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Abstract

Attack incidents are increasing day by day with the evolution of cloud com-

puting services. Most of the companies are changing the way they operate

and moving towards cloud based services. Security in such a complex tech-

nological environment is very important for providing assurance to cloud

customers. The importance of well-organized architecture and security roles

have become greater with the popularity of cloud computing. Some of the

researchers working in the field of cloud security have proposed intrusion

detection systems (IDS) as a defensive approach. The existing frameworks

that deploy IDS at individual Tenant Virtual Machine (TVM) are prone to

IDS subversion attacks. They are less efficient in detecting malware activi-

ties. Moreover, the TVM-layer security solutions cannot be directly applied

at the Virtual Machine Monitor (VMM)-layer because of the semantic gap

problem at the hypervisor. Semantic gap refers to interpreting the low-level

information of a guest OS into a high-level semantics. VM introspection

(VMI) is one of the virtualization-specific approaches that provides possible

ways to obtain the high-level view of TVM at hypervisor. However, not

enough work has been done in this direction to provide VMI-based security

solutions for cloud. The existing VMM-layer solutions do not provide a com-

plete solution to detect both basic and evasive malware attacks in cloud. On

the other hand, some of the cloud security frameworks are designed to detect

network intrusions only. Most of them apply signature-matching technique

as core detection technique, making them prone to signature-manipulation

attacks. Some of them apply machine learning at VMM-layer. However,

they are not integrated with the available network introspection functions

at VMM-layer. As the evaluation of above existing solutions are based on a

very older KDD99 dataset, estimation of the real performance of the system

is difficult to assess. Moreover, the security at Network-layer is as important

as the security at VMM or TVM-layer.

We propose a robust, efficient and VMI-based distributed intrusion detec-

tion framework, called CloudHedge which provides the detection of both

malware and network intrusions at various security-critical positions, cover-

ing all three layers in cloud, i.e. TVM-layer, VMM-layer and Network-layer.

It provides three lines of defense by providing efficient intrusion detection ca-

pability in form of three sub-IDS instances. The sub-IDS instances are called

as Malicious System Call Sequence Detection (deployed at TVM-layer), VM
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Introspection based Malware Detection (deployed at VMM-layer) and Mali-

cious Network Packet Detection (deployed at Network and VMM-layer). The

motivation for the design of CloudHedge is to overcome the limitations as-

sociated with the existing security architectures. A centralized IDS becomes

a bottleneck when there is an increase in the number of TVMs in the cloud

host and when the security tool uses centralized resources. A distributed IDS

that deploys the same security solution at all layers in cloud becomes less ef-

ficient because of the limitations associated with different layers. Each of the

sub-IDS instance of CloudHedge monitors at specific security-layer(s) which

are centrally controlled and configured by Cloud Service Provider (CSP).

This enables the CSP to assign the specific security solution based on the

tenants demands.

The first-line of defense is provided by Malicious System Call Sequence De-

tection (MSCSD), deployed at TVM-layer in cloud. MSCSD is applicable to

traditional physical hosts and TVMs of virtualization/cloud environments.

MSCSD analyses the run time behavior of the monitored programs, running

at TVMs of Cloud Compute Server (CCoS). Hence, it is free from anti-

detection techniques such as obfuscation and encryption. It can access all

the contextual information without requiring any complex security functions

for information extraction. MSCSD provides an efficient approach, called

‘Bag of n-grams’ (BonG) for representing the system call sequences. BonG

considers both frequency and structure of various short sequence of system

calls (called n-grams) of each trace. MSCSD derives various n-gram patterns

of same size for each trace. It is successful in maintaining the ordering of

the subsequent system calls within each sub-sequence. It then converts the

extracted n-grams into a numeric feature vector < c1, c2, c3, c4, ck >, repre-

senting their frequency distributions in various types of traces. Each entry c

in feature vector represents the occurrences of individual short sub-sequence

in the trace. Machine learning is applied to learn the behavior of programs

(both normal and maliciously modified) to learn their characteristics. It has

been validated using University of New Maxico (UNM) dataset and achieves

an accuracy of 72.103%-99.812% for detecting malicious programs. It pro-

vides various advantages over existing dynamic analysis approaches proposed

for cloud . It improves the accuracy and reduces the storage requirement

when compared to other approaches while maintaining the ordering of sys-

tem calls.

The second-line of defense is provided by VM Introspection based Malware

Detection (VIMD), deployed at VMM-layer in cloud. The main motivation

behind VIMD is to detect the attacks at VMM-layer of the Cloud Compute

Server (CCoS) which are bypassed by TVM-layer security solutions. VIMD
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makes use of the open source VMI libraries and performs two-levels of secu-

rity check. The primary check ensures that all the security-critical processes,

running at TVM such as auto-update, auto-scan are enabled. It also detects

the presence of hidden processes/VM rootkits at TVM memory. If any sus-

picious activity is detected, cloud administrator is alerted about it. It then

extracts the execution traces of running processes by using the kernel de-

bugging based VM introspection approach. A detailed behavioral log of all

the processes are obtained and secondary security check is performed. The

secondary check analyses the program semantic (run-time) behavior at the

VMM-layer using two different proposed detection mechanisms to detect the

malware attacks from hypervisor: VMGuard and VAED.

VMGuard is based on the frequency model and proposes the integration of

BonG (feature representation) method with text mining approach for feature

selection particularly by Term Frequency-Inverse Document Frequency (TF-

IDF) to extract the system call sequences with a high discriminative power.

The extracted features form Feature Vector Matrix (FVM) log, representing

the statistics of features. An ensemble learning classifier (Random Forest) is

used to learn the program semantics and detect the intrusions. VMGuard

considers the structural aspects of the traces and is found to perform well to

detect attacks which do not depend on the system artifacts (e.g. privileged

program subversion attacks). However, it does not capture the more complex

behavioral aspects of the programs. Hence, It is less suitable to detect evasion

based attacks which change their behavior on detection of some security

tool. VMGuard provides good detection accuracy (94%-100%) in detecting

anomalies when validated with UNM datasets.

VAED refers to VMI-assisted evasion detection approach, designed to deal

with the evasion based attacks against virtual domains running in cloud. It

considers both structural and behavioral aspects of the traces. It captures the

semantics in different execution paths of programs and extracts the complex

behavior of evasive malware. It is based on probability model which extracts

the program semantics in form of system call dependency graph (SCDG),

constructed using Markov Chain property. SCDG represents the ordered

system call transitions of the program. The probability model considers the

frequency of each system call transition with respect to the frequency of all

other possible transitions. The transition probabilities are stored in form

of Feature Transition Matrix (FTM). The information centric features are

extracted by applying Information Gain Ratio (IGR) over FTM and stored

in Optimal FTM (OFTM). OFTM is learned by ensemble classifier, based

on fusion of diverse classifiers. The trained classifier captures the behavior

semantics of evasive malware from FTM. It is used as baseline information
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to detect abnormality in future instances. VAED has been validated with

evasive attack dataset, obtained from University of California and provides

97.50%-98.8333% accuracy in detecting the evasive malware attacks.

The third-line of defense is provided by Malicious Network Packet Detection

(MNPD), deployed at Network and VMM-layer in cloud. MNPD ensures

the security from network intrusions by monitoring the tenant virtual net-

work traffic with two-levels of security check. The primary security check

performs the behavioral analysis of virtual network traffic at Cloud Network-

ing Server (CNS). It provides the primary security from attackers, targeting

CNS in cloud. The secondary security check validates the VM traffic at hy-

pervisor of CCoS to detect spoofing attacks (IP/MAC) which is originated

from VMs. To perform this, It does network introspection to gain the VM

related information using open source tools such as Libvirt, Xenstore, dns-

masq server from Dom0 of hypervisor. The non-spoofed packets are further

analyzed using behavior analysis of network traffic to detect any abnormality

in the virtual traffic. It provides secondary security from attackers targeting

the virtual domains running in the cloud at Cloud Compute Server (CCoS).

MNPD employs statistical learning technique (Random Forest) with union of

feature selection approaches (Chi Square and Recursive Feature Elimination)

to learn the behavior of traffic patterns. MNPD does not incur overhead in

monitoring extensive memory writes or instruction-level traces. It is a more

secure solution to detect attacks which never pass through physical interface

and hence, are not detected by traditional IDS. MNPD has been validated

with UNSW-NB and ITOC datasets. It provides an accuracy of 98.88%

using ITOC dataset and 95.091% using UNSW-NB dataset.

In summary, the thesis has presented a threat model and detailed analysis

of different attacks that are possible in the cloud. A comprehensive intru-

sion detection framework, called CloudHedge is proposed with three lines of

defense against different types of attacks in the cloud. The proposed tech-

niques have been validated using different datasets and results seem to be

promising.
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

We are living in the era of cloud computing, where services are provi-

sioned to the users on demand and ‘pay-per-use’ basis from a resource

pool. Cloud computing has evolved gradually over period of time. In

1961, McCarthy [1] suggested that computer time-sharing technology

might result in a future where computing will be provided as a pub-

lic utility like electricity. At the beginning of 1980s clusters became

the standard technology for parallel and high performance computing

providing load balancing and fault tolerance [2]. A computer cluster

is basically a group of computers that jointly performs computation to

carry out some task. These computers can be connected via LAN to

form a single computing entity.

In 1990s, grid computing evolved as a step further and as an aggregation

of geographically dispersed heterogeneous computing nodes or clusters.

Grid is utilized as a service on the top of internet. Grid computing

provisions the sharing of resources like storage, disk, databases and

software applications and computing power. Buyya et al. [3] defined

grid as “a type of parallel and distributed system that enables the shar-

ing, selection and aggregation of geographically distributed autonomous

resources dynamically at runtime depending on their availability, capa-

bility, performance, cost, and users quality-of-service requirements”.

The first scholarly use of the term “cloud computing” was coined in a

lecture talk by Ramnath Chellappa in 1997 [4].
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Figure 1.1: Cloud characteristics, Service models and Deployment models

Cloud computing goes one step further than grid computing, utiliz-

ing the power of virtualization. National Institute of Standards and

Technology (NIST) defines cloud computing as “a model for enabling

convenient, ubiquitous and on-demand network access to a shared pool

of computing resources (e.g., servers, network, storage, services an ap-

plications) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”[5].

The characteristics of cloud with its service and deployments models are

shown in Figure 1.1. NIST [5] has also defined the key characteristics

of cloud computing as follows:

1. On-demand self-service: A cloud customer can opt for computing

capabilities such as network, storage and virtual machines etc. au-

tomatically and does not require the interaction between customers

and service provider.

2. Ubiquitous network access: Cloud customers can access the services

over the network via standard methods which encourage the use of

the heterogeneous client platforms such as mobile, laptops etc.
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3. Resource pooling: A cloud services provider can pool its computing

resources to fulfill the need of various cloud customers by utiliz-

ing the multi-tenant model, with provision and release of physical

and virtual resources on a users demand. The resources include

network, storage and compute etc.

4. Rapid elasticity: Cloud services and resources can be dynamically,

elastically and automatically provisioned and released, to scale in-

/out to meet with customers demands.

5. Measured service: The resource usage can be automatically opti-

mized and controlled by cloud systems by employing the metering

capability for each type of service. The resource usage is transpar-

ent to both customers and service providers.

Cloud services are provided based on the need of users. Different types

of cloud service models [6] are mentioned as follows:

1. Infrastructure as a Service (IaaS): IaaS refers to providing re-

sources such as physical or virtual machine on demand. IaaS cloud

offers other services such as load balancer, firewall, disk image,

block storage, VLAN etc. on demand. E.g. Amazon EC2, GoGrid,

Google Compute Engine (GCE), Rackspace.

2. Platform as a Service (PaaS): PaaS refers to providing comput-

ing platform such as programming language execution environ-

ment, operating system, web server, database etc. E.g. Force.com,

Google App Engine, Windows Azure.

3. Software as a Service (SaaS): SaaS refers to providing access to

application software and databases on demand. Cloud provider

manages the infrastructure and platform that runs the applications.

E.g. Salesforce.com, Citrix GoToMeeting.

An organization must decide the deployment model based on its need

before switching to cloud. There are mainly four types of cloud deploy-

ment models [7] as mentioned below:

1. Private cloud: Private cloud is exclusively used by single organiza-

tion, managed internally or by third party. It offers high degree of

control over security, performance and reliability.

2. Public cloud: Public cloud services are used by general public over

internet. It lacks fine grain control over their network, data and

security.
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3. Community cloud: Community cloud offers the sharing of infras-

tructures between several organizations particularly communities

with common specific concern (e.g. security, compliance etc.) use

the shared resources. It is managed internally or by third party.

4. Hybrid cloud: Hybrid cloud exhibits the characteristics of both

private and public clouds. It offers more flexibility than public or

private cloud.

The key technology in the cloud environment is virtualization which cre-

ates an abstraction layer above the underlying hardware or software. It

hides the complexity of physical hardware and allows multiple operat-

ing system to run on same physical machine. The abstraction layer is

called as Virtual Machine Monitor (VMM) or Hypervisor [9]. It is of

two types: Type I (Bare Metal Hypervisor) and Type II (Hosted Hyper-

visor) as shown in Figure 1.2. In Type I Hypervisor, VMM can directly

access physical hardware. Hypervisor is booted first and have access

to the real device drivers. Xen [10], Hyper-V [11], VMware ESX/ESXi

[12] are some examples of Type I Hypervisor. In Type-2 Hypervisor,

host OS is loaded first. The Hypervisor is loaded post-boot when the

first VM is launched. The Hypervisor runs above the host operating

system as a user space application. It shares device drivers from host

OS to handle the input-output and completely depends on host OS for

its operations. VMware Workstation [13] and Oracle Virtual Box [14]

are examples of type II Hypervisor. Gradually software were developed

for implementing cloud computing platform such as Open Nebula [15],

VMware vSphere [12], OpenStack [16], Apache CloudStack [17], Citrix

Figure 1.2: Types of Hypervisor [8]
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XenSever [18], HP Helion Eucalyptus [19] etc. In our work, we have

considered Xen VMM for implementation and considered the cloud ar-

chitecture based on OpenStack [16], a leading global cloud management

software.

Xen VMM is booted first as a primary boot system. Afterwards, Linux

kernel is loaded as Dom0 domain by the Hypervisor. Dom0 is the priv-

ileged domain (administrative VM) which is used to control, configure

and manage all the other VMs by the cloud administrator. Dom0 runs

the device drivers and can access the actual hardware as shown in Fig-

ure 1.3. The networking between the TVMs is provided by VMM. Net-

working in VMM bridges the virtual adapter to the physical adapter.

The tenant virtual machines (TVMs) are loaded after Dom0 and are

also referred as untrusted domains (DomUs). VMM has the highest

privilege and full control over any VM running over it.

Openstack is a collection of open source cloud components used for de-

veloping cloud platform for public, private and hybrid cloud [21]. Ini-

tially OpenStack in jointly launched by Rackspace Hosting and NASA,

as an open-source cloud-software in 2010 [22]. Later, SUSE, Red Hat,

Oracle, IBM and some other companies launched their OpenStack based

distributions. VEXXHOST [23] provides public cloud services, powered

by OpenStack. AURO public cloud [24] offers Infrastructure as a Ser-

vice Cloud (IaaS) and is also powered by OpenStack. RackSpace public

cloud [25] also uses OpenStack for implementing the infrastructure for

cloud services. DataCentred public cloud [26] is another solution for

implementing IaaS services which is based on OpenStack. ELASTX

Figure 1.3: Basic Architecture of Xen Hypervisor [20]
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Figure 1.4: Adoption of cloud computing by Companies over years [33]

OpenStack:IaaS [27], Dualtec [28], AgileCLOUD [29], are other exam-

ples of OpenStack based public cloud. Rackspace private cloud [30] and

IBM Bluemix private cloud [31] are also powered by OpenStack. In the

OpenStack summit 2016 at Barcelona, Platform9 [32] announced its

contribution towards hybrid cloud implementation, using OpenStack.

They extended the project and included OpenStack drivers for Ama-

zon Web Services (AWS) to integrate the OpenStack services (nova-

compute, neutron etc.) with AWS.

Users are gradually adopting cloud for hosting their applications and

data. According to the survey done by Cloud Security Alliance (CSA)

[33], 62.0% users are active users who have adopted cloud for hosting

some of their applications and data. There are 27.3% potential users

who are evaluating the cloud vendors based on trial periods and 10.7%

users have no plan to move to cloud. They have further classified active

users based on their years of experience. There exist 31.6% active users

who have been using cloud for less than a year, 35.0% active users have

hosted their applications for more than a year but less than two years.

There exist 16.7% active users who have been taking benefits of cloud

for more than three years. The same amount of users (16.7%) have

been using cloud between two to three years as shown in Figure 1.4.

The ease and flexibility with cloud services have opened doors for at-

tackers. Some of the attacks have been reported by cloud providers

and users. For instance, the French research outfit VUPEN Security

[34] discovered the Virtual Machine Escape attack. The exploit targets
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Figure 1.5: The attack statistics of virtualization-aware evasive malware sam-
ples in cloud environment [39]

a vulnerability that affects the way Intel processors implement error

handling in the AMD SYSRET instruction. In Jan 2013, European

Network and Information Security Agency (ENISA) reported [35] that

Dropbox was attacked by Distributed Denial of Service (DDoS) attacks

and suffered a substantial loss of service for more than 15 hours affecting

all users across the globe. DDoS botnet attacks also launched against

the Amazon Cloud. Security researchers [36] have found the exploit

on the Amazon Cloud platform through the ElasticSearch distributed

search engine tool. Hackers attacked Amazon EC2 virtual machines

using cve-20143120 exploit in ElasticSearch ver. 1.1 x. Cyber threat

defense reported that 75% attacks use the publicly known vulnerabili-

ties present in the commercial software [37]. In 2014, Code Space was

hacked by attackers which caused the destruction of most of the cus-

tomers’ data [38]. Internet Security Threat Report [39] stated the pro-

portion of evasive-malware samples in cloud environment in the year

2015 that can detect the virtualization environment. Approximately

16% malware samples can detect the virtualization environment and

try to evade the security tool running in the virtual machines as shown

in Figure 1.5. According to Symantec report [40], 494 vulnerabilities

and two zero-day vulnerabilities were disclosed during the month of

January in 2015. W32. Ramnit! html was the most common malware

that had been blocked. Verizon [41] reported 55% of the incidents were

insider abuses/attacks in the year 2015. Stolen credentials accounted

for 50.7%, backdoors were 40.5%, SQL Injection were 19%, brute force

were 6.4%, and cross site scripting (XSS) attacks were 6.3%. Cisco [42]

reported that malware and unwanted applications are being distributed

by malware developers by using web browser add-ons as a medium. The
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Figure 1.6: Key security attacks in cloud [33]

Figure 1.7: Cloud security concern-level by cloud service providers [44]

proportion of top attacks on cloud are reported by CSA [33] as shown

in Figure 1.6. Most of the attacks are above 50% of total proportion.

On a recent survey done by Cisco in 2017, Trojans was classified as one

of the top five malware attack and is used to gain initial access to the

user’s computers and organizational networks. Their investigation re-

veals that around 75% organizations are affected by malicious software

infections. These malware can be used to launch further attacks [43].

1.2 Cloud Security

The attack incidents in cyberspace raise a big concern for security. Ac-

cording to the survey done by Information Security Group [44] in 2016,

91% of organizations are very much or moderately concerned about the

cloud security as shown in Figure 1.7 and only 4% to 5% organization

are less or not concerned about security. Some of the important secu-

rity aspects for cloud are shown in Figure 1.8. These are Application

level, Network level, Virtualization level, Data storage level, Identity
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management and Role based access control, Cryptographic key man-

agement level, SLA and trust level, Auditing, governance and regula-

tory compliance and Cloud & CSP migration level security. They are

discussed below in detail.

Application level security issues are concerned with the security of web

applications running in the cloud to provide cloud services. The SaaS

application has to be managed over the web (using a browser). The

web application security is tightly coupled with the security of web

browsers. A web browser is a platform independent program, used to

access the cloud services (SaaS), web 2.0 or web pages. A web browser

uses SSL/TLS protocol for secure transmission. The security loop holes

in the web applications create the vulnerabilities in the SaaS applica-

tions. The web applications are prone to a number of threats such as

cross-site scripting (XSS), SQL injection attack, broken authentication,

insecure transport layer protection, cross-site request forgery (CSRF)

etc.

Network level security issues are concerned with the security of the

cloud network. One of the key issues at network level is unavailability

of services. Denial of Service (DoS) and Distributed Denial of Service

(DDoS) are main threats to service unavailability. These attacks cause

inconvenience to customers and prevent their access to the cloud ser-

vices. HTTP based and XML based DDoS, are called as Economic

Denial of Sustainability (EDoS) which affect the pricing model of cloud

[45]. The key security issues at the network-level are authorization,

authentication, intrusion detection, vulnerability assessment, session

hijacking, etc. Some common attacks at network-layer are sniffing,

scanning, IP/MAC spoofing and DNS poisoning etc.

Virtualization level security issues are concerned with security of virtu-

alization layer. The major vulnerability is the multi-tenancy in which

multiple tenants share and utilize the cloud platform [46]. As the num-

ber of TVMs running above Hypervisor increase, the security issues

with the new TVMs also increases. Maintaining the security policies

of all TVMs is challenging task. Malicious code running inside a TVM

may try to gain root privilege of the Hypervisor with an intention to

take full access of the system. Security of TVMs is one of the crucial

concerns in the cloud environment. Once Hypervisor is compromised,

all TVMs running on it will be under the control of the attacker [47].

Infact, a improperly configured Hypervisor can fail to provide proper
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Figure 1.8: Cloud security issues in cloud

isolation among TVMs, leading to disclosure of the tenants’ sensitive

data.

Data security is vastly an open research area. Data can be in transit

(communicated via network channels) or in rest (stored in data centers).

The vulnerabilities in the network protocols and/or poor encryption di-

rectly affect the confidentiality and integrity of data. The data stored

in the servers needs to be physically and logically segregated and have

control policies. A few years back, Amazon reported that its Elastic

Block Store (EBS) volumes were trapped which affected its EC2 in-

stances [48]. Some of the related security issues are data remanence,

data recovery, data segregation and data integrity etc. Data remanence

refers to data which is left out after transfer or removal of VM. Data

recovery is preferred when data is lost because of some accidental dam-

age. Data segregation is the organization of the data of various users

residing in the same location. Ensuring the isolation between the user’s

data is an important security concern. Data integrity ensures that there

is no illegitimate modification in the user’s data [6]. Data deduplica-

tion is a approach for removing duplicate copies of data. Secure data

deduplication is a major research concern [49].

Identity management and access control issues are also important se-

curity concern. Identity management (IDM) deals with identifying the

entities in cloud and controlling their access to resources. As the cus-

tomers’ credentials are transmitted via internet, it imposes a great risk

to user’s sensitive data. The issue is addressed by providing the support

for federation protocols such as Service Provisioning Markup Language
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(SPML) or Security Assertion Markup Language (SAML) [50] to some

extent. SAML supports both authentication and authorization. Some

other protocols are created after SAML such as OpenID and OAuth2.

OAuth2 is an open standard for authorization and OpenID is an open

standard for authentication. The cloud based IDM are prone serious

threats such as brute-force attack, cookie replay attacks, eavesdropping

attack, denial of service attack and data tampering attack, etc [51].

There is a need to design strong security measures for IDM systems.

There is a need of providing fine-grained access control mechanisms for

controlling access to user’s data. For example, Google App uses eXten-

sible Access Control Markup Language (XACML) for authorization and

access control. Mon et al. [52] combined the Attribute-based Access

Control with Role-based Access Control (RBAC) to ensure the privacy

and security of user’s data.

Improper cryptographic keys management leads to failure of cloud secu-

rity measures [53]. The cryptographic approaches such as cryptographic

hash function, digital signature and message authentication code etc.

are used to authenticate the VM templates in cloud. They may prone to

the bootstrapping problem and hence, requires a strong security analy-

sis. The key security requirements for key management systems must be

ensured. Some of them are discussed as follows. The key management

commands and data should be secure from spoofing and illegitimate

modification. The third party who does key management should be au-

thentic. All the secret and private keys should also be protected from

disclosure. The cryptographic mechanism employed for protecting keys

should be strong enough and robust from attacks [54].

Service level agreement (SLA) and trust level security is another impor-

tant concern. The customers lose their control over data and programs

which are outsourced to cloud servers. Cloud service providers limit the

visibility of data location, network and system monitoring to customers

which generate the trust issues with service provider. It is very difficult

to assure trust in cloud environment. However, the use of signature

techniques and advanced cryptographic techniques can be used to deal

with the trust issues to some extent. SLA is another way to deal with

the trust issues to certain limit. An SLA is signed at the time of reg-

istration, describing the minimum performance criteria a CSP should

meet when delivering services. If a certain service fails to meet the
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customers need or quality of service (QoS) do not meet the SLA, cloud

customers can lose their trust with the CSP [55].

Regular audit and compliances to manage cloud resources must be done

to ensure whether internal and external processes are meeting the cus-

tomer requirements, regulations and laws. The policies should be mon-

itored regularly. There are some general governance standards that are

also applicable to cloud computing environment such as ISO/IEC 38500

IT Governance [56], Control Objectives for Information and Related

Technology (COBIT) [57], Cloud Security Alliance (CSA) Cloud Con-

trols Matrix [58] etc. The law and regulations of different countries are

different. Therefore, some of the compliance operate at country-level,

or regional-level [55]. Some of the standards are applicable to specific

company or data. The Health Insurance Portability and Accountability

Act (HIPAA) [59] requires the U.S. health care organization to main-

tain the confidentiality of protected health information (PHI). Payment

Card Industry Data Security Standard (PCI-DSS) [60] defines the min-

imum security controls to secure the customer data. The Federal In-

formation Security Modernization Act (FISMA) [61] is a compliance

framework that enforces the protection of information systems and as-

sets of all federal government agencies and contractors. Sarbanes-Oxley

Act (SOX) [62], a federal regulation, provides the standards for all U.S.

publicly traded companies to ensure security to all shareholders and

public from fraudulent actions. It maintains the information policies

and prevent the illegitimate data tampering.

There are some other security issues associated with cloud and CSP mi-

gration. When an organization or cloud customer is entering into the

cloud or shifting from one CSP to another CSP, the following migra-

tions will be considered: Data (application) migration and Cloud mi-

gration. Migration is one of the challenging research area. It involves

the secure transmission of the tenants’ data with strong application

and network security measures together with governance compliance.

There are many questions that need to be resolved with tenants such

as What technology is used in migration? Is the CSP migrating the

data with appropriate policies in place? Is the migrated data secure?

Is the migration secure from attackers? etc [63].

Researchers are working in different domains of security as discussed

above to address the security issues. We have considered intrusion
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(a) Types of intrusion detection techniques (b) Types of IDS

Figure 1.9: Broad classification of intrusion detection techniques and types of
intrusion detection system (IDS) in cloud

detection as one of the key security aspects to detect attacks at different

layers in cloud.

1.3 Intrusion Detection in Cloud

In the last few years, research has been carried out to tackle security

problems in cloud environment. Various researchers working in the area

of cloud security have proposed intrusion detection systems (IDS) as

one of the defense approaches. An IDS is a security tool that captures

and monitors the network traffic and/or system logs, and scans the

system/network for suspicious activities. It further alerts the system or

cloud administrator about the attacks.

Different intrusion detection techniques used by IDS in a cloud envi-

ronment include misuse detection, anomaly detection, virtual machine

introspection (VMI) and hybrid techniques as shown in Figure 1.9a.

Misuse detection techniques maintain rules for known attack signatures.

These rules can be derived either by using the knowledge based systems

which contain database of known attack signatures or by using machine

learning algorithms that are used in the determination of behavioral

profiles of the users based on known suspicious activities [64]. Anomaly

detection systems detect anomalies based on the expected behavior of

the system. Any deviation from the expected behavior is signaled as

anomalous [65].

Another well known technique is that of Virtual Machine Introspec-

tion (VMI). The basic principle behind the VMI technique is that it

performs introspection of programs running in a VM to determine any
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malicious program change or execution of some abnormal or malicious

code [66]. Different methods of VM introspection are based on guest-

OS hooks, VM state access, kernel debugging, interrupt and hypercall

authentication, etc. They bridge the semantic gap in interpreting the

low-level information available at a VM to high level semantic state

of a VM. Hybrid techniques make use of the combination of misuse,

anomaly and/or VMI approaches.

There are four types of Intrusion Detection System (IDS) in cloud,

classified based on the location of deployment and target of attack, i.e.

TVM based IDS, Hypervisor based IDS and Network-based IDS and

Distributed IDS as shown in Figure 1.9b. Each of these IDS makes use

of the one of the types of techniques as mentioned before. They are

described below:

TVM monitoring based IDS performs monitoring at TVM-layer. At

TVM-layer, the IDS is configured and executed inside a TVM and hence

it has good visibility of the monitored TVM. It performs host audit log

analysis, system call analysis and program analysis of the monitored

TVM. It sends alerts to tenants on detection of the suspicious activi-

ties. It detects suspicious activities such as modification or deletion of

system files, unwanted sequence of system calls or unwanted configura-

tion changes at TVM or in other cloud regions. It has direct access to

all contextual information of monitored TVM. Hence, performance in

such a deployment scenario is good. However, it is less attack resistant

as the security monitor can be easily compromised. The advantage with

guest monitoring solution is that it does not require any modification in

the Hypervisor and runs as an application in a tenant virtual machine,

which is configured and controlled by the tenants. It is suitable in all

cloud deployments to provide defense from attackers without the need

of introspection functionality. Bag of System Calls (BoS)-IDS [67] and

Secure In-VM Monitoring (SIM) [68] are some examples of TVM-based

IDS tools.

Hypervisor based IDS performs monitoring at VMM-layer. Security

tool is installed at the Hypervisor (VMM/Dom0) and is completely

controlled by cloud administrator. There are some VM Introspection li-

braries such as Ether [75], LibVMI [76], Libvirt [77], XenAccess [78] and

VMsafe [79] which can be used to retrieve the information about activi-

ties happening in a VM. The information is further analyzed by security

tools running at the VMM, which are configured and controlled by the
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Table 1.1: Types of IDS in Cloud

Parameter TVM-based IDS (A)
Hypervisor-based IDS

(B)
Network-based IDS(C) Distributed-IDS (D)

Placement of IDS TVM VMM
virtual/physical network points

(TVM/VMM/Network)
TVM, VMM or

network points, or CCS

Visibility of monitored machine Good Average Poor
Good for DTVM-IDS

average for DVMM/Detwork-IDS

Performance Good Average Poor
Better than A for DTVM-IDS

and Better than B/C for DVMM/Dnetwork-IDS

Attack Resistance Less High Higher than others
High for DVMM/DNetwork-IDS and

Less for DTVM-IDS

Hypervisor Dependency Independent Dependent Independent
Dependent for DVMM-IDS

and Independent for DTVM/Dnetwork-IDS
Configured and Controlled
by

Tenants
Cloud

Administrator
Tenant/Cloud
Administrator

Cloud
Administrator

Introspection
Functionality

Not Applied Applied Not Applied Applied in DVMM-IDS only

Tools used BOS [67], SIM [68]
XenIDS [69]

VMwatcher [70]
SNORT-IDS [71]

Collabra [72], ISCS [73]
Cooperative-agent [74]

cloud administrator to detect any suspicious activity in the monitored

VM. These libraries are Hypervisor dependent. Hypervisor-based IDS

can access VM-specific information from the privilege domain of VMM

and there is a moderate level of visibility of contextual information of

the monitored machine. Moreover, VMM is more secure than a TVM,

making the security tool highly resistant to attacks when compared to

other approaches where security tool runs in the same monitored ma-

chine. However, the performance of Hypervisor-based IDS is average

when compared to other IDS. This is because of low-level semantic gap

[80] between guest OS and host OS and due to privacy concerns of users

preventing access of VM information. Hypervisor-based IDS is VMM

dependent and is best suited to provide defense from attackers in IaaS

cloud where security tool is under monitoring of cloud administrator.

XenIDS [69] and VMwatcher [70] are some examples of Hypervisor-

based IDS tools.

Network-based IDS performs the network traffic monitoring and are

independent of underlying operating system. This is flexible to be de-

ployed at any layer (TVM/VMM/Network). However, the network

locations such as virtual bridge (joining a group of TVMs) or physical

network switches connecting the sub-networks of cloud physical servers

are most suitable locations to detect network attacks in cloud. In this

case, the security tool has poor visibility of the monitored VM and

its performance is not as good as above two types of IDS, particularly

for detecting host based anomalies such as rootkits, virus, worms and

program-subversion attacks etc. Detection of host based anomalies re-

quires host audit log information such as system calls invoked by mon-

itored programs. Such information cannot be accessed from network
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points. However, traffic analysis can be helpful in detecting network at-

tacks such as denial of service, port scanning and spoofing attacks. The

network security tool that is deployed outside the monitored machines

at network servers, is more resistant to attacks compared to IDSes as

discussed before; it is also Hypervisor independent and does not require

any introspection functionality. The Network-based IDS, deployed at

TVM is better suited to all cloud deployments and is controlled by

tenants. However, Network-based IDS deployment at VMM/network

server is well suited to IaaS cloud and is configured by cloud admin-

istrator on demand of tenant user. SNORT based Cloud-IDS [71] and

Cloud-NIDS [81] are some examples of network-IDS.

Distributed IDS consists of multiple IDS instances (Guest based IDS,

Hypervisor-based IDS or Network-based IDS) which are distributed

over the large network of cloud. These instances either communi-

cate with each other or are centrally controlled by cloud administra-

tor. Distributed IDS inherits the qualities of the IDS instances (TVM-

based/Network-based/Hypervisor-based) deployed at the different re-

gions. The visibility and attack resistance depends entirely on the type

of IDS instances deployed, as discussed above and shown in Table 1.1.

However the performance of distributed IDS is better than other type

of IDS as discussed above. It can be Hypervisor dependent or inde-

pendent, depending on the location of the IDS sensor. Gupta et al.

[73] proposed distributed architecture where Guest-IDS are deployed

at each TVM (DTVM-IDS) and centrally controlled by cloud adminis-

trator. It is Hypervisor independent. Bharadwaja et al. [72] proposed

a distributed architecture (DVMM-IDS), called ‘Collabra’ in which Hy-

pervisor based IDS instances are deployed at each VMM and commu-

nicate with each other to update about attacks. In Collabra-IDS, the

communication is done via VMM event channels. This makes it Hyper-

visor dependent. In the case of distributed IDS in which Network-based

IDS instances are deployed at the guest or network level, communica-

tion is done via network interface in a traditional manner which makes

the approach Hypervisor independent. For example, Lo et al. [74]

proposed a distributed architecture (DNetwork-IDS) which is called co-

operative intrusion detection framework. Multiple Network-based IDS

instances are deployed in each cloud server which cooperate with rest of

the instances for detecting attacks. A cooperative agent in each IDS is

responsible for receiving alerts from other IDS components. It decides
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on the majority vote based on a threshold value. If majority vote is

higher than the threshold, a new blocking rule is added in the block

table alongside the signature database.

The detailed description of intrusion detection systems (IDSes) with

their security architectures and techniques are provided in Chapter 2.

1.4 Motivation

Attack incidents are increasing day by day in cloud computing envi-

ronment. Hence, there is an immense desire to understand the secu-

rity solutions applicable to cloud environment from research point of

view. Traditional IDS systems have been applied to a cloud environ-

ment by several researchers. For example, Roschke et al. [82] proposed

a Snort based IDS architecture named as VM-Integrated IDS to detect

anomalies. Modi et al. [83] used Snort and machine learning classifiers

to detect anomalies in the network traffic between VMs. Alarifi and

Wolthusen [67] used traditional Bag of System Calls based approach to

detect anomalous sequences present in the user programs during execu-

tion. Gupta and Kumar [84] proposed Immediate System Call Sequence

approach (ISCS) which is similar to traditional look-ahead based ap-

proach [85]. Li et al. [86] applied Artificial Neural Network (ANN) to

detect intrusions in cloud. Singh et al. [87] applied Decision Tree (DT)

and ANN with SNORT to detect intrusions in the cloud. In all the

above approaches, the IDS works in a standard manner and is deployed

at the end host cloud servers or tenant virtual machines. However, a

recent survey by Information Security Group [44] confirms that only

14% security professionals expressed that traditional security tools are

sufficient to manage their security needs in cloud. A total of 59% se-

curity professional claim that traditional security tool either ‘does not

work at all’ or ‘somewhat works’ as shown in Figure 1.10.

Modern malwares can easily thwart traditional HIDS based on signa-

ture matching or static analysis techniques by using obfuscation and

encryption techniques [88]. Dynamic analysis based traditional IDS

can be evaded by checking the presence of specific security processes

in the memory of monitored tenant VM or end host as security ana-

lyzer is deployed in the monitored machine. In addition, a malicious

malware program can sense the virtual environment by checking the
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Figure 1.10: Traditional security tools in cloud [44]

registry key values and the presence of drivers specific to virtualiza-

tion. An attacker can also try to sense the periodic behavior of security

analyzer by observing the monitored machine [89]. Traditional NIDS

tools such as Snort-IDS employed by existing cloud security solutions

[82][90][87], fail to detect VM attacks targeted from one tenant VM

to another on the same physical server. The internal virtual network

traffic of co-resident TVMs never passes through the physical network.

Introspection based approaches are more specialized intrusion detection

approaches developed to work with virtualized systems and cloud en-

vironment. Hypervisor-based IDS makes use of these approaches and

has been proposed in virtualization environment. Maitland [91] and

VMWatcher [70] are examples of Hypervisor-based IDS. However, they

provide limited detection functionalities and lack in providing an ef-

ficient detection mechanism at different layers in cloud environment.

Moreover, some of Hypervisor-based IDS are not compatible in cloud

environment. For example, VMST [92] requires that the OS of the se-

curity VM (monitoring VM) must match the OS of the TVM being

introspected. This is not feasible in cloud. Some approaches impose

rigid design constraints. For example, ShadowContext [93] enforces the

execution of all monitored system calls of monitored VMs at Dom0 of

Hypervisor. Improperly designed system call redirection module can

crash the system and will impose significant overhead.

The previous research indicates that existing IDS frameworks, as dis-

cussed above provide same security solution at same or different regions

in cloud to detect a variety of attacks in cloud. Network-layer solutions

do not provide good detection rate for low frequency attacks such as
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virus, rootkits, evasive malware etc. Some of the TVM-layer solutions

target the detection of low frequency attacks. However, they are less

efficient and are not feasible to be applied at Hypervisor because of the

semantic gap issues [92]. None of the research presented so far pro-

vides a comprehensive solution to the problem. Rather, they perform

monitoring at a particular area, providing security at the TVM-level,

Hypervisor-level or Network-level. There is need to provide a complete

solution which provides security to all the vulnerable areas of the envi-

ronment.

As the existing methods alone are insufficient to handle various attacks

against virtual domains running in cloud, the motivation behind this

work is to provide an efficient, robust, VMI-based and distributed se-

curity framework for securing the cloud environment. The framework

is designed to detect attacks with three line of defense at TVM, VMM

and Network layer. The distribution of the security components with

different detection strategies makes the proposed solution more efficient

and suitable to cloud environment.

1.5 Statement of the Problem

The main objective of the present research work is as follows:

“To develop a comprehensive intrusion detection framework to detect

attacks in cloud environment by provisioning three-lines of defense, cov-

ering all three layer of cloud, i.e. TVM-layer, VMM-layer and Network-

layer”.

The framework is intended to provide different detection strategies de-

ployed at various security-critical positions such as tenant virtual ma-

chine (TVM), Hypervisor/virtual machine monitor (VMM) and cloud

network server (CNS) to facilitate the detection of both network and

malware attacks in cloud. The design of framework with proposed so-

lutions for detecting intrusions at various cloud layers strengthens the

detection mechanism. The framework aggregates existing open source

network security tools and virtual machine introspection tools and inte-

grates them with efficient detection mechanism to facilitate the objec-

tive of detecting network attacks and basic & modern evasive malware

attacks.

The contributions can be subdivided as following objectives:
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1. To propose a threat model and attack taxonomy at various layers

in cloud environment.

2. To propose a classification of intrusion detection mechanisms in

cloud environment.

3. To propose a robust, efficient and VMI-based distributed security

framework to detect intrusions at different layers of cloud environ-

ment.

4. To propose and implement an efficient security approach to detect

intrusions at the TVM-layer.

5. To propose and implement a robust VM Introspection based secu-

rity architecture to detect malicious activities at the VMM-layer.

6. To provide the design and implementation of an efficient VMI-

assisted malware detection approach based on system call sequence

analysis for detecting the basic malware attacks at VMM-layer .

7. To provide the design and implementation of an efficient VMI-

assisted evasion detection approach based on system call transition

analysis for detecting stealthy evasive malware attacks at VMM-

layer.

8. To propose and implement a malicious network packet detection

approach to detect network intrusions at Network and VMM-layer.

1.6 Thesis Organization

Rest of the thesis is organized as follows:

Chapter 2 proposes a threat model and an attack taxonomy with the

description of cloud attackers and attack scenarios in cloud. A classifi-

cation of detection techniques of IDS has also been proposed followed

by the detailed discussion on various types of IDS in cloud environment.

Various research gaps have also been identified and discussed.

Chapter 3 proposes an efficient, robust and distributed security

framework, called CloudHedge which provides three-line of defense

at different security-critical layers namely TVM, VMM and Network.

Three security proposals has been provided for TVM-based monitor-

ing, Hypervisor-based monitoring and Network-based monitoring re-

spectively to deal with hidden rootkits, stealth malware and network

intrusions. Each of the detection mechanism is distributed at differ-

ent security positions in cloud which is centrally controlled, configured
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and monitored by cloud administrator. A brief summary of conceptual

working of all three proposals has been described with diagrams and

unique qualities.

Chapter 4 provides the design and implementation of proposed ‘Ma-

licious System Call Sequence Detection (MSCSD)’, one of the sub IDS

instance of CloudHedge. MSCSD is based on the run time behavior

analysis of the programs at TVM-layer. It can directly access all con-

textual information of TVM as the security tool is deployed inside the

TVMs. A detail description of various detection components has been

presented with their implementation.

Chapter 5 provides the design and implementation of proposed VM In-

trospection based Malware Detection (VIMD), second sub IDS instance

of CloudHedge. VIMD performs the program behavior monitoring from

the VMM-layer. The key characteristics has been described with its

execution phases and detection components. The detailed description

about the design and implementation of VIMD with core detection com-

ponents (called VMGuard and VAED), used for behavior analysis of

programs, are described in more detail in separate sections. VMGuard

is based on system call sequence analysis and intended to detect basic

malware attacks such as program subversion attacks whereas VAED is

system call transition analysis and intended to detect evasive-malware

attacks that try to thwart the detection. The detection mechanism of

both the approaches is integrated with suitable text-mining and ma-

chine learning approaches along with the support of VMI functions.

Chapter 6 provides the design and implementation of proposed ‘Ma-

licious Network Packet Detection’ (MNPD), third sub IDS instance of

CloudHedge. MNPD provides the defense from network intrusions at

both Cloud Network Server (CNS) and Cloud Compute Server (CCoS).

It leverages the network introspection and machine learning approaches

for doing traffic validation and behavior analysis of the network traffic.

Chapter 7 concludes with summary of contributions towards intrusion

detection in cloud and also gives directions for future work.
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Chapter 2

Literature Survey

This chapter begins with the explanation of the proposed threat model

and proposed attack taxonomy in the cloud computing environment. A

classification of various intrusion detection techniques has also been pro-

posed with the description of their applicability in cloud environment.

The existing Intrusion Detection Systems (IDSes) in cloud environment

have been discussed in detail. Research gaps are discussed which are

identified during the study.

2.1 Threat Model and Attacks in Cloud

Environment

First of all, a brief overview of the cloud architecture, based on Open-

Stack [16] architecture, is discussed. OpenStack is a global leading

cloud management software opted by many companies for developing

cloud platform for public, private or hybrid cloud, as discussed in Chap-

ter 1 in detail. Next, a threat model is explained with associate attack

surfaces and attackers in cloud environment. The attacks are classified

based on target cloud components. A cloud environment typically con-

sists of three types of servers: Cloud Controller Server (CCS), Cloud

Compute Server (CCoS) and Cloud Networking Server (CNS) [16] as

shown in Figure 2.1. All the management related tasks of a cloud are

handled at CCS whereas CCoS hosts various virtual machines (VMs).

CNS facilitates configuration of network, IP allocation and traffic rout-

ing to cloud servers. It also enables VMs to connect to the Internet.

There are typically three networks in cloud: tenant network, adminis-

trative network and external network. Tenant traffic flows through the
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Figure 2.1: Basic architecture of cloud environment

tenant network which is configured to run in a virtualized environment.

Each tenant network is associated with a set of tenant virtual machines

(TVMs) and hence vulnerable to attacks from one TVM to other TVM

in the same tenant subnet. An administrative network is responsible

for connecting all cloud servers and is basically used to perform admin-

istrative task such as creating a TVM, destroying a TVM, resuming a

TVM, allocating storage and are less vulnerable to attacks from ten-

ant VMs due to access privilege issues. External network connects the

TVMs to the outsiders through the Internet and is vulnerable to var-

ious traditional attacks. There are different roles created for different

members in the cloud, such as cloud service provider, cloud administra-

tor, tenant administrator and tenant users. A cloud administrator is an

individual employed by a cloud service provider to maintain cloud in-

frastructure and typically has privileged access. If users want to become

tenants (cloud customer/tenant user), they have to register themselves

with the service provider. A tenant administrator is responsible for

configuring and allocating policies to a set of TVMs and is allocated

additional privileges by the cloud administrator. Tenant users can run

applications and services in tenant virtual machines.
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Figure 2.2: Classification of attackers in cloud environment

Cloud is vulnerable to attacks targeted against various cloud compo-

nents. Attacks can be launched by cloud administrators (entities pos-

sessing privileges of access and allotment of cloud resources), tenant

users, tenant administrator or malicious outsiders (attacking entities

outside the cloud environment). The various cloud attackers are shown

in Figure 2.2. The description about various attack surfaces and at-

tackers with attack scenarios is given in threat model, described next.

2.1.1 Threat Model

Threat modeling is a critical step in understanding which assets are

most likely to be targeted in the cloud environment. It also helps to

analyze various vulnerabilities that are present in these assets and how

they can be exploited. Let us now consider a typical configuration of

our system architecture as shown in Figure 2.3 and discuss the threat

model. We propose a threat model in which the direction of attack

is represented from source to target machine. The start of direction

is represented by a circle that represents origin point of attack and

end of direction is represented by an arrow head that represents victim

machine. The attack surfaces considered for security analysis in this

thesis, are shown in Figure 2.3. Below, we describe different attack

scenarios in threat model:

∗ If a malicious user of a TVM is able to access another TVM il-

legitimately by using various local privilege escalation techniques,

he/she can run VM rootkits in the guest machine to gain the root
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Figure 2.3: Proposed threat model in cloud environment

privileges of the guest operating system. Once the rootkits are in-

stalled, it is possible to hide the intrusions and run with privileges

with an intention to cause harm in the victim VM. In fact some

of the advanced malware are evasive in nature and can evade the

security tool running in the victim VM (TVM-TVM)(line 1).

∗ A malicious tenant user can also exploit the vulnerabilities present

in the operating system of VM and run malicious code (advanced

malware) that escape the boundaries of VM [94] and allows an

attacker to harm privilege domain (Dom0) of VMM and host OS

(VM-VMM/host OS) (line 2). Dom0 is the privileged VM, used

to create, destroy, resume, start or stop TVMs and define security

policies.

∗ If a tenant administrator has requested free communication be-

tween its TVMs (say VM13 and VM22). A malicious tenant can

launch the denial of service attacks by starving the resources and

crashing the server to other TVM and/or scan the other TVM traf-

fic. If the resources allocated to the other TVMs are exhausted sig-

nificantly, causing the TVM to be unable to respond to legitimate

tenant requests, leading to the violation in service level agreement

(SLA) (line 3).
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∗ If two tenant VMs belonging to different tenant administrators re-

side on the same physical server, then they can also become victim

of the attacks. For example, a malicious tenant VM (say, VM12

which belongs to tenant administrator 1 (TA1)) can perform scan-

ning of another tenant VM (say VM13 which belongs to TA2)

and can obtain detailed information and exploit the vulnerabili-

ties present in the victim VM13 (VM-VM) (line 4). A malicious

tenant user can also cause Guest Denial of Service (DoS) attack

by starving the resources of the server at the virtualization-layer

(VM-VMM) (line 5).

∗ The network intrusions can also be launched in a more complicated

way in which the malicious packets are tampered to a spoofed IP

and/or spoofed MAC address of victim virtual machine, again lead-

ing to disputes between cloud service provider and victim virtual

machine (line 3 and line 4).

∗ If a TA has requested free communication between its VMs (say

VM13 and VM22) which are placed at different cloud compute

servers, then the cloud provider will not monitor their communica-

tions. In this case, a malicious tenant user can exploit vulnerabili-

ties in VM13 and launch malware and/or network attacks on other

machines (say VM22) (line 3).

∗ There can also be attacks from the cloud administrator on a tenant

VM (a powerful malicious insider). Cloud administrator has access

to privilege domain (Dom0) of the VMM. A malicious cloud ad-

ministrator can misuse the information and cause further exploits

(lines 6 and 7). This is very rare situation. Generally, CSPs are

much interested in their reputation and do not want to destroy

their relationship with clients. However, the feasible solution to

tackle this problem is to select a most trustable CSP which has

been addressed by Habib and Varadharajan [95].

∗ Internet users can also target the cloud infrastructure to gain ac-

cess to cloud resources and can also use them to generate attacks.

Once an outsider is successful in gaining access to a tenant VM,

he/she can misuse it to launch further attacks such as flooding and

scanning (Outsider-VM) (line 8). The charges incurred by the mis-

use of resources is paid by the victim tenant, potentially leading to

further disputes. In addition, if a tenant VM is compromised, an at-

tacker can generate traffic floods with ICMP/UDP packets having
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a spoofed source address of another victim tenant VM, making the

victim’s resources busy. Another form of DDoS is EDoS (Economic

Denial of Sustainability) which affects the pricing model of tenant,

making him/her suffer from additional billing charges [45]. For ex-

ample, a malicious tenant user can continuously send requests to

websites, hosted in cloud. This causes the bandwidth consumption,

which bills to cloud website owner [46].

∗ CNS is responsible for routing and packet forwarding, as shown in

Figure 2.3. The packet coming from outside or going to outside,

passes though the network server. A CNS can also be subjected to

attacks mainly network attacks such as flooding, Denial of Service,

scanning, brute force attack etc. (line 9), bringing down the cloud

services.

2.1.2 Attacks Taxonomy

An attack taxonomy represents a systematic framework to classify at-

tacks. The attacks are classified based on target-components wise where

attacks target specific layers of cloud as shown in Figure 2.4. The brief

description of some of the attacks under each category is described be-

low:

(A) VMA: Attacks on Virtual Machine: Virtual machines are

most vulnerable part of cloud environment as they are easily accessible

by tenant users (line A). Malicious tenants or malicious cloud admin-

istrator may perform attacks against VMs. some of such attacks are

described below:

VMA1: VM rootkits: VM-rootkit attacks perform the guest OS kernel

modification. They hide their presence from the traditional IDS de-

ployed at monitored machine. The detection of such attacks is essential

at the primary stage since it can lead to further attacks.

VMA2: Program modification attacks: A malicious user can perform

the subversion of specific privileged programs running in TVM to es-

calate their privileges and launch further attacks on cloud. Subverting

files such as those which describe tenant privileges or authentication

information can allow cloud users to bypass access control and authen-

tication system.

VMA3: Virus/Worm: Some malicious code is either injected in a nor-

mal program or works as an independent code. Virus and worms are
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Figure 2.4: Classification of attacks under consideration in cloud

some examples of malware that can corrupt important system or user

files, and can even crash an OS by replicating themselves. An attacker

can inject the malware in a target VM to gain root access of machine

and later launch further attacks.

VMA4: Information Leakage: VM memory information may leak in

different ways. A malicious user can install a key logger program in the

victim machine in an illegitimate way. Upon execution, the credential

information of the victim user is transferred to the attacker, leading to

disclosure of tenant’s sensitive information.

VMA5: Time based evasions: Automated malware analysis systems

have to detect the malicious activities within a limited time frame. If a

program does not behave maliciously within 5-10 minutes, such program

will be classified as benign or normal. In time based evasions, malicious

program perform the malicious activity slowly not exceeding the time

window. For example, an attacker can put the stalling code in the

malware [96]. Stalling codes are loops containing timing operations to

delay the operations. The execution of stalling code is placed before the
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actual malicious code and hence automated malware analysis system

fails to detect such evasions. In addition, there are many introspection

techniques such as SIM [68] that place the security hooks inside the

guest VM/TVM and provides VM monitoring from security VM. They

perform the detection in regular interval of time. An attacker can evade

detection by observing the periodic behavior of analysis tool and can

attack between monitoring checks [89].

VMA6: Exception based evasions: Exception based evasions can be

another attempt to detect the analysis environment. For example, some

dynamic analysis tools insert the custom codes in the TVM memory.

By properly reading the context structure that is passed as a parameter

to a custom exception handler; the context of debug register can be

read which reveals the information about these custom codes. This is

explained in details by Fratantonio et al. [97]. Such kind of evasions

can be used to fool the analyzer.

VMA7: Processor-Specific evasions: Processor based evasions use

CPUID instruction to extract the processor-specific features such as

Physical Address Extension (PAE), Page Size Extension (PSE) and

Virtual Machine Extension (VMX), Hypervisor etc. values depending

on the contents of EAX and ECX registers. The information can be

helpful to detect the analyzer (if attacker has the knowledge of ana-

lyzer) and can also reveal the presence of Hypervisor. For example,

some analyzer modifies the default values of PAE and PSE to make

the memory writes easier in hardware-assisted virtualization platform

[98]. In addition, CPUID instruction executed at TVM with EAX=0

returns a 12 character ASCII string which is stored in EBX, EDX, ECX

(in order). If it is “KVMKVMKVM”: presence of KVM is detected; if

it is “XenVMMXen” : presence of Xen is detected [99]. The detection

of such evasion is essential before they can launch Hypervisor-specific

attacks.

VMA8: VM Escape: VM Escape is an attack in which an attacker gains

access to the memory that is beyond reach of compromised tenant VM

(memory of other guest VM, VMM or even host OS). VM escape can

also be described as the process breaking out of a VM and interacting

with VMM/host operating system. Attacker can further breach the

isolation of VMs and can cause harm to other guest VM [94].

(B) VMMA: Attacks on Virtual Machine Monitor: Attacker

may exploit the programming code vulnerabilities present in the VMM
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(line B) and cause harm to VMs under its control. The description of

some of the attacks is given below:

VMMA1: VMM DoS: VMM operations can be badly affected by re-

source starvation (such as RAM, CPU and network Bandwidth), or

interrupted if a complete shut-down of the VMM is caused or restart-

ing it every time for the new services in VM. These situations cause

DoS. It will affect all VMs running over it [9].

VMMA2: VMM Malware Injection: The virtual environment can be

detected by malware which can disable or infect critical components

such as the VMM. A malware can roll back the VMs and can restore

them to previous states [9].

VMMA3: VMM Hyperjacking: Hyperjacking attack refers to installing

a rogue Hypervisor that can take complete control of a server. Rootkits

based malware can cause hyperjacking attack. Hypervisor-level rootkits

exploit the hardware virtualization technologies such as Intel VT or

AMD-V. They run with high privileges than Dom0 and host of the

target VMs. Bluepill and SubVert are examples of it [100].

VMMA4: VMM Backdoor: An attacker can take a backdoor entry into

Hypervisor’s privilege domain by overwriting the Hypervisor code and

manipulating the kernel data structures of guest OS; leaving all bytes

in privilege domain unchanged. Detection is difficult if conducted from

privilege domain. Wojtczuk et al. [20] implemented two backdoors:

The first one resides in the Hypervisor code and the another one resides

in a hidden domain with artificially elevated privileges.

(C) TNA: Attacks on Tenant Network: Tenant’s traffic flows from

one VM to another VM through tenant network (via physical/virtual

network interfaces). The co-located VMs communicate via virtual net-

work interface at the Hypervisor. The non co-located VMs communi-

cate via both virtual and physical interfaces at Hypervisor and cloud

server respectively. The attacks on the tenant network exploit the net-

working layer vulnerabilities of cloud (line C). Following are some of

the attack examples:

TNA1:VM Traffic IP spoofing: A VM which is launched at certain

network segment is open to attacks from other VMs launched on the

same network. A malicious user can perform IP spoofing from one

VM in which attack traffic is generated on behalf of legitimate tenant

machine (victim) and is sent to destination VM. [101].
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TNA2:VM Traffic MAC spoofing: A malicious user can perform MAC

spoofing from one VM in which attack traffic is generated with the

MAC address of the victim VM [101], misleading the other VMs.

TNA3: VM Port scanning: Port scanning is an attack that does not

cause any harm on the VMs, but it gives the attacker some specific

information about the status of the ports that can be used for further

attacks such as DoS attacks. There are many scanning tools such as

hping3 [102] and nmap [103] which can be applied in virtualized envi-

ronment as well.

TNA4: VM Denial of Service: At network level, DoS attack is ac-

companied by IP spoofing and flooding. Attacker floods the broadcast

address with spoofed packets. The sender address is target VM’s IP

address providing a service on the cloud. On receiving the packet, each

node responds to the server hosting the VM with particular spoofed

IP. This causes consumption in the victim’s resources so that it can

no longer provide its intended service. If a DoS is initiated from more

than one source controlled by a master node then it is referred to as

Distributed Denial of Service (DDoS) attack. TCP-SYN flood, ICMP

flood, UDP flood are specific types of DDoS attacks [101].

TNA5: VM Traffic sniffing: In the environment where VMs are con-

nected via virtual switches, packet sniffing is done at the virtual switch

level. Hypervisor links the VMs via bridge or router and provide logical

isolation between the VMs. Physically the VMs share the same hard-

ware resources. Attacker can exploit this vulnerability in sniffing the

virtual network to gain sensitive information of VMs.

(D) VSA: Attacks on Virtual Storage: Tenants share the same

physical storage, divided into a large number of logical units depending

on the storage capacity. Such a multitenancy can cause following major

attacks at storage-layer of cloud environment (line D):

VSA1: Data Remanence: Data Remanence represents residual informa-

tion of the data after its deletion. Various file handling operations such

as the reformatting of storage and deletion operation may result into

data remanence. Such operations could cause disclosure of user’s sensi-

tive information. In a cloud environment, virtual storage is shared by

different tenants. If a tenant removes his/her data, the virtual private

sector is reallocated to another tenant user of the same service provider.
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With the technical expertise, the bits of information allocated to earlier

data can be interpreted by enterprise hackers [104].

VSA2: Data Leakage: Attacks such as password guessing and dumpster

diving can lead to VM data leakage. Attackers can also use tools such

as key logger to gain authentication into target VM and can breach

the data. VM backdoors [6] can also leak sensitive information such as

VMware I/O backdoor [105].

VSA3: Dumpster Diving: Dumpster diving is an attempt of digging

out information from data which was discarded as waste. The data is

recovered by the attacker that was discarded by cloud users or admin to

gain useful information from it. An attacker can also target a specific

user who has shared his/her data with the cloud. Discarded information

may include authentication information, cookie information, credit card

details, other technical manuals or organizational chart [104].

VSA4: Hash Value Manipulation: An attacker may manipulate the

hash value of the message and can get authorized access to the file

stored in the server. If manipulated hash value exists in the database,

server links the file to that hash value. If the modified hash value

does not exist, server request a file from the user. The vulnerability

may exist if the server does the calculation using OpenSSL by using

wrapper class library Ncrypto. Attacker may modify Ncrypto, which is

publicly available [106].

2.2 Taxonomy of Intrusion Detection

Techniques in Cloud

The state of the art IDS techniques for detecting attacks against the

virtual domains running in cloud environment, are presented. We have

classified techniques of intrusion detection for dealing with attacks at

different cloud layers (TVM/VMM/Network) into four types: (i) Mis-

use Detection (ii) Anomaly Detection (iii) Virtual Machine Introspec-

tion (VMI) (iv) Hybrid techniques as shown in Figure 2.5. Each tech-

nique is further classified based on the detection approach employed

and described under each subsection.
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Figure 2.5: Proposed Classification of IDS techniques in Cloud Environment
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2.2.1 Misuse detection techniques

Misuse detection techniques match the current behavior recorded in log

files with known attack patterns. The conceptual diagram for misuse

detection techniques is shown in Figure 2.6. Data is collected from

various sources such as packet capture files. The collected raw data is

first pre-processed and converted into a useful format before passing it

to the Detection Engine. The Detection Engine implements a decision

model which decides whether to pass the data or generate an alert based

on some known behavior. The known behavior can be in the form of

a signature or attack profile generated by machine learning algorithm

over a labeled dataset. If the current system activity matches with

the known attack behavior, an alarm is raised to concerned authority

(cloud administrator/tenant). In the virtualization-layer, misuse de-

tection systems are deployed at the tenant VMs and able to detect

outsider attacks targeting VMs and some Inter VM attacks (VM-VM).

Misuse detection techniques [64] can be further classified into two types:

Knowledge based approaches and Machine learning based approaches,

which are briefly explained in detail below:

(i) Knowledge based approaches: In knowledge-based approaches, net-

work traffic or host audit data such as system call traces are compared

against predefined rules or attack patterns. State transition analysis,

signature-based analysis, rule-based expert systems are some examples

of knowledge-based system [107]. Signature-based analysis maintains a

database of rules for detecting different types of known attacks. The

incoming packets are scanned against fixed patterns. If any of the pat-

terns matches with the packet header, the packet is flagged as anoma-

lous. State transition analysis maintains a state transition model of

the system for the known suspicious patterns. Different branches of

the model lead to a final compromised state of the machine. The rule-

based expert system maintains a database of rules for different intrusive

scenarios.

(ii) Machine learning based approaches: Misuse detection can also be

performed using supervised classification algorithms such as Back Prop-

agation ANN (BP-ANN)[108], Decision Tree (DT) [109] and Multi class

Support Vector Machine (SVM) [110] which are well known machine

learning approaches. Machine learning approaches for misuse detection

provide a learning based system to classify attacks based on learned
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Figure 2.6: Conceptual diagram for knowledge-based and machine learning
based approaches

normal and attack behaviors. It uses network traffic or host audit data

such as system call traces. The goal of machine learning methods is

to generate a general representation of attacks (host/virtual based or

network attacks). The attack behavior is automatically induced in the

representation rather than predefined. The algorithms are used to find

the inherent associations in the data or any irregularity with the data.

2.2.2 Anomaly detection techniques

Anomaly based techniques are based on making a behavior profile of

system and keep on updating it time to time. Any deviation from

the learned behavior flags the suspicious activity in the network/sys-

tem. They are different than misuse detection as they do not have any

knowledge of the attack patterns. Hence, the techniques can detect

zero-day attacks. A zero-day attack refers to exploitation of a vulner-

ability that has not been known earlier. Researchers have proposed

anomaly detection systems for cloud using: network behavior analysis

and program behavior analysis techniques. The program behavior anal-

ysis can be: dynamic analysis (run-time behavior capturing) and static

analysis (program code analysis) as shown in the conceptual diagram

in Figure 2.7.

(i) Behavior analysis of network traffic: Network traffic analysis

techniques capture the incoming and outgoing packets from the system.

The traffic features such as port number, source address, destination

address, service and the number of connections to same destination

36



Figure 2.7: Conceptual diagrams for (A) dynamic analysis (B) static analysis
and (C) network traffic analysis approaches

are the basic attributes in building the normal profile of the virtual/-

physical system. Anomaly detection techniques based on analysis of

network traffic are widely categorized into three types: statistical ap-

proaches, machine learning based approaches and finite state machine

(FSM) based approaches [65]. However, we have considered only FSM

based and machine learning based approaches in our taxonomy as they

are the ones used by researchers working in cloud security. They are

briefly described in detail below:

Finite state machine based approaches: A finite state machine (FSM)

produces a behavioral model which consists of states, transitions and

actions. A state stores the information about the past, a transition

represents change from one state to another on occurrence of an event

and action represents the response to be taken [111].

Machine learning based approaches: Anomaly detection can also be

performed using semi-supervised and unsupervised algorithms such as

self organizing map neural network [112], clustering algorithms [113]

and one class SVM [114]. Machine learning approaches for anomaly

detection provide a learning based system to discover zero-day attacks.

(ii) Behavior analysis of programs: Network Traffic analysis is

not sufficient to detect all kinds of attacks. Behavior analysis of pro-

grams is helpful in detecting low frequency attacks such as rootkits

and VM Escape. Behavior analysis techniques are categorized into two
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classes: Dynamic Behavior Detection (DBD) and Static Behavior De-

tection (SBD). Dynamic analysis and static analysis approaches are

discussed in brief below:

(a) Dynamic Behavior Detection: Dynamic Behavior Detection

(DBD) approaches for anomaly detection, collect the system calls of

the monitored programs in normal execution scenarios and make a base-

line profile for further analysis. The techniques assume that malicious

programs invoke a malicious sequence of system calls which deviate

from the normal execution scenario. The dynamic behavior of a pro-

gram remains the same even if code is obfuscated. The approaches are

categorized into four types: enumeration-based approach, frequency

based approach, state-based approaches and machine learning based

approach. We have included all four classes in our taxonomy as each

of the them has been applied for anomaly detection in cloud. They are

explained in brief detail below:

Enumeration based approaches: Enumeration based approaches [115]

make an ordered list of system call sequences of monitored programs.

The ordered list of system calls followed by each unique system call,

for the normal programs forms the baseline database for intrusion de-

tection in future. Researchers [84] have used this concept for detecting

anomalies in cloud for in-guest/host monitoring.

Frequency-based approaches: A rare pattern may occur because of sud-

den misuse behavior of a normal user such as invoking the unwanted

function, overflowing the buffer or any unexpected error. Just by mis-

matches, we cannot be sure about the anomalous behavior of a trace.

In some cases abnormal sequences may be present in a database and

their frequency of occurrences may not be too high. Hence, a fur-

ther step to compare the mismatches with a predefined threshold value

[116]. Frequency based methods found to improve the performance of

earlier enumeration approaches, based on just pattern matching. Some

researchers have applied this concept in cloud [117] for in-guest moni-

toring.

Finite state machine based approaches: FSM based approaches have

also been used for detecting malicious programs sequences. Cho et

al. [118] presented an anomaly detection technique based on Hidden

Markov Model (HMM). The authors have observed that HMM takes an

unusually longer time to build the model of all normal user processes.
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Therefore, they have improved the efficiency of HMM by modeling it

only for privileged programs.

Machine learning based approaches: Machine learning techniques are

applied with the existing techniques to provide a generic model which

represents the normal system call patterns of the programs. Researchers

[119] have applied machine learning for intrusion severity analysis at

VMM.

(b) Static Behavior Detection: Static Behavior Detection (SBD)

approaches perform the analysis of program codes and generation of the

behavioral profile of programs without running them. Static analysis

approaches try to capture the possible behavior of programs by an-

alyzing the programming codes whereas dynamic analysis approaches

capture the actual run-time behavior of the program. They are catego-

rized into two types: Specification based and Profile based. They are

discussed in brief below:

Specification based approaches: A specification of program predefines

its intended behavior and is defined in terms of policies. Researchers

have proposed specification policy based solutions [120] to specify the

behavior of each program (such as rdist) to prevent illegitimate actions.

The policies are precise and clear; however they will increase the over-

head of cloud administrator to set specification policies for all privilege

programs running in different cloud servers. Writing such a policy it-

self is a tedious, time-consuming task, and may prone to programming

errors which requires the specialized knowledge of program functions.

Profile based approaches: Profile based approach refers to making a

generic behavioral profile of the system based on the static analysis of

program behavior. The generic profile, first extracts the required in-

formation (features) such as byte-code sequences, DLL functions calls,

hexdump codes, function names etc. from the programs and then ap-

plies machine learning to the extracted features of monitored programs

to distinguish between normal and anomalous behavior [121].

Static analysis approaches are very older techniques, proposed in tra-

ditional environment. They fail to detect the modern malware attacks

which hide/change their behavior from security tool on detection of

monitoring tool or virtualziation environment. However, the existing

antivirus tools based on static analysis (reverse engineering of code) can

be directly used by tenants. To provide a secure monitoring place for
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Figure 2.8: Conceptual diagram for VMI-based approaches

security analyzer, VMI based techniques have been proposed, discussed

in next section.

2.2.3 Virtual Machine Introspection (VMI) tech-

niques

Advanced malware programs are intelligent to detect the malware anal-

ysis components running in the monitored machine. They try to disable

or compromize the security tool without leaving any trace in the sys-

tem. Hence it is essential to monitor the VMs by placing the security

monitor at VMM. VMI techniques are specifically designed to provide

VM introspection from outside the tenant VM (generally deployed at

security VM (Dom0)). The techniques utilize the features of the Hyper-

visor and introspection libraries such as LibVMI [122] which uses guest

symbol table to access the VM memory regions as shown in Figure 2.8.

VMI approaches provide the high-level view of the VM memory which

is analyzed by security analyzer working in security VM (Dom0). For

most of the VMI techniques, all the security analysis code run in the

security VM. However, some approaches place a security module (tram-

poline code) in the monitor VM which communicates the information to

other security modules running in security VM. If any of the VM mem-

ory region is found to be suspicious, security analyzer generates an alert
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to the cloud administrator. VMI approaches are helpful in cloud envi-

ronment where the provider wants to monitor the VM behavior from

the VMM. VMI-IDS are deployed at the VMM or in a privileged VM.

They can detect VM-VM attacks, insider VM attacks and especially

VM-VMM attacks. We have categorized them into five types based

on the introspection approach used: (i) Guest OS hook based (ii) VM

state access based (iii) Hypercall authentication based (iv) Kernel de-

bugging based (v) Interrupt based. Each of the VMI based approaches

is discussed below:

Guest OS hook based approaches: Guest OS hooks based VMI ap-

proaches inject hooks (In-VM agent) into the kernel of guest OS. These

hooks are kernel modules which send the required information to VMI

applications. These methods require modification of guest OS and are

less attack resistant than out VM approach [91].

VM state access based approaches: VM state access based approaches

rely on the state information of VMs provided by VMM. A VM state

is defined by its memory space, CPU registers, I/O access etc. VMI

applications derive semantic knowledge and intelligence about a guest

OS from low level details of VM state information [123].

Hypercall authentication based approaches: As syscall is a software trap

from an application to kernel; similar to that a hypercall is also a soft-

ware trap which is generated from a virtual machine to the Hypervisor.

Virtual domains use hypercalls to request privileged operations like up-

dating pagetables. A hypercall integrity is checked in these type of

solutions [72].

Kernel debugging based approaches: These method use the kernel de-

bugging data to extract the location of kernel functions and perform

break point injection at desired locations. An interrupt is generated

when break point is executed and kernel functions are trapped to col-

lect necessary information about the process [124].

Interrupt based approaches: Interrupt based VMI approaches trap the

monitored function calls at the same time when an interrupt is gen-

erated by target machine. These techniques are categorized into two

types: Interrupt handling based and Interrupt forcing based. Below,

we describe each of the approaches in brief:

∗ Interrupt handling based: Interrupt handling based VMI ap-

proaches trap the general purpose interrupts such as protection
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exception, page fault and VM EXIT events; information about the

monitored machine from processor context (register such as %eax)

is used to perform the active monitoring of VM [69].

∗ Interrupt forcing based: VMI approaches force the interrupts

(traps, exceptions, etc.) by using the hardware-based hooks (e.g.

unsetting setting specific register value and flag value) and derive

the information about monitored machine from processor context

to do active monitoring of VM [75].

VMI techniques provide a rich set of functionalities to introspect VMs

from outside the VM. Researchers are trying to adopt it for intrusion

detection applications in cloud environment. There are some other

techniques such as Hypervisor introspection (HVI) approaches. HVI

techniques addresses the attacks below virtualization layer particularly

hardware attacks which are used to bypass the Hypervisor security and

are not under the scope of this thesis.

2.2.4 Hybrid techniques

Misuse detection and anomaly detection techniques are combined to

improve the effectiveness of the detection engine. However, anomaly

and misuse detection techniques are not sufficient enough to detect in-

trusions at Hypervisor-level. VMI techniques utilize the features of the

Hypervisor to gain access inside a VM and provide useful information

to other IDS techniques. Hybrid techniques refer to the combination

of more than one intrusion detection techniques which make use of the

synergy of misuse based, anomaly based and introspection techniques

to detect intrusions in cloud.

The above discussed techniques require the high-level semantics of the

monitored machine. A brief summary is shown in Table 2.1. The

high-level view of TVM can be easily obtained for misuse and anomaly

detection approaches as they can be directly applied for in-guest moni-

toring at the TVM-layer. The security tool performs well when it works

inside the monitored machine as it has all contextual information of the

machine. However, IDS subversion is easy in such a scenario, as TVM

has less attack resistance capability. Hence, this led to works where

security tools are placed outside the TVM at VMM-level. However, it

is not that easy to get the high-level view of the TVM and get the com-

plete view of the system to provide strong security measures and detect
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the attacks at the VMM. Various OS features such as demand paging,

multi-threading, parallel computing makes this task more complex. The

problem of interpreting low-level bits and bytes and transforming it to

high-level semantics is called as semantic gap problem [125]. The ma-

jor challenges for monitoring the TVM from outside is to overcome

the semantic gap problem and provide a high level semantic view of

the system. VMI techniques prove to be powerful in filling this gap

and providing the high-level view of the TVM memory. However, VMI

alone is not sufficient. VMI functions need to be integrated with good

detection mechanism, leading to works towards Virtual Machine Intro-

spection based IDS. However, TVM monitoring from inside or outside

are mainly intended for detecting host based anomalies. Some authors

[126] have addressed the issue of network intrusion detection by using

the above discussed approaches for misuse, anomaly and hybrid detec-

tion. The categorization of various IDS security proposals is described

below.

2.3 Classification of Intrusion Detection

Systems in Cloud

Researchers working in the field of cloud security have proposed in-

trusion detection systems (IDSes) incorporating the suitable detection

mechanisms, discussed in previous section, in their security architecture

for cloud. The existing intrusion detection system (IDS) for cloud have

been categorized into four major categories [127]: (i) TVM-based intru-

sion detection system (ii) Hypervisor-based intrusion detection system

(iii) Network-based intrusion detection system (iv) Distributed intru-

sion detection system. TVM based IDS monitors the audit logs of spe-

cific host or guest machine to detect intrusions. It analyzes the audit

logs of specific guest or host machine. Hypervisor-based IDS monitors

the specific set of guest machines (TVMs) from Hypervisor for the pres-

ence of any abnormal activity. It introspects the audit logs of TVMs

from outside. Network-based IDS monitors the network traffic logs to

detect intrusions. It examines the network packet header information of

ingress and outgress tenant network traffic. Distributed IDS monitors

the guest, network and/or host by placing IDS instances at different
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locations which are controlled by central administrator and/or commu-

nicate with each other. Each of the key IDS proposals under each of

the category with the details of their detection mechanism have been

discussed in subsequent sections.

2.3.1 TVM-based Intrusion Detection System

TVM-based IDS analyzes the specific actions of the guest by monitoring

the interaction between user/system applications and guest operating

system. The existing traditional security solutions for host monitoring

are applicable to traditional physical server and guest machines (TVMs)

at SaaS/PaaS/IaaS cloud environment. Some of them have been ap-

plied by researchers for cloud environment at TVM-layer. They can

not be directly adopted at VMM-layer because of some technical issues

associated with different layers, discussed in Section 2.4. The details

of some of these security proposals for TVM monitoring are discussed

below.

Initially, Ko et al. [120] propose intrusion detection approach based on

the specification of programs. A specification of program pre-defines its

intended behavior and is defined in terms of policies. Hackers can ex-

ploit privilege programs. For example, rdist (Remote File Distribute)

program that is used to maintain consistency of files, distributed in

multiple hosts, can be exploited in the following way: A normal user

triggers rdist to update one of his files residing on local host. After-

wards, a temporary file is created by rdist before finishing copying.

An attacker can rename the temporary file and create a symbolic link

with the same name as the temporary file. After finishing copying,

when rdist changes the permission of the temporary file using chmod

command, the ownership of symbolic link is also affected. Hence, an

attacker can access the temporary file even after rdist finishes copying.

Authors have proposed specification policy to specify the behavior of

each program (such as rdist) to prevent illegitimate actions. Although

program policies are concise and clear, it is not easy to write such spec-

ifications as it requires the specialized knowledge of program function.

Specification based approaches are not suitable for the cloud environ-

ment. They will increase the overhead of cloud administrator to set

specification policies for all privilege programs running in different cloud

TVMs. Writing such a policy itself is a tedious and time-consuming
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task and may be prone to programming errors. It also requires regular

maintenance of the policy database.

There also exist enumeration based approaches, used for doing the pro-

gram behavior analysis using system calls. Forrest et al. [85] initiated

the use of system calls many years ago. Initially, they propose look-

ahead pair based approach in which a database of system calls is pre-

pared in the form of two values. Each entry in the database represents

a system call, and an immediate sub-sequence of system calls in a win-

dow of size n. All unique system call entries are recorded. The sliding

window moves by one position each time, and various system call en-

tries are recorded with their immediate sub-sequences. The database

serves a baseline for future system call traces. In the extended work

[115], they proposed Sequence Time Delay Embedding (STIDE) ap-

proach based on the analysis of the short sequence of system calls. The

approach observed that fixed-length contiguous sequences have better-

discriminating power than look ahead pairs. A sliding window of fixed

size is used to produce short sequence of system calls. The approach

is found to perform better than look-ahead pair approach. However,

STIDE is a very older enumeration based detection mechanism which

maintains a large database of normal system call sequences and is prone

to more false alarms for evolving normal behavior.

Warrender et al. [116] extended the above methodology, STIDE [115].

They added a frequency threshold to Sequence Time Delay Embedding

(STIDE) with Frequency Threshold (T-STIDE). If a match occurs, it

further checks for the frequency of occurrences of the sequence in the

database. If the frequency of occurrence is lower than a predefined

threshold, the instance is treated as a rare sequence. All the mismatch

sequences are checked against Locality Frame Count (LFC). LFC which

tells how many of the last 20 (fixed) sequences are a mismatch. The

approach will fail if new normal sequences come in the trace which are

likely to be mismatched with the nearby sequences.

Kang et al. [128] combined the frequency-based approach with ma-

chine learning approaches. They have considered all sequences in the

database. The approach first converts the input system call traces into

numeric feature vector called as Bag of system calls (BoS) which rep-

resents the occurrences of each system call. Therefore, the ordering

information between system call is lost. Here each feature is defined by

Xi = {s1, s2, s3, s4...sm} where si is the total occurrences of a system

46



call sj and m is the total number of system calls in input sequence Zi.

An attacker may fool the technique by creating the similar frequency

count as of normal sequences by injecting the malicious and legitimate

system calls without changing the attacks pattern. Therefore, BoS

based approach is not much effective in discriminating the anomalous

and normal sequences.

Sharif et al. [68] propose Secure In-VM Monitoring (SIM), a general-

purpose framework in which the security tool is placed in the untrusted

guest VM for efficiency. Their work incorporates the hardware virtual-

ization and memory protection feature to create Hypervisor protected

address space called as SIM virtual address space. The space is utilized

to execute the monitor where the execution is transferred in a controlled

manner. SIM maintains the log activities in the secure space which are

accessed by monitoring program in a controlled manner. A prototype

of the security architecture has been implemented using KVM VMM

and Intel VT hardware virtualization technology. The placement of se-

curity code at TVM requires strong security measures for security tool.

The framework only focuses on architectural aspects rather than on a

good detection mechanism.

Motivated from the frequency based approaches, some researchers

present the use of traditional Bag of system calls (BoS) [128] in a

cloud environment. For example, Alarifi and Wolthusen [67] used BoS

for detecting anomalies in TVMs. The IDS instances are distributed

at each TVM and perform analysis on the system calls generated at

TVM. Initially data collection is carried out in which a large collection

of traces is collected over a period from VMs. The approach assumes

that VMs are not malicious for some duration when they are initialized

and are limited. They have collected IOCTL (input/output control ser-

vices and application) system calls in KVM-based virtualization using

Linux strace utility. The time complexity of the approach is linear O(n)

where n is total number of lines in input file. Detection rate is 100%

with 11.11% false positive with sliding window of size 6. The limita-

tions with the BoS (as discussed above) are directly associated with the

implementation in cloud.

Yin et al. [129] present the usage of Hidden Markov Model (HMM) for

anomaly detection model. Earlier approaches were tedious and time-

consuming as application programs are constantly updated; so building
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a profile for all of them is very difficult. Authors mentioned that tempo-

ral signatures are stable, and hence modeling the temporal behavior will

improve the effectiveness of IDS. Therefore, the authors used HMM to

learn the temporal behavior of normal sequences of the database. HMM

consumes more time for training. As the baseline database contains only

normal sequences, there are chances of classifying the evolving normal

traces as abnormal.

Motivated from the state-based approaches, some researchers apply

state transition approaches for detecting attacks in cloud. Alarifi and

Wolthusen [117] have used HMM to generate more accurate normal be-

havior of programs that is based on probability calculations of system

calls. The learning of HMM is based on Baum-Welch algorithm. KVM

Hypervisor is used in their implementation. HMM takes the collected

VM system calls as input and generates the state transition diagram

in which each transition is presented by the probability of reaching to

other states, and probability of producing next input symbol (system

call). Here they have used different scenarios in training. In one sce-

nario, they considered all possible system calls. In another scenario,

only IOCTL system calls are considered. They tested the accuracy by

DoS attacks patterns and found that first scenario provides 100% detec-

tion rate with 5.66% false positive whereas only IOCTL considerations

lead to only 83% detection rate.

There are some limitations with the HMM. It is a gradient-based

method and may converge to a local optimum [130]. The training time

of HMM is also very high which is not desirable in the cloud environ-

ment where retraining of a model is desired regularly as the normal

user behavior keeps on changing. Hence, recalculation of the probabil-

ity distribution for the new system calls behavior will consume most of

the time in learning. HMM also requires prior information of the total

number of states which is not very easy to determine. It may involve

lots of experimental tasks which will again consume time.

2.3.2 Hypervisor based Intrusion Detection Sys-

tem

Hypervisor-based IDS monitors a set of TVMs from Hypervisor by

leveraging the concept of introspection functions. It is deployed at the
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Figure 2.9: Virtual machine introspection based IDS architecture [123]

VMM-layer and is dependent on the Hypervisor. Researchers have pro-

posed Hypervisor-based IDS for detecting intrusions at VMM/Hypevi-

sor in the virtualization environment. These IDS instances run individ-

ually at each VMM and are controlled by host machine administrator.

The command and control by cloud administrator is essential in cloud

environment leading to work on architectural aspects of approaches for

cloud. However, a few researchers have proposed Hypervisor-based IDS

for cloud, in last few years, applicable to IaaS cloud environment. The

details of some of the Hypervisor-based IDS are discussed.

Garfinkel [123] propose VMI-IDS architecture called Livewire, deployed

at VMware [131] workstation as VMM. VMI-IDS is deployed in a VMM

hosted server which makes it more secure from outside attackers. VMM

provides an interface to VMI-IDS to talk to it in terms of various com-

mands such as inspection, monitor and administrative commands and

to configure intrusion detection policies. It is divided into two parts: OS

Interface Library and Policy Engine. OS Library contains the detailed

information of the state of VMs (application, processes, operating sys-

tem). Policy engine consists of the specific policies of the different VMs.

Events from the VMM interface and OS interface library are notified

to the policy engine as shown in Figure 2.9. It supports both signature

techniques. The policy engine needs to update time to time for new

attack signatures. The technique may fail to detect unseen variants of

attacks.

Kourai and Chiba [132] propose a VMI-based framework where the in-

trospecting component is positioned inside a second VM running on
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the same host where first VM is running. The author named the in-

trospected VM as VM server. Mirroring software is used to receive

the frames sent to/from the introspected VM. Authors have used three

techniques. In first technique, a special tap device is used inside each

VM IDS; VMM forwards the traffic generated by the server VM to

VM-IDS for further analysis. The second technique is Inter-VM Disk

Mounting. The server VM file system is mounted to a shadow file sys-

tem inside the VM-IDS in read-only mode for file integrity checking.

The third technique is Inter-VM Process Mapping where a shadow pro-

cess is created inside VM-IDS corresponding to each VM server process.

The approaches lack in providing the mechanism for detailed behavioral

analysis of programs running on monitored VM.

Payne et al. [78] propose XenAccess, which is a VMI library for Xen

that provides virtual memory introspection and virtual disk monitor-

ing from the Hypervisor. It provides easy access to DomU memory

from Dom0 memory by creating a semantic-aware abstraction of DomU

memory. A series of introspection functions are supported by XenAc-

cess to provide monitoring of DomU memory. To begin with, it first

calls xa init() to initialize the xa object that holds the information used

in introspection process. After this, three access functions are used.

xa access virtual address() is used which takes kernel virtual address as

input and returns the memory page holding that address that is done

via PT lookup. xa access kernel symbol() function is used to convert

kernel symbol to the virtual address. The conversion is performed using

system.map file associated kernel from DomU. This file contains a ta-

ble of symbols and addresses. xa access user virtual address() provides

access to user space memory. The extended framework of XenAccess

is called LibVMI [122] which provides enhanced introspection functions

which supports multiple Hypervisor (such as KVM Hypervisor [133])

and multiple guest OS. LibVMI provides the interface commands which

are easy to be integrated with security applications.

VMWatcher [70] provides the prototype implementation of the guest

view casting technique, used for extracting the VM memory informa-

tion from Hypervisor. The guest view casting for a guest OS depends

on knowledge of the related guest OS drivers. The commercial sys-

tems such as Windows do not offer any such information. For Linux,

System.map file is used by authors which is offered by Linux distribu-

tions. For Windows, VMWatcher performs the full scan of memory and
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identify the addresses by looking for certain signatures that are unique

to kernel level data structure which are of interest. For Windows, it is

being tested for Windows XP version. It uses specific signature(i.e.

0x03001b0000000000), to identify potential process instances in the

Windows XP raw memory. The method of extracting the details of

Windows kernel data structure details is very specific to kernel version

and requires the knowledge of signatures. Secondly, it only checks the

presence of processes in VM memory and limited in doing the behavior

analysis of processes.

Dinaburg et al. [75] developed an Ether, a dynamic malware analysis

tool, which uses the hardware virtualization extension such as Intel-VT

support to provide transparent monitoring of malware samples from

outside the VM. Ether traps the execution of modified pages by trap-

ping each memory write attempt through write-protected shadow mem-

ory pages and dumps them to detect and extract dynamically generated

codes. Ether traces the system calls invoked by program for analysis.

Ether supports both software interrupt and fast system call mechanism

of modern processors to trace the execution of analysis target. In fast

system call mechanism, Ether monitors the SYSENTER and uses SY-

SENTER EIP MSR register to cause page faults and trap the execution

of programs. In software interrupt, 02E interrupt is used for syscall ex-

ecution. Ether changes the IDT entry for this interrupt to point to

the non present page. A VM EXIT because of page fault will indicate

Ether about system call execution. Ether is restricted to Windows XP

Guest only and depends on the very older version of Hypervisor i.e.

Xen 3.1.0.

Payne et al. [134] propose a VMI framework named as Lares in which

the security application is split into two VMs. Guest VM is the moni-

tored machine where the user applications and services run. One part of

security application consists of hooks and a specially crafted trampoline

code that are placed in the guest VM. These hooks can be redirections

or jumps placed inside program code or another mechanism to pass the

control of program execution. Hooks are used to intercept the event

at guest VM and trampoline code (an indirect jump vector) is used to

pass the event signals by hooks to the Hypervisor. Hypervisor passes

the events to security VM. The Hypervisor is provided with inter-VM

communication functionality for passing events. The security VM con-

sists of the core part of a security tool that does the analysis and makes
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decisions. The limitation with the approach is that if a guest OS ker-

nel is compromized, the security hooks will be also under control of

attackers and may send wrong notifications.

Benninger et al. [91] propose Maitland, a light weight approach to

VM introspection technique, which exploits paravirtualization in cloud.

Maitland follows a distributed architecture which comprises a set of

loadable kernel modules one for each guest VM and other for a privi-

leged VM. Privilege domain also contains cyber security analysis tool.

Maitland uses two approaches (i) It keeps track of dirty bit flag status

of memory page associated with process page table entry. Memory up-

dates are notified by MMU update interrupt signal to OS. Hypervisor

intercepts them and sends for analysis before passing to OS (ii) When a

page fault interrupt comes because of NX (non executable bit set to 1)

of an page; Hypervisor will check whether CR2 register contains a stack

pointer of an untrusted process. Hypervisor sends snapshot of memory

of suspicious processes which made an unsuccessful attempt of execu-

tion to security analysis tool. Maitland does not provide any detection

mechanism and relies on the existing pattern matching tools for doing

the analysis. Secondly, the security modules running in VM may get

exposed to attackers and hence require strong security measures.

Xenini [69] in an anomaly based IDS framework for virtualization envi-

ronment. System call tracing is carried out in paravirtualized machines

with Xen Hypervisor. In Xenini, syscall interrupts (080) are trapped,

and the control is passed to XenIDS before passing control to the guest

kernel which is running in Dom0. System call number and process id

(PID) are intercepted from %eax register. Xenini is a patch to Hy-

pervisor responsible for the stealthy gathering of the program behavior

running in VMs. Xenini communicates to XenIDS running in Dom0 via

event channels using libxc interface. Event channel notifies XenIDS for

the new interception data present in Xenini’s buffer. On receiving an

alert; libxc, an API interface is used to read data from Xenini’s buffer

and transfer to XenIDS. After processing the data, control transfers to

the guest VM. For critical operations, Xenini waits for the answer from

XenIDS before resuming execution of guest application. The detection

mechanism of XenIDS is based on STIDE [115] technique and has been

validated over UNM dataset. It introduces an overhead of 56%. The

drawbacks associated with STIDE are inherent with XenIDS.
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Nitro [135] is a VMI-based system call tracing framework which uses

the hardware-based technique for collecting traces of system calls from

Hypervisor in virtualization environment. It supports all three types

of the mechanism provided by Intel x86 architecture: interrupt based

system calls, SYSCALL/SYSRET based system calls, and SYSENTER

based system calls. In interrupt-based system call implementation, user

interrupts are forced to cause system interrupts and are trapped by In-

tel VT-X extensions. If the general protection fault is natural, guest OS

resumes. However, if it is because of user interrupt (for natural inter-

rupts, interrupt number below 32), Nitro data collection engine collects

the system call information. In syscall based system call implementa-

tion, Nitro enforces interrupts on execution of SYSCALL or SYSRET

instructions and collects the system calls. In SYSENTER based system

all implementation, whenever SYSENTER is executed, the program

switches to kernel mode at address stored in SYSENTER CS MSR.

Nitro causes page fault by storing the original value and loading the CS

register with NULL value. An attempt to load NULL value causes a

general protection exception which can be trapped at Hypervisor, and

necessary information can be collected from the Nitro data collection.

It supports Linux and Windows guest. Ether introduces a performance

degradation between 554% greater than that of Nitro. Nitro is a system

call tracing technique can be integrated with security tools implemented

on KVM Hypervisor.

Arshad et al. [119] propose an intrusion severity analysis approach for

cloud environment, which is implemented at Dom0 of the Hypervisor.

They have considered seven security requirements in their model: guest

OS integrity, work state integrity, DoS, zombie protection, malicious

resource exhaustion, platform attacks and backdoor protection. All the

system calls are mapped according to the security requirements using

REMUS ([136]) classification. Intrusion detection module uses misuse

detection approach based on known attack patterns to detect suspicious

system calls running in the VM. If a system call is found suspicious, it

is transferred to severity analysis module (SAM) which uses anomaly

detection technique (using Decision Tree C4.5) to identify severity of

system call. SAM consults with a profile engine to obtain VM specific

information such as security characteristics of VM and evaluates the

severity of system call. The technique provides an average detection

rate of 90.7954% for self generated dataset. The abstract description
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of technique lacks in providing the technical details of how the system

calls are extracted at the Hypervisor and what features are processed

for machine learning. The detection rate can be improved by applying

the ensemble classifier approaches.

Wu et al. [93] propose ShadowContext, an intrusion prevention strategy

for virtualization environment. It is based on system call redirection

in which certain selected system calls of monitored programs are exe-

cuted in Dom0 of the Hypervisor. It protects system calls from in-guest

malware attacks. Some security modules of ShadowContext also run at

the VMM. ShadowContext does not generate any alarm signal, as it

is an intrusion prevention strategy. ShadowContext fetches the details

of selected system calls of monitored programs and executes them at

Dom0. It maintains their ordering in the execution sequence of a pro-

gram. However, a piece of code is injected in a dummy monitored

process (used for communication with Dom0) which runs at the moni-

tored machine. The security of this code is important and depends on

hardware-assisted features such as EPT protection. Moreover, Shad-

owContext can behave abnormally if the security manager fails to de-

sign the system call redirection properly. A redirected system call can

produce unexpected results and can even crash the guest OS. It is im-

plemented on KVM (version is not specified).

2.3.3 Network-based Intrusion Detection System

Network-based IDS examines the packets passing through the physi-

cal/virtual network interfaces. They are designed to target the network

attacks in cloud such as denial of service, scanning, spoofing etc. Since,

NIDSes are independent of operating system; which makes them ex-

tremely portable to be deployed at any layer (TVM/VMM/Network).

However, the network points, connecting multiple servers or TVMs are

most suitable location to detect cloud network (physical/virtual) at-

tacks. Below, the details of some of the Network-based IDS are dis-

cussed:

Signature-based techniques have been used for detecting intrusions in

cloud. Roschke et al. [82] propose VM integrated IDS which consists

of various IDS sensor VMs and IDS Management unit as shown in

Figure 2.10. IDS Management unit consists of Event Gatherer, Event

Database, Analysis Component and IDS Remote Controller. This unit
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Figure 2.10: VM-Integrated IDS [82]

is remotely connected to various sensors. The central IDS manage-

ment will gather alerts from various virtual components of the user

machine and converts them into common format named as Intrusion

Detection Message Exchange Format (IDMEF) and stores them in the

event database. It further analyzes and correlates various alerts for

detecting the presence of any malicious behavior. Users can configure

the IDS by the Remote Controller which is a part of IDS VM Man-

agement unit. They take actions such as dropping or ignoring packets.

The technique may fail if an attacker makes a small variation in the

attack pattern without changing the semantics. The detection system

also requires regular update of the signature database.

Motivated by the use of machine learning algorithms in misuse detec-

tion, some authors have applied these methods in cloud environment

as well for learning the behavior of cloud network traffic. Li et al.

[86] propose a distributed IDS system based on Back Propagation (BP)

ANN based technique in a cloud environment. IDS sensors are deployed

at each TVM, are trained using ANN algorithm over a large dataset

of VM traffic (normal and anomalous) to learn about the VM profile.

The trained ANN does the analysis over network traffic for anomaly

detection. It raises alarms for malicious activities. ANN provides good

accuracy of 99.7% in 6 min 35 sec. of training time with 7 nodes model

using KDD99 dataset. IDS sensors can be compromized easily from

TVM. However, KDD99 is very older dataset and does not represent

the currently evolving attacks.

Mazzariello et al. [137] propose an centralized architecture for attack

55



detection in cloud environment. An NIDS tool (SNORT) is deployed

near to the cluster control for detecting the flooding attacks in cloud.

The experiment is done on Eucalyptus Cloud. The centralized deploy-

ment are prone to single point of failure and are not much efficient.

Moreover, having all analysis at a single node leads to the server over-

loading, leading to degradation in system performance. Authors have

also suggested to use distributed deployment strategy in which individ-

ual NIDS components are placed at each physical and virtual machine.

Kumar et al. [111] has propose an intrusion detection approach in

a cloud environment based on state-based analysis that makes use of

Hidden Markov technique to model the transitions of user behavior over

a long span of time. IDS instances are distributed at each TVM and

detect the intrusions based on the behavior probability of user actions.

HMM develops the data seeking profile of users that acts as a baseline

profile and is factored into three profiles: low, middle and high. The

high profile is the one that matches with the baseline model of the user.

Middle profile refers to the current profile of user that partially matches

with baseline profile of the user. If patterns have very low probability

of matching, they will correspond to the low profile. All matching is

done based on a certain threshold value set for each profile. In this way,

even if a user hacks username and password, his/her profile will have

low value. An IDS will be configured based on the profile matching the

behavior of currently observed patterns. There are some limitations

with the HMM. It is a gradient-based method and may converge to a

local optimum [130].

Lee et al. [138] propose a method that binds the users to different se-

curity groups based on the anomaly score and accordingly applies the

security policies to differentiate them. When a user requests access to

the cloud system, AAA (Authentication, Authorization and Account-

ing) module is used to calculate the anomaly score of user and based

on the score, a suitable IDS is chosen. AAA module requests the host

to assign guest OS image with the selected IDS for the user. Users

information, transactions and system logs are stored in the database.

The database periodically communicates with the AAA and host OS.

Private data of the users is stored in storage centers. Security levels

are categories into three types: high, medium and low. High level ap-

plies the strong security rules with signature based to Intrusion IDS.
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Medium level applies pattern of all known attacks to IDS. Low level ap-

plies known pattern of chosen malicious attacks to IDS. Thus resource

consumption varies from strong to low level. A suitable IDS is chosen

on the basis of the security requirements of the user which enables the

efficient usage of cloud resources. It will save computational cost of the

system since for a system with low security need, a full functional IDS

need not to be deployed. Risk points are given to different users based

on the anomaly score. A suitable IDS is chosen based on the risk points.

This will increase the speed of detection. The IDS is completely under

control of the virtual machine users. A nefarious user can manipulate

the security policies, leading to a threat to the cloud infrastructure.

Secondly, maintaining signature based IDS with different levels of secu-

rity requirement leads to extra overhead incurred in updating each of

the IDS instance.

Gul et al. [71] propose the centralized detection model for distributed

cloud architecture. Each IDS instance is deployed outside of the VM

servers at the network points such as routers, switches, gateway etc.

They have addressed the issue of huge data processing by cloud servers.

Authors also addressed the transparency of Cloud IDS to users. A

third party monitoring service is deployed outside of the Cloud Service

Provider (CSP) infrastructure which receives the alerts from the IDS

and informs users about the attacks on their machine. The third party

service also provides expert advice to the Cloud service provider about

the mis-configurations and loop holes in the IDS. It needs a trusted

management system on the third party authority for control and con-

figuration of IDS. The spoofed traffic with false virtual IP and MAC

can not be recognized from the network points, leading to high risk of

DoS attacks.

Srinivasan et al. [139] propose eCloudIDS to identify various anoma-

lies in the cloud VMs. The two key components of the system are uX-

Engine subsystem (Tier 1) and sX-Engine subsystem (Tier 2). A Cloud

Instance Monitor (CIM) subsystem observes the actions performed by

user on a user specified application directory and informs H-log-H com-

ponent for immediate logging. An Audit Log Preprocessor (ALP) ex-

tracts the information from H-log-H and pre-processes it to make it

compatible with uX-Engine subsystem which is a learning subsystem

and uses unsupervised classification algorithm particularly self organiz-

ing map (SOM) (Kohonen, 1990) as a first tier detection to detect the
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normal behavior, abnormality or special permission. It communicates

with Permission Recorder to verify the abnormality. The technical de-

scription of second tier sX-Engine is based on any existing supervised

classification technique. The unsupervised learning approach applied

by eCloudIDS provides low accuracy of 89% detection rate with 2%

false negative rate and 9% false positive rate. The technique will fail

for evolving normal behavior and also against spoofing attacks.

Modi et al. [90] improve the detection reliability of the signature based

NIDS by adding one more analysis step (anomaly detection module)

after signature based module as shown in Figure 2.11. The NIDS in-

stances are deployed at all cloud regions, i.e. all TVMs and cloud

servers. Snort is used as a signature based IDS, which uses a database

of known attack signatures. Decision tree algorithm is used to clas-

sify intrusions based on the anomaly detection approach. Their intru-

sion detection framework pre-processes the packets and passes them

to Snort. Snort uses the knowledge base for matching them against

packet patterns. If Snort signals legitimate behavior, the packets are

passed to anomaly detection module. In other case, an alarm is raised.

The anomaly detection module checks the patterns against the decision

tree rules and decides whether a packet belongs to intrusion class or

legitimate class. For intrusive behavior, it raises the alarm. All alerts

are collected at a central log. The other databases are updated if cen-

tral log is updated. The authhor used a well known dataset (KDD99)

which exhibits different behavior other than advanced network traffic

and hence not satisfactory. It provides an accuracy of 84.31% with false

positive rate (FPR) of 4.81% for NSL-KDD99 dataset and 96.71% ac-

curacy with FPR of 1.91% for KDD99 dataset. The anomaly detection

module is an additional step after Snort. As all the benign traffic is

forwarded and the malicious traffic is marked bad, this cannot reduce

the false positive rate of Snort (only the false negative).

Modi et al. [140] in their further work improve signature-based NIDS

by integrating the apriori algorithm with Snort signature database to

increase the accuracy and effectiveness of the NIDS. Their motivation

was to detect attacks and derivatives of attack. Aprioi module takes

the partially known rules and support threshold from the signature

database as an input. It then generates the new possible rules and

also updates the signature database. The derivatives of the attack can

also be detected by Snort. The implementation is done using a very
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Figure 2.11: Execution flow of Cloud-based NIDS
(signature and machine learning)[90]

old dataset (KDD’99) which exhibits different behavior other than real

traffic and hence is not satisfactory.

Lin et al. [141] propose a NIDS which is deployed at the Dom0 of

VMM. The detection rules in NIDS are configured according to the

OSes and services executing in the VMs running above VMM. VM

information is obtained from the operating system kernel map in the

Hypervisor. Services are identified, and rules are updated dynamically.

Contents of the memory region of the VM are used to refer to the

VM information. In Win32, TIB (Thread Information Block) and PEB

(Process Environment Block) can be used to refer to the OS version.

In Windows, kernel establishes EPROCESS data structure and MTOM

data structure to refer to processes and information related to those

processes. The model is implemented in the virtual platform of Linux

3.2.1, WinXP and Win7. Snort is used for network intrusion detection.

The system will add significant overhead at the centralized IDS. It is

because of the time complexity that is associated with the rule-matching

mechanism that will lead to high computational cost at the time of

detection. Next, the lack of network introspection feature at VMM

leads to other advanced network attacks, originated from TVM.

Tupakula et al. [142] propose an IDS architecture named as VICTOR

in IaaS cloud environment as shown in Figure 2.12. VICTOR uses In-

trusion Detection Engine (IDE) together with some other components

such as packet differentiator, Operating System Library and Repository
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Figure 2.12: VICTOR: Basic cloud security architecture [142]

(OSLR), Analyzer and Shared Packet Buffer to make the IDE compat-

ible in a virtual environment. The model is integrated into VMM or

host OS. Packet Differentiator receives packets from VMs. Details of

the entity (process, application, virtual machine, OS) are updated in

the OSLR. It also checks for the correct source address and forwards to

IDE. OSLR library contains the detailed information of configurations,

details of resources, OS and applications of each VM. OSLR also ver-

ifies information reported by packet differentiator. If hidden processes

have generated some packets, OSLR raises an alert to IDE for further

analysis. IDE matches the packet for known patterns (signature match-

ing) and then for the legitimate pattern by anomaly module. Anomaly

module applies machine learning techniques over OSLR to update the

behavior of VM. Suspicious packets pass to analyzer and shared packet

buffer. Legitimate packets are sent to destination. Detection of mali-

cious entity is done at a fine granular level to avoid denial of service

attack. The analyzer determines the legitimacy of the packet with

the help of OSLR. Malicious entities are isolated, and new attack sig-

natures are identified, and the attack signature database is updated.

Shared packet buffer stores detailed information of suspicious VM. The

limitations with the approach is that it is not integrated with advanced

memory introspection and network introspection functions, needed to

extract detailed VM state information.

Watson et al. [143] propose a Cloud Resilience architecture which is

composed of individual instances of a security component known as

Cloud Resilience Manager (CRM). A CRM performs anomaly detection

at each local node using Support Vector Machine (SVM). One compo-

nent of CRM is responsible for recovery process and other for coordi-

nation between other instances. Authors have tested the architecture

with KVM based deployment for detecting attacks Kelihos, Zeus and
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DoS attacks and achieved over 90% accuracy. The technique provides

low accuracy of attack detection and has been suitable for KVM-based

cloud deployments.

Pandeeswari and Kumar [126] present the use of machine learning for

intrusion detection at the Hypervisor. Their technique is based on

virtual network traffic analysis that is collected at the Hypervisor in

normal and anomalous scenarios. The detection mechanism is based

on the integration of Fuzzy C-mean Clustering with ANN to learn the

input training instances. The collected instances are used as a training

database for the classifier. Fuzzy clustering algorithm creates cluster

subsets based on membership value. ANN algorithm then trains each

sub-cluster which are combined by aggregation module. The technique

is found to perform well for capturing the anomalous traffic generated

by VM and provides an average detection rate of 97.55% with 3.77%

average false alarm rate for detecting intrusions. However, it involves

extensive training due to the complexity of the algorithms. The valida-

tion is done using KDD’99, a very older dataset. Hence, it is difficult

to assess the performance of system for current real time attacks.

2.3.4 Distributed Intrusion Detection System

A Distributed IDS consists of various IDS instances (TVM based IDS,

Hypervisor-based IDS and/or Network-based IDS) over the large cloud

network, deployed at different locations in cloud. These IDS instances

communicate with the central cloud administrator or each other to de-

tect attacks in cloud. The distributed approach is helpful to detect and

analyze the attacks collectively.

Che et al. [144] propose a distributed security architecture which uses

state based approach for detecting intrusion in cloud. The detection

component is distributed among the monitored machines and analyzes

the multiple log files generated as per user actions. A sequence of user

actions are recorded and stored in log files. The logs are analyzed to

find the main motive behind the user actions. The main idea behind

the approach is that that attacks such as buffer overflow, scanning and

password guessing etc. leave certain traces in the logs. The audit

logs can be monitored to identify the attack plan. Event-correlation is

then applied to find the correlation between user events. The analysis

leads to detection of certain attack patterns. Based on the report, a
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suitable response is generated to handle them. The accuracy of the

approach is highly dependent on the correlation methods which may

generate more false alarms if logs are subverted. Secondly, the detection

of certain patterns is based on the attack signature matching. This

leads to the need of continuous updation of the attack signatures for

detecting evolving attacks or variations in attacks.

Motivated from enumeration based approaches, some researchers ap-

plied similar approach in the cloud. For example, Gupta and Kumar

[84] propose intrusion detection technique based on system call anal-

ysis named as Immediate System Call Sequence (ISCS) for detecting

attacks in a cloud environment. ISCS instances are distributed to each

TVM and centrally controlled by administrator. The approach does not

use any learning based system instead it creates a database of system

calls structured in a key-value pair format. A key represents a unique

system call name whereas value represents an immediate sequence of

system calls following it during program execution. The programs to

be monitored are listed in the configuration file as specified by cloud

admin. Cloud admin performs the program-wide detection by match-

ing the baseline ISCS snapshot with individual ISCS snapshot. Any

mismatch from baseline database corresponds to anomalous sequence.

ISCS achieves 98% accuracy for intrusion detection. The approach lacks

in using the statistical techniques to learn the normal behavior of the

system. If a normal sequence does not appear in the database, it will

be flagged as anomalous. The chances of such situations occurring are

high in huge networks where user’ behavior keeps on changing. In this

case, this would be inappropriate to say that the instance is anomalous

if it does not conform to any match and will result in false positives.

Gupta and Kumar [73] propose an approach named as Malicious Sys-

tem Call execution Detection (MSCD) based on program cum system-

wide detection. The approach creates a program-wide MSCD database

at each VM and system-wide MSCD database at cloud manager.

Program-wide detection matches the current individual MSCD snap-

shot of each client VM with baseline MSCD snapshot at client VM.

System-wide detection matches the current ISCS snapshots of client

VMs with MSCD snapshots at cloud admin. The approach provides

reliability even if IDS daemon at client VM is subverted, and intrusions

can be detected at the system level. MSCD algorithm is tested for val-

idation over UNM (University of New Mexico) sendmail dataset and
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achieves an accuracy of 80% with 3% false negative rate. The approach

may face technical challenges in keeping replicas of VM snapshots and

prone to IDS subversion by modern malwares.

Varadharajan et al. [145] propose an integrated security architecture

which integrates the intrusion detection techniques with access control

policies and trusted attestation techniques. The security components

are deployed at Dom0 of VMM and communicate with each other to

detect the intrusions. Security tool runs at the virtualization layer

of VM hosted server and is completely controlled by cloud adminis-

trator. Physical server contains the trusted platform module (TPM)

whereas each Virtual Machine Monitor (VMM) is equipped with In-

trusion Detection Engine (IDE), Access Control Module (ACM) and

Decision Evaluation Engine (DEE). IDE is responsible for detecting in-

trusions. ACM contains the access control policies for each VM and

DEE makes security decisions. The IDE is one of core part of the cloud

security framework which applies the signature matching and anomaly

detection techniques to detect intrusions. The analysis done by de-

tection engine can be extended for doing the detailed investigation on

suspicious processes using system call analysis.

In the above distributed architectures, IDS instances run over individual

tenant VMs (TVMs) or each VMM but are configured and controlled by

a Cloud Controller Server (CCS). The IDS instances use the resources of

VM or VMM (where they are deployed) for their operation and have no

control mechanism for tenants. The cloud administrator is responsible

for creating policies, controlling the IDSes and responding to alerts.

He/she also manages how an IDS instance will behave for a specific

tenant VM. It has good visibility of the host machine as it is deployed

at each tenant VM. The Cloud administrator (CA) can specify how a

tenant VM IDS instance should behave, which makes it achieve better

performance than the centralized IDS. CCS regularly gets alerts from

individual tenant VMs about the attacks that have happened and acts

as a central point for log management.

Some of the distributed architecture also provide a collaborative mech-

anism in which the IDS instances communicate with each other and

update about attack information. The information is correlated collec-

tively to detect distributed attacks.

Lo et al. [74] propose a cooperative intrusion detection framework

based on distributed architecture. An IDS is deployed in each Cloud
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Figure 2.13: Security architecture of Collabora [72]

Computing region. Snort based IDS is implemented integrated with

other components such as alert clustering, threshold computation and

comparison, intrusion response, blocking and cooperative operation.

A block table is maintained along with signature database containing

information about packets to be blocked. Snort first checks the packet

against block table and then against known signatures. If packet is

abnormal than it is forwarded to alert clustering which determines the

severity of packet based on threshold value. If the severity score is high,

the packets are dropped and others are accepted. Intrusion response

component blocks the malicious packet and an alert is sent to other

IDSes. It decides the majority vote based on a threshold. If majority

vote is high, it adds a new blocking rule in the block table and otherwise

discards the alerts as false. The requirement for additional block table

is not clear. The approach also faces the challenges of IDS subversion

and is prone to signature-manipulation attacks.

Bharadwaja et al. [72] propose a distributed security architecture,

called Collabra as shown in Figure 2.13. It is a Hypervisor-based IDS

to detect anomalies in virtualized environment. Collabra is integrated

with each VMM and acts as a filtering layer between VMM and Dom0

in the guest VM network. It checks the integrity of the hypercalls.

It provides a collaborative detection mechanism to prevent attacks at
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VMM because of multiple hypercall requests from multiple VMs in the

network. Admin version of Collabra runs alongside Dom0. Each Col-

labra instance of VMM communicates with another Collabra instance

through a logical control channel (LCC). Whenever a guest VM issues a

security critical event, it is screened by Collabra admin for any authen-

tication and integrity checks. There are two key security components:

hypercall integrity check and hypercall origin check. Each hypercall

is cross-checked against the Message Authentication Code (MAC) and

specified policy for the call against the cryptographic repository. If

the call is not known, it is cross checked with other Collabra instances

running in the virtualization network for classification. The classifi-

cation is based on their origin check. This module checks the origin

based on the privilege of VM location and the application that causes

the hypercall. A legitimate call passes the module whereas calls made

from unknown sites are marked as untrusted and are communicated

with other instances. The model theoretical and implementation is not

discussed. The technical details such as how the MAC is generated,

how the known call sites are maintained and how an anomalous score is

calculated for each hypercall is not explained. Moreover, maintaining

a logical channel adds overhead to the Hypervisor and increases the

attacking surface.

Kholidy et al. [146] propose hierarchical and autonomous cloud based

intrusion detection system to secure VMs and back-end servers. IDS

is placed in the VM management server, and it sends the alarm with

associated risk impact factor to the Controller. The key components

of the framework are Event Collector, Event Correlator, Event An-

alyzer (NIDS analyzer, HIDS analyzer, DDSGA analyzer) and Con-

troller. Event Collector collects host based and network based events

from various sensors and correlates host and network events to observe

the user behavior in several VMs. Event Analyzers detect the host

and network events, based on the probability of user actions leading

to attacks and communicates to the Controller for appropriate actions.

The autonomous Controller provides the most appropriate response to

protect the cloud environment. Traditional HIDS are limited in their

capability to detect advanced attacks such as evasion based attacks at

virtualization-layer in cloud environment.

Haddad et al. [147] propose a collaborative intrusion detection frame-

work (C-NIDS) where IDS sensors are deployed at each cloud compute
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server at each VMM in cloud to detect the network attacks. The ar-

chitecture uses SNORT as a prime security tool to detect attacks in

cloud. Once the attack signature is found in the packet flow; an alarm

is sent to cloud admin. The normal traffic again passes through the

SVM classifier for detection of any abnormality in the traffic. This

additional analysis does not reduce the false alarms generated by the

SNORT. The collaborate about each other to update about the attacks.

However, no verification of updates is provided, leading to more false

alarms.

2.4 Research Challenges

There are various security concerns in cloud as discussed in the previ-

ous sections. However, our work in this thesis is focused on intrusion

detection in cloud environment. Based on the exhaustive literature sur-

vey on intrusion detection in cloud, we have identified some research

challenges associated with intrusion detection in cloud.

• Detection of malware attacks: Signature-matching and static

analysis techniques can be evaded by obfuscation and encryption tech-

niques. Dynamic analysis overcomes this limitation. The existing sys-

tem call analysis approaches for cloud such as Bag of System calls (BoS)

[67][148] and Immediate System Call Sequence Detection (ISCS) [73][84]

have some limitations associated with them. In BoS, the ordering of

system calls is lost which is very important for attack pattern iden-

tification. Though, ISCS retains the ordering, it will fail for longer

or infinite length traces. Moreover, these approaches assume to have

a full knowledge of the normal execution behavior of programs. If a

sequence does not appear in the baseline database, it will be flagged

as anomalous. The chances of such a situation happening are high in

large network systems, where users’ behavior keeps on changing with

time. In this case, it would be inappropriate to classify such instances

as anomalous, if they do not conform to a match, which can result in

high false positives. Secondly, they do not apply the statistical-learning-

based techniques which is very important for generalizing the program

behavior.

• Subversion of security monitor: An attacker can check the pres-

ence of security processes running at TVM and can try to disable it.
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For ex., malware such as Torpig and Conficker disable the security tools

and other security-critical services such as auto-update, error reporting

and Windows Defender services [101]. Some of the malware hide their

presence from the security monitor running at TVM. In addition, ad-

vanced malware can refrain from executing if they detect the presence of

security components at the TVM. Time-based, processor feature based

and exception-based evasions are some examples of evasive activities as

discussed in Section 2.1.2. The existing IDS approaches [84] [91] [117]

[148] are limited in their capability to detect such kind of attacks in

cloud environment. A CSP must provide an efficient security service to

detect stealth malware at VMM-layer.

• Detection of Network attacks within virtulization-layer: In

cloud environment, there can be multiple VMs connected over a virtual

switch and create a virtual network. The traditional NIDS and ex-

isting frameworks, that deploy IDS at central controller/cluster node/

cloud physical server [71] [87] [143] [147] are limited in their capability

to detect network attacks at virtualization-layer in cloud environment.

These security solutions fail to detect VM attacks targeted from one

TVM to another TVM on the same physical server, as the traffic never

passes through physical network. The situation becomes more complex

if the attack packets are forged by virtual IP/MAC address. Most of

the cloud security frameworks apply traditional signature-based NIDS

at TVM-layer to detect network intrusions [82] [138] [83] [139]. Signa-

ture matching techniques require regular updates. A small variation

in attack pattern can evade the security tool. In addition, applying

the signature matching at VMM-layer [141] [149] may impose a signifi-

cant overhead to the system. It is because of the time complexity that

is associated with the rule-matching mechanism that will lead to high

computational cost at the time of detection. Some recent works [126]

apply machine learning for detecting network intrusion at VMM-layer.

However, they are not integrated with the network introspection func-

tions. The evaluation is based on a very older dataset KDD99 [150],

estimation of the real performance of the system is difficult to assess.

• Virtual Machine Introspection (VMI) enabled security: We

identified that not much work has been done in the direction to provide

VMI-based security solutions for cloud. The existing security solutions
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have some limitations associated with them which make them less suit-

able in a multi-tenant cloud environment For example, VMST [92] re-

quires that the OS of the security VM (monitoring VM) must match

with the OS of the TVM being introspected, which is not practically

feasible in a cloud. ShadowContext [93] is an attack prevention strategy

based on system call redirection approach. An improperly configured

system call redirection module can crash the operating system kernel.

Maitland [91] provides introspection in cloud but it itself does not pro-

vide any detection approach and relies on existing signature matching

approach. There exist some VMI libraries such as LibVMI [122] and

XenAccess [78] which provide the VM state information but they do

not provide any detection mechanisms. Some of the introspection ap-

proaches [70] provide the limited introspection functions and are not

sufficient for intrusion detection applications. Xenini-IDS [69] is pro-

posed for virtualization environment which does the behavior analysis

using very older STIDE approach [115]. STIDE makes use of string

features and is prone to string manipulation attacks. Moreover, its de-

tection mechanism only rely on all normal sequences which will produce

more false alarms in dynamic cloud environment. Therefore, there is

a need to provide a more efficient, VMI enabled security framework

which is compatible to work for cloud deployment and is integrated

with efficient detection mechanism.

• Feasibility of same security solution at all layers: Distributed

frameworks overcome some drawbacks of existing IDS frameworks [128]

[117] [144] [91] [93] [86] that were not centrally controlled and hence

prone to attacks from nefarious users. However, it is being identified

that distributed TVM-layer approaches cannot be applied directly at

VMM-layer. This is because Hypervisor/VMM can view the guest op-

erating system’s information as raw bits and bytes. At the VMM-layer,

high-level semantics of TVM is not known. For example, the infor-

mation about a TVM such as processes, data structures, files and OS

abstraction etc. are not recognized from Hypervisor. In the same way,

distributed Network-layer approaches can not view the guest-specific

information from outside. Hence, the practicability of the security

frameworks [74] [90] [87] [84] [147] [151], which claim to deploy the

same security solution at all regions in cloud sounds less feasible and

inefficient.
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• Efficient security architecture: Majority of IDS proposals for

cloud [86] [141] [83] [146] [126] perform network traffic analysis to de-

tect various types of attacks using network traces. The network traffic

analysis can be helpful to detect network attacks. However, it is less

accurate in detecting low-frequency attacks such as rootkits, hidden

malicious processes, malware etc. just based on the examination of

their network statistics. Some of the researchers [84] [148] worked in

the direction of process analysis at the TVM-layer of cloud. However,

again only process analysis is not sufficient for detecting network at-

tacks. The IDS which does network traffic analysis or process analysis

is not robust and efficient. Hence, a security architecture which incor-

porates both traffic monitoring and process monitoring is required.

• Robust layered-security architecture: Distributed IDS which

are centrally controlled by cloud administrator or which cooperate with

each other for attack detection are robust than other types of IDS. How-

ever, the existing distributed security architectures support distributed

guest-based IDS [84] or distributed VMM-based IDS [72] or distributed

network-based IDS [74][87]. These IDSes detect the attacks at specific-

layer. There is a need to provide a more robust security architecture

which covers all three-layers of cloud i.e. TVM-layer, VMM-layer and

Network-layer, addressing the design limitations at individual layer to

facilitate the detection of both malware and network detection in cloud.

• Policy management for IDS: Existing techniques lack mainte-

nance of reliable policies which in turn lead to deterioration of the

efficiency of security tools. Cloud administrator needs to set up various

policies for an IDS where ever it is installed and also update it from

time to time. Moreover, the routing path for a VM communicating

with non-co-resident VMs needs to be established by the cloud admin

based on the location of nearby IDS (if IDS is installed at cloud network

points) whenever a new flow request comes from a VM. The manual up-

date is time-consuming and can be prone to errors. The automation of

such policies should be systematic.

• Limitations with conventional IDS: Some solutions [90] for cloud-

based IDS integrate the conventional signature matching (Snort) with

anomaly detection (machine learning). The anomaly detection module

is an additional step after Snort. As all the benign traffic is forwarded

and the malicious traffic is marked bad, this cannot reduce the false
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positive rate of Snort (only the false negative). As, there is no verifi-

cation of an alert, it does not reduce the false alarms, either for Snort

or for the anomaly module. Some cloud-IDS [148] apply conventional

host intrusion detection approach [128] in cloud. The techniques may

sound good when implemented at the TVM as the required informa-

tion (such as network traffic or system calls) can be gathered at the

VM without the need for additional expertise. However, conventional

techniques when implemented at the VMM, require additional tools or

mechanisms to obtain a high-level view of TVMs.

• Software assisted solutions for improving Hypervisor secu-

rity: Some low-level attacks can tamper security functions of Hyper-

visor and can manipulate the fields of kernel-data structure of com-

promised Hypervisor and host OS. Researchers have proposed security

architectures to improve security of the Hypervisor. However, most so-

lutions [152] [153] are hardware-specific and require modification to the

hardware design such as CPU, MMU etc. and hence are less flexible

to adapt. Furthermore, there is a need to address the security of the

security components themselves when implementing them in software.

We can conclude that there is need to provide a more robust and efficient

security architecture to deal with major security challenges identified.

To overcome the limitations with traditional approaches, CloudHedge

incorporate VMI approaches in the security proposals to detect attack

at the VMM-layer of cloud environment. Introspection based IDS pro-

vides a high confidence barrier between attacker and security monitor

than traditional IDS. Efficient dynamic analysis approaches which are

based on n-gram analysis and system call graph based analysis are in-

tegrated with VMI and Machine learning based approaches to detect

different types of attacks such as hidden process detection, program sub-

version detection and evasion attack detection, etc. To address the lim-

itations with NIDS in detecting attacks at virtualization-layer, Cloud-

Hedge provides Behavior based Network Intrusion Detection Approach

for detecting network intrusions at both VMM-layer and Network-layer

in cloud environment. The third line of defense also provides security

from spoofing attacks by leveraging the concepts of network introspec-

tion and hypervisor libraries such as Xenstore.

To address the limitations with existing security architectures, Cloud-

Hedge provides three-levels of security check for intrusion detection

which makes it more robust than other cloud security approaches. The
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first line of defense provides the detection of attacks at TVM-layer and

provides efficient TVM-based monitoring solution. The second-line of

defense provides the detection of attacks at VMM-layer by providing

a program-semantic aware VMI based monitoring solution. The third-

line of defense provides the detection of attacks at both network and

VMM-layer. The loop holes in the existing cloud security approaches

are identified which gave us a direction for providing a more robust

and efficient security approaches. The proposed TVM-level security

approach is efficient and applicable to traditional physical hosts and

all cloud deployments such as SaaS, PaaS and IaaS.

2.5 Conclusion

An exhaustive literature survey is carried out which covers how the tra-

ditional security solutions are being used for cloud security. It also dis-

cusses about the virtualization-specific security approaches, proposed

for cloud environment. The contributions of the chapter can be summa-

rized as: An threat model is proposed based on target cloud component.

Various attack surfaces related to the cloud environment are presented.

Classification of intrusion detection mechanisms in cloud environment is

proposed. A classification of Virtual Machine Introspection techniques

(VMI) is proposed. The categorization of key IDS security proposals

have been provided with discussion of their pros and cons. The detailed

analysis of techniques provide readers a strong and coherent view on

security solutions proposed so far. Research gaps have been identified

in the existing cloud security approaches.

We can conclude that there is need to provide a more robust and ef-

ficient security architecture to deal with major security threats iden-

tified. We also identified the loop holes in the existing cloud security

approaches which gave us a direction for providing a more robust and

efficient security solution for cloud. VMI approaches are more special-

ized intrusion detection approaches developed to work in virtualized

environment. There is need to incorporate VMI approaches in the se-

curity proposals for cloud environment. Introspection based IDS pro-

vides a high confidence barrier between attacker and security monitor

than traditional IDS. To address these challenges, we propose a secu-

rity framework which incorporates the introspection approaches and
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provides three lines of defense to detect specific set of attacks. The

first-line of defense provides the detection of attacks at TVM-layer by

providing an efficient guest-based monitoring solution. The second-line

of defense provides the detection of attacks at VMM-layer by prov-

ing a program-semantic aware VMI based monitoring solution. The

third-line of defense provides the detection of attacks at both network

and VMM-layer by providing network traffic monitoring solution inte-

grated with network introspection concepts. This makes our security

proposal more efficient, robust and VMI-based when compared to so-

lutions which apply conventional security approaches at all regions in

cloud to detect any abnormal activities. The description of proposed

security architecture with information about all three line of defenses

is presented in the Chapter 3, in detail.
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Chapter 3

CloudHedge: Intrusion

Detection Framework for

Cloud Environment

This chapter describes the proposed security framework, CloudHedge

for Intrusion detection in cloud environment. CloudHedge provides

various security solutions to detect intrusions at different security-

critical positions in cloud such as tenant virtual machine (TVM), vir-

tual machine monitor (VMM) and cloud network server. The secu-

rity solutions have been divided into three types: TVM-based (de-

ployed at TVM-Layer), Hypervisor-based (deployed at VMM-Layer)

and Network-based (deployed at Network and VMM-Layer). Each of

the security solution is provided by one of the CloudHedge sub IDS in-

stances namely Malicious System Call Sequence Detection (MSCSD),

VM Introspection based Malware Detection (VIMD) and Malicious Net-

work Packet Detection (MNPD). The instances are distributed, cen-

trally configured and controlled by cloud administrator.

3.1 Introduction

We propose a robust, efficient and VMI-based distributed security ar-

chitecture, called CloudHedge for detecting intrusions in cloud en-

vironment. It addresses the limitations with existing cloud security

proposals as discussed in Chapter 2. CloudHedge exhibits monitoring

capability of both program behavior and network traffic based on in-

trospection of VM memory and network features. CloudHedge detects
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intrusions in cloud environment by providing different-levels of security.

The CloudHedge places the monitoring tool at various security-critical

positions such as tenant virtual machine (TVM), hypervisor/virtual

machine monitor (VMM) and cloud network server. It provides differ-

ent intrusion detection strategies for both network and malware attack

detection in cloud and claim that same security solution may not be

efficient and viable to be applied at various regions in the cloud. It

is because of the semantic gap problem at the virtualization environ-

ment and limitations associated with the security solutions. Semantic

gap problem refers to interpreting the low-level bits and bytes of a

guest OS into a high-level semantics. Furthermore, there are different

design choices which security researchers have to make while design-

ing solutions at various layers in cloud. The existing solutions at one

particular layer are not complete and hence incapable to deal with ad-

vanced attacks. Some of these attacks hide their presence on detection

of the security tool or even try to evade the security tool running in the

same virtual memory in which the tenant applications are running. We

propose a comprehensive intrusion detection framework called Cloud-

Hedge which provides efficient security solutions at TVM, VMM and

Network-layer against different types of attacks in the cloud. Cloud-

Hedge exhibits the following unique qualities:

∗ It performs three-lines of defense which makes our architecture

more robust to attacks which may bypass the basic security pro-

vided by a cloud administrator.

∗ The first-line of defense is provided a program behavior monitoring

based TVM-layer security solution without requiring any complex

functions to gain insight into TVM. The monitoring tool has got

access to full contextual information of the monitored machine.

∗ The second-line of defense is provided by a introspection-assisted

program behavior monitoring based VMM-layer security ap-

proaches with the support of introspection libraries. Two differ-

ent detection mechanisms are provided for doing program behavior

analysis at hypervisor.

∗ The third-line of defense is provided by a network monitoring ap-

proach for malicious network packet detection in cloud at both

Network-layer and VMM-layer.
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∗ There are various complexities and privileges associated with each

layer in cloud which makes the single security solution infeasible

to be applied at multiple locations. The architecture and design

of CloudHedge overcomes the gap of existing security approaches

(NovelNIDS [90], C-NIDS [147]) which apply single security solu-

tion at various regions/layers in cloud.

∗ It incorporates VMI approaches at hypervisor for providing the

high-level view of processes running in TVM which is a way ahead

of other IDS approaches (ISCS [84], HMM-IDS[117]) which do pro-

cess monitoring at TVM-layer. Moreover, these existing frame-

works do not support both memory and network introspection for

attack detection in cloud.

∗ It supports both process monitoring and network monitoring func-

tions which makes it superior than other approaches (Xenini-IDS

[69], Signature-IDS [93], FingurePrint-IDS [154], Shadow-Context

[93]) which rely only on one type of analysis for various types of

attack identification.

∗ It can detect various malware attacks such as privileged program

modification, hidden processes, rootkits and various other evasion

based stealthy malware attacks, virtual IP spoofing and virtual

MAC spoofing attacks and other networking attacks by running

the individual CloudHedge instances at different positions.

∗ It utilizes machine learning approaches for learning the intrusion

profiles of monitored TVMs. Machine learning techniques classify

processes based on learned patterns and hence can help to reduce

false positives which occur with rigid sequence matching with the

normal traces.

CloudHedge is robust solution since the attacks which are bypassed by

one layer can be detected at subsequent layer. Moreover, it performs the

monitoring of both program behavior and network traffic with support

of introspection functions. It detects the suspicious behavior of the

applications running in the TVM by monitoring the virtual machine

both from inside and outside. This makes it efficient when compared

to other approaches which only do program analysis or network traf-

fic analysis, either from inside TVM or outside TVM. CloudHedge is

adaptable as it employs the machine learning approaches to provide a
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learning based detection model which can be retrained to learn the fea-

tures of new attacks in future. CloudHedge is distributed in nature as

individual CloudHedge sub IDS instances are executed at TVM-layer,

VMM-layer and Network-layer but are centrally configured, managed

and controlled by cloud administrator.

Cloud administrator monitors the individual sub IDS instances, running

in each layer and responds against alerts reported by IDS instances.

He/she takes decision based on the logs generated by the IDS-instances

and knowledge about the individual TVM and applications installed.

He/she has the highest privileges to stop/restart/resume TVM or ap-

plications or processes, reported as malicious by individual sub IDS

instances of CloudHedge. The proposed framework is an effective secu-

rity solution to detect malicious activities in cloud.

3.2 Security Architecture

A CSP is responsible for securing the cloud infrastructure from mali-

cious entities which target the virtual domains running in cloud. The

existing security proposals have some limitations, as discussed before.

Hence, we propose a robust security architecture incorporating efficient

approaches for providing the intrusion detection at three different layers

in cloud. CloudHedge is intended to detect attacks at various security-

critical positions in cloud environment. The three lines of defense and

security architecture for deployment of CloudHedge sub IDS instances

is discussed in subsequent subsections.

3.2.1 Lines of Defense

CloudHedge offers both basic and advanced security functions to

detect malware and network attacks at different layers of cloud. To

provide a robust security architecture, CloudHedge provides three-lines

of defense for detecting intrusions in cloud environment using its

three sub IDS instances. Each of the three modules are motivated

to solve the research gaps identified in existing security solutions, as

discussed in Chapter 2. We have categorized the security solutions

of CloudHedge into three types: (i) TVM-based security solution

(ii) Hypervisor-based security solution (iii) Network-based security

solution. The brief description of detection capabilities of each of the
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security solution provided by CloudHedge is described below:

(i) TVM-based security solution: TVM-based sub IDS instance

runs inside the individual TVM and examines specific guest-based

actions as following: What applications are installed and are currently

running in virtual machine?, What files are being processed?, What

regions of the memory are being accessed by applications in terms of

their system call interaction with the guest operating system?, etc.

It performs the analysis of system calls and programs of monitored

TVM with good detection efficiency. Since, it has direct access to all

contextual information of monitored VM where the detection agent is

running. TVM-based security tools have the greatest visibility into

the monitored host. They are installed at TVM-layer and can be

controlled either by the tenants or cloud administrator, depending on

the tenant’s security requirements as stated at the time of registration

in terms of SLA. However, TVM-based security solutions completely

depend on the trustworthiness of the guest operating system and may

not provide a comprehensive security from advanced attacks. Once

guest OS kernel is compromized, an attacker can disable the security

tool running in the virtual machine. The proposed security approach

for TVM-based monitoring provides first-line of defense and detects

the intrusion at TVM-layer such as malicious modifications of the

privileged programs, based on program behavior analysis .

(ii) Hypervisor-based security solution: Hypervisor-based based

sub IDS instance is configured to monitor a specific set of guest

virtual machines for malicious actions from the hypervisor/VMM.

For example, it examines: What application behavior is malicious?,

Is there any hidden malware (rootkits) running in the virtual ma-

chine?, Are all the critical-security processes such as auto-update and

auto-scan running in the virtual machine?. The main concern with

the Hypervisor-based tools is to detect the intrusions which may

not get detected by the guest-monitoring tools. It also monitors the

interaction between applications and operating system; however it

cannot access all the TVM-layer contextual information directly. It

leverages the VM introspection (VMI) approaches that was lacking

in traditional IDS approaches. The hypervisor/VMM can not view

the high-level semantics of the guest operating system’s information
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Figure 3.1: Abstract Composition of CloudHedge instances monitoring at
three-layers of cloud

as discussed in Section 3.1. VMI libraries provide possible ways to

extract the high-level semantics of the machine from hypervisor. The

information can be used for the intrusion detection approaches by the

security practitioner. However, the applicability of the introspection

approach for the hypervisor and its integration with an efficient

detection mechanism is again a challenging task for intrusion detection

in cloud. The proposed security approach for Hypervisor-based

(out-of-the-guest) monitoring detects the intrusions at VMM-layer

such as hidden processes, malware, subverted program modification

attacks, evasion based attacks (time-based, processor feature based,

exception-based). This is done by performing the program behavior

analysis with memory introspection.

(iii) Network-based security solution: Network-based sub IDS

instance examines the network traffic passing through a specific

network segment for detecting the malicious network packets in the

network. For example, it examines: Is there any malicious network flow

coming to or going from a monitored machine? Is the traffic coming

from a machine is actually coming from the claimed sender’s machine?,

etc. It is independent of the operating system over which it is installed

and uses the network data as a primary source of information, rather

than operating system logs as used by guest monitoring approaches.

This makes the network-based systems extremely portable and hence

can be deployed at various cloud layers such as TVM-layer, VMM-layer

and Network-layer. In the proposed solution, the IDS sensors are
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distributed at Network-layer and VMM-layer, out of the reach of

the tenants. The configuration, control and monitoring of each sub

IDS instance is governed centrally by cloud administrator. However,

tenants may have their own NIDS tool installed running in their virtual

machine, totally under the control of the tenants. This situation would

occur if tenants do not opt for security from the cloud service provider.

This proposed security approach for network traffic monitoring is a

composite module to detect network intrusions both at Network-layer

and VMM-layer such as SYN flooding, UDP flooding, scanning, etc.,

based on network behavior analysis with network introspection.

CloudHedge is a composition of three sub IDS instances which provide

security solutions based on guest monitoring (TVM-based IDS),

out-of-the-guest monitoring (Hypervisor-based IDS) and network

traffic monitoring (Network-based IDS) respectively to deal with the

attack detection at three different line of defense as discussed earlier

as shown in Figure 3.1. Each of the sub IDS instance has different

security functionalities to support the attack detection at various

regions in cloud, covering all three layers. However, they all together

form a single IDS instance (CloudHedge), which is monitored by

cloud administrator. Each of the IDS sub instance provides one of the

category of security solution provisioned by CloudHedge.

The three sub IDS instances are as follows:

• Sub-IDS-1: Malicious System Call Sequence Detection (MSCSD)

• Sub-IDS-2: VM Introspection based Malware Detection (VIMD)

• Sub-IDS-3: Malicious Network Packet Detection (MNPD)

MSCSD is a TVM-based IDS which provides TVM-layer security so-

lution. VIMD is a Hypervisor-based IDS which provides VMM-layer

security solution. VIMD provides two different detection strategies for

malware detection. A cloud administrator can employ any of them or

both at hypervisor layer in cloud. The first detection mechanism in

the second-line of defense is VMI-assisted malware detection approach

(called VMGuard) based on system call sequence analysis with mem-

ory introspection capabilities. The other detection mechanism is VMI-

assisted evasive malware detection approach (called VAED) based on

system call transition analysis with memory introspection capabilities.

The third sub IDS instance, MNPD provides network traffic monitor-

ing based security solution at both network and hypervisor-layer with
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network introspection capabilities.

All the sub IDS instances are part of CloudHedge. CloudHedge is an

efficient framework as each of the IDS sub instance has been designed

to detect intrusions at its different locations (inside the TVM or outside

the TVM) and found to perform well when compared to other solutions.

The different locations of CloudHedge have got different security-levels.

IDS running in TVM are less secure than IDS running outside the TVM

(at VMM and/or Network layer). Hence, even if the first-line of defense

mechanism is breached, the second and third-line of defense mechanism

would still be running actively at their locations. For example, malware

attacks bypassed by MSCSD can be detected from outside the TVM

by VIMD. However, all attacks cannot be detected by analyzing the

program behavior. These attacks includes the ones which do not harm

the programs installed in monitored machines but unnecessarily keep

the system’s resources busy (eg. Denial of Service (DoS) and scanning

attacks). Some other attacks may run malicious programs to generate a

flood of packets. The detection of these attacks becomes more difficult

by security tools if the flooding is done with spoofed address. Therefore,

network traffic monitoring is as important as process-monitoring for at-

tack detection in cloud. CloudHedge provides two security-levels in the

third-line of defense from network intrusions. It performs the network-

trace analysis at the Network-layer, providing primary security from

attacks. It also supports the traffic validation at the VMM-layer using

network introspection to check the legitimacy of the monitored TVM.

It then carries out network-trace analysis using machine learning tech-

niques at VMM-layer, providing the secondary security from attacks.

3.2.2 Deployment of CloudHedge in Cloud

The proposed security approach adds security functionalities at the

TVM-layer and VMM-layer of Cloud Computer Server (CCoS) and

Network-layer of Cloud Network Server (CNS) as shown in Figure 3.2.

The implementation set up is based on Xen VMM for hosting the

TVMs. We have considered the cloud architecture based on Open-

Stack [16], a leading global cloud management software. Openstack

is a collection of open source cloud components used which is popu-

lar for developing cloud platform for public, private and hybrid cloud

[21]. Various companies such as RackSpace public cloud [25], ELASTX
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Figure 3.2: A security design architecture and deployment of various sub IDS
instances in cloud

OpenStack:IaaS [27], Dualtec [28], AgileCLOUD [29], offer OpenStack

powered public cloud services, as discussed Chapter 1. Xen is an open

source hypervisor supported by commercial CSPs such as Amazon and

Citrix for hosting TVMs. The privileged domain (Dom0) of Xen is used

to configure, monitor and control the TVMs which are referred as Do-

mUs (untrusted domains). However, cloud administrator enforces strict

policies at VMM to restrict DomU users from accessing Dom0. Each

sub IDS instance of CloudHedge runs at different locations in cloud.

One sub IDS instance of CloudHedge runs at TVM to deal with basic

malware attacks and provides the first-line of defense from attacks. An-

other instance of CloudHedge runs at Dom0 of VMM-layer to deal with

advanced malware attacks and provides the second-line of defense. The

third instance of CloudHedge runs at both Dom0 of CCoS and host OS

of CNS to deal with network attacks and provides third-line of defense.

CloudHedge performs the analysis on process logs and network logs ex-

tracted from TVM memory and virtual switch. If TVM is found to be

suspicious, alert signals are sent to cloud administrator with details of

logs generated by CloudHedge.

CloudHedge is a distributed deployment approach where each of the sub
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IDS instance responds to cloud administrator on detection of the mali-

cious activity. The overall architecture of the cloud has been taken into

consideration. Each of the CloudHedge instance runs individually at

TVM, VMM and/or network server in the cloud but they are configured

and controlled by the cloud administrator at Cloud Controller Server

(CCS). A tenant member has no control over the configuration, moni-

toring and control of CloudHedge instances. As the sub IDS instances

are distributed in nature, they do not share the same VM resources

for their operations, reducing the resource overhead at individual ten-

ant TVM. Moreover, the IDS-instances which are deployed outside the

TVM, reduce the fear for IDS subversion at individual TVM.

A tenant member may not be aware about the IDS instances running

in the cloud as he/she has no control over any of the IDS sub instance.

The cloud administrator is only responsible for creating policies and

responding to alerts generated by sub IDS instances. A summary of

attack statistics gathered from various locations is made available to

cloud security team by cloud administrator so that the attacks can be

further analyzed with the expertise knowledge. The frequency of at-

tacks, associated TVM and applications responsible for causing attacks

are identified. A suitable response is initiated by cloud administrator.

CCS acts as a central point for log management, gathering attack statis-

tics, creating and modifying security policies etc. This helps the cloud

administrator to identify how the current security solutions can be en-

hanced to reduce the attacks on cloud. The brief summary of each of

the sub IDS module with their functionality is described in subsequent

sections.

3.3 Malicious System Call Sequence De-

tection (MSCSD)

The aim of Malicious System Call Sequence Detection (MSCSD) is

to provide a security technique that is applicable to traditional phys-

ical hosts and all cloud deployments such as SaaS, PaaS and IaaS.

A CSP can apply the MSCSD at TVM-layer to provide the first-line

of defense from basic malware attacks which generally disclose their

behavior on execution. MSCSD is based on the runtime behavioral

analysis of the programs, running in the tenant VM. The conceptual
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Figure 3.3: Conceptual diagram for in-guest monitoring by MSCSD in cloud
environment

diagram of MSCSD is shown in Figure 3.3. In initial phase, MSCSD

extracts the execution traces of monitored programs (located in pro-

gram file list) in form of system call logs using system call tracer.

Trace pre-processor then parses the tracing logs and extracts the sys-

tem call sequences (traces) to generate the features. MSCSD provides

a feature extraction approach, called ‘Bag of n-grams (BonG)’. It finds

out the sequence structure of the various short sequences of same size,

called n-grams. It then converts the traces into a numeric feature vec-

tor < c1, c2, c3, c4, ck >. Each entry c in feature vector represents the

occurrences of individual short sub-sequences in the trace.

BonG considers both frequency and structure of various short sequence

of system calls patterns of each trace. It is therefore successful in main-

taining the ordering of the subsequent system calls within each sub-

sequence. The extracted features are stored in Feature Matrix Log

(FML) which is passed to detection engine (DE). In learning phase of

DE, machine learning technique (Decision Tree C 4.5) is applied to
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learn the behavior patterns of feature vectors of observed system call

patterns. In detection phase of DE, the trained model is used to an-

alyze the behavior of running processes. If any suspicious activity is

detected, alerts are sent to cloud administrator. The key advantage

with MSCSD is that it improves the accuracy while maintaining the

ordering of system calls. MSCSD observes the run-time behavior of the

programs, hence it is free from anti-detection techniques such as ob-

fuscation and encryption. MSCSD has been validated with University

of New Mexico (UNM) [155] datasets. It provides various advantages

over existing dynamic analysis approaches proposed for cloud. MSCSD

is applicable to traditional physical hosts and virtual machines running

in cloud environments. However, the TVM-layer technique will fail to

detect advanced malware attacks which hide their behavior after sens-

ing the presence of security tool. There is need to provide a more strong

line of defense in cloud.

3.4 VM Introspection based Malware De-

tection (VIMD)

The goal of VM Introspection based Malware Detection (VIMD) is to

detect attacks at the VMM-layer, providing second-line of defense in

cloud. A cloud administrator can control and monitor the VIMD sub

IDS instance from Dom0 of VMM, which helps to prevent IDS subver-

sion from untrusted domains (TVMs). VIMD provides both primary

and secondary security checks. It operates in three phases: memory

introspection phase, behavior analysis phase and logging & alerting

phase. In memory introspection phase, primary security check is per-

formed to ensure whether any of the hidden malicious processes are

running in TVM. It also ensures whether all security-critical processes

are running properly on TVM. It then extracts the execution traces

of running processes by using the kernel debugging based VM intro-

spection mechanism [124]. The introspection mechanism employed by

VIMD uses the software break point injection at guest OS kernel func-

tion. However, the break points are hidden using Extended Page Table

(EPT) mechanism. Deng et al. [156] have proved the effectiveness of

the combined use of EPT protection with break points to hide from
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Figure 3.4: Conceptual diagram for out-of-the-guest monitoring by VIMD in
cloud environment

advanced anti-debugging techniques. VIMD utilizes the Rekall mem-

ory forensic framework [157] to obtain the details of guest OS kernel

symbols and their address locations as these details are not provided by

commercialized operating systems. On executing the programs, a de-

tailed behavioral log of all the processes are obtained which are passed

to behavior analysis phase. In behavior analysis phase, the secondary

security check is performed to detect the malicious processes running in

monitored TVM. VIMD provides two detection mechanism named as

VMGuard and VAED which capture and detect the program semantic

behavior of different malware attacks at the VMM-layer. The concep-

tual diagram of VIMD is shown in Figure 3.4. The description of each

of the detection mechanism is given below:
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3.4.1 VMGuard: VMI-assisted Malware Detec-

tion Approach based on System Call Sequence Anal-

ysis at the Hypervisor

The first detection mechanism, called as VMGuard, is a security so-

lution at VMM-layer in cloud. VMGuard is designed to detect the

malicious activities of TVMs which can be bypassed by MSCSD. VM-

Guard is one of the core detection components of VIMD. It performs

the behavior analysis on the extracted traces obtained from memory

introspection phase of VIMD. VMGuard improves the BonG feature

representation by integrating it with with text mining approach for

feature selection particularly Term Frequency-Inverse Document Fre-

quency (TF-IDF) and ensemble learning technique. BonG generates

the feature vectors based on the frequency distribution of all possible

unique n-gram values with respect to each class. VMGuard applies the

text mining approach with generated feature vectors to improve the

discriminative power of n-grams. It considers two major factors: Fre-

quency and Rarity. Frequency refers to “how frequent an n-gram is in

each trace?” and Rarity refers to “how rare an n-gram is in a collection

of traces?”. This is measured as a TF-IDF score for each n-gram.

VMGuard considers this score as feature selection criteria to gener-

ate the feature vector matrix (FVM). The selected features (stored in

FVM) are passed to the mX DetectionEngine (mX DE). In learning

phase, mX DE uses Random Forest classifier to learn the behavior of

attacks. Random Forest trains the multiple decision trees and applies

bagging to aggregate their result to provide the combined output. The

trained model is used to detect the malicious patterns in the detection

phase. Alert signals are generated and sent to cloud administrator on

detection of any suspicious activity. VMGuard has been validated with

University of New Mexico (UNM) [155]) dataset. VMGuard is well

suited to provide secondary security functions in virtualization based

cloud environment.
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3.4.2 VAED: VMI-Assisted Evasion Detection Ap-

proach based on System Call Transition Analysis at

Hypervisor

The second detection mechanism, called as VAED, is a security solu-

tion at VMM-layer in cloud which can also be used by CSP to provide

the second-line of defense from advanced evasive malware attacks. The

main objective of VAED is to provide a program semantic based VMI-

assisted evasion detection mechanism for detecting stealthy evasion-

based malware attacks from VMM-layer in cloud environment. Once

the execution traces are obtained from memory introspection phase,

VAED constructs the program semantics in form of the System Call

Dependency Graphs (SCDGs) to analyze the semantics in different ex-

ecution paths of the programs installed on TVM. SCDG represents

the system call transitions in different execution paths of the program.

The semantics are based on the ordered sequence of system calls with

the analysis of transition probabilities from one system call to other

possible system call. The transition probabilities are calculated by us-

ing the Markov Chain property which is basically a derived form of

2-gram model which extends the frequency model and uses the proba-

bility model to represent the system transitions in a more efficient way.

Each of the SCDG is stored in form of adjacency matrix which stores

all possible transition probabilities for each transition. It forms a basic

building block in forming feature transition matrix (FTM).

VAED employs the feature selection method, particularly Information

Gain Ratio (IGR) to select the important system call transitions. Now

eX DetectionEngine (eX DE) learns the behavior of attacks. It applies

an ensemble learning approach in which different classifiers are trained

for the FTM and weighted voting scheme is used as a fusion rule to

fuse the diverse classifiers results. The fused results are used to predict

the malware class for intrusive processes in the detection phase. The

fused model is used as a baseline information to test the semantic (run

time) behavior of programs running in monitored VM. If any suspicious

activity is detected by eX DE, alerts are generated and sent to cloud

administrator. VAED is also well suited to provide secondary-line of

defense in virtualization based cloud environment. It has been validated

with evasive attack dataset obtained from University of California [158].
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VIMD is deployed at virtualization-layer in cloud and monitored by

CSP to provide the secondary-line of defense from both basic and ad-

vanced malware (evasive malware) attacks. The proposed approach is

superior to other approaches, as on one hand, it is difficult for an at-

tacker to subvert the security monitor from TVM, while on the other

hand, it provides efficient techniques for attack detection at hypervisor.

It has been validated with different datasets and results seem to be

promising.

3.5 Malicious Network Packet Detection

(MNPD)

The goal of Malicious Network Packet Detection (MNPD) is to provide

a network traffic monitoring based malicious network packet detection

approach in cloud. It monitors the TVMs from outside the monitored

machine at both Network and VMM-layer in cloud environment and

provides the third-line of defense from attacks. MNPD is configured

to listen on virtual network interfaces (VNIs) of Cloud Network Server

(CNS) and Cloud Compute Server (CCoS). MNPD performs the behav-

ioral analysis of network traffic at CNS; providing the primary security

from network intrusions at Network-layer. MNPD also provides VM

network introspection to gain the VM related information using open

source tools such as LibVirt, XenStore, dnsmasq server from Dom0 of

hypervisor of CCoS. The information is later used to perform traffic val-

idation at virtualization layer of CCoS to detect spoofing attacks origi-

nated from monitored TVM. However, an attack can be targeted using

correct Source IP and/or MAC address. Hence, non-spoofed packets are

further analyzed using behavior analysis of network traffic to detect any

abnormality in the virtual traffic; providing secondary security from in-

trusions at virtualization-layer. The traffic is captured using the packet

sniffer tools. Packet pre-processor converts the captured packets (.pcap

files) into standard format (.CSV or .ARFF file) which contains various

traffic features. Relevant features are extracted using the ensemble of

feature selection methods (chi square and Recursive Feature Elimina-

tion) and stored in Optimal Feature Statistics Matrix (OFSM). MNPD

performs behavior analysis of traffic at both the servers using detection

engine (DE). DE applied Random Forest Classifier (RF) to learn and
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Figure 3.5: Conceptual diagram for network traffic monitoring by MNPD in
cloud environment

detect network attacks such as DoS, Scanning etc. On detection of any

suspicious activity, alert signals are generated and sent to cloud ad-

ministrator. MNPD does not involve overhead incurred in monitoring

extensive memory writes or instruction-level traces. It is a more secure

solution to detect network attacks which never pass through physical

interface and hence not detected by traditional IDS. The proposed ap-

proach has been validated with latest datasets (UNSW-NB and ITOC)

and results seem to be promising. The conceptual diagram of MNPD

is shown in Figure 3.5.

3.6 Conclusion

A robust security architecture, CloudHedge has been proposed for de-

tecting intrusions in cloud environment which provides three lines of
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defense to detect both malware and network attacks at various regions

in cloud. The limitations in the existing security solutions have been

well investigated and handled by CloudHedge. Our security architec-

ture provides three-lines of defense which make our architecture more

efficient and robust when compared to other cloud security approaches.

The design of CloudHedge is distributed and motivated from the fact

that a centralized IDS becomes a bottleneck when number of TVMs

in the cloud host increase and also when the security tool uses cen-

tralized resources. If all TVMs are monitored at the central location

i.e. at Cloud Controller Server (CCS), it adds a big overhead to the

cloud administrator which results in inefficiency, privacy and scalability

issues.

The tenants who are more concerned about their privacy can opt for

TVM-layer security solutions as tenant data will never go out of their

machine since security tool runs inside the monitored machine. Tenants

who are more concerned about security and at the same time who do not

want to compromise much on privacy can also opt for higher layer line

of defenses i.e. second and/or third. The privacy concerns are clarified

between tenant and cloud service provider (CSP) in form of service level

agreement (SLA) at the time of registration. The more the flexibility

a tenant provides to CSP for accessing its applications, memory and

CPU states; the more the security a CSP can provide to tenants by

using various layers of security functions provided by CloudHedge. We

have worked on following aspects:

∗ Security approach for performing TVM-based monitoring at TVM-

layer (first-line of defense)

∗ Security approaches for performing Hypervisor-based monitoring

at VMM-layer (second-line of defense)

∗ Security approach for performing Network-based monitoring at

Network and VMM-layer (third-line of defense).

CloudHedge is designed to deal with attacks at different cloud layers.

Each of the security solution addresses the complexities associated with

each layer and applies the suitable security functions at the monitor-

ing layer. The security solutions have also been categorized based on

security-layers which makes the CSP to assign the specific security solu-

tion based on the tenants demands. However, there are some limitations

associated with CloudHedge. Currently, the support of combining and
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co-relating the alert information obtained from various layers is not

supported by CloudHedge. Each instance can individually detect a set

of attacks. The fusion of their output can be helpful to detect the dis-

tributed attacks in cloud. In future, a mechanism will be provided to

correlate the information obtained from various sensors, deployed at

different layers to improve its efficiency and attack detection power.

In the subsequent chapters i.e. Chapter 4 (Malicious System Call Se-

quence Detection), Chapter 5 (VM Introspection based Malware Detec-

tion ) and Chapter 6 (Malicious Network Packet Detection), the design

and implementation of individual sub IDS instances of CloudHedge is

discussed in more detail.
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Chapter 4

Malicious System Call

Sequence Detection

(MSCSD)

This chapter describes the design and implementation of ‘Malicious Sys-

tem Call Sequence Detection (MSCSD)’, one of the sub IDS instance of

CloudHedge that is based on the run-time behavioral analysis (dynamic

analysis) of the programs at the Tenant Virtual Machine (TVM)-layer.

MSCSD sub IDS instances are distributed in each monitored TVM,

configured and controlled by cloud administrator. The security archi-

tecture of MSCSD along with various detection components is described

in detail.

4.1 Introduction

The flexibility and scalability in cloud services has opened door for

attackers. Any vulnerability present in cloud, can allow the attacker

to gain illegal privileges of tenant virtual machine (TVM) users. A

malicious user can install advanced malware programs and gain higher

access privileges (guest OS kernel privilege). A compromised guest OS

kernel can call malicious drivers and perform malicious actions. Once

a virtual machine is fully compromised, an attacker can try to launch

further attacks on other TVMs. A compromised virtual machine is a

big threat to cloud infrastructure as it can bypass the security of other

TVMs. It could further lead to monetary disputes between cloud service

provider (CSP) and legitimate VM users.
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Some researchers [68] [91] [123] used signature matching techniques as

a detection mechanism in their security architecture which maintains

a database of attack signatures. These techniques require a regular

update of the signature database. An attacker can be successful by

forming attacks patterns which can bypass the security mechanism of

signature based tools. Dynamic analysis is one of the intrusion detec-

tion approaches to learn the run time behavior of the programs running

in VMs. Some researchers [67][84] applied dynamic analysis based in-

trusion detection techniques in cloud which maintain a baseline profile

of normal behavior of tenant’s applications. Any deviation from base-

line profile, generates an alarm to cloud admin. This will result in more

false positives for evolving new behavior of users in dynamic cloud en-

vironment. Moreover, without applying a learning based mechanism,

these approaches require a huge storage to store the training database

for the monitored programs.

For example, Gupta et al. [84] have proposed enumeration-based ap-

proach, called Immediate System Call Sequence (ISCS) approach in

cloud environment in which a baseline database is created for all mon-

itored programs in a virtual machine in the form of key-value pairs. A

key refers to the system call name and value refers to the subsequent

sequence of system calls following it. The technique will fail for longer

or infinite length traces. Further, Alarifi et al. [67] and abed et al.

[148] have implemented frequency-based approach, called ‘Bag of sys-

tem calls (BoS)’ [128] approach for detecting intrusions in cloud. The

technique leads to reduction in storage as traces are converted to a nu-

meric feature vector which contains frequency count of each system call

but the ordering of information is lost. The ordering of system calls is

very important for attack behavior identification. Therefore, we need

an intermediate solution which will preserve the characteristics of both

enumeration-based and frequency-based approaches.

In TVM-based monitoring, the detection mechanism runs inside the

monitored TVM. Advanced security techniques such as Virtual Ma-

chine Introspection (VMI) [122] can be used for virtualization and cloud

environments which is helpful in introspecting the TVM memory from

outside at the hypervisor, called as Hypervisor-based monitoring or out-

of-the-guest monitoring. However, TVM-based monitoring has some

advantages over hypervisor-based monitoring as discussed below:
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∗ TVM-based security tools have excellent visibility into the moni-

tored host and have the highest attack detection efficiency.

∗ The techniques are applicable for all the cloud deployments includ-

ing IaaS, PaaS, SaaS.

∗ CSPs can apply TVM-based security tools without any modifica-

tion in the hypervisor or hardware design.

∗ This is the only way for privacy concerned tenants who do not want

to disclose their information for securing their VMs from different

types of attacks.

∗ Even if the tenants opt for Hypervisor-based security solutions,

TVM-layer security will always be needed as a basic security solu-

tion because of lesser complexity and higher privacy.

Therefore, TVM-based security tools are better suited to provide first-

line of security defense. These type of IDS make use of In-VM se-

curity approaches which run inside the TVM. Out-of-the-VM security

approaches for malware detection, run outside the VM at a secure lo-

cation in hypervisor and used by Hypervisor-based IDS. These details

of these approaches are discussed in Chapter 5.

The aim of our work is to develop a more efficient security technique

that is applicable to traditional physical hosts and all cloud deployments

such as SaaS, PaaS and IaaS. We propose ‘Malicious System Call Se-

quence Detection (MSCSD)’ approach that is based on the run-time

behavioral analysis (dynamic analysis) of the programs, running indi-

vidually in the tenant VMs and centrally controlled and coordinated by

cloud administrator. Dynamic analysis of a process involves capturing

the run-time behavior of a program in the form of a sequence of sys-

tem calls (trace) executed by it. System calls reveal how the process is

interacting with the operating system, which is key in identifying how

malicious processes perform attacks. Although a number of different

malicious programs exist which misuse different types of vulnerabilities

(such as stack-based buffer overflow), there is always a sequence of spe-

cific system calls which is/are often common in executing the exploits.

System calls can be invoked by both programs in the user space as well

as by privileged system code.

MSCSD extracts and analyses the execution traces of the monitored

programs. It considers various short sequence of system call patterns,

called n-grams (same size) of each trace and therefore successful in
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maintaining the ordering of the subsequent system calls within each

sub-sequence. Each trace is converted to a numeric feature vector

where each entry of feature vector represents the occurrences of unique

n-grams in the trace. In next phase, machine learning technique (De-

cision Tree [159]) is applied to learn the behavior patterns of observed

system call sequences which will serve as baseline profile for future test

instances. MSCSD is successful in improving the accuracy and reducing

the storage requirement while maintaining the ordering of system calls.

MSCSD is applicable to traditional physical hosts and as TVM-based

security tools for virtualization and cloud environment, monitored by

cloud administrator. Tenants have no access to any of the MSCSD de-

tection components and its configuration files. CSP can adopt MSCSD

as basic security mechanism to deal with attacks at TVM-layer.

4.2 MSCSD: Security Design

MSCSD as a sub IDS instance of CloudHedge, is designed to detect

the malicious system call sequences by monitoring the behavior of pro-

grams for any malicious actions. MSCSD stands out from the existing

approaches [67][148] for program behavior monitoring as it follows a

distributed detection which is controlled and configured by the cloud

administrator at the centralized server. This solution answers some

of the research gaps identified and discussed in Chapter 2. The key

characteristics are described along with design choices, below:

i. MSCSD is a TVM-based security tool which is hypervisor inde-

pendent and centrally controlled by cloud administrator to detect

malicious execution of programs at the tenant VMs.

ii. The deployment of MSCSD sub IDS daemons is distributed in na-

ture as the IDS instances run independently in all the monitored

TVMs. All the sub IDS daemons are centrally configured and con-

trolled by cloud administrator. It reduces the bottleneck situations

which can occur for the security architectures where the whole mon-

itoring is done at the centralized cloud server.

iii. It performs the run time behavior analysis of programs at the mon-

itored machine which makes it robust from obfuscation and encryp-

tion based attacks where an attacker changes the code in a way to
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Figure 4.1: Security architecture of MSCSD

thwart the detection schemes, specially schemes that are based on

static and signature based analysis.

iv. The solution is better than other solutions where the individual

IDS sub-daemons are distributed among VMs without having any

central control and reporting. The sub IDS daemons in this situa-

tion can be controlled by tenant users. They can directly update

the security policies which make the system insecure from nefari-

ous users which can subvert and stop the security policies without

getting noticed by cloud admin.

v. The proposed solution does not make use of any complex introspec-

tion mechanism for trapping the system call sequences. It performs

the analysis based on the frequency count of various ordered sub-

sequence of system calls to detect an intrusion. This increases the

detection accuracy and resource efficiency, which is an important

requirement for cloud environments.

vi. It takes the advantage of both misuse detection and anomaly de-

tection as it is based on the analysis of both intrusive and normal

sequences which makes it better than well known anomaly detec-

tion approaches [67] [148] [154] proposed for cloud. The use of

machine learning techniques removes the need of storing all possi-

ble system call sequences as needed by existing approaches such as

key-value pair [84].
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At a high-level, there are four detection components: System Call

Tracer, Trace Pre-Processor, Detection Engine and Alert and Log Gen-

erator as shown in the security design of MSCSD, in Figure 4.1. All

these components of MSCSD execute in the monitored TVM. System

Call Tracer retrieves the system call logs of monitored programs running

in the TVMs. It is configured to locate the monitored programs from

the file specified by cloud administrator. Trace Pre-Processor parses

the logs and extracts the system call sequences (traces). Each trace

is processed by a sliding window and short system call sub-sequences

(n-grams) are generated. Numeric feature vectors are generated and

stored in feature matrix log (FML) for all traces. FML is given as a

input to Detection Engine. Detection Engine learns the behavior of the

programs by using a machine learning algorithm to train itself for the

supplied behavioral pattern. The monitored programs are checked by

trained classifier (Decision Model) for their similarity and dissimilarity

from the learned behavior. An alert is generated by alert and log gen-

erator (ALG) to cloud admin if suspicious behavior is detected . All

the IDS daemons, are centrally controlled by cloud administrator at the

cloud controller server which is responsible for taking further actions

after receiving the alert from MSCSD tool running in TVM. The exe-

cution flow of various security functions of these components is shown

in Figure 4.2. Various detection components of MSCSD are explained

in the following subsections.

4.2.1 System Call Tracer

System Call Tracer (SCT) extracts the run-time behavior of the moni-

tored program in the form of sequences of system calls invoked by each

of them. The MSCSD sub IDS instance attaches a system call tracer

(strace) to all the running processes to create the individual system

call trace log for each of them. The strace utility produces the traces

of monitored programs. Monitored programs can either be decided by

the tenant member and communicated to cloud admin at the time of

registration or automatically taken from program file of monitored ma-

chine. The strace of monitored program produces a long list of system

calls, called a trace. For example, let us consider a system call trace

corresponding to a user utility program of linux as shown in Figure 4.3.

The sequence of open(), read() and write() system calls, executed in the

98



Figure 4.2: Execution flow of various security modules of MSCSD

Figure 4.3: strace of a VM user utility Program

normal execution scenario of the a user utility program, can be seen.

Each trace log is stored in form of the two columns where first column

represents the process id and second column represents the ordered se-

quence of system calls. All the trace logs of the monitored programs

are merged to create a behavior log which is later processed by other

components to represent the TVM profile.

System call tracing works in two stages, described below:

∗ Startup: On receiving the startup command, MSCSD executes the

programs mentioned in the file of list of programs and performs the

execution tracing on the running processes as explained above. The

system call logs are transferred to the next detection component

i.e. Trace Pre-Processor for extracting the features from the run
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time behavior of the programs. This command is generally fired by

the cloud administrator whenever a new tenant VM is allocated to

the user.

∗ Update: On receiving the update command, MSCSD again runs

the strace for the newly updated programs and obtains behavior

logs of system call sequences. The command is generally fired by

the cloud administrator when a new set of programs are installed

by tenant which needs security. The initial file of list of programs is

also updated to incorporate the changes requested by the tenants.

The output is supplied to next phase in the similar manner as in the

startup phase to do the feature extraction from logs and obtaining

the behavior of newly installed programs.

The two phases are very important for behavior extraction which

is analyzed for the intrusion detection in later stages. A behavioral

log file (Log1) is prepared from each monitored VM. This represents

various possible behaviors of monitored programs in the TVM.

4.2.2 Trace Pre-Processor

After generating program behavioral logs, pre-processing of each trace

is carried out to obtain a large collection of n-gram sequences for each

trace (present in Log1) by Trace Pre-Processor (TPP). TPP extracts

features inform of n-gram sequences. An n-gram is a short sequence

of system calls obtained by considering a sliding window of size n and

gradually shifting the window by 1. Each shift of the window provides

a unique n-gram sequence. MSCSD considers a sliding window with

n=6 which is proved to be best size based on analysis carried out with

various length of n-gram sequences by Warrender et. al [116]. For

example, consider a system call trace of a user utility program as shown

in Figure 4.3. The n-grams generated by traversing the window by 1

will be as follows:

n1=open(), read() read(), write (), write (), write ();

n2= read() read(), write (), write (), write (), write();

n3= read(), write (), write (), write (), write(), write();

n4= write (), write (), write (), write(), write(), write() and so on. All

n-grams of a trace are stored in the Log2.

Lets say Xi is a feature vector of trace i, represented by

Xi = {n1, n2, n3, n4, ......nm}. Xi is a set of n-grams which is the
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Figure 4.4: Description of the Bag of n-grams representation

output obtained after data preprocessing where m is total number of

n-gram obtained after processing trace. Each n-gram is represented

by nj =< s1s2s3s4s5s6 > where 1 <= j <= m, a substring of system

call. After feature extraction, feature vector for the trace is generated.

All features in the form of n-grams are converted into a numeric

vector represented by X ′i =< c1, c2, c3, c4, ck > where each c value

represents the total number of occurrences of each unique n-gram

value in the trace and k is total unique n-grams obtained. After

feature extraction and pre-processing, each feature vector (named as

Feature Vector) is written to the Feature Matrix Log (FML) with

the labeled name of trace (benign or intrusive). The Feature Vector

entries are flushed and next trace is pre-processed to obtain next

Feature Vector in similar way. The process is repeated for all traces

present in the Log1. Two file are maintained for each machine: FML
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and mapping file. Final FML presents the feature vector matrix which

contains the features for all the traces. A mapping file represents

the unique n-grams executed at the machine by the monitored

programs. To better understand the idea behind ‘Bag of n-grams

(BonG)’, lets consider two traces of sendmail process in two execution

scenarios: intrusive and benign. The Normal sendmailprocess=

{write→sethostid→sstk→open→setuid→setgid→write→fork→
alarm}
Intrusive sendmailprocess= {sethostid→sstk→open→setuid→setgid→write→
alarm→sstk} .

For minimizing space and calculations, we have replaced each unique

system call by a unique integer number. The n-grams obtained by

following the above procedure of BonG, are shown in Figure 4.4. The

actual values of each unique n-gram sample for sendmail process is given

in Table 4.1. It can be observed that n1, n2, n3 and n4 are appearing

once in the normal trace sequence of sendmail process. The n-gram

n2 is also appearing in intrusive trace, hence we can infer that there

can be some similar system call sequences/patterns appearing in both

intrusive and normal traces. However, n5 and n6 are appearing only

in intrusive trace which can be the signatures for the attack patterns,

hence important for detection. We have also taken a random trace:

{sstk→open→setuid→setgid→write→alarm→
sstk}.

It can be seen that it contains the short system call patterns (i.e. n5

and n6; shown in Table 4.1) which appears in intrusive trace. If n5 and

n6 appear rarely in normal traces and mostly in the intrusive traces,

then the chances of the random trace to be classified as intrusive is high.

Therefore, the frequency-based model of BonG approach plays a very

important role in the classification of normal and intrusive processes.

The Feature Matrix Log (FML) obtained by processing all traces, forms

a baseline database and represents the behavior of the machine in the

different execution scenarios. The obtained output is used to train the

classifier as described in the next phase. For example, the obtained

feature vector corresponding to a process named as ‘ps’ is discussed in

Section 4.3 (refer Figure 4.6).
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Table 4.1: Sample of unique n-grams of sendmail process

Feature
variable

N-grams
representation

Actual n-grams

n1 [4, 138, 66, 5, 23, 45] [write, sethostid, sstk, open, setuid, setgid]
n2 [138, 66, 5, 23, 45, 4] [sethostid, sstk, open, setuid, setgid, write]
n3 [66, 5, 23, 45, 4, 2] [sstk, open, setuid, setgid, write, fork]
n4 [5, 23, 45, 4, 2, 27] [open, setuid, setgid, write, fork, alarm]
n5 [66, 5, 23, 45, 4, 27] [sstk, open, setuid, setgid, write, alarm]
n6 [5, 23, 45, 4, 27, 66] [open, setuid, setgid, write, alarm, sstk]

4.2.3 Detection Engine

Detection Engine (DE) is one of the main components of MSCSD which

is responsible for detecting the intrusions in the monitored tenant VM.

There are two execution modes for the DE to operate: Learning mode

and Detection mode.

Learning mode: DE is executed in this mode, once cloud administrator

fires the configure command. In learning mode, the three components

of MSCSD such as SCT, TPP and DE operate over a set of known nor-

mal and maliciously modified processes (intrusive), in an offline fash-

ion. A TVM may contain user programs such as sendmail, login, perl

script, JavaScript, xlock and other executables or system program such

as ls, ping, dir etc. FML is generated which provides the run-time

behavioral statistics of the monitored programs in different execution

scenarios. The proposed approach is specifically designed for attacks

against TVMs. The working of MSCSD in learning mode is shown in

Algorithm 1. The workflow defining its specific actions are as follows:

∗ Monitored programs are executed in different execution scenarios

and the execution traces are obtained. A behavior log is prepared

for the machine, called as FML. Each row of FML is represented

by <X’i, L > where Lε{0, 1} >. L is label for each feature vector

< X ′i >. Here, 0 is representing malicious class and 1 is representing

benign class. FML records the features of the programs using the

Bag of n-grams approach.

∗ MSCSD now executes a machine learning algorithm: Decision Tree

C 4.5 [159] to learn the run-time behavior of programs (stored in

FML). It represents the behavioral profile of monitored VM which

is used to detect the malicious processes in future.
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∗ The trained classifier acts as baseline profile of the machine. The

trained classification object is stored in the local storage which rep-

resents the normal and intrusive profile of the monitored programs.

The stored information is later used for matching the abnormality

in the running processes with the pre-compiled profiles.

Detection mode: Detection engine is executed in this mode once cloud

Algorithm 1: Algorithm for Learning the Behavior of benign and intrusive sam-
ples of monitored programs
Result: VM1 Profile, VM2 Profile...VMn Profile
Profile Generation Module();
for VMi=1 to VMi <=n do

Log1(Traces)=strace(monitored programs);
for Each Trace i in Log1 do

Label=Extract name(Tracei); // Each program has many labeled benign and

intrusive traces

while Trace i 6= NULLdo
Feature Vector=Trace Preprocessor(Tracei);

end
Feature Matrix Log=Write(Label,Feature Vector);

end
clf=DecisionTreeClassifier();
X=Feature Matrix Log [ ,1:n-1] ; // All rows from 2nd(index 1) to n (index n-1)

columns

Y=Feature Matrix Log[0] ; // First column contains target class labels (index

0)

Decision ModelVMi=clf.fit(X, Y);

end

Algorithm 2: Algorithm for Detecting Maliciously Modified Monitored Programs
Result: Alert Logs
Detection Module()
for VMi=1 to VMi <=n do

Test Log1(Traces)=strace(monitored programs)
for Each Trace i in Test Log1 do

while Trace i 6= NULLdo
Feature Vector=Trace Preprocessor(Tracei)

end
Test FML=Write(Feature Vector)

end
Pred=Load(Decision ModelVMi);
Labels=pred.predict(Test Feature Matrix Log)
if Lables.find(‘intrusive’) then

Generate Alert(”Suspicious Activity Detected”)–>CloudAdmin
else

No alarm Raised;
end
CloudAdmin–>Analysis(Log);
CloudAdmin–>Respond();

end
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administrator fires the detection command. In this mode, all the com-

ponents of MSCSD such as SCT, TPP, DE and ALG operate over the

monitored processes of TVM, in an online fashion. Whenever a tenant

VM is allocated to a user, a program list file of monitored programs

which is configured by cloud administrator is shared with MSCSD sub

IDS as part of IDS deployment and initialization. Similar to learning,

Test FML is generated which provides the run-time behavioral statistics

of the monitored programs. However, the class label for the monitored

process are not known and are determined by the MSCSD. The working

of MSCSD in detection mode is shown in Algorithm 2. The workflow

defining its specific actions for attack detection are as follows:

∗ On receiving the detection command from cloud administrator,

MSCSD sub IDS instance invokes SCT for each running process to

fetch execution traces of the processes running on the virtual ma-

chine. Monitored programs are executed and the execution traces

are obtained. A behavior log is prepared for the machine, called as

Test FML. Unlike learning mode, each row of Test FML is repre-

sented by <X’i> where each x′i is a feature vector for the monitored

trace. The testing FML represents the features of the programs in

terms of the bag of n-grams which is further processed for analysis.

∗ MSCSD now loads the trained classifier to analyze the running

processes and detect any suspicious system call pattern occurring

in the traces. The run-time behavior of the monitored program is

processed by the trained classifier which acts as a decision model.

The decision model perform the statistical calculations over the

Test FML to classify the instances in one of the attack classes based

on the learning of the various types of execution traces.

∗ The behavioral semantics of monitored programs are detected by

detection engine. On detection of any suspicious system call pat-

tern, detection engine classifies a process as intrusive. It also noti-

fies alert and log generator.

In cloud environment, tenant user behavior may get changed over a

period of time, hence cloud administrator needs to verify the TVM from

time to time for the legitimate programs. We assume that new normal

behavior is differentiated from malicious one by cloud admin based on

the expertise knowledge and information available about tenant activity

logs. A classifier is retrained for the updated dataset over a time period.
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Figure 4.5: Deployment of of MSCSD instances in cloud environment

4.2.4 Alert and Log Generator

Alert and Log Generator (ALG) generates an alert signal if any of the

test instance (monitored processes running in TVM) have been flagged

as anomalous by Decision Model. It generates the log files with the in-

formation about the process name, process ID, system call logs, domain

ID and domain name of the TVM generating the suspicious patterns.

On receiving the alerts log report, cloud administrator can take fur-

ther actions such as terminating the application generating malicious

behavior, terminating the TVM from where the alert has been received

or isolating the machine from the cloud environment. All the alerts are

reported to the centralized cloud server i.e. cloud controller as shown

in Figure 4.5 which is handled by cloud administrator.

4.3 Experiments

In this section, we first describe the dataset and its pre-processing in

detail. Next, the analysis on results of classification is discussed. Lastly,

we compare our work with existing related work. The prototype imple-

mentation of MSCSD has been done on a Linux machine with 16 GB

RAM, 1 TB HDD, Core i7 processor and Ubuntu 15.10 Host OS, Core i7

processor, Xen 4.6 VMM and 1 Guest OS Ubuntu 14.04. Python 2.7.10

106



Figure 4.6: Feature set corresponding to UNM ps normal process

has been used for programming. There is no publicly available stan-

dard cloud dataset to validate the detection approaches proposed for

cloud. Generating self generated cloud dataset requires huge resources

for setting up real cloud environment and it also raises a question of

data validation which has not been known to anyone. MSCSD is vali-

dated over the well known University of New Maxico (UNM) datasets

[155]. This dataset is also being used by researchers [84][73] working in

cloud security and is publicly available provided by University of New

Mexico.

Table 4.2: Details of UNM Dataset

Process
Number of

Intrusive traces
Number of Normal

traces

Number of system
calls in Normal

Traces
CERT synthetic

sendmail
23 294 182,901

UNM synthetic lpr 1001 4298 2,027,468

UNM Live named 2 27 9230, 572
UNM xlock (mixed) 2 72 16, 937, 816

UNM Live login 9 2 8, 894

UNM Live ps 26 24 6, 144
UNM Live inetd 31 3 541
UNM Live stide 105 13,726 15, 618, 237

UNM Synthetic
sendmail

10 7 2076
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Figure 4.7: Performance comparison of different classifiers

4.3.1 Preparing the Dataset and Feature-

Extraction

The detailed description of the UNM datasets is given in Table 4.2.

Each UNM dataset represents the system call traces of privileged pro-

grams such as sendmail, ps, login etc. The normal and intrusive execu-

tion traces of each program is stored in separate dataset. Each dataset

consists of trace files having two column entries. First column repre-

sents the PID of trace and second column represents the system call

executed by the process. Data pre-processing is carried out to extract

the features from each dataset by applying ‘Bag of n-grams (BonG)’

approach explained in section 4.2.2. The collected n-gram’s frequency

count corresponding to different traces of a dataset are stored in a com-

mon file named as FML. The sample feature vector of UNM ps normal

process is shown in Figure 4.6 where first entry is PID name and rest

entries are corresponding to frequency count of n0, n1 n3....nm n-grams

respectively. The system call sequence corresponding to each n-gram, is

stored in a mapping file where each n-gram entry in mapping file points

to a short system call sequence.
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4.3.2 Results and Discussion

In this section, we have evaluated the performance of the detection

mechanism of MSCSD for detecting the malicious processes. The sys-

tem call traces for each UNM dataset are pre-processed and are stored

in form of bag of n-grams, as discussed above. The classification re-

sults of Decision Tree (DT) C 4.5 [159] have been discussed which is

used as a learning/decision model for MSCSD. However, we have also

considered the performance of other two classifiers mainly Support Vec-

tor Machine (SVM) [110] and Naive Bayes (NB) and compared their

results with DT [160] over UNM dataset for detecting malicious pro-

grams. The comparison is depicted in the form of bar chart as shown

in Figure 4.7 which shows the variations in detection rate of different

classifiers for different datasets. The results of the Algorithm are shown

in Table 4.3. The results show that Decision Tree C 4.5 is performing

better than other algorithms in detecting most of the anomalous pat-

terns. This is because of the implicit feature selection power of the tree

Table 4.3: Classification rate of different classifiers (Decision Tree C4.5, Neural
Network and Naive Bayes)

Database DT C4.5 SVM NB

CERT syn. sendmail 97.171 95.421 60.4606

UNM live inetd 81.103 84.521 80.4342

UNM live lpr 99.812 97.365 96.321

UNM live named 83.121 72.521 79.10

UNM live stide 98.230 96.871 95.356

UNM login 72.103 75.325 56.321

UNM mixed xlock 96.542 91.143 92.2973

UNM ps 89.20 85.21 82.44

UNM synthetic lpr 98.11 98.07 94.341

UNM synthetic sendmail 96.213 95.7821 33.5042

Table 4.4: performance results of Decision tree C.5

Database Detection Rate (%) FPR(%)
CERT Syn sendmail 97.171 4.29
UNM live inetd 81.103 3.21
UNM live lpr 99.812 2.23
UNM live named 83.121 3.98
UNM live stide 98.230 3.01
UNM login 72.103 6.53
UNM mixed xlock 96.542 1.00
UNM ps 89.20 5.02
UNM synthetic lpr 98.11 1.34
UNM synthetic sendmail 96.213 1.93
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based on Information Gain and Entropy. However, results are almost

similar to SVM in some case such as UNM live lpr, UNM synthetic lpr

and UNM synthetic sendmail. The average results are between 72%-

99%. We found that there are variations in the total number of normal

and intrusive traces in the datasets and hence there is a variation in the

performance for different classifiers. We found that a machine learning

algorithm performs better if the available dataset is sufficient and data

distribution is balanced.

In addition, it is observed that SVM provides better results even for

datasets with a small collection of traces. For example UNM live inetd

consists of 31 intrusive traces and 3 normal traces. Total number of

n-grams obtained are 235 which is lowest among all datasets. The

detection rate obtained by SVM is 84.521%, DT C 4.5 is 81.103% and

Naive Bayes is 80.4342%. For some datasets, large collection of n-

grams are obtained such as UNM synthetic sendmail, there were 12351

unique n-grams found. Decision Tree is providing best results (97.171%)

in this case. Time taken by SVM is longer than other classifiers for

larger datasets. Naive bayes is fastest among all classifiers but the

detection rate is not good for most of the cases. This is because of

probability distribution done by Naive bayes is based on the assumption

that features are independent to each other which may not be true for

all cases.

It is also observed that if performance of a classifier is good in detecting

one type of intrusion; it may not provide same accuracy in detecting

other intrusions. For example, SVM is providing good results in de-

tecting UNM synthetic lpr with detection rate 98.07% whereas detec-

tion rates of SVM for UNM ps and UNM login intrusions are not good

(75%-85%). This is because of the patterns gathered during the normal

execution of the processes are not sufficient enough to learn the behav-

ior. The low frequency occurrence of these attacks may be similar to

the normal execution of the system. There is also a difference in the

behavioral characteristics of these attacks. Some attacks behave simi-

lar to the normal behavior of the system. For example, local privileges

obtained without running some malicious script will provide behavior

similar to the normal processes until the attacker misuses the system

for launching further attacks. Weak authentication mechanism can be

breached easily in one or two attempts and does not give any clue about

suspicious system call execution clue. Detecting such kind of attacks
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are very difficult to achieve. On an average, we found decision tree is

performing better than other classifiers for detecting most of the mali-

cious attack patterns.

It is observed that Decision Tree C.5 performs better in compare to

other classifiers. It provides the detection rate of 72%-99.8% with false

positive rate of 1.00%-6.53%. The false positive rates are high for login

process. It may be because sometimes the wrong password attempts

by legitimate users can be assumed as malicious attempts for breaking

the password. On an average false positive alerts are less for UNM

databases. The results of decision tree with false positive rate for all

UNM processes are shown in Table 4.4.

MSCSD is compared with existing dynamic analysis based intrusion de-

tection approaches in cloud environment as shown in Table 4.5. Gupta

et. al [84] provided Immediate System Call Sequence (ISCS) approach

where each feature is represented by a key-value pair. A key is a system

call and value represents the list of immediate sequence of system calls

following the key. However, they did not consider the length of trace in

each ‘key-value’ pair (no sliding window concept). Hence, less efficient

for infinite length traces or very long traces. Alarifi’s et al. [67] applied

‘Bag of system calls’ method which keeps the frequency count of system

calls and hence the ordering among system calls is lost. ‘MSCSD’ main-

tains the frequency count of each unique n-grams which represents the

total occurrences of n-gram in each trace and hence temporal ordering

of system calls is maintained within each n-gram sequences. A sliding

window of fixed size is used in proposed MSCSD and in ‘Bag of system

calls’ approach which generates the short attack patterns to observe.

In addition, ‘Bag of system calls’ approach is less robust to attacks as

an attacker may fool the detection mechanism by generating malicious

system calls occurring with same frequency count as in normal system

calls but in malicious order. ISCS approach may fail for longer and

infinite length traces which make it less robust to detect attacks which

delay the execution of programs and run in loops. However, in MSCSD,

it is very difficult to generate short system call patterns with similar

frequency count of normal patterns as knowing the different patterns

of fixed size is quite difficult to achieve which makes ‘MSCSD’ more ro-

bust than other approaches. There are millions of system calls possible

and storing frequency count of all possible system call traces or gen-

erating and storing immediate system call patterns is not an efficient
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Table 4.5: Comparison between MSCSD technique and existing cloud-IDS
techniques based on behavior analysis

Parameters MSCSD ISCS [84] BoS [67]
Technique used BonG Key-value pair Bags of system calls
Nature of Technique Dynamic Analysis Dynamic Analysis Dynamic Analysis
Frequency count of n-grams Considered Not Considered Not Considered
Ordering of System Calls Considered Considered Not Considered
Sliding Window Applicable Not Applicable Applicable
Robustness High Low Low
Machine Learning Applied Not Applied Not Applied
Testing Time Low High Medium
Adaptability Very High Low Low
False Positives Low High High
Storage Requirement Medium Very High High
IDS Placement VMs VMs VMs
Scalable Yes No No
Efficient More than Gupta’s Model More than Alarifi’s Model Lesser among all
Data Set used for Validation UNM UNM Self Generated
Accuracy 72.103%-99.812% 4.7%-100% NA for UNM

approach. BoS and ISCS make a baseline dataset of all normal system

call sequences which may not be a good approach in dynamic cloud

environment, where the tenants behavior evolve over a period time. In

such a case, generalizing the behavior will be most suitable approach.

MSCSD incorporates the machine learning into the system unlike other

approaches which brings the adaptability and scalability in the system.

Moreover, ISCS and ‘Bag of system calls’ perform comparison of test in-

stance with all possible observed normal behavior instances, which will

lead to more testing time. The trained detection model of MSCSD,

provides negligible testing time of a few seconds.

MSCSD and ISCS are validated with UNM dataset prepared in virtual-

ization environment whereas ‘Bag of system calls’ is validated with self

generated traces of programs in VMs. ‘MSCSD’ achieves an accuracy

of 72.103%-99.812% whereas ‘Key-value pair’ achieves an accuracy of

4.7%-100% and ‘Bag of system calls’ achieves an accuracy of 100% for

attack detection using self generated small dataset.

4.4 Conclusion

An intrusion detection approach, ‘Malicious System Call Sequence De-

tection (MSCSD)’ has been proposed for detecting intrusions on TVMs,

running in cloud environment. MSCSD is a distributed in deployment

as different MSCSD sub IDS instances are deployed in the monitored

TVMs. Each of the instance is completely under the control of the cloud
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administrator. Tenants do not have access to any of the configuration

file of MSCSD as each of them are write protected. MSCSD provides

a feature representation approach called as BonG which is helpful in

retaining the properties of enumeration-based and frequency-based ap-

proaches. It is validated with a well known UNM dataset of privileged

programs and provides a good accuracy of 72.103%-99.812%. The ap-

proach is applicable to TVM-layer of cloud environment. The use of

machine learning brings the adaptability in the system and is helpful

to detect the variants of learned attack patterns which is way ahead of

other approaches which solely depend on pattern matching approach.

It is also secure from string manipulation attacks as it uses the numeric

feature vector. It can be applied in cloud environment as a first-line of

security defense mechanism.
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Chapter 5

VM Introspection based

Malware Detection (VIMD)

The chapter describes the design and implementation of VM Introspec-

tion based Malware Detection (VIMD), one of the sub IDS instance

of CloudHedge. VIMD performs the program behavior monitoring at

VMM-layer of cloud environment. The security design of VIMD is de-

scribed with the explanation about the execution phases and detection

components. The two core detection components (i.e. VMGuard and

VAED) for behavior analysis, are described in detail in subsequent sec-

tions. VMGuard is based on system call sequence analysis whereas

VMI-Assisted Evasion Detection (VAED) is based on system call tran-

sition analysis. VIMD can detect hidden malware, program subversion

attacks and stealth evasion-based attacks.

5.1 Introduction

Signature based and static analysis approaches are also prone to anti-

detection techniques such as obfuscation and encryption at Virtual Ma-

chine Monitor (VMM)-layer similar to Tenant Virtual Machine (TVM)-

layer. Dynamic analysis is one of the popular approaches used to cap-

ture the run-time behavior of the programs. TVM-layer security solu-

tions have better visibility to detect intrusions and they are also easy

to be implemented. However, there are higher chances of subversion

of security monitor as they are deployed on a monitored machine. A

Cloud Service Provider (CSP) can apply our previous security solution,
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MSCSD (discussed in Chapter 4) at TVM-layer to provide the basic se-

curity from malware attacks. However, the attacks can be bypassed at

TVM-layer if the security tool itself is compromised. Advanced malware

can detect the presence of the hypervisor, virtualization environment

or security analyzer. It can evade the TVM-layer security solutions as

identified in the research gaps, discussed in the Chapter 2. There is a

need to provide a more strong line of defense in cloud.

TVM-layer security solutions can not be applied directly at VMM-layer

because of the semantic gap problem [92] as a VMM cannot directly

access the high-level semantics of a guest machine. The drawbacks

associated with existing VMM-layer security solutions have been dis-

cussed in Chapter 2. We propose a robust security architecture, called

VM Introspection based Malware Detection (VIMD) as one of the sub-

IDS instance of CloudHedge which provides second-line of defense from

attacks at the VMM-layer. The aim of VIMD is to detect malicious

activities happening on TVMs by integrating the run-time behavior

analysis approach with VMI functions and machine learning techniques

[161] at the VMM/hypervisor level. The security monitor in the VIMD

runs in a privilege domain (i.e. Dom0) of the hypervisor. Dom0 is the

administrative VM used by CSP to start/stop VMs, change the config-

uration of TVMs and enforce security policies on TVMs at IaaS-level.

Each DomU is an untrusted TVM and does not have privilege to access

administrative VM (Dom0). This makes the subversion of VIMD more

difficult to achieve. Dom0 is considered to be in the Trusted Comput-

ing Base (TCB) of hypervisor. VIMD sub-IDS instances are distributed

and deployed at each VMM in cloud which are centrally coordinated

and configured by cloud administrator.

VIMD provides both primary and secondary security checks. The pri-

mary security check performs the process validation at the hypervisor to

identify the hidden processes and presence of security-critical processes

on TVM. The secondary security check extracts the execution traces

of running processes to generate a detailed behavioral log of all the

processes. It then performs the program semantic (run-time) behavior

analysis at hypervisor to detect the advanced malware which attach

themselves with the privileged programs and evasive malware which

change their behavior often to evade the security tool. VIMD employs

kernel debugging based VM introspection approach [124] to extract the
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execution traces of programs, running on monitored TVM from hyper-

visor. The introspection mechanism employed by VIMD uses the soft-

ware breakpoint injection at guest OS kernel function. However, the

introspection mechanism hides the breakpoints using Extended Page

Table (EPT) feature which is explained in detail in Section 5.1.1. The

combined use of EPT protection with breakpoints have been proved to

be effective to hide from advanced anti-debugging techniques by Deng

et al. [156]. VIMD utilizes the Rekall memory forensic framework [157]

to obtain the details of guest OS kernel symbols and their address lo-

cations as these details are not provided by commercialized operating

systems.

Once all the execution traces are collected, their behavior is analyzed

at hypervisor using two proposed detection approaches. The first ap-

proach, VMGuard constructs the program semantics inform of the fre-

quency distribution of the n-grams in a collection of traces. It applies

Bag of n-grams (BonG) feature representation method and integrates

it with text mining approach particularly Term Frequency-Inverse Doc-

ument Frequency (TF-IDF). It leverages the VMI functions along with

machine learning approach particularly Random Forest classifier to pro-

vide the practicability of BonG at the hypervisor also improve its ac-

curacy. The second approach VAED constructs the program semantics

in form of the System Call Dependency Graphs (SCDGs) to analyze

the semantics in different execution paths of the programs installed on

TVM. SCDGs are integrated with combination of feature selection (In-

formation Gain Ratio) method, VMI functions and fusion of classifiers.

VMGuard considers the structural aspects of each trace. It also de-

rives behavioral semantics by considering the frequency distribution of

the system call sequences in intrusive and normal traces. VMGuard

is found to perform well to detect attacks which do not depend on

system artifacts such as analysis environment, hypervisor, etc. (eg.

program subversion attacks). However, VMGuard does not capture

the more complex behavioral aspects of programs as the the possibility

of occurrence of system call transitions from each system call has not

been considered. This is very important in capturing and detecting

the complex behavior of evasive malware which may often change their

behavior. VAED considers both structural and behavior aspects in dif-

ferent execution paths of the program in form of system call transitions.

VAED is found to perform well to detect evasion-based attacks which
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change their behavior on detection of system artifacts. On detection of

suspicious activity, alert signals are generated and sent to cloud admin-

istrator. VIMD can be opted by the CSP to provide the second-line of

defense from advanced malware attacks.

The proposed VIMD exhibits the following key characteristics:

i. Secure positioning : It is difficult to subvert from a compromised

TVM as user domains(DomUs) do not have access to Dom0. This

makes VIMD more attack resistant from modern attacks which

thwart security tool. It also addresses the problem of IDS subver-

sion at the individual TVMs.

ii. Robustness: It performs both primary and secondary security

checks making the architecture more robust to attacks which may

bypass the basic security provided by the cloud administrator. The

primary security check detects the hidden malware and verifies the

presence of security-critical processes such as auto-update, auto-

scan in TVM. The Secondary security check performs the behavior

analysis on processes to detect suspicious behavior using two pro-

posed detection approaches.

iii. Fine granularity: Performing process-level detection at the TVM

can help to reduce the effect of denial of service attacks caused by

shutting down all processes running in a TVM on detection of any

malicious activity. VIMD does the fine-granular monitoring of pro-

cesses and blocks only those processes which perform maliciously.

iv. High attack resistance: It performs out-of-the-guest run-time pro-

gram behavior analysis which makes VIMD more attack-resistant

from anti-detection techniques such as obfuscation and encryption.

v. Good accuracy: VIMD is more accurate than other dynamic anal-

ysis approaches in cloud (such as ISCS [84], BoS [117]) as it applies

text-mining approaches along with system call structure and fre-

quency/probability of system call sequences/transitions.

vi. Introspection support: It incorporates VMI approaches at hypervi-

sor for providing the high-level view of processes running in TVM

which is way ahead of other IDS approaches which do process mon-

itoring at TVM-layer.

vii. Adaptability: It uses a learning model to learn the certain patterns

(features) present in process traces and hence, VIMD can easily be

adapted to learn the behavior of new malware.
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viii. Detection of stealthy attacks: It is installed at hypervisor and can

directly access the TVM memory by using introspection libraries

from outside. It does not perform the analysis inside the virtual

machine where the malware is running. Hence, VIMD can detect

stealthy attacks which hide their presence from security tools run-

ning on TVM.

ix. Detection of program subversion: It can also thwart malicious in-

siders who change the behavior of well-known programs running

at a TVM which cause changes to the system call sequences of

programs.

x. Detection of evasion-based attacks: It also facilitates the detec-

tion of evasive malware activities by providing a program semantic

aware technique for extracting the behavior. Evasive malware try

to change their behavior on detection of the security tool or delay

their execution for thwarting the detection.

The discussion on detailed security design of various detection compo-

nents of VIMD is given in subsequent sections.

5.2 VIMD: Security Design

In this section, first of all, the deployment of VIMD in cloud along with

design choices is described. The description about various execution

phases and detection components of VIMD is described in subsequent

subsections. Detailed description about the core detection components

i.e. VMGuard and VAED have been explained with their implementa-

tion details in Section 5.3 and 5.4 respectively.

The proposed security approach adds security functionalities at the

virtualization-layer of Cloud Compute Server (CCoS). VIMD addresses

the limitations identified in existing approaches, as mentioned in re-

search gaps. It is superior to other security frameworks, as on one

hand, it is difficult for an attacker to subvert the security monitor from

TVM, while on the other hand, it provides efficient techniques for at-

tacks detection at the VMM-layer.

The implementation set up for VIMD uses Xen VMM [10] for hosting

the TVMs. Xen is an open source hypervisor supported by commercial

CSPs such as Amazon [162] for hosting TVMs. We assume that CSP

provides a trusted VMM platform. The privileged domain (Dom0)
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Figure 5.1: Secure deployment of VIMD instances in cloud environment

of VMM is used to monitor, control and configure the TVMs which

are referred as DomUs (untrusted domains). Cloud administrator en-

forces strict policies at VMM to restrict DomU users from accessing

Dom0. Hence, we propose the deployment of VIMD instances at the

privileged domain (Dom0) of hypervisor on CCoS which performs the

security check on TVMs from outside. It is under the control of cloud

administrator and requires that cloud administrator has access to ap-

plication specific information of monitored TVMs. Such an access is

granted from VMM in CCoS. This privacy concern is clarified between

CSP and tenant users at the time of registration in form of SLA. For

example, Google says that it reserves the right to review the tenants

applications and data [163] and users sign this agreement at the time of

registration. A cloud administrator triggers VIMD from management

network to perform the security check on a monitored TVM (line A).

VIMD starts executing and performs memory introspection from Dom0

(line B). VIMD performs the analysis on process logs extracted from

TVM memory(line C). If TVM is found to be suspicious, an alert signal

is sent to cloud administrator with details of logs generated by VIMD

(line D) as shown by dotted lines in Figure 5.1.
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Figure 5.2: Security architecture for VIMD

Broadly, the execution of VIMD have been classified into three secu-

rity phases (i) Memory introspection, (ii) Behavior analysis of syscalls

at hypervisor and (iii) Alerting and reporting phase. At a high-level,

there are total four detection components: Process Validator, Program

Execution Tracer, VMGuard or VAED and Alert & Log Generator a

shown in Figure 5.2. Each one of them is associated with one of the

three key security phases for doing the attack detection at the hypervi-

sor. In memory introspection phase, VIMD performs the basic security

check to detect the presence of hidden processes or attacks which disable

security processes (such as virus tools) running in TVM using Process

Validator. VIMD then extracts the run time behavior of programs in

terms of sequence of system calls using Program Execution Tracer. In

behavior analysis phase, VIMD performs the behavior analysis using

two detection components: VMGuard and VAED, as discussed briefly

in Section 5.1. In alerting and reporting phase, an Alert and Log Gener-

ator is invoked to create logs and send alerts to the cloud administrator

with detailed report. Below, we will discuss, each of the security phase

and associated detection components in detail. VMGuard and VAED

are discussed in detail in Section 5.3 and Section 5.4 respectively.

5.2.1 Memory Introspection

VIMD provides prime security functions in Memory Introspection (MI)

phase to introspect the VM memory from Dom0 of VMM (a protected
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Figure 5.3: A sample output of active processes running in a TVM, intro-
spected by PV component from hypervisor

location) and do primary security analysis. VM introspection provides

the high-level view of the system from privileged domain which is helpful

to facilitate strong security measures. The two detection components;

Process Validator and Program Execution Tracer are used to provide

primary security check.

5.2.1.1 Process Validator

Some malware use rootkit technology to hide their presence from guest

OS. Afterwards malware may disable the security-critical processes such

as auto-update, auto-scan running in the TVM. Attacks such as con-

ficker and torpig can disable the security tool itself [101]. Some other

malware can maliciously modify the privileged programs and execute

with the same name and privileges of victim program. These attacks

are called as program-subversion attacks. In addition, advanced mal-

ware, called evasive malware (described in Chapter 2), can even try to

change their behavior on detection of the virtualization and analysis

environment. A malware can even attempt to evade the detection tool.

VIMD aims to detect these attacks at the VMM-layer. VIMD invokes

Process Validator (PV) to map the processes actually running in mon-

itored VM from a trusted-view. It then performs process validation

as a primary security check to provide basic security against attacks
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which target the virtual domains running in cloud. It has the following

objectives:

∗ To detect whether any of the security-critical process such as auto-

update, auto-scan etc, is disabled in the TVM.

∗ To detect whether there is any hidden process running in the TVM.

PV has two security modules: Virtual Machine Library Repository

(VMLR) and Virtual Machine Memory Inspection (VMMI). The VMMI

module of the PV detection component invokes the LibVMI API inter-

face [122] to obtain a list of the processes (Pro List) actually running

in the TVM. LibVMI is an open source library for extracting the infor-

mation about running processes such as process name, address location

and PID from outside the VM at hypervisor. It is very useful in build-

ing the VMI based security systems. LibVMI provides the API for

accessing the virtual memory and vCPU registers.

For Windows based TVM, first of all, kernel debug information is ob-

tained using LibVMI win-guid tool. The tool takes the domain name

of VM as input and creates the debug file (program database (PDB)

file) of kernel (i.e ntoskrnl.pdb) with associated GUID information

of PDB file which provides the mapping of kernel symbol names with

their addresses. After that, Rekall [157] memory forensic framework is

used to create the rekall profile of the VM (win.rekall.json) from the

PDB file. The JSON format created by Rekall is easy to parse and is

in machine readable format. To generate rekall profile, Rekall tool uses

fetch pdb and parse pdb plugins to fetch and parse the debug infor-

mation. It creates rekall profile based on GUID of debug file. VIMD

configures LibVMI for win.rekall.json to get the information about

the windows kernel functions and addresses. It does not require any

low level details of memory like presence of certain signatures[70]. A

memory snapshot of security-related processes for Avast is shown in

Figure 5.3. This snapshot is taken from the hypervisor, providing the

information of currently running processes at TVM.

For, Linux-based TVM, VIMD configures the LibVMI configuration

file to fetch the kernel symbol details from system.map file which pro-

vides a lookup between symbol name and addresses in memory. The

system.map is used to obtain symbol table. The page directory is

mapped to find the correct page table using the symbol table. The
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page table is further mapped to find the data page in physical mem-

ory which belongs to a process. Finally a list of processes running in

virtual memory of VM are returned to PV. This method is a standard

way to fetch the details of the kernel data structure and is applicable

to different version of OS.

The VMMI module of the PV detection component makes a connection

with guest OS from VMM and invokes utilities within guest OS such

as ps (for UNIX like VM) or tasklist.exe / ps.exe (for Windows

VM) to generate the process list. It maintains TVM Report for the

monitored machine, taken from the untrusted-view (guest-view). A

TVM report represents a detailed list of the running processes, reported

by a TVM. The information in TVM Report is updated automatically

at regular time intervals. A TVM Report may not provide the list of

processes which are controlled by an attacker and hence, it cannot be

trusted. However, VMMI can access the actual VM-state information

using the VMI functionality from the hypervisor and hence, the list of

processes produced by it, can be trusted. The security operation of the

PV component is now discussed. First of all, it executes the VMLR

module to obtain the latest TVM Report of the monitored TVMs. It

then runs the VMMI module to get the Pro List of monitored TVMs.

PV analyzes both the results for the presence of any suspicious process:

There are two cases:

∗ Case 1: PV scans Pro List for the presence of security-critical

processes. If any of the security-critical processes are not found in

the Pro List, then the TVM is considered to be compromised.

∗ Case 2: If security processes are found to be running in the TVM,

Pro List is compared with the TVM Report for the presence of

hidden processes. If there exist any variation in the list of pro-

cesses between the Pro List and the list of processes present in

the TVM Report, then the TVM is considered to be compromised.

In both cases, it may happen that a TVM had been just booted or

some malicious programs just terminated at the time when VMLR or

VMMI were executed. In such cases, there would be variations in both

the outputs. To reduce such false positives and false negatives, the

VMLR queries a TVM multiple times to obtain a stable list of processes

(TVM Report) in successive runs. Similarly, the VMMI performs the

memory mapping of a TVM in multiple runs.
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If a TVM fails to pass the primary security check, it is assumed to

be compromised and an alert is generated to the administrator with

detailed reports of running processes that are found to be suspicious

in the TVM. If TVM passes the primary security check, then VIMD

performs the secondary security check. It extracts the execution traces

of programs using advanced memory introspection and performs the

behavior analysis of processes using two proposed detection mechanism

explained in subsequent sections.

5.2.1.2 Program Execution Tracer

VIMD provides advanced memory introspection using Program Execu-

tion Tracer (PET) to extract run time behavior of processes executing

in TVM. PET generates a behavior log which provides useful informa-

tion related to running processes in the TVM which is further analyzed

by other security components. There are some methods to trap the

execution of processes such as generating a page fault exception (Ni-

tro [135]) or generating a software debug exception using breakpoint

injection (DRAKVUF [124]). The later method is used by VIMD for

collecting the system call trace sequences at the Xen hypervisor. The

former method can be applied for program execution tracing at KVM

hypervisor. The breakpoint injection method is OS agnostic; it would

work with any operating system running in the VM. Breakpoints are

opcodes (eg. int 0XCC) inserted in the beginning of the kernel functions

to be trapped. Once executed, it generates the software debug excep-

tion to vCPU. A vCPU is configured to call VM EXIT() operation in

the exception handler.

A VM EXIT transfers control to hypervisor which forwards the event

to Dom0 where the PET detection component is running. It then per-

forms the continuous read operation of the memory from the trapped

location which generates the full trace execution of process. The

other key aspect in PET is knowing the addresses of kernel func-

tions, need to be trapped. This is done by using kernel-debugging

tool called as Rekall [157]. Rekall supports the plugins for multiple

operating systems. Rekall provides a standard way to retrieve the

complete information about specific kernel version and is much flexi-

ble than traditional signature scanning mechanism [70]. Rekall parses

the debug data (uses PDB file (ntoskrnl.pdb) for Windows kernel
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Figure 5.4: A sample output of PET component

and DWARF file with System.map file for Linux kernel) to establish

a map of internal kernel functions. It generates the rekall profile for

monitored machine (ex. Windows-sp1.rekall.json for windows ker-

nel and Linux.rekall.json for linux kernel). Using these profiles, the

introspection mechanism knows about the address details of the ker-

nel functions to be trapped. VIMD executes PET to get the traces of

benign and malware binaries. A sample execution trace output of a

malware, extracted from hypervisor is shown in Figure 5.4. This shows

the detailed information of a process including the sequence of system

calls structure with process name and the address locations in CR3

register for each system call invocation.

One of the important aspect in execution tracing is the fear of detec-

tion of breakpoints at the guest VM by malware. The breakpoints can

be easily detected by malware in the traditional security environment

where the security code executes without the interruption or involve-

ment of hypervisor. VIMD performs the analysis at the virtualization-

layer of cloud where multiple VMs are controlled and monitored by

hypervisor. The introspection mechanism used by VIMD makes use of

altp2m feature of Xen hypervisor to hide the presence of breakpoints

from guest VM applications. Xens altp2m is an extension of p2m,

called as alternate p2m. The p2m feature refers to the translation of

the guest physical memory address (GPA) to host machine physical

memory address (MPA). The p2m functionality in Xen is used to parti-

tion the real memory of the machine between Xen and the VMs over it.

This also ensures that one VM cannot access the memory of the other
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VM without permission and is implemented by the Extended Page Ta-

ble (EPT) hardware-support mechanism. This mechanism in hardware

terminology is called as hardware-assisted paging mechanism in which

a single EPT is maintained by hypervisor for each of the guest VM.

The altp2m is an advanced feature which allows Xen to create multiple

EPTs (multiple views) of a guest VM [164].

The EPT-layer is very helpful for the stealthy monitoring from the hy-

pervisor. This advanced feature enables the introspection mechanism

to create a shadow copy for each memory page where the breakpoint is

going to be written. The breakpoints are written only in the shadow

copy of page. Guest VM accesses the guest physical memory in a nor-

mal way. It is actually executing the shadow copy which is a trapped

memory page. During execution, whenever a breakpoint is hit; the

modified guest view is switched to the unaltered guest view for a single

instruction (read access) and after that it is again switched back to

shadow copy view. This procedure hides the presence of the traps from

the guest VMs. Thus two guest views are created for monitored guest

using the altp2m feature. Each of the page in altered view (trapped

view) is marked as execute-only page which prevents the read access

on the execute-only page. A program trying to scan the memory will

induce an EPT violation which is handled by switching the memory

views. The read access is performed in the unaltered view only. The

functionality is integrated with the introspection mechanism employed

by VIMD. It now enters in the behavior analysis phase and calls the

other detection components to perform the detailed investigation of

processes.

5.2.2 Behavior Analysis of Syscalls at the Hyper-

visor

One of the core detection phase of VIMD is performing the behav-

ior analysis of syscalls at the hypervisor and providing the secondary

defense from advanced attacks. The system calls extracted from ear-

lier phase are analyzed in detail for fetching the behavior semantics

of programs. There exist some methods that can be used for analysis

such as look-ahead pair based approach [85], STIDE approach [115]

and frequency-based approach [128]. Look-ahead pair approach con-

siders the ordering of system calls. In this approach, each feature is
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represented by two values < look, ahead >. A ‘Look’ represents a sys-

tem call and ‘ahead’ represents the immediate sequence of system calls.

The approach maintains a structural property of system call sequences.

However, it fails for infinite length traces. Moreover such approaches

are subjected to more false alarms, because of rigid sequence matching

technique [115]. An attacker can insert many legitimate sequences in

the program trace to thwart detection. STIDE approach maintains the

short sequences of system call patterns of fixed size and is also based on

the pattern matching approach. A rare pattern may occur because of

sudden misuse behavior of a normal user such as invoking the unwanted

function, overflowing the buffer or any unexpected error. The anoma-

lous behavior of a trace cannot ascertain just by mismatches with the

baseline database.

The frequency based model considers the count of each unique system

call as feature vector. Although, storing the frequency count of each

system call reduces the storage requirement. It loses the ordering of

system calls which is the major limitation in such a system. Attacker

can fool the system by creating similar frequency (as of normal) by

injecting legitimate code into the malicious program without chang-

ing malicious pattern. Some researchers [67] [148] have applied the

frequency method and some researchers [84] [73] have applied the look-

ahead method for attack detection application at the TVM-layer in the

cloud. These methods are less efficient for attack detection because of

the above mentioned issues.

The behavior semantics are very important to detect the attacks which

can even attach themselves with the benign processes and run with

benign process privileges. There are two core detection components of

VIMD which extract the behavior semantics and carry out the analysis

on the execution traces, collected from the memory introspection

phase, called VMGuard and VAED. VMGuard is based on improved

Bag of n-Gram (BonG) analysis whereas VAED is based on System

Call Dependency Graph (SCDG) analysis. Each of them analyzes

the traces individually using different detection mechanisms for the

behavior analysis of processes.

A. VMGuard: VMI-Assisted Malware Detection Based on

System Call Sequence Analysis

VMguard is proposed to detect malware attacks at the VMM-layer by
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capturing the run-time behavior of programs outside the TVM. It an-

alyzes behavior of programs by doing system call sequence analysis.

VMGuard provides the integration of BonG (feature representation)

method which is based on frequency based n-gram model with text min-

ing approaches for feature selection particularly TF-IDF and ensemble

learning approach. VMGuard runs outside the TVM at the Dom0 (priv-

ilege domain) of hypervisor and is totally configured, monitored and

controlled by cloud administrator. It takes the input from the PET; de-

tection component which runs in memory introspection phase of VIMD.

The behavior is analyzed by two sub-detection components of VM-

Guard: (i) Trace Pre-Processor (TPP) and (ii) mX DetectionEngine.

TPP pre-processes the collected information to extract useful patterns

with high discriminative power. TPP applies BonG with combination

of TF-IDF to select the most appropriate n-grams. BonG considers

the frequency distribution of all possible unique n-gram sequences in

both normal and intrusive traces. It forms the numeric feature vector

which takes the count of patterns (n-grams) into consideration and is

not subjected to string-manipulation attacks. The integration of BonG

with TF-IDF method improves the discriminating power of n-grams.

It gives importance to both factors i.e. how frequent a sequence is oc-

curring in a trace? (TF) and How rare a sequence is in a collection

of traces? (IDF). Therefore, VMGuard removes less discriminative se-

quences. The output of the TPP is fed to the mX DetectionEngine.

The mX DetectionEngine uses the pre-compiled intrusion profile of the

TVMs (discussed in Section 5.2.4) and checks the behavior similarity

of the currently running processes with the intrusive behavior. The

detection engine of VMGuard applies Random Forest classifier to learn

and detect the program behavior instead of using a single decision tree

like MSCSD. The ensemble classification results of VMGuard are bet-

ter then single classifier results of MSCSD for detecting the program-

modification attacks. The subverted programs change the normal ex-

ecution sequence of the victim programs. VMGuard is has been vali-

dated with University of New Maxico dataset (UNM) [155] of program

subversion attacks and found to perform well to detect such attacks. It

can be used as a secondary check to detect attacks which have bypassed

MSCSD. The detailed description of VMGuard with its implementation

is given in Section 5.3.
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VMGuard is mainly concerned with the structural aspects of traces.

Though, it considers the frequency distribution of sequences in mal-

ware and normal classes. It does not consider the possible behavior of

execution traces in terms of other possible execution paths of patterns

from each system call. Hence, it may fail to detect the complex evasive

malware behavior which may change their behavior pattern after some

time of execution. A different detection mechanism, called VAED

is proposed for detecting the evasive malware which considers the

possible system call execution paths for each trace. The detection

approach of VAED is based on the probability model of system call

transitions. It considers the frequency distribution of each system call

transitions (say S1 to S2) with respect to all other transitions from

calling site (S1), discussed below.

B. VAED: VMI-Assisted Evasive Malware Detection (VAED):

is proposed to detect evasion-based attacks at the VMM-layer by cap-

turing the run-time behavior of programs outside the TVM. VAED pro-

vides system call transition analysis to extract the behavioral-semantics

of the evasive malware programs. It is difficult to generate signatures

(based on system call patterns, opcode sequences or byte code pat-

terns etc.) for evasive malware samples as attacker carefully crafts such

malware samples to evade detection. Hence, behavioral analysis is use-

ful, which extracts the run-time behavior of malware patterns. VAED

represents the behavior of each process in term of System Call Depen-

dency Graph (SCDG), used to generate the features. Graph analysis

approaches overcome the drawback of sequence analysis approaches and

capture both structural and behavioral aspects of the programs. This

is very important for capturing complex behavior of evasive malware

which may often change their behavior. In past few years, system call

graph analysis has been applied in different fields like network secu-

rity, system security and document processing applications. Anderson

et al.[165] demonstrated the use Markov Chain property for modeling

the behavior of assembly code instruction traces in-form of graphs for

detecting attacks in traditional systems. They have also shown the

effectiveness of probability based graph model. The system call graph

model has not been applied for malware attack detection in cloud. Tak-

ing the motivation from this, we applied it for modeling the behavior

of evasive malware execution traces in form of SCDG to detect attacks
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at VMM-layer in cloud environment. It is also configured, monitored

and controlled by cloud administrator.

VAED takes the input from the PET; detection component running

in memory introspection phase of VIMD. The behavior is analyzed

by following sub-detection components: (i) Program Semantics Ex-

tractor (PSE) (ii) Feature Transition Matrix Generator (FTMG) (iii)

eX DetectionEngine. PSE generates the system call graphs (inform of

adjacency matrix) for each system call trace using Markov Chain prop-

erty. Each SCDG is stored in a adjacency matrix and pre-processed by

FTMG to obtain a feature vector which is appended in a common file.

FTMG applies the Information Gain Ratio (IGR) to extract the system

call graph paths with maximum information. The output is fed to the

eX DetectionEngine. The eX DetectionEngine uses the pre-compiled

intrusion profile of the TVMs (discussed in Section 5.2.4) and checks

the behavior similarity of the currently running processes with the in-

trusive behavior. The detection engine of VAED applies the fusion of

diverse multi classifier scheme to obtain the detection output which is

found to perform well when compared to ensemble classifiers. VAED

has been validated with the evasive malware dataset [158]. The evasive

samples tend to change their behavior. The behavior is captured in

multiple runs of the programs from hypervisor. The system call tran-

sition analysis done by VAED, is found to perform well for detecting

evasive malware running in TVM. The detailed description of VAED

with its implementation is given in Section 5.4.

Detection of how the malicious user or system programs or malware

by core detection components of VIMD is discussed nest. Suppose

that an attacker succeeds in attaching a malware code with a victim

program. The malware sample will execute some sequence of sys-

tem calls which was earlier captured by detection engine during the

training phase and hence, would be detected at the time of its ex-

ecution. For example, the PET component produced a subsequence

of a system call trace for a malicious program: NtRaiseException()

→ NtInformationProcess()→ NtInformationThread() → NtRaiseEx-

ception() → NtInformationProcess()→ NtInformationThread() →
NtRaiseException()... occurring in repetition and forming an infinite

loop. These sub-sequences are more likely to occur in malicious software

and are captured by the DE component. The intuition is that processes
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(whether user-level or system-level processes) can use an abnormal se-

quence of system calls to gain memory accesses and perform malicious

operations to launch an attack is considered. Hence, the technique is

able to detect malicious patterns irrespective of whether they emerge

in user or system processes.

However, the system call patterns for newly installed applications at a

TVM will not match with any malware behavior as they do not perform

any malicious action. A malicious action can cause violation in memory

access or raise exceptions in a loop, running infinitely many times and

crashing an application. There are fewer chances that a new application

might display system call sequences not following a pattern consistent

with malignant processes.

The detection engine (mX DetectionEngine / eX DetectionEngine)

generates a notification to Alert and Log Generator upon detection

of a suspicious processes which sends alerts to cloud administrator.

5.2.3 Alerting and Reporting

In alerting and reporting phase, an Alert and Log Generator (ALG)

component is invoked. Analyzer checks the details of the applications

generating the malicious behavior with the help of VMLR. The appli-

cations which generate such malicious traces are dynamically isolated.

ALG can identify the malicious processes with the help of behavior logs

generated by the PET. As the detection approach of VIMD is based on

runtime behavior analysis of malware, it enables capturing the actual

behavior of malware, which is learned using the machine learning clas-

sifiers. The use of machine learning permits detection of the variants

of the learned attacks and their classification to a suitable attack class

based on the similarity score with the learned attack classes. The mal-

ware variants differ in signatures but possess similar behavior charac-

teristics to their original malware class. Signature matching techniques

fail to detect such attacks as they are not based on behavior analy-

sis and generate false negative alerts for known malware variants. If

a TVM generates a large number of malicious processes, such a TVM

is isolated and restored to a previous checkpoint that is benign. The

alert generator component sends alerts to the cloud administrator with
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Figure 5.5: Intrusion Profile generation using VMGuard

a detailed report of malware detected at the TVM and basic default se-

curity actions is taken. The cloud administrator can then take further

actions to improve the security of the system.

5.2.4 Generation of Intrusion Profile

Intrusion profiles are created by cloud administrator in an offline mode

for the monitored virtual machines. The sequence of system calls in-

voked by a TVM may differ depending on the applications and the guest

OS kernel running in the machine. Therefore, different behavioral pro-

files need to be captured for each TVM in VIMD architecture. VIMD

makes use of the existing detection components of for each approach

in an offline mode for creating an intrusion profile database for each

monitored TVM as shown in Figure 5.5 (in case of VMGuard) and Fig-

ure 5.6 (in case of VAED). The process of intrusion profile creation has

three main stages namely Trace Execution Phase (TEP), Feature Gen-

eration and Pre-Processing phase (FGP) & Classification phase. They

are described in detail as follows:

(i) Trace Execution Phase: In this phase, traces of benign and malware

files are obtained using the PET detection component. First, a clone

TVM of the monitored TVM is created using Logical Volume Man-

ager (LVM)’s copy-on-write (COW) functionality. The original TVM

state is saved and a backend/snapshot of the original disk volume is

created. The malware files are then injected into the Clone TVM of

the monitored TVM from the privilege domain of the hypervisor using

libguestfs tool [166] copying files into and out of a virtual machine. We
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Figure 5.6: Intrusion Profile generation using VAED

have applied this technique in an open-source Xen hypervisor deploy-

ment scenario. However, there are other easier methods for sharing files

between host and VM machines such as the use of vmtool in VMware

ESX-based deployment, but it can lead to risks of information disclo-

sure. The program traces of benign and malicious programs running in

a cloned TVM are collected from the hypervisor using the PET tool.

The clone TVM is deleted and the original TVM resumes its execution

after trace collection.

(ii) Feature Generation and Pre-Processing: In this phase, the existing

detection components of behavior analysis phase are used to retrieve

the features from the labeled malware samples. VMGuard and VAED,

both approaches are different for trace pre-processing. In VMGuard,

the first step in pre-processing is retrieving the n-gram for each trace,

and the second step is pre-processing the collected n-grams to generate

a numeric vector of n-gram values, which represents the frequency count

of each of the n-grams appearing in a trace. Next, TF-IDF is applied

to select the most appropriate features. The outputs of pre-processing

are maintained in the Feature Vector Matrix (FVM).

In case of VAED, the first step is pre-processing each trace to generate

system call dependency graph of system calls with labeled transition

probabilities for each edge. Each SCDG is stored as an adjacency ma-

trix and pre-processed to obtain the feature vectors. A feature vector

represents the transition probabilities of each system call transition ap-

pearing in a trace. Next, all feature vectors are combined to form com-

mon file. VAED applies IGR to select the most appropriate features.
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The output of pre-processing is maintained in the Feature transition

Matrix (FTM). Each entry in FVM/FTM is labeled with the intrusion

class. Each of the intrusive and benign traces may have some set of

common features but the value corresponding to the feature may be

different. For example, a malicious file may invoke a large number of

open() and read() operations in an abnormal way, which could be an

attempt to find some secret value by searching a large number of files.

In addition, malicious traces may also have some sequence of system

calls of kernel routines which do not appear in any of the benign traces.

This could be due to invocation of rare system calls. It is important

to consider such behavior of sequences as it plays an important role

in distinguishing the behavior of benign and malicious processes. We

have used text-mining approaches, described in Section 5.3 and 5.4 to

capture important behavior semantics of programs.

(iii) Classification: In this phase, the detection engine is trained for the

FVM/FTM values. In VMGuard, we have used a training module of

the mX DetectionEngine, which uses Random Forest (RF) algorithm to

learn the behavioural statistics of the malicious and benign programs

stored in the FVM. RF provides good accuracy as it involves data

distribution, feature selection and parameter tuning of the algorithm.

The trained classifier represents the pre-compiled intrusion profile of a

monitored TVM, and is stored in the database alongside the VMM.

In VAED, we have used training module of eX Detection Engine which

uses fusion based ensemble classifier to learn the features of FTM. It

fuses the results of multi-classifiers to get a common output and obtain

a good accuracy to detect detect evasive attacks. The pre-compiled

intrusion profiles (PIPs) are stored in common global database storage,

alongside the VMM.

5.3 VMGuard: Design and Implementa-

tion

VMGuard analyzes the execution traces, obtained from the mem-

ory introspection phase of VIMD using two sub-detection compo-

nents: (i) Trace Pre-Processor (TPP) and (ii) mX DetectionEngine.

TPP pre-processes the collected information to extract useful pat-

terns by extracting the behavior of various system call sequences and
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Figure 5.7: Execution Flow of various security functions of VIMD with be-
havior analysis using VMGuard

mX DetectionEngine applies machine learning to learn and detect the

malware behavior. The execution flow of various security functions

using VMGuard is given in Figure 5.7. A detailed description of its

detection phases and the implementation of VIMD with VMGuard as

core detection component is presented in subsequent sections.
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5.3.1 Program-semantic extraction using fre-

quency based n-gram approach integrated with TF-

IDF

Initially, all the collected traces, obtained from the memory introspec-

tion phase are pre-processed to extract some semantics out of them.

This stage uses a detection sub component Trace-pre-processor (TPP)

for this purpose. TPP pre-processes the collected traces, extracts the

desired features from the traces and forwards them to the detection en-

gine for further analysis. Similar to mining approaches, VMGuard em-

ploys a feature extraction method, called ‘Bag of n-grams (BonG)’ in-

tegrated with Term Frequency-Inverse Document Frequency (TF-IDF)

for intrusion detection in the cloud. The detailed description of feature

extraction using BonG approach has been given in Chapter 4 with ex-

ample. A brief summary is provided here. However, the details about

how BonG has been improved to provide a more discriminative system

call patterns from the set of normal and intrusive traces, is given in

detail. The steps of the BonG method are briefly explained below:

1. Process each trace i (present in Log DB) into a feature vector,

represented by Xi = n1, n2, n3, n4, ......nm, as a set of n-grams,

where m is the total number of n-grams obtained after process-

ing the trace. Each n-gram is represented by a feature vector

nj =< s1s2s3s4s5s6 > where 1 <= j <= m, a substring of a

system call.

2. Each feature vector is converted into a numeric vector represented

by X ′i =< c1, c2, c3, c4, ck > where each c value represents the total

number of occurrences of each unique n-gram value in the trace

and k is the total number of unique n-grams obtained.

A collection of n-gram feature vectors is obtained for the collected traces

by following step 1 of the procedure as explained above, and are stored

in a Log file (Log2 DB). The numeric vectors of n-grams obtained after

step 2 are written in a common feature-vector database file, FV DB.

It represents the frequency count of unique n-grams in each trace. For

example, the execution trace of a system process (srvhost.exe), inter-

cepted from hypevisor, is shown in Figure 5.8. The sample of collected
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Figure 5.8: Trace interception of svchost.exe process at VMM by PET com-
ponent

Table 5.1: Sample of n-grams extracted from a system process

srvhost.exe

n1
NtSetInformationThread(), Ntclose(), NtOpenThreadToken(),
NtOpenThreadTokenEx(), NtOpenThreadToken(),
NtOpenThreadTokenEx()

n2
Ntclose(), NtOpenThreadToken(), NtOpenThreadTokenEx(),
NtOpenThreadToken() , NtOpenThreadTokenEx(),
NtSetInformationThread()

n3
NtOpenThreadToken(), NtOpenThreadTokenEx(),
NtOpenThreadToken(),NtOpenThreadTokenEx(),
NtSetInformationThread(), NtOpenThreadToken()

n4
NtOpenThreadTokenEx(), NtOpenThreadToken(),
NtOpenThreadTokenEx(), NtSetInformationThread(),
NtOpenThreadToken(), NtOpenThreadTokenEx()

n-grams for the srvhost.exe trace is shown in Table 5.1. The feature

vector obtained for srvhost.exe is < normal, 2, 3, 5, 1, ... >.

The key component in trace pre-processing is extracting the n-gram

values. Here an n-gram is a short sequence of system calls obtained by

considering a sliding window of size k and gradually shifting the window

by 1. Each shift of the window provides a unique n-gram sequence. Here

we have considered size=6 that has proved to be the best size based

on analysis carried out with various lengths of n-gram sequences by

Warrender et al. [116].

Applying Feature Selection: The collected n-grams are not suffi-

cient enough to represent the most discriminative patterns of short se-

quences. There exist some n-grams that appear in both types of attack

classes. Infact, some n-gram may appear only in intrusive traces with

very low frequency which could be because of the general system faults.

Hence, we improved BonG by integrating it with TF-IDF, a popular

text mining approach, used to selected suitable features (n-grams). The

goal of feature selection is to select the most important and optimal

subset of features (n-grams) in order to improve the classifier’s per-

formance. Feature selection improves the generalization performance
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and reduces the computational cost of a classifier. It makes the clas-

sifier faster in detecting unseen data and simplifies the understanding

of data processing. Information Gain (IG) and Document Frequency

(DF) have been used in the traditional IDS systems [167]. However,

they do not reflect the rarity principle which says that rare patterns of

system calls are good for discrimination among large sets of data.

Term Frequency-Inverse Document Frequency (TF-IDF): We

applied a TF-IDF measure for feature selection in anomaly detection

techniques based on n-gram analysis. TF-IDF is a numerical statistic

that is intended to reflect how important a word is in a collection or

corpus. This measure is very popular in text mining techniques used

in information retrieval. Here, TF-IDF will reflect how important an

n-gram sequence is in a collection of n-grams (data set). Repeated

n-grams in many traces will not have a good discriminating power,

hence selecting rare n-grams out of a given class will be helpful in

discriminating the classes. A higher TF-IDF of an n-gram implies a

strong relationship of the n-gram with the corresponding class. This is

calculated with the help of two measures, Term Frequency (TF) and

Inverse Document Frequency (IDF).

Term Frequency: The mismatch of certain sequences with the base-

line database as considered in the existing anomaly detection ap-

proaches is not sufficient to detect malicious processes. Some rare se-

quences may appear in a running process because of some general error

condition such as a general page fault. Hence, the mismatch alone is

not sufficient to detect malicious traces. The count of sequences called

Term frequency is also important to consider.

Definition 1: The Term frequency of an n-gram sequence refers to the

total number of times the n-gram occurs in a trace (benign or mali-

cious). The Term frequency of an n-gram in trace X within a class i

can be represented by

TF (ab,Xi) = f(Vab, Xi) (5.1)

where f(Vab, Xi) is the frequency of sequence ‘ab’ in the system call

stream X with class i (benign or malicious). Each Xi represents a

trace. Hence, this measure will provide the frequency count of ‘ab’

subsequences in Xi. Vab represents the value of subsequence ‘ab’ (total

number of n-gram sequences with ‘ab’ term).
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Inverse Document Frequency: This measure improves the discrim-

inating power of a term (n-gram). It overcomes the drawback of the

document frequency approach and emphasizes the importance of rare

system call sequences, as they have more discriminating power, which is

important in anomaly detection techniques. Rare system call sequences

usually represent abnormal usages of the system and hence, useful for

anomaly detection.

Definition 2: IDF is defined as the logarithmic ratio of the number of

traces in a collection to the number of traces having the given sequence.

The Inverse document frequency of an n-gram sequence can be defined

by

IDF (ab, Ci) = log(Ci/CVab) (5.2)

where Ci represents the total traces (data set) with the target class i

and CVab represents those traces which contain the ‘ab’ sequence (rep-

resented by a non-zero value of Vab). Here, c can be the total number

of classes.

Definition 3: TF-IDF is the product of TF and IDF values. The

TF-IDF of an n-gram sequence is defined as

TF − IDF (ab, Ci) = f(Vab, Xi) ∗ log(Ci/CVab) (5.3)

We have considered the TF-IDF values of the n-grams as a selection cri-

terion. The top-ranked n-grams are selected using the TF-IDF feature

selection method from the FV DB database and the output is stored in

the Test DB. The details are given in Section 5.3.3.

5.3.2 Learning and detection

This stage uses a detection sub component, called mX DetectionEngine

used for capturing the malicious behaviors of a TVM. Each TVM may

have a different guest OS, services and applications installed in them.

Hence, an individual TVM will have a unique intrusion profile. It

operates in two phases: learning and detection. In detection phase,

mX DetectionEngine generates an intrusion profile as a baseline profile

to classify active processes of monitored TVM as normal or malicious.

The mX DetectionEngine uses the Random Forest machine learning

technique to learn/detect the behavior of evasive samples.
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The performance of individual classifiers is compared with an ensemble

of some classifier. We found that Random Forest (RF) technique[168],

which is an ensemble learning classifier, provides better results than

single classification algorithms. RF performs efficiently even for huge

databases. It reduces the over fitting problem caused by a single de-

cision tree [160]. An ensemble learning classifier generates many clas-

sifiers and aggregates their results. RF combines the idea of ‘bagging’

and the random selection of features. In bagging, successive indepen-

dent decision trees are constructed using a bootstrap sample (training

subsets originated from random sampling with replacement of the train-

ing set). At the end, a majority vote or average is taken for predictions.

The algorithmic steps of RF are briefly explained below:

1. Let N be the number of training cases and P be the number of vari-

ables in the classifier. Each of the training instances is represented

by (X, Y ) : (x1, y1), (x2, y2), (x3, y3).......(xn, yn).

2. A random sample (bootstrap sample) is generated by choosing n

times with the replacement of the training set; (Xb, Yb) replaces (X,

Y). Use the rest of the cases to estimate the error of the tree, by

predicting their classes.

3. Let p input variables be randomly chosen to determine the decision

at a node of the tree; p should be much less than P.

4. Grow an unpruned decision tree (fb) on this bootstrap sample (Xb,

Yb).

5. For each node, best split is chosen based on the selected p variables.

Gini Index is used for finding the best split node.

Gini(T ) = 1−
j=n∑
j=1

(Pj)
2 (5.4)

where T refers to a dataset with n classes and Pj is the relative

frequency of class j in T.

6. Go to step 2. Repeat for each bagging iteration. The total bag-

ging iterations (say B) depends on the total number of estimators

considered, derived by parameter-tuning during experimentation.

An unseen sample is passed to each of the trained trees. The output

can be defined as the average of the outputs of the generated trees. If

bagging is performed repeatedly for ‘B’ times then a prediction of an
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unseen sample x′ can be made by

f = (1/B)
b=B∑
b=1

fb(x′) (5.5)

RF has capability to generate rules and provide better detection results.

Prediction of a single tree is highly sensitive to noise in the training

data. The trained model is stored as a baseline pre-compiled intrusion

profile of monitored TVM (described in Section 5.2.4).

In the detection mode, mX DetectionEngine uses the pre-compiled in-

trusion profile of TVM to classify the running processes (extracted in

Test DB). The execution flow for mX DetectionEngine for detecting

the malicious processes is given below:

1. Test DB file is loaded, representing the current behavior of the mon-

itored TVM.

2. The intrusion profile (trained model) of the monitored TVM, is

loaded.

3. The running processes are classified.

4. The alert and log generator is notified on detection of any suspicious

activities.

5. A alert with the details of log report is sent to cloud administrator

for further activities. The implementation of VIMD using VMGuard

for behavior analysis is described in detail below.

5.3.3 Implementation of VIMD with VMGuard as

core detection mechanism

VIMD with VMGuard as core detection mechanism has been imple-

mented and validated using a well-known University of New Mexico

(UNM) dataset[155] which has been previously used by researchers [73]

[84] working in cloud security and is publicly available. The six datasets

of UNM, considered for behavior analysis for which enough traces were

available, are shown in Table 5.2. Each UNM dataset represents the

benign and intrusive system call traces of privileged processes such as

sendmail, ps and login. Malicious behavior has been introduced into

each of these processes, and the description of the traces of the programs

in each dataset is given here [155]. The prototype implementation has

been performed in a machine with 16 GB RAM, Core i7 processor, 500
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Table 5.2: Details of UNM Dataset

Data set Number of
Intrusive
traces con-
sidered for
training

Number
of Normal
traces Con-
sidered for
training

Total n-
grams con-
sidered (af-
ter TF-IDF
processing)

CERT
synthetic
sendmail

23 294 2312

MIT live lpr 460 1001 11201

UNM
synthetic lpr

1001 9 14384

UNM live lpr 1001 1231 16959

UNM Live ps 26 24 866

UNM Live
stide

105 645 7321

GB HDD, Ubuntu 15.10 as the host OS, Xen 4.6 as hypervisor and two

guest VMs: one with Windows 7 and other with Ubuntu 14.04. Python

2.7.10 has been used for implementing the IDS approach.

The evaluation of VMGuard using UNM dataset is discussed. As, the

dataset is in form of the traces, we have used this dataset only for

evaluating the detection accuracy of VMGuard for program subversion

attacks. The validation of other components have been discussed in the

implementation of VAED in Section 5.4.4. VAED is validated with the

malware dataset, obtained on request from University of California,

given by Kirat et al. [158]. The dataset was in form of executable

programs which are executed at TVM and extracted by VIMD at VMM-

layer using PET, scanned by PV component and analyzed by VAED.

5.3.3.1 Pre-processing of Dataset and Feature Extraction

In order to prepare the dataset for the classifier, first of all the traces

need to be arranged in the form of n-gram sequences. Many n-gram

sequences of normal and intrusive traces are obtained. The suitable

n-grams of normal and intrusive traces are selected using the TF-IDF

method. The top 70% of the n-grams with the highest TF-IDF values

have been considered for normal traces. Similarly, the top 70% of the n-

grams with the highest TF-IDF values for the intrusive traces have been

considered. All the n-grams are merged to form a common database for

intrusive and normal behavior of a corresponding process with dupli-

cates eliminated. Two files are maintained during implementation for

each UNM dataset: FVM DB and the mapping file. FVM DB presents
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Table 5.3: Collection of n-grams with their Term-Frequency in each Normal
Trace

Benign Ng1 Ng2 Ng3 Ng4 Ng5 Ng6
N1 2 1 0 2 0 2
N2 3 4 0 0 0 3
N3 0 3 1 2 2 1
N4 0 0 0 0 1 1
N5 0 0 0 0 1 0

Table 5.4: Collection of n-grams that belong to Normal Traces with their
Document-Frequency

Type Ng1 Ng2 Ng3 Ng4 Ng5 Ng6
Benign 2 3 1 2 3 4

Table 5.5: Collection of n-grams that belong to Normal Traces with their
Inverse Document Frequency

Type Ng1 Ng2 Ng3 Ng4 Ng5 Ng6
Benign 1.32193 0.73697 2.32193 1.32193 0.73697 0.32

Table 5.6: TF-TDF calculation of various n-grams of Normal Traces

Benign Ng1 Ng2 Ng3 Ng4 Ng5 Ng6
N1 2*1.32=2.64 1*.73=0.73 0*2.32=0 2*1.32=2.64 0*.73=0 2*.32=0.64
N2 3*1.32=3.96 4*.73=2.92 0*2.32=0 0*1.32=0 0*.73=0 3*.32=0.96

N3 0*1.32=0 3*.73=2.19 1*2.32=2.32 2*1.32=2.64 2*.73=1.46 1*.32=0.32
N4 0*1.32=0 0*.73=0 0*2.32=0 0*1.32=0 1*.73=0.73 0*.32=0
N5 0*1.32=0 0*.73=0 0*2.32=0 0*1.32=0 1*.73=0.73 0*.32=0

TF-
IDF

6.60 (rank 1) 5.84 (rank 2) 2.32(rank 5) 5.28 (rank 3) 2.92(rank 4) 1.92(rank 6)

the feature vector represented by < L,X ′i > where L is a label for each

feature vector X ′i;Lε{normal, intrusive}. The mapping file represents

the unique n-grams executed at the TVM by the running programs.

The process of creating TF-IDF for different n-grams is as follows:

Let us consider 5 benign programs and 5 intrusive programs. Each

program contains a total of 6 different n-grams in different quantities.

The term-frequency table of benign behavior is shown in Table 5.3.

Term-frequency counts the total number of occurrences of n-grams in

a trace. For example, n-gram Ng1 appears 2 times in the normal trace

N1 and 3 times in the trace N2. It does not appear in any of the other

normal traces. Hence, we can say that the VNg1 value of N1 is 2 and

VNg1 of N2 is 3. Any non-zero value of an n-gram corresponds to the

presence of an n-gram in the trace, and zero value represents the ab-

sence of an n-gram in the trace. Document Frequency represents, how
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Table 5.7: Evaluation metrics and their description

Parameter Description

True Positive (TP)
IDS detects intrusive program
execution as malicious

False Positive (FP)
IDS detects normal program
execution as malicious

True Negative (TN)
IDS detects normal program
execution as normal

False Negative (FN)
IDS detects intrusive program
execution as normal

TPR (Detection Rate)
TP/(TP+FN); The proportion of correctly
classified intrusions to the actual size
of the attack class

False Positive Rate (FPR)
FP/(TN+FP); The proportion of incorrectly
classified intrusions to the actual size
of the attack class

False Negative Rate FNR
FN/(TP+FN);The proportion of incorrectly
classified normal programs to the actual size
of the normal class

many traces contain a particular n-gram. For example, DF(Ng1)=2

means that Ng1 appears in two normal traces as shown in Table 5.4.

Now the Inverse Document Frequency is used to improve the weight of

the rare n-grams, as rare sequences have more discriminating power as

shown in Table 5.5. It is calculated by the the taking the logarithmic

ratio of total traces to traces which contains the n-grams log2(C/CNg).

Now the values in Table 5.6 are obtained by multiplying the TF score

by the IDF score for each n-gram. The values corresponding to differ-

ent traces are summed to find the final TF-IDF of the n-gram. The

top five n-grams selected after the feature selection process would be

Ng1, Ng2, Ng4, Ng5, Ng3, Ng6.

Similarly,the TF and IDF scores for n-grams for each of the intrusive

traces have been calculated. In our implementation with the UNM data

set, we have collected different sets of n-grams for each dataset after

TF-IDF processing.

5.3.3.2 Results and Discussion

The standard performance metrics are described in Table 5.7. For eval-

uation, we have applied a k-fold cross-validation method over the col-

lected data sets and taken k as 10. The dataset for each category of a

privileged process is tested. Initially, the UNM dataset is tested with

different machine learning algorithms such as Random Forest (RF),

Support Vector Machine (SVM) [169], Naive Bayes (NB)[170] and En-

semble Classifier (AdaBoosted SVM) [171]. NB makes the assumption

that features are independent of each other. This assumption may not
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Table 5.8: Detection rate (%) of different classifiers for UNM dataset

Dataset
Ensemble Classifier
(Random Forest)

SVM Naive Bayes
Ensemble classifier

(boosting with SVM)
CERT synthetic sendmail 98.7382 97.4763 62.4606 98.7382
MIT live lpr 99.9316 98.13 97.3306 98.69
UNM live lpr 99.9552 98.6 98.2975 99.121
UNM live stide 99.6 97.3333 99.6 98.131
UNM ps 94 84 90 90
UNM synthetic lpr 100 99.12 96.8317 99.12

Table 5.9: Detailed Performance Results of Random Forest Technique for
UNM dataset

Process Name
Correctly
Classified
Instances

Incorrectly Classified
Instances

TPR (%) FPR (%) FNR (%)

CERT synthetic sendmail 313 4 98.7382 4.1 1.2818
MIT live lpr 1460 1 99.9316 1 0.1
UNM live lpr 2231 1 99.9552 1 0
UNM live stide 747 3 99.6 2.5 0.4
UNM ps 47 3 94 6.2 6
UNM synthetic lpr 1010 0 100 0 0

be true for intrusion detection, where one system call pattern may be

co-related with other system call patterns. However, the training time

of NB is linear and provides results much faster than other classifiers.

Training time of the SVM-based classifier was high for larger dataset

when compared to other classifiers. This is due to the algorithmic com-

plexity associated with SVM in applying a suitable kernel function over

the dataset and fine tuning the parameter settings used.

Here we have applied a radial-basis kernel-based SVM. A kernel-based

SVM requires O(n*m) computations for training the dataset, where n

is the total number of training instances and m is the total number of

features. Hence, the training phase is computationally expensive. On

the other hand, RF, which is an ensemble of Decision Trees, builds the

trees in O(M(nmlogn)), where M is the number of trees initialized while

running the algorithm, n is the number of instances and m is the num-

ber of features. RF is comparatively efficient even for huge datasets.

Each of the parameter values is fine tuned according to the performance

of the classifier for particular types of intrusion dataset.

We found that boosting the SVM increases its performance but also

results in more complex analysis leading to slower training for larger

datasets. We found that RF provides better results than the other three

classifiers for the UNM datasets as shown in Table 5.8. The results are

also shown in the Figure 5.9.

RF technique is efficient for large datasets and is one of the most
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Figure 5.9: Detection Rate of Different Classifiers for UNM Dataset

accurate learning algorithms available. It is capable of handling several

thousands of input variables; hence RF performs better for datasets

with richer feature set. For UNM ps, RF achieves 94% TPR whereas

SVM achieves 84% TPR. Naive Bayes and adaboosted SVM achieve

90% TPR. RF achieves a 100% detection rate for UNM synthetic lpr

and around 99.9% TPR for most of the UNM datasets. It is less sen-

sitive to outliers and parameter choices. Adaboosted SVM provides

similar results but is sensitive to noisy data and outliers, and is found

to produce more false alarms (FA) for UNM traces (10%<FA<25%).

During or experimentation of VMGuard, many thousands of n-grams

are generated for datasets. Some of the n-grams may be noisy and

may not provide complete information. Therefore, RF is more suitable

for such cases, and the results seem to be promising. It provides a

good detection rate for most attacks (94%-100%) with acceptable false

positives (FPR) and false negatives (FNR). RF provides the highest

detection rate of 99.9552% with 1% FPR and negligible FNR for the

largest dataset considered (i.e. UNM live lpr). The detection rate is

low, around 94%, for the UNM ps dataset, with 6.2% FPR and 6%

FNR. The performance for other datasets can be seen in Table 5.9 and

is illustrated in Figure 5.10. The results show that RF provides good

results with fewer false alarms.

It was observed that the dataset size alone is not sufficient for achiev-

ing a good detection rate with low false alarms; the feature vectors
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Figure 5.10: Detection Rate and False Positive Rate for different UNM
Datasets using Random Forest

obtained from the dataset are equally important. Each feature vec-

tor represents the behavioral characteristics of a malware class, which

should be helpful to distinguish it from other classes. We also ob-

served that if one machine learning algorithm provides better results

for detecting one particular intrusion, it may not provide the similar

results for other intrusions. For example, RF provides 99.95% TPR for

UNM live lpr. However, it provides the much lower detection rate of

94% for the UNM ps dataset. This is because of the behavioural differ-

ences between various attacks, represented by different sets of feature

vectors.

The classifiers’performance depends on the discriminative power of fea-

tures. Further, we can say that a classifier with low time complexity

may or may not provide a better classification rate, like Naive Bayes,

and a classifier with a higher detection rate may have slow training

for large datasets, such as Adaboosted SVM. We observe that the en-

sembles of classifiers provide better result than individual classifiers,

because the error rate generated by one classifier may get minimized

when creating an ensemble with another classifier. For example, we ob-

served that the overall results of Ensemble Trees (RF) and Adaboosted

SVM are better then when only SVM or Naive Bayes is considered, as

shown in Figure 5.9.
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Table 5.10: Performance Overhead: Processing Time per Sample (seconds)

Process Monitoring
Parameters Time (best-worst) (seconds)
Introspection time 60-700
Process Validation 0.06 -1.453
Trace Pre-Processing 0.0231 -45.132
Detection Time 1.011 - 1.121
Total 61.0341 - 747.706

The overhead associated with the detection approach, per sample exe-

cution, is discussed next. Since, UNM dataset was in form of traces, the

same Windows malware dataset, used for evaluating PV, is considered

for overhead calculation because it contains the executable programs.

The system overhead directly depends on the program trace analysis

time. It is observed that the analysis time is high for longer traces and

low for shorter traces. The traces are extracted on a time frame of

fixed size (seconds). A time frame of 60 seconds is considered as a best

case, assuming all traces terminated within that time. It is observed

during experimentation, most of the traces usually terminated with 700

seconds. It is taken as the worst case, which would seldom occur. The

maximum time depends on the largest trace. Program-trace analysis

time depends on following: system call tracing time (60 seconds-600

seconds), process validation time (0.06 seconds ∼ 1.453 seconds), trace

pre-processing time (0.023 seconds - 45.132 seconds) and detection time

(1.011 seconds ∼ 1.121 seconds). Therefore, the time to process a sam-

ple was captured as 61.0341 seconds (best case scenario) ∼ 747.706

seconds (worst case scenario) respectively which is the total time exe-

cution of all phases. The maximum overhead incurred in processing a

sample was observed as 747.706 seconds. If short processes are running

in the memory which terminates frequently, the overhead will be less.

The overall time depends on the number of applications running in the

TVM and the trace length. The observed values, based on the exper-

imentation, are shown in Table 5.10. The additional time is taken for

creating intrusion profiles of malwares in an offline mode.

The execution of both process validation and behavior analysis using

VMGuard have been successfully evaluated. VMGuard is found to per-

form well to detect the program subversion attacks and provides the

accuracy of 94%-100% with low false positives (0%-6.2%) in detecting

program subversion attacks. The detection mechanism of VMGuard is
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effective and easy to be implemented and does not any require complex

analysis making it a good choice for security administrators.

5.4 VAED: Detection and Implementa-

tion

VAED analyzes the execution traces, obtained from the memory intro-

spection phase of VIMD using three sub-detection components: (i) Pro-

gram Semantics Extractor (PSE) (ii) Feature Transition Matrix Genera-

tor (FTMG) (iii) eX DetectionEngine. PSE pre-processes the collected

traces and generates SCDG for each trace. SCDG is useful to extract

useful behavioral semantics of various system call transitions of each

program. FTMG generates the matrix of probability values of transi-

tions for each SCDG and eX DetectionEngine applies machine learning

to learn and detect the evasive malware behavior base on the extracted

behavioral values. The execution flow of various security functions us-

ing VAED is given in Figure 5.11. A detailed description of its detection

stages and the implementation of VIMD with VAED as core detection

component is presented in subsequent sections.

5.4.1 Program-semantic extraction using SCDG

The execution traces collected from memory analysis phase are pre-

processed to construct the behavioral semantics. This stage uses the

detection sub-component Program Semantics Extractor (PSE) for this

purpose. PSE extracts the program semantics by generating SCDG

for each trace. In SCDG generation, each trace is represented as a di-

rected graph , based on Markov Chain principle [172]. Each transition

between two system calls is assigned a probability weight. A graph G

is represented by <V, E>. V is a set of vertices where each vertex

represents a unique system call occurring in the trace. E is a set of

edges where each edge represents a unique transition between two sys-

tem calls. The transition could be between same system calls such as

NtAllocateVirtualMemory→ NtAllocateVirtualMemory occuring mul-

tiple times. An edge weight Peij is used to represent the probability

between two vertices vi and vj. Edge weight (Peij) denotes the transi-

tion probability between vi→vj in a Markov Chain.
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Figure 5.11: Execution Flow of various security functions of VIMD with be-
havior analysis using VAED
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Figure 5.12: System Call Dependency Graph

According to Markov Chain property, for each vertex vi:

n∑
vj=1

Peij =

[
0 No transition from vi

1 Otherwise

]
(5.6)

This means that summation of the transition probabilities of all outgo-

ing edge of a vertex should be 1. The summation is 0 if no outgoing

edges exist from a vertex. Secondly, the transition probability (Peij)

should be calculated by formula as follows:

Peij = f(vi → vj)/

vj=n∑
vj=1

f(vi → vj) (5.7)

Here f represents the frequency of occurrence of a transition. An

example how SCDG is created and stored in adjacency matrix for

a given sample is described. Let Γ denotes a system call trace.

Γ={NtQueryInformationProcess →NtQuerySystemInformation→
NtAllocateVirtualMemory → NtOpenDirectoryObject → Nt-

QuerySystemInformation → NtOpenDirectoryObject → NtOpenFile

→ NtOpenFile → NtOpenFile → NtOpenKey → NtClose}. VAED

replaces each system call by unique index extracted from system

call-index mapper. Hence, trace Γ can be represented by {SC1, SC3,

SC2, SC4, SC3, SC4, SC5, SC5, SC5, SC6, SC7} sequence. The

SCDG generated by applying Markov Chain Principle (using equation

5.6 and 5.7) is shown in Figure 5.12. SCDG is stored in the form of

adjacency matrix (AM) as shown in table 5.11. AM is an n*n matrix

where n=|V |, representing the trace behavior. It can be seen from

the table that summation of the cell values of a row are 1 or 0 for

each vertex. Value 0 represents there is no outgoing edge from the

vertex (eg. SC7). If a particular transition is occurring in a particular

malware sample, it may also occur in another sample. Hence, each
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Table 5.11: Adjacency Marix corresponding to SCDG

Index SC1 SC2 SC3 SC4 SC5 SC6 SC7

SC1 0 0 1 0 0 0 0
SC2 0 0 0 1 0 0 0
SC3 0 0.5 0 0.5 0 0 0
SC4 0 0 0.5 0 0.5 0 0
SC5 0 0 0 0 0.67 0.33 0
SC6 0 0 0 0 0 0 1
SC7 0 0 0 0 0 0 0

Figure 5.13: Edge-Index Mapper of VAED

unique transition between two subsequent system calls, is stored in an

Edge-Index Mapper (EIM) as shown in Figure 5.13. EIM is a common

mapping file maintained by VAED which provides the mapping of all

possible transitions of system to an edge-index and is updated when

an SCDG is generated.

5.4.2 Feature Transition Matrix Generation

The creation of SCDG for malware and benign files are not alone suffi-

cient to detect malwares. Graph isomorphism is a NP complete prob-

lem. Hence, VAED does not employ graph similarity measures as used

by graph similarity solutions such as gSPAN [173]. VAED generates the

Feature Transition Matrix (FTM) of each of the SCDG using a proposed

scheme as shown in Algorithm 3. This detection stage uses the detec-

tion sub-component Feature Transition Matrix Generator (FTMG) for

same purpose. The FTMG takes Adjacency Matrix (AM), Edge-Index

Mapper (EIM) and SCDG as input. As stated above, AM contains

the transition probability information (Peij) for each transition vi→ vj
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calculated by applying equation (1) and (2) of Markov Chain princi-

ple. EIM represents the unique edge label for each transition. Each

transition of SCDG is mapped into a unique <transition-value pair>

which are stored in a Feature Vector (V) and represents the seman-

tic information of the malware patterns occurring in the trace. All

<transition-value pair > are generated and stored in V. For the exam-

ple trace Γ, the obtained values in V are {(E1, 1), (E2, 1), (E3, 0.5),

(E4, 0.5), (E5, 0.5), (E6, 0.5), (E7, 0.67), (E8, 0.33), (E9, 1) }. The

information in V is stored in the FTM. The first column of FTM rep-

resents the type of SCDG (attack class (T, E, P)/benign class of trace)

and first row represents the labels of unique transitions. All other cell

values represent the transition probabilities. It is zero, if no transition

exist for a given trace.

FTM contains a large number of features (transitions). The presence of

non-zero value corresponding to each feature indicates the presence of

system call transition in the trace. A zero value indicates the absence

of corresponding system call transition. The values represent the prob-

abilities obtained by applying markov chain property in each trace. If

a classifier is trained for all feature values, it may deteriorate its per-

formance. Hence, we applied feature selection in the FTM to select

most important and optimal set of transitions. Hence, we applied fea-

ture selection to select most important and optimal set of transitions

from FTM. We have applied Information Gain Ratio (IGR) [174] to

select features in continuous values dataset. Information Gain (IG) is

biased towards multi-valued attributes. Information Gain Ratio (IGR)

Algorithm 3: Algorithmic steps of generating Feature Transition Matrix (FTM)

Input: SCDG, Adjacency Matrix (AM), Edge-Index Mapper (EIM) and Empty
Feature Vector (V), Empty FTM
Result: FTM
for each SCDG do

for each vertex vi in SCDG do
for each outcome edge vi→vj of vertex vi do

Peij=Read Probability (AM);
Eij = Extract Label(EIM);
Add transition-value pair <Eij, Peij> → V;

end

end
Append Values Feature Vector (V) to FTM;

end
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solves the drawback of IG. IGR extends the IG to make it applicable

to be used with attributes with large number of values. It provides the

normalized score of feature’s contribution for classification.

Let S be the sample of benign and malware traces in FMT. |S| rep-

resents the total number of sample traces in S with class category i:

{0 (for Exception-based), 1 (for Time-based), 2 (for Process-feature

based), 3 (for (Benign class) }. The expected information needed to

classify an instance (tuple) for partition S is known as entropy. This

information is useful to identify a class label of an instance in S. In

S, let ki be the total number of traces having class category i. Then

entropy of S is calculate by following formula:

H(S) = −
i=3∑
i=0

Pilog2Pi (5.8)

where

Pi = ki/|S| (5.9)

Pi denotes the probability that a random instance in partition S be-

longs to class i. Also, 0 <= H(S) <= 1,the information entropy H(S)

represents the purity of the collection of information. The smaller the

value of entropy, the lesser the degree of chaos.

If the instances in S has to be partitioned (classified) on some feature

attribute A {a1, a2, a3......av}, then S will split into v partition sets

{S1, S2, S3.....Sv}. Then the information entropy of S based for an

attribute A will be calculated by formula:

HA(S) =

j=v∑
j=1

|Sj|
|S|
∗H(Sj) (5.10)

where |Sj| is total number of samples in each subset and H(Sj) is the

entropy of partition |Sj| calculated by formula 5.8 and 5.9. Informa-

tion Gain (IG) is used to measure the information obtained from the

transition for the class prediction and calculated by following formula

by partitioning on A:

InformationGain(A) = H(S)−HA(S) (5.11)
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where H(S) is the information entropy of the whole data set. IGR uti-

lizes the split information value which corresponds to the information

obtained by partitioning the dataset S into v sub-partitions on some

attribute A. The split information on A is calculated by following for-

mula:

SplitInfoA(S) =

j=v∑
j=1

|Sj|
|S|
∗ log2

|Sj|
|S|

(5.12)

where high value of SplitInfo infers that partitions have equal size (uni-

form) and low SplitInfo refers that few partitions contains most of the

tuples. Finally the Information Gain Ratio (IGR) is defined as:

InformationGainRatio(A) = InformationGain(A)/SplitInfo(A)

(5.13)

The more the value of IGR for an attribute A, the more weighted it

has got for considering it for classification. All the features of FTM

are ranked by using the discussed feature selection approach and top

ranked features are selected to form optimal feature transition matrix

(OFTM). Features with negligible information gain ratio are discarded.

The learning and detection module is described in next section.

5.4.3 Learning and detection

One of the important security function of VAED is to learn and detect

the behavior of evasive malware. This stage uses the detection sub-

component eX DetectionEngine for this purpose. It operates in two

mode: learning and detection. In learning mode, eX DetectionEngine

creates the intrusion profiles of the TVM by employing the classifier

fusion of diverse classifiers over OFTM, in offline mode. A OFTM is

a probability transition matrix which represents the transition prob-

abilities of selected transitions for each class category of known sam-

ple (Exception-based Evasion, Time-based Evasion, Processor-Feature

based evasions and Benign samples). VAED applies the weighted vot-

ing based scheme [175] to fuse the results of the diverse classifiers. This

scheme is not computationally intensive like other fusion methods [176]

and applicable to real time applications [177]. In a case study done
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by Moreno-Seco et al. [178], weighted voting scheme over diverse clas-

sifiers found to perform well which improved the results of individual

classifies.

Hence, different types of classifiers (diverse classifiers) have been con-

sidered: probability based (Naive Bayes (NB)[160]), hyperplane based

(Support Vector Machine (SVM) [179]), rule-based (Decision Tree (DT)

C 4.5 [180] and Random Forest (RF) [168]). The detection engine can

be mathematically derived as follows by using n set of classifiers:

A training set X : {(x1, y1), (x2, y2), (x3, y3), (x4, y4).......(xk, yk)} is con-

sidered where each xi instance is a set of features and each yi is the class

label for instance xi. Here yi is class label in set Y : {c1, c2, c3, ...., cm}.
A compound classifier can be obtained for training set X which is de-

rived by classifier fusion and achieves highest accuracy than single clas-

sifier results.

A total of n classifiers: {ξ1, ξ2.........ξn} are assumed. Each of them de-

cides if a sample in X belongs to one of the class in Y based on their out-

put prediction probability. Using the naive brute force approach [181],

each of them is assigned a weight wi from set W = {w1, w2, w3......wn}.
In brute force approach, each classifier is prior trained for all possible

combination of weights in the range of (1,m) and best combination

weights are chosen which provides the highest accuracy for combined

classifiers’ output. This parameter tuning of weights is done only once

in algorithm in an offline mode. Once weights are determined, they will

remain fixed for the detection algorithm.

For making a common decision by the ensemble of diverse classifiers;

a common decision model (M) for X, can be derived by the following

classifier fusion equation:

ξ′(X) = argmaxjεck

l=n∑
l=1

δ(j, ξl) ∗ wl (5.14)

where δ(j, ξl) is the predicted probability of the classifier for class j.

The output is decided based on the maximum prediction probability

derived by the classifier fusion by using equation 5.14. The class which

has the maximum prediction probability is returned as output for the

test instance x. Here the prediction probability of fused classifier for a

class (ck) is the summation of the multiplication of predicted probability

and classifier’s weight (wl) for all n classifiers. The ensemble classifier
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is trained for the malware and benign classes and the trained model is

stored in the baseline database, representing a pre-compiled intrusion

profile. The details about intrusion profile generation is explained in

Section 5.2.4.

In the detection mode, eX DetectionEngine uses the pre-compiled in-

trusion profile of TVM (stored in form of Detection Model) to classify

the running processes. The execution flow for eX DetectionEngine for

detecting the malicious processes is given below:

1. PET is invoked to take live trace of all processes running in TVM.

2. OFTM test is generated by following the above discussed procedure

of graph construction, FTM generation and feature selection.

3. OFTM test file is loaded representing the current behavior of moni-

tored TVM.

4. A trained Detection Model is loaded which represents the Intrusion

Profile (IP) of monitored TVM.

5. Detection Model is executed with test set OFTM test and classify

the running processes.

6. An alert is generated on detection of suspicious activities to cloud

admin.

Cloud administrator performs further analysis on suspicious processes

based on the application and user activity logs of TVM and behavior

logs generated by VAED. Cloud administrator can remove the appli-

cations generating the malicious traces. If a TVM generates a large

number of malicious processes, it is isolated and restored to a previous

checkpoint when it was benign. The implementation of VIMD using

VAED for behavior analysis is described in detail below:

5.4.4 Implementation of VIMD with VAED as

core detection mechanism

VIMD with VAED as core detection mechanism has been validated with

the evasive malware sample of windows evasive binaries. The evasive

samples are collected from University of California [158] on request.

We have considered 80 samples of time-based evasions, 86 samples of

processor-feature based evasions, 181 samples of exception-based eva-

sions and 132 benign samples named as ‘benign’. Two physical ma-

chines with 16 GB RAM, 1 TB HDD, core i7 processor, Ubuntu 15.10

and Xen 4.6 hypervisor have been considered. This can be considered
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as compute server of cloud. We have also configured two guest VMs

with Windows 7 guest OS and 8GB RAM and 100 GB HDD which can

be considered as TVMs. Python 2.7.10 has been used for implementing

the proposed VAED approach.

5.4.4.1 Preparing the Dataset and Feature Extraction

The dataset contains the imbalanced distribution of the classes. Hence,

an adaptive synthetic sampling approach (ADASYN) [182] is applied

over the dataset to perform the oversampling of the minority samples

that are harder to classify. In which, some synthetic samples are cre-

ated using the euclidean distance from K nearest neighbors that belong

to the minority class. There exists other sampling methods such as

SMOTEBoost [183] and DataBoost-IM [184] for dealing with class im-

balance problem. However, ADASYN is more efficient than other ap-

proaches. Unlike other approaches, it does not rely on the hypothesis

evaluation for generating the synthetic samples. ADASYN adaptively

updates the distribution based on the characteristics of data distribu-

tion and found to perform well when compared to other approaches

[182]. The sampled dataset is ready for experimentation. Initially the

experimental set up is used to generate the evasive malware and benign

sample traces by using the PET component. Benign applications such

as drivers, network utilities, games, multimedia, browser, social chat

messenger, teamviewer etc. are installed in the TVMs. The original

TVM state is saved and a backend/snapshot of original disk volume is

created. A clone TVM is created and the malware evasive binaries are

injected in a clone TVM from hypervisor using libguestfs tool [166] at

Figure 5.14: Trace Extraction of a Malware Process from VMM
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the time of intrusion profile creation. PET is used to collect the exe-

cution tracing which are stored in behavior logs. The sample output

of program execution tracing is shown in Figure 5.14. Once behavior

log is generated, system call parser is used to extract the sequence of

system calls executed by each program. The new dataset (traces) is

generated, named as Dnew.

Each of the trace is converted into SCDG by PSE sub-component of

VAED, which represents the transition probabilities of each transition,

stored in form of adjacency matrix (AM). Since it is difficult to find

the discrimination power of a transition, all SCDG are processed and a

<transition-value pair> is generated for each SCDG and stored in FTM.

VAED applies IGR for selecting most suitable transitions (features). A

total of 3955 features are obtained after generating FTM. However, we

have selected 2767 transitions, after applying IGR in the FTM having

good IGR value. Transitions with IGR value closer to 0 have not been

considered. The selected features (transitions) are stored in OFTM.

During the experimentation, its being observed that most of the pro-

cesses terminates within 10 ∼ 12 minutes. Hence, we set the maximum

trace extraction time to 12 minutes (∼ 720sec). However, if some eva-

sions are executing repeated transitions such as NtRaiseException→
NtQueryInformationProcess (observed in time-based evasion) in loop,

they are terminated forcefully when timer expires. If an attacker injects

stalling code in a program which may cause the program to run more

than 12 minutes. It means that it may perform the delaying operations

for more than 12 minutes. Since VAED is based on the semantic infor-

mation, VAED will detect that some system call transition is occurring

abnormally than its usual occurrence. For example, a malware can in-

voke GetTickCount () system call (Windows TVM) multiple times in

loop which is an abnormal behavior. It will try to access the same

information (the time elapsed since the booting of machine) multiple

times. The transition is invoked just once or twice to get some system

related information. If a program is producing the same transitions

in loop irrespective of how many iterations (directly relate to time of

delay), its semantics will be captured by VAED.
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5.4.4.2 Results and Discussion

To evaluate the primary security check of VIMD, we executed some

malicious and normal programs in TVM. Some of the suspicious pro-

cesses are detected by the traditional anti-virus tool (Avast is con-

sidered) installed at TVM and hence, not found in memory of TVM.

However, anti-virus tool failed to detect a process with PID 1664 which

was found to be running with name exploit.exe and detected by PV

component deployed at Dom0 of VMM as shown in Figure 5.15 and

Figure 5.16. The presence of security processes namely AvastSvc.exe

and avastui.exe is checked which were found to be running in TVM.

However modern malwares such as torpig and config can disable them

[101].

To perform a deep analysis of semantic behavior of programs run-

ning in TVM, other modules of VIMD are executed. The malicious

programs are executed by PET, pre-processed by PSE and stored in

OFTM by FTMG, as discussed before 5.4.4 (A). Now, the performance

of different types of classifiers: probability based (Naive Bayes (NB)

[160]), hyperplane based (Support Vector Machine (SVM) [179]), rule-

based (Decision Tree (DT) C 4.5 [180] and Random Forest (RF) [168]

and fusion of these classifiers using majority weighted voting scheme, is

considered and compared. The fusion of classifiers using voting scheme

is computationally less intensive and applicable to real time applications

as discussed in Section 5.4.3. NB is found to be the fastest algorithm

but NB assumes that all features are independent with each other which

may not be true in malware detection where system call sequences de-

pend on each other. SVM is very sensitive to parameter tuning which

significantly changes with change in the dataset values. It is complex

when compared to rule based tree classifiers. We have performed the

Figure 5.15: Hidden Process detection at VMM (PID 1664)

Figure 5.16: Output of Process Validation
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Table 5.12: Evaluation metrics and their description

Parameter Description

True Positive (TP) IDS detects the intrusive program execution as malicious
False Positive (FP) IDS detects the normal execution of the system as malicious
True Negative (TN) IDS detects the normal program execution as normal
False Negative (FN) IDS detects the intrusive program execution as normal
TPR (Detection Rate, Re-
call, Sensitivity)

TP/(TP+FN); The proportion of correctly classified intrusions to the actual
size of the attack class

FPR FP/(TN+FP); The proportion of incorrectly classified intrusions to the actual
size of the attack class

FNR FN/(TP+FN);The proportion of incorrectly classified normal programs to the
actual size of the normal class

TNR (specificity) TNR=TN/FP+TN ; The proportion of correctly classified normal to the actual
size of normal class

Accuracy Acc=TP+TN/(TP+TN+FN+FP); Percentage of correct classifications over all
test results

hyper-parameter to obtain the best parameter for SVM and set its pa-

rameters after tuning (kernel=rbf, C=100, gamma=1.0000). Tree based

classifiers provide good performance for intrusion detection because of

their implicit feature selection power and rule based classification. How-

ever, a single DT classifier does not provide good results due to over

fitting problem of the training dataset. Hence, we have used ensemble

of DT C4.5 classifier particularly Random Forest (RF) which takes ran-

dom samples of dataset and trains different DT for each set. However,

RF is sensitive to number of estimators (DT) values and requires tuning

of number of estimator parameter. We have considered a range from 2-

170 estimators and applied bagging method during parameter tuning as

shown in Figure 5.17. To predict the number of estimators, Out of Bag

(OOB) error is calculated in each iteration. Out of Bag (OOB) error

is the average error for each instance (Xi, Yi) predicted by n classifiers

trained over a bootstrap sample that does not contain (Xi, Yi) [185]. In

order to tune the RF parameter, a curve between Out-of-Bag (OOB)

error and number of estimators (DTs) is plotted. We have to find the

number of estimators (decision trees) for which OOB error is minimum.

OOB highly affects the classifiers performance and directly relates to

generalization error. We found that if number of estimators=80, OOB

error is minimum and hence, we choose the same value during classifica-

tion. OOB fluctuates from range 2-80 (number of estimators) and after

80 it remains nearly same. RF builds the trees in O(M(nmlogn)) where

M is the number of trees initialized while running the algorithm and n

is the number of instances and m is the number of features. Random

Forest runs on an average time even for huge datasets. Now, training

RF with IGR as feature selection criteria having total 80 estimators,

the least OOB error is produced. The standard evaluation metrics are

described in Table 5.12 and have been considered for evaluating the
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Figure 5.17: OOB error vs No. of Estimators

approach.

Fusion of classifiers (ensemble learning) is proved to achieve a better

accuracy. The weighted voting scheme have been applied with the dis-

cussed classifiers. RF is also ensemble based learning approach. How-

ever, it considers multiple instances of same classifier (DT). The motiva-

tion behind using fusion of diverse classifiers, is to combine the concep-

tually different classifiers based on weighted voting rule scheme. Here,

if a classifier is very confident (provides good prediction probability for

classification), it is assigned more weight over other classifiers. We have

performed parameter tuning of weights in which all four classifiers are

executed and their results are combined for different combination of

weight values in rnage (1, 4). The best combination weight is chosen at

the time of training (W1(SVM): 3, W2 (NB): 1, W3(DT):2, W4 (RF):3)

which provides the best results. We have applied k-fold cross validation

with classifiers to train/test them for evasive and benign samples. We

have taken k=10. It means that the dataset is divided into 10 portions.

Initially first nine portions are used for training and last portion is

used for testing the classifier. In the next iteration, next nine portions

are considered for training and one portion (which is not considered

for testing in previous iterations) is used for testing. The process is

repeated 10 times (folds).

We found that each of the classifier is providing different results for

each of the evasive classes which is because of the difference in attack

characteristics. For exception-based evasions, NB is providing a poor

accuracy of 94.166% with 1.9093% FPR and 14.917% FNR. The false
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Table 5.13: Classification Results for Exception based Evasions

Classifier Acc TPR TNR FPR FNR
SVM 97.021 94.4011 98.568 1.43198 5.6238
DT 96 93.370 97.136 2.8639 6.6298
NB 94.166 85.0828 98.0906 1.9093 14.917
RF 97.333 94.475 98.568 1.0432 5.5248
Fusion 97.666 95.027 98.8066 1.1933 4.9723

Table 5.14: Classification Results for Process Feature based Evasions

Classifier Accuracy TPR TNR FPR FNR
SVM 97.488 89.987 99.1576 0.64239 9.02255
DT 96.166 94.7368 96.5738 3.4261 5.2631
NB 94.1666 93.2330 94.432 5.5674 6.67669
RF 97.5 90.977 99.357 0.59642 9.2122
Fusion 98.833 95.488 99.7858 0.2141 4.511

alarms are high and detection rate is also low (85.0828% ) which is

not acceptable. The details are shown in Table 5.13. DT is providing

better results when compared to NB. It provides 96.0% accuracy with

comparatively low false alarms (2.8639% FPR and 6.6298% FNR). The

detection rate is improved to 93.370% and TNR (specificity) comes

out to be 98.0906% which is fairly acceptable. DT provides a rule

based classification and its performance can be improved with reduced

classification error using ensemble of DT (RF). RF classifier combines

the idea of bagging and random selection of features. It consists of

many decision trees. In bagging, successive trees are independent to

each other and constructed using a bootstrap sample (training subsets

originated from random sampling with replacement of training set). At

the end, majority vote or average is taken for predictions. An unseen

sample is passed to each of the trained tree. Output can be defined

as the average of the output of the generated trees. For exception

based evasions, RF provides 97.333% accuracy with 1.43198% FPR and

5.5248% FNR. The detection rate (TPR) is also better than NB and

DT which is 94.475%. SVM found to perform comparable to RF. The

fusion of classifiers is providing the highest accuracy of 97.666% with

low false alarms (1.1933% FPR and 4.9723%) with highest specificity

98.8066%.

For Processor-Feature based evasions, accuracy of DT is 2% higher than

accuracy of NB (94.166%) as shown in Table 5.14. DT is observed to

provide good true alarms for benign and malware class. The detection

rate is 94.7368% with 3.4261% FPR. NB provides the poor detection
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Table 5.15: Classification Results for Time based Evasions

Classifier Acc TPR TNR FPR FNR
SVM 96.813 93.216 97.2820 2.0179 6.4935
DT 95.166 89.6104 97.085 2.9147 10.3896
NB 94.1666 93.5064 94.39461 5.60538 6.49350
RF 96.833 93.506 97.9820 1.9910 6.393
Fusion 97.5 96.1038 97.9820 2.0179 3.8961

Table 5.16: Classification Results for Benign Processes

Classifier Acc TPR TNR FPR FNR
SVM 95.99 96.011 95.14017 4.0598 3.7878
DT 96.333 89.2906 98.2905 1.7094 10.6060
NB 94.5 82.5757 97.8632 2.1367 17.4242
RF 96 96.2121 95.940 3.9598 3.087
Fusion 98 97.7272 98.07692 1.9230 2.2727

rate of 93.2330% with high FPR of 5.5674%. In this case also, more

complex classifiers (considered RF and SVM) are providing nearly sim-

ilar accuracy of 97.500% and 97.488% respectively. The false alarms

for RF are slightly lower than SVM and its FPR is below 1% and FNR

is around ∼ 9%. They are outperforming the DT and NB and pro-

viding good detection results. The fusion of all these classifiers again

found to outperform the existing results. It achieves highest accuracy

of 98.833% with very low false alarms among other classifiers (0.2 ∼
4.5). The specificity is observed to be 99.78% with highest detection

rate of 95.488% which is fairly acceptable for detecting evasive samples

which tend to hide their behavior. The metrics can be compared from

Figure 5.18 where each sub figure shows the performance of different

classifiers for detecting different classes.

For time based evasions, NB is providing the 94.1666% accuracy with

false alarms in the range of 5.5∼6.5. However, DT failed to provide

good detection rate which is below 90%. However, the probability based

classifier achieves ∼ 93% detection in this case. Time based evasions

have similarity with normal processes and hence, the FNR is higher

in most cases. All the classifiers, other than fusion of classifiers, are

achieving the detection rate < 94%. The fusion achieves the detection

rate of 96% with 2.0179% FPR and 3.8961% FNR which is highest

among all cases as shown in Table 5.15. The specificity is 97.9820%.

The results for classification of benign process are shown in Table 5.16

which depicts that fusion of classifiers provides the highest accuracy

of 98% for correctly classifying the normal processes. The accuracy
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(a) Accuracy for different classes (b) TPR for different classes

(c) FPR for different classes
(d) FNR for different classes

(e) TNR for different classes (f) Performance results for fusion of
classifiers

Figure 5.18: Performance Metrices of VAED for Evasion-based malware De-
tection for Dnew using different classifiers

of fusion is higher in compared to other classes as shown in Figure

5.18a and TNR is lower as shown in Figure 5.18e which is important in

security applications where users are not interested to face trouble in

executing the benign applications.
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Table 5.17: Performance Overhead: Processing Time per Sample (seconds)

Process Monitoring
Parameters Time (best-worst) (s)
Introspection time 60-700
Process Validation 0.06 -1.453
Trace Pre-Processing 0.0423 -90.324
Detection Time 1.21 - 1.312
Total 61.3123 - 793.08

The results for other classifiers are also fine and accuracy is in the range

of 94% ∼ 96%. NB and DT are providing much FNR > 10% in this

case and are not a good choice for selection again. We plotted a bar

chart to compare the performance results of classifier fusion for different

classes as shown in Figure 5.18f. We can infer from Figure 5.18d and

5.18c that fusion of classifiers provides the low false alarms in compared

to other classifiers. The detection rate also goes higher for detecting

different types of evasions as shown in Figure 5.18b. The performance

of VAED is acceptable for detecting evasion based malwares.

The overhead associated with the approach per sample have been dis-

cussed as shown in Table 5.17. The system overhead directly depends

on the time taken for program trace analysis. This time is less for the

shorter traces and more for longer traces. All the traces are extracted

at a time within fixed time frame. We have considered 60 s of time

as a best case, assuming that traces terminate within 60 seconds. If a

trace terminates with 700 seconds, it would be worst case considered

which is a very rare case during observed during experimentation. The

maximum time incurred depends on the largest trace. Program-trace

analysis time depends on following: Introspection time (60s-600s), pro-

cess validation time (observed negligible 0.06s - 1.453s), feature vector

construction time (0.0423 s - 90.324 s) and detection time (observed

negligible 1.212s - 1.312s). Therefore, in both worst and best scenar-

ios, the time to process a sample was captured as 61.3123s - 793.08s

respectively which is the total time execution of all phases. The maxi-

mum overhead incurred in processing a sample was observed as 793.08s

as shown in Table 5.17. If short processes are running in the memory

which terminate frequently, the overhead will be less. The overall time

depends on the number of applications running in the TVM and the

trace length. The additional time is taken for offline analysis to create

intrusion profiles of malware which is a one time effort. The malware

trace extraction takes a long time (say a few weeks). OFTM creation

167



time (observed 164.05672s) with feature selection (observed ∼ 2.21s)

for all intrusive samples and training time (observed 1.64s).

The executions of all detection components of VIMD with VAED as core

detection mechanism have been successfully evaluated. VAED is found

to perform well to detect the evasive malware attacks and provides

the detection accuracy of 97.50%-98.8333% with 0.2141%-2.0179% false

positives in detecting evasive malware. The detection mechanism of

VAED is found to be effective for detecting evasive malware at VMM-

layer.

5.5 Comparison with Existing VMM

based IDS

We have compared VIMD with other intrusion detection frameworks in

a virtualization environment: Maitland [91], Xenini-IDS [69] and Shad-

owContext [93]. The various parameters considered for comparison are

shown in Table 5.18. VIMD, Xenini-IDS and ShadowContext are based

on dynamic analysis and VMI approaches. The main objective behind

VIMD, Maitland and Xenini-IDS is attack detection. ShadowContext

prevents the modification in privileged system calls by providing a sys-

tem call redirection based VMI approach. This approach forces the

monitored system calls to execute in a secure location. The attack pre-

vention of ShadowContext may not be a very good choice as it imposes a

significant overhead into the system. This is because that the monitored

system calls of programs of all the TVMs are executed in Dom0 mem-

ory of the hypervisor, protecting them, from in-guest malware attacks.

Xenini-IDS uses an interrupt handling technique in which interrupts

(0x80) are first diverted to the hypervisor (Xen is patched with Xenini

which is a security module running at VMM), which further divert con-

trol to XenIDS (running at Dom0) for performing malware detection.

Maitland uses the guest OS hooks based VMI technique where some

security modules execute as kernel hooks in guest OS. These security

modules further send the VM information to analysis module, running

at Dom0. VIMD employs a breakpoint injection based VMI technique

for trapping syscall traces and detecting in-guest malware from Dom0

of the hypervisor. Unlike other VMI approaches, breakpoint injection

technique is much flexible to be implemented at different guest-OS and
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Table 5.18: Comparison of Proposed technique with existing work

Parameter VIMD Maitland [91] Xenini-IDS [69]
ShadowContext

[93]

Technique
VMI with

Dynamic Analysis
VMI

VMI with
Dynamic Analysis

VMI with
Dynamic Analysis

Motive
Attack

Detection
Attack

Detection
Attack

Detection
Attack

Prevention
VMI
Technique

Break
Point Injection

Guest OS hooks
Interrupt
Handling

System Call
Redirection

Placement
of IDS

VMM (Dom0) VM and Dom0
VMM and

Dom0
VM

and Dom0
Feature
Extraction

BonG (VMGuard)
SCDG (VAED)

Memory
Writes (String)

System Call
Sequence (String)

System Call
(String)

Ordering of
System Call

Considered NA Considered Considered

Attack
Resistantance

High Medium Medium Medium

Feature
Selection

TF-IDF (VMGuard)
IGR(VAED)

NA NA NA

System
Model

Freq-based(VMGuard)
Prob-based(VAED)

NA String-based NA

Storage
Requirement

Medium
More for
signature system

High Low

Machine
Learning

Applied NA NA NA

Adaptability More
Lesser
than A

Lesser
than A

Lesser
than A

Process
Validation

Considered
Not

Considered
Not

Considered
Not

Considered
Hidden Process
Detection

Considered
Not

Considered
Not

Considered
Not

Considered
Levels of
Security Check

Two One One One

IDS
Subversion

Difficult Moderate Difficult Moderate

Robustness
of System

High Medium Medium Medium

Detection
Rate

94%-100% (VMGuard
,UNM), 97.50%-98.8333%

(VAED, Dnew)
NA

100%
(UNM sendmail)

NA

Hypervisor
dependability

dependant dependent dependant dependant

do not require additional security modules at guest OS kernel, making

it suitable for security applications for cloud environment.

VIMD have been implemented with two feature extraction approaches:

BonG (when VMGuard is used as core detection mechanism) and SCDG

(when VAED is used as core detection mechanism) at the VMM-layer.

VIMD with core detection mechanism as VAED, supports the proba-

bility model and constructs System Call Dependency Graph (SCDG)

for each trace which is built by using Markov Chain principle. The

ordering of system calls and transition probability distribution of sys-

tem calls both are maintained by VAED. Maitland does have its own

detection mechanism, however a simple pattern matching approach is

used by author for demonstration. Xenini-IDS considers the ordering

of system calls. However, since it employs string-based features, it is

prone to string based attacks in which legitimate codes are inserted in

the malware process to increase the number of matches compared to

mismatches. ShadowContext fetches the details of selected system calls

of monitored programs and executes them at Dom0. It maintains their

ordering in the execution sequence of a program. However, a piece of
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code is injected in a dummy monitored process (used for communica-

tion with Dom0) which runs at the monitored machine. The security of

this code is very important aspect here. In VAED detection mechanism

of VIMD, the feature vectors contain continuous values, it is difficult to

bypass the security system by performing string or frequency manipu-

lation.

Unlike all other approaches, VIMD uses feature selection method for

each of the detection mechanism: TF-IDF (in VMGuard) and IGR

(in VAED) which improves the discriminating power of system call se-

quences/transitions and improves the performance of detection engine.

In VIMD, none of the security code runs at the monitored machine,

making it more attack resistant and secure from in-guest malware

attacks. The attack resistant of rest of the approaches (Maitland

and ShadowContext) is moderate, as security modules are distributed

among monitoring TVM and Dom0 VM, requiring the security of their

own modules, running at TVM. Unlike VIMD, Xenini-IDS uses the

system call sequences (string patterns) for monitoring. It does not

incorporate the semantics of the sequences in different traces as in-

corporated by VIMD, making it less resistant to string (system call)

manipulation attacks. Hence, Xenini-IDS achieves moderate-level of

attack resistance.

The storage requirement of VIMD is different for each detection mecha-

nism. In case of VMGuard, it stores the frequency count of appropriate

unique n-grams selected by applying the TF-IDF algorithm. This re-

duces the storage requirement to a greater extent when compared to

existing schemes ISCS [84], BoS [67]) which stores all possible system

call sequences/system calls of monitored programs. If a total of m, n-

grams are selected, then O(km) storage will be required, where k is a

constant representing the number of bytes required to store the count

of an n-gram. In case of VAED, it stores the probability distribution of

appropriate unique system call transitions by applying IGR. The stor-

age requirement is reduced to a greater extent than existing approaches.

If there are total n transitions are selected, then O(cm) storage will be

required where c is a constant representing the byte required to store

a probability value of transition. Maitland requires more storage than

VIMD if various pattern matching rules are used to find any abnormal-

ity in the extracted memory patterns. Xenini-IDS also requires more

storage than VIMD in storing all possible system call patterns of all
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normal traces which directly depends on the total number of execution

traces. ShadowContext does not maintain any baseline profile. How-

ever, some context registers and in-guest buffers are used at the time

of monitoring.

VIMD improves the generalization power of the detection engine using

statistical learning techniques (machine learning approaches), which im-

proves the ability of the detection engine to detect similar unseen attack

processes. The other discussed approaches lack the statistical learning

based approach, and hence, limit their adaptability to learn the behav-

ior of newly discovered attacks.

VIMD provisions two-levels of security check, unlike other approaches

which have just one. The primary check provides a basic security check

to detect any hidden processes and also checks the presence of running

processes of traditional security-tool at the TVM (process validation),

which makes it more robust against stealth attacks. The secondary

security check performs a detailed behavioral analysis of processes, as

some malicious processes may attach themselves to normal programs

and keep running in the system.

VIMD, Xenini-IDS and ShadowContext have better robustness than

Maitland approaches because of completely out-of-the-VM implemen-

tation of the monitoring agent. However, unlike VIMD, rest approaches

do not check the presence of VM rootkits and do not validate whether

a tenants security tool (such as an Anti Virus) is running correctly.

Moreover, ShadowContext can behave abnormally if the security man-

ager fails to design the system call redirection properly. A redirected

system call can produce unexpected results and can even crash the guest

OS.

VIMD have been validated with the UNM dataset and Evasive mal-

ware dataset. The UNM dataset is a standard dataset that has been

widely used by researchers in validating their techniques. It is difficult

to replicate the results from self-generated dataset which is not pub-

licly available. VIMD achieves accuracy from 94%-100% in detecting

anomalies using VMGuard detection approach. It achieves an accu-

racy of 97.50%-98.8333% for detecting evasive malwares using VAED.

Maitland is not tested for any attack dataset. Xenini-IDS achieves

100% accuracy for UNM sendmail dataset. However, it uses traditional

STIDE detection mechanism [115], which is a very older approach and

based on the principle of collecting all normal system call sequences of
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monitored programs. Any deviation will signal to abnormal behavior.

Hence, it is not suitable in cloud environment where user’s behavior

keeps on evolving as it will produce more false alerts for evolving new

behavior. ShadowContext is a prevention strategy and hence, it has

not been tested with a attack dataset. VMI based approaches are

hypervisor dependent. Xenini-IDS is implemented on Xen 4.0.1 and

Shadow-Context on KVM (version unspecified). A key advantage of

VIMD is that, being an introspection-based application, it runs as a

security application at Dom0 of the hypervisor and provides efficient

intrusion detection schemes at the VMM-layer in cloud.

5.6 Conclusion

A VM introspection based malware detection system has been proposed

for detecting intrusions at the virtualization layer in cloud environment.

Our work addresses four main aspects: (i) Placement of the security tool

at a trusted location; (ii) Provision of primary security check to perform

process validation and program execution tracing at VMM (iii) Provi-

sion of secondary security check by providing two different system call

behavior analysis approaches at hypervisor (iv) Use of a machine learn-

ing techniques to learn about attack patterns. The first technique for

behavior analysis is VMGuard which extracts the semantics for attacks

using the TF-IDF integrated BonG approach and have been found to

perform well for program modification attacks. The second technique

for behavior analysis is VAED which is mainly designed to detect spe-

cific set of malwares called evasive malware. It employs SCDG analysis

for malware detection. It not only preserves the ordering of system

calls in form of system call transitions but also considers frequency and

probability distribution between each pair of system call which makes it

suitable to detect complex behavior of evasive malware. In both these

approaches, learning module is applied to create a generic behavior of

malware samples. So, even if there is a small variation in malware code,

its semantic information can be captured and detected by security tool.

In the proposed security architecture, VIMD is placed at Dom0 of a

VMM, and TVMs are introspected using VMI libraries. The run-time

behavior of programs is extracted. Machine learning approaches are

applied to generalize malware behavior and improve the adaptability of
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the system. VIMD is suitable for a virtualization based cloud environ-

ment. A cloud administrator can control and monitor the security tool

from Dom0 of VMM, which helps to prevent IDS subversion from ne-

farious tenants. VIMD achieves accuracy from 94%-100% in detecting

anomalies using VMGuard detection approach. It achieves an accuracy

of 97.50%-98.8333% for detecting evasive malwares using VAED.
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Chapter 6

Malicious Network Packet

Detection (MNPD)

This chapter describes the design and implementation of ‘Malicious

Network Packet Detection’ (MNPD), one of the sub IDS instance of

CloudHedge. MNPD monitors the network traffic at VMM-layer and

Network-layer in cloud. It supports the network introspection capability

along with the network behavior analysis to deal with intrusions in

cloud. MNPD sub IDS instances are distributed at each privileged

domain of Virtual Machine Monitor (VMM) and Cloud Network Server,

running outside the Tenant Virtual Machines (TVMs). Each instance is

configured and controlled by cloud administrator. The security design

of MNPD is described with the explanation about various detection

components in detail.

6.1 Introduction

A number of attack incidents are reported by IT companies or organiza-

tions depending heavily on IT every year. Cisco Annual Security report

[186] mentioned that spams related to the Boston Marathon bombing

made up of 40% of all spam messages delivered worldwide. European

Network and Information Security Agency (ENISA) [35] reported that

Dropbox was attacked by Distributed Denial of Service (DDoS) and

suffered a substantial loss of service for more than 15 hours. Amazon

cloud was infested with DDoS botnets [187]. Researchers have proposed

various defensive solutions. The defensive mechanisms are mainly cate-

gorized into two types: traditional approaches (like signature matching
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and machine learning etc.) and virtualization based approaches (like

VM introspection). The survey of detection mechanisms has been dis-

cussed in Chapter 2. Security researchers have applied these mecha-

nisms to detect the network intrusions in cloud. However, there are

some limitations associated with the existing security solutions as dis-

cussed in detail in Chapter 2. They are briefly summarized below.

Some researchers have proposed the use of traditional intrusion detec-

tion approaches at the TVM-layer for detecting network intrusions in

cloud [74][82][90][139][188]. These approaches share the TVM resources

which are being shared by monitoring programs and can be directly ac-

cessed by attackers. The existing network intrusion detection system

(NIDS) proposals [71][83][87] where the monitoring is done at the cloud

servers or node controllers, are not efficient. These approaches fail to

detect VM attacks which are targeted from one TVM to another TVM

sharing the same physical server as the tenant’s virtual traffic never

passes through any physical interface. Some of the security proposals

apply signature matching technique [141][149] at the VMM-layer which

may impose significant overhead into the system as discussed in Chap-

ter 2. Infact, most of the works [126] [90] have been validated using

datasets like KDD99 or NSL-KDD99 [150]. These are comparatively

old and have been criticized by other researchers for not representing

the state of the art network features and their statistics [189].

Some of the other recent approaches (eg. Maitland[91], FMA[190]) sup-

port introspection. However, they are mainly designed for VM memory

analysis and not intended for traffic analysis applications. The recent

work [126] (validated with KDD99) is based on network traffic monitor-

ing at VMM-layer and does not incorporate the introspection features at

the hypervisor. In fact, in all the existing IDS techniques, as discussed

before, the detection becomes more complex for the forged IP/MAC ad-

dresses. These attacks are difficult to detect at the VMM-layer. As the

actual VM IP information of a packet is lost when a packet crosses the

virtual bridge and reaches the physical interface. Moreover, the detec-

tion of intrusions at the Network-layer as as important as the detection

at other layers.

We propose a network behavior monitoring system, called as ‘Malicious

Network Packet Detection (MNPD)’ to provide security from network

intrusions in cloud. MNPD provides two-levels of security checks. One

instance of MNPD is deployed at the Network-layer of Cloud Network
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Server (CNS), providing primary security check from network attacks

at centralized server. However, not all tenant traffic passes through

the CNS, specially communication between co-located tenants in the

same server. Hence, another instance of MNPD is deployed at privi-

leged domain (Dom0) of VMM-layer of Cloud Compute Server (CCoS);

providing secondary security check. Xen VMM [10] is considered for

the implementation of MNPD which manages all the unprivileged do-

main (DomU) of hypervisor. MNPD is configured to listen on virtual

network interfaces (VNIs) on both servers. MNPD provides VM in-

trospection to gain the VM related information using open source tools

such as Libvirt [77], XenStore [191], dnsmasq server [192] from Dom0 of

hypervisor. The information is later used to perform traffic validation

at VMM-layer of CCoS to detect spoofing attacks. However, an attack

can be targeted using correct Source Internet Protocol (IP) and/or Me-

dia Access Control (MAC) address. Hence, MNPD performs behavior

analysis of traffic at both Network-layer and VMM-layer by using ma-

chine learning approaches particularly Random Forest classifier (RF)

with ensemble of feature selection method. MNPD employs two pop-

ular feature selection approaches i.e. Chi Square [193] and Recursive

Feature Elimination (RFE) [194] methods in parallel and combines their

results to transform the original dataset into new dataset. This reduces

the dimension of dataset and removes the less relevant features, which

improves the classifiers’ performance. The motive of feature union is

to reduce the biasness of one feature selection method towards the het-

erogeneous dataset which contains different datatypes. On detection of

suspicious network packets, alert signals are generated and sent to the

cloud administrator for further action. MNPD is well suited to provide

the third line-of-defense from network intrusion in cloud.

6.2 Network Introspection at Xen

In this section, we discuss the information related to various domains

at Xen, Xen-API tools, database, administrative interface, networking

drivers and Dynamic Host Configuration Protocol (DHCP) server which

are used by MNPD for VM network introspection.

Dom0 is the trusted privileged domain in Xen that starts first on boot.

It manages all other untrusted domains of tenants called as DomU do-

mains. Dom0 is isolated and secure from access of tenant users. There
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are two interfaces provided by Xen. One interface is used by tools

(Xen-API/Xen management API) and the other is used by guests (Xen

systemcall/hypercall API) [195]. Xen API provides the bridge between

the low-level daemons and userspace applications. The request from

userspace application is parsed and communicated to the Dom0 ker-

nel. It then serves the request using the management functions. In

the implementation of MNDP with Xen as VMM, libvirt library [77]

is used to provide Xen API and facilitates the management function-

alities at hypervisor. This library is widely used in the development

of cloud based solutions by companies like Oracle and SUSE in their

OpenStack-based Cloud [196]. Libvirt is an open source management

library in virtualization environment and provides support for many

APIs: storage management, networking and domain management to

perform management related tasks. For example, libvirt supports APIs

to do domain management such as provision, modify, create, control,

migrate, stop etc. It includes an API library, a daemon (libvirtd), and

a command line utility (virsh) to perform management related task.

Dom0 maintains a database named as XenStore which maintains the

configuration information of different domains which is shared between

them. The domains read and write in the database to communicate

with other domains. A daemon named xenstored runs in the Dom0 of

Xen to provide backend storage to XenStore. In Dom0, a special dae-

mon xend runs and provides the administrative interface to hypervisor

which is used by cloud administrator to define policies.

Dom0 is provided with device driver domain. It runs the native net-

work interface card (NIC) driver. As DomU machines cannot directly

access the physical NIC, Xen provides two part virtual NIC driver to

them. The first part is named as FrontendDriver which is installed on

DomU and second part is named as BackendDriver which is installed

on Dom0. FrontDrivers and BackendDriver communicates with each

other using XenStore, XenBus and event channels [191].

Xen provides ethernet bridge (virbr0) which connects the physical NIC

to virtual NICs as shown in Figure 6.1. The bridge multiplexes and

demultiplexes the traffic between physical NIC and each virtual NIC.

When a TVM wants to transfer data to internet, it sends the request

to FronendDriver which forwards the request to BackendDriver. All

requests are queued in the driver domain of Dom0 and forwarded to

actual physical device. The FrontendDrivers are named as ethN and

178



Figure 6.1: Security architecture for deployment of MNPD instances in cloud
environment

BackendDrivers are named as vif.DomID.DevID where DomID is do-

main ID of VM and DevID is interface ID. For example, vif5.0 can be

interpreted as virtual network interface of VM having domain ID 5 and

interface ID 0.

The OpenStack, a popular cloud management software uses dnsmasq

service at Dom0 of Compute Servers to assign the private IP addresses

to each TVM [192]. Hence, for implementing MNPD, dnsmasq service

is used for setting up Dynamic Host Configuration Protocol (DHCP)

Server at Dom0 of hyperivor. The libvirt supports this light weighted

service which provides network infrastructure for small network (such as

network for co-located tenant machines): Domain Name Server (DNS),

DHCP, route advertisement and network boot. The DHCP server of

Dnsmasq supports both static and dynamic leases, multiple networks

and IP address ranges. Cloud administrator can configure the service to

assign the range of IP addresses, gateway, DNS-server, and subnetmask

etc using the dnsmasq.conf configuration file (/etc/dnsmasq.conf).

6.3 MNPD: Security Design

The proposed Malicious Network Packet Detection (MNPD) as a sub-

IDS instance of CloudHedge, is designed to detect attacks against
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TVMs in cloud environment. MNPD provides the third-line of defense

from attacks, having two-levels of security check at CNS and CCoS re-

spectively as discussed before in Section 6.1. The MNPD approach is

concerned mainly with the analysis of network traffic traces. It provides

good performance for network attack detection. However, it does not

promise to achieve the same accuracy for low-frequency attacks such

as malware, rootkits, etc. The network connection statistics of these

attacks are similar to normal network connections. The approach to

detect such type of attacks is proposed in our earlier works (discussed

in Chapter 4 and Chapter 5) which are based on system call analysis.

The following assumptions are made in the security architecture: A

Cloud Service Provider (CSP) is a faithful and reputed organization

and VMM platform is trusted. MNPD has privilege to access the ap-

plication specific information of monitored VMs. This privacy concern

is clarified between CSP and tenant users at the time of registration in

form of Service Level Agreement (SLA). For example, Google says that

it reserves the right to review the tenant’s applications and data. Users

sign this agreement at the time of sign up/registration [163] .

The main objectives of the MNPD are as follows:

1. To perform the behavioral analysis of network traffic at Network-

layer of CNS to provide primary security defense from attacks.

2. To detect the spoofing attacks (both IP and MAC) originated from

TVMs and also to perform the behavioral analysis of network traffic

at VMM-layer of CCoS to provide secondary security defense from

attacks.

The detection of network attacks such as, TCP-SYN flooding, ICMP

flooding, UDP flooding and scanning etc., is essential at primary stage

at CNS. These attacks slow down the performance of target VM by

making its resources unnecessarily busy. Spoofing attacks from TVM

to another TVM, make the detection of network attacks more difficult

to achieve. Hence, whenever a packet is generated by a TVM, its IP

and MAC are validated at hypervisor and only non-spoofed packets are

passed to behavior analyzer at CCoS for further analysis for detection

of network attacks.

At a high-level, there are four main detection components of MNPD as

follows: Behavior Capturing Engine (BCE), Traffic Validator (Trval),

Network Behavior Analyzer (NBA) and Alert & Log Generator (ALG).
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Figure 6.2: Security architecture of MNPD

The various detection components of MNPD are shown in Figure 6.2.

BCE sniffs the packets and generates logs. It also provides the attack

dataset at the time of learning. TrVal validates the TVM traffic for

correct IP and MAC address. Only legitimate traffic is allowed to reach

the destination after behavior analysis at Dom0. NBA learns the attack

patterns in learning phase and detects any suspicious network pattern in

detection phase. ALG generates the alerts and logs if suspicious activity

is detected by NBA detection component. The logs are shared with

cloud administrator. Only legitimate packets are allowed to pass from

physical interface of CCoS and forwarded to other servers (CNS/other

CCoS). TrVal ensures that virtual traffic reaching to CNS or other

CCoS, has correct virual IP/virtual MAC. Therefore, TrVal is activated

at CCoS only whereas all other detection components are activated at

both the servers. The execution flow of various security functions of

MNPD is shown in Figure 6.3. A detailed description of each of the

detection components of MNPD is discussed in subsequent subsections.

6.3.1 Behavior Capturing Engine

A Behavior Capturing Engine (BCE) sniffs the packets ingress or

outgress on the monitored TVM. MNPD uses tcpdump [197] for sniffing

and logging the packets. At CNS, MNPD is deployed at the host OS

server and is configured to capture the packets passing through Open
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Figure 6.3: Execution flow of MNPD Sub IDS security functions
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Virtual Switch (OVS). OVS plug-in supports two types of bridge inter-

faces namely br-int and br-ex. A br-int is an integration bridge which

connects the VMs with each other. The internal network traffic flows

through this bridge. A br-ex is an external bridge which connects the

VMs to external world or vice versa. A br-ex bridge is connected to

physical interface of the CNS as shown in Figure 6.1 (refer Section 6.2).

At CCoS, the behavior is captured at the VNICs of the monitored ma-

chine. Packet Sniffing is done in parallel for each of the monitored VM

by listening on the corresponding Virtual Network Interface (VNI) of

machine and VM profiles are created. Each VM profile is identified by

a particular domain name and domain ID, set by administrator and hy-

pervisor respectively. Each profile represents the behavior statistics of

network connections which are stored in .pcap file. Another important

task of BCE is to provide the attack traffic records to TrVal and NBA

for validating and learning the behavior of attacks.

6.3.2 Traffic Validator

Intrusion Detection System deployed at the TVM being monitored can

be compromized and full control can be obtained by an attacker. Hence,

TVM-layer security mechanisms which ensure that a tenant is generat-

ing only legitimate packets, cannot be fully trusted. In fact, the detec-

tion process will become cumbersome, if the compromised TVM floods

the other TVMs with spoofed source addresses. Traditional IDSes do

not provide the introspection facility to detect such network attacks

from hypervisor. At the VMM-layer, Traffic Validator (TrVal) provides

the traffic validation functionality to ensure that TVMs are generating

traffic from a correct Source IP and MAC address. It takes the input

from BCE and redirects the non-spoofed packets to NBA for detailed

analysis as attacks can also be generated from a legitimate source ad-

dress. The proposed Algorithm 4 shows how TrVal validates the traffic

from outside the VM at Cloud Compute Server (CCoS).

VM traffic passes through VNI and then through virtual bridge be-

fore reaching an actual physical interface. Once the traffic reaches

actual physical interface, its information about the actual VM IP is

lost. Hence, MNPD captures the packets at VNI itself and detects the

spoofing attack by TrVal component. Each VNI (vif.DomID.DevID)

is associated with a DomID as discussed in Section 6.2. Hence, it is
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Algorithm 4: Proposed algorithm for Detecting IP and MAC Spoofing at Hy-
pervisor

Global Baseline Db ← {}, T est Db← {}, F lag ← {}
MACIPTable ← /var/lib/libvirt/dnsmasq/virbr0.statusOutPut : AlertandLogs

Function MNPD SpoofingDetection()
BaselineDB Generation();
for each VNI.DomID.DevID in Xen do

PacketCapturing VNI.DomID(VNI.DomID.DevID);
//We are calling it in parallel for each VNI

end

return
Function BaselineDB Generation()

Start dnsmaqservice of libvirt and Configure it for VMs network setting;
for all tenant VMs under monitoring and in running mode do

Domainname.value,DomainID.value=getDomainnameID(); Real.IP,
Real.MAC=ExtractReadIPMAC(MACIPTable);
Baseline Db=CreateBaselineDb(Domainname.value, DomainID.value, Real.IP, Real.MAC);

end

return
Function PacketCapturingVNI(V NI.DomID.DevID)

for each packets originated from VNI having domain ID as DomID do
src.IP, eth.MAC=getPacketHeaderInfo(Packet);
Append.Test Db(Src.IP, eth.MAC, DomID);

end
IP SpoofingDE(Test Db);
MAC SpoofingDE(Test Db);

return
Function IP SpoofingDE(Test Db)

Flag=0;
for each DomID in Test DB do

Extract Real.IP of VM with domain id equals to DomID from Baseline Db;
for each Packet of VM (DomID) do

Extract src.IP from Test Db;
if src.IP!=Real.IP then

Flag=1;
end
if Flag==1 then

Print Domain (Domainname.value) is generating IP Spoofed packets with Spoofed address
src.IP;

end

end

end

return
Function MAC SpoofingDE(Test Db)

Flag=0;
for each DomID in Test DB do

Extract Real.MAC of VM with domain id DomID from Baseline Db;
for each Packet of VM (DomID) do

Extract eth.MAC from Test Db;
if eth.MAC!=Real.MAC then

Flag=1;
end
if Flag==1 then

Print Domain (Domainname.value) is generating MAC Spoofed packets with Spoofed
address eth.MAC;

end

end

end

return
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possible to identify which VM has generated the traffic which is origi-

nated from the VNI being monitored. Once the domain ID is known,

MNPD can then identify which domain (such as Ubuntu-Guest-VM1 or

Ubuntu-Guest-VM2) is generating the traffic by mapping the domain

ID with domain name using Xen API commands.

Each domain is mapped to its real IP address and real MAC address

at hypervisor. This is achieved by installing DHCP service (dnsmasq is

considered in the implementation of MNPD) at the Dom0 and configur-

ing it for each VM network settings. The configuration file is located at

following path: /etc/dnsmasq.conf. The DHCP service is configured

to allocate an IP address from a given range of IP addresses at the time

of VM launch.

The MAC address is allocated to each VM at every launch

operation which is configured at the VM configuration file

(/etc/xen/Ubuntu-Guest-VM1.cfg). The configuration information

related to MAC address for each VM is also saved in XenStore. How-

ever, XenStore does not provide the IP related information and is shared

only with Domains. DHCP service stores the actual configured net-

working settings (IP address, MAC address etc.) at certain location

in Xen (/var/lib/libvirt/dnsmasq/virbr0.status) which is stored

on each booting process of VM. MNPD introspects the MAC and IP

entries at that location, configured by dnsmasq DHCP service for ob-

taining actual network configuration information.

A baseline database (Baseline Db) is created to store all the VM re-

lated information (Domainname.value, DomainID.value, Real.IP and

Real.MAC) which is later used to verify the packer header informa-

tion captured at VNI. We have retrieved src.IP and eth.MAC header

values from each packet coming from VM at its actual VNI (backend

driver interface) using tshark tool [198]. Each packet information with

corresponding domain ID is saved in the Test Db. The information

in Test Db is verified with baseline database (Baseline Db) based on

their domain ID. For each packet coming from VNI, the IP Spoof-

ing detection module (IPSpoof DE()) extracts the real IP information

(Real.IP) from (Baseline Db) and compares it with all the obtained

IP values (src.IP) of the packets originated from TVM. If any of the

packet mismatches with the real IP value allocated to VM, packet is

detected as IP spoofed. Similarly, for each packet, MAC Spoofing de-

tection module (MACSpoof DE()) extracts the real MAC information

185



(Real.MAC) from (Baseline Db) and compares it with all the obtained

MAC values (eth.MAC) of the packets originated from TVM. If any

of the packet mismatches with the real MAC value allocated to VM,

packet is detected as MAC spoofed. The VM generating such packets is

declared as suspicious. For each case, a message with details of spoofed

values and compromised virtual machine is displayed at administrative

interface.

6.3.3 Network Behavior Analyzer

The main goal of Network Behavior Analyzer (NBA) is to detect any

abnormality in the network traffic at both the servers. The output of

BCE is passed as input to NBA at CNS whereas the traffic which is

passed by TrVal is analyzed by NBA at CCoS. NBA has two detection

modules: (i) Optimal Feature Statistics Matrix (OFSM) Generation

and (ii) Detection Engine which are described below:

6.3.3.1 Optimal Feature Statistics Matrix Generation

Optimal Feature Statistics Matrix (OFSM) represents the behavioral

statistics (feature values) of the traffic which are to be analyzed by DE.

NBA performs two steps: packet pre-processing and feature selection,

to generate the OFSM log which is passed as a input to the detection

engine. The packet capture files (.pcap) provided by BCE represent the

basic statistics of the packet header values such as destination address,

source address, prototype, etc. However, they are not sufficient to de-

tect the attacks. Hence, in packet pre-processing, a set of advanced

features such as source bits per sec, sum of SYNACK and destination

bits per sec etc. are derived from captured data which represent the

association between packet header values. There are some tools which

can be used to derive various types of features from PCAP files such

as NetMate-flowcalc [199]. All extracted features are stored in Feature

Statistics Matrix (FSM) log file. Next, FSM is pre-processed to reduce

the dimensionality (features) and to select the most important features

which are more relevant for classification. We have used ensemble of Chi

Square [193] and Recursive Feature Elimination (RFE) method [194].

Each of the transformer object (feature selection method) is applied to

original dataset independently and in parallel. All feature vectors of
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the output are combined to form a new feature vectors and are stored

in optimal FSM (OFSM) log file.

6.3.3.2 Detection Engine

Detection Engine (DE) is responsible for detecting intrusions at Net-

work and VMM-layer. DE operates in two phases: learning and de-

tection. DE employs the learning approach based on ensemble based

classifier, particularly Random Forest (RF) [168]. In learning phase, RF

trains itself with behavior statistics of prepared attack dataset (OFSM)

and learns the attack patterns. It generates a decision model which is

used to detect the anomalies in the network traffic at the time of detec-

tion. In detection phase, the sniffed packets are processed and prepared

in a similar fashion as the packets of attack dataset are processed (ex-

plained above). However, the testing log file does not have any labels

which are decided by the decision model. RF generates trained multiple

decision trees over sub samples of training dataset (bootstrap sample).

The output is the average of the predictions made by each tree. The

main advantage of considering RF classifier is that it does not require

extensive training and can fit with large databases very well. It is also

not much sensitive to input parameters like SVM[200]

RF requires the tuning of one parameter i.e. no. of estimators, cal-

culated by Out of Bag (OOB) error plot. Out of Bag (OOB) error is

the average error for each instance (Xi, Yi) predicted by n classifiers

trained over a bootstrap sample that does not contain (Xi, Yi) [185].

OOB highly affects the classifiers performance and directly relates to

generalization error. Some researchers [119] have used Decision Tree

(DT) [160] in their detection approach as DT is the simplest tree based

classification algorithm. However, a tree can grow very deep and can

tend to learn highly irregular patterns which can overfit the dataset

instances. Hence, it will produce high classification error and low accu-

racy for large databases. The publicly available attack datasets such as

ITOC [201] and UNSW-NB [189] contain large number of records. De-

cision Tree is not suitable for them. Instead, the ensemble of decision

trees (DTs) (Random Forest) is found to perform well during imple-

mentation. The main advantage with Random Forest is that it handles

high dimensional spaces as well as large number of training examples

very well.
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Algorithm 5: Algorithm for Intrusion Profile
Generation and Detecting Malicious Packets
Initialization:

X← {x1,x2,x3......xn}
y← {y1,y2,y3......yk}

Result: VM1 Intrusion Profile, VM2 Intrusion Profile...VMn Intrusion Profile; Alerts and Logs
Function Profile Generation Module()

for each monitored machine m do
Log1(PCAP)=BeCap(VNI);
for Each network packet i in Log1 do

Label=Extract label(Packeti);
while Log1 6=NULL do

FV=Packet Pre-Processor(Packeti);
Append.FSM(Label, FV);

end

end
dt=DecisionTreeClassifier();
rfe=RFE(dt, 8);
chi2= SelectKBest(chi2, k=8);
combined features = FeatureUnion([(”RFE”, rfe), (”Chi Square”, chi2)]);
OFSM = combined features.fit(X, y).transform(X);
clf=RandomForestClassifier(n estimators=130);
X=OFSM [:,1:n-1] ; // All rows from 2nd(index 1) to n (index n-1) columns

;
Y=OFSM[0] ; // First column contains target class labels (index 0)

;
Decision Modelm=clf.fit(X, Y);

end

return
Function Detection Module()

for each monitored machine m do
Log2(PCAP)=BeCap(Interface card);
for Each network packet i in Log2 do

while Log2 6=NULL do
Test FV=Packet Preprocessor(Packeti);
Test FSM=Write(Test FV);

end

end
Pred=Load(Decision Modelm);
Labels=pred.predict(Test FSM);
if Lables.find(’intrusive’) then

Generate Alert(”Suspicious Activity Detected”)–>CloudAdmin;
end
CloudAdmin–>Analysis(Log);
CloudAdmin–>Respond();

end

return
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The trained classifier is stored as a baseline detector for matching traf-

fic behavior. Each trained IDS instance is enabled at both CNS and

CCoS. The trained profiles are stored in form of decision model in net-

work intrusion profiles database (NIP Db) for each monitored machine

as shown in Algorithm 5. In testing time, DE uses a pre-compiled in-

trusion profile of attacks stored in NIP Db as a decision model trained

over attack patterns. The execution flow of MNPD for network attacks

detection at CNS and CCoS is as follows:

1. MNPD invokes Behavior Capture Engine and captures the traffic.

2. Test log file is generated and loaded by executing the OFSM mod-

ule.

3. The baseline detector (decision model) for monitored machine is

loaded from NIP Db which is a trained ensemble classifier.

4. DE classifies the packet as anomalous or normal based on learned

traffic behavior and generates an alarm to cloud administrator on de-

tection of anomalous class.

As RF (supervised algorithm) is trained for a labeled attack dataset,

it can only detect those attacks for which it is trained. It can also

detect unknown attacks which are variants of known attack patterns.

The attack variants exhibit the similar behavior characteristics of their

parent class. The limitation with this approach is that it can not detect

those unseen attacks which exhibit a totally different behavior than

learned attack patterns.

6.3.4 Alert and Log Generator

A cloud administrator performs further analysis on suspicious traffic

based on the output log created by MNPD. The log provides the in-

formation about the TVM together with its domain ID, domain name

and VNI details generating the malicious traffic. Once, the details of

machine generating the malicious traffic is known, cloud administrator

can get the other details such as source/destination port details, source

addresses, destination addresses etc. A tenant can be informed to close

the applications associated with the suspicious ports. The suspicious

network connections are terminated. If a tenant TVM generates a large

number of malicious traffic, it is isolated for further analysis or restored

to a previous checkpoint when it was found to be benign.
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Table 6.1: Details of normal and intrusive records in the attack datasets

Intrusion Dataset Total Records Intrusive Records Normal Records No. of Attributes
ITOC 4,00,000 1,67,879 2,32,121 27
UNSW-NB 175,341 119,341 56,000 47

6.4 Experiments

The prototype of our approach has been implemented on a machine with

Ubuntu 16.04 as host OS, Xen 4.6 as hypervisor, Core i7 processor with

16 GB RAM, 500 GB HDD and two guest VMs with Ubuntu (one is

used as attacker machine and other one as victim machine). Each VM

has 8GB RAM, 100GB HDD and Ubuntu 14.04 is installed as guest

OS. Python 2.7.10 has been used as a programming language. We

have first used UNSW-NB [189], a latest Intrusion Detection dataset,

created at Cyber Range Lab of the Australian Centre for Cyber Se-

curity (ACCS). The dataset presents a current network threats and

modern low frequency attacks. UNSW-NB dataset contains a total 47

features which are explained by Moustafa et al. [202]. There are 10 at-

tack classes in the dataset namely Analysis, Fuzzers, Backdoors, Dos,

Exploits, Generic, Reconnaissance, Shellcode and Worms. We further

analyzed the performance with another ITOC dataset [201], generated

by Information Technology Operations Center at United States Mili-

tary Academy (USMA) which contains 27 records. ITOC dataset has

two attack classes benign and malicious. The details of the dataset is

shown in Table 6.1. The above two datasets are processed by MNPD

detection components.

6.4.1 Performance Measures

The following parameters are considered for evaluation:

∗ Accuracy: This is one of the basic measures for describing the

performance of classification algorithms. It describes the degree to

which an algorithm can correctly predict the positive and negative

instances and is calculated by the formula:

Accuracy =
TN + TP

TN + TP + FN + FP
(6.1)

∗ False Positive Rate (FPR): The proportion of incorrectly classi-

fied intrusions to the actual size of the attack class and is calculated
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by the formula:

False Positive Rate =
FP

FP + TN
(6.2)

∗ False Negative Rate (FNR): The proportion of incorrectly clas-

sified normal traffic to the actual size of the normal class and is

calculated by the formula:

False Negative Rate =
FN

TP + FN
(6.3)

∗ True Positive Rate (TPR): The proportion of correctly classi-

fied intrusions to the actual size of the attack class and is calculated

by the formula:

True Positive Rate =
TP

TP + FN
(6.4)

∗ True Negative Rate (TNR): The proportion of correctly clas-

sified normal traffic to the actual size of the normal class and is

calculated by the formula:

True Negative Rate =
TN

TN + FP
(6.5)

The validation of our technique is described in subsequent section.

6.4.2 Results and Discussion

In this section, MNPD is validated and results are discussed. The

performance metrics, considered for evaluation have been discussed in

previous section. MNPD detection approach is compared with existing

work for network intrusion detection in cloud.

To evaluate the TrVal detection component, we first created two guest

VMs (TVMs) running over hypervisor. Both the VMs are configured

to run over same tenant subnet, so that they can communicate with

each other. The first VM (VM1) is used to create and send IP spoofed

packets to victim target VM (VM2). IP spoofed packets are created at

VM1 using hping3 tool [102] with spoofed IP: 192.168.122.90 and real

IP: 192.168.122.92. Once the MNPD instance was activated at Dom0,

alert messages were generated with the details of the VM generating

malicious IP spoofed traffic as shown in Figure 6.4. It can be seen
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Figure 6.4: Output of MNPD for IP Spoofing Attack

that VM with certain domain name ‘ubuntu-guest1’ is generating the

IP spoofed packet, received at its vif3.0 backend driver. Domain ID of

VM can be interpreted from VNI number which is 3 in this case. To

block the packets arriving with particular source IP (src.IP), MNPD

enables iptable filter rules at virbr0 bridge of hypervisor.

In another case, second VM (VM2) is used to create and send MAC

spoofed packets to victim target VM (VM1). MAC spoofed pack-

ets are created at VM2 using nmap tool [203] with spoofed MAC:

aa:bb:cc:dd:de:cf and real MAC: 00:16:3e:cc:9a:d3. Once the MNPD

instance is activated at Dom0, alert messages were generated with the

details of the VM generating malicious MAC spoofed traffic as shown in

Figure 6.5. It can be seen that VM with domain name ‘ubuntu-guest2’

is generating the MAC spoofed packet, received at its vif4.0 backend

driver where 4 is the domain ID of VM2. To block the packets with

particular MAC address, MNPD enables ebtable filter rule at virbr0

bridge of hypervisor.

To evaluate the behavior analysis functionality, the dataset is pre-

processed by extracting the relevant features, normalizing and scaling
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Figure 6.5: Output of MNPD for MAC Spoofing Attack

Table 6.2: Results of MNPD over UNSW-NB intrusion dataset

Classifiers Accuracy (%) False Positive Rate (%)

DT [204] 85.56 15.78
NB [204] 82.07 18.56
LR [204] 83.15 18.48

ANN [204] 81.34 21.13
EM clustering [204] 78.47 23.79

DT (RFE) 91.570 6.21
DT (RFE+Chi Square) 93.903 5.218

RF (RFE) 92.458 4.121
RF (RFE+Chi Square) 95.091 2.415

the dataset. Tree based classifiers, particularly Decision Tree and Ran-

dom Forest are used for analysis using k-fold cross validation where

k=10. Feature selection plays a very important role to improve the

performance of classifier in a high dimensional dataset. The selected

features have a better ability to explain the variance in the training data

and improve the accuracy of a classifier. Hence, 16 features are selected

by using feature union of RFE [194] and Chi Square [193] methods.

First of all, the behavior analysis functionality of MNPD is evaluated

with UNSW-NB dataset [189], a latest intrusion detection dataset. The

prime motive was to provide an ensemble method which can provide an
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Figure 6.6: Estimator prediction based on OOB error for RF (UNSW-NB)

improvement over existing results of Moustafa et al. [204] using UNSW-

NB. Moustafa et al. have considered accuracy and FPR for evaluation.

The same parameters are considered for evaluating MNPD. They have

used different single classifiers DT, Naive Bayes (NB), Artificial Neural

Network (ANN), Logistic Regression (LR), Expectation-Maximization

(EM) clustering and found that DT is proving best results with 85.56%

accuracy with 15.78% FPR as shown in Table 6.2. In our implemen-

tation, DT with RFE improves the results with 91.570% accuracy and

6.21% FPR.

Its accuracy is further improved when it is trained and tested over

combined feature union method (RFE and Chi Square) which turns out

to be 93.903% with 5.218% FPR. Further, Random Forest is executed

with 130 decision trees and bagging method is applied. The estimators

are predicted based on the OOB error. To perform hyperparameter

tuning, RF is trained in iteration over a range of 10-200 estimators. In

each iteration OOB error is calculated. A curve plotted between out-of-

bag (OOB) error and number of estimators (DTs) as shown in Figure

6.6. Finally the number of estimators (decision trees) are selected as

130 for which OOB error found to be minimum. RF is also tested in

both scenarios of feature selection i.e (RF with RFE and RF with RFE

& Chi Square). RF with RFE feature selection provides an accuracy

of 92.458% with 4.121% FPR. We found the improvement in accuracy

when it is trained over the combined feature union method (RFE and
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Table 6.3: Classification results of MNPD for intrusion detection using ITOC
attack dataset

Classifier+Feature selec. Accuracy TPR TNR FNR FPR
NB (Chi Square) 68.760 51.100 81.544 48.89 18.455
DT (Chi Square) 92.740 88.54 97.7914 11.458 4.208
RF (Chi Square) 97.070 97.052 97.085 2.947 2.914
NB (RFE+Chi Square) 68.723 51.112 81.460 48.887 18.539
DT (RFE+Chi Square) 94.659 89.800 98.17 10.199 1.8266
RF (RFE+Chi Square) 98.888 99.182 98.482 0.8176 1.517
DT+SVM [87] 84.30 86.84 71.66 13.16 28.34

Chi Square). The accuracy comes out to be 95.091% with 2.415% FPR

which is better than the results by Moustafa et al. over the same dataset

(refer Table 6.2).

We considered another attack dataset (ITOC) for evaluating the behav-

ior analysis functionality of MNPD. The ensemble method of MNPD

provides an improvement over existing results of Singh et al. [87] using

ITOC dataset as shown in Table 6.3. Singh et al. [87] have considered

TPR, TNR, FPR, FNR, Accuracy for evaluation. We have also consid-

ered the parameters for evaluation. The performance of Naive Bayes

(NB), Decision Tree C 4.5 (DT) and Random Forest (RF) classifiers

is also compared. Initially we run NB algorithm in integration with

Chi Square as feature selection method. NB gives a low poor accuracy

of 68.760% with 51.100% TPR and 81.544% TNR. It provides a high

false positives (19.455%-48.89%). There is not much improvement in

the performance when running NB with an ensemble of feature selec-

tion methods (RFE + Chi Square). There is a very slight variation

in all parameters. NB is based on the assumption of that all features

are independent from each other. This is not a good criteria for intru-

sion detection as the network features are derived features and there is

definitely some relation between them. We have made a detailed inves-

tigation of the intrusion detection using machine learning classifiers and

observed that rule based classifiers have been found to perform well for

network intrusion detection system applications. The effectiveness of

rule based ensemble learning for detecting network intrusions has also

been proved by Panda et al [205].

Hence, MNPD applies the ensemble learning particularly RF classi-

fier for attack detection in cloud with ensemble of feature selection

approaches. However, we have compared the two popular rule based

classifiers DT C 4.5 and RF for attack detection. First of all, both
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Figure 6.7: Estimator prediction based on OOB error for RF (ITOC)

DT and RF are executed in integration with only Chi Square feature

selection method. DT with Chi Square is resulting in a accuracy of

92.740% accuracy with 88.54% TPR, 97.7914% TNR, 11.458% FNR

and 4.208% FPR. The performance of DT is improved using a feature

union method (union of RFE and Chi Square). It is providing an accu-

racy of 94.659% with 89.800% TPR, 98.17% TNR, 10.199% FNR and

1.8266 % FPR. There is an improvement in accuracy by ∼ 2%. There

is a good reduction in the FPR rate by ∼ 2.3814%. However, the ac-

curacy has not increased. A single DT classifier tends to overfit over a

large size of dataset which contains many records. Hence, we further

applied RF, an ensemble classifier with many decision trees. In case of

RF, we have considered 80 decision trees and applied bagging method.

The estimators are predicted based on the OOB error as shown in Fig-

ure 6.7. The parameter tuning is performed in a similar way as dis-

cussed above for UNSW-NB dataset. RF with Chi Square is providing

97.070% detection accuracy with 97.052% TPR, 97.085% TNR, 2.947%

FNR and 2.914% FPR. RF is providing good detection performance

when compared with other classifiers in all the cases discussed above.

RF when executed with an ensemble of RFE and Chi Square achieves

much better accuracy of 98.888%. The true alarms have improved and

false alarms have reduced. We can infer that the irrelevant features

having low discrimination power may affect a classifiers performance

for classifying instances. It is providing 99.182% TPR, 98.482% TNR,
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0.8176% FNR and 1.517% FPR with the ensemble of features selection

approaches. The final results of detection engine of MNPD based on

RF with (RFE and Chi Square) are compared with the recent work by

Singh et al. [87] for network intrusion detection in cloud. Singh et al.

achieved a low accuracy of 84.30% for the ITOC dataset by propos-

ing the integration of DT and SVM. MNPD improves its accuracy by

∼ 14. DT in integration with SVM also provides low TPR of 86.84%

with 71.66% TNR. It produces more false alarms with 28.34% FPR

and 13.16% FNR. The integration of DT with a completely different

classifier i.e. SVM (based on the concept of hyperplane) is producing

the poor results for ITOC. SVM is itself very sensitive to parameters

and require tuning of parameters for even any small variation in the

dataset. Hence, the rule based classifier applied by MNPD is provided

to be effective for network intrusion detection.

We have compared the performance of the proposed MNPD approach

with other approaches in cloud environment: ecloudIDS [139], NIDS

[90], C-IDS [87] and ‘Hypervisor Detector’ [126]. All the approaches

other than eCloudIDS are misuse detection approaches which use the

existing knowledge of attack signatures and/or labeled attack traffic

dataset. The eCloudIDS [87] uses traditional Self Organizing Map

(SOM) classifier as an anomaly detection module to learn the normal

behavioral profile of users. Any deviation from learned profile is noti-

fied as abnormal behavior. However, generalizing the clients behavior

is difficult in dynamic cloud environment because of the evolving ‘nor-

mal’ traffic flows. NIDS [90], the core module uses SNORT as a primary

detection module. The output of SNORT is integrated with the deci-

sion tree classifier algorithm which runs only for the traffic, marked as

normal by SNORT. As all the benign traffic is forwarded to classifier

and the malicious traffic marked as bad, this does not reduce the false

positive rate of Snort (only the false negative). Also, there is no verifi-

cation of an alert; it does not reduce the false alarms, neither for Snort

nor for the DT. The parameters considered for comparison are shown

in Table 6.4.

C-IDS [87] is a slight variation of NIDS. The only difference being the

use of machine learning approaches. C-IDS uses the ensemble of deci-

sion tree and SVM classifier in integration with SNORT for detecting

the intrusions. It has the same limitation as discussed for NIDS. The
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proposed MNPD approach is based on the integration of network in-

trospection and machine learning classifier to detect intrusions in cloud

environment. It was observed that the Random Forest (RF) technique,

which is an ensemble learning classifier, provides better results than

when compared with other classification algorithms. An ensemble learn-

ing approach generates more than one classifiers and aggregates their

results. RF combines the idea of bagging and the random selection of

features. ‘Hypervisor Detector’ [126] uses a network traffic analysis ap-

proach which employs misuse detection approach based on the Fuzzy

c-means clustering technique integrated with ANN deployed at VMM.

However, it involves extensive training due to the complexity of the

algorithm. This is not desirable in cloud environment as it may require

often retraining of IDS instances.

Most of these approaches (eCloudIDS, NIDS) with some other network

intrusion approaches for cloud [74][82][188] are deployed at TVM-layer.

This increases the risk of IDS subversion because of the lack of trust

in the guest OS kernel. Secondly, spoofing is difficult to be detected

at TVM-layer. Hypervisor is the only entity in the VM hosted server

which is responsible for the network and TVM configuration and set

up of TVMs. Tenant domains (DomUs) are not allowed to retrieve any

network related information from hypervisor, set up by cloud admin

at the time of VM launch. C-IDS is deployed at cloud servers/cluster

nodes. The virtual IP information gets lost once a packet passes the

virtual bridge of hypervisor. Hence, detecting attacks below hypervisor,

at the host OS of the hypervisor, does not provide the fine granularity.

‘Hypervisor Detector’ is deployed at the VMM. However, the technical

details about the deployment have not been discussed. Moreover, CNS

is the prime source of target for network intrusions. None of the ap-

proaches discuss the security at the network server. MNPD provides

two-levels of security check. The first is done at the CNS and other

at VMM of CNS. Unlike other approaches, MNPD performs traffic val-

idation as a second-level security check for checking the IP spoofing

and MAC spoofing attacks at hypervisor itself. It blocks the spoofed

packets to reach to destination machine (same server or other server).

Unlike all other approaches, MNPD considers feature selection using

ensemble of RFE and Chi Square which removes the irrelevant features

from the dataset and hence improves the accuracy of detection engine.
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Table 6.4: Comparison of MNPD with other approaches proposed for Cloud
Security

Parameter MNPD eCloudIDS [139] NIDS [90] C-IDS [87]
Hypervisor
Detector [126]

IDS technique
Misuse detec.
with VMI

Anomaly detec. Misuse detec. Misuse detec. Misuse detec.

Key tool/
Algorithm

Network Introspection
with ML

ML
SNORT and
ML

SNORT and
ML

ML

Placement of
IDS

CNS and VMM (dom0) VM VM, cloud servers cloud servers VMM

Feature selection
Ensemble (RFE
+ Chi2)

NA NA NA NA

Traffic validation Applicable NA NA NA NA
Behavior
analysis

Considered Considered Considered Considered Considered

IDS subversion Difficult Easy Easy Easy Moderate
Details of
virtual networking

Specified Not specified Not specified Not specified Not specified

Robustness High Low Low Low Moderate

Dataset
UNSW-NB,
ITOC

Self KDD99 KDD99, ITOC KDD99

Accuracy
98.88% (ITOC),
95.091% (UNSW-NB)

89%
96.71% (KDD99),
84.31% (NSL-KDD99)

99.98% (KDD99),
84.30% (ITOC)

98%

The TVM-layers approaches (eCloudIDS, NIDS) are prone to guest ker-

nel modification attacks and can be easily compromised by attackers.

These approaches are less robust and have high risk of subversion. C-

IDS is prone to host manipulation attacks. In fact, it may not be able

to capture the traffic from co-located TVMs as the virtual traffic never

passes through the physical interface. It is less robust and can also be

bypassed by spoofed attack traffic. ‘Hypervisor Detector’ analyzes the

virtual traffic at only VMM. However, it cannot identify the spoofed

attack traffic and hence the robustness is moderate.

The eCloudIDS is validated with self generated dataset and accuracy is

89% with 9% FPR. NIDS have been validated with a very older attack

dataset, i.e. KDD99 and NSL-KDD9. It achieves an accuracy of 96.71%

with 1.91% FPR using KDD99 and 84.31% accuracy with 4.81% FPR

with NSL-KDD99. ‘Hypervisor Detector’ is also validated with very

older KDD99 dataset and achieves 98% accuracy. C-IDS achieves an

accuracy of 99.98% with 0.01% false alarms using KDD99. Its accu-

racy is 84.30% with 13.16% false alarm using ITOC dataset which is

comparatively newer than KDD99. MNPD is validated with latest in-

trusion detection dataset (UNSW-NB) and achieves 95.091% accuracy

with 2.415% FPR. MNPD is also tested with ITOC dataset. The accu-

racy is 98.887% with 1.533% false alarms which is better than C-IDS,

a recent intrusion detection proposal. Most of the IDS techniques have

been with KDD99. As the evaluation is based on very older dataset,

no estimation of the real performance of the system can be assessed.
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6.5 Conclusion

A robust and learning based security approach Malicious Network

Packet Detection (MNPD) is proposed for detecting malicious network

traffic in cloud environment. CNS is the primary component which is

responsible for routing of cloud network packets from VM to VM, VM

to outside world and vice versa. Hence, in the proposed security archi-

tecture, one instance of MNPD is deployed at the CNS to monitor the

communication of VMs at the network level. CCoS is another critical

security component which runs various VMs. Hence, other instances of

MNPD are deployed at Dom0 of each of the CCoS which validates all

traffic originated by VM for detecting IP and MAC spoofing attacks.

Only legitimate packets are forwarded to other interfaces. Behavior

analysis of network traffic is performed at both the servers to detect

the abnormality in the traffic using pre-compiled intrusion profile and

machine learning algorithm. The two-levels of security checks improves

the robustness of the system. It also eliminates the need of IDS deploy-

ment at each and every VM instance. It achieves 95.091% accuracy

with 2.415% FPR using UNSW-NB dataset and an accuracy of 98.88%

with 1.517% FPR using ITOC dataset. The results are better than ex-

isting recent works for network intrusion detection using same datasets.

In future, we plan to provide an extended framework for doing the de-

tailed investigation of attacks by performing memory introspection at

VMM of VM hosted servers.
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Chapter 7

Conclusion and Scope for

Future Work

7.1 Conclusion

In this thesis, a comprehensive intrusion detection framework is devel-

oped to detect attacks in cloud environment by provisioning three-lines

of defense, covering all three layer of cloud, i.e. TVM-layer, VMM-layer

and Network-layer.

We started with a threat model, proposed in cloud environment which

helps in analyzing the vulnerabilities and assets that are most likely to

be targeted in cloud environment. The proposed threat model addresses

the various vulnerable attack surfaces and attack entities in cloud. The

attack scenarios are discussed with respect to each attack surface. An

attack taxonomy is proposed in cloud which represents a systematic

framework to classify attacks and highlight the need for intrusion de-

tection mechanisms. The classification of various attacks is done based

on the target cloud components where attacks target specific layers of

cloud. Some of these attacks have been addressed in this thesis to de-

tect the intrusion attempts against virtual domains running in cloud.

Based on the exhaustive literature study, a classification of detection

mechanism is proposed with various examples. A detailed description

of various intrusion detection systems is presented to give in-depth view

of the various cloud based IDS. Our findings represent the observations

after going through various techniques in detail, and they point out

the pros and cons of each category, technique and approach. A list of

research challenges have also been outlined.
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We proposed an efficient, robust and Virtual Machine

Introspection(VMI)-based distributed security framework, called

CloudHedge to detect intrusion at different layers i.e. TVM and

VMM and Network-layer in cloud environment. CloudHedge monitors

the behavior of both programs and network traffic of monitored TVMs

by using the various proposed security approaches integrated with the

memory and network introspection capabilities. It provides three line

of defense in form of three sub IDS instances which are TVM-based

monitoring, Hypervisor-based monitoring and Network-based monitor-

ing. These are named as Malicious System Call Sequence Detection

(MSCSD), VM Introspection based Malware Detection (VIMD) and

Malicious Network Packet Detection (MNPD) respectively. MSCSD

runs inside the TVM (TVM-layer). VIMD runs at the dom0 of the

hypervisor (VMM-layer). MNPD runs at both Cloud Network Server

(Network-layer) and Dom0 of the hypervisor (VMM-layer). All these

sub IDS instances are the part of CloudHedge. We assume that Cloud

Service Provider (CSP) is a faithful and reputed organization and

VMM platform is trusted. Each of the sub IDS instance of CloudHedge

has privilege to access the application specific information of monitored

VMs. This privacy concern is clarified between CSP and tenant users

at the time of registration in form of Service Level Agreement (SLA).

The sub-IDS instances are distributed and deployed at security-critical

positions such as TVM, VMM and Network-server, covering all three

layers i.e. TVM, VMM and Network-layer in cloud. Each of the

sub-IDS is configured, monitored and controlled by the cloud admin-

istrator. A tenant member has no control over any of the sub-IDS

instance. CloudHedge leverages the use of various VM Introspection li-

braries to perform the introspection from outside the TVM. The design

of CloudHedge is efficient as it provides different security approaches

to deal with both network and malware intrusions. It is robust since

if an attacker becomes successful in evading the TVM-layer security

approach, the other security approaches deployed out-of-the-VM would

still be running actively. The design of CloudHedge is motivated from

the fact that centralized IDS becomes a bottle neck when the number

of TVMs in cloud increase. We also identified that there is less viability

and efficiency of distributed IDSes which deploy same security solutions

at all regions of cloud. This is because of the limitations and design

choices associated with different layers. CloudHedge sub-IDS instances
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are distributed in nature providing different security approaches at each

layer. They do not share the same VM resources for their operations,

reducing the overhead at individual TVM. The implementation set up

is based on Xen VMM for hosting the TVMs. We have considered the

cloud architecture based on OpenStack [16]. The summary of each of

the sub-IDS instance is given below.

Malicious System Call Sequence Detection (MSCSD) sub IDS

instance provides the first-line of defense which is deployed at TVM-

layer in cloud. MSCSD is applicable to traditional physical hosts and

all cloud deployments such as SaaS, PaaS and IaaS. MSCSD performs

the dynamic analysis (run-time behavioral analysis) of the programs,

running in the monitored tenant VMs and centrally controlled and co-

ordinated by cloud administrator. It can access all the contextual in-

formation without requiring any complex functions for trace extraction.

MSCSD observes the run-time behavior of the programs, hence it is free

from anti-detection techniques such as obfuscation and encryption tech-

niques. First of all, it extracts the execution traces of monitored pro-

grams (located in program file list) in form of system call logs. MSCSD

then applies the proposed ‘Bag of n-grams (BonG)’ approach for ex-

tracting features out of the collected logs. BonG finds out the frequency

and structure of various short sequence of system calls, called n-grams.

It is therefore successful in maintaining the ordering of the subsequent

system calls within each sub-sequence. All the extracted feature vec-

tors represents the behavior of system call sequences in form of the

frequency distribution of unique n-grams present in normal and intru-

sive traces which is learned by machine learning (Decision Tree C 4.5)

classifier. In detection phase, the trained model is used to analyze the

behavior of running processes and detect suspicious activity. MSCSD

has been compared with existing dynamic analysis based intrusion de-

tection approaches [67] [84] for cloud and proved to be efficient with

better accuracy. The key advantage with MSCSD is that it improves

the accuracy and reduces the storage requirement when compared to

other behavior analysis approaches for cloud while maintaining the or-

dering of system calls. It is validated using University of New Mexico

(UNM) dataset [155] and achieves an accuracy of 72.103%-99.812%. It

is secure from string manipulation attacks as it uses the numeric feature

vector. It can be applied in cloud environment as a first-line of defense

mechanism and is better suited to the privacy concerned tenants.
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VM Introspection based Malware Detection (VIMD) sub IDS

instance provides the second-line of defense which is deployed at VMM-

layer. The main motivation behind VIMD is to detect both basic and

stealthy advanced attacks at VMM-layer in cloud. VIMD uses the open

source VMI libraries extensively. It provides two-levels of security and

operates in three phases: memory introspection, behavior analysis of

syscalls at hypervisor and alerting & reporting phase. In memory intro-

spection, VIMD performs the primary security check to ensure that all

the security-critical processes, running at TVM such as auto-update,

auto-scan are enabled. It also detects the presence of hidden processes

at TVM memory. If any suspicious activity is detected, cloud adminis-

trator is alerted about it. It further captures the execution tracing of

the programs, running at TVM, from hypervisor by employing a kernel

debugging based VM introspection mechanism. VIMD then performs

the secondary security check by doing the detailed behavior analysis on

processes in next phase. In behavior analysis phase, VIMD performs

the behavior analysis using two core detection components: VMGuard

and VAED. In alerting and reporting phase, Alert and Log Generator

(ALG) is invoked to create logs and send alerts to the cloud administra-

tor with detailed report. VIMD has been implemented with both the

core detection components. The detailed description of core detection

mechanism using VMGuard and VAED is given below.

VMGuard is based on the system call sequence analysis which detects

attacks at VMM-layer in cloud. It takes the input from the memory in-

trospection phase of VIMD and performs behavior analysis. It is based

on the frequency model which integrates the BonG approach with text

mining approach, particularly Term Frequency-Inverse Document Fre-

quency (TF-IDF) to extract the rare system call sequences and improve

the attack detection rate. TF-IDF considers two factors: frequency and

rarity while giving ranks to the extracted n-grams. The extracted rel-

evant features are stored in the Feature Vector Matrix (FVM) log file

which is given as input to detection engine. The detection engine of

VMGuard is based on the ensemble learning approach (Random For-

est) which is used to learn and detect the program semantics of the

malware. It has been validated with the UNM dataset [155]. VM-

Guard achieves an accuracy of 94%-100% in detecting intrusions. UNM

dataset is in form of system call traces. VMGuard considers the struc-

tural aspects of the traces. VMGuard is found to perform well to detect
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malware attacks in cloud which do not depend on the system artifacts

(e.g. privileged program subversion attacks) at VMM-layer in cloud.

However, it does not capture the more complex behavioral aspects of

the programs. It is less suitable to detect evasion based attacks which

change their behavior on detection of some security tool. The detection

of evasive malware attack is addressed by another approach, discussed

below.

VAED is based on the system call transition analysis which can be

opted by CSP to detect the evasive malware attacks at VMM-layer in

cloud. It is based on the probability model which considers both struc-

tural and behavioral aspects of traces. VAED captures the program

semantics in different execution paths of the program in form of system

call dependency graph (SCDG). The semantics are based on the ordered

sequence of system calls with the analysis of the transition probabili-

ties from one system call to other possible system call. The transition

probabilities are calculated by using the Markov Chain property. It

considers the frequency of a system call transition with respect to all

other system call transitions. This helps to capture the more complex

behavioral aspects of the evasive malware. The extracted features for

each SCDG, are stored in form of <transition-value pair> in Feature

Transition Matrix (FTM). The transitions having good information cen-

tric paths are chosen by applying Information Gain Ratio (IGR) over

FTM and stored in Optimal FTM (OFTM). OFTM is learned by en-

semble classifier, based on fusion of diverse classifiers. Here, weighted

voting scheme is used as a fusion rule to fuse the diverse classifiers re-

sults. The trained classifier captures the behavior semantics of evasive

malware from OFTM. It is used as baseline information to detect ab-

normality. It has been validated with evasive malware dataset [158] (in

form of malicious programs), obtained from University of California.

Evasive malware dataset is first injected in clone VMs for extracting

the behavior using PET component. The extracted traces are now an-

alyzed using VAED approach for evasion detection. VAED achieves an

accuracy of 97.50%-98.833% for detecting evasive malware.

The core detection components of VIMD has been successfully vali-

dated and seems to provide good results. To validate other compo-

nents of VIMD specially PV and PET, evasive malware dataset [158]

has been used. VIMD detected the hidden processes successfully. We

have compared VIMD with other intrusion detection frameworks in a
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virtualization environment: Maitland [91], Xenini-IDS [69] and Shad-

owContext [93]. It is proved to be better while considering various

parameters for comparison. The key advantage with VIMD is that its

runs as a security application out-of-the-VM at Dom0 of hypervisor and

provides a complete solution to detect both basic and evasive malware

attacks in cloud by providing efficient detection approaches. It is bet-

ter suited to provide second-line of security defense mechanism for the

privacy cum security concerned tenants.

Malicious Network Packet Detection (MNPD) sub IDS instance pro-

vides the third-line of defense which is deployed at Network and VMM-

layer in cloud. The security approaches as discussed above, perform

the careful examination of the system calls which is the key in identify-

ing the interaction between program and guest OS. This information is

very important to detect malware attacks. However, system call anal-

ysis based approaches are not sufficient to detect network based intru-

sions. In order to facilitate the detection of network intrusions outside

the guest machine, MNPD performs the network traffic analysis of ten-

ant’ network. MNPD ensures the security from network intrusions by

monitoring the tenant virtual network traffic with two-levels of secu-

rity check. It provides the primary security from attackers, targeting

Network-layer of Cloud Network Server in cloud. The secondary secu-

rity check detects the attacks against virtual domains at VMM-layer of

Cloud Compute Server. It leverages the network introspection features

to gain the VM related information using open source tools such as Lib-

virt [77], XenStore [191], dnsmasq server [192] from Dom0 of hypervisor.

The information is later used to validate the network traffic using pro-

posed algorithm. The non-spoofed packets are further analyzed passed

to network behavior analyzer (NBA) to learn and detect any abnormal-

ity in the virtual traffic. NBA learns the attack patterns in learning

phase using Random Forest classifier. The trained model is used to

detect any suspicious network pattern in detection phase. MNPD runs

two popular feature selection approaches i.e. Chi Square and Recursive

Feature Elimination (RFE) methods [194] in parallel and combines their

results to transform the original dataset into new dataset. This reduces

the dimension of dataset and removes the less relevant features which

improve the classifiers’ performance. Alerts and logs are sent to cloud

administrator if any suspicious activity is detected by NBA detection

component. Only legitimate packets are allowed to pass from physical
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interface of CCoS and forwarded to other servers (CNS/other CCoS).

MNPD does not incur overhead in monitoring extensive memory writes

or instruction-level traces. It is a more secure solution to detect at-

tacks which never pass through physical interface and hence are not

detected by traditional IDS. Secondly, it is difficult to get compromised

by malicious tenant users as it is deployed outside the TVM at both

the VMM and Network layer. We have compared the performance of

the proposed MNPD approach with other approaches in cloud environ-

ment: ecloudIDS [139], NIDS [90], CIDS [87] and ‘Hypervisor Detector’

[126]. Most of the IDS techniques have been validated with KDD99. As

the evaluation is based on very older dataset, no estimation of the real

performance of the system can be assessed. MNPD has been validated

with UNSW-NB and ITOC datasets. It provides an accuracy of 98.88%

using ITOC dataset and 95.091% using UNSW-NB dataset which are

better than the existing approaches.

In summary, this thesis presented a threat model, attack taxonomy,

classification of IDS with detailed analysis of their detection mecha-

nism for detecting attacks that are possible in the cloud. A set of

key research challenges have been identified. To address some of these

challenges, we proposed a comprehensive intrusion detection framework

called CloudHedge with three lines of defense against different types of

attacks in the cloud. We have validated the proposed techniques using

different datasets and the results seem to be promising.

7.2 Scope for Future Work

The design of CloudHedge overcomes the limitations associated with

the existing security proposals. However, a number of issues crop up in

the working of CloudHedge. Some of them are as follows:

∗ MSCSD is currently controlled by cloud administrator, for moni-

toring system specific and configuration files of TVMs. However,

in future MSCSD can be provided as a service to the tenants for

monitoring their user space files which will be completely under

control of tenants.

∗ CloudHedge can also be improved by making use of the clustering

approaches for intrusion detection. Clustering approaches (unsu-

pervised learning) can be used to detect the unseen attack patterns.
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∗ MNPD can also be improved by taking the advantage of both clas-

sification and clustering approaches to detect the attacks in cloud.

∗ Correlation of alerts from IDS instances deployed at different layers

can be done using appropriate mechanism to detect the distributed

attacks in cloud.

∗ In this stage, CloudHedge is designed to detect attack launched

by malicious tenants. Cloud Hedge does not provide the detection

of attacks from malicious cloud service provider. However, Cloud-

Hedge can be extended to detect these types of attacks in future.

∗ Efficient hypervisor security solutions can also be integrated with

the existing frameworks by incorporating hypervisor introspection

approaches to address the attacks against VMM.

∗ Severity of attacks can also be decided based on the some appro-

priate mechanism for anomalous score calculation based on user’s

behavior profile.

∗ Hypercall analysis can also be done at the hypervisor-layer to im-

prove the attack detection accuracy of IDS.
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Appendix A

List of Publications

� Publications in International Journals

1. P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “Intrusion

detection techniques in cloud environment: A survey,” Journal of

Network and Computer Applications, Elsevier, vol. 77, pp. 18-47,

2017 (SCI Expanded with 3.5 (IF)).

2. P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “VAED:

VMI-assisted evasion detection approach for infrastructure as a ser-

vice cloud,” Concurrency and Computation: Practice and Experi-

ence, Wiley, vol. 29, no. 12, pp. 1-21, 2017, (SCI Expanded with

1.133 (IF)).

3. P. Mishra, V. Varadharajan, E. S. Pilli, and U. Tupakula, “VM-

Guard: VMI-assisted security architecture for intrusion detection

in cloud environment,” IEEE Transactions on Cloud Computing,

pp 1-14, 2017 [Under minor revision].

4. P. Mishra, V. Varadharajan, E. S. Pilli, and U. Tupakula, “Detailed

Investigation and Analysis of using Machine Learning Techniques

for Intrusion Detection,” IEEE Communication Surveys and

Tutorials, pp. 1-35, 2017, (SCI with 17.177 (IF)) [Submitted

revised version].

� Publications in International Conferences

1. P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “Out-VM

monitoring for malicious network packet detection in cloud environ-

ment,” in IEEE ISEA Asia Security and Privacy Conference, IEEE,

NIT Surat, India, Jan 2017, pp. 1-10.
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2. P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, ”Securing

Virtual Machines from Anomalies Using Program-Behavior Anal-

ysis in Cloud Environment,” in IEEE 18th International Confer-

ence on High Performance Computing and Communications (HPCC

2016), Sydney, Australia, Dec 2016, pp. 991-998.

3. P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, ”Effi-

cient approaches for intrusion detection in cloud environment,” in

IEEE International Conference on Computing, Communication and

Automation (ICCCA 2016), Greater Noida, India, 2016, pp. 1211-

1216.

� Other Publications (Journal/Conference)

1. P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “PSI-

NetVisor: Program Semantic Aware Intrusion Detection at Network

and Hypervisor Layer in Cloud,” Journal of Intelligent and Fuzzy

Systems, vol. 32, no. 4, pp. 2909-2921, 2017. [SCI Expanded with

1.261 IF]

2. P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, ”NvClou-

dIDS: A Security Architecture to Detect Intrusions at Network and

Virtualization Layer in Cloud Environment,” in IEEE 5th Interna-

tional Conference on Advances in Computing, Communications and

Informatics (ICACCI 2016), Jaipur, India, Sept 2016, pp. 56-62.
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computing vulnerabilities,” IEEE Security & privacy, vol. 9, no. 2, pp.

50–57, 2011.

[95] M. M. S. M. Habib, V. Varadharajan, “A framework for evaluating

trust of service providers in cloud marketplaces,” in 28th ACM Symp.

Applied Computing, Coimbra, Portugal, 2013, pp. 1–3.

[96] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting

environment-sensitive malware,” in Int. Workshop on Recent Advances

in Intrusion Detection, CA, USA, 2011, pp. 338–357.

[97] Y. Fratantonio, C. Kruegel, and G. Vigna, “Shellzer: a tool for the

dynamic analysis of malicious shellcode,” in Int. Workshop on Recent

Advances in Intrusion Detection, Salzburg, Austria. Springer, 2011,

pp. 61–80.
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