
 

 

DYNAMIC BALANCING OF INDUSTRIAL 

MANIPULATORS USING POINT MASS MODELS AND 

TLBO 

 

 

 

 

 

Ph.D. Thesis 
 

 

 

 

 

 

DEVI SINGH KUMANI 

(ID. No. 2009RME103) 

 

 

 

 

 
 

DEPARTMENT OF MECHANICAL ENGINEERING 

MALAVIYA NATIONAL INSTITUTE OF TECHOLOGY, JAIPUR 

FEBRUARY, 2018  



 

Dynamic Balancing of Industrial Manipulators 

Using Point Mass Models and TLBO 

 

 

 

Submitted in 

 Fulfillment of the requirements for the degree of 

Doctor of Philosophy 

 

by 

 

DEVI SINGH KUMANI 

(ID: 2009RME103) 

 

 

Under the Supervision of 

Dr. Himanshu Chaudhary 

 

 

 
 

Department of Mechanical Engineering 

Malaviya National Institute of Technology Jaipur, India  

February, 2018 



 

                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©  Malviya   National   Institute   of   Technology ,   Jaipur - 2018 

                                                                                          All rights reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

 

 

 



 

 

Certificate 

 

 
This  is  to  certify  that  the  thesis  entitled  Dynamic  Balancing  of  

Industrial Manipulators  using  Point  Mass  Models  and  TLBO  being submitted  

by  Devi  Singh  Kumani  to  the  Malaviya  National  Institute  of Technology  

Jaipur  for  the  award  of  the  degree  of  Doctor  of  Philosophy is  a  bonafide  

record  of  original  research  work  carried  out  by  him  under my supervision  in  

conformity  with  rules  and  regulations  of  the institute. 

 

The  work  incorporated  in  this  thesis  have  not  been  submitted,  in  part or  

in  full,  to  any  other  University  or  Institute  for  the  award  of  any  Degree or  

Diploma.   

 

 

 

 

 

 

 

 

 
Dr. Himanshu Chaudhary 

 

Associate Professor 

 

                                                     Mechanical Engineering Department 

 

                                              Malaviya National Institute of Technology Jaipur 

 

                                                                Jaipur – 302017, India 

 

 

 

 

 

 

 



ii 
 

 

DECLARATION 

 

 

 
I, Devi Singh Kumani, declare that the thesis titled, “Dynamic Balancing of 

Industrial Manipulators Using Point Mass Models and TLBO”, and the work 

presented in it, are my own, I confirm that: 

 

 This work was done wholly or mainly while in candidature for a research 

degree at this university. 

 

 The work incorporated in this thesis has not been submitted elsewhere for the 

award of any degree or any other qualification at this university or any other 

institution. 

 

 Where I have consulted the published work of others, this is always clearly 

attributed (reference is given). 

 

 Where I have quoted from the work of others, the source (reference) is always 

given. With the exception of such quotation, this thesis is entirely my own 

work. 

 

 I have acknowledged all main sources of help. 

 

 

 

Date:   

 

 

                                                                                                     (Devi Singh Kumani) 

 

                                                                                                    (2009RME103)                   

 

 



iii 
 

Acknowledgements 

 
I  would  like  to  express  my  sincere  gratitude and  deep regards to  my  thesis  

supervisor Dr. Himanshu Chaudhary, an excellent academician  and  true teacher.  

This   research  work would   have  been  impossible  without  his  constant  

encouragement,  inspiring  guidance, experience, and  subject knowledge.   

         I am extremely grateful to Dr. R. Venkata. Rao of SVNIT, Surat for lucidly 

teaching the TLBO technique during one week short term course, which encouraged 

and motivated me to apply this technique to my research problem. 

 

        I also take this opportunity to express my heartfelt thanks to the members of 

DREC, Dr. T.C. Gupta, Dr. Dinesh Kumar, and Dr. A.K. Singh, who spared their 

valuable time and experiences to evaluate my research plan and the synopsis. I would 

like to thank Prof. G.S.Dangayach, Head of Mechanical Engineering Department and 

his office team for all support and administrative work regarding the thesis. 

       I am highly grateful to the higher management of my parent institute and 

employer Poornima College of Engineering, Jaipur for granting me the permission to 

pursue part time Ph. D. from MNIT, Jaipur. 

 

      During my research work, I have spent lot of time at MNIT, Jaipur in the room of 

my supervisor with  research colleague, Sh. Kailash Chaudhary and another research 

colleague, Sh. Ramanpreet Singh. They made my stay remarkable and memorable 

apart from assisting as and when needed. My fellow colleagues, Sh. Sanjay Kumawat 

and Sh. Kalpit Jain at Poornima College of Engineering also provided the desired 

assistance. Finally, but not the least I am thankful to my deceased wife Kalpana, who 

surrendered her priority and time for me. 

 

 

 

 

                                                                                                      Devi Singh Kumani 

Department of Mechanical Engineering 

Malaviya National Institute Technology Jaipur 

 



iv 
 

Abstract 

Industrial robots are extensively used worldwide in the automobile industry and 

variety of other applications. Present day manipulators operate at high speed. The 

inertia induced force and moment if not balanced, shake the manipulator, create 

vibrations and noise, fatigue etc.  These unbalanced inertia force and moment are 

known as the shaking force and the shaking moment. Hence, to improve the dynamic 

performance these are to be minimized. The balancing of inertia induced force and 

moment in an industrial manipulator is referred to as dynamic balancing. The aim of 

this dissertation is to provide an optimization methodology for the dynamic balancing 

of industrial manipulators. 

The octahedron seven point-mass model, hexahedron six and five point mass models 

and four point mass model configurations for dynamically representing the rigid links 

of an industrial manipulator are developed to ensure positive value for the equivalent 

point masses. For the same the concept of equimomental system of point masses, a 

convenient way to represent the inertia properties of a rigid link of Industrial 

Manipulator, is used. The expressions for computing the location of point masses and 

their value in terms of rigid link parameters are derived for the different proposed 

models. The proposed point-mass models to dynamically represent links of the 

manipulator are used to formulate optimization problem to minimize the shaking 

force and shaking moment simultaneously. 

The population based evolutionary algorithms, Genetic Algorithm (GA) and recently 

developed Teaching Learning Based Optimization (TLBO) algorithm, are used to 

solve the constrained optimization problem developed. The effectiveness of 

methodology is demonstrated by applying it to a six-dofs PUMA robot. The 

evolutionary techniques offer multiple solutions close to the optimal solution. The 
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TLBO Algorithm is used for the first time for spatial linkages balancing as 

optimization solver. 

Significant reductions of about 71% and 81% using GA and TLBO, respectively, in 

the shaking moment are obtained by proposed methodology. It is observed that TLBO 

gives better results with less computational efforts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

CONTENTS 

Certificate           i 

Declaration                                                                                          ii                                                                                                                                                                                                                                           

Acknowledgement         iii 

Abstract           iv 

Contents                            vi 

List of Figures                  viii 

List of Tables                  xiv 

List of Symbols and Abbreviations                      xvii 

 

1. Introduction          1 

1.1 Balancing of industrial manipulator mechanism         3 

1.2 Contributions of the research        5 

1.3 Thesis organization         6 

1.4 Summary          8 

2. Literature Review         9 

2.1 Shaking force balancing of mechanisms      9 

2.2 Shaking force and shaking moment balancing and driving torque    13 

 reduction   in mechanisms and robotic manipulators 

2.3 Teaching-learning-based-optimization technique   23 

2.4 Research objectives                                                                            24 

2.5 Summary        25 

3. Point-mass Models       27 

3.1 Equimomental systems for spatial motion    27 

3.2 Seven  point-mass octahedron model     29 

3.3 Six point-mass hexahedron model     31 

3.4 Five point-mass hexahedron model     32 

3.5 Four point-mass model      34 

3.6 Example for equimomental point-masses    35 

3.7 Summary        38 

4. Dynamic Analysis        39 

4.1 Dynamic analysis of a serial industrial manipulator   39 

4.2 Shaking force and shaking moment     42 

4.3 Summary        44 

5. Optimization Problem Formulation     45 

5.1 Optimization problem and optimality criteria    45 

5.2 Application problem - PUMA robot     48 

5.3 Summary        50 



vii 
 

6. Optimization Techniques      51 

6.1 Genetic algorithm tool box       51 

6.2 Teaching-learning-based-optimization     52 

6.2.1 Teacher phase       55 

6.2.2 Learner phase       56 

6.3 Summary        59 

7. Optimization Using Genetic Algorithm     60 

7.1 Shaking moments and shaking forces using GA   60 

7.1.1 Seven point-mass parallelepiped model   61 

7.1.2 Seven point-mass octahedron Model    63 

7.1.3 Six point-mass hexahedron Model    72 

7.1.4 Five point-mass hexahedron Model    81 

7.1.5 Four point-mass Model     89  

7.2 Summary        98  

8. Optimization Using TLBO      99 

8.1 Shaking moments and shaking forces using TLBO   99 

8.1.1 Seven point-mass octahedron model    103    

8.1.2 Six point-mass hexahedron model    111 

8.1.3 Five point-mass hexahedron Model    119                       

8.1.4 Four point-mass model     127 

8.1.5 Three point-mass model                                                         135 

8.2 Summary        139 

9.      Comparative Results                                                                    140 

 

10.     Conclusions  And Future Work     146 

 

References         148 

 

Appendix-A                                                                                                   153 

 

            Papers presented/accepted based on this work                          162 

            Brief Bio-data of the author       163 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 
.   

Fig.1.1 Examples of industrial manipulator applications               2 

Fig.3.1 Equimomental system of a rigid body in Spatial motion 

 

    27 

Fig.3.2 Seven point-mass octahedron Model     29 

Fig.3.3 Six point–mass hexahedron model     31 

Fig.3.4 Five point–mass hexahedron model     33 

Fig.3.5 Four point-mass model     34 

Fig.4.1 Serial Open-loop system, Manipulator     39 

Fig.4.2 Definition of vectors     41 

Fig.4.3 Free body diagram of the i
th

   Link      43 

Fig.5.1 Schematic ofPUMA500series Robot     49 

Fig.5.2 Coordinate  frames  and DH parameters     49 

Fig.5.3 Architecture of a PUMA Robot     49 

Fig.6.1 Distribution of marks obtained by a group of learners     54 

Fig.7.1 Constraint moments of original and optimally balanced 

PUMA at joint 1 with 7 point mass model 

 

 

 

 

 PUMA at joint 1 with 7 point mass model 

    66 

 

Fig.7.2 Constraint moments of original and optimally balanced 

 PUMA at joint 2 with 7 point mass model 

      67 

Fig.7.3 Constraint moments of original and optimally balanced 

PUMA at joint 3 with 7 point mass model 

    67 

Fig.7.4 Constraint moments of original and optimally balanced 

PUMA at joint 4 with 7 point mass model 

    68 

Fig.7.5 Constraint moments of original and optimally balanced 

PUMA at joint 5 with 7 point mass model 

    68 

Fig.7.6 Constraint moments of original and optimally balanced 

PUMA at joint 6 with 7 point mass model 

    69 

Fig.7.7 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 7point mass model 

    69 

Fig.7.8 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 7 point mass model 

    70 

Fig.7.9 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 7 point mass model 

    70 

Fig.7.10 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 7 point mass model 

    71 

Fig.7.11 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 7 point mass model 

 

 

    71 

Fig.7.12 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 7 point mass model 

 

    72 

Fig.7.13 Constraint moments of original and optimally balanced              

PUMA at joint 1 with 6 point mass model 

    75 

 Fig.7.14 Constraint moments of original and optimally balanced 

PUMA at joint 2 with 6 point mass model 

    75 



ix 
 

 Fig.7.15 Constraint moments of original and optimally balanced 

PUMA at joint 3 with 6 point mass model 

    76 

Fig.7.16 Constraint moments of original and optimally balanced 

PUMA at joint 4 with 6 point mass model 

    76 

Fig.7.17 Constraint moments of original and optimally balanced 

PUMA at joint 5 with 6 point mass model 

    77 

Fig.7.18 Constraint moments of original and optimally balanced 

PUMA at joint 6 with 6 point mass model 

    77 

Fig.7.19 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 6point mass model 

    78 

Fig.7.20 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 6point mass model 

    78 

Fig.7.21 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 6point mass model 

    79 

Fig.7.22 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 6point mass model 

    79 

Fig.7.23 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 6point mass model 

    80 

Fig.7.24 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 6point mass model 

    80 

Fig.7.25 Constraint moments of original and optimally balanced 

PUMA at joint 1 with 5 point mass model 

    83 

Fig.7.26 Constraint moments of original and optimally balanced 

PUMA at joint 2 with 5 point mass model 

    84 

Fig.7.27 Constraint moments of original and optimally balanced 

PUMA at joint 3 with 5 point mass model 

    84 

Fig.7.28 Constraint moments of original and optimally balanced 

PUMA at joint 4 with 5 point mass model 

    85 

Fig.7.29 Constraint moments of original and optimally balanced 

PUMA at joint 5 with 5 point mass model 

    85 

Fig.7.30 Constraint moments of original and optimally balanced 

PUMA at joint 6 with 5 point mass model 

    86 

Fig.7.31 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 5point mass model 

    86 

Fig.7.32 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 5point mass model 

    87  

Fig.7.33 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 5point mass model 

    87 

Fig.7.34 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 5point mass model 

    88 

Fig.7.35 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 5point mass model 

    88 



x 
 

Fig.7.36 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 5point mass model 

    89 

Fig.7.37 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 4point mass model 

    92 

Fig.7.38 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 4point mass model 

    92 

Fig.7.39 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 4point mass model 

    93 

Fig.7.40 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 4point mass model 

    93 

Fig.7.41 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 4point mass model 

    94 

Fig.7.42 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 4point mass model 

    94 

Fig.7.43 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 4point mass model 

    95 

Fig.7.44 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 4point mass model 

    95 

Fig.7.45 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 4point mass model 

    96 

Fig.7.46 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 4point mass model 

    96 

Fig.7.47 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 4point mass model 

    97 

Fig.7.48 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 4point mass model 

    97 

Fig.8.1 Flow chart of TLBO algorithm   102 

Fig.8.2 Constraint moments of original and optimally balanced 

PUMA at joint 1 with 7 point mass model 

  105 

Fig.8.3 Constraint moments of original and optimally balanced 

PUMA at joint 2 with 7 point mass model 

  105 

Fig.8.4 Constraint moments of original and optimally balanced 

PUMA at joint 3 with 7 point mass model 

  106 

Fig.8.5 Constraint moments of original and optimally balanced 

PUMA at joint 4 with 7 point mass model 

  106 

Fig.8.6 Constraint moments of original and optimally balanced 

PUMA at joint 5 with 7 point mass model 

  107 

Fig.8.7 Constraint moments of original and optimally balanced 

PUMA at joint 6 with 7 point mass model 

  107 

Fig.8.8 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 7point mass model 

  108 

Fig.8.9 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 7 point mass model 

  108 



xi 
 

Fig.8.10 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 7 point mass model 

  109 

Fig.8.11 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 7 point mass model 

  109 

Fig.8.12 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 7 point mass model 

 

 

  110 

Fig.8.13 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 7 point mass model 

 

  110 

Fig.8.14 Constraint moments of original and optimally balanced 

PUMA at joint 1 with 6 point mass model 

  113 

Fig.8.15 Constraint moments of original and optimally balanced 

PUMA at joint 2 with 6 point mass model 

  113 

Fig.8.16 Constraint moments of original and optimally balanced 

PUMA at joint 3 with 6 point mass model 

  114 

Fig.8.17 Constraint moments of original and optimally balanced 

PUMA at joint 4 with 6 point mass model 

  114 

Fig.8.18 Constraint moments of original and optimally balanced 

PUMA at joint 5 with 6 point mass model 

  115 

Fig.8.19 Constraint moments of original and optimally balanced 

PUMA at joint 6 with 6 point mass model 

  115 

Fig.8.20 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 6point mass model 

  116 

Fig.8.21 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 6point mass model 

  116 

Fig.8.22 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 6point mass model 

  117 

Fig.8.23 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 6point mass model 

  117 

Fig.8.24 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 6point mass model 

  118 

Fig.8.25 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 6point mass model 

  118 

Fig.8.26 Constraint moments of original and optimally balanced 

PUMA at joint 1 with 5 point mass model 

  121 

Fig.8.27 Constraint moments of original and optimally balanced 

PUMA at joint 2 with 5 point mass model 

  121 

Fig.8.28 Constraint moments of original and optimally balanced 

PUMA at joint 3 with 5 point mass model 

  122 

Fig.8.29 Constraint moments of original and optimally balanced 

PUMA at joint 4 with 5 point mass model 

  122 

Fig.8.30 Constraint moments of original and optimally balanced 

PUMA at joint 5 with 5 point mass model 

  123 



xii 
 

Fig.8.31 Constraint moments of original and optimally balanced 

PUMA at joint 6 with 5 point mass model 

  123 

Fig.8.32 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 5point mass model 

  124 

Fig.8.33 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 5point mass model 

  124 

Fig.8.34 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 5point mass model 

  125 

Fig.8.35 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 5point mass model 

  125 

Fig.8.36 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 5point mass model 

  126 

Fig.8.37 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 5point mass model 

  126 

Fig.8.38 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 4point mass model 

  129 

Fig.8.39 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 4point mass model 

  129 

Fig.8.40 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 4point mass model 

  130 

Fig.8.41 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 4point mass model 

  130 

Fig.8.42 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 4point mass model 

  131 

Fig.8.43 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 4point mass model 

  131 

Fig.8.44 Constraint forces of original and optimally balanced 

PUMA at joint 1 with 4point mass model 

  132 

Fig.8.45 Constraint forces of original and optimally balanced 

PUMA at joint 2 with 4point mass model 

  132 

Fig.8.46 Constraint forces of original and optimally balanced 

PUMA at joint 3 with 4point mass model 

  133 

Fig.8.47 Constraint forces of original and optimally balanced 

PUMA at joint 4 with 4point mass model 

  133 

Fig.8.48 Constraint forces of original and optimally balanced 

PUMA at joint 5 with 4point mass model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  134 

Fig.8.49 Constraint forces of original and optimally balanced 

PUMA at joint 6 with 4point mass model 

 

 

 

 

 

 

 

 

 

 

 

 

  134 

 

 

 

 

 

 

Fig.8.50 Two degree of freedom Robotic Arm   136 

Fig.8.51 Three Point-mass model for i
th

 link    136 

 

 

 

 

 

 

 

 

 

Fig.8.52 Driving torque at joint 1 of Planar Robotic Arm with 

  3 point mass model 

  138 



xiii 
 

Fig.8.53 Driving torque at joint 2 of Planar Robotic Arm with 

3 point mass model  

Planar Robotic Arm at joint 2 with 3 point mass model 

  138 

Fig.9.1(a) Function evaluations in TLBO   142 

Fig.9.1(b) Function evaluations in GA   142 

 

 

 

 

 

 

 

 

 

Fig.A.1 Flow chart of Genetic Algorithm (GA) cycle   153 

Fig.A.2 Representation of crossover operation in binary strings 

of mating pool 

  155 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 

 

 

 



xiv 
 

 

 

 

List of Tables 
 

. 

 Table 3.1 Mass and inertias about center of mass for six degree of 

freedom PUMA robot 

  36 

 Table 3.2 Equimomental Point massesfor7 point mass model taking 

α =1/8 (in Kg.) 

36 

 Table 3.3 Coordinates of the Point masses for 7 point mass model (in 

meters) 

(7 pt. massmodel) 

36 

 Table 3.4 Equimomental Point masses for 6 point mass model taking α 

=1/4 (in Kg.) 

36 

 Table 3.5 Coordinates of the Point masses for 6 point mass model (in 

meters) 

 

37 

 Table 3.6 Equimomental Point masses for 5 point mass model taking α 

= 1/4 (in Kg.) 

37 

 Table 3.7 Coordinates of the Point masses for 5 point mass model (in 

meters) 

 

37 

 Table 3.8 

 
Equimomental Pt. masses(in kg) & Coordinates(in  

meters) of the4 pt. mass model 

37 

 Table5.1 DH parameters, and mass and inertia properties of links    50 

Table 6.1 Initial Population (Pop.), Modified Pop./Variable value 

and Function Value after Teachers Phase, Learners 

Phase andafter one generation of TLBOAlgo 

   59 

Table7.1 Constraint forces and Constraint moments at various 

Joints of Puma with GA and fmincon solution 

   63 

Table7.2 Optimized mass and inertias using fmincon & GA    63 

 Table7.3 Objective function values using GA with octahedron point-

masses model 

   64 

 Table7.4 Improvement in FV during generations for the  

minimum FV 824.02 

   65 

 Table7.5 Point mass values for optimized FV of 824.02    65 

 Table7.6 Constraint moments and Constraint forces for original and 

optimized PUMA with FV of824.02 

   66 

 Table7.7 Objective function values using GA with hexahedron point-

masses model 

   73 

 Table7.8 Improvement in FV during generations for the 

minimum FV 823.02 

   73 

Table7.9 Point mass values for optimized FV of 823.02    74 

Table 7.10 Constraint moments and Constraint forces for original and               

optimized PUMA with FV of 823.02 

   74 

Table7.11 Objective function values using GA with five point-masses 

model 

   81 



xv 
 

Table7.12 Improvement in FV during generations for the 

minimum FV 825.47 

  82 

Table7.13 Point mass values for optimized FV of 825.47   82 

Table7.14 Constraint moments and Constraint forces for original and 

optimized PUMA with FV of 825.47 

  83 

Table7.15 Objective function values using GA with four point-masses 

model 

  90 

Table7.16 Improvement in FV during generations for  

the min. FV 825.47 (Four point model) 

  90 

Table7.17 Point mass values for optimized FV of 825.47    91 

Table7.18 Constraint moments and Constraint forces for original and 

optimized PUMA with FV of 825.47 

  91 

Table 8.1 Optimization function value for different  trials   103 

Table8.2 Improvement in function value (FV) during 

generations for min. FV 812.056 

103 

Table 8.3 Point mass values for optimized FV of 812.056 104 

Table 8.4 Constraint moments and Constraint forces for original and 

optimized PUMA with FV of 812.056 

104 

Table 8.5 Optimization function value for different trials 111 

Table8.6 Improvement in FV during generations for the 

minimum FV 813.649 

111 

Table 8.7 Point mass values for optimized FV of 813.649 112 

Table 8.8 Constraint moments and Constraint forces for original and 

optimized PUMA with FV of 813.649 

112 

Table 8.9 Optimization function value for different trials 119 

Table8.10 Improvement in FV during generations for the 

minimum FV 817.581 

119 

Table 8.11 Point mass values for optimized FV of817.581 120 

Table8.12 Constraint moments and constraint forces for original and 

optimized PUMA with FV of817.581 

120 

Table8.13 Optimization function value for different trials 127 

Table8.14 Improvement in FV during generations for the 

minimum FV 820.816 

127 



xvi 
 

Table8.15 Point mass values for optimized FV of 820.816 128 

Table8.16 Constraint moments and constraint forces for original and 

optimized PUMA with FV of 820.816 

128 

Table 9.1 Mean function value(FV), minimum (minm.)FV, minm. 
shaking moment (SM) for different  point mass models with 
various optimization techniques 

141 

Table 9.2 

 

Shaking moments for original and optimized PUMA for 

various point-masses models obtained using different 

optimization techniques 

143 

Table9.3 

 

Shaking forces for Original Puma and Optimized Puma for 

various point-masses models obtained using different 

optimization techniques  

145 

   
 Table A.1 Four bit binary numbers and the corresponding real number 

value of variables 

157    

Table A.2 Initial Population (Pop.), Mating Pool, Intermediate 

Pop., Population after Mutation and Function Value 

after one generation/cycle of Genetic Algorithm 

158 

   

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

List of Symbols and Abbreviations 

       Position vector of the origin     of (i+1)
th

 link, from origin    of i
th

 

link 

        Magnitude of       , link length 

Ci  The mass center of i
th

 link 

    Position vector of the mass center Ci of i
th

 link, from origin    

     Position vector of the j
th

point-mass of i
th

 link, from origin    

 ̃   The 3  3 skew symmetric matrix associated with vector    

  
   Resultant force acting on i

th
 link at center of mass Ci 

     Shaking force in a manipulator having n moving links 

        Constraint force at the origin    on i
th

 link due to (i – 1)
st
 link 

  
   External force on i

th
 link at the origin    

  
   The inertia force of i

th
 link at the origin    

 ̃     Root Mean Square (RMS) value of shaking force  

Ii  Inertia tensor of i
th

 link about the origin    

  
   Inertia tensor of i

th
 link about mass center Ci 

Iixx, Iiyy,Iizz Moments of inertia ofi
th

 link  

Iixy, Iiyz, Iixz Products of inertia ofi
th

 link 

mi  Mass of i
th 

link 

mij  Mass of j
th

 point-mass ofi
th

 link 

    Resultant of the pure moment and moment of forces of i
th

 link about    

  
   Resultant of the pure moment and moment of forces of i

th
 link about Ci 

     Shaking moment  

      Constraint moment at the origin   on i
th

 link due to (i – 1)
st
 link 



xviii 
 

  
   External moment on i

th
 link at and about the origin   

    Origin of i
th

 link  

Oi+1  Origin of (i+1)
st
 link 

P  Set of design vectors Xk of the population 

ri  Position vector of the mass center of mi from the origin Oi+1 

rij  Position vector of point mass mij  from the origin Oi+1 

    Linear velocity of origin    of i
th

 link 

  
   Linear velocity of the mass center Ci of i

th
 link 

 ̇   Linear acceleration of origin    of i
th

 link 

 ̇ 
   Linear acceleration of the mass center Ci of i

th
 link  

       Weighing factors of multiple objective functions 

Xi  Design vector for i
th

 link 

X  Design vector  

X
* 

Design vector of design variables mij
*
for which function value (FV) is 

minimum and it acts as teacher in TLBO 

 ̅  Design vector of mean of design variables in TLBO 

Xq, Xr  Design vectors of two randomly selected learners for learning in TLBO 

Xnew  New values of design variables after teachers phase in TLBO 

Xkq, Xkr New values of design variables of k
th

 population after learning from k
th

 

and r
th

 learner in TLBO 

xi,, yi, zi Body fixed frame fixed to thei
th

 link 

xij,, yij, zij Coordinates of j
th

 point mass of i
th

 link 

 ̅   ̅    ̅ Coordinates of the mass center of mass mi of i
th

 link 

    Angular position of i
th

 link at any time t 

    Angular velocity of i
th

 link 



xix 
 

 ̇   Angular acceleration of i
th

 link 

   Random number for each design variable mij to be generated in the 

range of 0 to1 during teacher phase in TLBO 

    Random number for each design variable mij to be generated in the 

range of 0 to1 during learner phase in TLBO 

GA Genetic Algorithm 

TLBO Teaching-Learning-based-Based-Optimization 

FV  Function value 

Vectors are shown by bold Fonts 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1 

Introduction 

The industrial robot is a manipulator to move materials, parts, tools, and perform a 

variety of programmable tasks in manufacturing. Industrial robots are extensively 

used worldwide in the automobile industry. Robot applications are growing fast. 

These applications can be found in manufacturing industries, medical applications, 

entertainment, work at dangerous places like nuclear power plants, space applications, 

etc. Few examples are shown in Fig.1.1. The inertia induced force and moment if not 

balanced, shakes the manipulator, create vibrations and noise, fatigue, etc. at high 

speeds of operation.  These unbalanced inertia force and moment are known as the 

shaking force and the shaking moment. Hence, to improve the dynamic performance, 

these are to be minimized. The balancing of inertia induced force and moment in an 

industrial manipulator is referred to as dynamic balancing. The prime objective of this 

dissertation is to develop a methodology for the dynamic balancing of industrial 

manipulators. The dynamic balancing requires trade-off between these competing 

shaking force and shaking moment. Thus, an industrial manipulator balancing 

problem can be formulated as an optimization problem to simultaneously minimize 

the shaking force and shaking moment. At the same time, constraints are imposed 

properly to assure the feasible mechanism for industrial manipulators. Mass of each 

moving link and its distribution plays a significant role in the balancing, it contributes 

to the shaking force and shaking moment.  

Thus the determination of inertial properties of the links of an industrial manipulator 

to optimally minimize the shaking force and shaking moment constitutes the main 

problem. These inertia properties can be represented more conveniently using the 
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dynamically equivalent system of point masses. The dynamically equivalent system is 

termed as the equimomental system.  

 

IRB 2400 Industrial Robot from ABB  

[http://www02.abb.com] 

 

Automated Pipe Welding  

[http://www.robots.com/automated-pipe-

welding-with-robots] 

 

Strongarm 375 / 500 Series Industrial Manipulator [http://www.strongmanindustries.com] 

 

Fig. 1.1 Examples of industrial manipulator applications 
 

The equimomental concept is used to represent the moving links into point-mass 

models. The optimization problem for dynamic balancing of the industrial 

manipulator is thus formulated in this study using different point mass models which 

will ensure positive values for point masses.  There are several algorithms available to 
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solve any optimization problem. Among the evolutionary algorithms, Genetic 

Algorithm (GA) and Teaching-Learning-Based-Optimization algorithm (TLBO) are 

explored for the dynamic balancing problem. TLBO is an optimization algorithm of 

recent origin, which has been successfully used in recent times for optimization 

applications in many areas. Use of TLBO for optimization of industrial manipulator 

has not been reported so far as evident from Literature review (Chapter 2). The 

evolutionary optimization algorithms find multiple solutions near to the global 

optimum solution and the solution which is more suitable for link shape formulation 

can be used. 

The algorithms are compared in terms of convergence to reach to the global optimum 

solution. To demonstrate the effectiveness of the proposed methodology, it is applied 

to balance a six degree of freedom PUMA robot. 

1.1 Balancing of industrial manipulator mechanism 

The interaction between a mechanism and its surrounding is an important aspect to be 

considered by the industrial manipulator designers. Some of the industrial 

manipulators are operated at high speed. The resultant inertial forces and moments of 

the moving links of the industrial manipulator are termed as shaking force and 

shaking moment is crucial in design of such manipulator. These inertial force and 

moment have no opposite reaction forces to cancel out internally in the manipulators 

mechanism. Hence, they transmit to the base/frame on which the manipulator is 

mounted. As a consequence, resulting vibrations, wear, noise and fatigue adversely 

affect the dynamic performance of the industrial manipulator. All the applied and 

constraint forces have equal and opposite reaction forces, and that vanish within the 

system including frame. However, there will be no reaction force for the inertia forces 
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and moments, and hence these need to be balanced. The mechanism balancing also 

helps in reducing the fluctuations in the input torque required to maintain a constant 

drive speed of the manipulator.  

The shaking force and shaking moment depends on the masses, their 

distribution, and accelerations of the moving links of the manipulator. The shaking 

force can be balanced either by redistributing the link masses or by adding the 

counterweights which result in the overall increase in mass of the balanced 

mechanism. The balancing of the shaking moment along with the shaking force can 

be achieved by using the additional links having opposite motion that makes the 

balanced mechanism very complex. 

           Thus the complete balance of shaking force and shaking moment is not 

recommended in most of the studies. To overcome this difficulty, some method 

suggests to reduce the shaking force and shaking moment simultaneously using the 

optimization methods. The researchers all over the world are continuously trying to 

explore the new ideas and techniques to balance the shaking force and shaking 

moment in the planar and spatial mechanisms. Though, a good amount of research in 

this area has been carried out in the past for planar mechanisms, relatively less work 

is reported for spatial mechanisms due to dynamic complexities involved in it.  

In most of the methods available in the literature, the analytical method is 

derived for complete force balance of simple mechanisms and very few are extended 

for the complex planar mechanisms and spatial mechanisms. Few methods use the 

dynamically equivalent systems to balance the planar and spatial mechanisms through 

optimization. The convex optimization method is also used to design optimally the 

counterweights to balance the planar and spatial mechanisms. Some other methods are 
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based on the mixed mass redistribution approach in which the principles of mass 

distribution and counterweight addition are combined to achieve dynamic balancing 

in the planar and spatial mechanisms. 

After pondering over the issue, it is decided to use optimization approach for 

minimization of shaking force and shaking moment using equimomental point masses  

for moving link of a manipulator that offers simple dynamic equations to be handled 

in the program. Simultaneously, investigate new point mass models in various 

configurations to ensure positive value for equivalent point masses. It is further 

decided to use Evolutionary techniques like Genetic Algorithms and recently 

introduced teaching-learning-based optimization algorithm to solve the optimization 

problem formulated. 

1.2 Contributions of the Research 

The contributions of this research work are summarized as follows: 

1. Seven point-mass octahedron, Six and five point-mass hexahedron and Four 

point-mass models are proposed in this study to ensure positive value for 

equivalent point masses to facilitate link shape formulation.  

2. The problem of dynamic balancing for the industrial manipulators is proposed 

as an optimization problem. 

3. Industrial manipulators are balanced by finding the optimum mass distribution 

for their links instead of using the counterweights and/or additional members. 

4. Evolutionary optimization techniques are explored to find the optimum 

solution for the proposed optimization problem. The techniques like Genetic 

Algorithm and Teaching-learning-based optimization algorithm (TLBO) are                            

applied for the industrial manipulators balancing. TLBO‟s use is demonstrated 
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on the specific problem of robot, to reduce shaking moments through 

optimization. Coding of TLBO to solve the optimization problem is 

developed. It is established that TLBO is computationally more efficient than 

the popular optimization algorithm, genetic algorithm (GA). 

1.3 Thesis Organization 

This thesis contains nine chapters arranged as follows: 

Chapter 1: Introduction 

The objective and motivation of the research work to develop a method for the 

dynamic balancing of industrial manipulators is presented in this chapter. It introduces 

the planar and spatial mechanisms balancing approaches. It also highlights the major 

contributions of the research work and outlines the organization of the thesis. 

Chapter 2: Literature Review 

The various methods developed for complete force balance, complete force and 

moment balance, partial force and moment balance including the optimization 

methods are discussed in this chapter. The drawbacks and limitations of these 

methods are mentioned to identify the research gap. 

Chapter 3: Point-mass Models 

The various equimomental point mass models for dynamic representation of the 

moving links of the manipulator are discussed. The seven point-mass octahedron, six 

and five point-mass hexahedron and four point mass configurations are developed. 

Such configurations ensure positive values for equimomental point masses. 

Chapter 4: Dynamic Analysis 

This chapter gives the equations of motion applicable to an open-loop system 

(industrial manipulator) to compute reaction forces and moments at the joints. The 



7 
 

dynamic formulation applicable to point-masses system and the expressions used to 

compute shaking forces and shaking moments are also given.  

Chapter 5: Optimization Problem Formulation 

The optimization problem is formulated to balance the open-loop system (industrial 

manipulators) dynamically in this Chapter. A numerical example of six degrees of 

freedom PUMA robot is solved to minimize the shaking force and shaking moment. 

The RMS values of shaking force and shaking moment over one cycle of operation 

for the known trajectory of manipulators operation are optimized. 

Since, the optimization results are trajectory dependent, we need to make 

computations for all possible trajectory combinations and select the solutions best 

suited for all possible trajectories for which the robot is likely to be used. 

Chapter 6: Evolutionary Optimization Techniques 

This chapter explores the evolutionary optimization algorithms. It differentiates the 

various parameters required to search the solution in the entire design space for these 

optimization algorithms. The two evolutionary optimization algorithms, (1) Genetic 

Algorithm (GA) and (2) Teaching-Learning-Based Optimization (TLBO) algorithm, 

are explained, and their applications are discussed in this chapter. 

Chapter 7: Optimization Using Genetic Algorithm 

The optimization problem formulated in Chapter 5 is solved using Genetic Algorithm. 

The results are presented in the tabular and graphical form and discussed in this 

chapter. 

Chapter 8: Optimization Using TLBO 

The results obtained using Teaching-Learning-Based-Optimization Algorithm 

(TLBO) are presented and discussed here. 
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Chapter 9: Comparative Results 

The results obtained using different point-masses models and two optimization 

technique i.e. GA and TLBO are discussed and compared in this chapter. It also 

explains the matching of curves for balanced and original PUMA at Joint 5 & 6 and 

reverse phenomenon observed in cases at Joint 5 & 6 for TLBO cases.  

Chapter 10: Conclusions 

In this chapter, the thesis work is summarized and the recommendations / suggestions 

based on the findings in the thesis are also made. Further, the recommendations for 

future work are also presented. 

1.4 Summary 

The dynamic balancing for the industrial manipulators is introduced in chapter 1. This 

chapter describes the motivation and objective of the research work and also outlines 

the thesis contributions. It also contains brief information about the nine chapters of 

the thesis. 
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Chapter 2 

Literature Review 

This chapter reviews various methods developed and reported for balancing of the 

planar and spatial mechanisms. The methods used for complete force balance, 

complete force and moment balance, partial force and moment balance are reviewed. 

The review also includes the optimization methods as well as the methods used for the 

optimal design and balancing of Industrial Manipulators/Robots. Review papers such 

as Kamenskii (1968), Lowen and Berkof (1968), Lowen et al. (1983), Kochev (2000), 

Arakelian and Smith (2005), Wijk et al. (2009), and  Arakelian and Briot (2015) 

throw light on the quantum of work carried out on the dynamic balancing of the 

planar, spatial mechanisms and industrial manipulators.  

2.1 Shaking force balancing of mechanisms 

Lowen and Berkof (1968) reported the survey on “Balancing the Linkages” 

emphasizing on the need of balancing of linkages running at high speed or massive 

links where considerable shaking force and shaking moments are transmitted to 

surroundings. These disturbances cause vibration, noise, wear and fatigue problems 

reducing the full potential of many machines. Contemporary, enough literature was 

published related to the balancing of slider-crank mechanism and little publication 

existed on the balancing of other types of planar or spatial linkages. Static balancing 

is achieved, if the center of mass of the system of moving links is kept stationary. 

Shaking force reduces to zero in the statically balanced system. It can be achieved by 

the method of principal vectors, use of cams or use of duplicate mechanisms as 

reported by different researchers. 
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Kamenski (1968 a) review report “On the Question of balancing the Linkages” stated 

that the use of counterweights had been made for static balancing of linkages. The 

position of the center of mass of the system of moving links is determined by the 

resultant of principal vector (The vectors directed along the links of the mechanism 

are termed as principal vectors) system which is equal to the sum of principal vectors 

of all moving links. He emphasized that the static balancing may affect the dynamic 

unbalance of a mechanism (it may even increase it). Any mechanism even if 

theoretically balanced shows unbalance because of inaccuracies of manufacture i.e. 

clearances at joints. Therefore dynamic balancing may be carried out together with 

static balancing or after it. Kamenskii (1968 b) used the cam mechanism, to 

completely balance the shaking force in the planar mechanisms. The reduction of the 

inertia forces is achieved by using a cam-counterweight arrangement and the cam 

driven masses to keep the mechanism‟s center of mass fixed. 

Shchptil (1968) suggested new construction that physically traces out the center of 

mass of a planar mechanism. By changing the original mass distribution, the total 

center of mass is moved to a rotating point of the proportional auxiliary mechanism. It 

allows the introduction of a counterweight which causes the final center of mass to be 

reduced to stationary point and the rotating part being not the part of the original 

linkage. It simultaneously generates a moment that may be used to balance the first 

harmonics of the disturbing moment (shaking moment). 

Berkof and Lowen (1969) gave the concept of “Method of Linearly Independent 

Vectors” that permits the complete force balancing of certain planar linkages. It 

consists of writing equations, describing the position of total mechanism center of 

mass so that the coefficient of time dependent term may be set equal to zero. It makes 
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the center of mass stationary that vanishes the shaking force completely. The equation 

for four and six-bar planar mechanisms with arbitrary link mass distribution is derived 

by them. In this method, the links masses are redistributed in such a way that it 

eliminates the time-dependent terms coefficients in an equation thereby representing 

the trajectory of the total center of mass of the mechanism.  

Kaufman and Sander (1971) applied the concept of  “Method of Linearly Independent 

Vectors” in RSSR and RSSP spatial mechanisms. Shaking force is eliminated by 

distributing the link masses so that the time dependent terms are eliminated in the 

equation which describes the motion of the overall center of mass of the linkages. 

This process makes the total center of mass  stationary.  

Tepper and lowen (1972) proposed the contour theorem that differentiates between 

the mechanisms in which the shaking force can be fully balanced and those in which 

cannot be achieved. Complete force balancing of planar linkage is possible using 

simple counterweights provided that from every point on the linkage there exists a 

contour to the ground through revolute joints only. Generalization of the method of 

linearly independent vectors for single degree freedom mechanism is presented, and it 

is proved that the counterweights required for the complete force balance of an n-link 

planar mechanism are half of the total number of the links.  It was shown that the 

pinned planar mechanisms can always be force balanced as they do not have the time-

dependent coefficient in the center of the mass equation. 

Lowen et al. (1974) found that the complete force balance increases the shaking 

moment and driving torque for the mechanism. Therefore, only force balancing is not 

useful and the moment balance is also needed to balance the mechanism completely. 

Smith (1975) developed a computer program for designing the counterweights to 
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balance the shaking force completely in the planar mechanisms using the “Method of 

Linearly Independent Vectors”. 

Walker and Oldham (1978, 1979) proposed a general theory of balancing shaking 

force using counterweights. Three equations are derived by them from which the 

force balance condition of multi-degree freedom n-bar planar linkages with revolute 

and prismatic joints can be obtained.  They presented the criteria for deciding the 

number of the counterweights required for complete force balancing and for the 

selection of the links to which the counterweight are to be attached. 

Bagci (1979) presented the shaking force balancing of planar linkages with force 

transmission irregularities encountered in spatial mechanisms where the links have a 

connection to fixed link through pairs permitting linear freedom only. In such cases, 

the shaking force balancing is achieved using the method of linearly independent 

mass vectors and balancing idler loops concept. 

Bagci (1983) presented the method of balancing shaking forces completely in space 

mechanisms using real vectors. Design equations for force balancing RSSR, RSRC, 

CSC and RCRC screw generator are developed. It is shown that SC and SRC dyads in 

spatial mechanism also introduce force transmission irregularity and are balanced by 

attaching a force balancing RRR dyad or a linearly moving counter balancer driven by 

gear rack drive. Note that R, S, and C denote Revolute, Spherical, and Cylindrical 

joints. 

Chen (1984) presented the partial balancing of shaking force of a spatial 4 bar RCCC 

linkage using optimization method. Three counterweights were attached to the 4 bar 

RCCC linkage and the optimal vectors of the position of counter weights were 

computed using optimization to achieve balancing. 
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Kochev (1987) proposed the general method of force balancing applicable to both 

spatial and planar mechanism. Here, the three sets of general force balancing 

conditions in X, Y and Z directions are derived. Thus, the linear balancing conditions 

for some spatial and planar linkages are presented in the Cartesian form in this 

method. 

Park and Kwak (1987) proposed optimal design formulation to reduce the undesirable 

dynamic effect due to clearance at joints. The optimization function to be minimized 

is the maximum ratio of the rate of change of force direction to the magnitude of the 

joint force. The magnitude and location of added mass (counterweight) to each link is 

computed optimally. It is applied to offset slider crank mechanism. 

Segla et. al. (1998) proposed Statistical Balancing of a Robot Mechanism with the aid 

of a Genetic Algorithm. Static balancing of robot mechanism reduces the motor 

power. The average gripper force in the working area is considered as an objective 

function and the link lengths, angle between links and spring force are considered as 

design variables. An industrial robot with 6 degrees of freedom is considered as an 

example. The balancing system should produce such forces that should be able to 

eliminate, or at least essentially reduce the static gravity forces at powered joints. The 

balancing using springs is proposed in this study. 

2.2 Shaking force and shaking moment balancing, and driving torque reduction 

in mechanisms and robotic manipulators 

The shaking moment is also to be balanced apart from balancing the shaking force to 

achieve the dynamic balance in the mechanisms. Enormous work has been reported 

on the balancing of shaking force and shaking moment either partially or completely 

particularly for planar linkages. Some work on spatial linkages has also been reported 
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and lately some work has been reported on balancing using advanced evolutionary 

optimization techniques as well.  

Lowen et. al. (1983) surveyed literature on force and moment balancing of linkages.  

It confines to the full or partial balancing of shaking forces and shaking moments 

using internal mass redistribution or counterweight addition.  

Lee and Chang (1984) proposed an analytical and computer-aided procedure for 

balancing of high-speed linkages. It involves a trade-off between shaking force, 

shaking moment, bearing reactions and input torque fluctuations by mass distribution 

of the links or counter-weighting the linkage. Analytical mechanics and heuristic 

optimization techniques are used to achieve the trade-off. This method has been 

demonstrated on a four-bar linkage. 

Yu (1987a, b) presented the partial/optimum balancing of shaking force and shaking 

moment of RSSR spatial linkages by using a dyad (or link) between output link and 

the frame. By the addition of counterweights to the input link, balancing of shaking 

force and shaking moment is further improved. It is observed that the complete 

balancing of spatial mechanism is not possible because their kinematics and dynamics 

is more complex as compared to planar linkages. 

Kochev (1992) presented the active balancing of the frame shaking moment in high- 

speed planer machines. The total moment comprising of the shaking moment and the 

driving torque is reduced based on mass redistribution and using one or more than one 

balancer revolving in a prescribed way in association with the geometry and the 

masses of the original linkage.   Elimination of the overall reaction moment (shaking 

+ driving) is achieved rather than its component which allows uniform rotation of the 

crank or the use of one balancer instead of three balancers. 
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Rahman S. (1996) presented reduction of inertia induced forces in a general spatial 

mechanism. In this study, the computer-aided design procedure has been developed 

for minimization of inertia-induced forces in CSSP mechanism. Here also, the 

concept of a dynamically equivalent system of point masses is used, and the point 

masses are kept positive. It is applied to generalized three-dimensional slider crank 

mechanism containing a different kind of joints such as cylindrical, spherical and 

prismatic type. However, the quantum of reduction in the average optimized value of 

shaking force and shaking moment is 0.73 % and 5.39% respectively, which is not 

very significant. 

Chiou et. al. (1997) proposed the two rotating mass balancers for partial balancing of 

spatial mechanisms. It is concerned with the partial balancing of spatial mechanisms 

by the use of counterweights mounted on shafts that rotate at cycle frequency and 

multiple of that frequency. In this, an equivalent system with only two rotating force 

vectors of any one frequency term of the shaking force and shaking moment of the 

spatial mechanism is found. That eliminates the term of the shaking effects with a two 

rotating mass balancers. 

Wawrzecki (1998) proposed a method of balancing spatial mechanism of the needle 

arm drive on a knitted fabric over lock sewing machine using the addition of masses 

at the design stage. It is suggested that each structural group of mechanism in the 

machine should be balanced separately. 

Papakostas et. al. (1998) reported on the genetic design of dynamically optimal 

robotic manipulators. The procedure is task oriented and minimizes the reaction 

forces and moments induced by the manipulator during the execution of specified 

trajectories. The objective function incorporates these forces and moments, which are 
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reduced by using genetic algorithms to calculate the balance weight and the associated 

eccentricity of each link for which the base reaction is minimized. The dynamic 

performance is measured by the mean-squared value of the reaction forces and 

moments generated during one cycle of trajectory execution. Reduction of 55% to 

64% is reported in objective function value using genetic algorithms for the solution 

of optimization problem formulated.    

Kochev (2000) provided a critical review of the methods employing additional 

members for complete shaking moment balancing. The techniques used are, direct 

balancing of shaking moment with the addition of one additional member which may 

be a cam driven rocker or a counter rotary balancer run by non-circular gear set or the 

crank itself revolving with a prescribed fluctuation, duplicate mechanism and direct 

balancing of individual members.    

Feng et. al. (2000) proposed optimum balancing of shaking force and shaking moment 

for spatial RSSR mechanism using Genetic Algorithm. A new method, 

comprehensive mass redistribution method is used for optimal balancing. It consists 

of two parts i. e. mass redistribution of the link itself and adding weights to the end of 

the link. This method is better than conventional methods, and the weight of the 

mechanism is decreased.   

 Guo et. al. (2000) proposed the optimum dynamic design of planar Linkage using 

Genetic Algorithm. Here also, mixed mass redistribution method is used. It is 

demonstrated that using genetic algorithms we can obtain optimum dynamic 

characteristics more efficiently than by the traditional non-linear optimization 

techniques. The mixed redistribution method reduces shaking force, shaking moment 

and driving torque more effectively. 
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Arkalin and Dahan (2001) presented partial shaking moment balancing of fully force 

balanced planar and spatial linkages. It is achieved by the displacement of the axis of 

rotation of the input link connected with the counterweight. 

Attia (2001) presented a simplified recursive formulation for the dynamic analysis of 

planar linkages replacing the rigid body by a dynamically equivalent constrained 

system of particles (i. e. point masses). Geometric constraints that fix the distance 

between particles are introduced. The concepts of linear and angular momentums are 

used to formulate dynamic equations for planar systems. However, these are 

expressed in terms of rectangular Cartesian coordinates of a dynamically equivalent 

system of particles. It results in the reduced system of differential algebraic equations 

without introducing any rotational coordinates.  

Attia and Quasseem (2003) presented the matrix formulation for the dynamic analysis 

of spatial mechanisms with a common type of kinematic joints using point 

coordinates and velocity transformation. Here also, the rigid body is replaced by the 

dynamically equivalent system of particles. The equations of motion are derived in 

terms of relative joint coordinates using velocity transformation matrix. The velocity 

transformation matrix relates the relative joint velocities to the Cartesian velocities. 

Ouyang et. al. (2003) presented an integrated approach to the design of robotic 

mechanisms for force balancing and trajectory tracking. The robotic manipulators are 

real-time controllable (RTC) mechanisms. A new approach termed as adjusting 

kinematic parameter (AKP) for the force balancing of RTC mechanism is described. 

It reduces joint forces and torques in servo motors and improves their trajectory 

tracking performance. 



18 
 

Alici and shirinzadeh (2004) presented a methodology for optimum dynamic 

balancing of two degrees of freedom planar parallel manipulator articulated with 

revolute joints. The optimization selects a set of parameters for mass distribution of 

moving links. The addition of counterweights is employed by them.  

Korayem and Ghariblu  (2004) established the load carrying capacity of a mobile base 

manipulator operated by limited force or torque actuators. It is shown that the 

maximum allowable load on a given trajectory is a function of base position. The 

recursive Newton-Euler method is used to compute the dynamic effects of the load 

and manipulator on each joint actuator, then the load carrying capacity of the mobile 

manipulator at each base point is computed by considering the manipulator joint and 

torque constraints. 

Arakalin and Smith (2005) presented the review of work on shaking force and 

shaking moment balancing of planar mechanisms by different methods based on the 

generation of movements of counterweights. Methods based on copying properties of 

pantograph system that carry counterweights (formed by gear or toothed belt 

transmissions) are proposed. It executes a movement exactly opposite to the 

movement of the total center of movable link masses. Such solution provides dynamic 

balancing with a relatively small increase of total mass of the movable link. 

Marcelin (2005) examined the possibility of using genetic algorithms for the 

optimization of the loads transmitted through the connections of the mechanisms. The 

objective function is the square root of the quadratic sum of all the components of 

loads and moments of all the connections (joints). The design variables are the 

relative positions of various connections.  
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Kuckus and Bingul (2006) reported on link mass optimization using genetic 

algorithms for industrial robot manipulators. It is applied to optimize the link masses 

of a three link robot manipulator with two revolute joint and one prismatic joint to 

obtain minimum energy performance.  

Kim (2006) presented the task based kinematic design of a two degree of freedom 

robot with a parallelogram five-bar link mechanism. Task-based design determines 

the kinematic and dynamic design parameters such as the dimensions and the mass of 

each link and DOF using optimality criteria. Further, the type of a manipulator is also 

decided based on task and manipulator specifications using the optimality criteria. 

The optimality criteria used are dexterity and cost. The genetic algorithm with 

excellent convergence criteria is used for optimization. 

Nguyen (2007) presented the balancing conditions for a spatial mechanism. The 

balancing conditions for shaking force and shaking moment of spatial one DOF 

mechanisms are derived algebraically. The balancing conditions for shaking force and 

shaking moment of slider crank mechanism are presented in this research. 

Chaudhary and  Saha (2007) presented minimization of constraint forces in industrial 

manipulators. The minimization of constraint forces improves the dynamic 

performance of an industrial manipulator. An optimization method is proposed using 

the concept of dynamically equivalent system of point masses. A seven point-mass 

model in parallelepiped configuration is used. It is applied to six DOF PUMA robot to 

demonstrate that the constraint forces are substantially reduced. 

Chaudhary and Saha (2007) presented balancing of four bar linkage using the 

maximum recursive dynamic algorithm. The technique presented is simple and 

computationally efficient for optimum balancing of four-bar linkages. It is based on 
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the maximum recursiveness of the dynamic equations for the evaluation of bearing 

forces. Mass distribution of linkage is embedded in constraints. Dynamically 

equivalent system of a rigid link comprises of two point masses. 

Verschuure (2008) proposed the optimization of counter weight parameters for 

balancing of spatial mechanisms that result in minimal forces and moments under 

constrained driving torque. The optimization problem can be reformulated as a 

convex problem using voxel -based discretizations. It results in counter weight shapes 

that can be easily implemented. It is applied to RSSR four bar spatial mechanism. 

Chaudhary and Saha (2008) presented balancing of shaking forces and shaking 

moments for planar mechanisms using the equimomental systems. The concept of a 

dynamically equivalent system of point masses is used here to represent the rigid 

links. A set of three equimomental point masses is used for each link. In order to 

determine shaking forces and shaking moments, the dynamic equations of motion are 

formulated in terms of point mass parameters. It leads to optimization for mass 

distribution to improve the dynamic performance of the mechanisms. 

Arakelian and Smith (2008) presented the design of a planar 3 DOF 3-RRR reaction 

less parallel manipulators. Design equations and techniques are proposed which 

allows the dynamic substitution of the moving platform of a parallel manipulator by 

three concentrated masses. The total angular momentum of the manipulator can be 

reduced to zero using either counter rotations or inertia flywheel rotating with 

prescribed velocity.    

Chaudhary and Saha (2008) presented optimization technique for the balancing of 

spatial mechanisms. The shaking forces and shaking moments induced due to inertia 

forces are optimized for a spatial mechanism. For a given link, the inertia forces 
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induced are dependent on the mass distribution of the link and its speed of operation. 

The equimomental system of seven point masses in parallelepiped configuration is 

used to represent inertial properties of links and to identify optimizing variables. It is 

applied on spatial RSSR mechanism. Mass redistribution of links offers the advantage 

over counterweight balancing without weight addition. 

Wijk et. al. (2009) presented the comparison of various dynamic balancing principles 

regarding additional mass and inertias. It is stated that the major disadvantage of 

existing balancing principles is that a considerable amount of mass and inertia is 

added to the system. The existing balancing principles are applied to double 

pendulum for comparison, both analytically and numerically. It is reported that the 

duplicate mechanism principle offers the dynamic balancing with minimum addition 

of mass and inertia to the system if available space is not a limiting factor. Using the 

force balancing counter masses as moment balancing counter inertias leads to less 

mass addition compared to use of separate counter rotations. Balancing the 

mechanism altogether is more advantageous. 

Briot and Arakelian (2009) presented the complete shaking force and shaking moment 

balancing of the position oriented decoupled PAMINSA manipulator. The dynamic 

reaction forces on the frame are eliminated by making the mass center of moving 

links stationary. The reaction moments are eliminated by optimal control of end 

effector, which rotates with prescribed velocity. 

Farmani et. al. (2011) presented the multi-objective optimization for force and 

moment of a four -bar linkage using evolutionary algorithms. The concept of inertia 

counterweights and physical pendulum are used completely to balance the mass 

effects independent of input angular velocity. The particle swarm optimization and 
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non-dominated genetic algorithm are applied to minimize multi-objective functions 

subjected to design constraints. Optimal solution minimizes the counter weights and 

eliminates the shaking forces and shaking moments transmitted to the ground.       

Wijk et. al. (2012) presented the comparative analysis for low-mass and low-inertia 

dynamic balancing of a mechanism. The main disadvantage of dynamic balancing is 

the considerable increase in mass and inertia. Evaluation of a balanced rotatable link 

is most crucial for comparison. A rotatable link is balanced by either of, duplicate 

mechanism, counter mass, separate counter rotation (SCR) and counter rotary counter 

mass (CRCM). The duplicate mechanism offers the best compromise for low-mass 

and low-inertia but requires a considerable space. Though, CRCM and SCR balanced 

link are more compact. However, there is a trade-off between mass and inertia for 

which CRCM balanced link is the better of the two.  

Nehemiah et. al. (2012) proposed the complete shaking force and shaking moment 

balancing of complex planar mechanisms. Shaking force is balanced by the 

redistribution of mass and shaking moment by adding gear inertia counterweights. 

The conditions for shaking moment balancing are formulated by copying properties of 

pantograph linkage and the method of dynamic substitution of distribution masses 

with concentrated point masses. It is applied to complex Stephenson‟s linkage.   

Erkaya (2013) investigated the balancing of a planar mechanism using the genetic 

algorithm. Balancing of a four-bar mechanism is formulated as an optimization 

problem. Optimization function consists of sub-components of shaking force and 

shaking moment, and the design variables are kinematic and dynamic parameters of 

linkage. A Genetic algorithm is used to solve the optimization problem. 

The major research gaps revealed based on literature survey are as follows: 
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1. The different point-mass configurations to provide positive value to 

equimomental point masses not explored. 

2. Shaking moment/force minimization is an optimization problem. Industrial 

manipulators requiring least constraint moment/force at different joints are 

needed to develop economic manipulators for industrial use. 

3. Dynamic balancing by internal mass redistribution can be more effective than 

adding devices like gears, mechanism etc. 

4. Recently developed evolutionary optimization technique such as Teaching-

Learning-based- Optimization (TLBO) is not explored for optimization of 

industrial manipulators. 

2.3 Teaching-learning-based-optimization technique 

Rao et al. (2011, 2012, 2013) proposed a novel method called “Teaching- learning-

based optimization” (TLBO) for designing mechanical components. It does not 

require any algorithm parameter to be tuned, as required in the evolutionary algorithm 

such as a genetic algorithm. It makes the implementation simpler. TLBO uses the best 

solution of the current iteration to change the existing solution in the population, 

thereby increasing the convergence rate. It is newly developed optimization algorithm 

that has been used for various optimization problems like constrained mechanical 

design optimization, multi-objective unconstrained & constrained functions,  to solve 

complex benchmark functions & difficult engineering problems. 

Tayfun (2013, 2014) presented the use of TLBO for discrete optimization of truss 

structures and optimal design of grillage structures. Satpathy et. al. (2013) presented 

the use of TLBO based orthogonal design for solving the global optimization 

problem. 
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 Kunjir Yu (2014) proposed an improved TLBO for solving numerical and 

engineering optimization problems. In this, a feedback phase, mutation crossover 

operation of differential evolution algorithms, and chaotic perturbation mechanism are 

incorporated to improve the performance of algorithm significantly. 

Debai Chen et. al. (2014) proposed TLBO with Producer-Scrounger (PS) model for 

global optimization. In this study, the swarm is divided in three parts: producer, 

scroungers, and remainders. The producer is the best individual selected from the 

current population, and it exploits new solution with a random angle and maximum 

radius. Some individuals different from the producer are randomly selected according 

to pre-defined probability as scroungers. The scroungers update their position with an 

area-copying operator which is used in PS model. Computation cost of this modified 

TLBO is less than that of original TLBO. 

Panwar and Rao (2013), Rao and Kalyankar (2014),  Keesari and Rao (2013),  used 

TLBO  for optimizing process parameters and also to solve the job shop scheduling 

problem. Yeldiz (2013) presented Optimization of multi-pass turning operations using 

hybrid teaching-learning approach. Adil et. al.(2014) and Yu et. al. (2015) reported 

using TLBO to solve the job shop scheduling problem. 

2.4 Research Objectives 

Based on the gaps revealed by literature survey, the following major research 

objectives are identified. 

1. Exploring different point-mass configuration that ensures positive value to 

equimomental point-masses to facilitate link shape formulation. 

2. Optimization scheme to minimize shaking moment/force in industrial 

manipulators using internal mass redistribution. 
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3. Explore use of recently developed evolutionary optimization technique such as 

TLBO for optimization of  industrial manipulators. 

2.5 Summary  

Dynamic balancing of shaking force and its effect on other dynamic quantities are 

reviewed in Section 2.1. It is observed by many researchers that balancing of shaking 

force alone is not useful as it increases shaking moment and driving torque in the 

mechanism. Dynamic balancing of shaking force and shaking moment, and driving 

torque reduction in mechanisms and robotic manipulators is reviewed in Section 

2.2.Some reviews on dynamic balancing show that there will be no clear-cut method 

for static and dynamic balancing. Several works of literature are very specific 

(generally with the addition of weight as balancers) and applicable to the mechanisms 

(mostly planar mechanism). A generalized methodology is not available which can be 

applied to all types of mechanisms, particularly open loop spatial mechanisms. 

Therefore, various optimization methods for simultaneous minimization of the 

shaking force and the shaking moment are also explored and reviewed in section 2.2. 

However, the methods used for balancing the flexible mechanisms are excluded in 

this section. It is observed that relatively less literature is reported on the generalized 

methodology for dynamic balancing of spatial mechanisms, specifically on industrial 

manipulators. Even in the literature reported, the dynamic balancing of shaking force 

and shaking moment adds to mass and inertia of the linkage in most of the cases. 

However, in very few it is achieved by the redistribution of the mass of the link 

without adding additional mass. It reduces the shaking moment which is dependent on 

the inertia of link. The equimomental point masses model suggested in available 

literature involves negative point mass values. It is likely to result in enormous 
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difficulty in shape optimization of the link. Equimomental point mass model with the 

positive value for point masses would be helpful in link shape optimization. Recent 

literature indicates that evolutionary technique genetic algorithm is used by many 

researchers in the optimization of spatial and industrial manipulator linkages [17, 27, 

29 and 39]. The literature available on the teaching-learning based optimization 

(TLBO) technique, which is developed recently in 2011, is reviewed in section 2.3. In 

recent years its use in optimization is reported in different areas [64-74].  

Chaudhary and Saha proposed seven point-masses model in parallelepiped 

configuration, but it involves negative point masses. Further, seven point-masses 

model with equal point- masses along three coordinate axes is proposed by Rahman 

for the slider-crank mechanism. However, so far no one has proposed the use of six 

and five point-masses hexahedron model or four point-masses model for representing 

a rigid link in terms of the point-mass model with positive point-mass values for 

spatial linkages. So far there is no literature reported on using TLBO for optimization 

of dynamic balancing of industrial manipulators. It justifies the research objectives 

identified in section 2.4. 
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Chapter 3 

Point-mass Models 

Consideration of the inertia induced shaking force, shaking moment and driving 

torque of a manipulator are important for designers. These dynamic quantities depend 

on the mass and inertia of its moving links, thus on the mass, location of its mass 

center and mass distribution. These inertia properties can be represented more 

conveniently using the dynamically equivalent system of point masses. The 

dynamically equivalent system is also referred as the equimomental system. The 

concept of the dynamically equivalent system is elaborated by Sherwood et al. [23]. 

In order to dynamically balance industrial manipulators, the concept of the 

equimomental system of point-mass is introduced, and the various dynamically 

equivalent point-masses systems possible to represent links of a robot are proposed a 

new in this chapter. The configurations ensures positive value to all point-masses.  

3.1 Equimomental systems for spatial motion 

 

Fig. 3.1 Equimomental system of a rigid body in spatial motion 

A rigid body, having mass m, Cartesian coordinates of mass center (  ̅   ̅  ̅ , moments 

of inertia,    ,     ,     , and the products of inertia,    ,     ,     is considered as 

shown in Fig. 3.1.The coordinates of the mass center location and the inertias are 
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taken in body fixed frame, OXYZ. Let, the rigid body be discretized in a set of p 

point-mass, which are rigidly fixed to the body fixed frame at locations (  ,  ,      for 

i = 1, 2, …., p. There is a set of ten conditions to be satisfied to represent the rigid link 

dynamically equivalent to the set of point-masses. These conditions are (i) The total 

mass of all point masses, (ii) The mass center of point- masses, and (iii) The mass 

moment of inertia and product moment of inertias of the set of point- masses and link 

must be same. To find the values of point-masses and their location using above ten 

conditions, the different set of point-mass are explored in this chapter. We can have a 

minimum of four point masses. The ten equimomental conditions are expressed 

mathematically as follows: 

∑   
 
                       (3.1) 

∑     
 
    =    ̅                                                                                                      (3.2) 

∑     
 
   = m ̅                                                                                                        (3.3) 

∑     
 
    =    ̅                                                                                                      (3.4) 

∑      
     

   
       =                                                                                           (3.5) 

∑      
     

   
      =                                                                                            (3.6) 

∑      
     

   
      =                                                                                                        (3.7) 

∑       
 
     =                                                                                                                    (3.8) 

∑       
 
     =                                                                                                                    (3.9) 

∑       
 
     =                                                                                                                  (3.10) 

The different point mass configurations presented below represent the dynamically 

equivalent point-masses systems for a given link.  
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3.2 Seven point-mass octahedron model 

Each link is treated as the dynamically equivalent system of point masses to distribute 

link masses optimally. A set of seven point masses in octahedron configuration as 

shown in Figs. 3.2 represent the links dynamically. Body fixed frame xiyizi is fixed to 

ith link at its mass center and axes xi,yi,zi are principal axes. It is assumed that six 

point masses, mij, are located at the vertices of an octahedron. Subscripts i and j 

denote the ith link and its jth point mass, respectively.  The remaining seventh point 

mass is assumed to be located at the mass center of the link.  The point masses are 

rigidly fixed to the frame xiyizi. The two systems, rigid link and the system of seven 

point masses in octahedron configuration, are dynamically equivalent. If (i) the sum 

of all point-masses equals the mass of link, (ii) the mass center of the set of point 

masses coincides with the mass center of the rigid link, and (iii) the moment of 

inertias and product of inertias for distributed point-masses is same as that of rigid 

link. These conditions are known as equimomental conditions for the ith link. 

 

(a) Octahedron model                         (b) Coordinates of point masses  

Figure 3.2: Seven point-mass Octahedron Model 
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The mass, mi, mass center coordinates ( ̅    ̅    ̅     the moment of inertia (Iixx,Iiyy,Iizz) 

and the product of inertia (Iixy, Iiyz, Iizx) are defined for the i
th

 link. The coordinates (xij, 

yij, zij) of point mass mij are defined for j
th

 point mass of i
th

 link. Assuming equal point 

masses at equidistance on either side of axes xi ,yi and zi , we get 

                                                                                        (3.11)  

                                                                                          (3.12) 

The point massmi2 is placed at the mass center of the link. Since the other point 

masses are placed on axes, their other coordinates are zeros. These assumptions lead 

product of inertias zero while xi , yi and zi become principal axes of the i
th

 link. The 

mass center also is at the origin, i.e.,  ̅      ̅        ̅ = 0. This arrangement 

automatically satisfies the six equimomental conditions about location of center of 

mass and product of inertias, the remaining four conditions of total mass and inertia 

about three axes give:  

                                                                           (3.13) 

                                  
         

                                                                    (3.14)               

                                 
         

                                                                    (3.15)                    

             
         

                                                                   (3.16)  

Eqs.(3.13) – (3.16) contain 7 unknowns, four point masses mi1,mi2, mi3, mi6, and three 

coordinates xi1, yi3, zi6 . Assuming mi1 = mi3= mi6 = αmi , Eqs. (3.13) – (3.16) give:     

                                                                                         (3.17)             

   
                                                                              (3.18) 
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                                                                                       (3.19) 

   
   

 
                                                                                      (3.20) 

Where, a constant α must satisfy 1 > (1 - 6α) > 0, i.e. , α < 1/6. 

Finally, if we know the mass and inertias of the rigid link, the unknown parameters of 

the point mass system can be computed using Eqs. (3.17-3.20).Such system of point-

mass is dynamically equivalent to the rigid link. 

3.3 Six point–mass hexahedron model 

Similar to the seven point-mass model in octahedron configuration, six point-mass 

model is defined in hexahedron configuration as shown in Fig. 3.3. 

 

(a) Hexahedron model                                          (b) Coordinates of point-masses 

Figure 3.3: Six point – mass hexahedron model 

For six point-mass model the following relationships of point masses and their 

distances along axes xi ,yi and zi are assumed to place the mass center of six point 

masses in hexahedron configuration at the mass center of the link . 

                                                                                             (3.21)                   

                                                                                       (3.22) 
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Since, all other coordinates are zeros for point masses 1,4,5 and 6 as shown in Fig. 3.3 

and the location of masses 2 and 3 being symmetric hence  the product of inertias  

become zero.  xi , yi and zi are principal axes of the i
th

 link and the mass center is at the 

origin, i.e.,  ̅      ̅        ̅ = 0. This arrangement automatically satisfies the six 

equimomental conditions about center of mass and product of inertias, the remaining 

four conditions of total mass and inertia about three axes gives:  

                                                                                                            (3.23)   

            
         

                                                                                             (3.24) 

           
         

                                                                                    (3.25) 

           
         

                                                                                    (3.26) 

Eqs. (3.23) – (3.26) contain 6 unknowns, three point masses mi1,mi4, mi5, and three 

coordinates xi2, yi1, zi5 . Assuming mi1 = 2mi5 = αmi , Eqs. (3.23) – (3.26) gives :  

                                                                                                        (3.27) 

   
                                                                                              (3.28) 

   
                                                                                              (3.29) 

   
                                                                                               (3.30) 

Where, a constant α must satisfy, 1 > (1 - 3α) > 0, i.e. , α < 1/3. 

Finally, knowing the mass and inertias of the rigid link, Eqs.(3.27) – (3.30) provide 

unknown parameters of the point mass system. Such a system of point-mass is 

dynamically equivalent to a rigid link.  

3.4 Five point – mass hexahedron model 

Similar to the seven point-mass model in octahedron configuration, five point mass 

model is defined in hexahedron configuration as shown in Fig. 3.4.For five point mass 
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model the following relationships of point masses and their distances along axes xi ,yi 

and zi , are assumed to place the mass center of five point masses in hexahedron 

configuration at the mass center of the link . 

                                                                                             (3.31)                   

                                                                                       (3.32) 

 

 

(a) Hexahedron model                                          (b) Coordinates of point-masses 

Figure 3.4: Five point – mass hexahedron model 

Since, all other coordinates are zeros for point masses 1,4 and 5 as shown in Fig. 3.4 

and the location of masses 2 and 3 being symmetric, hence the product of inertias 

become zero. xi ,yi and zi are principal axes of the i
th

 link and the mass center is at the 

origin, i.e.,  ̅      ̅        ̅ = 0. This arrangement automatically satisfies the six 

equimomental conditions about center of mass and product of inertias, the remaining 

four conditions of total mass and inertia about three axes give:  

                                                                                                                     (3.33) 

            
         

                                                                                                                                      (3.34) 

           
         

                                                                                     (3.35) 
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                                                                                     (3.36)  

Eqs. (3.33) – (3.36) contain 5 unknowns, two point masses mi1,mi4, and three 

coordinates xi2, yi1, zi5 . Assuming 2mi4 = mi1, Eq. (3.33) –  (3.36) gives: 

                                                                                                            (3.37) 

   
                                                                                           (3.38) 

   
                                                                                           (3.39) 

   
                                                                                           (3.40) 

Finally, the mass and inertias of the rigid link are known, Eqs. (3.37) – (3.40) provide 

unknown parameters of the point mass system. Such a system of point-mass is 

dynamically equivalent to a rigid link. 

3.5 Four point–mass model 

Four point-mass model is defined in parallelepiped configuration as shown in Fig. 3.5. 

 

 

 

 

 

 

Figure 3.5: Four point – mass model 

For four point mass model the following relationships of point masses and their 

distances along axes xi ,yi and zi ,  are assumed to place mass center of four point 

masses at the mass center of the link . 

                                                                                   (3.41)                  
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                                                                                                                (3.42) 

With above assumptions, the point-masses and their co-ordinates can be expressed as 

,   (   ,      ,         (          ,         (         ,          (           ,      It 

makes product of inertias  zero. The axes xi ,yi  and zi become principal axes for the ith 

link and the mass center is at the origin, i.e.,  ̅      ̅        ̅ = 0. This arrangement 

automatically satisfies the six equimomental conditions pertaining to center of mass 

and product of inertias, the remaining four conditions of total mass and inertia about 

three axes give:  

                                                                                                                           (3.43) 

            
                                                                                                                                         

    (3.44) 

            
         

                                                                                    (3.45) 

            
         

                                                                                    (3.46)  

Eqs. (3.43) – (3.46) contain 4 unknowns, one point masses     and three coordinates 

            , we get: 

                                                                                                                  (3.47) 

   
                                                                                                  (3.48)      

   
                                                                                                  (3.49) 

   
                                                                                                  (3.50) 

Finally, the mass and inertias of rigid link are known, Eqs. (3.47) – (3.50) provide 

unknown parameters of the point mass system. Such a system of point-masses is 

dynamically equivalent to a rigid link. 

3.6 Example for Equimomental point masses 

We take six degree of freedom PUMA Robot, whose details are available in the 

published literature [43], as an example. The masses and inertias of six different links   
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of the  robot are as given below:  

Table 3.1: Mass and inertias about center of mass for six degree of freedom PUMA 

robot 

Link Link Mass 

(kg) 

Ixx            

(kg-m
2
) 

Iyy            

(kg-m
2
) 

Izz      

(kg-m
2
) 

Ixy      

(kg-m
2
) 

Iyz      

(kg-m
2
) 

Ixz      

(kg-m
2
) 

1 10.521 1.612 1.612 0.5091 0.0 0.0 0.0 

2 15.761 0.4898 8.0783 8.2672 0.0 0.0 0.0 

3 8.767 3.3768 3.3768 0.3009 0.0 0.0 0.0 

4 1.052 0.1810 0.1273 0.1810 0.0 0.0 0.0 

5 1.052 0.0735 0.1273 0.0735 0.0 0.0 0.0 

6 0.351 0.0071 0.0071 0.0141 0.0 0.0 0.0 

 

Table 3.2: Equimomental Point masses for 7 point mass model taking α = 1/8 (in Kg) 

Li

nk 

Link 

mass 
                            Point 

mass 

sum 

1 10.52 1.315 2.630 1.315 1.315 1.315 1.315 1.315 10.52 

2 15.76 1.970 3.940 1.970 1.970 1.970 1.970 1.970 15.76 

3 8.77 1.096 3.192 1.096 1.096 1.096 1.096 1.096 8.77 

4 1.052 0.131 0.263 0.1315 0.1315 0.1315 0.1315 0.1315 1.052 

5 1.052 0.131 0.263 0.1315 0.1315 0.1315 0.1315 0.1315 1.052 

6 0.351 0.088 0.175 0.0877 0.0877 0.0877 0.0877 0.0877 0.351 

Table 3.3: Coordinates of the Point masses for 7 point mass model (in meters) 

Link                           

1 0.31109 0.31109 0.71839 -0.31109 -0.31109 -0.71839 

2 1.41846 0.29347 0.19540 -1.41846 -0.29347 -0.19540 

3 0.26200 0.26200 1.21328 -0.26200 -0.26200 -1.21328 

4 0.49195 0.66798 0.49195 -0.49195 -0.66798 -0.49195 

5 0.49195 0.66798 0.49195 -0.49195 -0.19353 -0.49195 

6 0.28345 0.28345 0.02387 -0.28345 -0.28345 -0.02387 

Table 3.4: Equimomental Point masses for 6 point mass model taking α =1/4 (in Kg) 

Link Link 

mass 
                        Point 

mass 

sum 

1 10.521 2.6302 1.3151 1.3151 2.6302 1.3151 1.3151 10.521 

2 15.761 3.9402 1.9701 1.9701 3.9402 1.9701 1.9701 15.761 

3 8.767 3.1918 1.0959 1.0959 3.1918 1.0959 1.0959 8.767 

4 1.052 0.2630 0.1315 0.1315 0.2630 0.1315 0.1315 1.052 

5 1.052 0.2630 0.1315 0.1315 0.2630 0.1315 0.1315 1.052 

6 0.351 0.1754 0.0877 0.0877 0.1754 0.0877 0.0877 0.351 
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Table 3.5: Coordinates of the Point masses for 6 point mass model (in meters) 

Link                                

1 0.31109 0.21997 0.50798 -0.31109 -0.21997 -0.50798 

2 1.41846 0.20751 0.14490 -1.41846 -0.20751 -0.14490 

3 0.26200 0.18526 0.87769 -0.26200 -0.18526 -0.87769 

4 0.49195 0.47233 0.34786 -0.49195 -0.47233 -0.34786 

5 0.49195 0.47233 0.34786 -0.49195 -0.13684 -0.34786 

6 0.28345 0.20043 0.01688 -0.28345 -0.20043 -0.01688 

 

Table 3.6: Equimomental Point masses  for 5 point mass model (in Kg) 

Link Link 

mass 
                    Point 

mass sum 

1 10.521 3.5070 1.7535 1.7535 1.7535 1.7535 10.521 

2 15.761 5.2537 2.6268 2.6268 2.6268 2.6268 15.761 

3 8.767 2.9223 1.4612 1.4612 1.4612 1.4612 8.767 

4 1.052 0.3507 0.1753 0.1753 0.1753 0.1753 1.052 

5 1.052 0.3507 0.1753 0.1753 0.1753 0.1753 1.052 

6 0.351 0.1170 0.0585 0.0585 0.0585 0.0585 0.351 

 

Table 3.7: Coordinates of the Point masses for 5 point mass model (in meters) 

Link                                

1 0.26941 0.19050 0.62215 -0.26941 -0.19050 -0.62215 

2 1.50352 0.17971 0.16922 -1.50352 -0.17971 -0.16922 

3 0.22690 0.16044 1.05073 -0.22690 -0.16044 -1.05073 

4 0.42604 0.40905 0.42604 -0.42604 -0.40905 -0.42604 

5 0.42604 0.40905 0.42604 -0.42604 -0.11851 -0.42604 

6 0.24547 0.17357 0.02067 -0.24547 -0.17357 -0.02067 

 

Table 3.8: Equimomental Point masses (in kg) and Coordinates (in meters) of the four 

point mass model 

Link Link mass     
    =    

    

             

1 10.521 2.6302 0.15555 0.15555 0.35920 

2 15.761 3.9402 0.70923 0.14345 0.10246 

3 8.767 2.1918 0.13100 0.13100 0.60664 

4 1.052 0.2630 0.24597 0.33399 0.24597 

5 1.052 0.2630 0.24597 0.09676 0.24597 

6 0.351 0.1754 0.20085 0.20085 0.01194 
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3.7 Summary 

In this chapter, the equimomental point-mass values, and their locations are obtained 

for various point-mass configurations i.e. seven point-mass octahedron model, six 

point-mass hexahedron model, five point mass hexahedron model, and four point-

mass model. Finally, the equimomental point-mass values and their locations for 

PUMA robot is obtained and tabulated for these four types of models. 
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Chapter 4 

Dynamic Analysis 

 
Mechanical systems are generally classified as open-loop (serial and/or tree type) and 

closed-loop type based on their composition/architecture. Industrial manipulators fall 

under the category of the open-loop type system. In this chapter, the dynamic 

formulation, i.e., the equations of motion for the robot (open-loop system) is 

presented that is used to compute reaction forces and moments at the joints. It is based 

on Newton-Euler equations of motion being derived with respect to the links frame. 

Since, we have represented rigid links in terms of equimomental point-masses 

systems in chapter 3, the dynamic formulation for point-masses system is presented 

here. Further, dynamic analysis of n degrees of freedom serial manipulator is done 

and the expressions for shaking forces and shaking moments are derived. 

4.1 Dynamic analysis of a serial industrial manipulator  

An n-link, n-DOF, open-loop serial-chain robot manipulator, such as PUMA robot, 

can be represented as open-loop (serial type) system shown in Fig. 4.1. 

 

 
 

 

Fig. 4.1: Serial Open-loop System, Manipulator 
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If mi is the mass of the i
th

 link and   
 denotes the 3x3 inertia tensor of the i

th
 link about 

its mass center Ci, the Newton-Euler (NE) equations of motion for the i
th

 link are 

written as 

Newton‟s Equation:   
 =    ̇ 

                                                                                                                         (4.1) 

Euler‟s Equation:        
    

  ̇    ̃   
                                                          (4.2) 

Where   
 is the resultant of all external moments about its mass center Ci, and   

 is the 

resultant force acting at Ci. The cross-product of angular velocity with any vector  ⃗⃗  is 

defined as  ̃    ⃗⃗⃗      ⃗⃗  . 

The velocity    and acceleration  ̇ of origin Oi are then obtained from velocity and 

acceleration of mass center as:   

      
    ̃                                                                                                   (4.3) 

 ̇    ̇ 
   ̃  ̇   ̃  ̃                                                                                   (4.4) 

Where vector    is from origin Oi to mass center Ci . 

The applied moment and force,  and  w.r.t Oi  respectively are then obtained from 

that w.r.t. Ci as: 

      
          

                                                                                           (4.5) 

      
                                                                                                                 (4.6) 

Where,   ,      and  , are the angular velocity, linear velocity, the resultant 

moment, and the resultant force acting on the i
th

 link, respectively,  at Oi of the link. 

Using Eqs. 4.1, 4.3 and 4.6, we get 

       ̇      ̃  ̇      ̃  ̃                                                                    (4.7) 

Using Eqs. 4.2, 4.5 and 4.6, and       
      ̃ 

  , we get 

       ̇    ̃         ̃  ̇                                                                         (4.8) 
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In order to represent the mass mi , in terms of the parameters of the point-masses, the 

ith rigid link is modeled as different point-mass models.  

 

Fig. 4.2 Definitions of vectors 
 

Referring to Fig. 4.2, the vectors, dij and rij, are the positions of the point-mass, mij, 

from the origins Oi and Oi+1, respectively. Vector di locates the link‟s mass center. 

Using the equimomental conditions, i.e. the mass center of point mass system to 

coincide with mass center of rigid link along all three axes, di is obtained in terms of 

dij  as :   
 

  
∑       

 
                                                                          (4.9) 

Denoting,                  ]T , the 33 skew-symmetric matrix,  ̃ , associated 

with the vector,   is given by 

 ̃  
 

  
[

  ∑        
 
   ∑        

 
   

∑        
 
     ∑        

 
   

 ∑        
 
   ∑        

 
    

]                               (4.10) 

 

Using the conditions of equality for each component of the inertia tensor for the point 

mass system and the rigid link, the inertia tensor, Ii, about Oi, in terms of the point 

mass parameters has the following representation: 
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   [

∑    (    
      

 ) 
   ∑            

 
   ∑            

 
   

∑            
 
   ∑    (    

      
 ) 

   ∑    
 
           

∑    
 
           ∑    

 
           ∑    (    

      
 ) 

   

] (4.11) 

4.2 Shaking force and shaking moment  

The dynamic balancing of mechanisms is necessary to reduce the amplitude of 

vibrations of the frame on which the mechanism is mounted due to shaking force and 

shaking moment. Further, the balancing also helps to obtain the constant speed of the 

mechanism through smoothening of the high fluctuations in the driving torque/force. 

We know that the vibration of any system leads to noise, wear, and fatigue, etc. 

Therefore there is a challenge to reduce all these three quantities, i.e., shaking force, 

shaking moment, and input  torque fluctuations. Shaking force and shaking moment 

can be balanced, if the mass center of moving  link lies at their point of rotation by 

using counterweights to the moving links. However, it increases the overall mass and 

inertia of the mechanism. It results in the increase in driving torque and reactions at 

the joints. Hence, to improve the overall performance, a trade-off between all 

dynamic quantities is to be made which can be better achieved by reducing the inertia 

of links through proper mass distribution by treating balancing problem as an 

optimization problem. 

The shaking force is defined as the reaction of the vector sum of all the inertia forces 

of moving links of the manipulator, and the shaking moment is the reaction of the 

resultant of the inertia moments and the moment of the inertia forces [43]. The free 

body diagram of the i
th

 link is given in Fig. 4.3. The shaking force and shaking 

moment in a manipulator having n moving links are given by 
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Fig. 4.3 : Free body diagram of the ith  Link 

 

       ∑   
  

                                                                                                      (4.12) 

       ∑    
  

    +  ̃     
                                                                                    (4.13) 

Where   
 and   

  are the 3-vectors of inertia force and inertia moment of the i
th

 link 

acting at and about origin Oi, respectively. The 3   3 matrix,  ̃   , is the skew-

symmetric matrix corresponding to three vectors, a1,i ,from O1 to Oi . The point O1 is 

the origin of the frame, X1Y1Z1, attached to the fixed link about which the shaking 

moment is defined. The equilibrium of forces and moments are expressed as (Fig. 

4.3).   

  
                  =     

                                                                                      (4.14) 

  
                    ̃            =    

                                                              (4.15) 

Where the 3-vectors,                                    are the constraint forces and 

moments at the origins, Oi and Oi+1, respectively  and 3-vectors,    
        

 ,  are  the   

external force and moment acting on the ith link at and about Oi , respectively.   
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Eqs. (4.14) and (4.15) are used to find constraint forces and moments from distant 

link to the first link. 

4.3 Summary 

In this chapter, the dynamic analysis of a serial industrial manipulator is established 

and the equations for shaking forces and shaking moments for the ith link are given. 

Using these recursive relations, we can find the shaking forces and shaking moments 

for other links moving in the backward direction from the end effector. 
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Chapter 5 

Optimization Problem Formulation 

An optimization problem is formulated in this chapter to minimize shaking force and 

shaking moment simultaneously. In our case, the objective function is to minimize the 

shaking force and shaking moment on the base frame of the manipulator. The 

expressions for shaking force and shaking moment given in chapter 4 are used. This 

formulation is simplified by representing the inertial properties of the links in terms of 

the equimomental point-mass parameters. The point-mass parameters are used as 

design variables for the proposed optimization problem formulation, and associated 

constraints are formulated.  

5.1 Optimization problem and optimality criteria  

Two most commonly used optimization techniques to reduce the shaking force and 

shaking moment are (i) counterweighing the moving links and (ii) redistribution of the 

mass of moving links. In the case of counterweight balancing, counterweights are 

attached to the moving links such that the shaking force and shaking moment 

transmitted to the mechanism frame is minimized. We can formulate it as an 

optimization problem. Since the shaking force and shaking moment are the resultants 

of the inertia forces and moments of the moving links, when the link length and 

trajectory of motion that governs speed are given, the inertia forces depend only on 

the mass distribution of the links. Hence, mass distribution is the obvious choice to 

balance spatial mechanisms. 

There are many possible criteria by which the shaking force and shaking moment 

transmitted to the frame/fixed link of the mechanism can be minimized. One of the 

criteria can be based on the root mean square (RMS) values of shaking force, and 
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shaking moment for a given trajectory of motion. Besides the RMS values, there are 

other criteria like maximum values, The amplitude of specified frequency and 

amplitude at some specified point during the motion cycle. The choice of criteria 

depends on the requirements. Here, the RMS value is preferred as it gives equal 

emphasis to the result of all time instances and every harmonic component.  

Our objective is to demonstrate the effectiveness of proposed point-mass models 

(Positive equimomental point-mass values are offered for all masses by keeping the 

masses in such configurations) and optimization techniques (TLBO and GA) in the 

dynamic balancing of industrial manipulators through reduction of shaking moments 

and shaking forces. The equations of motion (NE equations) and expressions for 

shaking forces and moments have been derived in Chapter 4. Since the shaking 

moments and shaking forces at the different joint of the manipulator are dependent on 

velocities and acceleration of links apart from other parameters, their values are time 

dependent. Therefore the RMS values of shaking force  ̃   and shaking moment  ̃  at 

  discret positions of the manipulator link are given by: 

 ̃   = √∑   
    ; and  ̃    √∑   

                                                                       (5.1) 

Then optimality criteria is considered as 

z =    ̃        ̃                                                                                                    (5.2) 

Where    and    are weighing factors whose value depends on the application. If we 

take               it minimizes shaking moment alone. Similarly, by 

taking,    ,         , it minimizes shaking force alone. Here,    , 

         is taken, to give equal weights to the reduction of shaking force and 

shaking moment.  
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We intend to reduce inertia induced forces and moments through mass redistribution 

of links i.e. by finding the values of different point-masses. It makes point-masses of 

different links as the design variables. For manipulator having   moving links, with 

each link modeled by p equimomental point masses, then we will have pn design 

variables. The pn-vector of design variables is expressed as: 

x = [                                                                                       (5.3)  

For existing robot/manipulator, we intend to keep the total mass of each link same or 

more thus it becomes a constraint, apart from individual point mass of each link to be 

more than zero being the other constraint. Thus the optimization problem for the 

manipulator is stated as below. 

Minimize z(x) =    ̃        ̃                                                                             (5.4a) 

Subject to ∑        
 
     for all n links, i.e., i = 1,2,3,….. n                             (5.4b) 

        for all point-masses of all links, i.e., i = 1,2,3,….. n and j = 1,2,….p    (5.4c) 

As discussed in Chapter 3, on point-mass models, all equimomental point masses of 

the links are assumed positive to satisfy conditions of product moment of inertias to 

be zero and also to avoid the practical implementation problem associated with 7 

points parallelepiped negative point mass model. Since, the load carrying capacity 

that is the design parameter of robot/manipulator which depends on dimensions and 

material of the links (i.e. mass of the links). Therefore, the total mass of each link is 

kept same for the existing manipulator. However, in the case of a new design of the 

robot, it can have a different value with load capacity and stresses in the link being the 

constraints.  

 

 



48 
 

5.2 Application problem- PUMA robot 

The greater use of the robot is being made, these days, in the industrial system 

compared to human for repetitive and non-conducive tasks in the industry. For 

instance, unlike the human, robots are able to work tirelessly and do repetitive tasks 

with high speed and accuracy. PUMA offers 200, 500, and 700 Series of Robots. 

PUMA 500 Series Robots are of 5 or 6 revolute axes. PUMA 560 Robot is a well-

known industrial robot with six degrees of freedom. It is an RRRRRR robot type 

which can do various tasks such as point welding in the automotive industry and 

similar industries. This robot has six degree of freedom, three of them (waist rotation, 

shoulder rotation, elbow rotation) are related to a manipulator that offers positioning 

of the arm and the remaining (wrist bend, flange rotation) offers orientation to the arm 

and are related to end effector. The schematic diagram of PUMA 500 series is shown 

in Fig. 5.1.  Gripper or End effector is mounted at gripper mounting location. 

Specialized tools like welding electrode, paint brush, a gas cutting torch, a de-burring 

tool, or a grinding wheel attached at the end of manipulator‟s arm to perform special 

tasks are also considered as end-effectors. In this study, dynamic balancing of PUMA 

robot is considered as a problem to demonstrate the application/use of proposed point-

mass models and optimization techniques. PUMA robot is considered because the 

parameters like masses of different links, their inertias, and DH parameter are 

available in the published literature for PUMA robot. 
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Figure 5.1 Schematic of PUMA 500 series Robot [57] 

The DH parameters, link‟s masses, and inertias of the manipulator given in [43] are 

taken here for analysis and comparison purposes. The frame convention and notations 

of DH parameters are shown in Fig. 5.2. The architecture of a PUMA robot is shown 

in Fig. 5.3 whose DH parameters, mass, and inertia about the mass center of each link 

are given in Table 5.1.  

 
 

Fig. 5.2 Coordinate frames and DH parameters 

( Saha,57) 

Fig. 5.3 Architecture of a PUMA  

Robot (Saha,57) 
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Inertias of the links are given in the local frame, and off-diagonal terms of inertias are 

all zero. Note that Xi+1 Yi+1 Zi+1is fixed to the i
th

 link in this notation. The joint 

trajectories are taken as:- 
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TABLE 5.1: DH parameters, and mass and inertia properties of links 

I ia  ib  i  i  im  ixr  iyr  izr  ixxI  iyyI  izzI  

 (m) (m) (deg) (deg) (Kg)  (m)  (Kg-m2) 

1 0 0 -90 1 10.521 0 0 -0.054 1.612 1.612 0.5091 

2 0.432 0.149 0 2 15.761 -0.292 0 0 0.4898 8.0783 8.2672 

3 0.02 0 90 3 8.767 -0.02 0 0.197 3.3768 3.3768 0.3009 

4 0 0.432 -90 4 1.052 0 -0.057 0 0.181 0.1273 0.181 

5 0 0 90 5 1.052 0 0 0.007 0.0735 0.1273 0.0735 

6 0 0.056 0 6 0.351 0 0 -0.019 0.0071 0.0071 0.0141 

 

The equimomental point masses for each link are obtained for different point-masses 

configurations (i.e. 7/6/5/4 point-masses to represent rigid links of the manipulator) in 

chapter 3. The values of point masses and their locations for 7, 6, 5 and 4 point mass 

configurations are given in Tables 3.2 to 3.8.  

5.3 Summary 

In this chapter, the optimization problem is formulated giving objective function and 

associated constraints. Weight factors are used for shaking force and shaking moment 

in the objective function. RMS value of the shaking forces and shaking moments, DH 

parameters and other details of PUMA robot are given which shall be used in solving 

the optimization problem formulated using different optimization techniques.  
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Chapter 6 

Optimization Techniques - GA and TLBO 

The difficulties associated with mathematical optimization like Linear Programming 

and Dynamic Programming etc. to solve engineering problems having a large number 

of variables and non-linear objective functions led to the development of several 

modern heuristic algorithms for searching near-optimal solutions to such problems. 

Some of the evolutionary and swarm intelligence based algorithms are Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), Artificial Bee Colony (ABC). All these algorithms are population-based. 

Recently, population-based algorithm, Teaching Learning based algorithm has been 

added to this group of evolutionary and swarm intelligence based algorithms. All 

these are population based probabilistic algorithms and require common controlling 

parameters like population size, the number of generations, elite size, etc. Apart from 

these controlling parameters, each algorithm requires its algorithm-specific 

parameters. Genetic Algorithm, which is based on Darwin‟s principle of survival of 

fittest, require mutation rate and crossover rate. Similarly, PSO uses inertia weight, 

social and cognitive parameters. However, the TLBO algorithm does not require any 

such algorithm-specific parameter. Hence, it is relatively simpler in its coding and 

implementation. Recently, TLBO has been used for solving the optimization problem 

in wide engineering applications.   

6.1 Genetic algorithm tool box 

A built-in standard tool box is available in MATLAB for solving constrained linear 

optimization problem with linear constraints. We can change population size, 

crossover probability, mutation probability, elite count and tolerance function as per 



52 
 

our requirements. However, there is a default setting in the built-in software for these 

parameters. The default setting, for population size, is 20, crossover probability is 0.8, 

elite count 2, tolerance function 1e -6 and performs mutation operation on remaining 

single parents i.e. 2 giving mutation probability of 0.10. Stopping criteria can be 

generation count, function tolerance, fitness limit, etc. 

At each step the GA uses current population to create the children that make up the 

next generation. The algorithm selects a group of individuals in the population called 

parents who contribute their genes - the entries of their vectors - to their children. The 

algorithm selects individuals that have better fitness value/function value as parents. 

One can specify the function that algorithm uses to select the parents in the selection 

function. GA generates initial population randomly or if the range is known we can 

define/give the initial population as input. 

GA creates three types of children for next generation 

 Elite children are individuals in the current generation with best fitness values. 

These individuals automatically survive to the next generation. 

 Crossover children are created by combining the vectors of their parents. 

 Mutation children are created by introducing random changes or mutation to a 

single parent. 

6.2 Teaching learning based optimization 

The Teaching-Learning-Based Optimization (TLBO) method developed recently by 

R. V. Rao et al. (2011) is also a nature inspired population-based method. It is based 

on acquiring knowledge/learning through teacher and self- learning through fellow 

colleagues so as to perform better in the evaluation. The subject knowledge can be 

acquired better through teachers, who are possessing subject related knowledge better.     
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Further refinements in terms of introducing elite, mutation and crossover concepts as 

prevailing in GA; feedback phase and chaotic perturbation mechanism that helps to 

improve significantly the performance of basic algorithm has been introduced in basic 

TLBO model very recently by Kunjie Yue (2014). 

The TLBO method is  based on the effect of the influence of a teacher on the output 

of learners in the class. Here, the output is considered in terms of results or grades. 

The teacher is considered as a highly learned person who shares his or her subject 

knowledge with the learners. The quality of a teacher affects the outcome of the 

learners. It is obvious that a good teacher trains learners such that they can have better 

results in terms of their marks or grades in the subject taught. 

Considering that two different teachers, T1 and T2, teach a subject with the same 

content to the same merit level students/learners in two different classes. On 

evaluation by the teachers with the same set of questions and with same time 

allotment to answer these questions, the distribution of marks obtained by the 

students/learners of two different classes would be different. The plot of the 

distribution of marks by the students in a class is generally observed to follow a 

normal distribution pattern though it might be skewed somewhat. 

 

If the mean of marks obtained by students who learned from teacher T2 is better 

compared to mean marks of students who learned from teacher T1, then it can be said 

that teacher T2 is better than teacherT1 in terms of teaching. The main difference 

between the results is their mean (M2 for teacher T2 and M1 for teacher T1), i.e. a good 

teacher produces a better mean for the results of the students/learners. Further, the 

students/learners also learn from the interaction among themselves, which also helps 
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in their results. The optimization technique called “Teaching–Learning-Based 

Optimization” (TLBO) is based on this teaching–learning process. 

 

 

 

Fig. 6.1: Distribution of marks obtained by a group of learners [Rao et. al.,59] 

 

Since the teacher is considered as the most knowledgeable person in the society, so 

the best learner in the population of learners is considered as a teacher, which is 

shown by TA in Fig. 6.3. The teacher tries to disseminate knowledge among learners, 

which will, in turn, increase the knowledge level of the whole class and help learners 

to get good marks or grades. So a teacher increases the mean of the class according to 

his or her capability. In Fig. 6.3, teacher TA  tries to move mean MA towards his/her  

level according to his or her capability thereby increasing the learners‟ level to a new 

mean MB. Teacher TA will put maximum effort to teach that subject to his or her 

students, but students will gain knowledge according to the quality of teaching and the 

quality of students present in the class. The quality of the students is judged from the 

mean value of the population. Teacher TA puts in the effort so as to increase the 

quality of the students from MA to MB where MB > MA at this stage the students 

require a new teacher, of superior quality than themselves, i.e. in this case the new 
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teacher is TB. Hence, there will be a new curve-B with new teacher TB. Like other 

nature-inspired algorithms, TLBO is also a population-based method that uses a 

population of solutions to proceed to the global solution. For TLBO, the population is 

considered as a group of learners or a class of learners. In optimization algorithms, the 

population consists of different design variables. In TLBO, different design variables 

are analogous to different subjects offered to learners and the learners‟ result is 

analogous to the „fitness‟, as in other population-based optimization techniques. The 

teacher is considered as the best solution obtained so far. The process of TLBO is 

divided into two parts. The first part consists of the „Teacher Phase‟ and the second 

part consists of the „Learner Phase‟. The „Teacher Phase‟ means learning from the 

teacher and the „Learner Phase‟ means learning through the interaction among 

learners 

6.2.1. Teacher phase 

A good teacher is one who brings his or her learners up to his or her level in terms of 

knowledge. In this phase, the teacher tries to increase the mean result of the class 

from any value M1 to his or her level. However, practically this is not possible, and a 

teacher moves the mean of class from M1 to any other value M2 (M2 > M1).It 

follows a random process depending on many factors. 

The new value of design variable is obtained by adding a fraction, lying between 0 

and 1, of the difference between the mean of the population and variable value of the 

teacher to the old value of design variable. Only the fraction of difference is added 

because the knowledge transferred may lie between 0 to 100 %. If the objective 

function value for the new solution is better than that of old, new solution is accepted 

otherwise the old one is retained. It completes the “Teacher‟s Phase”. 
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6.2.2 Learner Phase  

In “Learner Phase”, learners increase their knowledge by interaction among 

themselves. A learner learns new things if the other learner has more knowledge than 

him/her. A learner improves his/her knowledge through interaction with any other 

learner from the population. Suppose the learner 1 learns from learner 5 than the new 

value of the decision variable is dependent on the objective function value of learner 1 

and 5, whether it is minimization or maximization problem, i.e., the improvement is 

based on maximization/ minimization case and the comparison of their objective 

function values.  

The new value of design variable is obtained by adding a fraction, lying between 0 

and 1, of the difference between old design variable values of learner 1and 5, if the 

objective function value of learner 1 is less than that of 5 in the case of the 

minimization problem. However, if the objective function value of 1 is greater than 

that of 5 then the difference is subtracted.  

If the objective function value for the new solution is better than that of old, new 

solution is accepted otherwise the old one is retained. This process completes one 

cycle of iteration. The process from the computation of variable mean onwards is 

repeated if the termination criteria remain unsatisfied. The design vector for which the 

objective function is minimum represents the optimal solution. It would be another 

way round for maximization problem. We can understand the use of TLBO better 

through the following example which is same as that taken for GA. 

Maximize:  Z = 30(Y1)
2
 – Y2where Y1& Y2 lies between 0 and 1. 

Step 1: We generate initial population randomly for each Y1 and Y2, in the range of 0 

and 1.  Selecting population size N of 8. Eight random numbers are generated for each 
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of Y1 and Y2 (Col. 2 and 3 of Table 6.1). The function value FV is then computed 

using the initial population of variables (Col. 4 of Table 6.1).  

Teacher Phase 

The maximum FV equals to 27.1680 is the best solution Y1 = 0.96 and Y2 = 0.48. The 

best student i.e. Learner number 7 with variable values that gives best FV acts as the 

teacher. The mean value of each variable is computed by summing up the value of the 

variable for each learner, then dividing it by the number of learners. The mean value 

of variables Y1 and Y2 is 0.591 and 0.626 respectively (Last row of Table 6.1).   The 

difference between the variable value of teacher and the mean value of variable 

multiplied by the random number between 0 and 1 is obtained. The random number 

generated for variable Y1 and Y2 is0.2055 and 0.9384 respectively. The new value of 

variables is then obtained by adding the difference obtained to the old value of 

variables. However, the new/ modified value of the variable is to be restricted within 

their upper and lower limits (Col. 5 and 6 of Table 6.1). The FV with the modified 

value of variables is then obtained (Col. 7 of Table 6.1). If new FV (Col 7 value) is 

better than old FV (Col. 4 value), variables value is modified else old value (of Col. 2 

and 3) is retained (Col. 8 and 9 of Table 6.1). It completes teachers phase. In this case, 

FV for all sets is improved in teachers phase.   

Learner Phase 

In learner phase, we select any two learners randomly for each learner from whom the 

learner learns (Col. 10 of Table 6.1). It indicates that the learner 1 learns from learner 

7 and 3. Since our objective function is of maximization type, we have to modify the 

variables value suitably depending on old objective function value of learner 1  to be 

less than or more than old objective function value of learner 7 and 3. Generate a 
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random number between 0 and 1 for all variables (The last row under learners phase 

of Table 6.1, it is 0.8147 and 0.9058). 

The new value of the variable is obtained by subtracting a fraction, lying between 0 

and 1, of the difference between old variable values of learner 1 and 7, if the objective 

function value of learner 1 is less than that of 7 in the case of maximization problem. 

However, if the objective function value of 1 is greater than that of 5 then the 

difference is added.  

We get Ynew,1 = 0.9785,  Ynew,2 = 0.3866 and FV = 28.3373 for learning by 1 from 7 

and Ynew,1 = 0.9304,  Ynew,2 = 1.4617 (i.e. 1.0 which is upper limit) and FV = 24.9693 

for learning by 1 from 3. Both FV's are more than FV achieved after teacher‟s phase 

(22.666). Hence variable value is modified (Col. 14, 15 and 16 of Table 6.1). 

Similarly, the variable values are modified during learners phase for other learners. It 

gives the population and its FV after one iteration. It consists of “Teachers Phase” and 

“Learners Phase” (Col. 14, 15 and 16). 

The average value of FV after the first iteration is 25.3630 i.e. there is a significant 

improvement over initial population average of 13.0880. Subsequent 

generations/iterations improve the new population average further. Even after first 

iteration two of the variable set pertains to exact solution value of 30.00 and three sets 

pertains to FV lying between ~ 28.3 to 29.3 close to exact solution value. We can use 

penalty function combined with objective function to handle constraints in the 

optimization problem. The second iteration starts with the above variable value and 

continues till the termination criterion is satisfied. 
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Table 6.1: Initial Population (Pop.), Modified Pop./Variable value and Function Value 

after Teachers Phase, Learners Phase and after one generation  of TLBO Algorithm 

 

 

 

6.3 Summary 

In this chapter, the basic methodologies of Genetic Algorithm and Teaching- 

Learning-Based-Optimization are discussed. Maximization problem is solved step by 

step using TLBO.  

The step by step solution of same maximization problem using GA is given in 

Appendix-A. Comparing the results obtained using TLBO and GA demonstrates the 

effectiveness of TLBO over GA. 
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Chapter 7 

Optimization Using Genetic Algorithm  

This chapter gives the results in the form of optimized mass distribution for each link 

of the manipulator. PUMA robot is considered as a problem for illustration of the 

proposed methodology on the dynamic balancing of Industrial manipulator using 

different point-masses model developed in chapter 3 and equation of motion given in 

chapter 4. The optimization problem is formulated in chapter 5 while optimization 

technique GA is discussed in chapter 6.  Using GA, the values of optimization 

function, i.e., the sum of RMS values of constraint moments and constraint forces at 

each joint of the manipulator is computed by varying the decision variables i.e. point- 

masses.  

Optimized function values for 5 cases are obtained using GA. Their mean, optimized 

point-mass values of each link for minimum function value, constraint moment and 

constraint force at each joint of manipulator for minimum function value is presented 

in tabular form. The variation of constraint moment and constraint force at each joint 

of the manipulator over one cycle of operation is then graphically represented.  

Finally, the comparison of results for different point-mass models is made and 

discussed. Further, the driving torque values are also given to demonstrate that the 

optimization reduces the driving torque. 

7.1 Shaking moments and shaking forces using GA 

The genetic algorithm toolbox of MATLAB 2008a is used to solve the optimization 

problem formulated through equations 5.4a to 5.4c. The objective function is 

computed using equations of motions derived in Chapter 4 for dynamically equivalent 

point-masses system. Equations of motion call for the value of equimomental point- 
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masses and their locations. These are computed using expressions derived in Chapter 

3 for six degrees of freedom PUMA Robot and are given in Tables 3.2 to 3.8.  

MATLAB coding has been done, to evaluate the value of objective/fitness function, to 

define constraints given in equations 5.4b to 5.4c and to develop main GA 

optimization function program defining various input parameters like initial 

population, the number of variables, population size, elite count, the number of 

generations and function tolerance. The default settings for crossover probability and 

mutation probability available in built-in GA program, are used. 

 

7.1.1 Seven point-mass parallelepiped model 

The shaking forces and shaking moments value for seven point mass parallelepiped 

model of Puma robot has been found using “fmincon“ optimization toolbox of 

MATLAB by Chaudhary & Saha [43]. The optimization function values for this 

model using equimomental point mass values given in [43] are found using GA tool 

available in GA toolbox of MATLAB – version 8 for validation purposes. GA 

solutions were obtained for this point-masses model with different population size, 

elite children count to be retained in next generation, termination criteria (tolerance 

function and the number of generations), and defining initial population(if required). 

There is a default setting for these parameters in the algorithm. It calls for input 

information on number of variables, fitness/objective function (sum of RMS values of 

constraint forces as given in problem formulation) and constraints (lower and upper 

bound on the sum of different point masses of a link as given in problem formulation). 

Equimomental point-masses values and their locations for the original (unbalanced) 

robot are considered as initial population for better convergence of objective function 
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in less number of generations. We obtained a number of solutions (some feasible and 

some non-feasible) by having variations on these parameters. The best feasible 

solution reported here was obtained with population size of 1680, 25 generation 

count, elite count of 40, 0.8 crossover fraction(default setting), 10
-90

 tolerance 

function and defining point masses for the unbalanced robot as initial population (it 

was used as an initial solution in optimization using fmincon).The values of the 

minimum objective function obtained using GA and those reported by Chaudhary & 

Saha [43] are tabulated in Table 7.1 for comparison and validation purposes. 

Table 7.2 shows the mass, inertia about link origin and inertia about the center of 

mass for the optimized point masses obtained using fmincon and Genetic Algorithm. 

The total mass values for all six link is same for the fmincon & GA optimal solutions. 

It results in the same moment of inertia about origin for both cases. However, the 

optimal point mass values being different, it gives different MI values about the center 

of mass. Even though the optimal solution using GA does not reduce constraint 

moment particularly for link 2, it gives the positive value of   
 ,    

         
   for all 

the six links that make a feasible solution.    
 ,    

         
   values for links 1,2 and 4 

are negative in case of fmincon. The optimal solution due to high negative point mass 

values that reduces constraint moments further, but it makes solution infeasible. Few 

more solutions close to the one whose details are given in Table 7.1 & 7.2 were 

obtained using GA which gives positive moment of inertia values about the center of 

mass for all the six links. Therefore for validation purposes for our mass models 

(7/6/5/4) optimized solutions are obtained using GA and newly developed 

optimization method TLBO.  
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Table 7.1: Constraint forces and Constraint moments at various Joints of PUMA with 

GA and fmincon solution 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original PUMA 73.12 75.61 14.47 5.43 0.111 0.076 168.817 

Optimized PUMA 

(GA) 

4.79 28.48 4.28 3.67 0.11 0.076 41.406 

Optimized PUMA 
(fmincon) [43] 

1.95 1.87 1.23 1.05 0.24 0.067 6.407 

Constraint force  ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original PUMA 367.97 264.79 110.22 24.138 13.797 3.452 784.367 

Optimized PUMA 

(GA) 

367.91 264.71 110.13 24.118 13.797 3.452 784.117 

Optimized PUMA 
(fmincon) [43] 

367.91 264.70 110.12 24.089 13.797 3.452 784.068 

 
Table 7.2: Optimized mass and inertia  using fmincon & GA 

 

Li
n
k 
i 

Case 1, fmincon Case 2, GA 
*
im

 

link 

inertia 
*
ixxI  

*
iyyI  

*
izzI  

*
im

 

*
ixxI  

*
iyyI  

*
izzI  

kg kg/m
2
 kg/m

2
 kg/m

2
 kg/m

2
 Kg kg/m

2
 kg/m

2
 kg/m

2
 

1 10.    1.6423 1.6423 0.5088 10. 1.6423 1.6423 0.5488 

 521   
  0.0199 1.6415 -1.1128 521 0.8465 0.8606 0.4923 

2 15.    0.4896 9.4224 9.6112 15. 0.4896 9.4224 9.6112 

 761   
  -0.5419 -0.2165 1.0038  0.4317 0.8445 1.0549 

3 8.    3.7168 3.7203 0.3044 8. 3.7168 3.7203 0.3044 

 767   
  3.7138 3.7127 0.2976  3.7026 3.7093 0.3004 

4 1.    0.1844 0.1273 0.1844 1. 0.1844 0.1273 0.1844 

 052   
  -0.9597 0.1271 -0.9599  0.0433 0.1273 0.0433 

5 1.    0.0736 0.1274 0.0735 1. 0.0736 0.1274 0.0735 

 052   
  0.0735 0.1273 0.0735  0.0735 0.1273 0.0735 

6 0.    0.0072 0.0072 0.0141 0. 0.0072 0.0072 0.0141 

 351   
  0.0059 0.0059 0.0141  0.0071 0.0071 0.0141 

 

7.1.2 Seven point-mass octahedron model 

GA solutions were obtained for this point-mass model with different population size, 

elite count, tolerance function and termination criteria –the number of generations. 

Equimomental point-masses values and their locations for the original (unbalanced) 
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robot are considered as initial population for better convergence of objective function 

in lesser generations. The value of objective function obtained is presented in Table 

7.3. It is observed that the average function value (FV) obtained, for N=7200; EC=72; 

tolerance function 1e-90, is 830.37. The reduced tolerance function permits iteration 

for the larger number of generations before terminating the solution. Elite count of 

10% of population size is observed to be satisfactory. If the population size is 

increased to N=9000, the improved function value is obtained with 19 generations. 

Since the number of design variables (42) is large, the increase in population size 

improves the value of objective function.   

Table 7.3: Objective function values with GA for octahedron point-masses model 

 

population 

size 

elite 

count 

tolerance 

function 

generati

on 

generation 

termination  

objective     function     

value 

7200 72 1e -90 20 14 830.37 

7200 72 1e -200 20 19 829.33 

9000 90 1e -200 20 19 825.08 

9000 180 1e -90 20 14 832.47 

9000 180 1e -200 20 19 824.02 

 

The details of improvement in function value, for the solution in row 5 of Table 7.3 

(marked bold) are given in Table 7.4. These results are obtained for different 

generations with population size (N) = 9000, Elite count (EC) = 180 and Tol fun= 1e-

200 is given in Table 7.4. The Point mass values obtained for optimized function 

value of 824.02 for all links 1 to 6 are provided in Table 7.5. The optimized values of 

shaking moments and shaking forces at different joints of original and optimized 

PUMA robot obtained using seven-point octahedron point-masses model are given in 

Table 7.6. 
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Table 7.4: Improvement in FV during generations for the minimum, FV = 824.02 

gen

erati

on 

f-count best 

f(x) 

max. 

constr

aint 

stall 

genera

tion 

gen

erati

on 

f-count best 

f(x) 

max. 

constr

aint 

stall 

genera

tion 

1 198132 953.2

21 

2.22e-

016 

0 11 2088132 827.0

35 

2.22e-

016 

0 

2 387132 928.7

27 

2.22e-

016 

0 12 2277132 826.5

05 

2.22e-

016 

0 

3 576132 868.9

74 

2.22e-

016 

0 13 2466132 826.5

05 

2.22e-

016 

1 

4 765132 852.6

34 

2.22e-

016 

0 14 2655132 826.2

45 

2.22e-

016 

0 

5 954132 842.6

92 

2.22e-

016 

0 15 2844132 826.1

81 

2.22e-

016 

0 

6 1143132 835.5

04 

2.22e-

016 

0 16 3033132 825.7

89 

2.22e-

016 

0 

7 1332132 834.6

74 

2.22e-

016 

0 17 3222132 824.9

24 

2.22e-

016 

0 

8 1521132 833.1

60 

2.22e-

016 

0 18 3411132 824.7

07 

2.22e-

016 

0 

9 1710132 832.7

57 

2.22e-

016 

0 19 3600132 824.0

21 

2.22e-

016 

0 

10 1899132 827.4

80 

2.22e-

016 

0      

 

Table 7.5: Point mass values for Optimized FV of 824.02 

 
Link, i mi1 mi2 mi3 mi4 mi5 mi6 mi7 

1 1.5230 2.7320 0.2567 1.6719 1.1403 0.3106 2.8883 

2 0.4073 3.1891 0.7520 5.3442 0.6879 0.1228 5.2584 

3 0.1678 1.1920 1.0725 0.9323 3.1433 0.1627 2.0967 

4 0.1308 0.1238 0.3115 0.1315 0.0922 0.1315 0.1315 

5 0.1315 0.2630 0.1315 0.1315 0.1315 0.1315 0.1315 

6 0.0439 0.0878 0.0439 0.0439 0.0437 0.0439 0.0439 

 

The optimized constraint moment values at different joints are reduced significantly. 

The shaking moment is reduced from 168.817 to 39.838 due to the proper mass 

distribution of links that affects its inertia and thus shaking moment. The constraint 

forces that depends on the total mass of the link remains nearly the same because the 

total mass of the links is retained same. However, the peak value of constraint forces 
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at different joints is reduced somewhat as demonstrated by various graphs of 

constraint forces from Fig. 7.7-7.12. 

Table 7.6: Constraint moments and constraint forces for original and optimized 

PUMA with FV of 824.02 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

73.120 75.610 14.470 5.430 0.111 0.076 168.817 

Optimized 

PUMA 

6.086 22.244 6.694 4.627 0.111 0.076 39.838 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃   

Original 

PUMA 

367.970 264.790 110.220 24.138 13.797 3.452 784.367 

Optimized 

PUMA 

367.947 264.719 110.129 24.136 13.797 3.452 784.180 

Driving 

Torque 

Jt. 1 Jt. 2 Jt. 3 Jt. 4 Jt. 5 Jt. 6  

Original 

PUMA 

5.049 78.856 25.691 0.121 0.122 0.022 109.861 

Optimized 

PUMA 

4.601 3.438 1.659 0.174 1.357 0.089 11.318 

 
 Fig. 7.1: Constraint moments of original and optimally balanced PUMA at joint 

1 with 7 point-mass model 
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Fig. 7.2: Constraint moments of original and optimally balanced PUMA at joint 

2 with 7 point-mass model 

 

 

 
 

Fig. 7.3: Constraint moments of original and optimally balanced PUMA at joint 

3 with 7 point-mass model 
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Fig. 7.4: Constraint moments of original and optimally balanced PUMA at joint 

4 with 7 point-mass model 

 
 

Fig. 7.5: Constraint moments of original and optimally balanced PUMA at joint 

5 with 7 point-mass model 
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Fig. 7.6: Constraint moments of original and optimally balanced PUMA at joint 

6 with 7 point-mass model 

 

 

 

 
  

 

Fig. 7.7: Constraint forces of original and optimally balanced PUMA at joint 1 

with 7 point-mass mod 
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Fig. 7.8: Constraint forces of original and optimally balanced PUMA at joint 2  

with 7 point-mass model 

 

 
 

Fig. 7.9: Constraint forces of original and optimally balanced PUMA at joint 3 

with 7 point-mass model 
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Fig.7.10: Constraint forces of original and optimally balanced PUMA at joint 4 

with 7 point-mass model 

 

 
 

 

Fig.7.11: Constraint forces of original and optimally balanced PUMA at joint 5 

with 7 point-mass model 
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Fig.7.12: Constraint forces of original and optimally balanced PUMA at joint 6 

with 7 point-mass model 

 

 

Links 5 and 6 posses very low mass and very small size due to which the constraint 

force of optimal and original link is same (Figs. 7.11 and 7.12) 

7.1.3 Six point-mass hexahedron model 

GA solutions were obtained for this point-mass model with the population size of 

7200, elite count of 72, tolerance function and termination criteria –the number of 

generations. Equimomental point-masses values and their locations for the original 

(unbalanced) robot are considered as initial population for better convergence of 

objective function in less number of generations. The value of objective function 

obtained is presented in Table 7.7. It is observed that the average function value (FV) 

obtained, for N=7200; EC=72; tolerance function 10
-90

, is 826.86. Elite count of 10% 

of population size is observed to be satisfactory. The population size of 7200 is 

observed to be satisfactory as the solution is terminated at 20
th

 generation even with 

tolerance function of 10
-90

.   
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Table 7.7: Objective function values using GA with hexahedron point-masses model 

 

 

population 

size 

elite 

count 

tolerance 

function 

genera

tion 

generation 

termination  

objective     function     

value 

7200 72 1e -90 20 20 827.83 

7200 72 1e -90 20 20 823.02 

7200 72 1e -90 20 20 828.76 

7200 72 1e -90 20 20 825.80 

7200 72 1e -90 20 20 828.90 

 

The details of improvement in function value for the solution at row 2 of above table 

7.7 (marked bold) are given in Table 7.8. These results are obtained for different 

generations with population size (N) = 7200, Elite count (EC)= 72 and Tol fun= 1e-

200. The Point mass values obtained for optimized function value of 823.02 for all 

link‟s 1 to 6 are provided in Table 7.9.  

Table 7.8: Improvement in FV during generations for the minimum FV = 823.02 

Gen

erati

on 

f-count best 

f(x) 

max. 

constra

int 

stall 

genera

tion 

gen

erati

on 

f-count best 

f(x) 

max. 

constr

aint 

stall 

genera

tion 

1 158514 953.2

28 

0 0 11 1670514 826.2

89 

0 0 

2 309714 896.2

47 

0 0 12 1821714 824.9

93 

0 0 

3 460914 864.5

44 

0 0 13 1972914 824.7

94 

0 0 

4 612114 845.3

34 

0 0 14 2124114 824.4

71 

0 0 

5 763314 842.8

87 

0 0 15 2275314 824.1

12 

0 0 

6 914514 835.6

86 

0 0 16 2426514 824.1

12 

0 1 

7 1065714 834.6

04 

0 0 17 2577714    823.0

52 

0 0 

8 1216914 834.4

71 

0 0 18 2728914 823.0

21 

0 0 

9 1368114 830.6

99 

0 0 19 2880114 823.0

21 

0 1 

10 1519314 827.3

28 

0 0 20 3031314 823.0

21 

0 2 

 

 

 



74 
 

Table 7.9: Point mass values for Optimized FV of 823.02 

 
Link, i mi1 mi2 mi3 mi4 mi5 mi6 

1 1.0650 2.2696 2.7853 1.2845 0.0044 3.1123 

2 0.1389 1.7836 3.5002 4.9608 0.2230 5.1545 

3 1.0337 2.1918 1.9514 1.5744 0.0790 1.9369 

4 0.0501 0.1483 0.5861 0.0203 0.1266 0.1207 

5 0.1315 0.2630 0.2630 0.1315 0.1315 0.1315 

6 0.0438 0.0878 0.0878 0.0439 0.0439 0.0439 

 

 

The optimized values of constraint moments and constraint forces at different joints of 

original and optimized Puma robot obtained using six point hexahedron point-masses 

model are given in Table 7.10. The optimized constraint moment values at different 

joints are reduced significantly. The  shaking moment is reduced from 168.817 to 

38.897 due to the proper mass distribution of links that affects its inertia and thus 

shaking moment. The constraint forces that depends on the total mass of the link 

remains nearly the same because the total mass of the links is retained same. 

However, the peak value of constraint forces at different joints is reduced somewhat 

as demonstrated by various graphs of constraint forces, Fig. 7.19 - 7.24. 

Table 7.10: Constraint moments and Constraint forces for original and optimized 

PUMA with FV of 823.02 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

73.12 75.61 14.47 5.43 0.111 0.076 168.817 

Optimized 

PUMA 

5.102 26.812 2.663 4.132 0.112 0.076 38.897 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃   

Original 

PUMA 

367.97 264.79 110.22 24.138 13.797 3.452 784.367 

Optimized 

PUMA 

367.92 264.71 110.128 24.123 13.798 3.453 784.14 
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Fig.7.13: Constraint moments of original and optimally balanced PUMA at joint 

1 with 6point-mass model 

 

 

 

 
 

 

Fig.7.14: Constraint moments of original and optimally balanced PUMA at joint 

2 with 6point-mass model 
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Fig.7.15: Constraint moments of original and optimally balanced PUMA at joint 

3 with 6point-mass model 

 

 

 
 

Fig.7.16: Constraint moments of original and optimally balanced PUMA at joint 

4 with 6point-mass model 
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Fig.7.17: Constraint moments of original and optimally balanced PUMA at joint 

5 with 6point-mass model 

 

 

 
 

 

Fig.7.18: Constraint moments of original and optimally balanced PUMA at joint 

6 with 6point-massmodel 

 



78 
 

 
 

Fig.7.19: Constraint forces of original and optimally balanced PUMA at joint 1 

with 6point-mass model 

 

 

 

 
 

 

Fig.7.20: Constraint forces of original and optimally balanced PUMA at joint 2 

with 6point-mass model 
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Fig.7.21: Constraint forces of original and optimally balanced PUMA at joint 3 

with 6point-mass model 

 

 

 

 
 

Fig.7.22: Constraint forces of original and optimally balanced PUMA at joint 4 

with 6point-mass model 
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Fig.7.23: Constraint forces of original and optimally balanced PUMA at joint 5 

with 6point-mass model 

 

 

 
 

 

Fig.7.24: Constraint forces of original and optimally balanced PUMA at joint 6 

with 6point-mass model 
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7.1.4 Five point-mass model 
 

GA solutions were obtained for this point-masses model with the population size of 

7200, elite count 72, different tolerance function and termination criteria –the number 

of generations. Equimomental point-masses values and their locations for the original 

(unbalanced) robot are considered as initial population for better convergence of 

objective function in lesser generations. The value of objective function obtained is 

presented in Table 7.11. It is observed that the average function value (FV) obtained, 

for N=7200; EC=72; tolerance function 1e-200, is 828.08. Elite count of 10% of 

population size is observed to be satisfactory. The population size of 7200 is observed 

to be satisfactory as the solution is terminated at the 19
th

 generation with increased 

tolerance function of 1e-200.  

 

Table 7.11: Objective function values using GA with five point-masses model 

 

 

population 

size 

elite 

count 

tolerance 

function 

gener

ation 

generation 

termination  

objective     function     

value 

7200 72 1e -200 20 19 831.16 

7200 72 1e -200 20 19 825.47 

7200 72 1e -200 20 19 827.25 

7200 72 1e -200 20 19 827.99 

7200 72 1e -200 20 19 828.53 

 
 

The details of improvement in function value for the solution at row 2 of Table 7.11 

(marked bold) are given in Table 7.12. These results are obtained for different 

generations with population size (N) = 7200, Elite count (EC) = 72 and Tol fun= 1e-

200. The point mass values obtained for optimized function value of 825.47 for all 

link‟s 1 to 6 are provided in Table 7.13. 
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Table 7.12: Improvement in FV during generations for the minimum FV = 825.47 

 
Gen

erati

on 

f-count best 

f(x) 

max. 

constra

int 

stall 

genera

tion 

gen

erati

on 

f-count best 

f(x) 

max. 

constra

int 

stall 

genera

tion 

1 158496 953.2

13 

3.185e-

012 

0 11 1670496 831.1

82 

1.318e- 

012 

0 

2 309696 914.6

30 

1.318e- 

012 

0 12 1821696 831.1

14 

1.318e- 

012 

0 

3 460896 885.4

84 

1.318e- 

012 

0 13 1972896 829.7

78 

1.318e- 

012 

0 

4 612096 866.0

20 

1.318e- 

012 

0 14 2124096 829.1

14 

1.318e- 

012 

0 

5 763296 859.6

62 

1.318e- 

012 

0 15 2275296 828.8

51 

1.318e- 

012 

0 

6 914496 842.5

66 

1.318e- 

012 

0 16 2426496 827.9

93 

1.318e- 

012 

0 

7 1065696 837.5

49 

1.318e- 

012 

0 17 2577696 826.7

19 

1.318e- 

012 

0 

8 1216896 833.8

23 

1.318e- 

012 

0 18 2728896 825.4

96 

1.318e- 

012 

0 

9 1368096 832.0

77 

1.318e- 

012 

0 19 2880096 825.4

74 

1.318e- 

012 

0 

10 1519296 831.9

26 

1.318e- 

012 

0      

 

Table 7.13: Point mass values for optimized FV of 825.47 

 
Link, i mi1 mi2 mi3 mi4 mi5 

1 0.5888 2.3594 1.8019 1.1750 4.5964 

2 0.4065 3.4948 6.0053 0.7075 5.1477 

3 2.6632 1.6427 1.6937 0.2213 2.5461 

4 0.1753 0.5116 0.0226 0.1753 0.1672 

5 0.1753 0.3506 0.1753 0.1753 0.1753 

6 0.0585 0.1170 0.0585 0.0585 0.0585 

 

The optimized values of constraint moments and constraint forces at different joints of 

original and optimized PUMA robot obtained using five point-masses model are 

given in Table 7.14. The optimized constraint moment values at different joints are 

reduced significantly. The shaking moment is reduced from 168.817 to 41.328 due to 

the proper mass distribution of links that affects its inertia and thus shaking moment. 

The constraint forces that depends on the total mass of the link remains nearly the 

same because the total mass of the links is retained same. However, the peak value of 
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constraint forces at different joints is reduced somewhat as demonstrated by various 

graphs of constraint forces, from Fig. 7.31-7.36. 

 

Table 7.14: Constraint moments and Constraint forces for original and optimized 

PUMA with FV of 825.47 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

73.12 75.61 14.47 5.43 0.111 0.076 168.817 

Optimized 

PUMA 

4.508 26.186 5.573 4.873 0.112 0.076 41.328 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

367.97 264.79 110.22 24.138 13.797 3.452 784.367 

Optimized 

PUMA 

367.925 264.71 110.12 24.126 13.795 3.452 784.128 

 

 

 

 
 

 

Fig.7.25: Constraint moments of original and optimally balanced PUMA at joint 

1 with 5point-mass model 
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Fig.7.26: Constraint moments of original and optimally balanced PUMA at joint 

2 with 5point-mass model 

 

 

 
 

 

Fig.7.27: Constraint moments of original and optimally balanced PUMA at joint 

3 with 5point-mass model 
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Fig.7.28: Constraint moments of original and optimally balanced PUMA at joint 

4 with 5point-mass model 

 

 

 

 
 

 

Fig.7.29: Constraint moments of original and optimally balanced PUMA at joint 

5 with 5point-mass model 
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Fig.7.30: Constraint moments of original and optimally balanced PUMA at joint 

6 with 5point-mass model 

 

 

 

 
 

 

Fig.7.31: Constraint forces of original and optimally balanced PUMA at joint 1 

with 5point-mass model 
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Fig.7.32: Constraint forces of original and optimally balanced PUMA at joint 2 

with 5point-mass model 

 

 

 

 
 

 

Fig.7.33: Constraint forces of original and optimally balanced PUMA at joint 3 

with 5 point-mass model 
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Fig.7.34: Constraint forces of original and optimally balanced PUMA at joint 4 

with 5point-mass model 

 

 

 

 
 

 

Fig.7.35: Constraint forces of original and optimally balanced PUMA at joint 5 

with 5 point-mass model 
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Fig.7.36: Constraint forces of original and optimally balanced PUMA at joint 6 

with 5 point-mass model 

 

 

 

7.1.5 Four point mass model 

GA solutions were obtained for this point-masses model with different population 

size, elite count, tolerance function and termination criteria –the number of 

generations. Equimomental point-masses values and their locations for the original 

(unbalanced) robot are considered as initial population for better convergence of 

objective function in less number of generations. The value of objective function 

obtained is presented  in Table 7.15. It is observed that the average function value 

(FV) obtained, for N=7200; EC= 72; tolerance function 10
-90

, is 826.54. Elite count of 

10% of population size is observed to be satisfactory. The population size of 7200 is 

observed to be satisfactory as the solution is terminated at the 20
th

 generation even 

with tolerance function of 10
-90

.  
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Table 7.15: Objective function values using GA with four point-mass model 

 

population 

size 

elite 

count 

tolerance 

function 

gener

ation 

generation 

termination  

Objective     

function     value 

7200 72 1e -90 20 20 826.46 

7200 72 1e -90 20 20 828.09 

7200 72 1e-90 20 20 825.70 

7200 72 1e -90 20 20 826.90 

6000 60 1e-200 20 20 826.27 

 

The details of improvement in function value for the solution at row 3 of Table 7.15 

(marked bold) are given in Table 7.16. These results are obtained for different 

generations with population size (N) = 7200, Elite count (EC) of 72 and Tol fun of 1e-

90. The Point mass values obtained for optimized function value of 825.7 for all links 

1 to 6 are presented in Table 7.17.  

 Table 7.16: Improvement in FV during generations for the minimum FV = 825.7 

 
gen

erati

on 

f-count best 

f(x) 

max. 

constra

int 

stall 

gener

ation 

gen

erati

on 

f-count best 

f(x) 

max. 

constra

int 

stall 
gene
ratio
n 

1 158478 953.2

21 

4.395e-

012 

0 11 1670478 829.2

14 

0 0 

2 309678 936.2

75 

0 0 12 1821678 828.3

77 

0 0 

3 460878 898.8

77 

3.480e- 

012 

0 13 1972878 827.4

80 

0 0 

4 612078 861.9

00 

3.480e- 

012 

0 14 2124078 827.2

72 

0 0 

5 763278 847.4

85 

0 0 15 2275278 827.0

21 

0 0 

6 914478 837.3

53 

0 0 16 2426478 826.9

63 

0 0 

7 1065678 831.4

80 

0 0 17 2577678 826.9

56 

0 0 

8 1216878 831.1

24 

0 0 18 2728878 826.3

72 

0 0 

9 1368078 830.6

75 

0 0 19 2880078 825.9

87 

8.458e- 

007 

0 

10 1519278 829.8

00 

0 0 20 3031278 825.7

01 

8.485e-

007 

0 
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Table 7.17: Point mass values for optimized FV of 825.7 

 

 
Link, i mi1 mi2 mi3 mi4 

1 3.8121 0.5948 1.4327 4.6831 

2 3.0117 4.2440 0.0351 8.4705 

3 2.4844 1.0167 1.3208 3.9451 

4 0.3594 0.2630 0.2599 0.1703 

5 0.2630 0.2630 0.2630 0.2630 

6 0.0878 0.0878 0.0878 0.0877 

 

 

The optimized values of constraint moments and constraint forces at different joints of 

original and optimized PUMA robot obtained using four point-mass model are given 

in Table 7.18. The optimized shaking moment values at different joints are reduced 

significantly. The shaking moment is reduced from 168.817 to 41.524 due to the 

proper mass distribution of links that affects its inertia and thus shaking moment. The 

constraint forces that depends on the total mass of the link remains nearly the same 

because the total mass of the links is retained same. However, the peak value of 

constraint forces at different joints is reduced somewhat as demonstrated by various 

graphs of constraint forces, from Fig. 7.43-7.48. 

 

Table 7.18:- Constraint moments and Constraint forces for original and optimized 

PUMA with FV of 825.7 

 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

Puma 

73.12 75.61 14.47 5.43 0.111 0.076 168.817 

Optimized 

Puma 

4.158 28.495 3.516 5.169 0.111 0.076 41.524 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

Puma 

367.97 264.79 110.22 24.138 13.797 3.452 784.367 

Optimized 

Puma 

367.94 264.715 110.129 24.140 13.798 3.453 784.175 
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Fig.7.37: Constraint moments of original and optimally balanced PUMA at joint 

1 with 4point-mass model 

 

 

 

 
 

Fig.7.38: Constraint moments of original and optimally balanced PUMA at joint 

2 with 4point-mass model 
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Fig.7.39: Constraint moments of original and optimally balanced PUMA at joint 

3 with 4 point-mass model 

 

 

 
 

Fig.7.40: Constraint moments of original and optimally balanced PUMA at joint 

4 with 4 point-mass model 
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Fig.7.41: Constraint moments of original and optimally balanced PUMA at joint 

5 with 4 point-mass model 

 

 

 

 
 

Fig.7.42: Constraint moments of original and optimally balanced PUMA at joint 

6 with 4 point-mass model 
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Fig.7.43: Constraint forces of original and optimally balanced PUMA at joint 1 

with 4 point-mass model 

 

 

 

 
 

Fig.7.44: Constraint forces of original and optimally balanced PUMA at joint 2 

with 4 point-mass model 
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Fig.7.45: Constraint forces of original and optimally balanced PUMA at joint 3 

with 4 point-mass model 

 

 

 

 
 

Fig.7.46: Constraint forces of original and optimally balanced PUMA at joint 4 

with 4 point-mass model 
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Fig.7.47: Constraint forces of original and optimally balanced PUMA at joint 5 

with 4 point-mass model 

 

 

 

 
 

 

Fig.7.48: Constraint forces of original and optimally balanced PUMA at joint 6 

with 4 point-mass model 
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7.2 Summary 

 

In this chapter, the optimization problem of industrial manipulators is solved using 

GA for various equimomental point mass model configurations i.e. seven point-mass 

octahedron model, six point-mass hexahedron model, five point-mass hexahedron 

model, and four point-mass model. The optimized value of constraint moments and 

constraint forces at different joint of the manipulator is obtained and presented in 

tabular form for each of the four models. The variation of constraint moment and 

constraint force at each joint of manipulator over one cycle of operation is represented 

graphically for each of the four models. The results with different point-mass models 

and optimization techniques will be compared in chapter 9.   
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Chapter 8 

Optimization Using TLBO 

This chapter gives the results in the form of optimized mass distribution for each link 

of the manipulator. PUMA robot is being considered as the problem for illustration of 

the proposed methodology on the dynamic balancing of industrial manipulators using 

different point-masses model developed in chapter 3 and equation of motion given in 

chapter 4. The optimization problem is formulated in chapter 5 while optimization 

technique TLBO discussed in chapter 6 and the flow chart of TLBO is developed in 

this chapter. The coding for TLBO has been developed for the problem using the flow 

chart of TLBO. Using TLBO the values of optimization function, i.e., the sum of 

RMS values of shaking moments and shaking forces at each joint of the manipulator 

is computed by varying the decision variables, i.e., point- masses. The use of 

“teaching-learning–based-optimization” technique for optimization of the manipulator 

has not been reported in the literature so far and it has been used by the author for the 

first time.  

Optimized function values for 30 cases are obtained using TLBO. Their mean, 

standard deviation, optimized point-mass values of each link for minimum function 

value, constraint moment and constraint force at each joint of the manipulator for 

minimum function value is presented in tabular form. The variation of constraint 

moment and constraint force at each joint of manipulator over one cycle of operation 

is then graphically represented.  

8.1 Shaking moments and forces using TLBO 

 

The basic philosophy of TLBO has been discussed in chapter 6. The flow chart of 

TLBO for optimization problem formulated is discussed here. In the TLBO a group of 
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learners is considered as population and design variables are different subjects offered 

to the learner, and the result of the learner is analogous to the objective function. For 

our problem, population P is a set of design vectors Xk, k = 1,2, … p  and can be 

expressed in matrix form as follows: 

Population,
T

]...,,[ p1 XXP   

The design variables mij are subjects and the value of the objective function f (X) is 

the result of the learner. The design vector kX for which )k(Xf is minimum becomes 

*
X and it acts as the teacher for that iteration.  

The TLBO algorithm is divided in to two parts, “Teacher‟s Phase” and “Learner‟s 

Phase”.  In the “Teacher‟s Phase”, learner, i.e. 7n dimensional design vector X(for 7 

point-masses model), learns through teacher X
*.  

The teacher tries to increase the mean 

of the population X to his/her level X
*

. Therefore, design vectors are modified as 

)( X-XXX
*

knewk,  where ρ is the 7n×7n diagonal matrix of random numbers to 

be generated in the range [0 1]. If the objective function value for the new solution is 

better than that of old, f (Xk,new) <f (Xk) ,  the new solution is accepted otherwise the 

old one is retained. It completes the “Teacher‟s Phase” as shown in Fig. 8.1. 

In “Learner‟s Phase”, learners increase their knowledge by interaction among 

themselves. A learner learns new things if the other learner has more knowledge than 

him/her. Any learner, Xk, improves his/her knowledge through interaction with any 

other two learners, say Xq&Xr, from the population. The improvement is based on 

comparison of their objective function values as follows:   

Xkq= Xk+ ρlp (Xk– Xq),    if   f (Xk) <f (Xq)  

 

Xkq= Xk+ ρlp (Xq– Xk),    if   f (Xk) >f (Xq)  
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Xkr= Xk+ ρlp (Xk – Xr),   if   f (Xk) <f (Xr) 

 

Xkr= Xk+ ρlp (Xr  – Xk),  if f (Xk) >f (Xr)  

 

Where ρlp is the 7n×7n diagonal matrix of random numbers in the learners phase to be 

generated in the range [0 1].  The objective function values f (Xkq), f (Xkr) and f (Xk) 

are compared to find the minimum function value. The solution Xkq is accepted, if f 

(Xkq) is minimum.  The solution Xkr is accepted, if f (Xkr) is minimum, otherwise the 

solution Xk is retained. This process completes one cycle of iteration. The process 

from the computation of variable mean X onwards is repeated if the termination 

criterion is not satisfied. The final solution values for Xk„s are achieved if the 

termination criterion is satisfied. The design vector for which f (Xk) is minimum 

represents the optimal solution.  

A MATLAB program is developed based on the flowchart of TLBO algorithm given 

in Fig. 8.1. The constraint on non-negativity of point masses is handled through 

penalty function in the objective function. Constraint on the sum of point masses (Eq. 

5.4(b)) is implemented by re-defining any one point mass mij for each link i = 1, 2,… 

n. This is implemented at the end of initialization of population and whenever the 

design variable values are changed during teacher phase and learner phase. As the 

number of the design variables is large, the number of population sets in the solution 

for 7 and 6 point-masses models is taken as 200. However, with such large number of 

population sets the solution converges in less number of generations i.e. 20. For 5 and 

4 point-masses models 50 numbers of population sets are taken, and the number of 

generations is increased to 50 for better convergence of the solution. 
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Fig. 8.1: Flow chart of TLBO algorithm  

 

5.4(c). 

5.4(b) 
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8.1.1 Seven point-mass octahedron model 

 

TLBO solutions were obtained for this point-mass model with population sets of 200, 

termination criterion (20 number of generation). The initial population sets are 

generated randomly. Since the number of design variables (42) is large, the increase 

in population sets improves the value of the objective function. The value of objective 

function for 30 trials is tabulated in Table 8.1. The average value of objective function  

obtained, for the number of sets = 200 and the number of generations/iterations = 20, 

is 814.526 with the standard deviation of 1.1496. The details of improvement in the 

function value at trial number 29 of table 8.1 during different generations with 

population set = 200 are given in Table 8.2. 

Table 8.1: Objective function value (FV) for different trials 

Trial 1 2 3 4 5 6 7 

FV 815.404 815.252 813.790 814.599 812.915 812.915 815.499 

Trial  8 9 10 11 12 13 14 

FV 814.627 815.657 815.048 814.292 816.319 813.215 815.680 

Trial  15 16 17 18 19 20 21 

FV 812.142 814.228 812.937 815.349 814.802 814.895 814.493 

Trial  22 23 24 25 26 27 28 

FV 815.698 814.394 813.745 816.230 814.795 813.482 816.417 

Trial  29 30 

FV 812.056 814.505 

 

 

Table 8.2: Improvement in function value (FV) during generations for the 

minimum FV = 812.056 

 
gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

gen

erati

on 

min. FV 

in sets  

max. FV 

in sets 

0 895.9 1025.6 7 825.289 839.113 14 815.692 818.171 

1 882.740 976.913 8 821.863 835.553 15 815.301 817.346 

2 845.530 930.799 9 820.381 829.720 16 813.373 817.148 

3 841.012 884.280 10 818.662 824.726 17 813.083 815.897 

4 827.289 867.315 11 818.553 823.270 18 812.211 815.023 

5 827.289 850.922 12 818.072 822.570 19 812.102 814.061 

6 827.289 844.331 13 816.600 820.174 20 812.056 813.852 
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Table 8.3: Point mass values for optimized FV of 812.056 

 
Link, i mi1 mi2 mi3 mi4 mi5 mi6 mi7 

1 0.4967 1.8868 0.0010 1.0969 0.0335 0.0195 0.1473 

2 2.8189 0.0626 10.714 0.0750 0.0010 0.0021 0.0639 

3 2.5182 0.0255 0.2396 2.0293 0.0008 0.0780 0.0672 

4 0.6498 0.0010 4.3059 0.2489 0.0087 0.1582 0.0470 

5 1.5906 4.9040 0.5221 0.4763 0.1058 0.1666 0.0204 

6 0.5600 0.0530 0.4982 0.2828 0.5218 0.0192 0.0082 

 

 

The Point mass values obtained for Objective function value of 812.056 for all links 1 

to 6 are tabulated in Table 8.3. The optimized values of constraint moments and 

constraint forces at different joints of original and optimized Puma robot obtained 

using seven point-masses model are given in Table 8.4. The optimized constraint 

moment values at different joints are reduced significantly. The shaking moment is 

reduced from 168.817 to 28.091 due to the proper mass distribution of links that 

affects its inertia and thus shaking moment. The  constraint forces that depends on the 

total mass of the link remains nearly the same because the total mass of the links is 

retained same. However, the peak value of constraint forces at different joints is 

reduced somewhat as demonstrated by various graphs of constraint forces, Figs. 8.8- 

8.13. 

Table 8.4: Constraint moments and constraint forces for original and optimized 

PUMA with FV of 812.056 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

73.120 75.610 14.470 5.430 0.111 0.076 168.82 

Optimized 

PUMA 

4.424 16.110 2.376 4.542 0.471 0.168 28.09 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃   

Original 

PUMA 

367.970 264.790 110.220 24.138 13.797 3.452 784.37 

Optimized 

PUMA 

367.913 264.703 110.121 24.121 13.794 3.452 784.10 
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Fig.8.2: Constraint moments of original and optimally balanced PUMA at joint 1 

with 7 Point-mass model 

 

 

 

 
 

Fig.8.3: Constraint moments of original and optimally balanced PUMA at joint 2 

with 7 Point-mass model 
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Fig.8.4: Constraint moments of original and optimally balanced PUMA at joint 3 

with 7 Point-mass model 

 

 

 

 
 

Fig.8.5: Constraint moments of original and optimally balanced PUMA at joint 4 

with 7 Point-mass model 
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Fig.8.6: Constraint moments of original and optimally balanced PUMA at joint 5 

with 7 Point-mass model 

 

 

 

 
 

Fig.8.7: Constraint moments of original and optimally balanced PUMA at joint 6 

with 7 Point-mass model 
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Fig.8.8: Constraint forces of original and optimally balanced PUMA at joint 1 

with 7 Point-mass model 

 

 

 

 
 

Fig.8.9: Constraint forces of original and optimally balanced PUMA at joint 2 

with 7 Point-mass model 
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Fig.8.10: Constraint forces of original and optimally balanced PUMA at joint 3 

with 7 Point-mass model 

 

 

 

 
 

Fig.8.11: Constraint forces of original and optimally balanced PUMA at joint 4 

with 7 Point-mass model 
 

 



110 
 

 
Fig.8.12: Constraint forces of original and optimally balanced PUMA at joint 5 

with 7 Point-mass model 

 

 

 

 
 

Fig.8.13: Constraint forces of original and optimally balanced PUMA at joint 6 

with 7 Point-mass model 
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8.1.2 Six point-mass hexahedron model  

TLBO solutions were obtained for six point-mass model with population sets of 100, 

termination criteria (20 number of generation). The initial population sets are 

generated randomly. Since the number of design variables (36) is large, the increase 

in population sets improves the value of objective function. The value of objective 

function obtained is presented in Table 8.5. It is observed that the average function 

value (FV) obtained, for the number of sets of 100 and the number of 

generations/iterations of 20, is 816.878 with the standard deviation of 1.730.The Point 

mass values obtained for Objective function value of 813.649 for all links 1 to 6 are 

tabulated in Table 8.6. The details of improvement in function value for the solution 

at trial number 13 of Table 8.5, during different generations with population set of 

100, is given in Table 8.7.  

Table 8.5: Objective function value for different trials 

 
Trial  1 2 3 4 5 6 7 

FV 815.764 817.358 819.837 814.532 815.782 815.875 815.220 

Trial  8 9 10 11 12 13 14 

FV 817.083 814.742 815.780 819.288 818.525 813.649 815.596 

Trial 15 16 17 18 19 20 21 

FV 816.350 817.369 817.702 816.551 817.043 814.466 815.234 

Trial  22 23 24 25 26 27 28 

FV 821.529 816.180 817.709 817.000 818.033 817.548 817.472 

Trial  29 30 

FV 817.510 819.608 

 

Table 8.6: Point mass values for Optimized FV of 813.649 

 
Link, i mi1 mi2 mi3 mi4 mi5 mi6 

1 0.0010 4.5880 2.8029 0.4932 0.5097 2.1263 

2 0.0131 0.0399 0.2320 4.6599 0.0010 10.815 

3 0.0010 6.2246 0.1015 0.0307 0.1763 2.2330 

4 0.0104 0.1717 0.6892 0.0082 0.0393 0.1332 

5 0.0052 0.5653 0.1703 0.0458 0.0981 0.1673 

6 0.0010 0.0010 0.0010 0.0565 0.2345 0.0570 
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Table 8.7: Improvement in function value (FV) during generations for min. FV = 

813.649 

 
Gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

gen

erati

on 

min. FV 

in sets  

max. FV 

in sets 

0  867.6 1059.6 7 818.899 825.999 14 815.566 816.844 

1 847.026 905.437 8 817.443 823.625 15 815.468 816.134 

2 823.918 893.395 9 816.900 821.354 16 814.600 815.997 

3 821.229 864.716 10 816.827 821.354 17 814.500 815.767 

4 821.229 850.871 11 815.913 819.000 18 814.306 815.392 

5 821.015 839.343 12 815.574 819.000 19 814.287 814.886 

6 820.699 829.662 13 815.574 817.245 20 813.649 814.607 

 

The optimized values of constraint moments and constraint forces at different joints of 

original and optimized PUMA robot obtained using six point-mass model are given in 

Table 8.8. The optimized constraint moment values at different joints are reduced 

significantly. The  shaking moment is reduced from 168.817 to 29.817 due to the 

proper mass distribution of links that affects its inertia and thus shaking moment. The  

constraint forces that depends on the total of the link remains nearly the same because 

the total mass of the links is retained same. However, the peak value of constraint 

forces at different joints is reduced somewhat as demonstrated by various graphs of 

constraint forces, Figs. 8.20 to 8.25. 

Table 8.8: Constraint moments and constraint forces for original and optimized 

PUMA with FV of 813.649 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

73.120 75.610 14.470 5.430 0.111 0.076 168.82 

Optimized 

PUMA 

6.144 17.023 2.411 3.768 0.270 0.201 29.82 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃   

Original 

PUMA 

367.970 264.790 110.220 24.138 13.797 3.452 784.37 

Optimized 

PUMA 

367.917 264.706 110.118 24.118 13.798 3.452 784.11 
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Fig.8.14: Constraint moments of original and optimally balanced PUMA at joint 

1 with 6 Point-mass model 

 

 

 
 

 

Fig.8.15: Constraint moments of original and optimally balanced PUMA at joint 

2 with 6 Point-mass model 
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Fig.8.16: Constraint moments of original and optimally balanced PUMA at joint 

3 with 6 Point-mass model 

 

 

 

 
 

Fig.8.17: Constraint moments of original and optimally balanced PUMA at joint 

4 with 6 Point-mass model 
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Fig.8.18: Constraint moments of original and optimally balanced PUMA at joint 

5 with 6 Point-mass model 

 

 

 

 
 

Fig.8.19: Constraint moments of original and optimally balanced PUMA at joint 

6 with 6 Point-mass model 
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Fig.8.20: Constraint forces of original and optimally balanced PUMA at joint 1 

with 6 Point-mass model 

 

 

 

 
 

 

Fig.8.21: Constraint forces of original and optimally balanced PUMA at joint 2 

with 6 Point-mass model 
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Fig.8.22: Constraint forces of original and optimally balanced PUMA at joint 3 

with 6 Point-mass model 

 

 

 

 
 

 

Fig.8.23: Constraint forces of original and optimally balanced PUMA at joint 4 

with 6 Point-mass model 
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Fig.8.24: Constraint forces of original and optimally balanced PUMA at joint 5 

with 6 Point-mass model 

 

 

 

 
 

 

Fig.8.25: Constraint forces of original and optimally balanced PUMA at joint 6 

with 6 Point-mass model 
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8.1.3 Five point-mass hexahedron model  

 

TLBO solutions were obtained for this point-mass model with population sets of 50, 

termination criterion (20 number of generation). The initial population sets are 

generated randomly. Since the number of design variables (30) is relatively less, 

population set of 50 with increasing the number of generations to 50 is observed to be 

satisfactory. The value of objective function obtained is presented in Table 8.9. It is 

observed that the average function value (FV) obtained, for the number of sets of 50 

and the number of generations/iterations of 50, is 820.458 with the standard deviation 

of 1.390.  

Table 8.9: Objective function value for different trials 

 
Trial  1 2 3 4 5 6 7 

FV 820.012 819.860 820.529 818.341 823.068 820.328 817.581 

Trial 8 9 10 11 12 13 14 

FV 819.049 818.109 821.164 820.716 821.507 820.349 822.082 

Trial 15 16 17 18 19 20 21 

FV 821.607 819.802 821.164 820.716 819.459 818.864 821.282 

Trial 22 23 24 25 26 27 28 

FV 819.450 819.518 819.647 821.441 821.886 822.830 819.759 

Trial 29 30 

FV 822.958 820.672 

 

Table 8.10: Improvement in function value (FV) during generations for min. FV = 

817.581 

 
gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

gen

erati

on 

min. FV 

in sets  

max. FV 

in sets 

0  1.0e+18  3.688 

e+18 

10 828.073 845.348 30 818.812 819.346 

3 1.0e+17 2.018 

e+17 

12 826.031 839.701 35 818.470 818.605 

5 842.600 1015.6 14 825.937 833.475 40 818.198 818.378 

6 840.936 908.399 16 823.518 829.854 45 817.764 817.857 

7 832.290 861.944 18 821.693 826.557 48 817.676 817.821 

8 832.290 850.189 20 820.586 824.335 49 817.582 817.579 

9 830.719 847.417 25 819.018 820.472 50 817.581 817.720 
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The details of improvement in function value at trial number 7 of table 8.9, during 

different generations, with population set of 50 is given in Table 8.10. The Point mass 

values obtained for objective function value of 817.581 for all links 1 to 6 are 

tabulated in Table 8.11. 

Table 8.11: Point mass values for FV of 817.581 

 
Link, i mi1 mi2 mi3 mi4 mi5 

1 1.6588 1.0025 3.1234 1.3436 3.3927 

2 0.0087 0.0386 5.3825 0.0132 10.318 

3 2.1530 2.5746 1.7070 0.0302 2.3020 

4 0.0631 0.6606 0.2284 0.0840 0.0519 

5 0.3353 0.1818 0.1240 0.1227 0.2883 

6 0.0272 0.0896 0.0458 0.0166 0.1719 

 

The optimized values of Constraint moments and Constraint forces at different joints 

of original and optimized Puma robot obtained using five point-masses model are 

given in Table 8.12. The optimized constraint moment values at different joints are 

reduced significantly. The shaking moment is reduced from 168.817 to 33.503 due to 

the proper mass distribution of links that affects its inertia and thus shaking moment.  

Table 8.12:- Constraint moments and constraint forces for original and optimized 

PUMA with FV of 817.581 

The  constraint forces that depends on the total mass of the link remains nearly the 

same because the total mass of the links is retained same. However, the peak value of 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

73.120 75.610 14.47 5.430 0.111 0.076 168.817 

Optimized 

PUMA 

5.052 19.072 4.151 4.356 0.799 0.073 33.503 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

367.970 264.790 110.220 24.138 13.797 3.452 784.367 

Optimized 

PUMA 

367.915 264.704 110.120 24.125 13.793 3.453 784.110 
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constraint forces at different joints is reduced somewhat as demonstrated by various 

graphs of constraint forces, Figs. 8.32 to 8.37. 

 
 

Fig.8.26: Constraint moments of original and optimally balanced PUMA at joint 

1 with 5 Point-mass model 

 

 
 

Fig.8.27: Constraint moments of original and optimally balanced PUMA at joint 

2 with 5 Point-mass model 
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Fig.8.28: Constraint moments of original and optimally balanced PUMA at joint 

3 with 5 Point-mass model 

 

 

 

 
 

 

Fig.8.29: Constraint moments of original and optimally balanced PUMA at joint 

4 with 5 Point-mass model 
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Fig.8.30: Constraint moments of original and optimally balanced PUMA at joint 

5 with 5 Point-mass model 

 

 

 

 

 
 

Fig.8.31: Constraint moments of original and optimally balanced PUMA at joint 

6 with 5 Point-mass model 
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Fig.8.32: Constraint forces of original and optimally balanced PUMA at joint 1 

with 5 Point-mass model 

 

 

 

 
 

Fig.8.33: Constraint forces of original and optimally balanced PUMA at joint 2 

with 5 Point-mass model 
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Fig.8.34: Constraint forces of original and optimally balanced PUMA at joint 3 

with 5 Point-mass model 

 

 
 

 

Fig.8.35: Constraint forces of original and optimally balanced PUMA at joint 4 

with 5 Point-mass model 
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Fig.8.36: Constraint forces of original and optimally balanced PUMA at joint 5 

with 5 Point-mass model 

 

 
 

 

Fig.8.37: Constraint forces of original and optimally balanced PUMA at joint 6 

with 5 Point-mass model 
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8.1.4 Four point-mass model  

 

TLBO solutions were obtained for this point-mass model with population sets of 50, 

termination criteria (50 number of generation). The initial population sets are 

generated randomly. Since the number of design variables (24) is relatively less, 

population set of 50 with increasing the number of generations to 50 is observed to be 

satisfactory. The value of objective function obtained is presented in Table 8.13. It is 

observed that the average function value (FV) obtained, for the number of sets of 50 

and the number of generations/iterations of 50, is 824.242 with the standard deviation 

of 1.8916.  

Table 8.13: Objective function value for different trials 

 
Trial  1 2 3 4 5 6 7 

FV 823.311 823.472 826.460 824.387 825.678 827.028 825.162 

Trial  8 9 10 11 12 13 14 

FV 823.233 821.193 826.624 825.709 827.007 822.991 826.251 

Trial  15 16 17 18 19 20 21 

FV 823.311 821.550 824.288 821.100 825.456 820.816 824.898 

Trial 22 23 24 25 26 27 28 

FV 827.712 824.796 823.917 825.132 825.634 822.347 823.048 

Trial  29 30 

FV 822.480 822.253 

 

 

Table 8.14: Improvement in function value (FV) during generations for min. FV = 

820.816 

 
gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

Gen

erati

on 

min. FV 

in sets 

max. FV 

in sets 

gen

erati

on 

min. FV 

in sets  

max. FV 

in sets 

0  1.0e+17  6.0848 

e+17 

20 825.675 843.989 36 821.550 823.416 

2 871.7 1008.0 22 825.430 835.506 39 821.275 821.920 

5 869.316 967.687 25 823.532 828.966 41 821.119 821.510 

6 855.423 967.687 28 822.627 826.333 44 821.049 821.174 

10 846.378 963.522 30 821.995 825.143 46 820.973 821.138 

15 832.202 895.573 33 821.747 824.359 48 820.921 821.088 

19 827.226 874.885 35 821.653 823.776 50 820.816 821.085 
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Table 8.15: Point mass values for Optimized FV of 820.816 

 
Link, i mi1 mi2 mi3 mi4 

1 2.0874 1.4244 5.2268 1.7823 

2 0.0975 0.0200 12.682 2.9610 

3 0.3831 2.1654 3.6384 2.5802 

4 0.3904 0.1076 0.1441 0.4099 

5 0.2581 0.3197 0.1190 0.3522 

6 0.0406 0.1639 0.0916 0.0549 

 

 

The optimized values of shaking moments and constraint forces at different joints of 

original and optimized Puma robot obtained using four point-masses model are given 

in Table 8.16. The optimized constraint moment values at different joints are reduced 

significantly. The total shaking moment is reduced from 168.817 to 36.73 due to the 

proper mass distribution of links that affects its inertia and thus shaking moment. The  

constraint forces that depends on the total of the link remains nearly the same because 

the total mass of the links is retained same. However, the peak value of constraint 

forces at different joints is reduced somewhat as demonstrated by various graphs of 

constraint forces, Figs. 8.44 to 8.49. 

Table 8.16: Constraint moments and constraint forces for original and optimized 

PUMA with FV of 820.816 

Constraint 

moment 

 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

73.120 75.610 14.470 5.430 0.111 0.076 168.817 

Optimized 

PUMA 

5.676 20.454 5.283 4.236 0.841 0.240 36.730 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃  Total 

Original 

PUMA 

367.970 264.790 110.220 24.138 13.797 3.452 784.367 

Optimized 

PUMA 

367.914 264.705 110.124 24.121 13.792 3.451 784.107 
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Fig.8.38: Constraint moments of original and optimally balanced PUMA at joint 

1 with 4 Point-mass model 

 

 

 
 

 

Fig.8.39: Constraint moments of original and optimally balanced PUMA at joint 

2 with 4 Point-mass model 
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Fig.8.40: Constraint moments of original and optimally balanced PUMA at joint 

3 with 4 Point-mass model 

 

 

 

 
 

Fig.8.41: Constraint moments of original and optimally balanced PUMA at joint 

4 with 4 Point-mass model 
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Fig.8.42: Constraint moments of original and optimally balanced PUMA at joint 

5 with 4 Point-mass model 

 

 

 

 
 

Fig.8.43: Constraint moments of original and optimally balanced PUMA at joint 

6 with 4 Point-mass model 
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Fig.8.44: Constraint forces of original and optimally balanced PUMA at joint 1 

with 4 Point-mass model 

 

 

 

 
 

Fig.8.45: Constraint forces of original and optimally balanced PUMA at joint 2 

with 4 Point-mass model 
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Fig.8.46: Constraint forces of original and optimally balanced PUMA at joint 3 

with 4 Point-mass model 

 

 

 
 

 

Fig.8.47: Constraint forces of original and optimally balanced PUMA at joint 4 

with 4 Point-mass model 
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Fig.8.48: Constraint forces of original and optimally balanced PUMA at joint 5 

with 4 Point-mass model 

 

 

 
 

 

Fig.8.49: Constraint forces of original and optimally balanced PUMA at joint 6 

with 4 Point-mass model 
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8.1.5 Three point mass model (The two-DOF planar RR robotic arm) 

Consider a two degree of freedom robotic arm having two rigid links, each of mass 1 

Kg and length 1 meter. The links are cylindrical and have very small dimension in Z 

direction with motion of the arm in XY plane only. We shall analyze the driving 

torque required at joint 1 and 2 under motion profile of       ,          in 10 

secs with initial value of both    and    as zero under gravity ( g=9.81 m/sec
2
) using 

three point-mass system for the rigid link. This planar robotic arm has been 

considered as numerical illustration because its results are available in published book 

“Introduction to robotics” by S.K. Saha (2014). The trajectory of the planar robotic 

arm can be specified by the following relation. 
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We have used the concept of equimomental point mass system and TLBO 

optimization technique to find constraint force and constraint moment at different 

joints of 6 dof PUMA robot using different point-mass systems in the thesis. Since the 

planar robotic arm is having motion in XY plane only, we shall use  equimomental 

three point-mass system to represent the rigid links of the planar robot and find the 

driving torque required at each joint of the robotic arm. The equations for the driving 

torque for two dof planar robotic arm are derived in book on “Introduction to 

robotics” by S.K. Saha (2014). These equations are used after making suitable 

changes for point-masses in place of rigid mass to compute the inertias of the link and 

then computing the driving torque at different joints under the action of gravity for the 

three point-mass model.  

 



136 
 

Three point-mass system for planar robotic arm 

Considering the i
th

  rigid link  of length ai  and mass mi with its mass center C at 

distance ai / 2 from point O. It can be represented by three point masses mi1, mi2 and 

mi3 respectively retaining its center of mass at C, if point masses  mi1 and mi3 are 

equal and if ri1 equals ri3.  

 

 

 

 

 

  

 

 

 

 

                                                

 

 

 

 

 

the i
th

 link at Oi and mi2 situated at it automatically satisfies the seven equimomental 

conditions pertaining to location of center of mass,  product of inertias and inertia 

about X axis.  Assuming mi1= mi2 = mi3 =mi / 3, to satisfy the total mass condition, the 

Y 

            

        
X 

Y 

Z 

O 

B 

 

                           

                          Fig. 8.51 Three Point-mass model for i
th 

 link   

   

                                      Fig. 8.50  Two degree of freedom Robotic Arm 
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remaining two conditions of  inertia about Y and Z axes give the value of ri1  for the 

known mass moment of inertia of the link about its center of mass .                               

Iiyy = Iizz = 2 mi * ri1
2
 / 3 , Since Iiyy = Izz = mi *ai

2
 / 12 , we get ri1 = ai / Sqrt (8) = 

0.3535 ai   

Driving Torque at joints of the planar robotic arm 

The driving torques at joint 1 and 2 of the robotic arm are computed using expressions 

given in  book on “Introduction to Robotics” by S.K. Saha (2014). The inertia values 

of the links are computed using point mass values. The TLBO optimization technique 

is used for optimizing the sum of rms values of driving torques at joint 1 and 2 over 

one cycle of operation of the planar robotic arm.  

The minimum value of objective function ( i.e. the sum of driving torque at joints 1 

and 2) so obtained  is 1.6654 N-m as against 2.7462 N-m for original robotic arm. The 

optimization results in 39.36% reduction in total driving torque of the joints. The 

value of three point masses for the minimum value of objective function is m11 = m12 

= 0.001 Kg , m13 = 0.998 Kg  and m21 = m22 = 0.001 Kg , m23 = 0.998 Kg . The mean 

value of optimized objective function for 10 trials is 1.7372 N-m. 

The graph of the driving torque at joints 1 and 2 of the original robotic arm and 

optimized robotic arm for the minimum objective function value is shown in figures 

8.52 and 8.53 given below. The maximum value of driving torque at joint 1 and 2 for 

the original robotic arm is ~20 N-m and ~ 5 N-m respectively for the original robotic 

arm which gets reduced to ~13 N-m and ~1.8 N-m for the optimized robotic arm as 

seen from the Figs. 8.52 and 8.53. 
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Fig. 8.53 Driving Torque at Joint 2of Planar Robotic Arm with 3 Point mass 

model 

        Fig. 8.52 Driving Torque at Joint 1of Planar Robotic Arm with 3 Point mass model 
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8.2 Summary 

 

In this chapter, the optimization problem of industrial manipulators is solved using 

TLBO for various equimomental point mass model configurations. Seven point-mass 

octahedron model, six point-mass hexahedron model, five point-mass hexahedron 

model and four point-mass models are considered. The optimized value of constraint 

moments and constraint forces at different joint of the manipulator is obtained and 

presented in tabular form for each of the four models. The variation of constraint 

moment and constraint force at each joint of manipulator over one cycle of operation 

is presented graphically for each of the four models.    
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Chapter 9 

Comparative Results 

In this chapter comparison of results obtained using different point-masses models 

and three different techniques, namely GA, TLBO and “fmincon” is made.   The gist 

of results for different models and techniques are presented in tabular form. The 

results are presented through the minimum function value, minimum total values of 

shaking moment and force, mean function value and standard deviation for TLBO 

case. Apart from presenting minimum values obtained for constraint moments at 

various joints using different models and optimization techniques and then  inferences 

are drawn. The inference is also drawn from the graphs, of constraint forces and 

moments at different joints for various models and optimization techniques, presented 

in chapters 7 and 8. 

 

Links 5 and 6 posses very low mass and very small size due to which the constraint 

moment / force of optimal and original link is same (Figs. 

7.5,7.6:7.11,7.12;7.17,7.18;7.23,7.24; 7.29,7.30;7.35,7.36;7.41,7.42;7.47,7.48 and 

8.24). Further, Figs.8.6,8.7,8.13,8.18 ,8.19,8.30,8.42 and 8.43 representing constraint 

moment/force  for Links 5 & 6,have very low numerical values and thus constraint 

moment for balanced case is more than the unbalanced case because the overall 

constraint moment/force is optimized.  
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Table 9.1: Mean function value (FV), Minimum (Min.) FV, Min. shaking 

moment(SM) for different point mass models with various optimization techniques  

Point 

mass 

model 

Optimization technique 

GA TLBO Fmincon 

Mean 

FV 

Min. 

FV 

Min. 

SM 

Mean 

FV 

Std. 

dev. 

Min. 

FV 

Min. 

SM 

Min. 

FV 

Min. 

SM 

seven 

point 

824.50 824.02 39.84 814.53 1.15 812.06 28.09 810.64 26.55 

six 

point 

827.30 823.02 38.90 816.88 1.73 813.65 29.82 810.81 26.71 

five 

point 

828.08 825.47 41.33 820.46 1.39 817.58 33.50 816.17 32.03 

four 

point 

826.54 825.70 41.52 824.24 1.89 820.82 36.73 818.88 34.77 

 

Table 9.1 demonstrates that the minimum optimized objective function value for 

various point mass model varies from 812.06 to 820.82 and 824.02 to 825.70 for 

TLBO and GA optimization techniques, respectively. The objective function value 

obtained using TLBO is better than that of GA. The objective function value 

converges to 812.056 between 3000 and 4000 function evaluations with the TLBO 

algorithm as shown in Fig.9.1(a). Moreover, the Fig.9.1(b) shows that it converges to 

824.02 after 3x10
6
 function evaluations in the case of GA. It shows that the TLBO is 

computationally more efficient. Fig. 9.1(a) shows the minimum and maximum 

function value (FV) of population v/s number of the function evaluated. It shows that 

the difference between minimum (marked in black) and maximum (marked in red) 

function value of population decreases steeply with the increase in the number of 

function evaluations. It represents a better convergence of the solution. 
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Fig. 9.1 (a) Convergence of Function value in TLBO 

 

Fig. 9.1 (b) Function evaluations in GA 
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Table 9.2 shows that the sum of constraint moments at different joint of the robot is 

reduced by 70.67% to 71.66%, 78.24% to 83.36% and 79.41% to 84.27% through 

optimization using GA, TLBO and fmincon, respectively due to optimal mass 

distribution. GA and TLBO optimization offers a number of solutions close to the best 

optimal solution resulting in choosing the point-mass values that suits best for the link 

configuration/shape. Therefore, TLBO offers, higher reduction in the sum of 

constraint moment at the different joint of the manipulator, multiple solutions and 

requires fewer function evaluations as represented by graphs 9.1(a) and 9.1(b).  

Table 9.2:- Constraint moments for original and optimized PUMA for various point-

masses models obtained using different optimization techniques 

Pt. mass 

model 

Constraint 

moment 
 ̃   ̃   ̃   ̃   ̃   ̃  Total 

------ Original 

PUMA 

73.12 75.61 14.47 5.43 0.11 0.08 168.82 

Seven 

point 

octahedr

on model 

GA 

optimized  

6.086 22.244 6.694 4.627 0.111 0.076 39.838 

TLBO 

optimized  

4.424 16.110 2.376 4.542 0.471 0.168 28.091 

“fmincon” 

optimized 

4.492 16.192 3.906 1.898 0.027 0.034 26.549 

Six point 

hexahedr

onmodel 

GA 

optimized  

5.102 26.812 2.663 4.132 0.112 0.076 38.897 

TLBO 

Optimized  

6.144 17.023 2.411 3.768 0.270 0.201 29.817 

“fmincon” 

Optimized 

4.983 15.094 3.823 2.777 0.007 0.030 26.714 

Five 

Point 

Hexahedr

on model 

GA 

Optimized  

4.508 26.186 5.573 4.873 0.112 0.076 41.328 

TLBO 

Optimized  

5.052 19.072 4.151 4.356 0.799 0.073 33.503 

“fmincon” 

Optimized 

4.679 18.727 5.317 3.239 0.072 0.039 32.073 

Four 

Point 

model 

GA 

Optimized  

4.158 28.495 3.516 5.169 0.111 0.076 41.524 

TLBO 

Optimized  

5.676 20.454 5.283 4.236 0.841 0.240 36.730 

“fmincon” 

Optimized 

5.365 19.878 5.758 3.633 0.085 0.055 34.774 
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On comparing minimum constraint moment values for various point-masses model 

given in Table 9.1, it is observed that the minimum constraint moment value increases 

as the number of point masses decreases to represent the mass of the link. It is so 

because the overall mass of the link can be distributed better with the increase in the 

number of point masses for the link.  

Table 9.3 shows that the constraint force at different joint remains nearly same 

numerically for various point mass models and optimization techniques, i.e., there is 

no reduction in its value even after optimization because it depends on the total mass 

of the link. The total mass of various link of the manipulator is kept same as the 

change in it would affect the load capacity of the manipulator. However, the variation 

in the constraint force is reduced over the complete one cycle of operation mainly for 

links 1, 2 and 3 as can be seen from various constraint force graphs for various 

models presented in chapters 7 and 8. 

On comparing the  constraint moments at joint 2 and the optimized overall constraint 

moment based on the  results obtained using TLBO and given in Table 9.2, it is 

observed that overall constraint moment varies from 28.091, 29.817, 33.503 and 

36.730 for 7. 6, 5 and 4 point-mass model respectively, whereas constraint moment at 

joint 2 varies from 16.110, 17.023, 19.072 and 20.454  for 7, 6, 5 and 4 point-mass 

models respectively. This shows that 7 and 6 point mass model  reduces constraint 

moment at joint 2 as well as sum  of constraint moment due to  better mass 

distribution among more number of point-masses for complex shape link. For non-

complex shape i.e. linkages simpler in shape 5 and 4 point-mass model shall be used. 

Further, model with lesser number of point- masses would make link shape 

optimization easier. Therefore, Four point-mass model shall be preferred for simpler 
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shape linkages and 6/7 point-mass model should be preferred for complex shape 

linkages. 

Table 9.3:- Constraint forces for Original Puma and Optimized PUMA for various 

point-masses models obtained using different optimization techniques 

Pt. mass 

model 

Constraint 

force 
 ̃   ̃   ̃   ̃   ̃   ̃  Total 

------ original 

PUMA 

367.97 264.79 110.22 24.14 13.80 3.452 784.37 

seven 

point 

octahedr

on 

model 

GA 

optimized  

367.95 264.72 110.13 24.14 13.80 3.452 784.19 

TLBO 

optimized  

367.91 264.70 110.12 24.12 13.80 3.452 784.10 

“fmincon” 

optimized 

367.91 264.70 110.12 24.10 13.80 3.451 784.08 

six point 

hexahed

ronmod

el 

GA 

optimized  

367.92 264.71 110.13 24.12 13.80 3.453 784.13 

TLBO 

optimized  

367.92 264.71 110.12 24.12 13.80 3.452 784.12 

“fmincon” 

optimized 

367.92 264.71 110.12 24.11 13.80 3.454 784.11 

five 

point 

hexahed

ron 

model 

GA 

optimized  

367.92 264.71 110.11 24.13 13.80 3.452 784.12 

TLBO 

optimized  

367.92 264.70 110.12 24.13 13.79 3.453 784.11 

“fmincon” 

optimized 

367.91 264.70 110.12 24.11 13.80 3.452 784.09 

four 

point 

model 

GA 

optimized  

367.94 264.71 110.13 24.14 13.80 3.453 784.17 

TLBO 

optimized  

367.91 264.71 110.12 24.12 13.79 3.451 784.10 

“fmincon” 

optimized 

367.91 264.71 110.12 24.11 13.80 3.452 784.10 
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Chapter 10 

Conclusions and Future Work 

In this chapter, the thesis work is summarized and the recommendations / suggestions 

based on the findings in the thesis are also made. Further, the recommendations for 

future work are also presented. 

It is important to consider the effect of shaking forces and moments in the design of 

an industrial manipulator. Therefore, their minimization is posed as an optimization 

problem. To formulate the problem, the dynamic modeling of the manipulators is 

presented in terms of the equimomental system of point-mass using the different 

point-mass model that ensures positive values for all point masses and eliminates non-

linear constraints on link inertias. The optimization problem is solved using recently 

introduced algorithm TLBO. The results are compared and validated using the GA 

algorithm and fmincon optimization tool. It has been shown that the TLBO algorithm 

converges very fast with better optimization results as shown in Fig. 9.1. The various 

point mass models (7/6/5/4 point masses model) provides the redistribution of the link 

masses such that the constraint moments and forces at joints are reduced to the 

minimum. Simultaneously, it provides positive values for all point masses and thus 

offering feasible solutions for minimizing constraint forces, constraint moments and 

reducing the driving torques of the manipulator. The TLBO solution converges faster, 

it takes lesser computational time in comparison to GA. Furthermore, the various 

point mass models given solves the   problem of negative inertia faced with 

parallelepiped model. 

The different point-masses model (7/6/5/4) configurations presented for spatial 

linkages of industrial manipulator gives positive value for all point masses that 
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eliminates non-linear constraints on link inertias and should offer easier link shape 

formulation. 

The comparative results presented in chapter 9 shows that 7 or 6 point mass model   

should be used for complex shape links. For non-complex shape links (simpler in 

shape), 5 or 4 point-mass model shall be used.  

Further, model with lesser number of point- masses would make link shape 

optimization easier. Therefore,  Four  point-mass model shall be preferred for simpler 

shape linkages and 6/7 point-mass model should be preferred for complex shape 

linkages. 

Since, the optimization results are trajectory dependent, we need to make 

computations for all possible trajectory combinations and select the solutions best 

suited for all possible trajectories for which the manipulator/robot is likely to be used. 

The TLBO solution converges faster, it takes lesser computational time than GA and 

thus should be preferred vis-à-vis GA for optimization of industrial manipulators.  

Future Scope of the Work  

The balancing methodology gives the mass and inertia of each link such that the 

shaking force and shaking moment are made simultaneously minimum. Link shape 

realization can be taken up as future work using the appropriate point mass model and 

optimized point masses values obtained that reduces the inertia induced shaking 

forces and shaking moments. 
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Appendix A 

Genetic Algorithm (GA) 

Genetic Algorithms (GA) mimics the biological evolution process for solving 

problems in the wide domain and is an attractive class of computational models. GA 

was proposed by Professor John Holland in 1975. GA‟s mechanism was later 

analyzed and explained by Goldberg, De Jong, Davis, Muehlenbein, Chakraborti, 

Fogel, Vose and many others. GA has three major applications, namely, intelligent 

search, optimization and machine learning. Currently, GA is used along with neural 

networks and fuzzy logic for solving complex problems. 

GA uses principles of natural genetics and natural selection to constitute a search 

(i.e. Survival of the fittest principle of nature is used for search process) and solve 

the optimization problem. The cycle of Genetic Algorithm is presented below 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.1: Flow chart of Genetic Algorithm (GA) cycle [ 76 ] 
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It operates through a simple cycle of following stages: 

(i) Creation of a “population” of strings, 

(ii) Evaluation of each string, 

(iii) Selection of best strings and  

(iv) Genetic manipulation to create a new population of strings. 

 

Each cycle in Genetic Algorithm produces a new generation of possible solutions for 

a given problem. In the first phase, an initial population describing representatives of 

the potential solution is created to initiate the search process. The elements of the 

population are encoded into bit-strings, called chromosomes. The performance of the 

strings called fitness is then evaluated using some functions, representing the 

objective function and constraints of the problem. Depending on the fitness of the 

chromosomes they are selected for a subsequent genetic manipulation process. The 

selection process is mainly responsible for assuring the survival of the best-fit 

individuals. After selection of the population strings is over, the genetic manipulation 

process consisting of two steps, crossover, and mutation, is carried out.  

In the crossover operation, new strings are created by exchanging information among 

strings of mating pool. Generally, two strings are picked from the mating pool at 

random and some portions of the strings are exchanged between the strings. Either 

single point or two point crossover operation is performed. A single point crossover 

operation is performed by randomly choosing a crossing site along the string and then 

exchanging all bits on the right side of the crossing site as shown in Fig. 6.2 given 

below.  
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00 000                    00 111 

11 111                    11 000 

 

Fig. A.2: Representation of crossover operation in binary strings of mating pool [76  ] 

The two strings participating in the crossover operation are known as parent strings 

and resulting strings as children strings. Even though the random site for crossover 

may or may not create good strings by crossover but it does not matter because, if 

good strings are not created by crossover they will not survive too long, reproduction 

will not select these strings in subsequent generations. Since the effect of crossover 

may be detrimental or beneficial, thus to preserve some of good strings that are 

already present in the mating pool, all strings in the mating pool are not used in the 

crossover. When a crossover probability of pc is used, only 100 pc % strings in the 

population are used in crossover population and 100 (1- pc) % of the population 

remains as they are in the current population. A crossover operation is mainly 

responsible for the search of new strings. Crossover probability is kept high between 

0.7 and 0.8. 

In the second step, mutation operator changes 1 to 0 and vice versa with a small 

probability pm. The mutation operation is performed bitwise by choosing a number 

between 0 and 1 randomly. If the number chosen is smaller than pm than the bit is 

altered otherwise bit is kept unchanged. The need for mutation is to create a point in 

the neighborhood of the current point, thereby achieving a local search around the 

current solution. Mutation is also used to maintain diversity in the population. For 
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Parent strings  

sstrings 

Crossing site 
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example, if the population has four eight-bit strings such as 0110 1101,    0011 1110,   

0001 0101,   0101 0110. Here, all four strings have a 0 in leftmost bit position. If the 

true optimum solution requires 1 in that position, then neither reproduction nor 

crossover operations will be able to create 1 in that position. The mutation operation 

introduces some probability (Npm), for a population size of N, of turning 0 to 1 in that 

position. Mutation probability is kept low i.e. from 0.05 to 0.08. 

The different steps involved in solving a given optimization problem can be 

summarized as follows: 

Step 1:- Choose a coding (Binary/Real number) to represent problem parameters 

(variables), a selection operator (Objective/Fitness function), a crossover operator, 

and a mutation operator. 

Decide on population size N, crossover probability pc, mutation probability pm. 

Initialize a random population of strings of decided size  and maximum allowable 

generation number tmax, set t = 0. 

Step 2: Evaluate each string in the population. 

Step3:If the number of iteration t > tmax or other termination criteria is satisfied, 

Terminate. 

Step 4: Perform reproduction in the population. 

Step 5: Perform crossover on random pairs of strings. 

Step 6: Perform mutation on every string. 

Step 7: Evaluate strings in the new population, set t = t + 1 and go to step 3. 

Consider the following example to understand the GA 

Maximize:  Z = 30(Y1)
2
 – Y2where Y1& Y2 lies between 0 and 1. 
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Step 1:- Choosing binary coding to represent decision variables Y1 and Y2 and 4 bit 

for each variable.It makes total string length equal to 2*4 = 8 and gives solution 

accuracy of (1-0)/(2
4
-1) = 0.0667.Choose roulette – wheel (random number generator) 

for selection, Z as selection operator, a single point crossover, and a bit-wise mutation 

operator. Choose crossover and mutation probabilities as 0.8 and 0.05 respectively. 

Set maximum number of iteration tmax = 10 and initialize generation counter t = 0. 

Step 2:- Random population is initialized based on Knuth‟s random number generator 

for the population size of 2*4 = 8 (for 2 decision variables each with 4 bit). Four bit 

binary number 0000 represents 0 that corresponds to the variable value of 0.0 and 

binary number 1111 represents 15 that correspond to variables real number value of 

1.0. Sixteen binary numbers, between 0 and 15 integer numbers with increment in real 

value of variable by (1-0) / (16-1) = 0.0667 are given in following Table 6.1 along 

with real number value of the variable represented by each of them. Same random 

numbers are generated for both variables. However, we select strings combination for 

variables Y1 and Y2 at random. 

Table A.1: Four bit binary numbers and the corresponding real number value of 

variables   

Random 

Number 

0 1 2 3 4 5 6 7 

Binary 

number 

0000 0001 0010 0011 0100 0101 0110 0111 

Variable 

value (Real 

number)  

0.0 0.0667 0.1334 0.2001 0.2668 0.333

5 

0.4002 0.4669 

Random 

Number 

8 9 10 11 12 13 14 15 

Binary 

number 

1000 1001 1010 1011 1100 1101 1110 1111 

Variable 

value (Real 

number)  

0.5336 0.6003 0.6670 0.7337 0.8004 0.867

1 

0.9338 1.0005 
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Table A.2: Initial Population (Pop.), Mating Pool, Intermediate Pop., Population after Mutation and Function Value after one 

generation/cycle of Genetic Algorithm 

 

S.N

o. 

R. No. Initial 

Population 

(Binary) 

Functio

n value 

Reproduction Phase Intermediat

e 

Population 

(Binary) 

Population  

after 

Mutation 

(Binary) 

Real 

Number 

value of 

variables 

Functio

n Value 
Y1 Y2 Exp.cou

nt(Fval/

Avg. 

Probabili

ty=Exp. 

Count/8 

Random 

Number 

Mating Pool 

1 11 09 1010 1000 12.800 1.1497 0.1437 0.27767 1011 1100 1011 1100 1011 0100 0.733 0.267 15.867 

 

2 04 01 0011 0000 1.200 0.1078 0.0135 0.13025 1010 1000 1010 1000 1010 1000 0.667 0.533 12.800 

 

3 05 03 0100 0010 2.000 0.1796 0.0225 0.80217 1111 0011 1111 0000 1111 0000 1.000  0.000 30.000 

 

4 12 13 1011 1100 15.333 1.3772 0.1721 0.10875 1010 1000 1010 1011 1010 1011 0.667 0.733 12.600 

 

5 14 11 1101 1010 21.867 1.9641 0.2455 0.54127 1101 1010 1111 0011 1111 0011 1.000  0.200 29.800 

 

6 16 04 1111 0011 29.800 2.6767 0.3346 0.60311 1111 0011 1101 1010 1101 1010 0.867  0.667 21.867 

 

7 03 02 0010 0001 0.4662 0.0419 0.0052 0.49739 1101 1010 1101 1011 1101 1011 0.867 0.733 21.800 

 

8 08 15 0111 1110 5.6000 0.5030 0.0629 0.78626 1111 0011 1111 0010 1111 0010 1.000 0.133 29.867 

 

Su

m 

   89.066  1.0000      174.60 

Av

g. 

   11.133        21.825 
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We have taken last two digits between 01 and 16 of five digits random number table 

as random numbers for generating the initial population of variables in the binary 

form. The random numbers are obtained for variables Y1 and Y2 (Col. 2 and 3 of 

Table A.2). The initial population is generated based on these numbers. It is in eight-

bit form, using a four-bit number for each variable (Col. 4 of Table A.2). 

The value of variables Y1 and Y2 in real numbers for the initial population of 

randomly generated variables in binary form is obtained from Table A.1 while the 

function value / fitness value using objective function is computed (Col. 5 of Table 

A.2).The average fitness value of the initial population (i.e. 11.1333) is computed by 

dividing the sum of mod of function value with the size of population i.e. 8 in this 

case (Last row of Table A.2).  

Step 4: Next step is to compute the expected count of each string which is obtained by 

dividing the function value with average function value (Col. 6 of Table A.2). The 

Probability of each string (from 1 to 8) being considered in the mating pool is 

computed by dividing expected count (Column 6 of Table A.2) by population size that 

is 8 (Col 7 of Table A.2). Then the cumulative probability is computed. 

Random number between 0 and 1 is created to form mating pool. Taking random 

numbers from five-digit random number table (Col. 8 of Table A.2). Strings which are 

specified by each of the above random numbers are entered in column 9 of the table. 

These strings make the mating pool (for example the cumulative probability of the 3
rd

 

string is 0.1797, and that of 4
th

 string is 0.3518 thus 4
th

 string best represents the 

probability 0.2777). Thus strings (4, 1, 6, 1, 5, 6, 5 and 6) best represents the random 

numbers given in col. 8 of Table A.2. It completes the Evaluation and Reproduction 

phase. 
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Step 5:The strings in the mating pool are used in crossover operation. In a single point 

crossover, two strings are selected at random and crossed at the random site. Since the 

mating pool contains strings at random, we pick pairs from the top of the list (i.e. 1 

and 4 participate in the first crossover). As crossover probability pc is 0.80, we 

observe first two digits of 5-digit random number table, and if it lies between 01 and 

80, the crossover operation is performed on selected pair otherwise the strings are 

placed as is in an intermediate population. The next step is to find a crossover site at 

random by creatinga random number between (0,8).Selecting the last column of 5-

digit random number table with first two digits for pc and last digit for crossover site, 

we get (48, 74, 59, 41) and (7, 5, 1, 7) numbers. Therefore, we perform crossover 

operation on all four pairs at the site of 7, 5, 1 and 7 respectively. The intermediate 

population after crossover operation is given in column 10 of Table A.2.   

Step 6: Next we have to perform mutation on strings bitwise with probability pm = 

0.05 in intermediate population as above, we can expect to alter 0.05*8*2 = 0.8, say 1 

bit.  

Since only two strings at serial number 1 and 2 in the above intermediate population 

remains unchanged after crossover, i.e., these strings are identical to single parent 

strings selected in reproduction process and therefore mutation operation is performed 

on the string at serial number 1only. One random number between 1 and 8 selected 

from random number table is 5.The bit to be muted is marked bold.The population 

after mutation operation is as given in column 11 of Table A.2.The resulting 

population is new population (obtained after reproduction, crossover, and mutation).  

Next, we compute the real number value of decision variables corresponding to the 

binary number of above-resulting population (Col. 12 of Table A.2). 
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The Function Value (FV) represented by objective function Z of resulting population 

is computed (Last column of Table A.2). The average FV after the first iteration n is 

21.8250, i.e., there is a significant improvement over initial population average of 

11.1333. Subsequent generations/iterations improve the new population average 

further. Even after first iteration one of the strings pertains to exact solution value of 

30.0000 and two strings have FV of ~ 29.8 close to exact solution value. 
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