
A

DISSERTATION REPORT

on

DYNAMIC THRESHOLD PREDICTION TO MITIGATE VOLTAGE

DROOP IN x86 AVX ISA PROCESSORS

by

Shri Bhushan Singh

2017PEV5146

Submitted in partial fulfilment for the award of degree of

MASTER OF TECHNOLOGY

in VLSI Design

Internal Supervisor External Supervisor

Dr. C. Periasamy Rohit Jindal

Asst. Professor Engineering Manager

Dept. of ECE Intel India Pvt. Ltd.

MNIT Jaipur Bengaluru

Department of Electronics and Communication

Engineering

Malaviya National Institute of Technology, Jaipur, 2019

 CERTIFICATE

Department of Electronics and Communication Engineering

Malaviya National Institute of Technology, Jaipur

This is to certify that thesis entitled “Dynamic Threshold Prediction to Mitigate

Voltage Droop in x86 AVX ISA Processors” which is submitted by Shri Bhushan

Singh (2017PEV5146) in partial fulfilment of requirement for the degree of Master of

Technology in VLSI Design submitted to Malaviya National Institute of Technology

Jaipur is a record of students own work carried out under my supervision. The matter

in this report has not been submitted to any other university or institution for the award

of any degree.

Date

Place

Dr. C. Periasamy

(Project Supervisor)

Assistant Professor

Dept. of Electronics and

Communication Engineering

MNIT Jaipur 302017

 Declaration

I, Shri Bhushan Singh, hereby declare that this thesis submission titled as Dynamic

Threshold Prediction to Mitigate Voltage Droop in x86 AVX ISA Processors, is my

own work and that, to the best of my knowledge and belief.

It contains no material previously published or written by another person, nor material

which to be substantial extent has been accepted for the award of any other degree by

university or other institute of higher learning.

Wherever I used data (Theories, results) from other sources, credit has been made to

that sources by citing them (to the best of my knowledge).Due care has been taken in

writing the thesis, errors and omissions are regretted.

Shri Bhushan Singh

ID: 2017PEV5146

 Acknowledgement

I would like to thank all peoples who have helped me in this project, directly or

indirectly. I am especially grateful to my supervisor Dr. C. Periasamy (Assistant

Professor, Dept. of ECE, MNIT Jaipur) for his invaluable guidance during my project

work, encouragement to explore parallel paths and freedom to pursue my ideas. My

association with him has been a great learning experience. He made it possible for me

to discuss with a number of people and work in different areas.

I express my sincere gratitude to Mr. Rohit Jindal (Engineering Manager, Intel) and

Kartheek Domakuntla (Core Verification Lead, Intel) for the support and guidance in

this research work.

I express my sincere gratitude to Professor D. Boolchandani (Head of Department)for

his support and guidance. Many thanks to the committee members for their valuable

comments and guidance in this research work.

I would also like to thank Ministry of HRD, Government of India for its support to me

to pursue my Masters in VLSI Design from Malaviya National of Technology, Jaipur.

 -Shri Bhushan Singh

i

List of Abbreviations

AVX- Advanced vector extension

ISA- Instruction set architecture

SIMD- Single Instruction Multiple Data

FMA- Fused Multiply Addition

OOO – Out of Order Unit

EXE- Execution Unit

MEU- Memory Execution Unit

CPU- Central Processing Unit

Ld- Load

St- Store

Vec_Uop's – Vector Micro Operations

Non_Vec_Uop's – Non-Vector Micro Operations

Uop- Micro-Operation

FE- Front End

MSID- Micro Sequence Instruction Decoder

IFU - Instruction Fetch Unit

IQ- Instruction Queue

FPU- Floating Point Unit

FIFO- First In First Out

IPC - Instructions Per Cycle

RISC- Reduced Instruction Set Computer

CISC- Complex Instruction Set Computer

RAT- Register Alias Table

ROB- Reorder Buffer

RS- Reservation Station

Alloc- Allocation Unit

PRF- Physical Register File

Disp- Dispatch Block

CTE- Cluster Test Environment

RAW- Read after Write

WAW- Write after Write

ii

WAR- Write after Read

Th/Thr- Threshold

EC- Energy Cost

FSDB- file system data base

iii

 List of Tables

2.1 Comparison RISC vs. CISC 4

4.1 Number of Cycles Required by Uops and Available Dispatch Ports 23

4.2 Base, Scale and Multiplication Factor of Various Uops 24

4.3 Cycle Energy Cost Calculation 26

5.1 Blocked and Unblocked Cycles for Fixed Threshold 33

6.1 Dispatch Blocked Cycles for Dynamic Threshold 37

iv

 List of Figures

2.1 Simple Processor Execution Phases 5

2.2 uCode CISC & OOO 5

2.3 Intel Core (CPU) overview 6

2.4 Out of Order Execution General Overview 7

2.5 12 cycles per iteration (without out of order and branch prediction) 9

2.6 8 cycles per iteration (with out of order and no branch prediction) 10

2.7 5 cycles per iteration (out of order with branch prediction) 10

2.8 Abstraction Layers of a Processor 11

2.9 Verification Environment 16

3.1 Voltage Droop in Circuit 17

3.2 Voltage Droop in Processor Due to Load Change 18

4.1 Energy Cost of Various Data Type and Data Size uops 24

4.2 Individual uop’s Energy Cost and Cycle Energy Cost 25

4.3 Dispatch Ports of a Typical Processor 25

4.4 Cycle Energy Cost 26

4.5 Cycle Energy Cost Calculation 26

4.6 Energy Cost vs Time For randomly Incoming Uops 27

4.7 Variation in Cycle Energy Cost with Time 27

4.8 FIFO 27

5.1 Single Level Threshold (Fixed Threshold) 31

5.2 di/dt Stall for Different Values of Threshold 32

5.3 di/dt Stall (Block) for Randomly Incoming uops (Instructions) for

Single (Fixed) Value of Threshold of 128

32

6.1 Block Diagram Model for Uop Weightage Calculation and Droop

Block

35

6.2 Droop Logic Block Diagram 36

6.3 Choosing among Multiple Thresholds Based on Instruction Weightage 36

6.4 Dynamic Threshold variation 37

6.5 Dynamic Threshold Prediction with Less Blockage as Compared to

Fixed Threshold

37

6.6 Blockage Calculation for Dynamic Threshold 37

v

6.7 Blockage for Dynamic threshold 38

6.8 Fixed and Dynamic Threshold Blockage Percentage vs Uop Ratio 39

6.9 Out of Order Unit Verification Environment 40

6.10 Assertion for Port Energy Cost 41

6.11 Assertion for Dispatch Block to Execution Unit and Memory Ports 41

6.12 Execution Port Dispatch Block Coverage 42

6.13 Memory Port Dispatch Block Coverage 42

vi

 Abstract

Over last few decades, there were exponential advances in the processor. In general 64-

bit processors do computation using small data storage registers, but due to the need to

process large amount of data, in modern processors vector instructions have been

added. These vector instructions operate on larger size of registers (128 bit, 256bit and

512bit), thereby consuming large amount of power on chip. Due to their large power

consumption nature these instructions e.g. SIMD (single instruction multiple data) and

FMA (fused multiply accumulate) are called heavy instructions. These are very

commonly used in multimedia applications like image processing and deep learning.

When these instructions are being processed by processors large amount of current will

be drawn leading to sudden drop of on-chip voltage which is called voltage droop.

One such case occur in processors when there is random and frequent variation in

incoming instruction load, causing di/dt variations ultimately leading to frequent on-

chip voltage level changes, which can cause circuit fault and ultimately chip burn also.

To avoid voltage droop analog detectors have been placed which monitor the voltage

level continuously and prevent the voltage from going beyond the level by stopping

further execution of heavy instructions. But the problem with the analog detectors are

that they are not proactive, once they detect the voltage around the threshold level only

then they stop the heavy load execution. So to overcome this problem dynamic

threshold prediction has been done which will detect the instructions based on the

predicate in the reservation station and based the ratio of heavy to light instructions

(instruction ratio) an optimum threshold level will be determined which will not fully

block the execution dispatch ports. Light instructions will not be blocked from being

executed while heavy instructions will wait until proper power level is available. It has

been shown that this instruction based predicted dynamic threshold level minimizes the

dispatch port blockage thus boosting processor performance by saving cycles. Further

it has been shown how three level of threshold is better that single and fixed threshold.

vii

 Contents

 List of Abbreviations i

 List of Tables iii

 List of Figures iv

 Abstract vi

1 Introduction 1

1.1 Introduction and motivation 1

1.2 Objective 2

1.3 Thesis Organization 2

2 Literature Review/ Background 4

2.1 Intel CPU Architecture 4

2.2 Overview of Out of Order Unit 7

2.3 Energy Consumption at different levels of Abstraction Layer 10

2.4 Functional Verification 14

2.5 CTE Methodology 14

3 Voltage Droop Phenomenon 17

3.1 Overview of voltage droop 17

3.2 Disadvantages/advantages of voltage droop 18

4 Power Consuming Instructions and Droop in CPU 19

4.1 Power Consuming micro-instructions and their Grouping 20

4.2 Instructions Consuming Large Amount of Power 20

4.2 Voltage Droop in CPU 21

4.4 Energy per Instruction (EPI) 22

4.5 Cycle Energy Cost 25

4.6 Variation in Cycle Energy Cost Cause of Droop in CPU 27

5 Solutions to Mitigate droop effect 30

5.1 Analog Detectors 30

5.2 Single and Fixed Threshold Level 30

viii

6 Instruction Aware Threshold Variation 34

6.1 Disadvantages of Fixed Threshold 34

6.2 Proposed Method 34

6.3 Calculation Part of Dispatch Blockage 36

6.4 Comparison (Fixed Threshold Vs. Dynamic Threshold) 38

6.5 Validation of the design 39

7 Conclusion and Future Aspects 44

7.1 Conclusion 44

7.2 Future Aspects 44

 References 45

1

Chapter: 1

INTRODUCTION

1.1 Introduction and Motivation

Over the past six decades, there were exponential advances in semiconductor

fabrication technology, as foretold by Moore’s law. These advances in turn have

enabled the design of powerful processors residing in the computing devices that

pervade our lives today. Our quest for fast and energy efficient devices has led us to

processor designs that are among humankind’s most complex creations.

Processor architects have been incorporating more and more features and operating

modes into their designs over the years. The prevailing processor core design trends

today utilize complicated execution structures for out of order execution and advanced

power management techniques. In addition, designers are incorporating more and more

application specific accelerators into their designs to squeeze out more performance

under always tighter energy and power constraints. These accelerators reside on a chip

alongside the processor cores, a memory subsystem, and peripheral components, all

connected via an onchip interconnect. Each of these individual components are

complex on their own, with several design blocks, power management features, and

operating modes.

Due to increasing demand of large data processing in domains like multimedia and deep

learning fields, new instructions have been added in processors, these newly added

instructions like SIMD(single instruction multiple data) and FMA(fused multiply

addition) require large registers because they perform similar kind of operation on large

data set, thereby consuming large amount of power. These are called AVX instructions

(advanced vector instructions). These AVX instructions operate on large registers of

128, 256 or 512-bit. These AVX instructions speed application because they can

process more data per instruction. On the other hand simple processes like text editing

uses smaller registers and consume less power.

Voltage droop is major phenomenon in modern IC circuits and CPU’s operating at

higher frequencies and lower technology nodes. When the incoming instructions are

varying too frequently, the logic circuit draw high switching current when the load is

high while in low load case it draw very less current, resulting in undesirable voltage

droop phenomenon. As a consequence of this irregular and frequent current change in

2

circuits operating at high very high frequencies, the voltage droop causes delay and can

lead to faults in circuit operation.

For this dissertation purposes, the voltage droop occurring in the CPU has been

explained and methods to avoid the loss due to the droop has been proposed and

verified.

1.2 Objective

The purpose of this project is to avoid droop effect in CPU proactively. Analog

detectors can detect the voltage level and switch off certain parts of circuit which

require large amount of power. But this method is not proactive as only after detection

of voltage level around the threshold value, it stops the execution flow, thereby

affecting the performance due to multiple cycle execution blockage.

So to avoid this situation we can design a module which will calculate the power needed

in the upcoming cycles and will send a request to the PCU (power control unit) even

before the execution of the instruction, thus proactively avoiding both droop effect and

also boosting the performance by reducing the number of blocked cycles. And to show

this various concepts like cycle energy cost and port dispatch block etc has been

discussed.

1.3 Thesis Organisation

This thesis is organized in total 7 chapters including this introduction chapter.

Following the introduction, chapter 2 gives the basic idea about intel cpu architecture,

An overview of the art of verification its (will give a glimpse of the related works

through providing some literature analysis on this topic)

In chapter 3, there is discussion about voltage droop effect in general.

In chapter 4, there is detailed discussion about power consuming instructions and non

power consuming instructions. There is brief discussion about droop phenomenon

happening in processors.

In chapter 5, various solutions to mitigate voltage droop problem in processors are

discussed and advantages and shortcomings of these methods has been discussed.

In chapter 6, describes the proposed dynamic threshold prediction to mitigate the

voltage droop phenomenon. Some calculations related to this are done. There are some

tables which are showing the comparison of proposed design and the old design.

3

Finally in chapter 7, conclusion of whole project and future work which can be done

after this work is explained.

4

Chapter: 2

LITERATURE REVIEW

This chapter provides some basic information and literature survey which is required

in the next chapters. In the first section, there is a general overview of Intel x86

Architecture and out of order based processor, its advantages and detailed structure of

Out of Order unit and the next section provides basics of instruction set architecture.

The next section introduces energy consumption at various abstraction layers in

processors. And in the next section, there is an overview of the importance of the

functional validation aspect of design.

2.1 Intel CPU Architecture (x86 uArch)

It is a very common myth that Intel x86-64 processors are power consuming due to

their CICS architecture (complex instruction set).But Intel processors are not fully

based on CISC architecture it is a mixed combination of both CISC and RISC.[27]

2.1.1 RISC Vs CISC

 CISC RISC uCode CISC &OOO

Memory req Smaller Larger Smaller

Decode Complex Simple Complex

Registers Fewer More More

Clock speed Slower Faster Faster

Inst. Complexity Complex Simple Simple

 Table 2.1. Comparison RISC vs. CISC [28]

So to increase the speed and build a very fast RISC machine

Translate from IA (CISC) to RISC breaking the complex instructions in to simpler

micro-operations(called uops - micro-operation).This work is done internally by the out

of order and micro instruction translation engine.

In the next page there are figures showing the two types of execution.

5

 Figure 2.1: Simple Processor Execution Phases[27]

 Figure 2.2: uCode CISC & OOO [9]

6

2.1.2 Intel core x86 architecture

 Figure 2.3: Intel Core (CPU) overview

Intel x86 core consists of mainly five units-

i- FE/MSID-(Front End/ Micro Sequence Instruction Decide)- This unit is

responsible for decode and fetch of instructions from the memory and

converting the complex instructions into simpler micro-operations and

sending the uops to out of order unit through instruction queue.[11]

ii- Out of Order (OOO)- This is the most complex block in core. This block

is responsible for sending the uops to execution unit in out of order fashion

based on the resource availability of resources and in the end in order

retirement of the instructions.[9]

iii- Execution Unit- This is the most stable unit, it gets all the data from out of

order and memory unit and execute the uops in the corresponding function

block and send them back to ooo and memory.[15]

iv- MEU- Memory Execution Unit- this unit is responsible for providing

operand and other necessary data to various units in the core.

7

v- MLC- Mid Level Cache- this block is responsible for holding speculative

data which may be required in the upcoming cycles.[23]

2.1.3 Working principle of Out of Order based Processor

 Figure2.4: Out of Order Execution General Overview [18]

2.2 Overview of Out of Order Unit

2.2.1 Out of Order Unit Structure

The Out-of-Order (OOO) unit is responsible for dispatching uops for execution out of

program order, based on source availability, and for marshalling them back into

program order for retirement.

8

Allocation

The OOO cluster receives uops from the Front-End (FE).These uops are allocated

pipelined resources as per their requirement. The uop allocation is stalled if the required

resources are not available. The sources and the destination registers of the uops are

renamed to the Reorder Buffer (ROB) entries, which serves as a register file for reading

and writing uops results.

Reservation Station

Next the uops are written into the Reservation Stations (RS). The RS first checks for

sources location – the sources may be in the RS (not produced and therefore still tracked

by the RS table) or in the Physical Register File (PRF). The uops sources are tagged

with the appropriate connection to the producing uops that are still in the RS or marked

as valid if the sources are in the PRF. If the source values are not available from the

PRF the uops will wait in the RS for them to become available. These values become

available when the uops producing them execute (from bypass), or when they write

their results back into the PRF. In all these case, the tracking scheme in the RS will

indicate that a source is valid for all its consumers in the RS. The value can be used

when in one of the bypass levels or when it is available for the PRF. The uops with the

available sources are dispatched from the RS for execution to the Execution Cluster

according to a FIFO scheme that is part of the dispatch logic. For loads and stores the

relevant information is sent to the Memory Cluster on dispatch.

Re-Order Buffer (ROB)

After execution, uops write their results: the data and arithmetic flags are written back

into the PRF and fault data and valid information are written back into the ROB. The

executed uops are retired in the original program order from the ROB. If uops executed

correctly and no event needed to be handled then the uops are retired successfully.

Otherwise, the pipeline is cleared and appropriate event handler is invoked to service

the event.

2.2.2 Performance gain due to branch prediction and out of order

A simple example to show the benefits of out of order processing and branch

prediction:

9

A : loop: x0  [x1][0] (data read)

B : x0  x0*x2 (multiply)

C : x1  x0 (writeback)

D : x1  [x1][1] (pointer increment)

E : entrance: if([x] is != nil) goto loop (branch prediction)

Suppose we have 2 stage pipelined Cache and 4 stage pipelined floating point

execution.

Case I - Without out of order and branch prediction – as shown into the figure it takes

total 12 cycles to complete one iteration, without branch prediction and out of order

execution.

Stage/Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

fetch A1 B1 C1 D1 E1

issue A1 B1 C1 D1 E1

execute1 A1 B1 C1 D1 E1

execute2 A1 B1 C1 D1

execute3 B1

execute4 B1

Figure 2.5: 12 cycles per iteration (without out of order and branch prediction)

Cache_Stage1

Cache_Stage2

FPU_STAGE1

FPU_STAGE2

FPU_STAGE3

FPU_STAGE4

10

Case II - With out of order and without branch prediction – it takes 8 cycles for the

example thus making it faster than the first case.

Stage/Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

fetch A1 B1 C1 D1 E1

issue A1 B1 C1 D1 E1

execute1 A1 B1 D1 E1 C1

execute2 A1 B1 D1 C1

execute3 B1

execute4 B1

 Figure 2.6: 8 cycles per iteration (with out of order and no branch prediction)

Case III – With out of order and branch prediction – it takes only 5 cycle to complete

one iteration, so it makes the processor very fast.

 Figure 2.7: 5 cycles per iteration (out of order with branch prediction)

2.3 Energy Consumption Estimation at different levels of Abstraction

Layer

There are various ways to look any digital design or processor in general, the same

system and its behavior can be described from different perspective at different of level

of abstraction. Similarly, in a processor the energy consumption can be estimated at

different levels of abstraction. In the following section an overview of energy

 8 cycles

11

consumption estimation at different abstraction level is provided, with the advantages

and disadvantages at various abstraction layers.

 Figure 2.8: Abstraction Layers of a Processor

2.3.1 Energy Consumption at Source-Code Abstraction Level

The top most or highest level of abstraction level is source code level in which energy

consumption analysis can be done. Source code level is the easiest way to estimate the

energy consumption because source codes are easily available and other information

needed related to processor like memory transfer and memory accesses and number of

logical or arithmetic operations performed can be roughly estimated through any high

level language like C++ or java. But this not the best way to analyze the energy

consumption of any hardware, as this is the top most level of abstraction and it’s

difficult to establish a direct relationship between the operation happening at hardware

level and source code. There are different kind of compilers available in market and

each of these are specific to the programming language and to improve the compilation

performance these compilers often target a specific type of hardware and moreover

compilers are often designed optimized e.g. instruction scheduling and unrolling of

loops to decrease compilation time. And avoiding the loop and execution path is

difficult during energy cost estimation. Very less research in the area of energy cost

12

estimation at source code level has been done. In [23] before estimation of energy cost

path information has been analysis has been done.

2.3.2 Energy Consumption at Functional Level

A processor or any digital system is a combination of various functional blocks.

Estimation of the energy consumption of these individual blocks can be performed and

the summation of these individual block energy consumption will result in the total

energy consumption of the system. The energy consumption at this level is generally

estimated through either direct measurement or through simulation. But while

calculating and modelling the total energy computation of the processor several factors

need to been taken care like on-chip data transfer between the functional blocks and

clock speed (frequency) and the number of functional unit blocks available to process

same operation. And these factors are not static and the actual value can be only

determined after task execution. Therefore this model of energy consumption can be

applied to any processor and the complexity is also moderate at this level. In [22] energy

consumption model has been developed which is a hybrid model of the two levels

functional level and instruction level.

2.3.3 Energy Consumption at Instruction-Level

Instruction Set Architecture (ISA) is the mid-level in the abstraction layer of a

processor. Since every instruction is related to some operation or functional block in a

processor. There are many models available which estimate the energy consumption at

instruction level. The estimation of energy consumption at instruction level basically

done using either any instruction level simulator or by analyzing the assembly code of

the. For each and every instruction estimation of energy cost is estimated. These

estimations can be done into two fashions with taking design details into consideration

and without taking design details into consideration. For more accurate modelling of

energy cost design details like pipelining, cache miss/hit and other things should be

taken care of. Estimation of base and scale energy cost and from these total energy cost

of instructions has been calculated in Chapter 4.[8]

2.3.4 Energy Consumption at RTL (Register Transfer Level)

RT-level abstraction level refers to digital signal flow between hardware registers,

memory, bus, combinational logic devices and logic unit etc. VHDL (VHSIC Hardware

Description Language), System Verilog , VHDL,Verilog, and SystemC [14] are, fairly

13

often, used to describe RT abstraction level. RT-level energy estimation is used to

quickly predict the total switching activity in logic design compared to the simulation

speed of gate-level estimation. In this technique, switching activity profiles, circuit

modules or control signals are integrated to construct macro-module which can be

parameterized in terms of the supply voltage level, the internal organization of the

processor and the input bus width etc.. In general, the RT-level energy estimation can

be classified into two types. The first type is to use a simulator to extract actual

parameters for macro-model equation. The second type is based on the static analysis

of the structure of the circuit so that parameters for macro-model equation could be

extracted.

2.3.5 Energy Consumption at Gate-Level

Gate-level describes the operation of the circuit in terms of a structural interconnection

of boolean logic gates such as nor, add, and xor etc.. The design of gate-level is

represented as a netlist, which describes the connectivity of an electronic design. Gate-

level simulation (GLS) is often used at the early design stage. The simulation is

performed to measure switching activity of every net of circuit. In order to perform

simulation, technological information which provides timing, power information of the

processor and Gate-level netlist that contains all of the logic and delays of the final

system should be provided to the simulator. The drawbacks of this method are that the

simulation is time consuming and Gate-level netlist is confidential for most of

manufacturers.[30]

2.3.6 Transistor-Level

As the name suggests, transistor level describes the operating behavior of circuit

elements such as transistor, capacitors, inductors and resistors. With the rapid progress

of semiconductor technology, the transistor count on a single chip has reached

2,000,000,000 in latest ARM and 1,400,000,000 latest Intel i7. In this level, transistor

is often modeled as a device with only two states, “on” and “off”. In “off” state the

transistor is modeled as an open circuit, while in the “on” state, the transistor is modeled

by a linear resistance [14]. Transistor level power estimation employs simulation to

track the current drawn from the power supply. Only a few studies have been made at

this level, because the simulation is time consuming and it requires the knowledge of

the circuit layout.

14

Verification of a Design

2.4 Functional Verification

Functional verification can expose functional logic errors in the hardware designs

which are described in behavioral model, register transfer level model, gate level model,

or switch level model. Functional errors are introduced due to various factors including

careless coding, misinterpretation of the specification, microarchitecture design

complexity, corner cases, and so on. If any functional bug is found in a chip already

fabricated, the error needs to be corrected and the modified version of the design needs

to be fabricated again, which is very expensive. In the worst case, bug fixing after

delivery to customers will entail a very costly replacement as well as re-fabrication

expenses. For example, in 1994 Intel’s Pentium processor had a functional error called

FDIV bug and the company had to spend a staggering cost to replace the faulty

processors [21][8]

2.5 CTE Methodology

One of the fundamental decisions that Intel took early in the core processor

development program was to develop Cluster Test Environments (CTEs) and maintain

them for the life of the project. There is a CTE for each of the clusters into which the

processor design is logically subdivided. These CTEs are groupings of logically related

units (e.g. all the execution units of the machine constitute one CTE) surrounded by

code that emulates the interfaces to adjacent units outside of the cluster and provides

an environment for creating and running tests and checking results. The CTEs took a

good deal of effort to develop and maintain, and were themselves a source of a

significant number of bugs. However, they provided a number of key advantages: First

and foremost, they provided controllability that was otherwise lacking at the full-chip

level. An out of order, speculative execution engine like the processor is inherently

difficult to control at the instruction set architecture level. Assembly language

instructions (macroinstructions) are broken down by the machine into sequences of

microinstructions that may be executed in any order relative to one another and to

microinstructions from other preceding or following macroinstructions. Trying to

produce precise micro architectural behavior from macroinstruction sequences is like

pushing on a piece of string. This problem is particularly acute for the back end of the

machine the memory and bus clusters which lie beyond the out-of-order section of the

microarchitecture pipeline. CTEs allowed to provoke specific micro architectural

15

behavior on demand. Second, CTEs allowed to make significant strides in early

verification of the processor Structural Register Transfer Level (SRTL) even before a

full-chip model was available. Integrating and debugging all the logic and microcode

needed to produce even a minimally functional full-chip model was a major

undertaking. Because of the CTEs, testing could be started as soon as there was released

code in a particular unit, long before trials at the full-chip level. Even after a full-chip

model, the CTEs essentially decoupled validation of individual unit features from the

health of the fullchip model.

Cluster test environment (CTE) methodology is composed of stimulus generation,

checkers and coverage for Intel processor cores. There is a CTE for each of the clusters

into which the processor design. These CTEs are groupings of logically related units

(e.g. all the execution units of the machine constitute one CTE) surrounded by code that

emulates the interfaces to adjacent units outside of the cluster and provides an

environment for creating and running tests and checking results.

i- Testbench Environment

ii- Reference Model

iii- Checker

iv- Coverage

v- Monitor

vi- Driver/sequencer/injection randomization

Validation Phases of Specman:

i- Elaborate

ii- Model Build

iii- Connect

iv- Model Run

v- Post run

16

 Figure 2.9: General Verification Environment

17

Chapter: 3

OVERVIEW OF DROOP PHENOMENON

In Electrical system, a sudden large increase in Current will cause a drop in the voltage.

The size of the drop depends on a lot of parameters including: the size of the current

increase, the duration of the increase, the capacitance and resistance of the system and

the power supply.

 Figure 3.1: Voltage Droop in Circuit

3.1 Voltage Droop

Voltage droop is major phenomenon in modern IC circuits and CPU’s operating at

higher frequencies and lower technology nodes. When the logic circuit due to high load

draw high switching current, undesirable voltage droop occurs.

As a consequence of this irregular and frequent current change in circuits operating at

high very high frequencies due to irregular load, the voltage droop causes delay and can

lead to faults in circuit operation.

To tackle this problem guardbands are used (extra timing (cycle) addition), but this is

the most conservative way to tackle the problem, because the guardbands are usually

calculated keeping in mind the worst case scenario, so it can lead to significant power

and performance loss in circuits operating at very high frequencies and modern CPU’s

where both power and performance are the major factor.

18

 Figure 3.2: Voltage Droop in Processor Due to Load Change [31]

There is significant voltage drop in CPU when it goes from an idle state to a load

state. This sudden and large voltage drop is called voltage droop.

3.2 Voltage Droop is Designed to Help

Voltage droop is an inbuilt in feature of Intel Processors and it is designed to make

sure the voltage level never goes over beyond the specified level what has been set in

the BIOS. This is necessary because there is always an overshoot whenever there is a

voltage change due to irregular load change(variations), and without voltage droop,

the overshoot could make the voltage higher than what has been set in the BIOS (for a

split second), it may damage the CPU.

19

Chapter: 4

POWER CONSUMING UOP’s

NON-POWER CONSUMING UOP’s

AND VOLTAGE DROOP IN CPU

In general processors do computation using small data storage registers.64-bit registers

are frequently used On 64-bit processors. But due to the need to large/huge data

processing in most of the modern processors vector instructions have been added and

these vector instructions operate on larger size of registers (128-bit, 256-bit, 512-bit).

Intel’s latest processors support AVX-512 instructions (advanced vector extension

instructions). These AVX instructions operate on large registers of 128, 256 or 512-bit.

These AVX instructions speed some application because they can process more data

per instruction.

Some of these instructions use a lot of power and generate lot of heat. To keep power

usage within bounds, Intel reduces the frequency of the cores dynamically. This

frequency reduction (throttling) happens in any case when the processor uses too much

power or becomes too hot. However, there are also deterministic frequency reductions

based specifically on which instructions you use and on how many cores are active

(downclocking). Indeed, when any 512-bit instruction is used, there is a moderate

reduction in speed, and if a core uses the heaviest of these instructions in a sustained

way, the core may run much slower. Furthermore, the slowdown is usually worse when

more cores use these new instructions. In the worst case, you might be running at half

the advertised frequency and thus your whole application could run slower.

There are heavy and light instructions. Heavy instructions are those involving floating

point operations or integer multiplications (since these execute on the floating point

unit). Light instructions include integer operations other than multiplication, logical

operations, data shuffling (such as vpermw and vpermd) and so forth. Heavy

instructions are common in deep learning, numerical analysis, high performance

computing, and some cryptography (i.e., multiplication-based hashing). Light

instructions tend to dominate in text processing, fast compression routines, vectorized

implementations of library routines such as memcpyin C or System.arrayCopy in Java,

and so forth.

20

Intel cores can run in one of three modes: license 0 (L0) is the fastest (and is associated

with the turbo frequencies, license 1 (L1) is slower and license 2 (L2) is the slowest.

To get into license 2, you need sustained use of heavy 512-bit instructions, means

approximately one such instruction every cycle. Otherwise, any other 512-bit

instructions will move the core to L1.

The downclocking is determined on a per-core basis based on the license and the total

number of active cores, on the same CPU socket, irrespective of the license of the other

cores. That is, to determine the frequency of core under downclocking, you need only

to know its license (determined by the type of instructions it runs) and count the number

of cores where code is running. Thus you cannot downclock other cores on the same

socket, other than the sibling logical core when hyperthreading is used, merely by

running heavy and sustained AVX-512 instructions on one core.

4.1 Grouping the Instructions Based on Their Minimum and

Maximum Energy Consumption

The energy consumption is the lowest when there are no RAW dependencies between

instructions and the highest when there are. The groups we have created for this purpose

are:

• Simple Integer: Simple integer instructions are integer arithmetic and logic

instructions besides multiplications and divisions and also all register movement, and

compare and test instructions for integers.

• Simple float/double: These are all float and double additions and subtractions along

with register movement and compare.

• Multiplication: Multiplications for integer, float and double operands.

• Division: Divisions for integer, float and double operands.

• Load: Loads for integer, float and double operands for different cache level access.

• Store: Stores for integer, float and double operands for different cache level access.

4.2 Instructions Consuming Large Amount of Power

Following are the major vector instruction which require large amount of power in

execution:

SIMD – Single Instruction Multiple Data

This an extension of x86 architecture to increase the performance when exactly same

type of operations needs to be performed on multiple set of data objects. Its size can be

21

of 128, 256, 512 bits. Example- digital signal processing (DSP) and graphics and

multimedia processing.

SIMD is applicable to common tasks such as adjusting the contrast in a digital image or

adjusting the volume of digital audio. Modern CPU’s include SIMD instruction to

improve multimedia uses performance.

Applications where SIMD can be used is – when the same value needs to be added to a

large number of data set or points, or a common operation needs to performed in any

application. Like changing the contrast of image. Each pixel of the image consists of

three values for brightness red, green and blue. To change the brightness, first the R, G

and B values are read from memory, the required values are added to the corresponding

components, and the resulting value is written back to destination.

FMA- Fused Multiply Addition (Multiply accumulate operation)

This has 3 operands, fused uop is very useful where addition and multiplication is

required simultaneously to get the final value

 a= b.c +d

It is also be of 128, 256, 512 bits.[29]

Load Uop’s –

High priority has been given to load uops because in reservation station uops waits for

the operands to be available (this increases the IPC gain).

Store Uop’s -

Store uops have higher energy cost relative to load uops because, cache system is

prioritized for load uops. Storage to farthest cache doesn’t happen immediately, because

we may require the data in later cycles by other ups as source, so store takes more cycle

than load uops.

4.3 Voltage Droop in CPU

One such case of sudden voltage drop can occur in modern CPU’s due to irregular

current variation happening due to the incoming instruction’s (uop) of varying data type

and size. This is a major concern after the addition of AVX and other power hungry

instructions, which require large amount of current, causing the voltage to go below the

specified level.

22

4.4. Energy per Instruction (EPI)

It is a measure of the amount of energy expended by a microprocessor for each

instruction that the microprocessor executes. There are various factors that affect a

microprocessor’s EPI. Energy per instruction (EPI) is a measure of the power efficiency

of a microprocessor. It records the average amount of energy expended per instruction

processed by the microprocessor. EPI is measured in Joules/instruction. EPI is related

to other commonly used power-efficiency metrics performance/watt and MIPS/watt.

Specifically, EPI is the reciprocal of IPS/watt. This relationship is shown in the

following equation:

(Joules/Instruction) = (Joules/Second)/(Instructions/Second) = Watt/IPS

 Now we consider the EPI of a practical microprocessor. EPI is a function of several

factors:

1) Design (microarchitecture, logic, circuits, and layout)

2) Process technology

3) Environment (supply voltage)

4.4.1 Instruction (uop) Energy Cost:

Energy cost of uops :

Average energy cost of uop’s depends on its type and size:

Which is basically dependent on following factors:

i- Number of cycles required by the uop to complete the execution

ii- Resources required for the specific uop

iii- And other factors like number of dispatch ports available, cache miss/hit for that

particular type of uop.

Type of uops:

A- Executable uops

i- X86 uops

ii- SIMD/AVX

iii- FMA

B- Load/store uops

i- Load

ii- Store

23

Size of uops:

i- 128

ii- 256

iii- 512

UOP No. of Cycles required Dispatch ports available

FMA 4/6 0/1/5(3)

SIMD 1/3 0/1(2)

Load - 2/3(2)

Store - 7/8(2)

 Table 4.1: Number of Cycles Required by Uops and Available Dispatch Ports

So basically uop energy cost is :

Uop Energy Cost = aA+bB+cC

where a,b,c are weightage and A= number of cycles, B= resource factor,

C= number of dispatch ports available.

4.4.2 Energy Cost Calculation

To calculate the total energy cost of a particular type of uop we need the base and scale

values

4.4.2.1 Base Energy Cost

For each type of uops type we have some base value of energy cost which is calculated

using instruction level modelling and simulation of the design.

4.4.2.2 Scaling Factor:

Each type of uop under consideration can be of either 128 bit, 256 bit or 512 bit, so

corresponding scaling to the base energy cost of that particular type based on data size

of uops need to done to obtain total energy cost.

4.4.2.3 Total energy cost of uop

Total energy cost of uop is a linear function of base energy cost and scale factor, it can

be obtained by following formula.

 Uop energy cost = base energy cost +multiplication factor(shift)* scale

24

UOP Base value Scale

Value

Left Shift(Mul.

Fact.)

Energy Cost

X86/INT * * * *

SIMD_128 1 1 1 1+1*1=2

SIMD_256 2 1+1*2=3

SIMD_512 3 1+1*4=5

FMA_128 2 3 1 2+1*3=5

FMA_256 2 2+2*3=8

FMA_512 3 2+4*3=14

LOAD_128 1 1 0 1+0*1=1

LOAD_256 1 1+1*1=2

LOAD_512 2 1+2*1=3

STORE_128 1 3 0 1+0*3=1

STORE_256 1 1+1*3=4

STORE_512 2 1+2*3=7

 Table 4.2: Base, Scale and Multiplication Factor of Various Uops

 Figure 4.1: Energy Cost of Various Data Type and Data Size uops

25

 Figure 4.2: Individual uop’s Energy Cost and Cycle Energy Cost

4.5 Cycle Energy Cost

The total energy consumed in a cycle is the sum of the energy cost of individual uops

dispatched in that particular cycle. As a uop can be dispatched through pre-defined ports

only, so prior to dispatch that ports should not be gated.

Cycle Energy Cost =

(Number of Dispatched uop to Execution Unit Ports in the Cycle)*(Energy Cost of the uop)

 + (Number of load/store uops)*(Energy Cost)

 Figure 4.3: Dispatch Ports of a Processor

26

4.5.1 Calculating Cycle Energy Cost for Randomly Incoming Uops

In this section for randomly incoming stream of uops, from individual port energy cost

cycle energy cost has been calculated.

Figure 4.4: Cycle Energy Cost(Randomly incoming uops of various energy cost on

different dispatch ports and total energy cost of particular cycle)

 Figure 4.5: Cycle Energy Cost Calculation

Cycle/Port 1 2 3 4 5

Port0 0 3 2 3 -

Port1 0 0 3 0 -

Port5 3 3 3 3 -

Port2 0 0 0 0 -

Port3 0 0 0 0 -

Port7 0 0 0 0 -

Cycle

Energy Cost

- 3 6 8 6

 Table 4.3: Cycle Energy Cost Calculation

27

4.6 Variation in Cycle Energy Cost Cause of Droop in CPU

 Figure 4.6: Energy Cost vs Time For randomly Incoming Uops

 Figure 4.7: Variation in Cycle Energy Cost with Time

As we can see that the energy cost is varying rapidly over the cycles, this is the reason

for voltage droop.

4.6.1 Using FIFO to Calculate Average Value of Energy Cost Over a Period of

Cycles

 Figure 4.8: FIFO

28

Droop Calculation:

It has three parts

1- DC value

2- AC part

i- Positive part

ii- Negative part

DC (average) part calculation:

Dc value is the normalized value of energy cost over a number of cycles (depends on

the FIFO size).

AC part

i- Positive part- This is the energy cost of the present cycle which will be get

added to the FIFO(pushed to FIFO).

ii- Negative part- This is the energy cost of the oldest entry of the FIFO which

will be get subtracted from the FIFO(dropped out of the FIFO).

 Total (instantaneous) Energy Cost = DC Part + AC Positive Part - AC Negative

Part

Example

i- Overshoot Case-

Let us take the FIFO size = 30

And energy cost of last 30 cycles are (FIFO entries) : <30 entries of FIFO>

DC part = Average of total sum the elements of FIFO = ∑ FIFOi/30

Let us take the dc value -12.

AC positive part = present cycle energy cost

Let us take this value = 18

AC negative part = oldest cycle energy cost

Let us take this value = 10

So Total (instantaneous) Energy Cost = DC Part + AC sPositive Part

 - AC Negative Part

 = 12.xx+18-10

 = 20.xx(overshoot case)

29

ii- Undershoot Case-

DC part = ∑ FIFO(i)/30

Let us take the dc value -12.

AC positive part = present cycle energy cost

Let us take this value = 8

AC negative part = oldest cycle energy cost

Let us take this value = 16

So Total (instantaneous) Energy Cost = DC Part + AC Positive_Part -

 AC Negative_Part

 = 12.xx+8-16

 = 4.xx(undershoot case)

So we have overshoot and undershoot cases when there is sudden and continuous

change in the data type and size of the uops, this causes rapid di/dt ratio(current)

fluctuations(variation). This rapid variations in current can cause irregular voltage drop

and may result in unnecessary heating of the chip.

This problem is more severe when the incoming uops data size is varying too often.

E.g. – if in the present cycle energy cost is 20, in the next cycle it becomes 40 and in

the next to next cycle it becomes 10. Thus the current variation is happening rapidly,

this will lead to voltage droop happening too frequently causing circuit faults.

30

Chapter: 5

SOLUTION TO DROOP PROBLEM

Solution to the Droop Problem

To prevent this voltage droop following methods have been there. First is analog

detection and the other is fixed value of voltage threshold.

5.1 Placing Analog Detectors

To detect the instantaneous voltage level and prevent the voltage from going beyond

the certain limits analog detectors can be placed which detect the sudden voltage

drop(droop) happening due to instruction load variation and stop the execution of the

upcoming instructions, thus avoiding the voltage droop problem in processors.

Problem with Analog Detectors

The main problem with analog detectors is when any voltage droop is detected in

processors, it will block the execution of all instructions irrespective of the instruction

data type and size, so it leads to full hang scenario. Once voltage droop is detected, the

execution of heavy instructions stops until there is enough power available.

As this method is based on detecting the voltage droop after the execution of

instructions.

And moreover the instruction flow need to be stopped, this can be done through

blocking the dispatch ports (ports used by heavy instruction) which will ultimately

block the flow of other non power consuming instructions also, leading to performance

loss.

5.2 Threshold Level

To avoid this we may limit the di/dt to some predetermined value or threshold level.

The value of threshold depends on the maximum allowed current variation. The

optimum value of threshold depends on various factors. The value should be like this

that should not be too less, because if threshold level is too low then the blockage

probability is too high leading to too often dispatch port block and performance loss.

On the other hand if the threshold level is high then most of the time all gates and stacks

are open leading to power dissipation and heating. Optimum value is determined by

PCU (power control unit)

31

5.2.1 Single (Fixed) Threshold

Based on various factors like maximum available energy in a cycle and lowest possible

voltage for proper operation an optimum value of threshold is decided, if the energy

cost sum exceeds this threshold then dispatch will be blocked until more power become

available.

 Figure 5.1: Single Level Threshold (Fixed Threshold)

5.2.2 Calculating Blockage Percentage for single and fixed value of threshold:

In this section we will be calculating the execution and memory dispatch port block

percentage for randomly incoming uops and threshold level of 128.

 Figure 5.2 (a)

32

 Figure 5.2 (b)

 Figure 5.2 (c)

 Figure 5.2 (d)

Figure 5.2 a, b, c, d showing di/dt stall for different values of threshold (when energy

cost exceeds the threshold level)

Figure 5.3: di/dt stall (block) for randomly incoming uops (instructions) and for single

(fixed) value of threshold of 128

33

End cycle Start Cycle Cycle

Difference

End cycle Start Cycle Cycle

Difference

End cycle Start Cycle Cycle

Difference

318550 0 318550 1513750 1486550 27200 2873750 2825750 48000

 334550 318550 16000 1712150 1513750 198400 2979350 2873750 105600

424150 334550 89600 1745750 1712150 33600 2980950 2979350 1600

587350 424150 163200 1764950 1745750 19200 2982550 2980950 1600

740950 587350 153600 1809750 1764950 44800 3038550 2982550 56000

774550 740950 33600 1900950 1809750 91200 3177750 3038550 139200

873750 774550 99200 1961750 1900950 60800 3188950 3177750 11200

1012950 873750 139200 1984150 1961750 22400 3192150 3188950 3200

1169750 1012950 156800 2011350 1984150 27200 3216150 3192150 24000

1190550 1169750 20800 2044950 2011350 33600 3220950 3216150 4800

1238550 1190550 48000 2081750 2044950 36800 3233750 3220950 12800

1251350 1238550 12800 2110550 2081750 28800 3288150 3233750 54400

1268950 1251350 17600 2147350 2110550 36800 3326550 3288150 38400

1286550 1268950 17600 2382550 2147350 235200 3347350 3326550 20800

1320150 1286550 33600 2435350 2382550 52800 3406550 3347350 59200

1385750 1320150 65600 2435350 2382550 52800 3552150 3406550 145600

1419350 1385750 33600 2652950 2435350 217600 unblock 1918550 Total

1486550 1419350 67200 2825750 2652950 172800 blocked 1633600 3552150

 Table 5.1: Blocked and Unblocked Cycles for Fixed Threshold

So for this particular test (with randomized incoming instructions and single threshold)

Blockage percentage can be calculated by

 blockage percentage =
number of cycles dispatch is blocked

total number of cycles (test ran)

 =
1633600

3552150
 x 100 = 45.98%

 So the dispatch is blocked for approximately half of the total running time cycle,

affecting the processor performance drastically.

 So if the fixed threshold level to lower some value then the blockage percentage will

increase, more performance loss.

 if the threshold value is set to some higher value then it requires higher power

licenses all the time leading to power loss(and this become more severe when the

incoming instructions (uops) are light or rare heavy instructions).

34

Chapter: 6

INSTRUCTION AWARE THRESHOLD VARITION

6.1 Disadvantages of Single and Fixed Threshold Level

So as per the result in the previous chapter, the instruction dispatch is blocked for

approximately half of the total running time cycle, affecting the processor performance

drastically. If the fixed threshold level is decreased to lower some value then the

blockage percentage will increase, more performance loss. And if the threshold value

is set to some higher value then it requires higher power licenses all the time leading to

power loss, this become more severe when the incoming instructions (uops) are light or

mixed with rare heavy instructions.

6.2 Proposed Method

This method is based on detecting the data type and size of instructions present in the

reservation station and based on that and available power of a particular cycle

calculating(dynamically predicting) the optimum threshold level thus preventing

further execution of heavy instructions smartly, even before the execution of instruction

happens itself and not affecting the non-power consuming instructions.

6.2.1 Model for Calculating Dynamic Threshold Level Based on Instruction Data

Type and Data Size

Concept of Uop(Instruction) Weightage Ratio

To calculate the dynamically varying optimum threshold level based on uop data type

and size we need a model which will detect the data type and size for every incoming

uop and will calculate the weightage (percentage).Based on the ratio(weightage) of

light and heavy load instructions sitting in the reservation station which are yet to be

dispatched a threshold level is determined and request is send to the PCU to increase or

decrease the power license. Only upon getting the grant the proper license the heavy

uops can be dispatched, till then they have to wait in the reservation station. For this we

need multiple counters to count of which data type of uop and how many uops are

present of particular type in the reservation Station.

35

6.2.2 Droop Control Block

The droop control module is present in out of order unit. The following block diagram

shows its connection with other modules in the core. It is connected with reservation

station, reorder buffer and register alias table and also with dispatch ports.

 Figure 6.1: Block Diagram Model for Uop Weightage Calculation and Droop Block

6.2.3 DUT Parts

In the following various parts of the droop control logic block has been shown.

It consists of mainly following parts-

FIFO to calculate the sum of the energy cost for a number of cycles.

Droop control logic (threshold) which calculates the weightage of the uop and chooses

one threshold based on that.

Current threshold level block and running energy cost sum are compared and based on

the logic value ports are enabled or disabled.

36

 Figure 6.2: Droop Logic Block Diagram

6.3 Calculation Part: Blockage Part and Performance

In this design there are multiple levels of threshold and based on the uop weightage

one of them will be selected.

Figure 6.3: Choosing among Multiple Thresholds Based on Instruction Weightage

For the same testcase which generates same scenario we have tested the design which

has new droop control logic module.

37

Figure 6.4: Dynamic Threshold variation 38c860 as the energy cost is increasing

the value of threshold is also increasing (only after getting grant from PCU). Case of

threshold level stuck at 60, because of not availability of power at that time

Figure 6.5: Dynamic Threshold Prediction with Less Blockage as Compared to Fixed

Threshold

6.3.1 Blockage Percentage for Dynamic Threshold with Multilevel Threshold for

Same Directed Test Case

Figure 6.6: Blockage Calculation for Dynamic Threshold

End cycle Start Cycle Cycle

Difference

End cycle Start Cycle Cycle

Difference

End cycle Start Cycle Cycle

Difference

318550 0 318550 1320150 1286550 33600 2836450 2665650 170800

334550 318550 16000 1385750 1320150 65600 2879350 2836450 42900

393850 334550 59300 1471650 1385750 85900 3048850 2879350 169500

436750 393850 42900 1481950 1471650 10300 3075650 3048850 26800

659450 436750 222700 1716750 1481950 234800 3108950 3075650 33300

667350 659450 7900 1738950 1716750 22200 3122150 3108950 13200

810250 667350 142900 2044950 1738950 306000

873750 810250 63500 2081750 2044950 36800

996350 873750 122600 2110550 2081750 28800

1021550 996350 25200 2147350 2110550 36800

1089150 1021550 67600 2312650 2147350 165300

1118550 1089150 29400 2337550 2312650 24900

1268950 1118550 150400
2652950

2337550 315400 unblock 2627450 Total

1286550
1268950 17600 2665650

2652950
12700 blocked 494700 3122150

 Table 6.1: Dispatch Blocked Cycles for Dynamic Threshold

38

So for this particular test (with randomized incoming instructions and dynamic

threshold)

Blockage percentage is given by

 blockage percentage =
number of cycles dispatch is blocked

total number of cycles (test ran)

 =
494700

3122150
 x 100 = 15.84%

So we can see that there is very less dispatch block for this dynamically predicted

threshold as compared to the fixed threshold condition.

6.4 Comparison

Single (Fixed) Threshold Vs. Dynamic Threshold

The design has been tested for 20000 tests and no functional bug has been detected

either by random testcase or directed test .And from among these 20k tests, for

randomly chosen 40 tests the comparison between these two modes have been done and

it has been proved that there is significant performance improvement when there is

frequent load variation.

 Figure 6.7(a) Blockage for Single threshold

 Figure 6.7(b) Blockage for Dynamic threshold

For directed test cases, with varying uop ratio from light to heavy, the graph has been

plotted. For uop ratio near to zero it is seen that the blockage percentage for both are

same as the energy consumption is less and there is no problem for both. As the heavy

instructions starts mixing with light instructions the difference in performance is

significant. As the uop weightage ratio starts increasing (more and more heavy

instructions only with very less light instructions), again both starts showing same

blockage probability as in this case there is no use of prediction.

39

 Figure 6.8: Fixed and Dynamic Threshold Blockage Percentage vs Uop Ratio

6.5 Validation Part

6.5.1 Out of order verification environment

To verify that the design is working properly as per the design specification, verification

environment was created using CTE methodology (in specman or e language).

It consists of following parts. Each part was coded in specman language using CTE

methodology

i- Testbench Environment

ii- Reference Model

iii- Checker

iv- Coverage

v- Monitor

vi- Driver/sequencer/injection randomization

40

 Figure 6.9: Out of Order Unit Verification Environment

A brief overview of these parts and coverage result

Random Injection (Sequencer and Driver)

In the sequencer part tescases to generate random uops of various data type and size

and to emulate the threshold variation within the specified limits was coded. This help

in rigorously testing the design and finding corner cases.

Checker

Assertion based checkers have been implemented which compare the value between

CTE and RTL for various variables like uop energy cost for each port and cycle energy

cost and for port dispatch block etc.

 `ASSERTC_FORBIDDEN(EC_P0, (UopEngCostCTE[0] != UopECM[0]), droop_en, `ERR_MSG("Port 0 EC diff"));

 `ASSERTC_FORBIDDEN(EC_P1, (UopEngCostCTE[1] != UopECM[1]), droop_en, `ERR_MSG("Port 1 EC diff"));

 `ASSERTC_FORBIDDEN(EC_P5, (UopEngCostCTE[5] != UopECM[5]), droop_en, `ERR_MSG("Port 5 EC diff"));

 `ASSERTC_FORBIDDEN(EC_P2, (UopEngCostCTE[2] != UopECM[2]), droop_en, `ERR_MSG("Port 2 EC diff"));

 `ASSERTC_FORBIDDEN(EC_P3, (UopEngCostCTE[3] != UopECM[3]), droop_en, `ERR_MSG("Port 3 EC diff"));

 `ASSERTC_FORBIDDEN(EC_P7, (UopEngCostCTE[7] != UopECM[7]), droop_en, `ERR_MSG("Port 7 EC diff"));

41

 Figure 6.10: Assertion for Port Energy Cost

 Figure 6.11: Assertion for Dispatch Block to Execution Unit and Memory Ports

Coverage

Dispatch block covergroups:

To verify that the design behavior is in accordance with the specifications when

energy cost is exceeding above specified threshold level, uop dispatch to ports

are being blocked, we ran several tests and found that expected coverpoints are

hitting.

i- Covergroup- Execution_port_dispatch_block covergroup

Coverpoints- 1- Port_0_dispatch_block

 2- Port_1_dispatch_block

 3- Port_5_dispatch_block

 4/5- Cross_coverage_0_1_5_dispatch_block

ii- Covergroup- Memory_port_dispatch_block covergroup

Coverpoints(items) 1- Port_2_dispatch_block

 2- Port_3_dispatch_block

 3- Port_7_dispatch_block

 4/5- Cross_coverage_2_3_7_dispatch_block

42

 Figure 6.12: Execution Port Dispatch Block Covergroup

 Figure 6.13: Memory Port Dispatch Block Covergroup

43

Apart from the above cte implementation of coverage, port coverage was also implemented in

system verilog (in the design).

44

Chapter: 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The voltage droop occurring in the CPU has been explained and methods to minimize

the loss due to the droop has been proposed and verified. So we have seen that changing

the threshold level dynamically based on instruction (uop) data type and size helps in

reducing the dispatch blockage and improved performance.

The functional verification of the feature has done using CTE methodology which is

simulation based methodology. To get more confidence, formal verification can be

perform for the same.

7.2 Problem and Future Aspects

In cases when there are light instructions only or rare heavy instructions there is no

improvement at all. On the other hand when the instruction flow is flooded with heavy

instructions and no light instructions at all, in this case also there is no effect. So future

work can be done in this area for more improvement of performance.

45

References

[1]

Tao Wang, Student Member, IEEE, Chun Zhang, Jinjun Xiong, Member,
IEEE, Pei-Wen Luo, Liang-Chia Cheng, and Yiyu Shi “On the Optimal

Threshold Voltage Computation of On-Chip Noise Sensors”, IEEE

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS, VOL. 35, NO. 10, OCTOBER 2016

[2]

Fangming Ye, Farshad Firouzi, Yang Yang, Krishnendu Chakrabarty, and

Mehdi B. Tahoori, “On-Chip Voltage-Droop Prediction Using Support-

Vector Machines”, 2014 IEEE 32nd VLSI Test Symposium (VTS), 978-1-
4799-2611-4/14/$31.00 ©2014 IEEE

[3]

Shih-Yao Lin , Yen-Chun Fang , Yu-Ching Li , Yu-Cheng Liu , Tsung-Shan

Yang , Shang-Chien Lin ,Chien-Mo Li, Eric Jia-Wei Fang,” IR Drop

Prediction of ECO-Revised Circuits Using Machine Learning “,2018 IEEE
36th VLSI Test Symposium (VTS),IEEE Computer Society, 978-1-5386-

3774-6/18/$31.00 ©2018 IEEE

[4]

Yu-Cheng Liu1 , Cheng-Yu Han1 , Shih-Yao Lin1 , James Chien-Mo Li1,”

PSN-aware circuit test timing prediction using machine learning”, IET
Computers & Digital Techniques, IET Comput. Digit. Tech., 2017, Vol. 11

Iss. 2, pp. 60-67

[5]

Russ Joseph David Brooksy Margaret Martonosi, “Control Techniques to

Eliminate Voltage Emergencies in High Performance Processors”, IEEE
Computer Society Proceedings of the The Ninth International Symposium

on High-Performance Computer Architecture (HPCA-9’03) 1530-0897/02
$17.00 © 2002 IEEE

[6]

Virendra Singh, Nihar Hage, Rohini Gulve, Masahiro Fujita, “On Testing of
Superscalar Processors in Functional Mode for Delay Faults”, IEEE

Computer Society, 2380-6923/16 $31.00 © 2016 IEEE DOI
10.1109/VLSID.2017.58 2017 30th International Conference on VLSI

Design and 2017 16th International Conference on Embedded Systems

[7]

Matthew Travers, “CPU Power Consumption Experiments and Results
Analysis of Intel i7-4820K”, Technical Report Series NCL-EEE-MICRO-

TR-2015-197

[8]

Sheayun Lee, Andreas Ermedahl, Sang Lyul Min. "An Accurate Instruction-

Level Energy Consumption Model for Embedded RISC Processors",
Proceedings of the ACM SIGPLAN workshop on Languages, compilers and

tools for embedded systems - LCTES '01, 2001

[9]

G. Shen ; N. Patkar ; H. Ando ; D. Chang ; C. Chen ; Chien Chen ; F. Chen

; P. Forssell, “A 64b 4-issue out-of-order execution RISC processor”,

Proceedings ISSCC '95 - International Solid-State Circuits Conference,
10.1109/ISSCC.1995.535508 Publisher: IEEE

46

[10]

Indradeep Ghosh, Sekar, K. Boppana, v. Fujitsu Labs., America Inc.,

Sunnyvale, CA , (2002) “Design for verification at the register transfer
level”- Design Automation Conference, Proceedings of ASP-DAC 2002. 7th

Asia and South Pacific and the 15th International Conference on VLSI
Design

[11]

B. Solomon ; A. Mendelson ; R. Ronen ; D. Orenstien ; Y. Almog, “Micro-
operation cache: a power aware frontend for variable instruction length ISA”

, IEEE Transactions on Very Large Scale Integration (VLSI) Systems (
Volume: 11 , Issue: 5 , Oct. 2003)

[12]
Eduard Cerny. Synopsys, Inc. Marlborough, USA , Dmitry Korchemny Intel
Corp , (2007) “Using SystemVerilog Assertions for Creating Property-Based

Checkers”

[13]

Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Rimon,

Michael Vinov, and Avi Ziv, IBM Research Lab, Haifa, (2004) “Genesys-
Pro: Innovations in Test Program Generation for Functional Processor

Verification”

[14]

Hao Shen Yuzhuo Fu Sch. of Microelectron., Shanghai Jiao Tong Univ.,

China, (2005) “Priority directed test generation for functional verification
using neural networks”, Design Automation Conference, Proceedings of the

ASPDAC 2005.

[15]
Sapumal B. Wijeratne ; Nanda Siddaiah ; Sanu K. Mathew ; Mark A. Anders,

“A 9-GHz 65-nm Intel® Pentium 4 Processor Integer Execution Unit” ,
IEEE Journal of Solid-State Circuits (Volume: 42 , Issue: 1 , Jan. 2007)

[16]
Pei-Jun Ma, Yong Jiang, Kang Li, Jiang-Yi Shi “Functional Verification of

Network Processor” 978-1-4577-0321-8/11/$26.00 ©2011 IEEE

[17]

Bentley, B., Intel Corp., Hillsboro, OR, USA, (2002) “High level validation

of next-generation microprocessors”- High-Level Design Validation and
Test Workshop, 2002. Seventh IEEE International, 27-29 Oct. 2002

[18]

 Mostafa I. Soliman,“A VLIW architecture for executing multi-scalar/vector
instructions on unified datapath” 2015 IEEE 9th International Conference on

Intelligent Systems and Control (ISCO)

[19]

Prabhat Mishra, Dutt, N.; Krishnamurthy, N.; Ababir, M.S., (2004) “A

topdown methodology for microprocessor validation”- Design & Test of

Computers, IEEE, Volume 21, Issue 2, Mar-Apr 2004

[20]
Alon Gluska , (2003) “Coverage-Oriented Verification of Banias” –
IEEEDesign Automation Conference, Proceedings, 2-6 June 2003

[21]
Janick Bergeron, Writing testbenches: functional verification of HDL

models, Kluwer Academic Publishers, Norwell, MA, 2000

47

[22]

Kim, Doo-Hwan, and Jang-Eui Hong. "ESUMLEAF: a framework to

develop an energyefficient design model for embedded software", Software
& Systems Modeling, 2015.

[22]
Bob Bentley, Intel Corporation “Validating the Intel@ Pentium@ 4

Microprocessor” 2001 International Conference on Dependable Systems and

Networks

[23]

Swadhesh Kumar ; P K Singh, “A study of recent advances in cache
memories”, 2014 International Conference on Contemporary Computing and

Informatics (IC3I)

[24]

Pawel Gepner, “USING AVX2 INSTRUCTION SET TO INCREASE

PERFORMANCE OF HIGH PERFORMANCE COMPUTING CODE”,
Computing and Informatics, Vol. 36, 2017, 1001–1018, doi: 10.4149/cai

2017 5 1001

[25]

Thomas Jakobs, Gudula Runger, “On the energy consumption of Load/Store

AVX instructions”, Proceedings of the Federated Conference on Computer
Science and Information Systems pp. 319–327 DOI: 10.15439/2018F28

ISSN 2300-5963 ACSIS, Vol. 15

[26]

Vijayalakshmi Saravanan, Senthil Kumar Chandran, Sasikumar Punnekkat,

D. P. Kothari, “A Study on Factors Influencing Power Consumption in
Multithreaded and Multicore CPUs”, WSEAS TRANSACTIONS on

COMPUTERS, ISSN: 1109-2750, Issue 3, Volume 10, March 2011

[27]
Intel® 64 and IA-32 Architectures Software Developer’s Manuals,

https://software.intel.com/en-us/articles/intel-sdm#combined

[28]

Emily Blem, Jaikrishnan Menon, Karthikeyan Sankaralingam, "Power

struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and
x86architectures",https://ieeexplore.ieee.org/xpl/conhome/6518038/proceed

ing, IEEE Xplore: 03 June 2013INSPEC Accession Number: 13539004 DOI:
10.1109/HPCA.2013.6522302

[29]
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-

new-instructions/

[30]
"Power Estimation and Optimization Methodologies for VLIW-Based
Embedded Systems", Springer Nature, 2004

[31]

https://www.masterslair.com/vdroop-and-load-line-calibration-is-vdroop-

really-bad

14%
SIMILARITY INDEX

11%
INTERNET SOURCES

7%
PUBLICATIONS

5%
STUDENT PAPERS

1 3%

2 1%

3 1%

4 1%

5 1%

6 1%

7 1%

8 1%

9

the
ORIGINALITY REPORT

PRIMARY SOURCES

www.dac.com
Internet Source

www.intel.com.az
Internet Source

www.ics.forth.gr
Internet Source

Submitted to Malaviya National Institute of
Technology
Student Paper

download.intel.com
Internet Source

www.masterslair.com
Internet Source

epdf.tips
Internet Source

en.wikipedia.org
Internet Source

Mingsong Chen, Xiaoke Qin, Heon-Mo Koo,

1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

18

Prabhat Mishra. "System-Level Validation",
Springer Nature, 2013
Publicat ion

www.studymode.com
Internet Source

Submitted to Engineers Australia
Student Paper

Submitted to University of Liverpool
Student Paper

Submitted to Colorado Technical University
Online
Student Paper

geometra.descriptiva.es.wikimiki.org
Internet Source

Ming-Yi Sum, Shi-Yu Huang, Chia-Chien Weng,
Kai-Shuang Chang. "Accurate RT-level power
estimation using up-down encoding", The 2004
IEEE Asia-Pacif ic Conference on Circuits and
Systems, 2004. Proceedings., 2004
Publicat ion

dspace.uiu.ac.bd
Internet Source

www.projectsparadise.com
Internet Source

"Introduction", Functional Verif ication Coverage

<1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

28

Measurement and Analysis, 2004
Publicat ion

ethesis.nitrkl.ac.in
Internet Source

www.lib.kobe-u.ac.jp
Internet Source

Submitted to Cranfield University
Student Paper

www.primidi.com
Internet Source

annaunivnotes.f iles.wordpress.com
Internet Source

Sheayun Lee. "An Accurate Instruction-Level
Energy Consumption Model for Embedded
RISC Processors", ACM SIGPLAN Notices,
8/1/2001
Publicat ion

es.scribd.com
Internet Source

mmediego.blogspot.com
Internet Source

archive.org
Internet Source

Sheayun Lee, Andreas Ermedahl, Sang Lyul

	bhushan_1
	bhushan_2
	bhushan_3

