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4. ABSTRACT 

In developed countries, energy consumption of HVAC systems account for 

approximately twenty percent of the total energy consumption. Set-points of HVAC 

systems are usually controlled manually and may result in poor thermal comfort and 

increased energy demand. Optimizing HVAC control system strategy using genetic 

algorithms is attempted in this work. 

An HVAC model developed from elementary equations is studied. The model has four 

set-points (Zone Temperature, Supply Air Temperature, Supply Duct Static Pressure 

and Chilled Water Temperature) as the variables which determine the total energy 

demand and thermal comfort (in the form of PPD) of the system. As energy demand 

and PPD are contradicting functions, ordered combinations of these set-points which 

will result in least value of energy demand and PPD (pareto-optimal solutions) are found 

using a multi-objective genetic algorithm called the NSGA-II. The findings are 

analyzed and the effect of variations of different set-points in the pareto-optimal 

solutions on energy demand and PPD are understood. A new model which also 

incorporated reheat was designed, optimized and analyzed in a similar fashion. Further, 

another genetic algorithm, Omni-optimizer, was also used to optimize the initial model 

and the changes which were observed are stated. 
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Chapter 1 

1. INTRODUCTION 

1.1 Background 

We live in a day and age where air conditioning systems have changed from a non-essential 

appliance to a crucial necessity for humans around the globe. These systems have made 

human habitation and development possible in the most adverse of places. From the dry 

deserts of Sudan to the marshes of the Sunderbans to the icy deserts of Antarctica, air 

conditioning systems have helped bring conditions prevalent at home to almost anywhere 

on the globe. Air conditioning is defined by the Merriam-Webster Dictionary as equipping 

a building with an apparatus for washing air and controlling the temperature and humidity 

of the air. 

Heating, Ventilation and Air Conditioning (HVAC) systems are used for heating and/or 

cooling of homes, offices and industrial buildings. HVAC systems are also responsible for 

allowing adequate supply of fresh outdoor air to manage the increasing carbon dioxide 

concentration inside buildings as well as to dilute airborne contaminants inside the buildings 

such as odors from occupants, furnishings, volatile organic compounds (VOC’s), vapors of 

chemicals used for cleaning, etc. As long as the design is proper, an HVAC system can 

provide indoor comfort conditions throughout the year when it is maintained properly. 

An air conditioner works by passing the air over a cold coil surface, which cools and 

dehumidifies the air. The coil inside the air conditioner is an air to liquid heat exchanger, in 

which there are rows of tubes through which the cooling liquid or refrigerant flows. The 

overall surface area of the coil is also increased by the use of fins, thus helping to improve 

the heat transfer between the air and refrigerant inside the coil. The type of system 

determines which refrigerant is to be used. In Direct-expansion (DX) cooling coils, the 

refrigerant is in the liquid state. Chilled-water (CW) is also sometimes used as a liquid 

medium refrigerant. If the operating temperature of a chilled water system is close to the 

freezing point of water, salts and glycols are added to the water to protect it from freezing. 

The cooling coil would be cooled by a liquid delivered to it at cold temperature, whatever 

the refrigerant used. 
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As air passes over the cooling coils in a direct expansion (DX) coil system, the heat from 

the air is transferred to the cold liquid refrigerant. As the refrigerant heats up, it boils and 

vaporizes into a warm gas. This gaseous refrigerant is pumped to a compressor, where it is 

compressed and the pressure of the refrigerant increases. An accumulator between the 

cooling coils and the compressor can capture the unused liquid refrigerant, thus allowing 

only the vapor to enter the compressor. As the pressure of the refrigerant increases in the 

compressor, the temperature of the refrigerant also increases significantly. This hot 

refrigerant gas is then pumped through another heat exchanger (outdoor condenser) where 

the heat is rejected to the outside environment, condensing the gas into a liquid at high 

pressure. The liquid refrigerant is then pumped through a filter into an expansion device 

which reduced the pressure and the temperature of the liquid refrigerant. This cold, low 

pressure liquid enters the cooling coil, repeating the above process. 

As the cold liquid refrigerant moves inside the cooling coil, the air passing over the coil 

loses both sensible heat as well as latent heat. This means that the temperature of the air is 

lowered and also, the moisture in the air is decreased if the dew point of the air is lower than 

the surface temperature of the coils. The total cooling capacity of an Air conditioning system 

is expressed as the sum of the sensible and latent cooling capacities. The cooling capacity 

of a DX air conditioner depends on many factors. As the outdoor temperature increases, the 

cooling load on the air conditioning system increases, thus decreasing the cooling. The total 

air flowing over the cooling coils also affects the capacity of the coil and as the flow 

increases, the capacity of the system increases. But, when flow rate of is higher, the latent 

heat removing capacity of the cooling coil is reduced. The capacity of the AC system is also 

affected by the Indoor temperature and humidity. The sensible capacity increases as the 

indoor temperature increases. Similarly, the latent capacity of the AC system increases as 

the indoor relative humidity increases. The Air conditioners available  commercially usually 

come with performance charts which show how the total, sensible and latent load handling 

capacity of the Air conditioner vary with changes in outdoor, indoor temperatures and 

humidity. They also show how these variations affect the power consumption and efficiency 

of the air conditioner. 

HVAC has the largest energy end use, in the residential as well as non-residential sectors 

[1]. In USA, HVAC systems consume more than half of the total energy usage total 

buildings. Approximately one fifth of the total national energy use of all developing nations 

is consumed by HVAC systems. The efficiency of HVAC systems are specified in terms of 
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Energy Efficiency Ratio (EER) which is the ratio of the cooling output for a particular season 

to the energy input during the same period. 

According to the ASHRAE Standard 55, “Thermal comfort is the condition of mind that 

expresses satisfaction with the thermal environment and is assessed by subjective 

evaluation.” Thermal comfort is important for the productivity and health of the occupants 

in a building. It has been stated that by occupying an environment with sub-par thermal 

comfort conditions, the productivity can drop by up to 20%. Thermal equilibrium is 

maintained when the heat generated inside a room is removed or allowed to dissipate into 

the surroundings. The Predicted Mean Vote (PMV) model is one of the most recognized 

thermal comfort models. In the model, the main factors that determine thermal comfort are 

identified as air temperature, metabolic rate, mean radiant temperature, clothing insulation, 

relative humidity and air speed. 

To achieve the objective of sizably reducing heating, ventilating and air conditioning 

(HVAC) related energy costs, while not compromising indoor air quality requires 

implementation of better control over the HVAC system [2]. This statement forms the crux 

of this dissertation work. The solutions presented in the project provide options to a HVAC 

system controller that lets the controller choose how much of thermal comfort he is willing 

to sacrifice in order to obtain decreased energy consumption. 

1.2 Objectives of this work 

The main objectives of this work were  

1. To optimize a simple HVAC model for multi-zone using multi-objective genetic 

algorithms. The objective functions adopted are  

a. To minimize Energy Demand and  

b. To minimize PPD  

The control parameters adopted are 

a. Zone temperature 

b. Supply duct static pressure 

c. Supply air temperature 

d. Chiller water temperature  

2. To compare the performance of two different genetic algorithms, for 

optimization of a HVAC model described above. 
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3. To include relative humidity as an additional control parameter and optimize the 

simple HVAC model, described above. 

1.3 Organization of Thesis 

The thesis is organized in the following order 

 Chapter 1 gives an introduction on the background of HVAC systems and the 

reasons for the thesis work, the objectives of the work, and the organization of the 

thesis. 

 Chapter 2 reviews the literature available on the optimization of HVAC systems, 

Multi objective optimization using genetic algorithms, and Multi-objective 

optimization of HVAC systems. 

 Chapter 3 briefs on the classical methods of solving multi-objective optimization 

problems, the history and terminologies involved in Genetic algorithms, Genetic 

algorithms which can solve multi-objective optimization problems, and all the 

assumptions and parameters used for the optimization process. 

 Chapter 4 details about an existing HVAC Model which was optimized using multi-

objective genetic algorithms. Then a new HVAC model is discussed which uses 

reheat. 

 Chapter 5 presents, discusses, and compares the results obtained. 

 Chapter 6 presents the conclusions obtained during the work. 

 Chapter 7 gives details about future work plans. 
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Chapter 2 

2. LITERATURE REVIEW 

2.1 Optimization of HVAC systems 

The following list of publications shed light into the research going on in the field of HVAC 

optimization 

Mathews et al. (2001) [2] used new control strategies for comfort enhancement and to 

increase the energy saving potential. They used a software tool, QUICKcontrol, to run 

building, HVAC and control simulations. The comfort audit was done with pin-pointing the 

problem areas like out of order HVAC components and neglected maintenance. Opinions 

from occupants about the comfort conditions indoors were also collected. These were used 

to measure the indoor air conditions. An energy audit was conducted to identify the major 

consumers of energy. It was found that HVAC system accounted for 54% of the energy 

usage, thus being the largest energy consumer. Air bypass, setback control, economizer 

control, reset control, CO2 control and improved start-stop times were the control strategies 

that were investigated. Power consumption savings of 60% were predicted. The simple 

payback period for using this method is calculated to be 9 months.  

Fong et al. (2006) [3] described a new approach of simulation-optimization that was applied 

to create a reset scheme of supply air temperature and chilled water temperature set points 

for a local subway station HVAC system. They used a model of the entire HVAC system 

instead of subsystems for the simulation study. The model was a component-based model 

and it was built up using TRNSYS. The energy usage of the existing system was calculated 

by using the TRNSYS model for fixed supply air temperature and chilled water temperature 

set points, and was presented. The problem formulation is explained and the optimized set-

points for three conditions are obtained for yearly as well as monthly reset. They find that 

the yearly reset yields energy savings of up to 2.68% and a monthly reset results in 6.74% 

of energy savings. This study proves that energy efficiency can be obtained even without 

sacrificing thermal comfort. 

2.2 Genetic Algorithm / Multi-Objective Genetic Algorithms 

The different genetic algorithms used for solving multi-objective problems are explained by 

the following publications and books. 
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In his book, “Multi-Objective Optimization using Evolutionary Algorithms” [4], Prof. 

Kalyanmoy Deb discusses about the advantages Genetic Algorithms have over Classical 

Optimization techniques for solving Multi-Objective Optimization Problems. Classical 

Optimization techniques find, at best, only one optimum solution in a simulation run while 

the Evolutionary Algorithms can find multiple optimal solutions in a single simulation run. 

As multi-objective problems usually have multiple optimum trade off solutions, 

Evolutionary Algorithms, of which Genetic Algorithms are a part of, are much more 

effective than the classical techniques.   

Deb et al. (2002) [5] made some serious contributions to the field of multi objective genetic 

algorithms through this paper. They propose a new multi-objective genetic algorithm, the 

NSGA-II. It improved over the existing algorithms by bringing down the computational 

complexity, adding in the concept and advantages of elitism and removed the need of 

specifying the sharing parameter for diversity preservation. They also conclude that Multi-

objective Genetic Algorithms might have difficulty in dealing with highly epistatic 

problems.  

Deb et al. (2006) [6] proposed a new algorithm, Omni-optimizer, which could solve a 

variety of optimization problems. It automatically degenerates so that it is also able to solve 

simpler problems such as single objective single optima problems also, something which the 

previous algorithms were incapable of. The paper also introduces new concepts like 

restricted selection and crowding measure. The Algorithm is also more resilient to local 

optima because of a better mutation scheme.  

2.3 Optimization of HVAC systems using Evolutionary Algorithms 

A brief summary of the research being done in the field of Optimization of HVAC systems 

using Evolutionary Algorithms is explained here. 

Huang et al. (1997) [7] compared the use of classical optimization methods like Zeigler-

Nichols method along with Simple genetic Algorithms for HVAC controller tuning 

optimization and found that the GA method yields a much better performance compared to 

the traditional algorithms. They used a proportional plus integral (PI) controller to supervise 

the HVAC system and the simulation was done by using a modular dynamic simulation 

software HVACSIM+. The GA method optimized the system in 14.5s compared to 358s 

used for the optimization using Zeigler-Nicholas method. Even then, the author mentioned 
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that the higher processing time required for optimization limited the application of Genetic 

Algorithms for HVAC system optimization during those years. 

Wright et al. (2002) [8] used Multi-objective Genetic Algorithms for finding the optimal 

pay-off characteristic between thermal discomfort and the energy cost of a building. The 

study was done for a period of three design days and three different building weights.  63 

control variables including the set-points of supply air temperature and flow rate for each 

hour of the day are there for each day. The size of the HVAC components were also taken 

into account.  Two sample problems have been solved to show how the method works. The 

author mentions the advantages of using pareto-optimization for optimization comparing it 

to using priori preference articulation and progressive preference articulation. The paper 

lauds the use of multi-objective genetic algorithms for the said problem, appreciating how 

quickly the algorithm could converge to optimal solutions.  

Nassif et al. (2004) [9] tried to optimize two objective optimization problem using different 

evolutionary algorithms. The two objective problem is a simple HVAC system model, the 

two objective functions to be minimized being the energy demand and PPD. A few 

assumptions regarding terms like outdoor conditions were also used. After analyzing 

different evolutionary algorithms, they determined that the controlled elitist non-dominated 

sorting genetic algorithm offered the best potential for finding the pareto-optimal solutions. 

They also inferred that the two-objective optimization would offer much better energy 

savings as compared to single objective optimization. 

Nassif et al. (2005) [10] conducted experiments by applying different control system 

strategies on AHUs. They created models for the different components in the HVAC system 

and validated them against the existing systems. The control system strategy was also 

designed and implemented for the experiment. They tried out different strategies and found 

out that by varying all the set-points as per the results obtained in the genetic algorithm, they 

could achieve the maximum energy savings. 

Lu et al. (2005) [11] created an ANFIS model for an extended HVAC system and optimized 

the model for minimum energy usage using a modified genetic algorithm. They ran several 

simulation tests, and by varying the chilled water supply temperature set-point, they found 

that the fixed set-point condition may use up to 10% more energy than the optimal solution. 

They also conducted simulations with the fan and pump pressure set-points optimization and 

pump and chiller sequencing optimization. They presented the comparison of energy usages 
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for different systems, showing that the optimized mode showed minimum energy usage. 

This paper also shows the lack of complete models of HVAC systems and the difficulty of 

optimizing complete models with techniques other than evolutionary algorithms. 

Fong et al. (2009) [12] conducted studies on system optimization of HVAC energy 

management using the robust evolutionary algorithm (REA). Robust evolutionary algorithm 

was developed by the authors as an effective evolutionary algorithm for HVAC systems. It 

has the synergetic combination of three EA operators – arithmetic recombination, Cauchy 

deterministic mutation and tournament selection. They mention that both exploitation and 

exploration continually happen throughout the process of REA. A typical centralized HVAC 

system was modelled using mathematical expressions as well as by using TRNSYS 

simulation tool and TESS libraries. The constraint equations were also developed. They 

developed a monthly reset scheme for the chilled water supply temperature and supply air 

temperature of the AHU. The monthly energy consumption using evolutionary 

programming and REA were obtained by using TRNSYS, and a decrease in energy usage is 

noted by using REA. They also compared the decrease in energy usage when REA was used 

instead of Genetic Algorithms. A significant improvement was found in the results as well 

the efficiency and effectiveness of REA. 

2.4 Conclusions of the Literature Review 

It is concluded that there is a lot of work going on about the optimization of HVAC systems. 

The use of different techniques for optimizing HVAC systems are seen in the literature 

survey. We also see that the field of Genetic Algorithms is also rapidly developing and 

different and better algorithms are being made. The different types of optimization and 

simulation methods of HVAC systems are observed, especially with the use of different 

kinds of software like QUICKcontrol, HVACSIM+ and TRNSYS. It is understood that 

HVAC optimization is a trending topic of research and successful research work can help to 

aid in the decrease of energy consumption by large amounts.  
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Chapter 3 

3. MULTI OBJECTIVE GENETIC ALGORITHMS FOR 

HVAC SYSTEMS 

3.1 Classical Methods of solving Multi-Objective problems  

This section elaborates on the classical methods used for solving multi-objective problems, 

i.e., methods other than the use of evolutionary or genetic algorithms for multi-objective 

problems. According to Deb [4], these methods have been around for the last four decades. 

Even though there are a number of methods available for this purpose, each has its own 

advantages and dis-advantages, making each one more suitable for solving specific types of 

multi-objective problems. This report does not delve too deeply into the details of each of 

these methods specifically as they are outside the scope of this project work. The different 

methods that are used frequently are: 

 The Weighted Sum Method 

 ε - Constraint Method 

 Weighted Metric Method 

 Benson’s Method 

 Value Function Method 

 Goal Programming Method 

These methods all involve the conversion of the multi-objective problem into a single 

objective problem, and then using an optimization method for solving the single-objective 

problem to find the optimal solution. In the weighted sum method, a weighted sum of the 

multiple objectives is to be minimized. The ε - Constraint Method works by optimizing one 

of the objective functions while the other objective functions are set as constraints. The 

weighted metric method involves calculating an “lp” metric from the objective functions and 

minimizing it while the Value Function method works by maximizing an overall utility 

function or value function relating the objectives. The Goal programming method involves 

minimizing a weighted sum of deviations of objectives from user specific targets.   

The main strength of each of these methods are their proofs of convergence. The weighted 

sum method and weighted metric method guarantees that the pareto-optimal curve for a 

convex multi-objective problem will always be evaluated. The other methods also offer 
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similar guarantees for specific problems. The main disadvantage of these methods is that 

they only give one optimal solution in one simulation run, even though the multi-objective 

problem usually has more than one pareto-optimal solution. Also, by using some of these 

methods, finding all the pareto-optimal solutions of a non-convex multi-objective 

optimization problem is impossible. The final disadvantage is that all these methods require 

some problem knowledge to find the pareto-optimal solutions, such as suitable weights or 

target values or ε.  

3.2 Genetic Algorithms 

Genetic Algorithms are optimization techniques developed from the idea of natural 

selection. Survival of the fittest is the main inspiration and biological analogy of the GA 

process. Genetic algorithms are based on natural selection, the process that drives biological 

evolution [13]. Being analogous to genetics, Genetic algorithm is also composed of a long 

complex thread of DNAs and RNAs containing genetic data, as chromosomes, by which the 

traits of each individual is determined.  Every trait of a living organism is coded with a 

combination of “bases” like A (Adenine), C (Cytosine), T (Thymine) and G (Guanine). 

During meiotic or sexual reproduction, there is exchange of genetic material between the 

gametes from the parents, which is because of a process called chromosomal crossover. 

Thus, the children produced due to meiotic reproduction will exhibit the traits of both the 

parents. In some very rare cases, all the chromosomes can get mutated, and this might result 

in a child who has no resemblance to one of its parents. Mutation is a process by which one 

or more gene values are altered, resulting in new alleles, where, an allele is a variant form 

of a gene. For understanding this, we may take the example of a typist copying a book. He 

makes mistakes by copying wrongly spelled words which has no meaning and needs to be 

corrected or stricken off. But, there is a rare possibility that this mistake may lead to another 

meaningful word. So, by mutation, a species having entirely different traits from parent will 

be produced, which, in rare cases, may be better than its parents.  

Genetic algorithms (GAs) were invented in 1960s by John Holland. He along with his 

students and colleagues at the University of Michigan further developed this nature based 

evolutionary technique by 1970s. This invention did not have any specific intention, but to 

study the phenomena of adaptation occurring in nature and to adopt these natural adaptation 

mechanisms into computer systems. Holland’s book titled, “Adaptation in Natural and 

Artificial Systems (1975)” introduces genetic algorithm as a concept of biological evolution 
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and explains a theoretical outline for adaptation. In those days, GA was said to be a process 

by which the chromosomes in the form of bit string gets transformed to a new form in the 

next generation by using operators like crossover, inversion and mutation. The 

chromosomes contains genes represented by bit and each gene has alleles in it represented 

by 0 or 1. Healthier individuals will be allowed to reproduce offspring than compared with 

unhealthier one. Crossover exchanges subparts of two chromosomes, approximately 

mimicking biological recombination between two single−chromosome ("haploid") 

organisms; mutation randomly changes the allele values of some locations in the 

chromosome; and inversion reverses the order of a contiguous section of the chromosome, 

thereby rearranging the order in which genes are arrayed. 

The basic model of "genetic algorithm" by Holland has travelled a long way to reach its 

present state, which is absolutely nowhere its original concepts. Nevertheless, these 

evolutionary computational methods have been applied in almost all fields of science and 

engineering in the recent years. 

The invention and development of computers has made revolutionary changes in the 

development and use of genetic algorithms. They could be used to replicate natural processes 

in many ways. Because of the growth of computer science, stronger and more 

computationally complex genetic algorithms could be developed and put into use. Real 

world problems present lots of challenges to engineers, like requirement of high 

computational strength, ability to converge on optimal solutions with less iterations and 

time, etc. Genetic algorithms (GAs) are good choices for solving these problems as they can 

easily find the global optimum solution. Genetic algorithms are used to solve problems that 

cannot be solved using the standard or classical methods, like when the objective function 

is discontinuous, non-differentiable, stochastic, or highly nonlinear. 

Basic terminology in genetic algorithm are familiarized here as follows:  

 Fitness Functions: it is the function (often called the objective function in standard 

optimization algorithms) meant to undergo optimization. The genetic algorithm tries 

to minimize this fitness function. 

 Individuals: An individual is any point to which the fitness function can be applied. 

The value of the fitness function for an individual is its score. For example, if the 

fitness function is   

o f (x1, x2, x3) = (2 x1 + 1)2 + (3 x2 + 4)2 + (x3 - 2)2    
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o Here, a vector (2, 3, 1) is an individual, whose length is the number of 

variables and the score of the individual is f (2, 3, 1) = 51.  

o An individual is sometimes referred to as a genome and the vector entries of 

an individual is referred to as its genes.  

 Populations: A population is an array of individuals. For example, for a population 

size of 100 and the number of variables in the fitness function is 3, a 100 X 3 matrix 

represents the population. The same individual can appear more than once in the 

population. i.e., the individual (2, 3, 1) can appear in more than one row of the array.  

 Generations: On each iteration, genetic algorithm performs a series of computations 

on the current population to produce a new population. Each successive population 

is called a new generation. 

 Diversity: it refers to the average distance between individuals in a population. A 

population with high diversity is indicated by larger average distance. In Figure 3.1, 

the population on the left has higher diversity than that right. Diversity is essential 

in genetic algorithm as it provides a larger search space. 

 

Figure 3.1: Diversity in Genetic Algorithm Population 

 Fitness Values and Best Fitness Values: The fitness value of an individual is the 

value of the fitness function for that particular individual. As the toolbox works for 

minimizing the fitness function, the best fitness value for a population is the smallest 

possible fitness value for any individual in the prevailing population.  

 Parents and Children: To create the succeeding generation, genetic algorithm 

searches and selects certain individuals with better fitness values in the current 

population, called parents, and uses them to create individuals in the next generation, 

called children. 
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3.3 Multi- Objective Genetic Algorithms 

The main problem of the classical methods discussed above is the fact that they mainly work 

by converting multi-objective problems into single objective problems, thus concentrating 

on a single pareto-optimal solution at a time. By applying them many times and by changing 

the parameters, these methods are sometimes able to find out different pareto-optimal 

solutions. But evolutionary algorithms are able to find out multiple pareto-optimal solutions 

in one simulation run, which make them superior to the classical methods. During the course 

of this dissertation work, two genetic algorithms which can solve Multi-objective problems, 

the NSGA-II and the Omni-Optimizer, were studied and used. The following sub-sections 

present details about these algorithms. 

3.3.1 NSGA-II:  

In 1994, Srinivas and Deb implemented the Non-Dominated Sorting Algorithm (NSGA) 

based on the idea of non-dominated solutions. The assignment of solutions according to non-

dominated sets and trying to maintain phenotypic diversity was the main advantages of this 

algorithm. Although it was famous world-wide, it received criticism regarding the high 

computational complexity, lack of elitism and the need for specifying the sharing parameter 

(for maintaining the diversity among solutions). In 2002, Deb et al. published the improved 

NSGA-II algorithm which addressed all the issues of the original NSGA. Figure 3.2 shows 

how the NSGA-II algorithm solves the HVAC problem. 

The algorithm is structured and works in the following way. Initially, a random parent 

population Po is generated. This population is sorted, the sorting done on the basis of non-

domination. The solutions are assigned fitness ranks equal to their non-domination levels or 

fitness scores. Then, the binary tournament selection, recombination and mutation operators 

are used to create the first offspring generation. A combined population consisting of both 

the initial parent population and the new offspring generation population is created. This 

combined population is sorted based on non-domination. The best non-dominated solutions 

form the individuals in the best front, and subsequently each front is created based on the 

non-domination rank. To select the next population which would have a population size 

equal to that of the initial population, the best fronts are selected and added to the new parent 

population set till the addition of one more set would exceed the size of the new parent 

population than the initial population. The next remaining front is then sorted using the 

crowded-comparison operator, and the best solutions from among these are selected and 
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added to the new parent population so that the population size of the new parent population 

is equal to the initial population.  

 

Figure 3.2: NSGA-II used for HVAC systems [10] 

The non-domination sorting is done as follows. For each individual (p), the number of 

solutions in the whole population that dominate it (np) are calculated and the set of 

individuals that it dominates (Sp) are created. All the individuals with np equal to zero are 

added to the best front, and the Sp of each of these solutions are examined. The np of each 
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individual in these sets are decreased by one, and if any individual reaches np equal to zero, 

they are added to the next front. This process continues till all the individuals are sorted. 

Diversity preservation is done as follows in NSGA-II. First, a metric is calculated for 

estimating the density of individuals in a specific part of the objective or decision variable 

space. For each individual, this is done by calculating the average distance of two neighbours 

on either side of an individual along each objective. This metric idistance is then used in 

comparing the crowding distance between the individuals. 

3.3.2 Omni-Optimizer:  

In 2008, Deb, along with his students published a paper on a new genetic algorithm which 

could solve both multi-objective optimization problems as well as single-objective 

problems. Thus, this GA, Omni-optimizer [6], could handle real world problems much better 

than the GAs before it, as there was no need to select a specific GA that could handle the 

specific problem. Therefore, this GA was also used to optimize the problem in this 

dissertation work. 

When made to handle multi-objective problems where every solution obtained is a pareto-

optimal solution in the decision space, the Omni-optimizer works exactly like the NSGA-II 

with the following modifications. 

1. Restricted selection, based on distance between the players, is used to choose the two 

players that will take part in the binary tournament. In NSGA-II, this was a random 

selection method. This tends to speed up the convergence to the optimal solution. 

2. ε-Dominance is used for classifying solutions into different fronts when ranking the 

solutions. By making this modification, Omni-optimizer tries to increase the size of the 

non-dominated set by allowing some of the inferior individuals to remain in the 

population.  

3. In Omni-optimizer, minimising objective space and variable space crowding is 

attempted, for ensuring diversity among the solutions in a front. In NSGA-II, only 

objective space crowding is applied. 

Restricted Selection and minimising variable space crowding were the main reasons for 

using Omni-Optimizer. 
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3.4 Optimization Process: Use of a Control strategy for optimizing 

HVAC System 

This section explains the control strategy with which the genetic algorithm is used to 

optimize the HVAC system. The output of the optimized system supervisor are the system 

set-points, which will optimize the HVAC system for the specific indoor loads and output 

conditions. Figure 3.3 shows the optimization process as explained by Nassif et al [10]. Of 

the many components in this optimization process, The HVAC model and the Two-

Objective genetic Algorithm are explored in this dissertation. 

 

Figure 3.3: Optimization Process 

The other components of the supervisory control system are the data acquisition tool, the 

indoor load prediction tool and the selection tool. The data acquisition tool receives and 

processes the online measured data. The sensible and the latent loads for the HVAC system 
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are predicted by the load prediction tool using information from the data acquisition tool. 

For the last step in the optimization process, in the optimal solution selection tool, a 

particular solution is to be selected and the combination of set-points in this solution is used 

as the set-points of the HVAC system. This process of selecting one particular solution from 

the numerous solutions requires more information. When this information is available, it can 

be used by an optimal solution selection tool to find the best solution. These components 

were not used in this dissertation work as the data acquisition tool and the optimal solution 

selection tool would require a real system implementation to properly function. The load 

prediction tool was not used because the design conditions were assumed, the assumptions 

detailed in the next chapter. But incorporating the load prediction tool could be implemented 

as future work. 
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Chapter 4 

4. GA OPTIMIZATION MODEL AND PROCESS FOR 

HVAC SYSTEMS 

4.1 Existing HVAC Model  

HVAC systems are usually designed after calculating approximate system loads for the 

particular application and also taking the past outdoor climate data into account. This 

dissertation involves the investigation of an existing HVAC system installed at the Montreal 

campus of École de technologie supérieure (ETS). The model describes a simplified form of 

AHU – 6 which is part of a group of ten Air handling units at École de technologie supérieure. 

It caters to 70 zones in the second floor of the building. The HVAC system is modeled after this 

Air handling unit [10].The thermal comfort conditions were calculated from equations obtained 

from the ISO standard: 7730 [14]. This work was validated using the results in Nassif et al. 

(2004) [9]. The schematic diagram of the HVAC system is shown in Figure 4.1 below. 

 

Figure 4.1: Schematic Diagram of simple HVAC system 

The HVAC system is optimized for certain conditions, some of which were taken from the 

design conditions provided in Nassif et al. (2004) [9]. Some other conditions were assumed 

and ensured that these be under the ranges usually found in similar real world conditions. 

The outdoor condition in Nassif et al. (2004) [9] relates to a time period on a summer day. 

The enthalpy of the outdoor air was assumed as 71.25 kJ/kg, with the outdoor air temperature 

as 28 °C and relative humidity as 70%. 
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In Nassif et al. (2005) [10], the load for the system is obtained from predictions using 

previous data. But here, the total load for the HVAC system was taken as the sum of the 

load in each zone in the building. The zones were assumed to be perfectly similar, with each 

zone having a total load equal to one ton of refrigeration (1 Ton = 3.52 kW). The ratio of the 

sensible heat to the total load of the building (SHR) is assumed to be 0.75. Therefore, the 

latent load makes up 25% of the total load of the system. For the system model, four set-

points were decided to be the decision variables for the genetic algorithm optimization 

process. These are 

1. The zone temperature, (𝑇𝑧𝑖)𝑃𝑉 in °C 

2. The supply duct static pressure, (𝑃𝑠)𝑃𝑉 in Pa 

3. The supply air temperature, (𝑇𝑠)𝑃𝑉 in °C 

4. The chilled water supply temperature, (𝑇𝑊)𝑃𝑉 in °C, 

where PV was used as a suffix for identifying these as the problem variables. The upper 

and lower limits of these set-points were taken as follows  

1. The zone temperature, (𝑇𝑧𝑖)𝑃𝑉  (21 to 25 °C) 

2. The supply duct static pressure, (𝑃𝑠)𝑃𝑉 (150 – 250 Pa) 

3. The supply air temperature, (𝑇𝑠)𝑃𝑉 (13 to 18 °C) 

4. The chilled water supply temperature, (𝑇𝑊)𝑃𝑉 (6 to 11 °C) 

Although Nassif et al. (2004) [9] treated the optimization problem as a constrained problem, 

for the sake of simplicity and generalization, in this dissertation work, constraint equations 

were not considered. 

The total energy demand of the system was taken as the first objective function for the 

genetic algorithm. The energy demand was calculated as the sum of the chiller energy use 

and the fan energy use. The following equations were used for modelling: 

Total Energy Demand  �̇�𝑡 (𝑘𝑊), 

 �̇�𝑡  =�̇�𝑓 + �̇�𝐶                                                                                                              (1) 

Fan Energy use �̇�𝑓 (𝑘𝑊), was calculated as a function of fan air flow rate and the total static 

pressure drop. The total static pressure drop is obtained by the addition of the supply duct 

static pressure and the pressure drop because of the ducts and the fan (this is calculated as a 

function of the fan flow rate).  
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�̇�𝑓 =
�̇�𝑓((𝑃𝑠)𝑃𝑉 + 2 ∙ 10−3 ∙ �̇�𝑓

2)

0.68 ∙ 1000
                                                                       (2) 

where, the fan air flow rate �̇�𝑓 (𝑚3/𝑠) is taken as the sum of the individual air flow 

rate into each zone,  

�̇�𝑓 = ∑ �̇�𝑍𝑖
= ∑

(𝑞𝑠𝑖)𝐼𝑉

1.2 ∙ ((𝑇𝑧𝑖)𝑃𝑉 − (𝑇𝑠)𝑃𝑉)
                                                      (3) 

For calculating the Chiller Energy use, �̇�𝐶 (𝑘𝑊), the outdoor air fraction (𝜆) is assumed to 

be 0.2 and the air leaving the cooling coil is assumed to be saturated with its enthalpy 

(𝐻𝑠) calculated as a function of the supply air temperature (𝑇𝑠),   

�̇�𝐶 =
[𝜆 ∙ �̇�𝑓 ∙ ((𝐻𝑜)𝐼𝑉 − 𝐻𝑆) + (𝑞𝑡)𝐼𝑉 ∙ (1 − 𝜆)]

𝐶𝑂𝑃
,                                             (4) 

𝐻𝑠 =  1.01 ∙  (𝑇𝑠) +  𝑋 ∙ (2502 +  1.84 ∙  (𝑇𝑠)),                                              (5)  

where X is the specific humidity (kg of water vapour/kg of dry air) 

The coefficient of performance of the chiller (COP) was calculated as, 

𝐶𝑂𝑃 = 7.9275 ∙ 𝑃𝐿𝑅3 − 21.194 ∙ 𝑃𝐿𝑅2 + 16.485 ∙ 𝑃𝐿𝑅

+ 2.2139 + 0.1 ∙ ((𝑇𝑊)𝑃𝑉 − 6)                                                 (6) 

where PLR represents the part load ratio, which is equal to the ratio of the cooling 

coil load to its design load (assumed to be 722 kW) 

The second objective function of the genetic algorithm was taken as the Percentage of people 

dissatisfied (PPD) [14], which represented the thermal comfort in the room. It was calculated 

as a function of the predicted mean vote (PMV). The equations and assumptions used for 

calculating PPD and PMV is as follows  

𝑃𝑃𝐷 = 100 − 95 ∙ 𝐸𝑋𝑃{−(0.03353 ∙ 𝑃𝑀𝑉4 + 0.2179 ∙ 𝑃𝑀𝑉2)}                (7)    

𝑃𝑀𝑉 = (0.303 𝑒−0.036𝑀 + 0.028){(𝑀 − 𝑊)

− 3.05 ∙ 10−3 ∙ [5733 − 6.99(𝑀 − 𝑊) − 𝑝𝑎]

− 0.42 ∙ [(𝑀 − 𝑊) − 58.15]                                                                        (8)

− 1.7 ∙ 10−5𝑀(5867 − 𝑝𝑎) − 0.0014𝑀(34 − (𝑇𝑧𝑖)𝑃𝑉)

− 3.96 ∙ 10−8𝑓𝑐𝑙 ∙ [(𝑡𝑐𝑙 + 273)4 − (𝑡𝑟 + 273)4]

− 𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − (𝑇𝑧𝑖)𝑃𝑉)} 
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𝑡𝑐𝑙 = 35.7 − 0.028(𝑀 − 𝑊)

− 𝐼𝑐𝑙{3.96 ∙ 10−8𝑓𝑐𝑙 ∙ [(𝑡𝑐𝑙 + 273)4 − (𝑡𝑟 + 273)4]

+ 𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − (𝑇𝑧𝑖)𝑃𝑉)}                                                                       (9) 

fcl was assumed to be 1.2  

hc was assumed to be 3.8 W/(m2 °C)  

Icl was assumed to be 1 clo 

tr was assumed to be 27 °C 

M was assumed to be 60 W/m2 

W was assumed to be 0 W/ m2 

pa is water vapor pressure and is calculated from relative humidity and Buck’s 

fomula. 

The following flow chart (Figure 4.2) shows how the model calculates the fitness function 

values from the decision variables. 

 

Figure 4.2: Fitness value calculation from set-points 

For the genetic algorithm, the following parameters were used, as used in literature [9], 
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Population Size = 200 

Generations = 500 

Crossover probability = 𝑝𝑐 =  0.9 

Mutation Probability = 𝑝𝑚 =  0.04 

For the sake of simplicity and generalization, in this problem, no constraint equations were 

taken into consideration, even though there are a lot of constraints which depend on the 

specifications of the components used in real life systems. 

4.2 Modified HVAC Model with Reheat 

The HVAC Model mentioned in section 4.1 did consider the latent load of the building and 

the humidity of the room. For remedying this, the HVAC model was modified to include 

reheat also. This model is shown in Figure 4.3. 

 

Figure 4.3: HVAC Model with Reheat 

The relative humidity in the room (𝜙𝑍) was identified as the fifth set-point and decision 

variable (problem variable) of the HVAC model. The energy used for reheating depends on 

the conditions of the air supplied to the zone (𝑇𝑍) and of the air leaving the cooling coil. The 

condition of the supply air was determined by using the latent load of the room, thus making 

it a function of the relative humidity of the room. Thus, the energy demand of reheat is added 

to the total energy demand of the HVAC system, to be minimized, with the relative humidity 

set-point ranging the upper and lower limits specified in the supervisory controller. The 

equations used for reheat energy demand is as given below: 
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�̇�𝑅ℎ = �̇�𝑓 (𝐻𝑇 − 𝐻𝑊),                                                                                              (10)  

where the enthalpy of the supply air (𝐻𝑇) and the enthalpy of the air leaving the 

cooling coil (𝐻𝑊) are functions of 𝑇𝑊,  𝑇𝑍 𝑎𝑛𝑑 𝜙𝑍 similar to equation (5). 

𝜙𝑍 was made to take values between the bounds of 0.4 and 0.6. 

Without the loss of generality, the relative humidity of the air leaving the cooling coil is 

assumed to be 95%. 

Thus, in this model the first objective function changes into 

Total Energy Demand  �̇�𝑡 (𝑘𝑊), 

 �̇�𝑡  =�̇�𝑓 + �̇�𝐶 +  �̇�𝑅ℎ                                                                                             (11)  

The second objective function, i.e., PPD is calculated in the same way, using equations (7), 

(8) and (9). The assumptions made and the parameters used are also the same as the ones in 

the previous model. The results of optimization are presented in the next chapter. 
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Chapter 5 

5. RESULTS AND DISCUSSION 

The HVAC models mentioned in the previous chapter were optimized using the algorithms 

mentioned in Chapter 3. The main objective of this project was to produce an output which 

was similar to the results in Nassif et al. [9]. After successfully completing this objective, a 

new HVAC model was used to incorporate humidity as a new set-point. This model was 

modelled and optimized in a similar fashion as the first model. A newer algorithm, Omni-

optimizer, was also used to optimize the original HVAC model. The results obtained by the 

use of this algorithm was compared with the results obtained by the original algorithm, 

NSGA-II.  

5.1 The Existing HVAC model optimized using NSGA-II 

The graphs below display the result of optimizing the existing HVAC model using NSGA-

II with the parameters and assumptions mentioned in Chapter 4.  The graph shows an inverse 

relation between energy demand and PPD. This work, Figure 5.1, was similar to the work 

done by Nassif et al. (2004) [9],  

 

 

Figure 5.1: NSGA-II - Energy Demand vs. PPD 

Upon examining the individual set-points of the solution, it is noted that the variations in 
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and of PPD (Figure 5.2 and Figure 5.3). We find that as zone temperature decreases, the 

energy demand of the HVAC system increases. We also see that as Zone temperature is less, 

the PPD is less and then it increases at a higher rate with increase in zone temperature. But 

from 23 °C we see that the relationship changes into a more linear one. These variations are 

expected because of the higher powers of the zone temperature in the PPD-PMV equation. 

  

 

Figure 5.2:  NSGA-II - Zone Temperature vs. Energy Demand 

 

 

Figure 5.3: NSGA-II - Zone Temperature vs. PPD 
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In Figure 5.4 to Figure 5.9, we find that the set-points other than the room temperature set-

point  (𝑇𝑍) tend to assume an almost constant value for the pareto-optimal solutions. Any 

stray points in these figures may be due to mutation caused by the genetic algorithm code. 

It was assumed that this was due to the fact that these variables (set-points) were not in both 

the objective functions simultaneously. To test this theory as well as to make the model a 

more generalized one, one more variable which affected both thermal comfort as well as 

energy demand was introduced in the next model.  

 

Figure 5.44: NSGA-II - Supply Air Temperature vs. Energy Demand 

 

 

Figure 5.55: NSGA-II - Supply Air Temperature vs. PPD 
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Figure 5.66:  NSGA-II - Supply Duct Static Pressure vs. Energy Demand 

 

 

Figure 5.77: NSGA-II - Supply Duct Static Pressure vs. PPD 
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Figure 5.88: NSGA-II - Chiller Water Temperature vs. Energy Demand 

 

 

Figure 5.99:  NSGA-II - Chiller Water Temperature vs. PPD 
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5.2 The modified HVAC model with reheat optimized using NSGA-II 

In this model, reheat was added to the model, the main purpose being, the need to study the 

effect of a second variable which is in both of the two objective functions. The variable 

which was added was the relative humidity of the zone. The graphs below show how the 

Genetic Algorithm optimized the new HVAC model.  

Comparing Figure 5.10 with Figure 5.1, the shape of the graph generated remains the same, 

but we see that adding reheat has increase the energy demand by almost 60 kW. We also 

notice a higher variation in energy demand, and also that the maximum PPD in an optimum 

solution has reduced to around 27%. 

 

 

Figure 5.1010: NSGA-II with reheat - Energy Demand vs. PPD 

The higher variation in Energy Demand vs PPD means that the new system can provide 

much better energy savings when compared to the existing model. Thus, this model has 

shown incremental improvement compared to the previous model. 
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Figure 5.11 and Figure 5.12 show the variation of zone temperature with energy demand 

and PPD. As was observed before, we find that the zone temperature is inversely related to 

energy demand and that as zone temperature decreases, the energy demand increases. 

 

 

Figure 5.1111: NSGA-II with reheat - Zone Temperature vs. Energy Demand 

 

In Figure 5.12, we notice an interesting variation from the case without reheat (Figure 9). 

We find that the variation in the zone temperature from 22 °C to 24 °C results in a change 

of PPD from 5% to 15% as contrasted to Figure 9 where the same variation in zone 

temperature will result in a change of PPD from 5% to 20 %. Thus, we see that under the 

accepted levels of thermal comfort temperature conditions (22 °C to 24 °C), we have 

managed to attain better levels of comfort (less PPD) than what was attained using the model 

without reheating. But, this is achieved at the price of increased energy demand as seen in 

(Figure 5.2 and Figure 5.11). 
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Figure 5.12: NSGA-II with reheat - Zone Temperature vs. PPD 

 

Figure 5.13 to Figure 5.16 exhibit results similar to the results obtained when using the 

model without reheating. This was expected as these set-points were not used as variables 

in the PPD equation. 

 

Figure 5.1312: NSGA-II with reheat - Supply Air Temperature vs. Energy Demand 
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Figure 5.1413: NSGA-II with reheat - Supply Air Temperature vs. PPD 

 

 

Figure 5.1514: NSGA-II with reheat - Supply Duct Static Pressure vs. Energy Demand 
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Figure 5.1615: NSGA-II with reheat - Supply Duct Static Pressure vs. PPD 

 

In Figures 5.17 and Figure 5.18 we note a small variation in the chiller water temperature 

affecting energy demand as well as PPD. This set-point is a variable in the PPD equation as 

it affects the humidity. It is inferred that this is because the temperature off the chiller water 

dictates the temperature of the air leaving the cooling coils of the AHU, thus controlling the 

amount of water vapor that can be held by the saturated air.  

 

 

Figure 5.1716: NSGA-II with reheat - Chiller Water Temperature vs. Energy Demand 
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Figure 5.1817: NSGA-II with reheat - Chiller Water Temperature vs. PPD 
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In Figure 5.19 and Figure 5.20, we see that there is no variation in the humidifier set-point 

in the different optimal solutions. The reason for this maybe because of the fact the humidity 

does not affect the PMV and PPD much. On the other hand, Zone temperature affects PPD-

PMV very much. Comparatively, we find that Relative humidity plays a minor role in 

thermal comfort, at least, according to the PMV-PPD equation. Thus the reason for the 

almost-nil variation of the relative humidity set-point. 

 

 

Figure 5.1918: NSGA-II with reheat - Relative Humidity vs. Energy Demand 

 

 

Figure 5.2019: NSGA-II with reheat - Relative Humidity vs. PPD 

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

100 110 120 130 140 150 160 170 180 190 200

R
el

at
iv

e 
H

u
m

id
it

y 
( 

X
 1

0
0

 %
)

Energy Demand (kW)

Relative Humidity vs Energy Demand

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

5 10 15 20 25 30

R
el

at
iv

e 
H

u
m

id
it

y 
(X

 1
0

0
 %

)

PPD (%)

Relative Humidity vs PPD



 

Page | 36  

 

 

From these results, we notice that as the reheat was added, along with zone temperature, the 

chiller water temperature also starts to affect the variation of the energy demand and PPD 

of the system. 
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5.3 The Existing HVAC model optimized using Omni-Optimizer 

The use of a new algorithm, Omni-optimizer was also tested and analyzed. The Omni-

optimizer is useful because, if at any point, the HVAC system was to be optimized for either 

Thermal comfort (minimum PPD) or Energy Demand, but not both, NSGA-II would not 

work. As Omni-optimizer is able to handle a variety of different problems, especially single 

objective optimization problems, the potential flexibility it offers for real world problems 

far exceeds the flexibility offered by NSGA-II. 

After analyzing the Optimal Solution obtained using Omni-optimizer, we see that Omni-

optimizer produced results (Figure 5.21 to Figure 5.23) that were very similar, or even 

identical as that of the solutions obtained using NSGA-II. This was expected as the authors 

of Omni-optimizer had mentioned that the results obtained would be almost identical as that 

of NSGA-II. 

 

 

Figure 5.2120: Omni-optimizer - Energy Demand vs. PPD 
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Figure 5.2221: Omni-optimizer - Zone Temperature vs. Energy Demand 

 

 

Figure 5.2322: Omni-optimizer - Zone Temperature vs. PPD 

 

An advantage of Omni-Optimizer above NSGA-II that was mentioned in the literature [6] 
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also see that there is a small deviation of some of the obtained solutions from the optimal-

front, the optimal front assumed to be the front generated by using NSGA-II This maybe 

because of the abovementioned part of the algorithm attempting to increase diversity among 

the solutions at the decision variable space also. 
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Figure 5.2423: Omni-optimizer - Supply Air Temperature vs. Energy Demand 

 

 

Figure 5.2524: Omni-optimizer - Supply Air Temperature vs. PPD 

 

12.98

13.00

13.02

13.04

13.06

13.08

13.10

79 81 83 85 87 89 91 93

Su
p

p
ly

 A
ir

 T
em

p
er

at
u

re
 (

C
)

Energy Demand (kW)

Supply Air Temperature vs Energy Demand

12.98

13.00

13.02

13.04

13.06

13.08

13.10

5 10 15 20 25 30 35

Su
p

p
ly

 A
ir

 T
em

p
er

at
u

re
 (

C
)

PPD (%)

Supply Air Temperature vs PPD



 

Page | 40  

 

 

Figure 5.2625: Omni-optimizer - Supply Duct Static Pressure vs. Energy Demand 

 

 

Figure 5.2726: Omni-optimizer - Supply Duct Static Pressure vs. PPD 
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Figure 5.2827: Omni-optimizer - Chilled Water Temperature vs. Energy Demand 

 

 

Figure 28.29: Omni-optimizer - Chilled Water Temperature vs. PPD 
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5.3.1 Comparison of Convergence of solutions in Omni Optimizer and NSGA-

II 

In the literature on Omni-optimizer [6], the authors claim that there are changes in the 

procedure (Restricted Selection) of Omni-optimizer that bring about better and faster 

convergence of solutions. The populations of the first few generations created by Omni-

optimizer and NSGA-II are shown in Figure 5.30 and Figure 5.31 to analyze how the 

solutions converge to the pareto-optimal solution. We find that both algorithms almost 

converge to the pareto-optimal solution by generation 15. But upon closer inspection of the 

graphs, we find that the solutions in Omni-optimizer tends to clump together in the 5th and 

10th generations compared to the solutions of NSGA-II in 5th and 10th generations. But, as 

the Genetic algorithms advance to later generations, we find that the results become more 

equally spaced for both the algorithms. This clumping that is observed might be due to the 

few changes between the two algorithms such as restricted selection and ε-Dominance or it 

may be due to the nature of this specific problem. 

 

 

Figure 5.3029: Omni-optimizer - Convergence of Solutions 
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Figure 5.3130: NSGA-II - Convergence of Solutions 
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Chapter 6 

6. Conclusion 

From the literature survey conducted, it was realized that there is significant work being 

done in the fields of Genetic algorithms and of Optimization of HVAC systems. A study on 

optimization of the control system strategy using a two-objective genetic algorithm was 

conducted. Models of HVAC systems were made from elementary equations, one model 

with reheat and one without reheat. The energy demand and PPD for these models were used 

as the objective functions for the multi-objective genetic algorithms 

It is concluded that Multi-objective genetic algorithms are found to be effective in 

optimizing HVAC systems. Each solution which corresponds to a set of values for the 

HVAC system set-points can produce the minimum energy demand for the given PPD. It 

was also concluded that better results in terms of energy savings could be achieved by the 

addition of reheat to the HVAC model. Addition of reheat helped to optimize the humidity 

in the HVAC system. The modified HVAC system, after including Relative Humidity as an 

additional control parameter, becomes more realistic. For the modified system, it was found 

that by sacrificing the thermal comfort by 5% PPD results in an energy saving of 32 kW or 

an energy saving of 17.5% can be obtained  

A different genetic algorithm, Omni-optimizer, was also used to try and optimize the first 

HVAC model. Omni-Optimizer was found to be slower as compared to NSGA-II. This is 

because Omni-optimizer scans for more diverse solutions and hence takes more time to 

converge. This may be due to the fact that the procedure of Omni-optimizer emphasizes 

more on diversity preservation and this feature has not yet been perfected. It is also inferred 

that this feature may be the reason for the clumping together of solutions in the initial 

generations when compared to the initially used genetic algorithm. 
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Chapter 7 

7. Future Work 

During the process of doing this work, a large number of ideas were generated for future 

work. A few of these are discussed below. 

1. Changing more parameters to variable set-points with upper and lower ranges. This 

would increase the amount of control that could be set on the HVAC system and thus 

help in decreasing energy demand without sacrificing thermal comfort. 

2. Adding more constraints to the model so as to change the model from a generic one to a 

specific one. 

3. Simulating the optimization process for a whole year to quantify the energy savings. 

4. Changing the component models to more realistic models so that the realistic solutions 

are obtained.   
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