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ABSTRACT

Chapter 1 is intended to provide an introduction to various functions, poly-

nomials, integral transforms and fractional integral operators studied by some of

the earlier researchers. Further, we present the brief chapter by chapter summary

of the thesis. Finally, we give a list of research papers which have either been

published or accepted for publication in reputed journals having a bearing on

subject matter of the thesis.

In Chapter 2, we first present an integral representation and Mellin transform of

S-generalized Gauss hypergeometric function. Next, we give its complex integral

representation and a relationship between S-generalized Gauss hypergeometric

function and H-function of two variables. Further, we introduce a new integral

transform whose kernel is the S-generalized Gauss hypergeometric function and

point out its three special cases which are also believed to be new. We specify

that the well-known Gauss hypergeometric function transform follows as a simple

special case of our integral transforms. Next, we established an inversion formula

vii



for above integral transform. Finally, we establish image of Fox H-function un-

der the S-Generalized Gauss hypergeometric function transform and also obtain

the images of five useful and important functions which are special cases of Fox

H-function under the S-generalized Gauss hypergeometric function transform.

In Chapter 3, we study a pair of a general class of fractional integral operators

whose kernels involve the product of a Appell Polynomial, Fox H-function and

S-Generalized Gauss Hypergeometric Function. First we define and give the con-

ditions of existence of the operators of our study and then we obtain the images of

certain useful functions in them. Further, we evaluate four new integrals involving

Appell’s Function, Multivariate generalized Mittag-Leffler Function, generaliza-

tion of the modified Bessel function and generalized hypergeometric function by

the application of the images established and also gives the three unknown and

two known integral of these operators. Next we develop six results wherein the

first two contain the Mellin transform of these operators, the next two the corre-

sponding inversion formulae and the last two their Mellin convolutions. Later on,

we establish a theorem analogous to the well known Parseval Goldstein theorem

for our unified fractional integral operators.

In Chapter 4, we first derive three new and interesting expressions for the com-

position of the two fractional integral operators, which are slight variants of the

operators defined in Chapter 3. Finally, we obtain two interesting finite double

integral formulae as an application of our first composition formula known results

which follow as special case of our findings have also been mentioned.

In Chapter 5, we evaluate two unified and general finite integrals. The first
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integral involves the product of the Appell Polynomial An(z), the Generalized

form of the Astrophysical Thermonuclear function I3 and Generalized Mittag -

Leffler Function Eγ,δ
α,β,τ,µ,ρ,p(z; s, r). Next, we give five special cases of our main

integral. The second integral involves the I3 and H− function. Further, we give

the five special cases of our main integral

In Chapter 6, we find the solution of Bagley Torvik Equation using Generalized

Differential Transform Method (GDTM). Since the function f(t) taken in this

chapter is general in nature by specializing the function f(t) and taking different

values of constants A, B and C. We can obtain a large number of special cases

of Bagley Torvik Equation. Our findings match with the results obtained earlier

by Ghorbani et al. [29] by He’s variational iteration method. Further, we find

the solution of Fractional Relaxation Oscillation Equation using GDTM. Since

the function f(x) taken in this chapter is general in nature by specializing the

function f(x) and taking different values of constants A. we can obtain a large

number of special cases of Fractional Relaxation Oscillation Equation. Here we

give eight numerical examples. Furthermore these examples are also represented

graphically by using the MATHEMATICA SOFTWARE. Finally, we find the

solution of Fractional Order Riccati Differential Equation using GDTM. and we

give eight numerical examples. Furthermore these examples are also represented

graphically by using the MATHEMATICA SOFTWARE.
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1. INTRODUCTION TO THE TOPIC OF STUDY AND
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

The present chapter deals with an introduction to the topic of the study as

well as a brief review of the contributions made by some of the earlier workers

on the subject matter presented in this thesis. Next a brief chapter by chapter

summary of the thesis has been given. At the end of this chapter, list of research

paper having a bearing on subject matter has been given.

1.1 SPECIAL FUNCTIONS

Special functions have vast applications in all branches of engineering, applied

sciences, statistics and various other fields. A large number of eminent mathe-

maticians such as Euler, Gauss, Kummer, Ramanujan and several others worked

out hard to develop the commonly used special functions like the Gamma func-

tion, the elliptic functions, Bessel functions, Whittaker functions and polynomials

that go by the name of Jacobi, Legendre, Laguerre, Hermite.

The core of special functions is the Gauss hypergeometric functions 2F1, intro-

duced by famous mathematicians C F Gauss. It is represented by the following

series:

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
= 1 +

a.b

c

z

1!
+
a.(a+ 1).b.(b+ 1)

c.(c+ 1)

z2

2!
+ · · · (1.1.1)

where

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) for n ≥ 0; (a)0 = 1, c 6= 0,−1,−2, · · ·

a, b, c and z may be real or complex. Also if either of the numbers a or b is a

non-positive integer, the function reduces to a polynomial, but if c is non-positive

2



1.1 SPECIAL FUNCTIONS

integer, the function is not defined since all but a finite number of terms of the

series become infinite.

This series has a fundamental importance in the theory of special function

and is known as Gauss hypergeometric series. It is usually represented by the

symbol 2F1(a, b; c; z) the well known Gauss hypergeometric function.

In (1.1.1), if we replace z by
z

b
and let b→∞ then

(b)n
bn

zn → zn

and we arrive at the following well known Kummer’s series

∞∑
n=0

(a)n
(c)n

zn

n!
= 1 +

a

c

z

1!
+
a.(a+ 1)

c.(c+ 1)

z2

2!
+ · · · (1.1.2)

It is represented by the symbol 1F1(a; c; z) and is known as confluent hypergeo-

metric function.

A natural generalization of 2F1 is the generalized hypergeometric function pFq,

which is defined in the following manner:

pFq

 a1, · · · , ap;

b1, · · · , bq;
z

 = pFq[a1, · · · , ap; b1, · · · , bq; z]

=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
(1.1.3)

where p and q are either positive integers or zero and empty product is interpreted

as unity, the variable z and all the parameters a1, · · · , ap; b1, · · · , bq are real or

complex numbers such that no denominator parameters is zero or a negative

integer.

The conditions of convergence of the function pFq are as follow:

3



1. INTRODUCTION TO THE TOPIC OF STUDY AND
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

(i) when p ≤ q, the series on the right hand side of (1.1.3) is convergent.

(ii) when p = q+1, the series is convergent if |z| < 1 and divergent when |z| > 1,

and on the circle |z| = 1, the series is

(a) absolutely convergent if R(w) > 0

(b) conditionally convergent if −1 < R(w) < 0 for z 6= 1

(c) divergent if R(w) ≤ −1

where w =
q∑
j=1

bj −
p∑
j=1

aj

(iii) when p > q + 1, the series never converges except when z = 0 and the

function is only defined when the series terminates.

A comprehensive account of the functions 2F1, 1F1 and pFq can be found in the

works of Luke [67], Slater [106], Exton [25] and Rainville [90] and their applica-

tions can be found in Mathai and Saxena [74].

1.1.1 S-GENERALIZED GAUSS HYPERGEOMETRIC

FUNCTION

The S-generalized Gauss hypergeometric function F
(α,β;τ,µ)
p (a, b; c; z) was

introduced and investigated by Srivastava et al. [113, p. 350, Eq. (1.12)]. It is

represented in the following manner:

F (α,β;τ,µ)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β;τ,µ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
(|z| < 1) (1.1.4)

provided that (R(p) ≥ 0; min{R(α),R(β),R(τ),R(µ)} > 0; R(c) > R(b) > 0)

4



1.1 SPECIAL FUNCTIONS

in terms of the classical Beta function B(λ, µ) and the S-generalized Beta function

B
(α,β;τ,µ)
p (x, y), which was also defined by Srivastava et al. [113, p. 350, Eq. (1.13)]

as follows:

B(α,β;τ,µ)
p (x, y) =

∫ 1

0

tx−1(1− t)y−1
1F1

(
α; β;− p

tτ (1− t)µ

)
dt (1.1.5)

(R(p) ≥ 0; min{R(x),R(y),R(α),R(β),R(τ),R(µ)} > 0)

If we take p = 0 in (1.1.5), it reduces to classical Beta Function and (λ)n denotes

the Pochhammer symbol defined (for λ ∈ C) by (see [115, p. 2 and pp. 4-6]; see

also [114, p. 2]):

(λ)n =
Γ(λ+ n)

Γ(λ)

=

{
1, (n = 0)

λ(λ+ 1)...(λ+ n− 1), (n ∈ N := {1, 2, 3, · · · })
(1.1.6)

provided that the Gamma quotient exists (see, for details,[108, p. 16 et seq.] and

[112, p. 22 et seq.]).

For τ = µ, the S-generalized Gauss hypergeometric function defined by (1.1.4)

reduces to the following generalized Gauss hypergeometric function F
(α,β;τ)
p (a, b; c; z)

studied earlier by Parmar [83, p. 44]:

F (α,β;τ)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β;τ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
(|z| < 1) (1.1.7)

(R(p) ≥ 0; min{R(α),R(β),R(τ)} > 0; R(c) > R(b) > 0).

5



1. INTRODUCTION TO THE TOPIC OF STUDY AND
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

which, in the further special case when τ = 1, reduces to the following extension

of the generalized Gauss hypergeometric function (see, e.g., [82, p. 4606, Section

3] ; see also [81, p. 39]):

F (α,β)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β)
p (b+ n, c− b)
B(b, c− b)

zn

n!
(|z| < 1) (1.1.8)

(R(p) > 0; min{R(α),R(β)} > 0; R(c) > R(b) > 0)

Upon setting α = β in (1.1.8), we arrive at the following Extended Gauss hyper-

geometric function (see [13, p. 591, Eqs. (2.1) and (2.2)]:

Fp(a, b; c; z) =
∞∑
n=0

(a)n
Bp(b+ n, c− b)
B(b, c− b)

zn

n!
(|z| < 1) (1.1.9)

(R(p) > 0; R(c) > R(b) > 0)

1.1.2 THE H- FUNCTION

The H−function is defined by the following Mellin-Barnes type integral [109, p.

10] with the integrand containing products and quotients of the Euler gamma

functions. Such a function generalizes most of the known special functions.

HM,N
P,Q [z] = HM,N

P,Q

z
∣∣∣∣∣∣

(aj, αj)1,P

(bj, βj)1,Q

 = HM,N
P,Q

z
∣∣∣∣∣∣

(a1, α1), · · · , (aP , αP )

(b1, β1), · · · , (bQ, βQ)



:=
1

2πω

∫
L

Θ(s)zs ds, (1.1.10)

6



1.1 SPECIAL FUNCTIONS

where ω =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

and

Θ(s) =

M∏
j=1

Γ(bj − βjs)
N∏
j=1

Γ(1− aj + αjs)

Q∏
j=M+1

Γ(1− bj + βjs)
P∏

j=N+1

Γ(aj − αjs)
, (1.1.11)

Also M, N, P and Q are non-negative integers satisfying 1 5M 5 Q and

0 5 N 5 P ; αj(j = 1, · · · , P ) and βj(j = 1, · · · , Q) are assumed to be

positive quantities for standardization purposes. The definition of the H-function

given by (1.1.10) will, however, have meaning even if some of these quantities

are zero. Also, aj(j = 1, · · · , P ) and bj(j = 1, · · · , Q) are complex numbers such

that none of the points

s =
bh + ν

βh
h = 1, · · · ,M ; ν = 0, 1, 2, · · · (1.1.12)

which are the poles of Γ(bh − βhs), h = 1, · · · ,M and the points

s =
ai − η − 1

αi
i = 1, · · · , N ; η = 0, 1, 2, · · · (1.1.13)

which are the poles of Γ(1− ai + αis) coincide with one another, i.e

αi(bh + ν) 6= bh(ai − η − 1) (1.1.14)

for ν, η = 0, 1, 2, · · · ; h = 1, · · · ,M ; i = 1, · · · , N.

Further, the contour L runs from −ω∞ to +ω∞ such that the poles

Γ(bh − βhs), h = 1, · · · ,M, lie to the right left of L and the poles of

Γ(1− ai + αis), i = 1, · · · , N lie to the left of L. Such a contour is possible on

account of (1.1.14). These assumptions will be adhered to throughout the present

work.

7



1. INTRODUCTION TO THE TOPIC OF STUDY AND
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

SPECIAL CASES

The following special cases of the H−function have been made use in this thesis:

1. Lorenzo-Hartley G-function [34, p. 64, Eq. (2.3)]

H1,1
1,2

[
−azq

∣∣∣∣ (1− r, 1)
(0, 1), (1 + ν − rq, q)

]
=

Γ(r)

zrq−ν−1
Gq,ν,r[a, z] (1.1.15)

Here Gq,ν,r is the Lorenzo-Hartley G-function [66].

2. Generalized Mittag-Leffler function [73, p. 25, Eq. (1.137)]

H1,1
1,2

[
−z
∣∣∣∣ (1− γ, 1)

(0, 1), (1− β, α)

]
= Γ(γ)Eγ

α,β(z) (1.1.16)

(α, β, γ ∈ C; R(α, β, γ) > 0)

where Eγ
α,β is the generalized Mittag-Leffler function given by [87].

3. Generalized Hypergeometric function[109, p. 18, Eq. (2.6.3)]

H1,p
p,q+1

[
z

∣∣∣∣ (1− aj, 1)1,p

(0, 1), (1− bj, 1)1,q

]
=

p∏
j=1

Γ(aj)

q∏
j=1

Γ(bj)
pFq[(ap); (bq);−z]; (1.1.17)

4. Generalized Bessel Maitland Function [73, p. 25, Eq. (1.139)]

H1,1
1,3

[
z2

4

∣∣∣∣ (λ+ ν
2
, 1)

(λ+ ν
2
, 1), (ν

2
, 1), (µ(λ+ ν

2
)− λ− ν, µ)

]
= Jµν,λ(z) (1.1.18)

where Jµν,λ is the Generalized Bessel Maitland Function [72, p. 128, Eq.

(8.2)]

8



1.1 SPECIAL FUNCTIONS

5. Wright’s Generalized Bessel Function[109, p. 19, Eq. (2.6.10)]

H1,0
0,2

[
z

∣∣∣∣ −−
(0, 1), (−λ, ν)

]
= Jνλ(z) (1.1.19)

6. Krätzel Function [73, p. 25, Eq. (1.141)]

H2,0
0,2

[
z

∣∣∣∣ −−
(0, 1), (ν

ρ
, 1
ρ
)

]
= ρZν

ρ (z) z, ν ∈ C, ρ > 0 (1.1.20)

where Zν
ρ is the Krätzel Function [62].

7. Modified Bessel function of the third kind [30, p. 155, Eq. (2.6)]

H2,0
1,2

z
∣∣∣∣∣∣∣∣
(

1− σ + 1

β
,

1

β

)
(0, 1),

(
−γ − σ

β
,

1

β

)
 = λ(β)

γ,σ(z) (1.1.21)

1.1.3 THE H−FUNCTION

Though the H-function is sufficiently general in nature, many useful functions

notably generalized Riemann Zeta function [23], the polylogarithm of complex

order [23], the exact partition of the Gaussian model in statistical mechanics

[50], a certain class of Feynman integrals [23] and others do not form its special

cases. Inayat Hussain [50] introduced a generalization of the H-function popu-

larly known as H -function which includes all the above mentioned functions as

its special cases. This function is developing fast and stands on a firm footing

through the publications of Buschman and Srivastava [10], Rathie [91], Saxena

[103, 104], Gupta and Soni [42], Jain and Sharma [53], Gupta, Jain and Sharma

9
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[41], Gupta, Jain and Agrawal [40] and several others. The H-function is defined

and represented in the following manner:

H
m,n

p,q [z] = H
m,n

p,q

z
∣∣∣∣∣∣

(ej, Ej;∈j)1,n, (ej, Ej)n+1,p

(fj, Fj)1,m, (fj, Fj;=j)m+1,q



:=
1

2πω

∫
L

Θ(ξ)zξdξ (1.1.22)

where, ω =
√
−1,z ∈ C \ {0}, C being the set of complex numbers,

Θ(ξ) =

m∏
j=1

Γ(fj − Fjξ)
n∏
j=1

{Γ(1− ej + Ejξ)}∈j

q∏
j=m+1

{Γ(1− fj + Fjξ)}=j
p∏

j=n+1

Γ(ej − Ejξ)
(1.1.23)

It may be noted that Θ(ξ) contains fractional powers of some of the gamma

functions. m,n, p, q are integers such 1 ≤ m ≤ q, 0 ≤ n ≤ p, (Ej)1,p, (Fj)1,q

and (∈j)1,n, (=j)m+1,q are positive quantities for standardization purpose. The

definition (1.1.22) will however have meaning even if some of these quantities are

zero, giving us in turn simple transformation formulae.

(ej)1,p and (fj)1,q are complex numbers such that the points

ξ =
fj + k

Fj
j = 1, · · · ,m; k = 0, 1, 2, · · ·

which are the poles of Γ(fj − Fjξ), and the points

ξ =
ej − 1− k

Ej
j = 1, · · · , n; k = 0, 1, 2, · · ·

which are the singularities of {Γ(1− ej + Ejξ)}∈j , do not coincide.

We retain these assumptions throughout the thesis.
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1.1 SPECIAL FUNCTIONS

The contour L is the line from c − i∞ to c + i∞, suitably intended to keep the

poles of Γ(fj −Fjξ) j = 1, · · · ,m to the right of the path, and the singularities

of {Γ(1− ej + Ejξ)}∈j j = 1, · · · , n to the left of the path.

If ∈i= =j = 1 (i = 1, · · · , n; j = m + 1, · · · , q), the H−function reduces to

the familiar H−function.

The following sufficient conditions for the absolute convergence of the defining

integral for H−function given by (1.1.22) have been given by Gupta, Jain and

Agarwal [40]

(i) |arg(z)| < 1

2
Ωπ and Ω > 0

(ii) |arg(z)| = 1

2
Ωπ and Ω ≥ 0

and (a) µ 6= 0 and the contour L is so chosen that (cµ+ λ+ 1) < 0

(b) µ = 0 and (λ+ 1) < 0


(1.1.24)

where

Ω =
m∑
j=1

Fj +
n∑
j=1

Ej ∈j −
q∑

j=m+1

Fj=j −
p∑

j=n+1

Ej (1.1.25)

µ =
n∑
j=1

Ej ∈j +

p∑
j=n+1

Ej −
m∑
j=1

Fj −
q∑

j=m+1

Fj=j (1.1.26)

λ = R

(
m∑
j=1

fj +

q∑
j=m+1

fj=j −
n∑
j=1

ej ∈j −
p∑

j=n+1

ej

)

+
1

2

(
n∑
j=1

∈j −
q∑

j=m+1

=j + p−m− n

)
(1.1.27)
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The following series representation for the H−Function given by Rathie [91] and

Saxena [103] has been used in the present work:

H
m,n

p,q

z
∣∣∣∣∣∣

(ej, Ej;∈j)1,n, (ej, Ej)n+1,p

(fj, Fj)1,m, (fj, Fj;=j)m+1,q

 =
∞∑
t=0

m∑
h=1

Θ(st,h)z
st,h (1.1.28)

where,

Θ(st,h) =

m∏
j=1,j 6=h

Γ(fj − Fjst,h)
n∏
j=1

{Γ(1− ej + Ejst,h)}∈j

q∏
j=m+1

{Γ(1− fj + Fjst,h)}=j
p∏

j=n+1

Γ(ej − Ejst,h)

(−1)t

t!Fh
, st,h =

fh + t

Fh

(1.1.29)

In the Sequel, we shall also make use of the following behavior of the H
m,n

p,q [z]

function for small and large value of z as recorded by Saxena et al.

[102, p. 112, Eqs.(2.3) and (2.4)].

H
m,n

p,q [z] = O[|z|α], for small z, where α = min
1≤j≤m

R

(
fj
Fj

)
(1.1.30)

H
m,n

p,q [z] = O[|z|β], for large z, where β = max
1≤j≤n

R

(
∈j
(
ej − 1

Ej

))
(1.1.31)

provided that either of the following conditions are satisfied:

(i) µ < 0 and 0 < |z| <∞

(ii) µ = 0 and 0 < |z| < δ−1

 (1.1.32)

where

µ =
n∑
j=1

Ej ∈j +

p∑
j=n+1

Ej −
m∑
j=1

Fj −
q∑

j=m+1

Fj=j (1.1.33)

δ =
n∏
j=1

(Ej)
Ej∈j

p∏
j=n+1

(Ej)
Ej

m∏
j=1

(Fj)
−Fj

q∏
m+1

(Fj)
−Fj=j (1.1.34)
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1.1 SPECIAL FUNCTIONS

SPECIAL CASES

The following special cases of the H−function have been made use in this thesis:

(I) The Polylogarithm of order p [23, p.30, §1.11, Eq. (14)] and [39, p.

315, Eq. (1.9)]

F (z, p) =
∞∑
r=1

zr

rp
= zH

1,1

1,2

[
−z
∣∣∣∣ (0, 1; p+ 1)

(0, 1), (−1, 1; p)

]

= −H1,1

1,2

[
−z
∣∣∣∣ (1, 1; p+ 1)

(1, 1), (0, 1; p)

]
(1.1.35)

Here F (z, p) is the polylogarithm function of order p .

(II) The Generalized Wright Hypergeometric Function [41, p. 271, Eq.

(7)]

pΨq

 (ej, Ej;∈j)1,p;

(fj, Fj;=j)1,q;
z

 =
∞∑
r=0

p∏
j=1

{Γ(ej + Ejr)}∈j

q∏
j=1

{Γ(fj + Fjr)}=j
zr

r!

= H
1,p

p,q+1

−z
∣∣∣∣∣∣

(1− ej, Ej;∈j)1,p

(0, 1), (1− fj, Fj;=j)1,q


(1.1.36)

pΨq reduces to pΨq, the familiar Wright’s Generalized hypergeometric func-

tion [109, p. 19, Eq. (2.6.11)], when all the exponents (∈j)1,n, (=j)m+1,q

take the value 1.
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(III) The Generalized Riemann Zeta Function [23, p. 27, §1.11, Eq. (1)]

and [39, pp. 314–315, Eq. (1.6) and (1.7)]

φ(z, p, η) =
∞∑
r=0

zr

(η + r)p
= H

1,2

2,2

[
−z
∣∣∣∣ (0, 1; 1), (1− η, 1; p)

(0, 1), (−η, 1; p)

]
(1.1.37)

(IV) Generalized Hurwitz Lerch Zeta Function [51, pp. 147 & 151, Eqs.(6.2.5)

and (6.4.2)]

φα,β,γ(z, p, η) =
∞∑
r=0

(α)r(β)r
(γ)rr!

zr

(η + r)p

=
Γ(γ)

Γ(α)Γ(β)
H

1,3

3,3

−z
∣∣∣∣∣∣

(1− η, 1; p), (1− α, 1; 1), (1− β, 1; 1)

(0, 1), (1− γ, 1; 1), (−η, 1; p)


(1.1.38)

(V) Generalized Wright Bessel Function [41, p. 271, Eq.(8)]

J
ν,µ

λ (z) =
∞∑
r=0

(−z)r

r!(Γ(1 + λ+ νr))µ

= H
1,0

0,2

z
∣∣∣∣∣∣ (0, 1), (−λ, ν;µ)

 (1.1.39)
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(VI) A Generalization of the Generalized Hypergeometric Function

[41, p. 271, Eq. (9)]

pF q

 (ej,∈j)1,p;

(fj,=j)1,q;
z



=
∞∑
r=0

p∏
j=1

{(ej)r}∈j

q∏
j=1

{(fj)r}=j

zr

r!
=

q∏
j=1

{Γ(fj)}=j

p∏
j=1

{Γ(ej)}∈j
H

1,p

p,q+1

−z
∣∣∣∣∣∣

(1− ej, 1;∈j)1,p

(0, 1), (1− fj, 1;=j)1,q



=

q∏
j=1

{Γ(fj)}=j

p∏
j=1

{Γ(ej)}∈j
pΨq

 (ej, 1;∈j)1,p;

(fj, 1;=j)1,q;
z

 (1.1.40)

The function pF q reduces to well known pFq for ∈j= 1(j = 1, · · · , p),

=j = 1(j = 1, · · · , q) in it.

Naturally, all functions which are special cases of the H−function are also special

cases of the H−function.

1.1.4 THE MULTIVARIABLE H−FUNCTION

The multivariable H−function occuring in the thesis was introduced and studied

by Srivastava and Panda [118, p. 130, Eq. (1.1)]. This function involves r

complex variables and will be defined and represented in the following contracted
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form [109, pp. 251–252, Eqs. (C.1–C.3)]

H0,B:A1,B1;··· ;Ar,Br
C,D:C1,D1;··· ;Cr,Dr


z1

.

.

.
zr

∣∣∣∣∣∣∣∣∣∣∣

(aj;α
(1)
j , · · · , α(r)

j )1,C : (c
(1)
j , γ

(1)
j )1,C1 ; · · · ; (c

(r)
j , γ

(r)
j )1,Cr

(bj; β
(1)
j , · · · , β(r)

j )1,D : (d
(1)
j , δ

(1)
j )1,D1 ; · · · ; (d

(r)
j , δ

(r)
j )1,Dr



=
1

(2πω)r

∫
L1

· · ·
∫
Lr

ψ(ξ1, · · · , ξr)
r∏
i=1

(φi(ξi)z
ξi
i )dξ1 · · · dξr (i = 1, · · · , r)

(1.1.41)

where ω =
√
−1,

ψ(ξ1, · · · , ξr) =

B∏
j=1

Γ(1− aj +
r∑
i=1

α
(i)
j ξi)

D∏
j=1

Γ(1− bj +
r∑
i=1

β
(i)
j ξi)

C∏
j=B+1

Γ(aj −
r∑
i=1

α
(i)
j ξi)

(1.1.42)

φi(ξi) =

Ai∏
i=1

Γ(d
(i)
j − δ

(i)
j ξi)

Bi∏
j=1

Γ(1− c(i)
j + γ

(i)
j ξi)

Di∏
j=Ai+1

Γ(1− d(i)
j + δ

(i)
j ξi)

Ci∏
j=Bi+1

Γ(c
(i)
j − γ

(i)
j ξi)

(i = 1, · · · , r)

(1.1.43)

All the greek letters occuring on the left-hand side of (1.1.41) are assumed to be

positive real numbers for standardization purposes; the definition of the multi-

variable H−function will, however, be meaningful even if some of these quantities

are zero such that

Λi ≡
C∑
j=1

α
(i)
j +

Ci∑
j=Bi+1

γ
(i)
j −

D∑
j=1

β
(i)
j −

Di∑
j=1

δ
(i)
j > 0 (i = 1, 2, · · · , r) (1.1.44)

Ωi ≡ −
C∑

j=B+1

α
(i)
j +

Bi∑
j=1

γ
(i)
j −

Ci∑
j=Bi+1

γ
(i)
j −

D∑
j=1

β
(i)
j +

Ai∑
j=1

δ
(i)
j −

Di∑
j=Ai+1

δ
(i)
j > 0 (i = 1, 2, · · · , r)

(1.1.45)
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where B,C,D,Ai, Bi, Ci, Di are non negative integers such that 0 ≤ B ≤ C,

D ≥ 0, 0 ≤ Bi ≤ Ci and 1 ≤ Ai ≤ Di, (i = 1, · · · , r).

The sequences of the parameters in (1.1.41) are such that none of the poles of

the integrand coincide i.e. the poles of the integrand in (1.1.41) are simple. The

contour Li in the complex ξi− plane is of the Mellin-Barnes type which runs from

−ω∞ to +ω∞ with indentations, if necessary, to ensure that all the poles of

Γ(d
(i)
j − δ

(i)
j ξi) (j = 1, · · · , Ai) are separated from those of Γ(1− c(i)

j − γ
(i)
j ξi)

(j = 1, · · · , Bi) and Γ(1− aj +
r∑
i=1

α
(i)
j ξi) (i = 1, · · · , r; j = 1, · · · , B).

It is known that multiple Mellin-Barnes contour integral representing the multi-

variable H− function (1.1.41) converges absolutely [119, p. 130, Eq. (1.4)] under

the condition (1.1.45) when

|arg(zi)| <
1

2
Ωiπ, (i = 1, · · · , r) (1.1.46)

The point zi = 0(i = 1, · · · , r) and various exceptional parameter values are

excluded.

SPECIAL CASES

By suitably specializing the various parameters occuring in the multivariable H−

function defined by (1.1.41), it reduces to the simpler special functions of one and

more variables.

Some of them which have been used in this thesis are given below:

(i) If we take α
(1)
j = α

(2)
j = ... = α

(r)
j (j = 1, ..., D) and β

(1)
j = β

(2)
j = ... =

β
(r)
j (j = 1, ..., D) in (1.1.41), it reduces to a special multivariable H−

function studied by Saxena [103].
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(ii) If we take r = 2, in (1.1.41) , we get H−function of two variables defined

in [109, p.82, eq.(6.1.1)].

(iii) A relation between H−function of two variable and the Appell function

[109, p.89,Eq.(6.4.6)] is given as below:

H0,0:1,2;1,2
0,1:2,1;2,1

[
−x
−y

∣∣∣∣ − : (1− c, 1), (1− c′, 1); (1− e, 1), (1− e′, 1)
(1− b; 1, 1) : (0, 1); (0, 1)

]

=
Γ(c)Γ(c′)Γ(e)Γ(e′)

Γ(b)
F3(c, e, c′, e′; b;x, y), |x| < 1, |y| < 1 (1.1.47)

(iv) if we reduce Multivariable H-function into generalized hypergeometric Func-

tion [52, p.xi,Eq.(A.18)] as given below

H0,C:1,0;··· ;1,0
C,D:0,1;··· ;0,1


z1

.

.

.
zr

∣∣∣∣∣∣∣∣∣∣
(1− aj; 1, · · · , 1)1,C : −−; · · · ;−−

(1− bj; 1, · · · , 1)1,D : (0, 1); · · · ; (0, 1)



=

C∏
j=1

Γ(aj)

D∏
j=1

Γ(bj)
CFD

 (aC);

(bD);
− (z1 + · · ·+ zr)

 (1.1.48)

(v) if we reduce Multivariable H-function into Multivariate generalized Mittag-

Leffler Function [9, p.187,Eq.(B.27)] as given below

H0,0:1,1;··· ;1,1
0,1:1,1;··· ;1,1


z1

.

.

.
zr

∣∣∣∣∣∣∣∣∣∣
−− : (1− γ1, 1); · · · ; (1− γr, 1)

(1− λ; ρ1, · · · , ρr) : (0, 1); · · · ; (0, 1)



=
r∏
j=1

Γ(γj)E
(γj)

(ρj),λ
(z1, · · · , zr) (1.1.49)
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1.1.5 THE APPELL POLYNOMIALS

A class of polynomials over the field of complex numbers which contains many

classical polynomial systems. The Appell Polynomials were introduced by Appell

[6]. The series of Appell Polynomials is defined by :

An(z) =
n∑
k=0

an−k
k!

zk, n = 0, 1, 2, · · · (1.1.50)

where an−k is the complex coefficients and a0 6= 0

SPECIAL CASES OF THE APPELL POLYNOMIALS An[z]

On suitably specializing the coefficients an−k, occurring in (1.1.50), the Appell

polynomials An[z] can be reduced to various type polynomials as cited in the

papers referred to above.

The following special cases of the Appell polynomials An[z] will be required in

the thesis:

(a) Cesaro Polynomial

If we take an−k =
(
τ+n−k
n−k

)
k!

An[z]→ g(τ)
n (z) (1.1.51)

where g
(τ)
n (z) is Cesaro polynomial[112, p. 449, Eq. (20)] and is given by:

g(τ)
n (z) =

n∑
k=0

(
τ + n− k
n− k

)
zk

=

(
τ + n

n

)
2F1

(
−n, 1;
−τ − n;

z

)
(1.1.52)

.
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(b) Laguerre Polynomial

On taking an−k = (−1)k
(
α+n
n−k

)
An[z]→ Lαn(z), (1.1.53)

where L
(α)
n (z) is the Laguerre Polynomial [121, p. 101, Eq. (5.1.6)] and is

given by :

L(α)
n (z) =

n∑
k=0

(
α + n

n− k

)
(−z)k

k!

=
(1 + α)n

n!
1F1(−n; 1 + α; z) (1.1.54)

(c) Shively Polynomial

If we take an−k =
(λ+ n)n(−n)k(α1)k · · · (αp)k
n!(λ+ n)k(β1)k · · · (βq)k

An[z]→ Sλn(z) (1.1.55)

where Sλn(z) is the Shively Polynomial [112, p. 187, Eq. (49)] and is given

by :

Sλn(z) =
n∑
k=0

(λ+ n)n(−n)k(α1)k · · · (αp)k
n!(λ+ n)k(β1)k · · · (βq)k

zk

k!

=
(λ+ n)n

n!
p+1Fq+1

(
−n, α1, · · · , αp;
λ+ n, β1, · · · , βq;

z

)
(1.1.56)

(d) Bateman’s Polynomial

on taking an−k =
(−n)k(n+ 1)k

(1)k(1)k

An[z]→ Zn(z) (1.1.57)
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where Zn(z) is the Bateman’s Polynomial [112, p. 183, Eq. (42)] and is

given by:

Zn(z) =
n∑
k=0

(−n)k(n+ 1)k
(1)k(1)k

zk

k!

= 2F2

(
−n, n+ 1;

1, 1;
z

)
(1.1.58)

(e) Bessel Polynomial

If we take an−k =
(−n)k(α + n− 1)k(−1)k

βk

An[z]→ yn(z, α, β) (1.1.59)

where yn(z, α, β) is the Bessel Polynomial [60, p. 108, Eq. (34)] and is given

by:

yn(z, α, β) =
n∑
k=0

(−n)k(α + n− 1)k
k!

(
−z
β

)k

= 2F0

[
−n, α + n− 1;

−;

−z
β

]
(1.1.60)

1.1.6 INTEGRAL TRANSFORM

If f(x) denotes of a prescribed class of functions defined on a given interval [a, b]

and K(x, s) denotes a definite function of x in that interval for each value of

s, a parameter whose domain is prescribed, then the linear integral transform

T [f(x); s] of the function f(x) is defined in the following manner:

T [f(x); s] =

b∫
a

K(x, s)f(x)dx (1.1.61)
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wherein the class of functions and the domain of parameter s are so prescribed

that the above integral exists. In (1.1.61), K(x, s) is known as the kernel of the

transform, T [f(x); s] is the image of f(x) in the said transform; and f(x) is the

original of T [f(x); s].

Inversion formula for the transform

If an integral equation can be determined that

f(x) =

β∫
α

φ(s, x)T [f(x); s]ds (1.1.62)

then (1.1.62) is termed as the inversion formula of (1.1.61).

LAPLACE TRANSFORM

One of the simplest and most important integral transform is the well known

Laplace Transform. It has been a subject of wide and extensive study on account

of its applications in applied mathematics and physics.

The Laplace Transform of a function is defined as follows:

L {f(x); s} =

∞∫
0

e−sxf(x)dx (1.1.63)

and the inversion formula is given by:

f(x) =
1

2πi

c+i∞∫
c−i∞

esxL {f(x); s} ds (1.1.64)

provided that the above integral exists.

The standard works of Doestch [18] in three volumes give the detailed and com-

plete account of Laplace Transform.
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MELLIN TRANSFORM

The well known Mellin Transform is defined by:

M {f(x); s} =

∞∫
0

xs−1f(x)dx (1.1.65)

and the inversion formula is given by:

f(x) =
1

2πi

c+i∞∫
c−i∞

x−sM {f(x); s} ds (1.1.66)

provided that the above integral exists.

1.2 FRACTIONAL CALCULUS

The term Fractional calculus has its origin to the letter written by L’hospital in

1695 to Leibniz, wherein he enquired whether a meaning could be ascribed to

dnf(x)
dxn

if n were a fraction. Because the answer to the questions was affirmative,

various authors started working on the subject. In the initial stage of devel-

opment, the order n was taken to be fraction. Although now n is taken as an

arbitrary number, the subject is still known as fractional calculus. The works of

Oldham and Spanier [80], Samko, Kilbas and Marichev [97], Gorenflo and Vessela

[31], Kiryakova [61], McBridge [75], Miller and Ross [78], Nishimoto [79], Pod-

lubny [84], Caputo [12] provide a comprehensive account of the development and

applications in the field of fractional calculus.

The following well known Fractional integral operator has been widely studied :
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(i) The left-sided Riemann-Liouville fractional integral or Riemann-

Liouville fractional integral of order α, for α > 0, x > a, is defined as

[58, p. 69, Eq. (2.1.1)]

aI
α
x f(x) =

1

Γ(α)

x∫
a

(x− t)α−1f(t)dt (1.2.1)

(ii) The right-sided Riemann-Liouville fractional integral of order α, for

α > 0, x < b, is defined as [58, p. 69, Eq. (2.1.2)]

xI
α
b f(x) =

1

Γ(α)

b∫
x

(x− t)α−1f(t)dt (1.2.2)

(iii) The left-sided Riemann-Liouville fractional Derivative or Riemann-

Liouville fractional Derivative of order α, m− 1 < α ≤ m, m ∈ N, for

a real valued function f(x) defined on R+ = (0,∞), is defined as [58, p. 70,

Eq. (2.1.5)]

aD
α
xf(x) = Dm

aI
m−α
x f(x) =

1

Γ(m− α)

(
d

dx

)m x∫
a

f(t)dt

(x− t)α−m+1
(1.2.3)

(iv) The right-sided Riemann-Liouville fractional Derivative of order α,

m− 1 < α ≤ m, m ∈ N, is given by [58, p. 70, Eq. (2.1.6)]

xD
α
b f(x) =

1

Γ(m− α)

(
− d

dx

)m b∫
x

f(t)dt

(t− x)α−m+1
(1.2.4)

(v) Caputo fractional derivative of order α, m − 1 < α ≤ m, m ∈ N, is

defined as [11]

C
aD

α
xf(x) = aI

m−α
x Dmf(x) =

1

Γ(m− α)

x∫
a

1

(x− t)α−m+1

{(
d

dx

)m
f(t)

}
dt

(1.2.5)
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(vi) Weyl Fractional Integral of order α, for R(α) > 0 and x > 0 is defined

as [78, p. 236, Eq. (1.1)]

W−αf(x) =
1

Γ(α)

∞∫
x

(t− x)α−1f(t)dt (1.2.6)

On account of the importance of the fractional calculus operators(FCO) in several

problems of mathematical physics and applied mathematics, various generaliza-

tion of the FCO defined by Riemann -Liouville and Weyl have been studied from

time to time by several research workers notably: Kober [54], Sneddon [107],

Kalla [55], Kalla and Saxena [56], Saxena and Kumbhat [101], Manocha [70],

Koul [59], Raina and Kiryakova [89], Gupta and Soni [38], Garg [28], Garg and

Purohit [27], Gupta [37], Saigo [95, 96], Gupta and Jain [36] , Gupta, Jain and

Agrawal [35].

The fractional calculus finds use in many fields of science and engineering, such

as fluid flow, reheology model, diffusion, potential theory, electrical transmission

lines, probability, image processing, ultrasonic wave propagation electrochemistry,

scattering theory, transport theory, statistics, theory of viscoelasticity, potential

theory and many branches of mathematical analysis like integral and differen-

tial equations, operational calculus, univalent function theory and various other

problems involving special function of mathematical physics as well as their ex-

tensions and generalizations in one and more variables.

A detailed account of various fractional integral operators studied from time to

time has been given by Srivastava and Saxena [114].

In the present work we have introduced and developed a pair of unified Fractional
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Integral Operators whose kernels involve the product of Appell Polynomial, Fox

H-function and S-Generalized Gauss’s Hypergeometric Function

Iν,λx {An, H, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λAn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

HM,N
P,Q

z2

(
t

x

)ν2 (
1− t

x

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
f(t)dt

(1.2.7)

provided that

min
1≤j≤M

R

(
ν + ν2

hj
Hj

+ ζ + 1, λ+ λ2
hj
Hj

+ 1

)
> 0

min{ν1, ν3, λ1, λ3} ≥ 0

 (1.2.8)

Jν,λx {An, H, Fp; f(t)} = xν
∞∫
x

t−ν−λ−1(t− x)λAn

[
z1

(x
t

)ν1 (
1− x

t

)λ1]

HM,N
P,Q

z2

(x
t

)ν2 (
1− x

t

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3]
f(t)dt

(1.2.9)

provided that

R(w2) > 0 or R(w2) = 0 and min
1≤j≤M

R

(
ν − w1 + ν2

hj
Hj

)
> 0

min
1≤j≤M

R

(
λ+ λ2

hj
Hj

+ 1

)
> 0,min{ν1, ν3, λ1, λ3} ≥ 0

 (1.2.10)

where f(t) ∈ Λ and Λ denotes the class of functions for which

f(t) : =


O{|t|ζ}; max{|t|} → 0

O{|t|w1e−w2|t|}; min{|t|} → ∞
(1.2.11)
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1.3 FRACTIONAL DIFFERENTIAL EQUATIONS

1.3 FRACTIONAL DIFFERENTIAL EQUATIONS

Fractional differential equations have gained considerable importance due to their

application in various disciplines, such as physics, mechanics, chemistry, engineer-

ing, etc. In recent years, there has been a significant development in ordinary

and partial differential equations involving fractional derivatives (see the mono-

graphs of Samko et al.[97], Kilbas et al. [58], Miller and Ross [78], Oldham and

Spanier [80], and Podlubny [84]). Numerous problems in these areas are modeled

mathematically by systems of fractional differential equations.

A growing number of works in science and engineering deal with dynami-

cal systems described by fractional order equations that involve derivatives and

integrals of non-integer order [Benson et al. [8], Metzler & Klafter [77], Za-

slavasky [128]]. These new models are more adequate than the previously used

integer order models, because fractional order derivatives and integrals describe

the memory and hereditary properties of different substances [84]. This is the

most significant advantage of the fractional order models in comparison with in-

teger order models, in which such effects are neglected. In the context of flow in

porous media, fractional space derivatives exhibit large motions through highly

conductive layers or fractures, while fractional time derivatives describe particles

that remain motionless for extended period of time [76]

Recent applications of fractional differential equations to a number of systems

have given opportunity for physicists to study even more complicated systems.
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For example, the fractional diffusion equation allow describing complex systems

with anomalous behavior in much the same way as simpler systems.

1.3.1 BAGLEY TORVIK EQUATION

The Bagley-Torvik Equation is originally formulated to study the behavior of

real material by use of fractional calculus [7, 123]. It plays important role in

many engineering and applied science problems. In particular, the equation with

1/2-order derivative or 3/2-order derivative can model the frequency-dependent

damping materials quite satisfactorily. It can also describe motion of real physical

systems, the modeling of the motion of a rigid plate immersed in a Newtonian fluid

and a gas in a fluid, respectively [84, 93]. Fractional dynamic systems have found

many applications in various problems such as viscoelasticity, heat conduction,

electrode-electrolyte polarization, electromagnetic waves, diffusion wave, control

theory, and signal processing [3, 7, 17, 71, 84, 93, 120, 122, 123, 127].

The generic form of Bagley-Torvik equation [84, p. 229] can be written as

A
d2y(t)

dt2
+B

d
3
2y(t)

dt
3
2

+ Cy(t) = f(t), t > 0 (1.3.1)

Subject to initial conditions

y(0) = 0 and y′(0) = 0 (1.3.2)

Where y(t) is the solution of the equation, A 6= 0, B, and C are constant co-

efficient’s and f(t) is a given function from I into R, I is the interval [0,T]. The

analytic results on existence and uniqueness of solutions to fractional differential

equations have been investigated by many authors [84, 92].
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1.3.2 FRACTIONAL RELAXATION–OSCILLATION

EQUATION

The relaxation-oscillation equation is a fractional differential equation with ini-

tial conditions. There are many relaxation-oscillation models such as fractional

derivative [14, 15, 68, 69, 126]. The relaxation-oscillation equation is the primary

equation of relaxation and oscillation processes. The fractional derivatives are

employed in the relaxation and oscillation models to represent slow relaxation

and damped oscillation [68, 69].

Fractional Relaxation-Oscillation [44, p. 5928] model can be depicted as

Dβy(t) + Ay(t) = f(t), t > 0 (1.3.3)

y(0) = a if 0 < β ≤ 1 (1.3.4)

or

y(0) = λ and y′(0) = µ if 1 < β ≤ 2 (1.3.5)

where A is a positive constant. For 0 < β ≤ 2, the above equation is called the

fractional relaxation-oscillation equation. When 0 < β ≤ 1, the model describes

the relaxation with the power law attenuation. When 1 < β ≤ 2, the model

depicts the damped oscillation with viscoelastic intrinsic damping of oscillator

[16, 124].

This model has been applied in electrical model of the heart, signal processing,

modeling cardiac pacemakers, predator-prey system, spruce-budworm interac-

tions etc. [4, 16, 43, 94, 124, 125].
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1.3.3 FRACTIONAL ORDER RICCATI DIFFERENTIAL

EQUATION

The general form of Fractional Order Riccati differential equation [57] is

Dβy(t) = P (t)y2(t) +Q(t)y(t) +R(t), t > 0 (1.3.6)

Subject to initial condition

y(0) = B (1.3.7)

where P(t), Q(t) and R(t) are known functions. For β = 1, the fractional-

order Riccati differential equation converts into the classical Riccati differential

equation.

1.4 METHODS OF SOLUTION OF FRACTIONAL

DIFFERENTIAL EQUATIONS

Finding accurate and efficient methods for solving fractional differential equations

has been an active research undertaking. In the last decade, various analytical and

numerical methods have been employed to solve linear and non-linear problems.

For example the matrix method [85, 86] which is a numerical method. Unlike

other numerical methods used for solving fractional partial differential equations

in which the solution is obtained step-by-step by moving from the previous time

layer to the next one, here in matrix method, we consider the whole time interval.

This allows us to create a net of discretization nodes. The values of the unknown

function in inner nodes are to be found. The values at the boundaries are known
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and these are used in construction the system of algebraic equations. Adomian

decomposition method (ADM), introduced and developed by Adomian [1, 2],

attacks the problem in a direct way and in straightforward fashion without using

linearization, perturbation or any other restrictive assumption that may change

the physical behavior of the model under discussion, Homotopy perturbation

method (HPM), introduced by He [45, 46, 47, 48, 49], consider the solution as

the sum of an infinite series which converges rapidly to the accurate solutions.

Variational iteration method (VIM), established by He [49] gives rapidly con-

vergent successive approximations of the exact solution if such a solution exists.

The VIM does not require specific treatments for non-linear problems as in Ado-

mian decomposition method, perturbation techniques, etc. Homotopy analysis

method (HAM) introduced by Liao [63, 64, 65], is a method based on homotopy,

a fundamental concept in topology and differential geometry. It is a computa-

tional method that yields analytical solutions and has certain advantages over

standard numerical methods. It is free from rounding off errors as it does not

involve discretization, and does not require large computer obtained memory or

power. The method introduces the solution in the form of a convergent fractional

series with elegantly computable terms. Generalized differential transform

method (GDTM) developed by Ertuk, Momani and Odibat [22] , for solving

two dimensional linear and non-linear partial differential equations of fractional

order is a generalization of differential transform method, it was proposed by

Zhou [129] to solve linear and non-linear initial value problem in electric circuit
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analysis. This method constructs an analytical solution in the form of a poly-

nomial. It is different from the traditional higher order Taylor series method,

which requires symbolic computation of the necessary derivatives of the data

functions and takes long time in computation, whereas the differential transform

is an iterative procedure for obtaining analytic Taylor series solution.

In Chapter 6, we apply FDTM for solving Bagley Torvik Equation, Frac-

tional Relaxation Oscillation Equation and Fractional Order Riccati Differential

Equation.

1.5 BRIEF CHAPTER BY CHAPTER

SUMMARY OF THE THESIS

Now we present a brief summary of the work carried out in Chapter 2 to 6.

In Chapter–2, First of all we give definition of the S-generalized Gauss hyperge-

ometric function and S-generalized Beta function which was recently introduced

by Srivastava et al. [113].

Next, we first present an integral representation and Mellin transform of S-

generalized Gauss hypergeometric function. Next, we give its complex integral

representation and a relationship between S-generalized Gauss hypergeometric

function and H-function of two variables. Further, we introduce a new integral

transform whose kernel is the S-generalized Gauss hypergeometric function and

point out its three special cases which are also believed to be new. We specify that

the well-known Gauss hypergeometric function transform follows as a simple spe-

cial case of our integral transforms. Next, we established an inversion formula for
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above integral transform in theorem form. Finally, we establish image of Fox H-

function under the S-Generalized Gauss hypergeometric function transform and

also obtain the images of five useful and important functions which are special

cases of Fox H-function (Generalized Bessel function, Gauss Hpergeometric func-

tion, Generalized Mittag-Leffler Function, Krätzel Function and Lorenzo Hartley

G-function) under the S-generalized Gauss hypergeometric function transform.

Which are also believed to be new.

In Chapter–3, we study a pair of a general class of fractional integral operators

involving the Appell Polynomial, Fox H-function and S-Generalized Gauss

Hypergeometric Function. First we define and give the conditions of existence

of the operators of our study and then we obtain the images of certain useful

functions in them. Further, we evaluate four new integrals involving Appell’s

Function, Multivariate generalized Mittag-Lefflet Function, generalization of the

modified Bessel function and generalized hypergeometric function by the applica-

tion of the images established and also gives the three unknown and two known

integral of these operators. Next we develop six results wherein the first two

contain the Mellin transform of these operators, the next two the corresponding

inversion formulae and the last two their Mellin convolutions. Later on, we es-

tablish a theorem analogous to the well known Parseval Goldstein theorem for

our unified fractional integral operators.

In Chapter–4, we first derive three new and interesting expressions for the com-

position of the two fractional integral operators, which are slight variants of the

operators defined in Chapter 3. The operators of our study are quite general in
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nature and may be considered as extensions of a number of simpler fractional

integral operators studied from time to time by several authors. By suitably

specializing the coefficients and the parameters in these functions we can get a

large number of (new and known) interesting expressions for the composition of

fractional integral operators involving simpler special functions. Finally, we ob-

tain two interesting finite double integral formulae as an application of our first

composition formula known results which follow as special case of our findings

have also been mentioned.

In Chapter–5, we evaluate two unified and general finite integrals. The first

integral involves the product of the Appell Polynomial An(z), the Generalized

form of the Astrophysical Thermonuclear function I3 and Generalized Mittag -

Leffler Function Eγ,δ
α,β,τ,µ,ρ,p(z; s, r). The arguments of the functions occurring in

the integral involve the product of factors of the form xλ−1(a− x)σ−1(1− uxl)−ρ.

We also obtain five new special cases of our main Integral which are of interest

by themselves and are believed to be new.

The second integral involves the Generalized form of the Astrophysical

Thermonuclear function I3 and H− function. The arguments of the function

occurring in the integral involve the product of factors of the form

tλ−1(1− t)σ−1(1− ut`)−γ(1 + vtm)−β.

We also obtain five new special cases of our main Integral which are of interest

by themselves and are believed to be new.

In Chapter–6, The object of this chapter is to find solutions of the Bagley Torvik

34



1.5 BRIEF CHAPTER BY CHAPTER
SUMMARY OF THE THESIS

Equation, Fractional Relaxation Oscillation Equation and Fractional Order Ric-

cati Differential Equation. We make use of generalized differential transform

method (GDTM) to solve the equations. First of all we give definition of a Ca-

puto fractional derivative of order α which was introduced and investigated by

Caputo [12]. Then, we give the generalized differential transform method and

inverse generalized differential transform which was introduce and investigated

by Ertuk et al.[22] and some basic properties of GDTM. Next, we find solutions

to three different fractional differential equations using GDTM technique.

In section 6.2 we find the solution of Bagley Torvik Equation using GDTM.

Since the function f(t) taken in this chapter is general in nature by specializing

the function f(t) and taking different values of constants A, B and C. We can

obtain a large number of special cases of Bagley Torvik Equation. Here we give

two numerical examples. Our findings match with the results obtained earlier by

Ghorbani et al. [29] by He’s variational iteration method.

In section 6.3 we find the solution of Fractional Relaxation Oscillation Equa-

tion using GDTM. Since the function f(x) taken in this chapter is general in nature

by specializing the function f(x) and taking different values of constants A, we

can obtain a large number of special cases of Fractional Relaxation Oscillation

Equation. Here we give eight numerical examples. Furthermore these examples

are also represented graphically by using the MATHEMATICA SOFTWARE.

In section 6.4, Again we find the solution of Fractional Order Riccati Dif-

ferential Equation using GDTM. Since order of Fractional Riccati Differential

equation is β and all function are general in nature, by specializing parameters
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and functions, we can obtain a large number of special cases of Fractional Relax-

ation Oscillation Equation. Here we give eight numerical examples. Furthermore

these examples are also represented graphically by using the MATHEMATICA

SOFTWARE.
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2. S-GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION
AND AN INTEGRAL TRANSFORM ASSOCIATED WITH IT

In this chapter, we first define all the necessary function which is used in this

chapter. First of all we give definition of the S-generalized Gauss hypergeometric

function and S-generalized Beta function which was recently introduced by

Srivastava et al. [113]. Since S-generalized Gauss hypergeometric function is in

general nature, by specializing the parameters we can obtain a number of special

cases which are studied earlier by Parmar [83], Özergin [81] and [82], Chaudhry

et al. [13].

Next, we present an integral representation and Mellin transform of S-generalized

Gauss hypergeometric function in the theorem form 2.2.1 and 2.2.2 respectively

and its complex integral representation is also discussed in theorem 2.2.3 and also

we establish a relationship between S-generalized Gauss hypergeometric function

and H-function of two variables and also we introduce a new integral transform

whose kernel is the S-generalized Gauss hypergeometric function and point out

its three special cases which are also believed to be new. We specify that the

well-known Gauss hypergeometric function transform follows as a simple special

case of our integral transforms. Next, we established an inversion formula for

above integral transform in theorem 2.3.1. Finally, we establish image of Fox H-

function under the S-Generalized Gauss hypergeometric function transform and

also obtain the images of five useful and important functions which are special

cases of Fox H-function (Generalized Bessel function, Gauss Hpergeometric func-

tion, Generalized Mittag-Leffler Function, Krätzel Function and Lorenzo Hartley

G-function) under the S-generalized Gauss hypergeometric function transform.

Which are also believed to be new.
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2.1 INTRODUCTION

S-GENERALIZED GAUSS HYPERGEOMETRIC

FUNCTION

The S-generalized Gauss hypergeometric function F
(α,β;τ,µ)
p (a, b; c; z) was

introduced and investigated by Srivastava et al. [113, p. 350, Eq. (1.12)]. It is

represented in the following manner:

F (α,β;τ,µ)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β;τ,µ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
(|z| < 1) (2.1.1)

provided that (R(p) ≥ 0; min{R(α),R(β),R(τ),R(µ)} > 0; R(c) > R(b) > 0)

in terms of the classical Beta function B(λ, µ) and the S-generalized Beta function

B
(α,β;τ,µ)
p (x, y), which was also defined by Srivastava et al. [113, p. 350, Eq.(1.13)]

as follows:

B(α,β;τ,µ)
p (x, y) =

∫ 1

0

tx−1(1− t)y−1
1F1

(
α; β;− p

tτ (1− t)µ

)
dt (2.1.2)

(R(p) ≥ 0; min{R(x),R(y),R(α),R(β),R(τ),R(µ)} > 0)

If we take p = 0 in (2.1.2), it reduces to classical Beta Function and (λ)n denotes

the Pochhammer symbol defined (for λ ∈ C) by (see [115, p. 2 and pp. 4-6]; see

also [114, p. 2]):

(λ)n =
Γ(λ+ n)

Γ(λ)

=

{
1, (n = 0)

λ(λ+ 1)...(λ+ n− 1), (n ∈ N := {1, 2, 3, · · · })
(2.1.3)
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provided that the Gamma quotient exists (see, for details,[108, p. 16 et seq.] and

[112, p. 22 et seq.]).

For τ = µ, the S-generalized Gauss hypergeometric function defined by (2.1.1)

reduces to the following generalized Gauss hypergeometric function F
(α,β;τ)
p (a, b; c; z)

studied earlier by Parmar [83, p.44]:

F (α,β;τ)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β;τ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
(|z| < 1) (2.1.4)

(R(p) ≥ 0; min{R(α),R(β),R(τ)} > 0; R(c) > R(b) > 0).

which, in the further special case when τ = 1, reduces to the following extension

of the generalized Gauss hypergeometric function (see, e.g., [82, p.4606, Section

3] ; see also [81, p. 39]):

F (α,β)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β)
p (b+ n, c− b)
B(b, c− b)

zn

n!
(|z| < 1) (2.1.5)

(R(p) > 0; min{R(α),R(β)} > 0; R(c) > R(b) > 0)

Upon setting α = β in (2.1.5), we arrive at the following Extended Gauss hyper-

geometric function (see [13, p.591, Eqs. (2.1) and (2.2)]:

Fp(a, b; c; z) =
∞∑
n=0

(a)n
Bp(b+ n, c− b)
B(b, c− b)

zn

n!
(|z| < 1) (2.1.6)

(R(p) > 0; R(c) > R(b) > 0)
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Fox H-Function

A single Mellin-Barnes contour integral, occurring in the present work, is now

popularly known as the H-function of Charles Fox (1897-1977). It will be defined

and represented here in the following manner (see, for example, [109, p. 10]):

HM,N
P,Q [z] = HM,N

P,Q

z
∣∣∣∣∣∣

(aj, αj)1,P

(bj, βj)1,Q

 = HM,N
P,Q

z
∣∣∣∣∣∣

(a1, α1), · · · , (aP , αP )

(b1, β1), · · · , (bQ, βQ)


:=

1

2πi

∫
L

Θ(s)zs ds, (2.1.7)

where i =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

Θ(s) =

M∏
j=1

Γ(bj − βjs)
N∏
j=1

Γ(1− aj + αjs)

Q∏
j=M+1

Γ(1− bj + βjs)
P∏

j=N+1

Γ(aj − αjs)
, (2.1.8)

and

1 5M 5 Q and 0 5 N 5 P

(M,Q ∈ N = {1, 2, 3, · · · }; N,P ∈ N0 = N ∪ {0}), (2.1.9)

an empty product being interpreted to be 1. Here L is a Mellin-Barnes type

contour in the complex s-plane with appropriate indentations in order to separate

the two sets of poles of the integrand Θ(s) (see, for details, [58] and [109]).

2.2 MAIN RESULTS

In this section, we first give the integral representation, Mellin Transform and

complex integral representation of S-generalized gauss hypergeometric function.
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Next, we establish a relationship between S-generalized gauss hypergeometric

function and H-function of two variables.

INTEGRAL REPRESENTATION OF THE S-GENERALIZED

GAUSS HYPERGEOMETRIC FUNCTION

Theorem 2.2.1. Suppose that R(p) ≥ 0, |arg(1− z)| < π, min{R(τ),R(µ),

R(b+ τα),R(c− b+ µα)} > 0 and R(c) > R(b) > 0. Then the following integral

representation holds true :

F (α,β;τ,µ)
p (a, b; c; z)

=
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a1F1

(
α; β;− p

tτ (1− t)µ

)
dt (2.2.1)

where the S-generalized Gauss hypergeometric function F
(α,β;τ,µ)
p (a, b; c; z) is given

by (2.1.1).

Proof. Using Eq. (2.1.1) on the left hand side of (2.2.1), we have

F (α,β;τ,µ)
p (a, b; c; z)

=
∞∑
n=0

(a)n
B

(α,β;τ,µ)
p (b+ n, c− b)

B(b, c− b)
zn

n!

=
1

B(b, c− b)

∞∑
n=0

(a)n

∫ 1

0

tb+n−1(1− t)c−b−1
1F1

(
α; β;− p

tτ (1− t)µ

)
zn

n!
dt

=
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1
1F1

(
α; β;− p

tτ (1− t)µ

) ∞∑
n=0

(a)n
(zt)n

n!
dt

=
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a1F1

(
α; β;− p

tτ (1− t)µ

)
dt

which proves Theorem (2.2.1)
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THE MELLIN TRANSFORM OF THE S-GENERALIZED

GAUSS HYPERGEOMETRIC FUNCTION

As usual, the Mellin transform of a function f(t) is defined by (see, for example,[19,

p. 340, Eq. (8.2.5)])

M[f(z)](s) =

∫ ∞
0

zs−1f(z)dz R(s) > 0 (2.2.2)

provided that the improper integral exists.

Theorem 2.2.2. If R(p) ≥ 0, min{R(τ),R(µ),R(b + τα),R(c − b + µα)} >
0 and R(c) > R(s) < min{R(a),R(b)},
then

M[F (α,β;τ,µ)
p (a, b; c; z)](s) = (−1)s

B(s, a− s)B(α,β;τ,µ)
p (b− s, c− b)

B(b, c− b)
(2.2.3)

Proof. : In order to prove the assertion (2.2.3), by taking the Mellin transform

of (2.2.1), we obtain

∆(s) :=

∫ ∞
0

zs−1

[
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a1F1

(
α; β;− p

tτ (1− t)µ

)
dt

]
dz

Upon interchanging the order of t and z-integrals (which is permissible under the

conditions stated), if we evaluate the resulting z-integral first, we get

∆(s) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1
1F1

(
α; β;− p

tτ (1− t)µ

)
Γ(s)Γ(a− s)

(−t)sΓ(a)
dt

Now with the help of (2.1.2), we get the desired result (2.2.3) after a little

simplification.

A COMPLEX INTEGRAL REPRESENTATION OF THE

S-GENERALIZED GAUSS HYPERGEOMETRIC

FUNCTION

Theorem 2.2.3. If R(p) ≥ 0, min{R(τ),R(µ),R(b + τα),R(c − b + µα)} >
0 and R(c) > R(b) > 0 then complex integral representation for the s-generalized
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Gauss Hypergeometric function F
(α,β;τ,µ)
p (a, b; c; z) is defined in the following man-

ner:

F (α,β;τ,µ)
p (a, b; c; z)

=
1

2πi

∫ +i∞

−i∞
(−z)−s

B(s, a− s)B(α,β;τ,µ)
p (b− s, c− b)

B(b, c− b)
ds (2.2.4)

Proof. If we take the inverse Mellin transform of (2.2.3), we easily arrive the

desired result

RELATIONSHIP BETWEEN S-GENERALIZED GAUSS

HYPERGEOMETRIC FUNCTION AND H-FUNCTION

OF TWO VARIABLES

we give the following representation of F
(α,β;τ,γ)
p (a, b; c, z) in terms of H-function

of two variables:

F (α,β;τ,γ)
p (a, b; c, z) =

1

2πi

i∞∫
−i∞

(−z)−ξ
B(ξ, a− ξ)B(α,β;τ,µ)

p (b− ξ, c− b)
B(b, c− b)

dξ

=
Γ(β)

Γ(α)Γ(a)B(b, c− b)
H0,1:1,2;1,1

1,1:3,1;1,1

 p−1

−z

∣∣∣∣∣∣
(1− b; τ, 1) : A∗

(1− c; τ + µ, 1) : B∗

 (2.2.5)

where

A∗ = (1, 1), (1− c+ b, µ), (β, 1); (1− a, 1) B∗ = (α, 1); (0, 1)

provided that the existence conditions in (2.1.1) for the S-generalized Gauss

hypergeometric function.

Proof. To evaluate the contour integral (2.2.5), we first express the term

B
(α,β;τ,µ)
p (b− ξ, c− b) occurring in it’s integrand in terms of integral with the help

of equation (2.1.2). Thus left hand side of (2.2.5) takes the following form (say∆):
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TRANSFORM

∆ =
1

2πi

∫
L1

(−z)−ξ
B(ξ, a− ξ)
B(b, c− b)

 1∫
0

tb−ξ−1(1− t)c−b−1
1F1

(
α; β;

−p
tτ (1− t)µ

)
dt

 dξ
(2.2.6)

Now we convert 1F1 function into its contour integral form, then we change the

order of contour η− integral with t-integral (which is permissible under the con-

ditions stated). Thus right hand side of (2.2.6) takes the following form :

∆ =
Γ(β)

Γ(α)Γ(a)B(b, c− b)
1

(2πi)2

∫
L1

∫
L2

Γ(ξ)Γ(a− ξ)Γ(−η)Γ(α + η)

Γ(β + η) 1∫
0

tb−ξ−τη−1(1− t)c−b−µη−1dt

 (−z)−ξdξdη (2.2.7)

Further, we evaluate the t-integral occurring in (2.2.7) with the help of well known

Beta function. Thus we get the following equation

∆ =
Γ(β)

Γ(α)Γ(a)B(b, c− b)
1

(2πi)2

∫
L1

∫
L2

Γ(ξ)Γ(a− ξ)Γ(−η)Γ(α + η)Γ(b− ξ − τη)Γ(c− b− µη)

Γ(β + η)Γ(c− ξ − (τ + µ)η)
(−z)−ξpηdξdη

(2.2.8)

finally reinterpret the result thus obtained in terms of H-function of two variable.

We easily arrive at the right hand side of (2.2.5) after a little simplification.

2.3 THE S-GENERALIZED GAUSS

HYPERGEOMETRIC FUNCTION

TRANSFORM

We define the S-generalized Gauss hypergeometric transform by the following

equation (see also a recent work [110] dealing with several new families of integral
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transforms):

S̃[f(z); s] = ϕ(s) =

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)f(z)dz (2.3.1)

where f(z) ∈ Λ, and Λ denotes the class of functions for which

f(z) =

{
O{zζ}, (z → 0)

O{zw1e−w2z}, (|z| → ∞)
(2.3.2)

provided that the existence conditions in (2.1.1) for the S- generalized Gauss

hypergeometric function F
(α,β;τ,µ)
p (.) are satisfied and

R(ζ) + 1 > 0

R(w2) > 0 or R(w2) = 0 and R(w1 − a+ 1) < 0

 (2.3.3)

SPECIAL CASES

In this section, we give three special cases of our integral transform defined by

(2.3.1).

(i) GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION

TRANSFORM

If we put τ = µ in (2.3.1), the transform in (2.3.1) reduces to the generalized

Gauss hypergeometric function transform given by

ϕ1(s) =

∫ ∞
0

F (α,β;τ,τ)
p (a, b; c; sz)f(z)dz (2.3.4)
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(ii) EXTENSION OF THE GENERALIZED GAUSS

HYPERGEOMETRIC FUNCTION TRANSFORM

By taking τ = µ = 1 in (2.3.4), we get the following extension of the generalized

gauss hypergeometric function transform :

ϕ2(s) =

∫ ∞
0

F (α,β)
p (a, b; c; sz)f(z)dz (2.3.5)

(iii) EXTENDED GAUSS HYPERGEOMETRIC FUNCTION

TRANSFORM

Moreover, if we take α = β in (2.3.5), it reduces to the extended Gauss hyperge-

ometric function transform given below:

ϕ3(s) =

∫ ∞
0

Fp(a, b; c; sz)f(z)dz (2.3.6)

if we set p = 0 in the integral transforms defined by (2.3.4), (2.3.5) and (2.3.6),

we easily get the Gauss hypergeometric transform (see, for details, [109]).

INVERSION FORMULA FOR THE S-GENERALIZED

GAUSS HYPERGEOMETRIC FUNCTION TRANSFORM

Theorem 2.3.1. If yκ−1f(y) ∈ L(0,∞), the function f(y) is of bounded variation

in the neighborhood of the point y = z, and

ϕ(s) = S̃[f(z); s] =

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)f(z)dz (2.3.7)

then

1

2
{f(t+ 0) + f(t− 0)}

=
1

2πi

∫
L

(−1)κ−1B(b, c− b)
B(1− κ, a+ κ− 1)B

(α,β;τ,µ)
p (b+ κ− 1, c− b)

z−κΩ(κ)dκ (2.3.8)
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where

Ω(κ) =

∫ ∞
0

s−κϕ(s)ds (2.3.9)

provided that existence conditions for the S-generalized Gauss hypergeometric

function F
(α,β;τ,µ)
p (a, b; c; z) given by (2.1.1) are satisfied, the S-generalized Gauss

hypergeometric function transform of |f(z)| exists, and

R(1− κ) > 0, R(1− a− κ) < 0

Proof. : In order to prove the inversion formula (2.3.8), we substitute the value

of ϕ(s) from (2.3.7) in the right hand side of (2.3.9), We thus find that

Ω(κ) : =

∫ ∞
0

s−κϕ(s)ds

=

∫ ∞
0

s−κ
(∫ ∞

0

F (α,β;τ,µ)
p (a, b; c; sz)f(z)dz

)
ds (2.3.10)

Upon interchanging the order of the z and s- integrals in (2.3.10)(which is permis-

sible under the given conditions), if we evaluate the s-integral by using (2.2.3),

we obtain

Ω(κ) =

∫ ∞
0

B(1− κ, a+ κ− 1)B
(α,β;τ,µ)
p (b+ κ− 1, c− b)

B(b, c− b)
f(z)(−z)κ−1dz

(2.3.11)

Finally, by applying the Mellin Inversion Formula to the above integral (2.3.11),

we get the desired result (2.3.8), after a little simplification.
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2.4 THE S-GENERALIZED GAUSS

HYPERGEOMETRIC TRANSFORM OF

THE H-FUNCTION

The S-Generalized Gauss hypergeometric Transform (2.3.1) of Fox H-function

(2.1.7) defined as follows :

S̃

zκHM,N
P,Q

Azσ
∣∣∣∣∣∣

(aj, αj)1,P

(bj, βj)1,Q

 ; s

 =

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)zκHM,N

P,Q

Azσ
∣∣∣∣∣∣

(aj, αj)1,P

(bj, βj)1,Q

 dz
=

Γ(β)A−
κ+1
σ

σΓ(α)Γ(a)B(b, c− b)
H0,1:1+N,1+M ;1,2

1,1:1+Q,1+P ;3,1

 − s
Aσ

1
p

∣∣∣∣∣∣
(1− b; 1, τ) : A∗

(1− c; 1, τ + µ) : B∗


(2.4.1)

where

A∗ = (1− a, 1), (1− bj − βj (κ+1)
σ
,
βj
σ

)1,Q; (1, 1), (1− c+ b, µ), (β, 1)

B∗ = (0, 1), (1− aj − αj (κ+1)
σ
,
αj
σ

)1,P ; (α, 1)

provided that the existence conditions in (2.1.1) for the S-Generalized Gauss hy-

pergeometric function F
(α,β;τ,µ)
p (a, b; c; z) are satisfied and

(i) min
1≤j≤M

R
(
κ+

σbj
βj

)
+1 > 0 (ii) max

1≤j≤N
R
(
κ− a+

σ(aj−1)

αj

)
+1 < 0

Proof. To prove the result (2.4.1), we first write the complex integral representa-

tion of S-generalized Gauss hypergeometric function defined in (2.2.4) and then

change the order of ξ−integral with z-integral (which is permissible under the

conditions stated), we obtain (say ∆)

∆ =
1

2πi

∫
L

(−s)−uB(u, a− u)B
(α,β;τ,µ)
p (b− u, c− b)

B(b, c− b)


∞∫

0

zκ−uHM,N
P,Q [Azσ]dz

 du

(2.4.2)
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Now we evaluate the z-integral involved in (2.4.2) with the help of [109, p.15, Eq.

(2.4.1)], we have

∆ =
1

2πi

∫
L

(−s)−uB(u, a− u)B
(α,β;τ,µ)
p (b− u, c− b)

B(b, c− b)

1

σ
A−(κ−u+1

σ
)

M∏
j=1

Γ(bj + βj
(κ+1)
σ
− βj

σ
u)

N∏
j=1

Γ(1− aj − αj (κ+1)
σ

+
αj
σ
u)

Q∏
j=M+1

Γ(1− bj − βj (κ+1)
σ

+
βj
σ
u)

Q∏
j=N+1

Γ(aj + αj
(κ+1)
σ
− αj

σ
u)

du

(2.4.3)

Next, we express S-generalized Beta function in terms of complex integral form.

Finally, we get the right hand side of (2.4.1) by reinterpreting the result in terms

of H-function of two variables.

2.4.1 SPECIAL CASES

Here we give S-generalized Gauss hypergeometric function Transform of the some

important special cases of Fox H-Function involving Generalized Bessel func-

tion, Gauss Hpergeometric function, Generalized Mittag-Leffler Function, Krätzel

Function and Lorenzo Hartley G-function.

1. S-generalized Gauss hypergeometric function Transform of

Generalized Bessel Function: In (2.4.1), if we reduce Fox H-Function

to the Generalized Bessel function [109, p.19, Eq.(2.6.10)] by taking M =

1, N = P = 0, Q = 2, b1 = 0, β1 = 1, b2 = −λ, β2 = ρ, we can easily

get the following S-generalized Gauss hypergeometric function Transform
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of Generalized Bessel Function after a little simplification.

S̃ [zκJρλ [Azσ]; s] =

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)zκJρλ [Azσ]dz

=
A−(κ+1

σ
)Γ(β)

σΓ(α)Γ(a)B(b, c− b)
H0,1:1,2;1,2

1,1:3,1;3,1

 −s
1
p

∣∣∣∣∣∣
(1− b; 1, τ) : A∗

(1− c; 1, τ + µ) : B∗


(2.4.4)

where

A∗ = (1− a, 1), (1− (κ+1
σ

), 1
σ
), (1 + λ− ρ(κ+1

σ
), ρ
σ
); (1, 1), (1− c+ b, µ), (β, 1)

B∗ = (0, 1); (α, 1)

provided that the conditions are easily obtainable from the existing

conditions of (2.4.1) are satisfied.

2. S-generalized Gauss hypergeometric function Transform of Gauss

Hypergeometric Function: Next, if we reduce Fox H-Function to the

Gauss Hpergeometric function [109, p.19, Eq.(2.6.8)] by taking M = 1, N

= P = Q = 2, a1 = 1 − u, a2 = 1 − v, b1 = 0, b2 = 1 − w, α1 = α2 =

β1 = β2 = 1 in (2.4.1), we can easily get the following S-generalized Gauss

hypergeometric function Transform of Gauss Hpergeometric Function after

a little simplification.

S̃ [zκ2F1[u, v;w;−Azσ]; s] =

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)zκ2F1[u, v;w;−Azσ]dz

=
A−(κ+1

σ
)Γ(w)Γ(β)

σΓ(u)Γ(v)Γ(α)Γ(a)B(b, c− b)
H0,1:3,2;1,2

1,1:3,3;3,1

 −s
1
p

∣∣∣∣∣∣
(1− b; 1, τ) : A∗

(1− c; 1, τ + µ) : B∗


(2.4.5)

where

A∗ = (1− a, 1), (1− (κ+1
σ

), 1
σ
), (w − (κ+1

σ
), 1
σ
); (1, 1), (1− c+ b, µ), (β, 1)

53



2. S-GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION
AND AN INTEGRAL TRANSFORM ASSOCIATED WITH IT

B∗ = (0, 1), (u− (κ+1
σ

), 1
σ
), (v − (κ+1

σ
); 1
σ
); (α, 1)

provided that the conditions are easily obtainable from the existing

conditions of (2.4.1) are satisfied.

3. S-generalized Gauss hypergeometric function Transform of Gen-

eralized Mittag-Leffler Function : Again, if we reduce Fox H-Function

to the Generalized Mittag-Leffler function [73, p.25, Eq.(1.137)] by taking

M = N = P = 1, Q = 2 and a1 = 1−δ, b1 = 0, b2 = 1−σ, α1 = β1 = 1, β2 = ρ

in (2.4.1), we can easily get the following S-generalized Gauss hypergeomet-

ric function Transform of Generalized Mittag-Leffler Function after a little

simplification.

S̃
[
zκEδ

ρ,γ[Az
σ]; s

]
=

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)zκEδ

ρ,γ[Az
σ]dz

=
A−(κ+1

σ
)Γ(β)

σΓ(α)Γ(a)B(b, c− b)
H0,1:2,2;1,2

1,1:3,2;3,1

 −s
1
p

∣∣∣∣∣∣
(1− b; 1, τ) : A∗

(1− c; 1, τ + µ) : B∗


(2.4.6)

where

A∗ = (1− a, 1), (−κ, 1), (γ − ρ(κ+ 1), ρ); (1, 1), (1− c+ b, µ), (β, 1)

B∗ = (0, 1), (δ − κ− 1, 1); (α, 1)

provided that the conditions are easily obtainable from the existing

conditions of (2.4.1) are satisfied.

4. S-generalized Gauss hypergeometric function Transform of Krätzel

Function: In (2.4.1), if we reduce Fox H-Function to the Krätzel function

[73, p.25, Eq.(1.141)] by taking M = Q = 2, N = P = 0, b1 = 0, β1 = 1, b2 =
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ν
ρ
, β2 = 1

ρ
, we can easily get the following S-generalized Gauss hypergeo-

metric function Transform of Krätzel Function after a little simplification.

S̃
[
zκZν

ρ (Azσ); s
]

=

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)zκZν

ρ (Azσ)dz

=
A−(κ+1

σ
)Γ(β)

σρΓ(α)Γ(a)B(b, c− b)
H0,1:1,3;1,2

1,1:3,1;3,1

 −s
1
p

∣∣∣∣∣∣
(1− b; 1, τ) : A∗

(1− c; 1, τ + µ) : B∗


(2.4.7)

where

A∗ = (1− a, 1), (1− (κ+1
σ

), 1
σ
), (1− ν

ρ
− (κ+1

σρ
), 1
σρ

); (1, 1), (1− c+ b, µ), (β, 1)

B∗ = (0, 1); (α, 1)

provided that the conditions are easily obtainable from the existing

conditions of (2.4.1) are satisfied.

5. S-generalized Gauss hypergeometric function Transform of Lorenzo

Hartley G-function : In (2.4.1), if we reduce Fox H-Function to the

Lorenzo Hartley G-function [34, p.64, Eq.(2.3)] by taking M = N = P = 1,

Q = 2, a1 = 1− r, α1 = 1, b1 = 0, β1 = β2 = 1, b2 = 1 + ν − r, we can easily

get the following S-generalized Gauss hypergeometric function Transform

of Lorenzo Hartley G-function after a little simplification.

S̃ [zκGσ,ν,r[−A, t]; s] =

∫ ∞
0

F (α,β;τ,µ)
p (a, b; c; sz)zκGσ,ν,r[−A, t]dz

=
A−(κ−ν+rσ

σ
)Γ(β)

σΓ(r)Γ(α)Γ(a)B(b, c− b)
H0,1:2,2;1,2

1,1:3,2;3,1

 − s
Aσ

1
p

∣∣∣∣∣∣
(1− b; 1, τ) : A∗

(1− c; 1, τ + µ) : B∗


(2.4.8)

where

A∗ = (1− a, 1), (σ−κ+ν−rσ
σ

, 1
σ
), (−κ, 1); (1, 1), (1− c+ b, µ), (β, 1)
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B∗ = (0, 1), (ν−κ
σ
, 1
σ
); (α, 1)

provided that the conditions are easily obtainable from the existing

conditions of (2.4.1) are satisfied.
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3
FRACTIONAL INTEGRAL OPERATORS

WITH APPLICATIONS

The main findings of this chapter have been published as detailed below:

1. M. K. BANSAL and R. JAIN (2017). A STUDY OF UNIFIED FRAC-

TIONAL INTEGRAL OPERATORS INVOLVING S-GENERALIZED GAUSS’S

HYPERGEOMETRIC FUNCTION AS ITS KERNEL, Palestine Journal

of Mathematics, 6(1), 142–152 .
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3. FRACTIONAL INTEGRAL OPERATORS WITH
APPLICATIONS

In this chapter we study a pair of a general class of fractional integral opera-

tors involving the Appell Polynomial, Fox H-function and S-Generalized Gauss

Hypergeometric Function. First we define and give the conditions of existence

of the operators of our study and then we obtain the images of certain useful

functions in them. Further, we evaluate four new integrals involving Appell’s

Function, Multivariate generalized Mittag-Lefflet Function, generalization of the

modified Bessel function and generalized hypergeometric function by the applica-

tion of the images established and also gives the three unknown and two known

integral of these operators. Next we develop six results wherein the first two

contain the Mellin transform of these operators, the next two the corresponding

inversion formulae and the last two their Mellin convolutions. Later on, we es-

tablish a theorem analogous to the well known Parseval Goldstein theorem for

our unified fractional integral operators.

3.1 INTRODUCTION

APPELL POLYNOMIAL

A class of polynomials over the field of complex numbers which contains many

classical polynomial systems. The Appell Polynomials were introduced by Appell

[6]. The series of Appell Polynomials is defined by :

An(z) =
n∑
k=0

an−k
k!

zk n = 0, 1, 2, ... (3.1.1)

where an−k is the complex coefficient and a0 6= 0.
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FOX H-FUNCTION

A single Mellin-Barnes contour integral, occurring in the present work, is now

popularly known as the H-function of Charles Fox (1897-1977). It will be defined

and represented here in the following manner [109]:

HM,N
P,Q [z] = HM,N

P,Q

z
∣∣∣∣∣∣

(gj, Gj)1,P

(hj, Hj)1,Q

 = HM,N
P,Q

z
∣∣∣∣∣∣

(g1, G1), · · · , (gP , GP )

(h1, H1), · · · , (hQ, HQ)


:=

1

2πi

∫
L

Θ(ξ)zξ dξ, (3.1.2)

where i =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

Θ(ξ) =

M∏
j=1

Γ(hj −Hjξ)
N∏
j=1

Γ(1− gj +Gjξ)

Q∏
j=M+1

Γ(1− hj +Hjξ)
P∏

j=N+1

Γ(gj −Gjξ)

, (3.1.3)

M, N, P and Q are non-negative integers satisfying 1 5M 5 Q,

0 5 N 5 P ;Gj(j = 1, · · · , P ) and Hj(j = 1, · · · , Q) are assumed to be positive

quantities for standardization purpose.

The definition of the H-function given by (3.1.2) will, However, have meaning

even if some of these quantities are zero, giving us in turn simple transformation

formulas.

The nature of contour L in (3.1.2), a set of sufficient conditions for the con-

vergence of this integral, the asymptotic expansion of the H-function, some of its

properties and special cases can be referred to in a book by Srivastava et al.[109]
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THE MULTIVARIABLE H-FUNCTION

The Multivariable H-Function is defined and represented in the following manner

[109, p. 251–250, Eqs. (C.1–C.3)]:

H0,B:A1,B1;...;Ar,Br
C,D:C1,D1;...;Cr,Dr


z1

.

.

.
zr

∣∣∣∣∣∣∣∣∣∣∣

(aj;α
(1)
j , ..., α

(r)
j )1,C : (c

(1)
j , γ

(1)
j )1,C1 ; ...; (c

(r)
j , γ

(r)
j )1,Cr

(bj; β
(1)
j , ..., β

(r)
j )1,D : (d

(1)
j , δ

(1)
j )1,D1 ; ...; (d

(r)
j , δ

(r)
j )1,Dr



=
1

(2πω)r

∫
L1

∫
L2

...

∫
Lr

Φ(ξ1, ξ2, ..., ξr)
r∏
i=1

Θi(ξi)z
ξi dξ1dξ2, ..., dξr, (3.1.4)

where ω =
√
−1,

Φ(ξ1, ξ2, ..., ξr) =

B∏
j=1

Γ(1− aj +
r∑
i=1

α
(i)
j ξi)

D∏
j=1

Γ(1− bj +
r∑
i=1

β
(i)
j ξi)

C∏
j=B+1

Γ(aj −
r∑
i=1

α
(i)
j ξi)

Θi(ξi) =

Ai∏
j=1

Γ(d
(i)
j − δ

(i)
j ξi)

Bi∏
j=1

Γ(1− c(i)
j + γ

(i)
j ξi)

Ci∏
j=Bi+1

Γ(c
(i)
j − γ

(i)
j ξi)

Di∏
j=Ai+1

Γ(1− d(i)
j + δ

(i)
j ξi)

(i = 1, 2, ..., r), (3.1.5)

All the Greek letters occurring on the left and side of (3.1.4) are assumed to be

positive real numbers for standardization purposes. The definition of the

multivariable H-function will however be meaningful even if some of these quan-

tities are zero. The details about the nature of contour L1, ...,Lr, conditions of

convergence of the integral given by (3.1.4). Throughout the work it is assumed

that this function always satisfied its appropriate conditions of convergence

[109, p. 251, Eqs. (C.4–C.6)].
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3.1 INTRODUCTION

S-GENERALIZED GAUSS HYPERGEOMETRIC

FUNCTION

The S-generalized Gauss hypergeometric function F
(α,β;τ,µ)
p (a, b; c; z) was

introduced and investigated by Srivastava et al. [113, p. 350, Eq. (1.12)]. It is

represented in the following manner:

F (α,β;τ,µ)
p (a, b; c; z) =

∞∑
n=0

(a)n
B

(α,β;τ,µ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
(|z| < 1) (3.1.6)

provided that (R(p) ≥ 0; min{R(α),R(β),R(τ),R(µ)} > 0; R(c) > R(b) > 0)

in terms of the classical Beta function B(λ, µ) and the S-generalized Beta function

B
(α,β;τ,µ)
p (x, y) was also defined by Srivastava et al. [113, p. 350, Eq.(1.13)] as

follows:

B(α,β;τ,µ)
p (x, y) =

1∫
0

tx−1(1− t)y−1
1F1

(
α; β;

−p
tτ (1− t)µ

)
dt (3.1.7)

(R(p) ≥ 0; min{R(x),R(y),R(α),R(β),R(τ),R(µ)} > 0)

If we take p = 0 in (3.1.7), it reduces to Classical Beta Function and (λ)n denotes

the pochhammer symbol defined (for λ ∈ C) by (see [115, p. 2 and pp. 4–6]; see

also [114, p. 2]):

(λ)n : =
Γ(λ+ n)

Γ(λ)
=

{
1, (n = 0)

λ(λ+ 1)...(λ+ n− 1), (n ∈ N := {1, 2, 3})
(3.1.8)

provided that the Gamma quotient exists (see, for details,[108, et seq.] and [112,

p. 22 et seq.]).

61
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COMPLEX INTEGRAL REPRESENTATION OF S-GENERALIZED

GAUSS HYPERGEOMETRIC FUNCTION

A complex integral representation of S-Generalized Gauss Hypergeometric func-

tion F
(α,β;τ,µ)
p (a, b; c, z) was introduced and investigated by Srivastava et al.[111].

It is represented in the following manner:

F (α,β;τ,µ)
p (a, b; c, z) =

1

2πi

∫
L

(−z)−ξ
B(ξ, a− ξ)B(α,β;τ,µ)

p (b− ξ, c− b)
B(b, c− b)

dξ (3.1.9)

Now we give the following representation of F
(α,β;τ,γ)
p (a, b; c, z) in terms of H-

function of two variables:

F (α,β;τ,γ)
p (a, b; c, z) =

1

2πi

∫
L

(−z)−ξ
B(ξ, a− ξ)B(α,β;τ,µ)

p (b− ξ, c− b)
B(b, c− b)

dξ

=
Γ(β)

Γ(α)Γ(a)B(b, c− b)
H0,1:1,2;1,1

1,1:3,1;1,1

 p−1

−z

∣∣∣∣∣∣
(1− b; τ, 1) : A∗

(1− c; τ + µ, 1) : B∗

 (3.1.10)

where

A∗ = (1, 1), (1− c+ b, µ), (β, 1); (1− a, 1) B∗ = (α, 1); (0, 1)

GENERALIZED INCOMPLETE HYPERGEOMETRIC

FUNCTION

The generalized incomplete hypergeometric function introduced and defined by

Srivastava et al. [116, p.675, Eq.(4.1)] is represented in the following manner:

pγq

 (Ep;σ);

Fq;
z

 = pγq

 (e1;σ), e2, ..., ep;

f1, ..., fq;
z


:=

∞∑
n=0

(Ep;σ)n
(Fq; 0)n

zn

n!
=
∞∑
n=0

(e1;σ)n, (e2)n, ..., (ep)n
(f1)n, (f2)n, ..., (fq)n

zn

n!
(3.1.11)
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where the incomplete Pochhammer symbols are defined as follows:

(e;σ)n =
γ(e+ n, σ)

Γ(e)
(a, n ∈ C;x ≥ 0) (3.1.12)

and the familiar incomplete gamma function γ(s, x) is

γ(s, x) =

x∫
0

ts−1e−tdt (R(s) > 0;x ≥ 0) (3.1.13)

provided that the defining of infinite series in each case is absolutely convergent.

FRACTIONAL INTEGRAL OPERATORS

We study two unified fractional integral operators involving the Appell

Polynomial, Fox H-function and S-Generalized Gauss’s Hypergeometric Function

having general arguments defined and represented in the following manner:

Iν,λx {An, H, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λAn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

HM,N
P,Q

z2

(
t

x

)ν2 (
1− t

x

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
f(t)dt

(3.1.14)

where f(t) ∈ Λ and Λ denotes the class of functions for which

f(t) : =


O{|t|ζ}; max{|t|} → 0

O{|t|w1e−w2|t|}; min{|t|} → ∞
(3.1.15)

provided that

min
1≤j≤M

R

(
ν + ν2

hj
Hj

+ ζ + 1, λ+ λ2
hj
Hj

+ 1

)
> 0

min{ν1, ν3, λ1, λ3} ≥ 0

 (3.1.16)
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Jν,λx {An, H, Fp; f(t)} = xν
∞∫
x

t−ν−λ−1(t− x)λAn

[
z1

(x
t

)ν1 (
1− x

t

)λ1]

HM,N
P,Q

z2

(x
t

)ν2 (
1− x

t

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3]
f(t)dt

(3.1.17)

provided that

R(w2) > 0 or R(w2) = 0 and min
1≤j≤M

R

(
ν − w1 + ν2

hj
Hj

)
> 0

min
1≤j≤M

R

(
λ+ λ2

hj
Hj

+ 1

)
> 0,min{ν1, ν3, λ1, λ3} ≥ 0

 (3.1.18)

3.2 IMAGES

In this section, we will find the images of some useful functions under the our

operators define by (3.1.14) and (3.1.17). We have:

(i)

Iν,λx

An, H, Fp; tρH0,B;A1,B1;...;Ar,Br
C,D;C1,D1;...;Cr,Dr


z(1)tν

(1)
(x− t)λ(1)

.

.

.

z(r)tν
(r)

(x− t)λ(r)


 =

Γ(β)xρ

Γ(a)Γ(α)B(b, c− b)

n∑
k=0

an−kz
k
1

k!
H0,B+3;A1,B1;...;Ar,Br;1,2;M,N ;1,1
C+3,D+2;C1,D1;...;Cr,Dr;3,1;P,Q;1,1



z(1)xν
(1)+λ(1)

.

.

z(r)xν
(r)+λ(r)

p−1

z2

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(3.2.1)
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where

A∗ = (−ρ− ν − ν1k; ν(1), · · · , ν(r), ν2, ν3, 0), (−λ− λ1k;λ(1), · · · , λ(r), λ2, λ3, 0),

(1− b; 0, · · · , 0,︸ ︷︷ ︸
r+1

τ, 1), (aj;α
(1)
j , · · · , α(r)

j , 0, 0, 0)1,C

B∗ = (−1− ρ− (λ+ ν)− (λ1 + ν1)k; (λ(1) + ν(1)), · · · , (λ(r) + ν(r)), (λ2 + ν2), (λ3 + ν3), 0),

(1− c; 0, · · · , 0,︸ ︷︷ ︸
r+1

τ + µ, 1), (bj; β
(1)
j , · · · , β(r)

j , 0, 0, 0)1,D

C∗ = (c
(1)
j , γ

(1)
j )1,C1 ; · · · ; (c

(r)
j , γ

(r)
j )1,Cr ; (1, 1), (1− c+ b, µ), (β, 1); (gj, Gj)1,P ; (1− a, 1)

D∗ = (d
(1)
j , δ

(1)
j )1,D1 ; · · · ; (d

(r)
j , δ

(r)
j )1,Dr ; (α, 1); (hj, Hj)1,Q; (0, 1)


(3.2.2)

provided that conditions given by (3.1.16) are satisfied.

(ii)

Jν,λx

An, H, Fp; tρH0,B;A1,B1;...;Ar,Br
C,D;C1,D1;...;Cr,Dr


z(1)t−ν

(1)
(1− x

t
)λ

(1)

.

.

.

z(r)t−ν
(r)

(1− x
t
)λ

(r)


 =

Γ(β)xρ

Γ(a)Γ(α)B(b, c− b)

n∑
k=0

an−kz
k
1

k!
H0,B+3;A1,B1;...;Ar,Br;1,2;M,N ;1,1
C+3,D+2;C1,D1;...;Cr,Dr;3,1;P,Q;1,1



z(1)x−ν
(1)

.

.

z(r)x−ν
(r)

p−1

z2

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗∗ : C∗

B∗∗ : D∗


(3.2.3)

where A∗∗ and B∗∗ can be obtained from A∗ and B∗ defined in (3.2.2) by replacing

ρ by −1− ρ, and provided that conditions given by (3.1.18) are satisfied.

(iii)

Iν,λx

An, H, Fp; tρpγq
 (Ep;σ);

Fq;
z4

(
t

x

)ν4 (
1− t

x

)λ4 =
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Γ(β)xρ

Γ(a)Γ(α)B(b, c− b)

∞∑
i=0

n∑
k=0

an−k
k!

(e1;σ)i, (e2)i, ..., (ep)i
(f1)i, (f2)i, ..., (fq)ii!

zk1z
i
4

H0,3:M,N ;1,1;1,2
3,2:P,Q;1,1;3,1


z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣
E∗; (gj, Gj)1,P ; (1− a, 1); (1, 1), (1− c+ b, µ), (β, 1)

F ∗; (hj, Hj)1,Q; (0, 1); (α, 1)


(3.2.4)

E∗ = (−ρ− ν − ν1k − ν4i, ν2, ν3, 0), (−λ− λ1k − λ4i, λ2, λ3, 0), (1− b; 0, 1, τ)

F ∗ = (−1− ρ− (λ+ ν))− (λ1 + ν1)k − (λ4 + ν4)i, (λ2 + ν2), (λ3 + ν3), 0), (1− c; 0, 1, τ + µ)


(3.2.5)

provided that the conditions given by (3.1.16) are satisfied.

(iv)

Jν,λx

An, H, Fp; tρpγq
 (Ep;σ);

Fq;
z4t
−ν4
(

1− x

t

)λ4 =

Γ(β)

Γ(a)Γ(α)B(b, c− b)

∞∑
i=0

n∑
k=0

an−k
k!

(e1;σ)i, (e2)i, ..., (ep)i
(f1)i, (f2)i, ..., (fq)ii!

zk1z
i
4x

ρ−ν4i

H0,3:M,N ;1,1;1,2
3,2:P,Q;1,1;3,1


z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣
E∗∗; (gj, Gj)1,P ; (1− a, 1); (1, 1), (1− c+ b, µ), (β, 1)

F ∗∗; (hj, Hj)1,Q; (0, 1); (α, 1)


(3.2.6)

where E∗∗ and F ∗∗ can be obtained from E∗ and F ∗ defined in (3.2.5) by replac-

ing ρ by −1− ρ, and provided that conditions given by (3.1.18) are satisfied.
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Proof:

To prove (3.2.1), first of all express the I-operator involved in its left hand side,

in the integral form with the help of equation (3.1.14), we have

Iν,λx

An, H, Fp; tρH0,B;A1,B1;...;Ar,Br
C,D;C1,D1;...;Cr,Dr


z(1)tν

(1)
(x− t)λ(1)

.

.

.

z(r)tν
(r)

(x− t)λ(r)


 = x−ν−λ−1

x∫
0

tν+ρ(x− t)λAn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]
HM,N
P,Q

z2

(
t

x

)ν2 (
1− t

x

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q



F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
H0,B;A1,B1;...;Ar,Br
C,D;C1,D1;...;Cr,Dr


z(1)tν

(1)
(x− t)λ(1)

.

.

.

z(r)tν
(r)

(x− t)λ(r)

 dt
(3.2.7)

Now, we replace the Appell polynomial occurring in the above expression in terms

of its series with the help of equation (3.1.1) and change the order of the series

and the t-integral. Next, we express the S-Generalized Gauss Hypergeometric

Function in terms of H-function of two variable with the help of (3.1.10). Fur-

ther, we express Fox H-function, H-function of two variable and Multivariable

H-function in terms of the Mellin-Barnes type contour integrals with the help of

equation (3.1.2) and (3.1.4) respectively. Then changing the order of ξj- and t-

integrals (j= 1,2,3,...,r + 3) (which is permissible under the conditions stated),

we have

Iν,λx

An, H, Fp; tρH0,B;A1,B1;...;Ar,Br
C,D;C1,D1;...;Cr,Dr


z(1)tν

(1)
(x− t)λ(1)

.

.

.

z(r)tν
(r)

(x− t)λ(r)


 =

Γ(β)

Γ(α)Γ(a)B(b, c− b)
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n∑
k=0

an−k
k!

zk1x
ρ−(ν+λ)−(ν1+λ1)k−(ν2+λ2)ξr+1−(ν3+λ3)ξr+2−1 1

(2πω)r+3

∫
L1

∫
L2

...

∫
Lr+3

Φ(ξ1, ξ2, ..., ξr)

r∏
i=1

Θi(ξi)ϕ(ξr+2, ξr+3)
r+3∏
j=r+1

Θj(ξj)z
(i)ξiz

ξr+1

2 z
ξr+2

3 p−ξr+3

x∫
0

t
ρ+ν+ν1k+

r∑
i=1

ν(i)ξi+ν2ξr+1+ν3ξr+2

(x− t)
λ+λ1k+

r∑
i=1

λ(i)ξi+λ2ξr+1+ν3ξr+2

dt dξ1dξ2, ..., dξr+3

(3.2.8)

Finally, evaluating the t-integral and reinterpreting the result thus obtained in

terms of the H-function of r+3 variables, we easily arrive at the desired result

(3.2.1) after a little simplification.

The proof of (3.2.3), (3.2.4) and (3.2.6) can be obtained by proceed-

ing on similar lines to those given above.

3.3 APPLICATIONS

Now we shall establish four interesting integrals with the application of images:

(I) In the image (i), if we reduce Multivariable H-function into Appell’s Function

[109, p.89,Eq.(6.4.6)] and take ρ = 0. We obtain the following integral after a

little simplification:

Γ(c1)Γ(c2)Γ(c3)

Γ(d1)Γ(d2)

1

x

x∫
0

(
t

x

)ν (
1− x

t

)λ
An

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

HM,N
P,Q

z2

(
t

x

)ν2 (
1− t

x

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]

F3

[
c1, c2, c3, c4; b1; z(1)tν

(1)

(x− t)λ(1) , z(2)tν
(2)

(x− t)λ(2)
]
dt (3.3.1)
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=
Γ(β)

Γ(a)Γ(α)B(b, c− b)

n∑
k=0

an−kz
k
1

k!
H0,3;1,2;1,2;1,2;M,N ;1,1

3,3;2,1;2,1;3,1;P,Q;1,1


−z(1)xν

(1)+λ(1)

−z(2)xν
(2)+λ(2)

p−1

z2

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(3.3.2)

where

A∗ = (−ν − ν1k; ν(1), ν(2), ν2, ν3, 0), (−λ− λ1k;λ(1), λ(2), λ2, λ3, 0), (1− b; 0, 0, 0, τ, 1)

B∗ = (−1− (λ+ ν)− (λ1 + ν1)k; (λ(1) + ν(1)), (λ(2) + ν(2)), (λ2 + ν2), (λ3 + ν3), 0),

(1− c; 0, 0, 0, τ + µ, 1), (1− b1; 1, 1, 0, 0, 0)

C∗ = (1− c1, 1), (1− c2, 1); (1− c3, 1), (1− c4, 1); (1, 1), (1− c+ b, µ), (β, 1);

(gj, Gj)1,P ; (1− a, 1)

D∗ = (0, 1); (0, 1); (α, 1); (hj, Hj)1,Q; (0, 1)


(II) On taking in image (ii), if we reduce Multivariable H-function into Multi-

variate generalized Mittag-Leffler Function [99, p.5,Eq.(2.1)] and take ρ = 0. We

easily get the following integral after a little simplification:

r∏
j=1

Γ(γj)

∞∫
x

1

t

(x
t

)ν (
1− x

t

)λ
An

[
z1

(x
t

)ν1 (
1− x

t

)λ1]

HM,N
P,Q

z2

(x
t

)ν2 (
1− x

t

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3]
E
γj
βj ,b1

(
−z(1)t−ν

(1)

(1− x

t
)λ

(1)

, ...,−z(r)t−ν
(r)

(1− x

t
)λ

(r)
)
dt (3.3.3)
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=
Γ(β)x−1

Γ(a)Γ(α)B(b, c− b)

n∑
k=0

an−kz
k
1

k!
H0,3;1,1;...;1,1;1,2;M,N ;1,1

3,3;1,1;...;1,1;3,1;P,Q;1,1



z(1)x−ν
(1)

.

.

z(r)x−ν
(r)

p−1

z2

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E∗ : G∗

F ∗ : H∗


(3.3.4)

E∗ = (1− ν − ν1k; ν(1), ..., ν(r), ν2, ν3, 0), (−λ− λ1k;λ(1), ..., λ(r), λ2, λ3, 0), (1− b; 0, · · · , 0,︸ ︷︷ ︸
r+1

τ, 1)

F ∗ = (−(λ+ ν))− (λ1 + ν1)k; (λ(1) + ν(1)), ..., (λ(r) + ν(r)), (λ2 + ν2), (λ3 + ν3), 0),

(1− c; 0, ..., 0,︸ ︷︷ ︸
r+1

τ + µ, 1), (1− b1; β1, ..., βr, 0, 0, 0)

G∗ = (1− c1, 1); ...; (1− cr, 1); (1, 1), (1− c+ b, µ), (β, 1); (gj, Gj)1,P ; (1− a, 1)

H∗ = (0, 1); ...; (0, 1); (α, 1); (hj, Hj)1,Q; (0, 1)


(3.3.5)

(III) Further, in the image (i), if we reduce Multivariable H-function into gen-

eralization of the modified Bessel function of the third kind [30, p.155,Eq.(2.6)]

and take ρ = 0. We arrive at the following integral after a little simplification:

1

x

x∫
0

(
t

x

)ν (
1− t

x

)λ
An

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]
HM,N
P,Q

z2

(
t

x

)ν2 (
1− t

x

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q


F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
λ(η)
γ,σ

[
z(1)tν

(1)

(x− t)λ(1)
]
dt (3.3.6)

=
Γ(β)

Γ(a)Γ(α)B(b, c− b)

n∑
k=0

an−kz
k
1

k!
H0,3;2,0;1,2;M,N ;1,1

3,2;1,2;3,1;P,Q;1,1


z(1)xν

(1)+λ(1)

p−1

z2

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M∗ : P ∗

N∗ : Q∗


(3.3.7)
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where

M∗ = (−ν − ν1k; ν(1), ν2, ν3, 0), (−λ− λ1k;λ(1), λ2, λ3, 0), (1− b; 0, 0, τ, 1)

N∗ = (−1− (λ+ ν)− (λ1 + ν1)k; (λ(1) + ν(1)), (λ2 + ν2), (λ3 + ν3), 0),

(1− c; 0, 0, τ + µ, 1)

P ∗ = (1− (σ + 1)/η; 1/η); (1, 1), (1− c+ b, µ), (β, 1); (gj, Gj)1,P ; (1− a, 1)

Q∗ = (0, 1), (−γ − σ/η, 1/η); (α, 1); (hj, Hj)1,Q; (0, 1)


(3.3.8)

(IV) Again if we take in image (ii) ρ = 0 and reduce Multivariable H-function into

generalized hypergeometric Function [52, p.xi,Eq.(A.18)]. We get the following

integral after a little simplification:

p′∏
j=1

Γ(1− aj)

q′∏
j=1

Γ(1− bj)

∞∫
x

1

t

(x
t

)ν (
1− x

t

)λ
An

[
z1

(x
t

)ν1 (
1− x

t

)λ1]

HM,N
P,Q

z2

(x
t

)ν2 (
1− x

t

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3]

p′Fq′

[
(1− ap′);
(1− bp);

−
(
z(1)t−ν

(1)
(

1− x

t

)λ(1)
+ ...+ z(r)t−ν

(r)
(

1− x

t

)λ(r))]
dt

(3.3.9)

=
Γ(β)

Γ(a)Γ(α)B(b, c− b)

n∑
k=0

an−kz
k
1

k!
H0,p′+3;1,0;...;1,0;1,2;M,N ;1,1
p′+3,q′+2;0,1;...;0,1;3,1;P,Q;1,1



z(1)x−ν
(1)

.

.

z(r)x−ν
(r)

p−1

z2

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S∗ : U∗

T ∗ : V ∗


(3.3.10)
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S∗ = (1− ν − ν1k; ν(1), ..., ν(r), ν2, ν3, 0), (−λ− λ1k;λ(1), ..., λ(r), λ2, λ3, 0),

(1− b; 0, ..., 0,︸ ︷︷ ︸
r+1

τ, 1), (1− aj; 1, ..., 1︸ ︷︷ ︸
r

, 0, 0, 0)1,p′

T ∗ = (−(λ+ ν)− (λ1 + ν1)k; (λ(1) + ν(1)), ..., (λ(r) + ν(r)), (λ2 + ν2), (λ3 + ν3), 0),

(1− c; 0, ..., 0,︸ ︷︷ ︸
r+1

τ + µ, 1), (1− bj; 1, ..., 1︸ ︷︷ ︸
r

, 0, 0, 0)1,q′

U∗ = −; ...;−︸ ︷︷ ︸
r

; (1, 1), (1− c+ b, µ), (β, 1); (gj, Gj)1,P ; (1− a, 1)

V ∗ = (0, 1); ...; (0, 1)︸ ︷︷ ︸
r

; (α, 1); (hj, Hj)1,Q; (0, 1)


(3.3.11)

3.4 SPECIAL CASES OF FRACTIONAL

INTEGRAL OPERATORS

(i) In (3.1.14) and (3.1.17) , if we reduce Appell polynomial to Laguerre polyno-

mial [121, p.101, Eq.(5.1.6)] and Fox H-function reduced to Lorenzo Hartley

G-function [34, p.64,Eq.(2.3)], we obtain the following integral:

Iν,λx {Ln, Gq,σ,r, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λL(ρ)
n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

Gq,σ,r

[
z2,

(
t

x

)ν2 (
1− t

x

)λ2]
F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
f(t)dt

(3.4.1)

and

Jν,λx {Ln, Gq,σ,r, Fp; f(t)} = xν
∞∫
x

t−ν−λ−1(t− x)λL(ρ)
n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

Gq,σ,r

[
z2,
(x
t

)ν2 (
1− x

t

)λ2]
F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3]
f(t)dt

(3.4.2)
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(ii) In (3.1.14) and (3.1.17) , if we reduce Appell polynomial to Bessel polyno-

mial [60, p.108, Eq.(34)] and Fox H-function reduced to Generalized Mittag

Leffler function [73, p.25,Eq.(1.137)], we obtain the following integral:

Iν,λx {yn, E
η
γ,δ, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λyn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1
, ρ, σ

]

Eη
γ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2]
F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
f(t)dt

(3.4.3)

and

Jν,λx {yn, E
η
γ,δ, Fp; f(t)} = xν

∞∫
x

t−ν−λ−1(t− x)λyn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1
, ρ, σ

]

Eη
γ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2]
F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3]
f(t)dt

(3.4.4)

(iii) In (3.1.14) and (3.1.17) , if we reduce Appell polynomial to Cesaro polyno-

mial [112, p.449, Eq.(20)] and Fox H-function reduced to Bessel Maitland

function [73, p.25,Eq.(1.139)], we obtain the following integral

Iν,λx {gρn, J
η
γ,δ, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λg(ρ)
n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

Jηγ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2]
F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
f(t)dt

(3.4.5)

and

Jν,λx {gρn, J
η
γ,δ, Fp; f(t)} = xν

∞∫
x

t−ν−λ−1(t− x)λg(ρ)
n

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

Jηγ,δ

[
z2

(
t

x

)ν2 (
1− t

x

)λ2]
F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)ν3 (
1− x

t

)λ3]
f(t)dt

(3.4.6)
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If we reduce Appell polynomial An(z) and Fox’s H-function to unity, S-generalized

hypergeometric function into gauss hypergeometric function and λ3 = 1, ν3 = 0

in our fractional integral operators defined by (3.1.14) and (3.1.17), we easily

arrive at the results which are same in essence as those obtained by Saxena and

Kumbhat [98].

If we reduce Appell polynomial An(z) and Fox’s H-function to unity, S-generalized

hypergeometric function into gauss hypergeometric function and λ3 = 1, ν3 = ν =

0 in our fractional integral operators defined by (3.1.14) and (3.1.17), we easily

arrive at the results which are same in essence as those obtained by Saigo [96].

3.5 MELLIN TRANSFORM, INVERSION

FORMULAS AND MELLIN

CONVOLUTIONS

The Mellin transform of a function f(t) is defined as usual by the following

equation:

M{f(t); s} =

∞∫
0

ts−1f(t)dt (3.5.1)

provided that the integral on the right hand side exists.

Now we obtain the following results which give the Mellin transforms of the

fractional integral operators defined by (3.1.14) and (3.1.17), their corresponding

inversion formulae and convolutions.

Theorem 3.5.1. If M{[f(t)]; s}, M{Iν,λx [An, H, Fp; f(t)]; s} exist,

R(1 + λ) > 0, R(1 + ν − s) > 0 and the conditions of the existence of the
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operator Iν,λx [An, H, Fp; f(t)] are satisfied then

M{Iν,λx [An, H, Fp; f(t)]; s} = M{f(t); s}G(s) (3.5.2)

Theorem 3.5.2. If M{[f(t)]; s}, M{Jν,λx [An, H, Fp; f(t)]; s} exist,

R(1 + λ) > 0, R(ν + s) > 0 and the conditions of the existence of the operator

Jν,λx [An, H, Fp; f(t)] are satisfied then

M{Jν,λx [An, H, Fp; f(t)]; s} = M{f(t); s}G((1− s)) (3.5.3)

where

G(s) =
Γ(β)

Γ(a)Γ(α)B(b, c− b)

n∑
k=0

an−kz
k
1

k!

H0,3:M,N ;1,1;1,2
3,2:P,Q;1,1;3,1



z2

z3

p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

G∗; (gj, Gj)1,P ; (1− a, 1); (1, 1), (1− c+ b, µ), (β, 1)

H∗; (hj, Hj)1,Q; (0, 1); (α, 1)


G∗ = (−λ− λ1k;λ2, λ3, 0), (s− ν − ν1k; ν2, ν3, 0), (1− b; 0, 1, τ)

H∗ = (s− (ν + λ)− (ν1 + λ1)k − 1; (ν2 + λ2), (ν3 + λ3), 0), (1− c; 0, 1, τ + µ)


(3.5.4)

provided that conditions given by (3.1.16)and (3.1.18)are satisfied.

Proof: To prove Theorem 3.5.1, first we write the Mellin transform of the

I-operator defined by (3.1.14) with the help of (3.5.1)

M{Iν,λx [An, H, Fp; f(t)]; s} =

∞∫
0

xs−1Iν,λx [f(t)]dx

=

∞∫
0

xs−1x−ν−λ−1

x∫
0

tν(x− t)λAn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

HM,N
P,Q

z2

(
t

x

)ν2 (
1− t

x

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
t

x

)ν3 (
1− t

x

)λ3]
f(t)dtdx
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Next, we change the order of x- and t-integrals. Now, we replace the Fox

H-function and S-generalized hypergeometric function occuring in it in terms of

Mellin Barnes Contour integral with the help of equation (3.1.2) and (3.1.10)

respectively and Appell polynomial in terms of series with the help of equation

(3.1.1) and interchange the order of summation and integration in the result thus

obtained. Next we evaluate the t-integral and interpret the result in terms of

multivariable H-function and finally with the help of (3.5.1), we easily arrive at

the desired result (3.5.2) after a little simplification.

The proof of Theorem 3.5.2 can be developed on similar lines.

INVERSION FORMULAE

On making use of the well-known inversion theorem for the Mellin Transform,

(3.5.1), we easily arrive at the following inversion formulae for our fractional

integral operators defined by (3.1.14) and (3.1.17):

Formula 1

f(t− 0) + f(t+ 0)

2
=

1

2πi

∫
L

t−s

G(s)
M{Iν,λx [An, H, Fp; f(t)]; s}ds (3.5.5)

Formula 2

f(t− 0) + f(t+ 0)

2
=

1

2πi

∫
L

t−s

G(−1− s)
M{Jν,λx [An, H, Fp; f(t)]; s}ds (3.5.6)

where G(s) is given by (3.5.4)
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MELLIN CONVOLUTION

The Mellin convolution of two functions f(t) and g(t) will be defined by

(f ∗ g)(x) = (g ∗ f)(x) =

∞∫
0

t−1g
(x
t

)
f(t)dt (3.5.7)

provided that the integral involved in (3.5.7) exists.

The fractional integral operators defined by (3.1.14) and (3.1.17) can readily

be expressed as Mellin convolutions. we have the following interesting results

involving the Mellin convolutions :

Result 1

Iν,λx [An, H, Fp; f(t)] = (g ∗ f)(x) (3.5.8)

where

g(x) = x−ν−λ−1(x− 1)λAn
[
z1x
−ν1−λ1(x− 1)λ1

]
HM,N
P,Q

z2x
−ν2−λ2(x− 1)λ2

∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q


F (α,β;τ,µ)
p

[
a, b; c; z3x

−ν3−λ3(x− 1)λ3
]
U(x− 1)

(3.5.9)

Result 2

Jν,λx [An, H, Fp; f(t)] = (h ∗ f)(x) (3.5.10)

where

h(x) = xν(1− x)λAn
[
z1x

ν1(1− x)λ1
]
HM,N
P,Q

z2x
ν2(1− x)λ2

∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q


F (α,β;τ,µ)
p

[
a, b; c; z3x

ν3(1− x)λ3
]
U(1− x)

(3.5.11)
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3. FRACTIONAL INTEGRAL OPERATORS WITH
APPLICATIONS

U(x) being the Heaviside’s unit function.

Proof: To prove Result 1 we first write the Iν,λx -operator defined by (3.1.14) in

the following form using the definition of Heaviside’s unit function:

Iν,λx [f(t)] =

∞∫
0

t−1
(x
t

)−ν−λ−1 (x
t
− 1
)λ
HM,N
P,Q

z2

(x
t

)−ν2−λ2 (x
t
− 1
)λ2 ∣∣∣∣∣∣

(gj, Gj)1,P

(hj, Hj)1,Q


An

[
z1

(x
t

)−ν1−λ1 (x
t
− 1
)λ1]

F (α,β;τ,µ)
p

[
a, b; c; z3

(x
t

)−ν3−λ3 (x
t
− 1
)λ3]

U
(x
t
− 1
)
f(t)dt

(3.5.12)

Now making use of the equation (3.5.9) and the definition of the Mellin convolu-

tion given by (3.5.7) in the above equation, we easily arrive at the required Result

1 after a little simplification.

The proof of Result 2 can be developed on similar lines.

3.6 ANALOGUS OF PARSEVAL GOLDSTEIN

THEOREM

If

φ1(x) = Iν,λx [An, H, Fp; f(t)] (3.6.1)

and

φ2(x) = Jν,λx [An, H, Fp; f(t)] (3.6.2)

then

∞∫
0

φ1(x)f2(x)dx =

∞∫
0

φ2(x)f1(x)dx (3.6.3)
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3.6 ANALOGUS OF PARSEVAL GOLDSTEIN THEOREM

provided that the integral involved in (3.6.1), (3.6.2) and (3.6.3) exists.

Proof: To prove the above theorem, we substitute the value of φ1(x) from (3.6.1)

in the left hand side of (3.6.3) and expressing the I-operator in its integral form

by using (3.1.14). Now interchange the order of x and t-integrals (which is per-

missible under given conditions) and interpret the expression thus obtained in

term of J-operator with the help of (3.1.17), we arrive at the desired result by

(3.6.2) after a little simplification.
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4
COMPOSITION FORMULAE FOR

FRACTIONAL INTEGRAL OPERATORS

The main findings of this chapter have been published as detailed below:

1. M. K. BANSAL and R. JAIN (2016).COMPOSITION FORMULAE

FOR UNIFIED FRACTIONAL INTEGRAL OPERATORS, European Jour-

nal of Advances in Engineering and Technology. 3(4), 1-6.
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4. COMPOSITION FORMULAE FOR FRACTIONAL INTEGRAL
OPERATORS

In this chapter, we first derive three new and interesting expressions for the

composition of the two fractional integral operators, which are slight variants of

the operators defined in Chapter 3. The operators of our study are quite general

in nature and may be considered as extensions of a number of simpler fractional

integral operators studied from time to time by several authors. By suitably

specializing the coefficients and the parameters in these functions we can get a

large number of (new and known) interesting expressions for the composition

of fractional integral operators involving simpler special functions. Finally, we

obtain two interesting finite double integral formulae as an application of our first

composition formula known results which follow as special case of our findings

have also been mentioned.

4.1 INTRODUCTION

In line with chapter 3, Λ will denote the class of function f(t) for which

f(t) =


O{|t|ζ}; max{|t|} → 0

O{|t|w1e−w2|t|}; min{|t|} → ∞
(4.1.1)

For the sake of completeness, we would like to give in this chapter also, the

definitions, notations and conditions of existence of operators of our study. The

unified fractional integral operators studied in the present chapter will be defined
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4.2 COMPOSITION FORMULAE FOR THE FRACTIONAL
INTEGRAL OPERATORS

and represented in the following manner:

Iν,λx {An, H, Fp; f(t)} = x−ν−λ−1

x∫
0

tν(x− t)λAn

[
z1

(
t

x

)ν1 (
1− t

x

)λ1]

HM,N
P,Q

z2

(
1− t

x

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
1− t

x

)λ3]
f(t)dt

(4.1.2)

where f(t) ∈ Λ and

min
1≤j≤M

R

(
ν + ζ + 1, λ+ λ2

hj
Hj

+ 1

)
> 0 and min{ν1, λ1, λ3} ≥ 0 (4.1.3)

Where An, H
M,N
P,Q [z] and F

(α,β;τ,µ)
p (a, b; c; z) occurring in (4.1.2) stands for the Ap-

pell Polynomial, Fox H-function and S-generalized gauss hypergeometric function

defined by (3.1.1), (3.1.2) and (3.1.6) respectively.

Jν,λx {An, H, Fp; f(t)} = xν
∞∫
x

t−ν−λ−1(t− x)λAn

[
z1

(x
t

)ν1 (
1− x

t

)λ1]

HM,N
P,Q

z2

(
1− x

t

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
1− x

t

)λ3]
f(t)dt

(4.1.4)

provided that

R(w2) > 0 or R(w2) = 0 and R (ν − w1) > 0

min
1≤j≤M

R

(
λ+ λ2

hj
Hj

+ 1

)
> 0,min{ν1, λ1, λ3} ≥ 0

 (4.1.5)

4.2 COMPOSITION FORMULAE FOR THE

FRACTIONAL INTEGRAL OPERATORS

RESULT 1

Iν
′,λ′

x2

[
An′ , H

′, F ′p′ ; I
ν,λ
x1

[An, H, Fp; f(t)]
]

=
1

x2

x2∫
0

G

(
t

x2

)
f(t)dt (4.2.1)
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where

G(X) =
Γ(β)Γ(β′)

Γ(a)Γ(a′)Γ(α)Γ(α′)B(b, c− b)B(b′, c′ − b′)

n∑
k=0

n′∑
k′=0

an−kan′−k′

k!k′!
zk1z

,k′

1 Xν+ν1k(1−X)λ+λ1k+λ′+λ′1k
′+1

H0,5:1,2;1,2;M ′,N ′;1,1;M,N ;1,1;1,0
5,4:3,1;3,1;P ′,Q′;1,1;P,Q;1,1;0,1



p′−1

p−1

z′2(1−X)
−z′3(1−X)
z2(1−X)
−z3(1−X)
−(1−X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(4.2.2)

where

A∗ = (−λ− λ1k − ν − ν1k + ν ′ + ν ′1k
′; 0, 0, 0, 0, λ2, λ3, 1), (−λ′ − λ′1k′; 0, 0, λ′2, λ

′
3, 0, 0, 1),

(−λ− λ1k; 0, 0, 0, 0, λ2, λ3, 0), (1− b′; τ ′, 0, 0, 1, 0, 0, 0), (1− b; 0, τ, 0, 0, 0, 1, 0)

B∗ = (−λ− λ1k − ν − ν1k + ν ′ + ν ′1k
′; 0, 0, 0, 0, λ2, λ3, 0), (1− c; 0, (τ + µ), 0, 0, 0, 1, 0),

(−1− λ− λ1k − λ′ − λ′1k′; 0, 0, λ′2, λ
′
3, λ2, λ3, 1), (1− c′; (τ ′ + µ′), 0, 0, 1, 0, 0, 0)

C∗ = (1, 1), (1− c′ + b′, µ′), (β′, 1); (1, 1), (1− c+ b, µ), (β, 1); (g′j, G
′
j)1,P ′ ;

(1− a′, 1); (gj, Gj)1,P ; (1− a, 1);−

D∗ = (α′, 1); (α, 1); (h′j, H
′
j)1,Q′ ; (0, 1); (hj, Hj)1,Q; (0, 1); (0, 1)


(4.2.3)

and following conditions are satisfied

f(t) ∈ Λ

R (ν ′ + ν + ζ) > −2, min
1≤j≤M

R

(
λ′ + λ′2

h′j
H ′j

+ λ+ λ2
hj
Hj

)
> −2

min{ν1, ν
′
1, λ1, λ

′
1, λ3, λ

′
3} ≥ 0

 (4.2.4)
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4.2 COMPOSITION FORMULAE FOR THE FRACTIONAL
INTEGRAL OPERATORS

RESULT 2

Jν,λx2

[
An, H, Fp; J

ν′,λ′

x1
[An′ , H

′, Fp′ ; f(t)]
]

=

∞∫
x2

1

t
G
(x2

t

)
f(t)dt (4.2.5)

provided that

R(w2) > 0 or R(w2) = 0 and R (ν + ν ′ − w1) > 0;

min
1≤j≤M

R

(
λ+ λ2

hj
Hj

+ λ′ + λ′2
h′j
H ′j

)
> −2,min{ν1, λ1, λ3, ν

′
1, λ
′
1, λ
′
3} ≥ 0


(4.2.6)

and G(X) is given by (4.2.2), f(t) ∈ Λ, the composite operator defined by the

LHS of (4.2.5) exists.

RESULT 3

Iν
′,λ′

x2

[
An′ , H

′, F ′p′ ; J
ν,λ
x1

[An, H, Fp; f(t)]
]

=
1

x2

x2∫
0

K

(
t

x2

)
f(t)dt+

∞∫
x2

1

t
K∗
(x2

t

)
f(t)dt

(4.2.7)

where

K(T ) =
Γ(β)Γ(β′)

Γ(a)Γ(a′)Γ(α)Γ(α′)B(b, c− b)B(b′, c′ − b′)
n∑
k=0

n′∑
k′=0

an−kan′−k′Γ(ν + ν ′ + ν1k + ν ′1k
′ + 1)

k!k′!
zk1z

,k′

1 T ν
′+ν′1k

′
(1− T )λ+λ1k+λ′+λ′1k

′+1

H0,4:1,2;1,2;M ′,N ′;1,1;M,N ;1,1;1,0
4,4:3,1;3,1;P ′,Q′;1,1;P,Q;1,1;0,1



p′−1

p−1

z′2(1− T )λ
′
2

−z′3(1− T )λ
′
3

z2(1− T )λ2

−z3(1− T )λ3

−T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(4.2.8)
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where

A∗ = (−1− ν − ν ′ − ν1k − ν ′1k′ − λ′ − λ′1k′ − λ− λ1k; 0, 0, λ′2, λ
′
3, λ2, λ3, 1),

(−λ− λ1k; 0, 0, 0, 0, λ2, λ3, 1), (1− b′; τ ′, 0, 0, 1, 0, 0, 0), (1− b; 0, τ, 0, 0, 0, 1, 0)

B∗ = (−1− λ− λ1k − λ′ − λ′1k′ − ν − ν ′ − ν1k − ν ′1k′; 0, 0, λ′2, λ
′
3, λ2, λ3, 0),

(−1− λ− λ1k − ν − ν ′ − ν1k − ν ′1k′; 0, 0, 0, 0, λ2, λ3, 1)(1− c′; (τ ′ + µ′), 0, , 0, 1, 0, 0, 0),

(1− c; 0, (τ + µ), 0, 0, 0, 1, 0)

C∗ = (1, 1), (1− c′ + b′, µ′), (β′, 1); (1, 1), (1− c+ b, µ), (β, 1); (g′j, G
′
j)1,P ′ ;

(1− a′, 1); (gj, Gj)1,P ; (1− a, 1);−

D∗ = (α′, 1); (α, 1); (h′j, H
′
j)1,Q′ ; (0, 1); (hj, Hj)1,Q; (0, 1); (0, 1)


(4.2.9)

and K∗(T ) can be obtained from K(T) by interchanging the parameters with

dashes with those without dashes and following conditions are satisfied

f(t) ∈ Λ

R (ν ′ + ν + ζ) > −2, min
1≤j≤M

R

(
λ′ + λ′2

h′j
H ′j

+ λ+ λ2
hj
Hj

)
> −2

R(w2) > 0 or R(w2) = 0 and R (ν − w1) > 0

 (4.2.10)

Proof

To prove Result 1, we first express both the I-operators involved in its left

hand side, in the integral form with the help of equation (4.1.2). Next we inter-

change the order of t-and x1-integrals (which is permissible under the conditions

stated), we easily have after a little simplification.

Iν
′,λ′

x2

[
An′ , H

′, F ′p′ ; I
ν,λ
x1

[An, H, Fp; f(t)]
]

= x−ν
′−λ′−1

2

x2∫
0

tν∆ f(t)dt (4.2.11)
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where

∆ =
x2∫
t

xν
′−ν−λ−1

1 (x2 − x1)λ
′
(x1 − t)λAn

[
z1

(
t

x1

)ν1 (
1− t

x1

)λ1]
An′

[
z′1

(
x1

x2

)ν′1 (
1− x1

x2

)λ′1]

HM,N
P,Q

z2

(
1− t

x1

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 HM ′,N ′

P ′,Q′

z′2(1− x1

x2

)λ′2 ∣∣∣∣∣∣
(g′j, G

′
j)1,P ′

(h′j, H
′
j)1,Q′


F (α,β;τ,µ)
p

[
a, b; c; z3

(
1− t

x1

)λ3]
F

(α′,β′;τ ′,µ′)
p′

[
a′, b′; c′; z′3

(
1− x1

x2

)λ′3]
dx1

(4.2.12)

To evaluate ∆, we first express both the Fox’s H-Functions and S-Generalized

gauss hypergeometric functions in terms of their respective contour integral forms

with the help of (3.1.2) and (3.1.10) respectively, next both the Appell polyno-

mail are expressed in terms of the series with the help of (3.1.1). Further, we

interchange the order of summations and contour integral and get:

∆ =
Γ(β)Γ(β′)

Γ(a)Γ(a′)Γ(α)Γ(α′)B(b, c− b)B(b′, c′ − b′)

n∑
k=0

n′∑
k′=0

an−kan′−k′

k!k′!
zk1z

,k′

1 tν1k

1

(2πω)6

∫
L1

...

∫
L6

θ(ξ2)θ1(ξ′2)ψ(ξ1, ξ3)ψ(ξ′1, ξ
′
3)(p−1)ξ1(p′−1)ξ

′
1(z2)ξ2(z′2)ξ

′
2(−z3)ξ3

(−z′3)ξ
′
3x
−((ν′1+λ′1)k′+λ′2ξ

′
2+λ′3ξ

′
3)

2

x2∫
t

x
(ν′+ν′1k

′−ν−λ−(ν1+λ1)k−λ2ξ2−λ3ξ3)−1
1

(x2 − x1)(λ′+λ′1k
′+λ′2ξ

′
2+λ′3ξ

′
3)(x1 − t)(λ+λ1k+λ2ξ2+λ3ξ3)dx1dξ1, · · · , dξ6 (4.2.13)

Now, we substitute u =
(
x2−x1
x2−t

)
in (4.2.13) and evaluate the u integral with

the help of known result[90, p. 47, Eq.(16)]. Finally, re-interpreting the result in
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terms of the Multivariable H-function and substituting the values of ∆ in (4.2.11),

we get the right hand side of required result (4.2.1) after some simplification.

The proof of (4.2.5) can be developed proceeding on lines similar to

those indicated in the proof of the Result 1.

To prove Result 3 we first express both the I- and J- operators involved on the

left hand side of (4.2.7) in the integral form with the help of equation (4.1.2) and

(4.1.4), we have

Iν
′,λ′

x2

[
An′ , H

′, Fp′ ; J
ν,λ
x1

[An, H, Fp; f(t)]
]

= x−ν
′−λ′−1

2

x2∫
0

xν
′

1 (x2 − x1)λ
′

An′

[
z′1

(
x1

x2

)ν′1 (
1− x1

x2

)λ′1]
HM ′,N ′

P ′,Q′

z′2(1− x1

x2

)λ′2 ∣∣∣∣∣∣
(g′j, G

′
j)1,P ′

(h′j, H
′
j)1,Q′


F

(α′,β′;τ ′,µ′)
p′

[
a′, b′; c′; z′3

(
1− x1

x2

)λ′3]
xν1

∞∫
x1

t−ν−λ−1(t− x1)λAn

[
z1

(x1

t

)ν1 (
1− x1

t

)λ1]

HM,N
P,Q

z2

(
1− x1

t

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 F (α,β;τ,µ)
p

[
a, b; c; z3

(
1− x1

t

)λ3]
f(t)dtdx1

(4.2.14)

Next, we change the order of t- and x1- integrals, (which is permissible under the

conditions stated) and get :

Iν
′,λ′

x2

[
An′ , H

′, Fp′ ; J
ν,λ
x1

[An, H, Fp; f(t)]
]

=

x2∫
0

f(t)

t∫
0

g(x1, x2, t)dx1dt+

∞∫
x2

f(t)

x2∫
0

g(x1, x2, t)dx1dt

=

x2∫
0

f(t)I1dt+

∞∫
x2

f(t)I2dt (4.2.15)
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where

g(x1, x2, t) = x−ν
′−λ′−1

2 xν+ν′

1 (x2 − x1)λ
′
t−ν−λ−1(t− x1)λ

An′

[
z′1

(
x1

x2

)ν′1 (
1− x1

x2

)λ′1]
An

[
z1

(x1

t

)ν1 (
1− x1

t

)λ1]

HM ′,N ′

P ′,Q′

z′2(1− x1

x2

)λ′2 ∣∣∣∣∣∣
(g′j, G

′
j)1,P ′

(h′j, H
′
j)1,Q′

 HM,N
P,Q

z2

(
1− x1

t

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q


F

(α′,β′;τ ′,µ′)
p′

[
a′, b′; c′; z′3

(
1− x1

x2

)λ′3]
F (α,β;τ,µ)
p

[
a, b; c; z3

(
1− x1

t

)λ3]
(4.2.16)

To evaluate the I1 involved in the first integral on the right hand side of (4.2.15),

we first express the Appell polynomials involved in series form with the help of

(3.1.1) . The Fox H-functions and S-generalized gauss hypergeometric functions in

terms of their respective well known Mellin-Barnes contour integrals with the help

of equations (3.1.2) and (3.1.10). Now, interchanging the order of summations,

the contour integral ξi (i = 1,· · · ,6) and x1- integrals (which is permissible under

the conditions stated), we get:

t∫
0

g(x1, x2, t)dx1 =
Γ(β)Γ(β′)

Γ(α)Γ(α′)Γ(a)Γ(a′)B(b, c− b)B(b′, c′ − b′)

n∑
k=0

n′∑
k′=0

an−kan′−k′

k!k′!
zk1z

′k′
1

1

(2πi)6

∫
L1

∫
L2

...

∫
L6

φ1(ξ3, ξ4)φ2(ξ5, ξ6)
6∏
i=1

θi(ξi)(z
′
2)ξ1(z2)ξ2(z′3)ξ3p−ξ4(z3)ξ5p−ξ6

x
−ν′−λ′−(ν′1+λ′1)k′−(ν′2+λ′2)ξ1−(ν′3+λ′3)ξ3−1
2 t−ν−λ−(ν1+λ1)k−(ν2+λ2)ξ2−(ν3+λ3)ξ5−1

t∫
0

x
ν+ν′+ν′1k

′+ν1k+ν′2ξ1+ν2ξ2+ν′3ξ3+ν3ξ5
1 (x2 − x1)λ

′+λ′1k
′+λ′2ξ1+λ′3ξ3

(t− x1)λ+λ1k+λ2ξ2+λ3ξ5dx1dξ1dξ2...dξ6 (4.2.17)

Next we substitute x1 = tu in the right hand side of (4.2.17) and integrate it with

the help of known result [90, p. 47, Eq.(16)]. We get the following integral after
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a little simplification:

t∫
0

g(x1, x2, t)dx1 =
Γ(β)Γ(β′)

Γ(α)Γ(α′)Γ(a)Γ(a′)B(b, c− b)B(b′, c′ − b′)

n∑
k=0

n′∑
k′=0

an−kan′−k′

k!k′!
zk1z

′k′
1

(
t

x2

)ν′+ν′1k′ (
1− t

x2

)λ+λ′+λ1k+λ′1k
′λ2ξ2+λ3ξ5+λ′2ξ1+λ′3ξ3+1

1

x2

1

(2πi)6

∫
L1

∫
L2

...

∫
L6

φ1(ξ3, ξ4)φ2(ξ5, ξ6)
6∏
i=1

θi(ξi)(z
′
2)ξ1(z2)ξ2(z′3)ξ3p−ξ4(z3)ξ5

p−ξ6
Γ(1 + ν + ν ′ + ν ′1k

′ + ν1k)Γ(1 + λ+ λ1k + λ2ξ2 + λ3ξ5)

Γ(2 + ν + ν ′ + ν ′1k
′ + ν1k + λ+ λ1k + λ2ξ2 + λ3ξ5)

2F1

 −λ′ − λ′1k′ − λ′2ξ1 − λ′3ξ3, 1 + ν + ν ′ + ν ′1k
′ + ν1k;

2 + ν + ν ′ + ν ′1k
′ + ν1k + λ+ λ1k + λ2ξ2 + λ3ξ5;

t

x2


(4.2.18)

Then we transform the expression on the right hand side of (4.2.18) with the help

of [90, p. 60, Eq.(5)]. Further, we express 2F1 in terms of contour integral and

reinterpret the result, thus obtained in terms of multivariable H-function we get

I1.

Again to calculate I2 =
x2∫
0

g(x1, x2, t)dx1 , we proceed on similar lines to

those mentioned above I1 with the difference that we substitute x1 = x2u in the

corresponding appropriate expression to (4.2.17). On substituting the values of

I1 and I2 in (4.2.15), we get the required result (4.2.7).

4.3 APPLICATIONS AND SPECIAL CASES

As our composition formulae involve the Appell Polynomial, Fox H-function and

S-Generalized Gauss’s Hypergeometric Function, a large number of other com-

position formulae involving simpler functions and polynomials, can be obtained
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by specializing the functions involved in our composition formulae.

We mention below two such composition formulae cum double integrals.

(i) If in the Result 1, we reduce Appell polynomial to unity and f(t) = eωt, we

get the following double integral which is believed to be new.

x−ν
′−λ′−1

2

x2∫
0

x1∫
0

tνxν
′−ν−λ−1

1 (x2 − x1)λ
′
(x1 − t)λ

HM,N
P,Q

z2

(
1− t

x1

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 HM ′,N ′

P ′,Q′

z′2(1− x1

x2

)λ′2 ∣∣∣∣∣∣
(g′j, G

′
j)1,P ′

(h′j, H
′
j)1,Q′


F (α,β;τ,µ)
p

[
a, b; c; z3

(
1− t

x1

)λ3]
F

(α′,β′;τ ′,µ′)
p′

[
a′, b′; c′; z′3

(
1− x1

x2

)λ′3]
eωtdtdx1

(4.3.1)

=
Γ(β)Γ(β′)

Γ(a)Γ(a′)Γ(α)Γ(α′)B(b, c− b)B(b′, c′ − b′)

H0,6:1,2;1,2;M ′,N ′;1,1;M,N ;1,1;1,0;1,1
6,5:3,1;3,1;P ′,Q′;1,1;P,Q;1,1;0,1;1,1



p′−1

p−1

z′2
−z′3
z2

−z3

−1
−(xω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(4.3.2)
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where

A∗ = (−λ− ν + ν ′; 0, 0, 0, 0, λ2, λ3, 1, 0), (−λ′; 0, 0, λ′2, λ
′
3, 0, 0, 1, 0), (1− b′; τ ′, 0, 0, 1, 0, 0, 0, 0),

(−λ; 0, 0, 0, 0, λ2, λ3, 0, 0), (1− b; 0, τ, 0, 0, 0, 1, 0, 0), (−1− λ− λ′; 0, 0, 1, 1, 1, 1, 1, 0)

B∗ = (−λ− ν + ν ′; 0, 0, 0, 0, λ2, λ3, 0, 0), (1− c; 0, (τ + µ), 0, 0, 0, 1, 0, 0),

(−1− λ− λ′; 0, 0, λ′2, λ
′
3, λ2, λ3, 1, 0), (1− c′; (τ ′ + µ′), 0, 0, 1, 0, 0, 0, 0)

(−2− ν − λ− λ′; 0, 0, 1, 1, 1, 1, 1, 1)

C∗ = (1, 1), (1− c′ + b′, µ′), (β′, 1); (1, 1), (1− c+ b, µ), (β, 1); (g′j, G
′
j)1,P ′ ;

(1− a′, 1); (gj, Gj)1,P ; (1− a, 1);−; (−ν, 1)

D∗ = (α′, 1); (α, 1); (h′j, H
′
j)1,Q′ ; (0, 1); (hj, Hj)1,Q; (0, 1); (0, 1); (0, 1)

provided that the conditions easily obtainable from those mentioned in (4.2.4)

are satisfied.

(ii) If we take f(t) = 1 and reduce Appell polynomial to unity in the Result 2,

we obtain the following integral valid under the conditions derivable from the

conditions stated with (4.2.6):

xν2

∞∫
x2

∞∫
x1

t−ν
′−λ′−1xν

′−ν−λ−1
1 (x1 − x2)λ(t− x1)λ

′

HM,N
P,Q

z2

(
1− x2

x1

)λ2 ∣∣∣∣∣∣
(gj, Gj)1,P

(hj, Hj)1,Q

 HM ′,N ′

P ′,Q′

z′2 (1− x1

t

)λ′2 ∣∣∣∣∣∣
(g′j, G

′
j)1,P ′

(h′j, H
′
j)1,Q′


F (α,β;τ,µ)
p

[
a, b; c; z3

(
1− x2

x1

)λ3]
F

(α′,β′;τ ′,µ′)
p′

[
a′, b′; c′; z′3

(
1− x1

t

)λ′3]
dtdx1

(4.3.3)
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=
Γ(β)Γ(β′)Γ(ν)

Γ(a)Γ(a′)Γ(α)Γ(α′)B(b, c− b)B(b′, c′ − b′)
H0,6:1,2;1,2;M ′,N ′;1,1;M,N ;1,1;1,0

6,5:3,1;3,1;P ′,Q′;1,1;P,Q;1,1;0,1



p′−1

p−1

z′2
−z′3
z2

−z3

−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(4.3.4)

where

A∗ = (−λ− ν + ν ′; 0, 0, 0, 0, λ2, λ3, 1), (−λ′; 0, 0, λ′2, λ
′
3, 0, 0, 1), (−λ; 0, 0, 0, 0, λ2, λ3, 0),

(1− b′; τ ′, 0, 0, 1, 0, 0, 0), (1− b; 0, τ, 0, 0, 0, 1, 0), (−1− λ− λ′; 0, 0, 1, 1, 1, 1, 1)

B∗ = (−λ− ν + ν ′; 0, 0, 0, 0, λ2, λ3, 0), (1− c; 0, (τ + µ), 0, 0, 0, 1, 0),

(−1− λ− λ′; 0, 0, λ′2, λ
′
3, λ2, λ3, 1), (1− c′; (τ ′ + µ′), 0, 0, 1, 0, 0, 0)

(−1− ν − λ− λ′; 0, 0, 1, 1, 1, 1, 1)

C∗ = (1, 1), (1− c′ + b′, µ′), (β′, 1); (1, 1), (1− c+ b, µ), (β, 1); (g′j, G
′
j)1,P ′ ;

(1− a′, 1); (gj, Gj)1,P ; (1− a, 1);−

D∗ = (α′, 1); (α, 1); (h′j, H
′
j)1,Q′ ; (0, 1); (hj, Hj)1,Q; (0, 1); (0, 1)

Our results also unify and extend the findings of several authors, we give below

exact reference to two such results. Thus, if in these composition formulae, If we

take λ2 = λ′2 = 0 in (4.2.1), (4.2.5) and (4.2.7) H-Functions reduce to exponen-

tial function. Further, reducing exponential function to unity, reducing all the

Appell Polynomials to unity and S-Generalized Gauss’s Hypergeometric Func-

tion reducing to Gauss Hypergeometric Function by putting p = 0 thus obtained

Gauss Hypergeometric Function reducing to unity, we get the corresponding ex-

pressions which are in essence the same as those given by Erdélyi [24, p. 166, Eq.
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(6.1) and (6.2); p. 167, Eq. (6.3)].

Also, if we take p = 0 in (4.2.1), (4.2.5) and (4.2.7) S-Generalized Gauss’s Hyper-

geometric Function reduce to Gauss Hypergeometric Function. Further reducing

these Gauss Hypergeometric function to unity, reducing all the Appell Polyno-

mials to unity and reducing all the H-functions to generalized hypergeometric

functions, we get the corresponding expressions which are in essence the same as

those given by Goyal and Jain [32, p. 253, Eq.(2.4); p. 254, Eq. (2.7); p. 255,

Eq. (2.12)].
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5
A STUDY OF UNIFIED FINITE INTEGRALS

INVOLVING ASSOCIATED I3 FUNCTION,

GENERALIZED MITTAG LEFFLER

FUNCTION, H FUNCTION AND APPELL

POLYNOMIAL

The main findings of this chapter have been published as detailed below:

1. M. K. BANSAL and R. JAIN (2015). A STUDY OF FINITE IN-

TEGRAL INVOLVING GENERALIZED FORM OF THE ASTROPHYS-

ICAL THERMONUCLEAR FUNCTION, Journal of Rajasthan Academy

of Physical Sciences, 14(1), 51-55.

2. M. K. BANSAL and R. JAIN (2014). ON UNIFIED FINITE INTE-

GRALS INVOLVING I3 FUNCTION, GENERALIZED MITTAG-LEFFLER

FUNCTION AND APPELL POLYNOMIALS, The Journal of the Indian

Academy of Mathematics, 36(2), 211-219.
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In this chapter, we first define the various polynomial and functions and the

results required to establish our main integrals. Next, we evaluate two unified

and general finite integrals. The first integral involves the product of the

Appell Polynomial An(z), the Generalized form of the Astrophysical Thermonu-

clear function I3 and Generalized Mittag - Leffler Function Eγ,δ
α,β,τ,µ,ρ,p(z; s, r). The

arguments of the functions occurring in the integral involve the product of factors

of the form xλ−1(a− x)σ−1(1− uxl)−ρ. On account of the most general nature of

the functions occurring in the integrand of our main integral, a large number of

new integrals can easily be obtained from it merely by specializing the functions

and parameters. Next, we give the five special cases of our main integral involving

several polynomials and functions notably Cesaro Polynomial, Laguerre

Polynomial, Shively Polynomial, Bateman’s Polynomial, Bessel Polynomial,

Generalized Hypergeometric Function, Bessel Maitland Function, Mittag-Leffler

Function, Struve Function, Generalized Bessel Maitland Function, Steady State

Function which are new, sufficiently general, and of interest in themselves.

The second integral involves the Generalized form of the Astrophysical

Thermonuclear function I3 and H− function. The arguments of the function

occurring in the integral involve the product of factors of the form

tλ−1(1−t)σ−1(1−ut`)−γ(1+vtm)−β. On account of the most general nature of the

functions occurring in the integrand of our main integral, a large number of new

integrals can easily be obtained from it merely by specializing the function and

parameters. Next, we give the five special cases of our main integral involving

several functions notably Generalized Wright Bessel Function, Generalized
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Riemann Zeta Function, Generalized Hurwitz-Lerch Zeta Function,

Polylogarithm of order p, Generalized Hypergeometric Function which are new,

sufficiently general, and of interest in themselves.

5.1 INTRODUCTION

We shall first give a brief description of the polynomial and functions occurring

as integrand in our main integral.

THE APPELL POLYNOMIALS

A class of polynomials over the field of complex numbers which contains many

classical polynomial systems. The Appell Polynomials were introduced by Appell

[6]. The series of Appell Polynomials is defined by :

An(z) =
n∑
k=0

an−k
k!

zk, n = 0, 1, 2, · · · (5.1.1)

where an−k is the complex coefficients and a0 6= 0

THE MULTIVARIABLE H-FUNCTION

The Multivariable H-Function is defined and represented in the following manner

[109, pp. 251–252, Eqs. (C.1–C.3)]:

H0,B:A1,B1;··· ;Ar,Br
C,D:C1,D1;··· ;Cr,Dr


z1

.

.

.
zr

∣∣∣∣∣∣∣∣∣∣∣

(aj;α
(1)
j , · · · , α(r)

j )1,C : (c
(1)
j , γ

(1)
j )1,C1 ; · · · ; (c

(r)
j , γ

(r)
j )1,Cr

(bj; β
(1)
j , · · · , β(r)

j )1,D : (d
(1)
j , δ

(1)
j )1,D1 ; · · · ; (d

(r)
j , δ

(r)
j )1,Dr



97
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=
1

(2πω)r

∫
L1

∫
L2

· · ·
∫
Lr

Φ(ξ1, ξ2, · · · , ξr)
r∏
i=1

Θi(ξi)z
ξi dξ1dξ2, · · · , dξr, (5.1.2)

where ω =
√
−1,

Φ(ξ1, ξ2, · · · , ξr) =

B∏
j=1

Γ(1− aj +
r∑
i=1

α
(i)
j ξi)

D∏
j=1

Γ(1− bj +
r∑
i=1

β
(i)
j ξi)

C∏
j=B+1

Γ(aj −
r∑
i=1

α
(i)
j ξi)

(5.1.3)

Θi(ξi) =

Ai∏
j=1

Γ(d
(i)
j − δ

(i)
j ξi)

Bi∏
j=1

Γ(1− c(i)
j + γ

(i)
j ξi)

Ci∏
j=Bi+1

Γ(c
(i)
j − γ

(i)
j ξi)

Di∏
j=Ai+1

Γ(1− d(i)
j + δ

(i)
j ξi)

(i = 1, 2, · · · , r), (5.1.4)

All the Greek letters occurring on the left and side of (5.1.2) are assumed to be

positive real numbers for standardization purposes. The definition of the

multivariable H-function will however be meaningful even if some of these

quantities are zero. The details about the nature of contour L1, · · · ,Lr, conditions

of convergence of the integral given by (5.1.2). Throughout the work it is assumed

that this function always satisfied its appropriate conditions of convergence

[109, p. 252–253, Eqs. (C.4–C.6)].

THE H-FUNCTION

The following series representation of the H-function is defined and represented

in the following manner [50]:

H
m,n

p,q

z
∣∣∣∣∣∣

(ej, Ej;∈j)1,n, (ej, Ej)n+1,p

(fj, Fj)1,m, (fj, Fj;=j)m+1,q

 =
∞∑
t=0

m∑
h=1

Θ(st,h)z
st,h (5.1.5)
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where,

Θ(st,h) =

m∏
j=1,j 6=h

Γ(fj − Fjst,h)
n∏
j=1

{Γ(1− ej + Ejst,h)}∈j

q∏
j=m+1

{Γ(1− fj + Fjst,h)}=j
p∏

j=n+1

Γ(ej − Ejst,h)

(−1)t

t!Fh
, st,h =

fh + t

Fh

(5.1.6)

In the Sequel, we shall also make use of the following behavior of the H
m,n

p,q [z]

function for small and large value of z as recorded by Saxena et al.

[102, p. 112, Eqs.(2.3) and (2.4)].

H
m,n

p,q [z] = O[|z|α], for small z, where α = min
1≤j≤m

R

(
fj
Fj

)
(5.1.7)

H
m,n

p,q [z] = O[|z|β], for large z, where β = max
1≤j≤n

R

(
∈j
(
ej − 1

Ej

))
(5.1.8)

GENERALIZED FORM OF THE ASTROPHYSICAL

THERMONUCLEAR FUNCTION

The generalized form of the astrophysical thermonuclear function is given by

Saxena [100] in the following form :

I3(z, t, ν, µ, α) =

∞∫
0

yν−1e−z(y+t)−µ [1 + (α− 1)y]−
1

α−1dy

where R(ν) > 0,R(z) > 0, α > 1 and µ > 0.
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We give the following representation of I3 in terms of H-function of

two variable:

I3(z, t, ν, µ, α) =

∞∫
0

yν−1e−z(y+t)−µ [1 + (α− 1)y]−
1

α−1dy

=
tν

Γ( 1
α−1

)
H0,1:1,0;2,1

1,0:0,2;1,2


z
tµ

1
(α−1)t

∣∣∣∣∣∣
(1 + ν;µ, 1) : −; (1, 1)

− : (0, 1), (1, µ); ( 1
α−1

, 1), (ν, 1)

 (5.1.9)

Proof. :To evaluate the integral (5.1.9), we first express the terms

[1 + (α − 1)y]−
1

α−1 and e−z(y+t)−µ occurring in it’s integrand in terms of well

known Mellin-Barnes contour integral [109, p. 18, Eqs.(2.6.2) and (2.6.4)] and

then change the order of ξ - integral with y-integral (which is permissible under

the conditions stated). Thus the left hand side of (5.1.9) takes the following form

(say ∆).

∆ =
1

(2πω)2

∫
L1

∫
L2

Γ(−ξ1)Γ(−ξ2)Γ( 1
α−1

+ ξ2)(α− 1)ξ2zξ1

Γ( 1
α−1

)

 ∞∫
0

yν+ξ2−1(y + t)−µξ1dy

 dξ1dξ2 (5.1.10)

Now we evaluate the y-integral occurring in (5.1.10) with the help of well known

Beta function, Thus we get the following equation

∆ =
tν

Γ( 1
α−1

)

1

(2πω)2

∫
L1

∫
L2

Γ(−ξ1)Γ(ξ2)Γ( 1
α−1
− ξ2)Γ(ν − ξ2)

Γ(µξ1)

Γ(−ν + µξ1 + ξ2)zξ1t−µξ1−ξ2

(α− 1)ξ2
dξ1dξ2 (5.1.11)

finally reinterpret the result thus obtained in terms of H-function of two variable.

We easily arrive at the right hand side of (5.1.9) after a little simplification.
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GENERALIZED MITTAG LEFFLER FUNCTION

The Generalized Mittag-Leffler function is defined and represented in the

following form [88, p. 127, Eq.(1.2)]:

Eγ,δ
α,β,τ,µ,ρ,p(z; s, r) =

∞∑
n=0

[(γ)δn]sz(pn+ρ−1)

Γ(α(pn+ ρ− 1) + β)[(τ)µn]r(ρ)pn

provided that (α, β, γ, τ, ρ) ∈ C, R(α, β, γ, τ, ρ) > 0, (δ, µ, ρ) > 0 and

H-Function is defined in (5.1.5).

Next, We give the five special cases and representation of Generalized Mittag-

Leffler function in terms of H-function:

Eγ,δ
α,β,τ,µ,ρ,p(z; s, r) =

∞∑
n=0

[(γ)δn]sz(pn+ρ−1)

Γ(α(pn+ ρ− 1) + β)[(τ)µn]r(ρ)pn

=
Γ(ρ)(Γτ)rzρ−1

(Γγ)s
H

1,2

2,4

−zp
∣∣∣∣∣∣

(0, 1), (1− γ, δ; s)

(0, 1), (1− ρ, p), (1− α(ρ− 1)− β, αp), (1− τ, µ; r)


(5.1.12)

SPECIAL CASES OF GENERALIZED MITTAG LEFFLER

FUNCTION

1. Generalized Hypergeometric Function :If we take δ = p = µ = α = 1

in (5.1.12), we get

Eγ,1
1,β,τ,1,ρ,1(z; s, r) =

zρ−1

Γ(ρ− 1 + β)
2F 3

 1, γ; s

ρ, ρ+ β − 1, λ; r

∣∣∣∣∣∣ z
 (5.1.13)

where pF q is defined by Gupta et al.[41]
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2. Bessel–Maitland Function : Again, If we take s = r = 0, p = ρ = 1,

β = 1 + ν and z is replaced by (-z) in (5.1.12), we get

Eγ,δ
α,1+ν,τ,µ,1,1(z; 0, 0) = Jαν (z) =

∞∑
n=0

(−z)n

Γ(αn+ ν + 1)n!
(5.1.14)

where Jαν is defined in [73].

3. Generalization of the Mittag- Leffler Function : Further, If we take

s = 1, r = 0, p = ρ = 1 in (5.1.12), we get

Eγ,δ
α,β,τ,µ,1,1(z; 1, 0) = Eγ,δ

α,β(z) =
∞∑
n=0

(γ)δnz
n

Γ(αn+ β)n!
(5.1.15)

where Eγ,δ
α,β is defined in [105].

4. Generalized Bessel–Maitland function : If we take s = r = p = ρ =

µ = γ = δ = 1, α = µ, λ = λ+ 1, β = ν + λ+ 1, z = − z2

4
in (5.1.12), we get

E1,1
µ,1+λ+ν,1+λ,1,1,1(z; 1, 1) = Jµν,λ(z)

=
Γ(λ+ 1)(
z2

4

)ν+2λ

∞∑
n=0

(−1)n

Γ(µn+ ν + λ+ 1)Γ(λ+ 1 + n)

(z
2

)ν+2λ+2n

(5.1.16)

where Jµν,λ(Z) is defined in [88].

5. Struve function : If we take s = r = p = ρ = α = µ = γ = δ = 1, β =

3
2
, τ = 3

2
+ ν, z = − z2

4
in (5.1.12), we get

E1,1

1, 3
2
, 3
2

+ν,1,1,1
(z; 1, 1) = 1F2

 1

3/2, 3/2 + ν

∣∣∣∣∣∣
(
−z2

4

)

=
∞∑
n=0

(1)n
(3/2)n(3/2 + ν)nn!

(
−z2

4

)n
(5.1.17)
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5.2 FIRST INTEGRAL

5.2 FIRST INTEGRAL

∫ a

0

xλ−1(a− x)σ−1(1− ux`)−ρAn[z2x
λ2(a− x)σ2 ]I3[z, z1x

−λ1(a− x)−σ1 , ν1, µ1, α1]

Eγ3,δ3
α3,β3,τ3,µ3,η3,p

[z3x
λ3(a− x)σ3(1− ux`)−ρ3 ; s, r]dx

=
n∑
k=0

∞∑
t=0

an−k
k!

[Γ(τ3)]rΓ(η3)[Γ(γ3 + δ3t)]
s

Γ( 1
α1−1

)[Γ(γ3)]sΓ(η3 + pt)[Γ(τ3 + µ3t)]r

zν11 z
k
2z

η3+pt−1
3 aλ+σ−(λ1+σ1)ν1+(λ2+σ2)k+(σ3+λ3)(η3+pt−1)−1

Γ(α3η3 − α3 + β3 + α3pt)Γ(ρ+ ρ3(η3 + pt− 1))

H0,3:1,0;2,1;1,1
3,1:0,2;1,2;1,1


zaµ1(λ1+σ1)

z
µ1
1

a(λ1+σ1)

z1(α1−1)

−ua`

∣∣∣∣∣∣∣∣∣∣∣

A∗ : −; (1, 1); (1− ρ− ρ3(η3 + pt− 1), 1)

B∗ : (0, 1)(1, µ1); ( 1
α1−1

, 1)(ν1, 1); (0, 1)

 (5.2.1)

where

A∗ = (1 + ν1;µ1, 1, 0), (1− σ + σ1ν1 − σ2k − σ3(η3 + pt− 1);σ1µ1, σ1, 0),

(1− λ+ λ1ν1 − λ2k − λ3(η3 + pt− 1);λ1µ1, λ1, `)

B∗ = (1− (λ+σ) + (λ1 +σ1)ν1− (λ2 +σ2)k− (λ3 +σ3)(η3 + pt− 1);µ1(λ1 +σ1),

(λ1 + σ1), `)

The above result is valid under the following conditions :

(i) R
(
λ+ λ1 min{ 1

α1−1
, ν}
)
> 0 (ii) R

(
σ + σ1 min{ 1

α1−1
, ν}
)
> 0

(iii) minR{ν1, σ, σ3, η3, p, λ, λ3, ρ, ρ3} ≥ 0

(iv) min(`, σ1, µ1, λ1) ≥ 0 not all zero simultaneously.
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5. A STUDY OF UNIFIED FINITE INTEGRALS INVOLVING
ASSOCIATED I3 FUNCTION, GENERALIZED MITTAG LEFFLER
FUNCTION, H FUNCTION AND APPELL POLYNOMIAL

Proof. To prove the main integral, we first express An[x], I3(z, x, ν1, µ1, α1) and

Eγ3,δ3
α3,β3,τ3,µ3,η3,p

(z; s, r) function in the left hand side of (5.2.1) in their respective

series form and contour integral form with the help of equations (5.1.1), (5.1.9)

and (5.1.12) respectively. Next we change the order of summation and ξ1, ξ2-

integrals with the x-integral (which is permissible under the conditions stated).

Thus left hand side of (5.2.1) takes the following form (say ∆):

∆ =
n∑
k=0

∞∑
t=0

an−k
k!

[Γ(τ3)]rΓ(η3)[Γ(γ3 + δ3t)]
szk2z

ν1
1 z

η3+pt−1
3

Γ( 1
α1−1

)(Γγ3)sΓ(η3 + pt)Γ(α3η3 − α3 + β3 + α3pt)[Γ(τ3 + µ3t)]r

× 1

(2πω)2

∫
L1

∫
L2

Γ(−ξ1)Γ(ξ2)Γ( 1
α1−1

− ξ2)Γ(ν1 − ξ2)Γ(−ν1 + µ1ξ1 + ξ2)zξ1z−µ1ξ1−ξ21

Γ(µ1ξ1)(α1 − 1)ξ2

[∫ a

0

xλ−λ1ν1+λ1µ1ξ1+λ1ξ2+λ2k+λ3(η3+pt−1)−1(a− x)σ−σ1ν1+σ1µ1ξ1+σ1ξ2+σ2k+σ3(η3+pt−1)−1

(1− ux`)−(ρ+ρ3(η3+pt−1))dx
]
dξ1dξ2

(5.2.2)

Now we evaluate the x-integral occurring in (5.2.2) with the help of

[52, p. 47, Eq. (1.3.3)]. Next we express the Fox H-function involved in above

result in terms of contour integral, and finally reinterpret the result thus obtained

in terms of multi variable H-function, we easily arrive at the right hand side of

(5.2.1) after a little simplification.

5.3 SPECIAL CASES OF THE FIRST

INTEGRAL

(I) In the main integral, if we reduce Appell polynomials An[x] to the Cesaro

polynomial [112, p. 449, Eq. (20)] by taking an−k = τ2+n−kCn−kk!, λ2 =

z2 = 1, σ2 = 0, I3 function to the steady state function [5, p. 53, Eq.(2.6)]

by taking α1 → 1, µ1 = 1
2

and Generalized Mittag Leffler function to
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5.3 SPECIAL CASES OF THE FIRST
INTEGRAL

the generalized hypergeometric function defined in (5.1.13) by replacing

δ3 = p = α3 = µ3 = σ3 = 1, λ3 = ρ3 = 0 , we can easily get the following

interesting integral after a little simplification.

a∫
0

xλ−1(a− x)σ−1(1− ux`)−ρg(τ2)
n (x)I3[z, z1x

−λ1(a− x)−σ1 , ν1]

[z3(a− x)]η3−1

Γ(η3 + β3 − 1)
2F 3

 1, γ3; s

η3, η3 + β3 − 1, τ3; r

∣∣∣∣∣∣ z3(a− x)

 dx

=
n∑
k=0

∞∑
t=0

(Γ(τ3))rΓ(η3)[Γ(γ3 + t)]sΓ(τ2 + n− k + 1)zν11 z
η3+t−1
3 aλ+σ−(λ1+σ1)ν1+k+η3+t−2

[Γ(γ3)]sΓ(η3 + t)Γ(η3 + β3 − 1 + t)[Γ(τ3 + t)]rΓ(ρ)Γ(n− k + 1)Γ(τ2 + 1)

H0,3:1,0;2,1;1,1
3,1:0,2;1,2;1,1


za

1
2 (λ1+σ1)

z
1
2
1

a(λ1+σ1)

z1

−ua`

∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : −; (1, 1); (1− ρ, 1)

B∗ : (0, 1), (1, 1
2
); (0, 1), (ν1, 1); (0, 1)


(5.3.1)

where

A∗ = (1 + ν1; 1
2
, 1, 0), (1− σ + σ1ν1 − (η3 + t− 1); σ1

2
, σ1, 0), (1− λ+ λ1ν1 −

k; λ1
2
, λ1, `)

B∗ = (1− (λ+ σ) + (λ1 + σ1)ν1 − k − (η3 + t− 1); 1
2
(λ1 + σ1), (λ1 + σ1), `)

provided that the conditions that are easily obtainable from the existing

conditions of (5.2.1) are satisfied.

(II) Next, if we reduce the Appell polynomials An[x] to the Laguerre Polynomial

[121, p. 101, Eq. (5.1.6)] by taking an−k = (−1)k α2+nCn−k, λ2 = z2 =

1, σ2 = 0 and Generalized Mittag Leffler function to the Bessel Maitland
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ASSOCIATED I3 FUNCTION, GENERALIZED MITTAG LEFFLER
FUNCTION, H FUNCTION AND APPELL POLYNOMIAL

Function defined in (5.1.14) by replacing β3 = 1 + ν3, α3 = µ3, p = σ3 =

η3 = 1, λ3 = ρ3 = s = r = 0, z3 = −1 , we can easily get the following new

integral after a little simplification.

a∫
0

xλ−1(a− x)σ−1(1− ux`)−ρL(α2)
n (x)I3[z, z1x

−λ1(a− x)−σ1 , ν1, µ1, α1]Jµ3ν3 (a− x)dx

=
n∑
k=0

∞∑
t=0

(−1)t(−1)kΓ(α2 + n+ 1)

k!Γ(n− k + 1)Γ(α2 + k + 1)

1

Γ( 1
α1−1

)
zν11

aλ+σ−(λ1+σ1)ν1+k+t−1

t!Γ(µ3t+ ν3 + 1)Γ(ρ)

H0,3:1,0;2,1;1,1
3,1:0,2;1,2;1,1


zaµ1(λ1+σ1)

z
µ1
1

a(λ1+σ1)

z1(α1−1)

−ua`

∣∣∣∣∣∣∣∣∣∣∣

A∗ : −; (1, 1); (1− ρ, 1)

B∗ : (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1)


(5.3.2)

where

A∗ = (1+ν1;µ1, 1, 0), (1−σ+σ1ν1−t;σ1µ1, σ1, 0), (1−λ+λ1ν1−k;λ1µ1, λ1, `)

B∗ = (1− (λ+ σ) + (λ1 + σ1)ν1 − k − t;µ1(λ1 + σ1), (λ1 + σ1), `)

provided that the conditions that are easily obtainable from the existing

conditions of (5.2.1) are satisfied.

(III) Again in the main integral, if we reduce Appell polynomial An[x] to the

Shively Polynomial [112, p. 187, Eq. (49)] by taking an−k =
(λ′2+n)n(−n)k(α′1)k...(α

′
p)k

n!(λ′2+n)k(β′1)k...(β′q)k
,

λ2 = 1, σ2 = 0 and Generalized Mittag Leffler function to the gener-

alization of the Mittag-Leffler Function defined in (5.1.15) by replacing

η3 = p = σ3 = s = 1, ρ3 = r = λ3 = 0, we can easily get the following
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5.3 SPECIAL CASES OF THE FIRST
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interesting result after a little simplification.

∫ a

0

xλ−1(a− x)σ−1(1− ux`)−ρS(λ′2)
n (z2x)I3[z, z1x

−λ1(a− x)−σ1 , ν1, µ1, α1]

Eγ3,δ3
α3,β3

[z3(a− x)]dx

=
n∑
k=0

∞∑
t=0

(λ′2 + n)n(−n)k(α
′
1)k...(α

′
p)k

n!(λ′2 + n)k(β′1)k...(β′q)kk!

Γ(γ3 + δ3t)z
ν1
1 z

k
2z

t
3a
λ+σ−(λ1+σ1)ν1+k+t−1

Γ(γ3)Γ( 1
α1−1

)Γ(β3 + α3t)Γ(ρ)Γ(1 + t)

H0,3:1,0;2,1;1,1
3,1:0,2;1,2;1,1


zaµ1(λ1+σ1)

z
µ1
1

a(λ1+σ1)

z1(α1−1)

−ua`

∣∣∣∣∣∣∣∣∣∣∣

A∗ : −; (1, 1); (1− ρ, 1)

B∗ : (0, 1), (1, µ1); ( 1
α1−1

, 1), (1, ν1); (0, 1)


(5.3.3)

where

A∗ = (1+ν1;µ1, 1, 0), (1−σ+σ1ν1−t;σ1µ1, σ1, 0), (1−λ+λ1ν1−k;λ1µ1, λ1, `)

B∗ = (1− (λ+ σ) + (λ1 + σ1)ν1 − k − t;µ1(λ1 + σ1), (λ1 + σ1), `)

provided that the conditions that are easily obtainable from the existing

conditions of (5.2.1) are satisfied.

(IV) Next, if we reduce the Appell polynomials An[x] to the Bateman’s Poly-

nomial [112, p. 183, Eq. (42)] by taking an−k = (−n)k(n+1)k
(1)k(1)k

, λ2 = σ2 = 0

and Generalized Mittag Leffler function to the Struve function defined in

(5.1.17) by replacing s = r = p = σ3 = η3 = α3 = µ3 = γ3 = δ3 = 1, β3 =

3
2
, τ3 = 3

2
+ ν3, λ3 = ρ3 = 0, z3 = − z23

4
, we can easily get the following new
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integral after a little simplification.

∫ a

0

xλ−1(a− x)σ−1(1− ux`)−ρZn[z2]I3[z, z1x
−λ1(a− x)−σ1 , ν1, µ1, α1]

1F2

 1

3
2
, 3

2
+ ν3

∣∣∣∣∣∣ −z
2
3

4
(a− x)

 dx

=
n∑
k=0

∞∑
t=0

(−n)k(n+ 1)k
(1)k(1)kk!

Γ(3
2

+ ν3)zν11 z
k
2 (
−z23

4
)taλ+σ−(λ1+σ1)ν1+t−1

Γ( 1
α1−1

)Γ(3
2

+ t)Γ(3
2

+ ν3 + t)Γ(ρ)

H0,3:1,0;2,1;1,1
3,1:0,2;1,2;1,1


zaµ1(λ1+σ1)

z
µ1
1

a(λ1+σ1)

z1(α1−1)

−ua`

∣∣∣∣∣∣∣∣∣∣∣

A∗ : −; (1, 1); (1− ρ, 1)

B∗ : (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1)


(5.3.4)

where

A∗ = (1+ν1;µ1, 1, 0), (1−σ+σ1ν1−t;σ1µ1, σ1, 0), (1−λ+λ1ν1;λ1µ1, λ1, `)

B∗ = (1− (λ+ σ) + (λ1 + σ1)ν1 − t;µ1(λ1 + σ1), (λ1 + σ1), `)

provided that the conditions that are easily obtainable from the existing

conditions of (5.2.1) are satisfied.

(V) Again in the main integral, if we reduce Appell polynomial An[x] to the

Bessel Polynomial [60, p. 108, Eq. (34)] by taking an−k = (−n)k(α2+n−1)k(−1)k

βk2
,

λ2 = σ2 = 0 and Generalized Mittag Leffler function to the Generalized

Bessel Maitland function defined in (5.1.16) by replacing λ3 = ρ3 = 0, s =

r = p = σ3 = η3 = µ3 = γ3 = δ3 = 1, α3 = µ3, τ3 = τ3 + 1, β3 =
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ν3 + τ3 + 1, z3 = − z23
4

we can easily get the following interesting result after

a little simplification.∫ a

0

xλ−1(a− x)σ−1(1− ux`)−ρyn[z2, α2, β2]I3[z, z1x
−λ1(a− x)−σ1 , ν1, µ1, α1]

Jµ3ν3,τ3

(
−(a− x)

z2
3

4

)
dx

=
n∑
k=0

∞∑
t=0

(−n)k(α2 + n+ 1)k(−1)k

βk2k!

Γ(τ3 + 1)(−1)tzν11 z
k
2 ( z3

2
)2taλ+σ−(λ1+σ1)ν1+t−1

Γ( 1
α1−1

)Γ(ρ)Γ(ν3 + τ3 + 1 + µ3t)Γ(τ3 + 1 + t)

H0,3:1,0;2,1;1,1
3,1:0,2;1,2;1,1


zaµ1(λ1+σ1)

z
µ1
1

a(λ1+σ1)

z1(α1−1)

−ua`

∣∣∣∣∣∣∣∣∣∣∣

A∗ : −; (1, 1); (1− ρ, 1)

B∗ : (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1)


(5.3.5)

where

A∗ = (1+ν1;µ1, 1, 0), (1−σ+σ1ν1−t;σ1µ1, σ1, 0), (1−λ+λ1ν1;λ1µ1, λ1, `)

B∗ = (1− (λ+ σ) + (λ1 + σ1)ν1 − t;µ1(λ1 + σ1), (λ1 + σ1), `)

provided that the conditions that are easily obtainable from the existing

conditions of (5.2.1) are satisfied.

5.4 SECOND INTEGRAL

1∫
0

xλ−1(1− x)σ−1(1− uxa)−γ(1 + vxb)−βI3(z, x−λ1(1− x)−σ1 , ν1, ρ1, µ1, α1)

H
m,n

p,q

xλ2(1− x)σ2(1− uxa)−γ2(1 + vxb)−β2

∣∣∣∣∣∣
(ej, Ej;∈j)1,n , (ej, Ej)n+1,p

(fj, Fj)1,m , (fj, Fj;=j)m+1,q

 dx
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=
1

Γ(γ + γ2st,h)Γ(β + β2st,h)Γ( 1
α1−1

)

∞∑
t=0

m∑
h=1

Θ(st,h)H
0,3;1,0;2,1;1,1;1,1
3,1;0,2;1,2;1,1;1,1



1
zµ

1
(α1−1)

−u

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(5.4.1)

where the remaining parameters of H
m,n

p,q [z] occurring in (5.4.1) are given by left

hand side of (5.1.6) and

A∗ = (1− λ+ λ1ν1 − λ2st,h;λ1µ1, λ1, a, 0), (1− σ + σ1ν1 − σ2st,h;σ1µ1, σ1, 0, b),

(1 + ν1; 0, 0, µ1, 1).

B∗ = (1− (σ + λ) + (σ1 + λ1)ν1 − (σ2 + λ2)st,h; (σ1 + λ1)µ1, (σ1 + λ1), a, b)

C∗ = −; (1, 1); (1− γ − γ2st,h, 1); (1− β − β2st,h, 1)

D∗ = (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1); (0, 1)

and st,h = fh+t
Fh

The above result is valid under the following :

(i) R

(
λ+ λ1 min{ 1

α1−1
, ν1}+ λ2 min

1≤j≤m

(
fj
Fj

))
> 0.

(ii) R

(
σ + σ1 min{ 1

α1−1
, ν1}+ σ2 min

1≤j≤m

(
fj
Fj

))
> 0.

(iii) minR{γ, γ2, β, β2, λ, λ2, σ, σ2, ν1} ≥ 0; min(µ1, σ1, λ1, a, b) ≥ 0

not all zero simultaneously.

Proof. : To evaluate the above integral we first express H− function in series

form and astrophysical thermonuclear function I3(z, x−λ1(1−x)−σ1 , ν1, ρ1, µ1, α1)

in terms of Mellin-Barnes contour integral with help of (5.1.5) and (5.1.9) re-

spectively. Then we change the order of summations and ξ1, ξ2-integral with
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x-integral (which is permissible under the conditions stated). Thus the left hand

side of (5.4.1) takes the following form (say ∆):

∆ =
∞∑
t=0

m∑
h=1

Θ(st,h)

Γ( 1
α1−1

)

1

(2πω)2

∫
L1

∫
L2

Γ(−ν1 + µ1ξ1 + ξ2)Γ(−ξ1)Γ(ξ2)Γ( 1
α1−1

− ξ2)Γ(ν1 − ρξ2)

Γ(µ1ξ1)(α1 − 1)ξ2

×z−µ1ξ1
1∫

0

xλ−λ1ν1+λ1µ1ξ1+λ1ξ2+λ2st,h−1(1− x)σ−σ1ν1+σ1µ1ξ1+σ1ξ2+σ2st,h−1

(1− uxa)−γ−γ2st,h(1 + vxb)−β−β2st,hdxdξ1dξ2 (5.4.2)

Finally, we evaluate the x-integral occurring in (5.4.2) with the help of result [33,

p. 287, Eq.(3.211)] and reinterpreting the result thus obtained in terms of the

multivariable H-function, we easily arrive at the right hand side of (5.4.1), after

a little simplification.

5.5 SPECIAL CASES OF THE SECOND

INTEGRAL

(I.) In the main integral (5.4.1) , if we reduce the H−function to Generalized

Wright Bessel Function [41, p. 271, Eq.(8)] and take γ2 = β2 = 0, we

easily get the following integral after a little simplification:

1∫
0

xλ−1(1− x)σ−1(1− uxa)−γ(1 + vxb)−βI3(z, x−λ1(1− x)−σ1 , ν1, ρ1, µ1, α1)

J
ν2,µ2
τ2

(xλ2(1− x)σ2)dx
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=
1

Γ(γ)Γ(β)Γ( 1
α1−1

)

∞∑
t=0

(−1)t

t!{Γ(1 + τ2 + ν2t)}µ2
H0,3;1,0;2,1;1,1;1,1

3,1;0,2;1,2;1,1;1,1



1
zµ

1
(α1−1)

−u

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(5.5.1)

where

A∗ = (1− λ+ λ1ν1− λ2t;λ1µ1, λ1, a, 0), (1− σ+ σ1ν1− σ2t;σ1µ1, σ1, 0, b),

(1 + ν1; 0, 0, µ1, 1).

B∗ = (1− (σ + λ) + (σ1 + λ1)ν1 − (λ2 + σ2)t; (σ1 + λ1)µ1, (σ1 + λ1), a, b)

C∗ = −; (1, 1); (1− γ, 1); (1− β, 1)

D∗ = (0, 1), (1, µ1); ( 1
α1−1

, , 1), (ν1, 1)(0, 1); (0, 1).

provided that the conditions easily obtainable from those mentioned with

conditions (5.4.1) are satisfied.

(II.) On taking in (5.4.1), λ1 = λ2 = σ2 = 0 and reducing H−function to the

generalized Riemann Zeta Function [23, p. 27, §1.11, Eq.(1)], we easily

get the following integral after a little simplification:

1∫
0

xλ−1(1− x)σ−1(1− uxa)−γ(1 + vxb)−βI3(z, (1− x)−σ1 , ν1, ρ1, µ1, α1)

φ((1− uxa)−γ2(1 + vxb)−β2 , p, η)dx
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=
1

Γ(γ + γ2t)Γ(β + β2t)Γ( 1
α1−1

)

∞∑
t=0

1

(η + t)p
H0,2;1,0;2,1;1,2;1,1

2,1;0,2;1,2;2,1;1,1



1
zµ

1
(α1−1)

−u

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(5.5.2)

where

A∗ = (1− σ + σ1ν1;σ1µ1, σ1, 0, b), (1 + ν1; 0, 0, µ1, 1).

B∗ = (1− (σ + λ) + σ1ν1;σ1µ1, σ1, a, b)

C∗ = −−; (1, 1); (1− γ − γ2t, 1), (1− λ, a); (1− β − β2t, 1)

D∗ = (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1); (0, 1).

provided that the conditions that are easily obtainable from the existing

conditions (5.4.1) are satisfied.

(III.) Further in the main integral (5.4.1), if we take λ1 = σ1 = λ2 = σ2 = 0

and reduce H−function to the generalized Hurwitz-Lerch Zeta Function

[51, pp. 147 & 151, Eqs.(6.2.5) and (6.4.2)], we arrive at the following

interesting integral after a little simplification which is believed to be new:

1∫
0

xλ−1(1− x)σ−1(1− uxa)−γ(1 + vxb)−βI3(z, 1, ν1, ρ1, µ1, α1)

φν2,µ2,τ2((1− uxa)−γ2(1 + vxb)−β2 , p, η)dx
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=
1

Γ(γ + γ2t)Γ(β + β2t)Γ( 1
α1−1

)

∞∑
t=0

(ν2)t(µ2)t
(τ2)tt!(η + t)p

H0,1;1,0;2,1;1,2;1,2
1,1;0,2;1,2;2,1;2,1



1
zµ

1
(α1−1)

−u

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(5.5.3)

where

A∗ = (1 + ν1; 0, 0, µ1, 1) B∗ = (1− (σ + λ); 0, 0, a, b)

C∗ = −; (1, 1); (1− γ − γ2t, 1), (1− λ, a); (1− β − β2t, 1), (1− σ, b)

D∗ = (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1); (0, 1).

(IV.) Again if we take in (5.4.1), λ1 = γ2 = β2 = 0 and reduce H−function to

Polylogarithm of order p [23, p. 31 §1.11.1, Eq.(22) and (6.4.2)], we get

an interesting integral after a little simplification which is believed to be

new:

1∫
0

xλ−1(1− x)σ−1(1− uxa)−γ(1 + vxb)−βI3(z, (1− x)−σ1 , ν1, ρ1, µ1, α1)

F (xλ2(1− x)σ2 , p)dx

=
1

Γ(γ)Γ(β)Γ( 1
α1−1

)

∞∑
t=0

(−1)t+1

tp
H0,2;1,0;2,1;1,2;1,1

2,1;0,2;1,2;2,1;1,1



1
zµ

1
(α1−1)

−u

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(5.5.4)

where

A∗ = (1− σ + σ1ν1 − σ2(1 + t);σ1µ1, σ1, 0, b), (1 + ν1; 0, 0, µ1, 1).
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B∗ = (1− (σ + λ) + σ1ν1 − (λ2 + σ2)(1 + t);σ1µ1, σ1, a, b)

C∗ = −; (1, 1); (1− γ, 1), (1− λ− λ2(1 + t), a); (1− β, 1)

D∗ = (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1); (0, 1).

(V.) Finally, if we reduce the H−function to generalized hypergeometric func-

tion pFq [41, p. 271, Eq.(9)] and take λ1 = σ1 = γ2 = β2 = 0 in the main

integral (5.4.1), we obtain the following integral after a little simplification:

1∫
0

xλ−1(1− x)σ−1(1− uxa)−γ(1 + vxb)−βI3(z, 1, ν1, ρ1, µ1, α1)

pFq

xλ2(1− x)σ2

∣∣∣∣∣∣
(ej, 1; ρj)1,p

(fj, 1; ηj)1,q

 dx

=
1

Γ(γ)Γ(β)Γ( 1
α1−1

)

∞∑
t=0

p∏
j=1

{(ej)t}ρj

q∏
j=1

{(fj)t}ηj t!
H0,1;1,0;2,1;1,2;1,2

1,1;0,2;1,2;2,1;2,1



1
zµ

1
(α1−1)

−u

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : C∗

B∗ : D∗


(5.5.5)

where

A∗ = (1 + ν1; 0, 0, µ1, 1) B∗ = (1− (σ + λ)− (λ2 + σ2)t; 0, 0, a, b)

C∗ = −; (1, 1); (1− γ, 1), (1− λ− λ2t, a); (1− β, 1), (1− σ − σ2t, b)

D∗ = (0, 1), (1, µ1); ( 1
α1−1

, 1), (ν1, 1); (0, 1); (0, 1).

provided that the conditions that are easily obtainable from the existing

conditions (5.4.1) are satisfied.
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6
SOLUTION OF FRACTIONAL

DIFFERENTIAL EQUATION BY

GENERALIZED DIFFERENTIAL

TRANSFORM METHOD (GDTM)

The main findings of this chapter have been published as detailed below:

1. M. K. BANSAL and R. JAIN (2015). APPLICATION OF

GENERALIZED DIFFERENTIAL TRANSFORM METHOD TO FRACTIONAL

RELAXATION OSCILLATION EQUATION, Antarctica J. Math., 12(1), 85–95.

2. M. K. BANSAL and R. JAIN (2015). ANALYTICAL SOLUTION OF

BAGLEY TORVIK EQUATION BY GENERALIZED DIFFERENTIAL TRANS-

FORM, International Journal of Pure and Applied Mathematics, 110(2), 265–

273.

3. M. K. BANSAL and R. JAIN (2015). APPLICATION OF GENERAL-

IZED DIFFERENTIAL TRANSFORM METHOD TO FRACTIONAL ORDER

RICCATI DIFFERENTIAL EQUATION AND NUMERICAL RESULT, Inter-
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national Journal of Pure and Applied Mathematics, 99(3), 355–366.
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The object of this chapter is to find solutions of the Bagley Torvik Equa-

tion, Fractional Relaxation Oscillation Equation and Fractional Order Riccati

Differential Equation. We make use of generalized differential transform method

(GDTM) to solve the equations. First of all we give definition of a Caputo frac-

tional derivative of order α which was introduced and investigated by Caputo

[12]. Then, we give the generalized differential transform method and inverse

generalized differential transform which was introduce and investigated by Ertuk

et al. [22] and some basic properties of GDTM. Next, we find solutions to three

different fractional differential equations using GDTM technique.

In section 6.2 we find the solution of Bagley Torvik Equation using GDTM.

Since all constant coefficients and function f(t) are general in nature, by special-

izing the constant coefficients and function f(t) we can obtain a large number of

special cases of Bagley Torvik Equation. Here we give two numerical examples.

In section 6.3 we find the solution of Fractional Relaxation Oscillation Equa-

tion using GDTM. Since order of Fractional Relaxation Oscillation Equation is

β, A is constant coefficient and function f(x) are general in nature, by specializing

parameters and function f(x), we can obtain a large number of special cases of

Fractional Relaxation Oscillation Equation. Here we give eight numerical exam-

ples. Furthermore these examples are also represented graphically by using the

MATHEMATICA SOFTWARE.

In section 6.4, Again we find the solution of Fractional Order Riccati Dif-

ferential Equation using GDTM. Since order of Fractional Riccati Differential

equation is β and all function are general in nature, by specializing parameters
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and functions, we can obtain a large number of special cases of Fractional Relax-

ation Oscillation Equation. Here we give eight numerical examples. Furthermore

these examples are also represented graphically by using the MATHEMATICA

SOFTWARE.

6.1 INTRODUCTION

6.1.1 CAPUTO FRACTIONAL DERIVATIVE OF

ORDER α

The Caputo fractional derivative of order α was introduced and investigate by

Caputo [11] in the following manner

C
aD

α
xf(x) =


1

Γ(m−α)

x∫
a

f (m)(ξ)
(x−ξ)α−m+1dξ if (m− 1 < α < m),m ∈ N

f (m)(x) if α = m

(6.1.1)

6.1.2 KNOWN BASIC THEOREMS

The following theorems will be required to obtain our main findings :

Theorem 6.1.1 ([22] Generalized Taylor Formula). Suppose that (CaD
α
x )kf(x) ∈

C(a, b] for k = 0, 1, 2,....n + 1, where 0 < α ≤ 1, then we have

f(x) =
n∑

i=0

(x− a)iα

Γ(iα + 1)
((CaD

α
x )if)(a) +

((CaD
α
x )n+1f)(ξ)

Γ((n+ 1)α + 1)
.(x− a)(n+1)α (6.1.2)

with a ≤ ξ ≤ x,∀ x ∈ (a, b].

Theorem 6.1.2. [26] Suppose that f(x) = (x−x0)λg(x), where x0, λ > 0 and g(x)

has the generalized power series expansion g(x) =
∞∑
n=0

an(x− x0)nα with radius of
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convergence R > 0, 0 < α ≤ 1. Then

C
aD

γ
x

C
aD

β
xf(x) = C

aD
γ+β
x f(x) (6.1.3)

for all (x − x0) ∈ (0, R), the coefficients an = 0 for n given by nα + λ − β = 0

and either

(a) λ > µ, µ = max(β + [γ], [β + γ])

or

(b) λ ≤ µ, ak = 0 for k = 0,1,2,...,[µ−λ
α

]

where [x] denotes the greatest integer less than or equal to x.

6.1.3 GENERALIZED DIFFERENTIAL TRANSFORM

METHOD (GDTM)

The generalized differential transform of the Kth derivative of function f(x) in

one variable was introduced and investigated by Ertuk et al. [22, p. 1646] in the

following manner:

Fα(k) =
1

Γ(αk + 1)
[(CaD

α
x )kf(x)]x=x0 (6.1.4)

where 0 < α ≤ 1, (CaD
α
x )k = C

aD
α
x .
C
aD

α
x ....

C
aD

α
x (k − times), C

aD
α
x is defined by

(6.1.1) and Fα(k) is the transformed function.

The Inverse Generalized Differential Transform of Fα(k) is defined in the fol-

lowing manner [22, p. 1647]

f(x) =
∞∑
k=0

Fα(k)(x− x0)αk (6.1.5)
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6.1.4 SOME BASIC PROPERTIES OF THE

GENERALIZED DIFFERENTIAL TRANSFORM

If Fα(k), Gα(k) and Hα(k) are the generalized differential transforms of the

functions f(x), g(x) and h(x) respectively, then

(a) If f(x) = g(x) ± h(x), then Fα(k) = Gα(k)±Hα(k)

(b) If f(x) = ag(x), then Fα(k) = aGα(k), where a is a constant.

(c) If f(x) = g(x)h(x), then Fα(k) =
k∑
l=0

Gα(l)Hα(k − l)

(d) If f(x) = C
aD

α
xg(x), then Fα(k) = Γ(α(k+1)+1)

Γ(αk+1)
Gα(k + 1)

(e) If f(x) = (x− x0)γ, γ = nα, n ∈ Z, then Fα(k) = δ(k − γ/α),

where

δ(k) =

{
1 if k = 0

0 if k 6= 0

(f) If f(x) = C
b D

β
xg(x),m − 1 < β ≤ m and the function g(x) satisfies the

condition in Theorem 6.1.2, then

Fα(k) =
Γ(αk + β + 1)

Γ(αk + 1)
Gα

(
k +

β

α

)

6.2 APPLICATION OF GDTM TO BAGLEY

TORVIK EQUATION

In this section we consider Bagley Torvik Equation in the following form:

AD2y(t) +BD
3
2y(t) + Cy(t) = f(t) where t > 0 (6.2.1)

Subject to initial conditions

y(0) = 0 and y′(0) = 0 (6.2.2)
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where A 6= 0, B and C are constant coefficients.

SOLUTION: Applying generalized differential transform (6.1.4) on the both

sides of (6.2.1) by using the property of GDTM (f) with a = b = 0, we easily

arrive at the following result

A
Γ(αk + 3)

Γ(αk + 1)
Yα

(
k +

2

α

)
+B

Γ(αk + 3
2

+ 1)

Γ(αk + 1)
Yα

(
k +

3

2α

)
+ CYα(k) = Fα(k)

(6.2.3)

or

Yα

(
k +

2

α

)
=
Fα(k)− CYα(k)−B Γ(αk+ 5

2
)

Γ(αk+1)
Yα(k + 3

2α
)

A(αk + 2)(αk + 1)
(6.2.4)

Where Yα(k) be the Generalized Differential Transform Function of y(t).

The generalized differential transform of the initial conditions in Eq. (6.2.2) takes

the following form

[CaD
αk
t0
y(t)]t=0 = 0 for k = 0, 1, 2, 3, ... (6.2.5)

Utilizing the recurrence relation (6.2.4) and the transformed initial conditions

(6.2.5) we calculated the value of Yα
(
k + 2

α

)
for k = 1, 2, 3, · · · . Then taking

the inverse generalized differential transform (6.1.5), we obtain the desire solution

after a little simplification.

EXAMPLE 1: Consider the following special case of Bagley-Torvik equation

given by (6.2.1) as investigated earlier [29, 92]

D2y(t) +D
3
2y(t) + y(t) = 2 + 4

√
t

π
+ t2 (6.2.6)

Subject to initial conditions

y(0) = 0 and y′(0) = 0 (6.2.7)
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SOLUTION: Applying generalized differential transform (6.1.4) on the both

sides of (6.2.6) by using the property of GDTM (f) with a = b = 0 and setting

t0 = 0, α = 1/2, we easily arrive at the following result

Y 1
2
(k + 4) =

2δ(k) + 4√
π
δ(k − 1) + δ(k − 4)− Y 1

2
(k)− Γ( k

2
+ 5

2
)

Γ( k
2

+1)
Y 1

2
(k + 3)

(k
2

+ 2)(k
2

+ 1)
(6.2.8)

and initial conditions (6.2.7) takes the following form

Y 1
2
(0) = 0; Y 1

2
(1) = 0; Y 1

2
(2) = 0; Y 1

2
(3) = 0 (6.2.9)

Utilizing the recurrence relation (6.2.8) and the transformed initial conditions

(6.2.9) we calculated the value of Y 1
2
(k), for k = 1, 2,· · · . Then we can easily

obtain the following result after a little simplification

Y 1
2
(k) =

{
1 if k = 4

0 if k 6= 4
(6.2.10)

Now, from (6.1.5), and f(x) replaced by y(t) then it takes the following form

y(t) =
∞∑
k=0

Y 1
2
(k)t

k
2 (6.2.11)

Next, using the values of Y 1
2
(k) from (6.2.10) in (6.2.11) then we get the exact

solution of Bagley-Torvik equation (6.2.6) is

y(t) = t2 (6.2.12)

which is same as obtained by Ghorbani and Alavi [29] by using He’s Variational

Iteration Method.

We can obtain same solution for all values of α such that 0 < α ≤ 1.
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Example 2: We consider the following special case of Bagley-Torvik equation

given by (6.2.1) as investigated earlier [20, 21]

D2y(t) +D
3
2y(t) + y(t) = t+ 1 (6.2.13)

subject to initial condition

y(0) = 1 and y′(0) = 1 (6.2.14)

SOLUTION: Applying generalized differential transform (6.1.4) on the both

sides of (6.2.13) by using the property of GDTM (f) with a = b = 0 and setting

t0 = 0, α = 1/2, we easily arrive at the following result

Y 1
2
(k + 4) =

δ(k) + δ(k − 2)− Y 1
2
(k)−

Γ(k
2

+ 5
2
)

Γ(k
2

+ 1)
Y 1

2
(k + 3)

(k
2

+ 2)(k
2

+ 1)
(6.2.15)

and initial conditions (6.2.14) takes the following form

Y 1
2
(0) = 1; Y 1

2
(1) = 0; Y 1

2
(2) = 1; Y 1

2
(3) = 0 (6.2.16)

Utilizing the recurrence relation (6.2.15) and the transformed initial conditions

(6.2.16) we calculated the value of Y 1
2
(k), for k = 1, 2,· · · . Then we can easily

obtain the following result after a little simplification

Y 1
2
(k) =

{
1 if k = 0, 2

0 if k 6= 0, 2
(6.2.17)

Now, from (6.1.5), and f(x) replaced by y(t) then it takes the following form

y(x) =
∞∑
k=0

Y 1
2
(k)x

k
2 (6.2.18)

125



6. SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATION
BY GENERALIZED DIFFERENTIAL TRANSFORM METHOD
(GDTM)

Using the values of Y 1
2
(k) from (6.2.17) in (6.2.18), the exact solution of Bagley-

Torvik equation (6.2.13) is obtained as

y(t) = 1 + t (6.2.19)

which is same as obtained by El-Sayed at el. [20] by using Adomian decomposition

method (ADM) and proposed numerical method (PNM).

We can obtain same solution for all values of α such that 0 < α ≤ 1.

6.3 APPLICATION OF GDTM TO FRACTIONAL

RELAXATION OSCILLATION EQUATION

In this section, we shall apply GDTM for solving Fractional Relaxation Oscillation

Equation:

Consider the Fractional Relaxation Oscillation Equation in the following form:

Dβy(x) + Ay(x) = f(x), x > 0 (6.3.1)

Subject to initial conditions

y(0) = λ and y′(0) = µ (6.3.2)

where A is positive constant and 0 < β ≤ 2.

SOLUTION: Applying generalized differential transform (6.1.4) on the both

sides of (6.3.1) by using the property of GDTM (f) with a = b = 0, we easily

arrive at the following result

Γ(αk + β + 1)

Γ(αk + 1)
Yα

(
k +

β

α

)
+ AYα(k) = Fα(k) (6.3.3)
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or

Yα

(
k +

β

α

)
=

Γ(αk + 1)

Γ(αk + β + 1)
[Fα(k)− AYα(k)] (6.3.4)

Where Yα(k) be the Generalized Differential Transform function of y(t).

The generalized differential transform of the initial conditions in Eq. (6.3.2) takes

the following form

Yα(k) =
1

Γ(αk + 1)
[(CaD

α
x0

)ky(x)]x=0 for k = 0, 1, 2, ... (6.3.5)

Utilizing the recurrence relation (6.3.4) and the transformed initial conditions

(6.3.5) we calculated the value of Yα
(
k + β

α

)
for k = 1, 2, 3, · · · . Then taking

the inverse generalized differential transform (6.1.5), we obtain the desire solution

after a little simplification.

Example 3: If we take β = 1
4

, A = 1 and f(x) = 0 in (6.3.1), it reduces to

Relaxation-Oscillation Equation [44]

D
1
4y(x) + y(x) = 0 (6.3.6)

with initial condition

y(0) = 1 (6.3.7)

SOLUTION: Applying generalized differential transform (6.1.4) on the both

sides of (6.3.6) by using the property of GDTM (f) with a = b = 0 and setting

x0 = 0, α = 1/4, we easily arrive at the following result

Y 1
4
(k + 1) = −

Γ(k
4

+ 1)

Γ(k
4

+ 5
4
)
Y 1

4
(k) (6.3.8)
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and initial conditions (6.3.7) takes the following form

Y 1
4
(0) = 1 (6.3.9)

Utilizing the recurrence relation (6.3.8) and the transformed initial conditions

(6.3.9) we calculated the value of Y 1
2
(k+ 1), for k = 1, 2,· · · . Then we can easily

obtain the following result after a little simplification

Y 1
4
(1) = −1.1033; Y 1

4
(2) = 1.1284; Y 1

4
(3) = −1.0881;

Y 1
4
(4) = 1; Y 1

4
(5) = −0.8826; Y 1

4
(6) = 0.7523;

Y 1
4
(7) = −0.62175; Y 1

4
(8) = 0.5

 (6.3.10)

Similarly we can find the value of Y 1
4
(k) for k = 7, 8, 9 · · · .

Now, from (6.1.5), and f(x) replaced by y(x) then it takes the following form

y(x) =
∞∑
k=0

Y 1
4
(k)x

k
4 (6.3.11)

Using the values of Y 1
4
(k) from (6.3.10) in (6.3.11), the exact solution of Fractional

Relaxation Oscillation equation (6.3.6) is obtained as

y(x) =1− 1.1033x
1
4 + 1.1284x

1
2 − 1.0881x

3
4 + x− 0.8826x

5
4 + 0.7523x

3
2

− 0.62175x
7
4 + 0.5x2 · · · (6.3.12)

Example 4: If we take β = 1
2

, A = 1 and f(x) = 0 in (6.3.1) and follow the

method given in Example 3, we easily arrive at the following result

y(x) = 1− 1.1284x
1
2 + x− 0.7523x

3
2 + 0.5x2 · · · (6.3.13)
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Example 5: If we take β = 3
4

, A = 1 and f(x) = 0 in (6.3.1) and follow the

method given in Example 3, we easily arrive at the following result

y(x) = 1− 1.0881x
3
4 + 0.7523x

3
2 − 0.3923x

9
4 + 0.1667x3 · · · (6.3.14)

Example 6: If we take β = 1 , A = 1 and f(x) = 0 in (6.3.1) and follow the

method given in Example 3, we easily arrive at the following result

y(x) = exp(−x) (6.3.15)

Example 7: If we take β = 5
4

, A = 1 and f(x) = 0 in (6.3.1) and follow the

method given in Example 3, we easily arrive at the following result

y(x) = 1− 0.8826x
5
4 + 0.3009x

5
2 − 0.0603x

15
4 + 0.0083x5 · · · (6.3.16)

Example 8: If we take β = 3
2

, A = 1 and f(x) = 0 in (6.3.1) and follow the

method given in Example 3, we easily arrive at the following result

y(x) = 1− 0.7523x
3
2 + 0.1667x3 − 0.0191x

9
2 + 0.0014x6 · · · (6.3.17)

Example 9: If we take β = 7
4

, A = 1 and f(x) = 0 in (6.3.1) and follow the

method given in Example 3, we easily arrive at the following result

y(x) = 1 + x− 0.62175x
7
4 − 0.22609x

11
4 + 0.085972x

7
2 · · · (6.3.18)

Example 10: If we take β = 2 , A = 1 and f(x) = 0 in (6.3.1) and follow the

method given in Example 3, we easily arrive at the following result

y(x) = cos x (6.3.19)
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The graph given below demonstrates have been represented Eq.(6.3.12)

to Eq. (6.3.19) graphically by making use of ”MATHEMATICA SOFT-

WARE” as given below

Figure : 1. Approxiamte solution of example 3 to 10
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6.4 APPLICATION OF GDTM TO FRACTIONAL

ORDER RICCATI DIFFERENTIAL

EQUATION AND NUMERICAL RESULT

In this section we consider the Fractional Order Riccati Differential Equation in

the following form :

Dβy(t) = P (t)y2(t) +Q(t)y(t) +R(t), t > 0, 0 < β ≤ 1 (6.4.1)

Subject to initial condition

y(0) = B (6.4.2)

where P(t), Q(t) and R(t) are known functions.

SOLUTION: Applying generalized differential transform (6.1.4) on the both

sides of (6.4.1) by using the property of GDTM (f) with a = b = 0, we easily

arrive at the following result

Γ(αk + β + 1)

Γ(αk + 1)
Yα

(
k +

β

α

)
=

h∑
k=0

k∑
l=0

Pα(l)Yα(k − l)Yα(h− k)

+
k∑
l=0

Qα(l)Yα(k − l) +Rα(k) (6.4.3)

or

Yα

(
k +

β

α

)
=

Γ(αk + 1)

Γ(αk + β + 1)

[
h∑
k=0

k∑
l=0

Pα(l)Yα(k − l)Yα(h− k) +
k∑
l=0

Qα(l)Yα(k − l) +Rα(k)

]
(6.4.4)

where Yα(k) is the Generalized Differential Transform function of y(t).

The generalized differential transform of the initial conditions in Eq. (6.4.2) takes
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the following form

Yα(k) =
1

Γ(αk + 1)
[(CaD

α
t0

)ky(t)]t=0 for k = 0, 1, 2, · · · (6.4.5)

Utilizing the recurrence relation (6.4.4) and the transformed initial conditions

(6.4.5) we calculated the value of Yα
(
k + β

α

)
for k = 1, 2, 3, · · · . Then taking

the inverse generalized differential transform (6.1.5), we obtain the desire solution

after a little simplification.

Example 11: If we take β = 1
4

, P(t) = 1, Q(t)= 2 and R(t) = t2 in (6.4.1), it

reduces to

D
1
4y(t) = t2 + 2y(t) + y2(t) (6.4.6)

Subject to initial condition

y(0) = 0 (6.4.7)

SOLUTION : Applying generalized differential transform (6.1.4) on the both

sides of (6.4.6) by using the property of GDTM (f) with a = b = 0 and setting

t0 = 0, α = 1/4, we easily arrive at the following result

Y 1
4
(k + 1) =

Γ(k
4

+ 1)

Γ(k
4

+ 5
4
)

[
δ(k − 8) + 2Y 1

4
(k) +

k∑
l=0

Y 1
4
(l)Y 1

4
(k − l)

]
(6.4.8)

and initial conditions (6.4.7) takes the following form

Y 1
4
(0) = 0 (6.4.9)

Utilizing the recurrence relation (6.4.8) and the transformed initial conditions

(6.4.9) we calculated the value of Y 1
4
(k+ 1), for k = 1, 2,· · · . Then we can easily
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obtain the following result after a little simplification

Y 1
4
(1) = 0; Y 1

4
(2) = 0; Y 1

4
(3) = 0; Y 1

4
(4) = 0;

Y 1
4
(5) = 0; Y 1

4
(6) = 0; Y 1

4
(7) = 0; Y 1

4
(8) = 0;

Y 1
4
(9) = 0.6018; Y 1

4
(10) = 1.204; Y 1

4
(11) = 1.809; Y 1

4
(12) = 2.667;

Y 1
4
(13) = 3.862; Y 1

4
(14) = 5.502 Y 1

4
(15) = 7.717; Y 1

4
(16) = 10.67


(6.4.10)

Similarly we can find the value of Y 1
4
(k) for k = 17, 18, 19 · · · .

Now, from (6.1.5), and f(t) replaced by y(t) then it takes the following form

y(t) =
∞∑
k=0

Y 1
4
(k)t

k
4 (6.4.11)

Using the values of Y 1
4
(k) from (6.4.10) in (6.4.11), the exact solution of Fractional

Order Reccati Differential Equation (6.4.6) is obtained as

y(t) =0.6018t
9
4 + 1.204t

10
4 + 1.809t

11
4 + 2.667t3 + 3.862t

13
4 + 5.502t

14
4

+ 7.717t
15
4 + 10.67t4 · · · (6.4.12)

Example 12: If we take β = 1
2

, P(t) = 1, Q(t)= 2 and R(t) = t2 in (6.4.1) and

follow the method given in Example 11, we easily arrive at the following result

y(t) =0.6018t
5
2 + 0.6667t3 + 0.6878t

7
2 + 0.6667t4 + 0.6114t

9
2 + 0.5334t5

+ 0.6599t
11
2 + 0.8485t6 · · · (6.4.13)

Example 13:If we take β = 3
4

, P(t) = 1, Q(t)= 2 and R(t) = t2 in (6.4.1) and

follow the method given in Example 11, we easily arrive at the following result

y(t) = 0.4522t
11
4 + 0.3439t

14
4 + 0.2272t

17
4 + 0.133t5 · · · (6.4.14)
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Example 14: If we take β = 1 , P(t) = 1, Q(t)= 2 and R(t) = t2 in (6.4.1) and

follow the method given in Example 11, we easily arrive at the following result

y(t) =
t3

3
+
t4

6
+
t5

15
+
t6

45
+
t7

45
· · · (6.4.15)

The graph given below demonstrates have been represented eq.(6.4.12)

to eq. (6.4.15) graphically by making use of ”MATHEMATICA SOFT-

WARE” as given below.

Figure : 2. Approxiamte solution of example 11 to 14
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Example 15: If we take β = 1
4

, P(t) = -1, Q(t)= 3 and R(t) = t in equation

(6.4.1), it reduces to

D
1
4y(t) = t+ 3y(t)− y2(t) (6.4.16)

Subject to initial condition

y(0) = 1 (6.4.17)

SOLUTION : Applying generalized differential transform (6.1.4) on the both

sides of (6.4.16) by using the property of GDTM (f) with a = b = 0 and setting

t0 = 0, α = 1/4, we easily arrive at the following result

Y 1
4
(k + 1) =

Γ(k
4

+ 1)

Γ(k
4

+ 5
4
)

[
δ(k − 4) + 3Y 1

4
(k)−

k∑
l=0

Y 1
4
(l)Y 1

4
(k − l)

]
(6.4.18)

and initial conditions (6.4.17) takes the following form

Y 1
4
(0) = 1 (6.4.19)

Utilizing the recurrence relation (6.4.18) and the transformed initial conditions

(6.4.19) we calculated the value of Y 1
4
(k+1), for k = 1, 2,· · · . Then we can easily

obtain the following result after a little simplification

Y 1
4
(1) = 2.207; Y 1

4
(2) = 2.2578; Y 1

4
(3) = −2.519;

Y 1
4
(4) = −11.4756; Y 1

4
(5) = −3.9283; Y 1

4
(6) = 49.5215

 (6.4.20)

Similarly we can find the value of Y 1
4
(k) for k = 7, 8, 9 · · · .

Now, from (6.1.5), and f(t) replaced by y(t) then it takes the following form

y(t) =
∞∑
k=0

Y 1
4
(k)t

k
4 (6.4.21)
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Using the values of Y 1
4
(k) from (6.4.20) in (6.4.21), the exact solution of Fractional

Order Reccati Differential Equation (6.4.16) is obtained as

y(t) = 1 + 2.207t
1
2 + 2.2578t− 2.5198t

3
2 − 11.4756t2 − 3.9283t

5
2 + 49.5215t3 · · ·

(6.4.22)

Example 16: If we take β = 1
2

, P(t) = -1, Q(t)= 3 and R(t) = t in (6.4.16) and

follow the method given in Example 15, we easily arrive at the following result

y(t) = 1 + 2.257t
1
2 + 2t− 1.5753t

3
2 − 7.048t2 − 2.3694t

5
2 + 19.7999t3 · · ·

(6.4.23)

Example 17:If we take β = 3
4

, P(t) = -1, Q(t)= 3 and R(t) = t in (6.4.16) and

follow the method given in Example 15, we easily arrive at the following result

y(t) = 1 + 2.176t
3
4 + 1.5045t

6
4 − 1.6847t

9
4 + 0.3009t

10
4 · · · (6.4.24)

Example 18: If we take β = 1 , P(t) = -1, Q(t)= 3 and R(t) = t in (6.4.16) and

follow the method given in Example 15, we easily arrive at the following result

y(t) = 1 + 2t+ 1.5t2 − 0.8333t3 − 0.2083t4 + 0.1749t5 · · · (6.4.25)

The graph given below demonstrates have been represented eq.(6.4.22)

to eq. (6.4.25) graphically by making use of ”MATHEMATICA SOFT-

WARE” as given below
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Figure : 3. Approxiamte solution of example 15 to 18
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[24] Erdélyi A, Fractional integrals of generalized functions, Fractional Calculs

and its Applications. (Lecture Note in Math., Vol. 457), Springer Verlag,

New York (1975) 151–170.

[25] Exton H, Multiple Hypergeometric Functions and Applications. Halsted

Press (Elis Horwood, Chichester), John Wiley and Sons, New York, London

Sydney and Toronto (1976).

[26] Garg M and Manohar P, Three dimensional generalized differential trans-

form method for space-time fractional diffusion equation. Palestine Journal

of Mathematics,4(1) (2015) 127–135.

[27] Garg M and Purohit M, A Study of Multidimensional Fractional Inte-

gral Operators and Generalized Stieltjes Transform. Kyungpook Math. J., 40

(2000) 115–124.

142



BIBLIOGRAPHY

[28] Garg Sheekha, Multidimensional Fractional Integral Operators and a Gen-

eral Class of Multivariable Polynomials. Simon Steven Quart. J. Pure Appl.

Math., 66 (1992) 327–339.

[29] Ghorbani A and Alavi A, Application of He’s variational iteration method

to solve semi differential equations of nth order. Mathematical Problems in

Engineering, 2008 (2008), 1–9.

[30] Glaeske HJ, Kilbas AA and Saigo M, A modified Bessel–type inte-

gral transform and its compositions with fractional calculus operators on

spaces Fp,µ and F ′p,µ. Journal of Computational and Applied Mathematics,

118 (2000) 151–168.

[31] Gorenflo R and Vessalla S, Abel Integral Equations: Analysis and Ap-

plications, Lecture Notes in Mathematics Vol. 1461, Springer-Verlag Berlin

(1991).

[32] Goyal SP and Jain RM, Fractional integral operators and generalized

hypergeometric function. Indian J. Pure Appl. Math. 18(1987) 251–259.

[33] Gradshteyn IS and Ryzhik IM, Table of Integrals, Series and Products.

Academic Press(1980).

[34] Gupta KC, New releationship of the H-function with functions of practical

utility in fractional calculus. Ganita Sandesh, 15(2) (2001) 63–66.

143



BIBLIOGRAPHY

[35] Gupta KC, Jain R and Agrawal P, A Unified Study of Fractional

Integral Operators Involving General Polynomials and a Multivariable H-

Function. Soochow J. of Math.. 21(1) (1995) 29–40.

[36] Gupta KC and Jain R, A Study of Multidimensional Fractional Integral

Operators Involving a General Class of Polynomials and a Generalized Hyper

geometric Function. Ganita Sandesh, 5(2) (1991) 55–64.

[37] Gupta KC, On the H-function. Ann. Soc. Sci., Bruxelles, 79(1965) 97–106.

[38] Gupta KC and Soni RC, A unified inverse Laplace transform for-

mula,functions of practical importance and H-functions. J Rajasthan Acad

Phy Sci, 1(1) (2002) 7–16.

[39] Garg M and Mishra R, On Product of Hypergeometric Functions, General

Class of Multivariable Polynomials and a Generalized Hypergeometric Series

associated with Feynman Integrals. Bull. Cal. Math. Soc., 95(4) (2003), 313–

324.

[40] Gupta KC, Jain R and Agrawal R, On Existence Conditions for Gener-

alized Mellin–Barnes Type Integral. Nat. Acad. Sci. Lett., 30(5&6) (2007)

169–172.

[41] Gupta KC, Jain R and Sharma A, A study of Unified Finite Integral

Transforms with Applications. J. Raj. Aca. Phy. Sci., 2(4) (2003) 269–282.

144



BIBLIOGRAPHY

[42] Gupta KC and Soni RC, New Properties of Generalization of Hypergeo-

metric Series Associated with Feynman Integrals. Kyungpook Math J., 41(1)

(2001) 97–104.

[43] Grudzinski K and Zebrowski JJ, Modeling cardiac pacemakers with

relaxation oscillators. Physica A, 336(1-2) (2004) 153–162.
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