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Abstract 
 Many authors did a lot of study regarding information divergence measures 

and applied these divergences in several fields in information theory. Various 

measures of information have attracted the interest of scientific community recently 

primarily due to their use in several disciplines such as in Communication theory, 

Cybernetics, Biology, Psychology, Economics, Statistics, Thermodynamics, 

Questionnaire theory, Probability theory and many more. 

 
 In the present work, Various classes of non – parametric symmetric 

information measures of divergence, which belongs to the family of Csiszar’s  

f – divergence have been studied. Most of these classes are made up of symmetric 

Chi-Square, Kullback –Leibler, Relative Jensen-Shanon and arithmetic mean 

divergence measures. It is further shown that most of the information divergence 

measures in these classes are closely associated with the already known divergence 

measures in the literature. Also the properties of new divergence measures has been 

discussed which, by suitable choice of the convex, normalized and other functions 

involved, leads to some recently proposed divergence measures of Csiszar’s  

f – divergence class. Further bounds on these new divergence measures have been 

obtained. 

 
The summary of the thesis is as follows: 

Chapter 1 introduces the whole thesis. 

 
Chapter 2 introduces a new class of, non-parametric symmetric, divergence 

measures. Further we found that these new information measures are meticulously  

associated with some familiar information divergence measures. 

 
Chapter 3 introduces different series of some new classes of information divergence 

measures, which belong to the family of Csiszár’s f- divergences. 

 
Chapter 4 introduces two new series of information divergence measures using Jain 

and Saraswat generalized f- divergence measure to obtain various new information 



 

 

inequalities on these new series of divergence measures with some well-known 

information measures. 

 
Chapter 5 introduces a non-parametric theoretic based exponential information 

divergence measure. 

 
Chapter 6 introduces a non-parametric symmetric information divergence measure 

and its properties are studied and discussed. 

 

Chapter 7 includes the conclusion of the work reported in this thesis and also discuss 

the scope for further study. 
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INTRODUCTION 

1.1 Historical background 

 Information theory deals with the quantification, information storage, and 

communication of information. The most prominent feature of 20th century 

technology has been the development and exploitation of new communication 

media. Information theory is a mathematical demonstration of the state of affairs 

and constraints affecting the conduction and processing of information. The field of 

information theory is at the intersection of Mathematics, Statistics, Computer 

Science and Electrical Engineering. The landmark event that established the 

discipline of Information theory and brought it to immediate worldwide attention 

was the publication of Claude E. Shannon’s characteristic paper “A mathematical 

Theory of Communication” in the Bell system Technical Journal in 1948 [128].  

 
 The first person who studied all information theory was Harry Nyquist in 

1924 [109] & 1928 [110] and by Hartley in 1928[46] who discovered the 

logarithmic nature of the measure of information. Harry Nyquist published the paper 

'Certain Factors Affecting Telegraph Speed' in which he gave the relation W=K log 

m where W is the speed of transmission of intelligence, m is the number of 

difference voltage levels to choose from at each time step and K is a constant. He 

quantified "intelligence" and the "line speed" at which it can be communicated by 

communication system. 
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 In 1928 Ralph Hartley published a paper titled 'Transmission of Information' 

and used the word information as a measurable quantity and quantifying information 

as log lognH S n S= =  where S was the number of possible symbols and n the 

number of symbols in a transmission. At that time Wiener [159, 160] also came up 

with results analogous to those of Shannon. After its beginning it has broadened to 

find applications in many other areas, including statistical inference, natural 

language processing, cryptography, networks other than communication networks - 

as in neurobiology, the evolution and function of molecular codes, model selection 

in ecology, thermal physics, quantum computing, plagiarism detection and other 

forms of data analysis. Applications of fundamental topics of information theory 

include lossless data compression (e.g. ZIP files), lossy data compression (e.g. 

MP3’s and JPEG’s), and channel coding (e.g. for DSL lines).  

 
 Information theory overlaps deeply with communication theory, but it is more 

oriented toward the necessary limitations on the processing and communication of 

information and less oriented toward the detailed operation of particular strategies 

and devices. 

 
 Its impact has been crucial to the success of the Voyager missions to deep 

space, the invention of the compact disc, the feasibility of mobile phones, the 

development of the Internet, the study of linguistics and of human perception, the 

understanding of black holes, and numerous other fields. Important sub-fields of 

information theory are source coding, channel coding, algorithmic complexity 

theory, algorithmic information theory, and measures of information. 

 
 The most important and direct application of Information Theory is in 

Coding Theory. In 1974 Dutta in his paper (39) showed that information theory can 

also be applied in Number Theory, Quantum Mechanics, Qualitative Dynamics and 

Approximation Theory. The concepts introduced by Shannon have also been applied 

with enormous degree of success in a number of fields such as Biology, Psychology, 

Economics, Statistics thermodynamics, Language Questionnaire theory, probability 

theory, communication theory, Cybernetics and many more. Since its inception it 

has broadened to find applications in many other areas, including statistical 



1. Introduction 

3 

inference, natural language processing, cryptography, networks other than 

communication networks as in neurobiology, the evolution and function of 

molecular codes, model selection in ecology, thermal physics, quantum computing, 

plagiarism detection and other forms of data analysis. A key measure of information 

is known as entropy, which is usually expressed by the average number of bits 

needed to store or communicate one symbol in a message, entropy quantifies the 

uncertainty involved in predicting the value of random variable. 

 
1.1.1 Shannon’s entropy and other generalized entropy 

 Without essential loss of insight, we have restricted ourselves to discrete 

probability distributions, so let 

 

 
1, 2,

1
( ........ ) 0, 1 , 2

n

n n i i
i

P p p p p p n
=

 
Γ = = ≥ = ≥ 

 
∑   (1.1.1) 

be the set of all complete finite discrete probability distributions. 
 
Shannon [128] introduced the following measure of information 

 

 1
( ) log

n

n i i
i

H P p p
=

= −∑  (1.1.2) 

 
 For all 1, 2,( ........ )n nP p p p= ∈Γ .The expression (1.1.2) is famous as 

Shannon’s entropy or measure of uncertainty. The function ( )nH P represents the 

expected value of uncertainty associated with the given probability scheme and it is 
uniquely determined by some rather natural postulates. The Shannon entropy is the 
key concept in information theory. It satisfies many interesting properties [140]. 
There are different approaches to the derivation of Shannon entropy based on 
different postulates and axioms [2, 14, 15, 86, 98, 101 and 151]. The Shannon 
entropy has found wide applications in different fields of science and technology 
[12, 13, 28, 43, 45, 53, 100 and 151]. Applications of Shannon’s entropy to music 
can be seen in Siromoney and Rajagopalan [135]. Further Shannon’s entropy has 
also been used extensively in the analysis of the structure of languages. Various 
applications can be seen from Siromoney [135], Balasubrahmanyam and Siromoney 
[7].  
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 The coding theorems of information theory provide such overwhelming 

evidence for the adequateness of the Shannon information measure that to look for 

essentially different measure of information might appear to make no sense at all. 

Still, all the evidence show that the Shannon information measure is the only 

possible one is valid, only within restricted scope of coding problems, considered by 

Shannon. As pointed out by Renyi [125] in his fundamental paper on generalized 

information measures, that in some specific cases, other quantities may serve just, as 

well, or even better, as measures of uncertainty. This should be supported either by 

their operational significance or by a set of natural postulates characterizing them, 

or, preferably by both. Thus the idea of generalized entropy arises in the literature. It 

started with Renyi [125] who generalized the Shannon’s entropy by expressions  

 

 

* 1

1

log
( )

n
i i

i
n n

i
i

p p
H P

p

=

=

−

=
∑

∑
  (1.1.3) 

 

  
1

1( ) log , 1, 0.
1

n
n i

i
H P pα α α α

α =

 
= ≠ > 

−   
∑   (1.1.4) 

 
 For all 1, 2,( ........ )n nP p p p= ∈Γ and called them as entropy of order 1 and 

order α  respectively. Here α  is a real parameter. We can easily verify that  

 1
( ) ( )lim nH P H Pα

α→
=   (1.1.5) 

 
 Where ( )nH P  is the Shannon’s entropy defined by (1.1.2). This was the first 

systematic attempt to develop a generalization of Shannon’s entropy. Renyi’s 
entropy was generalized by Aczel and Dacroczy [1], Dacroczy [26], Verma [156, 
157], Kapur [79, 80], Verma and Nath [158], Rathie [122] etc. For operational 

purposes, it seems more natural to consider, the expression
1

n
i

i
pα

=
∑  as an information 

measure instead of Renyi’s entropy of orderα . So Havrda and Charvat [47] 
introduced a new type of entropy called structural α - entropy by the expression 
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1
( ) , 1, 0

2 1

n
i

i
n

p
H P

α

α
α α α=
−

−

= ≠ >
−

∑
   (1.1.6) 

 
Again we can verify that  

 

 1
( ) ( )lim n nH P H Pα

α→
=  (1.1.7) 

 
 Where ( )nH P  is the Shannon’s entropy defined by (1.1.2). This quantity 

(1.1.6) permits a simple characterization [47]. Dacrozy [27] gave an alternative way 

to characterize it. Another type of generalization identical to (1.1.6) can be seen in 

Nath [107] and Vajada [155]. Some other important generalizations of Shannon’s 

entropy can be seen in Arimoto [4], Kapur [82, 83, 84]. 

 
 From 1961, more than thirty measures of entropies have been introduced in 

the literature on information theory generalizing Shannon’s entropy. These are 

famous as parametric, trigonometric and weighted entropies. Renyi [125] for the 

first time gave the idea of parametric entropy. The idea of the trigonometric 

entropies was initiated by Aczel and Dacrozy [1]. Later Sharma and Taneja [132] 

and Sant’anna & Taneja [127] studied it from different aspects. The idea of 

weighted entropies was given by Belis and Guaisu [9]. Longo [99] gave several 

interpretations for these measures. Later Picard [116] extended it for generalized 

measures. The list of these generalized measures including their unified forms can 

be seen in Kapur [84], Taneja [140]. For simplicity, from now onwards we will 

denote the Shannon entropy by H (P) instead of ( )nH P . 

 
1.1.2 Directed divergence & inaccuracy 
 In 1951 Soloman Kullback and Richard-Leibler [91], two national security 

agency mathematicians, studied a measure of information from statistical overview, 

given by 

 
( ) ∑

=

=
n

i i

i
i q

p
pQPK

1
log,  (1.1.8) 
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 for all 1, 2,( ........ )n nP p p p= ∈Γ 1, 2,( ........ )n nQ q q q= ∈Γ . The 

measure (1.1.8) has many names given by different authors such as Relative 

Information, Directed Divergence, Cross Entropy, Measure of Discrimination etc. 

whenever any iq  is zero, then the corresponding ip  is also zero and we take 

00log 0log 0 0log 0 0
0
= − = . At the same time, Kullback and Leibler also studied a 

measure, called J-divergence, given by.
  

 

 
( ) ( ) ( ) ( )∑

=

−=+=
n

i i

i
ii q

p
qpPQKQPKQPJ

1
log,,,

 
(1.1.9) 

 
 We can easily see that ( )QPK ,  is non-symmetric information measure 

whereas ( )QPJ ,  is symmetric information measure with respect to probability 

distributions. The above measure ( )QPJ ,  was already studied by Jeffrey in 1996 

[67]. When the two distributions are equal i.e i ip q= ni ...,,3,2,1=∀ , then the 

Directed Divergence becomes zero. This property is useful in differentiating 

Directed Divergence from other information measures. Some of the 

characterizations of Directed Divergence are given by Kannapan [76], Kannapan 

and Rathie [77, 78] etc. 

 
 Another important measure of information for a pair of probability 

distributions is the inaccuracy measure, introduced by Kerridge [87] and is given by  

 

 
1

( , ) log
n

i i
i

H P Q p q
=

= −∑  (1.1.10) 

 
For all 1, 2,( ........ )n nP p p p= ∈Γ , 1, 2,( ........ ) .n nQ q q q= ∈Γ  

 
 When i ip q= ni ...,,3,2,1=∀ , the measure (1.1.10) becomes the Shannon’s 

entropy. Therefore Kerridge’s Inaccuracy, given by (1.1.10), is a generalization of 

Shannon’s entropy. The Kerridge’s inequaracy was characterized by Kerridge [87], 
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Nath [107] etc. We can see that H(P), K(P,Q) and H(P,Q) also satisfy a very 

interesting relation given by 

 
 H (P,Q) = H(P) + K(P,Q) (1.1.11) 

 
  Renyi (1961) [125] first presented a scalar parametric generalization of 

Kullback-Leibler’s Directed Divergence given by (1.1.8). Several authors presented 

alternative ways of generalizing it. These generalizations are as follows 

 Directed Divergence of order ‘r’ (Renyi [125])  

 

 

1 1

1
( , ) ( 1) log , 1, 0

n
r r r

i i
i

K P Q r p q r r− −

=

 
= − ≠ >  

 
∑  (1.1.12) 

 
 Directed Divergence of type ‘s’(Sharma & Autar [129])  

 

 
[ ] 11 1

1
( , ) 1 1 , 1, 0

n
s s

s i i
i

K P Q s p q s s− −

=

 
= − − ≠ >  

 
∑   (1.1.13) 

 
The modified version of the measure (1.1.13) is given by  

 
[ ] 12 1

1
( , ) ( 1) 1 , 0,1

n
s s

s i i
i

K P Q s s p q s− −

=

 
= − − ≠  

 
∑

 
(1.1.14)  

 
In particular, we have 

 

 
( ) ( ) ( )QPKKQPKQPK ssss

r

r
,lim,lim,lim 2

1

1

11
===

→→→  
(1.1.15) 

 
And  

 
( ) ( )QPKQPK ss

,,lim 2

0
=

→  
 (1.1.16) 

 
 Rathi and Kanappan [123] gave another generalization of (1.1.8) and called it 

directed divergence of order beeta which is given by 

 

 
( ) ( ) 1121, 111 ≠−








−=

−−

=

−∑ βββββ forqpQPI
n

i
ii

 
 (1.1.17) 
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 Later Patni & Jain [112, 113, and 114] gave various different methods of 

characterizing measures (1.1.13) and (1.1.17) respectively. Some other important 

generalizations of directed divergence can be seen in [130, 149]. The concept of 

weighted directed divergence and weighted inaccuracy was introduced by Taneja 

and Tuteja [136, 137]. Further results in this direction can be seen in Bhaker and 

Hooda [11], Hooda and Tuteja [51], Hooda and Ram [50]. Similar generalizations of 

Kerridge’s inaccuracy exist in literature and can be seen in Kapur [84], Sharma and 

Mittal [131], and Taneja [140].  

 
1.2 A Review of Information and Divergence Measures 
 As a generalization of the uncertainty theory based on the notion of 

possibility (Hartley, 1928[46]), information theory considers the uncertainty of 

randomness perfectly. The concept of Shannon’s entropy (1948[128]) is the central 

conception of information theory. Sometimes this measure is referred as the measure 

of uncertainty. The entropy of a random variable is defined in terms of its 

probability distribution and can be shown to be a good measure of randomness or 

uncertainty. Shannon’s model used the formalized language of the classical set 

theory, so it is only suitable to be used in limitation of classical set theory. 

Kolmogorov [88] proposed the notion of ε-entropy to measure the uncertainty when 

the set has unlimited elements. As pointed out by Renyi [125] in his fundamental 

paper on generalized information measures, in other short of problems other 

quantities may serve just as well, or even better, as measures of information. This 

should be supported either by their operational significance or by a set of natural 

postulates characterizing them or preferably by both. Thus the idea of generalized 

entropies arises in the literature. It started with Renyi [125] who characterized scalar 

parametric entropy as entropy of order, which includes Shannon entropy as a 

limiting case. 

 
 As to the divergence and inaccuracy of information, Kullback and Leibler 

[91] studied a measure of information from statistical aspects of view involving two 

probability distributions associated with the same experiment, calling discrimination 

function, later different authors named as cross entropy, relative information etc. It is 

a non-symmetric measure of the difference between two probability distributions P 
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and Q. At the same time they also developed the idea of the Harold (1946) invariant, 

famous as J-divergence. Kerridge [87] studied a different kind of measure calling 

inaccuracy measure involving again two probability distributions.  

 
 Sibson [134] studied another divergence measure involving two probability 

distributions, using mainly the concavity property of Shannon's entropy, calling 

information radius. Later, Burbea and Rao [16, 17] studied extensively the 

information radius and its parametric generalization, calling this measure as Jensen 

difference measure. Taneja [142, 143] studied a new measure of divergence and its 

two parametric generalizations involving two probability distributions based on 

arithmetic and geometric mean inequality. 

 
 Sharma and Taneja [132] and Sant’anna and Taneja [127] studied 

trigonometric entropies from different aspects. The idea of weighted entropies 

started by Belis and Guaisu [9], Later Picard [116] extended it for generalized 

measures. After Renyi [125], other researchers such as Havrda and Charvat [47], 

Arimoto [4], Sharma and Mittal [131] etc, were interested towards other kinds of 

expressions generalizing Shannon's entropy. Taneja [138] unified some of these. 

Taneja [139] introduced a new divergence measure called arithmetic-geometric 

mean divergence measure. Taneja [142, 143] studied symmetric and non-symmetric 

divergence measures and their generalizations based on different divergence 

measures.  

 
 The present chapter is an introductory one. In this chapter, we have listed 

different measures of information proposed by various mathematicians and 

researchers in associated fields. These measures are made up of one, two, and in 

some cases more than two probability distributions. Since our work deals with 

measures involving two probability distributions, our focus is more on these 

measures and generalizations. Some of the specific applications and interpretations 

of these measures discussed in the subsequent chapters of the thesis have been given 

in the following sections. Thereafter, an overview of the chapters that would 

constitute the major part of this thesis is provided. We begin with brief descriptions 

of measure of information made up of one probability distribution.  
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 One of the important issues in many applications of Statistics & Probability 

Theory is finding an appropriate measure of distance (or difference or 

discrimination) between two probability distributions. A number of divergence 

measures for this purpose have been proposed and extensively studied by Jeffreys 

[67], Kullback and and leibler [91], Renyi [125], Havrda and Charvat [47], Kapur 

[81], Sharma and Mittal [131], Berbea and Rao [16], Rao [121], Csiszar [25], Ali 

and Sllvey [3], vajda [154], Shioya and Da-te [133] among others. These measures 

applied a variety of fields such as anthropology [121], genetic [104], economics and 

poltical science [149], biology [117], the analysis of contingency tables [44], 

approximation of probability distributions [21, 85], signal processing [70, 75] and 

pattern recognition [8, 19, 68]. In this section, we will focus on these divergence 

measures. Further we will discuss some specific applications and interpretations of 

these measures. 

 
 We start with the measure (1.3.1) introduced by Kullback and Leibler in 

1951. The Kullback-Leibler’s Divergence given by (1.3.1) is very important concept 

in quantum information theory as well as in statistical mechanics [119]. In Bayesian 

statistics the KL divergence (Kullback-Leibler Divergence) given by (1.3.1) can be 

used as a measure of the “distance” between the prior distribution and the posterior 

distribution. If the logarithms are taken to the base 2 the KL divergence is also the 

gain in Shannon information involved in going from the prior to the posterior. In 

Bayesian experiment design, a design which is optimized to maximize the KL 

divergence between the prior and the posterior is said to be Bayes d-optimal. In 

coding theory, the KL divergence can be interpreted as the needed extra message-

length per datum for sending messages distributed as q, if the messages are encoded 

using a code that is optimal for distribution p.  

 
 In probability theory and information theory, the KL divergence is a measure 

of the difference between two probability distributions: from a “true” distribution P 

to an arbitrary probability distribution Q. Although it is often intuited as a distance 

metric, the KL divergence is not a true metric since it is not symmetric (‘divergence’ 

rather than ‘distance’). Typically P represents data, observations, or a precise 

calculated probability distribution. The measure Q typically represents a theory, a 
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model, a description or an approximation of P. However one of the most important 

applications of KL divergence has been in Image processing and Pattern recognition 

[19, 38, 75, 161]. Some other applications of KL divergence can be seen in Jumarie 

[71], Michel et al. [105] etc.  

  

1.2.1 Csiszár’s f - divergence and properties  
 The Csiszár’s f - divergence is a general class of divergence measures that 

includes several divergences used in measuring the distance or affinity between two 

probability distributions. This class is introduced by using a convex function f , 

defined on (0, )∞ . An important property of this divergence is that many known 

divergences can be obtained from this measure by appropriately defining the convex 

function f . [Shannon (1958), Renyi (1961), Csiszár’s (1967, 1974), Ali & Silvey 

(1966), Vajda (1972), Ferentimos & Papaiopannou (1981), Berbea & Rao (1982a, 

b), Taneja (1995)] 

 
 Further let F  be the set of convex functions :[0, )f ∞ → R continuous at 0, 

i.e. ( ) ( ),lim0
0

uff
u→

= 0 { : (1) 0}f f= ∈ =F F and let &D f D f− + denote the left hand 

side and right hand side derivatives of f , respectively. 

 
Define 

* ,f ∈F by *( ) (1 )f u u f u= , the * - conjugate (convex) function of f , let a function  

,f ∈F Satisfying *f f≡ be called * - self conjugate and let *f f f= + . 

 
 In order to avoid meaningless expressions in the sequel, let us agree in the 

following notational conventions  
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( ) ( )

( ) ( )

( ) .0,limlim
0

0

.0
0
00

0
00

.,0,00
0

0

.,0,00
0

0

0
>=







∈

∈=







=





=








∞∈=





=








∞∈=





=








∞→∈→

∗

∗

∗

+
a

u
ufaafaf

ff

ufu
u

fuuf

ufu
u

fuuf

u

  (1.2.1) 

 
 For a convex function :[0, )f ∞ → R , the f -Divergence measure of the 

probability distributions P and Q, defined by Csiszár’s [24, 25] and Ali & Silvey [3], 

is given by  

 
( ) ∑

=








=

n

i i

i
if q

p
fqQPC

1
,  (1.2.2) 

 
 It is well known that ( )QPC f ,  is a versatile functional form, which results in 

a number of popular divergence measures [29, 111, 139]. Most common choices are 

satisfy (1) 0f = , so that ( )QPC f , =0. Convexity ensures that the divergence measure 

( )QPC f ,  is always non-negative. Some examples are 

 
 ( )*( ) log ( ) logf u u u f u u= = − provides the Kullback-Leibler’s measure [90, 

91].  

 *( ) 1 ( )f u u f u= − = results in the variational distance [88]. 

 
2

2 * ( 1)( ) ( 1) ( ) uf u u f u
u

 −
= − =  

 
yields the 2χ −  divergence [115] and 

many more. 

 
 The properties (Uniqueness theorem, Symmetry theorem, Range of values 
theorem and Characterization theorem) of Csiszár’s generalized divergence can be 
seen in literature by Osterreicher [111]. Osterreicher has discussed axiomatic 
properties and some important classes of generalized divergence measures. Now we 
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are discussing the following fundamental properties of ( )QPC f , , which are being 

used in this thesis  
 
For *, , , , , [0, )nf f g P Q u∈ ∀ ∈Γ ∈ ∞F ,  

(i) ( )QPC f , = ( )PQC f ,∗  
 
(ii) UNIQUENESS THEOREM [98] 

 
( ) ( ) ( ) ( ) ( )1:,, −=−∈∃= ∗ ucufugRciffQPCQPC fg  

 
(iii) Let [ ](1), (1)c D f D f− +∈ , then ( ) ( ) ( 1)g u f u c u= − −  satisfies 

 ( ) (1) [0, )g u f u≥ ∀ ∈ ∞  

 ( ) (1) [0, )g u f u≥ ∀ ∈ ∞  

 
While not change the f −  divergence. Hence without loss of generality 

(iv) SYMMETRY THEOREM [98] 

 
( ) ( ) ( ) ( ) ( )1:,, −=−∈∃= ∗

∗ ucufufRciffPQCQPC ff  
 
 i.e. an f −  divergence is symmetric iff apart from an additional linear term, 

( 1)c u f− −  *self-conjugate. 

 
(v) RANGE OF VALUES THEOREM [152]  

 ( ) ( ) ( ) ( )00,1 ∗+≤≤ ffQPCf f  

 
 In the first inequality, equality holds iff P Q= . The letter provides that f  is 

strictly convex at u = 1. 

 
 Many authors introduced several divergence measures. These divergences 

are very useful in information theory for comparing discrete probability 

distributions. These are as follows :- 
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Relative Information or Kullback-Leibler distance (Kullback and Leibler [91]) 

 

 
( ) ∑

=

=
n

i i

i
i q

p
pQPK

1
log,

 
 (1.2.3) 

 
Variational Distance or l1 distance (Kolmogorov [115])  

 

 1
( , )

n

i i
i

V P Q p q
=

= −∑   (1.2.4) 

 
Chi-square divergence or Pearson divergence (Pearson [115]) 

 

 

2 2
2

1 1

( )( , ) 1
n n

i i i

i ii i

p q pP Q
q q

χ
= =

−
= = −∑ ∑   (1.2.5) 

 
Relative Jensen-Shannon divergence (Sibson [134]) 

 

 1

2( , ) log
n

i
i

i i i

pF P Q p
p q=

 
=  + 
∑  (1.2.6) 

 
Relative Arithmetic- Geometric divergence (Taneja [139]) 

 

 1
( , ) log

2 2

n
i i i i

i i

p q p qG P Q
p=

 + + =   
   

∑  (1.2.7) 

 
Hellinger discrimination (Hellinger [49])  

 

 
( )

2

1

1( , ) 1 ( , )
2

n

i i
i

h P Q B P Q p q
=

= − = −∑   (1.2.8) 

 

where 
1

( , )
n

i i
i

B P Q p q
=

=∑
  

 (1.2.9) 

 
is known as Bhattacharyya divergence measure [12] 
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Triangular discrimination (Dacunha- Castelle etc. all [150]) 

 

 
( ) ( )[ ] ( )∑

= +
−

=−=∆
n

i ii

ii

qp
qp

QPHQP
1

2

,12,  (1.2.10) 

 

 Where ( ) ∑
= +

=
n

i ii

ii

qp
qp

QPH
1

2
,  (1.2.11) 

 
is known as harmonic mean divergence measure 

 
Symmetric Chi-square divergence (Dragomir etc. all [37])  

 

 

2
2 2

1

( ) ( )( , ) ( , ) ( , )
n

i i i i

i i i

p q p qP Q P Q Q P
p q

ψ χ χ
=

− +
= + =∑  (1.2.12) 

 
J-divergence measure (Kullback and Leibler [67, 91]) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )13.2.1log,,,,,
1
∑
=

−=+=+=
n

i i

i
iiRR q

pqpRQJQPJPQKQPKQPJ   

 
Relative J-divergence measure (Dragomir etc. all [36])  

 

 1
( , ) ( ) log

2

n
i i

R i i
i i

p qJ P Q p q
q=

+
= −∑  (1.2.14) 

 
Arithmetic-Geometric mean divergence (Taneja [139]) 

 

 
[ ]

1

1( , ) ( , ) ( , ) log
2 2 2

n
i i i i

i i i

p q p qT P Q G P Q G Q P
p q=

 + + = + =        
∑  (1.2.15) 

 
Where G(P,Q) is the Relative AG divergence (1.2.7) 

 
Jensen- Shannon divergence measure (Burbea and Rao[17], Sibson [134])  

[ ]
1 1

2 21 1( , ) ( , ) ( , ) log log
2 2

n n
i i

i i
i ii i i i

p qI P Q F P Q F Q P p q
p q p q= =

    
= + = +    + +    

∑ ∑  (1.2.16) 

Where F(P,Q) is the Relative JS divergence (1.2.6) 
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d- Divergence measure (Basseville [147]) 

 

 1
( , ) 1

2 2

n
i i i i

i

p q p qd P Q
=

 + +
= −   

 
∑  (1.2.17) 

 
Jain and Srivastava divergence (Jain and Srivastava [54])  

 

 

( )2

1
( , )

n
i i

i i i

p q
E P Q

p q
∗

=

−
=∑  (1.2.18) 

 
 Kumar and Chhina divergence (Kumar and Chhina [92]) 

 

 
( ) ( ) ( )

ii

ii
n

i ii

iiii

qp
qp

qp
qpqp

QPS
2

log,
1

2 +−+
= ∑

=

 (1.2.19) 

 
Kumar and Hunter divergence (Kumar and Hunter [93]) 

 

 
( ) ( )

ii

ii
n

i ii

ii

qp
qp

qp
qp

QPL
2

log,
1

2 +
+
−

= ∑
=

 (1.2.20) 

 
 Kumar and Johnson divergence (Kumar and Johnson [94]) 

 

 
( ) ( )∑

=

−
=

n

i ii

ii
M

qp

qp
QP

1

222

2
3

)(2
,ψ

 
 (1.2.21) 

 
 
Jain and Mathur divergence (Jain and Mathur [60]) 

 

 
( ) ( ) ( ) ( )∑

=

∗ +−+
=

n

i ii

iiiiii

qp
qpqpqp

QPP
1

33

224

,  (1.2.22) 
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Relative information of type s [147]  

 

[ ] 11 1

1

1

( , ) ( 1) 1 , 1, 0
( , )

( , ) log , 1

n
s s

s i i
i

s n
i

i
i i

K P Q s s p q s s
P Q

pD P Q p s
q

− −

=

=

  = − − ≠ >   Ψ = 
  = =   

∑

∑
 (1.2.23) 

 
and 

 

1
1

1

1

( 1) ( ) , 1
( , )

( , ) ( ) log , 1

sn
i

i i
i i

s
n

i
i i

i i

ps p q s
q

P Q
pJ P Q p q s
q

η

−

−

=

=

  
 − − ≠ 
  = 

  = − = 
 

∑

∑
 (1.2.24) 

 
 The following measures and generalized particular cases of (1.2.23) are 

introduced by  

 

 

[ ] 12 1

1

1

1

( , ) ( 1) 1 , 0,1

( , ) ( , ) log , 0

( , ) log , 1

n
s s

s i i
i

n
i

s i
i i

n
i

i
i i

K P Q s s p q s

qP Q D Q P q s
p

pD P Q p s
q

− −

=

=

=

  = − − ≠   
  Φ = = =  

 
   = =   

∑

∑

∑

 (1.2.25) 

 
and  

 

1
1

1

1

( 1) ( ) , 1
( , )

( , ) ( ) log , 1

sn
i

i i
i i

s
n

i
i i

i i

ps p q s
q

P Q
pJ P Q p q s
q

η

−

−

=

=

  
 − − ≠ 
  = 

  = − = 
 

∑

∑
 (1.2.26) 
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 Unified relative Jensen-Shannon and Arithmetic-Geometric divergence 

of type s [139]  

 

[ ] 1

1

1

1

( , ) ( 1) 1 0,1
2

2( , ) ( , ) log , 0

( , ) log , 1
2 2

sn
i i

s i
i i

n
i

s i
i i i

n
i i i i

i i

p qFG P Q s s p s
p

pP Q F P Q p s
p q

p q p qG P Q s
p

−

=

=

=

   +  = − − ≠ 
    
  

Ω = = =  + 
  + +  = =      


∑

∑

∑

  (1.2.27) 

 
 The modified version of Unified relative Jensen-Shannon and Arithmetic-

Geometric divergence of type s (1.2.27) is given by 

 

 

[ ] ( )1 1 1

1

1 1

1

( , ) ( , ) ( , )

( , ) ( 1) 2 , 0,1
2

2 21( , ) log log , 0
2

( , ) log ,
2 2

s s s

sn
s s i i

s i i
i

n n
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i i
i ii i i i
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i i i

W P Q P Q Q P

p qIT P Q s s p q s

p qI P Q p q s
p q p q

p q p qT P Q
p q
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=

= =

=

= Ω +Ω

 + = − + − ≠  
   

    
= = + =    + +    

 + + =        

∑

∑ ∑

∑ 1s









 =


  (1.2.28) 

 
J-divergence of type s [139] 

 

 

[ ] 1 1 1

1

1

( , ) ( 1) 2 , 0,1
( , )

( , ) ( ) log , 0,1

n
s s s s

S i i i i
i

s n
i

i i
i i

J P Q s s p q p q s
P Q

pJ P Q p q s
q

ν
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=

=
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 = − =


∑

∑
  (1.2.29) 

 
Relative J-divergence of type s [139]  

 

[ ]
1

1

1

1

( , ) 1 ( ) , 1
2

( , )

( , ) log , 1

sn
i i

s i i
i i

s
n

i
i

i i

p qD P Q s p q s
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P Q
pJ P Q p s
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−
−

=

=
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 = − − ≠ 
  = 

  = = 
 

∑

∑
(1.2.30) 
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Sibson Information Radius (Sibson [134], Berbea & Rao [17])  

 
1

1

1

1

( 1) 1 , 1, 0
2 2

( , )
log log( , ) log , 1

2 2 2

rr rn
i i i i
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p q p qr r r

I P Q
p p q q p q p qI P Q if r
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 + + +     = − =      

       

∑

∑
  (1.2.31) 

 
Taneja Divergence Measure (Taneja [152, 153])  
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∑

∑
  (1.2.32) 

 
1.2.2 New generalized Divergence  
 We did a detail study about Csiszár’s f- divergence in previous section. 

Similarly, Jain and Saraswat[57] introduced and characterized a new generalized 

divergence, given by 

 

 
( ) 







 +
= ∑

= i

ii
n

i
if q

qp
fqQPS

2
,

1
 (1.2.33) 

 
 Where ( ) Rf →∞,0:  (set of real numbers) is real, continuous, and convex 

function and ., nQP Γ∈  
 
 We can obtain several well-known divergence measures by suitably defining 

the convex function in (1.2.33).  

 
 The following results are presented by Jain & Saraswat [57] 

 
Proposition 1.2.2.1: Let :[0, )f R∞ →  be the convex function nQP Γ∈, . Then we 

have the following inequality  
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 ( ) ( )1, fQPS f ≥  (1.2.34) 

 
 If f is normalized i.e. f (1) = 0, then ( ) 0, ≥QPS f  and if f is strictly convex 

and equality holds iff 1, 2,3,...,i ip q i n= ∀ =  

 
 i.e. ( ) ( ) QPifQPSandQPS ff ==≥ 0,0,   (1.2.35) 

 
Proposition 1.2.2.2: If 1f and 2f are two convex functions and 2211 fcfcF += then 

 

 ( ) ( ) ( )QPScQPScQPS ffF ,,,
21 21 +=  (1.2.36) 

 
Where 1c  and 2c  are constants and nQP Γ∈,  
 
1.2.3 Classes of f - Divergences 
 In this unit, we present some of the more intensively studied classes of 

f −Divergences in terms of their convex function f . The historic references are 

intended to give some insinuations as to their making. 

 
(I) The Class of χα -divergences 

 Total Variation Distance [115] 

   |1–|)( uuf =  
 
 K. Pearson (1900) [115] 

   
22 )1–()( uu =χ  

 
 Kagan (1963) [74], Vajda (1973) [154], Boekee (1977) [13] 

  1,|1–|)( ≥= αχ αα uu  
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(II) Dichotomy Class 

 Kullback and Leibler (1951) [91]  

   uuuf ln)( =  
 
 Likelihood Disparity  

   uuf ln–)(* =  
 
 K. Pearson (1900) [115] 

  
22 )1–()( uu =χ  

 
 Neyman (1949) [108] 

   u
uu

2
2 )1–()(*)( =χ

 
 
 Liese & Vajda (1987) [98] 
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Read & Cressie (1988) [124] 

  f λ(u) = 
)1(
1–1

λλ

λ

+

+u  for λ=α–1∈ R \{–1,0} 

 
Jeffreys (1946) [68]  

   uuuf ln)1–()(
~

=   
 
Csiszár & Fischer (1962) [25] 

  

1–
( )~

1–

( ) 1 – ( ), 0 1
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f u u u for s

u u u for s U
s s


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= + + < <= =


+ + ∈ ∞  
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(III) Matusita's Divergences 

 Matusita's (1955) [102] 

   
22

1
)1–()( uuf =  

 
 Matusita's (1964) [103] Boekee (1977) [13] 

   ,|1–|)(
1
ααα uuf = 10 ≤< α  

 
 Renyi's Divergences (This class doesn't belong to the family of f–

Divergences and the functions )1,0(,)( ∈= ααα uug  are concave). 

 

 (Hellinger (1909): ))(2
1

uug =  
 
Bhattacharyya (1946) [12] 
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Chernoff (1952) [20]  
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Renyi (1961) [125] 
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(IV) Elementary Divergences 

 Feldman & Osterreicher (1981) [40] 
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(V) Puri-Vincze Divergences 

 Le Cam (1986) [96], Topsoe (1999) [150] 
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Puri & Vincze (1990) [118], Kafka, Osterreicher & Vincze (1989) [73] 
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(V) Divergences of Arimoto-type Perimeter Divergence:  

 
  Osterreicher (1982) [111], Reschenhofer & Bomze (1991) [126] 
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Perimeter-type Divergence: Osterreicher (1996) [111] 
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1.3 Information inequalities 
 Various mathematicians and researchers have used these inequalities for a 

variety of determinations. Taneja has used it for obtaining bounds on symmetric and 

non-symmetric divergence measures in terms of relative information of type s [141], 

for obtaining relationships among mean divergence measures [144], for obtaining 

bounds on symmetric divergence measures in terms of non-symmetric divergence 

measures [142]. Further Taneja has shown that various one-parameter 

generalizations of symmetric and non-symmetric divergence measures can be 

written as particular cases of Csiszár’s f - Divergences [95]. Osterreicher [111] has 

discussed basic general properties of f - divergences including their axiomatic 

properties and some important classes. Different kinds of bounds on the information 

divergence measures have been studied during the recent past [150, 29- 37]. In 

[147], Kumar and Taneja unified and generalized information bounds for Cf (P,Q) 

studied by Dragomir [29- 37]. The main results [147] are given in the following 

theorem. 

 
Theorem1.3.1: Let RRf →+:  be a mapping which is normalized i.e. f (1) = 0 and 

suppose that  

(i) f  is twice differentiable function on (r, R), 0 1r R≤ ≤ ≤ < ∞  

(ii) There exists real constants m, M, such that m < M and 

( ) ( )2 '' , , ,Sm t f t M t r R s R−≤ ≤ ∀ ∈ ∈ . 

( f and f′ ′′ denote the first and second order derivatives of function f)  

If nQP Γ∈,  are discrete probability distributions with ∞<≤≤< R
q
p

r
i

i0 , 

 

 ( ) ( ) ( )QPMQPCQPm SfS ,,, Φ≤≤Φ , (1.3.1) 

 
And 

( ) ( ){ } ( ) ( ) ( ) ( ){ }QPQPMQPCQPCQPQPm ssfSs ,,,,,, Φ−≤−≤Φ− ηη ρ   (1.3.2) 
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Where  
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 ( ) ( )[ ] [ ] ,1,0,11, 112 ≠−−= ∑ −− sqpssQPK ss
s  (1.3.4) 

 
 

 
( ) ∑

=

=
n

i i

i
i q

p
pQPK

1
log,

 
 (1.3.5) 

 

 
( ) ( ) 








′−= ∑

− i

i
n

i
ii q

p
fqpQPC

1
,ρ , (1.3.6) 

 

( ) ( )QPCP
Q
PCQP

SSs ,,,
2

Φ′Φ′ −







=η

 

 

 =
( ) ( )

( )











=







−

≠







−−

∑

∑

=

−

=

−

n

i i

i
ii

s

i

i
n

i
ii

s
q
p

qp

s
q
p

qps

1

1

1

1

1,log

1,1

 

 (1.3.7) 

 
 As a consequence of this theorem, following information inequalities which 

are interesting from the information-theoretic point of view are also obtained in 

[134]. 

 
(i) The case s = 2 provides the information bounds in terms of the Chi-square 

divergence ( )2 ,P Qχ , 

 
( ) ( ) ( )QPMQPCQPm

f ,
2

,,
2

22 χχ ≤≤ , (1.3.8) 

 
And  

 
( ) ( ) ( ) ( )QPMQPCQPCQPm

f ,
2

,,,
2

22 χχ ρ ≤−≤  (1.3.9) 
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Where ( )2 ,P Qχ is given by (1.2.5). 

 
(ii) For s = 1, the information bounds in terms of the Kullback-Leibler 

divergence, K (P, Q), 

 

 ( ) ( ) ( )QPKMQPCQPKm f ,,, ≤≤  (1.3.10) 

And 

 ( ) ( ) ( ) ( )QPKMQPCQPCQPKm f ,,,, ≤−≤ ρ  (1.3.11) 

 
(iii) For s = ½, yields the information bounds in terms of the Hellinger’s 

discrimination  

 h (P,Q), ( ) ( ) ( )QPhMQPCQPhm f ,4,,4 ≤≤  (1.3.12) 

 
And 

 

( ) ( ) ( ) ( ) ( ) ( )





 −≤−≤






 − QPhQPMQPCQPCQPhQPm f ,,

4
14,,,,

4
14 2/12/1 ηη ρ   

(1.3.13) 

 
 (iv) For s = 0, the information bounds in terms of the Kullback-Leibler and Chi-

square divergence  

 

 ( ) ( ) ( )QPKMQPCQPKm f ,,, ≤≤  (1.3.14) 

 
And 

( ) ( ){ } ( ) ( ) ( ) ( ){ }PQKPQMQPCQPCPQKPQm f ,,,,,, 22 −≤−≤− χρχ  (1.3.15) 

 
 These inequalities have been considerably improved by Taneja [143]. Also 

very recently Baig and Dar [5, 6] have obtained bounds on divergence measures of 

Csiszár’s f − divergence D class in terms of Relative J-Divergence of type s and 

Renyi’s entropy of orderα . Some other important inequalities related to Csiszár’s 

f −Divergence can be seen in Csiszár’s and Korner [25] and Dragomir [34]. 
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1.3.1 Mean and their Applications in Information Theory 
 In the previous section, we have seen that lot of recently proposed symmetric 

divergence measures are based on arithmetic, geometric and other means and as 

such we could use the inequalities among these means for obtaining bounds on these 

divergence measures.  

 
Now, let us define some means for 0, >ba  

( )
2

, babaA +
= = Arithmetic mean.  (1.3.16) 

 
( ) babaB =,  = Geometric mean.  (1.3.17) 

 

( )
ba
babaH

+
=

2, = Harmonic mean.  (1.3.18) 

 

( ) ba
ba

babaL ≠
−
−

=∗ ,
loglog

, = Logarithmic mean. (1.3.19) 

 
 

 Now for ,, nQP Γ∈ put ipa = and iqb =  in above means and then sum over 

i = 1, 2, 3, …, n, we obtain 

 

( ) ∑ +
=

2
, ii qp
QPA = 1 = Arithmetic mean divergence (1.3.20) 

 

( ) ∑
=

=
n

i
ii qpQPB

1
, =Bhattacharya distance (1.3.21) 

 

( ) ∑
= +

=
n

i ii

ii

qp
qp

QPH
1

2
, = Harmonic mean divergence (1.3.22) 

 

( ), ,
log log

i i
i i

i i

p qL P Q p q
p q

∗ −
= ≠

−∑ = Logarithmic mean divergence (1.3.23)  

 Here B(P,Q) is well-known Bhattacharya distance(Bhattacharyya[12]). We 

can see some small inequality and equality relations 

 

 ( ) ( ) ( )QPAQPBQPH ,,, ≤≤  (1.3.24) 
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 ( ) ( ) ( )[ ]QPHQPAQP ,,2, −=∆  (1.3.25) 

 

 ( ) ( ) ( )[ ]QPBQPAQPh ,,, −=  (1.3.26) 

 
 (1.3.25) and (1.3.26) define small equality relations for Triangular 

discrimination and Hellinger discrimination respectively with above defined 

quantities. 

 
 Various information divergence measures are used in several disciplines such 

as in Communication theory, Cybernetics, Biology, Psychology, Economics, 

Statistics, Thermodynamics, Questionnaire theory, Probability theory etc. This 

makes Information Theory a useful tool for researchers of other disciplines 

 
 In the present work, various measures in information theory especially 

measures made up of two probability distributions have been studied. A number of 

new information measures have been proposed and their relationship with some 

well- known measures in information theory has been established. Some of the 

specific applications and interpretation of these measures are also discussed. Further 

a brief description of all the problems discussed in the subsequent chapters of the 

thesis has been given in the following sections. 

  
 Chapter 2 introduces a new class of, non-parametric symmetric, divergence 

measures. The properties of these divergence measures are studied and their bounds 

in terms of some familiar information divergence measures are derived. Chapter 3 

introduces different series of some new classes of information divergence measures, 

which belong to the family of Csiszár’s f - divergences. Some inequalities & 

equalities among new divergence measures and chi-square divergence, triangular 

discrimination, Jain and Saraswat divergence, Hellinger discrimination, Variational 

distance, harmonic mean divergence, are present in results respectively. Chapter 4 

will introduce two new series of information divergence measures using Jain and 

Saraswat generalized f - divergence measure to obtain various new information 

inequalities on these new series of divergence measures with some well-known 

information measures. Chapter 5 introduces a non-parametric theoretic based 



1. Introduction 

29 

exponential information divergence measure. Further for first time, we have derived 

some inequalities for this exponential information divergence measure in terms of 

some valuable information divergence measures. Some numerical illustrations are 

carried out, based on two distinct discrete probability distributions. Chapter 6 

introduces a non-parametric symmetric information divergence measure.. Its 

properties are studied and discussed. Further, we have derived some new bounds for 

this divergence measure in terms of some recognized divergence measures based on 

two distinct probability distributions. The information divergence measures are used 

to find out distance or difference or affinity between two probability distributions.  

Chapters 7 include the conclusions of the work reported in the thesis and also 

underline the future scope of work.  

 
 Lastly, references, candidate’s research profile and candidate’s academic & 

personal profile. 
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2 

New Information  
Divergence Measures of  
Csiszár’s f-Divergence  
Family and Their Bounds 

2.1 Introduction 
 During past years, a large number of new divergence measures have been 

proposed and studied broadly by various researchers and mathematicians in their 

related fields of research. Lots of these information divergence measures belong to 

the family of Csiszár’s f - divergence and most of them are symmetric information 

divergence measures with respect to the used probability distributions. 

 
 In this chapter, a new class of, non-parametric symmetric, divergence 

measures are introduced. The properties of these divergence measures are studied 

and their bounds in terms of some familiar information divergence measures are 

derived. Further we found that these information measures are meticulously 

associated with some familiar information divergence measures. 

 
 The whole chapter is structured as follows. In section 2.2, a new class of 

symmetric divergence measures, have been studied, which belong to the Csiszár’s 
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 f – Divergence family. In section 2.3, some new convex functions (2.3.2, 2.3.4, 

2.3.6) have been extracted, from the convex function (2.2.1) studied in section 2.2, 

using the property that, sum of convex functions is also a convex function. In this 

section 2.3, some non-parametric information divergence measures (2.3.3, 2.3.5, 

2.3.7), corresponding to convex functions (2.3.2, 2.3.4, 2.3.6), which belongs to the 

family of Csiszár’s f – divergence is also derived. In section 2.4, some general new 

information inequalities among new f – divergence measure (2.3.3) and relative J -

divergence, J - divergence, relative JS - divergence, relative AG divergence and 

Kullback-Leibler divergence are derived. In section 2.5, some inequalities & 

equalities among new divergence measures and chi-square divergence, triangular 

discrimination, logarithmic mean divergence, relative information, relative J-

divergence, relative arithmetic-geometric divergence, relative Jenson-Shannon 

divergence, arithmetic mean divergence, arithmetic-geometric mean divergence, 

harmonic mean divergence, J-divergence and relations are present in results 2.5.1, 

2.5.2, 2.5.3, 2.5.4 & 2.5.5 respectively. Section 2.6, concludes the results of the 

chapter. 

 
2.2 New Information Divergence Measures 

 In this section we shall find out the new information divergence measure 

with the help of following convex function. Let us consider the function 

( ) Rf →∞,0:  such than 

 
( ) ( )

( )
...,5,3,1;

1
1 1
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k t
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 The function ( )tf k  is convex since ( ) 0' ≥tf k , t > 0, k =1, 3, 5… and 

normalized also since ( ) .01 =f  Figure: 2.1 shows the behavior of the function ( )tf k , 

which is always convex if k = 1, 3, 5… (Odd numbers) with t > 0  

 
 Ali- Silvey [3] and Csiszár’s [24, 25] introduced the generalized measure of 

information using f-divergence measure given by 

 
( ) ∑

=








=

n

i i

i
if q

p
fqQPC

1
,  (2.2.4)  

Applying Csiszár’s f-divergence properties on equation (2.2.1), we get 

 
( ) ( )
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,...5,3,1;,

1

1
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=∑
=

+

k
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qpQPY
n

i
k

ii

k
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k  (2.2.5)  

 

 

FIGURE: 2.1 Graph of the convex function ( )tf k  
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 New information divergence measure ),( QPY c
k  is symmetric divergence 

measure, since 
 

 ( ) ( )PQYQPY c
k

c
k ,, =  (2.2.6) 

  
2.3 Extraction of Some Other Divergence Measures 

From equation (2.1.1) for k = 1, 3, 5… we get the following convex functions 
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We know that, sum of convex functions is also a convex function 

 
( ) ( ) ( ) ...77553311 ++++ fctfctfctfc  , is also a convex function. Where ...,, 7,531 cccc  

 

 are arbitrary positive constants and at least one ic (i = 1, 3, 5,…) is not equal 

to zero.  

 
Now 
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( ) ( ) ( )tttF log1

2
1

1 −=  (2.3.2) 

 
Now corresponding divergence measure of Csiszár’s f- divergence class 

 

 
( ) ( )∑

=

∗








−=

n

i i

i
ii q

p
qpQPY

1
1 log

2
1,  (2.3.3) 

 
Next taking ...5

1,3
1,1,0 7531 ==== cccc  in equation (2.3.1), we get 
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Hence, corresponding divergence measure of Csiszar’s f-divergence class is as under 
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FIGURE 2.2: Graph of convex function ( )tFk  for k = 3  

corresponding to ( )QPY ,3
∗  

 
And the corresponding series of divergence measures of Csiszár’s f-divergence class 
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2.4 Some Bounds for ( )QPY ,1
∗   

 In this section, we will derive some divergence inequalities and equalities for 

( )QPY ,1
∗  in terms of other well-known information divergence measures. 

 
Now, new divergence measure (2.3.3),  
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Using equation (1.2.3), we get, the result 
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From equation (1.2.13), we know that 
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 Therefore, (2.4.1), (2.4.2) and (2.4.3), shows the equality relations among 

new divergence measure (2.3.3), relative information (1.2.3), J- divergence measure 

(1.2.13) and relative J- divergence measure (1.2.14) respectively.  

 
Next, we know that, 
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 Hence, using (1.2.6) (1.2.7) and (1.2.14), we get the inequalities (2.4.4) & 

(2.4.5) among new divergence measure, Relative JS- divergence, Relative AG- 

divergence and Relative J- divergence 
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Equality holds for QP =  only. 

2.5 Inequalities and Equalities 

 In this section we will derive some other inequalities and equalities for 

( )QPYk ,* (for the case k = 1, k = 3) in terms of some well-known divergence 

measures. 

 
Proposition 2.5.1: Let nQP Γ∈,  , then we have the following new inequality  

 

 
( ) ( ) ( ) ( ) ( )[ ]PQKQPK

QPA
QPQPY ,,

,
1,

2
1,*

3 +∆≤  (2.5.1) 

 
And 

 ( ) ≤QPY ,*
3 ( ) ( ) ( ) ( )[ ]PQJQPJ

QPA
QP RR ,,

,
1,

2
1

+∆   (2.5.2) 

 
 Where  𝑌𝑌3

∗(P,Q) new divergence measure, A(P,Q) Arithmetic mean 

divergence, ( )QP,∆  Triangular discrimination, K(P,Q) Kullback-Leibler divergence 

(Relative information) and ( )QPJ R ,  Relative J- divergence measure are given by 
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Hence the required inequality 
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Hence the required inequality 

 
 Proposition 2.5.2: Let nQP Γ∈,  and then we have the following new 
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Hence the result 
 

Proposition 2.5.3: Let nQP Γ∈, , and then we have the following new relation  
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Hence the inequality 

 
Proposition 2.5.5: let nQP Γ∈,  and then we have the following new equality  
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3 

Series of Convex  
Functions and Analogous  
Information Divergence  
Measures 
 
3.1 Introduction 

 In chapter 2, we have calculated some new classes of divergence measures, 

which belong to the family of Csiszár’s f – divergence. In this chapter, we have 

studied different series of some new classes of information divergence measures, 

which again; belong to the family of Csiszár’s f-divergence. 

 
 This chapter is organized as follows: After this introduction section 3.1, we 

introduce the new series of convex functions (3.2.1) in section 3.2 and get 

corresponding series of the new information divergence measures (3.2.4) of 

Csiszár’s class. In section 3.3, the new series of exponential convex functions is 

extracted from previous series (3.2.1) of the new convex functions and using, the 

Csiszár’s generalized f- divergence concept; we get the new series of exponential 

divergence measures. In section 3.4, some new convex functions have been 

extracted, from the convex function (3.2.1), using the property that, sum of convex 

functions is also a convex function. In this section 3.4, some non-parametric 

information divergence measures (3.4.5, 3.4.6, 3.4.7, 3.4.8), corresponding to 
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convex functions (3.4.1, 3.4.2, 3.4.3, 3.4.4), which belongs to the family of Csiszár’s 

f – divergence also derived. In section 3.5, some inequalities & equalities among 

new divergence measures and chi-square divergence, triangular discrimination, Jain 

and Saraswat divergence, Hellinger discrimination, Variational distance , harmonic 

mean divergence, are present in results ( 3.5.4, 3.5.5, 3.5.6, 3.5.7, 3.5.8, 3.5.9, 

3.5.10, 3.5.11) respectively. 

 
3.2 Series of New Convex Functions and Information Measures 
 In this section we shall find out the series of new information divergence 

measures with the help of the following new series of convex functions.  

 
Let us consider the function ( ) Rf →∞,0:  
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 Since ( ) 00'' >∀≥ ttf k and k = 1, 2, 3… Therefore ( )tf k  are convex 

functions for each k,   and normalized also, since ( ) 01 =kf .  Now for convex 

functions (3.2.1), we get the following new series of divergences 
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 Where ( )QPC f ,  is well known Csiszár’s [24, 25]generalized divergence 

measure (1.2.2). Divergence measure 𝐽𝐽𝑘𝑘𝑐𝑐(P, Q) is non-symetric divergence measure 

since  

 ( ) ( )PQJQPJ c
k

c
k ,, ≠  (3.2.8) 

 
 

 

FIGURE 3.1: Graph of the convex function 𝒇𝒇𝒌𝒌 (𝒕𝒕) for k =1 
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FIGURE 3.2:  Comparison of new divergence measure ( )QPJ c
k ,   

with some well-known measures 
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3.3 Extraction of New Series of Convex Functions and 

Information Measures 

 
 Now, from equation (3.2.1) for k = 1, 2, 3, 4 ... we get the following convex 

functions 
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We know that, sum of convex functions is also a convex function  
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Now, for (3.3.2), Divergence measure of Csiszár’s f -divergence class 
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 Therefore, corresponding information divergence measure of Csiszár’s f –

divergence class                                               
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 Similarly, by appropriate selection of constants, we get the following convex 

functions  
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 Hence corresponding series of information measures of Csiszár’s f –

divergence class  
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 Further ( ) 01 =kF , so that  ( ) 0, =∗ PPJ k  and the convexity of the function 

( )tFk   ensure that the measure ( )QPJ k ,∗  is non-negative. 
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 Thus we can say that the measure (3.3.7) is non-negative and non-symmetric 

in the pair of probability distributions ( ) nQP Γ∈, , since 
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 And so on. 
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FIGURE 3.3: Graph of the convex function ( )tFk  corresponding  

to ( )QPJ k ,∗ for k = 1 
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3.4 Other New Series of Information Measures 
 In this section, we will derive series of new information divergence 

measures, using the series of convex functions. We know that, the sum of convex 

functions is again a convex function; therefore we have the following series of 

convex functions 
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And so on 

 Hence, the new series of information divergence measures of Csiszár’s f –

divergence class corresponding to the above new series of convex functions, given 

as 
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And so on. 

 Similarly, we can generate various other series of information divergence 

measures, using the properties of convex functions. 

 
3.5 Some Bounds for the New Series of Information Measures 
 In this section, we will derive some bounds for new information divergence 

measures,  which are derived earlier in (3.2.4), (3.3.3), (3.3.5), (3.3.7), (3.4.5), 

(3.4.6), (3.4.7), and (3.4.8) , with some familiar divergence measures 

 
( )QP,∆  : Triangular discrimination (1.2.10); 

 
V(P,Q)  : Variational Distance or l1 distance (1.2.4); 

 
h(P,Q)  : Hellinger Discrimination (1.2.8); 

 
H(P,Q)  : Harmonic mean divergence (1.3.22); 

 
Jain and Saraswat divergence [61] 
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( )QP,2χ    : Chi-square divergence or Pearson divergence (1.2.5)  

 
Other form of Chi-square divergence 
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Now, from (3.2.4) for k = 1, we have  
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Using (1.2.10), (1.2.5), and (1.3.22), we get 
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From (1.2.8) and (1.2.10), we know that [59],  
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And, from (1.2.4) and (1.2.10) [54], we know that, 
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Then, from (3.5.4), we get 
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Next, from (3.3.3), the outcome is 

 

( ) ( )



















 −−
= ∑

=

∗

2

1
2

4

1 exp,
i

ii
n

i ii

ii

p
qp

qp
qp

QPJ  



3. Series of Convex Functions and Analogous Information… 
 

55 

( )
( )

( )∑
= 































 −−+
+
−

=
n

i i

ii

i

ii

ii

ii

ii

ii

p
qp

p
qp

qp
qp

qp
qp

1

222

exp

 
 

( )
( )

( ) ( )































 −−







 +











+
−

= ∑∑∑
===

n

i i

ii

i

ii
n

i ii

ii
n

i ii

ii

p
qp

p
qp

qp
qp

qp
qp

1

22

11

2

exp
2

2

 
 

 
Now, using (1.2.10), (3.5.2) and (1.3.22), we get 
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And we know that [54], 
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Next, 
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by [58] we have  
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And, from (1.2.10) & (3.5.3), 
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4 

New Series of f-Divergence  
Measures and  
Their Bounds 
 
4.1 Introduction 
 In this chapter, we will introduce two new series of information divergence 

measures using Jain and Saraswat generalized f- divergence measure to obtain 

various new information inequalities on these new series of divergence measures 

with some well known information measures. 

 
 The complete chapter is divided in sections: In section 4.2, we give some 

well-known inequalities, which are established in literature of pure and applied 

mathematics. Using these inequalities, we have derived important bounds of 

divergence measures. In section 4.3, we have introduced, Jain and Saraswat[57] 

divergence measure and it’s properties. In section 4.4, we shall find out two new 

series of information divergence measures (4.4.4, 4.4.11) of Jain and Saraswat 

generalized f- divergence class. Finally, new information inequalities and equalities, 

in terms of new information divergence measures and other well known divergence 

measures ( e.g. Chi-Square divergence, Relative J- divergence measure, Triangular 

discrimination, Arithmetic mean divergence, Relative JS- divergence, Relative AG- 
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divergence, AG- mean divergence, JS- divergence measure, Relative Information) 

are obtained in section 4.5. 

 
4.2 Well known inequalities 
 In this section we give some well-known inequalities which are established 

in literature of pure and applied mathematics. These are very useful to derive some 

bounds of well-known information divergence measure in literature of information 

theory and statistics. Using following inequalities we have derived important bounds 

of well-known divergence measures 
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x  (4.2.1) 
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4.3 New f-Divergence Measure and Properties  
 A new f-divergence measure introduced by Jain & Saraswat [57], which is 

given by  

 
( ) 







 +
= ∑

= i

ii
n

i
if q

qp
fqQPS

2
,

1
 (4.3.1) 

 
 where ( ) Rf →∞,0: (set of real numbers) is a convex function and             

( ) ( ) nnn qqqqQppppP Γ∈== ,...,,,,...,, 321321 , where ii qandp  are discreate 

probability mass function. 

 
 An important property of this divergence is that many known divergences 

can be obtained from this measure by appropriately defining the convex function f. 

 
The following results are presented by Jain & Saraswat [57] 

 
Proposition 4.3.1: Let f: [0, ) R be the convex function nQP Γ∈, . Then we have 

the following inequality  

 

 ( ) ( )1, fQPS f ≥  (4.3.2) 
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 If f is normalized i.e. f (1) = 0, then   ( ) 0, ≥QPS f   and if f  is strictly convex 

and equality holds  iff  

 
  i=1, 2, 3…n 

 
 i.e. ( ) ( ) QPifQPSandQPS ff ==≥ 0,0,  (4.3.3) 

 
 

Proposition 4.3.2: If 1f and 2f are two convex functions and 2211 fcfcF += then 

 

 ( ) ( ) ( )QPScQPScQPS ffF ,,,
21 21 +=  (4.3.4) 

 
Where 1c  and 2c  are constants and nQP Γ∈,  

 
4.4 Divergence Measure of New f-Divergence Measure’s Class  
 In this section, we will find out the new series of information divergence 

measures with the help of following series of the convex functions.  

 
Let us consider the function   ( ) Rf →∞,0:  , defined as  
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 Since (t)  ;k=1,3,5,… therefore the function (t) is convex and 

normalized also since f(1) = 0. 

 
 Figure 4.1, shows the behavior of the function (t) is always convex if k =1, 

3, 5,…  . 

 
Now putting function [4.4.1] in [4.3.1], we obtain,  
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 Which is the new series of information divergence measure for k = 1, 3, 5, … 

Divergence measure ( )QPM c
k ,  is non-symmetric divergence measure, since    

( ) ( )PQMQPM c
k

c
k ,, ≠  

Moreover  

( ) ( ) QPiffQPMandQPQPM c
kn

c
k ==Γ∈∀≥ 0,,0,  
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FIGURE 4.1: Behavior of the convex function ( )tf k  
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Now, from equation (4.4.1) for k= 1, 3, 5…we get the following convex functions 
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We know that, sum of convex functions is also a convex function 

 
 ( ) ( ) ( ) ...77553311 ++++ fctfctfctfc  is also a convex function. Where 

...,, 7,531 cccc   are arbitrary positive constants and at least one kc (k = 1, 3, 5, 7 …) is 

not equal to zero.  
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From (4.3.1), Divergence measure of f- divergence class for (4.4.6), 
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Next, taking 5

1,3
1,1,0 7531 ==== cccc …, then from equation (4.4.5), 

 
We get 

 

 
( ) ( )

( )
( )t

t
ttF log

1
1

2
1

2

3

3
+
−

=  (4.4.8) 

 
 Figure 4.2, shows the convex behavior of the new convex function ( )tFk  for 

k = 3. Hence, Divergence measure, for (4.4.8) from (4.3.1),  
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FIGURE 4.2: Graph of the convex function ( )tFk   

corresponding to ( )QPM k ,∗ for k = 1 
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 Similarly, by appropriate selection of constants, we get the following convex 

function 
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(4.4.10) 

 
And the corresponding series of divergence measures of f-divergence class  
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 It may be noted that, ( )tFk  in (4.4.10) satisfies ( ) 01 =kF , so 

that ( ) 0, =∗ PPM k  , Convexity of ( )tFk  make sure that divergence measure 

( )QPM k ,*  is non-negative. Thus, we have 

 
( ) ( ) ( ) QPiffQPMandQPQPMa knk ==Γ∈∀≥ ∗∗ 0,,0,  

 
( ) ( )QPMb k ,∗  is non-symmetric with respect to probability distributions. 

 
4.5 New Information Inequalities and Equalities 
 We now derive information divergence inequalities and equalities providing 

bounds for the new series of information divergences (P, Q) in terms of the well-

known divergence measures in the following propositions  

 
 Proposition 4.5.1: Let (P, Q)  , then we have the following new 

inter-relation                                                                                                   

 (P, Q) [F (Q, P) + G (Q, P)] (4.5.1)  

 
 Where (P, Q) new divergence measure, F(Q, P) Relative J- divergence 

measure and G (P, Q) Relative Arithmetic- Geometric divergence are given by 

(4.4.7), (1.2.6), and (1.2.7) respectively. 
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Proof. From (4.4.7), we have  

 (P, Q) =  

 
=  

 
=  

 
=  

 
=  

 
(P, Q) =  

 
(P, Q) =  

 
(P, Q)   

 
Hence the inequality is proved. 

 
 Proposition 4.5.2: Let (P, Q)  , then we have the following new 

inter-relation  

 (P, Q)  (4.5.2) 

 
 Where (P,Q) new divergence, (P,Q) Triangular discrimination, (P,Q) 

Relative J- divergence measure & A(P,Q) Arithmetic mean divergence are given by 

(4.4.9), (1.2.10), (1.2.14) and (1.3.20) respectively. 
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Proof. We have  

(P, Q) =  

 
(P, Q)     

 
i.e. (P, Q)     

 
 

 
= (P, Q) 

 
(P, Q)   

 
 
Hence the inequality is proved. 

  
Proposition 4.5.3: Let (P, Q)  , then we have the following new inter-

relation 

 
 (P, Q) [F (Q, P) + G (Q, P)]  (4.5.3) 

 
 
 (P, Q) (P, Q) (P, Q)  (4.5.4) 

 
 (P, Q) (P, Q) [F (Q, P) + G (Q, P)]  (4.5.5) 

 
 Where (P,Q) , (P,Q) new divergence measures, F(Q,P) Relative JS- 

divergence, G(P,Q) Relative AG- divergence,  A(P,Q) Arithmetic mean divergence, 
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( )QPJ R , Relative J- divergence measure and ( )QP,2χ  Chi- Square divergence are 

given(4.4.7), (4.4.9), (1.2.6), (1.2.7), (1.3.20), (1.2.14) and (1.2.5) respectively. 

 
Proof.  From (25), we have  

 
 (P, Q) =  

 
 (P, Q) =  

 
 4 (P, Q) = (P, Q) 

 
And we have 

 
(P, Q) = 2[F (Q, P) + G (Q, P)] 

 
4 (P, Q) = (P, Q) = 2[F (Q, P) + G (Q, P)] 

 
Hence the equality is proved. 

 
Next, from (4.4.9), we have  

(P, Q) =  

 

 

 
= )  

 
(P, Q) (P, Q)  
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Hence the inequality is proved. 

  
 

We have  

(P, Q) = 2[F (Q, P) + G (Q, P)] 

 
So, 

(P, Q) (P, Q)   

 
Hence the inequality is proved. 

  
Proposition 4.5.4: Let (P, Q)  , then we have the following new inter-

relation  

 
H (P, Q) + 4  – 2 G (Q, P) 2 2 + 4  – 2 G (Q, P) (4.5.6) 

 
 Where (P, Q) new divergence measure, G (Q, P) Relative Arithmetic- 

Geometric divergence and H (P, Q) Harmonic mean divergence are given by (4.4.7), 

(1.2.7) and (1.3.22) respectively. 

 
Proof: From (4.2.1), we have the inequality  

 

 

 
 
Taking,   , then we get 

 

 
 

 
 

  (4.5.7) 
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Multiplying by 2  and taking summation, we get  
 

 

 
 

 
 

 
 
H (P, Q) 2 G (Q, P) –  

 
H (P, Q) + 4 (P, Q) – 2G (Q, P) 2 + 4 (P, Q) – 2G (Q, P) 

 
Hence the result  

 
Proposition 4.5.5: Let (P, Q)  , then we have the following new inter-

relation  

 (P, Q)= (P, Q) +  (4.5.8) 

 
And  

 (P, Q) +  =  +  (4.5.9) 

 
 Where (P, Q) new divergence measure, I(P,Q) Jensen- Shannon 

divergence measure and T(P,Q) Arithmetic- Geometric mean divergence are given 

by (4.4.7), (4.1.12), and (4.1.13) respectively. 
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Proof:  We have 

 

 

 

 

 

 

 

 

 
 

 (4.5.10) 

 
 
But      
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Hence prove the required equality. 

Again from (4.5.10), 

 

 

 

 
Hence 

 

 
 =  

 
Hence the equality is proved. 

 

 Proposition 4.5.6: Let (P, Q)  , then we have the following new 

inter-relation 

 ( ) ( ) ( ) 2log,4,, *
1 <−+ QPMPQFQPK  (4.5.11) 

 
 Where ( ) ( ) ( )PQFandQPKQPM ,,,,*

1 are new divergence measure, 

Relative information and Relative Jensen- Shannon divergence respectively and 

given by (4.4.7), (1.2.3) and (1.2.6) respectively. 

 
Proof: We know that, 
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( ) ( ) ( ) 2log,,4, *

1 +−< PQFQPMQPK  
 

( ) ( ) ( ) 2log,,4, *
1 <+− PQFQPMQPK  

 
Hence the desired result is verified. 
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5 

Theoretic Based  
Exponential Information  
Divergence Measure and  
Inequalities 
 
5.1 Introduction 
 In this chapter, a non-parametric theoretic based exponential information 

divergence measure is proposed. This measure belongs to the category of Csiszár’s 

−f divergences. Further for first time, we have derived some inequalities for this 

exponential information divergence measure in terms of some valuable information 

divergence measures.  Some numerical illustrations are carried out, based on two 

distinct discrete probability distributions.  

 

 Let   =  = ( npppp ,...,, 321 ); ip > 0, 1
1

=∑
=

n

i
ip }, n 2, be the set of all 

complete finite discrete probability distributions. Ali & Silvey [3] and Csiszár [24, 

25] introduced a generalized measure of information using   f-divergence measure  

 

 
( ) 
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= i

i
n

i
if q

p
fqQPC

1
,   (5.1.1)  
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 Where f :( 0, ) R (set of real numbers) is a convex function. Most 

common choices of function f satisfy f (1) = 0, so that .0),( =QPC f  Convexity of 

function f ensures that divergence measure ),( QPC f  is nonnegative. An important 

characteristic of this divergence measure is that many known divergences can be 

obtained from this measure by appropriately defining the convex function f , like 

[Shannon (1958), Renyi (1961), Ali & Silvey (1966), Vajda (1972), Jain and Patni 

(1976), Berbea & Rao (1982a, b), Taneja (1995), Kumar & Chhina (2005), Kumar 

& Johnson (2005), Jain and Shrivastva(2007), Jain and Mathur (2011), Jain and 

Chhabra (2014) and many more]. 

 
 Further, these information divergence measures are used to find out distance 

or affinity between two probability distributions. Non parametric divergence 

measures give the amount of information supplied by the data for discriminating in 

favor of a probability distribution P ={ }npppp ...,,, 321  against another Q 

={ }nqqqq ...,,, 321 ,where P, Q nΓ∈ . The construction of information divergence 

measure for two distinct probability distributions is not an easy task. 

 
  In this research work, we are introducing a new theoretic based non-

parametric exponential information divergence measure which fits to the category of 

Csiszár’s −f divergences [25, 28]. 

 
 In 5.2; we will discuss some advantageous inequalities. New exponential 

information divergence measure is achieved in section 5.3. In section 5.4, we get 

some information on inequalities for the new exponential information divergence 

measure in terms of some recognized and valued divergence measures. Some 

numerical illustrations of new exponential information measure are shown in section 

5.5. Section 5.6 concludes the chapter. 
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For rapidity, we will denote ii qp , and ∑
=

n

i 1

by qp, and∑  respectively. 

 During past years P. Kumar and others [92, 93, 94] have contributed a lot of 

work providing different kinds of information, bounds on the distance and 

divergence measures. His existing information divergence measures are as under 

P. Kumar and S. Chhina [92] 
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P. Kumar and A. Johnson [94] 
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5.2 Well Know Inequalities  
 In this section, we will discuss some well-known inequalities which are 

established in literature of pure and applied mathematics. Using following 

inequalities we have derived important bounds of well-known divergence measures 
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 0},exp{1 >≤+ xxx  (5.2.3) 

 
 0},exp{ >< xxx  (5.2.4) 

 
 

 

 

5.3 New Exponencial Information Divergence Measure  
 
Now, we consider the function ( ) Rf →∞,0:  given by 
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And thus the new theoretic exponential information divergence measure 
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Next, 
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( ) ( ) ( )[ ] { }t

t
tttttf exp51614720

8
1

27

22345 +−+−++
=′′

 (5.3.4) 

 The function f (t) is convex since  ( ) 0>′′ tf  for all t > 0 and normalized also 

since f (1) = 0. 

 

 Figure 5.1, Shows the behavior of the function  which is continuously 

convex. Thus the measure is nonnegative and convex in the pair of discrete 

probability distributions ( ) nQP Γ∈, .          
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FIGURE 5.1: Graph of the convex function f (t) 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 



5. Theoretic Based Exponential Information Divergence… 
 

80 

 

 

FIGURE 5.2: comparison graph of conxex functions of new divergence 

( )QPD ,Φ and Kumar’s divergence ( )QPS ,  
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5.4 BOUNDS FOR ( )QPD ,Φ   
 We now develop information inequalities providing bounds for ),( QPDΦ in 

terms of the recognized information divergence measures in the following 

propositions. 

 
Proposition 5.4.1: Let ( )QPD ,Φ  and ( )QPM ,Ψ be defined as (5.3.2) and (5.1.6) 

respectively and the symmetric 2χ -divergence 
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Then inequality  

 ( ) ( ) ( ),,,, QPDQPMQP Φ≤Ψ≤Ψ  (5.4.2) 

 
Holds and equality, iff P = Q. 

 
Proof: Considering the Harmonic mean (HM) and Geometric mean (GM) 
inequality, 
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Further, for 

x > 0, 

 
exp {x} > 1, 
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 Now, from (4.3) and (4.4), we get 
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Summing over all terms we get, 
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Therefore, we get 

( ) ( ) ( ),,,, QPDQPMQP Φ≤Ψ≤Ψ  

 
Hence, the inequality 

 
Proposition 5.4.2: Let ( ) ( )QPDandQPS ,, Φ  be defined as (5.1.3) and (5.3.2), 

respectively. Then inequality  

 ( ) ( )QPDQPS ,, Φ≤  (5.4.5) 

 
And equality holds for QP =  
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Proof:  From inequality (5.2.1) and (5.2.4), we get, 
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Replacing, x by q

p , we get, 
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Summing over both sides, we get, 
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Hence, the required inequality, 

( ) ( )QPDQPS ,, Φ≤ . 
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Proposition 5.4.3: Let ( ) ( ) ( )QPandQPMQPD ,,,, ΨΨΦ  be defined as (5.3.2), 

(5.1.6) and (5.4.1) respectively. Then inequality 
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And equality holds for P =Q.  

 
Proof: From inequality (5.4.6), we have  
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Replacing, x by q
p , we get, 
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Further, we know that  
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Now, from (5.4.9) and (5.4.10), we get 

 
( )

( ) ( )
( )

( )
{ }q
p

pq

qp
qp

pq
qp

pq

pq

qp exp
22

324

2 2
3

222

2
2

3

222 −
≤










−

+
−

+
−

 
 
Arranging in appropriate forms and summing over all terms, we get 
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Using (5.4.1), (5.1.6), and (5.3.2), we get  
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Proposition 5.4.4: Let ( ) ( ) ( )QPMandQPMQPD ,,,, ρΨΨΦ  be defined as (5.3.2), 

(5.1.6) and (5.1.7), respectively. Then inequality 
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Holds and equality iff P =Q. 

 
Where 

 
( ) ( ) ( ) ( )

( )
{ }q
p

pq

qpqqppqpqpQPD exp3252
4
1,

2
5

322322 +−+−−
=Φ ρ  (5.4.12) 

 
Proof: From (5.3.3), we have 

( ) ( ) { }t
t

tttttf exp32521
4
1

25

23
2








 +−+
−=′

 
And, thus 

( ) ( )∑ 






′−=Φ
q
pfqpQPD ,ρ

 

 

( ) ( ) ( ) ( )
( )

{ }q
p

pq

qpqqppqpqpQPD exp3252
4
1,

2
5

322322 +−+−−
∑=Φ ρ  (5.4.13) 

 
Further, from (5.3.2) and (5.4.6), we get 

 

( ) ( ) ( ) ( ) ( )
( )

{ }q
p

pq

qpqqppqpqpQPDQPD exp3252
4
1,,

2
5

322322 +−+−−
∑=Φ−Φ ρ  (5.4.14)
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From (5.1.6) and (5.1.7), we get  
 

( ) ( ) ( ) ( ) ( )
( ) 2

5

2222 323
4
1,,

pq

qpqpqqpqpQPMQPM +−−−
∑=Ψ−Ψ ρ  (5.4.15)

 

From (5.4.14) and (5.4.15), we get inequality (5.4.11). 

 
5.5 Numerical Illustration 

 In this section, we consider an example of symmetrical probability 

distributions. We will numerically verify the bounds achieved in the earlier section. 

For this, we calculate measures  

 
( ) ( ) ( ) ( ).,,,,,,, QPandQPSQPMQPD ΨΨΦ  

 
 Let P be the binomial probability distribution for the random variable X with 

parameter (n = 8, p = 0.5) and Q its approximated normal probability distribution. 

 
Table 5.1 Binomial Probability Distribution (n = 8, p = 0.5) 

X 0 1 2 3 4 5 6 7 8 

( )xp  0.0040 0.0310 0.1090 0.2190 0.2740 0.2190 0.1090 0.0310 0.0040 

( )xq  0.0050 0.0300 0.1040 0.2200 0.2820 0.2200 0.1040 0.0300 0.0050 

( )
( )xq
xp  0.8000 1.0333 1.0481 0.9955 0.9716 0.9955 1.0481 1.0333 0.8000 

 
The divergence measures ( ) ( ) ( ) ( ) :,,,,,,, areQPandQPSQPMQPD ΨΨΦ

  ( ) ( ) 00306097.0,,08103214.0, =Ψ=Φ QPMQPD
 ( ) ( ) 00305063.0,,00001030.0, =Ψ= QPQPS
  

It is noted that     

 0481.18000.0 ≤







≤

q
p  

These numerical values of measures verified the propositions of previous section.  
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6 

An Information  
Measure of f- Divergence  
Family and Its Properties 
 
6.1 Introduction 
 In this chapter, a non-parametric symmetric information divergence measure 

is proposed. This information measure belongs to the family of Csiszár’s 

−f divergences. Its properties are studied and discussed. Further, we have derived 

some new bounds for this information divergence measure in terms of some 

recognized divergence measures based on two distinct probability distributions. The 

information divergence measures are used to find out distance or difference or 

affinity between two probability distributions. The construction of information 

divergence measure for two distinct probability distributions is always a herculean 

task. 

 

 Let ( ) 2,1,0;,,,,
1

321 ≥








=>==Γ ∑
=

nppppppP
n

i
iinn   be the set of all 

discrete probability distributions. For convex function ( ) Rf →∞,0:  (set of real 

numbers) and for probability distributions P, Q ϵ nΓ , the −f divergence measure , 

by Csiszár’s, [24, 25] and Ali & Silvey, [3], is defined as  
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( ) ∑

=








=

n

i i

i
if q

pfqQPC
1

,  (6.1.1) 

 
 An important property of this divergence measure is that many known 

divergence measures can be obtained from this information measure by 

appropriately defining the convex function f . 

 
 The complete chapter is organized as follows:. In section 6.2; we discuss 

information inequalities of Csiszár’s −f divergences with other known divergence 

measures. New symmetric information divergence measure is obtained in section 

6.3. In section 6.4, we have derived some information inequalities for the new 

information divergence measure in terms of some well-known divergence measures. 

Section 5, concludes the paper. 

 

 For brevity, we will denote ( ) iif qpQPC ,,, and ∑
=

n

i 1

by 

( ) qpQPC ,,, and∑ , respectively. 

 
6.2 Information Inequalities 

 Different kinds of bounds on the information divergence measures have been 

studied during the recent past [29- 37]. In [148], Kumar and Taneja unified and 

generalized information bounds for C (P, Q) studied by Dragomir [29- 37]. The 

main results in [148] given in the following theorem. 

 
Theorem 6.2.1: Let RRf →+: be a mapping which is normalized and suppose 

that  

(iii) f is twice differentiable on (r, R), ∞<≤≤≤ Rr 10  

(iv) There exists real constants m, M, such that m < M 

and ( ) ( ) ∈∈∀≤≤ − sRrtMtftm s ,,,"2 . 

 

If nQP Γ∈,  are discrete probability distributions with ∞<≤≤< Rq
pr0 , 
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 ( ) ( ) ( )QPMQPCQPm ss ,,, Φ≤≤Φ ,  (6.2.1) 

And 

 ( ) ( ){ } ( ) ( ) ( ) ( ){ }QPQPMQPCQPCQPQPm ssSs ,,,,,, Φ−≤−≤Φ− ηη ρ  (6.2.2) 

Where  

 

( )
( )
( )
( )








=
=
≠

=Φ
,1,,
,0,,

,1,0,,
,

2

sQPK
sPQK
sQPK

QP
s

s  (6.2.3) 

 ( ) ( )[ ] [ ] ,1,0,11, 112 ≠−−= ∑ −− sqpssQPK ss
s  (6.2.4) 

 

( ) ∑ 







= ,ln,

q
ppQPK

 

 

 
( ) ( )∑ 







′−=
q
pfqpQPC ,ρ , (6.2.5) 

 

( ) ( )QPCP
Q
PCQP

sss ,,,
2

φφη ′′ −







=

 
 

 =
( ) ( )

( )









=







−

≠







−−

∑

∑
−

−

,1,ln

,1,1
1

1

s
q
pqp

s
q
pqps

s

 (6.2.6) 

 
 
 As a consequence of this theorem, following information inequalities which 

are interesting from the information-theoretic point of view are also obtained in [25]. 

 
(i) The case s = 2 provides the information bounds in terms of the Chi-square 

divergence   ( )QP,2χ , 

 
( ) ( ) ( )QPMQPCQPm ,

2
,,

2
22 χχ ≤≤ , (6.2.7) 

And           
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( ) ( ) ( ) ( )QPMQPCQPCQPm ,

2
,,,

2
22 χχ ρ ≤−≤  (6.2.8) 

 
(ii) For s = 1, the information bounds in terms of the Kullback-Leibler 

divergence, K (P, Q), 

 ( ) ( ) ( )QPKMQPCQPKm ,,, ≤≤  (6.2.9) 

And 

 ( ) ( ) ( ) ( )QPKMQPCQPCQPKm ,,,, ≤−≤ ρ  (6.2.10) 

(iii) For s = ½, yields the information bounds in terms of the Hellinger’s 

discrimination    

 h (P,Q), ( ) ( ) ( )QPhMQPCQPhm ,4,,4 ≤≤  (6.2.11) 

And 

( ) ( ) ( ) ( ) ( ) ( )





 −≤−≤






 − QPhQPMQPCQPCQPhQPm ,,

4
14,,,,

4
14 2/12/1 ηη ρ  (6.2.12) 

 
(iv) For s = 0, the information bounds in terms of the Kullback-Leibler and Chi-

square divergence 

 ( ) ( ) ( )QPMKQPCQPmK ,,, ≤≤  (6.2.13)  

 

And 

( ) ( ){ } ( ) ( ) ( ) ( ){ }PQKPQMQPCQPCPQKPQm ,,,,,, 22 −≤−≤− χρχ  (6.2.14) 

 
6.3 New Symmetric Information Divergence Measure  

Now, we consider the function ( ) Rf →∞,0:  given by 

 
( ) ( ) ( ) ( ) ( )

4

224 13111
t

ttttttf ++++−
=   (6.3.1) 

Then 

 
( ) ( ) ( )

5

234563 4121415151551
t

ttttttttf ++++++−
=′  (6.3.2) 

And  

 
( ) ( ) ( ) ( )

6

23522 221110
t

ttttttf +++−+
=′′  (6.3.3) 
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 The function f (t) is convex since f ´´ (t) > 0 for all t >0 and normalized also 

since f (1) = 0. 

 
Figure 5.1, Shows the behavior of the function  and which is always convex. 

 
 Now, we have the following new information divergence measure belonging 

to the Csiszár’s f-divergence family,  

 
( ) ( ) ( ) ( ) ( )∑ ++++−

= 44

22224 3,
qp

qpqpqpqpqpQPZ  (6.3.4) 

 
We have,  

(a) Divergence measure Z (P, Q) is symmetric with respect to probability 

distributions. 

(b) ( ) ( ) QPiffQPZandQPZ ==≥ ,0,0,  

(c) The function f (t) is *-self conjugate since f *(t) ( ) ( )tftft =≡ 1 . 
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FIGURE 6.1: Graph of convex function f (t) 
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6.4 Bounds For ),( QPZ  

 We now derive information inequalities providing bounds for Z (P, Q) in 

terms of the well-known divergence measures in the following propositions. 

 
Proposition 6.4.1: Let (P, Q)  , then we have the following new inequality   

 
( ) ( ) ( )[ ] ( ) ( ) 



















+








+≤

22
222

,
1

,
2,,,

QPBQPW
PQQPQPZ χχ  (6.4.1) 

 
 Where ( ) ( ) ( ) ( )QPBandQPWPQQP ,,,,, 22 χχ + are given by (6.1.3), 

(6.1.8) and (6.1.7) respectively. 

 
Proof: From (6.3.4), we have, 

( ) ( ) ( )( )( )∑ ++++−
= 44

22224 3,
qp

qpqpqpqpqpQPZ
 

 
( ) ( )( )( )∑ ++++−

≤ 44

224 3
qp

qpqpqpqpqp  ; Since qpqp +≤+ 22
 

 

= ( ) ( ) ( )∑ ∑ +++−
22

22

22

24 3
qp

qpqp
qp

qpqp

 

 

= ( ) ( )
























+







 +







 +− ∑∑∑
2222 1

2
4

pqpq
qp

pq
qpqp

 

 

( ) ( )[ ] ( ) ( ) 


















+








+≤

22
222

,
1

,
2,,),(

QPBQPW
PQQPQPZ χχ
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Hence the result 

 
Proposition 6.4.2: Let (P, Q)  , then we have the following new inequality    

 
( ) ( ) ( ) ( ) ( )QPBQPW

QPQPMQPZ
,

1
,

1,,8,
2









∆Ψ≤  (6.4.2) 

 
 Where ( ) ( ) ( ) ( ) ( )QPBandQPWQPQPMQPZ ,,,,,,,, ∆Ψ  are given by 

(6.3.4), (6.1.9), (6.1.6), (6.1.8) and (6.1.7) respectively. 

 
Proof: From (6.3.4), we have, 

 

( ) ( ) ( ) ( ) ( )∑ ++++−
= 44

22224 3,
qp

qpqpqpqpqpQPZ
 

 
( ) ( ) ( ) ( )∑ ++++−

≤ 44

224 3
qp

qpqpqpqpqp

 

 
( )
( )

( ) ( ) ( )∑ ∑ ∑∑ +++
+
−−

= 22

222

2
3

222 31

2
2

qp
qpqpqp

qp
qp

pqpq

qp

 

 
( )
( )

( )∑ ∑ ∑ ∑ 






 +
+
−−

≤
22

2
3

222

2
41

2
2

pq
qp

qp
qp

pqpq

qp  

 
Since qpqpqp +≤++ 22 3  

( ) ( ) ( ) ( ) ( )QPBQPW
QPQPMQPZ

,
1

,
1,,8,

2









∆Ψ≤  

 
Hence the result 
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Proposition 6.4.3: Let ( )QP,2χ  and Z (P, Q) be defined as in (6.1.2) and (6.3.4) 

respectively.  

 
For nnQP Γ×Γ∈, and ,0 ∞<≤≤< Rq

pr  we have 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )QP
r

rrrrr

QPZQP
R

RRRRR

,22115

,,22115

2
6

23522

2
6

23522

χ

χ

+++−+
≤

≤
+++−+

(6.4.3) 

And 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )QP
r

rrrrr

QPZQPZQP
R

RRRRR

,22115

,,,22115

2
6

23522

2
6

23522

χ

χ ρ

+++−+
≤

−≤
+++−+

(6.4.4) 

Where  

( ) ( ) ( )∑ ++++++−
= 45

65423324564 412141515155,
qp

qqpqpqpqpqppqpQPZ ρ (6.4.5) 

 
Proof. From (6.3.2), we have 

( ) ( ) ( )
5

234563 4121415151551
t

ttttttttf ++++++−
=′   (6.4.6)

 
 
So that  

( ) ( )

( ) ( )∑

∑
++++++−

=






′−=

45

65423324564 412141515155

,

qp
qqpqpqpqpqppqp

q
pfqpQPZ ρ

(6.4.7) 

 
Further, from (6.3.3), we have 

 
( ) ( ) ( ) ( )

6

23522 221110
t

ttttttf +++−+
=′′   (6.4.8)
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( ) thenbatIf ,,0],[ ∞⊂∈  

( ) ( ) ( ) ( ) ( ) ( ) ( )
6

23522

6

23522 221110221110
a

aaabatf
b

bbbbb +++−+
≤′′≤

+++−+

 
 

Or, consequently 

( ) ( ) ( ) ( ) ( ) ( ) ( )
6

23522

6

23522 221110221110
r

rrrrrtf
R

RRRRR +++−+
≤′′≤

+++−+  (6.4.9) 

 
 Hence, from (6.2.7) and (6.2.8), we get inequalities (6.4.3) and (6.4.4), 

respectively. 

 
Proposition 6.4.4: Let ( ) ( ) ( )QPZandQPZQPK ,,,, ρ  be defined as in (6.1.4), 

(6.3.4) and (6.4.5) respectively. For nnQP Γ×Γ∈, and ,0 ∞<≤≤< Rq
pr  we 

have 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )QPK
r

rrrrr

QPZQPK
R

RRRRR

,221110

,,221110

5

23522

5

23522

+++−+
≤

≤
+++−+

(6.4.10) 

And 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )QPK
r

rrrrr

QPZQPZQPK
R

RRRRR

,221110

,,,221110

5

23522

5

23522

+++−+
≤

−≤
+++−+

ρ

(6.4.11) 

 
Proof: From (6.3.3), we have 

 
( ) ( ) ( ) ( )

6

23522 221110
t

ttttttf +++−+
=′′   (6.4.12)

          
 

 , such that 

 
( ) ( ) ( ) ( ) ( )

5

23522 221110
t

ttttttftth +++−+
=′′=  (6.4.13) 

 
 

[ ]→RrhfunctiontheLet ,:
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Then  

 [ ] ( ) ( ) ( ) ( )
5

23522 221110
,

inf
R

RRRRRth
Rrt

+++−+
=

∈
 (6.4.14) 

 

And 

 

 [ ] ( ) ( ) ( ) ( )
5

23522 221110
,

sup
r

rrrrrth
Rrt

+++−+
=

∈
 (6.4.15) 

 
 Hence, from (6.2.9) and (6.2.10), we get inequalities (6.4.10) and (6.4.11), 

using (6.4.14) and (6.4.15), respectively. 
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7 

Conclusion and Future Scope 
 

 In this chapter we conclude the work reported in this thesis and also discuss 

the scope for further study which can be carried out on the basis of the work 

reported. 

 
7.1 Conclusion of the work reported 
 Several generalized divergences had been introduced in information theory 

for comparing two probability distributions at time, like: Csiszar’sdivergence([24], 

[25]), Burbea–Rao’s ([17]), Renyi’s divergence ([125]), Taneja and Tuteja’s 

measure of inaccuracy ([137]), Taneja and Kumar’s divergence ([148]), Jain and 

Saraswat’s divergence ([57]) etc. Motivated by the findings of various authors have 

studied information measures. 

 
 We have obtained thedifferent equalities and inequalities of derived non-

parametric symmetricf-divergence measures in terms of other well-known 

information divergence measures, which are very interesting in the field of the 

information theory.  

 
 In the next chapter, we  have introduced different series of information 

divergence measures using properties of Csiszar’sf - divergence and convex 

function. Divergence measures give most important key results for information 
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theory because we can derive different information divergence measures for 

different values of k.  

 
 Further, we have obtained the different information measures using Jain and 

Saraswat’s generalized   f - divergence which are very interesting in the field of the 

information theory. We have also described different equalities and inequalities of 

derived f-divergence measures in terms of other well-known information divergence 

measures.  

 
 During past years Dragomir [29-37], Teneja [136-146], Kumar and others 

[147-148] gave the idea of divergence measures, their properties, bounds and 

relations with other measures. Kumar and other did a lot of work especially in the 

field of information theory. In [147-148], he derived new bounds in terms of 

different symmetric and non-symmetric divergence measures. We have introduced a 

new exponential non-parametric divergence measure, in the Csiszár’sf-divergence 

category [24-25], by considering a convex functionf, defined on ( )∞,0 . This chapter 

also defines the bounds and properties of new exponential information measure with 

the work of Kumar’s divergence measures and some other well-known measures. 

 
 In the last chapter, in this new work, we have obtained the new information 

divergence measure using properties of Csiszár’s f- divergence category. This work 

is very interesting in the field of the information theory. We have also described 

different bounds for new derived f-divergence measure in terms of other recognized 

information divergence measures. Work on a 

 
7.2 Future Scope 
 While compiling this thesis some thoughts have originated in our mind, with 

several new directions that open with the study reported here, which could be of 

great potential to study further. 

a. The findings of Thesis (Information measures) can be used as practical 

application in different research fields of engineering and sciences as in 

Signal Processing in communication system, Cryptography etc. 
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b. One can generalize our new information divergence measures and their 

properties for his further research in the field of information theory. 

c. Study of divergence measures in fuzzy mathematics as fuzzy directed 

divergences and fuzzy entropies, which are very useful to find the amount of 

difficulty in making a decision whether an element belongs to a set or not ( 

Hooda [52]). 

d. Study of new information inequalities in mutual information sense 

(Dragomiretc [36]) 
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