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Abstract 

 

This thesis studies the vibrational behaviour of a rotating twisted tapered Timoshenko beam  

following the detailed formulation a FEM code in Matlab was constructed. The analytical 

results was matched with the published work. The stiffness and mass matrices of a rotating 

twisted and tapered beam element are derived. The angle of twist, breadth and depth of beam 

are assumed to vary linearly along the length of the beam. The effect of shear deformation 

and rotary inertia are also considered in deriving the element matrices. The first nine natural 

frequencies and mode shapes in bending-bending mode are calculated for free-free beamand 

first 6 natural frequency and mode shapes in x-z plane and y-z are made using matlab.  
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Chapter 1 Introduction 

 

1.1Introduction 
 

Rotating beams has been widely used in modelling of several engineering components, such 

as compressor blades ,turbine blades, propellers, robot manipulators ,helicopter rotor and 

spinning space structures. Rotating Euler Bernoulli beam model is the the topic of many 

studies in open literature. yet, application of the Timoshenko Beam Theory that accounts for 

rotary inertia and shear deformation effects is crucial  when the dimensions of the beam 

cross-section are equivalent to the beam length and when higher modes are required. 

 

 It is well-known that beams are very common types of  components and can be categorized 

according to their geometric configuration as tapered or uniform and thick and slender . It is 

used in many engineering applications and a large number of researches can be found in 

literature about transverse vibration of uniform isotropic beams. But if practically analysed, 

the non-uniform beams may provide a improved or more appropriate distribution of strength  

and mass than uniform beams and as a result can meet special functional requirements of 

robotics ,turbine blade, architecture, aeronautics, architecture and other new engineering 

applications and it have been the subject of numerous studies. Non-prismatic members are 

being increasingly used in diversities as for their aesthetic ,cost-effective,  and other 

considerations. 

 

Design of such to reduce mechanical vibrations,  mode localization  requires a knowledge of 

their natural frequencies and the mode shapes of vibration. For the tapered beam vibration 

analysis Timoshenko beam theory is used. Free vibration analysis that has been done in here 

is a process of describing a beam in terms of its natural characteristics which are the 

frequency and mode shapes.  Change of modal characteristics directly provides an indication 

of beam condition based on changes in frequencies of vibration and mode shapes. Many 

methods  have been many methods developed yet now for calculating the frequencies and 

mode shapes of beam. Due to advancement  in computational techniques and accessibility of 

software, FEA is quite a less cumbersome than the conventional methods. 
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In this work, the "Finite element technique is applied to "Find the natural frequencies and 

mode shapes of beams in the bending-bending mode of vibration by taking into account the 

taper, the pre-twist and the rotation simultaneously. The coupling that exists between the 

flexural and torsional vibration is not considered. The taper and the angle of twist are 

assumed to vary linearly along the length of the beam. The element stiffness and mass 

matrices are derived and the effects of depth and breadth taper ratios, angular velocity and 

pre-twist on the natural frequencies are studied.  

1.2 Thesis outline 
 

This thesis contains six chapter organised as follows 

 Chapter 1 gives an introduction of tapered beam and various practical uses of these 

beam 

 Chapter 2 gives literature review which gives the idea about various work that has 

been already done on these beam 

 Chapter 3 gives mathematical formulation of pre-twisted tapered Timoshenko beam 

 Chapter 4 gives procedure to find the natural frequency and mode shapes 

 Chapter 5 gives values of mode shape and natural frequency and their diagram 

 Chapter 6 gives conclusions and future work 
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Chapter 2 Literature Review 
 

 

2.1 Literature review 

Mabie and Rogers [1] developed the differential equation from the Euler-Bernoulli  equation 

for the free vibration of a tapered cantilever beam. The beam tapers linearly in the horizontal 

and in the vertical planes simultaneously. The effects of different taper ratio on the vibration 

frequency have been analysed. 

 

Mabie and Rogers [2] studied the free vibrations of non-uniform cantilever beams with an 

end support have been investigated, using the equations of Bernoulli‐ Euler. Two 

configurations of interest are treated in their analysis (a) constant width and linearly variable 

thickness and (b) constant thickness and linearly variable width. Charts have been plotted for 

each case.  

 

Sharp and Cobble [3] derived the equation of motion of beam for a uniform cross‐ section 

damped beam elastically restrained against rotation at either ends. This has been solved for 

the displacement under very general  distributed load conditions. The result is based on the 

properties of Hermitian operator.  

 

Carnegie &Thomas [4] determined the natural frequencies and mode shapes of vibration of 

tapered ,pre-twisted cantilever blades which is of great importance in the design of many 

engineering components. These include turbine blading, helicopter rotor blades, compressor 

blading and aircraft propeller blades.  

 

Chun [5] considered the free vibration of a beam hinged at one end by a rotational spring 

with a constant spring constant and the other end free. The beam  includes the „simply 

supported-free‟ beam and the „clamped-free‟ beam as the limiting cases of the zero spring 

constant and the infinite spring constant, respectively. Normal functions derived here can be 

of use to an approximate analysis for rectangular plate vibrations when one pair of the 

parallel edges is of the spring hinged-free type. 
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Goel [6] investigated the transverse vibrations of linearly tapered beam, elastically restrained 

against rotation at one of the end. He studied the vibration characteristics of beam which 

carries a concentrated mass. He assumed that one end of the beam is free and the other end is 

hinged by a rotational spring of constant stiffness. Results for the first three Eigen 

frequencies with different values of stiffness ratios (ratio of spring stiffness and beam 

stiffness at either end) and taper ratio are shown. Other cases of a tapered cantilever beam 

with a concentrated mass at the free end and spring hinged at the other end have also been 

presented. 

 

Hibbeler [8] studied the free vibration analysis of a beam having a combination of clamped 

or ideally pinned end supports. In many real cases, however, beams are subjected to a certain 

amount of bending stiffness at their end support. He analysed and considered such a case 

assuming the beam to be spring-hinged at both ends. The general frequency equation and the 

normal mode function are derived for the case when the spring stiffness at each support is 

dissimilar. The first five roots of this equation are computed and presented in a tabulated 

form so that the roots may be obtained for a variety of spring support and boundary 

conditions. Tapered beams have been analysed by many investigators using different 

technique 

 

Gupta [9] developed the stiffness and consistent mass matrices for linearly tapered beam 

element of any cross-sectional shape. Variation of area and moment of inertia of the cross 

section along the axis of the element was exactly represented by simple functions involving 

shape factors  

 

Raju et al. [10] studied the free vibration analysis of beam using the simple finite element 

mehtod. They applied it to the huge amplitude vibrations for different conditions i.e. clamped 

tapered beams and simply supported with linearly varying breadth and depth tapers.  

 

M.A De Rosta  and  N.M Aucie [13]  studied the dynamic behaviour of beams with linearly 

varying cross-section is studied, in the presence of axially and rotationally flexible ends. The 

equation of motion was solved in the form Bessel functions and the boundary conditions lead 

to the frequency equation which is a function of four flexibility coefficients. 
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B Posidala [14] studied the problem of free transverse vibrations of Timoshenko beams with 

attachments like translational and rotational springs  concentrated mass including the moment 

of inertia  linear undamped oscillators and additional supports is considered. The frequency 

equation for the collective system is derived by means of the Lagrange multiplier . The 

precise solution of the free vibration problem of the beam without attachments is taken into 

account for the formulation of the free vibration problem of the collective system. Numerical 

examples show the isolated or coupling influences of the additional elements on the 

collective system‟s frequencies. The comparison of results obtained from the present 

approach with results of the exact solution indicates a good agreement 

N M Auciello [15] studied  free vibrations of cantilever tapered beams with a mass at the tip. 

The rotatory inertia of the concentrated mass is considered with its eccentricity of mass. The 

non-dimensional frequency coefficients are given in tabular form at the end of the paper and 

comparisons with other results from the literature are presented 

 

Bruce Geist and Joyce [19] studied Asymtopic formulas .Asymptotic formulas are derived 

for the eigenvalues of a free-ended Timoshenko beam which has variable mass density and 

constant beam parameters . These asymptotic formulas show how the eigenvalues and hence 

how the natural frequencies of such a beams depend upon the material and geometric 

parameters which appear as coefficients in the Timoshenko differential equations. 

G.Falsone and  D.Settineri [20] studied a new finite element approach for the solution of the 

Timoshenko beam is shown. Similarly to the Bernoulli-Euler beam theory, it has been 

assumed a single fourth order differential equation governs the equilibrium of the 

Timoshenko beam. The results obtained through this approach are very good, both in terms of 

computation and accuracy effort. 

 J. R. Banerjee AND A. J. Sobey [21] find The kinetic energy of the rotating Timoshenko 

beam element  from the velocity components 

H. Ante [22] studied fundamental solutions for the second order differential equations of 

Timoshenko_s theory 

2.2 Research Gap 

Mabie and Rogers  studied the free vibrations of non-uniform cantilever beams with an end 

support have been investigated, using the equations of Bernoulli‐ Euler. Carnegie &Thomas [ 

determined the natural frequencies and mode shapes of vibration of tapered ,pre-twisted 
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cantilever blades. Hibbeler studied the free vibration analysis of a beam having a combination 

of clamped or ideally pinned end supports. Gupta developed the stiffness and consistent mass 

matrices for linearly tapered beam element of any cross-sectional shape. B Posidala  studied 

the problem of free transverse vibrations of Timoshenko beams with attachments like 

translational and rotational springs  concentrated mass. G.Falsone and  D.Settineri  studied a 

new finite element approach for the solution of the Timoshenko beam. J. R. Banerjee And A. 

J. Sobey  find The kinetic energy of the rotating Timoshenko beam element  from the 

velocity components. 

 

2.3 Research Objective  

In this work the finite element method is applied for finding the frequencies of natural 

vibration of doubly tapered and twisted beams. The stiffness and mass matrices of the beam 

element are developed by taking bending deflection, bending slope, shear deflection and 

shear slope in two planes as nodal degrees of freedom. The effects of shear deformation and 

rotary inertia, which are of significant importance at higher modes of vibration, are 

considered in the derivation. The natural frequencies of vibration have been calculated for a 

pre-twisted double tapered beam by using the finite element method . The mass matrix and 

the stiffness matrix is calculated using Mathmaitica software and various natural frequency 

are calculated using Matlab software and also mode shapes in both y-z plane and x-z plane 

are plotted.th 
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Chapter 3 Mathematical Modelling 

 

 

3.1 Displacement model  

Figure 3.1 (a) shows a doubly tapered, twisted beam element of length l with the nodes as l 

and 2. The breadth, depth and the twist of the element are assumed to be linearly varying 

along its length. The breadth and depth at the two nodal points are shown as  ,    and   ,      

respectively. The pre-twist at the two nodes is denoted by θ1 andθ2. Figure 3.1(b) shows the 

nodal degrees of freedom of the element where bending deflection, bending slope, shear 

deflections and shear slope in the two planes are taken as the nodal degrees of freedom. 

Figure 3.1(c) shows the angle of twist θ at any section z. The beam is assumed to rotate about 

the x-x-axis at a speed of Ω rad/s. The total deflections of the element in the y and x directions 

at a distance z from node 1, w(z) and v(z), are taken as 

 ( )     ( )     ( )     ( )     ( )     ( )                                                                   (   ) 

 

Where    ( ) and   ( ) are the deflections due to bending in the yz and xz planes 

respectively, and   ( )and   ( ) are the deflections due to shear in the corresponding planes. 

 

The displacement models for     ( )    ( )   ( ) and   ( )  are assumed to be polynomials 

of third degree. They are similar in nature except for the nodal constants. These expressions 

are given by 

   
  

  
(           )  

  

  
(        )  

  

  
(           )

 
  

  
(      )                                                                                                      (   ) 

  

   
  

  
(           )  

  

  
(        )  

  

  
(           )  

  

  
(   

   )                                                                                                                                                      (   )         

   
  

  
(           )  

  

  
(        )  

  

  
(           )

 
  

  
(      )                                                                                                    (   ) 

   
  

  
(           )  

  

  
(        )  

  

  
(           )

 
  

  
(      )                                                                      (   ) 
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Where u
1
, u

2
, u

3
 and u

4
 represent the bending degrees of freedom and u

5
, u

6
, u

7
and u

8
 are the 

shear degrees of freedom in the yz plane; u
9
, u

10
, u

11
 and u

12
 represent the bending degrees of 

freedom and u
13

, u
14

, u
15

 and u
16

 shear degrees of freedom in the xz plane. 
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Figure 3-1:(a) An element of tapered and twisted beam, (b) degrees of freedom of an element, (c) angle of 

twist h,(d) rotation of tapered beam 

. 

 

3.2 Calculation of shape function 

The analysis of two dimensional beams using finite element formulation is identical to matrix 

analysis of structures. The Bernoulli- Euler beam equation is based on the assumption that the 

plane normal to the neutral axis before deformation remains normal to the neutral axis after 

deformation but not in Timoshenko beam. Since there are four nodal variables for the beam 

element, a cubic polynomial function for y(z), is assumed as  

 ( )            
      

                                                                                             (    ) 

From the assumption for the Euler-Bernoulli beam, slope is computed from Eq. (3.6) is  

𝜃( )         
        

                                                                                                      (   ) 

Where             are the constants. The Eq.(3.6) can be written as 

                  ( )  ⌈              ⌉ [

    

  
  

  

]                                                                                 (   )                                                                         

 ( )  [ ][ ] 

Where 

[ ]  ⌈              ⌉ 
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[ ]      [

    

  
  

  

] 

 

For convenience local coordinate system is taken z1=0, z2=l that leads to  

                

             
      

  

                
  

[

  

  
  

  

]  [

   
   

 
 

    

    
  

   

] [

  

  
  

  

] 

[ ]  [ ][ ][ ]  [ ]  [ ] 

Eq. (3.8) can be written as 

 ( )  [ ][ ]  [ ] 

 ( )  [ ][ ] 

Where 

[ ]  [ ][ ]   

[ ]   

[
 
 
 
 
 
          
          

   
   

  

  
  

 

 

  

 

  
 

  
  

  

  

 
  

  ]
 
 
 
 
 

 

[H] = [H1(z), H2(z), H3(z), H4(z)]  

Where Hi(z) are called as Hermitian shape function whose values are given below  

   
 

  
(           )   

 
  

(        ) 

   
  

  
(           )   

  

  
(      )                                        (3.9) 

 

3.3 Element stiffness matrix 

3.3.1 Expression for strain energy (u) 

3.3.1.1 Strain energy due to bending 

 If the bending deflections in yz and xz planes of a beam are   and     , respectively, the 

axial strain and stress induced due to    an d      are given by     due to     
    

   
 - 
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    due to     
    

   
and  xx due to     

    

   
  xx due to      

    

   
 .The strain energy 

stored in the beam due to bending is given by U due to bending 

        
 

 
∫          
 

 

        
 

 
∫(                            )(                            )   
 

 

 

 
 

 
∫  
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)

 

 

 
 

 
∫  
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     (
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      ] 

 
 

 
∫  

 

 

 [
     

 
(
    

   
)

 

 
     

 
(
    

   
)

 

      

    

   

    

   
   ]                                    (    ) 

 

 

 Where V is the volume, l is the length and A is the cross-sectional area of the beam 

 

 

3.3.1.2 Strain energy due to shearing 

Let    and    be the shear forces that produce the shear deflections    and    in an element 

of length dz respectively. Then the strain energy of the beam due to shearing is given by  

                
 

 

 
∫ (  

   
  

   
   

  
)

  

 

   

 

Substituting    
   

  
 and    

   

  
for    and     respectively, one  can obtains 

 

                 ∫
   

 
*(

   

  
)
 

 (
   
  

)
 

+
  

 

   

 

3.3.1.3. Strain energy due to rotation 

The rotation of a beam induces an axial force P in the beam due to centrifugal action. If the 

beam is bending in the yz plane (Figure 3.2), the change in the horizontal projection of an 

element of length ds is given by 
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Figure 3-2: An element of the beam in equilibrium 

      ,(  )  (
  

  
  )

 

-

 
 

    
 

 
(
  

  
)
 

 

Since the axial force P acts against the changes in the horizontal projection, the work done by 

P is given by 

             
 

 
∫  ( ) (

  

  
)
 

  
 

 

 

The work done by the transverse distributed force   ( )can be written as 

        
  

 

 
∫   ( )   

 

 

 

 

 

 

 

 

 

 

 

                

 

                     

 

              

 

The expressions corresponding to the bending of the beam in the xz plane can be obtained 

similarly as 

             
 

 
∫  ( ) (

  

  
)
 

  
 

 

 

        
  

 

 
∫   ( )   

 

 

 

The total strain energy of the beam can be obtained as given in equation (3.11) by combining 

above equations  
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3.3.1.4. Expression for kinetic energy  

Consider a small element of area dA and length dz at a point in the cross-section having co-

ordinates (x, y) with respect to x- and y-axes. The kinetic energy of this element is given by 

 

  
[( ̇   ̇ )  (  ̇

 
   ̇

 
)
 

]      

Where  ̇
 
 and  ̇

 
 denote the bending slopes,  vb/ z and  wb/ z, respectively, and a dot over 

a symbol represents derivative with respect to time. Integrating this equation over the beam 

cross-section, the kinetic energy of an element of length dz can be obtained as  

 

   
 

  
[ ( ̇   ̇ )  (    ̇        ̇  ̇      ̇ 

 )]   

The kinetic energy of the entire beam (T) can be expressed as  

 

  ∫
  

  
[ ( ̇   ̇ )  (    ̇        ̇  ̇      ̇ 

 )]
 

 

   

 

 

3.3.2 Stiffness matrix 

The total strain energy U of a beam of length l, due to bending and shear deformation 

including rotary inertia and rotation effects is given by 

 

  ∫ [{
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Where  
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 )  (     )  
 

 
  ]                                    (    ) 

 

  ( )  
    

  
(     )                                                                                                 (    ) 

 

  ( )  
    

  
 (     )                                                                                        (    )    

Where e is the offset and    is the distance of the first node of the element from the root of 

the beam as shown in Figure 3.1(d), and P(z) is the axial force acting at section z. 

As the cross-section of the element changes with z and as the element is twisted, the cross-

sectional area A, and the moments of inertia     ,     and     will be function of z.  

 

 ( )   ( ) ( )  {   (     )
 

 
} {   (     )

 

 
} 

 
 

  
(   

          
 ) 

Where 

   (     )(     )  

     (     )    (     )  

        

   ( )           𝜃           𝜃  

   ( )           𝜃           𝜃  

   ( )  (           )
    𝜃

 
 

 

 

Where      and      are the axes inclined at an angle 𝜃, the angle of twist, at any point in the 

element, to the original axis xx and yy as shown in Figure 1(c).The value of          and the 

value of       and        can be computed as 
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Where  

   (     )(     )
   

      (     )
    (     )(     )

       

         (     )
    (     ) (     )    

   

        
 (     )  (     )  

  

       
      

 

By substituting the expressions of    ,    ,   ,   , A,    ,     and     from equations (3.2), 

(3.3),(3.4) ,(3.5),(3.15)and (3.16) into equation (3.11), the strain energy U can be expressed 

as 

 

  
 

 
  [ ]                                                                                   (3.17) 

 

Where u is the vector of nodal displacements u
1
 , u

2
 , . . . .  , u

16
, and [K] is the elemental 

stiffness matrix of order 16. Denoting the integrals 
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And 

 

∫
     

 
  

 
 

 

    [           ]
  [  ][           ]                                                       (    ) 

 

The element stiffness matrix can be given  such as 

                            

 

[ ]

 [

[  ]  [  ]  [  ] [  ]  [  ] [  ] [ ]
[  ]  [  ] [  ]  [  ]  [  ] [ ] [ ]

[  ] [ ] [  ]  [  ]  [  ] [  ]  [  ]
[ ] [ ] [  ]  [  ] [  ]  [  ]  [  ]

] (    ) 

 

elements are formulated. [0] is a null matrix of order 4.where [AK], [BK], [CK], [DK], [EK] 

and [FK] are symmetric matrices of order 4 and their 

 

3.4 Element mass matrix 

The kinetic energy of the element T considering the effects of shear deformation and rotary 

inertia is given by 
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By defining 
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Where  ̇  denotes the time derivative of the nodal displacement   
i
, i=1, 2,.. . ., 16, the kinetic 

energy of the element can be expressed as 

 

 

  
 

 
 ̇ [ ]  ̇                                                                       (3.30) 

 

where [M] is the mass matrix given by 
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[  ] [  ] [  ] [ ]
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               (    ) 

 

And [AM], [BM] [CM] and [DM] are symmetric matrices of order 4 . 
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Chapter 4 Numerical analysis 
 

4.1 Numerical analysis 

For numerical analysis a rotating double tapered, twisted-twisted Timoshenko beam is 

considered with the following properties  

Geometrical properties  

Width of the beam =   (at root) =2.54e-2m,            

Depth of the beam =    (at root) = 0.46e-2m,  

Twist angle at root (𝜃1) =0 

Twist angle at free end (𝜃2)=450  

Offset (e)=0 

β =breath taper ratio  =   
  

  
=2.56   

α =depth taper ratio= 
  

  
==2.29 

Length of the beam = 0.1524 m  

Material properties  

Elastic modulus of the beam (E)=2.07e11 N/m
2 

Density = 800 Kg/m
3 

Shear modulus of beam(G)=0.796e11 N/m
2 

 

4.2 Calculation of frequency of free-free beam  

First each component  such as AK,BK,CK,DK,EK,FK for stiffness matrix and 

AM,BM,CM,DM for mass matrix are find out using the MATHEMATICA program by using 

integration function  for single element of beam. Then a global matrix is made for stiffness 

and mass matrix. After that these stiffness and mass matrix are used in MATLAB to find out 

the natural frequency and mode shapes of beam. 
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4.2.1 Calculating stiffness matrix 
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When we calculate integral it is found 
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              (                  )      (                )     

 (                )                

 (               )     (               )    

             (                )                  

By putting the various element found from the above eqn are in [AK] is found which is given 

as 
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Similarly [BK] matrix 
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When we calculate integral it is found 
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Others matrix can also find out  
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After that stiffness matrix is calculated by the relation 

[ ]
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4.2.2 Calculating mass matrix 
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When we calculate integral it is found 
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Similarly other element of mass matrix can be calculated 
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Mass matrix is obtain by various element in below eqn 
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4.2.3: Calculation for natural frequency and mode shape 

 

As we know 

[[ ]  [ ][  ]][ ]       (   ) 
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From the above eqn we can find the all the natural frequency 

Now we will find the mode shape by putting the value of   in eqn (4.1) 
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Chapter 5 Results and Discussions 

 

5.1Free-Free Beam 

5.1.1 Natural Frequency 

 

 

Table 5-1: Nine natural frequency of rotating Timoshenko beam 

Natural Frequency of double tapered pre-twisted rotating twisting Timoshenko beam 

Number 1 2 3 4 5 6 7 8 9 

Frequency(Hz) 60 240 9340 35680 53090 126900 161360 286270 501300 

 

5.1.2 Eigen Vector 

 

 

Table 5-2: Eigenvector corresponding to Eigen values 

Mode Shape or Eigen vector  corresponding natural frequency 

 60 240 9340 35680 53090 126900 161360 286270 501300 

u1 -0.9327 0.0097 -0.0113 -0.0116 0.0066 -0.0185 -0.0018 -0.0047 -0.0059 

u2 -0.9327 0.0180 -0.0288 0.0019 -0.0167 0.0413 0.0026 -0.0159 0.0090 

u3 0.0011 0.1806 -0.4785 -0.8278 0.6244 -0.0778 -0.2579 -0.1348 -0.4821 

u4 0.0016 -0.1828 1 -0.4748 1 -0.2995 -0.3283 0.0353 -0.5412 

u5 0.9329 -0.0001 0 0 0.0001 0.0178 0.0002 0.0048 0.0060 

u6 0.9329 -0.0001 -0.0001 0.0004 0.0001 -0.0398 0.0004 0.0159 -0.0092 

u7 0 0 -0.0009 -0.0031 0.0148 0.0031 0.1110 0.1410 0.4882 

u8 0 0 0.0030 -0.0212 0.0134 0.1926 0.1289 -0.6328 0.6002 

u9 0.8473 -0.0562 -0.0042 -0.0062 0.0030 0.0195 0.0094 0.0028 0.0038 

u10 0.8861 0.0961 -0.0148 0.0255 0.0046 -0.0385 -0.0143 0.0101 -0.0055 
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u11 -0.2546 -0.9988 -0.1426 0.1666 0.1542 0.6932 0.8116 0.0722 0.3060 

u12 -0.2543 -1 0.5564 -1 -0.1302 1 1 -0.4083 0.3653 

u13 -1 0.0023 0 0.0001 0.0001 -0.0276 0.0026 0.0083 -0.0105 

u14 -1 0.0023 0 0.0008 0.0004 0.0618 -0.0057 0.0255 0.0151 

u15 0 0 0.0002 0.0054 0.0052 0.1794 0.1476 0.2632 -0.8411 

u16 0 0 0.0010 -0.0247 -0.0124 -0.0432 0.2293 1 -1 

 

5.1.3 Mode Shape Diagram 

 

 

 

Figure 5-1:Mode shape for 60 Hz in x-z plane 

                                         

 

Figure 5-2:Mode shape for 240 Hz in xz plane 
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Figure 5-3:Mode shape for 9340 Hz in xz plane                                    

 

 

Figure 5-4:Mode shape for 35680 Hz in xz plane 

                                        

 

Figure 5-5:Mode shape for 53090 Hz in xz plane 
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Figure 5-6:Mode shape for 126900 Hz in xz plane 

                                     

 

Figure 5-7:Mode shape for 161360 Hz in xz plane 

                             

 

 

Figure 5-8:Mode shape for 286270 Hz in xz plane                                
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Figure 5-9:Mode shape for 501300 Hz in xz plane 

                       

 

Figure 5-10:Mode shape for 60 Hz in yz plane 

                         

 

Figure 5-11:Mode shape for 240 Hz in yz plane    
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Figure 5-12:Mode shape for 9340 Hz in yz plane                    

 

Figure 5-13:Mode shape for 35680 Hz in yz plane                    

 

Figure 5-14:Mode shape for 53090 Hz in yz plane 
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Figure 5-15:Mode shape for 126900 Hz in yz plane                               

 

Figure 5-16:Mode shape for 161360 Hz in yz plane 

                                  

 

 

Figure 5-17:Mode shape for 286270 Hz in yz plane                                  
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Figure 5-18:Mode shape for 501300 Hz yz plane 

                                        

5.2 Fixed-Free beam 

5.2.1 Natural Frequency 

 

 

Table 5-3:Natural frequency of fixed-free beam 

Natural Frequency of double tapered pre-twisted rotating twisting 

fixed- free Timoshenko beam 

Number 1 2 3 4 5 6 

Frequency(Hz) 2340 9690 17310 46960 87410 26080 

 

 

5.2.2:Eigen vector 
 

 

Table 5-4:Eigenvector corresponding to Eigen values 

Mode Shape or Eigen vector  corresponding natural frequency 

 2340 9690 17310 46960 87410 260800 

u2 -0.0823 0.0179 0.0250 -0.0120 0.1338 0.0160 

u4 1 -1 -1 0.5063 0.8886 -0.6187 

u6 -0.0001 0.0004 -0.0003 0.0004 -0.1427 -0.0161 

u8 0 -0.0034 -0.0104 -0.0270 -0.5119 0.6200 
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u10 -0.0210 0.0443 0.0007 0.0245 -0.0703 -0.0099 

u12 0.4013 -0.8869 -0.3003 -1 -1 0.3819 

u14 0 0.0005 -0.0004 0.0001 0.2235 0.0259 

u16 0 -0.0008 -0.0033 -0.0567 0.5653 -1 

 

 

5.2.3 Mode Shape Diagram 
 

 

 

Figure 5-19:Mode shape for 2340 Hz in x-z plane 

 

 

Figure 5-20:Mode shape for 2340 Hz in y-z plane 
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Figure 5-21:Mode shape for 9690 Hz in x-z plane 

 

Figure 5-22:Mode shape for 9690 Hz in yz plane 

 

 

Figure 5-23:Mode shape for 17310 Hz in x-z plane 
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Figure 5-24:Mode shape for 17310 Hz in y-z plane 

 

 

Figure 5-25:Mode shape for 46960 Hz in x-z plane 

 

Figure 5-26:Mode shape for 46960 Hz in y-z plane 

 

- - - - - - - - -
-

-

-

-

-

-

-

-

-

Mode Shape For 17310hz in yz plane

 

 

undeformed

deformed

- - - - - - - - -
-

-

-

-

-

-

-

-

-

-
Mode Shape For fixed 46960hz in xz plane

 

 

undeformed

deformed

- - - - - - - - -
-

-

-

-

-

-

-

-

-

-

-
Mode Shape For 46960hz in yz plane

 

 

undeformed

deformed



36 
  

 

Figure 5-27:Mode shape for 87410 Hz in x-z plane 

 

Figure 5-28:Mode shape for 87410 Hz in y-z plane 

 

Figure 5-29:Mode shape for 26080 Hz in x-z plane 
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Figure 5-30:Mode shape for 26080 Hz in y-z plane 
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Chapter 6 Conclusions and Future Work 

 

6.1 Conclusions  

(1) The eight-degree-of-freedom pre-twisted Timoshenko beam element is made for the 

vibration analysis of rotating tapered Timoshenko beam. 

(2) The finite element model developed is based on two displacement fields that couple 

the transverse and angular displacements in two planes. The rotary inertia terms are 

included.  

(3) The functions of breadth and depth of the beam of equal strength have been taken into 

account in the derivation of the displacement functions of the finite element model. 

(4) A computer program in Mathematica is developed and then used to evaluate the mass 

and stiffness matrix. 

(5) The model has the considerable advantage of using few variables as nodal freedoms. 

Also, nodal variables facilitate the use of this element in the analysis of general 

structure involving other types of finite element having the same nodal freedoms. 

. 

6.2 Future work  

For future work, it is recommended to apply the proposed numerical method to study free 

vibration problem of a Timoshenko beam with different end condition such as fixed- fixed, 

fixed-hinge , simple supported internal cracks and cantilever and also it can with damaged 

boundaries 
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