
Development of Heuristics for Multi-Skill Resource-

Constrained Project Scheduling

Submitted in

fulfillment of the requirements for the degree of

Doctor of Philosophy

by

DHEERAJ JOSHI

ID: 2011RME7143

Under the supervision of

Prof. M. L. Mittal

DEPARTMENT OF MECHANICAL ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

August 2019

ii

© Malaviya National Institute of Technology Jaipur – 2019

All rights reserved.

iii

Dedicated to

My family

iv

DECLARATION

I, Dheeraj Joshi, declare that this thesis titled, “Development of Heuristics for Multi-Skill

Resource-Constrained Project Scheduling” and the work presented in it is my own. I confirm

that:

 This work was done wholly or mainly while in candidature for a research degree at this

university.

 Where any part of this thesis has previously been submitted for a degree or any other

qualification at this university or any other institution, this has been clearly stated.

 Where I have consulted the published work of others, this is always clearly attributed.

 Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

 I have acknowledged all main sources of help.

 Where the thesis is based on work done by myself, jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Date: August, 2019 Dheeraj Joshi

 (2011RME7143)

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY

JAIPUR – 302017 (RAJASTHAN) INDIA

v

CERTIFICATE

This is to certify that the thesis entitled “Development of Heuristics for Multi-Skill Resource-

Constrained Project Scheduling” being submitted by Mr. Dheeraj Joshi (ID No.:

2011RME7143) is a bonafide research work carried out under my supervision and guidance in

fulfillment of the requirement for the award of the degree of Doctor of Philosophy in the

Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur,

India. The matter embodied in this thesis is original and has not been submitted to any other

University or Institute for the award of any other degree.

Prof. M. L. Mittal

(Supervisor)

Professor

Department of Mechanical Engineering,

MNIT, Jaipur

India

Place: Jaipur.

Date: August, 2019

MALAVIYA NATIONAL INSTITUTE OFTECHNOLOGY

JAIPUR – 302017 (RAJASTHAN) INDIA

vi

ACKNOWLEDGEMENT

It is indeed a matter of great pleasure and proud privilege for me to introduce and present this

thesis entitled “Development of Heuristics for Multi-Skill Resource-Constrained Project

Scheduling”.

On the very onset, I thank the Almighty for bestowing upon me His kind blessings and fortunate

opportunity to undertake this work. I wish to extend my utmost gratitude and sincere thanks to

my benevolent supervisor Prof. M. L. Mittal whose excellent guidance, constructive feedback

and timely motivation have proved highly instrumental in bringing out this research work.

I am equally indebted to Prof. Dilip Sharma (Head, Mechanical Engineering Department) and

my DREC members: Prof. A.P.S. Rathore, Prof. Rakesh Jain and Dr. Gunjan Soni for providing

me with their insightful comments that helped in streamlining this work.

I would like to extend sincere thanks to the management of my working organization Swami

Keshvanand Institute of Technology, Management & Gramothan, Jaipur for permitting me to

carry out this research work. I owe overwhelming debt to Prof. (Dr.) N.K.Banthiya, Prof. (Dr.)

S.L.Surana and Prof. (Dr.) N.C. Bhandari for helping me a lot in balancing out my professional

and academic assignments. My special appreciation goes to (Late) Prof. Alok Mathur who

initiated a spark in me to start this research and also acted as a catalyst and key motivator till his

last breadth for timely completion of this work.

I duly acknowledge and thank all my friends and colleagues Mr. Manish Kumar, Dr. Manu

Augustine, Dr. Manoj Kumar Sain, Mr. Ramkaran Yadav and Mr. Pal Manojkumar Ramchandra

for all their help and support. I want to express my heartiest thanks to my parents and all family

members for their sacrifices, moral support and constant encouragement. Above all, I express my

utmost indebtedness to my beloved wife Lovely and cute little daughter Kiddu whose love and

energy kept me going.

Dheeraj Joshi

(2011RME7143)

vii

Abstract

Due to the increased market volatility and uncertainties in today‟s competitive environment,

there is a dire need for organizations to be more proactive and responsive in fulfilling customers‟

demand. Over the past few decades, achieving flexibility and robustness has been a key and

strategic objective of most of the business organizations to handle these uncertainties. Due to its

extensive breadth and sheer diversity, the term „flexibility‟ has crossed its traditional locus from

manufacturing to various other fields including project scheduling. Amongst the different

dimensions and facets of flexibility, labour flexibility (also termed as workforce flexibility or

human resource flexibility) has been a subject of much academic enquiry in the recent years.

This work focuses on project scheduling problems involving resource flexibility.

Resources are inevitably necessary for the execution and realization of any project. The

scheduling problems under the limited resource environment have been studied in the literature

as the resource-constrained project scheduling problem (RCPSP). Due to both its theoretical

relevance and practical applicability, there has been a significant and conspicuous research in the

area of RCPSP in the last few decades. In this research, one of the recent and practical extensions

of the RCPSP termed as the multi-skill resource constrained project scheduling problem

(MSRCPSP) has been considered for investigation. Unlike the RCPSP, in these problems

resources are flexible in nature i.e. each resource has the functionality of various renewable

resources. This scenario is highly pronounced particularly in call centers, software development

companies, consultancy firms, maintenance or construction agencies where the team members

are skilled to perform a variety of jobs. The scheduling decision, therefore, is twofold i.e.

allocation of a particular resource to an activity; and the specific skill for which the resource is

allocated.

A comprehensive literature review revealed that there exists a good literature pertaining to

resource flexibility in shop-floor and job-shop scheduling but same has not been sufficiently

addressed in the area of project scheduling. In most of the current works, it has been assumed

that each activity require one skill and one resource unit in form of a staff member possessing the

stated skill. Moreover, majority of these studies consider that staff members possess different

skills with same proficiency levels. However, this is not true in real life. Usually in

viii

organizations, a staff member possessing various skills may be expert in one (or more) particular

skill(s) but may not be able to exhibit the same level of expertise in all skill types. The

proficiency or expertise of a skill refers to the degree of sophistication, ease or superiority by

which a staff member can deliver a particular skill. Also, is has been found that in majority of

these studies only one scheduling objective (mostly the makespan) is considered. However, in

many practical situations decision-makers are concerned about several objectives simultaneously

which give rise to what is known as multi-objective multi-skill resource-constrained project

scheduling problem (MO-MSRCPSP).

The MSRCPSP is considered to be NP-hard in the strong sense hence it is difficult to find

optimal solutions for large sized real life problems in reasonable time. During the past few

decades, metaheuristic approaches have been an indispensable choice to achieve near optimal

solutions for many of the combinatorial optimization and NP-hard problems, project scheduling

being no exception. One of the recent metaheuristics for optimization problems is teaching-

learning- based algorithm (TLBO). The algorithm mimics the teaching-learning process

commonly seen in classrooms. It has been successfully applied on mathematical benchmark

functions and mechanical design optimization problems of continuous nature. To the best of the

knowledge attained from literature survey, there is no reported work in literature having

application of TLBO on standard RCPSP and its multi-skill version with finite resource

requirements and consideration of skill proficiencies.

Under this motivation, this study presents a TLBO algorithm with some modifications as an

alternative metaheuristic approach for solving the general class of the RCPSP as well as for the

MSRCPSP and its multi-objective case. The thesis starts by application of the TLBO for the

RCPSP with some modifications from its conventional form. In addition to teacher and learner

phase, two additional phases namely self-study phase and examination phase have also been

appended in the conventional TLBO for improving the exploration and exploitation capabilities

of the algorithm. The comparative results on standard benchmark problems show that

performance of the proposed TLBO is quite competitive with other approaches available in the

literature.

ix

Subsequently in the second phase of the research, a TLBO for the MSRCPSP with modified

encoding and decoding schemes has been developed that can accommodate the multi-skilled

resource assignment information in the solution. In addition, a genetic algorithm (GA) with

similar configuration has also been developed for comparing with the TLBO. The test instances

have been developed using the methodology proposed in the literature and comparative results

show that the proposed TLBO is quite effective to solve the MSRCPSP.

To fill another research gap, unlike most of the current research work, a practical scenario has

been considered wherein staff members possess different skills with different proficiency levels.

More specifically, a multi-objective TLBO has been introduced for the MO-MSRCPSP with two

objectives including minimization the project makespan along with minimization of total time

elapsed with less-skilled resource assignments. A weighted-sum or scalarization method has

been employed to design MO-TLBO and MO-GA to solve this problem. The results on the test

instances having different project architectures establish that MO-TLBO can be an effective

metaheuristic approach to tackle the MO-MSRCPSP.

Some typical beneficiaries of this research may include software development companies,

consultancy firms, R & D based organizations, maintenance firms, big construction houses etc.

which incorporate multi-skilled staff members to accomplish different client orders

simultaneously. Future research in this area may be directed towards consideration of project

scheduling under stochastic or non-deterministic environment with varying activity times and

interrupted skill availabilities.

x

Contents

Declaration…………………………………………………………………………………….….iv

Certificate……………….………………………………………………………………………....v

Acknowledgement………………………………………………………………………………..vi

Abstract……………………………………………………………………….………………….vii

Contents………………......…………………………………………………………………….…x

List of Figures…..xiii

List of Tables…………………………………………………………………………………….xv

Abbreviations…………………………………………………….…………………..………….xvi

1. Introduction……………………………………………………………………………....…01

1.1. Background…………...…………………………………………………………..….…02

1.2. Project scheduling under limited resources………………………………….…………03

1.3. Solution approaches in project scheduling………………………………………….….05

1.4. Motivation for the work ...06

1.5. Research objectives and scope of the work……………………………………………08

1.6. Organization of the thesis………………...……………………………………….……09

2. Literature Review...12

2.1. Resource-constrained project scheduling problem…..………………….....…..14

2.2. Flexibility in project management………………………………………………...……20

2.2.1. Theoretical concept of flexibility…………………………………………...…...20

2.2.2. Flexibility versus uncertainty………………………………………………...….20

2.2.3. Flexibility dimensions in manufacturing………………………………………...22

2.2.4. Human resource flexibility………………………………………………………22

2.3. Project scheduling with flexible resources……………...………………………….......24

2.3.1. Multi-skill personnel and staff assignment problems……………...……………24

2.3.2. Multi-skill resource-constrained project scheduling problem……..27

2.3.2.1. Single-objective MSRCPSP…………………………………………...28

2.3.2.2. Multi-objective MSRCPSP……………………………………………31

xi

2.4. Summary and research gaps…………………………………………………………….33

3. A Teaching-Learning-Based Optimization Algorithm for the RCPSP…………………35

3.1. Introduction……………………………………………………………………………...36

3.2. Problem description……………………………………………………………………..37

3.3. The philosophy of TLBO……………………………………………………………….39

3.4. The proposed TLBO for the RCPSP……………………………………………………40

3.4.1. Solutions encoding and decoding……………………………………………..43

3.4.2. Initial population………………………………………………………………44

3.4.3. The teacher and learner phase……………………………………………..….46

3.4.4. The self-study phase………………………………………………………..…47

3.4.5. The examination phase………………………………………………………..48

3.5. Computational experiences……………………………………………………...………48

3.5.1. Parameters setting…………………………………………….………………….49

3.5.2. Comparison of proposed TLBO with other approaches…………………………52

3.6. Summary………………………………………………………………………….……..55

4. A Teaching Learning Based Optimization Algorithm for the MSRCPSP…………..….57

4.1. Introduction……………………………………………………………………………...58

4.2. Problem description and mathematical formulation…………………….………………58

4.2.1. Mathematical formulation for the MSRCPSP………………………………...…59

4.2.2. An illustrative example………………………………………………….……….61

4.3. Proposed algorithms for the MSRCPSP……………………………….………………..63

4.3.1. Teaching-learning-based optimization algorithm for the MSRCPSP………..…..64

4.3.1.1. Encoding scheme………………………………………………….……..64

4.3.1.2. Decoding scheme………………………………………………………...67

4.3.1.3. Initial population……………...……………………………….…………67

4.3.1.4. Teacher and learner phase……………………………………………….69

4.3.1.5. Self-study and examination phase……………………………………….70

4.3.2. Proposed Genetic Algorithm for the MSRCPSP………….........………………..70

4.3.2.1. Initial population and parent selection……………….......………………71

xii

4.3.2.2. Details of genetic operators……………………………........……..…….72

4.4. Computational exercises………………………………………………………………...73

4.4.1. Test instances for the MSRCPSP……………….…………………………….….73

4.4.2. Parameter setting ……………………………………………………………...…76

4.4.2.1. Parameter setting for the TLBO………………………………………….76

4.4.2.2. Parameter setting for the GA…………………………………………….79

4.4.3. Comparative results……………………………………………………………...79

4.5. Summary………………………………………..……………………………………….85

5. A Multi-Objective TLBO for the Multi-Objective MSRCPSP…………………………..86

5.1. Introduction…………………………………………………………………...…………87

5.2. Multi-objective MSRCPSP………………………………………………………….…..88

5.2.1. Problem description……………………………………………………………...88

5.2.2. Mathematical model………………………………………………...…………...89

5.2.3. An illustrative example…………………………………………………………..92

5.3. Proposed algorithms for solving the MO-MSRCPSP…………………………………..96

5.3.1. A multi-objective TLBO for the MO-MSRCPSP………………………………..97

5.3.2. A multi-objective GA for the MO-MSRCPSP…………………………………..98

5.4. Computational results………...…………………………………………………………98

5.5. Summary……………………………………………………………………………….102

6. Conclusions and future research directions……………………………………………….. 104

6.1. Major research contributions…………………………………………………………..107

6.2. Limitations of the research…………………………………………………………….108

6.3. Future directions for the research……………………………………………………...109

References……………………………………………………………………………………...111

Appendices ...122

Appendix-I: Sample input file formats……………………………….......…………...……….123

 Appendix-II: MATLAB codes... 126

List of publications…………………………………………………………………………….145

Author’s Biographical Sketch………………………………………………………………...146

xiii

List of Figures

Figure 1.1: Pictorial view of organization of the thesis... 10

Figure 2.1: Flow of literature review.. 13

Figure 2.2: Exact solution approaches for the RCPSP... 15

Figure 2.3: Classification of heuristics methods for the RCPSP.. 16

Figure 2.4: Metaheuristics methods for the RCPSP... 17

Figure 2.5: Variations and extensions of the RCPSP... 19

Figure 3.1: A project instance for the RCPSP.. 38

Figure 3.2: A feasible solution for the illustrative instance... 39

Figure 3.3: Model to show TLBO philosophy.. 40

Figure 3.4: Framework of the proposed TLBO.. 41

Figure 3.5: Pseudo-code for the proposed TLBO.. 43

Figure 3.6: Pseudo code for the serial schedule generation (SGS) scheme................................. 44

Figure 3.7: Mechanism of 2-point crossover in teacher phase... 47

Figure 3.8: Trend of factor levels for J30... 51

Figure 3.9: Trend of factor levels for J60... 51

Figure 3.10: Trend of factor levels for J120... 52

Figure 4.1: Precedence graph of the illustrative project... 62

Figure 4.2: A feasible solution of the illustrative example.. 63

Figure 4.3: Flowchart of the proposed TLBO for the MSRCPSP... 65

Figure 4.4: Pseudo-code for the proposed TLBO for the MSRCPSP.. 66

Figure 4.5: Encoding of solution for the MSRCPSP... 67

Figure 4.6: Pseudo code for the modified SGS... 68

Figure 4.7: An illustration of 2-point crossover mechanism for the MSRCPSP........................ 70

Figure 4.8: Pseudo code for the proposed GA... 71

Figure 4.9: Pseudo-code for 2-point crossover in the proposed GA.. 72

Figure 4.10: Main effects plot for each level of factors of the TLBO... 78

Figure 4.11: Main effects plot for each level of factors of the GA.. 80

Figure 4.12: Comparison of the TLBO and GA results for different skill factor........................... 83

Figure 4.13: Comparison of the TLBO and GA results for different network complexity............... 83

Figure 4.14: Comparison of the TLBO and GA results for different modified resource strength. 84

xiv

Figure 5.1: Precedence graph of the illustrative project... 93

Figure 5.2: A solution (encoded individual) of illustrative project.. 94

Figure 5.3: A feasible solution of the illustrative example.. 94

Figure 5.4: Avg. % deviation for different skill factor... 101

Figure 5.5: Avg. % deviation for different network complexity.. 102

Figure 5.6: Avg. % deviation for different modified resource strength....................................... 102

xv

List of Tables

Table 2.1: Association of flexibility and uncertainty types (Gerwin, 1987)... 21

Table 2.2: Different forms of flexibility (Goudswaard and De Nanteuil, 2000).................................. 23

Table 3.1: Test results for different crossover and mutation mechanisms.. 49

Table 3.2: Parameters selected for the DOE... 50

Table 3.3: Orthogonal table and the ARV values for DOE... 50

Table 3.4: The best combination of parameters... 52

Table 3.5: Average deviations from optimal makespan for J30 instance set.. 53

Table 3.6: Average deviations from critical path based lower bound for J60 instance set................... 54

Table 3.7: Average deviations from critical path based lower bound for J120 instance set................. 55

Table 4.1: Activity-Skill Matrix.. 62

Table 4.2: Staff-Skill Matrix.. 63

Table 4.3: Number of staff members for given values of SF and MRS.. 75

Table 4.4: Summary of characteristics of the test instances... 75

Table 4.5: Factors and corresponding levels for the TLBO.. 76

Table 4.6: Test results for different combinations of crossover and mutation.................................... 77

Table 4.7: Orthogonal table and the ARV values for DOE test for TLBO... 78

Table 4.8: Factors and corresponding levels for the GA.. 79

Table 4.9: Orthogonal table and the ARV values for DOE test for GA.. 80

Table 4.10: Comparison of TLBO and GA for the test instances.. 81

Table 4.11: Summary of results.. 82

Table 5.1: Levels of proficiencies... 88

Table 5.2: A project instance for the MO-MSRCPSP.. 92

Table 5.3: Staff-Skill Proficiency Matrix.. 93

Table 5.4: Summary of the MO-TLBO algorithm... 97

Table 5.5: Summary of the proposed MO-GA... 98

Table 5.6: Comparison of MO-TLBO and MO-GA.. 100

Table 5.7: Summary of results for MO-TLBO and MO-GA... 101

xvi

Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimisation

AL Activity List

ARV Average Response Variable

B&B Branch & Bound

BM Boctor Mutation

CII Construction Industry Institute

CP Constraint Programming

CS Cuckoo Search

CPM Critical Path Method

DBH Decomposition Based Heuristic

DE Differential Evolution

DEGR Differential Evolution and Greedy Algorithm

DOE Design of Experiment

EST Earliest Start Time

EFT Earliest Finish Time

GA Genetic Algorithm

GRPW Greatest Rank Positional Weight

HM Hartmann Mutation

HAntCO Hybrid Ant Colony Optimization

HBD Hybrid Benders Decomposition

HS Harmony Search

iMOPSE Intelligent Multi-Objective Project Scheduling Environment

IT Information Technology

LST Latest Start Time

MC-NFP Minimum Cost Network Flow Problem

MILP Mixed-Integer Linear Programming

MIP Mixed-Integer Programming

MMRCPSP Multi-Mode Resource-Constrained Project Scheduling Problem

xvii

MOFOA Multi-Objective Fruit Fly Optimization Algorithm

MOIWO Multi-Objective Invasive Weeds Optimization Algorithm

MOPSO Multi-Objective Particle Swarm Optimization

MO-MSRCPSP Multi-Objective Multi-Skill Resource-Constrained Project Scheduling

Problem

MRS Modified Resource Strength

MSPSP Multi-Skill Project Scheduling Problem

MSRCPSP Multi-Skill Resource-Constrained Project Scheduling Problem

NC Network Complexity

NP-hard Non-deterministic Polynomial-time hardness

NPV Net Present Value

NSGA-II Non-Dominated Sorting Genetic Algorithm

PERT Programme Evaluation and Review Technique

PSO Particle Swarm Optimisation

PSP Project Scheduling Problem

PSPFR Project Scheduling Problem with Flexible Resources

PSPLIB Project Scheduling Problem Library

RBRS Regret-based Biased Random Sampling

RCPSP Resource-Constrained Project Scheduling Problem

RCPSP-FWP Resource-Constrained Project Scheduling Problem with Flexible Work

Profiles

RIP Resource Investment Problem

RSM Response Surface Methodology

R&D Research & Development

SA Simulated Annealing

SDS Skill Divergence Span

SF Skill Factor

SGS Serial Schedule Generation Scheme

SFLA Shuffled Frog-Leaping Algorithm

TLBO Teaching-Learning-Based Optimization

TS Tabu Search

1

Chapter 1

Introduction

2

Chapter 1

Introduction

1.1. Background

Projects are inevitable in our day-to-day life. In fact, the growth and development of human

civilization can be largely attributed to the timely and successful completion of various projects.

The term „project‟ can be defined as a non-repetitive process with definite start and end time

having specific objective(s) to be achieved under given constraints of time, cost and other

resources.

Many of the modern projects involve hundreds or even thousands of inter-related activities and

their timely execution demands a formal and structured approach. Project management, a

continuously growing management discipline, primarily involves planning, scheduling and

controlling of projects. During the planning phase the activities and their characteristics (such as

duration, nature, resource requirements, inter-relationships etc.) which must be carried out to

achieve the stated project objective(s) are defined. In addition, the constraints definitions are also

formalized in this phase. In the scheduling phase, the start and end times of various activities are

determined, of course, by honoring the given constraints. Finally, in the controlling phase,

monitoring and expediting of the project is carried out to ensure that activities are executed as

scheduled. In addition, during control phase the project managers may also carry out corrective

actions such as schedule repair or re-scheduling if unacceptable aberrations are found during

project execution. Undoubtedly, the competitiveness and success of a business organization

depend heavily on how effectively it employs project management tools to the projects. The

applications of project management are manifold and can be found in constructional activities,

public amenities and infrastructure, software development, process engineering, research and

development, repair and maintenance activities and many more.

The focus of this work is on scheduling aspect of project management which demands timely

and effective allocation of resources to the project activities. This has been increasingly difficult

and challenging in recent years primarily due to the dearth of skilled and sophisticated resources,

3

ever alarming energy crisis and increased geographical and political constraints. The scheduling

problems of projects have been studied under a generic name called Project Scheduling Problem

(PSP). A PSP involves a whole class of problems comprising different variations in fundamental

project characteristics such as resources, activities, their inter-relationships and also the stated

objective(s). The project scheduling function aims to determine the start/finish times of the

activities involved in a project so that some predefined performance metric (e.g. makespan,

profit, cost, NPV etc.) can be optimized for a given set of constraints. The nature and types of

resources which have a profound effect in the execution and completion of a project will be the

focus of discussion in the next section.

1.2. Project scheduling under limited resources

The early studies of project scheduling namely Programme Evaluation and Review Technique

(PERT) by Malcolm et al. (1959) and Critical Path Method (CPM) by Kelley and Walker (1959)

considered unlimited availability of resources which is, no doubt, an unrealistic assumption. In

real life situations, different resources required by activities such as machines, humans, energy,

budget etc. are indispensably limited in quantity and this demands their efficient and proper

utilization. The scheduling problems under the limited resource environment have been studied

in literature as the resource-constrained project scheduling problem (RCPSP). Due to both its

theoretical relevance and practical applicability in diverse fields like research and development,

maintenance, construction and software development, the RCPSP has attracted the attention of a

large number of researchers. For a holistic and comprehensive view of the nature, variants and

solution approaches of the RCPSP, reader is referred to surveys by Kolisch and Hartmann

(2006), Hartmann and Briskorn (2010) and Habibi et al. (2018).

Resources are inevitably necessary for the execution and realization of project activities (except

dummy) and can be broadly classified at three levels: categories, types and units (Weglarz et al.,

2011). The category classification is established on the view-point of resource limitations based

on time and can be further divided into following three basic sub-categories:

 Renewable resources which are constrained only on a period basis i.e. the amount

available of such a resource is fixed and constant for the entire planning horizon.

4

This is because the units of such resource are released immediately as soon as the

execution of an activity is over. Examples include human resources, machines and

equipment etc.

 Non-renewable resources which are constrained only on total consumption over the

entire planning horizon but having no restriction on per period availability. Units of

non-renewable resource once consumed cannot be assigned to other activities.

Examples are capital budget, raw material etc.

 Doubly constrained resources which are constrained both on a period-to-period

basis as well as for the entire project time interval. It is either used (e.g. tools,

machinery, equipment etc.) or consumed (e.g. raw material, money etc.) by an

activity during its execution. It is important to note that each doubly constrained

resource can be suitably substituted by a single renewable and another non-

renewable resource. (Talbot, 1982).

According to the type classification, resources are distinguished as per their functional

capabilities. In other words, two or more resources of same type are equally capable to execute a

given activity. Finally, the amount of resource availability can be defined under classification by

unit basis which simply identifies the number of units (for discretely-divisible like machines,

tools, workers etc.) or amount of resources (for continuously-divisible like money, energy, liquid

etc.) required to execute a given activity.

Besides these basic categories, several other categories of resources can also be found in

literature such as preemptable and non-preemptable resources (Blazewicz et al., 1986), reusable

resources (Shewchuk and Chang, 1995), dedicated resources (Bianco et al., 1998), spatial

resources (De Boer, 1998), partially renewable resources (Bottcher et al., 1999), cumulative

resources (Neumann et al., 2002), multi-skilled resources (Neron, 2002), synchronizing

resources (Schwindt and Trautmann, 2003), adjacent resources (Duin and Van Der Sluis, 2006),

changeover resources (Neumann et al, 2006) and heterogeneous resources (Tiwari et al., 2009)

etc.

Among the above mentioned categories, this work particularly focuses on „multi-skilled‟

resources wherein flexible resources have been considered i.e. each resource has the

5

functionality of various renewable resources. This scenario is highly pronounced particularly in

call centers, software development organizations, consultancy firms, maintenance or construction

agencies where the team members are skilled to perform a variety of jobs. For example, a coder

in a software development project can perform both coding and debugging; a mason in

construction projects can perform leveling, plumbing etc.in addition to plastering. In this context,

a given task which requires certain skill(s) can be accomplished by any staff member possessing

the stated skill(s). Besides human resources, multi-skilled resources also include multi-purpose

machines, robots, automatic machining centers etc. The problem in literature has been studied

under various names viz. “multi-skill project scheduling problem (MSPSP)” (Bellenguez-

Morineau & Néron, 2007), “project scheduling problem with flexible resources (PSPFR)”

(Correia et. al., 2012) and “multi-skill resource-constrained project scheduling problem

(MSRCPSP)” (Myszkowski et al. 2015). The underlying and common factor between all these

problem classes is that a resource is considered to possess more than one skill. The scheduling

decision, therefore, is twofold i.e. allocation of a particular resource to an activity; and the

specific skill for which the resource is allocated.

Due to its obvious applications in a lot of real-life projects, the MSRCPSP has gained quick

attention of researchers since its advent and it still presents a potential area of research. This

work focuses both on single-objective and multi-objective MSRCPSP which is again a scarcely

treated work in literature. The concept of resource flexibility and its variants in project

scheduling has been discussed in sufficient length in the next chapter. For the sake of brevity and

convenience, the detailed discussion on the other resource categories mentioned in this section

has been omitted.

1.3. Solution approaches in project scheduling

The RCPSP is combinatorial in nature and considered to be NP-hard (Blazewicz et al., 1983) in

the strong sense hence it is difficult to find optimal solutions for large sized real life problems in

reasonable time. The MSRCPSP, being a practical extension of the RCPSP, are more complex in

the sense that number of possible ways of resource allocation can be exceptionally large.

6

During the past few decades, heuristics approaches have been an indispensable choice to achieve

near optimal solutions for many of the combinatorial optimization and NP-hard problems,

project scheduling being no exception. Unlike traditional mathematical programming techniques,

heuristics are simple and intuitive in nature that determines sub-optimal or „good‟ solutions in

reasonable amount of computational time. The early heuristics proposed for the RCPSP were

constructive in nature and primarily based on priority rules and a schedule generation scheme

(Kolisch, 1996). In pursuit of finding better solutions for practical optimization problems

researches have proposed a variety of advanced heuristics called metaheuristics. These are a

recent class of heuristics which start from one or more initial feasible solutions and imitate some

natural or physical phenomena (e.g. genetic algorithms, simulated annealing etc.) to achieve

convergence towards a global optimum solution. The metaheuristics have proved far efficient

than rule-based heuristics in many fields and including project scheduling.

Although a number of metaheuristic approaches exist in literature but it is interesting to note that

no single approach can be guaranteed to give better results for all types of scheduling problems.

This is primarily due to the inherent nature and solution mechanisms that these approaches

employ, while one may be good at exploration, other at exploration. Nevertheless, this has

constantly motivated practitioners and researchers to employ and explore the behaviour of newly

designed metaheuristics based on various physical or natural phenomena.

1.4. Motivation for the work

A comprehensive literature survey revealed that although resource limitation aspect has been

sufficiently addressed by researchers in project scheduling, the notion of skilled resources still

presents a potential area of research. There exists good literature pertaining to resource flexibility

in shop-floor and job-shop scheduling (Dauzere et al., 1998) but same has not been sufficiently

addressed in the area of project scheduling. More specifically, numerous heuristic and

metaheuristic approaches can be found for the RCPSP (Hartmann and Briskorn, 2010) but this is

not true in case of MSRCPSP. The work by Neron (2002) wherein two lower bounds have been

proposed can be attributed as the initial contribution to the MSRCPSP. Bellenguez-Morineau &

Néron (2007) introduced branch-and-bound method for MSRCPSP which can tackle problems of

only small scale. Later, Correia et al. (2012) developed an MILP formulation for the PSPFR and

7

introduced few more inequalities in order to solve it more effectively using a general solver. The

concept of skilled resources has also been harnessed by researchers in in the area of personnel

assignment (Ernst et al., 2004) but there is still a lack of efficient metaheuristics or solution

approaches for solving large scale MSRCPSP.

Moreover, in the above studies, only one scheduling objective (mostly the makespan) is

considered. However, in many practical situations decision-makers need to optimize several

objectives functions simultaneously which give rise to what is known as multi-objective multi-

skill resource-constrained project scheduling problem (MO-MSRCPSP). Recently, some work

has been reported in literature in this growing area. Maghsoudlou et. al (2016) proposed multi-

objective invasive weeds optimization algorithm (MOIWO) with a new chromo-some structure

guaranteeing feasibility of solutions to solve this problem. Besides minimizing project‟s

makespan, the two other objectives considered were minimizing total cost of allocating workers

to skills and maximizing total quality of processing the activities. In addition, a knowledge-

guided multi-objective fruit fly optimization algorithm (MOFOA) was proposed by Wang et. al

(2018) for MO-MSRCPSP with the criteria of minimizing the makespan and the total cost

simultaneously.

In most of these works, it has been assumed that a staff member possess different skills with

same proficiency levels. However, this is not true in real life. Usually in organizations, a staff

member possessing various skills may be expert in one (or more) particular skill(s) but may not

be able to exhibit the same level of expertise in all skill types. To elaborate further, a coder in a

software developing project may be highly expert to code in JAVA platform but may have

moderate level of proficiency in Python, Elixir, TypeScript or other programming languages.

The concept of this varied level of proficiencies has been studied in literature under the name

„hierarchical skills levels‟ for single-objective problems but no substantial work can be found

particularly for the multi-objective MSRCPSP.

One of the recent metaheuristics for optimization problems is teaching-learning-based algorithm

(TLBO). The algorithm, introduced by Rao et al. (2011), mimics the teaching-learning process

commonly seen in classrooms. It has been successfully applied on mathematical benchmark

functions and mechanical design optimization problems of continuous nature. The TLBO has

8

been reported to have high convergence rate and it also inherits a merit of few algorithm specific

parameters to tune (Rao et al., 2011). Inspired by the performance of TLBO on continuous non-

linear problems, researchers have also applied it on discrete optimization problems. However, to

the best of the knowledge there is no reported work in literature having application of TLBO on

standard RCPSP and its multi-skill version with finite resource requirements and consideration

of skill proficiencies. Under this motivation, this thesis presents a TLBO algorithm with some

modifications as an alternative metaheuristic approach for solving general class of the RCPSP as

well as for the MSRCPSP and its multi-objective case.

1.5. Research objectives and the scope of the work

The discussions made in section 1.4 highlight some relatively less studied areas in the domain of

“project scheduling with flexible resources”. This has been a key motivation to develop efficient

solution techniques for the multi-skill resource-constrained project scheduling problem

(MSRCPSP) and also for multi-objective multi-skill resource-constrained project scheduling

problem (MO-MSRCPSP) taking skill proficiencies into account. The behaviour of the

developed metaheuristic has been tested on the standard resource-constrained project scheduling

problem (RCPSP) as a preliminary approach.

 In particular, following research objectives have been formulated in this work:

1. To develop metaheuristic for the resource-constrained project scheduling problem

(RCPSP).

2. To develop metaheuristic for the multi-skill resource-constrained project scheduling

problem (MSRCPSP).

3. To develop metaheuristic for the multi-objective multi-skill resource-constrained project

scheduling problem (MO-MSRCPSP).

As explained earlier, there are a number of variations and extensions of the classical RCPSP and

hence no approach can be generalized and suitable for all problem class. Having said this, the

scope of the current work is limited by following assumptions:

9

 Single-mode for execution of activity and renewable type multi-skilled resources have

been considered in this research work.

 The prerequisite activity relations are of the finish-to-start type i.e. there exist zero time

lags between activities.

 The deterministic and static scheduling is assumed which implies that all activity times,

resource requirements and their availabilities are known a priori and do not alter during

execution.

 The preemption of activities is not permitted and all skills needed by an activity need to

be available at its start.

1.6. Organization of the thesis

This section discusses a brief overview of the contents included in different chapters of this

thesis. Figure 1.1 gives a pictorial view of the organization of the thesis. The core contents and

inclusions of each chapter have been mentioned below:

In chapter 1, which is the current chapter, an introduction to the resource-constrained project

scheduling along with relevance of metaheuristics as potential solution approach in this area is

presented. In addition, it also brings out motivation and justification of incorporating multi-

skilled nature of resources in the current work. Finally, research objectives and scope of the work

have been exhibited.

Chapter 2, reviews the state-of-the-art literature on the RCPSP and MSRCPSP with special

emphasis on concept of resource flexibility or multi-skill resources. The research gaps have been

ascertained in the end as an outcome of the survey.

In chapter 3, a recently introduced metaheuristic teaching-learning-based optimization (TLBO)

has been proposed for the RCPSP with some modifications from its conventional form. The key

philosophy of TLBO and its framework of application for the problem in hand have been

discussed in detail. In addition the chapter also presents the results of the comprehensive

computational experiments conducted to test the behaviour of the developed algorithm.

10

.Figure 1.1: Pictorial view of organization of the thesis

M
o

ti
va

ti
o

n
 o

f
th

e

re
se

ar
ch

 a
n

d

st
at

e-
o

f-
th

e
ar

t

re
vi

ew
 o

f

lit
e

ra
tu

re

D
e

ve
lo

p
m

e
n

t,
 M

o
d

e
lin

g
an

d
 t

e
st

in
g

o
f

n
ew

m
et

ah
eu

ri
st

ic

Im
p

lic
at

io
n

s
o

f
re

se
ar

ch

an
d

 f
u

tu
re

 d
ir

e
ct

io
n

s

Chapter 1:

Introduction

Chapter 2:

 Literature Review

Chapter 3:

Teaching-learning-based optimization algorithm for

the RCPSP

Chapter 4:

Teaching-learning-based optimization algorithm for

the MSRCPSP

Chapter 5:

TLBO for the multi-objective MSRCPSP

Chapter 6:

Conclusions and future research directions

11

In chapter 4, a TLBO algorithm for the multi-skill version of the RCPSP, i.e., MSRCPSP has

been introduced. In particular, a mathematical model for the problem has been formulated and a

novel decoding scheme for the MSRCPSP has been proposed to suit the multi-skill nature of

resources. As another contribution of this work, the chapter also presents a modified schedule

generation scheme to avoid resource conflicts between competing activities and ensuring

resource feasibility.

In chapter 5, another scarcely treated work in literature has been targeted namely multi-

objective multi-skill resource-constrained project scheduling problem (MO-MSRCPSP) by

giving due consideration to different skill proficiencies of resources. A multi-objective

mathematical formulation has been presented for this problem which aims to minimize two time

estimates (1) the project makespan and (2) the total time elapsed with under-skill resource

assignments denoted as Skill Divergence Span (SDS). To solve this complex problem, a priori

approach of multi-objective optimization has been used as it is simple and intuitive. The TLBO

algorithm developed in chapter 5 for MSRCPSP has been appended with some modifications to

facilitate multi-objective optimization.

In chapter 6, finally summarizes the significant contributions and highlights of the research.

Besides, an insight has also been given of important directions for accomplishing future research

in the area of project scheduling.

12

Chapter 2

Literature Review

13

Chapter 2

Literature Review

This chapter presents a comprehensive and state-of-the-art review on contributions made by

researchers in the project scheduling area with special focus on scheduling under flexible

resource profiles. More precisely, it investigates the multi-skilled resource-constrained project

scheduling problem (MSRCPSP) which has been realized as a recent extension of the classical

resource-constrained project scheduling problem (RCPSP). A brief overview of the generic

concept of flexibility with special emphasis on workforce flexibility as an important facet and

dimension of flexibility has also been presented in this chapter. The key contributions and

available solution approaches in this area that may steer new research potentials have been

discussed in sufficient length. In the later section, significant contributions in the multi-objective

optimization under multi-skilled resources have been highlighted. For the purpose of

completeness and coherence, the review of the standard RCPSP is presented first and

subsequently it proceeds towards the multi-skilled extension of this problem. Figure 2.1 presents

the systematic flow of literature review that has been adopted in this work.

Figure 2.1: Flow of literature review

Resource constrained

project scheduling

problem (RCPSP)

First Phase

Second Phase

Third Phase Multi-Skill

Resource

constrained

project scheduling

problem

(MSRCPSP)

Multi-Objective

Multi-Skill

Resource

constrained

project scheduling

problem (MO-

MSRCPSP)

14

2.1 Resource-constrained project scheduling problem

Since its advent, the RCPSP has been considered as one of the most intractable problems in

operations research community and hence attracted ample attention of researchers and

practitioners. The reason can be attributed to its sheer diversity and applicability in various fields

like R & D, maintenance, manufacturing, construction and software development etc. Over the

last few decades, it has been a standard problem for project scheduling which deals with

determination of start/finish times of the activities involved in the project by respecting the

precedence and resource constraints and fulfilling a specific objective (s).

Since the early work on the RCPSP by Weist (1967), a number of researchers have contributed

significantly in this area. It is important to note that initial solution techniques were mainly based

on optimal or exact approaches such as dynamic programming, zero-one programming

(Patterson and Roth, 1976), implicit enumeration (Patterson et al., 1990), branch and bound

(Demeulemeester and Herroelen, 1992; Brucker et al., 1998) etc. Figure 2.2 classifies the various

exact solution approaches employed by researchers to tackle the RCPSP. It is worthwhile to

mention that exact approaches were found to be incompetent to provide good solutions for

practical size problems which involve large number of activities and high network complexity.

As the RCPSP is a generalized form of job-shop scheduling problem and proved to be NP-hard

(Blazewicz et al., 1983) in the strong sense, the optimal solution is difficult to achieve for

problems where number of activities exceeds around 60. This has motivated a lot of researchers

in the past few decades to search for the near-optimal or heuristic solution approaches for solving

the RCPSP.

The early heuristics for the RCPSP were constructive in nature and primarily based on priority

rules applied in a single or multi-pass fashion. A serial or parallel schedule generation scheme

(Kolisch, 1996) is generally used to obtain a feasible solution from a given priority list. The

study based on single pass priority rules and their relative comparison can be found in Boctor

(1990). In this work it was shown that no single heuristic consistently perform well for a given

problem and the performance may depend upon type of problem, network complexity and other

related parameters.

15

Figure 2.2: Exact solution approaches for the RCPSP

This motivated the researchers to devise another class of heuristics called improvement heuristics

which basically employ multi-priority rules to reach at better solution. Besides the conventional

multi-priority rule methods, forward-backward methods (Li and Willis, 1990) and sampling

techniques (Tormos and Lova, 2001) have also shown good results for the RCPSP. The sampling

techniques, in particular, being based on random device and probabilistic concepts have proved

better than other priority rules and forward-backward based techniques (Kolisch, 1996) for

regular measure of minimizing makespan. Figure 2.3 presents a pictorial overview of the

different heuristics for the RCPSP available in the literature (Abdolshah, 2014).

Exact solutions

Mathematical

methods

Numerical methods Stochastic methods Synthetic methods

Deterministic

methods

Linear

Programing

Integer

Programming

Zero-one

programming

Dynamic

Programming

Branch &

Bound

Method

Synthetic

Simulation

CPM-PERT

Methods
Markov Chain

Goal

Programming

System

analysis

16

Figure 2.3: Classification of heuristics methods for the RCPSP

As mentioned earlier in chapter 1, in pursuit of finding better solutions for real life practical

optimization problems of large and complex nature, researchers have proposed a latest class of

heuristics called metaheuristics. The metaheuristics have proved far efficient than conventional

heuristics in many fields and the RCPSP is no exception. These are generally inspired from

nature or based on some physiological phenomenon. Figure 2.4 shows a summary of different

metaheuristics that researchers have tested for the RCPSP.

Among the most widely applied population based metaheuristic for the RCPSP is genetic

algorithm (GA). Some of these include GAs developed by Hartmann (1998, 2002), Alcaraz and

Maroto (2001) and Mendes et al. (2009).

Heuristic

methods

Search-

based

Based on

exact

methods

Hybrid

approach

Constructive

Improvement

Schedule

generation

Neighborhood

search

Forward-

backward

improvement

Lagrange

Decomposition

Relaxation

Combination

within several

heuristics

Exact

method

Column

generation

Iteration

Priority-

based

Parallel

scheduling

Serial

scheduling

Double

scheduling

Serial

Parallel

Single pass

Multi-pass

Priority

rule

Forward

backward

Sampling

method

Biased random

sampling

Regret based

random sampling

Random

sampling

17

Figure 2.4: Metaheuristics methods for the RCPSP

In his GA, Zamani (2013) proposed a new magnet-based crossover operator which has been

found very effective and competitive as compared to conventional crossover techniques.

Simulated annealing (SA), which mimics the physical phenomena of cooling of metals or alloys,

obtains an initial solution and repeatedly performs local alterations to achieve better solutions

(Kirkpatrick et al., 1983). It has been successfully applied for RCPSP by Boctor (1996), Cho and

Kim (1997) and Bouleimen and Lecocq (2003). Another metaheuristic is tabu search (TS), which

also starts with a feasible solution and uses a tabu list to find the global solution by escaping

from a local optimum. Some works that applied TS for the RCPSP includes those of Thomas and

Salhi (1998), Klein (2000) and Pan et al. (2008). In another such work, Bukata et al. (2015)

employed a parallel TS algorithm using graphics processing units (GPUs) to solve this problem

which proved very effective in terms of quality of solutions and number of evaluated schedules.

Under the applications of swarm intelligence optimization techniques, Zhang et al. (2005, 2006)

Metaheuristic

Trajectory Population based Hybrid Meta-hybrid

Local search

Basic

local

search

Simulated

Annealing

Hill

climbing

Tabu

search

Random

optimization Iterated

local search

Basic local

search

Variable

neighborhood

search

GRASP

Evolutionary

algorithm

Swarm

intelligence

Artificial

intelligence
Exact

methods

Heuristic

Heuristic

Genetic

algorithm

Genetic

programming

Evolutionary

programming

Memetic

algorithm

Stochastic

scatter

search

Ant colony

optimization

Bee

colony

optimizati

Estimation of

distribution

Particle swarm

optimization

Artificial

immune system

Artificial

neural

network

18

employed particle swarm optimization (PSO) wherein two different representations namely

priority-based and permutation-based representations were considered for the RCPSP and their

relative performance was analyzed.

Besides these well-known metaheuristics, researchers have also tested the performance of some

other specific metaheuristics on the RCPSP. For example, Fang and Wang (2012) applied

shuffled frog-leaping algorithm (SFLA) to solve this problem by encoding an activity list as

virtual frog and using specific serial schedule generation scheme to decode the same. In the work

of Eshraghi (2016), differential evolution (DE) algorithm embedded with local search techniques

was employed to solve the RCPSP. In a recent application, the scheduling problem in

construction industry was tackled by harmony search (HS) algorithm which is based on a

musician‟s search process to achieve a better harmony (Giran et al. 2017). To tackle a practical

extension of RCPSP, Lacomme et al. (2017) introduced a new shortest path algorithm that

considers both routing and scheduling.

Due to the rapid development in the complexity theory and maturations in artificial intelligence

techniques, research communities have begun to introduce more and more practical extensions of

the RCPSP. As a matter of fact, project scheduling under limited resources has escaped from its

conventional locus of operation research or management science to other applications including

those in control theory, computer sciences, system simulation etc. In recent years, there has been

an unprecedented growth not only in defining new paradigms of the RCPSP but also in devising

its advanced solution approaches. In order to understand different solution approaches, variants

and extensions of the RCPSP, reader is referred to surveys by and Hartmann and Briskorn (2010)

and Weglarz et al. (2011).

Recently, Habibi (2018) identified four main characteristics of the RCPSP which may be

attributed for possible variations in realizing practical extensions of the standard RCPSP. These

are resources, concept of activities, objective functions and the availability level of information.

Figure 2.5 depicts these characteristics along with their sub-classifications.

19

Figure 2.5: Variations and extensions of the RCPSP (Habibi et al., 2018)

R
e

so
u

rc
e

 C
o

n
st

ra
in

ed
 P

ro
je

ct
 S

ch
ed

u
lin

g
P

ro
b

le
m

 (
R

C
P

SP
)

Concept of

Activities

Objective

functions

Availability level of

information

Renewable

Non-renewable

Pre-emption

Double constrained

Mode of execution

Type of resource

consumption

Economic

Time-based

Resource based

Single-objective

Deterministic

Multi-objective

Resources

Non-deterministic

NPV

Cost

Non-renewable

Renewable

Sensitivity

analysis

Fuzzy

Stochastic

Proactive

(Robust)

Reactive

Dedicated resources

Spatial resources

Cumulative

resources

Multi-skilled

resources

Other categories

Synchronizing

resources

20

Out of these various real-life generalizations, the current work particularly focuses on the

concept of flexible resource or more specifically multi-skill resource categories for single mode

project scheduling. The next section presents the facets and dimensions of flexibility that have

been conceptualized by researchers in the area of manufacturing and thereby identifies their key

applications in the context of project scheduling.

2.2 Flexibility in project management

2.2.1. Theoretical concept of flexibility

For the past few decades, the concept of flexibility has gained ample attention from researchers

due to its importance and relevance in diverse fields such as design, manufacturing systems,

production planning and control, construction, service centers, software development, etc. The

generic concept of flexibility seems difficult to define due to extreme diversity in its connotation;

however, it can be identified and realized by certain characteristics such as responsiveness,

adaptability, resilience, rapidity, efficiency, reliability and sometimes complexity (Bordoloi et

al., 1999). Olsson (2006) analyzed the dynamics related to project flexibility, both from a

theoretical and an empirical perspective.

2.2.2. Flexibility versus uncertainty

Organizations in today‟s world are exposed to various types of uncertainties on account of

continuous and dynamic changes that often become quite significant in magnitude. Uncertainties

in projects are usually one of a major concern of project stakeholders which may have

unproductive repercussions and detrimental effects on the overall project growth and hence on

the expected objective(s). Atkinson et al. (2006) categorized the overall uncertainty in a project

relying on three attributes: uncertainty associated with estimation, uncertainty due to different

project life cycles and uncertainty due to project stakeholders. Herroelen and Leus (2004)

defined uncertainty in terms of magnitude of different project parameters viz. time, cost and

quality as well as process intricacies like what, how, when, by whom and at what cost a process

has to be done. In order to face these uncertainties, organizations are expected to be internally

and/or externally flexible. Undoubtedly, the ever increasing demand of high quality goods and

services and that too at low cost by customers impose an additional pressure on organizational

21

functionalities to develop robust and flexible systems that can handle uncertainties. In fact, the

discipline of project risk management relies heavily on how accurately practitioners are able to

ascertain possible reasons of uncertainties.

The application of concept of flexibility to handle uncertainties has attracted significant attention

and recognition by researchers in the recent years. Groote (1994) demarcated flexibility as “a

hedge against the diversity or uncertainty of the environment”. The word „diversity‟ was

interpreted to represent variety, complexity, variability in the types and quantities demanded by

customers. A flexible technology-enabled organization is capable of responding in favourable

manner towards various environmental uncertainties in a better fashion as compared to its

competitors. Beach et al. (2000) recommended reactive and proactive flexibility approaches to

handle an uncertain environment. An early attempt depicting the association of flexibility types

and uncertainty was made by Gerwin (1987) and shown in Table 2.1. It is interesting to note that

each type of uncertainty needs a different and specific type of flexibility to accommodate it.

Table 2.1: Association of flexibility and uncertainty types (Gerwin , 1987)

Flexibility type Association to uncertainty type

Mix
Uncertainty as to which products will be accepted by customers created a need for mix

flexibility

Changeover Uncertainty as to the length of product life cycles leads to changeover flexibility

Modification
Uncertainty as to which particular attributes customers want leads to modification

flexibility

Re-routing Uncertainty with respect to machine downtime makes for rerouting flexibility

Volume
Uncertainty with regard to the amount of customer demand for the products offered

leads to volume flexibility

Material
Uncertainty as to whether the material inputs to a manufacturing process meet

standards gives rise to the need for material flexibility

Sequence
Sequence flexibility arises from the need to deal with uncertain delivery times of raw

materials

22

2.2.3. Flexibility dimensions in manufacturing

The concept of flexibility in manufacturing well existed in literature (Dauzere-Peres et al., 1998).

Due to the very nature of diversity in flexibility definition, researchers have identified different

traits and dimensions of manufacturing flexibility such as quantitative, qualitative, offensive,

defensive, static, dynamic, internal and external. A firm‟s overall flexibility is a blend of these

various dimensions, of course, with varied levels of each type. In their work, Golden and Powell

(2000) identified four more dimensions of flexibility namely intension, focus, range, and

temporal. The temporal flexibility can be further classified into three sub-categories namely

strategic, tactical and operational flexibilities. Further, in the work of Koste and Malhotra (1999),

operational flexibility of an organization was categorized into various other flexibilities such as

labour flexibility, product flexibility, volume flexibility, mix flexibility, material handling

flexibility, routing flexibility, expansion flexibility etc.

2.2.4. Human resource flexibility

Out of the various facets and dimensions of manufacturing flexibilities mentioned above labour

flexibility will be of particular interest in this work. The term has been invariably used with

workforce flexibility or human resource flexibility in the literature and may be defined in terms

of number of heterogeneous or variety of jobs that a labour or worker is capable to perform with

satisfactory level of cost, quality and performance. Due to their inherent mobility and ability to

migrate from one work station to another, human resources can be considered as one of the key

contributors in imparting flexibility to an organization. Table 2.2 (Goudswaard and De Nanteuil,

2000) shows the two basic forms of human resource flexibility namely external flexibility and

internal flexibility. These have been further categorized into several sub-categories as shown. To

achieve external flexibility the required workforce is balanced by hiring more workers on short

term contracts from external market. This facilitates organizations to realize a rapid and costless

strategic flexibility to cope up with the turbulent customers‟ demand.

There are negative impacts of developing external flexibility in terms of lack of core

competences among employees, high hiring and layoffs costs, reduced morale and motivation of

workers and also health and safety issues. Moreover, the flexibility achieved is a static one rather

23

than dynamic in nature. To overcome these issues, the organizations often strive for developing

internal flexibility which is also referred as multi-skills flexibility. Multi-skills flexibility is

defined as the ability of human resources to carry or execute variety of tasks rather than fixed or

conventional ones. This kind of flexibility is also sometimes categorized into functional

flexibility which requires rigorous training programme to incorporate in an organization. In this

thesis focus is given on multi-skill flexibility of workers which is known to play a paramount

role in handling the dynamic and static uncertainties of an organization.

Table 2.2 Different forms of flexibility (Goudswaard and De Nanteuil, 2000)

Forms of flexibility Quantitative flexibility Qualitative flexibility

External flexibility Employment status Production system

 Permanent contracts Subcontracting

 Fixed-term contracts Outsourcing

 Temporary agency contracts Self employed

 Seasonal work

 Work on demand/call

Numerical flexibility and/or

contract flexibility

Productive and/or geographical

flexibility

Internal flexibility Working time Work organization

 Reduction of working hours Job enrichment/job rotation

 Over-time/part-time work Teamwork/autonomous work

 Night and shift work Multitasking, multi-skilling

 Weekend work Project groups

 Compressed working week Responsibility of workers over:

planning, budget, innovation,

technology

 Varying working hours

 Irregular/unpredictable working time

Temporal flexibility Functional flexibility

Although the flexibility concepts have been incorporated and tested in different fields of study,

in the light of scope of this work, only review of the works pertaining to flexibility in the project

scheduling environment is presented. Moreover, to keep the review focused, the resources

24

considered are only humans or staff members ignoring other flexible resources such as multi-

purpose machines, automatic workcentres, etc.

2.3. Project scheduling under flexible resources

Realizing the importance and relevance of multi-skilled staff in increasing competitive advantage

of an organization, a lot of researchers in recent years have formulated mathematical models and

applied them in various scheduling problems that involve flexible resources. There are primarily

two different scenarios or set-ups where flexible resources have been studied. In the former, the

review of the staff assignment problems involving multi-skilled resources is done and later

section focuses on state-of-the art in the multi-skill resource-constrained project scheduling area.

2.3.1. Multi-skill personnel and staff assignment problems

These problems are not essentially in a project architecture form, but largely concerned with

optimum allocation and assignment of flexible resources in different applications such nurse

rostering; school timetabling, workforce balancing etc. Cai and Li (2000) formulated a multi-

criteria optimization model for a staff scheduling problem with three objectives: minimization of

total cost incurred in assigning staff to meet manpower requirements; maximization of surplus of

staff for same assignment cost; minimization of variations in surplus staff for different time

periods. It is interesting to note that problem is not purely of multi-skill type in the sense that not

all staffs members were assumed to possess multi-skills. More specifically, three types of staff

members were considered such that type-I members were able to do type-I job, type-II were able

to do type-II job and type-III staff members were able to perform both type-I and type-II jobs. In

order to handle this complex problem a multi-point crossover based GA was proposed which

proved effective in finding desirable solutions.

In the work of Cordeau (2007), a construction heuristic coupled with an adaptive large

neighborhood search heuristic was proposed for scheduling of technicians and tasks in a

telecommunication company. In the model, each technician was assumed to exhibit different

levels of skill hierarchy in a number of skill domains. In addition, the tasks also vary in difficulty

25

in the sense that some tasks require more than one technician for their execution. The problem

was given as the subject of 2007 challenge set-up conducted by French Operational Society

(ROADEF) in collaboration with France Telecom. The algorithm stood second in the

competition. Later, Firat and Hurkens (2011) improved the solution of the above problem by

incorporating the opportunity of outsourcing some tasks. The solution approach introduced

flexibility in matching model which resulted in improved packing of the experts requiring

heterogeneous skill distribution.

In another variation of the staff scheduling problem with multi-skilled workforce, Li and Womer

(2009) developed a hybrid benders decomposition (HBD) which combined the complementary

strengths of both constraint programming (CP) and mixed-integer linear programming (MILP) to

minimize the staffing costs under three constraint types: generalized temporal constraints,

constraint in terms of project deadline on the makespan and lastly the multi-skilled resource

constraints. It was shown by the computational study that hybrid MILP/CP algorithm performed

significantly better and efficient than pure MILP or CP approaches when tested alone.

In one of the real-life applications of skilled workforce scheduling, Valls et al. (2009) considered

various practical characteristics that are faced daily by Service Centers of the organizations.

These include service quality agreements between client and company enforcing additional

constraints on start and end dates for tasks with corresponding penalties in case of delay.

Besides, other constraints considered were related to generalized precedence relations between

tasks, time lags and variable task durations. Each worker was characterized by his/her efficiency

levels and speed in executing different tasks. The objective chosen for the study was to obtain a

quick feasible plan respecting the constraints of workers‟ timetable and maximum pre-

established dates. A novel and hybrid GA which combined local search strategies with genetic

techniques was proposed to solve this complex multi-objective staff scheduling problem.

Heimerl and Kolisch (2010) considered the problem of scheduling of IT projects involving

multi-skilled resources with heterogeneous efficiencies with an objective of minimizing the

labour costs. A MILP model with a sharp lower bound was proposed for this problem and

benefits of applying it over simple heuristic in real-life projects were established.

26

Ranjbar and Kianfar (2010) used a different setting of skilled resources in their problem which

consisted of only one renewable bottleneck resource and the processing time of activities and

resource requirement was not pre-specified. Based on the total work content, all feasible work

profiles were determined using a genetic algorithm approach. The problem was identified with

the name resource-constrained project scheduling problem with flexible work profiles (RCPSP-

FWP). For the same problem class, Naber and Kolisch (2014) proposed four discrete-time model

formulations in which the resource usage of an activity can be adjusted from one period to other.

The computational results indicated that the variable-intensity-based model performed

significantly better than the other three models.

Gutjahr et al. (2008) proposed a non-liner MIP model for the project portfolio selection under

multi-skilled resource environment. The model aimed to maximize the average profit of project

selection, optimization of time and optimal assignment of persons to the selected projects. A

greedy heuristic algorithm was employed to assign and schedule the persons and a metaheuristic

to select the project. The solutions when compared with the lower bounds obtained by the exact

solutions of simplified mathematical model proved very effective.

The concept of multi-skilled resources has also been suitably harnessed in the problems related

to the area of construction engineering and management. For example, Hegazy et al. (2000)

investigated a linear programming model to optimize the assignment and allocation process of a

partially multi-skilled workforce. The transition of one worker from one activity or crew to

another, known as „switching‟ was minimized through this study. It was ascertained using

Construction Industry Institute (CII) Model Plant data that paybacks of multi-skilling are not

significant beyond 20% concentration of multi-skilled workforce in a given crew. In another

study, Wongwai and Malaikrisanachalee (2011) proposed an alternative resource substitution

approach through an augmented heuristic algorithm. It was shown by a number of case studies

that this approach achieved shorter project durations as compared to other scheduling

approaches. For optimization of linear scheduling problem Liu and Wang (2012) developed a

constraint programming (CP) based optimization model along with heuristic rules and solved a

standard bridge example available in the literature. The model also allowed the interruptions

between two similar but repetitive activities. By this study managers can suitably select an

27

appropriate strategy for selecting crew and also ascertain the timing for temporary hiring of

workforce.

It is worth mentioning here that the problem of scheduling with multi-skilled resources can also

be classified as a special case of the multi-mode RCPSP (MMRCPSP) in which the permissible

number of modes for each activity corresponds to the possible number of subsets of staff

members that can perform the said activity. This number can be exceptionally large and hence

traditional methods to solve MMRCPSP (Reyck et al., 1999, Josefowska et al., 2001) cannot be

applied directly to MSRCPSP. More specifically, each activity is assumed to be processed in

multiple modes such that activity duration in a particular mode is inversely proportional to the

number of resource required by the activity. In literature the above problems are associated by

the term „elastic task modeling‟. The term elastic is used as an analogous to metal spring

elasticity where the length of a spring is inversely related to the force applied. Using same

principle, the activity durations are in inverse relation to the allocated resources capacity.

For the above mentioned problem type, Kadrou and Najid (2007) proposed a novel tabu search

algorithm (TS) with an objective of the minimization of overall project duration. The TS was

embedded in decomposition based heuristic (DBH) with the purpose of reducing the search

space. In order to test the behaviour of the developed algorithm, different standard benchmark

instances were used and results were found competitive. In another work under this problem

class, Santos and Tereso (2010) introduced a multi-objective cost-based mathematical model in

which each activity required only one unit of resource but this resource may be employed at any

of its specified levels.

Although notion of skill has been extensively applied in a lot of works related to personnel

assignment, the literature in multi-skill project scheduling is still rare. The next section reviewes

few of the contributions in this area that has steered and motivated other researchers to devise

more efficient solution approaches for this complex problem.

2.3.2. Multi-skill resource-constrained project scheduling problem

This section specifically review the works in which researchers have applied the concept of

human resource flexibility (termed as multi-skill resources in this context) in the project

28

scheduling environment. As explained earlier in chapter 1, unlike the conventional RCPSP, the

resources in a MSRCPSP master one or more types of skills out of the several available skills.

The resources are to be allocated from a pool of staff members with each member mastering one

or more skill types. The scheduling decision, therefore, is twofold i.e. allocation of a particular

resource to an activity; and the specific skill for which the resource is allocated. The usual

objective of a typical MSRCPSP is to minimize the project makespan; however, in recent years

researchers have also tackled the multi-objective cases of this problem. In the next section some

of the recent contributions by researchers for both the single-objective and multi-objective cases

of this problem are discussed.

2.3.2.1. Single-objective MSRCPSP

The motivation for the MSRCPSP was derived from considerable research in the field of

workforce planning and staff scheduling mentioned in previous section. For example in the nurse

rostering problem (Ernst et al., 2004), all needs of different working shifts have to be satisfied

from the team of employees by giving fair consideration to employee‟s individual preferences

and constraints. Similarly, in the problem of course time tabling (Alvarez et al., 1996) the

concept of multi-skill staff was harnessed wherein a feasible time table for each lesson was

determined respecting the constraints of teachers‟ availability and classrooms. To the best of the

knowledge, the work by Néron (2002) represents the formal introduction and initial contribution

in the area of the MSRCPSP. Later, Bellenguez and Néron (2004) extended the concept by

introducing hierarchical levels of skill abilities where each staff member was assumed to possess

the required skill(s) at different levels, thus imposing more complexity in the basic MSRCPSP.

The objective chosen was the minimization of the makespan. To solve this complex problem,

authors introduced the two lower bounds adapted from the lower bounds already available in

literature for the RCPSP.

In another work, based on exact approach for this problem, Bellenguez and Néron (2007)

introduced a branch-and-bound method which can tackle problems of small and average size

instances up to 32 activities. There were no hierarchical levels for skills considered in the

instances but a finite number of unavailability periods were assumed for the employees. After

29

comprehensive experimentations, it was established that neither the precedence junction nor the

resource junction can be linked directly with the difficulty level to solve an instance.

Correia et al. (2012) modeled the MSRCPSP as a mixed-integer linear programming (MILP) and

proposed sets of additional inequalities so as to solve the small and medium sized instances

without the use of off-the-shelf general solver. The other contribution of this work can be seen in

the form of developing standard benchmark instances for the MSRCPSP by taking motivation

from instance characteristics mentioned in the project scheduling problem library (PSPLIB)

(Kolisch and Sprecher, 1997). Analogous to a RCPSP instance, three fundamental characteristics

of an MSRCPSP instance were identified namely the network complexity (NC), the skill factor

(SF) and modified resource strength (MRS). Almeida et al. (2015) later proposed a detailed and

comprehensive procedure for developing the various instances of MSRCPSP with varying

complexity. In this thesis, this procedure will be used and coded to generate instances of required

characteristics for computational studies. In the light of this aspect, a more detailed and elaborate

methodology on the instance generation procedure will be presented in chapter 4.

Most of the above works were largely concerned with proposing optimal or exact solution

approaches for the MSRCPSP in terms of effective lower bounds or enhancing theoretical MILP

models by imposing additional inequalities. However, as already mentioned, the MSRCPSP

being an extension of the RCPSP, is also NP hard which limits the possibility of solving large or

practical instances in reasonable computational time. Moreover, the problem is a special case of

multi-mode-RCPSP where the number of modes is given by the permutations or different subsets

of staff members that may be assigned to a candidate activity and this may be exceptionally

large. For example, a project instance with only three skills types and with only one level for

each skill, among a pool of 10 employees may have 1000 different modes for executing some of

the activities. Nevertheless, the initial solution techniques based on exact approaches are of great

importance not only because of their academic insight but also for their ability to provide a

reference or benchmark for evaluating the different newly designed heuristics.

Among few of the early applications of (meta) heuristics for the MSRCPSP, Kazemipoor et al.

(2012) formulated the MSRCPSP as a novel linear mixed-integer programming (MILP) problem

and proposed an efficient simulated annealing (SA) algorithm for finding its solution. In order to

30

test the behaviour of the proposed SA, the authors compared it from the optimal solutions

obtained by LINGO solver for small sized instances. The results were quite promising in the

sense that optimal or near-optimal solutions for small instances as well as „good‟ solutions for

larger instances were determined in a reasonable time using the SA.

In the work of Almeida et al. (2016), the problem was solved using a heuristic approach based on

eight different priority rules and a modified parallel scheduling scheme. The author introduced

two new concepts namely resource weight and activity grouping to accommodate multi-skilled

nature of the resources. More specifically, each resource was assigned a weight depending upon

the number of skills it masters as well as scarceness and demand of the particular skill. The

activity grouping was made feasible by transforming the resource assignment problem into a

minimum cost network flow problem denoted as MC-NFP. The computational experiments were

performed on the test instances proposed by Correia et al. (2012) and deviation from the length

of critical path was determined for various instances. It was concluded in the study that no rule

performed significantly well simultaneously for all values of NC, SF and MRS. However, the

hybrid of two activity priority rules namely LST (Latest Start Time) and GRPW (Greatest Rank

Positional Weight) designated as LST+GRPW was found to exhibit better results among other

ten alternatives chosen in the study. In another work, Almeida et al. (2018) employed a biased

random-key based GA (based on Mendes et al., 2009) for the MSRCPSP and improved their

previous results obtained by the priority rule-based heuristics.

A notable research can be comprehended by some authors in multi-skilled resource based

scheduling area by considering the integration of resource investment problem (RIP) with the

multi-skilled project scheduling. In a RIP, the limits on renewable resources have been treated as

decision variables and the goal is to minimize the procurement cost of renewable resources with

constraint on project completion deadline. Under this motivation, Javanmard et al. (2017)

proposed two MILP models to minimize the total requirement cost for the different skill levels.

To tackle this complex problem, the author proposed an innovative solution representation

scheme and two metaheuristic approaches namely GA and particle swarm optimization (PSO)

whose parameters were calibrated by response surface methodology (RSM). The performance of

the algorithms was evaluated for different runs and compared with those obtained by GAMS

31

software. The results confirmed the applicability of the proposed methodology especially for

real-life problem scales.

Recently, Myszkowski et al. (2018) applied a hybrid Differential Evolution and Greedy

Algorithm (DEGR) with specialized indirect representation for the MSRCPSP. It is interesting to

mention that the authors transformed the solution space from discrete (typical for the MSRCPSP)

to continuous one (which is generally a feature of DE approaches). The authors compared the

performance of DEGR with other reference methods such as hybrid ant colony (HAntCO),

multiStart Greedy and GRASP on 36 benchmark instances which later became available in

literature (Myszkowski et al. 2018). The results confirmed the robustness of the proposed

algorithm. In fact, for 28 instances of iMOPSE dataset the best-known solutions were obtained

by DEGR.

2.3.2.2. Multi-objective MSRCPSP

The various complex and realistic optimization problems in daily life or engineering applications

demand optimization of more than a single objective such as maximizing the profit while

minimizing the consumption of raw materials, improving a product quality and lowering the

production cost or choosing a comfortable car at the minimum price and so on. These objectives

are mutually conflicting or contradictory with each other and hence conventional solution

approaches for single-objective optimization no longer prove feasible to solve these problems.

There are two common techniques available in literature to handle the multi-objective problems;

one is priori approach that combines the individual objective functions into a single function by

allocating weights based on judicious and conceptual skill of practitioners and other is posteriori

approach in which set of Pareto optimal solutions are obtained that are nondominated with

respect to each other. For a holistic and comprehensive view of multi-objective optimization

principles and theory, reader is referred to book by Kalyanmoy Deb, 2001.

In this section, the contributions made by researchers in the field of multi-objective project

scheduling problems with flexible resources have been reviewed. Myszkowski et al. (2015)

utilized a hybrid ant colony optimization (HAntCO) by linking classical heuristic priority rules

with the ant colony optimization (ACO) philosophy to solve a special case of MSRCPSP.

32

However, it was assumed that each task can be executed exactly by one of the resource out of the

available pool of resources. The authors proposed a novel method for updating the value of

pheromone by memorizing the best and worst solutions by ants. Two objectives were chosen in

this study namely duration optimization and cost optimization and tests were performed on the

iMOPSE (intelligent multi-objective project scheduling environment) data set containing 36

instances created as benchmark instances for the bi-objective MSRCPSP. It was found that

HAntCO outclassed classical ACO for both the objectives.

For the same type of multi-objective problem, Zheng et al. (2015) developed a teaching-learning-

based optimization (TLBO) algorithm incorporating a task-resource list-based encoding scheme

and a left-shift decoding scheme. To enhance the local intensification of the TLBO, the authors

also appended it with a reinforcement phase. The parameter setting based on Taguchi‟s design of

experiment was carried out to fine tune the algorithm and its performance was found effective

than the HAntCO proposed by Myszkowski et al. 2015.

Similar to the MSRCPSP, the multi-objective MSRCPSP has also been realized by some

researchers as a special case of MMRCPSP. For example, Maghsoudlou et al. (2016) studied the

multi-skill multi-mode resource-constrained project scheduling problem with three objectives:

(1) minimization of makespan of the project (2) minimization of total cost incurred in allocation

of workers to required skills, and finally (3) maximizing the overall quality of activities which

are executed. The authors encoded the solution into a novel chromosome structure that

guaranteed the feasibility of solutions. A multi-objective invasive weeds optimization algorithm

(MOIWO) was developed in this work to solve this tri-objective problem and results were

compared and found competitive to the two other metaheuristic algorithms namely non-

dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization

(MOPSO) developed for the purpose. In another work by same authors (Maghsoudlou et al.,

2017) three different modifications of Cuckoo Search algorithm (CS) were proposed for the bi-

objective MSRCPSP problem with two conflicting objectives: (1) minimization of the total cost

of processing the activities and (2) minimization of the reworking risks of the activities.

Recently, Wang and Zheng (2018) employed a knowledge-guided multi-objective fruit fly

optimization algorithm (MOFOA) for the bi-objective MSRCPSP. The two objectives

33

considered were minimization of project makespan and total cost simultaneously. The minimum

cost rule method was used for the initialization of the feasible solutions and both smell and

vision-based search were adopted carry out the multi-objective optimization. The numerical tests

conducted showed the effectiveness of the MOFOA over HACO (Myszkowski et al. 2015).

2.4. Summary and research gaps

In this chapter a thorough literature review related to the pertinent areas of project scheduling

within the scope of this work is presented. Focus is given to the concept of flexibility and its

elucidation in the area of project scheduling. The notion of skills in MSRCPSP is also

highlighted and a brief outline of its solution approaches for both single and multi-objective

optimization is presented. Although there has been a phenomenal growth in the classical RCPSP,

there still seem few potential research gaps which have been mentioned below:

1. Most of the research has been focused on basic resource categories that is renewable,

non-renewable and double constrained resources but adequate research about other

recently introduced categories of resources such as dedicated resources, spatial resources,

adjacent resources, cumulative resources, reusable resources, synchronizing resources,

multi-skilled resources, changeover resources etc. or their combinations has not been

tackled in sufficient length in the literature.

2. There seems a good scope of work in the area of modifying the activity characteristics in

a project such as time-switch constraints, preemptibility, time-varying tasks, crashing etc.

Also, a combination of these real-life activity variations can be studied in detail for a

given scenario.

3. Unlike deterministic project scheduling, the work done in project scheduling under

uncertainty is still rare. There is a good scope of developing efficient approaches for

reactive scheduling, stochastic project scheduling, and fuzzy project scheduling and

robust (proactive) scheduling.

4. Furthermore, research in sensitivity analysis in project scheduling environment has not

been explored to the extent as compared to shop floor or production system scheduling. It

can be fruitful to estimate the effect of change in parameters on the quality of solution

obtained from an exact or (meta) heuristic approach.

34

5. More specifically, a lot of heuristic and metaheuristic approaches are available for the

RCPSP in literature but efficient metaheuristics for the multi-skill resource-constrained

project scheduling problem (MSRCPSP) are still rare.

6. Although hierarchical levels of skills exist in literature but to the best of the knowledge

there is no reported work/algorithm involving different proficiency levels of skills

attained by staff members (resources).

7. There is a substantial literature addressing the multi-objective RCPSP, however a very

less work has been reported in literature regarding multi-objective multi-skill resource

constrained project scheduling problem (MO-MSRCPSP) with consideration of

proficiency levels in skills attained by staff members or human resources.

This thesis aims to fill some of these gaps, particularly related to the application of multi-skilled

resources for achieving „good‟ solutions for single and multi-objective cases. Moreover, the

concept of varying skill proficiencies of staff members will also be taken into consideration

during multi-objective optimization.

35

Chapter 3

Teaching-Learning-Based

Optimization Algorithm for the

RCPSP

36

Chapter 3

Teaching-learning-based optimization algorithm for the RCPSP

3.1 Introduction

As mentioned in chapter 1, in this work a modified version of teaching-learning-based

optimization algorithm (TLBO) will be developed which is a recently introduced metaheuristic

by Rao et al. (2011). The TLBO is a population based metaheuristic that mimics the teaching-

learning process commonly seen in classrooms. It has been successfully applied on mathematical

benchmark functions and mechanical design optimization problems of continuous nature.

Interestingly, the algorithm has been reported to have high convergence rate and inherits a merit

of having few algorithm specific parameters to tune (Rao et al., 2011). Inspired by the

performance of the TLBO on continuous non-linear problems, a lot of researchers have applied it

on discrete optimization problems in recent years. For a more comprehensive review of TLBO

and its application readers are referred to a recent survey by Zou et al. (2018).

Under above motivation, this chapter presents the framework and details of implementation

methodology of modified TLBO that has been conceptualized for the resource-constrained

project scheduling problem (RCPSP). Inspired by the study of Zheng and Wang (2014), in

addition to teacher and learner phase, the proposed work also applies two additional phases

namely self-study phase and examination phase for improving the exploration and exploitation

capabilities of the algorithm.

In this chapter, a formal introduction of the RCPSP is exhibited first with an illustrative example.

It is followed by basic philosophy or working mechanism of the conventional TLBO.

Afterwards, the encoding and decoding procedure designed to incorporate TLBO philosophy in

this problem is explained in detail. Finally, the comparative results with other state-of-the art

approaches available in literature to solve the RCPSP have been shown to validate the developed

algorithm.

37

3.2. Problem description

Consider a directed acyclic graph G(J,E) to represent a non-preemptive single mode resource

constrained project scheduling problem (RCPSP) wherein J denotes the activities and E

represents the precedence relations. The precedence relations which exist amongst activities due

to technological requirements force each activity j to be scheduled after all its immediate

predecessors (given by set E) are completely finished. There are total n+2 activities in the project

represented by set J, J= {1, 2,…… n+2} and K renewable resources given by set R so that R=

{1, 2, ……, K}. It is important to mention that activities 1 and n+2 are dummy in nature i.e. they

do not consume time and resources and represent start and finish activities of the project.

Each activity j J needs rj,k units of resource k (k R) during each time period of its non-

preemptive duration dj (obviously d1 = dn+2 = 0 and r1,k = rn+2,k = 0). Unlike PERT/CPM approach,

in RCPSP a practical assumption that per-period availability of each resource k R is limited

and constant given by Rk is considered. The values of the parameters Rk , dj and rj,k (total

availability of resources, processing time of activities and resource requirement by activities)

have been considered as deterministic, integer and non-negative. Let fj denotes the finish time of

activity j , then a schedule or solution of a RCPSP can be given as a vector of activities‟ finish

times, S={f1, f2, ……, fn+2}.The objective function is to minimize the makespan fn+2 i.e. the finish

time of last activity.

Mathematical formulation

Minimize f n+2 (3.1)

Subject to: fj – fi ≥ di (i,j) E (3.2)

 ∑ rj, k Rk t ; (3.3)

 fj (3.4)

38

1

0/0

2

3/4

3

4/5

4

2/6

5

4/2

6

1/5

7

4/3

8

0/0

K=1, R1=6

j

dj / rj,1

Eq. (3.1) represents the objective function which is to minimize the makespan of the schedule.

The precedence constraints between activities are handled by Eq. (3.2). As explained earlier, the

resources are limited in the RCPSP which is enforced by Eq. (3.3), where A (t) = j J fj – dj t

fj represents the set of activities which are active or being processed at time t. Finally, the

constraint for decision variables to be non-negative integers is represented by Eq. (3.4).

Figure 3.1 depicts an example of a typical project having eight activities with activity 1 and

activity 8 as dummy source and sink activity respectively. The objective is to generate a schedule

having start (or finish) times of all activities respecting the precedence relations and per period

availability of (renewable) resource R1 with maximum per period availability of 6 units. A

feasible (also optimal in this case) solution with a makespan of 15 time units is shown in Figure

3.2.

 Figure 3.1: A project instance for the RCPSP

39

Figure 3.2: A feasible solution for the illustrative instance

3.3. The philosophy of TLBO

The TLBO algorithm is inspired by the teaching-learning process commonly seen in classrooms.

It is a population- based algorithm and utilizes a group of students called learners as initial

population to reach a global optimum. Figure 3.3 shows a simple model to understand its

philosophy. The dotted curve represents the performance level or marks obtained by different

learners in a class with mean Mean1.The highest marks Teacher1 shown in extreme right of the

curve corresponds to that of a teacher because it is a teacher who is recognized as the most

intelligent in any class. As the teacher imparts his/her knowledge to the learners, it is assumed

that the mean Mean1 of the class increases to a new value say Mean2 by some probability

depending upon the capabilities of the teacher and learners. At this stage to continue the

teaching-learning process, the learners require a new teacher whose knowledge level is

appreciably higher than this new mean Mean2. The best learner from this new population having

knowledge level Teacher2 is selected as new teacher for next iteration. In this way the mean of

class gets improved in subsequent iterations.

R1

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 t

7

3

2

5

4
6

40

 Figure 3.3: Model to show TLBO philosophy

3.4. The proposed TLBO for the RCPSP

As explained in section 3.1, the TLBO is primarily conceptualized for mechanical design

optimization problems having design parameters continuous in nature. However, the RCPSP

being a discrete optimization problem, some modifications need to be done in solution

representations and other parameters before TLBO is applied on it. The framework of the

proposed TLBO is shown in Figure 3.4. It can be seen that in addition to the conventional

teacher and learner phase, the proposed TLBO also encompasses two additional phases namely

self-study and examination phase.

The details of the various features of TLBO proposed in this work have been summarized under

following steps:

Step 1: Initialization

Like other population based algorithms, the TLBO also starts with a group of solutions

which is known as a class of „learners (or students)‟ and treated as initial population. A

group of learners is generated randomly using the parameterized regret-based biased

random sampling (RBRS) method discussed later.

Mean1 Mean2

Teacher1 P
ro

b
ab

il
it

y
 d

en
si

ty

Obtained Marks

Teacher2

41

Figure 3.4: Framework of the proposed TLBO

Step 2: Identification of teacher

 The fitness function (makespan in this case) is calculated for all these learners using

 serial schedule generation scheme (SGS) proposed by Kolisch, 1996. Since a teacher is

 considered as the most knowledgeable person in any class, the best learner having

 minimum makespan is designated as teacher.

Yes

Perform crossover between each learner and teacher to

generate a new learner

Replace worst learners with elite learners

Is the termination

criterion satisfied?

Output teacher

Examination Phase

Teacher Phase

Learner Phase

Update teacher

Perform crossover between each learner and randomly

chosen another learner

Perform mutation on the learners

Generate randomly the initial population of learners

Identify the best learner as teacher

Self-study Phase

No

42

Step 3: Application of teacher phase

 In this phase the teacher tries to transfer his knowledge to each learner of the class. To

 realize this phase, crossover mechanism analogous to GA is employed which is explained

 in section 3.4.3 with an illustrative example.

Step 4: Application of learner phase

 During this phase, learners are supposed to learn interactively through informal

 communications, mutual discussions, presentations etc. More precisely, each learner is

 subjected to have crossover with other randomly chosen learner. The new learner is

 retained in the class if its fitness is improved else previous learner is kept as usual.

Step 5: Application of self-study phase

 This phase is appended in conventional TLBO to increase its exploration capabilities.

 Similar to the mutation concept of GA, the position of chromosomes (priorities of

 activities in this case) have been varied with some probability. As a result of this phase,

 possibility of algorithm being trapped in local minima is substantially reduced.

Step 6: Application of examination phase

This is another additional feature which is incorporated in conventional TLBO (Zheng

 and Wang, 2015) to increase its exploitation capabilities. To realize this phase, few best

 learners in a population replace the corresponding number of worst learners. The

 concept is akin to elitism in GA which guarantees that good features of a population

 are not lost rather transferred into subsequent populations. After the stopping

 criterion is met, the best learner in final iteration is reported as the solution of the

 problem.

Figure 3.5 shows a pseudo-code developed to incorporate the above-mentioned steps of the

TLBO proposed in this work.

43

Figure 3.5: Pseudo-code for the proposed TLBO

3.4.1. Solutions encoding and decoding

The encoding and decoding schemes are one of a vital decision for application of any

metaheuristic. In fact, the quality of solutions obtained by an algorithm is largely affected by the

way a solution is encoded. There are various types of representations used by researchers in

literature for encoding of the RCPSP such as shift vector representation, random key

representation, priority rule representation and activity list representation etc. (Alcaraz and

Moroto, 2001)

Based on the very promising and effective results obtained from activity list (AL) representation

based metaheuristics (Kolisch and Hartmann, 1999), each individual is represented (called

Input: Initialize class_size (number of learners in the class) , num_iter (Number of iterations),

 prob_ss (probability of self-study) and num_elite (elite size i.e. number of students to be failed)

Output: The teacher for iteration size= num_iter

1: Begin

2: Generate the initial population using RBRS method

3: Calculate the fitness i.e. the makespan of each learner using SGS method

4: Designate the learner with minimum makespan as the teacher

5: while (stopping condition is not met);

6: for i=1: class_size

7: Perform 2-point crossover between each learner and student % teacher phase

8: Evaluate the new learner

9: if makespan new learner < makespan old learner

10: Replace the old learner with new learner

11: end

12: Perform 2-point crossover between a learner with another random learner % Student phase

13: if makespan learner-2 < makespan learner-1

14: Replace the learner-1 with learner-2

15: end

16: Perform mutation with prob_ss % Self-study phase

17: Retain num_elite learners in the class % Examination Phase

18: Calculate makespan and update the teacher

19: end while

20: end

44

„learner‟ in TLBO) as precedence feasible list of the activities where no activity appears before

any of its predecessors. More specifically, a „learner‟ is any precedence feasible permutation of

activities represented as λ= (j1, j2, .……, jn+1, jn+2). The index values in this list represent the

corresponding priorities of activities for their execution. As mentioned earlier, the solution of the

RCPSP is to determine the finish (or start) time of each activity so that both the precedence and

resource constraints are satisfied and makespan is minimized. A serial schedule generation

scheme (SGS) has been chosen to transform a given activity list λ into a schedule. The

motivation behind this choice is that search space in SGS comprises of active schedules and

essentially contains an optimal solution (Kolish, 1996). Figure 3.6 gives a pseudo code for the

SGS procedure developed in this work.

Figure 3.6: Pseudo code for the SGS

3.4.2. Initial population

A parameterized regret-based biased random sampling (RBRS) method as mentioned in Kolisch

and Drexl (1996) is used to generate the initial population. Unlike priority rule based multi-pass

heuristics methods which produce the same schedule when applied each time, RBRS is a

sampling method which assigns a probability ψ(i) to each activity in the decision set D for being

selected at each stage of the SGS such that ψ:i D → [0,1]. A regret value (τi) for each activity i

is computed by comparing the priority value υ(i) of activity i with the worst priority value υ(j) of

the decision set activities as per the following equation:

τi = max υ(j)- υ(i), j D (3.5)

The parameterized probability mapping ψ (i) is then determined as follows:

Define N=total number of activities, j =1, 2,.., n +2

Determine E(g): a set of all precedence feasible activities which can be started at stage g

1: for g=1 to N

2: Calculate the eligible set E(g)

3: Select one j E (g)

4: Schedule j at the earliest precedence and resource feasible start time

5: end for

45

ψ (i) =

∑ ()

 (3.6)

The value of parameters ε and α has been fixed as 1 in the proposed algorithm as these values are

known to exhibit good results in literature (Kolisch and Drexl, 1996). On similar lines, latest

finish time (LFT) rule is employed to determine the regret values in the decision set D as this has

been reported as one of the best priority rule in the literature. To understand the procedure

discussed above an illustrative example is presented in what follows next.

 An illustrative example for implementation of RBRS method along with LFT rule

Problem Statement: Let at any stage the decision set contains three activities i.e. D= {1, 2, 3}

and one of these activity has to be chosen as per RBRS method.

Given parameters: Let the latest finish times of the activities LFT1=13; LFT2=16; LFT3=11 and

values of ε=α=1

Procedure:

Step 1: Calculate the worst priority value among all activities in D;

 = max (, ,) = max (13, 16, 11) =16

Step 2: Calculate the regret value (τi) for each activity i using equation (3.5);

 τ1= 16-13 = 3;

 τ2= 16-16 = 0;

τ1= 16-11 = 5;

Step 3: Calculate the parameterized probability ψ (i) for each activity i using equation (3.6);

ψ (1) = ((3+1)
1
) / ∑ = 0.363

Similarly, ψ (2) = 0.091 and ψ (3) = 0.545

46

Step 4: Calculate the parameterized probability mapping;

 ψ (i) = (0.363, 0.091, 0.545)

Step 5: Calculate the cumulative parameterized probability mapping;

 Cum (ψ (i)) = (0.363, 0.454, 0.999)

The activity selections can now be made by generating any random number (rand) and mapping

it with Cum (ψ (i)). For example if rand= 0.71, activity 3 has to be selected and so on.

3.4.3. The teacher and learner phase

This section explains the mechanism of applying two conventional phases of TLBO for the

RCPSP. Firstly, the fitness function (makespan) for all the individuals (learner) of the initial

population is determined using SGS and set the best learner corresponding to minimum

makespan as the teacher. As mentioned earlier, the teacher tries to transfer his or her knowledge

to all the learners in the class (population). To realize this process the crossover technique as

used in GA is employed. The two popular crossover versions namely 1-point and 2-point

crossovers (Hartmann, 1998) have been considered in this work. This is primarily because these

mechanisms preserve the precedence feasibility of the ALs. The following example shows the

two-point crossover method for a teacher to transfer his knowledge into the learner:

Let λ1 represent a learner and λ2 be the best learner or a teacher in a given population. Two

random integers u1 and u2 have been generated in the range [1, n]. Using Equations (3.7) to (3.9)

and the values u1 and u2, a new activity list λnew is determined. Figure 3.7 shows an example of

implementation mechanism of 2-point crossover or teacher phase for u1 = 4 and u2= 7 in an AL

having 10 activities in all. The learner so obtained after teaching is selected if it gives better

makespan else previous learner is retained.

In the learner phase, as explained earlier, a learner tries to improve his or her knowledge by

mutual interactions or discussions with other randomly chosen learner. To realize this phase,

once again the crossover between the two randomly chosen learners is employed. The new

47

learner (i.e. new AL) is accepted in the new population if it gives a better makespan; else

previous learner is retained in the population.

8 3 1 5 6 7 2 9 4 10

4 7 5 2 10 6 8 1 3 9

8 3 1 5 4 7 2 6 9 10

Figure 3.7: Mechanism of 2-point crossover in teacher phase

λ
new

j

:= λ

1
j , 1≤ j ≤ u1 (3.7)

λ
new

j

:= λ

2
k , k=min {k │ λ

2
k ∉ { λ

new
1 , ………….., λ

new
u1 }}, u1 + 1 ≤ j ≤ u2 (3.8)

λ
new

j := λ
1
k , k=min {k │ λ

1
k ∉ { λ

new
1 , ………….., λ

new
u2 }}, u2 + 1 ≤ j ≤ n (3.9)

3.4.4. The self-study phase

As already mentioned, the concept of self-study has also been incorporated in the proposed

TLBO to increase its exploration capabilities. This phase is analogous to mutation in GA which

is known to avoid premature convergence and thereby facilitating exploration search. It is a

general phenomenon that students may improve their grades through self- study before

examination. Two different mutation operators have been implemented to realize this phase in

the developed algorithm. The first one is adapted from Boctor, 1996 in which each activity in the

AL is shifted at some randomly chosen position with a probability prob_ss. The position chosen

for the activity should be higher than any of its predecessors and lower than any of its successors

to ensure that new AL is also precedence feasible.

u1=4 u2=7

λ2= teacher

λnew = new learner

λ1 = learner

48

The second mutation operator is adapted from Hartmann, 1998 in which pairwise exchange of

activities is there. For a given AL represented as λ= (j1,…. ji,……....jn) , the activities ji and ji+1

have been exchanged with a probability prob_ss provided the precedence feasibility is

maintained.

3.4.5. The examination phase

This phase restricts the non-performing learners (individuals) to enter the next class (population).

To keep the population size uniform some elite learners represented by num_elite replace such

non-performing learners. The concept seems to be akin to elitism which has been widely used in

genetic algorithms and other metaheuristics. Three different values of num_elite from literature

have been considered during parameters tuning of the algorithm.

3.5. Computational experiences

The proposed algorithm has been coded in MATLAB R2008a (Version 7.6) and run in Windows

7 having 2.0 GHz processor and 2.00 GB RAM. To test the performance of the algorithm, well-

known problem instances sets proposed by Kolisch & Specher (1997) and available in the

Project Scheduling Problem Library (PSPLIB) at http://www.bwl.uni-kiel.de/Prod/psplib/ have

been used in this work. More specifically, three problem instances sets namely J30, J60 and J120

which contains project instances with 30, 60 and 120 non-dummy activities respectively with

varied levels of network complexity, resource factor, and resource strength have been tested in

this work. There are 480 instances each for J30 and J60 activities whereas J120 set contains 600.

The proposed algorithm is compared for average percent deviation (Avg._Dev) from optimal

values for J30 set and critical-path based lower bound for set J60 and J120. The Avg._Dev has

been calculated as:

Avg._Dev = ∑

 /] / N (3.10)

where makespani is the total project completion time of i
th

 instance as obtained by proposed

TLBO, lbi represents the critical-path based lower bound of the i
th

 instance and N is the total

number of instances in a set. For J30 problem set lbi has been replaced by optimal makespan

values for all 480 instances as available in the literature.

http://www.bwl.uni-kiel.de/Prod/psplib/

49

3.5.1. Parameters setting

As explained in Section 3.4.2, the teacher and learner phase can be incorporated by 1-point or 2-

point crossover mechanisms. Also, the self-study phase is realized by two mutation mechanisms

as proposed by Boctor, 1996 and Hartmann, 1998. The two mutation mechanism will be

represented as BM and HM respectively in further discussion. In order to determine the best

combination of these factors, both the factors each having two levels have been crossed together,

thus having four different combinations to be tested. To have fair representation of the entire

problem set, 48 instances (10% of total 480 instances) are randomly chosen each from J30 and

J60 set. On similar lines 60 instances (10% of total 600 instances) from J120 set are chosen.

Each alternative combination was made to run five times for a maximum of 500 schedules to be

generated as termination criterion with a uniform population size of 80. The average percentage

deviation so obtained from optimal solutions for J30 and critical-path based lower bound for J60

and J120 is exhibited in Table 3.1.

Table 3.1: Test results for different crossover and mutation mechanisms

Crossover Mutation Avg. Percent Dev. for 500 schedules

J30 J60 J120

1-point BM 0.74 13.61 42.54

1-point HM 0.88 14.67 43.56

2-point BM 0.68 13.62 42.53

2-point HM 0.83 13.78 42.37

The results revealed that 2-point crossover and Boctor mutation have performed significantly

better than other combinations especially in case of J30 and J60 problem sets. Looking the

overall results obtained in above table, 2-point crossover and BM have been chosen in the

proposed algorithm for the further testing and parameter tuning.

After selecting the best combination of crossover and mutation mechanisms, Taguchi method of

design-of-experiment (DOE) is employed to tune the other parameters of the algorithm. There

are three key parameters of interest: the number of learners in a class represented by class_size

(commonly known as population size), the self-study probability (prob_ss) and the number of

50

non-performing students to be replaced by elite students (num_elite). Each of these factors is

considered at three different levels as shown in Table 3.2. These levels are inspired from the

values considered in literature for other population based metaheuristics namely GA and PSO.

Table 3.2: Parameters selected for the DOE

Parameters Factor level

1 2 3

class_size 60 80 100

prob_ss 1% 5% 10%

num_elite 4 8 12

Looking at the aspect that there are three factors at three different levels, a L9 (3
3
) orthogonal

array is chosen for this experimentation having eight degrees of freedom (DOF). The Taguchi

approach helps to reasonably reduce the total 27 experiments for a full-factorial design into 9

numbers of treatments. To conduct the test, 600 number of schedules is set as the stopping

criterion for each J30, J60 and J120 instance set and the average percent deviation (Avg._Dev)

from the optimum values for J30 and critical path based lower bound for J60 and J120 is chosen

as ARV(average response variable). The results of the DOE are shown in Table 3.3.

Table 3.3: Orthogonal table and the ARV values for DOE

Exp. number
Factors ARV for 600 schedules

class_size prob_ss num_elite J30 J60 J120

1 60 1 4 0.74 13.17 42.57

2 60 5 8 0.64 13.02 43.64

3 60 10 12 0.65 13.38 44.35

4 80 1 8 0.74 13.07 42.40

5 80 5 12 0.59 12.82 42.83

6 80 10 4 0.59 13.03 42.31

7 100 1 12 0.62 12.90 41.70

8 100 5 4 0.70 12.65 42.06

9 100 10 8 0.66 12.86 42.63

51

1008060

13.2

13.1

13.0

12.9

12.8

1051

1284

13.2

13.1

13.0

12.9

12.8

class_size

M
e

a
n

 o
f

M
e

a
n

s

prob_ss

num_elite

Main Effects Plot for Means
Data Means

1008060

0.70

0.68

0.66

0.64

0.62

1051

1284

0.70

0.68

0.66

0.64

0.62

class_size

M
e

a
n

 o
f

M
e

a
n

s

prob_ss

num_elite

Main Effects Plot for Means
Data Means

 The ARV as obtained from Table 3.3 is utilized to determine the trend of each of the three key

parameters for J30, J60 and J120 instance sets. Figure 3.8 to Figure 3.10 depict the best

combinations of these parameters which have been tabulated in Table 3.4.

Figure 3.8: Trend of factor levels for J30

Figure 3.9: Trend of factor levels for J60

52

Figure 3.10: Trend of factor levels for J120

It is evident from Table 3.4 that the values of class_size, prob_ss and num_elite are not same for

all instance sets. This may be attributed to the different network complexity and resource usage

factors for the three different instance sets.

Table 3.4: The best combination of parameters

Problem Set class_size prob_ss num_elite

J30 80 10 12

J60 100 5 4

J120 100 1 4

3.5.2. Comparison of proposed TLBO with other approaches

In order to test the effectiveness of the TLBO, the results have been compared with other

existing approaches available in literature to solve the RCPSP. For each instance set of J30, J60

and J120, the algorithm was run for maximum 1000 and 5000 number of schedules as the

1008060

43.6

43.2

42.8

42.4

42.0

1051

1284

43.6

43.2

42.8

42.4

42.0

class_size
M

e
a

n
 o

f
M

e
a

n
s

prob_ss

num_elite

Main Effects Plot for Means
Data Means

53

stopping criterion and other parameters namely class-size, prob_ss and num_elite have been

selected from the DOE test as reported in Table 3.4. Table 3.5 presents the computational results

of average percent deviations from the optimal makespan for instance set J30. Since the optimal

values of J60and J120 are not known for all problems, average percent deviations from critical

path based lower bounds is selected for the comparison purpose. The detailed results for J60 and

J120 instance set have been presented in Table 3.6 and Table 3.7 respectively.

Table 3.5: Average deviations from optimal makespan for J30 instance set

References Algorithm Maximum no. of schedules

 1000 5000

Mendes et al. (2009) GAPS 0.06 0.02

Kochetov and Stolyar (2003) GA, TS, path reli. 0.10 0.04

Agarwal et al. (2011) Neurogenetic-FBI 0.13 0.02

Chen et al.(2010) ACOSS 0.14 0.06

Tseng and Chen(2006) ANGEL 0.22 0.09

Alcaraz et al. (2004) GA 0.25 0.06

Valls et al.(2008) Hybrid GA 0.27 0.06

Fang and Wang(2012) SFLA 0.36 0.21

Hartmann (2002) Self-adapting GA 0.38 0.22

Nonobe and Ibaraki (2002) Tabu Search 0.46 0.16

This work TLBO 0.52 0.25

Hartmann (1998) Activity list GA 0.54 0.25

Schirmer (2000) Adaptive sampling 0.65 0.44

Kolisch and Drexl (1996) Adaptive sampling 0.74 0.52

Kolish(1996) serial sampling (LFT) 0.83 0.53

Hartmann(1998) Random Key GA 1.03 0.56

Hartmann(1998) priority rule GA 1.38 1.12

Kolish(1996) parallel sampling (LFT) 1.40 1.29

Leon and Balakrishnan (1995) problem space GA 2.08 1.59

It can be seen from Table 3.5 that for J30 instance set, the developed algorithm is found to be 11
th

best among all other approaches with average percent deviation as 0.52% for 1000 schedules and

0.25% for 5000 schedules. For the J60 and J120 instance set the average percent deviation from

critical path based lower bound is found to be 13.19% and 39.90% respectively when 1000

54

schedules are computed and 12.72% and 38.73% when 5000 schedules have been computed. (see

Table 3.6 and Table 3.7).

However, similar to other approaches, the performance of the algorithm diminishes with the

increase in combination explosion in RCPSP for an increased number of activities and network

complexity

Table 3.6. Average deviations from critical path lower bound for J60 instance set

References Algorithm Maximum no. of schedules

 1000 5000

Fang and Wang(2012) SFLA 11.44 10.87

Agarwal et al. (2011) Neurogenetic-FBI 11.51 11.29

Kochetov and Stolyar (2003) GA, TS, path reli. 11.71 11.17

Mendes et al. (2009) GAPS 11.72 11.04

Chen et al.(2010) ACOSS 11.75 10.98

Alcaraz et al. (2004) GA 11.89 11.19

Tseng and Chen(2006) ANGEL 11.94 11.27

Valls et al.(2008) Hybrid GA 12.21 11.27

Hartmann (2002) Self-adapting GA 12.21 11.70

Schirmer (2000) Adaptive sampling 12.94 12.58

Nonobe and Ibaraki (2002) Tabu Search 12.97 12.18

This work TLBO 13.19 12.72

Hartmann (1998) Activity list GA 13.30 12.74

Hartmann(1998) priority rule GA 13.30 12.74

Kolisch and Drexl (1996) Adaptive sampling 13.51 13.06

Kolish(1996) parallel sampling (LFT) 13.59 13.23

Kolish(1996) serial sampling (LFT) 13.96 13.53

Leon and Balakrishnan (1995) problem space GA 14.33 13.49

Hartmann(1998) Random Key GA 14.68 13.32

It can be concluded from the results exhibited in Table 3.5 to Table 3.7 that the proposed TLBO

algorithm is competitive to the other 18 approaches and metaheuristics chosen for the

comparison. For a limited number of schedules and small problem instances, the algorithm very

quickly converges to optimum and near-optimal solutions.

55

3.6. Summary

In this chapter, a relatively new population based metaheuristic called teaching-learning based

optimization algorithm for the RCPSP is presented and tested. For encoding the individuals, a

precedence feasible activity list is employed whereas SGS is used as decoding scheme.

Table 3.7. Average deviations from critical path lower bound for J120 instance set

References Algorithm Maximum no. of schedules

 1000 5000

Valls et al.(2008) Hybrid GA 34.07 32.54

Agarwal et al. (2011) Neurogenetic-FBI 34.65 34.15

Kochetov and Stolyar (2003) GA, TS, path reli. 34.74 33.36

Fang and Wang(2012) SFLA 34.83 33.20

Chen et al.(2010) ACOSS 35.19 32.48

Mendes et al. (2009) GAPS 35.87 33.03

Tseng and Chen(2006) ANGEL 36.39 34.49

Alcaraz et al. (2004) GA 36.53 33.91

Hartmann (2002) Self-adapting GA 37.19 35.39

Hartmann (1998) Activity list GA 39.37 36.74

Kolish(1996) parallel sampling (LFT) 39.60 38.75

Schirmer (2000) Adaptive sampling 39.85 38.70

This work TLBO 39.90 38.73

Hartmann(1998) priority rule GA 39.93 38.49

Nonobe and Ibaraki (2002) Tabu Search 40.86 37.88

Kolisch and Drexl (1996) Adaptive sampling 41.37 40.45

Kolish(1996) serial sampling (LFT) 42.84 41.84

Leon and Balakrishnan (1995) problem space GA 42.91 40.69

Hartmann(1998) Random Key GA 45.82 42.25

To enhance the exploitation and exploration capabilities of the original algorithm, in addition to

teacher and learner phase, the concepts of self-study and examination phase, inspired by other

studies, have been also employed in this work. An orthogonal-array based Taguchi design was

used to determine the best set of parameters for each instance set. The comprehensive test results

on problem instance sets taken from literature showed that the TLBO approach is reasonably

56

effective and competitive to other well-known solution techniques and metaheuristics available

to solve the RCPSP.

In the next chapter the TLBO developed here will be extended for the multi-skill resource-

constrained project scheduling problem (MSRCPSP) which is another research objective of this

thesis. It is obvious that some fundamental modifications in encoding and decoding schemes

have to be made to incorporate the flexible nature of resources. The details of this modified

TLBO for the MSRCPSP have been exhibited in the coming chapter.

57

Chapter 4

A Teaching-Learning-Based

Optimization Algorithm for the

MSRCPSP

58

Chapter 4

A Teaching Learning Based Optimization Algorithm for the MSRCPSP

4.1 Introduction

In this chapter, one of the recent and practical extensions of the RCPSP termed as the multi-skill

resource constrained project scheduling problem (MSRCPSP) is considered for investigation.

Unlike the RCPSP considered in last chapter, the resources are multi-skilled i.e. they have been

assumed to possess more than one skill. To solve this complex problem, the teaching-learning-

based optimization (TLBO) algorithm developed in the chapter 3 is extended by incorporating

modified encoding and decoding schemes. More specifically, an activity list based encoding

scheme has been modified to include the multi-skilled resource assignment information. For

comparing the performance of this metaheuristic, a genetic algorithm (GA) is also developed to

solve this problem. The computational experiments have been performed on the test instances

generated for the purpose with varying characteristics of network complexity and resource

strengths. The results obtained by the TLBO are quite promising in terms of average percentage

deviation from the critical path based lower bound.

The remaining of this chapter is structured as follows: The problem nature and mathematical

model along with an illustrative example is provided in next Section. Section 4.3 discusses the

implementation issues and framework of the proposed TLBO. The procedure of instance

generation and computational experiences has been presented in Section 4.4. Finally, Section 4.5

presents the key findings and conclusions drawn from the study.

4.2 Problem description and mathematical formulation

The problem considered here is Multi-Skill Resource-Constrained Project Scheduling Problem

(MSRCPSP) which is a realistic extension of the problem studied by Zheng et al. (2017). Unlike

Zheng et al. (2017), this work considers a real life scenario wherein resource requirement for any

activity is not restricted to unity and can be more than one. Also, it is assumed that activities may

require more than one type of skill for their execution. Thus, the number of persons required

corresponding to each skill may be more than one. The resources are staff members mastering

59

one or more skills. An activity-on-node (AON) acyclic network G= (A, E) represents a single

project where A= {1, 2,…….., i, j,….N+2} denotes the activity set and E provides the

precedence relations between them. The beginning and end activity of the project are dummy

activities i.e they consume no resource and time for their execution. A set P of renewable

resources comprising of staff members is considered wherein each member, as mentioned earlier,

possesses one or more skills. It is also assumed that each resource is available for the entire

project horizon but can contribute only one skill at a time to an activity. Finally, the activity

times have been considered deterministic and positive integers.

4.2.1 Mathematical formulation for the MSRCPSP

To understand the nature of the problem under study, a mathematical model is presented in this

section comprising of important notations, objective function and constraints along with their

definitions.

Notations:

Parameters Definition

N number of non-dummy activities in the project

A , { } set of activities

pi processing time of activity Ai

K total number of skills available

P total number of available staff members

S , { } set of skills

P, { } set of staff members

 equal to 1 if staff member Pm possesses skill Sk, 0 otherwise

 number of staff members with skill Sk required by activity i

ti start time of activity i

T project horizon

60

Decision variables:

1; if staff member m starts an activity i at time t,

0 otherwise

 1; if staff member m starts an activity i with skill k,

0 otherwise

 = 1; if activity i is started at time t,

0 otherwise

Mathematical Model

Minimize (4.1)

Sub. to :

 ∑ (4.2)

 (4.3)

∑ (4.4)

∑ ∑ (4.5)

 , , (4.6)

 ∑ , , (4.7)

 , , (4.8)

∑ (4.9)

∑ ∑ (4.10)

 { } , (4.11)

 { } (4.12)

61

 { } (4.13)

The objective function (4.1) minimizes the start time of (dummy) end activity and hence the

makespan. Constraint (4.2) represents the start time of activity i. Constraint (4.3) ensures the

precedence relations between the activities. It is obvious that each staff member can start an

activity at most once in whole planning horizon which is handled by constraint (4.4). Constraint

(4.5) avoids the possibility of a staff member to work simultaneously on more than one activity.

Constraint (4.6) and (4.7) collectively guarantees the synchronization of start times for an

activity initiated by different staff members. Constraint (4.8) ensures that a staff member delivers

only the skill that he/she masters. The total skill requirement of an activity should be met and this

is ensured by constraint (4.9). Constraint (4.10) ensures that a staff member cannot use more than

one skill at a time when assigned to an activity. Constraints (4.11) to (4.13) are domain

constraints which define the decision variables to be binary.

4.2.2 An illustrative example

This subsection discusses a small hypothetical example to understand the problem under study.

Let a project comprises of four non-dummy activities linked by precedence relations as shown in

Figure 4.1. The number of resources with particular skill required by each activity is presented in

„Activity-Skill Matrix‟ as shown in Table 4.1. For example, activity 2 requires one person with

skill S2 and one person with skill S3 for its execution, activity 4 requires two persons with skill S1

and one person with S2 and so on. The activities 1 and 6 being dummy require no resource (and

hence skills) for their execution.

The skills attained by four staff members are given by a „Staff-Skill Matrix‟ shown in Table 4.2.

The value „1‟ indicates that a staff member masters the particular skill while „0‟ signifies the

absence of skill. To elaborate, staff member 1 possesses two types of skills i.e. S2 and S3, staff

member 2 possesses skill type S1 and S3 and so on.

It is important to note that skill requirements of an activity can be accomplished by any of the

staff member(s) (from a pool of total six members) who possesses these skills. Also, all the

persons if assigned to execute an activity should be available at the start of the activity

simultaneously.

62

The goal is to minimize the makespan respecting the precedence relations and resource

requirements of the activities. A feasible solution determines the start/finish times of each

activity along with assignment of subset of staff members that fulfill all the skill needs of the

activities. Figure 4.2 presents one such feasible solution which is also optimal in this case.

 Figure 4.1: Precedence graph of the illustrative project

Table 4.1: Activity-Skill Matrix

Activity No. of staff members required (bi,k)

S1 S2 S3

1 0 0 0

2 0 1 1

3 1 0 1

4 2 1 0

5 0 1 0

6 0 0 0

1

 0

 (0, 0, 0)

2

 2

 (0, 1, 1)

3

4

 5

 (1, 0, 1)

4

 3

 (2, 1, 0)

5

 3

 (0, 1, 0)

6

 0

 (0, 0, 0)

Ai

pi

 (bi,1, bi,2, bi,3)

63

Table 4.2: Staff-Skill Matrix

Staff Skills Attained

S1 S2 S3

1 0 1 1

2 1 0 1

3 1 0 0

4 1 0 1

Figure 4.2: A feasible solution of the illustrative example

4.3 Proposed algorithms for the MSRCPSP

The problem under study being an extension of the RCPSP is also NP-hard and thus involves

large search spaces. Metaheuristics are known to be natural candidates for tackling such complex

problems. However, as explained in previous chapter, before applying a metaheuristic on any

problem, some basic issues like encoding and decoding schemes, mechanisms of solution

modifications etc. need to be taken care of. The following section presents in detail the

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10 11

S
ta

ff
 m

e
m

b
e
rs

 →

Time →

A3, S3

A3, S1

A2, S3

A2, S2 A4, S2

A4, S1

A4, S1

A5, S2

64

configuration and application methodology of the two algorithms namely TLBO and GA

proposed in this work to solve the MSRCPSP.

4.3.1 Teaching-learning-based optimization algorithm for the MSRCPSP

In chapter 3, the philosophy and working mechanism of the TLBO has been explained in detail.

The algorithm has been successfully applied for the standard RCPSP and inspired by the

competitive results obtained thereof, it is extended for the MSRCPSP. However, due to the

multi-skill nature of resources, the encoding and decoding mechanism will differ considerably as

compared to the RCPSP. The problem size for the MSRCPSP is exceptionally large and complex

and the concepts of self-study and examination are retained to avoid the algorithm been trapped

in local optima. There are primarily two modifications that have been incorporated in the

previous TLBO algorithm designed for the RCPSP:

1. The encoding scheme is appended with additional information to incorporate the feasible

resource assignments of the activities. (please see section 4.3.1.1 for details).

2. The serial schedule generation scheme (SGS) available in literature for the RCPSP is

suitably modified to ensure a feasible schedule considering the multi-skill nature of the

resources (please see section 4.3.1.2 for details).

The framework or mechanism of proposed TLBO for the MSRCPSP is depicted in Figure 4.3.

This is derived by incorporating the two additional features of multi-skilled resources mentioned

above. The pseudo code for the solving the above problem is also modified accordingly and

same is shown in Figure 4.4.

4.3.1.1 Encoding scheme

As mentioned in chapter 3, this is an important step that significantly affects the performance of

any metaheuristic algorithm. Due to multi-skilled resources being involved, one needs to

incorporate additional information of the feasible staff assignment corresponding to each activity

in the representation. The encoding scheme of the RCPSP is, therefore, modified and a solution

is encoded into two parts (Gürbüza, 2010). The first part determines the priority values of the

activities while second part defines the feasible staff assignment to each activity.

65

 Figure 4.3: Flowchart of the proposed TLBO for the MSRCPSP

Yes

No

Perform modified 2-point crossover between each

learner and teacher to generate a new learner

Replace worst solutions with elite solutions

Is the termination

criterion satisfied?

Output teacher

Examination Phase

Teacher Phase

Learner Phase

Update teacher

Perform modified 2-point crossover between each learner

and randomly chosen another learner

Perform mutation on the population

Design encoding of solution (learner) in the two parts:

1. Activity List (AL) using RBRS method

2. Feasible resource assignment using staff_skill_matrix

Calculate the fitness function i.e. makespan using modified

schedule generation scheme and identify the best learner as

teacher

Self-study Phase

66

Figure 4.4: Pseudo-code for the proposed TLBO for the MSRCPSP

To encode the first part, the precedence feasible activity list (AL) representation from Kolisch

and Hartmann (1999) is reused in the encoding procedure. More specifically, a precedence

feasible permutation of activities represented as λ= (j1, j2, .……, jn+1, jn+2) is created in which no

activity appears before any of its predecessors. The corresponding priorities of activities for their

execution in this list are represented by their index values.

Input: Initialize Class_size (number of learners in the class) , Num_iter (Number of iterations),

 SS_prob (probability of self-study) and Elite_per (elite size i.e. percentage of students to be failed)

 staff_skill_matrix (information of staffs mastering various skills)

Output: The teacher for iteration size= Num_iter

1 Begin

2 for 1: Class_size

3 Generate the upper part (activity list) of encoding scheme using RBRS method

4 Assign feasible set of staff members to each activity using staff_skill_matrix to generate a learner

5 end for

6 Calculate the fitness i.e. the makespan of each learner using modified SGS method

7 Designate the learner with minimum makespan as the teacher

8 while (stopping condition is not met);

9 for i=1: Class_size

10 Perform 2-point crossover between each learner and student % Teacher phase

11 Evaluate the new learner

12 if makespan new learner < makespan old learner

13 Replace the old learner with the new learner

14 end

15 Perform 2-point crossover between a learner with another random learner % Student phase

16 if makespan learner-2 < makespan learner-1

17 Replace the learner-1 with learner-2

18 end

19 Perform mutation with SS_prob % Self-study phase

20 Retain Num_elite learners in the class % Examination Phase

21 Calculate makespan and update the teacher

22 end while

23 end

67

To encode the second part of solution or individual, the set of staff members corresponding to

each skill is constructed and randomly assigned a feasible set of staff members as per the

requirement of each activity. These assignments are depicted in vertical columns corresponding

to the activities in AL constructed in first part of encoding scheme (Gürbüza, 2010). A

representation of an individual for the illustrative example discussed in section 4.2.2 is shown in

Figure 4.5.

Figure 4.5: Encoding of solution for the MSRCPSP

4.3.1.2 Decoding scheme

To obtain a feasible schedule from above representation, the classical serial schedule generation

scheme (SGS) by Kolisch (1996) is modified as used for the RCPSP in chapter 3. The motivation

behind this choice is that the search space in SGS consists of active schedules and essentially

contains an optimal solution. Unlike RCPSP, when this method is applied to the MSRCPSP

verifying the resource constraints is not trivial. Instead, there are a number of feasible ways to

assign resources to an activity. The SGS, is therefore, modified in the light of multi-skill nature

of the resources. A pseudo code for this modified scheduling scheme is presented in Figure 4.6.

4.3.1.3 Initial population

As evident from section 4.3.1.1 that an individual (a teacher or a learner) comprises of two parts

namely a precedence feasible activity list and resource assignment columns. To generate the first

part i.e. precedence feasible activity list, a parameterized regret-based biased random sampling

(RBRS) method (Kolisch and Drexl, 1996) is employed. It is worthwhile to mention that

sampling methods offers advantage in the sense that they are probabilistic in nature which

produces different schedules each time when applied and thus ensuring sufficient variability in

1 3 2 4 5 6

 3 1 1 1

 4 2 2

 3

Index of feasible staff members assigned to each non-

dummy activity as per activity-staff matrix

Activity list representation using RBRS method

68

the initial population. For details of generation of first part of encoding scheme one is referred to

section 3.4.1 of chapter 3.

Figure 4.6: Pseudo code for the modified SGS

Let, A= Set of total non-dummy activities in the project

Pred (j) = Set of all predecessor activities of activity j

EST (j) = Earliest start time of activity j (as per forward pass in CPM technique)

EFT (j) = Earliest finish time of activity j (as per backward pass in CPM technique)

pj =processing time of activity j

pυj,= Priority value of activity j

Si = Start time of activity i

AL= Activity list as per encoding scheme

1: Input: A, Pred (j), EST(j), EFT(j), pj, pυj, AL

2: Output: makespan

3: begin

4: AL ← A\ {1, N+2}; t ← 0; S1 ← 0 ; Sj ←∞ , j AL;

5: while AL≠ ϕ do

6: find j
*
: pυj*=max { pυj* :j AL ˄ Pred (j) ∩ AL= ϕ};

7: if Pred (j
*
) = ϕ then

8: Sj* ← 0;

9: else

10: Compute SAj* // set of activities scheduled before j*

11: if Sk <=EST(j*)<(Sk+pk) or Sk < EFT(j*)<=(Sk+pk) , k SAj*

 & there is common staff member in j
*
 and SAj*

12: Sj* ← max{Sk+pk}; k SAj*

13: else

14: Sj* ← EST(j);

15: end if

16: AL ← AL\ j
*
;

17: end if

18: makespan ← max {Sj +pj : j A};

19: end while

20: end begin

69

In order to generate an encoded individual for the MSRCPSP case, there is a need to assign the

feasible set of staff members in corresponding vertical columns against each activity. By

„feasible‟ it is meant that all staff members assigned to an activity must be unique to fulfill the

constraint that a staff member can only fulfill one skill requirement of an activity at a time

(although he/she may master more than one skill). For this purpose, a set comprising of resources

mastering the skills required by an activity is generated and resources are selected from this set

using a random device respecting the feasibility constraint. In this way, a total of Class_size

individuals are generated.

4.3.1.4 Teacher and learner phase

As mentioned earlier, in teacher phase, the teacher who is also the individual with best fitness

transfers his/her knowledge into the other individuals (learners) of the population (class). In

order to realize this phase, a teacher is subjected to crossover with learner in the class. Similar to

the RCPSP, both the 1-point and 2-point crossovers mechanisms as proposed by Hartmann, 1998

have been tested. However, in this case the solution is encoded in two parts comprising vertical

columns of resource assignments along with horizontal activity list (AL). To ensure that the new

individual also confirms to a feasible resource assignment, the resource assignment columns are

transferred along with the activities during the crossover. For the general details of 2-point

crossover recall the section 3.4.2 of chapter 3.

It can be seen in Figure 4.7, a learner before crossover is represented as λ1 whereas λ2 represents

a teacher who has to transfer his knowledge using crossover into the learner. A pair of two

distinct random numbers, (u1, u2) is generated in the range [1, n], where n denotes the total

number of activities in the activity list. It is important to note that to ensure the resource

feasibility, the corresponding staffs members assigned to activities are carried over in the new

learner. The learner so obtained after teaching is selected if it gives lower makespan; else

previous learner is retained.

After teacher phase is over, the learner phase is applied in which each learner is subjected to

cross-over with another randomly chosen learner from the population. This is based on the

practical analogy that a learner improves his/her knowledge by mutual interactions and

70

discussions with other learners of class. Again, this new learner is accepted in population if it

provides a better makespan else previous learner is retained in the population.

Figure 4.7: An illustration of 2-point crossover mechanism for the MSRCPSP

4.3.1.5 Self-study and examination Phase

Similar to the TLBO developed for the RCPSP, for the multi-skilled problem environment also,

the concepts of the self-study and examination phase have been incorporated which are known to

enhance the exploration and exploitation capabilities of the TLBO. To keep the discussion

concise, the already mentioned details regarding implementation mechanisms of these two

features have been omitted here.

4.3.2 Proposed Genetic Algorithm (GA) for the MSRCPSP

As stated earlier, this work also aims to develop another popular metaheuristic namely genetic

algorithm (GA) for the MSRCPSP primarily for the comparison purpose. GA is based on natural

selection and biological evolution process and has been an indispensable choice for solving

1 3 2 4 5 6

 3 1 1 1

 4 2 2

 3

1 2 3 4 5 6

 1 3 1 1

 4 4 2

 3

1 2 3 5 4 6

 1 1 1 1

 4 2 3

 4

 u1=2 u2=4

(λ1)

Learner

before

Crossover

(λ2)

Teacher

(λ new learner)

Learner after Crossover

71

many hard optimization problems since its advent. The basic scheme, operators and

implementation framework of the proposed GA on the MSRCPSP are discussed in next section.

4.3.2.1 Initial population and parent selection

Let an even integer POP denotes the total number of individuals in a population. Initial

population is created by the regret-based biased random sampling method as mentioned in

Section 4.3.1.3. While creating individuals, same encoding and decoding procedures used for the

TLBO have been adapted for obvious reasons of fair comparison. The individuals in the POP

have been evaluated for their fitness value (i.e. makespan) using the modified SGS developed

earlier. In order to choose parents for crossover, 2-tournament selection method is employed

(Hartmann, 1998) wherein two individuals I1 and I2 are randomly chosen from POP and if f (I1)

 f (I1), individual I1 is chosen else this process is repeated till POP individuals are selected. A

pseudo code for the proposed GA is presented in Figure 4.8.

Figure 4.8: Pseudo code for the proposed GA

// Initialize generation 0

g:=0;

//Create an initial population having POP individuals using RBRS method

// Evaluate POP;

Compute fitness (i) for each i POP;

while g< GEN

do

{ //Create generation g+1;

 Select pairs of individuals (parents) using 2-tournament method;

 Perform crossover and mutation to produce CHI;

 Evaluate the fitness (i) for each i CHI;

 Add the CHI to POP to get 2*POP individuals;

 Select POP individuals using ranking method

 Keep elite solutions for the next generation

 g:=g+1;

}

return the fittest individual as solution

72

4.3.2.2 Details of genetic operators

The two basic genetic operators conventionally used in GA are crossover and mutation. The 2-

point crossover mechanism as applied in the TLBO is re-employed for similarity purpose in the

two algorithms; however, in this case it is implemented between two members of a parent group

producing two offspring. More specifically, for a given parent group having a mother

{

 } and a father {

 } , two offspring, a daughter {

 } and

a son {

 } are produced. A pseudo code for producing a daughter and son using 2-

point crossover is exhibited in Figure 4.9.

Following the crossover, mutation as proposed by Boctor, 1996 is implemented to introduce the

genetic diversity in the population. Similar to the TLBO, elitism was also introduced to improve

the algorithm performance. Section 4.4.2.2 explains the method to obtain the best combination of

crossover, mutation and other parameter values for the proposed GA.

Figure 4.9: Pseudo-code for 2-point crossover in the proposed GA

Select two random integers u1 and u2 such that, 1 u1 u2 N

/* u1 and u2 are the random crossover-points */

/* Generation of the daughter */

for k=1 to u1 do

 𝐽𝑘
𝐷 𝐽𝑘

𝑀 ;

for k=u1+1 to u2 do

i=lowest index/ 1 𝑖 𝑁 and 𝐽𝑖
𝐹 ∉ {𝐽

𝐷 𝐽𝑘
𝐷 };

𝐽𝑘
𝐷 𝐽𝑖

𝐹;

for k=u2+1 to N do

i=lowest index/ u1 𝑖 𝑁 and 𝐽𝑖
𝑀 ∉ {𝐽

𝐷 𝐽𝑘
𝐷 };

𝐽𝑘
𝐷 𝐽𝑖

𝑀;

end

/* Generation of the son */

for k=1 to u1 do

 𝐽𝑘
𝑆 𝐽𝑘

𝐹 ;

for k=u1+1 to u2 do

i=lowest index/ 1 𝑖 𝑁 and 𝐽𝑖
𝑀 ∉ {𝐽

𝑆 𝐽𝑘
𝑆 };

𝐽𝑘
𝑆 𝐽𝑖

𝑀;

for k=u2+1 to N do

i=lowest index/ u1 𝑖 𝑁 and 𝐽𝑖
𝐹 ∉ {𝐽

𝑆 𝐽𝑘
𝑆 };

𝐽𝑘
𝑆 𝐽𝑖

𝐹;

end

73

4.4. Computational experiences

In this section the computational experiments to assess the behaviour of the proposed TLBO and

GA on test instances are presented. Both algorithms have been coded in MATLAB 7

environment and executed on a laptop computer with Core i3, and Windows 8.1 using 4 GB of

RAM. In the next sections the methodology of generating the test instances, parameter setting

and comparative results have been discussed in detail.

4.4.1 Test instances for the MSRCPSP

Unlike the RCPSP (PSPLIB, http://www.bwl.uni-kiel.de/Prod/psplib/), there does not exist any

standard benchmark instances for the MSRCPSP. Although in the work of Myszkowski et al.

2018, 36 benchmark instances (available as iMOPSE dataset) have been developed for the bi-

objective MSRCPSP but they cannot be used here. This is because in this work it is assumed that

resource requirements of activities are more than one. In addition, no cost aspects have been

considered in this work.

In the work of Almeida et al. (2015), a methodology is available for generating the MSRCPSP

instances (as used in this work) with variable characteristics. This methodology will be used to

develop different MSRCPSP instances for testing the two algorithms. As mentioned thereof, the

three major characteristics that mainly affect the complexity of a MSRCPSP instance are:

i. Network Complexity (NC): It is a measure of average number of non-redundant arcs or

average number of successors of each activity in the precedence graph. For the project

instance shown in Figure 4.1, total number of (non-redundant) arcs is 6 and there are 6

activities in the project. As per definition, the network complexity (NC) is calculated as

NC= 6/6=1.0. It is obvious that as the number of arcs in a network increases for a given

number of activities, NC also increases.

ii. Skill Factor (SF): It is simply the ratio of types of skills required by a particular activity

to the total skills number of types available in a given project. For example, w.r.t. Table

4.1, 3 type of skills are available in project namely S1, S2 and S3. It is evident that activity

2 requires only two types of skills (S2 and S3) for its execution which gives its SF as

74

2/3=0.67. On similar lines, SF of activity 3, 4 and 5 can be calculated as 0.67, 0.67 and

0.33 respectively.

iii. Modified Resource Strength (MRS): It is a ratio between available resources (staff

members) to the total number of resource units required to execute all the activities.

Let, N = Number of non-dummy activities;

 P = Total number of available staff members;

 |S| = Number of skill types;

 n = Average number of staff members required for an activity (assuming 2

 in this case)

Then, as per definition, MRS can be calculated as: =

. Alternatively, if one pre-

defines the MRS, the number of staff members required for a particular configuration can then be

determined as .

The methodology proposed by Almeida et al. (2015) is coded in MATLAB 7 and 216 different

instances for the MSRCPSP have been generated using different combinations of the above

three characteristics. The details of the developed instances with salient features have been as

mentioned below:

 Total number of non-dummy activities in the instances, N = 30.

 Processing time of activities, p is randomly derived as D~ U (1, 10).

 A total of four different skill types have been considered i.e. |S|=4.

 Network Complexity (NC) is varied for three possible values similar to PSPLIB instances

 (Kolisch and Sprecher, 1997), i.e. NC {1.5, 1.8, 2.1}.

 Skill Factor is varied to have four possible values i.e. SF {0.5, 0.75, 1, variable}. For

 instance, SF=0.75 means that each activity requires three out of total four available skills

 for its execution. By “variable” it is meant that for each activity number of skills required

 is varied randomly in the set {2, 3, 4}.

75

 Modified Resource factor (MRS) is varied from 0.0667 to 0.0944. This is because too

 low MRS value tends to generate instances extremely easy to solve while higher value

 may induce the resource infeasibility.

 Each activity is assumed to require {1, 2, 3} staff members corresponding to each skill.

 Each staff member is assumed to master 1, 2 or 3 skills out of four skills.

 The total number of staff members assigned to each instance, P can be determined by

 fixing its SF and MRS values as depicted in Table 4.3.

Table 4.3: Number of staff members for given values of SF and MRS

SF=0.5 SF=0.75 SF=1.0 SF=var.

MRS P

MRS P MRS P MRS P

0.0667 8

0.0667 12 0.0667 16 0.0667 12

0.0750 9 0.0778 14 0.0750 18 0.0778 14

0.0917 11 0.0944 17 0.0917 22 0.0944 17

Table 4.4 presents the summary of the characteristics of the test instances generated at a glance.

For each combination of SF, NC and MRS, 6 instances have been generated thus a total of

(4*3*3) *6=216 instances have been generated for testing the behaviour of the developed

algorithms.

Table 4.4: Summary of characteristics of the test instances

Factor Value

Number of activities (N) N=30

Activity duration (pi) pi ~U (1,10)

Network Complexity (NC) NC {1.5, 1.8, 2.1}

Skill Factor (SF) SF {0.5, 0.75, 1, variable}

Modified Resource Strength (MRS) 0.0667 MRS 0.0944

Total no. of available skills (|S|) |S|=4

Number of staff members required by each skill, bi,k bi,k {1,2,3}

76

4.4.2 Parameter setting

Parameter setting is a crucial step in any metaheuristic to determine the optimum combination of

factors that influence its performance. It is first performed for the TLBO and subsequently done

for the GA. It is important to note that conventional TLBO has only two parameters to tune i.e.

number of iterations and population size. However, in the modified TLBO as proposed in this

work, three parameters need to be tuned, the details as mentioned below.

4.4.2.1 Parameter setting for the TLBO

In the proposed TLBO three factors at three different levels have been selected for fine

tuning as depicted in Table 4.5. These levels have been selected from the literature (Rao et al.,

2012) and inspired by their competitive performance when applied to different benchmark

functions. In another work of Rao and Patel (2012) where elitist TLBO was proposed, population

sizes of 25, 50, 75 and 100 were used with elite size as 0, 4, 8 and 12. Inspired by these values,

three population sizes have been selected which are reasonably close to the values chosen in the

literature i.e. 20, 40 and 60. These values are equidistant for ensuring fair comparison during

parameter tuning. It is interesting to note that elite size proposed in the TLBO is employed as a

percentage of total population hence all three population sizes have been chosen as even integers

to avoid the fractional values in the elite size. Probability of self-study is basically a mutation

concept and its levels are inspired from Alcaraz and Moroto (2001).

Table 4.5: Factors and corresponding levels for the TLBO

Factor Symbol Level Values

Number of learners (pop size) Class_size 3 20 40 60

Probability of self-study SS_prob 3 0.01 0.05 0.10

Percentage of elite learners Elite_per 3 0.05 0.10 0.15

Two crossover mechanisms from literature namely 1-point and 2-point have been utilized to

realize the teacher and learner phase. Moreover, the self-study phase is also incorporated using

two mutation mechanisms one proposed by Boctor (1996) and other by Hartmann (1998) and

77

referred in this work as BM and HM respectively. To determine the best combination of these

two factors (each having two levels), all these are crossed together, thus having four different

combinations to be tested. The Class_size is fixed at 20, SS_prob at 0.01 and Elite_per at 0.05

during this test and 50 instances have been selected randomly from the 216 instances developed

for the MSRCPSP. As optimal solutions of the instances are not known, deviation from critical

path based lower bound has been taken into consideration which is given as, DEV = (Z
H
 –

Z
CP

)/Z
CP

 where Z
H
 is the solution provided by the developed algorithm and Z

CP
is the critical path

duration. The test results for crossover and mutation combinations are shown in Table 4.6.

It can be seen that Boctor mutation and 2-point crossover have performed relatively better than

other combinations. These have been therefore selected for further tuning of factors. A full

factorial method needs 3
3
=27 different tests to be performed. Again, in order to decrease the

number of tests, Taguchi‟s design of experiments (DOE) approach is employed. The proposed

work employs traditional method of handling the responses of multiple trials by using average or

mean (Fang and Wang, 2012). However, it is surmised that S/N ratio should be used if

consistency is desired over mean especially in situations where responses are more susceptible to

be affected by variation within the data. A L9 (3
3
) orthogonal array is used for the test having

eight degrees of freedom (DOF) as mentioned in Table 4.7. A total of 1000 schedules have been

generated as stopping criterion and average deviation from critical path based lower bound for

the 50 randomly selected instances is calculated as ARV (average response variable).

Table 4.6: Test results for different combinations of crossover and mutation

Crossover Mutation AVG % DEV.

1-point BM 0.7125

1-point HM 0.7236

2-point BM 0.6895

2-point HM 0.7105

78

Table 4.7: Orthogonal table and the ARV values for DOE test for TLBO

Exp. number
Factors

ARV
Class_size SS_prob Elite_per

1 20 0.01 0.05 0.6922

2 20 0.05 0.10 0.6316

3 20 0.10 0.15 0.5986

4 40 0.01 0.10 0.5813

5 40 0.05 0.15 0.6227

6 40 0.10 0.05 0.5930

7 60 0.01 0.15 0.6309

8 60 0.05 0.05 0.6096

9 60 0.10 0.10 0.5967

The results of Taguchi test can be seen from Table 4.7. The main effects plots for each factor are

shown in Figure 4.10. It is evident that optimum levels obtained for the parameters are:

Class_size = 40, SS_prob = 0.10 and Elite_per = 0.10.

Figure 4.10: Main effects plot for each level of factors of the TLBO

604020

0.64

0.63

0.62

0.61

0.60

0.100.050.01

0.150.100.05

0.64

0.63

0.62

0.61

0.60

Class_size

M
e

a
n

 o
f

M
e

a
n

s

SS_prob

Elite_per

Main Effects Plot for Means
Data Means

79

4.4.2.2 Parameter setting for the GA

For the GA discussed in Section 3.2., there are four different parameters of interest namely

population size (Pop_size), crossover probability (Cross_prob), mutation probability (Mut_prob)

and elite size (expressed as percentage of population size and denoted by Elite_per). Three levels

have been chosen for each of these parameters as shown in Table 4.8 which are inspired by

typical values used in literature for the RCPSP (Alcaraz and Maroto, 2001). The corresponding

values of ARV as obtained for L9 (3
4
) orthogonal array have been exhibited in Table 4.9. The

optimum levels as obtained after the test are Pop_size =40, Cross_prob = 0.80 , Mut_prob =

0.10 , Elite_per = 0.10 (Figure 4.10).

4.4.3 Comparative results

On the basis of optimum values of parameters obtained by DOE tests, the behaviour of both the

algorithms i.e. TLBO and GA is tested for 216 instances (36*6) induced by different values of

NC, SF and MRS. A total of 5000 schedules were generated for both the algorithms as stopping

criterion. As the optimum solutions of these problems are not known, the percentage deviation

from critical path based lower bound is used for comparison purpose which is as given below:

% DEV = (Z
H
 – Z

CP
)/Z

CP
 * 100

where Z
H
 is the heuristic solution provided by the algorithm and Z

CP
 is the critical path duration

Table 4.8: Factors and corresponding levels for the GA

Factor Symbol Level Values

Population size Pop_size 3 20 40 60

Probability of crossover Cross_prob 3 0.70 0.80 0.90

Probability of mutation Mut_prob 3 0.01 0.05 0.10

Percentage of elite individuals Elite_per 3 0.05 0.10 0.15

80

604020

0.81

0.80

0.79

0.78

0.77

0.90.80.7

0.100.050.01

0.81

0.80

0.79

0.78

0.77

0.150.100.05

Class_size

M
e

a
n

 o
f

M
e

a
n

s

Cross_prob

Mut_prob Elite_per

Main Effects Plot for Means
Data Means

Table 4.9: Orthogonal table and the ARV values for DOE test for GA

Exp. number
Factors

ARV
Class_size Cross_prob Mut_prob Elite_per

1 20 0.7 0.01 0.05 0.8430

2 20 0.8 0.05 0.1 0.7615

3 20 0.9 0.1 0.15 0.7845

4 40 0.7 0.05 0.15 0.7650

5 40 0.8 0.1 0.05 0.7612

6 40 0.9 0.01 0.1 0.7751

7 60 0.7 0.1 0.1 0.7590

8 60 0.8 0.01 0.15 0.8104

9 60 0.9 0.05 0.05 0.7846

The detailed results have been shown in Table 4.10. Each row represents the combination of

parameters of the test instance and average percentage deviation obtained by running both the

algorithms for the 6 instances for this combination.

Figure 4.11: Main effects plot for each level of factors of the GA

81

Table 4.10: Comparison of TLBO and GA for the test instances

SF NC MRS P

TLBO GA

(% DEV)

(% DEV)

0.5 1.5 0.0667 8 62.79 83.72

0.0750 9 58.14 79.07

0.0917 11 51.16 72.09

1.8 0.0667 8 57.58 77.27

0.0750 9 54.55 60.61

0.0917 11 39.39 50.00

2.1 0.0667 8 56.72 64.18

0.0750 9 46.27 61.19

0.0917 11 34.33 46.27

0.75 1.5 0.0667 12 74.42 86.05

 0.0778 14 61.63 81.40

 0.0944 17 58.14 74.42

1.8 0.0667 12 66.67 80.30

 0.0778 14 59.09 63.64

 0.0944 17 57.58 56.06

2.1 0.0667 12 58.21 67.16

 0.0778 14 49.25 53.73

 0.0944 17 37.31 52.24

1 1.5 0.0667 16 83.72 109.30

 0.0750 18 69.77 93.02

 0.0917 22 67.44 86.05

1.8 0.0667 16 74.24 92.42

 0.0750 18 71.21 72.73

 0.0917 22 66.67 60.61

2.1 0.0667 16 61.19 73.13

 0.0750 18 52.24 64.18

 0.0917 22 49.25 58.21

var. 1.5 0.0667 12 76.74 90.70

 0.0778 14 65.12 81.40

 0.0944 17 51.16 76.74

 1.8 0.0667 12 68.18 78.79

 0.0778 14 65.15 71.21

 0.0944 17 60.61 62.12

 2.1 0.0667 12 56.72 68.66

 0.0778 14 50.75 59.70

 0.0944 17 38.81 49.25

Avg. 58.67 71.05

82

Table 4.11: Summary of results

Parameters Values Algorithms

TLBO

(% DEV)

GA

(% DEV)

SF 0.5 51.21 66.04

0.75 58.03 68.17

1.0 66.19 78.85

var. 59.25 70.95

NC 1.5 65.02 84.50

1.8 61.75 68.82

2.1 49.26 59.82

MRS 0.0667 66.43 80.97

0.0750 58.70 71.18

0.0778 58.49 68.51

0.0917 51.37 62.21

0.0944 50.60 61.81

 Avg. 58.67 71.05

As evident from the results, the average percentage deviation obtained by the proposed TLBO is

58.67% while it is 71.05% for the GA thus showing 12.38% reduction on average makespan. A

relative comparison shows that TLBO results are 21.10 % better as compared to the GA.

The effects of individual parameters i.e. skill factor (SF), network complexity (NC) and modified

resource strength (MRS) have also been investigated on the results obtained. A summary of the

behaviour of these parameters on quality of results is presented in Table 11. Out of the total 216

instances, 72 instances correspond to each NC while there are 54 instances related to each SF. It

can be seen that there occur five different values of MRS in the overall instances. A MRS of

0.0667 is there in 72 instances while the other four MRS values 0.0750, 0.0778, 0.0917 and

0.0944 occur in 36 instances each.

83

From Table 4.11, it can be seen that average deviation increases with increase in skill factor (SF)

which can be attributed to the fact that serial scheduling scheme is applied for resource

assignments and due to the increased proportion of resource requirements by activities, number

of possible resource combinations increases accordingly. The behaviour of the results with

respect to the instance characteristics is pictorially represented through Figures 4.12 to Figure

4.14.

It can be observed that with the increase in network complexity (NC), average deviation

decreases similar to the inferences drawn by Almeida et al. (2016). In other words, instances

with increased value of NC are easier to solve because as the number of precedence relations

increases, there becomes less number of activities available that can be processed

simultaneously, i.e. the degree of parallelization decreases.

Figure 4.12: Comparison of the TLBO and GA results for different skill factors

Similarly with an increased value of modified resource strength (MRS), one can observe relative

improvement in results. This is obvious because with the availability of increased number of

staff members mastering a particular skill, the resource needs of an activity are satisfied

relatively earlier than with reduced value of MRS.

0

10

20

30

40

50

60

70

80

90

0.5 0.75 1 var.

Skill Factor(SF)

TLBO (% DEV)

GA (% DEV)

84

Figure 4.13: Comparison of the TLBO and GA results for different network complexity

Figure 4.14: Comparison of the TLBO and GA results for different modified resource strength

It can be seen from Table 4.11 that percentage deviations (% DEV) obtained by TLBO for

different combinations of SF, NC and MRS are comparatively better than those of GA. Thus

proposed TLBO can be regarded as a competitive metaheuristic to solve the MSRCPSP.

0

10

20

30

40

50

60

70

80

90

1.5 1.8 2.1

Network Complexity (NC)

TLBO (% DEV)

GA (% DEV)

0

10

20

30

40

50

60

70

80

90

0.0667 0.075 0.0778 0.0917 0.0944

Modified Resource Strength (MRS)

TLBO (% DEV)

GA (% DEV)

85

4.5 Summary

This chapter investigates the problem of multi-skill resource-constrained project scheduling

problem (MSRCPSP) in which resources possess more than a single skill. It is assumed that each

activity requires one or more resource persons with varying skill for its execution. A mixed-

integer linear programming model has been formulated for this NP-hard problem. Two

metaheuristics have been developed to solve this problem namely TLBO and GA. In addition to

the conventional teacher and learner phase in TLBO, the concept of self-study and examination

phase have also been employed which are known to enhance the exploration and exploitation

capabilities of the algorithm according to other studies. Taguchi‟s orthogonal array method is

employed for parameter tuning of both these algorithms. To test the behaviour of proposed

algorithms, 36 different combinations of three parameters viz. skill factor, network complexity

and modified resource strength have been designed and 6 instances are generated for each

combination i.e. 216 (36*6) instances in all have been tested. The results obtained after

computational study show that the TLBO has performed significantly better than GA in terms of

average percentage deviation from critical path based lower bound for each combination of these

parameters. In addition, TLBO also offers an additional advantage of less parameter to tune as

compared to GA.

In the next chapter, the metaheuristic developed here will be extended for the multi-objective

version of the MSRCPSP which is again a scarcely treated work in literature. The objective of

makespan minimization will be handled along with minimization of time elapsed with less-

skilled resource assignments. Many product and service organizations involving a large pool of

multi-skilled resources are facing problems of uneven allocation of skills to tasks rendering low

productivity indices, dissatisfaction among workers and reduced employee morale. Under this

motivation, effective metaheuristic algorithms for a multi-objective MSRCPSP will be

developed in the next chapter.

86

Chapter 5

A Multi Objective-TLBO for the

Multi Objective -MSRCPSP

87

Chapter 5

A Multi-Objective TLBO for the Multi-Objective MSRCPSP

5.1 Introduction

In this chapter, the TLBO algorithm developed for the single-objective MSRCPSP is extended

for its multi-objective version. One can recall from the comprehensive literature review in

chapter 2 that although resource limitation aspect has been sufficiently addressed by researchers

in project scheduling, the notion of skilled resources still presents a potential area of research.

Moreover, in most of the current studies, only one scheduling objective (mostly the makespan) is

considered but in many practical situations decision-makers are generally concerned about

several objectives simultaneously which give rise to what is known as multi-objective multi-skill

resource-constrained project scheduling problem (MO-MSRCPSP).

There are only few researchers who have focused on other objectives in addition to the regular

objective of minimizing the project‟s makespan for a MSRCPSP. These objectives are largely

related to minimizing the cost of allocating the workers in a project or maximizing the overall

quality of a given project (Maghsoudlou et al. 2016, Wang et al., 2018). Furthermore, in most of

these multi-objective MSRCPSP research works, it has been assumed that a staff member is able

to exhibit different skills with the same proficiency or expertise. However, this is not true in real

life. Usually in organizations, a person possessing various skills may be expert in one (or two)

skill(s) but may only be moderately trained for performing other skills. It is seen that a multi-

skilled person in an organization by experience is likely to achieve expertise in the skill domains

where he/she is associated for a prolonged period of time. In addition, by his very inherent

training he/she is also competent to execute activities requiring other skills. These (other) skills

may not be significantly different from his basic skill type but share some common features. For

example, a coder in a software development companies may be highly expert to code in JAVA

platform but may have moderate level of proficiency in Python, Elixir, TypeScript or other

programming languages. The proficiency or expertise of a skill signifies the degree of

sophistication, ease or superiority by which a staff member can execute a particular skill.

88

In this environment, it is sometimes judicious to assign a slightly less proficient person to an

activity if an „expert‟ or high-skill person is busy in executing other activity. This assignment

may help the project manager to meet the project deadlines with only a minor loss in project

quality which is often acceptable to the stakeholders. Moreover, it is possible that resources

having different levels of proficiencies of same skill can be simultaneously assigned to a

particular activity if resource need for the activity is more than one. This may provide an

opportunity to an individual to work in team with an expert or high-skilled person thus

increasing his/her proficiency level. Nevertheless, the assignments of persons with less-skilled

levels should always be kept as low as possible to achieve satisfactory quality targets.

Under this practical motivation, this chapter specifically aims to develop efficient solution

techniques for the multi-objective multi-skill resource-constrained project scheduling problem

(MO-MSRCPSP) taking variable skill proficiencies into account. In addition to the regular

objective of minimizing the makespan, second objective aims at minimizing the total time

elapsed in resource assignments with less-skilled persons.

5.2 Multi-objective MSRCPSP

5.2.1 Problem description

Unlike some researchers who focused on discrete type of hierarchical skill levels (for example 1,

2 3 etc.), proficiency levels considered in this work have been realized on a continuous scale

similar to the performance ratings of workers under a time-study. More precisely, following

levels of proficiencies have been considered for staff members‟ skills with corresponding values

shown in Table 5.1:

Table 5.1: Levels of proficiencies

Level of proficiency Value

Expert 1.0

Highly-skilled 0.9

Moderately-skilled 0.8

Less-skilled 0.7

89

In the above table it is important to note that no person can have skill proficiency above 100%,

thus proficiency level of an „expert‟ staff member is 1. The persons below the value 0.7 are

excluded from this consideration as they are highly under-skilled which may be detrimental to

the overall project quality. One may argue that allocating less-skilled person to an activity (as

compared to an expert) may also deteriorate the quality of a project. The statement is true in

strict theoretical sense. However, during a period when an expert person is already busy in

executing any pre-allocated activity, it is realistic and practical to allocate a slightly less-skilled

(available) person to a current schedulable activity so that a project is completed on time. In

addition, with this so called „less proficient‟ assignments, the project can still have reasonable or

satisfactory level of quality and performance often acceptable to the stakeholders. In simple

terms, it can be a natural choice for a project manager to complete a project as early as possible

with acceptable quality levels under a given pool of slightly less-proficient resources.

5.2.2 Mathematical model

To accommodate the above philosophy, a bi-objective mathematical model is formulated for the

MSRCPSP. The model is similar to the one proposed for the single-objective MSRCPSP with a

slight modification in the objective function. For the purpose of completeness and coherence, it

is reproduced here with all notations and constraints but with a bi-objective function as shown

below:

Notations:

Parameters Definition

N number of non-dummy activities in the project

A , { } set of activities

pi processing time of activity Ai

K total number of skills available

P total number of available staff members

S , { } set of skills

90

P, { } set of staff members

 greater than 0 if staff member Pm possesses skill Sk, 0 otherwise

 number of staff members with skill Sk required by activity i

ti start time of activity i

T project horizon

Decision variables:

1; if staff member m starts an activity i at time t,

0 otherwise

 1; if staff member m starts an activity i with skill k,

0 otherwise

 = 1; if activity i is started at time t,

0 otherwise

Mathematical Model for MO-MSRCPSP

Min. Z1 = (5.1)

Min. Z2 = ∑ ∑ ∑ (5.2)

Sub. to :

 ∑ (5.3)

 (5.4)

91

∑ (5.5)

∑ ∑ (5.6)

 , , (5.7)

 ∑ , , (5.8)

 , , (5.9)

∑ (5.10)

∑ ∑ (5.11)

 { } , (5.12)

 { } (5.13)

 { } (5.14)

For the detailed explanation and definition of constraints, one is referred to the section 4.2.1 of

chapter 4. It is evident from this revised model that two objectives have been considered for

investigation as mentioned below:

1. To minimize the project makespan (Z1)

2. To minimize the total time elapsed with less-skilled resource assignments defined as Skill

Divergence Span (SDS) (Z2).

It is interesting to note that second objective does not merely consider the minimization of less-

skilled resource assignments, rather a „Skill Divergence Span (SDS)‟ , in terms of total time

elapsed with less-skilled assignments, is considered for minimization. The SDS is basically the

product of processing time of an activity and the corresponding amount of penalty attracted due

to the low skill attained by staff member in performing that activity. Mathematically,

Skill Divergence Span (SDS) = (5.15)

where is a binary decision variable whose value is 1 if staff member m starts an activity i

with skill k and 0, otherwise.

The advantage of considering SDS is that instead of minimizing only the absolute loss due to

less-skilled assignments one can minimize the relative time (span) elapsed in less-skilled

92

assignments which a more reasonable way of capturing performance disparities arising due to

assignments of less-skilled resources in a project.

It is easier to understand that the two objectives mentioned above are conflicting to each other. If

second objective alone is considered, resource assignments having skill proficiency other than

„1‟ are not preferred for assignments which may increase project duration.

5.2.3 An illustrative example

To understand the nature of the MO-MSRCPSP under investigation, the project instance

presented in section 4.2 of chapter 4 is considered again.

Table 5.2: A project instance for the MO-MSRCPSP

Activities S-1 S-2 S-3 Activity

times (pi)

Number of

Successors

Successor Activities

1 0 0 0 0 2 2 3

2 0 1 1 2 1 4 -

3 1 0 1 5 1 5 -

4 2 1 0 3 1 6 -

5 0 1 0 3 1 6 -

6 0 0 0 0 0 - -

It comprises of four non-dummy activities linked by precedence relations as shown in Table 5.2.

Activity number 1 and 6 are dummy activities i.e. they do not consume any time or resource for

their execution. For other activities, there is at least one resource is required for their execution.

The information given in above table has been converted into a pictorial representation or

network diagram as shown in Figure 5.1.

Unlike the previous model of the single-objective MSRCPSP, a modification is made in this

problem in the sense that the skills attained by the staff members have been assumed to have

different proficiencies or expertise level (Table 5.3). The value „1‟ indicates that a staff member

masters that particular skill at an expert level while value less than 1 signifies low proficiency to

exhibit the skill relative to the expert level. For example, w.r.t. Table 5.3, one can see that staff

member 1 is expert in exhibiting skill S2 while has only 70 % proficiency in skill S3 and so on.

93

 Figure 5.1: Precedence graph of the illustrative project

Table 5.3: Staff-Skill Proficiency Matrix

Staff

Skills attained

S1 S2 S3

1 0 1 0.7

2 0.9 0 1

3 1 0 0

4 1 0 0.8

One can recall from chapter 4 that an individual for the MSRCPSP can be conveniently encoded

into two parts as shown in Figure 5.2. The first part is in the form of a top horizontal row that

determines the relative priorities of the activities which is more popularly known as activity list

(AL). The second part comprises of vertical columns corresponding to each activity such that the

number of elements in each column is equal to the total number of resources required for the

particular activity. In fact, the digits in the columns represent the corresponding index of staff

members assigned to perform the said activity. It is easier to understand that no digits in a

1

 0

 (0, 0, 0)

2

 2

 (0, 1, 1)

3

4

 5

 (1, 0, 1)

4

 3

 (2, 1, 0)

5

 3

 (0, 1, 0)

6

 0

 (0, 0, 0)

A

i

pi

 (bi,1, bi,2, bi,3)

94

particular column are identical due to the constraint (5.11) of mathematical model which ensures

that a staff member cannot use more than one skill at a time when assigned to an activity.

Figure 5.2: A solution (encoded individual) of illustrative project

The procedure of computing the values of two objective functions for this particular instance is

illustrated now. In order to calculate the makespan, the already developed modified serial

schedule generation scheme (refer chapter 4) is employed. Using this procedure the value of Z1

i.e. makespan is calculated as 11 time units as shown in Figure 5.3.

Figure 5.3: A feasible solution of the illustrative example

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10 11

S
ta

ff
 m

e
m

b
e
rs

 →

Time →

A3, S3

A3, S1

A2, S3

A2, S2 A4, S2

A4, S1

A4, S1

A5, S2

1 3 2 4 5 6

 3 1 1 1

 4 2 2

 3

95

To calculate the value of second objective function i.e. total time elapsed in less-skilled resource

assignments, the SDS is computed corresponding to each resource using equation (5.15) as

mentioned below:

Skill Divergence Span (SDS) =

For this particular problem, i=1,2,3,4,5,6; k =1,2,3; m=1,2,3,4)

From the solution of the instance shown in Figure 5.3, it is evident that following values of skill

divergence span (SDS) can be conveniently computed for each of the six activities of the project

(One should note that calculations are shown only for those non-dummy activities where

)

SDS1 = 0 (dummy start activity)

SDS2 = 1*2* (1-1) + 1*2* (1-1) =0

SDS3 = 1*5* (1-1) + 1*5* (1-0.8) =1

SDS4 = 1*3* (1-1) + 1*3* (1-0.9) + 1*3* (1-1) =0.3

SDS5 = 1*3* (1-1) =0

SDS6 =0 (dummy end activity)

To calculate the value of second objective function i.e. Z2, summation of SDS values is

performed for all activities,

Thus, Z2 = ∑
 = 0+0+ 1+ 0.3+0+ 0=1.3 time units.

The value of Z2 quantifies the total amount of time during which resources with skill proficiency

less than 1 are engaged in performing project activities. A fraction value is justified by the fact

that proficiencies of staff members have been assumed on a continuous scale rather than discrete

or hierarchical levels as found in literature. The Z2 has to be minimized in the algorithm along

with makespan.

96

5.3 Proposed algorithms for solving the MO-MSRCPSP

There are several approaches available in literature to tackle the multi-objective optimization

problems (Kalyanmoy D., 2001). These include weighted-sum or scalarization method, ε-

constraints method, goal programming, multi-level programming and multi-objective

optimization using metaheuristic approaches. As mentioned in chapter 2, this work employs the

weighted-sum or scalarization method as it is simple and intuitive. More specifically, the two

objectives have been combined by assigning suitable weights and the MO-MSRCPSP is

conveniently converted into a single-objective problem by using the TLBO and GA developed in

chapter 4. To elaborate further, a weighted-sum or scalarization method for an n-objective

problem assigns weight wi to the i
th

 objective function fi(x) and minimizes a positively weighted

sum of all the objectives. Mathematically,

Z3=Min. ∑

 (5.16)

∑
 (5.17)

 (5.18)

Equation (5.16) presents a unique objective function denoted by Z3. Mathematically, it can be

proved that minimization of this new single-objective function can be an efficient solution for the

multi-objective problem initially defined by equations (5.1) and (5.2) in the mathematical model

of MO-MSRCPSP. More specifically, if the w weight vector is greater than zero, the solution

obtained by the minimizer Z3 is a strict Pareto optimum.

There the two basic approaches to handle a multi-objective optimization problem namely priori

and posteriori approach. In the former, a decision maker has to assign suitable weights to the

objective functions according to his conceptual skill and preference. Actually, one cannot be

certain to say that which weights are the most appropriate to obtain a satisfactory solution. Also,

the consistent change in the solution cannot be correlated by the changing weights. Decision

makers have to try different combinations of weight vectors to touch different portions of the

Pareto curve which obviously create a considerable computational burden. In spite of these

shortcomings, the priori approach is chosen to solve the MO-MSRCPSP in this work as it is

97

simple and intuitive. In comparison to minimization of SDC, a higher consideration is given to

minimization of makespan and hence the weights of the two objective functions have been

specified as w1=0.7 and w2=0.3. Nevertheless, these weights have been chosen arbitrarily and a

decision maker can suitably alter their values depending upon his/her preference of the objective

function to be minimized. In the next section the details of the metaheuristic approaches

employed to solve the problem under hand have been presented.

5.3.1 A multi-objective TLBO for the MO-MSRCPSP

Looking to the promising results of the TLBO algorithm developed for the single-objective

MSRCPSP, the same set of parameters have been applied for the multi-objective MSRCPSP. In

chapter 4 the details of the solution representation schemes and implementation methodology of

the TLBO can be referred. The following table summarizes the important parameters used for the

TLBO developed for the MO-MSRCPSP:

Table 5.4: Summary of the MO-TLBO algorithm

Architecture of the TLBO developed for the MO-MSRCPSP

Encoding scheme Activity List (AL) with vertical columns having index of

staff members as resource assignment

Decoding scheme Modified serial schedule generation scheme

Initial population RBRS sampling method with LFT priority rule

Teacher and Learner phase Using 2-point crossover mechanism

Self-study phase Using Boctor‟s mutation (BM)

Examination phase Elitism

Test Instances Generated by using methodology proposed by Almeida

et al. (2015) with Staff-Skill Matrix replaced by Staff-

Skill Proficiency Matrix.

Parametric details of the TLBO for the MO-MSRCPSP

Size of initial population (Class_size) 40

Probability of self-study (SS_prob) 10%

Percentage of elite learners (Elite_per) 10 %

Number of instance tested 216

Number of schedules generated per instance 5000

98

5.3.2 A multi-objective GA for the MO-MSRCPSP

As mentioned earlier there is no reported algorithm in literature for the multi-objective

MSRCPSP by considering mixed level of proficiencies of skills having continuous nature.

Looking to this aspect, a MO-GA is also developed as an alternative metaheuristic primarily for

comparing the results with the proposed TLBO. The basic scheme, operators and implementation

framework of the proposed GA on the MO-MSRCPSP are same as designed for the single-

objective MSRCPSP. Table 5.5 presents a brief summary of the same.

Table 5.5: Summary of the proposed MO-GA

Architecture of the GA developed for the MO-MSRCPSP

Encoding scheme Activity List (AL) with vertical columns having index of

staff members as resource assignment

Decoding scheme Modified serial schedule generation scheme

Initial population RBRS sampling method with LFT priority rule

Crossover mechanism 2-point crossover mechanism

Mutation mechanism Boctor‟s mutation (BM)

Elitism Ranking based

Selection mechanism 2-tournament method for parents selection

Test Instances Generated by using methodology proposed by Almeida

et al. (2015) with Staff-Skill Matrix replaced by Staff-

Skill Proficiency Matrix.

Parametric details of the GA for the MO-MSRCPSP

Size of initial population (Class_size) 40

Crossover probability (Cross_prob) 0.80

Mutation Probability (Mut_prob) 0.10

Percentage of elite learners (Elite_per) 0.10

Number of instance tested 216

Number of schedules generated per instance 5000

5.4 Computational results

To test the behaviour of the two algorithms the algorithms have been coded in MATLAB 7

environment with Core i3 processor having Windows 8.1 and 4GB RAM. The staff-skill matrix

99

of the 216 different test instances generated for the single-objective MSRCPSP have been

modified to incorporate the different skill proficiencies among the staff members. The new

matrix is designated as staff-skill-proficiency matrix as shown in Table 5.3. It is ensured that

each staff member is „expert‟ in at least one skill type. For other skills attained by him, the

proficiency level is varied using a random number r such that r { }.

On the basis of values of parameters mentioned in Tables 5.4 and Table 5.5, the behaviour of

both the algorithms have been tested for 216 different instances induced by different values of

network complexity (NC), skill factor (SF) and modified resource strength (MRS) mentioned in

chapter 4. A total of 5000 schedules have been generated for both the algorithms as stopping

criterion. It is important to note that fitness (objective) function in these problem set is modified

by combining two objective functions by selecting a weight vector as . As the

optimum solutions of these problems are not known, the percentage deviation from critical path

based lower bound is calculated which is given as:

% DEV = (Z
H
 – Z

CP
)/Z

CP
 * 100

where Z
H
 is the heuristic solution provided by the algorithm and Z

CP
 is the critical path duration.

The detailed computational results are shown in Table 5.6 whereas summary of these results is

exhibited in Table 5.7. In addition, the variation of the different characteristics of instances with

respect to avg. % deviation is also shown graphically from Figure 5.5 to Figure 5.7. On the basis

of these results, following useful observations can be derived:

 The average % deviation from ctitical path based lower bound obtained is comparatively

lower for the MO-TLBO as compared to the MO- GA. It is 61.78% for the proposed MO-

TLBO while for MO-GA its value is 74.25%.

 Similar to the results of single-objective MSRCPSP, average % deviation increases with

increase in skill factor (SF) (see Figure 5.4) which can be attributed to the fact that due to

the increased proportion of resource requirements by activities, number of possible

resource combinations increases accordingly.

100

Table 5.6: Comparison of MO-TLBO and MO-GA

SF NC MRS P MO-TLBO
(AVG. % DEV)

MO-GA
(AVG. % DEV)

0.5

1.5

0.0667 8 66.28% 86.05%

0.0750 9 60.47% 81.40%

0.0917 11 53.49% 74.42%

1.8

0.0667 8 59.09% 78.79%

0.0750 9 56.06% 62.88%

0.0917 11 40.91% 51.52%

2.1

0.0667 8 58.21% 65.67%

0.0750 9 47.76% 62.69%

0.0917 11 35.82% 47.76%

0.75

1.5

0.0667 12 79.07% 90.70%

0.0778 14 65.12% 86.05%

0.0944 17 62.79% 80.23%

1.8

0.0667 12 69.70% 84.85%

0.0778 14 62.12% 66.67%

0.0944 17 60.61% 59.09%

2.1

0.0667 12 61.19% 70.15%

0.0778 14 52.24% 56.72%

0.0944 17 40.30% 55.22%

1

1.5

0.0667 16 90.70% 116.28%

0.0750 18 76.74% 100.00%

0.0917 22 74.42% 93.02%

1.8

0.0667 16 78.79% 96.97%

0.0750 18 75.76% 77.27%

0.0917 22 71.21% 65.15%

2.1

0.0667 16 65.67% 77.61%

0.0750 18 56.72% 68.66%

0.0917 22 53.73% 62.69%

var.

1.5

0.0667 12 79.07% 93.02%

0.0778 14 67.44% 83.72%

0.0944 17 53.49% 79.07%

1.8

0.0667 12 69.70% 80.30%

0.0778 14 66.67% 72.73%

0.0944 17 62.12% 63.64%

2.1

0.0667 12 58.21% 70.15%

0.0778 14 52.24% 61.19%

0.0944 17 40.30% 50.75%

Avg. 61.78% 74.25%

101

Table 5.7: Summary of results for MO-TLBO and MO-GA

Parameters Values

Algorithms

TLBO

(% DEV)

GA

(% DEV)

SF

0.5 53.12 67.91

0.75 61.46 72.19

1.0 71.53 84.18

var. 61.03 72.73

NC

1.5 69.09 88.66

1.8 64.39 71.66

2.1 51.87 62.44

MRS

0.0667 69.64 84.21

0.0750 65.25 75.48

0.0778 60.97 71.18

0.9170 54.93 65.76

0.9440 53.27 64.67

Figure 5.4: Avg. % deviation for different skill factor

 With increase in network complexity (NC), the number of precedence relations also

increases. This means less number of activities are available that can be processed

0

20

40

60

80

100

0.5 0.75 1.0 var.

SF

TLBO

GA

102

simultaneously, i.e. the degree of parallelization decreases. This in turn results in low

values of % deviation as observed from Figure 5.5.

 It can be seen that with the availability of increased number of staff members mastering a

particular skill, the resource needs of an activity are satisfied relatively earlier than with

reduced value of MRS which justifies the low values of % deviation with higher MRS

values (Figure 5.6).

Figure 5.5: Avg. % deviation for different network complexity

Figure 5.6: Avg. % deviation for different modified resource strength

5.5 Summary

In most of the real world optimization and search problems, it is inevitable to have multiple

objectives which are mostly conflicting to each other. In this chapter, a scarcely treated work in

0

20

40

60

80

100

1.5 1.8 2.1

NC

TLBO

GA

0

20

40

60

80

100

0.0667 0.0750 0.0778 0.0917 0.0944

MRS

TLBO

GA

103

literature about multi-objective multi-skilled resource-constrained project scheduling problem

(MO-MSRCPSP) by considering mixed skill proficiencies is investigated. A multi-objective

mathematical formulation is presented for this problem which aims to minimize two time

estimates; the project makespan and the total time elapsed with less-skilled resource assignments

which is defined as total skill divergence span (SDS). To solve this complex problem, a priori

approach based on weighted-sum or scalarization method is used. The weights given to

makespan and SDS function are 0.7 and 0.3 respectively which can be arbitrarily modified by

decision maker.

To solve this complex problem, two metaheuristics have been proposed namely MO-TLBO and

MO-GA. The test instances developed for the MSRCPSP have been modified with mixed

proficiency levels of the staff members. The comprehensive test results reveals that the MO-

TLBO has performed significantly better than the MO-GA and can be an effective metaheuristic

for solving such real life problems.

104

Chapter 6

Conclusions and future research

directions

105

Chapter 6

Conclusions and future research directions

In this work the resource-constrained project scheduling problem (RCPSP) involving flexible

resources is studied. In these problems the resources are „multi-skilled‟ i.e. each resource has the

functionality of various renewable resources. The problem in literature has been studied under

the name multi-skill resource-constrained project scheduling problem (MSRCPSP) in literature.

In chapter 2, a comprehensive literature review is conducted on the MSRCPSP with a brief

overview of the RCPSP. As an outcome, it is revealed that although resource limitation aspect

has been sufficiently addressed by researchers in project scheduling, the notion of skilled

resources still presents a potential area of research. It is found that in most of the research works,

a resource or staff member is assumed to possess different skills with same proficiency levels.

However, this is not true in real life. Usually in organizations, a staff member possessing various

skills may be expert in one (or more) skill(s) but may not be able to exhibit the same level of

expertise in all skill types. Moreover, in most of the studies it was found that only one scheduling

objective (mostly the makespan) is considered. However, in many practical situations decision-

makers need to take care about several objectives simultaneously which give rise to what is

known as multi-objective multi-skill resource-constrained project scheduling problem (MO-

MSRCPSP). The MO-MSRCPSP is investigated in the later stage of this work.

Although a number of metaheuristic approaches exist in literature but it is interesting to note that

no single approach can be guaranteed to give better results for all types of scheduling problems.

During the literature review, it has been found that one of the recent metaheuristics for

optimization problems is teaching-learning- based algorithm (TLBO) which was introduced by

Rao et al. (2011). The TLBO has been reported to have high convergence rate and it also inherits

a merit of few algorithm specific parameters to tune (Rao et al., 2011). Inspired by the

performance of TLBO on continuous non-linear problems, researchers have also applied it on

discrete optimization problems. However, to the best of the knowledge there is no reported work

in literature having application of TLBO on standard RCPSP and its multi-skill version with

106

finite resource requirements and consideration of mixed skill proficiencies. Under this

motivation, in this thesis a TLBO algorithm with some modifications is developed as an

alternative metaheuristic approach for general class of the RCPSP as well as for the MSRCPSP

and its multi-objective case.

Chapter 3 presents a modified TLBO algorithm for the RCPSP as a preliminary approach before

its application on the MSRCPSP. For encoding the individuals, a precedence feasible activity list

is employed whereas serial generation scheme (SGS) is used as a decoding scheme. To enhance

the exploitation and exploration capabilities of the original algorithm, in addition to teacher and

learner phase, the concepts of self-study and examination phase have also been utilized in this

work. The comprehensive test results on problem instance sets taken from literature show that

the developed algorithm is reasonably effective and competitive to other well-known solution

approaches for the RCPSP.

Using the basic architecture of the TLBO algorithm for the RCPSP, chapter 4 discusses its

extension it for the MSRCPSP. For this purpose, the activity list (AL) is specifically modified by

a revised encoding scheme to incorporate the multi-skilled nature of the resources. In addition, a

modified schedule generation scheme is also proposed as a decoding procedure to obtain a

feasible schedule from a given solution. For the comparison purpose, A GA is also

conceptualized as an alternative metaheuristic for solving this problem. The computational study

on 216 test instances generated with different characteristics established that the proposed TLBO

is comparatively better than the GA.

The research is extended in chapter 5 by investigating the multi-objective MSRCPSP involving

staff members having mixed proficiency levels of skill types. To the best of the knowledge, the

problem has not been previously addressed in literature in this fashion. A bi-objective

mathematical model is designed for minimizing the project makespan and total time elapsed with

less-skilled resource assignments defined as Skill Divergence Span (SDS). For solving this

complex problem, a weighted-sum or scalarization method integrated with a MO-TLBO is

employed. The results obtained are quite encouraging in contrast to the MO-GA which is also

developed in this work for the comparison purpose.

107

6.1 Major research contributions

The results of the proposed TLBO for the RCPSP and its multi-skill extension i.e. MSRCPSP

have already been highlighted in chapters 3, 4 and 5. These are quite promising and encouraging

in terms of providing quick near optimal solutions of these problems. In what follows next, some

of the major research contributions have been highlighted as fruitful outcomes of this study:

1. A modified version of the teaching-learning-based optimization (TLBO) algorithm has

been used to solve the RCPSP with additional phases of self-study and examination to

enhance the exploration and exploitation capabilities of the conventional TLBO

algorithm.

2. The TLBO algorithm developed in this work is simple to apply and offers less number of

algorithm-specific parameters to tune. In particular, it gives competitive results for the

RCPSP when compared to several other metaheuristic proposed in the literature to solve

this problem.

3. As evident, a new representation scheme of individual (solution) has been used in this

work from literature which contains feasible resource assignments for a given

MSRCPSP. To handle this new representation, the study brings out a modified schedule

generation scheme as a decoding procedure which is capable of avoiding resource-

conflicts in multi-skill environment.

4. The TLBO developed for the MSRCPSP can be conveniently applied to a product or

service organization wherein human resources are involved in executing project

activities. Some typical beneficiaries may include software development companies,

consultancy firms, R & D based organizations, maintenance firms, big construction

houses etc. which incorporate multi-skilled staff members to accomplish different client

orders simultaneously. The developed model can suitably handle resource allocation

problems faced in real-life large-sized projects usually administered in these

organizations. The research findings can assist the practitioners and managers to recruit

and schedule the staff members of their organizations in a much economic way.

5. The research also contributes by developing MATLAB codes for the generation of test

instances of a MSRCPSP with varying levels of network complexity (NC), skill factor

108

(SF) and modified resource strength (MRS). These can be used by other researchers to

generate standard or benchmark MSRCPSP instances for testing their algorithms.

6. As another research contribution, the study provides an effective metaheuristic for the

multi-objective MSRCPSP involving different proficiency levels of skills administered

by the staff members. Besides minimization of project makespan, a novel concept of

minimization of skill divergence span (SDS) is also introduced aims to minimize the total

time elapsed with less-skilled resource assignments.

6.2 Limitations of the research

In spite of above-mentioned contributions, the outcome of this research is limited by its

scope and applicability. These have been summarized below:

1. The activity times in this work have been assumed to be deterministic and constant

which is an unrealistic assumption. In a project scheduling environment where

resources are human beings and multi-skilled in nature it is very obvious to assume

that a highly-skilled worker can finish an activity earlier as compared to a

moderately-skilled or an under-skilled worker. This aspect is not considered in the

mathematical models proposed in this study.

2. The resources which are staff members have been assumed to be available

throughout the project span without any unavailability periods. This is, however,

not true in practical scenario. In many organizations due to the flexible work

profiles, human resources are not available uninterruptedly all along the time

horizon.

3. The multi-objective approach adopted in this research is based on weighted-sum or

scalarization method which has some inherent weaknesses. This approach is not able to

find effective Pareto-optimal solutions in problems having non-convex Pareto-optimal

region. Moreover, it is highly subjective for a decision maker to decide appropriate

weight vectors for a given multi-objective optimization problem. In fact, the final trade-

off solution obtained by this method is highly sensitive to the relative preference vector

utilized to form a (single) composite objective function. In contrast to this approach,

109

„ideal‟ approach for multi-objective optimization is usually favored by researchers as it

is more methodical, more practical and less subjective.

6.3 Future directions for the research

This section brings out some interesting areas that may steer new research in the domain of

project scheduling with flexible resources. These are motivated from the limitations or

restricted scope that is observed in this study. These have been mentioned below:

1. The activity characteristics in a project related to time-switch constraints,

preemptibility, time-varying tasks, crashing etc. may be integrated with multi-

skilled nature of resources to handle real-life problems faced by many product and

service organizations.

2. It will be interesting to consider the time and cost aspects of skilled resources

simultaneously. In other words, effective trade-offs can be designed for the project

managers to relate the extra costs incurred in employing highly skilled resources

with the benefit of relative reduction in the project makespan.

3. Although this work focuses on metaheuristic approaches, a lot of research avenues

do exist for developing effective exact approaches to solve the MSRCPSP. In

addition, one may think of designing tighter upper and lower bounds for these

problems to augment the existing exact procedures available in literature.

4. Furthermore, it will be interesting to perform sensitivity analysis of the solutions

obtained in project scheduling environment with flexible resources. This will help

the practitioners to devise more robust and reactive schedules along with scope of

repairing the current schedule which may be of utmost importance in today‟s

uncertain environment.

5. As another future direction for research, the bi-objective model proposed in this

work for the MSRCPSP can be extended to incorporate more objectives inspired

from real-life scenario. Non-dominated sorting metaheuristic approaches can be

designed to tackle such complex problems.

110

6. The multi-skill RCPSP environment can be investigated in a multi-project scenario

and related complexities of the problem can be tackled by designing more powerful

and efficient metaheuristics.

111

References

112

References

1. Abdolshah, M. (2014). A review of resource-constrained project scheduling problems

(RCPSP) approaches and solutions. International Transaction Journal of Engineering,

Management, & Applied Sciences & Technologies, 5, 253-286.

2. Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach for the resource-

constrained project scheduling problem. Computers & Operations Research, 38(1), 44-50.

3. Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in

project scheduling. Annals of Operations Research, 102(1-4), 83-109.

4. Alcaraz, J., Maroto, C., & Ruiz, R. (2004). Improving the performance of genetic

algorithms for the RCPS problem. In Proceedings of the ninth international workshop on

project management and scheduling (Vol. 40, p. 43).

5. Alvarez-Valdes, R., Crespo, E., & Tamarit, J. M. (2002). Design and implementation of a

course scheduling system using Tabu Search. European Journal of Operational Research,

137(3), 512-523.

6. Almeida, B. F., Correia, I., & Saldanha-da-Gama, F. (2015). An instance generator for the

multi-skill resource-constrained project scheduling problem.

7. Almeida, B. F., Correia, I., & Saldanha-da-Gama, F. (2016). Priority-based heuristics for

the multi-skill resource constrained project scheduling problem. Expert Systems with

Applications, 57, 91-103.

8. Almeida, B. F., Correia, I., & Saldanha-da-Gama, F. (2018). A biased random-key genetic

algorithm for the project scheduling problem with flexible resources. Top, 26 (2), 283-308.

9. Atkinson, R., Crawford, L., & Ward, S. (2006). Fundamental uncertainties in projects and

the scope of project management. International Journal of Project Management, 24(8),

687-698.

10. Beach, R., Muhlemann, A.P., Price, D.H.R., Paterson, A., Sharp, J.A., (2000). A review of

manufacturing flexibility. European Journal of Operational Research, 122 (1), 41–57.

11. Bianco, L., Dell'Olmo, P., & Speranza, M. G. (1998). Heuristics for multimode scheduling

problems with dedicated resources. European Journal of Operational Research, 107(2),

260-271.

113

12. Bellenguez, O., & Néron, E. (2004, August). Lower bounds for the multi-skill project

scheduling problem with hierarchical levels of skills. In International Conference on the

Practice and Theory of Automated Timetabling (pp. 229-243). Springer, Berlin,

Heidelberg.

13. Bellenguez-Morineau, O., & Néron, E. (2007). A branch-and-bound method for solving

multi-skill project scheduling problem. RAIRO-Operations Research, 41(2), 155-170.

14. Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Węglarz, J. (2001). Scheduling

under Resource Constraints. In Scheduling Computer and Manufacturing Processes (pp.

317-365). Springer, Berlin, Heidelberg.

15. Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource

constraints: classification and complexity. Discrete Applied Mathematics, 5(1), 11-24.

16. Boctor, F. F. (1990). Some efficient multi-heuristic procedures for resource-constrained

project scheduling. European Journal of Operational Research, 49(1), 3-13.

17. Boctor, F. F. (1996). Resource-constrained project scheduling by simulated annealing.

International Journal of Production Research, 34(8), 2335-2351.

18. Bordoloi, S.K., Cooper, W.W., Matsuo, H., 1999. Flexibility, adaptability, and efficiency in

manufacturing systems. Production and Operations Management, 8(2), 133–150.

19. Böttcher, J., Drexl, A., Kolisch, R., & Salewski, F. (1999). Project scheduling under

partially renewable resource constraints. Management Science, 45(4), 543-559.

20. Bouleimen, K. L. E. I. N., & Lecocq, H. O. U. S. N. I. (2003). A new efficient simulated

annealing algorithm for the resource-constrained project scheduling problem and its

multiple mode version. European Journal of Operational Research, 149(2), 268-281.

21. Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998). A branch and bound algorithm for

the resource-constrained project scheduling problem1. European Journal of Operational

Research, 107(2), 272-288.

22. Bukata, L., Ńůcha, P., & Hanzálek, Z. (2015). Solving the resource constrained project

scheduling problem using the parallel tabu search designed for the CUDA platform.

Journal of Parallel and Distributed Computing, 77, 58-68.

23. Cai, X., & Li, K. N. (2000). A genetic algorithm for scheduling staff of mixed skills under

multi-criteria. European Journal of Operational Research, 125(2), 359-369.

114

24. Chen, W., Shi, Y. J., Teng, H. F., Lan, X. P., & Hu, L. C. (2010). An efficient hybrid

algorithm for resource-constrained project scheduling. Information Sciences, 180(6), 1031-

1039.

25. Cho, J. H., & Kim, Y. D. (1997). A simulated annealing algorithm for resource constrained

project scheduling problems. Journal of the Operational Research Society, 48(7), 736-744.

26. Cordeau, J. F., Laporte, G., Pasin, F., & Ropke, S. (2010). Scheduling technicians and tasks

in a telecommunications company. Journal of Scheduling, 13(4), 393-409.

27. Correia, I., Lourenço, L. L., & Saldanha-da-Gama, F. (2012). Project scheduling with

flexible resources: formulation and inequalities. OR spectrum, 34(3), 635-663.

28. Dauzère-Pérès, S., Roux, W., & Lasserre, J. B. (1998). Multi-resource shop scheduling

with resource flexibility. European Journal of Operational Research, 107(2), 289-305.

29. De Boer, R. (1998). Resource-constrained multi-project management (Doctoral

dissertation, PhD thesis, University of Twente, The Netherlands).

30. De Groote, X. (1994). The flexibility of production processes: a general framework.

Management Science, 40(7), 933-945.

31. De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project

scheduling problem with generalized precedence relations. European Journal of

Operational Research, 119(2), 538-556.

32. Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the

multiple resource-constrained project scheduling problem. Management Science, 38(12),

1803-1818.

33. Duin, C. W., & Van der Sluis, E. (2006). On the complexity of adjacent resource

scheduling. Journal of Scheduling, 9(1), 49-62.

34. Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004). An annotated

bibliography of personnel scheduling and rostering. Annals of Operations Research, 127(1-

4), 21-144.

35. Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and

rostering: A review of applications, methods and models. European Journal of Operational

Research, 153(1), 3-27.

115

36. Eshraghi, A. (2016).A new approach for solving resource constrained project scheduling

problems using differential evolution algorithm. International Journal of Industrial

Engineering Computations, 7(2), 205-216.

37. Fang, C., & Wang, L. (2012).An effective shuffled frog-leaping algorithm for resource-

constrained project scheduling problem. Computers & Operations Research, 39(5), 890-

901.

38. Firat, M., & Hurkens, C. A. J. (2012).An improved MIP-based approach for a multi-skill

workforce scheduling problem. Journal of Scheduling, 15(3), 363-380.

39. Gerwin, D., 1987. An agenda for research on the flexibility of manufacturing processes.

International Journal of Operations and Production Management, 7 (1), 39-49.

40. Giran, O., Temur, R., & Bekdaş, G. (2017). Resource constrained project scheduling by

harmony search algorithm. KSCE Journal of Civil Engineering, 21(2), 479-487.

41. Golden, W., Powell, P., 2000. Towards a definition of flexibility: in search of the Holy

Grail? Omega, 28(4), 373–384.

42. Goudswaard, A., & De Nanteuil, M. (2000). Flexibility and working conditions: a european

bibliographical review. Dublin: European Foundation for the Improvement of Living and

Working Conditions.

43. Gürbüza, E. (2010). Genetic algorithm for bi-objective multi-skill project scheduling

problem with hierarchical levels of skills (Doctoral dissertation, Thesis on industrial

engineering department. Middle East Technical University, Turkey).

44. Gutjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., & Denk, M. (2008).

Competence-driven project portfolio selection, scheduling and staff assignment. Central

European Journal of Operations Research, 16(3), 281-306.

45. Josefowska, J., Mika, M., Rozycki, R., Waligora, G., & Weglarz, J. (2001). Simulated

annealing for multi-mode resource-constrained project scheduling problem. Annals of

Operational Research, 102, 137-155.

46. Habibi, F., Barzinpour, F., & Sadjadi, S. (2018). Resource-constrained project scheduling

problem: review of past and recent developments. Journal of Project Management, 3(2),

55-88.

47. Hartmann, S. (1998). A competitive genetic algorithm for resource‐constrained project

scheduling. Naval Research Logistics (NRL), 45(7), 733-750.

116

48. Hartmann, S. (2002). A self‐adapting genetic algorithm for project scheduling under

resource constraints. Naval Research Logistics (NRL), 49(5), 433-448.

49. Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Research,

207(1), 1-14.

50. Hegazy, T., Shabeeb, A. K., Elbeltagi, E., & Cheema, T. (2000). Algorithm for scheduling

with multiskilled constrained resources. Journal of Construction Engineering and

Management, 126(6), 414-421.

51. Heimerl, C., & Kolisch, R. (2010). Scheduling and staffing multiple projects with a multi-

skilled workforce. OR spectrum, 32(2), 343-368.

52. Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and

research potentials. European Journal of Operational Research, 165(2), 289-306.

53. Javanmard, S., Afshar-Nadjafi, B., & Niaki, S. T. A. (2017). Preemptive multi-skilled

resource investment project scheduling problem: Mathematical modelling and solution

approaches. Computers & Chemical Engineering, 96, 55-68.

54. Kadrou, Y., & Najid, N. M. (2006, October). A new heuristic to solve RCPSP with

multiple execution modes and Multi-Skilled Labor. In The Proceedings of the Multi-

conference on “Computational Engineering in Systems Applications" (Vol. 2, pp. 1302-

1309). IEEE.

55. Kalyanmoy, D. (2001). Multi objective optimization using evolutionary algorithms (pp.

124-124). John Wiley and Sons.

56. Kazemipoor, H., Tavakkoli-Moghaddam, R., & Shahnazari-Shahrezaei, P. (2002). Solving

a mixed-integer linear programming model for a multi-skilled project scheduling problem

by simulated annealing. Management Science Letters, 2(2), 681-688.

57. Kelley Jr, J. E., & Walker, M. R. (1959, December). Critical-path planning and scheduling.

In Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer

conference (pp. 160-173). ACM.

58. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598), 671-680.

59. Klein, R. (2000). Project scheduling with time-varying resource constraints. International

Journal of Production Research, 38(16), 3937-3952.

117

60. Kochetov, Y., & Stolyar, A. (2003). Evolutionary local search with variable neighborhood

for the resource constrained project scheduling problem. In Proceedings of the 3rd

international workshop of computer science and information technologies (Vol. 132).

61. Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods

revisited: Theory and computation. European Journal of Operational Research, 90(2), 320-

333.

62. Kolisch, R., & Drexl, A. (1996). Adaptive search for solving hard project scheduling

problems. Naval Research Logistics (NRL), 43(1), 23-40.

63. Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained

project scheduling problem: Classification and computational analysis. In Project

scheduling (pp. 147-178). Springer, Boston, MA.

64. Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-

constrained project scheduling: An update. European Journal of Operational Research,

174(1), 23-37.

65. Kolisch, R., & Sprecher, A. (1997). PSPLIB-a project scheduling problem library: OR

software-ORSEP operations research software exchange program. European Journal of

Operational Research, 96(1), 205-216.

66. Koste, L.L., & Malhotra, M.K. (1999). A theoretical framework for analyzing the

dimensions of manufacturing flexibility. Journal of Operations Management, 18(1), 75–93.

67. Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for

simultaneous scheduling of machines and automated guided vehicles. International Journal

of Production Economics, 143(1), 24-34.

68. Leon, V. J., & Balakrishnan, R. (1995). Strength and adaptability of problem-space based

neighborhoods for resource-constrained scheduling. Operations-Research-Spektrum, 17(2-

3), 173-182.

69. Li, K. Y., & Willis, R. J. (1992). An iterative scheduling technique for resource-constrained

project scheduling. European Journal of Operational Research, 56(3), 370-379.

70. Li, H., & Womer, K. (2009). Scheduling projects with multi-skilled personnel by a hybrid

MILP/CP benders decomposition algorithm. Journal of Scheduling, 12(3), 281.

71. Liu, S. S., & Wang, C. J. (2012). Optimizing linear project scheduling with multi-skilled

crews. Automation in Construction, 24, 16-23.

118

72. Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. (2016). A multi-objective invasive

weeds optimization algorithm for solving multi-skill multi-mode resource constrained

project scheduling problem. Computers & Chemical Engineering, 88, 157-169.

73. Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a

technique for research and development program evaluation. Operations Research, 7(5),

646-669.

74. Mellentien, C., Schwindt, C., & Trautmann, N. (2004). Scheduling the factory pick-up of

new cars. OR Spectrum, 26(4), 579-601.

75. Mendes, J. J. D. M., Gonçalves, J. F., & Resende, M. G. (2009). A random key based

genetic algorithm for the resource constrained project scheduling problem. Computers &

Operations Research, 36(1), 92-109.

76. Myszkowski, P. B., Laszczyk, M., Nikulin, I., & Skowroński, M. (2018). iMOPSE: a

library for bicriteria optimization in Multi-Skill Resource-Constrained Project Scheduling

Problem. Soft Computing, 1-14.

77. Myszkowski, P. B., Olech, Ł. P., Laszczyk, M., & Skowroński, M. E. (2018). Hybrid

Differential Evolution and Greedy Algorithm (DEGR) for solving Multi-Skill Resource-

Constrained Project Scheduling Problem. Applied Soft Computing, 62, 1-14.

78. Myszkowski, P. B., Skowroński, M. E., Olech, Ł. P., & Oślizło, K. (2015). Hybrid ant

colony optimization in solving multi-skill resource-constrained project scheduling problem.

Soft Computing, 19(12), 3599-3619.

79. Naber, A., & Kolisch, R. (2014). MIP models for resource-constrained project scheduling

with flexible resource profiles. European Journal of Operational Research, 239(2), 335-

348.

80. Néron, E. (2002, April). Lower bounds for the multi-skill project scheduling problem. In

Proceeding of the Eighth International Workshop on Project Management and Scheduling

(pp. 274-277).

81. Neumann, K., Schwindt, C., & Trautmann, N. (2002). Advanced production scheduling for

batch plants in process industries. OR spectrum, 24(3), 251-279.

82. Neumann, K., Schwindt, C., & Zimmermann, J. (2006). Resource-constrained project

scheduling with time windows. In Perspectives in modern project scheduling (pp. 375-

407). Springer, Boston, MA.

119

83. Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource

constrained project scheduling problem. In Essays and surveys in metaheuristics (pp. 557-

588). Springer, Boston, MA.

84. Olsson, N. O. (2006). Management of flexibility in projects. International Journal of

Project Management, 24(1), 66-74.

85. Pan, N. H., Hsaio, P. W., & Chen, K. Y. (2008). A study of project scheduling optimization

using Tabu Search algorithm. Engineering Applications of Artificial Intelligence, 21(7),

1101-1112.

86. Patterson, J. H., Brian Talbot, F., Slowinski, R., & Weglarz, J. (1990). Computational

experience with a backtracking algorithm for solving a general class of precedence and

resource-constrained scheduling problems. European Journal of Operational Research, 49,

68-79.

87. Patterson, J. H., & Roth, G. W. (1976). Scheduling a project under multiple resource

constraints: a zero-one programming approach. AIIE Transactions, 8(4), 449-455.

88. Ranjbar, M., & Kianfar, F. (2010). Resource-constrained project scheduling problem with

flexible work profiles: a genetic algorithm approach. Scientia Iranica, Transaction E,

Industrial Engineering, 17(1), 25.

89. Rao, R., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for

solving complex constrained optimization problems. International Journal of Industrial

Engineering Computations, 3(4), 535-560.

90. Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based

optimization: a novel method for constrained mechanical design optimization problems.

Computer-Aided Design, 43(3), 303-315.

91. Santos, M. A., & Tereso, A. P. (2010). On the multi-mode, multi-skill resource constrained

project scheduling problem (MRCPSP-MS). In 2nd International Conference on

Engineering Optimization (EngOpt2010).

92. Schirmer, A. (2000). Case-based reasoning and improved adaptive search for project

scheduling. Naval Research Logistics (NRL), 47(3), 201-222.

93. Shewchuk, J. P., & Chang, T. C. (1995). Resource-constrained job scheduling with

recyclable resources. European Journal of Operational Research, 81(2), 364-375.

120

94. Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs:

The nonpreemptive case. Management Science, 28(10), 1197-1210.

95. Thomas, P. R., & Salhi, S. (1998). A tabu search approach for the resource constrained

project scheduling problem. Journal of Heuristics, 4(2), 123-139.

96. Tiwari, V., Patterson, J. H., & Mabert, V. A. (2009). Scheduling projects with

heterogeneous resources to meet time and quality objectives. European Journal of

Operational Research, 193(3), 780-790.

97. Tormos, P., & Lova, A. (2001). A competitive heuristic solution technique for resource-

constrained project scheduling. Annals of Operations Research, 102(1-4), 65-81.

98. Tseng, L. Y., & Chen, S. C. (2006). A hybrid metaheuristic for the resource-constrained

project scheduling problem. European Journal of Operational Research, 175(2), 707-721.

99. Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the

resource-constrained project scheduling problem. European Journal of Operational

Research, 185(2), 495-508.

100. Valls, V., Pérez, Á., & Quintanilla, S. (2009). Skilled workforce scheduling in service

centres. European Journal of Operational Research, 193(3), 791-804.

101. Wang, L., & Zheng, X. L. (2018). A knowledge-guided multi-objective fruit fly

optimization algorithm for the multi-skill resource constrained project scheduling problem.

Swarm and Evolutionary Computation, 38, 54-63.

102. Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with

finite or infinite number of activity processing modes–A survey. European Journal of

Operational Research, 208(3), 177-205.

103. Wiest, J. D. (1967). A heuristic model for scheduling large projects with limited resources.

Management Science, 13(6), B-359.

104. Wongwai, N., & Malaikrisanachalee, S. (2011). Augmented heuristic algorithm for multi-

skilled resource scheduling. Automation in Construction, 20(4), 429-445.

105. Zamani, R. (2013). A competitive magnet-based genetic algorithm for solving the resource-

constrained project scheduling problem. European Journal of Operational Research,

229(2), 552-559.

106. Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes

for resource-constrained project scheduling. Automation in Construction, 14(3), 393-404.

121

107. Zhang, H., Li, H., & Tam, C. M. (2006). Particle swarm optimization for resource-

constrained project scheduling. International Journal of Project Management, 24(1), 83-

92.

108. Zheng, H. Y., & Wang, L. (2015). An effective teaching–learning-based optimisation

algorithm for RCPSP with ordinal interval numbers. International Journal of Production

Research, 53(6), 1777-1790.

109. Zheng, H. Y., Wang, L., & Zheng, X. L. (2017). Teaching–learning-based optimization

algorithm for multi-skill resource constrained project scheduling problem. Soft Computing,

21(6), 1537-1548.

110. Zou, F., Chen, D., & Xu, Q. (2019). A survey of teaching–learning-based optimization.

Neurocomputing, 335, 366-383.

122

Appendices

123

Appendix-I: Problem Instance formats

In this appendix, the sample instances of the RCPSP and MSRCPSP used in computational

experiments are provided.

(a) Sample .txt input file format for the RCPSP instance:

Row 1: No. of activities; No. of renewable resource types

Row 2: Maximum availability of each renewable resource

Row 3 onwards: Activity resource requirements (first 4 columns); No. of successors; Successor activities

32 4

12 13 4 12

0 0 0 0 0 3 2 3 4

8 4 0 0 0 3 6 11 15

4 10 0 0 0 3 7 8 13

6 0 0 0 3 3 5 9 10

3 3 0 0 0 1 20

8 0 0 0 8 1 30

5 4 0 0 0 1 27

9 0 1 0 0 3 12 19 27

2 6 0 0 0 1 14

7 0 0 0 1 2 16 25

9 0 5 0 0 2 20 26

2 0 7 0 0 1 14

6 4 0 0 0 2 17 18

3 0 8 0 0 1 17

9 3 0 0 0 1 25

10 0 0 0 5 2 21 22

6 0 0 0 8 1 22

5 0 0 0 7 2 20 22

3 0 1 0 0 2 24 29

7 0 10 0 0 2 23 25

2 0 0 0 6 1 28

7 2 0 0 0 1 23

2 3 0 0 0 1 24

3 0 9 0 0 1 30

3 4 0 0 0 1 30

7 0 0 4 0 1 31

8 0 0 0 7 1 28

3 0 8 0 0 1 31

7 0 7 0 0 1 32

2 0 7 0 0 1 32

2 0 0 2 0 1 32

0 0 0 0 0 0

124

(b) Sample .txt input file format for the MSRCPSP instance:

N

u
m

b
er

 o
f

A
ct

iv
it

ie
s

S-1 S-2 S-3

S-4

P
ro

ce
ss

in
g

T
im

e

N
u

m
b

er
 o

f

S
u

cc
es

so
rs

Successor

Activities

N
u

m
b

er
 o

f

st
af

f
(P

)

S-1 S-2 S-3 S-4

1 0 0 0 0 0 3 2 3 4 1 1 1 1 0

2 0 2 2 0 3 3 12 19 23 2 1 0 0 1

3 3 0 0 1 7 3 8 13 16 3 0 1 0 1

4 0 3 3 0 10 3 5 6 22 4 1 1 1 0

5 0 3 0 1 9 3 14 15 17 5 1 0 1 1

6 3 0 3 0 6 3 7 13 16 6 0 1 1 1

7 3 2 0 0 6 3 15 21 26 7 0 0 1 0

8 0 2 0 1 8 3 9 10 14 8 1 0 0 0

9 0 3 2 0 1 3 11 19 21 9 1 1 1 0

10 1 0 3 0 7 3 11 12 15 10 1 0 1 1

11 0 1 1 0 6 2 17 26 0 11 0 1 1 1

12 2 3 0 0 10 3 21 22 25 0 0 0 0 0

13 3 0 3 0 8 3 14 17 23 0 0 0 0 0

14 0 0 2 2 5 3 18 24 27 0 0 0 0 0

15 0 2 0 1 3 3 18 20 23 0 0 0 0 0

16 0 1 0 3 3 2 18 25 0 0 0 0 0 0

17 1 0 0 3 4 1 20 0 0 0 0 0 0 0

18 0 0 2 2 3 3 19 29 30 0 0 0 0 0

19 2 0 2 0 3 1 28 0 0 0 0 0 0 0

20 2 0 3 0 1 1 25 0 0 0 0 0 0 0

21 1 1 0 0 9 3 24 29 30 0 0 0 0 0

22 3 0 0 2 5 2 24 26 0 0 0 0 0 0

23 2 0 0 1 5 1 27 0 0 0 0 0 0 0

24 0 0 3 2 10 1 28 0 0 0 0 0 0 0

25 0 1 2 0 10 2 27 29 0 0 0 0 0 0

26 0 0 2 1 4 2 28 30 0 0 0 0 0 0

27 1 0 0 1 5 1 31 0 0 0 0 0 0 0

28 1 0 3 0 9 1 31 0 0 0 0 0 0 0

29 0 0 2 1 1 1 32 0 0 0 0 0 0 0

30 0 2 0 2 1 1 32 0 0 0 0 0 0 0

31 0 0 2 2 7 1 32 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125

(c) Sample .txt input file format for the MO-MSRCPSP instance (Staff with skill

proficiency levels):

N
u

m
b

er
 o

f

A
ct

iv
it

ie
s

S-1 S-2 S-3

S-4

P
ro

ce
ss

in
g

T
im

e

N
u

m
b

er
 o

f

S
u

cc
es

so
rs

Successor

Activities

N
u

m
b

er
 o

f

st
af

f
(P

)

S-1 S-2 S-3 S-4

1 0 0 0 0 0 3 2 3 4 1 1 0.8 0.7 0

2 0 1 2 0 3 3 12 19 23 2 0.9 0 0 1

3 3 0 0 1 7 3 8 13 16 3 0 0.8 0 1

4 0 3 3 0 6 3 5 6 22 4 1 0.7 0.8 0

5 0 3 0 1 9 3 14 15 17 5 0.9 0 1 0.7

6 3 0 3 0 6 3 7 13 16 6 0 0.8 0.7 1

7 2 2 0 0 6 3 15 21 26 7 0 0 1 0

8 0 2 0 1 8 3 9 10 14 8 0.8 0 0 0

9 0 3 2 0 1 3 11 19 21 9 1 0.7 1 0

10 1 0 3 0 7 3 11 12 15 10 0.7 0 1 0.9

11 0 1 1 0 6 2 17 26 0 11 0 1 0.7 0.8

12 2 3 0 0 8 3 21 22 25 0 0 0 0 0

13 3 0 3 0 8 3 14 17 23 0 0 0 0 0

14 0 0 2 2 5 3 18 24 27 0 0 0 0 0

15 0 2 0 1 3 3 18 20 23 0 0 0 0 0

16 0 1 0 3 3 2 18 25 0 0 0 0 0 0

17 1 0 0 3 10 1 20 0 0 0 0 0 0 0

18 0 0 2 2 3 3 19 29 30 0 0 0 0 0

19 2 0 2 0 3 1 28 0 0 0 0 0 0 0

20 2 0 3 0 1 1 25 0 0 0 0 0 0 0

21 1 1 0 0 9 3 24 29 30 0 0 0 0 0

22 3 0 0 2 5 2 24 26 0 0 0 0 0 0

23 2 0 0 1 5 1 27 0 0 0 0 0 0 0

24 0 0 3 2 6 1 28 0 0 0 0 0 0 0

25 0 1 2 0 10 2 27 29 0 0 0 0 0 0

26 0 0 2 1 4 2 28 30 0 0 0 0 0 0

27 1 0 0 1 5 1 31 0 0 0 0 0 0 0

28 1 0 3 0 9 1 31 0 0 0 0 0 0 0

29 0 0 2 1 1 1 32 0 0 0 0 0 0 0

30 0 2 0 2 5 1 32 0 0 0 0 0 0 0

31 0 0 2 2 7 1 32 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0

126

Appendix II: MATLAB Codes

This appendix presents the MATLAB codes developed in this work for the RCPSP, MSRCPSP

and MO-MSRCPSP.

%%% Codes for initialization and calling the RCPSP instances in required formats %%%

clc;
clear all;
Npop=80;
No_iterations=20;
A=textread('J30_Optimum Makespan.txt');
folder='D:\PhD\PhD MATLAB\J30_480';
filetype='*.txt';
f=fullfile(folder,filetype);
d=dir(f);
A1=(A(1:(numel(d)),3));
for k=1:numel(d)
fprintf('Problem Instance: J30_0%d\nOptimum Makespan from PSPLIB= %d\n',k,A1(k))
 MATRIX{k}=dlmread(fullfile(folder,d(k).name));
PROBLEM_MATRIX=MATRIX{1,k};
ACTmtx=[(1:32)',ones(32,1),PROBLEM_MATRIX(3:34,1),PROBLEM_MATRIX(3:34,2:5)];
LIMmtx=PROBLEM_MATRIX(2,1:4);
RELmtx=[(1:32)',ones(32,1),PROBLEM_MATRIX(3:34,6),PROBLEM_MATRIX(3:34,7:9)];
NumAct=size(RELmtx,1);
PREDmtx=zeros(NumAct,max(RELmtx(:,3))+1); % This step creates a skeleton of
precedence matrix with all zeros
LimLen=length(LIMmtx);
% LIMmtx=LIMmtx.*1000;
CeilDur=sum(ACTmtx(:,3))+1;
RESLIMmtx=zeros(LimLen,CeilDur);

for i=1:LimLen
 RESLIMmtx(i,1:CeilDur)=LIMmtx(1,i);
end

%%%Creating a precedence matrix %%%%%%

for i=4:size(RELmtx,2)
 for j=1:NumAct
 if RELmtx(j,i)~=0
 PREDmtx(RELmtx(j,i),1)=PREDmtx(RELmtx(j,i),1)+1;
 PREDmtx(RELmtx(j,i),PREDmtx(RELmtx(j,i),1)+1)=RELmtx(j,1);
 end
 end
end

%%% Codes for applying TLBO philosophy for the RCPSP %%%

function[Makespan_tlbo,Student]=tlbo(Npop,NumAct,Student,PREDmtx,ACTmtx,RELmtx,
RESLIMmtx)

127

Makespan1=zeros(Npop,1);
for i=1:Npop
 Student1=Student(i,:);
 [Makespan1(i,:)]=SSS(NumAct,Student1,PREDmtx,ACTmtx,RESLIMmtx);
end
% Makespan1;
[~,k0]=min(Makespan1); % k0 is the index of best student in the Class which will be
designated as Teacher

%%% Start of Teacher Phase %%%
Teacher=Student(k0,:);
Student1_tp=zeros(1,NumAct);
Student2_tp=zeros(1,NumAct);
StudentNew_tp=zeros(1,NumAct);
Makespan_tp=zeros(Npop,1);
for i=1:Npop
 Student1_tp(i,:)=Student(i,:);
 Student2_tp(i,:)=Teacher;
 StudentNew_tp(i,:)=Crossover(Student1_tp(i,:),Student2_tp(i,:),NumAct);
 Makespan_tp(i,:)=SSS(NumAct,StudentNew_tp(i,:),PREDmtx,ACTmtx,RESLIMmtx);
 if Makespan_tp(i,:)< Makespan1(i,:);
 Student1_tp(i,:)=StudentNew_tp(i,:);
 else
 Student1_tp(i,:)=Student(i,:);
 Makespan_tp(i,:)=Makespan1(i,:);
 end
end

%%% Start of Student Phase %%%
Student1_sp=zeros(1,NumAct);
Student2_sp=zeros(1,NumAct);
StudentNew_sp=zeros(1,NumAct);
Makespan_sp=zeros(Npop,1);
r=randperm(Npop);
for i=1:Npop
 Student1_sp(i,:)=Student1_tp(i,:);
 Student2_sp(i,:)=Student1_tp(r(i),:);
 if Makespan_tp(i,:)> Makespan_tp(r(i),:);
 StudentNew_sp(i,:)=Crossover(Student1_sp(i,:),Student2_sp(i,:),NumAct);
 else
 StudentNew_sp(i,:)=Crossover(Student2_sp(i,:),Student1_sp(i,:), NumAct);
 end
 Makespan_sp(i,:)=SSS(NumAct,StudentNew_sp(i,:),PREDmtx,ACTmtx,RESLIMmtx);
 if Makespan_sp(i,:)< Makespan_tp(i,:);
 Student1_sp(i,:)=StudentNew_sp(i,:);
 else
 Student1_sp(i,:)=Student1_sp(i,:);
 Makespan_sp(i,:)=Makespan_tp(i,:);
 end
end
Student= Student1_sp;
Makespan_tlbo= min(Makespan_sp);

128

%%% Start of self-study phase by applying mutation in the TLBO %%%

Makespan_mut=zeros(Npop,1);
for i=1:Npop
 Student(i,:)= mutation(NumAct,Student1_sp(i,:),RELmtx);
 Makespan_mut(i,:)=SSS(NumAct,Student(i,:),PREDmtx,ACTmtx,RESLIMmtx);
 if Makespan_mut(i,:)< Makespan_sp(i,:)
 Student(i,:)=Student(i,:);
 Makespan_mut(i,:)=Makespan_mut(i,:);
 else
 Student(i,:)=Student1_sp(i,:);
 Makespan_mut(i,:)=Makespan_sp(i,:);
 end
 Makespan_tlbo= min(Makespan_mut);
end
fprintf('TLBO DETAILED MATRIX AFTER ITERATION')

%%% Applying elitism i.e. replacing worst solutions by elite solutions %%%

e=4; % elite size
[~, index]=sort(Makespan_sp);
for i=1:Npop
 Student1_sp(i,:)=Student1_sp(index(i,1),:);
end
Student1_sp((Npop-e+1:Npop),:)=Student1_sp(1:e,:); % Replacing worst solutions with
elite solutions

%%% A function file for Serial Schedule Generation Scheme (SSS) for the RCPSP %%%

function[Makespan]=SSS(NumAct,Student,PREDmtx,ACTmtx,RESLIMmtx)
FDmtx=zeros(NumAct,1);
 while ismember(0,FDmtx)
 i=1;
 while i<=NumAct
 if FDmtx(Student(i))==0
 Npre=PREDmtx(Student(i),1);
 FDpre=zeros(Npre,1);

 if Npre~=0
 FDpre=zeros(Npre,1);
 for j=1:Npre
 if FDmtx(PREDmtx(Student(i),1+j))~=0
 FDpre(j)=FDmtx(PREDmtx(Student(i),1+j));
 end
 end
 else
 % If no predecessors Studentlow activity to schedule
 FDpre=zeros(1,1);
 FDpre(1)=1;
 end

 if not(ismember(0, FDpre))
 EarST = max(FDpre);

129

 ACTdur = ACTmtx(Student(i),3);
 RESlim =(3 + size(RESLIMmtx,1));
 ACTres(1: size(RESLIMmtx,1)) = ACTmtx(Student(i),4:RESlim);
 ResFes = 0;
 while ResFes == 0;
 EarFI = EarST + ACTdur;
 for k=1: size(RESLIMmtx,1)
 z(k,:)=RESLIMmtx(k, EarST+1:EarFI)>=ACTres(1,k);
 end
 if not(ismember(0,z))
 ResFes=1 ; %Record Activity Finish Date in
 Matrix based on %resource 'k' requirement.
 z=[];
 else
 ResFes =0;
 EarST = EarST+1;
 end
 end
 if ResFes==1
 for k=1: size(RESLIMmtx,1)
 RESLIMmtx(k, EarFI-ACTdur+1:EarFI)=RESLIMmtx(k,EarFI-
 ACTdur+1:EarFI)-ACTres(k);
 end
 end
 FDmtx(Student(i)) = EarFI;
 i=0;
 end
 end
 i=i+1;
 end
 end
 FDmtx(:) = FDmtx(:)-1;
 Makespan= max(FDmtx);
SDmtx=zeros(NumAct,1);
for k=1:NumAct
SDmtx(k)=FDmtx(k)-ACTmtx(k,3);
end
Activity_Duration_StartTime_FinishTime=[(1:NumAct)' ACTmtx(:,3) SDmtx FDmtx];
Makespan= max(FDmtx);

%%% Codes for creating the ‘mutation’ function in TLBO and GA %%%

%% Hartmann (1998) mutation

function[Student]=mutation(NumAct,Student,RELmtx)
mut_prob=0.05;
for i=2:NumAct-2
 r=rand;
 if r< mut_prob
 PosA=i;
 PosB=i+1;

130

 ActA=Student(PosA);
 ActB=Student(PosB);
 if not(ismember(ActB,RELmtx(ActA,:)))
 Student(PosA)=ActB;
 Student(PosB)=ActA;
 end
 end
end

% Boctor mutation

function[Student]=mutation(NumAct,Student,RELmtx)
mut_prob=0.01;
for i=2:NumAct-2
 r=rand;
 if r< mut_prob
 PosA=i;
 PosB=randi([i+1,NumAct-1]);
 ActA=Student(PosA);
 ActB=Student(PosB);
 if not(ismember(ActB,RELmtx(ActA,:)))
 Student(PosA)=ActB;
 Student(PosB)=ActA;
 end
 end
end

%%% Codes for creating the ‘crossover’ function in TLBO and GA %%%

% Codes for 1-point Crossover
function[StudentNew]=Crossover(Student1,Student2,NumAct)
u=randi((NumAct-1));
a=Student1(1:u);
b=zeros(1,NumAct);
for i=1:NumAct
 if not(ismember(Student2(1,i),a));
 b(1,i)=Student2(1,i);
 end
end
b=b(logical(b));
StudentNew=[a,b];

%% Codes for 2-point Crossover%%

function[StudentNew]=Crossover(Student1,Student2,NumAct)
u=sort(randperm(NumAct-2,2));
a=Student1(1:u(1));
b=zeros(1,NumAct);
for i=1:NumAct
 if not(ismember(Student2(1,i),a));
 b(1,i)=Student2(1,i);
 end
end

131

b=b(logical(b));
b=b(1:u(2)-u(1));
b=[a,b];

if size(b,2)==NumAct;
 StudentNew=b;
else
 c=zeros(1,NumAct);
 for i=1:NumAct
 if not (ismember(Student1(1,i),b))
 c(1,i)=Student1(1,i);
 end
 end
 c=c(logical(c));
 StudentNew=[b,c];
end

%% Codes for calculating the activity times as per different priority rules %%

function[EST,EFT,LST,LFT] = ActTimes(ACTmtx,RELmtx,PREDmtx)
NumAct=size(RELmtx,1);
% PREDmtx=zeros(NumAct,max(RELmtx(:,3))+1);

for i=4:size(RELmtx,2)
 for j=1:NumAct
 if not(isnan(RELmtx(j,i)))
 PREDmtx(RELmtx(j,i),1)=PREDmtx(RELmtx(j,i),1)+1;
 PREDmtx(RELmtx(j,i),PREDmtx(RELmtx(j,i),1)+1)=RELmtx(j,1);
 end
 end
end
Npre=PREDmtx(1:NumAct,1);
Nsucc=RELmtx(1:NumAct,3);

% Codes to determine EST and EFT of the activities %
EST=zeros(NumAct,1);
EFT=zeros(NumAct,1);

for j=1:NumAct

 if Npre(j,1)==0
 EST(j,1)=0;
 else
 PredAct =[];
 L1=[];
 T1=[];
 PredAct=PREDmtx(j,2:Npre(j)+1);
 L1=length(PredAct);
 for k=1:L1
 T1(k,1)= EFT(PredAct(1,k),1);
 end
 EST(j,1)=max(T1);
 end
 EFT(j,1)=EST(j,1)+ ACTmtx(j,3);

132

end

% Codes to determine LFT and LST of the activities %
LFT=zeros(NumAct,1);
for m=NumAct:-1:1
 if Nsucc(m)==0
 LFT(m)=EFT(NumAct,1);
 else
 SuccAct=[];
 L2=[];
 T2=[];
 SuccAct=RELmtx(m,4:Nsucc(m)+3);
 L2=length(SuccAct);
 for k=1:L2
 T2(k,1)=LFT(SuccAct(1,k),1)-ACTmtx(SuccAct(1,k),3);
 end
 LFT(m,1)=min(T2);
 end
 LST(m,1)=LFT(m,1)-ACTmtx(m,3);
end

% %% Codes to create Initial population as precedence feasible Activity List with
Regret Based Biased Random Sampling (RBRS),Refer: Kolish & Hartmnn (1999) paper %%

function[Student]=Initial_Pop(NumAct,ACTmtx,SUCCmtx,PREDmtx)
[~,~,~,LFT] = ActTimes_Multi_Skill(ACTmtx,SUCCmtx,PREDmtx);
TIMES=[EST EFT LST LFT];
Student=zeros(1,NumAct);
 AL=[]; % Initialization of Activity List which is precedence feasible %
 DecSet=[]; % Decision Set of eligible activities at any stage %
 stage=1; % Maximum stages is equal to number of activities i.e. NumAct %
while stage<= NumAct
 if stage==1
 AL=1;
 n2=[];
 else
 SuccAct=[]; % Successor activities at any stage %
 PredAct=[]; % Predecessor activities at any stage %
 NumSucc=[]; % Number of successors at any stage %
 PRIORITY_VALUE=[];
 BIASED_VALUE=[];
 BIASED_PROB=[];
 CUMM_PROB=[];
 ActSelect=[];
 n1=length(AL);
 NumSucc=SUCCmtx(AL(1,n1),2);
 SuccAct=SUCCmtx(AL(1,n1),3:(NumSucc+2));
 n2=[];
 for i=1:NumSucc
 PredAct=PREDmtx(SuccAct(1,i),3:size(PREDmtx,2));
 if ismember(PredAct,[AL 0]);
 DecSet=[DecSet,SuccAct(1,i)];

133

 else
 DecSet=[DecSet];
 end
 end
 n2=length(DecSet);
 for j=1:n2
 PRIORITY_VALUE(1,j)=LFT(DecSet(1,j),1);
 end
 MAX=max(PRIORITY_VALUE);
 for j=1:n2
 BIASED_VALUE(1,j)=MAX-PRIORITY_VALUE(1,j)+1; % taking alpha and eta as 1
 from Hartmann(1999) paper
 end
 SUM=sum(BIASED_VALUE);
 for j=1:n2
 BIASED_PROB(1,j)=BIASED_VALUE(1,j)/SUM;
 end
 for j=1:n2
 if j==1
 CUMM_PROB(1,j)=BIASED_PROB(1,j);
 else
 CUMM_PROB(1,j)=BIASED_PROB(1,j)+ CUMM_PROB(1,j-1);
 end
 end
 r=rand;
 for j=1:n2
 if r < CUMM_PROB(1,j)
 ActSelect=[ActSelect DecSet(1,j)];
 end
 end
 n3=length(ActSelect);
 ActSelect=ActSelect(1,1);
 AL=[AL ActSelect];
 DecSet(n2-n3+1)=[];
 n2=[];
 end
 stage=stage+1;
end
Student(1,:)=AL;
end

% These codes have been developed to generate a MSRCPSP instance based on the
methodology proposed in Almeida et al. (2015) %

clc
clear all
N=22; % Enter the total number of activities including dummy source and sink
activities
NC=2.1; % Enter the desired network complexity

nStart=3; % Number of activities having dummy source as predecessor
nFinish=3; % Number of activities having dummy sink as successor

MaxSucc=3; % Number of maximum successors allowable for any activity

134

MaxPred=3; % Number of maximum predecessors allowable for any activity

PRED_Matrix=zeros(N+1,N+2); % Initializing precedence matrix
SUCC_Matrix=zeros(N+1,N+2); % Initializing successor matrix

PRED_Matrix(1,3:N+2)=1:N; % Assigning index of activities in rows
PRED_Matrix(2:N+1,1)=1:N; % Assigning index of activities in columns

SUCC_Matrix(1,3:N+2)=1:N; % Assigning index of activities in rows
SUCC_Matrix(2:N+1,1)=1:N; % Assigning index of activities in columns

PRED_Matrix(3:nStart+2,3)=ones(nStart,1); % Updating PRED_Matrix by nstart and
nfinish
PRED_Matrix(N+1,N+2-nFinish:N+1)=ones(1,nFinish);

SUCC_Matrix(2,4:nStart+3)=ones(1,nStart); % Updating SUCC_Matrix by nstart and
nfinish
SUCC_Matrix(N-nFinish+1:N,N+2)=ones(nFinish,1);

SUCC_Matrix2=SUCC_Matrix(2:N+1,3:N+2); % Selecting a sub-set matrix from main matrix
having logical 0 or 1 representing successors.
SUM_Succ=sum(SUCC_Matrix2,2); % Calculating row-wise summation of elements of
matrix.
Num_Succ=[(1:N)' SUM_Succ]; % Calculating number of successors of each activity till
this stage.

PRED_Matrix2=PRED_Matrix(2:N+1,3:N+2); % Selecting a sub-set matrix from main matrix
having logical 0 or 1 representing predecessors.
SUM_Pred=sum(PRED_Matrix2,2); % Calculating row-wise summation of elements of
matrix.
Num_Pred=[(1:N)' SUM_Pred]; % Calculating number of predecessors of each activity
till this stage.

% Now follows codes to randomly assign a predecessor to an activity with NIL
predecessor based on ALGORITHM-1(Almeida et al., 2015)

nonredarcs=nStart+nFinish;
j=nStart+2;
LIMIT1=1;
while LIMIT1<100 && j<N
 while Num_Pred(j,2)==0
 if j>=(N-nFinish)
 i=randi([2,N-nFinish-1],1);
 else
 i=randi([2,j-1],1);
 end

 if Num_Succ(i,2)< MaxSucc

 SUCC_Matrix2(i,j)=1;
 SUM_Succ=sum(SUCC_Matrix2,2);
 Num_Succ=[(1:N)' SUM_Succ];

 PRED_Matrix2(j,i)=1;
 SUM_Pred=sum(PRED_Matrix2,2);

135

 Num_Pred=[(1:N)' SUM_Pred];
 nonredarcs=nonredarcs+1;
 end
 end
 j=j+1;
 LIMIT1=LIMIT1+1;
end

SUCC_MATRIX_ALL=zeros(N,3);
for i=1:N
 idx1 = find(SUCC_Matrix2(i,:));
 SUCC_MATRIX_ALL(i,1:length(idx1)) = idx1;
end
SUCC_MATRIX_ALL=[Num_Succ SUCC_MATRIX_ALL];

PRED_MATRIX_ALL=zeros(N,3);
for i=1:N
 idx2 = find(PRED_Matrix2(i,:));
 PRED_MATRIX_ALL(i,1:length(idx2)) = idx2;
end
PRED_MATRIX_ALL=[Num_Pred PRED_MATRIX_ALL]
nonredarcs ;

% % Now follows codes to randomly assign a successor to an activity with NIL
successor based on ALGORITHM-2 (Almeida et al., 2015)

j=N-nFinish-1; % Initialization of j
LIMIT2=1;
while LIMIT2<100 && j>1
 PRED_IMM=PRED_MATRIX_ALL(j,3:5); % PRED_IMM gives immediate predecessors of j
 PRED_ALL=[];
 PRED1_ALL=[];
 PRED2_ALL=[];
 PRED3_ALL=[];
 PRED4_ALL=[];
 for k1=1:length(PRED_IMM)
 if PRED_IMM(k1)>1
 PRED1_ALL(k1,:)=PRED_MATRIX_ALL(PRED_IMM(k1),3:5);
 for k2=1:length(PRED1_ALL)
 if PRED1_ALL(k2)>1
 PRED2_ALL(k2,:)=PRED_MATRIX_ALL(PRED1_ALL(k2),3:5);
 for k3=1:length(PRED2_ALL)
 if PRED2_ALL(k3)>1
 PRED3_ALL(k3,:)=PRED_MATRIX_ALL(PRED2_ALL(k3),3:5);
 for k4=1:length(PRED3_ALL)
 if PRED3_ALL(k4)>1

PRED4_ALL(k4,:)=PRED_MATRIX_ALL(PRED3_ALL(k4),3:5);
 end
 end
 end
 end
 end

136

 end
 end
 end
 PRED_ALL=[PRED_IMM ;PRED1_ALL;PRED2_ALL;PRED3_ALL;PRED4_ALL];
 Z=unique(PRED_ALL)';
 Z(Z==0)=[];
 PRED_ALL=Z; % Gives set of all immediate and distant predecessors for activity j
 SUCC_OF_PREDS=[];
 A=[];
 for i=1:length(PRED_ALL)
 A=SUCC_MATRIX_ALL(PRED_ALL(i),3:5);
 SUCC_OF_PREDS=[A SUCC_OF_PREDS];
 end
 SUCC_OF_PREDS;
 Z1=unique(SUCC_OF_PREDS);
 Z1(Z1==0)=[];
 SUCC_OF_PREDS=Z1;

 while Num_Succ(j,2)==0
 if j<=nStart+1
 u=randi([nStart+2,N-1],1);
 else
 u=randi([j+1,N-1],1);
 end

 if Num_Pred(u,2)< MaxPred && ~(ismember(u,SUCC_OF_PREDS))

 SUCC_Matrix2(j,u)=1;
 SUM_Succ=sum(SUCC_Matrix2,2);
 Num_Succ=[(1:N)' SUM_Succ];

 PRED_Matrix2(u,j)=1;
 SUM_Pred=sum(PRED_Matrix2,2);
 Num_Pred=[(1:N)' SUM_Pred];
 nonredarcs=nonredarcs+1;
 end
 end
 j=j-1;
 LIMIT2=LIMIT2+1;
end
SUCC_Matrix2;
SUCC_MATRIX_ALL=zeros(N,3);
for i=1:N
 idx3 = find(SUCC_Matrix2(i,:));
 SUCC_MATRIX_ALL(i,1:length(idx3)) = idx3;
end
SUCC_MATRIX_ALL=[Num_Succ SUCC_MATRIX_ALL];

PRED_Matrix2;
PRED_MATRIX_ALL=zeros(N,3);
for i=1:N
 idx4 = find(PRED_Matrix2(i,:));
 PRED_MATRIX_ALL(i,1:length(idx4)) = idx4;
end
PRED_MATRIX_ALL=[Num_Pred PRED_MATRIX_ALL];

137

%%% Now follows codes to achieve the graph with desired network complexity based on

ALGORITHM-2 (Almeida et al., 2015) %%%

reqnumarcs=ceil(NC*N)
LIMIT3=1;
while LIMIT3<100 && nonredarcs<= reqnumarcs
 nonredarcs;
 i=randi([2,N-nFinish-1],1);
 if Num_Succ(i,2)< MaxSucc
 if i<=nStart+1
 S1=nStart+2:N-1;
 S2=SUCC_MATRIX_ALL(i,3:5);
 S3=setdiff(S1,S2);
 j=S3(randi([1,length(S3)],1));
 else
 S1=i+1:N-1;
 S2=SUCC_MATRIX_ALL(i,3:5);
 S3=setdiff(S1,S2);
 j=S3(randi([1,length(S3)],1));
 end

 if Num_Pred(j,2)< MaxPred

% We now compute all predecessors of activity i (represented as PRED_ALL then Z2)

PRED_IMM=[];

 PRED_IMM=PRED_MATRIX_ALL(i,3:5); % PRED_IMM gives immediate predecessors
 of i chosen above
 PRED_ALL=[];
 PRED1_ALL=[];
 PRED2_ALL=[];
 PRED3_ALL=[];
 PRED4_ALL=[];
 PRED5_ALL=[];
 for k11=1:length(PRED_IMM)
 if PRED_IMM(k11)>1
 PRED1_ALL(k11,:)=PRED_MATRIX_ALL(PRED_IMM(k11),3:5);
 for k12=1:length(PRED1_ALL)
 if PRED1_ALL(k12)>1
 PRED2_ALL(k12,:)=PRED_MATRIX_ALL(PRED1_ALL(k12),3:5);
 for k13=1:length(PRED2_ALL)
 if PRED2_ALL(k13)>1

PRED3_ALL(k13,:)=PRED_MATRIX_ALL(PRED2_ALL(k13),3:5);
 for k14=1:length(PRED3_ALL)
 if PRED3_ALL(k14)>1

PRED4_ALL(k14,:)=PRED_MATRIX_ALL(PRED3_ALL(k14),3:5);
 for k15=1:length(PRED4_ALL)
 if PRED4_ALL(k15)>1

138

PRED5_ALL(k15,:)=PRED_MATRIX_ALL(PRED4_ALL(k15),3:5);
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 PRED_ALL=[PRED_IMM ;PRED1_ALL;PRED2_ALL;PRED3_ALL;PRED4_ALL;PRED5_ALL];
 Z2=unique(PRED_ALL)';
 Z2(Z2==0)=[];
 PRED_ALL=Z2;

%%% This function ‘SSS_Multi_Skill’ applies modified Serial Schedule Generation
Scheme (SSS) to determine the makespan for a given Student %%%

 function[Makespan]=SSS_Multi_Skill(NumAct,Student,Staff_Act,PREDmtx,ACTmtx,SUCCmtx)

[EST,EFT] = ActTimes_Multi_Skill(ACTmtx,SUCCmtx,PREDmtx);
STmtx=zeros(NumAct,1); % Initializing the start times of all activities
FTmtx=zeros(NumAct,1); % Initializing the finish times of all activities
Npre=PREDmtx(:,2);
SCH_ACT=[]; % initializes the set of already scheduled activities
for i=2:NumAct-1

 if i==2
 DEC_ACT=Student(1,i);
 STmtx(DEC_ACT)=EST(DEC_ACT);
 FTmtx(DEC_ACT)=STmtx(DEC_ACT)+ACTmtx(DEC_ACT,6);
 [STmtx FTmtx];
 SCH_ACT=[DEC_ACT];
 for j=1:SUCCmtx(DEC_ACT,2)
EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT));

EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_ACT,j+2),6);
 end

 else
 DEC_ACT=[]; % empties the DEC_ACT to include the new current activity
 to be scheduled
 PRED_DEC_ACT=[]; % empties the set of predecessor activities of current
 activity to be scheduled
 PARRL_ACT=[]; % empties the set of parallel activities to be considered
 while scheduling current activity
 DEC_ACT=Student(1,i); % defines the new current activity to be scheduled
 PRED_DEC_ACT=PREDmtx(DEC_ACT,3:5); % defines the predecessor activities of
 current activity to be scheduled

139

 PARRL_ACT=setdiff(SCH_ACT,PRED_DEC_ACT); % defines the set of activities with
 which current activity in hand 'can be'
 scheduled in parallel
 if isempty(PARRL_ACT)
 EST(DEC_ACT)=max(FTmtx);
 STmtx(DEC_ACT)=EST(DEC_ACT);
 EFT(DEC_ACT)=EST(DEC_ACT)+ACTmtx(DEC_ACT,6);
 FTmtx(DEC_ACT)=EFT(DEC_ACT);

 for j=1:SUCCmtx(DEC_ACT,2)

EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT));

EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_A
CT,j+2),6);

 end
 SCH_ACT=[SCH_ACT DEC_ACT];
 else
 for k=1:length(PARRL_ACT)

if (STmtx(PARRL_ACT(k))<=EST(DEC_ACT)&&
EST(DEC_ACT)<FTmtx(PARRL_ACT(k))) || (STmtx(PARRL_ACT(k))<EFT(DEC_ACT)&&
EFT(DEC_ACT) <=FTmtx(PARRL_ACT(k)));

 % we now check if there is(are) any common worker(s) between any
 activity from set PARRL_ACT and activity in DEC_ACT
 Staff_set1=[];
 Staff_set2=[];
 Staff_set1=Staff_Act(PARRL_ACT(k),2:13);
 Staff_set1=Staff_set1(logical(Staff_set1));
 Staff_set2=Staff_Act(DEC_ACT,2:13);
 Staff_set2=Staff_set2(logical(Staff_set2));

 if any(intersect(Staff_set1,Staff_set2))==1;
 EST(DEC_ACT)=FTmtx(PARRL_ACT(k));
 STmtx(DEC_ACT)=EST(DEC_ACT);
 EFT(DEC_ACT)=EST(DEC_ACT)+ ACTmtx(DEC_ACT,6);
 FTmtx(DEC_ACT)=EFT(DEC_ACT);
 else
 STmtx(DEC_ACT)=EST(DEC_ACT);
 FTmtx(DEC_ACT)=STmtx(DEC_ACT)+ ACTmtx(DEC_ACT,6);
 end
 SCH_ACT=[SCH_ACT DEC_ACT];
 for j=1:SUCCmtx(DEC_ACT,2)

EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT));

EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_ACT,j+2),6);
 end
 else

CONDITION=(EFT(DEC_ACT)<=STmtx(PARRL_ACT(k))||EST(DEC_ACT)>=FTmtx(PARRL_ACT(k)));
 STmtx(DEC_ACT)=EST(DEC_ACT);
 FTmtx(DEC_ACT)=STmtx(DEC_ACT)+ ACTmtx(DEC_ACT,6);
 SCH_ACT=[SCH_ACT DEC_ACT];

140

 for j=1:SUCCmtx(DEC_ACT,2)

EST(SUCCmtx(DEC_ACT,j+2))=max(EST(SUCCmtx(DEC_ACT,j+2)),FTmtx(DEC_ACT));

EFT(SUCCmtx(DEC_ACT,j+2))=EST(SUCCmtx(DEC_ACT,j+2))+ACTmtx(SUCCmtx(DEC_ACT,j+2),6);
 end
 end
 end
 end
 end
end
STmtx(NumAct)=EST(NumAct);
FTmtx(NumAct)=EFT(NumAct);
[STmtx FTmtx];
% SCHEDULE=[(1:NumAct)' EST EFT];
Makespan=max(EFT);

%% Code to generate Staff-Skill matrix
clc
clear all
P=11; % Define the number of staff members
r1=randi([1,3],P,1); % Number of skills mastered by each person(staff) is varied in
set {1,2,3}
for i=1:P
 if r1(i)==1
 P1=[1 0 0 0];
 elseif r1(i)==2
 P1=[1 1 0 0];
 elseif r1(i)==3
 P1=[1 1 1 0];
 end
 STAFF_SKILL_MATRIX(i,:)=P1(randperm(4));
end
STAFF_SKILL_MATRIX

% Code to generate Activity-Skill Matrix for a given skill factor
clc
clear all
N=30; % Define the number of activities

%If SF is 0.5, 0.75 or 1.0 use this code
A=[1 1 0 0];% SF=0.50, so two 'ones' are included in A1; total skill types is 4
%A=[1 1 1 0];% SF=0.75, so three 'ones' are included in A2; total skill types is 4
%A=[1 1 1 1];% SF=1.0, so four 'ones' are included in A4; total skill types is 4
for i=1:N % where N is number of activities
 B(i,:)=A(randperm(4));
end

141

% If SF is variable use this code
%SF variable means number of skill types needed by an activity is randomly chosen in
set {2,3,4}.
r2=randi([2,4],N,1); % Since there are three possibilities in {2,3,4} i.e. number of
types of skills needed by each activity
for i=1:N
if r2(i)==2
 A=[1 1 0 0];
 elseif r2(i)==3
 A=[1 1 1 0];
 elseif r2(i)==4
 A=[1 1 1 1];
 end
 B(i,:)=A(randperm(4));
end
C=randi([1,3],N,4); % No. of persons required by each activity is varied in set
{1,2,3}
ACT_SKILL_MATRIX=B.*C
P=randi([1,10],N,1);

% %% Now follows codes to assign feasible set of staff members to meet activities'

skill requirements%%

function[Staff_Act]=Staff_Assignment(NumAct,Student,ACTmtx,STAFFmtx)

STAFF_SKILL1=find(STAFFmtx(:,2)==1)';
STAFF_SKILL2=find(STAFFmtx(:,3)==1)';
STAFF_SKILL3=find(STAFFmtx(:,4)==1)';
STAFF_SKILL4=find(STAFFmtx(:,5)==1)';

 Staff_Act=zeros(NumAct,12);
 for j=2:NumAct-1
 b=[];
 S1=[];
 S2=[];
 S3=[];
 S4=[];
 A=[];
 for k=1:4
 b=ACTmtx(Student(1,j),k+1);
 if b==0
 A=[];
 elseif b~=0 && k==1
 r1=randperm(length(STAFF_SKILL1),b);
 for n1=1:b
 S1(n1)=STAFF_SKILL1(r1(n1));
 end

 elseif b~=0 && k==2
 r2=randperm(length(STAFF_SKILL2),b);

142

 for n2=1:b
 S2(n2)=STAFF_SKILL2(r2(n2));
 end

 elseif b~=0 && k==3
 r3=randperm(length(STAFF_SKILL3),b);
 for n3=1:b
 S3(n3)=STAFF_SKILL3(r3(n3));
 end

 elseif b~=0 && k==4
 r4=randperm(length(STAFF_SKILL4),b);
 for n4=1:b
 S4(n4)=STAFF_SKILL4(r4(n4));
 end
 end

 end
 A=[S1 S2 S3 S4];

% We now apply while loop to ensure that for each activity no staff member is
assigned to perform two or more skills simultaneously or in other words staff

assignment is unique in nature.%
 LIMIT=1;
 while length(unique(A))~=length(A)&& LIMIT<1000
 b=[];
 S1=[];
 S2=[];
 S3=[];
 S4=[];
 A=[];
 for k=1:4
 b=ACTmtx(Student(1,j),k+1);
 if b==0
 A=[];
 elseif b~=0 && k==1
 r1=randperm(length(STAFF_SKILL1),b);
 for n1=1:b
 S1(n1)=STAFF_SKILL1(r1(n1));
 end

 elseif b~=0 && k==2
 r2=randperm(length(STAFF_SKILL2),b);
 for n2=1:b
 S2(n2)=STAFF_SKILL2(r2(n2));
 end

 elseif b~=0 && k==3
 r3=randperm(length(STAFF_SKILL3),b);
 for n3=1:b

143

 S3(n3)=STAFF_SKILL3(r3(n3));
 end

 elseif b~=0 && k==4
 r4=randperm(length(STAFF_SKILL4),b);
 for n4=1:b
 S4(n4)=STAFF_SKILL4(r4(n4));
 end
 end

 end

 LIMIT=LIMIT+1;
 A=[S1 S2 S3 S4];
 end
 Staff_Act(j,1:length(A))=A;
 end

 Staff_Act=[Student(1,:)' Staff_Act];
for i=1:NumAct
 MINIMUM=min(Staff_Act(:,1));
 index=find((MINIMUM==Staff_Act(:,1)));
 Staff_Act2(i,:)=Staff_Act(index,:);
 Staff_Act(index,:)=[];
end
Staff_Act=Staff_Act2;

% Now follows codes for the MO-MSRCPSP to calculate the TOTAL TIME ELAPSED IN UNDER-
SKILLED STAFF ASSIGNMENT (denoted as TIME_UnderSkill) for the project

clc
clear all
ACTmtx=textread('ACTmtx.txt');
STAFFmtx=textread('STAFFmtx2.txt');
Staff_Act=textread('Staff_Act.txt');
NumAct=12;

TIME_UnderSkill_Matrix=zeros(NumAct,4);
for i=1:NumAct
 b=[];
 ASSIGNED_STAFF=0;
 for k=1:4 % as there are a total of four skill types
 b=ACTmtx(i,k+1);
 if b~=0
 Staff_Index=[];
 TIME_UnderSkill_Array=[];
 for n=1:b
 Staff_Index(n)=Staff_Act(i,n+1+ASSIGNED_STAFF);
 TIME_UnderSkill_Array(n)=(1-
(STAFFmtx(Staff_Index(n),k+1)))*ACTmtx(i,6);
 end
 ASSIGNED_STAFF=ASSIGNED_STAFF+b;

144

 TIME_UnderSkill_Matrix(i,k)=sum(TIME_UnderSkill_Array);
 end
 end
end
TIME_UnderSkill_Matrix
TIME_UnderSkill=sum(sum(TIME_UnderSkill_Matrix))

**

145

List of Publications

International Journals

1. Joshi, D., Mittal, M.L., Kumar M. An efficient teaching-learning-based optimization

algorithm (TLBO) for the resource-constrained project scheduling problem, International

Journal of Industrial and Systems Engineering (Accepted) (SCOPUS Indexed)

2. Joshi, D., Mittal, M.L., Sharma M. K., Kumar M. An effective teaching-learning-based

optimization algorithm for the multi-skill resource-constrained project scheduling

problem, Journal of Modelling in Management (Accepted) (SCOPUS Indexed)

3. Joshi, D., Mittal, M.L., Kumar M. A teaching-learning-based optimisation algorithm for

the multi-objective multi-skill resource-constrained project scheduling problem. (To be

communicated)

4. Joshi, D., Mittal, M.L., Kumar M. Resource flexibility in project scheduling: Facets and

dimensions. (To be communicated)

International Conferences

1. Joshi, D., Mittal, M.L., Kumar M., An improved teaching-learning-based algorithm

(TLBO) for the resource-constrained project scheduling problem (RCPSP), In: XX

Annual International Conference of Society of Operations Management- 2016 held at

ABV-IIITM Gwalior from 22
nd

 to 24
th

 December, 2016.

2. Joshi, D., Mittal, M. L., & Kumar, M. (2019). A Teaching–Learning-Based Optimization

Algorithm for the Resource-Constrained Project Scheduling Problem. In Harmony

Search and Nature Inspired Optimization Algorithms (pp. 1101-1109). Springer,

Singapore.(SCOPUS Indexed)

146

Author’s Biographical Sketch

Name : Dheeraj Joshi

Date of Birth : July 25, 1979

Address : Department of Mechanical Engineering

Swami Keshvanand Institute of Technology, Management &

Gramotham, Jaipur-302017.

E-mail: dheerajjoshi25@gmail.com

Phone: 9460355422

Qualifications : B.E. (Production and Industrial Engineering) (2002).

 M.B.M. Engineering College,

Jai Narain Vyas University,Jodhpur.

 M.E. (Production and Industrial Engineering) (2011).

 M.B.M. Engineering College, Jodhpur.

Jai Narain Vyas University,Jodhpur.

Experience : Associate Professor,

 Department of Mechanical Engineering

Swami Keshvanand Institute of Technology, Management &

Gramotham, Jaipur-302017

(July, 2005- till now)

Areas of Interest : Engineering Optimization

 Operations Management

Project Management and Scheduling

Artificial Intelligence Techniques

 Manufacturing Science

mailto:dheerajjoshi25@gmail.com

