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ABSTRACT

The main intent of this thesis is to establish some new results in the

area of special functions and fractional calculus. The study is pre-

sented having divided into six chapters

Chapter 1 is intended to provide an introduction to various special

functions, polynomials and fractional integral operators studied by

some of the earlier researchers. Further, we present the brief chapter

by chapter summary of the thesis.

In chapter 2, first of all we give definition of a generalized Riemann-

Liouville fractional derivative operator Dµ,ν
a+ of order µ and type ν.

Then, we introduce and investigate an integral operator H
w;m,n;α
a+;p,q;β

which contains H-function in its kernel. Next we find solutions to

two different fractional differential equations in theorem form using

these operators. Since H
w;m,n;α
0+;p,q;β is general in nature, by specializing

the parameters we can obtain a number of special cases of these the-

orems involving special cases of the integral operator H
w;m,n;α
a+;p,q;β and

giving appropriate values to f(x). Furthermore numerical examples

are calculated and using these examples graphical illustrations are

presented.

Chapter 3 deals with general fractional Kinetic differintegral equa-

tion involving the fractional operator Dµ,ν
0+ and an integral operator

whose kernel involves the general class of polynomials SMN . We make

use of Laplace transform method to solve the fractional kinetic dif-



ferintegral equation. On account of general nature of SMN occuring in

the fractional kinetic equation, a number of results involving simpler

polynomials also follow as special cases of our main result. We give

here six special cases involving Laguerre polynomial, Bessel polyno-

mial, Gould and Hopper polynomial, Brafman polynomial and Cesaro

polynomial in the kernel of the integral operator occuring in the frac-

tional kinetic differintegral equation respectively.

Chapter 4 deals with the study of fractional differential integral op-

erator. First, we define the operator (Dγ,µ,ν
p+ ) of our study and then

obtain image of a product of H-function and H− function under this

operator. Fractional integral operator involving a number of simpler

functions in its kernel follow as its special cases. we record here four

such special cases. Next we derrive two new and interesting compo-

sition formulae for the fractional integral operator Iγ,µa+ and the in-

tegral operator H
w;m,n;α
a+;p,q;β. Then we give the composition formulae for

the fractional integral operators Iµa+, D
µ
a+, D

γ,µ,ν
p+ and integral operator

H
w;m,n;α
a+;p,q;β.

The object of chapter 5 is to find solutions of two volterra-type

integral equations associated with integral operators whose kernels

involve H-function and a product of general class of polynomials SMN

and multivarible H−function respectively. We make use of convo-

lution technique to solve these equations. We have obtained a large

number of integral equations involving products of several useful poly-

nomials and special functions as its special cases.

In chapter 6 we evaluate a unified and general finite integral whose

integrand involves the product of generalized modified Bessel function

λ
(η)
µ,ν ,general class of polynomials SMN and the multivariableH−function.



The arguments of the functions occurring in the integrand involve the

product of factors of the form xρ−1(a−x)σ(1+(bx)`)−λ. Main integral

is believed to be new and is capable of giving a large number of sim-

pler integrals (new and known) involving several special functions and

polynomials as its special cases.For the sake of illustration we record

here six new integrals as its special cases.

Four research papers have already been published, two accepted for

publication and two have been communicated for publication, in re-

puted journals having a bearing on the subject matter of the thesis.
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1

INTRODUCTION TO THE

TOPIC OF STUDY AND BRIEF

CHAPTER BY CHAPTER

SUMMARY OF THE THESIS





1.1 SPECIAL FUNCTIONS

The present chapter deals with an introduction to the topic of the study as

well as a brief review of the contributions made by some of the earlier workers

on the subject matter presented in this thesis. Next a brief chapter by chapter

summary of the thesis has been given. At the end of this chapter, list of research

paper having a bearing on subject matter has been given.

1.1 SPECIAL FUNCTIONS

1.1.1 2F1, 1F1, pFq AND THE G−FUNCTION

The core of special functions is the Gaussian hypergeometric function 2F1 and

its confluent forms, the confluent hypergeometric functions 1F1 and ψ. The con-

fluent hypergeometric functions slightly modified are also known as Whittaker

functions. The 2F1 includes as special cases Legendre functions, the incomplete

beta function, the complete elliptic functions of the first and second kinds, and

most of classical orthogonal polynomials. The confluent hypergeometric functions

include as special cases Bessel functions, parabolic cylinder functions, Coulomb

wave functions, and incomplete gamma functions. Numerous properties of con-

fluent hypergeometric functions flow directly from a knowledge of the 2F1, and a

basic understanding of the 2F1 and 1F1 is sufficient for the derivation of many char-

acteristics of all the other above-named functions. A natural generalization of the

2F1 is the generalized hypergeometric function, the so-called pFq, which in turn is

generalized by Meijer G−function. The theory of the pFq and the G−function is

fundamental in the applications, since they contain as special cases all the com-

monly used functions of analysis. Further, these functions are the building blocks

for many functions which are not members of the hypergeometric family.

1



1. INTRODUCTION TO THE TOPIC OF STUDY AND BRIEF
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

1.1.2 THE H−FUNCTION

The H−function is defined by the following Mellin-Barnes type integral[49, p.10]

with the integrand containing products and quotients of the Euler gamma func-

tions. Such a function generalizes most of the known special functions.

Hm,n
p,q [z] = Hm,n

p,q

z
∣∣∣∣∣∣∣∣∣

(aj, αj)1,p

(bj, βj)1,q

 = Hm,n
p,q

z
∣∣∣∣∣∣∣∣∣

(a1, α1), · · · , (ap, αp)

(b1, β1), · · · , (bq, βq)



:=
1

2πω

∫
L

Θ(s)zs ds, (1.1.1)

where ω =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

and

Θ(s) =

m∏
j=1

Γ(bj − βjs)
n∏
j=1

Γ(1− aj + αjs)

q∏
j=m+1

Γ(1− bj + βjs)
p∏

j=n+1

Γ(aj − αjs)
, (1.1.2)

m,n, p and q are non-negative integers satisfying

1 5 m 5 q and 0 5 n 5 p ;αj(j = 1, ..., p) and βj(j = 1, ..., q)

are assumed to be positive quantities for standardization purposes. The definition

of the H-function given by (1.1.1) will, however, have meaning even if some of

these quantities are zero. Also, aj(j = 1, ..., p) and bj(j = 1, ..., q) are complex

numbers such that none of the points

s =
bh + ν

βh
h = 1, ...,m; ν = 0, 1, 2, ... (1.1.3)

which are the poles of Γ(bh − βhs), h = 1, ...,m and the points

s =
ai − 1− η

αi
i = 1, ..., n; η = 0, 1, 2, ... (1.1.4)

2



1.1 SPECIAL FUNCTIONS

which are the poles of Γ(1− ai + αis) coincide with one another, i.e

αi(bh + ν) 6= bh(ai − η − 1) (1.1.5)

for ν, η = 0, 1, 2, ...;h; 1, ...,m; i = 1, ..., n.

Further, the contour L runs from −ω∞ to +ω∞ such that the poles

Γ(bh − βhs), h = 1, ...,m, lie to the right of L and and the poles of

Γ(1 − ai + αis) i = 1, ...n, lie to the left of L. Such a contour is possible on

account of (1.1.5). These assumptions will be adhered to throughout the present

work.

SPECIAL CASES

We list here a few interesting cases of the H−function which may be useful for

the workers on integral transforms and special functions.

1. Confluent hypergeometric function of Kummer

H1,1
1,2

z
∣∣∣∣∣∣ (1− a, 1)

(0, 1), (1− c, 1)

 =
Γ(a)

Γ(c)
1F1(a; c;−z) (1.1.6)

which is the so-called confluent hypergeometric function of Kummer[6, 6.1]

2. Hypergeometric function[49, p.18]

H1,2
2,2

z
∣∣∣∣∣∣ (1− a, 1), (1− b, 1)

(0, 1), (1− c, 1)

 =
Γ(a)Γ(b)

Γ(c)
2F1(a, b; c;−z); (1.1.7)

3. Generalized Hypergeometric function[49, p.18]

3



1. INTRODUCTION TO THE TOPIC OF STUDY AND BRIEF
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

H1,p
p,q+1

z
∣∣∣∣∣∣ (1− ai, 1)1,p

(0, 1), (1− bj, 1)1,q

 =

p∏
i=1

Γ(ai)

q∏
j=1

Γ(bj)
pFq(a1, ..., ap; b1, ..., bq;−z).

(1.1.8)

4. MacRobert E−function

Hp,1
q+1,p

z
∣∣∣∣∣∣ (1, 1) (bj, 1)1,q

(ai, 1)1,p

 = E(a1, ..., ap : b1, ..., bq; z), (1.1.9)

where E(a1, ..., ap : b1, ..., bq; z) is the MacRobert E−function[6, section 5.2].

Now we give the H−functions which are reduced to Bessel type functions:

5. Bessel function of the first kind

H1,0
0,2

z2
4

∣∣∣∣∣∣ −−−−(a+η
2
, 1), (a−η

2
, 1)

 =
(z

2

)a
Jη(z), (1.1.10)

where Jη(z) is the Bessel function of the first kind[49, p.19]

6. Modified Bessel function of the third kind or Macdonald function

H2,0
0,2

z2
4

∣∣∣∣∣∣ −−−−(a−η
2
, 1), (a+η

2
, 1)

 = 2
(z

2

)a
Kη(z), (1.1.11)

where Kη(z) is the modified Bessel function of the third kind or Macdonald

function[7, section 7.2.2 and (8.9.2)]

7. Generalized Mittag-Leffler function

H1,1
1,2

−z
∣∣∣∣∣∣ (1− γ, κ)

(0, 1), (1− β, α)

 = Γ(γ)Eγ,κ
α,β(z) (1.1.12)

where Eγ,κ
α,β is the generalized Mittag-Leffler function given by [56]

8. Reduced Green function

H2,1
3,3

z
∣∣∣∣∣∣ (1, 1/α), (1, β/α), (1, ρ)

(1, 1/α), (1, 1), (1, ρ)

 = (αz)Kθ
α,β(z) (1.1.13)

4



1.1 SPECIAL FUNCTIONS

Where ρ = (α− θ)/2α and

Kθ
α,β stands for reduced Green function[19, p.11, eq. (10)]

9. Lorenzo-Hartley R-function

H1,1
1,2

−azq
∣∣∣∣∣∣ (0, 1)

(0, 1), (1 + ν − q, q)

 =
1

zq−ν−1
Rq,ν [a, z] (1.1.14)

Here Rq,ν is the Lorenzo-Hartley R-function[14, p.64, eq.(2.4)]see also[35]

10. Lorenzo-Hartley G-function

H1,1
1,2

−azq
∣∣∣∣∣∣ (1− r, 1)

(0, 1), (1 + ν − rq, q)

 =
Γ(r)

zrq−ν−1
Gq,ν,r[a, z] (1.1.15)

Here Gq,ν,r is the Lorenzo-Hartley G-function[14, p.64, eq.(2.3)] see also [35]

11. Miller-Ross functions

H1,1
1,2

−az
∣∣∣∣∣∣ (0, 1)

(0, 1), (−ν, 1)

 =
1

zν
Ez[ν, a] (1.1.16)

H1,1
1,2

a2z2
∣∣∣∣∣∣ (0, 1)

(0, 1), (−ν, 2)

 =
1

zν
Cz[ν, a] (1.1.17)

Here Ez and Cz are the Miller-Ross functions[19, p.14,eq. (21,22)]

Finally we present the special cases of the H−function which cannot be obtained

from the G−function:

11. Wright’s generalized hypergeometric function

H1,p
p,q+1

−z
∣∣∣∣∣∣ (1− ai, αi)1,p

(0, 1), (1− bj, βj)1,q

 = pΨq

 (ai, αi)1,p;

(bj, βj)1,q;
z

 , (1.1.18)

where

pΨq

 (ai, αi)1,p;

(bj, βj)1,q;
z

 =
∞∑
k=0

p∏
i=1

Γ(ai + kαi)

q∏
j=1

Γ(bj + kβj)

zk

k!
(1.1.19)

5



1. INTRODUCTION TO THE TOPIC OF STUDY AND BRIEF
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

is Wright’s generalized hypergeometric function[6, section 4.1]

12. Generalized Modified Bessel function[10, p.152, eq.(1.2); p.155, eq.(2.6)]

The following special case has been used in the thesis in chapter 6:

H2,0
1,2

z
∣∣∣∣∣∣ (1− σ+1

β
, 1
β
)

(0, 1), (−γ − σ
β
, 1
β
)

 = λ(β)γ,σ(z) (1.1.20)

with

λ(β)γ,σ(z) =
β

Γ(γ + 1− 1
β
)

∫ ∞
1

(tβ − 1)γ−
1
β e−ztdt (1.1.21)(

β > 0;<(γ) >
1

β
− 1;σ ∈ C,<(z) > 0

)
.

13. Modified Bessel Function[30, p.66 eq.(2.9.33)-(2.9.34)]

H2,0
1,2

z
∣∣∣∣∣∣ (γ + 1− 1

n
, 1
n
)

(γn, 1), (0, 1
n
)

 = (2π)
(1−n)

2 nγn+
1
2λ(n)γ (z) (1.1.22)

with

λ(n)γ (z) =
(2π)(n−1)/2

√
n

Γ(γ + 1− 1
n
)

( z
n

)γn ∫ ∞
1

(tn − 1)γ−
1
n e−ztdt (1.1.23)(

n ∈ N;<(γ) >
1

n
− 1,<(z) > 0

)
According to the following integral representations in Erdélyi, Magnus, Oberhet-

tinger and Tricomi[7, 7.12(23) and 7.12(19)] for the modified Bessel function of

the third kind or the Macdonald function Kν(z):

Kν(z) =
1

2

∫ ∞
0

e−z(t+1/t)/2t−ν−1dt

=

√
π

Γ(1
2
− ν)

(
2

z

)ν ∫ ∞
1

e−zt(t2 − 1)−ν−
1
2dt (<(z) > 0), (1.1.24)

the functions (1.1.23) and (1.1.21) are connected with the function K−γ(z) by the

relations

λ(2)γ (z) = 2
(z

2

)γ
K−γ(z); (1.1.25)

6



1.1 SPECIAL FUNCTIONS

λ
(2)
γ,0(z) =

2√
π

(
2

z

)γ
K−γ(z). (1.1.26)

We also note that the function λ
(n)
γ (z) in (1.1.23) is expressed via λ

(β)
γ,σ(z) in

(1.1.21) when σ = 0 and β = n ∈ N :

λ(n)γ (z) = (2π)(n−1)/2n−(γn+1/2)zγnλ
(n)
γ,0(z). (1.1.27)

1.1.3 THE H−FUNCTION

Though the H-function is sufficiently general in nature, many useful functions

notably generalized Riemann Zeta function [6], the polylogarithm of complex

order [6], the exact partition of the Gaussian model in statistical mechanics [24],a

certain class of Feynman integrals [6] and others do not form its special cases.

Inayat Hussain [24] introduced a generalization of the H-function popularly known

as H -function which includes all the above mentioned functions as its special

cases. This function is developing fast and stands on a firm footing through the

publications of Buschman and Srivastava [5], Rathie[40], Saxena [42, 43], Gupta

and Soni[20], Jain and Sharma[28], Gupta, Jain and Sharma[18], Gupta, Jain and

Agrawal[17] and several others.

The H-function[24] is defined and represented in the following manner:

H
M,N

P,Q [z] = H
M,N

P,Q

z
∣∣∣∣∣∣∣∣∣

(aj, αj;Aj)1,N , (aj, αj)N+1,P

(bj, βj)1,M , (bj, βj;Bj)M+1,Q



:=
1

2πω

∫
L

Θ(ξ)zξdξ (1.1.28)
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where, ω =
√
−1,z ∈ C \ {0}, C being the set of complex numbers,

Θ(ξ) =

M∏
j=1

Γ(bj − βjξ)
N∏
j=1

{Γ(1− aj + αjξ)}Aj

Q∏
j=M+1

{Γ(1− bj + βjξ)}Bj
P∏

j=N+1

Γ(aj − αjξ)
(1.1.29)

It may be noted that Θ(ξ) contains fractional powers of some of the gamma func-

tions. M,N,P,Q are integers such 1 ≤M ≤ Q, 0 ≤ N ≤ P, (αj)1,P , (βj)1,Q and

(Aj)1,N , (Bj)M+1,Q are positive quantities for standardization purpose. (aj)1,P and

(bj)1,Q are complex numbers such that the points ξ =
bj + k

βj
; j = 1, ...,M ; k =

0, 1, 2, ... which are the poles of Γ(bj − βjξ), and the points ξ =
aj − 1− k

αj
j =

1, ..., N ; k = 0, 1, 2, ... which are the singularities of {Γ(1− aj +αjξ)}Aj , do not

coincide. We retain these assumptions throughout the thesis.

The contour L is the line from c − i∞ to c + i∞, suitably intended to keep the

poles of Γ(bj − βjξ); j = 1, ...,M to the right of the path, and the singular-

ities of {Γ(1 − aj + αjξ)}Aj ; j = 1, ..., N to the left of the path. If we take

Ai = Bj = 1 (i = 1, ..., N ; j = M + 1, ..., Q), then the H−function reduces to

the familiar H−function.

The following sufficient conditions for the absolute convergence of the defining

integral for H−function given by (1.1.28) have been given by Gupta, Jain and

Agarwal[17]

(i) |arg(z)| < 1

2
Ωπ and Ω > 0

(ii) |arg(z)| = 1

2
Ωπ and Ω ≥ 0 (1.1.30)

and

(a) µ 6= 0 and the contour L is so chosen that (cµ+ λ+ 1) < 0

(b) µ = 0 and (λ+ 1) < 0

8
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where

Ω =
M∑
j=1

βj +
N∑
j=1

αjAj −
Q∑

j=M+1

βjBj −
P∑

j=N+1

βj (1.1.31)

µ =
N∑
j=1

αjAj +
P∑

j=N+1

αj −
M∑
j=1

βj −
Q∑

j=M+1

βjBj (1.1.32)

λ =Re

(
M∑
j=1

bj +

Q∑
j=M+1

bjBj −
N∑
j=1

ajAj −
P∑

j=N+1

aj

)

+
1

2

(
−M −

Q∑
j=M+1

Bj +
N∑
j=1

Aj + p−N

)
(1.1.33)

The following series representation for the H−Function given by Rathie [40] and

Saxena[42]:

H
M,N

P,Q

z
∣∣∣∣∣∣∣∣∣

(aj, αj;Aj)1,N , (aj, αj)N+1,P

(bj, βj)1,M , (bj, βj;Bj)M+1,Q

 =
∞∑
t=0

M∑
h=1

Θst,hz
st,h (1.1.34)

where,

Θ(st,h) =

M∏
j=1,j 6=h

Γ(bj − βjst,h)
N∏
j=1

{Γ(1− aj + αjst,h)}Aj

Q∏
j=M+1

{Γ(1− bj + βjst,h)}Bj
p∏

j=N+1

Γ(aj − αjst,h)

(−1)t

t!βh
(1.1.35)

st,h =
bh + t

βh
(1.1.36)

The following behaviour of the H
M,N

P,Q (z)function for small and large values of z

as recorded by Saxena et al[45, p.112, eqs.(2.3-2.4)],

H
M,N

P,Q (z) = O(|z|g), for small z, where g = min
1≤j≤M

<
(
bj
βj

)

9
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H
M,N

P,Q (z) = O(|z|h), for large z, where h = max
1≤j≤N

<
(
Aj
aj − 1

αj

)
provided that either of the following conditions are satisfied:

(i) µ < 0 and 0 < |z| <∞ (1.1.37)

(ii) µ = 0 and 0 < |z| < δ−1 (1.1.38)

where

µ =
N∑
1

αjAj +
P∑

N+1

αj −
M∑
1

βj −
Q∑

M+1

βjBj (1.1.39)

δ =
N∏
1

(αj)
αjAj

P∏
N+1

(αj)
αj

M∏
1

(βj)
−βj

Q∏
M+1

(βj)
−βjBj (1.1.40)

SPECIAL CASES

The following special cases of the H−function have been made use in this thesis:

1. Polylogarithm function

zH
1,1

1,2

−z
∣∣∣∣∣∣ (0, 1; p+ 1)

(0, 1), (−1, 1; p)

 = F (z, p) =
∞∑
r=1

zr

rp
(1.1.41)

Here F (z, p) is the polylogarithm function of order p [6, p.30]

2. The H−function

H
M,N

P,Q

z
∣∣∣∣∣∣∣∣∣

(aj, αj; 1)1,N , (aj, αj)N+1,P

(bj, βj)1,M , (bj, βj; 1)M+1,Q

 = HM,N
P,Q

z
∣∣∣∣∣∣∣∣∣

(ai, αi)1,P

(bj, βj)1,Q

 (1.1.42)

Naturally, all functions which are special cases of the H−function are also special

cases of the H−function.
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1.1.4 THE MULTIVARIABLE H−FUNCTION

The multivariable H−function occuring in the thesis was introduced and studied

by Srivastava and Panda [52, p. 130, eq. (1.1)]. This function involves r complex

variables and will be defined and represented in the following contracted form

[49, p. 251-252, eqs. (C.1-C.3)]

H0,B:A1,B1;...;Ar,Br
C,D:C1,D1;...;Cr,Dr



z1

.

.

.

zr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(aj;α
(1)
j , ..., α

(r)
j )1,C : (c

(1)
j , γ

(1)
j )1,C1 ; ...; (c

(r)
j , γ

(r)
j )1,Cr

(bj; β
(1)
j , ..., β

(r)
j )1,D : (d

(1)
j , δ

(1)
j )1,D1 ; ...; (d

(r)
j , δ

(r)
j )1,Dr



=
1

(2πω)r

∫
L1

...

∫
Lr

ψ(ξ1, ..., ξr)
r∏
i=1

(φi(ξi)z
ξi
i )dξ1...dξr (i = 1, ..., r) (1.1.43)

where ω =
√
−1,

φi(ξi) =

Ai∏
i=1

Γ(d
(i)
j − δ

(i)
j ξi)

Bi∏
j=1

Γ(1− c(i)j + γ
(i)
j ξi)

Di∏
j=Ai+1

Γ(1− d(i)j + δ
(i)
j ξi)

Ci∏
j=Bi+1

Γ(c
(i)
j − γ

(i)
j ξi)

(i = 1, ..., r)

(1.1.44)

ψ(ξ1, ..., ξr) =

B∏
j=1

Γ(1− aj +
r∑
i=1

d
(i)
j ξi)

D∏
j=1

Γ(1− bj +
r∑
i=1

β
(i)
j ξi)

C∏
j=B+1

Γ(aj −
r∑
i=1

α
(i)
j ξi)

(1.1.45)

All the greek letters occuring on the left-hand side of (1.1.43) are assumed to be

positive real numbers for standardization purposes; the definition of the multi-

variable H−function will, however, be meaningful even if some of these quantities

11
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are zero such that

Λi ≡
C∑
j=1

α
(i)
j +

Ci∑
j=Bi+1

γ
(i)
j −

D∑
j=1

β
(i)
j −

Di∑
j=1

δ
(i)
j > 0 (i = 1, 2, ..., r) (1.1.46)

Ωi ≡ −
C∑

j=B+1

α
(i)
j +

Bi∑
j=1

γ
(i)
j −

Ci∑
j=Bi+1

γ
(i)
j −

D∑
j=1

β
(i)
j +

Ai∑
j=1

δ
(i)
j −

Di∑
j=Ai+1

δ
(i)
j > 0 (i = 1, 2, ..., r)

(1.1.47)

where B,C,D,Ai, Bi, Ci, Di are non negative integers such that 0 ≤ B ≤ C,

D ≥ 0, 0 ≤ Bi ≤ Ci and 1 ≤ Ai ≤ Di, (i = 1, ..., r).

The sequences of the parameters in (1.1.43) are such that none of the poles of

the integrand coincide i.e. the poles of the integrand in (1.1.43) are simple. The

contour Li in the complex ξi− plane is of the Mellin-Barnes type which runs

from −ω∞ to +ω∞ with indentations, if necessary, to ensure that all the poles

of Γ(d
(i)
j − δ

(i)
j ξi) (j = 1, ..., Ai) are separated from those of Γ(1− c(i)j − γ

(i)
j ξi)

(j = 1, ..., Bi) and Γ(1− aj +
r∑
i=1

α
(i)
j ξi) (i = 1, ..., r; j = 1, ..., B)

It is known that multiple Mellin-Barnes contour integral representing the multi-

variable H− function (1.1.43) converges absolutely[53, p.130, eq.(1.4)] under the

condition (1.1.47) when

|arg(zi)| <
1

2
Ωiπ, (i = 1, ..., r) (1.1.48)

The point zi = 0(i = 1, ..., r) and various exceptional parameter values are

excluded.

SPECIAL CASES

By suitably specializing the various parameters occuring in the multivariable H−

function defined by (1.1.43), it reduces to the simpler special functions of one and

more variables.
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Some of them which have been used in this thesis are given below:

(i) If we take α
(1)
j = α

(2)
j = ... = α

(r)
j (j = 1, ..., D) and β

(1)
j = β

(2)
j = ... =

β
(r)
j (j = 1, ..., D) in (1.1.43), it reduces to a special multivariable H− function

studied by Saxena[42].

(ii) If we take all the Greek letters α′s, β′s, γ′s, and δ′s equal to unity in (1.1.43) ,

it reduces to the corresponding G−function of several variables studied by Khadia

and Goyal[29].

(iii) If we take r = 2, in (1.1.43), we get H−function of two variables defined in

[49, p.82, eq.(6.1.1)].

(iv) A relation between H−function of two variable and the Appell function[49,

p.89,eq.(6.4.6)] is given as below:

H0,0:1,2;1,2
0,1:2,1;2,1

 −x
−y

∣∣∣∣∣∣ − : (1− c, 1), (1− c′, 1); (1− e, 1), (1− e′, 1)

(1− b; 1, 1) : (0, 1); (0, 1)



=
Γ(c)Γ(c′)Γ(e)Γ(e′)

Γ(b)
F3(c, e, c

′, e′; b;x, y), |x| < 1, |y| < 1 (1.1.49)

1.1.5 GENERAL CLASS OF POLYNOMIALS

Srivastava [46, p.1 eq. (1)] has introduced the general class of polynomials

SUV [x] =

[V/U ]∑
R=0

(−V )UR AV,R xR

R!
(V = 0, 1, 2, ...), (1.1.50)

where U is an arbitrarty positive integer, and the coefficients AV,R(V,R ≥ 0)

are arbitrary constants, real or complex. On suitably specializing the coefficients

AV,R, S
U
V [x] yields a number of known polynomials as its special cases. These

include, among others, Jacobi polynomial, Laguerre polynomial and several others

[55, p.158-161].If x = 0, A0,0 = 1, then SUV [x] reduces to unity.
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SPECIAL CASES

The following special cases of the general class of polynomials SUV will be required

in the thesis:

(i) Laguerre Polynomials

On taking U = 1, AV , R =

 V + α

V

 1

(α + 1)R
in (1.1.50),

S1
V → L

(α)
V (x), (1.1.51)

where,

L
(α)
N (x) =

(1 + α)V
V !

1F1(−V ; 1 + α;x) (1.1.52)

is the Laguerre Polynomial[57, p.101,eq.(5.1.6)]

(ii) Jacobi Polynomials

On taking U = 1, AV , R =

 V + α

V

 (α + β + V + 1)R
(α + 1)R

in (1.1.50),

S1
V → P

(α,β)
V (1− 2x), (1.1.53)

where

P
(α,β)
V (x) =

V∑
R=0

 V + α

V −R

 V + β

R

(x− 1

2

)R(
x+ 1

2

)V−R

=
(1 + α)V

V !

V∑
R=0

(−V )R(1 + α + β + V )R
(1 + α)RR!

(
1− x

2

)R
(1.1.54)

is the Jacobi Polynomial.[57, p.68, eq.(4.3.2)]

(iii) Gould & Hopper Polynomial

Taking AV,R = 1 in (1.1.50),

SUV (x)→
(
−x
h

)V/U
gUV

[(
−h
x

)1/U

, h

]
, (1.1.55)
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where

gUV (x, h) =

[V/U ]∑
R=0

V !

R!(V − UR)!
hRxV−UR,

= xV MF0

[
∆(U ;−V );−;h

(
−U
x

)U]
(1.1.56)

is the Gould & Hopper polynomial.[12, p.58, eq.(6.2)]

Here ∆(U ;V ) denotes the array of U parameters V
U
, V+1

U
, ..., V+U−1

U
, U ≥ 1, the

set ∆(0, V ) being empty.

(iv) Cesaro Polynomial

Taking U = 1, AV,R =
(s+ 1)VR!

V !(−s− V )R

S1
V (x)→ g

(s)
V (x) (1.1.57)

where

g
(s)
V (x) =

 s+ V

V


2F1

 −V, 1;

−s− V ;
x

 (1.1.58)

is the Cesaro polynomial[51, p.449, eq.(20)].

(v) Bessel Polynomial

Taking V = 1, AV,R = (α + V − 1)R in (1.1.50),

S1
V (x)→ yV (−βx, α, β), (1.1.59)

where

yV (−βx, α, β) =
V∑
R=0

(−V )R(α + V − 1)R
R!

(
−x
β

)R

= 2F0[−V, α + V − 1;−;−x/β] (1.1.60)

is the Bessel Polynomial consideres by Krall and Frink[34, p.108, eq.(34)]

15



1. INTRODUCTION TO THE TOPIC OF STUDY AND BRIEF
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

(vi) Brafman Polynomial

Taking AV,R =
(α1)R...(αp)R
(β1)R...(βq)R

in (1.1.50),

SUV (x)→ BU
V [α1, ..., αp; β1, ..., βq : xUU ], (1.1.61)

where

BU
V [α1, ..., αp; β1, ..., βq : x] = pFq[∆(U ;−V ), α1, ..., αp; β1, ..., βq : x] (1.1.62)

is the Brafman polynomial.[3, p.186]

Here ∆(U ;V ) denotes the array of U parameters V
U
, V+1

U
, ..., V+U−1

U
, U ≥ 1, the

set ∆(0, V ) being empty.

1.2 FRACTIONAL CALCULUS

The concept of differentiation operator D = d/dx is familiar to all who have

studied the elementary calculus. And for suitable functions f , namely Dnf(x) =

dnf(x)/dxn is well-defined provided that n is a positive integer. In 1695 L’Hospital

inquired of Leibniz what meaning could be ascribed to Dnf if n were a frac-

tion. Since that time the fractional calculus has drawn the attention of many

famous mathematicians, such as, Euler, Laplace, Fourier, Abel, Liouville, Rie-

mann, Lacrocx, Pracoch, Heaviside, Weyl, Kober, Erdélyi and Laurent.

During the second half of the twentieth century, considerable amount of research

in fractional calculus was published in engineering literature. Indeed, recent ad-

vances of fractional calculus are dominated by modern examples of applications

in differential and integral equations, physics, signal processing, fluid mechanics,

viscoelasticity, mathematical biology, and electrochemistry. There is no doubt

that fractional calculus has become an exciting new mathematical method of

solution of diverse problems in mathematics, science, and engineering.
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1.2.1 FRACTIONAL DIFFERENTIAL INTEGRAL

OPERATOR

A detailed account of various fractional integral operators studied from time to

time has been given by Srivastava and Saxena[54]

The Riemann-Liouville fractional integral operator Iµa+ and the Riemann-Liouville

fractional derivative operator Dµ
a+, which are defined by (see, for details, [33], [37]

and [41]):

(Iµa+f)(x) =
1

Γ(µ)

∫ x

a

f(t)

(x− t)1−µ
dt

(
<(µ) > 0

)
(1.2.1)

and

(Dµ
a+f)(x) =

(
d

dx

)n
(In−µa+ f)(x)

(
<(µ) > 0; n = [<(µ)] + 1), (1.2.2)

where [x] denotes the greatest integer in the real number x. Hilfer [56] generalized

the operator in (1.2.2) and defined a general fractional derivative operator Dµ,ν
a+

of order 0 < µ < 1 and type 0 5 ν 5 1 with respect to x as follows:

(Dµ,ν
a+ f)(x) =

(
I
ν(1−µ)
a+

d

dx

(
I
(1−ν)(1−µ)
a+ f

))
(x). (1.2.3)

The generalization in (1.2.3) yields the classical Riemann-Liouville fractional

derivative operatorDµ
a+ when ν = 0. When ν = 1, (1.2.3) reduces to the fractional

derivative operator introduced by Joseph Liouville, which is often attributed now-

a-days to Caputo (see [33] and [68]; see also [11]).

The following generalized form of fractional integral operator studied earlier by

Hilfer[22] will be used in chapter 4 of the thesis.

(Dγ,µ,ν
p+ f)(x) =

(
I
γ,ν(1−µ)
p+

(
d

dx

)m
(I
γ,(1−ν)(1−µ)
p+ f)

)
(x) (1.2.4)

with 0 < µ < 1 and 0 ≤ ν ≤ 1

where

(Iγ,µa+ f)(x) =
(x− a)−µ−γ

Γ(µ)

∫ x

a

tγf(t)

(x− t)1−µ
dt (Re(γ) > −1, Re(µ) > 0) (1.2.5)
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Form = 1 and γ = 0, (1.2.4) reduces to the Hilfer fractional derivative operator[22,

p.43, see 11]

1.2.2 FRACTIONAL DIFFERENTIAL EQUATIONS

The first form of the Fractional Integral Equation is given by the following form:

1

Γ(α)

∫ t

0

u(τ)

(t− τ)1−α
dτ = f(t), 0 < α < 1 (1.2.6)

This may also be written as

Jαu(t) = f(t) (1.2.7)

The solution of this kind is straightforward, and written

u(t) = Dαf(t) (1.2.8)

In the present work we solve a set of following general fractional differential

equations: (
Dµ,ν

0+ y
)

(x) = λ
(
H
w;m,n;α
0+;p,q,β 1

)
(x) + f(x), (1.2.9)

and

x
(
Dµ,ν

0+ y
)

(x) = λ
(
H
w;m,n;α
0+;p,q,β 1

)
(x), (1.2.10)

For definition of Hw;m,n;α
0+;p,q,β see (2.2.1)

FRACTIONAL KINETIC EQUATION

Fractional Kinetic equations have gained popularity during the past decade mainly

due to the discovery of their relation with the CTRW-theory in [21]. These equa-

tions are investigated in order to determine and interpret certain physical

phenomena which govern such processes as diffusion in porous media, reaction

and relaxation in complex systems, anomalous diffusion, and so on [22, 23].
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In a recent investigation by Saxena and Kalla[44], the following fractional kinetic

equation was considered:

N(t)−N0f(t) = −cν(Iν0+N)(t) (<(ν) > 0), (1.2.11)

where N(t) denotes the number density of a given species at time t, N0 = N(0)

is the number density of that species at time t = 0, c is a constant and (for

convenience) f ∈ L(0,∞), it being tacitly assumed that f(0) = 1 in order to

satisfy the initial condition N(0) = N0.

1.3 BRIEF CHAPTER BY CHAPTER

SUMMARY

In chapter 2, first of all we give definition of a generalized Riemann-Liouville

fractional derivative operator Dµ,ν
a+ of order µ and type ν. Then, we introduce and

investigate an integral operator Hw;m,n;α
a+;p,q;β which contains H-function in its kernel.

Next we find solutions to two different fractional differential equations in theorem

form using this operator. Since H
w;m,n;α
0+;p,q;β is general in nature, by specializing the

parameters we can obtain a number of special cases of these theorems involving

special cases of the fractional integral operator H
w;m,n;α
a+;p,q;β and giving appropriate

values to f(x). Furthermore numerical examples are calculated and using these

graphical illustrations are presented.

chapter 3 deals with general fractional Kinetic differintegral equation involving

the fractional operator Dµ,ν
0+ and an integral operator whose kernel involves the

general class of polynomials SMN . We make use of Laplace transform method to

solve the fractional kinetic differintegral equation. On account of general nature

of SMN occuring in the fractional kinetic equation, a number of results involving

simpler polynomials also follow as special cases of our main result. We give here
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six special cases involving Laguerre polynomial, Bessel polynomial, Gould and

Hopper polynomial, Brafman polynomial and Cesaro polynomial in the kernel

of the integral operator occuring in the fractional kinetic differintegral equation

respectively.

chapter 4 deals with the study of a fractional differential integral operator. First,

we define the operator of our study Dγ,µ,ν
p+ and then obtain image of a product of

H-function and H− function under this operator. Fractional integrals involving

a number of simpler functions follow as its special cases. we record here four spe-

cial cases. Next we derive two new and interesting composition formulae for the

fractional integral operator Iγ,µa+ and the integral operator Hw;m,n;α
a+;p,q;β. Then we give

the composition formulae for the fractional integral operators Iγ,µa+ , I
µ
a+, D

µ
a+, D

µ,ν
a+

and integral operator H
w;m,n;α
a+;p,q;β.

The object of chapter 5 is to find solutions of two Volterra-type integral equa-

tions associated with integral operators whose kernels involve H-function and a

product of general class of polynomials SMN and multivarible H−function respec-

tively. We make use of convolution technique to solve these equations. We have

obtained a large number of integral equations involving products of several useful

polynomials and special functions as its special cases.

In chapter 6 we evaluate a unified and general finite integral whose integrand

involves the product of generalized modified Bessel function λ
(η)
µ,ν ,general class

of polynomials SMN and the multivariable H−function. The arguments of the

functions occurring in the integrand involve the product of factors of the form

xρ−1(a − x)σ(1 + (bx)`)−λ. Main integral is believed to be new and is capable

of giving a large number of simpler integrals (new and known) involving several

special functions and polynomials as its special cases.For the sake of illustration

we record here six new integrals as its special cases involving modified Bessel

function of third kind, Gould & Hopper polynomial and Mittag-leffler function;

20



1.4 LIST OF RESEARCH PAPERS
CONTRIBUTED BY THE AUTHOR

generalized modified Bessel function of third kind, general class of polynomials, re-

duced Green function, Lorenzo-Hartley R-function, Miller-Ross functions,Cesaro

polynomial and Lorenzo-Hartley G-function.

1.4 LIST OF RESEARCH PAPERS

CONTRIBUTED BY THE AUTHOR

(i) A General Fractional Differential Equation Associated with an In-

tegral operator with the H-function in the Kernel, Russian Journal of

Mathematical Physics, 22(1) (2015),112-126.

(ii) A study of Fractional Differential Equation with an Integral opera-

tor containing Fox’s H-function in the Kernel, Int. Bull. of Mathematical

research(IBMR)ISSN:2394-7802, 2(1) (2015), 1-8.

(iii) A General Volterra type Fractional Equation Associated with an

Integral operator with the H-function in the Kernel, Journal of Rajasthan

Academy of Physical Sciences, 14(3) (2015) 289-294.

(iv) A Study of Fractional Differential Integral operator,Proc. of the

12th annual conf. SSFA, 12 (2013), 73-77.

(v) A General Volterra type Fractional Equation Associated with an

Integral operator with the H-function in the Kernel, International Jour-

nal of Pure and Applied Mathematics(IJPAM) ISSN:1311-8080. (Accepted for

Publication)

(vi) A General Volterra-type Integral Equation Associated with an In-

tegral Operator involving the product of general class of polynomials

and multivarible H-Function in the Kernel,Journal of Rajasthan Academy

of Physical Sciences, Vol. 3 (2016) (In press)

(vii) A General Fractional kinetic Differintegral Equation Associated

21



1. INTRODUCTION TO THE TOPIC OF STUDY AND BRIEF
CHAPTER BY CHAPTER SUMMARY OF THE THESIS

with an Integral Operator with the general class of polynomial in the

Kernel, Proceedings of the Jangjeon Mathematical Society.(communicated)

(viii) A Study of unified finite integral involving generalized modified

Bessel function of third kind, general class of polynomials and the

multivariable H-function, Journal of the Indian Academy of Mathematics.

(Communicated)

22



2

ON GENERAL FRACTIONAL

DIFFERENTIAL EQUATIONS

ASSOCIATED WITH AN

INTEGRAL OPERATOR

HAVING THE H-FUNCTION

IN THE KERNEL

The main findings of this chapter have been published as given below:

A General Fractional Differential Equation Associated with an Inte-

gral operator with the H-function in the Kernel, Russian J. of Math.

Phy., 22(1) (2015),112-126.





A study of Fractional Differential Equation with an Integral oper-

ator containing H-function in the Kernel, Int.Bull.of Math.Research,2(1)

(2015),1-8.

In this chapter, First of all we give definition of a generalized Riemann-

Liouville fractional derivative operator Dµ,ν
a+ of order µ and type ν, which was

introduced and investigated in several earlier works of Hilfer[22].Then, we

introduce and investigate an integral operator Hw;m,n;α
a+;p,q;β which contains H-function

in its kernel. Further we give its three special cases involving Fox-Wright function,

hypergeometric function and Bessel function respectively . Then we prove our

first theorem corresponding to the boundedness property of the integral operator

H
w;m,n;α
a+;p,q;β . Next we find solutions to two different fractional differential equations

in theorem form using this operator.

In theorem 2 we find the solution to our first fractional differential equation in-

volving the operators H
w;m,n;α
0+;p,q;β and Dµ,ν

0+ . Since H
w;m,n;α
0+;p,q;β is general in nature, by

specializing the parameters we can obtain a number of special cases of theorem 2.

Here we give five corollaries of theorem 2 involving special cases of the fractional

integral operator H
w;m,n;α
a+;p,q;β and giving appropriate values to f(x). In the third

theorem we prove the companion of theorem 2 in which we find solution to our

second fractional differential equation involving the operators Hw;m,n;α
0+;p,q;β and Dµ,ν

0+ .

Then we give three corollaries of theorem 3 by specializing the oprator H
w;m,n;α
0+;p,q;β .

Furthermore numerical examples of theorem 2 are calculated using these

examples graphical illustrations are presented and it is found that the graphs

given here are quite comparable to the physical phenomena involving ordinary

calculus, especially when the parameters ν > 0 and µ > 0 get closer and closer

to an integer.
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The results derived in this chapter generalize the results obtained in earlier works

by Kilbas et al. [32] and Srivastava and Tomovski [56].

2.1 INTRODUCTION AND DEFINITIONS

In this chapter we make use of the Riemann-Liouville fractional integral opera-

tor Iµa+ and the Riemann-Liouville fractional derivative operator Dµ
a+, which are

defined by (see, for details, [33], [37] and [41]):

(Iµa+f)(x) =
1

Γ(µ)

∫ x

a

f(t)

(x− t)1−µ
dt

(
<(µ) > 0

)
(2.1.1)

and

(Dµ
a+f)(x) =

(
d

dx

)n
(In−µa+ f)(x)

(
<(µ) > 0; n = [<(µ)] + 1), (2.1.2)

where [x] denotes the greatest integer in the real number x. Hilfer [56] generalized

the operator in (2.1.2) and defined a general fractional derivative operator Dµ,ν
a+

of order 0 < µ < 1 and type 0 5 ν 5 1 with respect to x as follows:

(Dµ,ν
a+ f)(x) =

(
I
ν(1−µ)
a+

d

dx

(
I
(1−ν)(1−µ)
a+ f

))
(x). (2.1.3)

The generalization in (2.1.3) yields the classical Riemann-Liouville fractional

derivative operatorDµ
a+ when ν = 0. When ν = 1, (2.1.3) reduces to the fractional

derivative operator introduced by Joseph Liouville, which is often attributed now-

a-days to Caputo (see [33] and [68]; see also [11]).

Now, assuming that the Laplace transform L[f(x)](s) of the function f(x) exists,

that is, the integral in

L[f(x)](s) =

∫ ∞
0

e−sx f(x)dx
(
<(s) > 0

)
, (2.1.4)
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is convergent [68].

The well-known convolution theorem for Laplace transform

L


x∫

0

f(x− u)g(u)du; s

 = L{f(x); s}L{g(x); s} (2.1.5)

holds provided that the various Laplace transforms occuring in (2.1.5) exist.

L[(Dµ,ν
0+ f)(x)](s) = sµL[f(x)](s)−s−ν(1−µ)

(
I
(1−ν)(1−µ)
0+ f

)
(0+)

(
<(s) > 0; 0 < µ < 1

)
,

(2.1.6)

where the initial-value term: (
I
(1−ν)(1−µ)
0+ f

)
(0+)

involves the Riemann-Liouville fractional integral (2.1.1) (with a = 0) of the

function f(t) of order

µ 7→ (1− ν)(1− µ)

evaluated in the limit as x→ 0+.

2.2 AN INTEGRAL OPERATOR H
w;m,n;α
a+;p,q,β

INVOLVING THE H-FUNCTION

Various general families of operators of fractional integration involving the H-

function and its extensions including those in two and more variables were con-

sidered extensively by Srivastava and Saxena (see, for details, [66, Sections 6 to

9]). Here, in our present investigation, we find it to be convenient to use the fol-

lowing special case of one of these general families of fractional integral operators

with the H-function in their kernels (see [66, p. 15, eq. (6.3)] and the references

cited therein):(
H
w;m,n;α
a+;p,q;β ϕ

)
(x) :=

∫ x

a

(x− t)β−1 Hm,n
p,q [w(x− t)α]ϕ(t)dt (2.2.1)
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(
<(β) > 0; w ∈ C\{0}; 1 5 m 5 q; 0 5 n 5 p; <(β)+ min

15j5m

{
<
(
αbj
βj

)}
> 0

)
.

For a = 0, by using the Convolution Theorem for the Laplace Transform in

(2.1.4), we find from the definition (2.2.1) that

L
[(
H
w;m,n;α
0+;p,q;β ϕ

)
(x)
]

(s) = L
[
xβ−1 Hm,n

p,q [wxα]
]

(s) · L[ϕ(x)](s)

= s−βHm,n+1
p+1,q

ws−α
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q

Φ(s)

(2.2.2)

(
<(s) > 0; α > 0; <(β) + min

15j5m

{
<
(
αbj
βj

)}
> 0

)
,

where, for convenience,

Φ(s) := L[ϕ(x)](s)
(
<(s) > 0

)
.

In its special case when ϕ(x) ≡ 1, (2.2.2) immediately yields

L
[(
H
w;m,n;α
0+;p,q;β 1

)
(x)
]

(s) = s−β−1Hm,n+1
p+1,q

ws−α
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q

 (2.2.3)

(
<(s) > 0; α > 0; <(β) + min

15j5m

{
<
(
αbj
βj

)}
> 0

)
.

2.2.1 SPECIAL CASES OF H
w;m,n;α
a+;p,q,β

1. For the Fox-Wright function pΨq, it is known that (see, for example, [33, p.

67, eq. (1.12.68)])
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pΨq


(aj, αj)1,p;

(bj, βj)1,q;

z

 = pΨq


(a1, α1), · · · , (ap, αp);

(b1, β1), · · · , (bq, βq);

z



:=
∞∑
n=0

Γ(a1 + α1 n) · · ·Γ(ap + αp n)

Γ(b1 + β1 n) · · ·Γ(bq + βq n)

zn

n!

= H1,p
p,q+1

−z
∣∣∣∣∣∣∣∣∣

(1− aj, αj)1,p

(0, 1), (1− bj, βj)1,q

 . (2.2.4)

Thus, the following fractional integral operator becomes the special case of (2.2.1):

(
Ψw;p;α
a+;q;β ϕ

)
(x) :=

∫ x

a

(x− t)β−1 pΨq


(aj, αj)1,p;

(bj, βj)1,q;

w(x− t)α

ϕ(t)dt (2.2.5)

(
<(β) > 0; w ∈ C \ {0}; p 5 q + 1

)
,

2. Since (see, for example, [33, p. 65, eq. (1.12.54)])

pΨq


(a1, 1), · · · , (ap, 1);

(b1, 1), · · · , (bq, 1);

z

 =
Γ(a1) · · ·Γ(ap)

Γ(b1) · · ·Γ(bq)
pFq


a1, · · · , ap;

b1, · · · , bq;

z

 , (2.2.6)

we get the following special case of fractional integral operator (2.2.1):

(
F
w;p;α
a+;q;β ϕ

)
(x) :=

∫ x

a

(x− t)β−1 pFq


a1, · · · , ap;

b1, · · · , bq;

w(x− t)α

ϕ(t)dt (2.2.7)
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(
<(β) > 0; w ∈ C \ {0}; p 5 q + 1

)
,

3. For Bessel function it is known that[49, p.19, eq.(2.6.10)]

Jσλ(x) =
∞∑
r=0

(−x)r

r!Γ(1 + λ+ σr)

= H1,0
0,2

x| −

(0, 1), (−λ, σ)

 (2.2.8)

we get the following special case of fractional integral operator (2.2.1):(
J
w;1,0;α
a+;0,2;β ϕ

)
(x) :=

∫ x

a

(x− t)β−1Jσλ(w(x− t)α)ϕ(t)dt (2.2.9)(
<(β) > 0; w ∈ C \ {0}

2.2.2 BOUNDEDNESS PROPERTY OF H
w;m,n;α
a+;p,q,β

By assuming, in general, that (a, b) (−∞ 5 a < b 5 ∞) is a finite or infinite

interval on the real axis R = (−∞,∞), we denote by L(a, b) the space of Lebesgue

measurable functions on a finite interval [a, b] (b > a) on the real line R given

by (see, for details, [11],[33])

L(a, b) :=

{
f : ||f ||1 :=

∫ b

a

|f(x)|dx <∞
}
. (2.2.10)

Theorem 2.2.1. Under the various parametric constraints stated already with the

definition (2.2.1) let the function ϕ be in the space L(a, b) of Lebesgue measurable

functions on a finite interval [a, b] (b > a) of the real line R as defined by (2.2.10)

Then the integral operator H
w;m,n;α
a+;p,q,β is bounded on L(a, b) and∣∣∣∣(Hw;m,n;α

a+;p,q,β ϕ
)

(x)
∣∣∣∣

1
5M · ||ϕ||1 (0 < M <∞), (2.2.11)

where the constant M is given by

M =
1

2πi

∫
L

Θ(s)ws

(
(b− a)β+αs

β + αs

)
ds (0 < M <∞). (2.2.12)
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Proof. We apply the definitions (2.2.1) and (2.2.10) in conjunction with the def-

inition (6.1.7) of the H-function. Upon interchanging the order of integration by

means of the Dirichlet formula [37, p. 56], we thus find that

∣∣∣∣(Hw;m,n;α
a+;p,q,β ϕ

)
(x)
∣∣∣∣

1
=

∫ b

a

∣∣∣∣∫ x

a

(x− t)β−1 Hm,n
p,q [w(x− t)α]ϕ(t) dt

∣∣∣∣ dx

5
∫ b

a

|ϕ(t)|
(∫ b

t

(x− t)β−1
∣∣Hm,n

p,q [w(x− t)α]
∣∣ dx) dt

=

∫ b

a

|ϕ(t)|
(∫ b−t

0

τβ−1
∣∣Hm,n

p,q [wτα]
∣∣ dτ) dt

5
∫ b

a

|ϕ(t)|
(∫ b−a

0

τβ−1
∣∣Hm,n

p,q [wτα]
∣∣ dτ) dt

5 ||ϕ||1 ·
[

1

2πi

∫
L

Θ(s)ws

(
(b− a)β+αs

β + αs

)
ds

]

= M · ||ϕ||1
(
<(β) > 0

)
,

where the constant M (0 < M < ∞) is given by (2.2.12).This completes our

proof of the boundedness property of the integral operator H
w;m,n;α
a+;p,q,β as asserted

by (2.2.11).

Remark 1. Throughout the present investigation, it is tacitly assumed that, in

such situations as those occurring in the definitions (2.1.1), (2.1.2) and (2.2.1),

the number a in the function space L(a, b) coincides precisely with the lower ter-

minal a in the integrals involved in the definitions (2.1.1), (2.1.2) and (2.2.1).
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Remark 2. The results obtained by Kilbas et al. [32] and Srivastava and

Tomovski [56] can be deduced as special cases of (2.2.11).

2.3 FRACTIONAL DIFFERENTIAL EQUATIONS

BASED UPON HILFER DIFFERENTIAL

OPERATOR

2.3.1 FIRST FRACTIONAL DIFFERENTIAL EQUATION

Theorem 2.3.1. The following fractional differential equation:(
Dµ,ν

0+ y
)

(x) = λ
(
H
w;m,n;α
0+;p,q,β 1

)
(x) + f(x), (2.3.1)(

0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0}; 1 5 m 5 q;

0 5 n 5 p; <(β) + min
15j5m

{
<
(
αbj
βj

)}
> 0

)
.

with the initial condition: (
I
(1−ν)(1−µ)
0+ y

)
(0+) = C, (2.3.2)

has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + λxβ+µ Hm,n+1
p+1,q+1

wxα
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q, (−β − µ, α)



+
1

Γ(µ)

∫ x

0

(x− t)µ−1 f(t)dt, (2.3.3)

where C and λ are arbitrary constants and the function f is suitably prescribed.
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Proof. We denote by Y (s) the Laplace transform of the function y(x), which is

given as in (2.1.4). Then, by applying the Laplace transform operator L to each

side of (2.3.1), and using the formulas (2.1.6) and (2.2.3), the initial condition

(2.3.2), and the Laplace convolution theorem, we find that

sµY (s)− Cs−ν(1−µ) = λs−β−1 Hm,n+1
p+1,q

ws−α
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q

 + F (s),

which readily yields

Y (s) = Cs−µ−ν(1−µ)+λs−β−µ−1 Hm,n+1
p+1,q

ws−α
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q

+s−µ F (s).

(2.3.4)

Now, by taking the inverse Laplace transformation of each side of (2.3.4), we

get

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + λ

(
1

2πi

∫
L

Θ(s)ws Γ(β + αs)L−1
[
s−β−µ−αs−1

]
(x) ds

)

+

(
xµ−1

Γ(µ)
∗ f(x)

)

= C
xµ+ν(1−µ)−1

Γ(µ+ ν(1− µ))
+ λxβ+µ Hm,n+1

p+1,q+1

wxα
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q, (−β − µ, α)



+
1

Γ(µ)

∫ x

0

(x− t)µ−1 f(t)dt, (2.3.5)
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which completes our proof of (2.3.1) under the various already-stated parametric

constraints.

2.3.2 SPECIAL CASES

We give below some corollaries and consequences of (2.3.1). First of all, if we

reduce the H-function to the Mittag-Leffler function (see [56] and [56]) in the

integral operator on the right-hand side of (2.3.1), we get the result obtained by

Srivastava and Tomovski [56, p. 207, Theorem 8] ( with ν replaced by −ν).

Corollary 2.1. with the help of (2.2.4) if we reduce the H-function to Wright

function in the integral operator on the right hand side of (2.3.1) we get the

following fractional differential equation:

(
Dµ,ν

0+ y
)

(x) = λ
(
Ψw;p;α

0+;q,β 1
)

(x) + f(x), (2.3.6)

(
0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0}; p 5 q + 1

)
under the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + λxβ+µ p+1Ψq+1


(β, α), (aj, αj)1,p;

(bj, βj)1,q, (β + µ+ 1, α);

wxα



+
1

Γ(µ)

∫ x

0

(x− t)µ−1 f(t)dt, (2.3.7)

where C and λ are arbitrary constants and the function f is suitably prescribed.

By setting

αj = βk = 1 (j = 1, · · · , p; k = 1, · · · , q) and λ 7→ λ
Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

in Corollary 2.1, we immediately deduce Corollary 2.2 below.

32



2.3 FRACTIONAL DIFFERENTIAL EQUATIONS BASED UPON
HILFER DIFFERENTIAL

OPERATOR

Corollary 2.2. The following fractional differential equation:(
Dµ,ν

0+ y
)

(x) = λ
(
F
w;p;α
0+;q,β 1

)
(x) + f(x), (2.3.8)(

0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0}; p 5 q + 1
)

under the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) +
λΓ(β)

Γ(β + µ+ 1)
xβ+µ p+1Fq+1


β, a1, · · · , ap;

b1, · · · , bq, β + µ+ 1;

wxα



+
1

Γ(µ)

∫ x

0

(x− t)µ−1 f(t)dt, (2.3.9)

where C and λ are arbitrary constants and the function f is suitably prescribed.

Corollary 2.3. With the help of (2.2.9) we get the following special case of

(2.3.1): (
Dµ,ν

0+ y
)

(x) = λ
(
J
w;1,0;α
0+;0,2;β 1

)
(x) + f(x), (2.3.10)(

0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0};

under the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + xβ+µH1,1
1,3

wxα
∣∣∣∣∣∣ (1− β, α)

(0, 1), (−λ, σ), (−β − µ, α)



+
1

Γ(µ)

∫ x

0

(x− t)µ−1 f(t)dt, (2.3.11)

where C and λ are arbitrary constants and the function f is suitably prescribed.

Remark 3. In every situation in which the function f is prescribed appropri-

ately, each of the above results (Theorem 2.3.1, Corollary 2.1, Corollary 2.2 and

corollary 2.3) would provide us with an explicit solution of the initial-value prob-

lem for the corresponding fractional differential equation. Thus, in terms of the
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H-function of Inayat-Hussain [24] (see, for details, [5, p. 4707, eq. (1)]; see also

[65]), if we set

f(x) = xρ H
M,N

P,Q [wxκ] = xρ H
M,N

P,Q

wxκ
∣∣∣∣∣∣∣∣∣

(cj, γj;Aj)1,N , (cj, γj)N+1,P

(dj, δj)1,M , (dj, δj;Bj)M+1,Q



= xρ H
M,N

P,Q

wxκ
∣∣∣∣∣∣∣∣∣

(c1, γ1;A1), · · · , (cN , γN ;AN), (cN+1, γN+1), · · · , (cP , γP )

(d1, δ1), · · · , (dM , δM), (dM+1, δM+1;BM+1), · · · , (dQ, δQ;BQ)

 ,
(2.3.12)

we are led eventually to the following consequence of Theorem 2.3.1.

Corollary 2.4. The following fractional differential equation:

(
Dµ,ν

0+ y
)

(x) = λ
(
H
w;m,n;α
0+;p,q,β 1

)
(x)+xρ H

M,N

P,Q

wxκ
∣∣∣∣∣∣∣∣∣

(cj, γj;Aj)1,N , (cj, γj)N+1,P

(dj, δj)1,M , (dj, δj;Bj)M+1,Q


(2.3.13)(

κ > 0; 0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w,w ∈ C \ {0};

1 5 m 5 q; 0 5 n 5 p; 1 5M 5 Q; 0 5 N 5 P ;

<(β) + min
15j5m

{
<
(
αbj
βj

)}
> 0; <(ρ) + min

15j5M

{
<
(
κdj
δj

)}
> −1

)
.
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with the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + λxβ+µ Hm,n+1
p+1,q+1

wxα
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q, (−β − µ, α)



+ xµ+ρ H
M,N+1

P+1,Q+1

wxκ
∣∣∣∣∣∣∣∣∣

(−ρ, κ; 1), (cj, γj;Aj)1,N , (cj, γj)N+1,P

(dj, δj)1,M , (dj, δj;Bj)M+1,Q, (−µ− ρ, κ; 1)

 ,
(2.3.14)

where C and λ are arbitrary constants.

We now turn to one of the fundamentally important higher transcendental func-

tions of Analytic Number Theory, that is, the general Hurwitz-Lerch Zeta function

Φ(z, s, a) defined by (see, for example, [7, p. 27. eq. 1.11 (1)]; see also [58], [62,

p. 121 et seq.] and [63, p. 194 et seq.])

Φ(z, s, a) :=
∞∑
n=0

zn

(n+ a)s
(2.3.15)

(
a ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1

)
,

where Z−0 denotes the set of nonpostive integers. It contains, as its special cases,

not only the Riemann Zeta function ζ(s), the Hurwitz (or generalized) Zeta func-

tion ζ(s, a) (see [1] and [38]) and the Lerch Zeta function `s(ξ), but also such

other important functions of Analytic Number Theory as (for example) the Poly-

logarithmic function (or de Jonquière’s function) Lis(z) defined by

Lis(z) :=
∞∑
n=1

zn

ns
= zΦ(z, s, 1) (2.3.16)

(
s ∈ C when |z| < 1; <(s) > 1 when |z| = 1

)
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and the Lipschitz-Lerch Zeta function φ(ξ, a, s) (see [62, p. 122, eq 2.5 (11)])

given by

φ(ξ, s, a) :=
∞∑
n=0

e2nπiξ

(n+ a)s
= Φ

(
e2πiξ, s, a

)
(2.3.17)

(
a ∈ C \ Z−0 ; <(s) > 0 when ξ ∈ R \ Z; <(s) > 1 when ξ ∈ Z

)
,

which was first studied by Rudolf Lipschitz (1832-1903) and Matyáš Lerch (1860-

1922) in connection with Dirichlet’s famous theorem on primes in arithmetic pro-

gressions (see also [59, Section 5]). Recently, Srivastava et al. [67] introduced and

systematically studied various properties and results involving a natural multipa-

rameter extension and generalization of the Hurwitz-Lerch zeta function Φ(z, s, a)

defined by (2.3.15) (see also [61] for a further generalization). In order to recall

their definition (which was motivated essentially by several earlier works), each

of the following notations will be employed:

∇∗ :=

(
p∏
j=1

ρ
−ρj
j

)
·

(
q∏
j=1

σ
σj
j

)
(2.3.18)

and

∆ :=

q∑
j=1

σj −
p∑
j=1

ρj and ω := s+

q∑
j=1

µj −
p∑
j=1

λj +
p− q

2
(2.3.19)

The extended Hurwitz-Lerch zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a)

is then defined by [67, p. 503, eq. (6.2)] (see also [59], [60] and [64])

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq (z, s, a) :=

∞∑
n=0

p∏
j=1

(λj)nρj

n! ·
q∏
j=1

(µj)nσj

zn

(n+ a)s
(2.3.20)

(
p, q ∈ N0; λj ∈ C (j = 1, · · · , p); a, µj ∈ C \ Z−0 (j = 1, · · · , q);
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ρj, σk ∈ R+ (j = 1, · · · , p; k = 1, · · · , q);

∆ > −1 when s, z ∈ C;

∆ = −1 and s ∈ C when |z| < ∇∗;

∆ = −1 and <(ω) >
1

2
when |z| = ∇∗

)
,

where (λ)ν (λ, ν ∈ C) denotes the Pochhammer symbol (or the shifted factorial)

which is defined, in terms of the familiar Gamma function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=


1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the

above Γ-quotient exists. In terms of the extended Hurwitz-Lerch zeta function

defined by (2.3.20), if we set

f(x) = xρ Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(
wxκ, s, a

)
, (2.3.21)

Theorem 2.3.1 would readily yield the following corollary.

Corollary 2.5. The following fractional differential equation:

(
Dµ,ν

0+ y
)

(x) = λ
(
H
w;m,n;α
0+;p,q,β 1

)
(x) + xρ Φ

(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(
wxκ, s, a

)
, (2.3.22)

(
κ > 0; 0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0}; 1 5 m 5 q; 0 5 n 5 p;

<(β) + min
15j5m

{
<
(
αbj
βj

)}
> 0; <(ρ) > −1

)
.
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with the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + λxβ+µ Hm,n+1
p+1,q+1

wxα
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q, (−β − µ, α)



+
Γ(ρ+ 1)

Γ(µ+ ρ+ 1)
xµ+ρ Φ

(ρ1,··· ,ρp,κ,σ1,··· ,σq ,κ)
λ1,··· ,λp,ρ+1;µ1,··· ,µq ,µ+ρ+1

(
wxκ, s, a

)
, (2.3.23)

where C and λ are arbitrary constants.

By letting w → 0 in Corollary 2.2, the hypergeometric functions occurring in

(2.2.7) and (2.3.9) would obviously reduce to their first term 1. We are thus led

immediately to the following result.

Corollary 2.6. The following fractional differential equation:(
Dµ,ν

0+ y
)

(x) = λ
(
F

0;p
0+;q,β 1

)
(x) + f(x), (2.3.24)(

0 < µ < 1; 0 5 ν 5 1; <(β) > 0
)

under the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) +
λΓ(β)

Γ(β + µ+ 1)
xβ+µ +

1

Γ(µ)

∫ x

0

(x− t)µ−1 f(t)dt,

(2.3.25)

where C and λ are arbitrary constants and the function f is suitably prescribed.

Remark 5. In its further special case when we set

f(x) = xρ
(
<(ρ) > −1

)
,

Corollary 2.6 reduces to Corollary 2.7 below.

Corollary 2.7. The following fractional differential equation:(
Dµ,ν

0+ y
)

(x) = λ
(
F

0;p
0+;q,β 1

)
(x) + xρ, (2.3.26)
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(
0 < µ < 1; 0 5 ν 5 1; <(β) > 0; <(ρ) > −1

)
under the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) +
λΓ(β)

Γ(β + µ+ 1)
xβ+µ +

Γ(ρ+ 1)

Γ(µ+ ρ+ 1)
xµ+ρ, (2.3.27)

where C and λ are arbitrary constants and the function f is suitably prescribed.

2.3.3 SECOND FRACTIONAL DIFFERENTIAL

EQUATION

Theorem 2.3.2. The following fractional differential equation:

x
(
Dµ,ν

0+ y
)

(x) = λ
(
H
w;m,n;α
0+;p,q,β 1

)
(x), (2.3.28)(

0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0}; 1 5 m 5 q; 0 5 n 5 p;

<(β) + min
15j5m

{
<
(
αbj
βj

)}
> 0

)
.

with the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + C∗
xµ−1

Γ(µ)

+ λxβ+µ−1 Hm,n+2
p+2,q+2

wxα
∣∣∣∣∣∣∣∣∣

(1− β, α), (1− β, α), (aj, αj)1,p

(bj, βj)1,q, (−β, α), (1− β − µ, α)

 ,
(2.3.29)

where C, C∗ and λ are arbitrary constants.
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Proof. Since

dn

dsn
{L [f(x)] (s)} = (−1)n L [xn f(x)] (s), (2.3.30)

if we denote by Y (s) the Laplace transform of the function y(x) and apply the

Laplace transform operator L to each side of (2.3.28) and use the formulas (2.1.6)

and (2.2.3), the initial condition (2.3.2), and the Laplace convolution theorem,

we get

d

ds

{
sµY (s)− Cs−ν(1−µ)

}
= −λs−β−1 Hm,n+1

p+1,q

ws−α
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(bj, βj)1,q

 .
(2.3.31)

Upon integrating both sides, this last equation (2.3.31) yields

Y (s) = Cs−µ−ν(1−µ)+C∗s−µ+λs−β−µ Hm,n+2
p+2,q+1

ws−α
∣∣∣∣∣∣∣∣∣

(1− β, α), (1− β, α), (aj, αj)1,p

(bj, βj)1,q, (−β, α)

 ,
(2.3.32)

where C∗ is a constant of integration. The solution (2.3.29) asserted by (2.3.28)

would now follow when we take the inverse Laplace transform of each term in

(2.3.32).

2.3.4 SPECIAL CASES

Corollary 3.1.

with the help of (2.2.5) we get the following special case of theorem 2.3.2:

x
(
Dµ,ν

0+ y
)

(x) = λ
(
Ψw;p;α

0+;q,β 1
)

(x), (2.3.33)
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(
0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0}; p 5 q + 1

)
with the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + C∗
xµ−1

Γ(µ)

+ λxβ+µ−1 p+2Ψq+2


(1− β, α), (1− β, α), (aj, αj)1,p;

(bj, βj)1,q, (−β, α)(1− β − µ, α);

wxα


(2.3.34)

where C, C∗ and λ are arbitrary constants.

Corollary 3.2.

with the help of (2.2.7) we get the following special case of theorem 2.3.2:

x
(
Dµ,ν

0+ y
)

(x) = λ
(
F
w;p;α
0+;q,β 1

)
(x), (2.3.35)

(
0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0}; p 5 q + 1

)
with the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + C∗
xµ−1

Γ(µ)

+ λxβ+µ−1 p+2Fq+2


1− β, 1− β, a1, · · · , ap;

b1, · · · , bq,−β, 1− β − µ;

wxα

 (2.3.36)

where C, C∗ and λ are arbitrary constants.

Corollary 3.3.

with the help of (2.2.9) we get the following special case of (2.3.28):

x
(
Dµ,ν

0+ y
)

(x) = λ
(
J
w;1,0;α
0+;0,2;β 1

)
(x), (2.3.37)
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(
0 < µ < 1; 0 5 ν 5 1; <(β) > 0; w ∈ C \ {0};

with the initial condition (2.3.2) has its solution in the space L(0,∞) given by

y(x) = C
xµ+ν(1−µ)−1

Γ
(
µ+ ν(1− µ)

) + C∗
xµ−1

Γ(µ)

+ λxβ+µ−1H1,2
2,4

wxα
∣∣∣∣∣∣ (1− β, α), (1− β, α)

(0, 1), (−β, α), (−λ, σ), (1− β − µ, α)


(2.3.38)

where C, C∗ and λ are arbitrary constants.

Remark 4. By suitably specializing the H-function occurring in the definition

(2.2.1), we can derive a number of simpler results by appealing similarly to

Theorem 2.3.1 and 2.3.2.

2.4 NUMERICAL EXAMPLES AND

GRAPHICAL REPRESENTATIONS

Example 1. In Corollary 2.7, we set

β =
1

4
, µ =

1

2
, ν = 0 and ρ = 0.

Then the following fractional differential equation:(
D

1
2
,0

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + 1, (2.4.1)

together with the initial condition:(
I

1
2
0+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.5(x) =
C√
πx

+ λ
Γ
(
1
4

)
Γ
(
7
4

) x 3
4 + 2

√
x

π
, (2.4.2)
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where C and λ are arbitrary constants.

Example 2. In Corollary 2.7, we set

β =
1

4
, µ = 0.7, ν = 0 and ρ = 0.

Then the following fractional differential equation:(
D0.7,0

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + 1, (2.4.3)

together with the initial condition:(
I0.30+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.7(x) = C
x−0.3

Γ(0.7)
+ λ

Γ(1
4
)

Γ(1.95)
x0.95 +

x0.7

Γ(1.7)
, (2.4.4)

where C and λ are arbitrary constants.

Example 3. In Corollary 2.7, we set

β =
1

4
, µ = 0.9, ν = 0 and ρ = 0.

Then the following fractional differential equation:(
D0.9,0

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + 1, (2.4.5)

together with the initial condition:(
I0.10+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.9(x) = C
x−0.1

Γ(0.9)
+ λ

Γ(1
4
)

Γ(2.15)
x1.15 +

x0.9

Γ(1.9)
, (2.4.6)
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where C and λ are arbitrary constants.

Example 4. In Corollary 2.7, we set

β =
1

4
, µ = 0.95, ν = 0 and ρ = 0.

Then the following fractional differential equation:(
D0.95,0

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + 1, (2.4.7)

together with the initial condition:(
I0.050+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.95(x) = C
x−0.05

Γ(0.95)
+ λ

Γ(1
4
)

Γ(2.2)
x1.2 +

x0.95

Γ(1.95)
, (2.4.8)

where C and λ are arbitrary constants.

Example 5. In Corollary 2.7, we set

β =
1

4
, µ→ 1−, ν = 0 and ρ = 0.

Then the following fractional differential equation:(
D1,0

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + 1, (2.4.9)

together with the initial condition:(
I00+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y1(x) = C +
16

5
λ x

5
4 + x, (2.4.10)

44



2.4 NUMERICAL EXAMPLES AND
GRAPHICAL REPRESENTATIONS

where C and λ are arbitrary constants.

Example 6. In Corollary 2.7, we set

β =
1

4
, µ =

1

2
, ν =

1

2
and ρ = 2.

Then the following fractional differential equation:(
D

1
2
, 1
2

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + x2, (2.4.11)

together with the initial condition:(
I

1
4
0+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.5(x) = C
x−0.25

Γ(0.75)
+ λ

Γ(1
4
)

Γ(1.75)
x0.75 +

2x2.5

Γ(3.5)
, (2.4.12)

where C and λ are arbitrary constants.

Example 7. In Corollary 2.7, we set

β =
1

4
, µ =

1

2
, ν = 0.7 and ρ = 2.

Then the following fractional differential equation:(
D

1
2
,0.7

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + x2, (2.4.13)

together with the initial condition:(
I0.150+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.7(x) = C
x−0.15

Γ(0.85)
+ λ

Γ(1
4
)

Γ(1.75)
x0.75 +

2x2.5

Γ(3.5)
, (2.4.14)

45



2. ON GENERAL FRACTIONAL DIFFERENTIAL EQUATIONS
ASSOCIATED WITH AN INTEGRAL OPERATOR HAVING THE
H-FUNCTION IN THE KERNEL

where C and λ are arbitrary constants.

Example 8. In Corollary 2.7, we set

β =
1

4
, µ =

1

2
, ν = 0.9 and ρ = 2.

Then the following fractional differential equation:(
D

1
2
,0.9

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + x2, (2.4.15)

together with the initial condition:(
I0.050+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.9(x) = C
x−0.05

Γ(0.95)
+ λ

Γ(1
4
)

Γ(1.75)
x0.75 +

2x2.5

Γ(3.5)
, (2.4.16)

where C and λ are arbitrary constants.

Example 9. In Corollary 2.7, we set

β =
1

4
, µ =

1

2
, ν = 0.95 and ρ = 2.

Then the following fractional differential equation:(
D

1
2
,0.95

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + x2, (2.4.17)

together with the initial condition:(
I0.0250+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y0.95(x) = C
x−0.025

Γ(0.975)
+ λ

Γ(1
4
)

Γ(1.75)
x0.75 +

2x2.5

Γ(3.5)
, (2.4.18)
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where C and λ are arbitrary constants.

Example 10. In Corollary 2.7, we set

β =
1

4
, µ =

1

2
, ν = 1 and ρ = 2.

Then the following fractional differential equation:

(
D

1
2
,1

0+ y
)

(x) = λ
(
F

0;p

0+;q, 1
4

1
)

(x) + x2, (2.4.19)

together with the initial condition:

(
I00+ y

)
(0+) = C,

has its solution in the space L(0,∞) given by

y1(x) = C + λ
Γ(1

4
)

Γ(1.75)
x0.75 +

2x2.5

Γ(3.5)
, (2.4.20)

where C and λ are arbitrary constants.

The following graphs (see Figure 1 and Figure 2) are obtained by using

MATLAB. Figure 1 exhibits a comparison between the behaviors of the solutions

yµ(x) given by (2.4.2), (2.4.4), (2.4.6)and (2.4.10) for different values of the pa-

rameter µ. On the other hand, Figure 2 illustrates a comparison between the

behaviors of the solutions yν(x) given by (2.4.12), (2.4.14), (2.4.16) and (2.4.20)

for different values of the parameter ν.
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Figure 1. Solutions yµ(x) for different values of µ when C = 66.4

and λ = 1

[Here y1(x) is the uppermost graph and yµ(x) is approaching y1(x)

as µ→ 1]
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Figure 2. Solutions yν(x) for different values of ν when C = 88.4

and λ = 1

[Here y1(x) is the lowermost graph and yν(x) is approaching y1(x)

as ν → 1]

Remark 6: It is found that the graphs (see Figure 1 and Figure 2) given

here are quite comparable to the corresponding physical phenomena involving

ordinary calculus, especially when the parameters ν > 0 and µ > 0 get closer and

closer to an integer.
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3

A GENERAL FRACTIONAL

KINETIC DIFFERINTEGRAL

EQUATION ASSOCIATED

WITH AN INTEGRAL

OPERATOR S
M ;α
N ;β

The main findings of this chapter have been accepted for publication as given be-

low:

A General Fractional kinetic Differintegral Equation Associated with

an Integral Operator with the general class of polynomial in the Kernel,

Proceedings of the Jangjeon Mathematical Society.





In this chapter, we solve a general fractional Kinetic differintegral equation

involving the fractional operator Dµ,ν
0+ and an integral operator whose kernel

involves the general class of polynomials SMN . We make use of Laplace transform

method to solve the fractional kinetic differintegral equation.

On account of general nature of SMN occuring in the fractional kinetic equation,

a number of results involving simpler polynomials also follow as special cases

of our main result. We give here six special cases of the main equation. In

the first special case we give appropriate value to the function f(t) occuring

in the fractional kinetic differintegral equation. Second, third, fourth, fifth and

sixth special cases involve Laguerre polynomial, Bessel polynomial, Gould and

Hopper polynomial, Brafman polynomial and Cesaro polynomial in the kernel

of the integral operator occuring in the fractional kinetic differintegral equation

respectively.Our main findings generalizes the result obtained by Tomovski et

al.[56].
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3.1 INTRODUCTION AND DEFINITIONS

Fractional Kinetic equations have gained popularity during the past decade mainly

due to the discovery of their relation with the CTRW-theory in [21]. These equa-

tions are investigated in order to determine and interpret certain physical

phenomena which govern such processes as diffusion in porous media, reaction

and relaxation in complex systems, anomalous diffusion, and so on [22, 23].

AN INTEGRAL OPERATOR INVOLVING SMN

POLYNOMIAL IN ITS KERNEL

In our present investigation we use the following integral operator with SMN

polynomial[16] in its kernel

(
S
M ;α
N ;β ϕ

)
(x) :=

∫ x

0

(x− t)β−1 SMN [(x− t)α]ϕ(t)dt (3.1.1)

By using the Convolution Theorem for the Laplace Transform, we find from the

definition (3.1.1) that

L
[(

S
M ;α
N ;β ϕ

)
(x)
]

(s) = s−β
[N/M ]∑
r=0

(−N)Mr

r!
AN,rΓ(β + αr)s−αrΦ(s) (3.1.2)

where, for convenience,

Φ(s) := L[ϕ(x)](s)
(
<(s) > 0

)
.
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3.2 A FRACTIONAL KINETIC

DIFFERINTEGRAL EQUATION

INVOLVING S
M ;α
N ;β

In a recent investigation by Saxena and Kalla[44], the following fractional kinetic

equation was considered:

N(t)−N0f(t) = −cν(Iν0+N)(t) (<(ν) > 0), (3.2.1)

where N(t) denotes the number density of a given species at time t, N0 = N(0)

is the number density of that species at time t = 0, c is a constant and (for con-

venience) fεL(0,∞), it being tacitly assumed that f(0) = 1 in order to satisfy

the initial condition N(0) = N0.

We consider the following general fractional kinetic defferintegral equation

associated with SMN polynomial:

a
(
Dµ,ν

0+ N
)

(t)−N0f(t) = b
(
S
M ;α
N,β N

)
(t) (3.2.2)

(
0 < µ < 1; 0 5 ν 5 1; <(β) > 0

)

with the initial condition:

(
I
(1−ν)(1−µ)
0+ N

)
(0+) = c, (3.2.3)

where a, b and c are constants and f ∈ L(0,∞).
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Solution of (3.2.2) is given by:

N(t) = N0

∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−l−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− l

) dlf(t)

dtl

+ ac

∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−ν(1−µ)−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− ν(1− µ)

)
(3.2.4)

provided f (i)(0) = 0 for 0 ≤ i ≤ l − 1, l being a positive integer

where

∆r =
1

a

∑
k1+k2+....+k[N/M ]=r

(
r

k1k2...k[N/M ]

) ∏
1≤p≤[N/M ]

(λps
−[N/M ]α−β)kp (3.2.5)

and

λp = b
(−N)Mp

p!
AN,pΓ(β + αp) (3.2.6)

Proof. Taking Laplace Transform on both sides of (3.2.2), we get

a
[
sµN(s)− Cs−ν(1−µ)

]
−N0F (s) = s−β

[N/M ]∑
n=0

(−N)MnAN,n
n!

Γ(β + αn)s−αnN(s)

(3.2.7)

where N(s) is the Laplace transform of N(t)

Rearranging the terms in (3.2.7) we have

N(s) = N0F (s) + acs−ν(1−µ)

asµ − [N/M ]∑
n=0

λns
−αn−β

−1 (3.2.8)

where λn is given by (3.2.6).
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consider,asµ − [N/M ]∑
n=0

λns
−αn−β

−1 = as−µ

1−
[N/M ]∑
n=0

λns
−αn−β

−1 (3.2.9)

Using the following multinomial formula for any positive integer m and any non-

negative integer n, the multinomial formula is as follows:

(x1 + x2 + ...+ xm)n =
∑

k1+k2+...+km=n

(
n

k1, k2, ..., km

) ∏
1≤t≤m

xktt (3.2.10)

where (
n

k1, k2, ..., km

)
=

n!

k1!k2!...km!

is a multinomial coefficient.

The RHS of (3.2.9) takes the following form

as−µ

1−
[N/M ]∑
n=0

λns
−αn−β

−1 =
s−µ

a

∞∑
r=0

[N/M ]∑
n=0

λns
−αn−β−µ

r

=
∞∑
r=0

∆rs

((
[N/M ]∑
p=1

−[N/M ]α−β
)
kp−µ

)
(3.2.11)

provided

∣∣∣∣∣[N/M ]∑
n=0

λns
−αn−β

∣∣∣∣∣ < 1

where ∆r is given by (3.2.5)

Substituting (3.2.11) in (3.2.8) we get

N(s) = N0

∞∑
r=0

∆rs

((
[N/M ]∑
p=1

−[N/M ]α−β
)
kp−µ−l

)
slF (s)+ac

∞∑
r=0

∆rs

((
[N/M ]∑
p=1

−[N/M ]α−β
)
kp−µ−ν(1−µ)

)

(3.2.12)

Taking Laplace inverse of (3.2.12) we get the required result (3.2.4).
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3.2.1 SPECIAL CASES

SPECIAL CASE 1

If we put f(t) = tρ−1 in (3.2.2) we get the following equation:

a
(
Dµ,ν

0+ N
)

(t)−N0t
ρ−1 = b

(
S
M ;α
N,β N

)
(t) (3.2.13)

with the initial condition: (
I
(1−ν)(1−µ)
0+ N

)
(0+) = c, (3.2.14)

where a, b and c are constants.

whose solution is given by:

N(t) = N0

∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−l−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− l

) Γ(ρ)

Γ(ρ− l)
tρ−l−1

+ ac
∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−ν(1−µ)−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − ν(1− µ)

) (3.2.15)

where ∆r is given by (3.2.5) and λp is given by (3.2.6)

SPECIAL CASE 2

If we reduce SMN polynomial to Laguerre polynomial[4] we get the following equa-

tion:

a
(
Dµ,ν

0+ N
)

(t)−N0f(t) = b
(
L

1;α
N,β N

)
(t) (3.2.16)

with the initial condition: (
I
(1−ν)(1−µ)
0+ N

)
(0+) = c, (3.2.17)
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where a, b and c are constants.

whose solution is given by:

N(t) = N0

∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−l−1
)

Γ
(∑[N/M ]

p=1 (−[N/M ]α− β)kp − µ− l
) dl

dtl)
f(t)

+ ac
∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−ν(1−µ)−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − ν(1− µ)

) (3.2.18)

where ∆r is given by (3.2.5)

and

λn = b
(−1)n

n!

(
N

k

)
Γ(β + αn) (3.2.19)

SPECIAL CASE 3

If we reduce SMN polynomial to Bessel polynomial[4] we get the following equation:

a
(
Dµ,ν

0+ N
)

(t)−N0f(t) = b
(
J
1;α
N,β N

)
(t) (3.2.20)

with the initial condition:

(
I
(1−ν)(1−µ)
0+ N

)
(0+) = c, (3.2.21)
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where a, b and c are constants.

whose solution is given by:

N(t) = N0

∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−l−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− l

) dl

dtl)
f(t)

+ ac
∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−ν(1−µ)−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − ν(1− µ)

) (3.2.22)

where ∆r is given by (3.2.5)

and

λn = b
N∑
n=0

(N + n)!

(N − n)!n!2n
Γ(β + αn) (3.2.23)

SPECIAL CASE 4

If we reduce SMN polynomial to Gould and Hopper polynomial[4] we get the fol-

lowing equation:

a
(
Dµ,ν

0+ N
)

(t)−N0f(t) = b
(
G
M ;α
N,β N

)
(t) (3.2.24)

with the initial condition:

(
I
(1−ν)(1−µ)
0+ N

)
(0+) = c, (3.2.25)
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where a, b and c are constants.

whose solution is given by:

N(t) = N0

∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−l−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− l

) dlf(t)

dtl

+ ac
∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−ν(1−µ)−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− ν(1− µ)

)
(3.2.26)

provided f (i)(0) = 0 for 0 ≤ i ≤ l − 1, l being a positive integer

where ∆r is given by (3.2.5)

and

λn = b
(−N)Mn

n!
Γ(β + αn) (3.2.27)

SPECIAL CASE 5

If we reduce SMN polynomial to Brafman polynomial[4] we get the following equa-

tion:

a
(
Dµ,ν

0+ N
)

(t)−N0f(t) = b
(
B
M ;α
N,β N

)
(t) (3.2.28)

with the initial condition:

(
I
(1−ν)(1−µ)
0+ N

)
(0+) = c, (3.2.29)
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where a, b and c are constants.

whose solution is given by:

N(t) = N0

∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−l−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− l

) dlf(t)

dtl

+ ac
∞∑
r=0

∆r
t

(
[N/M ]∑
p=1

(−[N/M ]α−β)kp−µ−ν(1−µ)−1
)

Γ

(
[N/M ]∑
p=1

(−[N/M ]α− β)kp − µ− ν(1− µ)

)
(3.2.30)

provided f (i)(0) = 0 for 0 ≤ i ≤ l − 1, l being a positive integer

where ∆r is given by (3.2.5)

and

λn = b
(−N)Mn

n!

(α1)n...(αp)n
(β1)n...(βq)n

Γ(β + αn) (3.2.31)

SPECIAL CASE 6

If we reduce SMN polynomial to Cesaro polynomial[4] we get the following equa-

tion:

a
(
Dµ,ν

0+ N
)

(t)−N0f(t) = b
(
C
M ;α
N,β N

)
(t) (3.2.32)

with the initial condition:

(
I
(1−ν)(1−µ)
0+ N

)
(0+) = c, (3.2.33)
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where a, b and c are constants.

whose solution is given by:

N(t) = N0

∞∑
r=0

∆r
t

(
N∑
p=1

(−Nα−β)kp−µ−l−1
)

Γ

(
N∑
p=1

(−Nα− β)kp − µ− l
) dlf(t)

dtl

+ ac

∞∑
r=0

∆r
t

(
N∑
p=1

(−Nα−β)kp−µ−ν(1−µ)−1
)

Γ

(
N∑
p=1

(−Nα− β)kp − µ− ν(1− µ)

) (3.2.34)

provided f (i)(0) = 0 for 0 ≤ i ≤ l − 1, l being a positive integer

where ∆r is given by (3.2.5)

and

λn = b
(−N)n
n!

(S + 1)Nn!

N !(−S −N)n
Γ(β + αn) (3.2.35)

Finally, it may be noted that if we reduce SMN polynomial involved in the R.H.S of

(3.2.2) to unity, we get the results obtained by Tomovski, Hilfer and Srivastava[56,

p.813].
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4

A STUDY OF FRACTIONAL

DIFFERENTIAL INTEGRAL

OPERATOR

The main findings of this chapter have been published as detailed below:

A Study of Fractional Differential Integral operator,Proc.of the 12th an-

nual conf. SSFA, 12 (2013), 73-77.





4.1 INTRODUCTION AND DEFINITIONS

In this chapter we introduce and study a fractional differential integral op-

erator. First, we define the operator of our study and then obtain image of a

product of H-function and H− function under this operator. Fractional integrals

involving a number of simpler functions follow as its special cases. we record here

four special cases.

Next we derive two new and interesting composition formulae for the fractional

integral operator Iγ,µa+ and the integral operator Hw;m,n;α
a+;p,q;β. Then we give the com-

position formulae for the fractional integral operators Iµa+, D
µ
a+ and integral oper-

ator H
w;m,n;α
a+;p,q;β. Further, we find that the results obtained by Srivastava et al.[56]

follow as particular cases of our composition formulae.

4.1 INTRODUCTION AND DEFINITIONS

The main aim of the present chapter is to introduce and study the following

generalized form of fractional integral operator studied earlier by Hilfer[22].

(Dγ,µ,ν
p+ f)(x) =

(
I
γ,ν(1−µ)
p+

(
d

dx

)m
(I
γ,(1−ν)(1−µ)
p+ f)

)
(x) (4.1.1)

with 0 < µ < 1 and 0 ≤ ν ≤ 1

where

(Iγ,µa+ f)(x) =
(x− a)−µ−γ

Γ(µ)

∫ x

a

tγf(t)

(x− t)1−µ
dt (<(γ) > −1, <(µ) > 0) (4.1.2)

We shall also assume throughout this chapter that A denotes the class of functions

f(t) for which ∫
ω

|f(t)|dt <∞ (4.1.3)

63



4. A STUDY OF FRACTIONAL DIFFERENTIAL INTEGRAL
OPERATOR

for every bounded region ω excluding the origin

and

f(t) =



0{|t|ξ} ,max{|t|} → 0

0{|t|w1e−w2|t|} ,min{|t|} → ∞

(4.1.4)

Such a class of functions will be represented symbollically as f(t) ∈ A.

Form = 1 and γ = 0, (4.1.1) reduces to the Hilfer fractional derivative operator[22,

p.43, see 11]

4.2 IMAGE OF A PRODUCT OF H-FUNCTION

AND H-FUNCTION

Dγ,µ,ν
p+

[
xr(x− p)δ−1HM1,N1

P1,Q1
[x−λ(x− p)η]HM2,N2

P2,Q2
[(x− p)σ]

]
=

M2∑
h=1

∞∑
t=0

p2γ+r

Γ(−γ)
θ(st,h)

(x− p)δ+σst,h−2γ−m−1

H0,4:M1,N1;1,0;1,1
4,3:P1,Q1+1;0,1;1,1


(x−p)η
pλ

(x−p)
p

(x−p)
p

∣∣∣∣∣∣∣∣∣∣∣∣

A : (aj, αj)1,P1 , −; −; (1 + γ, 1)

B : (bj, βj)1,Q1 , (1 + r + γ;λ); (0, 1); (0, 1)


(4.2.1)

where,

A = (1− δ − σst,h + γ +m; η, 1, 1), (1− δ − σst,h + γ; η, 1, 0),

(1− δ − σst,h; η, 1, 0), (1 + γ + r;λ, 1, 0)
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B = (1− δ − σst,h + γ +m− ν(1− µ); η, 1, 1),

(1− δ − σst,h + γ +m; η, 1, 0), (1− δ − σst,h − (1− ν)(1− µ); η, 1, 0)

provided the following conditions are satisfied

<
(

(1− ν)(1− µ)− 1

)
> 0,

<
(
δ + η min

1≤j≤M1

[(b
(i)
j /β

(i)
j )] + σ min

1≤j≤M2

[(fj/Fj)]− 1

)
> 0 and

arg(x−p
p

) < π

Proof. To prove (4.2.1), first of all we express I
γ,(1−ν)(1−µ)
a+ involved in the right

hand side of (4.1.1) in the integral form with help of (4.1.2). Then, we express

H-function and H function in contour form and series form respectively with help

of (1.1.1) and (1.1.34) respectively. Next, we change the order of integration and

summation therein (which is permissible under the conditions stated), we arrive

at the following expression (say ∆1)

∆1 =
(x− p)−(1−ν)(1−µ)−γ

Γ[(1− ν)(1− µ)]

∞∑
t=0

M1∑
h=1

θ(St,h)
1

2πω1

∫
L1

θ(ξ1)

∫ x

p

(x− t)(1−ν)(1−µ)−1tγ+r−λξ1(t− p)δ−1+ηξ1+σst,hdtdξ1 (4.2.2)

Now, substituting (t− p) = U in the above equation and then evaluate the inte-

gral using [13, p.299]. Next, expressing 2F1 thus obtained in its contour form we

arrive at the following equation (say ∆2)
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4. A STUDY OF FRACTIONAL DIFFERENTIAL INTEGRAL
OPERATOR

∆2 =
∞∑
t=0

M1∑
h=1

θ(St,h)
1

2πω1

∫
L1

θ(ξ1)p
r−λξ1+γ−ξ2

1

2πω2

∫
L2

Γ(−ξ2)Γ(−r + λξ1 − γ + ξ2)

Γ[(1− ν)(1− µ) + δ + ηξ1 + σst,h + ξ2]

Γ(δ + ηξ1 + σst,h + ξ2)

Γ[−r + λξ1 − γ]
(x− p)δ+ηξ1+σst,h+ξ2−γ−1dξ2dξ1 (4.2.3)

Next, we Take the mth derivative with respect to x of the above equation (4.2.3),

we get the following:

∆3 =
∞∑
t=0

M1∑
h=1

θ(St,h)
1

2πω1

∫
L1

θ(ξ1)p
r−λξ1+γ−ξ2

1

2πω2

∫
L2

Γ(−ξ2)Γ(−r + λξ1 − γ + ξ2)

Γ[(1− ν)(1− µ) + δ + ηξ1 + σst,h + ξ2 −m]

Γ(δ + ηξ1 + σst,h + ξ2)

Γ[−r + λξ1 − γ]
(x− p)(1−ν)(1−µ)+δ+ηξ1+σst,h+ξ2−m−1dξ2dξ1 (4.2.4)

Applying I
γ,ν(1−µ)
p+ operator to the above expression, with the help of (4.1.2) and

interchange the order of contour integration and t-integral using[13, p.299]. Sub-
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stitute (t− p) = U and evaluating the integral we get the following.

∆4 =
∞∑
t=0

M1∑
h=1

θ(St,h)
1

2πω1

∫
L1

θ(ξ1)p
r−λξ1+γ−ξ2

1

2πω2

∫
L2

Γ(−ξ2)Γ(−r + λξ1 − γ + ξ2)

Γ[(1− µ) + δ + ηξ1 + σsst,h + ξ2 −m]

Γ(δ + ηξ1 + σst,h + ξ2)

Γ[−r + λξ1 − γ]
(x− p)(1−µ)+δ+ηξ1+σst,h+ξ2−m−1

2F1 [−γ, (1− ν)(1− µ) + δ + ηξ1 + σst,h + ξ2 −m;

1− µ+ δ + ηξ1 + σst,h + ξ2 −m;
−(x− p)

p

]
dξ2dξ1 (4.2.5)

Thereafter, express 2F1 in its contour form. Finally, reinterpreting the result thus

obtained in terms of multivariable H-function [49, P. 251-252], we easily arrive at

the required result.

4.2.1 SPECIAL CASES

FIRST IMAGE

If we let r=0, λ = 0, and reduce H function to unity[24], in the main result we

get the following:
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Dγ,µ,ν
p+

[
(x− p)δ−1HM,N

P,Q [(x− p)η]
]

=
p2γ

Γ(−γ)Γ(−γ)
(x− p)δ−2γ−m−1H0,3:M,N ;1,1;1,1

3,3:P,Q+1;1,1;1,1


(x− p)η

(x−p)
p

(x−p)
p

∣∣∣∣∣∣∣∣∣∣∣∣

C : (aj, αj)1,P , −; (1 + γ, 1); (1 + γ, 1)

D : (bj, βj)1,Q, (1− δ, η); (0, 1); (0, 1)


(4.2.6)

where,

C = (1− δ + γ +m; η, 1, 1), (1− δ + γ; η, 1, 0), (1− δ; η, 1, 0)

D = (1−δ+γ+m−ν(1−µ); η, 1, 1), (1−δ+γ+m; η, 1, 0), (1−δ−(1−ν)(1−µ); η, 1, 0)

SECOND IMAGE

if we let r =0, and reduce H function to unity [49], in the main result we get the

following:

Dλ,µ,ν
p+

[
(x− p)δ−1HM,N

P,Q [(x− p)η]
]

=
M∑
h=1

∞∑
t=0

θ(st,h)
p2γ

Γ(−γ)Γ(−γ)
(x− p)δ+ηst,h−2γ−m−1

H0,1:1,3;1,1
1,1:3,3;1,1

 (x−p)
p

(x−p)
p

∣∣∣∣∣∣ A
∗ : C∗, (1 + γ, 1); (1 + γ, 1)

B∗ : D∗, (0, 1); (0, 1)


(4.2.7)

where

A∗ = (1− δ − ηst,h + γ +m; 1, 1)
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B∗ = (1− ν(1− µ)− δ − ηst,h + γ +m; 1, 1)

C∗ = (1− δ − ηst,h + γ, 1), (1− δ − ηst,h, 1)

D∗ = (1− δ − ηst,h + γ +m, 1), (1− δ − ηst,h − (1− ν)(1− µ), 1)

Following two interesting results of Polylogarithm function[4, p.195-196, eq.C.23]

were found

THIRD IMAGE

Further in second image (4.2.7), if we reduce H− function to polylogarithm func-

tion F (x− p, α)[4, p.195-196, eq.C.23] we get the following:

Dγ,µ,ν
p+ [(x− p)δ−1F (x− p, α)] =

∞∑
r=0

(x− p)δ+r−2γ−m−1 p2γ

(r + 1)α
1

Γ(−γ)(−γ)

H0,1:1,3;1,1
1,1:3,3;1,1

 (x−p)
p

(x−p)
p

∣∣∣∣∣∣ (1− δ − r + γ +m; 1, 1) : C∗∗; (1 + γ, 1)

(1− δ − r + γ +m− ν(1− µ); 1, 1) : D∗∗; (0, 1)


(4.2.8)

where

C∗∗ = (1− δ − r + γ, 1), (1− δ − r, 1), (1 + γ, 1)

D∗∗ = (1− δ − r + γ +m, 1), (1− (1− ν)(1− µ)− δ − r, 1), (0, 1)
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FOURTH IMAGE

when γ = 0 in the above result (4.2.8) we get the following:

Dµ,ν
p+ [(x− p)δ−1F (x− p, α)] =(x− p)δ−µH1,2

1,3 [−(x− p)∣∣∣∣∣∣ (0, 1;α + 1), (−λ, 1; 1)

(0, 1), (−1, 1;α), (µ− λ, 1; 1)


(4.2.9)

4.3 COMPOSITION FORMULAE

COMPOSITION FORMULA FOR THE OPERATORS

H
w;m,n;α
a+;p,q;β AND Iγ,µa+

(
H
w;m,n;α
a+;p,q;βI

γ,µ
a+ φ

)
(x) =

∫ x

a

uγ(x− u)µ+β−1
(x− a)−µ−γ

Γ(µ+ γ)

H0,1:m,n;1,1
1,1:p,q;1,1

 w(x− u)α

−x−u
x−a

∣∣∣∣∣∣∣∣∣
(1− β;α, 1) : (aj, αj)1,p; (1− µ− γ, 1)

(1− µ− β;α, 1) : (bj, βj)1,q; (0, 1)


φ(u)du (4.3.1)

where H
w;m,n;α
a+;p,q;β is given by (2.2.1) and Iγ,µa+ is given by (4.1.2)

provided
∣∣x−u
x−a

∣∣ < 1,<(γ) > −1

Proof. To prove (4.3.1), we first express both H
w;m,n;α
a+;p,q;β and Iγ,µa+ involved in its left

hand side, in the integral form with the help of (2.2.1) and (4.1.2) respectively,

we have(
H
w;m,n;α
a+;p,q;βI

γ,µ
a+ φ

)
(x) =

∫ x

a

(x−t)β−1 Hm,n
p,q [w(x−t)α]

(t− a)−µ−γ

Γ(µ)

∫ t

a

uγ

(t− u)1−µ
φ(u)dudt

(4.3.2)
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Now, we interchange the order of u−integral and t−integral, which is permis-

sible under the conditions stated, we easily arrive at the following after a little

simplification: (
H
w;m,n;α
a+;p,q;βI

γ,µ
a+ φ

)
(x) =

∫ x

a

uγ

Γ(µ)
∆φ(u)du (4.3.3)

where

∆ =

∫ x

u

(t− u)µ−1(x− t)β−1(t− a)−µ−γHm,n
p,q [w(x− t)α]dt (4.3.4)

To evaluate ∆, we first replace the H− function occuring in it in terms of its

Mellin-Barnes contour integral with the help of (1.1.1) and interchange the order

of contour integral and t−integral, which is permissible under the given condi-

tions.

The above equation (4.3.4) now takes the following form after a little simplifica-

tion:

∆ =
1

2πi

∫
L

ϕ(ξ)wξ
∫ x

u

(t− u)µ−1(x− t)β+αξ−1(t− a)−µ−γdtdξ (4.3.5)

On setting z = x−t
x−u in the t−integral involved in (4.3.5) and evaluating the

resulting z−integral with the help of the known result [13, p.286, eq.(3.197(3))],

we arrive at the following result after a little simplication:

∆ =
1

2πi

∫
L

ϕ(ξ)wξ(x− u)µ+β+αξ−1(x− a)−µ−γB(µ, β + αξ)

2F1

[
µ+ γ, β + αξ;µ+ β + αξ;−x− u

x− a

]
dξ (4.3.6)

Now, writing 2F1 in terms of its contour and reinterpreting the above equa-

tion(4.3.6) in terms of the H−function of two variables and on substituting the

value of ∆ thus obtained, in (4.3.3), we easily arrive at the desired result (4.3.1)

after a little simplification.
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COMPOSITION FORMULA FOR THE OPERATORS

Iγ,µa+ AND H
w;m,n;α
a+;p,q;β

(
Iγ,µa+ H

w;m,n;α
a+;p,q;βφ

)
(x) =

xγ(x− a)−µ−γ

Γ(µ)Γ(−γ)

∫ x

a

xγ(x− u)µ+β−1

H0,0:m,n+1;1,2
0,1:p+1,q;2,1

 w(x− u)α

−x−u
x

∣∣∣∣∣∣∣∣∣
− : (1− β, α), (aj, αj)1,p; (1 + γ, 1), (1− µ, 1)

(1− µ− β;α, 1) : (bj, βj)1,q; (0, 1)


φ(u)du (4.3.7)

where H
w;m,n;α
a+;p,q;β is given by (2.2.1) and Iγ,µa+ is given by (4.1.2)

provided
∣∣x−u
x

∣∣ < 1

Proof. To prove (4.3.7), we first express both H
w;m,n;α
a+;p,q;β and Iγ,µa+ involved in its left

hand side, in the integral form with the help of (2.2.1) and (4.1.2) respectively,

we have

(
Iγ,µa+ H

w;m,n;α
a+;p,q;βφ

)
(x) =

(x− a)−µ−γ

Γ(µ)

∫ x

a

tγ(x−t)µ−1
∫ t

a

(t−u)β−1Hm,n
p,q [w(x−t)α]φ(u)dudt

(4.3.8)

Now, we interchange the order of u−integral and t−integral, which is permis-

sible under the conditions stated, we easily arrive at the following after a little

simplification:

(
Iγ,µa+ H

w;m,n;α
a+;p,q;βφ

)
(x) =

(x− a)−µ−γ

Γ(µ)

∫ x

a

∆φ(u)du (4.3.9)

where

∆ =

∫ x

u

tγ(t− u)β−1(x− t)µ−1Hm,n
p,q [w(x− t)α]dt (4.3.10)

To evaluate ∆, we first replace the H− function occuring in it in terms of its

Mellin-Barnes contour integral with the help of (1.1.1) and interchange the order
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of contour integral and t−integral, which is permissible under the given condi-

tions.

The above equation (4.3.10) now takes the following form after a little simplifi-

cation:

∆ =
1

2πi

∫
L

ϕ(ξ)wξ
∫ x

u

tγ(t− u)β+αξ−1(x− t)µ−1dtdξ (4.3.11)

On setting z = x−t
x−u in the t−integral involved in (4.3.11) and evaluating the

resulting z−integral with the help of the known result [13, p.286, eq.3.197(3)], we

arrive at the following result after a little simplication:

∆ =
1

2πi

∫
L

ϕ(ξ)wξxγ(x− u)µ+β+αξ−1B(µ, β + αξ)

2F1

[
−γ, µ;µ+ β + αξ;−x− u

x

]
dξ

(4.3.12)

Now, expressing 2F1 in its contour form and reinterpreting the above equa-

tion(4.3.12) in terms of the H−function of two variables and on substituting

the value of ∆ thus obtained, in (4.3.9), we easily arrive at the desired result

(4.3.7) after a little simplification.

COMPOSITION FORMULA FOR THE OPERATORS

H
w;m,n;α
a+;p,q;β AND Iµa+

For m = 1 and γ = 0 in (4.1.2),under the various parameteric constraints listed

already with the definition (2.2.1), the following composition relationship is ob-

tained as special cases of (4.3.1) and (4.3.7):(
H
w;m,n;α
a+;p,q;βI

µ
a+φ
)

(x) =
(
H
w;m,n+1;α
a+;p+1,q+1;β+µφ

)
(x) (4.3.13)

Proof. To prove (4.3.13), we first express both H
w;m,n;α
a+;p,q;β and Iµa+ involved in its left

hand side, in the integral form with the help of (2.2.1) and (2.1.1) respectively,
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we have(
H
w;m,n;α
a+;p,q;βI

µ
a+φ
)

(x) =

∫ x

a

(x− t)β−1Hm,n
p,q [w(x− t)α]

1

Γ(µ)

∫ t

a

(t− u)µ−1φ(u)dudt

(4.3.14)

Next, we change the order of u−integral and t−integral, which is permissible

under the conditions stated, we easily arrive at the following after a little simpli-

fication: (
H
w;m,n;α
a+;p,q;βI

µ
a+φ
)

(x) =
1

Γ(µ)

∫ x

a

∆φ(u)du (4.3.15)

where

∆ =

∫ x

u

(t− u)µ−1(x− t)β−1Hm,n
p,q [w(x− t)α]dt (4.3.16)

To evaluate ∆, we first replace the H− function occuring in it in terms of its

Mellin-Barnes contour integral with the help of (1.1.1) and interchange the order

of contour integral and t−integral, which is permissible under the given condi-

tions.

The above equation (4.3.16) now takes the following form after a little simplifi-

cation:

∆ =
1

2πi

∫
L

ϕ(ξ)wξ
∫ x

u

(t− u)µ−1(x− t)β+αξ−1dtdξ (4.3.17)

On setting z = x−t
x−u in the t−integral involved in (4.3.17) and evaluating the

resulting z−integral, we arrive at the following result after a little simplication:

∆ =
1

2πi

∫
L

ϕ(ξ)wξ(x− u)µ+β+αξ−1
Γ(β + αξ)

Γ(µ+ β + αξ)
dξ (4.3.18)

Now, reinterpreting the above equation(4.3.18) in terms of the H−function and

on substituting the value of ∆ thus obtained, in (4.3.15), we easily arrive at the

desired result (4.3.13) after a little simplification.

on similar lines we can also prove the following:(
Iµa+H

w;m,n;α
a+;p,q;βφ

)
(x) =

(
H
w;m,n+1;α
a+;p+1,q+1;β+µφ

)
(x) (4.3.19)
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COMPOSITION FORMULA FOR THE OPERATORS

H
w;m,n;α
a+;p,q;β AND Dµ

a+

Dµ
a+

(
H
w;m,n;α
a+;p,q;βφ

)
(x) =

(
H
w;m,n+2;α
a+;p+2,q+2;β−µφ

)
(x) (4.3.20)

where Dµ
a+ is given by (2.1.2) and H

w;m,n;α
a+;p,q;β is given by (2.2.1).

Proof. To prove (4.3.20) we make use of definition (2.1.2) of Dµ
a+ involved in the

left hand side of (4.3.20), we get

Dµ
a+

(
H
w;m,n;α
a+;p,q;βφ

)
(x) =

(
d

dx

)n
In−λa+

(
H
w;m,n;α
a+;p,q;βφ

)
(4.3.21)

With the help of result (4.3.13) the above equation (4.3.21) takes the following

form:

Dµ
a+

(
H
w;m,n;α
a+;p,q;βφ

)
(x) =

(
d

dx

)n (
H
w;m,n+1;α
a+;p+1,q+1;β+n−λφ

)

=

(
d

dx

)n ∫ x

a

(x− t)β−1+n−λHm,n+1
p+1,q+1[w(x− t)α]φ(t)dt

=

∫ x

a

(x− t)β−1−λHm,n+2
p+2,q+2[w(x− t)α]φ(t)dt

=
(
H
w;m,n+2;α
a+;p+2,q+2;β−µφ

)
(x) (4.3.22)

On similar lines we can prove the following:

(
H
w;m,n;α
a+;p,q;βD

µ
a+φ
)

(x) =
(
H
w;m,n+2;α
a+;p+2,q+2;β−µφ

)
(x) (4.3.23)
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COMPOSITION FORMULA FOR THE OPERATORS

H
w;m,n;α
a+;p,q;β AND Dµ,ν

a+

Dµ,ν
a+

(
H
w;m,n;α
a+;p,q;βφ

)
(x) =

(
H
w;m,n+3;α
a+;p+3,q+3;β−µφ

)
(x) (4.3.24)

where Dµ,ν
a+ is given by (2.1.3) and H

w;m,n;α
a+;p,q;β is given by (2.2.1).

Proof. Making use of the composition relationships asserted by (4.3.20) and

(4.3.13), we find that

Dµ+ν−µν
a+

(
H
w;m,n;α
a+;p,q;βφ

)
(x) =

(
H
w;m,n+1;α
a+;p+1,q+3;β−µ−ν+µνφ

)
(x) (4.3.25)

and

Dµ,ν
a+

(
H
w;m,n;α
a+;p,q;βφ

)
(x) = I

ν(1−µ)
a+ Dµ+ν−µν

a+

(
H
w;m,n;α
a+;p,q;βφ

)
(x)

= I
ν(1−µ)
a+

(
H
w;m,n+1;α
a+;p+1,q+3;β−µ−ν+µνφ

)
(x)

=
(
H
w;m,n+3;α
a+;p+3,q+3;β−µφ

)
(x) (4.3.26)

which would complete the proof of (4.3.24).

If we reduce the H− function involved in the integral operator H
w;m,n;α
a+;p,q;β to

Mittag-Leffler function in (4.3.13), (4.3.20) and (4.3.24) we get the results ob-

tained by Srivastava et al.[56, p. 7, eq.(2.23), (2.24) and (2.25)] respectively.
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The main findings of this chapter have been published/Accepted as below:

1.A General Volterra type Fractional Equation Associated with an In-

tegral operator with the H-function in the Kernel, J. of Raj. Acad. of

Phy. Sci., 14(3) (2015) 289-294.

2. A General Volterra type Fractional Equation Associated with an

Integral operator with the H-function in the Kernel, Int. J. of Pure and

Appl. Math. (Accepted)

3. A General Volterra-type Integral Equation Associated with an Inte-

gral Operator involving the product of SMN and multivarible H-Function

in the Kernel,J. of Raj. Acad. of Phy. Sci. Vol. 3 (2016)(In press)





The object of this chapter is to find solutions of the Volterra-type integral

equations associated with integral operators whose kernels involve various special

functions and polynomials.We make use of convolution technique to solve the

equations.

We first give solution to general Volterra-type integral equation associated with

an integral operator involving H-function in its kernel. Since H-function is gen-

eral in nature we can obtain a number of special cases of the Volterra-type integral

equation, by specializing the parameters involved.First special case is a Volterra-

type integral equation associated with an integral operator with H-function in

its kernal. On account of general nature of H-function occuring in the operator

herein we can obtain a number of special cases by specializing the parameters

of the H-function. We record here five such special cases which involve Fox-

Wright function pΨq, Mittag-Leffler functionEγ,κ
α,β, hypergeometric function pFq,

Bessel functionJσλ and giving appropriate value to g(x). Thereafter we give

two special cases involving Riemann Zeta function φ(t, µ, ξ) and Polylogarithm

functionF (t, µ).

Further, we solve a general Volterra-type integral equation involving a product of

general class of polynomials SMN and multivariable H−function occuring as ker-

nels in the integral equation. We can obtain a large number of integral equations

involving products of several useful polynomials and special functions as its spe-

cial cases. We record here only two such special cases which involve the product

of general class of polynomialsSMN & Appell function F3 and a general class of

polynomials.

The importance of the findings of this chapter lies in the fact that both the

Volterra-type integral equations associated with integral operators involving

several special functions and polynomials in their kernel are quite general in

nature and generalize the results obtained by Srivastava et al.[49] and Rashmi
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Jain[26][27] respectively. A large number of special cases of these equations, in-

volving useful and simpler special functions and polynomials can be obtained by

specializing the parameters, find practical importance in the fields of Physics and

Engineering science.

5.1 INTRODUCTION AND DEFINITIONS

The H-function occurring in the present work will be defined and represented

here in the following manner [24]

H
m,n

p,q [z] = H
m,n

p,q

z
∣∣∣∣∣∣∣∣∣

(aj, αj;Aj)1,n, (aj, αj)n+1,p

(bj, βj)1,m, (bj, βj;Bj)m+1,q



:=
1

2πω

∫ ω∞

−ω∞
Θ(ξ)zξdξ (5.1.1)

where, ω =
√
−1,z ∈ C \ {0}, C being the set of complex numbers,

Θ(ξ) =

m∏
j=1

Γ(bj − βjξ)
n∏
j=1

{Γ(1− aj + αjξ)}Aj

q∏
j=m+1

{Γ(1− bj + βjξ)}Bj
p∏

j=n+1

Γ(aj − αjξ)
(5.1.2)

The sufficient condition for the absolute convergence of the integral have been

established by Bushman and Srivastava[5, p.4708] The series representation for

the H−Function is as follows:

H
m,n

p,q

z
∣∣∣∣∣∣∣∣∣

(aj, αj;Aj)1,n, (aj, αj)n+1,p

(bj, βj)1,m, (bj, βj;Bj)m+1,q

 =
∞∑
t=0

m∑
h=1

Θst,hz
st,h (5.1.3)
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where,

Θ(st,h) =

m∏
j=1,j 6=h

Γ(bj − βjst,h)
n∏
j=1

{Γ(1− aj + αjst,h)}Aj

q∏
j=m+1

{Γ(1− bj + βjst,h)}Bj
p∏

j=n+1

Γ(aj − αjst,h)
(5.1.4)

The multivariable H-function occuring in this chapter is a special case of H-

function of r-variables and is defined as follows:[52, p.271, eq.(4.1)][50, p.64,

eq.(1.3)]

H



z1

.

.

.

zr


= H0,0:1,n1;...;1,nr

p,q:p1,q1+1;...;pr,qr+1



z1

.

.

.

zr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(aj;α
(1)
j , ..., α

(r)
j )1,p : (c

(1)
j , γ

(1)
j )1,p1 ; ...; (c

(r)
j , γ

(r)
j )1,pr

(bj; β
(1)
j , ..., β

(r)
j )1,q : (0, 1), (d

(1)
j , δ

(1)
j )1,q1 ; ...; (0, 1), (d

(r)
j , δ

(r)
j )1,qr



=
1

(2πω)r

∫
L1

...

∫
Lr

ψ(ξ1, ..., ξr)
r∏
i=1

(φi(ξi)z
ξi
i )Γ(−ξ1)...Γ(−ξr)zξ11 ...zξrr dξ1...dξr

(5.1.5)

(5.1.6)

=
∞∑

k1,...,kr=0

φ1(k1)...φr(kr)ψ(k1, ..., kr)
(−z1)k1
k1!

...
(−zr)kr
kr!

(5.1.7)
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where ω =
√
−1 and

φi(ki) =

ni∏
j=1

Γ(1− c(i)j + γ
(i)
j ki)

qi∏
j=1

Γ(1− d(i)j + δ
(i)
j ki)

pi∏
j=ni+1

Γ(c
(i)
j − γ

(i)
j ki)

(i = 1, ..., r) (5.1.8)

ψ(k1, ..., kr) =
1

q∏
j=1

Γ(1− bj +
r∑
i=1

β
(i)
j ki)

p∏
j=1

Γ(aj −
r∑
i=1

α
(i)
j ki)

(5.1.9)

AN INTEGRAL OPERATOR INVOLVING H-FUNCTION

IN ITS KERNEL

In this chapter, we make use of the following integral operator with H-function

in its kernel

(
H

1,n;σ

0+;p,q;ρ ϕ
)

(x) :=

∫ x

0

(x− t)ρ−1 H1,n

p,q [(x− t)σ]ϕ(t)dt (5.1.10)

<(ρ) > 0 By using the Convolution Theorem for the Laplace Transform, we find

from the definition (5.1.10) that

L
[(

H
1,n;σ

0+;p,q;ρ ϕ
)

(x)
]

(s) = L
[
xρ−1 H

1,n

p,q [xσ]
]

(s) · L[ϕ(x)](s)

= s−ρH
1,n+1

p+1,q

s−σ
∣∣∣∣∣∣∣∣∣

(1− ρ, σ; 1), (aj, αj;Aj)1,n, (aj, αj)n+1,p

(0, 1), (bj, βj;Bj)2,q

Φ(s)

(5.1.11)

where <(s, ρ, σ) > 0
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AN INTEGRAL OPERATOR WITH THE H-FUNCTION

IN ITS KERNEL

In our present investigation, we make use of the following special case of the

operator given by (5.1.10) i.e. the integral operator with the H-function in its

kernel[66]:

(
H
w;1,n;α
0+;p,q;β ϕ

)
(x) :=

∫ x

0

(x− t)β−1 H1,n
p,q [w(x− t)α]ϕ(t)dt (5.1.12)

(
<(β) > 0; w ∈ C \ {0}; 0 5 n 5 p;

)
.

By using the Convolution Theorem for the Laplace Transform given by (2.1.5) we

find from the definition (5.1.12) that

L
[(
H
w;1,n;α
0+;p,q;β ϕ

)
(x)
]

(s) = L
[
xβ−1 H1,n

p,q [wxα]
]

(s) · L[ϕ(x)](s)

= s−βH1,n+1
p+1,q

ws−α
∣∣∣∣∣∣∣∣∣

(1− β, α), (aj, αj)1,p

(0, 1), (bj, βj)2,q

Φ(s)

(5.1.13)

(
<(s) > 0; α > 0; <(β) > 0

)
,

where, for convenience,

Φ(s) := L[ϕ(x)](s)
(
<(s) > 0

)
.
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AN INTEGRAL OPERATOR INVOLVING THE

PRODUCT OF GENERAL CLASS OF

POLYNOMIALS AND MULTIVARIABLE H-FUNCTION

IN ITS KERNEL

The following integral operator involving a product of general class of polynomials

and multivariable H-function in its kernel will be used in this chapter[16]:

∫ x

0

(x− t)β−1SMN [−zr+1(x− t)]H



z1(x− t)

.

.

.

zr(x− t)


φ(t)dt (5.1.14)

<(β) > 0

whereH



z1(x− t)

.

.

.

zr(x− t)


is given by (5.1.5) and (5.1.7)

5.2 GENERAL VOLTERRA-TYPE INTEGRAL

EQUATION ASSOCIATED WITH THE

OPERATOR H
1,n;σ

0+;p,q;ρ

A general Volterra-type integral equation associated with an integral operator

with the H-function in its kernel (5.1.10) is given by(
H

1,n;σ

0+;p,q;ρ y
)

(x) +
a

Γ(η)

∫ x

0

(x− t)η−1y(t)dt := g(x) (5.2.1)
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1,n;σ

0+;p,q;ρ

<(ρ, σ, η) > 0; 0 ≤ n ≤ p

has the solution

y(x) =

∫ x

0

(x− t)l−σk−ρ−1
∞∑
λ=0

Cλ(x− t)σλ

Γ(l − σk + σλ− ρ)
Dl
t{g(t)}dt, (5.2.2)

where l is a positive integer such that <(l − σk − ρ) > 0, where k denotes the

least ν for which C
′
ν 6= 0 where

C
′

ν =

Γ(ρ+ σν)
n∏
j=1

{Γ(1− aj + αjν)}Aj

q∏
j=2

{Γ(1− bj + βjν)}Bj
p∏

j=n+1

Γ(aj − αjν)ν!

(−1)ν (5.2.3)

g is prescribed such that g(u)(0) = 0 for 0 ≤ u ≤ l − 1

Cλ are given by

Cλ = (−1)λ(C
′

k)
−λ−1det



C
′

k+1 C
′

k ... 0 ... 0

C
′

k+2 C
′

k+1 ... ... ... 0

. .

. .

. .(
Ck+ η−ρ

σ
+ a
)

.

. .

. .

. .

C
′

k+λ C
′

k+λ−1 ...
(
Ck+ η−ρ

σ
+ a
)

... C
′

k+1


(5.2.4)
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Proof. To solve (5.2.1) we first take the Laplace transform of its both sides. Using

(5.1.11) we get

s−ρH
1,n+1

p+1,q

s−σ
∣∣∣∣∣∣∣∣∣

(1− ρ, σ; 1), (aj, αj;Aj)1,n, (aj, αj)n+1,p

(0, 1), (bj, βj;Bj)2,q

Y (s)+aS−ηY (s) = G(s)

(5.2.5)

Now, expressing H- function involved in the left hand side of the above equation

in terms of series with the help of (5.1.3) we have

s−ρ

[
∞∑
ν=0

C
′

νs
−σν + as−η+ρ

]
Y (s) = G(s) (5.2.6)

where C
′
ν is given by (5.2.3).

Again, (5.2.6) is equivalent to

Y (s) = sρ

[
∞∑
ν=0

C
′

νs
−σν + as−η+ρ

]−1
G(s) (5.2.7)

If k denotes the least ν for which C ′ν 6= 0 the series given by (5.2.7) can be

reciprocated.

Writing [
∞∑
ν=0

C
′

ν+ks
−σν + as−η+ρ

]−1
=
∞∑
λ=0

Cλs
−σλ (5.2.8)

(5.2.7) takes the following form:

Y (s) = sρ−l+σk
∞∑
λ=0

Cλs
−σλ[slG(s)] (5.2.9)

(5.2.9) can be written as

L{y(x); s} = L

{
∞∑
λ=0

Cλ
xl−ρ−σk+σλ−1

Γ(l − σk + σλ− ρ)
; s

}
L{g(l)(x); s} (5.2.10)

Now using the convolution theorem in the RHS of (5.2.10) we get (using (2.3.30))

L{y(x); s} = L

{∫ x

0

∞∑
λ=0

Cλ
(x− t)l−ρ−σk+σλ−1

Γ(l − σk + σλ− ρ)
g(l)(x); s

}
(5.2.11)
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Finally, on taking the inverse of the Laplace transform of both sides of (5.2.11)

we arrive at the desired result (5.2.2).

If we take σ = 1, Aj(j = 1, 2, ..., n) = Bj(j = 2, ...q) = 1 and a = 0 in (5.2.1)

we arrive at the result derived by Srivastava and Bushman[47][48] and If we take

a = 0 in the (5.2.1) we arrive at the result obtained by Jain [26, theorem 2].

5.2.1 SPECIAL CASES

1. General Volterra-type integral equation associated with an integral operator

with the H-function in its kernel (5.1.12) is given by

(
H
w;1,n;α
0+;p,q;β y

)
(x) +

a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt := g(x) (5.2.12)

(
<(β, ν) > 0; w ∈ C \ {0}; 0 5 n 5 p;

)

has the solution

y(x) =

∫ x

0

∞∑
r=0

Er
(x− t)αr+l−β−αµ−1

Γ(αr + l − β − αµ)
g(l)(t)dt (5.2.13)

where <(l − β − αµ) > 0

provided that

g(i)(0) = 0 for 0 5 i 5 l − 1, l being a positive integer and ν − β(< r) is an
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integer. Also

Er =(−1)r(λµ)−r−1wrdet

λµ+1 λµ ... ... 0 0

λµ+2 λµ+1 ... .. 0 0

. .

.

. .

w−α
(
λµ+ ν−β

α
+ a

w
ν−β
α

)
. .

. .

. .

. .

λµ+r λµ+r−1 .... w−α
(
λµ+ ν−β

α
+ a

w
ν−β
α

)
... λµ+1


(5.2.14)

and µ is the least k for which

λk =

Γ(β + αk)
n∏
j=1

Γ(1− aj + αjk)

q∏
j=2

Γ(1− bj + βjk)
∏p

j=n+1 Γ(aj − αjk)k!

(−1)k 6= 0 (5.2.15)

SPECIAL CASES OF (5.2.12)

2. Reducing H-function in the R.H.S of (5.1.12) to the Fox-Wright function[33]

and defining the integral operator as

(
Ψw;p;α
a+;q;β ϕ

)
(x) :=

∫ x

a

(x− t)β−1 pΨq


(aj, αj)1,p;

(bj, βj)1,q;

w(x− t)α

ϕ(t)dt (5.2.16)

(
<(β) > 0; w ∈ C \ {0}; p 5 q + 1

)
,
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We find that Volterra-type equation (5.2.12) takes the form as(
Ψw;p;α

0+;q;β y
)

(x) +
a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt = g(x) (5.2.17)

(<(β) > 0;w ∈ C \ {0}; p 5 q + 1;<(ν) > 0)

whose solution is given by

y(x) =

∫ x

0

∞∑
r=0

Er
(x− t)αr+l−β−αµ−1

Γ(αr + l − β − αµ)
g(l)(t)dt (5.2.18)

where <(l − β − αµ) > 0

provided that

g(i) = 0 for 0 5 i 5 l − 1, l being a positive integer and ν − β(< r) is an integer,

Er is given by (5.2.14) and µ is the least n for which

λn =
Γ(a1 + α1n)...Γ(ap + αpn)Γ(β − αn)

Γ(b1 + β1n)...Γ(bq + βqn)n!
6= 0 (5.2.19)

3. Again reducing H-function in R.H.S of (5.1.12) to Mittag-Leffler function [56]

and defining the integral operator as follows:(
ξw;γ,κ0+;α,βy

)
(x) =

∫ x

0

(x− t)β−1Eγ,κ
α,β[w(x− t)α]y(t)dt, (5.2.20)

(γ, w ∈ C;<(α) > max{0,<(κ)− 1};min{<(β),<(κ)} > 0)

then (5.2.12) can be written as(
ξw;γ,κ0+;α,βy

)
(x) +

a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt = g(x) (5.2.21)

(γ, w ∈ C;<(α) > max{0,<(κ)− 1}; min{<(β),<(κ)} > 0;<(ν) > 0)

whose solution is given by

y(x) =

∫ x

0

∞∑
r=0

Er
(x− t)αr+l−β−αµ−1

Γ(αr + l − β − αµ)
g(l)(t)dt (5.2.22)

where <(l − β − αµ) > 0

provided that

87



5. SOLUTION OF GENERAL VOLTERRA-TYPE INTEGRAL
EQUATIONS

g(i) = 0 for 0 5 i 5 l − 1, l being a positive integer and ν − β(< r) is an integer,

Er is given by (5.2.14) and µ is the least n for which

λn =
Γ(γ + κn)

Γ(γ)n!
6= 0 (5.2.23)

4. Reducing H-function in R.H.S of (5.1.12) to hypergeometric function [49, p.18,

eq.(2.6.3)] and defining the fractional operator as follows:

(
F
w;p;α
a+;q;β ϕ

)
(x) :=

∫ x

a

(x− t)β−1 pFq


a1, · · · , ap;

b1, · · · , bq;

w(x− t)α

ϕ(t)dt (5.2.24)

(
<(β) > 0; w ∈ C \ {0}; p 5 q + 1

)
,

then (5.2.12) can be written as(
F
w;p;α
a+;q;β y

)
(x) +

a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt = g(x) (5.2.25)

(<(β) > 0;w ∈ C \ {0}; p 5 q + 1;<(ν) > 0)

whose solution is given by

y(x) =

∫ x

0

(x− t)l−β−αµ−1
∞∑
r=0

Er
(x− t)αr

Γ(αr + l − β − αµ)
g(l)(t)dt (5.2.26)

where <(l − β − αµ) > 0

provided that

g(i) = 0 for 0 5 i 5 l − 1, l being a positive integer and ν − β(< r) is an integer,

Er is given by (5.2.14) and µ is the least n for which

λn =
Γ(a1 + n)...Γ(ap + n)Γ(β − αn)

Γ(b1 + n)...Γ(bq + n)n!
6= 0 (5.2.27)

5. Reducing H-function in R.H.S of (5.1.12) to Bessel function [49, p.19, eq.(2.6.10)]

and defining the integral operator as follows:(
J
w;1,0;α
a+;0,2;β ϕ

)
(x) :=

∫ x

a

(x− t)β−1Jσλ(w(x− t)α)ϕ(t)dt (5.2.28)
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OPERATOR H
1,n;σ

0+;p,q;ρ

(
<(β) > 0; w ∈ C \ {0}<(ν) > 0)

then (5.2.12) can be written as

(
J
w;1,0;α
a+;0,2;β y

)
(x) +

a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt = g(x) (5.2.29)

(<(β) > 0;w ∈ C \ {0};<(ν) > 0)

whose solution is given by

y(x) =

∫ x

0

(x− t)l−β−αµ−1
∞∑
r=0

Er
(x− t)αr

Γ(αr + l − β − αµ)
g(l)(t)dt (5.2.30)

where <(l − β − αµ) > 0

provided that

g(i) = 0 for 0 5 i 5 l − 1, l being a positive integer and ν − β is an integer,

Er is given by (5.2.14) and µ is the least n for which

λn =
Γ(β + αn)

Γ(1 + λ+ σn)n!
6= 0 (5.2.31)

6. Substituting g(x) = x2 in (5.2.12) we get

(
H
w;1,n;α
0+;p,q;β y

)
(x) +

a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt := x2 (5.2.32)

(
<(β) > 0; w ∈ C \ {0}; 0 5 n 5 p;<(ν) > 0

)
has the solution

y(x) = 2

∫ x

0

∞∑
r=0

Er
(x− t)αr−β−αµ+1

Γ(αr − β − αµ+ 2)
dt, (5.2.33)

<(l − β − αµ) > 0

where Er is given by (5.2.14) and µ is the least k for which λk( 6= 0) is

given by (5.2.15)

ν − β(< r) is an integer.
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7. If we reduce the H-function involved in (5.2.1) to the generalized Riemann

Zeta function, φ ((x− t)σ, µ, ξ) , [9, p.27], we arrive at the following result:∫ x

0

(x− t)ρ−1φ ((x− t)σ, µ, ξ) y(t)dt+
a

Γ(η)

∫ x

0

(x− t)η−1y(t)dt := g(x) (5.2.34)

has the solution given by

y(x) =

∫ x

0

(x− t)l−σk−ρ−1
∞∑
λ=0

Cλ(x− t)σλ

Γ(l − σk + σλ− ρ)
Dl
t{g(t)}dt (5.2.35)

provided that min<(ρ, σ, l − ρ − σk) > 0, l is a positive integer and Cλ is given

by (5.2.4)

where

C
′

ν =
Γ(ρ+ σν)

(ξ + ν)µ
, ν = 0, 1, 2, .... (5.2.36)

Also g(u)(0) = 0 for 0 ≤ u ≤ l − 1

8. Again, if we reduce the H-function involved in (5.2.1) to the Polylogarithm

function F (t, µ) of order µ[9, p.30,p.315], we get the following result:∫ x

0

(x− t)ρ−1F ((x− t)σ, µ) y(t)dt+
a

Γ(η)

∫ x

0

(x− t)η−1y(t)dt := g(x) (5.2.37)

has the solution given by

y(x) =

∫ x

0

(x− t)l−σk−ρ−1
∞∑
λ=0

Cλ(x− t)σλ

Γ(l − σk + σλ− ρ)
Dl
t{g(t)}dt (5.2.38)

provided that min<(ρ, σ, l − ρ − σk) > 0, l is a positive integer and Cλ is given

by (5.2.4) where

C
′

ν =
Γ(ρ+ σ + σν)

(1 + ν)µ
, ν = 0, 1, 2, ... (5.2.39)

Also g(u)(0) = 0 for 0 ≤ u ≤ l − 1

90



5.3 GENERAL VOLTERRA-TYPE INTEGRAL EQUATION
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5.3 GENERAL VOLTERRA-TYPE INTEGRAL

EQUATION INVOLVING A PRODUCT OF

GENERAL CLASS OF POLYNOMIAL AND

MULTIVARIABLE H-FUNCTION

The second volterra-type integral equation involving the operator (5.1.14) is given

by:

∫ x

0

(x−t)β−1SMN [−zr+1(x−t)]H



z1(x− t)

.

.

.

zr(x− t)


y(t)dt+

a

Γ(ν)

∫ x

0

(x−t)ν−1y(t)dt := g(x)

(5.3.1)

<(β, ν) > 0

has the solution

y(x) =

∫ x

0

(x− t)l−β−µ−1
∞∑
j=0

Ej(x− t)j

Γ(j + l − β − µ)
g(l)(t)dt (5.3.2)

where<(l − β − µ) > 0

provided that

g(i)(0) = 0 for 0 5 i 5 l − 1, l being a positive integer and ν − β(< j) is an
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integer. Also

Ej = (−1)j(λ)−j−1µ det



λµ+1 λµ ... 0 ... 0

λµ+2 λµ+1 ... ... ... 0

. .

. .

. .

(λµ+ν−β + a) .

. .

. .

. .

λµ+j λµ+j−1 .... (λµ+ν−β + a) ... λµ+1


(5.3.3)

and µ is the least B for which

λB = (−1)B
∑

k1+...+kr+1=B

∆(k1, ..., kr+1)
zk11
k1!

...
z
kr+1

r+1

kr+1!
(5.3.4)

where

∆(k1, ..., kr+1) = φ1(k1)...φr+1(kr + 1)ψ(k1, ..., kr+1) (5.3.5)

ψ(k1, ..., kr+1) = Γ(β+k1+...+kr+1)

{
p∏
j=1

Γ

(
aj −

r∑
i=1

α
(i)
j ki

)
q∏
j=1

Γ

(
1− bj +

r∑
i=1

β
(i)
j ki

)}−1
(5.3.6)

φi(ki) =

ni∏
j=1

Γ
(

1− c(i)j + γ
(i)
j ki

){ pi∏
j=ni+1

Γ
(
cj − γ(i)j ki

) q∏
j=1

Γ
(

1− dj + δ
(i)
j ki

)}−1
(i = 1, ..., r) (5.3.7)
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and

φr+1(kr+1) =



(−N)Mkr+1AN,kr+1 , 0 ≤ kr+1 ≤
[
N
M

]

0, kr+1 >
[
N
M

]
(5.3.8)

Proof. To solve (5.3.1) we first take Laplace transform of its both sides. We easily

obtain by definition of Laplace transform and its convolution property stated in

(2.1.5), the following result

∫ ∞
0

e−sx(x)β−1SMN [−zr+1x]H



z1x

.

.

.

zrx


dxY (s) + as−νY (s) = G(s) (5.3.9)

Now expressing the SMN [−zr+1x] and H



z1x

.

.

.

zrx


involved in (5.3.9) in series using

(1.1.50) and (5.1.7), changing the order of series and integration and evaluating

the x−integral, we obtain ∞∑
k1,...,kr+1=0

∆(k1, ..., kr+1)
−zk11
k1!

...
−zkr+1

r+1

kr+1!
s−β−(k1+...+kr+1) + as−ν

Y (s) = G(s)

(5.3.10)

where ∆(k1, ..., kr+1) is defined by (5.3.5).

Re-writing (5.3.10), we get

s−β

[
∞∑
B=0

λBs
−B + as−ν+β

]
Y (s) = G(s) (5.3.11)
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where λB is given by (5.3.4).

Again, (5.3.11) is equivalent to

Y (s) = sβ

[
∞∑
B=0

λBs
−B + as−ν+β

]−1
G(s) (5.3.12)

If µ denotes the least B for which λB 6= 0, the series given by (5.3.12) can be

reciprocated.

Writing [
∞∑
B=0

λB+µs
−B + as−ν+β

]−1
=
∞∑
j=0

Ejs
−j (5.3.13)

(5.3.12) takes the following form:

Y (s) = sβ−l+µ
∞∑
j=0

Ejs
−j[slG(s)] (5.3.14)

(5.3.14) can be written as (using (2.3.30))

L{y(x); s} = L

{
∞∑
j=0

Ej
xj+l−µ−β−1

Γ(j + l − µ− β)
; s

}
L{g(l)(x); s} (5.3.15)

Now using the convolution theorem in the RHS of (5.3.15) we get

L{y(x); s} = L

{∫ x

0

∞∑
j=0

Ej
(x− t)j+l−µ−β−1

Γ(j + l − µ− β)
g(l)(t)dt; s

}
(5.3.16)

Finally, on taking the inverse of the Laplace transform of both sides of (5.3.16)

we arrive at the desired result (5.3.2).

It is interesting to note that, if we put a = 0 in (5.3.1) we get the result

obtained by Gupta et al.[16].

5.3.1 SPECIAL CASES

1. If we put r = 2 in (5.3.1) and reduce the H-function of two variables thus
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obtained to Appell’s function F3 [49, p.89, eq.(6.4.6)] we find after a little simpli-

fication that the Volterra-type integral equation given by∫ x

0

(x− t)β−1SMN [−zr+1(x− t)]F3[c
(1)
1 , c

(2)
1 , c

(1)
2 , c

(2)
2 ; b;−z1(x− t),−z2(x− t)]y(t)dt

+
a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt = g(x) (5.3.17)

has the solution

y(x) =
Γ(c

(1)
1 )Γ(c

(2)
1 )Γ(c

(1)
2 )Γ(c

(2)
2 )

Γ(b)

∫ x

0

(x− t)l−β−µ−1
∞∑
j=0

Ej(x− t)j

Γ(j + l − β − µ)
g(l)(t)dt

(5.3.18)

where<(l − β − µ) > 0,<(β) > 0, | z1(x− t) |< 1, | z2(x− t) |< 1

provided that

g(i)(0) = 0 for 0 5 i 5 l−1, l being a positive integer and ν−β(< j) is an integer

and Ej are given by the relation (5.3.3) and µ is least B for which λB 6= 0

λB = (−1)B
∑

k1+k2+k3=B

∆(k1, k2, k3)
zk11
k1!

zk22
k2!

zk33
k3!

(5.3.19)

where in (5.3.19)

∆(k1, k2, k3) =
Γ(c

(1)
1 + k1)Γ(c

(2)
1 + k2)Γ(c

(1)
2 + k1)Γ(c

(2)
2 + k2)Γ(β + k1 + k2 + k3)

Γ(b+ k1 + k2)
φ3(k3)

(5.3.20)

and

φ3(k3) =



(−N)Mk3AN,k3 , 0 ≤ k3 ≤
[
N
M

]

0, k3 >
[
N
M

]
(5.3.21)

2. If we put r = 1, p = q = 0, z2 = −1 in the LHS of (5.3.1), and further reduce

the H-function thus obtained to e−z1 [49, p.18, eq. (2.6.2)] and let z1 → 0, the
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H-function reduces to unity then we arrive at the following special case of (5.3.1):∫ x

0

(x− t)β−1SMN [(x− t)]y(t)dt+
a

Γ(ν)

∫ x

0

(x− t)ν−1y(t)dt = g(x) (5.3.22)

has the solution

y(x) =

∫ x

0

(x− t)l−β−µ−1
∞∑
j=0

Ej(x− t)j

Γ(j + l − β − µ)
g(l)(t)dt (5.3.23)

where<(l − β − µ) > 0,<(β) > 0

provided that

g(i)(0) = 0 for 0 5 i 5 l−1, l being a positive integer and ν−β(< j) is an integer

and Ej are given by the relation (5.3.3) and µ is least k for which λk 6= 0

λk =
(−N)MkAN,kΓ(β + k)

k!
(5.3.24)

k = 0, 1, ..., [N/M ], N = 0, 1, 2, ...,

If we put a = 0 in (5.3.22) we get the result obtained by Jain[27, p. 102-103, eq.

(3.5),eq.(3.6)]

Similary, on account of general nature of SMN and multivariable H−function in-

volved in the R.H.S of (5.3.1), we can obtain a number of special cases of (5.3.1)

by specializing the parameters involved therein.
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6

UNIFIED FINITE INTEGRAL

INVOLVING THE FUNCTION

λ
(η)
µ,ν, THE MULTIVARIABLE

H-FUNCTION AND SMN

POLYNOMIALS

The main findings of this chapter have been communicated as detailed below:

A Study of unified finite integral involving generalized modified Bessel

function of third kind, general class of polynomials and the multivari-

able H-function, J. of the Ind. Acad. of Math. (Communicated)





In this chapter we first define the functions and polynomial required to es-

tablish our main integral. Next, we evaluate a unified and general finite integral

whose integrand involves the product of generalized modified Bessel function

λ
(η)
µ,ν ,general class of polynomials SMN and the multivariable H−function. The ar-

guments of the functions occurring in the integrand involve the product of factors

of the form xρ−1(a− x)σ(1 + (bx)`)−λ.

Main integral is believed to be new and is capable of giving a large number of sim-

pler integrals (new and known) involving several special functions and polynomi-

als as its special cases.For the sake of illustration we record here six new integrals

as its special cases. The first, second, third, fourth fifth and sixth special cases

of the main integral are integrals whose integrands involve the product of the

modified Bessel function of the third kind, Laguerre polynomial,hypergeometric

function; the product of Meijer G-function, Jacobi polynomial and Appell func-

tion; the product of generalized modified Bessel function of third kind, Gould &

Hopper polynomial and Mittag-leffler function; the product of generalized mod-

ified Bessel function of third kind, general class of polynomials, reduced Green

function and Lorenzo-Hartley R-function; the product of generalized modified

Bessel function of third kind, general class of polynomials and Miller-Ross func-

tions and the product of generalized modified Bessel function of third kind, Cesaro

polynomial and Lorenzo-Hartley G-function respectively. Several basic integrals

obtained earlier by several authors also follow as special cases of our main findings.
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6.1 INTRODUCTION AND DEFINITIONS

For the sake of continuity, completeness and to avoid frequent reference to other

works we shall first briefly describe the polynomial and functions occuring in this

chapter.

GENERALIZATION OF THE MODIFIED BESSEL

FUNCTION

Generalization of the modified Bessel function of the third kind or Macdonald

function will be represented by the following form:[10, p.152, eq.(1.2); p.155,

eq.(2.6)]

λ(η)µ,ν [z] =
η

Γ(µ+ 1− 1/η)

∞∫
1

(tη − 1)µ−1/ηtνe−ztdt

= H2,0
1,2

z
∣∣∣∣∣∣ (1− (ν + 1)/η, 1/η)

(0, 1), (−µ− ν/η, 1/η)

 (6.1.1)

(η > 0; R(µ) > 1/η − 1; ν ∈ R; R(z) > 0)

The function in (6.1.1) was introduced by Kilbas et al.[31]. Such a function

was used by Bonilla et al.[2] to solve some homogeneous differential equations of

fractional order and Volterra integral equations.

SPECIAL CASES OF GENERALIZATION OF

MODIFIED BESSEL FUNCTION

1. If we take η = 2 and ν = 0, in (6.1.1), we get

λ
(2)
µ,0[z] =

2√
π

(
2

z

)µ
K−µ(z)

(
<(µ) > −1

2

)
, (6.1.2)
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where K−µ(z) is the modified Bessel function of third kind or Macdonald

function[7, Section 7.2.2]

2. If we take η = 1 in (6.1.1) we get

λµ,ν [z] = G2,0
1,2

z
∣∣∣∣∣∣ −ν

0,−µ− ν

 (6.1.3)

where G2,0
1,2 is Meijer G-function[36, p.10,eq.(1.7.1)].

MULTIVARIABLE H-FUNCTION

The multivariable H−function occuring in the thesis was introduced and studied

by Srivastava and Panda [52, p. 130, eq. (1.1)]. This function involves r complex

variables and will be defined and represented in the following contracted form

[49, p. 251-252, eqn. (C.1-C.3)]

H0,n:m1,n1;...;mr,nr
p,q:p1,q1;...;pr,qr



z1

.

.

.

zr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(aj;α
(1)
j , ..., α

(r)
j )1,p : (c

(1)
j , γ

(1)
j )1,p1 ; ...; (c

(r)
j , γ

(r)
j )1,pr

(bj; β
(1)
j , ..., β

(r)
j )1,q : (d

(1)
j , δ

(1)
j )1,q1 ; ...; (d

(r)
j , δ

(r)
j )1,qr



=
1

(2πω)r

∫
L1

...

∫
Lr

ψ(ξ1, ..., ξr)
r∏
i=1

(φi(ξi)z
ξi
i )dξ1...dξr (i = 1, ..., r) (6.1.4)

where ω =
√
−1,

φi(ξi) =

mi∏
i=1

Γ(d
(i)
j − δ

(i)
j ξi)

ni∏
j=1

Γ(1− c(i)j + γ
(i)
j ξi)

qi∏
j=mi+1

Γ(1− d(i)j + δ
(i)
j ξi)

pi∏
j=ni+1

Γ(c
(i)
j − γ

(i)
j ξi)

(i = 1, ..., r) (6.1.5)
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ψ(ξ1, ..., ξr) =

n∏
j=1

Γ(1− aj +
r∑
i=1

d
(i)
j ξi)

q∏
j=1

Γ(1− bj +
r∑
i=1

β
(i)
j ξi)

p∏
j=n+1

Γ(aj −
r∑
i=1

α
(i)
j ξi)

(6.1.6)

All the greek letters occuring on the left-hand side of (6.1.4) are assumed to be

positive real numbers for standardization purposes; the definition of the multi-

variable H−function will, however, be meaningful even if some of these quantities

are zero. The details about the nature of the contours L1, ..., Lr, conditions of

convergence of the integrals given by the equation (6.1.4), the special cases of

the multivariable H−function and its properties can be referred to in the paper

cited above. Throughout the thesis it is assumed that this function satisfies its

appropriate conditions of existence and convergence[49, p.252-253, eq.(C.4-C.6)].

THE H-FUNCTION

By taking r = 1, the multivariableH−function (6.1.4) reduces to theH−function.

The functionH[x] occurring in the present work stands for H-function[8] or simply

the H-function will be defined and represented in the following manner[49, p.10].

Hm,n
p,q [z] = Hm,n

p,q

z
∣∣∣∣∣∣∣∣∣

(aj, αj)1,p

(bj, βj)1,q

 = Hm,n
p,q

z
∣∣∣∣∣∣∣∣∣

(a1, α1), · · · , (ap, αp)

(b1, β1), · · · , (bq, βq)



:=
1

2πi

∫
L

Θ(s)zs ds, (6.1.7)

where i =
√
−1, z ∈ C \ {0}, C being the set of complex numbers,

Θ(s) =

m∏
j=1

Γ(bj − βjs)
n∏
j=1

Γ(1− aj + αjs)

q∏
j=m+1

Γ(1− bj + βjs)
p∏

j=n+1

Γ(aj − αjs)
, (6.1.8)
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and

1 5 m 5 q and 0 5 n 5 p (m, q ∈ N = {1, 2, 3, · · · }; n, p ∈ N0 = N∪{0}),

The definition of the H-function given by (6.1.7) will, however, have meaning

even if some of these quantities are zero, giving us in turn simple transformation

formulas.

The nature of contour L in (6.1.7), a set of sufficient conditions for the con-

vergence of this integral, the asymptotic expansions of the H-function, some of

its properties and special cases can be referred to in the book by Srivastava et al.

[49].

GENERAL CLASS OF POLYNOMIALS

Srivastava [46, p.1 eq. (1)] has introduced the general class of polynomials

SMN [x] =

[N/M ]∑
R=0

(−N)MR AN,R xR

R!
(N = 0, 1, 2, ...), (6.1.9)

where M is an arbitrarty positive integer, and the coefficients AN,R(N,R ≥ 0)

are arbitrary constants, real or complex. On suitably specializing the coefficients

AN,R, S
M
N [x] yields a number of known polynomials as its special cases. These

include, among others, Jacobi polynomial, Laguerre polynomial and several others

[4, 55, 57].

6.2 MAIN INTEGRAL

∫ a

0

xρ−1(a− x)σ[1 + (bx)`]−λλ(η)µ,ν(zr+1x
ρr+1(a− x)σr+1 [1 + (bx)`]−λr+1)
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H0,n:m1,n1;...;mr,nr
p,q:p1,q1;...;pr,qr



z1x
ρ1(a− x)σ1 [1 + (bx)`]−λ1

.

.

.

zrx
ρr(a− x)σr [1 + (bx)`]−λr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(aj;α
(1)
j , ..., α

(r)
j )1,p : C

(bj; β
(1)
j , ..., β

(r)
j )1,q : D



SMN [Y xρ
′
(a− x)σ

′
[1 + (bx)`]−λ

′
]dx

= aρ+σ
[N/M ]∑
R=0

(−N)MRAN,R(Y a(ρ
′+σ′))R

R!
H0,n+3:m1,n1;...;mr,nr;2,0;1,0
p+3,q+2:p1,q1;...;pr,qr;1,2;0,1



z1a
ρ1+σ1

.

.

.

zra
ρr+σr

zr+1a
ρr+1+σr+1

(ab)`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A : C∗

B : D∗


(6.2.1)
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where

A = (1− λ−Rλ′;λ1, ..., λr, λr+1, 1), (1− ρ−Rρ′; ρ1, ..., ρr, ρr+1, `),

(−σ −Rσ′;σ1, ..., σr, σr+1, 0), (aj;α
(1)
j , ..., α

(r)
j , 0, 0)1,p

B = (−ρ− σ −R(ρ′ + σ′); (ρ1 + σ1), ..., (ρr + σr), (ρr+1 + σr+1), `),

(1− λ−Rλ′;λ1, ..., λr, λr+1, 0), (bj; β
(1)
j , ..., β

(r)
j , 0, 0)1,q

C∗ = C; (1− (ν + 1)/η, 1/η);− D∗ = D; (0, 1), (−µ− ν/η, 1/η); (0, 1)

C = (c
(1)
j , γ

(1)
j )1,p1 ; ...; (c

(r)
j , γ

(r)
j )1,pr D = (d

(1)
j , δ

(1)
j )1,q1 ; ...; (d

(r)
j , δ

(r)
j )1,qr

provided

(i) <(λ) ≥ 0,min(ρ′, σ′, λ′, ρi, σi, λi) ≥ 0 (i = 1, ..., r + 1)

(not all zero simultaneously)

(ii) min <(ρ+
r∑
i=1

ρi(d
(i)
j )/δ

(i)
j − ρr+1(µη + ν)) > 0,

min <(σ + 1 +
r∑
i=1

σi(d
(i)
j )/δ

(i)
j − σr+1(µη + ν)) > 0 (j = 1, ...,mi)

Proof. First we express the modified Bessel function λ
(η)
µ,ν in terms of theH−function

of one variable[10, p.155,eq.(2.6)] and the SMN [x] polynomials in terms of the series

with the help of (6.1.9) occuring in the left-hand side of (6.2.1). Now, we express

the multivariable H−function and H−function of one variable in terms of their

respective Mellin-Barnes type contour integrals. Then we change the order of the

series and ξ1, ..., ξr+1 contour integrals with the x−integral which is permissible

under the conditions stated. The left-hand side of (6.2.1) takes the following form
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(say ∆):

∆ =

[N/M ]∑
R=0

(−N)MRAN,RY
R

R!

1

(2πω)r

∫
L1

...

∫
Lr

ψ(ξ1, ..., ξr)
r∏
i=1

(φi(ξi)z
ξi
i )

1

2πω

∫
Lr+1

Γ(−ξr+1)Γ(−µ− (ν + ξr+1)/η)

Γ(1− (ν + 1 + ξr+1)/η)
z
ξr+1

r+1

a∫
0

x

r+1∑
i=1

ρiξi+ρ+Rρ
′−1

(a− x)
σ+Rσ′+

r+1∑
i=1

σiξi
[1 + (bx)`]

−λ−Rλ′−
r+1∑
i=1

λiξi
dxdξ1...dξrdξr+1

(6.2.2)

Finally, on evaluating the above x−integral with the help of the following result

[25, p.47, eqn.(1.3.3)]:

τ∫
0

xρ−1(τ−x)σ(1+(Dx)`)−λdx =
Γ(σ + 1)

Γ(λ)
τ ρ+σH1,2

2,2

(Dτ)`

∣∣∣∣∣∣∣∣∣
(1− ρ, `), (1− λ, 1)

(0, 1), (−ρ− σ, `)


(6.2.3)

where

<(ρ) > 0, <(σ + 1) > 0

the right-hand side of (6.2.2) takes the following form:

∆ =

[N/M ]∑
R=0

(−N)MRAN,RY
R

R!

1

(2πω)r

∫
L1

...

∫
Lr

ψ(ξ1, ..., ξr)
r∏
i=1

(φi(ξi)z
ξi
i )

1

2πω

∫
Lr+1

Γ(−ξr+1)Γ(−µ− (ν + ξr+1)/η)

Γ(1− (ν + 1 + ξr+1)/η)
z
ξr+1

r+1 a
ρ+Rρ′+

r+1∑
i
(ρi+σi)ξi+σ+Rσ

′

(6.2.4)

H1,2
2,2

(bx)`

∣∣∣∣∣∣∣∣∣∣∣
(1− ρ−Rρ′ −

r+1∑
i=1

ρiξi, `), (1− λ−Rλ′ −
r+1∑
i=1

λiξi, 1)

(0, 1), (−ρ−Rρ′ −
r+1∑
i

(ρi + σi)ξi − σ −Rσ′, `)

 dξ1...dξrdξr+1

(6.2.5)
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Now we express the H−function thus obtained in terms of its Mellin-Barnes

type contour integral and re-interpret the result in terms of (r + 2)−variable

H−function, we easily arrive at the desired result after a little simplification.

6.2.1 SPECIAL CASES OF THE MAIN INTEGRAL

FIRST INTEGRAL

If we reduce λ
(η)
µ,ν into modified Bessel function of third kind K−µ [10, p.152,

eq.(1.3)], SMN into Laguerre polynomial[4, p.164, eq.(A.8)], and the H−function

into pFq by taking r = 1[49, p.18, eq.(2.6.3)] in the main integral, we arrive at

the following integral after a little simplification:∫ a

0

xρ−ρ2µ−1(a− x)σ−σ2µ[1 + (bx)`]−λ+λ2µK−µ(z2x
ρ2(a− x)σ2 [1 + (bx)`]−λ2)

LαN [Y xρ
′
(a− x)σ

′
[1 + (bx)`]−λ

′
]pFq[(cj)p; (dj)q : −z1xρ1−1(a− x)σ1 [1 + (bx)`]−λ1 ]dx

= 2−(µ+1)
√
π zµ2

q∏
j=1

Γ(dj)

p∏
j=1

Γ(cj)

aρ+σ
N∑
R=0

(−N)R(Y a(ρ
′+σ′))R

(α + 1)RR!
(N+α)CN

H0,3:1,p;2,0;1,0
3,2:p,q+1;1,2;0,1


z1a

ρ1+σ1

z2a
ρ2+σ2

(ab)`

∣∣∣∣∣∣∣∣∣∣∣∣

A∗ : (1− cj, 1)1,p; (1/2, 1/2); −

B∗ : (0, 1), (1− dj, 1)1,q; (0, 1), (−µ, 1/2); (0, 1)


(6.2.6)

where

A∗ = (1− λ−Rλ′;λ1, λ2, 1), (1− ρ−Rρ′; ρ1, ρ2, `), (−σ −Rσ′;σ1, σ2, 0)
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B∗ = (−ρ−R(ρ′ + σ′)− σ; (ρ1 + σ1), (ρ2 + σ2), `), (1− λ−Rλ′;λ1, λ2, 0)

provided that the conditions easily obtainable from (6.2.1) are satisfied.

SECOND INTEGRAL

If we take r = 2, ` = 1, λ′ = σ′ = σi = λi = 0, (i = 1, ..., r+1) in the main integral

and further reduce λ
(η)
µ,ν to Meijer G2,0

1,2 by taking η = 1 , SMN into Jacobi poly-

nomial Pα,β
n [55, p.159, eq.(1.6)]and the H−function of two variable into Appell

function F3 [49, p.89,eq.(6.4.6)], we arrive at the following integral after a little

simplification:

∫ a

0

xρ−1(a− x)σ[1 + (bx)]−λG2,0
1,2

z3xρ3
∣∣∣∣∣∣ ν

0,−µ− ν

 Pα,β
N [1− 2Y xρ

′
]

F3[k1, h1, k2, h2; s; z1x
ρ1
1 , z2x

ρ2
2 ]dx

=
Γ(s)Γ(1 + σ)

Γ(k1)Γ(k2)Γ(h1)Γ(h2)Γ(λ)
aρ+σ

N∑
R=0

(−N)R(α + β +N + 1)R(Y aρ
′
)R

(α + 1)RR!
α+NCN

H0,1:1,2;1,2;2,0;1,1
1,2:2,1;2,1;1,2;1,1



−z1aρ1

−z2aρ2

z3a
ρ3

(ab)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A∗∗ : C∗∗; (1− λ, 1)

B∗∗ : D∗∗; (0, 1)


(6.2.7)

where

A∗∗ = (1− ρ− ρ′R; ρ1, ρ2, ρ3, 1)

B∗∗ = (−ρ− σ − ρ′R; ρ1, ρ2, ρ3, 1), (1− s; 1, 1, 0, 0)
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C∗∗ = (1− k1, 1), (1− k2, 1); (1− h1, 1), (1− h2, 1); (−ν, 1)

D∗∗ = (0, 1); (0, 1); (0, 1), (−µ− ν, 1)

provided that the conditions easily obtainable from (6.2.1) are satisfied.

THIRD INTEGRAL

If we take r = 1, ` = 1, λ′ = σ′ = σi = λi = 0, (i = 1, ..., r+1) in the main integral

and further reduce the general polynomial SMN into Gould & Hopper polynomial

gMN [4, p.164, eq.(A.10)] and the H−function of one variable into Mittag Leffler

function[56, p.193, eq.(1.15); p.192, eq.(1.9)] we arrive at the following integral

after a little simplification:∫ a

0

xρ+ρ
′N/M−1(a− x)σ[1 + (bx)]−λλ(η)µ,ν(z2x

ρ2)gMN [(− h

Y xρ′
)1/M , h]Eγ,κ

α,β[z1x
ρ1 ]dx

=
(−1)N

Γ(γ)
(
h

Y
)
N
M aρ+σ

[N/M ]∑
R=0

(−N)MR(Y aρ
′
)R

R!

Γ(1 + σ)

Γ(λ)

H0,1:1,1;2,0;1,1
1,1:1,2;1,2;1,1


−z1aρ1

z2a
ρ2

(ab)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1− ρ− ρ′R; ρ1, ρ2, 1) : C∗∗∗; (1− λ, 1)

(−ρ− σ − ρ′R; ρ1, ρ2, 1) : D∗∗∗; (0, 1)


(6.2.8)

where

C∗∗∗ = (1− γ, κ); (1− (ν + 1)/η, 1/η)

D∗∗∗ = (0, 1), (1− β, α); (0, 1), (−µ− ν/η, 1/η)

provided that the conditions are easily obtainable from (6.2.1) satisfied.
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FOURTH INTEGRAL

If in the main integral, we reduce the multivariable H-function into a product of

two H-function by taking p = q = 0; r = 2,further reduce Hm1,n1
p1,q1

to the reduced

Green function Kθ
α,β[19, p.11, eq. (10)] and Hm2,n2

p2,q2
to the Lorenzo-Hartley R-

function Rq,u[19, p.14, eq.(24)][35, p.3,eq.(13)], SMN to Konhauser biorthogonal

polynomial ZA
N [4, p.165,eq.(A.12)] and take ` = 1, σ1 = σ2 = λ2 = λ3 = σ′ =

λ′ = 0 we arrive at the following integral after a little simplification:∫ a

0

xρ+ρ1+ρ2(u+1−q)−1(a− x)σ[1 + (bx)]−λ−λ1λ(η)µ,ν(z3x
ρ3(a− x)σ3)ZA

N [(Y xρ
′
)1/k; k]

(6.2.9)

Kθ
α,β[z1x

ρ1(1 + bx)−λ1 ]Rq,u(z2, x
ρ2)dx

=
1

αz1
aρ+σ

N∑
R=0

(−N)RΓ(1 + A+ kN)(Y aρ
′
)R

N !Γ(1 + A+ kR)R!

H0,2:2,1;1,1;2,1;1,0
2,1:3,4;1,2;2,2;0,1



z1a
ρ1

(−z2)aρ2q

z3a
ρ3+σ3

(ab)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A# : C#;−

B# : D#; (0, 1)


(6.2.10)

where

A# = (1− λ;λ1, 0, 0, 1), (1− ρ−Rρ′; ρ1, ρ2q, ρ3, 1)

B# = (−ρ− σ −Rρ′; ρ1, ρ2q, (ρ3 + σ3), 1)

C# = (1, 1/α), (1, β/α), (1,
α− θ

2α
); (0, 1); (−σ, σ3), (1− (ν + 1)/η, 1/η)

D# = (1, 1/α), (1, 1), (1,
α− θ

2α
), (1−λ, λ1); (0, 1), (1+u−q, q); (0, 1), (−µ−ν/η, 1/η)

provided that the conditions easily obtainable from (6.2.1) are satisfied.
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FIFTH INTEGRAL

Again, if in the main integral, we reduce the multivariable H-function into a

product of two H-functions by taking p = q = 0; r = 2, and further reduce

Hm1,n1
p1,q1

, Hm2,n2
p2,q2

into Miller-Ross Et & Ct functions[19, p.14, eq. (21,22)] respec-

tively, SMN to Brafman polynomial BM
N [4, p.165,eq.(A.11)] and take ` = 1, σ1 =

σ2 = λ1 = λ3 = σ′ = λ′ = 0 we get the following new integral involving the

product of λ
(η)
µ,ν , BM

N , Et and Ct after a little simplification:∫ a

0

xρ−γ(ρ1+ρ2)−1(a− x)σ[1 + (bx)]−λ+λ2γλ(η)µ,ν(z3x
ρ3(a− x)σ3)BM

N [α1, ..., αp; β1, ..., βq : Y xρ
′
MM ]

Exρ1 (γ, z1)Cxρ2 (1+bx)−λ2 (γ, z2)dx

= aρ+σ
[N/M ]∑
R=0

(−N)MR(α1)R...(αp)R(Y aρ
′
)R

(βR...(βq)R)R!

H0,2:1,1;1,1;2,1;1,0
2,1:1,2;1,3;2,2;0,1



−z1aρ1

(z2a
ρ2)2

z3a
ρ3+σ3

(ab)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A′ : C ′;−

B′ : D′; (0, 1)


(6.2.11)

where

A′ = (1− λ; 0, λ2, 0, 1), (1− ρ−Rρ′; ρ1, ρ2, ρ3, 1)

B′ = (−ρ− σ −Rρ′; ρ1, ρ2, (ρ3 + σ3), 1)

C ′ = (0, 1); (0, 1); (−σ, σ3), (1− (ν + 1)/η, 1/η)

D′ = (0, 1), (−γ, 1); (0, 1), (−γ, 2), (1− λ, λ22); (0, 1), (−µ− ν/η, 1/η)

provided that the conditions easily obtainable from (6.2.1) are satisfied.
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SIXTH INTEGRAL

Now, we take r = 1, ` = 1, p = q = 0 in the left hand side of (6.2.1) and further

reduce Hm1,n1
p1,q1

to Lorenzo and Hartley Gq,u,r function[35][14, p.64, eq.(2.3)] and

SMN to Cesaro polynomial g
(s)
N [4, P.167, eq. (A.18)], we arrive at the following

result after a little simplification:∫ a

0

xρ−ρ1(rq−u−1)−1(a− x)σ[1 + (bx)]−λ+λ1(rq−u−1)λ(η)µ,ν(z2x
ρ2)g

(s)
N [Y xρ

′
(a− x)σ

′
]

(6.2.12)

Gq,u,r[z1, x
ρ1(1 + bx)−λ1 ]dx

=
1

Γ(r)
aρ+σ

N∑
R=0

(−N)R(s+ 1)N(Y aρ
′+σ′)R

N !(−s−N)R
Γ(σ + σ′R + 1)

H0,2:1,1;2,0;1,0
2,1:1,3;1,2;0,1


−z1aρ1q

(z2)a
ρ2

(ab)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A′′ : C ′′;−

B′′ : D′′; (0, 1)


(6.2.13)

A′′ = (1− λ;λ1q, 0, 1), (1− ρ−Rρ′; ρ1q, ρ2, 1)

B′′ = (−ρ− σ − σ′R− ρ′R; ρ1q, ρ2, 1)

C ′′ = (1− r, 1); (1− (ν + 1)/η, 1/η)

D′′ = (0, 1), (1 + u− rq, q), (1− λ, λ1q); (0, 1), (−µ− ν/η, 1/η)

provided that the conditions easily obtainable from (6.2.1) are satisfied.

If we take ` = 1, λ = λ′ = λi = 0(i = 1, ..., r) and reduce λ
(η)
µ,ν to unity in

the main integral (6.2.1), we get a known integral obtained by Gupta, Goyal and
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Verma[15, p.69, eq.(3.1)].

Again if we put a = Y = ` = ρ′ = 1, r = 2, λ = λ′ = σ′ = λi = 0(i = 1, ..., r),

reduce λ
(η)
µ,ν to unity and general class of polynomial into Jacobi polynomial in

the main integral (6.2.1), we arrive at an integral by Prasad and Singh[39, p.126]

The importance of the findings of this chapter lies in the fact that the main

integral as well as all of its six special cases given here are unified in nature and

of interest in themselves. Moreover, the function λ
(η)
µ,ν involved in the integrand

of the main integral has been used by several authors to solve some homogeneous

differential equations of fractional order and Volterra integral equations. Further,

they may find applications in practical problems occurring in several branches of

engineering.
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