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ABSTRACT

Many authors did a lot of study regarding information divergence
measures and applied these divergences in several fields in informa-
tion theory. Jain and Saraswat introduced new generalized divergence
(2012) and did a detail work. Now in this thesis, we extends that work
with new information inequalities and their applications. The sum-
mary of the thesis is as follows:

Chapter 1 introduces the whole thesis.

Chapter 2 introduces several new information inequalities on new gen-
eralized divergence together with their applications and numerical ver-
ification.

Chapter 3 introduces new divergence measures of Csiszar’s class, their
bounds and their applications.

Chapter 4 introduces and characterize new series of divergences, intra
relations and their applications.

Chapter 5 introduces several important and interesting relations among
several new divergences and several well known divergences.

Chapter 6 introduces new generalized divergence for comparing finite

number of discrete probability distributions.
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INTRODUCTION

1.1 Historical Background

One of the most prominent features of 20th century technology has been the de-
velopment and exploitation of new communication media. Concurrent with the
growth of devices for transmitting and processing information, a unifying theory
known as Information Theory was initiated primarily by one man the U.S. elec-
trical Engineer Claude E. Shannon, whose initial ideas appeared in an article “A
Mathematical Theory of Communication”in the Bell System Tech. J. [83]. The
term “Information Theory”does not possess a unique definition. Broadly speak-
ing, information theory deals with the study of problems concern information
processing, information storage, information retrieval and decision making.

The first person who studied all this was Harry Nyquist in 1924 [72], 1928 [73] and
by Hartley in 1928 [36] who discovered the logarithmic nature of the measure of
information. Harry Nyquist published the paper “Certain Factors Affecting Tele-

graph Speed”in which he gave the relation W = K logm, where W is the speed of
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transmission of intelligence, m is the number of different voltage levels to choose
from at each time step and K is a constant. He quantified “Intelligence” and the
“Line Speed”by which it can be transmitted by communication system. In 1928
Ralph Hartley published a paper titled “Transmission of Information”[36] and
used the word information as a measurable quantity and quantifying information
as H =log S™ = nlog .S, where S was the number of possible symbols and n the
number of symbols in a transmission. Around that time, only Wiener [114] also
came up with results similar to those of Shannon.

This field is the intersection of Mathematics, Statistics, Computer science, Physics,
Neurobiology, and Electronics engineering. Its impact has been crucial to the suc-
cess of the Voyager missions to deep space, the invention of the compact disc,
the feasibility of mobile phones, the development of the Internet, the study of
linguistics and of human perception, the understanding of black holes, and nu-
merous other fields. Important subfields of information theory are source coding,
channel coding, algorithmic complexity theory, algorithmic information theory,
and measures of information.

In 1974, Dutta [32] in his paper showed that information theory can also be
applied in Number Theory, Quantum Mechanics, Qualitative Dynamics and Ap-
proximation Theory. The concepts introduced by Shannon, have also been applied
with enormous degree of success in a number of fields such as Biology, Psychology,
Economics, Statistics, Thermodynamics, Language Questionnaire theory, Prob-
ability theory, Communication theory, Cybernetics and many more. Since its

inception it has broadened to find applications in many other areas,including
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Statistical inference, Natural language processing, Cryptography, Networks other
than communication networks as in neurobiology, the evolution and function of
molecular codes, Model selection in ecology, Thermal physics, Quantum comput-

ing, Plagiarism detection and other forms of data analysis.

1.1.1 Shannon’s entropy

Without essential loss of insight, we have restricted ourselves to discrete proba-
bility distributions, so let
Ty ={P = (p1,p2.ps,-pn) 10 >0, _pi=1}n>2 (1.1.1)
i=1
be the set of all complete finite discrete probability distributions. If we take
pi > 0 for some i = 1,2, 3...,n, then we have to suppose that 0f (0) = 0f (%) = 0.

Shannon [83] introduced the following measure of information for all P € I',,

H(P)=-Y pilogp:. (1.1.2)
i=1

The expression is famous as Shannon’s entropy or measure of uncertainty.
This function H (P) represents the expected value of uncertainty associated with
the given probability scheme and it is uniquely determined by some rather natural
postulates. The Shannon’s entropy is the key concept in information theory. This
entropy has found wide applications in different fields of science and technology
(Bhattacharyya [10], Boekee [I3], Denbibh etc. all [22], Gallager [33], Goldman
[35], Horowitz [42], Majernik [68], Tverberg [110]). Applications of Shannon’s
entropy to music can be seen in (Siromoney and Rajagopalan [89]). Further

this entropy has also been used extensively in the analysis of the structure of
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languages.

Many authors generalized the Shannon’s entropy and obtained the interesting
relations. Firstly, Renyi [79] introduced the generalization of Shannon’s entropy.
After that, Havrda and Charvat [37], Nath [69], Vajada [112], Arimoto [3], Kapur
([57], [58], [59]) etc., generalized it in different manners.

From 1961, more entropies had been introduced in the literature on information
theory, generalizing Shannon’s entropy. These are well known as parametric,
trigonometric and weighted entropies. Renyi [79] for the first time gave the idea
of parametric entropies. The idea of the trigonometric entropies were initiated
by Aczel and Dacrozy [1] and the idea of weighted entropies were given by Belis
and Guaisu [7]. Later Picard [76] extended it for generalized measures. The list
of these generalized measures including their unified forms can be seen in Kapur

[59] and Taneja [94].

1.1.2 Directed divergence and inaccuracy

Soloman Kullback and Richard-Leibler [63], two national security agency math-

ematicians, studied a measure of information, given by

- Di
K(P.Q)=> pi log. (1.1.3)
i=1 v

for all P, € I'),. This measure has many names given by different authors such
as Relative information, Relative entropy, Directed Divergence, Cross entropy,

Measure of discrimination etc. At the same time, Kullback and Leibler also
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studied a measure, called J-divergence, given by

Di
JPQ=KPQ+KQP) =3 (-a)og?.  (1.14)
i=1 !
We can easily see that K (P, () is non- symmetric whereas J (P, )) is symmetric
with respect to probability distributions P and (). The measure J (P, () was
already studied by Jeffrey [50].

Another important measure of information for a pair of probability distributions

is the inaccuracy measure, introduced by Kerridge [61] and is given by

—> pilogg; (1.1.5)
=1

for all P,Q € I',. When p; = ¢; Vi =1,2,...,n, the measure H* (P, Q) becomes
the Shannon’s entropy H (P). Therefore Kerridge’s inaccuracy is a generalization
of Shannon’s entropy. Also, we can see that H (P), K (P,Q), and H* (P, Q)

satisfy a very interesting relationship given by

H*(P,Q)=H(P)+ K (P,Q). (1.1.6)

Several authors presented alternative ways of generalizing Directed divergence.
Some of those are as follows:

Directed divergence of order ‘r’(Renyi [79])

K" (P,Q)=(r—1)" "og (Zp:qzl T) ,r£1,r>0. (1.1.7)

Directed divergence of type ‘s’(Sharma and Autar [85])

'K, (P,Q)=(s—1)" (prq} 5—1> s#1,5>0. (1.1.8)
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The modified version of the measure ([1.1.8)) is given by

K, (P,Q) =K. (P,Q)=[s(s— )] (prqf‘s - 1) ,s#0,1. (LL9)
i=1
Particularly, we have

lim K7 (P,Q) = lim 'K, (P,Q) = lim °K, (P.Q) = K (P,Q)

r—1

and

lim 2K, (P,Q) = K (Q, P).

50
Some other important generalizations of Directed divergence can be seen in
(Sharma [84], Theil [I07]). The concept of weighted Directed divergence and
weighted Inaccuracy were introduced by Taneja and Tuteja ([90], [01]). Further
results in this direction can be seen in (Bhaker and Hooda [9]), (Hooda and Ram
[40]), and (Hooda and Tuteja [41]). Similar generalizations of Kerridge’s inaccu-
racy exist in the literatures (Kapur [59]), (Sharma and Mittal [86]), and (Taneja

o).

1.2 A Review of Information and Divergence

Measures

As a generalization of the uncertainty theory based on the notion of possibility,
information theory consider the uncertainty of randomness perfectly. As pointed
out by Renyi [79] in his fundamental paper on generalized information measures,
in other short of problems other quantities may serve just as well, or even better,

as measures of information. This should be supported either by their operational



1.2 A Review of Information and Divergence Measures

significance or by a set of natural postulates characterizing them or preferably by
both. Thus the idea of generalized entropies arises in the literature. It started
with Renyi [79] who characterized scalar parametric entropy, which includes Shan-
non entropy as a limiting case.

To design a communication system with a specific message handling capability, we
need a measure of information content to be transmitted. Divergence measures
are for quantifying the dissimilarity among probability distributions. Divergence
measures are basically measures of distance between two probability distributions
or compare two probability distributions. It means that any divergence measure
must take its minimum value zero when probability distributions are equal. So,
any divergence measure must increase as probability distributions move apart.
As to the divergence and inaccuracy of information,Kullback and Leibler [63]
studied a measure of information from statistical aspects of view involving two
probability distributions associated with the same experiment, calling discrimina-
tion function, later different authors named as cross entropy, relative information
etc. It is a non-symmetric measure of two probability distributions P and ). At
the same time they also developed the idea of the Harold invariant, famous as
J-divergence. Kerridge [61] studied a different kind of measure calling inaccuracy
measure involving again two probability distributions.

Sibson [88] studied another divergence measure involving two probability dis-
tributions, using mainly the concavity property of Shannon’s entropy, calling
information radius. Later, Burbea and Rao ([I5], [16]) studied extensively the in-

formation radius and its parametric generalization, calling this measure as Jensen
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difference measure. Taneja ([96], [98]) studied a new measure of divergence and
its two parametric generalizations involving two probability distributions based
on arithmetic and geometric mean inequality.

Sant’anna and Taneja [81] and Sharma and Taneja [87] studied trigonometric en-
tropies from different aspects. The idea of weighted entropies started by Belis and
Guaisu [7], later Picard [76] extended it for generalized measures. After Renyi
[79], other researchers such as Havrda and Charvat [37], Arimoto [3], Sharma
and Mittal [86] etc. interested towards other kinds of expressions generalizing
Shannon’s entropy. Taneja [92] unified some of these. Taneja [93] introduced a
new divergence measure called arithmetic geometric mean divergence measure.
Since our work deals with measures involving two probability distributions, our
focus is more on these measures and generalizations. One of the important issues
in many applications of Statistics and Probability Theory is finding an appropri-
ate measure of distance (or difference or discrimination) between two probability
distributions. Depending upon the nature of the problem, different divergence
measures are suitable. So it is always desirable to develop a new divergence mea-
sure. A number of divergence measures for this purpose have been proposed and
extensively studied. Divergence measures have been demonstrated very useful
in a variety of disciplines such as Bayesian model validation (Tumer and Ghosh
[109]), quantum information theory (Lamberti etc. all [67], Nielsen and Chuang
[71]), model validation (Benveniste etc. all [§]), robust detection (Poor [7§]), eco-
nomics and political science (Theil ([107], [108])), biology (Pielou [77]), analysis

of contingency tables (Gokhale and Kullback [34]), approximation of probability
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distributions (Chow and Lin [19], Kazakos and Cotsidas [60]), signal processing
(Kadota and Shepp [54], Kailath [56]), pattern recognition (Bassat [5], Boekee
[13], Chen [18], Jones and Byrne [53]), color image segmentation (Nielsen and
Boltz [70]), 3D image segmentation and word alignment (Taskar etc. all [106]),
cost- sensitive classification for medical diagnosis (Santos-Rodriguez etc. all [82]),
magnetic resonance image analysis (Vemuri etc. all [I13]) etc.

Also we can use divergence measures in fuzzy mathematics as fuzzy directed di-
vergences and fuzzy entropies (Bajaj and Hooda [4], Hooda [39], Jha and Mishra
[52]), which are very useful to find the amount of average ambiguity or difficulty
in making a decision whether an element belongs to a set or not. Fuzzy infor-
mation measures have recently found applications to fuzzy aircraft control, fuzzy
traffic control, engineering, medicines, computer science, management and deci-
sion making etc. Divergence measures are also very useful to find the utility of
an event (Bhullar etc. all [12], Taneja and Tuteja [91]), i.e., an event is how much
useful compare to other event. Also Bhatia and Singh [I1], Jain and Chhabra

[45] etc. have developed metric with the help of divergence measures.

1.2.1 GCsiszar’s generalized divergence and properties

We start this subsection with a very important function, convex function. Convex
functions play a very important role for information divergence measures in infor-
mation theory. Several information inequalities had been introduced for convex
functions and keep going in this thesis as well. Many authors had introduced gen-

eralized divergences like: Csiszar’s divergence (Ali and Silvey [2], Csiszar [20]),
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Bregman’s divergence (Bregman [I4]), Burbea- Rao’s divergence (Burbea and
Rao [16]), Renyi’s like divergence (Renyi [79]), M- divergence (Salicru [80]), New
generalized divergence (Jain and Saraswat [48]) etc., where they had considered f
as a real, continuous, and convex function on (0, c0). By putting suitable convex
function in these generalized divergences, we can obtain several divergence mea-
sures. So it is very necessary to understand first the definition of convex function,

as follows.

Definition 1.2.1. Conver function: A function f(t) is said to be convex over

an interval (a,b) if for every t1,ts € (a,b) and 0 < X <1, we have

fIMG A+ (=N ta] <A (8) + (1= A) f(ta),

and said to be strictly convex if equality does not hold only if A # 0 or A # 1.
Geometrically, it means that if A, B,C" are three distinct points on the graph of
convex function f with B between A and C, then B is on or below chord AC.

Furthermore, let C' be the set of convex functions f : [0,00) — (—00,00)
continuous at 0, i.e., f(0) = lim;o f (¢), also f is normalized, i.e., f (1) = 0.

Further, let f* € C, defined by

the x- conjugate convex function of f, let a function f € C satisfying f* = f be
called the *- self conjugate.

In order to avoid meaningless expressions in the sequel, let us agree in the fol-

10
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lowing notational conventions.

0f* <%> =tf (g) =1f(0),t € (0,00).
0f (%) =tf" (9) =tf(0),t € (0,00).

t
or () =or (2) -0
o () = e (2) =ejm o

Csiszar’s divergence ([2], [20]) and Jain- Saraswat’s divergence [48] are widely

used due to its compact nature, Specially Csiszar’s divergence, which is given by

Cy (P,Q) = ilqif <§) , (1.2.1)

where f : (0,00) — R (set of real no.) is real, continuous, and convex function
and P,QQ € I',. Cy(P,Q) is a natural distance measure from a true proba-
bility distribution P to an arbitrary probability distribution (). Typically P
represents observations or a precise calculated probability distribution, whereas
@ represents a model, a description or an approximation of P. We note that
Cr(P,Q) = Cp (Q, P) and Cf (P, Q) + Cy- (P, Q) will be a symmetric general-
ized information divergence measure.

The properties (Uniqueness theorem, Symmetry theorem, Range of values the-
orem and Characterization theorem) of Csiszar’s generalized divergence can be
seen in literature by Osterreicher [74]. Osterreicher has discussed axiomatic prop-
erties and some important classes of generalized divergence measures. Now we
are discussing the following fundamental properties of C (P, )), which are being

used in this thesis.

11
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Proposition 1.2.1. (Non negativity) Let f : (0,00) — R be a real, convex
function and (P,Q) € T',, x I',,, then we have

Cr(P,Q) = f(1). (1.2.2)

If f is normalized, i.e., f(1) = 0 then Cf(P,Q) > 0 and C; (P,Q) = 0 if and
only if P=Q, and f s strictly convez.

Proposition 1.2.2. (Convezxity) If the function f is convex and normalized, i.e.,
f7(t) >0Vt >0 and f(1) = 0 respectively, then C;(P,Q) and Cr(Q,P)
are both non-negative and convex in the pair of probability distribution (P,Q) €
I, xT,.

Proposition 1.2.3. (Linearity) If fi and fs are two convex functions such that
F = af; +bfy then Cr (P, Q) = aCy, (P, Q) + bCy, (P,Q) , where a and b are
constants and (P,Q) € I';, x I',,.

Proof: Let FF =af; + bfs, then

Cr (P,Q) = ZqF (g) - Zq (afi +b) (3)

i qi
- pi - pi
=a) 4l (q—) 0 aifs (q—) = aCy, (PQ) +bCy, (P,Q).
i=1 ¢ i=1 ¢
Dragomir [26] introduced the following generalized divergence measure for com-

paring finite discrete probability distributions, given by

AR i Rl S
C}L (PI,PQ,...,Pn,Ql,QQ,...,Qn) :ZZ %1%2%nf di1 di2 din .

=1 =1 i=1

(1.2.3)
Ciszar’s divergence measure is a particular case of this measure for comparing
two discrete probability distributions. Following relation can be seen as well in

the same literature

C}‘ (P17Q1) Z C]% (P1>P27Q17Q2) 2 2 C}l (Ph "'7Pn7Q17 7Qn)
(1.2.4)
Z CJCH_I (Ph ceey Pn+17 Qla "'7Qn+1) Z f (1) .
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1.2 A Review of Information and Divergence Measures

Divergences for comparing more than two probability distributions are useful for
discrimination and taxonomy.

Many authors introduced several divergence measures. These divergences are
very useful in information theory for comparing discrete probability distribu-
tions. These are defined as follows.

Symmetric divergence measures

Symmetric divergence measures are those measures that are symmetric with re-
spect to probability distributions P, Q) € I',,. These measures are as follows.

Triangular discrimination (Dacunha- Castelle etc. all [21])

A(P,Q) = Z % (1.2.5)

Hellinger discrimination (Hellinger [38])
n 2
Pi — /i
h(P,Q) = ZM. (1.2.6)
i=1

Variational distance or [; distance (Kolmogorov [62])

VI(PQ) =) Ipi—al. (1.2.7)

Jain and Srivastava divergence (Jain and Srivastava [49])

n 2

E*(P,Q) = Z% (1.2.8)

Symmetric Chi- square divergence (Dragomir etc. all [31])

V(PR = (PO + QP =3 P ql';iq(ipi a0 (129)

13



1. INTRODUCTION

where x? (P, Q) is the Chi- square divergence ((1.2.19)).
J- divergence (Jeffrey [50], Kullback and Leibler [63])

J(P,Q) =K (P,Q)+ K (Q.P)=Jr(P.Q)+ Jr(Q.P) =Y (p —qmog%

| (1.2.10)
where K (P,Q) and Jg (P, Q) are the Relative entropy and Relative J-
divergence , respectively.

Arithmetic- Geometric Mean divergence (Taneja [93])

N | —

T(P,Q)=5[G(PQ+G(Q,P)]=>) (p" +q") log 2t % (12.11)

— 2 2\/PiGi
where G (P, Q) is the Relative AG divergence ([1.2.20)).

Jensen- Shannon divergence (Burbea and Rao [16], Sibson [88])

1 Di . 2Qz
I(P,Q) =5 [F(PQ)+F(@Q P)= sz o8 +) gilog
+ g i=1 Dit+ i
(1.2.12)
where F' (P, Q) is the Relative JS divergence (|1.2.21]).
Kumar and Chhina divergence (Kumar and Chhina [64])
“(pita)pi—a), pita
S*(P,Q) = log . 1.2.13
( ) ; Pig; 2/piti ( )
Kumar and Hunter divergence (Kumar and Hunter [65])
L(PQ):i(pi—Qi)Qlogmeqz‘ (1.2.14)
’ — pita 2\/piqi
Kumar and Johnson divergence (Kumar and Johnson [66])
~ 0 -a)
Yar (PQ) =) ~—— (1.2.15)
-1 2 (pZQz>2

14



1.2 A Review of Information and Divergence Measures

d- Divergence (Basseville [6])

a1 3y ()

Jain and Mathur divergence (Jain and Mathur [46])

n

3.3
i1 Dig;

Non- symmetric divergence measures

(1.2.16)

(1.2.17)

Non- symmetric divergence measures are those measures that are not symmetric

with respect to probability distributions P, @) € I',. These measures are as fol-

lows.

Relative entropy or Kullback- Leibler distance (Kullback and Leibler [63])

o Di
i=1 ¢

Chi- square divergence or Pearson divergence (Pearson [75])

n 2
Di — qi
G (PQ) =Y L)k
i=1 i
Relative Arithmetic- Geometric divergence (Taneja [93])
— (pi+a pi + 4
G(P,Q) = —— Jlog | — ).
P =3 (15 )es (75"

Relative Jensen- Shannon divergence (Sibson [88])

- 2p;
F(P,Q) =) pilog :
— Di+ ¢

Relative J- Divergence (Dragomir etc. all [28])

LJRQ)Zﬁé@rwmbgC%+%)-

i=1 2q;

15
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1. INTRODUCTION

Parametric symmetric and non- symmetric divergence measures
Some authors defined parametric divergence measures, by which we obtain some

well known existing divergences for some values of parameter. These measures

are as follows.

Relative information of type 's’ (Taneja and Kumar [104])

K, (P,Q) =[s(s—1)] (prqf 5—1>,8#0,1

(150 = PO = KPR =2
Yo piloglt = K (P,Q) =limyy; K, (P,Q) ifs=1 o
b, G pg) Ky (P.Q)  ifs—

1
2
kzizl q; log & L= K (Q,P) =lim, 0 K, (P,Q) ifs=0

Unified Relative Jensen- Shannon and Arithmetic- Geometric divergence of type

's" (Taneja and Kumar [105])

&, (P,Q) = [s(s— 1) [Zpi (p;pq) - 1] 5401

(1yr, @l — IA(PQ) =0, (P.Q) if s — —1
S pilog (prq — F(P, Q) — lim, o @, (P, Q) ifs=0
B > (B5%) log %) =G (P,Q) =lim,,; @, (P,Q) ifs=1
%Z?:l(pi;—fiy:%XQ(QaP):@z(P,Q) ifs=2
(1.2.24)

Relative J- divergence of type s’ (Taneja and Kumar [105])

r(PQ) = (s—1)" Z <pi ; Qi) (pz';(;i%‘) ,s# 1

=1
Ly, eeel LA (PQ) =7 (P.Q) its—0
IS (i — ) log (Wh):%JR(P,Q):hmHTS(P,Q) ifs=1.
7112?:1%—1 (P,Q) =7 (P,Q) ifs=2

(1.2.25)
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1.2 A Review of Information and Divergence Measures

Generalized Jensen- Shannon and Arithmetic Geometric mean divergence (Taneja

[95])

QS (P7 Q)

[s(s— 1) [Zn:( ;ql > <pi"£Qi 8—1],57&0,1,561%

1=1
( n ; i
Ly Beal TN (P,Q) = Q. (P.Q)
: [Zi:l Di IOg p2£lq + Zizl qi log inZqi| =1 (P, Q) - liIns—>0 Qs (P, Q)
= Q41 -2 /e ()] = 4d(PQ) = 24 (P.Q)
Sr B log WL =T (P,Q) = lim,,, 2 (P, Q)

T L (7.0) 0 (P0)

(1.2.26)

Renyi’s ‘a’ order entropy (Renyi [79])

R.(P,Q) :Z

Series of symmetric and non- symmetric divergence measures

D a1 (1.2.27)

gt

These divergence measures are basically series of measures and we obtain infinite
divergences by putting the particular value of parameter.
Jain and Srivastava divergences (Jain and Srivastava [49])

B (P.Q) :i%,m: 1,2,3, ..., (1.2.28)

o1 (pigi) °
where E} (P,Q) = E* (P, Q) is a particular case at m = 1, given by (|1.2.8)).

Jain and Srivastava divergences (Jain and Srivastava [49])

n 2m 2
I (PQ) =Y (P %12,1 exp P9 103 (1.2.29)
-1 (pigi) 2 Pidi

Puri and Vineze divergences (Kafka etc. all [55])

n

(pz' - Q¢)2m
A, (PQ) = ———,m=1,2,3.., (1.2.30)
2 (pi + Qi)2 !

17



1. INTRODUCTION

where A; (P, Q) = A (P, Q) is a particular case at m = 1, given by (1.2.5)).
Chi- m divergences (Vajda [111])
2 - (pi - Qi)Qm
XM(PQ) =) o m =123, (1.2.31)
— g
=1 ?
where x? (P, Q) is a particular case at m = 1, given by (1.2.19).

Now, let us define some means for a,b > 0 that can be seen in literature (Taneja

[101]). The following means are being used in many new relations and for making

22
S (a,b) =14/ ¢ ; = Root mean square. (1.2.32)

new divergences.

2ab

H (a,b) = %% _ Harmonic mean. (1.2.33)
a+b

Ala,b) = ath_ Arithmetic mean. (1.2.34)

2
Ny (a,b) = (M) = Square root mean. (1.2.35)

Ny (a,b) = (ﬁ il ﬁ’) “0 _ N, mean. (1.2.36)

2 2
b+b
Nj (a,b) = % = Heronian mean. (1.2.37)
L. (a,b) azb 4 b = Logarithmi (1.2.38)
L(a,b) = —— a = Logarithmic mean. 2.
loga — logb . &
B (a,b) = Vab = Geometric mean. (1.2.39)
2 b2
C(a,b) = a ib = Contra harmonic mean. (1.2.40)
a
2a® + ab + b?
R(a,b) = Aty Centroidal mean. (1.2.41)
3 a+b

18



1.2 A Review of Information and Divergence Measures

Now for P,QQ € I',,, put a = p; and b = ¢; in above means and then sum over all

1 =1,2,...,n, we obtain

S(P,Q) = Z /pﬁrqz H(P.Q) . p?ziqzl metqz:
NNR@)ZZ(M) N, (P,Q) = Z(\/ﬁ;\/_> W,

=1 i=1

" pi + VPiqi + qi & Pi — G
N3 (P.Q) =) ,L*(PyQ)=Z—7pi#qz»,
— 3 “— log p; —logg;

- P2+ ¢ P2+ pigi + q7
= z’i;O P7 o * 1 R P Fq U e T
izlx/pq (P.Q) = 2 v g Q)= Zl p——

respectively. Here B (P, Q) is the well known Bhattacharya distance (Bhat-
tacharyya [10]). Also we note a good inequality relation among these, by (5.2.47)),
which is
H(P,Q)<B(PQ)< N3 (P,Q) <A(P,Q)
<R(P.Q)<S(P.Q) <C(P.Q).
We can see some small equality relations as well among Triangular discrimination,

Hellinger discrimination and above defined quantities. These are as follows:

A(PQ)=3[C(P,Q) - R(P,Q)] =2[A(P,Q) - H(P,Q)]=2[C(P,Q) - A(P,

=6[R(P,Q) ~ A(P.Q)] = 5 [R(P.Q) ~ H (P,Q)]

and

3

h(PQ)=3[A(P.Q) - N5 (P.Q)]=[A(P,Q) - B(P,Q)] =5 [N:(P,Q) - B(P,Q)].

Now we define some other divergences (Taneja [101]), as follows:

Square root- arithmetic mean divergence

Msa (P,Q) = S(P,Q) — A(P,Q) :i\/@—l- (12.42)
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1. INTRODUCTION

Square root- geometric mean divergence

My (P,Q) = S (P,Q) - B(P,Q) = Z( o p@-qZ). (1.2.43)

Square root- harmonic mean divergence

n 2 2 .
Mgy (P,Q) = S(P,Q) - H(P,Q) =) (y/p" ;ql' —p?ﬁz_q;). (1.2.44)

=1

Some difference of particular divergences can be seen in literature (Taneja [100]),

which are as follows.

Dur (P,Q) = -0 (P.Q) T <P, Q)

——Z IR P (1.2.45)
gErs 8pzqz “oupa|
DwJ<P7Q):%w<P>Q)_J<P7Q)

(1.2.46)

1.2.2 New generalized divergence

We did a detail study about Csiszar’s divergence in previous subsection. Similarly,
Jain and Saraswat [48] introduced and characterized a new generalized divergence,

given by

St (P.Q) = Z af (plzq’), (1.2.47)

=1 v

where f : (0,00) — R (set of real no.) is real, continuous, and convex function
and P, @ € I',,. We can obtain Several well known divergences by suitably defining

the convex function in (1.2.47)). For example:

20



1.2 A Review of Information and Divergence Measures

If we take f(t) = (t — 1)logt in ((1.2.47]), we obtain

7

SHP.Q) = 53 (5 — a0 log (%) = 37n(P.Q).

i=1 '

If we take f (t) = (t_tl)2 in (|1.2.47)), we obtain

n

1 ; — i2 1
Sf(P,Q):§;—(Z;+qq; :§A(P,Q)-

If we take f,, (t) = (i;}l)jn exp (t;l)z, m=1,2,3... in (|1.2.47)), we obtain

— (pi— Qi)Qm (pi — %‘)2 .
St (P,Q) = — exp =N} (P,Q),(Jain and Saraswat [47]).
! 2 G 0"

(1.2.48)
and many more. Where A (P,Q) and Jg (P, Q) are already defined by
and respectively.

Like the fundamental properties of Cy (P, @), There are the following fundamental

properties of Sy (P, Q).

Proposition 1.2.4. (Non negativity) Let f : (0,00) — R be a real, convex
function and (P,Q) € T',, x ', then we have
Sy (P.Q)> £ (1), (1.2.49)

If f is normalized, i.e., f (1) = 0 then Sy (P,Q) > 0 and Sy (P, Q) = 0 if and
only if P = Q, and f is strictly convex..

Proposition 1.2.5. (Convezity) If the function f is conver and normalized, i.e.,
[ (t) >0V t>0and f (1) =0 respectively, then Sy (P, Q) and Sy (Q, P) are both

non-negative and convex in the pair of probability distribution (P,Q) € I';, x T'y,.

Proposition 1.2.6. (Linearity) If fi and fs are two convex functions such that
F = afy + bfy then Sp (P, Q) = aSy, (P,Q) + bSy, (P,Q) , where a and b are
constants and (P,Q) € I';, x T'y,.
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Proof: Let F =af; + bfs, then
. Di + qi - Pi + ¢
SF(P7Q>:Z%F( 50 ):ZQi(af1+bf2)( 2 )
i=1 ¢ i=1 ¢

& i + i = i + Qi
=a) ah (p TS ) +b>aifs (p s ) = aS;, (P,Q) +bSp, (P.Q).
i=1 v i=1

1

Now, we define a relation between Jain and Saraswat’s divergence measure Sy (P, Q))
and Csiszar’s divergence measure Cy (P, ()). This relation can also be seen in lit-

erature (Jain and Saraswat [48]).

Theorem 1.2.1. Let f : (0,00) — R be the differentiable convex function, i.e.,
f"(t) >0Vt >0 and normalized, i.e., f (1) = 0. Then for P,Q € I',,, we have

the following relation

5¢(P.Q) < 505 (P.Q).

Proof: Apply Jensen inequality (|1.3.3)) for the domain I C (0, o), by putting

AM=X=3X =..=X\ =0in (1.3.3), we get

F(52) < 5@+ s

2 2

Now put t; =t and t5 = 1 in above inequality, we obtain

(5 =50

Now take t = % in above inequality, multiply with ¢; for each ¢ and then sum-
mation over from ¢ = 1 to ¢« = n, we obtain the required relation.
Now for a differentiable function f : (0,00) — R, consider the associated func-

tions g : (0,00) = R and h: (0,00) — R, are given by

gt)=0t—=1)1(t) (1.2.50)
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1.3 Information Inequalities and Definitions

and

W) = (t—1) f (%) | (1.2.51)

For g (t) and h (t), we get the followings respectively.

Sy (P,Q) = Es,, (P,Q) = En: (%) f (p" fqi) : (1.2.52)

=1

sea=m, e =3 (B50) r (BE2), e

pay 4q;
€y (P.Q) = Eu, (P.Q) = Z wear (), a2
and -
G (P.Q) = 2., (P,Q) = Z - (M%), (1.255)

where C (P,Q) and Sy (P, () are given by ([1.2.1]) and (1.2.47) respectively.

1.3 Information Inequalities and Definitions

In recent years, several mathematicians, like: S.S. Dragomir, I.J. Taneja and
many more, introduced and characterized information inequalities for compar-
ing probability distributions. Also they derived many relations among several
divergences, mean divergences and evaluated bounds by using that information
inequalities. Specially Taneja ([97], [101], [102], [103]) did a lot of work in in-
equalities involving several means, mean divergences and difference of means.

There are many information inequalities in information and statistics theory. By
defining two of them, we are just giving an idea how these inequalities relate

divergence measures for probability distributions. We start with the following
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information inequality involving Csiszar’s f- divergence ([1.2.1)) and Kullback-
Leibler divergence (|1.2.18]). This inequality is given in literature (Cerone etc. all
[17]) but obtained by using the inequality given by Dragomir [27].

Proposition 1.3.1. Let f : [a, 3] C (0,00) — (—00,00) be an absolutely con-
tinuous and convex function with 0 < a < 1 < f < oo, # [ and o < % <
BYi=1,2,..,n. Then we have the following inequality involving Cy (P, Q) and
K (P, Q) between probability distributions P,Q € ['y,:

0P - [Tl < 2 (k@) —tog B4 A 1171
(1.3.1)

where B = B(a, ) = vaf and A = A(a,3) = # are Geometric and Arith-
metic mean of o and [ respectively, 1 is the identity function, i.e.,l(x) =z V x €

[, B] and
11— flloo = sup |(f'1—f) ()] < oo.

tela,B

We note that, several results can be obtained in terms of Kullback Leibler
divergence by using inequality ((1.3.1)) for appropriate convex function f, for ex-

ample:

For function 1 (1 — \/_)2, we obtain Cf (P,Q) = h(P,Q) (1.2.6)), similarly for

the functions (1) log &L, (¢ — 1)*, tlog ;2% 2 (t—1)logt, tllog ;r/lp (tfl)j(t+1)

etc., we obtain corresponding divergence measures G (P, Q) (1.2.20), x? (P, Q)
L F(PQ) [[220). J(P,Q) L T(P,Q) ([21), ¥ (PQ) ([L29)
etc. In this way, we obtain many relations between Csiszar’s family member and
Kullback Leibler divergence measure.

Dragomir [24] given the following information inequalities as well, which relate
Csiszar’s family members to the well known Chi- square divergence measure

(T.2.19).
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1.3 Information Inequalities and Definitions

Proposition 1.3.2. Let f : [a, 5] C (0,00) — R be a real, convex differentiable
function with 0 < a <1< < o0, a # (.
If P,Q) € T, and satisfying the assumption a < % < B, Vi=1,23,....n, then

we have the following inequalities

0< Brla ) (P.Q) < O (510 -0y -2 (P.Q)) < 4y (a8).
(1.3.2)
where
R CEL VT EELYIL)
Ap(a.B)= 3 (8= a)[F'(5) ~ f (@)

So, by defining suitable convex function like defined for inequality ,
we obtain relations between a particular divergence of Csiszar’s family and Chi-
square divergence.

Apart from all above, now we are giving some definitions. We start with well
known Jensen’s inequality. Jensen [51] introduced and characterized the following

fundamental inequality which are very useful in statistics and probability theory.

Definition 1.3.1. (Jensen inequality): Let f : I C R — R be differentiable
convex on I° (I° is the interior of the interval I), t; € I° N\ >0V i=1,2,...n
and Y1, N, = 1, then we have the following inequality.

f (i Aiti) < En:Aif (ti) - (1.3.3)

If function is concave, then Jensen’s inequality will be reversed.

Corollary 1.3.1. We obtain the Propositions 1.2.1 and 1.2.4 after replacing \;
with q; as Y, ¢; = 1 and t; with % and 4’% respectively for each i =1,....;n in

Jensen’s inequality, by assuming that the function is normalized, i.e., f (1) = 0.
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Definition 1.3.2. (Absolutely continuous) Let I C R be an interval. A function
f 1 — R is said to be absolutely continuous on I if for every e > 034 > 0 such

that
Z|f az)’ <e

for every finite number of non overlapping intervals (a;, b;),i = 1,2...,n with
la;, b)) C I and

Z| a;)| < 0.

Further f s said to be locally absolutely continuous if it 1s absolutely continuous

in [a,b] for every interval [a,b] C I.

Definition 1.3.3. (Total variation and Bounded variation) The total variation of
a real valued or more generally complex valued function f, defined on an interval
la,b] C R is the quantity

np—1

= sup 3211 () = F (a9,

PeB

where the supremum is taken over the set B = {P = (Io, . a:np) : P is a partition of |a,b]}
of all partitions of the interval considered. Further, if f is differentiable and its

deriwative is Riemann- integrable, its total variation is the vertical component of

Z/:\f’(x)\dx-

Now, a real valued function f on the real line is said to be of bounded variation

the arc length of its graph, i.e.,

on a chosen interval [a,b] C R if its total variation is finite, i.e.,

b
:/ |f (z)|dx < oo,

Now, we give a brief idea of the chapters of this work. Chapter 2 introduces
several new information inequalities on new generalized divergence in different

aspects together with their applications in obtaining new relations and bounds
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1.3 Information Inequalities and Definitions

together with numerical verification. Chapter 3 introduces new divergence mea-
sures of Csiszar’s class, their bounds by using existing information inequalities
and their applications. Chapter 4 introduces and characterize new series of diver-
gences, intra relations and their applications. Chapter 5 introduces several im-
portant and interesting relations among several new divergences and several well
known divergences by helping out some algebraic and exponential inequalities.
Chapter 6 introduces new generalized divergence for comparing finite number of
discrete probability distributions.

Lastly further scope of the work, references and candidate’s academic and re-

search profile.
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2

NEW INFORMATION
INEQUALITIES AND
APPLICATIONS

2.1 Introduction

Information inequalities play a very important role in information and probability
theory. Such inequalities are for instance needed in order to calculate the relative
efficiency of two or more divergences. Most of the achievable limits are thus
stated in the form of inequalities involving fundamental measures of information
such as: entropy and information divergence measures.

Ali- Silvey [2] and Csiszar’s [20] introduced the generalized divergence measure,

given by

Cr(P,Q) = ngf (Z—) : (2.1.1)
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

Similarly, Jain and Saraswat [48] introduced new generalized divergence, given

by

Sp(P,Q) =Y aif (pizzq") , (2.1.2)

i=1
where f : (0,00) — Risreal, continuous, and convex function and P = (py, pa, ..., pn) , @ =
(1,92, .-, qn) € T, (Discrete probability distributions). Many divergence mea-

sures can be obtained from this generalized measure by suitably defining the
function.

In this chapter, we obtain various new information inequalities on Sy (P, Q). The
complete chapter is organized as follows: After this introduction section 2.1, we
introduce the new information inequalities in section 2.2 and get the bounds of

the new divergence measure. In section 2.3 , 2.4, and 2.5 new inequalities in

terms of the Chi- square divergence, Variational distance and the Unified Rel-

ative Jensen- Shannon and Arithmetic- Geometric divergence measure of type

's" are introduced respectively, with applications. Further, new information in-
equalities on absolute functions are obtained in section 2.6 and lastly section 2.7
introduces new information inequalities in a different manner on Sy (P, Q) by us-

ing Ostrowski’s inequalities. Section 2.8 concludes the whole chapter.
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2.2 On New Generalized Divergence Measure and Applications

2.2 On New Generalized Divergence Measure

and Applications

In this section, we obtain upper and lower bounds of a new non- symmetric
divergence measure in terms of the well known divergence measures A (P, Q),
2 (P,Q), Jr (P,Q), G (P,Q), and F (P, Q) by using new information inequalities

on Sy (P, Q).

2.2.1 New information inequalities

The following theorem or inequalities are introduced which relate Sy (P, Q) for
two different convex functions. The results are on similar lines to the results
presented by Taneja [95].

Theorem 2.2.1. Let fi,fo : I C (0,00) — R be two convex and normalized
functions, i.e., fi'(t),fy(t) >0Vt >0 and fi (1) = fo(1) = 0 respectively and
suppose the following assumptions.

(i) f1 and fy are twice differentiable on (a, ), 0 < a <1< < oo with o # B.
(ii) There exists the real constants m, M such that m < M and

m < : Eg <M, fI () £0Y 1€ (). (2.2.1)

If P,Q €T, then we have the following inequalities

mez (P’ Q) < Sfl (P7 Q) < MSf2 (P7 Q) (2‘2‘2>

Proof:Let us consider two functions

Fo (8) = f1(t) —mf2 (1) (2.2.3)

and

Py (t) =Mf(t) = fi (1), (2.2.4)
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where m and M are the minimum and maximum values of the function % Vie
2

() =f(1)=0=F,(1)=Fy(1)=0 (2.2.5)

and the functions f; (t) and f; (t) are twice differentiable. Then in view of (2.2.1)),

we have

R0 =0 -mit 0= 0| B0 w20 @20
and

i =MEO-f0=g0 - 5020 @2

In view (2.2.5), (2.2.6) and (2.2.7)), we can say that the functions F,, () and

Fy (t) are convex and normalized on (a, f3).

Now, with the help of linearity property and non- negativity, we have

SFm (P> Q) = Sfl*mfz (P7 Q) = Sfl (P7 Q) - mez (Pv Q) >0 (228)

and

SFM (P7 Q) = SMfQ_fl (Pv Q) = Msz (PvQ) - Sfl (P7 Q) > 0. (2'2'9)

From (2.2.8) and ([2.2.9)), we get the result (2.2.2)).

2.2.2 New divergence measure and properties

Divergence measures are basically measures of distance between two probability

distributions or compare two probability distributions. Depending on the nature
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2.2 On New Generalized Divergence Measure and Applications

of the problem, different divergence measures are suitable. So it is always desir-
able to develop a new divergence measure.

Let f:(0,00) — R be a mapping, defined as

f0 =i ="" vt 000 (2.2.10)
1 \/Z ) ) .
1.5}
1.0}
051
05 l.IO 1.I5 2.I0

Figure 2.1: Convex function fi (t)

For this function, we obtain

2

Sy (P, =S5y (P L* (P, 2.2.11
f( , Q) f1< ,Q) = Q) = Z 2% pﬁ-qz ( )
and
/ _(t_l)(3t+1) 1" 3t2+2t+3
O e (IR S N CERE)

Since f'(t) > 0 and f; (1) = 0, therefore f; (¢) is strictly convex and normalized
respectively.

Moreover by the properties of Sy (P, Q), we see that L* (P, () > 0 and convex
in the pair of probability distribution (P, Q) € T',, x I';, and L* (P, Q) = 0 (Non-
degeneracy) if P = @ or attains its minimum value when p; = ¢;. We can also

see that L* (P, Q) is non- symmetric divergence w.r.t. P and Q as L* (P, Q) #

L*(Q, P).
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

2.2.3 Bounds of new divergence measure

Now, we evaluate bounds of L* (P,() in terms of other symmetric and non-
symmetric divergence measures by using new information inequalities ([2.2.2)).

Proposition 2.2.1. For P,Q € I, and 0 < a < 1 < 8 < oo with a # (3, we

have
Vol itz p g <1 (g < VEEET N (),
(2.2.13)
where A (P, Q) is defined by (1.2.5).
Proof: Let us consider
2

f) = ! tl) t e (0,00)

and
2 -1 2
Bn="S =2 (2214

Since fY (t) >0Vt > 0and fo (1) =0, so fo (t) is strictly convex and normalized

function respectively. Now for fs (t), we get

1o~ (pi — Qi)2 1
S, (PQ)==-S"Li—4%) _ A p Q). 2.2.15
Now, let g () = ggg _ Vi3 ;rzt+3 and ¢ (t) = % S0ViE>0.

It is clear that g () is always strictly increasing in (0, 00), so

Va (3a? + 2a + 3)

m = tei(r(ljﬁ)g (t)=g(a) = 3 . (2.2.16)
2
M :tGS(u%)g(t) =9(p) = VB35 ;2ﬂ+3)- (2.2.17)

The result (2.2.13)) is obtained by using (2.2.11)), (2.2.15)), (2.2.16),and (2.2.17) in
229).
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2.2 On New Generalized Divergence Measure and Applications

Proposition 2.2.2. For P,Q €T, and0 < a <1 < B < oo with a # 3, we have

362 +26+3 . 3a? +2a + 3
32032 3202
where x? (P, Q) is defined by .
Proof: Let us consider
f2(t) = (t—=1)*,t € (0,00)
and
) =20t—1),f 1) =2 (2.2.19)

Since f5 (t) >0Vt > 0and fy (1) =0, so fy () is strictly convex and normalized

function respectively. Now for f5 (), we have

I s (pi—aq)® 1
Sp(P.Q) =7 > % =X (PQ). (2.2.20)
i=1 ¢
" 2 3(t2+2t+5
Now, let g (t) = }”8 = S35 and g/ (t) = _3(e245) e ) coveso.

It is clear that g () is always strictly decreasing in (0, 00), so

. 362 +268+3
m = inf t) = = 2.2.21
nt (0 =g () = 2:221)
3a% + 2a + 3
M= sup g(t) =g(a) = ———. (2.2.22)
te(a,B) S8a2

The result (2.2.18]) is obtained by using (2.2.11]), (2.2.20)), (2.2.21),and (2.2.22)) in

22.2).

Proposition 2.2.3. For P,QQ € ', and 0 < a < 1 < 8 < oo with a # [, we

have
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

(i) If 0 < o < 1, then

1 § 1 3o+ 20 +3 332 +28+3
—Jr (P L* (P — Jr (P )
9 R( 7Q>§ ( 7Q)S8ma‘r 05%(1—{—04) ) ﬁ%(l—i—ﬁ) R( 7Q)
(2.2.23)
(ii) If « = 1, then
1 . 362428+ 3
—Jp (P L* (P —Jp (P 2.2.24
where Jr (P, Q) is defined by (1.2.29).
Proof: Let us consider
fo(t) = (t—1)logt,t € (0,00)
and
—1 1
A =" g gy = (2.2.25)

Since f5 (t) >0Vt > 0and f2 (1) =0, so fy () is strictly convex and normalized

function respectively. Now for f; (t), we obtain

n

S (PQ) = %Z (pi — i) log (pi fqz') — %JR (P,Q). (2.2.26)

i=1

Now, let ¢ (t) _ f{i(t) _ 3242643 0 q (t) _ M7 q" (t) _

F®) T g (140 8¢5 (144)2 16t3 (1+1)3

Ifg(t)=0=>t=1-3,—3.
It is clear that ¢’ (t) < 0in (0,1) and > 0 in [1, 00), i.e., g (¢) is strictly decreasing
in (0,1) and increasing in [1,00). So ¢ (¢) has a minimum value at ¢ = 1 because

g (1)=1>0.So

m= inf g¢g(t)=g(1)=1. (2.2.27)

te(0,00)
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2.2 On New Generalized Divergence Measure and Applications

(i) If 0 < @ < 1, then

_ B _ 3’ +2a+3 36°+26+3
M—tesal?ﬁ)g(t)—max[g(a)yg(ﬁ)]—mfw W10 43015

(2.2.28)

(ii) If & = 1, then

362428+ 3
t:gi)g( )=9(B) e

The inequalities ([2.2.23]) and (2.2.24]) are obtained by using ([2.2.11]), (2.2.26]),
£227), £.2.29) and (2.2.29) in (2.2.2).

(2.2.29)

Proposition 2.2.4. For P,QQ € T, and 0 < a < 1 < 8 < o0 with a # [, we
have
(i) If 1 < 8 <2.09, then

302 4+ 20+ 3

3
4oz

1.678G (Q,P) < L* (P,Q) < G(Q,P). (2.2.30)

(i) If 5 > 2.09, then

2492 249
min {30‘ R S f“’] G(Q.P) < L*(P.Q)
daz 45 (2.2.31)
2 2 2 2 e
< maz {3@ + 3a+3’3ﬂ + 36+31 G(Q.P),
42 433
where G (P, Q) is defined by (1.2.20).
Proof: Let us consider
fo (t) =tlogt,t € (0,00)
and
1
fo(t) =1+logt, fo (t) = T (2.2.32)
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

Since fY (t) >0Vt > 0and fo (1) =0, so fp (t) is strictly convex and normalized

function respectively. Now for f; (¢), we have

— (pi+a i + ¢
P = 1 = P). 2.2.
5.0 = ) (5 eyt =@ p) (22.33)
_ M _ 3242143 s (37—2t-9) o 3(—242t+15)
Now, let ¢ (t) = O = 43 and ¢’ (t) = s pak (t) = ——

If ¢/ (t) = 0 = t = 2.09, —1.430.

It is clear that ¢’ (t) < 0 in (0,2.09) and > 0 in (2.09,00), i.e., g (t) is strictly
decreasing in (0, 2.09) and strictly increasing in (2.09, 00). So ¢ (t) has a minimum
value at ¢ = 2.09 because ¢” (2.09) = 0.210 > 0. So

(i) If 1 < B <2.09, then

m= inf g(t) = g(2.09) = 1.678. (2.2.34)
30?4+ 2a+3
M= sup g(t)=g(a) = ———. (2.2.35)
te(a,B) 4oz
(ii) If B > 2.09, then
. . o [3a® +2a+3 362+25+3}
m = inf t) =min|g(a), = min , , .
Jut 90 = minlg(a) g (5)] = min |22 o
(2.2.36)
302 +2a+3 38°4+28+3
M= sup g(0) = maly (@) g (3)] = mae | 2122 SEAITED]
te(a,B) 4oy 4ﬁ2
(2.2.37)

The inequalities (2.2.30) and (2.2.31]) are obtained by using (2.2.11]), (2.2.33),
[@-2.34), [£-2.35), [£.2.36) and (2.2.37) in (2.2.9).

By the similar approach, we obtain the bounds of L* (P, @) in terms of divergence

measure F' (P, Q). The result is as follows:
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2.2 On New Generalized Divergence Measure and Applications

For f, (t) = —logt, we obtain

(i) If 0 < a < 0.47, then

302 +2a+3 382 +28+3

1.678F (Q,P) < L™ (P,Q) < max ; , : F(Q,P).
4oz 432
(2.2.38)
(ii) If 0.47 < & < 1, then
302 +2 3 3682 +2 3
St o p << B 00 P 2239)
4oz 432
where F' (P, Q) is defined by ((1.2.21])).
0.20 -
018 4 T CFRE
016 | ———-2@x .
014 | oo ey !
002 { _____ —_— ' i
010 { - _ ’
0.08 - A R
006 | 8 QY % -,l é,;v
0.04 - \Z /
002 - . 2
0.00 . \L i
0.00 0.20 L 040 0.60

Figure 2.2: Comparison of the well known divergences with L* (P, Q)

Figure[2.2shows the behavior of L* (P, Q), F (P,Q), G (P,Q), T (P,Q), I (P,Q),
and h (P, Q). We have considered p; = (a,1 —a),q; = (1 — a,a), where a € (0, 1).

It is clear from Figure that the L* (P, Q) has a steeper slope than all others.
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

2.3 New Information Inequalities in Terms of

Chi- square Divergence and Applications

In this section, new information inequality is introduced and characterized on
St (P, @) in terms of the well known Chi- square divergence and this inequality is
taken for evaluating the relations among some standard divergences with the Chi-
square divergence. Numerical verifications of the obtained relations are done as
well by considering two discrete probability distributions: Binomial and Poisson.
Now the following lemma is important for proving the upcoming new information
inequality. This lemma has been obtained from literature (Dragomir etc. all [30]).

Lemma 2.3.1. Let ¢ : [a,b] C R — R be an absolutely continuous and differen-

tiable function, and there exists the constants m, M € R, such that
m<Y (t) < MVtelab.

Then, we have

¥ (a) + 9 (b)
2

b
_bia/@/J(t)dt‘gé(b—a)(M—m). (2.3.1)

Proof: We start with the following identity that is obvious by using integra-

tion by parts.

w(a)—gww) _bia/abwt)dt:bia/ab (t_“;b>¢/(t)dt.

We observe that

bia/ab (t_a;rb>w/(t)dt:bia/a” (t_a—gb> (w,w_m;M)dt

and since

V' (t) Vtela,bl.

_m+M <M—m
2 - 2
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and Applications

So we deduce that

b a+b , m+ M 1 M—m [°
[l o )al <

M—m
=3 (b—a).

1
b—a

2.3.1 New information inequalities

Now, we introduce new information inequality in terms of the well known Chi-
square divergence measure. The results are on similar lines to the results pre-

sented by (Dragomir etc. all [30]).

Theorem 2.3.1. Let f : (0,00) — R be a mapping which is normalized, i.e.,
f(1) =0 and f" is locally absolutely continuous on [a, ] C (0,00) then there
exists the constants m, M € R with m < M, such that

m< ") <MVte (a,p).

IfP,Qel, and 0 < a <1 < f < oo with a # (3, then we have the following

imequality

5/(PQ) - 355, (PQ)| < HOT-m) P (RQ). (232)

where Eg,, (P,Q) is defined by :
Proof:Put ¢ (t) = f'(t), b=t € (o, 5) and a = 1 in (2.3.1)), we get

Or
1

£ 5= DI @+ 7] < 5= 00—, (233)

Now put t = ’%,i =1,2,3...,nin 1} we obtain

bi 4 Pi =) | (Pt / 1 (pi — a)”
’f( 2¢; >_ 4q; [f( 24 )"‘f(l)Hﬁﬁ(M—m)q—?
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

Now multiply the above expressions by ¢; and sum over all = 1,2,3...,n by
taking into account > »  p; = Y i, ¢; = 1, we obtain

Z aif (pl+Qz) _%i(ﬁi;%)f (Pi;(;iqi)‘ S%(M—m)zw_

i=1 24; i=1 =1 &

Or

5/(P.Q) - 35, (PQ)| < 35 (M — m)* (P.Q).

Hence prove the inequality (2.3.2)).

2.3.2 Application of new information inequalities

Now, we obtain relations among standard divergence measures: Relative JS di-
vergence, Relative AG divergence, Relative J- divergence, and Triangular dis-
crimination with Chi- square divergence by using new inequalities ([2.3.2)) (taking

only convex functions here).

Proposition 2.3.1. For PQ €T, and0 < a <1< [ < oo, # [, we have

IG(P,Q)— F(P,Q)| < % (%;) 2 (Q.P), (2.3.4)

where x* (P,Q), G (P,Q), and F (P,Q) are already defined by (1.2.19), (1.2.20),

and (|1.2.21]) respectively.

Proof: Let us consider

f(t)=tlogt,t >0,f(1)=0,f (t) =1+logt and f" (¢t) = 1

Since f"(t) >0Vt >0and f(1) =0, so f () is strictly convex and normalized

function respectively.

42



2.3 New Information Inequalities in Terms of Chi- square Divergence
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Now for f (t) and f’ (t), we get the followings.

Sr(P.Q) =) (]%) log pl;; % —GQ.p). (2.3.5)
i=1 ¢

"~ (pi— a Pi+ G "~ (pi— g Di T q;

im1 2q;
2q; o ( Di + %’) 2q;
= = q; — log
Z: ( > Pz’ + qi ; 2 Pi + G
i [ gi <pz~ - Qi> 2q; ]
q; log log
2
=1
n

1
pz+Qz pi+Qi
2q; Pi + g DPi + i
= i 1o + lo
;{q Srita ( 2 ) S ]
=F(Q,P)+G(Q,P).

(2.3.6)
Now, let g (t) = f"(t) = } and ¢’ (t) = —% < 0.
It is clear that g (¢) is always strictly decreasing in (0, 00), so
it g(6)=9(5) = - (237
m= in = = —. 3.
(o)’ I B
1
M= sup g(t) =g(a) = o (2.3.8)

te ()

The result (2.3.4]) is obtained by using (2.3.5)), (2.3.6), (2.3.7) and (2.3.8) in

(2.3.2)), after interchanging P and Q).

Proposition 2.3.2. For P,Q €T, and 0 < a <1< [ < oo,a # (3, we have

(P -a Pl < P EIED ep o) a9

where A (P,Q), x*(P,Q), and Jr (P,Q) are defined by (1.2.5), (1.2.19), and
respectively.
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

Proof: Let us consider

1+t
2

f(t)=(t—1)logt,t>0,f(1)=0,f(t) = %+logtandf”(t) =

Since f"(t) >0Vt >0and f(1) =0, so f(¢) is strictly convex and normalized
function respectively.

Now for f (t) and f’(t), we get the followings.

S/ (P,Q) = 12 (i — ) log (pg;%‘) = 2 n(P.Q). (2.3.10)
i=1 v
1 i T4 - (Pz‘ - )
o (01 =15 () 4 1§
K z—l o Pt (2.3.11)

[JR (P,Q) +A(P,Q)].
Now, let g (t) = f” (t ) = and ¢/ (t) = -3 < 0.

+3

It is clear that g () is always strictly decreasing in (0, 00), so

m = tei(rgﬁ)g (t)=9(B) = 1;—25 (2.3.12)
M= sup g(t)=g(a)= ! iy (2.3.13)

te(o5) o?

The result (2.3.9) is obtained by using (2.3.10)), (2.3.11)), (2.3.12) and ([2.3.13)) in

2.3.2).

2.3.3 Numerical verification of obtained results

By using new information inequalities (2.3.2)), relations among well known diver-
gences have been obtained mathematically with Chi- square divergence in last
subsection. Now, in this subsection, we give an example for calculating the di-
vergences G (P,Q), F (P,Q), A(P,Q), Jr(P,Q), x*(P,Q), x*(Q, P) and verify
the inequalities ([2.3.4)) and -, numerically.
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Example 2.3.1. Let P be the Binomial probability distribution with parameters
(n=10,p=0.7) and Q its approximated Poisson probability distribution with

parameter (A =np = 7) for the random variable X , then we have

T 0 1 2 31 415 0 7 8 9 10
pi~ | .0000059 | .000137 | .00144 | .009 | .036 | .102 | .200 | 266 | .233 | .121 | .0282
¢~ | .000911 | .00638 | .022 |.052|.091|.177 | .199 | .149 | .130 | .101 | .0709

% ~ | .503 010 532 | 586 | .697 | .788 | 1.002 | 1.392 | 1.396 | 1.099 | .698

Table 2.1: Evaluation of Binomial and Poisson probability distributions

By using Table we obtain the followings.

a(=.503) < p’é*q‘?” < B (= 1.396). (2.3.14)
P,Q) = R ) B T2 &~ .0746. 2.3.1
G (P,Q) ;(2>og<2i) 0746 (2.3.15)
11 2p
F(P,Q)=Y p;lo ( d )%.0842. 2.3.16
(P.Q) ; 3 e ( )
= (0 - )
APQ) =Y T2 ~ 1812, 2.3.17
( ) ; Di + ¢ ( )
11 p—f-(]
Jr (P,Q) = Zl (pi — q;) log (2—) ~ .1686. (2.3.18)
11 ( o ')2
P =Y % ~ .3208. (2.3.19)
i=1 i
— (pi — @)
X (Q,P) =) — ~1.2260. (2.3.20)

i=1 i

Put all approximated numerical values from ([2.3.14)) to (2.3.20) in results ([2.3.4)

and (2.3.9)), we obtain the followings numerical results

.0096 < .0973 and .0126 < .1942
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

respectively. Hence verified the new inequalities numerically for p = 0.7.

Remark 2.3.1. In a similar manner, we can verify the inequalities for different
values of p and q and for other discrete probability distributions as well, like;

Negative binomial, Geometric, Uniform etc.

2.4 New Information Inequalities in Terms of

Variational Distance and Applications

In previous section, new information inequality has been obtained in terms of
X2 (P,Q). Now, in this section, new information inequality is introduced and
characterized on Sy (P, Q) in terms of the well known Variational or /; distance
V (P, Q) and this inequality is taken for evaluating the relations among standard
divergences with the Variational distance.

Let us begin with an important proposition for proving the new information
inequality. This proposition with proof can be seen in literature (Dragomir etc.
all [29]).

Proposition 2.4.1. Let ¢ : [a,b] C R — R be a differentiable function and is
of bounded wvariation on [a,b], i.e., A’ () = f:WJ’ (t)|dt < oo. Then for all

u € [a,b], we have

g(b;a+‘u—a+b‘)/ﬂ;(¢). (2.4.1)

[ ewa—ve-a .

Now for all uj,uy € [a,b], if we put w = w; and summing over i, we get the

following

/abwdt— (b;a> S0 ()

i=1

a+b b
w— DAaw».
(2.4.2)

b—a 12
< —
<[5 s
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and Applications

2.4.1 New information inequalities

Now we introduce new information inequality on Sy (P, @) in terms of well known
Variational distance. The results are on similar lines to the results presented by

(Dragomir etc. all [29]).

Theorem 2.4.1. Let f : [a, 5] C (0,00) — R be a twice differentiable function
which is normalized, i.e., f (1) =0 and f" is of bounded variation on |a, (], i.e.,
AZ(f) = D1 ()] di < oo

IfP,Qel, and 0 < a <1 < f < oo with a # (3, then we have the following

mequality

V(P.Q) A% (f), (2.4.3)

N | —

S¢(P.Q) ~ 35, (P.Q)| <

where Eg,, (P,Q) is defined by :

Proof:

Case I (for 1 <w): Put ¢ = f,uy =a=1,and ug = b =u € [o, 8] in (2.4.2]), we

obtain
[ roa- (T s )
S[u—1+1(‘1_u+1‘ u_u;1’>]Alf(f,)
Or
rw-r- () rw )| < (S5 ) aren
Or
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

Case II (for u < 1): Put ¢ = f',u; =a =u € |, 5], and ug = b =1 in (2.4.2)),

we get similarly

< (I—u) A, (f) < (1—u) AZ(f).

- (S50 £ w)

Or

Fw- (M) @ @) < -0 < A=) AL @245

By using together (2.4.4]) and ([2.4.5)), we obtain respectively

<|u—1] A% (f). (2.4.6)

- (M5 ¢ £ )

Now put u = %,i =1,2,3...,nin 1} we obtain

‘f (pi;(;,%) B <pi4:]'%‘) [f/ (PiQ—iC;Qi) 4/ (1)” <

Now multiply the above expression by ¢; and sum over all : = 1,2, 3..., n by taking

into account Y ., p; = > ., ¢ = 1, we get the desire result (2.4.3).

Pi — 4q;

2q;

AL ().

2.4.2 Relations with the Variational distance

In this subsection, we obtain relations among the standard divergence measures:

F(P,Q),G(P,Q), Jr(P,Q), and A (P,Q) by using new inequality (2.4.3]), with

V (P, Q) (taking only convex functions here), where V' (P, Q) is defined by (1.2.7)).

Proposition 2.4.2. For PQ €T, and0 < a <1< < oo, # [, we have

g

Gra-rrQl <o (L)virg. (247)
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Proof: Let us consider

F(t) =tlogt,t >0, F(1) =0, f' (£) = 1+ logt and f” (£) %

Since f”(t) >0Vt >0and f (1) =0, so f(t) is strictly convex and normalized
function respectively.

Now for f (t) and f’(t), we obtain the followings respectively.

S (PQ) =3 (Z%) 0" = 6(Q.P). (2.48)
i=1 v

Di — G pi+ “~ (pi— a pi+ 4
1+ log——| = 1
2 ) { o 2¢ } Z( 2 ) o8 2q;

2q; i + Qi 2q;
gilog - log

2q; i + i i + i
wlog 2y (P8 ) 10" L8| p(Q.P) 1 G Q).

(2.4.9)
Ag(f’):/j\f”(tﬂdt:/j Hdt:/f%dtzlog (g) (2.4.10)

The result (2.4.7)) is obtained by using (2.4.8), (2.4.9), and (2.4.10)) in (2.4.3),

after interchanging P and Q.

Proposition 2.4.3. For P,Q €T, and 0 < a <1< [ < oo,a # 3, we have

B—o B

17 (P,Q) — A(P,Q)| <2 (Q—BHO%) V(P,Q). (2.4.11)

Proof: Let us consider

14+t
t2

f@)=@t—1logt,t>0,f(1)=0,[f(t)= % +logt and f" (t) =
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

Since f”(t) >0Vt >0and f (1) =0, so f(t) is strictly convex and normalized
function respectively.

Now for f (t) and f’ (t), we get the followings respectively.

S (P.Q) = 53 (b — g o (m

=1

Ly pit+ 4 1 (pi—q)?
S G R

i=1 o Pt (2.4.13)

) _ %JR (P,Q). (2.4.12)

:% Jr (P,Q) + A (P,Q)].

B B B _
Aﬁ(f’)z/ |f”(t)|dt=/ 1;t’dt:/ %dt:ﬁa—;mgg. (2.4.14)

The result (2.4.11)) is obtained by using (2.4.12)), (2.4.13) and (2.4.14)) in ([2.4.3]).

2.4.3 Numerical verification of obtained results

Now, in this subsection, we give an example for verifying the new results (12.4.7))

and (2.4.11]), numerically.

Example 2.4.1. Here, we are considering the example same as example 2.3.1
(subsection- 2.3.3). The observations for Binomial and Poisson distributions are
also same as Table 2.1, so we are skipping the repetition. Now, by Table 2.1, we

get the value of V (P, Q), as follows.

11
V(P.Q) =) lpi— a = 4844, (2.4.15)

=1

Put the approximated numerical values from (2.3.14)) to (2.3.18)) and (2.4.15))

into (2.4.7) and (2.4.11)), we get

9.6 x 107°* < .4944 and .0126 < 2.22098.

respectively and hence verified the inequalities (2.4.7)) and (2.4.11)) for p = 0.7.
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Remark 2.4.1. We can verify the obtained new information inequalities
and (2.4.11]) numerically in a similar manner like subsection 2.5.3, by considering
two different discrete probability distributions for different values of probability of

success and probability of failure.

2.5 New Information Inequalities in Terms of
One Parametric Divergence Measure and Ap-

plications

In this section, we are going to introduce new information inequalities on Sy (P, Q)
in terms of the well known one parametric divergence ®, (Q, P), designated as
adjoint of the Unified relative Jensen- Shannon (JS) and Arithmetic- Geometric
(AG) divergence measure of type s, where s € R — {0,1} is parameter here.
O, (P, Q) is already defined by in introduction chapter. Also introduce
the new information divergence measure, characterize it and obtain the math-
ematical relations with other divergences: F (P, Q), G (P,Q), Jr(P,Q), and
X2 (P, Q). Further we obtain bounds of the new divergence as an application

of new information inequalities, together with numerical verification.

2.5.1 New information inequalities

In this part of the section, we introduce two new information inequalities (The-
orems 2.5.1 and 2.5.2) on Sy (P, Q) ; one of them is in terms of one parametric
divergence @, (@, P). The results are on similar lines to the results presented by

Dragomir [24].
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Theorem 2.5.1. Let f : (0,00) — R be a real, convex function on («, 8) C (0, 00)
with 0 < a <1< 8 <oo,a# p. If PQ €T, then we have the following

imequality
Sy (P,Q) < By (o, B), (2.5.1)

where

(2.5.2)

Proof: Since f is convex on (0, 00), therefore we can write the following for

(a, B) € (0,00) x (0,00), A € [0, 1] by the definition of convex function

FDa+ (=Nl < Af(@)+ (1= ) F(5). (2.5.3)

Now assume \ = g:‘; for x € (o, 8) in (2.5.3]), we get

f(x)

IN

(2.5.4)

__ pitai

T 2¢g

we obtain the require inequality (2.5.1)).

Now put x in (2.5.4)), multiply by ¢; and then sum over all: = 1,2,3, ..., n,

Theorem 2.5.2. Let f : (0,00) — R be a real, conver and twice differentiable
function on (o, ) C (0,00) with 0 < o <1 < < oo, # . If there exists the

real constants m, M with m < M and
m<t*Sf ()< MVte(a,B),s € R—{0,1}.
If P,Q €T, then we have

m[B¢s (aaﬁ> - CI)S (Q,P)] S Bf (Q{,ﬁ) - Sf (P7Q> S M[B¢s (Oé,ﬁ) _CDS (QaP)]7
(2.5.5)
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where

&, (P,Q) = [s(s — 1) lzpz(

+q¢) —1] s#40,1
2p;

(15 sl A (PQ) = 0 (P.Q) if s = —1
B > pilog (p?ﬁ’q F(P,Q) = lim,_,,®, (P, Q) ifs=0
>t (B5%) log (” - ) G(P,Q) =lim, ., &, (P,Q) ifs=1
\%Z?zl(piqu: X*(Q,P) =2, (P,Q) if s =2
given by and
By (a,) = L1 (aﬂ) - S — /), (2.5.6)
B¢5 (a, 5) _ (ﬁ B 1) ¢s (a) + (1 B a) (bs (ﬂ) (2.5‘7>

b —«

Proof: Let us define a function F,, : (0,00) — R as
Fo(t)=f(t) =m[s(s = )] (t* = 1) = [ (t) = mo, (1), (2.5.8)

where
b (1) =[s(s—1)] ' (t*—1),s € R—{0,1}. (2.5.9)

Since f(t) and ¢ (t) are both twice differentiable, therefore F, (t) is twice dif-

ferentiable as well, So
El ()= f"(t) —mt* 2 =t [ f" (t) —m] > 0.

Since F" (t) > 0Vt € (o, B) C (0, 00), therefore F,, (t) is convex as well.

Now we write inequality (2.5.1)) for the function F,, (¢), we obtain

SFm (PvQ) S BFm (Oé,ﬁ), i'e'7
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

n

ZQif <p12‘;%‘) —ms (s — 1)]71 ;Qi (piQ_;Qi) _q

LB @+ (1-0a)f(B) (B-D@-D+1-a)F -1
= f-a f-a e

Sf (P7 Q) — mPy (va) < Bf (OZ,B) - mB¢s (avﬁ)a Le.,

—ms(s—1)]""

m By, (a, B) — ,(Q, P)] < By (o, ) = Sy (P, Q).

Hence prove the first inequality of (2.5.5]).

The second inequality of (2.5.5) obtains by a similar approach for the function
Fp(t)=M[s(s =1 (t* = 1) = [ (t).

We omit the details.

2.5.2 New information divergence measure, properties and

relations

In this subsection, we introduce new information divergence measure of class
St (P, Q). Properties and relations of this new divergence with other divergences
are also given.

Now, let f: (0,00) — R be a mapping defined as

Ft) = (%) log (%) | (2.5.10)
f@z%b%(%%)—ﬂ,ﬂmzo
and
f1(t) = WIH) (2.5.11)
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15 2.0

Figure 2.3: Convex function f (t)

Since f”(t) >0Vt >0and f(1) =0, so f(t) is strictly convex and normalized

function respectively. Now for f (¢), we have the following new divergence measure

S;(P,Q) = 2 (p z 1 ) log {ﬁ} = M*(P,Q). (2.5.12)

Moreover by properties of Sy (P,(Q), we see that M*(P,() > 0 and convex
in the pair of probability distribution (P,Q) € I, x I';, and M*(P,Q) = 0
(Non- degeneracy) if P = @ or attains its minimum value when p; = ¢;. We

can also see that M* (P, () is non- symmetric divergence w.r.t. P and @ as
M*(P,Q) # M*(Q, P).
Now we are giving the following theorem, statement of which is being used for ob-

taining upcoming new relation. This theorem with proof can be seen in literature

(Jain and Saraswat [48]).

Theorem 2.5.3. Let f: (0,00) = R be a convex and normalized function, i.e.,
f"(t) >0Vt>0and f (1) =0 respectively, then for (P,Q) € I'y, x I, we have

Sr(P,Q) < Cr(P,Q) < Ec,, (P,Q), (2.5.13)

where Sy (P,Q), Cy (P, Q), and Ec, (P, Q) have their usual meanings.
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Now, we derive a simple relation (Proposition 2.5.1) for M* (P, Q) in terms
OfF<P7Q)JG(P7Q)7‘]R(P7Q)7 and X2 <P7Q)

Proposition 2.5.1. Let (P,Q) € T',, X I',,, then we have the following new inter

relation

[F(Q,P)—G(Q,P)] <M (P,Q) < % [Jr (Q,P) +Xx*(Q,P)], (25.14)

IO,

where F (P,Q),G (P,Q), Jr (P,Q), and x* (P, Q) have their usual meanings, re-

spectively.

Proof: Since we know that AM > GM, i.e., for a,b >0

b
a;r > vab. (2.5.15)

Now put @ =1 and b= 1 in (2.5.15)) for ¢ > 0, we obtain

1

n t+1 1 1

: 1 —log —. 2.5.1
\/7:>0g(2t> 5 log ~ (2.5.16)

Now multiply (2.5.16) by % for t > 0, we get

1 1 1 1
L+ log <t+ )2t+ 1og¥. (2.5.17)

2 2t 4

Now put t = plﬂ“ n (2.5.17), multiply by ¢; and then sum over all i = 1,2,3..., n,

we have
, l.e.,
=1 (pi + ¢i)

" (p; + 3q; pl + 3g;
Z log >
4 2 (pi + qi)
1 pi+Qi+2%‘> [ 2q; } .
M*(P,Q) > =~ <— log e,
( ) 4 Z 2 (pi + )

=1

2q; " pit G, pita
;1o — lo
[Z T8 4 Z 2 g,

»-blr—‘

i=1
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M (P.Q) > {[F(Q.P)~C(QP). (2.5.18)

Since we know the following by (2.5.13)).

n

St (P,Q) < Ec,, (P,Q) = g%’f <pi h qj) < ; (pi — ) ' <]ﬁ> . (25.19)

2q; G
Now put f(¢) and f'(t) in (2.5.19)), we obtain

- pi + 3%‘) [ i + 3q; ] 1 < { Di +q; qi| .
— )log | 77— <3 pi — qi) |log - —1,le,
Z ( 4 2 (pi + @) 2 Z ( ) 2p; i

i=1 i=1

n

<p@><§[zm—qi)mg(w%) Fyo e ]
=1
Jr(Q.P)+ Z%i 11&

M* (P,Q) < % [JR(Q,P) + (Xn: (Qi _pi) +pi (Qi _pi>>] : i.e.,

i—1 Di bi

M*(P,Q) <

M (P.Q) < 5 [Jr(@.P) +3*(@.P)]. (2.5.20)

Relations ([2.5.18) and (2.5.20]) together give the required relation ([2.5.14)).

2.5.3 Bounds of the new information divergence measure

In this subsection, we obtain bounds of the new information divergence measure
M* (P,Q) in terms of one parametric generalized divergence measure @, (Q, P)
for different values of ’s’, by using new information inequalities (2.5.5)). Actually,

this part is an application of obtained new inequalities ([2.5.5)).

Proposition 2.5.2. For PQ €T, and0 < a <1< [ < oo,a # 8, we have

a. For s — 0,1 and s > 0, we have

1 *
W[qus (a,B) — D4 (Q, P)] < By (o, ) — M* (P, Q) 251
. 5.
S m[Bﬁbs (aaﬁ) _(I)s (Q7P>]
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b. For s < —1, we have

1

s [ Be. (@, 8) = @, (Q, P)] < By (a, B) = M" (P, Q)

20 (o +11) ¢ f (2.5.22)
< S aGES] By, (a, 8) = 2, (Q, P)],

where By (a, 8) and By, (o, 5) are evaluated below by equations (2.5.24) and
respectively.

Proof: For f(¢) (2.5.10) and ¢4 (¢) (2.5.9), we get the followings respectively.

5 (P.Q) = Z (P g [ 2 ) _apepg) s
By (v, B) = (5—1)f(aﬁ)iél—a)f(ﬂ)
(B (1+a)log (5) + (1 —a) (5 + Dlog (%) (2.5.24)
2(8—a) -
By, (o, B) _(B-1)¢s (aﬁ) j fxl —a) o, (B)
=[s(s—1)]" [ ﬁ - Z _ap (B;‘l_—aas—l) - 1} |

se€ R—A{0,1}.
Now let us consider the function g () = t*75f" (t) =

by (2.5.11)) and

g (t)=-— [M} = {< 0 s 20 (2.5.26)

m, where f” (t) is given

25+ (£ + 1) >0 ifs<—1'
So ¢ (t) is monotonically decreasing for s > 0 and monotonically increasing for

s < —1. Therefore, we have

9(8) = gy 520
1

o . (2.5.27)
te@p) | 9(0) = gy <1
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M= sup =9 T w20 (2.5.28)
te(a,f) 90B) =smrm  s< 1

Thus, the inequalities (2.5.21]) and (2.5.22)) are obtained by using (2.5.23)), (2.5.24)),

[25.25), [25.27), and [2.5.28) in (2.5.5).

Now we evaluate some special results of proposition 2.5.2 at s = —1,s =0,s5 =1,

and at s = 2 for getting bounds of the new divergence measure M* (P, () in

terms of other well known divergences A (P, Q) (1.2.5), F' (P, Q) (1.2.21), G (P, Q)
(T2.20), and v2 (P, Q) (T.2.19).

Result 2.5.1. For P,QeTl', and 0 < a <1< [ < oo, # 3, we have

o} 1 .
5 (1) B¢—1(a>6)__A(P7Q) SBf<aa6)_M (P7Q)
2(a+1) 4
5 ) (2.5.29)
<2 B _ZA(P
< s B s - a0,
where By, (a, B) is evaluated below in the proof.
Proof: We evaluate @, (Q, P) and By, (o, ) at s = —1, i.e.,
IR pita\ 1< 2¢) -
(P_ ,P —— i — 1 = — L — i
@ (5r) QLZ;W%. 21
1 i G — pidi — pidi +pigi _ 1 Z ¢ (i +a) <~ 20
— pit 4 2|1 pita ' pita
1 1_i 2pig | _1|N pi"f_Qi_i 2pig;
2 Pi + 4 2|1 = 2 — pita
L m (it @)’ —4pigi I~ (i—q)” 1
__Zp+q pq:_z(p ) A0,
4= pi+ 4 4~ pitq 4
(2.5.30)
(1-p)(a=1)
B = . 2.5.31
¢71 (Oé, 6) 2@/8 ( )

After putting (2.5.30) and (2.5.31)) together with (2.5.24)) in (2.5.22)) at s = —1,

we get the result (2.5.29) in terms of Triangular discrimination.
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Result 2.5.2. For PQ T, and 0 < a <1< [ <oo,a # 3, we have

]_ *
m[B%(Oéaﬁ)—F(Q?P)]SBf(Oéaﬁ)—M (P,Q) 25
1 5.
< a1 [By, (a, B) = F(Q, P)],
where By, (o, ) is evaluated below in the proof.
Proof: We evaluate @, (Q, P) and By, (a, 5) at s — 0, i.e.,
@ (Q, P) =lim @, (Q, P) = lim [s (s — 1)] " [Z @ (%ﬂ) - 1]
. , =1 o (2.5.33)
_ . di _
_izlqllog (pi +qi) F(Q,P).
o [B-D(@ -+ 1 -a)(f-1)] 0
Bm(“’ﬁ)‘lf%[ SG-D(F-a) ]‘o‘
After applying D Hospital Rule, we obtain
B¢>o (Oé,ﬂ) =lim [(ﬁ — 1) (as 10g0&) + (1 B OC) (ﬁslogﬂ)}
(a—=1)logf— (B —1)loga o
= o .

After putting (2.5.33)) and (2.5.34)) together with (2.5.24)) in (2.5.21)) at s = 0, we

get the result (2.5.32) in terms of Relative Jensen- Shannon divergence.

Result 2.5.3. For PQ T, and0 < a <1< [ <oo,a# 3, we have

1 *
WA [By, (a, B) — G (Q, P)| < By (o, B) — M* (P, Q)
L (2.5.35)
< satas 1) B (@B -G@P),

where By, (o, ) is evaluated below in the proof.
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Proof: We evaluate @, (Q, P) and By, (a, 5) at s — 1, i.e.,

- pit+a\®
ZQZ' (—2% ) —1]

1 (Q, P) =lim®, (Q, P) =lim[s (s — 1)

. = (2.5.36)

_ Di + 4 Dit+qi\

_; (—2 ) log (—2% ) =G(Q,P).
o[-+ (1-a)(F-1)] _0

Bm(a,ﬁ)—ll_rg[ S(S—l)(ﬂ—a) }—O
After applying D Hospital Rule, we obtain
o [(B=1) (e loga) 4 (1 — @) (8 log B)

(1-a)BlogB— (1 - B)aloga -

b —«
After putting (2.5.36) and (2.5.37)) together with (2.5.24)) in (2.5.21)) at s = 1, we
get the result (2.5.35) in terms of Relative Arithmetic- Geometric divergence.

Result 2.5.4. For P,QeTl', and 0 < a <1< [ < o0, # 3, we have

BT [B¢>2 (, B) = (P, Q)} < By (o, 8) = M" (P, Q) 259
1 1 o
S m [B¢2 (Oé,ﬁ) - §X2 <P7 Q):| 5
where By, (o, 5) is evaluated below in the proof.
Proof: We evaluate @, (Q, P) and By, (o, 5) at s =2, i.e.,
1 [ i + Qi 2 1= (p;i + @)
@2(Q7P):§ Z%(%) —1 _glz(quQ) —ZPZ
=1 ; =T (2.5.39)
1 D~ 1
:g Z(p q'Q) ] _ Xz(RQ)
| i=1 v
By, (o, ) = U _5)2(0‘_ Y. (2.5.40)

After putting (2.5.39) and (2.5.40)) together with (2.5.24)) in (2.5.21)) at s = 2, we
get the result (2.5.38) in terms of Chi- Square divergence.
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2.5.4 Numerical verification of obtained results

Now, in this subsection, we give an example for calculating the divergences
A(P,Q) and M* (P, Q) and verify the inequalities (Or bounds of M* (P, Q) in

terms of A (P,Q)) (2.5.29) numerically.

Example 2.5.1. Here, we are considering the example same as example 2.3.1
(subsection- 2.3.3). The observations for Binomial and Poisson distributions are
also same as Table 2.1, so we are skipping the repetition. Now, by Table 2.1, we
get the value of M* (P,Q), as follows.

- i + 3q; pi + 3¢
M*(P,Q) = ( ) log {—} ~ 0115412 2.5.41
( ) ; 4 2(pi + ) ( )

Put the approximated numerical values (2.3.14), (2.3.17), and (2.5.41) into

(2.5.29)), we obtain
01586 < .031810 — .0115412 (= M* (P, Q)) < .02762

and hence verified the inequalities (2.5.29)) for p = 0.7.

Similarly, we can verify the other inequalities (2.5.32) (2.5.35)), and (2.5.38]) for

different values of p and q.

2.6 New Information Inequalities on Absolute
Form of The New (Generalized Divergence

and Applications

In this section, we introduce new information inequalities on Sy (P, Q) by con-

sidering convex normalized functions in absolute form. Further, we apply these
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inequalities for getting relations among well known divergences, together with

numerical verification.

2.6.1 New information inequalities and bounds

In this subsection, we introduce new information inequalities by theorem 2.6.1
on Sy (P,Q) for functions in absolute form. The results are on similar line to
the results presented by Dragomir [25]. Further, we obtain bounds of different
divergences (in absolute form) in terms of the Variational distance by using this

new inequalities as an application.

Theorem 2.6.1. Let fi,fo : (o, ) C (0,00) — R be two real, conver and
normalized differentiable functions, i.e., fi'(t),fJ(t) >0Vt >0 and f,(1) =
fo (1) = 0 respectively with 0 < a <1 < § < oo, # [. If there exists the real
constants m, M such that m < M and

|fi(t) = fi (t2)]
" ) Rt = -

e
"ol | <t>‘ =AM (26.2)

for all t,ty € (o, f) C (0, 00).
If P,Q €T, then we have the following inequalities

mS 1 (P, Q) < Sy (P,Q) < MSy, (P,Q), (2.6.3)

where Sy (P, Q) has its usual meaning.

Proof: Firstly, we can see that (2.6.2)) is obtained from ([2.6.1) by using

Cauchy’s theorem of calculus.

Now put t; = ’% and to = 1 in (2.6.1]), multiply with ¢; and then sum over all
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i=1,2,3...,n, we get the desire result (2.6.3).
Now, let fy: (0,00) — R be a function defined as

—1 if0<t<1
1 ifl<t<oo’

L) =1t=1], /(1) =0, f(t) = {
5 (t) =0Vt e (0,00)but not at t =1 and
f2 ()] =1. (2.6.4)
Since fY () >0Vt > 0and f5(1) =0, so fs (t) is convex and normalized function

respectively. Now for f; (¢), we have

f2 (p" *q")‘ =3 bi—al =3V (PQ). (269
i=1

n

Sifal (P,Q) = qu'

i=1

2q;

where V (P, Q) (1.2.7) is well known Variational distance.

Now, the following propositions are presenting the bounds of different divergences
in absolute form, in terms of Variational distance by using new obtained inequal-
ities .

Proposition 2.6.1. For PQ €T, and0 < a <1< < oo, # [, we have

1 1

Proof: Let us consider

filt) = —logt,t >0, f (1) =0, (t) = _% and (1) = tgz

Since f{ (t) >0Vt >0and f; (1) =0, so fi (t) is strictly convex and normalized
function respectively.

Now for fi (t), we have

S (P, Q) = qu'
i=1

2q; .
log (pi -~ q)‘ —|F|(Q,P). (2.6.7)
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~
=

1t
!

Now, let g (t) = 0
2

= |4 =1, where |f} (t)| =1 and ¢ (t) = —% < 0.

$2

~

It is clear that g () is always strictly decreasing in (0, 00), so

) - o - l
m= inf g(t) =9 (5) =1 (5)] = (2.6.8)
M= sup g(t) = g(a) = 7] (o)) = ~. (2.6.9)

te(a,f)

The result (2.6.6)) is obtained by using (2.6.5)), (2.6.7)), (2.6.8]), and (2.6.9) in
(2.6.3)), after interchanging P and Q).

Proposition 2.6.2. For P,Q €T, and 0 < a <1< [ < oo,a # 3, we have
(a). If 0 < a < 1, then

1 BQ _ OéZ 52 + 052
0<A(PQ) <3 { e e QH V(P,Q). (2.6.10)
(b). If a« =1, then
2 _
0<A(PQ) <’ - Ly (p,0). (2.6.11)
Proof: Let us consider
_1)? 2 _
=" 0 nm=0q0="Smagn="2

Since f{'(t) >0Vt > 0and f; (1) =0, so fi (t) is strictly convex and normalized
function respectively.

Now for f (t), we have

n

Sip (PQ) = Ly~ iz a)” %A (P,Q). (2.6.12)

[\
=
+
<

Now, let

t2—1‘_{—(t;1) if0<t<1

-1 fl<t<oo
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-2 <0 fo<t<1
where |2 ()] =1 and ¢’ (t) = & )
(0] =1 and o (1) {%>0 o

It is clear that ¢’ (t) < 0in (0,1) and > 0 in (1, 00), i.e., g (t) is strictly decreasing

in (0, 1) and strictly increasing in (1,00). So g (t) has a minimum value at ¢ = 1,

therefore
m=inf g(t)=g(1)=I[f1)]=0 (2.6.13)
t€(0,00)
M = sup g(t)
te(a,B)

_ {maw (1 @)1, 1f (B) = BOEHOLIEOIAON 0 < o <4
15 o1

_Js [;‘522 + | —2H if0<a<1
2 .
% ifa=1

(2.6.14)
The results (2.6.10]) and (2.6.11]) are obtained by using (2.6.5)), (2.6.12), (2.6.13]),
and (2.6.14) in (2.6.3).

Proposition 2.6.3. For PQ €T, and0 < a <1< < oo, # [, we have
(a). If 0 < a < %, then

0<|G|(P,Q) < % [log \/24— ‘log e\/@‘ V(P,Q). (2.6.15)
(b). If L <a <1, then
Yy pg <iol P < Bl (pg). @616

Proof: Let us consider
1
fi(t) = tlogt,t >0, fi (1) = 0, fi (t) = 1+ logt and f1' (1) = -

Since f] (t) >0Vt > 0and f; (1) =0, so fi (t) is strictly convex and normalized

function respectively.
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Now for f (t), we have

S0 (2@ =3 (25 s (252 |61 oan

i=1

Now, let

g(t)=

fi(t) 14 logt] = —(1+1logt) ifO<t<?:
f5 (@) 1+ logt if%<t<oo’

—1<0 ifo<t<?
where |2 (t)] =1 and ¢’ (t) = t —e
|f2()| g() {%>0 ifé<t<OO

It is clear that ¢’ (£) < 0in (0,21) and > 0in (2, 00), i.e., g (¢) is strictly decreasing

in (O, %) and strictly increasing in (1 oo). So ¢ (t) has a minimum value at t = %,

e’

therefore
(Hl=0 if 0 <1
m= inf gt = MG sase (2.6.18)
te(a,B) |fi(a)] =141oga if: <a<1
M = sup g(t)
) m%ﬂﬂ@%Uﬂ@DzP%V@+%ﬁﬁ£ﬂ}im<a§§
|fi(B)] =1+logp ifl<a<i

(2.6.19)
The results (2.6.15)) and (2.6.16]) are obtained by using (2.6.5)), (2.6.17)), (2.6.18]),
and (2.6.19) in (2.6.3)), after interchanging P and Q).

In a similar manner, we obtain the followings as well.
(a) For fi(t) = (t — 1) logt, we obtain

(i) If 0 < a < 1, then

0<|Jg|(P,Q) < llog \/g—l— 52;; + ‘/62;_; —loge/afB|| V(P,Q). (2.6.20)
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(ii) If @ = 1, then
0< 174l (P.) < (loges - 5 )V (R @)
(b) For f; (t) = (t — 1), we obtain

(i) If 0 < < 1, then
0<x*(PQ)<2[8-a+2—(a+ PV (P.Q).

(ii) If @ = 1, then

0<*(PQ)<4(B-1)V (PQ).

2.6.2 Numerical verification of obtained results

(2.6.21)

(2.6.22)

(2.6.23)

Now, in this subsection, we give an example for calculating the divergences

|F|(P,Q), A(P,Q), |Jrg| (P,Q), and V (P,Q) and then verify the inequalities

(2.6.6), (2.6.10)), and (2.6.20)), numerically.

Example 2.6.1. Here, we are considering the example same as example 2.3.1

(subsection- 2.3.3). The observations for Binomial and Poisson distributions are

also same as Table 2.1, so we are skipping the repetition. Now, by Table 2.1, we

get the followings.

o (= .503) < pi; % < 5 (=1.396).
q;
11 2p
F|(P,Q)=) p log< ’ )‘ ~ .21792.
PIP.Q) = 3 floe \ 7200

11

(Pz‘ - %’)2
A(P,Q) = E ~— "/ ~ .1812.
Y Dt

1=

(pi — qi) log (%) ‘ ~ .1686.

%

11

Rl (P.Q) =Y

i=1
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11

V(P,Q) =) lpi— a| = 4844, (2.6.28)

i=1

Put the approximated numerical values from (22.6.24) to (2.6.28)) into (2.6.6)),

(2.6.10)), and ([2.6.20)), we get

1734 < 2179 (|F| (P, Q)) < .4815,0 < .1812 (A (P, Q)) < 1.4301,

and

0 < .1686 (|Jx| (P, Q)) < .8129

respectively and hence verified the inequalities (2.6.6]), (2.6.10), and (2.6.20) for

p=0.7.
Similarly, we can verify the other inequalities for different values of p and ¢ and

for other discrete probability distributions as well.

2.7 Ostrowski’s Integral Inequalities on New Gen-

eralized Divergence and Applications

In this section, two different new information inequalities on Sy (P, ()) are intro-
duced. These inequalities are derived by using Ostrowski’s inequalities. Further
obtain the bounds of the well known divergences F (P,Q), A (P,Q), G (P,Q),
Jr (P,Q), and h (P, Q) in terms of x? (P, Q) and V (P, Q) separately in a differ-
ent aspect, by using new information inequalities.

Firstly, following theorems 2.7.1 (Dragomir etc. all [28]) and 2.7.2 (Dragomir
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[23]) are very important to introduce new information inequalities. We are con-
sidering the statements only of these theorems, detail prove can be seen in given

literatures.

Theorem 2.7.1. Let f : (a,b) C R — R be an absolutely continuous function
with a < b and f': (a,b) — R is essentially bounded or f' € L (a,b), i.e.,
1/ loe = ess sup | f' ()] < oo,
te(a,b)

then we have

1w -5 [0 < §+(‘”b‘_aj) b= (27

Vz,t € (a,b).
Theorem 2.7.2. Let f : (a,b) C R — R be differentiable function and is of

bounded variation on (a,b), i.e.,

Az<f>=/ (1)) < oo,

then we have
[ i@ oo

b
Va,t € (a,b).

g[b;%\x—“”ﬂA’;(n, (27.2)

Inequalities (2.7.1)) and (2.7.2)) are well known Ostrowski’s integral inequali-

ties.

2.7.1 New information inequalities

Now, we obtain two new information inequalities in terms of the well known

Chi- square divergence and Variational distance by helping above two Ostrowskis
inequalities (2.7.1) and (2.7.2). The results are on similar lines to the results

presented by Dragomir etc. all 28] and Dragomir [23], respectively.
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Theorem 2.7.3. Let f : (o, 8) C (0,00) — R be an absolutely continuous
function with 0 < o <1 < f < oo, # f and ' : (a,8) — R is essentially
bounded or ' € Ly (, ), i.e.,

1/ loo = sup [f(£) | < o0, (2.7.3)

te(a,f)

Vite (a,p). If P,Q €T, then we have the following inequality

S/ (P.Q) - /f dt' w{ﬂ 1 (PQ)],

(2.7.4)

(6 —a)

where Sy (P, Q) and x* (P, Q) have their usual meaning respectively.

Proof: Put a = a,b =, and x = 1% in inequality 1’ multiply by ¢;

and then sum over all © = 1,2,3...,n, we get
= Pi + G 1 g -
;%f( 2 >— 5_@)/01 f(t>dti21Qi
N (pita a+B)\’
[qu )21(2%_2)
‘Sf(P,Q /f '
pi+ ? ,
Z (2o +B)>](ﬁ—a)||f|!oo
=1

L,
_(B-o Hf/HOO 1+(6—a)2 <i(piZIQi)2+(Oé+ﬁ)2i%‘_2(a+ﬁ>i<pi+%‘))

(B =) | o, Le.,

~—

B

4
i=1 ? i=1 i=1

Bl [, 1 2<(a+5)2_4<a+m+4+i<pl-;qz->2)]

4 (6 - a) i=1

Bl [, 1 2
_ ) _L+w_af«a+ﬁ—2)+X(RQ»}
_B=a)lf s T 1 5 » 2 >

Hence prove the inequality ([2.7.4)).
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Theorem 2.7.4. Let f : (o, ) C (0,00) — R be a differentiable function and is
of bounded variation on (o, f) with 0 < o <1< § < 00,0 # 3, i.e.,
B
A= [ 170 <x. (275)
Vte (a,p). If P,Q €T, then we have the following inequality

o (f)
2

\Sﬂﬂ@)—ﬁéa /jf(t)dt‘SA [2+ <R@>}, (2.7.6)

B—a)

where V (P, Q) is the well known Variational distance.

Proof: Put a = o,b = 3, and o = Z% in inequality 1D multiply by ¢;

and then sum over all ¢ = 1,2,3...,n, we get

Sout (Bpt) - e [ S0 dtizn;q"

=1
1 1 =
< [§+(ﬁ_&);%

5@ - [ 1o

Pi + G

AP
20 o (f),ie,

a+
2

_1 1 = Di + q; Oé‘i‘ﬁ
< _5—1-@;%2—%—1—( 5 —1>‘ A7 (f)
7-1 1 ~ |pita ~ Ja+pf 8
_ _2+(,3—a) (ZZIqz o 1‘+“qz : 1‘) Aq (f)
_fr, ot /1 at B _ 6
S )]z
§|:2+<B_Q)V(P7Q):|Aa(f)>|i 9 _1‘§ 9 :|

Hence prove the inequality ([2.7.6)).

2.7.2 Bounds of the well known divergences

Now, we derive bounds of the well known divergences in terms of the Chi- Square

divergence and the Variational distance separately as an application of obtained
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new information inequalities (2.7.4]) and (2.7.6) respectively. We are considering
only convex functions, the inequalities hold good for concave functions as well.

Proposition 2.7.1. For P,QQ € T,,, we have
Blogf — aloga

]F Q.P) + _ 3] <P oswpa() @77
B —a te(a,B)
and
F(QP)+ TEEZORE g < (), (.79

where F (P,Q), x*(P,Q), and V (P,Q) have their usual meanings respectively.
Also

F= (ﬁ;“) {Hﬁx? (RQ)],
F, = % [2+ (5—;0()‘/(})’ Q)]

and sup;c(, 5 91 (t) and AJ (f) are evaluated below in the proof.
Proof: Let us consider
!/ 1 " 1

Since f”(t) >0Vt >0and f(1) =0, so f(t) is strictly convex and normalized
function respectively.

Now for f (t) and f’ (t), we obtain

N, 26\ _
Sr(P,Q) —;qzlog (pi +qi> = F(Q,P). (2.7.9)
g Bl 1 81
Ag(f)Z/ \f’(t)\dt:/ —;‘dt:/ ;dtzlogﬁ—loga. (2.7.10)
Now, let g1 (1) = |/ (0] = | =3 | = 7, and g3 (1) = —3x <0.

It is clear that g; (t) is always decreasing in (0, 00), so

1
[fllsc = sup |f' ()] = sup g1 (t) = g1 () = —. (2.7.11)
t€(a,B) te(a,B) @
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The results (2.7.7]) and (2.7.8]) are obtained by using (2.7.9)), (2.7.10)), and (2.7.11]
in inequalities (2.7.4)) and ({2.7.6) respectively.
Proposition 2.7.2. For P,Q) € T',,, we have

2 (log 8 — log «v)

'A (P,Q)+4— — (a+ 5)‘ < 2F, sup go(t) (2.7.12)
B -« te(a,B)
and
ArQ - 2B g <omain, @y

b — «

where A (P, Q) has its usual meaning. Also sup,c(, g g2 (t) and A% (f) are eval-

uated below in the proof.

Proof: Let us consider

(t—1) 21

=" e 000, F) =05 (0 = F o and () = 2

Since f”(t) >0Vt >0and f (1) =0, so f(t) is strictly convex and normalized
function respectively.

Now for f (t) and f’ (t), we obtain

1 — (pi - %)2 1
S (PO ==S" V"8 _ A (pQ. 2.7.14
1+ (P,Q) 2; a2 (P, Q) ( )
8 12 P2 -1 a+p
AP (1) — / _ - — 4. (2.7.15
5(f) L|f@Wﬁ L t2-+[ v e +a+p ( )
Now, let
2 —E ifo<t<1
t)=1f ()= = 1 ’
g2 () = | ()] £2 ‘ {ti;l ifl <t<oo
and

—2 ifo<t<l1
L)y =47 :
g2 () {2 if1<t<oo
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It is clear that ¢4 (¢) < 0 in (0,1) and > 0 in (1,00), i.e., g2 (¢) is decreasing in
(0,1) and increasing in (1, 00), so

[/ llec = sup |f* ()] = sup g2 (t)

te(a,B) te(a,f)
_ {max[‘f/ (@)1 (B)]] = LQHI ORI @GN i < o < 1
1/ (B)] ifa=1
_{%[55;5052+‘5jj;;2_gu ifo<a<l
(ﬁ+1g(2ﬂ—1) Fo—1 :

(2.7.16)
The results (2.7.12) and (2.7.13) are obtained by using (2.7.14)), (2.7.15), and
(2.7.16) in inequalities ([2.7.4)) and ([2.7.6)) respectively.

Proposition 2.7.3. For P,QQ € T',,, we have

a+ B  p%*logB — a’loga
4+ 2B-a)

< Fy sup gs(t) (2.7.17)

c@P+
te(a,B)

and
at+pB  Pp*logf —a’loga

4 2(—a)
where G (P, Q) has its usual meaning. Also sup,e, g 93 (t) and A8 (f) are eval-

’G(Q,P) + < FAP(f), (2.7.18)

uated below in the proof.

Proof: Let us consider

F(t) = tlogt,t € (0,00), F(1) =0, f' (£) = 1+ log t and " () = %

Since f”(t) >0Vt >0and f(1) =0, so f(t) is strictly convex and normalized
function respectively.

Now for f (t) and f’ (t), we obtain

S, (PR =" 7# log (pi;q_'qi) = G(Q,P). (2.7.19)
i=1 v
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8 ! g
B — / = — 0 0
Aaﬁ)—llﬁ(ﬂwﬁ—é “+ngdﬁ%é (lost)dr (2.7.20)

2
=aloga+ flog B+ —.
e

Now, let

—1—logt if0O<t<1

=1 =1+logt| = ,
91 (1) = 1" ()] = |1 + log {Hlogt 1ot o

and
Toifo<t<t
ifl<t<oo
It is clear that g4 (£) < 0 in (0,1) and > 0 in (1,00), i.e., g3 (t) is decreasing in

(0, %) and increasing in (é, oo), SO

1/ loo = sup [f ()] = sup gs(t)

te(a,B) te(a,B)
_ [mar i @11 @) = [log /2 + 1+ tog vl it0<a <
7/(3) = 1+ loga tl<a<i

(2.7.21)

The results (2.7.17) and (2.7.18) are obtained by using (2.7.19), (2.7.20), and
(2.7.21)) in inequalities (2.7.4)) and ([2.7.6]) respectively.

Proposition 2.7.4. For P,Q) € T',,, we have

Tn(P.Q) - {6<5_2)10g§‘“(“‘2)10g“—“*ﬁz” <2F sup g (1)
-« 2 te(a,)
(2.7.22)
and
n(pQ) - | E=2Hosg o= 2lone 0Py <omal(s),

(2.7.23)
where Jr (P, Q) has its usual meaning. Also sup,e(, g) 94 (t) and AB(f) are eval-

uated below in the proof.
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Proof: Let us consider

F()= (6~ logtt € (0,00)  f (1) =0, (1) = " +log and /" (1) = "

Since f”(t) >0Vt >0and f(1) =0, so f(t) is strictly convex and normalized
function respectively.

Now for f (¢) and f’(t), we obtain

n

5(PQ =53 (- atog (P ) = (P (2720
i=1 '

Aﬁ(f)z/ﬁ\f’wdt:/l (—1—1ogt+%> dt+/15 <1+logt—%> i

= aloga + Blog f — loga — log 3.
(2.7.25)

Now, let

—1—logt+1 if0<t<l1

t—1
t: /t :—+1 t: ’
g (t) = |f"(1)] ‘ n Og‘ {1+1Ogt_% if1<t<oo

and

—Hl ifo<t<1
Hl if1<t<oo

It is clear that ¢} (f) < 0 in (0,1) and > 0 in (1,00), i.e., g4 (f) is decreasing in
(0,1) and increasing in (1, 00), so

1/ lee = sup |f* ()] = sup ga(t)

te(a,B) te(a,B)
[t @l o= o2+ G55 + 55 - togeva|| it0<a <
£ (8)] = (loges — 1) ifo =1

(2.7.26)
The results (2.7.22) and (2.7.23) are obtained by using (2.7.24)), (2.7.25), and
(2.7.26)) in inequalities (2.7.4)) and ([2.7.6) respectively.
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Proposition 2.7.5. For P,(Q € I',,, we have

h(P—i—Q,Q) %—1 SFltsa%)g5(t) (2.7.27)
and
P 2(82 —a
h( ;Q,Q)+%—1 < FRAP(f), (2.7.28)

where h (P, Q) has its usual meaning. Also sup,c, g) 95 (t) and AL (f) are evalu-
ated below in the proof.
Proof: Let us consider

f(t):l—\/ite(O,oo),f(l)zo,f’(t):—%\/g andf”(t):é.

Since f"(t) >0Vt >0and f(1) =0, so f () is strictly convex and normalized

function respectively.

Now for f (¢) and f’(t), we obtain

- Di +qi - ¢ (pi + @)
Sf<P,Q>=Zqi (1— % ):1‘2\/—2

1 (:Z’L pz+Qz pz+Qz \/7
5[ 22 Z +ZQ1 2% pz"“]z)
2
1o Di + qi P+Q

B B
a0 = [ Irala=; [

o 2

(2.7.29)

1 1
-7 dt:i/a 7t = VB — V. (2.7.30)

_ _1 / _ 1
= 577> and g5(t)——4t—%<0.

1
Vit

Now, let g5 (t) = |f' (t)| = %

It is clear that g5 (t) is always decreasing in (0, 00), so

[f'loc = sup |f'(#)] = sup g5(t) = g5(a) = 5—. (2.7.31)
t€(0.) te(a) 2,/
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2.8 Conclusion

The results (2.7.27) and (2.7.28)) are obtained by using (2.7.29), (2.7.30)), and
(2.7.31)) in inequalities (2.7.4) and ([2.7.6|) respectively.

2.8 Conclusion

The study of information expressions and inequalities are of paramount impor-
tance in solving key results in information theory. In this chapter, we have derived
some important information inequalities on new generalized divergence measure
St (P, Q) in terms of Variational distance, in terms of Chi- square divergence and
many more. With the help of new information inequalities, we have obtained
bounds of new divergences in terms of standard divergences and obtained many

new inter relations among existing divergences as well.
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3

NEW INFORMATION
DIVERGENCE MEASURES OF
CSISZAR’S CLASS AND
APPLICATIONS

3.1 Introduction

In this chapter, we introduce two new information divergence measures of Csiszar’s
class and do a detail study regarding these measures.

This chapter is organized as follows: After introduction, section 3.2 introduce a
new divergence measure which is exponential in nature and obtain bounds of this
new divergence mathematically in terms of the other well known divergences, like:
Kullback Leibler divergence (1.2.18)), Triangular discrimination (1.2.5]), Hellinger
discrimination (1.2.6), Symmetric Chi- Square divergence and many more,
by using standard information inequalities on C (P, (), together with verifica-

tion of obtained bounds numerically. In section 3.3, we introduce and characterize
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again a new divergence measure of Csiszar’s class and obtain its bounds in terms
of Relative information of type s, i.e., K, (P,Q) (1.2.23) by using well known
information inequalities different from section 3.2, on Cj (P, Q). Section 3.4 is

the conclusion of the whole chapter.

3.2 New Exponential Divergence Measure, Prop-

erties and Bounds

We already discussed that Ali- Silvey [2] and Csiszar [20] introduced a generalized

information divergence measure, given by

CrPQ) =Y af (5‘) ,
i=1 v

where f : (0,00) — R isreal, continuous, and convex function and P = (p1,pa, ..., pn), @ =
(41,492, ---,qn) € I'yy. Many divergence measures can be obtained from this gener-

alized divergence measure by suitably defining the convex function.

We are taking here the following theorems 3.2.1 and 3.2.2 (statement only) for
evaluating the bounds of the upcoming new exponential divergence measure in

terms of several divergences of Csiszar’s class and Variational distance separately.
Actually Taneja [95] and Dragomir [25] gave the following theorems with their

proofs respectively, which relate Csiszar’s generalized divergence for two different

convex functions. The results are on the similar lines to the results presented by

Taneja [95] and Dragomir [25] separately.

Theorem 3.2.1. Let fi,fo : I C (0,00) = R be two convez differentiable and
normalized functions, i.e., f{' (t),f5(t) >0Vt >0 and fi (1) = fo(1) =0
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respectively and suppose the following assumptions.
(i) f1 and fy are twice differentiable on (a, ), 0 < a <1< < oo with o # B.
(ii) There ezists the real constants m, M such that m < M and

1 (1)
2 (1)

If P,Q €T, then we have the following inequalities

<M, fI ()£ 0Vt e (a,B). (3.2.1)

mez (Pv Q) < C(f1 (Pa Q) < Msz (PvQ) (3'2'2)

Theorem 3.2.2. Let fi, fo : (a,5) C (0,00) — R be two real, conver and
normalized differentiable functions, i.e., fi'(t),f3 () >0Vt >0 and f1(1) =
fo (1) = 0 respectively with 0 < o < 1 < 8 < 0o, v # (. If there exists the real
constants m, M such that m < M and

m < |1 (t1) — fu(t2)

|
T | fo (t1) = fo (L) =M,
ORI
mEmol | n <t>' <M, (3:2.3)

for all t1,t2 € (o, f) C (0, 00).
If P,QQ € T, is such that o < % < pB < Vi=1,23..n, then we have the

following inequalities

mClp,| (P, Q) < Cipy) (P, Q) < MCip, (P.Q). (3.2.4)

3.2.1 New exponential divergence measure and properties

Let f:(0,00) — R be a real differentiable mapping, which is defined as

fO)=ft)=€e(t—-1),Vte(0,00), (3.2.5)
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-2

05— 10 15 2.0

Figure 3.1: Convex function f; (¢)
fi(t) =te'

and

) =€ (t+1). (3.2.6)

We can check that the function f; (¢) is exponential in nature and strictly convex
normalized because f] (t) > 0V ¢t € (0,00) and f; (1) = 0 respectively. Further
f1 (t) is strictly increasing in (0, 00) as fi (£) > 0 in (0, 00).
For this exponential function, we have
N
Cp (P.Q) = Gexp (P,Q) = e (p; — qi) - (3.2.7)
i=1
In view of properties of C (P, @), we see that Geyp, (P, Q) is positive and convex
for the pair of probability distribution (P, Q) € T',, x T, and equal to zero (Non-
degeneracy) or attains its minimum value when p; = ¢;. We can also see that

Gexp (P, Q) is non- symmetric divergence w.r.t. P and ) because Gex, (P, Q) #

Gexp (Q, P).
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3.2.2 Bounds of new exponential divergence measure

To estimate the new exponential divergence Gey, (P, Q), it would be very inter-
esting to establish some upper and lower bounds. So in this subsection, we obtain
bounds of the exponential divergence measure ([3.2.7) in terms of other symmetric

and non- symmetric divergence measures by using inequalities (3.2.2)) and (3.2.4))

respectively.

Proposition 3.2.1. Let P,Q € I',, and 0 < a <1 < 8 < o0, # 3, then we

have
VN PG < G (P < T AR 328)

where A (P, Q) is defined by (T.2.5).

Proof: Let us consider
fa(t) = (ttlll)Q,t € (0,00) (3.2.9)
and
j ==Y < tll(f; Y,

5 (1) = (tf1>3. (3.2.10)

Since f5 (t) >0Vt > 0and fo (1) =0, so fa () is strictly convex and normalized

function respectively. For fs (), we obtain

n

Cy, (P,Q) = Z % =A(P,Q). (3.2.11)

Now, let
vty et (141)*
t = L =
g(t) =2 0 5

2
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where f{ (t) and fJ (t) are given by (3.2.6) and (3.2.10) respectively and

(1)’ (541

g (t) = 3 :

It is clear that ¢’ (t) > 0 for ¢ > 0, therefore g (¢) is strictly increasing function in

interval (0, 00). So

a 4
m = tei(g%) (t) =g (a)= ‘ (18+ @) (3.2.12)
and
B 4
M= sup g(t)=9g(B) = %. (3.2.13)
te(a,B)

The result (3.2.8) is obtained by using (3.2.7)), (3.2.11)), (3.2.12)), and (3.2.13)) in
inequalities ((3.2.2)).

Proposition 3.2.2. Let P,QQ € I, and 0 < a <1 < § < 00,0 # 3, then we

have
4 (1+a) ath (P,Q) < Guxp (P,Q) < 4¢° (14 8) 821 (P,Q),  (3.2.14)

where h (P, Q) is defined by (1.2.6).

Proof: Let us consider

fa(t) = @,t € (0,00) (3.2.15)
and
/ - (1 - \/¥)
2 (t) - 2\/% )
2 () = 4%3- (3.2.16)
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Since fY (t) >0Vt >0and fo (1) =0, so fa (t) is strictly convex and normalized

function respectively. For f; (t), we have

Cr, (P,Q) = Z (vri \/_> h(P,Q). (3.2.17)
Now, let
0
g(t) = ) =4e' (14+1)t2,

where f{'(t) and f} (t) are given by (3.2.6) and (3.2.16)) respectively and
g (t) =2Vt (3+1) (2t +1).

It is clear that ¢’ (t) > 0 for ¢t > 0, therefore g (¢) is strictly increasing function in

interval (0, 00). So

m= inf g(t)=g(a)=4e"(1+a)az (3.2.18)
te(a,B)
and
M= sup g(t)=g(B)=4¢’ (1+pB) g2 (3.2.19)
te(a,B)
The result (3.2.14)) is obtained by using (3.2.7)), (3.2.17)), (3.2.18)), and (3.2.19) in
inequalities ((3.2.2]).

In a similar procedure, we obtain the bounds of Gy, (P, Q) in terms of the other

well known divergence measures. The results are as follows.

(a) If fo (t) = Llogt + () log 2 7 and I (P,Q) is , then we get
2¢%a (14 a)’ 1 (P,Q) < Gep (P,Q) < 2°B(1+ B 1(P,Q). (3.2.20)
(b) If f2(t) = (t — 1) logt and J (P, Q) is (1.2.10]), then we get

¢"a?J (P,Q) < Guxy (P,Q) < " 82] (P.Q). (3.2.21)
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() If fo (t) = U=1° and E* (P, Q) is (1.2.8), then we get

Vit
460‘(1—%0()042 (1+B)6g .
302 1 20+ 3 E* (P,Q) < Gexp (P,Q) < m}} (P,Q). (3222

(d) If fo(t) = (t_l)iﬁ and ¢ (P, Q) is (1.2.9), then we get

e®o’ e’ B3
m¢(ﬂ@) < Goxp (P,Q) < YY)

L) log £ L2 and T'(P, Q) is (1.2.11), then we get

Vv (P,Q). (3.2.23)

(e) If fo (t) = (*

4e”0? (1 + )’

w|+

4e°5? (1+ )
1+ 2

T (P,Q) < Gexy (P.Q) < T(PQ). (3.2:24)

() If fo (1) = (t;—;) and ¥y (P, Q) is ((1.2.15)), then we get

8t (14 )
1504 + 202 4+ 15

SGﬁB (1+75)
— 1564+ 252+ 15

Uu (P,Q) < Gexp (P, Q) < Y (P, Q).

(3.2.25)
(8) If fo(t) = (t — 1)log ¥* and Jg (P, Q) is , then we get
e (1+a)? e’ (1+B)°
g3 Ir(PQ <G (PQ) < — Ik (PQ). (3.2.26)
(h) If f5(t) = tlogt and K (P, Q) is (1.2.18)), then we get
0(140)e"K (P,Q) < Gup (P,Q) < B(1+A) K (P.Q).  (3227)

(i) If fo(¢) = (22)log 2L and G (P, Q) is , then we get
202 (1 4+ a)? G (P,Q) < Gexp (P,Q) <262 (1 + B)°e’G (P,Q).  (3.2.28)

(G) If fo (t) = (t — 1)* and X2 (P, Q) is , then we get

e (14 ) ¢’ (1+ )

5 5 * (P,Q). (3.2.29)

X2 (P,Q) < Gy (P, Q) <
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(k) If f5 (t) = tlog 25 and F (P, Q) is , then we get
ae® (14 a)’ F(P,Q) < Gup (P,Q) < ac® (1 + )’ F(P,Q). (3.2.30)

Now, the following proposition gives the bounds of absolute value of Gex, (P, Q)

in terms of the Variational distance by helping the inequalities ([3.2.4)).

Proposition 3.2.3. Let P,Q €T, and 0 < a <1 < 5 < oo, # 3, then we
have
eV <P7 Q) S |G6Xp| <P7 Q) S Beﬁv (P7 Q)a (3231>

where V (P, Q) is defined by (1.2.7).

Proof: Let us consider

L) =e(t—1),fr(t)=]t—1 Vte (0,00),

-1 if0<it<1
1 ifl<t<oo

fi(t) =te', f5(t) = {
and
Tt = e (1), L (1) = 0.
We can see that both functions fi (t), f2 (t) are convex and normalized because
T(t)>0Vt>0, ff(t)>0Y¢t>0but notatt =1 and fi(1) =0 = fo(1)

respectively.

Now for fi (t), f2 (t), we obtain the followings

Cini (P,Q) = Ze% i — 6| = |Gesp| (P, Q) (3.2.32)

and

Cipl (P,Q) = Z!pz @l =V (P,Q) (3.2.33)
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respectively.
Now, let g (t) = ;23;} = 28 = |te’| = te', where |f}(¢)] = 1 and ¢ (t) =
e'(t+1)>0.

It is clear that g (¢) is strictly increasing in (0, c0), so

m= inf g¢(t) =g(a)=ae”. (3.2.34)
te(a,B)

M= sup g(t)=g(p) = Be”. (3.2.35)
te(a,B)

The result (3.2.31]) is obtained by using (3.2.32), (3.2.33)), (3.2.34), and (3.2.35))
in G23).

3.2.3 Numerical verification of obtained bounds

In this subsection, we take an example for calculating the divergences A (P, @),

h(P,Q), G(P,Q), V(P,Q), Gep (P, Q), and |Geyp| (P, Q) and then verify nu-

merically the results (3.2.8)), (3.2.14)), (3.2.28)), and (3.2.31)) or verify the bounds

of Gegp (P, Q) and |Geap| (P, Q).

Example 3.2.1. Let P be the binomial probability distribution with parameters
(n=10,p=0.7) and Q its approzimated Poisson probability distribution with

parameter (A = np = 7) for the random variable X , then we obtain

T 0 1 2 3 4 3 6 7 8 9 10
p; ~ | .0000059 | .000137 | .00144 | .009 | .036 | .102 | .200 | .266 | .233 | .121 | .0282
g ~ | .000911 | .00638 022 | .052 | .091 | .177 | .199 | .149 | .130 | .101 | .0709
B | .00647 .0214 0654 | 173 | .395 | .871 | 1.005 | 1.785 | 1.792 | 1.198 | .397

qi

Table 3.1: Evaluation of Binomial and Poisson probability distributions

a(=.00647) < 2 < g (= 1.792). (3.2.36)

d;
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11 2
(pi — @)
APQ) =Y T ~ 1812 3.2.37
( ) ; Di + G ( )
1 2
h(P,Q) =) M ~ .0502. (3.2.38)
=1
11 . + . . + .
G(PQ) =) Z% log (p’Q—pq’) ~ .0746. (3.2.39)
i=1 g
11
V(P.Q) =) Ipi — ai| = 0.4844. (3.2.40)
=1
uo
Gexp (P,Q) = e (i — q;) = 97971 (3.2.41)

=1
11

Gl (P.Q) =Y e

i=1
Put the approximated values from (3.2.36)) to (3.2.42)) in results (3.2.8]), (3.2.14)),
(13.2.28]), and ([3.2.31)) respectively and get the following results

pi — qi| ~ 1.78872. (3.2.42)

0233 < .97971 (= Gexp (P, Q)) < 8.260,1.508 x 107* < .97971 (= Gexp (P, Q)) < 8.071,
6.367 x 107% < .97971 (= Goyp (P, Q)) < 22.414, and

3.154 x 1073 < 1.78872 (= |Gexp| (P, Q)) < 5.2095

respectively.

Hence verified the bounds of Geyp (P, Q) and |Gexp| (P, @) in terms of A (P, Q),
h(P,Q), G(P,Q), and V (P, Q) for p = 0.7, where all divergence measures have
their usual meanings.

Similarly, we can verify the bounds of Gey, (P, @) in terms of other divergences
or can verify the other inequalities for different values of p and ¢ and for other
discrete probability distributions as well, like; Negative binomial, Geometric, uni-

form etc.
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100 Symm. Chi- Squaradiv. |
- --- Chi Square div. )
--------- Jain Srivastavadiv.
— Triangualr dis.

Hellingze dis.

IS div

— Idiv.

AG mean div.
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0.00 0.10 0.20

Figure 3.2: Comparison of the well known divergences with Gexp (P, Q)

In Figure we have considered p; = (a,1 —a),q; = (1 —a,a), where a €
(0,1). It is clear from Figure that the new exponential divergence Geyp (P, Q) has
a steeper slope than ¢ (P,Q), x* (P,Q), E*(P,Q), A (P,Q), h(P,Q), I (P,Q),

J(P,Q), T(P,Q), and Jg (P, Q).

3.3 New Divergence Measure and Bounds

In this section, a new information divergence measure of Csiszar’s class is pro-
posed and obtain the bounds of this new divergence in terms of the other well
known divergences x* (P, Q), K (P,Q), h(P,Q), and R, (P, Q) (as special cases
of Relative information of type 's’; i.e., K (P, Q) (1.2.23)) by using information
inequalities given by theorem 3.3.1 (Taneja and Kumar [I04]). The results are

on the similar lines to the results presented by Taneja and Kumar [104].

Theorem 3.3.1. Let f : (a, ) C (0,00) — R be a mapping which is normalized,
i.e., f(1) =0 and suppose that

(i). f is twice differentiable on (o, 5),0 < a <1< < oo with a # .

(11). There exist real constants m, M such that m < M and m < t*75f" (1) <
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MVt e (o,5),s € R.
If P,Q €T, is such that a < % < pBVi=1,2,3....,n, then we have the following
imequalities

K, (P.Q) < C; (P,Q) < MK, (P,Q) (3.3.1)

and

m[nS(P>Q)_KS(P7Q)] SECf/ (P7Q>_Cf(P7Q>

(3.3.2)
S M[T]S(P,Q) _Ks(PaQ)]7

where C (P, Q), Ec, (P, Q) have their usual meanings respectively, earlier men-

tioned and

K, (P,Q) = [s(s — 1)] [prqzl -1 ]

(3.3.3)
= the Relative information of type 's'(1.2.23)),
where s # 0,1 and s € R. Particularly
lim K (P, Q) = K (P,Q),lim K, (P,Q) = K(Q, P), (3.3.4)
S—r S—r
where K (P, Q) is well known Relative information.
P2

:(3_1)_1;(192'_%) (]qi) s # 1.

3.3.1 New divergence measure

In this subsection, we introduce a new divergence measure corresponding to new
convex function, and will study the properties.

Let f:(0,00) = R be a mapping, defined as

W te (0,00), (3.3.6)
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0.5 1.0 15 2.0

Figure 3.3: Convex function f (¢)

and

(t—1)(3t+1)
12 ’

ft) =

2(t—1)° (32 + 2t + 1)
13

(1) = . (3.3.7)

Now for the function f (¢), we obtain the following new divergence measure

n

Cr(P.Q) =V (P.Q) =) % (3.35)

Since f”(t) > 0 and f (1) = 0, therefore f (¢) is convex and normalized respec-
tively. We can also see that f'(¢) < 0 at (0,1) and > 0 at (1,00) ,i.e., f(t) is
strictly decreasing in (0, 1) and strictly increasing in (1,00), and f' (1) = 0.

Moreover by the properties of Cy (P, Q), we see that V*(P,Q) > 0 and con-
vex in the pair of probability distribution (P,Q) € T',, x I';, and V*(P,Q) = 0
(Non- degeneracy) if P = ) or attains its minimum value when p; = ¢;. We

can also see that V*(P,@) is non- symmetric divergence w.r.t. P and @ as

Vi (P,Q) # V" (Q, P).
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3.3.2 Bounds of new divergence measure

In this subsection, we derive bounds of V* (P, @) by using the inequalities
and . Actually, these all propositions are the special cases on Relative
information of type s ; i.e., K, (P, Q) at s =2,s=1,s = %,s =0 ,and s = —1.

Proposition 3.3.1. For P,QQ € I',, and 0 < a < 1 < 8 < oo with a # [, we

have
(i) If 0 < o < 1, then

2 2
0<V* (P.Q) < maz | @Y (3(o;§+2a+1)7 8-1) (3§§+2B+1)] 2P,
(3.3.9)
1) )2 3.3.10
< maw |21 (3242—1—2044—1)7 (B-1) (3§§+25+1) 2(P.O). (3.3.10)
(i) If « = 1, then
2
0<ve(pQ <Y <3§§ t204 02 (p ). (3.3.11)
2
0<V(PQ) -V (PQ) < (B-1) (35 +25+ 1)x2 (P,Q), (3.3.12)

33
where x? (P, Q) is defined by .

Proof: Firstly put s = 2 in (3.3.3)) and (3.3.5)), we get the followings respec-

tively
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nz(P,Q)ZZ—(p’ BB _ &—1:Zl&—2pi+qz}

4di i i = L4

o o )’ (3.3.14)
. Pi — q; _ 2
—;—qi X (P,Q).
Now for f’(t), we obtain
n 4
Ec, (P,Q) =V, (P.Q) =) (pi = g:) (3pi+a:) (3.3.15)

2
i=1 (pZQZ>

2(t—1)%(3t2+2t+1)
t3

Now, let g (t) = " (t) = (after putting s = 2 in t27° " (t)) and

6(tt—1) A4

g ()= t—4>9" (t) = e

fg(t)=0=>t"-1=0=t=1,—1and ¢’ (1) =24 > 0.
It is clear that g (¢) is strictly decreasing on (0, 1) and increasing on [1,00) and

¢ () has minimum value at t = 1, so

m= inf g¢g(t)=g(1) =0, (3.3.16)

te(0,00)
and
(i) If 0 < a < 1, then

M = sup g(t) =maz[g(a),g(5)]

te(a,b)
2 12 (3.3.17)
o 2(a—1) (?;0342—#204%—1), 2(B—1) (Z€2+25+ 1)
(ii) If @ = 1, then
2
M= sup g(t)=¢g(B) = 201" (35 +28+ 1). (3.3.18)

te[1,8) B3

The results (3.3.9)), (3.3.10), (3.3.11)), and (3.3.12)) are obtained by using (3.3.8]),
B3.13), B-3.14), (33.15), (3.3.16), (3.3.17) and B-3.18) in (3.3.1) and (3.3.2).
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Proposition 3.3.2. For PQ €T, and 0 < a <1 < < o0 with a # 3, we
have
(i) If 0 < a < 1, then

2(a—1)*(3a® +2a+1) 2(8-1)*(33>+28+1)
OéQ ’ BZ

K(PQ).
(3.3.19)

0<V*(P,Q) §max[

0<V/(PQ) -V (PQ)

2(a—1)°(Ba® +2a+1) 2(8 -1 (382 +28+1)

< max o2 ) 32

K(Q,P).

(3.3.20)
(ii) If « = 1, then

2(8—1)° (382 +28+1)
52

2(8—1)° (382 +28+1)
52

0<V*(P,Q) < K (P,Q). (3.3.21)

where K (P, Q) is defined by .

K(Q,P), (3.3.22)

Proof: Firstly put s =1 in and (| - we get the followings respec-

tively

ilir% K, ( sz log —Z =K (PQ). (3.3.23)

lim 7, (P, Q) = szlog——l—qulog—: (P,Q)+ K (Q,P). (3.3.24)

2(t—1)°(3t242t+1)
$2

Now, let g (t) =tf" (t) = (after putting s = 1 in 27 " (¢)) and
4t —1) B+t +t+1)

12 (4 4 1)
3 '

g/ (t) = 4

g (t) =

fgt)=0=0t—-1)B*+t*+t+1)=0=¢t=1,-0.63 and ¢" (1) = 24 > 0.

It is clear that g (¢) is strictly decreasing on (0,1) and increasing on [1,00) and
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g (t) has minimum value at ¢t = 1, so

m=_inf g(t)=g(1) =0,

te(0,00)

and

(i) If 0 < < 1, then
M = tGS(upB)g(t) = maz [g (@), g (B)]
2(a—1)°(3a® +2a+1) 2(8-1)°(362+28+1)
Oé2 ’ BZ

= max
(i) If & =1, then

2
M = sup g(t)=g(B) = 26 -1) <3€2+2ﬁ+1)-
te[1,8) B

(3.3.25)

(3.3.26)

(3.3.27)

The results (3.3.19)), (3.3.20)), (3.3.21)), and (3.3.22)) are obtained by using (3.3.8]),
B315), (3:3.23), (3:3.24), (3-3.25), (3-3.26) and (3.3.27) in (3.3.1) and (3.3.2).

Proposition 3.3.3. For P,QQ € ', and 0 < a < 1 < 8 < 0o with a # (3, we

have
(i) If 0 < o < 1, then

0<V*(PQ)
< mas S(a—1)2(30342+2a+1)’8(ﬁ—1)2(3ﬁ32+25+1) h(P,Q).
o2 p2
(3.3.28)
0<V (PQ) -V (PQ)
8(a—1)°Ba2+2a+1) 8(8—1)°(38%+26+1
< mazx (a-1) (og - )7 ( ) (5:; : (3.3.29)

B (Ry@P) = B(P.Q)-n(P @} |
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(i) If « = 1, then

8(B—1)"(33*+28+1)
B3

0<V*(P,Q) < h(P,Q). (3.3.30)
0<VI(PQ) -V (PQ)

where h (P, Q), R, (P, Q) are defined by (1.2.0), (1.2.27) respectively, and B (P, Q) =
Yo 1 \/Piti s the well known Bhattacharya distance [10].

(3.3.31)

Proof: Firstly put s = 3 in (3.3.3) and (3.3.5)), we get the followings respec-

tively
K. (P,Q)=4 [1—2\/17%] =2 [2—22@] =2 [pi+a — 2]
=1 =1 =1

:423—(@_2@) — 4h (P,Q).

(3.3.32)
n n %
4; 4q;
m(P.Q)=2) (¢—p),/— =2 (—1 - \/]%‘%)
’ Zl pi Zl p? (3.3.33)
=2[Ry (Q.P)-B(PQ)].
—1)2(3¢2
Now, let g (t) = t2 f" (t) = 2D <t3§ +24) (after putting s = 5 in t27*f” (¢)) and
3(t—1)(5t° +t* +t+1 3(15t* — 413 45
o= =06 ) = 20 =40 5)

fg#t)=0=0t-1)(B+1>+t+1)=0=t=1,-0.53 and ¢" (1) = 24 > 0.
It is clear that g () is strictly decreasing on (0, 1) and increasing on [1,00) and

¢ (t) has minimum value at t = 1, so

m= inf ¢g(t)=g(1)=0, (3.3.34)

te(0,00)
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and

(i) If 0 < aw < 1, then

M = sup g(t) =mazlg(a),g(B)]
t€(a,B)

2(a—1) (30 +20+1) 2(8—-123F2+28+1)]  B33)

= max 3
a2 ﬁ§

(ii) If @ = 1, then

2
M= sup g(t) = g(p) = 2OV BT +26+1)
te[1,8) 33

The results (3.3.28)), (3.3.29)), (3.3.30), and (3.3.31)) are obtained by using (3.3.8)),
B315), B332), (3.3.33), B-3.34), (3.3.35) and (3.3.36) in (3.3.1) and (B.3.2).

. (3.3.36)

Similarly, for s = 0, we obtain

(i) If 0 < a < 1, then

0<V*(P,Q)
< maz 2(a—1)2(3§2+2a+1)72(ﬂ—1)2(3§2+26+1) K(Q.P).
(3.3.37)
0<V (PQ) -V (PQ)
< maz 2(a—1) (352 + 20 + 1)7 2(8—1) (3552 +268+1) (33.38)
[ (Q.P)-K(Q.P)].
(ii) If o = 1, then
0< v (pQ) < 2P= (36726 +1) (Q, P). (3.3.39)

B
0<V/(PQ)-V"(PQ)

_1\2 2 3.3.40
L28-1) (355 +2841) Q. P) - K(Q,P)]. ( )
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3.3 New Divergence Measure and Bounds

Now for s = —1, we obtain

(i) If 0 < @ < 1, then

0<V*(PQ)
(3.3.41)
< maz [(o — 1)? (3¢® +2a+1),(8— 1)? (38°+28 + 1)] X2 (Q, P).
0<V (PQ)-V"(PQ)
<maz [(a —1)* (3a> + 20+ 1), (B — 1)* (38° + 28+ 1)] (3.3.42)
[R?) (QvP) _R2 (va) _X2 (Q7P)} :
(ii) If & = 1, then
0<V*(P,Q)<(B-1)7°(382+28+1)x*(Q,P). (3.3.43)
0<V(PQ)— V" (PQ)
(3.3.44)

<(B-1°(38+28+1)[R:(Q,P)— R (Q,P) — x*(Q, P)] .

In Figure[3.4] we have considered p; = (a,1 — a),¢; = (1 — a,a), where a € (0, 1).

0.60

0.50

0.40

0.30

020

0.10

0.00

0.00 0.10 020 030 . 040 0.50 0.60 070

Figure 3.4: Comparison of the well known divergences with V* (P, Q)

It is clear from Figure that the new divergence measure V* (P, Q) has a steeper
slope than £ (P, Q), A (P,Q), h (P, Q), F (P,Q), G (P,Q), Jr (P,Q), M* (P,Q),

K (P,Q), T(P,Q), L*(P,Q), and I (P,Q).
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3. NEW INFORMATION DIVERGENCE MEASURES OF
CSISZAR’S CLASS AND APPLICATIONS

3.4 Conclusion

In this chapter, we introduced two different non- symmetric divergence measures
of Csiszar’s class. One of them is by exponential convex function and other is by
algebraic convex function. Further evaluated bounds of these divergence measures
separately by using well known information inequalities on C (P, Q). Numerical
verification by taking Binomial and Poisson distributions, has been done as well.
By comparison graph, we compared new divergence measure with well known

divergence measures.
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4

SERIES OF NEW
DIVERGENCE MEASURES
AND APPLICATIONS

4.1 Introduction

In chapter 3, new divergence measures of Csiszar’s class have been introduced by
suitably defined the convex functions and did a detail study of these divergences.
In this chapter, different series of divergence measures of Csiszar’s class are pro-
posed.

This chapter is organized as follows: This chapter contains 2 sections excluding
Introduction and Conclusion. Since there are many series of divergences and their
studies, therefore we make two sections with the same title differing by Roman
number I and II respectively. Sections 4.2 and 4.3 introduce different new se-
ries of convex functions and corresponding new series of divergence measures of

Csiszar’s class, further obtain the bounds of a particular divergence of a series
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separately by using well known information inequalities together with numerical

verifications. Intra relations among new series of divergences obtain separately.

4.2 Series of New Divergence Measures and Applications-

I

In this section, we introduce new series of divergence measures as a family of
Csiszar’s generalized divergence, characterize the properties of convex functions
and divergences, compare several divergences, and derive important and interest-
ing intra relation among divergences of these new series. Also get the bounds of a
particular member of that series together with numerical verification of obtained

bounds.

4.2.1 Series of convex functions and properties- 1

In this subsection, we develop some new series of convex functions and study

their properties. For this, firstly let f: (0,00) — R be a mapping defined as

2m
fm () = @;_Tﬂ,m =1,2,3... (4.2.1)
and
, 21" 2 em+ 1) +2m—1
G oy G <t2:? ) +2m — 1] (4.2.2)
2m—2
fr(t) = 2m (t:2;+11) [t* (2m + 1) +4t* (m — 1) 4+ 2m — 1] . (4.2.3)

Since f (t) > 0 for t > 0 and m = 1,2, ..., therefore f,, (t) are convex functions

for each m.
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4.2 Series of New Divergence Measures and Applications- I

Now, from (4.2.1), we get the following new convex functions at m = 1,2, 3...

respectively.

(2 - 1)’

i) = h ) = e () = (4.2.4)

Since, we know that the linear combination of convex functions is also a convex
function, i.e., a1 fi (t) + asfo (t) + asfs (t) + ... is a convex function as well, where
ai,as,as, ... are positive constants. Therefore, we have following two cases to
obtain new series of convex functions.

(i) If we take a3 = ay = 1,a3 = a4 = a5 = ... = 0, then we have

-1 @-1)" (-1 -+

fia®)=fi()+ fa(t) = Tt = 3 . (4.2.5)

Similarly, if we take as = a3 = 1,a; = a4 = a5 = ... = 0, then we have

fa® =0+ he=C EC EV D (g

In this way, we can write for m = 1,2, 3...

fm,m+1 <t> - fm (t) + fm+1 (t)

(tQ o 1)2m (t2 - 1)2m+2 _ (t2 o 1)2m (t4 _ t2 + 1) (427)
$2m—1 {2m+1 $2m+1 :

(i) If we take ay = 1, a9 = log, b, ag = %,% = (10g3+b)3” ...,b > 1, then we have

91 (t) = f1 () + (log. b) f2 () + %ﬁ; (t) + ...

GE; (-1 (og. b (2~ 1)
= + (log, b) " + 5 e + ...

(- 1)° (- 1)° . (og. b’ (12— 1)" n
12 2! t

(4.2.8)
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2 3
Similarly, if we take a; = 0,a2 = 1,a3 =log, b, a4 = (log;!b) , a5 = %, b >1,

then we have

g2 (t) = (752;—3”4 + (log, b) (& ;5 )" + (log;!b)2 (= t_7 D) +..,0>1
_ (t?t—_31)4 1+ (log, b) & = b, GOg;! )" (¢ . b, (4.2.9)
_ -y p 1)4b(t2;21)2 b1
In this way, we can write
g () = %ﬂ—pﬁlb(#;)ib S1,m=123, .. (4.2.10)

Remark 4.2.1. If we take b = e ~ 2.71828 then from , we obtain the

following series.

m (2_1)> 2m 2
(22— 1) (*-1) (12 —1) (t2 — 1)
gm (t) = t2'm,——1€ 2 = t2m—1 eXp t2

om=1,2,3,.... (4.2.11)

Properties of convex functions defined by (4.2.1)), (4.2.7) and (4.2.11)), are as

follows.

0 Since fu(1) = 0 = frmir (1) = g (1) = fon (), frnmes (£) and g (1) are

normalized functions for each m.

e Since f! (t) <0 at (0,1) and > 0 at (1,00) = f, (t) are strictly decreasing in

(0,1) and strictly increasing in (1, 00), for each value of m and f/, (1) = 0.
Figures [£.1], 1.2, and shows the behavior of convex functions and shows

that f, (), frm+1 (1), and g, (t) has a stepper slope for increasing values of m

respectively.
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&8 s

SN

Figure 4.1: Behavior of convex functions fy, (t)

200§

W0 f

2000 k

Figure 4.2: Behavior of convex functions fp, m+1 (%)

35107
30 %10 f

25 =10 F

20«07}

Figure 4.3: Behavior of convex functions g, (t)
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4.2.2 New series of divergence measures- I

In this subsection, we obtain new series of divergence measures of Csiszar’s class
corresponding to series of convex functions defined in subsection 4.2.1 and study
their properties. Now for convex functions (4.2.1]), we get the following new series

of divergences.

" (p2—q?)"
i=1 i i
n 2 212 n 2 2\4
p; —q; pi —4;
m (P,Q) :Z%,W (P,Q) :Z(?,—4),... (4.2.13)

where Cf (P, Q) is well known Csiszar’s generalized divergence.

Similarly for (4.2.7), we get the following new series of divergences.

n

2
(p? — )" (p! — P2 + q})

i=1 i i
n 2 2\2 (4 ) 4
b — q; Di —DPiq; +q;
m(P,Q) = Z< ) (p3q4 ) (4.2.15)
i=1 i i
n 2 24/ 4 2 2 4
pi —q) (pi —pigi +q;)
2 (P,Q) = Z( ) (p5q6 (4.2.16)
i=1 i

Similarly for (4.2.11)), we get the following new series of divergences.

N R N (- R (- N
Cr(P,Q) = pm (P,Q) = it exp oom=1,2,... (4.2.17)
i1 Di 4; (Pids)

L) @)’

p1(P,Q) = exp : (4.2.18)
; pid; (1%%‘)2
- -
p2 (P,Q) = exp . (4.2.19)
; piq (pigi)*

Properties of divergences defined by (4.2.12)), (4.2.14]) and (4.2.17)), are as follows.

e In view of properties of Cy (P, @), we can say that v, (P, Q) , nm (P, Q) , pm (P, Q) >
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4.2 Series of New Divergence Measures and Applications- I

0 and are convex in the pair of probability distribution P, @ € T,,.
¢V, (P,Q)=0=n,(P,Q)=pn(P,Q)if P=Q or p; = ¢; (attains its minimum

value).

e Since Yy, (P, Q) # Ym (Q, P) ;0 (P, Q) # 0 (Q, P) , pim (P, Q) # pin (Q, P) =

Ym (P, Q) yMm (P, Q), pm (P, Q) are non- symmetric divergence measures.

35.00

30.00

div(3 8 atm=1
e i (3.3) atme2
25.00
- div(3.3) stwel
2000 - div(30) atme2
— =~ div(3 D) atme]
15.00
- = FRQ)

1000 Sy, Chi- Squarediv.

5.00

0.00

Figure 4.4: Comparison of the well known divergences with new series of diver-

gences

Figure [[] shows the behavior of 51 (P,Q), 72 (P,Q), m (P.Q), m (P.Q),
P1 (PaQ)a P (P7 Q)v ¢(P7Q)a X2 (Pv Q)? and L* <P7 Q) We have considered
pi = (a,1—a),q; = (1 —a,a), where a € (0,1). It is clear from Figure that

the new divergences 71 (Pa Q)7 Y2 (P7 Q)v m <P> Q)a 2 (P7 Q)a and P1 <P7 Q) has a

steeper slope than others.

4.2.3 Intra relation and bounds- I

First, we derive an intra relation among new series of divergence measures (4.2.12)),

(4.2.14)), and (4.2.17)), as follows.

Proposition 4.2.1. Let P,Q € T, then we have the following new intra relation.

Y (P, Q) < i (P, Q) < p (P, Q) (4.2.20)
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where m = 1,2,3... and vy, (P, Q) ,nm (P, Q), and py, (P, Q) are given by (4.2.19),
4.2.14)), and respectively.

Proof: Since

(t2 - 1)2m (t4 — 2 4 1) (t2 — 1)2m (t2 _ 1)2m+2

t2m+1 t2m71 t2m+1

and

) I o VN o Vi [1 GRS NG

P T e 7 o

t2m—1

Therefore, for m = 1,2,3... and ¢t > 0, we have the following inequalities.

2m 2m 2m—+2
=-" _(#-1 (t* —1)
t2m71 - t2m71 t2m+1

G 1) [1 L (- 1) (2-1)" . ] | (4.2.21)

t? 214

- t2m—l

Now put t = %,2’ =1,2,3...,n in (4.2.21), multiply by ¢; and then sum over all

1=1,2,3...,n, we get the relation (4.2.20)).

Particularly from (4.2.20)), we will obtain the followings.

Vl(PaQ) §771<P7Q) Spl(P7Q)772(P7Q) STIQ(PaQ) §p2<PvQ)7'“ (4'2'22)

Now, bounds of a particular member ~; (P, Q) of one of the series of diver-

gences, are obtained in terms of the well known divergences h (P, Q)(1.2.6)),

v (P,Q)([29), J (P,Q)([:2.10), T (P, Q)([2.10), I (P,Q)(1:212), K (P, Q)(L2.18),

2 (P,Q)(1.2.19), G (P, Q)(1.2.20), and F (P, Q)({1.2.21)) by using information in-
equalities (3.2.2)) on C (P, Q) given by Taneja [95]. The results are on the similar

lines to the results presented by Taneja [95]. Firstly, let us consider

(- 1)°

=" 0 =g = EEDEEED

t2
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4.2 Series of New Divergence Measures and Applications- I

and

() = w (4.2.23)

For fi (t), we have

Cf1 (P,Q) :Z (pg_qg)

= (P,Q). 4.2.24
2 1(P,Q) ( )

Now the following propositions give the bounds of v (P, Q).

Proposition 4.2.2. For P,QQ € I, and 0 < a < 1 < 8 < oo with a # [, we
have
(i) If 0 < o < .67, then

3at4+1 381 +1

BANP.Q) <7 (P,Q) < Smar | == S n(R.Q). (4229
(ii) If 67 < a < 1, then
et e < < M ). (1.2.26)
Proof: Let us consider
R =5 (1-V) e 00) 20 =010 =5 (1- 22 and
" (1) = 4;. (4.2.27)

Since fY(t) >0Vt > 0and fo (1) =0, so fa (t) is strictly convex and normalized

function respectively. Now for fs (t), we get

(VB VE)

Cp (PQ) =) " =h(PQ). (4.2.28)
i=1
ey 8(3t141)
Now, let g (t) = R and
4 (15t* — 3 1
/0= 20020 g =0 (3vie )
2 2
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4. SERIES OF NEW DIVERGENCE MEASURES AND
APPLICATIONS

where f'(t) and f} (t) are given by (4.2.23)) and (4.2.27)) respectively.
If ¢ (t) = 0=t =.6687403 ~ .67. It is clear that ¢’ (¢) < 0 in (0,.67) and > 0

in (.67,00) with ¢” (.67) = 195.5276 ~ 195.5 > 0, i.e., g (¢) is strictly decreasing
in (0,.67) and strictly increasing in (.67,00). So ¢ (¢) has a minimum value at
t = .67. Therefore

(i) If 0 < a < .67, then

m= inf g (t) = g (.67) = 23.405968 ~ 23.4. (4.2.29)
te(a,

M = sup g¢(t) =max|g(a),g(B)]
te(a,B)

8(30% +1) 8(38' +1) (4.2.30)
= max § , - :
o2 52
(ii) If .67 < a <1, then
8 (3a* + 1
m= inf g(t)=ga)= 0+ (4.2.31)
tE(a,B) %}
8334+ 1
M= sup g(t)=g(8) = BT L (12.32)
te(a.5) B2

The results (4.2.25)) and (4.2.26)) are obtained by using (4.2.24]), (4.2.28]), (4.2.29)),

[@230), (2.31), and [@.2.32) in (3.2.2).

Proposition 4.2.3. For PQ €1, and 0 < a <1 < 8 < oo with a # 3, we
have
(i) If 0 < a < .51, then

LG (P.Q) <7 (P.Q) < tmae | (O GLDOTL D),

! (4.2.33)

(i1) If 51 < a <1, then

4(a+1)(3a4+1)G 4(5+1)(354+1)G

(P.Q) <m(PQ) <

(P,Q). (4.2.34)
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4.2 Series of New Divergence Measures and Applications- I

Proof: Let us consider

fa(t) = (%) log %,t € (0,00), f2(1) =0, f5(t) = % {log% a ﬂ and
" _ 1
" (1) = m (4.2.35)

Since fY (t) >0Vt >0and fo (1) =0, so fa (t) is strictly convex and normalized

function respectively. Now for fs (t), we get

—~ (pi + 4 Pi+ G
P. = 1 =G (P . 4.2.
Cp, (P,Q) Z( ; )og 2 —C(PQ) (4.2.36)
” 4
Now, let ¢ (t) = 2’%3 _ 4(t+1)g3t ) nd
4 (1265 +9t* — 1 1
J (t) = ( J; ),g”(t):8(18t2—|—9t+t—3),

where f]'(t) and f (t) are given by (4.2.23) and (4.2.35) respectively.
If ¢ (t) =0=t=.507385 =~ .51. It is clear that ¢’ (¢) < 0 in (0,.51) and > 0 in

(.51, 00) with ¢"” (.51) = 134.4830294 ~ 134.45 > 0, i.e., g (¢) is strictly decreasing
in (0,.51) and strictly increasing in (.51,00). So ¢ (¢) has a minimum value at
t = .51. Therefore

(i) If 0 < o < .51, then

m = i(nfﬁ) g(t) = g(.51) = 14.24677337 ~ 14.24. (4.2.37)
te(a,
M = sup g(t) =maz|g(a),g(F)]
te(a,8)
(4.2.38)

4(a+1)Ba*+1) 4(B+1)(38*+1)
el ’ g

= max

(ii) If .51 < a <1, then

m= inf g(t)=g(a)= Lat1)Bal+ 1). (4.2.39)

te(a,p) o

113
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4
M= sup g(1)=g()=TOTVETED
te(a.9) B

The results (4.2.33)) and (4.2.34]) are obtained by using (4.2.24]), (4.2.36]), (4.2.37)),
(#2:33), ([#2:39), and (£.2.40) in (3.2.9).

. (4.2.40)

By using the similar procedure, we obtain the bounds of v, (P, Q) in terms of
other standard divergences. These inequalities (results) are as follows, omitting
the details.

(a) If we take fy (t) = (t — 1)%, then we have

(i) If 0 < a < 1, then

30 +1 3p4 +1

W(PQ) < (PQ) <mar | 1N R a2
(ii) If @ = 1, then
4
4 (P,Q) <m (P,Q) < 3%; L (PQ). (4.2.42)
(b) If we take fo (t) = tlogt, then we have
(i) If 0 < o < .76, then
69K (P.Q) < 3 (P.Q) < 2mar | XL 35;? HErQ. (1243
(ii) If .76 < a < 1, then
200 Ve < p@ < 2B e pg). a2

52

o2

(c) If we take fo (t) = tlog ti—tl, then we have

(i) If 0 < a < .62, then

(a+1)°Ba*+1) (B+1)2(364+1)
Oé2 ’ ﬁ2

19.7F (P, Q) <7 (P, Q) < 2max

(4.2.45)
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(i) If .62 < a <1, then

2(Oz+1)2(3a4+1)F(PQ><7 (P.Q) < 2(8+1)°(38*+1)
a2 ) = L ) = 32

F(P.Q).
(4.2.46)
(d) If we take fo (t) = (t — 1) logt, then we have

(i) If 0 < a < .65, then

3at+1 384 +1
ala+1) g(B+1)

2.87J (P,Q) <7 (P,Q) < 2max J(P,Q). (4.247)

(ii) If .65 < a < 1, then

2(30&4—{—1) 2(354—{—1)
mJ(P, Q) < (PQ) < WJ(P7 Q). (4.2.48)
(e) If we take f, (t) = 5t log ;i\/lz, then we have

(i) If 0 < < .62, then

30t + 1) (a+1) 38'+1)(B+1)

(
21.8T (P,Q) < m (P, Q) < 8maz | — @+1) ' B(BR+1)

T(PQ).
(4.2.49)

(ii) If .62 < a < 1, then

8(3at+1)(a+1)
a(a?+1)

8381 +1)(B+1)
BB +1)

(f) If we take fo (t) = wl)iﬁ, then we have

(i) If 0 < o < .25, then

3at4+1 3684 +1

Vv (P,Q) < v (P,Q) < max Pl Pl v (P,Q). (4.2.51)
(ii) If .25 < a <1, then
3at +1 384 +1
VPO (P < e (PQ). (42.52)
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(g) If we take fo (t) = §logt + S+ log 25, then we have

(i) If 0 < o <.69, then

a+1)(Ba’+1) (B+1)(36'+1)
052 ’ 62

23.861 (P, Q) < 7 (P, Q) < 4max ( I(P,Q).
(4.2.53)

(i) If .69 < a < 1, then

4(a+1)(3at+1)

4(B+1)(3p*+1)

> [(P,Q). (4.2.54)

4.2.4 Numerical verification of obtained bounds- I

In this subsection, we take an example for calculating the divergences h (P, Q),

G (P,Q), and v (P, Q) and then verify numerically the results (4.2.25)) and (4.2.33])

or verify the bounds of v (P, Q) in terms of h (P, Q) and G (P, Q).

Example 4.2.1. We are taking the example same as example 3.2.1 (subsection-
3.2.8) for p=0.7 and g = 0.3 by considering two discrete probability distributions
Binomial and Poisson, so the values of o, 5, h (P,Q), G (P, Q) are same already
defined in that example, given by (3.2.36), (3.2.38), (3.2.39) and v (P,Q) is
defined as follows.

=~ (0 — )’
n(PQ) =Y # ~ 2.25065. (4.2.55)
i=1 i

Now, put the approximated numerical values from (3.2.36)), (3.2.38)), (3.2.39),

and (4.2.55)) in (4.2.25) and (4.2.33)), we get the followings respectively

1.17468 < 2.25065 (= 1 (P, Q)) < 771.68

and

1.062304 < 2.25065 (= 71 (P, Q)) < 46.4161.
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Hence verify the inequalities (4.2.25)) and (4.2.33)) for p = 0.7.

Similarly, we can verify the other obtained inequalities numerically for different
values of p and ¢ by taking other discrete probability distributions, like: Geomet-

ric, Negative Binomial, Uniform etc.

4.3 Series of New Divergence Measures

and Applications- 11

In this section, we again introduce new series of divergence measures as a family
of Csiszar’s generalized divergence, characterize the properties of convex func-
tions and divergences, compare several divergences, and derive important and
interesting intra relation among divergences of these new series. Also get the
bounds of a particular member of that series together with numerical verification

of obtained bounds.

4.3.1 Series of convex functions and properties- 11

In this subsection, we develop some series of convex functions and will study their

properties. For this, Let f : (0,00) — R be a real valued mapping, defined as

tz 1 2m
and
() = (2 = 1" 2 (6m + 1) + 2m — 1] (43.2)
" 275 ’ o
fot) = R [t* (36m® — 1) + 2t* (12m* — 16m + 1) + 4m> — 1] .
(4.3.3)
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Since f" (t) > 0 for t > 0 and m = 1,2, ..., therefore f,, (t) are convex functions
for each m.
Now, from (4.3.1), we get the following new convex functions at m = 1,2, 3...

respectively.

hy=ED o Dy E-D

4.3.4
t t t ( )

Nlo
ot

[N

Now by using (4.3.4]), we get the following series of convex functions as well.

fa) =i+ ho =" ;1) L t—gl> RGN t—2t bie1)

wlw

(4.3.5)

-1 @-1)°" @-D"(—22+t+1)

fos (t) = fo(t) + f5 (t) = n _ |

3 5 5
tz ts tz
(4.3.6)
In this way, we can write for m = 1,2, 3...
(t2 o 1>2m (tz o 1)2m+2
fm,m+1 (t) = fm (t) + fm+1 (t) = 2m—1 + 2m+1
- b b (4.3.7)
-T2+t + 1)
- 2m+1 :

2
Since, we know that the linear combination of convex functions is also a convex
function, i.e., a1 f1 (t) + asfo (t) + asfs (t) + ... is a convex function as well, where

ai,as,as, ... are positive constants. So, we get another series of convex functions

by using (4.3.4)), defined as follows.
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(i) If we take a3 = 1, a9 = log, b, a3 = %, ...,b > 1, then we have
0 (1) = F1 () + (log, b) fu (1) + “Og;! D Bt
— -1 t_% b’ + (log, b) (¢ t—% 1)’ + (log;! b)” (2 t—g 1)°
_ -y ; D’ 1+ (log, b) (& ; D’ - (log;! b ;2 o) + .
_ - - DGk b1

log, b)*

(ii) If we take a1 = 0,as = 1,a3 = log,b,ay = ( 5=, ...,0 > 1, then we have

2 —1)* 2 -1°%  (log )2 -1)°
)= E=D o =D Uoec (1)
t2 ts 21 t3
22— 1) 2—17%  (log,b)* (2 —1)*
:(t—g) 1+(10g6b)( 7 ) +( 2' ) ( t2 ) 4+ ... (439)
t2—14 2_1)?
:<—3)b( t) ,b>1.
t3
In this way, we can write
t2_12m 2-.1)?
gm(t):%b( t) ,b>1,m=1,2,3,.. (4.3.10)
t 5

Remark 4.3.1. If we take b = e ~ 2.71828 then from , we obtain the

following series

21" () @21 (#2—1)
gm (t) = (tTl)e T = ( tzml) exp ( ; ) ,m=1,23,.. (4.3.11)
2 2

Properties of convex functions defined by (4.3.1)), (4.3.7) and (4.3.11)), are as

follows.

e Since fm (1> =0= fm,m—i—l (1> = 9m (1> = fm (t)7fm,m+1 (t) and 9m (t> are

normalized functions for each m.

119



4. SERIES OF NEW DIVERGENCE MEASURES AND
APPLICATIONS

500

400

300

200

100

05 10 15 20 25 30

Figure 4.5: Behavior of convex functions f, (t)

4000
3000 {

2000

1000}

Figure 4.6: Behavior of convex functions f, m+1 (%)
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Figure 4.7: Behavior of convex functions g, (t)
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e Since f/ (t) <0 at (0,1) and > 0 at (1,00) = f,, (t) are strictly decreasing in
(0,1) and strictly increasing in (1, 00), for each value of m and f/ (1) = 0.

Figures , , andshow that fo, (1), fim+1 (t) and gy, (t) have a stepper

slope for increasing values of m respectively.

4.3.2 New series of divergence measures- 11

In this subsection, we obtain new series of divergence measures of Csiszar’s class
corresponding to convex functions defined in subsection 4.3.1, and study their
properties in detail.

Now for convex functions , we get the following new series of divergences

of Csiszar’s class.

o N o~ -
1(PQ) =& (PQ) =) —“—Ft— m=123.. (4.3.12)

2m
m

- (pigi) ¢

n 2 _ 2 2 n 2 2 4
P =39 ¢ pg -y %) (13.13)
= (pig)? q? - (pigi)? q}

Similarly for (4.3.7), we obtain the following new series.

2m—+1 Y

t(p? = g2)""
CrPQ) =G (PQ =Y W) W Wia i) g,

i=1 (pigi) 2 qu”
(4.3.14)
—~ (p? — ¢ — 219161z + pig} + g
G =y od) Wl 2} (43.15)
i=1 (pi%') qi
n > _ L _ 9 )
Z @)’ pzqz il “’Z),... (4.3.16)
i=1 (Pi%‘) C_IZ-

Similarly for convex functions (4.3.11)), we have the following new series of diver-

gences.

n 2 2

2
Cr(P,Q) = wn (P,Q) = Z ql) exp P §i> ;m=1,2,... (43.17)
i=1 (pqu) B qi Pig;
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- )

wi (P,Q) =~ exp it (4.3.18)
= (pigi)? ¢ Did;
" (2 — ) 2 2)?

wy (PQ) =) W= @) o, Pl @) (4.3.19)

3 3
= (pigi)? g} Pid;

Properties of divergences defined by (4.3.12)), (4.3.14)) and (4.3.17)), are as follows.

e In view of properties of Cy (P, @), we can say that &, (P, Q) , (n (P, Q) ,wn, (P, Q) >
0 and are convex in the pair of probability distribution P,Q € I',,.

&, (PQ)=0=(n(P,Q) =wn(PQ)if P=Q or p; = ¢; (attains its minimum
value).

o Since &m (P, Q) # &m (Q, P) G (P, Q) # (G (@, P) ,wm (P, Q) # wi (Q, P) =

Em (P,Q), G (P,Q), wy, (P,Q) are non- symmetric divergence measures.

3.00

b !

4.50 — — —xi(HEY ! i

— @Y ' !
4.00 e y ;
350 EEQ \ J
300 { 7777 e S A
230 { TTTTTEGER oA iF
2.00 »eQ !
150 b
1.00 HRD k :
0.50
0.00

Figure 4.8: Comparison of the well known divergences with new series of diver-

gences

Figure shows the behavior of & (P,Q), P*(P,Q), ¥ (P,Q), V(P,Q),
2 (P,Q), J(P,Q), E* (P,Q),and K (P, Q). We have considered p; = (a,1 —a),q; =
(1 —a,a), where a € (0,1). It is clear from the Figure that the new divergence

&1 (P, Q) has a stepper slope than remaining divergences.
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4.3.3 Intra relation and bounds- I1

Firstly we derive an intra relation among new series of divergence measures

(4.3.12), (4.3.14)), and (4.3.17)), which is the following proposition.

Proposition 4.3.1. Let P, Q) € T, then we have the following new intra relation.
Em (P,Q) < G (P, Q) Swn (P,Q), (4.3.20)

where m = 1,2, ... and &, (P, Q), (i (P, Q), and wy, (P, Q) are given by ({4.3.19),
/.3.14}), and respectively.

Proof: Since

-1 =22 +t+1) E-1D" @B-1)""7
2mtl = 2m_1 mtl
t 2 t™ 2 t™ 2

and

(-1 @ -1) (-1 [1 PG N G VN

2m—1 exp n t2m71 t + 2!t2

2

Therefore, for m = 1,2, 3... and t > 0, we have the following inequalities.

(t2 o 1)2771 < (tQ o 1)2771 (tz o 1)2m+2

2m—1 — 2m—1 + 2m+1
2 t 2 t 2
(12— 1)2m (12— 1>2 (12— 1)4 (4.3.21)
— 2m—1 1 + +
=5 t 2112

Now put t = %,i =1,2,3...,n in (4.3.21), multiply by ¢; and then sum over all

it =1,2,3...,n, we obtain the relation (4.3.20)).

Particularly from (4.3.20f), we have the followings as well.

§I(P7Q> SCI(P7Q) SWI(P7Q)7§2<P’Q) S(Z(P’Q) §w2<P’Q>7“' (4322)

Now, bounds of a particular member & (P,Q) of one of the series of diver-

gences, are obtained in terms of the well known divergences K (P, Q)(1.2.18])
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4. SERIES OF NEW DIVERGENCE MEASURES AND
APPLICATIONS

and x? (P, Q)(1.2.19) by using information inequalities (3.2.2)) on C; (P, Q) given

by Taneja [95]. The results are on the similar lines to the results presented by
Taneja [95].
Firstly, let us consider

(t —1)°

filt) = T,t S0, £ (1) =0, f (1) = (2 —1) (T2 + 1)

2>

and
(35t4 — 6t + 3)
4t5

" (t) = . (4.3.23)

For fi (t), we obtain

(2 — )
Cr(PQ =) "= =6(PQ). (4.3.24)
i—1 (0igi)? q;
Now, the following two propositions give the upper and lower bounds of new
divergence & (P, Q).

Proposition 4.3.2. For P,QQ € ', and 0 < a < 1 < 8 < oo with a # (3, we

have
3503 — 6as + 3a3 3582 — 683 + 332
QP <P < PRI g p)
(4.3.25)
Proof: Let us consider
t—1)> ) 2—1
pm="" 000 nm =070 =" ana
1! 2
5 (1) = et (4.3.26)

Since fY (t) >0Vt > 0and fo (1) =0, so fa (t) is strictly convex and normalized

function respectively. Now for f; (), we get

n 2

Cup.@) =3 P o). (4.3.27)
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Now, let

o(f) = 7(t) 352 — 613 + 3tz
5 (1) 8

where f]'(t) and f (t) are given by (4.3.23) and (4.3.26)) respectively.

It is clear that ¢/ (t) > 0V ¢ > 0 or g (¢) is always strictly increasing in (0, c0), so

4 2
) 3105t — 102 + 1)
16t2

_ 35a7 —6a? + 3a2

m = tei(r;é}fﬁ)g (t)=g(a)= 3 (4.3.28)
M= sup g(t)=g(p) = 350° — 652 + 355. (4.3.29)

te(a,B) 8
The result (4.3.25) is obtained by using (4.3.24)), (4.3.27)), (4.3.28) and (4.3.29))
in (3.2.2).

Proposition 4.3.3. For P,QQ € I', and 0 < a < 1 < 8 < oo with a # [, we
have
(i) If 0 < a < .3916, then

1L.158K (Q,P) < & (P, Q)

< maz 35075 — GZS 1 3a7 | 3585 — 653 13387 K(@.P). (4.3.30)

(i) If .3916 < a < 1, then

3507 — 6oz + 307 3587 — 6% + 337
o a—l—aK o) B—i—ﬁK

1 (Q,P)<&(PQ) < 1 (Q,P).
(4.3.31)
Proof: Let us consider
2 (£) = ~logt,1 € (0,00) £ (1) =0, fy (1) = 7 and
1
2 ()= - (4.3.32)

t2

125
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Since fY (t) >0Vt > 0and fo (1) =0, so fp (t) is strictly convex and normalized

function respectively. Now for f; (), we get

- qi
Cr (P,Q) =) ailog L= E@QP). (4.3.33)
i=1 ¢
Now, let
"(t) 35t —6t2 + 3tz 245t4 — 18¢2 — 3
9(t) = Frs = g (t) = 3
2 (t) 4 8t2
and

1225t* — 18t2+9
g” (t) = 5 ha
16¢2

where f'(t) and f} (t) are given by (4.3.23) and (4.3.32)) respectively.
It is clear that ¢’ (t) < 01in (0,.3916) and ¢’ (t) > 0in [.3916, c0) with ¢” (.3916) >

Y

0, i.e., g(t) is strictly decreasing in (0,.3916) and increasing in [.3916,00). So
g (t) has a minimum value at ¢ = .3916. Therefore

(i) If 0 < a < .3916, then

m = inf_g(t) = g(3916) = 1.158. (4.3.34)
te(a,B)
M = sup g(t) =mazx[g(a),g(F)]
te(a,pB)
3501 — 60t + 307 358% — 6% + 387 (4:3.35)
= max 1 , 1

(ii) If .3916 < a < 1, then

3507 —6a? +3a7

m = tei(réfﬁ) g(t)=g() 1 (4.3.36)
M= sup ¢g(t)=g(p) = 356 — 66> + 3ﬁ7. (4.3.37)

te(a,B) 4
The results (4.3.30]) and (4.3.31]) are obtained by using (4.3.24]), (4.3.33]), (4.3.34]),
(@3.35), (#.3.36) and ([#.3.37) in (3.2.2).
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4.3.4 Numerical verification of obtained bounds- 11

In this subsection, we take an example for calculating the divergences x? (Q, P),
K (Q,P), and & (P,Q) and then verify numerically the results (4.3.25) and

(4.3.30)) or verify the bounds of & (P, Q) in terms of x? (P, Q) and K (P, Q).

Example 4.3.1. We are taking the example same as example 3.2.1 (subsection-
3.2.8) for p = 0.7 and g = 0.3 by considering two discrete probability distributions

Binomial and Poisson, so the values of o, B are same already defined in that

example, given by and the values of x*(Q, P), K (Q,P), and & (P, Q)

are defined as follows.

2

QP =Y Wi = @)y 9959 (4.3.38)
, Di
=1
11 ‘
K(Q.P)=Y qlog ¥ ~ 2467. (4.3.39)
- Di
=1
1o 9\2
§(PQ) =Y Pr=6)” ) 5703, (4.3.40)

=1 (pigi)? ¢

Now, put the approximated numerical values from (3.2.36|) and (4.3.38]) to

({4.3.40) in (4.3.25) and (4.3.30), we get the followings respectively

03697 < & (P, Q) = 1.5703 < 70.700, .2849 < & (P, Q) = 1.5703 < 15.8406.

Hence verify the inequalities (4.3.25)) and (4.3.30]) for p = 0.7.

Similarly, we can verify the same inequalities numerically for different values of p
and ¢ by taking other discrete probability distributions, like: Geometric, Negative

Binomial, Uniform etc.
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4.4 Conclusion

In this chapter, we introduced parametric series of divergence measures of Csiszar’s
class for series of convex functions of algebraic type. Nature of all convex functions
with respect to the value of their parameter, has shown graphically. Comparison
of new members of Csiszar’s class with old standard members, has also been pre-
sented. We have evaluated bounds of a member of the new series of divergences,

together with numerical verification.
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5

NEW RELATIONS AMONG
SEVERAL DIVERGENCES

5.1 Introduction

Since we know that divergence measures are very useful in information theory
and practical problems, therefore it is very important to derive some relations
among them.

In this chapter, we derive many new important and interesting relations among
several divergences by helping some algebraic, exponential, and logarithmic in-
equalities. This chapter contains only one section excluding introduction and

Conclusion.

5.2 Inequalities, Relations Among Divergences

This section contains several algebraic, exponential, and logarithmic inequalities

and then further we establish many new relations among new divergence measures
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and well known old divergence measures by using these inequalities. Several
interesting and important new relations among divergences, also obtain by helping

old relations.

5.2.1 Algebraic, exponential, and logarithmic inequalities

The following inequalities (5.2.1)) and ([5.2.2)) are famous in literature of pure and
applied mathematics, which are important tools to prove many interesting and

important results in information theory.

1+{;<et<1—|—t€t, t > 0. (5.2.1)
— <o (1—|—)< >0 (522)

t t, 1 . 2.
1 E_ g —~ Uy

Besides above inequalities, we are introducing the following algebraic and expo-
nential inequalities as well together with their proofs.

Proposition 5.2.1. Let t € (0,00) and m = 1,2, ..., then we have the following

mequalities.
21" (t—1)"
( 2m—1) ( 2m—)1 Y (523)
tT2 t77
2 —1)*" t—1)"
( 2m—1) > ( Q)m—l’ (524)
" (t+1)
2 —1)"" 217 (=1 t—1)°
( QLB exp ( ) > ( 2L,>1 exp ( ) : (5.2.5)
t 2 t t 2 t
(- 1)* 2
> (t—1)7, (5.2.6)
Vi
and ,
(t*—1)

NG >1 -t (5.2.7)

All functions involve in (5.2.9) to (5.2.7) are convex and normalized, since f" (t) >
0Vit>0 and f (1) =0 respectively.
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Proof: From (j5.2.3]), we have to prove that

21" (-1
( QLB >( QL,)I = (t+1)"—1>0,

2 t 2

which is true (obvious) for ¢ > 0. Hence proved (j5.2.3)) for each m.

Further, from (5.2.4)), we have to prove that

2 —1)"" (-1
2m—1 > 2m—1
t72 (t+1)

4000 -

3000

2000 -

1000 -

—1

Figure 5.1: Graph of (t+ 1)*" ' — ™% form = 1,2, ...

which is true (Figure for t > 0. Hence proved ([5.2.4)) for each m.

Similarly, from ([5.2.5)), we have to prove that

2 —1)"" -1  (t—1)>™" t—1)°
( 2m71) eXp ( ) > ( 2mf>1 eXp ( )
t 2 t t 2 t

2 — 1)* t—1)°
= (t—i—l)zmexp% >exp( )

(1) exp [(t2 —1)? (- 1)2 »

t t

= (t+ 1) exp [(t+2) (t—1)°] =1 >0,
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600 -

500+

a0

300

W00

100 F

03 10

Figure 5.2: Graph of (£ +1)*" exp [(t +2)(t— 1)2} —1lform=1,2,..

which is true (Figure for t > 0. Hence proved ((5.2.5)) for each m.
Second lastly, from ([5.2.6]), we have to prove that

(t* —1)°
Vi

which is true (obvious) for ¢ > 0. Hence proved (/5.2.6)).

>(t—1°= (t+1)° =Vt >0,

Lastly, from ([5.2.7)), we have to prove that

-1 —1)° *-1)° 1)°
T >1—Vt= \/Z +VE>1

= (2 —1)" +1-Vi>0,

on
T

.
T

—
T

05 10 13 10

Figure 5.3: Graph of (t2 — 1)2 +t—/t

which is true (Figure for t > 0. Hence proved ([5.2.7)).
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Proposition 5.2.2. Let t € (0,00) and m = 1,2, 3... then we have the following

mequalities.
(2 —1)""  (t—1)*"
2m—1 I 528
$2m—1 % ( )
2 -1 (t—1)™™
> : 5.2.9
$2m—1 (t + 1)2m—1 ( )
t2 1 2m
(t?Tz > (t—1)"", (5.2.10)
and 2 2 2 2
o)™ 21 - 1™ -1
(t ) exp (t ) (t—1) exp (t=1) . (5.2.11)

t2 > 2(/_2m—1 t

t2m71 5

All functions involve in (5.2.8) to (5.2.11) are convexr and normalized, since

") >0Vt>0 and f (1) = 0 respectively.

Proof:From (j5.2.8]), we have to prove that

(2 —1)""  (t—1)""

_ 2m—1
t2m 1 tmT

= (t4+ 1) > " s

= Vi(t+1)"" =t >0,

a3 12 LS 10 13 io

Figure 5.4: Graph of v/t (¢ + 1)2m —tMform=1,2,..

which is true (Figure fort > 0,m =1,2,3.... Hence proved the result (5.2.8]).
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Now from (j5.2.9)), we have to prove that

2 —1)""  (t—1)""
$2m—1 (t + 1)2m—1

= (t+ 1) > 2t

= (t+ )" =2t s,

which is true for ¢ > 0,m = 1,2, 3.... Hence proved the result (5.2.9).

Similarly from ([5.2.10)), we have to prove that

(2 —1)*"

o )* = (t+1)"" =1 >,

which is true (obvious) for ¢ > 0,m = 1,2, 3.... Hence proved the result (5.2.10)).

Similarly from (5.2.11)), we have to prove that

e VY Gt VR (R VY U Vs

$2m—1 2 tM t

2

(t71)2(t2+t+1)

t 12m 2
(e

1
tm=3

(t—1)2 (t2+t+1>

>1=(t+1)"e 2 — ™ >0,

000 |
50000 |
40000
p000
0000 |

10000 |

(t—1)2(t2+t+1) L
Figure 5.5: Graph of (t +1)*"e 2 —t™"2 form=1,2,...

which is true (Figure for t > 0,m = 1,2,3.... Hence proved the result

(5.2.11).
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5.2.2 Several new relations among divergences

In subsection 5.2.1, many inequalities (algebraic, exponential, and logarithmic)
have been introduced. Now, in this part of the section, we establish several rela-
tions among many divergence measures together with standard means. We have
already defined all the divergence measures and means (using in upcoming propo-
sitions) in introduction chapter. So we are not repeating that all divergences. We

start with the following proposition.

Proposition 5.2.3. Let P,Q € I',, and m = 1,2,3..., then we have the following

new relations

N; (P.Q) = Niy (P.Q) < A, (P.Q) (5.2.12)

and

Aerl (Pa Q) < N;1+1 <P7 Q) ) (5213>

where A, (P,Q) and N}, (P, Q) are defined by and respectively.

Proof: Put t = Ep’ qz; in inequalities ([5.2.1]), we get

2 2
<14 (pi — @) exp (pi — )

B (pi + C_Iz')z (pi + Qz‘)Q.

(ps —C]) < exp (pi—qz'>2

1+
(pi + @)’ (pi + @)

a)?

Now multiply the above expression by (I’ZW, m = 1,2,3... and sum over all

1=1,2,3...,n, we get

- ( . (pz )2m+2 < & (Pz‘ - (Ji)2m (pi - %)2
E : 2m T+ > om—1 SXP p)
(pz + @) — (p; +q;)"" — (pi + @) (pi + @)
o n o 2m—+2 . 2
< Z (pi qu 4 (pi qz)2m+1 exp (pi %)2 e
(pi + @) — (pi + @) (pi + @)
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From second and third part of (5.2.14)), we obtain inequality ([5.2.12)) and from
first and third part, we obtain (5.2.13]). Particularly

at m = 1;
N{(P,Q) = Ny (P,Q) <A (P,Q) = A(P,Q), Ay (P,Q) < N3 (P,Q) . (5.2.15)

at m = 2:
Ny (P,Q) = N3 (P,Q) < Ay (P,Q), A3 (P, Q) < N3 (P,Q), (5.2.16)

and so on.

Proposition 5.2.4. Let P,Q € T',, and m = 1,2, ..., then we have the following
new relations
I (P, Q) = J5 1 (P,Q) < EL (P,Q) (5.2.17)

and
B (PQ)< 1 (PQ), (5.2.18)

where E*, (P, Q) and J*, (P, Q) are defined by (1.2.28) and (1.2.29) respectively.

Proof: Put t = (“p ;”) in inequalities (5.2.1)), we get

2 2 2 2
(pi — @) gexp(p’ ¢) <1+(pz ) exp (pi ql)‘

Diqi piqi Diqi Diqi

1+

Now multiply the above expression by %,m = 1,2,... and sum over all
Piqq

1=1,2,3...,n, we get

n 2m+2 2m

2m n n 2
Z(p ) +Z(p qzzmﬂ Z 2m " o (p; — ¢:)
(pzqz) T (pa) i (i) 7 Pigi
2m—+2 2
< Z (pi —aq)™"" exp (pi — @) e
= quz T i=1 (pz'C_Ii)Qm;l pigi

E,(PQ)+ E,. (P,Q) < J, (P,Q) <E,(P,Q)+J,, (PQ). (5219

2m
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From second and third part of (5.2.19)), we get inequality (5.2.17) and from first

and third part, we get ((5.2.18]). Particularly

at m = 1:

J(PQ) = J; (P,Q) < EN(P,Q) = E"(P,Q), E; (P,Q) < J; (P,Q). (52.20)

at m = 2:
and so on.

Except the above results, from first and second part of the inequalities (5.2.19)),

we can easily see that at m =1

EY (P,Q) < J7 (P,Q). (5.2.22)
Proposition 5.2.5. Let P,QQ € I',,, then we have the following new relations

¥ (P,Q) —2E1 (P,Q) <5 (P,Q) (5.2.23)
and
S*(P,Q) + ¢ (P,Q) < ¢um (P,Q), (5.2.24)

where E (P,Q), ¥ (P,Q), S* (P,Q), and 1y (P, Q) are defined by , ,
, and respectively.

_ _ (vriva)” .. ..
Proof: Put t = avng o n inequalities ([5.2.2]), we get
(vpi-va)* 2 2
/I TR 1 Vo~ va)- < (VP = V&) ie.
1+ (Vri-va@)” ~ 2\/Piti - 2ymig T
2\/Piqi
i + 4 — 2/Piti < log pitdai _ Pi + g — 2/Pig;
Pi +qi - 2\/piti — 2\/Didi
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(pitai)(pi—a:)*

Now multiply the above expression by v

and sumoverall? =1,2,3....n

we get

>

(pi + @) (pi — qz')2

i + qi — 2/Digi “ (pi+q) 0 — @) i T i
{p ¢ — pq} Z(p + @) (pi — @) log 2 +q
=1

P Pidi pi + g m Pidi 2\/PiGi
Z (i + @) (pi — a:)° {pi +q— 2\/piQi:| o
_ Pid; 2\/piQi ’ ’

i (pi + ) (pi — @) _ zi (pi — @) < 5 (P,Q)

— Pidi — \/]T% -
N - q?f i pi+a) (i — @)’ e
i-1 2 (Pz%)i i=1 Pigi
¥ (P,Q) —2E] (P,Q) < 5" (P,Q) <vu (P,.Q) ¢ (P,Q). (5.2.25)

From first and second part of ([5.2.25)), we get inequality ([5.2.23)) and from second
and third part, we get (5.2.24]).

Except these, if we add and , we get
20 (P,Q) < v (P,Q) +2E7 (P,Q). (5.2.26)
From second and third part of the inequalities , we can easily see that
S*(P,Q) < ¢ (PQ). (5.2.27)
By taking both and ([5.2.27)), we can write

U (P,Q) —2E7 (P,Q) <S"(P,Q) <vm (P,Q). (5.2.28)
Proposition 5.2.6. Let P,QQ € T',,, then we have the following new relations

L(P.Q)+A(P.Q) < LF; (P.Q) (5.2.29)

138



5.2 Inequalities, Relations Among Divergences

and

A(P.Q SL(PQ)+2) (pi(;‘q;) qf)/f%, (5.2.30)

where A (P,Q), E; (P,Q), and L (P,Q) are defined by (1.2.5), ({1.2.8), and

respectively.
(voi—va)’
Proof: Put t = Svma 0 inequalities (5.2.2)), we get
Pi +Gi — 2\/]91% o D ta _Pitai—2Vpidi
Pi + G 2\/pzqz 2\/pigi

(pzflﬁ)Q and sum over all Z = 1, 2, 37 n, we

Now multiply the above expression by Py

get

n

(pi — %)2 {Pz’ +q — 2\/2%%] i (pi — %‘)2 lo Pi +
: Di
—1

g
= Dita pi+ i i + 4 2\/pigi
< ~ (pi — ) [pz' +qi — 2\/]%%'] Lo
I bita 2\/PiGi

Zn: (ps ;Q;)z _22”: (pi — 4i)° /Pidi <L(PQ) < %Z (pi — %)2_2”: (pi — ;) e,

=1 PiT i=1 pi+a) 2= VPigi I Pt

A(P,Q) - 22 (e pqu q{m <L(P.Q)<LE (P.Q) - A(P.Q). (231

From second and third part of (5.2.31]), we get inequality (5.2.29) and from first

and second part, we get ([5.2.30)).
From inequality ([5.2.29]), we can easily see that
1
A(P.Q) < 3B} (P.Q). (5.2.32)

Proposition 5.2.7. Let P,Q €T, and Y p; = > ., ¢; = 1, then we have the

following new relations

A(P,Q)<h(P,Q) <T(PQ), (5.2.33)
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A(P,Q)+h(P,Q) < i Z % (5.2.34)

and

AP.Q)+T(P,Q) < 33 LA (5.2.35)

where h (P, Q) and T (P, Q) are defined by (1.2.6) and (1.2.11)) respectively, and
A(PaQ) :Z?:lm =1

2

2
Proof: Put t = % in inequalities (5.2.2)), we get

i + i — 2/Diqi < log i + i o Pi + G — 24/PiGi
pi + g o 2/piq — 2./Diq;

Now multiply the above expression by 234

and sum over all © = 1,2, 3...

get

= i i i + 2\/pi - i i i i
Z(p +q)(p ¢ — \/pqz) Z(p +q)1ogp +q
— 2 pi + G — 2

2\/piQi

- i i i + @ — 24/Digi

< Z (pﬁrqz) (p +q \/pq) e,
P 2 2\/Pidi

zn:pi+Qi;2\/M<T (P,Q) <Z pl+q2)

—1,1ie.,
i=1 i—1 4\/Pidi
Z\/_ V@) <T(P,Q) <Zp’+ql 1, ie,

i1 i1 V/Digi

WO <T(PQ) <S eite) | (5.2.36)
; 4v/piti

From first and third part of (5.2.36)), we get inequality ([5.2.34)) and from second
and third part, we get (5.2.35]).

Except these, from (5.2.34]) and ([5.2.36]), we can easily see the followings

A(P.Q) < Z (b + )° (5.2.37)
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5.2 Inequalities, Relations Among Divergences

h(P,Q) < Z %, (5.2.38)
and
h(P,Q) <T(P,Q). (5.2.39)

Now do ((5.2.37))-(5.2.38]), we get

A(P,Q) < h(P,Q). (5.2.40)

By taking both (5.2.39) and (5.2.40]), we get the inequalities (5.2.33)).

Proposition 5.2.8. Let P,Q € ', and > pi =Y i ¢ = 1, then we have the
following new relations

—log2 (5.2.41)

1

and

1
log2 + G (Q. P) < § [Ra (P.Q) + 1], (5.2.42)
where G (P, Q) and Ry (P, Q) are defined by and respectively.

Proof: Put t = % in inequalities | , we get

Di Slogpi+%§]ﬁ'
Di + qi q; q;

p’L +q1

Now multiply the above expression by and sum over all © = 1,2,3...,n, we

get
Pit+¢q D Szpﬁ_qilog Pri—% sz+quz,i.e.,
pitq =
_<1 sz+Qz pz"—% pz+Qz 5_¢+ %,i.e.,
i=1 24i P
1
5 <log2+G(Q,P) < 3 [RQ (P,Q)+1]. (5.2.43)

From first and second part of (5.2.43|), we get inequality (5.2.41]) and from second

and third part, we get (5.2.42)).
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Proposition 5.2.9. Let P,Q €T, and > p;i =Y i, ¢ = 1, then we have the

following new relations

log2 — F(P,Q) < A(P,Q) (5.2.44)
and
%H (P,Q) + F (P,Q) < log2, (5.2.45)
where F (P, Q) is defined by (1.2.21) and H (P,Q) = >\, zimeqii'

Proof: Put t = Z—:’ in inequalities 1) we get

Di Slngi+Qi§&.
pi+q; Qi q;

Now multiply the above expression by 2¢; and sum over all : = 1,2, 3....n, we get

. Di a 2(pi + ) - pi .
2q; <) 2¢qlog———— < > 2¢;— , e,
; Di T q; ; 2q; ; q;

H(P,Q) < ZIOgZZqi—QZqilogp_iq_q. < QZpi ,le.,
i=1 i=1 t t i=1

H(P,Q) < 2log2 —2F (Q,P) < 2.

After interchanging P and (), we obtain the following
H(P,Q) < 2log2—2F (P,Q) < 2. (5.2.46)

From second and third part of , we get inequality and from first
and second part, we get .

Some more new relations:

The following inequalities is a famous relation from literature (Taneja

[TOT]). These expressions have been already defined in introduction of this thesis.

(5.2.47)
<SR(PQ)<S(PQ)<C(PQ).
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5.2 Inequalities, Relations Among Divergences

Now we can obtain some other important relations among various divergences

with the help of above inequalities, these are as follows.

From ([5.2.33) and (5.2.47]), we obtain

H(P,Q)<B(P,Q)<N3(P,Q)<A(P,Q)<h(PQ)<T(P,Q). (5248)

From ([5.2.44)) and ((5.2.47]), we obtain

g2~ F(P,Q) < A(P,Q) < R(P,Q)<S(P.Q)<C(PQ). (5249

From ([5.2.33) and (5.2.44)), we obtain

log2 — F (P.Q) < A(P,Q) < h(P,Q) < T (P,Q). (5.2.50)

Do (5.2.42)) - (5.2.44)), we get

G(Q,P)+ F(Q,P)<-[R(P,Q)+ 1] —A(P,Q) ,ie.,

1
2

24 (P,Q) + Jr (P,Q) < Ry (P, Q) + 1. (5.2.51)

From (5.2.15), (5.2.22) and (5.2.32), we obtain

Ny (P,Q) — N; (P,Q) < A(P,Q) < %EI (P,Q) < %J;‘ (P,Q). (5.2.52)

From ([5.2.15)) and ([5.2.29)), we obtain

NP (P.Q) - N (P.Q)<A(PQ < B (PQ - L(PQ).  (5253)

143
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Proposition 5.2.10. Let P,Q € I',,, then we have the followings new inter rela-

tions.
Em (P,Q) > E (P,Q). (5.2.54)

En (P.Q) > An (P,Q). (5.2.55)

wm (P,Q) > J: (P,Q). (5.2.56)

& (PQ)>X*(PQ). (5.2.57)

& (P,Q) > h(P,Q), (5.2.58)

where &, (P, Q) and w, (P, Q) are defined by and respectively.

Proof: If we put ¢t = %,i =1,2,3...,n in (15-2-3D to (I5.2.7P and multiply by

¢;, and then sum over all i = 1,2,3...,n, we get the desired relations (5.2.54]) to

(5.2.58]) respectively.

Now we can easily say from ([5.2.54)), (5.2.55)) and ([5.2.56)) that

& (P,Q) > Ef (P,Q),6 (P,Q) > E;(P,Q), ... (5.2.59)
51 <P7Q> > A1 (P>Q> = A(PvQ)7£2 <P7Q) > AZ (P>Q>7"'7 (5260)
and
w1 (P,Q) > J7 (P,Q),ws (P,Q) > J5 (P,Q), ... (5.2.61)
respectively.

Proposition 5.2.11. Let P,Q € I',,, then we have the followings new inter rela-

tions.

(5.2.62)
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5.2 Inequalities, Relations Among Divergences

<APQ <&(P.Q) <[G(P.Q),w (PQ). -
PO SEPQ<6(PASGPQ.@PQl (5260

2A (P, Q) — %w (P,Q)<x*(P,Q) <& (P,Q) <[G(PQ),wi (P,Q)]. (5265)

e (P.Q - L7 (PQ)| <6(P.Q <G (PQ) @ (PQ)]. (5260
[J7(P,Q)—J5 (P,Q) <& (P,Q) <G (P,Q),w (P,Q)]. (5.2.67)
YAPQHLPQI<6(PQ<GPQ),w (Pl (269

AMsa (P, Q) < %MSH (P.Q) <& (PQ)<[G(PQ),w (PQ)].  (52069)

1

§MSB (P7 Q) < 51 <P7 Q) < [Cl (Pv Q) y W1 (P7 Q)] . (527())
32d(P,Q) < & (P,Q) < [G (P,Q) w1 (P,Q)]. (5.2.71)

6D¢J(P7Q> S 64D1/1T(P7Q> S E; (P7Q) S 52 (P7Q) S [CQ (PaQ)7w2 (PaQ)]v
(5.2.73)
where Msa (P, Q), Msp (P,Q), Msu (P,Q), Dyr (P,Q), Dy (P,Q), and ¢ (P, Q)
are defined by (1.2.42), (1.2.43), (1.2.44)), (1.2.45), (1.2.46]), and respec-

tively.

Proof: Since we know the following relations. Relations ([5.2.75)), (5.2.77)),

(5.2.81)), and (5.2.82) have taken from literature (Jain and Chhabra [43]), rela-

tions (5.2.74) and (5.2.80) are from literature (Jain and Srivastava [49]), rela-
tions (5.2.79) and (5.2.86) are from (Jain and Chhabra [44]), relations (5.2.83))

and (5.2.84]) have taken from (Taneja [97]), whereas relations (5.2.78)), (5.2.85)),
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(5.2.76)), and (5.2.87)) are from literatures (Jain and Saraswat [48]), (Taneja [100]),

(Taneja [101]), and (Taneja [99]) respectively.

EA(P,Q) <I(P,Q)<h(P,Q) < éJ(P,Q)

1 (5.2.74)
<T(RQ) < LE (P.Q)

Ny (P,Q) — N3 (P,Q) < A(P,Q). (5.2.75)
(5.2.76)

<N (P,Q) < N2 (P,Q) <A(P,Q).
A(P.Q) < h(P.Q). (5.2.77)
1n(P.Q) S K(P.Q) < T(PQ). (5275)
A(P.Q) < % %w (P,Q) +(P,Q)] . (5.2.79)
S (P.Q) < B (P,Q) + 17 (P.Q). (5.2.80)
7 (P.Q) - J; (P.Q) < Fi (P.Q). (5.2.81)
A(P.Q) < SE(P.Q)~ L(P,Q). (5.2.82)
Msa (P,Q) < s Msu (P.Q) < 1A (P,Q). (5.2.89)
%MSB (P,Q) < h(P,Q). (5.2.84)
1d(P,Q) < %J(P, Q). (5.2.85)
F(P.Q) < %A (P,Q). (5.2.86)
iDW (P.Q) < ngT (P,Q) < 2—14E§ (P,Q). (5:2.87)

By taking (5.2.74), (5.2.75|) and first part of the relations (5.2.59)) and ({4.3.22])
together, we get the relation (5.2.62]).
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By taking (5.2.58)), (5.2.76)), (5.2.77) and first part of the relation (4.3.22), we get

the relation (5.2.63)).

By taking ([5.2.78]) and fifth, eighth, ninth elements of the proved relation (5.2.62])

together, we get the relation (5.2.64]).

By taking ([5.2.57)), (5.2.79) and first part of the relation (4.3.22) together, we get

the relation ([5.2.65]).

By taking and first part of the relations and together,
we get the relation (5.2.66)).
By taking and first part of the relations and together,
we get the relation ((5.2.67)).
By taking and first part of the relations and together,
we get the relation .
By taking and first part of the relations and together,
we get the relation (5.2.69).

By taking ([5.2.58)), (5.2.84) and first part of the relation (4.3.22)) together, we get

the relation ((5.2.70)).
By taking ([5.2.85)) and fifth, eighth, ninth elements of the proved relation ([5.2.62])

together, we get the relation ([5.2.71)).

By taking ([5.2.86|) and first part of the relations (5.2.60)) and (4.3.22) together,
we get the relation ([5.2.72)).
By taking ((5.2.87)) and second part of the relations (5.2.59) and (4.3.22]) together,

we get the relation (5.2.73]).
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Proposition 5.2.12. Let P,Q € I',,, then we have the followings new inter rela-

tions.
Y (P, Q) > Ey, (P,Q), (5.2.88)
T (P, Q) > Ay (P, Q) (5.2.89)
T (P,Q) > X*" (P, Q), (5.2.90)
and
pm (P, Q) > J5, (P.Q), (5.2.91)

where Ay, (P,Q), X*™ (P,Q), Ym (P,Q), and p,, (P,Q) are defined by (1.2.30),
(1.2.51), (4.2.12), and respectively..

Proof: If we put t = %,i =1,2,3...,n in (I5.2.8D to (I5.2.11|), multiply by

¢; and then sum over all i = 1,2,3...,n, we get the desired relations (5.2.88|) to

(5.2.91)) respectively.

Now we can easily say from (5.2.88) to (5.2.91)), that

71 (P,Q) > ET (P,Q) = E*(P,Q),7% (P,Q) > E; (P,Q), ... (5.2.92)
1 (P,Q)> A (P,Q)=A(P,Q),% (P,Q) > Ay (P,Q), ... (5.2.93)
N (P.Q)>x*(P,Q), 7% (P,Q) >x"(P.Q), ... (5.2.94)
and
pL(P.Q) > Ji (P,Q),p2(P,Q) > J; (P,Q) ..., (5.2.95)
respectively.

Proposition 5.2.13. Let P, () € T',,, then we have the followings new inter rela-

tions.

pu(P,Q) > T, (P,Q) > E;, (P,Q), (5.2.96)
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p1 (P,Q) > 8T (P,Q) >J(P,Q) >8h(P,Q)>8(PQ), (5.2.98)
and

(5.2.99)
>8L.(P,Q)>8B(P,Q) >8H (P,Q).

Proof: Since we know the followings. Relations ((5.2.100), (5.2.101)), and

(5.2.103)) are from (Jain and Chhabra [43]), whereas relations (5.2.102)) and
(5.2.104) are from literatures (Jain and Srivastava [49]) and (Taneja [101]) re-

spectively.
I (P,Q) > E;, (P,Q), (5.2.100)
%E* (P,Q) = A(P,Q) = [Ny (P,Q) — N5 (P.Q)], (5.2.101)
%E* (P,Q)2T(PQ) = éJ (P,Q) > h(P,Q)>1(P,Q), (5.2.102)
T(P,Q)>A(PQ), (5.2.103)

and

(5.2.104)
> L.(P,Q) = B(P,Q) = H(P,Q).

By taking (5.2.91)) and (5.2.100) together, we get the relation (5.2.96)).

By taking first and third part of the proved relation (5.2.96|) at m = 1 together

with (5.2.101)), we get the relation ((5.2.97)).
By taking first and third part of the proved relation (5.2.96|) at m = 1 together

with (5.2.102)), we get the relation ([5.2.98)).
By taking first and second part of the proved relation (5.2.98]) together with

(5.2.103) and ([5.2.104)), we get the relation ((5.2.99)).
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5.3 Conclusion

In this chapter, we derived many new important and interesting relations among
several divergences by using some algebraic, exponential, and logarithmic inequal-

ities.

150



6

NEW GENERALIZED
INFORMATION DIVERGENCE
FOR COMPARING FINITE
PROBABILITY
DISTRIBUTIONS AND
APPLICATIONS

6.1 Introduction

Several generalized divergences had been introduced in information theory for
comparing two probability distributions at a time, like; Csiszar’s divergence ([2],
[20]), Bregman’s divergence ([14]), Burbea- Rao’s divergence ([16]), Renyi’s diver-
gence ([79]), Jain and Saraswat’s divergence ([48]) etc. This chapter introduces
new generalized divergence measure for comparing finite number of discrete prob-

ability distributions.
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APPLICATIONS

This chapter is organized as follows: Besides introduction and conclusion sections,
there are two more sections as well. In section 6.2, we introduce a new generalized
divergence for comparing 27, 7 = 1, 2, 3..., n discrete probability distributions at a
time. we also obtain a sequence of intra relations among this generalized measure
and the measures with 25 4+2,25 —2,27 —4,...,4,2Vj = 1,2, 3...,n discrete prob-
ability distributions, respectively. Relation with other generalized divergence has
been obtained as well. In section 6.3, Special cases as an application, are dis-

cussed.

6.2 New Generalized Divergence, Properties and

Relations

Let Ty, = {P = (p1,p2,P3,-sPm) = pi > 0,2, p;i = 1}, m > 2 be the set of
all complete finite discrete probability distributions. If we take p; > 0 for some
i =1,2,3...,m, then we have to suppose that 0f (0) =0f (g) =0.

Let Pi = (p11s s Pm1) s ooy Pn = (Piny ooy Dnn) and Q1 = (qu1y ooy @) 5 o0y @ =
(qins -+, Gmn) be discrete probability distributions such that P;,Q; € I',, V j =
1,2,...,n. Now we define a new generalized information divergence measure

among 2n discrete probability distributions by

S;”L (P17P27 cey Pn7Q17 Q?a 7Qn)

m m m Pi1tgi1 Pi2+4gi2 Pint+qin
o 2¢i1 + 2qi2 +o+ 2¢in (6'2'1)
= GiQi2---Qinf n )

=1 i=1 =1

where f: (0,00) — R (set of real no.) is real, continuous, and convex function.

Particularly, Jain and Saraswat’s generalized divergence measure (|1.2.47)) is a
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special case of this measure, which is

SH(PL Q1) = Z ginf (p” ;rlq“) :Z a.f (pl+q’). (6.2.2)

2qi
Now we define the following basic properties of measure (6.2.1]).
(a). SF (P, Poy .oy Py Q1,Q2, ..., Qp) > 0 and is convex in the pair of probability
distribution P,Q € I',,,.
(b). S7 (P}, Q;) =0if P; = Q; Vj=1,2...,n (attains its minimum value).
(c). S (P, Q;) attains its maximum value when P; and @Q); are perpendicular to

each other for each j.

6.2.1 Intra relation among new generalized divergences

Now, we derive an important and fruitful relation among new generalized diver-
gence measures. The sequence of these measures are basically special cases of

(6.2.1) according to the number of probability distributions.

Theorem 6.2.1. Let [ : (0,00) — R be a differentiable, convex function, i.e.,
f" () >0Vt>0. For P;,Q; € ', Vj=1,2....,n, we have

S} (P, Q1) > Sfc (P, Po, Q1,Q2) > ... > 7 (P1, Pay .y Py Q1, Qo Q)

Z S;H_l (PI)P% ceey P’n7 Pn+17Q17Q27 "'7Qn)Qn+l) 2 f (1) ) (623)

where S} (Py, Py, ..., Po, Q1, Qa, ..., Q) is given by )

Proof: By using Jensen inequality ([1.3.3]) for multiple summations for the

discrete probability distributions, we get

m Pi1+qi1 + Pi2+qi2 + ...+ Pin+Gin Pi(n+1) +qi(n+1)

m m 2(]11 2%,2 2Q7,n 2qi(n+1)
Z Z Z qile‘Q-‘-Qz‘nQi(n-‘rl)f n+1

i=1 i=1 =1
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Pi1tdgia + pi2+4gi2 + _|_ Pintqin pi("+1>+qi(”+1>

m m m
2qi1 2qi2 2¢in 2¢;(n
Z f Z Z 2%1%2 Qm%(n—i—l) "+ 1 (ot

=1 =1

—f - i : (Z (Pn ; Qil) Zqﬂ‘“ Z%’(n+1) NI Z (pi(n—I—l) ;_Qi(n-&-l)) Z%l--- qu)]
= =1 i=1 i=1 i=1 1=1

L 1
n+1 )
—f{ +1(1+1—|— +1)] f<n+1):f(1),1.e.,
S}H—l (Pla P2a “'7Pn7pn+17Ql)Q27 ceey Q?’La Q?’H—l) Z f (1) . (624)

Hence the last inequality of relation (6.2.3]) is proved.
Now apply Jensen inequality (1.3.3|) for z1,xs, ..., 2,41, where x; € (0,00) Vi =
1,2,...,n+ 1, we obtain

1+ To+ ... —i—acn—l-an

Lf (1) + f (22) + oo+ f () + f (201)] > f

n+1 n+1
(6.2.5)
Let
21+ 20+ ...+ 2, Zot+ 23+ ...+ Zn + Znya Zny1 21+ o+ 21
T = , Ly = yeees Lppl = s
n n n
where z; € (0,00) Vi=1,2,....n+ 1.
Then by inequality (6.2.5)), we get
1 2714+ 29+ ...+ 2 Zpa1+ 21+ F 2
p(atmrarn), g (mera i)
n+1 n n
1 21+ 20+ ...+ 2, Znel+ 21+ o+ 2
zf[ ( L +op T 1)} (6.2.6)
n+1 n n
_ n(z1+ 22+ ...+ 20 + Zny1) _ 21+ 204 o+ Zn + Zna
B n(n+1) B n+1 ‘
Now put z; = ’% in (6.2.6), multiply with ¢;; V j = 1,...,n + 1 and for each
ij

1 =1,...,m and then summation n + 1 times from ¢ = 1 to i = m, we get

m m Pi1+gi1 Pin+Qin
paten 4y
2q; 2qin
Z'“Zqil---qi(nJrl)f ( = = )]
=1 =1 n
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Pi(n+1) Tdi(n+1) + Pi1+gi1 4o+ Pi(n—1)Ti(n—1)

m m
2¢i(n+1) 2gi1 2qi(n—1)
) 38 ST :
=1 =1
pi1t+gi1 Pi(n+1) Tqi(n+1)

- S 2qi1 + + 2%(n+1) .

Z Zq Gin+1) S , L.e.,
n+1
=1 =1
1
S}L (P17 P27 sy Pn7 Ql? Q27 T} Qn) Z S;LJF (P17 P27 EERE) PTL+17 Qlu Q27 (RS QTLJrl) .

(6.2.7)
Hence the second last inequality of (6.2.3)) is proved for all n, and the theorem is
thus proved.

Remark 6.2.1. If function is normalized, i.e., f(1) = 0, then we obtain the
following sequence of new relations from )

S]]Z (P17Q1> 2 5]2‘ (P17P27Q17Q2) Z Z S}L (P1;P2a "'7P7’L7Q17Q27 "'7@71)

Z S}H_l (Plu P27 sy an Pn-i—la Qb Q27 [ERE) QTM Qn-l—l) Z 0.
(6.2.8)

6.2.2 Relation between two different generalized diver-

gences

The following generalized divergence measure for comparing finite discrete prob-

ability distributions, is introduced by Dragomir [26], which is
CT (P, Pay ooy Py Q1 Qs o, Q)

- ii 2%1%2 Gin f (’Zzi T T %) ’ (6.2.9)
n

i=1 =1 =1

where f: (0,00) — R (set of real no.) is real, continuous, and convex function.
Particularly, Ciszar’s generalized divergence measure (|1.2.1)) is a special case of

this measure, which is

C} (P, Q1) unf <p11) = Zqu (&) : (6.2.10)

i1 4di
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Now we derive a special and important relation between generalized measure
(6.2.1) and (6.2.9), by the following theorem .

Theorem 6.2.2. Let f: (0,00) — R be a differentiable, conver and normalized
function, i.e., " (t) > 0Vt >0 and f (1) = 0 respectively. For P;,Q; € I, V j =

1,2...,n, we have

1
S:;'L (P17P27 ceey Pn’ Q17Q2, "'7@”) S 50? (P17P27 ceey PTL) Ql, Q2’ ...’Qn) . (6.211)

Proof: Apply Jensen inequality (|1.3.3)) for the domain I C (0, c0), by putting

)\1:)\2:%,)\3:...:)\”:0,weget

F(P2) <y + s (6:2.12)

Now put t; =t and t2 = 1 in above inequality, we obtain

f (%) < %f(t). (6.2.13)

n Pij

i1 g
Now take t = % in inequality (6.2.13]), multiply with H?Zl ¢;; for each ¢

and then summation over n times from ¢ = 1 to ¢ = m, we obtain the required

relation (6.2.11]).

Remark 6.2.2. By considering two probability distributions at a time, we get the
following well known result from inequality (6.2.11

S i+ 1 ¢ i 1
Z%f (%) < §;Qif <§_) = 5 (P,Q) §§Of(P7Q)7

i=1 v

where Sy (P, Q),Cr (P,Q) are given by and respectively.
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6.3 Application of New Generalized Divergence

In previous section, we introduced new generalized divergence measure for com-
paring finite discrete probability distributions. In this section, we apply this new
generalized divergence on Variational distance, Chi- square divergence and Expo-
nential divergence respectively and obtain the interesting relations. The results

are on the similar lines to the results presented by Dragomir [26].

Proposition 6.3.1. Let P;,Q; € I',, V7 =1,2,...,n, then we have

Vi (PL, Pay ooy Pas Q1 Qo oy Q) < ZH:V(Pj,Qj) (6.3.1)
j=1
and
Vi(PL @) =V (P.Q) 2 35 (P Py Q1) 2 2 Vi (Pry o P @)
> —Vier (Pry o Pos Past, @, Qs Qi) 2 0,

(6.3.2)

Proof: Let f (t) = |t — 1|, ¢ > 0. Here f (¢) is convex and normalized function

because f”(t) >0Vt >0 but not at £ =1 and f (1) = 0 respectively.

Put f(¢) in (6.2.1) and (6.2.2]), we obtain the followings respectively.

Pi1tgi1 Pintgin
2q;1 +o + 2qin o 1

n

(pz'l +aqn 1) I (pin + qin 1)’
2qi1 2Gin

Pi1 — qi1 NI Pin — Gin
qi1 Gin

S}Z (Pl, ceny Pn,Ql, ...,Qn) == Z ZQZIQW

(6.3.3)
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and
1 & 1
52—l =5V (P.Q), (6.3.4)
=1

where V,, (P, ..., P, Q1, ..., Q) is designated as generalized Variational distance
and V' (P, @) is the well known Variational distance, a special case of V,, (P, ..., Py, Q1, ..., Qn)
for comparing two probability distributions.

Now, equation (6.3.3) can be written as

1 1 Em: Em: Pi1 — g Pin — Gin
%Vn (P17 "'7Pn7Q17 7@71) < % — o qi1---Gin |: T + ...+ qT 1
= % [Z [pi1 — qan Zqig...zfjm + ...+ E \Din — Gin| E gi1--- § Qi(n—1)

= % [; Ipi1 — qin | +-..—|—;|pin_%n’] = %szﬂ — qij| = %;V(P],Q])

j=1 i=1
= Vo (P, Py Qo Qo) <D V(PLQ)).
j=1
Hence prove the relation (6.3.1) and sequence of inequalities (6.3.2)) can be ob-

tained by using (6.2.8)) directly.

Proposition 6.3.2. Let P;,Q; €', Vj =1,2,...,n, then we have
2 o . 2
Xn, (Ph P27 L) Pn7 Qb QQ? (RS Qn) - ZX (Pj, Q]) (635)
j=1

and

1 1
X? (P17Q1> = X2 (P7 Q) Z ?X% (P17P27Q17Q2> 2 Z EXEL (Pl, ---7PH7Q17 ,Qn)
1
> _(n n 1)2X3L+1 (Ph ooy Pry Priq, Q1 ...,Qn,Qn_H) > (.

(6.3.6)
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Proof: Let f(t) = (t—1)*,t > 0. Here f(t) is convex and normalized

function because f” (t) >0Vt > 0 and f (1) = 0 respectively.

Put f(¢) in (6.2.1) and (6.2.2]), we obtain the followings respectively.

2

3

2(]21 2(1111 _ 1
n

SP(Pr s P Qs Qu) = >

=1 i=

m Pi1Tgi1 +4i1 —I— _|_ p1n+Q1n
qi1---Qin
1

%Em: Em:qﬂ Qin {(M—l) .+ <M

i=1 i=1 2g1 2in
1 < = Pi1 — g Pin — Qin ?
4n2; ;q [ qi1 e Qin ]
= L (P Py Q1 Q)
- 4n Xn 1y ey dmygly ooy \¥n
(6.3.7)
and
1 - (pz _Qi)Z 1
1 Z q— = ZX2 (P,Q), (6.3.8)
=1 v

where X2 (P, ..., Py, Q1, ...,Q,) is designated as generalized Chi- square diver-
gence and x? (P, Q) is the well known Chi- square divergence, a special case of

X2 (P, ..., Py, Q1, ..., Q,) for comparing two probability distributions.

Now, the above equation (|6 can be written as

1
WX?L (P17 "'7Pn7Q17 "'7Qn)

Z qu G [Z (pz]+QzJ _1>2+2 Z (pij+qij _1> <p1k+q1k
n2 ? mn _ -

2%] 1<j<k<n 2%] 2q$k

I &~ - Pij + Qij ?

oy
j=1 i=1  4=1 @i

Z Z iqﬂ Gin <pm + Qz] . 1) (pzk: + ik i 1)

1<]<k:<nz 1 =1 24i; 2qin
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n m m 2 m
= ig Z [Z Gi1--- Z%’j (M - 1) Zan]
[ i=1 243 i—1
: . Pij + Qij . ) (pz'k + Qi _ 1) = m]
1<];<n [zzlql qu ( 2qin z‘zlq
Pij + G ? Pij — @i \ N~ [ Pik — Qi
R “) 5; Z<J )2 (")

7j=1 =1

4n22x B Z (P, Q)

:>X2(P17"'7Pn7Q17"'7Qn):ZX2 (P Q )
j=1

Hence prove the relation (6.3.5) and sequence of inequalities (6.3.6) can be ob-

tained by using (6.2.8)) directly.

Proposition 6.3.3. Let P;,Q; €', Vj =1,2,...,n, then we have

D2,y (P, Poyoy Pay Q1 Qa, - Qu) = [[ D1 (P Q) (6.3.9)

]:

—_

and

D;zp (P17Q1) = DBIP (P7 Q) > Dzzp <P17P27Q17Q2) > 2 ngp (P17P27 "'7PH7Q17Q27 7Qn)

Dgajpl <P17 P27 "'7Pn7 Pn+17 Qb Q27 "'7@7L7Qn+1) Z €.
(6.3.10)

Proof: Let f (t) = e',t > 0. Here f (¢) is convex but not normalized function

because f”(t) >0Vt >0 and f (1) # 0 respectively.

Put f (¢) in (6.2.1)) and (6.2.2), we obtain the followings respectively.

m

m pzé‘f"hl + + ng—i-qzn
Dgxp (Ply-.-,Pnan,- ,Qn :Z ZqZIQZneXp qdi1 Qin

n
=1 =1

(6.3.11)



6.4 Conclusion

and

pita;
qu % = Deyy (P,Q), (6.3.12)

where (6.3.11)) is designated as generalized Exponential divergence and (|6.3.12])

is called Exponential divergence, a special case of (6.3.11) for comparing two
probability distributions.

Now, equation (6.3.11]) can be written as

m m
. pé1+qz‘1 P752n+qin
De,, (Pryoy Py Q1 Q E Qi1 ---Qin (€ 291 ...e 2ndin
=1 =1
m m
Pi1+4di1 Pintin
= Qe it . Qin€ *iin
i=1 =1
1
n m Pijtaij pm+q”
— I I E QZJG 2”‘17,] | | qu 2‘17,]
j=1 Li=1 j=1 Li=1

Hence prove the relation (6.3.9) and sequence of inequalities ([6.3.10]) can be ob-

tained by using (6.2.3) directly by considering f (1) = e # 0.

6.4 Conclusion

In this chapter, we have introduced a new generalized divergence for comparing
more than two discrete probability distributions at a time. This new general-
ized measure is an extension of Jain and Saraswat’s [48] generalized divergence
measure. We also derived a relation between this new measure and another gen-
eralized measure (Dragomir [26]). Interesting relations on Variational distance

(1.2.7), Chi- square divergence (|1.2.19)), and Exponential divergence have been
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evaluated as well by using new generalized divergence measure (6.2.1]).

Future Scope:

With several new directions that open with the study reported here, there is scope
of further work. Some of that we can suggest are the followings:

a. Study of new information inequalities in Mutual information sense (Dragomir
etc. all [28]), which tell us how far the joint distribution is from its independency
if distributions are independent to each other.

b. Study of Metric spaces over the set of positive real numbers by helping new
symmetric divergence measures, also can be seen in literatures (Bhatia and Singh
[11], Jain and Chhabra [45]). So we strongly believe that divergence measures
can be extended to other significant problems of functional analysis and its ap-
plications and such investigations are actually in progress because this is also an
area worth being investigated.

c. Study of divergences in fuzzy mathematics as fuzzy directed divergences and
fuzzy entropies (Bajaj and Hooda [4], Hooda [39], Jha and Mishra [52]), which
are very useful to find the amount of average ambiguity or difficulty in making a
decision whether an element belongs to a set or not. Fuzzy information measures
have recently found applications to fuzzy aircraft control, fuzzy traffic control,
engineering, medicines, computer science, management and decision making etc.
d. Study of utilities of different events (Bhullar etc. all [12], Taneja and Tuteja

[91]), i.e., an event is how much useful compare to other events.
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