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 Abstract 

 

Over last few decades, there were exponential advances in the processor. In general 64-

bit processors do computation using small data storage registers, but due to the need to 

process large amount of data, in modern processors vector instructions have been 

added. These vector instructions operate on larger size of registers (128 bit, 256bit and 

512bit), thereby consuming large amount of power on chip. Due to their large power 

consumption nature these instructions e.g. SIMD (single instruction multiple data) and 

FMA (fused multiply accumulate) are called heavy instructions. These are very 

commonly used in multimedia applications like image processing and deep learning. 

When these instructions are being processed by processors large amount of current will 

be drawn leading to sudden drop of on-chip voltage which is called voltage droop. 

One such case occur in processors when there is random and frequent variation in 

incoming instruction load, causing di/dt variations ultimately leading to frequent on-

chip voltage level changes, which can cause circuit fault and ultimately chip burn also. 

To avoid voltage droop analog detectors have been placed which monitor the voltage 

level continuously and prevent the voltage from going beyond the level by stopping 

further execution of heavy instructions. But the problem with the analog detectors are 

that they are not proactive, once they detect the voltage around the threshold level only 

then they stop the heavy load execution. So to overcome this problem dynamic 

threshold prediction has been done which will detect the instructions based on the 

predicate in the reservation station and based the ratio of heavy to light instructions 

(instruction ratio) an optimum threshold level will be determined which will not fully 

block the execution dispatch ports. Light instructions will not be blocked from being 

executed while heavy instructions will wait until proper power level is available. It has 

been shown that this instruction based predicted dynamic threshold level minimizes the 

dispatch port blockage thus boosting processor performance by saving cycles. Further 

it has been shown how three level of threshold is better that single and fixed threshold. 
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Chapter: 1 

INTRODUCTION 

----------------------------------------------------------------------------------------- 

1.1 Introduction and Motivation 

Over the past six decades, there were exponential advances in semiconductor 

fabrication technology, as foretold by Moore’s law. These advances in turn have 

enabled the design of powerful processors residing in the computing devices that 

pervade our lives today. Our quest for fast and energy efficient devices has led us to 

processor designs that are among humankind’s most complex creations. 

Processor architects have been incorporating more and more features and operating 

modes into their designs over the years. The prevailing processor core design trends 

today utilize complicated execution structures for out of order execution and advanced 

power management techniques. In addition, designers are incorporating more and more 

application specific accelerators into their designs to squeeze out more performance 

under always tighter energy and power constraints. These accelerators reside on a chip 

alongside the processor cores, a memory subsystem, and peripheral components, all 

connected via an onchip interconnect. Each of these individual components are 

complex on their own, with several design blocks, power management features, and 

operating modes. 

Due to increasing demand of large data processing in domains like multimedia and deep 

learning fields, new instructions have been added in processors, these newly added 

instructions like SIMD(single instruction multiple data) and FMA(fused multiply 

addition) require large registers because they perform similar kind of operation on large 

data set, thereby consuming large amount of power. These are called AVX instructions 

(advanced vector instructions). These AVX instructions operate on large registers of 

128, 256 or 512-bit. These AVX instructions speed application because they can 

process more data per instruction. On the other hand simple processes like text editing 

uses smaller registers and consume less power. 

Voltage droop is major phenomenon in modern IC circuits and CPU’s operating at 

higher frequencies and lower technology nodes. When the incoming instructions are 

varying too frequently, the logic circuit draw high switching current when the load is 

high while in low load case it draw very less current, resulting in undesirable voltage 

droop phenomenon. As a consequence of this irregular and frequent current change in 
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circuits operating at high very high frequencies, the voltage droop causes delay and can 

lead to faults in circuit operation.  

For this dissertation purposes, the voltage droop occurring in the CPU has been 

explained and methods to avoid the loss due to the droop has been proposed and 

verified. 

 

1.2   Objective 

The purpose of this project is to avoid droop effect in CPU proactively. Analog 

detectors can detect the voltage level and switch off certain parts of circuit which 

require large amount of power. But this method is not proactive as only after detection 

of voltage level around the threshold value, it stops the execution flow, thereby 

affecting the performance due to multiple cycle execution blockage.  

So to avoid this situation we can design a module which will calculate the power needed 

in the upcoming cycles and will send a request to the PCU (power control unit) even 

before the execution of the instruction, thus proactively avoiding both droop effect and 

also boosting the performance by reducing the number of blocked cycles. And to show 

this various concepts like cycle energy cost and port dispatch block etc has been 

discussed. 

1.3   Thesis Organisation 

This thesis is organized in total 7 chapters including this introduction chapter. 

Following the introduction, chapter 2 gives the basic idea about intel cpu architecture, 

An overview of the art of verification its (will give a glimpse of the related works 

through providing some literature analysis on this topic) 

In chapter 3, there is discussion about voltage droop effect in general. 

In chapter 4, there is detailed discussion about power consuming instructions and non 

power consuming instructions. There is brief discussion about droop phenomenon 

happening in processors. 

In chapter 5, various solutions to mitigate voltage droop problem in processors are 

discussed and advantages and shortcomings of these methods has been discussed. 

In chapter 6, describes the proposed dynamic threshold prediction to mitigate the 

voltage droop phenomenon. Some calculations related to this are done. There are some 

tables which are showing the comparison of proposed design and the old design. 
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Finally in chapter 7, conclusion of whole project and future work which can be done 

after this work is explained. 
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Chapter: 2 

LITERATURE REVIEW 

----------------------------------------------------------------------------------------- 

This chapter provides some basic information and literature survey which is required 

in the next chapters. In the first section, there is a general overview of Intel x86 

Architecture and out of order based processor, its advantages and detailed structure of 

Out of Order unit and the next section provides basics of instruction set architecture. 

The next section introduces energy consumption at various abstraction layers in 

processors. And in the next section, there is an overview of the importance of the 

functional validation aspect of design. 

2.1 Intel CPU Architecture (x86 uArch) 

It is a very common myth that Intel x86-64 processors are power consuming due to 

their CICS architecture (complex instruction set).But Intel processors are not fully 

based on CISC architecture it is a mixed combination of both CISC and RISC.[27] 

2.1.1 RISC Vs CISC 

 CISC RISC  uCode CISC &OOO 

Memory req Smaller Larger Smaller 

Decode Complex Simple Complex 

Registers Fewer More More 

Clock speed Slower  Faster Faster 

Inst. Complexity Complex  Simple Simple 

   

        Table 2.1. Comparison RISC vs. CISC [28] 

 

So to increase the speed and build a very fast RISC machine 

Translate from IA (CISC) to RISC breaking the complex instructions in to simpler 

micro-operations(called uops - micro-operation).This work is done internally by the out 

of order and micro instruction translation engine. 

In the next page there are figures showing the two types of execution. 
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           Figure 2.1:  Simple Processor Execution Phases[27] 

 

 

 

 

   
 

       Figure 2.2: uCode CISC & OOO [9] 
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2.1.2 Intel core x86 architecture  

 

 
 

 

  Figure 2.3: Intel Core (CPU) overview 

 

Intel x86 core consists of mainly five units- 

i- FE/MSID-(Front End/ Micro Sequence Instruction Decide)- This unit is 

responsible for decode and fetch of instructions from the memory and 

converting the complex instructions into simpler micro-operations and 

sending the uops to out of order unit through instruction queue.[11] 

ii- Out of Order (OOO)- This is the most complex block in core. This block 

is responsible for sending the uops to execution unit in out of order fashion 

based on the resource availability of resources and in the end in order 

retirement of the instructions.[9] 

iii- Execution Unit- This is the most stable unit, it gets all the data from out of 

order and memory unit and execute the uops in the corresponding function 

block and send them back to ooo and memory.[15] 

iv- MEU- Memory Execution Unit- this unit is responsible for providing 

operand and other necessary data to various units in the core. 
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v- MLC- Mid Level Cache- this block is responsible for holding speculative 

data which may be required in the upcoming cycles.[23] 

2.1.3 Working principle of Out of Order based Processor 

 
 

       Figure2.4: Out of Order Execution General Overview [18] 

 

 

2.2 Overview of Out of Order Unit  

2.2.1 Out of Order Unit Structure 

The Out-of-Order (OOO) unit is responsible for dispatching uops for execution out of 

program order, based on source availability, and for marshalling them back into 

program order for retirement. 
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Allocation 

The OOO cluster receives uops from the Front-End (FE).These uops are allocated 

pipelined resources as per their requirement. The uop allocation is stalled if the required 

resources are not available. The sources and the destination registers of the uops are 

renamed to the Reorder Buffer (ROB) entries, which serves as a register file for reading 

and writing uops results.  

Reservation Station 

Next the uops are written into the Reservation Stations (RS). The RS first checks for 

sources location – the sources may be in the RS (not produced and therefore still tracked 

by the RS table) or in the Physical Register File (PRF). The uops sources are tagged 

with the appropriate connection to the producing uops that are still in the RS or marked 

as valid if the sources are in the PRF. If the source values are not available from the 

PRF the uops will wait in the RS for them to become available. These values become 

available when the uops producing them execute (from bypass), or when they write 

their results back into the PRF. In all these case, the tracking scheme in the RS will 

indicate that a source is valid for all its consumers in the RS. The value can be used 

when in one of the bypass levels or when it is available for the PRF. The uops with the 

available sources are dispatched from the RS for execution to the Execution Cluster 

according to a FIFO scheme that is part of the dispatch logic. For loads and stores the 

relevant information is sent to the Memory Cluster on dispatch. 

Re-Order Buffer (ROB) 

After execution, uops write their results: the data and arithmetic flags are written back 

into the PRF and fault data and valid information are written back into the ROB. The 

executed uops are retired in the original program order from the ROB. If uops executed 

correctly and no event needed to be handled then the uops are retired successfully. 

Otherwise, the pipeline is cleared and appropriate event handler is invoked to service 

the event. 

2.2.2 Performance gain due to branch prediction and out of order 

A simple example to show the benefits of out of order processing and branch 

prediction: 
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A :  loop: x0  [x1][0]   (data read) 

B :  x0  x0*x2   (multiply) 

C :  x1  x0   (writeback) 

D :  x1  [x1][1]   (pointer increment) 

E :     entrance: if([x] is != nil) goto loop (branch prediction) 

 

 

Suppose we have 2 stage pipelined Cache and 4 stage pipelined floating point 

execution.  

 

  

  

 

 

 

 

 

 

Case I - Without out of order and branch prediction – as shown into the figure it takes 

total 12 cycles to complete one iteration, without branch prediction and out of order 

execution.  

Stage/Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 

fetch A1 B1 C1 D1 E1         

issue  A1 B1 C1 D1 E1        

execute1   A1  B1    C1 D1  E1  

              

execute2    A1  B1    C1 D1   

              

execute3       B1       

              

execute4        B1      

 

Figure 2.5: 12 cycles per iteration (without out of order and branch prediction) 

 

 

 

 

 

 

 

Cache_Stage1 

Cache_Stage2 

 

 

FPU_STAGE1 

FPU_STAGE2 

FPU_STAGE3 

FPU_STAGE4 
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Case II - With out of order and without branch prediction – it takes 8 cycles for the 

example thus making it faster than the first case. 

Stage/Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 

fetch A1 B1 C1 D1 E1         

issue  A1 B1 C1 D1 E1        

execute1   A1  B1 D1  E1 C1     

              

execute2    A1  B1 D1   C1    

              

execute3       B1       

              

execute4        B1      

 

 

 

         Figure 2.6: 8 cycles per iteration (with out of order and no branch prediction) 

 

 

Case III – With out of order and branch prediction – it takes only 5 cycle to complete 

one iteration, so it makes the processor very fast. 

 
        Figure 2.7: 5 cycles per iteration (out of order with branch prediction) 

 

2.3 Energy Consumption Estimation at different levels of Abstraction 

Layer 

There are various ways to look any digital design or processor in general, the same 

system and its behavior can be described from different perspective at different of level 

of abstraction. Similarly, in a processor the energy consumption can be estimated at 

different levels of abstraction. In the following section an overview of energy 

  8 cycles 
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consumption estimation at different abstraction level is provided, with the advantages 

and disadvantages at various abstraction layers. 

                 

            Figure 2.8: Abstraction Layers of a Processor 

2.3.1 Energy Consumption at Source-Code Abstraction Level  

The top most or highest level of abstraction level is source code level in which energy 

consumption analysis can be done. Source code level is the easiest way to estimate the 

energy consumption because source codes are easily available and other information 

needed related to processor like memory transfer and memory accesses and number of 

logical or arithmetic operations performed can be roughly estimated through any high 

level language like C++ or java. But this not the best way to analyze the energy 

consumption of any hardware, as this is the top most level of abstraction and it’s 

difficult to establish a direct relationship between the operation happening at hardware 

level and source code. There are different kind of compilers available in market and 

each of these are specific to the programming language and to improve the compilation 

performance these compilers often target a specific type of hardware and moreover 

compilers are often designed optimized e.g. instruction scheduling and unrolling of 

loops to decrease compilation time. And avoiding the loop and execution path is 

difficult during energy cost estimation. Very less research in the area of energy cost 
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estimation at source code level has been done. In [23] before estimation of energy cost 

path information has been analysis has been done. 

2.3.2 Energy Consumption at Functional Level  

A processor or any digital system is a combination of various functional blocks. 

Estimation of the energy consumption of these individual blocks can be performed and 

the summation of these individual block energy consumption will result in the total 

energy consumption of the system. The energy consumption at this level is generally 

estimated through either direct measurement or through simulation. But while 

calculating and modelling the total energy computation of the processor several factors 

need to been taken care like on-chip data transfer between the functional blocks and 

clock speed (frequency) and the number of functional unit blocks available to process 

same operation. And these factors are not static and the actual value can be only 

determined after task execution. Therefore this model of energy consumption can be 

applied to any processor and the complexity is also moderate at this level. In [22] energy 

consumption model has been developed which is a hybrid model of the two levels 

functional level and instruction level. 

2.3.3 Energy Consumption at Instruction-Level 

Instruction Set Architecture (ISA) is the mid-level in the abstraction layer of a 

processor. Since every instruction is related to some operation or functional block in a 

processor. There are many models available which estimate the energy consumption at 

instruction level. The estimation of energy consumption at instruction level basically 

done using either any instruction level simulator or by analyzing the assembly code of 

the. For each and every instruction estimation of energy cost is estimated. These 

estimations can be done into two fashions with taking design details into consideration 

and without taking design details into consideration. For more accurate modelling of 

energy cost design details like pipelining, cache miss/hit and other things should be 

taken care of. Estimation of base and scale energy cost and from these total energy cost 

of instructions has been calculated in Chapter 4.[8] 

2.3.4 Energy Consumption at RTL (Register Transfer Level) 

RT-level abstraction level refers to digital signal flow between hardware registers, 

memory, bus, combinational logic devices and logic unit etc. VHDL (VHSIC Hardware 

Description Language), System Verilog , VHDL,Verilog, and SystemC [14] are, fairly 



13 
 

often, used to describe RT abstraction level. RT-level energy estimation is used to 

quickly predict the total switching activity in logic design compared to the simulation 

speed of gate-level estimation. In this technique, switching activity profiles, circuit 

modules or control signals are integrated to construct macro-module which can be 

parameterized in terms of the supply voltage level, the internal organization of the 

processor and the input bus width etc.. In general, the RT-level energy estimation can 

be classified into two types. The first type is to use a simulator to extract actual 

parameters for macro-model equation. The second type is based on the static analysis 

of the structure of the circuit so that parameters for macro-model equation could be 

extracted. 

2.3.5 Energy Consumption at Gate-Level 

Gate-level describes the operation of the circuit in terms of a structural interconnection 

of boolean logic gates such as nor, add, and xor etc.. The design of gate-level is 

represented as a netlist, which describes the connectivity of an electronic design. Gate-

level simulation (GLS) is often used at the early design stage. The simulation is 

performed to measure switching activity of every net of circuit. In order to perform 

simulation, technological information which provides timing, power information of the 

processor and Gate-level netlist that contains all of the logic and delays of the final 

system should be provided to the simulator. The drawbacks of this method are that the 

simulation is time consuming and Gate-level netlist is confidential for most of 

manufacturers.[30] 

2.3.6 Transistor-Level 

As the name suggests, transistor level describes the operating behavior of circuit 

elements such as transistor, capacitors, inductors and resistors. With the rapid progress 

of semiconductor technology, the transistor count on a single chip has reached 

2,000,000,000 in latest ARM and 1,400,000,000 latest Intel i7. In this level, transistor 

is often modeled as a device with only two states, “on” and “off”. In “off” state the 

transistor is modeled as an open circuit, while in the “on” state, the transistor is modeled 

by a linear resistance [14]. Transistor level power estimation employs simulation to 

track the current drawn from the power supply. Only a few studies have been made at 

this level, because the simulation is time consuming and it requires the knowledge of 

the circuit layout. 
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Verification of a Design 

2.4 Functional Verification  

Functional verification can expose functional logic errors in the hardware designs 

which are described in behavioral model, register transfer level model, gate level model, 

or switch level model. Functional errors are introduced due to various factors including 

careless coding, misinterpretation of the specification, microarchitecture design 

complexity, corner cases, and so on. If any functional bug is found in a chip already 

fabricated, the error needs to be corrected and the modified version of the design needs 

to be fabricated again, which is very expensive. In the worst case, bug fixing after 

delivery to customers will entail a very costly replacement as well as re-fabrication 

expenses. For example, in 1994 Intel’s Pentium processor had a functional error called 

FDIV bug and the company had to spend a staggering cost to replace the faulty 

processors [21][8] 

2.5 CTE Methodology 

One of the fundamental decisions that Intel took early in the core processor 

development program was to develop Cluster Test Environments (CTEs) and maintain 

them for the life of the project. There is a CTE for each of the clusters into which the 

processor design is logically subdivided. These CTEs are groupings of logically related 

units (e.g. all the execution units of the machine constitute one CTE) surrounded by 

code that emulates the interfaces to adjacent units outside of the cluster and provides 

an environment for creating and running tests and checking results. The CTEs took a 

good deal of effort to develop and maintain, and were themselves a source of a 

significant number of bugs. However, they provided a number of key advantages: First 

and foremost, they provided controllability that was otherwise lacking at the full-chip 

level. An out of order, speculative execution engine like the processor is inherently 

difficult to control at the instruction set architecture level. Assembly language 

instructions (macroinstructions) are broken down by the machine into sequences of 

microinstructions that may be executed in any order relative to one another and to 

microinstructions from other preceding or following macroinstructions. Trying to 

produce precise micro architectural behavior from macroinstruction sequences is like 

pushing on a piece of string. This problem is particularly acute for the back end of the 

machine the memory and bus clusters which lie beyond the out-of-order section of the 

microarchitecture pipeline. CTEs allowed to provoke specific micro architectural 
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behavior on demand. Second, CTEs allowed to make significant strides in early 

verification of the processor Structural Register Transfer Level (SRTL) even before a 

full-chip model was available. Integrating and debugging all the logic and microcode 

needed to produce even a minimally functional full-chip model was a major 

undertaking. Because of the CTEs, testing could be started as soon as there was released 

code in a particular unit, long before trials at the full-chip level. Even after a full-chip 

model, the CTEs essentially decoupled validation of individual unit features from the 

health of the fullchip model. 

Cluster test environment (CTE) methodology is composed of stimulus generation, 

checkers and coverage for Intel processor cores. There is a CTE for each of the clusters 

into which the processor design. These CTEs are groupings of logically related units 

(e.g. all the execution units of the machine constitute one CTE) surrounded by code that 

emulates the interfaces to adjacent units outside of the cluster and provides an 

environment for creating and running tests and checking results. 

i- Testbench Environment 

ii- Reference Model 

iii- Checker  

iv- Coverage 

v- Monitor 

vi- Driver/sequencer/injection randomization 

Validation Phases of Specman: 

i- Elaborate 

ii- Model Build  

iii- Connect 

iv- Model Run 

v- Post run 
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                             Figure 2.9: General Verification Environment 
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Chapter: 3 

OVERVIEW OF DROOP PHENOMENON 

----------------------------------------------------------------------------------------- 

In Electrical system, a sudden large increase in Current will cause a drop in the voltage. 

The size of the drop depends on a lot of parameters including: the size of the current 

increase, the duration of the increase, the capacitance and resistance of the system and 

the power supply. 

 

 

 

                          
 

         Figure 3.1:  Voltage Droop in Circuit 

 

 

3.1 Voltage Droop 

Voltage droop is major phenomenon in modern IC circuits and CPU’s operating at 

higher frequencies and lower technology nodes. When the logic circuit due to high load 

draw high switching current, undesirable voltage droop occurs. 

As a consequence of this irregular and frequent current change in circuits operating at 

high very high frequencies due to irregular load, the voltage droop causes delay and can 

lead to faults in circuit operation.  

To tackle this problem guardbands are used (extra timing (cycle) addition), but this is 

the most conservative way to tackle the problem, because the guardbands are usually 

calculated keeping in mind the worst case scenario, so it can lead to significant power 

and performance loss in circuits operating at very high frequencies and modern CPU’s 

where both power and performance are the major factor.    
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             Figure 3.2: Voltage Droop in Processor Due to Load Change [31] 

There is significant voltage drop in CPU when it goes from an idle state to a load 

state. This sudden and large voltage drop is called voltage droop.       

3.2 Voltage Droop is Designed to Help 

Voltage droop is an inbuilt in feature of Intel Processors and it is designed to make 

sure the voltage level never goes over beyond the specified level what has been set in 

the BIOS. This is necessary because there is always an overshoot whenever there is a 

voltage change due to irregular load change(variations), and without voltage droop, 

the overshoot could make the voltage higher than what has been set in the BIOS (for a 

split second), it  may damage the CPU. 
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Chapter: 4 

POWER CONSUMING UOP’s  

NON-POWER CONSUMING UOP’s  

AND VOLTAGE DROOP IN CPU 

----------------------------------------------------------------------------------------- 

 

In general processors do computation using small data storage registers.64-bit registers 

are frequently used On 64-bit processors. But due to the need to large/huge data 

processing in most of the modern processors vector instructions have been added and 

these vector instructions operate on larger size of registers (128-bit, 256-bit, 512-bit). 

Intel’s latest processors support AVX-512 instructions (advanced vector extension 

instructions). These AVX instructions operate on large registers of 128, 256 or 512-bit. 

These AVX instructions speed some application because they can process more data 

per instruction. 

Some of these instructions use a lot of power and generate lot of heat. To keep power 

usage within bounds, Intel reduces the frequency of the cores dynamically. This 

frequency reduction (throttling) happens in any case when the processor uses too much 

power or becomes too hot. However, there are also deterministic frequency reductions 

based specifically on which instructions you use and on how many cores are active 

(downclocking). Indeed, when any 512-bit instruction is used, there is a moderate 

reduction in speed, and if a core uses the heaviest of these instructions in a sustained 

way, the core may run much slower. Furthermore, the slowdown is usually worse when 

more cores use these new instructions. In the worst case, you might be running at half 

the advertised frequency and thus your whole application could run slower.  

There are heavy and light instructions. Heavy instructions are those involving floating 

point operations or integer multiplications (since these execute on the floating point 

unit). Light instructions include integer operations other than multiplication, logical 

operations, data shuffling (such as vpermw and vpermd) and so forth. Heavy 

instructions are common in deep learning, numerical analysis, high performance 

computing, and some cryptography (i.e., multiplication-based hashing). Light 

instructions tend to dominate in text processing, fast compression routines, vectorized 

implementations of library routines such as memcpyin C or System.arrayCopy in Java, 

and so forth. 
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Intel cores can run in one of three modes: license 0 (L0) is the fastest (and is associated 

with the turbo frequencies, license 1 (L1) is slower and license 2 (L2) is the slowest. 

To get into license 2, you need sustained use of heavy 512-bit instructions, means 

approximately one such instruction every cycle. Otherwise, any other 512-bit 

instructions will move the core to L1. 

The downclocking is determined on a per-core basis based on the license and the total 

number of active cores, on the same CPU socket, irrespective of the license of the other 

cores. That is, to determine the frequency of core under downclocking, you need only 

to know its license (determined by the type of instructions it runs) and count the number 

of cores where code is running. Thus you cannot downclock other cores on the same 

socket, other than the sibling logical core when hyperthreading is used, merely by 

running heavy and sustained AVX-512 instructions on one core.  

4.1 Grouping the Instructions Based on Their Minimum and 

Maximum Energy Consumption 

The energy consumption is the lowest when there are no RAW dependencies between 

instructions and the highest when there are. The groups we have created for this purpose 

are: 

• Simple Integer: Simple integer instructions are integer arithmetic and logic 

instructions besides multiplications and divisions and also all register movement, and 

compare and test instructions for integers. 

• Simple float/double: These are all float and double additions and subtractions along 

with register movement and compare. 

• Multiplication: Multiplications for integer, float and double operands. 

• Division: Divisions for integer, float and double operands. 

• Load: Loads for integer, float and double operands for different cache level access. 

• Store: Stores for integer, float and double operands for different cache level access. 

 

4.2 Instructions Consuming Large Amount of Power 

Following are the major vector instruction which require large amount of power in 

execution: 

SIMD – Single Instruction Multiple Data 

This an extension of x86 architecture to increase the performance when exactly same 

type of operations needs to be performed on multiple set of data objects. Its size can be 
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of 128, 256, 512 bits.  Example- digital signal processing (DSP) and graphics and 

multimedia processing. 

SIMD is applicable to common tasks such as adjusting the contrast in a digital image or 

adjusting the volume of digital audio. Modern CPU’s include SIMD instruction to 

improve multimedia uses performance. 

Applications where SIMD can be used is – when the same value needs to be added to a 

large number of data set or points, or a common operation needs to performed in any 

application. Like changing the contrast of image. Each pixel of the image consists of 

three values for brightness red, green and blue. To change the brightness, first the R, G 

and B values are read from memory, the required values are added to the corresponding 

components, and the resulting value is written back to destination. 

FMA- Fused Multiply Addition (Multiply accumulate operation) 

This has 3 operands, fused uop is very useful where addition and multiplication is 

required simultaneously to get the final value  

   a= b.c +d 

It is also be of 128, 256, 512 bits.[29] 

Load Uop’s –  

High priority has been given to load uops because in reservation station uops waits for 

the operands to be available (this increases the IPC gain). 

Store Uop’s -   

Store uops have higher energy cost relative to load uops because, cache system is 

prioritized for load uops. Storage to farthest cache doesn’t happen immediately, because 

we may require the data in later cycles by other ups as source, so store takes more cycle 

than load uops. 

4.3 Voltage Droop in CPU 

One such case of sudden voltage drop can occur in modern CPU’s due to irregular 

current variation happening due to the incoming instruction’s (uop) of varying data type 

and size. This is a major concern after the addition of AVX and other power hungry 

instructions, which require large amount of current, causing the voltage to go below the 

specified level.  
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4.4. Energy per Instruction (EPI)  

It is a measure of the amount of energy expended by a microprocessor for each 

instruction that the microprocessor executes. There are various factors that affect a 

microprocessor’s EPI. Energy per instruction (EPI) is a measure of the power efficiency 

of a microprocessor. It records the average amount of energy expended per instruction 

processed by the microprocessor. EPI is measured in Joules/instruction. EPI is related 

to other commonly used power-efficiency metrics performance/watt and MIPS/watt. 

Specifically, EPI is the reciprocal of IPS/watt. This relationship is shown in the 

following equation: 

(Joules/Instruction) = (Joules/Second)/(Instructions/Second) = Watt/IPS 

 Now we consider the EPI of a practical microprocessor. EPI is a function of several 

factors: 

1) Design (microarchitecture, logic, circuits, and layout) 

2) Process technology 

3) Environment (supply voltage) 

4.4.1 Instruction (uop) Energy Cost:  

Energy cost of uops : 

Average energy cost of uop’s depends on its type and size: 

Which is basically dependent on following factors: 

i- Number of cycles required by the uop to complete the execution 

ii- Resources required for the specific uop 

iii-     And other factors like number of dispatch ports available, cache miss/hit for that     

particular type of uop. 

Type of uops: 

A- Executable uops 

i- X86 uops 

ii- SIMD/AVX 

iii- FMA 

B- Load/store uops 

i- Load  

ii- Store 
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Size of uops: 

i- 128 

ii- 256 

iii- 512 

 

UOP No. of Cycles required Dispatch ports available 

FMA 4/6 0/1/5(3) 

SIMD 1/3 0/1(2) 

Load -  2/3(2) 

Store -  7/8(2) 

 

         Table 4.1: Number of Cycles Required by Uops and Available Dispatch Ports 

So basically uop energy cost is : 

Uop Energy Cost = aA+bB+cC 

where a,b,c are weightage and A= number of cycles, B= resource factor, 

C= number of dispatch ports available. 

4.4.2 Energy Cost Calculation 

To calculate the total energy cost of a particular type of uop we need the base and scale 

values 

4.4.2.1 Base Energy Cost 

For each type of uops type we have some base value of energy cost which is calculated 

using instruction level modelling and simulation of the design. 

4.4.2.2 Scaling Factor:  

Each type of uop under consideration can be of either 128 bit, 256 bit or 512 bit, so 

corresponding scaling to the base energy cost of that particular type based on data size 

of uops need to done to obtain total energy cost. 

4.4.2.3 Total energy cost of uop  

Total energy cost of uop is a linear function of base energy cost and scale factor, it can 

be obtained by following formula. 

           Uop energy cost  =  base energy cost +multiplication factor(shift)* scale 

 

 

 



24 
 

 

 

UOP Base value Scale 

Value 

Left Shift(Mul. 

Fact.) 

Energy Cost 

X86/INT * * * * 

SIMD_128 1 1 1 1+1*1=2 

SIMD_256   2 1+1*2=3 

SIMD_512   3 1+1*4=5 

FMA_128 2 3 1 2+1*3=5 

FMA_256   2 2+2*3=8 

FMA_512   3 2+4*3=14 

LOAD_128 1 1 0 1+0*1=1 

LOAD_256   1 1+1*1=2 

LOAD_512   2 1+2*1=3 

STORE_128 1 3 0 1+0*3=1 

STORE_256   1 1+1*3=4 

STORE_512   2 1+2*3=7 

 

                      Table 4.2: Base, Scale and Multiplication Factor of Various Uops 

 

 

 

 

 
 

                     Figure 4.1: Energy Cost of Various Data Type and Data Size uops 
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        Figure 4.2: Individual uop’s Energy Cost and Cycle Energy Cost 

 

4.5 Cycle Energy Cost  

The total energy consumed in a cycle is the sum of the energy cost of individual uops 

dispatched in that particular cycle. As a uop can be dispatched through pre-defined ports 

only, so prior to dispatch that ports should not be gated. 

Cycle Energy Cost =  

(Number of Dispatched uop to Execution Unit Ports in the Cycle)*(Energy Cost of the uop) 

        + (Number of load/store uops)*(Energy Cost) 

 

 

 

           Figure 4.3: Dispatch Ports of a Processor 
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4.5.1 Calculating Cycle Energy Cost for Randomly Incoming Uops 

In this section for randomly incoming stream of uops, from individual port energy cost 

cycle energy cost has been calculated. 

 
    

Figure 4.4: Cycle Energy Cost(Randomly incoming uops of various energy cost on 

different dispatch ports and total energy cost of particular cycle) 

 

 

 
 

                    Figure 4.5: Cycle Energy Cost Calculation 

 

 

Cycle/Port 1 2 3 4 5 

Port0 0 3 2 3 - 

Port1 0 0 3 0 - 

Port5 3 3 3 3 - 

Port2 0 0 0 0 - 

Port3 0 0 0 0 - 

Port7 0 0 0 0 - 

Cycle 

Energy Cost 

- 3 6 8 6 

 

                                  Table 4.3: Cycle Energy Cost Calculation 
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4.6 Variation in Cycle Energy Cost Cause of Droop in CPU 

 

 

     Figure 4.6: Energy Cost vs Time For randomly Incoming Uops  

 

                Figure 4.7: Variation in Cycle Energy Cost with Time 

 

As we can see that the energy cost is varying rapidly over the cycles, this is the reason 

for voltage droop. 

4.6.1 Using FIFO to Calculate Average Value of Energy Cost Over a Period of 

Cycles 

 

 
     Figure 4.8: FIFO 
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Droop Calculation: 

It has three parts  

1- DC value 

2- AC part  

i- Positive part 

ii- Negative part 

DC (average) part calculation: 

Dc value is the normalized value of energy cost over a number of cycles (depends on 

the FIFO size). 

AC part 

i- Positive part-  This is the energy cost of the present cycle which will be get 

added to the FIFO(pushed to FIFO). 

ii- Negative part- This is the energy cost of the oldest entry of the FIFO which 

will be get subtracted from the FIFO(dropped out of the FIFO). 

   Total (instantaneous) Energy Cost = DC Part + AC Positive Part  - AC Negative 

Part 

 

Example  

i- Overshoot Case-  

Let us take the FIFO size = 30 

And energy cost of last 30 cycles are (FIFO entries) : <30 entries of FIFO> 

DC part = Average of total sum the elements of FIFO =  ∑ FIFOi/30 

Let us take the dc value -12.  

AC positive part = present cycle energy cost 

Let us take this value = 18 

AC negative part = oldest cycle energy cost 

Let us take this value = 10 

So Total (instantaneous) Energy Cost = DC Part + AC sPositive Part   

                   - AC Negative Part  

       = 12.xx+18-10 

       = 20.xx(overshoot case) 
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ii- Undershoot Case-  

DC part = ∑ FIFO(i)/30  

Let us take the dc value -12.  

AC positive part = present cycle energy cost 

Let us take this value = 8 

AC negative part = oldest cycle energy cost 

Let us take this value = 16 

So Total (instantaneous) Energy Cost = DC Part + AC Positive_Part  -  

        AC Negative_Part  

       = 12.xx+8-16 

       = 4.xx(undershoot case) 

So we have overshoot and undershoot cases when there is sudden and continuous 

change in the data type and size of the uops, this causes rapid di/dt ratio(current) 

fluctuations(variation). This rapid variations in current can cause irregular voltage drop 

and may result in unnecessary heating of the chip.  

This problem is more severe when the incoming uops data size is varying too often.  

E.g. – if in the present cycle energy cost is 20, in the next cycle it becomes 40 and in 

the next to next cycle it becomes 10. Thus the current variation is happening rapidly, 

this will lead to voltage droop happening too frequently causing circuit faults.  
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Chapter: 5  

SOLUTION TO DROOP PROBLEM 

----------------------------------------------------------------------------- 

Solution to the Droop Problem 

To prevent this voltage droop following methods have been there. First is analog 

detection and the other is fixed value of voltage threshold.  

5.1  Placing Analog Detectors 

To detect the instantaneous voltage level and prevent the voltage from going beyond 

the certain limits analog detectors can be placed which detect the sudden voltage 

drop(droop) happening due to instruction load variation and stop the execution of the 

upcoming instructions, thus avoiding the voltage droop problem in processors. 

Problem with Analog Detectors 

The main problem with analog detectors is when any voltage droop is detected in 

processors, it will block the execution of all instructions irrespective of the instruction 

data type and size, so it leads to full hang scenario. Once voltage droop is detected, the 

execution of heavy instructions stops until there is enough power available. 

As this method is based on detecting the voltage droop after the execution of 

instructions. 

And moreover the instruction flow need to be stopped, this can be done through 

blocking the dispatch ports (ports used by heavy instruction) which will ultimately 

block the flow of other non power consuming instructions also, leading to performance 

loss. 

5.2 Threshold Level 

To avoid this we may limit the di/dt to some predetermined value or threshold level. 

The value of threshold depends on the maximum allowed current variation. The 

optimum value of threshold depends on various factors. The value should be like this 

that should not be too less, because if threshold level is too low then the blockage 

probability is too high leading to too often dispatch port block and performance loss. 

On the other hand if the threshold level is high then most of the time all gates and stacks 

are open leading to power dissipation and heating. Optimum value is determined by 

PCU (power control unit) 
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5.2.1 Single (Fixed) Threshold 

Based on various factors like maximum available energy in a cycle and lowest possible 

voltage for proper operation an optimum value of threshold is decided, if the energy 

cost sum exceeds this threshold then dispatch will be blocked until more power become 

available. 

 

    Figure 5.1: Single Level Threshold (Fixed Threshold) 

 

5.2.2 Calculating Blockage Percentage for single and fixed value of threshold:  

In this section we will be calculating the execution and memory dispatch port block 

percentage for randomly incoming uops and threshold level of 128.  

 
       

         Figure 5.2 (a) 
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     Figure 5.2 (b) 

 

 

 
                

    Figure 5.2 (c) 

 

 

 
     

   Figure 5.2 (d) 

 

Figure 5.2 a, b, c, d showing di/dt stall for different values of threshold (when energy 

cost exceeds the threshold level) 

 

 

 

Figure 5.3: di/dt stall (block) for randomly incoming uops (instructions) and for single 

(fixed) value of threshold of 128 
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End cycle Start Cycle Cycle 

Difference 

End cycle Start Cycle Cycle 

Difference 

End cycle Start Cycle Cycle 

Difference 

318550 0 318550 1513750 1486550 27200 2873750 2825750 48000 

   334550 318550 16000 1712150 1513750 198400 2979350 2873750 105600 

424150 334550 89600 1745750 1712150 33600 2980950 2979350 1600 

587350 424150 163200 1764950 1745750 19200 2982550 2980950 1600 

740950 587350 153600 1809750 1764950 44800 3038550 2982550 56000 

774550 740950 33600 1900950 1809750 91200 3177750 3038550 139200 

873750 774550 99200 1961750 1900950 60800 3188950 3177750 11200 

1012950 873750 139200 1984150 1961750 22400 3192150 3188950 3200 

1169750 1012950 156800 2011350 1984150 27200 3216150 3192150 24000 

1190550 1169750 20800 2044950 2011350 33600 3220950 3216150 4800 

1238550 1190550 48000 2081750 2044950 36800 3233750 3220950 12800 

1251350 1238550 12800 2110550 2081750 28800 3288150 3233750 54400 

1268950 1251350 17600 2147350 2110550 36800 3326550 3288150 38400 

1286550 1268950 17600 2382550 2147350 235200 3347350 3326550 20800 

1320150 1286550 33600 2435350 2382550 52800 3406550 3347350 59200 

1385750 1320150 65600 2435350 2382550 52800 3552150 3406550 145600 

1419350 1385750 33600 2652950 2435350 217600 unblock 1918550 Total 

1486550 1419350 67200 2825750 2652950 172800 blocked 1633600 3552150 

 

  Table 5.1: Blocked and Unblocked Cycles for Fixed Threshold 

 

So for this particular test (with randomized incoming instructions and single threshold) 

Blockage percentage can be calculated by  

 

 

 blockage percentage =
number of cycles dispatch is blocked

total number of cycles (test ran)
 

 

 

                                                    =
1633600

3552150
  x 100 = 45.98% 

 

 

 So the dispatch is blocked for approximately half of the total running time cycle, 

affecting the processor performance drastically. 

 

 So if the fixed threshold level to lower some value then the blockage percentage will 

increase, more performance loss. 

 

 if the threshold value is set to some higher value then it requires higher power 

licenses all the time leading to power loss(and this become more severe when the 

incoming instructions (uops) are light or rare heavy instructions). 
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Chapter: 6 

INSTRUCTION AWARE THRESHOLD VARITION 

----------------------------------------------------------------------------- 

6.1 Disadvantages of Single and Fixed Threshold Level 

So as per the result in the previous chapter, the instruction dispatch is blocked for 

approximately half of the total running time cycle, affecting the processor performance 

drastically. If the fixed threshold level is decreased to lower some value then the 

blockage percentage will increase, more performance loss. And if the threshold value  

is set to some higher value then it requires higher power licenses all the time leading to 

power loss, this become more severe when the incoming instructions (uops) are light or 

mixed with rare heavy instructions. 

6.2  Proposed Method 

This method is based on detecting the data type and size of instructions present in the 

reservation station and based on that and available power of a particular cycle 

calculating(dynamically predicting) the optimum threshold level thus preventing 

further execution of heavy instructions smartly, even before the execution of instruction 

happens itself and not affecting the non-power consuming instructions. 

 

6.2.1 Model for Calculating Dynamic Threshold Level Based on Instruction Data 

Type and Data Size 

Concept of Uop(Instruction) Weightage Ratio 

To calculate the dynamically varying optimum threshold level based on uop data type 

and size we need a model which will detect the data type and size for every incoming 

uop and will calculate the weightage (percentage).Based on the ratio(weightage) of 

light and heavy load instructions sitting in the reservation station which are yet to be 

dispatched a threshold level is determined and request is send to the PCU to increase or 

decrease the power license. Only upon getting the grant the proper license the heavy 

uops can be dispatched, till then they have to wait in the reservation station. For this we 

need multiple counters to count of which data type of uop and how many uops are 

present of particular type in the reservation Station.  
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6.2.2 Droop Control Block 

The droop control module is present in out of order unit. The following block diagram 

shows its connection with other modules in the core. It is connected with reservation 

station, reorder buffer and register alias table and also with dispatch ports. 

 

 

 

  Figure 6.1: Block Diagram Model for Uop Weightage Calculation and Droop Block 

 

6.2.3 DUT Parts 

In the following various parts of the droop control logic block has been shown. 

It consists of mainly following parts- 

FIFO to calculate the sum of the energy cost for a number of cycles. 

Droop control logic (threshold) which calculates the weightage of the uop and chooses 

one threshold based on that. 

Current threshold level block and running energy cost sum are compared and based on 

the logic value ports are enabled or disabled. 
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    Figure 6.2: Droop Logic Block Diagram 

 

6.3  Calculation Part: Blockage Part and Performance 

In this design there are multiple levels of threshold and based on the uop weightage 

one of them will be selected. 

 

Figure 6.3: Choosing among Multiple Thresholds Based on Instruction Weightage 

 

For the same testcase which generates same scenario we have tested the design which 

has new droop control logic module. 
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Figure 6.4: Dynamic Threshold variation 38c860 as the energy cost is increasing 

the value of threshold is also increasing (only after getting grant from PCU). Case of 

threshold level stuck at 60, because of not availability of power at that time  

 

 

Figure 6.5: Dynamic Threshold Prediction with Less Blockage as Compared to Fixed 

Threshold 

6.3.1 Blockage Percentage for Dynamic Threshold with Multilevel Threshold for 

Same Directed Test Case 

 

Figure 6.6: Blockage Calculation for Dynamic Threshold 

 

End cycle Start Cycle Cycle 

Difference 

End cycle Start Cycle Cycle 

Difference 

End cycle Start Cycle Cycle 

Difference 

318550 0 318550 1320150 1286550 33600 2836450 2665650 170800 

334550 318550 16000 1385750 1320150 65600 2879350 2836450 42900 

393850 334550 59300 1471650 1385750 85900 3048850 2879350 169500 

436750 393850 42900 1481950 1471650 10300 3075650 3048850 26800 

659450 436750 222700 1716750 1481950 234800 3108950 3075650 33300 

667350 659450 7900 1738950 1716750 22200 3122150 3108950 13200 

810250 667350 142900 2044950 1738950 306000 
 

 
 

873750 810250 63500 2081750 2044950 36800 
   

996350 873750 122600 2110550 2081750 28800 
   

1021550 996350 25200 2147350 2110550 36800 
   

1089150 1021550 67600 2312650 2147350 165300 
   

1118550 1089150 29400 2337550 2312650 24900 
   

1268950 1118550 150400 
2652950 

2337550 315400 unblock 2627450 Total 

1286550 
1268950 17600 2665650 

2652950 
12700 blocked 494700 3122150 

 

  Table 6.1: Dispatch Blocked Cycles for Dynamic Threshold 
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So for this particular test (with randomized incoming instructions and dynamic 

threshold) 

Blockage percentage is given by  

 

 blockage percentage =
number of cycles dispatch is blocked

total number of cycles (test ran)
 

 

                                                    =
494700

3122150
  x 100 = 15.84% 

 

So we can see that there is very less dispatch block for this dynamically predicted 

threshold as compared to the fixed threshold condition. 

 

6.4 Comparison 

Single (Fixed) Threshold Vs. Dynamic Threshold  

The design has been tested for 20000 tests and no functional bug has been detected 

either by random testcase or directed test .And from among these 20k tests, for 

randomly chosen 40 tests the comparison between these two modes have been done and 

it has been proved that there is significant performance improvement when there is 

frequent load variation. 

 

 

  Figure 6.7(a) Blockage for Single threshold 

 

  Figure 6.7(b) Blockage for Dynamic threshold 

 

For directed test cases, with varying uop ratio from light to heavy, the graph has been 

plotted. For uop ratio near to zero it is seen that the blockage percentage for both are 

same as the energy consumption is less and there is no problem for both. As the heavy 

instructions starts mixing with light instructions the difference in performance is 

significant. As the uop weightage ratio starts increasing (more and more heavy 

instructions only with very less light instructions), again both starts showing same 

blockage probability as in this case there is no use of prediction. 
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         Figure 6.8: Fixed and Dynamic Threshold Blockage Percentage vs Uop Ratio 

6.5  Validation Part 

6.5.1 Out of order verification environment 

To verify that the design is working properly as per the design specification, verification 

environment was created using CTE methodology (in specman or e language).  

It consists of following parts. Each part was coded in specman language using CTE 

methodology  

i- Testbench Environment 

ii- Reference Model 

iii- Checker  

iv- Coverage 

v- Monitor 

vi- Driver/sequencer/injection randomization 
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                Figure 6.9: Out of Order Unit Verification Environment 

 

 

A brief overview of these parts and coverage result  

Random Injection (Sequencer and Driver) 

In the sequencer part tescases to generate random uops of various data type and size 

and to emulate the threshold variation within the specified limits was coded. This help 

in rigorously testing the design and finding corner cases. 

Checker 

Assertion based checkers have been implemented which compare the value between 

CTE and RTL for various variables like uop energy cost for each port and cycle energy 

cost and for port dispatch block etc. 

 

 `ASSERTC_FORBIDDEN(EC_P0, (UopEngCostCTE[0] != UopECM[0]), droop_en, `ERR_MSG("Port 0 EC diff"));  

 `ASSERTC_FORBIDDEN(EC_P1, (UopEngCostCTE[1] != UopECM[1]), droop_en, `ERR_MSG("Port 1 EC diff"));  

 `ASSERTC_FORBIDDEN(EC_P5, (UopEngCostCTE[5] != UopECM[5]), droop_en, `ERR_MSG("Port 5 EC diff"));  

 `ASSERTC_FORBIDDEN(EC_P2, (UopEngCostCTE[2] != UopECM[2]), droop_en, `ERR_MSG("Port 2 EC diff")); 

 `ASSERTC_FORBIDDEN(EC_P3, (UopEngCostCTE[3] != UopECM[3]), droop_en, `ERR_MSG("Port 3 EC diff"));  

 `ASSERTC_FORBIDDEN(EC_P7, (UopEngCostCTE[7] != UopECM[7]), droop_en, `ERR_MSG("Port 7 EC diff"));  
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           Figure 6.10: Assertion for Port Energy Cost  

 

 
    Figure 6.11: Assertion for Dispatch Block to Execution Unit and Memory Ports 

 

Coverage 

Dispatch block covergroups: 

To verify that the design behavior is in accordance with the specifications when 

energy cost is exceeding above specified threshold level, uop dispatch to ports 

are being blocked, we ran several tests and found that expected coverpoints are 

hitting. 

 

i- Covergroup- Execution_port_dispatch_block covergroup 

Coverpoints- 1- Port_0_dispatch_block 

                       2- Port_1_dispatch_block 

                       3- Port_5_dispatch_block 

                    4/5- Cross_coverage_0_1_5_dispatch_block 

 

ii- Covergroup- Memory_port_dispatch_block covergroup 

Coverpoints(items) 1- Port_2_dispatch_block 

                       2- Port_3_dispatch_block 

                       3- Port_7_dispatch_block 

                    4/5- Cross_coverage_2_3_7_dispatch_block 
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                        Figure 6.12: Execution Port Dispatch Block Covergroup 

 

 
 

 

 
                        Figure 6.13: Memory Port Dispatch Block Covergroup 
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Apart from the above cte implementation of coverage, port coverage was also implemented in 

system verilog (in the design). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

Chapter: 7 

CONCLUSION AND FUTURE WORK 

----------------------------------------------------------------------------------------- 

 

7.1 Conclusion 

The voltage droop occurring in the CPU has been explained and methods to minimize 

the loss due to the droop has been proposed and verified. So we have seen that changing 

the threshold level dynamically based on instruction (uop) data type and size helps in 

reducing the dispatch blockage and improved performance.  

The functional verification of the feature has done using CTE methodology which is 

simulation based methodology. To get more confidence, formal verification can be 

perform for the same. 

7.2 Problem and Future Aspects  

In cases when there are light instructions only or rare heavy instructions there is no 

improvement at all. On the other hand when the instruction flow is flooded with heavy 

instructions and no light instructions at all, in this case also there is no effect. So future 

work can be done in this area for more improvement of performance. 
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