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ABSTRACT

Many authors did a lot of study regarding information divergence

measures and applied these divergences in several fields in informa-

tion theory. Jain and Saraswat introduced new generalized divergence

(2012) and did a detail work. Now in this thesis, we extends that work

with new information inequalities and their applications. The sum-

mary of the thesis is as follows:

Chapter 1 introduces the whole thesis.

Chapter 2 introduces several new information inequalities on new gen-

eralized divergence together with their applications and numerical ver-

ification.

Chapter 3 introduces new divergence measures of Csiszar’s class, their

bounds and their applications.

Chapter 4 introduces and characterize new series of divergences, intra

relations and their applications.

Chapter 5 introduces several important and interesting relations among

several new divergences and several well known divergences.

Chapter 6 introduces new generalized divergence for comparing finite

number of discrete probability distributions.
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1

INTRODUCTION

1.1 Historical Background

One of the most prominent features of 20th century technology has been the de-

velopment and exploitation of new communication media. Concurrent with the

growth of devices for transmitting and processing information, a unifying theory

known as Information Theory was initiated primarily by one man the U.S. elec-

trical Engineer Claude E. Shannon, whose initial ideas appeared in an article “A

Mathematical Theory of Communication”in the Bell System Tech. J. [83]. The

term “Information Theory”does not possess a unique definition. Broadly speak-

ing, information theory deals with the study of problems concern information

processing, information storage, information retrieval and decision making.

The first person who studied all this was Harry Nyquist in 1924 [72], 1928 [73] and

by Hartley in 1928 [36] who discovered the logarithmic nature of the measure of

information. Harry Nyquist published the paper “Certain Factors Affecting Tele-

graph Speed”in which he gave the relation W = K logm, where W is the speed of
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1. INTRODUCTION

transmission of intelligence, m is the number of different voltage levels to choose

from at each time step and K is a constant. He quantified “Intelligence”and the

“Line Speed”by which it can be transmitted by communication system. In 1928

Ralph Hartley published a paper titled “Transmission of Information”[36] and

used the word information as a measurable quantity and quantifying information

as H = logSn = n logS, where S was the number of possible symbols and n the

number of symbols in a transmission. Around that time, only Wiener [114] also

came up with results similar to those of Shannon.

This field is the intersection of Mathematics, Statistics, Computer science, Physics,

Neurobiology, and Electronics engineering. Its impact has been crucial to the suc-

cess of the Voyager missions to deep space, the invention of the compact disc,

the feasibility of mobile phones, the development of the Internet, the study of

linguistics and of human perception, the understanding of black holes, and nu-

merous other fields. Important subfields of information theory are source coding,

channel coding, algorithmic complexity theory, algorithmic information theory,

and measures of information.

In 1974, Dutta [32] in his paper showed that information theory can also be

applied in Number Theory, Quantum Mechanics, Qualitative Dynamics and Ap-

proximation Theory. The concepts introduced by Shannon, have also been applied

with enormous degree of success in a number of fields such as Biology, Psychology,

Economics, Statistics, Thermodynamics, Language Questionnaire theory, Prob-

ability theory, Communication theory, Cybernetics and many more. Since its

inception it has broadened to find applications in many other areas,including

2



1.1 Historical Background

Statistical inference, Natural language processing, Cryptography, Networks other

than communication networks as in neurobiology, the evolution and function of

molecular codes, Model selection in ecology, Thermal physics, Quantum comput-

ing, Plagiarism detection and other forms of data analysis.

1.1.1 Shannon’s entropy

Without essential loss of insight, we have restricted ourselves to discrete proba-

bility distributions, so let

Γn = {P = (p1, p2, p3, ..., pn) : pi > 0,
n∑
i=1

pi = 1}, n ≥ 2 (1.1.1)

be the set of all complete finite discrete probability distributions. If we take

pi ≥ 0 for some i = 1, 2, 3..., n, then we have to suppose that 0f (0) = 0f
(
0
0

)
= 0.

Shannon [83] introduced the following measure of information for all P ∈ Γn

H (P ) = −
n∑
i=1

pi log pi. (1.1.2)

The expression (1.1.2) is famous as Shannon’s entropy or measure of uncertainty.

This function H (P ) represents the expected value of uncertainty associated with

the given probability scheme and it is uniquely determined by some rather natural

postulates. The Shannon’s entropy is the key concept in information theory. This

entropy has found wide applications in different fields of science and technology

(Bhattacharyya [10], Boekee [13], Denbibh etc. all [22], Gallager [33], Goldman

[35], Horowitz [42], Majernik [68], Tverberg [110]). Applications of Shannon’s

entropy to music can be seen in (Siromoney and Rajagopalan [89]). Further

this entropy has also been used extensively in the analysis of the structure of

3



1. INTRODUCTION

languages.

Many authors generalized the Shannon’s entropy and obtained the interesting

relations. Firstly, Renyi [79] introduced the generalization of Shannon’s entropy.

After that, Havrda and Charvat [37], Nath [69], Vajada [112], Arimoto [3], Kapur

([57], [58], [59]) etc., generalized it in different manners.

From 1961, more entropies had been introduced in the literature on information

theory, generalizing Shannon’s entropy. These are well known as parametric,

trigonometric and weighted entropies. Renyi [79] for the first time gave the idea

of parametric entropies. The idea of the trigonometric entropies were initiated

by Aczel and Dacrozy [1] and the idea of weighted entropies were given by Belis

and Guaisu [7]. Later Picard [76] extended it for generalized measures. The list

of these generalized measures including their unified forms can be seen in Kapur

[59] and Taneja [94].

1.1.2 Directed divergence and inaccuracy

Soloman Kullback and Richard-Leibler [63], two national security agency math-

ematicians, studied a measure of information, given by

K (P,Q) =
n∑
i=1

pi log
pi
qi

(1.1.3)

for all P,Q ∈ Γn. This measure has many names given by different authors such

as Relative information, Relative entropy, Directed Divergence, Cross entropy,

Measure of discrimination etc. At the same time, Kullback and Leibler also

4



1.1 Historical Background

studied a measure, called J-divergence, given by

J (P,Q) = K (P,Q) +K (Q,P ) =
n∑
i=1

(pi − qi) log
pi
qi
. (1.1.4)

We can easily see that K (P,Q) is non- symmetric whereas J (P,Q) is symmetric

with respect to probability distributions P and Q. The measure J (P,Q) was

already studied by Jeffrey [50].

Another important measure of information for a pair of probability distributions

is the inaccuracy measure, introduced by Kerridge [61] and is given by

H∗ (P,Q) = −
n∑
i=1

pi log qi (1.1.5)

for all P,Q ∈ Γn. When pi = qi ∀ i = 1, 2, ..., n, the measure H∗ (P,Q) becomes

the Shannon’s entropy H (P ). Therefore Kerridge’s inaccuracy is a generalization

of Shannon’s entropy. Also, we can see that H (P ), K (P,Q), and H∗ (P,Q)

satisfy a very interesting relationship given by

H∗ (P,Q) = H (P ) +K (P,Q) . (1.1.6)

Several authors presented alternative ways of generalizing Directed divergence.

Some of those are as follows:

Directed divergence of order ‘r’(Renyi [79])

Kr (P,Q) = (r − 1)−1 log

(
n∑
i=1

pri q
1−r
i

)
, r 6= 1, r ≥ 0. (1.1.7)

Directed divergence of type ‘s’(Sharma and Autar [85])

1Ks (P,Q) = (s− 1)−1
(

n∑
i=1

psiq
1−s
i − 1

)
, s 6= 1, s ≥ 0. (1.1.8)

5



1. INTRODUCTION

The modified version of the measure (1.1.8) is given by

2Ks (P,Q) = Ks (P,Q) = [s (s− 1)]−1
(

n∑
i=1

psiq
1−s
i − 1

)
, s 6= 0, 1. (1.1.9)

Particularly, we have

lim
r→1

Kr (P,Q) = lim
s→1

1Ks (P,Q) = lim
s→1

2Ks (P,Q) = K (P,Q)

and

lim
s→0

2Ks (P,Q) = K (Q,P ) .

Some other important generalizations of Directed divergence can be seen in

(Sharma [84], Theil [107]). The concept of weighted Directed divergence and

weighted Inaccuracy were introduced by Taneja and Tuteja ([90], [91]). Further

results in this direction can be seen in (Bhaker and Hooda [9]), (Hooda and Ram

[40]), and (Hooda and Tuteja [41]). Similar generalizations of Kerridge’s inaccu-

racy exist in the literatures (Kapur [59]), (Sharma and Mittal [86]), and (Taneja

[94]).

1.2 A Review of Information and Divergence

Measures

As a generalization of the uncertainty theory based on the notion of possibility,

information theory consider the uncertainty of randomness perfectly. As pointed

out by Renyi [79] in his fundamental paper on generalized information measures,

in other short of problems other quantities may serve just as well, or even better,

as measures of information. This should be supported either by their operational

6



1.2 A Review of Information and Divergence Measures

significance or by a set of natural postulates characterizing them or preferably by

both. Thus the idea of generalized entropies arises in the literature. It started

with Renyi [79] who characterized scalar parametric entropy, which includes Shan-

non entropy as a limiting case.

To design a communication system with a specific message handling capability, we

need a measure of information content to be transmitted. Divergence measures

are for quantifying the dissimilarity among probability distributions. Divergence

measures are basically measures of distance between two probability distributions

or compare two probability distributions. It means that any divergence measure

must take its minimum value zero when probability distributions are equal. So,

any divergence measure must increase as probability distributions move apart.

As to the divergence and inaccuracy of information,Kullback and Leibler [63]

studied a measure of information from statistical aspects of view involving two

probability distributions associated with the same experiment, calling discrimina-

tion function, later different authors named as cross entropy, relative information

etc. It is a non-symmetric measure of two probability distributions P and Q. At

the same time they also developed the idea of the Harold invariant, famous as

J-divergence. Kerridge [61] studied a different kind of measure calling inaccuracy

measure involving again two probability distributions.

Sibson [88] studied another divergence measure involving two probability dis-

tributions, using mainly the concavity property of Shannon’s entropy, calling

information radius. Later, Burbea and Rao ([15], [16]) studied extensively the in-

formation radius and its parametric generalization, calling this measure as Jensen

7



1. INTRODUCTION

difference measure. Taneja ([96], [98]) studied a new measure of divergence and

its two parametric generalizations involving two probability distributions based

on arithmetic and geometric mean inequality.

Sant’anna and Taneja [81] and Sharma and Taneja [87] studied trigonometric en-

tropies from different aspects. The idea of weighted entropies started by Belis and

Guaisu [7], later Picard [76] extended it for generalized measures. After Renyi

[79], other researchers such as Havrda and Charvat [37], Arimoto [3], Sharma

and Mittal [86] etc. interested towards other kinds of expressions generalizing

Shannon’s entropy. Taneja [92] unified some of these. Taneja [93] introduced a

new divergence measure called arithmetic geometric mean divergence measure.

Since our work deals with measures involving two probability distributions, our

focus is more on these measures and generalizations. One of the important issues

in many applications of Statistics and Probability Theory is finding an appropri-

ate measure of distance (or difference or discrimination) between two probability

distributions. Depending upon the nature of the problem, different divergence

measures are suitable. So it is always desirable to develop a new divergence mea-

sure. A number of divergence measures for this purpose have been proposed and

extensively studied. Divergence measures have been demonstrated very useful

in a variety of disciplines such as Bayesian model validation (Tumer and Ghosh

[109]), quantum information theory (Lamberti etc. all [67], Nielsen and Chuang

[71]), model validation (Benveniste etc. all [8]), robust detection (Poor [78]), eco-

nomics and political science (Theil ([107], [108])), biology (Pielou [77]), analysis

of contingency tables (Gokhale and Kullback [34]), approximation of probability

8



1.2 A Review of Information and Divergence Measures

distributions (Chow and Lin [19], Kazakos and Cotsidas [60]), signal processing

(Kadota and Shepp [54], Kailath [56]), pattern recognition (Bassat [5], Boekee

[13], Chen [18], Jones and Byrne [53]), color image segmentation (Nielsen and

Boltz [70]), 3D image segmentation and word alignment (Taskar etc. all [106]),

cost- sensitive classification for medical diagnosis (Santos-Rodriguez etc. all [82]),

magnetic resonance image analysis (Vemuri etc. all [113]) etc.

Also we can use divergence measures in fuzzy mathematics as fuzzy directed di-

vergences and fuzzy entropies (Bajaj and Hooda [4], Hooda [39], Jha and Mishra

[52]), which are very useful to find the amount of average ambiguity or difficulty

in making a decision whether an element belongs to a set or not. Fuzzy infor-

mation measures have recently found applications to fuzzy aircraft control, fuzzy

traffic control, engineering, medicines, computer science, management and deci-

sion making etc. Divergence measures are also very useful to find the utility of

an event (Bhullar etc. all [12], Taneja and Tuteja [91]), i.e., an event is how much

useful compare to other event. Also Bhatia and Singh [11], Jain and Chhabra

[45] etc. have developed metric with the help of divergence measures.

1.2.1 Csiszar’s generalized divergence and properties

We start this subsection with a very important function, convex function. Convex

functions play a very important role for information divergence measures in infor-

mation theory. Several information inequalities had been introduced for convex

functions and keep going in this thesis as well. Many authors had introduced gen-

eralized divergences like: Csiszar’s divergence (Ali and Silvey [2], Csiszar [20]),

9



1. INTRODUCTION

Bregman’s divergence (Bregman [14]), Burbea- Rao’s divergence (Burbea and

Rao [16]), Renyi’s like divergence (Renyi [79]), M - divergence (Salicru [80]), New

generalized divergence (Jain and Saraswat [48]) etc., where they had considered f

as a real, continuous, and convex function on (0,∞). By putting suitable convex

function in these generalized divergences, we can obtain several divergence mea-

sures. So it is very necessary to understand first the definition of convex function,

as follows.

Definition 1.2.1. Convex function: A function f (t) is said to be convex over

an interval (a, b) if for every t1, t2 ∈ (a, b) and 0 ≤ λ ≤ 1, we have

f [λt1 + (1− λ) t2] ≤ λf (t1) + (1− λ) f (t2) ,

and said to be strictly convex if equality does not hold only if λ 6= 0 or λ 6= 1.

Geometrically, it means that if A,B,C are three distinct points on the graph of

convex function f with B between A and C, then B is on or below chord AC.

Furthermore, let C be the set of convex functions f : [0,∞) → (−∞,∞)

continuous at 0, i.e., f (0) = limt→0 f (t), also f is normalized, i.e., f (1) = 0.

Further, let f ∗ ∈ C, defined by

f ∗ (t) = tf

(
1

t

)
, t ∈ (0,∞)

the ∗- conjugate convex function of f , let a function f ∈ C satisfying f ∗ ≡ f be

called the ∗- self conjugate.

In order to avoid meaningless expressions in the sequel, let us agree in the fol-

10



1.2 A Review of Information and Divergence Measures

lowing notational conventions.

0f ∗
(
t

0

)
= tf

(
0

t

)
= tf (0) , t ∈ (0,∞) .

0f

(
t

0

)
= tf ∗

(
0

t

)
= tf (0) , t ∈ (0,∞) .

0f

(
0

0

)
= 0f ∗

(
0

0

)
= 0.

0f
(a

0

)
= lim

ε→0+
εf
(a
ε

)
= a lim

t→∞

f (t)

t
, a > 0.

Csiszar’s divergence ([2], [20]) and Jain- Saraswat’s divergence [48] are widely

used due to its compact nature, Specially Csiszar’s divergence, which is given by

Cf (P,Q) =
n∑
i=1

qif

(
pi
qi

)
, (1.2.1)

where f : (0,∞) → R (set of real no.) is real, continuous, and convex function

and P,Q ∈ Γn. Cf (P,Q) is a natural distance measure from a true proba-

bility distribution P to an arbitrary probability distribution Q. Typically P

represents observations or a precise calculated probability distribution, whereas

Q represents a model, a description or an approximation of P . We note that

Cf (P,Q) = Cf∗ (Q,P ) and Cf (P,Q) + Cf∗ (P,Q) will be a symmetric general-

ized information divergence measure.

The properties (Uniqueness theorem, Symmetry theorem, Range of values the-

orem and Characterization theorem) of Csiszar’s generalized divergence can be

seen in literature by Osterreicher [74]. Osterreicher has discussed axiomatic prop-

erties and some important classes of generalized divergence measures. Now we

are discussing the following fundamental properties of Cf (P,Q), which are being

used in this thesis.

11



1. INTRODUCTION

Proposition 1.2.1. (Non negativity) Let f : (0,∞) → R be a real, convex

function and (P,Q) ∈ Γn × Γn, then we have

Cf (P,Q) ≥ f (1) . (1.2.2)

If f is normalized, i.e., f (1) = 0 then Cf (P,Q) ≥ 0 and Cf (P,Q) = 0 if and

only if P = Q, and f is strictly convex.

Proposition 1.2.2. (Convexity) If the function f is convex and normalized, i.e.,

f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0 respectively, then Cf (P,Q) and Cf (Q,P )

are both non-negative and convex in the pair of probability distribution (P,Q) ∈
Γn × Γn.

Proposition 1.2.3. (Linearity) If f1 and f2 are two convex functions such that

F = af1 + bf2 then CF (P,Q) = aCf1 (P,Q) + bCf2 (P,Q) , where a and b are

constants and (P,Q) ∈ Γn × Γn.

Proof : Let F = af1 + bf2, then

CF (P,Q) =
n∑
i=1

qiF

(
pi
qi

)
=

n∑
i=1

qi (af1 + bf2)

(
pi
qi

)
= a

n∑
i=1

qif1

(
pi
qi

)
+ b

n∑
i=1

qif2

(
pi
qi

)
= aCf1 (P,Q) + bCf2 (P,Q) .

Dragomir [26] introduced the following generalized divergence measure for com-

paring finite discrete probability distributions, given by

Cn
f (P1, P2, ..., Pn, Q1, Q2, ..., Qn) =

m∑
i=1

m∑
i=1

...
m∑
i=1

qi1qi2...qinf

(
pi1
qi1

+ pi2
qi2

+ ...+ pin
qin

n

)
.

(1.2.3)

Ciszar’s divergence measure is a particular case of this measure for comparing

two discrete probability distributions. Following relation can be seen as well in

the same literature

C1
f (P1, Q1) ≥ C2

f (P1, P2, Q1, Q2) ≥ ... ≥ Cn
f (P1, ..., Pn, Q1, ..., Qn)

≥ Cn+1
f (P1, ..., Pn+1, Q1, ..., Qn+1) ≥ f (1) .

(1.2.4)
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1.2 A Review of Information and Divergence Measures

Divergences for comparing more than two probability distributions are useful for

discrimination and taxonomy.

Many authors introduced several divergence measures. These divergences are

very useful in information theory for comparing discrete probability distribu-

tions. These are defined as follows.

Symmetric divergence measures

Symmetric divergence measures are those measures that are symmetric with re-

spect to probability distributions P,Q ∈ Γn. These measures are as follows.

Triangular discrimination (Dacunha- Castelle etc. all [21])

∆ (P,Q) =
n∑
i=1

(pi − qi)2

pi + qi
. (1.2.5)

Hellinger discrimination (Hellinger [38])

h (P,Q) =
n∑
i=1

(√
pi −
√
qi
)2

2
. (1.2.6)

Variational distance or l1 distance (Kolmogorov [62])

V (P,Q) =
n∑
i=1

|pi − qi| . (1.2.7)

Jain and Srivastava divergence (Jain and Srivastava [49])

E∗ (P,Q) =
n∑
i=1

(pi − qi)2√
piqi

. (1.2.8)

Symmetric Chi- square divergence (Dragomir etc. all [31])

ψ (P,Q) = χ2 (P,Q) + χ2 (Q,P ) =
n∑
i=1

(pi − qi)2 (pi + qi)

piqi
, (1.2.9)

13
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where χ2 (P,Q) is the Chi- square divergence (1.2.19).

J- divergence (Jeffrey [50], Kullback and Leibler [63])

J (P,Q) = K (P,Q) +K (Q,P ) = JR (P,Q) + JR (Q,P ) =
n∑
i=1

(pi − qi) log
pi
qi
,

(1.2.10)

where K (P,Q) and JR (P,Q) are the Relative entropy (1.2.18) and Relative J-

divergence (1.2.22), respectively.

Arithmetic- Geometric Mean divergence (Taneja [93])

T (P,Q) =
1

2
[G (P,Q) +G (Q,P )] =

n∑
i=1

(
pi + qi

2

)
log

pi + qi
2
√
piqi

, (1.2.11)

where G (P,Q) is the Relative AG divergence (1.2.20).

Jensen- Shannon divergence (Burbea and Rao [16], Sibson [88])

I (P,Q) =
1

2
[F (P,Q) + F (Q,P )] =

1

2

[
n∑
i=1

pi log
2pi

pi + qi
+

n∑
i=1

qi log
2qi

pi + qi

]
,

(1.2.12)

where F (P,Q) is the Relative JS divergence (1.2.21).

Kumar and Chhina divergence (Kumar and Chhina [64])

S∗ (P,Q) =
n∑
i=1

(pi + qi) (pi − qi)2

piqi
log

pi + qi
2
√
piqi

. (1.2.13)

Kumar and Hunter divergence (Kumar and Hunter [65])

L (P,Q) =
n∑
i=1

(pi − qi)2

pi + qi
log

pi + qi
2
√
piqi

. (1.2.14)

Kumar and Johnson divergence (Kumar and Johnson [66])

ψM (P,Q) =
n∑
i=1

(p2i − q2i )
2

2 (piqi)
3
2

. (1.2.15)
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1.2 A Review of Information and Divergence Measures

d- Divergence (Basseville [6])

d (P,Q) = 1−
n∑
i=1

√
pi + qi

2

(√
pi +
√
qi

2

)
. (1.2.16)

Jain and Mathur divergence (Jain and Mathur [46])

P ∗ (P,Q) =
n∑
i=1

(pi − qi)4 (pi + qi) (p2i + q2i )

p3i q
3
i

. (1.2.17)

Non- symmetric divergence measures

Non- symmetric divergence measures are those measures that are not symmetric

with respect to probability distributions P,Q ∈ Γn. These measures are as fol-

lows.

Relative entropy or Kullback- Leibler distance (Kullback and Leibler [63])

K (P,Q) =
n∑
i=1

pi log
pi
qi
. (1.2.18)

Chi- square divergence or Pearson divergence (Pearson [75])

χ2 (P,Q) =
n∑
i=1

(pi − qi)2

qi
. (1.2.19)

Relative Arithmetic- Geometric divergence (Taneja [93])

G (P,Q) =
n∑
i=1

(
pi + qi

2

)
log

(
pi + qi

2pi

)
. (1.2.20)

Relative Jensen- Shannon divergence (Sibson [88])

F (P,Q) =
n∑
i=1

pi log
2pi

pi + qi
. (1.2.21)

Relative J- Divergence (Dragomir etc. all [28])

JR (P,Q) =
n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
. (1.2.22)
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Parametric symmetric and non- symmetric divergence measures

Some authors defined parametric divergence measures, by which we obtain some

well known existing divergences for some values of parameter. These measures

are as follows.

Relative information of type ′s′ (Taneja and Kumar [104])

Ks (P,Q) = [s (s− 1)]−1
(

n∑
i=1

psiq
1−s
i − 1

)
, s 6= 0, 1

=



1
2

∑n
i=1

(pi−qi)2
qi

= 1
2
χ2 (P,Q) = K2 (P,Q) if s = 2∑n

i=1 pi log pi
qi

= K (P,Q) = lims→1Ks (P,Q) if s = 1

4
∑n

i=1

(√pi−
√
qi)

2

2
= 4h (P,Q) = K 1

2
(P,Q) if s = 1

2∑n
i=1 qi log qi

pi
= K (Q,P ) = lims→0Ks (P,Q) if s = 0

.

(1.2.23)

Unified Relative Jensen- Shannon and Arithmetic- Geometric divergence of type

′s′ (Taneja and Kumar [105])

Φs (P,Q) = [s (s− 1)]−1
[

n∑
i=1

pi

(
pi + qi

2pi

)s
− 1

]
, s 6= 0, 1

=



1
4

∑n
i=1

(pi−qi)2
pi+qi

= 1
4
∆ (P,Q) = Φ−1 (P,Q) if s = −1∑n

i=1 pi log
(

2pi
pi+qi

)
= F (P,Q) = lims→0 Φs (P,Q) if s = 0∑n

i=1

(
pi+qi

2

)
log
(
pi+qi
2pi

)
= G (P,Q) = lims→1 Φs (P,Q) if s = 1

1
8

∑n
i=1

(pi−qi)2
pi

= 1
8
χ2 (Q,P ) = Φ2 (P,Q) if s = 2

.

(1.2.24)

Relative J- divergence of type ′s′ (Taneja and Kumar [105])

τs (P,Q) = (s− 1)−1
n∑
i=1

(
pi − qi

2

)(
pi + qi

2qi

)s−1
, s 6= 1

=


1
2

∑n
i=1

(pi−qi)2
pi+qi

= 1
2
∆ (P,Q) = τ0 (P,Q) if s = 0

1
2

∑n
i=1 (pi − qi) log

(
pi+qi
2qi

)
= 1

2
JR (P,Q) = lims→1 τs (P,Q) if s = 1

1
4

∑n
i=1

(pi−qi)2
qi

= 1
4
χ2 (P,Q) = τ2 (P,Q) if s = 2

.

(1.2.25)
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1.2 A Review of Information and Divergence Measures

Generalized Jensen- Shannon and Arithmetic Geometric mean divergence (Taneja

[95])

Ωs (P,Q) = [s (s− 1)]−1
[

n∑
i=1

(
p1−si + q1−si

2

)(
pi + qi

2

)s
− 1

]
, s 6= 0, 1, s ∈ R

=



1
4

∑n
i=1

(pi−qi)2
pi+qi

= 1
4
∆ (P,Q) = Ω−1 (P,Q) if s = −1

1
2

[∑n
i=1 pi log 2pi

pi+qi
+
∑n

i=1 qi log 2qi
pi+qi

]
= I (P,Q) = lims→0 Ωs (P,Q) if s = 0

4
[
1−

∑n
i=1

√
pi+qi

2

(√
pi+
√
qi

2

)]
= 4d (P,Q) = Ω 1

2
(P,Q) if s = 1

2∑n
i=1

pi+qi
2

log pi+qi
2
√
piqi

= T (P,Q) = lims→1 Ωs (P,Q) if s = 1

1
16

∑n
i=1

(pi−qi)2(pi+qi)
piqi

= 1
16
ψ (P,Q) = Ω2 (P,Q) if s = 2

.

(1.2.26)

Renyi’s ′a′ order entropy (Renyi [79])

Ra (P,Q) =
n∑
i=1

pai
qa−1i

, a > 1. (1.2.27)

Series of symmetric and non- symmetric divergence measures

These divergence measures are basically series of measures and we obtain infinite

divergences by putting the particular value of parameter.

Jain and Srivastava divergences (Jain and Srivastava [49])

E∗m (P,Q) =
n∑
i=1

(pi − qi)2m

(piqi)
2m−1

2

,m = 1, 2, 3, ..., (1.2.28)

where E∗1 (P,Q) = E∗ (P,Q) is a particular case at m = 1, given by (1.2.8).

Jain and Srivastava divergences (Jain and Srivastava [49])

J∗m (P,Q) =
n∑
i=1

(pi − qi)2m

(piqi)
2m−1

2

exp
(pi − qi)2

piqi
,m = 1, 2, 3, .... (1.2.29)

Puri and Vineze divergences (Kafka etc. all [55])

∆m (P,Q) =
n∑
i=1

(pi − qi)2m

(pi + qi)
2m−1 ,m = 1, 2, 3..., (1.2.30)
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where ∆1 (P,Q) = ∆ (P,Q) is a particular case at m = 1, given by (1.2.5).

Chi- m divergences (Vajda [111])

χ2m (P,Q) =
n∑
i=1

(pi − qi)2m

q2m−1i

,m = 1, 2, 3..., (1.2.31)

where χ2 (P,Q) is a particular case at m = 1, given by (1.2.19).

Now, let us define some means for a, b > 0 that can be seen in literature (Taneja

[101]). The following means are being used in many new relations and for making

new divergences.

S (a, b) =

√
a2 + b2

2
= Root mean square. (1.2.32)

H (a, b) =
2ab

a+ b
= Harmonic mean. (1.2.33)

A (a, b) =
a+ b

2
= Arithmetic mean. (1.2.34)

N1 (a, b) =

(√
a+
√
b

2

)2

= Square root mean. (1.2.35)

N2 (a, b) =

(√
a+
√
b

2

)√
a+ b

2
= N2 mean. (1.2.36)

N3 (a, b) =
a+
√
ab+ b

3
= Heronian mean. (1.2.37)

L∗ (a, b) =
a− b

log a− log b
, a 6= b = Logarithmic mean. (1.2.38)

B (a, b) =
√
ab = Geometric mean. (1.2.39)

C (a, b) =
a2 + b2

a+ b
= Contra harmonic mean. (1.2.40)

R (a, b) =
2

3

a2 + ab+ b2

a+ b
= Centroidal mean. (1.2.41)
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1.2 A Review of Information and Divergence Measures

Now for P,Q ∈ Γn, put a = pi and b = qi in above means and then sum over all

i = 1, 2, ..., n, we obtain

S (P,Q) =
n∑
i=1

√
p2i + q2i

2
, H (P,Q) =

n∑
i=1

2piqi
pi + qi

, A (P,Q) =
n∑
i=1

pi + qi
2

= 1,

N1 (P,Q) =
n∑
i=1

(√
pi +
√
qi

2

)2

, N2 (P,Q) =
n∑
i=1

(√
pi +
√
qi

2

)√
pi + qi

2
,

N3 (P,Q) =
n∑
i=1

pi +
√
piqi + qi

3
, L∗ (P,Q) =

n∑
i=1

pi − qi
log pi − log qi

, pi 6= qi,

B (P,Q) =
n∑
i=1

√
piqi, C (P,Q) =

n∑
i=1

p2i + q2i
pi + qi

, R (P,Q) =
2

3

n∑
i=1

p2i + piqi + q2i
pi + qi

respectively. Here B (P,Q) is the well known Bhattacharya distance (Bhat-

tacharyya [10]). Also we note a good inequality relation among these, by (5.2.47),

which is

H (P,Q) ≤ B (P,Q) ≤ N3 (P,Q) ≤ A (P,Q)

≤ R (P,Q) ≤ S (P,Q) ≤ C (P,Q) .

We can see some small equality relations as well among Triangular discrimination,

Hellinger discrimination and above defined quantities. These are as follows:

∆ (P,Q) = 3 [C (P,Q)−R (P,Q)] = 2 [A (P,Q)−H (P,Q)] = 2 [C (P,Q)− A (P,Q)]

= 6 [R (P,Q)− A (P,Q)] =
3

2
[R (P,Q)−H (P,Q)]

and

h (P,Q) = 3 [A (P,Q)−N3 (P,Q)] = [A (P,Q)−B (P,Q)] =
3

2
[N3 (P,Q)−B (P,Q)] .

Now we define some other divergences (Taneja [101]), as follows:

Square root- arithmetic mean divergence

MSA (P,Q) = S (P,Q)− A (P,Q) =
n∑
i=1

√
p2i + q2i

2
− 1. (1.2.42)
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Square root- geometric mean divergence

MSB (P,Q) = S (P,Q)−B (P,Q) =
n∑
i=1

(√
p2i + q2i

2
−√piqi

)
. (1.2.43)

Square root- harmonic mean divergence

MSH (P,Q) = S (P,Q)−H (P,Q) =
n∑
i=1

(√
p2i + q2i

2
− 2piqi
pi + qi

)
. (1.2.44)

Some difference of particular divergences can be seen in literature (Taneja [100]),

which are as follows.

DψT (P,Q) =
1

16
ψ (P,Q)− T (P,Q)

=
1

2

n∑
i=1

[
(pi − qi)2

8piqi
− log

pi + qi
2
√
piqi

]
(pi + qi) .

(1.2.45)

DψJ (P,Q) =
1

2
ψ (P,Q)− J (P,Q)

=
n∑
i=1

[
(p2i − q2i )

2piqi
− log

pi
qi

]
(pi − qi) .

(1.2.46)

1.2.2 New generalized divergence

We did a detail study about Csiszar’s divergence in previous subsection. Similarly,

Jain and Saraswat [48] introduced and characterized a new generalized divergence,

given by

Sf (P,Q) =
n∑
i=1

qif

(
pi + qi

2qi

)
, (1.2.47)

where f : (0,∞) → R (set of real no.) is real, continuous, and convex function

and P,Q ∈ Γn. We can obtain Several well known divergences by suitably defining

the convex function in (1.2.47). For example:
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If we take f (t) = (t− 1) log t in (1.2.47), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
=

1

2
JR (P,Q) .

If we take f (t) = (t−1)2
t

in (1.2.47), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi)2

pi + qi
=

1

2
∆ (P,Q) .

If we take fm (t) = (t−1)2m
t2m−1 exp (t−1)2

t2
, m=1,2,3... in (1.2.47), we obtain

Sf (P,Q) =
n∑
i=1

(pi − qi)2m

(pi + qi)
2m−1 exp

(pi − qi)2

(pi + qi)
2 = N∗m (P,Q) , (Jain and Saraswat [47]).

(1.2.48)

and many more. Where ∆ (P,Q) and JR (P,Q) are already defined by (1.2.5)

and (1.2.22) respectively.

Like the fundamental properties of Cf (P,Q), There are the following fundamental

properties of Sf (P,Q).

Proposition 1.2.4. (Non negativity) Let f : (0,∞) → R be a real, convex

function and (P,Q) ∈ Γn × Γn, then we have

Sf (P,Q) ≥ f (1) . (1.2.49)

If f is normalized, i.e., f (1) = 0 then Sf (P,Q) ≥ 0 and Sf (P,Q) = 0 if and

only if P = Q, and f is strictly convex..

Proposition 1.2.5. (Convexity) If the function f is convex and normalized, i.e.,

f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0 respectively, then Sf (P,Q) and Sf (Q,P ) are both

non-negative and convex in the pair of probability distribution (P,Q) ∈ Γn × Γn.

Proposition 1.2.6. (Linearity) If f1 and f2 are two convex functions such that

F = af1 + bf2 then SF (P,Q) = aSf1 (P,Q) + bSf2 (P,Q) , where a and b are

constants and (P,Q) ∈ Γn × Γn.

21



1. INTRODUCTION

Proof : Let F = af1 + bf2, then

SF (P,Q) =
n∑
i=1

qiF

(
pi + qi

2qi

)
=

n∑
i=1

qi (af1 + bf2)

(
pi + qi

2qi

)
= a

n∑
i=1

qif1

(
pi + qi

2qi

)
+ b

n∑
i=1

qif2

(
pi + qi

2qi

)
= aSf1 (P,Q) + bSf2 (P,Q) .

Now, we define a relation between Jain and Saraswat’s divergence measure Sf (P,Q)

and Csiszar’s divergence measure Cf (P,Q). This relation can also be seen in lit-

erature (Jain and Saraswat [48]).

Theorem 1.2.1. Let f : (0,∞) → R be the differentiable convex function, i.e.,

f ′′ (t) ≥ 0 ∀ t > 0 and normalized, i.e., f (1) = 0. Then for P,Q ∈ Γn, we have

the following relation

Sf (P,Q) ≤ 1

2
Cf (P,Q) .

Proof : Apply Jensen inequality (1.3.3) for the domain I ⊂ (0,∞), by putting

λ1 = λ2 = 1
2
, λ3 = ... = λn = 0 in (1.3.3), we get

f

(
t1 + t2

2

)
≤ 1

2
[f (t1) + f (t2)] .

Now put t1 = t and t2 = 1 in above inequality, we obtain

f

(
t+ 1

2

)
≤ 1

2
f (t) .

Now take t = pi
qi

in above inequality, multiply with qi for each i and then sum-

mation over from i = 1 to i = n, we obtain the required relation.

Now for a differentiable function f : (0,∞) → R, consider the associated func-

tions g : (0,∞)→ R and h : (0,∞)→ R, are given by

g (t) = (t− 1) f ′ (t) (1.2.50)
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and

h (t) = (t− 1) f ′
(
t+ 1

2

)
. (1.2.51)

For g (t) and h (t), we get the followings respectively.

Sg (P,Q) = ESf ′
(P,Q) =

n∑
i=1

(
pi − qi

2

)
f ′
(
pi + qi

2qi

)
, (1.2.52)

Sh (P,Q) = E∗Sf ′
(P,Q) =

n∑
i=1

(
pi − qi

2

)
f ′
(
pi + 3qi

4qi

)
, (1.2.53)

Cg (P,Q) = ECf ′
(P,Q) =

n∑
i=1

(pi − qi) f ′
(
pi
qi

)
, (1.2.54)

and

Ch (P,Q) = E∗Cf ′
(P,Q) =

n∑
i=1

(pi − qi) f ′
(
pi + qi

2qi

)
, (1.2.55)

where Cf (P,Q) and Sf (P,Q) are given by (1.2.1) and (1.2.47) respectively.

1.3 Information Inequalities and Definitions

In recent years, several mathematicians, like: S.S. Dragomir, I.J. Taneja and

many more, introduced and characterized information inequalities for compar-

ing probability distributions. Also they derived many relations among several

divergences, mean divergences and evaluated bounds by using that information

inequalities. Specially Taneja ([97], [101], [102], [103]) did a lot of work in in-

equalities involving several means, mean divergences and difference of means.

There are many information inequalities in information and statistics theory. By

defining two of them, we are just giving an idea how these inequalities relate

divergence measures for probability distributions. We start with the following
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information inequality involving Csiszar’s f - divergence (1.2.1) and Kullback-

Leibler divergence (1.2.18). This inequality is given in literature (Cerone etc. all

[17]) but obtained by using the inequality given by Dragomir [27].

Proposition 1.3.1. Let f : [α, β] ⊂ (0,∞) → (−∞,∞) be an absolutely con-

tinuous and convex function with 0 < α ≤ 1 ≤ β < ∞, α 6= β and α ≤ pi
qi
≤

β ∀ i = 1, 2, ..., n. Then we have the following inequality involving Cf (P,Q) and

K (P,Q) between probability distributions P,Q ∈ Γn:∣∣∣∣Cf (P,Q)− 1

β − α

∫ β

α

f (t)

t
dt

∣∣∣∣ ≤ 2

β − α
[K (P,Q)− logB + A− 1] ‖f ′l − f‖∞,

(1.3.1)

where B ≡ B (α, β) =
√
αβ and A ≡ A (α, β) = α+β

2
are Geometric and Arith-

metic mean of α and β respectively, l is the identity function, i.e., l (x) = x ∀ x ∈
[α, β] and

‖f ′l − f‖∞ = sup
t∈[α,β]

| (f ′l − f) (t) | <∞.

We note that, several results can be obtained in terms of Kullback Leibler

divergence by using inequality (1.3.1) for appropriate convex function f , for ex-

ample:

For function 1
2

(
1−
√
t
)2

, we obtain Cf (P,Q) = h (P,Q) (1.2.6), similarly for

the functions
(
t+1
2

)
log t+1

2t
, (t− 1)2, t log 2t

t+1
, (t− 1) log t, t+1

2
log t+1

2
√
t
, (t−1)2(t+1)

t

etc., we obtain corresponding divergence measures G (P,Q) (1.2.20), χ2 (P,Q)

(1.2.19), F (P,Q) (1.2.21), J (P,Q) (1.2.10), T (P,Q) (1.2.11), ψ (P,Q) (1.2.9)

etc. In this way, we obtain many relations between Csiszar’s family member and

Kullback Leibler divergence measure.

Dragomir [24] given the following information inequalities as well, which relate

Csiszar’s family members to the well known Chi- square divergence measure

(1.2.19).
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Proposition 1.3.2. Let f : [α, β] ⊂ (0,∞) → R be a real, convex differentiable

function with 0 < α ≤ 1 ≤ β <∞, α 6= β.

If P,Q ∈ Γn and satisfying the assumption α ≤ pi
qi
≤ β, ∀ i = 1, 2, 3, ..., n, then

we have the following inequalities

0 ≤ Bf (α, β)−Cf (P,Q) ≤ f ′ (β)− f ′ (α)

β − α
[
(β − 1) (1− α)− χ2 (P,Q)

]
≤ Af (α, β) ,

(1.3.2)

where

Bf (α, β) =
(β − 1) f (α) + (1− α) f (β)

β − α
,

Af (α, β) =
1

4
(β − α) [f ′ (β)− f ′ (α)] .

So, by defining suitable convex function like defined for inequality (1.3.1),

we obtain relations between a particular divergence of Csiszar’s family and Chi-

square divergence.

Apart from all above, now we are giving some definitions. We start with well

known Jensen’s inequality. Jensen [51] introduced and characterized the following

fundamental inequality which are very useful in statistics and probability theory.

Definition 1.3.1. (Jensen inequality): Let f : I ⊂ R → R be differentiable

convex on I0 (I0 is the interior of the interval I), ti ∈ I0, λi > 0 ∀ i = 1, 2, ..., n

and
∑n

i=1 λi = 1, then we have the following inequality.

f

(
n∑
i=1

λiti

)
≤

n∑
i=1

λif (ti) . (1.3.3)

If function is concave, then Jensen’s inequality will be reversed.

Corollary 1.3.1. We obtain the Propositions 1.2.1 and 1.2.4 after replacing λi

with qi as
∑n

i=1 qi = 1 and ti with pi
qi

and pi+qi
2qi

respectively for each i = 1, ..., n in

Jensen’s inequality, by assuming that the function is normalized, i.e., f (1) = 0.
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Definition 1.3.2. (Absolutely continuous) Let I ⊂ R be an interval. A function

f : I → R is said to be absolutely continuous on I if for every ε > 0 ∃ δ > 0 such

that
n∑
i=1

|f (bi)− f (ai)| ≤ ε

for every finite number of non overlapping intervals (ai, bi) , i = 1, 2..., n with

[ai, bi] ⊂ I and
n∑
i=1

|(bi − ai)| ≤ δ.

Further f is said to be locally absolutely continuous if it is absolutely continuous

in [a, b] for every interval [a, b] ⊂ I.

Definition 1.3.3. (Total variation and Bounded variation) The total variation of

a real valued or more generally complex valued function f , defined on an interval

[a, b] ⊂ R is the quantity

Aba (f) = sup
P∈B

np−1∑
i=0

|f (xi+1)− f (xi)| ,

where the supremum is taken over the set B = {P =
(
x0, ..., xnp

)
: P is a partition of [a, b]}

of all partitions of the interval considered. Further, if f is differentiable and its

derivative is Riemann- integrable, its total variation is the vertical component of

the arc length of its graph, i.e.,

Aba (f) =

∫ b

a

|f ′ (x)| dx.

Now, a real valued function f on the real line is said to be of bounded variation

on a chosen interval [a, b] ⊂ R if its total variation is finite, i.e.,

Aba (f) =

∫ b

a

|f ′ (x)| dx <∞.

Now, we give a brief idea of the chapters of this work. Chapter 2 introduces

several new information inequalities on new generalized divergence in different

aspects together with their applications in obtaining new relations and bounds
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together with numerical verification. Chapter 3 introduces new divergence mea-

sures of Csiszar’s class, their bounds by using existing information inequalities

and their applications. Chapter 4 introduces and characterize new series of diver-

gences, intra relations and their applications. Chapter 5 introduces several im-

portant and interesting relations among several new divergences and several well

known divergences by helping out some algebraic and exponential inequalities.

Chapter 6 introduces new generalized divergence for comparing finite number of

discrete probability distributions.

Lastly further scope of the work, references and candidate’s academic and re-

search profile.
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2

NEW INFORMATION

INEQUALITIES AND

APPLICATIONS

2.1 Introduction

Information inequalities play a very important role in information and probability

theory. Such inequalities are for instance needed in order to calculate the relative

efficiency of two or more divergences. Most of the achievable limits are thus

stated in the form of inequalities involving fundamental measures of information

such as: entropy and information divergence measures.

Ali- Silvey [2] and Csiszar’s [20] introduced the generalized divergence measure,

given by

Cf (P,Q) =
n∑
i=1

qif

(
pi
qi

)
. (2.1.1)
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Similarly, Jain and Saraswat [48] introduced new generalized divergence, given

by

Sf (P,Q) =
n∑
i=1

qif

(
pi + qi

2qi

)
, (2.1.2)

where f : (0,∞)→ R is real, continuous, and convex function and P = (p1, p2, ..., pn) , Q =

(q1, q2, ..., qn) ∈ Γn (Discrete probability distributions). Many divergence mea-

sures can be obtained from this generalized measure by suitably defining the

function.

In this chapter, we obtain various new information inequalities on Sf (P,Q). The

complete chapter is organized as follows: After this introduction section 2.1, we

introduce the new information inequalities in section 2.2 and get the bounds of

the new divergence measure. In section 2.3 , 2.4, and 2.5 new inequalities in

terms of the Chi- square divergence, Variational distance and the Unified Rel-

ative Jensen- Shannon and Arithmetic- Geometric divergence measure of type

′s′ are introduced respectively, with applications. Further, new information in-

equalities on absolute functions are obtained in section 2.6 and lastly section 2.7

introduces new information inequalities in a different manner on Sf (P,Q) by us-

ing Ostrowski’s inequalities. Section 2.8 concludes the whole chapter.
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2.2 On New Generalized Divergence Measure and Applications

2.2 On New Generalized Divergence Measure

and Applications

In this section, we obtain upper and lower bounds of a new non- symmetric

divergence measure in terms of the well known divergence measures ∆ (P,Q),

χ2 (P,Q), JR (P,Q), G (P,Q), and F (P,Q) by using new information inequalities

on Sf (P,Q).

2.2.1 New information inequalities

The following theorem or inequalities are introduced which relate Sf (P,Q) for

two different convex functions. The results are on similar lines to the results

presented by Taneja [95].

Theorem 2.2.1. Let f1, f2 : I ⊂ (0,∞) → R be two convex and normalized

functions, i.e., f ′′1 (t) , f ′′2 (t) ≥ 0 ∀ t > 0 and f1 (1) = f2 (1) = 0 respectively and

suppose the following assumptions.

(i) f1 and f2 are twice differentiable on (α, β), 0 < α ≤ 1 ≤ β <∞ with α 6= β.

(ii) There exists the real constants m,M such that m < M and

m ≤ f ′′1 (t)

f ′′2 (t)
≤M, f ′′2 (t) 6= 0 ∀ t ∈ (α, β) . (2.2.1)

If P,Q ∈ Γn, then we have the following inequalities

mSf2 (P,Q) ≤ Sf1 (P,Q) ≤MSf2 (P,Q) . (2.2.2)

Proof :Let us consider two functions

Fm (t) = f1 (t)−mf2 (t) (2.2.3)

and

FM (t) = Mf2 (t)− f1 (t) , (2.2.4)
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2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

where m and M are the minimum and maximum values of the function
f ′′1 (t)

f ′′2 (t)
∀ t ∈

(α, β).

Since

f1 (1) = f2 (1) = 0⇒ Fm (1) = FM (1) = 0 (2.2.5)

and the functions f1 (t) and f2 (t) are twice differentiable. Then in view of (2.2.1),

we have

F ′′m (t) = f ′′1 (t)−mf ′′2 (t) = f ′′2 (t)

[
f ′′1 (t)

f ′′2 (t)
−m

]
≥ 0 (2.2.6)

and

F ′′M (t) = Mf ′′2 (t)− f ′′1 (t) = f ′′2 (t)

[
M − f ′′1 (t)

f ′′2 (t)

]
≥ 0. (2.2.7)

In view (2.2.5), (2.2.6) and (2.2.7), we can say that the functions Fm (t) and

FM (t) are convex and normalized on (α, β).

Now, with the help of linearity property and non- negativity, we have

SFm (P,Q) = Sf1−mf2 (P,Q) = Sf1 (P,Q)−mSf2 (P,Q) ≥ 0 (2.2.8)

and

SFM
(P,Q) = SMf2−f1 (P,Q) = MSf2 (P,Q)− Sf1 (P,Q) ≥ 0. (2.2.9)

From (2.2.8) and (2.2.9), we get the result (2.2.2).

2.2.2 New divergence measure and properties

Divergence measures are basically measures of distance between two probability

distributions or compare two probability distributions. Depending on the nature
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of the problem, different divergence measures are suitable. So it is always desir-

able to develop a new divergence measure.

Let f : (0,∞)→ R be a mapping, defined as

f (t) = f1 (t) =
(t− 1)2√

t
,∀ t ∈ (0,∞) . (2.2.10)

Figure 2.1: Convex function f1 (t)

For this function, we obtain

Sf (P,Q) = Sf1 (P,Q) = L∗ (P,Q) =
1

2

n∑
i=1

(pi − qi)2√
2qi (pi + qi)

(2.2.11)

and

f ′1 (t) =
(t− 1) (3t+ 1)

2t
3
2

, f ′′1 (t) =
3t2 + 2t+ 3

4t
5
2

. (2.2.12)

Since f ′′1 (t) > 0 and f1 (1) = 0, therefore f1 (t) is strictly convex and normalized

respectively.

Moreover by the properties of Sf (P,Q), we see that L∗ (P,Q) > 0 and convex

in the pair of probability distribution (P,Q) ∈ Γn × Γn and L∗ (P,Q) = 0 (Non-

degeneracy) if P = Q or attains its minimum value when pi = qi. We can also

see that L∗ (P,Q) is non- symmetric divergence w.r.t. P and Q as L∗ (P,Q) 6=

L∗ (Q,P ).
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2.2.3 Bounds of new divergence measure

Now, we evaluate bounds of L∗ (P,Q) in terms of other symmetric and non-

symmetric divergence measures by using new information inequalities (2.2.2).

Proposition 2.2.1. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have
√
α (3α2 + 2α + 3)

16
∆ (P,Q) ≤ L∗ (P,Q) ≤

√
β (3β2 + 2β + 3)

16
∆ (P,Q) ,

(2.2.13)

where ∆ (P,Q) is defined by (1.2.5).

Proof : Let us consider

f2 (t) =
(t− 1)2

t
, t ∈ (0,∞)

and

f ′2 (t) =
t2 − 1

t2
, f ′′2 (t) =

2

t3
. (2.2.14)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we get

Sf2 (P,Q) =
1

2

n∑
i=1

(pi − qi)2

pi + qi
=

1

2
∆ (P,Q) . (2.2.15)

Now, let g (t) =
f ′′1 (t)

f ′′2 (t)
=
√
t(3t2+2t+3)

8
and g′ (t) =

3(5t2+2t+1)
16
√
t

> 0 ∀ t > 0.

It is clear that g (t) is always strictly increasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (α) =

√
α (3α2 + 2α + 3)

8
. (2.2.16)

M = sup
t∈(α,β)

g (t) = g (β) =

√
β (3β2 + 2β + 3)

8
. (2.2.17)

The result (2.2.13) is obtained by using (2.2.11), (2.2.15), (2.2.16),and (2.2.17) in

(2.2.2).
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Proposition 2.2.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞ with α 6= β, we have

3β2 + 2β + 3

32β
5
2

χ2 (P,Q) ≤ L∗ (P,Q) ≤ 3α2 + 2α + 3

32α
5
2

χ2 (P,Q) , (2.2.18)

where χ2 (P,Q) is defined by (1.2.19).

Proof : Let us consider

f2 (t) = (t− 1)2 , t ∈ (0,∞)

and

f ′2 (t) = 2 (t− 1) , f ′′2 (t) = 2. (2.2.19)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we have

Sf2 (P,Q) =
1

4

n∑
i=1

(pi − qi)2

qi
=

1

4
χ2 (P,Q) . (2.2.20)

Now, let g (t) =
f ′′1 (t)

f ′′2 (t)
= 3t2+2t+3

8t
5
2

and g′ (t) = −3(t2+2t+5)
16t

7
2

< 0 ∀ t > 0.

It is clear that g (t) is always strictly decreasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (β) =
3β2 + 2β + 3

8β
5
2

. (2.2.21)

M = sup
t∈(α,β)

g (t) = g (α) =
3α2 + 2α + 3

8α
5
2

. (2.2.22)

The result (2.2.18) is obtained by using (2.2.11), (2.2.20), (2.2.21),and (2.2.22) in

(2.2.2).

Proposition 2.2.3. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have
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(i) If 0 < α < 1, then

1

2
JR (P,Q) ≤ L∗ (P,Q) ≤ 1

8
max

[
3α2 + 2α + 3

α
1
2 (1 + α)

,
3β2 + 2β + 3

β
1
2 (1 + β)

]
JR (P,Q) .

(2.2.23)

(ii) If α = 1, then

1

2
JR (P,Q) ≤ L∗ (P,Q) ≤ 3β2 + 2β + 3

8β
1
2 (1 + β)

JR (P,Q) , (2.2.24)

where JR (P,Q) is defined by (1.2.22).

Proof : Let us consider

f2 (t) = (t− 1) log t, t ∈ (0,∞)

and

f ′2 (t) =
(t− 1)

t
+ log t, f ′′2 (t) =

1 + t

t2
. (2.2.25)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we obtain

Sf2 (P,Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
=

1

2
JR (P,Q) . (2.2.26)

Now, let g (t) =
f ′′1 (t)

f ′′2 (t)
= 3t2+2t+3

4t
1
2 (1+t)

and g′ (t) = (3t+1)(t−1)(t+3)

8t
3
2 (1+t)2

, g′′ (t) =
(−3t4−12t3+42t2+28t+9)

16t
5
2 (1+t)3

.

If g′ (t) = 0⇒ t = 1,−3,−1
3
.

It is clear that g′ (t) < 0 in (0, 1) and ≥ 0 in [1,∞), i.e., g (t) is strictly decreasing

in (0, 1) and increasing in [1,∞). So g (t) has a minimum value at t = 1 because

g′′ (1) = 1
2
> 0. So

m = inf
t∈(0,∞)

g (t) = g (1) = 1. (2.2.27)
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(i) If 0 < α < 1, then

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)] = max

[
3α2 + 2α + 3

4α
1
2 (1 + α)

,
3β2 + 2β + 3

4β
1
2 (1 + β)

]
.

(2.2.28)

(ii) If α = 1, then

M = sup
t∈(1,β)

g (t) = g (β) =
3β2 + 2β + 3

4β
1
2 (1 + β)

. (2.2.29)

The inequalities (2.2.23) and (2.2.24) are obtained by using (2.2.11), (2.2.26),

(2.2.27), (2.2.28) and (2.2.29) in (2.2.2).

Proposition 2.2.4. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

(i) If 1 < β ≤ 2.09, then

1.678G (Q,P ) ≤ L∗ (P,Q) ≤ 3α2 + 2α + 3

4α
3
2

G (Q,P ) . (2.2.30)

(ii) If β > 2.09, then

min

[
3α2 + 2α + 3

4α
3
2

,
3β2 + 2β + 3

4β
3
2

]
G (Q,P ) ≤ L∗ (P,Q)

≤ max

[
3α2 + 2α + 3

4α
3
2

,
3β2 + 2β + 3

4β
3
2

]
G (Q,P ) ,

(2.2.31)

where G (P,Q) is defined by (1.2.20).

Proof : Let us consider

f2 (t) = t log t, t ∈ (0,∞)

and

f ′2 (t) = 1 + log t, f ′′2 (t) =
1

t
. (2.2.32)
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Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we have

Sf2 (P,Q) =
n∑
i=1

(
pi + qi

2

)
log

pi + qi
2qi

= G (Q,P ) . (2.2.33)

Now, let g (t) =
f ′′1 (t)

f ′′2 (t)
= 3t2+2t+3

4t
3
2

and g′ (t) =
(3t2−2t−9)

8t
5
2

, g′′ (t) =
3(−t2+2t+15)

16t
7
2

.

If g′ (t) = 0⇒ t = 2.09,−1.430.

It is clear that g′ (t) < 0 in (0, 2.09) and > 0 in (2.09,∞), i.e., g (t) is strictly

decreasing in (0, 2.09) and strictly increasing in (2.09,∞). So g (t) has a minimum

value at t = 2.09 because g′′ (2.09) = 0.210 > 0. So

(i) If 1 < β ≤ 2.09, then

m = inf
t∈(α,β)

g (t) = g (2.09) = 1.678. (2.2.34)

M = sup
t∈(α,β)

g (t) = g (α) =
3α2 + 2α + 3

4α
3
2

. (2.2.35)

(ii) If β > 2.09, then

m = inf
t∈(α,β)

g (t) = min [g (α) , g (β)] = min

[
3α2 + 2α + 3

4α
3
2

,
3β2 + 2β + 3

4β
3
2

]
.

(2.2.36)

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)] = max

[
3α2 + 2α + 3

4α
3
2

,
3β2 + 2β + 3

4β
3
2

]
.

(2.2.37)

The inequalities (2.2.30) and (2.2.31) are obtained by using (2.2.11), (2.2.33),

(2.2.34), (2.2.35), (2.2.36) and (2.2.37) in (2.2.2).

By the similar approach, we obtain the bounds of L∗ (P,Q) in terms of divergence

measure F (P,Q). The result is as follows:

38



2.2 On New Generalized Divergence Measure and Applications

For f2 (t) = − log t, we obtain

(i) If 0 < α ≤ 0.47, then

1.678F (Q,P ) ≤ L∗ (P,Q) ≤ max

[
3α2 + 2α + 3

4α
1
2

,
3β2 + 2β + 3

4β
1
2

]
F (Q,P ) .

(2.2.38)

(ii) If 0.47 < α ≤ 1, then

3α2 + 2α + 3

4α
1
2

F (Q,P ) ≤ L∗ (P,Q) ≤ 3β2 + 2β + 3

4β
1
2

F (Q,P ) , (2.2.39)

where F (P,Q) is defined by (1.2.21).

Figure 2.2: Comparison of the well known divergences with L∗ (P,Q)

Figure 2.2 shows the behavior of L∗ (P,Q), F (P,Q), G (P,Q), T (P,Q), I (P,Q),

and h (P,Q). We have considered pi = (a, 1− a) , qi = (1− a, a), where a ∈ (0, 1).

It is clear from Figure that the L∗ (P,Q) has a steeper slope than all others.
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2.3 New Information Inequalities in Terms of

Chi- square Divergence and Applications

In this section, new information inequality is introduced and characterized on

Sf (P,Q) in terms of the well known Chi- square divergence and this inequality is

taken for evaluating the relations among some standard divergences with the Chi-

square divergence. Numerical verifications of the obtained relations are done as

well by considering two discrete probability distributions: Binomial and Poisson.

Now the following lemma is important for proving the upcoming new information

inequality. This lemma has been obtained from literature (Dragomir etc. all [30]).

Lemma 2.3.1. Let ψ : [a, b] ⊂ R→ R be an absolutely continuous and differen-

tiable function, and there exists the constants m,M ∈ R, such that

m ≤ ψ′ (t) ≤M ∀ t ∈ [a, b] .

Then, we have∣∣∣∣ψ (a) + ψ (b)

2
− 1

b− a

∫ b

a

ψ (t) dt

∣∣∣∣ ≤ 1

8
(b− a) (M −m) . (2.3.1)

Proof : We start with the following identity that is obvious by using integra-

tion by parts.

ψ (a) + ψ (b)

2
− 1

b− a

∫ b

a

ψ (t) dt =
1

b− a

∫ b

a

(
t− a+ b

2

)
ψ′ (t) dt.

We observe that

1

b− a

∫ b

a

(
t− a+ b

2

)
ψ′ (t) dt =

1

b− a

∫ b

a

(
t− a+ b

2

)(
ψ′ (t)− m+M

2

)
dt

and since ∣∣∣∣ψ′ (t)− m+M

2

∣∣∣∣ ≤ M −m
2

∀ t ∈ [a, b] .
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So we deduce that

1

b− a

∣∣∣∣∫ b

a

(
t− a+ b

2

)(
ψ′ (t)− m+M

2

)
dt

∣∣∣∣ ≤ 1

b− a
M −m

2

∫ b

a

∣∣∣∣t− a+ b

2

∣∣∣∣ dt
=
M −m

8
(b− a) .

2.3.1 New information inequalities

Now, we introduce new information inequality in terms of the well known Chi-

square divergence measure. The results are on similar lines to the results pre-

sented by (Dragomir etc. all [30]).

Theorem 2.3.1. Let f : (0,∞) → R be a mapping which is normalized, i.e.,

f (1) = 0 and f ′ is locally absolutely continuous on [α, β] ⊂ (0,∞) then there

exists the constants m,M ∈ R with m < M , such that

m ≤ f ′′ (t) ≤M ∀ t ∈ (α, β) .

If P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, then we have the following

inequality ∣∣∣∣Sf (P,Q)− 1

2
ESf ′

(P,Q)

∣∣∣∣ ≤ 1

32
(M −m)χ2 (P,Q) , (2.3.2)

where ESf ′
(P,Q) is defined by (1.2.52).

Proof :Put ψ (t) = f ′ (t) , b = t ∈ (α, β) and a = 1 in (2.3.1), we get∣∣∣∣f ′ (1) + f ′ (t)

2
− 1

t− 1

∫ t

1

f ′ (t) dt

∣∣∣∣ ≤ 1

8
(t− 1) (M −m) .

Or ∣∣∣∣f (t)− 1

2
(t− 1) [f ′ (t) + f ′ (1)]

∣∣∣∣ ≤ 1

8
(t− 1)2 (M −m) . (2.3.3)

Now put t = pi+qi
2qi

, i = 1, 2, 3..., n in (2.3.3), we obtain∣∣∣∣f (pi + qi
2qi

)
− (pi − qi)

4qi

[
f ′
(
pi + qi

2qi

)
+ f ′ (1)

]∣∣∣∣ ≤ 1

32
(M −m)

(pi − qi)2

q2i
.
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Now multiply the above expressions by qi and sum over all i = 1, 2, 3..., n by

taking into account
∑n

i=1 pi =
∑n

i=1 qi = 1, we obtain∣∣∣∣∣
n∑
i=1

qif

(
pi + qi

2qi

)
− 1

2

n∑
i=1

(pi − qi)
2

f ′
(
pi + qi

2qi

)∣∣∣∣∣ ≤ 1

32
(M −m)

n∑
i=1

(pi − qi)2

qi
.

Or ∣∣∣∣Sf (P,Q)− 1

2
ESf ′

(P,Q)

∣∣∣∣ ≤ 1

32
(M −m)χ2 (P,Q) .

Hence prove the inequality (2.3.2).

2.3.2 Application of new information inequalities

Now, we obtain relations among standard divergence measures: Relative JS di-

vergence, Relative AG divergence, Relative J- divergence, and Triangular dis-

crimination with Chi- square divergence by using new inequalities (2.3.2) (taking

only convex functions here).

Proposition 2.3.1. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

|G (P,Q)− F (P,Q)| ≤ 1

16

(
β − α
αβ

)
χ2 (Q,P ) , (2.3.4)

where χ2 (P,Q), G (P,Q), and F (P,Q) are already defined by (1.2.19), (1.2.20),

and (1.2.21) respectively.

Proof : Let us consider

f (t) = t log t, t > 0, f (1) = 0, f ′ (t) = 1 + log t and f ′′ (t) =
1

t
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.
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Now for f (t) and f ′ (t), we get the followings.

Sf (P,Q) =
n∑
i=1

(
pi + qi

2

)
log

pi + qi
2qi

= G (Q,P ) . (2.3.5)

ESf ′
(P,Q) =

n∑
i=1

(
pi − qi

2

)[
1 + log

pi + qi
2qi

]
=

n∑
i=1

(
pi − qi

2

)
log

pi + qi
2qi

=
n∑
i=1

(
qi − pi

2

)
log

2qi
pi + qi

=
n∑
i=1

(
qi −

pi + qi
2

)
log

2qi
pi + qi

=
n∑
i=1

[
qi log

2qi
pi + qi

−
(
pi + qi

2

)
log

2qi
pi + qi

]
=

n∑
i=1

[
qi log

2qi
pi + qi

+

(
pi + qi

2

)
log

pi + qi
2qi

]
=F (Q,P ) +G (Q,P ) .

(2.3.6)

Now, let g (t) = f ′′ (t) = 1
t

and g′ (t) = − 1
t2
< 0.

It is clear that g (t) is always strictly decreasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (β) =
1

β
. (2.3.7)

M = sup
t∈(α,β)

g (t) = g (α) =
1

α
. (2.3.8)

The result (2.3.4) is obtained by using (2.3.5), (2.3.6), (2.3.7) and (2.3.8) in

(2.3.2), after interchanging P and Q.

Proposition 2.3.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

|JR (P,Q)−∆ (P,Q)| ≤ 1

8

(β − α) (α + β + αβ)

α2β2
χ2 (P,Q) , (2.3.9)

where ∆ (P,Q), χ2 (P,Q), and JR (P,Q) are defined by (1.2.5), (1.2.19), and

(1.2.22) respectively.
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Proof : Let us consider

f (t) = (t− 1) log t, t > 0, f (1) = 0, f ′ (t) =
t− 1

t
+ log t and f ′′ (t) =

1 + t

t2
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we get the followings.

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
=

1

2
JR (P,Q) . (2.3.10)

ESf ′
(P,Q) =

1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
+

1

2

n∑
i=1

(pi − qi)2

pi + qi

=
1

2
[JR (P,Q) + ∆ (P,Q)] .

(2.3.11)

Now, let g (t) = f ′′ (t) = 1+t
t2

and g′ (t) = −2+t
t3
< 0.

It is clear that g (t) is always strictly decreasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (β) =
1 + β

β2
. (2.3.12)

M = sup
t∈(α,β)

g (t) = g (α) =
1 + α

α2
. (2.3.13)

The result (2.3.9) is obtained by using (2.3.10), (2.3.11), (2.3.12) and (2.3.13) in

(2.3.2).

2.3.3 Numerical verification of obtained results

By using new information inequalities (2.3.2), relations among well known diver-

gences have been obtained mathematically with Chi- square divergence in last

subsection. Now, in this subsection, we give an example for calculating the di-

vergences G (P,Q), F (P,Q), ∆ (P,Q), JR (P,Q), χ2 (P,Q), χ2 (Q,P ) and verify

the inequalities (2.3.4) and (2.3.9), numerically.
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Example 2.3.1. Let P be the Binomial probability distribution with parameters

(n = 10, p = 0.7) and Q its approximated Poisson probability distribution with

parameter (λ = np = 7) for the random variable X , then we have

xi 0 1 2 3 4 5 6 7 8 9 10

pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282

qi ≈ .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709
pi+qi
2qi
≈ .503 .510 .532 .586 .697 .788 1.002 1.392 1.396 1.099 .698

Table 2.1: Evaluation of Binomial and Poisson probability distributions

By using Table 2.1, we obtain the followings.

α (= .503) ≤ pi + qi
2qi

≤ β (= 1.396) . (2.3.14)

G (P,Q) =
11∑
i=1

(
pi + qi

2

)
log

(
pi + qi

2pi

)
≈ .0746. (2.3.15)

F (P,Q) =
11∑
i=1

pi log

(
2pi

pi + qi

)
≈ .0842. (2.3.16)

∆ (P,Q) =
11∑
i=1

(pi − qi)2

pi + qi
≈ .1812. (2.3.17)

JR (P,Q) =
11∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
≈ .1686. (2.3.18)

χ2 (P,Q) =
11∑
i=1

(pi − qi)2

qi
≈ .3298. (2.3.19)

χ2 (Q,P ) =
11∑
i=1

(pi − qi)2

pi
≈ 1.2260. (2.3.20)

Put all approximated numerical values from (2.3.14) to (2.3.20) in results (2.3.4)

and (2.3.9), we obtain the followings numerical results

.0096 ≤ .0973 and .0126 ≤ .1942
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respectively. Hence verified the new inequalities numerically for p = 0.7.

Remark 2.3.1. In a similar manner, we can verify the inequalities for different

values of p and q and for other discrete probability distributions as well, like;

Negative binomial, Geometric, Uniform etc.

2.4 New Information Inequalities in Terms of

Variational Distance and Applications

In previous section, new information inequality has been obtained in terms of

χ2 (P,Q). Now, in this section, new information inequality is introduced and

characterized on Sf (P,Q) in terms of the well known Variational or l1 distance

V (P,Q) and this inequality is taken for evaluating the relations among standard

divergences with the Variational distance.

Let us begin with an important proposition for proving the new information

inequality. This proposition with proof can be seen in literature (Dragomir etc.

all [29]).

Proposition 2.4.1. Let ψ : [a, b] ⊂ R → R be a differentiable function and is

of bounded variation on [a, b], i.e., Aba (ψ) =
∫ b
a
|ψ′ (t)| dt < ∞. Then for all

u ∈ [a, b], we have∣∣∣∣∫ b

a

ψ (t) dt− ψ (u) (b− a)

∣∣∣∣ ≤ (b− a2
+

∣∣∣∣u− a+ b

2

∣∣∣∣)Aba (ψ) . (2.4.1)

Now for all u1, u2 ∈ [a, b], if we put u = ui and summing over i, we get the

following∣∣∣∣∣
∫ b

a

ψ (t) dt−
(
b− a

2

) 2∑
i=1

ψ (ui)

∣∣∣∣∣ ≤
(
b− a

2
+

1

2

2∑
i=1

∣∣∣∣ui − a+ b

2

∣∣∣∣
)
Aba (ψ) .

(2.4.2)
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2.4.1 New information inequalities

Now we introduce new information inequality on Sf (P,Q) in terms of well known

Variational distance. The results are on similar lines to the results presented by

(Dragomir etc. all [29]).

Theorem 2.4.1. Let f : [α, β] ⊂ (0,∞) → R be a twice differentiable function

which is normalized, i.e., f (1) = 0 and f ′ is of bounded variation on [α, β], i.e.,

Aβα (f ′) =
∫ β
α
|f ′′ (t)| dt <∞.

If P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, then we have the following

inequality ∣∣∣∣Sf (P,Q)− 1

2
ESf ′

(P,Q)

∣∣∣∣ ≤ 1

2
V (P,Q)Aβα (f ′) , (2.4.3)

where ESf ′
(P,Q) is defined by (1.2.52).

Proof :

Case I (for 1 ≤ u): Put ψ = f ′, u1 = a = 1, and u2 = b = u ∈ [α, β] in (2.4.2), we

obtain ∣∣∣∣∫ u

1

f ′ (t) dt−
(
u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣
≤
[
u− 1

2
+

1

2

(∣∣∣∣1− u+ 1

2

∣∣∣∣+

∣∣∣∣u− u+ 1

2

∣∣∣∣)]Au1 (f ′) .

Or

∣∣∣∣f (u)− f (1)−
(
u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ (u− 1

2
+

∣∣∣∣u− 1

2

∣∣∣∣)Au1 (f ′) .

Or

∣∣∣∣f (u)−
(
u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ (u− 1)Au1 (f ′) ≤ (u− 1)Aβα (f ′) . (2.4.4)
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Case II (for u < 1): Put ψ = f ′, u1 = a = u ∈ [α, β], and u2 = b = 1 in (2.4.2),

we get similarly

∣∣∣∣−f (u)−
(

1− u
2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ (1− u)A1
u (f ′) ≤ (1− u)Aβα (f ′) .

Or

∣∣∣∣f (u)−
(
u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ (1− u)A1
u (f ′) ≤ (1− u)Aβα (f ′) . (2.4.5)

By using together (2.4.4) and (2.4.5), we obtain respectively

∣∣∣∣f (u)−
(
u− 1

2

)
(f ′ (1) + f ′ (u))

∣∣∣∣ ≤ |u− 1|Aβα (f ′) . (2.4.6)

Now put u = pi+qi
2qi

, i = 1, 2, 3..., n in (2.4.6), we obtain

∣∣∣∣f (pi + qi
2qi

)
−
(
pi − qi

4qi

)[
f ′
(
pi + qi

2qi

)
+ f ′ (1)

]∣∣∣∣ ≤ ∣∣∣∣pi − qi2qi

∣∣∣∣Aβα (f ′) .

Now multiply the above expression by qi and sum over all i = 1, 2, 3..., n by taking

into account
∑n

i=1 pi =
∑n

i=1 qi = 1, we get the desire result (2.4.3).

2.4.2 Relations with the Variational distance

In this subsection, we obtain relations among the standard divergence measures:

F (P,Q), G (P,Q), JR (P,Q), and ∆ (P,Q) by using new inequality (2.4.3), with

V (P,Q) (taking only convex functions here), where V (P,Q) is defined by (1.2.7).

Proposition 2.4.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

|G (P,Q)− F (P,Q)| ≤ log

(
β

α

)
V (P,Q) . (2.4.7)
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Proof : Let us consider

f (t) = t log t, t > 0, f (1) = 0, f ′ (t) = 1 + log t and f ′′ (t) =
1

t
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we obtain the followings respectively.

Sf (P,Q) =
n∑
i=1

(
pi + qi

2

)
log

pi + qi
2qi

= G (Q,P ) . (2.4.8)

ESf ′
(P,Q) =

n∑
i=1

(
pi − qi

2

)[
1 + log

pi + qi
2qi

]
=

n∑
i=1

(
pi − qi

2

)
log

pi + qi
2qi

=
n∑
i=1

(
qi − pi

2

)
log

2qi
pi + qi

=
n∑
i=1

(
qi −

pi + qi
2

)
log

2qi
pi + qi

=
n∑
i=1

[
qi log

2qi
pi + qi

−
(
pi + qi

2

)
log

2qi
pi + qi

]
=

n∑
i=1

[
qi log

2qi
pi + qi

+

(
pi + qi

2

)
log

pi + qi
2qi

]
= F (Q,P ) +G (Q,P ) .

(2.4.9)

Aβα (f ′) =

∫ β

α

|f ′′ (t)| dt =

∫ β

α

∣∣∣∣1t
∣∣∣∣ dt =

∫ β

α

1

t
dt = log

(
β

α

)
. (2.4.10)

The result (2.4.7) is obtained by using (2.4.8), (2.4.9), and (2.4.10) in (2.4.3),

after interchanging P and Q.

Proposition 2.4.3. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

|JR (P,Q)−∆ (P,Q)| ≤ 2

(
β − α
αβ

+ log
β

α

)
V (P,Q) . (2.4.11)

Proof : Let us consider

f (t) = (t− 1) log t, t > 0, f (1) = 0, f ′ (t) =
t− 1

t
+ log t and f ′′ (t) =

1 + t

t2
.
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Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we get the followings respectively.

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
=

1

2
JR (P,Q) . (2.4.12)

ESf ′
(P,Q) =

1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
+

1

2

n∑
i=1

(pi − qi)2

pi + qi

=
1

2
[JR (P,Q) + ∆ (P,Q)] .

(2.4.13)

Aβα (f ′) =

∫ β

α

|f ′′ (t)| dt =

∫ β

α

∣∣∣∣1 + t

t2

∣∣∣∣ dt =

∫ β

α

1 + t

t2
dt =

β − α
αβ

+log
β

α
. (2.4.14)

The result (2.4.11) is obtained by using (2.4.12), (2.4.13) and (2.4.14) in (2.4.3).

2.4.3 Numerical verification of obtained results

Now, in this subsection, we give an example for verifying the new results (2.4.7)

and (2.4.11), numerically.

Example 2.4.1. Here, we are considering the example same as example 2.3.1

(subsection- 2.3.3). The observations for Binomial and Poisson distributions are

also same as Table 2.1, so we are skipping the repetition. Now, by Table 2.1, we

get the value of V (P,Q), as follows.

V (P,Q) =
11∑
i=1

|pi − qi| ≈ .4844. (2.4.15)

Put the approximated numerical values from (2.3.14) to (2.3.18) and (2.4.15)

into (2.4.7) and (2.4.11), we get

9.6× 10−3 ≤ .4944 and .0126 ≤ 2.22098.

respectively and hence verified the inequalities (2.4.7) and (2.4.11) for p = 0.7.

50



2.5 New Information Inequalities in Terms of One Parametric
Divergence Measure and Applications

Remark 2.4.1. We can verify the obtained new information inequalities (2.4.7)

and (2.4.11) numerically in a similar manner like subsection 2.3.3, by considering

two different discrete probability distributions for different values of probability of

success and probability of failure.

2.5 New Information Inequalities in Terms of

One Parametric Divergence Measure and Ap-

plications

In this section, we are going to introduce new information inequalities on Sf (P,Q)

in terms of the well known one parametric divergence Φs (Q,P ), designated as

adjoint of the Unified relative Jensen- Shannon (JS) and Arithmetic- Geometric

(AG) divergence measure of type s, where s ∈ R − {0, 1} is parameter here.

Φs (P,Q) is already defined by (1.2.24) in introduction chapter. Also introduce

the new information divergence measure, characterize it and obtain the math-

ematical relations with other divergences: F (P,Q), G (P,Q), JR (P,Q), and

χ2 (P,Q). Further we obtain bounds of the new divergence as an application

of new information inequalities, together with numerical verification.

2.5.1 New information inequalities

In this part of the section, we introduce two new information inequalities (The-

orems 2.5.1 and 2.5.2) on Sf (P,Q) ; one of them is in terms of one parametric

divergence Φs (Q,P ). The results are on similar lines to the results presented by

Dragomir [24].
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Theorem 2.5.1. Let f : (0,∞)→ R be a real, convex function on (α, β) ⊂ (0,∞)

with 0 < α ≤ 1 ≤ β < ∞, α 6= β. If P,Q ∈ Γn, then we have the following

inequality

Sf (P,Q) ≤ Bf (α, β) , (2.5.1)

where

Bf (α, β) =
(β − 1) f (α) + (1− α) f (β)

β − α
. (2.5.2)

Proof : Since f is convex on (0,∞), therefore we can write the following for

(α, β) ∈ (0,∞)× (0,∞) , λ ∈ [0, 1] by the definition of convex function

f [λα + (1− λ) β] ≤ λf (α) + (1− λ) f (β) . (2.5.3)

Now assume λ = β−x
β−α for x ∈ (α, β) in (2.5.3), we get

f (x) ≤ (β − x) f (α) + (x− α) f (β)

β − α
. (2.5.4)

Now put x = pi+qi
2qi

in (2.5.4), multiply by qi and then sum over all i = 1, 2, 3, ..., n,

we obtain the require inequality (2.5.1).

Theorem 2.5.2. Let f : (0,∞) → R be a real, convex and twice differentiable

function on (α, β) ⊂ (0,∞) with 0 < α ≤ 1 ≤ β < ∞, α 6= β. If there exists the

real constants m, M with m < M and

m ≤ t2−sf ′′ (t) ≤M ∀ t ∈ (α, β) , s ∈ R− {0, 1}.

If P,Q ∈ Γn, then we have

m [Bφs (α, β)− Φs (Q,P )] ≤ Bf (α, β)− Sf (P,Q) ≤M [Bφs (α, β)− Φs (Q,P )] ,

(2.5.5)
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where

Φs (P,Q) = [s (s− 1)]−1
[

n∑
i=1

pi

(
pi + qi

2pi

)s
− 1

]
, s 6= 0, 1

=



1
4

∑n
i=1

(pi−qi)2
pi+qi

= 1
4
∆ (P,Q) = Φ−1 (P,Q) if s = −1∑n

i=1 pi log
(

2pi
pi+qi

)
= F (P,Q) = lims→0 Φs (P,Q) if s = 0∑n

i=1

(
pi+qi

2

)
log
(
pi+qi
2pi

)
= G (P,Q) = lims→1 Φs (P,Q) if s = 1

1
8

∑n
i=1

(pi−qi)2
pi

= 1
8
χ2 (Q,P ) = Φ2 (P,Q) if s = 2

.

given by (1.2.24) and

Bf (α, β) =
(β − 1) f (α) + (1− α) f (β)

β − α
. (2.5.6)

Bφs (α, β) =
(β − 1)φs (α) + (1− α)φs (β)

β − α
. (2.5.7)

Proof : Let us define a function Fm : (0,∞)→ R as

Fm (t) = f (t)−m [s (s− 1)]−1 (ts − 1) = f (t)−mφs (t) , (2.5.8)

where

φs (t) = [s (s− 1)]−1 (ts − 1) , s ∈ R− {0, 1}. (2.5.9)

Since f (t) and φs (t) are both twice differentiable, therefore Fm (t) is twice dif-

ferentiable as well, So

F ′′m (t) = f ′′ (t)−mts−2 = ts−2
[
t2−sf ′′ (t)−m

]
≥ 0.

Since F ′′m (t) ≥ 0 ∀ t ∈ (α, β) ⊂ (0,∞), therefore Fm (t) is convex as well.

Now we write inequality (2.5.1) for the function Fm (t), we obtain

SFm (P,Q) ≤ BFm (α, β) , i.e.,
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n∑
i=1

qif

(
pi + qi

2qi

)
−m [s (s− 1)]−1

n∑
i=1

qi

(
pi + qi

2qi

)s
− 1

≤ (β − 1) f (α) + (1− α) f (β)

β − α
−m [s (s− 1)]−1

(β − 1) (αs − 1) + (1− α) (βs − 1)

β − α
, i.e.,

Sf (P,Q)−mΦs (Q,P ) ≤ Bf (α, β)−mBφs (α, β) , i.e.,

m [Bφs (α, β)− Φs (Q,P )] ≤ Bf (α, β)− Sf (P,Q) .

Hence prove the first inequality of (2.5.5).

The second inequality of (2.5.5) obtains by a similar approach for the function

Fm (t) = M [s (s− 1)]−1 (ts − 1)− f (t) .

We omit the details.

2.5.2 New information divergence measure, properties and

relations

In this subsection, we introduce new information divergence measure of class

Sf (P,Q). Properties and relations of this new divergence with other divergences

are also given.

Now, let f : (0,∞)→ R be a mapping defined as

f (t) =

(
t+ 1

2

)
log

(
t+ 1

2t

)
, (2.5.10)

f ′ (t) =
1

2

[
log

(
t+ 1

2t

)
− 1

t

]
, f (1) = 0

and

f ′′ (t) =
1

2t2 (t+ 1)
. (2.5.11)
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Figure 2.3: Convex function f (t)

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively. Now for f (t), we have the following new divergence measure

Sf (P,Q) =
n∑
i=1

(
pi + 3qi

4

)
log

[
pi + 3qi

2 (pi + qi)

]
= M∗ (P,Q) . (2.5.12)

Moreover by properties of Sf (P,Q), we see that M∗ (P,Q) > 0 and convex

in the pair of probability distribution (P,Q) ∈ Γn × Γn and M∗ (P,Q) = 0

(Non- degeneracy) if P = Q or attains its minimum value when pi = qi. We

can also see that M∗ (P,Q) is non- symmetric divergence w.r.t. P and Q as

M∗ (P,Q) 6= M∗ (Q,P ).

Now we are giving the following theorem, statement of which is being used for ob-

taining upcoming new relation. This theorem with proof can be seen in literature

(Jain and Saraswat [48]).

Theorem 2.5.3. Let f : (0,∞) → R be a convex and normalized function, i.e.,

f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0 respectively, then for (P,Q) ∈ Γn × Γn, we have

Sf (P,Q) ≤ Cf (P,Q) ≤ ECf ′
(P,Q) , (2.5.13)

where Sf (P,Q), Cf (P,Q), and ECf ′
(P,Q) have their usual meanings.
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Now, we derive a simple relation (Proposition 2.5.1) for M∗ (P,Q) in terms

of F (P,Q) , G (P,Q) , JR (P,Q), and χ2 (P,Q).

Proposition 2.5.1. Let (P,Q) ∈ Γn × Γn, then we have the following new inter

relation

1

4
[F (Q,P )−G (Q,P )] ≤M∗ (P,Q) ≤ 1

2

[
JR (Q,P ) + χ2 (Q,P )

]
, (2.5.14)

where F (P,Q) , G (P,Q) , JR (P,Q), and χ2 (P,Q) have their usual meanings, re-

spectively.

Proof : Since we know that AM ≥ GM, i.e., for a, b > 0

a+ b

2
≥
√
ab. (2.5.15)

Now put a = 1 and b = 1
t

in (2.5.15) for t > 0, we obtain

1 + 1
t

2
≥
√

1

t
⇒ log

(
t+ 1

2t

)
≥ 1

2
log

1

t
. (2.5.16)

Now multiply (2.5.16) by t+1
2

for t > 0, we get

t+ 1

2
log

(
t+ 1

2t

)
≥ t+ 1

4
log

1

t
. (2.5.17)

Now put t = pi+qi
2qi

in (2.5.17), multiply by qi and then sum over all i = 1, 2, 3..., n,

we have

n∑
i=1

(
pi + 3qi

4

)
log

[
pi + 3qi

2 (pi + qi)

]
≥

n∑
i=1

(
pi + 3qi

8

)
log

[
2qi

(pi + qi)

]
, i.e.,

M∗ (P,Q) ≥ 1

4

n∑
i=1

(
pi + qi + 2qi

2

)
log

[
2qi

(pi + qi)

]
, i.e.,

M∗ (P,Q) ≥ 1

4

[
n∑
i=1

qi log
2qi

pi + qi
−

n∑
i=1

pi + qi
2

log
pi + qi

2qi

]
, i.e.,
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M∗ (P,Q) ≥ 1

4
[F (Q,P )−G (Q,P )] . (2.5.18)

Since we know the following by (2.5.13).

Sf (P,Q) ≤ ECf ′
(P,Q)⇒

n∑
i=1

qif

(
pi + qi

2qi

)
≤

n∑
i=1

(pi − qi) f ′
(
pi
qi

)
. (2.5.19)

Now put f (t) and f ′ (t) in (2.5.19), we obtain

n∑
i=1

(
pi + 3qi

4

)
log

[
pi + 3qi

2 (pi + qi)

]
≤ 1

2

n∑
i=1

(pi − qi)
[
log

(
pi + qi

2pi

)
− qi
pi

]
, i.e.,

M∗ (P,Q) ≤ 1

2

[
n∑
i=1

(pi − qi) log

(
pi + qi

2pi

)
+

n∑
i=1

qi (qi − pi)
pi

]
, i.e.,

M∗ (P,Q) ≤ 1

2

[
JR (Q,P ) +

n∑
i=1

qi (qi − pi)
pi

]
, i.e.,

M∗ (P,Q) ≤ 1

2

[
JR (Q,P ) +

(
n∑
i=1

(qi − pi)2

pi
+
pi (qi − pi)

pi

)]
, i.e.,

M∗ (P,Q) ≤ 1

2

[
JR (Q,P ) + χ2 (Q,P )

]
. (2.5.20)

Relations (2.5.18) and (2.5.20) together give the required relation (2.5.14).

2.5.3 Bounds of the new information divergence measure

In this subsection, we obtain bounds of the new information divergence measure

M∗ (P,Q) in terms of one parametric generalized divergence measure Φs (Q,P )

for different values of ′s′, by using new information inequalities (2.5.5). Actually,

this part is an application of obtained new inequalities (2.5.5).

Proposition 2.5.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

a. For s→ 0, 1 and s > 0, we have

1

2βs (β + 1)
[Bφs (α, β)− Φs (Q,P )] ≤ Bf (α, β)−M∗ (P,Q)

≤ 1

2αs (α + 1)
[Bφs (α, β)− Φs (Q,P )] .

(2.5.21)

57



2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

b. For s ≤ −1, we have

1

2αs (α + 1)
[Bφs (α, β)− Φs (Q,P )] ≤ Bf (α, β)−M∗ (P,Q)

≤ 1

2βs (β + 1)
[Bφs (α, β)− Φs (Q,P )] ,

(2.5.22)

where Bf (α, β) and Bφs (α, β) are evaluated below by equations (2.5.24) and

(2.5.25) respectively.

Proof : For f (t) (2.5.10) and φs (t) (2.5.9), we get the followings respectively.

Sf (P,Q) =
n∑
i=1

(
pi + 3qi

4

)
log

[
pi + 3qi

2 (pi + qi)

]
= M∗ (P,Q) . (2.5.23)

Bf (α, β) =
(β − 1) f (α) + (1− α) f (β)

β − α

=
(β − 1) (1 + α) log

(
1+α
2α

)
+ (1− α) (β + 1) log

(
1+β
2β

)
2 (β − α)

.

(2.5.24)

Bφs (α, β) =
(β − 1)φs (α) + (1− α)φs (β)

β − α

= [s (s− 1)]−1
[

(β − 1) (αs − 1) + (1− α) (βs − 1)

β − α

]
= [s (s− 1)]−1

[
βs − αs

β − α
− αβ (βs−1 − αs−1)

β − α
− 1

]
,

(2.5.25)

s ∈ R− {0, 1}.

Now let us consider the function g (t) = t2−sf ′′ (t) = 1
2ts(t+1)

, where f ′′ (t) is given

by (2.5.11) and

g′ (t) = −
[

(s+ 1) t+ s

2ts+1 (t+ 1)2

]
=

{
< 0 if s ≥ 0

> 0 if s ≤ −1
. (2.5.26)

So g (t) is monotonically decreasing for s ≥ 0 and monotonically increasing for

s ≤ −1. Therefore, we have

m = inf
t∈(α,β)

=

{
g (β) = 1

2βs(β+1)
s ≥ 0

g (α) = 1
2αs(α+1)

s ≤ −1
. (2.5.27)
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M = sup
t∈(α,β)

=

{
g (α) = 1

2αs(α+1)
s ≥ 0

g (β) = 1
2βs(β+1)

s ≤ −1
. (2.5.28)

Thus, the inequalities (2.5.21) and (2.5.22) are obtained by using (2.5.23), (2.5.24),

(2.5.25), (2.5.27), and (2.5.28) in (2.5.5).

Now we evaluate some special results of proposition 2.5.2 at s = −1, s = 0, s = 1,

and at s = 2 for getting bounds of the new divergence measure M∗ (P,Q) in

terms of other well known divergences ∆ (P,Q) (1.2.5), F (P,Q) (1.2.21), G (P,Q)

(1.2.20), and χ2 (P,Q) (1.2.19).

Result 2.5.1. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

α

2 (α + 1)

[
Bφ−1 (α, β)− 1

4
∆ (P,Q)

]
≤ Bf (α, β)−M∗ (P,Q)

≤ β

2 (β + 1)

[
Bφ−1 (α, β)− 1

4
∆ (P,Q)

]
,

(2.5.29)

where Bφ−1 (α, β) is evaluated below in the proof.

Proof : We evaluate Φs (Q,P ) and Bφs (α, β) at s = −1, i.e.,

Φ−1 (Q,P ) =
1

2

[
n∑
i=1

qi

(
pi + qi

2qi

)−1
− 1

]
=

1

2

[
n∑
i=1

2q2i
pi + qi

−
n∑
i=1

qi

]

=
1

2

n∑
i=1

q2i − piqi − piqi + piqi
pi + qi

=
1

2

[
n∑
i=1

qi (pi + qi)

pi + qi
−

n∑
i=1

2piqi
pi + qi

]

=
1

2

[
1−

n∑
i=1

2piqi
pi + qi

]
=

1

2

[
n∑
i=1

pi + qi
2
−

n∑
i=1

2piqi
pi + qi

]

=
1

4

n∑
i=1

(pi + qi)
2 − 4piqi

pi + qi
=

1

4

n∑
i=1

(pi − qi)2

pi + qi
=

1

4
∆ (P,Q) .

(2.5.30)

Bφ−1 (α, β) =
(1− β) (α− 1)

2αβ
. (2.5.31)

After putting (2.5.30) and (2.5.31) together with (2.5.24) in (2.5.22) at s = −1,

we get the result (2.5.29) in terms of Triangular discrimination.
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Result 2.5.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

1

2 (β + 1)
[Bφ0 (α, β)− F (Q,P )] ≤ Bf (α, β)−M∗ (P,Q)

≤ 1

2 (α + 1)
[Bφ0 (α, β)− F (Q,P )] ,

(2.5.32)

where Bφ0 (α, β) is evaluated below in the proof.

Proof : We evaluate Φs (Q,P ) and Bφs (α, β) at s→ 0, i.e.,

Φ0 (Q,P ) = lim
s→0

Φs (Q,P ) = lim
s→0

[s (s− 1)]−1
[

n∑
i=1

qi

(
pi + qi

2qi

)s
− 1

]

=
n∑
i=1

qi log

(
2qi

pi + qi

)
= F (Q,P ) .

(2.5.33)

Bφ0 (α, β) = lim
s→0

[
(β − 1) (αs − 1) + (1− α) (βs − 1)

s (s− 1) (β − α)

]
=

0

0
.

After applying D Hospital Rule, we obtain

Bφ0 (α, β) = lim
s→0

[
(β − 1) (αs logα) + (1− α) (βs log β)

(2s− 1) (β − α)

]
=

(α− 1) log β − (β − 1) logα

β − α
.

(2.5.34)

After putting (2.5.33) and (2.5.34) together with (2.5.24) in (2.5.21) at s = 0, we

get the result (2.5.32) in terms of Relative Jensen- Shannon divergence.

Result 2.5.3. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

1

2β (β + 1)
[Bφ1 (α, β)−G (Q,P )] ≤ Bf (α, β)−M∗ (P,Q)

≤ 1

2α (α + 1)
[Bφ1 (α, β)−G (Q,P )] ,

(2.5.35)

where Bφ1 (α, β) is evaluated below in the proof.
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Proof : We evaluate Φs (Q,P ) and Bφs (α, β) at s→ 1, i.e.,

Φ1 (Q,P ) = lim
s→1

Φs (Q,P ) = lim
s→1

[s (s− 1)]−1
[

n∑
i=1

qi

(
pi + qi

2qi

)s
− 1

]

=
n∑
i=1

(
pi + qi

2

)
log

(
pi + qi

2qi

)
= G (Q,P ) .

(2.5.36)

Bφ1 (α, β) = lim
s→1

[
(β − 1) (αs − 1) + (1− α) (βs − 1)

s (s− 1) (β − α)

]
=

0

0
.

After applying D Hospital Rule, we obtain

Bφ1 (α, β) = lim
s→1

[
(β − 1) (αs logα) + (1− α) (βs log β)

(2s− 1) (β − α)

]
=

(1− α) β log β − (1− β)α logα

β − α
.

(2.5.37)

After putting (2.5.36) and (2.5.37) together with (2.5.24) in (2.5.21) at s = 1, we

get the result (2.5.35) in terms of Relative Arithmetic- Geometric divergence.

Result 2.5.4. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

1

2β2 (β + 1)

[
Bφ2 (α, β)− 1

8
χ2 (P,Q)

]
≤ Bf (α, β)−M∗ (P,Q)

≤ 1

2α2 (α + 1)

[
Bφ2 (α, β)− 1

8
χ2 (P,Q)

]
,

(2.5.38)

where Bφ2 (α, β) is evaluated below in the proof.

Proof : We evaluate Φs (Q,P ) and Bφs (α, β) at s = 2, i.e.,

Φ2 (Q,P ) =
1

2

[
n∑
i=1

qi

(
pi + qi

2qi

)2

− 1

]
=

1

2

[
n∑
i=1

(pi + qi)
2

4qi
−

n∑
i=1

pi

]

=
1

8

[
n∑
i=1

(pi − qi)2

qi

]
=

1

8
χ2 (P,Q) .

(2.5.39)

Bφ2 (α, β) =
(1− β) (α− 1)

2
. (2.5.40)

After putting (2.5.39) and (2.5.40) together with (2.5.24) in (2.5.21) at s = 2, we

get the result (2.5.38) in terms of Chi- Square divergence.
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2.5.4 Numerical verification of obtained results

Now, in this subsection, we give an example for calculating the divergences

∆ (P,Q) and M∗ (P,Q) and verify the inequalities (Or bounds of M∗ (P,Q) in

terms of ∆ (P,Q)) (2.5.29) numerically.

Example 2.5.1. Here, we are considering the example same as example 2.3.1

(subsection- 2.3.3). The observations for Binomial and Poisson distributions are

also same as Table 2.1, so we are skipping the repetition. Now, by Table 2.1, we

get the value of M∗ (P,Q), as follows.

M∗ (P,Q) =
n∑
i=1

(
pi + 3qi

4

)
log

[
pi + 3qi

2 (pi + qi)

]
≈ .0115412. (2.5.41)

Put the approximated numerical values (2.3.14), (2.3.17), and (2.5.41) into

(2.5.29), we obtain

.01586 ≤ .031810− .0115412 (= M∗ (P,Q)) ≤ .02762

and hence verified the inequalities (2.5.29) for p = 0.7.

Similarly, we can verify the other inequalities (2.5.32) (2.5.35), and (2.5.38) for

different values of p and q.

2.6 New Information Inequalities on Absolute

Form of The New Generalized Divergence

and Applications

In this section, we introduce new information inequalities on Sf (P,Q) by con-

sidering convex normalized functions in absolute form. Further, we apply these
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inequalities for getting relations among well known divergences, together with

numerical verification.

2.6.1 New information inequalities and bounds

In this subsection, we introduce new information inequalities by theorem 2.6.1

on Sf (P,Q) for functions in absolute form. The results are on similar line to

the results presented by Dragomir [25]. Further, we obtain bounds of different

divergences (in absolute form) in terms of the Variational distance by using this

new inequalities as an application.

Theorem 2.6.1. Let f1, f2 : (α, β) ⊂ (0,∞) → R be two real, convex and

normalized differentiable functions, i.e., f ′′1 (t) , f ′′2 (t) ≥ 0 ∀ t > 0 and f1 (1) =

f2 (1) = 0 respectively with 0 < α ≤ 1 ≤ β < ∞, α 6= β. If there exists the real

constants m,M such that m < M and

m ≤ |f1 (t1)− f1 (t2)|
|f2 (t1)− f2 (t2)|

≤M, (2.6.1)

i.e.,

m ≤ |f
′
1 (t)|
|f ′2 (t)|

=

∣∣∣∣f ′1 (t)

f ′2 (t)

∣∣∣∣ ≤M, (2.6.2)

for all t1, t2 ∈ (α, β) ⊂ (0,∞).

If P,Q ∈ Γn, then we have the following inequalities

mS|f2| (P,Q) ≤ S|f1| (P,Q) ≤MS|f2| (P,Q) , (2.6.3)

where Sf (P,Q) has its usual meaning.

Proof : Firstly, we can see that (2.6.2) is obtained from (2.6.1) by using

Cauchy’s theorem of calculus.

Now put t1 = pi+qi
2qi

and t2 = 1 in (2.6.1), multiply with qi and then sum over all
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i = 1, 2, 3..., n, we get the desire result (2.6.3).

Now, let f2 : (0,∞)→ R be a function defined as

f2 (t) = |t− 1| , f2 (1) = 0, f ′2 (t) =

{
−1 if 0 < t < 1

1 if 1 < t <∞
,

f ′′2 (t) = 0 ∀ t ∈ (0,∞) but not at t = 1 and

|f ′2 (t)| = 1. (2.6.4)

Since f ′′2 (t) ≥ 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is convex and normalized function

respectively. Now for f2 (t), we have

S|f2| (P,Q) =
n∑
i=1

qi

∣∣∣∣f2(pi + qi
2qi

)∣∣∣∣ =
1

2

n∑
i=1

|pi − qi| =
1

2
V (P,Q) , (2.6.5)

where V (P,Q) (1.2.7) is well known Variational distance.

Now, the following propositions are presenting the bounds of different divergences

in absolute form, in terms of Variational distance by using new obtained inequal-

ities (2.6.3).

Proposition 2.6.1. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

1

2β
V (P,Q) ≤ |F | (P,Q) ≤ 1

2α
V (P,Q) . (2.6.6)

Proof : Let us consider

f1 (t) = − log t, t > 0, f1 (1) = 0, f ′1 (t) = −1

t
and f ′′1 (t) =

1

t2
.

Since f ′′1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is strictly convex and normalized

function respectively.

Now for f1 (t), we have

S|f1| (P,Q) =
n∑
i=1

qi

∣∣∣∣log

(
2qi

pi + qi

)∣∣∣∣ = |F | (Q,P ) . (2.6.7)
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Now, let g (t) =
∣∣∣f ′1(t)f ′2(t)

∣∣∣ =
∣∣−1

t

∣∣ = 1
t
, where |f ′2 (t)| = 1 and g′ (t) = − 1

t2
< 0.

It is clear that g (t) is always strictly decreasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (β) = |f ′1 (β)| = 1

β
. (2.6.8)

M = sup
t∈(α,β)

g (t) = g (α) = |f ′1 (α)| = 1

α
. (2.6.9)

The result (2.6.6) is obtained by using (2.6.5), (2.6.7), (2.6.8), and (2.6.9) in

(2.6.3), after interchanging P and Q.

Proposition 2.6.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

(a). If 0 < α < 1, then

0 ≤ ∆ (P,Q) ≤ 1

2

[
β2 − α2

α2β2
+

∣∣∣∣β2 + α2

α2β2
− 2

∣∣∣∣]V (P,Q) . (2.6.10)

(b). If α = 1, then

0 ≤ ∆ (P,Q) ≤ β2 − 1

β2
V (P,Q) . (2.6.11)

Proof : Let us consider

f1 (t) =
(t− 1)2

t
, t > 0, f1 (1) = 0, f ′1 (t) =

t2 − 1

t2
and f ′′1 (t) =

2

t3
.

Since f ′′1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is strictly convex and normalized

function respectively.

Now for f1 (t), we have

S|f1| (P,Q) =
1

2

n∑
i=1

(pi − qi)2

pi + qi
=

1

2
∆ (P,Q) . (2.6.12)

Now, let

g (t) =

∣∣∣∣f ′1 (t)

f ′2 (t)

∣∣∣∣ =

∣∣∣∣t2 − 1

t2

∣∣∣∣ =

{
−
(
t2−1
t2

)
if 0 < t < 1

t2−1
t2

if 1 ≤ t <∞
,
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where |f ′2 (t)| = 1 and g′ (t) =

{
− 2
t3
< 0 if 0 < t < 1

2
t3
> 0 if 1 ≤ t <∞

.

It is clear that g′ (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g (t) is strictly decreasing

in (0, 1) and strictly increasing in (1,∞). So g (t) has a minimum value at t = 1,

therefore

m = inf
t∈(0,∞)

g (t) = g (1) = |f ′1 (1)| = 0. (2.6.13)

M = sup
t∈(α,β)

g (t)

=

{
max (|f ′1 (α)| , |f ′1 (β)|) =

|f ′1(α)|+|f ′1(β)|+||f ′1(α)|−|f ′1(β)||
2

if 0 < α < 1

|f ′1 (β)| if α = 1

=

{
1
2

[
β2−α2

α2β2 +
∣∣∣β2+α2

α2β2 − 2
∣∣∣] if 0 < α < 1

β2−1
β2 if α = 1

.

(2.6.14)

The results (2.6.10) and (2.6.11) are obtained by using (2.6.5), (2.6.12), (2.6.13),

and (2.6.14) in (2.6.3).

Proposition 2.6.3. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β <∞, α 6= β, we have

(a). If 0 < α ≤ 1
e
, then

0 ≤ |G| (P,Q) ≤ 1

2

[
log

√
β

α
+
∣∣∣log e

√
αβ
∣∣∣]V (P,Q) . (2.6.15)

(b). If 1
e
< α ≤ 1, then

log eα

2
V (P,Q) ≤ |G| (P,Q) ≤ log eβ

2
V (P,Q) . (2.6.16)

Proof : Let us consider

f1 (t) = t log t, t > 0, f1 (1) = 0, f ′1 (t) = 1 + log t and f ′′1 (t) =
1

t
.

Since f ′′1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is strictly convex and normalized

function respectively.
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Now for f1 (t), we have

S|f1| (P,Q) =
n∑
i=1

(
pi + qi

2

) ∣∣∣∣log

(
pi + qi

2qi

)∣∣∣∣ = |G| (Q,P ) . (2.6.17)

Now, let

g (t) =

∣∣∣∣f ′1 (t)

f ′2 (t)

∣∣∣∣ = |1 + log t| =

{
− (1 + log t) if 0 < t ≤ 1

e

1 + log t if 1
e
< t <∞

,

where |f ′2 (t)| = 1 and g′ (t) =

{
−1

t
< 0 if 0 < t ≤ 1

e
1
t
> 0 if 1

e
< t <∞

.

It is clear that g′ (t) < 0 in
(
0, 1

e

)
and > 0 in

(
1
e
,∞
)
, i.e., g (t) is strictly decreasing

in
(
0, 1

e

)
and strictly increasing in

(
1
e
,∞
)
. So g (t) has a minimum value at t = 1

e
,

therefore

m = inf
t∈(α,β)

g (t) =

{∣∣f ′1 (1e)∣∣ = 0 if 0 < α ≤ 1
e

|f ′1 (α)| = 1 + logα if 1
e
< α ≤ 1

. (2.6.18)

M = sup
t∈(α,β)

g (t)

=

max (|f ′1 (α)| , |f ′1 (β)|) =

[
log
√

β
α

+
∣∣log e

√
αβ
∣∣] if 0 < α ≤ 1

e

|f ′1 (β)| = 1 + log β if 1
e
< α ≤ 1

.

(2.6.19)

The results (2.6.15) and (2.6.16) are obtained by using (2.6.5), (2.6.17), (2.6.18),

and (2.6.19) in (2.6.3), after interchanging P and Q.

In a similar manner, we obtain the followings as well.

(a) For f1 (t) = (t− 1) log t, we obtain

(i) If 0 < α < 1, then

0 ≤ |JR| (P,Q) ≤

[
log

√
β

α
+
β − α
2αβ

+

∣∣∣∣β + α

2αβ
− log e

√
αβ

∣∣∣∣
]
V (P,Q) . (2.6.20)
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(ii) If α = 1, then

0 ≤ |JR| (P,Q) ≤
(

log eβ − 1

β

)
V (P,Q) . (2.6.21)

(b) For f1 (t) = (t− 1)2, we obtain

(i) If 0 < α < 1, then

0 ≤ χ2 (P,Q) ≤ 2 [β − α + |2− (α + β)|]V (P,Q) . (2.6.22)

(ii) If α = 1, then

0 ≤ χ2 (P,Q) ≤ 4 (β − 1)V (P,Q) . (2.6.23)

2.6.2 Numerical verification of obtained results

Now, in this subsection, we give an example for calculating the divergences

|F | (P,Q), ∆ (P,Q), |JR| (P,Q), and V (P,Q) and then verify the inequalities

(2.6.6), (2.6.10), and (2.6.20), numerically.

Example 2.6.1. Here, we are considering the example same as example 2.3.1

(subsection- 2.3.3). The observations for Binomial and Poisson distributions are

also same as Table 2.1, so we are skipping the repetition. Now, by Table 2.1, we

get the followings.

α (= .503) ≤ pi + qi
2qi

≤ β (= 1.396) . (2.6.24)

|F | (P,Q) =
11∑
i=1

pi

∣∣∣∣log

(
2pi

pi + qi

)∣∣∣∣ ≈ .21792. (2.6.25)

∆ (P,Q) =
11∑
i=1

(pi − qi)2

pi + qi
≈ .1812. (2.6.26)

|JR| (P,Q) =
11∑
i=1

∣∣∣∣(pi − qi) log

(
pi + qi

2qi

)∣∣∣∣ ≈ .1686. (2.6.27)
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V (P,Q) =
11∑
i=1

|pi − qi| ≈ .4844. (2.6.28)

Put the approximated numerical values from (2.6.24) to (2.6.28) into (2.6.6),

(2.6.10), and (2.6.20), we get

.1734 ≤ .2179 (|F | (P,Q)) ≤ .4815, 0 ≤ .1812 (∆ (P,Q)) ≤ 1.4301,

and

0 ≤ .1686 (|JR| (P,Q)) ≤ .8129

respectively and hence verified the inequalities (2.6.6), (2.6.10), and (2.6.20) for

p = 0.7.

Similarly, we can verify the other inequalities for different values of p and q and

for other discrete probability distributions as well.

2.7 Ostrowski’s Integral Inequalities on New Gen-

eralized Divergence and Applications

In this section, two different new information inequalities on Sf (P,Q) are intro-

duced. These inequalities are derived by using Ostrowski’s inequalities. Further

obtain the bounds of the well known divergences F (P,Q), ∆ (P,Q), G (P,Q),

JR (P,Q), and h (P,Q) in terms of χ2 (P,Q) and V (P,Q) separately in a differ-

ent aspect, by using new information inequalities.

Firstly, following theorems 2.7.1 (Dragomir etc. all [28]) and 2.7.2 (Dragomir
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[23]) are very important to introduce new information inequalities. We are con-

sidering the statements only of these theorems, detail prove can be seen in given

literatures.

Theorem 2.7.1. Let f : (a, b) ⊂ R → R be an absolutely continuous function

with a < b and f ′ : (a, b)→ R is essentially bounded or f ′ ∈ L∞ (a, b), i.e.,

‖f ′‖∞ = ess sup
t∈(a,b)

|f ′ (t) | <∞,

then we have∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) ‖f ′‖∞, (2.7.1)

∀x, t ∈ (a, b).

Theorem 2.7.2. Let f : (a, b) ⊂ R → R be differentiable function and is of

bounded variation on (a, b), i.e.,

Aba (f) =

∫ b

a

|f ′ (t) | <∞,

then we have∣∣∣∣∫ b

a

f (t) dt− f (x) (b− a)

∣∣∣∣ ≤ [b− a2
+

∣∣∣∣x− a+ b

2

∣∣∣∣]Aba (f) , (2.7.2)

∀x, t ∈ (a, b).

Inequalities (2.7.1) and (2.7.2) are well known Ostrowski’s integral inequali-

ties.

2.7.1 New information inequalities

Now, we obtain two new information inequalities in terms of the well known

Chi- square divergence and Variational distance by helping above two Ostrowskis

inequalities (2.7.1) and (2.7.2). The results are on similar lines to the results

presented by Dragomir etc. all [28] and Dragomir [23], respectively.
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Theorem 2.7.3. Let f : (α, β) ⊂ (0,∞) → R be an absolutely continuous

function with 0 < α ≤ 1 ≤ β < ∞, α 6= β and f ′ : (α, β) → R is essentially

bounded or f ′ ∈ L∞ (α, β), i.e.,

‖f ′‖∞ = sup
t∈(α,β)

|f ′ (t) | <∞, (2.7.3)

∀ t ∈ (α, β). If P,Q ∈ Γn, then we have the following inequality∣∣∣∣Sf (P,Q)− 1

β − α

∫ β

α

f (t) dt

∣∣∣∣ ≤ (β − α) ‖f ′‖∞
4

[
2 +

1

(β − α)2
χ2 (P,Q)

]
,

(2.7.4)

where Sf (P,Q) and χ2 (P,Q) have their usual meaning respectively.

Proof : Put a = α, b = β, and x = pi+qi
2qi

in inequality (2.7.1), multiply by qi

and then sum over all i = 1, 2, 3..., n, we get∣∣∣∣∣
n∑
i=1

qif

(
pi + qi

2qi

)
− 1

(β − α)

∫ β

α

f (t) dt
n∑
i=1

qi

∣∣∣∣∣
≤

[
1

4

n∑
i=1

qi +
1

(β − α)2

n∑
i=1

qi

(
pi + qi

2qi
− α + β

2

)2
]

(β − α) ‖f ′‖∞, i.e.,∣∣∣∣Sf (P,Q)− 1

(β − α)

∫ β

α

f (t) dt

∣∣∣∣
≤

[
1

4
+

1

4 (β − α)2

n∑
i=1

qi

(
pi + qi
qi

− (α + β)

)2
]

(β − α) ‖f ′‖∞

=
(β − α) ‖f ′‖∞

4

[
1 +

1

(β − α)2

(
n∑
i=1

(pi + qi)
2

qi
+ (α + β)2

n∑
i=1

qi − 2 (α + β)
n∑
i=1

(pi + qi)

)]

=
(β − α) ‖f ′‖∞

4

[
1 +

1

(β − α)2

(
(α + β)2 − 4 (α + β) + 4 +

n∑
i=1

(pi − qi)2

qi

)]

=
(β − α) ‖f ′‖∞

4

[
1 +

1

(β − α)2
(
(α + β − 2)2 + χ2 (P,Q)

)]
=

(β − α) ‖f ′‖∞
4

[
2 +

1

(β − α)2
χ2 (P,Q)

]
,
[
∵ (α + β − 2)2 ≤ (β − α)2

]
.

Hence prove the inequality (2.7.4).
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Theorem 2.7.4. Let f : (α, β) ⊂ (0,∞)→ R be a differentiable function and is

of bounded variation on (α, β) with 0 < α ≤ 1 ≤ β <∞, α 6= β, i.e.,

Aβα (f) =

∫ β

α

|f ′ (t) | <∞, (2.7.5)

∀ t ∈ (α, β) . If P,Q ∈ Γn, then we have the following inequality∣∣∣∣Sf (P,Q)− 1

β − α

∫ β

α

f (t) dt

∣∣∣∣ ≤ Aβα (f)

2

[
2 +

1

(β − α)
V (P,Q)

]
, (2.7.6)

where V (P,Q) is the well known Variational distance.

Proof : Put a = α, b = β, and x = pi+qi
2qi

in inequality (2.7.2), multiply by qi

and then sum over all i = 1, 2, 3..., n, we get∣∣∣∣∣
n∑
i=1

qif

(
pi + qi

2qi

)
− 1

(β − α)

∫ β

α

f (t) dt
n∑
i=1

qi

∣∣∣∣∣
≤

[
1

2
+

1

(β − α)

n∑
i=1

qi

∣∣∣∣pi + qi
2qi

− α + β

2

∣∣∣∣
]
Aβα (f) , i.e.,∣∣∣∣Sf (P,Q)− 1

(β − α)

∫ β

α

f (t) dt

∣∣∣∣
≤

[
1

2
+

1

(β − α)

n∑
i=1

qi

∣∣∣∣pi + qi
2qi

− 1−
(
α + β

2
− 1

)∣∣∣∣
]
Aβα (f)

=

[
1

2
+

1

(β − α)

(
n∑
i=1

qi

∣∣∣∣pi + qi
2qi

− 1

∣∣∣∣+
n∑
i=1

qi

∣∣∣∣α + β

2
− 1

∣∣∣∣
)]

Aβα (f)

=

[
1

2
+

1

(β − α)

(
1

2
V (P,Q) +

∣∣∣∣α + β

2
− 1

∣∣∣∣)]Aβα (f)

=
1

2

[
2 +

1

(β − α)
V (P,Q)

]
Aβα (f) ,

[
∵

∣∣∣∣α + β

2
− 1

∣∣∣∣ ≤ (β − α)

2

]
.

Hence prove the inequality (2.7.6).

2.7.2 Bounds of the well known divergences

Now, we derive bounds of the well known divergences in terms of the Chi- Square

divergence and the Variational distance separately as an application of obtained
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new information inequalities (2.7.4) and (2.7.6) respectively. We are considering

only convex functions, the inequalities hold good for concave functions as well.

Proposition 2.7.1. For P,Q ∈ Γn, we have∣∣∣∣F (Q,P ) +
β log β − α logα

β − α
− 3

∣∣∣∣ ≤ F1 sup
t∈(α,β)

g1 (t) (2.7.7)

and ∣∣∣∣F (Q,P ) +
β log β − α logα

β − α
− 3

∣∣∣∣ ≤ F2A
β
α (f) , (2.7.8)

where F (P,Q), χ2 (P,Q), and V (P,Q) have their usual meanings respectively.

Also

F1 ≡
(β − α)

4

[
2 +

1

(β − α)2
χ2 (P,Q)

]
,

F2 ≡
1

2

[
2 +

1

(β − α)
V (P,Q)

]
and supt∈(α,β) g1 (t) and Aβα (f) are evaluated below in the proof.

Proof : Let us consider

f (t) = − log t, t ∈ (0,∞) , f (1) = 0, f ′ (t) = −1

t
and f ′′ (t) =

1

t2
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we obtain

Sf (P,Q) =
n∑
i=1

qi log

(
2qi

pi + qi

)
= F (Q,P ) . (2.7.9)

Aβα (f) =

∫ β

α

|f ′ (t)| dt =

∫ β

α

∣∣∣∣−1

t

∣∣∣∣ dt =

∫ β

α

1

t
dt = log β − logα. (2.7.10)

Now, let g1 (t) = |f ′ (t)| =
∣∣−1

t

∣∣ = 1
t
, and g′1 (t) = − 1

t2
< 0.

It is clear that g1 (t) is always decreasing in (0,∞), so

‖f ′‖∞ = sup
t∈(α,β)

|f ′ (t)| = sup
t∈(α,β)

g1 (t) = g1 (α) =
1

α
. (2.7.11)

73



2. NEW INFORMATION INEQUALITIES AND APPLICATIONS

The results (2.7.7) and (2.7.8) are obtained by using (2.7.9), (2.7.10), and (2.7.11)

in inequalities (2.7.4) and (2.7.6) respectively.

Proposition 2.7.2. For P,Q ∈ Γn, we have∣∣∣∣∆ (P,Q) + 4− 2 (log β − logα)

β − α
− (α + β)

∣∣∣∣ ≤ 2F1 sup
t∈(α,β)

g2 (t) (2.7.12)

and ∣∣∣∣∆ (P,Q) + 4− 2 (log β − logα)

β − α
− (α + β)

∣∣∣∣ ≤ 2F2A
β
α (f) , (2.7.13)

where ∆ (P,Q) has its usual meaning. Also supt∈(α,β) g2 (t) and Aβα (f) are eval-

uated below in the proof.

Proof : Let us consider

f (t) =
(t− 1)2

t
, t ∈ (0,∞) , f (1) = 0, f ′ (t) =

t2 − 1

t2
and f ′′ (t) =

2

t3
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi)2

pi + qi
=

1

2
∆ (P,Q) . (2.7.14)

Aβα (f) =

∫ β

α

|f ′ (t)| dt =

∫ 1

α

1− t2

t2
+

∫ β

1

t2 − 1

t2
=
α + β

αβ
+ α + β − 4. (2.7.15)

Now, let

g2 (t) = |f ′ (t)| =
∣∣∣∣t2 − 1

t2

∣∣∣∣ =

{
− t2−1

t2
if 0 < t < 1

t2−1
t2

if 1 ≤ t <∞
,

and

g′2 (t) =

{
− 2
t3

if 0 < t < 1
2
t3

if 1 ≤ t <∞
.
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It is clear that g′2 (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g2 (t) is decreasing in

(0, 1) and increasing in (1,∞), so

‖f ′‖∞ = sup
t∈(α,β)

|f ′ (t)| = sup
t∈(α,β)

g2 (t)

=

{
max [|f ′ (α)| , |f ′ (β)|] = |f ′(α)|+|f ′(β)|+||f ′(α)|−|f ′(β)||

2
if 0 < α < 1

|f ′ (β)| if α = 1

=

{
1
2

[
β2−α2

α2β2 +
∣∣∣β2+α2

α2β2 − 2
∣∣∣] if 0 < α < 1

(β+1)(β−1)
β2 if α = 1

.

(2.7.16)

The results (2.7.12) and (2.7.13) are obtained by using (2.7.14), (2.7.15), and

(2.7.16) in inequalities (2.7.4) and (2.7.6) respectively.

Proposition 2.7.3. For P,Q ∈ Γn, we have∣∣∣∣G (Q,P ) +
α + β

4
− β2 log β − α2 logα

2 (β − α)

∣∣∣∣ ≤ F1 sup
t∈(α,β)

g3 (t) (2.7.17)

and ∣∣∣∣G (Q,P ) +
α + β

4
− β2 log β − α2 logα

2 (β − α)

∣∣∣∣ ≤ F2A
β
α (f) , (2.7.18)

where G (P,Q) has its usual meaning. Also supt∈(α,β) g3 (t) and Aβα (f) are eval-

uated below in the proof.

Proof : Let us consider

f (t) = t log t, t ∈ (0,∞) , f (1) = 0, f ′ (t) = 1 + log t and f ′′ (t) =
1

t
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we obtain

Sf (P,Q) =
n∑
i=1

pi + qi
2

log

(
pi + qi

2qi

)
= G (Q,P ) . (2.7.19)
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Aβα (f) =

∫ β

α

|f ′ (t)| dt =

∫ 1
e

α

− (1 + log t) dt+

∫ β

1
e

(1 + log t) dt

= α logα + β log β +
2

e
.

(2.7.20)

Now, let

g3 (t) = |f ′ (t)| = |1 + log t| =

{
−1− log t if 0 < t ≤ 1

e

1 + log t if 1
e
< t <∞

,

and

g′3 (t) =

{
−1

t
if 0 < t ≤ 1

e
1
t

if 1
e
< t <∞

.

It is clear that g′3 (t) < 0 in
(
0, 1

e

)
and > 0 in

(
1
e
,∞
)
, i.e., g3 (t) is decreasing in(

0, 1
e

)
and increasing in

(
1
e
,∞
)
, so

‖f ′‖∞ = sup
t∈(α,β)

|f ′ (t)| = sup
t∈(α,β)

g3 (t)

=

max [|f ′ (α)| , |f ′ (β)|] =

[
log
√

β
α

+
∣∣1 + log

√
αβ
∣∣] if 0 < α ≤ 1

e

|f ′ (β)| = 1 + logα if 1
e
< α ≤ 1

.

(2.7.21)

The results (2.7.17) and (2.7.18) are obtained by using (2.7.19), (2.7.20), and

(2.7.21) in inequalities (2.7.4) and (2.7.6) respectively.

Proposition 2.7.4. For P,Q ∈ Γn, we have∣∣∣∣JR (P,Q)−
[
β (β − 2) log β − α (α− 2) logα

β − α
− α + β

2
+ 2

]∣∣∣∣ ≤ 2F1 sup
t∈(α,β)

g4 (t)

(2.7.22)

and∣∣∣∣JR (P,Q)−
[
β (β − 2) log β − α (α− 2) logα

β − α
− α + β

2
+ 2

]∣∣∣∣ ≤ 2F2A
β
α (f) ,

(2.7.23)

where JR (P,Q) has its usual meaning. Also supt∈(α,β) g4 (t) and Aβα (f) are eval-

uated below in the proof.
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Proof : Let us consider

f (t) = (t− 1) log t, t ∈ (0,∞) , f (1) = 0, f ′ (t) =
t− 1

t
+ log t and f ′′ (t) =

t+ 1

t2
.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi

2qi

)
=

1

2
JR (P,Q) . (2.7.24)

Aβα (f) =

∫ β

α

|f ′ (t)| dt =

∫ 1

α

(
−1− log t+

1

t

)
dt+

∫ β

1

(
1 + log t− 1

t

)
dt

= α logα + β log β − logα− log β.

(2.7.25)

Now, let

g4 (t) = |f ′ (t)| =
∣∣∣∣t− 1

t
+ log t

∣∣∣∣ =

{
−1− log t+ 1

t
if 0 < t < 1

1 + log t− 1
t

if 1 ≤ t <∞
,

and

g′4 (t) =

{
− t+1

t2
if 0 < t < 1

t+1
t2

if 1 ≤ t <∞
.

It is clear that g′4 (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g4 (t) is decreasing in

(0, 1) and increasing in (1,∞), so

‖f ′‖∞ = sup
t∈(α,β)

|f ′ (t)| = sup
t∈(α,β)

g4 (t)

=

max [|f ′ (α)| , |f ′ (β)|] =

[
log
√

β
α

+ β−α
2αβ

+
∣∣∣β+α2αβ

− log e
√
αβ
∣∣∣] if 0 < α < 1

|f ′ (β)| =
(

log eβ − 1
β

)
if α = 1

.

(2.7.26)

The results (2.7.22) and (2.7.23) are obtained by using (2.7.24), (2.7.25), and

(2.7.26) in inequalities (2.7.4) and (2.7.6) respectively.
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Proposition 2.7.5. For P,Q ∈ Γn, we have∣∣∣∣∣∣h
(
P +Q

2
, Q

)
+

2
(
β

3
2 − α 3

2

)
3 (β − α)

− 1

∣∣∣∣∣∣ ≤ F1 sup
t∈(α,β)

g5 (t) (2.7.27)

and ∣∣∣∣∣∣h
(
P +Q

2
, Q

)
+

2
(
β

3
2 − α 3

2

)
3 (β − α)

− 1

∣∣∣∣∣∣ ≤ F2A
β
α (f) , (2.7.28)

where h (P,Q) has its usual meaning. Also supt∈(α,β) g5 (t) and Aβα (f) are evalu-

ated below in the proof.

Proof : Let us consider

f (t) = 1−
√
t, t ∈ (0,∞) , f (1) = 0, f ′ (t) = − 1

2
√
t

and f ′′ (t) =
1

4t
3
2

.

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized

function respectively.

Now for f (t) and f ′ (t), we obtain

Sf (P,Q) =
n∑
i=1

qi

(
1−

√
pi + qi

2qi

)
= 1−

n∑
i=1

√
qi (pi + qi)

2

=
1

2

[
2− 2

n∑
i=1

√
qi (pi + qi)

2

]
=

1

2

[
n∑
i=1

pi + qi
2

+
n∑
i=1

qi −
√

2qi (pi + qi)

]

=
1

2

n∑
i=1

(√
pi + qi

2
−√qi

)2

= h

(
P +Q

2
, Q

)
.

(2.7.29)

Aβα (f) =

∫ β

α

|f ′ (t)| dt =
1

2

∫ β

α

∣∣∣∣− 1√
t

∣∣∣∣ dt =
1

2

∫ β

α

1√
t
dt =

√
β −
√
α. (2.7.30)

Now, let g5 (t) = |f ′ (t)| = 1
2

∣∣∣− 1√
t

∣∣∣ = 1
2
√
t
, and g′5 (t) = − 1

4t
3
2
< 0.

It is clear that g5 (t) is always decreasing in (0,∞), so

‖f ′‖∞ = sup
t∈(α,β)

|f ′ (t)| = sup
t∈(α,β)

g5 (t) = g5 (α) =
1

2
√
α
. (2.7.31)
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2.8 Conclusion

The results (2.7.27) and (2.7.28) are obtained by using (2.7.29), (2.7.30), and

(2.7.31) in inequalities (2.7.4) and (2.7.6) respectively.

2.8 Conclusion

The study of information expressions and inequalities are of paramount impor-

tance in solving key results in information theory. In this chapter, we have derived

some important information inequalities on new generalized divergence measure

Sf (P,Q) in terms of Variational distance, in terms of Chi- square divergence and

many more. With the help of new information inequalities, we have obtained

bounds of new divergences in terms of standard divergences and obtained many

new inter relations among existing divergences as well.
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3

NEW INFORMATION

DIVERGENCE MEASURES OF

CSISZAR’S CLASS AND

APPLICATIONS

3.1 Introduction

In this chapter, we introduce two new information divergence measures of Csiszar’s

class and do a detail study regarding these measures.

This chapter is organized as follows: After introduction, section 3.2 introduce a

new divergence measure which is exponential in nature and obtain bounds of this

new divergence mathematically in terms of the other well known divergences, like:

Kullback Leibler divergence (1.2.18), Triangular discrimination (1.2.5), Hellinger

discrimination (1.2.6), Symmetric Chi- Square divergence (1.2.9) and many more,

by using standard information inequalities on Cf (P,Q), together with verifica-

tion of obtained bounds numerically. In section 3.3, we introduce and characterize
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again a new divergence measure of Csiszar’s class and obtain its bounds in terms

of Relative information of type s, i.e., Ks (P,Q) (1.2.23) by using well known

information inequalities different from section 3.2, on Cf (P,Q). Section 3.4 is

the conclusion of the whole chapter.

3.2 New Exponential Divergence Measure, Prop-

erties and Bounds

We already discussed that Ali- Silvey [2] and Csiszar [20] introduced a generalized

information divergence measure, given by

Cf (P,Q) =
n∑
i=1

qif

(
pi
qi

)
,

where f : (0,∞)→ R is real, continuous, and convex function and P = (p1, p2, ..., pn) , Q =

(q1, q2, ..., qn) ∈ Γn. Many divergence measures can be obtained from this gener-

alized divergence measure by suitably defining the convex function.

We are taking here the following theorems 3.2.1 and 3.2.2 (statement only) for

evaluating the bounds of the upcoming new exponential divergence measure in

terms of several divergences of Csiszar’s class and Variational distance separately.

Actually Taneja [95] and Dragomir [25] gave the following theorems with their

proofs respectively, which relate Csiszar’s generalized divergence for two different

convex functions. The results are on the similar lines to the results presented by

Taneja [95] and Dragomir [25] separately.

Theorem 3.2.1. Let f1, f2 : I ⊂ (0,∞) → R be two convex differentiable and

normalized functions, i.e., f ′′1 (t) , f ′′2 (t) ≥ 0 ∀ t > 0 and f1 (1) = f2 (1) = 0
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respectively and suppose the following assumptions.

(i) f1 and f2 are twice differentiable on (α, β), 0 < α ≤ 1 ≤ β <∞ with α 6= β.

(ii) There exists the real constants m,M such that m < M and

m ≤ f ′′1 (t)

f ′′2 (t)
≤M, f ′′2 (t) 6= 0 ∀ t ∈ (α, β) . (3.2.1)

If P,Q ∈ Γn, then we have the following inequalities

mCf2 (P,Q) ≤ Cf1 (P,Q) ≤MCf2 (P,Q) . (3.2.2)

Theorem 3.2.2. Let f1, f2 : (α, β) ⊂ (0,∞) → R be two real, convex and

normalized differentiable functions, i.e., f ′′1 (t) , f ′′2 (t) ≥ 0 ∀ t > 0 and f1 (1) =

f2 (1) = 0 respectively with 0 < α ≤ 1 ≤ β < ∞, α 6= β. If there exists the real

constants m,M such that m < M and

m ≤ |f1 (t1)− f1 (t2)|
|f2 (t1)− f2 (t2)|

≤M,

i.e.,

m ≤ |f
′
1 (t)|
|f ′2 (t)|

=

∣∣∣∣f ′1 (t)

f ′2 (t)

∣∣∣∣ ≤M, (3.2.3)

for all t1, t2 ∈ (α, β) ⊂ (0,∞).

If P,Q ∈ Γn is such that α ≤ pi
qi
≤ β < ∀ i = 1, 2, 3..., n, then we have the

following inequalities

mC|f2| (P,Q) ≤ C|f1| (P,Q) ≤MC|f2| (P,Q) . (3.2.4)

3.2.1 New exponential divergence measure and properties

Let f : (0,∞)→ R be a real differentiable mapping, which is defined as

f (t) = f1 (t) = et (t− 1) ,∀ t ∈ (0,∞) , (3.2.5)
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Figure 3.1: Convex function f1 (t)

f ′1 (t) = tet

and

f ′′1 (t) = et (t+ 1) . (3.2.6)

We can check that the function f1 (t) is exponential in nature and strictly convex

normalized because f ′′1 (t) > 0 ∀ t ∈ (0,∞) and f1 (1) = 0 respectively. Further

f1 (t) is strictly increasing in (0,∞) as f ′1 (t) > 0 in (0,∞).

For this exponential function, we have

Cf1 (P,Q) = Gexp (P,Q) =
n∑
i=1

e
pi
qi (pi − qi) . (3.2.7)

In view of properties of Cf (P,Q), we see that Gexp (P,Q) is positive and convex

for the pair of probability distribution (P,Q) ∈ Γn × Γn and equal to zero (Non-

degeneracy) or attains its minimum value when pi = qi. We can also see that

Gexp (P,Q) is non- symmetric divergence w.r.t. P and Q because Gexp (P,Q) 6=

Gexp (Q,P ).
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3.2.2 Bounds of new exponential divergence measure

To estimate the new exponential divergence Gexp (P,Q), it would be very inter-

esting to establish some upper and lower bounds. So in this subsection, we obtain

bounds of the exponential divergence measure (3.2.7) in terms of other symmetric

and non- symmetric divergence measures by using inequalities (3.2.2) and (3.2.4)

respectively.

Proposition 3.2.1. Let P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞, α 6= β, then we

have

eα (1 + α)4

8
∆ (P,Q) ≤ Gexp (P,Q) ≤ eβ (1 + β)4

8
∆ (P,Q) , (3.2.8)

where ∆ (P,Q) is defined by (1.2.5).

Proof : Let us consider

f2 (t) =
(t− 1)2

t+ 1
, t ∈ (0,∞) (3.2.9)

and

f ′2 (t) =
(t− 1) (t+ 3)

(t+ 1)2
,

f ′′2 (t) =
8

(t+ 1)3
. (3.2.10)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. For f2 (t), we obtain

Cf2 (P,Q) =
n∑
i=1

(pi − qi)2

pi + qi
= ∆ (P,Q) . (3.2.11)

Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=
et (1 + t)4

8
,
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where f ′′1 (t) and f ′′2 (t) are given by (3.2.6) and (3.2.10) respectively and

g′ (t) =
et (1 + t)3 (5 + t)

8
.

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in

interval (0,∞). So

m = inf
t∈(α,β)

g (t) = g (α) =
eα (1 + α)4

8
(3.2.12)

and

M = sup
t∈(α,β)

g (t) = g (β) =
eβ (1 + β)4

8
. (3.2.13)

The result (3.2.8) is obtained by using (3.2.7), (3.2.11), (3.2.12), and (3.2.13) in

inequalities (3.2.2).

Proposition 3.2.2. Let P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞, α 6= β, then we

have

4eα (1 + α)α
3
2h (P,Q) ≤ Gexp (P,Q) ≤ 4eβ (1 + β) β

3
2h (P,Q) , (3.2.14)

where h (P,Q) is defined by (1.2.6).

Proof : Let us consider

f2 (t) =

(
1−
√
t
)2

2
, t ∈ (0,∞) (3.2.15)

and

f ′2 (t) = −
(
1−
√
t
)

2
√
t

,

f ′′2 (t) =
1

4t
3
2

. (3.2.16)
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Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. For f2 (t), we have

Cf2 (P,Q) =
n∑
i=1

(√
pi −
√
qi
)2

2
= h (P,Q) . (3.2.17)

Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
= 4et (1 + t) t

3
2 ,

where f ′′1 (t) and f ′′2 (t) are given by (3.2.6) and (3.2.16) respectively and

g′ (t) = 2et
√
t (3 + t) (2t+ 1) .

It is clear that g′ (t) > 0 for t > 0, therefore g (t) is strictly increasing function in

interval (0,∞). So

m = inf
t∈(α,β)

g (t) = g (α) = 4eα (1 + α)α
3
2 (3.2.18)

and

M = sup
t∈(α,β)

g (t) = g (β) = 4eβ (1 + β) β
3
2 . (3.2.19)

The result (3.2.14) is obtained by using (3.2.7), (3.2.17), (3.2.18), and (3.2.19) in

inequalities (3.2.2).

In a similar procedure, we obtain the bounds of Gexp (P,Q) in terms of the other

well known divergence measures. The results are as follows.

(a) If f2 (t) = t
2

log t+
(
t+1
2

)
log 2

t+1
and I (P,Q) is (1.2.12), then we get

2eαα (1 + α)2 I (P,Q) ≤ Gexp (P,Q) ≤ 2eββ (1 + β)2 I (P,Q) . (3.2.20)

(b) If f2 (t) = (t− 1) log t and J (P,Q) is (1.2.10), then we get

eαα2J (P,Q) ≤ Gexp (P,Q) ≤ eββ2J (P,Q) . (3.2.21)

87



3. NEW INFORMATION DIVERGENCE MEASURES OF
CSISZAR’S CLASS AND APPLICATIONS

(c) If f2 (t) = (t−1)2√
t

and E∗ (P,Q) is (1.2.8), then we get

4eα (1 + α)α
5
2

3α2 + 2α + 3
E∗ (P,Q) ≤ Gexp (P,Q) ≤ 4eβ (1 + β) β

5
2

3β2 + 2β + 3
E∗ (P,Q) . (3.2.22)

(d) If f2 (t) = (t−1)2(t+1)
t

and ψ (P,Q) is (1.2.9), then we get

eαα3

2 (α2 − α + 1)
ψ (P,Q) ≤ Gexp (P,Q) ≤ eββ3

2 (β2 − β + 1)
ψ (P,Q) . (3.2.23)

(e) If f2 (t) =
(
t+1
2

)
log t+1

2
√
t

and T (P,Q) is (1.2.11), then we get

4eαα2 (1 + α)2

1 + α2
T (P,Q) ≤ Gexp (P,Q) ≤ 4eββ2 (1 + β)2

1 + β2
T (P,Q) . (3.2.24)

(f) If f2 (t) =
(t2−1)

2

2t
3
2

and ψM (P,Q) is (1.2.15), then we get

8eαα
7
2 (1 + α)

15α4 + 2α2 + 15
ψM (P,Q) ≤ Gexp (P,Q) ≤ 8eββ

7
2 (1 + β)

15β4 + 2β2 + 15
ψM (P,Q) .

(3.2.25)

(g) If f2 (t) = (t− 1) log t+1
2

and JR (P,Q) is (1.2.22), then we get

eα (1 + α)3

α + 3
JR (P,Q) ≤ Gexp (P,Q) ≤ eβ (1 + β)3

β + 3
JR (P,Q) . (3.2.26)

(h) If f2 (t) = t log t and K (P,Q) is (1.2.18), then we get

α (1 + α) eαK (P,Q) ≤ Gexp (P,Q) ≤ β (1 + β) eβK (P,Q) . (3.2.27)

(i) If f2 (t) =
(
t+1
2

)
log t+1

2t
and G (P,Q) is (1.2.20), then we get

2α2 (1 + α)2 eαG (P,Q) ≤ Gexp (P,Q) ≤ 2β2 (1 + β)2 eβG (P,Q) . (3.2.28)

(j) If f2 (t) = (t− 1)2 and χ2 (P,Q) is (1.2.19), then we get

eα (1 + α)

2
χ2 (P,Q) ≤ Gexp (P,Q) ≤ eβ (1 + β)

2
χ2 (P,Q) . (3.2.29)
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(k) If f2 (t) = t log 2t
t+1

and F (P,Q) is (1.2.21), then we get

αeα (1 + α)3 F (P,Q) ≤ Gexp (P,Q) ≤ αeβ (1 + β)3 F (P,Q) . (3.2.30)

Now, the following proposition gives the bounds of absolute value of Gexp (P,Q)

in terms of the Variational distance by helping the inequalities (3.2.4).

Proposition 3.2.3. Let P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞, α 6= β, then we

have

αeαV (P,Q) ≤ |Gexp| (P,Q) ≤ βeβV (P,Q) , (3.2.31)

where V (P,Q) is defined by (1.2.7).

Proof : Let us consider

f1 (t) = et (t− 1) , f2 (t) = |t− 1| ∀ t ∈ (0,∞) ,

f ′1 (t) = tet, f ′2 (t) =

{
−1 if 0 < t < 1

1 if 1 < t <∞

and

f ′′1 (t) = et (t+ 1) , f ′′2 (t) = 0.

We can see that both functions f1 (t) , f2 (t) are convex and normalized because

f ′′1 (t) ≥ 0 ∀ t > 0, f ′′2 (t) ≥ 0 ∀ t > 0 but not at t = 1 and f1 (1) = 0 = f2 (1)

respectively.

Now for f1 (t) , f2 (t), we obtain the followings

C|f1| (P,Q) =
n∑
i=1

e
pi
qi |pi − qi| = |Gexp| (P,Q) (3.2.32)

and

C|f2| (P,Q) =
n∑
i=1

|pi − qi| = V (P,Q) (3.2.33)
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respectively.

Now, let g (t) =
|f ′1(t)|
|f ′2(t)|

=
∣∣∣f ′1(t)f ′2(t)

∣∣∣ = |tet| = tet, where |f ′2 (t)| = 1 and g′ (t) =

et (t+ 1) > 0.

It is clear that g (t) is strictly increasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (α) = αeα. (3.2.34)

M = sup
t∈(α,β)

g (t) = g (β) = βeβ. (3.2.35)

The result (3.2.31) is obtained by using (3.2.32), (3.2.33), (3.2.34), and (3.2.35)

in (3.2.4).

3.2.3 Numerical verification of obtained bounds

In this subsection, we take an example for calculating the divergences ∆ (P,Q),

h (P,Q), G (P,Q), V (P,Q), Gexp (P,Q), and |Gexp| (P,Q) and then verify nu-

merically the results (3.2.8), (3.2.14), (3.2.28), and (3.2.31) or verify the bounds

of Gexp (P,Q) and |Gexp| (P,Q).

Example 3.2.1. Let P be the binomial probability distribution with parameters

(n = 10, p = 0.7) and Q its approximated Poisson probability distribution with

parameter (λ = np = 7) for the random variable X , then we obtain

xi 0 1 2 3 4 5 6 7 8 9 10

pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282

qi ≈ .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709
pi
qi
≈ .00647 .0214 .0654 .173 .395 .871 1.005 1.785 1.792 1.198 .397

Table 3.1: Evaluation of Binomial and Poisson probability distributions

α (= .00647) ≤ pi
qi
≤ β (= 1.792) . (3.2.36)
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∆ (P,Q) =
11∑
i=1

(pi − qi)2

pi + qi
≈ .1812. (3.2.37)

h (P,Q) =
11∑
i=1

(√
pi −
√
qi
)2

2
≈ .0502. (3.2.38)

G (P,Q) =
11∑
i=1

pi + qi
2

log

(
pi + qi

2pi

)
≈ .0746. (3.2.39)

V (P,Q) =
11∑
i=1

|pi − qi| ≈ 0.4844. (3.2.40)

Gexp (P,Q) =
11∑
i=1

e
pi
qi (pi − qi) ≈ .97971. (3.2.41)

|Gexp| (P,Q) =
11∑
i=1

e
pi
qi |pi − qi| ≈ 1.78872. (3.2.42)

Put the approximated values from (3.2.36) to (3.2.42) in results (3.2.8), (3.2.14),

(3.2.28), and (3.2.31) respectively and get the following results

.0233 ≤ .97971 (= Gexp (P,Q)) ≤ 8.260, 1.508× 10−4 ≤ .97971 (= Gexp (P,Q)) ≤ 8.071,

6.367× 10−6 ≤ .97971 (= Gexp (P,Q)) ≤ 22.414, and

3.154× 10−3 ≤ 1.78872 (= |Gexp| (P,Q)) ≤ 5.2095

respectively.

Hence verified the bounds of Gexp (P,Q) and |Gexp| (P,Q) in terms of ∆ (P,Q),

h (P,Q), G (P,Q), and V (P,Q) for p = 0.7, where all divergence measures have

their usual meanings.

Similarly, we can verify the bounds of Gexp (P,Q) in terms of other divergences

or can verify the other inequalities for different values of p and q and for other

discrete probability distributions as well, like; Negative binomial, Geometric, uni-

form etc.
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Figure 3.2: Comparison of the well known divergences with Gexp (P,Q)

In Figure 3.2, we have considered pi = (a, 1− a) , qi = (1− a, a), where a ∈

(0, 1). It is clear from Figure that the new exponential divergence Gexp (P,Q) has

a steeper slope than ψ (P,Q), χ2 (P,Q), E∗ (P,Q), ∆ (P,Q), h (P,Q), I (P,Q),

J (P,Q), T (P,Q), and JR (P,Q).

3.3 New Divergence Measure and Bounds

In this section, a new information divergence measure of Csiszar’s class is pro-

posed and obtain the bounds of this new divergence in terms of the other well

known divergences χ2 (P,Q), K (P,Q), h (P,Q), and Ra (P,Q) (as special cases

of Relative information of type ’s’, i.e., Ks (P,Q) (1.2.23)) by using information

inequalities given by theorem 3.3.1 (Taneja and Kumar [104]). The results are

on the similar lines to the results presented by Taneja and Kumar [104].

Theorem 3.3.1. Let f : (α, β) ⊂ (0,∞)→ R be a mapping which is normalized,

i.e., f (1) = 0 and suppose that

(i). f is twice differentiable on (α, β) , 0 < α ≤ 1 ≤ β <∞ with α 6= β.

(ii). There exist real constants m,M such that m < M and m ≤ t2−sf ′′ (t) ≤
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M ∀t ∈ (α, β) , s ∈ R.
If P,Q ∈ Γn is such that α ≤ pi

qi
≤ β ∀ i = 1, 2, 3..., n, then we have the following

inequalities

mKs (P,Q) ≤ Cf (P,Q) ≤MKs (P,Q) (3.3.1)

and

m [ηs (P,Q)−Ks (P,Q)] ≤ ECf ′
(P,Q)− Cf (P,Q)

≤M [ηs (P,Q)−Ks (P,Q)] ,
(3.3.2)

where Cf (P,Q), ECf ′
(P,Q) have their usual meanings respectively, earlier men-

tioned and

Ks (P,Q) = [s (s− 1)]−1
[

n∑
i=1

psiq
1−s
i − 1

]
= the Relative information of type ′s′(1.2.23),

(3.3.3)

where s 6= 0, 1 and s ∈ R. Particularly

lim
s→1

Ks (P,Q) = K (P,Q) , lim
s→0

Ks (P,Q) = K (Q,P ) , (3.3.4)

where K (P,Q) is well known Relative information.

ηs (P,Q) = CK′s

(
P 2

Q
,P

)
− CK′s (P,Q)

= (s− 1)−1
n∑
i=1

(pi − qi)
(
pi
qi

)s−1
, s 6= 1.

(3.3.5)

3.3.1 New divergence measure

In this subsection, we introduce a new divergence measure corresponding to new

convex function, and will study the properties.

Let f : (0,∞)→ R be a mapping, defined as

f (t) =
(t− 1)4

t
,∀ t ∈ (0,∞) , (3.3.6)
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Figure 3.3: Convex function f (t)

and

f ′ (t) =
(t− 1)3 (3t+ 1)

t2
,

f ′′ (t) =
2 (t− 1)2 (3t2 + 2t+ 1)

t3
. (3.3.7)

Now for the function f (t), we obtain the following new divergence measure

Cf (P,Q) = V ∗ (P,Q) =
n∑
i=1

(pi − qi)4

piq2i
. (3.3.8)

Since f ′′ (t) ≥ 0 and f (1) = 0, therefore f (t) is convex and normalized respec-

tively. We can also see that f ′ (t) < 0 at (0, 1) and > 0 at (1,∞) , i.e., f (t) is

strictly decreasing in (0, 1) and strictly increasing in (1,∞), and f ′ (1) = 0.

Moreover by the properties of Cf (P,Q), we see that V ∗ (P,Q) > 0 and con-

vex in the pair of probability distribution (P,Q) ∈ Γn × Γn and V ∗ (P,Q) = 0

(Non- degeneracy) if P = Q or attains its minimum value when pi = qi. We

can also see that V ∗ (P,Q) is non- symmetric divergence w.r.t. P and Q as

V ∗ (P,Q) 6= V ∗ (Q,P ).
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3.3.2 Bounds of new divergence measure

In this subsection, we derive bounds of V ∗ (P,Q) by using the inequalities (3.3.1)

and (3.3.2). Actually, these all propositions are the special cases on Relative

information of type s , i.e., Ks (P,Q) at s = 2, s = 1, s = 1
2
, s = 0 ,and s = −1.

Proposition 3.3.1. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

(i) If 0 < α < 1, then

0 ≤ V ∗ (P,Q) ≤ max

[
(α− 1)2 (3α2 + 2α + 1)

α3
,
(β − 1)2 (3β2 + 2β + 1)

β3

]
χ2 (P,Q) .

(3.3.9)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ max

[
(α− 1)2 (3α2 + 2α + 1)

α3
,
(β − 1)2 (3β2 + 2β + 1)

β3

]
χ2 (P,Q) .

(3.3.10)

(ii) If α = 1, then

0 ≤ V ∗ (P,Q) ≤ (β − 1)2 (3β2 + 2β + 1)

β3
χ2 (P,Q) . (3.3.11)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q) ≤ (β − 1)2 (3β2 + 2β + 1)

β3
χ2 (P,Q) , (3.3.12)

where χ2 (P,Q) is defined by (1.2.19).

Proof : Firstly put s = 2 in (3.3.3) and (3.3.5), we get the followings respec-

tively

K2 (P,Q) =
1

2

n∑
i=1

p2i
qi
− 1 =

1

2

n∑
i=1

[
p2i
qi
− 2pi + qi

]
=

1

2

n∑
i=1

(pi − qi)2

qi
=

1

2
χ2 (P,Q) .

(3.3.13)
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η2 (P,Q) =
n∑
i=1

(pi − qi) pi
qi

=
n∑
i=1

p2i
qi
− 1 =

n∑
i=1

[
p2i
qi
− 2pi + qi

]
=

n∑
i=1

(pi − qi)2

qi
= χ2 (P,Q) .

(3.3.14)

Now for f ′ (t), we obtain

ECf ′
(P,Q) = V ∗ρ (P,Q) =

n∑
i=1

(pi − qi)4 (3pi + qi)

(piqi)
2 . (3.3.15)

Now, let g (t) = f ′′ (t) =
2(t−1)2(3t2+2t+1)

t3
(after putting s = 2 in t2−sf ′′ (t)) and

g′ (t) =
6 (t4 − 1)

t4
, g′′ (t) =

24

t5
.

If g′ (t) = 0⇒ t4 − 1 = 0⇒ t = 1,−1 and g′′ (1) = 24 > 0.

It is clear that g (t) is strictly decreasing on (0, 1) and increasing on [1,∞) and

g (t) has minimum value at t = 1, so

m = inf
t∈(0,∞)

g (t) = g (1) = 0, (3.3.16)

and

(i) If 0 < α < 1, then

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)]

= max

[
2 (α− 1)2 (3α2 + 2α + 1)

α3
,
2 (β − 1)2 (3β2 + 2β + 1)

β3

]
.

(3.3.17)

(ii) If α = 1, then

M = sup
t∈[1,β)

g (t) = g (β) =
2 (β − 1)2 (3β2 + 2β + 1)

β3
. (3.3.18)

The results (3.3.9), (3.3.10), (3.3.11), and (3.3.12) are obtained by using (3.3.8),

(3.3.13), (3.3.14), (3.3.15), (3.3.16), (3.3.17) and (3.3.18) in (3.3.1) and (3.3.2).
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Proposition 3.3.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

(i) If 0 < α < 1, then

0 ≤ V ∗ (P,Q) ≤ max

[
2 (α− 1)2 (3α2 + 2α + 1)

α2
,
2 (β − 1)2 (3β2 + 2β + 1)

β2

]
K (P,Q) .

(3.3.19)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ max

[
2 (α− 1)2 (3α2 + 2α + 1)

α2
,
2 (β − 1)2 (3β2 + 2β + 1)

β2

]
K (Q,P ) .

(3.3.20)

(ii) If α = 1, then

0 ≤ V ∗ (P,Q) ≤ 2 (β − 1)2 (3β2 + 2β + 1)

β2
K (P,Q) . (3.3.21)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q) ≤ 2 (β − 1)2 (3β2 + 2β + 1)

β2
K (Q,P ) , (3.3.22)

where K (P,Q) is defined by (1.2.18).

Proof : Firstly put s = 1 in (3.3.3) and (3.3.5), we get the followings respec-

tively

lim
s→1

Ks (P,Q) =
n∑
i=1

pi log
pi
qi

= K (P,Q) . (3.3.23)

lim
s→1

ηs (P,Q) =
n∑
i=1

pi log
pi
qi

+
n∑
i=1

qi log
qi
pi

= K (P,Q) +K (Q,P ) . (3.3.24)

Now, let g (t) = tf ′′ (t) =
2(t−1)2(3t2+2t+1)

t2
(after putting s = 1 in t2−sf ′′ (t)) and

g′ (t) =
4 (t− 1) (3t3 + t2 + t+ 1)

t3
, g′′ (t) =

12 (t4 + 1)

t4
.

If g′ (t) = 0⇒ (t− 1) (3t3 + t2 + t+ 1) = 0⇒ t = 1,−0.63 and g′′ (1) = 24 > 0.

It is clear that g (t) is strictly decreasing on (0, 1) and increasing on [1,∞) and
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g (t) has minimum value at t = 1, so

m = inf
t∈(0,∞)

g (t) = g (1) = 0, (3.3.25)

and

(i) If 0 < α < 1, then

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)]

= max

[
2 (α− 1)2 (3α2 + 2α + 1)

α2
,
2 (β − 1)2 (3β2 + 2β + 1)

β2

]
.

(3.3.26)

(ii) If α = 1, then

M = sup
t∈[1,β)

g (t) = g (β) =
2 (β − 1)2 (3β2 + 2β + 1)

β2
. (3.3.27)

The results (3.3.19), (3.3.20), (3.3.21), and (3.3.22) are obtained by using (3.3.8),

(3.3.15), (3.3.23), (3.3.24), (3.3.25), (3.3.26) and (3.3.27) in (3.3.1) and (3.3.2).

Proposition 3.3.3. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

(i) If 0 < α < 1, then

0 ≤ V ∗ (P,Q)

≤ max

[
8 (α− 1)2 (3α2 + 2α + 1)

α
3
2

,
8 (β − 1)2 (3β2 + 2β + 1)

β
3
2

]
h (P,Q) .

(3.3.28)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ max

[
8 (α− 1)2 (3α2 + 2α + 1)

α
3
2

,
8 (β − 1)2 (3β2 + 2β + 1)

β
3
2

]
[

1

2

(
R 3

2
(Q,P )−B (P,Q)

)
− h (P,Q)

]
.

(3.3.29)
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(ii) If α = 1, then

0 ≤ V ∗ (P,Q) ≤ 8 (β − 1)2 (3β2 + 2β + 1)

β
3
2

h (P,Q) . (3.3.30)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ 8 (β − 1)2 (3β2 + 2β + 1)

β
3
2

[
1

2

(
R 3

2
(Q,P )−B (P,Q)

)
− h (P,Q)

]
,

(3.3.31)

where h (P,Q), Ra (P,Q) are defined by (1.2.6), (1.2.27) respectively, and B (P,Q) =∑n
i=1

√
piqi is the well known Bhattacharya distance [10].

Proof : Firstly put s = 1
2

in (3.3.3) and (3.3.5), we get the followings respec-

tively

K 1
2

(P,Q) = 4

[
1−

n∑
i=1

√
piqi

]
= 2

[
2− 2

n∑
i=1

√
piqi

]
= 2

n∑
i=1

[pi + qi − 2
√
piqi]

= 4
n∑
i=1

(√
pi −
√
qi
)2

2
= 4h (P,Q) .

(3.3.32)

η 1
2

(P,Q) = 2
n∑
i=1

(qi − pi)
√
qi
pi

= 2
n∑
i=1

(
q

3
2
i

p
1
2
i

−√piqi

)
= 2

[
R 3

2
(Q,P )−B (P,Q)

]
.

(3.3.33)

Now, let g (t) = t
3
2f ′′ (t) =

2(t−1)2(3t2+2t+1)
t
3
2

(after putting s = 1
2

in t2−sf ′′ (t)) and

g′ (t) =
3 (t− 1) (5t3 + t2 + t+ 1)

t
5
2

, g′′ (t) =
3 (15t4 − 4t3 + 5)

2t
7
2

.

If g′ (t) = 0⇒ (t− 1) (5t3 + t2 + t+ 1) = 0⇒ t = 1,−0.53 and g′′ (1) = 24 > 0.

It is clear that g (t) is strictly decreasing on (0, 1) and increasing on [1,∞) and

g (t) has minimum value at t = 1, so

m = inf
t∈(0,∞)

g (t) = g (1) = 0, (3.3.34)
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and

(i) If 0 < α < 1, then

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)]

= max

[
2 (α− 1)2 (3α2 + 2α + 1)

α
3
2

,
2 (β − 1)2 (3β2 + 2β + 1)

β
3
2

]
.

(3.3.35)

(ii) If α = 1, then

M = sup
t∈[1,β)

g (t) = g (β) =
2 (β − 1)2 (3β2 + 2β + 1)

β
3
2

. (3.3.36)

The results (3.3.28), (3.3.29), (3.3.30), and (3.3.31) are obtained by using (3.3.8),

(3.3.15), (3.3.32), (3.3.33), (3.3.34), (3.3.35) and (3.3.36) in (3.3.1) and (3.3.2).

Similarly, for s = 0, we obtain

(i) If 0 < α < 1, then

0 ≤ V ∗ (P,Q)

≤ max

[
2 (α− 1)2 (3α2 + 2α + 1)

α
,
2 (β − 1)2 (3β2 + 2β + 1)

β

]
K (Q,P ) .

(3.3.37)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ max

[
2 (α− 1)2 (3α2 + 2α + 1)

α
,
2 (β − 1)2 (3β2 + 2β + 1)

β

]
[
χ2 (Q,P )−K (Q,P )

]
.

(3.3.38)

(ii) If α = 1, then

0 ≤ V ∗ (P,Q) ≤ 2 (β − 1)2 (3β2 + 2β + 1)

β
K (Q,P ) . (3.3.39)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ 2 (β − 1)2 (3β2 + 2β + 1)

β

[
χ2 (Q,P )−K (Q,P )

]
.

(3.3.40)
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3.3 New Divergence Measure and Bounds

Now for s = −1, we obtain

(i) If 0 < α < 1, then

0 ≤ V ∗ (P,Q)

≤ max
[
(α− 1)2

(
3α2 + 2α + 1

)
, (β − 1)2

(
3β2 + 2β + 1

)]
χ2 (Q,P ) .

(3.3.41)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ max
[
(α− 1)2

(
3α2 + 2α + 1

)
, (β − 1)2

(
3β2 + 2β + 1

)]
[
R3 (Q,P )−R2 (Q,P )− χ2 (Q,P )

]
.

(3.3.42)

(ii) If α = 1, then

0 ≤ V ∗ (P,Q) ≤ (β − 1)2
(
3β2 + 2β + 1

)
χ2 (Q,P ) . (3.3.43)

0 ≤ V ∗ρ (P,Q)− V ∗ (P,Q)

≤ (β − 1)2
(
3β2 + 2β + 1

) [
R3 (Q,P )−R2 (Q,P )− χ2 (Q,P )

]
.

(3.3.44)

In Figure 3.4, we have considered pi = (a, 1− a) , qi = (1− a, a), where a ∈ (0, 1).

Figure 3.4: Comparison of the well known divergences with V ∗ (P,Q)

It is clear from Figure that the new divergence measure V ∗ (P,Q) has a steeper

slope than E∗ (P,Q), ∆ (P,Q), h (P,Q), F (P,Q), G (P,Q), JR (P,Q), M∗ (P,Q),

K (P,Q), T (P,Q), L∗ (P,Q), and I (P,Q).
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3.4 Conclusion

In this chapter, we introduced two different non- symmetric divergence measures

of Csiszar’s class. One of them is by exponential convex function and other is by

algebraic convex function. Further evaluated bounds of these divergence measures

separately by using well known information inequalities on Cf (P,Q). Numerical

verification by taking Binomial and Poisson distributions, has been done as well.

By comparison graph, we compared new divergence measure with well known

divergence measures.
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4

SERIES OF NEW

DIVERGENCE MEASURES

AND APPLICATIONS

4.1 Introduction

In chapter 3, new divergence measures of Csiszar’s class have been introduced by

suitably defined the convex functions and did a detail study of these divergences.

In this chapter, different series of divergence measures of Csiszar’s class are pro-

posed.

This chapter is organized as follows: This chapter contains 2 sections excluding

Introduction and Conclusion. Since there are many series of divergences and their

studies, therefore we make two sections with the same title differing by Roman

number I and II respectively. Sections 4.2 and 4.3 introduce different new se-

ries of convex functions and corresponding new series of divergence measures of

Csiszar’s class, further obtain the bounds of a particular divergence of a series
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4. SERIES OF NEW DIVERGENCE MEASURES AND
APPLICATIONS

separately by using well known information inequalities together with numerical

verifications. Intra relations among new series of divergences obtain separately.

4.2 Series of New Divergence Measures and Applications-

I

In this section, we introduce new series of divergence measures as a family of

Csiszar’s generalized divergence, characterize the properties of convex functions

and divergences, compare several divergences, and derive important and interest-

ing intra relation among divergences of these new series. Also get the bounds of a

particular member of that series together with numerical verification of obtained

bounds.

4.2.1 Series of convex functions and properties- I

In this subsection, we develop some new series of convex functions and study

their properties. For this, firstly let f : (0,∞)→ R be a mapping defined as

fm (t) =
(t2 − 1)

2m

t2m−1
,m = 1, 2, 3... (4.2.1)

and

f ′m (t) =
(t2 − 1)

2m−1
[t2 (2m+ 1) + 2m− 1]

t2m
, (4.2.2)

f ′′m (t) =
2m (t2 − 1)

2m−2

t2m+1

[
t4 (2m+ 1) + 4t2 (m− 1) + 2m− 1

]
. (4.2.3)

Since f ′′m (t) ≥ 0 for t > 0 and m = 1, 2, ..., therefore fm (t) are convex functions

for each m.
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Now, from (4.2.1), we get the following new convex functions at m = 1, 2, 3...

respectively.

f1 (t) =
(t2 − 1)

2

t
, f2 (t) =

(t2 − 1)
4

t3
, f3 (t) =

(t2 − 1)
6

t5
... (4.2.4)

Since, we know that the linear combination of convex functions is also a convex

function, i.e., a1f1 (t) + a2f2 (t) + a3f3 (t) + ... is a convex function as well, where

a1, a2, a3, ... are positive constants. Therefore, we have following two cases to

obtain new series of convex functions.

(i) If we take a1 = a2 = 1, a3 = a4 = a5 = ... = 0, then we have

f1,2 (t) = f1 (t) + f2 (t) =
(t2 − 1)

2

t
+

(t2 − 1)
4

t3
=

(t2 − 1)
2

(t4 − t2 + 1)

t3
. (4.2.5)

Similarly, if we take a2 = a3 = 1, a1 = a4 = a5 = ... = 0, then we have

f2,3 (t) = f2 (t) + f3 (t) =
(t2 − 1)

4

t3
+

(t2 − 1)
6

t5
=

(t2 − 1)
4

(t4 − t2 + 1)

t5
. (4.2.6)

In this way, we can write for m = 1, 2, 3...

fm,m+1 (t) = fm (t) + fm+1 (t)

=
(t2 − 1)

2m

t2m−1
+

(t2 − 1)
2m+2

t2m+1
=

(t2 − 1)
2m

(t4 − t2 + 1)

t2m+1
.

(4.2.7)

(ii) If we take a1 = 1, a2 = loge b, a3 = (loge b)
2

2!
, a4 = (loge b)

3

3!
, ..., b > 1, then we have

g1 (t) = f1 (t) + (loge b) f2 (t) +
(loge b)

2

2!
f3 (t) + ...

=
(t2 − 1)

2

t
+ (loge b)

(t2 − 1)
4

t3
+

(loge b)
2

2!

(t2 − 1)
6

t5
+ ...

=
(t2 − 1)

2

t

[
1 + (loge b)

(t2 − 1)
2

t2
+

(loge b)
2

2!

(t2 − 1)
4

t4
+ ...

]

=
(t2 − 1)

2

t
b
(t2−1)

2

t2 , b > 1.

(4.2.8)
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Similarly, if we take a1 = 0, a2 = 1, a3 = loge b, a4 = (loge b)
2

2!
, a5 = (loge b)

3

3!
, ..., b > 1,

then we have

g2 (t) =
(t2 − 1)

4

t3
+ (loge b)

(t2 − 1)
6

t5
+

(loge b)
2

2!

(t2 − 1)
8

t7
+ ..., b > 1

=
(t2 − 1)

4

t3

[
1 + (loge b)

(t2 − 1)
2

t2
+

(loge b)
2

2!

(t2 − 1)
4

t4
+ ...

]

=
(t2 − 1)

4

t3
b
(t2−1)

2

t2 , b > 1.

(4.2.9)

In this way, we can write

gm (t) =
(t2 − 1)

2m

t2m−1
b
(t2−1)

2

t2 , b > 1,m = 1, 2, 3, .... (4.2.10)

Remark 4.2.1. If we take b = e ≈ 2.71828 then from (4.2.10), we obtain the

following series.

gm (t) =
(t2 − 1)

2m

t2m−1
e

(t2−1)
2

t2 =
(t2 − 1)

2m

t2m−1
exp

(t2 − 1)
2

t2
,m = 1, 2, 3, .... (4.2.11)

Properties of convex functions defined by (4.2.1), (4.2.7) and (4.2.11), are as

follows.

• Since fm (1) = 0 = fm,m+1 (1) = gm (1) ⇒ fm (t) , fm,m+1 (t) and gm (t) are

normalized functions for each m.

• Since f ′m (t) < 0 at (0, 1) and > 0 at (1,∞)⇒ fm (t) are strictly decreasing in

(0, 1) and strictly increasing in (1,∞), for each value of m and f ′m (1) = 0.

Figures 4.1, 4.2, and 4.3 shows the behavior of convex functions and shows

that fm (t) , fm,m+1 (t), and gm (t) has a stepper slope for increasing values of m

respectively.
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Figure 4.1: Behavior of convex functions fm (t)

Figure 4.2: Behavior of convex functions fm,m+1 (t)

Figure 4.3: Behavior of convex functions gm (t)
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4. SERIES OF NEW DIVERGENCE MEASURES AND
APPLICATIONS

4.2.2 New series of divergence measures- I

In this subsection, we obtain new series of divergence measures of Csiszar’s class

corresponding to series of convex functions defined in subsection 4.2.1 and study

their properties. Now for convex functions (4.2.1), we get the following new series

of divergences.

Cf (P,Q) = γm (P,Q) =
n∑
i=1

(p2i − q2i )
2m

p2m−1i q2mi
,m = 1, 2, 3... (4.2.12)

γ1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

piq2i
, γ2 (P,Q) =

n∑
i=1

(p2i − q2i )
4

p3i q
4
i

, ... (4.2.13)

where Cf (P,Q) is well known Csiszar’s generalized divergence.

Similarly for (4.2.7), we get the following new series of divergences.

Cf (P,Q) = ηm (P,Q) =
n∑
i=1

(p2i − q2i )
2m

(p4i − p2i q2i + q4i )

p2m+1
i q2m+2

i

,m = 1, 2, ... (4.2.14)

η1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

(p4i − p2i q2i + q4i )

p3i q
4
i

, (4.2.15)

η2 (P,Q) =
n∑
i=1

(p2i − q2i )
4

(p4i − p2i q2i + q4i )

p5i q
6
i

, ... (4.2.16)

Similarly for (4.2.11), we get the following new series of divergences.

Cf (P,Q) = ρm (P,Q) =
n∑
i=1

(p2i − q2i )
2m

p2m−1i q2mi
exp

(p2i − q2i )
2

(piqi)
2 ,m = 1, 2, ... (4.2.17)

ρ1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

piq2i
exp

(p2i − q2i )
2

(piqi)
2 , (4.2.18)

ρ2 (P,Q) =
n∑
i=1

(p2i − q2i )
4

p3i q
4
i

exp
(p2i − q2i )

2

(piqi)
2 , ... (4.2.19)

Properties of divergences defined by (4.2.12), (4.2.14) and (4.2.17), are as follows.

• In view of properties of Cf (P,Q), we can say that γm (P,Q) , ηm (P,Q) , ρm (P,Q) >
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0 and are convex in the pair of probability distribution P,Q ∈ Γn.

• γm (P,Q) = 0 = ηm (P,Q) = ρm (P,Q) if P = Q or pi = qi (attains its minimum

value).

• Since γm (P,Q) 6= γm (Q,P ) , ηm (P,Q) 6= ηm (Q,P ) , ρm (P,Q) 6= ρm (Q,P ) ⇒

γm (P,Q) , ηm (P,Q), ρm (P,Q) are non- symmetric divergence measures.

Figure 4.4: Comparison of the well known divergences with new series of diver-

gences

Figure 4.4 shows the behavior of γ1 (P,Q), γ2 (P,Q), η1 (P,Q), η2 (P,Q),

ρ1 (P,Q), P ∗ (P,Q), ψ (P,Q), χ2 (P,Q), and E∗ (P,Q). We have considered

pi = (a, 1− a) , qi = (1− a, a), where a ∈ (0, 1). It is clear from Figure that

the new divergences γ1 (P,Q), γ2 (P,Q), η1 (P,Q), η2 (P,Q), and ρ1 (P,Q) has a

steeper slope than others.

4.2.3 Intra relation and bounds- I

First, we derive an intra relation among new series of divergence measures (4.2.12),

(4.2.14), and (4.2.17), as follows.

Proposition 4.2.1. Let P,Q ∈ Γn, then we have the following new intra relation.

γm (P,Q) ≤ ηm (P,Q) ≤ ρm (P,Q) , (4.2.20)
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where m = 1, 2, 3... and γm (P,Q) , ηm (P,Q), and ρm (P,Q) are given by (4.2.12),

(4.2.14), and (4.2.17) respectively.

Proof : Since

(t2 − 1)
2m

(t4 − t2 + 1)

t2m+1
=

(t2 − 1)
2m

t2m−1
+

(t2 − 1)
2m+2

t2m+1

and

(t2 − 1)
2m

t2m−1
exp

(t2 − 1)
2

t2
=

(t2 − 1)
2m

t2m−1

[
1 +

(t2 − 1)
2

t2
+

(t2 − 1)
4

2!t4
+ ...

]
.

Therefore, for m = 1, 2, 3... and t > 0, we have the following inequalities.

(t2 − 1)
2m

t2m−1
≤ (t2 − 1)

2m

t2m−1
+

(t2 − 1)
2m+2

t2m+1

≤ (t2 − 1)
2m

t2m−1

[
1 +

(t2 − 1)
2

t2
+

(t2 − 1)
4

2!t4
+ ...

]
.

(4.2.21)

Now put t = pi
qi
, i = 1, 2, 3..., n in (4.2.21), multiply by qi and then sum over all

i = 1, 2, 3..., n, we get the relation (4.2.20).

Particularly from (4.2.20), we will obtain the followings.

γ1 (P,Q) ≤ η1 (P,Q) ≤ ρ1 (P,Q) , γ2 (P,Q) ≤ η2 (P,Q) ≤ ρ2 (P,Q) , ... (4.2.22)

Now, bounds of a particular member γ1 (P,Q) of one of the series of diver-

gences, are obtained in terms of the well known divergences h (P,Q)(1.2.6),

ψ (P,Q)(1.2.9), J (P,Q)(1.2.10), T (P,Q)(1.2.11), I (P,Q)(1.2.12), K (P,Q)(1.2.18),

χ2 (P,Q)(1.2.19), G (P,Q)(1.2.20), and F (P,Q)(1.2.21) by using information in-

equalities (3.2.2) on Cf (P,Q) given by Taneja [95]. The results are on the similar

lines to the results presented by Taneja [95]. Firstly, let us consider

f1 (t) =
(t2 − 1)

2

t
, t > 0, f1 (1) = 0, f ′1 (t) =

(t2 − 1) (3t2 + 1)

t2
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and

f ′′1 (t) =
2 (3t4 + 1)

t3
. (4.2.23)

For f1 (t), we have

Cf1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

piq2i
= γ1 (P,Q) . (4.2.24)

Now the following propositions give the bounds of γ1 (P,Q).

Proposition 4.2.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

(i) If 0 < α ≤ .67, then

23.4h (P,Q) ≤ γ1 (P,Q) ≤ 8max

[
3α4 + 1

α
3
2

,
3β4 + 1

β
3
2

]
h (P,Q) . (4.2.25)

(ii) If .67 < α ≤ 1, then

8 (3α4 + 1)

α
3
2

h (P,Q) ≤ γ1 (P,Q) ≤ 8 (3β4 + 1)

β
3
2

h (P,Q) . (4.2.26)

Proof : Let us consider

f2 (t) =
1

2

(
1−
√
t
)2
, t ∈ (0,∞) , f2 (1) = 0, f ′2 (t) =

1

2

(
1− 1√

t

)
and

f ′′2 (t) =
1

4t
3
2

. (4.2.27)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we get

Cf2 (P,Q) =
n∑
i=1

(√
pi −
√
qi
)2

2
= h (P,Q) . (4.2.28)

Now, let g (t) =
f ′′1 (t)

f ′′2 (t)
=

8(3t4+1)
t
3
2

and

g′ (t) =
4 (15t4 − 3)

t
5
2

, g′′ (t) = 30

(
3
√
t+

1

t
7
2

)
,
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where f ′′1 (t) and f ′′2 (t) are given by (4.2.23) and (4.2.27) respectively.

If g′ (t) = 0 ⇒ t = .6687403 ≈ .67. It is clear that g′ (t) < 0 in (0, .67) and > 0

in (.67,∞) with g′′ (.67) = 195.5276 ≈ 195.5 > 0, i.e., g (t) is strictly decreasing

in (0, .67) and strictly increasing in (.67,∞). So g (t) has a minimum value at

t = .67. Therefore

(i) If 0 < α ≤ .67, then

m = inf
t∈(α,β)

g (t) = g (.67) = 23.405968 ≈ 23.4. (4.2.29)

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)]

= max

[
8 (3α4 + 1)

α
3
2

,
8 (3β4 + 1)

β
3
2

]
.

(4.2.30)

(ii) If .67 < α ≤ 1, then

m = inf
t∈(α,β)

g (t) = g (α) =
8 (3α4 + 1)

α
3
2

. (4.2.31)

M = sup
t∈(α,β)

g (t) = g (β) =
8 (3β4 + 1)

β
3
2

. (4.2.32)

The results (4.2.25) and (4.2.26) are obtained by using (4.2.24), (4.2.28), (4.2.29),

(4.2.30), (4.2.31), and (4.2.32) in (3.2.2).

Proposition 4.2.3. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

(i) If 0 < α ≤ .51, then

14.24G (P,Q) ≤ γ1 (P,Q) ≤ 4max

[
(α + 1) (3α4 + 1)

α
,
(β + 1) (3β4 + 1)

β

]
G (P,Q) .

(4.2.33)

(ii) If .51 < α ≤ 1, then

4 (α + 1) (3α4 + 1)

α
G (P,Q) ≤ γ1 (P,Q) ≤ 4 (β + 1) (3β4 + 1)

β
G (P,Q) . (4.2.34)
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Proof : Let us consider

f2 (t) =

(
t+ 1

2

)
log

t+ 1

2t
, t ∈ (0,∞) , f2 (1) = 0, f ′2 (t) =

1

2

[
log

t+ 1

2t
− 1

t

]
and

f ′′2 (t) =
1

2t2 (t+ 1)
. (4.2.35)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we get

Cf2 (P,Q) =
n∑
i=1

(
pi + qi

2

)
log

pi + qi
2pi

= G (P,Q) . (4.2.36)

Now, let g (t) =
f ′′1 (t)

f ′′2 (t)
=

4(t+1)(3t4+1)
t

and

g′ (t) =
4 (12t5 + 9t4 − 1)

t2
, g′′ (t) = 8

(
18t2 + 9t+

1

t3

)
,

where f ′′1 (t) and f ′′2 (t) are given by (4.2.23) and (4.2.35) respectively.

If g′ (t) = 0⇒ t = .507385 ≈ .51. It is clear that g′ (t) < 0 in (0, .51) and > 0 in

(.51,∞) with g′′ (.51) = 134.4830294 ≈ 134.45 > 0, i.e., g (t) is strictly decreasing

in (0, .51) and strictly increasing in (.51,∞). So g (t) has a minimum value at

t = .51. Therefore

(i) If 0 < α ≤ .51, then

m = inf
t∈(α,β)

g (t) = g (.51) = 14.24677337 ≈ 14.24. (4.2.37)

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)]

= max

[
4 (α + 1) (3α4 + 1)

α
,
4 (β + 1) (3β4 + 1)

β

]
.

(4.2.38)

(ii) If .51 < α ≤ 1, then

m = inf
t∈(α,β)

g (t) = g (α) =
4 (α + 1) (3α4 + 1)

α
. (4.2.39)
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M = sup
t∈(α,β)

g (t) = g (β) =
4 (β + 1) (3β4 + 1)

β
. (4.2.40)

The results (4.2.33) and (4.2.34) are obtained by using (4.2.24), (4.2.36), (4.2.37),

(4.2.38), (4.2.39), and (4.2.40) in (3.2.2).

By using the similar procedure, we obtain the bounds of γ1 (P,Q) in terms of

other standard divergences. These inequalities (results) are as follows, omitting

the details.

(a) If we take f2 (t) = (t− 1)2, then we have

(i) If 0 < α < 1, then

4χ2 (P,Q) ≤ γ1 (P,Q) ≤ max

[
3α4 + 1

α3
,
3β4 + 1

β3

]
χ2 (P,Q) . (4.2.41)

(ii) If α = 1, then

4χ2 (P,Q) ≤ γ1 (P,Q) ≤ 3β4 + 1

β3
χ2 (P,Q) . (4.2.42)

(b) If we take f2 (t) = t log t, then we have

(i) If 0 < α ≤ .76, then

6.9K (P,Q) ≤ γ1 (P,Q) ≤ 2max

[
3α4 + 1

α2
,
3β4 + 1

β2

]
K (P,Q) . (4.2.43)

(ii) If .76 < α ≤ 1, then

2 (3α4 + 1)

α2
K (P,Q) ≤ γ1 (P,Q) ≤ 2 (3β4 + 1)

β2
K (P,Q) . (4.2.44)

(c) If we take f2 (t) = t log 2t
t+1

, then we have

(i) If 0 < α ≤ .62, then

19.7F (P,Q) ≤ γ1 (P,Q) ≤ 2max

[
(α + 1)2 (3α4 + 1)

α2
,
(β + 1)2 (3β4 + 1)

β2

]
F (P,Q) .

(4.2.45)
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(ii) If .62 < α ≤ 1, then

2 (α + 1)2 (3α4 + 1)

α2
F (P,Q) ≤ γ1 (P,Q) ≤ 2 (β + 1)2 (3β4 + 1)

β2
F (P,Q) .

(4.2.46)

(d) If we take f2 (t) = (t− 1) log t, then we have

(i) If 0 < α ≤ .65, then

2.87J (P,Q) ≤ γ1 (P,Q) ≤ 2max

[
3α4 + 1

α (α + 1)
,

3β4 + 1

β (β + 1)

]
J (P,Q) . (4.2.47)

(ii) If .65 < α ≤ 1, then

2 (3α4 + 1)

α (α + 1)
J (P,Q) ≤ γ1 (P,Q) ≤ 2 (3β4 + 1)

β (β + 1)
J (P,Q) . (4.2.48)

(e) If we take f2 (t) = t+1
2

log t+1
2
√
t
, then we have

(i) If 0 < α ≤ .62, then

21.8T (P,Q) ≤ γ1 (P,Q) ≤ 8max

[
(3α4 + 1) (α + 1)

α (α2 + 1)
,
(3β4 + 1) (β + 1)

β (β2 + 1)

]
T (P,Q) .

(4.2.49)

(ii) If .62 < α ≤ 1, then

8 (3α4 + 1) (α + 1)

α (α2 + 1)
T (P,Q) ≤ γ1 (P,Q) ≤ 8 (3β4 + 1) (β + 1)

β (β2 + 1)
T (P,Q) . (4.2.50)

(f) If we take f2 (t) = (t−1)2(t+1)
t

, then we have

(i) If 0 < α ≤ .25, then

ψ (P,Q) ≤ γ1 (P,Q) ≤ max

[
3α4 + 1

α3 + 1
,
3β4 + 1

β3 + 1

]
ψ (P,Q) . (4.2.51)

(ii) If .25 < α ≤ 1, then

3α4 + 1

α3 + 1
ψ (P,Q) ≤ γ1 (P,Q) ≤ 3β4 + 1

β3 + 1
ψ (P,Q) . (4.2.52)
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(g) If we take f2 (t) = t
2

log t+ t+1
2

log 2
t+1

, then we have

(i) If 0 < α ≤ .69, then

23.86I (P,Q) ≤ γ1 (P,Q) ≤ 4max

[
(α + 1) (3α4 + 1)

α2
,
(β + 1) (3β4 + 1)

β2

]
I (P,Q) .

(4.2.53)

(ii) If .69 < α ≤ 1, then

4 (α + 1) (3α4 + 1)

α2
I (P,Q) ≤ γ1 (P,Q) ≤ 4 (β + 1) (3β4 + 1)

β2
I (P,Q) . (4.2.54)

4.2.4 Numerical verification of obtained bounds- I

In this subsection, we take an example for calculating the divergences h (P,Q),

G (P,Q), and γ1 (P,Q) and then verify numerically the results (4.2.25) and (4.2.33)

or verify the bounds of γ1 (P,Q) in terms of h (P,Q) and G (P,Q).

Example 4.2.1. We are taking the example same as example 3.2.1 (subsection-

3.2.3) for p = 0.7 and q = 0.3 by considering two discrete probability distributions

Binomial and Poisson, so the values of α, β, h (P,Q), G (P,Q) are same already

defined in that example, given by (3.2.36), (3.2.38), (3.2.39) and γ1 (P,Q) is

defined as follows.

γ1 (P,Q) =
11∑
i=1

(p2i − q2i )
2

piq2i
≈ 2.25065. (4.2.55)

Now, put the approximated numerical values from (3.2.36), (3.2.38), (3.2.39),

and (4.2.55) in (4.2.25) and (4.2.33), we get the followings respectively

1.17468 ≤ 2.25065 (= γ1 (P,Q)) ≤ 771.68

and

1.062304 ≤ 2.25065 (= γ1 (P,Q)) ≤ 46.4161.
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Hence verify the inequalities (4.2.25) and (4.2.33) for p = 0.7.

Similarly, we can verify the other obtained inequalities numerically for different

values of p and q by taking other discrete probability distributions, like: Geomet-

ric, Negative Binomial, Uniform etc.

4.3 Series of New Divergence Measures

and Applications- II

In this section, we again introduce new series of divergence measures as a family

of Csiszar’s generalized divergence, characterize the properties of convex func-

tions and divergences, compare several divergences, and derive important and

interesting intra relation among divergences of these new series. Also get the

bounds of a particular member of that series together with numerical verification

of obtained bounds.

4.3.1 Series of convex functions and properties- II

In this subsection, we develop some series of convex functions and will study their

properties. For this, Let f : (0,∞)→ R be a real valued mapping, defined as

fm (t) =
(t2 − 1)

2m

t
2m−1

2

,m = 1, 2, 3..., (4.3.1)

and

f ′m (t) =
(t2 − 1)

2m−1
[t2 (6m+ 1) + 2m− 1]

2t
2m+1

2

, (4.3.2)

f ′′m (t) =
(t2 − 1)

2m−2

4t
2m+3

2

[
t4
(
36m2 − 1

)
+ 2t2

(
12m2 − 16m+ 1

)
+ 4m2 − 1

]
.

(4.3.3)
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Since f ′′m (t) ≥ 0 for t > 0 and m = 1, 2, ..., therefore fm (t) are convex functions

for each m.

Now, from (4.3.1), we get the following new convex functions at m = 1, 2, 3...

respectively.

f1 (t) =
(t2 − 1)

2

t
1
2

, f2 (t) =
(t2 − 1)

4

t
3
2

, f3 (t) =
(t2 − 1)

6

t
5
2

... (4.3.4)

Now by using (4.3.4), we get the following series of convex functions as well.

f1,2 (t) = f1 (t) + f2 (t) =
(t2 − 1)

2

t
1
2

+
(t2 − 1)

4

t
3
2

=
(t2 − 1)

2
(t4 − 2t2 + t+ 1)

t
3
2

.

(4.3.5)

f2,3 (t) = f2 (t) + f3 (t) =
(t2 − 1)

4

t
3
2

+
(t2 − 1)

6

t
5
2

=
(t2 − 1)

4
(t4 − 2t2 + t+ 1)

t
5
2

.

(4.3.6)

In this way, we can write for m = 1, 2, 3...

fm,m+1 (t) = fm (t) + fm+1 (t) =
(t2 − 1)

2m

t
2m−1

2

+
(t2 − 1)

2m+2

t
2m+1

2

=
(t2 − 1)

2m
(t4 − 2t2 + t+ 1)

t
2m+1

2

.

(4.3.7)

Since, we know that the linear combination of convex functions is also a convex

function, i.e., a1f1 (t) + a2f2 (t) + a3f3 (t) + ... is a convex function as well, where

a1, a2, a3, ... are positive constants. So, we get another series of convex functions

by using (4.3.4), defined as follows.
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(i) If we take a1 = 1, a2 = loge b, a3 = (loge b)
2

2!
, ..., b > 1, then we have

g1 (t) = f1 (t) + (loge b) f2 (t) +
(loge b)

2

2!
f3 (t) + ...

=
(t2 − 1)

2

t
1
2

+ (loge b)
(t2 − 1)

4

t
3
2

+
(loge b)

2

2!

(t2 − 1)
6

t
5
2

+ ...

=
(t2 − 1)

2

t
1
2

[
1 + (loge b)

(t2 − 1)
2

t
+

(loge b)
2

2!

(t2 − 1)
4

t2
+ ...

]

=
(t2 − 1)

2

t
1
2

b
(t2−1)

2

t , b > 1.

(4.3.8)

(ii) If we take a1 = 0, a2 = 1, a3 = loge b, a4 = (loge b)
2

2!
, ..., b > 1, then we have

g2 (t) =
(t2 − 1)

4

t
3
2

+ (loge b)
(t2 − 1)

6

t
5
2

+
(loge b)

2

2!

(t2 − 1)
8

t
7
2

+ ..., b > 1

=
(t2 − 1)

4

t
3
2

[
1 + (loge b)

(t2 − 1)
2

t
+

(loge b)
2

2!

(t2 − 1)
4

t2
+ ...

]

=
(t2 − 1)

4

t
3
2

b
(t2−1)

2

t , b > 1.

(4.3.9)

In this way, we can write

gm (t) =
(t2 − 1)

2m

t
2m−1

2

b
(t2−1)

2

t , b > 1,m = 1, 2, 3, .... (4.3.10)

Remark 4.3.1. If we take b = e ≈ 2.71828 then from (4.3.10), we obtain the

following series

gm (t) =
(t2 − 1)

2m

t
2m−1

2

e
(t2−1)

2

t =
(t2 − 1)

2m

t
2m−1

2

exp
(t2 − 1)

2

t
,m = 1, 2, 3, .... (4.3.11)

Properties of convex functions defined by (4.3.1), (4.3.7) and (4.3.11), are as

follows.

• Since fm (1) = 0 = fm,m+1 (1) = gm (1) ⇒ fm (t) , fm,m+1 (t) and gm (t) are

normalized functions for each m.
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Figure 4.5: Behavior of convex functions fm (t)

Figure 4.6: Behavior of convex functions fm,m+1 (t)

Figure 4.7: Behavior of convex functions gm (t)
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• Since f ′m (t) < 0 at (0, 1) and > 0 at (1,∞)⇒ fm (t) are strictly decreasing in

(0, 1) and strictly increasing in (1,∞), for each value of m and f ′m (1) = 0.

Figures 4.5, 4.6, and 4.7 show that fm (t) , fm,m+1 (t) and gm (t) have a stepper

slope for increasing values of m respectively.

4.3.2 New series of divergence measures- II

In this subsection, we obtain new series of divergence measures of Csiszar’s class

corresponding to convex functions defined in subsection 4.3.1, and study their

properties in detail.

Now for convex functions (4.3.1), we get the following new series of divergences

of Csiszar’s class.

Cf (P,Q) = ξm (P,Q) =
n∑
i=1

(p2i − q2i )
2m

(piqi)
2m−1

2 q2mi
,m = 1, 2, 3... (4.3.12)

ξ1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

(piqi)
1
2 q2i

, ξ2 (P,Q) =
n∑
i=1

(p2i − q2i )
4

(piqi)
3
2 q4i

, ... (4.3.13)

Similarly for (4.3.7), we obtain the following new series.

Cf (P,Q) = ζm (P,Q) =
n∑
i=1

(p2i − q2i )
2m

(p4i − 2p2i q
2
i + piq

3
i + q4i )

(piqi)
2m+1

2 q2m+2
i

,m = 1, 2, ...

(4.3.14)

ζ1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

(p4i − 2p2i q
2
i + piq

3
i + q4i )

(piqi)
3
2 q4i

, (4.3.15)

ζ2 (P,Q) =
n∑
i=1

(p2i − q2i )
4

(p4i − 2p2i q
2
i + piq

3
i + q4i )

(piqi)
5
2 q6i

, ... (4.3.16)

Similarly for convex functions (4.3.11), we have the following new series of diver-

gences.

Cf (P,Q) = ωm (P,Q) =
n∑
i=1

(p2i − q2i )
2m

(piqi)
2m−1

2 q2mi
exp

(p2i − q2i )
2

piq3i
,m = 1, 2, ... (4.3.17)
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ω1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

(piqi)
1
2 q2i

exp
(p2i − q2i )

2

piq3i
, (4.3.18)

ω2 (P,Q) =
n∑
i=1

(p2i − q2i )
4

(piqi)
3
2 q4i

exp
(p2i − q2i )

2

piq3i
, ... (4.3.19)

Properties of divergences defined by (4.3.12), (4.3.14) and (4.3.17), are as follows.

• In view of properties of Cf (P,Q), we can say that ξm (P,Q) , ζm (P,Q) , ωm (P,Q) >

0 and are convex in the pair of probability distribution P,Q ∈ Γn.

• ξm (P,Q) = 0 = ζm (P,Q) = ωm (P,Q) if P = Q or pi = qi (attains its minimum

value).

• Since ξm (P,Q) 6= ξm (Q,P ) , ζm (P,Q) 6= ζm (Q,P ) , ωm (P,Q) 6= ωm (Q,P ) ⇒

ξm (P,Q) , ζm (P,Q), ωm (P,Q) are non- symmetric divergence measures.

Figure 4.8: Comparison of the well known divergences with new series of diver-

gences

Figure 4.8 shows the behavior of ξ1 (P,Q), P ∗ (P,Q), ψ (P,Q), V (P,Q),

χ2 (P,Q), J (P,Q), E∗ (P,Q), andK (P,Q). We have considered pi = (a, 1− a) , qi =

(1− a, a), where a ∈ (0, 1). It is clear from the Figure that the new divergence

ξ1 (P,Q) has a stepper slope than remaining divergences.
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4.3.3 Intra relation and bounds- II

Firstly we derive an intra relation among new series of divergence measures

(4.3.12), (4.3.14), and (4.3.17), which is the following proposition.

Proposition 4.3.1. Let P,Q ∈ Γn, then we have the following new intra relation.

ξm (P,Q) ≤ ζm (P,Q) ≤ ωm (P,Q) , (4.3.20)

where m = 1, 2, ... and ξm (P,Q), ζm (P,Q), and ωm (P,Q) are given by (4.3.12),

(4.3.14), and (4.3.17) respectively.

Proof : Since

(t2 − 1)
2m

(t4 − 2t2 + t+ 1)

t
2m+1

2

=
(t2 − 1)

2m

t
2m−1

2

+
(t2 − 1)

2m+2

t
2m+1

2

and

(t2 − 1)
2m

t
2m−1

2

exp
(t2 − 1)

2

t
=

(t2 − 1)
2m

t
2m−1

2

[
1 +

(t2 − 1)
2

t
+

(t2 − 1)
4

2!t2
+ ...

]
.

Therefore, for m = 1, 2, 3... and t > 0, we have the following inequalities.

(t2 − 1)
2m

t
2m−1

2

≤ (t2 − 1)
2m

t
2m−1

2

+
(t2 − 1)

2m+2

t
2m+1

2

≤ (t2 − 1)
2m

t
2m−1

2

[
1 +

(t2 − 1)
2

t
+

(t2 − 1)
4

2!t2
+ ...

]
.

(4.3.21)

Now put t = pi
qi
, i = 1, 2, 3..., n in (4.3.21), multiply by qi and then sum over all

i = 1, 2, 3..., n, we obtain the relation (4.3.20).

Particularly from (4.3.20), we have the followings as well.

ξ1 (P,Q) ≤ ζ1 (P,Q) ≤ ω1 (P,Q) , ξ2 (P,Q) ≤ ζ2 (P,Q) ≤ ω2 (P,Q) , ... (4.3.22)

Now, bounds of a particular member ξ1 (P,Q) of one of the series of diver-

gences, are obtained in terms of the well known divergences K (P,Q)(1.2.18)
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and χ2 (P,Q)(1.2.19) by using information inequalities (3.2.2) on Cf (P,Q) given

by Taneja [95]. The results are on the similar lines to the results presented by

Taneja [95].

Firstly, let us consider

f1 (t) =
(t2 − 1)

2

√
t

, t > 0, f1 (1) = 0, f ′1 (t) =
(t2 − 1) (7t2 + 1)

2t
3
2

and

f ′′1 (t) =
(35t4 − 6t2 + 3)

4t
5
2

. (4.3.23)

For f1 (t), we obtain

Cf1 (P,Q) =
n∑
i=1

(p2i − q2i )
2

(piqi)
1
2 q2i

= ξ1 (P,Q) . (4.3.24)

Now, the following two propositions give the upper and lower bounds of new

divergence ξ1 (P,Q).

Proposition 4.3.2. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

35α
9
2 − 6α

5
2 + 3α

1
2

8
χ2 (Q,P ) ≤ ξ1 (P,Q) ≤ 35β

9
2 − 6β

5
2 + 3β

1
2

8
χ2 (Q,P ) .

(4.3.25)

Proof : Let us consider

f2 (t) =
(t− 1)2

t
, t ∈ (0,∞) , f2 (1) = 0, f ′2 (t) =

t2 − 1

t2
and

f ′′2 (t) =
2

t3
. (4.3.26)

Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we get

Cf2 (P,Q) =
n∑
i=1

(pi − qi)2

pi
= χ2 (Q,P ) . (4.3.27)

124



4.3 Series of New Divergence Measures
and Applications- II

Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=

35t
9
2 − 6t

5
2 + 3t

1
2

8
, g′ (t) =

3 (105t4 − 10t2 + 1)

16t
1
2

,

where f ′′1 (t) and f ′′2 (t) are given by (4.3.23) and (4.3.26) respectively.

It is clear that g′ (t) > 0 ∀ t > 0 or g (t) is always strictly increasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (α) =
35α

9
2 − 6α

5
2 + 3α

1
2

8
. (4.3.28)

M = sup
t∈(α,β)

g (t) = g (β) =
35β

9
2 − 6β

5
2 + 3β

1
2

8
. (4.3.29)

The result (4.3.25) is obtained by using (4.3.24), (4.3.27), (4.3.28) and (4.3.29)

in (3.2.2).

Proposition 4.3.3. For P,Q ∈ Γn and 0 < α ≤ 1 ≤ β < ∞ with α 6= β, we

have

(i) If 0 < α ≤ .3916, then

1.158K (Q,P ) ≤ ξ1 (P,Q)

≤ max

[
35α

7
2 − 6α

3
2 + 3α

−1
2

4
,
35β

7
2 − 6β

3
2 + 3β

−1
2

4

]
K (Q,P ) .

(4.3.30)

(ii) If .3916 < α ≤ 1, then

35α
7
2 − 6α

3
2 + 3α

−1
2

4
K (Q,P ) ≤ ξ1 (P,Q) ≤ 35β

7
2 − 6β

3
2 + 3β

−1
2

4
K (Q,P ) .

(4.3.31)

Proof : Let us consider

f2 (t) = − log t, t ∈ (0,∞) , f2 (1) = 0, f ′2 (t) = −1

t
and

f ′′2 (t) =
1

t2
. (4.3.32)
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Since f ′′2 (t) > 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is strictly convex and normalized

function respectively. Now for f2 (t), we get

Cf2 (P,Q) =
n∑
i=1

qi log
qi
pi

= K (Q,P ) . (4.3.33)

Now, let

g (t) =
f ′′1 (t)

f ′′2 (t)
=

35t
7
2 − 6t

3
2 + 3t

−1
2

4
, g′ (t) =

245t4 − 18t2 − 3

8t
3
2

and

g′′ (t) =
1225t4 − 18t2 + 9

16t
5
2

,

where f ′′1 (t) and f ′′2 (t) are given by (4.3.23) and (4.3.32) respectively.

It is clear that g′ (t) < 0 in (0, .3916) and g′ (t) ≥ 0 in [.3916,∞) with g′′ (.3916) >

0, i.e., g (t) is strictly decreasing in (0, .3916) and increasing in [.3916,∞). So

g (t) has a minimum value at t = .3916. Therefore

(i) If 0 < α ≤ .3916, then

m = inf
t∈(α,β)

g (t) = g (.3916) = 1.158. (4.3.34)

M = sup
t∈(α,β)

g (t) = max [g (α) , g (β)]

= max

[
35α

7
2 − 6α

3
2 + 3α

−1
2

4
,
35β

7
2 − 6β

3
2 + 3β

−1
2

4

]
.

(4.3.35)

(ii) If .3916 < α ≤ 1, then

m = inf
t∈(α,β)

g (t) = g (α) =
35α

7
2 − 6α

3
2 + 3α

−1
2

4
. (4.3.36)

M = sup
t∈(α,β)

g (t) = g (β) =
35β

7
2 − 6β

3
2 + 3β

−1
2

4
. (4.3.37)

The results (4.3.30) and (4.3.31) are obtained by using (4.3.24), (4.3.33), (4.3.34),

(4.3.35), (4.3.36) and (4.3.37) in (3.2.2).
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4.3 Series of New Divergence Measures
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4.3.4 Numerical verification of obtained bounds- II

In this subsection, we take an example for calculating the divergences χ2 (Q,P ),

K (Q,P ), and ξ1 (P,Q) and then verify numerically the results (4.3.25) and

(4.3.30) or verify the bounds of ξ1 (P,Q) in terms of χ2 (P,Q) and K (P,Q).

Example 4.3.1. We are taking the example same as example 3.2.1 (subsection-

3.2.3) for p = 0.7 and q = 0.3 by considering two discrete probability distributions

Binomial and Poisson, so the values of α, β are same already defined in that

example, given by (3.2.36) and the values of χ2 (Q,P ), K (Q,P ), and ξ1 (P,Q)

are defined as follows.

χ2 (Q,P ) =
11∑
i=1

(pi − qi)2

pi
≈ 1.2259. (4.3.38)

K (Q,P ) =
11∑
i=1

qi log
qi
pi
≈ .2467. (4.3.39)

ξ1 (P,Q) =
11∑
i=1

(p2i − q2i )
2

(piqi)
1
2 q2i

≈ 1.5703. (4.3.40)

Now, put the approximated numerical values from (3.2.36) and (4.3.38) to

(4.3.40) in (4.3.25) and (4.3.30), we get the followings respectively

.03697 ≤ ξ1 (P,Q) = 1.5703 ≤ 70.700, .2849 ≤ ξ1 (P,Q) = 1.5703 ≤ 15.8406.

Hence verify the inequalities (4.3.25) and (4.3.30) for p = 0.7.

Similarly, we can verify the same inequalities numerically for different values of p

and q by taking other discrete probability distributions, like: Geometric, Negative

Binomial, Uniform etc.
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4. SERIES OF NEW DIVERGENCE MEASURES AND
APPLICATIONS

4.4 Conclusion

In this chapter, we introduced parametric series of divergence measures of Csiszar’s

class for series of convex functions of algebraic type. Nature of all convex functions

with respect to the value of their parameter, has shown graphically. Comparison

of new members of Csiszar’s class with old standard members, has also been pre-

sented. We have evaluated bounds of a member of the new series of divergences,

together with numerical verification.
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5

NEW RELATIONS AMONG

SEVERAL DIVERGENCES

5.1 Introduction

Since we know that divergence measures are very useful in information theory

and practical problems, therefore it is very important to derive some relations

among them.

In this chapter, we derive many new important and interesting relations among

several divergences by helping some algebraic, exponential, and logarithmic in-

equalities. This chapter contains only one section excluding introduction and

Conclusion.

5.2 Inequalities, Relations Among Divergences

This section contains several algebraic, exponential, and logarithmic inequalities

and then further we establish many new relations among new divergence measures
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and well known old divergence measures by using these inequalities. Several

interesting and important new relations among divergences, also obtain by helping

old relations.

5.2.1 Algebraic, exponential, and logarithmic inequalities

The following inequalities (5.2.1) and (5.2.2) are famous in literature of pure and

applied mathematics, which are important tools to prove many interesting and

important results in information theory.

1 + t ≤ et ≤ 1 + tet, t > 0. (5.2.1)

t

1 + t
≤ log (1 + t) ≤ t, t > 0. (5.2.2)

Besides above inequalities, we are introducing the following algebraic and expo-

nential inequalities as well together with their proofs.

Proposition 5.2.1. Let t ∈ (0,∞) and m = 1, 2, ..., then we have the following

inequalities.
(t2 − 1)

2m

t
2m−1

2

>
(t− 1)2m

t
2m−1

2

, (5.2.3)

(t2 − 1)
2m

t
2m−1

2

>
(t− 1)2m

(t+ 1)2m−1
, (5.2.4)

(t2 − 1)
2m

t
2m−1

2

exp
(t2 − 1)

2

t
>

(t− 1)2m

t
2m−1

2

exp
(t− 1)2

t
, (5.2.5)

(t2 − 1)
2

√
t

> (t− 1)2 , (5.2.6)

and
(t2 − 1)

2

√
t
≥ 1−

√
t. (5.2.7)

All functions involve in (5.2.3) to (5.2.7) are convex and normalized, since f ′′ (t) ≥
0 ∀ t > 0 and f (1) = 0 respectively.
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5.2 Inequalities, Relations Among Divergences

Proof : From (5.2.3), we have to prove that

(t2 − 1)
2m

t
2m−1

2

>
(t− 1)2m

t
2m−1

2

⇒ (t+ 1)2m − 1 > 0,

which is true (obvious) for t > 0. Hence proved (5.2.3) for each m.

Further, from (5.2.4), we have to prove that

(t2 − 1)
2m

t
2m−1

2

>
(t− 1)2m

(t+ 1)2m−1
⇒ (t+ 1)4m−1 − t

2m−1
2 > 0,

Figure 5.1: Graph of (t+ 1)4m−1 − t
2m−1

2 for m = 1, 2, ...

which is true (Figure 5.1) for t > 0. Hence proved (5.2.4) for each m.

Similarly, from (5.2.5), we have to prove that

(t2 − 1)
2m

t
2m−1

2

exp
(t2 − 1)

2

t
>

(t− 1)2m

t
2m−1

2

exp
(t− 1)2

t

⇒ (t+ 1)2m exp
(t2 − 1)

2

t
> exp

(t− 1)2

t

⇒ (t+ 1)2m exp

[
(t2 − 1)

2

t
− (t− 1)2

t

]
> 1

⇒ (t+ 1)2m exp
[
(t+ 2) (t− 1)2

]
− 1 > 0,
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Figure 5.2: Graph of (t+ 1)2m exp
[
(t+ 2) (t− 1)2

]
− 1 for m = 1, 2, ...

which is true (Figure 5.2) for t > 0. Hence proved (5.2.5) for each m.

Second lastly, from (5.2.6), we have to prove that

(t2 − 1)
2

√
t

> (t− 1)2 ⇒ (t+ 1)2 −
√
t > 0,

which is true (obvious) for t > 0. Hence proved (5.2.6).

Lastly, from (5.2.7), we have to prove that

(t2 − 1)
2

√
t
≥ 1−

√
t⇒ (t2 − 1)

2

√
t

+
√
t ≥ 1

⇒
(
t2 − 1

)2
+ t−

√
t ≥ 0,

Figure 5.3: Graph of
(
t2 − 1

)2
+ t−

√
t

which is true (Figure 5.3) for t > 0. Hence proved (5.2.7).
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Proposition 5.2.2. Let t ∈ (0,∞) and m = 1, 2, 3... then we have the following

inequalities.

(t2 − 1)
2m

t2m−1
>

(t− 1)2m

t
2m−1

2

, (5.2.8)

(t2 − 1)
2m

t2m−1
>

(t− 1)2m

(t+ 1)2m−1
, (5.2.9)

(t2 − 1)
2m

t2m−1
> (t− 1)2m , (5.2.10)

and
(t2 − 1)

2m

t2m−1
exp

(t2 − 1)
2

t2
>

(t− 1)2m

t
2m−1

2

exp
(t− 1)2

t
. (5.2.11)

All functions involve in (5.2.8) to (5.2.11) are convex and normalized, since

f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0 respectively.

Proof :From (5.2.8), we have to prove that

(t2 − 1)
2m

t2m−1
>

(t− 1)2m

t
2m−1

2

⇒ (t+ 1)2m > tm−
1
2

⇒
√
t (t+ 1)2m − tm > 0,

Figure 5.4: Graph of
√
t (t+ 1)2m − tm for m = 1, 2, ...

which is true (Figure 5.4) for t > 0,m = 1, 2, 3.... Hence proved the result (5.2.8).

133



5. NEW RELATIONS AMONG SEVERAL DIVERGENCES

Now from (5.2.9), we have to prove that

(t2 − 1)
2m

t2m−1
>

(t− 1)2m

(t+ 1)2m−1
⇒ (t+ 1)4m−1 > t2m−1

⇒ (t+ 1)4m−1 − t2m−1 > 0,

which is true for t > 0,m = 1, 2, 3.... Hence proved the result (5.2.9).

Similarly from (5.2.10), we have to prove that

(t2 − 1)
2m

t2m−1
> (t− 1)2m ⇒ (t+ 1)2m − t2m−1 > 0,

which is true (obvious) for t > 0,m = 1, 2, 3.... Hence proved the result (5.2.10).

Similarly from (5.2.11), we have to prove that

(t2 − 1)
2m

t2m−1
exp

(t2 − 1)
2

t2
>

(t− 1)2m

t
2m−1

2

exp
(t− 1)2

t

⇒ (t+ 1)2m e
(t−1)2(t2+t+1)

t2

tm−
1
2

> 1⇒ (t+ 1)2m e
(t−1)2(t2+t+1)

t2 − tm−
1
2 > 0,

Figure 5.5: Graph of (t+ 1)2m e
(t−1)2(t2+t+1)

t2 − tm−
1
2 for m = 1, 2, ...

which is true (Figure 5.5) for t > 0,m = 1, 2, 3.... Hence proved the result

(5.2.11).
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5.2.2 Several new relations among divergences

In subsection 5.2.1, many inequalities (algebraic, exponential, and logarithmic)

have been introduced. Now, in this part of the section, we establish several rela-

tions among many divergence measures together with standard means. We have

already defined all the divergence measures and means (using in upcoming propo-

sitions) in introduction chapter. So we are not repeating that all divergences. We

start with the following proposition.

Proposition 5.2.3. Let P,Q ∈ Γn and m = 1, 2, 3..., then we have the following

new relations

N∗m (P,Q)−N∗m+1 (P,Q) ≤ ∆m (P,Q) (5.2.12)

and

∆m+1 (P,Q) ≤ N∗m+1 (P,Q) , (5.2.13)

where ∆m (P,Q) and N∗m (P,Q) are defined by (1.2.30) and (1.2.48) respectively.

Proof : Put t = (pi−qi)2

(pi+qi)
2 in inequalities (5.2.1), we get

1 +
(pi − qi)2

(pi + qi)
2 ≤ exp

(pi − qi)2

(pi + qi)
2 ≤ 1 +

(pi − qi)2

(pi + qi)
2 exp

(pi − qi)2

(pi + qi)
2 .

Now multiply the above expression by (pi−qi)2m

(pi+qi)
2m−1 ,m = 1, 2, 3... and sum over all

i = 1, 2, 3..., n, we get

n∑
i=1

(pi − qi)2m

(pi + qi)
2m−1 +

n∑
i=1

(pi − qi)2m+2

(pi + qi)
2m+1 ≤

n∑
i=1

(pi − qi)2m

(pi + qi)
2m−1 exp

(pi − qi)2

(pi + qi)
2

≤
n∑
i=1

(pi − qi)2m

(pi + qi)
2m−1 +

n∑
i=1

(pi − qi)2m+2

(pi + qi)
2m+1 exp

(pi − qi)2

(pi + qi)
2 , i.e.,

∆m (P,Q) + ∆m+1 (P,Q) ≤ N∗m (P,Q) ≤ ∆m (P,Q) +N∗m+1 (P,Q) . (5.2.14)
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From second and third part of (5.2.14), we obtain inequality (5.2.12) and from

first and third part, we obtain (5.2.13). Particularly

at m = 1:

N∗1 (P,Q)−N∗2 (P,Q) ≤ ∆1 (P,Q) = ∆ (P,Q) ,∆2 (P,Q) ≤ N∗2 (P,Q) . (5.2.15)

at m = 2:

N∗2 (P,Q)−N∗3 (P,Q) ≤ ∆2 (P,Q) ,∆3 (P,Q) ≤ N∗3 (P,Q) , (5.2.16)

and so on.

Proposition 5.2.4. Let P,Q ∈ Γn and m = 1, 2, ..., then we have the following

new relations

J∗m (P,Q)− J∗m+1 (P,Q) ≤ E∗m (P,Q) (5.2.17)

and

E∗m+1 (P,Q) ≤ J∗m+1 (P,Q) , (5.2.18)

where E∗m (P,Q) and J∗m (P,Q) are defined by (1.2.28) and (1.2.29) respectively.

Proof : Put t = (pi−qi)2
piqi

in inequalities (5.2.1), we get

1 +
(pi − qi)2

piqi
≤ exp

(pi − qi)2

piqi
≤ 1 +

(pi − qi)2

piqi
exp

(pi − qi)2

piqi
.

Now multiply the above expression by (pi−qi)2m

(piqi)
2m−1

2
,m = 1, 2, ... and sum over all

i = 1, 2, 3..., n, we get

n∑
i=1

(pi − qi)2m

(piqi)
2m−1

2

+
n∑
i=1

(pi − qi)2m+2

(piqi)
2m+1

2

≤
n∑
i=1

(pi − qi)2m

(piqi)
2m−1

2

exp
(pi − qi)2

piqi

≤
n∑
i=1

(pi − qi)2m

(piqi)
2m−1

2

+
n∑
i=1

(pi − qi)2m+2

(piqi)
2m+1

2

exp
(pi − qi)2

piqi
, i.e.,

E∗m (P,Q) + E∗m+1 (P,Q) ≤ J∗m (P,Q) ≤ E∗m (P,Q) + J∗m+1 (P,Q) . (5.2.19)
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From second and third part of (5.2.19), we get inequality (5.2.17) and from first

and third part, we get (5.2.18). Particularly

at m = 1:

J∗1 (P,Q)− J∗2 (P,Q) ≤ E∗1 (P,Q) = E∗ (P,Q) , E∗2 (P,Q) ≤ J∗2 (P,Q) . (5.2.20)

at m = 2:

J∗2 (P,Q)− J∗3 (P,Q) ≤ E∗2 (P,Q) , E∗3 (P,Q) ≤ J∗3 (P,Q) , (5.2.21)

and so on.

Except the above results, from first and second part of the inequalities (5.2.19),

we can easily see that at m = 1

E∗1 (P,Q) ≤ J∗1 (P,Q) . (5.2.22)

Proposition 5.2.5. Let P,Q ∈ Γn, then we have the following new relations

ψ (P,Q)− 2E∗1 (P,Q) ≤ S∗ (P,Q) (5.2.23)

and

S∗ (P,Q) + ψ (P,Q) ≤ ψM (P,Q) , (5.2.24)

where E∗1 (P,Q), ψ (P,Q), S∗ (P,Q), and ψM (P,Q) are defined by (1.2.8), (1.2.9),

(1.2.13), and (1.2.15) respectively.

Proof : Put t =
(√pi−

√
qi)

2

2
√
piqi

in inequalities (5.2.2), we get

(√pi−
√
qi)

2

2
√
piqi

1 +
(√pi−

√
qi)

2

2
√
piqi

≤ log

[
1 +

(√
pi −
√
qi
)2

2
√
piqi

]
≤
(√

pi −
√
qi
)2

2
√
piqi

, i.e.,

pi + qi − 2
√
piqi

pi + qi
≤ log

pi + qi
2
√
piqi
≤
pi + qi − 2

√
piqi

2
√
piqi

.
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Now multiply the above expression by (pi+qi)(pi−qi)2
piqi

and sum over all i = 1, 2, 3..., n,

we get

n∑
i=1

[
(pi + qi) (pi − qi)2

piqi

] [
pi + qi − 2

√
piqi

pi + qi

]
≤

n∑
i=1

(pi + qi) (pi − qi)2

piqi
log

pi + qi
2
√
piqi

≤
n∑
i=1

[
(pi + qi) (pi − qi)2

piqi

] [
pi + qi − 2

√
piqi

2
√
piqi

]
, i.e.,

n∑
i=1

(pi + qi) (pi − qi)2

piqi
− 2

n∑
i=1

(pi − qi)2√
piqi

≤ S∗ (P,Q)

≤
n∑
i=1

(p2i − q2i )
2

2 (piqi)
3
2

−
n∑
i=1

(pi + qi) (pi − qi)2

piqi
, i.e.,

ψ (P,Q)− 2E∗1 (P,Q) ≤ S∗ (P,Q) ≤ ψM (P,Q)− ψ (P,Q) . (5.2.25)

From first and second part of (5.2.25), we get inequality (5.2.23) and from second

and third part, we get (5.2.24).

Except these, if we add (5.2.23) and (5.2.24), we get

2ψ (P,Q) ≤ ψM (P,Q) + 2E∗1 (P,Q) . (5.2.26)

From second and third part of the inequalities (5.2.25), we can easily see that

S∗ (P,Q) ≤ ψM (P,Q) . (5.2.27)

By taking both (5.2.23) and (5.2.27), we can write

ψ (P,Q)− 2E∗1 (P,Q) ≤ S∗ (P,Q) ≤ ψM (P,Q) . (5.2.28)

Proposition 5.2.6. Let P,Q ∈ Γn, then we have the following new relations

L (P,Q) + ∆ (P,Q) ≤ 1

2
E∗1 (P,Q) (5.2.29)
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and

∆ (P,Q) ≤ L (P,Q) + 2
n∑
i=1

(pi − qi)2
√
piqi

(pi + qi)
2 , (5.2.30)

where ∆ (P,Q), E∗1 (P,Q), and L (P,Q) are defined by (1.2.5), (1.2.8), and (1.2.14)

respectively.

Proof : Put t =
(√pi−

√
qi)

2

2
√
piqi

in inequalities (5.2.2), we get

pi + qi − 2
√
piqi

pi + qi
≤ log

pi + qi
2
√
piqi
≤
pi + qi − 2

√
piqi

2
√
piqi

.

Now multiply the above expression by (pi−qi)2
pi+qi

and sum over all i = 1, 2, 3..., n, we

get

n∑
i=1

(pi − qi)2

pi + qi

[
pi + qi − 2

√
piqi

pi + qi

]
≤

n∑
i=1

(pi − qi)2

pi + qi
log

pi + qi
2
√
piqi

≤
n∑
i=1

(pi − qi)2

pi + qi

[
pi + qi − 2

√
piqi

2
√
piqi

]
, i.e.,

n∑
i=1

(pi − qi)2

pi + qi
−2

n∑
i=1

(pi − qi)2
√
piqi

(pi + qi)
2 ≤ L (P,Q) ≤ 1

2

n∑
i=1

(pi − qi)2√
piqi

−
n∑
i=1

(pi − qi)2

pi + qi
, i.e.,

∆ (P,Q)− 2
n∑
i=1

(pi − qi)2
√
piqi

(pi + qi)
2 ≤ L (P,Q) ≤ 1

2
E∗1 (P,Q)−∆ (P,Q) . (5.2.31)

From second and third part of (5.2.31), we get inequality (5.2.29) and from first

and second part, we get (5.2.30).

From inequality (5.2.29), we can easily see that

∆ (P,Q) ≤ 1

2
E∗1 (P,Q) . (5.2.32)

Proposition 5.2.7. Let P,Q ∈ Γn and
∑n

i=1 pi =
∑n

i=1 qi = 1, then we have the

following new relations

A (P,Q) ≤ h (P,Q) ≤ T (P,Q) , (5.2.33)
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A (P,Q) + h (P,Q) ≤ 1

4

n∑
i=1

(pi + qi)
2

√
piqi

, (5.2.34)

and

A (P,Q) + T (P,Q) ≤ 1

4

n∑
i=1

(pi + qi)
2

√
piqi

, (5.2.35)

where h (P,Q) and T (P,Q) are defined by (1.2.6) and (1.2.11) respectively, and

A (P,Q) =
∑n

i=1
pi+qi

2
= 1.

Proof : Put t =
(√pi−

√
qi)

2

2
√
piqi

in inequalities (5.2.2), we get

pi + qi − 2
√
piqi

pi + qi
≤ log

pi + qi
2
√
piqi
≤
pi + qi − 2

√
piqi

2
√
piqi

.

Now multiply the above expression by pi+qi
2

and sum over all i = 1, 2, 3..., n, we

get

n∑
i=1

(
pi + qi

2

)(
pi + qi − 2

√
piqi

pi + qi

)
≤

n∑
i=1

(
pi + qi

2

)
log

pi + qi
2
√
piqi

≤
n∑
i=1

(
pi + qi

2

)(
pi + qi − 2

√
piqi

2
√
piqi

)
, i.e.,

n∑
i=1

pi + qi − 2
√
piqi

2
≤ T (P,Q) ≤

n∑
i=1

(pi + qi)
2

4
√
piqi

− 1 , i.e.,

n∑
i=1

(√
pi −
√
qi
)2

2
≤ T (P,Q) ≤

n∑
i=1

(pi + qi)
2

4
√
piqi

− 1 , i.e.,

h (P,Q) ≤ T (P,Q) ≤
n∑
i=1

(pi + qi)
2

4
√
piqi

− 1. (5.2.36)

From first and third part of (5.2.36), we get inequality (5.2.34) and from second

and third part, we get (5.2.35).

Except these, from (5.2.34) and (5.2.36), we can easily see the followings

A (P,Q) ≤
n∑
i=1

(pi + qi)
2

4
√
piqi

, (5.2.37)
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h (P,Q) ≤
n∑
i=1

(pi + qi)
2

4
√
piqi

, (5.2.38)

and

h (P,Q) ≤ T (P,Q) . (5.2.39)

Now do (5.2.37)-(5.2.38), we get

A (P,Q) ≤ h (P,Q) . (5.2.40)

By taking both (5.2.39) and (5.2.40), we get the inequalities (5.2.33).

Proposition 5.2.8. Let P,Q ∈ Γn and
∑n

i=1 pi =
∑n

i=1 qi = 1, then we have the

following new relations

G (Q,P ) ≥ 1

2
− log 2 (5.2.41)

and

log 2 +G (Q,P ) ≤ 1

2
[R2 (P,Q) + 1] , (5.2.42)

where G (P,Q) and R2 (P,Q) are defined by (1.2.20) and (1.2.27) respectively.

Proof : Put t = pi
qi

in inequalities (5.2.2), we get

pi
pi + qi

≤ log
pi + qi
qi

≤ pi
qi
.

Now multiply the above expression by pi+qi
2

and sum over all i = 1, 2, 3..., n, we

get

n∑
i=1

pi + qi
2

pi
pi + qi

≤
n∑
i=1

pi + qi
2

log
2 (pi + qi)

2qi
≤

n∑
i=1

pi + qi
2

pi
qi

, i.e.,

n∑
i=1

pi
2
≤ log 2

n∑
i=1

pi + qi
2

+
n∑
i=1

pi + qi
2

log
pi + qi

2qi
≤

n∑
i=1

p2i
2qi

+
n∑
i=1

pi
2

, i.e.,

1

2
≤ log 2 +G (Q,P ) ≤ 1

2
[R2 (P,Q) + 1] . (5.2.43)

From first and second part of (5.2.43), we get inequality (5.2.41) and from second

and third part, we get (5.2.42).
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Proposition 5.2.9. Let P,Q ∈ Γn and
∑n

i=1 pi =
∑n

i=1 qi = 1, then we have the

following new relations

log 2− F (P,Q) ≤ A (P,Q) (5.2.44)

and
1

2
H (P,Q) + F (P,Q) ≤ log 2, (5.2.45)

where F (P,Q) is defined by (1.2.21) and H (P,Q) =
∑n

i=1
2piqi
pi+qi

.

Proof : Put t = pi
qi

in inequalities (5.2.2), we get

pi
pi + qi

≤ log
pi + qi
qi

≤ pi
qi
.

Now multiply the above expression by 2qi and sum over all i = 1, 2, 3..., n, we get

n∑
i=1

2qi
pi

pi + qi
≤

n∑
i=1

2qi log
2 (pi + qi)

2qi
≤

n∑
i=1

2qi
pi
qi

, i.e.,

H (P,Q) ≤ 2 log 2
n∑
i=1

qi − 2
n∑
i=1

qi log
2qi

pi + qi
≤ 2

n∑
i=1

pi , i.e.,

H (P,Q) ≤ 2 log 2− 2F (Q,P ) ≤ 2.

After interchanging P and Q, we obtain the following

H (P,Q) ≤ 2 log 2− 2F (P,Q) ≤ 2. (5.2.46)

From second and third part of (5.2.46), we get inequality (5.2.44) and from first

and second part, we get (5.2.45).

Some more new relations:

The following inequalities (5.2.47) is a famous relation from literature (Taneja

[101]). These expressions have been already defined in introduction of this thesis.

H (P,Q) ≤ B (P,Q) ≤ N3 (P,Q) ≤ A (P,Q)

≤ R (P,Q) ≤ S (P,Q) ≤ C (P,Q) .
(5.2.47)
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Now we can obtain some other important relations among various divergences

with the help of above inequalities, these are as follows.

From (5.2.33) and (5.2.47), we obtain

H (P,Q) ≤ B (P,Q) ≤ N3 (P,Q) ≤ A (P,Q) ≤ h (P,Q) ≤ T (P,Q) . (5.2.48)

From (5.2.44) and (5.2.47), we obtain

log 2− F (P,Q) ≤ A (P,Q) ≤ R (P,Q) ≤ S (P,Q) ≤ C (P,Q) . (5.2.49)

From (5.2.33) and (5.2.44), we obtain

log 2− F (P,Q) ≤ A (P,Q) ≤ h (P,Q) ≤ T (P,Q) . (5.2.50)

Do (5.2.42) - (5.2.44), we get

G (Q,P ) + F (Q,P ) ≤ 1

2
[R2 (P,Q) + 1]− A (P,Q) , i.e.,

2A (P,Q) + 2 [G (Q,P ) + F (Q,P )] ≤ R2 (P,Q) + 1 , i.e.,

2A (P,Q) + JR (P,Q) ≤ R2 (P,Q) + 1. (5.2.51)

From (5.2.15), (5.2.22) and (5.2.32), we obtain

N∗1 (P,Q)−N∗2 (P,Q) ≤ ∆ (P,Q) ≤ 1

2
E∗1 (P,Q) ≤ 1

2
J∗1 (P,Q) . (5.2.52)

From (5.2.15) and (5.2.29), we obtain

N∗1 (P,Q)−N∗2 (P,Q) ≤ ∆ (P,Q) ≤ 1

2
E∗1 (P,Q)− L (P,Q) . (5.2.53)
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Proposition 5.2.10. Let P,Q ∈ Γn, then we have the followings new inter rela-

tions.

ξm (P,Q) > E∗m (P,Q) . (5.2.54)

ξm (P,Q) > ∆m (P,Q) . (5.2.55)

ωm (P,Q) > J∗m (P,Q) . (5.2.56)

ξ1 (P,Q) > χ2 (P,Q) . (5.2.57)

ξ1 (P,Q) ≥ h (P,Q) , (5.2.58)

where ξm (P,Q) and ωm (P,Q) are defined by (4.3.12) and (4.3.17) respectively.

Proof : If we put t = pi
qi
, i = 1, 2, 3..., n in (5.2.3) to (5.2.7) and multiply by

qi, and then sum over all i = 1, 2, 3..., n, we get the desired relations (5.2.54) to

(5.2.58) respectively.

Now we can easily say from (5.2.54), (5.2.55) and (5.2.56) that

ξ1 (P,Q) > E∗1 (P,Q) , ξ2 (P,Q) > E∗2 (P,Q) , ..., (5.2.59)

ξ1 (P,Q) > ∆1 (P,Q) = ∆ (P,Q) , ξ2 (P,Q) > ∆2 (P,Q) , ..., (5.2.60)

and

ω1 (P,Q) > J∗1 (P,Q) , ω2 (P,Q) > J∗2 (P,Q) , ... (5.2.61)

respectively.

Proposition 5.2.11. Let P,Q ∈ Γn, then we have the followings new inter rela-

tions.

2 [N∗1 (P,Q)−N∗2 (P,Q)] ≤ 2∆ (P,Q) ≤ 8I (P,Q) ≤ 8h (P,Q) ≤ J (P,Q)

≤ 8T (P,Q) ≤ E∗1 (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] .

(5.2.62)
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H (P,Q) ≤ B (P,Q) ≤ L∗ (P,Q) ≤ N1 (P,Q) ≤ N3 (P,Q) ≤ N2 (P,Q)

≤ A (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] .
(5.2.63)

1

4
JR (P,Q) ≤ K (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.64)

2∆ (P,Q)− 1

2
ψ (P,Q) ≤ χ2 (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.65)

1

2

[
ψM (P,Q)− 1

2
J∗1 (P,Q)

]
≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.66)

[J∗1 (P,Q)− J∗2 (P,Q)] ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.67)

2 [∆ (P,Q) + L (P,Q)] ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.68)

4MSA (P,Q) ≤ 4

3
MSH (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.69)

1

2
MSB (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.70)

32d (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.71)

2F (P,Q) ≤ ξ1 (P,Q) ≤ [ζ1 (P,Q) , ω1 (P,Q)] . (5.2.72)

6DψJ (P,Q) ≤ 64DψT (P,Q) ≤ E∗2 (P,Q) ≤ ξ2 (P,Q) ≤ [ζ2 (P,Q) , ω2 (P,Q)] ,

(5.2.73)

where MSA (P,Q), MSB (P,Q), MSH (P,Q), DψT (P,Q), DψJ (P,Q), and ζm (P,Q)

are defined by (1.2.42), (1.2.43), (1.2.44), (1.2.45), (1.2.46), and (4.3.14) respec-

tively.

Proof : Since we know the following relations. Relations (5.2.75), (5.2.77),

(5.2.81), and (5.2.82) have taken from literature (Jain and Chhabra [43]), rela-

tions (5.2.74) and (5.2.80) are from literature (Jain and Srivastava [49]), rela-

tions (5.2.79) and (5.2.86) are from (Jain and Chhabra [44]), relations (5.2.83)

and (5.2.84) have taken from (Taneja [97]), whereas relations (5.2.78), (5.2.85),
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(5.2.76), and (5.2.87) are from literatures (Jain and Saraswat [48]), (Taneja [100]),

(Taneja [101]), and (Taneja [99]) respectively.

1

4
∆ (P,Q) ≤ I (P,Q) ≤ h (P,Q) ≤ 1

8
J (P,Q)

≤ T (P,Q) ≤ 1

8
E∗1 (P,Q) .

(5.2.74)

N∗1 (P,Q)−N∗2 (P,Q) ≤ ∆ (P,Q) . (5.2.75)

H (P,Q) ≤ B (P,Q) ≤ L∗ (P,Q) ≤ N1 (P,Q)

≤ N3 (P,Q) ≤ N2 (P,Q) ≤ A (P,Q) .
(5.2.76)

A (P,Q) ≤ h (P,Q) . (5.2.77)

1

4
JR (P,Q) ≤ K (P,Q) ≤ J (P,Q) . (5.2.78)

∆ (P,Q) ≤ 1

2

[
1

2
ψ (P,Q) + χ2 (P,Q)

]
. (5.2.79)

1

2
ψM (P,Q) ≤ E∗1 (P,Q) +

1

4
J∗1 (P,Q) . (5.2.80)

J∗1 (P,Q)− J∗2 (P,Q) ≤ E∗1 (P,Q) . (5.2.81)

∆ (P,Q) ≤ 1

2
E∗1 (P,Q)− L (P,Q) . (5.2.82)

MSA (P,Q) ≤ 1

3
MSH (P,Q) ≤ 1

4
∆ (P,Q) . (5.2.83)

1

2
MSB (P,Q) ≤ h (P,Q) . (5.2.84)

4d (P,Q) ≤ 1

8
J (P,Q) . (5.2.85)

F (P,Q) ≤ 1

2
∆ (P,Q) . (5.2.86)

1

4
DψJ (P,Q) ≤ 8

3
DψT (P,Q) ≤ 1

24
E∗2 (P,Q) . (5.2.87)

By taking (5.2.74), (5.2.75) and first part of the relations (5.2.59) and (4.3.22)

together, we get the relation (5.2.62).
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By taking (5.2.58), (5.2.76), (5.2.77) and first part of the relation (4.3.22), we get

the relation (5.2.63).

By taking (5.2.78) and fifth, eighth, ninth elements of the proved relation (5.2.62)

together, we get the relation (5.2.64).

By taking (5.2.57), (5.2.79) and first part of the relation (4.3.22) together, we get

the relation (5.2.65).

By taking (5.2.80) and first part of the relations (5.2.59) and (4.3.22) together,

we get the relation (5.2.66).

By taking (5.2.81) and first part of the relations (5.2.59) and (4.3.22) together,

we get the relation (5.2.67).

By taking (5.2.82) and first part of the relations (5.2.59) and (4.3.22) together,

we get the relation (5.2.68).

By taking (5.2.83) and first part of the relations (5.2.60) and (4.3.22) together,

we get the relation (5.2.69).

By taking (5.2.58), (5.2.84) and first part of the relation (4.3.22) together, we get

the relation (5.2.70).

By taking (5.2.85) and fifth, eighth, ninth elements of the proved relation (5.2.62)

together, we get the relation (5.2.71).

By taking (5.2.86) and first part of the relations (5.2.60) and (4.3.22) together,

we get the relation (5.2.72).

By taking (5.2.87) and second part of the relations (5.2.59) and (4.3.22) together,

we get the relation (5.2.73).
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Proposition 5.2.12. Let P,Q ∈ Γn, then we have the followings new inter rela-

tions.

γm (P,Q) > E∗m (P,Q) , (5.2.88)

γm (P,Q) > ∆m (P,Q) , (5.2.89)

γm (P,Q) > χ2m (P,Q) , (5.2.90)

and

ρm (P,Q) > J∗m (P,Q) , (5.2.91)

where ∆m (P,Q), χ2m (P,Q), γm (P,Q), and ρm (P,Q) are defined by (1.2.30),

(1.2.31), (4.2.12), and (4.2.17) respectively..

Proof : If we put t = pi
qi
, i = 1, 2, 3..., n in (5.2.8) to (5.2.11), multiply by

qi and then sum over all i = 1, 2, 3..., n, we get the desired relations (5.2.88) to

(5.2.91) respectively.

Now we can easily say from (5.2.88) to (5.2.91), that

γ1 (P,Q) > E∗1 (P,Q) = E∗ (P,Q) , γ2 (P,Q) > E∗2 (P,Q) , ..., (5.2.92)

γ1 (P,Q) > ∆1 (P,Q) = ∆ (P,Q) , γ2 (P,Q) > ∆2 (P,Q) , ..., (5.2.93)

γ1 (P,Q) > χ2 (P,Q) , γ2 (P,Q) > χ4 (P,Q) , ..., (5.2.94)

and

ρ1 (P,Q) > J∗1 (P,Q) , ρ2 (P,Q) > J∗2 (P,Q) , ..., (5.2.95)

respectively.

Proposition 5.2.13. Let P,Q ∈ Γn, then we have the followings new inter rela-

tions.

ρm (P,Q) > J∗m (P,Q) ≥ E∗m (P,Q) , (5.2.96)

ρ1 (P,Q) > 2∆ (P,Q) ≥ 2 [N∗1 (P,Q)−N∗2 (P,Q)] , (5.2.97)
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ρ1 (P,Q) > 8T (P,Q) ≥ J (P,Q) ≥ 8h (P,Q) ≥ 8I (P,Q) , (5.2.98)

and

ρ1 (P,Q) > 8A (P,Q) ≥ 8N2 (P,Q) ≥ 8N3 (P,Q) ≥ 8N1 (P,Q)

≥ 8L∗ (P,Q) ≥ 8B (P,Q) ≥ 8H (P,Q) .
(5.2.99)

Proof : Since we know the followings. Relations (5.2.100), (5.2.101), and

(5.2.103) are from (Jain and Chhabra [43]), whereas relations (5.2.102) and

(5.2.104) are from literatures (Jain and Srivastava [49]) and (Taneja [101]) re-

spectively.

J∗m (P,Q) ≥ E∗m (P,Q) , (5.2.100)

1

2
E∗ (P,Q) ≥ ∆ (P,Q) ≥ [N∗1 (P,Q)−N∗2 (P,Q)] , (5.2.101)

1

2
E∗ (P,Q) ≥ T (P,Q) ≥ 1

8
J (P,Q) ≥ h (P,Q) ≥ I (P,Q) , (5.2.102)

T (P,Q) ≥ A (P,Q) , (5.2.103)

and

A (P,Q) ≥ N2 (P,Q) ≥ N3 (P,Q) ≥ N1 (P,Q)

≥ L∗ (P,Q) ≥ B (P,Q) ≥ H (P,Q) .
(5.2.104)

By taking (5.2.91) and (5.2.100) together, we get the relation (5.2.96).

By taking first and third part of the proved relation (5.2.96) at m = 1 together

with (5.2.101), we get the relation (5.2.97).

By taking first and third part of the proved relation (5.2.96) at m = 1 together

with (5.2.102), we get the relation (5.2.98).

By taking first and second part of the proved relation (5.2.98) together with

(5.2.103) and (5.2.104), we get the relation (5.2.99).
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5.3 Conclusion

In this chapter, we derived many new important and interesting relations among

several divergences by using some algebraic, exponential, and logarithmic inequal-

ities.

150



6

NEW GENERALIZED

INFORMATION DIVERGENCE

FOR COMPARING FINITE

PROBABILITY

DISTRIBUTIONS AND

APPLICATIONS

6.1 Introduction

Several generalized divergences had been introduced in information theory for

comparing two probability distributions at a time, like; Csiszar’s divergence ([2],

[20]), Bregman’s divergence ([14]), Burbea- Rao’s divergence ([16]), Renyi’s diver-

gence ([79]), Jain and Saraswat’s divergence ([48]) etc. This chapter introduces

new generalized divergence measure for comparing finite number of discrete prob-

ability distributions.
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This chapter is organized as follows: Besides introduction and conclusion sections,

there are two more sections as well. In section 6.2, we introduce a new generalized

divergence for comparing 2j, j = 1, 2, 3..., n discrete probability distributions at a

time. we also obtain a sequence of intra relations among this generalized measure

and the measures with 2j+ 2, 2j− 2, 2j− 4, ..., 4, 2 ∀j = 1, 2, 3..., n discrete prob-

ability distributions, respectively. Relation with other generalized divergence has

been obtained as well. In section 6.3, Special cases as an application, are dis-

cussed.

6.2 New Generalized Divergence, Properties and

Relations

Let Γm = {P = (p1, p2, p3, ..., pm) : pi > 0,
∑m

i=1 pi = 1}, m ≥ 2 be the set of

all complete finite discrete probability distributions. If we take pi ≥ 0 for some

i = 1, 2, 3...,m, then we have to suppose that 0f (0) = 0f
(
0
0

)
= 0.

Let P1 = (p11, ..., pm1) , ..., Pn = (p1n, ..., pmn) and Q1 = (q11, ..., qm1) , ..., Qn =

(q1n, ..., qmn) be discrete probability distributions such that Pj, Qj ∈ Γm ∀ j =

1, 2, ..., n. Now we define a new generalized information divergence measure

among 2n discrete probability distributions by

Snf (P1, P2, ..., Pn, Q1, Q2, ..., Qn)

=
m∑
i=1

m∑
i=1

...

m∑
i=1

qi1qi2...qinf

(
pi1+qi1
2qi1

+ pi2+qi2
2qi2

+ ...+ pin+qin
2qin

n

)
,

(6.2.1)

where f : (0,∞)→ R (set of real no.) is real, continuous, and convex function.

Particularly, Jain and Saraswat’s generalized divergence measure (1.2.47) is a
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special case of this measure, which is

S1
f (P1, Q1) =

m∑
i=1

qi1f

(
pi1 + qi1

2qi1

)
=

m∑
i=1

qif

(
pi + qi

2qi

)
. (6.2.2)

Now we define the following basic properties of measure (6.2.1).

(a). Snf (P1, P2, ..., Pn, Q1, Q2, ..., Qn) > 0 and is convex in the pair of probability

distribution P,Q ∈ Γm.

(b). Snf (Pj, Qj) = 0 if Pj = Qj ∀ j = 1, 2..., n (attains its minimum value).

(c). Snf (Pj, Qj) attains its maximum value when Pj and Qj are perpendicular to

each other for each j.

6.2.1 Intra relation among new generalized divergences

Now, we derive an important and fruitful relation among new generalized diver-

gence measures. The sequence of these measures are basically special cases of

(6.2.1) according to the number of probability distributions.

Theorem 6.2.1. Let f : (0,∞) → R be a differentiable, convex function, i.e.,

f ′′ (t) ≥ 0 ∀t > 0. For Pj, Qj ∈ Γm ∀ j = 1, 2..., n, we have

S1
f (P1, Q1) ≥ S2

f (P1, P2, Q1, Q2) ≥ ... ≥ Snf (P1, P2, ..., Pn, Q1, Q2, ..., Qn)

≥ Sn+1
f (P1, P2, ..., Pn, Pn+1, Q1, Q2, ..., Qn, Qn+1) ≥ f (1) , (6.2.3)

where Snf (P1, P2, ..., Pn, Q1, Q2, ..., Qn) is given by (6.2.1).

Proof : By using Jensen inequality (1.3.3) for multiple summations for the

discrete probability distributions, we get

m∑
i=1

m∑
i=1

...

m∑
i=1

qi1qi2...qinqi(n+1)f

 pi1+qi1
2qi1

+ pi2+qi2
2qi2

+ ...+ pin+qin
2qin

+
pi(n+1)+qi(n+1)

2qi(n+1)

n+ 1
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≥ f

 m∑
i=1

m∑
i=1

...
m∑
i=1

qi1qi2...qinqi(n+1)

 pi1+qi1
2qi1

+ pi2+qi2
2qi2

+ ...+ pin+qin
2qin

+
pi(n+1)+qi(n+1)

2qi(n+1)

n+ 1


= f

[
1

n+ 1

(
m∑
i=1

(
pi1 + qi1

2

) m∑
i=1

qi2...
m∑
i=1

qi(n+1) + ...+
m∑
i=1

(
pi(n+1) + qi(n+1)

2

) m∑
i=1

qi1...
m∑
i=1

qin

)]

= f

[
1

n+ 1
(1 + 1 + ...+ 1)

]
= f

(
n+ 1

n+ 1

)
= f (1) , i.e.,

Sn+1
f (P1, P2, ..., Pn, Pn+1, Q1, Q2, ..., Qn, Qn+1) ≥ f (1) . (6.2.4)

Hence the last inequality of relation (6.2.3) is proved.

Now apply Jensen inequality (1.3.3) for x1, x2, ..., xn+1, where xi ∈ (0,∞) ∀ i =

1, 2, ..., n+ 1, we obtain

1

n+ 1
[f (x1) + f (x2) + ...+ f (xn) + f (xn+1)] ≥ f

[
x1 + x2 + ...+ xn + xn+1

n+ 1

]
.

(6.2.5)

Let

x1 =
z1 + z2 + ...+ zn

n
, x2 =

z2 + z3 + ...+ zn + zn+1

n
, ..., xn+1 =

zn+1 + z1 + ...+ zn−1
n

,

where zi ∈ (0,∞) ∀ i = 1, 2, ..., n+ 1.

Then by inequality (6.2.5), we get

1

n+ 1

[
f

(
z1 + z2 + ...+ zn

n

)
+ ...+ f

(
zn+1 + z1 + ...+ zn−1

n

)]
≥ f

[
1

n+ 1

(
z1 + z2 + ...+ zn

n
+ ...+

zn+1 + z1 + ...+ zn−1
n

)]
= f

(
n (z1 + z2 + ...+ zn + zn+1)

n (n+ 1)

)
= f

(
z1 + z2 + ...+ zn + zn+1

n+ 1

)
.

(6.2.6)

Now put zj =
pij+qij
2qij

in (6.2.6), multiply with qij ∀ j = 1, ..., n + 1 and for each

i = 1, ...,m and then summation n+ 1 times from i = 1 to i = m, we get

1

n+ 1

[
m∑
i=1

...

m∑
i=1

qi1...qi(n+1)f

(
pi1+qi1
2qi1

+ ...+ pin+qin
2qin

n

)]
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+...+
1

n+ 1

 m∑
i=1

...
m∑
i=1

qi1...qi(n+1)f

 pi(n+1)+qi(n+1)

2qi(n+1)
+ pi1+qi1

2qi1
+ ...+

pi(n−1)+qi(n−1)

2qi(n−1)

n


≥

m∑
i=1

...

m∑
i=1

qi1...qi(n+1)f

 pi1+qi1
2qi1

+ ...+
pi(n+1)+qi(n+1)

2qi(n+1)

n+ 1

 , i.e.,

Snf (P1, P2, ..., Pn, Q1, Q2, ..., Qn) ≥ Sn+1
f (P1, P2, ..., Pn+1, Q1, Q2, ..., Qn+1) .

(6.2.7)

Hence the second last inequality of (6.2.3) is proved for all n, and the theorem is

thus proved.

Remark 6.2.1. If function is normalized, i.e., f (1) = 0, then we obtain the

following sequence of new relations from (6.2.3).

S1
f (P1, Q1) ≥ S2

f (P1, P2, Q1, Q2) ≥ ... ≥ Snf (P1, P2, ..., Pn, Q1, Q2, ..., Qn)

≥ Sn+1
f (P1, P2, ..., Pn, Pn+1, Q1, Q2, ..., Qn, Qn+1) ≥ 0.

(6.2.8)

6.2.2 Relation between two different generalized diver-

gences

The following generalized divergence measure for comparing finite discrete prob-

ability distributions, is introduced by Dragomir [26], which is

Cn
f (P1, P2, ..., Pn, Q1, Q2, ..., Qn)

=
m∑
i=1

m∑
i=1

...

m∑
i=1

qi1qi2...qinf

(
pi1
qi1

+ pi2
qi2

+ ...+ pin
qin

n

)
,

(6.2.9)

where f : (0,∞)→ R (set of real no.) is real, continuous, and convex function.

Particularly, Ciszar’s generalized divergence measure (1.2.1) is a special case of

this measure, which is

C1
f (P1, Q1) =

m∑
i=1

qi1f

(
pi1
qi1

)
=

m∑
i=1

qif

(
pi
qi

)
. (6.2.10)
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Now we derive a special and important relation between generalized measure

(6.2.1) and (6.2.9), by the following theorem .

Theorem 6.2.2. Let f : (0,∞) → R be a differentiable, convex and normalized

function, i.e., f ′′ (t) ≥ 0 ∀t > 0 and f (1) = 0 respectively. For Pj, Qj ∈ Γm ∀ j =

1, 2..., n, we have

Snf (P1, P2, ..., Pn, Q1, Q2, ..., Qn) ≤ 1

2
Cn
f (P1, P2, ..., Pn, Q1, Q2, ..., Qn) . (6.2.11)

Proof : Apply Jensen inequality (1.3.3) for the domain I ⊂ (0,∞), by putting

λ1 = λ2 = 1
2
, λ3 = ... = λn = 0, we get

f

(
t1 + t2

2

)
≤ 1

2
[f (t1) + f (t2)] . (6.2.12)

Now put t1 = t and t2 = 1 in above inequality, we obtain

f

(
t+ 1

2

)
≤ 1

2
f (t) . (6.2.13)

Now take t =

∑n
j=1

pij
qij

n
in inequality (6.2.13), multiply with

∏n
j=1 qij for each i

and then summation over n times from i = 1 to i = m, we obtain the required

relation (6.2.11).

Remark 6.2.2. By considering two probability distributions at a time, we get the

following well known result from inequality (6.2.11)

m∑
i=1

qif

(
pi + qi

2qi

)
≤ 1

2

m∑
i=1

qif

(
pi
qi

)
⇒ Sf (P,Q) ≤ 1

2
Cf (P,Q) ,

where Sf (P,Q) , Cf (P,Q) are given by (6.2.2) and (6.2.10) respectively.
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6.3 Application of New Generalized Divergence

In previous section, we introduced new generalized divergence measure for com-

paring finite discrete probability distributions. In this section, we apply this new

generalized divergence on Variational distance, Chi- square divergence and Expo-

nential divergence respectively and obtain the interesting relations. The results

are on the similar lines to the results presented by Dragomir [26].

Proposition 6.3.1. Let Pj, Qj ∈ Γm ∀ j = 1, 2, ..., n, then we have

Vn (P1, P2, ..., Pn, Q1, Q2, ..., Qn) ≤
n∑
j=1

V (Pj, Qj) (6.3.1)

and

V1 (P1, Q1) = V (P,Q) ≥ 1

2
V2 (P1, P2, Q1, Q2) ≥ ... ≥ 1

n
Vn (P1, ..., Pn, Q1, ..., Qn)

≥ 1

n+ 1
Vn+1 (P1, ..., Pn, Pn+1, Q1, ..., Qn, Qn+1) ≥ 0.

(6.3.2)

Proof : Let f (t) = |t− 1| , t > 0. Here f (t) is convex and normalized function

because f ′′ (t) ≥ 0 ∀ t > 0 but not at t = 1 and f (1) = 0 respectively.

Put f (t) in (6.2.1) and (6.2.2), we obtain the followings respectively.

Snf (P1, ..., Pn, Q1, ..., Qn) =
m∑
i=1

...
m∑
i=1

qi1...qin

∣∣∣∣∣
pi1+qi1
2qi1

+ ...+ pin+qin
2qin

n
− 1

∣∣∣∣∣
=

1

n

m∑
i=1

...
m∑
i=1

qi1...qin

∣∣∣∣(pi1 + qi1
2qi1

− 1

)
+ ...+

(
pin + qin

2qin
− 1

)∣∣∣∣
=

1

2n

m∑
i=1

...
m∑
i=1

qi1...qin

∣∣∣∣pi1 − qi1qi1
+ ...+

pin − qin
qin

∣∣∣∣
=

1

2n
Vn (P1, ..., Pn, Q1, ..., Qn)

(6.3.3)
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and

1

2

m∑
i=1

|pi − qi| =
1

2
V (P,Q) , (6.3.4)

where Vn (P1, ..., Pn, Q1, ..., Qn) is designated as generalized Variational distance

and V (P,Q) is the well known Variational distance, a special case of Vn (P1, ..., Pn, Q1, ..., Qn)

for comparing two probability distributions.

Now, equation (6.3.3) can be written as

1

2n
Vn (P1, ..., Pn, Q1, ..., Qn) ≤ 1

2n

m∑
i=1

...
m∑
i=1

qi1...qin

[∣∣∣∣pi1 − qi1qi1

∣∣∣∣+ ...+

∣∣∣∣pin − qinqin

∣∣∣∣]

=
1

2n

[
m∑
i=1

|pi1 − qi1|
m∑
i=1

qi2...
m∑
i=1

qin + ...+
m∑
i=1

|pin − qin|
m∑
i=1

qi1...
m∑
i=1

qi(n−1)

]

=
1

2n

[
m∑
i=1

|pi1 − qi1|+ ...+
m∑
i=1

|pin − qin|

]
=

1

2n

n∑
j=1

m∑
i=1

|pij − qij| =
1

2n

n∑
j=1

V (Pj, Qj) .

⇒ Vn (P1, ..., Pn, Q1, ..., Qn) ≤
n∑
j=1

V (Pj, Qj) .

Hence prove the relation (6.3.1) and sequence of inequalities (6.3.2) can be ob-

tained by using (6.2.8) directly.

Proposition 6.3.2. Let Pj, Qj ∈ Γm ∀ j = 1, 2, ..., n, then we have

χ2
n (P1, P2, ..., Pn, Q1, Q2, ..., Qn) =

n∑
j=1

χ2 (Pj, Qj) (6.3.5)

and

χ2
1 (P1, Q1) = χ2 (P,Q) ≥ 1

22
χ2
2 (P1, P2, Q1, Q2) ≥ ... ≥ 1

n2
χ2
n (P1, ..., Pn, Q1, ..., Qn)

≥ 1

(n+ 1)2
χ2
n+1 (P1, ..., Pn, Pn+1, Q1, ..., Qn, Qn+1) ≥ 0.

(6.3.6)
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Proof : Let f (t) = (t− 1)2 , t > 0. Here f (t) is convex and normalized

function because f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0 respectively.

Put f (t) in (6.2.1) and (6.2.2), we obtain the followings respectively.

Snf (P1, ..., Pn, Q1, ..., Qn) =
m∑
i=1

...

m∑
i=1

qi1...qin

[
pi1+qi1
2qi1

+ ...+ pin+qin
2qin

n
− 1

]2

=
1

n2

m∑
i=1

...

m∑
i=1

qi1...qin

[(
pi1 + qi1

2qi1
− 1

)
+ ...+

(
pin + qin

2qin
− 1

)]2
=

1

4n2

m∑
i=1

...

m∑
i=1

qi1...qin

[
pi1 − qi1
qi1

+ ...+
pin − qin
qin

]2
=

1

4n2
χ2
n (P1, ..., Pn, Q1, ..., Qn)

(6.3.7)

and

1

4

m∑
i=1

(pi − qi)2

qi
=

1

4
χ2 (P,Q) , (6.3.8)

where χ2
n (P1, ..., Pn, Q1, ..., Qn) is designated as generalized Chi- square diver-

gence and χ2 (P,Q) is the well known Chi- square divergence, a special case of

χ2
n (P1, ..., Pn, Q1, ..., Qn) for comparing two probability distributions.

Now, the above equation (6.3.7) can be written as

1

4n2
χ2
n (P1, ..., Pn, Q1, ..., Qn)

=
1

n2

m∑
i=1

...

m∑
i=1

qi1...qin

[
n∑
j=1

(
pij + qij

2qij
− 1

)2

+ 2
∑

1≤j<k≤n

(
pij + qij

2qij
− 1

)(
pik + qik

2qik
− 1

)]

=
1

n2

n∑
j=1

m∑
i=1

...
m∑
i=1

qi1...qin

(
pij + qij

2qij
− 1

)2

+
2

n2

∑
1≤j<k≤n

m∑
i=1

...
m∑
i=1

qi1...qin

(
pij + qij

2qij
− 1

)(
pik + qik

2qik
− 1

)
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=
1

n2

n∑
j=1

[
m∑
i=1

qi1...

m∑
i=1

qij

(
pij + qij

2qij
− 1

)2

...
m∑
i=1

qin

]

+
2

n2

∑
1≤j<k≤n

[
m∑
i=1

qi1...

m∑
i=1

qij

(
pij + qij

2qij
− 1

)
...

m∑
i=1

qik

(
pik + qik

2qik
− 1

)
...

m∑
i=1

qin

]

=
1

n2

n∑
j=1

m∑
i=1

qij

(
pij + qij

2qij
− 1

)2

+
2

n2

∑
1≤j<k≤n

m∑
i=1

(
pij − qij

2

) m∑
i=1

(
pik − qik

2

)

=
1

4n2

n∑
j=1

χ2 (Pj, Qj) + 0 =
1

4n2

n∑
j=1

χ2 (Pj, Qj) .

⇒ χ2
n (P1, ..., Pn, Q1, ..., Qn) =

n∑
j=1

χ2 (Pj, Qj) .

Hence prove the relation (6.3.5) and sequence of inequalities (6.3.6) can be ob-

tained by using (6.2.8) directly.

Proposition 6.3.3. Let Pj, Qj ∈ Γm ∀ j = 1, 2, ..., n, then we have

Dn
exp (P1, P2, ..., Pn, Q1, Q2, ..., Qn) =

n∏
j=1

D
exp

1
n

(Pj, Qj) (6.3.9)

and

D1
exp (P1, Q1) = Dexp (P,Q) ≥ D2

exp (P1, P2, Q1, Q2) ≥ ... ≥ Dn
exp (P1, P2, ..., Pn, Q1, Q2, ..., Qn)

≥ Dn+1
exp (P1, P2, ..., Pn, Pn+1, Q1, Q2, ..., Qn, Qn+1) ≥ e.

(6.3.10)

Proof : Let f (t) = et, t > 0. Here f (t) is convex but not normalized function

because f ′′ (t) ≥ 0 ∀ t > 0 and f (1) 6= 0 respectively.

Put f (t) in (6.2.1) and (6.2.2), we obtain the followings respectively.

Dn
exp (P1, ..., Pn, Q1, ..., Qn) =

m∑
i=1

...

m∑
i=1

qi1...qin exp

(
pi1+qi1
2qi1

+ ...+ pin+qin
2qin

n

)
(6.3.11)
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and
m∑
i=1

qie
pi+qi
2qi = Dexp (P,Q) , (6.3.12)

where (6.3.11) is designated as generalized Exponential divergence and (6.3.12)

is called Exponential divergence, a special case of (6.3.11) for comparing two

probability distributions.

Now, equation (6.3.11) can be written as

Dn
exp (P1, ..., Pn, Q1, ..., Qn) =

m∑
i=1

...
m∑
i=1

qi1...qin

(
e

pi1+qi1
2nqi1 ...e

pin+qin
2nqin

)

=
m∑
i=1

qi1e
pi1+qi1
2nqi1 ...

m∑
i=1

qine
pin+qin
2nqin

=
n∏
j=1

[
m∑
i=1

qije
pij+qij
2nqij

]
=

n∏
j=1

[
m∑
i=1

qij

(
e

pij+qij
2qij

) 1
n

]

=
n∏
j=1

D
exp

1
n

(Pj, Qj) .

Hence prove the relation (6.3.9) and sequence of inequalities (6.3.10) can be ob-

tained by using (6.2.3) directly by considering f (1) = e 6= 0.

6.4 Conclusion

In this chapter, we have introduced a new generalized divergence for comparing

more than two discrete probability distributions at a time. This new general-

ized measure is an extension of Jain and Saraswat’s [48] generalized divergence

measure. We also derived a relation between this new measure and another gen-

eralized measure (Dragomir [26]). Interesting relations on Variational distance

(1.2.7), Chi- square divergence (1.2.19), and Exponential divergence have been
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evaluated as well by using new generalized divergence measure (6.2.1).

Future Scope:

With several new directions that open with the study reported here, there is scope

of further work. Some of that we can suggest are the followings:

a. Study of new information inequalities in Mutual information sense (Dragomir

etc. all [28]), which tell us how far the joint distribution is from its independency

if distributions are independent to each other.

b. Study of Metric spaces over the set of positive real numbers by helping new

symmetric divergence measures, also can be seen in literatures (Bhatia and Singh

[11], Jain and Chhabra [45]). So we strongly believe that divergence measures

can be extended to other significant problems of functional analysis and its ap-

plications and such investigations are actually in progress because this is also an

area worth being investigated.

c. Study of divergences in fuzzy mathematics as fuzzy directed divergences and

fuzzy entropies (Bajaj and Hooda [4], Hooda [39], Jha and Mishra [52]), which

are very useful to find the amount of average ambiguity or difficulty in making a

decision whether an element belongs to a set or not. Fuzzy information measures

have recently found applications to fuzzy aircraft control, fuzzy traffic control,

engineering, medicines, computer science, management and decision making etc.

d. Study of utilities of different events (Bhullar etc. all [12], Taneja and Tuteja

[91]), i.e., an event is how much useful compare to other events.
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