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ABSTRACT 

 

In today’s competitive globalised market, it is imperative for enterprises to 

improve their efficiency and provide better service to customers. To do so, 

organisations are opting for producing at multiple manufacturing sites situated at 

geographically distinct locations. The generation of effective production and 

distribution planning is necessary for success of this multi-site network. 

Production planning is concerned with quantity of production of different products 

and aims to find a cost effective plan, while distribution planning is related with 

computing transportation quantity so as to fulfil the demand of customers. Most of 

the literature focuses on solving these two planning problems independently called 

as two phase approach, which leads to suboptimal solutions. The purpose of this 

research work is to deal with the complex scenario and aspects of integrated 

production and distribution planning in two echelon supply chain network in 

which demand of multiple selling locations is served by multiple manufacturers. 

The study covers integrated production and distribution planning problem 

considering single as well as multiple objectives, optimize in deterministic as well 

as under uncertain environment. The problems are formulated using mathematical 

programming, especially mixed-integer linear programming (MILP) technique, 

and to solve these mathematical models, several solution approaches are 

implemented. 

Initially, a mixed integer linear programming (MILP) model is formulated for an 

integrated production and distribution planning problem in a multi-product, multi-

period and multi-site manufacturing environment. Three important aspects of 

production and distribution planning; set up cost/time for different products at 

manufacturing sites, capacities of the heterogeneous transport vehicles and 

backordering for unfulfilled demand are considered in an integrated manner to 

represent the real life scenario. An illustrative example inspired from an Indian 

automobile manufacturing company is taken and analytical results are presented to 

indicate the performance of the proposed model. The problem is solved by branch 

and cut approach using CPLEX solver of IBM CPLEX 12.7 software. The 
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outcome of the proposed mathematical model determines optimal quantities of 

production, inventory and trasnportation.  

Real life problems of multi-site integrated production and distribution planning is 

having large number of variables and this complexity makes it difficult to be 

solved by computational solver in reasonable time due to limitation of memory. 

Consequently, Lagrangian relaxation based heuristics approaches are 

implemented, which are able to generate feasible solutions in less computational 

time. The hard constraints are relaxed and added into objective function, resulting 

in an easy to solve subproblem. This relaxation makes the original problem 

infeasible. To maintain the feasibility; lagrangian heuristics algorithms are 

proposed. The performance of lagrangian relaxation approach is demonstrated 

using various random data based problem instances and compared solution of 

them with commercial solver results. 

For a successful production plan, there exists more than one criterion. The 

proposed mathematical model is extended to include multiple criterions or 

objectives. Three conflicting objectives that need to be minimized are total cost, 

delivery time, and backorder level. A variant of Goal programming method, 

known as Preemptive goal programming is used to solve the proposed multi-

objective mathematical model. Input parameter data of automobile manufacturing 

company is considered and further analysis is also conducted to visualize effect of 

changing priority level on objective functions and deviation variables.  

The practical integrated production and distribution planning problem in supply 

chain has multiple conflicting objectives which are often fuzzy or uncertain due to 

unavailability or improper information. Therefore, it is necessary to consider this 

variability while modeling production and distribution plans. A fuzzy multi-

objective mixed integer linear programming model is formulated for a multi-

product, multi-period and multi-site manufacturing environment. The fuzzy 

objectives are represented by piecewise linear membership function. Sensitivity 

analysis on objective function values is conducted and important findings are 

drawn from analytical result of the study. 
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The fuzzy approach only considers truth side of a problem but do not consider 

false side and aspect of indeterminacy, which occurs due to unexpected 

parameters hidden in some propositions. To consider all the three aspects, concept 

of Neutrosophy is implemented. Neutrosophic sets have been introduced as a 

generalization of fuzzy and intuitionistic fuzzy sets to represent imprecise, vague 

and incomplete information about a problem. Mathematical model for multi-

objective multi-site integrated production and distribution planning problem is 

formulated in neutrosophic environment. Each objective function of the proposed 

mathematical model is represented by membership functions of neutrosophic 

environment i.e. truth, indeterminacy and falsity. A neutrosophic model is 

constructed using these membership functions to find the best compromised 

solution. The outcome of the neutrosophic model is compared with Intuitionistic 

fuzzy programming approach which shows superiority of the results obtained 

through the neutrosophic approach. 
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Chapter 1 

Introduction 

 

1.1 Problem contextualization 

Organizations nowadays are configured into network of manufacturing and 

distribution facilities called as supply chain. Supply chain can be defined as group 

of entities that interact with each other to procure and transform raw material into 

finished goods and distribute them to the end customer (Chopra and Meindl, 

2004). There are three levels of activities in supply chain depending upon the time 

horizon and decisions; strategic, tactical and operational (Ballou, 1992). Strategic 

level decisions are related with facility location design, supply chain network 

design, production technologies and capacities of plants and made over a time 

horizon of more than one year. Once the location of facilities is determined, the 

focus shifts to tactical level decisions, which made over a span of few weeks to a 

year and are related with assembly policy, lot sizing, production, inventory and 

distribution; ensuring effective utilization of resources. At the operational level, 

decision related with operations sequence and schedules are made over a short 

time horizon of a day to a week.  

Successful supply chain requires effective coordination among various members 

and functions of the supply chain. Performance of the supply chain can be 

improved through effective integration of production and distribution (PD) 

functions (Vercellis, 1999). Traditionally, these planning decisions were made 

sequentially, leading to an infeasible or sub-optimal plan in terms of inventory 

and capacities (Torabi and Hassini, 2009). To overcome this drawback, 

organizations are working towards coordinating the PD planning decisions in an 

integrated framework. 

In this research, the interaction between production and distribution decisions of 

two echelons of supply chain; manufacturer and selling location are analysed. 

Integration of these two functions in multi-site manufacturing scenario is 
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demonstrated through mathematical modelling and illustrated through real life 

industrial example problem. The production and distribution plans are generated 

for single as well as multi-criteria deterministic and uncertain scenarios. 

This chapter presents overview of the thesis. First section discusses about 

background of the research work and two echelon supply chain scenario. After 

that, the motivation for conducting this research work is presented in terms of 

research gaps analysed from the critical examination of literature. To fulfil these 

research gaps, research objectives are formulated. Next section demonstarte about 

the research methodology employed in this thesis. The chapter ends with 

explaination of structure of this thesis.   

1.1.1 Multi-site manufacturing 

In this current trend of globalization, there is a competitive environment for 

organizations to capture the market by quickly responding to customer needs. This 

globalisation of market has motivated organizations to move close to the customer 

by opting for producing at multiple manufacturing sites situated at geographically 

distinct locations to save cost/time of distribution, focus on few product 

categories, achieve better quality and to provide better service to customer (Chan 

et al., 2005). The goal is to deliver the right product to the right place at the right 

time. 

In multi-site manufacturing environment, two scenarios can be possible i.e. series 

and parallel (Kanyalkar and Adil, 2005). A serial setup produces intermediate 

products which are then assembled into final products by other manufacturing 

sites. The manufacturing sites in this setup are non-identical and assembling sites 

are located close to customer (Guinet, 2001). In parallel setup, each 

manufacturing site is producing final product and distributing them to customer, 

as shown in Figure 1.1. There are two ways to deal with the parallel setup, one in 

which each manufacturing site is allocated with fixed number of selling locations 

or customers called as fixed channel matrix (Figure 1.1 a). Another way is 

dynamic allocation of selling locations to manufacturing sites (Figure 1.1 b).  
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(a) Fixed channel matrix layout   (b) Dynamic allocation layout 

Figure 1.1: Layouts of Manufacturing site and selling location 

Production planning is easy in the fixed channel, but isolating manufacturing sites 

from each other is not helpful when customer demand reaches beyond each plants 

fixed production capacity, consequently there is loss of customer due to 

backordering and lost sales. In dynamic allocation, shifting of excess requirement 

to other manufacturing site is possible, which leads to effective utilization of 

production capacity of all sites. In this study, parallel manufacturing sites with 

dynamic allocation scenario is considered. 

1.1.2 Hierarchal and Integrated planning 

Hierarchical production planning uses separate mathematical models for every 

level. It decomposes a complex problem into smaller and easier subproblems and 

solves them independently. The solution obtained from one level is imposed to 

next level in decision hierarchy. According to Bitran and Tirupati (1993) 

“hierarchical planning represents a philosophy to address complex problems, 

rather than a specific solution technique.” 
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There are some advantages of hierarchical planning. It takes less time to collect 

data and getting the solution for even a large size industrial problem. Beside these 

advantages, there are some major disadvantages. The procedure decomposes the 

original problem into subproblems. Results obtained from the first subproblem are 

used to optimise second subproblem, which leads to sub-optimal solution. In 

addition to that, sometimes the solutions obtained are infeasible.  

Integration and coordination of decisions related with production, inventory and 

distribution, yield economic as well as competitive advantages (Darvish and 

Coelho, 2016). Over the past decades, much research both in industry and 

academia have focused on increasing flexibility, reducing lead time and 

minimising total system costs simultaneously through integration of different 

functions in supply chain. Integrated production and distribution planning (IPDP) 

is one among them and is the key to success of any industry. The decision 

variables of different functions are dealt simultaneously in the integrated 

approach. Traditionally, manufacturing organisations manage production and 

distribution functions sequentially and independently leading to sub-optimal 

planning (Zegordi and Nia, 2009). However, in today‟s competitive global market 

the interaction between these two functions is a crucial step towards systematic 

and synchronous production and distribution planning. Several articles in the 

literature have shown the merits and demerits of integrated approach over 

hierarchal approach (Park, 2005; Torabi and Hassini, 2009; Darvish and Coelho, 

2016, Darvish et al, 2016). A real world example of this integration is IBM, who 

has developed an integrated plan of PD functions and could gain 2–4% increase in 

resource utilisation, 15% increase in on-time delivery of products, and 25–30% 

decrease in inventory (Degbotse et al. 2013).  

1.1.3 Multi-site integrated production and distribution planning 

To achieve the advantages of multi-site manufacturing i.e. maximise service to the 

customer and minimise total system cost, a coordination of production and 

distribution planning is important. Multi-site integrated production and 

distribution planning (MSIPDP) involves decisions related to determining 

production and inventory level at different facilities and quantity to be transported 
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between facilities to fulfil the demand of customer. The problem can be viewed as 

an optimization model that integrates production, inventory and distribution 

decisions. It is difficult to solve an IPDP problem to optimality due to its 

combinatorial nature (Lei et al. 2006).  

In a multi-site manufacturing scenario, proper allocation of demand from various 

customers to the manufacturing sites is important. In this thesis, MSIPDP problem 

is considered incorporating production cost, inventory holding cost at 

manufacturing site as well as selling location, backorder cost, setup cost and 

transportation cost, so as to minimize total system cost for an automotive 

manufacturing industry in India. 

1.2 Motivation for research 

The key factor for success of a manufacturing orgainization to be competitive in 

present globalized market is to fulfill customer demand on time with desired 

product quality. This is a challenging mission because of short product life cycle, 

high variety of products, short customer lead time and uncertain customer 

demand. Gaining competitive advantage requires smooth communication and 

effective coordination between various departments to ensure effective utilization 

of resources. IPDP functions helps in achieving this challenging mission. To 

achieve this target, it is required that the PD decisions should be made 

simultaneously to balance production, setup, inventory carrying and transportation 

costs in supply chain. Most of the models presented in the literature have treated 

subsystems of PD network separately, or attempted to coordinate only parts of the 

whole network; however, their integration can have a significant impact on the 

overall system.  

The integration of production and distribution planning though has advantages 

over hierarchal planning; it makes the problem computationally complex. Several 

studies in the literature have dealt with integrated problem and methods used so 

far have found good quality solutions by oversimplifying or considering too many 

assumptions. Most of the studies in the literature have investigated simplified 
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problem such as consideration of single item, single period, without setup and 

capacities, homogeneous transportation etc. in their mathematical model 

formulation, in order to solve them for large size problem instances. These studies 

though helpful in understanding the structure and complexity of problem; they 

present limited real life applications. Implementation of heuristics and 

metaheuristics approaches is helpful in dealing with large size industrial 

problems. 

The practical IPDP problem in supply chain often has trade-off among multiple 

conflicting objectives which need to be simultaneously optimized by the decision 

maker (DM). Apart from the performance measure of production and distribution 

planning based on financial aspects such as profit, cost, etc., other measures such 

as customer service level and responsiveness are also critical and should be 

considered. 

The literature on multi-site production and distribution planning (MSPDP) is 

oblivious to uncertainty. Most of the models are assuming that planning system 

operates in a deterministic manner and the parameters are exactly as predicted in 

forecast. In the present environment where organizations are trying to implement 

the concept of zero inventory and focusing on removing the backordering 

situation, there is a need to work on optimization models under uncertain 

environment. There are two ways to handle unceratainty; through probabilistic 

programming and possibilistic programming. A good amount of research in the 

literature is dealing with probabilistic or stochastic programming approach to 

handle uncertainty. Another approach of handling uncertainty which is 

possibilistic programming is still remains an area to be worked upon. 

1.3 Research Objectives 

This research attempts to give new insights into the existing literature by 

presenting novel mathematical programming models and solution approaches 

regarding production planning, distribution planning and integration of the two in 

multi-site manufacturing scenario. The main objective of this thesis is to 

formulate and solve IPDP mathematical model for a two echelon supply chain in 
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deterministic as well as in uncertain environment. Initially, a mixed integer linear 

programming model is formulated for MSIPDP problem and solved using CPLEX 

12.7 solver which works based on branch and cut algorithm. Three important 

aspects of production and distribution planning: setup cost and time, backordering 

and capacity of heterogeneous transportation vehicles are incorporated in the 

formulation of mathematical model. 

In order to be able to solve large size problem instances, a Lagrangian relaxation 

based heuristics approach is implemented. The approach provides lower bound on 

the optimal solution since the objective is of minimization. After every iteration, a 

new lower bound value is obtained based on the most recent upper bound value. 

Two different formulations are made which are relaxing hard constraints and 

adding them into objective function, thus decomposing the original problem into 

subproblems. To maintain the feasibility of the solution, two heuristics algorithms 

are implemented.  

For a successful production plan, there exists more than one criterion. 

Performance measure of production and distribution planning based on three 

important criteria i.e. cost, delivery time and backorder level are considered for 

formulation of multi-objective mathematical model and a variant of goal 

programming method, known as preemptive goal programming is used to handle 

the proposed mathematical model. 

Another important contribution of this study is incorporation of uncertainty. In 

real life situation, the parameters of production and distribution are often fuzzy or 

uncertain due to several factors such as variation in human performance, changing 

environmental conditions, and unavailability or improper information (Liang, 

2007; Azadegan et al., 2011). Therefore, it is necessary to consider this variability 

while modeling production and distribution plans. Mathematical model with 

multiple objectives are formulated and solved using possibilistic programming 

approaches (Fuzzy, Intuitionistic fuzzy and Neutrosophic) to deal with 

impreciseness. 
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The main objectives of this study that fill the gaps in existing research are given 

as follows:  

1. Mathematical model formulation for multi-site integrated production and 

distribution planning (MSIPDP) problem and implementation of an 

effective solution approach to handle large size practical problems. 

2. Multi-objective mathematical model formulation and solution for MSIPDP 

problem. 

3. Analysing the multi-objective MSIPDP problem under uncertainty. 

The major contribution of this research is an in-depth analysis of integration of 

production and distribution planning problem in multi-site manufacturing 

scenario. The findings of this research will be helpful for researchers and 

practitioners to formulate a real life problem into mathematical model, solve the 

problem using exact as well as heuristic approach and in deterministic as well as 

uncertain environment. The research methodology proposed in this study is 

discussed in the next Section. 

1.4 Research Methodology 

The research methods employed in this thesis are: literature review, mathematical 

modeling and optimization in deterministic as well as uncertain environment. 

Literature review 

The literature review (Chapter 2) provides overview and fundamentals of 

production and distribution planning in multi-site manufacturing scenario and 

discuss issues regarding mathematical modeling and solution approaches. On the 

basis of literature review, major research gaps in this area are found out. Critical 

analysis of literature reveals that existing work in this area does not take into 

account important production and distribution aspects simultaneously.  
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Figure 1.2: Research methodology adopted in current research 
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Mathematical modeling in deterministic environment 

The research work formulates single as well as multi-objective mathematical 

models for MSIPDP problem under deterministic environment. The proposed 

mathematical models are described and illustrated using real life problem of an 

Indian automotive industry. Appropriate solution approaches are identified and 

implemented to get desired results. 

Mathematical modeling under uncertainty - Possibilistic programming 

The proposed multi-objective mathematical model is optimized under uncertain 

environment. Possibilistic programming approaches are employed to address 

improper, imprecise and indeterminate information in parameters, constraints and 

objective functions of the proposed mathematical model. The crisp formulations 

of mathematical models are solved using CPLEX solver provided by IBM ILOG 

CPLEX. 

1.5 Organisation of the thesis 

The thesis is structured into eight chapters as described below: 

Chapter 1- Introduction: This chapter provides general introduction about multi-

site manufacturing and integration of production and distribution planning. The 

motivation for conducting this research and obectives of research are discussed. A 

step by step research methodology is also described in the chapter which will be 

able to achieve the objectives.  

Chapter 2- Literature Review: Chapter 2 discusses about earlier research work 

done in the area of MSPDP. Based on the structured literature review, few 

research gaps are suggested.  

Chapter 3- Mathematical modeling - solution using exact approach: The IPDP 

problem of multi-product, multi-period, multi-site manufacturing with 

condiseration of setup, heterogeneous transportation and backordering is 
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addressed in chapter 3. A MILP model is formulated and discussed with 

illustration of real life industrial problem. 

Chapter 4- Mathematical modeling – solution using heuristic approach: Chapter 

4 deals with the complexity of the proposed MILP model. To handle the 

complexity of the problem, Lagrangian relaxation (LR) based heuristics approach 

is implemented. Two heuristics are proposed for handling complexity of 

production and transportation part of the problem and solutions are compared with 

exact optimization results of MILP solver. 

Chapter 5- Mathematical modeling – multi-objective formulation: Chapter 5 

extends the problem to multi-objective formulation. The objectives are to 

minimize total system cost with minimum backorder level and distribution time of 

products. The proposed mathematical model is solved using preemptive goal 

programming method. 

Chapter 6- Multi-objective optimization in Fuzzy environment: In Chapter 6, 

multi-objective optimization of MSIPDP problem under uncertainty is addressed. 

Fuzzy programming approach is implemented to handle the ambiguity of 

parameters and impreciseness of objective functions.  

Chapter 7- Multi-objective optimization in Neutrosophic environment: Chapter 7 

also deals with uncertainty in multi-objective formulation, but in Neutrosophic 

environment. To analyze the performance of the neutrosophic approach, results 

are compared with intuitionistic fuzzy programming approach. 

Chapter 8- Conclusion: Finally, Chapter 8 is devoted to conclude the thesis and 

provide future research directions in this area. 
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Chapter 2 

Literature Review 

 

2.1 Introduction 

The purpose of this chapter is to provide a state-of-the-art review on production 

and distribution planning in multi-site manufacturing environment and to establish 

link between background and this research work. The contributions of this chapter 

are, to review the mathematical models proposed in the literature, classify the 

literature on the basis of problem formulation approach, aspects of the 

mathematical model, solution approaches and real-life applications, and to 

provide important findings and research gaps. The systematic literature review 

methodology of Badhotiya et al. (2016), Soni and Kodali (2011) and Fahimnia et 

al. (2013) has been adopted. Initially, PD planning problem in multi-site 

manufacturing environment is investigated to find research gaps. A separate 

review on MSPDP problem under uncertainty is conducted after following 

observations from first review process. The next section provides analysis of the 

collected literature, in which methodology for conducting review is discussed 

along with literature classification and focused literature review on uncertainty. 

Section 2.3 provides research gaps identified through critical examination of 

literature and Section 2.4 presents chapter summary.  

2.2 Analysis of Literature 

Integrated decision making is one of the most important aspects of supply chain 

management. Over the past years, there have been an increasing number of 

articles published on the IPDP problem. Earlier works in this area attempts to deal 

with this problem in single site manufacturing environment. However, in this 

current global competitive environment, it is imperative for organizations to shift 

from single site to multi-site manufacturing. Therefore, over the last two decades, 

many researchers have worked upon Multi-site integrated production and 

distribution planning (MSIPDP) problem.  
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Few researchers in the past have conducted review on PD planning problems and 

mathematical models, summary of which is given in Table 2.1. Bhatnagar et al. 

(1993) addressed the issue of coordination in organizations. Two levels of problem 

are defined, coordination between functions, called as General Coordination 

problem and coordination within the same function at different echelons in an 

organization, called as Multi-Plant Coordination problem. Vidal and Goetschalckx 

(1997) reviewed strategic PD planning models. The articles were classified based 

on optimisation models, modelling issues and case studies and applications. The 

focus of the study was on mixed integer programming models for global logistics 

system. The articles were analysed for lack of features and on the basis of that, 

opportunities for future research were identified. Sarmiento and Nagi (1999) 

reviewed articles on integrated PD system with the focus on analysis of 

transportation system. Strategic and tactical planning level was also a perspective 

for review. The articles were classified based on fixed and infinite time horizon of 

production-inventory-distribution models. 

Table 2.1 Summary of literature review articles on production and distribution 

planning 

Articles Article Scope # Time 

range 

Content description 

Gelders and 

Wassenhove (1981) 

Production 

planning 

UN UN Focus on resource utilization, 

capacity allocation, lot sizing and 

scheduling 

Bhatnagar et al. 

(1993) 

Production 

planning 

UN UN Articles classified on the basis of 

level of coordination as general and 

multi-plant 

Vidal and 

Goetschalckx (1997) 

Production-

distribution 

planning 

UN UN Articles were classified into four 

groups: Existing reviews, 

optimization models, additional 

issues for modelling, and case 

studies and applications. 

Sarmiento and Nagi 

(1999) 

Integrated 

Production-

distribution 

system 

UN UN Classified on the basis of type of 

decision to be taken in the model 
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Articles Article Scope # Time 

range 

Content description 

Erengüç et al. (1999) Integrated 

Production/ 

distribution 

planning 

UN UN Articles were analysed according to 

the supply chain network and nature 

of relationship between each stage 

Schmidt and 

Wilhelm (2000) 

Strategic, tactical 

and operational 

level logistics 

UN UN Discussed strategic, tactical and 

operational level modelling issues 

Bilgen and 

Ozkarahan (2004) 

Strategic, tactical 

and operational 

levels of SCM 

UN UN literature survey on production and 

distribution models of SCM 

Fahimnia et al. 

(2008) 

Integrated 

Production-

distribution 

planning 

UN UN Emphasis on optimization and 

simulation studies. Described 

characteristics of the models. 

Mula et al. (2010) supply chain 

production and 

transportation 

planning 

44 1989-

2009 

Articles were classified based on 

supply chain structure, decision 

level, modelling approach, purpose, 

shared information, limitations, 

novelty and application 

Fahimnia et al. 

(2013) 

Integrated 

Production-

distribution 

planning 

UN 1988-

2009 

Articles were classified based on 

degree of complexity and solution 

approaches applied. 

Díaz-Madroñero et 

al. (2015) 

Integrated 

Production and 

transport routing 

planning 

22 1994-

2013 

Articles were classified based on 

modelling aspects and solution 

approaches. 

Note: UN – Unknown 

An invited review on integrated PD planning in supply chain was provided by 

Erengüç et al. (1999). After defining the supply chain, the articles provide PD 

planning function at each stage of the supply chain. Based on review, some future 

research directions were also provided. Multi-national logistics network is taken 

into consideration by Schmidt and Wilhelm (2000). Literature on Strategic, 

tactical and operational level decisions and their modelling issues was reviewed in 
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the paper. In 2004, Bilgen and Ozkarahan reviewed supply chain management PD 

planning literature at strategic, tactical and operational level. The literature was 

classified on the basis of solution methodology applied. Fahimnia et al. (2008) 

reviewed PD models of supply chain with focus on optimisation and simulation 

studies. Issue of demand uncertainty in production-distribution models was also 

analysed. Mula et al. (2010) presented an invited review of 44 reference articles 

on supply chain production and transportation planning. The emphasis was given 

on mathematical programming models and articles were classified based on 

supply chain structure, decision level, modelling approach, purpose, shared 

information, limitations, novelty and application. 

Complexity and solution based classification of integrated PD planning models 

was provided by Fahimnia et al. (2013). The complexity was considered in terms 

of product, plant, warehouse, transport path and time period. Literature was 

classified in four categories of solution based classification: mathematical 

techniques, heuristics techniques, simulation modelling and genetic algorithms. 

Based on the classification of literature research gaps were identified and future 

research trends were suggested. Recently, in 2015, Díaz-Madroñero et al. 

reviewed tactical optimisation models for integrated PD planning decisions. 

Mathematical programming models on production transportation planning 

presented in the literature are discussed on emphasis on production, inventory and 

routing aspects. 

Earlier review articles on PD planning were focused on complete supply chain 

irrespective of number of manufacturers. As the market is spreading and become 

competitive, manufacturing organisations are shifting from single to multiple 

manufacturing sites. The first article on MSPDP was published in 1997 and since 

then, there is continuous growth in the number of articles on this area. This 

chapter provides review of articles in the field of MSPDP and classifies them on 

the basis of modelling approach, aspects of the model, solution approach and 

practical application.  
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Figure 2.1: Literature Review methodology adopted in current study 
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2.2.1 Review Methodology 

This Section highlights some important research work done in this field. The 

review methodology is based on collection, exclusion, classification and critical 

analysis of literature to draw out meaningful research gaps. Articles in the 

literature are organised and classified to draw out meaningful interpretations. 

Figure 2.1 presents review methodology followed in this research. Initially, 

articles were collected from major scientific publishing databases and applying 

exclusion criterias yielded desired relevant pool of research articles. These articles 

were then classified into categories and critically analysed to draw out meaningful 

findings and research gaps. The complete procedure of this review methodology 

in detail is explained in the subsequent Sections. 

2.2.1.1 Reference collection 

The articles published in the field of MSPDP are collected from major scientific 

publishing databases including Elsevier, Taylor & Francis, Springer, ACS 

(American Chemical Society), Wiley and Inderscience. The combinations of 

search keywords used for extracting the articles are given in Table 2.2. References 

and search results used in earlier review articles were also followed for complete 

collection of relevant articles. Only those articles written in English language 

were selected for further classification and analysis. Initially, 221 articles were 

collected by following the above mentioned search scheme. From this collection, 

relevant review articles were scrutinised and irrelevant review articles and articles 

related with scheduling and sequencing, network design, closed loop supply 

chain, facility location and lot sizing problem were excluded. After the scrutiny 

and exclusion process, a total of 65 research articles remained for further 

classification and review. The distribution of collected articles published in 

journals is enlisted in Table 2.2.  
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Table 2.2: Keywords used for article collection 

S. No. Constructs Keywords 

1 Manufacturing Multi-site; Multi-plant; Supply chain 

2 Planning Planning; Production; Distribution; Transportation 

3 Integration Integration; Coordination; Collaboration  

4 Solution Optimization; modeling; Uncertainty; multi-objective 

 

It can be seen from Table 2.3 that there exists a large numer of articles availale in 

this area published in reputed international journals. According to the collected 

literature, the first article on MSPDP was published in 1997 by McDonald and 

Karimi which shows that MSPDP is a promising research area. 

Table 2.3: Journal wise distribution of articles 

S.No. Journal Publisher Frequency 

1 International Journal of Production Research Taylor & Francis 13 

2 International Journal of Production Economics Elsevier 5 

3 Computers & Industrial Engineering Elsevier 5 

4 Computers & Operations Research Elsevier 4 

5 Computers and Chemical Engineering Elsevier 4 

6 IIE Transactions Taylor & Francis 4 

7 European Journal of Operational Research Elsevier 4 

8 Industrial & Engineering Chemistry Research ACS 4 

9 Omega Elsevier 2 

10 Information Sciences Elsevier 2 

11 Expert Systems with Applications Elsevier 2 

12 International Journal of Management Science 

and Engineering Management 

Taylor & Francis 2 

13 OR Spectrum Springer 2 
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2.2.1.2 Literature classification 

The classification scheme of this study is adopted from Mula et al. (2010). The 

literature is classified under four schemes i) Modelling or problem formulation 

approach, ii) Aspects of the model, iii) Solution approaches, and iv) application of 

the proposed model. The detailed discussion of each classification scheme is 

given in subsequent sections.  

Problem formulation approach 

This classification tells about the echelon or supply chain entities considered, type 

of mathematical representation or modelling approach, objective of the 

mathematical model and the time formulation of the proposed model. Table 2.4 

classify the literature based on problem formulation approach. 

Supply chain consists of five entities viz. supplier, manufacturer, distributor, 

retailor and customer. Considering complete supply chain and focusing on all the 

aspects will make the resulting model very complex and difficult to solve. 

Therefore, a combination of echelons is taken into consideration by several 

researchers. For example, Sabri and Beamon (2000), Jang et al. (2002) and Chen 

and Chang (2006) have considered four echelons; supplier, manufacturer, 

distributor and customer while article by Miller and Matta (2003) focused on two 

geographically distant plants only. The majority of articles in the literature have 

considered two echelons of supply chain to reduce complexity of the problem. 

A mathematical programming model can be formulated as single objective or 

multi-objective. In the collected literature, 22 articles are formulated based on 

multiple objective functions and 43 articles are on single objective. In the single 

objective, 32 articles were formulated with total cost minimisation as objective 

function and remaining 11 articles taken profit maximisation as objective function 

which shows that cost minimisation is the most preferred objective function.  
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Table 2.4: Literature classification by problem formulation  

Author Supply chain echelons considered Modelling 

approach 

Objective function Time 

representation MTC MTP MO 

McDonald and Karimi (1997) Manufacturer-Customer MILP 

 



 

Continuous 

Dogan and Goetschalckx (1999) Supplier-Manufacturer-Distributor MILP 

  

Discrete 

Vercellis (1999) Manufacturer-Distributer  MILP 

  

Discrete 

Sabri and Beamon (2000) Supplier-Manufacturer-Distributor- Customer MOMILP 

  

 Discrete 

Timpe and Kallrath (2000) Manufacturer-Customer MILP 

 



 

Discrete 

Dhaenens-Flipo (2000) Manufacturer-Customer ILP 

  

Discrete 

Dhaenens-Flipo and Finke (2001) Manufacturer-Customer ILP 

  

Discrete 

Sakawa et al. (2001) Manufacturer-Customer MILP 

  

Discrete 

Jayaram and Pirkul (2001) Supplier-Manufacturer-Customer MILP 

  

Single period 

Jang et al. (2002) Supplier-Manufacturer-Distributor- Customer LP 

  

Discrete 

Kallrath (2002) Manufacturer-Customer MILP 

 



 

Discrete 

Miller and Matta (2003) Manufacturer MILP 

  

Discrete 

Chen et al. (2003) Manufacturer-Distributer-retailor MOMINLP 

  

 Discrete 

Jackson and Grossmann (2003) Manufacturer-Customer NLP 

 





Discrete 

Ryu et al. (2004) Manufacturer-Distributer  LP 

  

Single period 

Jolayemi and Olorunniwo (2004) Manufacturer-Distributer  MILP 

 



 

Discrete 
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Author Supply chain echelons considered Modelling 

approach 

Objective function Time 

representation MTC MTP MO 

Chen and Lee (2004) Manufacturer-Distributer-retailor MOMINLP 

  

 Discrete 

Chan et al. (2005) Manufacturer-Customer LP 

  

Single period 

Kanyalkar and Adil (2005) Manufacturer-Customer MILP 

  

Discrete 

Park (2005) Manufacturer-Retailor MILP 

 



 

Discrete 

Gen and Syarif (2005) Manufacturer-Customer LP 

  

Discrete 

Chen and Chang (2006) Supplier-Manufacturer-Distributor- Customer LP 

  

Discrete 

Ek¸sio˘glu et al. (2006) Manufacturer-Retailor MILP 

  

Discrete 

Lei et al. (2006) Manufacturer-Distributer  MILP 

  

Discrete 

Yılmaz and Çatay (2006) Supplier-Manufacturer-Distributor MILP 

  

Discrete 

Ek¸sio˘glu et al. (2007) Manufacturer-Retailor MILP 

  

Discrete 

Roghanian et al. (2007) Manufacturer-Distributer  MOLP 

  

 Single period 

Kanyalkar and Adil (2007) Supplier-Manufacturer-Customer MOMILP 

  

 Discrete 

Aliev et al. (2007) Manufacturer-Distributer- Customer  LP 

 



 

Discrete 

Liang (2007) Manufacturer-Distributer  MOLP 

 

 Single period 

Liang (2008a) Manufacturer-Distributer  MOLP 

 

 Discrete 

Liang (2008b) Manufacturer-Distributer  MOLP 

 

 Single period 

Selim et al. (2008) Manufacturer-Distributer-retailor- Customer MOLP 

  

 Discrete 
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Author Supply chain echelons considered Modelling 

approach 

Objective function Time 

representation MTC MTP MO 

Liang and Cheng (2009) Manufacturer-Distributer  MOLP 

  

 Discrete 

Torabi and Hassini (2009) Supplier-Manufacturer-Distributor MOMILP 

  

Discrete 

Verderame and Floudas (2009) Manufacturer-Distributer  MILP 

  

 Discrete 

Alemany et al. (2010) Supplier-Manufacturer-Distributor MILP 

 

Discrete 

Bilgen (2010) Manufacturer-Distributer  MILP 

 





Discrete 

Bilgen and Günther (2010) Manufacturer-Distributer  MILP 

 

Discrete 

Kanyalkar and Adil (2010) Supplier-Manufacturer-Customer MILP 

 

Discrete 

Safaei et al. (2010) Manufacturer-Distributer-retailor MILP 

  

Discrete 

Mula et al. (2010) Manufacturer-Customer MILP 

  

Discrete 

You et al. (2010) Manufacturer-Customer MILP 

  

Discrete 

Calvete et al. (2011) Manufacturer-Retailor MILP 

   

Single period 

Jolai et al. (2011) Manufacturer-Distributer-retailor-Customer MOLP 

  

Discrete 

Kanyalkar and Adil (2011) Supplier-Manufacturer-Customer MILP 

  

 Discrete 

Terrazas-Moreno et al. (2011) Manufacturer-Customer MILP 





 

Discrete 

Lidestam and Rönnqvist (2011) Supplier-Manufacturer-Distributor MILP 





 

Discrete 

Liang (2011) Manufacturer-Distributer  MOLP 

 

 Discrete 

MirzapourAl-e-hashem et al. (2011) Supplier-Manufacturer-Customer MOMINLP 

 

 Discrete 
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Author Supply chain echelons considered Modelling 

approach 

Objective function Time 

representation MTC MTP MO 

Pathak and Sarkar (2012) Supplier-Manufacturer-Retailor- Customer MOLP 

 

 Discrete 

Amorim et al. (2012) Manufacturer-Distributer  MOMILP 

 

 Discrete 

Fahimnia et al. (2012) Manufacturer-Customer MINLP 

 

Discrete 

Jung and Jeong (2012) Manufacturer-Distributer- Customer  LP 







Discrete 

Yuan et al. (2012) Manufacturer-Customer MILP    Discrete 

Torabi and Moghaddam (2012) Manufacturer-Distributer  MOLP    Discrete 

Melo and Wolsey (2012) Manufacturer-Customer MILP    Discrete 

Nasiri et al. (2014) Supplier-Manufacturer-Distributor MINLP    Continuous 

Camacho-Vallejo et al. (2015) Manufacturer-Distributer-retailor LP    Single period 

Gholamian et al. (2015) Supplier-Manufacturer-Customer MOMINLP    Discrete 

Gholamian et al. (2016) Supplier-Manufacturer-Customer MOMINLP    Discrete 

Khalili-Damghani and Tajik-Khaveh 

(2015) 

Supplier-Manufacturer-Distributor MOMILP 

  

Discrete 

Darvish et al. (2016) Manufacturer-Customer ILP    Discrete 

Entezaminia et al. (2016) Supplier-Manufacturer-Customer MOMILP    Discrete 

Rafiei et al. (2018) Supplier-Manufacturer-Distributor-Customer MOMINLP    Discrete 
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Time is an important factor in the modelling of PD planning problems. There are 

few articles in the literature who have formulated the mathematical model in 

single time period (Jayaram and Pirkul, 2001; Ryu et al., 2004; Chan et al., 2005; 

Roghanian et al., 2007; Calvete et al., 2011; Camacho-Vallejo et al., 2015). 

Articles considered multiple time periods can be classified on the basis of discrete 

and continuous time representation. Discrete time representation was the most 

preferred one while formulating the mathematical model. Mathematical model 

based on continuous time was formulated by McDonald and Karimi (1997) and 

Nasiri et al. (2014). The major difference in discrete and continuous time 

representation is the occurrence of an event. In the discrete time representation an 

event can happen on the boundary of the time period while in continuous time 

representation an event can occur anytime in a period. A detailed description on 

discrete and continuous time models can be referred form Floudas and Lin (2004). 

Aspects of the problem 

This classification scheme tells about dimensions or aspects considered in the 

literature while formulating a problem in mathematical terms. There exists three 

important aspects of PD planning; production, inventory and transportation. In 

production aspect, dimension of the problem is investigated which is defined by 

number of products, consideration of setup cost/time and capacity of production. 

Inventory aspect deals with available storage capacity and inventory policies. 

Transportation aspects deals with fleet of vehicle, transport modes, capacity of 

transport mode, number of trips, time windows, number of routing etc. Apart from 

this, other aspect can be consideration of backordering. When the unfulfilled 

demand or shortage is added in the next period demand then it is called backorder. 

Table 2.5 classify the literature according to the above described problem aspects. 

A majority of the articles considered multiple products in their mathematical 

formulation. Very few articles have considered single product (Chan et al. 2005; 

Lei et al. 2006; Ekşioğlu et al. 2006; Yılmaz and Catay 2006; Ekşioğlu et al. 

2007; Alemany et al. 2010; Camacho-Vallejo et al. 2015; Darvish et al. 2016; 

Rafiei et al. 2018).  
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Table 2.5: Literature classification by problem aspects 

Author Product Setup Production 

Capacity 

Storage 

Capacity 

Transportation 

limit 

Backorder 

Single Multiple Setup cost Setup time Sequence 

dependent  

McDonald and Karimi (1997) 

 



   



  



Dogan and Goetschalckx (1999) 

 



   



   Vercellis (1999) 

 



   



  



Sabri and Beamon (2000) 

 

  

 



  



Timpe and Kallrath (2000) 

 



   



 



 Dhaenens-Flipo (2000) 

 



  

 

   Dhaenens-Flipo and Finke (2001) 

 



  

 

 



 Sakawa et al. (2001) 

 



   

 

  Jayaram and Pirkul (2001) 

 



   



   Jang et al. (2002) 

 



   



   Kallrath (2002) 

 



   



 



 Miller and Matta (2003) 

 

 

      Chen et al. (2003) 

 



    

  

Jackson and Grossmann (2003) 

 



   



  Ryu et al. (2004) 

 



   



 



 Jolayemi and Olorunniwo (2004) 

 



 



 



 



 



[26]  

Author Product Setup Production 

Capacity 

Storage 

Capacity 

Transportation 

limit 

Backorder 

Single Multiple Setup cost Setup time Sequence 

dependent  

Chen and Lee (2004) 

 



    

  

Chan et al. (2005) 


        Kanyalkar and Adil (2005) 

 



   



 



 Park (2005) 

 

  

 

  

 Gen and Syarif (2005) 

 



       Chen and Chang (2006) 

 



    

 

 Ek¸sio˘glu et al. (2006) 


 



      Lei et al. (2006) 


    

  

 Yılmaz and C¸ atay (2006) 


    

 

  Ek¸sio˘glu et al. (2007) 


 



  



   Roghanian et al. (2007) 

 



   



   Kanyalkar and Adil (2007) 

 



   



 



 Aliev et al. (2007) 

 



       Liang (2007) 


    

  

 Liang (2008a) 

 



   

   

Liang (2008b) 


    

  

 Selim et al. (2008) 

 



   

  
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Author Product Setup Production 

Capacity 

Storage 

Capacity 

Transportation 

limit 

Backorder 

Single Multiple Setup cost Setup time Sequence 

dependent  

Liang and Cheng (2009) 

 



   

  

 Torabi and Hassini (2009) 

 



   



 



 Verderame and Floudas (2009) 

 

  

 







 Alemany et al. (2010) 


        Bilgen (2010) 

 

  

 





 

Bilgen and Günther (2010) 

 

  

 

 

 Kanyalkar and Adil (2010) 

 







 

 

Safaei et al. (2010) 

 



   



 



Mula et al. (2010) 

 

  

 

  

You et al. (2010) 

 



   



  Calvete et al. (2011) 

        Jolai et al. (2011) 


    

 

 Kanyalkar and Adil (2011) 

 



   

  

Terrazas-Moreno et al. (2011) 

 



 

 





Lidestam and Rönnqvist (2011) 

 

 

 

  

Liang (2011) 

 



  





 

MirzapourAl-e-hashem et al. (2011) 

 



  





 
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Author Product Setup Production 

Capacity 

Storage 

Capacity 

Transportation 

limit 

Backorder 

Single Multiple Setup cost Setup time Sequence 

dependent  

Pathak and Sarkar (2012) 

 



    

 

Amorim et al. (2012) 

 

    

  Fahimnia et al. (2012) 

 



  

   

Jung and Jeong (2012) 

 

 

 

  

Yuan et al. (2012)          

Torabi and Moghaddam (2012)         

Melo and Wolsey (2012)          

Nasiri et al. (2014)          

Camacho-Vallejo et al. (2015) 
         

Gholamian et al. (2015) 
         

Gholamian et al. (2016) 
         

Khalili-Damghani and Tajik-Khaveh 

(2015)         

Darvish et al. (2016) 
         

Entezaminia et al. (2016)         

Rafiei et al. (2018) 
        
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When multiple products or services are provided using common resource, there is 

need for changeover and setup activities (Allahverdi and Soroush, 2008). 

Consideration of setup or change over in multi-product manufacturing adds to 

complexity of the problem. There exist four elements of setup; setup cost, setup 

time, sequence dependent setup, and setup carryover. Some of the articles have 

considered the cost and time of setup in their model e.g. Guinet (2001), 

Sambasivan and Schmidt (2002), Gnoni et al. (2003), Verderame and Floudas 

(2009), Bilgen (2010), Safaei et al. (2010), Melo and Wolsey (2012), Darvish et 

al. (2016). Guinet (2001) implemented a primal-dual approach to solve multi-site 

production planning problem. The fixed setup cost and time was considered which 

depends on products and sites. Sambasivan and Schmidt (2002) employed 

heuristic procedure to solve capacitated lot sizing problem considering setup time 

to determine production capacity consumption. Jolayemi and Olorunniwo (2004) 

and Kanyalkar and Adil (2010) were considered setup time without considering 

setup cost. Gnoni et al. (2003) dealt with lot sizing and scheduling problem 

considering setup cost and time with a case of automotive industry. In the model 

proposed by Park (2005), a fixed setup cost was considered on lot for lot basis, 

unrelated with quantity produced. Melo and Wolsey (2012) considered a two 

echelon supply chain of production sites and clients and setup cost and time was 

considered. A lot sizing and distribution problem with setup time was considered 

by Darvish et al. (2016). Sequence dependent setup was considered by Dhaenens-

Flipo (2000), Dhaenens-Flipo and Finke (2001) and Terrazas-Moreno et al. 

(2011). There was no article found considering setup carryover. Article by 

Amorim et al. (2012) have considered both sequence dependent and sequence 

independent setup time and cost. Sequence dependent setup for changeover form a 

block to other block and sequence independent setup for changeover of a product 

on a production line.  

The capacity constraints in the mathematical model are related with production, 

inventory and distribution activities. These constraints are limited production 

resources like production capacity of production line or total available time in a 

period, limited storage space of inventory and constraint on either capacity of 

vehicle used for transportation or maximum transport limit between source to 
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destination. All of the above explained capacity constraints were taken in to 

formulation by Park (2005), Lei et al. (2006), Liang (2007), Liang (2008a), Liang 

(2008b), Selim et al. (2008), Liang and Cheng (2009), Mula et al. (2010), 

Lidestam and Rönnqvist (2011), Fahimnia et al. (2012), Jung and Jeong (2012), 

Melo and Wolsey (2012) and Entezaminia et al. (2016). 

In inventory system, when there is a stock out situation, the unfulfilled demand is 

considered as backorder. It may be added to the next period demand or considered 

as lost. Backorder can increase the distribution cost on expedited shipping, 

increased production cost due to overtime and the customer service level. 

Backordering is considered by few articles in the literature such as Vercellis 

(1999), Alemany et al. (2010), Torabi and Moghaddam (2012), Khalili-Damghani 

and Tajik-Khaveh (2015) and Entezaminia et al. (2016). Vercellis C (1999) 

proposed multi-site production planning problem in which unfulfilled demand or 

backlogged amount was considered as lost sales. Alemany et al. (2010) calculated 

cost and quantity of backorder without coinciding with the demand for a given 

time period. Khalili-Damghani and Tajik-Khaveh (2015) and Torabi and 

Moghaddam (2012) considered backlog cost and backlogging quantity with limits 

on backorder quantities in their production and logistics planning model. 

Few articles in the literature have incorporated different issues in their 

mathematical models such as delivery time window, heterogeneous transportation, 

and limited transportation capacity. Multi-plant capacitated lot sizing problem 

with distribution is presented by Darvish et al. (2016). Motivated by a real case of 

a furniture company, the concept of delivery time window was proposed and 

solved using branch and bound algorithm. Park (2005) and Steinrücke, (2015) 

considered fixed as well as variable transportation cost with limited vehicle 

capacity Lei et al. (2006) considered heterogeneous transportation fleet where 

each manufacturing site has its own number of vehicles and each vehicle has 

different maximum loading capacity. Zegordi and Nia, (2009) assumed the 

sharing of vehicle by group of suppliers to reduce the transportation cost. H'Mida 

and Lopez, (2013) have considered two different type of vehicles; tractors and 

trailers, each have its maximum transportation capacity. Different transportation 
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modes and shipment lead times was considered by Entezaminia et al. (2016). 

Multi-plant capacitated lot sizing problem with distribution is presented by 

Consideration of heterogeneous transportation with limited number of vehicle 

having a fixed loading capacity is presented by Feng et al. (2017). 

Solution approach 

In this scheme, solution techniques used to handle MSPDP models are classified 

based on single objective and multi objective model solution approaches. Table 

2.6 summarize the solution approaches used in the literature to handle single 

objective and multi-objective mathematical programming models.  

Table 2.6: Approaches used to solve MSPDP models 

Solution approaches Authors 

Single objective model solution 

approaches 

 

Mathematical programming  

based approaches 

McDonald and Karimi (1997), Timpe and 

Kallrath (2000), Dhaenens-Flipo and Finke 

(2001), Kallrath (2002), Jolayemi and 

Olorunniwo (2004), Ryu et al. (2004), Kanyalkar 

and Adil (2005), Verderame and Floudas (2009), 

Alemany et al. (2010), Bilgen and Günther 

(2010), Kanyalkar and Adil (2010), Kanyalkar 

and Adil (2011), Yuan et al. (2012), Darvish et al. 

(2016), Miller and Matta (2003) 

Heuristics techniques Dogan and Goetschalckx (1999), Vercellis 

(1999), Dhaenens-Flipo (2000), Jayaram and 

Pirkul (2001), Jackson and Grossmann (2003), 

Park (2005), Ek¸sio˘glu et al. (2006), Lei et al. 

(2006), Yılmaz and C¸ atay (2006), Ek¸sio˘glu et 

al. (2007), You et al. (2010), Terrazas-Moreno et 

al. (2011), Lidestam and Rönnqvist (2011), Nasiri 

et al. (2014), Camacho-Vallejo et al. (2015) 
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Solution approaches Authors 

Metaheuristics approach Calvete et al. (2011), Fahimnia et al. (2012) 

Fuzzy optimisation approach Sakawa et al. (2001), Chen and Chang (2006), 

Aliev et al. (2007), Bilgen (2010), Jung and Jeong 

(2012) 

Hybrid approaches Jang et al. (2002), Chan et al. (2005), Gen and 

Syarif (2005), Safaei et al. (2010), Melo and 

Wolsey (2012) 

Multi-objective model solution 

approaches 

 

Goal programming Kanyalkar and Adil (2007), Khalili-Damghani 

and Tajik-Khaveh (2015) 

LP-metrics method MirzapourAl-e-hashem et al. (2011), Entezaminia 

et al. (2016) 

Weighted programming Amorim et al. (2012) 

Epsilon constraint method Sabri and Beamon (2000) 

Elastic constraint method Rafiei et al. (2018) 

Fuzzy decision making Chen et al. (2003), Chen and Lee (2004), 

Roghanian et al. (2007), Liang (2007), Liang 

(2008a), Liang (2008b), Selim et al. (2008), 

Liang and Cheng (2009), Torabi and Hassini 

(2009), Mula et al. (2010), Liang (2011), Pathak 

and Sarkar (2011), Jolai et al. (2011), Torabi and 

Moghaddam (2012), Gholamian et al. (2015), 

Gholamian et al. (2016) 

Most of the approaches for solving the PD planning problem are sequential in 

nature commonly based on decomposition (Dhaenens-Flipo, 2000; Terrazas-

Moreno et al., 2011; Steinrücke, 2015), two phase approach (Lei et al., 2006) and 

bi-level approach (Camacho-Vallejo et al., 2015). These sequential approaches 

break the problem into smaller and easier ones. These approaches though are 

capable of solving the large size problems; they may not produce a global optimal 
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solution (Zegordi and Nia, 2009). Solving the problem in an integrated manner, 

however, has found to be useful in reducing inventory holding, shortage and 

transportation cost along with improvement in customer service level (Park, 

2005). 

The MSIPDP problem in the literature have dealt with solution approaches like 

mathematical programming based exact optimisation, Linear programming based 

heuristic approaches, Lagrangian relaxation heuristics, Lagrangian decomposition, 

two phase approach and metaheuristics approaches like genetic algorithm and 

hybrid genetic algorithm as shown in Table 2.5. The exact optimisation 

approaches were solved using optimisation modelling software‟s such as CPLEX, 

AIIMS, GAMS, XPRESS-MP, AMPL, LINGO etc. When size of the problem is 

small, optimal solution can be obtained in less computation time but as the size of 

the problem gets large, sub-optimal solutions obtained at longer computation 

times, which generates the need to develop heuristics and metaheuristics 

approaches which are able to obtain feasible solutions in comparatively less 

computational time. 

Single objective model solution approaches 

Single objective model solution approaches implemented in the literature are 

mathematical programming based approaches, heuristic approaches, metaheuristic 

approaches, Fuzzy optimisation approaches and Hybrid approaches. 

Mathematical programming approaches in the collected literature are branch and 

bound, parametric optimisation and exact optimisation approaches which can be 

solved to optimality using any mathematical programming software. There are 

few articles in the literature that have used mathematical programming based 

exact optimization approaches. Miller and Matta (2003) implemented branch and 

bound technique for solution of production and distribution scheduling model. 

Ryu et al. (2004) formulated a bi-level optimisation model under uncertainty and 

solved using parametric optimization technique. Kanyalkar and Adil (2011) 

proposed a robust optimisation model for multi-site procurement-production-
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distribution planning problem and solved using GLPK (Gnu Linear Programming 

Kit) software. 

Mathematical programming techniques are applicable to solve small size problem 

to optimality but as the problem size increases so does the complexity of the 

problem and it takes longer computational time and computer memory to solve 

the problem to optimality. To overcome this issue, heuristics techniques are used 

to rapidly find a feasible or suboptimal solution. Heuristics techniques 

implemented in the literature includes decomposition techniques such as Benders 

decomposition (Dogan and Goetschalckx, 1999), Lagrangean decomposition 

(Jackson and Grossmann, 2003; Ek¸sio˘glu et al., 2007; Terrazas-Moreno et al., 

2011; Lidestam and Rönnqvist, 2011; You et al., 2010), Spatial decomposition 

(Dhaenens-Flipo, 2000), LP based heuristics (Vercellis, 1999; Yılmaz and C¸atay, 

2006; Camacho-Vallejo et al., 2015), Lagrangian relaxation (Jayaram and Pirkul, 

2001; Nasiri et al., 2014), Two phase heuristics (Park, 2005; Lei et al., 2006), and 

primal dual heuristics (Ek¸sio˘glu et al., 2006).  

Metaheuristics approaches are used to overcome the local search phenomenon of 

heuristics methods. Two articles in the literature have applied metaheuristics 

approaches. Few more articles have applied metaheuristics with combination of 

other approaches; those articles are placed in hybrid approaches. Calvete et al. 

(2011) formulated a bilevel programming model for hierarchical PD planning 

problem and solved using ant colony optimisation approach. Fahimnia et al. 

(2012) applied genetic algorithm optimisation approach for solution of PD 

planning problem of a two level supply chain network. 

Apart from the single heuristics and metaheuristics approach, few article have 

presented hybrid solution approaches such as Chan et al. (2005) proposed a linear 

programing model for multi-factory supply chain production-distribution planning 

problem solved using hybrid analytical hierarchy process - genetic algorithm 

(AHP-GA) approach. For solution of multi-time period production/distribution 

planning problem, Gen and Syarif (2005) proposed a hybrid spanning tree-based 

genetic algorithm with the fuzzy logic controller approach. Safaei et al. (2009) 

proposed a MILP model that takes an integrated view of MSPDP. A hybrid 
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mathematical simulation approach was implemented and computational results 

indicate the benefits of integrated approach over two phase sequential approach. 

Melo and Wolsey (2012) proposed a MIP formulation for a two level production-

distribution problem solved using hybrid heuristics based on relaxation induced 

neighborhood search and local branching. 

The parameters and objective function of a mathematical model are subjected to 

uncertainty in real life. To handle this impreciseness, fuzzy optimisation approach 

is used. Few articles in the literature have implemented fuzzy optimisation 

approach in single objective mathematical model such as Chen and Chang, 

(2006); Bilgen, (2010); Jung and Jeong, (2012).  

Multi-objective model solution approaches 

Production and distribution planning problems in literature are represented by 

mathematical models based on the concepts of operations research. The objective 

is to determine best production and distribution plan at minimum total cost or 

maximum total profit or other objective functions. Most of the models in the 

literature have considered single criterion for production and distribution 

planning, such as cost. The practical production and distribution planning 

decisions consists of more than one conflicting objectives which needs to be 

simultaneously optimised by decision maker. Multi-objective model solution 

approaches implemented in the literature are Goal programming, LP-metrics 

method, Weighted programming, Epsilon constraint method, Elastic constraint 

method and Fuzzy decision making.  

In the past decade, a large number of studies have been done considering multiple 

objectives in PD planning problems as shown in Table 2.7. Chen et al (2003) 

proposed a multi-objective optimization of PD planning of a supply chain 

considering profit, customer service level and safe inventory level as multiple 

objectives. A multi-objective model for multi-site aggregate production planning 

is proposed by Leung et al. (2003). Profit maximisation and workforce level are 

the multiple objectives simultaneously optimised using goal programming 

method. Kanyalkar and Adil (2007) formulated mixed integer goal programming 
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model considering three objective functions; minimisation of inventory storage 

volume, forward coverage policy and total cost. Amorim et al. (2012) considered 

the case of shelf life of perishable goods and formulated a MOMILP model. A 

decoupled and integrated PD planning model was proposed and solved by 

weighted programming method.  

Table 2.7: Literature on deterministic multi-objective production-distribution 

planning models 

Author (year) Objective functions Solution approach 

Chen et al (2003) Maximising profit, customer service 

level and safe inventory level 

Two phase approach 

Leung et al. (2003) Maximising profit, minimising cost 

of hiring and laying off and 

utilization of import quota. 

Goal programming 

Kanyalkar and Adil 

(2007) 

Minimising inventory storage 

volume, forward coverage policy 

and total cost 

Goal programming 

Amorim et al. (2012) Minimising cost, maximising 

remaining shelf life 

Weighted linear 

programming 

Liu and Papageorgiou, 

(2013) 

Minimising cost, flow time and lost 

sales 

 -constraint and 

lexicographic minimax 

Khalili-Damghani and 

Tajik-Khaveh (2015) 

Minimising logistics cost and 

maximising service level 

Weighted goal 

programming 

Ayadi et al. (2017) Minimization of total cost, 

maximization of product quality and 

customer service level 

 -constraint method and 

AHP 

Entezaminia et al. 

(2016) 

Minimization of total cost, maximise 

environmental criteria. 

LP-metrics method 

Rafiei et al. (2018) Minimising of total cost and 

maximising customer service level 

Elastic constraint 

method 
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Liu and Papageorgiou, (2013) proposed a multi-objective MILP model 

considering cost, responsiveness and service level to address PD planning 

problem of a supply chain. To solve the proposed multi-objective model,  -

constraint and lexicographic minimax methods were employed. Khalili-Damghani 

and Tajik-Khaveh (2015) proposed a multi-objective MIP model for logistic 

planning and design problem for a three-echelon supply chain. Logistics cost and 

service level were the two objective functions used to formulate mathematical 

model. To solve the proposed multi-objective mathematical model, a weighted 

goal programming method is applied. The applicability of the proposed model 

was illustrated by taking illustrative example of a dairy industry supply chain. 

Ayadi et al. (2017) dealt with multi-site supply chain planning problem and 

formulated a multi-objective mathematical model considering minimization of 

total cost, maximization of product quality and customer service level. These 

conflicting objectives generate a set of Pareto-optimal solution obtained by 

solving the model using  -constraint method. To select the best Pareto-optimal 

solution, analytical hierarchy process method was applied. Entezaminia et al. 

(2016) considered environmental aspects while formulating MOMILP model and 

solved using LP-metrics method. Rafiei et al. (2018) investigated an IPDP 

problem within a four echelon supply chain considering competitiveness of 

market. Minimising total cost and maximising customer service level are the two 

objective functions used to formulate two multi-objective MILP model for 

competitive and non-competitive market situation. Elastic constraint method is 

used to solve the proposed multi-objective models.  

In the practical PD planning problems in a supply chain, because of the 

conflicting nature of the multiple objectives and the vagueness in parameters, 

conventional mathematical programming methods are not suitable for obtaining 

an effective solution. To overcome this problem, possibilistic programming 

approaches are used.  
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Practical application 

The imitation of real life application in the mathematical model support and 

validate the study. This classification describes practical application and 

illustrative examples proposed in the literature to validate the mathematical 

model. 

Among the 65 research articles in the literature, 33 articles have taken random 

instances or illustrative examples to analyse the performance of their 

mathematical models. Rest of the literature reported various discrete and 

continuous manufacturing industries such as in health care (Pirkul and Jayaram, 

1996), construction (Sakawa et al., 2001), automotive manufacturing (Gnoni et 

al., 2003; Torabi and Hassini, 2009; Fahimnia et al., 2012), ceramic tile industry 

(Alemany et al., 2010), consumer goods manufacturing (Kanyalkar and Adil, 

2010; Kanyalkar and Adil, 2011), furniture manufacturing (Darvish et al., 2016), 

can production (Dhaenens-Flipo, 2000; Dhaenens-Flipo and Finke, 2001), general 

appliance company (Aliev et al., 2007), precision machinery and transmission 

components producer (Liang, 2008a; Liang and Cheng, 2009; Liang, 2011), 

electronics company (Jung and Jeong, 2012), surface and materials science 

Company (Torabi and Moghaddam, 2012), wood and paper industry 

(MirzapourAl-e-hashem et al., 2011; Lidestam and Rönnqvist, 2011; Gholamian 

et al., 2015, Gholamian et al., 2016) and other process industry (Vercellis, 1999) 

like chemical (Timpe and Kallrath, 2000; Kallrath, 2000; Lei et al., 2006; Mula et 

al., 2010), soft drink manufacturer (Liang, 2007; Liang, 2008b; Bilgen and 

Günther, 2010), dairy industry (Khalili-Damghani and Tajik-Khaveh, 2015). 

2.2.1.3 MSIPDP problems under Uncertainty 

The practical IPDP problem in supply chain has multiple conflicting objectives 

which are often uncertain due to several factors such as variation in human 

performance, changing environmental conditions, and unavailability or improper 

information (Liang 2007). To incorporate and handle the impreciseness, 

possibilistic programing approaches are implemented in this study.  
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Fuzzy programming 

This Section examines earlier contributions in handling MSIPDP problem based 

on fuzzy programming approach. The Literature review is divided into two sub-

sections addressing production and distribution planning problems formulated as 

single objective and multi-objective mathematical model and solved using fuzzy 

optimisation approach. 

The benefit of applying fuzzy set theory is that it allows imprecise aspiration of 

the DM to be quantified (Hannan 1981). The concept of fuzzy set theory of Zadeh 

(1965) was first implemented by Zimmermann (1976) for solving a linear 

programming model having fuzzy objectives as well as fuzzy constraints based on 

the fuzzy decision-making concept of Bellman and Zadeh (1970). Later 

Zimmermann (1978) implemented the fuzzy linear programming approach to 

transform fuzzy multi-objective model into single objective using fuzzy min 

operator. Many researchers and practitioners followed Zimmermann‟s fuzzy linear 

optimization methods for solving IPDP problems in fuzzy environments. 

Utilization of piecewise linear and continuous functions to represent imprecise 

aspiration levels in FGP problem was proposed by Hannan (1981). Few 

researchers have followed Zimmermann‟s fuzzy linear optimisation methods and 

Hannan‟s piecewise linear membership function for solving IPDP problems in 

fuzzy environments. 

Fuzzy optimisation and decision making approach was implemented in MSIPDP 

literature for both single as well as multiple objective function formulations. In 

single objective function, Sakawa et al. (2001) formulated a MIP model for 

production and transportation planning considering real problem of housing 

material manufacturer. Impreciseness in objective function and parameters of 

demands and production capacities are represented by membership function of 

Bellman and Zadeh (1970) and aggregation operator of Zimmermann (1978). 

Chen and Chang (2006) formulated a mathematical model for supply chain PD 

planning with fuzzy total cost minimization objective function. To convert the 

fuzzy model into crisp one, α cut and extension principle of Zadeh (1999) was 

applied. Bilgen (2008) addressed blending and maritime transport planning 
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problem considering uncertainty in objective functions, shipment and customer 

demand. Bilgen (2010) addressed fuzzy IPDP problem in a supply chain system 

of a consumer goods company. Vagueness in objective function and capacity 

constraints are represented by membership function of Zimmermann (1976). To 

convert the fuzzy model into crisp model, three different aggregation operators 

were applied. Jung and Jeong (2012) addressed supply chain planning problem 

under demand uncertainty in case of a Korean electronics company. Sharahi et al. 

(2018) dealt with location-allocation and production-distribution problem of a 

three echelon supply chain. Uncertainty in supply, process and demand were 

modeled using type-II fuzzy sets. 

The usefulness of fuzzy decision making approach also extends to multi-objective 

models where impreciseness comes in parameters, constraints and in multiple 

conflicting goals. A two phase fuzzy decision making approach for multi-

objective multi-site supply chain optimisation problem is applied by Chen et al. 

(2003). A multi-objective mixed integer non-linear programming model was 

formulated and vagueness in profit maximization objective function is addressed. 

Chen and Lee (2004) formulated a multi-objective mixed integer non-linear 

programming model for three level supply chain considering uncertainty in 

demand and prices. Roghanian et al. (2007) formulated a fuzzy programming 

technique to convert bi-level probabilistic multi-objective programming model 

into crisp model for enterprise wide supply chain planning. Liang (2007) 

considered production/transportation planning problem solved by FGP approach 

to deal with fuzzy multiple goals. Liang (2008a) and Liang (2008b) developed 

FMOLP model to solve IPDP problem with fuzzy objectives, represented by 

piecewise linear membership function. Peidro et al. (2009) proposed a fuzzy 

mathematical model for supply chain planning considering uncertainties in 

supply, demand and process. Torabi and Hassini (2009) proposed an interactive 

fuzzy goal programming (IFGP) approach for multi-site procurement, production 

and distribution planning problem. Liang (2011) handled production and 

distribution planning decision by using fuzzy linear programming approach based 

on possibility theory. Sahebjamnia et al. (2016) applied fuzzy programming 

concepts on capacitated lot sizing problem considering uncertain demand and 
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process parameters. Mohammed and Wang (2017) formulated and solved a fuzzy 

multi-objective programming model for production distribution plan of a green 

meat supply chain network. The benefit of applying fuzzy set theory is that it 

allows imprecise aspiration of the DM to be quantified.  

Few articles in the literature have considered environmental issues in the PD 

planning model solved using fuzzy programming method. Mohammed and Wang 

(2017) developed a production distribution plan for a green meat supply chain 

network. Four fuzzy objective functions are addressed simultaneously and 

solution obtained using LP-metrics, ε-constraint and goal programming method. 

Mokhtari and Hasani (2017) formulated a multi-objective model for cleaner 

production-transportation planning and solved using FGP and simulated annealing 

based heuristics. 

Intuitionistic fuzzy programming 

Fuzzy sets only consider belongingness of an element of set while intuitionistic 

fuzzy set considers both belongingness and non-belongingness of sets. Atanassov 

(1986) proposed the concept of intuitionistic fuzzy sets which is a generalization 

of the fuzzy sets. Further, Angelov (1997) illustrated the concept of intuitionistic 

fuzzy optimization (IFO) by solving a simple transportation problem. Jana and 

Roy (2007) solved a multi-objective transportation model using IFO approach. 

Chakrabortty et al. (2013) implemented IFO technique for solution of an 

inventory model with fuzzy cost and demand rate. De and Sana (2014) considered 

a multi-plant, multi period production inventory model and provided a 

comparison of solutions of fuzzy and intuitionistic fuzzy optimization approaches. 

Various multi-objective programming models were also solved using IFO 

approaches. Bharati et al. (2014) demonstrated application of IFO approach in 

solution of multi objective linear programming model. Chakrabortty et al. (2015) 

solved multi-objective intuitionistic fuzzy transportation problem using chance 

operator. Pareto optimal solution of a multi-objective programming problem using 

IFGP is obtained by Razmi et al. (2016). 

 



[42]  

Neutrosophic programming 

Uncertainty in MSIPDP problem has been solved in the literature using fuzzy and 

intuitionistic fuzzy approaches. Fuzzy sets only consider belongingness of an 

element of set while intuitionistic fuzzy set considers both belongingness and non-

belongingness of sets. These approaches consider truth and false sides but do not 

consider the aspect of indeterminacy, which occurs due to unexpected parameters 

hidden in some propositions (Abdel-Baset et al, 2016). Neutrosophic set (NS) is 

generalization of fuzzy and intuitionistic fuzzy set based on the philosophy of 

Neutrosophy (Smarandache, 1999). There are three components of neutrosophic 

sets: truth-membership degree, indeterminacy-membership degree, and falsity-

membership degree, which are able to represent indeterminate or inconsistent 

information.  

The neutrosophic programming approach was used to solve several mathematical 

programming models such as linear programming, mixed integer programming, 

and multi-objective models. Abdel-Baset et al. (2016) introduced the concept of 

neutrosophic optimization for solving a goal programming problem having 

multiple conflicting objectives. Mohamed et al. (2017) introduced neutrosophic 

integer programming problem, where parameters of integer program was 

represented by triangular numbers and solved using neutrosophic programming 

approach. Abdel-Basset et al. (2018) solved a linear programming problem using 

neutrosophic approach. The parameters of proposed mathematical model were 

represented by trapezoidal numbers.  

The concept of NS is also applied in various fields such as transportation 

modelling, production planning, multi-objective optimization etc. Thamaraiselvi 

and Santhi (2016) solved a real-life transportation problem in neutrosophic 

environment using single valued trapezoidal neutrosophic number. Rizk-Allah et 

al (2018) found a best compromised solution of a multi-objective transportation 

model in neutrosophic environment and found better results comparing the 

solutions with fuzzy optimization solutions. 
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2.3 Research Gaps 

The current review helps in identifying potential areas for future research, which 

received less attention from the researchers in past and need further exploration by 

engineering management scholars. The key research areas identified for future 

research based on the research gaps discussed above are summarised below:  

 In the entire literature, articles have considered production, inventory and 

distribution aspects in several combinations but there is no article available 

considering all these aspects in single mathematical model and in an 

integrated manner. Formulating a mathematical model considering all the 

aspects such as setup time/cost, production capacity, storage capacity, 

transportation capacity, different modes or types of vehicles, backordering 

etc. would reflect closeness to the real life scenario.  

 In the distribution phase, majority of recent articles have considered 

homogeneous transportation with unlimited number of vehicle availability 

or one trip transportation and without any loading capacity constraint 

which simplifies the solution but are generally not feasible in real world 

distribution networks. 

 Incorporating all the production and distribution aspects will result in a 

complex problem. It is evident from literature that mathematical models 

were solved either for small size problems or considering too many 

assumptions to simplify their mathematical models. There is need to work 

on an effective algorithm which can handle large size practical problems. 

 It is evident from the literature that instead of working on real life 

imitation in mathematical models, researchers focused more on developing 

or implementing efficient solution approaches. There is a need to work on 

real life problems or problems which illustrate real life scenarios.  

 A large number of articles in the literature have formulated their 

mathematical modes using variants of linear programming i.e. LP, MIP, 

MILP. There is a need to work on non-linear programming approaches as 

well. 
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 Only a few articles in the literature have formulated mathematical model 

based on continuous time representation. Continuous time formulation 

represents closeness to real life situation because parameter change can 

occur at any time.  

 Apart from the performance measures based on financial aspects e.g. cost, 

profit; other measures such as customer service level, responsiveness, are 

also critical but have received very less attention. 

 The literature on MSPDP is oblivious to uncertainty. Most of the models 

are assuming that planning system operates as deterministic and the 

parameters are exactly as predicted in forecast. In the present dynamic 

environment, there is a need to work upon optimization models under 

uncertain environment. 

2.4 Chapter Summary 

The significance of production and distribution planning in multi-site 

manufacturing environment has been recognised by researchers in last two 

decades. In this chapter, the existing knowledge based on production and 

distribution planning in the multi-site manufacturing is consolidated and classified 

based on different schemes. It becomes clear that integration of PD planning 

function is crucial to obtain a cost effective optimal plan. The classification of 

literature presented in this chapter can help decision makers in choosing suitable 

modelling and solution approach for integrating their production and distribution 

functions.  
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Chapter 3 

Multi-Site Production and Distribution Planning: An 

Integrated Approach 

 

3.1 Introduction 

In this chapter, two echleon supply chain scenario along with description and 

formulation of mathematical model is presented. It was observed form the 

literature review that the three important aspects of MSIPDP problem: set up cost 

for different products at manufacturing site, capacity of the heterogeneous 

transport vehicles and backorder cost for unfulfilled demand, have not been 

considered in an integrated manner yet. Incorporating these three components 

represents closeness to the real life situation. This chapter fulfils this gap and 

presents a mathematical model for MSIPDP scenario of an automobile 

manufacturing company located in India.  

The MSIPDP problem considered in this study is inspired from an automobile 

manufacturing company located in India. The company has multiple 

geographically dispersed plants producing multiple products (Two wheeler 

motorcycles). The demand for various products is originating from geographically 

scattered district level dealers called as selling locations. Each manufacturing site 

is producing final products and has a limited storage space from where products 

are distributed to selling locations. Whenever production starts at site, a fixed 

setup time and cost is incurred. All the manufacturing sites and selling locations 

have their own storage space of limited capacity. The transportation between 

manufacturing sites to selling locations is done by a heterogeneous fleet of 

vehicles each having a fixed amount of loading capacity. Backordering is 

considered whenever demand of a selling location is not fulfilled. The problem is 

formulated as MILP model and the analytical results of the proposed model are 

discussed. 
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This chapter is formulated in four sections. Section 3.2 provides description about 

the problem considered, notations used and assumption taken to formulate the 

mathematical model. The proposed model is a deterministic multi-product, multi-

period, two echelon supply chain structure with consideration of setup, 

heterogeneous transportation and backordering. Section 3.3 presents the input 

parameter values and discussion of results obtained after solving the proposed 

model. The summary of this chapter is provided in Section 3.4. 

3.2 Problem description 

This section describes the MSIPDP problem considered and formulates the 

mathematical model. Figure 3.1 shows a typical network of manufacturing sites 

and selling locations to provide an overview of the problem. Multiple products are 

produced at multiple manufacturing sites which are then distributed to multiple 

selling locations. Each manufacturing site has a limited production capacity, a 

fixed setup time/cost for each production run of a product, and known processing 

time per unit. After production, the finished products are transported to various 

selling locations through heterogeneous fleet of vehicles each having a fixed 

loading capacity. Fixed transportation cost for each pair of manufacturing site and 

selling location and variable cost for transporting one unit of a product is known. 

There is a limited storage at each manufacturing site and selling location. When 

demand of any selling location is not fulfilled, it is considered as backorder and 

added to the next period demand but up to a predecided fraction of demand. The 

objective is to plan production and distribution quantities in order to satisfy the 

demand of products at each selling location at minimum total cost. 
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Figure 3.1: Cross supply network of manufacturing sites and selling location 

3.2.1 Assumptions 

Following assumptions are taken to convert the real life problem in to the 

mathematical model: 

1. The demands of all the products originating from fixed number of selling 

locations are deterministic and known in advance. 

2. The associated capacities of each manufacturing site and selling location 

are known. 

3. There is direct transportation between manufacturing sites and selling 

locations and transportation lead times are negligible. 

4. There are no quantity based discounts. 

5. All the products produced and transported are assumed as defect free, 

hence the products are produced on the basis of exact order quantity. 

3.2.2 Deterministic formulation of multi-site integrated production and 

distribution planning model 

3.2.2.1 Nomenclature 

Following sets, parameters and variables will be used for formulation of 

mathematical model. 
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Sets 

   Set of products (i = 1,……,I)    

   Set of manufacturing sites (s = 1,……,S) 

   Set of selling locations (l = 1,……,L) 

G  Set of vehicle types (g = 1,…..,G) 

   Set of time periods (t = 1,……,T) 

Parameters: 

        Demand of product i at selling location l in period t  

       Setup time of product i at manufacturing site s  

       Processing time of product i at manufacturing site s   

       Production cost per unit of product i in manufacturing site s  

       Setup cost of product i at manufacturing site s  

      Inventory carrying cost of product i at manufacturing site s per 

time period  

      Inventory carrying cost of product i at selling location l per time 

period  

          Variable transportation cost of vehicle type g for transporting 

product i from manufacturing site s to selling location l 

    Fixed transportation cost per vehicle of type g  

       Backordering cost of product i at selling location l  

       Production capacity of manufacturing site s in period t 

     Maximum storage capacity of manufacturing site s 

     Maximum storage capacity of selling location l   

     Maximum capacity of transport vehicle of type g 

    Fraction of demand of product i that is allowed to be backordered  
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   A sufficiently large number 

Decision variables: 

       Quantity of product i produced at manufacturing site s during 

period t   

             Quantity of product i transported by vehicle type g from 

manufacturing site s to selling location l in time period t  

        Backordered quantity of product i at selling location l at the end of 

the period t  

          Number of vehicles of type g used to transport between 

manufacturing site s to selling location l in period t 

        Quantity of product i carrying at manufacturing site s at the end of 

time period t  

        Quantity of product i carrying at selling location l at the end of 

time period t  

       = {
                                                                                   

  
                                                                                                                                     

 

3.2.2.2 The objective function 

The objective function of the proposed mixed integer linear programming (MILP) 

model formulation of MSIPDP problem is consisting of various cost elements as 

follows. 

Total production cost = (Production cost per unit of product) * (quantity of 

products produced) 

i.e.  ∑ ∑ ∑                  

Setup cost = (Setup cost of product at manufacturing site)*(binary variable of 

setup) 

i.e. ∑ ∑ ∑                  
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Total Inventory carrying cost at site = (Inventory carrying cost per unit of product 

at manufacturing site) * (quantity of products carrying at manufacturing site at the 

end of period) 

i.e. ∑ ∑ ∑                   

Total Inventory carrying cost at selling location = (Inventory carrying cost per 

unit of product at selling location) * (quantity of products carrying at selling 

location at the end of period) 

i.e. ∑ ∑ ∑                   

Total fixed transportation cost = (fixed cost of vehicles) * (number of vehicle used 

for transportation) 

i.e. ∑ ∑ ∑ ∑                    

Total variable transportation cost = (variable cost of transportation) * (quantity 

transported) 

i.e. ∑ ∑ ∑ ∑ ∑                             

Total backorder cost = (Backordering cost of product) * (quantity backordered) 

i.e. ∑ ∑ ∑                   

The complete objective function can be written as follows: 

Minimum total cost = ∑ ∑ ∑               + ∑ ∑ ∑                 

∑ ∑ ∑                + ∑ ∑ ∑                + ∑ ∑ ∑ ∑                  + 

∑ ∑ ∑ ∑ ∑                           + ∑ ∑ ∑                         (3.1) 

The objective function shown in equation (3.1) seeks to minimise the total cost 

comprising production cost, inventory carrying cost at different production site 

and selling locations, fixed and variable transportation cost between plants and 

selling locations, setup cost at manufacturing sites and backorder cost. 
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3.2.2.3 Constraints 

The proposed MILP model is subjected to following constraints. 

Inventory balance constraints: Constraint (3.2) and (3.3) states inventory balance 

equation at manufacturing site and selling locations respectively. Constraint (3.2) 

relates the inventory quantity at start and end of period with the production and 

transported quantity at each manufacturing site. Constraint (3.3) relates inventory 

and backorder level at the start and end of period to the demand and transported 

quantity in that period at each selling location. It shows that in a particular period 

if both inventory and backorder quantity is greater than zero then there is no 

optimal solution. 

         =                  ∑ ∑                         (3.2) 

                 =                       + ∑ ∑              -                 (3.3) 

Setup constraint: Constraint (3.4) force the binary setup variable. 

       ≤                        (3.4) 

Production capacity constraint: Constraints (3.5) shows that production and setup time at 

each site should be less than or equal to the available production capacity of that period. 

∑                                 ≤                 (3.5) 

Transportation capacity constraint: Constraint (3.6) provides limit on transported 

quantity, quantity transported from manufacturing site to selling location should 

be less than or equal to transportation capacity of the vehicle. 

∑              ≤                             (3.6) 

Backorder constraint: Constraint (3.7) limits the backordering quantity in each 

period at each selling location to be less than some fraction of demand. 

        ≤                       (3.7) 
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Storage space constraint: Constraint (8) and (9) are storage capacity constraints 

at each manufacturing site and selling location respectively. 

∑ ∑           ≤                          (3.8) 

∑ ∑           ≤               (3.9) 

Nature of variables: Constraint (3.10) and (3.11) defines the nature of the 

variables. 

         {1, 0} (3.10) 

      ,        ,        ,            ,                   ≥ 0 and integer (3.11) 

Initial inventory and backorder value: Constraint (3.12) defines that initial 

inventory at manufacturing site and selling location and backorder quantity is 

assumed as zero.  

        =         =         = 0  (3.12) 

  

3.3 Illustrative Example 

This Section illustrates the problem instances of case company and report 

analytical results computed by solver. The case company considered in this study 

is an automobile manufacturing company producing two wheeler motorcycles. 

The company has three plants geographically located at northern, western and 

southern parts of India. The company produces fifteen different models of the two 

wheelers at its manufacturing facilities, but to avoid complexity of the 

mathematical model only three product categories that are manufactured in all the 

three plants have been considered. The three products are distributed to four 

selling locations located at different parts of the country. Each manufacturing site 

is producing final products and has a limited storage space. The motorcycles are 

transported from manufacturing sites to selling locations by a heterogeneous fleet 

of vehicles each having a fixed loading capacity.  
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3.3.1 Input data values 

The problem considered here is demonstrating a real world problem of small 

problem size and formulated in a stylised manner. There are three manufacturing 

sites producing three types of products and distributing them to four selling 

locations. The planning horizon is taken as three months having discrete time 

periods of one month. Due to confidentiality of exact data and for proper 

representation, input parameter values are scaled down and considered in a 

uniformly distributed manner. The value of different input parameters is shown in 

Table 3.1.  

Table 3.1: Input data values of parameters 

Parameter Value 

Demand (units) 

Product 1 U (200-250)  

Product 2 U (220-300) 

Product 3 U (150-200) 

Setup time (hour/setup) U (0.75-1.5)  

Processing time (hour) U (1.9-2.1) 

Production cost (Rs.) U (10000-13000) 

Carrying cost at a manufacturing site (Rs.) U (50-60) 

Carrying cost at selling location (Rs.) U (40-50) 

Variable Transportation cost (Rs.) U (300-400), U(250-350) 

Fixed transportation/vehicle cost (Rs.) U (2000-10000), U(6000-30000) 

Setup cost (Rs.) U (13000-15000) 

Backorder cost (Rs.) U (11000-12000) 

Transportation capacity of vehicles (units) {40, 84} 

Max storage at site and selling location (units) {50, 100} 

Fraction of demand backorder 0.5 
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3.3.2 Computational results and discussion 

The proposed mathematical model was written and solved using CPLEX solver 

provided via IBM ILOG CPLEX 12.7 on a PC Intel Core i5 1.7 GHz and 4GB 

RAM. The solution of the proposed model identifies periods in which production 

occurs, optimal production quantity in each manufacturing site, optimal inventory 

quantity at manufacturing site and selling location, optimal transportation quantity 

and number of vehicles sufficient to fulfil the demand at minimum total cost. 

Table 3.2: Computational complexity and results 

Object Value 

Objective function (Total Cost) 91620983 

Production cost 72025150 

Backorder cost 14604991 

Fixed transportation cost 2551125 

Variable transportation cost 2104148 

Setup cost 330420 

Carrying cost at manufacturing site 1746 

Carrying cost at selling location 3403 

Number of variables 
Binary 27 

Integer 447 

Number of constraints 279 

Solution time in CPU seconds 3813.5 

Number of nodes 8519277 

Number of iterations 39836323 

The computational results are obtained to investigate the performance of the 

proposed mathematical model. Table 3.2 shows the computational complexity in 

terms of number of variables, constraints, iterations, nodes and solution time in 

CPU seconds and cost computations. It can be seen from Table 3.2 that after 

visiting 8519277 nodes, performing 39836323 iterations, and in 3813 CPU 
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seconds; optimal solution is obtained. Total cost of the proposed model is 

calculated as Rs. 91620983 in which production, transportation and backorder 

cost are having the major contribution. Because of the high demand of the 

products it is observed that backorder quantity is more and inventory quantity at 

both manufacturing sites and selling locations is very less. Table 3.3 to Table 3.7 

shows the optimum values of decision variables.   

Table 3.3: Optimum value of production quantity at manufacturing site 

Manufacturing 

Site 

M1 M2 M3 

         Period 

Product 

t1 t2 t3 t1 t2 t3 t1 t2 t3 

P1 307 307 307 310 265 - 308 285 110 

P2 304 304 304 310 310 310 313 313 - 

P3 315 315 315 304 302 - 198 190 - 

Table 3.3 shows the amount of products produced at each manufacturing site in 

each time period. For example the quantity of product 1, produced in 

manufacturing site 2 in first time period is 310. 

Table 3.4: Optimum value of backorder quantity at selling location 

Selling 

Location 

L1 L2 L3 L4 

         Period 

Product 

t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

P1 6 - 111 - - 104 8 - 101 6 - 110 

P2 - 8 - 38 61 116 - - 111 41 - 100 

P3 - - 112 - - 92 - - 72 - - 104 

Table 3.4 shows the optimum quantity of backorder level at selling location of 

each product in the end of each time period. It can be observed from the table that 

product 2 is having maximum demand among all and that is why maximum 
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backorder quantity is for product 2. It can be seen that there is some backorder for 

each product which states that the demand is not fulfilled which results in a low 

amount of inventory at each selling location. 

Table 3.5: Optimum value of quantity transported from manufacturing site to 

selling location 

V
eh

icle 

P
ro

d
u

ct 

M
a

n
u

fa
ctu

rin
g

 

site 

Selling Location 

L1 L2 L3 L4 

Period    

t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

G1 P1 M1 - - - - - 11 68 100 101 - - - 

M2 - - - 237 211 - 73 54 - - - - 

M3 - - - - - - 74 61 - - - 26 

P2 M1 - - - 75 110 59 - - - - - 21 

M2 - - - 65 111 119 161 199 111 - - 80 

M3 - - - - - - 114 59 - 199 254 - 

P3 M1 80 160 112 5 10 88 92 140 59 - - 59 

M2 - - - 67 200 - 142 55 - - - - 

M3 - - - - - - 12 - - - 66 12 

G2 P1 M1 239 207 111 - - 84 - - - - - - 

M2 - - - - - - - - - - - - 

M3 - - - - - - - - - 234 224 84 

P2 M1 229 194 224 - - - - - - - - - 

M2 - - - 84 - - - - - - - - 

M3 - - - - - - - - - - - - 

P3 M1 120 19 1 - - - - - - - - - 

M2 - - - - - - - - - - - - 

M3 - - - - - - - - - 186 112 - 
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The amount of quantity transported from manufacturing site to selling location in 

each time period is shown in Table 3.5. It can be observed from the table that the 

maximum amount of product transported is equal to the maximum transportation 

quantity limit. For example the quantity of product 1 transported from 

manufacturing site 1 to selling location 1 in first time period is 100. 

Table 3.6: Optimum number of vehicle type used for transportation 

Vehicle Manufacturing 

site 

Selling Location 

L1 L2 L3 L4 

Period    

t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

G1 M1 2 4 3 2 3 4 4 6 4 - - 2 

M2 - - - 12 14 3 9 8 3 - - 2 

M3 - - - - - - 5 3 - 5 8 - 

G2 M1 7 5 4 - - 1 - - - - - - 

M2 - - - 1 - - - - - - - - 

M3 - - - - - - - - - 5 4 1 

Table 3.6 shows the optimal number of both vehicle types and it is observed that 

vehicle type 1 is used more than the type 2 for minimum total cost.  

One important thing in linear programming models of PD planning is the size of 

the problem. In this study, size of the problem is defined by number of products, 

number of sites, number of selling locations, number of vehicles and number of 

time periods. The problem instance solved in this study is demonstrating the real 

life situation but having a small problem size. To solve larger problems, either a 

suboptimal solution can be obtained by changing the % gap of CPLEX solver or a 

heuristic approach can be implemented.  

In the proposed mathematical model, there was limit on total transported quantity 

according to vehicle capacity, but there was no limit on minimum transported 

quantity which results in high fixed transportation cost due to small amount of 

loading of vehicles. In practical scenario, increasing the vehicle transportation 

capacity decreases the requirement of number of vehicles and thus reduces the 
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fixed transportation cost but it would not be consistent because the amount of 

quantity transported depends upon the product demand, production quantity and 

availability of storage at selling location.    

3.4 Chapter Summary 

This chapter considered a MSIPDP problem of a two echelon supply chain, 

formulated as a MILP model to minimise total cost including production, 

inventory, setup, backorder and transportation cost. A real life case of an 

automobile industry is considered and a stylised data set is generated with the 

purpose of providing details and demonstrates the performance of the model. The 

model includes most of the characteristics of the automobile industry such as 

consideration of setup, backorder and heterogeneous fleet of vehicles with distinct 

capacities. The computational results obtained using CPLEX solver for objective 

function and decision variables are tabulated. The outcomes of analytical results 

are discussed to drawn out some important managerial implications.  

This chapter tries to fill the gaps by formulating a mathematical model 

considering major cost and capacity aspects of production as well as distribution 

processes. The scenario is related with the actual case of an automotive company 

for analysis of the problem and computational results. The proposed mathematical 

model and solution reflects the actual scenario up to a sufficient degree of reality 

and can be helpful to decision makers to effectively plan production and 

distribution activities in a multi-site manufacturing scenario.  

To achieve better solutions in reasonable computational time and to solve large 

size problems, heuristics and metaheuristics algorithms can be applied. In addition 

to that, stochastic programming or fuzzy approach can be applied to handle 

uncertainty in objective function and parameters. The proposed mathematical 

model can be extended to include multiple conflicting objectives related with 

customer service level. Some of these issues are addressed in upcoming chapters. 
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Chapter 4 

Lagrangian Relaxation for Multi-Site Production and 

Distribution Planning 

 

4.1 Introduction 

Integrated decision making is one of the most important aspects of supply chain 

management. Over the past years, there have been an increasing number of 

articles published on the IPDP problem. Chapter 3 presented the formulation of 

mathematical model for MSIPDP problem and solution using exact optimization 

technique with illustrative example. The results indicate that for large size 

problem, computational solver takes too much time or does not generate an 

optimal solution. For solving these large size industrial problems, a Lagrangian 

relaxation based heuristic algorithm is implemented in this study.  

There are different approaches employed in the literature to solve the complex 

problems. There is a tradeoff between solution quality and acceptable 

computational time. Exact optimization methods such as Branch & Bound can 

generate optimal solutions for MIP problems, but it takes too much time to solve a 

complex problem. On the other hand, feasible solutions in less computational time 

can be obtained by heuristics approaches, which compromise on solution quality. 

Heuristic approaches are used to investigate two important problem aspects, 

generation of feasible solution and finding strong lower bounds. The purpose of 

this study is to formulate and solve large size MSIPDP problem. The heuristic 

algorithms implemented in this study are based on Lagrangian relaxation (LR) 

technique that incorporates the hard constraints into the objective function, 

resulting in an easy to solve subproblem. The feasibility of these subproblems is 

maintained by using two heuristic algorithms. The computational results are tested 

using problem instances generated by uniform distribution. The performance of 

these heuristics is evaluated by comparing with exact optimization results. 
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The rest of the chapter is structured as follows. Section 4.2 is devoted to describe 

background and overview of the problem considered. Section 4.3 discuss about 

the problem considered and formulation of mathematical model. Section 4.4 

presents the methodology of implementation of Lagrangian heuristics and 

algorithms for feasibility establishment. Computational results using exact and 

heuristics approaches are reported in Section 4.5. Section 4.6 concludes the 

chapter. 

4.2 Background and overview 

Due to the complexity of the MSIPDP mathematical formulation, several heuristic 

algorithms have been implemented in literature to solve large size industrial 

problems. Kuno & Utsunomiya (2000) solved a production-transportation 

problem using Lagrangian relaxation based branch and bound algorithm. The 

computational results indicate that the algorithm can solve large size problems. 

Wu and Golbasi (2004) proposed a multi-product multi facility supply chain 

planning problem. A Lagrangian decomposition scheme was implemented where 

the original model is decomposed into single item subproblems. Effectiveness of 

shortest path algorithm in comparison to subgradient search algorithm was 

analysed. Park (2005) dealt with the problem of IPDP in a multi-plant, multi-

retailer, two echelon supply chain. The proposed model was solved using two 

phase heuristics approach having local improvement procedure coupled with load 

shifting among periods. Advantage of integrated approach over decoupled one 

was shown in computational results. Lei et al. (2006) proposed a MIP model for 

single item, multi-period, multi-plant integrated production and distribution 

routing problem with heterogeneous transportation. The computational results of 

two phase heuristics approach was compared with CPLEX solver results and it 

was found that heuristics gives same/better results in less computational time. 

Ekşioğlu et al. (2007) presented an IPDP problem in a two echelon supply chain 

formulated as MILP model. The proposed model was solved using Lagrangian 

decomposition based heuristics. Primal-dual and dynamic programming 

algorithms were used to solve subproblems and results were compared with 

optimal solution of CPLEX solvers for small size problems.  
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Lidestam and Ronnvist (2011) applied a lagrangean decomposition heuristic for 

IPDP problem of a pulp company supply chain. The problem was formulated as 

MILP including tactical decision related with transportation of raw material, 

production and distribution of products. Kanyalkar and Adil (2011) dealt with 

multi-site integrated procurement, production and distribution planning problem 

and formulated a mixed integer programming model. Aggregate and detailed level 

planning was presented under a rolling schedule. Wei et al. (2017) proposed a 

tactical PD planning model for a two stage production process. Two 

decomposition based heuristics; relax and fix and variable neighbourhood search 

were applied to solve the problem. The convergence of computational results was 

compared with branch and cut results obtained using CPLEX solver. Bajgiran et 

al. (2016) dealt with lumber supply chain tactical planning problem formulated as 

MIP model. To solve such complex problem, Lagrangian relaxation based 

heuristic algorithm is applied in which multiplier value is updated by subgradient 

optimization technique. The integrated model was compared with decoupled 

model which has shown profit improvement using integrated approach. 

Consideration of heterogeneous transportation with limited number of vehicle 

having a fixed loading capacity is presented by Feng et al. (2017). They addressed 

the problem of coordinated production and distribution planning and formulated a 

MILP model. The problem was solved using decomposition and Lagrangian 

relaxation based heuristics and results were compared with exact solution of 

CPLEX solver, which shown the efficiency of applied heuristic methods. 

Apart from the single heuristics approach, few articles have presented hybrid 

solution approaches such as Melo and Wolsey (2012) proposed a MIP formulation 

for a two level production-distribution problem solved using hybrid heuristics 

based on relaxation induced neighbourhood search and local branching. Camacho-

Vallejo et al. (2014) dealt with production and distribution planning problem 

considering three echelons; plants, distribution centre and retailers of supply 

chain. A bilevel mathematical problem is presented and solved using scatter 

search based heuristic algorithm. The computational results were compared with 

similar studies in literature and found to be efficient. 
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Table 4.1: Summary of relevant studies on MSIPDP problem using heuristics. 

Author year Multi-

product 

Multi-

period 

Production 

capacity 

Setup Vehicle fleet Model Solution 

Cost Time Heterogeneous 

transportation 

Constrained 

Capacity 

Kuno & Utsunomiya (2000)        MIP Lagrangian relaxation heuristic 

Wu & Golbasi (2004)        MIP Lagrangian decomposition 

heuristic 

Park (2005)        MIP Two Phase heuristic 

Lei et al. (2006)        MIP Two Phase heuristic 

Ekşioğlu et al. (2007)        MILP Lagrangian decomposition 

heuristic 

Kanyalkar & Adil (2011)         MIP Rolling schedule 

Lidestam & Ronnvist 

(2011) 

       MILP Lagrangian decomposition 

heuristic 

Melo & Wolsey (2012)        MIP Hybrid heuristic 

Camacho-Vallejo et al. 

(2014)  

       LP Heuristic 

Darvish et al. (2016)        ILP Branch and Bound 

Bajgiran et al. (2016)        MIP Lagrangian relaxation heuristic 

Wei et al. (2017)        MILP Decomposition heuristic 

Feng et al. (2017)        MILP 

& NLP 

Lagrangian relaxation and 

decomposition heuristics 

Current study        MIP Lagrangian relaxation heuristic 
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To summarise existing research work, a categorization is done on the basis of 

aspects of problem, model formulation and solution approach employed, as shown 

in Table 4.1. It can be observed from the table that most of the previous studies 

assumed homogeneous transportation with unlimited capacity of vehicles. In 

practical scenario, heterogeneous transportation is used because of flexibility and 

cost effectiveness (Feng et al. 2017). Current study considers all the mentioned 

problem aspects and employed Lagrangian relaxation approach to handle 

complexity of the resulting formulation. 

4.3 Problem formulation 

In this study, MSIPDP problem is addressed considering setup time/cost in 

production and fleet of heterogeneous transportation with constrained capacity in 

transportation. The description of problem, assumptions, notations and model 

formulation is already explained in Section 3.2. In the current study, backlogging 

situation is not considered. The problem is formulated as MILP model as follows: 

Minimum total cost = ∑ ∑ ∑               + ∑ ∑ ∑                 

∑ ∑ ∑                + ∑ ∑ ∑                + ∑ ∑ ∑ ∑                  + 

∑ ∑ ∑ ∑ ∑                                (4.1) 

         =           +       - ∑ ∑                          (4.2) 

        =          + ∑ ∑              -                    (4.3) 

       ≤                        (4.4) 

∑                                 ≤                 (4.5) 

∑              ≤                              (4.6) 

∑ ∑           ≤                           (4.7) 

∑ ∑           ≤               (4.8) 

          {1, 0}        (4.9) 

      ,        ,        ,            ,           ≥ 0 and integer   (4.10) 

        =         = 0       (4.11) 
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The complexity of the problem implies that the solution using standard solver will 

not be possible, especially with the large size of the problem. To handle this issue, 

a LR based approach is implemented to solve medium and large size problems in 

less computational time. Solution methodology of implementation of heuristics is 

descried in next Section. 

4.4 Solution methodology 

Lagrangian relaxation was first implemented by Held and Karp (1970, 1971) to 

solve large size optimization travelling salesman problems. The idea is to relax the 

set of hard constraints by adding them into objective function with a penalty, thus 

makes the problem easier to solve. The solution provides lower bound for the 

original problem in case of minimization problem. Upper bound of the problem is 

obtained by maintaining the feasibility of solution using a heuristic algorithm. The 

solution obtains when gap of lower bound and upper bound is reasonably small or 

the number of iterations reaches to a predefined number. Lagrangian dual aims to 

find the highest lower bound value for the MIP problem over all Lagrangian 

relaxations. LR methodology employed in this study is shown in Figure 4.1. 

Two Lagrangian relaxation algorithms are employed in this study to compute 

lower bounds on the objective function values because of minimization problem. 

The hard constraints are added in the objective function with a given vector of 

non-negative multipliers called as Lagrangian multipliers. To iterate the value of 

multiplier and to obtain best lower bound value, subgradient optimization method 

is used, which is a most widely used method in the literature because it is easy to 

program and has performad well on many real life problems (Fisher 1981). The 

relaxed problems have infeasibility in most of the cases. The feasibility of the 

solutions is maintained by employing Lagrangian heuristics algorithms. Section 

4.4.1 presents relaxation of production part and Section 4.4.2 for distribution part 

of the problem. Section 4.4.3 discuss about Lagrangian dual solution using 

subgradient optimization method. Section 4.4.4 discuss about Lagrangian 

heuristics used to maintain the feasibility of the relaxed problem. 
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Figure 4.1: Lagrangian relaxation methodology of current study (adapted from 

Rafie-Majd 2018) 
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[66]  

4.4.1 Lagrangian Relaxation for production 

Production capacity constraint (4.5) is relaxed and added in the objective function, 

thus leading to the following relaxed problem: 

Minimize ZLR (λ) = ∑ ∑ ∑               + ∑ ∑ ∑                 

∑ ∑ ∑                + ∑ ∑ ∑                + ∑ ∑ ∑ ∑                  + 

∑ ∑ ∑ ∑ ∑                           + α              +             -       ) 

Constraint (4.2 – 4.11) and 

    .          (4.12) 

Where   is vector of Lagrange multiplier. 

4.4.2 Lagrangian Relaxation for transportation 

Transportation capacity constraint (4.6) is relaxed and added in the objective 

function, thus leading to the following relaxed problem: 

Minimize ZLR (λ) = ∑ ∑ ∑               + ∑ ∑ ∑                 

∑ ∑ ∑                + ∑ ∑ ∑                + ∑ ∑ ∑ ∑                  + 

∑ ∑ ∑ ∑ ∑                           + β       
      -        

       

Constraint (4.2 – 4.11) and 

β ≥ 0.          (4.13) 

Where β is vector of Lagrange multiplier. 

4.4.3 Lagrangian dual solution – Subgradient optimization 

Subgradient optimization method is used to find vectors of Lagrangian multipliers 

that give the lower bound to near optimality. For a particular value of α and β, the 

feasible solution of LR(α) and LR(β) is optimal solution. There is no other way of 

proving optimality in subgradient method; because of this the method is 

terminated after some defined iteration limit. For detailed description about the 

method, refer Fisher (1981). 
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[AL1] max ZL(α)  

s.to.  α ≥ 0 

and max ZL (β) 

s.to.  β ≥ 0 

at iteration r, subgradient vectors θ
r
 is determined by 

   
  =       

∗                            

 2
  =            

∗               
 

where       
* 

and            
*
 are the optimal solutions of LR(α) and LR(β) obtained 

at iteration r. 

Multiplier at iteration r, α
r
, for the next generation multipliers α

r+1
, is generated by  

α
r+1

 = max { α
r
 + Sr1   

  , 0}  

In the same manner, multiplier at iteration r, β
r
, for the next generation multipliers 

β
r+1

, is generated by 

β
r+1

 = max { β
r
 + Sr2  2

  , 0}  

where Sr1 and Sr2 are positive scalar step sizes. This is obtained as- 

 Sr1 = 
    

∗      
   

‖  
 ‖2⁄  

Sr2 = 
    

∗      
   

‖ 2
 ‖2⁄  

Where 0 <    ≤ 2, is a positive scalar,  ∗ is an upper bound on optimal solution of 

ZL(α) and ZL (β). ‖  
 ‖ and ‖ 2

 ‖ denotes the Euclidean norm of vector   .  ∗ is 

usually obtained by applying a heuristic technique. The initial value of scalar is set 

as 2 and halved whenever the lower bound value fails to improve within a fixed 

number of iterations. There are multiple ways to stop this iteration process, when 
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the gap between lower and upper bound value reaches to a predefined value, the 

number of specified iteration completed or when scalar value reaches to a 

specified close to zero value. 

4.4.4 Lagrangian Heuristics 

The relaxed problem may not satisfy the capacity constraints and thus leads to an 

infeasible solution. In order to provide the algorithm an upper bound, the 

infeasible solution needs to be converted into a feasible one. This Section presents 

two Lagrangian heuristics algorithms to solve production and distribution 

subproblems to find feasible solutions of the upper bound problem. 

Top down heuristics 

Solution methodology using lot shifting heuristic algorithm is as follows: 

Step 1. Solve the uncapacitated PD planning problem with initial Lagrangian 

multiplier as zero. The solution of this problem will give production, 

inventory and transportation quantities at multiple sites and selling 

locations. 

Step 2. The sum of production time and setup time gives value of production 

capacity consumption. If capacity consumption is less than the available 

production capacity, a feasible solution will be obtained and algorithm 

will stop, otherwise a capacity violation is exist and need to move to next 

step. 

Step 3. Set the values for initial Lagrangian multiplier, step size and number of 

iterations. 

Step 4. A lot shifting algorithm needs to be employed in which production 

quantities are shifted among periods. This is done into two phases, a 

backward phase and then a forward phase. In backward phase, products 

are transferred to previous time period to eliminate overtime capacity in 

pair of plant period of production capacity. Next in forward phase, 

transfer is done in subsequent periods.  
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Algorithm 1 below shows the pseudocode for the production capacity feasibility 

strategy. 

Algorithm 1: Feasibility establishment of production capacity 

  Data: Approximate dual solution 

  Result: Either a heuristic feasible solution or an infeasible solution 

 repeat 

      //Backward phase 

     for t = T to 2 with excess capacity 

          repeat 

          identify the plant s with excess capacity in period t; 

          repeat 

          Update production variables by performing the transfer  

          Until production capacity (s,t) does not represent excess capacity; 

    if production variables is feasible then  

          return production variables 

    else 

      //Forward phase 

     for t = 1 to T-1 

       repeat 

           Identify the plant s with excess capacity in period t; 

        repeat 

          Update production variables by performing the transfer  

          Until production capacity (s,t) does not represent excess capacity; 

    If production variables is feasible then 

         Return production variables; 

    Else 

Until the number of iteration has not been reached; 

 

Step 5. Apply the sub-gradient method to update value of Lagrangian multiplier 

until the maximum number of iteration reached. If still solution not found 

then it is said that solution cannot be found. 
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Step 6. Check again for production capacity violation, if violation do not exist, a 

feasible solution will be obtained, otherwise go to step 4. 

Step 7. The values of quantities are obtained and objective function value will be 

computed. 

Bottom Up heuristics 

Solution methodology using minimum transport cost algorithm 

Step 1. Solve the uncapacitated production distribution planning problem with 

initial Lagrangian multiplier as zero. The solution of this problem will 

give production, inventory and transportation quantities at multiple sites 

and selling locations. 

Step 2. Check for the transportation capacity. If the transportation capacity is less 

than the available capacity, a feasible solution will be obtained and 

algorithm will stop, otherwise a capacity violation is exist and need to 

move to next step. 

Step 3. Set the values for initial Lagrangian multiplier, step size and number of 

iterations. 

Step 4. A minimum transport cost algorithm needs to be employed in which 

products having minimum cost of transportation are employed. Sort the 

products in increasing order of transportation cost and then calculate 

optimal number of transportation quantities.  

Step 5. Apply the sub-gradient method to update value of Lagrangian multiplier 

until the maximum number of iteration reached. If still solution not found 

then it is said that solution cannot be found. 

Step 6. Check again for transportation capacity violation, if violation does not 

exist, a feasible solution will be obtained, otherwise goes to step 4. 

Step 7. The values of quantities are obtained and objective function value will be 

computed. 
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Algorithm 2 below shows the pseudocode for the production capacity feasibility 

strategy. 

Algorithm 2: Feasibility establishment of transportation capacity 

  Data: Approximate dual solution 

  Result: Either a heuristic feasible solution or an infeasible solution 

 repeat 

     for t = 1 to T  

          if             ≤               transportation variable is feasible 

            return  

            update production and transportation variables; 

         else 

      //Feasibility establishment phase 

         Sort the products in decreasing order of transportation cost 

         Set   =  ….P and obtain optimal values of transportation quantity                   

         If transportation variables is feasible then 

             Return production and transportation variables; 

         Else 

Until the number of iteration has not been reached; 

 

4.5 Computational results 

Using the real life data set of automobile manufacturing company, random data 

instances are generated that reflect the characteristics of the real life scenario as 

much as possible. Input data of all the parameters used in mathematical model are 

generated following the data provided by company and preliminary studies. A 

total 20 number of problem instances of small and large categories are generated 

using Uniform distribution following the data generation scheme of Park (2005). 

The sets of test problems are given in Table 4.2. Demand in each period is 

generated from interval [170, 250], processing time is generated from interval [5, 

8]. Production cost is generated according to type of product from interval [13000, 

17000]. Holding cost at site is between [20, 30] and at selling location is between 



[72]  

[30, 40], setup time is between [100, 120] and setup cost is between [60000, 

80000]. Fixed transportation cost varies according to the capacity of vehicle, e.g. 

for a vehicle having 40 units loading capacity assigned fixed cost of 5000, another 

vehicle of 84 units loading capacity is having fixed cost of 10000. Variable 

transportation cost is decided on the basis of distance between manufacturing site 

and selling location on map. Production capacity is calculated following the 

generation scheme of Carvalho (2016), as follows: 

      = [∑∑∑
                         

 

 

   

 

   

 

   

] 

Storage capacity at site and at selling location is determined on the basis of total 

demand in a period as suggested by Park (2005). 

   = 
    ∑        

   
    and     = 

    ∑        

   
 

Table 4.2: Set of test problem 

S.No. Sets Description 

1   {3 - 15} 

2   {3,4,5,6,7} 

3   {3,5,7,9,11,13,15,18,20} 

4   {2,3,4,5} 

5   {3,4,6,9,12} 

The combination of sets showing configuration and the complexity of problem 

instances in terms of number of variables and constraints are presented in Table 

4.3. 
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Table 4.3: Configuration and complexity of problem instances 

Problem 

no. 

Number of nodes Test problem specifications No. of 

variable 

No. of 

constraints 
          

S1 3 3 3 2 3 168 342 

S2 3 3 3 2 4 216 450 

S3 3 5 4 3 3 316 875 

S4 3 5 4 3 4 408 1156 

S5 4 5 5 3 4 570 1825 

S6 4 7 5 3 4 718 2451 

S7 4 7 6 3 4 789 2874 

S8 4 7 6 4 4 901 3658 

L9 4 7 6 4 6 1289 5454 

L10 5 9 7 4 6 2020 9746 

L11 5 9 8 4 6 2148 10984 

L12 5 9 8 4 9 3159 16420 

L13 5 11 9 4 9 3886 22050 

L14 6 11 10 4 9 4687 28916 

L15 6 13 10 4 9 5321 33868 

L16 6 13 11 5 9 6267 45398 

L17 6 15 12 5 12 9633 75204 

L18 7 15 13 5 12 11216 94102 

L19 7 18 14 5 12 13395 120302 

L20 7 20 15 5 12 15036 142185 

*S –small size problems, L – Large size problems
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Table 4.4: Comparison of lower bound values for small size problem instances 

S.no. Exact optimization Top down heuristics (TDH) Bottom up heuristics (BUH) 

Obj. value Runtime (sec) Lower bound Runtime (sec) % gap Lower bound Runtime (sec) % gap 

S1 48508804 5.82 47668474 1.56 1.73 47954410 0.19 1.14 

S2 64336781 10.55 63058688 19.25 1.99 62843169 0.50 2.32 

S3 175936073 3.21 169894208 4.15 3.43 172320616 0.22 2.05 

S4 230677251 7.13 225553648 9.58 2.22 226489200 1.34 1.82 

S5 300290408 151.31 296150475 75.49 1.38 296295089 0.55 1.33 

S6 424742906 277.28 423239051 166.03 0.35 422160842 2.1 0.61 

S7 505846375 379.03 498533866 312.22 1.45 497981451 3.76 1.55 

S8 502015538 400.23 493006190 298.41 1.79 495712267 2.50 1.26 
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Table 4.5: Computational results for large size results 

S.no. Top down heuristics (TDH) Bottom up heuristics (BUH) 
CPLEX 

Solution 
 Lower bound Upper bound % gap Runtime 

(sec) 

Lower bound Upper bound  % gap Runtime 

(sec) 

L9 
748448134 778386059 3.85 75.21 742050709 756891723 1.96 7.53 748449745 

L10 
1104448862 1159671305 4.76 150.45 1094761784 1111183211 1.48 10.58 1104472688 

L11 
1259339632 1309713217 3.85 199.69 1248344350 1263324482 1.19 27.28 1259330692 

L12 
1896064005 1952945925 2.91 252.36 1879429998 1911568251 1.68 15.24 1896061295 

L13 
2596402411 2726222532 4.76 350.12 2573592121 2580798179 0.28 9.82 2596414325 

L14 
2835866554 2920942551 2.91 354.66 2810168159 2876488128 2.31 45.12 2836019630 

L15 
3346755206 3463891638 3.38 450.71 3316441347 3378458800 1.84 36.17 3346839146 

L16 
3678735202 3811169669 3.47 454.75 3644843959 3696236259 1.39 40.47 3678711607 

L17 
6197634368 6445539743 3.85 534.2 6141513931 6299964990 2.52 50.25 6197061566 

L18 
6740760065 7044094268 4.31 644.75 6680081455 6804998978 1.84 65.74 6741167003 

L19 
8688343716 9105384214 4.58 541.28 8610196561 8713518920 1.19 66.96 8687874704 

L20 
10325525399 10759197466 4.03 737.24 10232469007 10329677463 0.94 115.47 10328371483 
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All the problem instances are run on a PC Intel Core i5 on a computer Intel Core 

i5 1.7 GHz with 4GB RAM. All the formulations and algorithms are implemented 

and solved using CPLEX solver provided via IBM ILOG CPLEX 12.7. Table 4.4 

shows the total cost, solution time and % gap between optimal solution obtained 

by exact optimization, and lower bound values obtained by top down heuristics 

(TDH) and bottom up heuristics (BUH). The quality of solution is evaluated by 

calculating % gap as follows: 

     =  
        

     
      

It can be seen from the table that both the heuristics give good results in terms of 

computation time. The overall average % gap from TDH is 1.79% and from BUH 

is 1.51%. The average % gap and computational time is less in case of BUH 

which shown superiority of relaxation of transportation constraints.   

The generation of optimal solution for large size instances with solver takes large 

amount of time and usually has short of memory. Therefore, for large size 

problem instances, the performances of heuristics are evaluated based on % gap 

between the two heuristics approaches. The feasible solution for original problem 

are obtained using CPLEX solver in constrained CPU time of 1 hour. The 

computational results for this comparison are shown in Table 4.5. The qualities of 

solution of proposed heuristics are evaluated by calculating % gap as follows: 

     =  
     

  
      

The average cost gap for large size problem instance using TDH is 3.89% and 

using BUH is 1.55%, which demonstrates that the two heuristics are efficient and 

comparable. The computation time is very less in comparison to direct solution 

using solver. Among the two heuristics, BUH is taking less time in obtaining a 

feasible solution and % gap is also less. The reason might be that constraint 

related to vehicle capacity is having more tightness as compared to production 

capacity constraint.  
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4.6 Chapter Summary 

This chapter has analyzed a multi-product, multi-site integrated production and 

distribution planning problem. The problem is formulated as MILP model and 

solved directly using CPLEX solver. The solver provides optimal solutions for 

small sized instances but for medium or large size problems solver takes too much 

time or does not generate solution due to limitation of available memory. To solve 

large size problems, two Lagrangian relaxation based heuristic approaches are 

implemented that compute lower and upper bounds on the optimal solution value. 

Subgradient optimization method is used to find best lower bound value of 

Lagrangian dual problems. The computational performances of the algorithms are 

compared with exact optimization results which indicate that both heuristics are 

comparable and provide efficient results. 
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Chapter 5 

Multi-Site Integrated Production and Distribution 

Planning: A Multi-Objective Approach 

 

5.1 Introduction 

In the real life situation, there is more than one criterion for a successful supply 

chain. Even if all the options for defining an optimal solution are considered in 

planning of the supply chain, it is unlikely that any one criterion defines the best 

optimal solution of the system. Instead, there will be a variety of acceptable trade-

offs between multiple objectives. There is no single optimal solution for these 

multi-objective optimization problems, they creates a pareto-optimal solution 

which is a set of trade-off between all the conflicting objectives and their 

solutions. For decision making in supply chain, performance measures related 

with cost, customer service and responsiveness are of major importance. In this 

chapter, multiple objective functions are taken into consideration to represent it 

close to real life situation.  

In the literature, minimisation of cost and maximisation of profit are the most 

commonly used objectives for PD planning problems. The components of 

commonly represented total cost are production, setup, inventory, and 

transportation cost. Another important measure of effective production and 

distribution planning is „Responsiveness‟. Responsiveness indicates quick changes 

to fulfil the customer needs and meeting of market demands. Cost and 

responsiveness are conflicting with each other. To have higher responsiveness, 

there is need for expedite distribution which leads to higher cost. 

The ultimate goal of supply chain is to fulfil the demands of customer which 

makes customer service level as another important criterion. It measures on time 

satisfaction of customer demand. A low customer service level represents higher 

loss of sales or backorder level, which results in loss of profit (Liu and 

Papageorgiou, 2013). It is observed from the literature survey that very few 
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articles have considered cost, responsiveness and customer service level 

simultaneously. In this study, these three objective functions are considered to 

formulate a multi-objective multi-site integrated production and distribution 

planning (MO-MSIPDP) model. 

This chapter aims to achieve the second objective of this research work i.e. 

formulation of multi-objective mathematical model for MSIPDP problem. The 

problem handled in this study is illustrated by a case of an automobile industry 

located in India. The input parameter values are scaled down for proper 

demonstration of results and to maintain the confidentiality. The outcome of the 

mathematical model would determine optimum quantity of production, inventory 

level at manufacturing site and selling location, transported quantity from 

manufacturing site to selling location using each of the vehicle and unfulfilled 

demand or backordered quantity at each selling location at minimum level of all 

the three objective functions. The formulation and solution of production and 

distribution planning problem in multi-site manufacturing environment 

considering multiple conflicting objectives is presented in upcoming sections.  

5.2 Problem description and Mathematical formulation 

This section provides a general MILP formulation for MO-MSIPDP problem. The 

description of case along with supply chain network is presented in Section 3.2. 

The objective is to plan production and distribution quantities in order to satisfy 

the demand of products at each selling location at minimum total cost (includes 

production, setup, inventory holding, transportation and backorder cost), delivery 

time and backorder level. The assumption and notations are same as presented in 

Section 3.2.1 and 3.2.2.1 with following additional parameters and variables. 

Additional Parameters: 

       Transport time from manufacturing site m to selling location l 

Additional Decision variables: 

     Aspiration level of total cost goal 



[80]  

  2  Aspiration level of delivery time goal 

     Aspiration level of backorder level goal 

Auxiliary variables: 

   
   Deviation of overachievement of     

   
   Deviation of underachievement of     

  2
   Deviation of overachievement of   2 

  2
   Deviation of underachievement of   2 

   
   Deviation of overachievement of     

   
   Deviation of underachievement of     

Using above mentioned parameters and variables, initially a MILP model is 

formulated considering three conflicting objective functions. Later, a goal 

programming model is formulated to deal with all objective function 

simultaneously.  

Objective functions: 

The objective functions of the mathematical model are: 

 Minimising total cost is the first objective function comprising production 

and inventory holding cost at manufacturing sites and selling locations, 

fixed and variable transportation cost between manufacturing sites and 

selling locations, setup cost at manufacturing sites and backorder cost for 

unfulfilled demand, given in the following expression. 

Minimum total cost = ∑ ∑ ∑               + ∑ ∑ ∑                 

∑ ∑ ∑                + ∑ ∑ ∑                + ∑ ∑ ∑ ∑                      + 

∑ ∑ ∑ ∑ ∑                           + ∑ ∑ ∑                       (5.1) 
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 Minimization of total delivery time, defined as on time delivery of 

products transported from manufacturing sites to selling locations is taken 

as second objective function. 

Minimum distribution time = ∑ ∑ ∑ ∑ ∑             /                    (5.2) 

 Minimization of backorder level is considered as third objective function 

which depicts the customer satisfaction through minimization of the sum 

of maximum backlog quantities in all periods. 

Minimum backorder level = ∑ ∑ ∑                    (5.3) 

Above three objective functions are conflicting in nature. Increasing the 

responsiveness decreases the cost efficiency because of large amount of inventory 

holding cost. To minimize backorder level, the quantity of transportation should 

be increased which will increase delivery time and distribution cost and vice 

versa. The constraints of above MILP model are same as the constraints described 

in Section 3.2.2.3. 

5.3 Solution approach 

Many solution approaches have developed for treating deterministic multi-

objective optimization problems to get pareto-optimal solutions. Among them, 

goal programming, weighted sum and  -constraint methods are most commonly 

implemented for converting multi-objective vector into scalar one. The scalar 

model can be solved by any programming solver or exact optimization techniques. 

Goal programming method developed by Charnes and Cooper (1957) is a well-

known approach for solving multi-objective optimisation problems. A variance of 

goal programming method known as preemptive goal programming (PGP) is 

implemented in this study.  

Preemptive goal programming (PGP) is a special case of goal programming (GP) 

method, in which goals or objective functions are optimised according to their 

priority level. In PGP, decision maker is able to set priorities of goals and provide 

target levels of achievement for each objective function. It looks for a solution that 
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satisfies as many goals as possible according to their specified priority 

(Baykasoğlu, 2005). The approach tries to find a solution which decreases the 

deviation between achievement level and aspiration level of goals. Two auxiliary 

variables (positive and negative) represent the deviation from target value of 

goals. The goals of higher priority receive first attention and then lower priority 

goals are attended.  

The mixed integer programming formulation of MSIPDP problem is transformed 

into PGP model formulation as follows: 

Min   332211 AlPAlPAlP  

Subjected to, 

∑ ∑ ∑               + ∑ ∑ ∑                 ∑ ∑ ∑                + 

∑ ∑ ∑                + ∑ ∑ ∑ ∑                  + 

∑ ∑ ∑ ∑ ∑                           + ∑ ∑ ∑                     
      

 =      (5.4) 

∑ ∑ ∑ ∑ ∑             /                    2
     2

 =   2        (5.5) 

∑ ∑ ∑                 
      

 =              (5.6) 

         =                 - ∑ ∑                          (5.7) 

                =                      ∑ ∑                                 (5.8) 

       ≤                            (5.9) 

∑                                 ≤                    (5.10) 

∑              ≤                             (5.11) 

        ≤                        (5.12) 

∑ ∑           ≤                           (5.13) 

∑ ∑           ≤                    (5.14) 

          {1, 0}                      (5.15) 
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      ,        ,        ,        ,            ,           ≥ 0 and integer         (5.16) 

       =        =        =                       (5.17) 



1Al ,


1Al ,


2Al ,


2Al , 


3Al , 


3Al ≥ 0 and integer           (5.18) 

P1, P2 and P3 (P1> P2 > P3) represent the level of priority for goals specified by 

management with P1 as the highest priority and P3 as the lowest. The objective of 

preemptive model is to minimise the deviation from aspiration levels or goals. In 

this formulation, all the objective functions direction are minimisation, therefore, 

the undesirable deviation variable in all objective functions are overachievement 

of the goal or positive deviation variable. The deviation with highest priority must 

first be minimised to the extent possible and then next highest priority in order. 

The proposed PGP model can be solved by using any linear programming solver. 

5.4 Illustration of the problem  

Input parameter values are generated in the similar fashion as described in Section 

3.3.1. Input value of an additional parameter i.e. delivery time is generated as U 

(2-14) hours. The proposed mathematical model was written and solved using 

CPLEX solver provided via IBM ILOG CPLEX 12.7 on a PC Intel Core i5 1.7 

GHz and 4GB RAM. The branch and cut algorithm of CPLEX terminates only if 

an optimal solution of the problem is found. 

The target value or aspiration levels of objectives can be obtained by consulting 

the company‟s management or can be computed by solving single objective 

models. In this study, the aspiration level is computed by solving single objective 

models individually. The computed target values are {91477427; 545.7; 158}. The 

preemptive goal programming model consists of 282 constraints and 480 variables 

out of which 27 are binary, 447 are integer and 6 are deviation variables. The 

highest priority goal is minimisation of overachievement of total cost followed by 

delivery time and backorder level. Using the target values, the PGP model is 

formulated as discussed in Section 5.3. Objective function values after 
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computation of the preemptive goal programming model are {91477427; 704.5; 

1289}. Optimum values of decision variables are shown in Table 5.1, to Table 5.4. 

Table 5.1: Solution obtained for production quantity at manufacturing site 

Product Manufacturing site Time period 

1 2 3 

1 1 307 307 307 

2 310 296 0 

3 308 280 84 

2 1 304 304 304 

2 314 314 314 

3 313 313 0 

3 1 315 315 315 

2 305 304 0 

3 198 187 0 

Table 5.2: Solution obtained for backorder quantity at selling location 

Product Selling location Time period 

1 2 3 

1 1 2 0 111 

2 0 0 104 

3 15 0 101 

4 3 0 110 

2 1 0 4 0 

2 22 57 115 

3 0 0 104 

4 53 0 96 

3 1 0 0 112 

2 0 0 92 

3 0 0 72 

4 0 0 104 
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Table 5.1 shows the optimum level of production quantity of product i, 

manufactured at site s in time period t. For example      2 = 280, means that 280 

units of product 1 should be produced by third manufacturer in time period 2. 

Other values in the table have same meaning. 

Table 5.2 shows the optimum level of backorder quantity of product i, at selling 

location l in time period t. For example         = 15, means that the product 1 is 

short by 15 units at third selling location in first time period. Other values in the 

table have same meaning. 

Table 5.3: Solution obtained for transportation quantity from manufacturing site 

to selling location 

Vehicle Product Manufacturing 

site 

Selling 

location 

Time period 

1 2 3 

1 1 1 1 0 0 0 

2 0 0 20 

3 0 22 92 

4 0 0 0 

2 1 0 0 0 

2 173 120 0 

3 53 0 8 

4 0 0 0 

3 1 0 0 0 

2 0 0 0 

3 71 33 0 

4 0 0 0 

2 1 1 0 0 0 

2 0 0 13 

3 75 106 46 

4 0 0 25 

2 1 0 0 0 

2 0 0 0 

3 74 105 72 

4 0 0 80 

3 1 0 0 0 

2 0 0 0 

3 126 47 0 

4 187 266 0 

3 1 1 0 160 108 

2 0 0 87 

3 85 146 62 

4 0 0 53 
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Vehicle Product Manufacturing 

site 

Selling 

location 

Time period 

1 2 3 

2 1 0 0 0 

2 67 200 0 

3 142 55 0 

4 0 0 0 

3 1 0 0 0 

2 0 0 0 

3 3 0 0 

4 12 14 0 

2 1 1 1 243 203 111 

2 64 82 84 

3 0 0 0 

4 0 0 0 

2 1 0 0 0 

2 0 0 0 

3 84 168 0 

4 0 0 0 

3 1 0 0 0 

2 0 0 0 

3 0 0 0 

4 237 247 84 

2 1 1 229 198 220 

2 0 0 0 

3 0 0 0 

4 0 0 0 

2 1 0 0 0 

2 240 209 162 

3 0 0 0 

4 0 0 0 

3 1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

3 1 1 200 19 5 

2 20 0 0 

3 0 0 0 

4 0 0 0 

2 1 0 0 0 

2 96 43 6 

3 0 0 0 

4 0 0 0 

3 1 0 0 0 

2 0 0 0 

3 0 0 0 

4 183 173 0 
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Table 5.3 shows the optimum level of transportation quantity of product i, 

transport by vehicle type g, from manufacturing site s to selling location l in time 

period t. For example   2       2 = 106, means that the 106 units of product 2 

should be transported by vehicle type 1 from manufacturing site 1 to selling 

location 3 in time period 2. Other values in the table have same meaning. 

Table 5.4: Solution obtained for number of vehicles of both type used for 

transportation 

Vehicles Manufacturing 

site 

Selling 

location 

Time Period 

1 2 3 

1 

  

1 1 0 4 3 

2 0 0 3 

3 4 7 5 

4 0 0 2 

2 1 0 0 0 

2 6 8 0 

3 7 4 2 

4 0 0 2 

3 1 0 0 0 

2 0 0 0 

3 5 2 0 

4 5 7 0 

2 1 1 8 5 4 

2 1 1 1 

3 0 0 0 

4 0 0 0 

2 1 0 0 0 

2 4 3 2 

3 1 2 0 

4 0 0 0 

3 1 0 0 0 

2 0 0 0 

3 0 0 0 

4 5 5 1 
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Table 5.4 shows the optimum level of number of vehicles of type g needed to 

transport from manufacturing site s to selling location l in time period t. For 

instance         2 = 7, means that 7 vehicles of type 1 should be used to 

transported quantity from manufacturing site 3 to selling location 4 in time period 

2. Other values in the table have same meaning. 

Minimisation of the overachievement of total cost is at highest priority. The 

positive deviation variable 

1Al  is 0, which means that the goal is achieved. The 

next goal on priority is minimisation of total delivery time. The positive deviation 

variable is 158.8, which means that this goal is overachieved. The same is 

happening with third priority goal of minimisation of backlog level having an 

overachievement of 1131. The reason for the high amount of backorder level goal 

is that the minimisation of total cost goal is at highest priority and because of that 

there is less production and market demand is less fulfilled. 

Table 5.5: Effect of priority level on objective function values 

R
u

n
 

Objective function (Priority) Deviation 
T

o
ta

l C
o
st 

T
o
ta

l 

d
eliv

ery
 

tim
e 

B
a
ck

o
rd

er 

lev
el 



1Al  


1Al  


2Al  


2Al

 



3Al  


3Al  

1 91477427 

(P1) 

704.5  

(P2) 

1289  

(P3) 

0 0 158.8 0
 

1131 0 

2 91477427 

(P1) 

822.9  

(P3) 

1131  

(P2) 

0 0 277.2 0 973 0 

3 91521348 

(P2) 

701.2  

(P1) 

1277  

(P3) 

43920 0 155.5 0 1119 0 

4 91845343 

(P3) 

554.8  

(P1) 

1397  

(P2) 

367916 0 9 0 1239 0 

5 91895177 

(P2) 

886.6  

(P3) 

586  

(P1) 

417750 0 340.9 0 428 0 

6 92430140 

(P3) 

904.9  

(P2) 

158  

(P1) 

952713 0 359.2 0 0 0 
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The feasible solutions obtained at different priority settings shows the difference 

in objective function and deviation values. It can be seen from Table 5.5 that in 

first two scenarios minimizing total cost objective in on highest priority and the 

results obtained are having no deviation from target value. The target value of 

total delivery time goal is achieved when backorder level is on second priority but 

when total cost is on second priority the goal is not achieved. The reason might be 

transportation quantity value, when the transportation quantity is less; there is 

more backorder as can be seen in run 4. The same can be observed for other 

objective values on different priority settings. These values show the difference of 

solution from the target values generally decided by management team. After 

analysing the results it can be stated that focusing or providing high priority to one 

objective may not necessary cause an improvement in another objectives value 

even if they are having same direction. 

5.5 Chapter Summary 

This chapter has dealt with the multi-objective production and distribution 

planning problem in a multi-site manufacturing environment. Three conflicting 

objectives optimised simultaneously are minimisation of total cost, total delivery 

time and backorder level. Three important aspect of production and distribution 

function as setup cost, transportation capacity in terms of vehicle loading capacity 

and backorder are considered in an integrated manner.  

The mathematical model is solved using preemptive goal programming method. 

For illustration, the proposed model has been implemented to an Indian 

automobile company manufacturing two-wheelers. The computational results 

illustrate the performance of the model and provide an estimate to management 

for different priority levels of objective functions. This study provides a 

quantitative tool for management or decision maker to analyse trade-off and 

priority consideration between multiple conflicting objectives.  
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Chapter 6 

Fuzzy Multi-Objective Optimizaion of Multi-Site 

Integrated Production and Distribution Planning 

 

6.1 Introduction 

In the previous chapter, a multi-objective mathematical model for MSIPDP 

problem in deterministic environment was formulated and solved using premptive 

goal programming method. According to Arikan and Güngör (2007), in real life 

situation, decision making have two properties, one is conflicting objectives and 

other is uncertain parameters. The purpose of this chapter is to achieve the third 

objective of this research work by presenting an optimization model, 

incorporating these two properties of decision making.  

It can be observed from the literature that there exist a good amount of articles 

dealing with impreciseness in PD planning problem, considering different 

members of supply chain and aspects of problem. Very few articles are available 

in the literature considering impreciseness of objective functions along with 

ambiguity of parameters. The practical IPDP problem in supply chain often has 

trade-off among multiple conflicting objectives which need to be simultaneously 

optimised by the decision maker (DM). These objective functions are often fuzzy 

or imprecise due to several possible factors such as variation in human 

performance, changing environmental conditions, and unavailability or improper 

information (Liang, 2007). Also, the parameters such as demand, capacity and 

various associated costs are also usually changing. To incorporate and handle the 

impreciseness in objective functions as well as in parameters, this study develops 

a fuzzy multi-objective mixed integer linear programming (FMO-MILP) model 

considering multiple products and multiple time periods and demonstrates the 

same on a real life industrial problem.  
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The advantages of fuzzy multi-objective optimization compared to other 

techniques are as follows: 

1. The benefit of applying fuzzy set theory is that it allows imprecise 

aspiration of the decision maker to be quantified (Hannan 1981). The DM 

may simultaneously consider various conflicting imprecise objectives for 

which aspiration level decided by experience of DM. 

2. The objective function can be of different directions i.e. minimization or 

maximization. To handle these multiple objectives simultaneously, there is 

a need to put them on a common scale. Using fuzzy multi-objective 

programming these multiple objectives can be represented by degree of 

membership.  

3. Application of weighted additive, preemptive goal programming, α – cut 

approach makes it possible to control objective function values so that 

aspiration level of decision maker can be achieved. 

The purpose of this chapter is to make some contribution on MSIPDP problem in 

an uncertain environment of fuzziness and obtain pareto-optimal solution of multi-

objective problem formulation. This chapter is structured in six Sections: current 

Section providing introduction to the research problem. Sections 6.2 describe and 

formulate the FMOMILP model for the two echelon supply chain network 

problem. In Section 6.3, solution methodology of the approach to solve the 

problem is discussed. Section 6.4 illustrates the application of the proposed model 

to a case company and Section 6.5 ends with contribution and chapter summary. 

6.2 Problem formulation 

6.2.1 Problem description 

This Section describes the formulation of fuzzy MO-MILP model. The description 

of network with figure is provided in Section 3.2. The demand and production 

capacity parameters are considered as imprecise. The objective is to plan 

production and distribution quantities in order to satisfy the demand of products at 

each selling location at minimum total cost, delivery time and backorder level. 



[92]  

Following assumptions are taken to convert the real life problem in to the fuzzy 

mathematical model: 

1. It is assumed that all the products produced and transported are defect free; 

hence the products are produced on the basis of exact order quantity. 

2. There are no quantity based discounts. 

3. The associated storage capacities of each manufacturing site and selling 

location are known. 

4. The objective functions are fuzzy and have imprecise aspiration level. 

5. The demands of all the products originating from fixed number of selling 

locations and production capacity of each manufacturing site are 

imprecise. 

6. A piecewise linear membership function is used to represent the fuzzy 

objective functions and triangular membership function is used for 

imprecise parameters. 

7. The minimum aggregation operator is used for combining the objective 

functions. 

Demand and production capacity parameters are considered as imprecise and 

distribution time is the additional parameter, rest of the notations are same as 

provided in 3.2.2.1.  

Parameters: 

 ̃     
   Fuzzy demand of product i at selling location l in period t  

   ̃    Fuzzy production capacity of manufacturing site s in terms of time 

in any period  

        Distribution time by vehicle g from manufacturer s to selling 

location l   
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6.2.2 Fuzzy multi-objective mixed integer linear programming model 

In the present global competitive market, it is imperative for firms to focus on 

multiple objectives simultaneously for effective production and distribution 

planning. It is seen from the relevant literature that objectives related to profit 

maximization, cost minimization, customer service level and responsiveness are 

mostly considered as multiple conflicting objectives. Liang (2007) considered 

three objectives: minimization of total transportation cost, total number of 

defective items, and total delivery time. Other typical objective functions 

considered in earlier studies include; maximize profit (Torabi and Moghaddam 

2012; Chen et al. 2003; Selim et al. 2008), minimize total production and 

distribution cost (Roghanian et al. 2007; Liang 2008a; Liang 2008b; Gholamian et 

al. 2015), number of rejected or defective items (Liang 2008b; Torabi and Hassini 

2009), safe inventory level (Chen et al. 2003; Chen and Lee 2004) and customer 

service level in terms of ratio of sales to demand and backorder (Chen and Lee 

2004), delivery time or late deliveries (Liang 2008a; Liang 2008b; Torabi and 

Hassini 2009), and backorder level (Selim et al. 2008; Gholamian et al. 2015; 

Jolai et al. 2011).  

It is observed from the literature that in terms of cost, maximizing total profit and 

minimizing total production and distribution cost are representative objectives. 

Another important aspect is maximization of customer service level which is 

represented by delivery time and backorder level objectives. In this study, these 

three important and conflicting objectives are considered in formulation of the 

mathematical model. 

In the real world problem, there are so many parameters whose values are 

assigned by experts or decision makers. The decision makers do not know the 

value of these uncertain parameters precisely and therefore the value assigned on 

the basis of knowledge of experts is considered as fuzzy. To handle the 

impreciseness in objective function and parameter, fuzzy programming approach 

is implemented in this study. The symbol „=̃‟ in equation (1)-(3) is fuzzy version 

of „=‟, represent the fuzzification of the aspiration levels. It shows transformation 

of a non-fuzzy set into a fuzzy set which is approximately equal to it. 
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The three objective function considered for the formulation of fuzzy mathematical 

model are minimization of total cost, delivery time and backorder level; 

description of these conflicting objective functions and constraints are given in 

deterministic model of Section 5.3.1. 

Minimize total cost  ̃  =̃ ∑ ∑ ∑               + ∑ ∑ ∑                + 

∑ ∑ ∑                + ∑ ∑ ∑ ∑                      + ∑ ∑ ∑ ∑ ∑                           + 

∑ ∑ ∑                + ∑ ∑ ∑                                 (6.1) 

Minimize total delivery time  ̃2 =̃ ∑ ∑ ∑ ∑ ∑             /                 (6.2)  

Minimize backorder level  ̃  =̃ ∑    ∑ ∑               (6.3) 

The constraints of the proposed mathematical models are: 

         =                 - ∑ ∑                          (6.4) 

                                    ∑ ∑              =  ̃     
           (6.5) 

       ≤                          (6.6) 

∑                                 ≤    ̃                  (6.7) 

∑              ≤                               (6.8) 

        ≤    ̃     
                    (6.9) 

∑ ∑           ≤                   (6.10) 

∑ ∑           ≤                  (6.11) 

         {1, 0}                (6.12) 

      ,        ,        ,            ,                   ≥ 0       (6.13) 

        =         =         = 0                          (6.14) 
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6.3 Solution Methodology 

To solve the proposed fuzzy mathematical model, first imprecise parameters are 

defuzzified using triangular fuzzy numbers and then the solution methodology of 

fuzzy programming method using piecewise linear membership function is 

implemented.  

6.3.1 Modelling the imprecise data and constraints 

A possibility distribution represents the degree of occurrence of an event with 

imprecise data (Khalili-Damghani et al. 2014). In this study, triangular possibility 

distribution is assumed to adopt by DM to represent the imprecise data. This study 

follows Lai and Hwang‟s (1992) weighted average method to convert triangular 

fuzzy parameters into auxiliary crisp representatives. If minimum acceptance 

possibility, β, is given, the auxiliary crisp equality constraint for equation (6.5), 

(6.7) and (6.9) can be represented as follows: 

                                    ∑ ∑              =            
  

  2        
             

                (6.15) 

            +             ≤           
    2        

             
          (6.16) 

        ≤              
 

   2        
             

 )           (6.17) 

Where     2    represents the corresponding weights of lower bound value, 

model value and upper bound value of the imprecise parameters, respectively. 

Assuming all the possibility distribution as symmetric and applying α cut concept 

of fuzzy set theory, the values can be calculated as:  

        
  =       

  

        
 

 = (      
         

 )             
 

  

        
  =       

   (      
         

 )      
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The value of corresponding weights and acceptance level can be taken 

subjectively on the basis of DM‟s knowledge and experience. In this study, after 

following the literature (Liang 2008a), the weights are taken as    =    = 1/6,  2 

= 4/6, and acceptance level   = 0.5 for constraint (6.15), (6.16) and (6.17). 

6.3.2 Solution procedure 

The solution methodology of fuzzy programming method using piecewise linear 

membership function suggested by Hannan (1981) and maximizing solution 

strategy for the minimum operator suggested by Zimmermann (1978) are followed 

in this study. Use of piecewise linear membership function is advantageous 

because it quantifies the DM‟s preference to produce a computationally 

controllable membership function. Since all the three objective functions might 

not be achieved simultaneously, the membership function values provided by DM 

is used to define the achievement level of each objective function. An auxiliary 

variable   (0 ≤   ≤ 1) is derived which represent the DM‟s satisfaction level and a 

fuzzy min operator, to integrate the fuzzy set to transform the fuzzy multi-

objective model into crisp model. The steps for this conversion are described as 

follows: 

Step 1. For each objective function   (n = 1, 2, 3), specify a membership 

function or grade of membership        from the DM. 

Step 2. Plot the piecewise linear membership function curves. 

Step 3. Convert each membership function        into the fuzzy linear 

equations. 

Step 4. Define the positive and negative deviational variables    
  and    

 . 

These variables show the deviation of objective function value from 

target value. 

Step 5. Maximize the minimum membership function value by introducing 

the auxiliary variable   (0 ≤   ≤ 1) and convert the fuzzy multi-

objective model into an equivalent crisp linear programming form. 
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Step 6. Solve the crisp linear programming problem and if the DM wants to 

improve the solution obtained in terms of satisfaction level and 

objective function values, modify the membership function values 

until a satisfactory solution is obtained. 

6.4 An illustration of the proposed model 

Description of the case considered in this study and input data values are same as 

provided in Section 5.4. The fuzzy parameter values for imprecise demand and 

production capacity are generated using symmetric triangular fuzzy numbers. 

6.4.1 Solution and Analysis of results 

Using triangular fuzzy numbers and piecewise linear membership function, 

imprecise MSIPDP problem is converted into FMOMIP problem. The FMOMIP 

problem is solved using solution approach described in Section 3.3. The solution 

obtained using following steps: 

Step 1. Determine the initial optimal solutions by solving the problem for 

individual objective function. The computational results obtained after 

solving the individual objective function are    = 90839629,  2 = 543.7 

and    = 116. Using these initial optimal solutions, the FMOMIP model 

is formulated. The optimal solutions of each objective function can be 

taken as aspiration level of associated fuzzy objective. Table 6.1 shows 

the piecewise linear membership function values.  

Table 6.1: Piecewise linear membership function values 

   >12,00,00,000 12,00,00,000 11,00,00,000 10,00,00,000 900,00,000 <900,00,000 

       0 0 0.5 0.8 1 1 

 2 >1400 1400 1100 800 500 <500 

 2  2  0 0 0.5 0.8 1 1 

   >3200 3200 2200 1200 200 <200 

       0 0 0.5 0.8 1 1 
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Step 2. Represent both imprecise coefficients ( ̃     
     ̃ ) used in right hand side 

of constraints using triangular possibility distribution. Using the 

minimum acceptable possibility,  , and the weighted average method of 

the fuzzy ranking concepts, formulate crisp equivalent constraints using 

equation (6.15), (6.16) and (6.17). 

Step 3. Using membership function data shown in Table 6.1, plot the piecewise 

linear membership function curve. The curves plotted are shown in 

Figure 6.1, 6.2 and 6.3. The curve helps in approximating membership 

values for intermediate points.  

 

Figure 6.1: Piecewise linear membership function curve (  ,      ) 

 

Figure 6.2: Piecewise linear membership function curve ( 2, 2  2 ) 
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Figure 6.3: Piecewise linear membership function curve (  ,      ) 

Step 4. Convert each membership functions        into fuzzy linear equations: 

       =  0.00000001 (    110000000) – 0.000000005 (    100000000) – 

0.000000035   + 4.4 

 2  2  =  0.000333 ( 2-1100) – 0.000167 ( 2-800) – 0.00117 2 + 1.83 

       =  0.0001 (  -2200) – 0.00005 (  -1200) – 0.00035   + 1.32 

Step 5. Introduce deviational variables in positive and negative direction. The 

deviation variable shows underachievement or overachievement of 

objective function value form its target or aspiration level. Considering 

deviation variables, convert each membership function        into the 

piecewise linear equations.  

       =  0.00000001 (   
  -    

 ) – 0.000000005 (  2
  -    2

 ) – 0.000000035 

{∑ ∑ ∑               + ∑ ∑ ∑                + ∑ ∑ ∑                + 

∑ ∑ ∑ ∑                      + ∑ ∑ ∑ ∑ ∑                           + ∑ ∑ ∑                

+ ∑ ∑ ∑                 } + 4.4 

 2  2  =  0.000333 ( 2 
  -  2 

 ) – 0.000167 ( 22
  -   22

 ) – 0.00117 

{∑ ∑ ∑ ∑ ∑             /                } + 1.83 

        =  0.0001 (   
  -     

 ) – 0.00005 (  2
  -    2

 ) – 0.00035 {∑ ∑ ∑           } 

+ 1.32 
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Step 6. Maximize the minimum membership function value by introducing the 

auxiliary variable   (0 ≤   ≤ 1) and transform the FMOMIP problems 

into an equivalent crisp linear programming form. The resulting 

equivalent crisp linear programming form can be formulated as follows: 

Max   

Subject to: 

  ≤  0.00000001 (   
  -    

 ) – 0.000000005 (  2
  -    2

 ) – 0.000000035 

{∑ ∑ ∑               + ∑ ∑ ∑                + ∑ ∑ ∑                + 

∑ ∑ ∑ ∑                      + ∑ ∑ ∑ ∑ ∑                           + ∑ ∑ ∑                

+ ∑ ∑ ∑                 } + 4.4 

  ≤  0.000333 ( 2 
  -  2 

 ) – 0.000167 ( 22
  -   22

 ) – 0.00117 

{∑ ∑ ∑ ∑ ∑             /                } + 1.83 

  ≤  0.0001 (   
  -     

 ) – 0.00005 (  2
  -    2

 ) – 0.00035 {∑ ∑ ∑           } + 

1.32 

∑ ∑ ∑               + ∑ ∑ ∑                + ∑ ∑ ∑                + 

∑ ∑ ∑ ∑                      + ∑ ∑ ∑ ∑ ∑                           + ∑ ∑ ∑                

+ ∑ ∑ ∑                 +    
  -    

  = 110000000 

∑ ∑ ∑               + ∑ ∑ ∑                + ∑ ∑ ∑                + 

∑ ∑ ∑ ∑                      + ∑ ∑ ∑ ∑ ∑                           + ∑ ∑ ∑                

+ ∑ ∑ ∑                 +   2
  -   2

  = 100000000 

∑ ∑ ∑ ∑ ∑             /                 +  2 
  -   2 

  = 1100 

∑ ∑ ∑ ∑ ∑             /                +  22
  -   22

  = 800 

∑ ∑ ∑            +    
 -    

  = 2200 

∑ ∑ ∑            +   2
  -   2

  = 1200 

0 ≤   ≤ 1 
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Equations (6.4), (6.6), (6.8), (6.10) to (6.17). 

   
 ,    

 ,   2
 ,   2

 ,  22
 ,  22

 ,  2 
 ,  2 

 ,    
 ,    

 ,   2
 ,   2

     ≥ 0    

According to the solution procedure explained in Section 6.4.2, the fuzzy 

mathematical model is transformed into crisp form. The crisp formulation is in the 

form of single objective MILP model which is solved using CPLEX 12.7 solver 

provided via IBM ILOG CPLEX on a computer Intel Core i5 1.7 GHz with 4GB 

RAM.  

Table 6.2 Solutions obtained by different methods 

Item MIP-1 MIP-2 MIP-3 FMOMIP 

Objective 

functions 

Min.    Min.    Min.    Max. λ 

   90839629
* 

108918582 94651039 93414170 

 2 807.1 543.7
* 

1111.9 604.8 

   1223 2866 116
* 

576 

λ (%) 100% 100% 100% 92.48 

* represent the optimal solution of individual single objective MILP model. 

Computational results of individual single-objective MILP models and crisp linear 

programming model are shown in Table 6.2. The proposed fuzzy multi-objective 

optimization approach simultaneously minimize total cost, delivery time and 

backorder level and yields an efficient compromised solution. If the DM is not 

satisfied with the obtained results, the membership function values would be 

revised. 

6.4.2 Sensitivity analysis 

After obtaining results, it is important to perform sensitivity analysis for analyzing 

the effect of change in aspirational levels of objective function values on DM‟s 

satisfaction level. The sensitivity of decision parameters is analyzed based on 

three scenarios with numerical examples to implement the FMOMIP model. By 
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changing one of the objective function values and keeping rest of the two 

objectives unchanged, three different scenarios are created. A two-step 5% scale 

variation in both increase (Run 4 and Run 5) and decrease (Run 1 and Run 2) for 

each scenario is designated and Run 3 is taken as a test base. Sensitivity analysis 

results obtained after implementing the above three scenarios are shown in Table 

6.3.  

Table 6.3: Sensitivity analysis results 

Scenarios Objectives Run 1 

(-10%) 

Run 2 

(-5%) 

Run 3 

(0%) 

Run 4 

(5%) 

Run 5 

(10%) 

Scenario 1 

Change in    

Objective 

function 

   

 2 

   

  

90851314 

819 

1223 

0.7802 

91225003 

666.5 

782 

0.8835 

93414170 

604.8 

576 

0.9248 

93414170 

604.8 

576 

0.9248 

93414170 

604.8 

576 

0.9248 

Scenario 2 

Change in  2 

Objective 

function 

   

 2 

   

  

92580152 

590 

716 

0.8968 

92769734 

597.1 

648 

0.9102 

93414170 

604.8 

576 

0.9248 

92886502 

613.7 

493 

0.9414 

92292722 

620.6 

429 

0.9541 

Scenario 3 

Change in    

Objective 

function 

   

 2 

   

  

93202336 

609.5 

532 

0.9216 

92877253 

607 

556 

0.9234 

93414170 

604.8 

576 

0.9248 

93434916 

602.4 

599 

0.9264 

93384814 

600.5 

617 

0.9277 

Sensitivity analysis results indicate the effect of specific degree of membership 

function on satisfaction level and output solutions. As shown in Table 6.3, the 

three scenarios are displaying conflicts and trade-offs among dependent objective 

functions. It is showing effect of change in membership function value of 

objective functions on output solution and satisfaction level. Run 3 is the test base 

and considered as reference point to depict the change in respective values. In 

scenario 1, change in membership function value of total cost objective function 

on positive side doesn‟t change any output value but on the negative side delivery 
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time and backorder level values are increases while total cost value and overall 

satisfaction level decreases. The reason might be reduction in production and 

transportation quantity.  

In scenario 2, change of membership function value of delivery time objective on 

output values is analyzed. The increment in the value results in increased value of 

delivery time and satisfaction level and simultaneously decreased values of total 

cost and backorder level. Effect of change of membership function value on 

backorder level is shown in scenario 3. All three scenarios reflect that increasing 

the membership function value increases the output value of that objective 

function and overall satisfaction level, also decreases the other objective function 

values. This depicts DM‟s flexibility in specifying the membership function 

values for each objective function to obtain satisfactory result. 

6.5 Chapter summary 

This study addresses the IPDP problem for a two echelon supply chain. 

Production and distribution aspects in the multi-site environment are discussed 

and a multi-objective mixed integer linear programming model is formulated. 

Further uncertainty and impreciseness in the problem is considered and fuzzy 

multi-objective optimisation approach is implemented, which simultaneously 

optimize three objectives; total cost, delivery time and backorder level. The 

solution approach uses piecewise linear membership function of Hannan (1981) 

and fuzzy min operator approach of Zimmerman (1976). The fuzzy model was 

transformed into crisp linear form and solved using CPLEX solver. For 

illustration, the proposed model has been implemented to an Indian automobile 

company manufacturing two-wheelers. To test the efficiency and effect of change 

in membership function value on satisfaction level and objective function values, 

sensitivity analysis is performed. The implementation result shows the 

applicability of the proposed model to handle fuzziness in practical environments 

and flexibility of DM for analysing the trade-offs among objective function values 

to get a satisfactory result.  
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This chapter contributes to the literature by incorporating ambiguity of parameters 

along with vagueness in the objective functions and implementing fuzzy solution 

approach to handle the impreciseness. The analytical results and sensitivity 

analysis depicts a systematic procedure that allows a DM to modify the related 

parameters until a desired satisfaction level is achieved. The illustration of 

mathematical model and solution approach using a real life case may be helpful in 

handling conflicting multi-objective PD planning problems in multi echelon 

supply chain. The methodology adopted here can be applied or extended on any 

other situation of IPDP in real world supply chain. 
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Chapter 7 

Multi Objective Optimizaion of Multi-Site Integrated 

Production and Distribution Planning in Neutrosophic 

Environment 

 

7.1 Introduction 

Chapter 6 has presented the implementation of fuzzy optimization approach to 

handle uncertainty in multi-objective MSIPDP problem. With the advancement in 

new mathematical tools and solution methods, several approaches are presented to 

handle uncertainty. The concept of Fuzzy set theory introduced by Zadeh (1965) is 

the most popular approach used to deal with problems having imprecise and vague 

information. The drawback of fuzzy approach is that decisions based on available 

information are not good enough to represent the level of accuracy. Atanassov 

(1986) advanced fuzzy sets to intuitionistic fuzzy sets which incorporate both 

belongingness and non-belongingness of a membership function. In 1999, the 

concept of Neutrosophy was introduced by Florentin Smarandache as a branch of 

philosophy to deal with “the origin, nature and scope of neutralities, as well as 

their interactions with different ideational spectra”. The philosophy laid 

foundation for new mathematical theories which are neutrosophic sets, 

neutrosophic logic, neutrosophic probability and neutrosophic statistics.  

The problem considered in this study is an IPDP problem for a two echelon supply 

chain network comprising of multiple manufacturers serving multiple selling 

locations. The practical IPDP problem in supply chain contains of indeterminate 

or inconsistent information due to various reasons like imperfection in data, poor 

demand forecasting and incomplete information or awareness about the problem. 

To handle this situation, this study develops a neutrosophic programming model 

considering multiple products and multiple time periods, demonstrating the same 

on a real-life industrial problem. 
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The aim of this chapter is to obtain a compromised solution for MO-MSIPDP 

problem in neutrosophic environment. The organization of this chapter is as 

follows. Section 7.2 presents preliminaries of the fuzzy and neutrosophic 

programming approaches. In Section 7.3, solution methodology of intuitionistic 

fuzzy and neutrosophic approach is discussed. Section 7.4 illustrates the 

application of the proposed model to a case company. Section 7.5 ends with 

chapter summary.  

7.2 Preliminaries 

This Section provides information about background knowledge and concepts 

related to Intuitionistic fuzzy sets and Neutrosophic sets applied in this study.  

Intuitionistic fuzzy set 

In fuzzy logic, the set of truth values {0,1} are replaced by real number interval 

[0,1], which shows degree of truth where 0 represent false and 1 represent truth 

value. 

Definition 1: Let a set E be fixed. An intuitionistic fuzzy set A in E can be defined 

as  

 = {⟨               ⟩|   }, 

Where the functions              and              defines the degree of 

membership and the degree of non-membership of the element     and holds 

the following condition: 

                     

Each ordinary fuzzy set has the form 

{⟨                 ⟩|   } 

Definition 2: The degree of non-determinacy or uncertainty of the element     

to the intuitionistic fuzzy set A expressed as: 
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Definition 3:       level intervals or cuts 

A set of       cut generated by IFS A, where   and   are fixed number in 

             and              can be defined as: 

    = {
(             )     

                                    
 

Neutrosophic Sets 

Definition 4: Let X be a universal set having elements denoted by x. The 

neutrosophic set B on the universal set X is categorized into three membership 

functions as the true      , indeterminate       and false       contained in a 

subset of     
       . 

            
       

          
       

           
       

These three membership function values are independent to each other and hence 

there is no restriction on sum of              and      , so 

  
                            

Definition 5: Single valued neutrosophic sets  

Let X is a universal set having elements denoted by x. The neutrosophic set B on 

the universal set X is an objective having the form as 

B = {⟨                    ⟩|   } 

Where  

              ,              and              with 
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7.3 Solution methodology of Neutrosophic programming 

Neutrosophic sets are used to solve the proposed MO-MSIPDP model descried in 

Section 5.3.1, with indeterminate or inconsistent information. The solution 

methodology of neutrosophic programming method using concept of Bellman and 

Zadeh (1970) is followed in this study. The step by step solution methodology is 

stated below. 

Step 1. Determine the initial optimal solutions by solving the individual 

objective function subjected to all the constraints. 

Step 2. Using initial solutions, calculate the value of upper and lower bound 

for each objective function for neutrosophic environment 

Step 3. Define membership functions of truth, indeterminacy and falsity using 

upper and lower bound values. 

Step 4. Construct neutrosophic programming model using membership 

functions and formulate simplified model using auxiliary parameters. 

Step 5. Solve the neutrosophic programming model and if decision maker 

wants to improve the solution, modify the values of s and t until 

satisfactory solution is obtained. 

The proposed neutrosophic programming approach aims to maximize truth degree 

and falsity degree, minimizes indeterminacy degree simultaneously. To convert 

the multi-objective model into neutrosophic programming model, the concept of 

Bellman and Zadeh (1970) have been followed. According to the concept, fuzzy 

decision is conjunction of fuzzy objective functions and fuzzy constraints. 

Applying the concept into neutrosophic sets, neutrosophic decision can be 

considered as conjunction of neutrosophic objective function and neutrosophic 

constraints, which can be written mathematically as: 

  = (⋂  

 

   

) (⋂  

 

   

) =  (                   ) 
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Where       is the truth membership function,       is the indeterminacy 

membership function and       is the falsity membership function, which can be 

represented as: 

     =    (
         2          

         2           
)               

     =    (
         2          

         2           
)               

     =    (
         2          

         2           
)               

The next step is to find upper and lower bounds for each objective function for 

formulation of membership functions. The bounds are calculated as follows: 

For truth membership function    
 =        

 =    

For indeterminacy membership function   
 =   

       
     

     
 =   

  

For falsity membership function     
 =   

    
 =   

       
     

   

Where    and    are predetermined real numbers in (0,1).    and    are the upper 

and lower values for each objective function calculated by optimizing each 

objective function one at a time represented mathematically as  

  =    {     }   
     =    {     }   

  

The membership function can be determined using above bounds as follows: 

  (      ) =  

{
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  (      ) =  

{
 
 

 
                                                     

 

   
          

 

  
     

            
          

                                                  
  

  
  

  (      ) =  

{
 
 

 
                                                     

 

   
  

         

  
     

            
          

                                                  
  

  
  

The neutrosophic programming model can be obtained as follows: 

           2       (      ) 

           2       (      ) 

           2       (      ) 

Subject to all constraints from (5.7) to (5.17). 

Using auxiliary parameters, above formulation can be converted in to following: 

      

      

      

  (      )         (      )           (      )      

                                    

Constraints (5.7) to (5.17). 

The simplified model can be represented as follows- 
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Constraints (5.7) to (5.17). 

Solution of the above neutrosophic model will provide the values of all three 

auxiliary parameters along with the values of different variables of the problem. 

7.4 Illustration of the proposed model 

To demonstrate procedure of neutrosophic programming, illustrative example of 

an automotive manufacturing company is considered. The description of which is 

provided in Section 3.2. The notations and mathematical formulation is the same 

as provided in 3.2.2.1.  

7.4.1 Solution procedure 

Neutrosophic Solution 

Step 1. Solve the MILP model to obtain initial optimal solutions by 

individually solving the problem for each objective function. The 

computational results obtained after solving the individual objective 

function are    = 91403462,  2 = 543.67 and    = 191.  

Step 2. Determine the upper and lower bounds for each objective function 

  =            = 134713192    =            = 91403462 

 2 =     2  2   = 1816.66   2 =     2  2   = 543.67 

  =            = 3843     =            = 191 

Step 3. Calculate the bounds for neutrosophic environment 

a. Truth values 

  
 =   = 134713192     

 =   = 91403462 

 2
 =  2 = 1816.66    2

 =  2 = 543.67 
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 =   = 3843      

 =   = 191  

b. Falsity values 

  
 =   

 =  134713192    

 2
 =  2

 = 1816.66      

  
 =   

 = 3843     

  
 =   

       
     

    = 91403462 +   (134713192 - 91403462)  

= 91403462 + 43309730   

 2
 =  2

   2  2
    2

   = 543.67 +  2 (1816.66 – 543.67)  

= 543.67 + 1272.99 2 

  
 =   

       
     

  = 191 +    (3843 - 191) = 191 + 3652   

c. Indeterminacy values 

  
 =   

       
     

   =  91403462 +   (134713192-91403462)  

= 91403462 + 43309730   

 2
 =  2

   2  2
    2

    =  543.67 +  2 (1816.66 – 543.67)  

 = 543.67 + 1272.99 2 

  
 =   

       
     

  =  191 +    (3843 - 191) = 191 + 3652     

  
 =   

 = 91403462  

 2
 =  2

 = 543.67 

  
 =   

 = 191 

Step 4. Using above bounds, calculate the membership function value 
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a. Truth membership 

  (      )

=  

{
 

 
                                                         2

   
               2

        
                2         

                                                        2 

        2 

 2( 2  2 ) =  

{
 

 
                                            2  2        

   
 2  2         

 2 2   
                  2  2  

                                          2  2          

        

 2(      ) =  

{
 

 
                                                     

   
           

   2
                     

                                                     

     

b. Falsity membership 

  (      )

=  

{
 

 
                                                          2

   
        2         

              
           2                      

                                                       2              

        2 

 2( 2  2 )

=  

{
 

 
                                            2  2         

   
          2  2 

 2 2       2 
                   2 2    2    2  2  

                                          2  2            2 2    2 

        

  (      ) =  

{
 

 
                                                      

   
            

   2      
                  2           

                                                         2   
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c. Indeterminacy membership 

  (      )

=  

{
 

 
                                                         2

   
               2

              
                2                2             

                                                       2              

 

 2( 2  2 )

=  

{
 

 
                                            2  2        

   
 2  2         

 2 2       2 
                  2  2            2 2    2

                                          2  2            2 2    2 

 

  (      ) =  

{
 

 
                                                     

   
           

   2      
                              2  

                                                         2   

 

Step 5. Using auxiliary parameters, formulate the neutrosophic model as 

following-  

            

                               2  

 2  2    2 2                

           2           

                             2               

 2  2    2 2                   2 2     

           2             2   

                                 2               

 2  2    2 2                      2 2      

           2                  2  
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Constraints (5.7) to (5.17) 

After deciding the values of s and t, solve the above model to obtain compromised 

results in the neutrosophic environment. 

IFP Solution 

To demonstrate the performance of neutrosophic model, IFP model is formulated 

and solved as described in following steps. 

Step 1. Solve the initial MILP model by individually solving the problem for 

each objective function. The computational results obtained after 

solving the individual objective function are    = 91403462,  2 = 

543.67 and    = 191. These values are representing lower bound for 

each objective function. 

Step 2. Determine the upper and lower bounds by maximizing and 

minimizing each objective function 

  =            = 134713192    =            = 91403462 

 2 =     2  2   = 1816.66   2 =     2  2   = 543.67 

  =            = 3843     =            = 191 

Step 3. Calculate the bounds for IF environment 

a) Membership function values 

  
 

=                
 

=           

  
 

=   = 134713192     
 

=   = 91403462 

 2
 

=  2 = 1816.66    2
 

=  2 = 543.67 

  
 

=   = 3843      
 

=   = 191 
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b) Non-membership function value 

  
 =   

 
      

 =   
 

      
 

    
 
    

  
 =         2     

 =        2               

  
 =             

 =           2 2     

  
 =          

 =           2  

Step 4. Consider membership and non-membership function as following 

linear equation 

Membership function 

  (      ) =  

{
 
 

 
 

                                                    
 

 
  

 
        

  
 

    
            

 
            

 

                                                  
 
 

 

  (      )

=  

{
 

 
                                                         2

 
        2        

        
                2                  2

                                                        2 

 

 2( 2  2 ) =  

{
 

 
                                                        

 
         2  2 

 2 2   
                               

                                                        

 

  (      ) =  

{
 

 
                                                     

 
           

   2
                          

                                                     

 

Non-membership function 

  (      ) =  

{
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  (      ) =

 {

                                                          2 
               2              

              
          2                                 2 

                                                       2 

  

 2( 2  2 )

=  

{
 

 
                                            2  2              2 2    

 2  2            2 2    

 2 2         
               2 2       2  2          

                                          2  2         

 

  (      )

=  

{
 

 
                                                             2 

                 2 

   2      
                   2               

                                                    

 

Step 5. Formulate the IFP model using auxiliary parameters as follows- 

           

        2                  ∗    

         2  2     2 2   ∗    

                2 ∗    

              2                               ∗    

 2  2            2 2        2 2         ∗    

                 2       2      ∗    

                                 

Constraints (5.7) to (5.17) 
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7.5 Results and Discussion 

This Section provides analytical results obtained after solving the proposed 

mathematical models. The proposed neutrosophic model is analysed using 

illustrative example of a real life problem. The mathematical models are solved 

using CPLEX solver provided via IBM ILOG CPLEX 12.7 on a computer Intel 

Core i5 1.7 GHz with 4GB RAM. The values of ideal anti-ideal solution for each 

objective function are represented in Table 7.1. These values are representing a 

region of satisfaction and are helpful for obtaining the lower and upper bound for 

each objective function. 

Table 7.1: Ideal and anti-ideal solution for each objective function 

Item MIP-1 MIP-2 MIP-3 MIP-1 MIP-2 MIP-3 

Objective 

functions 

Min.    Min.    Min.    Max.    Max.    Max.    

   91403462
* 

110213067 94776095 134713192
* 

108519226 121792415 

 2 793.66 543.67
* 

1207.12 1097.69 1816.66
* 

1039.06 

   1307 2982 191
* 

1149 907 3843
* 

 

Table 7.2: Comparison of solutions obtained using different approaches 

Solution 

Technique 

Total Cost  

   

Delivery time  

   

Backlog level  

   

Auxiliary  

parameters 

Deterministic 

programming 
91403462 543.67 191 

- 

Neutrosophic 

programming 
93718317 627 430 

  = 0.934539 

  = 0 

  = 0.836349 

Intuitionistic 

fuzzy 

programming 

93739937 627 430 

  = 0.934539 

  = 0 
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According to the steps given in Section 7.3, initial MO-MIP model is transformed 

into neutrosophic and IFP model. IFP model is formulated and solved for 

comparison purpose and to demonstrate performance of the proposed neutrosophic 

model. Table 7.2 shows the comparison of solutions obtained by deterministic, 

neutrosophic programming and IF programming. After following the relevant 

literature, values of t and s parameter is taken as 0.3 and 0.4. In the intuitionistic 

fuzzy programming, value of   is taken as 0.6. 

It can be seen from the Table 7.2 that solutions obtained by neutrosophic 

programming approach has better results for total cost objective function. The 

values obtained by neutrosophic programming model are near to the ideal solution 

of the problem. The value of auxiliary parameter of truth membership function is 

same as the membership function parameter of IF programming. Based on these 

values of objective functions, the DM or system analyst can make a proper PD 

plan for the actual multi-site manufacturing scenario. 

7.6 Chapter Summary 

This study addressed the MSIPDP problem in neutrosophic environment. A multi-

objective mathematical model is developed and converted to neutrosophic 

compromised model. The proposed neutrosophic programming model is solved 

and discussed using an illustrative example of automotive industry. The 

performance of neutrosophic programming model is compared with intuitionistic 

fuzzy programming model and effect of parameters related with indeterminate and 

false membership functions on auxiliary parameter values are analyzed. Results 

obtained after solving both the models shows that neutrosophic approach provides 

better compromised solution in comparison to IFP approach. The formulation of 

compromised model and solution of this study can be helpful in development of 

effective neutrosophic solution approach for solving other real life industrial 

problems.   

 

  



[120]  

Chapter 8 

Conclusion  

 

8.1 Introduction 

This final chapter presents the conclusion of the thesis. The chapter discuss about 

the contribution of present research work in the field of multi-site production and 

distribution planning considering several aspects. The managerial implications 

and limitations of current research work along with potential areas of future 

research are also presented. 

Section 8.2 presents managerial implication, Section 8.3 provide discussion and 

concluding remarks of this study and Section 8.4 ends with limitations of current 

research work and suggestions for future research opportunities. 

8.2 Managerial implications 

In this thesis, novel mathematical models are formulated for MSIPDP problem of 

a two echelon supply chain. A real life case of an automobile company is 

considered to demonstrate the performance of the proposed mathematical models. 

The problem includes most of the characteristics of the industry such as 

consideration of setup, backordering and heterogeneous fleet of vehicles with 

distinct capacities.  

There are a number of managerial implications in the different phases of the 

proposed research work. Use of an integrated approach in business decision 

making will be less reluctant because it makes the problem more understandable. 

The proposed integrated models and tools can be implemented in the system 

architecture of organizations by linking information between several modules. 

ERP system can be used to input and manage relevant database. This architecture 

will provide flexibility to decision makers and could be used with other 

information tools of the company. 
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The proposed mathematical model and solution reflects the actual scenario up to a 

sufficient degree of reality and can be helpful to decision makers to effectively 

plan PD activities in a multi-site manufacturing scenario. The heuristic approach 

implemented in this study could be helpful to solve real life complex problems. 

Also, the computational results of multi-objective models provide an estimate to 

management for different priority levels of objective functions. This research 

provides a quantitative tool for management or decision maker to analyse trade-off 

and priority consideration between multiple conflicting objectives. The network 

considered in this research is illustrated through real life scenario of 

manufacturing organization which provides understanding and practicality to 

supply chain managers. 

8.3 Concluding remarks and Discussion 

This research presented the integration of production and distribution functions 

that were used to make decisions in two echelon supply chain network. The aim 

was to propose a methodology that can be helpful for integration of PD planning 

functions and develop such kind of tools that effectively solve this coordinated 

problem. Traditionally, these functions were handled by managers in a hierarchal 

manner, which meets the expectations of decision makers but does not produce a 

cost optimal solution. Nowadays, with the advancement of technologies for 

information sharing, it is possible to employ decision tools which can solve 

problems in an integrated view. Considering these facts and following research 

gaps in the literature, research objectives are articulated and structured 

methodology is proposed.  

Initially, a single objective mixed integer linear programming model was 

formulated in Chapter 3 that was used as the foundation for the mathematical 

models developed in later chapters. The model was focused on tactical level 

decisions of supply chain i.e. production and distribution planning. The model 

includes several aspects of production and distribution such as consideration of 

setup cost/time, backordering and heterogeneous transportation with constrained 

vehicle capacity. Exact optimization is used to solve the model which generated 
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the need to employ a heuristic approach. Lagrangian relaxation based heuristics 

approach was implemented in Chapter 4. Two heuristics were proposed, one for 

production and another for distribution. To maintain the feasibility of solutions, 

top down and bottom up heuristics were applied. The computational results were 

compared with exact optimization results which show better performance of 

heuristics in terms of computational time.  

Multi-criteria decision making model was developed in Chapter 5 considering 

three criteria: cost, distribution time and customer service level. Preemptive goal 

programming method was used to solve the proposed mathematical model. 

Sensitivity analysis was also conducted to analyze the effect of priority level on 

objective function values. The analysis was helpful for decision makers to assign 

priorities to different criteria‟s. Chapter 6 and 7 optimizes the multi-objective 

mathematical model under uncertain environment. Possibilistic programming 

approaches i.e. Fuzzy, Intuitionistic fuzzy and Neutrosophic programming 

approaches are used to handle the ambiguity in parameters and impreciseness in 

objective functions. 

The present research work contributes to the literature in following ways: 

 The study presented here is based on critical review of literature on PD 

planning problem in multi-site manufacturing scenario.  

 The proposed mathematical model formulation is novel in the sense that it 

incorporates major aspects of production and distribution functions 

representing real life situations. 

 This study has presented solution of large number of problem instances 

with practical problem sizes (up to 7 manufacturing sites, 15 product 

categories, 5 heterogeneous vehicles, 20 selling locations and 12 time 

periods) to demonstrate most generic results.  

 Solutions of all the mathematical models formulated in this study are 

illustrated with real life case of an Indian automotive manufacturing 

organization, which shows the practical applicability of the proposed 

models and solution approaches. 
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 This study extended the mathematical model formulation by considering 

multiple criteria‟s and analysed the problem in this multi-objective 

framework with sensitivity analysis. 

 There are several studies available on optimization and analysis of multi-

objective model under uncertain environments using stochastic 

programming but use of possibilistic programming approaches is not 

implemented much. This study dealt with the impreciseness in objective 

functions as well as in input parameters. 

8.4 Research Limits and Future scope 

8.4.1 Limitations 

This study has tried to cover major aspects, concepts and procedures by presenting 

some unique mathematical models which were representing the potential 

application in the manufacturing organizations. Even though, there are some 

limitations of present work, which are identified and presented in this section as 

follows. 

The problem considered in this study was focused on only two echelons of the 

supply chain. The methodology needs to be applied at more levels and regarding 

different entities of the supply chain. The research methodology of current study is 

illustrated using case of an automotive industry and has been helpful in providing 

interesting results. In order to generalize the method and analytical results, the 

approach should be applied to other type of industries. The relaxation approaches 

implemented in this study is applied on production and distribution part 

separately, in order to obtain more integrated results, the approach should be 

applied on linking constraints of the problem. The logic of benefit through 

integration of several aspects is represented by mathematical procedures, and it 

should be empirically analysed and validated.  
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8.4.2 Future Scope 

This research work has proposed several mathematical models and solution 

approaches for dealing with different problems in PD planning of two echelon 

supply chain. To illustrate practical scenario, it has attempted to address problem 

of consideration of major aspects, multiple criteria as well as uncertainties that are 

of significant importance to the organization and fill the gaps in the literature. 

Considering the complete supply chain incorporating all the production, 

distribution and transportation aspects can be investigated in mathematical 

modelling. To solve such as complex problem, hyrid heuristics and metaheuristics 

algorithms can be applied in future. 

It was shown in this study that integration of different decision making aspects 

could be beneficial, but it seems difficult to implement due to restructure of 

internal processes of the organizations. Future work can be directed towards 

conducting an empirical study focusing on analysing factors and barriers for 

implementation of integration of different decision making functions. 

In this study, different integrated mathematical models have been introduced that 

were used to generate results for decision making. Current approach is only based 

on model integration. It will be interesting to analyse combination of model as 

well as method integration. 

The input data values for different problem instances were collected from the case 

company and generated through uniform distribution. These input data values 

were representing a specific situation; a possible scope for future research is to 

take generic data in the form of ratios and solve the model. By changing the ratios, 

more results can be drawn and graphically presented to see the trends and impact 

of change.  

Considering the effect of uncertainty, possibilistic programming approaches were 

implemented in this study. Another segment for dealing with uncertainty i.e. 

stochastic programming can be applied to handle uncertainty in objective function 

and parameters. Current research can also be extended by considering fuzzy 

objectives, decision parameters and constraints. 
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The suggestions for future research work can be summarized as follows. 

 Consideration of all the members of the supply chain for model as well as 

method integration.  

 Empirical studies focusing enablers and barriers to implementation of 

integration. 

 Use of heuristics and metaheuristics approaches for solving complex 

deterministic as well as uncertain problems. 

 Use of hybrid solution approaches such as mathematical modelling and 

simulation, Analytical hierarchy process with genetic algorithm.  

 Formulation of mathematical models based on continuous time 

representation for representation of real life scenario especially in process 

system industries. 

 Implementation of stochastic programming approach to deal with 

uncertainty. 

 Considering environmental factors and sustainability in production and 

distribution planning models like waste reduction in production phase and 

gas emission in distribution phase can be a good area of research.  
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ANNEXURE A: CPLEX Codes 

 

Integrated model: 

/********************************************* 

 * OPL 12.7.1.0 Model 

 * Author: Choudhary 

 * Creation Date: 26-Oct-2016 at 5:59:46 pm 

 *********************************************/ 

using CPLEX; 

//sets 

int numberofproducts =...; 

range products = 1..numberofproducts; 

int numberofsites =...; 

range sites = 1..numberofsites; 

int numberofmarkets =...; 

range markets = 1..numberofmarkets; 

int numberofperiods =...; 

range periods = 1..numberofperiods; 

int numberofvehicles =...; 

range vehicles =1..numberofvehicles; 

//parameters 

int demand[products,markets,periods] =...; 

float setuptime [products,sites] =...; 

float processingtime [products,sites] =...; 

int productioncost[products,sites] =...; 

int holdingcosts [products,sites] =...; 
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int holdingcostm [products,markets] =...; 

int vtranscost [products,vehicles,sites,markets] =...; 

int ftranscost [vehicles] =...; 

int setupcost [products,sites] =...; 

int backordercost [products,markets] =...; 

int maxstoragem [markets] =...; 

int maxstorages [sites] =...; 

int maxtransport [vehicles] =...; 

int productioncapacity[sites,periods]=...; 

float theta [products] =...; 

int M = 1000000; 

//decision variables 

dvar int+ pquantity[products,sites,periods]; 

dvar int+ iquantitys[products,sites,0..numberofperiods]; 

dvar int+ iquantitym[products,markets,0..numberofperiods]; 

dvar int+ tquantity[products,vehicles,sites,markets,periods]; 

dvar int+ bquantity[products,markets,0..numberofperiods]; 

dvar boolean bvsetup[products,sites,periods]; 

dvar int+ ntransport[vehicles,sites,markets,periods]; 

//objective functions 

dexpr float production = (sum(p in products, m in sites, t in periods) 

productioncost[p,m]*pquantity[p,m,t]); 

dexpr float holdings =   (sum(p in products, m in sites, t in periods) 

holdingcosts[p,m]* iquantitys[p,m,t]);  

dexpr float holdingm = (sum(p in products, l in markets, t in periods) 

holdingcostm[p,l]*iquantitym[p,l,t]); 

dexpr int setup =  (sum(p in products, m in sites, t in periods) 

setupcost[p,m]*bvsetup[p,m,t]); 
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dexpr float transportation = (sum(p in products, g in vehicles, m in sites, l in 

markets, t in periods) vtranscost[p,g,m,l]*tquantity[p,g,m,l,t]);  

dexpr float fixedtrans = (sum(g in vehicles, m in sites, l in markets, t in periods) 

ftranscost[g]*ntransport[g,m,l,t]); 

dexpr float backorder = (sum(p in products,l in markets, t in periods) 

backordercost[p,l]*bquantity[p,l,t]); 

dexpr float totalcost = (production + holdings + holdingm + transportation + setup 

+ fixedtrans + backorder); 

  minimize totalcost; 

subject to { 

 forall (p in products, m in sites) 

 ctStartInvs:   iquantitys[p,m,0] == 0;  

 forall (p in products, l in markets){ 

 ctStartInvm:  iquantitym[p,l,0] == 0; 

ctstartbquan: bquantity[p,l,0] ==0; 

 } 

forall (p in products, m in sites, t in periods)    

//inventory balance equation at site 

ct10: iquantitys[p,m,t] == iquantitys[p,m,t-1] + pquantity[p,m,t] - sum ( g in 

vehicles,l in markets) tquantity[p,g,m,l,t]; 

forall (p in products, l in markets, t in periods) 

ct11: iquantitym[p,l,t-1] - iquantitym[p,l,t] + bquantity[p,l,t] - bquantity[p,l,t-1] + 

sum(g in vehicles,m in sites) tquantity[p,g,m,l,t] == demand[p,l,t]; 

forall (p in products, m in sites, t in periods) 

 //production capacity constraint  

 ct13: pquantity[p,m,t] <= M*bvsetup[p,m,t]; 

forall (m in sites, t in periods) 

  //production time constraint 
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ct14: sum (p in products)((pquantity[p,m,t]*processingtime[p,m]) + 

(setuptime[p,m]*bvsetup[p,m,t])) <= productioncapacity[m,t]; 

forall (g in vehicles,m in sites, l in markets, t in periods) 

// transportation constraint 

ct15: sum (p in products)tquantity[p,g,m,l,t] <= 

maxtransport[g]*ntransport[g,m,l,t]; 

forall ( l in markets) 

//storage capacity constraint at market 

ct16: sum (p in products,t in periods)iquantitym[p,l,t] <= maxstoragem[l]; 

forall (m in sites) 

//storage at site 

ct17: sum(p in products, t in periods) iquantitys[p,m,t] <= maxstorages[m]; 

forall (p in products, l in markets, t in periods) 

//backoredered demand 

ct18: bquantity[p,l,t] <= theta[p]*demand[p,l,t]; 

}; 

 

execute DISPLAY { 

writeln("production cost =",production); 

writeln("setup cost =",setup); 

writeln("holding cost at site =",holdings); 

writeln("holding cost at market =",holdingm); 

writeln("backorder cost =",backorder); 

writeln("fixed transportation cost =",fixedtrans); 

writeln("transportation cost =",transportation); 

writeln("totalcost =",totalcost); 

}; 
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Relaxed model:  

/********************************************* 

 * OPL 12.7.1.0 Model 

 * Author: Choudhary 

 * Creation Date: 27-Jul-2018 at 2:56:02 pm 

 *********************************************/ 

using CPLEX; 

//sets 

int numberofproducts =...; 

range products = 1..numberofproducts; 

int numberofsites =...; 

range sites = 1..numberofsites; 

int numberofmarkets =...; 

range markets = 1..numberofmarkets; 

int numberofperiods =...; 

range periods = 1..numberofperiods; 

int numberofvehicles =...; 

range vehicles =1..numberofvehicles; 

//parameters 

int demand[products,markets,periods] =...; 

float setuptime [products,sites] =...; 

float processingtime [products,sites] =...; 

int productioncost[products,sites] =...; 

int holdingcosts [products,sites] =...; 

int holdingcostm [products,markets] =...; 

int vtranscost [products,vehicles,sites,markets] =...; 
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int ftranscost [vehicles] =...; 

int setupcost [products,sites] =...; 

int maxstoragem [markets] =...; 

int maxstorages [sites] =...; 

int maxtransport [vehicles] =...; 

int productioncapacity[sites,periods]=...; 

int M = 1000000; 

//decision variables 

dvar float+ pquantity[products,sites,periods]; 

dvar float+ iquantitys[products,sites,0..numberofperiods]; 

dvar float+ iquantitym[products,markets,0..numberofperiods]; 

dvar float+ tquantity[products,vehicles,sites,markets,periods]; 

dvar boolean bvsetup[products,sites,periods]; 

dvar float+ ntransport[vehicles,sites,markets,periods]; 

//objective functions 

dexpr float production = (sum(p in products, m in sites, t in 

periods)productioncost[p,m]*pquantity[p,m,t]); 

dexpr float holdings =   (sum(p in products, m in sites, t in 

periods)holdingcosts[p,m]* iquantitys[p,m,t]);  

dexpr float holdingm = (sum(p in products, l in markets, t in 

periods)holdingcostm[p,l]*iquantitym[p,l,t]); 

dexpr int setup =  (sum(p in products, m in sites, t in 

periods)setupcost[p,m]*bvsetup[p,m,t]); 

dexpr float transportation =    

  (sum(p in products, g in vehicles, m in sites, l in markets, t in 

periods)vtranscost[p,g,m,l]*tquantity[p,g,m,l,t]);  

dexpr float fixedtrans =    
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  (sum(g in vehicles, m in sites, l in markets, t in periods) 

ftranscost[g]*ntransport[g,m,l,t]); 

dexpr float totalcost = (production + holdings + holdingm + transportation + setup 

+ fixedtrans); 

  minimize totalcost; 

subject to { 

 forall(p in products, m in sites) 

 ctStartInvs:   iquantitys[p,m,0] == 0;  

 forall(p in products, l in markets){ 

 ctStartInvm:  iquantitym[p,l,0] == 0; 

 } 

forall (p in products, m in sites, t in periods)    

//inventory balance equation at site 

ct10: iquantitys[p,m,t] == iquantitys[p,m,t-1] + pquantity[p,m,t] - sum ( g in 

vehicles,l in markets) tquantity[p,g,m,l,t]; 

forall (p in products, l in markets, t in periods) 

ct11: iquantitym[p,l,t] == iquantitym[p,l,t-1] - demand[p,l,t] + sum(g in 

vehicles,m in sites) tquantity[p,g,m,l,t]; 

forall (p in products, m in sites, t in periods) 

 //production capacity constraint  

 ct13: pquantity[p,m,t] <= M*bvsetup[p,m,t]; 

forall (m in sites, t in periods) 

  //production time constraint 

ct14: sum (p in products)((pquantity[p,m,t]*processingtime[p,m]) + 

(setuptime[p,m]*bvsetup[p,m,t])) <= productioncapacity[m,t]; 

forall (g in vehicles,m in sites, l in markets, t in periods) 

// transportation constraint 
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ct15: sum (p in products)tquantity[p,g,m,l,t] <= 

maxtransport[g]*ntransport[g,m,l,t]; 

forall ( l in markets) 

//storage capacity constraint at market 

ct16: sum (p in products,t in periods)iquantitym[p,l,t] <= maxstoragem[l]; 

forall ( m in sites) 

//storage at site 

ct17: sum(p in products,t in periods) iquantitys[p,m,t] <= maxstorages[m]; 

}; 

  



[149]  

Lower bound model: 

/********************************************* 

 * OPL 12.7.1.0 Model 

 * Author: Choudhary 

 * Creation Date: 27-Jul-2018 at 2:48:15 pm 

 *********************************************/ 

using CPLEX; 

//sets 

int numberofproducts =...; 

range products = 1..numberofproducts; 

int numberofsites =...; 

range sites = 1..numberofsites; 

int numberofmarkets =...; 

range markets = 1..numberofmarkets; 

int numberofperiods =...; 

range periods = 1..numberofperiods; 

int numberofvehicles =...; 

range vehicles = 1..numberofvehicles; 

//parameters 

int demand[products,markets,periods] =...; 

float setuptime [products,sites] =...; 

float processingtime [products,sites] =...; 

int productioncost[products,sites] =...; 

int holdingcosts [products,sites] =...; 

int holdingcostm [products,markets] =...; 

int vtranscost [products,vehicles,sites,markets] =...; 
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int ftranscost [vehicles] =...; 

int setupcost [products,sites] =...; 

int maxstoragem [markets] =...; 

int maxstorages [sites] =...; 

int maxtransport [vehicles] =...; 

int productioncapacity[sites,periods]=...; 

int M = 1000000; 

float lambda[products] =...; 

//decision variables 

dvar int+ pquantity[products,sites,periods]; 

dvar int+ iquantitys[products,sites,0..numberofperiods]; 

dvar int+ iquantitym[products,markets,0..numberofperiods]; 

dvar int+ tquantity[products,vehicles,sites,markets,periods]; 

dvar boolean bvsetup[products,sites,periods]; 

dvar int+ ntransport[vehicles,sites,markets,periods]; 

//objective functions 

dexpr float lagrangian_obj = (sum(p in products, m in sites, t in periods) 

productioncost[p,m]*pquantity[p,m,t]) +  

(sum(p in products, m in sites, t in periods) holdingcosts[p,m]*iquantitys[p,m,t]) +  

(sum(p in products, l in markets, t in periods) holdingcostm[p,l]*iquantitym[p,l,t]) 

+ (sum(p in products, g in vehicles, m in sites, l in markets, t in periods) 

vtranscost[p,g,m,l]*tquantity[p,g,m,l,t]) + (sum(p in products, m in sites, t in 

periods) setupcost[p,m]*bvsetup[p,m,t]) + (sum(g in vehicles, m in sites, l in 

markets, t in periods) ftranscost[g]*ntransport[g,m,l,t]) + (sum(p in products, m in 

sites, t in periods) (lambda[p] * ((productioncapacity[m,t] - 

pquantity[p,m,t]*processingtime[p,m]) + (setuptime[p,m]*bvsetup[p,m,t])))); 

  minimize lagrangian_obj; 

subject to { 

 forall(p in products, m in sites){ 
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 ctStartInvs:   iquantitys[p,m,0] == 0; } 

 forall(p in products, l in markets){ 

 ctStartInvm:  iquantitym[p,l,0] == 0; } 

forall (p in products, m in sites, t in periods)    

//inventory balance equation at site 

ct10: iquantitys[p,m,t] == iquantitys[p,m,t-1] + pquantity[p,m,t] - sum ( g in 

vehicles,l in markets) tquantity[p,g,m,l,t]; 

forall (p in products, l in markets, t in periods) 

ct11: iquantitym[p,l,t] == iquantitym[p,l,t-1] - demand[p,l,t] + sum(g in 

vehicles,m in sites) tquantity[p,g,m,l,t]; 

forall (p in products, m in sites, t in periods) 

 //production capacity constraint  

 ct13: pquantity[p,m,t] <= M *bvsetup[p,m,t]; 

forall (g in vehicles,m in sites, l in markets, t in periods) 

// transportation constraint 

ct15: sum (p in products)tquantity[p,g,m,l,t] <= 

maxtransport[g]*ntransport[g,m,l,t]; 

forall ( l in markets) 

//storage capacity constraint at market 

ct16: sum (p in products, t in periods)iquantitym[p,l,t] <= maxstoragem[l]; 

forall ( m in sites) 

//storage at site 

ct17: sum(p in products, t in periods) iquantitys[p,m,t] <= maxstorages[m]; 

}; 

execute DISPLAY { 

writeln("lagrangian_obj = ", lagrangian_obj); 

}; 
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Upper bound 

/********************************************* 

 * OPL 12.7.1.0 Model 

 * Author: Choudhary 

 * Creation Date: 27-Jul-2018 at 2:48:30 pm 

 *********************************************/ 

using CPLEX; 

//sets 

int numberofproducts =...; 

range products = 1..numberofproducts; 

int numberofsites =...; 

range sites = 1..numberofsites; 

int numberofmarkets =...; 

range markets = 1..numberofmarkets; 

int numberofperiods =...; 

range periods = 1..numberofperiods; 

int numberofvehicles =...; 

range vehicles = 1..numberofvehicles; 

//parameters 

int demand[products,markets,periods] =...; 

float setuptime [products,sites] =...; 

float processingtime [products,sites] =...; 

int productioncost[products,sites] =...; 

int holdingcosts [products,sites] =...; 

int holdingcostm [products,markets] =...; 

int vtranscost [products,vehicles,sites,markets] =...; 
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int ftranscost [vehicles] =...; 

int setupcost [products,sites] =...; 

int maxstoragem [markets] =...; 

int maxstorages [sites] =...; 

int maxtransport [vehicles] =...; 

float productioncapacity[sites,periods]=...; 

int M = 1000000; 

//this data is calculated in the script using result of previous solve 

int Spquantity[products,sites,periods] =...; 

int Sbvsetup[products,sites,periods] =...; 

//decision variables 

dvar int+ iquantitys[products,sites,0..numberofperiods]; 

dvar int+ iquantitym[products,markets,0..numberofperiods]; 

dvar int+ tquantity[products,vehicles,sites,markets,periods]; 

dvar int+ ntransport[vehicles,sites,markets,periods]; 

//objective functions 

dexpr float production = (sum(p in products, m in sites, t in 

periods)productioncost[p,m]*Spquantity[p,m,t]); 

dexpr float holdings = (sum(p in products, m in sites, t in periods) 

holdingcosts[p,m]* iquantitys[p,m,t]);  

dexpr float holdingm = (sum(p in products, l in markets, t in 

periods)holdingcostm[p,l]*iquantitym[p,l,t]); 

dexpr float transportation = (sum(p in products, g in vehicles, m in sites, l in 

markets, t in periods)vtranscost[p,g,m,l]*tquantity[p,g,m,l,t]);  

dexpr float setup = (sum(p in products, m in sites, t in 

periods)setupcost[p,m]*Sbvsetup[p,m,t]);  

dexpr float fixedtrans = (sum(g in vehicles, m in sites, l in markets, t in 

periods)ftranscost[g]*ntransport[g,m,l,t]); 
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dexpr float totalcost = (production + holdings + holdingm + transportation + setup 

+ fixedtrans); 

  minimize totalcost; 

subject to { 

 forall(p in products, m in sites){ 

 ctStartInvs:   iquantitys[p,m,0] == 0; } 

 forall(p in products, l in markets){ 

 ctStartInvm:  iquantitym[p,l,0] == 0; } 

forall (p in products, m in sites, t in periods)    

//inventory balance equation at site 

ct10: iquantitys[p,m,t] == iquantitys[p,m,t-1] + Spquantity[p,m,t] - sum ( g in 

vehicles,l in markets) tquantity[p,g,m,l,t]; 

forall (p in products, l in markets, t in periods) 

ct11: iquantitym[p,l,t] == iquantitym[p,l,t-1] - demand[p,l,t] + sum(g in 

vehicles,m in sites) tquantity[p,g,m,l,t]; 

forall (p in products, m in sites, t in periods) 

 //production capacity constraint  

 ct13: Spquantity[p,m,t] <= M*Sbvsetup[p,m,t]; 

forall (p in products, m in sites, t in periods) 

  //production time constraint 

ct14: (Spquantity[p,m,t]*processingtime[p,m]) + 

(setuptime[p,m]*Sbvsetup[p,m,t]) <= productioncapacity[m,t]; 

forall (g in vehicles,m in sites, l in markets, t in periods) 

// transportation constraint 

ct15: sum (p in products) tquantity[p,g,m,l,t] <= 

maxtransport[g]*ntransport[g,m,l,t]; 
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forall ( l in markets) 

//storage capacity constraint at market 

ct16: sum (p in products,t in periods) iquantitym[p,l,t] <= maxstoragem[l]; 

forall ( m in sites) 

//storage at site 

ct17: sum(p in products,t in periods) iquantitys[p,m,t] <= maxstorages[m]; 

}; 
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Lagrangian Relaxation for Production problem 

/********************************************* 

 * OPL 12.7.1.0 Model 

 * Author: Choudhary 

 * Creation Date: 27-Jul-2018 at 2:45:18 pm 

 *********************************************/ 

//sets 

int numberofproducts =...; 

range products = 1..numberofproducts; 

int numberofsites =...; 

range sites = 1..numberofsites; 

int numberofmarkets =...; 

range markets = 1..numberofmarkets; 

int numberofperiods =...; 

range periods = 1..numberofperiods; 

int numberofvehicles =...; 

range vehicles = 1..numberofvehicles; 

//parameters 

int demand[products,markets,periods] =...; 

float setuptime [products,sites] =...; 

float processingtime [products,sites] =...; 

int productioncost[products,sites] =...; 

int holdingcosts [products,sites] =...; 

int holdingcostm [products,markets] =...; 

int vtranscost [products,vehicles,sites,markets] =...; 

int ftranscost [vehicles] =...; 
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int setupcost [products,sites] =...; 

int maxstoragem [markets] =...; 

int maxstorages [sites] =...; 

int maxtransport [vehicles] =...; 

int productioncapacity[sites,periods]=...; 

int M = 1000000; 

main { 

  function maxArray(arr) { 

    var max; 

    if (arr.size <= 0) 

      max = undefined; 

    else {   

      max = arr[1]; 

      for (var p=2;p<=arr.size;p++) 

        if (arr[p]>max) 

          max = arr[p]; 

    } 

    return max; 

  }   

  thisOplModel.settings.mainEndEnabled = true; 

  thisOplModel.generate(); 

  var data = thisOplModel.dataElements; 

  writeln("--- LP Relaxation ---"); 

  var m1Source = new IloOplModelSource("relax.mod"); 

  var m1Cplex = new IloCplex(); 

  var m1Def = new IloOplModelDefinition(m1Source); 
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  var m1Opl = new IloOplModel(m1Def,m1Cplex); 

  m1Opl.addDataSource(data); 

  m1Opl.generate(); 

  if (m1Cplex.solve()) { 

    var LB = m1Cplex.getObjValue(); 

  } 

  m1Opl.end(); 

  m1Def.end(); 

  m1Cplex.end(); 

  m1Source.end(); 

 

  var m2Source = new IloOplModelSource("Lowerbound.mod"); 

  var m2Cplex = new IloCplex(); 

  var m2Def = new IloOplModelDefinition(m2Source); 

  // model used to retrieve data common at each iteration 

  var m2_init = new IloOplModel(m2Def,m2Cplex); 

  m2_init.addDataSource(data); 

  var datalambda = new IloOplDataSource("lambda.dat"); 

  m2_init.addDataSource(datalambda); 

  var data2 = m2_init.dataElements;  

  m2_init.generate(); 

   var m3Source = new IloOplModelSource("Upperbound.mod"); 

  var m3Cplex = new IloCplex(); 

  var m3Def = new IloOplModelDefinition(m3Source); 

  var m3_init = new IloOplModel(m3Def,m3Cplex); 

  m3_init.addDataSource(data); 
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  var dataSpquantity = new IloOplDataSource("Spquantity.dat"); 

  var dataSbvsetup = new IloOplDataSource("Sbvsetup.dat");   

  m3_init.addDataSource(dataSpquantity); 

  m3_init.addDataSource(dataSbvsetup); 

  m3_init.generate(); 

  var data3 = m3_init.dataElements; 

    // begin the Lagrangian calculation here    

  writeln(); 

  writeln(" beginning the Lagrangian calculation here... "); 

  // maximum number of iteration we want to run the loop   

  var iter_limit = 10; 

  // initialize arrays and variables used in the loop that follows 

  var same = 0; 

  var same_limit = 3; 

  var slack = new Array(thisOplModel.products); 

  var temp = new Array(thisOplModel.products); 

  var lambda = new Array(thisOplModel.products); 

  var some = 0; 

  var excess = new Array(thisOplModel.sites); 

  var UB = 0; 

  UB += 56165000; 

  for (var p in thisOplModel.products) { 

    slack[p] = 0.0; 

    temp[p] = 0.0; 

    lambda[p] = 0.0; 
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  }  

  for (var s in thisOplModel.sites) { 

  for (var t in thisOplModel.periods) { 

   excess [s][t] = 0.0;   

  }} 

  

  var scale = 1.0; 

  var norm = 0.0; 

  var step = 0.0; 

  //arrays to store the UB, LB, scale and step values at each iteration 

  var LBlog = new Array(iter_limit); 

  var UBlog = new Array(iter_limit); 

  var scalelog = new Array(iter_limit); 

  var steplog = new Array(iter_limit); 

  // executes LowerBound and UpperBound model  

  for(var k=1; k<=iter_limit;k++) { 

    LBlog[k] = 0.0; 

    UBlog[k] = 0.0; 

    scalelog[k] = 0.0; 

    steplog[k] = 0.0; 

    writeln(); 

    writeln(" ITERATION:  " , k );   

    var m2 = new IloOplModel(m2Def,m2Cplex); 

    for (p in thisOplModel.products){ 

      data2.lambda[p] = lambda[p]; 

    } 
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    m2.addDataSource(data2);   

    m2.generate(); 

    var Lagrangian; 

    if (m2Cplex.solve()) {  

      Lagrangian = m2Cplex.getObjValue(); 

    } 

    norm = 0; 

    for(p in thisOplModel.products) { 

      slack[p] = 0; 

      for (var m in thisOplModel.sites) { 

     for (var t=1;t<=thisOplModel.numberofperiods;t++){   

     slack[p] += ((thisOplModel.processingtime[p][m]) * (m2.pquantity[p][m][t])) 

+ ((thisOplModel.setuptime[p][m]) * (m2.bvsetup[p][m][t]));  

     slack[p] -= thisOplModel.productioncapacity[m][t];}}  

      norm += Opl.pow(slack[p],2);} 

  

    writeln("lower bound obj value: ", Lagrangian);  

    if (Lagrangian > LB + 0.000001) { 

      LB = Lagrangian; 

      same = 0;   

    }  

    else {    

      same ++;  

    } 

    if (same == same_limit) { 

     scale = scale/2; 
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     same = 0;     

    } 

   step = scale * ((UB - Lagrangian) / norm); 

    for (m in thisOplModel.sites) { 

    for (t in thisOplModel.periods){   

    excess = (m2.productioncapacity[m][t]) - 

((m2.pquantity[p][m][t]*m2.processingtime[p][m])+(m2.setuptime[p][m] * 

m2.bvsetup[p][m][t])); 

    }} 

    var sum1 = 0; 

    var sum2 = 0; 

   for (p in thisOplModel.products){ 

   for (m in thisOplModel.sites) { 

   for (t in thisOplModel.periods){     

   sum1 += (m2.pquantity[p][m][t]* thisOplModel.processingtime[p][m]) + 

(thisOplModel.setuptime[p][m] * m2.bvsetup[p][m][t]);  

   }}} 

    for (m in thisOplModel.sites) { 

    for (t in thisOplModel.periods){   

    sum2 -= m2.productioncapacity[m][t]; 

    }}    

        

    if (sum1 <= sum2){ 

    // solve the model to get the Upper Bound 

    var m3 = new IloOplModel(m3Def,m3Cplex); 

    // get the dvar values of the model just solved 

      // to use in Upper Bound model 
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    for (p in thisOplModel.products){ 

      for (m in thisOplModel.sites){ 

      for (t in thisOplModel.periods){ 

      data3.Spquantity[p][m][t] = m2.pquantity[p][m][t]; 

      data3.Sbvsetup[p][m][t] = m2.bvsetup[p][m][t]; 

          }}}       

      m3.addDataSource(data3); 

      m3.generate();           

      if (m3Cplex.solve()) { 

        writeln("upper bound model value 1: ", m3Cplex.getObjValue()); 

        if (m3Cplex.getObjValue() < UB) 

          UB = m3Cplex.getObjValue();  

      } 

      m3.end();   

      }              

    if (sum1 >= sum2)  { 

      var m3 = new IloOplModel(m3Def,m3Cplex); 

    for (p in thisOplModel.products){ 

      for (m in thisOplModel.sites){ 

      for (t=3; t<=thisOplModel.numberofperiods;t--){ 

      data3.Spquantity [p][m][t] = m2.pquantity[p][m][t]+ 

(excess[m][t]/m2.processingtime[p][m]); 

      data3.Sbvsetup[p][m][t] = m2.bvsetup[p][m][t]; 

    }}} 

      for (p in thisOplModel.products){ 

      for (m in thisOplModel.sites){ 
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      for (t=1; t<=thisOplModel.numberofperiods;t++){ 

      data3.Spquantity [p][m][t] = m2.pquantity[p][m][t]+ 

(excess[m][t]/m2.processingtime[p][m]); 

      data3.Sbvsetup[p][m][t] = m2.bvsetup[p][m][t]; 

    }}} 

      m3.addDataSource(data3); 

      m3.generate();  

                

      if (m3Cplex.solve()) { 

        writeln("upper bound model value 2: ", m3Cplex.getObjValue()); 

        if (m3Cplex.getObjValue() < UB) 

          UB = m3Cplex.getObjValue();  

      } 

      m3.end();   

      }       

    // update mult to pass it as input data to LowerBound model in next iteration 

    for(p in thisOplModel.products) { 

      temp[p] = lambda[p];  

      if (temp[p] - (step * slack[p]) > 0 ) 

        lambda[p] = temp[p] - (step * slack[p]) ; 

      else  

        lambda[p] = 0;  

    } 

    LBlog[k] = LB; 

    UBlog[k] = UB;  

    scalelog[k] = scale; 
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    steplog[k] = step;  

    m2.end(); 

    } 

  //end of main "for loop" 

  datalambda.end(); 

  m2_init.end(); 

  dataSpquantity.end(); 

 dataSbvsetup.end(); 

  m3_init.end(); 

  writeln("---------------------"); 

  writeln(); 

  write("LBlog = "); 

  for (p=1;p<=iter_limit;p++)   

    writeln(LBlog[p]); 

  writeln();   

  writeln("UBlob = "); 

  for (p=1;p<=iter_limit;p++)   

    writeln(UBlog[p]); 

  writeln();   

  writeln("scalelog = "); 

  for (p=1;p<=iter_limit;p++)  

    writeln(scalelog[p]); 

  writeln();   

  writeln("steplog = "); 

  for (p=1;p<=iter_limit;p++)  

    writeln(steplog[p]); 
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    writeln();   

  writeln("lambdalog = "); 

  for (p=1;p<=iter_limit;p++)  

    writeln(lambda[p]); 

  m3Def.end(); 

  m3Cplex.end(); 

  m3Source.end();  

  m2Def.end(); 

  m2Cplex.end(); 

  m2Source.end();      

    } 
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Main LR for transport 

/********************************************* 

 * OPL 12.7.1.0 Model 

 * Author: Choudhary 

 * Creation Date: 01-Nov-2018 at 5:42:11 pm 

 *********************************************/ 

//sets 

int numberofproducts =...; 

range products = 1..numberofproducts; 

int numberofsites =...; 

range sites = 1..numberofsites; 

int numberofmarkets =...; 

range markets = 1..numberofmarkets; 

int numberofperiods =...; 

range periods = 1..numberofperiods; 

int numberofvehicles =...; 

range vehicles = 1..numberofvehicles; 

//parameters 

int demand[products,markets,periods] =...; 

float setuptime [products,sites] =...; 

float processingtime [products,sites] =...; 

int productioncost[products,sites] =...; 

int holdingcosts [products,sites] =...; 

int holdingcostm [products,markets] =...; 

int vtranscost [products,vehicles,sites,markets] =...; 

int ftranscost [vehicles] =...; 
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int setupcost [products,sites] =...; 

int maxstoragem [markets] =...; 

int maxstorages [sites] =...; 

int maxtransport [vehicles] =...; 

int productioncapacity[sites,periods]=...; 

int M = 1000000; 

tuple sproducts{ 

 key int numberofproducts; 

 int ftranscost; 

} 

main { 

  function maxArray(arr) { 

    var max; 

    if (arr.size <= 0) 

      max = undefined; 

    else {   

      max = arr[1]; 

      for (var t=2;t<=arr.size;t++) 

        if (arr[t]>max) 

          max = arr[t]; 

    } 

    return max; 

  }   

  thisOplModel.settings.mainEndEnabled = true; 

  thisOplModel.generate(); 

  var data = thisOplModel.dataElements; 
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  writeln("--- LP Relaxation ---"); 

  var m1Source = new IloOplModelSource("relaxTrans.mod"); 

  var m1Cplex = new IloCplex(); 

  var m1Def = new IloOplModelDefinition(m1Source); 

  var m1Opl = new IloOplModel(m1Def,m1Cplex); 

  m1Opl.addDataSource(data); 

  m1Opl.generate(); 

  if (m1Cplex.solve()) { 

    var LB = m1Cplex.getObjValue(); 

  } 

  m1Opl.end(); 

  m1Def.end(); 

  m1Cplex.end(); 

  m1Source.end(); 

  var m2Source = new IloOplModelSource("LowerboundTrans.mod"); 

  var m2Cplex = new IloCplex(); 

  var m2Def = new IloOplModelDefinition(m2Source); 

  // model used to retrieve data common at each iteration 

  var m2_init = new IloOplModel(m2Def,m2Cplex); 

  m2_init.addDataSource(data); 

  var databeta = new IloOplDataSource("beta.dat"); 

  m2_init.addDataSource(databeta); 

  var data2 = m2_init.dataElements;  

  m2_init.generate(); 
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  var m3Source = new IloOplModelSource("UpperboundTrans.mod"); 

  var m3Cplex = new IloCplex(); 

  var m3Def = new IloOplModelDefinition(m3Source); 

  var m3_init = new IloOplModel(m3Def,m3Cplex); 

  m3_init.addDataSource(data); 

  var dataRtquantity = new IloOplDataSource("Rtquantity.dat"); 

  var dataRntransport = new IloOplDataSource("Rntransport.dat"); 

  m3_init.addDataSource(dataRtquantity); 

  m3_init.addDataSource(dataRntransport); 

  m3_init.generate(); 

  var data3 = m3_init.dataElements; 

  // begin the Lagrangian calculation here    

  writeln(); 

  writeln(" beginning the lagrangian calculation here... "); 

  // maximum number of iteration we want to run the loop   

  var iter_limit = 10; 

  // initialize arrays and variables used in the loop that follows 

  var same = 0; 

  var same_limit = 3; 

  var slack = new Array(thisOplModel.periods); 

  var temp = new Array(thisOplModel.periods); 

  var beta = new Array(thisOplModel.periods); 

  var UB = 0; 

  UB += 56165000; 

  for (var t in thisOplModel.periods) { 

    slack[t] = 0.0; 
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    temp[t] = 0.0; 

    beta[t] = 0.0; 

  }  

  var scale = 1.0; 

  var norm = 0.0; 

  var step = 0.0; 

  //arrays to store the UB, LB, scale and step values at each iteration 

  var LBlog = new Array(iter_limit); 

  var UBlog = new Array(iter_limit); 

  var scalelog = new Array(iter_limit); 

  var steplog = new Array(iter_limit); 

  // executes LowerBound and UpperBound model  

  for(var k=1; k<=iter_limit;k++) { 

    LBlog[k] = 0.0; 

    UBlog[k] = 0.0; 

    scalelog[k] = 0.0; 

    steplog[k] = 0.0; 

    writeln(); 

    writeln(" ITERATION:  " , k );   

    var m2 = new IloOplModel(m2Def,m2Cplex); 

    for (t in thisOplModel.periods){ 

      data2.beta[t] = beta[t]; 

    } 

    m2.addDataSource(data2);   

    m2.generate(); 

    var Lagrangian; 
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    if (m2Cplex.solve()) {  

      Lagrangian = m2Cplex.getObjValue(); 

    } 

    norm = 0; 

    for(t in thisOplModel.periods) { 

      slack[t] = 0; 

    for (var g in thisOplModel.vehicles) {  

    for (var m in thisOplModel.sites) { 

    for (var l in thisOplModel.markets) {   

    slack[t] -= ((m2.maxtransport[g]) * (m2.ntransport[g][m][l][t])); 

    for (var p in thisOplModel.products){  

     slack[t] += m2.tquantity[p][g][m][l][t]; 

     }}}}}   

      for (t in thisOplModel.periods) { 

      norm += Opl.pow(slack[t],2); 

}  

      

    writeln("lower bound obj value: ", Lagrangian);  

    if (Lagrangian > LB + 0.000001) { 

      LB = Lagrangian; 

      same = 0;   

    }  

    else {    

      same ++;  

    } 

    if (same == same_limit) { 
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     scale = scale/2; 

     same = 0;     

    } 

   step = scale * ((UB - Lagrangian) / norm); 

    var sum1 = 0; 

    var sum2 = 0; 

   for (p in thisOplModel.products){ 

   for (g in thisOplModel.vehicles) {    

   for (m in thisOplModel.sites) { 

   for (l in thisOplModel.markets) {    

   for (t in thisOplModel.periods){     

   sum1 += (m2.tquantity[p][g][m][l][t]);  

   }}}}} 

    for (g in thisOplModel.vehicles) { 

    for (m in thisOplModel.sites) { 

    for (l in thisOplModel.markets) {   

    for (t in thisOplModel.periods){   

    sum2 += (m2.maxtransport[g]*m2.ntransport[g][m][l][t]); 

    }}}}      

     if (sum1 >= sum2) { 

      var m3 = new IloOplModel(m3Def,m3Cplex); 

     sorted {sproducts} sp = {<1,2,3> | <1,2,3 in > ftranscost}; 

     for (sp in thisOplModel.products){ 

      for (m in thisOplModel.sites){ 

      for (t=1; t<=thisOplModel.numberofperiods;t++){ 

      data3.Rtquantity[p][g][m][l][t] = m2.tquantity[p][g][m][l][t]; 
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    }}}} 

    else if (sum1 <= sum2){ 

    var m3 = new IloOplModel(m3Def,m3Cplex); 

      for (g in thisOplModel.vehicles){ 

      for (m in thisOplModel.sites){ 

      for (t=1; t<=thisOplModel.numberofperiods;t++){ 

      data3.Rntransport[g][m][l][t] = m2.ntransport[g][m][l][t]; 

      for (p in thisOplModel.products){ 

      data3.Rtquantity[p][g][m][l][t] = m2.tquantity[p][g][m][l][t]; 

      }}}} 

      m3.addDataSource(data3); 

      m3.generate();  

                    

      if (m3Cplex.solve()) { 

        writeln("upper bound model value: ", m3Cplex.getObjValue()); 

        if (m3Cplex.getObjValue() < UB) 

          UB = m3Cplex.getObjValue();  

      } 

      m3.end();   

      }       

    // update mult to pass it as input data to LowerBound model in next iteration 

    for(t in thisOplModel.periods) { 

      temp[t] = beta[t];  

      if (temp[t] - (step * slack[t]) > 0 ) 

        beta[t] = temp[t] - (step * slack[t]) ; 

      else  
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        beta[t] = 0;  

    } 

    LBlog[k] = LB; 

    UBlog[k] = UB;  

    scalelog[k] = scale; 

    steplog[k] = step;  

      

    m2.end(); 

    } 

  //end of main "for loop" 

  databeta.end(); 

  m2_init.end(); 

  dataRtquantity.end(); 

  dataRntransport.end(); 

  m3_init.end(); 

  writeln("---------------------"); 

  writeln(); 

  write("LBlog = "); 

  for (p=1;p<=iter_limit;p++)   

    writeln(LBlog[p]); 

  writeln();   

  writeln("UBlob = "); 

  for (p=1;p<=iter_limit;p++)   

    writeln(UBlog[p]); 

  writeln();   

  writeln("scalelog = "); 
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  for (p=1;p<=iter_limit;p++)  

    writeln(scalelog[p]); 

  writeln();   

  writeln("steplog = "); 

  for (p=1;p<=iter_limit;p++)  

    writeln(steplog[p]);   

  m3Def.end(); 

  m3Cplex.end(); 

  m3Source.end();  

  m2Def.end(); 

  m2Cplex.end(); 

  m2Source.end();      

 } 
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