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Abstract

Clustering is a complex problem of segrigating data points with similar characteristics
into groups within any available complex dataset which may contain various, numerous
data points with various properties. Many algorithms have been developed in the past to
tackle this problem using various techniques. The problem of clustering becomes more
complicated when outliers are introduced in the dataset. Outliers are the data-points
which have the most distinct characteristics compared to the other data-points in the
dataset. Hence these contaminated datasets cannot be clustered using orthodox cluster-
ing algorithms and therefore robust clustering techniques were developed by researchers.
Some of these robust techniques are modified version of conventional algorithms to make
them more adaptive to contamination while others are based on completely new concepts.
Researchers have also applied optimization algorithms to solve clustering problems. The
optimization is the method of picking the most optimal component from an available set
of components with regard to some benchmark. Basically an optimization problem is
maximizing or minimizing a mathematical function by meticulously picking input values
from within an available domain and calculating the value of function. Optimization
can be applied on variety of functions and variety of domains. There exist a variety of
methods to perform optimization. To test the general performance and other character-
istics of these methods, like precision and robustness, researchers have developed some
benchmark mathematical test functions. A bencmark function can be highdimensional
unimodal(one minima/maxima) or multimodal(more than one minima/maxima) mathe-
matical landscape. These test functions are general for all types of optimization methods.
The benefit of these test function is that the result obtained from testing different opti-
mization metods can be compared to each other to find the most competent algorithms.
In the past few decades tackling the problem of clustering using nature-inspired opti-
mization algorithms have become popular by considering it as an optimization problem.
Researchers have developed various nature-inspired algorithms to solve the optimization
problem. A new metaheuristic named as Grey Wolf Optimizer(GWO) was proposed in
the year 2014.This algorithm is inspired by the behavior of grey wolves (Canis lupus)
in their natural habitat. This algorithm was tested on benchmark tested on benchmark
functions and the results obtained were very accurate and had low deviation. However
these results can be made more precise md the deviation can be lowered further. For
this a new varient of the algorithm is proposed and tested on the benchmark functions
to obtain even more robust results and compare them with previous one.

xii



Chapter 1

Introduction

Clustering is unsupervised learning by which a dataset can be categorized into different

smaller sets of similar data-points. Clustering is a complex problem because the target

value is unknown for all the data-points that are to be clustered. Clustering has found

its application in marketing where it can be used to classify and identify customers for

marketing purposes. It has also been used by scientists to categorize different species of

plants and animals. Researchers have also used the concept to learn about earthquake

and flood-affected areas and to classify them into dangerous zones.[4], [5], [6]

Many algorithms have been developed to solve clustering problems, some of them

use the concept separation between the centroids whereas some of them use density to

identify the clusters. The result of clustering depends on the algorithm used and the

dataset on which it is applied. It is not necessary that a technique is best suited for all

the datasets as every dataset has a different orientation of data-points. The performance

of an algorithm also gets affected by the presence of outliers therefore either the algorithm

should be robust to take care of the outliers all by itself or the data should be preprocessed

before applying an algorithm. In this project robust clustering algorithms [7], [8]

In the past few decades, solving clustering problems using nature-inspired optimiza-

tion algorithm, by considering clustering as an optimization problem has also become

popular. The general idea is to formulate a fitness function which can either be the inter-

cluster distance which is maximized or it can be the intra-cluster distance which is to be

minimized. Apart from that, the users can also formulate their own fitness function de-

pending on the problem. In 2014 authors Seyedali Mirjalili, Seyed Mohammad Mirjalili,
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Chapter 1. Introduction

and Andrew Lewis propose a new metaheuristic named as Grey Wolf Optimizer(GWO).

[1] This algorithm is inspired by the behavior of grey wolves (Canis lupus) in their natu-

ral habitat. This algorithm imitates their hunting techniques and the hierarchy of social

status. [9], [10]

In this project, a different method is proposed to improve the performance of GWO

which employs an orthogonal movement mechanism using an orthogonal experimental

design to adjust the movement of every single particle.

1.1 Objectives

The purpose of this project is to study different methods of clustering including conven-

tional and robust clustering techniques to cluster datasets contaminated with outliers.

In addition to that other nature-inspired optimization algorithms were studied including

Grey Wolf Optimization(GWO) which was introduced in 2014 [] and a new variant of

GWO is proposed in order to make it more robust and accurate which is based on or-

thogonal experimental design. Another objective is to test the algorithm on benchmark

test functions for comparative study and to solve clustering problems.

1.2 Thesis Organisation

The thesis is organized in five chapters including this introduction. Chapter-2 gives a

basic idea about clustering algorithms including K-means, Trimmed K-means, BFR, and

CURE algorithm. Density-based clustering techniques are discussed in the same chapter.

Later in chapter-2 optimization algorithms based on orthogonal experimental design along

with orthogonal array generation are discussed. Lastly, in the chapter, GWO is discussed.

In chapter-3 results of robust clustering algorithms(Trimmed K-means, BFR, and density-

based clustering algorithms) are shown when data is corrupted by outliers. In chapter-4

the proposed algorithm is discussed in detail and comparative results of the performance

of the algorithm on benchmark test functions and clustering datasets are included. In

the last chapter the whole project is concluded and the future work that can be done

after this work is explained.
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Chapter 2

Literature review

2.1 K-means clustering algorithm

K-means clustering algorithm is a very popular and strong clustering algorithm. It is very

simple to implement and also converges quickly, no data preprocessing is required and

Euclidean distance is used to determine the similarity between two points. In K-means

clustering algorithm, data is to be clustered into ‘K’ different clusters and each cluster is

represented by the centroid point. K-means algorithm is initialized by selecting ‘k’ points

from the dataset. There are several methods for selecting points from dataset. The most

common method is random initialization where ‘k’ points can be chosen in a completely

random way, another method suggests that initial points should be chosen in such a way

that they are as dispersed as possible which means that they should not be close to each

other.

Once the initialization is done the distance of every single point is calculated from

these points and if ith point from the dataset, is found to be closest to the jth centroid

point then this point is assigned to that centroid. In this way, whole data is scanned

and when scanning is done all the points are going to be assigned to a centroid in such

a way that not a single remains unassigned and all the centroid points have at least one

point under them. The centroids are now replaced with the mean of the points which are

assigned to them. The process is repeated several times and final results are obtained.

It quite evident from above that k-means is very simple to implement and it is also

computationally faster as compared to other algorithms. But if sufficient information
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Chapter 2. Literature review

about data is not available then it is difficult to choose the value of ‘K’ correctly. Apart

from choosing the correct value of the number of centroids, initialization also affects the

results of the algorithm, different initialization may result in different final results. There

is a method to pick ‘k’ correctly if the dataset is large, then some samples from the dataset

are loaded and a smaller value of ‘k’ is chosen initially and the algorithm is applied. The

average distance of all the points from their centroid is calculated and the value of ‘K’

is increased , this process is repeated and ‘K’ vs ‘average distance to centroid’ is plotted

from the plot it can be observed that the average drops quickly until a value of ‘K’ and

then either the rate of drop becomes decreases significantly or it becomes almost zero.

The value of ‘K’ for which rate of drops by a significant amount and no longer drops

on increasing the value of ‘K’ is chosen. This whole scenario is explained in figure-2.1.

Results of K-means algorithm are shown in figure-2.2. K-means clustering algorithm can

easily detect normally distributed clusters but cannot detect complex shaped clusters.

Apart from that, the presence of outliers affects the algorithm and there is no method by

which the algorithm can deal with the outliers, in fact, the presence of outliers deviate

the position of centroids from their original position which results in misclassification of

data points.[4], [11], [12].

2.2 Trimmed K-means clustering algorithm

The modified version of K-means can be used to deal with the presence of outliers and

the problem of misclassification can be prevented. The modified algorithm is known as

Trimmed K-means algorithm where the data is trimmed before the algorithm is applied,

this algorithm is also iterative. The trimming can either be random or it can be selective,

in random trimming 30-percent of data points are randomly loaded in memory whereas in

selective trimming first, ‘K’ points are chosen randomly and then only those data points

are considered which are in close proximity of these ‘K’ points.[13], [14] After trimming is

done, the k-means algorithm is applied and final centroids are obtained and this process is

repeated again and again to a certain number of iterations. In the end, the final centroid

can be obtained by taking an average of centroids obtained at every iteration. Trimmed

K-means algorithm can also be modified by using Mahalanobis Distance Mahalanobis
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2.2. Trimmed K-means clustering algorithm

distance instead of using Euclidean distance.

Most of the time Euclidian distance is used to determine the proximity of a point to

a cluster, however, there are some issues with Euclidian distance. Generally, datasets are

multidimensional and each dimension has different range and different units it is possible

that a dimension has low range but is crucial for clustering point of view, therefore, it

is not going to contribute much to Euclidian distance however it might happen that the

information associated with this dimension is sufficient to partition the whole data-set

into clusters correctly but this information would be lost while using Euclidian distance.

This problem can be taken care of either by normalizing the data or by using some

other distances to calculate the proximity of a point such as Bhattacharyya distance,

Mahalanobis distance or earth movers distance in some cases. Mahalanobis distance is

very popular and is discussed here. Mahalanobis distance calculates the distance between

a point ‘p’ and the mean ‘c’ of a distribution. [8], [15].

In the case of clusters, it can be used to calculate the distance of a point from a cluster.

Mahalanobis distance quantifies the likelihood of a point belonging to a centroid and it

depends critically on the assumption of data-points being normally distributed along the

centroid. Let a cluster has centroidsC1C2. . . .Cd and standard deviation σ1σ2. . . . . . σd. let

a point ‘P’ be represented by coordinates X1X2. . . Xd. then the normalized distance along

ith dimension (Yi) from centroid ‘C’ is given by equation-2.1 and Mahalanobis distance is

given by equation-2.2. The benefit of using Mahalanobis distance over Euclidean distance

is that now the different units and range of dimensions no longer affects the distance.

Even if the range for a particular dimension is small but its standard deviation remains

the same thus this distance can be used without taking care of units and the range of

dimensions and in this all the dimensions are going to contribute by the same magnitude

regardless of their smaller values.[8]

Yi = (Xi − Ci)/σi (2.1)

M.D =

√√√√ d∑
i=1

Y 2
i (2.2)
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Chapter 2. Literature review

Figure 2.1: Figure showing K vs average distance plot by which correct value of K can
be selected

2.3 BFR algorithm

K-means clustering and Trimmed K-means clustering algorithms can produce good results

but they have some drawbacks of their own such as the deviation in the position of centroid

points in the presence of outliers and computational complexity when data-set is very

large. To deal with the problem of outliers and large data-sets a variant of k-means also

known as Bradley Fayyad Reina algorithm(BFR algorithm) can be used. It can

be used when the data-set is so large that it cannot be loaded into the main memory

at one time. This algorithm is optimized for really large datasets. In order to perform

this task, BFR-Algorithm makes a very strong assumption that each cluster is normally

distributed about its centroid in Euclidean space which means that most of the points (68

percent ) lie within one standard deviation of cluster whereas 95 percent of total points

are located within two standard deviations from the centroid point and this assumption is

made for all the dimensions. It is also assumed that all the dimensions are independent of

each other and each dimension can have a different mean and standard deviation. Thus

the likelihood of finding any point at a certain distance from the centroid of a cluster

can be quantified. The normally distributed clusters are shown in the figure 2.3 where

it can be seen that cluster-1 is an ellipse with more spread along x-axis and less spread
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2.3. BFR algorithm

along y-axis which shows that the standard deviation is more for x-dimension and less

for y-axis whereas for cluster-2 the deviation is more along y-axis and comparatively less

along x-axis. For cluster-3 the deviation is almost the same for both the dimension which

is evident from its circular shape.[7], [8]

The whole dataset is divided into smaller chunks or subsets of data-sets which can

be loaded into the memory since complete data-set cannot be loaded into the memory

because of its large size. One such chunk of data is then loaded in the memory at a

time. The size of these chunks should be kept such that they can easily be loaded and

processed in main memory because apart from these data-chunks, the information about

cluster metadata has to be kept and is updated after every data read at the same time.

In the metadata, the information about indices of the points is stored which occupy

very less memory as compared to the whole data-set. For initializing first data-subset is

loaded into primary memory from the disk and ‘k’ points are chosen within this dataset.

These points can either be chosen randomly or by some other different methods such

as chaotic initialization, orthogonal initialization or they can also be chosen from as far

apart from each other as possible to get better results. Once K-points are initialized, the

remaining points are to be categorized into three different categories or sets. These sets

are Discard-set (DS), Compression-set (CS), and Retained-set (RS). Any point which lies

close enough to the chosen centroid point belongs to DS. If the point is not close enough

to the centroid point then it can belong either to CS or to RS. After this, the metadata

in DS is updated and loaded points are discarded and another subset can now be loaded.

If a point is not assigned to DS then it is first loaded into RS then from there it can be

moved either to CS or it can remain to RS. In RS points are classified using any of the

clustering algorithms, either k-means or hierarchical and then the points which are close

to each other but not sufficiently close to any centroid are then transferred to CS whereas

remaining points which are not close to any centroid point and are isolated, are retained

in this set. The decision that whether a point is ‘sufficiently close’ to centroid point or

not is taken with the help of Mahalanobis distance. Generally, 5 standard deviations

can be taken as the threshold but it can vary depending on the problem. The whole

procedure to categorize a point is explained with the help of figure-2.4. The discard
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Chapter 2. Literature review

set(DS) is summarized in such a way that it can hold more information and occupy less

space in terms of memory. The discard set(DS) is maintained for each centroid point in

which the number of points belonging to that cluster(N) is to be maintained and updated.

Another parameter is vector SUM which is nothing but the sum of all these data points

within that cluster and vector SUMSQ which is nothing but the sum of the square of all

elements along ith dimension. These two vectors and the value ‘N’ helps in calculating the

Mahalanobis distance. Once all the data chunks are loaded and whole data is scanned,

the mini clusters in RS are assigned to the closest centroid and the points in RS can be

considered as outliers or noise. [7]

BFR algorithm is a powerful technique to handle massive datasets but it has some

shortcomings which are its inability to detect clusters with complex shapes which means

that the clusters which are not normally distributed around their centroid cannot be

identified correctly and even if the cluster is normally distributed but the axes along

which it is inclined are not true ‘X’ and true ‘Y’ but to some other inclined axes, in

that case, BFR algorithm fails to identify the cluster. These issues arise because of the

assumption that BFR algorithm makes about the normal distribution of cluster around

its centroid and about fixed axes.[8]

2.4 CURE algorithm

To deal with complex shaped clusters and massive datasets another algorithm can be

used. This algorithm is known as CURE algorithm and not only can it handle massive

datasets but it can also detect outliers. CURE is an acronym that stands for Clustering

Using Representatives. In CURE algorithm, Euclidean distance is used and therefore

it is recommended to normalize the data in the dataset before applying this algorithm.

Normalization helps by scaling all the features and therefore all the features contribute

to the distance by the same amount. CURE algorithm does not make any assumption

regarding the shape of the cluster thus it is applicable to all the datasets and the results

of the algorithm are unaffected as far as the shape of the cluster is concerned.[16]

Unlike in the K-means clustering algorithm and the BFR algorithm, the cluster is not

merely represented by its centroid, rather multiple representative points are used to repre-
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sent a cluster in Euclidean space. Similar to BFR algorithm the initialization for CURE

algorithm is quite similar. Instead of loading complete dataset, a fraction of dataset

is loaded into main memory and then the loaded points are clustered. The clustering

algorithm used here can either be K-means, Hierarchical algorithm or density-based clus-

tering algorithm. Once the data points are clustered, another step is the representation of

cluster in Euclidean space and as mentioned before multiple points are used to represent

a cluster. These points are chosen in such a way that they are as separated or dispersed

from one another as possible. The purpose of choosing representative points dispersed is

to cover as much cluster volume as possible. The whole dataset is then rescanned and all

the points are then assigned to the closest cluster. The decision about the closeness of

a point with a particular cluster can be taken either by calculating its average distance

from all the representative point of all the clusters one by one and comparing or by simply

calculating its distance from all the representative points and assigning this point to the

cluster for which this distance is minimum. The whole process is explained with the help

of figures 2.7 and 2.8.[8]

2.5 Density-based clustering algorithms

Density-based algorithms are very popular and are widely used to carry out clustering.

They can be used to easily declutter noise or outliers from the main and useful data which

is also their main advantage. Density-based algorithms have proven their importance in

clustering of complex shaped datasets. In this section, two such algorithms are discussed

which are based on the concept of clustering using density. In these algorithms, high-

density data is classified into different clusters whereas low-density points are considered

as noise or outliers.

2.5.1 DBSCAN

DBSCAN is one such algorithm where DBSCAN is an acronym to Density-Based Spa-

tial Clustering of Application with Noise. Low and high-density data points are

shown in the figure-2.10 where it can be seen that high-density points are part of the
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cluster while low-density points are outliers. These outliers can be easily detected using

this algorithm and can be removed from the data. Two parameters are required to be

defined before proceeding with DBSCAN. These parameters are (ε) and min-points. The

parameter ‘ε’ is nothing but a radial distance, calculated from a point which is the mea-

sure of how close a point should be from another point to be considered as a core point.

Before the completion of DBSCAN, when a cluster is not completely formed, a cluster is

represented by its core points and a core point is a point which is surrounded by other

neighboring points such that the number of neighboring points exceeds min point and all

those neighboring points should be within the proximity of ‘ε’. This process of selecting

a point as the core point is explained in the figure. The parameter ε is user-defined and

has to be chosen carefully, it represents the distance and if a point has a distance less

than this from currently visited point then this point is considered as a neighboring point

and this condition has to be checked in all the possible direction.[17], [18],

The algorithm starts from the with an arbitrary point which is not yet visited and

its distance is calculated from all other points, any point having a distance less than

ε is considered as its neighboring point and in this way, all the neighboring points are

extracted. If the number of neighboring points is higher than ‘min-point’ then this point

is marked as core-point and also marked as visited whereas if the condition is unsatisfied

then this point is marked as noise but, later on, this point can also become part of the

cluster. If a point is a core-point then its neighboring points are also the part of the

cluster and the above-described process is repeated for all the neighboring points and

this process is repeated for all the remaining unvisited points and they will either become

the neighboring points or the core points. After that, all the core points sharing the same

neighborhood are joined and the cluster is formed and the remaining points are marked

as noise.[19], [20]

2.5.2 Peak density-based clustering

Another popular density-based algorithm is the peak density-based clustering algorithm

where regions of high density are calculated and based on that, the decision is made. In

this algorithm, a cluster is characterized with a relatively high density region as compared
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to its neighbors and using this idea which is proposed in this algorithm, outliers can

be easily spotted and removed. As mentioned above, clusters with arbitrary shapes

can be easily identified and categorized using this algorithm. This algorithm makes

an assumption that the cluster centers are at higher density than to their immediate

neighbors and the immediate neighbors of cluster centroids are at relatively higher density

than their neighbors.[21], [22], In this algorithm, for every single point in the dataset,

two parameters, local density of ithpoint (ρi) and distance of ith point from a point which

is closest to it but is at relatively higher density(δi) are calculated. To calculate the local

density can be calculated from equation no. 2.3

ρi =
∑
j

X(dij − dc) (2.3)

Here dc is cutoff distance, any point which is at a higher distance from that from ith

point, contributes zero while a point with a distance less than or equal to the threshold

contributes one to the density. Another parameter δ which is a measure of the mini-

mum possible distance between ith point and a point with relatively higher density. The

mathematical expression to evaluate δi is given by equation-2.4.

δi = min(dij); ρj > ρi (2.4)

It is not possible to assign δ value to a point with the highest density. For a point with

the highest density, maximum distance is used in equation-3 instead of the minimum.

From the values of δ and ρ, a decision graph between ρi vs δi is plotted, and points

with relatively high ρ and δ are chosen as centroid points whereas points with higher

δ but relatively lower ρ can be considered as outliers. This process is illustrated in the

figure. The next step is to assign points to the cluster centroids, the remaining points

are assigned to the same cluster as the closest neighbor of higher density. After this,

the border region of the cluster is found which can be defined as the set of points whose

distance is less than or equal to dc from other points which are assigned to another cluster.

In the border region, a threshold density is found and the density of all the points lying

in the border region is compared with the threshold. Any point with a density less than
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the threshold is dropped and rest of the points are kept.[23], [24]

2.6 Orthogonal experimental design based Optimiza-

tion algorithms

Experimental design refers to how a ‘model’ whose performance is to be tested, performs

when subjected to different conditions. These conditions can either take discrete values or

they can be continuous or some of them can be discrete and some with continuous values.

There can be at least one such condition or there can be many conditions affecting the

performance of the model. For example, pressure affects the performance of wristwatch,

where user can be a diver who dives deep underwater where pressure is high comparative

to another user who is a hill climber where pressure is low. Therefore before launching

a product like that the designer has to make sure that the product is going to perform

equally well under all such circumstances. The process sounds simple for a few conditions

but becomes extremely tedious when the conditions, under which the behavior and the

performance of an object are to be tested, become more. For example, let there be 15

conditions affecting the performance of a model and each variable can take 10 different

values then there will be 1510 possible combinations which are more than five hundred

billion. Thus it is impossible for any designer to test the product at every possible

combination of variables. Therefore it is required to sample these combinations and to

get a small but representative set of combinations in order to test the model.In order

to sample the combinations, the orthogonal design was developed. With the help of

orthogonal design a series of orthogonal arrays are generated which gives the indices or

the information about how to sample the whole combinations in an efficient way. Despite

the fact that only a fraction or a subset of the total combinations is considered but this

subset contains a diverse set of conditions(conditions).[25], [26]

2.6.1 Orthogonal array generation

The cocept of orthogonal design is explained with the help of an example.The production

of a certain vegetable is affected by three factors: 1) Temperature, 2) the amount of
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Table 2.1: Table showing(a)An experimental design problem with three factors and
three levels and (b) Orthogonal combinations generated from this information [2]

(a)

Factors
Levels Temperature Amount of fertilizers ph value
L1 200C 100g/m3 6
L2 250C 150g/m3 7
L3 300C 200g/m3 8

(b)

Combinations Factors
Temperature Amount of fertilizers ph value

1 200C 100g/m2 6
2 200C 150g/m2 7
3 200C 200g/m2 8
4 250C 100g/m2 7
5 250C 150g/m3 8
6 250C 200g/m3 6
7 300C 100g/m3 8
8 300C 150g/m3 6
9 300C 200g/m3 7

fertilizer used and 3) the pH of the soil. In this experiment, there are three ‘factors’ that

are responsible for the yield of vegetable. Let each factor can take three different values,

the temperature can either be 20 or 25 or 30 degrees and three different fertilizers can be

used in the experiment and are marked as ‘A’, ‘B’ and ‘C’. while the pH value of soil can be

6, 7 or 8. It can be seen clearly that there are three features which can take three different

values, producing 27 different combinations but there is a way by which few samples can

be selected from these 27 combinations in such a way that they are evenly scattered over

the search space yielding better representatives for all the possible combinations. These

representatives are mentioned in table 2.1(b) and later in the section, the method to

design these samples is described.[2]

The orthogonal array produces an array of indices of different combinations. Let, for

an experiment, there be ‘N’ factors or conditions or dimensions and each of these factors

can take ‘Q’ values therefore there can a total of QN possible combinations and out of
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these, few scattered combinations are to be selected. Another variable ’M ’ is defined as

M = QJ . Here ’J ’ is another variable that can be calculated from the equation-2.5

N = QJ − 1
Q− 1 (2.5)

. Now it can be observed from equation-3.1 that ‘J ’ depends on ‘N ’ and therefore it

is not necessary that there exist an integral value of ‘J ’ for every ‘N ’ in that case the

condition to find ‘J ’ can be bypassed by inequality-2.6.

N ′ = QJ − 1
Q− 1 (2.6)

The smallest possible value of ‘J ’ should be chosen that satisfies inequality. Once J is

chosen another variable N ′ is defined as given by equation-2.7.

N ≤ QJ − 1
Q− 1 (2.7)

The next step is to calculate the basic columns in the orthogonal array. To calculate the

basic columns, first the value of ‘J ’ is calculated from equation-2.5, if ‘J’ turned out to

be an integer otherwise ‘J’ is calculated from inequality-2.6. Now another variable ‘k’ is

defined and ‘k’ varies from 1 to J. For each ‘k’ ,‘j’ is calculated from equation-2.8 and

basic elements of orthogonal array can be calculated from equation-2.9 where ‘i’ varies

from1 to QJ

j = QK−1 − 1
Q− 1 + 1; (2.8)

ai,j = b i− 1
QJ−k cmod(Q) (2.9)

To construct non-basic column ’k’ is varied from 2 to J and ’j’ is calculated from equation

2.8. For another variables ’s’ varying from ’s’ = 1 to j−1 and ’t’ varying from 1 to Q−1

non-basic elements are calculated from equation-2.10

aj+(s−1)(Q−1)+t = (as × t+ aj)mod(Q) (2.10)

ai,j is Incremented by 1 for all 1 ≤ i ≤ M and 1 ≤ j ≤ N and the last N ′ −N columns
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are eliminated to get final arrray.

The generation of orthogonal combination is explained with the help of an exam-

ple.Consider a vector with factors, N = 3 and levels, Q = 4 and each factor is cosidered

to be varying from [0 5] linearly.The values that this vector’s each feature can take is

shown in the table-2.3. From this table it can be observed that total number of possible

combinations are 43 (64) but using orthogoanal array a variety of different combinations

can be tested. Orthogonal array can be created for N=3 and Q=4 which are shown

in table-2.4. With the help of table-2.3 and using the indices obtained from table-2.4

orthogonal combinations can be calculated as shown in table-2.5. It can be observed that

the number of orthogonal combinations obtained are 16. Thus a wide variety of different

combination can be tested.[27], [28]

2.6.2 Orthogonal genetic algorithm with quantization

In Orthogonal genetic algorithm with quantization, initialization is done with the help

of orthogonal array which helps in exploring the search space in an efficient way. For a

better initialization it is less probable that algorithm will struck at local minima.Consider

an example to minimize a function f(.) depending on five variables,(x1, x2, x3, x4 and

x5) and each variable has a specified range between (a1, a2, a3, a4, a5) and (b1, b2 ,b3,

b4, b5) with ’ai’ as lower and ’bi’ as the upper bound. It can be speculated that for this

function the search space is defined as [ ai, bi ]. The next step is to quantize the search

space. For quantization, a quantization variable ’Q1’ is chosen and from this variable the

search space can be divided into ’Q1’ levels which are linearly spaced. For example if

Q1 is taken as 10 then every ai and bi is divided into 10 linearly spaced values including

both ai and bi. After quantization initialization has to be done and as discussed above.

An orthogonal array is created for ’N ’ and’Q1’ and representative combinations can be

obtained. These combinations can be used as initial population.

The next step is selection. for selection, the fitness of the initialized population

is calculated and the best 80-90 percent population is selected for the crossover. The

crossover is also orthogonal, and a variable ’Q2’ is defined and the features of both

the parents who are participating for crossover, are sorted and arranged in increasing
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Table 2.2: Table showing:(a) Showing different levels of three features, (b) Orthoganal
array for N=3 Q=4 (c) The generation of orthogonal combination with the help of or-
thogonal array

(a)

factor1 factor2 factor3
0 0 0

1.67 1.67 1.67
3.33 3.33 3.33

5 5 5

(b)

1 1 1
2 2 3
2 3 4
2 4 1
2 1 2
3 2 4
3 3 1
3 4 2
3 1 3
4 2 1
4 3 2
4 4 3
4 1 4
1 2 2
1 3 3
1 4 4

(c)

0 0 0
1.67 1.67 3.33
1.67 3.3 5
1.67 5 0
1.67 0 1.67
3.33 1.67 5
3.33 3.33 0
3.33 5 1.67
3.33 0 3.33

5 1.67 0
5 3.33 1.67
5 5 3.33
5 0 5
0 1.67 1.67
0 3.33 3.33
0 5 5

order before proceeding towards crossover. The orthogonal crossover is explained with

an example. Consider P1 = [1.6, 1.6, 3.3] and P2 = [3.3, 0, 1.6] be the pair selected for

crossover, then after sorting them a new space is created with lower bound = [1.6, 0, 1.6]

and upper bound as = [3.3, 1.6, 3.3]. After defining the lower and upper bound, this space

is again divided in Q2 linearly spaced levels as done before and another orthogonal array

is created with N factors and Q2 levels from above mentioned procedure and from that

array create another set offspring. Mutation is the very next step. To perform mutation

with probability Pm on a chromosome, an interger is randomly generated between [1

N ] followed by a real number ranges between lower and upper bound for that factor
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and then the original value of that factor is replaced by the randomly generated number.

Best chromosomes can be selected out of the original parents, offsprings and from mutated

population.[2]

2.6.3 Orthogonal Particle swarm optimization

Particle swarm optimization is an optimization technique which is based on social be-

haviour of bird flocking. Since it is population based search technique, it has an advantage

of exploring the search space with very low probability of getting struck into local minima.

First the standard particle swarm optimization is briefly explained.

For an N -dimensional search space, ’K’ particles each with ’N ’ dimensions are initial-

ized in the search space randomly, followed by the velocity initialization. Velocity is also a

vector with same dimension as of the swarm and it is also initialized randomly. After that

the fitness of each particle is calculated from the fitness function which depends on the

function to be optimized. Fitness evaluation gives the best local and global performance

of every individual particle and the swarm respectively. Now the velocty of each particle

is updated from their own individual local best and global best of the swarm. Velocity

update is followed by the position update. The updation equations 2.11 and 2.12 are the

update equations [3]

Vin(t+1) = WVin(t)+ c1 ·rand() · (Pin(t)−Xin(t))+ c2 ·rand() · (Pgn(t)−Xin(t)) (2.11)

Xin = Xin(t) + Vin(t+ 1) (2.12)

where i=1,2..K and denotes particles index, n=1,2..N denotes the nth dimension of ith

particle and t denotes the no. of iteraton.

In OPSO the movement of a particle is controlled by IMM(intelligent move mecha-

nism) which works in a different way as compared to the orthodox movement mechanism

as explained above. IMM controls the flow of particle with the help of orthogonal ex-

perimental design(OED) and factor analysis. Orthogonal experimental design works on

Orthogonal Array. First an orthogonal array is created as was explained before in OGA
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algorithm for N factors and Q levels. Once the array is created the population can be

initialized with the help of OA and the fitness of the population is evaluated. After eval-

uating the fitness of the population factor analysis is applied on it. The purpose of factor

analysis is to discover the best combination of the levels. In factor analysis main effect

is evaluvated on the population for all the individual. Mathematically main effect Sjk is

given by the equation as,

Sjk =
∑M
z=1 Fz.fz∑M
z=1 Fz

(2.13)

where z = 1...M , fz denotes the fitness function over a zth combination, M is the total

no. of combination, k=1...Q and Fz = 1 if the level of the factor j of combination is k

otherwise Fz = 0. The whole procedure is explained with the help of an example. let

there be three factors (A,B,C) and each factor has three levels as shown in the table 2.3.

Now orthogonal array is created for this setup with N = 3 and Q = 3.the ortho gonal

array is shown in table 2.4

After creating orthogonal array, the next step is to initialize the population, and

calculating the fitness of each individual.which is done with the help of array and applying

the main effect is shown in table 2.5. Since the experiment is not real therefore the

fitness results are assumed and written based on assumption only. Thus, the effect of

every level on every single factor is calculated and considering the above experiment as

a maximization problem, the best best combination can be selected from analysing the

best or greatest value(in this case) for Snq. It is clear from table-2.5 that the best results

are the combination of factor A with 3rd level, factor B with 2nd level and factor C with

2nd level. It is also to be noticed that this combination was not present in the previous

nine combinations.

The OPSO is a modified version of standard version of PSO, modified with the help

Table 2.3: Table showing factors and levels for an arbitrary experiment

Levels A B C
1 A1 B1 C1
2 A2 B2 C2
3 A3 B3 C3
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of OED and factor analysis. In OPSO, two temporary moves are generated H and R.

H represents the cognitive learning part while H represents the social learning. H is

calculated from individual best position and present position while R is calculated from

global best position and present position of particle as shown in equation (8) and (9).

Depending on the problem the N dimensional H and R can be further divided into D

dimensional non overlapping vectors such that D ¡ N .The efficiency of IMM and the

performance of algorithm depends on the value of D. Larger the value of D the more

efficient the algorithm will be.

Step1: cognitive learning component H and social learning component R are created

from given equation (2.14) and (2.15).

H = Xin +WVin(t) + c1 · rand() · (Pin(t)−Xin(t)). (2.14)

R = Xin +WVin(t) + c1 · rand() · (Pgn(t)−Xin(t)). (2.15)

Step 2: H and R are divided into D dimensional space and every dimension is treated

as a factor.

Step3: OA is created for factors N = D and levels Q =2.

Step4: from OA find the M different combinatins where M is number of rows in OA.

Step5: the fitness of every single combination is evaluated with the help of fitness

function or objective function.

Step6: Main effect Sjk is calculated for j = 1...D and k=1,2.

Step6: the best factor is picked up.

Step7:the next move of particle is based on this factor.

Step8: it is to be varified that the new position Xi(t+ 1) is better then the previous

position Xi(t). If the condition is not satisfied then Xi(t + 1) is replaced by the best

among Xi(t).
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2.7 Grey wolf optimization

Grey wolf optimization which is a metaheuristic optimization technique inspired by the

behavior of grey wolf scientifically known as canis lupus. The behaviour of grey wolf dur-

ing hunting has been mathematically modelled.GWO follows the leadership and hunting

operation of the grey wolf in the wild [2]. Grey wolf can be categorized into four different

categories in a pack, the alpha wolf, the beta wolves, the delta wolves, and the omega

wolves. Grey wolves are apex predators that is, they are at the top of the food chain.

Like any other wolf, they also like to live in a pack and prefer to hunt together in a pack

with mutual efforts. It has also been observed that the size of the pack is usually 5 to

12 on average. The leader of the pack can be male or female and known as alpha. The

alpha being the leader of the pack is responsible for making all the important decisions

about sleeping time, the time to wake up and time to hunt. Alpha wolf dominates the

pack because he is the strongest among them all however it is also been observed that

apart from giving orders alpha also follows orders from other comparatively less strong

and inferior but experienced wolves. It is only the alpha wolf in the pack who is allowed

to mate in the pack. It is also very interesting to note that it may not be necessary that

alpha wolf is the strongest wolf although alpha is among the strongest wolves but he/she

is also supposed to be the smartest wolf among all, therefore, alpha has to be best in

decision making, keeping the pack in discipline because a well-organized pack is stronger

than an unorganized one. Another level of hierarchy is of beta wolves they are gener-

ally more than one. They can be considered as second-in-command of the pack Their

duty is to help alpha wolf in decision making and organizing the pack. They are the

best candidates to become or replace alpha wolf in case alpha becomes very old or gets

wounded or dies. They are responsible for implementing the decision taken by alpha wolf

in the pack. The third category according to the hierarchy is delta wolves. They perform

multiple task and they hold the third most important position in the pack. Some of them

guard the boundaries of the dominated land of the pack and inform their superior wolves

about any such threat to their territory while some of them take part in the hunt along

with the other beta wolves and alpha wolf. Some of the delta wolves also take care of

wounded wolves. The last of the wolves among the pack are omega wolves. They are the
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least important candidates among the pack but it has been seen that pack faces some

internal problems when it comes to loosing their omega wolves. They play the role of

space goat. Since they are in lowest in hierarchy, they have to submit to all other wolves

i.e. the alpha, beta wolves and delta wolves. Their share is lowest in the prey and at the

time of hunt they simply follow all other wolves. It has also seen that the do babysitting

for the pack by taking care of the young ones of the wolves. The hunting done by the

pack is also interesting. The hunting is proceeded in three main steps which includes

tracking the prey and then chasing and informing other members of the pack and then

quietly approaching the prey. The next step is to pursuing, encircling and harassing the

prey until it stops moving. Final step involves attacking the already freezed prey. For an

optimization problem the whole scenario is mathematically modelled [/cite grey wolf op-

timization]. The search space can be considered as the territory of the grey wolf and they

cannot hunt beyond their territory meaning,[? ] solution has to be found inside the pre-

specified search space. Since the orthogonal grey wolf optimization is a population based

meta heuristic optimization algorithm therefore multiple points have to be initialized in

the search space which can be considered as grey wolf pack.Apart from population based

meta heuristic, grey wolf optimization also follows the concept of swarm intelligence (SI)

and so is the orthogonal grey wolf optimization, which preserves the information about

the solutions over every iteration. The best solution obtained so far is preserved with the

help of memory, which help these algorithms to obtain a better result.The next step is to

set the hierarchy as discussed above since there are four main categories of grey wolves,

therefore the whole initialized set is to be categorized as the alpha-solution which is the

best solution among all, the beta-solution which the second best among the initialized

set and the delta-solution which is the third best solution in the search space from the

set, rest of the solutions are considered as omega-solutions.This is done by calculating

the fitness of every point from objective function which is to be optimized.As discussed

above the hunting is carried out in three different steps these steps are mathematically

modelled. The encircling prey is given by the equation-2.16 and equation-2.17 [1], [29]

[30]
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~D = |~C. ~Xp(t)− ~X(t)| (2.16)

~X(t+ 1) = ~Xp(t)− ~A. ~D (2.17)

Where ’t’ is the current iteration, ~A and ~C are coefficient vectors, Xp is the position

vector of the prey and ~X represents the position of grey wolf. Coefficient vector A and

C are updated according to equation-2.18 and equation-2.19

~A = 2~a.~r − ~a (2.18)

~C = 2 ~r2 (2.19)

Where the components of ~a are to be decreased linearly from 2 to 0 over the course of

iterations and r1 and r2 are random numbers between 0 and 1.It has been observed that

generally in the hunting, the hunting is guided by alpha-wolf and the beta and delta-

wolves take part in the hunting by following the lead of alpha the rest of the pack i.e.

the omega-wolves follows either the alpha or the beta or the delta-wolves.The position

of the prey can be understood as the location of optimal solution but it is not known,

not before initializing neither any thing can be said about it after the initialization. It

is assumed that the alpha, beta and the delta wolves have the best knowledge about the

position of the prey therefore the first three best position are saved and the new variables

Dα, Dβ, Dδ are calculated from equation-2.20, equation-2.21, and equation-2.22.

~Dα = | ~C1. ~Xα − ~X| (2.20)

~Dβ = | ~C2. ~Xβ − ~X| (2.21)

~Dδ = | ~C3. ~Xδ − ~X| (2.22)
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~X1 = ~Xα − ~A1.( ~Dα) (2.23)

~X2 = ~Xβ − ~A2.( ~Dβ) (2.24)

~X3 = ~Xδ − ~A3.( ~Dδ) (2.25)

~X1, ~X2 and ~X3 represents the movement towards the global best, second best and third

best solution in the search space respectively and these values has to be clculated for

every member in the pack where as ~Xα, ~Xβ and ~Xδ are the respective positions of global

best, second best and third best solution in the search space. The final position of each

member is then updated from equation-2.26 in grey wolf optimization.

~X(t+ 1) =
~X1 + ~X2 + ~X3

3 (2.26)
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Chapter 2. Literature review

(a)

(b)

Figure 2.2: Example of K-means clustering: (a) Original unclustered dataset (b) Well
clustered dataset.
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2.7. Grey wolf optimization

Figure 2.3: Figure showing normally distributed clusters, appropriate for BFR algorithm

Table 2.4: Table showing orthoganal array for N=3 Q=3

1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2
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Figure 2.4: Figure showing the procedure to assign an incoming point to different sets in
BFR algorithm

Figure 2.5: Shapes of clusters that cannot be identified using K-means and BFR algorithm
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2.7. Grey wolf optimization

Figure 2.6: Figure showing the representation of a cluster by multiple represebtative
points.

Table 2.5: deciding the best combination level of given experiment using OED method
[3]

Combinations A B C fitness
C1 A1 B1 C1 31
C2 A1 B2 C2 54
C3 A1 B3 C3 38
C4 A2 B1 C2 53
C5 A2 B2 C3 49
C6 A2 B3 C1 42
C7 A3 B1 C3 57
C8 A3 B2 C1 62
C9 A3 B3 C2 64
Levels Factor Analysis
L1 (F1+F2+F3)/3 = 41 (F1+F4+F7)/3 = 47 (F1+F6+F8)/3 = 45
L1 (F4+F5+F6)/3 = 48 (F2+F5+F8)/3 = 55 (F2+F4+F9)/3 = 57
L1 (F7+F8+F9)/3 = 61 (F3+F6+F9)/3 = 48 (F3+F5+F7)/3 = 48
OED Results A3 B2 C2
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Chapter 2. Literature review

(a)

(b)

Figure 2.7: Figure showing (a) initialization and (b) clustering of initially loaded data-
points in CURE algorithm
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2.7. Grey wolf optimization

(a)

(b)

Figure 2.8: Figure showing (a) representation of mini cluster and (b) assigning incoming
points to cluster in CURE algorithm
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Chapter 2. Literature review

Figure 2.9: Complex shapes that can be clustered using density-based clustering algo-
rithms

Figure 2.10: figure showing high density core points and outlier points at low density
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2.7. Grey wolf optimization

Figure 2.11: figure showing decision graph and poits with high δ values but low ρ value
are rejected as outliers and points with high ρ and δ are selected as centroids
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Chapter 2. Literature review

(a)

(b)

Figure 2.12: figure showing (a) unclustered dataset and (b) decision graph for the dataset
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Chapter 3

Robust clustering

Clustering is[31] a method to club a set of similar elements such that similar elements

lie in the same group which is also known as a cluster. Elements in the same group

or cluster are more identical to each other than the elements in different clusters. The

criteria to classify elements is to find out the similarity between them which can be found

by analysing their features. Clustering is unsupervised learning that is why it is different

from classification. A clustering algorithm should be robust in order to deal with practical

datasets.Generally the outcome of an algorithm is affected by the presence of outliers. In

this chapter, robust clustering algorithms are used for outliers removal.

3.1 Implementation of Trimmed K-means algorithm

K-means algorithm works on clusters which are normally distributed but the presence of

outliers affects the outcome of the algorithm significantly. The deviation of the centroid

points from their original position is shown in figure 3.1 where outliers were added in

fisheriris-dataset and the results of K-means algorithm are shown for both the cases. The

purpose of Trimmed K-means algorithm is to predict the position of centroids correctly.

It is evident from figure 3.2 that centroids are identified with high accuracy.
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Chapter 3. Robust clustering

(a) (b)

Figure 3.1: Effect of outliers on the performance of K-means clustering: (a)Result on Iris
dataset without outliers (b) Result on Iris dataset after adding outliers

Figure 3.2: figure showing deviation of centroids from original position when outliers are
present and correct centroid estimation by trimmed K-means algorithm

3.2 Outliers removal using BFR algorithm

Unlike Trimmed K-means, BFR algorithm can be used to detect as well as remove outliers.

The data points in Retained set can be considered as outliers. The results of BFR

algorithm are shown in figure-3.3(c). The dataset used is artificial with four normally

distributed clusters where cluster-1 has more deviation along x-axis than y, cluster-2 has

more deviation along y-axis, cluster-3 and cluster-4 have same deviation along both x and

y axes, as shown in figure3.3(a). It can be observed from figure3.3(b) that the outliers

which were present along the axes of clusters for which deviation was less are removed
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3.3. Outlier removal using density based clustering algorithms

easily whereas the outliers which were present along the boundary for which the deviation

was more, cannot be removed completely.

3.3 Outlier removal using density based clustering

algorithms

Density-based algorithms treat low density data points as noise or outliers. Using density

based clustering algorithms data points which are located away from the cluster , having

camparatively low density as campared to those points which are present inside the

cluster cloud can be detected as well as removed. DBSCAN algorithm is used to remove

the outliers present in the dataset shown in figure 3.4(a) and 3.4(b). Another density

based algorithm known as peak density based clustering algorithm is used to detect the

outliers from another artificial spiral dataset, shown in figure3.6(a) The results of the

algorithm are shown in figure 3.5 and 3.6(c) respectively.

3.4 Important discussions

The effect of outliers can be observed from the figure 3.1 on the performance of K-

means algorithm. K-means algorithm is not able to detect correct ccentroids and a large

deviation can be observed in the position of centroids. This issues can be resolved by

using Trimmed K-means algorithm as shown in figure 3.2 where it can be observed that

algorithm easily detected original position with almost 99% accuracy in Iris dataset. BFR

algorithm was origially made to deal with massive datasets but here it is shown that the

algorithm can also be used to detect and remove outliers. In given artificial dataset shown

in figure 3.3 outliers are detected and removed with almost 90% accuracy. The density

based algorithms also give more than 90% accuracy in detecting and removing outliers.
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Chapter 3. Robust clustering

(a)

(b)

(c)

Figure 3.3: Figure showing: (a) original artificial dataset without outliers (b) dataset
with outliers (c) result of BFR algorithm
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3.4. Important discussions

(a)

(b)

Figure 3.4: figure showing two differnt non clustered datasets
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Chapter 3. Robust clustering

(a)

(b)

Figure 3.5: figure showing results of dbscan algorithm
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3.4. Important discussions

(a)

(b)

(c)

Figure 3.6: figure showing (a) unclustered dataset and (b) decision graph for the dataset
(c)the result of peak density based clustering
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Chapter 4

Orthogonal Grey Wolf Optimization

4.1 Proposed OGWO algorithm

Grey wolf optimization(GWO) is one of the many nature-inspired algorithms that is

popular for solving labyrinthine optimization problems. The algorithm uses properties

of hunting mechanism and leadership hierarchy of grey wolves. In this chapter a new

variant of GWO called the Orthogonal Grey Wolf Optimization(OGWO) in which unlike

the previous approach where the position of points are not merely updated by averaging

the movement towards three global leaders but is used in combination with the proposed

orthogonal methodology to compare and find the best and more robust results. the objec-

tive is to obtain the best possible combination of positions from the three global leaders.

The simulation analysis on standard benchmark function reveals that the results obtained

from the proposed algorithm are more optimal and have lesser standard deviation than

the previous approach. In addition to this, the proposed algorithm is also successfully

used on cluster analysis and very competent results are obtained when compared to other

nature-inspired algorithms like Particle Swarm Optimization(PSO), GWO, Orthogonal

PSO(OPSO), Orthogonal Genetic Algorithm with Quantization(OGA)

The final position of each member is updated from equation-2.26 in grey wolf opti-

mization where as in the proposed algorithm it is updated with the help of equation-4.1.

where ⊕ is orthogonal combination operator. Orthogonal combination can be calculated

with the help of orthogonal array. Orthogonal array provides some specific but different
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Chapter 4. Orthogonal Grey Wolf Optimization

combinations of the features of ~X1, ~X2 and ~X3

~X(t+ 1) = best



~X1 ⊕ ~X2 ⊕ ~X3

~X1+ ~X2+ ~X3
3



(4.1)

The benefit of orthogonal combination over averaging can be explained with the help of

an example.Suppose that the spherical function is to be optimized and it is considered

to be three dimensional for the sake of convenience and let the three-vector movement

towards first, second and third global best that is ~X1, ~X2 and ~X3 be [0 1 2], [1 0 3]

and [1 1 2] respectively. Their individual fitness is 5, 10 and 6. when averaged the new

position obtained as [[0.67 0.67 2.33] with fitness 6.19. The orthogonal array for this

case(N = 3,Q = 3) is obtained as shown in table-1 where it can be seen that one of the

nine combinations is [1 2 2] from which the orthogonal combination of vector would be

[0 0 1] with fitness 1 and since it is a minimization problem, the result obtained from

orthogonal combination is better than the previous one. Thus it is observed that the

use of the orthogonal combination gives better results by ensuring the contribution from

all the three vectors but still it is not always necessary because although orthogonal

array does contain a diverse combinations but not all the possible combinations therefore

it is also suggested that average value should also be saved and its fitness should be

compared with all the orthogonal combinations before updating the final position of the

points. Updating the position orthogonally make the algorithm converge faster. It is

Table 4.1: Table showing orthoganal array for N=3 Q=3 [? ]

1 1 1
1 2 2
1 3 3
2 1 2
2 2 3
2 3 1
3 1 3
3 2 1
3 3 2
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4.2. Simulation on benchmark mathematical test function

Algorithm 1 Orthogonal Grey Wolf Optimization
Step1. Specify the search space by setting the lower and upper bound.
Step2. Initialize the population in the search space the number of points can vary
depending on the problem.
Step3. Initialize alpha, beta and delta positions by calculating the fitness of all the
initialized points, the best position is allocated to alpha, second best to the beta and the
third best to the delta.
Step4. Generate the orthogonal array for Q=3 and N with the help of Algorithm-1,
where Q is the quantization levels and N represents the number of dimensions. Eliminate
any row which has all same values.
Step5. Define an array ‘z’ which can take values from z1 to maximum iteration alterna-
tively after every ‘l’ where ‘l’ is more than 2.
Step6. Algorithm proceedes iteratively form 1 to maximum iteration and variable ‘i’
will keep track of present iteration. If ‘i’ is equal to a value in ‘z’ then updating is done
by equation-12. In case ‘i’ is not equal to values in ‘t’ update the position of points by
equation 11.
Step7. Update the alpha, beta and delta in case the present position of the point is
better then previous position of alpha, beta and delta otherwise retain their previous
position.
Step8. Repeat until the count of ‘i’ reaches to maximum iteration.

also suggested that out of the total number of iterations the orthogonal updating is done

either alternatively or after every ‘z’ iteration. Apart from this it is also necessary to

make sure that the new position has a combination from all the movement vectors i.e.
~X1, ~X2and ~X3 therefore from orthogonal array eliminate any such row which has all the

entries same.The complete algorithm is explained in algorithm-2.

4.2 Simulation on benchmark mathematical test func-

tion

In this section the proposed algorithm is applied on 20 benchmark functions, first seven

(f1-f7) are unimodal benchmark functions, next six(f8-f13) are variable dimensional mul-

timodal benchmark functions remaining functions(f14-f20) are fixed dimensional multi-

modal benchmark functions. These functins are shown in in table-2 where along with the

function expression the dimension, range and absolute minima of all the functions are

mentioned. The algorithm was rum on every single function and the results were com-

pared with its original form, Grey Wolf Optimization(GWO) along with Particle Swarm

Optimization(PSO). The results obtained are shown in table-3 and it is observed that
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Chapter 4. Orthogonal Grey Wolf Optimization

the results obtained were much closer to the optimal solution compared to GWO. Also

the results are more robust as it can be seen that the standard deviation is much lower

compared to obtained from GWO. Comparatively lower standard deviation in results

shows that the orthogonal algorithm is more robust.

4.3 Simulation on benchmark clustering dataset

Proposed algorithm was applied on differnt datasets to perform clustering in order to

study it’s performance. Thirteen datasets were used including real life datasets, gaussian

datasets with different standard deviation and highdimensional datasets. Before applying

the algorithm on highdimensional datasets their dimensions were reduced using canonical

correlation analysis.The detailed information about the datasets is mentioned in the table-

4. The fitness function used to solve clustering as an optimization problem is shown in

equation-16. The results of the Proposed algorithm is compared with other optimization

algorithms like PSO, OPSO, OGA and GWO. The results obtained are mentioned in

table-5.

f = minimize
N∑
i=1

k∑
m=1

δ[(ri,Q, cm,Q)]2 (4.2)

where, δ(ri,Q, cm,Q) is eucledian distance between cluster centroid cm,Q and ri,Q are the

elements of mth cluster. It can be observed that percentage error is low for real time

dataset which is concluded from lesser number of overlapping points. Algorithm was also

tested on gaussian datasets with decreasing variance,G-8-70 to G-8-40 are those gaussian

datasets. G-8-70 dataset has highest variance with a standard deviation of 70 where

as dataset G-8-40 has comparatively low variance with a standard deviation of 40, for

datasets with higher variance the error percentage is higher due to more overlapping

points than the datasets with lesser standard deviation and less overlapping points.
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4.3. Simulation on benchmark clustering dataset
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Chapter 4. Orthogonal Grey Wolf Optimization

(a)

(b)

(c)

Figure 4.1: Figure showing benchmark functions used (a) Unimodal (b) Multimodal and
(c) Fixed dimensional multimodal benchmark functions[1]
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4.3. Simulation on benchmark clustering dataset

(a) (b)

Figure 4.2: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F1 and (b) F2 unimodal benchmark functions with 30 di-
mensions, 50 population size and 50 iterations for both the algorithms

(a) (b)

Figure 4.3: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F3 and (b) F4 unimodal benchmark functions with 30 di-
mensions, 50 population size and 50 iterations for both the algorithms

(a) (b)

Figure 4.4: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F5 and (b) F6 unimodal benchmark functions with 30 di-
mensions, 50 population size and 50 iterations for both the algorithms
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(a) (b)

Figure 4.5: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F8 and (b) F9 multimodal 30-dimensional benchmark func-
tions with 30 dimensions, 50 population size and 50 iterations for both the algorithms

(a) (b)

Figure 4.6: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F10 and (b) F11 multimodal 30-dimensional benchmark
functions with 30 dimensions, 50 population size and 50 iterations for both the algorithms

(a) (b)

Figure 4.7: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F12 and (b) F13 multimodal 30-dimensional benchmark
functions with 30 dimensions, 50 population size and 50 iterations for both the algorithms
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4.3. Simulation on benchmark clustering dataset

(a) (b)

Figure 4.8: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F14 and (b) F15 fixed dimensional multimodal benchmark
functions, with 50 population size and 50 iterations for both the algorithms

(a) (b)

Figure 4.9: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F16 and (b) F17 fixed dimensional multimodal benchmark
functions, with 50 population size and 50 iterations for both the algorithms

(a) (b)

Figure 4.10: Figure showing the convergence comparison between the proposed algorithm
and GWO algorithm on: (a)F18 and (b) F19 fixed dimensional multimodal benchmark
functions, with 50 population size and 50 iterations for both the algorithms
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(a) (b)

Figure 4.11: Figure (a) showing clustering results on diabetes dataset using OGWO and
(b) showing convergence comparison of OGWO with OGA, PSO, OPSO, and GWO

(a) (b)

Figure 4.12: Figure (a) showing clustering results on gaussian G260 dataset using OGWO
and (b) showing convergence comparison of OGWO with OGA, PSO, OPSO, and GWO

(a) (b)

Figure 4.13: Figure (a) showing clustering results on highdimensional highdim-1 dataset
using OGWO and (b) showing convergence comparison of OGWO with OGA, PSO,
OPSO, and GWO
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4.3. Simulation on benchmark clustering dataset

Table 4.3: table showing details of datasets used

Dataset Name samples dimensions number of clusters
Iris 150 4 3
Wines 178 13 3
Breast cancer 569 31 2
Diabetes 768 8 2
A1 3000 2 20
A2 5250 2 35
G1 2048 5 2
G-8-70 2048 8 2
G-8-60 2048 8 2
G-8-50 2048 8 2
G-8-40 2048 8 2
Highdimensional 1024 32 16
Highdimensiona2 1024 64 16

Table 4.4: Table showing percentage misclassification on different dataset when sub-
jected to differnt clustering algorithms including the proposed algorithm

Dataset Name pso opso oga gwo ogwo
Iris 3.3 2 0.67 2 1.33
Wine 6.89 4.68 3.68 4.87 4.87
Breast Cancer 4.23 4.23 1.52 3.97 3.8
Diabetes 5.20 2.69 2.43 2.56 2.56
A-1 13 10.433 10.63 11.67 11.16
A-2 10.05 8.74 8.57 9.75 9.54
G-1 1.36 0.58 0.24 0.34 0.34
G-8-70 4.93 3.369 1.41 1.9 2
G-8-60 1.025 0.6839 0.396 0.43 0.43
G-8-50 0.34 0.23 0.24 0.24 0.24
G-8-40 0 0 0 0 0
Highdimensional 41.01 19.53 12.6 13.8 12.89
Highdimensiona2 31.25 28.32 11.68 14.7 12.9
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Chapter 5

Conclusion and future aspects

In this project, ordinary and robust clustering techniques are studied and the robust

clustering algorithms are used to classify data points in a dataset correctly in the pres-

ence of outliers. In addition to that, a new variant of the Grey Wolf Optimization

algorithm(GWO) is proposed which is based on the orthogonal movement of points. The

proposed algorithm is used to solve the clustering as an optimization problem by applying

the algorithm on thirteen datasets it is also tested on benchmark functions to compare its

performance with other algorithms. Four out of thirteen datasets are real-life datasets,

seven datasets are gaussian-datasets whereas rest two are high-dimensional datasets. The

results obtained from the proposed algorithm are better than its original version in most

of the cases, and in some cases, performance is found to be the same. Also, the results

obtained are more robust in all the cases because of a very low standard deviation. The

computational complexity of the proposed algorithm is more than its previous version.

No work has been done on the initialization of the proposed algorithm, the algorithm

follows the random initialization which can be replaced with orthogonal initialization

which will make the results of the algorithm more robust. Efforts can be made to reduce

the computational complexity of the algorithm as well.
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