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1
Introduction to Bicomplex Numbers

Bicomplex analysis is a recent powerful mathematical tool to develop the theory of

functions belonging to large class of frequency domain. The concept of bicomplex

numbers play a vital role in solving problems of electromagnetism. It has great

advantage of dealing both the vector fields (electric and magnetic) together as a

single vector field in bicomplex space. This approach is also advantageous than

quaternionic approach due to the commutative property of bicomplex numbers.

The present chapter deals with an introduction to the topic of the study as

well as a brief review of the contributions made by some of the earlier workers

on the subject matter presented in this thesis. Next a brief chapter by chapter

summary of the thesis has been given.

1.1 History and Literature Review of Bicom-

plex Numbers

Beginning from the end of the first half of the 19th century, particularly, in Great

Britain, developed the theory on geometrical interpretation of complex numbers
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1. INTRODUCTION TO BICOMPLEX NUMBERS

that led to the birth of new systems of hypercomplex numbers. In particular,

the discovery in 1843 of quaternion numbers by well-known Irish mathematician

Hamilton (see, e.g. [63]) revealed the existence of an algebraic system that had

all the properties of real and complex numbers except commutativity of multipli-

cation. It was described as physical rotations in a four-dimensional space. Also,

it was as an extension of complex number concept into four dimensions [74], [76]

and [108].

As a result, researches were carried out on new systems of hypercomplex

numbers, leading to the discovery of octonions, theory of pluriquaternions and

biquaternions. The idea of bicomplex numbers came to James Cockle begin-

ning from the observation made by Horner on the existence of irrational equa-

tions which has neither real nor complex solutions. Cockle [31] assumed a new

imaginary unit j s.t. j2 = 1, and taking inspiration from the theory of quater-

nions which was defined by Hamilton, he defined the bicomplex number as p =

x0 + x1i+ x2j + ijx3, with j2 = 1.

In 1892, Segre [132], rediscovered the algebra of bicomplex numbers and pre-

sented as the analytical representation of the points of bicomplex geometry and

identified that Hamilton introduced the same quantities in the study of biquater-

nions and also described the geometrical interpretation of the algebra of bicom-

plex numbers. In 1928 and 1932, Futagawa originated the concept of holomorphic

functions of a bicomplex variable in a series of papers [49], [50].

In 1934, Dragoni [37] gave some basic results in the theory of bicomplex holo-

morphic functions while Price [119] and Rönn [126] have developed the bicomplex
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1.1 History and Literature Review of Bicomplex Numbers

algebra and function theory. Price [119] discussed the field property of bicomplex

numbers and observed that the commutativity in the former is obtained if the

ring of these numbers contains zero-divisors and so can not form a field. How-

ever, the property of commutativity of bicomplex numbers is later on recognized

as the complex numbers with complex coefficients due to this effect there are deep

similarities between the bicomplex and complex numbers by Olariu [112].

In 2004, Rochon [122] generalized a holomorphic Riemann zeta function in

bicomplex form. In the same year, Rochon and Tremblay [124] generalized the

Schrödinger equation from complex form to bicomplex form and obtained Born’s

formula for the class of bicomplex wave functions having a null hyperbolic angle.

In 2006, Rochon and Tremblay [125] discussed hyperbolic and bicomplex Hilbert

spaces with their properties and Goyal and Goyal [57], introduced a holomorphic

bicomplex Hurwitz Zeta-function.

In recent developments efforts have been made and a number of results have

been obtained using bicomplex numbers. In 2007, Goyal et al. [56] extended

Polygamma function in bicomplex form. In 2008, Charak and Rochon [26] ex-

tended the factorization of meromorphic functions from complex variable to bi-

complex variable. In 2009, Charak et al. [29] obtained Julia and Fatou sets in

bicomplex form. In 2010, Lavoie et al. [90], [91] investigated bicomplex quantum

harmonic oscillator with eigenvalues and eigenkets and introduced the concept

of infinite dimensional bicomplex Hilbert spaces with their applications to quan-

tum harmonic oscillator. In 2011, Lavoie et al. [92] discussed finite dimensional

3



1. INTRODUCTION TO BICOMPLEX NUMBERS

bicomplex Hilbert spaces, linear operators, orthogonal bases and self adjoint op-

erators with their applications in quantum mechanics. In the same year, Kumar

and Kumar [88] extended the Laplace transform in the bicomplex variable from

their complex counterpart. In 2012, Luna-Elizarraras et al. [97] introduced about

the algebra of bicomplex numbers and their elementary functions.

In 2013, Charak et al. [27], [28] discussed the Riesz-Fischer theorem and

bicomplex Spectral decomposition theorem on infinite dimensional bicomplex

Hilbert spaces. In the same year, Mathein et al. [101] obtained the analyti-

cal solution of the quantum Coulomb potential problem formulated in terms of

bicomplex numbers and Singh and Srivastava [135] discussed the continuity and

compactness of the bicomplex spaces and its subsets. In 2014, Dubey et al. [38]

studied the bicomplex Orlicz spaces. Further, discussed some applications of

Hahn-Banach theorem on bicomplex Banach modules. In the same year, Baner-

jee et al. [10] generalized the inversion Laplace transform in bicomplex variable.

In 2015, Banerjee et al. [11], [12] extended the Fourier transform and its inverse

to bicomplex variable. In the same year, Kumar and Singh [89] studied the basic

properties of bicomplex linear operators on bicomplex Hilbert spaces and proved

Littlewood’s subordination principle for bicomplex Hardy space.

1.2 Bicomplex Numbers

Ordered pairs of the real numbers forms the well known field of complex numbers

wherein the operations of addition and multiplication are defined as

4



1.2 Bicomplex Numbers

(a) (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

(b) (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1), x1, x2, y1, y2 ∈ R

where R is the set of real numbers. The theory of analytic functions on domains

in C1 (set of complex numbers) has been extensively developed.

The question arises that, ‘what happens if the above definitions are applied to

pairs of complex numbers and the corresponding function theory is investigated?’

The new set of ordered pairs of complex numbers allow the same definition of

all fundamental operations except the division that is not possible by an ordered

pair (z1, z2) if z2
1 + z2

2 = 0.

Precisely, the set of complex numbers generated by the field of real numbers

i.e.

C1 = {x+ i1y : x, y ∈ R} = {(x, y) : x, y ∈ R},

where i21 = −1. Thus the set C1 is the set of ordered pairs of real numbers. Now,

we apply this process to the ordered pair of complex numbers. Consequently,

we require two complex planes which are denoted by C(i1) and C(i2), where

i21 = −1 = i22; i1i2 = i2i1 = j.

We denote the set of all bicomplex numbers by C2, defined by Segre [132] as

C2 = {ξ : ξ = x0 + i1x1 + i2x2 + jx3; x0, x1, x2, x3 ∈ R}

or

C2 = {ξ : ξ = z1 + i2z2; z1, z2 ∈ C1} .

5



1. INTRODUCTION TO BICOMPLEX NUMBERS

· i0 i1 i2 j

i0 i0 i1 i2 j

i1 i1 −i0 j −i2
i2 i2 j −i0 −i1
j j −i2 −i1 i0

The Cayley table of the set of the set C2 is of the form:

where i0 := 1 acts as identity, and

i1i2 = i2i1 = j

i1j = ji1 = −i2

i2j = ji2 = −i1

j2 = i0.

Such an approach says that we provided the real four-dimensional linear space

R4 with a standard basis

i0 = (1, 0, 0, 0), i1 = (0, 1, 0, 0), i2 = (0, 0, 1, 0), j = (0, 0, 0, 1)

with the following arithmetic operations.

Let ξ = x0 + i1x1 + i2x2 + jx3 and η = y0 + i1y1 + i2y2 + jy3, then the addition

and multiplication of two bicomplex numbers is defined as

ξ + η := (x0 + y0) + i1(x1 + y1) + i2(x2 + y2) + j(x3 + y3);

ξ · η := (x0y0 − x1y1 − x2y2 + x3y3) + i1(x0y1 + x1y0 − x2y3 − x3y2)

+ i2(x0y2 − x1y3 + x2y0 − x3y1) + j(x0y3 + x1y2 + x2y1 + x3y0),

6



1.3 Idempotent Representation and Cartesian Set in Bicomplex Space

respectively. In C2, multiplication is commutative, associative and distributive

over addition and C2 is a commutative algebra but not division algebra.

Three important subsets of C2 can be specified as

C(ik) = {x+ iky : x, y ∈ R} , k = 1, 2 and D = {x+ jy : x, y ∈ R}.

Each of the sets C(ik) is isomorphic to the field of complex numbers and D is

called set of hyperbolic numbers, also called duplex numbers (see, e.g. [121],

[123], [137]). C2 has zero divisors, viz. the set of points

{
z1 + i2z2 ∈ C2 : z2

1 + z2
2 = 0

}
= {(i1 ± i2)z : z ∈ C1}. (1.1)

This set is called null-cone and denoted by NC or O2 [119].

Definition 1.1. Let ξ ∈ C2, we denote by C−1
2 the set of all invertible elements

defined by

C−1
2 =

{
ξ = z1 + i2z2 : z2

1 + z2
2 6= 0

}
. (1.2)

An important property of the invertible elements follows from the following

result:

Theorem 1.1. Let ξ, η ∈ C2, if ξ and η are invertible, then ξη is also invertible

and (ξη)−1 = ξ−1η−1.

1.3 Idempotent Representation and Cartesian

Set in Bicomplex Space

Every bicomplex number can be uniquely expressed as a complex combination of

e1 and e2, viz.

ξ = (z1 + i2z2) = (z1 − i1z2)e1 + (z1 + i1z2)e2, (1.3)

7



1. INTRODUCTION TO BICOMPLEX NUMBERS

(where e1 = 1+j
2
, e2 = 1−j

2
; e1 + e2 = 1 and e1e2 = e2e1 = 0).

This representation of a bicomplex number is known as idempotent represen-

tation of ξ. The coefficients (z1 − i1z2) and (z1 + i1z2) are called the idempotent

components of the bicomplex number ξ = z1 + i2z2 and {e1, e2} is called idempo-

tent basis.

The auxiliary complex spaces A1 and A2 are defined as follows:

A1 = {w1 = z1 − i1z2, ∀ z1, z2 ∈ C1}, A2 = {w2 = z1 + i1z2, ∀ z1, z2 ∈ C1}.

A Cartesian set X1 ×e X2 determined by X1 ⊆ A1 and X2 ⊆ A2 and is defined

as:

X1 ×e X2 = {z1 + i2z2 ∈ C2 : z1 + i2z2 = w1e1 + w2e2, w1 ∈ X1, w2 ∈ X2}.
(1.4)

With the help of idempotent representation, we give the following definition:

Definition 1.2. The projection mappings P1 : C2 → A1 ⊆ C1 and P2 : C2 →
A2 ⊆ C1 are defined as

(P1 : z1 + i2z2) = P1(z1 + i2z2) = P1[(z1 − i1z2)e1 + (z1 + i1z2)e2] = (z1 − i1z2) ∈ A1,

(P2 : z1 + i2z2) = P2(z1 + i2z2) = P2[(z1 − i1z2)e1 + (z1 + i1z2)e2] = (z1 + i1z2) ∈ A2,

∀ z1 + i2z2 ∈ C2.

Remark 1.1. From equation (1.1), ξ ∈ O2 iff at least one of P1(ξ) and P2(ξ)

vanishes.

Theorem 1.2. Every bicomplex number z1 + i2z2 ∈ C2 is uniquely expressed as

z1 + i2z2 = P1(z1 + i2z2)e1 + P2(z1 + i2z2)e2. (1.5)

8



1.3 Idempotent Representation and Cartesian Set in Bicomplex Space

The representation (1.5) of bicomplex numbers is useful because addition,

multiplication and division can be done term by term (Price [119]) and it is

helpful to understand the structure of functions of a bicomplex variable.

Let ξ = ξ1e1 + ξ2e2 ∈ C2 and η = η1e1 + η2e2 ∈ C2, where ξ1, ξ2, η1, η2 ∈ C1.

Idempotent representation of some of the basic bicomplex functions are as follows:

1. eξ = eξ1e1+ξ2e2 = eξ1e1 + eξ2e2

2. cos ξ = cos(ξ1e1 + ξ2e2) = (cos ξ1)e1 + (cos ξ2)e2

3. sin ξ = sin(ξ1e1 + ξ2e2) = (sin ξ1)e1 + (sin ξ2)e2

4. ξn = (ξ1e1 + ξ2e2)n = ξn1 e1 + ξn2 e2

5. (ξ − η)n = (ξ1e1 + ξ2e2 − η1e1 − η2e2)n

= [(ξ1 − η1)e1 + (ξ2 − η2)e2]n = (ξ1 − η1)ne1 + (ξ2 − η2)n

6. ξ
η

= ξ1e1+ξ2e2
η1e1+η2e2

= ξ1
η1
e1 + ξ2

η2
e2; η /∈ O2

7. ξ ∗ η = (ξ1e1 + ξ2e2)(η1e1 + η2e2) = ξ1η1e1 + ξ2η2e2

8. ξn + ηn = ξn1 e1 + ξn2 e2 + ηn1 e1 + ηn2 e2 = (ξn1 + ηn1 )e1 + (ξn2 + ηn2 )e2

9.
∫
D
f(ξ)dξ =

∫
D1
fe1(ξ1)dξ1 e1 +

∫
D2
fe2(ξ2)dξ2 e2;

Here P1 : D → D1, P2 : D → D2

10. d
dξ
f(ξ) = d

dξ1
fe1(ξ1)e1 + d

dξ2
fe2(ξ2)e2.

In the following theorem, Price discussed the convergence of bicomplex func-

tion with respect to its idempotent complex component functions. This theorem

is useful in proving our results.

9



1. INTRODUCTION TO BICOMPLEX NUMBERS

Theorem 1.3 (Price [119]). F (ξ) = Fe1(ξ1)e1+Fe2(ξ2)e2 is convergent in domain

D ⊆ C2 iff Fe1(ξ1) and Fe2(ξ2) under projection mappings P1 : D → D1 ⊆ C1

and P2 : D → D2 ⊆ C1 are convergent in domains D1 and D2, respectively.

1.4 The Conjugations in Bicomplex Numbers

The complex conjugation plays an important role for both algebraic and geo-

metric properties of C1 and for analysis of complex functions. Three types of

conjugations have been defined for bicomplex numbers:

Definition 1.3 (Bicomplex conjugation w.r.t. i1 or 1st kind of conjugation). It

is defined as

(z1 + i2z2)†1 = z̄1 + i2z̄2, ∀ z1, z2 ∈ C1

where z̄1, z̄2 are the complex conjugations of complex numbers z1, z2 respectively.

Definition 1.4 (Bicomplex conjugation w.r.t. i2 or 2nd kind of conjugation). It

is defined by

(z1 + i2z2)†2 = z1 − i2z2, ∀ z1, z2 ∈ C1.

Definition 1.5 (3rd kind of conjugation). It is the composition of the above two

conjugations and it is defined by

(z1 + i2z2)∗ =
(
(z1 + i2z2)†1

)†2
=
(
(z1 + i2z2)†2

)†1
= z̄1 − i2z̄2, ∀ z1, z2 ∈ C1.

We can easily verify that each of these conjugates can be expressed in terms

of two others, such that ξ∗ =
(
ξ†1
)†2 =

(
ξ†2
)†1 , etc. Precisely, the conjugates

form the following Klein group, under the composition:

10



1.4 The Conjugations in Bicomplex Numbers

◦ †0 †1 †2 ∗
†0 †0 †1 †2 ∗
†1 †1 †0 ∗ †2
†2 †2 ∗ †0 †1
∗ ∗ †2 †1 †0

where ξ†0 := ξ, ∀ ξ ∈ C2. All three types of conjugations have the standard

properties of conjugations,

(ξ + η)†k = ξ†k + η†k (1.6)(
ξ†k
)†k = ξ (1.7)

(ξ · η)†k = ξ†k · η†k (1.8)

for ξ, η ∈ C2, k = 1, 2 and †k ≡ ∗. Anyway, let us illustrate the proof for the last

property in case of first kind conjugation. Let ξ = x1 + i2z2 and η = z3 + i2z4

with z1, z2, z3, z4 ∈ C1. Then

(ξ · η)†1 = [(z1z3 − z2z4) + i2(z1z4 + z2z3)]†1

= (z1z3 − z2z4) + i2(z1z4 + z2z3)

= z1z3 − z2z4 + i2 (z1z4 + z2z3)

= z̄1z̄3 − z̄2z̄4 + i2(z̄1z̄4 + z̄2z̄3)

= (z̄1 + i2z̄2)(z̄3 + i2z̄4)

= ξ†1 · η†1 .

Remark 1.2. Let ξ ∈ C2, ξ is invertible iff ξ†2 is also invertible; besides
(
ξ†2
)−1

=

(ξ−1)
†2 .

11



1. INTRODUCTION TO BICOMPLEX NUMBERS

1.5 Bicomplex Moduli

We know that the product of a standard complex number and its conjugate is the

square of the Euclidean metric in R × R. Following are the bicomplex analogue

of this fact. Let z1, z2 ∈ C1 and ξ = z1 + i2z2 ∈ C2. Then we have following

results by Rochon and Shapiro [123, p. 80]

|ξ|2i1 = ξ · ξ†2 = z2
1 + z2

2 ∈ C1, (1.9)

|ξ|2i2 = ξ · ξ†1 =
(
|z1|2 − |z2|2

)
+ 2Re(z1z̄2)i2 ∈ C(i2), (1.10)

|ξ|2j = ξ · ξ∗ =
(
|z1|2 + |z2|2

)
− 2Im(z1z̄2)j ∈ D. (1.11)

The norm of ξ ∈ C2 can be defined as

‖ξ‖ =
√
|z1|2 + |z2|2 =

√
Re
(
|ξ|2j
)

=
√
x2

1 + x2
2 + x2

3 + x2
4 (1.12)

where z1 = x1 + i1x2 and z2 = x3 + i1x4.

Theorem 1.4 (Rochon and Shapiro [123]). Let ξ, η ∈ C2, then

‖ξ · η‖ ≤
√

2‖ξ‖‖η‖. (1.13)

Remark 1.3. Since ‖ei · ei‖ = ‖ei‖ =
√

2
2

=
√

2‖ei‖‖ei‖, i = 1, 2, the constant
√

2

is the best possibility in Theorem 1.4.

The norm in bicomplex space C2 as defined as

Definition 1.6. Let the function ‖ · ‖ : C2 → R is a norm on the real space

R4 ∼= C2, i.e. ∀ ξ, η ∈ C2 and a ∈ R

(i) ‖ξ‖ ≥ 0,

12



1.5 Bicomplex Moduli

(ii) ‖ξ‖ = 0 iff ξ = 0,

(iii) ‖aξ‖ = |a|‖ξ‖,

(iv) ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖.

Bicomplex function spaces:

In 2014, Dubey et al. [38] discussed about the bicomplex function spaces, which

defined in the following way:

Let Ω = (Ω,Σ, µ) be a σ- finite complete measure space. If f = f1e1 + f2e2,

where f1 and f2 are complex-valued measurable functions on Ω = (Ω,Σ, µ) , then

f is bicomplex-valued measurable function Ω. Therefore, for any complex-valued

function space (F (Ω), ‖ · ‖Ω) the bicomplex function space (F (Ω, C2), ‖ · ‖C2) de-

fined for consisting of all functions of the type f = f1e1 + f2e2, where f1 and f2

are in (F (Ω), ‖ · ‖Ω) and

‖f‖C2 =
1√
2

(
‖f1‖2 + ‖f2‖2

)
. (1.14)

In particular, if ξ = s1e1 + s2e2, then

‖ξ‖ =
1√
2

(
|s1|2 + |s2|2

) 1
2 (1.15)

The addition and scalar multiplication on (F (Ω, C2), ‖ · ‖C2) is defined as

f + g = (f1e1 + f2e2) + (g1e1 + g2e2)

= (f1 + g1)e1 + (f2 + g2)e2

and

af = (a1e1 + a2e2)(f1e1 + f2e2)

= (a1f1)e1 + (a2f2)e2,

13



1. INTRODUCTION TO BICOMPLEX NUMBERS

where f, g ∈ F (Ω, C2) and a ∈ C2. Now, Lp and L∞ spaces in C2 defined as

Definition 1.7. Let Lp(Ω) denotes the linear space of all equivalence classes of

complex-valued Σ- measurable essentially bounded functions of Ω and for any

two functions that are equal µ- almost everywhere on Ω are identified. Then

the corresponding bicomplex measurable function space Lp(C2) consists of all

functions of the type f = f1e1 + f2e2, where f1, f2 ∈ Lp(Ω). Also,

‖f‖p,C2 = ‖f1e1 + f2e2‖p,C2

=
1√
2

(
‖f1‖2

p + ‖f2‖2
p

) 1
2 . (1.16)

Definition 1.8. Let L∞(Ω) denotes the linear space of all equivalence classes

of complex-valued Σ- measurable essentially bounded functions of Ω and for any

two functions that are equal µ- almost everywhere on Ω are identified. Then

the corresponding bicomplex measurable function space L∞(C2) consists of all

functions of the type f = f1e1 + f2e2, where f1, f2 ∈ L∞(Ω). Also,

‖f‖∞,C2 = ‖f1e1 + f2e2‖∞,C2

=
1√
2

(
‖f1‖2

∞ + ‖f2‖2
∞
) 1

2 . (1.17)

1.6 Differentiation of Bicomplex Functions

The derivative of a bicomplex function definition is isomorphic to the correspond-

ing definition in C1 because bicomplex operations are isomorphic to the complex

ones. But bicomplex numbers do not form a field due to the lack of inverses

of singular numbers. Thus, the definition of the bicomplex derivative (see, e.g.

Rönn [126, Definition 4.1]) as

Definition 1.9. Let f be a bicomplex function whose domain of definitions con-

tains a neighborhood of the point ξ. The derivative of f at the point ξ is defined

14



1.7 Bicomplex Integration

as

f ′(ξ) = lim
4ξ→0
4ξ /∈O2

f(ξ +4ξ)− f(ξ)

4ξ
(1.18)

provided the limit exists.

A bicomplex function which has a derivative at the point ξ is said to be

differentiable of holomorphic at ξ. If the function is holomorphic at all points of

a domain D ⊆ C2 it is said to be holomorphic in D.

Normal techniques for computing derivatives of sums, production, quotients

and composition of functions as follows:

(i) (f + g)′(ξ) = f ′(ξ) + g′(ξ)

(ii) (f · g)′(ξ) = f ′(ξ) · g(ξ) + f(ξ) · g′(ξ)

(iii)
(
f
g

)′
(ξ) = f ′(ξ)·g(ξ)−f(ξ)·g′(ξ)

[g(ξ)]2

(iv) (f ◦ g)′(ξ) = f ′(g(ξ)) · g′(ξ).

1.7 Bicomplex Integration

Consider the bicomplex function of the form

f(ξ) = (f1(z1, z2), f2(z1, z2))

= (φ1(x1, y1, x2, y2) + i1φ2(x1, y1, x2, y2), φ3(x1, y1, x2, y2) + i1φ4(x1, y1, x2, y2))
(1.19)

where ξ = (z1, z2), z1 = x1 + i1y1 and z2 = x2 + i1y2. We assume that f1 and

f2 are analytic function in z1 and z2, thereby ensuring that φi, i = 1, 2, 3, 4 are

15



1. INTRODUCTION TO BICOMPLEX NUMBERS

continuous. The basic bicomplex integral is necessarily isomorphic to the complex

integral. The line integral w.r.t. some four dimensional curve Γ in C2 defined as

∫
Γ

f(ξ) · dξ, dξ = (dz1, dz2)

Henceforth, we shall choose the curve Γ, so that it is piecewise continuously

differentiable in C2 and has the parametric equation

Γ : ξ = ξ(t), ξ(t) = (z1(t), z2(t)) for a ≤ t ≤ b (1.20)

where t ∈ R. Γ is a curve made up of two curves Γ1 and Γ2 in C1 i.e.

Γ = (Γ1,Γ2) (1.21)

whose parametric equations are

Γ1 : z1 = z1(t), z1(t) = x1(t) + i1y1(t) for a ≤ t ≤ b

Γ2 : z2 = z2(t), z2(t) = x2(t) + i1y2(t) for a ≤ t ≤ b.

Then the line integral of f(ξ) over the curve Γ is

∫
Γ

f(ξ) · dξ =

∫ b

a

f(ξ(t)) · ξ′(t)dt. (1.22)

Since f is continuous, f(ξ(t)) at the right-hand side is also continuous. If ξ′(t)

is discontinuous at some points the integration has to be taken in subintervals of

[a, b].

The Cauchy’s theorem of a bicomplex function in bicomplex space as follows:
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1.8 Summary of the Thesis

Theorem 1.5. Let the bicomplex function f(ξ) = (f1(z1, z2), f2(z1, z2)) , ξ =

(z1, z2), be holomorphic in domain D ⊆ C2. Then∫
Γ

f(ξ) · dξ = 0

for any closed curve Γ that is the boundary of an orientable surface S(Γ) in D.

Further details of bicomplex differentiation and integration can be seen in

Rönn [126].

1.8 Summary of the Thesis

Now, we present a brief summary of the work carried out in Chapter 2 to 7.

In Chapter–2, we prove the inversion formula for bicomplex Laplace transform,

some of its properties and convolution theorem for complexified Laplace trans-

form to bicomplex variables that is capable of transferring signals from real-valued

(t) domain to bicomplex frequency (ξ) domain. The bicomplex inverse Laplace

transform of a convolution function has been illustrated with the help of an ex-

ample. Physical applications of bicomplex Laplace transform in finding solution

of bicomplex Maxwell’s equation and bicomplex Schrödinger equation for free

particle are given.

Motivated by the work of Eltayeb and Killicman in this chapter we also, gen-

eralize complex double Laplace transform to bicomplex double Laplace transform.

Also, we derive some of its basic properties and inversion theorem in bicomplex

space. Applications of bicomplex double Laplace transform have been discussed

in finding the solution of two-dimensional time-dependent bicomplex Schrödinger

17



1. INTRODUCTION TO BICOMPLEX NUMBERS

equation for free particle by using two different approaches.

In Chapter–3, we define Sumudu transform with convergence conditions in bi-

complex space. Also, we derive some of its basic properties and its inverse. Appli-

cations of bicomplex Sumudu transform have been illustrated to find the solution

of differential equation of bicomplex-valued functions and find the solution for

Cartesian transverse electric magnetic (TEM) waves in homogeneous space.

In Chapter–4, we define the formula for bicomplex version of Stieltjes transform,

its inverse and relationship with bicomplex Laplace transform. We have discussed

some of its basic operational properties and convolution theorem. Applications of

bicomplex Stieltjes transform in finding the solution of singular integral equation,

probability distribution theory and spectral analysis of random matrices in signal

processing are given.

Further, we also define the bicomplex version of Laplace-Stieltjes transform.

Also, we derive some useful properties and Tauberian theorem for Laplace-Stieltjes

transform in the bicomplex variable. Applications of bicomplex Laplace-Stieltjes

transform in exponential decay of tail probability and bicomplex Dirichlet series

are given.

In Chapter–5, we define bicomplex Fourier-Stieltjes transform which is more

generalized form of bicomplex Fourier transform. Also, we define some basic

properties of class of bicomplex Bochner functions and generalize the classical

Bochner theorem in the framework of bicomplex analysis. Applications of bicom-

plex Fourier transform in finding the solution of initial value heat equation in

18



1.8 Summary of the Thesis

bicomplex algebra and algebraic reduction of complicated bicomplex linear time-

invariant systems in easy form have been discussed. Illustrations have been given

to find the solution of bicomplex heat equation and check the unboundedness

condition of non-homogeneous bicomplex-valued wave equation.

The concept of bicomplex numbers is introduced in Electro-magnetics, with

direct applications to the solution of Maxwell’s equations. Here, we discuss the

technique to find the analytic solution of the electromagnetic wave equation in

vacuum with the help of bicomplex analysis as tool. Also, we find the solution of

Gaussian pulse wave using bicomplex vector field.

In Chapter–6, motivated by the work of Zemanian we generalize the complex

Hankel transform to bicomplex Hankel transform and derive some of its basic

properties. A table of bicomplex Hankel transform is given for some functions of

importance. It has found applications in solving partial differential equation of

bicomplex-valued functions, signal processing, optics, electromagnetic field the-

ory and other related problems. The application of Hankel transform has been

illustrated by solving bicomplex Cauchy problem.

In Chapter–7, motivated by the recent applications of bicomplex theory to

the study of functions of large class, we define bicomplex Mellin transform of

bicomplex-valued functions. Also, we derive some of its basic properties and in-

version theorem in bicomplex space.

Further, we also obtain the bicomplex Mellin transform of Riemann-Liouville

fractional integral and Caputo fractional derivative of order α(≥ 0) of certain

19



1. INTRODUCTION TO BICOMPLEX NUMBERS

functions and some of their properties. Applications of bicomplex Mellin trans-

form in networks with time-varying parameters problem and solution of differen-

tial equation involving fractional derivatives of bicomplex-valued functions have

been illustrated.
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2
Laplace Transform in Bicomplex Space and

Applications

The main findings of this chapter have been published as:

1. Agarwal R., Goswami M.P. and Agarwal R.P. (2014), Convolution theorem

and applications of bicomplex Laplace transform, Advances in Mathematical

Sciences and Applications, 24(1), 113-127.

2. Agarwal R., Goswami M.P. and Agarwal R.P. (2016), Double Laplace trans-

form in bicomplex space with applications, CUBO: A Mathematical Journal,

18(2), (In press).
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2. LAPLACE TRANSFORM IN BICOMPLEX SPACE AND
APPLICATIONS

In this chapter, one of our concern is to extend the convolution theorem for

complexified Laplace transform to bicomplex variables. Also, we extend the com-

plex double Laplace transform to bicomplex double Laplace transform in two

bicomplex variables. Applications have been discussed in finding the solution of

bicomplex Schrödinger equations and bicomplex Maxwell’s equation.

2.1 Introduction

The Laplace transform is widely used in physics and engineering. It is named

after a mathematician and astronomer Pierre-Simon Laplace (1749-1827), who

introduced a similar transform (now known as z transform), in his work on prob-

ability theory. The use of transforms came after second world war although in

19th century it had been used by Abel, Lerch, Heaviside and Bromwich. Laplace

transform is a transformation, where inputs and outputs are functions of time,

to the frequency domain, in which the same inputs and outputs are functions of

complex angular frequency, which measures in radians per unit time.

The Laplace transform ( see, e.g. Davies [33, Chapter 2]) of complex-valued

function f(t) of exponential order K ∈ R as

L[f(t); ξ] =

∫ ∞
0

e−stf(t)dt = F (s), s ∈ C1 (2.1)

where F (s) exists and convergent for Re(s) > K.

The inversion formula for Laplace transform (see, e.g. Davies [33, Chapter 3])

is given by the following theorem
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2.1 Introduction

Theorem 2.1. Let F (s) be the Laplace transform of f(t), analytic in the half

plane Re(s) > K then,

f(t) = lim
r→∞

1

2πi

∫
γ

estF (s)ds (2.2)

where γ is the contour taken in left of Re(s) > K along the vertical line joining

two points a− i1r and a+ i1r with a > K in the complex plane.

In 1936, Van der Pol [143] introduced about the double Laplace transform.

This has been used by Humbert [68] in the study of hypergeometric functions; by

Jaeger [72] to solve boundary value problems in heat conduction. In 1951, Estrin

et al. [45] extended the complex double Laplace transform to multiple Laplace

transform in n independent complex variables. In 2008, Elatayeb and Kilicman

[40] used double Laplace transform for solving a second-order partial differential

equations. In 2010, Kilicman and Gaddin [81] discussed relationship between

double Laplace transform and double Sumudu transform. In 2013, Kashuri et al.

[75] used double Laplace transform in solving partial differential equation.

In two recent developments Kumar and Kumar [88] and Banerjee et al. [10]

have studied bicomplexified version of the Laplace transform and its inverse from

its complexified form. In this procedure idempotent representation of bicomplex

numbers play a vital role. Bicomplex Laplace transform is a powerful mathemat-

ical tool applied in physics, electric circuit theory, power system load frequency

control, control engineering, communication, signal analysis and design, system

analysis and solving differential equations.
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2. LAPLACE TRANSFORM IN BICOMPLEX SPACE AND
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2.2 Bicomplex Laplace Transform

The bicomplex Laplace transform and its properties are discussed by Kumar and

Kumar [88] and is defined as

Definition 2.1. Let f(t) be a bicomplex-valued piecewise continuous function

of exponential order K ∈ R. Then the bicomplex Laplace Transform of f(t) for

t ≥ 0 can be defined as

L[f(t); ξ] =

∫ ∞
0

f(t)e−ξtdt = F (ξ). (2.3)

Here F (ξ) exists and is convergent for all ξ ∈ D = D1 ∪D2 ∪D3

where

D = {ξ : Hρ(ξ) represent a Right half plane a0 > K + |a3|},

= {ξ ∈ C2 : Re(ξ) > K + |Imj(ξ)|},

= {ξ = s1e1 + s2e2 ∈ C2 : Re(s1) > K and Re(s2) > K}

= {ξ = s1e1 + s2e2 ∈ C2 : Re(P1 : ξ) > K and Re(P2 : ξ) > K}. (2.4)

D1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > K, a3 = 0},

D2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > K + a3, a3 > 0},

and D3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > K − a3, a3 < 0}.

The domainD contains infinite number of points ξ which have sameHρ hyperbolic

projection because a1 and a2 are free from restriction.

Some of the results given by Kumar and Kumar [88] have been mentioned

here for the ready reference.

Theorem 2.2 (Linearity Property). Let F (ξ) and G(ξ) be the bicomplex Laplace

transforms of continuous functions f(t) and g(t), respectively. Then

L[af(t) + bg(t); ξ] = aF (ξ) + bG(ξ), ξ ∈ D (2.5)

where a, b are constants in the region of convergence D given by (2.4).
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2.2 Bicomplex Laplace Transform

Theorem 2.3. Let f(t) and f ′(t) be continuous functions of exponential order

K for t ≥ 0, then

L[f ′(t); ξ] = ξF (ξ)− f(0), ξ ∈ D (2.6)

where F (ξ) = L[f(t); ξ] and D defined in (2.4).

Theorem 2.4. Let F (ξ) be the bicomplex Laplace transform of a continuous

function f(t) of exponential order K. Then

L

[∫ t

0

f(u)du; ξ

]
=
F (ξ)

ξ
, ξ ∈ D and ξ /∈ O2 (2.7)

where D defined in (2.4).

Theorem 2.5. Let F (ξ) be the bicomplex Laplace transform of a continuous

function f(t) of exponential order K. Then

L[tf(t); ξ] = − d

dξ
F (ξ), ξ ∈ D (2.8)

where D defined in (2.4).

Theorem 2.6. Let F (ξ) be the bicomplex Laplace transform of a continuous

function f(t) of exponential order K. If limt→0
f(t)
t

exists, then

L

[
f(t)

t
; ξ

]
=

∫ ∞
ξ

F (η)dη, ξ ∈ D (2.9)

where D defined in (2.4).

Theorem 2.7 (First Shifting Theorem). Let F (ξ) be the bicomplex Laplace trans-

form of a continuous function f(t) of exponential order K. Then

L
[
eatf(t); ξ

]
= F (ξ − a), (ξ − a) ∈ D (2.10)

where D defined in (2.4).

Theorem 2.8 (Second Shifting Theorem). Let F (ξ) be the bicomplex Laplace

transform of a continuous function f(t) of exponential order K. Then

L [Ua(t)f(t− a); ξ] = e−aξF (ξ), ξ ∈ D (2.11)

where D defined in (2.4) and Ua(t) is the unit step function.
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Further, detailed proof of the above theorems can be found in Kumar and Kumar

[88]. For solving the large class of bicomplex partial differential equations, we need

integral transforms defined for large class. The bicomplex integral transforms are

capable of transferring the signals from real-valued time domain to bicomplexified

frequency domain.

2.3 Inverse Bicomplex Laplace Transform

Motivated by the work of Kumar and Kumar [88] and Theorem 2.1, we derive here

the formula for inverse Laplace transform for bicomplex functions. An alternative

proof for the same can be seen in Banerjee et al. [10].

Theorem 2.9. Let F (ξ) be the Bicomplex Laplace transform of f(t), analytic in

Re(P1 : ξ) > K and Re(P2 : ξ) > K then,

f(t) = lim
r1,r2→∞

1

2πi1

∫
Γ

eξtF (ξ)dξ, ξ ∈ D ⊂ C2 (2.12)

where Γ = (Γ1,Γ2) is piecewise continuous differentiable closed contour in Bicom-

plex space and Γ1, Γ2 are closed contours in left of Re(s1) > K and Re(s2) > K,

along the vertical lines joining two points ak − i1rk and ak + i1rk, k = 1, 2,

respectively in complex plane.

Proof. The Bicomplex Laplace Transform of f(t) is defined as:

F (ξ) =

∫ ∞
0

e−ξxf(x)dx, ξ ∈ C2 (2.13)

Multiplying (2.13) by eξt, we obtain

eξtF (ξ) = eξt
∫ ∞

0

e−ξxf(x)dx (2.14)
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Let ξ = s1e1 + s2e2, where ξ ∈ C2 and s1, s2 ∈ C1. Then (2.14) becomes

es1tF1(s1)e1 + es2tF2(s2)e2 = es1t
∫ ∞

0

es1xf(x)dx e1 + es2t
∫ ∞

0

es2xf(x)dx e2

(2.15)

Integrating coefficient of e1 w.r.t. ‘s1’ and coefficient of ‘e2’ w.r.t. s2 between the

limits a1 + i1r1 and a2 + i1r2 respectively, we have{∫ a1+i1r1

a1−i1r1
es1tF1(s1)ds1

}
e1 +

{∫ a2+i1r2

a2−i1r2
es2tF2(s2)ds2

}
e2

=

{∫ a1+i1r1

a1−i1r1
es1tds1

∫ ∞
0

es1xf(x)dx

}
e1 +

{∫ a2+i1r2

a2−i1r2
es2tds2

∫ ∞
0

es2xf(x)dx

}
e2

Putting s1 = a1 − i1p1, ds1 = −i1dp1 and s2 = a2 − i1p2, ds2 = −i1dp2{∫ a1+i1r1

a1−i1r1
es1tF1(s1)ds1

}
e1 +

{∫ a2+i1r2

a2−i1r2
es2tF2(s2)ds2

}
e2

=

{
i1

∫ r1

−r1
et(a1−i1p1)

∫ ∞
0

f(x)e−(a1−i1p1)xdx dp1

}
e1

+

{
i1

∫ r2

−r2
et(a2−i1p2)

∫ ∞
0

f(x)e−(a2−i1p2)xdx dp2

}
e2

=

{
i1e

a1t

∫ r1

−r1
e−i1p1tdp1

∫ ∞
0

f(x)e−a1tei1p1xdx

}
e1

+

{
i1e

a2t

∫ r2

−r2
e−i1p2tdp2

∫ ∞
0

f(x)e−a2tei1p2xdx

}
e2 (2.16)

Let us define φ1(t) and φ2(t) as

φ1(t) =

e−a1tf(t) when t ≥ 0

0 when t < 0

and

φ2(t) =

e−a2tf(t) when t ≥ 0

0 when t < 0

The Fourier complex integral of φ1(t) and φ2(t) are

φ1(t) =
1

2π

∫ ∞
−∞

e−i1p1t
∫ ∞
−∞

φ(x)ei1p1xdx dp1
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e−a1tf(t) =
1

2π

∫ ∞
−∞

e−i1p1t
∫ ∞

0

[e−a1xf(x)]ei1p1xdx dp1 (2.17)

and

φ2(t) =
1

2π

∫ ∞
−∞

e−i1p2t
∫ ∞
−∞

φ(x)ei1p2xdx dp2

e−a2tf(t) =
1

2π

∫ ∞
−∞

e−i1p2t
∫ ∞

0

[e−a2xf(x)]ei1p2xdx dp2 (2.18)

In the limiting case when r1, r2 →∞, (2.16) becomes{∫ a1+i1∞

a1−i1∞
es1tF1(s1)ds1

}
e1 +

{∫ a2+i1∞

a2−i1∞
es2tF2(s2)ds2

}
e2

=

{
i1e

a1t

∫ ∞
−∞

e−i1p1tdp1

∫ ∞
0

f(x)e−a1xei1p1xdx

}
e1

+

{
i1e

a2t

∫ ∞
−∞

e−i1p2tdp2

∫ ∞
0

f(x)e−a2xei1p2xdx

}
e2 (2.19)

Substituting the values of the integrals from (2.17) and (2.18) in (2.19), we have{∫ a1+i1∞

a1−i1∞
es1tF1(s1)ds1

}
e1 +

{∫ a2+i1∞

a2−i1∞
es2tF2(s2)ds2

}
e2

= i1e
a1t{2πe−a1tf(t)}e1 + i1e

a2t{2πe−a2tf(t)}e2

= 2πi1f(t)

f(t) =
1

2πi1

{∫ a1+i1∞

a1−i1∞
es1tF1(s1)ds1 e1 +

∫ a2+i1∞

a2−i1∞
es2tF2(s2)ds2 e2

}
(2.20)

Equation (2.20) is the inversion formula for the Bicomplex Laplace transform.

Further, let Γ1 and Γ2 be closed contours taken in left of Re(P1 : ξ) > K and

Re(P2 : ξ) > K joining two points ak − i1rk and ak + i1rk, k = 1, 2, respectively.

From (2.20)

f(t) = lim
r1,r2→∞

1

2πi1

[∫
Γ1

es1tF1(s1)ds1 e1 +

∫
Γ2

es2tF2(s2)ds2 e2

]
= lim

r1,r2→∞

1

2πi1

∫
(Γ1,Γ2)

e(s1e1+s2e2)tF (s1e1 + s2e2)(ds1e1 + ds2e2)

= lim
r1,r2→∞

1

2πi1

∫
Γ

eξtF (ξ)dξ,

where Γ = (Γ1,Γ2) is piecewise continuous differentiable closed contour in bicom-

plex space as discussed in section 1.7.
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2.4 Properties of Bicomplex Laplace Transform

In this section, we are discussing some properties of bicomplex Laplace transform

viz. bicomplex Laplace transform of periodic function, change of scale property,

initial value theorem, final value theorem and relationship between bilateral bi-

complex Laplace transform and bicomplex Fourier Transform.

Theorem 2.10. Let f(t) be a periodic function with period T and bicomplex

Laplace transform is F (ξ), then

F (ξ) =

∫ T
0
e−ξtf(t)dt

1− e−ξt
, ξ = s1e1 + s2e2 ∈ C2 and Re(s1) > 0,Re(s2) > 0.

Proof. Let f(t) be a periodic function of exponential order K with period T , then

for s1 ∈ C1 and Re(s1) > 0, (see, e.g. Schiff [130]).

F (s1) =

∫ T
0
e−s1tf(t)dt

1− e−s1t
.

Taking another s2 ∈ C1 and Re(s2) > 0, we have

F (s2) =

∫ T
0
e−s2tf(t)dt

1− e−s2t
.

Since F (s1)and F (s2) are analytic for Re(s1) > 0,Re(s2) > 0 respectively, then

F (s1)e1 + F (s2)e2 =

∫ T
0
e−s1tf(t)dt

1− e−s1t
e1 +

∫ T
0
e−s2tf(t)dt

1− e−s2t
e2

By application of Theorem 1.3 (Price [119]), we get

F (s1e1 + s2e2) =

∫ T
0
e−(s1e1+s2e2)tf(t)dt

1− e−(s1e1+s2e2)t

⇒ F (ξ) =

∫ T
0
e−ξtf(t)dt

1− e−ξt
, where ξ = s1e1 + s2e2 ∈ C2.
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Theorem 2.11 (Change of Scale Property). Let the function f(t) of exponential

order K ∈ R has bicomplex Laplace transform F (ξ), then for a > 0

L[f(at); ξ] =
1

a

(
ξ

a

)
, ξ = s1e1 + s2e2 ∈ C2 and Re(s1) > K,Re(s2) > K.

Proof. The bicomplex Laplace transform of f(at) is given by

L[f(at); ξ] =

∫ ∞
0

e−ξtf(at)dt

Put at = u⇒ dt =
du

a

=
1

a

∫ ∞
0

e−
ξ
a
uf(u)du

=
1

a
F

(
ξ

a

)
.

Theorem 2.12 (Initial Value Theorem). Let f(t) is differentiable on [0,∞) and

exponential order K ∈ R such that Re(P1 : ξ) > K and Re(P2 : ξ) > K, then

lim
Re(ξ)→∞

ξF (ξ) = f(0), ξ ∈ C2.

Proof. We have seen that

ξF (ξ)− f(0) = L

{
d

dt
f(t)

}
=

∫ ∞
0

e−ξt
d

dt
f(t)dt

Taking the limit Re(ξ)→∞ on both sides, we have

lim
Re(ξ)→∞

(ξF (ξ)− f(0)) = lim
Re(ξ)→∞

∫ ∞
0

e−ξt
d

dt
f(t)dt = 0

∴ lim
Re(ξ)→∞

ξF (ξ) = f(0).

Theorem 2.13 (Final Value Theorem). Let F (ξ) be the bicomplex Laplace trans-

form of f(t) defined for every ξ ∈ C2 in a region around zero, then

lim
ξ→0

ξF (ξ) = f(∞).
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Proof. We have seen that

ξF (ξ)− f(0) = L

[
d

dt
f(t); ξ

]
=

∫ ∞
0

e−ξt
d

dt
f(t)dt

Taking the limit ξ → 0, we have

lim
ξ→0

(ξF (ξ)− f(0)) = lim
ξ→0

∫ ∞
0

e−ξt
d

dt
f(t)dt

=

∫ ∞
0

(
lim
ξ→0

e−ξt
)
d

dt
f(t)dt =

∫ ∞
0

d

dt
f(t)dt

= f(∞)− f(0)

∴ lim
ξ→0

ξF (ξ) = f(∞).

In the following theorem we discuss relationship between the bilateral bicom-

plex Laplace transform and bicomplex Fourier transform. This relationship is

often used to determine the bicomplex frequency spectrum of a signal or dynam-

ical system.

Theorem 2.14. Let f(t) be a real-valued continuous function with bilateral bi-

complex Laplace transform F (ξ) and bicomplex Fourier transform f̂(w) and sat-

isfies the following estimates

|f(t)| ≤ C1e
−αt, t ≥ 0, α > 0

|f(t)| ≤ C1e
βt, t ≥ 0, β > 0

Then bilateral bicomplex Laplace transform is equivalent to bicomplex Fourier

transform with w = i1ξ, ξ ∈ D, where

D = {ξ ∈ C2 : ξ = s1e1 + s2e2,−α < Re(s1),Re(s2) < β}.
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Proof. Since we know that,

F (ξ) =

∫ ∞
−∞

e−ξtf(t)dt =

∫ ∞
−∞

e−(s1e1+s2e2)tf(t)dt

=

∫ ∞
−∞

e−s1tf(t)dt e1 +

∫ ∞
−∞

e−s2tf(t)dt e2

=

∫ ∞
−∞

ei1(i1s1)tf(t)dt e1 +

∫ ∞
−∞

ei1(i1s2)tf(t)dt e2

=

∫ ∞
−∞

ei1(i1(s1e1+s2e2)tf(t)dt

=

∫ ∞
−∞

ei1(i1ξ)tf(t)dt (∵ ξ = s1e1 + s2e2 ∈ C2)

= f̂(w)|w=i1ξ, w ∈ C2.

2.5 Convolution

The way of combining two signals is known as convolution. It is such a widespread

and useful formula that it has its own shorthand notation ‘∗’. For any two signals

x and y, there will be another signal z obtained by convolving x with y,

z(t) = x ∗ y =

∫ t

0

x(s)y(t− s)ds, t ∈ R. (2.21)

We derive here the convolution theorem for bicomplex Laplace transform as fol-

lows:

Theorem 2.15. If L[f(t); ξ] = F (ξ) and L[g(t); ξ] = G(ξ), ξ ∈ C2 with Re(P1 :

ξ) > K and Re(P2 : ξ) > K, where K = Max(K1, K2) and f(t) and g(t) are of

exponential orders K1 and K2 respectively. Then

L{f ∗ g} = F (ξ)G(ξ).
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Proof. By the definition of bicomplex Laplace transform

L{f ∗ g} =

∫ ∞
0

e−ξt(f ∗ g)(t)dt

=

∫ ∞
0

e−ξt
(∫ t

0

f(t− x)g(x)dx

)
dt

=

∫ ∞
0

(∫ t

0

f(t− x)g(x)e−ξtdx

)
dt

On changing the order of integration, we have

=

∫ ∞
0

(∫ ∞
x

f(t− x)g(x)e−ξtdt

)
dx

=

∫ ∞
0

(∫ ∞
0

f(z)e−ξ(z+x)dz

)
g(x)dx, [On putting t− x = z]

=

∫ ∞
0

e−ξzf(z)dz

∫ ∞
0

e−ξxg(x)dx

= F (ξ)G(ξ).

Following is the illustration to find inverse Laplace transform of a bicomplex-

valued function using convolution theorem.

Example 2.1. Let bicomplex Laplace transform F (ξ) = ξ
(ξ2+w2)2

, where ξ = ξ1e1 +

ξ2e2 ∈ C2, w = w1e1 +w2e2 ∈ C2 with Re(ξ1 +w1) > 0 and Re(ξ2 +w2) > 0, then

find f(t).

Solution. ∵ Re(P1 : ξ + w) > 0 and Re(P2 : ξ + w) > 0

∴ L−1

{
w

ξ2 + w2

}
= sinwt = h(t) and L−1

{
ξ

ξ2 + w2

}
= coswt = g(t)

Using convolution theorem, we have

f(t) = L−1

{
ξ

(ξ2 + w2)2

}
=

1

w
L−1{g ∗ h}

=
1

2w

∫ t

0

2 sinws cos(wt− ws)ds

=
1

2w

∫ t

0

(sinwt+ sin(2ws− wt)) ds =
t sinwt

2w
.
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2.6 Applications of Bicomplex Laplace Trans-

form

(a) Here we find bicomplex solution for Cartesian transverse electric magnetic

(TEM) waves in homogeneous space using bicomplex Laplace transform tech-

nique. To apply this purely mathematical concept in electromagnetic theory,

Maxwell’s equations (in a source-free domain) are first written in a form in-

volving the wave number k and the medium intrinsic impedance η, rather than

the medium permittivity and permeability. Bicomplex Maxwell’s equation is de-

scribed in Anastassiu et al. [5]. i.e.

∇× E = −i1kηH (2.22)

∇×H = i1
k

η
E (2.23)

for the time convention ei1wt. Vector fields E and H are electric and magnetic

field respectively. The bicomplex vector field F is defined:

F ≡ 1
√
η
E + i2

√
ηH (2.24)

with the implication that each directional component of F is a scalar bicomplex

function, combining the corresponding field directional components. Multiply-

ing (2.23) with i2 and adding the result to (2.22), after some manipulation, the

bicomplex Maxwell’s equation is derived, i.e.

∇× F = i2i1kF (2.25)
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Assuming a TEM to z wave, i.e., a vanishing z-component, and after introducing

Qy = i2Fy, in (2.25) is reduced to the following system of bicomplex differential

equations

dQy

dz
= i1kFx (2.26)

dFx
dz

= i1kQy (2.27)

∂Fy
∂x
− ∂Fx

∂y
= 0 (2.28)

with Fx(0) = A and F ′x(0) = B, where A and B are bicomplex constants due to

(2.28). After solving (2.26) and (2.27), we have

d2Fx
dz2

+ k2Fx = 0 (2.29)

d2Qy

dz2
+ k2Qy = 0 (2.30)

For the solution, taking the bicomplex Laplace transform of (2.29), we have

ξ2Fx(ξ)− ξFx(0)− F ′x(0) + k2Fx(ξ) = 0

⇒ Fx(ξ) =
ξFx(0) + F ′x(0)

ξ2 + k2
(2.31)

Taking the bicomplex inverse Laplace transform of (2.31), we get

Fx(z) = lim
r1,r2→∞

1

2πi1

∫
Γ

eξz
A+Bξ

ξ2 + k2
dξ

= lim
r1→∞

1

2πi1

∫
Γ1

eξ1z
A+Bξ1

ξ2
1 + k2

dξ1 e1 + lim
r2→∞

1

2πi1

∫
Γ2

eξ2z
A+Bξ2

ξ2
2 + k2

dξ2 e2

=
1

2πi1
2πi1

[
lim

ξ1→−i1k
(ξ1 + i1k)eξ1z

A+Bξ1

ξ2
1 + k2

+ lim
ξ1→i1k

(ξ1 − i1k)eξ1z
A+Bξ1

ξ2
1 + k2

]
e1

+
1

2πi1
2πi1

[
lim

ξ2→−i1k
(ξ2 + i1k)eξ2z

A+Bξ2

ξ2
2 + k2

+ lim
ξ2→i1k

(ξ2 − i1k)eξ2z
A+Bξ2

ξ2
2 + k2

]
e2

=
[
Re−i1kz +Kei1kz

]
e1 +

[
Re−i1kz +Kei1kz

]
e2

=
[
Re−i1kz +Kei1kz

]
(2.32)
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Similarly,

Qy(z) =
[
Le−i1kz + Sei1kz

]
(2.33)

∴ F ≡ 1
√
η
E + i2

√
ηH =

[
Re−i1kz +Kei1kz

]
x̂− i2

[
Le−i1kz + Sei1kz

]
ŷ (2.34)

where R = A−i1Bk
−2i1k

= R1 + i2R2, K = A+i1Bk
2i1k

= K1 + i2K2, L and S are bicomplex

constants and x̂ and ŷ are the fundamental position unit vectors in the direction

of X- axis and Y - axis respectively. Since (2.34) is the solution of bicomplex

Maxwell’s equation (2.25), therefore it satisfies the Maxwell’s equation if L = −R

and S = K. Hence (2.34) becomes

F ≡ 1
√
η
E + i2

√
ηH =

[
Re−i1kz +Kei1kz

]
x̂− i2

[
−Re−i1kz +Kei1kz

]
ŷ (2.35)

Extracting the bi-real and bi-imaginary parts of the solutions (2.35) yields the

electric and magnetic field components

E =
[
R1e

−i1kz +K1e
i1kz
]
x̂+

[
−R2e

−i1kz +K2e
i1kz
]
ŷ (2.36)

H =
1

η

[
R2e

−i1kz +K2e
i1kz
]
x̂− 1

η

[
−R1e

−i1kz +K1e
i1kz
]
ŷ (2.37)

where R1, R2, K1 and K2 are complex constants and (2.36) and (2.37) are the

solution of Maxwell’s equations (2.22-2.23).

(b) Here we find the solution of the bicomplex time-dependent Schrödinger Equa-

tion for free particle in one-dimension. For the solution of the time-dependent

Schrödinger Equation by Laplace transform method, (refer, Lin and Eyring [95]).

The one-dimensional standard Schrödinger’s equation over the bicomplex space

functions is given by Rochon and Tremblay [124, Eq. (4.1)] as

i1~∂tψ(x, t) +
~2

2m
∂2
xψ(x, t)− V (x, t)ψ(x, t) = 0 (2.38)

36



2.6 Applications of Bicomplex Laplace Transform

where

ψ : R2 → C2 and V : R2 → R.

The imaginary unit i1 has been chosen as it is more appropriate for the decompo-

sition of the bicomplex Schrödinger equation into idempotent components. For

free particle V (x, t) = 0. Therefore (2.38) becomes

i1~∂tψ(x, t) = − ~2

2m
∂2
xψ(x, t) (2.39)

For solution, taking the bicomplex Laplace transform of (2.39) we have

i1~(ξΨ(x, ξ)− ψ(x, 0)) = − ~2

2m

d2Ψ(x, ξ)

dx2
, where Ψ(x, ξ) = L{ψ(x, t)}

d2Ψ(x, ξ)

dx2
+

2mi1
~

ξΨ(x, ξ) =
2m

~2
ψ(x, 0)

∴ Ψ(x, ξ) = Ae(cos 3π
4

+i1 sin 3π
4 )
√

2mξ
~ x+Be−(cos 3π

4
+i1 sin 3π

4 )
√

2mξ
~ x+

1

D2 + 2mi1
~ ξ

ψ(x, 0).

Taking the inverse bicomplex Laplace transform we have

ψ(x, t) =
1

2πi1

(
A

∫
Γ

eξte(cos 3π
4

+i1 sin 3π
4 )
√

2mξ
~ xdξ

)
+

1

2πi1

(
B

∫
Γ

e−(cos 3π
4

+i1 sin 3π
4 )
√

2mξ
~ xdξ +

∫
Γ

eξt
1

D2 + 2mi1
~ ξ

ψ(x, 0)dξ

)
where Γ is the closed contour in bicomplex space. Using the Cauchy’s theorem

in bicomplex space, (see, e.g. Rönn [126, Theorem 5.5]).∫
Γ

eξte(cos 3π
4

+i1 sin 3π
4 )
√

2mξ
~ xdξ = 0 and

∫
Γ

e−(cos 3π
4

+i1 sin 3π
4 )
√

2mξ
~ xdξ = 0

∴ ψ(x, t) =
1

2πi1

∫
Γ

eξt
1

D2 + 2mi1
~ ξ

ψ(x, 0)dξ (2.40)

(2.40) is the solution of the bicomplex Schrödinger equation (2.39) in one dimen-

sion.
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Generally, ψ(x, 0) have one of the forms cos 2πx
λ

, sin 2πx
λ

and e±i1
2πx
λ . For illus-

tration, let us consider one of the form as ψ(x, 0) = sin(2π
λ
x). Then

ψ(x, t) =
1

2πi1

∫
Γ

eξt
1

−4π2

λ2
+ 2mi1

~ ξ
sin

(
2π

λ
x

)
dξ

= −i1
~

2m
sin

(
2π

λ
x

)
1

2πi1

∫
Γ

eξt
1

ξ + 2π2~
mλ2

i1
dξ

= −i1
~

2m
sin

(
2π

λ
x

)
1

2πi1

(
2πi1 lim

ξ→− 2π2~
mλ2

i1

eξt

)

= −i1
~

2m
sin

(
2π

λ
x

)
e−i1

2π2~
mλ2

t (2.41)

(2.41) is the solution of bicomplex Schrödinger equation (2.39) for ψ(x, 0) =

sin(2π
λ
x).

2.7 Bicomplex Double Laplace Transform

Let f(x, t) be a bicomplex-valued function of two variables x, t > 0, which is

piecewise continuous and has exponential orders K1 and K2 w.r.t. x and t re-

spectively. The bicomplex Laplace transform ( see, Kumar and Kumar [88]) w.r.t.

x is

Lx[f(x, t)] =

∫ ∞
0

e−ξxf(x, t)dx = f̄(ξ, t), ξ ∈ Ω1 ⊂ C2 (2.42)

where

Ω1 = {ξ = s1e1 + s2e2 ∈ C2 : Re(P1 : ξ) > K1 and Re(P2 : ξ) > K1} (2.43)

or equivalently,

Ω1 = {ξ ∈ C2 : Re(ξ) > K1 + |Imj(ξ)|} (2.44)
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where Imj(ξ) denotes the imaginary part of ξ w.r.t. j and (2.42) is convergent

and analytic in Ω1. Similarly, bicomplex Laplace transform of f(x, t) w.r.t. t is

Lt[f(x, t)] =

∫ ∞
0

e−ηtf(x, t)dt = f̄(x, η), η ∈ Ω2 ⊂ C2 (2.45)

where

Ω2 = {η = p1e1 + p2e2 ∈ C2 : Re(P1 : η) > K2 and Re(P2 : η) > K2} (2.46)

or equivalently,

Ω2 = {η ∈ C2 : Re(η) > K2 + |Imj(η)|} (2.47)

where (2.45) is convergent and analytic in Ω2. Now, taking the bicomplex Laplace

transform of (2.42) w.r.t. t and using (2.45), we have

Lxt[f(x, t)] = Lt[f̄(ξ, t)] =

∫ ∞
0

e−ηtf̄(ξ, t)dt

=

∫ ∞
0

e−ηt
∫ ∞

0

e−ξxf(x, t)dxdt = ¯̄f(ξ, η), (ξ, η) ∈ Ω (2.48)

where the integral on right hand side is convergent and analytic in

Ω =
{

(ξ, η) ∈ C2
2 : ξ ∈ Ω1 and η ∈ Ω2

}
. (2.49)

Now, we define the bicomplex double Laplace transform as follows:

Definition 2.2. Let f(x, t) be a bicomplex-valued function of two variables x, t >

0, which is piecewise continuous and has exponential orders K1 and K2 w.r.t. x

and t respectively. Then bicomplex double Laplace transform is defined as

Lxt[f(x, t)](ξ, η) =

∫ ∞
0

∫ ∞
0

e−ξx−ηtf(x, t)dxdt = ¯̄f(ξ, η), (ξ, η) ∈ Ω
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which exists and is convergent for all (ξ, η) ∈ Ω as defined as

Ω =
{

(ξ, η) ∈ C2
2 : ξ ∈ Ω1 and η ∈ Ω2

}
, (2.50)

where

Ω1 = {ξ ∈ C2 : Re(ξ) > K1 + |Imj(ξ)|} (2.51)

Ω2 = {η ∈ C2 : Re(η) > K2 + |Imj(η)|} . (2.52)

2.8 Properties of Bicomplex Double Laplace Trans-

form

In this section, we discuss some properties of bicomplex double Laplace transform

viz. linearity property, change of scale property, shifting property etc.

Theorem 2.16 (Linearity Property). Let f(x, t) and g(x, t) be two bicomplex-

valued functions of x, t > 0 such that

Lxt[f(x, t)] = ¯̄f(ξ, η), (ξ, η) ∈ Ω

where Ω =
{

(ξ, η) ∈ C2
2 : Re(ξ) > K1 + |Imj(ξ)| and Re(η) > K2 + |Imj(η)|

}
and Lxt[g(x, t)] = ¯̄g(ξ, η), (ξ, η) ∈ Ω

where Ω =
{

(ξ, η) ∈ C2
2 : Re(ξ) > K3 + |Imj(ξ)| and Re(η) > K4 + |Imj(η)|

}
.

Then,

Lxt[c1f(x, t) + c2g(x, t)] = c1Lxt[f(x, t)] + c2Lxt[g(x, t)], (ξ, η) ∈ Ω

where Ω =
{

(ξ, η) ∈ C2
2 : Re(ξ) > max(K1, K3) + |Imj(ξ)|

and Re(η) > max(K2, K4) + |Imj(η)|} and c1, c2 are constants.

Proof. Applying the definition of bicomplex double Laplace transform,

Lxt[c1f(x, t) + c2g(x, t)] =

∫ ∞
0

∫ ∞
0

e−ξx−ηt[c1f(x, t) + c2g(x, t)]dxdt

= c1

∫ ∞
0

∫ ∞
0

e−ξx−ηtf(x, t)dxdt+ c2

∫ ∞
0

∫ ∞
0

e−ξx−ηtg(x, t)dxdt

= c1
¯̄f(ξ, η) + c2ḡ(ξ, η).
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Thus,

Lxt[c1f(x, t) + c2g(x, t)] = c1Lxt[f(x, t)] + c2Lxt[g(x, t)].

Theorem 2.17 (Change of Scale Property). Let ¯̄f(ξ, η) be the bicomplex double

Laplace transform of bicomplex-valued function f(x, t). Then

Lxt[f(αx, βt)](ξ, η) =
1

αβ
¯̄f

(
ξ

α
,
η

β

)
, (ξ, η) ∈ Ω and α, β > 0

where Ω defined in (2.50).

Proof. From the definition of bicomplex double Laplace transform,

Lxt[f(αx, βt)](ξ, η) =

∫ ∞
0

∫ ∞
0

e−ξx−ηtf(αx, βt)dxdt

=

∫ ∞
0

e−ηt
(∫ ∞

0

e−ξxf(αx, βt)dx

)
dt

=
1

α

∫ ∞
0

e−ηt
(∫ ∞

0

e−
ξ
α
rf(r, βt)dr

)
dt [Taking αx = r]

=
1

α

∫ ∞
0

e−ηtf̄

(
ξ

α
, βt

)
dt

=
1

αβ

∫ ∞
0

e−
η
β
sf̄

(
ξ

α
, s

)
ds [Taking βt = s]

=
1

αβ
¯̄f

(
ξ

α
,
η

β

)
.

Thus,

Lxt[f(αx, βt)](ξ, η) =
1

αβ
¯̄f

(
ξ

α
,
η

β

)
.

Theorem 2.18 (First Shifting Property). Let ¯̄f(ξ, η) be the bicomplex double

Laplace transform of bicomplex-valued function f(x, t). Then

Lxt
[
eax+btf(x, t)

]
(ξ, η) = ¯̄f(ξ − a, η − b), (ξ − a, η − b) ∈ Ω

where Ω defined in (2.50).
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Proof. Applying the definition of bicomplex double Laplace transform,

Lxt
[
eax+btf(x, t)

]
(ξ, η) =

∫ ∞
0

∫ ∞
0

e−ξx−ηteax+btf(x, t)dxdt

=

∫ ∞
0

e−(η−b)t
(∫ ∞

0

e−(ξ−a)xf(x, t)dx

)
dt

=

∫ ∞
0

e−(η−b)tf̄(ξ − a, t)dt

= ¯̄f(ξ − a, η − b).

Thus,

Lxt
[
eax+btf(x, t)

]
(ξ, η) = ¯̄f(ξ − a, η − b).

Theorem 2.19 (Double Laplace Transform of Derivatives). Let ¯̄f(ξ, η) be the

bicomplex double Laplace transform of bicomplex-valued function f(x, t). Then

Lxt [fxt(x, t)] (ξ, η) = ξη ¯̄f(ξ, η)− ξf̄(ξ, 0)− ηf̄(0, η) + f(0, 0), (ξ, η) ∈ Ω

where Ω defined in (2.50) and fxt(x, t) = ∂2

∂x∂t
f(x, t).

Proof. Applying the definition of bicomplex double Laplace transform,

Lxt [fxt(x, t)] =

∫ ∞
0

e−ηt
(∫ ∞

0

e−ξxfxt(x, t)dx

)
dt

=

∫ ∞
0

e−ηt
[(
e−ξxft(x, t)

)∞
x=0

+ ξ

∫ ∞
0

e−ξxft(x, t)dx

]
dt

= −
∫ ∞

0

e−ηtft(0, t)dt+ ξ

∫ ∞
0

e−ηt
∫ ∞

0

ft(x, t)dxdt

= f(0, 0)− η
∫ ∞

0

e−ηtf(0, t)dt+ ξ

∫ ∞
0

e−ηt
(∫ ∞

0

ft(x, t)dt

)
dx

= f(0, 0)− ηf̄(0, η) + ξ

∫ ∞
0

e−ξx
[(
e−ηtf(x, t)

)∞
t=0

+ η

∫ ∞
0

e−ηtf(x, t)dt

]
dx

= f(0, 0)− ηf̄(0, η)− ξ
∫ ∞

0

e−ξxf(x, 0)dx+ ξη

∫ ∞
0

∫ ∞
0

e−ξx−ηtf(x, t)dxdt

= f(0, 0)− ηf̄(0, η)− ξf̄(ξ, 0) + ξη ¯̄f(ξ, η).
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Thus,

Lxt [fxt(x, t)] (ξ, η) = ξη ¯̄f(ξ, η)− ξf̄(ξ, 0)− ηf̄(0, η) + f(0, 0).

Theorem 2.20 (Multiplication by xt). Let ¯̄f(ξ, η) be the bicomplex double Laplace

transform of bicomplex-valued function f(x, t). Then

Lxt[xtf(x, t)](ξ, η) =
∂2

∂ξ∂η
¯̄f(ξ, η), [(ξ, η) ∈ Ω as defined in (2.50)]

Proof. Applying the definition of bicomplex double Laplace transform,

∂2

∂ξ∂η
¯̄f(ξ, η) =

(
∂2

∂ξ1∂η1

¯̄fe1(ξ1, η1)

)
e1 +

(
∂2

∂ξ2∂η2

¯̄fe2(ξ2, η2)

)
e2

=

(
∂2

∂ξ1∂η1

∫ ∞
0

∫ ∞
0

e−ξ1x−η1tfe1(x, t)dxdt

)
e1

+

(
∂2

∂ξ2∂η2

∫ ∞
0

∫ ∞
0

e−ξ2x−η2tfe2(x, t)dxdt

)
e2[

where ¯̄f(ξ, η) = ¯̄fe1(ξ1, η1)e1 + ¯̄fe2(ξ2, η2)e2, ξ = ξ1e1 + ξ2e2 and η = η1e1 + η2e2

]
.

Applying Leibniz’s rule for complex functions [100, p. 243], we have

∂2

∂ξ∂η
¯̄f(ξ, η) = (−1)2

{(∫ ∞
0

∫ ∞
0

e−ξ1x−η1txtfe1(x, t)dxdt

)
e1

+

(∫ ∞
0

∫ ∞
0

e−ξ2x−η2txtfe2(x, t)dxdt

)
e2

}
=

∫ ∞
0

∫ ∞
0

e−(ξ1e1+ξ2e2)x−(η1e1+η2e2)t (fe1(x, t)e1 + fe2(x, t)e2) dxdt

=

∫ ∞
0

∫ ∞
0

e−ξx−ηtxtf(x, t)dxdt.

Thus,

Lxt[xtf(x, t)](ξ, η) =
∂2

∂ξ∂η
¯̄f(ξ, η).

In general,

Lxt [xmtnf(x, t)] (ξ, η) = (−1)m+n ∂m+n

∂ξm∂ηn
¯̄f(ξ, η).
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Theorem 2.21 (Division by xt). Let ¯̄f(ξ, η) be the bicomplex double Laplace

transform of bicomplex-valued function f(x, t). Then

Lxt

[
f(x, t)

xt

]
(ξ, η) =

∫ ∞
ξ

∫ ∞
η

¯̄f(ξ, η)dξdη, (ξ, η) ∈ Ω

provided the integral on right hand exists.

Proof. Applying the definition of bicomplex double Laplace transform,

¯̄f(ξ, η) =

∫ ∞
0

∫ ∞
0

e−ξx−ηtf(x, t)dxdt (2.53)

Integrating (2.53) w.r.t. ξ from ξ to ∞ and η from η to ∞, we have∫ ∞
ξ

∫ ∞
η

¯̄f(ξ, η)dξdη =

∫ ∞
ξ

∫ ∞
η

∫ ∞
0

∫ ∞
0

e−ξxe−ηtf(x, t)dxdtdξdη

=

∫ ∞
η

∫ ∞
0

∫ ∞
0

(
e−ξx

−x

)∞
ξ=ξ

e−ηtf(x, t)dxdtdη

=

∫ ∞
0

∫ ∞
0

(
0 +

e−ξx

x

)(
e−ηt

−t

)∞
η=η

f(x, t)dxdt

=

∫ ∞
0

∫ ∞
0

e−ξxe−ηt
f(x, t)

xt
dxdt

= Lxt

[
f(x, t)

xt

]
(ξ, η).

Thus,

Lxt

[
f(x, t)

xt

]
(ξ, η) =

∫ ∞
ξ

∫ ∞
η

¯̄f(ξ, η)dξdη.

Theorem 2.22 (Double Laplace Transform of Integrals). Let ¯̄f(ξ, η) be the bi-

complex double Laplace transform of bicomplex-valued function f(x, t). Then

Lxt

[∫ x

0

∫ t

0

f(u, v)dudv

]
=

¯̄f(ξ, η)

ξη
, Re(ξ) > |Imj(ξ)| , Re(η) > |Imj(η)| .

Proof. Let

g(x, t) =

∫ x

0

∫ t

0

f(u, v)dudv.
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Hence, we have

gxt(x, t) = f(x, t) and g(0, 0) = 0

∴ Lxt[gxt(x, t)] = L[f(x, t)] = ¯̄f(ξ, η).

Now from the Theorem 2.19 we have

Lxt [gxt(x, t)] = ξη¯̄g(ξ, η)− ξḡ(ξ, 0)− ηḡ(0, η) + g(0, 0)

⇒f̄2(ξ, η) = ξηḡ2(ξ, η)− ξḡ1(ξ, 0)− ηḡ1(0, η)

∴ ¯̄g(ξ, η) =
¯̄f(ξ, η)

ξη
+
ḡ(ξ, 0)

η
+
ḡ(0, η)

ξ
.

But ḡ(ξ, 0) = 0 and ḡ(0, η) = 0, therefore

¯̄g(ξ, η) =
¯̄f(ξ, η)

ξη

∴ Lxt[g(x, t)] =
¯̄f(ξ, η)

ξη
.

Hence,

Lxt

[∫ x

0

∫ t

0

f(u, v)dudv

]
=

¯̄f(ξ, η)

ξη
.

Theorem 2.23. Let f(x, t) be a periodic function of period K and T w.r.t. x

and t respectively. Then the bicomplex double Laplace transform is given by

Lxt[f(x, t)] =

∫ K
0

∫ T
0
e−ξx−ηtf(x, t)dxdt

(1− e−Kξ) (1− e−Tη)
, Re(ξ) > |Imj(ξ)| and Re(η) > |Imj(η)| .

Proof. Let f(x, t) be a periodic function with period K w.r.t. x. Then for ξ ∈ C2

and Re(ξ) > |Imj(ξ)| (see, Theorem 2.10)

Lx[f(x, t)] =

∫ K
0
e−ξxf(x, t)dx

1− e−Kξ
= f̄(ξ, t). (2.54)

45



2. LAPLACE TRANSFORM IN BICOMPLEX SPACE AND
APPLICATIONS

Similarly, for η ∈ C2 and Re(η) > |Imj(η)| taking the bicomplex Laplace trans-

form of (2.54) w.r.t. t, we have

Lt[f̄(ξ, t)] = ¯̄f(ξ, η) =

∫ T
0
e−ηtf̄1(ξ, t)dt

1− e−Tη

=
1

1− e−Tη

∫ T

0

e−ηt
∫ K

0
e−ξxf(x, t)dx

1− e−Kξ
dt

=

∫ K
0

∫ T
0
e−ξx−ηtf(x, t)dxdt

(1− e−Kξ) (1− e−Tη)
.

Thus,

Lxt[f(x, t)] =

∫ K
0

∫ T
0
e−ξx−ηtf(x, t)dxdt

(1− e−Kξ) (1− e−Tη)
.

2.9 Inversion of Bicomplex Double Laplace Trans-

form

In this section, we derive the inversion theorem for bicomplex double Laplace

transform.

Theorem 2.24. Let ¯̄f(ξ, η) be the bicomplex double Laplace transform of bicomplex-

valued function f(x, t). Then

f(x, t) = − 1

4π2

∫
Γ1

∫
Γ2

eξx+ηt ¯̄f(ξ, η)dξdη, (ξ, η) ∈ Ω (2.55)

where Ω defined in (2.50) and Γ1 and Γ2 are Bromwich closed contours in bicom-

plex space.

Proof. Taking the inverse bicomplex Laplace transform [10] of ¯̄f(ξ, η) w.r.t. ξ,

we have

L−1
ξ [ ¯̄f(ξ, η)] = f̄(x, η) =

1

2πi1

∫
Γ2

eξx ¯̄f(ξ, η)dξ. (2.56)
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Similarly, taking inverse bicomplex Laplace transform of (2.56) w.r.t. η, we have

L−1
η [f̄(x, η)] = f(x, t) =

1

2πi1

∫
Γ1

eηtf̄(x, η)dη

=
1

(2πi1)2

∫
Γ1

eηt
∫

Γ2

eξx ¯̄f(ξ, η)dξdη.

Hence,

f(x, t) = − 1

4π2

∫
Γ1

∫
Γ2

eξx+ηt ¯̄f(ξ, η)dξdη.

2.10 Applications of Bicomplex Double Laplace

Transform

In this section, we discuss applications of bicomplex double Laplace transform

in finding the solution of two-dimensional time-dependent bicomplex Schrödinger

equation for free particle by two different approaches. In first approach, we find

the solution of above equation by taking the bicomplex double Laplace transform

under suitable initial and boundary conditions w.r.t. spaces variables x and y

and in second approach, w.r.t. space variable x and time variable t.

Rochon and Tremblay [124] discussed the extension of time dependent time-

dependent complex Schrödinger equation in bicomplex form. In section 2.6, we

discussed the solution of one-dimensional time-dependent bicomplex Schrödinger

equation for free particle using by bicomplex Laplace transform. In [6], Arnold

discussed the solution of two-dimensional time-dependent complex Schrödinger

equation using by Fourier-Laplace transform. In [35], Dehghan et al. discussed

the numerical solution of two-dimensional time-dependent Schrödinger equation.
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Here, we discuss the solution of two-dimensional time-dependent bicomplex

Schrödinger equation for free particle. We extend the one-dimensional time-

dependent bicomplex Schrödinger equation (2.38) in two dimensions as

i1~∂tψ(x, y, t) +
~2

2m

(
∂2
xψ(x, y, t) + ∂2

yψ(x, y, t)
)
− V (x, y, t)ψ(x, y, t) = 0,

(2.57)

where

ψ : R3 → C2 and V : R3 → R.

with initial and boundary conditions

ψ(x, y, 0) = h(x, y), ψ(0, y, t) = f1(y, t), ψ(x, 0, t) = g1(x, t),

ψx(0, y, t) = f2(y, t), ψy(x, 0, t) = g2(x, t), x > 0, y > 0, t > 0. (2.58)

For free particle V (x, y, t) = 0, (2.57) becomes

i1~∂tψ(x, y, t) +
~2

2m

(
∂2
xψ(x, y, t) + ∂2

yψ(x, y, t)
)

= 0. (2.59)

(a) Firstly, we have solved equation (2.59) by using bicomplex double Laplace

transform w.r.t. x and y. Taking bicomplex double Laplace transform of (2.59)

w.r.t. x and y, we have

∫ ∞
0

∫ ∞
0

e−ξx−ηyi1~∂tψ(x, y, t)dxdy

+

∫ ∞
0

∫ ∞
0

e−ξx−ηy
~2

2m

(
∂2
xψ(x, y, t) + ∂2

yψ(x, y, t)
)
dxdy = 0

⇒ i1~
d

dt
¯̄ψ(ξ, η, t) +

~2

2m

((
ξ2 + η2

) ¯̄ψ(ξ, η, t)− ξψ̄(0, η, t)− ηψ̄(ξ, 0, t)

−ψ̄x(0, η, t)− ψ̄y(ξ, 0, t)
)

= 0,
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where ¯̄ψ(ξ, η, t) = Lxy [ψ(x, y, t)] is bicomplex double Laplace transform of ψ(x, y, t).

Applying the boundary conditions (2.58), we get

i1~
d ¯̄ψ

dt
+

~2

2m

((
ξ2 + η2

) ¯̄ψ − ξf̄1(η, t)− ηḡ1(ξ, t)− f̄2(η, t)− ḡ2(ξ, t)
)

= 0

⇒ d ¯̄ψ

dt
− i1

~
2m

(
ξ2 + η2

)
= −i1

~
2m

(
ξf̄1(η, t) + ηḡ1(ξ, t) + f̄2(η, t) + ḡ2(ξ, t)

)
.

Rearranging the terms and simplifying, we get

¯̄ψ(ξ, η, t) = −i1
~

2m
exp

(
i1

~
2m

(
ξ2 + η2

)
t

)∫
exp

(
−i1

~
2m

(
ξ2 + η2

)
t

)(
ξf̄1(η, t)

+ηḡ1(ξ, t) + f̄2(η, t) + ḡ2(ξ, t)
)
dt+ c exp

(
i1

~
2m

(
ξ2 + η2

)
t

)
.

(2.60)

Letting ¯̄ψ(ξ, η, 0) = ¯̄h(ξ, η) in (2.60) we have

c = ¯̄h(ξ, η)

+i1
~

2m

∫
exp

(
−i1

~
2m

(
ξ2 + η2

)
t

)(
ξf̄1(η, t) + ηḡ1(ξ, t) + f̄2(η, t) + ḡ2(ξ, t)

)
dt

∣∣∣∣
t=0

= ¯̄p(ξ, η) (say). (2.61)

Therefore, (2.60) becomes

¯̄ψ(ξ, η, t) = −i1
~

2m
exp

(
i1

~
2m

(
ξ2 + η2

)
t

)∫
exp

(
−i1

~
2m

(
ξ2 + η2

)
t

)(
ξf̄1(η, t)+

ηḡ1(ξ, t) + f̄2(η, t) + ḡ2(ξ, t)
)
dt+ ¯̄p(ξ, η) exp

(
i1

~
2m

(
ξ2 + η2

)
t

)
.

(2.62)

Taking the inverse bicomplex Laplace transform of (2.62), we have

ψ(x, y, t) = − 1

4π2

∫
Γ1

∫
Γ2

eξx+ηy

[
¯̄p(ξ, η) exp

(
i1

~
2m

(
ξ2 + η2

)
t

)
+ A(ξ, η, t)

]
dξdη

(2.63)
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where,

A(ξ, η, t) = −i1
~

2m
exp

(
i1

~
2m

(
ξ2 + η2

)
t

)∫
exp

(
−i1

~
2m

(
ξ2 + η2

)
t

)(
ξf̄1(η, t)

+ηḡ1(ξ, t) + f̄2(η, t) + ḡ2(ξ, t)
)
dt

and Γ1 and Γ2 are closed contours in bicomplex space w.r.t. ξ and η respectively.

(2.63) is the solution of two-dimensional time-dependent bicomplex Schrödinger

equation for free particle.

Illustrative Example:

Let us consider the initial and boundary conditions for equation (2.59) as

ψ(x, y, 0) = sin

(
2π

λ
x

)
cos

(
2π

λ
y

)
, ψx(0, y, t) =

2π

λ
exp

(
−i1

4~π2

mλ2
t

)
sin

(
2π

λ
y

)
,

ψ(0, y, t) = 0, ψ(x, 0, t) = 0, ψy(x, 0, t) =
2π

λ
exp

(
−i1

4~π2

mλ2
t

)
sin

(
2π

λ
x

)
.

(2.64)

Then (2.63) becomes

ψ(x, y, t) = − 1

4π2

∫
Γ1

∫
Γ2

eξx+ηy 2π

λ

η exp
(
i1

~
2m

(ξ2 + η2) t
)(

ξ2 +
(

2π
λ

)2
)(

η2 +
(

2π
λ

)2
)dξdη

= − 1

2πλ

∫
Γ1

eξx(
ξ2 +

(
2π
λ

)2
)2πi1

(
lim

η→i1 2π
λ

eηy
η exp

(
i1

~
2m

(ξ2 + η2) t
)(

η + i1
2π
λ

)
+ lim

η→−i1 2π
λ

eηy
η exp

(
i1

~
2m

(ξ2 + η2) t
)(

η − i1 2π
λ

) )
dξ

= −i1
λ

∫
Γ1

eξx(
ξ2 +

(
2π
λ

)2
) exp

(
i1

~
2m

(
ξ2 − 4π2

λ2

)
t

)
cos

(
2π

λ
y

)
dξ
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= −i1
λ

cos

(
2π

λ
y

)
2πi1

(
lim

ξ→i1 2π
λ

eξx(
ξ + i1

2π
λ

) exp

(
i1

~
2m

(
ξ2 − 4π2

λ2

)
t

)

+ lim
ξ→−i1 2π

λ

eξx(
ξ − i1 2π

λ

) exp

(
i1

~
2m

(
ξ2 − 4π2

λ2

)
t

))

= exp

(
−i1

4~π2

mλ2
t

)
sin

(
2π

λ
x

)
cos

(
2π

λ
y

)
.

Therefore,

ψ(x, y, t) = exp

(
−i1

4~π2

mλ2
t

)
sin

(
2π

λ
x

)
cos

(
2π

λ
y

)
. (2.65)

Expression in (2.65) is the solution of two-dimensional time-dependent bicomplex

Schrödinger equation (2.59) for initial and boundary conditions (2.64).

(b) In this alternative approach, we shall make use of bicomplex double Laplace

transform w.r.t. x and t. Consider the two-dimensional time-dependent bicom-

plex Schrödinger equation (2.59) for free particle with the condition

ψ(x, y, t) is bounded as |y| → ∞ and x > 0, t > 0. (2.66)

Taking the bicomplex double Laplace transform of (2.59) w.r.t. x and t, we get

∫ ∞
0

∫ ∞
0

e−ξx−ηti1~∂tψ(x, y, t)dxdy +

∫ ∞
0

∫ ∞
0

e−ξx−ηt
~2

2m

(
∂2
xψ(x, y, t)

+ ∂2
yψ(x, y, t)

)
dxdy = 0

⇒ i1~
(
η ¯̄ψ(ξ, y, η)− ψ̄(ξ, y, 0)

)
+

~2

2m

(
ξ2 ¯̄ψ(ξ, y, η)− ξψ̄(0, y, η)− ψ̄x(0, y, η)

)
+

~2

2m

d2

dy2
¯̄ψ(ξ, y, η) = 0

⇒ d2 ¯̄ψ

dy2
+

(
ξ2 + i1

2mη

~

)
¯̄ψ = i1

2m

~
ψ̄(ξ, y, 0) + ξψ̄(0, y, η) + ψ̄x(0, y, η).
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Rearranging the terms and solving, we get

¯̄ψ(ξ, y, η) = c1 exp

(
y

√
−ξ2 − i1

2mη

~

)
+ c2 exp

(
−y
√
−ξ2 − i1

2mη

~

)

+
1

d2

dy2
+
(
ξ2 + i1

2mη
~

) (i1 2m

~
ψ̄(ξ, y, 0) + ξψ̄(0, y, η) + ψ̄x(0, y, η)

)
,

(2.67)[
where Re

(
P1 :

√
−ξ2 − i1

2mη

~

)
> 0 and Re

(
P2 :

√
−ξ2 − i1

2mη

~

)
> 0

]
.

∵ ¯̄ψ(ξ, y, η) is bounded as |y| → ∞ ⇒ c1 = c2 = 0. Then (2.67) becomes

¯̄ψ(ξ, y, η) =
1

d2

dy2
+
(
ξ2 + i1

2mη
~

) (i1 2m

~
ψ̄(ξ, y, 0) + ξψ̄(0, y, η) + ψ̄x(0, y, η)

)
.

(2.68)

Taking the inverse bicomplex Laplace transform of (2.68), we get

ψ(x, y, t) = − 1

4π2

∫
Γ1

∫
Γ2

eξx+ηt ¯̄ψ(ξ, y, η)dξdη (2.69)

where Γ1 and Γ2 are closed contours in bicomplex space w.r.t. ξ and η respectively.

(2.69) is the solution of two-dimensional time-dependent bicomplex Schrödinger

equation (2.59).

Illustrative Example:

Let us consider the initial and boundary conditions for equation (2.59) as

ψ(x, y, 0) = sin

(
2π

λ
x

)
sin

(
2π

λ
y

)
, ψ(0, y, t) = 0

ψx(0, y, t) =
2π

λ
exp

(
−i1

4~π2

mλ2
t

)
sin

(
2π

λ
y

)
. (2.70)

Then (2.69) becomes

ψ(x, y, t)

= − 1

4π2

∫
Γ1

∫
Γ2

2π

λ
sin

(
2π

λ
y

)
eξx+ηt

ξ2 + i1
2mη
~ −

4π2

λ2

(
i1

2m

~
1

ξ2 + 4π2

λ2

+
1

η − i1 4~π2

mλ2

)
dξdη

52



2.10 Applications of Bicomplex Double Laplace Transform

= −i1
m

π~λ
sin

(
2π

λ
y

)∫
Γ1

∫
Γ2

eξx+ηt(
ξ2 + i1

2mη
~ −

4π2

λ2

) (
ξ2 + 4π2

λ2

)dξdη
− 1

2πλ
sin

(
2π

λ
y

)∫
Γ1

∫
Γ2

eξx+ηt(
ξ2 + i1

2mη
~ −

4π2

λ2

) (
η − i1 4~π2

mλ2

)dξdη
= I1 + I2. (say) (2.71)

Now,

I1 = −i1
m

π~λ
sin

(
2π

λ
y

)∫
Γ1

∫
Γ2

eξx+ηt(
ξ2 + i1

2mη
~ −

4π2

λ2

) (
ξ2 + 4π2

λ2

)dξdη
= −i1

m

π~λ
sin

(
2π

λ
y

)∫
Γ1

2πi1
~

2mi1
eξx lim

η→−i1
(

4π2

λ2
−ξ2

)
~

2m

(
eηt

1

ξ2 + 4π2

λ2

)
dξ

= −i1
λ

sin

(
2π

λ
y

)∫
Γ1

eξx

ξ2 + 4π2

λ2

exp

(
−i1

~
2m

(
4π2

λ2
− ξ2

)
t

)
dξ

= −i1
λ

sin

(
2π

λ
y

)
2πi1

[
lim

ξ→i1 2π
λ

eξx

ξ + i1
2π
λ

exp

(
−i1

~
2m

(
4π2

λ2
− ξ2

)
t

)

+ lim
ξ→−i1 2π

λ

eξx

ξ − i1 2π
λ

exp

(
−i1

~
2m

(
4π2

λ2
− ξ2

)
t

)]

= exp

(
−i1

4~π2

mλ2
t

)
sin

(
2π

λ
x

)
sin

(
2π

λ
y

)
. (2.72)

Similarly,

I2 = − 1

2πλ
sin

(
2π

λ
y

)∫
Γ1

∫
Γ2

eξx+ηt(
ξ2 + i1

2mη
~ −

4π2

λ2

) (
η − i1 4~π2

mλ2

)dξdη
= −i1λ sin

(
2π

λ
y

)∫
Γ1

(
exp

(
i1

4π2~
λ2m

t
)
− exp

(
i1
λ2ξ2~−4π2~

2λ2m
t
))

λ2ξ2 − 12π2
dξ

= 0, [by using contor integral]. (2.73)

Using (2.72) and (2.73) in (2.71), we get

ψ(x, y, t) = exp

(
−i1

4~π2

mλ2
t

)
sin

(
2π

λ
x

)
sin

(
2π

λ
y

)
. (2.74)

Expression in (2.74) is the solution of two-dimensional time-dependent bicomplex

Schrödinger equation (2.59) under the conditions given in (2.66) and (2.70).
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2.11 Conclusion

In this chapter, we derived inversion formula, convolution theorem and some

properties of bicomplex Laplace transform. Also, we defined double Laplace

transform and its inverse in bicomplex space. Applications have been illustrated

for the solution of bicomplex Maxwell’s equation and bicomplex time-dependent

Schrödinger equation for free particle using bicomplex Laplace transform. Also,

the solution of two-dimensional time-dependent bicomplex Schrödinger equation

has been obtained by using bicomplex double Laplace transform.

Moreover, similar to work of Rochon and Tremblay [124], under some dis-

crete symmetries time-dependent bicomplex Schrödinger equation can be decom-

posed into two standard Schrödinger equations. Therefore, solution of two stan-

dard Schrödinger equations can be obtained by separating the solution of time-

dependent bicomplex Schrödinger equation. The bicomplex analysis has found

a great advantage that it separates the electric and magnetic field as complex

components. This theory can further be developed to find the solution of the

problems in electromagnetic field theory and quantum mechanics also.
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3
Sumudu Transform in Bicomplex Space and

Applications

The main finding of this chapter has been published as:

1. Agarwal R., Goswami M.P. and Agarwal R.P. (2017), Sumudu transform in

bicomplex space and its applications, Annals of Applied Mathematics, (In

press).
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In this chapter, we obtain bicomplex Sumudu transform, its inverse and some of

their properties. As applications we find the solution of differential equation of

bicomplex-valued function and solution of Cartesian transverse electric magnetic

(TEM) waves in homogeneous media.

3.1 Introduction

In literature, various integral transforms are widely used in physics and engineer-

ing mathematics. In the sequence of these integral transforms, Watugala [146]

defined Sumudu transform and applied it for finding the solution of ordinary dif-

ferential equations in control engineering problems.

Over the set of functions

A =

{
f(t) : ∃M, τj > 0, |f(t)| < Me

|t|
τj , if t ∈ (−1)j[0,∞), j = 1, 2

}
(3.1)

the Sumudu transform is defined by the formula

S[f(t); s] =
1

s

∫ ∞
0

e−
t
sf(t)dt, s ∈ (τ1, τ2). (3.2)

Sumudu transform have scale and unit preserving properties. In [17], Bel-

gacem et al. discussed fundamental properties of Sumudu transform and shown

that Sumudu transform is a theoretical dual of Laplace transform. Also, it used

in solving an integral production-depreciation problem. In [16], Belgacem et al.

have generalized Sumudu differentiations, integrations and convolution theorems

existing in literature. Also they have generalized Sumudu shifting theorems and

introduced recurrence formulas of the transform.
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In [157], Zhang developed an algorithm based on Sumudu transform which

can be implemented in computer algebra systems like Maple and used in solving

differential equations. In [70], Hussian et al. obtained the solution of Maxwell’s

differential equations for transient excitation functions propagating in a lossy con-

ducting medium by using Sumudu transform in time domain.

In [15], Belgacem find the electric field solutions of Maxwell’s equations, per-

taining to transient electromagnetic planner, (TEMP), waves propagating in lossy

media, through Sumudu transform. In [42], Eltayeb et al. have discussed the

Sumudu transform on a space of distributions. In ([80], [81]), Kilicman and

Gadain produced some properties and relationship between double Laplace and

double Sumudu transform and also, used the double Sumudu transform for solv-

ing wave equation in one dimension having singularity at initial conditions.

In [79], Kilicman et al. discussed the existence of double Sumudu transform

with convergence conditions and applied it for finding the solution of linear or-

dinary differential equations with constant coefficients. In [1], Al-Omari and

Belgacem investigated certain class of quaternions and Sumudu transform. Moti-

vated by the work of Al-Omari et al., we have made efforts to extend the Sumudu

transform to bicomplex variable.
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3.2 Bicomplex Sumudu Transform

Let f(t) be bicomplex-valued piecewise continuous function of exponential order

K. Then bicomplex Laplace transform (Kumar and Kumar [88]) of f(t) is

L[f(t); ξ] =

∫ ∞
0

e−ξtf(t)dt, ξ ∈ D (3.3)

where

D = {ξ = s1e1 + s2e2 ∈ C2 : Re(s1) > K and Re(s2) > K} (3.4)

or, equivalently

D = {ξ ∈ C2 : Re(ξ) > K + |Imj(ξ)|} (3.5)

Imj(ξ) denotes the imaginary part w.r.t. j. In (3.3) if we replace ξ by 1
ξ

and

multiply the integral obtained by 1
ξ
, we get

1

ξ
L

[
f(t);

1

ξ

]
=

1

ξ

∫ ∞
0

e−
1
ξ
tf(t)dt = S[f(t); ξ] = f̄(ξ), ξ ∈ Ω (3.6)

where S[·] denote the Sumudu transform of f and

Ω =

{
ξ = s1e1 + s2e2 ∈ C2 : Re

(
1

s1

)
> K, Re

(
1

s2

)
> K and ξ 6∈ O2

}
(3.7)

or equivalently,

Ω =

{
ξ ∈ C2 : Re

(
1

ξ

)
> K +

∣∣∣∣Imj

(
1

ξ

)∣∣∣∣ and ξ 6∈ O2

}
(3.8)
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Further, we show that
∥∥f̄(ξ)

∥∥ <∞. Now, for ξ = s1e1 + s2e2, s1 = x1 + i1y1 and

s2 = x2 + i1y2,

∥∥f̄(ξ)
∥∥ =

∥∥∥∥1

ξ

∫ ∞
0

e−
1
ξ
tf(t)dt

∥∥∥∥
≤ 1

‖ξ‖

∫ ∞
0

∥∥∥e− 1
ξ
t
∥∥∥ ‖f(t)‖ dt, [ξ 6= 0 i.e. ξ 6∈ O2]

≤ 1

‖ξ‖

∫ ∞
0

∥∥∥e− 1
(s1e1+s2e2)

t
∥∥∥MeKtdt

=
M

‖ξ‖

∫ ∞
0

∥∥∥e− 1
s1
t
e1 + e

− 1
s2
t
e2

∥∥∥ eKtdt, [using (1.15)]

=
M

‖ξ‖

∫ ∞
0

1√
2

(∣∣∣e− 1
s1
t
∣∣∣2 +

∣∣∣e− 1
s2
t
∣∣∣2) 1

2

eKtdt

=
M√
2‖ξ‖

∫ ∞
0

(
e
− 2x1
x21+y

2
1
t
+ e

− 2x2
x22+y

2
2
t
) 1

2

eKtdt

≤ M√
2‖ξ‖

[∫ ∞
0

e
− x1
x21+y

2
1
t
eKtdt+

∫ ∞
0

e
− x2
x22+y

2
2
t
eKtdt

]
[
∵ by Minkowski’s inequality

(
|x|2 + |y|2

) 1
2 ≤ |x|+ |y|, ∀ x, y ∈ R

]
=

M√
2‖ξ‖

[∫ ∞
0

e
−
(

x1
x21+y

2
1
−K

)
t
dt+

∫ ∞
0

e
−
(

x2
x22+y

2
2
−K

)
t
dt

]

=
M√
2‖ξ‖

(
1

x1
x21+y21

−K
+

1
x2

x22+y22
−K

)
.

Then the requirement
∥∥f̄(ξ)

∥∥ < ∞ only if x1
x21+y21

> K i.e. Re
(

1
s1

)
> K and

x2
x22+y22

> K i.e. Re
(

1
s2

)
> K. Therefore, f̄(ξ) is analytic and convergent in the

strip Ω, defined by (3.7).

Thus, we can summarize the above discussion to define the bicomplex Sumudu

transform as follows:

Definition 3.1. Let f(t) bicomplex-valued piecewise continuous function of ex-
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ponential order K. Then bicomplex Sumudu transform of f(t) is defined as

S[f(t); ξ] =
1

ξ

∫ ∞
0

e−
1
ξ
tf(t)dt = f̄(ξ), ξ ∈ Ω (3.9)

where Ω is defined as

Ω =

{
ξ ∈ C2 : Re

(
1

ξ

)
> K +

∣∣∣∣Imj

(
1

ξ

)∣∣∣∣ and ξ 6∈ O2

}
. (3.10)

3.3 Properties of Bicomplex Sumudu Transform

In this section, we discuss some properties of bicomplex Sumudu transform viz.

linearity property, change of scale property and etc. as follows:

Theorem 3.1 (Linearity Property). Let f̄(ξ) = S[f(t); ξ] and ḡ(ξ) = S[g(t); ξ]

be bicomplex Sumudu transforms of bicomplex-valued functions f(t) and g(t) of

exponential orders K1 and K2, respectively. Then

S[c1f(t) + c2g(t)] = c1f̄(ξ) + c2ḡ(ξ), ξ ∈ Ω (3.11)

where Ω is defined in (3.10) and K = max{K1, K2}.

Proof. By applying the definition of bicomplex Sumudu transform, we get

S[c1f(t) + c2g(t)] =
1

ξ

∫ ∞
0

e−
1
ξ
t[c1f(t) + c2g(t)]dt

=
c1

ξ

∫ ∞
0

e−
1
ξ
tf(t)dt+

c2

ξ

∫ ∞
0

e−
1
ξ
tg(t)dt

= c1f̄(ξ) + c2ḡ(ξ).

Theorem 3.2 (Change of scale property). Let f̄(ξ) = S[f(t); ξ] be the bicomplex

Sumudu transform of bicomplex-valued function f(t), then

S[f(at); ξ] = f̄(aξ), a > 0, ξ ∈ Ω (3.12)

where Ω is defined in (3.10).
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Proof. By applying the definition of bicomplex Sumudu transform, we get

S[f(at); ξ] =
1

ξ

∫ ∞
0

e−
1
ξ
tf(at)dt, [put at = u]

=
1

aξ

∫ ∞
0

e−
1
aξ
uf(u)du

= f̄(aξ).

Theorem 3.3. Let f̄(ξ) = S[f(t); ξ] be the bicomplex Sumudu transform of

bicomplex-valued function f(t), then

(i) S[f ′(t); ξ] = 1
ξ
[f̄(ξ)− f(0)], ξ ∈ Ω

(ii) S[f ′′(t); ξ] = 1
ξ2

[f̄(ξ)− f(0)− ξf ′(0)], ξ ∈ Ω

(iii) S[f (n)(t); ξ] = 1
ξn

[
f̄(ξ)− f(0)−

∑n−1
k=1 ξ

kf (k)(0)
]
, ξ ∈ Ω

where Ω is defined in (3.10).

Proof. (i) By applying the definition of bicomplex Sumudu transform, we get

S[f ′(t); ξ] =
1

ξ

∫ ∞
0

e−
1
ξ
tf ′(t)dt

=

(
1

s1

∫ ∞
0

e
− 1
s1
t
f ′1(t)dt

)
e1 +

(
1

s2

∫ ∞
0

e
− 1
s2
t
f ′2(t)dt

)
e2

Integrating by parts, we get

S[f ′(t); ξ] =

(
− 1

s1

f1(0) +
1

s1

f̄1(s1)

)
e1 +

(
− 1

s2

f2(0) +
1

s2

f̄2(s2)

)
e2

=
1

s1e1 + s2e2

[
f̄1(s1)e1 + f̄2(s2)e2 − f1(0)e1 − f2(0)e2

]
=

1

ξ
[f̄(ξ)− f(0)]. (3.13)
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(ii) If we replace f ′(t) = g(t), then

S[f ′′(t); ξ] = S[g′(t); ξ]

=
1

ξ
[ḡ(ξ)− g(0)] , [using (3.13)]

=
1

ξ

[
1

ξ

(
f̄(ξ)− f(0)

)
− f ′(0)

]
=

1

ξ2

[
f̄(ξ)− f(0)− ξf ′(0)

]
.

(iii) By (3.13) the result (iii) is true for n = 1. Now, let us assume the result is

true for n = m, i.e.

S[f (m)(t); ξ] =
1

ξm

[
f̄(ξ)− f(0)−

m−1∑
k=1

ξkf (k)(0)

]
(3.14)

Now, for n = m+ 1

S[f (m+1)(t); ξ] =
1

ξ

[
S[f (m)(t); ξ]− f (m)(0)

]
=

1

ξm+1

[
f̄(ξ)− f(0)−

m∑
k=1

ξkf (k)(0)

]
, [using (3.14)]

Hence, by the principle of mathematical induction, the result is true for all n ∈
N.

Theorem 3.4. Let f̄(ξ) = S[f(t); ξ] be the bicomplex Sumudu transform of

bicomplex-valued function f(t), then

S[tf(t); ξ] = ξ2 d

dξ
f̄(ξ) + ξf̄(ξ), ξ ∈ Ω (3.15)

where Ω is defined in (3.10).

Proof. Since,

d

dξ
f̄(ξ) =

d

dξ

∫ ∞
0

1

ξ
e−

t
ξ f(t)dt

=

(
d

ds1

∫ ∞
0

1

s1

e
− t
s1 f1(t)dt

)
e1 +

(
d

ds2

∫ ∞
0

1

s2

e
− t
s2 f2(t)dt

)
e2
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Using Leibniz rule for integration for complex functions, we get

d

dξ
f̄(ξ) =

(∫ ∞
0

∂

∂s1

1

s1

e
− t
s1 f1(t)dt

)
e1 +

(∫ ∞
0

∂

∂s2

1

s2

e
− t
s2 f2(t)dt

)
e2

=

(∫ ∞
0

1

s3
1

e
− t
s1 tf1(t)dt−

∫ ∞
0

1

s2
1

e
− t
s1 f1(t)dt

)
e1

+

(∫ ∞
0

1

s3
2

e
− t
s2 tf2(t)dt−

∫ ∞
0

1

s2
2

e
− t
s2 f2(t)dt

)
e2

=

(
1

s2
1

S[tf1(t); s1]− 1

s1

S[f1(t); s1]

)
e1 +

(
1

s2
2

S[tf2(t); s2]− 1

s2

S[f2(t); s2]

)
e2

=
1

(s1e1 + s2e2)2
S[t (f1(t)e1 + f2(t)e2) ; s1e1 + s2e2]

− 1

s1e1 + s2e2

S[(f1(t)e1 + f2(t)e2) ; s1e1 + s2e2]

=
1

ξ2
S[tf(t); ξ]− 1

ξ
S[f(t); ξ]

∴ S[tf(t); ξ] = ξ2 d

dξ
f̄(ξ) + ξf̄(ξ).

Theorem 3.5. Let f̄(ξ) = S[f(t); ξ] be the bicomplex Sumudu transform of

bicomplex-valued function f(t), then

S

[∫ t

0

f(u)du; ξ

]
= ξf̄(ξ), ξ ∈ Ω (3.16)

where Ω is defined in (3.10).

Proof. From the definition of bicomplex Sumudu transform, we have

S

[∫ t

0

f(u)du; ξ

]
=

1

ξ

∫ ∞
0

e−
t
ξ

∫ t

0

f(u)dudt

by changing the order of integration, we get

S

[∫ t

0

f(u)du; ξ

]
=

1

ξ

∫ ∞
0

f(u)du

∫ ∞
u

e−
t
ξ dt

=
1

ξ

∫ ∞
0

ξe−
u
ξ f(u)du

= ξf̄(ξ).
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Theorem 3.6. Let f(t) be the bicomplex-valued function of period T > 0, then

S[f(t); ξ] =

1
ξ

∫ T
0
e−

t
ξ f(t)dt

1− e−
T
ξ

, ξ ∈ Ω (3.17)

where Ω is defined in (3.10).

Proof. By definition, we have

S[f(t); ξ] =
1

ξ

∫ ∞
0

e−
t
ξ f(t)dt

=
1

ξ

∞∑
n=0

∫ (n+1)T

nT

e−
t
ξ f(t)dt (3.18)

Taking t = τ + nT in the nth integral, (3.18) becomes

S[f(t); ξ] =
1

ξ

∞∑
n=0

e−
nT
ξ

∫ T

0

e−
τ
ξ f(τ + nT )dτ

=
1

ξ

∞∑
n=0

e−
nT
ξ

∫ T

0

e−
τ
ξ f(τ)dτ, [∵ f(t+ nT ) = f(t)]

=
1

ξ
(

1− e−
T
ξ

) ∫ T

0

e−
t
ξ f(t)dt.

3.3.1 Convolution

The convolution of two signals is defined in equation (2.21). We derive here the

convolution theorem for bicomplex Sumudu transform as follows:

Theorem 3.7. Let f̄(ξ) = S[f(t); ξ] and ḡ(ξ) = S[g(t); ξ] be the bicomplex

Sumudu transforms of bicomplex-valued functions f(t) and g(t) of exponential

orders K1 and K2 respectively, then

S[(f ∗ g)(t); ξ] = ξf̄(ξ)ḡ(ξ), ξ ∈ Ω (3.19)

where K = max{K1, K2} and Ω is defined in (3.10).
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Proof.

S[(f ∗ g)(t); ξ] =
1

ξ

∫ ∞
0

e−
t
ξ (f ∗ g)(t)dt

=
1

ξ

∫ ∞
0

e−
t
ξ

∫ t

0

f(u)g(t− u)dudt

Changing the order of integration, we get

S[(f ∗ g)(t); ξ] =
1

ξ

∫ ∞
0

f(u)du

∫ ∞
u

e−
t
ξ g(t− u)dt

Put t− u = z

=
1

ξ

∫ ∞
0

e−
u
ξ f(u)du

∫ ∞
0

e−
z
ξ g(z)dz

= ξf̄(ξ)ḡ(ξ).

3.4 Inverse Bicomplex Sumudu Transform

In this section, we discuss the inversion theorem for Sumudu transform in bicom-

plex space as follows:

Theorem 3.8. Let f̄(ξ) be the bicomplex Sumudu transform of bicomplex-valued

function f(t) of exponential order K, analytic in Ω, then

f(t) =
1

2πi1

∫
Γ

e
t
ξ ξf̄(ξ)dξ =

∑
Res

[
e
t
ξ ξf̄(ξ)

]
(3.20)

where Γ = (Γ1,Γ2) is piecewise continuous differentiable closed contour in Bicom-

plex space and Ω is defined in (3.10).

Proof. Since we know that bicomplex Laplace transform [88] of bicomplex-valued

function f(t) is

L

[
f(t);

1

ξ

]
= F

(
1

ξ

)
=

∫ ∞
0

e−
t
ξ f(t)dt, ξ ∈ Ω

⇒1

ξ
F

(
1

ξ

)
=

1

ξ

∫ ∞
0

e−
t
ξ f(t)dt = f̄(ξ)

⇒F
(

1

ξ

)
= ξf̄(ξ) (3.21)
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Inverse bicomplex Laplace transform [10, Definition 3.1] of (3.21) is

f(t) =
1

2πi1

∫
Γ

e
t
ξF

(
1

ξ

)
dξ

=
1

2πi1

∫
Γ

e
t
ξ ξf̄(ξ)dξ, [Using (3.21)]

Hence the result (3.20).

3.5 Applications

In this section, we find the solution of an application of differential equation of

bicomplex-valued functions. Also, we find the solution for Cartesian transverse

electric magnetic (TEM) waves in homogeneous space using bicomplex Sumudu

transform.

(a) Consider the general linear differential equation of order n of bicomplex-valued

function y(t)

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a0y = f(t) (3.22)

with initial conditions y(0), y′(0), · · · , yn−1(0) are given and finite, a0, a1, · · · , an

are bicomplex constants and f(t) be bicomplex-valued function. Taking the bi-

complex Sumudu transform of (3.22), we get

an
1

ξn

[
ȳ(ξ)− y(0)−

n−1∑
k=1

ξky(k)(0)

]
+ an−1

1

ξn−1

[
ȳ(ξ)− y(0)−

n−2∑
k=1

ξky(k)(0)

]
+ · · ·+ a0ȳ(ξ) = f̄(ξ)

⇒ an

[
ȳ(ξ)− y(0)−

n−1∑
k=1

ξky(k)(0)

]
+ an−1ξ

[
ȳ(ξ)− y(0)−

n−2∑
k=1

ξky(k)(0)

]
+ · · ·+ a0ξ

n = ξnf̄(ξ)
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Therefore,

ȳ(ξ) =
y(0) [an + an−1ξ + an−2ξ

2 + · · ·+ a1ξ
n−1]

an + an−1ξ + an−2ξ2 + · · ·+ a0ξn

+
y′(0)ξ [an + an−1ξ + an−2ξ

2 + · · ·+ a2ξ
n−2]

an + an−1ξ + an−2ξ2 + · · ·+ a0ξn

+ · · ·+ y(n−1)(0)anξ
n−1

an + an−1ξ + an−2ξ2 + · · ·+ a0ξn

+
ξnf̄(ξ)

an + an−1ξ + an−2ξ2 + · · ·+ a0ξn
(3.23)

Taking the inverse bicomplex Sumudu transform of (3.23), we get the solution of

differential equation (3.22) as

y(t) =
1

2πi1

∫
Γ

e
t
ξ ξȳ(ξ)dξ (3.24)

where Γ = (Γ1,Γ2) is piecewise continuous differentiable closed contour in Bicom-

plex space and Ω and ȳ(ξ) are defined in (3.10) and (3.23), respectively.

In particular, consider the differential equation

dy

dt
+ y = eat, a ∈ C2 (3.25)

with initial condition y(0) = 0 and y(t) is bicomplex-valued function.

Taking the bicomplex Sumudu transform of (3.25), we get

ȳ(ξ)− y(0)

ξ
+ ȳ(ξ) =

∞∑
n=0

anξn

ȳ(ξ) =
ξ

ξ + 1

∞∑
n=0

anξn

ȳ(ξ) = ξ
(
1− ξ + ξ2 − ξ3 + · · ·

) ∞∑
n=0

anξn

67
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Taking the inverse bicomplex Sumudu transform and making use of theorem 3.7,

we get

y(t) =

∫ t

0

e−uea(t−u)du =
1

1 + a

(
eat − e−t

)
which is the required solution of the given differential equation (3.25).

(b) Here, we shall solve the bicomplex Maxwell’s equation using bicomplex Sumudu

transform. For details about bicomplex Maxwell’s equation see, Anastassiu [5]

and section 2.6 of the thesis. Recall, the equation (2.25)

∇× F = i2i1kF (3.26)

Assuming a TEM to z wave, i.e., a vanishing z-component, and after introducing

Qy = i2Fy, in (3.26) is reduced to the following system of bicomplex differential

equations

dQy

dz
= i1kFx (3.27)

dFx
dz

= i1kQy (3.28)

∂Fy
∂x
− ∂Fx

∂y
= 0 (3.29)

Differentiating (3.27) and (3.28) and using respectively(3.28) and (3.27) therein,

we get

d2Fx
dz2

+ k2Fx = 0 (3.30)

d2Qy

dz2
+ k2Qy = 0 (3.31)
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For the solution, taking the bicomplex Sumudu transform of (3.30), we get

1

ξ2

[
F̄x(ξ)− Fx(0)− ξF ′x(0)

]
+ k2F̄x(ξ) = 0

⇒ F̄x(ξ) =
Fx(0) + ξF ′x(0)

ξ2k2 + 1
(3.32)

Taking the inverse bicomplex Sumudu transform of (3.32), we get

Fx(z) =
1

2πi1

∫
Ω

e
z
ξ ξF̄x(ξ)dξ

=
1

2πi1

∫
Ω

e
z
ξ ξ
Fx(0) + ξF ′x(0)

ξ2k2 + 1
dξ

= lim
ξ→ i1

k

(
ξ − i1

k

)
ξe

z
ξ
Fx(0) + ξF ′x(0)

ξ2k2 + 1
+ lim

ξ→− i1
k

(
ξ +

i1
k

)
ξe

z
ξ
Fx(0) + ξF ′x(0)

ξ2k2 + 1

=
kFx(0) + i1F

′
x(0)

k3
e−i1kz +

kFx(0)− i1F ′x(0)

k3
ei1kz

= Re−i1kz +Kei1kz (3.33)

Similarly

Fy(z) = −i2Qy(z) = −i2
[
Le−i1kz + Sei1kz

]
(3.34)

Therefore,

F ≡ 1
√
η
E + i2

√
ηH =

[
Re−i1kz +Kei1kz

]
x̂− i2

[
Le−i1kz + Sei1kz

]
ŷ (3.35)

x̂ and ŷ are the fundamental position unit vectors in the direction of X- axis and

Y - axis respectively and

R =
kFx(0) + i1F

′
x(0)

k3
= R1 + i2R2, K =

kFx(0)− i1F ′x(0)

k3
= K1 + i2K2

L =
kQy(0) + i1Q

′
y(0)

k3
= L1 + i2L2, S =

kQy(0)− i1Q′y(0)

k3
= S1 + i2S2.
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Equation (3.29) implies that L, R, S and K are bicomplex constants. Since (3.35)

satisfy bicomplex Maxwell’s equation (3.26)

L = −R and S = K.

Hence (3.35) becomes,

F ≡ 1
√
η
E + i2

√
ηH =

[
Re−i1kz +Kei1kz

]
x̂− i2

[
−Re−i1kz +Kei1kz

]
ŷ (3.36)

Extracting the bi-real and bi-imaginary parts of the solutions (3.36) yields the

electric and magnetic fields components

E =
√
η
[
R1e

−i1kz +K1e
i1kz
]
x̂+
√
η
[
−R2e

−i1kz +K2e
i1kz
]
ŷ (3.37)

H =
1
√
η

[
R2e

−i1kz +K2e
i1kz
]
x̂− 1
√
η

[
−R1e

−i1kz +K1e
i1kz
]
ŷ (3.38)

where R1, R2, K1,&K2 are arbitrary complex constants and (3.37) and (3.38)

are the solution of Maxwell’s equations (2.22-2.23).

3.6 Conclusion

In this chapter, we derived bicomplex Sumudu transform with convergence con-

ditions and some of its basic properties which are useful in finding the solution

of differential equations involving bicomplex-valued functions.
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4
Stieltjes and Laplace-Stieltjes Transforms in

Bicomplex Space and Applications

The main findings of this chapter have been published as:

1. Agarwal R., Goswami M.P. and Agarwal R.P. (2014), Bicomplex version of

Stieltjes transform and applications, Dynamics of Continuous, Discrete and

Impulsive Systems Series B: Applications & Algorithms, 21(4-5), 229-246.

2. Agarwal R., Goswami M.P. and Agarwal R.P. (2015), Tauberian theo-

rem and applications of bicomplex Laplace-Stieltjes transform, Dynamics

of Continuous, Discrete and Impulsive Systems, Series B: Applications &

Algorithms, 22, 141-153.
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4. STIELTJES AND LAPLACE-STIELTJES TRANSFORMS IN
BICOMPLEX SPACE AND APPLICATIONS

In this chapter, motivated by work of Galue et al. [51] we investigate bicomplex

Stieltjes transform which is generalization of complex Stieltjes transform and

also, investigate bicomplex Laplace-Stieltjes transform which is generalization of

complex Laplace-Stieltjes transform and its Tauberian theorem. Both transforms

are powerful mathematical tool applied in the theory of moments, probability

distribution theory, tail probability, Dirichlet series, orthogonal polynomial, signal

processing and mathematical physics.

4.1 Introduction

The Stieltjes transform introduced by Stieltjes (1856-1894) in his studies on con-

tinued fractions. In 1938, Widder [147] discussed the Stieltjes transform and

its inverse with convergence conditions and relate to probability moments. In

1985, Sinha [136] developed two new characterization of the Stieltjes transform

for distribution and proved standard theorem as analyticity, uniqueness and in-

vertibility of the Stieltjes transform. In 1987, Pathak and Debnath [113] discussed

recent developments on the Stieltjes transform of generalized functions. In 1989,

Tekale [141] discussed generalized Stieltjes transform and its inversion in Banach

space-valued distributions. In 1995, Srivastava and Tuan [138] proved a new con-

volution theorem of the Stieltjes transform and solving a certain class of singular

integral equations by using convolution theorem.

In 2003, Geronimo and Hill [54] discussed the necessary and sufficient condi-

tion that point-wise limit of a sequence of Stieltjes transforms of real Borel prob-

ability measures is a Stieltjes transform of a Borel probability measure. Also,
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applications in mathematical physics are studied. In 2005, Schwarz [131] for-

mulated generalized Stieltjes transform for all ρ > 0, which is iterated Laplace

transform and therefore, its inverse can be expressed in the form of iterated in-

verse Laplace transform. In 2009, Choi [30] discussed the inversion formula for

the Stieltjes transform of spectral distribution. In 2014, Yakubivich and Mar-

tins [153] established relationship between iterated Stieltjes transform to iterated

Hilbert transform on the half axis and proved corresponding convolution and

Titchmarsh’s theorem.

4.1.1 Complex Stieltjes Transform

Definition 4.1. A real-valued function F (t) of real variable t which satisfies the

following three conditions:

(i) non-decreasing,

(ii) right-continuous,

(iii) limt→∞ F (t) = 1, limt→−∞ F (t) = 0

is called a probability distribution function.

Note. If F (t) be probability distribution function of probability density function

f(t). Then F (t) =
∫ t
−∞ f(x)dx, ∀ t ∈ R. Support of f written supp(f) is the set

of points where f is non-zero, i.e.

supp(f) = {x ∈ X | f(x) 6= 0}.

Definition 4.2 (Yyh-Shin Huang [67]). Let F (t) be a probability distribution

function for t ∈ R. Its Stieltjes transform SF (s) is defined as

SF (s) =

∫ ∞
−∞

dF (t)

t− s
, (4.1)

where s = x+ i1y ∈ C1, SF (s) is exist and convergent for Im(s) = y > 0 and C1

is the complex plane.
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Since ∣∣∣∣∫ ∞
−∞

dF (t)

t− s

∣∣∣∣ < ∫ ∞
−∞

1

y
dF (t) =

1

y
<∞,

the existence of the integral is trivial.

We require the following complex inversion formula for Stieltjes transform to

define its bicomplex form.

Theorem 4.1 (Choi [30]). For any λ1 < λ2

F (λ2)− F (λ1) = lim
y→0

1

π

∫ λ2

λ1

Im(SF (x+ i1y))dx, (4.2)

where λ1 and λ2 are continuity points of distribution function F .

On the other hand , the Laplace-Stieltjes transform is similar to Laplace transform

which named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, it is the

Laplace transform of Stieltjes measure, which is defined as

F (s) =

∫ ∞
0

e−stdα(t), s = x+ i1y ∈ C1 (4.3)

where α(t) is function of bounded variation on any interval [0, X], (0 < X <∞).

In 1960, Saltz [128] discussed the inversion theorem for Laplace-Stieltjes trans-

form. In 1966, Ditzian and Jakimovski [36] proved a general inversion theorem for

Laplace-Stieltjes transform which improved the result obtained by Saltz [128]. In

1990, Batty [14] discussed the Tauberian theorem for Laplace-Stieltjes transform,

power series and Dirichlet series. In 1994, Lin extended the uniqueness theorem

for the moment generating function and for the Laplace-Stieltjes transform.

In 2007, Nakagawa [110] discussed that if the abscissa of convergence of the

Laplace-Stieltjes transform is negative finite and the real point on the axis of
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convergence is a pole of the Laplace-Stieltjes transform, then the tail probabil-

ity decays exponentially. In 2012, Xu et al. [152] discussed the convergence

of Laplace-Stieltjes transform which represents the proximate order and type

function for analytic functions of finite order and investigated growthn of such

functions. In [158], Ziolkowski discussed methods connected with applications of

Laplace-Stieltjes transform and generating functions.

In 2013, Xu and Xuan [151] discussed the growth and value distribution of

Laplace-Stieltjes transformations with infinite order in the right half-plane. In

[51], Galue et al. established two theorems on Laplace-Stieltjes transform and

applications of these theorems to evaluate some integrals. In 2014, Kong and

Yang [87] investigated a type function of Laplace-Stieltjes transforms convergent

in the complex plane, which extends some results of Dirichlet series.

4.2 Bicomplex Stieltjes Transform

In the following theorem we find the bicomplex Stieltjes transform with the help

of bicomplex Laplace transform already discussed in the chapter 2.

Theorem 4.2. Let f(t) be any bicomplex-valued function of real variable t ≥ 0

and F (ξ), ξ ∈ C2 be bicomplex Laplace transform of f(t). Then the Stieltjes

transform of f(t) is

Sf (ξ) = L{L{f(t)}} =

∫ ∞
0

1

ξ + t
f(t)dt, (4.4)

provided that the integral is absolutely convergent.

Proof. The bicomplex Laplace transform (see, section 2.2) is given by

F (ξ) = L{f(t)} =

∫ ∞
0

e−ξtf(t)dt, where ξ = s1e1 + s2e2 ∈ D ⊂ C2
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∴ Bicomplex Stieltjes transform

Sf (ξ) = L{L{f(t)}} =

∫ ∞
0

e−ξp
∫ ∞

0

e−ptf(t)dt dp; p = p1e1 + p2e2 ∈ C2

{where p1 and p2 varies from 0 to ∞}

=

∫ ∞
0

∫ ∞
0

e−(ξ+t)pf(t)dt dp

=

∫ ∞
0

∫ ∞
0

e−(s1e1+s2e2+t)(p1e1+p2e2)f(t)dt d(p1e1 + p2e2)

=

(∫ ∞
0

∫ ∞
0

e−(s1+t)p1f(t)dt dp1

)
e1 +

(∫ ∞
0

∫ ∞
0

e−(s2+t)p2f(t)dt dp2

)
e2

=

(∫ ∞
0

1

s1 + t
f(t)dt

)
e1 +

(∫ ∞
0

1

s2 + t
f(t)dt

)
e2

=

∫ ∞
0

1

(s1e1 + s2e2) + t
f(t)dt =

∫ ∞
0

1

ξ + t
f(t)dt. (4.5)

Remark 4.1. The integral (4.5) is analytic in C2\supp(f), where

supp(f) = {ξ : ξ = s1e1 + s2e2; Im(P1 : ξ) = 0 and Im(P2 : ξ) = 0}, where

Im(P1 : ξ) = Im(s1) and Im(P2 : ξ) = Im(s2). For convenience and particular

applications in probability theory, the bicomplex Stieltjes transform of a proba-

bility distribution is defined on the upper bicomplex space excluding support of

f(t) and is integrated over (−∞,∞) i.e. Im(s1) > 0 and Im(s2) > 0.

Let F (t) be probability distribution function defined on (−∞,∞) for t ∈ R.

Its Stieltjes transform SF (s1) is defined as

SF (s1) =

∫ ∞
−∞

dF (t)

t− s1

,

where s1 = x1 + i1y1 ∈ C1, SF (s1) exists and is convergent and analytic for

Im(s1) = y1 > 0 and take another Stieltjes transform for s2 ∈ C1 such that

SF (s2) =

∫ ∞
−∞

dF (t)

t− s2

,
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where s2 = x2 + i1y2 ∈ C1, SF (s2) exists and is convergent and analytic for

Im(s2) = y2 > 0. Now we have linear combination of SF (s1) and SF (s2) with e1

and e2 such as:

SF (s1)e1 + SF (s2)e2 =

∫ ∞
−∞

dF (t)

t− s1

e1 +

∫ ∞
−∞

dF (t)

t− s2

e2 =

∫ ∞
−∞

dF (t)

t− (s1e1 + s2e2)

=

∫ ∞
−∞

dF (t)

t− ξ
= SF (ξ)

SF (ξ) exist for Im(s1) > 0 and Im(s2) > 0 that is, Im(P1 : ξ) > 0 and Im(P2 :

ξ) > 0.

Since SF (s1) and SF (s2) are complex valued functions which are convergent

and analytic for Im(s1) > 0 and Im(s2) > 0 respectively, so a bicomplex valued

function SF (ξ)=SF (s1)e1 +SF (s2)e2 will be convergent and analytic in the region

D defined as:

D = {ξ : ξ = s1e1 + s2e2; Im(P1 : ξ) > 0 and Im(P2 : ξ) > 0}. (4.6)

∵ Im(s1) = y1 > 0 and Im(s2) = y2 > 0, then

ξ = (x1 + i1y1)e1 + (x2 + i1y2)e2 = (x1 + i1y1)

(
1 + i1i2

2

)
+ (x2 + i1y2)

(
1 + i1i2

2

)
=
x1 + x2

2
+

(
y1 + y2

2

)
i1 +

(
y2 − y1

2

)
i2 +

(
x1 − x2

2

)
i1i2

Now there are three possible cases:

1. If y1 = y2 then y2−y1
2

= 0 and y1+y2
2

= y1 = y2 > 0. Hence if ξ = a0 + a1i1 +

a2i2 + a3i1i2, then a1 > 0 and a2 = 0.

2. If y1 > y2 then y2−y1
2

< 0 and y1+y2
2

> 0+y1
2

> y1−y2
2
. Thus a1 > −a2 and a2 < 0.
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3. If y1 < y2 then y2−y1
2

> 0 and y1+y2
2

> 0+y2
2

> y2−y1
2
. Thus a1 > a2 and a2 > 0.

From these three conditions following three sets can be defined:

D1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a1 > 0 and a2 = 0}

D2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a1 > −a2 and a2 < 0}

D3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a1 > a2 and a2 > 0}, respectively.

Thus, Im(P1 : ξ) > 0 and Im(P2 : ξ) > 0 implies ξ ∈ D = D1 ∪ D2 ∪ D3.

Conditions in the set D1, D2 and D3 can be combined and written as a1 > |a2|

and D defined as:

D = {ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ C2 : a1 > |a2|}

= {ξ ∈ C2 : Imi1(ξ) > |Imi2(ξ)|} (4.7)

where Imi1(ξ) and Imi2(ξ) denote the imaginary part of a bicomplex number w.r.t.

i1 and i2, respectively.

Conversely, the existence condition of bicomplex Stieltjes transform F (ξ) can

be obtained in the following way:

If ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ Ω, a1 > |a2|. (4.8)

Now, in terms of idempotent components, ξ can be expressed as

ξ = a0 + a1i1 + a2i2 + a3i1i2

= [(a0 + a3) + i1(a1 − a2)] e1 + [(a0 − a3) + i1(a1 + a2)] e2

= s1e1 + s2e2.

Depending on the value of a2, there arises three cases:
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1. When a2 = 0, from the inequality (4.8) a1 > 0 which trivially leads a1−a2 >

0 and a1 + a2 > 0.

2. When a2 > 0, from the inequality (4.8) a1 − a2 > 0. This result can be

interpreted as a1 + a2 > a1 − a2 > 0.

3. When a2 < 0, from the inequality (4.8) a1 + a2 > 0. This result can be

interpreted as a1 − a2 > a1 + a2 > 0.

Hence the result.

As a consequence of the Theorem 4.2 and above discussion, bicomplex Stieltjes

transform can be defined as

Definition 4.3. Let F (t) be probability distribution function defined on (−∞,∞)

for t ∈ R. Its bicomplex Stieltjes transform is defined as

SF (ξ) =

∫ ∞
−∞

dF (t)

t− ξ
, ξ ∈ D ⊂ C2. (4.9)

It is well-defined in D and defined as

D = C2\supp(F ) = {ξ ∈ C2 : Imi1(ξ) > |Imi2(ξ)|} , (4.10)

where supp(F ) = {ξ : ξ = s1e1 + s2e2; Im(s1) = 0 and Im(s2) = 0}.

In terms of expected value, the bicomplex-valued Stieltjes transform can be

expressed as

SF (ξ) =

∫ ∞
−∞

dF (t)

t− ξ
= −

∫ ∞
−∞

dF (t)

ξ(1− tξ−1)

= −
∫ ∞
−∞

(1− tξ−1)−1dF (t)

ξ

= −
∞∑
n=0

∫ ∞
−∞

(tξ−1)ndF (t)

ξ
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= −
∞∑
n=0

∫ ∞
−∞

tndF (t)

ξn+1
= −

∞∑
n=0

E[tn]

ξn+1

∴ SF (ξ) = −
∞∑
n=0

E[tn]

ξn+1
(4.11)

[where E represent the expected value.]

If instead of probability distribution of real variable, we consider the probability

distribution of complex variable, the Stieltjes transform for such distribution can

be defined as

Definition 4.4. Let F (z) be probability distribution function of complex vari-

able. Then bicomplex Stieltjes transform is given by

SF (ξ) =

∫
S

dF (z)

z − ξ
, ξ ∈ C2 (4.12)

where S is the support of F (z).

The Stieltjes transform inversion formula for bicomplex function is given in

the following theorem:

Theorem 4.3. For any λ1 < λ2

F (λ2)− F (λ1) = lim
y1,y2→0

1

π

∫ λ2

λ1

Imi1(SF (ξ))d(Re(ξ)), ξ = s1e1 + s2e2 ∈ C2

(4.13)

where λ1 and λ2 are continuity points of distribution function F , Imi1(ξ) denotes

imaginary part bicomplex number ξ w.r.t. i1 component and s1 = x1 + i1y1, s2 =

x2 + i1y2 with Im(P1 : ξ) > 0, Im(P2 : ξ) > 0.

Proof. We have by definition,

lim
y1,y2→0

1

π

∫ λ2

λ1

Imi1(SF (ξ))d(Re(ξ))

= lim
y1,y2→0

1

π

∫ λ2

λ1

Imi1 (SF (s1e1 + s2e2)) d (Re(s1e1 + s2e2))

=

(
lim
y1→0

1

π

∫ λ2

λ1

Imi1 (SF (s1)) d (Re(s1))

)
e1 +

(
lim
y2→0

1

π

∫ λ2

λ1

Imi1 (SF (s2)) d (Re(s2))

)
e2
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=

(
lim
y1→0

1

π

∫ λ2

λ1

Imi1 (SF (x1 + i1y1)) dx1

)
e1 +

(
lim
y2→0

1

π

∫ λ2

λ1

Imi1 (SF (x2 + i1y2)) dx2

)
e2

= (F (λ2)− F (λ1)) e1 + (F (λ2)− F (λ1)) e2 [by Theorem 4.1]

= F (λ2)− F (λ1).

4.3 Some Basic Operational Properties of Stielt-

jes Transform

In this section we derive some basic operational properties of bicomplex Stieltjes

transform.

Theorem 4.4. Let Sf (ξ) be bicomplex Stieltjes transform of bounded variation

function f(t), then Sf (f(t+ a)) = Sf (ξ + a); where a is constant and ξ = s1e1 +

s2e2 ∈ C2\supp(f).

Proof. We have, by definition

Sf (f(t+ a)) =

∫ ∞
−∞

f(t+ a)

t− ξ
dt =

∫ ∞
−∞

f(t+ a)

t− (s1e1 + s2e2)
dt

=

∫ ∞
−∞

f(t+ a)

t− s1

dt e1 +

∫ ∞
−∞

f(t+ a)

t− s2

dt e2

Put t+ a = x ⇒ dt = dx

=

∫ ∞
−∞

f(x)

x− (s1 + a)
dx e1 +

∫ ∞
−∞

f(x)

x− (s2 + a)
dx e2

= Sf (s1 + a)e1 + Sf (s2 + a)e2 = Sf ((s1e1 + s2e2) + a)

= Sf (ξ + a).

Theorem 4.5. Let Sf (ξ) be bicomplex Stieltjes transform of bounded variation

function f(t), then Sf (f(at)) = Sf (aξ); where a > 0 is constant and ξ = s1e1 +

s2e2 ∈ C2\supp(f).
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Proof. We have, by definition

Sf (f(at)) =

∫ ∞
−∞

f(at)

t− ξ
dt =

∫ ∞
−∞

f(at)

t− (s1e1 + s2e2)
dt

=

∫ ∞
−∞

f(at)

t− s1

dt e1 +

∫ ∞
−∞

f(at)

t− s2

dt e2

Put at = x ⇒ dt = dx
a

=

∫ ∞
−∞

f(x)

x− as1

dx e1 +

∫ ∞
−∞

f(x)

x− as2

dx e2

= Sf (as1)e1 + Sf (as2)e2 = Sf (a(s1e1 + s2e2))

= Sf (aξ).

Theorem 4.6. Let Sf (ξ) be bicomplex Stieltjes transform of bounded variation

function f(t), then Sf (tf(t)) = ξSf (ξ) +
∫∞
−∞ f(t)dt; where a is constant and

ξ = s1e1 + s2e2 ∈ C2\supp(f). Provided the integral on the right hand side exists.

Proof. We have, by definition

Sf (tf(t)) =

∫ ∞
−∞

tf(t)

t− ξ
dt =

∫ ∞
−∞

tf(t)

t− (s1e1 + s2e2)
dt

=

∫ ∞
−∞

tf(t)

t− s1

dt e1 +

∫ ∞
−∞

tf(t)

t− s2

dt e2

=

∫ ∞
−∞

(t− s1 + s1)f(t)

t− s1

dt e1 +

∫ ∞
−∞

(t− s2 + s2)f(t)

t− s2

dt e2

=

∫ ∞
−∞

f(t)dt e1 + s1

∫ ∞
−∞

f(t)

t− s1

dt e1 +

∫ ∞
−∞

f(t)dt e2 + s2

∫ ∞
−∞

f(t)

t− s2

dt e2

= (s1e1 + s2e2)

∫ ∞
−∞

f(t)

t− (s1e1 + s2e2)
dt+

∫ ∞
−∞

f(t)dt (e1 + e2)

= ξ

∫ ∞
−∞

f(t)

t− ξ
dt+

∫ ∞
−∞

f(t)dt

= ξSf (ξ) +

∫ ∞
−∞

f(t)dt.

82



4.4 Convolution Theorem

Theorem 4.7. Let Sf (ξ) be bicomplex Stieltjes transform of bounded variation

function f(t), then Sf

(
f(t)
t−a

)
= 1

a−ξ (Sf (ξ)− Sf (a)) ; where a is constant and

ξ = s1e1 + s2e2 ∈ C2\supp(f).

Proof. We have, by definition

Sf

(
f(t)

t− a

)
=

∫ ∞
−∞

f(t)

(t− a)(t− ξ)
dt =

∫ ∞
−∞

f(t)

(t− a)(t− (s1e1 + s2e2))
dt

=

∫ ∞
−∞

f(t)

(t− a)(t− s1)
dt e1 +

∫ ∞
−∞

f(t)

(t− a)(t− s2)
dt e2

=
1

a− s1

(∫ ∞
−∞

(
1

t− s1

− 1

t− a

)
f(t)dt

)
e1

+
1

a− s2

(∫ ∞
−∞

(
1

t− s2

− 1

t− a

)
f(t)dt

)
e2

=
1

a− s1

(Sf (s1)− Sf (a)) e1 +
1

a− s2

(Sf (s2)− Sf (a)) e2

=
1

a− (s1e1 + s2e2)
(Sf (s1e1 + s2e2)− Sf (a))

=
1

a− ξ
(Sf (ξ)− Sf (a)) .

4.4 Convolution Theorem

Motivated by the work on convolution theorem of Stieltjes transform and its

applications by Srivastva and Tuan [138] and also work of Sinha [136], we derive

the convolution theorem for bicomplex Stieltjes transform in this section.

Theorem 4.8. Let Sf (ξ) and Sg(ξ) are the bicomplex Stieltjes transforms of

bounded variation functions f(t) and g(t) with domains C2\supp(f) and C2\supp(g)

respectively, then f ∗ g is Stieltjes transformable in Ω, where Ω = C2\supp(f) ∩
C2\supp(f) and for every ξ ∈ Ω

S(f∗g)(ξ) = Sf (ξ)Sg(ξ). (4.14)
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Proof. Since we know that the convolution of two function of bounded variation

on the interval (−∞,∞) is

h(t) = (f ∗ g)(t) = f(t)

∫ ∞
−∞

g(u)

u− t
du+ g(t)

∫ ∞
−∞

f(u)

u− t
du (4.15)

Under the hypothesis of the theorem, (f ∗ g)(t) is Stieltjes transformable.

Next, by using the definition of bicomplex Stieltjes transform and (4.15), we

have

S(f∗g)(ξ) =

∫ ∞
−∞

(f ∗ g)(t)

t− ξ
dt

=

∫ ∞
−∞

f(t)

t− ξ

[∫ ∞
−∞

g(u)

u− t
du

]
dt+

∫ ∞
−∞

g(t)

t− ξ

[∫ ∞
−∞

f(u)

u− t
du

]
dt (4.16)

We now change the order of integration in the second integral on the right-hand

side of (4.16),we have

S(f∗g)(ξ) =

∫ ∞
−∞

f(t)

t− ξ

[∫ ∞
−∞

g(u)

u− t
du

]
dt+

∫ ∞
−∞

f(u)

[∫ ∞
−∞

g(t)

(t− ξ)(u− t)
dt

]
du

(4.17)

or, similarly,

S(f∗g)(ξ) =

∫ ∞
−∞

f(t)

[∫ ∞
−∞

g(u)

(t− ξ)(u− t)
du

]
dt+

∫ ∞
−∞

f(t)

[∫ ∞
−∞

g(u)

(u− ξ)(t− u)
du

]
dt

=

∫ ∞
−∞

f(t)

[∫ ∞
−∞

g(u)

u− t

{
1

t− ξ
− 1

u− ξ

}
du

]
dt

Simplifying this last double integral, we have

S(f∗g)(ξ) =

∫ ∞
−∞

f(t)

t− ξ
dt

∫ ∞
−∞

g(u)

u− ξ
du

= Sf (ξ)Sg(ξ).
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4.5 Applications of Bicomplex Stieltjes Trans-

form

The bicomplex Stieltjes transform is highly applicable in theory of moments, prob-

ability distribution theory, orthogonal polynomial, signal processing and math-

ematical physics. In this section discuss the applications of bicomplex Stieltjes

transform to check the symmetry of probability distribution function and finding

the solution of singular integral equation of bicomplex functions.

Definition 4.5. A probability distribution function F is symmetric if F (t) =

1 − F (t−), ∀ t ∈ R. Where F (t−) = limh→0+ F (t − h) and F (t) = 1 − F (t−) is

called the conjugate distribution of F (t).

Theorem 4.9 (Huang Yyh-Shin [67]). A probability distribution function F is

symmetric if and only if SF (z) = −SF (−z), ∀ z ∈ C1\R.

(a) To check the symmetry of probability distribution function F we may use

bicomplex Stieltjes transform as described in the following theorem:

Theorem 4.10. A probability distribution function F is symmetric if and only

if SF (ξ) = −SF (−ξ), ∀ ξ ∈ C2\supp(F ). Where supp(F ) = {ξ : ξ = s1e1 +

s2e2; Im(s1) = 0 and Im(s2) = 0}.

Proof. Suppose that F is symmetric, i.e. F (t) = 1− F (−t−).

SF (ξ) =

∫ ∞
−∞

1

t− ξ
dF (t)

=

∫ ∞
−∞

1

t− (s1e1 + s2e2)
d(1− F (−t−))

= −
(∫ ∞
−∞

1

t− s1

dF (−t)
)
e1 −

(∫ ∞
−∞

1

t− s2

dF (−t)
)
e2

= −SF (−s1)e1 − SF (−s2)e2
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= −SF (−s1e1 − s2e2) {∵ SF (s1e1 + s2e2) = SF (s1)e1 = SF (s1)e1}

= −SF (−ξ).

Suppose that SF (ξ) = −SF (−ξ). From the bicomplex inversion formula, if t is a

continuity point of F , then

F (t) = lim
y1,y2→0+

1

π

∫ t

−∞
Imi1(SF (ξ))d(Re(ξ)).

We then put the discussion into two parts.

(i) Assume that both t and −t are continuity points of F . Then

F (t) = lim
y1,y2→0+

1

π

∫ t

−∞
Imi1(SF (ξ))d(Re(ξ))

= lim
y1,y2→0+

1

π

∫ t

−∞
Imi1(SF (s1e1 + s2e2))d(Re(s1e1 + s2e2))

=

(
lim
y1→0+

1

π

∫ t

−∞
Imi1(SF (s1))d(Re(s1))

)
e1

+

(
lim
y2→0+

1

π

∫ t

−∞
Imi1(SF (s2))d(Re(s2))

)
e2

=

(
lim
y1→0+

1

π

∫ t

−∞
Imi1(SF (x1 + i1y1))dx1

)
e1

+

(
lim
y2→0+

1

π

∫ t

−∞
Imi1(SF (x2 + i1y2))dx2

)
e2

= (1− F (−t)) e1 + (1− F (−t)) e2 [by Theorem 4.9]

= 1− F (−t).

(ii) Assume that t is any real number. Since F is monotonic, the set of discon-

tinuities of F is countable. Moreover, F is right continuous and the continuity

points of F are dense. Hence, we can find a sequence tn → t from the right hand

side with both {tn} and {−tn} are continuity points of F. Then

F (t) = lim
n→∞

F (tn)

= lim
n→∞

(1− F (−tn)) {by (i)}

= 1− lim
n→∞

F (−tn)

= 1− F (−t−).
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By (i) and (ii), F is symmetric. The proof is complete.

(b) Here we find the solution by using convolution theorem of bicomplex Stieltjes

transform of the following Cauchy’s singular integral equation:

f(t) + λ

∫ ∞
−∞

f(u)

u− t
du = g(t) (λ 6= 0), (4.18)

where g(t) is known and f(t) is an unknown function to be determined. If f(t) is

complex-valued function then solution of (4.18) can be seen in Chakrabarti and

Martha [25, p. 25]. In case, f(t) is bicomplex-valued function, we find solution

of (4.18) by using convolution theorem of bicomplex Stieltjes transform.

Then, in view of the well-known integral (Erdelyi et al. [43, p. 251]):∫ ∞
−∞

ei1au

u− ξ
du = πi1e

i1aξ, a > 0; ξ ∈ D as defined in (4.10) (4.19)

Multiplying (4.18) by i1πe
i1at on both side and putting λ = −i1

π
, we have

f(t)

∫ ∞
−∞

ei1au

u− t
du+ ei1at

∫ ∞
−∞

f(u)

u− t
du = i1πe

i1atg(t)

or, equivalently,

f(t) ∗ ei1at = i1πe
i1atg(t) (4.20)

Applying the convolution theorem of bicomplex Stieltjes transform on (4.20), we

have

S{f(t) : ξ}
∫ ∞
−∞

ei1at

t− ξ
dt = πi1S{ei1atg(t) : ξ} (4.21)

By using (4.19), we have

S{f(t) : ξ} = e−i1aξS{ei1atg(t) : ξ} (4.22)
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S{f(t) : s1e1 + s2e2} = e−i1a(s1e1+s2e2)S{ei1atg(t) : s1e1 + s2e2}

S{f(t) : s1}e1 + S{f(t) : s2}e2 =
(
e−i1as1S{ei1atg(t) : s1}

)
e1

+
(
e−i1as2S{ei1atg(t) : s2}

)
e2 (4.23)

Taking the classical inversion Stieltjes transform (Widder [149]) of (4.23) on both

sides , we have

f(t) =(
lim
ε1→0+

1

2πi1

(
ei1a(−t+i1ε1)S{ei1atg(t) : −t+ i1ε1} − ei1a(−t−i1ε1)S{ei1atg(t) : −t− i1ε1}

))
e1

+

(
lim
ε2→0+

1

2πi1

(
ei1a(−t+i1ε2)S{ei1atg(t) : −t+ i1ε2} − ei1a(−t−i1ε2)S{ei1atg(t) : −t− i1ε2}

))
e2

∴f(t) =

lim
ε1,ε2→0+

1

2πi1

(
ei1a(−t+(ε1+ε2)i1−(ε1−ε2)

i2
2

)S

{
ei1atg(t) : (−t+ (ε1 + ε2)i1 − (ε1 − ε2)

i2
2

}
− ei1a(−t−(ε1+ε2)i1+(ε1−ε2)

i2
2

)S

{
ei1atg(t) : (−t− (ε1 + ε2)i1 + (ε1 − ε2)

i2
2

})
.

(4.24)

equation (4.24) is the solution of the singular integral equation (4.18).

(c) Here we discuss the application of bicomplex Stieltjes transform in spectral

analysis of large dimensional random matrices, Bai et al. [9] as follows:

Similar to bicomplex Fourier transform in classical probability theory and

signal processing which allows to perform simpler analysis in the bicomplexified

frequency domain than the time domain, the bicomplex Stieltjes transform often

used for spectral analysis of large dimensional random matrices.
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For X ∈ CN×N
1 matrix, (see, for details, Couillet and Debbah [32]) with real

eigenvalues λ1, λ2, ..., λN and eigenvalue distribution FX , we use Stieltjes trans-

form for s ∈ C1 \ {λ1, λ2, ..., λN},

SFX (s) =

∫
S

dFX(t)

t− s
=

1

N

N∑
k=1

1

λk − s
=

1

N
tr(X − sIN)−1.

If X ∈ CN×N
2 matrix with bicomplex entries, (Alpay et al. [4]) with real eigen-

values λ1, λ2, ..., λN and eigenvalue distribution FX , we use bicomplex Stieltjes

transform for ξ ∈ C2 \ {λ1, λ2, ..., λN},

SFX (ξ) =

∫
S

dFX(t)

t− ξ
=

1

N

N∑
k=1

1

λk − ξ
=

1

N
tr(X − ξIN)−1.

In case, if X ∈ CN×N
2 have complex eigenvalues λ1, λ2, ..., λN and eigenvalue

distribution FX , we use bicomplex Stieltjes transform for ξ ∈ C2\{λ1, λ2, ..., λN},

SFX (ξ) =

∫
S

dFX(z)

z − ξ
=

1

N

N∑
k=1

1

λk − ξ
=

1

N
tr(X − ξIN)−1

where S is the support of the distribution FX .

If the bicomplex Stieltjes transform of random matrix X ∈ CN×N
2 is known,

then its eigenvalue distribution can be obtained, which is often more difficult to

obtain in the spectral domain than in the domain of bicomplex Stieltjes transform

of FX .

Let the wireless Single Input Multiple Output (SIMO) system is given by

y =
√
γHx+ n (4.25)

where H ∈ CR×T
2 , x ∈ RT , y ∈ CR

2 , n ∈ CR
2 , and γ are the channel matrix,

channel input, channel output, additive white Gaussian noise, and the signal-to-

noise ratio respectively. Moreover, entries of the channel H ∈ CR×T
2 represent

89



4. STIELTJES AND LAPLACE-STIELTJES TRANSFORMS IN
BICOMPLEX SPACE AND APPLICATIONS

the fading coefficient between each transmission path from a transmit antenna to

receive antenna. For the spectral analysis of random matrix H ∈ CR×T
2 , we use

the bicomplex Stieltjes transform.

The bicomplex Stieltjes transform is advantageous than Stieltjes transform

in complex form because in bicomplex Stieltjes transform the frequency domain

is of large class than Stieltjes transform in complex form. So it gives simpler

analysis than Stieltjes transform in complex form. It is also advantageous than

quaternionic Stieltjes transform, (Müller and Cakmak [109] and Cakmak [22])

due to commutativity property for multiplication of two bicomplex numbers.

The quaternions are inconvenient to deal with since multiplication of quaternions

does not commute, in general.

For this we give an illustration of bicomplex Stiletjes transform as follows:

Example 4.1. LetH be semicircle element, (Wigner [150]) then find the bicomplex

limiting spectrum of H i.e. SFH (ξ).

Solution. Since, ∫ ∞
−∞

dFH(t)

t− ξ
= −

∞∑
n=0

Cn
ξ2n+1

(4.26)

Since odd moments of a even distribution vanishes and Cn is nth catalan number,

(Nica and Speicher [111]) we have

SFH (ξ) = −1

ξ
−
∞∑
n=1

1

ξ2n+1

(
n∑

m=1

Cm−1Cn−m

)

= −1

ξ
− 1

ξ

∞∑
n=1

n∑
m=1

Cm−1

ξ2m+1

Cn−m
ξ2(n−m)+1

= −1

ξ
− 1

ξ

∞∑
m=1

Cm−1

ξ2m+1

(
∞∑
n=m

Cn−m
ξ2(n−m)+1

)
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= −1

ξ
− 1

ξ

∞∑
m=1

Cm−1

ξ2m+1
SFH (ξ)

= −1

ξ
− 1

ξ
S2
FH (ξ)

S2
FH (ξ) + ξSFH (ξ) + 1 = 0

∴ SFH (ξ) =
−ξ ±

√
ξ2 − 4

2
(4.27)

(Note: Since ξ ∈ D defined in (4.6) and (4.10) and by definition lim‖ξ‖→∞ ξSF (ξ) =

−1. Therefore + sign has to be chosen in ± of (4.27))

∴ SFH (ξ) =
−ξ +

√
ξ2 − 4

2
.

4.6 Bicomplex Laplace-Stieltjes Transform

Let X be a non-negative random variable with distribution function F (t) defined

on [0,∞) with F (0) = 0. Its Laplace-Stieltjes transform defined as

(LSF )(s1) =

∫ ∞
0

e−s1tdF (t), s1 ∈ C1

is absolutely convergent and analytic for Re(s1) > K, where K is the exponential

order of F (t). Take another Laplace-Stieltjes transform for s2 ∈ C1 such that

(LSF )(s2) =

∫ ∞
0

e−s2tdF (t), s2 ∈ C1

is absolutely convergent and analytic for Re(s2) > K. The linear combination of

(LSF )(s1) and (LSF )(s2) with e1 and e2 is

(LSF )(s1)e1 + (LSF )(s2)e2 =

∫ ∞
0

e−s1tdF (t)e1 +

∫ ∞
0

e−s2tdF (t)e2

=

∫ ∞
0

e−(s1e1+s2e2)tdF (t)

=

∫ ∞
0

e−ξtdF (t) = (LSF )(ξ).
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(LSF )(ξ) exists for Re(s1) > K and Re(s2) > K or Re(P1 : ξ) > K and

Re(P2 : ξ) > K.

Since (LSF )(s1) and (LSF )(s2) are complex-valued functions which are abso-

lutely convergent and analytic for Re(s1) > K and Re(s2) > K respectively, so

bicomplex-valued function (LSF )(ξ) = (LSF )(s1)e1 + (LSF )(s2)e2 will be abso-

lutely convergent and analytic in the region D defined as:

D = {ξ : ξ = s1e1 + s2e2; Re(P1 : ξ) > K and Re(P2 : ξ) > K}. (4.28)

Let s1 = x1 + i1y1 and s2 = x2 + i1y2. Thus Re(s1) = x1 > K and Re(s2) = x2 >

K, then

ξ = (x1 + i1y1)e1 + (x2 + i1y2)e2 = (x1 + i1y1)

(
1 + i1i2

2

)
+ (x2 + i1y2)

(
1 + i1i2

2

)
=
x1 + x2

2
+

(
y1 + y2

2

)
i1 +

(
y2 − y1

2

)
i2 +

(
x1 − x2

2

)
i1i2

Now there are three possible cases:

1. If x1 = x2 then x1−x2
2

= 0 and x1+x2
2

= x1 = x2 > K. Hence if ξ = a0 + a1i1 +

a2i2 + a3i1i2, then a0 > K and a3 = 0.

2. If x1 > x2 then x1−x2
2

> 0 and x1+x2
2

> K+x1
2

> K+x1
2

+ K−x2
2

= K + x1−x2
2

.

Thus a0 > K + a3 and a3 > 0.

3. If x1 < x2 then x1−x2
2

< 0 and x1+x2
2

> K+x2
2

> K+x1
2

+ K−x2
2

= K − x2−x1
2

.

Thus a0 > K − a3 and a3 < 0.
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These three conditions will make following three sets:

D1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > K and a3 = 0}

D2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > K + a3 and a3 > 0}

D3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : a0 > K − a3 and a3 < 0}, respectively.

Thus, Re(P1 : ξ) > 0 and Re(P2 : ξ) > 0 implies ξ ∈ D = D1∪D2∪D3. Conditions

in the set D1, D2 and D3 can be combined and written as a0 > K + |a3|. Thus

(4.28) can also be written in an equivalent form as

D = {ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ C2 : a0 > K + |a3|}

= {ξ ∈ C2 : Re(ξ) > K + |Imj(ξ)|} (4.29)

where Imj(ξ) denotes the imaginary part of a bicomplex number w.r.t. j.

Conversely, the existence condition of bicomplex Laplace-Stieltjes transform

F (ξ) can be obtained in the following way:

If ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ Ω, a0 > K + |a3|. (4.30)

Now, in terms of idempotent components, ξ can be expressed as

ξ = a0 + a1i1 + a2i2 + a3i1i2

= [(a0 + a3) + i1(a1 − a2)] e1 + [(a0 − a3) + i1(a1 + a2)] e2

= s1e1 + s2e2.

Depending on the value of a3, there arises three cases:
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1. When a3 = 0, from the inequality (4.30) a0 > K, which trivially leads

a0 − a3 > K and a0 + a3 > K.

2. When a3 > 0, from the inequality (4.30) a0 > K + a3, we get a0 − a3 > K.

This result can be interpreted as a0 + a3 > a0 − a3 > K.

3. When a3 < 0, from the inequality (4.30) a0 > K − a3, we get a0 + a3 > K.

This result can be interpreted as a0 − a3 > a0 + a3 > K.

Hence the result.

Thus, the bicomplex Laplace-Stieltjes transform can be defined as

Definition 4.6. Let X be a non-negative random variable with distribution

function F (t) defined on [0,∞) with F (0) = 0. Its bicomplex Laplace-Stieltjes

transform defined as

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t), ξ ∈ D ⊂ C2 (4.31)

Or in general, if α : R → C2 is bounded variation function on [0,∞). Then

bicomplex Laplace-Stieltjes transform defined as

(LSα)(ξ) =

∫ ∞
0

e−ξtdα(t), ξ ∈ D ⊂ C2 (4.32)

are absolutely convergent and analytic in D is defined as

D = {ξ ∈ C2 : Re(ξ) > K + |Imj(ξ)|} (4.33)

where K is exponential order of F (t) and Imj(ξ) denotes the imaginary part of a

bicomplex number w.r.t. j.
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4.7 Some Useful Properties of Bicomplex Laplace-

Stieltjes Transform

Motivated by work of Lin [94], Ziolkowski [158] and Debnath and Bhatta [34] we

are deriving some useful properties of Bicomplex Laplace-Stieltjes transform.

Theorem 4.11 (Linearity Property). Let probability distribution functions F (t)

and G(t) have bicomplex Laplace-Stieltjes transforms (LSF )(ξ) and (LSG)(ξ) with

Re(P1 : ξ) > K1, Re(P2 : ξ) > K1 and Re(P1 : ξ) > K2, Re(P2 : ξ) > K2,

respectively. Then for Re(P1 : ξ) > K, Re(P2 : ξ) > K, where K = max(K1, K2)

LS{c1F (t) + c2G(t)} = c1(LSF )(ξ) + c2(LSG)(ξ) (4.34)

for arbitrary constants c1, c2.

Proof. Applying the definition of bicomplex Laplace-Stieltjes transform,

LS{c1F (t) + c2G(t)} =

∫ ∞
0

e−ξtd (c1F (t) + c2G(t))

=

∫ ∞
0

e−(s1e1+s2e2)t (c1dF (t) + c2dG(t)) , [where ξ = s1e1 + s2e2]

= c1

(∫ ∞
0

e−s1tdF (t)

)
e1 + c1

(∫ ∞
0

e−s2tdF (t)

)
e2 + c2

(∫ ∞
0

e−s1xdF (t)

)
e1

+ c2

(∫ ∞
0

e−s2tdF (t)

)
e2

= c1(LSF )(s1)e1 + c1(LSF )(s2)e2 + c2(LSG)(s1)e1 + c2(LSG)(s2)e2

= c1(LSF )(s1e1 + s2e2) + c2(LSG)(s1e1 + s2e2)

= c1(LSF )(ξ) + c2(LSG)(ξ).

Theorem 4.12 (Change of Scale Property). Let LSF (ξ) be the bicomplex Laplace-

Stieltjes transform of probability distribution function F (t) for Re(P1 : ξ) >

K, Re(P2 : ξ) > K, then for a > 0

LS{F (at)} =
1

a
(LSF )

(
ξ

a

)
. (4.35)
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Proof. Applying the definition of bicomplex Laplace-Stieltjes transform,

LS{F (at)} =

∫ ∞
0

e−ξtdF (at)

put at = u then dF (at) =
dF (u)

a

=
1

a

∫ ∞
0

e−
ξ
a
udF (u)

=
1

a
(LSF )

(
ξ

a

)
.

Theorem 4.13. Let X1, X2, · · · , Xn denote the sequence of independent non-

negative random variables and (LSF1)(ξ), (LSF2)(ξ), · · · , (LSFn)(ξ) denote the

sequence of bicomplex Laplace-Stieltjes transform of these random variables re-

spectively. Also, let X = X1 + X2 + · · · + Xn be the sum of random variables

X1, X2, · · · , Xn. Let (LSF )(ξ) denote the bicomplex Laplace-Stieltjes transform

of random variable X. Then

(LSF )(ξ) =
n∏
i=1

(LSFi)(ξ), ξ ∈ D as defined in (4.33).

Proof. Applying the definition of bicomplex Laplace-Stieltjes transform, E(X)

being expected value of X

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t) = E
(
e−ξX

)
∴ (LSF )(ξ) = E

(
e−ξX

)
= E

(
eξ
∑n
i=1Xi

)
= E

(
n∏
i=1

e−ξXi

)
by mean value property of independent random variables product, we have

(LSF )(ξ) =
n∏
i=1

E
(
e−ξXi

)
=

n∏
i=1

(LSFi)(ξ).

Theorem 4.14. Let X be a non-negative random variable and F (t) and (LSF )(ξ)

are distribution function and bicomplex Laplace-Stieltjes transform of random

96



4.8 Tauberian Theorem for Bicomplex Laplace-Stieltjes Transform

variable X respectively. Then

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t) = ξ

∫ ∞
0

e−ξtF (t)dt, ξ ∈ D (4.36)

where D is defined in (4.33).

Proof. Applying the definition of bicomplex Laplace-Stieltjes transform,

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t) =

∫ ∞
0

e−(s1e1+s2e2)tdF (t)

=

(∫ ∞
0

e−s1tdF (t)

)
e1 +

(∫ ∞
0

e−s2tdF (t)

)
e2

=

(
s1

∫ ∞
0

e−s1tF (t)dt

)
e1 +

(
s2

∫ ∞
0

e−s2tF (t)dt

)
e2

[using bi-part integration]

= (s1e1 + s2e2)

∫ ∞
0

e−(s1e1+s2e2)tF (t)dt

= ξ

∫ ∞
0

e−ξtF (t)dt.

4.8 Tauberian Theorem for Bicomplex Laplace-

Stieltjes Transform

Tauberian Theorem used to study asymptotic behaviour of F (t) from asymptotic

behaviour of (LSF )(ξ). This has found applications in communications, network-

ing, high-SNR analysis of performance over fading channels and proving prime

number theorem (Widder [148]). In this section, we have made efforts to extend

the following Ikehara’s Tauberian theorem (Ikehara [71], see also Widder [148, p.

233, Theorem 17]) for bicomplex variable.
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Theorem 4.15. Let F (t) be a non-negative and non-decreasing function defined

in 0 ≤ t <∞, and let the integral

(LSF )(s) =

∫ ∞
0

e−stdF (t), s = x+ i1y ∈ C1

converges for Re(s) > 1. If for some constant A and some function g(y)

lim
Re(s)→1+

(
(LSF )(s)− A

s− 1

)
= g(y)

uniformly in every finite interval of y, then we have

lim
t→∞

e−tF (t) = A.

Motivated by their work, we find the Tauberian theorem of bicomplex Laplace-

Stieltjes transform as follows:

Theorem 4.16 (Bicomplex Tauberian Theorem). Let F (t) be a probability dis-

tribution function defined in 0 ≤ t <∞, and let the integral

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t), ξ = s1e1 + s2e2 ∈ C2

converges for Re(P1 : ξ) > 1 and Re(P2 : ξ) > 1. If for some constant A and some

function g(y)

lim
Re(ξ)→1+, Imj(ξ)→0

(
(LSF )(ξ)− A

ξ − 1

)
= g(y),

(where y = y1e1 + y2e2 and A = A1e1 + A2e2)

uniformly in every finite interval of y1 and y2, then we have

lim
t→∞

e−tF (t) = A,

where Imj(ξ) denotes the imaginary part of bicomplex number ξ w.r.t. j compo-

nent.
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Proof. Applying the definition of bicomplex Laplace-Stieltjes transform,

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t), ξ = s1e1 + s2e2 ∈ C2

=

∫ ∞
0

e−(s1e1+s2e2)tdF (t)

=

(∫ ∞
0

e−s1tdF (t)

)
e1 +

(∫ ∞
0

e−s2tdF (t)

)
e2

= (LSF )(s1)e1 + (LSF )(s2)e2 (4.37)

Now,

(LSF )(s1) =

∫ ∞
0

e−s1tdF (t), s1 = x1 + i1y1 ∈ C1 (4.38)

The integral in (4.38) converges for Re(s1) > 1. If for some constant A1 and some

function g(y1)

lim
Re(s1)→1+

{
(LSF )(s1)− A1

s1 − 1

}
= g(y1) (4.39)

uniformly in every finite interval of y1, then we have

lim
t→∞

e−tF (t) = A1. (4.40)

Similarly,

(LSF )(s2) =

∫ ∞
0

e−s2tdF (t), s2 = x1 + i1y1 ∈ C1

converges for Re(s2) > 1. If for some constant A2 and some function

lim
Re(s2)→1+

{
(LSF )(s2)− A2

s2 − 1

}
= g(y2) (4.41)

uniformly in every finite interval of y2, then we have

lim
t→∞

e−tF (t) = A2. (4.42)
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Since g(y1) and g(y2) are analytic functions, therefore by taking linear combina-

tion of (4.39) and (4.41) with e1 and e2 respectively, we have

lim
Re(s1)→1+

{
(LSF )(s1)− A1

s1 − 1

}
e1 + lim

Re(s2)→1+

{
(LSF )(s2)− A2

s2 − 1

}
e2 = g(y1)e1 + g(y2)e2

lim
Re(ξ)→1+, Imj(ξ)→0

{
(LSF )(s1e1 + s2e2)− A1e1 + A2e2

(s1e1 + s2e2)− 1

}
= g(y1e1 + y2e2)

lim
Re(ξ)→1+, Imj(ξ)→0

{
(LSF )(ξ)− A

ξ − 1

}
= g(y) (4.43)

(where ξ = s1e1 + s2e2, y = y1e1 + y2e2 and A = A1e1 + A2e2)

uniformly in every finite interval of y1 and y2.

Therefore, by taking the linear combination of (4.40) and (4.42) with e1 and

e2 respectively, we have(
lim
t→∞

e−tF (t)
)
e1 +

(
lim
t→∞

e−tF (t)
)
e2 = A1e1 + A2e2

lim
t→∞

e−tF (t) = A.

4.9 Applications of Bicomplex Laplace-Stieltjes

Transform

The bicomplex Laplace-Stieltjes transform has found applications in applied physics,

moments, probability distribution theory, signal processing and other related

problem. In this section, we discuss applications of bicomplex Laplace-Stieltjes

transform to tail probability and bicomplex Dirichlet series.

Theorem 4.17 (Nakagawa [110]). Let X be a non-negative random variable and

F (t) = P (X ≤ t) be the probability distribution function of X. Let

(LSF )(s) =

∫ ∞
0

e−stdF (t), s ∈ C1
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be the Laplace-Stieltjes transform of F (t) and σ0 be the abscissa of convergence

of (LSF )(s). We assume −∞ < σ0 < 0. If s = σ0 is a pole of (LSF )(s), then

lim
t→∞

1

t
logP (X > t) = σ0.

(a) To find the exponential decay tail probability in bicomplex space we may

use the the bicomplex Laplace-Stieltjes transform as described in the following

theorem:

Theorem 4.18. Let X be a non-negative random variable and F (t) = P (X ≤ t)

be the bicomplex-valued probability distribution function of X for t ∈ R. Let

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t), ξ ∈ D [where D defined in (4.28) and (4.33)]

be the bicomplex Laplace-Stieltjes transform of F (t) and (LSF )(ξ) converges for

Re(P1 : (ξ) > σ0 and Re(P2 : (ξ) > σ0. We assume −∞ < σ0 < 0. If ξ = σ0 is a

pole of (LSF )(ξ), then

lim
t→∞

1

t
logP (X > t) = σ0.

Proof. Applying the definition of bicomplex Laplace-Stieltjes transform,

(LSF )(ξ) =

∫ ∞
0

e−ξtdF (t)

=

∫ ∞
0

e−(s1e1+s2e2)tdF (t)

=

(∫ ∞
0

e−s1tdF (t)

)
e1 +

(∫ ∞
0

e−s2tdF (t)

)
e2

= (LSF )(s1)e1 + (LSF )(s2)e2

Now,

(LSF )(s1) =
∫∞

0
e−s1tdF (t) is converges for Re(s1) > σ0, −∞ < σ0 < 0. There-

fore by Theorem 4.17, we have

lim
t→∞

1

t
logP (X > t) = σ0 (4.44)
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where s1 = σ0 be the pole of (LSF )(s1).

Similarly,

(LSF )(s2) =
∫∞

0
e−s2tdF (t) is converges for Re(s2) > σ0, −∞ < σ0 < 0. There-

fore, by Theorem 4.17, we have

lim
t→∞

1

t
logP (X > t) = σ0 (4.45)

where s2 = σ0 be the pole of (LSF )(s2).

Now taking the linear combination of (4.44) and (4.45) with e1 and e2 respectively,

we have(
lim
t→∞

1

t
logP (X > t)

)
e1 +

(
lim
t→∞

1

t
logP (X > t)

)
e2 = σ0e1 + σ0e2

∴ lim
t→∞

1

t
logP (X > t) = σ0

where ξ = σ0 is a pole of (LSF )(ξ). Therefore, bicomplex-valued tail probability

exponentially decay in bicomplex space.

(b) Here we discuss the relation between bicomplex Laplace-Stieltjes transform

and bicomplex Dirichlet series (Price [119, p. 61]) as follows:

The complex Dirichlet series is given by

f(s) =
∞∑
n=1

ane
−λns (4.46)

(s = x+ iy, 0 = λ1 < λ2 < · · · < λn → +∞, x, y ∈ R)

where an, n ∈ N is complex-valued coefficient of Dirichlet series.

Jiarong [73] and Knopp [83] have shown in their papers that complex Dirichlet

series is a particular case of complex Laplace-Stieltjes transform. Therefore, all

the properties of Dirichlet series can be discussed by using complex Laplace-

Stieltjes transform. Some results of complex Dirichlet series are obtained by

complex Laplace-Stieltjes transform in Yinying and Daochun [154] and Kong and

102



4.9 Applications of Bicomplex Laplace-Stieltjes Transform

Yang [87].

In a similar way, consider bicomplex Dirichlet series given by

f(ξ) =
∞∑
n=1

ane
−λnξ (4.47)

(ξ = z1 + i2z2 ∈ C2, 0 = λ1 < λ2 < · · · < λn → +∞, z1, z2 ∈ C1)

where an, n ∈ N is bicomplex-valued coefficient of bicomplex Dirichlet series.

Let us consider bicomplex Laplace-Stieltjes transform

(LSα)(ξ) =

∫ ∞
0

e−ξtdα(t) (ξ = z1 + i2z2 ∈ D, z1, z2 ∈ C1), (4.48)

where α : R→ C2 is a function of bounded variation on any interval [0, X], (0 <

X <∞) and D defined in (4.28) and (4.33). If we construct

α(t) =

{
0, if 0 ≤ t < λ1;∑n

m=1 am, if λn ≤ t ≤ λn+1.
(4.49)

Then, by using Theorem 4.14, equation (4.48) becomes

(LSα)(ξ) = ξ

∫ ∞
0

e−ξtα(t)dt

= ξ

∫ λ1

0

e−ξtα(t)dt+ ξ
∞∑
n=1

∫ λn+1

λn

e−ξtα(t)dt

= ξ

∞∑
n=1

∫ λn+1

λn

(
e−ξt

n∑
m=1

am

)
dt [using by (4.49)]

= ξ

∞∑
n=1

(
an

∫ ∞
λn

e−ξtdt

)
=
∞∑
n=1

ane
−λnξ.

Therefore, bicomplex Dirichlet series is a particular case of the bicomplex

Laplace-Stieltjes transform. Therefore, all the properties of bicomplex Dirichlet
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series can be discussed by bicomplex Laplace-Stieltjes transform. In particularly,

the convergence conditions of bicomplex Dirichlet series are difficult to find out.

So by using Bicomplex Laplace-Stieltjes transform we can easily find out the

convergence conditions.

4.10 Conclusion

In this chapter, we introduced the Stieltjes and Laplace-Stieltjes transforms with

Tauberian theorem in bicomplex space which are the generalization of Stieltjes

and Laplace-Stieltjes transforms from complexified frequency domain to bicom-

plexified frequency domain, respectively. The applications of bicomplex Stieltjes

transform have been illustrated to check the symmetry of probability distribution

function, find the solution of singular integral equation of bicomplex-valued func-

tion and spectral analysis of large dimensional random matrices. In quaternion-

valued Stieltjes transform to define the inversion formula is challenging in prac-

tice. This problem can be solved easily in bicomplex Stieltjes transform due to

commutative property of bicomplex numbers.

Also, the applications of bicomplex Laplace-Stieltjes transform have been il-

lustration to find the exponential decay of tail probability of the bicomplex-vauled

distribution and analysis of bicomplex Dirichlet series. Since bicomplex Dirichlet

series is a particular case of bicomplex Laplace-Stieltjes transform, properties of

the former can be discussed later. The work can further be applied to obtain

the properties of bicomplex Dirichlet series using by bicomplex Laplace-Stiletjes

transform.
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The main findings of this chapter have been published as:
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applications of bicomplex Fourier-Stieltjes transform, Advanced Studies in

Contemporary Mathematics, 26(2), 355-369.

2. Agarwal R., Goswami M.P., Agarwal R.P., Venkataratnam K.K. and Baleanu

D. (2017), Solution of Maxwell’s wave equations in bicomplex space, Ro-

manian Journal of Physics, 62(5-6), Article no. 115, 1-11.
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In this chapter, we derive the bicomplex Fourier-Stieltjes transform and related

Bochner theorem with convergence conditions that can be capable of transfer-

ring signals from real-valued (t) domain to bicomplexified frequency (ξ) domain.

Bicomplex Fourier-Stieltjes transform is highly applicable in applied physics, mo-

ments, probability distribution theory, signal processing, image processing and

other related problems.

Applications of bicomplex Fourier transform in finding the solution of ini-

tial value heat equation in bicomplex algebra, algebraic reduction of complicated

bicomplex linear time-invariant systems and solution of Maxwell’s equations in

vacuum have been discussed. Illustrations have been given to find the solu-

tion of bicomplex heat equation and check the unboundedness condition of non-

homogeneous bicomplex-valued wave equation.

5.1 Introduction

The Fourier-Stieltjes transform is similar to Fourier transform which named for

Joseph Fourier and Thomas Joannes Stieltjes. The Fourier-Stieltjes transform is

the generalization of the standard Fourier transform and it has certain applica-

tions in the area of theoretical and applied probability and stochastic process. In

1939, Cameron and Wiener [23] discussed convergence conditions of the Fourier-

Stieltjes transform. In 1967, Rosenthal [127] discussed some theorems of bounded

measurable function defined on Lebesgue measurable subset of R with restrictions

of Fourier-Stieltjes transform. In 1977,Blei [19] proved a theorem on continuous

measures of Fourier-Stieltjes transform.

106



5.1 Introduction

In 1989, Assiamoua and Olubummo [7] discussed the Fourier-Stieltjes trans-

form of a Banach algebra valued measure on a compact group which is a collection

of some continuous sesquilinear mappings. In 2012, Gulhane [61] studied different

versions of inversion formula for the conventional Fourier-Stieltjes transform. In

2013, Mensah [104] studied the modern technique of tensor product to keep the

interpretation of the Fourier-Stieltjes transform of a vector measure which is a

collection of operators.

On the other hand, the classical Bochner theorem on Fourier integral trans-

form, can be seen in Bochner ([20], [21]). In Bochner theorem, Fourier-Stieltjes

transform of non-decreasing bounded functions can be easily seen to result in

continuous function of positive type. In 2013, Georgier and Morais [52] extended

the classical Bochner theorem in the framework of quaternion analysis.

We shall need the following definitions and results for our work.

Definition 5.1 (Alpay et al. [4]). Let Ω ⊂ C2 be some set. A function f : Ω→ C2

is said to positive definite in Ω if,

n∑
p=1

n∑
k=1

cpc
∗
kf(ξp − ξ∗k) ∈ D+, ∀ ξ1, ξ2, · · · , ξn ∈ Ω (5.1)

for every choice of c1, c2, · · · , cn ∈ C2.

The relation between the Fourier transform and the positive definiteness of a

continuous function is given by Bochner [20] in the following theorem:

Theorem 5.1 (Bochner). A continuous function f : R→ C1 is positive definite

iff it is the Fourier transform of a finite positive measure µ on R, i.e.

f(x) =

∫ ∞
−∞

eitxdµ(t).
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The bicomplex Fourier transform defied by Banerjee et al. [11] in the following

way:

Definition 5.2. Let f(t) be a real-valued continuous function in (−∞,∞) that

satisfies the following estimates

|f(t)| ≤ c1e
−αt, t ≥ 0, α > 0

|f(t)| ≤ c2e
βt, t < 0, β > 0.

(5.2)

The bicomplex Fourier transform defined as

F[f(t); ξ] =

∫ ∞
−∞

ei1ξtf(t)dt = f̄(ξ), ξ ∈ Ω ⊂ C2 (5.3)

(5.3) exists and is analytic for all ξ ∈ Ω, defined as

Ω = {ξ = a0 + i1a1 + i2a2 + i1i2a3 ∈ C2 : −∞ < a0, a3 <∞;

−α + |a2| < a1 < β − |a2|; 0 ≤ |a2| < (α + β)/2} . (5.4)

5.2 Bicomplex Fourier-Stieltjes Transform

In this section, we discuss the convergence conditions and define bicomplex Fourier-

Stieltjes transform.

Let f(t) be a bicomplex-valued continuous function for −∞ < t < ∞ and

satisfies the estimates

‖f(t)‖ ≤ c1e
−αt, t ≥ 0, α > 0

‖f(t)‖ ≤ c2e
βt, t < 0, β > 0

(5.5)

which guarantees that f is absolutely integrable on whole real line. For bicomplex-

valued function f(t), bicomplex Fourier transform can be defined as

f̂(ξ) =

∫ ∞
−∞

ei1ξtf(t)dt, ξ ∈ C2 (5.6)
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together with the requirement of ‖f̂(ξ)‖ < ∞. Now for ξ = s1e1 + s2e2, s1 =

x1 + i1y1 and s2 = x2 + i1y2,

‖f̂(ξ)‖ =

∥∥∥∥∫ ∞
−∞

ei1ξtf(t)dt

∥∥∥∥
≤
∫ ∞
−∞

∥∥ei1ξt∥∥ ‖f(t)‖dt

≤
∫ 0

−∞

∥∥ei1ξt∥∥ c2e
βtdt+

∫ ∞
0

∥∥ei1ξt∥∥ c1e
−αtdt

= c2

∫ 0

−∞

∥∥ei1s1te1 + ei1s2te2

∥∥ eβtdt+ c1

∫ ∞
0

∥∥ei1s1te1 + ei1s2te2

∥∥ e−αtdt,
[∵ ξ = s1e1 + s2e2]

= c2

∫ 0

−∞

1√
2

(∣∣ei1s1t∣∣2 +
∣∣ei1s2t∣∣2) 1

2
eβtdt

+ c1

∫ ∞
0

1√
2

(∣∣ei1s1t∣∣2 +
∣∣ei1s2t∣∣2) 1

2
e−αtdt, [using (1.15)]

=
c2√

2

∫ 0

−∞

(
e−2y1t + e−2y2t

) 1
2 eβtdt+

c1√
2

∫ ∞
0

(
e−2y1t + e−2y2t

) 1
2 e−αtdt,[

∵
∣∣ei1xt∣∣ = 1

]
≤ c2√

2

∫ 0

−∞
e−y1teβtdt+

c2√
2

∫ 0

−∞
e−y2teβtdt+

c1√
2

∫ ∞
0

e−y1te−αtdt

+
c1√

2

∫ ∞
0

e−y2te−αtdt[
∵
(
|x|2 + |y|2

) 1
2 ≤ |x|+ |y|, ∀ x, y ∈ R i.e. Minkowski’s inequality

]
=

c2√
2

∫ 0

−∞
e(β−y1)tdt+

c2√
2

∫ 0

−∞
e(β−y2)tdt+

c1√
2

∫ ∞
0

e−(α+y1)tdt

+
c1√

2

∫ ∞
0

e−(α+y2)tdt

=
c2√

2

(
1

β − y1

+
1

β − y2

)
+

c1√
2

(
1

α + y1

+
1

α + y2

)
.

Then, the requirement ‖f̂(ξ)‖ < ∞ is fulfilled only if −α < y1 < β and −α <

y2 < β.
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Therefore, f̂(ξ) is analytic and convergent in the strip

D = {ξ = s1e1 + s2e2 ∈ C2 : −α < Im(P1 : ξ) < β and − α < Im(P2 : ξ) < β}.
(5.7)

Now, let µ : R → C2 be the Stieltjes measure which satisfies the estimate (5.5).

Equation (5.6) can be written as

f̂(ξ) =

∫ ∞
−∞

ei1ξtdµ(t), ξ ∈ D (5.8)

where D is defined in (5.7). Then (5.8) is known as bicomplex Fourier-Stieltjes

transform, which is analytic and convergent in D. For better geometrical repre-

sentation of the region of convergence of bicomplex Fourier-Stieltjes transform,

it will be advantageous to use the four dimensional representation of bicomplex

number. Let s1 = x1 + i1y1 and s1 = x2 + i1y2, then in accordance with (5.7),

ξ = s1e1 + s2e2 =
x1 + x2

2
+ i1

y1 + y2

2
+ i2

y1 − y2

2
+ i1i2

x1 − x2

2

= a0 + i1a1 + i2a2 + i1i2a3, where a0, a1, a2, a3 ∈ R. (5.9)

There are three possibilities for the equivalent form (5.9)

1. If y1 = y2, then −α < a1 < β and a2 = 0.

2. If y1 > y2, then we may infer −α− a2 < a1 < β + a2 and −α+β
2

< a2 < 0.

3. If y1 < y2, then we have −α + a2 < a1 < β − a2 and 0 < a2 <
α+β

2
.

By combining all three cases we have

−α + |a2| < a1 < β − |a2|, 0 ≤ |a2| <
α + β

2
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and hence the region of convergence D of f̂(ξ) is given by

D = {ξ = a0 + i1a1 + i2a2 + i1i2a3 ∈ C2 : −α + |a2| < a1 < β − |a2|,

0 ≤ |a2| < (α + β)/2} (5.10)

or, equivalently

D =

{
ξ ∈ C2 : −α + |Imi2(ξ)| < Imi1(ξ) < β − |Imi2(ξ)|, 0 ≤ |Imi2(ξ)| <

α + β

2

}
(5.11)

where Imi1(ξ) and Imi2(ξ) denotes the imaginary part of a bicomplex number

w.r.t. i1 and i2, respectively. Therefore, we the above discussion can be summa-

rized in the following proposition:

Proposition 5.1. Let µ(t) be bicomplex-valued Stieltjes measurable function sat-

isfying the estimates

‖µ(t)‖ ≤ c1e
−αt, t ≥ 0, α > 0

‖µ(t)‖ ≤ c2e
βt, t < 0, β > 0.

Then

f̂(ξ) =

∫ ∞
−∞

ei1ξtdµ(t),

exists and analytic in the strip

D = {ξ = s1e1 + s2e2 ∈ C2 : −α < Im(P1 : ξ) < β and − α < Im(P2 : ξ) < β}.

Now, we define the bicomplex Fourier-Stieltjes transform as follows:

Definition 5.3. Let µ(t) be bicomplex-valued Stieltjes measurable function in

(−∞,∞) for t ∈ R that satisfies the estimates

‖µ(t)‖ ≤ c1e
−αt, t ≥ 0, α > 0

‖µ(t)‖ ≤ c2e
βt, t < 0, β > 0.

(5.12)
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Then the bicomplex Fourier-Stieltjes transform of µ(t) is defined as

f̂(ξ) =

∫ ∞
−∞

ei1ξtdµ(t), ξ ∈ D ⊂ C2. (5.13)

The bicomplex Fourier-Stieltjes transform f̂(ξ) exists and analytic for all ξ ∈ D,

where D defined as

D =

{
ξ ∈ C2 : −α + |Imi2(ξ)| < Imi1(ξ) < β − |Imi2(ξ)|, 0 ≤ |Imi2(ξ)| <

α + β

2

}
(5.14)

where Imi1(ξ) and Imi2(ξ) denotes the imaginary part of a bicomplex number

w.r.t. i1 and i2, respectively.

Definition 5.4. The class of functions f̂(ξ), ξ ∈ D represented by (5.13) is called

the class of functions and it is denoted as B. B will be referred as the bicomplex

Bochner set.

Since bicomplex Fourier-Stieltjes transform f̂(ξ) analytic for all ξ ∈ D. It follows

that all members of B are analytic functions of bicomplex variable ξ in D.

5.3 Properties of the Class of Bicomplex Bochner

Functions

In this section, we discuss some basic properties of the class B of bicomplex

Bochner functions.

Theorem 5.2. B is a linear space.

Proof. Let f̂ , ĝ ∈ B and a, b ∈ C2, then for ξ ∈ D (as defined in (5.14))

f̂(ξ) =

∫ ∞
−∞

ei1ξtdµ1(t)

ĝ(ξ) =

∫ ∞
−∞

ei1ξtdµ2(t).
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Therefore,

af̂(ξ) + bĝ(ξ) = a

∫ ∞
−∞

ei1ξtdµ1(t) + b

∫ ∞
−∞

ei1ξtdµ2(t)

=

∫ ∞
−∞

ei1ξtd(aµ1(t) + bµ1(t))

=

∫ ∞
−∞

ei1ξtdµ(t) ∈ B, (where µ(t) = aµ1(t) + bµ1(t)).

Hence, B is a linear space.

Theorem 5.3. Every element of B is a continuous bounded function.

Proof. Let f̂ be any element of B, then

f̂(ξ) =

∫ ∞
−∞

ei1ξtdα(t), ξ ∈ D

where D is defined in (5.14) and (5.10). Since, f̂(ξ) is analytic in D, it is differ-

entiable and hence continuous in D. Therefore, every element of B is continuous

function. Now,∥∥∥f̂(ξ)
∥∥∥ =

∥∥∥∥∫ ∞
−∞

ei1ξtdα(t)

∥∥∥∥
≤
∫ ∞
−∞

∥∥ei1ξt∥∥ ‖dα(t)‖

=

∫ ∞
−∞

∥∥ei1s1te1 + ei1s2te2

∥∥ ‖dα(t)‖ (∵ ξ = s1e1 + s2e2)

=
1√
2

∫ ∞
−∞

(∣∣ei1s1t∣∣2 +
∣∣ei1s2t∣∣2) 1

2 ‖dα(t)‖,

[
∵ ‖s1e1 + s2e2‖ =

(
|s1|2 + |s2|2

2

) 1
2

]

=
1√
2

∫ ∞
−∞

(
e−2y1t + e−2y2t

) 1
2 ‖dα(t)‖, (∵ s1 = x1 + i1y1 and s1 = x2 + i1y2)

≤ 1√
2

∫ ∞
−∞

(
e−y1t + e−y2t

)
‖dα(t)‖,

(
∵
(
|x|2 + |y|2

) 1
2 ≤ |x|+ |y|, ∀ x, y ∈ R

)
=

1√
2

(∫ 0

−∞
e−y1t‖dα(t)‖+

∫ ∞
0

e−y1t‖dα(t)‖

+

∫ 0

−∞
e−y2t‖dα(t)‖+

∫ ∞
0

e−y2t‖dα(t)‖
)
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By (5.5) and using integration by parts, we have

≤
√

2c2 +
c2y1√

2(β − y1)
+
√

2c1 +
c1y1√

2(α + y1)
+

c2y2√
2(β − y2)

+
c1y2√

2(α + y2)

= M(say) <∞.

Therefore, f̂(ξ) is bounded function. Hence, every element of B is a continuous

bounded function.

5.4 Bicomplex Bochner Theorem

In this section, we discuss the Bochner Theorem of bicomplex Fourier-Stieltjes

transform, which is the generalization of the complex Bochner Theorem. Also,

this is advantageous than quaternionic Bochner’s Theorem (Georgiev and Morais

[52]) due to commutative property of bicomplex numbers.

Motivated by the work of Georgiev and Morais [52], we generalize the Bochner’s

theorem in the framework of bicomplex analysis.

Theorem 5.4. A continuous function f : C2 → C2 is positive definite if it is the

Fourier transform of a finite positive measure µ on C2 satisfying the estimates

(5.5), i.e.

f(ξ) =

∫ ∞
−∞

ei1ξtdµ(t).

Proof. f : C2 → C2 will be positive definite if it satisfies the Definition (5.1).

For any ξ1, ξ2, · · · , ξn ∈ C2, c1, c2, · · · , cn ∈ C2 and µ : R → C2, straightfor-

ward computations show that

n∑
p=1

n∑
k=1

cpc
∗
kf(ξp − ξ∗k) =

n∑
p=1

n∑
k=1

cpc
∗
k

∫ ∞
−∞

ei1(ξp−ξ∗k)tdµ(t)

=
n∑
p=1

n∑
k=1

cpc
∗
k

∫ ∞
−∞

ei1ξpte−i1ξ
∗
ktdµ(t)
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=
n∑
p=1

n∑
k=1

cpc
∗
k

∫ ∞
−∞

ei1ξpt
(
ei1ξkt

)∗
dµ(t)

=

∫ ∞
−∞

n∑
p=1

cpe
i1ξpt

n∑
k=1

(
cke

i1ξkt
)∗
dµ(t)

=

(∫ ∞
−∞

n∑
p=1

(c1)pe
i1(s1)pt

n∑
k=1

(c1)kei1(s1)ktdµ1(t)

)
e1

+

(∫ ∞
−∞

n∑
p=1

(c2)pe
i1(s2)pt

n∑
k=1

(c2)kei1(s2)ktdµ2(t)

)
e2

(where ξ = s1e1 + s2e2, c = c1e1 + c2e2 and µ(t) = µ1(t)e1 + µ2(t)e2)

=

(∫ ∞
−∞

n∑
p=1

∣∣(c1)pe
i1(s1)pt

∣∣2 dµ1(t)

)
e1

+

(∫ ∞
−∞

n∑
p=1

∣∣(c2)pe
i1(s2)pt

∣∣2 dµ2(t)

)
e2

= αe1 + βe2 ∈ D+,

where,

α =

∫ ∞
−∞

n∑
p=1

∣∣(c1)pe
i1(s1)pt

∣∣2 dµ1(t) ≥ 0

β =

∫ ∞
−∞

n∑
p=1

∣∣(c2)pe
i1(s2)pt

∣∣2 dµ2(t) ≥ 0.

This proves that f is positive definite.

5.5 Applications

In [11], Banerjee et al. proposed to use bicomplex functions in order to define

a bicomplex Fourier transform applicable to signal processing, image processing,

solving differential equations, quantum mechanics and other related fields. In

this section, we discuss applications of bicomplex Fourier transform to solve par-

tial differential equations in bicomplex algebra and reduction of one-dimensional
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bicomplex-valued linear time-invariant systems. The details of the solution of

parabolic initial value problem in quaternion algebra by using quaternion Fourier

transform can be seen in Bahri et al. [8].

(a) Consider the parabolic initial value problem

∂u

∂t
=
∂2u

∂x2
, (5.15)

with

u(x, 0) = f(x), (5.16)

where u : R×R→ C2 and f : R→ C2 are bicomplex-valued functions satisfying

the estimates defined in (5.5). To find the solution of above bicomplex heat

equation take the bicomplex Fourier transform of (5.15). We get∫ ∞
−∞

ei1ξx
∂u

∂t
dx =

∫ ∞
−∞

ei1ξx
∂2u

∂x2
dx

⇒ dū(ξ, t)

dt
= (i1ξ)

2ū(ξ, t), (5.17)

where ū(ξ, t) is the bicomplex Fourier transform of u(x, t). The general solution

of (5.17) is given by

ū(ξ, t) = ce−ξ
2t, (5.18)

where c is a bicomplex constant. By taking bicomlex Fourier transform of initial

condition (5.16), we have

ū(ξ, 0) = f̄(ξ),
(
where f̄(ξ) is the bicomplex Fourier transform of f(x)

)
.

(5.19)
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Using (5.19) in (5.18), we have

ū(ξ, t) = f̄(ξ)e−ξ
2t (5.20)

Taking the bicomplex inverse Fourier transform of (5.20) and making use of the

following result

1

2
√
πt

∫ ∞
−∞

ei1ξxe−
x2

4t dx = e−ξ
2t (5.21)

and convolution theorem therein, we obtain

u(x, t) =
1

2
√
πt

∫ ∞
−∞

f(u)e−
(x−u)2

4t du, (5.22)

which is the solution of the heat equation (5.15).

(b) In [39], Ell discussed the use of the quaternion Fourier transform for quater-

nion linear time-invariant systems analysis and reduction in easy form of com-

plicated two-dimensional quaternion systems. The work in [39] is suitable for

the case where impulse response of the quaternion linear time-invariant systems

is a pure real function. Further, Pei et al. [115] developed the relationship be-

tween quaternion convolution and quaternion Fourier transform. With these rela-

tions, quaternion Fourier transform analyzes the quaternion linear time-invariant

systems easily. For the analysis of commutative linear time-invariant systems,

quaternion Fourier transform is difficult to use due to non-commutative property

of quaternions.

In this section, we use bicomplex Fourier transform to analyze the bicom-

plex linear time-invariant systems and reduction to easy form from complicated
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one-dimensional linear time-invariant systems composed in series and in parallel

connections of one-dimensional linear time-invariant subsystems. Bicomplex lin-

ear time-invariant systems in one variable can be defined in terms of a convolution

operator as

y(t) =

∫ ∞
−∞

h(t− u)x(u)du

where x(·) is the input, y(·) is the output and h(·) impulse response of the system.

The pictorial representation of this system is given in Fig. 5.1 below

Figure 5.1: Block diagram for bicomplex linear time-invariant systems

Convolution theorem (Banerjee et al. [11, Theorem 4]) for the bicomplex Fourier

transform is as follows:

Theorem 5.5. The Fourier transform of two functions f(t) and g(t), −∞ < t <

∞ is the product of their Fourier transforms, respectively f̄(ξ) and ḡ(ξ) i.e.

F {f(t) ∗b g(t)} = F

{∫ ∞
−∞

f(u)g(t− u)du

}
= f̄(ξ)ḡ(ξ).

When we combine the bicomplex linear time-invariant systems in parallel (as

in Fig. 5.2), the relation between the input f(x) and output g(x) can be expressed

as

g(x) = f(x) ∗b ht(x) (5.23)

where ht(x) =

p∑
n=1

hn(x) (5.24)
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and ∗b is the bicomplex convolution. In the frequency domain, bicomplex Fourier

transforms of (5.23) and (5.24) are as follows

ḡ(ξ) = f̄(ξ)h̄t(ξ) (5.25)

where h̄t(ξ) =

p∑
n=1

hn(ξ). (5.26)

Figure 5.2: Combination of bicomplex linear time-invariant systems in parallel

When we combine the bicomplex linear time-invariant systems in series (as in

Fig. 5.3), the relation between input f(x) and output g(x) can be expressed as

g(x) = f(x) ∗b ht(x) (5.27)

where ht(x) = h1(x) ∗b h2(x) ∗b · · · ∗b hp(x). (5.28)

Figure 5.3: Combination of bicomplex linear time-invariant systems in series

In the frequency domain, bicomplex Fourier transforms of (5.27) and (5.28) are
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as follows

ḡ(ξ) = f̄(ξ)h̄t(ξ) (5.29)

where h̄t(ξ) =

p∏
n=1

hn(ξ). (5.30)

For the analysis of these kind of bicomplex linear time-invariant systems, we

need large class of frequency domain. So bicomplex Fourier transform permits

easy analysis of the complicated one-dimensional bicomplex-valued linear time-

invariant systems by composing in parallel and in series conversion.

Following are the illustrations to find the solution of bicomplex heat equa-

tion with initial condition generated by bicomplex linear time-invariant systems

and check the unbounded condition of non-homogeneous bicomplex-valued wave

equation.

Example 5.1. Find the solution of the bicomplex heat equation described by the

following differential system

∂u

∂t
=
∂2u

∂x2
, with initial condition u(x, 0) = i1δ(x) (5.31)

where δ(x) is the Dirac-delta function.

Solution. The solution of (5.31) can be obtained using (5.22) as

u(x, t) =
1

2
√
πt

∫ ∞
−∞

i1δ(u)e−
(x−u)2

4t du

=
i1

2
√
πt

e−
(x−u)2

4t

∣∣∣∣
u=0

=
i1

2
√
πt
e−

x2

4t

∴ u(x, t) = i1
2
√
πt
e−

x2

4t .
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Example 5.2. Consider the non-homogeneous bicomplex-valued wave equation

with zero initial conditions described by the following differential system

∂2u(x, t)

∂t2
− c2∂

2u(x, t)

∂x2
= p(x, t), u(x, 0) = 0,

∂u(x, 0)

∂t
= 0, (5.32)

where u : R × R → C2. Show that the above system becomes unbounded if the

forcing function i.e. bicomplex input is of the form

p(x, t) = cos(ξx) cos(ηt), ξ, η ∈ C2.

Solution. Taking the bicomplex Fourier transform of (5.32) w.r.t. x, we have∫ ∞
−∞

ei1ξx
∂2u(x, t)

∂t2
dx− c2

∫ ∞
−∞

ei1ξx
∂2u(x, t)

∂x2
dx =

∫ ∞
−∞

ei1ξxp(x, t)dx

d2ū(ξ, t)

dt2
+ c2ξ2ū(ξ, t) = p̄(ξ, t). (5.33)

Again taking bicomplex Fourier transform of (5.33) w.r.t. t, we have∫ ∞
−∞

ei1ηt
d2ū(ξ, t)

dt2
dt+ c2ξ2

∫ ∞
−∞

ei1ηtū(ξ, t)dt =

∫ ∞
−∞

ei1ηtp̄(ξ, t)dt

⇒ − η2 ¯̄u(ξ, η) + c2ξ2 ¯̄u = ¯̄p(ξ, η)

⇒ ¯̄u(ξ, η) =
¯̄p(ξ, η)

(c2ξ2 − η2)
.

This is singular whenever

η2 = c2ξ2. (5.34)

Now, the d’Alembert’s solution of the wave equation is given by

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−t̄)

x−c(t−t̄)
p(x̄, t̄)dx̄dt̄

=
1

2c

∫ t

0

∫ x+c(t−t̄)

x−c(t−t̄)
cos(ξt̄) cos(ηx̄)dx̄dt̄

=
(cos(ηt)− cos(ctξ)) cos(ηx)

−η2 + c2ξ2
(5.35)
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which is unbounded under the condition mentioned in (5.34).

Let ξ = ξ1e1 + ξ2e2 and η = η1e1 + η2e2, where ξ1, ξ2, η1, η2 ∈ C1. Then

(5.35) can be written as

u(x, t) =
(cos(η1t)− cos(ξ1ct)) cos(η1x)

c2ξ2
1 − η2

1

e1 +
(cos(η2t)− cos(ξ2ct)) cos(η2x)

c2ξ2
2 − η2

2

e2.

Alternatively, using the results by Luna-Elizarraras et. al [97, p. 75] in (5.35),

we can write

u(x, t) =
1

A+ i2B

[
cos

(
η1 + η2

2
x

)
cosh

(
i1
η1 − η2

2
x

){
cos

(
η1 + η2

2
t

)
cosh

(
i1
η1 − η2

2
t

)
− cos

(
ξ1 + ξ2

2
ct

)
cosh

(
i1
ξ1 − ξ2

2
ct

)}
−

sin

(
η1 + η2

2
x

)
sinh

(
i1
η1 − η2

2
x

){
sin(

η1 + η2

2
t) sinh

(
i1
η1 − η2

2
t

)
− sin

(
ξ1 + ξ2

2
ct

)
sinh

(
i1
ξ1 − ξ2

2
ct

)}
− i2

(
sin

(
η1 + η2

2
x

)
sinh

(
i1
η1 − η2

2
x

){
cos

(
η1 + η2

2
t

)
cosh

(
i1
η1 − η2

2
t

)
− cos

(
ξ1 + ξ2

2
ct

)
cosh

(
i1
ξ1 − ξ2

2
ct

)}
+ cos

(
η1 + η2

2
x

)
cosh

(
i1
η1 − η2

2
x

){
sin

(
η1 + η2

2
t

)
sinh

(
i1
η1 − η2

2
t

)
− sin

(
ξ1 + ξ2

2
ct

)
sinh

(
i1
ξ1 − ξ2

2
ct

)})]
where,

A =
1

2

(
c2ξ2

1 + c2ξ2
2 − η2

1 − η2
2

)
B =

i1
2

(
c2ξ2

1 − c2ξ2
2 − η2

1 + η2
2

)
.

James Maxwell published his first paper in 1853 after obtaining his graduate de-

gree. In this paper, he published Faraday’s concept lines of force. He gave the

mathematical explanation of Faraday’s work (see, e.g. Guilmette [60]). Maxwell’s
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equations describe how electric and magnetic fields are generated and influenced

by each other and by charges and currents. These equations are named after the

mathematician and physicist Maxwell, who published these equations between

1861 and 1862.

In 1864, Maxwell [102] discussed that an electromagnetic disturbance travels

in free space with the velocity of light. In 1873, Maxwell [103] records the trans-

formation of Maxwells complete theory of electromagnetism. Hertz discussed

electromagnetic waves in the year 1888 [65, Chapter 7, p. 107-123], in which

Hertz confirmed Maxwell’s prediction and helped in the acceptance of Maxwell’s

electromagnetic theory. By the efforts of Hertz, George Francis Fitzgerald (1851-

1901), Oliver Lodge (1851-1940) and Oliver Heaviside (1850-1925) (see, e.g. Sen-

gupta and Sarkar [133]) Maxwell’s ideas and equations made understandable.

These developments are well documented in [69] and [64].

Motivated by the work of Anastassiu et al. [5] for finding solution of Maxwell’s

equations in source free domain for electric and magnetic fields using quaternions,

we have made efforts to solve the Maxwell’s equations in vacuum using bicomplex

analysis. The method discussed here has the advantage of dealing both the vector

fields (electric and magnetic) together as a single vector field in bicomplex space.
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5.6 Bicomplex Solution for Electromagnetic Wave

Equation in Vacuum

The Maxwell’s equations in vacuum for electromagnetic field are (see, e.g. Lon-

ngren and Savov [96, Chapter 7])

∇× E = −µ0
∂H

∂t
(5.36)

∇×H = ε0
∂E

∂t
(5.37)

∇ · E = 0 (5.38)

∇ ·H = 0 (5.39)

where electric field E and magnetic field intensity H are complex-valued vector,

µ0 is permeability and ε0 is the permittivity of free space. Let us define bicomplex

vector field F as

F ≡
√
ε0E + i2

√
µ0H (5.40)

with the intimation that each directional component of F is a scalar bicomplex

function, obtaining by combining the corresponding field directional components.

Now, taking curl of (5.40) on both sides,

∇× F =
√
ε0∇× E + i2

√
µ0∇×H

= −µ0

√
ε0
∂H

∂t
+ i2
√
µ0ε0

∂E

∂t

= i2
√
µ0ε0

∂

∂t
(
√
ε0E + i2

√
µ0H)

= i2
√
µ0ε0

∂F

∂t
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Therefore, we obtain the bicomplex Maxwell’s vector equations as,

∇× F = i2
1

c

∂F

∂t
,

[
where c =

1
√
µ0ε0

]
(5.41)

∇ · F = 0 (5.42)

Assuming that the wave is travelling in x-direction, i.e., a vanishing x- component,

then (5.41) and (5.42) are reduced to the following system of bicomplex differential

equations,

−∂Fz
∂x

= i2
1

c

∂Fy
∂t

(5.43)

∂Fy
∂x

= i2
1

c

∂Fz
∂t

(5.44)

∂Fz
∂y
− ∂Fy

∂z
= 0 (5.45)

∂Fy
∂y

+
∂Fz
∂z

= 0 (5.46)

Put Qz = i2Fz. The equations (5.43) and (5.44) become

∂Qz

∂x
=

1

c

∂Fy
∂t

, (5.47)

and
∂Fy
∂x

=
1

c

∂Qz

∂t
, repectively. (5.48)

Differentiating (5.47) and (5.48) and using respectively (5.48) and (5.47) therein,

we get

∂2

∂x2
Fy(x, t) =

1

c2

∂2

∂t2
Fy(x, t) (5.49)

∂2

∂x2
Qz(x, t) =

1

c2

∂2

∂t2
Qz(x, t) (5.50)

Due to (5.45) and (5.46) initial conditions of Fy and Qz are only functions

of the variable x only. Let initial conditions Fy(x, 0) = Af1(x), ∂
∂t
Fy(x, 0) =
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Bg1(x), Qz(x, 0) = Df1(x) and ∂
∂t
Qz(x, 0) = Gg1(x), where f1(x), g1(x) are

bicomplex-valued functions and A, B, D, G are bicomplex constants.

Taking the bicomplex Fourier transform (for details, refer [11]) of (5.49) w.r.t. x,

we get

d2

dt2
F̄y(ξ, t) + c2ξ2F̄y(ξ, t) = 0 (5.51)

Solving (5.51) and applying initial conditions therein, we get

F̄y(ξ, t) =
A

2
f̄1(ξ)

(
ei1cξt + e−i1cξt

)
− i1B

ḡ1(ξ)

2cξ

(
ei1cξt − e−i1cξt

)
. (5.52)

[where f̄1(ξ) = F[f1(x)](ξ) and ḡ1(ξ) = F[g1(x)](ξ)]

Remark 5.1. There is no major reason to prefer i1 instead of i2, however i1 is

more appropriate than i2 for the decomposition of bicomplex form in idempotent

components.

Taking the inverse bicomplex Fourier transform [12, Eq. 11] of (5.52) w.r.t.

ξ, we have

Fy(x, t) =
1

2π

∫
Γ

e−i1ξxF̄y(ξ, t)dξ

where Γ = (Γ1,Γ2) is closed contour in bicomplex space, where Γ1 and Γ2 are

closed contours in complex space along the horizontal lines {−α < Im(P1 : ξ) <
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β} and {−α < Im(P2 : ξ) < β}, respectively.

Fy(x, t) =
A

2

[
1

2π

∫
Γ

e−i1ξ(x−ct)f̄1(ξ)dξ +
1

2π

∫
Γ

e−i1ξ(x+ct)f̄1(ξ)dξ

]
+
B

2c

{
1

2π

∫
Γ

ḡ1(ξ)

i1ξ

(
e−i1ξ(x−ct) − e−i1ξ(x+ct)

)
dξ

}
=
A

2

[
1

2π

∫
Γ

e−i1ξ(x−ct)f̄1(ξ)dξ +
1

2π

∫
Γ

e−i1ξ(x+ct)f̄1(ξ)dξ

]
+
B

2c

{
1

2π

∫
Γ

ḡ1(ξ)

∫ x+ct

x−ct
e−i1ξpdpdξ

}
=
A

2

[
1

2π

∫
Γ

e−i1ξ(x−ct)f̄1(ξ)dξ +
1

2π

∫
Γ

e−i1ξ(x+ct)f̄1(ξ)dξ

]
+
B

2c

{∫ x+ct

x−ct
dp

(
1

2π

∫
Γ

e−i1ξpḡ1(ξ)dξ

)}
. (5.53)

By simplifying (5.53), we get

Fy(x, t) =
A

2
[f1(x− ct) + f1(x+ ct)] +

B

2c

∫ x+ct

x−ct
g1(p)dp. (5.54)

Similarly,

Fz(x, t) = −i2Qz(x, t) = −i2
D

2
[f1(x− ct) + f1(x+ ct)]− i2

G

2c

∫ x+ct

x−ct
g1(p)dp.

(5.55)

Therefore, wave travelling in x-direction with vector field Fx is

Fx = Fy(x, t)ŷ + Fz(x, t)ẑ (5.56)

Since (5.56) is the solution of bicomplex Maxwell’s equations, it satisfies the equa-

tions (5.41-5.42). So we obtain the values of D and G in terms of A and B.

Similarly, the wave travelling in y-direction with vector field Fy with ini-

tial conditions Fx(y, 0) = Rf2(y), Qz(y, 0) = Mf2(y), ∂
∂t
Fx(y, 0) = Sg2(y) and

∂
∂t
Qz(y, 0) = Ng2(y) are

Fy = Fx(y, t)x̂+ Fz(y, t)ẑ (5.57)

127



5. BOCHNER THEOREM OF FOURIER-STIELTJES
TRANSFORM AND APPLICATIONS OF FOURIER
TRANSFORM IN BICOMPLEX SPACE

where,

Fx(y, t) =
R

2
[f2(y − ct) + f2(y + ct)] +

S

2c

∫ y+ct

y−ct
g2(p)dp,

and

Fz(y, t) = −i2
M

2
[f2(y − ct) + f2(y + ct)]− i2

N

2c

∫ y+ct

y−ct
g2(p)dp.

Again, since (5.57) is the solution of bicomplex Maxwell’s equations, it satisfies

the equations (5.41-5.42). So we obtain the values of M and N in terms of R and

S.

Also, wave travelling in z-direction with vector field Fz and initial condi-

tions Fx(z, 0) = Lf3(z), Qy(z, 0) = If3(z), ∂
∂t
Qy(z, 0) = Jg3(z) and ∂

∂t
Fx(z, 0) =

Gg3(z) are

Fz = Fx(z, t)x̂+ Fy(z, t)ŷ (5.58)

where,

Fx(z, t) =
L

2
[f3(z − ct) + f3(z + ct)] +

G

2c

∫ z+ct

z−ct
g3(p)dp,

and

Fy(z, t) = −i2
I

2
[f3(z − ct) + f3(z + ct)]− i2

J

2c

∫ z+ct

z−ct
g3(p)dp.

Again, since (5.58) is the solution of bicomplex Maxwell’s equations, it satisfies

the equations (5.41-5.42). So we obtain the values of I and J in terms of L and

G.
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Now, by applying the superposition principle on equations (5.56), (5.57) and

(5.58), we obtain the solution of equations (5.41) and (5.42)as

F = [Fx(y, t) + Fx(z, t)] x̂+ [Fy(x, t) + Fy(z, t)] ŷ + [Fz(x, t) + Fz(y, t)] ẑ. (5.59)

By separating bi-real and bi-imaginary part we obtain the electric and magnetic

fields in all three dimensions which satisfy the Maxwell’s equations.

5.7 Bicomplex Gaussian Pulse Wave

In this section, we find the complete solution of the bicomplex Gaussian pulse

travelling electromagnetic wave equation. For Gaussian pulse wave function is a

solution of Gaussian pulse travelling wave (see, e.g. Lonngren and Savov [96, p.

345-346]). A two-pulse synthesis model presented by Goswami et al. [55] success-

fully reconstructed digital volume pulse waveforms using Rayleigh functions with

small Mean Square Error. In [144], Wang Lu et al. presented a multi-Gaussian

model to fit real pulse waveforms using an adaptive number of Gaussian waves.

Consider the bicomplex Gaussian pulse travelling electromagnetic wave equa-

tions are

∇× F = i2
1

c

∂F

∂t

∇ · F = 0
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For the bicomplex Gaussian pulse wave travelling in x- direction, the initial con-

ditions (see, e.g. Lonngren and Savov [96, p. 345-346]) are of the form

Fy(x, 0) = Ae−x
2

,
∂

∂t
Fy(x, 0) = Bxe−x

2

, A, B ∈ C2 (5.60)

Qz(x, 0) = De−x
2

,
∂

∂t
Qz(x, 0) = Gxe−x

2

, D, G ∈ C2 (5.61)

Since (5.56) satisfies bicomplex Maxwell’s equations and using (5.60) and (5.61)

in (5.54) and (5.55), respectively. We get

Fy(x, t) =

(
A

2
+
B

4c

)
e−(x−ct)2 +

(
A

2
− B

4c

)
e−(x+ct)2

and

Fz(x, t) = i2

(
A

2
+
B

4c

)
e−(x−ct)2 − i2

(
A

2
− B

4c

)
e−(x+ct)2

Let A
2

+ B
4c

= α ∈ C2 and A
2
− B

4c
= β ∈ C2, then (5.56) becomes

Fx =
[
αe−(x−ct)2 + βe−(x+ct)2

]
ŷ + i2

[
αe−(x−ct)2 − βe−(x+ct)2

]
ẑ. (5.62)

Similarly, for the bicomplex Gaussian pulse wave travelling in y- direction with

initial conditions

Fx(y, 0) = Re−y
2

,
∂

∂t
Fx(y, 0) = Sye−y

2

, R, S ∈ C2 (5.63)

Qz(y, 0) = Me−y
2

,
∂

∂t
Qz(y, 0) = Nye−y

2

, M, N ∈ C2 (5.64)

is

Fy =
[
δe−(y−ct)2 + γe−(y+ct)2

]
x̂− i2

[
δe−(y−ct)2 − γe−(y+ct)2

]
ẑ, (5.65)
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where δ = R
2

+ S
4c

and γ = R
2
− S

4c
. And the bicomplex Gaussian pulse wave

travelling in z- direction with initial conditions

Fx(z, 0) = Le−z
2

,
∂

∂t
Fx(z, 0) = Gze−y

2

, L, G ∈ C2, (5.66)

Qy(z, 0) = Ie−z
2

,
∂

∂t
Qy(z, 0) = Jze−z

2

, I, J ∈ C2 (5.67)

is

Fz =
[
φe−(z−ct)2 + ψe−(z+ct)2

]
x̂+ i2

[
φe−(z−ct)2 − ψe−(z+ct)2

]
ŷ, (5.68)

where φ = L
2

+ G
4c
, ψ = L

2
− G

4c
and α, β, φ, ψ, δ and γ are bicomplex constants.

Now, by applying the superposition principle on equations (5.62), (5.65) and

(5.68), we get vector field as

F =
[
δe−(y−ct)2 + γe−(y+ct)2 + φe−(z−ct)2 + ψe−(z+ct)2

]
x̂+

[
αe−(x−ct)2 + βe−(x+ct)2+

i2φe
−(z−ct)2 − i2ψe−(z+ct)2

]
ŷ + i2

[
αe−(x−ct)2 − βe−(x+ct)2 − δe−(y−ct)2 + γe−(y+ct)2

]
ẑ.

Therefore,

F ≡
√
ε0E + i2

√
µ0H =

[
δ1e
−(y−ct)2 + γ1e

−(y+ct)2 + φ1e
−(z−ct)2 + ψ1e

−(z+ct)2
]
x̂

+
[
α1e

−(x−ct)2 + β1e
−(x+ct)2 − φ2e

−(z−ct)2 + ψ2e
−(z+ct)2

]
ŷ

+
[
−α2e

−(x−ct)2 + β2e
−(x+ct)2 + δ2e

−(y−ct)2 − γ2e
−(y+ct)2

]
ẑ

+ i2

{[
δ2e
−(y−ct)2 + γ2e

−(y+ct)2 + φ2e
−(z−ct)2 + ψ2e

−(z+ct)2
]
x̂

+
[
α2e

−(x−ct)2 + β2e
−(x+ct)2 + φ1e

−(z−ct)2 − ψ1e
−(z+ct)2

]
ŷ

+
[
α1e

−(x−ct)2 − β1e
−(x+ct)2 − δ1e

−(y−ct)2 + γ1e
−(y+ct)2

]
ẑ
}

(5.69)
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where δ1, δ2, γ1, γ2, α1, α2, β1, β2, φ1, φ2, ψ1, ψ2 ∈ C1. By separating bi-real and

bi-imaginary part of (5.69), we get

E =
1
√
ε0

{[
δ1e
−(y−ct)2 + γ1e

−(y+ct)2 + φ1e
−(z−ct)2 + ψ1e

−(z+ct)2
]
x̂

+
[
α1e

−(x−ct)2 + β1e
−(x+ct)2 − φ2e

−(z−ct)2 + ψ2e
−(z+ct)2

]
ŷ

+
[
−α2e

−(x−ct)2 + β2e
−(x+ct)2 + δ2e

−(y−ct)2 − γ2e
−(y+ct)2

]
ẑ
}

(5.70)

H =
1
√
µ0

{[
δ2e
−(y−ct)2 + γ2e

−(y+ct)2 + φ2e
−(z−ct)2 + ψ2e

−(z+ct)2
]
x̂

+
[
α2e

−(x−ct)2 + β2e
−(x+ct)2 + φ1e

−(z−ct)2 − ψ1e
−(z+ct)2

]
ŷ

+
[
α1e

−(x−ct)2 − β1e
−(x+ct)2 − δ1e

−(y−ct)2 + γ1e
−(y+ct)2

]
ẑ
}
. (5.71)

Therefore, electric field E and and magnetic field H satisfies the Maxwell’s equa-

tions (5.36-5.39). Therefore, electric and magnetic fields of Gaussian pulse wave

propagating in positive direction are

E =
1
√
ε0

{[
δ1e
−(y−ct)2 + φ1e

−(z−ct)2
]
x̂+

[
α1e

−(x−ct)2 − φ2e
−(z−ct)2

]
ŷ

+
[
−α2e

−(x−ct)2 + δ2e
−(y−ct)2

]
ẑ
}

(5.72)

H =
1
√
µ0

{[
δ2e
−(y−ct)2 + φ2e

−(z−ct)2
]
x̂+

[
α2e

−(x−ct)2 + φ1e
−(z−ct)2

]
ŷ

+
[
α1e

−(x−ct)2 − δ1e
−(y−ct)2

]
ẑ
}
. (5.73)
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Similarly, electric and magnetic fields of Gaussian pulse wave propagating in

negative direction are

E =
1
√
ε0

{[
γ1e
−(y+ct)2 + ψ1e

−(z+ct)2
]
x̂+

[
β1e
−(x+ct)2 + ψ2e

−(z+ct)2
]
ŷ

+
[
β2e
−(x+ct)2 − γ2e

−(y+ct)2
]
ẑ
}

(5.74)

H =
1
√
µ0

{[
γ2e
−(y+ct)2 + ψ2e

−(z+ct)2
]
x̂+

[
β2e
−(x+ct)2 − ψ1e

−(z+ct)2
]
ŷ

+
[
−β1e

−(x+ct)2 + γ1e
−(y+ct)2

]
ẑ
}
. (5.75)

Also, electric and magnetic fields of Gaussian pulse wave in equations (5.72-

5.75) satisfies the Maxwell’s equations (5.36-5.39). Bicomplex approach is ad-

vantageous than quaternionic approach due to the commutativity property of

bicomplex numbers. The authors have discussed application of bicomplex Mellin

transform in chapter 7 in RLC circuit also.

5.8 Conclusion

In this chapter, we define bicomplex Fourier-Stieltjes transform which is the

generalization of complex Fourier-Stieltjes transform. We have discussed the

positive-definiteness of bicomplex Fourier-Stieltjes transform through Bochner’s

theorem, which is advantageous than Bochner’s theorem for quaternion Fourier-

Stieltjes transform due to commutativity property of bicomplex numbers. In case

of quaternions, three types of Bochner’s theorem are required to be discussed.

Also, we find the solution of bicomplex electromagnetic Maxwell’s equations by

defining bicomplex vector field.
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Bicomplex Fourier transform has many applications in image processing, sig-

nal processing, solving differential equations in quantum mechanics and other

related problems in which large class of frequency domain required. The appli-

cations have been illustrated to find the solution of parabolic initial value prob-

lem in bicomplex algebra and algebraic reduction of complicated one-dimensional

bicomplex-valued linear time-invariant systems.

The concept of bicomplex numbers has been applied for finding the solution of

Maxwell’s equations. We conclude that the bicomplex analysis has great advan-

tage that both the vector fields (electric and magnetic) toghter as a single vector

field in bicomplex space. This approach is also advantageous than quaternion

approach due to the commutativity property of bicomplex numbers.
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6
Hankel Transform in Bicomplex Space and

Applications

The main finding of this chapter has been published as:

1. Agarwal R., Goswami M.P. and Agarwal R.P. (2016), Hankel transform in

bicomplex sapce with applications, Transylvanian Journal of Mathematics

and Mechanics, 8(1), 1-14.
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In this chapter, we investigate Hankel transform and its properties in bicomplex

space which is generalization of complex Hankel transform which is given by Koh

and Zemanian [85]. The application of Hankel transform in bicomplex space

has been illustrated by solving bicomplex Cauchy problem. Bicomplex Hankel

transform is highly applicable in solving partial differential equation of bicomplex-

valued function, signal processing, optics and other related problems.

6.1 Introduction

In 1966, Zemanian [155] extended the classical Hankel transformation which intro-

duced by Germen mathematician Hermann Hankel (1839-1873), to generalized

functions of slow growth and in 1968, Koh and Zemanian [85] generalized the

Hankel transform in complex variable. In 1985, Singh and Pathak [134] obtained

various representations of finite Hankel transforms of generalized functions with

inversion theorem, which gives a Fourier-Bessel series representation of general-

ized functions. In 1991, Betancor [18] proved characterization theorem for the

elements of H ′µ space of generalized functions defined by Zemanian.

In 1994, Koh and Li [84] extended the complex Hankel transform defined by

Zemanian in a large space of generalized functions. In 1997, Tuan [142] extended

the range of the Hankel transform. In 2008, Molina and Trione extended n- di-

mensional Hankel transform to arbitrary values of µ ∈ Rn. In 2012, Taywade et

al. [139], [140] derived fractional Hankel transform and its inversion theorem in

the Zemanian space.
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Complex Hankel transform of a complex-valued function is defined by Koh

and Zemanian [85, Eq. 11] as

Definition 6.1. Let µ ∈ R be restricted to µ ≥ −1
2
. If a > b > 0, then

Jµ,b ⊂ Jµ,a. This follows immediately from the inequality τµ,ak (φ) ≤ τµ,bk (φ) for

φ ∈ Jµ,a. Hence, the restriction of f ∈ J′µ,a to Jµ,b is in J′µ,b and convergence in

J′µ,a implies convergence in J′µ,b. For every f ∈ J′µ,a, ∃ a unique real number σ

such that

f ∈ J′µ,b if b < σ

f 6∈ J′µ,b if b > σ.

Therefore, f ∈ J′µ(σ). The Hankel transform F (s) of f of order µ defined as

F (s) = Hµ{f(x)} =
〈
f(x),

√
xsJµ(xs)

〉
, (6.1)

where

s ∈ Ωf = {s : |Im(s)| < σ, s 6∈ (−∞, 0]} , (6.2)

where Jµ,a is a space of complex-valued testing function φ(x), which are defined

and smooth on 0 < x <∞ and for which

τµ,ak (φ) = sup
0<x<∞

∣∣∣e−axx−µ−1/2
(
x−µ−1/2Dx2µ+1Dx−µ−1/2

)k
φ(x)

∣∣∣ <∞,
k = 0, 1, 2, · · · , D ≡ d

dx

and J′µ,a denotes the dual space of Jµ,a.

Analyticity of complex function F (s) is given by the following theorem:

Theorem 6.1 (Koh and Zemanian [85]). F (s), as defined in (6.1), is an analytic

function of s in the region Ωf defined in (6.2), and

DsF (s) =

〈
f(x),

∂

∂s

√
xsJµ(xs)

〉
, s ∈ Ωf .
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6.2 The Testing Spaces Jµ,a and Jµ(σ) and their

Duals

In this section, we define the space of bicomplex-valued testing functions extend-

ing the space defined by Koh and Zemanian [85]. Let a denote a positive real

number and µ any bicomplex number. Then for each pair of a and µ we define

Jµ,a as the space of testing functions φ which are bicomplex-valued, which are

defined and smooth on 0 < x <∞ and for which

τµ,ak (φ) = sup
0<x<∞

∥∥∥e−axx−µ−1/2
(
x−µ−1/2Dx2µ+1Dx−µ−1/2

)k
φ(x)

∥∥∥ <∞,
k = 0, 1, 2, · · · , D ≡ d

dx
,

where ‖ · ‖ is as defined in (1.16). The space of testing function satisfy the

inclusion relation as discussed in the following theorem.

Theorem 6.2. Let a > b > 0, then Jµ,b ⊂ Jµ,a.

Proof. Let φ ∈ Jµ,b, then

τµ,bk (φ) = sup
0<x<∞

∥∥∥e−bxx−µ−1/2
(
x−µ−1/2Dx2µ+1Dx−µ−1/2

)k
φ(x)

∥∥∥ <∞.
Since a > b > 0, therefore

sup
0<x<∞

∥∥∥e−axx−µ−1/2
(
x−µ−1/2Dx2µ+1Dx−µ−1/2

)k
φ(x)

∥∥∥
≤ sup

0<x<∞

∥∥∥e−bxx−µ−1/2
(
x−µ−1/2Dx2µ+1Dx−µ−1/2

)k
φ(x)

∥∥∥ <∞
⇒ τµ,ak (φ) ≤ τµ,bk (φ) <∞.
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Therefore,

τµ,ak (φ) = sup
0<x<∞

∥∥∥e−axx−µ−1/2
(
x−µ−1/2Dx2µ+1Dx−µ−1/2

)k
φ(x)

∥∥∥ <∞
⇒ φ ∈ Jµ,a

∴ Jµ,b ⊂ Jµ,a.

Jµ,a is the linear space over the field of complex numbers as c1, c2 ∈ C1 and φ, ψ ∈

Jµ,a ⇒ c1φ + c2ψ ∈ Jµ,a. Let {aν}∞ν=1 be a monotonically increasing sequence

of positive numbers tending to σ. By the Theorem 6.2, if a1 > b1 > 0, then

Jµ1,b1 ⊂ Jµ1,a1 .

This follows that {Jµ,aν}∞ν=1 is a sequence such that Jµ,a1 ⊂ Jµ,a2 ⊂ Jµ,a3 · · · .

Let Jµ(σ) =
⋃∞
ν=1 Jµ,aν denote the countable-union space generated by the above

sequence of spaces. The dual of Jµ,a and Jµ(σ) are denoted by J′µ,a and J′µ(σ)

respectively.

Let bicomplex-valued function f(x) be locally integrable on 0 < x < ∞ and

such that
∫∞

0

∥∥∥f(x)eaxxµ+ 1
2

∥∥∥ dx <∞. Then f(x) generates a regular generalized

function in J′µ,a defined by

〈f, φ〉 =

∫ ∞
0

f(x)φ(x)dx, φ ∈ Jµ,a.

6.3 Bicomplex Hankel Transform

Let µ1 ∈ C1 be restricted to Re(µ1) ≥ −1
2
. If a1 > b1 > 0, then Jµ1,b1 ⊂ Jµ1,a1 .

This follows immediately from the inequality τµ1,a1k (φ) ≤ τµ1,b1k (φ) for φ ∈ Jµ1,a1 .

Hence, the restriction of f1 ∈ J′µ1,a1 to Jµ1,b1 is in J′µ1,b1 , and convergence in J′µ1,a1
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implies convergence in J′µ1,b1 . For every f1 ∈ J′µ1,a1 , ∃ a unique real number σ1

such that

f1 ∈ J′µ1,b1 if b1 < σ1

f1 6∈ J′µ1,b1 if b1 > σ1.

Therefore, f1 ∈ J′µ1(σ1). The Hankel transform F (s1) of f1 of order µ1 is defined

as

F (s1) = Hµ1{f1(x)} = 〈f1(x),
√
xs1Jµ1(xs1)〉 , (6.3)

where

s1 ∈ Ω1 = {s1 : |Im(s1)| < σ1, s1 6∈ (−∞, 0]} . (6.4)

Similarly, for every f2 ∈ J′µ2(σ2), another Hankel transform F (s2) of f2 of order

µ2 is defined as

F (s2) = Hµ2{f2(x)} = 〈f2(x),
√
xs2Jµ2(xs2)〉 , (6.5)

where

s2 ∈ Ω2 = {s2 : |Im(s2)| < σ2, s2 6∈ (−∞, 0]} . (6.6)

Since F (s1) and F (s2) are analytic and convergent in Ω1 and Ω2 respectively for

σ = min(σ1, σ2), taking the linear combination with idempotent components e1

and e2 as:

F (s1)e1 + F (s2)e2

= 〈f1(x),
√
xs1Jµ1(xs1)〉 e1 + 〈f2(x),

√
xs2Jµ2(xs2)〉 e2

=
〈
f1(x)e1 + f2(x)e2,

√
x(s1e1 + s2e2)Jµ1e1+µ2e2(x(s1e1 + s2e2))

〉
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=
〈
f(x),

√
xξJµ(xξ)

〉
= F (ξ) (6.7)

(where f(x) = f1(x)e1 + f2(x)e2, µ = µ1e1 + µ2e2 and ξ = s1e1 + s2e2) .

Since F (s1) and F (s2) are complex functions which are convergent and ana-

lytic in Ω1 and Ω2 respectively, so a bicomplex function F (ξ) = F (s1)e1 +F (s2)e2

will be convergent and analytic in the region Ω defined as:

Ω = {ξ : ξ = s1e1 + s2e2; |Im(s1)| < σ, |Im(s2)| < σ and s1, s2 6∈ (−∞, 0]}
(6.8)

For better geometrical understanding of the region of convergence of bicomplex

Hankel transform it will be advantageous to use the general four dimensional rep-

resentation of bicomplex numbers. For this we take conventional representation

of s1, s2 ∈ C1 as

s1 = x1 + i1y1, s2 = x2 + i1y2; x1, x2, y1, y2 ∈ R.

Then by (6.8), |y1| < σ, |y2| < σ and if y1 = y2 = 0 then x1, x2 6∈ (−∞, 0]. Now,

ξ = s1e1 + s2e2 = (x1 + i1y1)e1 + (x2 + i1y2)e2

= (x1 + i1y1)

(
1 + i1i2

2

)
+ (x2 + i1y2)

(
1 + i1i2

2

)
=
x1 + x2

2
+

(
y1 + y2

2

)
i1 +

(
y2 − y1

2

)
i2 +

(
x1 − x2

2

)
i1i2.

= a0 + i1a1 + i2a2 + i1i2a3 (say)

On the basis of restriction on y1 and y2, three possible cases occur:

1. If y1 = y2 then y2−y1
2

= 0 and y1+y2
2

= y1 = y2. Hence a2 = 0 and |a1| < σ.

In particular, if y1 = y2 = 0 and x1, x2 6∈ (−∞, 0]. Clearly if a1, a2 = 0 then

|a3| < a0.
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2. If y1 > y2 then −σ < y2−y1
2

< 0, y1+y2
2

< y2+σ
2

< y2+σ
2

+ σ−y1
2

= σ + y2−y1
2

and y1+y2
2

> y1−σ
2

> y1−σ
2
− σ+y2

2
= −σ − y2−y1

2
. Hence −σ < a2 < 0 and

−σ − a2 < a1 < σ + a2.

3. If y1 < y2 then 0 < y2−y1
2

< σ, y1+y2
2

< y1+σ
2

< y1+σ
2

+ σ−y1
2

= σ − y2−y1
2

and y1+y2
2

> y2−σ
2

> y2−σ
2

+ −σ−y1
2

= −σ + y2−y1
2
. Hence 0 < a2 < σ and

−σ + a2 < a1 < σ − a2.

Considering all of these results we conclude that the region of convergence of F (ξ)

as

Ω = {ξ : ξ = a0 + i1a1 + i2a2 + i1i2a3 ∈ C2, −σ + |a2| < a1 < σ − |a2|,

0 < |a2| < σ and if a1 = a2 = 0 then |a3| < a0} (6.9)

or, equivalently

Ω = {ξ ∈ C2 : −σ + |Imi2(ξ)| < Imi1(ξ) < σ − |Imi2(ξ)|, 0 < |Imi2(ξ)| < σ

and if Imi1(ξ) = Imi2(ξ) = 0 then |Imj(ξ)| < Re(ξ)} , (6.10)

where Re(ξ), Imi1(ξ), Imi2(ξ) and Imj(ξ) are real part, imaginary partof ξ w.r.t.

i1, i2 and j, respectively.

Conversely, the existence condition of bicomplex Hankel transform F (ξ) can

be obtained in the following way:

If ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ Ω,

−σ + |a2| < a1 < σ − |a2|, 0 < |a2| < σ and if a1 = a2 = 0 then |a3| < a0

(6.11)
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Now, in terms of idempotent components, ξ can be expressed as

ξ = a0 + a1i1 + a2i2 + a3i1i2

= [(a0 + a3) + i1(a1 − a2)] e1 + [(a0 − a3) + i1(a1 + a2)] e2

= s1e1 + s2e2.

Depending on the value of a3, there arises three cases:

1. When a2 = 0, from inequality (6.11) −σ < a1 < σ which trivially leads

−σ < a1 + a2 < σ and −σ < a1 − a2 < σ. If a1 = a2 = 0 then a0 − a3 > 0,

a0 + a3 > 0 i.e. a0 − a3, a0 + a3 /∈ (−∞, 0].

2. When a2 > 0, from the inequality (6.11) −σ + a2 < a1 < σ − a2, we

get −σ < a1 − a2 and a1 + a2 < σ. This result can be interpreted as

−σ < a1 − a2 < a1 + a2 < σ.

3. When a2 < 0, from the inequality (6.11) −σ − a2 < a1 < σ + a2, we

get −σ < a1 + a2 and a1 − a2 < σ. This result can be interpreted as

−σ < a1 + a2 < a1 − a2 < σ.

Hence the result.

Similarly, combining Re(µ1) ≥ −1
2

and Re(µ2) ≥ −1
2

using idempotent com-

ponents, we get

Re(µ) ≥ −1

2
+ |Imj(µ)| ,
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where µ = µ1e1 + µ2e2 ∈ C2 and Imj denotes imaginary part w.r.t. j. Let

bicomplex-valued function f(x) be locally integrable on 0 < x < ∞ and such

that ∫ ∞
0

∥∥∥f(x)eaxxµ+ 1
2

∥∥∥ dx <∞, ∀ a < σ. (6.12)

Therefore, (6.7) can be written as

F (ξ) =
〈
f(x),

√
xξJµ(xξ)

〉
=

∫ ∞
0

f(x)
√
xξJµ(xξ)dx

∴ F (ξ) =

∫ ∞
0

f(x)
√
xξJµ(xξ)dx, ∀ ξ ∈ Ω. (6.13)

After all the above discussion, now we are in the position to define bicomplex

Hankel transform as follows:

Definition 6.2. Let µ ∈ C2 be restricted to Re(µ) ≥ −1
2

+ |Imj(µ)|. If a > b > 0,

then Jµ,b ⊂ Jµ,a. This follows immediately from the inequality τµ,ak (φ) ≤ τµ,bk (φ)

for φ ∈ Jµ,a. Hence, the restriction of f ∈ J′µ,a to Jµ,b is in J′µ,b, and convergence

in J′µ,a implies convergence in J′µ,b. For every bicomplex-valued function f ∈ J′µ,a,

∃ a unique real number σ such that f ∈ J′µ,b if b < σ and f 6∈ J′µ,b if b > σ.

Therefore, f ∈ J′µ(σ). The µth order bicomplex Hankel transform F (ξ) of f is

defined as

F (ξ) = Hµ{f(x)} =
〈
f(x),

√
xξJµ(xξ)

〉
, ∀ ξ ∈ Ω

where

Ω = {ξ ∈ C2 : −σ + |Imi2(ξ)| < Imi1(ξ) < σ − |Imi2(ξ)|, 0 < |Imi2(ξ)| < σ

and if Imi1(ξ) = Imi2(ξ) = 0 then |Imj(ξ)| < Re(ξ)} (6.14)

where Re(ξ), Imi1(ξ), Imi2(ξ) and Imj(ξ) are real part, imaginary parts of ξ w.r.t.

i1, i2 and j, respectively. If bicomplex-valued function f(x) is locally integrable

on 0 < x <∞ and satisfies the condition∫ ∞
0

∥∥∥f(x)eaxxµ+ 1
2

∥∥∥ dx <∞, ∀ a < σ. (6.15)
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Then bicomplex Hankel transform of f(x) is defined as

F (ξ) =

∫ ∞
0

f(x)
√
xξJµ(xξ)dx, ∀ ξ ∈ Ω.

6.4 Properties of Bicomplex Hankel Transform

In this section, some properties of bicomplex Hankel transform viz. linearity prop-

erty, change of scale property, analyticity of F (ξ), relationship with bicomplex

Laplace transform and others have been discussed.

Theorem 6.3 (Linearity Property). Let F (ξ) and G(ξ) be the bicomplex Hankel

transforms of order µ of bicomplex-valued functions f(x) and g(x) respectively,

then

Hµ{f(x) + g(x)} = F (ξ) +G(ξ), ξ ∈ Ω (6.16)

where Ω defined in (6.14).

Proof. By applying the definition of bicomplex Hankel transform,

Hµ{f(x) + g(x)}

=
〈
f(x) + g(x),

√
xξJµ(xξ)

〉
=
〈
f1(x)e1 + f2(x)e2 + g1(x)e1 + g2(x)e2,

√
x(s1e1 + s2e2)Jµ(x(s1e1 + s2e2))

〉
= 〈f1(x) + g1(x),

√
xs1Jµ(xs1)〉 e1 + 〈f2(x) + g2(x),

√
xs2Jµ(xs2)〉 e2

= 〈f1(x),
√
xs1Jµ(xs1)〉 e1 + 〈g1(x),

√
xs1Jµ(xs1)〉 e1

+ 〈f2(x),
√
xs2Jµ(xs2)〉 e2 + 〈g2(x),

√
xs2Jµ(xs2)〉 e2

=
〈
f1(x)e1 + f2(x)e2,

√
x(s1e1 + s2e2)Jµ(x(s1e1 + s2e2))

〉
+
〈
g1(x)e1 + g2(x)e2,

√
x(s1e1 + s2e2)Jµ(x(s1e1 + s2e2))

〉
=
〈
f(x),

√
xξJµ(xξ)

〉
+
〈
g(x),

√
xξJµ(xξ)

〉
=F (ξ) +G(ξ).
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Theorem 6.4 (Change of Scale Property). Let F (ξ) be the bicomplex Hankel

transform of order µ of bicomplex-valued function f(x) and satisfy the condition

(6.15). Then

Hµ{f(ax)} =
1

a
F

(
ξ

a

)
, a 6= 0 ∈ R, ξ ∈ Ω (6.17)

where Ω defined in (6.14).

Proof. By applying the definition of bicomplex Hankel transform

Hµ{f(ax)} =

∫ ∞
0

f(ax)
√
xξJµ(xξ)dx

Put ax = t

=
1

a

∫ ∞
0

f(t)

√
t
ξ

a
Jµ

(
t
ξ

a

)
dt

=
1

a
F

(
ξ

a

)
.

Theorem 6.5. Let Hµ{f(x)} be the bicomplex Hankel transform of order µ of

bicomplex-valued locally integrable function f(x) and satisfy the condition (6.15).

Then

Hµ

{
df

dx

}
=
ξ

2
(Hµ+1 {f(x)} −Hµ−1 {f(x)})− 1

2
Hµ

{
f

x

}
, ξ ∈ Ω (6.18)

where Ω defined in (6.14).

Proof. If F (ξ) be the bicomplex Hankel transform of order µ of f(x) i.e.

Hµ {f(x)} =

∫ ∞
0

f(x)
√
xξJµ(xξ)dx,

then the bicomplex Hankel transform of df
dx

is

Hµ

{
df

dx

}
=

∫ ∞
0

df

dx

√
xξJµ(xξ)dx
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on integrating by parts and assuming that
√
xf(x) → 0 as x → 0, x → ∞, we

get

Hµ

{
df

dx

}
=−

∫ ∞
0

f(x)
d

dx

(√
xξJµ(xξ)

)
dx

=−
∫ ∞

0

f(x)

( √
ξ

2
√
x
Jµ(xξ) +

ξ

2

√
xξJµ−1(xξ)− ξ

2

√
xξJµ+1(xξ)

)
dx

=− 1

2

∫ ∞
0

f(x)

x

√
xξJµ(xξ)dx

− ξ

2

∫ ∞
0

f(x)
√
xξJµ−1(xξ)dx+

ξ

2

∫ ∞
0

f(x)
√
xξJµ+1(xξ)dx

=− 1

2
Hµ

{
f

x

}
− ξ

2
Hµ−1(ξ) +

ξ

2
Hµ+1(ξ)

∴ Hµ

{
df

dx

}
=
ξ

2
(Hµ+1 {f(x)} −Hµ−1 {f(x)})− 1

2
Hµ

{
f

x

}
.

Theorem 6.6. Let Hµ{f(x)} be the bicomplex Hankel transform of order µ of

bicomplex-valued locally integrable function f(x) and satisfy the condition (6.15).

Then

Hµ

{
d2f

dx2

}
=
ξ2

4
(Hµ+2{f(x)} − 2Hµ{f(x)})

−ξ
4

(
Hµ−1

{
f

x

}
− 2Hµ+1

{
f

x

})
− 1

4
Hµ

{
f

x2

}
, ξ ∈ Ω (6.19)

where Ω defined in (6.14).

Proof. By Theorem 6.5 we have,

Hµ

{
df

dx

}
=
ξ

2
(Hµ+1{f(x)} −Hµ−1{f(x)})− 1

2
Hµ

{
f

x

}
(6.20)

By inserting df
dx

in place of f in (6.20) we have

Hµ

{
d2f

dx2

}
=
ξ

2

(
Hµ+1

{
df

dx

}
−Hµ−1

{
df

dx

})
− 1

2
Hµ

{
1

x

df

dx

}
=
ξ

2

(
ξHµ+2{f(x)} − 2ξHµ{f(x)}+ ξHµ−2{f(x)} −Hµ+1

{
f

x

}
+Hµ−1

{
f

x

})
− 1

2
Hµ

{
1

x

df

dx

}
(6.21)
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Now,

Hµ

{
1

x

df

dx

}
=

∫ ∞
0

f(x)
1

x

√
xξJµ(xξ)dx

On integrating by parts and assuming that f(x)√
x
→ 0 as x→ 0, x→∞ we have

Hµ

{
1

x

df

dx

}
=−

∫ ∞
0

f(x)
d

dx

(√
ξ

x
Jµ(xξ)

)
dx

=−
∫ ∞

0

√
ξf(x)

(
− 1

2x3/2
Jµ(xξ) +

ξ√
x

(
1

2
(Jµ−1(xξ)− Jµ+1(xξ))

))
dx

=
1

2

∫ ∞
0

f(x)

x2

√
xξJµ(xξ)dx− ξ

2

∫ ∞
0

f(x)

x

√
xξJµ−1(xξ)dx

+
ξ

2

∫ ∞
0

f(x)

x

√
xξJµ+1(xξ)dx

=
1

2
Hµ

{
f

x2

}
− ξ

2
Hµ−1

{
f

x

}
+
ξ

2
Hµ+1

{
f

x

}
By putting the value in (6.21) and after simplification we have

Hµ

{
d2f

dx2

}
=
ξ2

4
(Hµ+2{f(x)} − 2Hµ{f(x)})

− ξ

4

(
Hµ−1

{
f

x

}
− 2Hµ+1

{
f

x

})
− 1

4
Hµ

{
f

x2

}
.

Theorem 6.7 (Relationship between bicomplex Hankel transform and bicom-

plex Laplace transform). Let Hµ {f(x); ξ} and L {f(x); η} be bicomplex Hankel

transform and bicomplex Laplace transform respectively. Then

Hµ

{
e−ηxf(x); ξ

}
= L

{√
xξJµ(xξ)f(x); η

}
, ξ ∈ Ω (6.22)

where Re(P1 : η) > 0, Re(P2 : η) > 0 and Ω defined in (6.14).
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Proof. By the definition of bicomplex Hankel transform, we have

Hµ

{
e−ηxf(x); ξ

}
=

∫ ∞
0

e−ηxf(x)
√
xξJµ(xξ)dx

=

∫ ∞
0

e−ηx
(
f(x)

√
xξJµ(xξ)

)
dx

=L
{√

xξJµ(xξ)f(x); η
}
.

Theorem 6.8 (Analyticity of F (ξ)). F (ξ), as defined in (6.7), is an analytic

function of ξ in the region Ω defined in (6.14), and

DξF (ξ) =

〈
f(x),

∂

∂ξ

√
xξJµ(xξ)

〉
, ξ = s1e1 + s2e2 ∈ Ω. (6.23)

Proof. Clearly, the bicomplex function F (ξ) is analytic in Ω. By Theorem 6.1,

we have

Ds1F (s1) =

〈
f1(x),

∂

∂s1

√
xs1Jµ1(xs1)

〉
, s1 ∈ Ω1. (6.24)

Similarly,

Ds2F (s2) =

〈
f2(x),

∂

∂s2

√
xs2Jµ2(xs2)

〉
, s2 ∈ Ω2. (6.25)

Since (6.24) and (6.25) are analytic in Ω1 and Ω2 respectively. Therefore, taking

linear combination of (6.24) and (6.25) with e1 and e2 respectively.

Ds1F (s1)e1 +Ds2F (s2)e2

=

〈
f1(x),

∂

∂s1

√
xs1Jµ1(xs1)

〉
e1 +

〈
f2(x),

∂

∂s2

√
xs2Jµ2(xs2)

〉
e2

or

D(s1e1+s2e2)F (s1e1 + s2e2)

=

〈
f1(x)e1 + f2(x)e2,

∂

∂(s1e1 + s2e2)

√
x(s1e1 + s2e2)Jµ1e1+µ2e2(x(s1e1 + s2e2))

〉
∴ DξF (ξ) =

〈
f(x),

∂

∂ξ

√
xξJµ(xξ)

〉
(where ξ = s1e1 + s2e2, f(x) = f1(x)e1 + f2(x)e2 and µ = µ1e1 + µ2e2).
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6.5 Inversion of Bicomplex Hankel Transform

In this section, we discuss inversion formula for bicomplex Hankel transform. We

require the following theorem by Koh and Zemanian [85, Theorem 4] for inverse

Hankel transform to define its bicomplex form.

Theorem 6.9. Let F (s) = Hµ{f(x)}, f ∈ J′µ(σ) be complex Hankel transform

of f(x) where s is restricted to the real positive axis. Let Re(µ) ≥ −1
2
. Then, in

the sense of convergence in D′(I),

f(x) = lim
r→∞

∫ r

0

H(s)
√
xsJµ(xs)ds. (6.26)

D(I) denotes the space of smooth functions that have compact support on I

and D′(I) is dual of space D(I). Now, we shall find the inversion formula for

bicomplex Hankel transform with the help of Theorem 6.9.

Theorem 6.10. Let F (ξ) = Hµ{f(x)}, f ∈ J′µ(σ) as in (6.7) where ξ restricted

to the real positive axis and f(x) and F (ξ) are bicomplex-valued functions. Then

for Re(µ) ≥ −1
2

+ |Imj(µ)| , in the sense of convergence in D′(I),

f(x) = lim
r→∞

∫ r

0

F (ξ)
√
xξJµ(xξ)dξ. (6.27)

Proof. Let F1(ξ) = Hµ1{f1(x)}, f1 ∈ J ′µ1(σ), Re(µ1) ≥ −1
2

be complex-valued

Hankel transform of complex-valued function f(x), where ξ restricted to the real

positive axis. Then, from Theorem 6.9 we have

f1(x) = lim
r→∞

∫ r

0

F1(ξ)
√
xξJµ1(xξ)dξ (6.28)

Similarly, let F2(ξ) = Hµ2{f2(x)}, f2 ∈ J ′µ2(σ), Re(µ2) ≥ −1
2
. Then

f2(x) = lim
r→∞

∫ r

0

F2(ξ)
√
xξJµ2(xξ)dξ (6.29)
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Taking the linear combination of (6.28) and (6.29) with e1 and e2 respectively,

we have

f1(x)e1 + f2(x)e2 = lim
r→∞

[(∫ r

0

F1(ξ)
√
xξJµ1(xξ)dξ

)
e1

+

(∫ r

0

F2(ξ)
√
xξJµ2(xξ)dξ

)
e2

]

f(x) = lim
r→∞

∫ r

0

{F1(ξ)e1 + F2(ξ)e2}
√
xξJ(µ1e1+µ2e2)(xξ)dξ

f(x) = lim
r→∞

∫ r

0

F (ξ)
√
xξJµ(xξ)dξ

where f(x) = f1(x)e1 + f2(x)e2, µ = µ1e1 + µ2e2 and F (ξ) = F1(ξ)e1 + F2(ξ)e2.

Combining the conditions Re(µ1) ≥ −1
2
, Re(µ2) ≥ −1

2
using idempotent compo-

nents, we get

Re(µ) ≥ −1

2
+ |Imj(µ)| .

This completes our proof.

Following is the illustration to find bicomplex Hankel transform of a bicomplex-

valued function.

Example 6.1. If F (ξ) = Hµ {f(x); ξ} , ξ ∈ Ω be the bicomplex Hankel transform,

then show that

Hµ

{
xµ−

1
2 e−ηx; ξ

}
=

2µΓ
(
µ+ 1

2

)
√
π(ξ2 + η2)µ+ 1

2

,

where Re(P1 : η) > 0, Re(P2 : η) > 0, Re(µ) > −1
2

+ |Imj(µ)| and Ω defined in

(6.14).

Solution. By the definition of bicomplex Hankel transform, we have

Hµ

{
xµ−

1
2 e−ηx; ξ

}
=

∫ ∞
0

xµ−
1
2 e−ηx

√
xξJµ(xξ)dx

=
√
ξ

∫ ∞
0

e−ηxxµJµ(xξ)dx

151



6. HANKEL TRANSFORM IN BICOMPLEX SPACE AND
APPLICATIONS

Table 6.1: Bicomplex Hankel transform of some functions

S.No. f(x) Order µ

Bicomplex

Hankel

Transform

F (ξ)

Region of

Convergence

1. x−
1
2 µ = 0 ξ−

1
2 ξ ∈ Ω

2.

xµ+ 1
2 , 0 < x < a

0, x > a

Re(µ) ≥
−1

2
+ |Imj(µ)|

aµ+1
√
ξ
Jµ+1(aξ) ξ ∈ Ω

3. x
1
2 (a2 + x2)−

1
2 µ = 0 ξ−

1
2 e−aξ

ξ ∈ Ω,

Re(P1 : a) > 0,

Re(P2 : a) > 0

4. x
1
2 (x2 + a2) µ = 0 ξ

1
2

a
e−aξ

ξ ∈ Ω,

Re(P1 : a) > 0,

Re(P2 : a) > 0

5. x−
1
2 e−ax µ = 0 ξ

1
2 (ξ2 + a2)−

1
2

ξ ∈ Ω,

Re(P1 : a) > 0,

Re(P2 : a) > 0

=
√
ξ

∫ ∞
0

e−ηxxµ
∞∑
r=0

(−1)r

r!Γ(µ+ r + 1)

(
xξ

2

)µ+2r

dx

=
√
ξ

∞∑
r=0

(−1)r

r!Γ(µ+ r + 1)

(
ξ

2

)µ+2r ∫ ∞
0

e−ηxx2µ+2rdx

=
ξµ+ 1

2

2µ

∞∑
r=0

(−1)r

r!Γ(µ+ r + 1)

(
ξ

2

)2r
Γ(2µ+ 2r + 1)

η2µ+2r+1

Applying Duplication formula for Gamma function Rainville [120, p. 24]

=
ξµ+ 1

2

2µη2µ+1

∞∑
r=0

(−1)r

r!

(
ξ

2η

)2r Γ(µ+ r + 1
2
)

√
π

22µ+2r

=
2µΓ(µ+ 1

2
)ξµ+ 1

2

√
πη2µ+1

∞∑
r=0

(−1)r

r!

(
µ+

1

2

)
r

(
ξ2

a2

)r
=

2µΓ(µ+ 1
2
)ξµ+ 1

2

√
πη2µ+1

(
1 +

ξ2

η2

)−µ− 1
2

=
2µΓ(µ+ 1

2
)ξµ+ 1

2

√
π(ξ2 + η2)µ+ 1

2

.
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6.6 An Operational Calculus

y = x
1
2Jµ(x) satisfies the following differential equation (see, Watson [145, p.

158])

x2 d
2y

dx2
+

[
x2 −

(
µ2 − 1

4

)]
y = 0. (6.30)

Let ∆µ ≡ x−µ−
1
2Dx2µ+1Dx−

1
2
−µ, D ≡ d

dx
, Then

∆µ(f) =x−µ−
1
2Dx2µ+1Dx−

1
2
−µf(x)

=x−µ−
1
2

{
(2µ+ 1)x2µ+1Dx−µ−

1
2f(x) + x2µ+1D2

[
x−µ−

1
2f(x)

]}
=x−µ−

1
2

{
(2µ+ 1)x2µ+1

(
−µ− 1

2

)
x−µ−

3
2f(x) + (2µ+ 1)x2µ+1x−µ−

1
2f ′(x)

+ x2µ+1

[(
−µ− 1

2

)(
−µ− 3

2

)
x−µ−

5
2f(x) + 2

(
−µ− 1

2

)
x−µ−

3
2f ′(x)

+ x−µ−
1
2f ′′(x)

]}
=f ′′(x) + x−2

(
1

4
− µ2

)
f(x).

Therefore,

∆µ ≡ x−µ−
1
2Dx2µ+1Dx−

1
2
−µ ≡ D2 + x−2

(
1

4
− µ2

)
. (6.31)

The operator satisfies (see, Koh and Zemanian [85, p. 951])

∆k
µ [
√
xs1Jµ(xs1)] = (−1)ks2k

1 Jµ(xs1), s1 ∈ C1 (6.32)

Similarly,

∆k
µ [
√
xs2Jµ(xs2)] = (−1)ks2k

2 Jµ(xs2), s2 ∈ C1 (6.33)
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By taking linear combination of (6.32) and (6.33) w.r.t. e1 and e2 respectively,

we have

∆k
µ [
√
xs1Jµ(xs1)] e1 + ∆k

µ [
√
xs2Jµ(xs2)] e2 =

(
(−1)ks2k

1

√
xs1Jµ(xs1)

)
e1

+
(
(−1)ks2k

2

√
xs2Jµ(xs2)

)
e2

∆k
µ

[√
xξJµ(xξ)

]
= (−1)kξ2k

√
xξJµ(xξ), (where ξ = s1e1 + s2e2 ∈ C2). (6.34)

Now we define the operator

∆µ : Jµ(σ)→ Jµ(σ)

such that

〈∆µf(x), φ(x)〉 = 〈f(x),∆µφ(x)〉 , ∀ f ∈ J′µ(σ), φ ∈ Jµ(σ). (6.35)

From (6.34) and (6.35), we get

〈
∆k
µf(x),

√
xξJµ(xξ)

〉
= (−1)kξ2k

〈
f(x),

√
xξJµ(xξ)

〉
. (6.36)

Therefore, bicomplex Hankel transform of ∆k
µf(x) is

Hµ

{
∆k
µf(x)

}
=
〈

∆k
µf(x),

√
xξJµ(xξ)

〉
= (−1)kξ2k

〈
f(x),

√
xξJµ(xξ)

〉
, [Using (6.36)]

= (−1)kξ2kHµ {f(x)}

= (−1)kξ2kF (ξ). (6.37)

154



6.7 Applications

6.7 Applications

Hankel transform is an important transform and has found many applications

in the fields of science and engineering. In [86], Kong discussed the application

of Hankel transform in the dipole antenna radiation in conductive medium. In

[62], Gupta et al. discussed that computation of electromagnetic fields, for one-

dimensional layered earth model, requires evaluation of Hankel transform of the

electromagnetic kernel function. Bicomplex Hankel transform is advantageous

than complex Hankel transform as the former can deal with the large class of

frequency domain. In [99], Malgonde et al. used generalized Hankel transform to

solve the Cauchy problem

∂2u

∂x2
+

2µ+ 1

x

∂u

∂x
− ν2 − µ2

x2
u = λ

∂u

∂t
, (6.38)

with initial condition

u(x, t)→ f(x) in D′(I), where f ∈ H′µ,ν(σ) for some σ > 0 as t→ 0+.

In the above equation notations and terminologies are as defined in Zemanian

[156] and I denotes the open interval (0,∞).

In the similar manner, consider Cauchy problem for bicomplex-valued function

u : R→ C2 is in the form

∂2u

∂x2
−
µ2 − 1

4

x2
u = λ

∂u

∂t
, (6.39)

with initial condition

u(x, t)→ f(x) in D′(I), where f ∈ J′µ,ν(σ) for some σ > 0 as t→ 0+.
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For the solution of (6.39), we shall make use of bicomplex Hankel transform. By

taking bicomplex Hankel transform of (6.39) and by using (6.37) we have

− ξ2U(ξ, t) = λ
∂

∂t
U(ξ, t), [where U(ξ, t) = Hµ {u(x, t)}]

⇒ d

dt
U(ξ, t) +

ξ2

λ
U(ξ, t) = 0.

This is first order differential equation w.r.t. variable t. Solving and making use

of initial condition, we get

U(ξ, t) = F (ξ)e−
ξ2

λ
t, [where F (ξ) = Hµ {f(x)}] . (6.40)

Further, taking the bicomplex inverse Hankel transform of (6.40), we get

u(x, t) = lim
r→∞

∫ r

0

F (ξ)e−
ξ2

λ
t
√
xξJµ(xξ)dξ (6.41)

which is the solution of equation (6.39).

6.8 Conclusion

In this chapter, we define bicomplex Hankel transform and its properties which is

a natural extension of the complex Hankel transform Koh and Zemanian [85]. It is

applicable in signal processing, solving partial differential equation of bicomplex-

valued functions, optics, electromagnetic field theory and other related problems

due to large class. Bicomplex numbers being basically four dimensional hyper-

complex numbers, provide large class of frequency domain.

156



7
Mellin Transform in Bicomplex Space,

Fractional Calculus and Applications

The main findings of this chapter have been published as:

1. Agarwal R., Goswami M.P. and Agarwal R.P. (2016), Mellin transform

in bicomplex Space and its application, Studia Universitatis Babes-Bolyai

Mathematica, (in press).

2. Agarwal R., Goswami M.P. and Agarwal R.P. (2017), A study of Mellin
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157



7. MELLIN TRANSFORM IN BICOMPLEX SPACE,
FRACTIONAL CALCULUS AND APPLICATIONS

In this chapter, we extend the Mellin transform of complex-valued function

in complex variable to Mellin transform of bicomplex-valued function in bicom-

plex variable. Also, we obtain bicomplex Mellin transform of Riemann-Liouville

integral, differential and Caputo fractional derivative of order α ≥ 0 of certain

functions and some of their properties.

7.1 Introduction

Hjalmar Mellin (1854-1933, see, e.g. [118]) gave his name to the Mellin transform

that associates to a complex-valued function f(t) defined over the interval (0,∞),

the function of complex variable s, as

f̄(s) =

∫ ∞
0

ts−1f(t)dt.

The change of variables t = e−x shows that the Mellin transform is closely re-

lated to the Laplace transform. General properties of the Mellin transform are

usually treated in detail in books on integral transforms, like those of Poularikas

[118] and Davies [33]. In 1959, Francis [53] discussed the application of complex

Mellin transform to networks with time-varying parameters. In 1992, Pilipovic

and Stojanovic [116] discussed the modified Mellin transform, its inverse, convo-

lution and properties over the investigated space. Also, applied modified Mellin

convolution in solving an integro-differential equation. In 1995, Flajolet et al.

[47] used Mellin transform for the asymptotic analysis of harmonic sums.

In 2007, Fitouhi and Bettaibi [46] discussed the applications of q- Mellin trans-

form in quantum calculus and derived the asymptotic expansion of some func-
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tions. In 2009, Erfani and Bayan [44] studied the application of two-dimensional

Laplace,Hankel and Mellin transforms in linear time-varying networks systems.

In 2015, Patil and Patil [114] discussed some properties of Mellin transform to

obtained electrical analogous with the use of force-voltage analogy of the given

mechanical system. In [3], Alotta et al. proposed a wavelet transform of an arbi-

trary function f(t) which can quickly computed by Mellin transform expression.

In 2016, Bardaro et al. [13] established the Paley-Wiener theorem of Fourier

analysis in the frame of Mellin transform.

For defining bicomplex Mellin transform, we shall need the definitions of bi-

complex gamma and beta functions. In [58], Goyal et al. defined bicomplex

gamma and beta function and discussed its various properties.

Definition 7.1. (Bicomplex Gamma function [58, p. 137]). Let ξ ∈ C2, p =

p1e1 + p2e2 ∈ C2, p1, p2 ∈ (0,∞), then

Γ(ξ) =

∫
H

e−ppξ−1dp (7.1)

where H = (γ1, γ2), γ1 ≡ γ1(p1) and γ2 ≡ γ2(p2). Γ(ξ) exists provided the integral

exists.

Definition 7.2. (Bicomplex Beta function [58, p. 137]). Let ξ = u1 + i2u2, η =

v1 + i2v2 ∈ C2, p = p1e1 + p2e2 ∈ C2, p1, p2 ∈ [0, 1] with Re(u1) > |Im(u2)| and

Re(v1) > |Im(v2)| then

B(ξ, η) =

∫
H

pξ−1(1− p)η−1dp (7.2)

where H = (γ1, γ2), γ1 ≡ γ1(p1) and γ2 ≡ γ2(p2).
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Mellin convolution of two bicomplex-valued functions can be defined as:

f(t) ∗ g(t) =

∫ ∞
0

1

x
f(x)g

(
t

x

)
dx (7.3)

f(t) ◦ g(t) =

∫ ∞
0

f(xt)g(x)dx. (7.4)

7.1.1 Basics of Fractional Calculus

Fractional calculus is a generalization of the classical calculus and it has been

used in various fields of science and engineering. The fractional calculus is a pow-

erful mathematical tool for the physical description systems that have long-term

memory and long term spatial interactions (see, for details, Podlubny [117], Miller

and Ross [106], Hilfer [66], Kilbas et al. [77] and Samko et al. [129]).

In [82], Klimek and Dziembowski applied Mellin transform to find the solution

of fractional differential equations of complex-valued function. In [48], Francisco

et al. proposed a fractional differential equation for the electrical RC and LC cir-

cuit in terms of the fractional time derivative of the Caputo type. In [93], Liang

and Liu deduced a fractional-order model based on skin effect for frequency de-

pendent transmission line model. In their paper voltage and currents at any

location in transmission line can be calculated by the proposed fractional partial

differential equations.

In this section, we give the definitions of Riemann-Liouville and Caputo frac-

tional operators along the main properties.

Definition 7.3. (see, e.g. Miller and Ross [106, p. 45]). Let α > 0 and f be

piecewise continuous on (0,∞) and integrable on any finite subinterval of [0,∞).
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Then for t > 0

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

(t− x)α−1f(x)dx

the Riemann-Liouville fractional integral of f of order α.

Definition 7.4. (see, e.g. Miller and Ross [106, p. 82]). Let f be a function of

class C and let α > 0. Let n be the smallest integer that exceeds α. Then the

fractional derivative of f of order α is defined as

0D
α
t f(t) = 0D

n
t

[
0D
−β
t f(t)

]
, α > 0, t > 0

where β = n− α > 0.

Some properties of Riemann-Liouville fractional operator are as follows:

Theorem 7.1. (see, e.g. Miller and Ross [106, Eq. 5.25, 6.1]). Let α, β are

two positive real number, then

(a) 0D
α
t

(
0D
−β
t f(t)

)
= 0D

α−β
t f(t),

(b) 0D
−α
t 0D

−β
t f(t) = 0D

−α−β
t f(t),

(c) 0D
−α
t 0D

−β
t f(t) = 0D

−β
t 0D

−α
t f(t).

For Riemann-Liouville operator 0D
α
t and α, n > 0 the fractional derivative of

the power function tn (see, e.g. Miller and Ross [106, p. 36]) is given by

0D
α
t t
n =

Γ(n+ 1)

Γ(n− α + 1)
tn−α. (7.5)

Definition 7.5. (Caputo [24] and see, e.g. Podlubny [117, Eq. (2.138)]). The

Caputo fractional derivative of f for α > 0 is defined as

C
0D

α
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(x)

(t− x)α+1−ndx, n− 1 < α ≤ n (7.6)

C
0D

α
t f(t) = 0D

−(n−α)
t g(t), g(t) = f (n)(t), n− 1 < α ≤ n (7.7)

provided the integral exists.
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Some properties of Caputo fractional derivative are as follows:

Theorem 7.2. (see, e.g. Kilbas et al. [77, p. 95, 96]). If m−1 < α ≤ m, m ∈ N
and function f s.t. integral (7.6) exist, then

(a) C
0D

α
t

(
0D
−α
t f(t)

)
= f(t),

(b) 0D
−α
t

(
C
0D

α
t f(t)

)
= f(t)−

∑m−1
k=0 f

(k)(0)
(
xk

k!

)
.

7.2 Bicomplex Mellin Transform

Let f1(t) be a complex-valued continuous function on the interval (0,∞) with

f1(t) = O (t−α1) as t→ 0+ and f1(t) = O
(
t−β1

)
as t→∞, where α1 < β1. Then

Mellin transform of f1(t) is

M [f1(t); s1] =

∫ ∞
0

ts1−1f1(t)dt = f̄1(s1), s1 ∈ C1 (7.8)

where f̄1(s1) is analytic and convergent in the vertical strip

Ω1 = {s1 ∈ C1 : α1 < Re(s1) < β1} . (7.9)

Similarly, f2(t) be a complex-valued continuous function on the interval (0,∞)

with f2(t) = O (t−α2) as t → 0+ and f2(t) = O
(
t−β2

)
as t → ∞, where α2 < β2.

Then Mellin transform of f2(t) is

M [f2(t); s2] =

∫ ∞
0

ts2−1f2(t)dt = f̄2(s2), s2 ∈ C1 (7.10)

where f̄2(s2) is analytic and convergent in the vertical strip

Ω2 = {s2 ∈ C1 : α1 < Re(s2) < β1} . (7.11)

162



7.2 Bicomplex Mellin Transform

Since f̄1(s1) and f̄2(s2) are complex functions which are analytic and convergent

in the strips Ω1 and Ω2 respectively. Now, we take linear combination of f̄1(s1)

and f̄2(s2) w.r.t. e1 and e2 respectively, denote by f̄(ξ), ξ = s1e1 + s2e2

f̄1(s1)e1 + f̄2(s2)e2 =

(∫ ∞
0

ts1−1f1(t)dt

)
e1 +

(∫ ∞
0

ts2−1f2(t)dt

)
e2

f̄(ξ) =

∫ ∞
0

t(s1e1+s2e2)−1 (f1(t)e1 + f2(t)e2) dt

f̄(ξ) =

∫ ∞
0

tξ−1f(t)dt (7.12)

where ξ = s1e1 + s2e2 and f̄(ξ) is analytic and convergent in the strip

Ω = {ξ : ξ = s1e1 + s2e2 ∈ C2;α < Re(P1 : ξ) < β;α < Re(P2 : ξ) < β;

α = max(α1, α2) and β = min(β1, β2)} . (7.13)

∵ α < Re(s1) = x1 < β and α < Re(s2) = x2 < β, we have

ξ = (x1 + i1y1)e1 + (x2 + i1y2)e2

= (x1 + i1y1)

(
1 + i1i2

2

)
+ (x2 + i1y2)

(
1− i1i2

2

)
=
x1 + x2

2
+

(
y1 + y2

2

)
i1 +

(
y2 − y1

2

)
i2 +

(
x1 − x2

2

)
i1i2.

Now, there are three possible cases:

1. If x1 = x2 = a0 (say) then x1−x2
2

= 0 and x1+x2
2

= a0.

Hence, if ξ = a0 + a1i1 + a2i2 + a3i1i2, then α < a0 < β and a3 = 0.

2. If x1 > x2, then x1−x2
2

> 0,

x1+x2
2

< β+x2
2

< β+x2
2

+ β−x1
2

= β − x1−x2
2

and x1+x2
2

> α+x1
2

> α+x1
2

+ α−x2
2

= α + x1−x2
2

.

Thus, α + a3 < a0 < β − a3 and a3 > 0.
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3. If x1 < x2, then x1−x2
2

< 0,

x1+x2
2

< β+x1
2

< β+x1
2

+ β−x2
2

= β + x1−x2
2

and x1+x2
2

> α+x2
2

> α+x2
2

+ α−x1
2

= α− x1−x2
2

.

Thus, α− a3 < a0 < β + a3 and a3 < 0.

These three conditions can be written in the following set builder form

Ω1 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α < a0 < β and a3 = 0},

Ω2 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α + a3 < a0 < β − a3 and a3 > 0},

Ω3 = {ξ = a0 + a1i1 + a2i2 + a3i1i2 : α− a3 < a0 < β + a3 and a3 < 0}.

Thus, α < Re(P1 : ξ) < β and α < Re(P2 : ξ) < β implies ξ ∈ Ω1 ∪ Ω2 ∪ Ω3 = Ω

which can be defined as:

Ω = {ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ C2 : α + |a3| < a0 < β − |a3|} (7.14)

or equivalently,

Ω = {ξ ∈ C2 : α + |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|}

where Imj(ξ) denotes the imaginary part w.r.t. j unit of a bicomplex number.

Conversely, the existence condition of bicomplex Mellin transform f̄(ξ) can

be obtained in the following way:

If ξ = a0 + a1i1 + a2i2 + a3i1i2 ∈ Ω,

α + |a3| < a0 < β − |a3|. (7.15)
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Now, in terms of idempotent components, ξ can be expressed as

ξ = a0 + a1i1 + a2i2 + a3i1i2

= [(a0 + a3) + i1(a1 − a2)] e1 + [(a0 − a3) + i1(a1 + a2)] e2

= s1e1 + s2e2.

Depending on the value of a3, there arises three cases:

1. When a3 = 0 and α < a0 < β which trivially leads α < a0 + a3 < β and

α < a0 − a3 < β.

2. When a3 > 0, from the inequality (7.15) α + a3 < a0 < β − a3, we get

α < a0 − a3 and a0 + a3 < β. This result can be interpreted as α <

a0 − a3 < a0 + a3 < β.

3. When a3 < 0, from the inequality (7.15) α − a3 < a0 < β + a3, we get

α < a0 + a3 and a0 − a3 < β. This result can be interpreted as α <

a0 + a3 < a0 − a3 < β.

Hence the result.

Now, we define the Mellin transform in the bicomplex space as follows:

Definition 7.6. Let f(t) be a bicomplex-valued continuous function on the in-

terval (0,∞) with f(t) = O (t−α) as t→ 0+ and f(t) = O
(
t−β
)

as t→∞, where

α < β. Then bicomplex Mellin transform of f(t) defined as

M[f(t); ξ] =

∫ ∞
0

tξ−1f(t)dt = f̄(ξ), ξ ∈ Ω

where f̄(ξ) is analytic and convergent in Ω defined as

Ω = {ξ ∈ C2 : α + |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|} (7.16)

where Imj(ξ) denotes the imaginary part w.r.t. j unit of a bicomplex number.
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Following is the illustration to explain the process of finding the bicomplex

Mellin transform of a bicomplex valued function.

Example 7.1. Let f(t) = taU(t− t0), where U(t− t0) is unit-step function, then

M[f(t); ξ] = − tξ+a0

ξ + a
, Re(ξ + a) < − |Imj(ξ + a)| .

Solution. By applying the definition of bicomplex Mellin transform

M[f(t); ξ] =

∫ ∞
0

tξ−1taU(t− t0)dt

=

∫ ∞
t0

tξ+a−1dt

= − tξ+a0

ξ + a
.

Example 7.2. Let g(t) =

(1− t)α−1, 0 ≤ t < 1

0, t ≥ 1
Then

M[g(t); ξ] =
Γ(α)Γ(ξ)

Γ(ξ + α)
, Re(ξ1) > |Im(ξ2)| and Re(α1) > |Im(α2)| (7.17)

where ξ = ξ1 + i2ξ2 and α = α1 + i2α2.

Solution. By applying the definition of bicomplex Mellin transform

M[g(t); ξ] =

∫ ∞
0

tξ−1g(t)dt

=

∫ 1

0

tξ−1(1− t)α−1dt

where ξ = ξ1 + i2ξ2 and α = α1 + i2α2 with Re(ξ1) > |Im(ξ2)| and Re(α1) >

|Im(α2)| , then

M[g(t); ξ] = B(ξ, α) =
Γ(α)Γ(ξ)

Γ(ξ + α)
. (7.18)
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Table 7.1: Bicomplex Mellin transform of some basic functions

S.No. f(t)

Bicomplex

Hankel

Transform

F (ξ)

Region of Convergence

1. (1 + t)−a Γ(ξ)Γ(a−ξ)
Γ(a)

|Imj(a− ξ)| < Re(a− ξ)
2. (1 + t)−1 π

sin(πξ)
|Imj(ξ)| < Re(ξ) < 1− |Imj(ξ)|

3. ent, n > 0 Γ(ξ)
nξ

Re(ξ) > |Imj(ξ)|

4. sin(at), a > 0
Γ(ξ) sin(πξ2 )

aξ
−1+ |Imj(ξ)| < Re(ξ) < 1−|Imj(ξ)|

5. cos(at), a > 0
Γ(ξ) cos(πξ2 )

aξ
|Imj(ξ)| < Re(ξ) < 1− |Imj(ξ)|

6. log(1 + t) π
ξ sin(πξ)

−1 + |Imj(ξ)| < Re(ξ) < − |Imj(ξ)|
7. t−a − 1

ξ−a Re(ξ − a) < − |Imj(ξ − a)|

7.3 Properties of Bicomplex Mellin Transform

In this section, we discuss the basic properties of bicomplex Mellin transform viz.

linearity property, change of scale property, shifting property, Mellin transform of

derivatives and operators, relation with bicomplex Laplace transform and some

other properties. Also, we discuss bicomplex Mellin transform of convolution of

functions, Riemann-Liouville fractional integral and Caputo derivative of order

α ≥ 0 of certain functions and some of their properties.

Theorem 7.3. Let f(t) and g(t) are bicomplex-valued functions with f(t) =

O (t−α1) , g(t) = O (t−α2) as t → 0+ and f(t) = O
(
t−β1

)
, g(t) = O

(
t−β2

)
as

t→∞, with max(α1, α2) + |Imj(ξ)| < Re(ξ) < min(β1, β2)− |Imj(ξ)|, then

M[c1f(t) + c2g(t); ξ] = c1M[f(t); ξ] + c2M[g(t); ξ]

where c1 and c2 are arbitrary constants.
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Proof. By applying the definition of bicomplex Mellin transform

M[c1f(t) + c2g(t); ξ] =

∫ ∞
0

tξ−1[c1f(t) + c2g(t)]dt

= c1

∫ ∞
0

tξ−1f(t)dt+ c2

∫ ∞
0

tξ−1g(t)dt

= c1M[f(t); ξ] + c2M[g(t); ξ].

Theorem 7.4 (Change of scale property). Let f̄(ξ) be the bicomplex Mellin trans-

form of bicomplex-valued function f(t), then

M[f(at); ξ] = a−ξf̄(ξ), ξ ∈ Ω, a > 0 (7.19)

where Ω is defined in (7.16).

Proof. By applying the definition of bicomplex Mellin transform

M[f(at); ξ] =

∫ ∞
0

tξ−1f(at)dt, [where ξ = s1e1 + s2e2]

=

(∫ ∞
0

ts1−1f1(at)dt

)
e1 +

(∫ ∞
0

ts2−1f2(at)dt

)
e2

Put at = u, to obtain

=
1

as1

(∫ ∞
0

ts1−1f1(u)dt

)
e1 +

1

as2

(∫ ∞
0

ts2−1f2(u)dt

)
e2

=
1

as1e1+s2e2

∫ ∞
0

ts1e1+s2e2−1 (f1(u)e1 + f2(u)e2) dt

=
1

aξ

∫ ∞
0

tξ−1f(u)dt

=
f̄(ξ)

aξ
.

Theorem 7.5 (Bicomplex Mellin Transform of Derivatives). Let f̄(ξ) be bicom-

plex Mellin transform of bicomplex-valued function f(t), then

M
[
f (n)(t); ξ

]
= (−1)n

Γ(ξ)

Γ(ξ − n)
f̄(ξ − n), (ξ − n) ∈ Ω (7.20)

168



7.3 Properties of Bicomplex Mellin Transform

where Ω is defined in (7.16) and provided tξ−r−1f (r)(t) vanishes as t→ 0 and as

t→∞ for r = 0, 1, 2, · · · , (n− 1).

Proof. For n = 1, according to the definition of bicomplex Mellin transform,

M [f ′(t); ξ] =

∫ ∞
0

tξ−1f ′(t)dt

which on integration by parts, gives

M [f ′(t); ξ] = tξ−1f(t)|∞0 − (ξ − 1)

∫ ∞
0

tξ−2f(t)dt

= −(ξ − 1)f̄(ξ − 1).

Therefore, the result is true for n = 1. Let the the above result is true for n = m

M
[
f (m)(t); ξ

]
= (−1)m

Γ(ξ)

Γ(ξ −m)
f̄(ξ −m). (7.21)

Now, for n = m+ 1

M
[
f (m+1)(t); ξ

]
=

∫ ∞
0

tξ−1f (m+1)(t)dt

Integrating by parts, we get

M
[
f (m+1)(t); ξ

]
= tξ−1f (m)(t)|∞0 − (ξ − 1)

∫ ∞
0

tξ−2f (m)(t)dt

= −(ξ − 1)(−1)m
Γ(ξ − 1)

Γ(ξ −m− 1)
f̄(ξ −m− 1), [using (7.21)]

= (−1)m+1 Γ(ξ)

Γ(ξ −m− 1)
f̄(ξ −m− 1).

Therefore, the result is true for n = m+ 1. Hence, by the principal of mathemat-

ical induction the result is true for all n = 1, 2, · · · . Therefore,

M
[
f (n)(t); ξ

]
= (−1)n

Γ(ξ)

Γ(ξ − n)
f̄(ξ − n).

Theorem 7.6 (Shifting Property). Let f̄(ξ) be bicomplex Mellin transform of

bicomplex-valued function f(t). Then

M [taf(t); ξ] = f̄(ξ + a), (ξ + a) ∈ Ω, a ∈ C2 (7.22)

where Ω is defined in (7.16).
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Proof. By applying the definition of bicomplex Mellin transform,

M [taf(t); ξ] =

∫ ∞
0

tξ−1taf(t)dt

=

∫ ∞
0

tξ+a−1f(t)dt

= f̄(ξ + a).

Theorem 7.7. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued func-

tion f(t). Then

M [f(ta); ξ] =
1

a
f̄

(
ξ

a

)
,

ξ

a
∈ Ω, 0 6= a ∈ R (7.23)

where Ω is defined in (7.16).

Proof. By applying the definition of bicomplex Mellin transform,

M [f(ta); ξ] =

∫ ∞
0

tξ−1f(ta)dt

=
1

a

∫ ∞
0

u
ξ
a
−1f(u)du [substituting ta = u]

=
1

a
f̄

(
ξ

a

)
.

Theorem 7.8. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued func-

tion f(t). Then

M
[
tnf (n)(t); ξ

]
= (−1)n

Γ(ξ + n)

Γ(ξ)
f̄(ξ), ξ ∈ Ω (7.24)

where Ω is defined in (7.16) and provided tξ−rf (r)(ξ) vanishes as t → 0 and as

t→∞ for r = 0, 1, 2, · · · , (n− 1).
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Proof. By applying the definition of bicomplex Mellin transform,

M
[
tnf (n)(t); ξ

]
=

∫ ∞
0

tξ−1tnf (n)(t)dt, [where ξ = s1e1 + s2e2]

=

(∫ ∞
0

ts1−1tnf
(n)
1 (t)dt

)
e1 +

(∫ ∞
0

ts2−1tnf
(n)
2 (t)dt

)
e2

= (−1)n
Γ(s1 + n)

Γ(s1)
f̄1(s1)e1 + (−1)n

Γ(s2 + n)

Γ(s2)
f̄2(s2)e2,

[using [34, Equation (8.3.12)]]

= (−1)n
Γ(s1e1 + s2e2 + n)

Γ(s1e1 + s2e2)

(
f̄1(s1)e1 + f̄2(s2)e2

)
= (−1)n

Γ(ξ + n)

Γ(ξ)
f̄(ξ).

Theorem 7.9 (Bicomplex Mellin Transform of Differential Operators). Let f̄(ξ)

be bicomplex Mellin transform of bicomplex-valued function f(t). Then

M

[(
t
d

dt

)2

f(t); ξ

]
= M

[
t2f ′′(t) + tf ′(t); ξ

]
= (−1)2ξ2f̄(ξ), ξ ∈ Ω (7.25)

where Ω is defined in (7.16).

Proof. By applying the definition of bicomplex Mellin transform,

M

[(
t
d

dt

)2

f(t); ξ

]
= M

[
t2f ′′(t) + tf ′(t); ξ

]
= M

[
t2f ′′(t); ξ

]
+ M [tf ′(t); ξ]

= ξ(ξ + 1)f̄(ξ)− ξf̄(ξ)

= (−1)2ξ2f̄(ξ).

In general,

M

[(
t
d

dt

)n
f(t); ξ

]
= (−1)nξnf̄(ξ).
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Theorem 7.10 (Bicomplex Mellin Transform of Integrals). Let f̄(ξ) be bicomplex

Mellin transform of bicomplex-valued function f(t). Then

M

[∫ t

0

f(x)dx; ξ

]
= −1

ξ
f̄(ξ + 1), (ξ + 1) ∈ Ω (7.26)

where Ω is defined in (7.16).

Proof. We write

g(t) =

∫ t

0

f(x)dx

so that g′(t) = f(t) with g(0) = 0. Taking the bicomplex Mellin transform of g′(t)

and using Theorem 7.5 therein, we get

M [g′(t); ξ] = −(ξ − 1)M[g(t); ξ − 1]

= −(ξ − 1)M

[∫ t

0

f(x)dx; ξ − 1

]
Replacing ξ by ξ + 1, we get the desired result (7.26).

7.3.1 Relation with Bicomplex Laplace Transform

The bicomplex Laplace transform and its properties are already discussed in

section 2.2 of chapter 2. Therefore, the usual right-sided bicomplex Laplace

transform is analytic in half-plane Re(ξ) > α + |Imj(ξ)|. In the same way, left-

sided bicomplex Laplace transform is analytic in the region Re(ξ) < β−|Imj(ξ)|.

If the two half-planes overlap, the region of analyticity of the two-sided bicomplex

Laplace transform is thus the strip

D = {ξ ∈ C2 : α + |Imj(ξ)| < Re(ξ) < β − |Imj(ξ)|} .

Hence, D is equivalent to Ω defined in (7.16).
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Theorem 7.11. Let f̄(ξ) be bicomplex Mellin transform of bicomplex-valued func-

tion f(t). Then

M[f(t); ξ] =

∫ ∞
−∞

eξxf(e−x)dx = L
[
f(e−x); ξ

]
, ξ ∈ Ω (7.27)

where Ω is defined in (7.16).

Proof. Taking t = e−x in the definition of bicomplex Mellin transform

M[f(t); ξ] =

∫ ∞
0

tξ−1f(t)dt,

we get

M[f(t); ξ] =

∫ ∞
−∞

eξxf(e−x)dx = L
[
f(e−x); ξ

]
.

Theorem 7.12. Let f̄(ξ) and ḡ(ξ) are bicomplex Mellin transforms of bicomplex-

valued functions f(t) and g(t) respectively. Then

M[f(t) ∗ g(t); ξ] = M

[∫ ∞
0

1

x
f(x)g

(
t

x

)
dx; ξ

]
= f̄(ξ)ḡ(ξ), ξ ∈ Ω (7.28)

and

M[f(t) ◦ g(t); ξ] = M

[∫ ∞
0

f(xt)g(x)dx; ξ

]
= f̄(ξ)ḡ(1− ξ), ξ ∈ Ω (7.29)

where Ω is defined in (7.16).
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Proof. We have, by definition,

M[f(t) ∗ g(t); ξ] = M

[∫ ∞
0

1

x
f(x)g

(
t

x

)
dx; ξ

]
=

∫ ∞
0

tξ−1dt

∫ ∞
0

f(x)g

(
t

x

)
dx

x

By changing the order of integration

=

∫ ∞
0

f(x)
dx

x

∫ ∞
0

tξ−1g

(
t

x

)
dt

=

∫ ∞
0

f(x)dx

∫ ∞
0

(xy)ξ−1g(y)dy,

[
y =

t

x

]
=

∫ ∞
0

xξ−1f(x)dx

∫ ∞
0

yξ−1g(y)dy

= f̄(ξ)ḡ(ξ).

Similarly, we have

M[f(t) ◦ g(t); ξ] = M

[∫ ∞
0

f(xt)g(x)dx; ξ

]
=

∫ ∞
0

tξ−1dt

∫ ∞
0

f(xt)g(x)dx

By changing the order of integration

=

∫ ∞
0

g(x)dx

∫ ∞
0

tξ−1f(xt)dt

=

∫ ∞
0

g(x)dx

∫ ∞
0

yξ−1x1−ξf(y)
dy

x
, [y = xt]

=

∫ ∞
0

x1−ξ−1g(x)dx

∫ ∞
0

yξ−1f(y)dy

= f̄(ξ)ḡ(1− ξ).

In the following theorem, we make efforts to find the bicomplex Mellin trans-

form of the Riemann-Liouville fractional integrals.
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Theorem 7.13. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t). Then for α > 0

M
[

0D
−α
t f(t); ξ

]
=

Γ(1− ξ − α)

Γ(1− ξ)
f̄(ξ + α), ξ + α ∈ Ω (7.30)

where Ω is defined in (7.16).

Proof. Since we know that

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ

=
tα

Γ(α)

∫ 1

0

(1− x)α−1f(tx)dx,
[
x =

τ

t

]
=

tα

Γ(α)

∫ 1

0

f(tx)g(x)dx (7.31)

where

g(t) =

(1− t)α−1, 0 ≤ t < 1

0, t ≥ 1
(7.32)

Then using equations (7.17), (7.29), (7.31) and (7.32), we get

M
[

0D
−α
t f(t); ξ

]
=

1

Γ(α)
f̄(ξ + α)B(α, 1− ξ − α)

=
Γ(1− ξ − α)

Γ(1− ξ)
f̄(ξ + α).

In the following theorem, we make efforts to find the bicomplex Mellin trans-

form of the Riemann-Liouville fractional derivative.

Theorem 7.14. Let f̄(ξ) be the bicomplex Mellin transform of the bicomplex-

valued function f(t). Then for 0 ≤ n− 1 < α < n

M [0D
α
t f(t); ξ] =

n−1∑
k=0

Γ(1− ξ + k)

Γ(1− ξ)
[

0D
α−k−1
t f(t)tξ−k−1

]∞
0

+
Γ(1− ξ + α)

1− ξ
f̄(ξ − α),

ξ − α ∈ Ω (7.33)

where Ω defined in (7.16).
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Proof. By taking the bicomplex Mellin transform, we get

M [0D
α
t f(t); ξ] =

∫ ∞
0

tξ−1
0D

α
t f(t)dt

=

(∫ ∞
0

ts1−1
0D

α
t f1(t)dt

)
e1 +

(∫ ∞
0

ts2−1
0D

α
t f2(t)dt

)
e2

[where ξ = s1e1 + s2e2 and f(t) = f1(t)e1 + f2(t)e2]

=

(
n−1∑
k=0

Γ(1− s1 + k)

Γ(1− s1)

[
0D

α
t f1(t)ts1−k−1

]∞
0

+
Γ(1− s1 + α)

Γ(1− s1)
f̄1(s1 − α)

)
e1

+

(
n−1∑
k=0

Γ(1− s2 + k)

Γ(1− s1)

[
0D

α
t f2(t)ts2−k−1

]∞
0

+
Γ(1− s2 + α)

Γ(1− s2)
f̄2(s2 − α)

)
e2

(using [117, Eq.(2.287)])

=
n−1∑
k=0

Γ(1− s1e1 − s2e2 + k)

Γ(1− s1e1 − s2e2)

[
0D

α
t (f1(t)e1 + f2(t)e2)ts1e1+s2e2−k−1

]∞
0

+
Γ(1− s1e1 − s2e2 + α)

Γ(1− s1e1 − s2e2)
(f̄1(s1 − α)e1 + f̄2(s2 − α)e2)

=
n−1∑
k=0

Γ(1− ξ + k)

Γ(1− ξ)
[

0D
α
t f(t)tξ−k−1

]∞
0

+
Γ(1− ξ + α)

Γ(1− ξ)
f̄(ξ − α). (7.34)

Remark 7.1. In its particular case, if 0 < α < 1, then (7.34) becomes

M [0D
α
t f(t); ξ] =

[
0D

α
t f(t)tξ−k−1

]∞
0

+
Γ(1− ξ + α)

Γ(1− ξ)
f̄(ξ − α). (7.35)

If the function f(t), Re(s1) and Re(s2), where ξ = s1e1 + s2e2 are such that the

substitutions of the limit t = 0 and t = ∞ make the first term of (7.35) zero,

then (7.35) reduces to the

M [0D
α
t f(t); ξ] =

Γ(1− ξ + α)

Γ(1− ξ)
f̄(ξ − α). (7.36)

In the following theorem, we have found the bicomplex Mellin transform of

the Caputo fractional derivative.
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Theorem 7.15. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t), where 0 ≤ n− 1 ≤ α < n, n ∈ N, then

M
[
C
0D

α
t f(t); ξ

]
=

n−1∑
k=0

Γ(α + k − ξ)
Γ(1− ξ)

[
f (k)(t)tξ−α+k

]∞
0

+
Γ(1− ξ + α)

Γ(1− ξ)
f̄(ξ − α), ξ − α ∈ Ω

(7.37)

where Ω defined in (7.16).

Proof. By taking the bicomplex Mellin transform, we get

M
[
C
0D

α
t f(t); ξ

]
=

∫ ∞
0

tξ−1 C
0D

α
t f(t)dt

=

(∫ ∞
0

ts1−1 C
0D

α
t f1(t)dt

)
e1 +

(∫ ∞
0

ts2−1 C
0D

α
t f2(t)dt

)
e2

[where ξ = s1e1 + s2e2 and f(t) = f1(t)e1 + f2(t)e2

=

(
n−1∑
k=0

Γ(α + k − s1)

Γ(1− s1)

[
f

(k)
1 (t)ts1−α+k

]∞
0

+
Γ(1− s1 + α)

Γ(1− s1)
f̄1(s1 − α)

)
e1

+

(
n−1∑
k=0

Γ(α + k − s2)

Γ(1− s2)

[
f

(k)
2 (t)ts2−α+k

]∞
0

+
Γ(1− s2 + α)

Γ(1− s2)
f̄2(s2 − α)

)
e2

(using [117, Eq.(2.291)])

=
n−1∑
k=0

Γ(α + k − s1e1 − s2e2)

Γ(1− s1e1 − s2e2)

[(
f

(k)
1 (t)e1 + f

(k)
2 (t)e2

)
ts1e1+s2e2−α+k

]∞
0

+
Γ(1− s1e1 − s2e2 + α)

Γ(1− s1e1 − s2e2)

(
f̄1(s1 − α)e1 + f̄2(s2 − α)e2

)
=

n−1∑
k=0

Γ(α + k − ξ)
Γ(1− ξ)

[
f (k)(t)tξ−α+k

]∞
0

+
Γ(1− ξ + α)

Γ(1− ξ)
f̄(ξ − α). (7.38)

Remark 7.2. In its particular case, if 0 < α < 1, then (7.38) becomes

M
[
C
0D

α
t f(t); ξ

]
=

Γ(α− ξ)
Γ(1− ξ)

[
f(t)tξ−α

]∞
0

+
Γ(1− ξ + α)

Γ(1− ξ)
f̄(ξ − α) (7.39)

If the function f(t), Re(s1) and Re(s2), where ξ = s1e1 + s2e2 are such that the

substitutions of the limit t = 0 and t = ∞ make the first term of (7.38) zero,
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then (7.38) reduces to the

M
[
C
0D

α
t f(t); ξ

]
=

Γ(1− ξ + α)

Γ(1− ξ)
f̄(ξ − α). (7.40)

Theorem 7.16. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t), where 0 ≤ n− 1 < α < n, n ∈ N, then

M
[
C
0D

α
t 0D

−α
t f(t); ξ

]
= f̄(ξ), ξ ∈ Ω (7.41)

where Ω defined in (7.16).

Proof. Since we know that

C
0D

α
t

[
0D
−α
t f(t)

]
= f(t).

By taking the bicomplex Mellin transform on both side, we have

M
[
C
0D

α
t 0D

−α
t f(t); ξ

]
= f̄(ξ).

Deduction 7.1. If we take f(t) = tnU(t− t0), then

0D
−α
t tnU(t− t0) =

(t− t0)α

Γ(α)

∫ 1

0

uα−1

n∑
r=0

(−1)r nCrt
n−rur(t− t0)rdu. (7.42)

where U(t− t0) is unit step function and hence

M

[
1

Γ(α)
C
0D

α
t 0D

−α
t f(t); ξ

]
= − tξ+n0

ξ + n
, Re(ξ + n) < − |Imj(ξ + n)| . (7.43)

Proof. By applying the definition of Riemann-Liouville integral operator on tnU(t−
t0)

0D
−α
t tnU(t− t0) =

1

Γ(α)

∫ t

0

(t− x)α−1xnU(x− t0)dx

=
1

Γ(α)

∫ t

t0

(t− x)α−1xndx

=
(t− t0)α

Γ(α)

∫ 1

0

uα−1 [t− u(t− t0)]n du,

[
put u =

t− x
t− t0

]
=

(t− t0)α

Γ(α)

∫ 1

0

uα−1

n∑
r=0

(−1)r nCrt
n−rur(t− t0)rdu.
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Changing the order of integration and summation which is valid under the con-

ditions of convergence, we get

0D
−α
t tnU(t− t0) =

(t− t0)α

Γ(α)

n∑
r=0

(−1)r nCrt
n−r(t− t0)r

∫ 1

0

uα+r−1du

=
1

Γ(α)

n∑
r=0

(−1)r
nCr
α + r

tn−r(t− t0)α+r. (7.44)

Therefore, making use of (7.41) and (7.44), we get the desired result (7.43).

Theorem 7.17. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t), where 0 ≤ n− 1 < α < n, n ∈ N, then

M
[

0D
−α
t

C
0D

α
t f(t); ξ

]
= f̄(ξ)−

m−1∑
k=0

f (k)(0)

k!(k + ξ)
, |Imj(k + ξ)| < Re(k + ξ) (7.45)

where Ω defined in (7.16).

Proof. Since we know that

0D
−α
t

[
C
0D

α
t f(t)

]
= f(t)−

m−1∑
k=0

f (k)(0)

(
tk

k!

)
.

By taking the bicomplex Mellin transform on both side, we have

M
[

0D
−α
t

C
0D

α
t f(t); ξ

]
= M [f(t); ξ]−M

[
m−1∑
k=0

f (k)(0)

(
tk

k!

)
; ξ

]

= f̄(ξ)−
m−1∑
k=0

f (k)(0)

k!

∫ ∞
0

tξ+k−1dt

= f̄(ξ)−
m−1∑
k=0

f (k)(0)

k!(k + ξ)
.

Theorem 7.18. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t), where 0 ≤ n− 1 < α, β < n, n ∈ N, then

M
[

0D
−α
t 0D

−β
t f(t); ξ

]
=

Γ(1− α− β − ξ)
Γ(1− ξ)

f̄(α + β + ξ), (7.46)

Re(α + β + ξ) < 1− |Imj(α + β + ξ)| , α + β + ξ ∈ Ω

where Ω defined in (7.16).
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Proof. Since we know that

0D
−α
t 0D

−β
t f(t) = 0D

−α−β
t f(t).

By taking the bicomplex Mellin transform on both side, we have

M
[

0D
−α
t 0D

−β
t f(t); ξ

]
= M

[
0D
−α−β
t f(t); ξ

]
=

∫ ∞
0

tξ−1 1

Γ(α + β)

∫ t

0

(t− x)α+β−1f(x)dxdt

By changing the order of integration

=
1

Γ(α + β)

∫ ∞
0

f(x)dx

∫ ∞
x

tξ−1(t− x)α+β−1dt

Put t = x
u
, then∫ ∞
x

tξ−1(t− x)α+β−1dt = xα+β+ξ−1

∫ 1

0

u−α−β−ξ(1− u)α+β−1du

Therefore,

M
[

0D
−α
t 0D

−β
t f(t); ξ

]
=

1

Γ(α + β)

∫ ∞
0

xα+β+ξ−1f(x)dx

∫ 1

0

u−α−β−ξ(1− u)α+β−1du

where α + β > 0, and Re(α + β + ξ) < 1− |Imj(α + β + ξ)|

After using beta function (7.2), we have

M
[

0D
−α
t 0D

−β
t f(t); ξ

]
=
B(1− α− β − ξ, α + β)

Γ(α + β)

∫ ∞
0

xα+β+ξ−1f(x)dx

=
Γ(1− α− β − ξ)

Γ(1− ξ)
f̄(α + β + ξ).

Deduction 7.2. For 0 ≤ n− 1 < α, β < n, n ∈ N

M

[
1

Γ(β)
0D
−α
t

{
n∑
r=0

(−1)r
nCr
β + r

tn−r(t− t0)β+r

}
; ξ

]

= −Γ(1− α− β − ξ)
Γ(1− ξ)

tξ+α+β+n
0

ξ + α + β + n
, (7.47)

Re(ξ + α + β) < 1− |Imj(ξ + α + β)| , Re(ξ + α + β + n) < − |Imj(ξ + α + β + n)| .
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Proof. In the similar manner of equation (7.44) and using result (7.46), we get

M
[

0D
−α
t 0D

−β
t tnU(t− t0)

]
= −Γ(1− α− β − ξ)

Γ(1− ξ)
tξ+α+β+n
0

ξ + α + β + n

M

[
1

Γ(β)
0D
−α
t

n∑
r=0

(−1)r
nCr
β + r

tn−r(t− t0)β+r; ξ

]
= −Γ(1− α− β − ξ)

Γ(1− ξ)
tξ+α+β+n
0

ξ + α + β + n
.

Theorem 7.19. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t), then

(a) M
[
C
tD

1
2∞f(t); ξ

]
=

Γ(ξ)

Γ
(
ξ − 1

2

)M [
f(t); ξ − 1

2

]
, ξ − 1

2
∈ Ω (7.48)

(b) M
[
C
tD

3
2∞f(t); ξ

]
=

Γ(ξ)

Γ
(
ξ − 3

2

)M [
f(t); ξ − 3

2

]
, ξ − 3

2
∈ Ω (7.49)

where Ω defined in (7.16) and 0D
α+j−n
t tsi−1

0D
n−1−j
t fi(t) vanishes as t → 0 and

t → ∞ for j = 0, 1, · · · , n − 1 and i = 1, 2. Where ξ = s1e1 + s2e2, f(t) =

f1(t)e1 + f2(t)e2 and α = 1
2
, 3

2
.

Proof. (a) By applying the definition of bicomplex Mellin transform, we get

M
[
C
tD

1
2∞f(t); ξ

]
=

∫ ∞
0

tξ−1 C
tD

1
2∞f(t)dt

=

(∫ ∞
0

ts1−1 C
tD

1
2∞f1(t)dt

)
e1 +

(∫ ∞
0

ts2−1 C
tD

1
2∞f2(t)dt

)
e2

[where ξ = s1e1 + s2e2 and f(t) = f1(t)e1 + f2(t)e2].

We know the result of fractional integration by parts (see, e.g. Almeida and

Torres [2]) as

∫ b

a

g(t) CtD
α
b f(t)dt =

∫ b

a

f(t) aD
α
t g(t)dt+

n−1∑
j=0

[
(−1)n+j

aD
α+j−n
t g(t) aD

n−1−j
t f(t)

]b
a
.

(7.50)
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By using (7.50) and using given conditions, we obtain

M
[
tD

1
2∞f(t); ξ

]
=

(∫ ∞
0

f1(t) 0D
1
2
t t

s1−1dt

)
e1 +

(∫ ∞
0

f2(t) 0D
1
2
t t

s2−1dt

)
e2

=
Γ(s1)

Γ
(
s1 − 1

2

)M [
f1(t); s1 −

1

2

]
e1 +

Γ(s2)

Γ
(
s2 − 1

2

)M [
f2(t); s2 −

1

2

]
e2

[using (7.5)]

=
Γ(s1e1 + s2e2)

Γ
(
s1e1 + s2e2 − 1

2

)M [
f1(t)e1 + f2(t)e2; s1e1 + s2e2 −

1

2

]
=

Γ(ξ)

Γ
(
ξ − 1

2

)M [
f(t); ξ − 1

2

]
.

(b) Similarly,

M
[
C
tD

3
2∞f(t); ξ

]
=

(∫ ∞
0

f1(t) 0D
3
2
t t

s1−1dt

)
e1 +

(∫ ∞
0

f2(t) 0D
3
2
t t

s2−1dt

)
e2

=
Γ(s1)

Γ
(
s1 − 3

2

)M [
f1(t); s1 −

3

2

]
e1 +

Γ(s2)

Γ
(
s2 − 3

2

)M [
f2(t); s2 −

3

2

]
e2

=
Γ(s1e1 + s2e2)

Γ
(
s1e1 + s2e2 − 3

2

)M [
f1(t)e1 + f2(t)e2; s1e1 + s2e2 −

3

2

]
=

Γ(ξ)

Γ
(
ξ − 3

2

)M [
f(t); ξ − 3

2

]
.

Continuing by the induction, the results in Theorem 7.19 can be extended

further to fractional derivatives as in the following theorem:

Theorem 7.20. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t) for all n− 1 < α < n, n ∈ N, then

M
[
C
tD

α
∞f(t); ξ

]
=

Γ(ξ)

Γ (ξ − α)
M [f(t); ξ − α] , ξ − α ∈ Ω (7.51)

where Ω defined in (7.16) and 0D
α+j−n
t tsi−1

0D
n−1−j
t fi(t) vanishes as t → 0 and

t → ∞ for j = 0, 1, · · · , n − 1 and i = 1, 2. Where ξ = s1e1 + s2e2 and f(t) =

f1(t)e1 + f2(t)e2.
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Theorem 7.21. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t), then

(a) M
[
t
1
2
C
tD

1
2∞f(t); ξ

]
=

Γ
(
ξ + 1

2

)
Γ(ξ)

M [f(t); ξ] , ξ +
1

2
∈ Ω (7.52)

(b) M
[
t
3
2
C
tD

3
2∞f(t); ξ

]
=

Γ
(
ξ + 3

2

)
Γ (ξ)

M [f(t); ξ] , ξ +
3

2
∈ Ω (7.53)

where Ω defined in (7.16) and 0D
α+j−n
t tsi−α 0D

n−1−j
t fi(t) vanishes as t → 0 and

t → ∞ for j = 0, 1, · · · , n − 1 and i = 1, 2. Where ξ = s1e1 + s2e2, f(t) =

f1(t)e1 + f2(t)e2 and α = 1
2
, 3

2
.

Proof. (a) By applying the definition of bicomplex Mellin transform, we get

M
[
t
1
2
C
tD

1
2∞f(t); ξ

]
=

∫ ∞
0

tξ−
1
2
C
tD

1
2∞f(t)dt

=

(∫ ∞
0

ts1−
1
2
C
tD

1
2∞f1(t)dt

)
e1 +

(∫ ∞
0

ts2−
1
2
C
tD

1
2∞f2(t)dt

)
e2

[where ξ = s1e1 + s2e2 and f(t) = f1(t)e1 + f2(t)e2].

By using (7.50) and using given conditions, we obtain

M
[
t
1
2
C
tD

1
2∞f(t); ξ

]
=

(∫ ∞
0

f1(t) 0D
1
2
t t

s1− 1
2dt

)
e1 +

(∫ ∞
0

f2(t) 0D
1
2
t t

s2− 1
2dt

)
e2

=
Γ(s1 + 1

2
)

Γ(s1)

(∫ ∞
0

ts1−1f1(t)dt

)
e1 +

Γ(s2 + 1
2
)

Γ(s2)

(∫ ∞
0

ts2−1f2(t)dt

)
e2

[using (7.5)]

=
Γ
(
s1e1 + s2e2 + 1

2

)
Γ (s1e1 + s2e2)

M [f1(t)e1 + f2(t)e2; s1e1 + s2e2]

=
Γ
(
ξ + 1

2

)
Γ (ξ)

M [f(t); ξ] .
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(b) Similarly,

M
[
t
3
2
C
tD

3
2∞f(t); ξ

]
=

(∫ ∞
0

f1(t) 0D
3
2
t t

s1+ 1
2dt

)
e1 +

(∫ ∞
0

f2(t) 0D
3
2
t t

s2+ 1
2dt

)
e2

=
Γ
(
s1 + 3

2

)
Γ(s1)

M [f1(t); s1] e1 +
Γ
(
s2 + 3

2

)
Γ(s2)

M [f2(t); s2] e2

=
Γ
(
s1e1 + s2e2 + 1

2

)
Γ(s1e1 + s2e2)

M [f1(t)e1 + f2(t)e2; s1e1 + s2e2]

=
Γ(ξ)

Γ
(
ξ − 3

2

)M [f(t); ξ] .

Following the similar technique as in the above theorem, follows Theorem 7.22.

Theorem 7.22. Let f̄(ξ) be the bicomplex Mellin transform of bicomplex-valued

function f(t) for all n− 1 < α < n, n ∈ N, then

M
[
tα CtD

α
∞f(t); ξ

]
=

Γ(ξ + α)

Γ (ξ)
M [f(t); ξ] , ξ + α ∈ Ω (7.54)

where Ω defined in (7.16) and 0D
α+j−n
t tsi−α 0D

n−1−j
t fi(t) vanishes as t → 0 and

t → ∞ for j = 0, 1, · · · , n − 1 and i = 1, 2. Where ξ = s1e1 + s2e2 and f(t) =

f1(t)e1 + f2(t)e2.

7.4 Inversion of Bicomplex Mellin Transform

In this section, we discuss the inversion of bicomplex Mellin transform. Let f̄(ξ)

be the bicomplex Mellin transform of bicomplex-valued continuous function f(t).

Then f̄(ξ) = f̄1(s1)e1 + f̄2(s2)e2 is analytic in the strip Ω, which is defined in

(7.13). The inverse formula for complex mellin transform ( see, e.g. Poularikas
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[118, chapter 11] and Davies [33, p. 195-210]) is

f1(t) =
1

2πi1

∫ c1+i1∞

c1−i1∞
t−s1 f̄1(s1)ds1, α1 < c1 < β1

=
1

2πi1

∫
Ω1

t−s1 f̄1(s1)ds1 (7.55)

where, Ω1 is defined in (7.9). Similarly, another inverse formula for complex

Mellin transform is

f2(t) =
1

2πi1

∫ c2+i1∞

c2−i1∞
t−s2 f̄2(s2)ds2, α2 < c2 < β2

=
1

2πi1

∫
Ω2

t−s2 f̄2(s2)ds2 (7.56)

where, Ω2 is defined in (7.10).

Now, using complex inversions (7.55) and (7.56), we obtain the bicomplex-

valued function as

f(t) = f1(t)e1 + f2(t)e2

=

(
1

2πi1

∫
Ω1

t−s1 f̄1(s1)ds1

)
e1 +

(
1

2πi1

∫
Ω2

t−s2 f̄2(s2)ds2

)
e2

=
1

2πi1

(∫
(Ω1,Ω2)

t−(s1e1+s2e2)
(
f̄1(s1)e1 + f̄2(s2)e2

)
d(s1e1 + s2e2)

)
=

1

2πi1

∫
Ω

t−ξf̄(ξ)dξ (7.57)

where, Ω is defined in (7.16).

Consider the problem of asymptotically expanding f(t) as t → 0+, when

f̄(ξ) is known to be continuable in −M + |Imj(ξ)| ≤ Re(ξ) ≤ α − |Imj(ξ)| for

some M > 0. We also postulate that f̄(ξ) has finitely many poles λk such that

Re(λk) > −M + |Imj(λk)|. Then

f(t) =
∑
λk∈K

Res
[
t−ξf̄(ξ), ξ = λk

]
+O

(
tM
)
, as t→ 0+
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where K is the set of singularities and M is as large as we want. Similarly, for

problem of asymptotically expanding f(t) as t→∞. Then contour taken in right

and side of the fundamental strip, we have

f(t) = −
∑
λk∈K

Res
[
t−ξf̄(ξ), ξ = λk

]
+O

(
t−M

)
, as t→∞.

Following is the illustration to explain the process of finding the inverse bicomplex

Mellin transform.

Example 7.3. Let f̄(ξ) = 1
(ξ−a)(ξ−b) , for Re(ξ−a) < − |Imj(ξ − a)| and Re(a−b) <

− |Imj(a− b)|. Then find the inverse bicomplex Mellin transform f(t) of f̄(ξ).

Solution. By applying the inverse bicomplex Mellin transform on f̄(ξ)

f(t) =
1

2πi1

∫
Ω

t−ξf̄(ξ)dξ

= −
[
Res

(
t−ξ

1

(ξ − a)(ξ − b)
, ξ = a

)
+ Res

(
t−ξ

1

(ξ − a)(ξ − b)
, ξ = b

)]
=

1

b− a
(
t−a − t−b

)
.

7.5 Applications of Bicomplex Mellin Transform

Here, we are interested in determining the extent to which the output voltage

V and current I using by bicomplex concept differs from their input values as

the length of the transmission line tends to a very small value. In this section,

we also discuss the application of bicomplex Mellin transform in solving Caputo

fractional equation of bicomplex-valued function.

(a) Now, let us define bicomplex scalar field as

F ≡ V + i2I (7.58)
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where voltage V and current I are complex scalar fields. Now, we consider an

equivalent circuit of a transmission line of small length ∆x containing resistance

R∆x, capacitance C∆x, and inductance L∆x as shown in Figure 7.1.

Figure 7.1: Equivalent circuit of a transmission line

The above figure is a symmetrical network. By using the Kirchhoff’s voltage law

(KVL), we have

V =
1

2
RI∆x+

1

2
L
∂I

∂t
∆x+

1

2
L
∂

∂t
(I + ∆I)∆x+

1

2
R(I + ∆I)∆x+ V + ∆V.

(7.59)

Dividing (7.59) by ∆x and simplifying, we get

∆V

∆x
= −

[
RI + L

∂I

∂t
+

(
L

2

∂

∂t

∆I

∆x
+
R

2

∆I

∆x

)
∆x

]
. (7.60)

Taking limit as ∆x→ 0, we get

∂V

∂x
= −

[
RI + L

∂I

∂t

]
. (7.61)

By applying Kirchhoff’s current law (KCL) on the equivalent circuit of the trans-

mission line, we get

I = Ic + I + ∆I

= C
∂

∂t

(
V +

∆V

2

)
∆x+ I + ∆I. (7.62)
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Dividing (7.62) by ∆x and simplifying, we get

∆I

∆x
= −

[
C
∂V

∂t
+
C

2

∂

∂t

(
∆V

∆x

)
∆x

]
. (7.63)

Taking limit as ∆x→ 0, we get

∂I

∂x
= −C∂V

∂t
. (7.64)

The differential equations in (7.61) and (7.64) describes the evaluation of current

and voltage in a lossy transmission line. Differentiating (7.61) w.r.t. x and

simplifying using (7.64), we get

∂2V

∂x2
= CL

∂2V

∂t2
+ CR

∂V

∂t
. (7.65)

Similarly, differentiating (7.64) w.r.t. x and simplifying using (7.61), we get

∂2I

∂x2
= CL

∂2I

∂t2
+ CR

∂I

∂t
. (7.66)

Equations (7.65) and (7.66) are hyperbolic partial differential equations which

describes the voltage and current along power transmission lines.

Combining equation (7.65) and (7.66) with the help of bicomplex unit i2 as

∂2V

∂x2
+ i2

∂2I

∂x2
= CL

(
∂2V

∂t2
+ i2

∂2I

∂t2

)
+ CR

(
∂V

∂t
+ i2

∂I

∂t

)
⇒ ∂2

∂x2
(V + i2I) = CL

∂2

∂t2
(V + i2I) + CR

∂

∂t
(V + i2I)

⇒ ∂2

∂x2
F (x, t) = CL

∂2

∂t2
F (x, t) + CR

∂

∂t
F (x, t) (7.67)

where F (x, t) is bicomplex-valued function defined by (7.58).

In particular, a circuit which has resistance R = 1
t
, capacitance C = t2 and
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inductance L = 1. The differential equation (7.67) of bicomplex-valued function

becomes

∂2

∂x2
F (x, t) = t2

∂2

∂t2
F (x, t) + t

∂

∂t
F (x, t). (7.68)

For finding the solution of partial differential equation (7.68), we assume bound-

ary conditions as

F (0, t) = 0 and F (1, t) = A

(
1

ta
+

1

tb

)
(7.69)

where A ∈ C2, Re(b− a) > |Imj(b− a)|. By taking the bicomplex Mellin trans-

form of (7.68) w.r.t. t and making use of Theorem 7.9, we get

d2

dx2
F̄ (x, ξ) = ξ2F̄ (x, ξ). (7.70)

Therefore, by taking the bicomplex Mellin transform of (7.69) and using in solu-

tion of (7.70), we get

F̄ (x, ξ) = A

[
(−2ξ + a+ b)

(
eξx − e−ξx

)
(ξ − a)(ξ − b) (eξ − e−ξ)

]
. (7.71)

By taking the inverse bicomplex Mellin transform (7.71), we get

F (x, t) =
1

2πi1

∫
Ω

t−ξF̄ (x, ξ)dξ (7.72)

where F̄ (x, ξ) is analytic in Re(ξ − a) > |Imj(ξ − a)|. Then taking a semi-circle

on the right-hand side of a large radius and using by residue theorem, we have

F (x, t) = A

[
sinh(ax)

sinh(a)
t−a +

sinh(bx)

sinh(b)
t−b
]

= A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
e1

+ A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]
e2
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where A = A1e1 + A2e2, a = a1e1 + a2e2 and b = b1e1 + b2e2. Therefore,

F (x, t) ≡ V + i2I

=
1

2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
+ i2

i1
2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
−A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
. (7.73)

Separating the bi-real and bi-imaginary parts of (7.73), we obtain the voltage and

current of above model as

V (x, t) =
1

2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
+A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}

and

I(x, t) =
i1
2

{
A1

[
sinh(a1x)

sinh(a1)
t−a1 +

sinh(b1x)

sinh(b1)
t−b1

]
−A2

[
sinh(a2x)

sinh(a2)
t−a2 +

sinh(b2x)

sinh(b2)
t−b2

]}
.

(b) In similar manner to equation (7.68), we can write a Caputo fractional differ-

ential equation of bicomplex-valued function of a circuit of transmission line as

follows:

tα CtD
α
∞F (x, t) + tβ CtD

β
∞F (x, t) = Aδ(t− a)δ(x− a), A ∈ C2 (7.74)
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Taking the bicomplex Mellin transform of (7.74) w.r.t. t, we get

Γ(ξ + α)

Γ(ξ)
F̄ (x, ξ) +

Γ(ξ + β)

Γ(ξ)
F̄ (x, ξ) = Aδ(x− a)aξ−1

∴ F̄ (x, ξ) = Aδ(x− a)
Γ(ξ)aξ−1

Γ(ξ + α) + Γ(ξ + β)
.

Taking the inverse bicomplex Mellin transform of F̄ (x, ξ), we get

F (x, t) = V + i2I =
A

2πi1
δ(x− a)

∫
Ω

t−ξ
Γ(ξ)aξ−1

Γ(ξ + α) + Γ(ξ + β)
dξ (7.75)

where Ω defined in (7.16). By separating the bi-real and bi-imaginary part of

(7.75), we obtain the voltage and current of the given circuit of transmission line.

7.6 Conclusion

The concept of bicomplex numbers has been applied for finding the solution of dif-

ferential equations of bicomplex-valued function generated by network diagram.

In this chapter, we define Mellin transform and its inverse in bicomplex space

which is the generalization of complex Mellin transform. Also, we find bicomplex

Mellin transform of some useful properties of fractional operators, which are use-

ful for finding the solution of fractional differential equation of bicomplex-valued

function.

The applications have been illustrated to find the solution of partial differen-

tial equation of bicomplex-valued function generated by a network and for find-

ing the solution of transmission line equations in fractional form. The bicomplex

analysis has great advantage that it separates the voltage and current as complex

components.
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