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ABSTRACT 

 

 To study the end-use properties of the polymer we developed models for 

molecular weight distribution and particle size distribution. The moment equations 

are utilized to find molecular weight distribution, and average molecular weight. 

The model for the particle size distribution is taken from literature (Crowley, 

Meadows et al. 2000). Zero-one model was selected for the study, the particles are 

assumed to contain either one or zero radical. In such a system, the average number 

of radicals per particle cannot exceed 0.5. Termination occurs only between an 

entering radical and a growing radical. 

 
 Batch reactor was used for the experiments in the laboratory. The experiments 

were carried out in a reaction vessel maintained at 70ºC. The reactor contents were 

agitated using impeller at 750 rpm. The impeller was connected to a variable speed 

motor, thus allowing changing the speed of the agitator. Vessel contains the 

thermocouple to monitor the temperature of the reaction mixture with on/off control 

system. Prior to start the reaction, the reactor was purge with nitrogen gas to dissipate 

the oxygen, if present. A nitrogen blanket was maintained throughout the reaction. A 

reliable apparatus Malvern Mastersizer 2000E was used to study particle size 

 Emulsion polymerization involves nucleation and growth of particle nuclei, 

followed by consumption of residual monomer in a heterogeneous reaction system. 

The propagation reaction of free radicals with monomer molecules takes place 

primarily in the latex particles and the emulsified monomer droplets only serve as a 

reservoir to supply the growing particles with monomer. Polymerization in non-

uniform latex particles is a potential candidate for offering various application 

properties. Emulsion polymerization has huge application in industries of textile, 

paint and pharmaceutical.  

 
 Only a small number of industries uses large scale batch reactor for production 

of polymer. However, from batch emulsion polymerization reactor, we can produce 

narrower distribution of particles, higher molecular weight and can get higher rate of 

polymerization as compared to that of semi-batch and continuous reactor. 
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distribution and monomer droplets size. The system operates on scattering pattern of 

light. Samples are added to the unit and circulated after sonication, distilled water 

was used as dispersant. Different concentrations of monomer, initiator and surfactant 

were used in analysis for particle size distribution and molecular weight.  

 
 As the polymerization reactors are exothermic and reactor thermal runaways 

can occur, effective control strategies have to be implemented. Here, we have made an 

attempt to develop three control systems for batch reactor viz. PID, MPC and NNPC. 

 
 A simulink model was developed for batch reactor using PMMA for the 

study. In this study, two different strategies were used for PID to control the 

temperature of the reactor. First PID controller used split range and second PID uses 

heater power as manipulative variable. We, further, pursue with model predictive 

control and neural network control. The molecular weight and PSD of the polymer 

are the most important elements to the properties of the product. However it is 

difficult to measure the molecular weight or PSD in real time. Therefore, the control 

of the molecular weight and PSD is often carried out by controlling the reaction 

temperature.  

 
 To make the quantitative comparison of the controllers, performance criteria 

for good control action were applied. These are the integral of time weighted absolute 

error (ITAE), integral of the square of the error (ISE), the integral of the absolute of 

the error. This helped in obtaining insights on aspects of simulation. All the criteria 

were analysed carefully and the model validation was done with experimental data. 

Nitrogen gas is used during the process, as the viscosity increases probability of 

entrapment of gas bubbles increases. A model is introduced in this work and 

simulated using MATLAB. 
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Chapter -1 
Introduction  



1. INTRODUCTION 

 
1.1 Emulsion Polymerization 

Emulsion polymerization could be explained mathematically by using 

particle number, volume, chain length and number of radicals. Smith and Ewart 

(1948) were the first who gave the population balance equation, which describes the 

complete particle balance in the system followed by Katz and his co-workers (Katz 

et al. 1969) who solves the population balance equation. These population balance 

equations are used to predict the behaviour of the particle size and their distribution. 

Immense research has been done on the subject of emulsion polymerization. 

Emulsion    polymerization has immense application in contemporary industries like 

textile, paint industries used in producing stiffening agents, binders, binders for 

pigments, bonding agent, synthetic rubbers, adhesives, sealants, trade paints, 

industrial coatings, printing inks, thermoplastics, toners, immunoassay and drug 

delivery in pharmaceutical industries.  

 
Emulsion polymerization has a nature gain over others. These are: safe, 

faster and easy to control because of the colloidal nature and in some cases product 
can be used without further separation. Additionally, they have less thermal and less 
physical problems in contrast to other processes like bulk polymerization. Along 
with physical gain there is a kinetic lead also, that is emulsion polymerization is the 
only process where relationship between molecular weight and rate of 
polymerization is not inverse like other processes. Emulsion polymerization 
facilitates change in molecular weight without altering rate of polymerization by 
adding chain transfer agents. From literature, it is clear that emulsion polymerization 
is an important field and it is worthy to pursue further research and development. 
 

Emulsion polymerization brings into play water as a solvent, which enable 

the process to be very swift, excellent heat transfer and enhances the control of heat 

of reaction, this aqueous phase bring down the viscosity of the emulsion. 

 
Water based polymerization has vast significance in industry as it endows an 

environmental friendly process, removes the reaction heat easily during 

polymerization and enables feasible handling of the final product. 
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 Research in controlled/free radical polymerization has increased 

significantly during the past two decades. Arora and co-workers synthesised the 

poly-methyl methacrylate by batch emulsion polymerization and also compared 

their results with mathematical model solved by computer programming in C. 

(Arora et al. 2010). 

 
Chern (2006; 2008) reviewed emulsion polymerization mechanisms and 

kinetics. Polymerization process engrosses the propagation reaction of free radicals 

with monomer molecules in a hefty number of discrete polymer particles distributed 

in the continuous aqueous phase. The nucleation and growth of latex particles 

actually controls the colloidal and physical properties of latex products. Emulsion 

polymerization involves nucleation and growth of particle nuclei, followed by 

consumption of residual monomer in a heterogeneous reaction system. This 

propagation reaction of monomer molecules takes place primarily in the latex 

particles; emulsified monomer droplets only serve as a reservoir to supply the 

growing particles with monomer. Polymerization in these non-uniform latex 

particles enhances various application properties of the product. The interfacial 

tension between polymer pairs and the particle–water performs an eminent role in 

the development of particle morphology.  

 
1.1.1 Modelling and Control 

Tools and technologies for process modelling of the polymer process 

extended in excess of past 30 years. A short time ago polymer industries have 

hurriedly and profitably adopted polymer process modelling technology.  

 
Control means “regulation the operation in such a tactic as to certify a desire 

outcome.” Online control of emulsion polymerization reactor is vital in order to 

optimize the productivity (Ramagnoli et al. 2006). 

 
It was found in literature that, emulsion is the only process which gives 

100% conversion but practically we must use a control scheme. Extensive literature 

is present on offline control of emulsion polymerization; during last few years 

inferential control of emulsion polymerization gained researcher’s curiosity.  
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In polymerization processes, the end-use properties are currently controlled 

directly or indirectly by controlling the molecular properties. A fact well accepted is 

that the behaviour of the majority of the chemical processes is best described by 

nonlinear models. Despite this reality, linear controllers still dominate in process 

industries. 

 
For purposes of product quality control, safety, and overall economic 

operation, it is necessary to monitor polymerization conversion and temperature. 

Obviously, these goals are difficult to achieve without efficient and reliable on-line 

measurement techniques.  

 
In last twenty years, very accurate off-line techniques/apparatus for the 

characterization of polymer quality have been developed. For example, molecular 

weight distributions (MWD) can be determined by NMR techniques and gel-

permeation chromatography (GPC). These are used to calculate the composition 

distribution of polymers. However, there are relatively few on-line sensors available, 

especially for emulsion polymerization systems. Currently, most major difficulties 

in on-line sensor technology arise from the complex nature of these systems, and 

sensor development requires a multidisciplinary effort. 

 
The most common controllers are the feedback type that receive sensor 

signals and send a proportional signal to the controlling element which executes the 

action. This Computer control approaches have been used to control the emulsion 

polymerisation. These depend on mathematical models of the emulsion 

polymerisation process. Statistical process control is supplementary frequently used 

in emulsion polymerisation. 

 
Polymerization processes are decidedly non-linear, therefore use of linear 

controller for the non-linear model results in inadequate performance. A good 
number of chemical process systems are non-linear. Some are only slightly non-
linear and can be analyzed and controlled effectively with linear techniques; and 
others are highly non-linear so that some form of non-linear control is desirable. A 
polymerization reactor is highly non-linear due to the heat of reaction [highly 
exothermic] and the complex reaction networks. 
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It is found that (Attarakih 2013) Population Balance Equations are a 

promising tool for modeling  of various important facets of emulsion 

polymerization, including Particle Size Distribution and molecular weight 

distribution. Advances in computational power and the development of numerical 

algorithms, coupled with progress of modeling emulsion stability will make PBEs 

omnipresent tools for the modeling of Emulsion Polymerization in the near future. 

 
The most significant variables, those which have an effect on end-use 

properties of the polymer and are necessary to control namely molecular weight, 

MWD, particle size, conversion, composition, PSD and temperature, are reported in 

this study. 

 
1.1.2 Evolution of Distributions 

Water borne polymerization such as emulsion polymerization is of enormous 

significance in industry as it is an environmental friendly process. Removal of 

reaction heat is easy during polymerization and feasible handling. Research in 

controlled/free radical polymerization has increased significantly during the past 

decades. 

 
It should be noted that a thermodynamic analysis gives the ultimate particle 

morphology (when the aging time approaches infinity). Nevertheless, this is generally 

not the case because other physicochemical parameters and polymerization conditions 

also come into play in determining the particle morphology (Chern 2008). 

 
Emulsion polymerization is essentially a process in which an aqueous 

dispersion of a sparingly soluble monomer or a mixture of monomers is converted 

into a stable dispersion of polymer particles (Friis et al. 1973).  

 
Chern and his co-workers (2000) concluded that the probability of capturing 

free radicals by micelles decreases with increasing number of micelles per unit of 

volume of water. Thus higher the concentration of micelles the smaller will be 

fraction of micelles which can be successfully converted into latex particles. As a 

matter of fact Chern claims about 85% of latex particles originate from 

homogeneous nucleation for the polymerization system with surfactant 
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concentration 10 mM. The concentration of latex particles originating from 

homogeneous nucleation increases with increasing surfactant concentration. This is 

due to the fact that micelles do not contribute in the formation of latex particles; they 

only serve as a reservoir to provide the growing latex particles. Waterborne free 

radicals first polymerize with monomer molecules dissolved in the continuous 

aqueous phase and then these oligomeric-radicals become hydrophobic in nature.  

 
After propagation, when a desired chain length is achieved by the 

oligomeric-radical, they become hydrophobic, and start showing a strong tendency 

nature to enter the monomer-swollen micelles and continue to propagate by reacting 

with those monomer molecules present in the micelle. As a result, monomer-swollen 

micelles are successfully transformed into particle nuclei. These embryos continue 

to grow by acquiring the reactant species from monomer droplets and monomer-

swollen micelles. In order to maintain proper colloidal stability of the growing 

particle nuclei, micelles that do not contribute to particle nucleation dismantle to 

supply the demand for surfactant. The Smith–Ewart theory formulated that the 

number of particles nucleated per unit volume of water (Np) is proportional to the 

surfactant  and initiator concentration to the 0.6 and 0.4 powers, respectively (Odian 

2004).  

 
The majority of monomer is consumed in this particle growth stage within 

60% monomer conversion. The particle growth stage (Interval II) ends when 

monomer droplets completely disappear in the polymerization system. Smith–Ewart 

case-2 kinetics has been used to calculate the rate of polymerization. 

Rp = kp  [M]p  (n Np/NA) 

 
Where propagation rate constant is kp, [M]p is the concentration of monomer 

in the particles, average number of free radicals per particle is denoted by n, and NA 

the Avogadro number which is a universal constant, Np is the number of polymer 

particles. .  
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This kinetic model was developed based on the following assumptions: 

(1) Coagulation of particles does not occur and the number of particles per unit 

volume during the process remains constant. .                 

(2) Monodispersed particle size distribution. 

(3) Neglect Desorption of free radicals from the particles. 

(4) Bimolecular termination of the radical inside the particle after the entry of 

second oligomeric radical from the aqueous phase is instantaneous.  

 
Fig. 1.1: Rate of polymerization as a function of monomer conversion. 

 
 The most important parameter that controls the particle nucleation process is 

the surfactant concentration. The particle nucleation period is relatively short (up to 

about 10–20% monomer conversion), depends on the initiator concentration controls 

the particle size and particle size distribution of latex products.  

 
1.2  Molecular weight distribution in Emulsion Polymerization 

 Available literature(Ando et al. 1996) is evidence that low molecular weight 

material boosts the ease of polymer processing. Vigorous molecular mass control is 

therefore a key issue in polymer production. On the whole, literature reported that 

techniques available were not accurate or robust enough for implementation in the 

process industry. Further, most control strategies developed have been based either 

on the simulations study or on extensive experimental effort. To overcome this 

challenge, various online methods have been developed to estimate relevant process 

variables. 
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 The mechanical properties of any polymer depend on their chemical 

structure, molecular weight and its distribution. Increase in chain length increases 

toughness, creep resistance and melt temperature. Higher molecular weight of 

polymers increases the tensile strength. When we talk about molecular weight 

distribution, which can be either a broad or a narrow, which is the calculation of 

molecular weights of the largest and smallest polymer molecules, but these polymer 

could have the same average. Broader molecular weight distribution means that 

there are more molecules with differing molecular weights, where as narrow 

molecular weight distribution means that there are a higher range of molecules of 

similar length and weight (Altarawneh 2008).  

 
1.3 Particle size distribution in Emulsion Polymerization 

 In emulsion polymerization, the polymer particles are in large colloidal size 

range. Particle size distribution (PSD) is strongly correlated with the end product 

properties of the emulsion. It influences the rheological properties, adhesion and 

film-forming properties of the final products: adhesives, coatings, emulsion paints, 

etc. There is a rich literature on modeling of emulsion polymerization processes, 

starting with the conventional Smith–Ewart model of the late 1940’s. 

 
 Emulsion polymerization can be carried out in batch, semi-batch and 

continuous reactor. Model identification methodology for batch processes is still an 

unexplored area and needs to be addressed. 

 
 There is a unique relationship between PSD and rheology, narrow 

distribution favours high value of rheology property; thus a process model and a 

rheology model will be needed in the identification of the PSD target.  

 
 Once the PSD that would lead to the desired rheology is identified, the 

rheology can be achieved by inferential control towards this target PSD.  

 
 In emulsion polymerization final latex properties are largely determined by 

the particle size distribution (PSD) and particle size; therefore, PSD control is a key 

process objective. For industrial application, a specified final PSD should achieve by 

following a specified recipe. Feed-back control of easily measured variables, such as 
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temperature, pressure and conversion ensures that the recipe is consistently 

implemented, but feedback control of PSD is rarely done. One reason may be, until 

recently, it was difficult to measure the full distribution on-line. Another reason 

stems from the distributed nature of polymer and the structure of models describing 

this system.  

 
1.4 This work : Motivation and Outlines 

 The motivation for this study is the industrial application of batch emulsion 

reactor. Only few industries use large scale batch reactor for production of polymer 

because batch reactor has severe problems in controlling the reaction temperature, 

since free radical emulsion polymerization is highly exothermic reaction and the 

heat transfer capacity is very limited due to surface to volume ratio and also lack of 

steady state condition. But from batch emulsion polymerization reactor we can 

produce narrower distribution of particle size and can get highest rate of 

polymerization along with high molecular weight than semi-batch and continuous 

reactor. Second reason is a plenty of work on control of bulk, solution free radical 

batch polymerization is available in literature but for batch free radical emulsion 

polymerization little or no literature is present till now. In this study we have tried to 

design effective and robust control system for batch emulsion polymerization 

reactor.   

 
The objectives of this research work are:  

• To develop a dynamic model for the reactor, Particle size distribution and 

Molecular weight distribution.  

• To study the synthesis of PMMA with different concentrations of initiator,        

emulsifier and monomer. 

• To study the effect of concentration of monomer, initiator and emulsifier on 

the particle size distribution and molecular weight. 

• To implement the advance control methodology for batch reactor using PID, 

MPC and NNPC to maintain particle size distribution in narrow range with 

bimodal distribution so that larger portion of polymer has similar particle 

size and controls the molecular weight to a specific value. 

• Validate the experimental results with simulated results. 
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 The core objective of this study is to control the end use properties (particle 

size distribution and molecular weight) of the final polymer product. For this, a 

robust control system is required, because the particle size distribution strongly 

affects the rheological properties and molecular weight affects the thermal, physical 

and mechanical properties of the final latex product (Kiparissides 2004). Bimodal 

particle size distribution allows increasing the solid content with low viscosity as 

compared to mono-modal distribution, and this is specified end-use properties for 

Paint and adhesives industries (Arevalillo et al. 2006; Krieger et al. 1959; Luckham 

et al. 1999; Mooney 1951; Silva et al. 2012; Sudduth 1993). Rheological property 

value increases with narrow distribution. Narrow distribution of polymer is designed 

mainly for paint industries, especially for methyl methacrylate and its co-polymers; 

smaller particles also favour the fast rate of film formation. A latex product with 

smaller particle size shows better colloidal stability because the colloidal stability of 

the particle is proportional to the particle size to the third power. Narrow distribution 

of particle size means that larger portion of the polymer particles are of same or 

nearly same size, where as broader distribution means large variation in size. 

 
 It is a well known fact that rate of polymerization increases with increasing 

temperature. With increase in temperature after a certain temperature, the size of the 

particle decreases. This inverse dependence between the particle size and the 

polymerization temperature is due to the increasing decomposition rate of the 

initiator with increasing monomer solubility in the aqueous phase, which increase 

the concentration of growing chains and, thus, reduce the latex size. It is given in 

literature (Tanrisever et al. 1996) that an opposite effect of the polymerization 

temperature on the latex size may also be expected in MMA polymerization. Rise in 

temperature is accompanied by narrower particle size distribution, and 

polymerization at higher temperature gives relatively narrow molecular weight 

distributions. Polydispersity index approaches 1.4 with increasing temperature. 

However, as the temperature decreases, molecular weight distribution of polymers 

becomes broader.  

 
 At high molecular weight [order of 105 g/mol], the polymer chains become 

entangled enough to show actual rubbery behaviour. Tensile strength and elongation 
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of polymer is very good with high molecular weight. Broader particle size 

distribution would necessarily lead to the formation of polymers having broad 

molecular weight distribution. Broader PSD gives higher weight average molecular 

weight of polymer. Hence, we use temperature as controlled variable to control the 

particle size in narrow distribution and molecular weight at the specific value of 

12,000 g/mol of the latex particle. 

 
 Mathematical modelling is a powerful tool not only for the development of 

process understanding, but also for the design strategy of advanced process control. 

As polymerization reactions are exothermic in nature and reactor thermal runaways 

can occur, thus, to prevent the system from thermal runaway effective control 

strategies have to be implemented. Another challenge is that online measurements of 

end use property for example molecular weights, composition, degree of branching 

and particle size distribution are not always available; this will make control more 

complicated and difficult. A control system for a polymerization reactor should be 

robust to handle unmeasured disturbance which impacts on the process of the 

polymer. The variability within batch reactor and variability from batch to batch is 

also a challenge when the control setup is decided. It is required to develop optimum 

and robust control strategies to control the end use properties in a batch reactor. 

 
Table 1.1: Relation between characteristics and properties of the polymer 

Characteristics Properties of polymer 

Narrow particle size 
distribution 

High Rheological properties, High solid content, 
Fast rate of film formation, better colloidal 
stability and low viscosity. 

High molecular weight  Good rubbery behaviour, good elongation, good 
tensile strength, good mechanical strength. 

  
1.5 Thesis Contribution 

• Developed a comprehensive mathematical model accounting for molecular 

weight and particle size distribution of free radical emulsion polymerization. 

This model was validated against experimental results and found to be 

capable of accurately predicting PSD, MWD. 
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• Investigating the effect of changing concentration of monomer, initiator and 

surfactant on the polymer key properties.  

• The dynamic model is used for model based control structure of batch 

reactor for PSD and MWD. 

• Based on this investigation, the manipulating variables that had a significant 

effect on the MWD, and PSD were determined and their effects were 

quantified. 

• Applied successfully three different controls (namely PID, MPC, and NNPC) 

on the batch reactor without steady state condition. 

• Able to control the narrow particle size distribution with the help of advance 

controller. 

• Efficently control the molecular weight of the polymer at its specific value 

by using advance controller. 

 
1.6  Outline of Thesis 

This thesis is organized as follows:  

 Chapter 2 gives the literature review and important characteristics of the 

process, and gives an overview of some significant contributions in the emulsion 

polymerization, modeling and control of the batch emulsion polymerization. 

 
 Chapter 3 is divided into three sections; in first section we discuss kinetics of 

batch emulsion polymerization, in second section modeling of molecular weight is 

discussed and in the last section modeling of particle size distribution is detailed. 

Bubble entrapment function is introduced new in this chapter. 

 
 In chapter 4 experimental and control strategies for both particle size 

distribution and molecular weight distribution are explained. The encountered 

difficulties are also discussed in this chapter. After explanation of experimental 

setup three control strategies are discussed for both the models namely PID, MPC, 

NNPC. Control strategies, control design along with parameter tuning are detailed 

later.  
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 All the experimental results are collected in chapter 5, simulation results for 

particle size distribution in chapter 6 and molecular weight distribution for batch 

emulsion polymerization and bubble entrapment function are discussed in chapter 7. 

The PMMA system is used for this study. 

 
 Last chapter of this thesis contains the conclusion of the work and gives 

future directions. 



 

Chapter -2 
Literature Review 



2.  LITERATURE REVIEW 
 
 Emulsion polymerization allows the production of polymer particles with 

special properties, including composition, morphology, molecular weight and 

particle size; and functional groups can also be incorporated to the polymer particle. 

Different types of polymer latex have been formulated to provide the desired 

properties without copolymerisation (Fream et al. 2000; 2000). 

 
 In polymerization the rate of polymerisation (Rp) is inversely proportional to 
the molecular weight. Large numbers of radicals produce a high polymerisation rate 
and also result in the formation of low molecular weight polymer. However, in 
emulsion polymerisation, the rate of polymerisation and the molecular weight can be 
simultaneously high as a result of compartmentalisation within polymerising 
particles. These advantages are the most fascinating features of the emulsion 
polymerization. 
 
 Additionally low viscosity of latex allows a high rate of heat transfer during 

polymerisation (Hangquan et al. 1999). 

 
2.1  Historical Perspective  

 Emulsion polymerization is a type of radical polymerization that usually 
starts with an emulsion incorporating monomer, water and surfactant. The most 
common type of emulsion polymerization is an oil-in-water emulsion, in which 
droplets of monomer (the oil) are emulsified (with surfactants) in a continuous phase 
of water. 
 
 The German chemist Fittig and Paul discovered the polymerization process 
in 1877 that turns Methyl Methacrylate into poly Methyl Methacrylate. The idea of 
using an emulsified monomer in an aqueous suspension or emulsion was first 
conceived by workers at Bayer, before World War I, in an attempt to prepare 
synthetic rubber. During 1920’s the first emulsion polymerization product was used 
as a surface-active agent and polymerization initiator. Over the next twenty years 
after the end of World War II, more efficient methods for the production of many 
forms of synthetic rubber by emulsion polymerization were developed; some 
historical events are tabulated in Table 2.1. 

http://wapedia.mobi/en/Radical_polymerization
http://wapedia.mobi/en/Emulsion
http://wapedia.mobi/en/Monomer
http://wapedia.mobi/en/Surfactant
http://wapedia.mobi/en/Surfactant
http://wapedia.mobi/en/Surfactant
http://wapedia.mobi/en/World_War_II
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Table 2.1: History of emulsion polymerization 

Time line Innovation 

1843 First acrylic acid was created. 

1865 Methacrylic acid was formulated 

1877 Fittig and Paul discovered the polymerization process produced 
polymethyl methacrylate. 

1933 German chemist Otto R"ohm patented the PMMA as brand name 
PLEXIGLAS(R). 

1936 The first commercial production of PMMA, production of safety 
glass began. 

1947 Biocompatibility and inertness of polymethyl methacrylate has been 
well accepted. 

1949 Contact lenses were made from a hard plastic (polymethyl 
methacrylate ) 

1952 Oct 28 latex dewatering process is disclosed in US. 

1966 Dec 27, emulsion polymerized polydiorganosiloxane and its method 
of manufacture is introduced 

1975 Lehigh's EPI, carried out research into the preparation, properties, 
characterization and applications of latex polymers 

1998 Bone Cement was submitted to the FDA for orthopedic applications 
made from PMMA 

2003 Bovine collagen and microscopic plastic spheres made  
 
 To induce emulsion polymerization process water-soluble initiator is usually 

added. Polymerization is induced by radicals forming in the water phase and 

diffusing to the emulsion phase, where the polymerization starts. 

 
 Batch emulsion polymerization is usually represented through following 

three intervals as, first proposed by Harkins (1947). 

 
Interval I 

 At the beginning of the reaction, the system contains monomer droplets 

suspended in the continuous water phase and stabilized by the surfactant then the 

initiator is charged to the reactor. However, if enough surfactant has been added 

above the CMC value, other entity also present in the system called micelles, made 

http://www.google.co.in/search?hl=en&rlz=1R2RNWN_enIN334&tbo=p&tbs=tl:1&q=bone%20cement&ei=3TkGS46pFsjZ-QaU18nGDQ&sa=X&oi=toolbelt_timeline_result&resnum=4&ct=timeline-snippet&cd=1&ved=0CCoQ0AEoADAD
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up of surfactant molecules which dispose themselves with the hydrophilic part 

towards the water and the hydrophobic part inside. When a water-soluble initiator is 

introduced, the radical species formed in the water phase enter preferentially the 

micelles rather than the monomer droplets. Thus, many of the micelles are converted 

into polymer particles, and are nourished by the monomer diffusing from the 

monomer droplets.  

 
 After some time the micelles disappear completely, at this point interval I 

('nucleation stage') is over; the birth of new polymer particles stops and the 

polymerization carries on inside a constant number of polymer particles. 

 
Interval II 

 In the second interval polymerization proceeds with a constant number of 

polymer particles which are swollen by the monomer diffusing from the droplets 

through the water phase. As long as the monomer droplets exist, the system is in 

saturation condition. As the polymerization proceeds, the monomer droplets 

decrease in size and eventually disappear. At this point interval II is over. 

 
Interval III 

 This is the final stage. The polymerization ends when the monomer is 

completely depleted. Finally the latex particle is available for further use. 

 
 In emulsion polymerization, the reaction takes place in the polymer particles 

rather than in the much larger monomer droplets. 

 
 All most all chemical process systems are non-linear. Some are only slightly 

non-linear and so can be analysed and controlled effectively with linear techniques 

and for others non-linear that some forms of non-linear control may be desirable. A 

polymerization reactor tends to be non-linear due to the heat of reaction [highly 

exothermic] and the complex reaction networks control the batch polymerization 

reactor.  

 
 For the purposes of temperature and product quality control, safety, and 

overall economic operation, it is necessary to monitor polymerization conversion. 
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Obviously, these goals are difficult, but not impossible to achieve with efficient and 

reliable on-line measurement techniques. In the last twenty years, very accurate off-

line techniques for the characterization of polymer quality have been developed. For 

example, molecular weight distributions (MWD) can be determined by gel-

permeation chromatography (GPC), and NMR techniques are used to calculate the 

composition distribution of copolymers. However, the development and use of on-

line sensors, which are required for any feedback control of polymerization 

processes, have remained rather static. There are still relatively few on-line sensors 

available, especially for emulsion polymerization systems, where the presence of 

more than one phase leads to serious complications. Currently, most major 

difficulties in on-line sensor technology arise from the complex nature of these 

chemical systems, and sensor development requires a multidisciplinary effort. 

 
 A negative aspect of emulsion polymerization is that surfactant used in 

emulsion polymerization cause undesirable characteristics in the final product. For 

instance, they are often difficult to remove from the latex, and if removed, may 

cause destabilization and enhanced coagulation. Furthermore, films produced by the 

latex product have poor weather durability and water resistance as the small 

surfactant molecules have a tendency to migrate with time. Particle size distributions 

can also be rather broad a result of secondary nucleation in systems containing 

surfactants. Finally, surfactant released into the environment may have serious 

consequences for subsequent biological processes(Dobie et al. 2010). 

 
2.2 Modeling and Control 

 Several sensors have been developed over the years for offline monitoring of 

process/product attributes (conversion, composition, molecular weight, particle size, 

etc.) of polymers. Emulsion polymerization is often monitored using gravimetry, 

Dilatometry and gas chromatography (GC).With gravimetric and GC analyses, 

handling of samples requires special care. 

 
 These techniques are limited in accuracy and in the extent of data obtainable. 

Online sensors such as densitometers require a sampling device and an auxiliary 

recirculating loop. These present difficulties such as coagulation of polymer 
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particles within the device and in the circulating loop, sensitivity to polymer 

viscosity and requirements of extensive in situ calibration. These techniques are 

often implemented offline, resulting in considerable measurement delay, undesirable 

for real-time control. Thus, most reported techniques were not accurate or robust 

enough for implementation in industry. Further, most control strategies developed 

have been open- loop, based on simulations only or on extensive experimental 

effort. To overcome the challenges mentioned above, various online methods have 

been developed to estimate relevant process variables. 

 
 Chistofides and Daoutidis (1996) describes first-order hyperbolic partial 

differential equations (PDEs), for which the input, controlled output and the 

measured output are distributed in space. A general feedback control methodology 

was developed employing a combination of theory of PDE’s and concepts from 

geometric control. Concept of characteristic index was introduced and used for the 

synthesis of distributed state-feedback laws that guarantee output tracking in the 

closed-loop system. Analytical algorithms of distributed output-feedback controllers 

were derived through combination of appropriate state observers with state-feedback 

controllers. The developed control methodology was implemented on a non-

isothermal plug-flow reactor and its performance was evaluated through simulations.  

A novel model (Kwang S. Lee 1999; Lee et al. 1999) predictive control technique 

geared specifically toward batch process applications was demonstrated in an 

experimental batch reactor system for temperature tracking control. The technique, 

called Batch-MPC (BMPC) is based on a time-varying linear system model 

representing a nonlinear system along a fixed trajectory and utilizes not only the 

incoming measurements from the running batch, but also from the past batch 

histories. In a series of experiments performed on a batch reactor system, the 

technique was found to give satisfactory performance, by overcoming a large 

amount of model uncertainty and various process disturbances.  

 
 Most research efforts in batch process control have therefore been dedicated 

to the problem of designing a feedback controller that can compensate for strong 

effects of nonlinearity. Nonlinear cascade control(Marroquin 1972), successive 

linearization-based control (Lee et al. 1999) , generic model control and its variants 
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(Cott B. J. 1989),feedback linearization (Soroush 1992), adaptive MPC 

(Jarupintusophon 1994) , non  linear MPC (Nagy et al. 2003) and adaptive control 

(Cabassud M. et al. 1989 .),are some of the approaches by which problems have 

been solved by gain-scheduling the PID control parameters, sometimes with 

appropriate feed-forward compensations, such as those for the heat of reaction  

inferred from a calorimetric balance (Juba 1986)(Dimitratos 1994). 

 
 On-line sensors for emulsion polymerization are more difficult to develop, 

due to the thermodynamically unstable nature of the latex particles (Chien 1990). 

Consequently, most of the control strategies developed in the last two decades have 

been open-loop, based on mathematical models of the process or on extensive 

experimental work (Broadhead 1985) ,(Hamielec 1987). 

 
 Mutha et al.  (1997)  presented an experimental evaluation of a non-linear 

model-based estimator and predictive control strategy on a continuous MMA 

solution polymerization reactor. The proposed estimator was successfully 

implemented for both single-rate and multi-rate measurements.  

 
 A model-predictive software sensor was developed for on-line estimation of 

monomer conversion and average molecular weight during bulk polymerization of 

systems exhibiting a gel effect. The temperature and viscosity of the reaction are the 

measured secondary variables, which allow the state of the system to be estimated. 

Manker et.al  modified the viscometer assembly to measure the viscosity of the 

reaction mass during bulk polymerization of methyl methacrylate (MMA) at 

temperatures higher than those reported in paper (Manker et al. 1999),(Mankar et al. 

1998). Further Manker et all have developed a viscometer-reactor assembly The 

viscosity of the polymerizing mixture has been measured continuously at two 

different temperatures (isothermal) and initiator concentration. Samples have also 

been taken out at several different times and analysed for monomer conversion and 

the weight-average molecular weight. The data taken have been fitted using the 

Martin equation with KM treated as an empirical parameter this was the first attempt 

in the open literature to measure the viscosity of a polymerizing mixture during bulk 

polymerization. 
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 Fevotte et al. merged off-line and on-line measurements, with the on-line 

measurements being used in the kinetic and process models to estimate the current 

state of the reaction such as copolymer composition distribution. Techniques used 

by them are of great potential use in the control of industrial processes, and are 

merely possible using process computers. (Fevotte et al. 1996).  

 
 To control the polymerization reactors every single system should be sorted: 

those are to be controlled or those which may be manipulated to get controlled and 

very last disturbances whether measured or unmeasured.  

 
 There are fundamentally two levels of control for batch processes. The 

elevated level control is the control of final product quality at the end of the batch. 

The subordinate level control is the set-point tracking of certain process variable 

trajectories. Several approaches to both these control problems have been proposed 

and applied. The product quality is usually only measured off-line in a quality 

control lab after completion of the batch nowadays online measurement is expected 

to control the whole process at craving point. 

 
2.2.1 Control of Particle Size Distribution 

 Particle size distribution (PSD) in emulsion is also an important factor in 

determining the end-use properties of the latex product, for example a narrow PSD 

is required for a glossy finish to latex paints. Smaller particles are generally very 

stable and have useful process advantages such as faster reaction kinetics and more 

scalable and reproducible preparations: these have useful optical properties (e. g., 

lower turbidity), higher viscosity, greater surface area, and easier coalescence to 

form more uniform or thinner films. These properties may be advantageous in 

typical applications such as adhesives, dispersants, and coatings. 

 
 A key first study on PSD control is the controllability analysis by Semino 

et.al. (1995), this was followed by several contributions to this field. Initially offline 

optimization was based on the process model to determine the optimal input profiles 

that give the desired PSD. Then, these obtained input profiles were applied 

experimentally by assuming perfect process modelling (Crowley et al. 2000).  
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 The modeling of the particle size distribution is a special case of population 

balance equation (PBE) modeling which plays a crucial role in control of the PSD 

(Abad et al. 1994; Coen et al. 1998; Min et al. 1974). Several PBE models for 

different types of emulsion polymerization processes have been developed during 

the last two decades (Mallikarjunan et al. 2010; Melis et al. 1998; Paquet et al. 1994; 

Rawlings et al. 1998; Saldivar et al. 1997; Zeaiter et al. 2002). 

 
 A batch to batch control strategy was proposed  (Flores-Cerillo et al. 2002)  

by adding an online correction of the surfactant concentration in the middle of the 

reaction using a prediction of the PSD obtained by partial least square models. 

Genetic control algorithm , hybrid model based approach (Doyle et al. 2003) were 

used to predict the control profile to obtain desired PSD (Immanuel et al. 2002). 

 
 Modelling of emulsion polymerization processes leads to complex models 

describing different physical and chemical phenomena. The population balance is 

very important to describe particle nucleation, coagulation and growth. According to 

Immanuel (Immanuel et al. 2003) the pseudo-bulk model has a general form and is 

available for almost all particle sizes during  most of the reaction  since it has no 

assumptions on the number of radicals in the particles. The Zero-One model (Gilbert 

1995) is adapted only for systems where the number of radicals per particle can be 

either zero or one and is applicable at the beginning of most reactions where the gel 

effect is negligible. It distinguishes: particles that have one radical, particle that has 

zero radicals and those that have an oligomeric radical. Edouard (2003) have 

proposed a new representation of Zero-one model called bulk like model. The 

interest of this model is that it describes the number of particles of a specific size 

independent of number of radicals they contain. 

 
 A comprehensive dynamic model for the simulation of limited particle 

coagulation in emulsion polymerization has been developed (Mayer et al. 1996). 

They discussed that there is a reasonable agreement between simulations with the 

dynamic model and experimental data (e.g., conversion time history, particle 

number, and particle size distribution). The dynamic model can be a useful tool to 

predict the occurrence of limited particle coagulation and its influence on the 
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polymerization process. Solution of the model equations with a simple first-order 

Euler integration method (resulting, among other things, in a discrete particle size 

distribution) has the advantage that the dynamic model can easily be extended with 

other chemical or physical processes that may be important in emulsion 

polymerization (e.g., limited particle coagulation). A soap titration method was also 

used for determining the average latex particle size (Ali et al. 1987).  

 
 Alamir and his co-workers applied an iterative learning control of the PSD 

by proposing a simplified behavioural model to describe the particle size distribution. 

Besides the correction of the model and control inputs, online measurements 

(delayed) of the particle size distribution were used in the feedback control (Alamir 

et al. 2010). 

 
 Sahani et al. (2011) developed a model to stimulate the entrapment and 

growth of vapour bubble in bulk polymerization system. A empirical function is 

formulated which used five parameters which captures the phenomena of 

entrapment of vapour bubble. 

 
 Ohmura et al (Ohmura et al. 2012) proposed compartment reactor consisting 

of well mixing compartments. This reactor has advantage that each compartment of 

the reactor can keep a different non-equilibrium steady-state with respect to each 

other. An emulsion polymerization was categorized into four function module and 

these modules were assigned to different compartment. First two modules 

Contacting and Activation were assigned, and third module chemical reaction and 

last compartment with particle growth function module.  The reactor used by authors 

was set vertically, and the lower middle and upper compartment named first, second 

and third respectively. They found use of turbine impeller in compartment gave 

higher monomer conversion. They stated that strong agitation enhances the 

reactivity to obtain higher monomer conversion, further more the compartment 

reactor successfully produced stable and monodisperse particles.  

 
 Recently inferential, and a two step MIMO MPC control strategy was used  

(Immanuel et al. 2008; Silva et al. 2012) for free surfactant concentration (Santos et 
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al. 2007) trajectories, which was pre-calculated offline by model to get bimodal 

distribution and also to maximize the concentration monomer in the polymer particle 

by constraining the set-point to its saturation value, monomer and surfactant flow 

rates were used as manipulative variable. 

 
 Recently, Hosseini et al. ((Hosseini et al. 2012)) showed that the standard 

PBE models of emulsion polymerizations do not predict the broadening of the PSDs 

that was observed experimentally for the growth dominated in semi-batch emulsion 

polymerization. Hosseini then proposed two approaches, which were found to be 

effective in overcoming the limitations of the basic PBE models of emulsion 

polymerization to describe experimental results (Alireza Hosseini et al. 2013).  

 
2.2.2  Control of Molecular Weight Distribution 

 The molecular weight (or molar mass) is one of the most important 

properties of a polymer. It is directly related to the strength of the polymer particle 

(De Brouwer et al. 2000).A minimum molecular weight of 105 g/mol is 

recommended for sufficient chain entanglement and the resulting film toughness. 

Broad molecular weight distributions are required for pressure sensitive adhesive 

applications. 

 
 The molecular weight is not uniform throughout the polymer sample, but a 

distribution of polymer chain lengths is present (Bonfils et al. 2000). The molecular 

weight distribution is analysed and expressed in terms of averages: the number-

average molecular weight (Mn), the weight average molecular weight (Mw), and the 

viscosity average molecular weight (Mv). 

 
 Molecular weight and molecular weight distribution is one of the important 

end-use properties of the polymer. Early work in this area was carried out first by 

Katz et. al.(1969). Resulting in a set of partial differential equations from which the 

MWD theory could be obtained. After that Lichti et al. (1980) improved the work of 

Katz and others by generating a set of ordinary differential equations that describe 

the evolution of the number molecular weight distribution by accounting radical 

entry and exit from polymer particles, bimolecular termination, and chain transfer, 

Clay and Gilbert adopted the solution of that differential equations (1995).  
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 Often in practice, a single molecular weight average (e.g., viscosity average 

molecular weight, weight average molecular weight or number molecular weight) is 

controlled to yield the target polymer properties such as tensile strength, impact 

strength, etc. Sometimes it is necessary to control the polymer molecular weight 

distribution (Bersted et al. 1990). The breadth of polymer MWD is measured by the 

ratio of weight average molecular weight to number average molecular weight 

(named as polydispersity index). Polydispersity is a useful and convenient measure 

of polymer molecular weight distribution. It is feasible that polymers of different 

chain length distribution can have the same polydispersity index but exhibit different 

end-use properties (Crowley et al. 1997; Schork et al. 1993; Storti et al. 1992). 

 
 Zhang and his co-researchers (Zhang et al. 1998) developed stacked neural 

network which was a combination of multiple neural networks. The individual 

neural network was trained using different training data sets from different initial 

weights. They applied the proposed technique to the free radical solution MMA 

polymerization reactor and found that this technique can accurately predict 

trajectories of polymer quality variables even in the presence of impurities. They 

compared the stacked neural network with single neural network model and 

concluded that stacked neural network model performs much better than single 

neural network model.  

 
 The mathematical model developed by Sayer et al.(2000) was presented in 

detail with all parameters required for simulation. The model contains a system of 

coupled differential equations that describe the time evolution of the concentrations 

of different chemical species, of the average molecular weights and of the MWD 

(Sayer et al. 2001).  

 
 GMC and IMBC controllers were presented by Epko (2008) to successfully 

track and control the batch solution polymerization reactor operation. Neural 

network has proved to be accurate and fast on-line dynamic estimators. Matlab 

toolbox was used for the study. To evaluate the performance of controller test was 

conducted which shows that effect of disturbance increases heat of polymerization 

by 25 %. The performance of GMC-NN was found better than the neural based 
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IMBC controller. IMBC gave lower performance than GMC-NN in robustness test. 

The lower performance of the IMBC controller highlights its poor extrapolation 

capabilities. 

 
 In neural network, ideally, a large number of data set covering different 

operating conditions should be used in neural network training. Thus a batch process 

model should be a non-linear model. A neural network based batch to batch control 

strategy was proposed by Zhang (2008). Linearization of a stacked neural network 

model was used in calculating optimal control profile. This method can effectively 

overcome the problems of model plant mismatches and unknown disturbance.  

 
 Thomson et al. were (2010) the first to present the population balance 

calculations which encompass the complete molecular weight distribution (MWD) 

to discuss the implications of both radical and catalytic chain transfer agent (CCTA) 

compartmentalization in a catalytic chain transfer (CCT) mediated emulsion 

polymerization system. In 2009 ((Lenzi et al. 2005; Smeets et al.) They have been 

given the theoretical evidence of multimodal MWDs (Lenzi et al. 2005) 

experimentally. 

 
 Recently Tjiam and Gomes (2011) developed an online estimation and 

monitoring system for conversion and molecular weight in batch and semi-batch 

emulsion polymerization, conducted with and without CTA. Calorimetric model was 

used for determining heat of reaction from the temperature profile measurements in 

the reactor by using heating/cooling circuit. 
 

Table 2.2: Summary of Control of polymerization process. 

Controller used Manipulative 
variable Remarks Reference 

PI and PID 

Concentration 
of Initiator and 
Chain transfer 

agent 

When dynamics is speedy 
PI controller is able to 
control well and when 
dynamics is slow PID 

controls better 

(Rawlings and 
Ray 1988) 

Neural Network 
with MPC Feed flow rate 

NARX perceptron was 
modified for better 

training 

(Su et al. 
1993) 
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Controller used Manipulative 
variable Remarks Reference 

NNPC,MPC,PID Feed flow rate NNPC works better (Mauricio et 
al. 1993) 

PI, PID, NMPC Feed flow rates NMPC controlled better (Ogunnaike 
1994) 

P, PI, PID 
Concentration 

of Initiator, 
Surfactant 

They bring to close that 
conversion/initiator 

control and total particle 
number/ surfactant 

control are most easily 
implementable. 

(Semino 1995) 

Bootstrap re-
sampling 

Monomer feed 
rate MWD (Zhang et al. 

1998) 

Non-linear 
feedback 
controller 

Population 
balance 
equation 

Controllers cope 
effectively with model 

uncertainty and 
measurement delays. 

(Chiu et al. 
1999) 

On line control 
using Non-

Linear model 
based controller 

Monomer flow 
rate, Chain 

transfer agent 

Controller significantly 
control the variables 

(Vicente et al. 
2001) 

NLMPC 

Co-monomer 
ratio and ratio 
of the overall 

unreacted 
monomer 

Control strategy allowed 
the production of linear 

co-polymer of any 
composition and MWD. 

(Vicente et al. 
2001) 

Feed forward 
neural network 

Jacket 
temperature 

Controlled temperature of 
batch reactor 

(Kuroda et al. 
2002) 

NLMPC 

Monomer 
addition rate, 
CTA addition 

rate and coolant 
flow rate 

NLMPC reduces the 
possibility of failing to 

meet product 
specification. 

(Valappil 
2002) 

Model based 
controller 

Concentration 
of monomer, 
emulsifier, 

Initiator 

They found nucleation 
growth and coagulation 

exhibit reversible 
characteristics. 

(Immanuel 
and Doyle III 

2004) 

NMPC Monomer flow 
rate 

They manipulate the 
concentration of 

monomer at the same 

(Othmana, 
Fevotte et al. 

2004) 
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Controller used Manipulative 
variable Remarks Reference 

time able to maintain the 
polymer composition at 

the desire value. 

Hybrid Neural 
network Feed flow rate Control reactor 

temperature 
(Ng et al. 

2004) 

Hybrid neural 
network 

Jacket 
temperature 

Control reactive 
impurities and reactor 

fouling 

(Tian et al. 
2004) 

Hybrid forward 
neural network 

Jacket 
Temperature Bulk batch process (Curteanu et 

al. 2006) 

PI 
Monomer feed 

rate, Jacket 
Temperature 

Controller allows to 
lessening the process 

time. 

(Othman and 
Othman 2006) 

gPROM and 
computational 
fluid dynamics 

Population 
balance 
equation 

Found good performance. 
(Elgebrandta, 
Fletchera et al. 

2006) 

MPC Heating and 
Cooling media 

Authors realized good 
control performance for 
wide temperature range. 

(Noguchi and 
Kobari 2007) 

Hybrid neural 
network 

Jacket 
Temperature Simulated batch reactor (Chang et al. 

2007) 

Stacked neural 
network 

Jacket 
Temperature 

Number average 
molecular weight and 

weight average molecular 
weight 

(Zhang 2008) 

P controller Coolant flow 
rate 

Found significant control 
on reactor temperature 

(Singh, Arora 
et al. 2010) 

Online-control Concentration 
of CTA 

Results harmonized well 
with experimental results. 

(Altarawneh 
2009) 

Latent variable 
MPC Temperature Found good off set free 

performance. 

(Golshan, 
MacGregor et 

al. 2010) 

input/output 
linearization 
coupled with 
proportional 

controller 

Jacket 
temperature and 
monomer feed 

flow rate 

MWD 
(Sheibat-

Othman et al. 
2011) 
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Controller used Manipulative 
variable Remarks Reference 

MPC 
Monomer and 
surfactant feed 

flow rate 
PSD (Silva et al. 

2012) 

GMC Feed flow rate GMC resulted in 
marginal improvement (Rani 2012) 

NNPC Heat Input 
Effect of initiator, 
temperature and 

monomer 

(Hosen et al. 
2012) 

 
 Emulsion polymerisation is a sensitive process, so care should be taken to 

ensure that the polymerisation is carried out properly. It is desirable to monitor the 

emulsion polymerisation process on-line (although in practice, online estimation of 

end-use properties is difficult) (Vieira et al. 2001). The most critical parameters to 

be considered are the conversion, free surfactant concentration, particle size and 

molecular weight. 

 
 Effective process control (Vogel et al. 1997) is crucial in keeping the 

production process running safely.  

 
 The simplest controllers are the feedback controllers that receive signals and 

send a proportional signal to actuators. Computer control approaches have been used 

to control continuous and semi-batch emulsion polymerisations (Liotta et al. 1998). 

Table 2.2 summarized some papers on application of controllers on the 

polymerization system. 

 
2.3  Industrial Application 

 Polymer products are usually not used in their original form, but can be used 

after post processing with other components to tailor them to their intended 

applications. Pigments (Erdem et al. 2000) and thickeners (Lapasin et al. 2001) are 

added to latexes to modify their optical and rheological properties, respectively. 

Latex coatings provide chemical resistance to the exposed surfaces of industrial 

equipment, and latex binders enhance stability to fabrics (Wootton 2001). Total of at 

least 8 million metric tons of dry latex are produced annually. We use PMMA 
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(acrylic polymer) in this case study, so we emphasis here on the industrial 

application of acrylic polymer.  

 
2.3.1  Paper Coatings 

 Polymers produced by emulsion are used in paper industry. Acrylic polymers 

are commonly used as coatings. They are used for improving the strength (wet 

strength) of the paper (Keim 2000; Yumin et al. 2001), they are also used as binders 

and fillers for the pigments, it gives colour and opacity with gloss to the paper. 

These polymers are also used in fibreboard and cardboard (Alince et al. 2000). 

 
2.3.2  Textile 

 Co-polymers of acrylic are commonly used in textile industries as binders. 

Softness and toughness of the fabrics are controllers by these binders (Lorenz et al. 

1998; Tullo 1999). 
 
 
2.3.3  Adhesives 

 Viscous materials are mostly used as adhesives because of their high 

molecular weight. Polurethane and polyacrylics are used as adhesives. They are 

crosslinked to improve the strength (Charmeau et al. 1996). 

 
 Few uses of acrylic polymers are mentioned above, beside these, there are 

many more industrial applicaltions of emulsion polymerization printing inks (De 

Krom et al. 2001), cosmetics industry (Corp. 1999), toughening agents (Hazor et al. 

2000), modifiers (Kim et al. 1998; Liucheng et al. 1996), resins and latex foams. 

 
2.4 Issues in control of distribution 

In past, researchers treated these processes as lumped processes because 

� Lack of Instrumentation to determine distribution attributes of the process 

� Deficient in computation tools to deal with the complexity of models. 

� Being short of knowledge of the underlying mechanisms. 

 
 According to Ray (1986) one of the greatest difficulties in achieving quality 

control of the polymer product is that the actual customer specifications may be in 

terms of non-molecular parameters such as tensile strength, crack resistance, 
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temperature stability etc. The quantitative relationship between these product 

parameters and reactor operating conditions may be the least understood area of 

polymerization reaction engineering. 

 
 Automation control of polymerization reactor is complicated for the 

following reasons 

� Polymerization process are highly non-linear: The use of linear controller 

often result in poor performance 

� Many polymerization systems are open loop unstable; therefore safety 

considerations are mandatory. 

�  Polymerization reactor control systems are multivariable in nature. Process 

interactions, dead time and constraints complicate the control system design. 

� Many of the important variables such as molecular weight, molecular weight 

distribution and Mooney viscosity can’t be measured directly. They must be 

inferred from other measurements .Inferential measurements lead to 

erroneous results and therefore automation of control system that is based on 

such measurements must be designed to accommodate such errors. 

 
 There are multiple steady states in polymerization reactors, and this is known 

both experimentally and theoretically. As polymerization reactors are exothermic 

and reactor thermal runaways can occur, effective control strategies have to be 

implemented.  

 
 Another challenge is that online measurements of i.e. polymer molecular 

weight, composition and degree of branching are not always available. We have to 

rely on polymer properties from laboratory analysis of reactor samples or from 

analysis of the final product. The control system for a polymerization reactor should 

be robust to handle unmeasured disturbances which can impact the operation of the 

polymer reactor.  
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3. MATHEMATICAL MODELING 
 
 Emulsion polymerization is a very complex heterogeneous process which 

involves transport of monomers, free radicals and other molecules between both 

aqueous and suspended phases. Emulsion polymerization is known to be the most 

complicated system, compared to suspension, bulk or precipitation polymerization. 

Developing a fundamental mathematical model for the polymerization reactor is a 

very challenging task. Models are valuable as they put forward a powerful tool for 

process control, optimization, and operator training. Models also give a better 

understanding of underlying mechanisms in the process. Examples are reaction 

mechanism, physical transport phenomena (e.g. mass and heat transfer and mixing), 

reactor type and reactor operating conditions that affect the “polymer quality” of the 

final product. 

 
 Polymerization rate in the organic phase is not only controlled by monomer 

partitioning, but it is also influenced by particle nucleation and radical absorption 

and desorption, these factors make the modeling very complicated. Particle stability 

is affected by ionic strength, surfactant type and amount of surfactant in the 

dispersion media. Other difficulties in modeling of emulsion polymerization are the 

solution of these nonlinear ordinary differential equations combined with algebraic 

equations. Lack of information of certain model parameters makes adjustments 

towards a real process complex. 

 
 In literature several models are present which describe different aspects of 

emulsion polymerization. 

 
 The problem is that most of these models deal with specific aspects in 

emulsion polymerization and are not general models that can readily be utilized for 

other process conditions and purpose. The objective is therefore to develop a more 

general model; this model should be simple and cover both physical and chemical 

phenomena in emulsion polymerization. Models should consist of a set of 

differential equations combined with algebraic equations, based on mass, energy and 

population balances. 
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Typical Assumptions Utilized in Modeling 

 Different assumptions are utilized when a dynamic mathematical model is 

derived for a batch emulsion polymerization reactor. Some assumptions are normal 

to utilize, and some are required to make the model fit its purpose. These are listed 

below. Other assumptions will be given when they are utilized in the modeling. 

• Model nucleation occurs through only micellar mechanism because of high 

surfactant concentration. The other type of nucleation, homogeneous 

nucleation, is considered negligible. 

• Monomer droplet diameter as well as those of the growing particles is 

considered to be mono-disperse. 

• Propagation and termination in the aqueous phase are neglected. 

• Transfer to polymer chain reaction is not considered much in this work. 

• Coagulation between particles is neglected. The extension of coagulation is 

often not known. 

• The mixture in the reactor is assumed to be perfectly mixed. 

 
 In latex reactor systems, the level-one balance are strongly coupled with the 

particle population balances, thereby making level-one models of limited value. In 

recent years, considerable advances have been made in the modeling of emulsion 

polymerization reactors. Until 1974 models for these systems did not include the 

particle nucleation phenomena, nor did they consider population balances to account 

for the particle size distribution. Now, both homogeneous nucleation, and micellar 

nucleation mechanisms (collision or diffusion theory) are usually included in the 

models. Again, two levels of model are used to account for particle size. The 

“monodisperse approximation model” is based on modeling the development of the 

number of polymer particles and the total particle volume. Assuming monodisperse 

particles, the particle size is calculated as proportional to the cube root of the total 

volume of polymer phase divided by the number of particles.  

 
 The surface area of polymer particles (needed to calculate the micelle area) is 

also obtained as proportional to the two-thirds power of the volume. The second 

level of emulsion polymerization model employs a population balance approach (or 

an age distribution analysis) to obtain the full PSD. By treating the moments of these 
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population balance equations to get total or average properties, the set of equations 

that must be solved is greatly simplified. Since the method of characteristics gives 

the PSD as a function of (birth/growth) displaced back along the age axis, the 

moment equations may provide sufficient information to obtain the PSD. 

 
 Models for emulsion polymerization vary in their complexity. The first level 

model involves reactor, material balance and energy balance which are used to 

predict the temperature, monomer concentration in the reactor and pressure. Second 

level can not only predict the above parameters but also polymer properties like 

particle size distribution, molecular weight distribution. In this thesis we worked 

upon second level. 

 
 The model is developed to describe the temperature control in the batch 

emulsion polymerization and emulsion polymerization of methyl methacrylate. 

Conservation of energy accounts for the heat generated by the propagation reaction 

and heat removal through the wall of the reactor and by convective fluid flow. The 

density of the mixture is a function of the conversion, the amount of solvent 

introduced in the feed and the temperature.  

 
3.1  Kinetics 

 The following mechanisms are found in free radical emulsion polymerization 

for PMMA production. 
.dkI xR→  

1. k
iR M RM+ → . 

 

 

1
dPk

n nRM RM M+ → +  

. . tck
n P n pRM RM RM RM+ → +  

. .trTA

n

k
nRM TA RM T A+ → +  

 
 The reaction kinetic has already been given in the above part, and these 

reactions have been utilized in the modeling part. 

.
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 Only the most important reactions were considered to make the model more 

manageable. If more kinetic is considered several rate constants have to be known, 

and often no information is available about these. To estimate all parameters that are 

included in the model, different measured values have to be known and available. 

As the purpose is to utilize the model for PID, MPC and NMPC the model has to be 

made simple and therefore the most important kinetics is given. 

 
3.1.1  Mass Balance Equation for Batch Emulsion Polymerization Reaction 

 A fundamental law state that mass cannot be produced nor destroyed, and 

mass is therefore conserved. Another fundamental law is ‘conservation of energy’. 

Energy can change its form, but it cannot be created or destroyed. These laws 

provide the basis for two tools which are utilized in engineering and science; energy 

and material balances. Energy and material balances are plays important role, and 

material balances are fundamental for model development. As the energy cost has 

increased in the last years, industries have to find methods to reduce energy 

consumptions in processing. Energy balances are important for this reason, and they 

are utilized in the various stages of a process, and over the whole processes. 

 
 Mathematical modelling of emulsion polymerization is crucial in gaining a 

fundamental understanding; it is also a valuable tool for product development, 

reactor design. Important assumptions should include 

1. Nucleation and coagulation of particle do not occur and the number of 

particle per unit volume of water remains constant during polymerization. 

2. Desorption of free radicals out of the particle does not take place. 

3. Bimolecular termination of the polymeric radical inside the particle upon the 

entry of an oligomeric radical from the aqueous phase is instantaneous. 

4. Micelle nucleation and the rate of polymerization is a function of monomer 

conversion. 

 
3.1.2  Mass Balance for Initiator I 

 Initiator is consumed through decomposition in the aqueous phase, and the 

corresponding reaction rate is given in Equation 3.1. Moles of every species have 

decided fate. 
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[ ]
d

d I k I
dt

= −  
 (3.1)

 

0 exp( )dI I k t= −   (3.2) 

2 [ ]i d
dRiR f fk I
dt

= =  
 (3.3) 

 
Here f is the factor efficiency of the initiator. 

 A free radical initiator should be relatively stable at room temperature, but in 

polymer processing the initiator decomposition can occur either by thermal or by 

redox reaction. The decomposition rate (kd) of the initiator will also depend on the 

solvent/monomer system. The effect of solvent molecules causes secondary wastage 

reactions including recombination of radicals to regenerate the initiator (known as 

cage effect). As viscosity in the solution increases, this cage effect becomes more 

significant. The activity of an initiator can be defined as its half-life, t1/2, and if it is 

known for more than two temperature conditions, then one can calculate the factor 

efficiency and activation energy of the initiator. 

 
 The homolytic decomposition of initiator molecules can be represented 

schematically as given in reaction above. Homolytic decomposition of covalent 

bonds occurs after absorption of energy, which may be in form of heat, light or high 

energy radiation, depending on the type of initiator used. 

 
3.1.3 Mass Balance for Monomer M 

Monomer conversion is given by 

. .
1

[ ] [ ][ ] [ ][ ]P P
d MR k R M k M M

dt
= − = +  

 (3.4)
 

.
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=

=∑  
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.
. . . .[ ] 2 [ ][ ] 2 [ ][ ]i tc td

d M R k M M k M M
dt

= − −  
 (3.6)

 

. 2[ ] 2 [ ]i t
d M R k M
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t tc tdk k k= +   (3.8) 
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(3.11) 

 
 Rate of propagation is proportional to the monomer concentration in the 

particle. It is assumed that if there is no more than one radical per polymer particle 

present the termination occurs spontaneously, and is very rapid compared to radical 

entry.
 

 
3.1.4 Mass Balance for Polymer P 

. 2 . 2 . .[ ] [ ] 2 [ ] [ ][ ] [ ][ ]tc td trM trI
d P k M k M k M M k M I

dt
= + + +  

 (3.12)
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dt k k k k

       
= + + +       
       

 
 (3.13) 

 
3.2 Energy Balance for Batch Emulsion Polymerization  

Energy balance is an accounting of 

• Rate of heat flow into the reactor with reactants. 

• Rate of heat flow out of the reactor with products. 

• Rate of heat generated / absorbed by reaction. 

• Rate of heat added/removed from reactor. 

• Work done by stirrers and friction. 

 
3.2.1.  General Energy Equations  

 Rate of energy accumulation = (Rate of energy entering system by inflow) – 

(Rate of energy leaving system by out flow) + (Rate of heat added to system) + 

(Rate of work done on system) 

 
0 0 1 1

dE m E m E Q W
dt

• •= − + +  
(3.14)
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Reactor energy equation  

( )   ( )   ( )0 1
0 1

s b

d U K
m H K m H K Q W W

dt
φ

φ φ • • •+ +
= + + − + + + + +  

 (3.15)
 

 
For batch reactor flow stream will be zero 

( )   ( )0

d U K
m H K

dt
φ

φ
+ +

= + +   ( )1
0

m H K φ− + +
1

s bQ W W• • •+ + +  
 (3.16)

 

We find  

( )
s b

d U K
Q W W

dt
φ • • •+ +

= + +  
 (3.17)

 

 
3.2.2 Energy Equation, Process  

( )P P i i M
dTVC HR h A T T
dt

ρ = ∆ − −  
 (3.18)

 

( )i i MP

P R R P

h A T THRdT
dt C V V Cρ ρ

−∆
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 (3.19)
 

( )[ ] iI R jR d
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−−∆
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 (3.20) 

( )1/2 1/2 ( )/ [ ][ ]
M MR R jP d t

P R R P

dT UA T THk fk k M I
dt C V V Cρ ρ

−−∆
= −

 (3.21) 

( ) ( ) ( ) ( )1/2 1/2 3/2 ( )[ / [ ] 2 / [ ] / [ ][ ] / [ ] ]
P PR R jd t tc d t td d t trM d t trI

P R R P

dT UA T TH fk k k I fk k k I fk k k M I fk k k I
dt C V V Cρ ρ

−−∆ + + +
= −

(3.22) 

 
 Energy having different forms, i.e. heat, kinetic energy, chemical energy and 

potential energy. Because of inter-conversion it is not always readily to isolate 

constituents of energy balances, but under some circumstances certain aspects 

predominate.  
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3.2.3 Energy Equation, Metal Wall  

( ) ( )M
M PM M i i M os o M J

dTC V h A T T h A T T
dt

ρ = − − −  
(3.23)

 

 
3.2.4 Energy Equation, Hot Water 

( ) ( )J J
J S S S o o J M C C

d U
V F H h A T T W h

dt
ρ

ρ= − − −  
(3.24)

 

 
Where  Uj = internal energy of hot water in jacket, Btu/lbm 

Hs =enthalpy of incoming hot water, Btu/lbm 

hc = enthalpy of liquid cooled, Btu/lbm  

 
 The internal energy changes usually neglected if compared with the latent 

heat effects, thus a simple algebraic steady-state energy equation can be used 

 ( )o os M J
C

S C

h A T T
W

H h
−

= −
−

 
 (3.25) 

 
 The equation of state for hot water can be used to calculate temperature Tj 

and pressure Pj from density ρj, the perfect-gas law and a simple vapour-pressure 

relation can be used for the calculation
 

/VP j VPA T B
J

J

M e
RT

ρ +=  
(3.26) 

 
Where M = molecular weight of hot water =18 lbm/mole. 

 Avp and Bvp are vapour pressure constant for water. 

 
3.2.5  Energy Equation, Cold Water 

 During the period when cooling water is running in the jacket, only an 

energy equation for the jacket is required, we assume the water is incompressible 

and water in the jacket is perfectly mixed. We assume that the temperature is 

uniform in the jacket and that is Tj. The heat transfer rate of the process (as 

temperature T and the cooling water at temperature Tj ) is described by an overall 

heat transfer coefficient (Singh. 2010). 

( )H JQ UA T T= −  (3.27) 
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Where Q = heat transfer rate 

U = overall heat transfer coefficient  

HA = heat transfer area 

Jacket energy equation: 

( ) ( )0
J

J J J W J J J J o o M J
dTC V F C T T h A T T
dt

ρ ρ= − − −  
 (3.28) 

Where Tj=temperature of cooling water in jacket, 0K 

ρj =density of water, lbm/ft3 

Cj =heat capacity of water, Btu/lbm 0K 

Tj0 =inlet cooling water temperature, 0K 

 
3.2.6 Overall Energy Equation, Reactor Jacket 

( ) ( ) ( )
I

J J J J
s J J J hot w J J cold s w J J J J R J

d C V T
F C V T F C T F F C T UA T T

dt
ρ

ρ ρ ρ= + − + + −
 (3.29) 

 
 Where Fhot and Fcold are the flow rate of the hot and cold streams fed to the 

circulating water system going through the jacket or the external heat exchanger 

with volume Vj 
( ) ( )hot cold JJ hot hot cold cold J M J

J J J J J

F F TdT F T F T UA T T
dt V V V Cρ

++ −
= − +  

 (3.30) 

 
 The second energy balance can be utilized to calculate outlet temperature of 

the cooling jacket. The cooling jacket could have been modelled as multiple 

sections, but instead only inlet and outlet temperature are considered. An average 

temperature is utilized, as control of the reactor temperature becomes simpler to 

perform. The energy balance for the cooling jacket is given in Equation 3.30. The 

first term is rate of energy added and removed to the system by the water mass flow 

in the jacket. The second term is heat loss to the environment and the last term is for 

the heat transfer from the jacket to the reactor. As no energy balance for the 

temperature of the reactor metal is utilized, a term in the denominator is included as 

the steel of the reactor has to be cooled or heated. 
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 We can use another set of reactor and jacket energy balance equation with 

out using flow rate of hot water  

( ) ( )r
p p j

dTVC Q H R V UA T T
dt

ρ = + −∆ − −   (3.31) 

0( ) ( )j
c pc c c pc ji j j

dT
V C M C T T UA T T

dt
ρ = − + −   (3.32)

 
Where Q is heater power, U overall heat transfer coefficient. 
 
3.2.7  Estimation of Kinetic Chain Length 

 The kinetic chain length “v” of a radical chain polymerization is defined as 

the average number of monomer molecules consumed per radical, which initiates the 

polymer chain.  

 
The value of the kinetic chain length is given by the following formula: 

1/2 1/2

[ ]
(2 ) [ ]

p

d t

k M
v

fk k I
=   (3.33) 

 
 Assuming that mode of termination is disproportionate the kinetic chain 

length is equal to the number avg. degree of polymerization.  
'nX v=  

 (3.34)
 

 
The number average molecular weight of a polymer is given by the  

* 'n w nM M X=   (3.35) 

Where:  Mw= molecular weight of monomer 

 
3.2.8 Estimation of Kinetics Coefficient 

The kinetics coefficient kP, kd, ktrM follows the Arrhenius’s law 

0

PE
RT

P Pk k e
 − 
 =   (3.36) 

0

dE
RT

d dk k e
 − 
 =   (3.37) 

0

trME
RT

trM trMk k e
 − 
 =  (3.38) 
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 Rate constants can be measured experimentally, but for us it is not possible 

to resolve the quantities to estimate the individual rate coefficients. Both efficiency 

(f) and the rate constant (kI) should be known before, and a common assumption 

usually made is that radicals are not being consumed or trapped by impurities in the 

system. These constants are reported in the literature (Adebekun et al. 1989; Chen et al. 

2009; Curteanu et al. 1998; Silva-Beard et al. 1999). The values of the rate constants are 

varying with temperature .We have taken the value of rate constants from the 

literature. 

 
3.3  Molecular Weight Distribution 

 The energy and mass balance equation of a single element is already 

discussed earlier. Assumptions must be taken in the model is concerning the 

initiation step. Thermal initiation with three monomer molecule has a small 

probability of taking place. Volume contraction during polymerization is also 

considered as well as gel and glass effect. 

 
The monomer conversion and volume contraction is defined as 

X= (MoVo-MV)/MoVo (3.39) 

V= Vo (1+єX)  (3.40) 

 
 Mo,Vo are the monomer concentration and volume at zero conversion. Є is 

the expansion factor of the volume, which depends upon monomer and polymer 

densities dm and dp respectively.  

 
Є= (dm-dp)/dp (3.41)   

 
From the equations above  

1
1o

XM M
X

−
=

+ ε
 (3.42) 

 
 The final structure of the moments is given later, Long chain hypothesis 

(LCH) and quasi -steady state approximation (QSSA) are applied to the model to 

simplify the equations. LCH implies that the monomer is consumed in the 

propagation phase only; its consumption in the initiation reaction is being neglected. 
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QSSA assumes that the effective rate of the increasing radical chain formation is 

close to zero. 

 (3.43) 

 (3.44) 

 
Using these assumptions we get the final model 

 Moment balances for dead and live polymers were derived, even though they 

are available in different literature. Often the moment balances are given in 

literature(Curteanu et al. 1998; Shahrokhi et al. 2002), but the derivation of these 

balances are not given. The derivation of some of these equations is therefore given 

below. To find the weight average molecular weight, six new states are introduced 

into the model. The moment equations are utilized to find molecular weight 

distribution and molecular weight. 

 
 The kinetic consider in derivation was initiation, propagation, termination, 

and chain transfer to monomer and chain transfer agent. The first step is to find 

balances for live radicals and dead chains of length n, accounting for all the 

consumption and generation terms from the kinetic mechanisms listed above.  

 
 Based on the above kinetics, we can derive the following population balance 

equations for the live  and dead  polymer chains of length x. Assuming that 

the degree of polymerization, x, can only take discrete values (x:1:2:3).  

 
Live Polymer Chain 

  (3.45) 

 
  (3.46) 

2
0 1 2 0 2 2 0 0 0 2 0

1 1 12 ( )(2 ) k ( )[ ] ( )( )
1 1 1d p t p tm tm

d x x xfk I k M k k k M
dt x x x
λ λ λ λ λ λ λ λ λ λ− − −

= − + − − ∈ + − −
+∈ +∈ +∈

  (3.47) 

Dead polymer chain 

 (3.48) 
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 (3.49) 

 (3.50) 

 
 The right hand side term in equations above represents the net production of 

Live and Dead polymer chains. The method of moments is based on the statistocal 

representation of the average molecular properties of the polymer (number average, 

weight average molecular weight) in terms of leading moment of the number chain 

length distribution (NCLDs) of Live and Dead polymer chains. 

 
 This model can be used for higher temperature range, for below 100ºC only 

chemical decomposition of initiation was considered, so kiterm =0, but beyond this 

temperature both thermal and chemical decomposition are considered. During the 

polymerization, the ktc, kp, ktm constants decreases because of diffusion constraints 

like gel effect and glass effect. 

 
3.4  Particle Size Distribution 

 Polymer particles in emulsion polymerization system are generally having a 

distribution of sizes. This distribution is due to two factors: Particles nucleated at the 

same time will have a statistically distribution of periods of radical residence and 

growth and secondly particles nucleated over a long period of time will have 

different sizes because of there different duration of growth. 

 
 Gibbs free energy is directly proportional to the Hamakar constants. 

Hamakar constant can be calculated by relation 

 
AH, eff = AH, 11 +AH, 22+AH, 12 (3.51) 

 
 Where AH, 11 and AH, 22 represents the Hamakar constant of component 1 and 

component 2 respectively in vacuum.  AH, 12   is assumed to be geometric average of 

component 1 and 2.Particles are normally assumed spherical in shape so that surface 

area and particle diameter are easily calculated from particle volume. Hamakar 

Constant for PMMA is 6 X 10-20. This constant uses only Vander wall attraction, 

larger the value of Hamakar constant, stronger will be the tendency for the pair of 
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colloidal particles to coagulate with each other (Ali et al. 1986; Zollars et al. 1985). 

The value of Hamakar is very small hence we avoid coagulation in the model 

(Zollars et al. 1987).At high concentration of surfactant, particle size distribution 

shows self preserving nature which causes decrease in crate of coagulation of 

particles (Ali et al. 1988).   

 
Some assumptions are made  

1. Particle contains either zero or one radical. 

2. Instantaneous bimolecular radical termination occurs. 

3. Neglect glass transition. 

4. Assumed lower radical entry rates and higher radical exit and termination 

rate. 

 
 Theses assumption favours instantaneous bimolecular terminationThe 

particles are assumed to contain either one or zero radical; this system is called zero 

one model. Population balance equation for particle size distribution is given by 

equation (Crowley et al. 2000; Sood.A 2008). 

1 1 ( ) 1( )[n (r) n (r) n (r)] k ( )p m mo
o o r

n r n r
t

∂
= ρ + − + ×

∂
 (3.52)                                                                                                                                

 
(3.53)  

 
 n0(r) is the population containing zero radicals and n1(r)  is the population 

containing one radical , polymer radical n1
p(r) which would not readily diffuse out of 

the particle due to its size. Monomer radicals formed from chain transfer reaction is 

n1
m(r ), which presumable can readily exit particle. jcrit is the  chain length which 

becomes insoluble in water and participates in a new particle. 

 
Particle growth rate is given by 

 (3.54) 
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Here  is propagation rate,  molecular weight of monomer, density of polymer 

represent by  

 
Quasi –steady state assumption is applied and we get   

 (3.55) 

n(r )= n0(r )+n1
p(r)+ n1

m(r )  (3.56) 

n1(r) = n1
p(r) +n1

m(r) (3.57) 

 
 Zero –one system is where entry of a radical into a particle which already 

contains a growing radical causes termination at a rate much faster than overall 

polymerization. In such a system the average number of radicals per particle cannot 

exceed 0.5, termination occurs only between an entering radical and a radical which 

has been growing at the same time. 

 (3.58) 

  (3.59) 

 (3.60) 

 (3.61) 

 (3.62) 

 (3.63) 

 
 
 The mathematical dynamic model is actually a set of algebraic and 

differential equations (DAE). The algebraic equations (AE) in the model are 

possible to order so that they can be solved as intermediate calculations instead of 

solving a DAE equation set. A solver in MATLAB was utilized, ODE15s, as this 

solver is a variable-order solver for stiff systems. 
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3.5  Bubble Entrapment 

 In highly viscous system like bulk polymerization, the process is associated 

with a rapid increase in viscosity of the reaction mass; this increase in viscosity 

makes the reaction diffusion control. Recently Sahani et al (2011) carried out bulk 

polymerization of MMA in 1 L fully instrumented stainless steel batch reactor. They 

observed that small vapour bubbles get entrapped in reaction mass and because of 

high viscosity those bubbles are enable to escape. They start growing with the 

process. In our present study we introduce equations for batch emulsion 

polymerization which only focus on entrapment of gas bubbles as the viscosity of 

reaction mass increases. Inert gas nitrogen is used to suppress the vaporization of 

MMA and prevent degradation of the polymer. In industrial practice similar problem 

of entrapment arises, usually a devolatilization step is carried out to avoid this 

phenomenon. In fact industrial polymerization is carried out in two steps. Firstly 

pre-polymerization is carried out in batch reactor until bubble entrapment starts. 

Then the reaction mass is transferred to a tubular reactor to further complete the 

process. 

 
 Few assumptions are taken for the theoretical treatment of the model , which 

makes model more simplified. 

• Batch reactor is assumed to well stir. 

• There is no nucleation of bubble. 

• Instantaneous breakage of bubble into smaller size bubbles is taking place. 

• No coalescence of bubbles. 

• Mass transfer from liquid to the vapour is controlled by liquid mass transfer 

coefficient. 

 
 Kinetic equations are same as discusses above used in this model and the 

molecular weight distribution model used is again the same model given in equation 

numbers 3.39- 3.50.  

 
Bubble entrapment is given by equation 

2

3
4 21 4

53
3

exp( ) 2.3[ ,a ] 60(1 )(1 [( )( ) ] )(exp[ (lna ) ])
exp( )

i

p

p
ai

i i
f

ap pR p
p AA

η ηη
η

−
= + + − −   (3.64) 
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1For 0 t t≤ ≤  

Moment equations should be 

0 1 2 0 1 2 0u u uλ λ λ= = = = = =  

Growth rate 

0( ) 2 ( )([M] [M] ); 1,2...i
i i

T

da RTG a k i
dt P

= = − =  (3.65) 

Population balance 

1[ ( ), ( )]( );i 1, 2...i
i i i

dN R t a t a a
dt

η += − =  (3.66) 

Viscosity of the liquid reaction mass 

0[ ](MW ) ([ ] [ ])(MW ))([M](MW ) / ) / ( )m m m
m m m

m p

M M Mξφ ρ
ρ ρ

− −
= +  (3.67) 

1p Mφ φ= −  (3.68) 

2
int 0 1 int 2 int[1 exp{ ( ) ( ) }]sol polym polym polymC d d C d Cη η η η η= + + +  (3.69) 

C (1 )polym m mφ ρ= −  (3.70) 

 
 Where ai is bubble diameter, Ni is total number of bubbles in the ith range at 

time t, Cpolym  is density of polymer in monomer-polymer mixture. 

 
 There is no concentration gradient for the polymer to diffuse into the bubble. 

The polymer is assumed not to diffuse out in the liquid phase.ODE15s is used in 

MATLAB to solve the set of model equations, it select the optimum stepsize.  

  
3.6 Discussion: Modeling 

 In this work we model: modeling of monomer distribution and radical of the 

polymer particles, molecular weight and particle size distributions; other possible 

cooling solution like split range was also considered during control of the reactor. 

When modeling of emulsion polymerization started, decisions about how advanced 

the model should have to be made in the start. The more advanced the model gets, 

including different aspects in the process, several more parameters have to be 

estimated and introduced in the model. To estimate all these parameters a broad 

collection of measured process data has to be available. These measurements are 
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costly to perform, and some variables are actually impossible to get information 

about. This makes it difficult to implement complex models with several parameters 

in a control system. It was therefore decided to develop models that are as simple as 

possible, but still get satisfying predictions. 

 
 There were two energy balances, one for outlet cooling temperature and the 

other for reactor temperature in the model. To utilize the energy balance for the 

reactor temperature and achieve correct temperature a controller had to be 

implemented in the model. This controller should control the cooling water flow rate 

or the temperature of the inlet cooling water, as this was tested in the model. We 

found after implementation of PID controller that is very difficult to proceed with it 

further because of the drawback of ‘dead zone’ and occurrences of oscillation 

somewhere in the control process. We concluded other control systems can probably 

also be utilized, but independent of control configuration implemented in a plant, the 

controller had to be tuned. 

 
 The problem in implementation of a simple PID controller was the time 

delay, and this would cause a problem in the simulation of the model. By performing 

model reduction and simplifications, a less complex model can be obtained. 

 
 Simple models that do not require a heavy computational load but capture 

the entire essential process features are readily agreeable to the reactor optimization 

and control studies. Some aspects were therefore modelled in different ways, to 

make the model simpler and to reduce stiffness. 

 
 As ODE15s was utilized, stiff models were not a problem and calculation 

time for simulating the model over a long time interval was short. A batch on 7-8 

hours was simulated and this took about 1 hour to calculate in MATLAB. 

 
 As the model was both complex and stiff in some cases, i.e. extremely fast 

dynamic for some states, the step size had to be quite small (about 0.0001) and this 

gave a calculation time around 1000 seconds. In this case h was kept constant 

through the whole batch simulation.  
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 In particle size distribution moles of radicals in the polymer particles or the 

average number of radicals per particle was also an important value that influences 

the polymerization rate. The calculated moles of radicals in the polymer particles, 

and this method should predict correct values for Np. It was therefore not necessary 

to have moles of particles with zero, one, two etc. as states, and more ODEs has to 

be solved.  

 
 The zero-one system could also be a reasonable method to utilize when 

modeling an emulsion polymerization process, but this solution only count for 

processes with a low n < 0.5 average number of radicals per polymer particle 

according to Smith-Ewart theory.  

 
 Different grades can be made by using another recipe or concentration of 

initiator, monomer and surfactant in different ways into the reactor. In the mole 

balances of monomer, surfactant and initiator it was possible to change dose but 

small changes had to be done in the mole balances and the programming files for the 

initiator and monomer. The recipe given is readily to make change in, as change in 

recipe only change amount of chemicals and temperature utilized.  

 
 Different grades can be produced if different factors in the reactor are 

changed, and some are listed below. 

• Chain transfer agent (CTA) can be utilized to change molecular weight 

(MW). 

• Large increase in MW can be done by decreasing the polymerization rate, by 

decreasing the initiator concentration or by lowering reaction temperature. 

Temperature profile can be readily changed by changing the flow of cooling 

water. 

• The number of polymer particles (Np) is the prime determinant of the rate 

and degree of polymerization. This depends on surfactant.  

 
 Moles of particles also depend on rate of radical’s generation. High particle 

numbers are associated with small particle size and low particle numbers with large 
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particle size. Number of particles can be increased by increasing surfactant 

concentration in the reactor recipe. 

 
 Predictions about PSD could be utilized to determine when the batch should 

end. The partial differential equations of particle size distribution are converted into 

ordinary differential equations by finite collocation method which is out of the scope 

of this thesis. 

 
3.7  Challenges in Polymerization Reactor Modeling 

 Product quality in polymerization system is very complex issue than other 

chemical system. Polymer quality includes all the polymer molecular properties [eg. 

MWD, copolymer composition distribution (CCD), sequence length distribution 

(SLD), Long chain and short chain branching (LCB, SCB), PSD etc]. One of the 

most difficult issues in polymer reactor optimization and control is to determine the 

relation between the product’s physical, mechanical, chemical, thermal, rheological 

and morphological polymer properties. Table -3.1 summarizes some quality control 

measures.  
 

 The analysis of polymerization process is rather complex problem due to the 

highly coupled kinetics, heat and mass transfer, thermodynamics in the emulsion 

polymerization being a heterogeneous process. 

 
Table3.1: Some measures of polymer quality 

Morphological properties End use properties 

• Average molecular weight And 
Molecular weight distribution 
(MWD)    

Physical and thermal properties (e.g. 
Density, Temperature, melting point). 
 

• Particle Size Distribution(PSD) Rheological (e.g. Viscosity, Melt 
Index, flow properties). 

• Sequence length Distribution (SLD) Chemical 

• Copolymer composition Distribution 
(CCD) 

Chemical 

• Particle Porosity and surface area Rheological properties 

• Long chain Branching Distribution 
(LCBD) 

Mechanical properties (e.g.  Strength, 
resistance, shear Viscosity). 
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4. Control and experimental Methodology 
 

 PMMA batch emulsion polymerization was run using various concentrations 

of surfactant, initiator and monomer. The following sections give a detailed 

description of the materials, experimental techniques, apparatus and analytical 

procedures that were employed to carry out the experiments and analysis of sample. 

 
4.1 Materials 

Table 4.1: The material used during the course of project 

Elements Name Specification 

Monomer Methyl-methacrylate Analytical Reagent 
Central Drug House (P) LTD, New Delhi 

Surfactant Sodium oleate Analytical Reagent 
Central Drug House (P) LTD, New Delhi 

Initiator Potassium persulfate Analytical Reagent 
Central Drug House (P) LTD, New Delhi 

Gas Nitrogen Grade – Instrumental Gas 
 

4.1.1  Monomers 

 Typical monomers are those that undergo radical polymerization, are liquid 

or some gaseous at reactor condition, may be soluble or poorly soluble in water. 

Some monomers are in solid state, which are hardly diffuse in water. If the solubility 

of the monomer is too high, as a result particle formation may disappear from the 

system and the system is transformed into solution polymerization. 

 Methyl Methacrylate monomer is used as a main ingredient, which was purchased 

from Central Drug House (P) LTD, New Delhi, batch No-05114and product No-

029234. 

Structures  

 
Fig. 4.1: Structure of MMA 
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Properties  

Table 4.2: Properties of methyl methacrylate monomer 

Molecular formula C5H8O2 

Molar mass 100.12 g/mol 

Appearance colourless liquid 

Density 0.94 g/cm³ 

Melting point -48 °C (225 K) 

Boiling point 101 °C (374 K) 

Solubility in water Soluble in methyl ketone 

Viscosity 0.6 cP at 20 °C 

Minimum assay 99.5% 

Refractive Index 1.414-1.415 

Maximum Impurity , free acid & water 1ml N% &0.1% 
 
Application  

• Consuming approximately 80% of the MMA for the manufacturing of 

acrylic plastics (PMMA).  

• It is used for the production of the co-polymer methyl Methacrylate-

butadiene-styrene (MBS), used as a modifier for PVC. 

 
4.1.2  Initiators 

 Thermal and redox generation of free radicals have been used in emulsion 

polymerization. Persulfate ions are commonly used in initiation process. The 

persulfate ion readily break off into sulphate radical ions above about 50°C, 

providing a thermal source of initiation. 

 
 Potassium persulfate are used as initiator in PMMA synthesis, which was 

purchased from Central Drug House (P) LTD, New Delhi, batch No-01036 and 

product No-029861. 
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Structure  

 
Fig. 4.2: Structure of potassium persulfate 

 
Properties  

Table 4.3: Properties of potassium persulfate initiators 

Molecular formula K2S2O8 

Molecular Weight 270.322 g/mol 

Appearance white crystal powder (solid) 

Density 2.477 g/cm3 

Melting point 100 °C 

Solubility in water 1.75 g/100 mL (0 °C), 5.29 g/100 ml (20 ºC) 

Minimum assay 98.0% 

Chloride Not more than 0.04% 

 
Applications 

• Potassium Persulphate is used for textile designing, bleaching as an 

oxidizing agent and antiseptic, for manufacture of soap and pharmaceuticals. 

• It is a food additive, and in hair dye substances as whitening agent with 

hydrogen peroxide.  

• It plays an important role as initiator in polymerization reaction. 

 
4.1.3  Surfactants 

 The surfactant must enhance rate of polymerization, minimize coagulation or 

fouling in the reactor and other process equipment, prevent from high viscosity 

during polymerization (which leads to poor heat transfer), and improve end-use 

properties of the final product such as rheological, tensile strength, gloss, and water 

http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Water
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absorption and other properties. Anionic, non-ionic, and cationic surfactants have 

been used; by far anionic surfactants are used widely surfactant. Normally 

surfactants having low critical micelle concentration (CMC) are favoured; the 

polymerization rate shows an increasing trend when the surfactant level is higher 

then the CMC, where as minimization of the surfactant concentration is chosen for 

economic reasons and also avoided for the adverse effect of surfactant on the 

physical properties of the polymer. Mixtures of surfactants are often used, including 

mixtures of anionic with non-ionic surfactants. Mixtures of cationic and anionic 

surfactants form insoluble salts and are not useful. 

 
 Sodium oleate (C18H33NaO2): It is used as surfactants in the PMMA 

synthesis, which was purchased from Loba chemie Pvt. Ltd., Mumbai, Batch No-

G110406. 

 
 Sodium oleate occurs as a white powder, or as light yellow coarse powder. 

Since it is a fatty acid, sodium oleate is not generally found free in nature, rather 

found in the form of complex lipid.  

 
Structure  

 
Fig. 4.3: Structure of sodium oleate 
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Properties 

Table 4.4: Properties of sodium oleate emulsifier 

Molecular  formula C18H33NaO2 

Phase Solid (at STP) 

Appearance White to slightly yellow powder 

Melting point 233.5 ° C. 

Density 1.1 g/cm3 

Minimum assay 99.0% 

Maximum limit of Impurities 

Assay of fatty acid 

Free alkali (as NaOH) 

Heavy metal (as Pb) 

Chloride 

 

>82% 

<0.5% 

<0.005% 

<0.2% 

 
Applications 

• Used in saponification. 

• For the production of metallic stearates. 

• For the production of industrial lubricants various oil-based cosmetics 

 
4.2  Experimental Apparatus 

 The experiments were carried out in 2.4 litre reaction vessel maintained at 70 

ºC. The reactor contents were agitated using impeller at 750 RPM. The impeller was 

connected to a variable speed motor, thus allowing changing the speed of the 

agitator.  
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Fig. 4.4: A schematic and physical representation of batch  

emulsion polymerization process. 

(B = batch reactor; N = N2 gas cylinder; R = gas regulator; C = gas supply 
controller; TW = three way valve; v = initiator vessel; V= vacuum pump; MT = 
motor; T = thermometer; PM = pump; W = water tank; M = monomer; I = Initiator, 
P = Polymer) 
 

 
Fig. 4.5: Parameters calculation in Batch reactor 
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Fig. 4.6: Close view of the reactor 

 
 Vessel contains the thermocouple with on-off controller to monitor the 

temperature of the reaction mixture. Sampling point is given at the bottom of the 

reactor. This on-off controller system is basic control system, if the temperature of 

the reactor is higher than set-point the heater is turned off and if the temperature is 

lower that set-point then the heater is turned on to reached the desired temperature. 

Notice that an on–off controller is based on the error between the set-point and 

measured output.  Prior to the start of the reaction the reactor was purge with 

nitrogen gas to dissipate the oxygen if present. A nitrogen blanket was maintained 

throughout the reaction. Figure 5 illustrates the apparatus that was used, close view 

is given in figure 6 and 7. 

 
4.3  Experimental Procedure 

 System with various amounts of initiator, surfactant were use .Table 5 

summarize the various formulation that were investigated. These parameters were 

varied to create a wide range of conditions over which to access the reliability of the 

technique. Varying these parameters will ultimately affect the rate of 

polymerization. 
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Table 4.5: Summary of the formulations that were investigated. 

Experiments Monomer 
(ml) 

Water (ml) Initiator 
(gm) 

Surfactant 
(gm) 

1st  Recipe 200 300 2 2 

2nd Recipe 160 640 1.5 1.5 

3rd (Flory) Recipe 160 640 1 2 
 
The steps used in batch reactor for synthesis of polymer 

1. Fill the hot water tank  up to 2/3 depth, select the reaction temperature 70 .C 

and set it on the TIC (Temperature indicator controller) fixed at the front 

panel. Start the heater and wait until desired temperature is reached. 

2. Inhibitor is removed by heating methyl Methacrylate at a temperature of 

60.C. 

3. Prepare the aqueous solution of emulsifier by thoroughly mixing with water. 

4. Charge the aqueous solution of emulsifier and monomer into the reactor 

(total volume = 500ml) through the feed inlet fixed at the top head of the 

reactor. 

5. Prepare the initiator solution in about 20 ml of water and store it in the vessel 

provided at the top rear of set-up under an atmosphere of N2. 

6. Evacuate the reactor up to 50 mm Hg with the help of vacuum pump 

provided at the base of setup then stop the vacuum pump and flash point with 

pure N2 for some time. 

7. Start the agitation at the rate of 700 to 750 rpm and simultaneously bubble 

the N2 (@ 3 LPM into the reaction mixture. (Please ensure the absence of O2 

in the reactor). 

8. Raise the temperature of reaction mixture to a constant reaction temperature 

by circulating hot water through the jacket of the reactor. Wait until the 

desired reaction temperature is reached and remains constant. 

9. During the reaction, the stirring rate is to be maintained constant and N2 

supply has to be maintained all through. 
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10. After exactly one hour’s mixing, add initiator to initiate the reaction from 

initiator vessel under N2 pressure. Close the initiator feed valve after its 

delivery and also close the N2 supply to the initiator storage vessel. 

11.  After the reaction is initiated, collect 20 ml of reaction mixture at regular 

intervals of time. Weigh the sample accurately, and add 50 ml of methanol 

containing small amount of hydroquinone as a terminator. The polymer 

formed will precipitate in each sample. 

12. Dry the polymer in oven at 70 to 80 oC. 

13. Repeat the procedure for different concentrations. 

 
Experimental Calculations 

Initial weight fraction of (MMA) monomer in the mixture  

0 (weight of monomer taken)/Total weight of mixturefW =  

0
M

f
T

WW
W

=  

 
 Average density of the feed mixture=total weight of mixture taken (gm)/total 

volume taken (ml) 

T
avg

T

W
V

ρ =   

Weight of polymer = weight of sample before drying–weight of sample after drying 

1 2P samp sampW W W= −  

 
At a particular time “t” degree of conversion X 

 X=weight of dry polymer in the sample/ (weight of sample*weight monomer 

fraction) 

( )0*
P

samp f

WX
W W

=  

 
 For each time, “t”, degree of conversion is calculated and data is fitted to a 

4th degree polynomial passing through origin (0, 0) 
2 3 4

1 2 3 4X a t a t a t a t= + + +  
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2 3
1 2 3 42 3 4dX a a t a t a t

dt
= + + +

 
 
4.4.  Analytical Procedure 

 Several analytical techniques were employed. The following sections 

describe the various equipment and techniques, as well the procedures that were 

used.  

 
Viscosity 

 The viscosity of polymer solution is basically a resistance force tending to 
cause the fluid to flow. The solution viscosity is empirically related to molecular 
weight for linear polymers. Therefore viscosity measurements constitute an 
extremely valuable tool for the molecular weight characterization of polymers. 
 
 Measurements of solution viscosity (η) are usually are made by comparing 

the efflux time t required for a specified volume of polymer solution to flow through 

a capillary tube with the corresponding efflux time t0 for the solvent (of viscosity η0) 

 
Fig. 4.7: Ostwald viscomter 

Ostwald viscometer 
Relative viscosity  
ηrel = η / η0 = t / t0 
Where η = viscosity of polymer solution 
η0 = viscosity of solvent  
t = efflux time required for polymer solution 
t0= efflux time for solvent  
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 pH  

 A pH meter is used to measure the pH of a sample. A typical pH meter 

containing a special measuring probe (a glass electrode) connected to an electronic 

meter that measures and displays the reading taken by pH meter. The probe 

measures pH as the activity of hydrogen ions surrounding a thin-walled glass bulb at 

its tip. The probe produces a small voltage (about 0.06 volt per pH unit) that is 

measured and displayed as pH units by the meter.  

 
 Calibration with at least two, but preferably three different buffer solution 

standards is usually performed every time a pH meter is used. One of the buffers has 

a pH of 7.01 and the second solution is selected having pH range near the pH of the 

sample to be measured usually pH 10.01 for basic solutions and pH 4.01 for acidic 

solutions at 25°C.  

 
Electrical Conductivity 

 Electrical conductivity or specific conductance is a measure of a material's 

ability to conduct an electric current. When ever the difference in electrical potential 

occurs across the conductor, movable charges flow and an electric current is 

generated. The conductivity σ is defined as the ratio of the current density J to 

the electric field strength E:  J Eσ=  

 
 Conductivity is the reciprocal of electrical resistivity ( ρ), and has the SI unit 

is S·m-1 and CGS units of inverse second (s–1): 1/σ ρ=  

 
 An electrical conductivity meter (EC meter) measures the electrical 

conductivity of a solution. 

 
 The electrodes of the conductivity meter are usually made of platinum. An 

alternating current is passes through the outer pair of the electrodes and measured 

the potential between the inner pair of electrodes. 

 
Mastersizer 

 A reliable apparatus Malvern Mastersizer 2000E was used for the study of 

particle size distribution and monomer droplets size. The system operates on 

http://en.wikipedia.org/wiki/Electrical_potential_difference
http://en.wikipedia.org/wiki/Electrical_potential_difference
http://en.wikipedia.org/wiki/Electrical_potential_difference
http://en.wikipedia.org/wiki/Current_density
http://en.wikipedia.org/wiki/Multiplicative_inverse
http://en.wikipedia.org/wiki/Electrostatic_units
http://en.wikipedia.org/wiki/Second


Control and Experimental Methodology 

62 

scattering pattern of light. Samples are added to the unit and circulated after 

sonication distilled water used as dispersant. Drawback of the apparatus is that it is 

not able to detect the polymer particles in the presence of monomer droplets until 

approximately about 30% conversion has been reached. The reason behind may be 

that unit passes laser light through an optical unit and based on the way the light is 

scattered can deduct the size of the polymer particles that are present. 

 
 As the sample removed from the reactor for particle size measurement and 

immediately transfer to the Malvern mastersizer. In order avoid coagulation it is 

important to add sample as soon as it is removed from reactor. The agitation speed 

was set at 2000rpm, measurement time would be 12 seconds and that 12000 snaps 

would be taken on that time. At each sampling point a small amount of latex was 

taken out from the reactor for particle size measurement and transferred to a glass 

and without delay added to the Malvern. 

 
 It is imperative to add the sample as smoothly and quickly as possible. In 

order to lessen the coagulation of the particles it was also significant that the sample 

was added to mastersizer immediately after removal from the reactor to avoid the 

coagulation. 

 
Fig. 4.8: Mastersizer 2000 E 
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End Group Analysis 

 Molecular characterization of polymers, particularly linear polymers, by end 

group count assumes importance, particularly for low polymers, and the relevant 

analytical data may be used for the determination of polymer molecular weight. 

Chemical methods as tools of molecular weight determination are only selectively 

applicable in systems where end groups are easily characterizable chemically. 

Counterfeit sources of end groups admitted into the system inadvertently and not 

taken into account in the assumed reaction mechanism become more and more 

consequential as the molecular weight increases. 

 
Procedure 

1.  Weight accurate 5 gm of potassium hydrogen thylate/hydrochloric acid or 

KOH. 

2.  Dry for three hours. 

3.  Freshly boil water and cool. Mix with water [ 75 ml of water]. 

4.  Take 0.1 N of KOH [10 ml]. 

5.  Mix 10ml of sample in acetone. 

6.  When the colour start changing add phenophthaline. 

7.  Note down the reading. 

 
4.5  Control Methodology 

 The word control implies “A device or mechanism used to regulate or guide 

the operation of a machine, apparatus or system. Prior to the 1940s, most chemical 

processing plants operated manually, with increasing labour and cost in the 1940s 

and 1950s it become uneconomical and near to impossible to operate plants without 

controllers. At that stage feedback controllers were introduced to the plant with little 

real consideration of, or appreciation for the underlying process dynamics. By the 

year of 1960s, chemical engineers were experimenting with the new developments 

in dynamic analysis and control theory. 

 
 A batch reactor starts from some initial conditions and proceed to change 

dynamically with time over some batch time. The batch reactor is usually small but 

their surface-to-volume area is very large so heat transfer is extreme good. In early 
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seventeenth or eighteenth centuries most commercial reactors were batch (Richards 

and Congalidis 2006). In twentieth century, continuos reactors were developed for 

many reactions because they proved to be more economical in some systems. 

However, batch reactors have very important kinetic advantages for some systems, 

so they still widely used, even when production rates are high. Two important 

classical examples are polymerization and fermentation. Batch polymerization 

reactors allow the production of polymer with a narrower molecular weight 

distribution. 

 
 The polymer industry experienced very fast growth over the last five 

decades. The heart of the polymerization process is its reactor. The design and 

control of batch reactors are more difficult than CSTR’s because of there time-

varying nature. Defining of optimum variables or operating condition is quiet 

complex. Control of these systems are important because final product properties 

such as viscosity, molecular weight distribution, particle size distribution and 

composition depends upon temperature and few of these properties can be measured 

online. 

 
 Suffice it to say that the control of such complex systems like polymerization 

reactors is most challenging and difficult job. 

 
Control Issues 

• Tuning   

 Tuning of the controller is one of the major issues with batch reactor. 

Physically Steady –state condition cannot be achieved in the batch reactor hence 

tunning of the controller can be done with the help of trial and error method. 

 
• Time Constant 

 In a batch reactor the reaction proceed in such a way that any disturbance in 

the initial or the intermediate condition would definitely affect the operation. Once 

the disturbance introduce in the process, it is often difficult to take remedial action. 
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• Time Specific Control Action 

 In batch process, the ability to influence the reaction decreases with time. It 

is generally required to take control action at very specific time instants. For 

example in control of PSD in emulsion polymerization the control actions need to 

apply at the time either the nucleation take place or before the nucleation is over. 

 
• Quality Related Measurement 

 Process variables can be measured easily in most reactor system but in batch 

reactor usually long time-delay is often expected in analysing sample. 

 
• Trajectory Independent 

 A batch process is considered satisfactory if the end-use properties are 

achieved. No matter what has been runway followed by the process trajectory. 

 
• Highly Non-Linear Nature 

 Polymerization system is highly non-linear so that control system must 

capable of handling the non-linearity of the system. 

 
4.5.1  Proportional-Integral-Derivative (PID) 

4.5.1.1 Background 

 The PID controller was first arrived in the market in 1939 and has remained 

the most widely used controller in process control till present. A research has been 

performed in 1989 in Japan indicated that more than 90% of the controllers used in 

process industries are PID controllers and advanced PID controller. PI controllers 

are quite common, while derivative action is very susceptible to measurement noise. 

“PID control” is the method of feedback control that uses the PID controller as the 

main tool. The fundamental structure of feedback control systems is shown in Figure 

4.5.1 below, using a block diagram representation. The rationale of control is to 

make the process variable y follow the set-point value r. To accomplish this idea, the 

manipulated variable u is changed at the command of the controller. 

 
 Explanation of question how actual a controller works is the controllers first 

compares a measured value from a process with a reference set-point value. The 

difference known as error is then used to calculate a new value for manipulable 



Control and Experimental Methodology 

66 

input to the process that keeps the process measured value back to its desired set-

point. 

 
Control Law 

 The control signal c (t) is calculated from the value of error e(t) through a pre 

defined function 

c(t) = C[e(t)] (4.1) 

 
The function C constitutes the control law 

 
Proportional 

 To handle the present, the error is multiplied by a constant P (for 

"proportional"), and added to (subtracting error from) the controlled quantity. P is 

only valid when a controller's output is proportional to the error of the system. 

Whenever the error is zero, a proportional controller's output is zero. 

 
 This mode produces a control signal that is proportional to the error 

(Ramagnoli and Palazoglu 2006) 

c(t) = Kc e(t) +cb (4.2) 

 
 Kc represents the proportional gain and defines how sensitive the controller is 

to error present in the system  

 
Integral 

 To learn from the past, the error is integrated over a period of time, and then 

multiplied by a constant I, and added to the controlled quantity. Integral averages the 

measured error to find the process output's average error from the set point. A 

simple proportional system either oscillates, moving back and forth around the set 

point because there's nothing to remove the error when it overshoots, or oscillates or 

stabilizes at a too low or too high value.  

 
The controller signal for this mode is produced by the integral action. 

c(t) =kc /τI   de(t)/dt +cb  (4.3) 
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 The new parameter τI represents the integral time constant or the reset time. 

With this mode the controller responds effectively to the error that builds up over 

time. 

 
Derivative 

 To handle the future, the first derivative over time is calculated, and the 

multiplied with constant D. The response towards change in the system is controller 

by the derivative term. Larger the value of derivative term, the more speedily the 

controller responds to the changes in the process's output. 

 
 In this mode, the controller signal responds to the rate of the change of error 

signal, 

c(t) =kc τD de(t)/dt + cb (4.4) 

 
 The new parameter τD is introduced as the derivative time constant. The role 

of this mode is to judge the change in the error.  

 
 This is helpful in order to analyze whether it will actually reach a stable 

value or not. If the values are incorrect, the controlled process input can oscillate, 

and the process output may never keep on the set point. 

 
4.5.1.2 Control Strategy  

 Simulations of the various processes were conducted in MATLAB using 

single-loop feedback controller. A common feedback loop is shown in Figure 4.9 

below where 

  C(s) = the controller transfer function  

 G(s)  = the overall process transfer function.  

 e  = the control error  

 u = the controller output 

 ysp = the set-point of the controlled variable 

 yd = the disturbance signal  

 y = the response of the controlled variable 
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Fig. 4.9: General feedback controller setup. 

 
 The equation describing a PID controller is the sum of all three equations 

explained above for proportional, Integral and derivative action. 

∫ +++=
dt

tdeKdtteKteKutu Dc
I

c
c

)()()()( τ
τ  

(4.5) 

Where 

 u  = bias value 

 e = error 

 Kc  = controller gain 

 τ I = integral (or reset) time 

 τD = derivative (or rate) time 

 
 The controller gain, Kc, determines how much the output from the controller 

changes for a given change in error. Thus Kc establishes the sensitivity of the 

controller to an error, that is, how much the controller output changes per unit error. 

The larger the value of Kc, the more the controller output changes for a given error, 

the response becomes fast. On the other hand, for most control processes there is a 

maximum value of Kc, beyond which the process becomes unstable. The controller 

in Eq. (4.5) is a PID controller. Its main negative aspect is its lack of ability to 

eliminate the steady-state errors that occur after a set-point change or a sustained 

load disturbance. 

 The third term in Eq. (1) is the integral or reset control term, which integrates 
the error, and is answerable for eliminating the steady-state error offset. The value of 

 ysp C(s)  G(s) y

yd

+

-

+

+

E(s) U(s)
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the integral time, τI, tells how much weight is given to the integral action. When the 
value is lower, the weight given to this term should be more. The drawback of using 

τ I is that it tends to show oscillatory overshoot response in the controlled process 
and thus cut down the system stability. The controller shown with the first three 
terms in Eq. (1) is PI controller.  
 
 The last term in Eq. (1) is the derivative or rate control term. The function of 
derivative term is to predict the behavior of the error signal. By providing this 
predicted control action, the derivative mode used to stabilize the controlled process, 
and is often used to neutralize the destabilizing tendency of the integral mode. The 
main drawback of a PID controller is that a sudden change in the set-point will cause 
the derivative term to become very unstable and thus endow with a large derivative 
"kick" to the control element. 
 
4.5.1.3 Control Design 
 By taking Laplace transforms, Equation (1) becomes the transfer function: 









++= s

s
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I
c τ
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(4.6) 

 
This describes an ideal PID controller 
 The polymerization kinetic model explained above was simulated in matlab. 
The PID controller was first used in 1939 and is the most widely used controller in 
the market till today. PID controller is a feedback controller as shown in figure 4.10 
below, using a block diagram representation. As shown in the figure, the process is 
the objective to be controlled.  
 
 In our study two different strategies is used for PID to control the 
temperature of the reactor. First controller strategy used is PID controller using split 
range and second is PID controller using heater power as manipulative variable. 
Split range is a controller configuration where a single PID controller outputs to two 
control valve. In our case PID output signal controls the hot-water and cold water 
steam as per required. The range of signal is constrained between 0-1.Flow rates are 
used as manipulative variable and reactor temperature is used as control variable 
(Luyben 2007). The logic of PID controller is given in figure 4.10 below where 
proportional, integral and derivative function is clearly defined. 
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Fig. 4.10: PID control Logic 

 
 In second strategy heater power is used as manipulative variable, which may 
vary from 40-140 W in our case optimum value is 90W. Heater power value is 
highly correlated with flow rate of stream. The generated results were first compared 
with experimental data and then further proceeds towards comparison of strategy. 
Before implementing the controller tunning parameters should be optimised first to 
achieve the good performance of the controller.  

 
Fig. 4.11: Alogorithm of dynamic simulation 

  

Calculate the desire number of moments of the distribution 

Set the initial values or conditions on all the variable 

   Start 

Compute all the remaining material balance 

    Iterate until the desire reaction time has elapsed 

Calculate the differential distribution, based on moment expansion 



Control and Experimental Methodology 

71 

4.5.1.4 Tuning of PID 

 PID tunning can be done by using Ziegler and Nichols (Z-N) and Cohen and 

Coon (C-C). In a batch reactor since steady-state can not be achieved hence tunning 

of the controller become problematic. Trial and error method was used in our case 

for tunning of PID. Everyone faced with the task of adjusting or optimization of the 

control parameters to obtain desire behaviour with the control system. There are 

many ways to do this but the simpler way or may be the only way to optimize the 

parameter where steady-state cannot be achieved. Increase the gain until the system 

starts to oscillate, and then lessen the gain by using an appropriate factor.  

I. Effect of controller Gain:  Increase in value of controller gain over its 

optimum value oscillation increases, below that again found oscillations. 

Notice that increasing the controller gain reduces the offset and speeds up the 

response. In practice , there are time delays or other model uncertainties and 

that may cause closed loop to be unstable with high Kc value(Bequette 

2003).   

II. Effect of τI: Change in value cause the overshoot and required more time to 

settle down to its set-point value. Too small value can cause the system to be 

unstable 

 
4.5.2  Model Predictive Control (MPC) 

4.5.2.1 Background 

 The performance of the Model Predictive control in batch reactor is 

investigated in this study. MPC is the family of controller in which there is a direct 

use of explicit model. MPC is a user friendly and applicable technique for different 

needs, where the objective function and optimization are flexible (Nagy and Braatz 

2003). 

 
The advantages of MPC over other control system are as follow: 

1.  It can handle input or output constraints directly. 

2.  It can use step and impulse response data. 

3.  It gives satisfactory performance with the time delays and also with high 

non-linearity of the system like polymerization system. 

4.  It is robust in most cases. 
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5.  It is simple to implement. 

6.  It can optimize over a trajectory. 

7.  It controls either simple or complex processes. 

 
 We aimed to investigate MPC performance for batch emulsion 

polymerization reactor. A SISO (single- input single- output) MPC is used for the 

control of temperature of the reactor. In the simulation study MATLAB is used. The 

performance of the designed controller is checked for set-point trajectory and 

disturbance rejection for the system. 

 
 The mathematical model utilized is important when MPC is implemented, as 

MPC requires models with satisfying prediction quality. 

 
Various criteria should be fulfill before implementing MPC 

� The model should be an ODE system. 

� Stiff system should be avoided, or stiffness reduction should be performed. 

� The calculation time should be as rapid as possible, so time-consuming 

calculations should be avoided if possible. 

� The parameters in the model have to be possible to estimate. Estimated 

parameters will capture mistakes in the model. 

 
 At present MPC is the most widely used control algorithm in the chemical 

industries. 

 
4.5.2.2. Control Strategy 

 The strategy of the MPC is given in fig 14. At the present time n, the future 

outputs (y ( n + k ) for k= 1……P) of the system over a prediction horizon (P), are 

predicted at each instant by using the model, knowing value upto n ( past inputs and 

outputs ) and future inputs ( u(n), u(n+1)……u(n+C)) where c is the control horizon. 

In the figure 4.12 the past inputs are shown by solid line and future inputs are shown 

by dashed lines. The set of future inputs which minimize the objective function are 

applied to the system. Figure shows the basic structure of MPC. A model is used in 

the order to predict the future outputs and inputs of the system. A comparison made 
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between the predicted output of the plant and the reference trajectory of it and the 

future error of the plant are calculated at each step. 

 
Fig. 4.12: MPC strategy 

 
Fig. 4.13: Basic structure of MPC 

 
 Model predictive control (MPC) possesses many attributes which makes it 

successful approach and they are: 

1. The basic idea of MPC does not require complex mathematics. 
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2. All of the basic MPC components can be tailored to the details of the 

problem in hand. 

3. It is often the resolution of problem s such as satisfying control or output 

constraints. 

 
4.5.2.3 Controller Design 

 Temperature control of a batch reactor depends mainly on heating and 

cooling system of the reactor either by flow rates of cooling water or by heater 

power. In this study we use heater power as manipulative variable. The model 

developed and solved for simulation by Runge-Kutta integration method. Model 

predictive control is a generic term for a widely used class of controllers(Cueli and 

Bordons 2008; Harnischmacher and Marquardt 2007). 

 
 Model predictive control is one of the most widely used advance control 

method. MPC presented a set of future manipulated variable moves is calculated to 

minimize the objective function over a prediction horizon based on the sum of 

squares of the differences between model predictive output and desire output(Nagy 

and Braatz 2003). 

 
 The Tool used in MATLAB to compute the manipulated variable moves 

subject to constraints is cmpc, which solve optimization problem by using QP. The 

function requires model used for estimation the plant and model which state the 

controller in step format, limits of both input and output variable and weights of 

output and manipulated variables. 

 

 (4.7) 

There is some assumptions taken for MPC 

1. The output sequence y(k) for ylim is also observed 

2. The input u(k) is a continuing driving function of the process 

3. The noise is a random sequence with zero mean and is uncorrelated with 

u(k). 
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Fig. 4.14: MPC Block Diagram 

 
 The structure of MPC is shown in Figure 4.14 The difference between the 
predicted and actual output variables serve as a feedback signal to the prediction 
block and are utilized in two types of control calculations that are performed at each 
sampling instant. These are set point and control calculations. 
 
 In MPC future value of output variable is predicted using a dynamic model 
of the process and current measurements. The control calculations are based on both 
future predictions and current measurements. Usually MPC used when PID is unable 
to control the system or when there are some constraints or limitations on process 
variable and manipulative variable. In this study we compare the performance of 
PID and MPC for controlling molecular weight of a batch emulsion polymerization. 
 

 The flow chart of MPC used in matlab programming if shown in Fig 4.15 

 
Fig. 4.15: Flowchart for MPC 
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 An advantage of MPC is that inequality constraints can be incorporated in 

both the set-point and control calculations. These constraints are a result of physical 

limitations on plant equipment, and set-points for control calculations are often 

calculated from an economic optimization of the process based on a steady state 

process. Objective of the control calculations in the control block is to determine a 

sequence of control moves, so predicted response moves to the set-point in an 

optimal manner. The quality of MPC dependents on an accurate process model that 

has to be available and this model have to capture interactions between input, output 

and disturbance variables.  

 
4.5.2.4 Parameters Tuning  

 The main tuning parameters for MPC are the control horizon (C), weight 

tunning (w) and prediction horizon (P). 

 
 The model horizon M should be selected to be equal of 99 % of the settling 

time used. The control horizon C, is used in the optimization calculation in order to 

reduce the predicted errors. It can be used as 60% of the open loop settling time. 

Large value of control horizon leads to a robust controller which is insensitive to 

model errors. Another tunning parameter is prediction horizon P is also used in 

optimization calculation. Increasing P results in conventional control action but also 

increases the computational effort. Usually P is chosen as 85 % of model horizon. 

The weight tunning factor for predicted error is usually selected in terms of identity 

matrix I.  

 
Predictive Horizon (P) 

 The prediction horizon specifies the number of future plant outputs to be 

calculated using the model, the past control actions and the computed future control 

action. Increasing the prediction horizon results in more conservative control action 

that has a stabilizing effect, but it increases the computational effort. Large value of 

prediction horizon would be recommended for only very good model and having 

limited feedback. 
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Control Horizon (C) 

 The control horizon specifies the number of future control actions to be 

calculated, in order to minimize the objective function, and used in the optimization 

step to minimize the prediction error. A large value of control horizon (C) than 

prediction horizon tends to excessive control actions and smaller value leads to 

robust control. Computational effort is also reduced by decreasing the value of 

control horizon. 

 
Weight Tuning 

 Weight tuning is mainly used for move suppression to prevent oscillations 

behaviour. Increasing weight will prevent oscillations but large value tends to slow 

down the response time. 

 
 In all three cases a lot trial and error tuning had to be performed to get the 

required optimum value. 

 
4.5.3 Neural Network Predictive Control (NNPC) 

4.5.3.1 Background 

 Neural networks have been able to approximate any continuous non-linear 

functions and have been applied to non-linear process modeling. The most 

commonly used is feed forward neural network (Hossen, Hussain  et al. 2011; 

Kuroda and Kim 2002; Ng and Hussain 2004; Su and McAvory 1993). The layer of 

neural network is consists of neurons which are connected to the neurons of same 

layer or the adjacent layer. Inputs to an input layer propagated through the 

interconnection of the input neurons to the neurons of adjacent layer which is known 

as hidden layer. 

 
 Neural network is hidden layer structures which essentially define the 

mechanism of a feed forward network. Each interconnection has associated with a 

scalar weight which acts to modify the strength of the signal passing through it. 

 
The neurons associated with hidden layer performs two task 

1.  They sum the weighted inputs to the neurons. 
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2.  And then pass the resulting summation through a non-linear activation 

function. 

 
 Neural network model is divided into two sets: training data set and testing 

data set. During network training the network error on the testing data is monitored 

continuously. Validation is the last step of the training of the neural network which 

itself minimize the error and check the performance of the network with regression 

analysis. 

 
4.5.3.2 Control strategy 

 
Fig. 4.16: Block diagram of NNPC 

 
 In neural network the multilayer feed forward NN architecture is used to 

model underlying plant. It has hidden layer with sigmoid activation functions. The 

neural network weights are initialized with small numbers. The inputs of the neural 

network are the control signals and the past of the plant outputs. Training is used for 

the neural network with the help of this NN predicts the output of the plant through 

the prediction horizon.  

 
 Neural networks have been applied very successfully in the identification 

and control of dynamic systems. The use of a neural network for process modelling 

is shown in Figure 4.17. The unknown function may correspond to a controlled 

system, and the neural network is the recognized plant model. This neural network is 
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thus two-layer networks, with sigmoid transfer functions in the hidden layer and 

linear transfer functions in the output layer.  

 
Fig. 4.17: Neural Network as function approximators. 

 
 The prediction error between the plant output and the neural network output 

is used as the neural network training signal. The NN plant model uses previous 

inputs and previous plant outputs to predict future values of the plant output. The 

structure of the neural network plant model is given in the Figure 4.18, where u(t) is 

the system input, yp(t) is the plant output, ym(t) is the neural network model plant 

output, the blocks labelled TDL are tapped delay lines that store previous values of 

the input signal, IW i,j is the weight matrix from the input j to the layer i. LW i,j is 

the weight matrix from the layer 1 to the layer 2 and here b is value of biases. 

 

 
Fig. 4.18: Structure of the neural network plant model 

(Vasickaninova and Bakosova 2009) 
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4.5.3.3 Control Design  

 The neural network predictive controller as illustrated in Fig. 4.19 

implements neural network to predict future plant performance.  

 
Fig. 4.19: Neural Network structure 

 
 For linear systems, the choice of control horizon is normally decided by the 

time to achieve a steady state. For nonlinear systems, there is no definite selection 

criteria provided. Hence, the simulation results (trial and error method) are normally 

used for the determination of the prediction horizon. In a batch system steady state 

condition can be never achieved hence it is easy to tune the network through trial 

and error method. With the simultaneous solution and optimization approach, the 

increase in size of the Cost horizon increases the size of constrained nonlinear 

optimization problem. The performance of the controlled variable i.e. reactor 

temperature was observed to determine the best value for the prediction horizon. It 

was observed that small values for the prediction horizon show oscillatory or 

unstable responses(Hossen, Hussain  et al. 2011). 
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Fig. 4.20: Basic strategy of Neural Network control. 

(Hossen, Hussain  et al. 2011) 

 
4.5.3.4 Neural Network Training 

 In the process of NN training, the error, which is the difference between the 

desired response and the actual response, was calculated. The error was then 

propagated backward through the network. The error was used to adjust the weights 

and threshold values of the neuron. This was done to ensure that in the next round, 

the error would be reduced for the same inputs. Fig.4.21 illustrates the basic concept 

of neuron weight adjustment. 
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Fig. 4.21: Neuron Weight Adjustment 

 
 We train the neural network using back propagation as discussed above in 

Section. We are using the Levenberg Marquardt algorithm for weight updating in 

our model, and this algorithm is implemented in the Matlab. While training the 

neural network using an error function on the training data set, we investigate the 

performance of the network on the validation data set. Poor generalisation will show 

as an increasing error function on the validation data set. 

 
 This network first trained using data collected from the open loop using same 

model. The procedure for selecting the network parameters is called training the 

network. The Levenberg-Marquardt (LM) algorithm is very efficient for training. 

The Levenberg Marquardt algorithm is an iterative technique that locates the 

minimum of a function that is expressed as the sum of squares of nonlinear 

functions.  

 
 LM algorithm is used to solve non-linear square problems. It uses iterative 

improvement to parameters value in order to reduce the sum of square of the error. It 

is a combination of two improvement methods; one is guass- newton method and 

second is gradient descent method. 
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Fig. 4.22: Training of Neural Network 

 

 
Fig. 4.23: Training Analysis 
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Fig. 4.24: Structure of neural network. 

 
4.5.3.5 Tuning 

 There are a number of parameters that we have to tune: the control horizon 

Nu, the costing horizon N2 and the control weight and hidden layer. The 

accumulation of errors in the prediction of future plant outputs limits the horizon 

N2. It is not possible to increase N2 beyond a certain limit, where the accumulated 

error starts to have impact. The costing horizon has to be large enough to extend 

over the dynamics of the plant. The costing horizon has to be large enough to allow 

the algorithm to see the outcome of the predicted controls. 

 
 At the same time, an increased N2 increases the computation time. The 

choice of control horizon Nu has nothing serious impact on the computational 

results. 

 
 

Fig. 4.25: Flow diagram of neurons signals 
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Control Horizon (Nu) 

 The quality of any controller can be improved by optimizing there 

parameters. The effect of parameters on the control quality of the controller are 

analysed here. The control parameters which have been optimized in this study are 

Control weight, Control Horizon (Nu) and neurons of hidden layer in the neural 

network. 

 
Control Weight 

 Increase in control weight causes the oscillatory behaviour in the control 

variable. The Nu does not affect the quality of NNPC strongly but during 

performance analysis. At the same time, an increased Nu increases the computation 

time. The choice of control horizon Nu has serious impact on the computational 

results 

 
Hidden Layer and number of Neurons 

 A single Hidden layer was used in the neural network, the number of neurons 

highly affect the control ability of the controller. The optimum value of neurons was 

found using trial and error method. Increase in the number of neurons cause 

controller sluggish in nature. 

 
 This neural network method, however, has two drawbacks. First, the neural 

network training process must be repeated when the desired output response has 

been changed. This restricts the practicality of the control method. Second, due to 

the existence of constraints, the control law may not be a continuous or continuously 

differentiable function of x(k). As a result, accurate neural network training may be 

difficult. 

 
 In this section, neural network methodology for modeling the PMMA batch 

reactor process has been introduced to overcome various modeling difficulties. This 

methodology includes the following steps:  

i.  Used the same model involving temperature varying kinetic parameters.  

ii.  Generate reactor temperature profiles by conducting several reaction runs 

using predefined operating conditions.  
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iii.  Use the generated temperature profiles and the mechanistic model to 

estimate the kinetic parameters.  

iv.  Use NN modeling methodology to model the estimated kinetic parameters 

under the reactor operating conditions.  

 
4.6  New Issues on Optimization and Control 

 There are limited industrial applications on the dynamic optimization and 

control of polymerization processes. There are some reasons for lack in quality 

control application for polymerization processes and they are as follows 

(Kiparissides 2004): 

[1]. Polymerization processes are highly non-linear, containing large number of 

time varying kinetics and transport parameters. 

[2]. Modeling of polymerization system leads to non-linear integro - differential 

equations. This nature does not allow their direct use for the design of non-

linear controller that can be easily implemented in real-time. 

[3]. On-line measurement of MWD, CCD, LCB, PSD, etc is very difficult and 

the available secondary measurements are often insufficient. 

[4].  Formulation of distributed molecular properties is not easy especially when 

the end-use properties of the product need to be controlled. 



 

Chapter-5 
Experimental Results 

and  
Discussion  



 

5. Experimental Result and Discussion 
 

 Experiments have been done in our laboratory in batch for Methyl-

Methacrylate system. Few results are tabulated in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 

5.6. This is well documented system for which most of the kinetic and physical 

parameters are available in the literature. 

 
 PMMA can be produced using a variety of polymerization mechanisms. The 

most common technique is the free radical polymerization of MMA. This unique 

polymerization process that is heterogeneous in nature exhibits very different 

reaction mechanisms and kinetics compared to bulk or solution free radical 

polymerization. Surfactant is generally required to stabilize the colloidal system; 

otherwise, latex particles nucleated during the early stage of polymerization may 

experience significant coagulation in order to reduce the interfacial free energy. This 

feature may also come into play in determining the number of reaction loci (i.e., 

polymer particles) available for the consumption of monomer. 

 
 The free radical polymerization of acrylates and methacrylates is a chain 

polymerization across the double bond of the monomer. The free radical 

polymerization of methyl methacrylate can be performed homogeneously, by bulk 

or solution polymerization and heterogeneously using suspension or emulsion 

polymerization. It is relatively easy to perform free radical polymerizations.  

 
 In order for polymerization to proceed successfully, it is mandatory to 

remove all oxygen from the polymerization. Oxygen if present acts as a radical 

scavenger and it is able to terminate free radical polymerizations. Radicals can be 

generated with radiation, chemical agents or heat. 

 
 Emulsion polymerization involves the propagation reaction of free radicals 

with monomer within the monomer–swollen polymer particle dispersed in the 

aqueous phase. These discrete hydrophobic particles are stabilized by surfactant 

sodium Oleate in our case. Micelles are formed when the level of surfactant is 

greater than its critical micelles concentration (cmc). 
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 Particle nucleation is generated via the capture of radicals by micelles. Water 

born polymerization such as emulsion polymerization are of great importance in 

industry application as they provide environmental friendly process, removal of heat 

of the reaction is quite manageable during polymerization and assume the viable 

handling of the final latex product having a low viscosity. Research in free 

radical/controlled polymerization has been increased appreciably during the past two 

decades. 

 
 The most striking feature of emulsion polymerization is the segregation of 

free radicals among the discrete monomer-swollen polymer particles. This will 

greatly reduce the probability of bimolecular termination of free radicals and, 

thereby, result in a faster polymerization rate and polymer with a higher molecular 

weight. This advantageous characteristic of emulsion polymerization cannot be 

achieved simultaneously in bulk or solution polymerization. Transport of monomer, 

free radicals and surfactant to the growing particles and partition of these reagents 

among the continuous aqueous phase, emulsified monomer droplets (monomer 

reservoir), monomer swollen polymer particles (primary reaction loci) and oil–water 

interface are the key factors that govern the particle growth stage.  

 
 The colloidal properties of latex products are of great importance from both 

academic and industrial points of view. Some representative properties include the 

particle size and particle size distribution, particle surface charge density (or zeta 

potential), particle surface area covered by one stabilizer molecule, conformation of 

the hydrophilic polymer physically adsorbed or chemically coupled onto the particle 

surface, type and concentration of functional groups on the particle surface, particle 

morphology, optical and rheological properties and colloidal stability. Batch 

emulsion polymerization is commonly used in the laboratory to study reaction 

mechanisms, develop new latex products and obtain kinetic data for process 

development and reactor scale-up. Most of the commercial latex products are 

manufactured by semi-batch or continuous reaction systems due to the very 

exothermic nature of free radical polymerization and rather limited heat transfer 

capacity in large-scale reactors.(Chern 2006) 
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 Emulsion polymerization had a physical gain over the other and is safe, 

faster and easy to control for the reason of its colloidal system and in some cases 

product can be used without further separations. Additional physical advantages are 

less thermal and less other physical problem in contrast to other processes like bulk 

polymerization. In spite of physical gain there is kinetic lead also, that is emulsion 

polymerization is the merely process where relationship between molecular weight 

and rate of polymerization is not inverse similar to other processes. Emulsion 

polymerization facilitates the change in molecular weight without altering rate of 

polymerization just by adding chain transfer agents. Up to date leaning clearly point 

out that emulsion polymerization is an important field and be worthy of further 

research and development. 

 
 Track down from literature the monomer conversion is shown below in 

Fig.5.1 the rate of consumption of monomer is relatively long-drawn-out, but the 

molecular weight of polymer builds up hurriedly because of chain addition reaction. 

The conversion first increases and then gradually levels off with the progress of 

polymerization. After a certain conversion, the termination rate constant (kt) 

becomes chain length dependent due to the influence of diffusion of free radicals on 

the bimolecular termination reaction. Under these circumstances, kt decreases 

significantly with increasing conversion, thereby leading to the severely retarded 

bimolecular termination reaction and then auto-acceleration of the polymerization 

rate. This is termed the gel effect or Trommsdorff effect. 

 
 The polymerization rate either is constant or increases slightly with time 

during interval II (explained in chapter 2). The latter behaviour, which may begin 

immediately or after a constant rate period, is an outcome of the Trommsdorff effect 

(or gel effect). The polymer particles increase in size as the monomer droplets 

decrease. 
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Fig. 5.1: Relationship of conversion with time found in literature. 

 
 The experiments were done in our laboratory with three different recipes and 

results pictured in form of graphs although a vast research has been done from last 

two decades on this simple study but still we give brief description of the process. 

Started with rate of polymerization and conversion of monomer as the reaction 

proceeds with time we have taken number of runs in which few are given which 

shows the reproducibility of the results. Different runs have been taken at different 

time and plotted in Fig 5.2, 5.3, 5.4 and tabulated in table no 5.1, 5.2 and 5.3 for rate 

of polymerization for recipe 1, 2 and 3 respectively.. 

 
Fig 5.2: Comparison of runs taken at different time for rate of  

polymerization (using 1st recipe). 
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Table 5.1: Rate of Polymerization using 1st recipe. 

Time Run 1 Run 2 Run 3 Run 4 Run 5 

0 0 0 0 0 0 

20 1.0519 1.7955 0.8571 1.4532 1.4809 

40 3.2147 3.3199 1.992 3.2145 2.8717 

60 5.1849 6.0336 3.8398 5.1693 5.6013 

80 6.5008 7.1213 6.5592 6.9091 6.2859 

100 7.7239 8.1982 7.71843 8.1558 7.03984 

120 8.3444 8.9007 8.199 8.8766 7.20553 

140 8.9506 9.4285 8.7864 9.1504 7.8911 

160 8.7367 9.2145 8.9798 9.1381 8.6264 

180 8.9078 9.2002 9.0576 9.1233 9.1443 

200 8.7543 9.1542 8.356 8.9798 8.3676 
 

 
Fig. 5.3: Comparison of runs taken at different time for rate of  

polymerization (using 2nd recipe). 
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Table 5.2: Rate of Polymerization using 2nd recipe 

Time Run 1 Run 2 Run 3 Run 4 Run 5 

0 0 0 0 0 0 

20 0.21725 1.00674 0.42504 0.81486 0.57133 

40 1.226143 1.17395 1.0429 1.40944 0.7744 

60 2.262525 1.74128 1.81214 2.93484 0.916183 

80 2.60056 2.4737 2.34791 3.44405 1.803756 

100 2.88799 2.7779 2.6494 4.118402 2.332704 

120 3.69731 3.42713 3.45202 4.30661 2.988522 

140 3.76449 3.84799 4.043295 4.04329 3.58265 

160 3.95852 3.58265 3.9476 3.61823 3.27366 

180 3.691704 3.34718 4.34288 3.14833 3.11685 
 

 
Fig. 5.4: comparison of runs taken at different time for rate of  

polymerization (using 3rd recipe). 
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Table 5.3: Rate of Polymerization using 3rd recipe 

Time Run 1 Run 2 Run 3 Run 4 Run 5 

0 0 0 0 0 0 

20 0.4032 0.29864 0.39047 0.34738 0.42156 

40 0.47181 0.32928 0.401766 0.8544 0.54351 

60 0.77103 0.47896 0.609918 1.50529 1.0214 

80 1.36125 1.538112 0.95989 2.0243 1.852 

100 1.93847 1.96125 1.7809 2.5836 2.3836 

120 2.60385 2.52033 2.4748 3.05427 3.0122 

140 3.1611 3.06368 3.32714 3.3275 3.2351 

160 3.38689 4.2353 3.6693 3.8769 3.6998 

180 2.83849 4.0991 3.03688 3.00981 3.1567 
 
 The fate of most common latex products is the coagulation of polymer 

particles in our case we use methanol for coagulation in order to minimize the 

particle – water interfacial area. Moreover, the monomer - swollen particles may 

even lose their colloidal stability and flocculate with one another in the course of 

emulsion polymerization.  

 
 We bring into play three different recipes and found increase in monomer 

with initiator and emulsifier concentration intensifies the rate of polymerization. 

Amusingly originate that the stage of constant rate of polymerization conquer at the 

same time (150 min.). The increase in concentration of initiator and emulsifier 

facilitate the rate of polymerization hastily as found in 1st recipe. 

 
 The rate of an emulsion polymerization depends upon four major variables: 

the propagation rate coefficient, the monomer concentration in the latex particles, 

the total particle concentration, and the radical concentration within the particles.  

 
 If most of the monomer in an emulsion polymerization is contained within 

the latex particles, then this will reduce the rate of polymerization exponentially, this 

effect cannot be altered in a batch emulsion polymerization process until the 
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monomer partitioning between the latex particle and aqueous phase has been 

changed. 

 
 The monomer partitioning can be easily calculated and its effect on the rate 

of polymerization deduced. The partitioning of monomer may be altered to favour 

the latex particle phase by altering the conditions of the reaction (e. g. the 

temperature), hence enhancing the rate of polymerization.  

 
 The final variable that affects the rate of polymerization is the free-radical 

concentration in the latex particles. It is well known that there are three kinetic 

events that may alter the concentration of radicals within latex particles: entry, exit 

and bimolecular termination. Both free-radical exit and termination are free-radical 

loss mechanisms, and have been shown to be diffusion-controlled. As the weight 

fraction of polymer in latex particles increases at high conversions, all models 

predict that the rate of free-radical loss via the mechanisms of exit and termination 

should be decreased, hence the rate of polymerization increased.  

 
5.1 Conversion 

 
Fig. 5.5: comparison of runs taken at different time for conversion  

(using 1st recipe). 
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Table 5.4: Conversion using 1st recipe. 

Time x1 x2 x3 x4 x5 

0 0 0 0 0 0 

20 0.059 0.1007 0.0776 0.03857 0.08153 

40 0.1803 0.1862 0.07499 0.04807 0.18028 

60 0.2909 0.3258 0.1888 0.11172 0.289925 

80 0.3647 0.3995 0.23465 0.21536 0.38749 

100 0.4333 0.4598 0.2664 0.3678 0.45742 

120 0.4679 0.4993 0.371229 0.43289 0.49784 

140 0.5021 0.5288 0.36563 0.45984 0.5132 

160 0.4892 0.5168 0.35665 0.49278 0.51251 

180 0.4992 0.5076 0.3768 0.503638 0.51168 

200 0.4911 0.5034 0.4021 0.508004 0.52363 
 

 
Fig. 5.6: comparison of runs taken at different time for conversion  

(using 2nd recipe). 
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Table 5.5: Conversion using 2nd recipe. 

Time x1 x2 x3 x4 x5 

0 0 0 0 0 0 

20 0.02646 0.1121 0.047323 0.09074 0.06362 

40 0.02295 0.13073 0.11613 0.15695 0.04169 

60 0.02355 0.1939 0.201798 0.32682 0.10202 

80 0.06678 0.27547 0.26146 0.39352 0.20086 

100 0.09888 0.30934 0.29504 0.45861 0.25976 

120 0.18901 0.38164 0.38441 0.47957 0.332797 

140 0.241 0.4285 0.45025 0.450255 0.39895 

160 0.32945 0.39895 0.439613 0.40291 0.36455 

180 0.4111 0.37273 0.48361 0.45059 0.347088 
 

 
Fig. 5.7: comparison of runs taken at different time for conversion  

(using 3rd recipe). 
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Table 5.6: Conversion using 3rd recipe. 

 
 The conversion first increases and then gradually levels off with the progress 

of polymerization. After a certain conversion, the termination rate constant (kt) 

becomes chain length dependent due to the influence of diffusion of free radicals on 

the bimolecular termination reaction. Gel effect causes low conversion. In fact when 

the monomer conversion reaches 0.03 mol/l-sec, the termination reaction becomes 

diffusion control i.e. miscibility problems occurs so that large free-radical chain 

terminates hardly and propagation accelerates. Results are tabulated in Tables 5.4, 

5.5 and 5.6 for conversion using recipe 1st, 2nd and 3rd respectively  

 
 Fascinatingly overall conversion rate drops as the rate of polymerization turn 

out to be faster. The reason behind this is the polymer particles get saturated with 

monomer. In the midst of more monomer to convert, the particle stay saturated with 

monomer for a longer time, the gel effect is delayed and conversion rate is slower 

then excepted. 

 
 We found that increase in concentration of initiator and monomer makes 

increases in conversion as well which is provided evidence in Fig 5.7. The 

conversion first increases and then gradually levels off with the progress of 

polymerization the reason behind is the localized increase in viscosity of the 

polymerizing system which caused the motion of the radical hindered to approach 

each other for the termination, hence it decrease the termination rate. 

Time x1 x2 x3 x4 x5 
0 0 0 0 0 0 
20 0.0675 0.0552 0.02834 0.05823 0.05662 
40 0.07909 0.08029 0.08412 0.14325 0.07129 
60 0.12925 0.15435 0.10196 0.25235 0.1435 
80 0.2282 0.2282 0.14739 0.3394 0.2582 
100 0.324975 0.32193 0.29855 0.43313 0.2993 
120 0.43625 0.4264 0.4148 0.51203 0.4216 
140 0.52994 0.51361 0.5577 0.55783 0.5536 
160 0.56779 0.52538 0.61514 0.64993 0.5381 
180 0.477032 0.47156 0.50918 0.50458 0.4826 
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At high conversions the monomer concentration in both the latex particle and 

aqueous phase decreases, so causing other variables such as the diffusion coefficient 

of monomer in the latex particles to decrease  

 
Effect of Monomer concentration on rate of polymerization 

 Polymerization proceeds in the polymer particles as the monomer 

concentration in the particles is maintained at the equilibrium (saturation) level by 

diffusion of monomer from solution, which in turn is maintained at the saturation 

level by dissolution of monomer. 

 
 Interval II ends when the monomer droplets disappears completely. The 

changeover from interval II to interval III occurs at lower conversions as the water 

solubility of the monomer increases and the extent of swelling of the polymer 

particles by monomer increases.  

 
Fig. 5.8:  Effect of monomer concentration on rate of polymerization. 

 
 The rate of polymerization depends on concentration of monomer as shown 

in figure 5.8 above. When concentration of monomer used is 106 ml in Flory recipe, 

the maximum rate obtained is 3.5 gm/l-min whereas rate get hold of maximum value 

of 9 gm/l-min when 200ml of MMA was used. 

 
 The percentage of conversion depends on concentration of monomer, 

initiator and emulsifier as the concentration increases, conversion also increases. 
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Flory recipe used gives lesser conversion while modified recipe with higher 

concentration of monomer and initiator bestow high conversion. 

 
Viscosity 

 
Fig. 5.9: Comparison of viscosity of all three formulations  

(First= 1gm of surfactant conc.,second =1.5,third =2gm) 

 
 In polymer processes, the viscosity increases with conversion and this makes 
perfect mixing impossible. Viscosity has a significant effect on the heat transfer 
characteristics as well. Non-ideal mixing conditions in stirred tank reactors are often 
suspected to be the cause of unexpected broad chain length distribution in free 
radical chain polymerization. For detail profile of viscosity effective agitation is 
required. 
 
 The emulsion polymerization is characterized by the formation of the 
polymer in the form of latex. The particle size distribution (PSD) of the latex and the 
molecular weight distribution (MWD) of the polymer are two important measurable 
parameters. Not only do they influence the end-use behaviour of the product, but 
they also replicate the growth history of the emulsion polymerization process.  
 
pH and Conductivity 
 Conductivity of PMMA solutions varies from 0.0270 to 0.02702. pH of 
PMMA solutions varies from 5.51 to 5.97. This analysis is done to validate the 
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characteristics of PMMA. The value found in literature is 5.85 pH and the value of 
conductivity is 0.02. 
 
5.2  Particle Size Distribution 

 The observable properties of an emulsion polymerization, such as the PSD 

and MWD, are governed by a set of rate coefficients for the various microscopic 

processes occurring therein. Although the two distribution functions are 

interconnected, to discuss separately the mathematical modeling required to 

compute these two observables (see chapter 3). It must be recognized, however, that 

the various rate coefficients that can be determined are themselves commonly a 

function of the PSD and, less commonly, of the MWD. 

 
 It is open to criticism in that the results may be ambiguous: the same 

agreement between theory and experiment could often have been reached with a 

different set of parameters and/or other equally plausible theoretical premises. 

Literature values for many rate coefficients for polymerization processes display 

considerable variation 

 
 Interval II of an emulsion polymerization is characterized by polymerization 

in a constant number of latex particles in the presence of monomer droplets (i.e. 

nucleation is absent). This situation usually exists in an ab-initio polymerization 

immediately on completion of Interval I; however, for a seeded system, it may exist 

from the commencement of polymerization. 

 
 In the presence of monomer droplets, the concentration of monomer at each 

polymerizing site in the particles is approximately constant.  

 
 As polymerization proceeds, more particles enter the growing state. After 

some time, the total number of latex particles in each state is equal although the 

population is marginally further advanced in the size than the non growing 

population .The overall PSD moves along the size axis and broadens with increasing 

time. The rate of broadening is greatest when the polydispersity is least. 
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 Two mechanisms for particle nucleation (i.e., formation of polymer particles) 

have been reported in literature. One is micellar particle nucleation, occurs when 

radicals from the aqueous phase enter the micelles. (The term heterogeneous particle 

nucleation has been proposed as an alternative to the term micellar particle 

nucleation.) The radicals may be primary radicals or, oligomeric radicals formed by 

solution polymerization. Second homogeneous particle nucleation involves solution-

polymerized oligomeric radicals becoming insoluble and precipitating in the same 

(or onto dead oligomer in solution). The precipitated species become stabilized by 

absorbing surfactant (from solution, monomer droplets, and micelles) and on 

subsequent absorption of monomer is the equivalent of polymer particles formed by 

micellar nucleation. The relative scope of micellar and homogeneous nucleation are 

expected to vary with the surfactant concentration and its CMC value along with the 

solubility of monomer in water. Micellar nucleation is the predominant nucleation 

process when the surfactant concentration is well above CMC. For methyl 

methacrylate, more than 99% of particle nucleation occurs by micellar nucleation.  

 
 Around CMC, micellar nucleation is still the predominant mode of 

nucleation, but homogeneous nucleation is present—more for vinyl acetate and 

methyl methacrylate and less for styrene. The circumstances are much different for 

all monomers when the surfactant concentration is well below CMC. Micelles are 

absent below CMC and only homogeneous nucleation occurs. In fact, the occurrence 

of emulsion polymerization in the absence of micelles is evidence for the 

homogeneous nucleation mechanism. In our experiments we assumed that only 

micellar nucleation is taking place in the reaction medium 

 
 As the sample removed from the reactor for particle size measurement and 

immediately transfer to the Malvern Mastersizer. In order to avoid coagulation it is 

important to add sample as soon as it is removed from reactor. The agitation speed 

was set at 2000rpm, measurement time would be 12 seconds and that 12000 snaps 

would be taken on that time. At each sampling point a small amount of latex was 

taken out from the reactor for particle size measurement and transferred to a glass 

and without delay added to the Malvern. 
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 It is imperative to add the sample as smoothly and quickly as possible. In 

order to lessen the coagulation of the particles it was also significant that the sample 

was added to Mastersizer immediately after removal from the reactor to avoid the 

coagulation. 

 
 The result shows materialization of bimodal distribution, having comparable 

number of particles on both models. We reproduce the results and concluded that 

most of the distributions results superimposed on each other and indicating good 

reproducibility.  

 
 Bimodality of distribution is instigated by coagulation. Malvern Mastersizer 

2000 E is used for particle size distribution and water is being used as dispersant. 

 

 
Fig. 5.10: particle size distribution of PMMA latex at 200 min using first recipe. 

 
 The graph shows possible coagulation which caused bimodal distribution. 

Particle nucleation occurs by micellar mechanism and compartmentalization caused 

bimodal distribution in the latex particles. 90 % particles produced are of 119.852 

µm. The emergence of a bimodal after some time is due to the depletion of 

monomer droplets and the associated release of the surfactant accumulated within 

back in the aqueous phase, causing a crossing of CMC barrier and coagulation. 

Bimodal particle size distribution has a great advantage and that property basically 

used in paint industry, that is bimodal distribution allows increasing the solid 

content with low viscosity. 
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Fig. 5.11: Particle size distribution of PMMA latex at time 120 min  

using first recipe. 

 

 

Fig. 5.12: Particle size distribution of PMMA latex at time 200 min  

using second recipe. 

 
Fig. 5.13: Particle size distribution of PMMA latex at time 120 min  

using second recipe. 
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Fig. 5.14: Particle size distribution of PMMA latex at time 200 min  

using third recipe. 

 
Fig. 5.15: Particle size distribution of PMMA latex at time 120 min using Third 

recipe. 

 
 The final PSD was always considerably narrower than that of initial PSD. At 

10 % conversion, the particles are fairly small with essentially 0 or 1 radical per 

particle. As the conversion reaches at 40 % the distribution has moved to larger 

particle size. Here 10 % of the volume distribution is of size 0.94µm and 90 % of 

volume distribution is of size 31.378 µm as given in table also. 
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Fig 5.16: Comparison of PSD @120 min and 200 min.  

(Green-120min, Red-200 min). 

 
 The result shows that final PSD is slightly narrower that the PSD at 120 min. 

Red color shows the Final PSD of the polymer particles and green shows the PSD at 

time 120 min. In final PSD at the end the lager particles appeared due to the 

coagulation. The particles less than 100µm are polymer particle and above that may 

be monomer droplets or the larger particles because of coagulation.  

 
 The ratio of water and monomer mixture is also very important. Owing to the 

small particle size, the system become very thick if the water/monomer ratio is very 

low. The particle size decreases gradually as the water content increases 

 
Reproducibility 

 It is always important to confirm that the results produced by the equipment 

are reproducible or not. Repeated results proves that the distribution closely 

comparable with each other, which shows very good reproducibility. Since little 

disagreement is may be because of coagulation event in the sample. All the results 

for reproducibility are collected in appendix 1. 

 
Monomer Droplets 

 Sodium oleate was used as the surfactant during the polymerization. Runs 

were carried out using three different concentrations i.e. 1 gm, 1.5gm, 2 gm.  
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 The most important parameter which affects the stability of an emulsion is 

the droplet size and the droplet size distribution which is inclined by emulsification 

process, type and amount of emulsifier. Much work has been carried out in 

determining droplet size but very little experimental work has been reported in the 

area of characterization of monomer emulsion in terms of droplet size distribution 

and stability. Droplet size distribution of methyl methacrylate emulsion has also 

been presented in this thesis by utilizing light scattering method of Mastersizer. 

 
 In principle, a balance between the rate of droplet breakage and coalescence 

determine the size of the droplet consequently droplet size is a strong function of 

numerous parameters like density, viscosity interfacial tension, type and 

concentration of emulsifier stirring speed and also kinetics of polymerization. 

 
 Malvern mastersizer is used for study of monomer droplet size. The results 

of each run are displayed in a graphical format as a distribution. 

 
 The sample analysed was taken before addition of initiator in the reactor. 

Through in the early stages of polymerization the monomer droplets are appreciably 

lager than the polymer particle consequently distribution obtain was broader as 

compared to polymer particle distribution as shown in Fig 5.17a, 5.17b and 5.17c as 

compared to their respective particle size distribution (Table 5.7). 

 
 The large particle (100 µm to 1000µm) at high concentration of emulsifier  
(2 gm) is the result of coagulation it is well known that emulsion droplet is unstable 
as the time passes droplet size changes the reason behind is coagulation or 
coalescence or sometimes break up. Droplets formed spectacularly increases the 
surface area available for mass transfer and as a result they have reflective impact on 
rate of polymerization and the final properties of the latex. Increase in emulsifier 
concentration in the main tends to speed up the emulsifier adsorption which 
decreases the interfacial tension and droplet breaking which ultimately endorse the 
formation of smaller droplets (avoiding the large particle which is the result of 
coagulation). As shown in fig 8 there is not appreciably changes in the width of the 
distribution. It is observed that the amplitude of the distribution is narrow for high 
concentration of emulsifier. 
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 As the rate of polymerization increases viscosity of the droplets increases, 

the rise in viscosity escort towards increase in droplet coalescence rate and decrease 

of droplet breakage, resulting in a larger particle size 

 

 
Fig. 5.17 a): Size of monomer droplets (surfactant conc-1 gm). 

 
Fig. 5.17 b): Size of monomer droplets (surfactant conc-1.5 gm). 

 
Fig. 5.17 c):  Size of monomer droplets (surfactant conc-2 gm). 
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 Increase in the concentration of Surfactant causes multimodal distribution of 

monomer droplets. Higher the concentration of emulsifier, greater is the number of 

particles that can be initiated. As the number of particles increases the number of 

reaction sites also increases, thus faster the rate and lower the reaction time which 

results in broader particle size distribution. Multimodal distribution is also resulting 

by considerably coagulation event; increase in the concentration of emulsifier 

increases the possibility of coagulation. Detailed results are given in the table above. 

 

Table 5.7: Comparison of results of different concentration of surfactant. 

Surfactant conc. Bimodal distribution 90% of volume containing  
particles  of size (µm) 

1gm Yes 61.849 

1.5gm Yes 41.341 

2gm Yes 128.77 
  
 Usually, particle formation by initiation in the monomer droplets is not 

considered important. This is because of the low absorption rate of radicals into the 

droplets in emulsion polymerization, relative to the other particle formation rates. 

Only in cases where the monomer droplets are made very small may they be an 

important source for partic1e formation. In literature we found a strong case for 

droplet nuc1eation in systems with especially effective preparation and stabilization 

methods for making and keeping the monomer in a very fine-dispersion. In some 

cases the partic1es become larger because some emulsifier is adsorbed on the 

monomer droplets, leaving less emulsifier in the aqueous phase and thereby leading 

to the formation of a smaller number of partic1es.  

 
 There are two factors that influence the particle formation conditions: the 

adsorption of emulsifier on the droplets, which leaves less emulsifier in the aqueous 

phase to facilitate particle formation there, and the rate of radical absorption in 

monomer droplets.  
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Comparison of Size of Monomer Droplets 

 
Fig. 5.18: Comparison of monomer droplets @ 1, 1.5 and 2 gm surfactant (Blue 

– 1gm,Green-1.5 gm, Red-2gm). 

 
 Emulsifier is the most important parameter which controls the particle size 

and particle size distribution of latex product. Latex product with a large particle 

size can be produced by using relatively low concentration of emulsifier and 

narrower particle size will be achieved. Higher the concentration of emulsifier, 

greater is the number of particles that can be initiated. As the number of particles 

increases the number of reaction sites also increases, thus faster the rate and lower 

the reaction time which results in broader particle size distribution. Fig 5.18 gives 

the comparison between particle size distributions using three different 

concentration of emulsifier.  

 

 
Fig. 5.19: comparison of PSD and monomer droplets for 1 gm concentration of 

emulsifier (green-polymer particles, red-monomer droplets). 
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Fig. 5.20: Comparison of PSD and monomer droplets for concentration 1.5 gm 

(red- polymer particle, green- monomer droplets). 

 

 
Fig. 5.21: comparison of PSD and monomer droplets for concentration of 2 gm 

(Green- polymer particle, Red– monomer droplets). 

 
Table 5.8: Results of three formulations. 

 Formulation  1 Formulation 2 Formulation 3 

RPM of Malvern Mastersizer 2000 2000 2000 

Bimodal distribution Yes Yes Yes 

Size of particles in 90% volume 
distribution.(µm) 

170.852 69.094 68.697 

Specific surface area(m2/g) 1.83 1.94 3.38 

Surface weighted mean.(µm) 3.282 3.0914 1.775 

Volume weighted mean.(µm) 73.517 25.220 23.265 
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 Emulsifier is the most important parameter which controls the particle size 

and particle size distribution of latex product. Latex product with a large particle 

size can be produced by using relatively low concentration of emulsifier and 

narrower particle size will be achieved. Higher the concentration of emulsifier, 

greater is the number of particles that can be initiated and distribution will be 

broader. A brief summary is given in table 5.8.  

 
 A major drawback of the Mastersizer is that it is not able to detect the 

polymer particles in the presence of monomer droplets until approximately about 

30% conversion has been reached. The reason behind may be that unit passes laser 

light through an optical unit and based upon the way the light is scattered can deduct 

the size of the polymer particles that are present.  

 
Sensitivity Analysis  

a) Particle size distribution as a function of surfactant 

 The result shows materialization of bimodal distribution, having comparable 

number of particles on both models. Higher the concentration of emulsifier, greater 

is the number of particles that can be initiated (Fig 5.22, 5.23). As the number of 

particles increases the number of reaction sites also increases, thus faster the rate and 

lower the reaction time which results in broader particle size distribution. 

Multimodal distribution is also resulting by considerably coagulation event; increase 

in the concentration of emulsifier increases the possibility of coagulation. At 200 

min as shown in Fig 5.23, this exhibits bimodal nature which is due to secondary 

distribution. 

 
 Surfactant plays a crucial role in the micellar nucleation phenomena by 

forming micelles which serve as precursor. 
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Fig. 5.22: Comparison of Particle Size Distribution using three different 

concentration of emulsifier at time 120 min (Blue–2gm, green -1.5 gm , Red -1 gm). 

 
Fig. 5.23: Comparison of Particle Size Distribution using three different 

concentration of emulsifier at time 200 min. (Blue – 2gm, green-1.5 gm, Red-1 gm). 

 
 The essential feature of emulsion polymerization is that polymerization 

occurs in a large number of isolated particles that normally contain no more than a 

single polymerizing radical: this permits high molecular weight polymer to be 

formed at a high rate of polymerization, by contrast with bulk or solution 

polymerization in which an increase in the rate of polymerization generally results in 

a decrease in the molecular weight of the polymer produced. Emulsion 

polymerization without the use of an emulsifier may be achieved even with a 

monomer with water solubility as low as possible provided one uses an initiator such 

as potassium persulfate which introduces ionic end groups into the polymer that can 

stabilize the polymer latex particles produced electrostatically.  
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 Emulsifier-free emulsion polymerization is advantageous some times when 

the object is to obtain a well-characterized model colloid for use in experiments on 

colloidal stability, etc.  

 
 When an emulsifier is used, its type and concentration primarily affects the 

number of latex particles formed, which in turn determines the rate of 

polymerization and, depending also on the rate of initiation, the molecular weight of 

the polymer formed. Although the physical properties of the polymer are primarily 

dependent on its molecular weight and their distribution, the properties of the latex 

depend on its concentration, average particle size, particle size distribution, and the 

viscosity of the aqueous phase. 

 
 The best emulsifiers for stabilizing the monomer emulsion are not only those 

that are best for stabilizing the polymer latex but remains in dispersion for prolong 

time even without agitation if required. 

 
 The fact that the latex particles are much smaller than the monomer droplets 

in the original emulsion facilitates stabilization of the latex, but emulsifiers will 

usually have to be chosen with a view to stabilizing the latex rather than the 

monomer emulsion.  

 
 The effects of emulsifiers in emulsion polymerization systems may be 

detailed as follows:  

(1)  Stabilization of the monomer in emulsion,  

(2)  Solubilization of monomer in micelles,  

(3)  Stabilization of polymer latex particles,  

(4)  Solubilization of polymer,  

(5)  Catalysis of the initiation reaction, and 

 (6)  Action as transfer agents or retarders which leads to chemical binding of 

emulsifier residues in the polymer obtained. 

 
 In the absence of particle coalescence (i.e., when relatively large 

concentrations of emulsifiers are present sufficient to stabilize all primary particle 

nuclei formed) the essential condition for the formation of a latex with a very narrow 
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particle size distribution is that the nuclei of all particles should be formed at very 

nearly the same time and should subsequently grow at equal rates 

 
 Low initial surfactant concentration was attributed to homogeneous 

nucleation where high initial concentration was attributed to micellar nucleation. 

 
 Decrease in the flow rate of surfactant causes decrease in the total number of 

particles nucleated this result in larger growth rate thereby causing the particles to 

grow in large size. 

 
 Increase in the concentration of Surfactant causes multimodal distribution of 

monomer droplets. Higher the concentration of emulsifier, greater is the number of 

particles that can be initiated. As the number of particles increases the number of 

reaction sites also increases, thus faster the rate and lower the reaction time which 

results in broader particle size distribution. Multimodal distribution is also resulting 

by considerably coagulation event; increase in the concentration of emulsifier 

increases the possibility of coagulation. 

 
 Occurrence of secondary nucleation as shown in fig 23 can be explained as 

at the beginning of the reaction micelle nucleation rate is much higher than that of 

homogeneous nucleation rate therefore micelle nucleation is dominating. After 30-

40 minutes the micelle nucleation decreases and homogeneous rate increases and 

then secondary nucleation is because of homogeneous nucleation.  

 
b) Particle size distribution as a function of initiator. 

 Large initiator concentration will cause rapid particle formation so that all 

the particles are formed almost simultaneously and will grow to a relatively narrow 

particle size distribution. Concentration of initiator is used to control the PSD 

.Higher concentration of initiator favour narrow initial and final distribution by as 

shown in the Fig 5.24. 
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Fig. 5.24: Comparison of Particle Size Distribution using three different 

concentration of Initiator (Blue – 1.5gm , green -1 gm , Red -2 gm). 

 
 Increase in concentration of initiator cause increase in conversion rate, final 

average polymer size drops ultimately resulting in a narrower distribution. 

 
 The effect of the reaction medium on the initiator can be found in literature. 

In a polymerization process the initiator is inefficiently used. There is wastage of 

initiator due to normally two reactions. The first one induced decomposition of 

initiator, this ensue by the hit of propagating radicals on the initiator. This is called 

chain transfer to initiator.  

 
 Concentration during polymerization, as the newly formed radical will 

initiate a new polymer chain. The second reaction, which will give wastage of 

initiator, is a reaction involving side reactions of the radicals formed in the primary 

step of initiator decomposition. 

 
 Efficiency factor (f) is defined as the fraction of radicals formed in the initial 

step of initiator decomposition. This is the nature of the decomposition pathway that 

controls the efficiency of the primary radicals in initiating new polymer chains. This 

effect has been called the ”cage” theory. According to cage theory the two 

dissociated fragments will be surrounded by reaction mass and this reaction mass 

will form a sort of cage around them. The two fragments will stay inside the cage for 

a finite amount of time, and during this time they may reassociate to give back the 

initiator molecule.  
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 Redox systems appear very versatile, permitting polymerization at ambient 

temperatures and the possibility of control of the rate of radical initiation versus 

polymerization time. This would thus permit control of heat generation and the 

minimization of reaction time. The use of potassium persulfate with water forms an 

effective redox system for PMMA emulsion polymerization. At high conversions, 

the concentration of monomer in the aqueous phase is very low and water-phase 

termination of hydrophilic radicals becomes excessive. The rate of radical entry into 

polymer particles is thus greatly reduced and the polymerization rate falls to a very 

low. 

 
c) Particle size distribution as a function of Agitation speed 

 Agitation in polymerization reactors play a key role in polymer engineering, 

since the process is highly non-linear in nature so sufficient mixing is required to 

control the process. Agitation is notably affected the course of reaction. Increasing 

stirring speed make the particle size distribution to become narrower. 

 
 In multiphase systems like emulsion polymerization it is important to 

achieve good mixing conditions in order to favour heat and mass transfer, avoiding 

phase coagulation or segregation.  

 
Fig. 5.25: Effect of RPM on PSD (Green shows PSD @ 1500 rpm and  

red shows 2000). 

 
 Monomer droplet and particle size is being influenced by RPM of Malvern 

mastersizer is proven in the fig 5.25 where the sample was analysed with Malvern 
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agitation i.e. 1500 and 2000.Agitation speed is responsible for the uniform mixture 

of monomer droplet. 

 
 Emulsion droplets are unstable in nature as the time passes the size of 

droplets may be change so it is required to measure the sample as early as possible 

Increase in the stirrer speed resulting smaller droplets without significantly changing 

the distribution. 

 
 Data obtained from the Malvern (peak areas of the particles and droplets) has 

been used in an attempt to quantify this theory. In addition to particle size the 

Malvern outputs the volume % of the sample below a given size, and thus allows an 

estimate of the volume of residual monomer, Three distinct peaks were typically 

observed in the Malvern plots, on below 1 µm, one between 1-100 µm, and beyond 

100µm. For this analysis it was assumed that the material less than 1 µm was a 

polymer particle and anything from 1 - 100 µm was monomer droplets. Particle 

sizes grater than 100 µm were assumed to be either monomer droplets or polymer 

particles that had coagulated due to the fact the concentration of emulsifier drops 

significantly. The relative areas of the particle and droplet peaks are then assumed to 

represent the relative amounts of each. 

 
5.3  Molecular Weight  

 Polymers contain chains of varying lengths and polymers are characterized 

by its Molecular weight distribution (MWD). There are some techniques to 

determine MWD and its averages. The Molecular weight and molecular weight 

distribution affects the properties of the polymers and one example is the mechanical 

strength which is improved by increasing the molecular weight. MWD is often 

characterized by its average molecular weight (Vicente, Leiza et al. 2003). 

 
 In some polymerization systems polymer molecular weight is observed to be 

lower than the predicted value. Chain-breaking can occur with a transfer 

mechanism. In this mechanism the growing radicals remove a weakly bonded atom, 

from monomer or other molecules in the system to generate a dead polymer chain as 

well as a new radical that initiates another polymer chain. This weakly bonded atom 
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is usually hydrogen, and other molecules can be monomer, polymer or chain-

transfer agent (CTA). These radical displacement reactions are called chain transfer 

reactions where chain transfers from a propagating radical to monomer and the 

polymer. 

 
Fig. 5.26 : Average molecular weight using surfactant concentration=1 gm. 

 

 
Fig. 5.27: Average molecular weight using surfactant concentration=1.5 gm. 

 

 
Fig. 5.28: Average molecular weight using surfactant concentration= 2 gm. 
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 Average molecular weight of polymer using three different concentration of 

emulsifier (sodium oleate) is plotted in figure 5.26, 5.27, 5.28 with 1 gm, 1.5 gm ,2 

gm respectively. The graph shows the increasing trend as the concentration of 

emulsifier were increases as shown in figure 5.29 below. 

 
 If molecular weight is too low, the transition temperature and the mechanical 

properties will be too low for the polymer material to have any useful commercial 

applications. A polymer having useful application must have transition temperature 

above the room temperature on the other hand lower the molecular weight, lower 

will be the strength. 

 
 A molecular weight of a polymer is not only a value rather will have a whole 

distribution of molecular weight and it depends upon the way it produced. Physical 

properties of any polymer are a function of their molecular weight distribution. 

 
Fig. 5.29: Comparison of Molecular weight using different concentration of 

emulsifier (yellow line – 2gm, pink – 1.5 gm, black- 1 gm). 

 
 There are two limiting kinds of behaviour of the propagation rate coefficient: 

the chemically controlled and the diffusion-controlled limit. The chemically 

controlled limit is independent of the weight fraction of polymer in the latex 

particles, and dependent upon the monomer-polymer system and the reaction 

conditions. The diffusion-controlled propagation rate coefficient occurs, when the 

diffusion of monomer to the polymeric radical is slower than the chemical reaction 

of these two species. The diffusion coefficient depends critically upon the weight 
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fraction of polymer, reaction condition and the monomer-polymer system. Higher 

weight fractions of polymer (or higher conversions) may cause the diffusion-

controlled propagation rate coefficient to decrease by orders of magnitude, thus 

causing very slow rates of polymerization. Diffusion-controlled propagation 

normally occurs for systems polymerized below the glass transition temperature of 

the polymer, but not for systems polymerized above the glass transition temperature 

of the polymer. If slow diffusion-controlled propagation is to be overcome, the 

reaction conditions must be changed to favour faster diffusion.  

 
 The molecular weight distribution (MWD) of a polymer generated by 

emulsion polymerizations can be fundamentally different from that generated in 

solution or bulk. For example, in PMMA emulsion polymerization the MWD of 

formed polymer has a much higher average molecular weight than may be obtained 

using other methods. The basic reason for this was the compartmentalization of the 

polymerization reaction inside the latex particles which leads to the isolation of free 

radicals. This isolation reduces the probability of bimolecular terminations and 

hence increases the degree of polymerization. 

 
 Since latex particles grow to many times their original volume during the 

course of polymerization, the component of the MWD produced by nucleation is 

often negligible (at least, when measured as a weight average).  

 
Polydispersity Index 

 
Fig. 5.30: PDI using first formulation. 
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Fig. 5.31: PDI using second formulation. 

 
Fig. 5.32: PDI using third formulation. 

 
 The Value of polydispersity index may vary from 1- 10.The nature of 

distribution of molecular weight depends on value of polydispersity index. 

Polydispersity value 1 means that the polymers are all of the same length, value 

around 3 means that there is a wide distribution of polymer size. Figure 5.30, 5.31, 

5.32 shows the polydispersity of three formulations taken in the study, as the 

molecular weight increases value of polydispersity index increases in our study. 
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Chapter-6 
Simulation Results 

(PSD)  



 

6. Simulation Results (PSD) 
 
Particle Size Distribution 

 A little work is available on control of batch emulsion polymerization reactor 

due to the complexity and non-linear nature. Many researchers in the area of process 

control readily acknowledge that there is a wide gap in process control theory and 

their application to the polymerization system. The reason behind this gap is that the 

most conventional control is readily available for continuous and semi-batch 

systems and plenty of work has been already done for these system with measured 

outputs, and can superimposed on top of an existing system. For the batch process a 

detailed mechanistic understanding of the process is required for the process control 

implementation.  

 
 Mathematical modeling is a way of summarizing and quantifying our 

knowledge about polymerization, and is required for process strengthening; beside 

this, models are powerful tools for improving the understanding of multipart 

processes, which may result into better product quality. They can also be used to 

recognize advantageous process conditions and risky situations that must be 

avoided.  Models can also facilitate on-line control of emulsion polymerization 

reactors and are useful for the education and training of personnel.  

 
 The demand of polymer and latexes in the market having special properties 

and improved performance has led to increase academic interest in advanced 

modeling and control of polymerization reactors. This chapter includes the control 

of batch emulsion polymerization reactor which is rarely available in literature. 

 
 Heterogeneous polymerization systems like emulsion polymerization having 

additional difficulties in their modeling. These systems are multiphase system, hence 

material balance have to used in the modeling and even heat balance is also required 

for each phase. Additionally their end use properties dependent on concentration of 

polymer particles and particle size distribution and molecular weight distribution 

which ultimately increases the complexity. 
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 Emulsion polymerization systems have been discussed in chapter 2 and their 

detailed modeling in Chapter 3. 

 
 Here we emphasise on control of batch reactor using MATLAB. Most 

polymers and their properties are difficult to measure even off-line in the laboratory 

and some can be measure with time lagging in case of batch reactor. 

 
 Most batch and semi-batch polymerization control systems consist of a pre-

programmed recipe addition, a start-up and shut-down scheduler, and temperature 

control based perhaps on a heat balance and few of them are aimed to optimized 

polymer properties through using trajectory, here we tried to bridge this gap by 

optimizing the control system through temperature trajectory and also by applying 

disturbance in the system during control run of the system. 

 
 There is a unique relationship between PSD and rheology, narrow 

distribution favours high value of rheology property, thus a process model and a 

rheology model will be needed in the identification of the PSD target. A well known 

fact is the rate of polymerization increases with increasing temperature. Increase in 

temperature after a certain temperature, the size of the particle decreases. This 

inverse dependence between the particle size and the polymerization temperature is 

due to the increasing decomposition rate of the initiator with increasing monomer 

solubility in the aqueous phase, which increase the concentration of growing chains 

and, thus, reduce the latex size. Control of reactor temperature facilitates us to 

control particle size distribution 

 
 Normally batch reactors are extensively used for homopolymerization where 

only a single monomer is used for the process. In polymerization reactors there are 

different instabilities and these can be caused by i.e. thermal, viscous, hydrodynamic 

and kinetics. When system viscosity increases there will be a reduction of heat 

transfer coefficients and this leads to an increase in the reactor temperature. 

Exothermic nature can causes serious safety issues, and control schemes have to 

include tight safety procedures.  
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 On-line measurements of end-use properties of polymer materials are 

difficult, and the control procedures have to rely frequently in values provided by 

process models and on measured values provided with long delays by plant off-line 

measurements. A control methodology has to take into consideration for 

polymerization system, producing consistent, uniform and in-specification polymer. 

In order to operate polymer processes safely and in order to set characteristics of the 

product, a set of process manipulated variables must be kept constant or modified 

systematically over the duration of the reaction. The keystone of successful control 

strategy is a good mathematical model, and to perform the modeling knowledge 

about the process is important. The modeling of a model for a batch emulsion 

polymerization reaction is already discussed in Chapter 3.  

 
 Temperature control in batch reactors can be divided into two phases, one is 

heating in which the temperature is raised to the target value avoiding overshoot and 

another is stabilizing phase in which the objective is to maintain the temperature at a 

set-point through out the process. 

 
 In a feedback controller a manipulative variable is used to maintain the 

control variable. Two type of manipulative variable is used for PID in this thesis. 

One is flow rates of jacket medium and second is heater power or heat duty of the 

reactor. Split range is used in the first PID controller when we go through it we 

found second controller is better to work with further hence, we precede next with 

second type of controller which is having heat load as manipulative variable. The 

difficulties come in the way during split range controller is discussed in next section.  

In this chapter we discuss results of that model with three different controllers i.e. 

PID, MPC and NNPC. This chapter is divided into two sections one for particle size 

distribution and second for molecular weight distribution. Each section enfold PID, 

MPC and NNPC controller separately. 

 
6.1  Proportional-Integral-Derivative (PID) 

 In general, particle size distribution in batch emulsion polymerization can be 

controlled through manipulating the temperature of the reactor and flow rates of 

reactor medium. The bimodal PSD’s obtained in laboratory for PMMA emulsion 
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polymerization were well predicted by their population balance model. The effects 

of variables on the final latex PSD were investigated and discussed in previous 

chapter. 

 
 In emulsion polymerization rate determining step for the entry of oligomeric 

particle into latex particle is still to be explored, some researchers presumed that 

diffusion of soluble oligomers to the particle surface is the rate determining step but 

other verbalized that displacement of surfactant from particle surface is the rate 

determining step, more recently researchers postulated a new mechanism in which 

the propagation of the free radicals in the aqueous phase is the rate determining step. 

PSD of the emulsion polymer or product is convincingly influence polymer’s 

rheological, chemical, physical, mechanical, film forming properties. 

 
 Batch reactor was used for production of PMMA. A measured amount of 

MMA, emulsifier and water was charged to the reactor. The reactor was bubbled 

with nitrogen gas to purge oxygen from the reactor. The reactor was brought to the 

initial temperature and then required amount of initiator was supplemented to the 

reactor. Comparison of experimental value of reactor temperature with simulation 

with on/off controller and with controller was studied and the result found was 

shown below. PID controller is successfully operated; performance of controller was 

studied with different parameters. After this we compared two methods which will 

be explained later.  

 

The temperature profile in batch polymerization reactor follows:- 
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 The prediction of particle number and size distribution has been far less 

successful than the prediction of conversion time histories and molecular weight 

development, given these parameters as initial conditions. The nucleation and early 

growth of polymer particles is even today, after the comprehensive investigations 

not well understood. There are several reasons for this. First, the measurement of 

number and size of polymer particles smaller than 100 A° presents rather difficult 

experimental problems. Many complex processes occur simultaneously including 

radical capture by micelles and polymer particles, precipitation of growing radicals 

from the aqueous phase, and finally particle coagulation.  

 
 To develop effective control strategies for polymer particle concentration, it 

is of considerable importance to establish the time scale for micellar nucleation of 

polymer particles. The effectiveness of any control scheme would of course depend 

on the nucleation time. 

 
Split-Range PID Control  

 It is worthy to note that the process model describing the PSD is non-linear, 

distributed and includes an important number of parameters that are not well known 

or sensitive to adulterations. This makes the model-based control of PSD more 

difficult task. Moreover, online measurement of PSD without delay is not available. 

Our objective is to control PSD, instead of direct control we control through 

controlling the temperature of the reactor, Indeed temperature affect the propagation, 

solubility and entry parameters which affects the nucleation rate, hence temperature 

ultimately control the PSD. 

 
 A split-range-heating/ cooling system is used that adds hot or cold water to a 

circulating-water system (Lepore, Wouwer et al. 2007), which is assumed to be 

perfectly mixed at temperature TJ. The set-point of a reactor temperature controller 

is 343 K .The output signal from the reactor temperature controller positions two 

control valves, using a split-range setup. Figure 6.1 shows how the flow rates of the 

hot and cold streams change with the output signal and gives the batch reactor and 

temperature controller setup when just jacket cooling is used. This cold-stream 

control valve is usually “air-to-close” (AC) so it will fail wide open, which is the 
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safe position. Using the same logic, the hot-stream control valve is “air-to-open” 

(AO). The hot-stream temperature is 373 K. The cold stream temperature is 293 K. 

The maximum flow rate of each of these streams is 0.5 kg/s. If the value of cold 

water stream is open to its full at the same time value of hot water stream is closed 

and vice-versa. The range of the output signal is defined between 0-1. Figure 6.1 

shows the relationship between flow rates of cold and hot water stream with output 

signal of the controller. This output signal is the difference between set-point and the 

actual temperature of the reactor i.e. error calculated by the controller. 

 
Fig. 6.1: Split range temperature control (Luyben 2007). 

 
 The tuning of the controller is another important issue, which is explored in 

the chapter 4 and their results are discussed here in next few sections of this chapter. 

 
PID Controller (Heater power as manipulative variable) 

 In our study first PID controller we uses split range controller as explained 

above and second one uses heater power as a manipulative variable. In this strategy 

the value of power of a heater is changes accordingly to maintain the temperature of 

the reactor. Initially the heater increases the temperature of the reactor to its desire 

value, after attaining the set-point the error is calculated by the controller, with 

respect to the error the value of the heat load changes. The range of the heat load is 

defined as 40-140 W. Simulink file is shown in Figure 6.2. 
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Table 6.1a: Control Parameters. 

Parameter Split range Heat load 

Kc 5.29 10 

TauI 0.31 0.01 

 

Table6.1b : Parameters used in the study for PSD. 

Parameter Unit Value 

Kp lit/mol min 49876.54 

Kd Per min 8.6*10e-5 

Kt Lit/mol-min 1.414*10e9 

F - 0.5 

Uc W/m2-K 55 

Tcold K 275 

Cj J/kg-K 4.183 

Thot K 400 
 

 
Fig. 6.2: Simulink file for PID 
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Fig. 6.3: Controlled Variable (split range- blue, Heat load- Green). 

 
 The effect of strategy on control variable is shown clearly in the figure 

6.3.Green line is showing the PID controller having heater power as manipulative 

variable and blue shows split range controller. As shown in Fig 6.3 split range 

controller requires minimum time to settle down at set-point i.e 343 K and heater 

power takes ample of time (4000 sec) with a small overshoot but there is oscillations 

occurs in split range controller. The polymerization reaction is an exothermic 

reaction as the time passes the temperature of the reactor increases along with 

conversion, hence these controllers maintain the temperature at its target value using 

there respective control logics. Split range manipulates the flow rates of the steams 

either hot water or cold water as required where as in second controller the value of 

heat load of the heater changes with error calculated by the controller. The value of 

the heat load varies from 40 W to 140 W.   Temperature overshoot are noticed in 

both the controllers at the start of the reaction. The initial overshoot is caused by the 

fact that for MMA polymerization, most of the heat released at the initial stage of 

the polymerization when initiation and propagation kinetics are dominating. 

 
 Split range controller uses both hot water stream and cold water stream as its 

manipulative variable (Fig 6.4) and is capable to maintain set-point better than PID 

using heater power as manipulative variable.  
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Fig. 6.4: Manipulative variable of split range controller. 

 
 The parameters used (Table 6.1a, 6.1b) and performance indexes for both the 

controller were studied and tabulated in Table 6.2. The data of performance index 

provide evidence that split range perform better than the heater power.  

 
 The value of absolute error for split range is 3.833X10^6 which is 

enormously lesser than heater power method having value 1.4137X10^7. 

 
 As the temperature increases, initial conversion increases significantly. This 

is expected because the rates of reactions are exponentially temperature dependent 

functions according to Arrhenius law. At higher temperature, concentration of 

oligomeric radicals in the aqueous phase and nucleation rate increase and 

consequently the total number of particles increases. This in turn leads to a smaller 

final average particle size but run away of the temperature destroys the uniformity of 

the particles hence a robust control is required to maintain the particle size of the 

latexes. A better controller is one which handles the load change and set-point 

change efficiently along with set-point. Figures 6.5 and 6.6 show set-point change in 

both the controllers. In split range after set point change there are some oscillations 

before settling down to its target value but in heat load set point change is very 

smooth. 
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 Both two are capable to maintain the desire reactor temperature with 

suddenly set point change but there is some noticeable oscillations in split range 

controller which makes heat duty as manipulative variable as better controller to be 

used furthur. Performance index is calculated for the system, results are discussed in 

Table no 6.2.  

 
 Performance index were compared in Table 6.3. Performance index shows 

heater power as manipulative variable is capable to handle load change and set-point 

change better than split range, which means heat load as manipulative variable is 

much better strategy to be used since physically or practically there may be 

disturbance at any time to the controller. The control system for a polymerization 

reactor must be sufficiently robust to handle unmeasured disturbances, which impact 

polymer reactor operation. These disturbances typically result either from trace 

amount of polymerization inhibitors or retarders left over after monomer 

purification.  

 
 The purpose of this test is to see the effect of error on the controller during 

the process. This error has the effect on the temperature, change in flow rate of the 

cold water in second strategy is being used to introduce the error in the system, as 

seen in the figure 6.7 controllers efficiently maintain the temperature by changing 

the value of manipulative variable. 

 
Fig. 6.5: Set point change in split range controller 

0 1 2 3 4 5 6 7 8 9 10

x 10
4

290

300

310

320

330

340

350

360

370

380

Time(sec)

 

 

R
e
a
c
to

r 
T

e
m

p
e
ra

tu
re

 (
K

)

Setpoint
Negative set-point change (-10 k)
Positive set-point change (+10 K)



Simulation Results (PSD) 

133 

 
Fig. 6.5: Set point change in split range controller. 

 

 
Fig. 6.6: Response of Set point change in controller having heater power as 

manipulative variable. 

 
 We have also studied the load change, in second method it requires 402 

seconds to reject the disturbance causes load change in system shown in Fig 6.8 

below. 

 
 The results explained above point that the PID controller using heater power 

as its manipulative variable is perform better than the other controller.  
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 After the study of performance of any controller their optimization is the 

second objective to be studied. Optimization of controller is used to study to 

optimize the parameters value that a controller used. We have optimized the 

parameters of the controller for better performance as shown in Fig 6.8 and 6.9. 

A common problem in emulsion polymerization is to maximize production of a high 

quality polymer under safe conditions. Process optimization is an activity is a useful 

tool to solve this problem.  

 
Fig. 6.7: Response of load change in second controller  

(heater power as manipulative variable). 
 

Parameter Tuning 

 
Fig. 6.8: Optimization of controller gain in second controller (τI = 0.01). 
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Fig. 6.9: Optimization of τI in second controller (Kc=10). 

 
 Responses for the change of values of integral time (τI), as shown in figure 

6.9 for τI = 0.0001, 0.001, 0.01 and 0.1 were studied (controller gain, Kc is held 

constant). It was observed that as the value of integral time decreases, the response 

becomes less oscillatory but more sluggish, whereas on increasing the value of 

integral time above 0.01 the system shows some oscillatory behaviour. The effect of 

various values of controller gain (Kc) were also studied (with constant integral time, 

τI) for Kc = 1, 3, 6, 9 and 10 and is shown in Fig. 6.8. It was observed that at lower 

value of Kc the controller acts aggressively and oscillatory but finally bringing the 

response to the desired set point at Kc= 10.  

 
 It is found while using split range controller, there is critical zone when 

switching from heating to cooling. To avoid both heating cooling together is 

required, there is also a small dead zone where both heating and cooling is absent. 

Switching between both the modes of control may cause oscillations and difficulties. 

Comparison of density function of two controllers along with experimental result is 

shown in fig. 6.10. 
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Table 6.2: Performance at set-point (343 K) using two different control 

strategy. 

Performance Criteria Split Range controller Controller using Heat duty 

ITAE 3.8333e+006 1.4137e+007 

IAE 3.1993e+002 1.6120e+004 

ISE 4.2969e+004 1.8296e+005 

ITSE 5.1468e+007 7.4853e+007 

 

Table 6.3: Performance of controllers for set-point change and load change.  

Controller Split Range controller Controller using Heat duty 

Parameter ITAE IAE ISE ITSE ITAE IAE ISE ITSE 

Positive 
Load 

Change 

2.2805 1.956 3.5205 4.2102 1.1458 1.1949 1.1505 1.3816 

e+008 e+004 e+005 e+007 e+007 e+004 e+005 e+007 

Negative 
Load 

change 

2.7642 2.311 4.2346 5.0635 1.0403 1.3755 1.1637 1.9161 

e+008 e+004 e+005 e+007 e+007 e+004 e+005 e+007 

Positive set-
point 

change 

4.8527 3.643 5.0364 6.692 3.7422 3.1014 5.0013 3.7385 

e+010 e+005 e+006 e+010 e+010 e+005 e+006 e+010 

Negative 
set-point 
change 

1.5279 5.152 5.9209 2.1469 1.4722 5.1014 5.9213 1.7385 

e+010 e+005 e+006 e+010 e+010 e+005 e+006 e+010 

 
 The global minimum of the performance index function for each of the 

experimental cases was then calculated.  Based on the conditions, the performance is 

optimized when the chosen value of performance index function is minimized. The 

result of this calculation of performance index indicates which conditions lead to the 

optimum performance. Line plots, as illustrated in Figure 6.3, provide a graph of 

these trends.  Therefore, a prediction can be made regarding the operating conditions 

that result in the optimum performance (tabulated in Table 6.2). Table 6.3 shows the 

performance indexes for set point change from 333 to 353 K. The integral of time 

absolute error (ITAE) is the popular performance criterion used for control system 
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design. The error is lesser with PID controller using heater power as manipulative 

variable. Therefore, for further study second control strategy will be used. 

 
Validation 

 
Fig. 6.10: Comparison of density function. 

 
 The temperature influences both micelle formation and adsorption of 

surfactant onto the polymer particles, the rise of temperature causes the increase of 

CMC in reaction solution, simultaneously with its values. 

 
Fig. 6.11: Comparison of Reactor Temperature. 

 
 The Figure 6.11 demonstrates the comparison of controlled variable 

calculated from experiments (on/off controller), open loop run in simulation study 
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and result of PID controller. Experimental result shows some variation from the set-

point value of the reactor temperature i.e. 343 k. This variation is the result of 

exothermic nature of the reaction, during the process temperature increases; 

effective cooling system is required at the same time to maintain the temperature to 

its target value. Some times normal cooling system is not capable to maintain the 

temperature of the reactor hence a robust control system is required. First we run the 

model in open loop system again the variation was found in the temperature of the 

reactor. PID controller was implemented to the model using the Toolbox available in 

the MATLAB; the simulink file is given in figure 6.2. PID controller initially gives a 

loop and within a few minutes it’s settling down to its set-point and is able to 

maintain the temperature through out the process. 

 
6.2  Model Predictive Control  

 MPC has attracted many researchers due to its better performance and 

control of processes including non-minimum phase, long time delay or open loop 

unstable characteristics (Golshan, MacGregor  et al. 2010; Sekia, Ogawab et al. 

2001). 

 
 The main advantage of the MPC is that constraints (due to: manipulative 

variables, physical limitations, operating procedures or safety reasons) may be 

explicitly specified into the problem formulation. The second advantage is its ability 

to address long time delays, inverse responses, significant non-linearities and 

multivariable interactions. 

 
 During the study of PID controller we came to know that in our case heat 

load as manipulative variable is better methodology to control the molecular weight 

and particle size distribution hence we continue with the same, in this section we are 

going to discuss MPC controller for MWD and PSD followed by NNPC. 

 
 The model predictive controller is used for control of PSD of polymer 

PMMA. Heater power of the heater is used as manipulative variable and temperature 

as controller variable in this study. The coolant flow rate is kept constant. The 

design parameters used in the simulation given in Table 6.4, 6.5. The performance 
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of MPC is compared with PID controller. Our next objective is to improve the 

control performance. Tunning of the controllers were done by trail and error method 

and tabulated in table 6.6 for MPC and table 6.7 for PID. Figure 6.12 shows the 

controller profile for MPC and PID. The response shows that PID controller took 

large time to get closer to the set-point with overshoot. MPC took 2100s where as 

PID adjusted within 2800s to the set-point with 4 K overshoot which depicts higher 

overshoot than MPC. In MPC heat duty oscillates in start-up but In PID heater 

power oscillated at time 50000s with initial start-up also where as MPC gives rest 

response smoother than PID which will prolong the life of heater. 

 
 Absolute Error calculated for the reactors are given in table 6.6 for MPC on 

the basis of performance index tunning parameters was finalized. 

 

Table 6.4: Tuning parameters for MPC 

Parameters Value 

Weight Tuning 0.7 

Prediction Horizon (Np) 100 

Control Horizon (Nc) 10 
 

Table 6.5: Tuning parameters for PID 

Parameters Value 

Controller Gain 10 

TauI 0.01 
 
 In industrial practice, some uncertainty and disturbance are normally 

encountered in the reactor; to explore this we introduce disturbance and set-point 

change in the reactor. An excitation in the cold flow rate was introduced at the time 

50000s. Increasing the flow rate would decrease the temperature of the reactor and 

decrease in flow rate would increase the temperature because of the heat transfer 

rate of the reactor shown in fig 6.13 for MPC and PID simultaneously. Similarly set-

point was also introduced into the system at time 50000s shown in figure 6.14 for 

MPC and PID. MPC took less time as compared to PID for getting closer to the set-
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point in load-change, and gave less oscillation in set-point change with small 

overshoot. This evidence that advance controllers are promising than traditional 

controllers in terms of there robustness for non-linear control. Comparison of 

particle density function is given in figure 6.18. 

 
Table 6.6 :MPC Performance Index for PSD (Lowest ITAE value is the 

significant digit). 

Parameter ITAE IAE ISE ITSE 

Weight 
Tunning-0.7 

1.7150e+012 3.4315e+007 1.1775e+010 5.8825e+014 

Weight 
tunning-0.8 

1.8158e+012 2.8626e+007 6.7263e+010 2.6668e+014 

Nc-10 1.7190e+007 3.4355e+007 1.1776e+010 5.8826e+014 

Nc-20 1.7150e+012 3.4315e+007 1.1775e+010 5.8825e+014 

Nc-50 1.7550e+012 3.4395e+007 1.1795e+010 5.8828e+014 

Np-500 1.7150e+012 3.4315e+007 1.1775e+010 5.8825e+014 

Np-1000 2.1150e+012 2.1315e+007 1.7715e+010 6.6825e+014 
 

Table 6.7: Performance Index PID for PSD 

Parameter ITAE IAE ISE ITSE 

Kc-10 1.1458e+007 1.1949e+004 1.1505e+005 3.1816e+007 

Kc-9 1.1657e+007 1.2715e+004 1.2730e+005 3.8286e+007 

Kc-8 1.1871e+007 1.3540e+004 1.4205e+005 4.6841e+007 

Kc-6 1.4137e+007 1.6120e+004 1.8296e+005 7.4853e+007 

Kc-3 3.1867e+007 2.5277e+004 3.0668e+005 1.9843e+008 

TauI-0.1 5.0679e+007 3.3373e+004 4.2574e+005 3.6435e+008 

TauI-0.01 1.4137e+007 1.6120e+004 1.8296e+005 7.4853e+007 

TauI-0.001 1.0293e+008 2.0597e+004 1.7498e+005 6.7183e+007 

TauI-0.0001 2.4418e+008 1.6576e+004 1.7379e+005 4.4335e+007 
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 As already mentioned, performance index is calculated to optimize the 

parameter by minimizing the error by using the ITAE performance criterion. The 

integral of the absolute magnitude of error (ITAE) criterion is defined as  

ITAE=∫0T
  │ t e(t) │ dt  (6.1) 

 
 The ITAE performance index has the advantages of producing smaller 

overshoots and oscillations than the IAE (integral of the absolute error) or the ISE 

(integral square error) performance indices. In addition, it is the most sensitive of the 

three, i.e. it has the best selectivity. The ITSE (integral time-square error) index is 

somewhat less sensitive. Since it is not practicable to integrate up to infinity, the 

convention is to choose a value of T sufficiently large so that e(t) for t > T is 

negligible.  

 

 
Fig. 6.12: Compariosion of Control variable results of MPC and PID controller. 

 
 It is observed in figure 12, in MPC the peak of temperature does not occur, 

because the MPC strategy is enough to maintain the temperature sufficient to slow 

down the process dynamics. Thus the controllability of the process is better, even at 

set-point trajectory (figure 14) and load change shown in figure 13.  
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Fig. 6.13: Response of Load change in PID and MPC 

 
Fig. 6.14: Response of set-point change in PID and MPC 

 
 After simulation time 50000 sec, error is introduced in flow rate of water 

stream in jacket, the impact of this uncertainty on the reactor temperature is shown 

in the Figure 6.13. As the flow rate of cold water stream decreases to its value 0.4 

kg/sec the temperature start rising at the same time as expected MPC takes about 

2000 seconds to settle down the control variable to its set-point value. Similarly if 

introduced flow rate of 0.6 kg/sec causes negative load change as the Figure 6.13 

shows.  
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 With MPC algorithm the operation with better control of the process even 

with disturbance is possible. The main disadvantage of this algorithm is that the time 

for obtaining the control movement is much larger than PID. 

 
Parameter Tuning 

 Tuning of parameters in batch reactor is always difficult as compared to 

continuous reactor. Trial and error method was using for tuning of both the 

controllers. In MPC as the value of weight tuning decreases number of oscillations 

increases, Change in control horizon and prediction horizon makes little difference 

(fig 6.15, 6.16, 6.17) but the best value was taken after the study of performance 

index. 

 
 The quality of control of any controller is strongly depends upon their 

parameters, simmilarly quality of MPC depends on weight tuning factor, control 

horizona nd prediction horizon. In figure 6.16 one can see the fact that value of 

weight tuning factor strongly affects the quality of control of MPC. Increase in the 

value of weight factor causes ossilatory behaviour, the best quality being obtained 

for weight tuning= 0.7.  

      

 
Fig. 6.15: Parameter analysis (weight tuning) of MPC (Nc= 10, Np=20) 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
300

310

320

330

340

350

Time (sec)

R
e
a
c
to

r 
T

e
m

p
e
ra

tu
re

 (
K

)

 

 

Weight tunning=0.7
Weight tunning=0.8



Simulation Results (PSD) 

144 

 
Fig. 6.16: Parameter analysis (control horizon) of MPC.(wt= 0.7, Np=500) 

 

 
Fig. 6.17: Parameter analysis (prediction horizon) of MPC (wt=0.7,Nc =20) 

 
 The best result for prediction horizon is obtained for the value 500 (figure 

6.17), the quality of control decreases either P exceeds or decrease from the value 

P= 500.A bump were found in the starting after changing the value of prediction 

horizon. The value of control horizon does not influence the nature of control (figure 

6.16). After analysing performance index we found best results for value 20. 
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Validation 

 

 
Fig. 6.18: Comparison of particle density function (Red- PID, Blue- MPC). 

 
  
 Figure 6.18 shows the effect of type of controller used on particle density in 

terms of its function. By increasing the reactor temperature the free surfactant 

concentration reduces more quickly, therefore its concentration reaches below the 

critical micelle concentration (CMC) sooner. As micellar nucleation occurs as long 

as free surfactant concentration is above the CMC, increasing the reactor 

temperature reduces the nucleation period. On the other hand, the increase of reactor 

temperature results in a higher rate of production of oligomeric radicals, which leads 

to formation of more particles in a shorter time. Consequently, increase of the 

reactor temperature leads to production of higher number of particles in a shorter 

time and therefore PSD becomes narrower with a smaller average particle size; it is 

required to maintain the temperature through out the process for uniform narrow 

distribution.  
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 The main advantage of MPC over PID controllers are its ability to handle 

constraints, non-minimum phase processes, changes in system parameters and its 

straightforward applicability to large, multivariable processes. 

 
6.3  Neural Network Predictive Control 

 Ideally a large amount of data covering process operating conditions should 

be used in neural network model, but in batch processes neural network models are 

usually not abundant due to limited runs. 

 
 Neural network predictive control is basically a model based predictive 

control, where the neural network is used for model predictions. It offers an 

alternative approach to modeling process behaviour as they do not necessarily 

require a previous knowledge of the process phenomena. They are trained to follow 

a process by ‘training’ them, were they are open to the sets of input–output data and 

a least-squares optimization is performed. Throughout this optimization, the neural 

network forms its own model of the process which can be used to predict output(s) 

for a given set of inputs. Neural network predictive control uses a neural network 

model of the process, a history of past control moves and an optimization cost 

function over the receding prediction horizon to calculate the optimal control moves 

(Ng and Hussain 2004; Vasickaninova and Bakosova 2009; Zhang, Morris et al. 

1998).  

 
 In the neural network model Heater power is used as manipulative variable. 

Performance of manipulative variable is given in figure 6.19; the value of the heater 

power (M) may vary from 40 W – 140 W. The value of heater power initially 

increases to reach the desire value of the reactor temperature and after that remains 

at the value 90 W to maintain the set- pint of the control variable. 
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Fig. 6.19: Comparison of Response of Controllers. 

 Set point trajectory and error were also introduced in the process run as same 

as discussed for the other controllers to see the performance of the neural network 

shown in figure 6.20 and 6.21 respectively. 

 
Fig. 6.20: Response of set-point change in control variable 

 

 
Fig. 6.21: Response of load change in control variable 
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Tuning 

 
Fig. 6.22: Effect of control weight factor on control variable (Nu =4, H=9) 

 
Fig. 6.23: Effect of Nu on control variable (Nc= 0.01, H=9) 

 
Fig. 6.24: Effect of hidden layer on control variable (Nu=3, Wt=0.1) 
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Table 6.8: Performance Index NNPC for PSD 

Parameter ITAE IAE ISE ITSE 

Nu-2 1.7607e+010 2.6725e+005 1.5591e+006 8.2064e+010 

Nu-3 1.7566e+010 2.6824e+005 1.5665e+006 8.1701e+010 

Nu-4 1.7959e+010 2.7307e+005 1.6094e+006 8.5332e+010 

Control Weighting 
factor-1 

1.7939e+010 3.1572e+005 1.8872e+006 8.4228e+010 

Control Weighting 
factor-0.1 

1.7566e+010 2.6824e+005 1.5665e+006 8.1701e+010 

Control Weighting 
factor-0.01 

1.5767e+010 2.3927e+005 1.3208e+006 6.5892e+010 

Hidden Layer-10 1.5790e+010 2.3951e+005 1.3241e+006 6.6118e+010 

Hidden Layer-9 1.8767e+08 2.3927e+004 1.3208e+004 5.5892e+010 

Hidden Layer-8 2.4878e+012 3.7346e+007 1.8570e+010 1.3869e+015 

 
 The quality of any controller can be improved by optimizing there 

parameters. The effect of parameters on the control quality of the controller are 

analysed here. The control parameters which have been optimized in this study are 

Control weight, Nu and neurons of hidden layer in the neural network. 

 
 Increase in control weight causes oscillatory behaviour in the control 

variable. The optimum value found is 0.01 for the control weight (Figure 6.22). A 

single Hidden layer was used in the neural network, the number of neurons highly 

affect the control ability of the controller. The optimum value of neurons found is 9, 

increase in the number of neurons cause controller sluggish in nature (Figure 6.23). 

Nu does not affect the quality of NNPC strongly but during performance analysis, 

we found optimum value is 4 for this study; the zoom in view of effect of Nu on 

control variable is given in Figure 6.24. At the same time, an increased Nu increases 

the computation time. The choice of control horizon Nu has serious impact on the 

computational results 
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Training of Neural Network 

 Initially, the fundamental model was used as the real process and simulated 

open-loop in order to obtain two sets of random number data, namely training and 

test sets. Training datasets contained 5001 samples and test dataset contained 1001 

samples with 100 s sampling interval. These datasets were used to generate an input 

matrix consisting of output variable and manipulated variable.  

 
 Figure 6.25 represents our structure of NNPC. Levenberg Marquardt 

algorithm is used for the training. NNPC first trained using random data collected 

from the open loop using same model. The procedure for selecting the network 

parameters is called training the network. The Levenberg-Marquardt (LM) algorithm 

is very efficient for training. The LM algorithm is an iterative technique that locates 

the minimum of a function that is expressed as the sum of squares of nonlinear 

functions. It has become a standard technique for nonlinear least-squares problems 

and can be thought of as a combination of steepest descent and the Gauss-Newton 

method. 

 
 Number of neurons used in the NNPC is 9, 1000 data sets were used for 

training and 25% of the training data sets were used for testing and validation 

purpose. 

 
 In this study Feed-forward back propagation neural network was created 

which consist of number of layers using the input function, weight function and the 

specified transfer functions. Each consequent layer has a weight coming from the 

previous layer. The last layer is the network output. For creating a feed-forward 

back propagation network, first we define the number of hidden layers and number 

of neurons in the hidden layer. In this study we specified 9 neurons in single hidden 

layer and used a ‘tan-sigmoid’ transfer function for hidden layer. Figure 6.26 shows 

the resulting network. The training performance and training state is given in the 

Figures 6.27 and 6.28 respectively. 
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Fig. 6.25: Neural Network 
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Fig. 6.26: Neural Network Training 

 

 
Fig. 6.27: Neural Network training performance 
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Fig. 6.28: Training state of Neural Network Training 

 

 

 
Fig. 6.29: Regression analysis for training and validation of Neural Network. 
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Fig. 6.30: Input/output data produced during training 

 
 The neural network was trained using Levenberg- Marquardt 
backpropagation (trainlm) method the training output data produced during the 
training is shown fig 6.30. The regression shows that the training is perfect as shown 
in Figure 6.29 having R2 value as 1 for training and Validation. Test dataset were 
validated with the trained neural network. The mean square error is also calculated 
and presented in the figure 0.00125. Minimum mean squared error (MSE) is used as 
the criterion for the network selection and also for the stopping of weights and bias 
adjustment. These results indicate that neural network was trained perfectly. 
 
Validation 

 
Fig. 6.31: Responses of controllers to set-point change (dotted line- Response of 

PID, dashed line- response of MPC and solid line- response of NNPC). 
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 Figure 6.31 presents the comparison of controller’s ability to handle set-point 
change during the process. Black sold line shows the set-point of the process i.e. 343 
K and other lines represents- Dotted line shows response of PID, dashed and solid 
lines portray the response of MPC and NNPC respectively. PID shows a bump in 
there response where as MPC and NNPC show good tracking of the set-point 
change. Neural network more closely following the set-point trajectory as seen in 
the figure. Figure 6.32 gives the comparison of response of the controllers along 
with experimental value obtained from the experiments done in the laboratory.   

 
Fig. 6.32: Comparison of control variable  

(Experimental value using on/off controller) 

 

 
Fig. 6.33: Comparison of Particle density functions as a result of  

PID, MPC and NNPC. 
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Table 6.9: Performance Criteria for Set-point change in the controllers. 

 

Table 6.10: Performance Criteria for load change in the controllers. 

 
 The core objective of this whole study is to control the end use properties 
(particle size distribution and molecular weight) of the final polymer product for this 
aim a robust control system is required. In this study we found NNPC works better 
than PID and MPC although there is little difference in the response of MPC and 
NNPC but still it is proved in this study that NNPC controlled our system better than 
else two. Figure 6.33 presents the comparison of density function of three controllers 
and table 6.9, 6.10 tabulated the comparison of performance of all three controllers 
viz. PID, MPC and NNPC for set-point change and load change through which we 
had made decisions. PID gives broader density than the others. 

Controllers and 
Performance 

Criteria 

Particle Size Distribution 

ITAE IAE ISE ITSE 

Positive 
Set-point 
Change 

PID 3.7422e+010 3.1014e+005 5.0013e+006 3.7385e+010 

MPC 1.6776e+010 3.0817e+005 1.1439e+007 3.6295e+010 

NNPC 1.2301e+010 2.5064e+005 4.1452e+006 2.8109e+010 

Negative 
Set-point 
Change 

PID 3.7422e+010 5.1014e+005 5.0913e+006 3.7385e+010 

MPC 1.7522e+010 4.8009e+005 1.2119e+008 6.1412e+010 

NNPC 1.3279e+010 4.6355e+005 4.3718e+006 2.9836e+010 



 

Chapter-7 
Molecular Weight 



 

7.  Molecular Weight 
Molecular Weight  

 Molecular weight averages are a convenient measure of polymer molecular 

weight; these molecular weight averages do not describe the complete characteristics 

of polymer MWD. Furthermore, for some polymers such as PMMA, knowing the 

full MWD may not be always sufficient for many practical applications. It is 

possible that two polymer samples of different chain length distribution can have 

identical number and weight average molecular weights. Bimodal or multi-modal 

MWD curves cannot be represented by molecular weight averages and 

polydispersity. 

 
 The major limitation in using the molecular weight moment technique is that 

only molecular weight averages are calculated and a complete MWD is not 

obtainable. Certain functions, such as distributions are often adopted and fitted with 

molecular weight average. Certainly, such methods are no more than curve fittings, 

lacking any physical implications. 

 
 But now a technique of moments fully utilizes the convenience at the same 

time it enables the computation of full chain length distribution. We use six 

moments’ equations in which three for live polymer and three for dead polymer. 

 
 The molecular weight and MWD affects the mechanical properties of the 

final latex, whereas the PSD affects the rheological and optical properties of the 

final polymer product and their stability, in previous chapter we discussed PSD and 

here we are going to discuss MW. 

 
 A major simplification in the modeling of molecular weight and branching 

development results when it can be assumed that a negligible amount of polymer is 

produced via termination reactions but actually a polymer can be produced via the 

following reactions: transfer to monomer to chain transfer agent and to polymer, 

termination reactions, and terminal double bond reactions. Transfer to polymer and 
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terminal double bond reactions produce long-chain branches. Transfer to small 

molecules and termination reactions produce linear polymer chains. Fortunately, in 

most emulsion polymerizations, transfer reactions are relatively more important than 

termination reactions in the production of polymer. When the amount of polymer 

produced by termination reactions is negligible, molecular weight and branching 

development is independent of initiator and emulsifier levels (or number and size of 

the polymer partic1es) and when polymer produced by termination reactions is 

appreciable, molecular weight and branching development depend on the initiation 

rate and emulsifier concentration (number of particles and their size distribution). 

 
7.1  Proportional-Integral-Derivative (PID) 

 The reactor was brought to the initial temperature having on/off controller 

and then required amount of initiator was supplemented to the reactor. On/off 

controller is successfully operated experimentally; performance of controllers here 

was studied with different parameters. After this we compared two methods which 

will be explained later.  

 
 In our study first PID controller uses split range controller as explained in 

previous chapter for particle size distribution and second PID controller uses heater 

power as a manipulative variable. In the split range controller, the reactor is initially 

heated with hot water until the reaction begins to generate heat. Then cold water is 

used. The control methodology used is as same explain above for particle size 

distribution. To avoid repetition we skip the discussion of strategies as they 

explained already in previous chapter and jump directly to results for molecular 

weight. 

 
 Split range controller uses flow rates of hot and cold water as manipulative 

variable, Figure 7.1 shows how the flow rates of cold and hot streams change with 

output signal of the controller.  
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Fig. 7.1: Hot and cold stream for split range controller. 

 
Fig. 7.2: Control Variable (split range- blue, Heat load- Green). 

 
 The Green line is showing the heat load method and blue shows split range. 

As clearly shown in Fig 7.2 split range controller requires minimum time to settle 

down at set-point i.e 343K and heater power takes ample of time (4000 sec) but 

there are small oscillations in split range controller. Split range controller uses both 

hot water stream and cold water stream as its manipulative variable (Fig 7.1) and is 

not capable to maintain set-point better than heat load. The hot stream temperature is 

380 K and temperature of cold stream used is 294K. The maximum flow rates of the 

streams are 0.5 kg/s. The value of Absolute error for split range is 3.7613e+007 
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which is enormously higher than the heat load method having value 8.9167e+006. 

Both the controllers behave well at load change and set-point change in system. 

Table 7.1 gives the value of parameters used in simulation studies. Performance 

index were compared in Table 7.2. Contradictory results were found. Performance 

index shows heater power as manipulative variable is capable to handle set-point 

change better than split range, which means heat load as manipulative variable is 

much better strategy to be used since physically or practically there may be load at 

any time to the controller.  

 
 Both two are capable to maintain the desire reactor temperature with load 

changes and suddenly set point changes.  

 
 Figure 7.3 and 7.4 presented set-point change in both the controllers and 

Figure 7.5 represent load change. In split range after set point change there are some 

oscillations before settling down on change but in heat load set point change is very 

smooth. 

 

 

Fig. 7.3: Set point change in split range controller. 
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Fig. 7.4: Response of Set point change in controller having heater power as 

manipulative variable. 

 

 
Fig. 7.5: Response of load change in second PID controller (heater power as 

manipulative variable). 

 
 The disturbance is scheduled at time 50000 sec, flow rate of the cold water 

increases by 0.1 kg/sec to its optimum value in negative load change which resultant 

in decrease in the reactor temperature, where as in positive load change the value of 

flow rate decreased by 0.1 kg/sec to its optimum value. The controller is active 

enough to maintain the set-point within 3000 seconds. 
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Parameter Tuning 

 The tuning of the temperature controller is an important issue (Table 7.3), 

Low controller gain leads to overshoot, Kc=1 leads to 8K overshoot and at Kc=3 

leads to 3K overshoot as shown in Figure 7.7 because lower value of controller gain 

makes the Controller vary unstable in nature. Higher the value of TauI leads to 

oscillatory response of the controller as shown below in the Figure 7.8. 

 
 In this study we calculate error with adjustable parameters then select the 

optimum value of parameter with minimum error. These set of parameters are 

tabulated in Table 7.2. 

 
Table 7.1 : Parameters used in the study for MW. 

 

Table 7.2: Performance of controller using heat duty as manipulative variable. 

Parameters ITAE IAE ISE ITSE 

Kc-9 7.7540e+007 1.4355e+004 1.4409e+005 3.1997e+007 

Kc-6 7.9275e+007 1.8180e+004 1.9122e+005 5.2891e+007 

Kc-3 8.4318e+007 2.8848e+004 3.4146e+005 1.5403e+008 

Kc-1 9.6242e+007 4.5368e+004 6.5680e+005 5.3608e+008 

TauI-0.0001 1.6711e+008 1.1272e+004 1.4334e+005 2.2589e+007 

TauI-0.001 7.7540e+007 1.4355e+004 1.4409e+005 3.1997e+007 

TauI-0.01 8.9167e+006 1.2244e+004 1.5136e+005 3.5224e+007 

TauI-0.1 1.3334e+007 1.9443e+004 3.0616e+005 1.2576e+008 
 

Parameter Unit Value 

Kp lit/mol min 49876.54 

Kd Per min 8.6*10e-5 

Kt Lit/mol-min 1.414*10e9 

F - 0.5 

uc W/m2-K 55 

Tcold K 275 

Cj J/kg-K 4.183 

Thot K 400 
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Table 7.3 Control parameters. 

Parameter Split range Heat load 
Kc 0.1 9 

TauI 0.0009 0.01 
 

 
Fig. 7.6: Analysis of controller gain in second controller. (0.01) 

 
Fig. 7.7: Analysis of TauI in second controller (kc=9) 

 
 Performance index is calculated for the system, results are discussed in Table 

7.4 and 7.5.The comparison of result of the controller and experimental result with 

on/off controller is given in Figure 7.9. 

 

 The performance index for both the controller were studied and discussed in 

Table 7.5. As the data of Performance index provide evidence that heat load perform 

better than the split range. 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
300

310

320

330

340

350

Time(sec)

R
ea

ct
or

 T
em

pe
rt

au
tr

e(
K

)

 

 
Kc=1
Kc=3
Kc=6
Kc=9

0 2000 4000 6000 8000 10000 12000
310

320

330

340

350

360

370

Time(sec)

R
ea

ct
or

 T
em

pe
ra

tu
re

 (K
)

 

 
TauI=0.0001
TauI=0.001
TauI=0.01
TauI=0.1



Molecular Weight 

164 

Table 7.4: Performance at set-point (343 K) using two different control 

strategy. 

Performance Criteria ITAE IAE ISE ITSE 

Split range controller 3.7613e+007 4.6035e+003 6.1616e+004 4.6702e+006 

Controller using heat 
duty 

8.9167e+006 1.2244e+004 1.5136e+005 3.5224e+007 

  
Table 7.5: Performance of controllers for set-point change and load change. 

Controller Split Range controller Controller using Heat duty 

Parameter ITAE IAE ISE ITSE ITAE IAE ISE ITSE 

Positive 
Load Change 

2.2805 
e+0010 

1.9063 
e+006 

3.5205 
e+007 

4.2102 
e+012 

1.7292 
e+0010 

1.3246 
e+006 

1.5194 
e+007 

6.4684 
e+012 

Negative 
Load change 

2.7642 
e+0010 

2.3111 
e+005 

4.2346 
e+007 

5.0635 
e+012 

1.9942 
e+0010 

1.3246 
e+005 

1.5191 
e+007 

6.2928 
e+012 

Positive set-
point change 

4.8527 
e+010 

5.6430 
e+005 

5.0364 
e+003 

6.6920 
e+011 

3.7366 
e+010 

5.1037 
e+005 

5.1328 
e+006 

3.7362 
e+011 

Negative set-
point change 

1.5279 
e+010 

5.3152 
e+005 

2.09 
e+003 

2.1469 
e+011 

1.1736 
e+010 

5.1037 
e+005 

5.1328 
e+006 

3.7362 
e+011 

 
Validation 

 
Fig. 7.8: Comparison of Reactor Temperature. 
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 Comparison of experimental value of reactor temperature with open loop 

simulation controller and with on-off controller (experimental result) was studied 

and the result found was shown below in Fig 7.8. 

 
Fig. 7.9: Comparison of experimental data with controller. 

 
 A comparison of molecular weight is given in Figure 7.9 which demonstrate 

that molecular weight (Crowley and Choi 1998) of polymer is maintained at the 

value 12500 gm/mol with the help of controller rather than of without controller. In I 

interval the number of particles increases, monomer droplets are also present in the 

system which act as a supplier, in interval II when all the monomer droplets 

disappeared from the system the average molecular weight decreases because of 

diminish of monomer droplets and remains nearly constant through out the process. 

 
7.2  Model Predictive Controller 

 The model predictive controller is used for control of the molecular weight 

of polymer PMMA. Again we used the same strategy i.e. power of the heater is used 

as manipulative variable and temperature as controller variable. The coolant flow 

rate is kept constant. The design parameters used in the simulation given in table 

7.6, 7.7.  
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Fig. 7.10: MPC strategy 

 
Model predictive strategy involves the following steps: 
1. The process model calculates the predicted future outputs for the prediction 

horizon (N) at each sampling time t. Theses depends upon past inputs and 
outputs, including the current output y(t) (initial condition). 

2. The sequence of future control signals is computed to optimize a 
performance criterion. Usually the control effort is included in the 
performance criterion. 

3. Only the current output signal u(t) is send to the process. Step 1 is repeated 
for all the sequence to bring the process up to date. 

4. The future moves of the manipulated variables are determined by minimizing 
the predicted error or the objective function 

 
 The performance of MPC is compared with PID controller and presented in 
Figure 7.12 and MPC flow chart is given in Figure 7.11. Our objective is to improve 
the control performance using different controllers. The response shows that PID 
controller took large time to get closer to the set-point with overshoot. MPC took 
2000s where as PID adjusted within 2800s to the set-point with 5.5 K overshoot 
which depicts higher overshoot than MPC. The behaviour of heat duty as 
manipulative variable is shown in Figure 7.13 and 7.14 for MPC and PID 
respectively. In MPC heat duty oscillates in start-up but In PID heater power 
oscillated at time 50000s with initial start-up also where as MPC gives rest response 
smoother than PID which will prolong the life of heater. 
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 In industrial practice, some uncertainty and disturbance are normally 
encountered in the reactor; to explore this we introduce disturbance and set-point 
change in the reactor. An excitation in the cold flow rate was introduced at the time 
50000s. Increasing the flow rate would decrease the temperature of the reactor and 
decrease in flow rate would increase the temperature because of the heat transfer 
rate of the reactor shown in Fig 7.15 and 7.16 for MPC and PID simultaneously. 
Simulink file used in Matlab for MPC is given in Fig 7.17. Similarly set-point was 
also introduced into the system at time 50000s shown in Fig 7.18 for MPC and 7.19 
for PID. MPC took less time as compared to PID for getting closer to the set-point in 
load-change, and gave less oscillation in set-point change with small overshoot. This 
is evidence that advance controllers are promising than traditional controllers in 
terms of there robustness for non-linear systems control. Control variable obtain 
from MPC and PID compared with experiment result, these experiments were 
performed in laboratory, we found overshoot in PID is greater than MPC thus MPC 
performs well in our case. 

 
Fig. 7.11: Flowchart for MPC 
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Fig. 7.12: Comparison of control variable using MPC and PID 

 

 
Fig. 7.13: Manipulative variable (MPC heat duty as manipulative variable). 

 
Fig. 7.14: Manipulative variable (PID heat duty as manipulative varable). 
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Fig. 7.15: Load change in MPC. 

 
Fig. 7.16: Load change in PID and MPC. 

 

 
Fig. 7.17: Simulink file for MPC. 
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Fig. 7.18: Response to set-point change in MPC. 

 
Fig. 7.19: Response to set-point change in PID. 

 
 In this work we have formulated non-linear model predictive control for the 

control of batch emulsion polymerization within target points i.e. temperature of the 

reactor at 373 K and compared with PID controller. This is to cover the gap between 

theoretical and real control and also to provide better controller. MPC was able to 

track the optimum reactor temperature profile efficiently and without a noticeable 

overshoot as in the case of PID, better disturbance rejection and smoother control 

move were also shown by MPC (Sheibat-Othman, Othman et al. 2011). This study 

shows advanced controllers are more robust and faster than traditional controller. 
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Tuning 

 Tuning of the controllers were done by trail and error method and tabulated 

in Table 7.6 for MPC and Table 7.7 for PID.  

 

Table 7.6: Tuning parameters for MPC 

Parameters Value 

Weight Tunning 0.8 

Prediction Horizon (Np) 500 

Control Horizon (Nc) 10 
 

 
Table 7.7: Tuning parameters for PID 

Parameters Value 

Controller Gain 9 

TauI 0.01 
 
 

 
Fig. 7.20: Effect of weight tuning(Nc=20,Np=1000). 
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Fig. 7.21: Effect of Control horizon of MPC(wt=0.8,Np=1000) 

 
Fig. 7.22: Effect of prediction horizon of MPC (Nc=20, Wt=0.7) 

 
 Tuning of parameters in batch reactor is always difficult as compared to 

continuous reactor. Trial and error method was using for tuning of both the 

controllers. In MPC as the value of weight tuning decreases number of oscillations 

increases (Figure 7.20), Change in control horizon (Figure 7.21) and prediction 

horizon (Figure 7.22) makes little difference in our case but the best value was taken 

after the study of performance index, the same procedure is repeated for the PID 

controller, decrease in the value of controller gain causes higher the value of 

overshoot on control variable as shown in Figure 7.6, at Kc=1 highest overshoot was 

obtained, as the value of tauI increases oscillations in the control variable increases 

as in Figure 7.7. 
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Table 7.8: MPC Performance Index for MWD 

Parameters ITAE IAE ISE ITSE 

Weight tunning 0.7 1.8158e+007 2.8626e+004 6.7263e+005 2.6668e+008 

Wt tunning 0.8  6.2645e+007 3.3623e+004 6.7436e+005 2.8880e+008 

Nc -10 1.7193e+007 2.8313e+004 6.7193e+005 2.6620e+008 

Nc-20 1.7351e+007 2.8364e+004 6.7190e+005 2.6624e+008 

Nc-30 1.7346e+007 2.8363e+004 6.7192e+005 2.6624e+008 

Np-100 2.0476e+007 2.9342e+004 6.7304e+005 2.6841e+008 

Np-500 1.7753e+007 2.8673e+004 6.8195e+005 2.7088e+008 

Np-1000 1.7558e+007 2.8631e+004 6.8299e+005 2.7129e+008 
 
 Absolute Error calculated for the reactors are given in Table 7.5 and 7.8 for 

PID and MPC respectively. On the basis of performance index tuning parameters 

was finalized. The value of parameter having minimum absolute error is used as 

optimum parameters for the controller (Table 7.8). Significant digit is the lowest 

value of ITAE i.e. weight tuning is 0.8, Nc is 10 and Np is 1000. 

 
Validation 

 
Fig. 7.23:Comparision of MPC, PID control variable with experiment result. 
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Fig. 7.24: Comparison of Average molecular weight. 

 
 The effect of temperature on MWD has been investigated well in the 

literature (Shahrokhi and Fanaei 2002). Increasing the reactor temperature, shifts 

MWD towards shorter chain length or lower weighted average molecular weight. It 

is well known that MWD is highly dependent on the ratio of chain transfer rate 

coefficient to propagation rate coefficient. In the absence of CTA, the chain transfer 

to monomer is dominant and therefore temperature determines temperature effect on 

MWD. Derivative of the above ratio respect to temperature is positive and therefore 

MWD is decreased as temperature is increased. Finally, according to the results of 

the above analysis, it can be concluded that MPC is the best candidates for 

controlling MWD and PSD, respectively, with minimal overshoot, presented in 

Figure 7.23. To overcome with this minimal overshoot present in MPC we studied 

another advance controller which is discussed below. Figure 7.24 illustrate the 

average molecular weight by PID MPC and on-off controller in experiments. 

 
 It can be concluded that synthesizing an optimal open loop assuming perfect 

modeling would leads to important errors between real and desired molecular 

weights, due to impurities, changes in raw materials or due to degradation of the 

process components. Meanwhile, the closed-loop SISO MPC strategy is a much 

batter than PID since it reduces the impact of error.  
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7.3  Neural Network Predictive Control 

 The molecular weight of the polymer is most important element to the 

properties if the product. However it is difficult to measure the molecular weight in 

real time. Therefore, the control of the molecular weight is often carried out by 

controlling the reaction temperature which influences the monomer conversion and 

molecular weight significantly. As NNPC is already discussed in previous chapters. 

 
Fig. 7.25: Comparison of Control variable. 

 
 The main control objective of our study is to bring the reactor temperature to 

its target value as rapidly as possible with minimal temperature overshoot. It has 

been observed in the figure that temperature overshoot can be minimized by this 

proposed method. 

 
 The PID control shows a little delay in action which causes the overshoot 

from the set-point and NNPC gives faster response this is due to the fact that NNPC 

and MPC uses the prior information which is lacking in the case of PID. It can be 

seen in the Figure 7.25 that NNPC is more active and faster than the other two 

without any overshoot. 
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Fig. 7.26: Response to Load change in NNPC 

 
Fig. 7.27: set-point change in the control variable (dotted line shows set-point). 

 
 Tracking of set-point changes in control variable is presented in Figure 7.27 

.Set-point of the reactor temperature is represented by dotted line in the figure. 

Negative and positive set-pint changes are introduced in the process and the NNPC 

handle the changes more satisfactorily. This is because the NNPC takes into account 

the changes caused in the processes and thus it changes the manipulative variable 

accordingly. 

 
 Load change is also introduced in the process at run time 50,000 sec by 

changing the flow rate of cold water by +_ 0.1 kg/sec. Positive and negative effect of 

load change in presented in the figure 7.26. 
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Fig. 7.28: Manipulative Variable during the process without any disturbance. 

 
 Heater power is used as manipulative variable in the process as explained 

previously. The trend of the manipulative variable during the process is shown in 

Figure 7.28 without any disturbance the manipulative variable is maintained at its 

optimum value 50W through out the process. 

 
Neural Network Training 

 
Fig. 7.30: Neural Network Training 
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Fig. 7.30: Architecture of NNPC used in our model 

 
 Neural network has proven to be accurate and a fast dynamic estimators. The 

architecture of multilayered feed-forward neural network can be seen in Figure 7.29. 

The network consist of an eight number of nodes arranged in a layers (Figure 7.30). 

Through these nodes in the layer signals propagate in feed-forward direction. The 

output of nodes transmitted signals to the next.  

 
Fig. 7.31: Data generated during training in NNPC. 
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 Since the reactor is dynamic in nature. It is necessary to feed the network 

with past historical data. The necessary data are generated from simulation the open 

loop detailed model. Data generated during the training is presented in the Figure 

7.31. The training of the neural network is done by using backpropagation 

algorithm. Also mean square error (MSE) (Figure 7.32, 33 and 34) performance 

function was used to determine overall error for training and validation. Regression 

analysis is also done for training and validation and found R=1 (Figure 7.35). 

 
Fig. 7.32: Network Architecture 

 
Fig. 7.33: Testing data 
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Fig. 7.34: Training state of neural network training 

 

 
Fig. 7.35: Regression Analysis 
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Parameter Tuning 

 The quality of any controller can be improved by optimizing there 

parameters (Table 7.9). The effect of parameters on the control quality of the 

controller are analysed here. The control parameters which have been optimized in 

this study are Control weight, Nu and neurons of hidden layer in the neural network. 

Increase in control weight causes a bump in the control variable in the starting of the 
process. The optimum value found is 0.01 for the control weight. A single Hidden 
layer was used in the neural network, the number of neurons highly affect the 
control ability of the controller. The optimum value of neurons found is 8, increase 
in the number of neurons cause controller sluggish in nature. Nu does not affect the 
quality of NNPC strongly but during performance analysis, we found optimum value 
is 4 for this study (figure 7.36, 37 and 38). 

 
Fig. 7.36: Effect of control weight on control variable (H=8,Nu=4) 

 
Fig. 7.37: Effect of neurons of the hidden layer on control variable  

(Nu=4, controlwt=0.01) 
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Fig. 7.38: Effect of Nu on control variable(H=8,controlwt=0.01) 

 
Table 7.9: Performance Index NNPC for MWD 

Parameters ITAE IAE ISE ITSE 

Nu-2 5.3760e+007 3.1182e+004 7.3247e+005 2.9333e+008 

Nu-3 5.3636e+007 3.1184e+004 7.3243e+005 2.9327e+008 

Nu-4 1.9997e+007 3.0696e+004 7.3239e+005 2.9298e+008 

Control 
Weight-0.01 

1.9997e+007 3.0696e+004 7.3239e+005 2.9298e+008 

Control 
Weight-0.001 

4.7853e+007 3.0976e+004 7.3234e+005 2.9303e+008 

Control 
Weight-1 

6.6236e+007 3.3347e+004 7.3520e+005 3.0082e+008 

Hidden Layer-
10 

4.4430e+010 8.5020e+005 8.2611e+006 3.9938e+011 

Hidden 
Layer-8 

1.5303e+010 1.2947e+006 1.7158e+007 8.5505e+011 

 
Validation 

 A model aims to predict the future behaviour of the process and the best one 

is chosen by a correct optimal control of the manipulated variables. 

 
 The advantage of NNPC is Constraints (such as manipulated variables 

physical limitations, constraints due to operating procedures or safety reasons) may 
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be specified and the disadvantage is Computational time needed may limit on line 

use Suboptimal solutions. 

 
Fig. 7.39: Comparison of average molecular weight. 

 
 The ultimate goal of the polymerization reactor temperature control is to 
obtain polymer product having desire properties. Therefore, the batch operation is 
carried out to control the molecular weight of the product through tracking the 
temperature trajectory. Molecular weight is very sensitive to the reaction 
temperature unlike the monomer conversion, so small changes in the reaction 
temperature may induce large deviation in molecular weight. The initial temperature 
was 343 K and the total reaction time is 200 min. The desire average molecular 
weight obtained is 12000 kg/mol (figure 7.39). PID shows the highest deviation 
from the experimental result. This implies that the polymer product having desire 
properties can be obtained by the controlling the reactor temperature with robust 
controller. 
 
 To make the quantitative comparison of the controllers, Different criteria for 

good control action were applied. These are the integral of time weighted absolute 

error (ITAE), integral of the square of the error (ISE), the integral of the absolute of 

the error. The results are presented in the table for PID, MPC and NNPC 

respectively. All the criteria tested carefully and concluded that NNPC is superior to 

the others (Table 7.10 and 7.11). It is evident that the end-use properties of the 

product can be controlled more efficiently by using Neural Network predictive 

controller. 
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Fig. 7.40: Comparison of density functions for average molecular weight. 

 
 In figure 7.40 it is clearly shown that NNPC gives narrow distribution of 

density function. NNPC is the only controller able to produce particles having same 

or nearly same molecular weight. 

 

Table7.10: Performance Criteria for Set-point change in the controllers viz 

PID, MPC and NNPC. 

Controllers and 
Performance Criteria 

Molecular Weight Distribution 

ITAE IAE ISE ITSE 

Positive Set-
point Change 

PID 3.7366e+010 5.1037e+005 5.1328e+006 3.7362e+011 

MPC 3.7209e+010 5.2232e+005 5.5874e+006 3.7097e+011 

NNPC 1.1458e+007 1.1949e+004 1.1505e+005 3.1816e+007 

Negative Set-
point Change 

PID 1.1736e+010 5.1037e+005 5.1328e+006 3.7362e+011 

MPC 2.1212e+010 5.2237e+005 5.5884e+006 3.7102e+011 

NNPC 1.7284e+007 5.2418e+004 5.6478e+005 3.7361e+007 
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Table 7.11: Performance Criteria of all the controllers for Load change in 

jacket fluid flow rate 

Controllers and 
Performance 

Criteria 

Molecular Weight Distribution 

ITAE IAE ISE ITSE 

Positive 
Load 

Change 

PID 1.7292e+010 1.3246e+005 1.5194e+007 6.4684e+0012 

MPC 2.8212e+010 6.3297e+004 3.7744e+007 5.5543e+011 

NNPC 0.041682e+010 4.0404e+004 6.6290e+005 5.1942e+008 

Negative 
Load 

Change 

PID 5.9942e+010 1.3246e+005 1.5191e+007 6.2928e+0012 

MPC 2.5694e+010 5.3396e+004 0.0714e+007 1.0453e+011 

NNPC 0.038990e+010 3.9888e+004 6.6176e+005 4.6127e+008 
 
 As shown in above analysis MPC takes more settling time than PID in 

disturbance rejection the  reason being is MPC takes large computation time and 

using time consuming algorithm, Where is gives the best result for disturbance 

rejection than others. 

 
7.4  Bubble Entrapment 

 Entrapment of bubbles is a function of viscosity of the reaction liquid. Rate 

of entrapment of bubbles are tend to change as the viscosity of the reaction mass 

changes. It is observed that as the viscosity increases number of entrapped bubbles 

increases and the diameter of the bubble is also increases. At low viscosity the high 

percentage of bubble entrapped having small diameter and vice-versa. The first term 

in the equation 3.64 (term in first bracket) dominates at low viscosity of reaction 

mass and tends to entrapment of bubbles of low size range. Parameter p1 is 

represents rate of instantaneous breakage of big bubbles of gas; parameter p2 is used 

for the inverse of the overall rate at which large bubbles are getting entrapped at the 

surface. As the viscosity increases the effect of second term increase and this term 

became dominating. The third term (exponential term) gives log normal distribution 

effect at the value of parameter p5.The value of parameters are p1= 690.01,p2= 2.14, 

p3= 3.20X10-4 , p4= 334.31, p5= -8.76 
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Fig. 7.41: Comparison of entrapment functions of all three formulations. 

 
 Presented in figure 7.41 as viscosity of the reaction mass increases the 

number of bubbles entrapped increases formulation 1 having the higher number of 

bubbles entrapped into the reaction mass. 
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8. Conclusions 
 
Problems encountered during experiments and control of batch reactor 

 The primary objective of reactor control in industrial polymerization 
processes is to maintain stable reactor operations and product quality at their target 
values. For an existing plant, improved reactor controls are needed to increase the 
polymer yield and to reduce production cost. Process knowledge, sensors, 
transmitters, and analysers are the prerequisites for the design of basic control 
system to regulate pressure, temperature, level, and flow rate. With the regulatory 
control system in place, one can design advanced regulatory control, model based 
control and intelligent scheduling and optimization system. 
 
 There have been a large number of publications on the control of 

polymerization reactors in the past two decades. Many of these publications dealt 

mainly with reactor temperature control and polymer property control problems of 

semi-batch and continuous reactors. 

 
 Exothermic polymerization processes often exhibit strongly nonlinear 
dynamic behaviours (e.g., multiple steady states, autonomous oscillations, limit 
cycles, parametric sensitivity and thermal runaway), particularly when continuous 
stirred tank reactors are used. Some polymerization processes are open loop unstable 
and susceptible to unmeasured disturbances, even with a feedback controller in 
place. 
 

 Since many of the polymer properties are hard to monitor online, first-level 
process variables are controlled to follow a certain process recipe. Polymerization 
rate and polymer properties are non-linearly correlated and hence a polymerization 
process control system is inherently a multivariable control system. In presence of 
unexpected process disturbances, or load change, little can be done to correct the 
damages made on the product properties but in a batch process, the consequence of 
not being able to handle load change and disturbance is a heavy economical loss. 
 
 Control objectives include the direct control of polymer properties using on-

line measurements or estimates of polymer properties. Any variations in the product 

quality can be corrected if such quality parameters are known available during the 

polymerization. 
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 Here are some issues concerning batch polymerization reactor control. A 

batch polymerization process is a multivariate and non-stationary or dynamic 

process. Quite often, direct on-line control of polymer properties is not feasible, or 

very difficult in batch polymerization processes. For example, sampling from a 

reactor can be quite a challenge in some high-pressure batch reactor systems. For 

short batch reaction time, there is simply no time to analyze polymer samples off-

line and use the result to make appropriate corrective control actions before the 

batch operation is terminated. A batch polymerization reactor should also be 

operated to maintain consistent batch-to-batch product quality and to maximize the 

product yield by increasing monomer conversion and/or reducing batch reaction 

time.  

 
During this study we encounter with some difficulties and those are: 

1. The product is characterized by its end use properties like molecular weight 

and particle size which is strongly depend upon temperature. A proper 

temperature policy would keep these parameters within range. 

2. In batch polymerization, physico- chemical properties are changing with 

time and important mass and heat transfer is also taking place. Thus, control 

of temperature becomes more difficult. 

3. The system is highly non-linear. 

4. The disturbance during the batch especially the heat of the reaction increases 

to its highest at the end of the reaction causes many challenging control 

problems. When the rate of reaction is high, the removal of heat becomes 

very difficult task to be done due to the increases viscosity. 

5. Being a batch process, there is no steady state operating point which makes 

tuning of the controller more difficult. 

 
  In many industrial batch polymerization processes, the design of a batch 

polymerization reactor control consists of two stages: 

1) Off-line design of a control trajectory (recipe), and  

2)  Implementation and execution of the control trajectory.   
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 There might some control objectives (e.g., polymer yield, molecular weight, 

composition, batch reaction time) that require special treatments. So we concentrate 

on the control of batch reactor using MATLAB to provide a system with 

optimization. During the time of work we faced problems with one strategy using 

for control of batch reactor, we make some in the system through changing 

manipulative variable and introduced second strategy for control. Now this Strategy 

is more reliable and trustable to work with, so we proceed with this strategy and 

design next controllers. 

 
8.1  Conclusion 

 MMA emulsion polymerization was performed in order to measure the 

validity of mode1 proposed in the chapter 3 for conversion, MW, MWD and PSD of 

polymer. The data collected from the experiments were analyzed by the Malvern 

Mastersizer 2000 E, to evaluate the sizes of the polymer particles and monomer 

droplets, and by end group analysis to measure the molecular weight of the sample. 

The data were then incorporated into the respective models so an evaluation could 

be made and the objectives outlined in Chapter 1 could be addressed. 

 
The thesis work that was performed led to the following conclusions: 

(i) Satisfactory results for conversion were obtained under the different 

concentration conditions of monomer, initiator and emulsifier. 

(ii) A dynamic model was developed for the reactor, particle size distribution 

and molecular weight distribution.  

(iii) With reliable Malvern Mastersizer 200E Particle size distribution, monomer 

droplets and their characteristics were studied with effect of monomer, 

initiator and emulsifier concentration. 

(iv) Molecular weight is characterized and explained the relation with PSD. 

(v) Control of batch reactor is more difficult because of heterogeneous 

nucleation and reaction without steady state. We applied three controllers 

namely PID, MPC and NNPC for PSD and MW. 

(vi) Performance indices were calculated for all the controllers. 
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(vii) We effectively obtained narrow distribution of particle size distribution using 

NNPC. Narrow distribution affects the rheology property and film formation 

characteristic of the polymer which is required in paint industries. 

(viii) NNPC efficiently maintained the molecular weight at specific a value of 

12500 gm/mol. High molecular weight strengthens the mechanical, tensile 

properties. 

(ix) Entrapment of gas bubbles increases with increase in viscosity of the system. 

 
 The ultimate goal of the polymerization reactor temperature control is to 

obtain polymer product having desired properties. Therefore, the batch operation is 

carried out to control the molecular weight of the product through tracking the 

temperature trajectory. Molecular weight is very sensitive to the reaction 

temperature unlike the monomer conversion, so small changes in the reaction 

temperature may induce large deviation in molecular weight. The initial temperature 

was 343 K and the total reaction time is 200 min. The desired average molecular 

weight obtained is 12000 g/mol. PID shows the highest deviation from the 

experimental result. This implies that the polymer product having desire properties 

can be obtained by the controlling the reactor temperature with robust controller.  

 
 From this research study, the models for particle size distribution and 

molecular weight were better fitted with the experimental results. Higher 

concentration of emulsifier favours broader particle size distribution and high 

molecular weight. High concentration of initiator gives narrower distribution. 

 
 Rheological property value increases with narrow distribution of polymer. 

Narrow distribution of polymer is designed mainly for paint industries, especially 

methyl methacrylate and its co-polymers is used, smaller particles also favour the 

fast rate of film formation. A latex product with smaller particle size shows better 

colloidal stability because the colloidal stability of the particle is proportional to the 

particle size to the third power. 

 
 We use temperature for controlling end –use properties of the polymer. It is 

well known fact that rate of polymerization increases with increasing temperature. 
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Increase in temperature after a certain temperature, the size of the particle decreases. 

This inverse dependence between the particle size and the polymerization 

temperature is due to the increasing decomposition rate of the initiator with 

increasing monomer solubility in the aqueous phase, which increase the 

concentration of growing chains and, thus, reduce the latex size. 

 
 A mathematical model was developed and simulated the entrapment of gas 

bubbles (nitrogen gas) in the polymerization reactor. 

 
8.2  Recommendations for Future Work 

 The results produced in this study validated with simulated results and gives 

valuable information. Results collected by the Malvern Mastersizer 2000E indicate 

that monomer droplets may be present in the system. More sophisticated apparatus 

for particle size distribution should be used like 200SM which works upon both 

static light scattering and dynamic light scattering technology. 

 
 NNPC is the best among three controllers, this should be applied practically 

to the batch reactors present in the industries so that high molecular weight with 

high rate of polymerization can be obtained and narrower particle size distribution 

can also be obtained, this is possible only with a batch reactor. 
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Appendix 
 

1. Moments equation for molecular weight 

 P* represents the growing polymer chain 

For Zero moment 

  (1) 

 (2) 

 (3) 

 
For First moment 

 (4) 

  (5) 

 (6) 

 
Where k =0,1,2 …..n 

 (7) 

 (8) 

 
For dead polymer chain 

 (9) 

 (10) 

 (11) 
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2. Reproducibility 

Particle Size Distribution 

 

 
Fig a: Reproducibility of particle size distribution of PMMA latex at time=120 

min using first formulation. 

 
Fig b: Reproducibility of particle size distribution of PMMA latex at time 200 

min using first formulation. 

 
Fig : Reproduced results of PSD at 200 min using 2nd formulation. 
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Fig: Reproduced results of PSD at 200 min using 2nd formulation. 

 

 
Fig : Reproduced results of PSD at 200 min using 3rd formulation. 

 

 
Fig: Reproduced results of PSD at 200 min 3rd formulation 
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Monomer Droplets 

Reproducibility 

 
Fig  a): Reproducibility of Particle size of monomer droplets  

(Surfactant conc-1gm). 

 

 
Fig  b): Reproducibility of Particle size of monomer droplets  

(Surfactant conc-1.5gm). 

 

 
Fig  c): Reproducibility of Particle size of monomer droplets  

(Surfactant conc-2gm). 
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 Results as shown in fig (a) indicating that coagulation event is occurring 

which makes little disagreement between the timings and magnitude and complete 

agreement between the trends. 

 
 Good agreement between two runs indicating reproducibility as shown in fig 

(b). Concentration of the surfactant used is 2 gm which gives multimodal 

distribution in fig (c). Lower the concentration of emulsifier causes the distribution 

narrower but at the end due to coagulation particles appeared of larger size. 

Disagreement in Reproducibility appears at lager particle which is resulting by 

coagulation event 

 
Matlab Programme for Particle Size Distribution 

M file 

function dy = batch_temp_mwd_new2 (t,y,Q) 

% M0=3.56; %monomer concentration,mol/lit 

% I0=.01485;%initiator concentration,mol/lit 

% global f  kd kp ktrm kt  cp  x eps fcold fhot tcold  roe u vr  areahx vj fjout lambda 

cj roej thotfinal 

global f  kd kp ktrm kt thotfinal cp  x eps fcold fhot tcold dr roe FcoldMax tji vr 

areaj areahx vj fjout lambda cj roej kem uc pi mw wm r nagg na k0 k1 k2 k3 k4 ei 

pii dw ket micelle rhoini 

 count=0; 

dy=zeros(13,1); 

%if y(2)>=0 

    count=count+1; 

% cp=3137; 

 dy(1)= -(2*f*kd*y(1)); 

%rate of initiation 

dy(2)=-(kp*(2*f*kd/kt)^(1/2)*y(2)*(y(1))^(1/2)); 

%dx=kp*y(6)*(1-x);% monomer conversion 

% y(4)=dy(4); 

% dy(4) = (kp/kt^1/2)*((f*y(1)*kd)^1/2)*(exp(-kd));%conc. of polymer 

% dy(3)=(fcold*tcold+fhot*thot)/vj-fjout*y(3)/vj* (cj*roej*vj)); +(q/(cj*roej*vj));  
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% dy(4)=-lambda*(.6*(kp*(f*kd/kt)^(1/2)*y(2)^1/2))/roe*(cp*roe*vr )/cp-

(q/(cp*roe*vr)); 

dy(3)=(FcoldMax*cj*(tji-y(3))+q)/(cj*roej*vj);  

dy(4)=Q +(-lambda)*(.6*(kp*(f*kd/kt)^(1/2)*y(1)*y(2))-q)/(cp*roe*vr); 

dy(5)=(2*f*kd*y(1))-(kt*y(5)^2)-(y(5)*eps*((1-

x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)));%for  

% Live polymer chain 

%lamda0 

dy(6)=(2*f*kd*y(1))-(kp*y(2)*((1-x)/(1+eps*x))*y(5))-(kt*y(6)*y(5))-

(y(6)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5))+ktrm*y(2)*((1-

x)/(1+eps*x))*(y(6)-y(5))); 

% for lamda1 

dy(7)=(2*f*kd*y(1))-(kp*y(2)*((1-x)/(1+eps*x))*(2*y(6)+y(5)))-(kt*y(5)*y(7))-

(y(7)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))-(ktrm*y(2)*((1-

x)/(1+eps*x))*(y(7)-y(5)/y(4)));  

dy(8)=(kt*(y(5)^2))-y(8)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5))-

ktrm*y(2)*((1-x)/(1+eps*x))*y(5); 

% dead polymer chain 

dy(9)=(kt*y(5)*y(6))-(y(9)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))-

ktrm*y(2)*((1-x)/(1+eps*x))*y(6)*y(4)*y(4); 

dy(10)=(kt*y(5)*y(6))-kt*y(6)^2-(y(10)*eps*((1-

x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))*ktrm*y(2)*((1-x)/(1+eps*x))*y(7); 

% %dy(11)=(y(10)+y(7))/((y(9)+y(6))+y(3));%((kt*y(5)*y(6))+kt*y(6)^2-

(y(10)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))+ktrm*y(2)*((1-

x)/(1+eps*x))*y(7))/((kt*y(5)*y(6))+(y(9)*eps*((1-

x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))+ktrm*y(2)*((1-x)/(1+eps*x))*y(6)); 

dy(11)=k4*(y(12)+y(13)-y(11))+k1*y(13); 

dy(12)=rhoini*y(11)-(k4*y(12)-kt*10*y(12))+kem*micelle*(10e10)*2.6e-

8+kp*0.3*y(13);   

%del(r-rnuc);polymer radicals,which would not diffuse out of the particle 

%monomer radical formed from chain transfer rxn 
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dy(13)=(ket*ei*y(11)+ktrm*y(12))*0.3/(k4+kp*0.3+k1);%monomer radical formed 

from chain transfer rxn 

 
S function file 

function [sys,y0,str,ts] = mwd_new_sfunction(t,y,u,flag) 

% global f  kd kp ktrm kt  cp  x eps fcold fhot tcold dr roe  vr areaj areahx vj fjout 

lambda cj roej u thotfinal 

global f  kd kp ktrm kt thotfinal cp  x eps fcold fhot  dr roe  vr areaj areahx vj fjout 

lambda cj roej FcoldMax tji kem uc pi mw wm rs rm nagg  Q na k0 k1 k2 k3 k4 ei 

pii dw ket micelle rhoini 

 FcoldMax= 0.5; 

FhotMax=  0.239; %0.0075;          %0.0009; 

% if (manip>=0) && (manip<0.5) 

kem=4*pii*rm*na*1.06*10e-7; 

mw=0.15; 

wm=100.12; 

na=6.022*10e23; 

k2=4*3.14*k0*na*1.06e-7; 

k3=(4*pii*rs*k0*na*dw); 

pii=3.14; 

dw=1.5e-6; 

k4=(k3*ei); 

ei=35000;%j/mol 

   
%------------------------ 

Qinit=90; 

%------------------ 

pi=1e-5; 

micelle= delmicelle;     

rhoini=rho1;% rough value 

 f=0.5;%factor efficiency 

kd=1.4e-6; % Initiation rate coefficient (1/s) 

%  kd=8.6e-5; % per min 
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 kp=0.83127; % m3/mol min 

% ktrm=3.24e-2;% l/mol min 

ktrm=5.4e-5;% m3/mol min 

 kt=1.414e9;%l/mol min 

  
cj=4.183; %J/kg-K 

roej=rho2;%kg/m3 

  
eps = 0.364; 

  
tji =303.8; %K 

dr = delr; %radius, m 

roe=983;    %801; %kg/m3 

thotfinal=400;   % Manipulating varible 

uc=55; %W/m2-K 

vr=3.14*(dr^2)* dr/2;%m3 

areaj=2*(3.14*dr^2); 

areahx=areaj*4; 

vj=.00258*areahx/.4026; 

fjout=fhot+fcold; 

lambda=-23.85e6; %-69.71e6*1e-7;  %j/kmol 

cp=1752; %J/kg-K 

x=1; 

y(:,:) = abs(y(:,:)); 

  

% if t>50000 

%     FcoldMax=0.4; 

% end  

%       

switch flag 

case 0 %initializing 

     str=[] ; 

     ts = [0 0] ; 



Appendix  

217 

      s = simsizes ; 

      s.NumContStates = 13; 

      s.NumDiscStates = 0 ; 

      s.NumOutputs = 16; 

      s.NumInputs = 1 ; 

      s.DirFeedthrough = 0 ; 

      s.NumSampleTimes = 1 ; 

      
    sys = simsizes(s) ; 

%     y0=[0.142,8.58,290,320,0,0,0,0,0,0]; 

%  y0=[1.42,358,290,320,0,0,0,0,0,0]; 

% y0=[1.42,5.58,310,320,0,0,0,0,0,0,0.01,0.1,0]; 

%   y = y0; 

   
    case 1 %derivatives 

      %thotfinal=thot ; 

   

Q = Qinit + u(1);  

       sys = batch_temp_mwd_new2 (t,y,Q); 

    case 3 

        totp=y(11)+y(12)+y(13); 

        if y(9)==0, molwt=0; 

        else 

            molwt=y(10)/y(9); 

        end 

        sys = [y; molwt;totp;Q]; 

        %dy= batch_temp_mwd_new2 (t,y,thotfinal); 

     case {2 4 9}    % 2:discrete 

                      % 4:calcTimeHit 

                       % 9:termination 

     

       sys =[]; 

    otherwise 
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        error (['unhandled flag =',num2str(flag)]) ; 

end 

 
Simulink File for PID 

 
Simulink for MPC 

 
 

Simulink for NNPC 
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Matlab Programme for molecular weight distribution 

 

M file 

function dy = batch_temp_mwd1_new2 (t,y,Q) 

% M0=3.56; %monomer concentration,mol/lit 

% I0=.01485;%initiator concentration,mol/lit 

global f  kd kp ktrm kt  cp  x eps fcold fhot tcold tji roe uc vr  areahx vj fjout lambda 

cj roej thotfinal FcoldMax 

count=0; 

dy=zeros(10,1); 

%if y(2)>=0 

    count=count+1; 

% cp=3137; 

dy(1)= -(2*f*kd*y(1)); 

%rate of initiation 

dy(2)=-(kp*(2*f*kd/kt)^(1/2)*y(2)*(y(1))^(1/2)); 

% dy(2)=-(kp*y(2)*(((2*f*kd*y(1))/kt)^1/2)); 

%dx=kp*y(6)*(1-x);% monomer conversion 

% y(4)=dy(4); 
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% dy(4) = (kp/kt^1/2)*((f*y(1)*kd)^1/2)*(exp(-kd));%conc. of polymer 

% dy(3)=(fcold*tcold+fhot*thot)/vj-fjout*y(3)/vj*/(cj*roej*vj +(q/(cj*roej*vj));  

% dy(4)=-lambda*(.6*(kp*(f*kd/kt)^(1/2)*y(2)^1/2))/roe/cp*/(cp*roe*vr) -

(q/(cp*roe*vr)); 

  

% dy(3)=((ua*(y(3)-y(4)))+((fw*rhow*cw)*(tji-y(3))))/(mj*cw); 

% dy(4)=((-delh*kp*(2*f*kd*y(1))^1/2)*y(2)^1/2+(ua*(y(3)-y(4))))/(m*cp); 

dy(3)=(FcoldMax*cj*(tji-y(3))+q)/(cj*roej*vj);  

dy(4)=Q +(-lambda)*(.6*(kp*(f*kd/kt)^(1/2)*y(1)*y(2))-q)/(cp*roe*vr); 

% dy(3)=(fcold*tcold+fhot*thotfinal)/vj-fjout*y(3)/vj+q/(cj*roej*vj);  

% dy(4)=-lambda*(.6*(kp*(f*kd/kt)^(1/2)*y(1)*y(2)))/(roe*cp)-q/(cp*roe*vr); 

%[t,y]=ode45(@batch_temp,[0 8000],[0.142,8,0,0,320,343.15]); 

% %-------------------Molecular weight%distribution-------------------------- 

% dy(5)=(2*f*kd*y(1))-(kt*y(5))-(y(5)*eps*((1-x)/(1+eps*x))*(kp*y(5)-

ktrm*y(5)));%for lamda0 

% dy(6)=(2*f*kd*y(1))-(kp*y(2)*((1-x)/(1+eps*x))*y(5))-(kt*y(6)*y(5))-

(y(6)*eps*((1-x)/(1+eps*x))*(kp*y(5))+((ktrm*y(5))-ktrm*y(2)*((1-

x)/(1+eps*x))*(y(6)-y(5)))); 

% % for lamda1 

% % y(5)=dy(5); 

% dy(7)=(2*f*kd*y(1))+(kp*y(2)*((1-x)/(1+eps*x))*(2*y(6)+y(5)))-(kt*y(5)*y(7))-

(y(7)*eps*((1-x)/(1+eps*x))*(kp*y(5)-ktrm*y(5)))-(ktrm*y(2)*((1-

x)/(1+eps*x))*(y(7)-y(5))); % for lamda 2 

% % y(6)=dy(6); 

% %%--------------------- Dead polymer-------------- 

%  

% dy(8)=(kt*(y(5)^2))-y(8)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5))-

ktrm*y(2)*((1-x)/(1+eps*x))*y(5); 

% dy(9)=(kt*y(5)*y(6))+(y(9)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))-

ktrm*y(2)*((1-x)/(1+eps*x))*y(6)*y(4); 

% dy(10)=(kt*y(5)*y(6))+kt*y(6)^2-(y(10)*eps*((1-x)/(1+eps*x))*(kp*y(5)-

ktrm*y(5)))-ktrm*y(2)*((1-x)/(1+eps*x))*y(7); 
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 %-------------------Molecular weight%distribution for live polymer---------------------

----- 

dy(5)=(2*f*kd*y(1))-(kt*y(5)^2)-(y(5)*eps*((1-

x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)));%for lamda0 

dy(6)=(2*f*kd*y(1))-(kp*y(2)*((1-x)/(1+eps*x))*y(5))-(kt*y(6)*y(5))-

(y(6)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5))+ktrm*y(2)*((1-

x)/(1+eps*x))*(y(6)-y(5))); 

% for lamda1 

% y(5)=dy(5); 

dy(7)=(2*f*kd*y(1))-(kp*y(2)*((1-x)/(1+eps*x))*(2*y(6)+y(5)))-(kt*y(5)*y(7))-

(y(7)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))-(ktrm*y(2)*((1-

x)/(1+eps*x))*(y(7)-y(5)/y(4))); % for lamda 2 

% y(6)=dy(6); 

%%--------------------- Dead polymer-------------- 

  

dy(8)=(kt*(y(5)^2))-y(8)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5))-

ktrm*y(2)*((1-x)/(1+eps*x))*y(5); 

dy(9)=(kt*y(5)*y(6))-(y(9)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))-

ktrm*y(2)*((1-x)/(1+eps*x))*y(6)*y(4)*y(4); 

dy(10)=(kt*y(5)*y(6))-kt*y(6)^2-(y(10)*eps*((1-

x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))*ktrm*y(2)*((1-x)/(1+eps*x))*y(7); 

% %dy(11)=(y(10)+y(7))/((y(9)+y(6))+y(3));%((kt*y(5)*y(6))+kt*y(6)^2-

(y(10)*eps*((1-x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))+ktrm*y(2)*((1-

x)/(1+eps*x))*y(7))/((kt*y(5)*y(6))+(y(9)*eps*((1-

x)/(1+eps*x))*(kp*y(5)+ktrm*y(5)))+ktrm*y(2)*((1-x)/(1+eps*x))*y(6)); 

  

    I(count)=y(1); 

    M(count)=y(2); 

    Tj(count)=y(3); 

    Tr(count)=y(4); 

    l0(count)=y(5); 

    l1(count)=y(6); 
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    l2(count)=y(7); 

    u0(count)=y(8); 

    u1(count)=y(9); 

    u2(count)=y(10); 

    wt(count)=(y(10)/y(9)); 

 %end; 

S Function file 

function [sys,y0,str,ts] = mwd1_new_sfunction(t,y,u,flag) 

global f  kd kp ktrm kt  cp tji  x eps fcold fhot tcold dr roe  vr areaj areahx vj fjout 

lambda cj roej uc thotfinal Q FcoldMax 

  
FcoldMax=0.5; 

FhotMax=10e-3; 

% if (manip>=0) && (manip<0.5) 

%     fcold=(1-2*manip)*FcoldMax; 

%     fhot=0; 

% else 

%     fcold=0; 

%     fhot=(2*manip-1)*FhotMax; 

% end 

%fcold=5e-3; 

%fhot=5e-3; 

f=0.5;%factor efficientcy 

kd=1.4e-6; % Initiation rate coeffiient (1/s) 

%  kd=8.6e-5; % per min 

kp=0.83127; % m3/mol min 

% ktrm=3.24e-2;% l/mol min 

ktrm=5.4e-5;% m3/mol min 

 kt=1.414e9;%l/mol min 

cj=4.29;    J/kg-K 

roej= rho1;%kg/m3 

eps=0.364; 
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%--------------------------------------- 

Qinit=50;%140; %70; 

%-------------------------------- 

tji=306.5 ;%303; %290; %K 

dr=del2; %radius, m 

roe= 983;%g/l%801; %kg/m3 

thotfinal=360;   % Manipulating varible 

vr=3.14*(dr^2)* dr/2;%m3 

areaj=2*(3.14*dr^2); 

areahx=areaj*4; 

vj=.00258*areahx/.4026; 

cp=1752; %J/kg-K 

x=1; 

y(:,:) = abs(y(:,:)); 

if t>50000 

    FcoldMax=0.6; 

end 

switch flag 

case 0 %initializing 

     str=[] ; 

     ts = [0 0] ; 

      s = simsizes ; 

      s.NumContStates = 10; 

      s.NumDiscStates = 0 ; 

      s.NumOutputs = 11; 

      s.NumInputs = 1 ; 

      s.DirFeedthrough = 0 ; 

      s.NumSampleTimes = 1 ; 

      

    sys = simsizes(s) ; 

%     y0=[0.142,8.58,290,320,0,0,0,0,0,0]; 

% y0=[1.42,3.58,300,320,0.001,0.0001,0.001,0.001,0.001,0.1]; 
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  y = y0; 

    case 1 %derivatives 

% if t<=1500 

%     manip=0.609; 

% else manip=0.4999; 

% end 

%          u=Q; 

%       if (manip>=0 & manip<0.5) 

%         fcold=(1-2*manip)*FcoldMax; 

%         fhot=0; 

%       else 

%         fcold=0; 

%         fhot=(2*manip-1)*FhotMax; 

%       end 

Q = Qinit + u(1);  

     sys = batch_temp_mwd1_new2 (t,y,Q); 

    case 3 

     

        if y(9)==0, molwt=0; 

        else 

            molwt=y(10)/y(9); 

            
        end 

        sys = [y; molwt]; 

        %dy= batch_temp_mwd_new2 (t,y,thotfinal); 

     case {2 4 9}    % 2:discrete 

                      % 4:calcTimeHit 

                       % 9:termination 

     
       sys =[]; 

    otherwise 

        error (['unhandled flag =',num2str(flag)]) ; 

end 



Appendix  

225 

Simulink file of PID for molecular weight 

 
Simulink file of MPC for molecular weight 

 
 
Simulink file of NNPC for molecular weight 
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ABSTRACT 

Poly (methyl methacrylate) was synthesized by batch emulsion polymerization with 

Methyl Methacrylate as the monomer potassium peroxo-disulfate as the initiator, 

sodium stearate as the  emulsifier and distilled water as a medium. The kinetics of 

free radical polymerization was  studied . The kinetics have been modeled assuming 

homogeneous nucleation and the resulting equation were solved using runge-kutta 

method. Degree of conversion and rate of polymerization were studied.  
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NOMENCLATURE 

 
 f : Initiator efficiency 

P : Concentration of polymer 

 I : Initiator (mol/lit) 

M : Monomer (mol/lit) 

R : Primary Radical 

Kd  : Rate constant for Initiator Decomposition (min-1  ) 

K1 : Rate constant for Initiation (lit/mol min) 

Kp : Rate constant for Propagation (lit/mol min) 

Ktc : Rate constant for Termination by Combination (lit/mol min) 

Ktd : Rate constant for Termination by Disproportionation (lit/mol min) 

KtrTA : Rate constant for transfer to Monomer/Initiator (lit/mol min) 

Kt         : Overall rate coefficient for termination (lit/mol min) 
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Introduction 

 PMMA is a versatile material and has been used in a wide range of fields and 

applications. The German chemist Fittig and Paul discovered in 1877 the 

polymerization process that turns Methyl Methacrylate into poly Methyl 

Methacrylate (Lovell 1997). PMMA is routinely produced by emulsion 

polymerization. 

 
 Water born polymerization such as emulsion polymerization are of great 

importance in industry application as they provide environmental friendly process, 

remove the reaction heat easily during polymerization and assume the feasible 

handling of the final product having a low viscosity. Research in controlled/free 

radical polymerization has been increased significantly during the past two decades 

(Yeonhwa Wi and 2008). 

 
 Emulsion polymerization involves the propagation reaction of free radicals 

with monomer within the monomer–swollen polymer particle dispersed in the 

aqueous phase. These discrete hydrophobic particles are stabilized by surfactant 

sodium stearate. Micelles are formed when the level of surfactant is greater than its 

critical micelles concentration (cmc). Particle nucleations are generated via the 

capture of radicals by micelles. These absorb monomer to achieve a critical chain 

length (.Guoquan Zhu and 2008).  

 
 PMMA is often used as a light or shatter-resistant alternative to glass. It is an 

economical alternative to polycarbonate (PC) when extreme strength is not 

necessary. It is often preferred because of its moderate properties, easy handling and 

processing, and low cost. PMMA is a versatile material and has been used in a wide 

range of fields and applications as a substituent of glass, medical technologies and 

implants and  aesthetic  use as well. This properties and uses of PMMA motivated us 

to work on. 

 
 The main objectives of this paper is synthesis of Poly Methyl Methacrylate 

by batch emulsion polymerization and develop a model to describe the emulsion 

polymerization of Methyl Methacrylate in a batch reactor at steady state and the 
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comparison of model predictions with experimental observations and 

characterization of PMMA polymer by estimation of properties of polymer 

solution.We recently (Arora et all) presented this work in a preliminary form and the 

detailed results are given in this study. 

 
Experimental Setup 

 The schematic diagram of the experimental setup as shown in Figure. I. A 

jacketed batch reactor provided with a high speed mixer is used for emulsion 

polymerization. Proper arrangements are provided for the control of reaction 

temperature and the RPM of the mixer. Proper arrangements are provided for 

administering the initiator under inert atmosphere. Inhibitor is removed by heating 

Methyl Methacrylate at a temperature of 60°C.recipe used is given in Table no.I. 

 
Characterization  

 Viscosity of PMMA solutions varies from 1.07 cP to 1.42 cP with 

concentration of polymer solution. pH of PMMA solutions varies from 5.5 to 6.4 

with concentration of polymer solution.,  

 
 An electrical conductivity meter (EC meter) measures the electrical 

conductivity in a solution. Commonly used in hydroponics, aquaculture and 

freshwater systems to monitor the amount of nutrients, salts or impurities in the 

water. 

 
 The common laboratory conductivity meters employ a potentiometric 

method and four electrodes. Often, the electrodes are cylindrical and arranged 

concentrically. The electrodes are usually made of platinum metal. An alternating 

current is applied to the outer pair of the electrodes. The potential between the inner 

pair is measured. Conductivity could in principle be determined using the distance 

between the electrodes and their surface area using the Ohm's law but generally, for 

accuracy, a calibration is employed using electrolytes of well-known conductivity. 

The results as shown in table no. V. 

 
 Conductivity of PMMA solutions varies from 0.027 to 0.092 with 

concentration of polymer solution from 4.8 gm/lt to 11.6 gm/lt (Jain  2008.). 
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Conductivity of polymer solution is measured by conductivity meter. Conductivity 

meter is firstly calibrated with 0.1 N Agcl solution. 

 
Modeling of Batch Emulsion Polymerization for PMMA 

 The model is developed to describe the emulsion polymerization of Methyl 

Methacrylate in a batch reactor at steady state. Non-isothermal effects are 

considered by coupling the mass and energy balances through the Arrhenius 

dependence of the rate constants (Sangwai, Bhat et al. 2005). Conservation of 

energy accounts for the heat generated by the propagation reaction and heat removal 

through the wall of the reactor and by convective fluid flow. The density of the 

mixture is a function of the conversion, the amount of solvent introduced in the feed 

and the temperature. Heat capacities of the monomer, solvent and polymer are taken 

to be constant, independent of temperature. Monomer and polymer are assumed to 

have the same heat capacity on a unit mass basis (Min and Ray 1978) (Zeaiter, A. 

Romagnoli et al. 2002) (Tefera, Weickert et al. 1997). The set of coupled first order 

differential equations(Chern 2006) is listed in Table II. The Arrhenius expressions of 

the rate constants are listed in Table 3. The calculated results are the conversion, 

initiator and PMMA concentration profiles and rate of polymerization. Model 

predictions for different operating conditions have been compared with experimental 

observations. Reaction kinetics equations for batch emulsion polymerization are 

following in tableII. 

 
Computation 

Rate of change in Initiator I 

][2][ . IfKdtIfdR di ==  (1) 

Rate of change in Monomer M 

2/12/1 ]][[)(][ IMKfKKdtMdR tdpp =−=  (2) 

Rate of change in Polymer P 

2/3

2/12/1

][)(

]][[)(][)(][)(][

IKKfK
IMKKfKIKKfKIKKfKdtpd

trItd

trMtdtdtdtctd

+

++=

 (3) 
 

Initial Condition:- 

At t = 0,         I = Ii,          M = Mi,                 P = 0,  
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 Now, in order to solve the equations 1, 2 and 3 simultaneously we make use 

of the Runge-Kutta methods for the solution of ordinary differential 

equations(Sangwai, Bhat et al. 2005). We carry out the calculations for different 

values of I, M and P corresponding to time and using h=0.001 sec. Kinetics rate 

constant for free radical polymerization of PMMA is calculated at 70.C from 

literatures (Baillagou and Soong 1985) (Tefera 1997). Rate constant for free radical 

polymerization is shown in Table III. 

 
We have the equations 

][2][ . IfKdtRfdR di ==  = f (t, I, M, P) 

2/12/1 ]][[)(][ IMKfKKdtMdR tdpp ==  = g (t, I, M, P) 

2/3

2/12/1

][)(

]][[)(][)(][)(][

IKKfK
IMKKfKIKKfKIKKfKdtpd

trItd

trMtdtdtdtctd

+

++=

 
= p (t, I, M, P) 

 
With the initial conditions:- 

At t = 0,         I = Ii,          M = Mi,                 P = 0,  

 Now, using h =0.001 sec we calculate the values of I, M and P at different 

intervals using Turbo C++ version 3.0 and simulate the data. The corresponding 

results were plotted graphically. 

 
Results & Discussion 

 pH of PMMA Solution is measured by pH meter at 25.C. Conductivity of 

PMMA solution is measured by conductivity meter. pH and conductivity of different 

concentrated PMMA solutions are tabulated in table VI. Dried polymer which is 

made in experiment runs is dissolved in 50 ml of benzene. Efflux time t0 required for 

a specified volume of benzene solvent to flow through a capillary is measured by 

ostwald viscometer. Measured efflux time t0 for benzene at 20.c is 3.81 seconds. 

Viscosity of benzene with respect to water is calculated by viscometer. η0 = 1.005 

cp, viscosity of samples are tabulated in Table no. V. 

 
 Results of batch emulsion polymerization has been done by simulation. 

Degree of conversion X increase with time t  initially and then equilibrates between 
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0.04 and 0.06 as shown in Figure III, a sharp increased has been observed  because 

of Trommsdorff effect , this was due to the localized increase in viscosity of the 

polymerizing system which caused the motion of the radical hindered to approach 

each other for the termination, hence it decrease the termination rate. Figure IV 

shows linear increase at conversion 0.03 and suddenly shoot up at value of 3.5 of 

rate of polymerization Rp in very short time, data’s are given in table IV. This could 

be because of exothermic nature of reaction, and also autoacceleration must be 

caused by the raised viscosity of the polymerization region when the concentration 

of formed polymer molecules was increased and termination decreased from 

concentration 0.035 to0.045. Initiator concentration profile in figure V shows that 

the concentration of initiator decrease with time from concentration 0.185 mol/lit to 

0.168 mol/lit, because the initiator radical combines with monomer particle and 

leads to chain propagation, which finally leads to formation of polymer. The faster 

the initiation rate the narrower should be the particle size distribution. Monomer 

concentration profile in figure VI shows that the concentrations of Methyl 

methacrylate monomer exponentially decrease with time from concentration 5.0 

mol/lit to 0.164 mol/lit. This could be because the monomer is the raw material for 

the polymerization reaction, the concentration of monomer decreases as the reaction 

proceeds forward with time.  

 
 Polymer concentration in figure VII shows that the concentration of 

polymethyl methacrylate increases with time from concentration 0 to 0.000213 

mol/lit. As the reaction proceeds in the forward direction, the product concentration 

increases with respect to time. 

 
 We got the degree of conversion from 0 to 0.04553, pH of the polymer 

solution varies from 5.5 to 6 and conductivity varies from 0.027 to 0.092 (mhos). 

Number average degree of polymerization for disproportion was 334.29 and its 

number average molecular weight was 33429.21 gm/gmol.The kinetic chain length 

obtained was 334.29. Kinetic chain length is inversely proportional to the radical 

concentration. Increasing the radical concentration in radical polymerization leads to 

small sized polymer molecule. 

 

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Viscosity
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Encountered Difficulties in Batch Emulsion Polymerization of PMMA 

The following difficulties are encountered during batch emulsion polymerization of 

PMMA 

1. In batch reactor, the outlet of the reactor is clogged during the 

polymerization process. It could be because of emulsifier particles. 

2. In batch emulsion polymerization process, it is difficult to maintain constant 

temperature during the process. Emulsion polymerization is exothermic 

reaction so temperature of reaction goes higher than the desired temperature. 

For maintaining the constant temperature hot water is circulated through the 

jacket of the batch reactor. 

 
Conclusion 

 PMMA Polymer was successfully prepared by batch emulsion 

polymerization as shown in figure II and characterized. The simulation of the 

process was carried out using Runge-Kutta algorithm on C++ computer language. 

Corresponding graphs were obtained for concentration of initiator, monomer, 

PMMA with respect to time hence the complete analysis of batch polymerization 

process was done.  

 
 Degree of conversion and rate of polymerization is calculated at particular 

time which shows the trommsdorff effect. The graphs were plotted from results and 

discussed. With the successful synthesis of PMMA from emulsion polymerization,it 

is suggested that this technique can be extended for the preparation of other 

polymers as well.      
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Figure I    

 
B = batch reactor; N = N2 gas cylinder; R = gas regulator; C = gas supply controller; 
TW = three way valve; v = initiator vessel; V= vacuum pump; MT = motor; T = 
thermometer; PM = pump; W = water tank; M = monomer; I = Initiator, P = 
Polymer. 
 

Figure II    

  
 
Figure III    
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Figure IV   

 
Figure V   

 
Figure VI   
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Figure VII   

 
 
Table I 

Contents  

Ion-exchanged double distilled water 180 ml 

Methyl Methacrylate 106 ml 

Sodium stearate 2 gm 

Potassium persulfate 1 gm 

N2 gas supply at rate of 3 LPM 

Hydroquinone Present in Monomer 

Temperature of Reaction 70 0C ± 1 0C 

Stirring speed N 700 rpm to 750 rpm 
 

Table II 

Species Mass balance equations for batch emulsion polymerization reactor 
For 
initiator ][2][ . IfKdtIfdR di ==  

For 
monomer 

2/12/1 ]][[)(][ IMKfKKdtMdR tdpp =−=  

For 
polymer 

2/3

2/1

][)(

]][[)(][)(][)(][

IKKfK
IMKKfKIKKfKIKKfKdtpd

trItd

trMtdtdtdtctd

+

++=
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Table III 

Constants Value of constants 
F 0.58 
Kd 0.001834 min-1 
Kp 49876.54 l/mol min 
KtrM 1.40813 l/mol min 
K1 Kp 
Ktd Kt 
Ktc 0.0 
Kt 1.414 * 109 l/mol min 

 

Table IV  

Time 
(min) 

Initiator 
concentration  

(mol / lt) 

Monomer 
concentration  

(mol / lt) 

PMMA 
concentration 

(Mol / lt) 

0 0.185 5.0 0.0 

15 0.182078 2.652442 0.000037 

30 0.179202 1.6993186 0.000074 

45 0.176372 0.965976 0.000110 

60 0.173586 0.360244 0.000146 

75 0.170844 0.267043 0.000181 

90 0.168146 0.163858 0.000213 
 
Table V 

Beaker 
no. 

Weight of 
polymer 

Concentration 
in 50 ml 
benzene 
(gm/lit) 

Efflux time 
t for 

polymer 
solution 

ηrel=η/η0 = t 
/ t0 

 
η in cp 

1 0.24 4.8 4.08 1.07 1.075 

2 0.32 6.4 4.12 1.08 1.085 

3 0.42 8.4 4.51 1.18 1.186 

4 0.48 9.6 5.03 1.32 1.326 

5 0.58 11.6 5.43 1.42 1.427 
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TableVI:  

Beaker 
no. 

Concentration of 
PMMA solution 

gm/lt 
pH Conductivity (mhos) 

1 4.8 5.5 0.027 

2 6.4 5.8 0.051 

3 8.4 6.0 0.055 

4 9.6 6.1 0.075 

5 11.6 6.4 0.092 
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