DISSERTATION REPORT

ON

PERFORMANCE AND COMBUSTION ANALYSIS OF VARIABLE COMPRESSION RATIO DIESEL ENGINE FUELLED WITH HYDROGEN

Submitted in partial fulfillment of the requirements for the award of degree of

MASTER OF TECHNOLOGY IN ENERGY ENGINEERING

Submitted by

Debasmita Bal (2013PME5119)

Supervised by

Prof. S. L. Soni

Mechanical Engineering Department Malaviya National Institute of Technology Jaipur-302017 June 2015

Α

DEPARTMENTOFMECHANICALENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR(RAJASTHAN)-302017

CERTIFICATE

Thisistocertifythatthedissertationreportentitled "Performance andCombustion analysis of Variable Compression Ratio (VCR) DieselEnginefuelledwithHydrogen "submittedbyMs.DebasmitaBal(IDN0.2013PME5119)totheMalaviyaNationalInstituteofTechnologyJaipurfortheawardofthedegreeofMasterofTechnologyinEnergyEngineeringisabonafiderecordoforiginalworkcarriedoutbyher.Shehasworkedundermyguidanceandsupervisionandhasfulfilledtherequirementfor the submissionofthisthesis, whichhasreachedtherequisitestandard.

Date:

Prof. S.L. Soni Department of Mechanical Engineering MNIT, JAIPUR

DEPARTMENTOFMECHANICALENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR(RAJASTHAN)-302017

CERTIFICATE BY CANDIDATE

This is to certify that the dissertation entitled "Performance and Combustion analysis of Variable Compression Ratio (VCR) Diesel Engine fuelled with Hydrogen "submitted by DebasmitaBaltowards the partial fulfilment of requirement for the degree of Masters of Technology (M.Tech.) in the field of Energy Engineering of Malaviya National Institute of Technology Jaipur is a work carried out by me under the supervision of Prof.S.L.Soniand has not been submitted anywhere else. The thesis has been checked for plagiarism and I will be solely responsible if any kind of plagiarism is detected.

DebasmitaBal M.Tech, Energy Engineering (2013PME5119)

Date: Place:

DEPARTMENTOFMECHANICALENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR(RAJASTHAN)-302017

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in this dissertation entitled "Performance and Combustion analysis of Variable Compression Ratio (VCR) Diesel Engine fuelled with Hydrogen"in partial fulfillment of the requirements for the award of the degree of Master of Technology (M.Tech.) in Energy Engineering, and submitted to the Department of Mechanical Engineering, Malaviya National Institute of Technology,Jaipur is an authentic record of my own work carried out by me during a period of one year from July 2014 to June 2015 under the guidance and supervision of Prof. S. L. Soni,Department of Mechanical Engineering, Malaviya National Institute of Technology Jaipur.

The matter presented in this dissertation embodies the results of my own work and has not been submitted anywhere else for award of any other degree or diploma.

DebasmitaBal (2013PME5119)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Prof. S. L. Soni Supervisor

Place: Jaipur, June 2015

ACKNOWLEDGEMENT

Firstandforemost, I expressmy deepsenseofgratitude andrespect tomy supervisor**Prof. S.L. Soni,**DepartmentofMechanicalEngineering, forhisinvaluableguidanceandsuggestionsduringmyresearchstudy.
I considermyselfextremelyfortunatetohavehad theopportunity ofassociatingmyselfwithhimforoneyear. This thesiswasmadepossiblefor his kindpatienceandpersistence.

I express my sincere thanks to **Prof. DilipSharma**, Department of Mechanical Engineering, for his constant supportand elucidating my doubts during my research work.

Iwouldliketothankthetechnicalstaffspecially**Mr.RameshChandraMeena**,**Mr.BabuLa** ISainiandMr.KolahalPrasadforprovidingmethesupportandequipment I neededtocompletemyexperiment.

I convey my heartfelt thanks to **Mr. Deepesh Sonar** and **Anmesh KumarSrivastava**, who helped me while conducting experiments and all those who helped me in completion of this work.

(DEBASMITA BAL)

ABSTRACT

Alternative fuels are fetching attention among the researchers due to growing environmental concerns all over the globe. One most prominent candidate of alternative fuels is hydrogen due to its higher calorific value per unit mass basis, lower fuel consumption and clean burning properties. Using hydrogen as an energy source has opened up a new direction for its highest calorific value based on its mass basis. This research work focuses on the utilization of hydrogen in diesel engine in gaseous form along with air at a fixed mass flow rate of 40gm/hr at a fixed injection timing and fixed injection pressure while operating the engine at varied loads and different compression ratios (16-22) in Variable Compression Ratio Engine set up 240PE. Compression ratio 21 is found to be the optimum compression ratio in terms of maximum brake thermal efficiency when the engine is run with diesel only. Performance parameters and combustion analysis of hydrogen enriched diesel has been discussed and it has been observed the brake thermal efficiency decreases and BSEC increases when hydrogen enriched diesel fuel is used, but sustainable reduction in diesel mass flow rate has been observed as hydrogen takes part in reaction, which is desirable. However, the exhaust gas temperature and cylinder pressure and temperature is found to be higher during hydrogen enriched fuel as compared to the results obtained when the engine is run with diesel only. For appraisal any source of energy in a large scale basis, generates the need of determining its viability. This research study will assist the researchers to carry out their researches further on hydrogen at various compression ratios and will aid them with an outlook in its implementations.

TABLE OF CONTENTS

Certificateii
Certificate By Candidate
Candidate's Declarationii
Acknowledgementiiii
Abstractvi
Table of Contents
List of Figuresix
List of Tables
Nomenclaturexiii
Chapter 1 1
Introduction1
1.1 Background1
1.2 Alternative fuels
1.3 Energy Market evolution
1.4 Reasons for which Hydrogen is preferred
1.5 Benefits of Hydrogen
1.6 Applications
1.7 Physical Properties of Hydrogen6
1.8 Fuel properties: specific for engine application
1.9 Ways of producing Hydrogen
1.10 Barriers to use hydrogen as a mono fuel
CHAPTER 29
Literature review
2.1 Literature on experimental works on hydrogen enriched CI engine
2.2Literature on numerical analysis and simulated works on hydrogen enriched in CI engine
2.3 Literature on effect of VCR on diesel fueled with a fraction of substitutes
2.4 Literature on effect of VCR on SI engine fueled

2.5Literature on achieving VCR in engines	19
2.6 Literature on minimizing emission level of diesel engine	20
2.7Literature on future of hydrogen, its usage and economics	22
2.8 Summary of the review	24
2.9 Objective of the project	24
CHAPTER 3	25
Methodology	25
3.1 Assumption during experimentation	26
3.2 Experimental Set-up	27
3.3 Auxiliary Equipments Required	29
3.3.1 Pressure Gauge	29
3.3.2Mixer	29
3.3.3 Flame Trap and Flame Arrestor	31
3.3.4 Weighing Machine	32
3.4. Performance parameters	32
3.5. Basic measurements	33
3.5.1 Measurement of speed	34
3.5.2 Measurement of diesel fuel consumption	35
3.5.3 Measurement of air consumption	36
3.5.4Measurement of brake power	37
3.5.5Measurement of indicated power	37
3.5.6Measurement of temperature	37
3.6 Formulas for calculations	38
3.7 Geometrical parameters	38
3.8VCRExperimental set-up	40
3.8.1Setup Specifications	40
CHAPTER 4	43
Results and discussions	43
4.1 Test conditions	43
4.2 Effect on Brake Thermal Efficiency (BTE)	43

48
51
54
54
56
57
57
58
61
62
62
62
62
64

LIST OF FIGURES

Fig. No	Title of The Figure	Page No
1.1	World's oil consumption	2
1.2	World's oil production	2
3.1	Schematic Experimental set up for hydrogen operated diesel engine	29
3.2	Pictorial view of Pressure Gauge	30
3.3	Pictorial view of Mixer (air inlet and Cu pipe for hydrogen enrichment)	30
3.4	Pictorial view of Ferule for leakage free connection	31
3.5	Pictorial view of Copper Pipe bender to assemble the set up	31
3.6	Pictorial view of Pipe cutter	31
3.7	Pictorial view of Flame Trap and Flame Arrestor	32
3.8	Pictorial view of modified Experimental set up	32
3.9	Pictorial view of VCR burette, indicators	35
3.10	Pictorial view of CR adjustor	40
3.11	VCR experimental set up	41
4.1	Variation of BTE with load when engine is run with 100% diesel at different Compression Ratios (16-22)	44
4.2	Comparison of 100% diesel and hydrogen-diesel blend in terms of BTE with load when engine is run at Compression Ratio 22	44
4.3	Comparison of 100% diesel and hydrogen-diesel blend in terms of BTE with load when engine is run at Compression Ratio 21	45
4.4	Comparison of 100% diesel and hydrogen-diesel blend in terms of BTE with load when engine is run at Compression Ratio 20	45
4.5	Comparison of 100% diesel and hydrogen-diesel blend in terms of BTE with load when engine is run at Compression Ratio 19	46
4.6	Comparison of 100% diesel and hydrogen-diesel blend in terms of	46

BTE with load when engine is run at Compression Ratio 18

4.7	Comparison of 100% diesel and hydrogen-diesel blend in terms of BTE with load when engine is run at Compression Ratio 17	47
4.8	Comparison of 100% diesel and hydrogen-diesel blend in terms of BTE with load when engine is run at Compression Ratio 16	47
4.9	Comparison of 100% diesel and hydrogen-diesel blend in terms of BSEC with load when engine is run at Compression Ratio 22	48
4.10	Comparison of 100% diesel and hydrogen-diesel blend in terms of BSEC with load when engine is run at Compression Ratio 21	48
4.11	Comparison of 100% diesel and hydrogen-diesel blend in terms of BSEC with load when engine is run at Compression Ratio 20	49
4.12	Comparison of 100% diesel and hydrogen-diesel blend in terms of BSEC with load when engine is run at Compression Ratio 19	49
4.13	Comparison of 100% diesel and hydrogen-diesel blend in terms of BSEC with load when engine is run at Compression Ratio 18	50
4.14	Comparison of 100% diesel and hydrogen-diesel blend in terms of BSEC with load when engine is run at Compression Ratio 17	50
4.15	Comparison of 100% diesel and hydrogen-diesel blend in terms of BSEC with load when engine is run at Compression Ratio 16	51
4.16	Comparison of 100% diesel and hydrogen-diesel blend in terms of EGT with load when engine is run with at Compression Ratio 22	51
4.17	Comparison of 100% diesel and hydrogen-diesel blend in terms of EGT with load when engine is run with at Compression Ratio 21	52
4.18	Comparison of 100% diesel and hydrogen-diesel blend in terms of EGT with load when engine is run with at Compression Ratio 20	52
4.19	Comparison of 100% diesel and hydrogen-diesel blend in terms of EGT with load when engine is run with at Compression Ratio 19	53
4.20	Comparison of 100% diesel and hydrogen-diesel blend in terms of EGT with load when engine is run with at Compression Ratio 18	53
4.21	Comparison of 100% diesel and hydrogen-diesel blend in terms of EGT with load when engine is run with at Compression Ratio 17	54
4.22	Comparison of 100% diesel and hydrogen-diesel blend in terms of EGT with load when engine is run with at Compression Ratio 16	55
4.23	IMEP, BMEP, FMEP when engine is run with 100% D blend at Compression Ratio 21	55

4.24	IMEP, BMEP, FMEP when engine is run with H+D blend at Compression Ratio 21	55
4.25	IP, BP, FP when engine is run with 100% D at Compression Ratio 21	56
4.26	IP, BP, FP when engine is run with H+D blend at Compression Ratio 21	56
4.27	Comparison of 100% diesel and hydrogen-diesel blend in terms of volumetric efficiency with load when engine is run at Compression Ratio 21	57
4.28	Air and Fuel flow rate when engine is run with 100% D at Compression Ratio 21	58
4.29	Air and Fuel flow rate when engine is run with H+D blend at Compression Ratio 21	58
4.30	Engine cylinder P-V graph when run with 100% D at Compression Ratio 21	59
4.31	Engine cylinder Log P- Log V graph when engine is run with 100% D at Compression Ratio 21	59
4.32	Engine cylinder P-V graph when run with H+D at Compression Ratio 21	60
4.33	Engine cylinder Log P- Log V graph when engine is run with 100% D at Compression Ratio 21	60
4.34	Engine cylinder mean gas temperature when run with 100% D at Compression Ratio 21	61
4.35	Engine cylinder mean gas temperature when run with H+D at Compression Ratio 21	61

LIST OF TABLES

Table No.	Table Description	Page No.
1.1	Alternative fuels, their advantages and problems	4
1.2	Comparison of fuel energy content	7
1.3	Combustible Fuel Properties	7
3.1	Assumed values during experimentation	27
3.2	Specification of diesel engine and electric dynamometer	28

NOMENCLATURE

Α	Area	
C_d	Coefficient of discharge	
D	Piston diameter, m	
f	Coefficient of friction,	
FF	Friction Factor	
FC	Coefficient Of Friction	
L	Length of the stroke, m	
А	Area of the piston, m ²	
Ν	Rotational speed of engine, RPM	
P _m	Mean Effective Pressure (in bar)	
ppm	Parts per million	
R_e	Reynold's number	
S	Sommerfeld number (dimensionless)	
Т	Torque, Nm	
μ	Dynamic viscosity of fluid, Pa-s.	
U	Linear velocity, m/s	
V	Total Volume, m ³	
V_a	Volume flow rate of air, m^3/s	
V_S	Swept Volume, m ³	
V_c	Clearance Volume, m ³	
kW	KiloWatt	
Greek symbols		

η_{bth} Brake Thermal Efficiency η_{it} Indicated Thermal Efficiency η_m Mechanical efficiency η_{v} Volumetric Efficiency θ Crank Angle ρ_w Density of water, kg/m³ ρ_a Density of air, kg/m³

Abbreviations

A/F	Air-Fuel Ratio
BDC	Bottom Dead Center
BMEP	Brake Mean Effective Pressure
BP	Brake Power
BSEC	Brake Specific Energy Consumption
BSFC	Brake Specific Fuel Consumption
BSN	Bosch Smoke Number
BTDC	Before Top Dead Centre
BTE	Brake Thermal Efficiency
CAE	Computer Aided Engineering
CFD	Computational Fluid Dynamics
CI	Compression Ignition
СО	Carbon Monoxide
CO_2	Carbon Dioxide
CNG	Compressed Natural Gas
CR	Compression Ratio
CV	Calorific Value
DI	Direct Injection
EGT	Exhaust gas Temperature
EGR	Exhaust Gas Recirculation
FCV	Fuel Cell Vehicle
FDM	Finite Difference Method
FEA	Finite Element Analysis
FMEP	Frictional Mean Effective Pressure
FP	Frictional Power
HC	Hydrocarbon
HCCI	Homogeneous Charge Compression Ignition
ICE	Internal Combustion Engine
IDC	Inner Dead Center
IMEP	Indicated Mean Effective Pressure

- IP Indicated Power
- LPG Liquefied Petroleum Gas
- LPM LitrePer Minute
- NO_X Nitrogen Oxides
- ODC Outer Dead Center
- PBDF Petroleum Based Diesel Fuel
- PM Particulate Matter
- P-V Pressure Volume
- SCR Selective Catalytic Reduction
- SI Spark Ignition
- TMI Timed Manifold Injection
- TDC Top Dead Center
- UHC Unburned Hydrocarbon
- VCR Variable Compression Ratio