Dissertation Report

on

"Processing, Characterization and Evolution of Epoxy and E-Glass Fibre Composite Filled with Zinc Sulphide for Automobile Body Panel Application"

Submitted in partial fulfillment of the requirements for the obtainment of degree of

Master of Technology

In

Production Engineering

by Prabhat Kumar 2013PPE5149

Under the Supervision of

Mr. Mukesh Kumar

DEPARTMENT OF MECHANICAL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR-302017

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR DEPARTMENT OF MECHANICAL ENGINEERING Jawahar Lal Nehru Marg, Jaipur-302017(Rajasthan)

CERTIFICATE

This is to certify that the Dissertation titled "Processing, Characterization and Evolution of Epoxy and E-Glass Fibre Composite Filled with Zinc Sulphide for Automobile Body Panel Application" that is being submitted by PRABHAT KUMAR, M.Tech (2013PPE5149) requirement for partial fulfillment of award of the degree of Master of Technology, Production Engineering, Malaviya National Institute of Technology Jaipur is found to be satisfactory and is hereby approved for submission.

Place: Jaipur Date: Mr. Mukesh Kumar Asst. Professor Mechanical Engineering Department MNIT Jaipur

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR DEPARTMENT OF MECHANICAL ENGINEERING Jawahar Lal Nehru Marg, Jaipur-302017(Rajasthan)

CANDIDATE'S DECLARATION

NSTITUTI

I hereby certify that following work which is being presented in the dissertation entitled "Processing, Characterization and Evolution of Epoxy resin and E-Glass Fibre Composite Filled with Zinc Sulphide for Automobile Body Panel Application" in the partial fulfillment of requirement for award of the degree of Master of technology (M.Tech.) and submitted in Department of Mechanical Engineering of Malaviya National Institute of Technology Jaipur is an authentic record of my own work carried out by me during a period from July 2014 to June 2015 under the supervision of Mr. Mukesh Kumar, Assistant Professor, Department of Mechanical Engineering, Malaviya National Institute of Technology Jaipur.

The matter presented in this dissertation embodies the result my own work and studies carried out and has not been submitted anywhere else.

Date:

Prabhat Kumar

2013PPE5149

ACKNOWLEDGEMENT

It gives me immense pleasure to express my deep sense of gratitude and indebtedness to my supervisor **Mr. Mukesh Kumar** for his constant encouragement and guidance from inception to completion of this dissertation work by taking interest and giving personal attention to the same. His valuable feedback and moral support have been a great source of inspiration for broadening my horizons in this area of research.

I am grateful to **Professor G.S. Dangayach, H.O.D. Mechanical Engineering Department** for providing me a healthy and supportive environment for my research work.

I would like to extend my sincere thanks to **Dr. Amar Patnaik** for his invaluable support throughout the research work and **Professor Upender Pandel**, HOD. Metallurgical & Material Engineering for his help and cooperation.

I would also like to thanks all Technical and Non-Technical Staff of the office of Mechanical Engineering department, MNIT Jaipur and Staff of Material Research Centre for their support.

I sincerely thank to my family members and friends for encouraging me and giving me support though all my works.

Prabhat Kumar

(2013PPE5149)

ABSTRACT

Fibre reinforced Polymers (FRPs) are widely used in industries like automobiles, aerospace, marine and many others. They are preferred for their light weight, durability and design flexibility. Automobile body panels are also made of fibre glass, carbon fibres, or fibrereinforced plastic. In some light commercial vehicles, these reinforced plastics may be used to ensure its potential benefits as per requirements. In the present work the polymer matrix composites (PMC) uses E-glass fibres as reinforcement and Epoxy resin as matrix component. The variation of properties of composites is studied under different fillers (particulates) contents, particulate being Zinc sulphide (ZnS) in this case. The present research work deals with the mechanical, thermal, thermo-mechanical and erosive wear behavior of E-glass fibre reinforced epoxy based composites and its properties variations with variation in the filler contents. The effect of filler content on mechanical properties like tensile strength, flexural strength, hardness and impact strength are investigated. The thermo gravimetric analysis is done to study the effect of thermal degradation of the polymer matrix composites. The dynamic mechanical analysis is also performed on the Visco-elastic materials to study Storage modulus, loss modulus and tan delta variations with temperature. Solid particle erosion behavior is provided in great details for glass fibre reinforced polymers. A robust design technique called Taguchi method is also used to determine the optimal condition for erosion wear rate by considering different parameters associated with it. The morphology of eroded surfaces is examined by using scanning electron microscopy (SEM) and possible erosion mechanisms are discussed.

CE	CRTIFICATE	II							
CANDIDATE'S DECLARATION									
ACKNOWLEDGEMENT ABSTRACT CONTENT LIST OF FIGURES LIST OF TABLES									
					ABBREVIATION				
					1.	INTRODUCTION	1		
						1.1 Background	1		
						1.2 Classification of Composite materials	1		
	1.2.1 Classifications based upon the Matrix Phase	1							
	1.2.2 Classification of Composites based on the type of Reinforcements	4							
	1.3 Types of polymer matrix composites	5							
	1.4 Types of Fibre Reinforcements	6							
	1.5 PMC for Automobile body panel applications	7							
	1.6 Thesis Outline	8							
2.	LITERATURE REVIEW	9							
	2.1 On mechanical properties of E-glass reinforced epoxy composites	9							
	2.2 On thermal and thermo-mechanical characterization of PMC	10							
	2.3 On the basis of solid particle erosion of polymer composites	11							
	2.4 On implementation of DOE (Design of Experiments) and optimization techniques	13							
	2.5 Research Gap	13							
	2.6 Objectives of present study	14							
3.	MATERIALS AND METHODS	15							
	3.1 Materials	15							
	3.2 Fabrication of composites	16							
	3.3 Physical and Mechanical Characterization	17							

CONTENT

	3.4 Thermal and Thermo-mechanical characterization	20	
	3.5 Scanning electron microscopy (SEM)		
	3.6 Erosion wear test rig		
	3.7 Taguchi Method		
4.	RESULTS AND DISCUSSION	26	
4.1 Physical and Mechanical Characterization of composites		26	
	4.2 Thermal and Thermo-Mechanical Characterization of composites		
	4.2.1 Thermo-gravimetric analysis (TGA)	31	
	4.2.2 Dynamic Mechanical Analysis (DMA)	32	
	4.3 Erosion Wear Characteristics		
	4.3.1 Taguchi Experimental Analysis	37	
	4.3.2 ANOVA and the effects of factors	39	
	4.4 Surface Morphology	39	
5.	CONCLUSION	42	

REFERENCES

LIST OF FIGURES

Figure 1.1	Classification of composite based on the type of matrix phases	
Figure 1.2	Classification of Composites based on the type of Reinforcements	
Figure 3.1	Unmodified epoxy resin chain	
Figure 3.2	Fabricated Samples	
Figure 3.3	Rockwell Hardness Testers	
Figure 3.4	Electronic Tensometer for Tensile test	
Figure 3.5	Impact Tester	
Figure3.6	Thermo-gravimetric analyzer	
Figure3.7	Dynamic Mechanical Analyzer	
Figure3.8	Scanning Electron Microscopy (SEM)	
Figure 3.9	Air Jet Erosion Tester	
Figure 4.1	Variations of Density and Void Fraction with Filler Content	
Figure 4.2	Rockwell Hardness (HRB) variations with Filler content	
Figure 4.3	Tensile Strength Variations with Filler Content	
Figure 4.4	Flexural Strength Variations with Filler Content	

Figure 4.5	Impact Energy Variations with Filler Content
Figure 4.6	TGA behavior of unfilled and ZnS filled GFRP composite
Figure4.7	Storage Modulus (E') vs. Temperature
Figure 4.8	Loss Modulus (E'') Vs Temperature
Figure 4.9	Tan Delta (tan δ) Vs Temperature
Figure 4.10	Effect of control factors on erosion rate
Figure 4.11	SEM graph of glass fiber reinforced epoxy composites
Figure 4.12	SEM micrographs of the eroded epoxy composites filled with ZnS

LIST OF TABLES

- Table 1.1Composition of glass fibres
- Table 3.1Properties of Epoxy resin used
- Table 3.2Properties of E- Glass Fibre used
- Table 3.3Properties of Zinc Sulphide used
- Table 3.4Designations and detailed compositions of the composites
- Table 3.5Parameter settings for erosion test
- Table 3.6Levels for various control factors
- Table 3.7Taguchi orthogonal array design (L_{16}) for solid particle erosion test
- Table 4.1Densities of the composites
- Table 4.2Rockwell Hardness Values
- Table 4.3Tensile strength values (MPa)
- Table 4.4Flexural Strength values (MPa)
- Table 4.5Impact Energy values (Joule)
- Table 4.6Experimental design using L16 orthogonal array
- Table 4.7Response Table for Signal to Noise Ratios
- Table 4.8ANOVA table for erosion rate

ABBREVIATION

PMC:	Polymer matrix Composites
FRP:	Fibre reinforced polymers
GF:	Glass fibre
GFRP:	Glass fibre reinforced polymers
CF:	Carbon Fibre
DGEBA:	Bisphenol-A-Diglycidyl-Ether
TETA:	Tri-ethylene-tetramine
TGA :	Thermo-gravimetric analysis
DMA :	Dynamic Mechanical Analysis
SEM :	Scanning electron microscopy
S/N :	Signal-To-Noise
HRB:	Rockwell Hardness B-Scale
DOE:	Design of Experiments
ANOVA:	Analysis of variance