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Abstract 

 

Due to the increased market volatility and uncertainties in today‟s competitive environment, 

there is a dire need for organizations to be more proactive and responsive in fulfilling customers‟ 

demand. Over the past few decades, achieving flexibility and robustness has been a key and 

strategic objective of most of the business organizations to handle these uncertainties. Due to its 

extensive breadth and sheer diversity, the term „flexibility‟ has crossed its traditional locus from 

manufacturing to various other fields including project scheduling. Amongst the different 

dimensions and facets of flexibility, labour flexibility (also termed as workforce flexibility or 

human resource flexibility) has been a subject of much academic enquiry in the recent years. 

This work focuses on project scheduling problems involving resource flexibility.  

Resources are inevitably necessary for the execution and realization of any project. The 

scheduling problems under the limited resource environment have been studied in the literature 

as the resource-constrained project scheduling problem (RCPSP). Due to both its theoretical 

relevance and practical applicability, there has been a significant and conspicuous research in the 

area of RCPSP in the last few decades. In this research, one of the recent and practical extensions 

of the RCPSP termed as the multi-skill resource constrained project scheduling problem 

(MSRCPSP) has been considered for investigation. Unlike the RCPSP, in these problems 

resources are flexible in nature i.e. each resource has the functionality of various renewable 

resources. This scenario is highly pronounced particularly in call centers, software development 

companies, consultancy firms, maintenance or construction agencies where the team members 

are skilled to perform a variety of jobs. The scheduling decision, therefore, is twofold i.e. 

allocation of a particular resource to an activity; and the specific skill for which the resource is 

allocated.  

A comprehensive literature review revealed that there exists a good literature pertaining to 

resource flexibility in shop-floor and job-shop scheduling but same has not been sufficiently 

addressed in the area of project scheduling. In most of the current works, it has been assumed 

that each activity require one skill and one resource unit in form of a staff member possessing the 

stated skill. Moreover, majority of these studies consider that staff members possess different 

skills with same proficiency levels. However, this is not true in real life. Usually in 
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organizations, a staff member possessing various skills may be expert in one (or more) particular 

skill(s) but may not be able to exhibit the same level of expertise in all skill types. The 

proficiency or expertise of a skill refers to the degree of sophistication, ease or superiority by 

which a staff member can deliver a particular skill. Also, is has been found that in majority of 

these studies only one scheduling objective (mostly the makespan) is considered. However, in 

many practical situations decision-makers are concerned about several objectives simultaneously 

which give rise to what is known as multi-objective multi-skill resource-constrained project 

scheduling problem (MO-MSRCPSP). 

The MSRCPSP is considered to be NP-hard in the strong sense hence it is difficult to find 

optimal solutions for large sized real life problems in reasonable time. During the past few 

decades, metaheuristic approaches have been an indispensable choice to achieve near optimal 

solutions for many of the combinatorial optimization and NP-hard problems, project scheduling 

being no exception. One of the recent metaheuristics for optimization problems is teaching-

learning- based algorithm (TLBO). The algorithm mimics the teaching-learning process 

commonly seen in classrooms. It has been successfully applied on mathematical benchmark 

functions and mechanical design optimization problems of continuous nature. To the best of the 

knowledge attained from literature survey, there is no reported work in literature having 

application of TLBO on standard RCPSP and its multi-skill version with finite resource 

requirements and consideration of skill proficiencies. 

Under this motivation, this study presents a TLBO algorithm with some modifications as an 

alternative metaheuristic approach for solving the general class of the RCPSP as well as for the 

MSRCPSP and its multi-objective case. The thesis starts by application of the TLBO for the 

RCPSP with some modifications from its conventional form. In addition to teacher and learner 

phase, two additional phases namely self-study phase and examination phase have also been 

appended in the conventional TLBO for improving the exploration and exploitation capabilities 

of the algorithm. The comparative results on standard benchmark problems show that 

performance of the proposed TLBO is quite competitive with other approaches available in the 

literature. 
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Subsequently in the second phase of the research, a TLBO for the MSRCPSP with modified 

encoding and decoding schemes has been developed that can accommodate the multi-skilled 

resource assignment information in the solution. In addition, a genetic algorithm (GA) with 

similar configuration has also been developed for comparing with the TLBO. The test instances 

have been developed using the methodology proposed in the literature and comparative results 

show that the proposed TLBO is quite effective to solve the MSRCPSP. 

To fill another research gap, unlike most of the current research work, a practical scenario has 

been considered wherein staff members possess different skills with different proficiency levels. 

More specifically, a multi-objective TLBO has been introduced for the MO-MSRCPSP with two 

objectives including minimization the project makespan along with minimization of total time 

elapsed with less-skilled resource assignments. A weighted-sum or scalarization method has 

been employed to design MO-TLBO and MO-GA to solve this problem. The results on the test 

instances having different project architectures establish that MO-TLBO can be an effective 

metaheuristic approach to tackle the MO-MSRCPSP.  

Some typical beneficiaries of this research may include software development companies, 

consultancy firms, R & D based organizations, maintenance firms, big construction houses etc. 

which incorporate multi-skilled staff members to accomplish different client orders 

simultaneously. Future research in this area may be directed towards consideration of project 

scheduling under stochastic or non-deterministic environment with varying activity times and 

interrupted skill availabilities. 
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Chapter 1 

 

Introduction 

 

1.1. Background 

Projects are inevitable in our day-to-day life. In fact, the growth and development of human 

civilization can be largely attributed to the timely and successful completion of various projects. 

The term „project‟ can be defined as a non-repetitive process with definite start and end time 

having specific objective(s) to be achieved under given constraints of time, cost and other 

resources.  

Many of the modern projects involve hundreds or even thousands of inter-related activities and 

their timely execution demands a formal and structured approach. Project management, a 

continuously growing management discipline, primarily involves planning, scheduling and 

controlling of projects. During the planning phase the activities and their characteristics (such as 

duration, nature, resource requirements, inter-relationships etc.) which must be carried out to 

achieve the stated project objective(s) are defined. In addition, the constraints definitions are also 

formalized in this phase. In the scheduling phase, the start and end times of various activities are 

determined, of course, by honoring the given constraints. Finally, in the controlling phase, 

monitoring and expediting of the project is carried out to ensure that activities are executed as 

scheduled. In addition, during control phase the project managers may also carry out corrective 

actions such as schedule repair or re-scheduling if unacceptable aberrations are found during 

project execution. Undoubtedly, the competitiveness and success of a business organization 

depend heavily on how effectively it employs project management tools to the projects. The 

applications of project management are manifold and can be found in constructional activities, 

public amenities and infrastructure, software development, process engineering, research and 

development, repair and maintenance activities and many more. 

The focus of this work is on scheduling aspect of project management which demands timely 

and effective allocation of resources to the project activities. This has been increasingly difficult 

and challenging in recent years primarily due to the dearth of skilled and sophisticated resources, 
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ever alarming energy crisis and increased geographical and political constraints. The scheduling 

problems of projects have been studied under a generic name called Project Scheduling Problem 

(PSP). A PSP involves a whole class of problems comprising different variations in fundamental 

project characteristics such as resources, activities, their inter-relationships and also the stated 

objective(s). The project scheduling function aims to determine the start/finish times of the 

activities involved in a project so that some predefined performance metric (e.g. makespan, 

profit, cost, NPV etc.) can be optimized for a given set of constraints. The nature and types of 

resources which have a profound effect in the execution and completion of a project will be the 

focus of discussion in the next section. 

1.2. Project scheduling under limited resources 

The early studies of project scheduling namely Programme Evaluation and Review Technique 

(PERT) by Malcolm et al. (1959) and Critical Path Method (CPM) by Kelley and Walker (1959) 

considered unlimited availability of resources which is, no doubt, an unrealistic assumption. In 

real life situations, different resources required by activities such as machines, humans, energy, 

budget etc. are indispensably limited in quantity and this demands their efficient and proper 

utilization. The scheduling problems under the limited resource environment have been studied 

in literature as the resource-constrained project scheduling problem (RCPSP). Due to both its 

theoretical relevance and practical applicability in diverse fields like research and development, 

maintenance, construction and software development, the RCPSP has attracted the attention of a 

large number of researchers. For a holistic and comprehensive view of the nature, variants and 

solution approaches of the RCPSP, reader is referred to surveys by Kolisch and Hartmann 

(2006), Hartmann and Briskorn (2010) and Habibi et al. (2018). 

Resources are inevitably necessary for the execution and realization of project activities (except 

dummy) and can be broadly classified at three levels: categories, types and units (Weglarz et al., 

2011). The category classification is established on the view-point of resource limitations based 

on time and can be further divided into following three basic sub-categories: 

 Renewable resources which are constrained only on a period basis i.e. the amount 

available of such a resource is fixed and constant for the entire planning horizon. 
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This is because the units of such resource are released immediately as soon as the 

execution of an activity is over. Examples include human resources, machines and 

equipment etc. 

 Non-renewable resources which are constrained only on total consumption over the 

entire planning horizon but having no restriction on per period availability. Units of 

non-renewable resource once consumed cannot be assigned to other activities. 

Examples are capital budget, raw material etc. 

 Doubly constrained resources which are constrained both on a period-to-period 

basis as well as for the entire project time interval. It is either used (e.g. tools, 

machinery, equipment etc.) or consumed (e.g. raw material, money etc.) by an 

activity during its execution. It is important to note that each doubly constrained 

resource can be suitably substituted by a single renewable and another non-

renewable resource. (Talbot, 1982). 

According to the type classification, resources are distinguished as per their functional 

capabilities. In other words, two or more resources of same type are equally capable to execute a 

given activity. Finally, the amount of resource availability can be defined under classification by 

unit basis which simply identifies the number of units (for discretely-divisible like machines, 

tools, workers etc.) or amount of resources (for continuously-divisible like money, energy, liquid 

etc.) required to execute a given activity. 

Besides these basic categories, several other categories of resources can also be found in 

literature such as preemptable and non-preemptable resources (Blazewicz et al., 1986), reusable 

resources (Shewchuk and Chang, 1995), dedicated resources (Bianco et al., 1998), spatial 

resources (De Boer, 1998), partially renewable resources (Bottcher et al., 1999), cumulative 

resources (Neumann et al., 2002),  multi-skilled resources (Neron, 2002), synchronizing 

resources (Schwindt and Trautmann, 2003),  adjacent resources (Duin and Van Der Sluis, 2006), 

changeover resources (Neumann et al, 2006) and heterogeneous resources (Tiwari et al., 2009) 

etc.   

Among the above mentioned categories, this work particularly focuses on „multi-skilled‟ 

resources wherein flexible resources have been considered i.e. each resource has the 
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functionality of various renewable resources. This scenario is highly pronounced particularly in 

call centers, software development organizations, consultancy firms, maintenance or construction 

agencies where the team members are skilled to perform a variety of jobs. For example, a coder 

in a software development project can perform both coding and debugging; a mason in 

construction projects can perform leveling, plumbing etc.in addition to plastering. In this context, 

a given task which requires certain skill(s) can be accomplished by any staff member possessing 

the stated skill(s). Besides human resources, multi-skilled resources also include multi-purpose 

machines, robots, automatic machining centers etc. The problem in literature has been studied 

under various names viz. “multi-skill project scheduling problem (MSPSP)” (Bellenguez-

Morineau & Néron, 2007), “project scheduling problem with flexible resources (PSPFR)” 

(Correia et. al., 2012) and “multi-skill resource-constrained project scheduling problem 

(MSRCPSP)” (Myszkowski et al. 2015). The underlying and common factor between all these 

problem classes is that a resource is considered to possess more than one skill. The scheduling 

decision, therefore, is twofold i.e. allocation of a particular resource to an activity; and the 

specific skill for which the resource is allocated.  

Due to its obvious applications in a lot of real-life projects, the MSRCPSP has gained quick 

attention of researchers since its advent and it still presents a potential area of research. This 

work focuses both on single-objective and multi-objective MSRCPSP which is again a scarcely 

treated work in literature. The concept of resource flexibility and its variants in project 

scheduling has been discussed in sufficient length in the next chapter. For the sake of brevity and 

convenience, the detailed discussion on the other resource categories mentioned in this section 

has been omitted. 

1.3. Solution approaches in project scheduling 

The RCPSP is combinatorial in nature and considered to be NP-hard (Blazewicz et al., 1983) in 

the strong sense hence it is difficult to find optimal solutions for large sized real life problems in 

reasonable time. The MSRCPSP, being a practical extension of the RCPSP, are more complex in 

the sense that number of possible ways of resource allocation can be exceptionally large. 
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During the past few decades, heuristics approaches have been an indispensable choice to achieve 

near optimal solutions for many of the combinatorial optimization and NP-hard problems, 

project scheduling being no exception. Unlike traditional mathematical programming techniques, 

heuristics are simple and intuitive in nature that determines sub-optimal or „good‟ solutions in 

reasonable amount of computational time. The early heuristics proposed for the RCPSP were 

constructive in nature and primarily based on priority rules and a schedule generation scheme 

(Kolisch, 1996). In pursuit of finding better solutions for practical optimization problems 

researches have proposed a variety of advanced heuristics called metaheuristics. These are a 

recent class of heuristics which start from one or more initial feasible solutions and imitate some 

natural or physical phenomena (e.g. genetic algorithms, simulated annealing etc.) to achieve 

convergence towards a global optimum solution. The metaheuristics have proved far efficient 

than rule-based heuristics in many fields and including project scheduling. 

Although a number of metaheuristic approaches exist in literature but it is interesting to note that 

no single approach can be guaranteed to give better results for all types of scheduling problems. 

This is primarily due to the inherent nature and solution mechanisms that these approaches 

employ, while one may be good at exploration, other at exploration. Nevertheless, this has 

constantly motivated practitioners and researchers to employ and explore the behaviour of newly 

designed metaheuristics based on various physical or natural phenomena. 

1.4. Motivation for the work 

A comprehensive literature survey revealed that although resource limitation aspect has been 

sufficiently addressed by researchers in project scheduling, the notion of skilled resources still 

presents a potential area of research. There exists good literature pertaining to resource flexibility 

in shop-floor and job-shop scheduling (Dauzere et al., 1998) but same has not been sufficiently 

addressed in the area of project scheduling. More specifically, numerous heuristic and 

metaheuristic approaches can be found for the RCPSP (Hartmann and Briskorn, 2010) but this is 

not true in case of MSRCPSP. The work by Neron (2002) wherein two lower bounds have been 

proposed can be attributed as the initial contribution to the MSRCPSP. Bellenguez-Morineau & 

Néron (2007) introduced branch-and-bound method for MSRCPSP which can tackle problems of 

only small scale. Later, Correia et al. (2012) developed an MILP formulation for the PSPFR and 
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introduced few more inequalities in order to solve it more effectively using a general solver. The 

concept of skilled resources has also been harnessed by researchers in in the area of personnel 

assignment (Ernst et al., 2004) but there is still a lack of efficient metaheuristics or solution 

approaches for solving large scale MSRCPSP. 

Moreover, in the above studies, only one scheduling objective (mostly the makespan) is 

considered. However, in many practical situations decision-makers need to optimize several 

objectives functions simultaneously which give rise to what is known as multi-objective multi-

skill resource-constrained project scheduling problem (MO-MSRCPSP). Recently, some work 

has been reported in literature in this growing area. Maghsoudlou et. al (2016) proposed multi-

objective invasive weeds optimization algorithm (MOIWO) with a new chromo-some structure 

guaranteeing feasibility of solutions to solve this problem.  Besides minimizing project‟s 

makespan, the two other objectives considered were minimizing total cost of allocating workers 

to skills and maximizing total quality of processing the activities. In addition, a knowledge-

guided multi-objective fruit fly optimization algorithm (MOFOA) was proposed by Wang et. al 

(2018) for MO-MSRCPSP with the criteria of minimizing the makespan and the total cost 

simultaneously.  

In most of these works, it has been assumed that a staff member possess different skills with 

same proficiency levels. However, this is not true in real life. Usually in organizations, a staff 

member possessing various skills may be expert in one (or more) particular skill(s) but may not 

be able to exhibit the same level of expertise in all skill types. To elaborate further, a coder in a 

software developing project may be highly expert to code in JAVA platform but may have 

moderate level of proficiency in Python, Elixir, TypeScript or other programming languages.  

The concept of this varied level of proficiencies has been studied in literature under the name 

„hierarchical skills levels‟ for single-objective problems but no substantial work can be found 

particularly for the multi-objective MSRCPSP. 

One of the recent metaheuristics for optimization problems is teaching-learning-based algorithm 

(TLBO). The algorithm, introduced by Rao et al. (2011), mimics the teaching-learning process 

commonly seen in classrooms. It has been successfully applied on mathematical benchmark 

functions and mechanical design optimization problems of continuous nature. The TLBO has 
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been reported to have high convergence rate and it also inherits a merit of few algorithm specific 

parameters to tune (Rao et al., 2011). Inspired by the performance of TLBO on continuous non-

linear problems, researchers have also applied it on discrete optimization problems. However, to 

the best of the knowledge there is no reported work in literature having application of TLBO on 

standard RCPSP and its multi-skill version with finite resource requirements and consideration 

of skill proficiencies. Under this motivation, this thesis presents a TLBO algorithm with some 

modifications as an alternative metaheuristic approach for solving general class of the RCPSP as 

well as for the MSRCPSP and its multi-objective case. 

1.5. Research objectives and the scope of the work 

The discussions made in section 1.4 highlight some relatively less studied areas in the domain of 

“project scheduling with flexible resources”. This has been a key motivation to develop efficient 

solution techniques for the multi-skill resource-constrained project scheduling problem 

(MSRCPSP) and also for multi-objective multi-skill resource-constrained project scheduling 

problem (MO-MSRCPSP) taking skill proficiencies into account. The behaviour of the 

developed metaheuristic has been tested on the standard resource-constrained project scheduling 

problem (RCPSP) as a preliminary approach. 

 In particular, following research objectives have been formulated in this work: 

1. To develop metaheuristic for the resource-constrained project scheduling problem 

(RCPSP). 

2. To develop metaheuristic for the multi-skill resource-constrained project scheduling 

problem (MSRCPSP). 

3. To develop metaheuristic for the multi-objective multi-skill resource-constrained project 

scheduling problem (MO-MSRCPSP). 

As explained earlier, there are a number of variations and extensions of the classical RCPSP and 

hence no approach can be generalized and suitable for all problem class. Having said this, the 

scope of the current work is limited by following assumptions:  



9 
 

 Single-mode for execution of activity and renewable type multi-skilled resources have 

been considered in this research work. 

 The prerequisite activity relations are of the finish-to-start type i.e. there exist zero time 

lags between activities. 

 The deterministic and static scheduling is assumed which implies that all activity times, 

resource requirements and their availabilities are known a priori and do not alter during 

execution. 

 The preemption of activities is not permitted and all skills needed by an activity need to 

be available at its start. 

 

1.6. Organization of the thesis  

This section discusses a brief overview of the contents included in different chapters of this 

thesis. Figure 1.1 gives a pictorial view of the organization of the thesis. The core contents and 

inclusions of each chapter have been mentioned below: 

In chapter 1, which is the current chapter, an introduction to the resource-constrained project 

scheduling along with relevance of metaheuristics as potential solution approach in this area is 

presented. In addition, it also brings out motivation and justification of incorporating multi-

skilled nature of resources in the current work. Finally, research objectives and scope of the work 

have been exhibited. 

Chapter 2, reviews the state-of-the-art literature on the RCPSP and MSRCPSP with special 

emphasis on concept of resource flexibility or multi-skill resources. The research gaps have been 

ascertained in the end as an outcome of the survey. 

In chapter 3, a recently introduced metaheuristic teaching-learning-based optimization (TLBO) 

has been proposed for the RCPSP with some modifications from its conventional form. The key 

philosophy of TLBO and its framework of application for the problem in hand have been 

discussed in detail. In addition the chapter also presents the results of the comprehensive 

computational experiments conducted to test the behaviour of the developed algorithm. 
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.Figure 1.1: Pictorial view of organization of the thesis 
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In chapter 4, a TLBO algorithm for the multi-skill version of the RCPSP, i.e., MSRCPSP has 

been introduced. In particular, a mathematical model for the problem has been formulated and a 

novel decoding scheme for the MSRCPSP has been proposed to suit the multi-skill nature of 

resources. As another contribution of this work, the chapter also presents a modified schedule 

generation scheme to avoid resource conflicts between competing activities and ensuring 

resource feasibility. 

In chapter 5, another scarcely treated work in literature has been targeted namely multi-

objective multi-skill resource-constrained project scheduling problem (MO-MSRCPSP) by 

giving due consideration to different skill proficiencies of resources. A multi-objective 

mathematical formulation has been presented for this problem which aims to minimize two time 

estimates (1) the project makespan and (2) the total time elapsed with under-skill resource 

assignments denoted as Skill Divergence Span (SDS). To solve this complex problem, a priori 

approach of multi-objective optimization has been used as it is simple and intuitive. The TLBO 

algorithm developed in chapter 5 for MSRCPSP has been appended with some modifications to 

facilitate multi-objective optimization. 

In chapter 6, finally summarizes the significant contributions and highlights of the research. 

Besides, an insight has also been given of important directions for accomplishing future research 

in the area of project scheduling. 
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Chapter 2 

 

Literature Review 

 

This chapter presents a comprehensive and state-of-the-art review on contributions made by 

researchers in the project scheduling area with special focus on scheduling under flexible 

resource profiles. More precisely, it investigates the multi-skilled resource-constrained project 

scheduling problem (MSRCPSP) which has been realized as a recent extension of the classical 

resource-constrained project scheduling problem (RCPSP). A brief overview of the generic 

concept of flexibility with special emphasis on workforce flexibility as an important facet and 

dimension of flexibility has also been presented in this chapter. The key contributions and 

available solution approaches in this area that may steer new research potentials have been 

discussed in sufficient length. In the later section, significant contributions in the multi-objective 

optimization under multi-skilled resources have been highlighted. For the purpose of 

completeness and coherence, the review of the standard RCPSP is presented first and 

subsequently it proceeds towards the multi-skilled extension of this problem. Figure 2.1 presents 

the systematic flow of literature review that has been adopted in this work. 

 

Figure 2.1: Flow of literature review 
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2.1 Resource-constrained project scheduling problem 

Since its advent, the RCPSP has been considered as one of the most intractable problems in 

operations research community and hence attracted ample attention of researchers and 

practitioners. The reason can be attributed to its sheer diversity and applicability in various fields 

like R & D, maintenance, manufacturing, construction and software development etc. Over the 

last few decades, it has been a standard problem for project scheduling which deals with 

determination of start/finish times of the activities involved in the project by respecting the 

precedence and resource constraints and fulfilling a specific objective (s).  

Since the early work on the RCPSP by Weist (1967), a number of researchers have contributed 

significantly in this area. It is important to note that initial solution techniques were mainly based 

on optimal or exact approaches such as dynamic programming, zero-one programming 

(Patterson and Roth, 1976), implicit enumeration (Patterson et al., 1990), branch and bound 

(Demeulemeester and Herroelen, 1992; Brucker et al., 1998) etc. Figure 2.2 classifies the various 

exact solution approaches employed by researchers to tackle the RCPSP. It is worthwhile to 

mention that exact approaches were found to be incompetent to provide good solutions for 

practical size problems which involve large number of activities and high network complexity. 

As the RCPSP is a generalized form of job-shop scheduling problem and proved to be NP-hard 

(Blazewicz et al., 1983) in the strong sense, the optimal solution is difficult to achieve for 

problems where number of activities exceeds around 60. This has motivated a lot of researchers 

in the past few decades to search for the near-optimal or heuristic solution approaches for solving 

the RCPSP. 

The early heuristics for the RCPSP were constructive in nature and primarily based on priority 

rules applied in a single or multi-pass fashion. A serial or parallel schedule generation scheme 

(Kolisch, 1996) is generally used to obtain a feasible solution from a given priority list. The 

study based on single pass priority rules and their relative comparison can be found in Boctor 

(1990). In this work it was shown that no single heuristic consistently perform well for a given 

problem and the performance may depend upon type of problem, network complexity and other 

related parameters. 
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Figure 2.2: Exact solution approaches for the RCPSP 
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Figure 2.3: Classification of heuristics methods for the RCPSP 

As mentioned earlier in chapter 1, in pursuit of finding better solutions for real life practical 

optimization problems of large and complex nature, researchers have proposed a latest class of 

heuristics called metaheuristics. The metaheuristics have proved far efficient than conventional 

heuristics in many fields and the RCPSP is no exception. These are generally inspired from 

nature or based on some physiological phenomenon. Figure 2.4 shows a summary of different 

metaheuristics that researchers have tested for the RCPSP.  

Among the most widely applied population based metaheuristic for the RCPSP is genetic 

algorithm (GA). Some of these include GAs developed by Hartmann (1998, 2002), Alcaraz and 

Maroto (2001) and Mendes et al. (2009). 

Heuristic 

methods 

Search-

based 

Based on 

exact 

methods 

Hybrid 

approach 

Constructive 

Improvement 

Schedule 

generation 

Neighborhood 

search 

Forward-

backward 

improvement 

Lagrange 

Decomposition 

Relaxation 

Combination 

within several 

heuristics 

Exact 

method 

Column 

generation 

Iteration 

Priority-

based 

Parallel 

scheduling 

Serial 

scheduling 

Double 

scheduling 

Serial 

 
Parallel 

Single pass 

Multi-pass 

Priority 

rule 

Forward 

backward 

Sampling 

method 

Biased random 

sampling 

Regret based 

random sampling  

Random 

sampling 



17 
 

 

Figure 2.4: Metaheuristics methods for the RCPSP 
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employed particle swarm optimization (PSO) wherein two different representations namely 

priority-based and permutation-based representations were considered for the RCPSP and their 

relative performance was analyzed.  

Besides these well-known metaheuristics, researchers have also tested the performance of some 

other specific metaheuristics on the RCPSP. For example, Fang and Wang (2012) applied 

shuffled frog-leaping algorithm (SFLA) to solve this problem by encoding an activity list as 

virtual frog and using specific serial schedule generation scheme to decode the same. In the work 

of Eshraghi (2016), differential evolution (DE) algorithm embedded with local search techniques 

was employed to solve the RCPSP. In a recent application, the scheduling problem in 

construction industry was tackled by harmony search (HS) algorithm which is based on a 

musician‟s search process to achieve a better harmony (Giran et al. 2017). To tackle a practical 

extension of RCPSP, Lacomme et al. (2017) introduced a new shortest path algorithm that 

considers both routing and scheduling. 

Due to the rapid development in the complexity theory and maturations in artificial intelligence 

techniques, research communities have begun to introduce more and more practical extensions of 

the RCPSP. As a matter of fact, project scheduling under limited resources has escaped from its 

conventional locus of operation research or management science to other applications including 

those in control theory, computer sciences, system simulation etc. In recent years, there has been 

an unprecedented growth not only in defining new paradigms of the RCPSP but also in devising 

its advanced solution approaches. In order to understand different solution approaches, variants 

and extensions of the RCPSP, reader is referred to surveys by and Hartmann and Briskorn (2010) 

and Weglarz et al. (2011).  

Recently, Habibi (2018) identified four main characteristics of the RCPSP which may be 

attributed for possible variations in realizing practical extensions of the standard RCPSP. These 

are resources, concept of activities, objective functions and the availability level of information. 

Figure 2.5 depicts these characteristics along with their sub-classifications. 
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Figure 2.5: Variations and extensions of the RCPSP ( Habibi et al., 2018) 
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Out of these various real-life generalizations, the current work particularly focuses on the 

concept of flexible resource or more specifically multi-skill resource categories for single mode 

project scheduling. The next section presents the facets and dimensions of flexibility that have 

been conceptualized by researchers in the area of manufacturing and thereby identifies their key 

applications in the context of project scheduling. 

2.2 Flexibility in project management 

2.2.1. Theoretical concept of flexibility 

For the past few decades, the concept of flexibility has gained ample attention from researchers 

due to its importance and relevance in diverse fields such as design, manufacturing systems, 

production planning and control, construction, service centers, software development, etc. The 

generic concept of flexibility seems difficult to define due to extreme diversity in its connotation; 

however, it can be identified and realized by certain characteristics such as responsiveness, 

adaptability, resilience, rapidity, efficiency, reliability and sometimes complexity (Bordoloi et 

al., 1999). Olsson (2006) analyzed the dynamics related to project flexibility, both from a 

theoretical and an empirical perspective. 

2.2.2. Flexibility versus uncertainty 

Organizations in today‟s world are exposed to various types of uncertainties on account of 

continuous and dynamic changes that often become quite significant in magnitude. Uncertainties 

in projects are usually one of a major concern of project stakeholders which may have 

unproductive repercussions and detrimental effects on the overall project growth and hence on 

the expected objective(s). Atkinson et al. (2006) categorized the overall uncertainty in a project 

relying on three attributes: uncertainty associated with estimation, uncertainty due to different 

project life cycles and uncertainty due to project stakeholders. Herroelen and Leus (2004) 

defined uncertainty in terms of magnitude of different project parameters viz. time, cost and 

quality as well as process intricacies like what, how, when, by whom and at what cost a process 

has to be done. In order to face these uncertainties, organizations are expected to be internally 

and/or externally flexible. Undoubtedly, the ever increasing demand of high quality goods and 

services and that too at low cost by customers impose an additional pressure on organizational 
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functionalities to develop robust and flexible systems that can handle uncertainties. In fact, the 

discipline of project risk management relies heavily on how accurately practitioners are able to 

ascertain possible reasons of uncertainties. 

The application of concept of flexibility to handle uncertainties has attracted significant attention 

and recognition by researchers in the recent years. Groote (1994) demarcated flexibility as “a 

hedge against the diversity or uncertainty of the environment”. The word „diversity‟ was 

interpreted to represent variety, complexity, variability in the types and quantities demanded by 

customers. A flexible technology-enabled organization is capable of responding in favourable 

manner towards various environmental uncertainties in a better fashion as compared to its 

competitors. Beach et al. (2000) recommended reactive and proactive flexibility approaches to 

handle an uncertain environment. An early attempt depicting the association of flexibility types 

and uncertainty was made by Gerwin (1987) and shown in Table 2.1. It is interesting to note that 

each type of uncertainty needs a different and specific type of flexibility to accommodate it.  

 

Table 2.1: Association of flexibility and uncertainty types (Gerwin , 1987) 

Flexibility type Association to uncertainty type 

Mix 
Uncertainty as to which products will be accepted by customers created a need for mix  

flexibility 

Changeover Uncertainty as to the length of product life cycles leads to changeover flexibility 

Modification 
Uncertainty as to which particular attributes customers want leads to modification 

flexibility 

Re-routing Uncertainty with respect to machine downtime makes for rerouting flexibility 

Volume 
Uncertainty with regard to the amount of customer demand for the products offered 

leads to volume flexibility 

Material 
Uncertainty as to whether the material inputs to a manufacturing process meet 

standards gives rise to the need for material flexibility 

Sequence 
Sequence flexibility arises from the need to deal with uncertain delivery times of raw 

materials 
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2.2.3. Flexibility dimensions in manufacturing  

The concept of flexibility in manufacturing well existed in literature (Dauzere-Peres et al., 1998). 

Due to the very nature of diversity in flexibility definition, researchers have identified different 

traits and dimensions of manufacturing flexibility such as quantitative, qualitative, offensive, 

defensive, static, dynamic, internal and external. A firm‟s overall flexibility is a blend of these 

various dimensions, of course, with varied levels of each type. In their work, Golden and Powell 

(2000) identified four more dimensions of flexibility namely intension, focus, range, and 

temporal. The temporal flexibility can be further classified into three sub-categories namely 

strategic, tactical and operational flexibilities. Further, in the work of Koste and Malhotra (1999), 

operational flexibility of an organization was categorized into various other flexibilities such as 

labour flexibility, product flexibility, volume flexibility, mix flexibility, material handling 

flexibility, routing flexibility, expansion flexibility etc.  

2.2.4. Human resource flexibility  

Out of the various facets and dimensions of manufacturing flexibilities mentioned above labour 

flexibility will be of particular interest in this work. The term has been invariably used with 

workforce flexibility or human resource flexibility in the literature and may be defined in terms 

of number of heterogeneous or variety of jobs that a labour or worker is capable to perform with 

satisfactory level of cost, quality and performance. Due to their inherent mobility and ability to 

migrate from one work station to another, human resources can be considered as one of the key 

contributors in imparting flexibility to an organization. Table 2.2 (Goudswaard and De Nanteuil, 

2000) shows the two basic forms of human resource flexibility namely external flexibility and 

internal flexibility. These have been further categorized into several sub-categories as shown. To 

achieve external flexibility the required workforce is balanced by hiring more workers on short 

term contracts from external market. This facilitates organizations to realize a rapid and costless 

strategic flexibility to cope up with the turbulent customers‟ demand. 

There are negative impacts of developing external flexibility in terms of lack of core 

competences among employees, high hiring and layoffs costs, reduced morale and motivation of 

workers and also health and safety issues. Moreover, the flexibility achieved is a static one rather 
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than dynamic in nature. To overcome these issues, the organizations often strive for developing 

internal flexibility which is also referred as multi-skills flexibility. Multi-skills flexibility is 

defined as the ability of human resources to carry or execute variety of tasks rather than fixed or 

conventional ones. This kind of flexibility is also sometimes categorized into functional 

flexibility which requires rigorous training programme to incorporate in an organization. In this 

thesis focus is given on multi-skill flexibility of workers which is known to play a paramount 

role in handling the dynamic and static uncertainties of an organization. 

Table 2.2 Different forms of flexibility (Goudswaard and De Nanteuil, 2000) 

Forms of flexibility Quantitative flexibility Qualitative flexibility 

External flexibility Employment status Production system 

 Permanent contracts  Subcontracting 

 Fixed-term contracts  Outsourcing 

 Temporary agency contracts  Self employed 

 Seasonal work 

 Work on demand/call 

Numerical flexibility and/or 

contract flexibility 

Productive and/or geographical 

flexibility 

Internal flexibility Working time Work organization 

 Reduction of working hours  Job enrichment/job rotation 

 Over-time/part-time work  Teamwork/autonomous work 

 Night and shift work  Multitasking, multi-skilling 

 Weekend work  Project groups 

 Compressed working week  Responsibility of workers over: 

planning, budget, innovation, 

technology 

 Varying working hours 

 Irregular/unpredictable working time 

Temporal flexibility Functional flexibility 

  

Although the flexibility concepts have been incorporated and tested in different fields of study, 

in the light of scope of this work, only review of the works pertaining to flexibility in the project 

scheduling environment is presented. Moreover, to keep the review focused, the resources 
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considered are only humans or staff members ignoring other flexible resources such as multi-

purpose machines, automatic workcentres, etc.   

2.3. Project scheduling under flexible resources 

Realizing the importance and relevance of multi-skilled staff in increasing competitive advantage 

of an organization, a lot of researchers in recent years have formulated mathematical models and 

applied them in various scheduling problems that involve flexible resources. There are primarily 

two different scenarios or set-ups where flexible resources have been studied. In the former, the 

review of the staff assignment problems involving multi-skilled resources is done and later 

section focuses on state-of-the art in the multi-skill resource-constrained project scheduling area. 

 

2.3.1. Multi-skill personnel and staff assignment problems 

These problems are not essentially in a project architecture form, but largely concerned with 

optimum allocation and assignment of flexible resources in different applications such nurse 

rostering; school timetabling, workforce balancing etc. Cai and Li (2000) formulated a multi-

criteria optimization model for a staff scheduling problem with three objectives: minimization of 

total cost incurred in assigning staff to meet manpower requirements; maximization of surplus of 

staff for same assignment cost; minimization of variations in surplus staff for different time 

periods. It is interesting to note that problem is not purely of multi-skill type in the sense that not 

all staffs members were assumed to possess multi-skills. More specifically, three types of staff 

members were considered such that type-I members were able to do type-I job, type-II were able 

to do type-II job and type-III staff members were able to perform both type-I and type-II jobs. In 

order to handle this complex problem a multi-point crossover based GA was proposed which 

proved effective in finding desirable solutions. 

In the work of Cordeau (2007), a construction heuristic coupled with an adaptive large 

neighborhood search heuristic was proposed for scheduling of technicians and tasks in a 

telecommunication company. In the model, each technician was assumed to exhibit different 

levels of skill hierarchy in a number of skill domains. In addition, the tasks also vary in difficulty 
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in the sense that some tasks require more than one technician for their execution. The problem 

was given as the subject of 2007 challenge set-up conducted by French Operational Society 

(ROADEF) in collaboration with France Telecom. The algorithm stood second in the 

competition. Later, Firat and Hurkens (2011) improved the solution of the above problem by 

incorporating the opportunity of outsourcing some tasks. The solution approach introduced 

flexibility in matching model which resulted in improved packing of the experts requiring 

heterogeneous skill distribution. 

In another variation of the staff scheduling problem with multi-skilled workforce, Li and Womer 

(2009) developed a hybrid benders decomposition (HBD) which combined the complementary 

strengths of both constraint programming (CP) and mixed-integer linear programming (MILP) to 

minimize the staffing costs under three constraint types: generalized temporal constraints, 

constraint in terms of project deadline on the makespan and lastly the multi-skilled resource 

constraints. It was shown by the computational study that hybrid MILP/CP algorithm performed 

significantly better and efficient than pure MILP or CP approaches when tested alone. 

In one of the real-life applications of skilled workforce scheduling, Valls et al. (2009) considered 

various practical characteristics that are faced daily by Service Centers of the organizations. 

These include service quality agreements between client and company enforcing additional 

constraints on start and end dates for tasks with corresponding penalties in case of delay. 

Besides, other constraints considered were related to generalized precedence relations between 

tasks, time lags and variable task durations. Each worker was characterized by his/her efficiency 

levels and speed in executing different tasks. The objective chosen for the study was to obtain a 

quick feasible plan respecting the constraints of workers‟ timetable and maximum pre-

established dates. A novel and hybrid GA which combined local search strategies with genetic 

techniques was proposed to solve this complex multi-objective staff scheduling problem. 

Heimerl and Kolisch (2010) considered the problem of scheduling of IT projects involving 

multi-skilled resources with heterogeneous efficiencies with an objective of minimizing the 

labour costs. A MILP model with a sharp lower bound was proposed for this problem and 

benefits of applying it over simple heuristic in real-life projects were established. 
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Ranjbar and Kianfar (2010) used a different setting of skilled resources in their problem which 

consisted of only one renewable bottleneck resource and the processing time of activities and 

resource requirement was not pre-specified. Based on the total work content, all feasible work 

profiles were determined using a genetic algorithm approach. The problem was identified with 

the name resource-constrained project scheduling problem with flexible work profiles (RCPSP-

FWP). For the same problem class, Naber and Kolisch (2014) proposed four discrete-time model 

formulations in which the resource usage of an activity can be adjusted from one period to other. 

The computational results indicated that the variable-intensity-based model performed 

significantly better than the other three models. 

Gutjahr et al. (2008) proposed a non-liner MIP model for the project portfolio selection under 

multi-skilled resource environment. The model aimed to maximize the average profit of project 

selection, optimization of time and optimal assignment of persons to the selected projects. A 

greedy heuristic algorithm was employed to assign and schedule the persons and a metaheuristic 

to select the project. The solutions when compared with the lower bounds obtained by the exact 

solutions of simplified mathematical model proved very effective. 

The concept of multi-skilled resources has also been suitably harnessed in the problems related 

to the area of construction engineering and management. For example, Hegazy et al. (2000) 

investigated a linear programming model to optimize the assignment and allocation process of a 

partially multi-skilled workforce. The transition of one worker from one activity or crew to 

another, known as „switching‟ was minimized through this study. It was ascertained using 

Construction Industry Institute (CII) Model Plant data that paybacks of multi-skilling are not 

significant beyond 20% concentration of multi-skilled workforce in a given crew. In another 

study, Wongwai and Malaikrisanachalee (2011) proposed an alternative resource substitution 

approach through an augmented heuristic algorithm. It was shown by a number of case studies 

that this approach achieved shorter project durations as compared to other scheduling 

approaches. For optimization of linear scheduling problem Liu and Wang (2012) developed a 

constraint programming (CP) based optimization model along with heuristic rules and solved a 

standard bridge example available in the literature. The model also allowed the interruptions 

between two similar but repetitive activities. By this study managers can suitably select an 
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appropriate strategy for selecting crew and also ascertain the timing for temporary hiring of 

workforce. 

It is worth mentioning here that the problem of scheduling with multi-skilled resources can also 

be classified as a special case of the multi-mode RCPSP (MMRCPSP) in which the permissible 

number of modes for each activity corresponds to the possible number of subsets of staff 

members that can perform the said activity. This number can be exceptionally large and hence 

traditional methods to solve MMRCPSP (Reyck et al., 1999, Josefowska et al., 2001) cannot be 

applied directly to MSRCPSP. More specifically, each activity is assumed to be processed in 

multiple modes such that activity duration in a particular mode is inversely proportional to the 

number of resource required by the activity. In literature the above problems are associated by 

the term „elastic task modeling‟. The term elastic is used as an analogous to metal spring 

elasticity where the length of a spring is inversely related to the force applied. Using same 

principle, the activity durations are in inverse relation to the allocated resources capacity. 

For the above mentioned problem type, Kadrou and Najid (2007) proposed a novel tabu search 

algorithm (TS) with an objective of the minimization of overall project duration. The TS was 

embedded in decomposition based heuristic (DBH) with the purpose of reducing the search 

space. In order to test the behaviour of the developed algorithm, different standard benchmark 

instances were used and results were found competitive. In another work under this problem 

class, Santos and Tereso (2010) introduced a multi-objective cost-based mathematical model in 

which each activity required only one unit of resource but this resource may be employed at any 

of its specified levels.  

Although notion of skill has been extensively applied in a lot of works related to personnel 

assignment, the literature in multi-skill project scheduling is still rare. The next section reviewes 

few of the contributions in this area that has steered and motivated other researchers to devise 

more efficient solution approaches for this complex problem. 

2.3.2. Multi-skill resource-constrained project scheduling problem  

This section specifically review the works in which researchers have applied the concept of 

human resource flexibility (termed as multi-skill resources in this context) in the project 
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scheduling environment. As explained earlier in chapter 1, unlike the conventional RCPSP, the 

resources in a MSRCPSP master one or more types of skills out of the several available skills. 

The resources are to be allocated from a pool of staff members with each member mastering one 

or more skill types. The scheduling decision, therefore, is twofold i.e. allocation of a particular 

resource to an activity; and the specific skill for which the resource is allocated. The usual 

objective of a typical MSRCPSP is to minimize the project makespan; however, in recent years 

researchers have also tackled the multi-objective cases of this problem. In the next section some 

of the recent contributions by researchers for both the single-objective and multi-objective cases 

of this problem are discussed. 

2.3.2.1. Single-objective MSRCPSP  

The motivation for the MSRCPSP was derived from considerable research in the field of 

workforce planning and staff scheduling mentioned in previous section. For example in the nurse 

rostering problem (Ernst et al., 2004), all needs of different working shifts have to be satisfied 

from the team of employees by giving fair consideration to employee‟s individual preferences 

and constraints. Similarly, in the problem of course time tabling (Alvarez et al., 1996) the 

concept of multi-skill staff was harnessed wherein a feasible time table for each lesson was 

determined respecting the constraints of teachers‟ availability and classrooms. To the best of the 

knowledge, the work by Néron (2002) represents the formal introduction and initial contribution 

in the area of the MSRCPSP. Later, Bellenguez and Néron (2004) extended the concept by 

introducing hierarchical levels of skill abilities where each staff member was assumed to possess 

the required skill(s) at different levels, thus imposing more complexity in the basic MSRCPSP. 

The objective chosen was the minimization of the makespan. To solve this complex problem, 

authors introduced the two lower bounds adapted from the lower bounds already available in 

literature for the RCPSP. 

In another work, based on exact approach for this problem, Bellenguez and  Néron (2007) 

introduced a branch-and-bound method which can tackle problems of small and average size 

instances up to 32 activities. There were no hierarchical levels for skills considered in the 

instances but a finite number of unavailability periods were assumed for the employees. After 
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comprehensive experimentations, it was established that neither the precedence junction nor the 

resource junction can be linked directly with the difficulty level to solve an instance. 

Correia et al. (2012) modeled the MSRCPSP as a mixed-integer linear programming (MILP) and 

proposed sets of additional inequalities so as to solve the small and medium sized instances 

without the use of off-the-shelf general solver. The other contribution of this work can be seen in 

the form of developing standard benchmark instances for the MSRCPSP by taking motivation 

from instance characteristics mentioned in the project scheduling problem library (PSPLIB) 

(Kolisch and Sprecher, 1997). Analogous to a RCPSP instance, three fundamental characteristics 

of an MSRCPSP instance were identified namely the network complexity (NC), the skill factor 

(SF) and modified resource strength (MRS). Almeida et al. (2015) later proposed a detailed and 

comprehensive procedure for developing the various instances of MSRCPSP with varying 

complexity. In this thesis, this procedure will be used and coded to generate instances of required 

characteristics for computational studies. In the light of this aspect, a more detailed and elaborate 

methodology on the instance generation procedure will be presented in chapter 4. 

Most of the above works were largely concerned with proposing optimal or exact solution 

approaches for the MSRCPSP in terms of effective lower bounds or enhancing theoretical MILP 

models by imposing additional inequalities. However, as already mentioned, the MSRCPSP 

being an extension of the RCPSP, is also NP hard which limits the possibility of solving large or 

practical instances in reasonable computational time. Moreover, the problem is a special case of 

multi-mode-RCPSP where the number of modes is given by the permutations or different subsets 

of staff members that may be assigned to a candidate activity and this may be exceptionally 

large. For example, a project instance with only three skills types and with only one level for 

each skill, among a pool of 10 employees may have 1000 different modes for executing some of 

the activities. Nevertheless, the initial solution techniques based on exact approaches are of great 

importance not only because of their academic insight but also for their ability to provide a 

reference or benchmark for evaluating the different newly designed heuristics. 

Among few of the early applications of (meta) heuristics for the MSRCPSP, Kazemipoor et al. 

(2012) formulated the MSRCPSP as a novel linear mixed-integer programming (MILP) problem 

and proposed an efficient simulated annealing (SA) algorithm for finding its solution. In order to 
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test the behaviour of the proposed SA, the authors compared it from the optimal solutions 

obtained by LINGO solver for small sized instances. The results were quite promising in the 

sense that optimal or near-optimal solutions for small instances as well as „good‟ solutions for 

larger instances were determined in a reasonable time using the SA. 

In the work of Almeida et al. (2016), the problem was solved using a heuristic approach based on 

eight different priority rules and a modified parallel scheduling scheme. The author introduced 

two new concepts namely resource weight and activity grouping to accommodate multi-skilled 

nature of the resources. More specifically, each resource was assigned a weight depending upon 

the number of skills it masters as well as scarceness and demand of the particular skill. The 

activity grouping was made feasible by transforming the resource assignment problem into a 

minimum cost network flow problem denoted as MC-NFP. The computational experiments were 

performed on the test instances proposed by Correia et al. (2012) and deviation from the length 

of critical path was determined for various instances. It was concluded in the study that no rule 

performed significantly well simultaneously for all values of NC, SF and MRS. However, the 

hybrid of two activity priority rules namely LST (Latest Start Time) and GRPW (Greatest Rank 

Positional Weight) designated as LST+GRPW was found to exhibit better results among other 

ten alternatives chosen in the study. In another work, Almeida et al. (2018) employed a biased 

random-key based GA (based on Mendes et al., 2009) for the MSRCPSP and improved their 

previous results obtained by the priority rule-based heuristics. 

A notable research can be comprehended by some authors in multi-skilled resource based 

scheduling area by considering the integration of resource investment problem (RIP) with the 

multi-skilled project scheduling. In a RIP, the limits on renewable resources have been treated as 

decision variables and the goal is to minimize the procurement cost of renewable resources with 

constraint on project completion deadline. Under this motivation, Javanmard et al. (2017) 

proposed two MILP models to minimize the total requirement cost for the different skill levels. 

To tackle this complex problem, the author proposed an innovative solution representation 

scheme and two metaheuristic approaches namely GA and particle swarm optimization (PSO) 

whose parameters were calibrated by response surface methodology (RSM). The performance of 

the algorithms was evaluated for different runs and compared with those obtained by GAMS 
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software. The results confirmed the applicability of the proposed methodology especially for 

real-life problem scales. 

Recently, Myszkowski et al. (2018) applied a hybrid Differential Evolution and Greedy 

Algorithm (DEGR) with specialized indirect representation for the MSRCPSP. It is interesting to 

mention that the authors transformed the solution space from discrete (typical for the MSRCPSP) 

to continuous one (which is generally a feature of DE approaches). The authors compared the 

performance of DEGR with other reference methods such as hybrid ant colony (HAntCO), 

multiStart Greedy and GRASP on 36 benchmark instances which later became available in 

literature (Myszkowski et al. 2018). The results confirmed the robustness of the proposed 

algorithm. In fact, for 28 instances of iMOPSE dataset the best-known solutions were obtained 

by DEGR. 

2.3.2.2. Multi-objective MSRCPSP  

The various complex and realistic optimization problems in daily life or engineering applications 

demand optimization of more than a single objective such as maximizing the profit while 

minimizing the consumption of raw materials, improving a product quality and lowering the 

production cost or choosing a comfortable car at the minimum price and so on. These objectives 

are mutually conflicting or contradictory with each other and hence conventional solution 

approaches for single-objective optimization no longer prove feasible to solve these problems. 

There are two common techniques available in literature to handle the multi-objective problems; 

one is priori approach that combines the individual objective functions into a single function by 

allocating weights based on judicious and conceptual skill of practitioners and other is posteriori 

approach in which set of Pareto optimal solutions are obtained that are nondominated with 

respect to each other. For a holistic and comprehensive view of multi-objective optimization 

principles and theory, reader is referred to book by Kalyanmoy Deb, 2001.  

In this section, the contributions made by researchers in the field of multi-objective project 

scheduling problems with flexible resources have been reviewed. Myszkowski et al. (2015) 

utilized a hybrid ant colony optimization (HAntCO) by linking classical heuristic priority rules 

with the ant colony optimization (ACO) philosophy to solve a special case of MSRCPSP. 
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However, it was assumed that each task can be executed exactly by one of the resource out of the 

available pool of resources. The authors proposed a novel method for updating the value of 

pheromone by memorizing the best and worst solutions by ants. Two objectives were chosen in 

this study namely duration optimization and cost optimization and tests were performed on the 

iMOPSE (intelligent multi-objective project scheduling environment) data set containing 36 

instances created as benchmark instances for the bi-objective MSRCPSP. It was found that 

HAntCO outclassed classical ACO for both the objectives. 

For the same type of multi-objective problem, Zheng et al. (2015) developed a teaching-learning-

based optimization (TLBO) algorithm incorporating a task-resource list-based encoding scheme 

and a left-shift decoding scheme. To enhance the local intensification of the TLBO, the authors 

also appended it with a reinforcement phase. The parameter setting based on Taguchi‟s design of 

experiment was carried out to fine tune the algorithm and its performance was found effective 

than the HAntCO proposed by Myszkowski et al. 2015. 

Similar to the MSRCPSP, the multi-objective MSRCPSP has also been realized by some 

researchers as a special case of MMRCPSP. For example, Maghsoudlou et al. (2016) studied the 

multi-skill multi-mode resource-constrained project scheduling problem with three objectives: 

(1) minimization of makespan of the project (2) minimization of total cost incurred in allocation 

of workers to required skills, and finally (3) maximizing the overall quality of activities which 

are executed. The authors encoded the solution into a novel chromosome structure that 

guaranteed the feasibility of solutions. A multi-objective invasive weeds optimization algorithm 

(MOIWO) was developed in this work to solve this tri-objective problem and results were 

compared and found competitive to the two other metaheuristic algorithms namely non-

dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization 

(MOPSO) developed for the purpose. In another work by same authors (Maghsoudlou et al., 

2017) three different modifications of Cuckoo Search algorithm (CS) were proposed for the bi-

objective MSRCPSP problem with two conflicting objectives: (1) minimization of the total cost 

of processing the activities and (2) minimization of the reworking risks of the activities.  

Recently, Wang and Zheng (2018) employed a knowledge-guided multi-objective fruit fly 

optimization algorithm (MOFOA) for the bi-objective MSRCPSP. The two objectives 



33 
 

considered were minimization of project makespan and total cost simultaneously. The minimum 

cost rule method was used for the initialization of the feasible solutions and both smell and 

vision-based search were adopted carry out the multi-objective optimization. The numerical tests 

conducted showed the effectiveness of the MOFOA over HACO (Myszkowski et al. 2015). 

2.4. Summary and research gaps 

In this chapter a thorough literature review related to the pertinent areas of project scheduling 

within the scope of this work is presented. Focus is given to the concept of flexibility and its 

elucidation in the area of project scheduling. The notion of skills in MSRCPSP is also 

highlighted and a brief outline of its solution approaches for both single and multi-objective 

optimization is presented. Although there has been a phenomenal growth in the classical RCPSP, 

there still seem few potential research gaps which have been mentioned below: 

1. Most of the research has been focused on basic resource categories that is renewable, 

non-renewable and double constrained resources but adequate research about other 

recently introduced categories of resources such as dedicated resources, spatial resources, 

adjacent resources, cumulative resources, reusable resources, synchronizing resources, 

multi-skilled resources, changeover resources etc. or their combinations has not been 

tackled in sufficient length in the literature.  

2. There seems a good scope of work in the area of modifying the activity characteristics in 

a project such as time-switch constraints, preemptibility, time-varying tasks, crashing etc. 

Also, a combination of these real-life activity variations can be studied in detail for a 

given scenario. 

3. Unlike deterministic project scheduling, the work done in project scheduling under 

uncertainty is still rare. There is a good scope of developing efficient approaches for 

reactive scheduling, stochastic project scheduling, and fuzzy project scheduling and 

robust (proactive) scheduling. 

4. Furthermore, research in sensitivity analysis in project scheduling environment has not 

been explored to the extent as compared to shop floor or production system scheduling. It 

can be fruitful to estimate the effect of change in parameters on the quality of solution 

obtained from an exact or (meta) heuristic approach.  



34 
 

5. More specifically, a lot of heuristic and metaheuristic approaches are available for the 

RCPSP in literature but efficient metaheuristics for the multi-skill resource-constrained 

project scheduling problem (MSRCPSP) are still rare. 

6. Although hierarchical levels of skills exist in literature but to the best of the knowledge 

there is no reported work/algorithm involving different proficiency levels of skills 

attained by staff members (resources). 

7. There is a substantial literature addressing the multi-objective RCPSP, however a very 

less work has been reported in literature regarding multi-objective multi-skill resource 

constrained project scheduling problem (MO-MSRCPSP) with consideration of 

proficiency levels in skills attained by staff members or human resources. 

This thesis aims to fill some of these gaps, particularly related to the application of multi-skilled 

resources for achieving „good‟ solutions for single and multi-objective cases. Moreover, the 

concept of varying skill proficiencies of staff members will also be taken into consideration 

during multi-objective optimization. 
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Chapter 3 

 

Teaching-learning-based optimization algorithm for the RCPSP 

 

 

3.1 Introduction 

As mentioned in chapter 1, in this work a modified version of teaching-learning-based 

optimization algorithm (TLBO) will be developed which is a recently introduced metaheuristic 

by Rao et al. (2011). The TLBO is a population based metaheuristic that mimics the teaching-

learning process commonly seen in classrooms. It has been successfully applied on mathematical 

benchmark functions and mechanical design optimization problems of continuous nature. 

Interestingly, the algorithm has been reported to have high convergence rate and inherits a merit 

of having few algorithm specific parameters to tune (Rao et al., 2011). Inspired by the 

performance of the TLBO on continuous non-linear problems, a lot of researchers have applied it 

on discrete optimization problems in recent years. For a more comprehensive review of TLBO 

and its application readers are referred to a recent survey by Zou et al. (2018). 

Under above motivation, this chapter presents the framework and details of implementation 

methodology of modified TLBO that has been conceptualized for the resource-constrained 

project scheduling problem (RCPSP). Inspired by the study of Zheng and Wang (2014), in 

addition to teacher and learner phase, the proposed work also applies two additional phases 

namely self-study phase and examination phase for improving the exploration and exploitation 

capabilities of the algorithm.  

In this chapter, a formal introduction of the RCPSP is exhibited first with an illustrative example. 

It is followed by basic philosophy or working mechanism of the conventional TLBO. 

Afterwards, the encoding and decoding procedure designed to incorporate TLBO philosophy in 

this problem is explained in detail. Finally, the comparative results with other state-of-the art 

approaches available in literature to solve the RCPSP have been shown to validate the developed 

algorithm. 
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3.2. Problem description 

Consider a directed acyclic graph G(J,E) to represent a non-preemptive single mode resource 

constrained project scheduling problem (RCPSP) wherein J denotes the activities and  E 

represents the precedence relations. The precedence relations which exist amongst activities due 

to technological requirements force each activity j to be scheduled after all its immediate 

predecessors (given by set E) are completely finished. There are total n+2 activities in the project 

represented by set J, J= {1, 2,…… n+2} and K renewable resources given by set R so that R= 

{1, 2, ……, K}. It is important to mention that activities 1 and n+2 are dummy in nature i.e. they 

do not consume time and resources and represent start and finish activities of the project. 

Each activity j   J needs rj,k units of resource k (k   R) during each time period of its non- 

preemptive duration dj (obviously d1 = dn+2 = 0 and r1,k = rn+2,k = 0). Unlike PERT/CPM approach, 

in RCPSP a practical assumption that per-period availability of each resource k   R is limited 

and constant given by Rk is considered. The values of the parameters Rk , dj and rj,k (total 

availability of resources, processing time of activities and resource requirement by activities) 

have been considered  as deterministic, integer and non-negative. Let fj denotes the finish time of 

activity j , then a schedule or solution of a RCPSP can be given as a vector of activities‟ finish 

times, S={f1, f2, ……, fn+2}.The objective function is to minimize the makespan fn+2 i.e. the finish 

time of last activity. 

Mathematical formulation 

Minimize  f n+2          (3.1) 

Subject to: fj – fi ≥ di   (i,j)   E       (3.2)  

  ∑          rj, k    Rk  t    ;          (3.3) 

  fj                 (3.4) 
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Eq. (3.1) represents the objective function which is to minimize the makespan of the schedule. 

The precedence constraints between activities are handled by Eq. (3.2). As explained earlier, the 

resources are limited in the RCPSP which is enforced by Eq. (3.3), where A (t) = j   J   fj – dj   t   

fj  represents the set of activities which are active or being processed at time t. Finally, the 

constraint for decision variables to be non-negative integers is represented by Eq. (3.4). 

Figure 3.1 depicts an example of a typical project having eight activities with activity 1 and 

activity 8 as dummy source and sink activity respectively. The objective is to generate a schedule 

having start (or finish) times of all activities respecting the precedence relations and per period 

availability of (renewable) resource R1 with maximum per period availability of 6 units. A 

feasible (also optimal in this case) solution with a makespan of 15 time units is shown in Figure 

3.2.  

 

 

 

 

 

 

 

                                               Figure 3.1:  A project instance for the RCPSP 
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Figure 3.2:  A feasible solution for the illustrative instance 

 

3.3. The philosophy of TLBO 

The TLBO algorithm is inspired by the teaching-learning process commonly seen in classrooms. 

It is a population- based algorithm and utilizes a group of students called learners as initial 

population to reach a global optimum. Figure 3.3 shows a simple model to understand its 

philosophy. The dotted curve represents the performance level or marks obtained by different 

learners in a class with mean Mean1.The highest marks Teacher1 shown in extreme right of the 

curve corresponds to that of a teacher because it is a teacher who is recognized as the most 

intelligent in any class. As the teacher imparts his/her knowledge to the learners, it is assumed 

that the mean Mean1 of the class increases to a new value say Mean2 by some probability 

depending upon the capabilities of the teacher and learners. At this stage to continue the 

teaching-learning process, the learners require a new teacher whose knowledge level is 

appreciably higher than this new mean Mean2. The best learner from this new population having 

knowledge level Teacher2 is selected as new teacher for next iteration. In this way the mean of 

class gets improved in subsequent iterations. 
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             Figure 3.3: Model to show TLBO philosophy 

 

3.4. The proposed TLBO for the RCPSP 

As explained in section 3.1, the TLBO is primarily conceptualized for mechanical design 

optimization problems having design parameters continuous in nature. However, the RCPSP 

being a discrete optimization problem, some modifications need to be done in solution 

representations and other parameters before TLBO is applied on it. The framework of the 

proposed TLBO is shown in Figure 3.4. It can be seen that in addition to the conventional 

teacher and learner phase, the proposed TLBO also encompasses two additional phases namely 

self-study and examination phase. 

The details of the various features of TLBO proposed in this work have been summarized under 

following steps: 

Step 1: Initialization 

Like other population based algorithms, the TLBO also starts with a group of solutions 

which is known as a class of „learners (or students)‟ and treated as initial population. A 

group of learners is generated randomly using the parameterized regret-based biased 

random sampling (RBRS) method discussed later. 
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Figure 3.4: Framework of the proposed TLBO 

 

Step 2: Identification of teacher 

 The fitness function (makespan in this case) is calculated for all these learners using 

 serial schedule generation scheme (SGS) proposed by Kolisch, 1996. Since a teacher is 

 considered as the most knowledgeable person in any class, the best learner having 

 minimum makespan is designated as teacher. 
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Is the termination 

criterion satisfied? 

Output teacher 

Examination Phase 

Teacher Phase 

Learner Phase 

Update teacher 

Perform crossover between each learner and randomly 

chosen another learner 

Perform mutation on the learners 

Generate randomly the initial population of learners  

Identify the best learner as teacher 

Self-study Phase 

No 
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Step 3: Application of teacher phase 

 In this phase the teacher tries to transfer his knowledge to each learner of the class. To 

 realize this phase, crossover mechanism analogous to GA is employed which is explained 

 in section 3.4.3 with an illustrative example. 

Step 4: Application of learner phase 

 During this phase, learners are supposed to learn interactively through informal 

 communications, mutual discussions, presentations etc. More precisely, each learner is 

 subjected to have crossover with other randomly chosen learner. The new learner is 

 retained in the class if its fitness is improved else previous learner is kept as usual. 

Step 5: Application of self-study phase 

 This phase is appended in conventional TLBO to increase its exploration capabilities.

 Similar to the mutation concept of GA, the position of chromosomes (priorities of 

 activities in this case) have been varied with some probability. As a result of this phase,  

 possibility of algorithm being trapped in local minima is substantially reduced. 

Step 6: Application of examination phase 

This is another additional feature which is incorporated in conventional TLBO (Zheng 

 and Wang, 2015) to  increase its exploitation capabilities. To realize this phase, few best 

 learners in a population replace the corresponding number of worst learners. The 

 concept is akin to elitism in GA which guarantees that good features of a population 

 are not lost rather transferred into subsequent populations. After the stopping 

 criterion is met, the best learner in final iteration is reported as the solution of the 

 problem. 

Figure 3.5 shows a pseudo-code developed to incorporate the above-mentioned steps of the 

TLBO proposed in this work. 
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Figure 3.5: Pseudo-code for the proposed TLBO 

3.4.1. Solutions encoding and decoding 

The encoding and decoding schemes are one of a vital decision for application of any 

metaheuristic. In fact, the quality of solutions obtained by an algorithm is largely affected by the 

way a solution is encoded. There are various types of representations used by researchers in 

literature for encoding of the RCPSP such as shift vector representation, random key 

representation, priority rule representation and activity list representation etc. (Alcaraz and 

Moroto, 2001) 

Based on the very promising and effective results obtained from activity list (AL) representation 

based metaheuristics  (Kolisch and Hartmann, 1999), each individual is represented (called 

Input: Initialize class_size (number of learners in the class) , num_iter (Number of iterations), 

   prob_ss ( probability of self-study) and  num_elite ( elite size i.e. number of students to be failed) 

Output: The teacher for iteration size= num_iter 

1: Begin 

2:  Generate the initial population using RBRS method 

3:  Calculate the fitness i.e. the makespan of each learner using SGS method 

4:  Designate the learner with minimum makespan as the teacher 

5:  while (stopping condition is not met); 

6:   for i=1: class_size 

7:  Perform 2-point crossover between each learner and student         % teacher phase 

8:  Evaluate the new learner 

9:   if  makespan new learner < makespan old learner 

10: Replace the old learner with new learner 

11:  end 

12: Perform 2-point crossover between a learner with another random learner  % Student phase 

13: if  makespan learner-2 < makespan learner-1 

14: Replace the learner-1 with learner-2 

15:  end 

16: Perform mutation with prob_ss       % Self-study phase 

17:  Retain num_elite learners in the class     % Examination Phase 

18:  Calculate makespan and update the teacher 

19: end while 

20: end 
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„learner‟ in TLBO) as precedence feasible list of the activities where no activity appears before 

any of its predecessors. More specifically, a „learner‟ is any precedence feasible permutation of 

activities represented as λ= (j1, j2, .……, jn+1, jn+2). The index values in this list represent the 

corresponding priorities of activities for their execution. As mentioned earlier, the solution of the 

RCPSP is to determine the finish (or start) time of each activity so that both the precedence and 

resource constraints are satisfied and makespan is minimized. A serial schedule generation 

scheme (SGS) has been chosen to transform a given activity list λ into a schedule. The 

motivation behind this choice is that search space in SGS comprises of active schedules and 

essentially contains an optimal solution (Kolish, 1996). Figure 3.6 gives a pseudo code for the 

SGS procedure developed in this work. 

 

Figure 3.6: Pseudo code for the SGS 

3.4.2.  Initial population 

A parameterized regret-based biased random sampling (RBRS) method as mentioned in Kolisch 

and Drexl (1996) is used to generate the initial population. Unlike priority rule based multi-pass 

heuristics methods which produce the same schedule when applied each time, RBRS is a 

sampling method which assigns a probability ψ(i) to each activity in the decision set D for being 

selected at each stage of the SGS such that ψ:i   D → [0,1]. A regret value (τi) for each activity i 

is computed by comparing the priority value υ(i) of activity i with the worst priority value υ(j) of 

the decision set activities as per the following equation:  

τi =  max υ(j)- υ(i),         j  D          (3.5) 

The parameterized probability mapping ψ (i) is then determined as follows: 

Define N=total number of activities, j =1, 2,.., n +2 

Determine E(g): a set of all precedence feasible activities which can be started at stage g 

1:   for g=1 to N 

2:   Calculate the eligible set E(g) 

3:   Select one j   E (g) 

4:   Schedule j at the earliest precedence and resource feasible start time  

5:  end for 
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ψ (i) = 
       

∑ (    )
 

   

          (3.6)
 

The value of parameters ε and α has been fixed as 1 in the proposed algorithm as these values are 

known to exhibit good results in literature (Kolisch and Drexl, 1996). On similar lines, latest 

finish time (LFT) rule is employed to determine the regret values in the decision set D as this has 

been reported as one of the best priority rule in the literature. To understand the procedure 

discussed above an illustrative example is presented in what follows next. 

 An illustrative example for implementation of RBRS method along with LFT rule 

Problem Statement: Let at any stage the decision set contains three activities i.e.  D= {1, 2, 3} 

and one of these activity has to be chosen as per RBRS method.  

Given parameters: Let the latest finish times of the activities LFT1=13; LFT2=16; LFT3=11 and 

values of ε=α=1 

Procedure:  

Step 1: Calculate the worst priority value among all activities in D; 

       = max (  ,   ,    ) = max (13, 16, 11) =16 

Step 2: Calculate the regret value (τi) for each activity i using equation (3.5); 

 τ1= 16-13 = 3;  

 τ2= 16-16 = 0; 

τ1= 16-11 = 5; 

Step 3: Calculate the parameterized probability ψ (i) for each activity i using equation (3.6); 

ψ (1) = ((3+1)
1
 ) / ∑                       = 0.363 

Similarly, ψ (2) = 0.091 and ψ (3) = 0.545 
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Step 4: Calculate the parameterized probability mapping; 

 ψ (i) = ( 0.363, 0.091, 0.545) 

Step 5: Calculate the cumulative parameterized probability mapping; 

 Cum (ψ (i)) = (0.363, 0.454, 0.999) 

The activity selections can now be made by generating any random number (rand) and mapping 

it with Cum (ψ (i)). For example if rand= 0.71, activity 3 has to be selected and so on. 

3.4.3. The teacher and learner phase 

This section explains the mechanism of applying two conventional phases of TLBO for the 

RCPSP. Firstly, the fitness function (makespan) for all the individuals (learner) of the initial 

population is determined using SGS and set the best learner corresponding to minimum 

makespan as the teacher. As mentioned earlier, the teacher tries to transfer his or her knowledge 

to all the learners in the class (population). To realize this process the crossover technique as 

used in GA is employed. The two popular crossover versions namely 1-point and 2-point 

crossovers (Hartmann, 1998) have been considered in this work. This is primarily because these 

mechanisms preserve the precedence feasibility of the ALs. The following example shows the 

two-point crossover method for a teacher to transfer his knowledge into the learner: 

Let λ1 represent a learner and λ2 be the best learner or a teacher in a given population. Two 

random integers u1 and u2 have been generated in the range [1, n]. Using Equations (3.7) to (3.9) 

and the values u1 and u2, a new activity list λnew is determined. Figure 3.7 shows an example of 

implementation mechanism of 2-point crossover or teacher phase for u1 = 4 and u2= 7 in an AL 

having 10 activities in all. The learner so obtained after teaching is selected if it gives better 

makespan else previous learner is retained. 

In the learner phase, as explained earlier, a learner tries to improve his or her knowledge by 

mutual interactions or discussions with other randomly chosen learner. To realize this phase, 

once again the crossover between the two randomly chosen learners is employed. The new 



47 
 

learner (i.e. new AL) is accepted in the new population if it gives a better makespan; else 

previous learner is retained in the population. 

 

8 3 1 5 6 7 2 9 4 10 

 

4 7 5 2 10 6 8 1 3 9 

 

8 3 1 5 4 7 2 6 9 10 

 

 

Figure 3.7:  Mechanism of 2-point crossover in teacher phase 
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3.4.4. The self-study phase 

As already mentioned, the concept of self-study has also been incorporated in the proposed 

TLBO to increase its exploration capabilities. This phase is analogous to mutation in GA which 

is known to avoid premature convergence and thereby facilitating exploration search. It is a 

general phenomenon that students may improve their grades through self- study before 

examination. Two different mutation operators have been implemented to realize this phase in 

the developed algorithm. The first one is adapted from Boctor, 1996 in which each activity in the 

AL is shifted at some randomly chosen position with a probability prob_ss. The position chosen 

for the activity should be higher than any of its predecessors and lower than any of its successors 

to ensure that new AL is also precedence feasible.  

u1=4 u2=7 

λ2= teacher 

λnew = new learner 

λ1 = learner 
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The second mutation operator is adapted from Hartmann, 1998 in which pairwise exchange of 

activities is there. For a given AL represented as λ= (j1,…. ji,……....jn) , the activities ji and   ji+1 

have been exchanged with a probability prob_ss provided the precedence feasibility is 

maintained. 

3.4.5. The examination phase 

This phase restricts the non-performing learners (individuals) to enter the next class (population). 

To keep the population size uniform some elite learners represented by num_elite replace such 

non-performing learners. The concept seems to be akin to elitism which has been widely used in 

genetic algorithms and other metaheuristics. Three different values of num_elite from literature 

have been considered during parameters tuning of the algorithm. 

3.5. Computational experiences 

The proposed algorithm has been coded in MATLAB R2008a (Version 7.6) and run in Windows 

7 having 2.0 GHz processor and 2.00 GB RAM. To test the performance of the algorithm, well-

known problem instances sets proposed by Kolisch & Specher (1997) and available in the 

Project Scheduling Problem Library (PSPLIB) at http://www.bwl.uni-kiel.de/Prod/psplib/  have 

been used in this work. More specifically, three problem instances sets namely J30, J60 and J120 

which contains project instances with 30, 60 and 120 non-dummy activities respectively with 

varied levels of network complexity, resource factor, and resource strength have been tested in 

this work. There are 480 instances each for J30 and J60 activities whereas J120 set contains 600. 

The proposed algorithm is compared for average percent deviation (Avg._Dev) from optimal 

values for J30 set and critical-path based lower bound for set J60 and J120. The Avg._Dev has 

been calculated as: 

Avg._Dev =   ∑               
 
    /    ] / N      (3.10) 

where makespani is the total project completion time of i
th

 instance as obtained by proposed 

TLBO, lbi represents the critical-path based lower bound of the i
th

 instance and N is the total 

number of instances in a set. For J30 problem set lbi has been replaced by optimal makespan 

values for all 480 instances as available in the literature. 

http://www.bwl.uni-kiel.de/Prod/psplib/
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3.5.1. Parameters setting  

As explained in Section 3.4.2, the teacher and learner phase can be incorporated by 1-point or 2- 

point crossover mechanisms. Also, the self-study phase is realized by two mutation mechanisms 

as proposed by Boctor, 1996 and Hartmann, 1998. The two mutation mechanism will be 

represented as BM and HM respectively in further discussion. In order to determine the best 

combination of these factors, both the factors each having two levels have been crossed together, 

thus having four different combinations to be tested. To have fair representation of the entire 

problem set, 48 instances (10% of total 480 instances) are randomly chosen each from J30 and 

J60 set. On similar lines 60 instances (10% of total 600 instances) from J120 set are chosen. 

Each alternative combination was made to run five times for a maximum of 500 schedules to be 

generated as termination criterion with a uniform population size of 80. The average percentage 

deviation so obtained from optimal solutions for J30 and critical-path based lower bound for J60 

and J120 is exhibited in Table 3.1. 

Table 3.1: Test results for different crossover and mutation mechanisms 

Crossover  Mutation  Avg. Percent Dev. for 500 schedules 

J30 J60 J120 

1-point BM 0.74 13.61 42.54 

1-point HM 0.88 14.67 43.56 

2-point BM 0.68 13.62 42.53 

2-point HM 0.83 13.78 42.37 

 

The results revealed that 2-point crossover and Boctor mutation have performed significantly 

better than other combinations especially in case of J30 and J60 problem sets. Looking the 

overall results obtained in above table, 2-point crossover and BM have been chosen in the 

proposed algorithm for the further testing and parameter tuning.  

After selecting the best combination of crossover and mutation mechanisms, Taguchi method of 

design-of-experiment (DOE) is employed to tune the other parameters of the algorithm. There 

are three key parameters of interest: the number of learners in a class represented by class_size 

(commonly known as population size), the self-study probability (prob_ss) and the number of 
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non-performing students to be replaced by elite students (num_elite). Each of these factors is 

considered at three different levels as shown in Table 3.2. These levels are inspired from the 

values considered in literature for other population based metaheuristics namely GA and PSO. 

Table 3.2: Parameters selected for the DOE  

Parameters Factor level 

1 2 3 

class_size 60 80 100 

prob_ss 1% 5% 10% 

num_elite 4 8 12 

 

Looking at the aspect that there are three factors at three different levels, a L9 (3
3
) orthogonal 

array is chosen for this experimentation having eight degrees of freedom (DOF). The Taguchi 

approach helps to reasonably reduce the total 27 experiments for a full-factorial design into 9 

numbers of treatments. To conduct the test, 600 number of schedules is set as the stopping 

criterion for each J30, J60 and J120 instance set and the average percent deviation (Avg._Dev) 

from the optimum values for J30 and critical path based lower bound for J60 and J120 is chosen 

as ARV(average response variable). The results of the DOE are shown in Table 3.3.  

Table 3.3: Orthogonal table and the ARV values for DOE   

Exp. number 
Factors ARV for 600 schedules 

class_size prob_ss num_elite J30 J60 J120 

1 60 1 4 0.74 13.17 42.57 

2 60 5 8 0.64 13.02 43.64 

3 60 10 12 0.65 13.38 44.35 

4 80 1 8 0.74 13.07 42.40 

5 80 5 12 0.59 12.82 42.83 

6 80 10 4 0.59 13.03 42.31 

7 100 1 12 0.62 12.90 41.70 

8 100 5 4 0.70 12.65 42.06 

9 100 10 8 0.66 12.86 42.63 
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 The ARV as obtained from Table 3.3 is utilized to determine the trend of each of the three key 

parameters for J30, J60 and J120 instance sets. Figure 3.8 to Figure 3.10 depict the best 

combinations of these parameters which have been tabulated in Table 3.4. 

     

Figure 3.8: Trend of factor levels for J30 

 

 

 

 

 

 

 

 

 

Figure 3.9: Trend of factor levels for J60 
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Figure 3.10: Trend of factor levels for J120 

It is evident from Table 3.4 that the values of class_size, prob_ss and num_elite are not same for 

all instance sets. This may be attributed to the different network complexity and resource usage 

factors for the three different instance sets.  

Table 3.4: The best combination of parameters 

Problem Set class_size prob_ss num_elite 

J30 80 10 12 

J60 100 5 4 

J120 100 1 4 

 

3.5.2. Comparison of proposed TLBO with other approaches 

In order to test the effectiveness of the TLBO, the results have been compared with other 

existing approaches available in literature to solve the RCPSP. For each instance set of J30, J60 

and J120, the algorithm was run for maximum 1000 and 5000 number of schedules as the 
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stopping criterion and other parameters namely class-size, prob_ss and num_elite have been 

selected from the DOE test as reported in Table 3.4. Table 3.5 presents the computational results 

of average percent deviations from the optimal makespan for instance set J30. Since the optimal 

values of J60and J120 are not known for all problems, average percent deviations from critical 

path based lower bounds is selected for the comparison purpose. The detailed results for J60 and 

J120 instance set have been presented in Table 3.6 and Table 3.7 respectively. 

Table 3.5: Average deviations from optimal makespan for J30 instance set 

References Algorithm Maximum no. of schedules 

  1000 5000 

Mendes et al. (2009) GAPS 0.06 0.02 

Kochetov and Stolyar (2003) GA, TS, path reli. 0.10 0.04 

Agarwal et al. (2011) Neurogenetic-FBI 0.13 0.02 

Chen et al.(2010) ACOSS 0.14 0.06 

Tseng and Chen(2006) ANGEL 0.22 0.09 

Alcaraz et al. (2004) GA 0.25 0.06 

Valls et al.(2008) Hybrid GA 0.27 0.06 

Fang and Wang(2012) SFLA 0.36 0.21 

Hartmann (2002) Self-adapting GA 0.38 0.22 

Nonobe and Ibaraki (2002) Tabu Search 0.46 0.16 

This work TLBO 0.52 0.25 

Hartmann (1998) Activity list GA 0.54 0.25 

Schirmer (2000) Adaptive sampling 0.65 0.44 

Kolisch and Drexl (1996) Adaptive sampling 0.74 0.52 

Kolish(1996) serial sampling (LFT) 0.83 0.53 

Hartmann(1998) Random Key GA 1.03 0.56 

Hartmann(1998) priority rule GA 1.38 1.12 

Kolish(1996) parallel sampling (LFT) 1.40 1.29 

Leon and Balakrishnan (1995) problem space GA 2.08 1.59 

 

It can be seen from Table 3.5 that for J30 instance set, the developed algorithm is found to be 11
th

 

best among all other approaches with average percent deviation as 0.52% for 1000 schedules and 

0.25% for 5000 schedules. For the J60 and J120 instance set the average percent deviation from 

critical path based lower bound is found to be 13.19% and 39.90% respectively when 1000 
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schedules are computed and 12.72% and 38.73% when 5000 schedules have been computed. (see 

Table 3.6 and Table 3.7). 

However, similar to other approaches, the performance of the algorithm diminishes with the 

increase in combination explosion in RCPSP for an increased number of activities and network 

complexity 

Table 3.6. Average deviations from critical path  lower bound for J60 instance set 

References Algorithm Maximum no. of schedules 

  1000 5000 

Fang and Wang(2012) SFLA 11.44 10.87 

Agarwal et al. (2011) Neurogenetic-FBI 11.51 11.29 

Kochetov and Stolyar (2003) GA, TS, path reli. 11.71 11.17 

Mendes et al. (2009) GAPS 11.72 11.04 

Chen et al.(2010) ACOSS 11.75 10.98 

Alcaraz et al. (2004) GA 11.89 11.19 

Tseng and Chen(2006) ANGEL 11.94 11.27 

Valls et al.(2008) Hybrid GA 12.21 11.27 

Hartmann (2002) Self-adapting GA 12.21 11.70 

Schirmer (2000) Adaptive sampling 12.94 12.58 

Nonobe and Ibaraki (2002) Tabu Search 12.97 12.18 

This work TLBO 13.19 12.72 

Hartmann (1998) Activity list GA 13.30 12.74 

Hartmann(1998) priority rule GA 13.30 12.74 

Kolisch and Drexl (1996) Adaptive sampling 13.51 13.06 

Kolish(1996) parallel sampling (LFT) 13.59 13.23 

Kolish(1996) serial sampling (LFT) 13.96 13.53 

Leon and Balakrishnan (1995) problem space GA 14.33 13.49 

Hartmann(1998) Random Key GA 14.68 13.32 

 

It can be concluded from the results exhibited in Table 3.5 to Table 3.7 that the proposed TLBO 

algorithm is competitive to the other 18 approaches and metaheuristics chosen for the 

comparison. For a limited number of schedules and small problem instances, the algorithm very 

quickly converges to optimum and near-optimal solutions. 
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3.6. Summary 

In this chapter, a relatively new population based metaheuristic called teaching-learning based 

optimization algorithm for the RCPSP is presented and tested. For encoding the individuals, a 

precedence feasible activity list is employed whereas SGS is used as decoding scheme. 

Table 3.7. Average deviations from critical path lower bound for J120 instance set 

References Algorithm Maximum no. of schedules 

    1000 5000 

Valls et al.(2008) Hybrid GA 34.07 32.54 

Agarwal et al. (2011) Neurogenetic-FBI 34.65 34.15 

Kochetov and Stolyar (2003)  GA, TS, path reli. 34.74 33.36 

Fang and Wang(2012) SFLA 34.83 33.20 

Chen et al.(2010) ACOSS 35.19 32.48 

Mendes et al. (2009) GAPS 35.87 33.03 

Tseng and Chen(2006) ANGEL 36.39 34.49 

Alcaraz et al. (2004) GA 36.53 33.91 

Hartmann (2002) Self-adapting GA 37.19 35.39 

Hartmann (1998) Activity list GA 39.37 36.74 

Kolish(1996) parallel sampling (LFT) 39.60 38.75 

Schirmer (2000) Adaptive sampling 39.85 38.70 

This work TLBO 39.90 38.73 

Hartmann(1998) priority rule GA 39.93 38.49 

Nonobe and Ibaraki (2002) Tabu Search 40.86 37.88 

Kolisch and Drexl (1996) Adaptive sampling 41.37 40.45 

Kolish(1996) serial sampling (LFT) 42.84 41.84 

Leon and Balakrishnan (1995) problem space GA 42.91 40.69 

Hartmann(1998) Random Key GA 45.82 42.25 

 

To enhance the exploitation and exploration capabilities of the original algorithm, in addition to 

teacher and learner phase, the concepts of self-study and examination phase, inspired by other 

studies, have been also employed in this work. An orthogonal-array based Taguchi design was 

used to determine the best set of parameters for each instance set. The comprehensive test results 

on problem instance sets taken from literature showed that the TLBO approach is reasonably 
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effective and competitive to other well-known solution techniques and metaheuristics available 

to solve the RCPSP. 

In the next chapter the TLBO developed here will be extended for the multi-skill resource-

constrained project scheduling problem (MSRCPSP) which is another research objective of this 

thesis. It is obvious that some fundamental modifications in encoding and decoding schemes 

have to be made to incorporate the flexible nature of resources. The details of this modified 

TLBO for the MSRCPSP have been exhibited in the coming chapter. 
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Chapter 4 

 

A Teaching Learning Based Optimization Algorithm for the MSRCPSP 

 

 

4.1  Introduction 

In this chapter, one of the recent and practical extensions of the RCPSP termed as the multi-skill 

resource constrained project scheduling problem (MSRCPSP) is considered for investigation. 

Unlike the RCPSP considered in last chapter, the resources are multi-skilled i.e. they have been 

assumed to possess more than one skill. To solve this complex problem, the teaching-learning-

based optimization (TLBO) algorithm developed in the chapter 3 is extended by incorporating 

modified encoding and decoding schemes. More specifically, an activity list based encoding 

scheme has been modified to include the multi-skilled resource assignment information. For 

comparing the performance of this metaheuristic, a genetic algorithm (GA) is also developed to 

solve this problem. The computational experiments have been performed on the test instances 

generated for the purpose with varying characteristics of network complexity and resource 

strengths. The results obtained by the TLBO are quite promising in terms of average percentage 

deviation from the critical path based lower bound. 

The remaining of this chapter is structured as follows: The problem nature and mathematical 

model along with an illustrative example is provided in next Section. Section 4.3 discusses the 

implementation issues and framework of the proposed TLBO. The procedure of instance 

generation and computational experiences has been presented in Section 4.4. Finally, Section 4.5 

presents the key findings and conclusions drawn from the study. 

4.2 Problem description and mathematical formulation 

The problem considered here is Multi-Skill Resource-Constrained Project Scheduling Problem 

(MSRCPSP) which is a realistic extension of the problem studied by Zheng et al. (2017). Unlike 

Zheng et al. (2017), this work considers a real life scenario wherein resource requirement for any 

activity is not restricted to unity and can be more than one. Also, it is assumed that activities may 

require more than one type of skill for their execution. Thus, the number of persons required 

corresponding to each skill may be more than one. The resources are staff members mastering 
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one or more skills. An activity-on-node (AON) acyclic network G= (A, E) represents a single 

project where A=  {1, 2,…….., i, j,….N+2} denotes the activity set and E provides the 

precedence relations between them. The beginning and end activity of the project are dummy 

activities i.e they consume no resource and time for their execution. A set P of renewable 

resources comprising of staff members is considered wherein each member, as mentioned earlier, 

possesses one or more skills. It is also assumed that each resource is available for the entire 

project horizon but can contribute only one skill at a time to an activity. Finally, the activity 

times have been considered deterministic and positive integers. 

4.2.1 Mathematical formulation for the MSRCPSP  

To understand the nature of the problem under study, a mathematical model is presented in this 

section comprising of important notations, objective function and constraints along with their 

definitions. 

Notations: 

Parameters Definition 

N number of non-dummy activities in the project 

A ,     {         } set of activities  

pi processing time of activity Ai 

K total number of skills available 

P total number of available staff members 

S   ,   {      } set of skills 

P,    {       } set of staff members 

      equal to 1 if staff member Pm possesses skill Sk, 0 otherwise 

     number of staff members with skill Sk  required by activity i 

ti start time of activity i 

T project horizon 
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Decision variables:  

          

 

1;   if staff member m starts an activity i at time t, 

0  otherwise 

 

        1;   if staff member m starts an activity i with skill k, 

0  otherwise 

 

      = 1;   if activity i is started at time t, 

0  otherwise 

 

Mathematical Model 

Minimize                (4.1) 

Sub. to :  

    ∑                                (4.2) 

                                 (4.3) 

∑                                    (4.4) 

∑ ∑                                         (4.5) 

                     ,       ,             (4.6) 

              ∑                  ,       ,             (4.7) 

                     ,       ,          (4.8) 

∑                                   (4.9) 

∑               ∑                               (4.10) 

         {   }                 ,              (4.11) 

         {   }                      (4.12) 
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       {   }                           (4.13) 

The objective function (4.1) minimizes the start time of (dummy) end activity and hence the 

makespan. Constraint (4.2) represents the start time of activity i. Constraint (4.3) ensures the 

precedence relations between the activities. It is obvious that each staff member can start an 

activity at most once in whole planning horizon which is handled by constraint (4.4). Constraint 

(4.5) avoids the possibility of a staff member to work simultaneously on more than one activity. 

Constraint (4.6) and (4.7) collectively guarantees the synchronization of start times for an 

activity initiated by different staff members. Constraint (4.8) ensures that a staff member delivers 

only the skill that he/she masters. The total skill requirement of an activity should be met and this 

is ensured by constraint (4.9). Constraint (4.10) ensures that a staff member cannot use more than 

one skill at a time when assigned to an activity. Constraints (4.11) to (4.13) are domain 

constraints which define the decision variables to be binary. 

4.2.2 An illustrative example 

This subsection discusses a small hypothetical example to understand the problem under study. 

Let a project comprises of four non-dummy activities linked by precedence relations as shown in 

Figure 4.1. The number of resources with particular skill required by each activity is presented in 

„Activity-Skill Matrix‟ as shown in Table 4.1. For example, activity 2 requires one person with 

skill S2 and one person with skill S3 for its execution, activity 4 requires two persons with skill S1 

and one person with S2 and so on. The activities 1 and 6 being dummy require no resource (and 

hence skills) for their execution.  

The skills attained by four staff members are given by a „Staff-Skill Matrix‟ shown in Table 4.2. 

The value „1‟ indicates that a staff member masters the particular skill while „0‟ signifies the 

absence of skill. To elaborate, staff member 1 possesses two types of skills i.e. S2 and S3, staff 

member 2 possesses skill type S1 and S3 and so on. 

It is important to note that skill requirements of an activity can be accomplished by any of the 

staff member(s) (from a pool of total six members) who possesses these skills. Also, all the 

persons if assigned to execute an activity should be available at the start of the activity 

simultaneously. 
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The goal is to minimize the makespan respecting the precedence relations and resource 

requirements of the activities. A feasible solution determines the start/finish times of each 

activity along with assignment of subset of staff members that fulfill all the skill needs of the 

activities. Figure 4.2 presents one such feasible solution which is also optimal in this case. 

 

 

 

 

 

 

 

 

                           Figure 4.1:  Precedence graph of the illustrative project 

 

Table 4.1: Activity-Skill Matrix 

Activity No. of staff members required (bi,k) 

S1 S2 S3 

1 0 0 0 

2 0 1 1 

3 1 0 1 

4 2 1 0 

5 0 1 0 

6 0 0 0 

1

 0 

 (0, 0, 0) 

2

 2 

 (0, 1, 1) 

3

4

 5 

 (1, 0, 1) 

4

 3 

 (2, 1, 0) 

5

 3 

 (0, 1, 0) 

6

 0 

 (0, 0, 0) 

Ai 

pi 

 (bi,1, bi,2, bi,3) 
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Table 4.2: Staff-Skill Matrix 

Staff Skills Attained 

S1 S2 S3 

1 0 1 1 

2 1 0 1 

3 1 0 0 

4 1 0 1 

 

 

Figure 4.2:  A feasible solution of the illustrative example 

4.3 Proposed algorithms for the MSRCPSP 

The problem under study being an extension of the RCPSP is also NP-hard and thus involves 

large search spaces. Metaheuristics are known to be natural candidates for tackling such complex 

problems. However, as explained in previous chapter, before applying a metaheuristic on any 

problem, some basic issues like encoding and decoding schemes, mechanisms of solution 

modifications etc. need to be taken care of. The following section presents in detail the 
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configuration and application methodology of the two algorithms namely TLBO and GA 

proposed in this work to solve the MSRCPSP.  

4.3.1 Teaching-learning-based optimization algorithm for the MSRCPSP 

In chapter 3, the philosophy and working mechanism of the TLBO has been explained in detail. 

The algorithm has been successfully applied for the standard RCPSP and inspired by the 

competitive results obtained thereof, it is extended for the MSRCPSP. However, due to the 

multi-skill nature of resources, the encoding and decoding mechanism will differ considerably as 

compared to the RCPSP. The problem size for the MSRCPSP is exceptionally large and complex 

and the concepts of self-study and examination are retained to avoid the algorithm been trapped 

in local optima. There are primarily two modifications that have been incorporated in the 

previous TLBO algorithm designed for the RCPSP: 

1. The encoding scheme is appended with additional information to incorporate the feasible 

resource assignments of the activities. (please see section 4.3.1.1 for details). 

2. The serial schedule generation scheme (SGS) available in literature for the RCPSP is 

suitably modified to ensure a feasible schedule considering the multi-skill nature of the 

resources (please see section 4.3.1.2 for details). 

The framework or mechanism of proposed TLBO for the MSRCPSP is depicted in Figure 4.3. 

This is derived by incorporating the two additional features of multi-skilled resources mentioned 

above. The pseudo code for the solving the above problem is also modified accordingly and 

same is shown in Figure 4.4. 

4.3.1.1 Encoding scheme 

As mentioned in chapter 3, this is an important step that significantly affects the performance of 

any metaheuristic algorithm. Due to multi-skilled resources being involved, one needs to 

incorporate additional information of the feasible staff assignment corresponding to each activity 

in the representation. The encoding scheme of the RCPSP is, therefore, modified and a solution 

is encoded into two parts (Gürbüza, 2010). The first part determines the priority values of the 

activities while second part defines the feasible staff assignment to each activity.  
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            Figure 4.3: Flowchart of the proposed TLBO for the MSRCPSP 

Yes 

No 

Perform modified 2-point crossover between each 

learner and teacher to generate a new learner 

 

Replace worst solutions with elite solutions 

Is the termination 

criterion satisfied? 

Output teacher 

Examination Phase 

Teacher Phase 

Learner Phase 

Update teacher 

Perform modified 2-point crossover between each learner 

and randomly chosen another learner 

Perform mutation on the population 

Design encoding of solution (learner) in the two parts: 

1. Activity List (AL) using RBRS method 

2. Feasible resource assignment using staff_skill_matrix 

Calculate the fitness function i.e. makespan using modified 

schedule generation scheme and identify the best learner as 

teacher 

Self-study Phase 
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Figure 4.4: Pseudo-code for the proposed TLBO for the MSRCPSP 

To encode the first part, the precedence feasible activity list (AL) representation from Kolisch 

and Hartmann (1999) is reused in the encoding procedure. More specifically, a precedence 

feasible permutation of activities represented as λ= (j1, j2, .……, jn+1, jn+2) is created in which no 

activity appears before any of its predecessors. The corresponding priorities of activities for their 

execution in this list are represented by their index values.  

Input: Initialize Class_size (number of learners in the class) , Num_iter (Number of iterations), 

   SS_prob ( probability of self-study) and  Elite_per ( elite size i.e. percentage of students to be failed) 

  staff_skill_matrix (information of staffs mastering various skills) 

 

Output: The teacher for iteration size= Num_iter 

1   Begin 

2  for 1: Class_size 

3  Generate the upper part (activity list) of encoding scheme using RBRS method 

4  Assign feasible set of staff members to each activity using staff_skill_matrix to generate a learner 

5 end  for 

6  Calculate the fitness i.e. the makespan of each learner using modified SGS method 

7  Designate the learner with minimum makespan as the teacher 

8  while (stopping condition is not met); 

9  for i=1: Class_size 

10  Perform 2-point crossover between each learner and student          % Teacher phase 

11  Evaluate the new learner 

12   if  makespan new learner < makespan old learner 

13 Replace the old learner with the new learner 

14  end 

15 Perform 2-point crossover between a learner with another random learner    % Student phase 

16 if  makespan learner-2 < makespan learner-1 

17 Replace the learner-1 with learner-2 

18  end 

19 Perform mutation with SS_prob      % Self-study phase 

20  Retain Num_elite learners in the class     % Examination Phase 

21  Calculate makespan and update the teacher 

22 end while 

23   end 
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To encode the second part of solution or individual, the set of staff members corresponding to 

each skill is constructed and randomly assigned a feasible set of staff members as per the 

requirement of each activity. These assignments are depicted in vertical columns corresponding 

to the activities in AL constructed in first part of encoding scheme (Gürbüza, 2010). A 

representation of an individual for the illustrative example discussed in section 4.2.2 is shown in 

Figure 4.5. 

 

 

 

Figure 4.5: Encoding of solution for the MSRCPSP 

4.3.1.2 Decoding scheme 

To obtain a feasible schedule from above representation, the classical serial schedule generation 

scheme (SGS) by Kolisch (1996) is modified as used for the RCPSP in chapter 3. The motivation 

behind this choice is that the search space in SGS consists of active schedules and essentially 

contains an optimal solution. Unlike RCPSP, when this method is applied to the MSRCPSP 

verifying the resource constraints is not trivial. Instead, there are a number of feasible ways to 

assign resources to an activity. The SGS, is therefore, modified in the light of multi-skill nature 

of the resources. A pseudo code for this modified scheduling scheme is presented in Figure 4.6.  

4.3.1.3 Initial population 

As evident from section 4.3.1.1 that an individual (a teacher or a learner) comprises of two parts 

namely a precedence feasible activity list and resource assignment columns. To generate the first 

part i.e. precedence feasible activity list, a parameterized regret-based biased random sampling 

(RBRS) method (Kolisch and Drexl, 1996) is employed. It is worthwhile to mention that 

sampling methods offers advantage in the sense that they are probabilistic in nature which 

produces different schedules each time when applied and thus ensuring sufficient variability in 

1 3 2 4 5 6 

  3 1 1 1  

 4 2 2   

   3   

Index of feasible staff members assigned to each non-

dummy activity as per activity-staff matrix 

Activity list representation using RBRS method 



68 
 

the initial population. For details of generation of first part of encoding scheme one is referred to 

section 3.4.1 of chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

                    

 

 

 

 

Figure 4.6: Pseudo code for the modified SGS 

 

Let,  A= Set of total non-dummy activities in the project 

Pred (j) = Set of all predecessor activities of activity j 

EST (j) = Earliest start time of activity j (as per forward pass in CPM technique) 

EFT (j) = Earliest finish time of activity j (as per backward pass in CPM technique) 

pj =processing time of activity j 

pυj,= Priority value of activity j 

Si = Start time of activity i 

AL= Activity list as per encoding scheme 

 

1: Input: A, Pred (j), EST(j), EFT(j), pj, pυj, AL 

2:  Output: makespan 

3:  begin 

4:  AL ← A\ {1, N+2}; t   ←  0; S1 ← 0 ; Sj ←∞ , j   AL; 

5:    while AL≠ ϕ do 

6:   find j
*
: pυj*=max { pυj* :j   AL ˄ Pred (j) ∩ AL= ϕ}; 

7:   if  Pred (j
*
) = ϕ then 

8:               Sj*   ←  0; 

9:   else 

10:    Compute SAj*     // set of activities scheduled before j* 

11:        if  Sk <=EST(j*)<(Sk+pk) or  Sk < EFT(j*)<=(Sk+pk)  , k   SAj* 

      & there is common staff member in j
*
 and  SAj* 

12:            Sj*  ←  max{Sk+pk};  k   SAj* 

13:     else 

14:      Sj*  ← EST(j); 

15:      end if 

16:    AL ← AL\ j
*
; 

17:    end if 

18:    makespan ← max {Sj +pj : j  A}; 

19:   end while 

20:    end begin 
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In order to generate an encoded individual for the MSRCPSP case, there is a need to assign the 

feasible set of staff members in corresponding vertical columns against each activity. By 

„feasible‟ it is meant that all staff members assigned to an activity must be unique to fulfill the 

constraint that a staff member can only fulfill one skill requirement of an activity at a time 

(although he/she may master more than one skill). For this purpose, a set comprising of resources 

mastering the skills required by an activity is generated and resources are selected from this set 

using a random device respecting the feasibility constraint. In this way, a total of Class_size 

individuals are generated. 

4.3.1.4 Teacher and learner phase 

As mentioned earlier, in teacher phase, the teacher who is also the individual with best fitness 

transfers his/her knowledge into the other individuals (learners) of the population (class). In 

order to realize this phase, a teacher is subjected to crossover with learner in the class. Similar to 

the RCPSP, both the 1-point and 2-point crossovers mechanisms as proposed by Hartmann, 1998 

have been tested. However, in this case the solution is encoded in two parts comprising vertical 

columns of resource assignments along with horizontal activity list (AL). To ensure that the new 

individual also confirms to a feasible resource assignment, the resource assignment columns are 

transferred along with the activities during the crossover. For the general details of 2-point 

crossover recall the section 3.4.2 of chapter 3. 

It can be seen in Figure 4.7, a learner before crossover is represented as λ1 whereas λ2 represents 

a teacher who has to transfer his knowledge using crossover into the learner. A pair of two 

distinct random numbers, (u1, u2) is generated in the range [1, n], where n denotes the total 

number of activities in the activity list. It is important to note that to ensure the resource 

feasibility, the corresponding staffs members assigned to activities are carried over in the new 

learner. The learner so obtained after teaching is selected if it gives lower makespan; else 

previous learner is retained. 

After teacher phase is over, the learner phase is applied in which each learner is subjected to 

cross-over with another randomly chosen learner from the population. This is based on the 

practical analogy that a learner improves his/her knowledge by mutual interactions and 
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discussions with other learners of class. Again, this new learner is accepted in population if it 

provides a better makespan else previous learner is retained in the population. 

 

 

 

 

 

 

 

 

 

Figure 4.7: An illustration of 2-point crossover mechanism for the MSRCPSP 

4.3.1.5  Self-study and examination Phase 

Similar to the TLBO developed for the RCPSP, for the multi-skilled problem environment also, 

the concepts of the self-study and examination phase have been incorporated which are known to 

enhance the exploration and exploitation capabilities of the TLBO. To keep the discussion 

concise, the already mentioned details regarding implementation mechanisms of these two 

features have been omitted here. 

4.3.2 Proposed Genetic Algorithm (GA) for the MSRCPSP 

As stated earlier, this work also aims to develop another popular metaheuristic namely genetic 

algorithm (GA) for the MSRCPSP primarily for the comparison purpose. GA is based on natural 

selection and biological evolution process and has been an indispensable choice for solving 
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many hard optimization problems since its advent. The basic scheme, operators and 

implementation framework of the proposed GA on the MSRCPSP are discussed in next section. 

4.3.2.1 Initial population and parent selection 

Let an even integer POP denotes the total number of individuals in a population. Initial 

population is created by the regret-based biased random sampling method as mentioned in 

Section 4.3.1.3. While creating individuals, same encoding and decoding procedures used for the 

TLBO have been adapted for obvious reasons of fair comparison. The individuals in the POP 

have been evaluated for their fitness value (i.e. makespan) using the modified SGS developed 

earlier. In order to choose parents for crossover, 2-tournament selection method is employed 

(Hartmann, 1998) wherein two individuals I1 and I2 are randomly chosen from POP and if   f (I1) 

  f (I1), individual I1 is chosen else this process is repeated till POP individuals are selected. A 

pseudo code for the proposed GA is presented in Figure 4.8. 

 

Figure 4.8: Pseudo code for the proposed GA 

 

 

 

// Initialize generation 0 

g:=0; 

//Create an initial population having POP individuals using RBRS method  

// Evaluate POP; 

Compute fitness (i) for each i  POP; 

while g< GEN 

do 

{ //Create generation g+1; 

 Select pairs of individuals (parents) using 2-tournament method; 

 Perform crossover and mutation to produce CHI; 

 Evaluate the fitness (i) for each i  CHI; 

 Add the CHI to POP to get 2*POP individuals; 

 Select POP individuals using ranking method 

 Keep elite solutions for the next generation 

 g:=g+1; 

} 

return the fittest individual as solution 
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4.3.2.2 Details of genetic operators  

The two basic genetic operators conventionally used in GA are crossover and mutation. The 2-

point crossover mechanism as applied in the TLBO is re-employed for similarity purpose in the 

two algorithms; however, in this case it is implemented between two members of a parent group 

producing two offspring. More specifically, for a given parent group having a mother   

{  
       

 } and a father    {  
       

 } , two offspring, a daughter    {  
       

 }  and 

a son   {  
       

 }  are produced. A pseudo code for producing a daughter and son using 2-

point crossover is exhibited in Figure 4.9. 

Following the crossover, mutation as proposed by Boctor, 1996 is implemented to introduce the 

genetic diversity in the population. Similar to the TLBO, elitism was also introduced to improve 

the algorithm performance. Section 4.4.2.2 explains the method to obtain the best combination of 

crossover, mutation and other parameter values for the proposed GA. 

 

Figure 4.9: Pseudo-code for 2-point crossover in the proposed GA 

Select two random integers u1 and u2 such that, 1 u1 u2 N 

/* u1 and u2 are the random crossover-points */ 

 

/* Generation of the daughter */ 

for k=1 to u1 do 

 𝐽𝑘
𝐷  𝐽𝑘

𝑀 ; 

for k=u1+1 to u2 do 

i=lowest index/ 1 𝑖  𝑁 and 𝐽𝑖
𝐹 ∉ {𝐽 

𝐷    𝐽𝑘  
𝐷 }; 

𝐽𝑘
𝐷  𝐽𝑖

𝐹; 

for k=u2+1 to N do 

i=lowest index/ u1  𝑖  𝑁 and 𝐽𝑖
𝑀 ∉ {𝐽 

𝐷    𝐽𝑘  
𝐷 }; 

𝐽𝑘
𝐷  𝐽𝑖

𝑀; 

end 

 

/* Generation of the son */ 

for k=1 to u1 do 

 𝐽𝑘
𝑆  𝐽𝑘

𝐹 ; 

for k=u1+1 to u2 do 

i=lowest index/ 1 𝑖  𝑁 and 𝐽𝑖
𝑀 ∉ {𝐽 

𝑆    𝐽𝑘  
𝑆 }; 

𝐽𝑘
𝑆  𝐽𝑖

𝑀; 

for k=u2+1 to N do 

i=lowest index/ u1  𝑖  𝑁 and 𝐽𝑖
𝐹 ∉ {𝐽 

𝑆    𝐽𝑘  
𝑆 }; 

𝐽𝑘
𝑆  𝐽𝑖

𝐹; 

end 
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4.4. Computational experiences 

In this section the computational experiments to assess the behaviour of the proposed TLBO and 

GA on test instances are presented. Both algorithms have been coded in MATLAB 7 

environment and executed on a laptop computer with Core i3, and Windows 8.1 using 4 GB of 

RAM. In the next sections the methodology of generating the test instances, parameter setting 

and comparative results have been discussed in detail. 

4.4.1 Test instances for the MSRCPSP 

Unlike the RCPSP (PSPLIB, http://www.bwl.uni-kiel.de/Prod/psplib/), there does not exist any 

standard benchmark instances for the MSRCPSP. Although in the work of Myszkowski et al. 

2018, 36 benchmark instances (available as iMOPSE dataset) have been developed for the bi-

objective MSRCPSP but they cannot be used here. This is because in this work it is assumed that 

resource requirements of activities are more than one. In addition, no cost aspects have been 

considered in this work. 

In the work of Almeida et al. (2015), a methodology is available for generating the MSRCPSP 

instances (as used in this work) with variable characteristics. This methodology will be used to 

develop different MSRCPSP instances for testing the two algorithms. As mentioned thereof, the 

three major characteristics that mainly affect the complexity of a MSRCPSP instance are: 

i. Network Complexity (NC): It is a measure of average number of non-redundant arcs or 

average number of successors of each activity in the precedence graph. For the project 

instance shown in Figure 4.1, total number of (non-redundant) arcs is 6 and there are 6 

activities in the project. As per definition, the network complexity (NC) is calculated as 

NC= 6/6=1.0. It is obvious that as the number of arcs in a network increases for a given 

number of activities, NC also increases. 

ii. Skill Factor (SF): It is simply the ratio of types of skills required by a particular activity 

to the total skills number of types available in a given project. For example, w.r.t. Table 

4.1, 3 type of skills are available in project namely S1, S2 and S3. It is evident that activity 

2 requires only two types of skills (S2 and S3) for its execution which gives its SF as 
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2/3=0.67. On similar lines, SF of activity 3, 4 and 5 can be calculated as 0.67, 0.67 and 

0.33 respectively. 

iii. Modified Resource Strength (MRS): It is a ratio between available resources (staff 

members) to the total number of resource units required to execute all the activities.  

Let,  N  = Number of non-dummy activities; 

 P  = Total number of available staff members; 

 |S|  = Number of skill types; 

 n  = Average number of staff members required for an activity (assuming 2  

    in this case)  

Then, as per definition, MRS can be calculated as:         =
 

         
.   Alternatively, if one pre-

defines the MRS, the number of staff members required for a particular configuration can then be 

determined as             . 

The methodology proposed by Almeida et al. (2015) is coded in MATLAB 7 and 216 different 

instances for the MSRCPSP have been generated using different combinations of  the above 

three characteristics. The details of the developed instances with salient features have been as 

mentioned below: 

 Total number of non-dummy activities in the instances, N = 30. 

 Processing time of activities, p is randomly derived as D~ U (1, 10). 

 A total of four different skill types have been considered i.e. |S|=4. 

 Network Complexity (NC) is varied for three possible values similar to PSPLIB instances 

 (Kolisch and Sprecher, 1997), i.e. NC   {1.5, 1.8, 2.1}. 

 Skill Factor is varied to have four possible values i.e. SF   {0.5, 0.75, 1, variable}. For 

 instance, SF=0.75 means that each activity requires three out of total four available skills 

 for its execution. By “variable” it is meant that for each activity number of skills required 

 is varied randomly in the set {2, 3, 4}.   
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 Modified Resource factor (MRS) is varied from 0.0667 to 0.0944. This is  because too 

 low MRS value tends to generate instances extremely easy to solve while  higher value 

 may induce the resource infeasibility. 

 Each activity is assumed to require {1, 2, 3} staff members corresponding to each skill. 

 Each staff member is assumed to master 1, 2 or 3 skills out of four skills. 

 The total number of staff members assigned to each instance, P can be determined by 

 fixing its SF and MRS values as depicted in Table 4.3. 

Table 4.3: Number of staff members for given values of SF and MRS 

SF=0.5 SF=0.75 SF=1.0 SF=var. 

MRS P
 

MRS P MRS P MRS P 

0.0667 8
 

0.0667 12 0.0667 16 0.0667 12 

0.0750 9 0.0778 14 0.0750 18 0.0778 14 

0.0917 11 0.0944 17 0.0917 22 0.0944 17 

 

Table 4.4 presents the summary of the characteristics of the test instances generated at a glance. 

For each combination of SF, NC and MRS, 6 instances have been generated thus a total of 

(4*3*3) *6=216 instances have been generated for testing the behaviour of the developed 

algorithms. 

Table 4.4: Summary of characteristics of the test instances 

Factor Value 

Number of activities (N) N=30 

Activity duration (pi) pi ~U (1,10) 

Network Complexity (NC) NC   {1.5, 1.8, 2.1} 

Skill Factor (SF) SF   {0.5, 0.75, 1, variable} 

Modified Resource Strength (MRS) 0.0667   MRS  0.0944 

Total no. of available skills (|S|) |S|=4 

Number of staff members required by each skill, bi,k bi,k   {1,2,3} 
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4.4.2 Parameter setting  

Parameter setting is a crucial step in any metaheuristic to determine the optimum combination of 

factors that influence its performance. It is first performed for the TLBO and subsequently done 

for the GA. It is important to note that conventional TLBO has only two parameters to tune i.e. 

number of iterations and population size. However, in the modified TLBO as proposed in this 

work, three parameters need to be tuned, the details as mentioned below. 

4.4.2.1 Parameter setting for the TLBO 

In the proposed TLBO three factors at three different levels have been selected for fine 

tuning as depicted in Table 4.5. These levels have been selected from the literature (Rao et al., 

2012) and inspired by their competitive performance when applied to different benchmark 

functions. In another work of Rao and Patel (2012) where elitist TLBO was proposed, population 

sizes of 25, 50, 75 and 100 were used with elite size as 0, 4, 8 and 12. Inspired by these values, 

three population sizes have been selected which are reasonably close to the values chosen in the 

literature i.e. 20, 40 and 60. These values are equidistant for ensuring fair comparison during 

parameter tuning. It is interesting to note that elite size proposed in the TLBO is employed as a 

percentage of total population hence all three population sizes have been chosen as even integers 

to avoid the fractional values in the elite size. Probability of self-study is basically a mutation 

concept and its levels are inspired from Alcaraz and Moroto (2001). 

Table 4.5: Factors and corresponding levels for the TLBO 

Factor Symbol Level Values 

Number of learners (pop size) Class_size 3 20 40 60 

Probability of self-study SS_prob 3 0.01 0.05 0.10 

Percentage of elite learners Elite_per 3 0.05 0.10 0.15 

 

Two crossover mechanisms from literature namely 1-point and 2-point have been utilized to 

realize the teacher and learner phase. Moreover, the self-study phase is also incorporated using 

two mutation mechanisms one proposed by Boctor (1996) and other by Hartmann (1998) and 
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referred in this work as BM and HM respectively. To determine the best combination of these 

two factors (each having two levels), all these are crossed together, thus having four different 

combinations to be tested. The Class_size is fixed at 20, SS_prob at 0.01 and Elite_per at 0.05 

during this test and 50 instances have been selected randomly from the 216 instances developed 

for the MSRCPSP. As optimal solutions of the instances are not known, deviation from critical 

path based lower bound has been taken into consideration which is given as, DEV = (Z
H
 – 

Z
CP

)/Z
CP

 where Z
H
 is the solution provided by the developed algorithm and Z

CP 
is the critical path 

duration. The test results for crossover and mutation combinations are shown in Table 4.6. 

It can be seen that Boctor mutation and 2-point crossover have performed relatively better than 

other combinations. These have been therefore selected for further tuning of factors. A full 

factorial method needs 3
3
=27 different tests to be performed. Again, in order to decrease the 

number of tests, Taguchi‟s design of experiments (DOE) approach is employed. The proposed 

work employs traditional method of handling the responses of multiple trials by using average or 

mean (Fang and Wang, 2012). However, it is surmised that S/N ratio should be used if 

consistency is desired over mean especially in situations where responses are more susceptible to 

be affected by variation within the data. A L9 (3
3
) orthogonal array is used for the test having 

eight degrees of freedom (DOF) as mentioned in Table 4.7. A total of 1000 schedules have been 

generated as stopping criterion and average deviation from critical path based lower bound for 

the 50 randomly selected instances is calculated as ARV (average response variable).  

Table 4.6:  Test results for different combinations of crossover and mutation 

Crossover Mutation AVG % DEV. 

1-point BM 0.7125 

1-point HM 0.7236 

2-point BM 0.6895 

2-point HM 0.7105 
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Table 4.7: Orthogonal table and the ARV values for DOE test for TLBO   

Exp. number 
Factors 

ARV 
Class_size SS_prob Elite_per 

1 20 0.01 0.05 0.6922 

2 20 0.05 0.10 0.6316 

3 20 0.10 0.15 0.5986 

4 40 0.01 0.10 0.5813 

5 40 0.05 0.15 0.6227 

6 40 0.10 0.05 0.5930 

7 60 0.01 0.15 0.6309 

8 60 0.05 0.05 0.6096 

9 60 0.10 0.10 0.5967 

The results of Taguchi test can be seen from Table 4.7. The main effects plots for each factor are 

shown in Figure 4.10. It is evident that optimum levels obtained for the parameters are: 

Class_size = 40, SS_prob = 0.10 and Elite_per = 0.10. 

 

Figure 4.10: Main effects plot for each level of factors of the TLBO 
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4.4.2.2 Parameter setting for the GA 

For the GA discussed in Section 3.2., there are four different parameters of interest namely 

population size (Pop_size), crossover probability (Cross_prob), mutation probability (Mut_prob) 

and elite size (expressed as percentage of population size and denoted by Elite_per). Three levels 

have been chosen for each of these parameters as shown in Table 4.8 which are inspired by 

typical values used in literature for the RCPSP (Alcaraz and Maroto, 2001). The corresponding 

values of ARV as obtained for L9 (3
4
) orthogonal array have been exhibited in Table 4.9. The 

optimum levels as obtained after the test are Pop_size =40,  Cross_prob = 0.80 , Mut_prob = 

0.10 , Elite_per = 0.10 (Figure 4.10). 

4.4.3 Comparative results 

On the basis of optimum values of parameters obtained by DOE tests, the behaviour of both the 

algorithms i.e. TLBO and GA is tested for 216 instances (36*6) induced by different values of 

NC, SF and MRS. A total of 5000 schedules were generated for both the algorithms as stopping 

criterion. As the optimum solutions of these problems are not known, the percentage deviation 

from critical path based lower bound is used for comparison purpose which is as given below: 

% DEV = (Z
H
 – Z

CP
)/Z

CP
 * 100 

where Z
H
 is the heuristic solution provided by the algorithm and Z

CP
 is the critical path duration 

Table 4.8:  Factors and corresponding levels for the GA 

Factor Symbol Level Values 

Population size Pop_size 3 20 40 60 

Probability of crossover Cross_prob 3 0.70 0.80 0.90 

Probability of mutation Mut_prob 3 0.01 0.05 0.10 

Percentage of elite individuals Elite_per 3 0.05 0.10 0.15 
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Table 4.9: Orthogonal table and the ARV values for DOE test for GA   

Exp. number 
Factors  

ARV 
Class_size Cross_prob Mut_prob Elite_per 

1 20 0.7 0.01 0.05 0.8430 

2 20 0.8 0.05 0.1 0.7615 

3 20 0.9 0.1 0.15 0.7845 

4 40 0.7 0.05 0.15 0.7650 

5 40 0.8 0.1 0.05 0.7612 

6 40 0.9 0.01 0.1 0.7751 

7 60 0.7 0.1 0.1 0.7590 

8 60 0.8 0.01 0.15 0.8104 

9 60 0.9 0.05 0.05 0.7846 

The detailed results have been shown in Table 4.10. Each row represents the combination of 

parameters of the test instance and average percentage deviation obtained by running both the 

algorithms for the 6 instances for this combination. 

  

Figure 4.11: Main effects plot for each level of factors of the GA 
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Table 4.10: Comparison of TLBO and GA for the test instances 

SF NC MRS P 

TLBO GA 

 

(% DEV) 

 

(% DEV) 

0.5 1.5 0.0667 8 62.79 83.72 

  
0.0750 9 58.14 79.07 

  
0.0917 11 51.16 72.09 

 
1.8 0.0667 8 57.58 77.27 

  
0.0750 9 54.55 60.61 

  
0.0917 11 39.39 50.00 

 
2.1 0.0667 8 56.72 64.18 

  
0.0750 9 46.27 61.19 

  
0.0917 11 34.33 46.27 

0.75 1.5 0.0667 12 74.42 86.05 

 
 0.0778 14 61.63 81.40 

 
 0.0944 17 58.14 74.42 

 
1.8 0.0667 12 66.67 80.30 

 
 0.0778 14 59.09 63.64 

 
 0.0944 17 57.58 56.06 

 
2.1 0.0667 12 58.21 67.16 

 
 0.0778 14 49.25 53.73 

 
 0.0944 17 37.31 52.24 

1 1.5 0.0667 16 83.72 109.30 

 
 0.0750 18 69.77 93.02 

 
 0.0917 22 67.44 86.05 

 
1.8 0.0667 16 74.24 92.42 

 
 0.0750 18 71.21 72.73 

 
 0.0917 22 66.67 60.61 

 
2.1 0.0667 16 61.19 73.13 

 
 0.0750 18 52.24 64.18 

 
 0.0917 22 49.25 58.21 

var. 1.5 0.0667 12 76.74 90.70 

  0.0778 14 65.12 81.40 

  0.0944 17 51.16 76.74 

 1.8 0.0667 12 68.18 78.79 

  0.0778 14 65.15 71.21 

  0.0944 17 60.61 62.12 

 2.1 0.0667 12 56.72 68.66 

  0.0778 14 50.75 59.70 

  0.0944 17 38.81 49.25 

Avg.    58.67 71.05 

 



82 
 

Table 4.11: Summary of results 

Parameters Values Algorithms 

 

TLBO 

(% DEV) 

GA 

(% DEV) 

SF 0.5 51.21 66.04 

0.75 58.03 68.17 

1.0 66.19 78.85 

var. 59.25 70.95 

NC 1.5 65.02 84.50 

1.8 61.75 68.82 

2.1 49.26 59.82 

MRS 0.0667 66.43 80.97 

0.0750 58.70 71.18 

0.0778 58.49 68.51 

0.0917 51.37 62.21 

0.0944 50.60 61.81 

                       Avg.  58.67  71.05 

 

As evident from the results, the average percentage deviation obtained by the proposed TLBO is 

58.67% while it is 71.05% for the GA thus showing 12.38% reduction on average makespan. A 

relative comparison shows that TLBO results are 21.10 % better as compared to the GA.  

The effects of individual parameters i.e. skill factor (SF), network complexity (NC) and modified 

resource strength (MRS) have also been investigated on the results obtained. A summary of the 

behaviour of these parameters on quality of results is presented in Table 11. Out of the total 216 

instances, 72 instances correspond to each NC while there are 54 instances related to each SF. It 

can be seen that there occur five different values of MRS in the overall instances. A MRS of 

0.0667 is there in 72 instances while the other four MRS values 0.0750, 0.0778, 0.0917 and 

0.0944 occur in 36 instances each. 
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From Table 4.11, it can be seen that average deviation increases with increase in skill factor (SF) 

which can be attributed to the fact that serial scheduling scheme is applied for resource 

assignments and due to the increased proportion of resource requirements by activities, number 

of possible resource combinations increases accordingly. The behaviour of the results with 

respect to the instance characteristics is pictorially represented through Figures 4.12 to Figure 

4.14. 

It can be observed that with the increase in network complexity (NC), average deviation 

decreases similar to the inferences drawn by Almeida et al. (2016). In other words, instances 

with increased value of NC are easier to solve because as the number of precedence relations 

increases, there becomes less number of activities available that can be processed 

simultaneously, i.e. the degree of parallelization decreases. 

 

Figure 4.12: Comparison of the TLBO and GA results for different skill factors  

Similarly with an increased value of modified resource strength (MRS), one can observe relative 

improvement in results. This is obvious because with the availability of increased number of 

staff members mastering a particular skill, the resource needs of an activity are satisfied 

relatively earlier than with reduced value of MRS. 
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Figure 4.13: Comparison of the TLBO and GA results for different network complexity 

 

 

Figure 4.14: Comparison of the TLBO and GA results for different modified resource strength  

 

It can be seen from Table 4.11 that percentage deviations (% DEV) obtained by TLBO for 

different combinations of SF, NC and MRS are comparatively better than those of GA. Thus 

proposed TLBO can be regarded as a competitive metaheuristic to solve the MSRCPSP. 
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4.5 Summary 

This chapter investigates the problem of multi-skill resource-constrained project scheduling 

problem (MSRCPSP) in which resources possess more than a single skill. It is assumed that each 

activity requires one or more resource persons with varying skill for its execution. A mixed-

integer linear programming model has been formulated for this NP-hard problem. Two 

metaheuristics have been developed to solve this problem namely TLBO and GA. In addition to 

the conventional teacher and learner phase in TLBO, the concept of self-study and examination 

phase have also been employed which are known to enhance the exploration and exploitation 

capabilities of the algorithm according to other studies. Taguchi‟s orthogonal array method is 

employed for parameter tuning of both these algorithms. To test the behaviour of proposed 

algorithms, 36 different combinations of three parameters viz. skill factor, network complexity 

and modified resource strength have been designed and 6 instances are generated for each 

combination i.e. 216 (36*6) instances in all have been tested. The results obtained after 

computational study show that the TLBO has performed significantly better than GA in terms of 

average percentage deviation from critical path based lower bound for each combination of these 

parameters. In addition, TLBO also offers an additional advantage of less parameter to tune as 

compared to GA.  

In the next chapter, the metaheuristic developed here will be extended for the multi-objective 

version of the MSRCPSP which is again a scarcely treated work in literature. The objective of 

makespan minimization will be handled along with minimization of time elapsed with less-

skilled resource assignments. Many product and service organizations involving a large pool of 

multi-skilled resources are facing problems of uneven allocation of skills to tasks rendering low 

productivity indices, dissatisfaction among workers and reduced employee morale. Under this 

motivation, effective metaheuristic algorithms for a multi-objective MSRCPSP will be 

developed in the next chapter. 
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Chapter 5 

 

A Multi-Objective TLBO for the Multi-Objective MSRCPSP 

 

5.1 Introduction 

In this chapter, the TLBO algorithm developed for the single-objective MSRCPSP is extended 

for its multi-objective version. One can recall from the comprehensive literature review in 

chapter 2 that although resource limitation aspect has been sufficiently addressed by researchers 

in project scheduling, the notion of skilled resources still presents a potential area of research. 

Moreover, in most of the current studies, only one scheduling objective (mostly the makespan) is 

considered but in many practical situations decision-makers are generally concerned about 

several objectives simultaneously which give rise to what is known as multi-objective multi-skill 

resource-constrained project scheduling problem (MO-MSRCPSP).  

There are only few researchers who have focused on other objectives in addition to the regular 

objective of minimizing the project‟s makespan for a MSRCPSP. These objectives are largely 

related to minimizing the cost of allocating the workers in a project or maximizing the overall 

quality of a given project (Maghsoudlou et al. 2016, Wang et al., 2018).  Furthermore, in most of 

these multi-objective MSRCPSP research works, it has been assumed that a staff member is able 

to exhibit different skills with the same proficiency or expertise. However, this is not true in real 

life. Usually in organizations, a person possessing various skills may be expert in one (or two) 

skill(s) but may only be moderately trained for performing other skills.  It is seen that a multi-

skilled person in an organization by experience is likely to achieve expertise in the skill domains 

where he/she is associated for a prolonged period of time. In addition, by his very inherent 

training he/she is also competent to execute activities requiring other skills. These (other) skills 

may not be significantly different from his basic skill type but share some common features. For 

example, a coder in a software development companies may be highly expert to code in JAVA 

platform but may have moderate level of proficiency in Python, Elixir, TypeScript or other 

programming languages. The proficiency or expertise of a skill signifies the degree of 

sophistication, ease or superiority by which a staff member can execute a particular skill. 



88 
 

In this environment, it is sometimes judicious to assign a slightly less proficient person to an 

activity if an „expert‟ or high-skill person is busy in executing other activity. This assignment 

may help the project manager to meet the project deadlines with only a minor loss in project 

quality which is often acceptable to the stakeholders. Moreover, it is possible that resources 

having different levels of proficiencies of same skill can be simultaneously assigned to a 

particular activity if resource need for the activity is more than one. This may provide an 

opportunity to an individual to work in team with an expert or high-skilled person thus 

increasing his/her proficiency level. Nevertheless, the assignments of persons with less-skilled 

levels should always be kept as low as possible to achieve satisfactory quality targets. 

Under this practical motivation, this chapter specifically aims to develop efficient solution 

techniques for the multi-objective multi-skill resource-constrained project scheduling problem 

(MO-MSRCPSP) taking variable skill proficiencies into account. In addition to the regular 

objective of minimizing the makespan, second objective aims at minimizing the total time 

elapsed in resource assignments with less-skilled persons. 

5.2 Multi-objective MSRCPSP 

5.2.1 Problem description  

Unlike some researchers who focused on discrete type of hierarchical skill levels (for example 1, 

2 3 etc.), proficiency levels considered in this work have been realized on a continuous scale 

similar to the performance ratings of workers under a time-study. More precisely, following 

levels of proficiencies have been considered for staff members‟ skills with corresponding values 

shown in Table 5.1: 

Table 5.1: Levels of proficiencies 

Level of proficiency Value 

Expert 1.0 

Highly-skilled 0.9 

Moderately-skilled 0.8 

Less-skilled 0.7 
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In the above table it is important to note that no person can have skill proficiency above 100%, 

thus proficiency level of an „expert‟ staff member is 1. The persons below the value 0.7 are 

excluded from this consideration as they are highly under-skilled which may be detrimental to 

the overall project quality. One may argue that allocating less-skilled person to an activity (as 

compared to an expert) may also deteriorate the quality of a project. The statement is true in 

strict theoretical sense. However, during a period when an expert person is already busy in 

executing any pre-allocated activity, it is realistic and practical to allocate a slightly less-skilled 

(available) person to a current schedulable activity so that a project is completed on time. In 

addition, with this so called „less proficient‟ assignments, the project can still have reasonable or 

satisfactory level of quality and performance often acceptable to the stakeholders. In simple 

terms, it can be a natural choice for a project manager to complete a project as early as possible 

with acceptable quality levels under a given pool of slightly less-proficient resources. 

5.2.2 Mathematical model  

To accommodate the above philosophy, a bi-objective mathematical model is formulated for the 

MSRCPSP. The model is similar to the one proposed for the single-objective MSRCPSP with a 

slight modification in the objective function. For the purpose of completeness and coherence, it 

is reproduced here with all notations and constraints but with a bi-objective function as shown 

below: 

Notations: 

Parameters Definition 

N number of non-dummy activities in the project 

A ,     {         } set of activities  

pi processing time of activity Ai 

K total number of skills available 

P total number of available staff members 

S   ,   {      } set of skills 
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P,    {       } set of staff members 

      greater than 0 if staff member Pm possesses skill Sk, 0 otherwise 

     number of staff members with skill Sk  required by activity i 

ti start time of activity i 

T project horizon 

 

Decision variables:  

          

 

1;   if staff member m starts an activity i at time t, 

0  otherwise 

 

        1;   if staff member m starts an activity i with skill k, 

0  otherwise 

 

      = 1;   if activity i is started at time t, 

0  otherwise 

 

Mathematical Model for MO-MSRCPSP 

Min. Z1 =                (5.1) 

Min. Z2 =  ∑     ∑     ∑                         (5.2) 

Sub. to :  

    ∑                                (5.3) 

                                 (5.4) 
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∑                                    (5.5) 

∑ ∑                                         (5.6) 

                     ,       ,             (5.7) 

              ∑                  ,       ,             (5.8) 

                     ,       ,          (5.9) 

∑                                     (5.10) 

∑               ∑                             (5.11) 

         {   }                 ,              (5.12) 

         {   }                      (5.13) 

       {   }                           (5.14) 

 

For the detailed explanation and definition of constraints, one is referred to the section 4.2.1 of 

chapter 4. It is evident from this revised model that two objectives have been considered for 

investigation as mentioned below: 

1. To minimize the project makespan (Z1) 

2. To minimize the total time elapsed with less-skilled resource assignments defined as Skill 

Divergence Span (SDS) (Z2). 

It is interesting to note that second objective does not merely consider the minimization of less-

skilled resource assignments, rather a „Skill Divergence Span (SDS)‟ , in terms of total time 

elapsed with less-skilled assignments, is considered for minimization. The SDS is basically the 

product of processing time of an activity and the corresponding amount of penalty attracted due 

to the low skill attained by staff member in performing that activity. Mathematically,  

Skill Divergence Span (SDS) =                          (5.15) 

where        is a binary decision variable whose value is 1 if staff member m starts an activity i 

with skill k and 0, otherwise. 

The advantage of considering SDS is that instead of minimizing only the absolute loss due to 

less-skilled assignments one can minimize the relative time (span) elapsed in less-skilled 
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assignments which a more reasonable way of capturing performance disparities arising due to 

assignments of less-skilled resources in a project.  

It is easier to understand that the two objectives mentioned above are conflicting to each other. If 

second objective alone is considered, resource assignments having skill proficiency other than 

„1‟ are not preferred for assignments which may increase project duration. 

5.2.3 An illustrative example 

To understand the nature of the MO-MSRCPSP under investigation, the project instance 

presented in section 4.2 of chapter 4 is considered again. 

Table 5.2: A project instance for the MO-MSRCPSP  

Activities S-1 S-2 S-3 Activity 

times (pi) 

Number of 

Successors 

Successor Activities 

1 0 0 0 0 2 2 3 

2 0 1 1 2 1 4 - 

3 1 0 1 5 1 5 - 

4 2 1 0 3 1 6 - 

5 0 1 0 3 1 6 - 

6 0 0 0 0 0 - - 

 

It comprises of four non-dummy activities linked by precedence relations as shown in Table 5.2. 

Activity number 1 and 6 are dummy activities i.e. they do not consume any time or resource for 

their execution. For other activities, there is at least one resource is required for their execution. 

The information given in above table has been converted into a pictorial representation or 

network diagram as shown in Figure 5.1. 

Unlike the previous model of the single-objective MSRCPSP, a modification is made in this 

problem in the sense that the skills attained by the staff members have been assumed to have 

different proficiencies or expertise level (Table 5.3). The value „1‟ indicates that a staff member 

masters that particular skill at an expert level while value less than 1 signifies low proficiency to 

exhibit the skill relative to the expert level. For example, w.r.t. Table 5.3, one can see that staff 

member 1 is expert in exhibiting skill S2 while has only 70 % proficiency in skill S3 and so on. 
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               Figure 5.1:  Precedence graph of the illustrative project 

 

Table 5.3: Staff-Skill Proficiency Matrix 

Staff 

  

Skills attained 

S1 S2 S3 

1 0 1 0.7 

2 0.9 0 1 

3 1 0 0 

4 1 0 0.8 

 

One can recall from chapter 4 that an individual for the MSRCPSP can be conveniently encoded 

into two parts as shown in Figure 5.2. The first part is in the form of a top horizontal row that 

determines the relative priorities of the activities which is more popularly known as activity list 

(AL). The second part comprises of vertical columns corresponding to each activity such that the 

number of elements in each column is equal to the total number of resources required for the 

particular activity. In fact, the digits in the columns represent the corresponding index of staff 

members assigned to perform the said activity. It is easier to understand that no digits in a 
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particular column are identical due to the constraint (5.11) of mathematical model which ensures 

that a staff member cannot use more than one skill at a time when assigned to an activity. 

 

 

 

 

Figure 5.2: A solution (encoded individual) of illustrative project 

The procedure of computing the values of two objective functions for this particular instance is 

illustrated now. In order to calculate the makespan, the already developed modified serial 

schedule generation scheme (refer chapter 4) is employed. Using this procedure the value of Z1 

i.e. makespan is calculated as 11 time units as shown in Figure 5.3. 

 

Figure 5.3:  A feasible solution of the illustrative example 
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To calculate the value of second objective function i.e. total time elapsed in less-skilled resource 

assignments, the SDS is computed corresponding to each resource using equation (5.15) as 

mentioned below: 

Skill Divergence Span (SDS) =                      

For this particular problem,  i=1,2,3,4,5,6; k =1,2,3; m=1,2,3,4) 

From the solution of the instance shown in Figure 5.3, it is evident that following values of skill 

divergence span (SDS) can be conveniently computed for each of the six activities of the project 

(One should note that calculations are shown only for those non-dummy activities where 

        ) 

SDS1 = 0 (dummy start activity) 

SDS2 = 1*2* (1-1) + 1*2* (1-1) =0 

SDS3 = 1*5* (1-1) + 1*5* (1-0.8) =1 

SDS4 = 1*3* (1-1) + 1*3* (1-0.9) + 1*3* (1-1) =0.3 

SDS5 = 1*3* (1-1) =0 

SDS6 =0 (dummy end activity) 

To calculate the value of second objective function i.e. Z2, summation of SDS values is 

performed for all activities, 

Thus, Z2 = ∑       
  = 0+0+ 1+ 0.3+0+ 0=1.3 time units. 

The value of Z2 quantifies the total amount of time during which resources with skill proficiency 

less than 1 are engaged in performing project activities. A fraction value is justified by the fact 

that proficiencies of staff members have been assumed on a continuous scale rather than discrete 

or hierarchical levels as found in literature. The Z2 has to be minimized in the algorithm along 

with makespan. 
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5.3 Proposed algorithms for solving the MO-MSRCPSP 

There are several approaches available in literature to tackle the multi-objective optimization 

problems (Kalyanmoy D., 2001). These include weighted-sum or scalarization method, ε- 

constraints method, goal programming, multi-level programming and multi-objective 

optimization using metaheuristic approaches. As mentioned in chapter 2, this work employs the 

weighted-sum or scalarization method as it is simple and intuitive. More specifically, the two 

objectives have been combined by assigning suitable weights and the MO-MSRCPSP is 

conveniently converted into a single-objective problem by using the TLBO and GA developed in 

chapter 4. To elaborate further, a weighted-sum or scalarization method for an n-objective 

problem assigns weight wi to the i
th

 objective function fi(x) and minimizes a positively weighted 

sum of all the objectives. Mathematically, 

Z3=Min. ∑    
 
                 (5.16) 

∑      
              (5.17) 

                        (5.18) 

Equation (5.16) presents a unique objective function denoted by Z3. Mathematically, it can be 

proved that minimization of this new single-objective function can be an efficient solution for the 

multi-objective problem initially defined by equations (5.1) and (5.2) in the mathematical model 

of MO-MSRCPSP. More specifically, if the w weight vector is greater than zero, the solution 

obtained by the minimizer Z3 is a strict Pareto optimum. 

There the two basic approaches to handle a multi-objective optimization problem namely priori 

and posteriori approach. In the former, a decision maker has to assign suitable weights to the 

objective functions according to his conceptual skill and preference. Actually, one cannot be 

certain to say that which weights are the most appropriate to obtain a satisfactory solution. Also, 

the consistent change in the solution cannot be correlated by the changing weights. Decision 

makers have to try different combinations of weight vectors to touch different portions of the 

Pareto curve which obviously create a considerable computational burden. In spite of these 

shortcomings, the priori approach is chosen to solve the MO-MSRCPSP in this work as it is 
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simple and intuitive. In comparison to minimization of SDC, a higher consideration is given to 

minimization of makespan and hence the weights of the two objective functions have been 

specified as w1=0.7 and w2=0.3. Nevertheless, these weights have been chosen arbitrarily and a 

decision maker can suitably alter their values depending upon his/her preference of the objective 

function to be minimized. In the next section the details of the metaheuristic approaches 

employed to solve the problem under hand have been presented. 

5.3.1 A multi-objective TLBO for the MO-MSRCPSP 

Looking to the promising results of the TLBO algorithm developed for the single-objective 

MSRCPSP, the same set of parameters have been applied for the multi-objective MSRCPSP. In 

chapter 4 the details of the solution representation schemes and implementation methodology of 

the TLBO can be referred. The following table summarizes the important parameters used for the 

TLBO developed for the MO-MSRCPSP: 

Table 5.4: Summary of the MO-TLBO algorithm 

Architecture of the TLBO developed for the MO-MSRCPSP 

Encoding scheme Activity List (AL) with vertical columns having index of 

staff members as resource assignment  

Decoding scheme Modified serial schedule generation scheme  

Initial population RBRS sampling method with LFT priority rule 

Teacher and Learner phase Using 2-point crossover mechanism  

Self-study phase Using Boctor‟s mutation (BM) 

Examination phase Elitism  

Test Instances Generated by using methodology proposed by Almeida 

et al. (2015) with Staff-Skill Matrix replaced by Staff-

Skill Proficiency Matrix. 

Parametric details of the TLBO for the MO-MSRCPSP 

Size of initial population (Class_size) 40 

Probability of self-study (SS_prob) 10% 

Percentage of elite learners (Elite_per) 10 % 

Number of instance tested 216 

Number of schedules generated per instance 5000 
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5.3.2 A multi-objective GA for the MO-MSRCPSP 

As mentioned earlier there is no reported algorithm in literature for the multi-objective 

MSRCPSP by considering mixed level of proficiencies of skills having continuous nature. 

Looking to this aspect, a MO-GA is also developed as an alternative metaheuristic primarily for 

comparing the results with the proposed TLBO. The basic scheme, operators and implementation 

framework of the proposed GA on the MO-MSRCPSP are same as designed for the single-

objective MSRCPSP. Table 5.5 presents a brief summary of the same. 

Table 5.5: Summary of the proposed MO-GA 

Architecture of the GA developed for the MO-MSRCPSP 

Encoding scheme Activity List (AL) with vertical columns having index of 

staff members as resource assignment  

Decoding scheme Modified serial schedule generation scheme  

Initial population RBRS sampling method with LFT priority rule 

Crossover mechanism 2-point crossover mechanism  

Mutation mechanism Boctor‟s mutation (BM) 

Elitism Ranking based 

Selection mechanism 2-tournament method for parents selection 

Test Instances Generated by using methodology proposed by Almeida 

et al. (2015) with Staff-Skill Matrix replaced by Staff-

Skill Proficiency Matrix. 

Parametric details of the GA for the MO-MSRCPSP 

Size of initial population (Class_size) 40 

Crossover probability (Cross_prob) 0.80 

Mutation Probability (Mut_prob) 0.10 

Percentage of elite learners (Elite_per) 0.10  

Number of instance tested 216 

Number of schedules generated per instance 5000 

 

5.4 Computational results 

To test the behaviour of the two algorithms the algorithms have been coded in MATLAB 7 

environment with Core i3 processor having Windows 8.1 and 4GB RAM. The staff-skill matrix 
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of the 216 different test instances generated for the single-objective MSRCPSP have been 

modified to incorporate the different skill proficiencies among the staff members. The new 

matrix is designated as staff-skill-proficiency matrix as shown in Table 5.3. It is ensured that 

each staff member is „expert‟ in at least one skill type. For other skills attained by him, the 

proficiency level is varied using a random number r such that r  {           }. 

On the basis of values of parameters mentioned in Tables 5.4 and Table 5.5, the behaviour of 

both the algorithms have been tested for 216 different instances induced by different values of 

network complexity (NC), skill factor (SF) and modified resource strength (MRS) mentioned in 

chapter 4. A total of 5000 schedules have been generated for both the algorithms as stopping 

criterion. It is important to note that fitness (objective) function in these problem set is modified 

by combining two objective functions by selecting a weight vector as            . As the 

optimum solutions of these problems are not known, the percentage deviation from critical path 

based lower bound is calculated which is given as: 

% DEV = (Z
H
 – Z

CP
)/Z

CP
 * 100 

where Z
H
 is the heuristic solution provided by the algorithm and Z

CP
 is the critical path duration. 

The detailed computational results are shown in Table 5.6 whereas summary of these results is 

exhibited in Table 5.7. In addition, the variation of the different characteristics of instances with 

respect to avg. % deviation is also shown graphically from Figure 5.5 to Figure 5.7. On the basis 

of these results, following useful observations can be derived: 

 The average % deviation from ctitical path based lower bound obtained is comparatively 

lower for the MO-TLBO as compared to the MO- GA. It is 61.78% for the proposed MO-

TLBO while for MO-GA its value is 74.25%. 

 Similar to the results of single-objective MSRCPSP, average % deviation increases with 

increase in skill factor (SF) (see Figure 5.4) which can be attributed to the fact that due to 

the increased proportion of resource requirements by activities, number of possible 

resource combinations increases accordingly. 

 



100 
 

Table 5.6: Comparison of MO-TLBO and MO-GA  

SF NC MRS P MO-TLBO 
(AVG. % DEV) 

MO-GA 
(AVG. % DEV) 

0.5 

1.5 

0.0667 8 66.28% 86.05% 

0.0750 9 60.47% 81.40% 

0.0917 11 53.49% 74.42% 

1.8 

0.0667 8 59.09% 78.79% 

0.0750 9 56.06% 62.88% 

0.0917 11 40.91% 51.52% 

2.1 

0.0667 8 58.21% 65.67% 

0.0750 9 47.76% 62.69% 

0.0917 11 35.82% 47.76% 

0.75 

1.5 

0.0667 12 79.07% 90.70% 

0.0778 14 65.12% 86.05% 

0.0944 17 62.79% 80.23% 

1.8 

0.0667 12 69.70% 84.85% 

0.0778 14 62.12% 66.67% 

0.0944 17 60.61% 59.09% 

2.1 

0.0667 12 61.19% 70.15% 

0.0778 14 52.24% 56.72% 

0.0944 17 40.30% 55.22% 

1 

1.5 

0.0667 16 90.70% 116.28% 

0.0750 18 76.74% 100.00% 

0.0917 22 74.42% 93.02% 

1.8 

0.0667 16 78.79% 96.97% 

0.0750 18 75.76% 77.27% 

0.0917 22 71.21% 65.15% 

2.1 

0.0667 16 65.67% 77.61% 

0.0750 18 56.72% 68.66% 

0.0917 22 53.73% 62.69% 

var. 

1.5 

0.0667 12 79.07% 93.02% 

0.0778 14 67.44% 83.72% 

0.0944 17 53.49% 79.07% 

1.8 

0.0667 12 69.70% 80.30% 

0.0778 14 66.67% 72.73% 

0.0944 17 62.12% 63.64% 

2.1 

0.0667 12 58.21% 70.15% 

0.0778 14 52.24% 61.19% 

0.0944 17 40.30% 50.75% 

Avg. 61.78% 74.25% 
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Table 5.7: Summary of results for MO-TLBO and MO-GA 

Parameters Values 

Algorithms 

TLBO 

(% DEV) 

GA 

(% DEV) 

SF 

0.5 53.12 67.91 

0.75 61.46 72.19 

1.0 71.53 84.18 

var. 61.03 72.73 

NC 

1.5 69.09 88.66 

1.8 64.39 71.66 

2.1 51.87 62.44 

MRS 

0.0667 69.64 84.21 

0.0750 65.25 75.48 

0.0778 60.97 71.18 

0.9170 54.93 65.76 

0.9440 53.27 64.67 

 

 

 

Figure 5.4: Avg. % deviation for different skill factor 

 

 With increase in network complexity (NC), the number of precedence relations also 

increases. This means less number of activities are available that can be processed 
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simultaneously, i.e. the degree of parallelization decreases. This in turn results in low 

values of % deviation as observed from Figure 5.5. 

 It can be seen that with the availability of increased number of staff members mastering a 

particular skill, the resource needs of an activity are satisfied relatively earlier than with 

reduced value of MRS which justifies the low values of % deviation with higher MRS 

values (Figure 5.6). 

 

Figure 5.5: Avg. % deviation for different network complexity 

 

 

Figure 5.6: Avg. % deviation for different modified resource strength  

5.5 Summary 

In most of the real world optimization and search problems, it is inevitable to have multiple 

objectives which are mostly conflicting to each other. In this chapter, a scarcely treated work in 
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literature about multi-objective multi-skilled resource-constrained project scheduling problem 

(MO-MSRCPSP) by considering mixed skill proficiencies is investigated. A multi-objective 

mathematical formulation is presented for this problem which aims to minimize two time 

estimates; the project makespan and the total time elapsed with less-skilled resource assignments 

which is defined as total skill divergence span (SDS). To solve this complex problem, a priori 

approach based on weighted-sum or scalarization method is used. The weights given to 

makespan and SDS function are 0.7 and 0.3 respectively which can be arbitrarily modified by 

decision maker.  

To solve this complex problem, two metaheuristics have been proposed namely MO-TLBO and 

MO-GA. The test instances developed for the MSRCPSP have been modified with mixed 

proficiency levels of the staff members. The comprehensive test results reveals that the MO-

TLBO has performed significantly better than the MO-GA and can be an effective metaheuristic 

for solving such real life problems. 
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Chapter 6 

 

Conclusions and future research directions 

 

In this work the resource-constrained project scheduling problem (RCPSP) involving flexible 

resources is studied. In these problems the resources are „multi-skilled‟ i.e. each resource has the 

functionality of various renewable resources. The problem in literature has been studied under 

the name multi-skill resource-constrained project scheduling problem (MSRCPSP) in literature.  

 

In chapter 2, a comprehensive literature review is conducted on the MSRCPSP with a brief 

overview of the RCPSP. As an outcome, it is revealed that although resource limitation aspect 

has been sufficiently addressed by researchers in project scheduling, the notion of skilled 

resources still presents a potential area of research. It is found that in most of the research works, 

a resource or staff member is assumed to possess different skills with same proficiency levels. 

However, this is not true in real life. Usually in organizations, a staff member possessing various 

skills may be expert in one (or more) skill(s) but may not be able to exhibit the same level of 

expertise in all skill types. Moreover, in most of the studies it was found that only one scheduling 

objective (mostly the makespan) is considered. However, in many practical situations decision-

makers need to take care about several objectives simultaneously which give rise to what is 

known as multi-objective multi-skill resource-constrained project scheduling problem (MO-

MSRCPSP). The MO-MSRCPSP is investigated in the later stage of this work. 

Although a number of metaheuristic approaches exist in literature but it is interesting to note that 

no single approach can be guaranteed to give better results for all types of scheduling problems. 

During the literature review, it has been found that one of the recent metaheuristics for 

optimization problems is teaching-learning- based algorithm (TLBO) which was introduced by 

Rao et al. (2011). The TLBO has been reported to have high convergence rate and it also inherits 

a merit of few algorithm specific parameters to tune (Rao et al., 2011). Inspired by the 

performance of TLBO on continuous non-linear problems, researchers have also applied it on 

discrete optimization problems. However, to the best of the knowledge there is no reported work 

in literature having application of TLBO on standard RCPSP and its multi-skill version with 
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finite resource requirements and consideration of mixed skill proficiencies. Under this 

motivation, in this thesis a TLBO algorithm with some modifications is developed as an 

alternative metaheuristic approach for general class of the RCPSP as well as for the MSRCPSP 

and its multi-objective case. 

Chapter 3 presents a modified TLBO algorithm for the RCPSP as a preliminary approach before 

its application on the MSRCPSP. For encoding the individuals, a precedence feasible activity list 

is employed whereas serial generation scheme (SGS) is used as  a decoding scheme. To enhance 

the exploitation and exploration capabilities of the original algorithm, in addition to teacher and 

learner phase, the concepts of self-study and examination phase have also been utilized in this 

work. The comprehensive test results on problem instance sets taken from literature show that 

the developed algorithm is reasonably effective and competitive to other well-known solution 

approaches for the RCPSP. 

Using the basic architecture of the TLBO algorithm for the RCPSP, chapter 4 discusses its 

extension it for the MSRCPSP. For this purpose, the activity list (AL) is specifically modified by 

a revised encoding scheme to incorporate the multi-skilled nature of the resources. In addition, a 

modified schedule generation scheme is also proposed as a decoding procedure to obtain a 

feasible schedule from a given solution. For the comparison purpose, A GA is also 

conceptualized as an alternative metaheuristic for solving this problem. The computational study 

on 216 test instances generated with different characteristics established that the proposed TLBO 

is comparatively better than the GA. 

The research is extended in chapter 5 by investigating the multi-objective MSRCPSP involving 

staff members having mixed proficiency levels of skill types. To the best of the knowledge, the 

problem has not been previously addressed in literature in this fashion. A bi-objective 

mathematical model is designed for minimizing the project makespan and total time elapsed with 

less-skilled resource assignments defined as Skill Divergence Span (SDS). For solving this 

complex problem, a weighted-sum or scalarization method integrated with a MO-TLBO is 

employed. The results obtained are quite encouraging in contrast to the MO-GA which is also 

developed in this work for the comparison purpose. 
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6.1 Major research contributions 

The results of the proposed TLBO for the RCPSP and its multi-skill extension i.e. MSRCPSP 

have already been highlighted in chapters 3, 4 and 5. These are quite promising and encouraging 

in terms of providing quick near optimal solutions of these problems. In what follows next, some 

of the major research contributions have been highlighted as fruitful outcomes of this study: 

1. A modified version of the teaching-learning-based optimization (TLBO) algorithm has 

been used to solve the RCPSP with additional phases of self-study and examination to 

enhance the exploration and exploitation capabilities of the conventional TLBO 

algorithm. 

2. The TLBO algorithm developed in this work is simple to apply and offers less number of 

algorithm-specific parameters to tune. In particular, it gives competitive results for the 

RCPSP when compared to several other metaheuristic proposed in the literature to solve 

this problem. 

3. As evident, a new representation scheme of individual (solution) has been used in this 

work from literature which contains feasible resource assignments for a given 

MSRCPSP. To handle this new representation, the study brings out a modified schedule 

generation scheme as a decoding procedure which is capable of avoiding resource-

conflicts in multi-skill environment. 

4. The TLBO developed for the MSRCPSP can be conveniently applied to a product or 

service organization wherein human resources are involved in executing project 

activities. Some typical beneficiaries may include software development companies, 

consultancy firms, R & D based organizations, maintenance firms, big construction 

houses etc. which incorporate multi-skilled staff members to accomplish different client 

orders simultaneously. The developed model can suitably handle resource allocation 

problems faced in real-life large-sized projects usually administered in these 

organizations. The research findings can assist the practitioners and managers to recruit 

and schedule the staff members of their organizations in a much economic way. 

5. The research also contributes by developing MATLAB codes for the generation of test 

instances of a MSRCPSP with varying levels of network complexity (NC), skill factor 
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(SF) and modified resource strength (MRS). These can be used by other researchers to 

generate standard or benchmark MSRCPSP instances for testing their algorithms. 

6. As another research contribution, the study provides an effective metaheuristic for the 

multi-objective MSRCPSP involving different proficiency levels of skills administered 

by the staff members. Besides minimization of project makespan, a novel concept of 

minimization of skill divergence span (SDS) is also introduced aims to minimize the total 

time elapsed with less-skilled resource assignments. 

 

6.2 Limitations of the research 

In spite of above-mentioned contributions, the outcome of this research is limited by its 

scope and applicability. These have been summarized below: 

1. The activity times in this work have been assumed to be deterministic and constant 

which is an unrealistic assumption. In a project scheduling environment where 

resources are human beings and multi-skilled in nature it is very obvious to assume 

that a highly-skilled worker can finish an activity earlier as compared to a 

moderately-skilled or an under-skilled worker. This aspect is not considered in the 

mathematical models proposed in this study. 

2. The resources which are staff members have been assumed to be available 

throughout the project span without any unavailability periods. This is, however, 

not true in practical scenario. In many organizations due to the flexible work 

profiles, human resources are not available uninterruptedly all along the time 

horizon.  

3. The multi-objective approach adopted in this research is based on weighted-sum or 

scalarization method which has some inherent weaknesses. This approach is not able to 

find effective Pareto-optimal solutions in problems having non-convex Pareto-optimal 

region. Moreover, it is highly subjective for a decision maker to decide appropriate 

weight vectors for a given multi-objective optimization problem. In fact, the final trade-

off solution obtained by this method is highly sensitive to the relative preference vector 

utilized to form a (single) composite objective function. In contrast to this approach, 
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„ideal‟ approach for multi-objective optimization is usually favored by researchers as it 

is more methodical, more practical and less subjective. 

 

6.3 Future directions for the research 

This section brings out some interesting areas that may steer new research in the domain of 

project scheduling with flexible resources. These are motivated from the limitations or 

restricted scope that is observed in this study. These have been mentioned below: 

1. The activity characteristics in a project related to time-switch constraints, 

preemptibility, time-varying tasks, crashing etc. may be integrated with multi-

skilled nature of resources to handle real-life problems faced by many product and 

service organizations. 

2.  It will be interesting to consider the time and cost aspects of skilled resources 

simultaneously. In other words, effective trade-offs can be designed for the project 

managers to relate the extra costs incurred in employing highly skilled resources 

with the benefit of relative reduction in the project makespan. 

3. Although this work focuses on metaheuristic approaches, a lot of research avenues 

do exist for developing effective exact approaches to solve the MSRCPSP. In 

addition, one may think of designing tighter upper and lower bounds for these 

problems to augment the existing exact procedures available in literature. 

4. Furthermore, it will be interesting to perform sensitivity analysis of the solutions 

obtained in project scheduling environment with flexible resources. This will help 

the practitioners to devise more robust and reactive schedules along with scope of 

repairing the current schedule which may be of utmost importance in today‟s 

uncertain environment. 

5. As another future direction for research, the bi-objective model proposed in this 

work for the MSRCPSP can be extended to incorporate more objectives inspired 

from real-life scenario. Non-dominated sorting metaheuristic approaches can be 

designed to tackle such complex problems. 
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6. The multi-skill RCPSP environment can be investigated in a multi-project scenario 

and related complexities of the problem can be tackled by designing more powerful 

and efficient metaheuristics.  
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Appendix-I: Problem Instance formats 

 

In this appendix, the sample instances of the RCPSP and MSRCPSP used in computational 

experiments are provided. 

 
(a) Sample .txt input file format for the RCPSP instance: 
 
Row 1: No. of activities; No. of renewable resource types 

Row 2: Maximum availability of each renewable resource 

Row 3 onwards: Activity resource requirements (first 4 columns); No. of successors; Successor activities  

32    4            

12    13       4       12          

0       0        0       0       0       3       2       3       4     

8       4        0       0       0       3       6       11     15       

4       10      0       0       0       3       7       8       13       

6        0       0       0       3       3       5       9       10       

3        3       0       0       0       1       20       

8        0       0       0       8       1       30       

5        4       0       0       0       1       27       

9        0       1       0       0       3       12      19      27       

2        6       0       0       0       1       14       

7        0       0       0       1       2       16      25       

9        0       5       0       0       2       20      26       

2        0       7       0       0       1       14       

6        4       0       0       0       2       17      18       

3        0       8       0       0       1       17       

9        3       0       0       0       1       25       

10      0       0       0       5       2       21      22       

6        0       0       0       8       1       22       

5        0       0       0       7       2       20      22       

3        0       1       0       0       2       24      29       

7        0       10     0       0       2       23      25       

2        0       0       0       6       1       28       

7        2       0       0       0       1       23       

2        3       0       0       0       1       24       

3        0       9       0       0       1       30       

3        4       0       0       0       1       30       

7        0       0       4       0       1       31       

8        0       0       0       7       1       28       

3        0       8       0       0       1       31       

7        0       7       0       0       1       32       

2        0       7       0       0       1       32       

2        0       0       2       0       1       32       

0        0       0       0       0       0        
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(b) Sample .txt input file format for the MSRCPSP instance: 

 
N
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ct

iv
it

ie
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S-1 S-2 S-3 

 

S-4 

 

P
ro

ce
ss

in
g

 

T
im
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N
u
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S
u
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es

so
rs

 

Successor 

Activities 

N
u

m
b

er
 o

f 

st
af

f 
(P

) 

S-1 S-2 S-3 S-4 

1 0 0 0 0 0 3 2 3 4 1 1 1 1 0 

2 0 2 2 0 3 3 12 19 23 2 1 0 0 1 

3 3 0 0 1 7 3 8 13 16 3 0 1 0 1 

4 0 3 3 0 10 3 5 6 22 4 1 1 1 0 

5 0 3 0 1 9 3 14 15 17 5 1 0 1 1 

6 3 0 3 0 6 3 7 13 16 6 0 1 1 1 

7 3 2 0 0 6 3 15 21 26 7 0 0 1 0 

8 0 2 0 1 8 3 9 10 14 8 1 0 0 0 

9 0 3 2 0 1 3 11 19 21 9 1 1 1 0 

10 1 0 3 0 7 3 11 12 15 10 1 0 1 1 

11 0 1 1 0 6 2 17 26 0 11 0 1 1 1 

12 2 3 0 0 10 3 21 22 25 0 0 0 0 0 

13 3 0 3 0 8 3 14 17 23 0 0 0 0 0 

14 0 0 2 2 5 3 18 24 27 0 0 0 0 0 

15 0 2 0 1 3 3 18 20 23 0 0 0 0 0 

16 0 1 0 3 3 2 18 25 0 0 0 0 0 0 

17 1 0 0 3 4 1 20 0 0 0 0 0 0 0 

18 0 0 2 2 3 3 19 29 30 0 0 0 0 0 

19 2 0 2 0 3 1 28 0 0 0 0 0 0 0 

20 2 0 3 0 1 1 25 0 0 0 0 0 0 0 

21 1 1 0 0 9 3 24 29 30 0 0 0 0 0 

22 3 0 0 2 5 2 24 26 0 0 0 0 0 0 

23 2 0 0 1 5 1 27 0 0 0 0 0 0 0 

24 0 0 3 2 10 1 28 0 0 0 0 0 0 0 

25 0 1 2 0 10 2 27 29 0 0 0 0 0 0 

26 0 0 2 1 4 2 28 30 0 0 0 0 0 0 

27 1 0 0 1 5 1 31 0 0 0 0 0 0 0 

28 1 0 3 0 9 1 31 0 0 0 0 0 0 0 

29 0 0 2 1 1 1 32 0 0 0 0 0 0 0 

30 0 2 0 2 1 1 32 0 0 0 0 0 0 0 

31 0 0 2 2 7 1 32 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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(c) Sample .txt input file format for the MO-MSRCPSP instance (Staff with skill 

proficiency levels): 
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S-1 S-2 S-3 
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Successor 

Activities 

N
u

m
b

er
 o
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f 
(P

) 

S-1 S-2 S-3 S-4 

1 0 0 0 0 0 3 2 3 4 1 1 0.8 0.7 0 

2 0 1 2 0 3 3 12 19 23 2 0.9 0 0 1 

3 3 0 0 1 7 3 8 13 16 3 0 0.8 0 1 

4 0 3 3 0 6 3 5 6 22 4 1 0.7 0.8 0 

5 0 3 0 1 9 3 14 15 17 5 0.9 0 1 0.7 

6 3 0 3 0 6 3 7 13 16 6 0 0.8 0.7 1 

7 2 2 0 0 6 3 15 21 26 7 0 0 1 0 

8 0 2 0 1 8 3 9 10 14 8 0.8 0 0 0 

9 0 3 2 0 1 3 11 19 21 9 1 0.7 1 0 

10 1 0 3 0 7 3 11 12 15 10 0.7 0 1 0.9 

11 0 1 1 0 6 2 17 26 0 11 0 1 0.7 0.8 

12 2 3 0 0 8 3 21 22 25 0 0 0 0 0 

13 3 0 3 0 8 3 14 17 23 0 0 0 0 0 

14 0 0 2 2 5 3 18 24 27 0 0 0 0 0 

15 0 2 0 1 3 3 18 20 23 0 0 0 0 0 

16 0 1 0 3 3 2 18 25 0 0 0 0 0 0 

17 1 0 0 3 10 1 20 0 0 0 0 0 0 0 

18 0 0 2 2 3 3 19 29 30 0 0 0 0 0 

19 2 0 2 0 3 1 28 0 0 0 0 0 0 0 

20 2 0 3 0 1 1 25 0 0 0 0 0 0 0 

21 1 1 0 0 9 3 24 29 30 0 0 0 0 0 

22 3 0 0 2 5 2 24 26 0 0 0 0 0 0 

23 2 0 0 1 5 1 27 0 0 0 0 0 0 0 

24 0 0 3 2 6 1 28 0 0 0 0 0 0 0 

25 0 1 2 0 10 2 27 29 0 0 0 0 0 0 

26 0 0 2 1 4 2 28 30 0 0 0 0 0 0 

27 1 0 0 1 5 1 31 0 0 0 0 0 0 0 

28 1 0 3 0 9 1 31 0 0 0 0 0 0 0 

29 0 0 2 1 1 1 32 0 0 0 0 0 0 0 

30 0 2 0 2 5 1 32 0 0 0 0 0 0 0 

31 0 0 2 2 7 1 32 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix II: MATLAB Codes 

 

This appendix presents the MATLAB codes developed in this work for the RCPSP, MSRCPSP 

and MO-MSRCPSP. 
 
 
%%% Codes for initialization and calling the RCPSP instances in required formats %%% 
 
clc; 
clear all; 
Npop=80; 
No_iterations=20; 
A=textread('J30_Optimum Makespan.txt'); 
folder='D:\PhD\PhD MATLAB\J30_480'; 
filetype='*.txt'; 
f=fullfile(folder,filetype); 
d=dir(f); 
A1=(A(1:(numel(d)),3)); 
for k=1:numel(d) 
fprintf('Problem Instance: J30_0%d\nOptimum Makespan from PSPLIB= %d\n',k,A1(k))  
    MATRIX{k}=dlmread(fullfile(folder,d(k).name)); 
PROBLEM_MATRIX=MATRIX{1,k}; 
ACTmtx=[(1:32)',ones(32,1),PROBLEM_MATRIX(3:34,1),PROBLEM_MATRIX(3:34,2:5)]; 
LIMmtx=PROBLEM_MATRIX(2,1:4); 
RELmtx=[(1:32)',ones(32,1),PROBLEM_MATRIX(3:34,6),PROBLEM_MATRIX(3:34,7:9)]; 
NumAct=size(RELmtx,1); 
PREDmtx=zeros(NumAct,max(RELmtx(:,3))+1); % This step creates a skeleton of 
precedence matrix with all zeros 
LimLen=length(LIMmtx); 
% LIMmtx=LIMmtx.*1000; 
CeilDur=sum(ACTmtx(:,3))+1; 
RESLIMmtx=zeros(LimLen,CeilDur); 
 
for i=1:LimLen 
    RESLIMmtx(i,1:CeilDur)=LIMmtx(1,i); 
end 
 
%%%Creating a precedence matrix %%%%%% 
 
for i=4:size(RELmtx,2) 
    for j=1:NumAct 
        if RELmtx(j,i)~=0 
            PREDmtx(RELmtx(j,i),1)=PREDmtx(RELmtx(j,i),1)+1; 
            PREDmtx(RELmtx(j,i),PREDmtx(RELmtx(j,i),1)+1)=RELmtx(j,1); 
        end 
    end 
end 
 
 

%%% Codes for applying TLBO philosophy for the RCPSP %%% 
 
 
function[Makespan_tlbo,Student]=tlbo(Npop,NumAct,Student,PREDmtx,ACTmtx,RELmtx, 
RESLIMmtx)  
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Makespan1=zeros(Npop,1); 
for i=1:Npop 
    Student1=Student(i,:); 
    [Makespan1(i,:)]=SSS(NumAct,Student1,PREDmtx,ACTmtx,RESLIMmtx); 
end 
% Makespan1; 
[~,k0]=min(Makespan1); % k0 is the index of best student in the Class which will be 
designated as Teacher 
 
%%% Start of Teacher Phase %%% 
Teacher=Student(k0,:); 
Student1_tp=zeros(1,NumAct); 
Student2_tp=zeros(1,NumAct); 
StudentNew_tp=zeros(1,NumAct); 
Makespan_tp=zeros(Npop,1); 
for i=1:Npop 
    Student1_tp(i,:)=Student(i,:); 
    Student2_tp(i,:)=Teacher; 
    StudentNew_tp(i,:)=Crossover(Student1_tp(i,:),Student2_tp(i,:),NumAct); 
    Makespan_tp(i,:)=SSS(NumAct,StudentNew_tp(i,:),PREDmtx,ACTmtx,RESLIMmtx); 
    if Makespan_tp(i,:)< Makespan1(i,:); 
        Student1_tp(i,:)=StudentNew_tp(i,:); 
    else 
        Student1_tp(i,:)=Student(i,:); 
        Makespan_tp(i,:)=Makespan1(i,:); 
    end 
end 
 
%%% Start of Student Phase %%% 
Student1_sp=zeros(1,NumAct); 
Student2_sp=zeros(1,NumAct); 
StudentNew_sp=zeros(1,NumAct); 
Makespan_sp=zeros(Npop,1); 
r=randperm(Npop); 
for i=1:Npop 
    Student1_sp(i,:)=Student1_tp(i,:); 
    Student2_sp(i,:)=Student1_tp(r(i),:); 
  if Makespan_tp(i,:)> Makespan_tp(r(i),:); 
    StudentNew_sp(i,:)=Crossover(Student1_sp(i,:),Student2_sp(i,:),NumAct); 
  else 
    StudentNew_sp(i,:)=Crossover(Student2_sp(i,:),Student1_sp(i,:), NumAct); 
  end 
    Makespan_sp(i,:)=SSS(NumAct,StudentNew_sp(i,:),PREDmtx,ACTmtx,RESLIMmtx); 
     if Makespan_sp(i,:)< Makespan_tp(i,:); 
        Student1_sp(i,:)=StudentNew_sp(i,:); 
    else 
       Student1_sp(i,:)=Student1_sp(i,:);  
       Makespan_sp(i,:)=Makespan_tp(i,:); 
     end 
end 
Student= Student1_sp; 
Makespan_tlbo= min(Makespan_sp); 
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%%% Start of self-study phase by applying mutation in the TLBO %%% 
 
Makespan_mut=zeros(Npop,1); 
for i=1:Npop 
    Student(i,:)= mutation(NumAct,Student1_sp(i,:),RELmtx); 
    Makespan_mut(i,:)=SSS(NumAct,Student(i,:),PREDmtx,ACTmtx,RESLIMmtx); 
    if Makespan_mut(i,:)< Makespan_sp(i,:) 
        Student(i,:)=Student(i,:); 
        Makespan_mut(i,:)=Makespan_mut(i,:); 
    else 
        Student(i,:)=Student1_sp(i,:); 
        Makespan_mut(i,:)=Makespan_sp(i,:); 
    end 
    Makespan_tlbo= min(Makespan_mut); 
end 
fprintf('TLBO DETAILED MATRIX AFTER ITERATION') 
 
 

%%% Applying elitism i.e. replacing worst solutions by elite solutions %%% 
 
e=4; % elite size 
[~, index]=sort(Makespan_sp); 
for i=1:Npop 
    Student1_sp(i,:)=Student1_sp(index(i,1),:); 
end 
Student1_sp((Npop-e+1:Npop),:)=Student1_sp(1:e,:); % Replacing worst solutions with 
elite solutions 
 
 

%%% A function file for Serial Schedule Generation Scheme (SSS) for the RCPSP %%% 
 
function[Makespan]=SSS(NumAct,Student,PREDmtx,ACTmtx,RESLIMmtx) 
FDmtx=zeros(NumAct,1); 
 while ismember(0,FDmtx) 
     i=1; 
     while i<=NumAct 
        if FDmtx(Student(i))==0 
            Npre=PREDmtx(Student(i),1); 
            FDpre=zeros(Npre,1); 
            
            if Npre~=0 
                FDpre=zeros(Npre,1); 
                for j=1:Npre 
                    if FDmtx(PREDmtx(Student(i),1+j))~=0 
                        FDpre(j)=FDmtx(PREDmtx(Student(i),1+j)); 
                    end 
                end   
            else 
            % If no predecessors Studentlow activity to schedule 
            FDpre=zeros(1,1); 
            FDpre(1)=1; 
            end 
            
            if not(ismember(0, FDpre)) 
                EarST = max(FDpre); 
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                ACTdur = ACTmtx(Student(i),3); 
                RESlim =(3 + size(RESLIMmtx,1)); 
                ACTres(1: size(RESLIMmtx,1)) = ACTmtx(Student(i),4:RESlim); 
                ResFes = 0; 
                while   ResFes == 0; 
                        EarFI = EarST + ACTdur; 
                         for k=1: size(RESLIMmtx,1) 
                                 z(k,:)=RESLIMmtx(k, EarST+1:EarFI)>=ACTres(1,k); 
                          end  
                             if not(ismember(0,z)) 
                                    ResFes=1 ;  %Record Activity Finish Date in  
      Matrix based on  %resource 'k' requirement. 
                                 z=[]; 
                             else 
                                    ResFes =0; 
                                    EarST = EarST+1;  
                             end        
                end 
                if  ResFes==1 
                    for k=1: size(RESLIMmtx,1) 
                         RESLIMmtx(k, EarFI-ACTdur+1:EarFI)=RESLIMmtx(k,EarFI-  
         ACTdur+1:EarFI)-ACTres(k);  
                    end  
                end 
                  FDmtx(Student(i)) = EarFI;  
                  i=0; 
         end 
        end 
        i=i+1; 
     end 
 end 
 FDmtx(:) = FDmtx(:)-1; 
 Makespan= max(FDmtx); 
SDmtx=zeros(NumAct,1); 
for k=1:NumAct 
SDmtx(k)=FDmtx(k)-ACTmtx(k,3); 
end 
Activity_Duration_StartTime_FinishTime=[(1:NumAct)' ACTmtx(:,3) SDmtx FDmtx]; 
Makespan= max(FDmtx); 
 
 
 
 
                  

%%% Codes for creating the ‘mutation’ function in TLBO and GA %%% 
 
%% Hartmann (1998) mutation  
 
function[Student]=mutation(NumAct,Student,RELmtx) 
mut_prob=0.05; 
for i=2:NumAct-2 
    r=rand; 
     if r< mut_prob 
         PosA=i; 
         PosB=i+1; 
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         ActA=Student(PosA); 
         ActB=Student(PosB); 
         if not(ismember(ActB,RELmtx(ActA,:))) 
             Student(PosA)=ActB; 
             Student(PosB)=ActA; 
         end  
     end  
end 
 
% Boctor mutation 
 
function[Student]=mutation(NumAct,Student,RELmtx) 
mut_prob=0.01; 
for i=2:NumAct-2 
    r=rand; 
    if r< mut_prob 
        PosA=i; 
        PosB=randi([i+1,NumAct-1]); 
        ActA=Student(PosA); 
        ActB=Student(PosB); 
        if not(ismember(ActB,RELmtx(ActA,:))) 
            Student(PosA)=ActB; 
            Student(PosB)=ActA; 
        end  
    end  
end 
 
 
 

%%% Codes for creating the ‘crossover’ function in TLBO and GA %%% 
 
% Codes for 1-point Crossover 
function[StudentNew]=Crossover(Student1,Student2,NumAct) 
u=randi((NumAct-1)); 
a=Student1(1:u); 
b=zeros(1,NumAct); 
for i=1:NumAct 
     if not(ismember(Student2(1,i),a)); 
         b(1,i)=Student2(1,i); 
     end 
end 
b=b(logical(b)); 
StudentNew=[a,b]; 
 
%% Codes for 2-point Crossover%% 
 
function[StudentNew]=Crossover(Student1,Student2,NumAct) 
u=sort(randperm(NumAct-2,2)); 
a=Student1(1:u(1)); 
b=zeros(1,NumAct); 
for i=1:NumAct 
    if not(ismember(Student2(1,i),a)); 
        b(1,i)=Student2(1,i); 
    end 
end 
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b=b(logical(b)); 
b=b(1:u(2)-u(1)); 
b=[a,b]; 
 
if size(b,2)==NumAct; 
    StudentNew=b; 
else 
    c=zeros(1,NumAct); 
    for i=1:NumAct 
        if not (ismember(Student1(1,i),b)) 
            c(1,i)=Student1(1,i); 
        end 
    end 
 c=c(logical(c)); 
 StudentNew=[b,c]; 
end 
 

 
%% Codes for calculating the activity times as per different priority rules %% 

 
function[EST,EFT,LST,LFT] = ActTimes(ACTmtx,RELmtx,PREDmtx) 
NumAct=size(RELmtx,1); 
% PREDmtx=zeros(NumAct,max(RELmtx(:,3))+1); 
 
for i=4:size(RELmtx,2) 
    for j=1:NumAct 
         if not(isnan(RELmtx(j,i))) 
             PREDmtx(RELmtx(j,i),1)=PREDmtx(RELmtx(j,i),1)+1; 
             PREDmtx(RELmtx(j,i),PREDmtx(RELmtx(j,i),1)+1)=RELmtx(j,1); 
         end 
     end 
end 
Npre=PREDmtx(1:NumAct,1); 
Nsucc=RELmtx(1:NumAct,3); 
 
% Codes to determine EST and EFT of the activities % 
EST=zeros(NumAct,1); 
EFT=zeros(NumAct,1); 
 
for j=1:NumAct 
     
    if Npre(j,1)==0 
        EST(j,1)=0; 
    else  
        PredAct =[]; 
        L1=[]; 
        T1=[]; 
        PredAct=PREDmtx(j,2:Npre(j)+1); 
        L1=length(PredAct); 
        for k=1:L1 
            T1(k,1)= EFT(PredAct(1,k),1); 
        end 
        EST(j,1)=max(T1); 
    end  
    EFT(j,1)=EST(j,1)+ ACTmtx(j,3); 
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end   
 
 
% Codes to determine LFT and LST of the activities % 
LFT=zeros(NumAct,1); 
for m=NumAct:-1:1 
    if  Nsucc(m)==0 
        LFT(m)=EFT(NumAct,1); 
    else 
        SuccAct=[]; 
        L2=[]; 
        T2=[]; 
        SuccAct=RELmtx(m,4:Nsucc(m)+3); 
        L2=length(SuccAct); 
        for k=1:L2 
            T2(k,1)=LFT(SuccAct(1,k),1)-ACTmtx(SuccAct(1,k),3); 
        end 
        LFT(m,1)=min(T2); 
    end 
    LST(m,1)=LFT(m,1)-ACTmtx(m,3); 
end 
 
 

% %% Codes to create Initial population as precedence feasible Activity List with 
Regret Based Biased Random Sampling (RBRS),Refer: Kolish & Hartmnn (1999) paper %% 

 
 
function[Student]=Initial_Pop(NumAct,ACTmtx,SUCCmtx,PREDmtx) 
[~,~,~,LFT] = ActTimes_Multi_Skill(ACTmtx,SUCCmtx,PREDmtx); 
TIMES=[EST EFT LST LFT]; 
Student=zeros(1,NumAct); 
        AL=[];       % Initialization of Activity List which is precedence feasible % 
        DecSet=[];    % Decision Set of eligible activities at any stage % 
        stage=1;      % Maximum stages is equal to number of activities i.e. NumAct % 
while stage<= NumAct 
    if stage==1 
        AL=1; 
        n2=[]; 
    else 
        SuccAct=[];    % Successor activities at any stage % 
        PredAct=[];    % Predecessor activities at any stage % 
        NumSucc=[];    % Number of successors at any stage %  
        PRIORITY_VALUE=[]; 
        BIASED_VALUE=[]; 
        BIASED_PROB=[]; 
        CUMM_PROB=[]; 
        ActSelect=[]; 
        n1=length(AL); 
        NumSucc=SUCCmtx(AL(1,n1),2); 
        SuccAct=SUCCmtx(AL(1,n1),3:(NumSucc+2)); 
        n2=[]; 
        for i=1:NumSucc 
            PredAct=PREDmtx(SuccAct(1,i),3:size(PREDmtx,2)); 
            if  ismember(PredAct,[AL 0]); 
                DecSet=[DecSet,SuccAct(1,i)]; 
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            else 
                DecSet=[DecSet]; 
            end 
        end  
           n2=length(DecSet); 
        for j=1:n2 
            PRIORITY_VALUE(1,j)=LFT(DecSet(1,j),1); 
        end 
        MAX=max(PRIORITY_VALUE); 
        for j=1:n2 
            BIASED_VALUE(1,j)=MAX-PRIORITY_VALUE(1,j)+1;  % taking alpha and eta as 1 
         from Hartmann(1999) paper 
        end 
        SUM=sum(BIASED_VALUE); 
        for j=1:n2 
            BIASED_PROB(1,j)=BIASED_VALUE(1,j)/SUM; 
        end  
        for j=1:n2 
            if j==1 
                CUMM_PROB(1,j)=BIASED_PROB(1,j); 
            else 
                CUMM_PROB(1,j)=BIASED_PROB(1,j)+ CUMM_PROB(1,j-1); 
            end 
        end    
        r=rand; 
        for j=1:n2 
                    if r < CUMM_PROB(1,j) 
                 ActSelect=[ActSelect DecSet(1,j)]; 
            end  
        end 
        n3=length(ActSelect); 
        ActSelect=ActSelect(1,1); 
        AL=[AL ActSelect]; 
        DecSet(n2-n3+1)=[ ]; 
        n2=[ ]; 
    end 
    stage=stage+1; 
end 
Student(1,:)=AL; 
end 
 
 

% These codes have been developed to generate a MSRCPSP instance based on the 
methodology proposed in Almeida et al. (2015) % 

 
clc 
clear all 
N=22;   % Enter the total number of activities including dummy source and sink 
activities 
NC=2.1; % Enter the desired network complexity 
 
nStart=3;  % Number of activities having dummy source as predecessor 
nFinish=3; % Number of activities having dummy sink as successor 
 
MaxSucc=3; % Number of maximum successors allowable for any activity 
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MaxPred=3; % Number of maximum predecessors allowable for any activity 
 
PRED_Matrix=zeros(N+1,N+2); % Initializing precedence matrix 
SUCC_Matrix=zeros(N+1,N+2); % Initializing successor matrix 
 
PRED_Matrix(1,3:N+2)=1:N; % Assigning index of activities in rows 
PRED_Matrix(2:N+1,1)=1:N; % Assigning index of activities in columns 
 
SUCC_Matrix(1,3:N+2)=1:N;  % Assigning index of activities in rows 
SUCC_Matrix(2:N+1,1)=1:N;  % Assigning index of activities in columns 
 
PRED_Matrix(3:nStart+2,3)=ones(nStart,1); % Updating PRED_Matrix by nstart and 
nfinish  
PRED_Matrix(N+1,N+2-nFinish:N+1)=ones(1,nFinish); 
 
SUCC_Matrix(2,4:nStart+3)=ones(1,nStart); % Updating SUCC_Matrix by nstart and 
nfinish  
SUCC_Matrix(N-nFinish+1:N,N+2)=ones(nFinish,1); 
 
 
SUCC_Matrix2=SUCC_Matrix(2:N+1,3:N+2);  % Selecting a sub-set matrix from main matrix 
having logical 0 or 1 representing successors. 
SUM_Succ=sum(SUCC_Matrix2,2);   % Calculating row-wise summation of elements of 
matrix. 
Num_Succ=[(1:N)' SUM_Succ];  % Calculating number of successors of each activity till 
this stage. 
 
PRED_Matrix2=PRED_Matrix(2:N+1,3:N+2); % Selecting a sub-set matrix from main matrix 
having logical 0 or 1 representing predecessors. 
SUM_Pred=sum(PRED_Matrix2,2);   % Calculating row-wise summation of elements of 
matrix. 
Num_Pred=[(1:N)' SUM_Pred]; % Calculating number of predecessors of each activity 
till this stage. 
 

% Now follows codes to randomly assign a predecessor to an activity with NIL 
predecessor based on ALGORITHM-1(Almeida et al., 2015) 

nonredarcs=nStart+nFinish; 
j=nStart+2; 
LIMIT1=1; 
while LIMIT1<100 && j<N 
    while Num_Pred(j,2)==0 
        if j>=(N-nFinish) 
            i=randi([2,N-nFinish-1],1); 
        else 
            i=randi([2,j-1],1); 
        end 
         
        if Num_Succ(i,2)< MaxSucc 
    
            SUCC_Matrix2(i,j)=1; 
            SUM_Succ=sum(SUCC_Matrix2,2); 
            Num_Succ=[(1:N)' SUM_Succ]; 
              
            PRED_Matrix2(j,i)=1; 
            SUM_Pred=sum(PRED_Matrix2,2); 
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            Num_Pred=[(1:N)' SUM_Pred]; 
            nonredarcs=nonredarcs+1; 
        end 
    end 
    j=j+1; 
    LIMIT1=LIMIT1+1; 
end 
 
SUCC_MATRIX_ALL=zeros(N,3); 
for i=1:N 
    idx1 = find(SUCC_Matrix2(i,:)); 
    SUCC_MATRIX_ALL(i,1:length(idx1)) = idx1; 
end 
SUCC_MATRIX_ALL=[Num_Succ SUCC_MATRIX_ALL]; 
 
PRED_MATRIX_ALL=zeros(N,3); 
for i=1:N 
    idx2 = find(PRED_Matrix2(i,:)); 
    PRED_MATRIX_ALL(i,1:length(idx2)) = idx2; 
end 
PRED_MATRIX_ALL=[Num_Pred PRED_MATRIX_ALL] 
nonredarcs ; 
 
 

% % Now follows codes to randomly assign a successor to an activity with NIL 
successor based on ALGORITHM-2 (Almeida et al., 2015) 

 
 
j=N-nFinish-1;  % Initialization of j 
LIMIT2=1; 
while LIMIT2<100 && j>1 
    PRED_IMM=PRED_MATRIX_ALL(j,3:5); % PRED_IMM gives immediate predecessors of j 
    PRED_ALL=[]; 
    PRED1_ALL=[]; 
    PRED2_ALL=[]; 
    PRED3_ALL=[]; 
    PRED4_ALL=[]; 
    for k1=1:length(PRED_IMM) 
        if PRED_IMM(k1)>1 
            PRED1_ALL(k1,:)=PRED_MATRIX_ALL(PRED_IMM(k1),3:5); 
            for k2=1:length(PRED1_ALL) 
                if PRED1_ALL(k2)>1 
                    PRED2_ALL(k2,:)=PRED_MATRIX_ALL(PRED1_ALL(k2),3:5); 
                    for k3=1:length(PRED2_ALL) 
                        if PRED2_ALL(k3)>1 
                            PRED3_ALL(k3,:)=PRED_MATRIX_ALL(PRED2_ALL(k3),3:5); 
                            for k4=1:length(PRED3_ALL) 
                                if PRED3_ALL(k4)>1 
                                   
PRED4_ALL(k4,:)=PRED_MATRIX_ALL(PRED3_ALL(k4),3:5); 
                                end 
                            end 
                        end 
                    end 
                end 
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            end 
        end 
    end 
  PRED_ALL=[PRED_IMM ;PRED1_ALL;PRED2_ALL;PRED3_ALL;PRED4_ALL]; 
    Z=unique(PRED_ALL)'; 
    Z(Z==0)=[]; 
    PRED_ALL=Z; % Gives set of all immediate and distant predecessors for activity j 
    SUCC_OF_PREDS=[]; 
    A=[]; 
    for i=1:length(PRED_ALL) 
        A=SUCC_MATRIX_ALL(PRED_ALL(i),3:5); 
        SUCC_OF_PREDS=[A SUCC_OF_PREDS]; 
    end 
    SUCC_OF_PREDS; 
    Z1=unique(SUCC_OF_PREDS); 
    Z1(Z1==0)=[]; 
    SUCC_OF_PREDS=Z1; 
   
    while Num_Succ(j,2)==0 
        if j<=nStart+1 
            u=randi([nStart+2,N-1],1); 
        else 
            u=randi([j+1,N-1],1); 
        end 
         
        if Num_Pred(u,2)< MaxPred && ~(ismember(u,SUCC_OF_PREDS))    
 
            SUCC_Matrix2(j,u)=1; 
            SUM_Succ=sum(SUCC_Matrix2,2); 
            Num_Succ=[(1:N)' SUM_Succ]; 
              
            PRED_Matrix2(u,j)=1; 
            SUM_Pred=sum(PRED_Matrix2,2); 
            Num_Pred=[(1:N)' SUM_Pred]; 
            nonredarcs=nonredarcs+1; 
        end 
    end 
    j=j-1; 
    LIMIT2=LIMIT2+1; 
end 
SUCC_Matrix2; 
SUCC_MATRIX_ALL=zeros(N,3); 
for i=1:N 
    idx3 = find(SUCC_Matrix2(i,:)); 
    SUCC_MATRIX_ALL(i,1:length(idx3)) = idx3; 
end 
SUCC_MATRIX_ALL=[Num_Succ SUCC_MATRIX_ALL]; 
 
PRED_Matrix2; 
PRED_MATRIX_ALL=zeros(N,3); 
for i=1:N 
    idx4 = find(PRED_Matrix2(i,:)); 
    PRED_MATRIX_ALL(i,1:length(idx4)) = idx4; 
end 
PRED_MATRIX_ALL=[Num_Pred PRED_MATRIX_ALL]; 
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%%% Now follows codes to achieve the graph with desired network complexity based on 

ALGORITHM-2 (Almeida et al., 2015) %%% 
 
 
reqnumarcs=ceil(NC*N) 
LIMIT3=1; 
while   LIMIT3<100 && nonredarcs<= reqnumarcs  
    nonredarcs; 
    i=randi([2,N-nFinish-1],1); 
    if Num_Succ(i,2)< MaxSucc 
        if i<=nStart+1 
            S1=nStart+2:N-1; 
            S2=SUCC_MATRIX_ALL(i,3:5); 
            S3=setdiff(S1,S2); 
            j=S3(randi([1,length(S3)],1)); 
        else 
            S1=i+1:N-1; 
            S2=SUCC_MATRIX_ALL(i,3:5); 
            S3=setdiff(S1,S2); 
            j=S3(randi([1,length(S3)],1)); 
        end 
         
        if Num_Pred(j,2)< MaxPred 
 
 
% We now compute all predecessors of activity i (represented as PRED_ALL then Z2) 
             

PRED_IMM=[]; 
            

 PRED_IMM=PRED_MATRIX_ALL(i,3:5); % PRED_IMM gives immediate predecessors  
      of i chosen above 
            PRED_ALL=[]; 
            PRED1_ALL=[]; 
            PRED2_ALL=[]; 
            PRED3_ALL=[]; 
            PRED4_ALL=[]; 
            PRED5_ALL=[]; 
            for k11=1:length(PRED_IMM) 
                if PRED_IMM(k11)>1 
                    PRED1_ALL(k11,:)=PRED_MATRIX_ALL(PRED_IMM(k11),3:5); 
                    for k12=1:length(PRED1_ALL) 
                        if PRED1_ALL(k12)>1 
                            PRED2_ALL(k12,:)=PRED_MATRIX_ALL(PRED1_ALL(k12),3:5); 
                            for k13=1:length(PRED2_ALL) 
                                if PRED2_ALL(k13)>1 
                                    
PRED3_ALL(k13,:)=PRED_MATRIX_ALL(PRED2_ALL(k13),3:5); 
                                    for k14=1:length(PRED3_ALL) 
                                        if PRED3_ALL(k14)>1 
                                            
PRED4_ALL(k14,:)=PRED_MATRIX_ALL(PRED3_ALL(k14),3:5); 
                                            for k15=1:length(PRED4_ALL) 
                                                if PRED4_ALL(k15)>1 
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PRED5_ALL(k15,:)=PRED_MATRIX_ALL(PRED4_ALL(k15),3:5); 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
            PRED_ALL=[PRED_IMM ;PRED1_ALL;PRED2_ALL;PRED3_ALL;PRED4_ALL;PRED5_ALL]; 
            Z2=unique(PRED_ALL)'; 
            Z2(Z2==0)=[]; 
            PRED_ALL=Z2; 
             
             
 

%%% This function ‘SSS_Multi_Skill’ applies modified Serial Schedule Generation 
Scheme (SSS) to determine the makespan for a given Student %%% 

 
 function[Makespan]=SSS_Multi_Skill(NumAct,Student,Staff_Act,PREDmtx,ACTmtx,SUCCmtx) 
 
[EST,EFT] = ActTimes_Multi_Skill(ACTmtx,SUCCmtx,PREDmtx); 
STmtx=zeros(NumAct,1);  % Initializing the start times of all activities 
FTmtx=zeros(NumAct,1);  % Initializing the finish times of all activities 
Npre=PREDmtx(:,2); 
SCH_ACT=[];  % initializes the set of already scheduled activities 
for i=2:NumAct-1 
     
    if  i==2 
        DEC_ACT=Student(1,i); 
        STmtx(DEC_ACT)=EST(DEC_ACT); 
        FTmtx(DEC_ACT)=STmtx(DEC_ACT)+ACTmtx(DEC_ACT,6); 
        [STmtx FTmtx]; 
        SCH_ACT=[DEC_ACT]; 
        for j=1:SUCCmtx(DEC_ACT,2) 
EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT)); 
            
EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_ACT,j+2),6); 
        end 
      
    else 
        DEC_ACT=[];        % empties the DEC_ACT to include the new current activity  
    to be scheduled 
        PRED_DEC_ACT=[];   % empties the set of predecessor activities of current  
    activity to be scheduled 
        PARRL_ACT=[];      % empties the set of parallel activities to be considered  
    while scheduling current activity 
        DEC_ACT=Student(1,i);      % defines the new current activity to be scheduled 
        PRED_DEC_ACT=PREDmtx(DEC_ACT,3:5); % defines the predecessor activities of  
       current activity to be scheduled 
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        PARRL_ACT=setdiff(SCH_ACT,PRED_DEC_ACT); % defines the set of activities with 
       which current activity in hand 'can be' 
       scheduled in parallel 
        if isempty(PARRL_ACT) 
            EST(DEC_ACT)=max(FTmtx); 
            STmtx(DEC_ACT)=EST(DEC_ACT); 
            EFT(DEC_ACT)=EST(DEC_ACT)+ACTmtx(DEC_ACT,6); 
            FTmtx(DEC_ACT)=EFT(DEC_ACT); 
  
            for j=1:SUCCmtx(DEC_ACT,2) 

                
EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT)); 
                
EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_A
CT,j+2),6); 

            end 
            SCH_ACT=[SCH_ACT DEC_ACT]; 
        else 
            for k=1:length(PARRL_ACT) 
 

if (STmtx(PARRL_ACT(k))<=EST(DEC_ACT)&& 
EST(DEC_ACT)<FTmtx(PARRL_ACT(k)))  ||  (STmtx(PARRL_ACT(k))<EFT(DEC_ACT)&& 
EFT(DEC_ACT) <=FTmtx(PARRL_ACT(k))); 

 
                    % we now check if there is(are) any common worker(s) between any  
   activity from set PARRL_ACT and activity in DEC_ACT 
                    Staff_set1=[]; 
                    Staff_set2=[]; 
                    Staff_set1=Staff_Act(PARRL_ACT(k),2:13); 
                    Staff_set1=Staff_set1(logical(Staff_set1)); 
                    Staff_set2=Staff_Act(DEC_ACT,2:13); 
                    Staff_set2=Staff_set2(logical(Staff_set2)); 
                     
                    if any(intersect(Staff_set1,Staff_set2))==1; 
                        EST(DEC_ACT)=FTmtx(PARRL_ACT(k)); 
                        STmtx(DEC_ACT)=EST(DEC_ACT); 
                        EFT(DEC_ACT)=EST(DEC_ACT)+ ACTmtx(DEC_ACT,6); 
                        FTmtx(DEC_ACT)=EFT(DEC_ACT); 
                    else 
                        STmtx(DEC_ACT)=EST(DEC_ACT); 
                        FTmtx(DEC_ACT)=STmtx(DEC_ACT)+ ACTmtx(DEC_ACT,6); 
                    end 
                        SCH_ACT=[SCH_ACT DEC_ACT]; 
                        for j=1:SUCCmtx(DEC_ACT,2) 
                            
EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT)); 
                            
EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_ACT,j+2),6); 
 end 
 else 
                    
CONDITION=(EFT(DEC_ACT)<=STmtx(PARRL_ACT(k))||EST(DEC_ACT)>=FTmtx(PARRL_ACT(k))); 
                    STmtx(DEC_ACT)=EST(DEC_ACT); 
                    FTmtx(DEC_ACT)=STmtx(DEC_ACT)+ ACTmtx(DEC_ACT,6); 
                    SCH_ACT=[SCH_ACT DEC_ACT]; 
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                    for j=1:SUCCmtx(DEC_ACT,2) 
                        
EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT)); 
                        
EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_ACT,j+2),6); 
                    end           
                end   
            end 
        end 
    end 
end 
STmtx(NumAct)=EST(NumAct); 
FTmtx(NumAct)=EFT(NumAct); 
[STmtx FTmtx]; 
% SCHEDULE=[(1:NumAct)' EST EFT]; 
Makespan=max(EFT); 
 

%% Code to generate Staff-Skill matrix 
clc 
clear all 
P=11;  % Define the number of staff members 
r1=randi([1,3],P,1); % Number of skills mastered by each person(staff) is varied in 
set {1,2,3} 
for i=1:P 
    if r1(i)==1 
        P1=[1 0 0 0]; 
    elseif r1(i)==2 
        P1=[1 1 0 0]; 
    elseif r1(i)==3 
        P1=[1 1 1 0]; 
    end 
  STAFF_SKILL_MATRIX(i,:)=P1(randperm(4)); 
end 
STAFF_SKILL_MATRIX 
 
 
 
 

% Code to generate Activity-Skill Matrix for a given skill factor 
clc 
clear all 
N=30; % Define the number of activities 
 
 
%If SF is 0.5, 0.75 or 1.0 use this code 
A=[1 1 0 0];% SF=0.50, so two 'ones' are included in A1; total skill types is 4 
%A=[1 1 1 0];% SF=0.75, so three 'ones' are included in A2; total skill types is 4 
%A=[1 1 1 1];% SF=1.0, so four 'ones' are included in A4; total skill types is 4 
for i=1:N % where N is number of activities  
    B(i,:)=A(randperm(4)); 
end 
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% If SF is variable use this code 
%SF variable means number of skill types needed by an activity is randomly chosen in 
set {2,3,4}. 
r2=randi([2,4],N,1); % Since there are three possibilities in {2,3,4} i.e. number of 
types of skills needed by each activity 
for i=1:N 
if r2(i)==2 
         A=[1 1 0 0]; 
     elseif r2(i)==3 
        A=[1 1 1 0]; 
     elseif r2(i)==4 
        A=[1 1 1 1]; 
     end 
   B(i,:)=A(randperm(4)); 
end 
C=randi([1,3],N,4); % No. of persons required by each activity is varied in set 
{1,2,3} 
ACT_SKILL_MATRIX=B.*C 
P=randi([1,10],N,1); 
 
 
 
     
% %% Now follows codes to assign feasible set of staff members to meet activities' 

skill requirements%% 
 
function[Staff_Act]=Staff_Assignment(NumAct,Student,ACTmtx,STAFFmtx) 
 
STAFF_SKILL1=find(STAFFmtx(:,2)==1)'; 
STAFF_SKILL2=find(STAFFmtx(:,3)==1)'; 
STAFF_SKILL3=find(STAFFmtx(:,4)==1)'; 
STAFF_SKILL4=find(STAFFmtx(:,5)==1)'; 
 
    Staff_Act=zeros(NumAct,12); 
    for j=2:NumAct-1 
        b=[]; 
        S1=[]; 
        S2=[]; 
        S3=[]; 
        S4=[]; 
        A=[]; 
        for k=1:4 
            b=ACTmtx(Student(1,j),k+1); 
            if b==0 
                A=[]; 
            elseif b~=0 && k==1 
                r1=randperm(length(STAFF_SKILL1),b); 
                for n1=1:b 
                    S1(n1)=STAFF_SKILL1(r1(n1)); 
                end 
                 
                 
            elseif b~=0 && k==2 
                r2=randperm(length(STAFF_SKILL2),b); 
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                for n2=1:b 
                    S2(n2)=STAFF_SKILL2(r2(n2)); 
                end 
                 
                 
            elseif b~=0 && k==3 
                r3=randperm(length(STAFF_SKILL3),b); 
                for n3=1:b 
                    S3(n3)=STAFF_SKILL3(r3(n3)); 
                end 
                 
            elseif b~=0 && k==4 
                r4=randperm(length(STAFF_SKILL4),b); 
                for n4=1:b 
                    S4(n4)=STAFF_SKILL4(r4(n4)); 
                end 
            end 
             
        end 
        A=[S1 S2 S3 S4]; 
         

 
 
 

% We now apply while loop to ensure that for each activity no staff member is 
assigned to perform two or more skills simultaneously or in other words staff 

assignment is unique in nature.% 
        LIMIT=1; 
        while length(unique(A))~=length(A)&& LIMIT<1000 
            b=[]; 
            S1=[]; 
            S2=[]; 
            S3=[]; 
            S4=[]; 
            A=[]; 
            for k=1:4 
                b=ACTmtx(Student(1,j),k+1); 
                if b==0 
                    A=[]; 
                elseif b~=0 && k==1 
                    r1=randperm(length(STAFF_SKILL1),b); 
                    for n1=1:b 
                        S1(n1)=STAFF_SKILL1(r1(n1)); 
                    end 
                     
                     
                elseif b~=0 && k==2 
                    r2=randperm(length(STAFF_SKILL2),b); 
                    for n2=1:b 
                        S2(n2)=STAFF_SKILL2(r2(n2)); 
                    end 
                                         
                elseif b~=0 && k==3 
                    r3=randperm(length(STAFF_SKILL3),b); 
                    for n3=1:b 
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                        S3(n3)=STAFF_SKILL3(r3(n3)); 
                    end 
                     
                elseif b~=0 && k==4 
                    r4=randperm(length(STAFF_SKILL4),b); 
                    for n4=1:b 
                        S4(n4)=STAFF_SKILL4(r4(n4)); 
                    end 
                end 
                 
            end 
             
            LIMIT=LIMIT+1; 
            A=[S1 S2 S3 S4]; 
        end 
             Staff_Act(j,1:length(A))=A; 
    end 
     
    Staff_Act=[Student(1,:)' Staff_Act]; 
for i=1:NumAct 
    MINIMUM=min(Staff_Act(:,1)); 
    index=find((MINIMUM==Staff_Act(:,1))); 
    Staff_Act2(i,:)=Staff_Act(index,:); 
    Staff_Act(index,:)=[]; 
end 
Staff_Act=Staff_Act2; 
 

 
 

% Now follows codes for the MO-MSRCPSP to calculate the TOTAL TIME ELAPSED IN UNDER-
SKILLED STAFF ASSIGNMENT (denoted as TIME_UnderSkill) for the project 

 
 
clc 
clear all 
ACTmtx=textread('ACTmtx.txt'); 
STAFFmtx=textread('STAFFmtx2.txt'); 
Staff_Act=textread('Staff_Act.txt'); 
NumAct=12; 
 
TIME_UnderSkill_Matrix=zeros(NumAct,4); 
for i=1:NumAct 
    b=[]; 
    ASSIGNED_STAFF=0; 
    for k=1:4  % as there are a total of four skill types 
        b=ACTmtx(i,k+1); 
        if  b~=0 
            Staff_Index=[]; 
            TIME_UnderSkill_Array=[]; 
            for n=1:b 
                Staff_Index(n)=Staff_Act(i,n+1+ASSIGNED_STAFF); 
                TIME_UnderSkill_Array(n)=(1-
(STAFFmtx(Staff_Index(n),k+1)))*ACTmtx(i,6); 
            end 
            ASSIGNED_STAFF=ASSIGNED_STAFF+b; 
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            TIME_UnderSkill_Matrix(i,k)=sum(TIME_UnderSkill_Array); 
        end 
    end 
end 
TIME_UnderSkill_Matrix 
TIME_UnderSkill=sum(sum(TIME_UnderSkill_Matrix)) 
 

************************************************************************** 
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