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ABSTRACT 
The main intent of this thesis is to establish some new results for non-Newtonian 

fluids. Such results refer to different motions of fluids such as fractional Maxwell 

fluid, fractional Oldroyd-B fluid. The study is presented, having divided into seven 

chapters.  

• First chapter ‘ Introduction’ presents brief summary about fluids, constitutive 

equations, equation of continuity, equation of motion, fractional calculus and 

some integral transforms.  

• In chapter 2, we study the flow of fractional Maxwell fluid in an annular pipe. 

More exactly, by means of the sequential fractional derivatives Laplace and 

finite Hankel transforms we establish the solutions corresponding to the 

motion of fractional Maxwell fluid between two oscillating infinite coaxial 

circular cylinders. 

• Chapter 3 provides exact solutions for the velocity field and shear stress 

corresponding to the unsteady flow of an incompressible fractional Maxwell 

fluid in annular region between two infinitely long coaxial circular cylinders. 

At time t=0+, the inner cylinder applies a time dependent torsional shear to the 

fluid and outer cylinder is moving at a constant velocity.  

• In chapter 4, it is studied the flow of fractional Maxwell fluid in pipe-like 

domains by the inner cylinder is pulled with a time-dependent shear stress and 

the outer cylinder is moving at a constant velocity. The solution is obtained 

using Laplace and Hankel transform methods and the results are presented in 

terms of generalized G and R functions.  

• Chapter 5 provides exact solution for the velocity field of flow for Oldroyd-B 

fluid in annular region between two infinitely long coaxial cylinders. This 

solution is obtained using finite Hankel and Laplace transform methods and 

the result is presented in terms of the generalized-G functions. Finally, the 

influence of different values of parameters, constants and fractional 

coefficients on the velocity field is also analyzed using graphical illustration. 

This chapter is divided into three parts. In part A, the motion is produced by 

constant pressure gradient, inner cylinder is pulled with constant shear and 

outer cylinder is moving with time dependent velocity. In part B, the motion is 

created by a constant pressure gradient & the inner cylinder start moving along 
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its axis of symmetry with the constant velocity. In part C, the motion is created 

by inner cylinder is pulled with constant shear and outer cylinder is moving 

with time dependent velocity.  

• Chapter 6 deals with the study of helical flow of fractional Oldroyd-B fluid in 

a circular cylinder. Both components of the velocity and shear stresses have 

been found in terms of generalized G function. Further, the solutions for 

ordinary Oldroyd-B fluid, fractional Maxwell fluid, ordinary Maxwell fluid 

and Newtonian fluid are easily obtained by imposing appropriate limits to the 

exact solution. 

• Chapter 7 contains exact solution for the velocity field and shear stress of 

rotational flow for fractional Oldroyd-B fluid filled between two coaxial 

circular cylinders by the inner cylinder begins to rotate about its axis with a 

time dependent shear stress while outer cylinder is moving at a constant 

velocity. 
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1.1 Fluids 

Materials have always been an integral part of human life. They are so important that 

they have been used to designate part of human civilization period e.g. Stone Age, 

Bronze Age, Iron Age etc.  

All materials show deformation under the action of external forces. If the 

deformation in a material, under the action of shearing forces, increases continuously 

without limit, the material is called fluid. Fridtjov [1] says “A fluid is a material that 

continuously deforms when it is subjected to anisotropic states of stress”. Thus, a fluid 

may be defined as a material that deforms continuously under the action of shearing 

forces. 

 Generally, fluids are classified as liquids or gases. A liquid has intermolecular 

forces which hold it together. It possesses volume but does not have a definite shape. 

When it is poured into a container, it fills the container upto the volume of the liquid, 

regardless of the shape of the container. Liquids are slightly compressible, however, 

for most of the practical purposes it is sufficient to consider liquids as incompressible 

fluids. On the other hand, a gas consists of molecules which collide with each other 

tending to disperse it while in motion. Hence, a gas has no volume or shape. The 

intermolecular forces are extremely small in gases. A gas fills any container into 

which it is placed and is therefore known as a (highly) compressible fluid. 

Based on the flow properties, fluids can be classified into Ideal, Real, 

Newtonian and non-Newtonian Fluids. An Ideal Fluid has no viscosity (or no friction) 

and it is incompressible in nature. Practically, there are no ideal fluid that exists. Real 

fluids have some viscosity and they are compressible in nature. Examples of such 

fluids are Kerosene, Petrol, Castor oil, etc. The fluids, which obey Newton’s law of 

viscosity )  (
dy

dvµτ = , are described as Newtonian fluids. In Newtonian fluids, the 

relationship between shear stress and the strain rate is linear. Examples of such fluids 

are water, air etc. For Newtonian fluids, viscosity entirely dependents on the 

temperature and pressure of the fluid. The fluids, which do not obey Newton’s law of 

viscosity, are described as non-Newtonian fluids. For non-Newtonian fluids, the 

relationship between shear stress and the strain rate is non-linear and can even be time 

dependent. Thus, a constant coefficient of viscosity cannot be determined. Example of 

such fluids are blood, saliva, semen, synovial fluid, butter, cheese, jam, ketchup, soup, 
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mayonnaise, magma, lava, gums, slurries, emulsions, etc. While Newtonian fluid 

simplifies the mathematical modeling, in industries, most fluid properties differ from 

this model. Hence, it is important to study the behavior of Non-Newtonian fluids.  

Fluids play a very important role in many aspects of our life. We drink them, 

breath them and it runs through our bodies. Fluids control the weather and also have 

many applications in the industries. The study of motion of fluids is a complex 

phenomenon. The Navier-Stokes equations are the most famous form of equations 

which are widely studied and applied in fluid mechanics. These are non-linear partial 

differential equations that are applicable in almost every real situation. Therefore, 

there are a limited number of exact solutions under certain conditions such that many 

terms in the equations of motion either disappear automatically or may be neglected. 

The resulting equations thus reduce to a form that can be easily solved. 

Thus, classical Navier-Stokes equations are used to describe the behavior of 

Newtonian fluids. However, due to the non-linear viscoelastic behavior, the ordinary 

Navier-Stokes equations are inadequate to describe rheological complex fluids such as 

plastic and polymer solutions. This has led to development of models for non-

Newtonian fluids. These models include rate type [2], differential type [3] and integral 

type. Among them, rate type model is the most popular. Differential type model does 

not describe the influence of relaxation and retardation times and also cannot describe 

the flow of some polymers. 

The non-Newtonian fluids play an important role in technological applications. 

A large number of industrial materials fall under this category. Fluids such as 

solutions and liquid polymers, soap and cellulose solutions, biological fluids, various 

colloids and paints, certain oils and asphalts belongs to this category. These fluids are 

very frequently encountered in many different fields such as food industries, chemical 

engineering, petroleum industry, biomedicine etc. and also are relevant to many other 

industrial processes. Hence, study of flow of non-Newtonian fluids has become a 

subject of great importance. In comparison to Newtonian fluids, the analysis of the 

motion of such fluids is much more difficult because of non-linear relationship 

between stress and the rate of strain. 

It has been a challenge for mathematicians and physicists to analyze the flow 

characteristics and the properties of non-Newtonian fluids due to complicated partial 

differential equations arising in the mathematical formulation of the flows. Typical 

non-Newtonian characteristics include shear thinning, viscoelasticity, viscoplasticity 
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and shear thickening behavior. Classical Navier-Stokes equations, which are sufficient 

to describe the flows of fluids with less atomic mass, fail to explain the behavior of 

such rheological complex fluids. Therefore, some mathematical models have been 

proposed to describe the characteristics of these complex fluids. Due to their wide 

applications in the industry, mathematicians are very much interested in the study of 

non-Newtonian fluids. These applications include the plastic manufacture, 

performance of lubricants, clay suspensions, drilling muds, paints, processing of food 

and moment of biological fluids which contain higher molecular weight components. 

When a constant shear stress is applied, Viscosity for Thixotropic fluids decreases 

with time, while it increases for Rheopectic fluids. Many paints are classified as 

thixotropic fluids. Similarly, few fluids return to their original shape after the applied 

stress is released, such fluids are called viscoelastic fluids. 

The oscillating flow of the viscoelastic fluid in cylindrical pipes has been 

applied in many industrial areas such as oil exploitation, chemical industry, food 

industry and bioengineering. This type of analysis is of particular interest in 

bioengineering since blood in veins is forced by a periodic pressure gradient. 

Similarly, there are many applications in the petroleum and chemical industries which 

involve the dynamic response of the fluid to the frequency of the periodic pressure 

gradient. 

So far numerous number of papers have been dedicated to study motions of 

Newtonian and Non-Newtonian fluids. The study of the motion of a fluid in the 

vicinity of a rotating or sliding cylinder is of great interest for engineering & industry. 

For Newtonian fluids, the velocity distribution for a fluid contained in a 

circular cylinder was studied by G.K. Batchelor [4]. For non-Newtonian fluids, the 

first exact solution corresponding to motions of second grade fluids in a cylindrical 

domain seem to be those of Ting [5]. Similarly, Srivastava [6] and Waters & King [7] 

proposed first exact solution for Maxwell and Oldroyd-B fluids respectively. The first 

exact solution for motion of non-Newtonian fluids that applies a constant shear stress 

to the fluid are those of Bandelli and Rajagopal [8] and Bandelli et al. [9] for second-

grade fluids.  Recently, a lot of papers have been published regarding such fluid 

motions. Exact solutions for the velocity field and the shear stress corresponding to 

the unsteady flow of a generalized Oldroyd-B fluid due to an infinite circular cylinder 

subject to a longitudinal time-dependent shear stress have been obtained by Qammar 
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et al. [10]. Tong et al. [11] published their work on unsteady unidirectional transient 

flows of Oldroyd-B fluid in an annular pipe. They used fractional calculus approach to 

build a generalized Jeffreys model. Muhammad Athar et al. [12] published exact 

solutions for a fractional Maxwell fluid for unsteady axial Couette flow due to an 

accelerated shear. Amir Mahmood et al. [13] presented their work on exact solutions 

for unsteady flow of generalized second grade fluids in cylindrical domains. Fang et 

al. [14] published their work on the Rayleigh–Stokes problem for a heated generalized 

second grade fluid using fractional derivative model. M. Kamran et al. [15] obtained 

expressions for the velocity field and shear stress corresponding to the motion of a 

fractional second grade fluid as limiting cases of general solutions corresponding to 

the fractional Oldroyd-B fluid. Recently, other similar solutions have been obtained in 

[16-26].  

During 1886, Stokes [27] published an exact solution for the rotational 

oscillations of an infinite rod immersed in a linearly viscous fluid. Casarella and Laura 

[28] established an exact solution for oscillating rod with longitudinal and torsional 

motion. Exact solutions for the flow of a second grade fluid induced by the 

longitudinal and torsional oscillations of a rod have been obtained by Rajagopal [29]. 

Rajagopal and Bhatnagar [30] studied two simple but elegant solutions for the flows 

of an Oldroyd-B fluid induced by the longitudinal and torsional oscillations of an 

infinite long rod. Hayat et al. [31] studied the influences of Hall current on the flow of 

a Burgers’ fluid in a pipe. Many important studies of non-Newtonian fluids for 

oscillating flows inside a cylindrical region have been done by various authors [32-

40]. Fetecau and Corina Fetecau [41] proposed the most general solutions 

corresponding to the helical flow of a second grade fluid. Some exact solutions for the 

helical flow of a generalized Oldroyd-B fluid in a circular cylinder have been obtained 

by Fetecau et al. [42]. Wood [43] obtained exact solutions for helical flows of 

Oldroyd-B fluids in cylindrical domains. Qi and Jin [44] studied some helical flows of 

Oldroyd-B fluids in two infinite coaxial circular cylinders. Fetecau et al. [45-47], 

Jamil et al. [48-51] and Shah [52] studied some helical flows of Oldroyd-B and 

Maxwell fluids within an infinite circular cylinder or between two infinite coaxial 

circular cylinders. 

In order to describe rheological properties of various classes of materials in 

detail, the rheological constitutive equations with fractional derivatives have been 
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introduced for a long time. These have been discussed in the papers published time to 

time by various authors, to name a few, Bagley [53], Friedrich [54], Makris and 

Constantinou [55], Glockle and Nonnenmacher [56], Mainardi [57], Rossikhin and 

Shitikova [58, 59], Mainardi and Gorenflo [60]. 

Fractional calculus has been widely used to describe viscoelastic behavior of 

fluids [61-63]. The starting point of the fractional derivative model of viscoelastic 

fluid is usually a classical differential equation. This is being modified by replacing 

the time derivative of an integer order by the so-called Caputo fractional calculus 

operators [64]. Hence, many exact solutions for non-Newtonian fluids with fractional 

derivatives have been established [65-69] due to the importance of viscoelasticity.  

Exact solutions play a key role not only because they are solutions of some 

fundamental flows but also because they are used as an accuracy checks for 

experimental, numerical or empirical and asymptotic methods. Even though computer 

techniques make it feasible to integrate complete equation of motion, the accuracy of 

the results can only be established by comparison with an exact solution. 

 

1.2 Constitutive Equations 

Rheological properties of materials can be specified by their constitutive equations. 

A constitutive equation can be defined as a relation between two physical quantities 

that is specific to a material and approximates the response of that material to external 

forces. Fridtjov [1] described constitutive equation as “A relation between stress and 

different measures of deformations, as strains, rates of deformation and rates of 

rotation”. In other words, we can say a relation between entities that describe a 

physical process is called constitutive equation. 

Generally, constitutive equations define the ideal materials that have mathematical 

models to describe the behavior of some classes of real materials. In other words, we 

can say the constitutive equations represent macro-mechanical models for the real 

materials. The constitutive equations corresponding to different materials must satisfy 

some general principles. Examples of such principles are symmetry principle and the 

objectivity principle [70]. The constitutive equations for the non-Newtonian fluids 

lead to a problem in which the order of the differential equations exceeds the number 
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of available conditions. In three dimension, the simplest constitutive equation form is 

a Newtonian one. The constitutive equations of some fluids are given below as [71] 

1. Newtonian fluid  

                    

                                     (1.2.1)                                A         S      , µ=+−= whereSpIT  

 

where A is the first Rivlin-Ericksen tensor.  

2. Maxwell fluid 

                   SpIT +−= , (1.2.2)                                                              ,A
t

S
S µ

δ
δλ =+

 

3. Oldroyd-B fluid 

                     SpIT +−= , (1.2.3)                                           ,






 +=+
t

A
A

t

S
S r δ

δλµ
δ
δλ

 

where T is the Cauchy stress tensor, S is the extra-stress tensor and 
t

S

δ
δ

  is the upper 

convective derivative defined as
 

                              (1.2.4)                                                                        ,TSLLSS
t

S −−= &

δ
δ

 

where the dot denotes the material time differentiation. 

 p is the pressure, I is the identity tensor, λ  and rλ are relaxation and 

retardation times, TLLA += is the first Rivlin-Ericksen tensor with L the velocity 

gradient, µ  is the dynamic viscosity and
 
the superscript T indicates the transpose 

operation. 

 
 

1.3 Equation of Continuity 

The continuity equation is based on the law of conservation of mass. The law of 

conservation of mass states that the mass is neither created nor destroyed inside a 

control volume region. Thus the rate of increase of the mass in the closed volume is 

equal to the mass of the fluid entering per unit time through the surface enclosing the 

volume. The equation of continuity in vector notation is given by 

                                (1.3.1)                                                           , 0)( =+
∂
∂ →

Vdiv
t

ρρ
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where ρ is the density, t is the time and 
→
V is the velocity vector. 

For steady compressible fluid flow, the equation of continuity reduces to 

                                   (1.3.2)                                                                             .0)( =
→
Vdiv ρ  

For incompressible fluid flow, the equation of continuity reduces to 

                                        (1.3.3)                                                                            . 0)( =
→
Vdiv  

 

1.4 Equation of Motion 

The equations of motion are derived from Newton’s second law of motion which 

states that the rate of change of linear momentum is equal to the total force acting on 

the flowing fluid in the arbitrary volume. In vector notation, the equations of motion 

are given by 

                                           (1.4.1)                                                2
→→

→

∇+∇−= VpF
Dt

VD µρρ  

where ).( ∇+
∂
∂=

→
V

tDt

D
 is the material derivative, ρ is the density of fluid, 

→
F is the 

body force per unit volume, µ is the coefficient of viscosity, t is time, ∇ is the gradient 

operator and 
→
V  is the velocity vector. Equations of motion are also known as Navier-

Stokes equations.  

 

1.5 Fractional Calculus 

The branch of Mathematics in which we study differentiation and integration to an 

arbitrary order is popularly known as fractional calculus. Many famous 

mathematicians such as Leibnitz, Euler, Laplace, Fourier, Abel, Liouville, Riemann, 

Weyl, Kober have contributed a lot to the development of fractional calculus. The first 

use of fractional operations was done by Abel in the solution of tautochrone problem. 

Since then, the subject of fractional calculus has gained importance during the last 
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three decades. Its applications in various fields of science and engineering, such as 

fluid flow, rheology, hydraulics of dams, diffusion problems, electrical networks, 

probability, electrochemistry, transport theory, scattering theory, electromagnetic 

theory, statistics, visco-elasticity have been extremely powerful in solving complex 

mathematical problems. Fractional derivatives are used to provide an excellent 

mechanism to describe the hereditary properties and memory of different materials 

and processes. Fractional calculus is applicable in deriving the solution of certain 

integral equations involving special functions of mathematical physics. Fractional 

calculus is very convenient for describing properties of real materials, i.e. polymers. 

Few problems related to elasticity were formulated and solved by M. Caputo with his 

own definition of fractional differentiation. Considerable research has been going on 

in this field and published through books, research papers, workshops, symposiums 

and international conferences in the last 35 years. 

 The mathematical aspects of the fractional calculus have been widely 

discussed by Caputo [72], Oldham and Spanier [73], McBride and Roach [74], 

Gorenflo and Vessela [75], Samko et al. [76], Miller and Ross [77], Kiryakova [78], 

Nishimoto [79], Podlubny [64] etc. 

Fractional calculus can be defined as the theory of derivatives and integrals of 

an arbitrary order (called fractional derivatives and fractional integrals), which unifies 

and generalizes the notion of integer-order differentiation and n-fold integration. The 

infinite sequence of n-fold integrals and n-fold derivatives is given by 

...   ,
)(

   ,
)(

   ),(   ,)(   ,)(   ...,
2

2

11112

2

td

tfd

dt

tdf
tfdfdfd

t

aa

t

a

τττττ
τ

∫∫∫  

The derivative of arbitrary real order α  can be considered as an interpolation of this 

sequence of operators. We will use it for the notation suggested and used by Davis 

[80] 

 

)(tfDta
α

 

 

Fractional derivative is the short name for derivatives of arbitrary order of fractional 

order. The subscripts a and t denote the two limits related to the operation of fractional 
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differentiation. Following Ross [81], we will call them the terminals of fractional 

differentiation. The fractional integrals mean integrals of arbitrary order and 

correspond to negative values of α  . We will denote the fractional integral of order 

0>β by 

 

)(tfDta
β−

 

 The Theory of fractional calculus is mainly based upon the study of the well-

known fractional integral operators and fractional derivative operators. In which some 

integral operators such as Riemann Liouville and Weyl and fractional derivatives such 

as Riemann Liouville and Caputo given below as 

1. Riemann Liouville fractional integral operator [77] 

  

[ ] (1.5.1)             0,)Re(                ,)()(
)(

1
)( 1 axdttftxxfD

x

a

xa >>−
Γ

= ∫
−− υ

υ
υυ

 

2. Weyl fractional integral operator [77] 

   
[ ] (1.5.2)               0  0,)Re(                ,)()(

)(

1
)( 1 >>−

Γ
= ∫

∞
−−

∞ xdttfxtxfW
x

x υ
υ

υυ

 

3. Riemann Liouville fractional derivative operator [77] 

            

[ ]
                

(1.5.3)                   0  ,1                )],([)( )( ><≤−= −− υυυυ nnxfDDxfD nn
xa

 
4. Caputo fractional derivative operator [64] 

 

       

(1.5.4)                       1                ,
)(

)(

)(

1
)(

1
nnd

t

f

n
tfD

t

a
n

n

t
C
a <<−

−−Γ
= ∫ −+ βτ

τ
τ

β β
β

  

Several generalizations of Riemann Lioville fractional integrals have been introduced 

and widely studied by a number of eminent mathematicians notably Eardely, Kober 

and several other. Due to important role played by Riemann-Lioville and Weyl 

integral operators in different branches of science, engineering and mathematical 

physics, a number of generalizations of fractional integral operators have been 

introduced from time to time by many research workers notably Kober [82], Erdélyi 
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[83,84], Manocha [85,86], Saxena [87], Kalla and Saxena [88], Kalla [89], Saigo [90], 

Raina and Kiryakova [91], Srivastava and Goyal [92], Sneddon [93], Kalla and 

Kiryakova [94, 95], Srivastava et al. [96], Gupta and Jain [97], Goyal and Tariq [98], 

Gupta and Soni [99] etc.  

 A systemic analysis of various fractional integral operators studied from time 

to time has been given by Srivastava and Saxena [100]. 

 Fractional derivatives have been used by many famous mathematicians such as 

Caputo [101], Smit and Vries [102], Mainardi [103], Luchko and Srivastava [104], 

Hadid and Luchko [105], Giona et al. [106], Friedrich [54, 107], Fenander [108], 

Enelund and Josefson [109], El-Sayed [110, 111], Beyer and Kempfle [112], Bagley 

and Torvik [113]. 

 

1.6 Some Integral Transforms 

The integral transform of a function f(x) defined on a given interval (a, b) is denoted 

by { } )();( pFpxfT = , defined by the integral equation, as follows 

                             { } (1.6.1)                                                       ,)(),();( dxxfpxKpxfT
b

a
∫=  

where K(x, p) is called the kernel of the transform, p is a parameter (real or complex) 

independent of x and the operator T  is called integral transform operator. The 

properties of integral transforms vary widely but all integral transforms have common 

linearity properties as follows 

 

                         (1.6.2)                                                       ),()()( gTfTgfT +=+  

 

       (1.6.3)                      c. constantsfor     )()T( fcTcf =  

 

Some important and well-known integral transforms are Laplace, Mellin, Fourier, 

Hankel, Hilbert and Legendre transforms. These transforms are defined by choosing 

different kernels K(x, p) and different values for a and b involved in Eq. (1.6.1). 

Therefore, it is observed from the above that an integral transformation is a unique 
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mathematical operation through which a real or complex-valued function f is 

transformed into another function F = Tf. 

The integral transform is important because it transforms a complicated 

mathematical problem into a simpler one, which can be easily solved. Integral 

transforms are very useful to solve different type of problems in mathematics, 

especially in dealing with differential equations subject to particular boundary 

conditions. In the study of initial or boundary value problems involving differential 

equations, the differential operators are replaced by much simpler algebraic operations 

involving F which can easily be solved. Then the required solution can be obtained by 

the inverse transformation. 

Integral transforms is very efficient and powerful tool to solve different types 

of problems in mathematics involving differential equations. Many different integral 

transforms are used for this purpose. In the following section, we introduce few 

integral transforms and their inverses that have been used in present work.  

 

1.6.1 Laplace Transform 

The Laplace transform of a function f(t) defined on ∞<< t0  is denoted by

{ } )();( sFstfL = , defined by  

 { } (1.6.4)                                       0,Re(s)          ,)()();(
0

>== ∫
∞

− dttfesFstfL st

 

where ste−  is the kernel of the Laplace transform, the parameter s is a real or complex 

number and the operator L is Laplace transform operator.  

The inverse Laplace transform is defined as  

        { } (1.6.5)                                                                  );()( 1 tsFLtf −=  

where 1−L  is known as the inverse Laplace transformation operator. 

All functions of f(t) are not Laplace transformable. The Laplace transformation for a 

function f(t) is possible if it should satisfy the Dirichlet conditions (a set of sufficient 

but not necessary conditions). These conditions are given below 

1. The function f(t) must be sectionally or piecewise continuous; that is, it must 

be single valued but can have a finite number of finite isolated discontinuities 

for t > 0. 
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2. The function f(t) must be of exponential order; that is, f(t) must remain less 

than taMe 0 as t approaches ∞, where M is a positive constant and 0a  is a real 

positive number. 

The Laplace transformation is not possible for the functions such as tan (t), cot (t) and 

.
2te  The convolution theorem is an important result of Laplace transform, as defined 

by 

If  { } )()( sFtfL =  and { } )()( sGtgL = , then 

        
{ } (1.6.6)                                         .)()()()(

0

1 gfduutgufsGsFL
x

∗=−= ∫
−

 

Laplace transforms are used to solve different types of problems in mathematics such 

as partial differential equations, initial and boundary value problems, integral 

equations, difference equations and many other fields.  

 

1.6.2 Finite Hankel Transform 

The finite Hankel transform of order n of a function f(r) defined in 0 ≤ r ≤ R, is 

defined by 

            { } (1.6.7)                                             ,)()()()(
0

drrfrrrJrfrfH i

R

ninn ∫==
 

where ir  are the positive roots of the transcendental equation 0)( =in RrJ  and Jn(.) is 

the Bessel function of first kind of order n. 

The inverse finite Hankel transform is defined by 

           
{ } (1.6.8)                               , 

)]([

)(
)(

2
)()(

2
11

2

1

in

in

i
ininn

RrJ

rrJ
rf

R
rfrfH

+

∞

=

−
∑==

 

The finite Hankel transforms defined in Eq. (1.6.7) used for the solution of problems 

in which only one cylinder is used. 

Hankel transform is used in the study of functions which depend only on the 

distance from the origin. This transform involves the Bessel functions as the kernel 

appearing in axisymmetric problems formulated in cylindrical polar coordinates. 

The partial differential equations with adequate initial and boundary conditions 

can be solved by several methods. However, the integral transforms technique is a 

systematic, efficient and powerful tool. The finite Hankel transform is very useful 



Chapter 1                                                                                                                                                  13

 

when we are dealing with problems that show circular symmetry. The finite Hankel 

transforms and Laplace transform are used to solve partial differential equations 

involving fractional calculus. 

 

 



 

 

 

 

 

 

 

Chapter 2. Flow of fractional 

Maxwell fluid in oscillating pipe-

like domains 
 

 

 

 

 

 

 

 

 

 

The paper submitted on the work described in this chapter: 

Mathur V. and Khandelwal K., Flow of fractional Maxwell fluid in pipe-like domains, 

International Journal of Applied and Computational Mathematics, 1-18. DOI: 

10.1007/s40819-016-0139-x(Springer)
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2.1 Introduction 

The oscillating flow of the viscoelastic fluid in cylindrical domain has applications in 

many industrial areas. This chapter presents an analysis for oscillating flows of 

fractional Maxwell fluid in the annular region between two infinite concentric circular 

cylinders. The fluid motion is created as both cylinders begin to oscillate around their 

common axis. The exact solutions are established using the sequential fractional 

derivatives Laplace transform and finite Hankel transform in terms of generalized G 

and R functions. Also, we obtain the solutions for ordinary Maxwell fluid and 

Newtonian fluid as special cases of the generalized solutions. Moreover, the effects of 

various parameters on the velocity field and shear stress are analyzed by graphical 

illustration. Finally, a comparison is drawn between motions of fractional Maxwell 

fluid, ordinary Maxwell fluid and Newtonian fluid. 

 

2.2 Governing equations 

The constitutive equations of an incompressible Maxwell fluid are given by [71, 114] 

 

                                        ,SpIT +−= ( ) (2.2.1)                     ,ASLLSSS T µλ =−−+ &
 

 

where T is the Cauchy stress tensor, pI−  denotes the indeterminate spherical stress, 

S is the extra-stress tensor, λ is relaxation time, TLLA +=  with L the velocity 

gradient, the superscript T indicates the transpose operation and  the dot denotes the 

material time differentiation.  

For the problem under consideration, we use a velocity field of the form and 

extra stress S as in the form of 

              

(2.2.2)                                                        ),,S(S             ,),(),( tretrwtrVV === θ  

where θe  is the unit vector in the θ direction of the cylindrical coordinates. 

At time t=0, the fluid is at rest in an annular region between two infinite coaxial 

circular cylinders. At time t=0+, both cylinders begin to oscillate. For these flows, the 
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constraint of incompressibility is automatically satisfied. Initially the fluid is at rest, 

hence 

                   (2.2.3)                                                                    0.(r,0)      ,0)0,( == SrV  

The governing equations corresponding to incompressible Maxwell fluid in the 

absence of body forces and a pressure gradient in the θ  direction are given by [115] 

 

( ) (2.2.4)                                         ,),(
11),(

1
22

2

trw
rrrrt

trw
Dt 








−

∂
∂+

∂
∂=

∂
∂+ υλ β

 

          ( ) (2.2.5)                                                             ),,(
1

),(1 trw
rr

trDt 






 −
∂
∂=+ µτλ β

 

where  ),(),( trStr rθτ = is the non-trivial shear stress, 
ρ
µυ =  is the kinematic 

viscosity, ρ is the constant density of the fluid and the Caputo fractional derivative of 

order β as defined by [64] 

(2.2.6)                                      

1,                                               ),(

;10                ,
)(

)(

)1(

1

)( 0













=

<<
−−Γ=

∫

β

βτ
τ
τ

β β
β

tf
dt

d

d
t

f

dt

d

tfD

t

t

 

where ).(Γ  is the Gamma function. This model can be reduced to ordinary Maxwell 

model when β → 1 and to Newtonian model when β → 1 and λ → 0. 

To solve this problem we use Laplace and finite Hankel transforms. 

 

2.3 Mathematical formulation and solution of the 

problem 

Let us consider an incompressible fractional Maxwell fluid at rest in an annular region 

between two coaxial circular cylinders of radii 1R  and )( 12 RR > . At time t=0+, both 

cylinders begin to oscillate around their common axis (r = 0) with the velocities 
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)sin( 11 tV ω  and )sin( 22 tV ω . Due to the shear, the fluid between the cylinders is 

gradually moved and its velocity is of the form Eq. (2.2.2)1. The governing equations 

are given by Eqs. (2.2.4) and (2.2.5), while the appropriate initial and boundary 

conditions are 

                             (2.3.1)                                                                0,(r,0)      ,0)0,( == τrw
 

and
 

        

(2.3.2)                    0,       t),sin(),(          ),sin(),( 222111 ≥== tVtRwtVtRw ωω  

 

where 1ω  and 2ω  are the frequencies of the velocity of the cylinder and V1, V2 are 

constant amplitudes. 

 

2.3.1 Calculation of the velocity field 

Applying Laplace transform to Eq. (2.2.4) and using the initial conditions as given in 

Eq. (2.3.1), we obtain 

       ( ) (2.3.3)                                .),(
11

),(
22

2
1 qrw

rrrr
qrwqq 








−

∂
∂+

∂
∂=+ + υλ β

 

Applying Laplace transform to Eq. (2.3.2), we obtain 

(2.3.4)                                             . ),(      ,),(
2
2

2
22

22
1

2
11

1 ω
ω

ω
ω

+
=

+
=

q

V
qRw

q

V
qRw  

The Hankel transform method with respect to r is used and defined as follows 

        (2.3.5)                                                                     ,),(),(),(
2

1

drrrBqrwrqrw
R

R

nnH ∫=  

where 

      (2.3.6)                                                   ),()()()(),( 121211 nnnnn rrYrRJrRYrrJrrB −=  

nr  being the positive roots of the transcendental equation 0),( 1 =rRB . The inverse 

Hankel transform as defined by [116], is given below  
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(2.3.7)                                            ).,(

)()(

),()(

2
),(

1 2
2
11

2
1

1
2
1

22

qrw
rRJrRJ

rrBrRJr
qrw nH

n nn

nnn
∑

∞

= −
= π

 

Multiplying both sides of Eq. (2.3.3) by rB(r, rn), then integrating with respect to r 

from R1 to R2 and taking into account the conditions Eq. (2.3.4) along with the 

following relation  

                               (2.3.8)                                                 
2

)()()()( 11 x
xYxJxYxJ

πυυυυ =− ++  

and the equality 

       
(2.3.9)                                 ,
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we obtain 

 

      (2.3.10)                     .
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Rewriting Eq. (2.3.10) into a suitable equivalent form, we obtain below 
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Applying inverse Hankel transform to Eq. (2.3.11) and taking into account the 

following result  

( ) ( )
( ) (2.3.12)         ,
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)(22
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we obtain 
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Applying Inverse-Laplace transform to Eq. (2.3.13) and then using the expansion 
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and taking into account the following result [117] 
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we obtain 
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2.3.2 Calculation of the shear stress 

Applying Laplace transform to Eq. (2.2.5), we obtain 

    (2.3.17)                                                 ).,(
1
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1
),( qrw
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 −
∂
∂

+
= βλ
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Substitute Eq. (2.3.13) into Eq. (2.3.17), we obtain 
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where

 
(2.3.19)                              ).()()()(),( 021210 nnnnn rrYrRJrRYrrJrrB −=

 

Applying inverse Laplace transform to Eq. (2.3.18), then using Eq. (2.3.15) and taking 

into account the following result [117] 
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we obtain  
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2.4 Limiting Cases 

2.4.1 Ordinary Maxwell Fluid 

Applying 1→β into Eqs. (2.3.16) and (2.3.21), we obtain the velocity field 
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and its associated shear stress corresponding to ordinary Maxwell fluid performing the 

same motion 
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( ) ( ) (2.4.2)                                                           . 
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2.4.2 Newtonian Fluid 

Applying 0→λ into Eqs. (2.4.1) and (2.4.2) and taking into account the following 
results [22] 
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we obtain the corresponding solutions for the Newtonian fluid, as follows 
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2.5 Conclusions and Numerical results 

In this chapter, we obtained the expressions for the velocity field and shear stress. We 

obtained these expressions for an incompressible fractional Maxwell fluid in the 

annular region. The fluid motion is created as both cylinders begin to oscillate around 

their common axis with different angular frequencies 1ω and 2ω  of their velocities. The 

results have been determined using sequential fractional derivatives Laplace and finite 

Hankel transform methods. These results are also presented in a series form in terms 

of the generalized G and R functions. Similar solutions are obtained for ordinary 

Maxwell and Newtonian fluids as limiting cases of the solution for fractional Maxwell 

fluid. 

Importantly, we can obtain the velocity field and the shear stress, when one of 

the cylinder is at rest, by making V1 = 0, V2 = V and ωω =2  (when inner cylinder is at 

rest) or V1 = V, V2 = 0, and ωω =1  (when outer cylinder is at rest). For instance, the 

velocity field for the flow of fractional Maxwell fluid, when inner cylinder is at rest 

and outer cylinder is oscillating, is given by below equation 
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Similarly, the velocity field for the flow of fractional Maxwell fluid, when outer 

cylinder is at rest and inner cylinder is oscillating, is given by below equation 
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Similarly, we can obtain shear stress solution by appropriate substitutions. 

In order to demonstrate impact of physical parameters, the obtained results are 

presented in the form of diagrams for the velocity ),( trw  and the shear stress ),( trτ . 

They are given by Eqs. (2.3.16) and (2.3.21) and have been drawn against r for 

different values of the time t and other relevant parameters as shown in diagrams. It 

can be observed from the figures that the velocity component w is decreasing function 

of r. The influence of the time t on fluid motion is shown in Figure 2.1. The influence 

of the frequency of oscillations1ω  and 2ω on fluid motion is shown in figures 2.2 and 

2.3.  Both parameters have opposite effect on the fluid motion. Figures 2.4 and 2.5 are 

showing the effect of different values of V1and V2 on the fluid motion. Figures 2.6(a) 

and 2.6(b) are showing the effect of different values of kinematic viscosity on the 

fluid motion. It indicates that the velocity is decreasing and the shear stress is 

increasing function ofυ . The dependency of the relaxation time on the fluid motion is 

shown in the figure 2.7. It indicates that the velocity and the shear stress are increasing 

function ofλ . Figure 2.8 is showing the effect of different values of fractional 

parameter β  on the fluid motion. It can be observed that the velocity is increasing 

while the shear stress is decreasing function ofβ . Figure 2.9 exhibits a comparative 

diagram of the velocity ),( trw  and the shear stress ),( trτ corresponding to the 

motions of fractional Maxwell fluid, ordinary Maxwell fluid and Newtonian fluid in a 

circular cylinder, for same values of the common material constants and time t. The 

velocity in the neighborhood of inner cylinders is swiftest for Newtonian fluid while it 

is slowest for the Fractional Maxwell fluid. Similarly, shear stress on the whole flow 

domains highest for Maxwell fluid while it is slowest for the Newtonian fluid. In all of 

the figures 2.1-2.9, the units of the material constants are in SI units and the root nr  

has been approximated by .
)(2

)12(

12 RR

n

−
− π
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Figure 2.3 
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Figure 2.5 
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Figure 2.6 
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Figure 2.7 
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Figure 2.9 
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3.1 Introduction 

The constitutive equations of an incompressible Maxwell fluid, as it is given by Eq. 

(2.2.1), are 

                                     ,SpIT +−= ( ) (3.1.1)                        ,ASLLSSS T µλ =−−+ &
 

where T, pI− , S, λ , A, L, µ , the superscript T and  
.

S  have the same significance as 

before. The motion of a fluid in the annular region of sliding or rotating cylinders is of 

great interest for industry and academic workers. This chapter deals with the unsteady 

flow of an incompressible fractional Maxwell fluid filled in the annular region 

between two infinite coaxial circular cylinders. The motion of the fluid is due to the 

inner cylinder that applies a time dependent torsional shear to the fluid and outer 

cylinder which is moving at a constant velocity. The velocity field and shear stress are 

determined by the Laplace and finite Hankel transforms. The obtained solutions are 

presented in terms of the generalized G and R functions. Solutions for ordinary 

Maxwell fluid and Newtonian fluid are also obtained by imposing appropriate limits. 

Finally, the influence of different values of parameters, constants and fractional 

coefficient, as well as a comparison between the velocity field and shear stress are 

also analyzed using graphical illustration.

 
 

3.2 Governing equations 

Let us consider an incompressible fractional Maxwell fluid with velocity V and extra 

stress S as in the form of 

     

(3.2.1)                                  ),,S(S                  ,),(),( tretrwtrVV === θ

 

where θe  is the unit vector in the θ  direction of the cylindrical coordinates.  

At time t=0, the fluid is at rest in an annular region between two infinite coaxial 

circular cylinders. At time t=0+, the inner cylinder applies a time dependent torsional 

shear to the fluid and outer cylinder is moving at a constant velocity. For these flows, 

the constraint of incompressibility is automatically satisfied. Initially the fluid is at 

rest, hence 
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           (3.2.2)                                                                  0.)0,S(               ,0)0,( == rrV  

For such flows the constraint of incompressibility is automatically satisfied, while the 

governing equations [17] are 
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where  ),(),( trStr rθτ = is the non-trivial shear stress, λ  is relaxation time, µ  is the 

dynamic viscosity, ρ is the constant density of the fluid, 
ρ
µυ =  is the kinematic 

viscosity and α
tD  is the Caputo fractional derivative of order α as defined by [64] 
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where ).(Γ  is the Gamma function. 

For 1→α when ,/)()( dttdftfDt →α
 Eqs. (3.2.3) and (3.2.4) are reduced to the 

governing equations for an ordinary Maxwell fluid. 

 

3.3 Flow through the annular region 

Let us consider an incompressible fractional Maxwell fluid at rest in the annular 

region between two infinite coaxial circular cylinders. Also, consider that radius of 

inner and outer cylinders are1R  and )( 12 RR >  respectively. At time t=0+, the outer 

cylinder moving at a constant velocity and the inner cylinder begins to rotate about its 

axis with a time dependent torque per unit length ),(2 11 tRRτπ  [17], where   



Chapter 3                                                                                                                                                 30 

 

        (3.3.1)                                            1,0       ;,
1

),( 1,
1

1 <<






−= − α
λλ

τ α tR
f

tR
 

where 1f  is a constant and generalized R functions are defined by [117] 
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The governing equations are given by Eqs. (3.2.3) and (3.2.4), while appropriate 

initial and boundary conditions are   

                (3.3.3)                                                   0,(r,0)      ,0)0,( == τrw  

and 
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where 2f  is the constant velocity of outer cylinder. Eq. (3.3.1) is the solution of Eq. 

(3.3.4). To solve this problem we use Laplace and Hankel transform methods. 

 

3.3.1 Calculation of the velocity field 

Applying Laplace transform of Eq. (3.2.3) and using the initial conditions as given in 

Eq. (3.3.3), we obtain 
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where ∫
∞

−=
0

),(),( dttrweqrw qt is the Laplace transform of function ),( trw and q is the 

transform parameter. 

Applying Laplace transform of Eq. (3.3.4), we obtain 
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The Hankel transform method with respect to r is used and defined as follows 
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nr  being the positive roots of the transcendental equation 0),( 2 =rRB . The inverse 

Hankel transform as defined [17], is given below 
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Multiplying both sides of Eq. (3.3.5) by rB(r, rn), then integrating with respect to r 

from R1 to R2 and taking into account the conditions Eq. (3.3.6) and the equality 
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Rewriting Eq. (3.3.11) into a suitable equivalent form, we obtain below 
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Applying inverse Hankel transform to Eq. (3.3.12) and taking into account the 

following result  
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Applying Inverse-Laplace transform of Eq. (3.3.14) and taking into account the 

following result [117]  
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we obtain 
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3.3.2 Calculation of the shear stress 

Applying Laplace transform to Eq. (3.2.4), we obtain 
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Substitute Eq. (3.3.14) in Eq. (3.3.17), we obtain 
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where 

       (3.3.19)                                    ).()()()(),( 212122 nnnnn rrYrRJrRYrrJrrB −=  

Applying inverse Laplace transform to Eq. (3.3.18) and using Eq. (3.3.15), we obtain 
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3.4 Limiting Cases 

3.4.1 Ordinary Maxwell Fluid 

Applying 1→α into Eqs. (3.3.16) and (3.3.20), we obtain the velocity field 
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and its associated shear stress corresponding to ordinary Maxwell fluid performing the 

same motion
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3.4.2 Newtonian Fluid 

Applying 0→λ into Eqs. (3.4.1) and (3.4.2) and taking into account the following 

result [22]  
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we obtain the corresponding solutions for the Newtonian fluid, as follows 
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3.5 Conclusions and Numerical results 

The purpose of this chapter is to establish exact solutions for the velocity field and 

shear stress corresponding to the unsteady flow of an incompressible fractional 

Maxwell fluid flow in the annular region. Where, the motion is produced by the inner 

cylinder that applies a time dependent torsional shear to the fluid and outer cylinder 

which is moving at a constant velocity.  The solution is obtained by finite Hankel and 

Laplace transform methods and the result is presented under series form in terms of 

the generalized G and R functions.  The similar solutions for ordinary Maxwell and 

Newtonian fluids are also obtained as limiting cases of the solution for fractional 

Maxwell fluid. The velocity field and shear stress are also analyzed using graphical 
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illustration for various parameters, constants and fractional coefficients and a 

comparison between models of the velocity field and shear stress are also analyzed 

using graphical illustration. 

As shown in below diagrams, the velocity ),( trw  and the shear stress ),( trτ  given 

by Eq. (3.3.16) and Eq. (3.3.20) have been drawn against r for different values of the 

time t, 1f , 2f and other relevant parameters. It can be clearly seen from the figures that 

the velocity component w is decreasing function of r and the shear stress component 

τ  is increasing function of r. The motion of the fluid is relatively higher and shear 

stress lower in the neighborhood of the inner cylinder for given boundary conditions 

and 1f <0, 2f <0. Figures 3.1(a) and 3.1(b) are showing the effect of different values of 

time on the fluid motion. It can be seen that the velocity and the shear stress are the 

decreasing function of time t. The influence of relaxation time λ  and fractional 

parameter α  on the fluid motion is shown in figures 3.2 and 3.3.  Both parameters 

have opposite effect on the fluid motion. The velocity and the shear stress are 

increasing function of λ and decreasing function ofα . Figures 3.4(a) and 3.4(b) are 

showing the effect of different values of dynamic viscosity on the fluid motion. The 

results indicate that the velocity and the shear stress are increasing function of 

dynamic viscosity. Figures 3.5 and 3.6 are showing the behavior of 1f  and 2f on the 

fluid motion for their different values. Figure 3.7 is showing a comparison diagram of 

the velocity ),( trw  and the shear stress ),(trτ among three models (Fractional 

Maxwell fluid, ordinary Maxwell fluid and Newtonian fluid) for same values of the 

common material constants and time t. The velocity in the neighborhood of inner 

cylinders is swiftest for fractional Maxwell fluid while it is slowest for the ordinary 

Maxwell fluid. Similarly, shear stress on the whole flow domains highest for 

fractional Maxwell fluid while it is slowest for the Newtonian fluid. 

In all of the figures 3.1-3.7, the units of the material constants are in SI units 

and the root nr has been approximated by .
)(2
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Figure 3.3 
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Figure 3.5 
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Figure 3.6 
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Figure 3.7 
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Chapter 4. Exact solutions for the 

flow of fractional Maxwell fluid in 

pipe-like domains 
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4.1 Introduction 

This chapter presents an analysis of unsteady flow of incompressible fractional 

Maxwell fluid filled in the annular region between two infinite coaxial circular 

cylinders. The fluid motion is created by the inner cylinder that applies a longitudinal 

time-dependent shear stress and the outer cylinder that is moving at a constant 

velocity. The velocity field and shear stress are determined using the Laplace and 

finite Hankel transforms. Obtained solutions are presented in terms of the generalized 

G and R functions. The solutions for ordinary Maxwell and Newtonian fluids are also 

obtained as limiting cases of 1→α  and 1→α , 0→λ  respectively. The influence of 

different parameters on the velocity field and shear stress are also presented using 

graphical illustration. Finally, a comparison is drawn between motions of fractional 

Maxwell fluid, ordinary Maxwell fluid and Newtonian fluid. 

 

4.2 Governing equations 

Consider an incompressible fractional Maxwell fluid that has a velocityV and extra 

shear stress S of the form [69] 

     ,),(),( zetrvtrVV ==        (4.2.1)                                       ),,( trSS =  

where ze  is the unit vector in the zdirection of the cylindrical coordinates. For such 

flows, the constraint of incompressibility is automatically satisfied, while the 

governing equations are [69]  
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where  ),(),( trStr rz=τ is the non-trivial shear stress, λ  is relaxation time, µ  is the 

dynamic viscosity, 
ρ
µυ =  is the kinematic viscosity,ρ is the constant density of the 

fluid and β
tD is the Caputo fractional derivative of order β as defined by [64] 
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where ).(Γ  is the Gamma function. For 1→β , Eqs. (4.2.2) and (4.2.3) are reduced to 

the governing equations for an ordinary Maxwell fluid. 

 

4.3 Flow through the annular region between 

coaxial circular cylinders 

Let us consider an incompressible fractional Maxwell fluid at rest in infinite coaxial 

circular cylinders of radii 1R and )( 12 RR > . At time t=0+, the inner cylinder is pulled 

with a time-dependent shear stress and the outer cylinder is moving at a constant 

velocity. At time t=0+, a time dependent longitudinal shear stress can be defined by 

[12] 
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where 1f   is a real constant and generalized ),(, tdR ba  function is defined by [117]  
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The governing equations given by Eqs. (4.2.2) and (4.2.3) with appropriate initial and 

boundary conditions are   
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where 2f  is the constant velocity of outer cylinder. Eq. (4.3.1) is the solution of first 

equation of Eq. (4.3.4). To solve this problem, we use Laplace and finite Hankel 

transforms. 

 

4.3.1 Calculation of the velocity field 

Applying Laplace transform to Eq. (4.2.2) and using the initial conditions as given in 

Eq. (4.3.3), we obtain 
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applying Laplace transform to Eq. (4.3.4), we obtain 
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The Hankel transform method with respect to r is used and defined by [116] 
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and nr  being the positive roots of the transcendental equation 0),( 2 =rRB . The 

inverse Hankel transform is given by [116] 

         (4.3.9)                                              ).,(
)()(

),()(

2
),(

1 2
2
01

2
1

2
2
0

22

qrv
rRJrRJ

rrBrRJr
qrv nH

n nn

nnn
∑

∞

= −
= π

 

Multiplying both sides of Eq. (4.3.5) by rB(r, rn) and integrating with respect to r from 

R1 to R2, taking into account the Eq. (4.3.6) and the equality 
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Rewriting Eq. (4.3.11) into a suitable equivalent form, we obtain  
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Applying inverse Hankel transform to Eq. (4.3.12) and taking into account the 

following result  

           (4.3.13)                                                       , 
2

),(ln
3

12

2

1 n
n

R

R rR
drrrB

R

r
r

π
=








∫
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Applying Inverse-Laplace transform to Eq. (4.3.14) and taking into account the 

following results
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4.3.2 Calculation of the shear stress 

Applying Laplace transform to Eq. (4.2.3), we obtain
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Substitute Eq. (4.3.14) in Eq. (4.3.18), we obtain 
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where 
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Applying inverse Laplace transform to Eq. (4.3.19) and using Eqs. (4.3.15) and 

(4.3.16), we obtain 

       

(4.3.21)                           . ),(
)(

)(
          

),(
)(

)(
),(         

)1(

)]()([

),()(
),(

)1(
),(

1
1,1,

0

2

20

1
'
02

1
1,

20

1
'
021

1,1,
0

2

1

1 2
2
01

2
1

2
2
01

1,
11







−









 −
+

−−−








 −
×




 +Γ
−

−
−−

+Γ
=

−
+−−

∞

=

−
−

−
+−−−

∞

=

∞

=

−
−−

∑

∑

∑

tG
r

rRJ

rRJf

tR
rRJ

rRJf
tG

r

r

af

rRJrRJ

rrBrRJr
tR

r

aRf
tr

kk
k

k

n

n

n

n

n
kka

k

k

n

nn nn

nnn
a

λ
λ
υ

λ
µ

λ
λ
µλ

λ
υ

λ
πλ

λ
τ

α

αα

α

 

 

4.4 Limiting Cases 

4.4.1 Ordinary Maxwell Fluid 

Applying 1→α into Eqs. (4.3.17) and (4.3.21), we obtain the velocity field
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and the associated shear stress 
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4.4.2 Newtonian Fluid 

Applying 0→λ into Eqs. (4.4.1) and (4.4.2) and taking into account the following 

results [22]  
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we obtain the corresponding solutions for the Newtonian fluid, as follows 
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4.5 Conclusions and Numerical results 

The intent of this chapter is to establish the exact solution for the velocity field and 

shear stress corresponding to the unsteady flow of an incompressible fractional 
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Maxwell fluid filled between two infinite coaxial circular cylinders. We obtain this 

solution using Laplace and finite Hankel transform methods. The fluid motion is 

produced by the inner cylinder that is pulled with a time-dependent shear stress and 

the outer cylinder that is moving at a constant velocity. The results are presented in the 

form of series of the generalized G and R functions.  Similar solutions are obtained for 

ordinary Maxwell and Newtonian fluids as limiting cases of solution derived for 

fractional Maxwell fluid. The velocity field and shear stress are also analyzed using 

graphical illustration for various parameters. The motions of fractional Maxwell fluid, 

ordinary Maxwell and Newtonian fluids are also analyzed graphically. 

As shown in below diagrams, the velocity ),( trv  and the shear stress ),( trτ  

given by Eq. (4.3.17) and Eq. (4.3.21) have been drawn against r for different values 

of the time t and other relevant parameters. It can be clearly seen from the figures that 

the velocity component v is decreasing and the shear stress component τ  is increasing 

function of r. The fluid velocity is relatively higher and shear stress is lower in the 

neighborhood of the inner cylinder for given boundary conditions. Figures 4.1(a) and 

4.1(b) are showing the fluid motion at different times. It can be seen that the velocity 

is increasing and the shear stress is the decreasing function of time t. The influence of 

kinematic viscosity υ and relaxation time λ  on the fluid motion is shown in figures 

4.2 and 4.3.  Both parameters have opposite effect on the fluid motion. Figure 4.4 is 

showing a comparison diagram of the velocity ),( trv  and the shear stress ),( trτ

among three models (Fractional Maxwell fluid, ordinary Maxwell fluid and 

Newtonian fluid) for the same values of common material constants and time t. The 

velocity in the neighborhood of inner cylinders is swiftest for Newtonian fluid while it 

is slowest for the fractional Maxwell fluid. Similarly, shear stress is highest for 

fractional Maxwell fluid while it is slowest for the Newtonian fluid.In all of the 

figures 4.1-4.4, the units of the material constants are in SI units andthe root nr  has 

been approximated by .
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Figure 4.1 
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Figure 4.3
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Chapter 5. Exact solutions for the 

flow of Oldroyd-B fluid between two 
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5.1 Introduction 

This chapter deals with flows of Oldroyd-B fluid between two infinitely long coaxial 

cylinders. Initially, the fluid is at rest. We use Hankel and Laplace transforms to reach 

the exact solution. The obtained solution is presented in terms of generalized G 

functions. 

This chapter is divided into three parts. In part-A, the motion is produced by a 

constant pressure gradient. The inner cylinder is pulled with constant shear and outer 

cylinder is moving with time dependent velocity. In part-B, the motion is produced by 

a constant pressure gradient & the inner cylinder start moving along its axis of 

symmetry with the constant velocity. In part-C, the motion is produced by the inner 

cylinder pulled with a constant shear and outer cylinder moving with time dependent 

velocity.  

Fetecau [21] obtained analytical solutions for non-Newtonian fluid flowing in 

cylindrical structures and used constitutive relation given as 

        (5.1.1)                                          ),,()1()1( trvrtrt ∂∂+=∂+ λµτλ  

wherev  is the velocity,λ  and rλ  are relaxation and retardation times, τ  is tangential 

tension and µ  is the dynamic viscosity. 

Using fractional calculus approach, the constitutive relation of the generalized 

Oldroyd-B fluid in Eq. (5.1.1) can be written as 

     

(5.1.2)                                    , ),()1()1( trvDD rtrt ∂+=+ βα λµτλ
 

where α
tD  and β

tD  are fractional operators and are defined as [64] 
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where ).(Γ  is the Gamma function. When 1== βα , Eq. (5.1.2) simplified as Eq. 

(5.1.1). 
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5.2 Governing equations 

Let us consider the unsteady flow of an incompressible Oldroyd-B fluid in coaxial 

cylinders. The following assumptions are considered during this mathematical study. 

The flows are assumed to be axi-symmmetric. The fluid velocity at the direction of the 

pipe radius is assumed to be zero. The axial velocity is assumed to be only relevant to 

the cylinder radius. 

The equation of axial flow motion is written as [11] 

           
(5.2.1)                                                        ,
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whereρ  is the constant density of the fluid. 

Substitute Eq. (5.1.2) into Eq. (5.2.1), we get 

   

( ) ( ) (5.2.2)                     ),,(
1

1
)1(

1 2 trv
r

D
t

AA
t

v
D rrtrt 







 ∂+∂++
−Γ

+=
∂
∂+

−
β

α
α λυ

α
λλ  

where
ρ
µυ = is the kinematical viscosity and 

z

p
A

∂
∂=− ρ is the constant pressure 

gradient that acts on the liquid in the z-direction. 

 

Part A 

5.3 Flow through the annular region 

Let us consider a constant pressure gradient applied at time t=0+ to an Oldroyd-B fluid 

contained in the annular region between two infinitely long coaxial cylinders of radii 

1R and )( 12 RR > .At time t=0+, the inner cylinder is pulled with constant shear and 

outer cylinder is moving with time dependent velocity. We have to solve the next 

initial and boundary problem. 
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The initial and boundary conditions are expressed by  
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where 21, ff are constants.
 

Making the change of unknown function 
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Substitute Eq. (5.3.4) in Eq. (5.3.1), we get 
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Substitute Eq. (5.3.4) in Eqs. (5.3.2) & (5.3.3), we get 
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The Hankel Transform method with respect to r is used and is defined as follows [11] 
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The inverse Hankel Transform is    
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 .0),( 2 =Rsnφ  

Applying the Hankel transform in Eq. (5.3.6), we obtain 
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Applying the Hankel transform in Eq. (5.3.7), we obtain
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Applying Laplace transform to Eq. (5.3.11) and using Eq. (5.3.12), we obtain 
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Applying Inverse-Laplace transform of Eq. (5.3.13) and taking into account the 

following result [117] 
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The expression of the velocity field can be written as
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5.4 Results 

As shown in below diagrams, the velocity ),( trv  given by Eq. (5.3.16) has been 

drawn against r for different values of the time t, constants and other relevant 

parameters. The velocity component v is decreasing function of r. The motion of the 

fluid is higher in the neighborhood of the inner cylinder for given boundary conditions 

and 1f >0, 2f >0. Figure 5.1 is showing the time dependency on the fluid motion. It can 

be clearly seen that the velocity is decreasing function of t. The influence of kinematic 

viscosity on the fluid motion is shown in figure 5.2. The velocity is increasing 

function of kinematic viscosity. Figures 5.3 and 5.4 show the influence of the 

relaxation and retardation times on the fluid motion. Both the two parameters have 

opposite effects on the fluid motion. The velocity is decreasing function of λ and 

increasing function ofrλ .The influence of fractional parametersα and β on the fluid 

motion is shown in figures 5.5 and 5.6.  The velocity is decreasing function of α and 

increasing function of.β  Figure 5.7 show the influence of dynamic viscosity on the 

fluid motion. The velocity is increasing function ofµ . Figure 5.8 is showing the 

dependency of p on the fluid motion. It can be seen that the velocity increases, when p 

increases. Figures 5.9 and 5.10 show the influences of1f  and 2f on the fluid motion. 
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Figure 5.11 is showing the dependency of A on the fluid motion. It can also be seen 

that the velocity decreases, when A increases. 
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      Figure 5.3
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      Figure 5.5
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       Figure 5.7
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      Figure 5.9
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      Figure 5.11
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Part B 

5.5 Flow through the annular region 

Let us consider an incompressible Oldroyd-B fluid in infinite coaxial circular 

cylinders. At time ,0=t  fluid is assumed to be stationary. At time += 0t ,a constant 

pressure gradient applied and the inner cylinder moves with constant velocity and the 

outer cylinder held fixed. Consider that the radius of inner and outer cylinders are 1R  

and )( 12 RR >  respectively.  

The initial and boundary conditions are  
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Substitute Eq. (5.5.3) in Eq. (5.2.2), we obtain 
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Substitute Eq. (5.5.3) in Eqs. (5.5.1) & (5.5.2), we obtain  
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The Hankel Transform method with respect to r is used and is defined as follows [11] 
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Applying the Hankel transform in Eq. (5.5.5), we obtain 
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Applying the Hankel transform of Eq. (5.5.6), we obtain 
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Applying Laplace transform of Eq. (5.5.10) and using Eq. (5.5.11), we obtain 
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Applying Inverse-Laplace transform of Eq. (5.5.12) and taking into account the 

following result, as it is given by Eq. (5.3.14), is 
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we obtain 
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The expression of the velocity field can be written as 
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5.6 Results 

As shown in below diagrams, the velocity ),( trv  given by Eq. (5.5.15) has been 

drawn against r for different values of the time t, f and some other relevant 

parameters. The motion of the fluid is relatively lower in the neighborhood of the 

inner cylinder for given boundary conditions. Figure 5.12 is showing the time 
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dependency on the fluid motion. It can be seen that the velocity is the increasing 

function of time t. Figure 5.13 is showing the dependency of the kinematic viscosityυ  

on the fluid motion. It can be clearly seen that the velocity is the decreasing function 

of kinematic viscosityυ . Figures 5.14 and 5.15 are showing the effect of the relaxation 

time λ and retardation time rλ  on the fluid motion. Both parameters have opposite 

effect on the fluid motion. The velocity is decreasing function of λ and increasing 

function of rλ .The influence of fractional parametersα andβ  on the fluid motion is 

shown in figures 5.16and 5.17.Both parameters have opposite effect on the fluid 

motion. The velocity is increasing function of α and decreasing function of β . Figure 

5.18 is showing the dependency of f on the fluid motion. It can be seen that the 

velocity is decreasing function of f. Figure 5.19 is showing the dependency of A on 

the fluid motion. It can be seen that the velocity is increasing function of A. 

         Figure 5.12 

 

 

Figure 5.12 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1 = 0.3, R2 = 0.5,  

f = -3, ν = 0.035, λ= 12, λr=2.2, α=0.9, β=0.6, A=4 and different values of t. 
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Figure 5.13

 

 

Figure 5.13 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1=0.3, R2=0.5,  

f= -3, t=6s, λ=9, λr=4, α=0.3, β=0.3, A=4 and different values of ν. 

  

Figure 5.14

 

 

Figure 5.14 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1=0.3, R2=0.5, 

 f= -3, t=5s, ν=0.04, λr=7, α=0.3, β=0.3, A=4 and different values of λ.
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Figure 5.15

 

 

Figure 5.15 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1=0.3, R2=0.5, 

 f= -3, t=5s, ν=0.04, λ=8, α=0.3, β=0.9, A=4 and different values of λr. 

 

Figure 5.16

 

 

Figure 5.16 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1=0.3, R2=0.5,  

f= -3, t=6s, ν=0.045, λ=25, λr=8, β=0.5, A=4 and different values of α. 
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 Figure 5.17

 

 

Figure 5.17 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1=0.3, R2=0.5,  

f= -3, t=6s, ν=0.04, λ=8, λr=5.5, α=1, A=4 and different values of β. 

          

 Figure 5.18

 

 

Figure 5.18 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1=0.3, R2=0.5, 

t=5s, ν=0.045,  λ=14, λr=2.8, α=0.8, β=0.5, A=4 and different values of f. 
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Figure 5.19

 

 

Figure 5.19 Profiles of the velocity v(r,t) given by Eq. (5.5.15) for R1=0.3, R2=0.5,  

f= -3, t=5s, ν=0.04, λ=11, λr=2.5, α=0.9, β=0.6 and different values of A. 

 

Part C 

5.7 Flow through the annular region 

Consider an Oldroyd-B fluid at rest between two infinitely long coaxial cylinders. 

Also, consider that radius of inner and outer cylinders are 1R  and )( 12 RR >  

respectively. The inner cylinder pulled with constant shear and outer cylinder is 

moving with time dependent velocity. We have to solve the next initial and boundary 

problem, in the absence of a pressure gradient in the z-direction.  
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where 21, ff  are constant. 

Making the change to unknown function 
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Substitute Eq. (5.7.4) into Eqs. (5.7.2) and (5.7.3), we get   
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The Hankel Transform method with respect to r is used and is defined as follows [11] 
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where n0110111 s  ),()()()(),( rsJsRYrsYsRJrs nnnnn −=φ is the positive root of

 .0),( 21 =Rsnφ  

Applying the Hankel transform to Eq. (5.7.6), we obtain 
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Applying the Hankel transform to Eq. (5.7.7), we obtain 
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Applying Laplace transform to Eq. (5.7.11), we obtain 
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Substitute Eq. (5.7.12) into Eq. (5.7.13), we obtain 
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Applying Inverse-Laplace transform to Eq. (5.7.14) and taking into account the 

following result [117] 
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The expression of the velocity field can be written as
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5.8 Results 

As shown in below diagrams, the velocity ),( trv  given by Eq. (5.7.17) has been 

drawn against r for different values of the time t, constants and other relevant 

parameters. The velocity component v is decreasing function of r. Figure 5.20 shows 
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the influence of the time on the fluid motion. As expected, the velocity is increasing 

function with respect to t. The kinematic viscosityυ , as result from Fig. 5.21, has a 

strong influence on the velocity. The result indicates that the velocity is increasing 

function ofυ . The influences of the relaxation and retardation times on the fluid 

motion are shown in the figures 5.22 and 5.23.It indicates that the velocity is 

decreasing function of λ and rλ . Figure 5.24 show the influence of the fractional 

parameter α  on the fluid motion. It is clearly seen from the figure that the velocity is 

increasing function ofα . In figure 5.25, it is shown the influence of the fractional 

parameterβ  on the fluid motion. It is clearly seen from the figure that the velocity is 

decreasing functionβ . Figure 5.26 show the influences of p on the fluid motion. It is 

clearly seen from the figure that the velocity is increasing function of p. figures 5.27 

and 5.28 show the influences of1f  and 2f on the fluid motion. Figure 5.29 show the 

influence of µ  on the fluid motion. It is clearly seen from the figure that the velocity 

is increasing function ofµ . 
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        Figure 5.21
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      Figure 5.23
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       Figure 5.25
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      Figure 5.27
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        Figure 5.29

 

 

.  of values

different and  2p  ,6.0  0.9,  ,5.2  11,  0.04, ,5 ,4 ,3

,5.0  ,3.0for  (5.7.17) Eq.by given  t) v(r,  velocity theof Profiles  5.29  Fig.

r21

21

µ
βαλλυ =========

==
stff

RR

 

5.9 Conclusions 

The purpose of this chapter is to establish exact solutions for the velocity field 

corresponding to the flow of Oldroyd-B fluid in the annular region between two 

infinitely long coaxial cylinders. In part-A, the motion is produced by a constant 

pressure gradient and the inner cylinder pulled with constant shear and outer cylinder 

is moving with time dependent velocity. In part-B, the motion is produced by a 

constant pressure gradient and inner cylinder is moving with constant velocity while 

the outer cylinder is fixed. In part-C, the motion of the fluid is produced by the inner 

cylinder pulled with a constant shear and outer cylinder is moving with time 

dependent velocity. This solution is obtained by using Hankel transform and Laplace 

transform methods and the result is presented in terms of generalized G functions. 

This solution satisfies the governing equation and all imposed initial and boundary 

conditions. The velocity field is also analyzed using graphical illustration for various 

parameters, constants and fractional coefficients. 
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Chapter 6. Exact solutions for the 

helical flow of fractional Oldroyd-B 

fluid in a circular cylinder 
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Oldroyd-B fluid in a circular cylinder, Advances in Applied Mathematics and 

Mechanics (communicated). 



Chapter 6                                                                                                                                                 80 

 

6.1 Introduction 

This chapter presents and analyzes the velocity fields and the adequate shear stresses 

corresponding to the helical flow of fractional Oldroyd-B fluid. The fluid is assumed 

to be present in a circular cylinder. We use sequential fractional derivatives Laplace 

transform and finite Hankel transforms to reach to desired results. The results are 

presented in terms of generalized G function and they are free from convolution 

products. Subsequently, we impose appropriate limits to derive solutions for ordinary 

Oldroyd-B fluid, Newtonian fluid, ordinary Maxwell fluid and fractional Maxwell 

fluid. Further, this chapter demonstrates the influence of various physical parameters 

on velocity and shear stress and presents the results graphically. Finally, a comparison 

is drawn and discussed among different models. 

 

6.2 Governing equations 

The constitutive equations of an incompressible Oldroyd-B fluid are given by [21, 

71,118] 

           ,SpIT +−= (6.2.1)              )],([)( T
r

T ALLAAASLLSSS −−+=−−+ && λµλ
 

 

where T is the Cauchy stress tensor, pI−  denotes the indeterminate spherical stress, 

S is the extra-stress tensor, λ  and rλ are relaxation and retardation times, TLLA += is 

the first Rivlin-Ericksen tensor with L the velocity gradient, µ  is the dynamic 

viscosity, the superscript T indicates the transpose operation and the dot denotes the 

material time differentiation. 

 
In cylindrical coordinates ),,( zr θ  the helical flow velocity field V and extra 

stress S are defined as  

(6.2.2)                                      ,),(           ,),(),(),( trSSetrvetrwtrVV z =+== θ
 

where θe  and Ze are the unit vectors in the θ and zdirections. The fluid is assumed to 

be at rest at t=0, then 

 

         (6.2.3)                                                  0.)0,(            0,(r,0) == rSV  
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Eqs. (6.2.1) and (6.2.2) imply 0 ==== zzzrr SSSS θθθ   and relevant equations  

          ( ) ( ) (6.2.4)                               ),,(
1

1),(1 1 trw
rr

DtrD trt 






 −
∂
∂+=+ βα λµτλ  

             ( ) ( ) (6.2.5)                                 ,
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1),(1 2 r

trv
DtrD trt ∂

∂+=+ βα λµτλ
 

where θτ rS=1 and rzS=2τ  are the shear stresses. The equation of motion, in the 

absence of a pressure gradient in the axial direction and neglecting body forces, leads 

to the relevant equations 
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Eliminating 1τ
 
and 2τ

 
between Eqs. (6.2.6) and (6.2.7), we obtain 
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where
ρ
µυ =  is the kinematic viscosity, ρ is the constant density of the fluid and βtD  

is the Caputo fractional derivative of order β  as defined by [64]
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where ).(Γ  is the Gamma function. This model can be reduced to ordinary Oldroyd-B 

model when α→1 and β →1. 
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6.3 Helical flow through an infinite circular 

cylinder 

Let us consider an incompressible fractional Oldroyd-B fluid at rest in an infinite 

circular cylinder of radius R. At time t=0+, the cylinder begins to oscillate around its 

axis with the velocity tR ωsin and to slide along the same axis with the velocityaUt , 

where ω  is the angular frequency of velocity, U and aare constants. The appropriate 

initial and boundary conditions are
 

         

       (6.3.1)                                                                                 ,0)0,()0,( == rvrw
 

and 

                 (6.3.2)                0.a   0,       t,),(          ,sin),( ≥≥== aUttRvtRtRw ω  

In order to solve this problem, we use fractional derivative Laplace and finite Hankel 

transforms. 

 

6.3.1 Calculation of the velocity field 

Applying Laplace transform to Eqs. (6.2.8) and (6.2.9), in terms of sequential 

fractional derivative Laplace transform [64] and using the initial conditions as given in 

Eq. (6.3.1), we obtain 
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Applying Laplace transform to Eq. (6.3.2), we obtain 
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Multiplying both sides of Eqs. (6.3.3) and (6.3.4) by )( 11 nrrrJ and ),( 00 nrrrJ

respectively, integrating them with respect to r from 0 to R and taking into account the 

following results 
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are the Hankel transform of ),( qrw  and ),( qrv , while nr1 and nr0  are the positive 

roots of the  transcendental equations 0)(1 =RrJ  and 0)(0 =RrJ  respectively. The 

inverse Hankel transform, as defined by [116], can be given as 
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Applying inverse Hankel transform to Eqs. (6.3.8) and (6.3.9), we obtain 
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Applying Inverse-Laplace transform to Eqs. (6.3.13) and (6.3.14), taking into account 

the following results [117]
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6.3.2 Calculation of the shear stress 

Applying Laplace transform to Eqs. (6.2.4) and (6.2.5), we obtain 
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Substitute Eqs. (6.3.13) and (6.3.14) into Eqs. (6.3.19) and (6.3.20), we obtain 
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Applying inverse Laplace transform to Eqs. (6.3.21) and (6.3.22), then using Eqs. 

(6.3.15) and (6.3.16), we obtain 
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6.4 Limiting Cases 

6.4.1 Ordinary Oldroyd-B fluid 

Applying 1→α  and   1→β into Eqs. (6.3.17), (6.3.18), (6.3.23) and (6.3.24), we 

obtain the velocity field  
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and the tangential stress corresponding to ordinary Oldroyd-B fluid performing the 

same motion.   
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6.4.2 Fractional Maxwell fluid 

Applying 0→rλ  into Eqs. (6.3.17), (6.3.18), (6.3.23) and (6.3.24), we obtain the 

velocity field  
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and the shear stress corresponding to the fractional Maxwell fluid performing the 

same motion.
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6.4.3 Ordinary Maxwell fluid 

Applying 0→rλ and 1→α  into Eqs. (6.3.17), (6.3.18), (6.3.23) and (6.3.24), we 

obtain the velocity field  
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and its associated tangential stress corresponding to ordinary Maxwell fluid 

performing the same motion.
 

(6.4.11)                                                                                                                       
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6.4.4 Newtonian Fluid 

Applying 0→λ  into Eqs. (6.4.9), (6.4.10), (6.4.11) and (6.4.12) and taking into 

account the following result [22] 
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we obtain the corresponding solutions for the Newtonian fluid as follows 
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6.5 Conclusions and Numerical results 

In this chapter, we obtained and presented a solution for the helical flow of an 

incompressible fractional Oldroyd-B fluid. The motion is created as cylinder begins to 

oscillate around its axis and slides along the same axis with prescribed velocity. The 

expressions for the velocity fields and the shear stresses have been determined using 
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Laplace transform of sequential fractional derivatives and finite Hankel transforms in 

terms of generalized G function and they satisfy all the initial and boundary 

conditions. Furthermore, our solutions can be simplified for Newtonian fluids and 

some non-Newtonian fluids such as ordinary Oldroyd-B fluid, fractional Maxwell 

fluid, ordinary Maxwell fluid. Thus, the technique and the fractional Oldroyd-B model 

will be useful in the theory of non-Newtonian fluids.  

In order to demonstrate impact of physical parameters, the obtained results are 

presented in the form of diagrams for both components of the velocity and shear 

stresses. They are given by Eqs. (6.3.17), (6.3.18), (6.3.23) and (6.3.24) and have been 

drawn against r for different values of the time t and other relevant parameters as 

shown in diagrams. It can be observed from figures that the velocity component 

),( trv decreases with the radius r. Figure 6.1 shows the fluid motion at different times. 

It is observed that the velocities are increasing while the shear stresses area decreasing 

function of time t. Figure 6.2 shows the effect of different values of kinematic 

viscosity on the fluid motion. It indicates that the velocity profiles increase while the 

shear stresses decrease, when kinematic viscosity increases. The dependencies of the 

relaxation and retardation times on the fluid motion are shown in the figures 6.3 & 

6.4. The figures indicate that both components of velocity are decreasing and the shear 

stresses are increasing function of.λ  As well as the velocities are increasing and the 

shear stresses are decreasing function of retardation time rλ . Fig. 6.5 demonstrates the 

velocities and the shear stresses changes with the fractional parameterα . It can be 

observed that the two components of the velocity increases while the shear stresses 

decreases with increasing value ofα . The influence of the fractional parameter β on 

the fluid motion is shown in figure 6.6. It indicates that the velocity profiles are 

decreasing and the shear stresses are increasing function ofβ. 

Figure 6.7 exhibits a comparative diagram of  both components of velocity and 

the shear stresses corresponding to the motions of a fractional Oldroyd-B fluid, 

ordinary Oldroyd-B fluid, fractional Maxwell fluid, ordinary Maxwell fluid and 

Newtonian fluid in a circular cylinder, for same values of the common material 

constants and time t. In all cases, the velocities of the Newtonian fluid are the swiftest 

while they are slowest for the fractional Maxwell fluid on the whole flow domain. 

Similarly, shear stresses on the whole flow domains are highest for fractional Maxwell 

fluid while it is slowest for the Newtonian fluid. In all of the figures 6.1-6.7, the units 
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of the material constants are in SI units and the roots nr0 and nr1  have been 

approximated by 
R

n

4

)14( π−
and 

R

n

4

)14( π+
respectively. 
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Figure 6.2
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Figure 6.3
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Figure 6.4
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Figure 6.5
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Figure 6.6
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Figure 6.7
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7.1 Introduction 

The constitutive equations of an incompressible Oldroyd-B fluid, as it is given by Eq. 

(6.2.1), are 

           ,SpIT +−= (7.1.1)              )],([)( T
r

T ALLAAASLLSSS −−+=−−+ && λµλ
 

where T, pI− , S, λ , rλ , A, L, µ , the superscript T and  
.

S  have the same significance 

as before.
 The intent of this chapter is to propose the exact solution for the velocity field 

and shear stress of rotational flow for fractional Oldroyd-B fluid filled between two 

coaxial circular cylinders. At time t=0+, the inner cylinder begins to rotate about its 

axis with a time dependent shear stress while outer cylinder is moving at a constant 

velocity. We use Hankel and Laplace transforms to reach the exact solution. The 

obtained solutions are presented in terms of generalized G functions and satisfy all the 

initial and boundary conditions. The solution of ordinary Oldroyd-B fluid, fractional 

Maxwell fluid, ordinary Maxwell fluid and Newtonian fluid are obtained by limiting 

cases of 1, →βγ ; 0→rλ ; 1   ,0 →→ γλr  and 0→λ  respectively. The expression 

for the velocity field and shear stress are in the most simplified form and are free from 

convolution product. 

 

7.2 Governing equations 

Consider an incompressible fractional Oldroyd-B fluid that has a velocity v and extra 

stress S as given by 

              (7.2.1)                              ),,(             ,),(),( trSSetrwtrvv === θ  

where θe  is the unit vector in the θ direction of the cylindrical coordinates. 

At time t=0, the fluid is at rest in an annular region between two infinite 

coaxial circular cylinders. At time t=0+, the inner cylinder begins to rotate about its 

axis with a time dependent shear stress and the outer cylinder moving at a constant 

velocity. For these flows, the constraint of incompressibility is automatically satisfied. 

Initially the fluid is at rest, hence 
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    (7.2.2)                                                                    0.)0,(            0,(r,0) == rSV  

The governing equations corresponding to an incompressible fractional 

Oldroyd-B fluid are [22] 

          ( ) ( ) (7.2.3)               );,(
11

1
),(

1
22

2

trw
rrrr

D
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trw
D trt 
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          ( ) ( ) (7.2.4)                     ).,(
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1),(1 trw
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DtrD trt 






 −
∂
∂+=+ βγ λµτλ

 

where  ),(),( trStr rθτ = is the non-trivial shear stress, r  and  λλ are relaxation and 

retardation times respectively, 
ρ
µυ =  is the kinematic viscosity, ρ is the constant 

density of the fluid and β
tD  is the Caputo fractional derivative of order β  as defined 

by [64]
 

(7.2.5)                                      
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where ).(Γ  is the Gamma function. 

     

7.3 Flow through the annular region between 

moving outer and rotating inner cylinders 

Let us consider an incompressible fractional Oldroyd-B fluid at rest in infinite coaxial 

circular cylinders. At time t=0+, the inner cylinder begins to rotate about its axis with 

a time dependent shear stress and outer cylinder moving at a constant velocity. Also, 

consider that radius of inner and outer cylinders are 1R  and )( 12 RR >  respectively. At 

time t=0+, a time dependent shear stress [22] 

            
(7.3.1)                           1,0          ;,

1
),( 1,

1
1 <≤







−= − γ
λλ

τ γ tR
f

tR  
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is applied at the boundary of the inner cylinder, where 1f  is a constant and generalized 

function R is define by [117] 

       

(7.3.2)                                                 .1
q

d
     0,Re(q)     ,0)Re(
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The governing equations are given by Eqs. (7.2.3) and (7.2.4), while appropriate 

initial and boundary conditions are   

                        (7.3.3)                                                        0,(r,0)      ,0)0,( == τrw  

and 

            

( ) ( )
(7.3.4)                                                                                0,     ;),(
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1

1),(1

22

111

>=
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 −
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∂+=+ ==

tftRw

ftrw
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DtrD RrtrRrt
βγ λµτλ

 

where 2f  is the constant velocity of outer cylinder. Eq. (7.3.1) is the solution of first 

equation of (7.3.4). To solve this problem we use Laplace and Hankel transforms. 

 

7.3.1 Calculation of the velocity field 

By applying Laplace transform to Eq. (7.2.3) and using the initial conditions as given 

in Eq. (7.3.3), we obtain 

                      ( ) ( ) (7.3.5)               ).,(
11

1),(
22

2
1 qrw

rrrr
qqrwqq r 
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∂
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∂
∂+=+ + βγ λυλ  

Applying Laplace transform to Eq. (7.3.4), we obtain 

         
(7.3.6)                                                                                               .),(
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The Hankel transform method with respect to r is used and defined as follows [17] 
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(7.3.7)                                   ,),(),(),(

2

1

drrrBqrwrqrw
R

R

nnH ∫=

    

where                                    

     (7.3.8)                           ),()()()(),( 112121 nnnnn rrYrRJrRYrrJrrB −=  

nr  being the positive roots of the transcendental equation 0),( 2 =rRB . The inverse 

Hankel transform, as defined by [17], is given by  

      
(7.3.9)                         ).,(

)()(

),()(

2
),(

1 2
2
11

2
2

2
2
1

22

qrw
rRJrRJ

rrBrRJr
qrw nH

n nn

nnn
∑

∞

= −
= π

 

Multiplying both sides of Eq. (7.3.5) by rB(r, rn) and integrating with respect to r from 

R1 to R2, Taking into account the Eq. (7.3.6) and the equality 
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(7.3.10)                                                                                                                               
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we obtain 

(7.3.11)                                                                                                                          
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Rewriting Eq. (7.3.11) into a suitable equivalent form, we obtain below 
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(7.3.12)                                                                                                                        
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Applying inverse Hankel transform to Eq. (7.3.12) and taking into account the 

following result  
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we obtain 
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Taking into account the following result  
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we find Eq. (7.3.14) as  
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(7.3.16)                                    .
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Applying Inverse-Laplace transform of Eq. (7.3.16) and taking into account the 

following result [117] 
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7.3.2 Calculation of the shear stress 

Applying Laplace transform to Eq. (7.2.4), we obtain
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Now, we rewrite Eq. (7.3.11) in a more suitable equivalent form for the shear stress
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Applying inverse Hankel transform to Eq. (7.3.20), we obtain  
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where 
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Substitute Eq. (7.3.22) into Eq. (7.3.19), we obtain 
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Substitute Eq. (7.3.15) into Eq. (7.3.23), we obtain 
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Applying inverse Laplace transform to Eq. (7.3.25) and using Eq. (7.3.17), we obtain 
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7.4 Limiting cases 

7.4.1 Ordinary Oldroyd-B fluid 

Applying 1→γ  and   1→β into Eqs. (7.3.18) and (7.3.26), we obtain the velocity 

field  
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and the tangential stress corresponding to ordinary Oldroyd-B fluid performing the 

same motion. 
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7.4.2 Fractional Maxwell fluid 

Applying 0→rλ  into Eqs. (7.3.18) and (7.3.26), we obtain the velocity field  
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7.4.3 Ordinary Maxwell fluid 

Applying 0→rλ and 1→γ  into Eqs. (7.3.18) and (7.3.26), we obtain the velocity 

field  
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and its associated tangential stress corresponding to ordinary Maxwell fluid 

performing the same motion. 
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7.4.4 Newtonian Fluid 

Applying 0→λ  into Eqs. (7.4.5) and (7.4.6) and taking into account the following 
result [17]  
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we obtain the corresponding solutions for the Newtonian fluid as follows 
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These solutions can also be written in a simpler form as 
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7.5 Conclusions and Numerical results 

The main objective of this chapter is to provide exact solution for the velocity field 

and shear stress of rotational flow for fractional Oldroyd-B fluid between two coaxial 

circular cylinders where inner cylinder is rotating with a time dependent shear stress 

and outer circle is moving at a constant velocity. This solution is obtained by using 

Hankel transform and Laplace transform methods and the result is presented in terms 

of generalized G function. The similar solutions for ordinary Oldroyd-B fluid, 

Fractional Maxwell fluid, ordinary Maxwell fluid, Newtonian fluid are also obtained 

as limiting cases of the solution for fractional Oldroyd-B fluid.  

As shown in below diagrams, the velocity ),(trw  and the shear stress ),(trτ  

given by Eqs. (7.3.18) and (7.3.26) have been drawn against r for different values of 

the time t, 1f , 2f and other relevant parameters. The velocity component w and the 

shear stress component τ are decreasing function of r. The fluid motion and the shear 

stress are relatively higher at the neighborhood of the inner cylinder for given 

boundary conditions and 1f <0, 2f >0. The influence of time t on the fluid motion is 

shown in figure 7.1. It can be seen that the velocity and the shear stress are decreasing 

function of time t. Figures 7.2(a) and 7.2(b) are showing the effect of different values 

of kinematic viscosity on the fluid motion. The result indicates that the velocity 

decreases while the shear stress increases when kinematic viscosity decreases. The 

dependencies of the relaxation and retardation times on the fluid motion are shown in 

the figures 7.3 and 7.4. It indicates that the velocity is decreasing and the shear stress 

is increasing function ofλ . Also, the velocity and the shear stress are decreasing 

function of retardation timerλ . Figures 7.5(a) and 7.5(b) indicate that the velocity and 

the shear stress are decreasing function of .γ  Figures 7.6(a) and 7.6(b) are showing the 
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effect of different values of fractional parameter β  on the fluid motion. It can be seen 

that the velocity is decreasing while the shear stress is increasing function ofβ . 

Figures 7.7 and 7.8 are showing the behavior of 1f  and 2f on the fluid motion for their 

different values. Figure 7.9 is showing a comparison diagram of the velocity ),( trw  

and the shear stress ),( trτ among corresponding five models (fractional Oldroyd-B 

fluid, ordinary Oldroyd-B fluid, Fractional Maxwell fluid, ordinary Maxwell fluid and 

Newtonian fluid) for same values of the common material constants and time t.  In all 

cases the velocity of the fluid is a decreasing function w.r.t. r and the ordinary 

Maxwell fluid is the swiftest while the fractional Oldroyd-B fluid has the smallest 

velocity on the whole flow domain.  In all of the figures 1-9, the units of the material 

constants are in SI units and the root nr  has been approximated by .
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Figure 7.1
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Figure 7.3
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Figure 7.5 
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Figure 7.7 
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Figure 7.8 
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