Techno-economic Comparison of Small Scale Solar Thermal and Solar Photovoltaic Cooling Systems

Ph.D. Thesis

by

BACHCHU LAL (ID No. 2008 RME 902)

DEPARTMENT OF MECHANICAL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR November 2015 In memory of my beloved late father

Techno-economic Comparison of Small Scale Solar Thermal and Solar Photovoltaic Cooling Systems

Submitted by

BACHCHU LAL (ID No. 2008 RME 902) (MECHANICAL ENGINEERING DEPARTMENT)

Under the supervision of

Dr.-Ing. Jyotirmay Mathur Professor

Department of Mechanical Engineering,

M.N.I.T. Jaipur, India.

Submitted in fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

to the

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

November 2015

© MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR-2014

ALL RIGHTS RESERVED.

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

DEPARTMENT OF MECHANICAL ENGINEERING

CERTIFICATE

This is to certify that the thesis entitled "*Techno-economic Comparison of Small Scale Solar Thermal and Solar Photovoltaic Cooling System*" is being submitted by *Bachchu lal (ID No.2008 RME902)* to the Malaviya National Institute of Technology, Jaipur for the award of the degree of **Doctor of Philosophy** in Mechanical Engineering is a bonafide record of original research work carried out by him. He has worked under my guidance and supervision and has fulfilled the requirement for the submission of this thesis, which has reached the requisite standard.

The results contained in this thesis have not been submitted in part or full, to any other University or Institute for the award of any degree or diploma.

Date:

Dr.- Ing. Jyotirmay Mathur

Professor Dept. of Mechanical Engg. Malaviya National Institute of Tech. Jaipur, Rajasthan, INDIA

ACKNOWLEDGEMENT

It gives me great pleasure in expressing my sincere thanks to my thesis supervisor, honorable **Dr.-Ing. Jyotirmay Mathur,** Professor, Mechanical Engineering Department Malaviya National Institute of Technology, Jaipur, for his valuable guidance, encouragement and support at each and every step in the completion of this work. His encouragement and broad influence has given me much confidence to pursue professional knowledge and develop my career. It was due to his immense keenness and continuous attention that this present work could take a final picture. I will be thankful throughout my life to him.

I express my gratitude to Head of Department, **Prof. Rakesh Jain** and DRC Chairman of Mechanical Engineering Department, **Prof G. S. Dangayach for** providing valuable suggestions and words of encouragement.

I am also thankful to all the members of my doctoral research committee, **Prof. S.L.Soni, Prof. Dilip Sharma, Dr.G.D.Agrawal**, and **Dr. Nirupam Rohatgi** who have provided valuable suggestions and support during the completion of my research work.

I am grateful to **Col.(Dr) Ranjeet Singh** Principal Govt. Engineering College, Bharatpur and **Dr. M M Sharma** Ex-principal Govt. Engineering College, Bharatpur, for allowing me to pursue this work at MNIT jaipur and for his invaluable support and advice. I am also thankful to all staff members of Govt. Engineering College, Bharatpur.

I am heartily thankful to all staff member of Mechanical Engineering Department, Center of Energy and Environment and staff members involved in the project CBERD Malaviya National Institute of Technology, Jaipur for their help in making the experimental facility and conducting the research work.

I am grateful to my parents, in-laws, brothers and their families, sister and her family for their support, good wishes and blessings for my successful completion of research work. I am grateful to my wife **Mrs. Poonam Gupta** for her understanding and moral support during this period inspite of her bad health. I appreciate her patience, encouragement and the pains taken in looking after the entire family. I am glad to express my sincere thanks to my little daughters **Vanshika Gupta and Dishika Gupta**.

I am also immensely grateful to my research colleague-friend Mr. Mayank Bhatanagar, for his big-hearted help and unwavering support and encouragement throughout the course of research work. I am indebted to many of my friends, Mr. Lalit Kumar Joshi, Ms. Anupma, Mr. Hemant kumar Gupta, Mr. Kamlesh Jagratwal, Mr. Sumit Sharma, Mr. Sanjay, Mr. Vaibhav, Mr. Abhay, Mr. Yasin, Mr. Prateek, Mr. Anuj Mathur, Mr. Anirudh Batwara, Mr. Rahul Khatri,Mr.Dharmendra, Mr. Rajesh Verma, Mr Rajesh Chedwal, Ms. Sunita Sharma and Mr. Indra Kumar for helping me throughout my Ph.D. work. I would also thank my friend Dr. Deepak Sharma, Assistant Professor, MSJ College, Bharatpur, for his support in removing grammatical error in the thesis.

I am also thankful to **Mr. Arvind Gupta** Director (Climatech Aircon Engineers Pvt. Ltd. Jaipur) and his family for their valuable support and blessings.

Last but not least I wish to express my gratefulness to God and my friends, relatives, colleagues and students for their support, assistance and encouragement.

Place: Jaipur Date:

(Bachchu Lal Gupta)

ABSTRACT

This study covers the techno- economic comparison between solar energy based cooling systems using solar thermal and solar photovoltaic (PV) technology. Analysis has been carried through simulation of a typical office building considered to be located in four different cities, representing four climatic zones of India namely Hot and dry, Warm and humid, Moderate, and Composite. The fifth climatic zone of the country i.e. Cold and cloudy has not been considered due to very less and practically insufficient cooling demand as compared to other four. For both the cooling technologies multiple options have been considered; flat plate, evacuated and compound parabolic collector for solar thermal and mono crystalline, poly crystalline and thin film for PV. A single effect lithium bromide vapour absorption chiller has been considered for producing cooling effect in the solar thermal route, where as vapour compression cycle based cooling system is modeled in photovoltaic route. For a comparative analysis, the building geometry, user profile and construction have been considered identical for chosen locations in four climatic zones; Ahmedabad from hot and dry zone, Bangalore from moderate zone, Chennai from warm and humid zone and Delhi from composite zone. Energy simulation of building and coupled solar cooling system has been carried using TRNSYS v-17 software. Numerous iterations were carried out for different technology versions and with a wide variance of collector/PV area.

It has been analyzed that solar thermal cooling system offers a higher solar fraction and primary energy savings than its photovoltaic counterpart for the same collector/PV area for all climatic zones because in the thermal cooling system there is a storage device (hot storage tank) between the solar thermal collector and cooling machine resulting in continuous operation of vapour absorption machine without using the grid power for small fluctuation in solar radiations.

In the solar photovoltaic cooling system (grid supported) the annual solar fraction is calculated without considering the storage device. The vapour compression machine (Packaged air conditioner) requires a fix amount of power to drive the

compressor, if instantaneously it is available on PV it is supplied to the cooling system otherwise it is taken from the grid and not accounted for calculation of the annual solar fraction.

As compared to a conventional non solar air conditioner the primary energy savings reaches up to 74 % in the solar thermal cooling system for moderate climate because of the low cooling energy demand while in the solar photovoltaic primary energy savings reaches 60% in the moderate climate (Bangalore).

From the economic point of view the solar thermal cooling system using an absorption chiller has a high initial cost compared to vapour compression system resulting in higher payback periods (65-242 years) which is much higher than the system life itself, practically being the case of no payback period. The solar photovoltaic cooling system also has higher payback periods, however it is significantly lower than solar thermal systems in all the climatic zones and the least being 14 years for the hot and dry climate. When PV based systems are optimally used with net metering provisions during the non cooling periods then the payback period reduces to 4-6 years for all the four climate zones.

In order to increase the solar fraction of the PV cooling systems various techniques were analyzed using tracking, thermal mass, modifying sizing approach of air conditioner and use of VRF technology. It was observed that using VRF technology solar fraction reaches in the range of 0.84 to 0.95 from earlier range 0.37 to 0.60 as in the case of non VRF compressor. The payback comes down to 11 years for the warm and humid climate. By using the modified approach for sizing air conditioner due to higher indoor air velocity, the capacity of air conditioner reduced from 10 TR to 7 TR, which in turn increased the solar fraction to the ranges of 0.77 to 0.89 from earlier range 0.37 to 0.60. The payback comes down upto 10 year for the warm and humid climate as compared to 15 year in earlier case. Use of double axis tracker enhanced the solar fraction only by 5 to 9 %, and therefore its payback period increases over non tracking system. Use of thermal mass in building envelope was not found to have significant impact on solar fraction.

On the basis of techno-economic analysis, considering the prevailing costs and performance levels solar thermal cooling systems for small office building are not financially feasible. However this type of systems may be feasible in the remote areas where the grid electricity is not available and local generation of electricity is too costly. Grid supported solar PV based cooling system (using non VRF compressor) have higher financial payback than the acceptable limit of market. However use of VRF technology and modifying sizing approach of air conditioner makes the PV cooling system technically feasible. The financial feasibility with use of VRF technology and modifying sizing approach of air conditioner found to be closed to acceptable limit. Introducing the net metering system for small scale systems through modifying in renewable energy policy, brings the payback period of solar PV based cooling system significantly down and to the level of acceptance in free market. Hence this study recommends use of solar photovoltaic based cooling system through VRF compressor based air conditioner, used modified sizing approach and introduction of net metering systems with the utility.

TABLE OF CONTENTS

	Ackno	owledgement	i-ii
	Abstra	act	iii-v
	Table	of Contents	vi-x
	List of	f Figures	xi-xv
	List of	f Tables	xvi
	Nome	nclature	xvii-xx
	List of	f Abbreviations	xxi-xxii
1.	INTR	ODUCTION	1-13
	1.1	Solar Cooling Systems	2
		1.1.1 Solar thermal cooling systems	4
		1.1.2 Solar electric cooling systems	7
	1.2	Solar Cooling System: Application, Problems and Prospects	10
	1.3	Origin of the Problem	11
	1.4	Scope of Present Research	11
	1.5	Outline of the Thesis	13
2.	LIT	ERATURE REVIEW	14-55
	2.1	Studies on Solar Thermal Cooling Systems	14
		2.1.1 Solar vapour absorption system studies	14
		2.1.2 Solar vapour adsorption system studies	28
		2.1.3 Solar desiccant cooling system studies	37
		2.1.4 Solar hybrid desiccant system studies	43
		2.1.5 Working fluids and materials studies	44
	2.2	Studies on Solar Photovoltaic Cooling System	47
		2.2.1 Modeling and simulation studies	47
		2.2.2 Experimental studies	48
	2.3	Comparative Studies between Solar Thermal and Photovoltaic Cooling System	52
	2.4	Summary and Research Gaps	53
	2.5	Area Identified for Further Research	54
3.	MAT	ERIALS AND METHODS	56-116
	3.1	Description of Methodology	56
	3.2	Simulation Tools	58
		3.2.1 TRNSYS v17	58
		3.2.2 TRANSOL PRO v 3.1	63

	3.2.3	Energy Plus v8.1	63
3.3	Descr	ription of Building Coupled with Solar Air	67
	Cond	itioning	
	3.3.1	Building envelope	67
	3.3.2	Building heat gains	70
	3.3.3	Building cooling load analysis	71
3.4	Descr	iption of Analyzed Solar Thermal Cooling Systems	75
	3.4.1	Solar thermal collector	77
	3.4.2	Solar heat exchanger	81
	3.4.3	Hot storage tank	81
	3.4.4	Vapour absorption chiller	81
	3.4.5	Cold storage tank	84
	3.4.6	Cooling tower	85
	3.4.7	Cold distribution system	85
	3.4.8	Control strategy	85
3.5	Descr	iption of Analyzed Solar Photovoltaic Cooling	87
	Syster	ms	
	3.5.1	Photovoltaic panel	88
	3.5.2	Inverter	97
	3.5.3	Air conditioner	100
	3.5.4	Cooling strategy	102
3.6	Syster	m Analysis under Different Climatic Conditions	102
	3.6.1	Climatic Classification /Zones in India	102
	3.6.2	Weather data analysis	107
3.7	Basis	of Performance Analysis	111
	3.7.1	Annual total electricity consumption	111
	3.7.2	Annual useful solar heat	112
	3.7.3	Annual net collector efficiency	112
	3.7.4	Specific useful net collector output	113
	3.7.5	Solar fraction	113
	3.7.6	Electrical (Grid) COP	113
	3.1.1	Annual primary energy consumption	113
20	5.7.8 Ein on	Relative primary energy savings	114
3.8	r man 3 Q 1	Capital cost	114 117
	3.0.1	Annual operation and maintenance cost	114
	383	Cost of saved primary energy	114
	384	Pavhack period	115
	3.8.5	Internal rate of return (IRR)	115

4	PER COO	FORMA LING S	NCE YSTE	ANALYSIS M	OF	SOLAR	THERMAL	117-156
	4.1	Model	ing of	Solar Thermal	Coolii	ng System		117
	4.2	Model	Valida	ation of Solar T	Therm	al Cooling	System	117
		4.2.1	Annua	al cooling load o	of build	ling		119

	4.2.2	Annual heat produced by solar collector	119
	4.2.3	Annual net collector efficiency	120
	4.2.4	Annual absorption and compression cooling	121
	4.2.5	Specific useful net collector output	122
	4.2.6	Monthly model validation	122
4.3	Perfo	rmance Analysis of Solar Thermal Collector	127
	4.3.1	Specific useful net collector output	127
	4.3.2	Net collector efficiency	129
4.4.	Perfo	rmance Analysis of System	132
	4.4.1	Solar fraction	132
	4.4.2	Electrical (Grid) COP of system	135
4.5	Energ	y and Economic Analysis	137
	4.5.1	Primary energy savings	137
	4.5.2	Specific primary energy savings	139
	4.5.3	Economic analysis	142
	4.5.4	Cost per unit primary energy saved	149
4.6	Sensit	tivity Analysis	152
	4.6.1	Total investment cost sensitivity analysis	152
	4.6.2	Electricity cost sensitivity analysis	154
4.7	Sumn	nary of Chapter	156

5 PERFORMANCE ANALYSIS OF SOLAR PHOTOVOLTAIC 157-183 COOLING SYSTEM

5.1	Modeling of Solar Photovoltaic Cooling System		
5.2	Perfo	rmance Analysis of Photovoltaic Panel	158
	5.2.1	Annual power generation	158
	5.2.2	Capacity utilization factor (CUF)	160
5.3	Perfo	rmance Analysis of System	161
	5.3.1	Solar fraction	161
	5.3.2	Electrical (Grid) COP of system	165
5.4	Energ	y and Economic Analysis	167

		5.4.1	Primary energy savings	167
		5.4.2	Specific primary energy savings	169
		5.4.3	Economic analysis	170
		5.4.4	Cost per unit primary energy saved	178
	5.5	Sensit	ivity Analysis	179
		5.5.1	Total investment cost sensitivity analysis	179
		5.5.2	Electricity cost sensitivity analysis	182
	5.6	Summ	nary of Chapter	183
6	COM PHO	PARIS FOVOL	ON OF SOLAR THERMAL AND SOLAR TAIC COOLING SYSTEMS	184-194
	6.1	Techn	ical Comparison	184
		6.1.1	Solar fraction	184
		6.1.2	Primary energy savings	188
		6.1.3	Electrical (Grid) COP of system	190
	6.2	Econo	omical Comparison	192
		6.2.1	Payback periods	192
		6.2.2	Internal rate of return	194
7	PER SYST	FORMA 'EM	ANCE ENHANCEMENT OF PV COOLING	195-223
	7.1 Tı	racking	Systems	195
	,	7.1.1 Tra	cking system modeling	196
	,	7.1.2 Per	formance analysis of PV cooling system with tracking	199
	7.2 TI	hermal	Mass	200
	7	.2.1 Ther	mal mass modeling	201
	7	7.2.2 Perf	formance analysis of PV cooling system with thermal mass	204
	7.3 M	odifying	Air Conditioning System Sizing Approach	205
	7.	3.1 Anal	ysis of Peak Cooling Load Hours	205
	7.	3.2 Utiliz	zing high air velocity	206
	7	.3.3 Perfe	ormance analysis of PV cooling system with modified size	207
	7.4 Va	ariable	Refrigerant Flow (VRF)	212
	7	.4.1 VRF	System Modelling	213
	7	.4.2 Perfe	ormance analysis of PV cooling system with VRF	215
	7.5 St	ımmary	of Chapter	220
8	CON	CLUSI	ON AND FUTURE WORKS	221-227
	81	Summ	narv of Work	221

8.2	Techn	ical Feasibility	221
	8.2.1	Solar fraction	222
	8.2.2	Primary energy savings	224
8.3	Finan	cial Feasibility	226
8.4	Scope	of Future Work	227
Refere	ences		231-243
Apper	ndix		
Appen perform	dix: A	I-12 Solar Thermal Cooling System - Energy and cost sheet	244-255

P ····································	
Appendix: B1-12 Solar Photovoltaic Cooling System - Energy and cost performance sheet	256-267
Appendix: C – Fresh air Requirements through ventilation	268
Appendix: D- Construction Material Properties	269
Appendix: E – Calculation of Primary Energy Conversion Factor	269
Appendix: F-1-8 Solar Photovoltaic Cooling System (Single and double axis tracking system) - Energy and cost performance sheet	270-277
Appendix: G1-4 Solar Photovoltaic Cooling System (VRF) - Energy and cost performance sheet	278-281
Appendix: H1-4 Solar Photovoltaic Cooling System (Reduced Size 7TR) - Energy and cost performance sheet	282-285
Publication	286
Profile of the Author	287

Figure No.	Title	Page No.
1.1	Overview of physical conversion of solar radiation into cooling	3
1.2	Schematic of vapour absorption system	5
1.3	Schematic diagram of the adsorption refrigerator	6
1.4	Schematic diagram of solar electric compression cooling system	8
3.1	Methodology of research work	57
3.2	Example of domestic hot water system	59
3.3	Online plotter in TRNExe	60
3.4	TRN Build	61
3.5	TRNEdit – Tabbed view to design TRNSED applications	62
3.6	Overall EnergyPlus Structure	64
3.7	Integrated Simulation Manager	65
3.8	Heat balance Phenomenon of EnergyPlus	66
3.9	Building System Simulation Manager	66
3.10	(a) 3 D view of Building (b) Plan of Building	69
3.11	Monthly variation of peak cooling load	72
3.12	Monthly cooling demand (kWh _{th}) (a) Sensible, (b) Latent and (c) Total	73
3.13	Zone wise annual cooling load kWhth/m2of conditioned area	74
3.14	Annual cooling energy demand and Peak cooling load	75
3.15	Solar thermal cooling system-SCH 601	77
3.16	Flat Plate collector – Cross section	78
3.17	Typical construction of Flat plate collector	78
3.18	Schematic diagram of an evacuated tube collector	79
3.19	Compound parabolic collector	80
3.20	Collector efficiency versus the difference	81

LIST OF FIGURES

Figure No.	Title	Page No.
3.21(a)	Schematic of solar vapour absorption cooling system	82
3.21(b)	Pressure Temperature diagram	82
3.22	Schematic of model used in TRANSYS for PV air conditioner	87
3.23	Equivalent electrical circuit four parameter	91
3.24	Equivalent electrical circuit five parameter model[TRNSYS]	95
3.25	Climate zone map of India	103
3.26	Monthly variation of temperature (a) Ahmedabad, (b) Bangalore, (c) Chennai and (d) Delhi	108-109
3.27	Monthly variation of relative humidity	110
3.28	Monthly average variation of global horizontal radiation	111
4.1	Annual cooling demand for the simulated cases	119
4.2	Annual heat produced by solar collector for simulated cases	120
4.3	Net collector efficiency	120
4.4	Annual absorption cooling	121
4.5	Annual compression cooling	121
4.6	Specific useful net collector output	122
4.7	Monthly cooling demand for case No. 3	123
4.8	Solar heat production	124
4.9	Solar absorption cooling	126
4.10	Electric compression cooling	126
4.11	Annual electricity consumption	126
4.12	Variation of specific useful net collector output with collector area (a) FPC (b) ETC (c) CPC	128
4.13	Specific useful net collector output (90 m ² FPC)	129
4.15	Variation of net collector efficiency with collector area (a) FPC (b) ETC (c) CPC	131
4.16	Variation of solar fraction with collector area (a) FPC (b) ETC (c) CPC	134
4.17	Variation of electrical COP (Grid) of the system with collector area (a) FPC (b) ETC(c) CPC	136

Figure No.	Title	Page No.
4.18	Variation of primary energy savings with collector area (a) FPC (b) ETC (c) CPC	138
4.19	Variation of specific primary energy savings with collector area (a) FPC (b) ETC (c) CPC	141
4.20	Capital costs with collector area	143
4.21	Annual maintenance cost with collector area	144
4.22	Annual cost (using collector area 90 m^2)	146
4.23	Cost per unit primary energy saved (a) FPC (b) ETC(c) CPC	151
4.24	Influence of total investment cost variation on (a) Annual capital cost (b) Annual maintenance cost (c) Payback time (Collector area -100 m^2 , warm and humid climate)	153
4.25	Influence of electricity cost variation (a) Annual electricity savings (b) Annual net savings (c) Payback time	155
5.1	Annual power generation with PV area (a) Mono (b) Poly (c) Thin-film	159
5.2	CUF for Mono, Poly and Thin-film in considered climates	160
5.3(i)	Annual solar fraction with PV area (a) Mono (b) Poly (c) Thin-film	162
5.3 (ii)	Annual solar fraction (net metering) with PV area (a) Mono (b) Poly (c) Thin-film	164
5.4	Electrical (Grid) COP with PV area (a) Mono (b) Poly (c) Thin-film	166
5.5	Primary energy savings with PV area (a) Mono (b) Poly (c) Thin-film	168
5.6	Specific primary energy savings for Mono, Poly and Thin- film	169
5.7	Capital costs with PV area	171
5.8	Annual maintenance cost with PV Area	172
5.9 (a)	Payback (Grid supported)	175
5.9 (b)	Payback net metering	176
5.10	Internal rate of return (IRR) - Net metering	177
5.11	Internal rate of return (IRR) – Grid supported	177
5.12	Cost per unit Primary Energy Saved for Mono, Poly and Thin-film	179

Figure No.	Title	Page No.
5.13	Influence of total investment cost variation on (a) Total capital cost (b) Annual maintenance cost (c) Payback time	181
5.14	Influence of electricity prices on payback time	182
5.15	Influence of Electrical Prices on Payback time	183
6.1	Annual solar fraction comparison for thermal and photovoltaic cooling (a) 70 m^2 (b) 90 m^2 (c) 110 m^2	185
6.2	Annual solar fraction comparison - Hot and dry climate (Ahmedabad)	186
6.3	Annual solar fraction comparison – Net metering	187
6.4	Primary energy savings comparison for solar thermal and photovoltaic cooling (grid supported) (a) 70 m ² (b) 90 m ² (c) 110 m^2	189
6.5	Electrical (Grid) COP comparison for solar thermal and photovoltaic cooling (grid supported) (a) 70 m ² (b) 90 m ² (c) 110 m^2	191
6.6	Payback periods (a) Solar thermal (b) Solar photovoltaic (Grid supported) (c) Solar photovoltaic (Net metering)-Collector/PV area-90m ²	193
7.1	Annual power generation with PV area (a) Hot and dry (Ahemdabad) (b) Moderate (Bangalore) (c) Warm and humid (Chennai) (d) Composite (Delhi)	197
7.2	Annual Solar Fraction with PV area (a) Hot and dry (Ahemdabad) (b) Moderate (Bangalore) (c) Warm and humid (Chennai) (d) Composite (Delhi)	198
7.3	Comparison of Electrical COP (PV area-90 m ²)	199
7.4	Comparison of Payback time (PV area90 m ²)	200
7.5	Variation of Annual Cooling Energy Demand	202
7.6	Comparison of Peak Cooling Load	202
7.7	Hourly profile of peak cooling load for hot and dry climate (a) Feb 1/2 and (b) May 1/2	203
7.8	Comparison of solar fraction for different climates with thermal masses	204
7.9	Annual Load Duration Curve	206

Figure No.	Title	Page No.
7.10	Air speed required offset increased temperature [ASHRAE 55-2004]	207
7.11	Variation of Solar Fraction with PV area	208
7.12	Comparison of Solar Fraction	208
7.13	Day Night profile of Cooling Load, Power Generation, and Consumption	209
7.14	Day Night profile of Temperature on 19 April (Hot and dry climate Ahmedabad)	210
7.15	Comparison of Electrical COP (PV area-90m ²)	211
7.16	Payback Time (PV area -90m ²)	212
7.17	Comparison of Cooling Load [Hot and dry climate - Ahemedabad]	214
7.18	Comparison of Power Generation [70 m ² PV Area Mono crystalline]	215
7.19(a)	Variation of Solar Fraction with PV area	216
7.19(b)	Comparison Solar Fraction (PV area-90m ²)	216
7.20	Comparison of PV generation and consumption [Hot and dry climate (Ahemdabad) PV area 90 m ²]	217
7.21	Comparison of annual electrical energy consumption	218
7.22	Comparison of Electrical COP [PV area-90 m ²]	219
7.23	Comparison of payback time COP [PV area-90 m ²]	219

Table No.	Title	Page No.
1.1	Advantage and disadvantage of solar thermal cooling systems	7
2.1	Summary of solar absorption cooling systems	26
2.2	Summary of solar adsorption cooling systems	35
2.3	Summary of solar desiccant cooling systems	41
2.4	Summary of solar photovoltaic cooling systems	51
3.1	Building zone area and WWR	67
3.2	Building construction details	68
3.3	Internal load on Building	71
3.4	Solar collector parameters used in simulation	80
3.5	Pump flow rates and power consumption	87
3.6	Parameter of photovoltaic panel used for simulation	97
3.7	Classification of climates	103
3.8	Classifications of different climates zones in India	106
3.9	Climatic condition of different representative cities	111
4.1	Climatically conditions in Palermo, Madrid and Stuttgart	118
4.2	Cases considered for the simulation	118
4.3	Cooling demand	123
4.4	Solar heat production (MBE= 2% RMSE=99.58 CV= 2.17%)	125
4.5	Cost and parameters considered in the calculation	142
4.6	Total annual cost	147
4.7	Payback time	148
5.1	Cost and parameters considered in the calculation	170
5.2	Operational cost	173
5.3	Total annual cost	174

LIST OF TABLES

Notation	Description	Unit
А	Collector area	m ²
a_1 and a_2	Collector loss coefficients.	W/m ² -K
C _p	Specific heat of the water	kJ/kg-K
G _T	Solar radiation intensity	W/m ²
h	Convective heat transfer coefficient of air	Wm ⁻² °C ⁻¹
kWh _{el}	Electrical energy	kWh
kWh _{th}	Energy in cooling	kWh
1	Volume	liter
Q_1	Annual radiation on solar collectors	kWh
Q ₂	Annual heat produced by solar collectors	kWh
Q ₃	Annual required heat for ACM	kWh
Q ₄	Annual heat removed by cooling tower	kWh
Q5	Annual cooling produced by ACM	kWh
Q ₆	Annual cooling produced by electrical chiller	kWh
Q ₇	Annual overall cold production	kWh
Q ₈	Annual cooling demand	kWh
Q9	Annual heating demand	kWh
Q ₁₀	Annual heat demand for domestic hot water	kWh
Q ₁₁	Annual heating provided by backup of the thermal solar system	kWh
Q ₁₂	Annual heating provided by the solar collectors	kWh
Q ₁₃	Annual heat for domestic water provided by the backup of the thermal solar system	kWh
Q ₁₄	Annual heat for domestic hot water provided by the solar collectors	kWh
Qc	Condenser capacity	kW
Qe	Evaporative capacity	kW
Q_{g}	Generative capacity	kW
Qs	Thermal storage capacity	m ³
Rs	Indian currency	Rupees
U	Heat transfer coefficient	Wm^{-2} °C ⁻¹
V	Volume of the cold storage tank	m ³
ΔΤ	Temperature difference	°C
η_0	Conversion factor	Unit less

NOMENCLATURE

Notation	Description	Unit
ρ	Density of water	kg/m ³
$\eta_{sol\text{-}pow}$	Efficiency of solar panel	Unit less
$\eta_{\text{pow-cool}}$	Efficieny of refrigeration machine	Unit less
$\eta_{sol\text{-}cool}$	Overall efficiency of solar electric cooling system	Unit less
β	Slope of PV array	degree
γ	Empirical PV curve-fitting parameter	
η _c	Module conversion efficiency	Unit less
μ_{Isc}	Temperature coefficient of short-circuit current	A/K
μ_{Voc}	Temperature coefficient of open-circuit voltage	V/K
τα	Module transmittance-absorptance product	
Ι	Current	А
IL	Module Photo current	А
I _{L,ref}	Module photocurrent at reference conditions	А
I _{o,ref}	Diode reverse saturation current at reference conditions	А
I _{sc}	Short-circuit current	А
I _{sc,ref}	Short-circuit current at reference conditions	А
I _{mp}	Current at maximum power point along IV curve	А
I _{mp, ref}	Current at maximum power point along IV curve, reference conditions	А
IAM	Dimensionless incidence angle modifier	Unit less
G _T	Total radiation incident on PV array	W/m ²
G _{T,Beam}	Beam component of incident radiation	W/m ²
G _{Tdiff}	Diffuse component of incident radiation	W/m ²
G _{T,gnd}	Ground-reflected component of incident radiation	W/m ²
G _{T,NOCT}	Incident radiation at NOCT conditions	W/m ²
G _{T,ref}	Incident radiation at reference conditions	W/m ²
R _s	Module series resistance	Ω
R _{sh}	Module shunt resistance	Ω
NP	Number of modules in parallel in array	Unit less

Notation	Description	Unit
NS	Number of modules in series in array	Unit less
V	Voltage	V
V _{mp}	Voltage at maximum power point along IV curve	V
V _{mp,ref}	Voltage at maximum power point along IV curve, reference conditions	v
V _{oc}	Open-circuit voltage	V
V _{oc,ref}	Open-circuit voltage at reference conditions	V
P _A	Power from the solar cell	kJ/hr
P _D	Power demanded by load	kJ/hr
P _L	(+) Power sent to load from array and battery (-) Power sent to battery from utility	kJ/hr
P _{LMAX}	Output capacity of inverter (or if negative, Input current limit)	kJ/hr
P _R	Power "dumped" or not collected	kJ/hr
P _U	Power supplied by $(P_U > 0)$ or fed back to $(P_U < 0)$ utility	kJ/hr
P _B	Power to or from battery (+ charge, - discharge	kJ/hr
P _{BMAX}	Maximum Input (charge)	kJ/hr
P _{BMIN}	Minimum output (discharge) of battery	kJ/hr
P _C	Allowed charge rate when battery at high voltage limit VC	kJ/hr
P _{vd}	Allowed charge rate when battery is at low voltage limit $V_{\rm D}$	kJ/hr
F	Fractional state of charge of battery $(1.0 = \text{full charge})$	Unit less
F _C	High limit on F, when battery charging	Unit less
F _B	Limit on F, above which battery can begin to discharge after being charged	Unit less
F _D	Low limit on F, when battery discharging	Unit less
V	Battery voltage (and solar cell array voltage, in mode 3)	V
V _C	High limit on V, when battery charging	V
V _D	Low limit on V, when battery discharging	V
Efficiency 1,2	Power efficiencies of regulator and inverter (DC to AC and AC to DC)	Unit less
T _{evap,in}	Temperature of air entering the evaporator side of the coil	°C
h _{evap,in}	Enthalpy of air entering the evaporator side of the coil	kJ/kg

Notation	Description	Unit	
P _{evap,in}	Pressure of air entering the evaporator side of the coil	atm	
ω _{evap,in}	Humidity ratio of air entering the evaporator side of the coil	kg H ₂ O/kg air	
T _{evap,out}	Temperature of air exiting the evaporator side of the coil	°C	
h _{evap,out}	Enthalpy of air exiting the evaporator side of the coil	kJ/kg	
P _{evap,out}	Pressure of air exiting the evaporator side of the coil	atm	
@ _{evap,out}	Humidity ratio of air exiting the evaporator side of the coil	kg H ₂ O/kg air	
Q _{Total}	Rate of total energy transferred by the coil	kJ/hr	
Q Rejested	Rate of energy rejected by the coil to ambient	kJ/hr	
Q _{Sensib;le}	Rate of sensible energy transferred by the coil	kJ/hr	
SHR	Sensible heat ratio	Unit less	
m _{evap}	Flow rate of air on the evaporator side of the coil	kg/hr	
Pwr _{Total}	Total power draw by the air conditioner (residential cooling coil)	kJ/hr	
Х	Mass fraction of LiBr	%	
T _{sol}	Solution temperature	°C	
T _{ref}	Refrigerant temperature	°C	
h _{sol}	LiBr solution enthalpy	kJ/kg	
T _{avg}	Average temperature of fluid	°C	
T _{amb}	Ambient temperature	°C	

LIST OF ABBREVIATIONS

AC	Alternating Current
ACH	Air Change per Hour
ACM	Absorption Cooling Machine
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
BEE	Bureau of Energy Efficiency
CEA	Central Electricity Authority
CERC	Central Electricity Regulatory Commission
CFCs	Chloro- Fluoro Carbons
СОР	Coefficient of Performance
COPs	Solar COP
CPC	Compound Parabolic Collector
CST	Cold Storage Tank
CSTB	Canadian Software Testing Board
CV	Coefficient of Variance
DBT	Dry Bulb Temperature
DC	Direct Current
DECS	Desiccant Evaporative Cooling Systems
ECBC	Energy Conservation Building Code
ETC	Evacuated Tube Collector
FPC	Flat Plate Collector
HCFCs	Hydrochlorofluorocarbures
HFCs	Hydrofluocarbues
HST	Hot Storage Tank
HVAC	Heating, Ventilation and Air Conditioning
INR	Indian Rupees
IPCC	Intergovernmental Panel on Climate Change
IRR	Internal rate of return
kWh	Kilo Watt Hours
LiBr	Lithium Bromide

LiCl	Lithium Chloride
MBE	Mean Bias Error
MJ	Mega Joule
MNRE	Ministry for New and Renewable Energy Source
NPV	Net Present Value
OSE	Overall System Efficiency
РСМ	Energy Consumed by Compression Chiller (kWh)
РСТ	Energy Consumed by Cooling Tower (kWh)
PE	Primary Energy
PTAC	Packaged Terminal Air Conditioner
PV	Photo Voltaic
RH	Relative Humidity
SF	Solar Fraction
SHE	Solar Heat Exchanger
SPCS	Solar Photovoltaic Cooling System
STCS	Solar Thermal Cooling System
TEWI	Total Equivalent Warming Impact
TR	Tonne of Refrigeration
TRNSYS	TRaNsient Systems Simulation Program
VAM	Vapour Absorption Machine
VCS	Vapour Compression System
VRF	Variable Refrigerant Flow
WWR	Window to Wall Ratio
BLAST	Building Loads Analysis and System Thermodynamics