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ABSTRACT 

 

Existing distribution systems are moving toward smart distribution systems to 

achieve larger socio economic and other non-tangible benefits such as lesser carbon foot 

prints, better asset utilization, improved energy efficiency, reliability, security and power 

quality, etc. The construction of next generation active distribution networks requires the 

exploitation of existing infrastructure, use of new technologies of generation and changes in 

operational practices. The integration of distributed generations (DGs) and shunt capacitors 

(SCs), and network reconfiguration (NR) are the key technologies for realizing smart 

distribution systems. These key technologies may be coordinated together to get better 

solutions so that distribution systems can achieve optimum performance. The passive 

distribution systems will be gradually transformed into active distribution systems having 

wide spread deployment of distributed resources (DRs). Though, this transition requires a 

paradigm shift in the operations of distribution systems. However, ground realities of 

distribution systems should be considered with a good degree of accuracy otherwise 

counterproductive results so obtained may jeopardize the operation of distribution systems.  

This thesis addresses new issues related to distribution NR while considering the 

presence of renewable DGs and SCs to improve power quality and reliability of the system. 

More practical formulations for these optimization problems are suggested while 

considering realistic operational issues and realities of modern distribution systems. These 

concerns include characteristic load patterns of distribution buses, intermittency of 

renewable DGs, stochastic nature of load demand, dynamic pricing, etc. The existing 

reliability indices have been modified so have more meaningful in the present scenario of 

existing distribution systems. Attempts have been made to give new dimensions to the 

framework of service restoration problems. Since the presence of optimally placed 

distributed resources can sufficiently manage power flow among distribution feeders, a new 

day-ahead NR strategy is suggested to minimize switching operations. The diversity, 

uncertainty and variability pertaining to load demand and power generation among 

distribution buses are duly incorporated in the problem formulations to create more practical 

scenario of contemporary distribution systems. With these concerns, the complexity of NR 

problem is raised by many folds. Therefore, improved variants of standard GA and PSO 

algorithms are developed by utilizing the concept of super sense whenever creating offspring 

during the computational process. These developed algorithms have successfully solved 



v 

 

such complex optimization problems accurately and efficiently. Proposed methods are 

applied to standard as well as real distribution systems. The results of study are thoroughly 

investigated and presented. The application results reveal the importance of NR while 

dealing with performance improvement and service restoration problems of contemporary 

distribution systems.  
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CHAPTER 1 

INTRODUCTION  

The electric power industries have witnessed many reforms in recent years. The 

concept of smart grid is taking shape with broader objectives to improve reliability, 

efficiency, power quality and safety of power delivery and its usage. The potential promise of 

the smart grid include environmental benefits, reduction in transmission congestion, peak 

load shaving, better asset utilization along with increased energy efficiency, reliability, 

security and power quality, etc. The rise of smart grid is a boon not only to society as a whole 

but to all who are involved in the electric power industry, its customers, and its stakeholders 

[1]. However, major changes are taking place at distribution level to achieve the objectives of 

smart grid. The existing distribution systems are therefore moving toward smart distribution 

systems to achieve larger socio-economic and other non-tangible benefits [2]. It is important 

to note that majority of power quality and reliability issues are related to distribution systems 

and majority of power or energy losses occur in distribution systems owing to their low 

operating voltage levels. A typical distribution system accounts for 40% of the cost to deliver 

power and 80% of customers’ reliability problems [3]. Studies show that as much as 13% of 

the total power generated is wasted on account of Joule’s heating in the distribution networks 

[4]. The present trend towards deregulation and competitive business environment are 

compelling electric distribution utilities to improve their efficiency and reduce cost whereas 

customers are becoming more sensitive to reliability and power quality. Massive deployment 

of distributed resources (DRs) such as distributed generations (DGs), shunt capacitors (SCs) 

and renewable energy resources are taking place in distribution systems to realize the 

objectives of smart distribution systems. The present trend behind the high DG penetration in 

distribution systems evolved primarily on account of decreased capital cost of renewable 

DGs, environmental concerns, self-sustainability, peak shaving etc. The DGs deployed in 

distribution system are mostly renewable energy based such as SPVs and WTs. These energy 

resources are characterized by intermittency and uncertainty in power generation. For 

satisfactory system operation, therefore, the integration of dispatchable DGs like MTs and 

SCs becomes essential which leads to mix-DR model. Moreover, the loads on the distribution 

systems are also stochastic in nature. Therefore, structural characteristics and operational 

strategies of contemporary distribution system are changing. The electric utilities must 
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constantly evolve to meet the changing requirements and operational strategies of electrical 

distribution systems. 

The distribution network reconfiguration (NR) is one of the most effective operational 

strategies to improve the performance of distribution systems. It can effectively control both 

active and reactive power in distribution networks by merely exchanging the status of 

sectionalizing (normally closed) and tie-switches (normally open). Though network 

reconfiguration was fundamentally devised for service restoration during fault, but has been 

successfully used for improving the diverse performances of distribution system via loss 

reduction, voltage profile enhancement, reliability improvement, etc.  

In legacy distribution systems the structure of the network is normally a mesh 

configuration, but it is operated in radial configuration to reduce fault level and to reduce the 

cost of protective schemes [5, 6]. The network operation is thus essentially constrained by the 

radial topology constraint. The radiality of distribution system introduces many problems 

such as higher power loss, inferior voltage profile, poor feeder load balancing, etc. The mesh 

distribution network is operated in radial mode by changing the open/close status of the 

tie/sectionalizing switches. For a given distribution network, there might be several possible 

radial configurations. A given radial configuration may be good under certain load 

conditions, but may not be economical for other. Similarly, one radial configuration may be 

satisfactory from the point of loss reduction, but may not be suitable from the point of view 

of feeder load balancing or reliability. The optimal network reconfiguration strategies attempt 

to address multiple objectives of distribution system performance. 

About 70 years ago Merlin and Back [7] emphasized the utility of NR for power loss 

reduction by optimally balancing the load among distribution feeders. Since then, NR 

becomes an effective operational strategy to improve the multiple performance objectives of 

distribution systems such as loss minimization, voltage profile improvement, reliability 

enhancement, congestion management, etc. The network reconfiguration may be effectively 

used to achieve optimum performance of distribution systems even during the fault periods. 

In contemporary distribution system with wide spread distributed energy resources, 

NR can also play crucial role to achieve self-healing objective of smart distribution systems, 

under fault conditions with and without loss of grid connection. It is worth to mention that 

future distribution system may also operate in isolated mode in case of grid failure. Under 

such condition the local power generation by DGs and SCs may partially feed critical 

distribution loads during abnormal conditions. The NR can help to shed non critical loads on 

priority basis so as to maximize the supply to important loads of the systems. This definitely 
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enhances system reliability.  However, the task is extremely difficult on account of satisfying 

power balance equations within distribution network while considering the variability and 

uncertainty of the load demand and power generation of renewables. With these concerns, 

NR becomes highly complex combinatorial exercise and requires development of new NR 

strategies for future distribution systems. The actual amount of benefit achieved through NR 

is governed by proper problem formulation that must fully addresses the realities of practical 

distribution systems. 

The Distribution planners usually provide dedicated feeders to cater different class of 

customers, i.e. residential, industrial, and commercial, etc. and each has typical load profile 

[8]. Definite load diversity therefore exists among distribution buses which plays vital role in 

deciding the load profile of the system. Thus, variability exists among distribution buses 

owing to load demand and power generation and that should be duly addressed while 

formulating distribution optimization problem like NR. This, however, increases complexity 

of the NR problem by many folds thus makes it highly challenging task. The literature shows 

various population-based meta-heuristic techniques like [9-24]. These optimization 

techniques have the potential to efficiently solve complex NR problem of distribution 

systems. They though do not guarantee global optima, but are capable to provide a set of 

narrow-range solutions in the close proximity of the global optima, each of which have very 

good practical acceptance. These meta-heuristics are governed by some heuristic rules and 

have relative advantages and disadvantages. So there is always scope to improve their 

performance.  

The roadmap of future distribution systems envisions widespread deployment of 

renewable energy sources (RESs) such as SPVs and WTs in distribution systems. These 

energy resources are seemed to be the only option to a sustainable energy supply 

infrastructure since they are neither exhaustible nor polluting [25]. These renewable energy-

based DGs are mostly harvesting natural resources so produce clean emission-free electricity, 

but having intermittent power output so are non-dispatchable. Therefore, mix-DG model has 

gained more popularity in recent DG planning of distribution systems. The mix-DG model 

includes alternative energy sources (AESs) such as MTs which are high-speed and 

mechanically simple devices fired by natural gas or biogas, so are fully controllable. 

Moreover, the solar irradiations and wind speeds are complementary to each other in terms of 

power generation. Therefore, hybridization of SPVs, WTs and MTs units have been adopted 

for mix-DG model to be implemented in future distribution systems [26]. This approach has 

revolutionized the frame work of optimal NR problems and thus intended to devise new 
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formulations and methodologies to achieve more practical solutions. However, the mix-DG 

model possess additional challenges on account of the interactions of diverse time-variant 

energy sources and stochastic load demand. With these concerns, the NR problem of 

distribution systems assume different dimension and thus requires different treatment. 

Contemporary distribution systems passes through various states during a day due to 

the integration of diverse energy resources, most of them have variability and intermittency in 

power generation, and also on account of stochastic nature of load demand. More 

specifically, distribution loads have diverse load characteristics owing to variety of 

customers. This time varying load and generation patterns when incorporated in NR problem 

formulation suggests hourly topological changes which is neither feasible nor practical. 

Therefore to develop new strategy that involves minimum switching operations is highly 

desired for existing active distribution systems. 

The conventional optimal NR allocation problem has been solved using analytical, 

numerical, exhaustive search, heuristic or meta-heuristic techniques, etc. Analytical methods 

are easy to implement and fast to execute, but their solutions are sub-optimal. Numerical 

methods are efficient, but some of them need linearized modeling whereas exhaustive search 

methods suffer from the curse of dimensionality, so are not suitable for large-scale systems. 

Heuristic methods are very fast and provide promising solution, typically when subjected to 

solve loss minimization problems. On the other hand meta-heuristic techniques are robust and 

guarantees global or near global optima, but are computationally demanding. However, this 

limitation is not critical in the present scenario of available high speed computational 

platforms. The actual challenge behind the application of these techniques is their parameter 

tuning, otherwise the performance may suffer adversely. Indeed, care should be taken to 

avoid premature or slow convergence. This leads to probably the most discussed 

disadvantage of metaheuristics. Metaheuristics may be broadly divided into evolutionary 

algorithms, like genetic algorithms (GAs), differential evolution (DE), etc. and swarm 

intelligence based techniques such as particle swarm optimization (PSO), ant colony 

optimization (ACO), teaching learning based optimization (TLBO), etc. GA and PSO may be 

called as the founder algorithms of these two broad classes of metaheuristics. However, GA 

suffers from high processing time and premature convergence [27], whereas particle swarm 

optimization (PSO) usually trapped into local optima [28]. These metaheuristics therefore 

requires further reinforcement in order to extract their optimum potential. This probably 

could be achieved by overcoming inherent limitations associated with the standard models of 

these techniques. 
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In the light of above discussion this thesis attempts to reinvestigate the problem of 

multi-objective network reconfiguration for contemporary distribution systems. It aims to 

analyze the effect of reconfiguration on the overall performance of contemporary and future 

distribution systems and to reinvestigate solutions methodologies for network reconfiguration 

of contemporary and future distribution systems. This thesis explores solution methodologies 

for optimal reconfiguration of distribution systems in the presence of renewable DGs for 

service restoration, reliability enhancement and performance improvement while satisfying 

several network operational constraints. More realistic modeling is suggested by considering 

variability in power generation from renewable DGs and diversity in load demand among 

distribution buses. It is important to note that placement of DRs can also achieve some of the 

objectives of network reconfiguration and therefore it will be interesting to analyze the need 

of NR in such situations. In this thesis improved variants of some of the existing 

metaheuristics have been developed to complex NR problems of contemporary distribution 

systems. The applicability of developed methods has been thoroughly investigated on 

standard test distribution system. The results of the study are investigated and presented in 

the view of relevance of NR for contemporary distribution systems.   

In the following chapter, comprehensive literature survey in the area of optimal 

allocation of DRs in distribution systems and NR is presented. A critical review of the 

literature has been carried out and on  the  basis  of  critical  reviews,  the  objectives  of  the  

thesis  are  formulated. 
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CHAPTER 2 

LITERATURE SURVEY 

The distribution network reconfiguration (NR) is a well-known operational strategy to 

enhance reliability and improve performance of distribution systems, besides service 

restoration. It is the processes that alter topology of distribution network by merely 

exchanging the on/off status of sectionalizing and tie-switches. Distribution systems are 

generally structured in mesh but operated in radial configuration that optimizes certain 

objectives while satisfying operational constraints. For a given distribution network there 

might be several possible radial configurations. Finding a radial configuration, which 

optimizes the multiple objectives, is a difficult multi constrained combinatorial optimization 

problem. As the size of the network increases, the complexity of this problem increases. The 

complexity of the problem further increases in contemporary distribution system due to the 

stochastic nature of customer’s power demands and presence of distributed generations.  A 

lot of research has been conducted during the past decades to address the NR problem of 

radial distribution systems while considering a variety of objectives such as loss minimization 

voltage profile improvement, reliability enhancement, service restoration, etc. by considering 

different scenarios such as type of DRs and their mode of power generations, type of load 

profile and the type of NR strategy. The single or multi-objective NR problem is solved using 

various analytical, numerical, heuristic and meta-heuristic techniques. In this chapter, a brief 

literature review about these research areas is presented to identify the issues and concerns of 

current research directions for contemporary distribution systems. The research gaps 

pertaining to the current research directions are identified and presented in the critical 

reviews. The research objectives of this thesis work are then framed on the basis of critical 

reviews. 

2.1 NETWORK RECONFIGURATION IN PASSIVE DISTRIBUTION SYSTEMS 

Legacy distribution systems are passive without the presence of distributed 

generations. Merlin and Back [7] were first to report a method for NR to minimize line 

losses. They formulated the problem as a mixed-integer non-linear optimization problem and 

solved it through a discrete branch-and-bound technique. The method may not provide the 

global optimal solution due to the loop interaction problem. Civanlar et al. [23] suggested a 

branch exchange type heuristic algorithm to minimize real power loss under the assumption 

that the distribution system is well compensated and the phase angles of the bus voltages 
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were neglected. Shirmohammadi and Hong [29] also presented a branch-exchange heuristic 

strategy for minimization of real power loss of a distribution network. Solution algorithm was 

initiated with a meshed network as in [7] and the lines with minimum current were opened 

successively till the desired radial topology is achieved. Baran and Wu [30] developed two 

approximate power flow methods with varying degree of accuracy. A branch-exchange 

heuristic of [23] was used for power loss reduction and load balancing. But, the method does 

not guarantee the global optimal solution. Similarly, Taylor and Lubkeman [31], Goswami 

and Basu [32], Augugliaro et al. [33], Kashem et al. [34], Kashem and Ganpathi [35], Huang 

and Chin [36], Gohokar et al. [37], Schmidt et al. [38], Gomes et al. [39], Raju and Bijwe 

[40] and several other works reported who solve reconfiguration problem for loss 

minimization using modified branch-exchange heuristics. 

Later on the reconfiguration problem was attempted as a multi-objective optimization 

problem using heuristic rules. Das [41] suggested a fuzzy multi-objective approach for feeder 

reconfiguration which incorporates a heuristic rule base. Multiple objectives are considered 

for load balancing among the feeders and also to minimize the real power loss, deviation of 

nodes voltage, and branch current constraint violation. Ref. [42] followed the same method as 

in [41] except the difference that the overall fuzzy membership was calculated by weighted 

addition instead of min-max approach. Savier and Das [43] presented fuzzy multi-objective 

approach for distribution network reconfiguration using conventional branch exchange 

heuristic. Martin and Gil [44] presented a branch exchange heuristic approach to solve the 

reconfiguration problem by a switching operation in order to reduce the power loss of 

distribution systems. Unlike the conventional branch exchange algorithm, the proposed 

algorithm was based on the direction of the branch power flows. 

Though these heuristic approaches are very fast but usually converges to suboptimal 

solutions when applied to large scale problems or while optimizing multi-objective problems. 

Moreover they converge to a single solution that might not be a feasible solution for the 

current state of the distribution network. 

With the advent of fast computational facilities, researchers attracted toward these 

techniques which requires excessive computation before obtaining the global or near global 

optima. Several works reported have used Artificial Neural Network as an optimizing tool to 

solve reconfiguration problem. Kim et al. [45] proposed ANN where neural network 

developed was capable to provide the optimal solution for loss minimization of both constant 

and sudden load variations, and it also has the capability of a high-speed control strategy 

decision. Kim showed that the method using ANN is more suitable for on-line 

implementation compared with quadratic programming, simulated annealing and heuristic 
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methods. Similarly, Bouchard et al. [20], Kashem et al. [47], Jin and Jiaja [48], Salazar et al. 

[49] and Siti et al. [50] also successively solve the reconfiguration problem. However, the 

training time of ANN was very large and the results affected if the ANN is under trained or 

over trained. Another difficulty is with the availability of real data to train ANN remains 

unresolved. 

Meanwhile, several evolutionary and swarm intelligence-based optimization 

techniques such as genetic algorithm (GA), differential evolution (DE), ant colony 

optimization (ACO), particle swarm optimization (PSO), etc. have been attempted to solve 

this problem. The functioning of these heuristic approaches is independent of the nature of 

objective function and problem constraints, and converges to global or near global optima. 

Nara et al. [51] were first to introduce genetic algorithm (GA) as an optimizing tool for this 

problem. Since then several works [9-17, 52-62] have been reported who attempted this 

potential technique. GA is simple and easy to implement, but the tuning of operators may 

affect its performance. It has been observed that GA has extraordinary exploration potential, 

but its exploitation is weak and thus it causes premature convergence. 

PSO is a very powerful swarm intelligence based technique which has been 

successfully applied to solve diverse engineering optimization problems. The special feature 

of this technique is that it governs only by a single control equation. PSO is inherently 

designed for continuous decision variables. Even then, several researchers [18-21] applied 

this technique to optimize reconfiguration problem. However, the accuracy, convergence and 

efficiency of PSO greatly suffers from parameter tuning otherwise it usually converges to 

suboptimal solution. Many efforts [63-67] have been reported to improve the overall 

performance of this technique by varying modulations of inertia weight, modifying 

cognitive/social behavior of the swarm, redesigning control equation or by restricting particle 

velocity using constriction factor approach or otherwise, etc. 

Several other swarm and evolutionary techniques such as ACO [68-72], Simulated 

Annealing [73-76], Linear Programming [77], Immune Algorithm [78], Evolutionary 

Programming [79-80], Differential Evolution [81], Tabu Search [82-83], Honey Bee Mating 

Optimization [84], etc. can also successfully solve this problem.  

2.2 NETWORK RECONFIGURATION IN CONTEMPORARY DISTRIBUTION SYSTEMS 

The electric power industries have witnessed many reforms in the recent years. 

Building of such distribution systems requires local generation of reactive and active power 

using distributed energy resources such as shunt capacitors, distribution static compensator 

and dispersed or distributed generations (DGs), etc. These components allow increased 
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efficiency, more reliability and better power quality. Moreover, they also facilitate effective 

utilization and life extension of existing distribution system infrastructure [1]. Therefore, the 

existing distribution systems are moving towards smart distribution systems to achieve larger 

socio-economic and other non-tangible benefits. 

Distributed generations (DGs) refer to small generating units typically connected to the 

utility grid in parallel near load centers and can satisfy these objectives. Proper placement of 

DG is essential otherwise it may adversely affect the system [8]. Recently, several works have 

been reported who attempted optimal allocation of DG units in distribution systems using a 

variety of techniques such as GA, PSO, Artificial Bee Colony (ABC), Evolutionary 

Programming (EP), Bacterial Forging Algorithm (BFA), Harmony Search Algorithm (HSA), 

Gravitational Search Algorithm (GSA), etc.[85-96]. However, most of these optimization 

techniques require tuning of their algorithm-specific parameters: GA requires the crossover 

probability, mutation rate, and selection method; PSO requires learning factors, the variation 

of weight, and the maximum value of velocity; ABC requires the limit value; and HSA 

requires the harmony memory consideration rate, pitch adjusting rate and number of 

improvisations [97], etc. In fact, this parameter tuning is highly computationally demanding 

but is very crucial as it affects the performance of the algorithms. 

In distribution systems shunt capacitors (SCs) are installed at certain locations to 

improve the performance of distribution systems in term of loss minimization voltage 

improvement etc. The SCs are essentially deployed in the distribution system to supply 

reactive power. The presence of SC significantly affects power flow among distribution 

feeders. Therefore location and capacity of SC is greatly affected by network reconfiguration. 

There are many possible approaches for optimal capacitor placement. Capacitor may be placed 

before network reconfiguration and may be placed after network reconfiguration. Some 

strategies suggest mixed approaches for capacitor placement. Ahmadi and Marti [98] 

optimally determined the different control variables, such as switchable capacitors, voltage 

regulators, and system configuration to satisfy various objectives, like loss minimization and 

voltage profile improvement by using Linearized power-flow equations and the problem is 

formulated as mixed-integer quadratic programming. Shuaiba et al. [99] reduced the power 

loss by first using the sensitivity analysis to reduce the search space and to arrive at an 

accurate solution for recognizing the locality of capacitors and then using the Gravitational 

Search Algorithm. 

Smart grid requires integrated solutions of optimal allocation of DGs and network 

reconfiguration that reflect coexistence of multiple strategies to achieve higher energy 
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efficiency and good quality power supply. The reconfiguration of active distribution networks 

play a vital role to achieve the objectives of smart grid in much better way as it can regulate 

the flow of both active and reactive power in the distribution feeders and transformers. 

Recently some work have been reported who solve the network reconfiguration problem in the 

multi-objective framework. Guedes et al. [100] suggested a new and efficient multi-objective 

branch exchange heuristic approach to solve the network reconfiguration problems. The 

authors claim that their method provides a feasible switching plan for all Pareto solutions. 

Andervazh et al. [101] proposed a Pareto-based multi-objective distribution network 

reconfiguration using PSO algorithm. The objectives considered are minimization of power 

loss, the number of switching operations and deviations of bus voltages. They employed 

probabilistic heuristics and graph theory techniques to improve the stochastic random search 

of the PSO. Some researchers [60, 95-96,101-104] have employed network reconfiguration in 

conjunction with the optimal allocation of DGs and acknowledged that this strategy is more 

useful to improve the performance of distribution systems. Zhang and Fu [60] employed joint 

optimization to solve DG allocation and network reconfiguration. However, this strategy is not 

realistic since the solution obtained can demand an alteration in both network topology and 

sites of DGs for different load scenarios. In practice, the network topology can be altered, but 

not the DG sites. 

Lueken et al. [105] study showed that for a reconfigurable network net present value 

analysis of automated switch technology shows that the return on investment is negative for 

this test network when considering only loss reduction, but that the investment is attractive 

under certain conditions when reconfiguration is used to minimize curtailment. Rao et al. [95] 

presented a meta-heuristic Harmony Search Algorithm (HSA) to simultaneously reconfigure 

and identify the optimal locations for installation of DG units in a distribution network. They 

considered different scenarios of DG placement and reconfiguration of network to study the 

performance of the proposed method. Pilo et al. [106] study reveals that, modern distribution 

planning algorithms should emulate the new environment to produce expansion and strategic 

plans for guiding the evolution of system in times of financial restrictions and concluded that it 

is important to integrate smart grid operation within planning algorithms by allowing 

integration of renewable resources. Capitanescu et al. [107] paper explores how the DG 

hosting capacity of active distribution systems can be increased by means of network 

reconfiguration, both static, i.e., grid reconfiguration at planning stage, and dynamic, i.e., grid 

reconfiguration using remotely controlled switches as an active network management scheme. 

When many periods are considered the algorithm breaks down the large problem size. 
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Syahputra et al. [108] suggests that high performance distribution network optimization has 

become an important issue in the presence of DGs and can be achieved by optimal network 

reconfiguration. The study showed that the optimal configuration of the distribution network 

is able to significantly reduce both power loss and node voltage deviations. Guan et al. [109] 

uses Decimal coded quantum particle swarm optimization to solve feeder reconfiguration of 

DGs and applies decimal encoding to quantum particle swarm optimization, which can 

decrease the particle length, generate few infeasible solutions and have better search 

efficiency. Anjum et al. [110] in his study discussed the classification of DGs, problem 

formulation related to DSR and DG and then results are compared with and without DG with 

ACO, Heuristic etc. Tehboub et al. [111] proposed a strategy for distribution system 

reconfiguration proposed for minimizing the annual energy losses in the presence of 

distributed generators and variability in active and reactive power demand. Further energy loss 

reduction is obtained by grid automation and including the possibility of interchanging a 

predefined number of configurations that minimize annual energy losses. Bizuayehu et al. 

[112] shows the analysis of a distribution system subject to reconfiguration with high wind 

penetration over a period of 24 hours and to meet this objective, the reconfiguration problem is 

solved through mixed integer linear programming considering the stochasticity of the 

variables, where the balance between load and generation is satisfied at the lowest cost. Reza 

et al. [113] presented a hybrid method of meta-heuristic and heuristic algorithms, to boost 

robustness and shorten the computational time to achieve network minimum loss 

configuration with renewables. Chidanandappa et al. [22] proposed an algorithm for the 

reconfiguration of active distribution system using genetic algorithm and forward backward 

load flow method with time varying load condition. The algorithm provides various switching 

patterns for the optimal reconfiguration which gives minimum voltage, minimum loss and 

reduces the switching operation after satisfying the constraints. Rajaram et al. [114] applied 

Modified plant growth simulation to minimize real power loss because it does not require 

barrier factors or crossover rates. They dealt with the objectives and constraints separately. 

This is continuous guiding search algorithm along with changing objective function because 

power from distributed generation is continuously varying so this can be applied for real time 

applications with required modifications. Chen et al. [115] proposed a methodology to deal 

with segmented-time reconfiguration problem of distribution networks coupled with 

segmented-time reactive power control of distributed generators. They used the strategy of 

grouping branches mathematical problem and a hybrid particle swarm optimization (HPSO) 

method to search the optimal solution. To avoid trapping in local optima fuzzy adaptive 
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inference is integrated into basic HPSO method. Pons and Repetto [116] showed that in order 

to satisfy the power balance at the local level, the distribution system operators are interested 

in the minimisation of the power exchange with the transmission network and maximising the 

local consumption of DG energy. They presented a topological reconfiguration procedure, 

based on the branch exchange technique, for maximisation of the local consumption of 

renewable energy. 

Recently some works reported [95, 104] employed different combinatorial strategies of 

DGs allocation. But, according to their proposed strategy, network reconfiguration should be 

carried before the addition of DG units. In fact, the problem of planning horizon should be 

dealt before optimizing any operational strategy otherwise it may lead to erroneous results 

[117]. 

The aforementioned literature does not include the stochastic variations in load 

demand and the uncertainty related with the intermittent power output from DGs. Wu et al. 

[118] studied network reconfiguration with DGs and concluded that DG has the effects of loss 

reduction improvement over feeders and the topological structures of optimum network 

without DG are different from those with DG. Zidan and Saadamy [119] obtained the optimal 

configuration for each season of the year for minimizing annual energy losses and by 

considering switching operation costs. The DG power and varying load uncertainty are 

considered by creating a probabilistic generation load model that combines all possible 

operating conditions of the renewable distributed generators with the probability of their 

occurrence. Zidan et al. [120] proposed a GA based algorithm taking into consideration the 

uncertainty related to renewable distributed generation output power and the load variability. 

They considered three scenarios for distributed generation and the network configuration 

having constraint of line current limit, voltage limit and radial topology. Haghight and Zeng 

[121] proposed two steps for obtaining minimum loss configuration. They first enforce the 

radiality constraint and then power flows are computed for the worst operating conditions over 

the uncertainty sets. They proposed master slave structure for the optimization problem and 

also presented optimization model for network configurations and losses are derived in two 

steps.  First the radiality constraint is ensured before knowing the actual system loads and 

output level of renewable generation and then Power flows are computed to achieve minimum 

network losses considering the worst operating conditions over the uncertainty sets. 

Researchers [95, 122] proposed a multi-objective algorithm to solve stochastic distribution 

feeder reconfiguration problem in the presence of distributed wind power generation and fuel 
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cells. They considered uncertainty in wind power and solve the problem using population-

based meta-heuristic techniques. 

The reliability enhancement is an important issue of concern in modern distribution 

systems. The distribution network reconfiguration can be effectively used to improve the 

reliability of power supply to end users. Mendoza et al. [15] proposes an evolutionary-based 

micro-genetic algorithm for multi-objective reconfiguration in distribution networks by 

minimizing the losses and reliability indices. They generated well-distributed Pareto optimal 

solutions to the multi-objective reconfiguration problem and established that compact trade-

off region exists between the power losses and the reliability indices. Narimani et al. [123] 

presented a technique for solving the multi-objective reconfiguration of radial distribution 

systems with regard to distributed generators. This considers reliability, operation cost and 

loss simultaneously and uses Enhanced Gravitational Search Algorithm (EGSA) having 

special mutation strategy for reducing the processing time and improving solution quality to 

avoid being trapped in local optima. Fard et al.[124] suggest a method to employ the 

distribution feeder reconfiguration as a reinforcement strategy to enhance the reliability of the 

distribution systems and several wind power sources are considered to assess their effects on 

the reliability indices. They proposed a method based on harmony search algorithm to 

improve the ability to explore the problem search space. 

Gupta et al. [24] presented a method to improve the reliability and power quality of 

distribution systems using network reconfiguration by formulating two new objective 

functions to address power quality and reliability issues for the reconfiguration problem. 

They proposed a single objective function to address   feeder power loss, system’s node 

voltage deviation, system’s average interruption frequency index, system’s average 

interruption unavailability index and energy not supplied are transformed into a single 

objective function and then solved using GA based method. Fard et al. [125] established a 

method for reliability improvement by defining a cost function to include the cost of active 

power losses of the network and the customer interruption costs simultaneously. To find the 

customer interruption cost data the composite customer damage function is applied. A novel 

self-adaptive modification method based on the clonal selection algorithm is proposed as the 

optimization tool. Fard et al. [126] investigated the optimal feeder reconfiguration and found 

this to be a valuable and cheaper approach to increase the load balance, reduce the amount of 

power losses, and improve the voltage of the buses. 

Zhang et al. [127] suggest a multi-agent system based distributed control solution that 

can realize optimal generation control and the solution is designed based upon an improved 
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distributed gradient algorithm, which can address both equality and inequality constraints. 

Reliability is improved by introduction of N-1 rule to design the communication network 

topology. Murthy et al.[128] presented the effect of reconfiguration in the presence of 

distributed generation (DG) in radial distribution system to improve the voltage stability with 

different load models by using Artificial Bee Colony (ABC) algorithm. The NR selects the 

best set of branches to be opened, one from each loop, such that the reconfigured radial 

distribution system possesses desired performance characteristics. Jahromi et al. [129] shows 

that daily load curves of different types of distribution consumers, during various types of  

days (weekdays and holidays) and seasons (summer and winter),are used to obtain the best 

reconfiguration hours during a day. They used genetic algorithm to obtain the optimum 

configuration during each time interval having objective function of loss and energy not 

supply. The configuration is changed by the remote controlled switches for the speedy 

operation. 

Paterakis et al. [130] developed a method for Day-ahead Network Reconfiguration 

(DNR) by means of minimizing active power losses and a set of commonly used reliability 

indices. They used lexicographic optimization to solve the multi-objective optimization 

problem and the reliability indices are developed with a mixed-integer linear programming 

approach. Lopez et al. [131] presented a mixed-integer second-order conic programming 

model for the robust reconfiguration of electrical distribution systems, considering the 

minimisation of active power losses and reliability constraints. The uncertainty at the 

reliability data is considered by using a linear and adjustable robust approach. The reliability 

indices SAIDI, SAIFI are calculated as functions of the switch status. 

In contemporary distribution systems with imbedded DGs and SCs, network 

reconfiguration can also be effectively used for service restoration. In fact self-healing 

through advance protective scheme and network reconfiguration is one of the most important 

objectives of smart distribution systems. Kotamarty et al. [132] discusses a procedure for 

evaluating the impact of site and size on both the original distribution power system as well 

as a reconfigured power system after a fault. They showed that using these alternative energy 

and other traditional energy sources, in  the distribution power system, allows the 

development of a new paradigm related to distributed generation (DG). Botea et al. [133] 

discussed the reconfiguration problem for supply restoration when the switching cost is 

higher, the network reverts to its normal configuration quickly, the electricity loss and the 

load imbalance in a temporary suboptimal configuration are of less importance. They 

proposed optimal informed search algorithms and introduced heuristics for reconfiguration 
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and Combining A with admissible cost. Song et al. [134] defined and classified the smart 

control functions for the Distributed Energy Resources units in the Smart Distribution 

Network. The integration schemes are introduced for the SDN with DER units. They proved 

the effectiveness of the scheme by implementing this into the Korean Smart Distribution 

Management System (KSDMS) as operation schemes for loss reduction and service 

restoration. Pavanaand Triveni [135] proposes the MST-Kruskal’s technique for determining 

optimal target network for minimization of the power losses, maximization of the load 

balance and for restoration of the power after network reconfiguration. 

Quevedo et al. [136] suggested to apply energy storage systems and renewable energy 

sources for the overloaded and increased power loss DS. They presented an optimal 

contingency assessment model using two-stage stochastic linear programming including wind 

power generation and a generic ESS. They propose that in case of contingencies, energy 

storage systems (ESS) and renewable energy sources (RES) can be applied to improve 

operating conditions. They presented two-stage stochastic linear programming including 

wind power generation and a generic ESS, and obtained the best radial topology by 

determining the best switching sequence to solve contingencies. Huang et al. [137] proposed 

an algorithm to realize synchronous optimization of both main network and island 

restorations that are used to find the global optimization solution. The proposed method 

breaks the loops in the distribution systems by matrix operations and significantly improve 

calculation speeds. 

The loads and DGs generation in distribution systems keep changing with time. 

Therefore an optimal configuration obtained for certain loads and distributed generation 

conditions may no longer be optimal under new operating conditions. How often NR is 

to be performed, depends on various factors such as switching cost, reduction in loss, 

maximization of income etc. Cho et al. [138] find out optimal load which obtain best network 

reconfiguration result according to time-varying load demand and DG generation. The 

proposed method show how to select the most optimal load considering not only time-

varying  demand and DGs generation but also the number of switching for maximizing 

income. Study by Reza et al. [139] considers the uncertainty related to renewable distributed 

generation output power and the load variability by proposing a mathematical model to 

minimize daily network losses by applying hourly reconfigurations. This is a mixed integer 

second-order cone programming problem and is solved by MOSEK solver by considering the 

load demand variations and renewable power generation fluctuations during a day. Alcaraz et 

al. [140] suggest a two-phase approach for optimal short-term operational scheduling with 
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intermittent renewable energy resources (RES) in an active distribution system. Initially the 

amount of purchased power from the market and the unit status of distributed generation 

(DG) is determined and feeds the data for a real-time scheduling coordination with hourly 

network. Golshannavaz et al.[141] proposed an algorithm that targets to optimally control 

active elements of the network, distributed generations and responsive loads for minimize the 

day-ahead total operation costs. This algorithm uses hourly network reconfiguration by 

placing remote control switches. Chen et al. [142] suggests day-ahead scheduling model 

considering renewable energy generation like forecasting errors of wind speed, solar radiation 

intensity and loads are formulated as interval numbers so as to avoid any need for accurate 

probability distribution. For the optimization of nodal voltage deviation and network power 

losses, order relation of interval numbers is used to transform the proposed interval optimal 

scheduling model into a deterministic optimization problem which can be solved using the 

harmony search algorithm. Reja et al. [143] proposed day-ahead NR in active distribution 

systems by applying hourly reconfiguring strategy. They considered the variability in load 

and power generation from DGs during the day and reconfigure distribution network for loss 

minimization. 

2.3 CRITICAL REVIEW 

In the present competitive deregulated environment of power distribution utilities, 

there is stringent pressure to maximize annual profits while on the other hand the customers 

are sensitive to get good quality of power supply with adequate reliability. Literature shows 

that the integration of optimally placed DGs and SCs in distribution systems can achieve 

these objectives to a great extent. Furthermore, the stringent environmental laws and 

declining trend in the installation cost of renewable DGs has made them very popular in 

contemporary distribution systems. Therefore, future distribution system can be seen with 

deep penetration of these DRs. This, however, greatly affects the power transactions from the 

utility grid and also the flow of power among distribution feeders in such a way that 

distribution systems may be operated with very good energy efficiency and node voltage 

profiles. The NR is a well-known operational strategy of distribution systems which has been 

extensively studied and successfully implemented for service restoration, enhance system 

reliability and also to enhance system performance by minimizing feeder power losses and 

node voltage deviations under normal and abnormal conditions.  In this context, it is essential 

to reinvestigate the extent of benefit that would be extracted by optimal reconfiguration of 

contemporary distribution systems. 
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From the abovementioned literature review it is evident that NR problem has gained 

new dimensions in the context of contemporary distribution systems being well equipped 

with diverse energy resources such as renewable DGs, AESs and SCs. These renewable DGs 

are characterized by uncertainty and intermittency in power generation, therefore the 

stochastic nature of load profile needs due consideration while formulating NR problem. 

With these considerations, the distribution network states are now becoming dynamic thus 

needs exploration of new and more practical NR strategy while addressing service restoration 

and network performance of distribution systems by giving due consideration to performance 

improvement versus minimization of switching operations. Moreover, realities of practical 

distribution systems such as load diversity among distribution buses on account of different 

type of distribution customers should be addressed to avoid counterproductive solution. With 

these concerns, the complexity of NR problem increases by many folds. This intends new 

more realistic problem formulations, methodologies, strategies and the application of more 

accurate optimization techniques to solve NR problems. This definitely has shifted the 

paradigm of formulation and solving distribution system optimization problems in the context 

of contemporary distribution systems. The NR problem of distribution system therefore needs 

reinvestigation while employed to solve diverse vital objectives pertaining to system 

performance improvement, reliability enhancement, system restoration. The distribution 

systems should be more reliable and secured. The reliability of electric distribution systems is 

the strict function of Joule’s heating developed along various power distribution components. 

The distribution feeders are pretty long so are ones among other distribution components 

which are usually more prone to faults. The future distribution systems may have most 

undergrounded feeders to reduce the frequency of occurrence of faults as it directly enhances 

system reliability. The reliability indices therefore need to be reviewed in the view of Joule’s 

heating as this heating is much more important in under-ground feeders than in over-head 

distribution feeders. A new formulation therefore required to address reliability concerns for 

NR problems of distribution systems. Moreover, the power quality and power reliability 

issues show conflicting nature while solving NR problems. Therefore, a multi-objective 

problem formulation should be devised in order to provide most compromising solution to 

distribution system operators. 

While considering optimization techniques, the evolutionary and swarm intelligence-

based metaheuristics have successfully solved the NR problem of distribution systems, but 

are computationally demanding and needs cumbersome parameter tuning through 

experimentations. Several improved variants of these techniques are available in literature 

which has enhanced their performance by improving the internal working, introducing 
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additional control parameters or by hybridization with other suitable technique, etc. However, 

the overall performance of the standard model of these techniques may be significantly 

enhanced by just attacking on the inherent limitations of these techniques. Whatever be the 

modification suggested for improved variants, they should be simple to understand and easy 

to implement. Therefore, there is a need of time to develop simplified but efficient models of 

standard metaheuristics. 

On the basis of critical reviews, following research objectives have been formulated 

for the thesis work. 

1. To carry out exhaustive literature survey in the area of distribution network 

reconfiguration (NR) for service restoration, reliability enhancement and distribution 

system performance improvement and to study existing optimization techniques to 

solve NR problems of distribution systems. 

2. To develop improved variants of existing metaheuristic techniques and investigate 

their applicability to solve small and large-scale NR problems of contemporary 

distribution systems. 

3. To propose multi-objective formulation for optimal NR problem of contemporary 

distribution systems to simultaneous optimize reliability and power quality objectives 

while considering practical feeder power flow constraints and stochastic variation in 

load demand and power generation from renewable DGs. 

4. To develop new strategies for both on-grid and off-grid service restoration and 

investigate the impact of NR to enhance the performance of active distribution 

systems during abnormal operating conditions. 

5. To propose new NR strategy and formulations for NR problems while considering 

various distribution system states owing to variability, diversity and uncertainty of 

load demand and power generation among distribution buses, and reinvestigate the 

effectiveness of NR and the strategy proposed in the context of contemporary 

distribution systems. 

In this chapter, an exhaustive literature survey in the area of distribution network 

reconfiguration (NR) for service restoration, reliability enhancement and distribution system 

performance improvement have been carried. The literature survey also includes existing 

optimization techniques to solve NR problems of distribution systems. A critical review of 

the literature is also presented to identify the research gaps. In the following chapter 

improved variants of existing metaheuristic techniques have been developed for network 

reconfiguration of contemporary distribution systems. In the following chapter improved 
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variants of GA and PSO techniques have been developed to solve small and large-scale NR 

problems of contemporary distribution systems. 
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CHAPTER 3 

PROPOSED META-HEURISTIC METHODS FOR DISTRIBUTION 

NETWORK RECONFIGURATION  

The network reconfiguration problem is a highly complex combinatorial non-linear 

optimization problem of distribution systems. The complexity of this problem has increased 

many folds in contemporary distribution systems due to the presence of distributed energy 

resources and tunable compensating devices. A lot of research work has been carried in the 

area of DNR for single and multiple objectives including service restoration. This has led to 

the development of different approaches. The problem has been earlier solved using several 

mathematical approaches [144-145] and heuristic methods [29-44,146-152] while 

considering certain assumptions or solving for loss minimization of small-scale distribution 

systems. Later on population-based meta-heuristics such as GA [9-17, 52-62], PSO [18-21], 

ACO [68-72], TLBO [8,153-154], BA [155-156], CSO [157-158], etc. have been exploited to 

solve complex multi objectives DNR problems. In the recent past several new meta-heuristic 

techniques have been evolved and lot of work has been contributed on the further refinement 

of existing metaheuristics. Among all metaheuristics, GA and PSO are of great interest as are 

not only the very first developments of evolutionary and swarm intelligence-based techniques 

respectively, but also had provided platform to develop numerous well-established 

metaheuristics as mentioned above. Moreover, these two fundamental techniques are still on 

the center of focus of researchers to enhance their performance by suggesting various 

improved variants and only some of them can be mentioned as refined GA [9-10], fuzzy GA 

[13,53,59], enhanced GA [11], hybrid GA [12,62], adaptive GA [60], micro GA [15], 

dedicated GA [16], discrete PSO [18], modified PSO [19], self-adaptive PSO [20] and 

enhanced integer coded PSO [21]. This is due to the fact that both GA and PSO are simplest 

to understand and easiest to implement while solving diverse engineering optimization 

problems. However, the complexity of engineering optimization problems is consistently 

increasing with time as the systems are now becoming more and more complex on the one 

hand and the business environment becomes more and more competitive on the other hand. 

Moreover, rational issues and concerns have to be considered while formulating the problem 

in order to provide more realistic scenarios so obtained more practical solutions that can 

withstand successfully in the present competitive environment. The literature witnessed many 

successful attempts where GA and PSO have been improved [159-168]. However, these 



22 

 

attempts worked out on the improvement of inner working of these techniques by suggesting 

different methods for crossover or mutation operators of GA or by redefining the control 

parameters of PSO. Nevertheless, attempt has yet not been addressed where the human 

intelligence element is incorporated along with the artificial intelligence of these techniques. 

The coalition between these two intelligences may enhance the performance of these 

techniques as the human intelligence can play vital role without affecting the inner working 

of these techniques. The human intelligence element when incorporated in GA and PSO 

enables them to have super sense during the selection process of these techniques. In this 

chapter, different variants of GA and PSO named as (super sense GA) SSGA and (super 

sense PSO) SSPSO respectively have been developed by incorporating the human 

intelligence element in their basic models. These developed variants have been investigated 

to solve the NR problem on standard test systems with and without diverse distributed 

resources. The results of investigations are analyzed and presented.   

3.1 NETWORK RECONFIGURATION IN CONTEMPORARY DISTRIBUTION SYSTEMS 

Network reconfiguration (NR) is one of the well-known and most effective 

operational strategies to improve the efficiency, reliability and power quality of distribution 

systems, apart from service restoration. 

Distribution networks are generally structured in mesh but operated in radial topology 

for effective co-ordination of their protective schemes and to reduce the fault level [5]. For a 

given distribution network there might be millions of possible radial topologies. Therefore, 

the determination of one particular radial topology that optimizes desired objectives while 

satisfying certain specified network operational constraints is a hard complex combinatorial 

exercise. In fact, the optimal NR may be said as one of the complex optimization problem of 

power system. On the one hand, the combinatorial nature of the problem increases with the 

increase in the size of the distribution systems. In recent years, the legacy passive distribution 

systems are being transformed into active distribution systems by the widespread deployment 

of renewable DGs as they provide green energy economically and efficiently at the doorsteps 

of the end users. However, the integration of these RESs lead to additional complexities to 

power system operators which are primarily concerned with the intermittency associated with 

their power generation, bi-direction power flows among distribution feeders and alarming 

over voltages among distribution nodes.  Further, the distribution systems have a variety of 

customers each have characteristic load pattern that is not only stochastic in nature but also 

varies with seasons. This leads to the consideration of several time varying states of the 
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distribution system due to prevailing load and generation patterns of distribution buses. 

Therefore, the reconfiguration of distribution networks needs to be performed frequently to 

achieve optimum performance of distribution systems while the feeder currents and node 

voltage constraints need to be stringent while solving NR problems. 

The trend towards deregulation and competitive business environment are forcing 

electric utilities to improve their energy efficiency and reduce cost while consumers are 

becoming more sensitive to reliability and power quality. In this context, optimal NR 

becomes vital strategy for the distribution network operators (DNOs) since the majority of 

the power quality and reliability issues are related to distribution systems and majority of the 

power losses occur in distribution systems owing to their low operating voltage levels. 

Therefore, distribution system design and operation are becoming critical for financial 

success of electric utilities and customer’s satisfaction.  

3.2 PROBLEM FORMULATION FOR DISTRIBUTION NETWORK  

The NR problem is formulated to minimize power loss reduction for the given system 

state n and to maintain node voltages within prescribed limits while considering distribution 

system well equipped with distributed resources such as DGs and SCs. The problem is 

formulated as:  

 
 Max. ;in bn anF PLoss PLoss n N     (3.1) 

where, bnPLoss / anPLoss are network power loss in the ith radial topology before and after 

NR for nth system state. 

Subject to the system operational constraints defined below.  

The sum of the power supplied from the utility grid and the total power generated by 

the different DRs being installed in the distribution system must be balanced by the local load 

demand and feeder power losses. For a radial network, a set of recursive equations are used to 

model the power flow in the network as given by (3.2)-(3.6). 
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1. Node voltage constraint 

All node voltages Vjn of the nodes at state jmust be maintained within the minimum 

and maximum permissible limits i.e. Vmin and Vmax, respectively as defined below 

 min max ;  ;jn cV V V n N j N       (3.7) 

2. Feeder current constraint  

The current flow in each distribution line must be below or equal to the rated 

ampacity. This imposes feeder current constraints which can be expressed as  

 
max ;  ,jn j cI I n N j N    

 (3.8) 

3. Radial topology constraint 

The reconfigured network topology must be radial, i.e. with no closed path. 

Therefore, the radiality constraint for the ith radial topology at nth system state is defined as 

 
( ) 0;n nФ i N  

 
(3.9) 

While dealing with NR problem using any population-based optimization technique, 

the radiality constraint imposes the biggest hurdle as all tentative solutions must represents 

radial topologies without any islanding. In the present work, the codification proposed by [5] 

is used to handle the radiality constraint. This is a rule-based codification to check and correct 

the infeasible radial topologies. According to this codification, following three rules are 

framed which are based on graph theory to identify and correct infeasible individuals 

whenever appeared in the computational process. 

Rule 1: Each candidate switch must belong to its corresponding loop vector. 

Rule 2: Only one candidate switch can be selected from one common branch vector. 

Rule 3: All the common branch vectors of a prohibited group vector cannot participate 

simultaneously to form an individual. For further details about the loop vector, common 

branch vector and prohibited group vector, Ref. [5] may be referred. 

 

3.3 HANDLING UNCERTAINTY MODELING FOR LOAD AND GENERATION 

Several probabilistic and deterministic techniques have been suggested in the recent 

past to handle uncertainty and variability of load demand and power generation from 

renewable DGs. Recently, Wang et al. [169] suggested deterministic polyhedral uncertainty 

sets to deal with the uncertainty of intermittent generations from RESs and the stochastic load 

demand. They claimed that these uncertainty sets require limited information such as the 

mean, lower and upper bounds of the uncertain data which are easier to obtain from the 

historical data or estimated with certain confidence intervals in practice. The authors admitted 
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that the degree of uncertainty has to be adjusted taking into account the trade-off between the 

robustness and conservativeness of the solution. But, the proposed model has limitation that 

the selection of data spread (DS) and budget of uncertainty (BOU) is a difficult task. 

Therefore, these parameters are taken constant in [169] while generating synthetic data for 

load demand or power generation at system buses. However, it may lead to conservative 

solution. Moreover, the results may be affected seriously if both DS and BOU considered are 

either overestimated or underestimated. In the authors’ view, these parameters must be made 

self-adaptive with the prevailing conditions of generation/load demand at system buses. 

Therefore, new self-adaptive polyhedral deterministic uncertainty sets (SPDUS) are proposed 

in [170] which require historical uncertain data only for a year. According to this model, the 

available annual hourly information is segmented into twelve segments each consists of a 

data set of matrix 24xm, i.e. one for each month. The hourly mean and standard deviation 

(SD) of the monthly data is used to generate SPDUS. In this modeling, DS and BOU depend 

upon the mean and SD of the data set matrix. The self-adaptive feature of SPDUS is based 

upon the philosophy that the variations in uncertain data is governed by the law of  nature, 

therefore the modeling must faithfully follow the law of natural distribution. Therefore the 

method of [170] is employed to deal with variability and uncertainty of load demand and 

power generation. In this method the SPDUS ,

ld

m nW for the load demand of the node j at state 

n of the month m is defined as 
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where, ω-terms denote available data and χ-terms denote the synthetic data to be generated. 

In the similar way, the uncertainty sets of power generation from SPV and WT units may also 

be defined. 

The DS for the load demand of node j at state n for month m is described by the 

interval , ,, , ,  
ldld
j m nj m n  

  
. The uncertain load demand at the node j at state n for month m is 

constrained by the DS , , , ,( )ld ld

j m n j m nz  . Where, , ,

ld

j m n is the SD of the hourly load demand over the 

month m for the node j at state n. The synthetic load data so generated is further constrained 

by BOUs. The lower and upper limits of BOU are , ,
ˆ ˆ[ ]ld ld

j m j mz  . Similarly, the uncertainty 

sets for SPVs and WTs can be developed. The value of z depends upon the strategic location 
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where renewables have been placed. Its value is considered as unity in the present work. 

The unique feature of SPDUS is that it automatically considers the diversity in load or 

generation at different system buses. For the instance, the load diversity factor is smaller for 

commercial customers whereas it is pretty high for the residential customers. Therefore, DSs 

and BOUs obtained will be smaller for commercial and relatively larger for the residential 

customers. Similarly DSs and BOUs will be more for WTs than SPVs. Thus, SPDUS method 

provides less conservative solutions for DR planning and operation. 

 

Fig. 3.1 Representation of synthetic data generated for SPV power generation  

A sample for the synthetic data generated for the power generation from SPV unit is 

shown in Fig. 3.1. It can be observed from the figure that DSs are varying hourly on account 

of their self-adaptive feature; it remains zero whenever there is no generation, remains 

smaller during morning and evening hours, but becomes wider during the afternoon hours 

due to more solar insolation. This self-adaptive feature is of great significance while dealing 

uncertainty in load demand at various system buses as each bus has its own characteristic 

load pattern due to diversity of load demand among distribution buses. This is usually not the 

case while dealing with uncertainty of the power generation from RESs, or otherwise, the 

uncertainty model easily takes care as in case of uncertainty of load demand at system buses.    

3.4 PROPOSED SUPER SENSE GA FOR NETWORK RECONFIGURATION 

GAs are derivative free adaptive heuristic search algorithm inspired by the concept of 

natural selection and genetics. The development of GA is largely credited to the work of 

Holland [171] and Goldberg [172]. Since then GAs have evolved and become a promising 

tool to solve diverse engineering optimization problems [5]. GA is initialized with random 

population (tentative solutions) dispersed in the problem search space to simulate the survival 

of the fittest individuals over consecutive iterations called generations. The population 

consists of individuals of character strings that are analogous to the chromosome that we see 
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in our DNA. Depending upon the genotype coding, each chromosome possesses a 

characteristic fitness value decided by the objective function to be optimized. Higher the 

fitness value of an individual, better will be the chances of its survival. The individuals are 

allowed to participate in the evolutionary process from one generation to next generation. 

Selection, crossover, mutation and termination are the basic operators of GA. The law of 

natural selection and genetic drift lead to the evolution of better and better individuals during 

the evolutionary process. The genetic drift is imposed by genetic operators, namely crossover 

and mutation. Crossover is the main operator of GA that selects two individuals (parents) and 

brings them together on the matting pool. The offspring so produced have diverse genotype 

coding that help to explore the problem search space. However, this diversity in population is 

not sufficient so GA may stagnate, i.e. there is no improvement in the mean fitness of 

individuals. This usually leads to local trapping. In order to avoid this, a small percentage of 

the population is mutated. The mutation provides sudden genetic drift thus pulls individuals 

out of the hat. GA is assumed to be terminated after pre-specified generations, and the best 

individual obtained during the complete evolutionary process is treated as the solution of the 

problem being optimized. Elitism is used to preserve the best individual obtained in each 

generation.  

 

(a) 

 

(b) 

Fig. 3.2 Demonstration of GA (a) Crossover (b) Mutation 
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While considering network reconfiguration problem of distribution systems, a set of 

definite number of switches (co-tree branches) may represent an individual having decimal 

genetic coding represented by the set of switches such that their opening provides a radial 

topology of the distribution network while all loads remain energized. Therefore, the 

structure of individuals for GA may be considered by the string of switches as shown in Fig. 

3.2.  The length of string is restricted to the number of tie-lines in the distribution system. The 

figure also illustrates the crossover and mutation of GA. 

The standard GA suffers from limitations such as poor convergence, local trapping, 

etc. while dealing with complex optimization problems. Though GA possesses very good 

communication among individuals using crossover operator, but the diversity is lost 

whenever two identical parents are selected at the mating pool. The chances of the selection 

of such identical parents increase as the algorithm progresses. Therefore, the diversity is most 

likely to be lost during anaphase of algorithm and it leads to premature convergence of GA. 

Several attempts have been reported in literature who experimented on various methods to 

modify crossover or mutation operators. In fact, the full potential of these techniques can be 

extracted if attempts are made to alter their internal mechanism in such a way that provides 

self-sustainable healing against their intrinsic flaws [173]. Nevertheless, it will be interesting 

to see the improved performance of GA without altering the internal mechanism of standard 

GA. This could be possible if the human intelligence is embedded with the artificial 

intelligence of meta-heuristic techniques. The fundamental difference between the artificial 

and human intelligence is that human beings can sense and react accordingly. With this 

theme, Super Sense GA (SSGA) is proposed in this work. The internal working of the SSGA 

is identical to that of standard GA, but the selection of individuals is biased by the human 

intelligence element. In GA, and all other evolutionary and swarm-intelligence-based 

metaheuristics, the decision variables are selected in a random or probabilistic fashion to 

form individuals without considering their ability to affect the objective function to be 

optimized. In SSGA, though the selection process is probability based, however, it also 

considers the ability of decision variables with regards to the fitness value of the objective 

function. In order to incorporate this sense in SSGA, both the genotype coding and the fitness 

of each child is compared with their parents and the decision is taken to determine whether or 

not the genotype coding of offspring has improved their fitness. The genetic information so 

obtained is stored into two different archives; the Archive-A, if the fitness improves 

otherwise in the Archive-X.  Moreover, these archives also store the frequency of genetic 

information being stored. In each generation a definite percentage of population is selected 
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from these archives on probabilistic basis that depends upon the frequency of genetic 

information stored.  

 

Fig. 3.3 Flow chart of proposed SSGA  
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These individuals are allowed to participate in the evolutionary process. The Archive-

A is likely to provide better fit individuals in the population so that better offspring may 

produce, whereas the reverse may be true while considering the selection of population from 

the Archive-X. The role of proposing Archive-X is that it maintains adequate diversity in 

population. The selection of total population from these archives is defined as the selection 

rate ξ which is defined as the definite fraction of the population size being used for GA. The 

selection ratio ϒ(k)for the population generation has also been defined as the ratio of 

population being generated from Archive-A and Archive-X during kth generation. Adequate 

values of these parameters are desired. Higher values of the selection rate may unnecessarily 

increase the computational burden of GAs, whereas sufficient smaller values do not 

appreciably influence the performance of algorithm. Therefore, 0.5 may be an ideal choice 

for the selection rate. However, care has to be taken so that total population generated (P + 

ξP) be even numbered. On the other hand, the selection ratio is randomly selected within the 

range [1, 4] such that even numbered population is generated from each achieve.  The 

crossover and mutation operators are kept same as in the standard GA. SSGA terminates 

when the maximum generations are exhausted. The population is replenished in each 

generation by replacing ξP of least fit individuals from the population by the equal number of 

individuals being generated through archives. The flow chart of SSGA is shown in Fig. 3.3. 

3.5 PROPOSED SUPER SENSE PSO FOR NETWORK RECONFIGURATION 

PSO is inspired by the social behavior of bird flocking or fish schooling and is one of 

the most popular swarm intelligence-based optimization technique developed by Kennedy 

and Eberhart in 1995 [174]. The algorithm is initialized with a population (called a swarm) of 

candidate solutions (called particles). These particles are allowed to fly randomly in the 

problem search space. The movements of the particles are guided by their own best known 

position Pbest in the search-space (cognitive behavior) as well as the entire swarm's best 

known position gbest (social behavior) using a single control equation.  In due course of time, 

particles update their position vectors in the problem search space in accordance to cognitive 

and social behaviors. However these two movements are supported by the time varying 

inertia weight to impart necessary momentum to particles. This is schematically demonstrated 

in Fig. 3.4.  Each particle updates its previous velocity and position vectors according to the 

following model [175]: 

 
1

1 1 2 2( ) ( )

k k

p p pk k

p p

pbest s gbest s
v wv c r c r

t t


 

        
 

 (3.11) 



31 
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p p ps s v t     (3.12) 

where, k

pv  is the velocity of pth particle at kth iteration, r1(∙) and r2(∙) are random numbers in 

the range [0,1], 
k

ps  is the position of pth particle at kth iteration, c1, c2 are the acceleration 

coefficients, pbestp is the best position of pth particle achieved based on its own experience, 

gbest is the best particle position based on overall swarm experience, Δt is the time step, 

usually set to 1 s and w is the inertia weight which is allowed to decrease linearly with 

iterations as follows: 

 max min max max( ) /w w w w itr itr     (3.13) 

where, wmin and wmax are the minimum and maximum bounds of the inertia weight 

respectively, itrmax is the maximum iteration count and itr is the current iteration count. 

 

Fig. 3.4 Demonstration of PSO 

Researchers have paid attention towards PSO primarily on account of its simplicity, 

convergence speed, and robustness, yet having potential to obtain global or near global 

solution. However, PSO has inherent tendency of local trapping while subjected to solve 

complex optimization problems. It happened due to over speeding of particles that leads to 

poor local search. Several modified versions of PSO have been reported in the recent past to 

enhance its performance by modulating inertia weight [83,176-177], improvising cognitive 

and social behavior [64, 67,177] using constriction factor approach [162,178], modifying the 

control equation of PSO [66,179-182], or squeezing the search space [181-182], etc. 

However, some of these suggested versions of PSO require several experimentations for 

parameter setting or needs some additional mechanism to avoid local trapping or to regulate 
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particle’s velocity in order to maintain a better balance between cognitive and social behavior 

of the swarm [183].  

 

Fig. 3.5 Flow chart of proposed SSPSO 
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Moreover, the intrinsic nature of PSO could only generate continuous decision 

variables thus both accuracy and convergence may affect while it is applied to the 

optimization problems having discrete decision variables [173]. Therefore, a suitable variant 

of PSO is highly desired that can efficiently solve complex network reconfiguration problem 

after overcoming these limitations. In the present work the idea of human intelligence, as 

suggested in SSGA, is also attempted in PSO to enhance its overall performance without 

altering internal working of the algorithm. The variant of PSO so developed is therefore 

named as super sense PSO (SSPSO).  

In SSPSO, the particles are updated through iterations using the same control equation 

as in PSO, but some particles are added to the swarm during its movement using Archive A 

and Archive X with certain selection rate and selection factor as in SSGA. However, care has 

to be taken as the procession of PSO algorithm is different than that of GA where every 

particle has to track its best movement. Therefore, the position of particles in the swarm 

should not be altered during the computational process. So it is necessary that the particles 

generated from archives to replenish the swarm shall not survive in the next iteration. Thus 

the population so generated may be called as short-lived swarm (SS), and accordingly the 

initial population generated by randomization may be called as long-lived swarm (LS). In this 

way, SSPSO differs from SSGA where the population generated from archives may survive 

longer according to the Darwian’s principle. The particles belong to LS governed by the 

principles of PSO, but a doubt arises while considering particles belonging to SS. It is due the 

fact that how can these particles track their best movement when their life span is limited to 

only one iteration, at least theoretically. But, these particles can be allowed to track the best 

movement of all those particles which occupy the same position in the swarm. This may be 

looked as a breakthrough from the   basic philosophy of PSO. However, this theme 

contributed towards better diversity in population. PSO usually suffers from lack in diversity 

on account of weak communication among particles as particles can communicate only with 

their own best and group’s best particles. This eventually leads to local trapping phenomenon 

in PSO.  On the contrary, in SSPSO the particles belonging to SS are generated through 

archives which are being formed on the basis of quality communication among particles of 

the whole swarm. This feature may provide better exploration of the search space, as good as 

provided by the genetic drift using the multi-point mutation in GA. The particles of both LS 

and SS follow the leader, and the best fit particle of the swarm is copied and kept preserved 

during each iteration so that it can never lost even when it is generated from SS.  The flow 

chart of SSPSO is shown in Fig. 3.5. 
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3.6 SIMULATION RESULTS AND DISCUSSION  

The performance of developed SSGA and SSPSO is investigated by solving NR 

problem of distribution systems. For this purpose, simulations are carried on two case studies 

by selecting IEEE 33-bus test distribution system [30] and 83-bus TPC real distribution 

system [68]. The single line diagram and brief data of these systems are given in Table 3.1. It 

can be observed from the table that 33-bus system consists of 37 lines including 5 tie-lines 

whereas 83-bus system has 96 lines including 13 tie-lines. This shows that the problem 

search space offered by 83-bus system is much larger than that offered by 33-bus system 

while solving NR problem using meta-heuristic techniques. The single line diagram, and 

detailed bus and line data of these systems may be referred from Table A1 and Table A2 in 

Appendix. 

TABLE 3.1  

BRIEF DATA OF THE TEST SYSTEMS 

Particular 33- bus system 83- bus system 

Line voltage (kV) 12.66 11.40 

Nominal active power demand (kW) 3715 28350 

Nominal reactive power demand (kVAr) 2300 20700 

Sectionalizing switches 1-32 1-83 

Tie-switches 33-37 84-96 

Base configuration with open lines 33 to 37 84 to 96 

Power loss (kW) 202.5 531.99 

Minimum node voltage (pu) 0.9131 0.9285 

It has been assumed that both distribution systems are equipped with SPVs, WTs, 

MTs and SCs. The consideration of intermittency in power generation from renewables and 

stochastic nature of load demand is taken into account by assuming suitable factors for power 

generation and load demand which are based upon historical data available for the particular 

place. The historical generation data considered for SPVs and WTs are taken from [184,185] 

respectively. The load and generation profiles of renewable DGs considered for 24 states of a 

day are given in Table 3.2.Though distribution network can be optimally reconfigured for any 

system state, but the state 15 is selected as it has fair generation from both SPVs and WTs 

while the load demand is adequate. 

The developed SSGA and SSPSO are applied to both distribution systems and the 

results obtained are compared with their respective standard counterparts. The algorithmic 

specific parameters used for these algorithms are shown in Table 3.3. Each algorithm runs for 

100 independent trials and the best result obtained is considered for comparison. A statistical 



35 

 

error analysis is finally performed to investigate the relative performance of these techniques. 

Intel(R) i5, 3.2 GHz, 4GB RAM is the platform used for computation.  

TABLE 3.2  

LOAD AND GENERATION FACTORS FOR RENEWABLE DGS 

State 
Load/Generation factor 

State 
Load/Generation factor 

Load WT SPV Load WT SPV 

1 0.5421 0.556 0 13 0.8711 0.896 0.967 

2 0.5421 0.507 0 14 0.8000 0.894 0.921 

3 0.5421 0.484 0 15 0.8711 0.799 0.820 

4 0.5421 0.454 0 16 0.8711 0.688 0.625 

5 0.5421 0.45 0 17 0.8711 0.704 0.398 

6 0.6132 0.49 0 18 0.8711 0.728 0.158 

7 0.6829 0.397 0.008 19 0.9303 0.763 0 

8 0.6829 0.435 0.203 20 1.0000 0.784 0 

9 0.6829 0.587 0.453 21 1.0000 0.806 0 

10 0.7421 0.698 0.563 22 0.7513 0.823 0 

11 0.7421 0.748 0.794 23 0.5421 0.88 0 

12 0.7421 0.796 0.934 24 0.5421 0.911 0 

TABLE 3.3 

ALGORITHM SPECIFIC PARAMETERS SELECTED  

Parameter GA SSGA PSO SSPSO 

CR 0.9 0.9 - - 

MR 0.05 0.05 - - 

C1 - - 2 2 

C2 - - 2 2 

Wmin - - 0.1 0.1 

Wmax - - 0.9 0.9 

ξ - 0.5 - 0.5 

ϒ - 1-4 - 1-4 

It is customary to first establish proposed SSGA and SSPSO. For this purpose these 

techniques are applied to both 33-bus and 83-bus systems at nominal load but without any 

DRs so that the results obtained for NR may be compared with that available in literature. 

The comparison results so obtained are presented in Table 3.4 and 3.5, respectively. It can be 

observed from the table that proposed GA and PSO are capable to explore the solution same 

as available in literature for both the case studies. This shows the effectiveness of proposed 

techniques to solve large scale reconfiguration problems. 
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TABLE 3.4 

COMPARISON RESULTS FOR IEEE 33-BUS TEST DISTRIBUTION SYSTEM 

Methods Optimal configuration 

(switches to be opened) 
Power loss (kW) 

Minimum node 

Voltage (pu) 

RGA [9]  7, 9, 14, 32, 37 139.55 0.9378 

Heuristic [39] 7, 9, 14, 32, 37 139.55 0.9378 

Heuristic [44]  7, 9, 14, 32, 37 139.55 0.9378 

GA [14]  7, 9, 14, 32, 37 139.55 0.9378 

HBMO [84] 7, 9, 14, 32, 37 139.55 0.9378 

GA [5] 7, 9, 14, 32, 37 139.55 0.9378 

SSGA 7, 9, 14, 32, 37 139.55 0.9378 

SSPSO 7, 9, 14, 32, 37 139.55 0.9378 

 

TABLE 3.5 

COMPARISON RESULTS FOR IEEE 83-BUS TEST DISTRIBUTION SYSTEM 

Methods Optimal configuration 

(switches to be opened) 

Power loss 

(kW) 

Minimum node  

voltage (pu) 

HBMO [84] 7, 14, 34, 39, 42, 55, 62, 72, 83, 86, 88, 90, 92 482.14 0.9529 

SAPSO-MSFLA 

/SAPSO/MSFLA [20] 
7, 14, 34, 39, 42, 55, 62, 72, 83, 86, 88, 90, 92 480.94 0.9529 

AIS-ACO [69] 7, 13, 34, 39, 42, 55, 62, 72, 86, 89, 90, 91, 92 471.14 0.9479 

SA/GA/ACSA [68] 7, 13, 34, 39, 41, 55, 62, 72, 83, 86, 89, 90, 92 469.88 0.9532 

GA [61] 7, 13, 34, 39, 42, 55, 62, 72, 83, 86, 89, 90, 92 469.87 0.9532 

GA [5] 7, 13, 34, 39, 42, 55, 62, 72, 83, 86, 89, 90, 92 469.87 0.9532 

SSGA 7, 13, 34, 39, 42, 55, 62, 72, 83, 86, 89, 90, 92 469.87 0.9532 

SSPSO 7, 13, 34, 39, 42, 55, 62, 72, 83, 86, 89, 90, 92 469.87 0.9532  

 

3.6.1 Case study 1: 33-bus test distribution system 

For this case study the IEEE 33-bus test distribution system is assumed to be well 

equipped with DGs and SCs as shown in Table 3.6. The table shows that the system is 

integrated with total installed capacity of 1680kWp, 1540kWp, 800 kW, 1200 kVAr of SPVs, 

WTs, MTs and SCs, respectively. The load flow result for the state 15, keeping network in 

the base configuration shows feeder losses and minimum node voltage as 26.15 kW and 

0.9878 p.u., respectively. A comparison of these results with that shown in Table 3.1 reveals 

that both power losses and node voltage profile have been significantly enhanced by the 

placement of DRs.  
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TABLE 3.6 

ALLOCATION OF DRS IN IEEE 33-BUS TEST DISTRIBUTION SYSTEM 
 

SPV 

(Capacity in kWp/Node) 

WT 

(Capacity in kWp/Node) 

MT 

(Capacity in kW/Node) 

SC 

(Capacity in 

kVAr/Node) 

280/14, 840/24, 560/30 420/14, 700/24, 420/30 800/24 300/12, 300/25, 600/30 

The NR problem for this active distribution system is solved independently by 

applying GA, SSGA, PSO and SSPSO techniques. The population size and maximum 

generation/iteration count is kept uniformly at 20 and 50, respectively for each of these 

techniques. The best result obtained after 100 trial runs is found to be identical using all these 

techniques and suggests the optimal topology by opening of lines 7, 9, 14, 32, 37. For this 

topology, the feeder power loss and minimum node voltage is 139.55 kW and 0.9378 p. u., 

respectively which were 202.5 kW and 0.9131 p.u. respectively before network 

reconfiguration.  

 

(a) 

 

(b) 

Fig. 3.6 Comparison of convergence of GA and SSGA for (a) best fitness (b) mean fitness 
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It is important to compare the convergence of these techniques. For this purpose the 

convergence for best and mean fitness are studied. The convergence for the best fitness 

shows the movement of best individual in the problem search whereas the convergence for 

the mean fitness depict the average movement of the population during the computational 

process. The comparison of these convergence characteristics for SSGA with GA, and for 

SSPSO with PSO are presented in Fig. 3.6 and Fig. 3.7, respectively. It can be observed from 

the Fig. 3.6 (a) that the convergence is significantly improved in SSGA, the fitness of the best 

individual improves at much faster rate than in GA. Similarly, Fig. 3.6 (b) shows that the 

mean fitness of the population is remarkably improved in SSGA. This is noteworthy because 

not only the best fit individual but all individuals of the population are improving their 

genetic information throughout the evolutionary process by virtue of super sense proposed in 

SSGA. Almost similar conclusions may be drawn from Fig. 3.7 which compares the 

convergences obtained using PSO and SSPSO for this system. 

 

(a) 

 

(b) 

Fig. 3.7 Comparison of convergence of PSO and SSPSO for (a) best fitness (b) mean fitness 
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(a) 

 

(b) 

Fig. 3.8 Comparison of convergence of SSGA and SSPSO for (a) best fitness (b) mean fitness 

It is interesting to compare the convergences of SSGA and SSPSO. For this purpose 

Fig. 3.8 is presented. The Fig. 3.8 (a) shows that the best convergences of these two 

algorithms are quite comparable, however, there is a marked difference while comparing their 

mean convergences as presented in Fig. 3.8 (b). The figure shows that the mean fitness 

improves much smoothly in SSGA than that in SSPSO. This indicates that SSGA provides 

better guided search. It probably happens on account of better communication in SSGA that 

maintains adequate diversity during the evolutionary process. However, the same happens in 

SSPSO during later half run because the velocity of particles remains uncontrolled during 

initial iterations in PSO owing to higher values assigned to the inertia weight parameter. 

Nevertheless, the comparison of the solution quality obtained after definite trial runs of these 

algorithms is vital before commenting upon the relative performance of these algorithms. For 

this purpose the statistical error analysis is performed on the sampled solutions obtained 

during their respective trial runs. The results of this analysis are presented in Table 3.7. On 

the prima-facie, the comparison of mean, best and worst fitness shows that both SSGA and 

22

23

24

25

26

27

28

1 8 15 22 29 36 43 50

P
o

w
er

 L
o

ss
 (

k
W

)

Generation/Iteration

SSGA SSPSO

20

30

40

50

60

70

80

90

1 8 15 22 29 36 43 50

P
o

w
er

 L
o

ss
 (

k
W

)

Generation/Iteration

SSGA SSPSO



40 

 

SSPSO perform better than their respective standard models. However, while considering the 

worst fitness, it is the SSPSO which seems to be slightly better than SSGA. The same is true 

as the frequency of obtaining best solution is 64 for SSPSO which is 55 for SSGA. But, 

SSGA is found to be better than SSPSO while comparing quality indices SD, COVm and 

COVb. Moreover, SSGA demands less CPU time than SSPSO. Therefore, it may be 

concluded that both SSGA and SSPSO have improved significantly than their respective 

standard forms, but SSGA is performing slightly better than SSPSO for this system.  

TABLE 3.7  

STATISTICAL ERROR ANALYSIS FOR CASE STUDY 1 

Technique Mean fitness 

(kW) 

Best fitness 

(kW) 

Worst fitness 

(kW) 

SD 

(kW) 

COVm COVb Frequency CPU 

Time (s) 

GA 23.65 22.79 25.33 0.6118 2.5866 4.6220 11 8.81 

Proposed GA 22.97 22.79 23.80 0.2180 0.9490 1.2362 55 13.16 

PSO 23.21 22.79 24.75 0.4973 2.1428 2.8466 45 8.91 

Proposed PSO 22.97 22.79 23.77 0.2637 1.1484 1.3843 64 16.40 

SD: standard deviation; COVm/COVb: coefficient of variation for mean/best fitness 

 

Fig. 3.9 Comparison of the spread of sampled solutions for 33-bus system 

For better visualization of the relative performance of these algorithms, the spread of 

sampled solutions obtained are compared in Fig. 3.9. The figure shows a sample of 100 

solutions which are being arranged in the order of increasing fitness. The figure clearly shows 

by what extent both SSGA and SSPSO have been improved than their respective standard 

models. It can also be seen that both SSGA and SSPSO generate good quality solutions, but 

SSGA is found to be slightly better. Thus the concept of “super sense” works well for both 

evolutionary and swarm intelligence-based metaheuristics techniques.  

The behavior of the meta-heuristic techniques may vary with the size of the 

optimization problem, some techniques may show better performance on both small-scale 
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and large-scale optimization problems whereas some others may behave differently. 

Therefore, proposed SSGA and SSPSO are investigated to solve NR problem of a large-scale 

distribution system in the following section.  

3.6.2 Case study 2: 83-bus TPC real distribution system 

For this case study the 83-bus TPC real distribution system modified by installing 

SPVs, WTs, MT units and SCs as shown in Table 3.8. The table shows that the installed 

capacities of these components are 15300 kWp, 14600 kWp, 1500 kW and 7800 kVAr, 

respectively. For base configuration, the feeder power loss and minimum node voltage are 

obtained as 311.13 kW and 0.9697 p.u. while considering state 15. Thus system performance 

has been improved significantly by placement of these DRs, when compared with the results 

given in Table 3.1. The NR problem is solved using GA, SSGA, PSO and SSPSO with 

population size maximum generation/iteration count of 40 and 200, respectively. Each 

algorithm has been run independently for 100 trial runs. It has been observed that all 

algorithms provide identical solution that suggests opening of lines 7, 13, 34, 39, 42, 55, 62, 

72, 83, 86, 89, 90, 92 for the most optimal radial topology of the distribution network. For 

this topology the power loss and minimum node voltage are 469.87 kW and 0.9532 pu, 

respectively which were 531.99 kW and 0.9285 pu respectively before network 

reconfiguration.  

TABLE 3.8  

ALLOCATION OF DRS ASSUMED IN EXISTING DISTRIBUTION SYSTEM 

SPV 

(Capacity in kWp/Node) 

WT 

(Capacity in kWp/Node) 

MT 

(Capacity in kW/Node) 

SC 

(Capacity in kVAr/Node) 

3000/6, 3800/12, 3000/28, 

2500/71, 3000/79 

15300 

2800/6, 3300/12, 2800/28, 

2200/71, 3500/79 

14600 

290/6, 360/12, 290/28, 

230/71, 330/79 

1500 

1500/6, 1800/12, 1800/31, 

1200/71, 1500/79 

7800 

Fig. 3.10 shows the comparison of convergence characteristics obtained for these 

algorithms.  It can be observed from the figure that SSGA still works well for this large-scale 

optimization problem. The convergences of SSGA, for both best and mean fitness, are found 

to be improved than that of GA and the amount of improvement is almost same as in case 

study 1. 
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(a) 

 

(b) 

Fig. 3.10 Comparison of convergence of GA and SSGA for (a) best fitness (b) mean fitness 

However, while considering Fig. 3.11 this inference cannot be developed for PSO and 

SSPSO. Fig. 3.11 (a) clearly shows local trapping phenomenon in PSO which has been 

overcome in SSPSO. Moreover, Fig. 3.11 (b) shows that the swarm is not able to reach in the 

promising region in PSO, as in case of SSPSO. Therefore, SSPSO is also significantly 

enhanced. The comparison of SSGA and SSPSO is presented in Fig. 3.12. It can be observed 

from the Fig. 3.12 (a) that both SSGA and SSPSO are comparable for this system also as far 

as the convergence of the best fitness is concerned. But, Fig. 3.12 (b) throws some light while 

comparing their mean convergence. The figure shows that the initial movement of individuals 

is much better in SSGA than in SSPSO, though their finally convergences are comparable. 

This shows that both SSGA and SSPSO have shown significant improvement than their 

respective standard models even when applied to large-scale optimization problem. However, 

the deviation in initial convergence may lead to different overall performance of these 
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algorithms. This can be evaluated by conducting the statistical error test on the sampled 

results obtained using these algorithms. 

 

(a) 

 

(b) 

Fig. 3.11 Comparison of convergence of PSO and SSPSO for (a) best fitness (b) mean fitness 
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(b) 

Fig. 3.12 Comparison of convergence of SSGA and SSPSO for (a) best fitness (b) mean fitness 

TABLE 3.9 

STATISTICAL ERROR ANALYSIS FOR CASE STUDY 2 

Technique Mean 

fitness 

(kW) 

Best 

fitness 

(kW) 

Worst 

fitness 

(kW) 

SD 

(kW) 
COVm COVb Frequency 

best fitness 

CPU 

Time (s) 

GA 173.67 171.43 180.26 2.4548 1.4135 1.9376 15 442.61 

SSGA 171.66 171.43 177.19 1.1288 0.6576 0.6721 96 520.56 

PSO 177.45 171.43 189.31 4.58 2.5801 4.4089 4 460.77 

SSPSO 174.96 171.43 183.40 2.9577 1.6905 2.6853 7 489.73 

The statistical error analysis performed for these algorithms is presented in Table 3.9. 

The table shows a marked improvement in the performance of SSGA in comparison to GA; 

not only the mean and worst fitness have been improved using SSGA but also the frequency 

of obtaining the best solution is remarkably improved from 15 to 96. This shows the potential 

of SSGA to efficiently solve large-scale optimization problems. However, SSGA is little bit 

more computationally demanding which is acceptable on account of better results so 

produced. While considering the performance of SSPSO, it has been observed that it has also 

improved significantly than PSO, but not as much as that of SSGA. SSPSO is not performing 

so well for this large-scale problem as that in case study 1. The reason is that PSO is not 

doing so well as that of GA for this case study. This fact can be observed from the table while 

comparing the values of SD, COVm and COVb. Therefore, it may be concluded that both 

SSGA and SSPSO have improved significantly than their respective standard forms, but 

SSGA is performing much better than SSPSO for large-scale optimization problems.  
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Fig. 3.13 Comparison of the spread of sampled solutions for 83-bus system 

Finally, the spread of sampled solutions obtained for this system using GA, SSGA, 

PSO and SSPAO are compared in Fig. 3.13. The figure shows a sample of 100 solutions 

which are being arranged in the order of increasing fitness. The figure clearly shows by what 

extent both SSGA and SSPSO have been improved than their respective standard models. It 

can also be seen that both SSGA and SSPSO generate good quality solutions, but SSGA is 

much better. Interestingly, SSPSO is found to be less promising even than GA. It happens 

because PSO has shown very poor performance in comparison of GA. Therefore, SSPSO 

cannot be enhanced up to the level of SSGA. However, the concept of “super sense” works 

well with both evolutionary and swarm intelligence-based metaheuristics techniques, but is 

found to be more suitable for evolutionary-based techniques.  

3.7 DISCUSSION 

The proposed SSGA and SSPSO algorithms utilize the identical element of proposed 

human intelligence called “super sense” without affecting the internal working of their 

standard models.  With this single proposed modification, both SSGA and SSPSO have been 

improved significantly than their respective standard counterparts.  However, SSGA 

outperforms than SSPSO, especially for large-scale optimization problems. This shows that 

the proposed concept of “super sense” is more suitable for evolutionary-based algorithms 

than the swarm intelligence based algorithms. It probably happened because of the 

fundamental difference between the search mechanisms employed by these algorithms. This 

can be discussed in detail as follows. 

In GA, better fit offspring are produced by virtue of the natural selection that obeys 

the Darwian’s principle, i.e. “Survival of the fittest”. However, the rate of obtaining better fit 

offspring is primarily governed by the crossover operator which works very well initially and 
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loses effectiveness as GA progresses. It happened because of the greediness associated with 

natural selection that gradually reduces diversity in population so the algorithm stagnates and 

even mutation is not sufficient as it provides limited diversity, not the local random walk 

around the current best individual. These limitations of GA are overcome in SSGA by 

replenishing population from proposed archives. The population generated from Archive-A 

provides local random walk around the current best individual whereas that generated from 

Archive-X maintains adequate diversity in population. Since the crossover operator of GA 

provides sufficient communication among individuals, the genetic information injected 

through archives is swiftly transmitted in population. This not only leads to maintain 

adequate diversity in each generation but also provides dedicated search for the global 

optima. Thus the performance of SSGA enhances significantly even for large-scale 

optimization problems.  

On the contrary, PSO possesses very weak communication among particles and works 

on the philosophy, i.e. “To follow the leader”. In PSO, each particle communicate with only 

two particles on account of cognitive and social behavior that restricts the communication of 

a particle with itself and the current best particle the swarm, respectively. Though, the control 

equation of PSO provides diversity in population but it loses its effectiveness as the algorithm 

advances, same as did by the crossover operator of GA. But, SSPSO cannot enhance the 

performance as that of SSGA because no information exchange is possible in LS, SS or 

between LS and SS, as in SSGA, due to the inheritance of restricted communication in PSO. 

Therefore, the new information injected into the population by SS cannot be transmitted in 

the swarm from one to next iteration so diversity is not maintained at the desired level during 

the whole computational process. This leads to inadequate exploration of large problem 

search space so the best particle may not improve its fitness, especially during anaphase of 

the algorithm. The movement of the swarm therefore stagnates and eventually the algorithm 

converges to local optima. However, a small diversity and local random walk is provided by 

the population generated from the Archive-X and Archive-A, respectively. Therefore, SSPSO 

has shown comparable performance with that of SSGA only for small-scale problems 

whereas SSGA performs much better than SSPSO for large-scale optimization problems. 

3.8 SUMMARY 

An attempt has been made for the coalition of human intelligence with artificial 

intelligence while considering the performance improvement of evolutionary and swarm 

intelligence based meta-heuristic techniques. The well-known metaheuristics, namely GA 
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and PSO are selected for investigation and are applied to solve the network reconfiguration 

problem of active distribution systems. The human intelligence incorporated in these 

algorithms is called super sense because the quality of each decision variable that involved in 

the computational process of proposed SSGA and SSPSO is assessed and kept in memory to 

produce future populations based upon the accumulated information. The application results 

on the benchmark small test distribution system reveal that the proposed super sense feature 

alone is sufficient to enhance the overall performance of the standard models of both GA and 

PSO. This is interesting as only selection rules are modified in SSGA and SSPSO without 

affecting the internal mechanisms of the standard algorithms. However, When SSGA and 

SSPSO are applied to a large-scale real distribution system, both SSGA and SSPSO are found 

to improve significantly, but SSGA performs better than SSPSO. In fact, the SSGA has 

shown outstanding performance for large-scale optimization. The possible reason is that the 

genetic evolution in organisms employs variations that have been accumulated from previous 

generations. This important feature, however, was missing in the standard GA though it is the 

basis for better future generations. It is because the accumulated variations from previous 

generations are assured to be really good as they are being originated from those living 

organisms who had survived. However, SSPSO is not able to exploit the benefits of super 

sense feature on account of it legacy in lack of communication among particles so the new 

variations created are not well transmitted within the swarm.  

 In this chapter, improved variants of existing GA and PSO have been developed and 

their potentials have been investigated. The application results of the developed method to 

solve small and large-scale NR problems of contemporary distribution systems have been 

presented and discussed. In the following chapter a multi-objective formulation for optimal 

NR problem of contemporary distribution systems to simultaneously optimize reliability and 

power quality objectives while considering practical feeder power flow constraints and 

stochastic variation in load demand and power generation from renewable DGs is proposed. 
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CHAPTER 4 

NETWORK RECONFIGURATION FOR RELIABILITY 

ENHANCEMENT AND SERVICE RESTORATION  

4.1 INTRODUCTION 

Reliability of power supply to end users is the most important factor in operation and 

planning of distribution systems. Over the past decades distribution systems have received 

considerably less attention regarding reliability enhancement through network operation than 

devoted to generating systems. The main reason for this is that loss of generating unit has a 

larger impact on the power supply and society as a whole than the loss of distribution system 

feeder.  However, the analysis of customer failure statistics shows that distribution systems 

make the greatest individual contribution to the unavailability of customer supply. According 

to an estimate a typical distribution system accounts for 40% of the cost to deliver power and 

80% of customers’ reliability problems [13]. 

The reliability has assumed significant importance in recent years due to deregulation 

of electric utilities with consequent competitive business environment. In contemporary 

distribution systems with renewable DGs and stochastic nature of load demands reliability of 

distribution system may further deteriorate if not taken care off. Owing to higher request on 

reliability for customers incurred by sustainable economic growth of the world, system 

reliability draws more and more attentions, and thus becomes an important technical and 

economic indicator to distribution companies [186]. It is important to plan and maintain 

reliable power supply to end users as the cost of interruptions and power outages can have 

severe economic impact on distribution utility and its customers. This fact clearly shows the 

importance and necessity of reliability enhancement in the area of distribution systems. 

Reliability evaluation aims to assess customer annual outage frequency and duration which 

may assist in power system planning and operation. The reliability of distribution system is 

characterized by different reliability indices based on the failure rate of its components. 

Failure rates of different system components are the most crucial data for reliability analysis. 

Since accurate information of these failure rates is not available, most of the existing methods 

rely on average values of failure rates available in the literature. However, in real life, 

components would have different failure rates due to exposure to different factors such as 

loading level. If a component is over loaded for longer duration its failure rate will increase 
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due to increased Joule’s heating.  In this context, the existing failure rates and related 

reliability indices need modifications. 

The network reconfiguration has been successfully used to optimize multiple 

conflicting objectives of distribution systems performance [28, 40-41]. Therefore, NR can be 

used for reliability enhancement also.  However, the addition of reliability objective to the 

NR problem makes this problem more complex and it needs to be solved with an accurate 

algorithm [13].  Moreover, in the event of a fault with consequent loss of a line, NR can be 

used to restore power supply to the consumers by providing alternative minimum loss path. 

In contemporary distribution systems having adequate penetration of DRs including 

renewable DGs, the reliability enhancement and service restoration through optimal network 

reconfiguration is a very complex optimization problems. 

The NR inherently performs load balancing among distribution feeders whether the 

distribution system is passive or active. Eventually, NR can be used as a new strategy for 

active distribution systems to maintain reliability indices below the continuity limits imposed 

by regulators [139]. Thus, in addition to the classical aim of reconfiguring the distribution 

networks for service restoration, power loss reduction and voltage profile enhancement, it is 

also possible to optimally reconfigure it in order to get additional guarantee for a reliable 

operation. Contemporary distribution systems are well equipped with adequate penetration of 

DRs and remote-operated line switches. The network topology therefore may be altered to 

achieve desired objectives. The present trends towards deregulation and competitive business 

environment are forcing electric utilities to improve their efficiency and reduce cost while 

consumers are becoming more sensitive to reliability and power quality. Therefore, NR 

becomes an effective approach to increase the worth of distribution systems’ reliability 

without extra costs, providing customers quality and financial benefits [187]. Reliability 

indices are calculated as the function of the failure rate and the restoration time of the system 

components. The frequency and duration of the interruptions experienced by users can be 

directly related to the system’s topology [188]. The reliability indices are also greatly affected 

by the presence of DRs in distribution systems as their presence changes the power flow 

among distribution feeders. 

In this chapter, a new multi-objective NR method is proposed for reliability 

enhancement and service restoration. Some of the existing reliability indices are modified and 

proposed by considering practical issues of Joule’s heating of distribution feeders. Moreover, 

reconfiguration strategy is developed for service restoration via NR maintaining better energy 

efficiency. The problem is formulated by considering more practical scenarios of 
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contemporary distribution systems having adequate penetration of DRs including renewable 

DGs with stochastic nature of load demand. The feasibility and the efficiency of the proposed 

method are investigated by a standard distribution test system. The application results on 

standard test distribution system demonstrate the importance of proposed methodologies. 

4.2 PROPOSED RELIABILITY INDICES 

The reliability of the distribution systems can be expressed in term of existing 

reliability indices such as system’s average interruption frequency index (F), system’s 

average interruption unavailability index (T), system’s average duration interruption index 

(D) and energy not supplied (ENS). For a distribution network with Nc feeding nodes, the 

reliability indices as adopted by the Chilean law are defined by the Inter-American 

Committee of Regional Electricity-CIER [15] and are given as under for ith topology: 
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where, F(i) is system’s average interruption frequency index, T(i) is system’s average 

interruption unavailability index, D(i) is system’s average duration interruption index and 

ENS(i) is the energy not supplied for the ith candidate topology. These objectives are the 

function of active load demand kW(j) and apparent load demand kVA(j) of the Nc system load 

points as well as of the failure rate λ(j) repair time r(j) and the unavailability U(j) for each 

load point. 

The reliability indices have been defined in literature [15,132] are based upon the 

average failure rate and average duration of interruption that might occur for a system or its 
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components in general. However, with the penetration of DRs and due to frequent 

reconfiguration of distribution systems, the dynamics of power flow is changed and therefore 

the use of average failure rate will provide erroneous results of different reliability indices. 

The distribution system consists of various components such as distribution transformers, 

distribution feeders, switchgears, etc. The useful life of each of these components depends 

upon, the amount of current flows during operation of distribution systems. Higher the 

magnitude of current more will be the heat produced on account of Joule’s heating so more 

wear and tear occur causing increase in failure rate. Therefore, failure rates of distribution 

components may be taken proportional to the amount of Joule’s heating produced. Therefore, 

the failure rates need to be modified to take into account heating effect of the actual feeder 

currents. In the present work, the failure rates are proposed to be redefined by considering 

Joule’s heating of distribution feeders. The Joule’s heating is proportional to the magnitude of 

current flowing through the given feeder. Since current flowing through the distribution 

feeders varies with the dynamically changing states, the failure rates of distribution feeders 

shall be made dynamic. Therefore, in the present work dynamic failure rate of distribution 

feeders are proposed as  

 ζ(i, j,n) =  λi (I(i , j, n) /I(b, j, nom))2 (4.6) 

where ζ(i, j, n) and I(i, j, n)  denotes the failure rate and current in the jth distribution feeder 

during nth system state respectively while the distribution system is operating in ith radial 

topology and  I(b, j, nom) denotes the current in the jth distribution feeder during nominal 

load conditions for the base topology of the distribution system. Proposed failure rate 

becomes dynamic with reference to the load demand/power generation among distribution 

buses and also with the varying network topology.  

The reliability index ENS is of prime importance for distribution system operator as it 

directly affects their margin of profits. In the present scenario of deregulated environment of 

power industries, the energy pricing to customers become dynamic owing to dynamic 

electricity markets. In dynamic electricity market, the electricity price depends upon the 

magnitude of system loading in somewhat proportional manner. In such scenario, the same 

amount of energy may have different costs during different hours of a day. In this context, the 

existing reliability index ENS may not be a useful index in terms of economy. The existing 

reliability index ENS thus needs modification, otherwise a wrong signal may be 

communicated while assessing monetary values of existing ENS. Therefore, reliability 

indices for the ith radial topology during nth system state are proposed as  
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In fact, from a practical point of view, the index D is not a good index to be used as an 

objective function because, its minimization is also possible with maximization of F [15]. 

The maximization of F is not a desirable attribute. Therefore, in the present study, 

minimization of the index D is not considered as an objective. However, power quality 

indices to represent energy losses and node voltage deviations are considered which may be 

formulated as 
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where, LD(n) and ke(n) denote the load duration and energy price prevailed for the nth 

system state.  

 

 

4.2.1 Application Results  
 

The effectiveness of the proposed reliability indices has been investigated using IEEE 

33-bus test distribution system [144]. This system is a 33 node, 37 lines distribution system 

where the base configuration is obtained by opening the tie-lines 33-37. The nominal system 

data considered for this system may be referred from Table 3.1 of Chapter 3. In order to 

highlights the difference between existing and proposed reliability indices, the distribution 

system is first assumed in the base configuration. The existing and proposed reliability 

indices are determined for the distribution system at three different loading conditions, i.e. at 
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nominal and ±10% of this loading. A comparison of the results obtained is shown in Table 

4.1.  

TABLE 4.1 

COMPARISON OF EXISTING AND PROPOSED RELIABILITY INDICES WITHOUT DRS BEFORE NR 

Reliability 

Index per 

year 

Load Levels 

1.0 1.1 0.9 

Existing Proposed Diff(%) Existing Proposed Diff(%) Existing Proposed Diff(%) 

F 3.18 3.18 0 3.18 3.91 22.97 3.18 2.53 –20.26 

T 1.86 1.86 0 1.86 2.29 22.89 1.86 1.49 –20.20 

ENS  437.67 437.67 0 481.43 591.41 22.84 393.90 314.41 –20.18 

It can be observed from the table that proposed indices are exactly the same as 

existing indices under normal conditions. For other load conditions the proposed indices are 

different. For peak load condition, all proposed indices are larger whereas they are smaller for 

light load condition, which clearly reflects that if the system is overloaded the proposed  

reliability indices are adversely affected and vice versa. Whereas the existing reliability 

indices are not affected by loading conditions and therefore they are not true indicators of 

systems reliability under different operating conditions.  The table also shows that the percent 

variation in proposed indices is about twice to that of percentage change in loading factor. 

This is true because Joule’s heating varies in proportional to the square of the change in 

percent loading of distribution feeders. The results clearly highlights that proposed reliability 

indices are promising in dealing with dynamically changing network conditions.  

Interestingly, the index D remains almost unchanged. It happened because the index D(i, n) is 

the ratio of indices F(i, n) and T(i, n), so nullify the impact of proposed dynamic failure rates. 

The proposed reliability indices have been used in the following section 

4.3 PROPOSED NETWORK RECONFIGURATION METHOD FOR RELIABILITY ENHANCEMENT 

The distribution network reconfiguration may be used to enhance the reliability 

distribution systems. In general, several different objectives can be included in multi-

objective distribution system reconfiguration problem. Apart from the reliability indices, the 

feeder power loss and node voltage deviation are the other two important power performance 

objectives which should also be addressed. Therefore, a multi-objective formulation of NR 

problem is proposed. The reliability and performance objectives can be simultaneously 

optimized to obtain the best operating radial topology of the distribution network. However, 

different objectives have different units and there is difficulty in formulating a single 

objective function which is to be optimized to achieve most compromising solution for this 
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multi-objective optimization problem. Keeping this in view the multi-objective NR problem 

is formulated in fuzzy framework. While formulating multi-objective optimization problem 

in fuzzy framework, the objectives considered needs to be scaled about their respective 

minimum and maximum bounds to obtain fuzzy membership values using suitable fuzzy 

membership function for each of the objective so that they can be incorporated in a single 

objective function. These fuzzy membership values can be combined into a single fuzzy 

membership value using the conventional way of addition of the objectives using weighted 

sums approach [11, 189]. Since this fuzzy membership value acts as the fitness function of 

the overall objective function to be optimized, such formulations leads to an optimal solution 

which may be dominated by one or more objectives thus the determination of the most 

compromising solution remains doubtful. In order to avoid this, the fuzzy membership values 

are combined by taking their geometric mean [30]. This eventually results in the rejection of 

those candidate topologies which possess poor degree of fuzzy satisfaction for even one 

objective considered. In this chapter, following objectives are considered for NR optimization 

problem. 

1. system’s average interruption frequency index F(i, n)  

2. system’s average interruption unavailability index T(i, n), and 

3. energy not supplied ENS(i, n) 

4. feeder power loss EL(i, n)  

5. system’s node voltage deviation DV(i, n)  

 

 

Fig. 4.1 Fuzzy membership function  

 

Linear fuzzy membership function is considered for each of the objectives as shown 

in Fig. 4.1. 

The multi-objective problem formulation in fuzzy framework to solve NR problem is 

therefore formulated as below.  
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 Max µ(i, n) = (µF(i, n) µT(i, n) µENS(i, n) µEL(i, n) µDV(i, n))1/5 (4.14) 

where i stands for the ith radial topology of the distribution network and n stands for the nth 

system state, whereas µ refers to fuzzy membership functions of various objectives 

considered. Where, 

 

 

 

   
 

 

1.0                                          ; ,  

,  
( , ) – ; ,  

– –

0.0                                          ; ,  

min

max
F min max

max min max min

max

F i n F

F i n F
µ i n F F i n F

F F F F

F i n F

 



   

 

 (4.15) 

 

 

 

 

   
 

 

min

max
min max

max min max min

max

1.0                                         ; ,  

,  
( , ) –  ; ,  

– –

0.0                                         ; ,  

T

T T

T i n T

i n
µ i n T T i n T

T T

T i n T

T T

 



   

 

 (4.16) 

 

 

 

   
 

min

max
min max

max min max min

1.0                                                               ; ,  

,  
( , ) – ; ,  

– –

0.0                                           

ENS

ENS i n ENS

ENS i n ENS
µ i n ENS ENS i n ENS

ENS ENS ENS ENS



   

  max                    ; ,  ENS i n ENS






 

 (4.17) 

 

 

 

   
 

 

min

max
min max

max min max min

max

1.0                                                    ; ,  

,  
( , ) – ; ,  

– –

0.0                                                    ; ,  

EL

EL i n EL

EL i n EL
µ i n EL EL i n EL

EL EL EL EL

EL i n EL

 

   










 (4.18) 

 

 

 

   
 

 

min

max
min max

max min max min

1.0                                                       ; ,  

,  
( , ) – ; ,  

– –

0.0                                                      ; ,  

DV

DV DV

DV DV
DV DV DV

DV D

i n

i

V DV D

n
µ i n

D

n

i n

V
i

DV



   

 maxV









 (4.19) 

Subjected to the following constraints: 

Power flow constraint 

   0;  j cg i j N    (4.20) 
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Node voltage constraint 

 min max ;  ;jn cV V V n N j N       (4.21) 

Feeder current limit constraint 

 
max ;  ,jn j cI I n N j N      (4.22)

 
Radial topology constraint 

 ( ) 0;n nФ i N    (4.23) 

Calculation of indices 

For the base configuration, the fuzzy membership functions of proposed reliability 

and power quality indices are determined separately for each system state. Thereafter, the 

aggregate fuzzy memberships are determined as defined below.  

 µF
M(o) = Mean (µF(o, n)) (4.24) 

 µT
M(o) = Mean (µT(o, n)) (4.25) 

 µENS
 M(o) = Mean (µɆ(o, n)) (4.26) 

 µEL
M(o) = Mean(µEL(o, n)) (4.27) 

 µDV
MIN(o) = Min(µDV(o, n)) (4.28) 

It is noteworthy that the aggregate fuzzy membership for node voltage deviations is 

determined by taking the minimum, not the mean, of the n system states. In a similar way, the 

aggregate fuzzy memberships are determined for the optimal topologies obtained for all n 

system states of the distribution network while replacing the letter “b” by the letter “o”. 

Finally, the aggregate fuzzy memberships are de-fuzzified using the following general 

relation. 

 X = Xmax – µX (Xmax– Xmin) (4.29) 

Except for EL, where 

 X = (Xmax – µX (Xmax– Xmin))*8760 (4.30) 

 

4.3.1 Simulation Results and Discussion 
 

The application of proposed network reconfiguration method has been investigated 

using IEEE 33-bus test distribution system [30]. This system is a 33 node, 37 lines 

distribution system where the base configuration is obtained by opening the tie-lines 33-37. 

In order to investigate the proposed method the standard IEEE 33-bus test distribution system 

is assumed to be modified by deploying DGs and SCs as shown in Table 4.2. The table shows 
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the assumed sizing and siting of SPVs, WTs, MT and SCs in the system. The spinning 

reserve is assumed to be 0.1 MW for MT unit. The generation factors and load factors for 

SPV and WT units considered for the sample day are shown in Table 3.2 of Chapter 3. The 

table also shows corresponding load factors for distribution loads which have been 

considered throughout the simulations. The dynamic energy charges in US$/kWh assumed 

for different time slots is shown in Table 4.3. SSGA proposed in Chapter 3 is used as an 

optimization tool to solve this multi-objective NR problem. The coding of the algorithm is 

developed in MATLAB® Version 7. 

  

TABLE 4.2  

ALLOCATION OF DGS AND SCS  

WT SPV MT SC 

420 (14), 700 (24), 420 (30) 280 (14), 840 (24), 560 (30) 800 (24)  300 (12), 300 (25), 600 (30) 

 

TABLE 4.3  

DYNAMIC ELECTRICITY CHARGES 

00AM- 6AM 6AM-5PM 5PM-9PM 9PM-00AM 

0.02 0.06 0.12 0.09 

The application of the proposed method requires the determination of values of lower 

and upper bounds of fuzzy membership function of each indices.  The lower bound of these 

indices can be safely assumed to zero; however, their upper bounds depend upon the 

particular network topology of the distribution network. To determine upper bound of each 

membership function the proposed NR method is run as a single objective optimization 

problem for each of the objectives. The maximum value of reliability indices so obtained are 

rounded-off to higher side as shown in Table 4.4. With these upper bounds, the multi-

objective NR problem can be formulated in fuzzy framework.  

TABLE 4.4  

MAXIMUM VALUE OF RELIABILITY INDICES OBTAINED USING OPTIMAL NR 

Fmax (Failure/yr) Tmax(h/yr) ENS max (US$/yr) EL max (US$) DVmax (p.u.) 

5 3 800 70 0.10 

 In order to investigate the effect of network reconfiguration two cases of studies have 

been carried out.  

Scenario 1: Distribution system without DRs 

Scenario 2: Distribution system with DRs 
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For the application of the proposed method the population size and maximum 

iterations are taken as 50 and 100, respectively and the best solutions obtained after 100 trial 

runs are shown. The results obtained for each case is compared to that obtained with base 

topology. 

A. Distribution systems without DRs 

The distribution network is first assumed to be in base configuration without DR 

allocation. The load profile considered for 24 system states are taken as given in Table 3.2. 

The fuzzy membership functions of various reliability and power quality objectives are 

determined for each system state which may be referred from Table 4.5.  

TABLE 4.5  

FUZZY MEMBERSHIP FUNCTIONS AND THE OVERALL MEMBERSHIP FUNCTION FOR BASE TOPOLOGY 

State µF
*(b, n) µT

*(b, n) µENS
*(b, n) µEL

*(b, n) µDV
*(b, n) µ*(b, n) 

1 0.8256 0.8291 0.9744 0.9841 0.5461 0.8145 

2 0.8256 0.8291 0.9744 0.9841 0.5461 0.8145 

3 0.8256 0.8291 0.9744 0.9841 0.5461 0.8145 

4 0.8256 0.8291 0.9744 0.9841 0.5461 0.8145 

5 0.8256 0.8291 0.9744 0.9841 0.5461 0.8145 

6 0.7746 0.7792 0.9625 0.9794 0.4837 0.7726 

7 0.7176 0.7234 0.8433 0.9228 0.4218 0.7019 

8 0.7176 0.7234 0.8433 0.9228 0.4218 0.7019 

9 0.7176 0.7234 0.8433 0.9228 0.4218 0.7019 

10 0.6637 0.6707 0.7972 0.9080 0.3687 0.6531 

11 0.6637 0.6707 0.7972 0.9080 0.3687 0.6531 

12 0.6637 0.6707 0.7972 0.9080 0.3687 0.6531 

13 0.5275 0.5377 0.6660 0.8708 0.2511 0.5287 

14 0.6057 0.6141 0.7439 0.8922 0.3163 0.6005 

15 0.5275 0.5377 0.6660 0.8708 0.2511 0.5287 

16 0.5275 0.5377 0.6660 0.8708 0.2511 0.5287 

17 0.5275 0.5377 0.6660 0.8708 0.2511 0.5287 

18 0.5275 0.5377 0.3320 0.7416 0.2511 0.4454 

19 0.4561 0.4681 0.1793 0.7025 0.1963 0.3504 

20 0.3646 0.3789 0.0452 0.6526 0.1309 0.2215 

21 0.3646 0.3789 0.0452 0.6526 0.1309 0.2215 

22 0.6548 0.6620 0.6840 0.8584 0.3604 0.6202 

23 0.8256 0.8291 0.8846 0.9284 0.5461 0.7896 

24 0.8256 0.8291 0.8846 0.9284 0.5461 0.7896 
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The table also shows the value of overall membership function for each system state. 

From this table the aggregate fuzzy membership functions are determined using (24)-(28) 

which are then de-fuzzified using (29)-(30) to get the mean value of objectives as presented 

in Table 4.6. It may be observed that system’s average interruption frequency index F is  

1.7123 per year, system’s average interruption unavailability index T is 1.0055 hr per year, 

average value of energy not supplied ENS is 229.0578 $ per year and  feeder power loss EL is 

70722.9896 $ per year.  These values of indices will serve the basis for comparison for the 

forthcoming investigations. 

TABLE 4.6  

MEAN FUZZY MEMBERSHIP FUNCTIONS AND RELIABILITY INDICES FOR BASE TOPOLOGY 

µF*M(b) µT*M(b) µENS*M(b) µEL*M(b) µDV*MIN(b) 

0.6575 0.6648 0.7137 0.8847 0.1309 

F(b) (failure/yr) T(b) (hr/yr) ENS(b) (US $/yr) EL(b)(US $/yr) DV(b) (p.u.) 

1.7123 1.0055 229.0578 70722.9896 0.0869 

The base configuration is now optimally reconfigured for all the 24 operating state of 

the distribution system using proposed method. The application results obtained of each state 

after 100 trial runs of the algorithm are shown in Table 4.7. The table shows optimal 

configuration corresponding to the best solution. The corresponding fuzzy membership 

functions pertaining to various objectives and their overall fuzzy membership function are 

also shown in this table. The comparison of Table 4.5 and Table 4.7 clearly shows that the 

proposed reliability enhancement method causes an improvement in overall fuzzy 

membership function of each system state.     

The mean fuzzy membership functions of objectives and their de-fuzzyfied values are 

shown in Table 4.8. The comparison of this table with Table 4.6 shows that system’s average 

interruption frequency index F is decreased from 1.7123 per year to 1.5300 per year, system’s 

average interruption unavailability index T is decreased from 1.0055 hr per year to 0.9123 per 

year, the cost of average value of energy not supplied ENS is decreased from 229.0578 $ per 

year to 207.9202 $ per year and, the cost of feeder power loss EL is also reduced from 

70722.9896 $ per year to 66282.7841 $ per year. Thus proposed NR method improves all the 

objectives considered. This is interesting because reliability and power quality objectives are 

conflicting in nature. 
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TABLE 4.7  

OPTIMAL TOPOLOGY, FUZZY MEMBERSHIP FUNCTIONS AND THE OVERALL MEMBERSHIP FUNCTION AFTER NR 

State Optimal 

configuration 

µF(o, n) µT(o, n) µENS(o, n) µEL(o, n) µDV(o, n) µ(o, n) 

1 33-37-11-13-32 0.8315 0.8283 0.9736 0.9857 0.5924 0.8290 

2 33-37-11-13-32 0.8315 0.8283 0.9736 0.9857 0.5924 0.8290 

3 33-37-11-13-32 0.8315 0.8283 0.9736 0.9857 0.5924 0.8290 

4 33-37-11-13-32 0.8315 0.8283 0.9736 0.9857 0.5924 0.8290 

5 33-37-11-13-32 0.8315 0.8283 0.9736 0.9857 0.5924 0.8290 

6 33-37-11-13-32 0.7828 0.7787 0.9616 0.9815 0.5367 0.7905 

7 33-37-10-12-32 0.7319 0.7277 0.8424 0.9296 0.4791 0.7247 

8 33-37-10-12-32 0.7319 0.7277 0.8424 0.9296 0.4791 0.7247 

9 33-37-10-12-32 0.7319 0.7277 0.8424 0.9296 0.4791 0.7247 

10 33-37-10-12-32 0.6813 0.6763 0.7964 0.9163 0.4315 0.6797 

11 33-37-10-12-32 0.6813 0.6763 0.7964 0.9163 0.4315 0.6797 

12 33-37-10-12-32 0.6813 0.6763 0.7964 0.9163 0.4315 0.6797 

13 33-37-10-12-32 0.5540 0.5475 0.6661 0.8826 0.3262 0.5662 

14 33-37-10-12-32 0.6270 0.6214 0.7434 0.9019 0.3845 0.6315 

15 33-37-10-12-32 0.5540 0.5475 0.6661 0.8826 0.3262 0.5662 

16 33-37-10-12-32 0.5540 0.5475 0.6661 0.8826 0.3262 0.5662 

17 33-37-10-12-32 0.5540 0.5475 0.6661 0.8826 0.3262 0.5662 

18 33-37-35-14-32 0.5755 0.5781 0.3844 0.7505 0.3079 0.4944 

19 33-37-35-14-32 0.5117 0.5149 0.2443 0.7130 0.2573 0.4116 

20 33-37-35-14-32 0.4301 0.4340 0.0524 0.6649 0.1972 0.2640 

21 33-37-35-14-32 0.4301 0.4340 0.0524 0.6649 0.1972 0.2640 

22 33-37-35-14-32 0.6895 0.6912 0.7084 0.8631 0.4086 0.6534 

23 33-37-10-12-32 0.8338 0.8310 0.8834 0.9347 0.5906 0.8049 

24 33-37-10-12-32 0.8338 0.8310 0.8834 0.9347 0.5906 0.8049 

TABLE 4.8  

MEAN FUZZY MEMBERSHIP FUNCTIONS AND RELIABILITY INDICES AFTER NR 

µF
M(o) µT

M(o) µENS
M(o) µEL

M(o) µDV
MIN(o) 

0.6940 0.6959 0.7401 0.8919 0.1972 

F(o) (failure/yr) T(o) (hr/yr) ENS(o) (US $/yr) ELA(o) (US $/yr) DV(o) (p.u.) 

1.5300 0.9123 207.9202 66282.7841 0.0803 

B. Distribution systems with DRs 

The distribution network is now assumed to be equipped with DRs as given in Table 

3.6. Simulations are carried to determine fuzzy membership functions of the objectives 
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considered keeping distribution network in base configuration. The results obtained for all 24 

operating state are presented in Table 4.9. The table also shows overall fuzzy membership 

functions for each system state which is found to be improved significantly for each system 

state while comparing with Table 4.5. This shows that both reliability and power quality 

indices are sufficiently improved by deploying DRs in the distribution system. The mean 

fuzzy membership functions of objectives and their de-fuzzyfied values are shown in Table 

4.10. The comparison of Table 4.6 and Table 4.10 clearly highlights that optimal deployment 

of DGs and SCs alone causes significant improvement in all reliability indices and power loss 

reduction.  

TABLE 4.9  

FUZZY MEMBERSHIP FUNCTIONS AND OVERALL MEMBERSHIP FUNCTION BEFORE NR 

State Configuration µF
*(b, n) µT

*(b, n) µENS
*(b, 

n) 

µEL
*(b, n) µDV

*(b, n) µ*(b, n) 

1 33-34-35-36-37 0.9377 0.9234 0.9881 0.9964 0.8786 0.9438 

2 33-34-35-36-37 0.9370 0.9236 0.9882 0.9962 0.8643 0.9406 

3 33-34-35-36-37 0.9362 0.9233 0.9882 0.9961 0.8577 0.9389 

4 33-34-35-36-37 0.9348 0.9225 0.9881 0.9960 0.8489 0.9365 

5 33-34-35-36-37 0.9347 0.9225 0.9881 0.9960 0.8477 0.9362 

6 33-34-35-36-37 0.9222 0.9103 0.9845 0.9951 0.8005 0.9198 

7 33-34-35-36-37 0.8969 0.8877 0.9361 0.9782 0.7166 0.8782 

8 33-34-35-36-37 0.9101 0.8956 0.9396 0.9839 0.7769 0.8985 

9 33-34-35-36-37 0.9119 0.8878 0.9333 0.9869 0.8829 0.9198 

10 33-34-35-36-37 0.8952 0.8664 0.9136 0.9845 0.8930 0.9097 

11 33-34-35-36-37 0.8785 0.8412 0.8963 0.9798 0.8674 0.8914 

12 33-34-35-36-37 0.8639 0.8203 0.8817 0.9744 0.8442 0.8754 

13 33-34-35-36-37 0.8386 0.7933 0.8422 0.9725 0.8618 0.8597 

14 33-34-35-36-37 0.8515 0.8067 0.8633 0.9733 0.8497 0.8672 

15 33-34-35-36-37 0.8554 0.8179 0.8625 0.9776 0.8784 0.8768 

16 33-34-35-36-37 0.8686 0.8396 0.8803 0.9797 0.7988 0.8714 

17 33-34-35-36-37 0.8709 0.8476 0.8877 0.9784 0.7472 0.8631 

18 33-34-35-36-37 0.8656 0.8479 0.7789 0.9488 0.6940 0.8225 

19 33-34-35-36-37 0.8334 0.8192 0.7236 0.9273 0.6137 0.7759 

20 33-34-35-36-37 0.8021 0.7879 0.6535 0.9088 0.5598 0.7320 

21 33-34-35-36-37 0.8041 0.7895 0.6558 0.9108 0.5666 0.7352 

22 33-34-35-36-37 0.9013 0.8843 0.8899 0.9746 0.7822 0.8843 

23 33-34-35-36-37 0.9338 0.9133 0.9380 0.9842 0.9036 0.9341 

24 33-34-35-36-37 0.9325 0.9114 0.9366 0.9838 0.9001 0.9324 
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TABLE 4.10  

MEAN VALUES OF OBJECTIVES BEFORE NR 

µF
*M(b) µT

*M(b) µENS
*M(b) µEL

*M(b) µDV
*MIN(b) 

0.8882 0.8660 0.8891 0.9743 0.5598 

F(b) (failure/yr) T(b) (hr/yr) ENS(b) (US $/yr) EL(b) (US $/yr) DV(b) (p.u.) 

0.5590 0.4021 88.7287 15757.7700 0.0440 

 

TABLE 4.11  

FUZZY MEMBERSHIP FUNCTIONS AND OVERALL MEMBERSHIP FUNCTION AFTER NR 

State Optimal configuration µF(o, n) µT(o, n) µENS(o, n) µEL(o, n) µDV(o, n) µ(o, n) 

1 33-37-35-13-36 0.9396 0.9249 0.9883 0.9963 0.8890 0.9468 

2 33-37-35-13-36 0.9395 0.9256 0.9885 0.9961 0.8769 0.9443 

3 33-37-35-13-36 0.9391 0.9257 0.9886 0.9960 0.8713 0.9430 

4 33-37-35-13-36 0.9385 0.9256 0.9886 0.9959 0.8639 0.9413 

5 33-37-35-13-36 0.9385 0.9257 0.9886 0.9959 0.8629 0.9410 

6 33-37-35-13-36 0.9272 0.9144 0.9853 0.9951 0.8189 0.9260 

7 33-37-35-14-36 0.9067 0.8962 0.9414 0.9785 0.7439 0.8895 

8 33-37-35-13-36 0.9156 0.9001 0.9424 0.9837 0.8006 0.9064 

9 33-37-35-13-36 0.9120 0.8873 0.9330 0.9862 0.8923 0.9215 

10 20-37-11-34-36 0.9053 0.8760 0.9205 0.9827 0.8725 0.9105 

11 20-37-8-12-36 0.8921 0.8548 0.9058 0.9785 0.8725 0.8998 

12 20-37-8-12-36 0.8797 0.8356 0.8922 0.9737 0.8493 0.8848 

13 20-37-35-13-8 0.8693 0.8179 0.8588 0.9696 0.8679 0.8753 

14 20-37-33-10-34 0.8739 0.8268 0.8760 0.9728 0.8552 0.8796 

15 33-37-35-9-34 0.8651 0.8245 0.8645 0.9774 0.8915 0.8832 

16 33-37-35-11-34 0.8674 0.8354 0.8748 0.9792 0.8331 0.8764 

17 33-37-35-12-36 0.8750 0.8508 0.8902 0.9778 0.7598 0.8679 

18 33-37-35-12-36 0.8725 0.8536 0.7880 0.9481 0.7042 0.8291 

19 33-37-35-14-36 0.8455 0.8300 0.7418 0.9269 0.6229 0.7863 

20 33-37-35-14-36 0.8163 0.8006 0.6767 0.9088 0.5699 0.7447 

21 33-37-35-14-36 0.8187 0.8025 0.6793 0.9105 0.5749 0.7477 

22 33-37-35-12-36 0.9045 0.8868 0.8924 0.9738 0.7821 0.8858 

23 20-37-35-34-36 0.9392 0.9190 0.9425 0.9833 0.9073 0.9379 

24 20-37-35-34-36 0.9382 0.9174 0.9413 0.9831 0.9037 0.9363 

TABLE 4.12  

MEAN VALUES OF OBJECTIVES AFTER NR 

µF
M(o) µT

M(o) µENS
M(o) µEL

M(o) µDV
MIN(o) 

0.8967 0.8732 0.8954 0.9812 0.5899 

F(o) (failure/yr) T(o) (hr/yr) ENS(o) (US $/yr) EL(o) (US $/yr) DV(o) (p.u.) 

0.5167 0.3804 83.6887 13122.48 0.0316 
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The distribution system with DRs is now optimally reconfigured to solve multi-

objective NR problem for each system state using SSGA and the best result obtained after 

100 trial runs are presented in Table 4.11. The table shows optimal configuration 

corresponding to the best solution. For this solution, the fuzzy membership functions 

pertaining to various objectives and their overall fuzzy membership function is also shown in 

the table. While comparing with Table 4.7, it has been seen that optimal network 

configuration depends upon the presence of DRs in the system. A close look of the Table 

4.11 with Table 4.7 shows that there is a small but definite improvement in the overall fuzzy 

membership function using NR. However, the comparison of Table 4.12 with Table 4.8 

shows that the improvement in all objectives is satisfactory. Thus DRs improve reliability and 

power quality of the distribution system by good margins which can be further enhanced 

using NR. 

In the present study, two scenarios of distribution system, i.e. without and with DRs 

have been investigated before and after NR. Therefore, it is important to see the consolidated 

results as shown in Table 4.13 before deducing any concluding remarks. It is important to 

note that reliability and power quality parameters are the reflections of networks operating 

conditions. From the table it may be observed that NR strategy is relatively more effective in 

the distribution network without DRs.  In case where distribution system is equipped with 

optimally placed DRs, the effect of NR on the power quality and reliability attributes is 

marginal. This is perhaps due to the fact that optimally placed DRs optimizes the flow of 

power in all the lines and very small scope is left for further improvement. That is why the 

NR strategy is causing only marginal improvement in system reliability and power quality 

parameters. For more clear differentiation, the percentage enhancements in objectives are 

determined with respect to base condition of the distribution network and results obtained are 

presented in Table 4.14. It can be observed from the table that an enhancement of about 10% 

is obtained using NR in distribution systems without DRs. After DR placement the 

effectiveness of NR is found to be increased marginally by about 2-3%.  
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TABLE 4.13  

COMPARISON RESULTS BEFORE AND AFTER NR 

Scenario Network 

Topology 

F 

(failure/yr) 

T 

(h/yr) 

Energy Not Supplied 

(US$/yr) 

Energy 

Loss 

(US$/yr) 

Maximum Node 

Voltage 

Deviation (p.u.) 

1 Before NR 1.7123 1.0055 229.0578 70722.99 0.0869 

After NR 1.5300 0.9123 207.92 66282.78 0.0803 

2 Before NR 0.5590 0.4021 88.7287 15757.77 0.0440 

After NR 0.5167 0.3804 83.6887 13122.48 0.0316 

 

TABLE 4.14  

COMPARISON OF PERCENTAGE ENHANCEMENT IN OBJECTIVES WITH BASE CONFIGURATION 

 F (failure/yr) T (hr/yr) ENS (US $/yr) EL (US $/yr) DV (p.u.) 

Scenario 1 after NR 10.65 9.27 9.23 6.28 7.59 

Scenario 2 before NR 67.35 60.01 61.26 77.72 49.37 

Scenario 2 after NR 69.82 62.17 63.46 81.45 63.64 

 

4.4 SERVICE RESTORATION THROUGH NETWORK RECONFIGURATION  
 

In contemporary distribution systems, there is increasing concern about service 

restoration on account of two most important aspects of distribution system operation 

namely, reliability and economy. With significant extension and complexity of modern power 

systems, possibility of fault occurrence has increased many folds. This may lead to possible 

loss of economy and loss to customers’ satisfaction. Therefore service restoration has become 

one of the important attributes of smart distribution operation. It evaluates loss caused by the 

fault, identifies solutions to restore the outage area, and indicates new configurations of the 

distribution network, as well as the new operation status of the distribution system’s 

equipment, from the time when the fault was isolated to the time when the fault was 

repaired[136]. Distribution networks are structured in mesh configuration but operated in 

radial topology. Therefore, whenever a fault occurs in any line, islanding takes place. To 

avoid this some other line is connected to the islanded node by tie switch. However, the new 

radial topology obtained by randomly closing adjacent tie switch may not be optimal in terms 

of power quality attributes.  In fact, NR was initially devised for service restoration, so 

whenever fault occurs at any line, some alternate route is to be provided by NR to restore the 

affected loads. The NR can be used to improve the operation of distribution systems in case 

of contingencies, considering RES in electrical networks [15]. It happened because power 
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generations from renewable provide self-sustainability to distribution systems during 

contingencies. Since power generation from renewable is uncertain, the stochastic nature of 

load demand has to be considered while formulating NR problem. Thus service restoration 

assumes new dimensions for active distribution system operations. In the following section 

the NR is addressed from the view point of optimal service restoration  

4.4.1 Proposed Methodology 

Service restoration in distribution systems can be formulated as a constrained multi-

objective optimization problem [191, 192]. Normally, the main objectives are to minimize 

either the load curtailment, the number of switching operations, or the system’s power loss, 

with the constraints being any number of factors, including branch power flow, nodal voltage, 

and radial configuration [14]. Due to several technical reasons such as low cost operation, 

simplicity of analysis and coordination, and reduction of short circuit current, distribution 

systems must operate with a radial topology [190]. With increasing penetration rates of DRs, 

it is important to take the advantage of these components during the service restoration. The 

single-period model with constant load and DER power generation and the multi-period 

model with varying load and DR power generation during the restoration period are 

frequently employed to formulate service restoration problem. Usually, studies that have 

adopted the single-period model [193] focus on improving the optimization algorithm to get 

better calculating performance, whereas in other studies [194-195] that use the multi-period 

model, the focus is on improving the optimization model to better represent the practical 

operating situations of DRs and distribution systems [136]. In the present study single-period 

model is considered, but it can be extended to multi-period model. The solution algorithm 

used for optimal NR therefore needs modification. For this purpose proposed GA of Chapter 

3 is modified. In proposed GA, the genetic information is in the form of line switches which 

should be open to obtain desired radial topology of the distribution network. Therefore, the 

switch corresponding to the faulted line must remain intact as the genetic information among 

all individuals of the population throughout the genetic evolutions. It is noteworthy that this 

genetic information should not be swept away during the evolutionary process otherwise the 

whole computational process will be in vain. Fortunately, it will not happen in GA once the 

genetic information about the faulted line is being assigned to all individuals during 
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initialization, as the crossover operator is not able to hinder the genetic information. 

However, care has to be taken during mutation. The process of restricting the faulted line 

during crossover and mutation is explained in Fig. 4.2 and 4.3 

 
 

Fig. 4.2 Proposed crossover to intact genetic information of the faulted line during evolutionary process 

 

 
 

Fig. 4.3 Proposed mutation to intact genetic information of the faulted line during evolutionary process 
 

Fortunately, in the proposed GA the structure of the individual is such that each gene 

is associated with one loop vector. While applying GA, the loop corresponding to the faulted 

line is identified so that this genetic information may remain intact among all individuals 

during initialization. The site corresponding to this genetic information is kept abandoned 

while mutating individuals. With these two modifications the GA proposed in Chapter 3 is 

modified to solve service restoration problem of distribution systems using optimal NR.  

 

4.4.2 Problem Formulation 

 

The objective of the problem may be formulated as to restore service to the isolated 

portions of a distribution system through network reconfiguration which minimizes power 

loss of the given system state keeping node voltages within prescribed limits. The problem 

constraints regarding to power flow, node voltage limits, thermal limits of feeders, etc. are 



68 

 

considered as it is. However, the radiality constraints is redefined by the restriction of 

keeping the line to remain essentially open where the contingency is being considered. The 

objective function for the NR problem is defined as to 

  Max. ;in bn anF PLoss PLoss n N     (4.31) 

subject to the system operational constraints defined below. 

The sum of the power supplied from the utility grid and the total power generated by 

the different DRs being installed in the distribution system must be balanced by the local load 

demand and feeder power losses. For a radial network, a set of recursive equations are used to 

model the power flow in the network as given by (32)-(36). 
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1 1 1;  L

j j j cp p p j N       (4.35) 

 
SC

1 1 1;  L

j j j cq q q j N       (4.36) 

4. Node voltage constraint 

All node voltages Vjn of the nodes at state n must be maintained within the minimum 

and maximum permissible limits i.e. Vmin and Vmax, respectively as defined below  

 min max ;  ;jn cV V V n N j N       (4.37) 

5. Feeder current constraint  

The current flow in each distribution line must be below or equal to the rated capacity. 

This imposes feeder current constraints which can be expressed as  

 
max ;  ,jn j cI I n N j N      (4.38) 

6. Radial topology constraint 

The reconfigured network topology must be radial, i.e. with no closed path. 

Therefore, the radiality constraint for the ith radial topology is defined as 

 ( ) 0;n nФ i N    (4.39) 

s.t. Nb=0 for the contingency considered on line Nb   
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4.4.3 Simulation Results 

The proposed method is applied to 33-bus test distribution system as detailed in 

section 4.3 assuming that only one contingency occurred at a time in the distribution systems. 

The main objective is service restoration even during contingencies without any loss of load. 

The contingencies are considered on line 8, 12, 16, and 27, being the longest lines of the 

system having maximum probability of fault occurrence. The network loads and generations 

are assumed to be corresponding to state 18. This state is considered because the peak load 

condition and solar generation is moderate during this state of the distribution system. Using 

proposed GA method the distribution systems is reconfigured for all assumed contingency 

one by one. The population size and maximum generation are taken as 30 and 50, 

respectively. The crossover and mutation rates of GA are fixed at 0.9 and 0.05, respectively. 

The best result obtained after 100 independent trials of GA is used for analysis. The 

algorithm has been developed using MATLAB and the simulations have been carried on a 

personal computer of Intel i5, 3.2 GHz, and 4 GB RAM. In order to show the importance of 

NR in the presence of DRs, the service restoration problem is solved for the following 

scenarios: 

Scenario 1: Distribution system without DRs 

Scenario 2: Distribution system with DRs 

A. Scenario 1: Distribution system without DRs 

Under given operating state the optimal topology requires opening of lines 7, 9, 14, 32 

and 37 the corresponding losses are 139.51 kW with minimum node voltage as 0.9378 p.u. 

The service restoration problems under four different contingencies as stated above are 

considered.  It is important to note that for each contingency, the corresponding 

sectionalizing switch automatically opens due to the operation of associated circuit breakers. 

The proposed method is then applied to determine number of remaining switching operations 

needed to restore service to network loads that are isolated due to forced outages with 

minimum possible loss.  The application results for different contingencies are summarized in 

Table 4.15. The table also shows the results of the service restoration problem when the 

contingencies are considered for lines 8, 12, 16, and 27. Each of these contingency may cause 

islanding of many loads if not taken care off. It can be observed from the table that for each 

contingency, the proposed method provides the best possible optimal configuration with 

service restoration and acceptable node voltages. From the table it may be observed that for a 

fault on line 12 and 27, only two switching operation is required that is closing of one line 



70 

 

with only 2 to 5 % increase in loss compared to normal pre-fault condition. The minimum 

node voltage nearly remains the same. For all other contingencies, the required switching 

operations are 4 with increase in power loss from 8 to 19 % with acceptable node voltages. It 

is also important to mention that the time taken for service restoration depends on the number 

of switching operations and so, lesser is the required number of switching operations lesser 

will be the time in service restoration.  

TABLE 4.15  

RESULTS OF SERVICE RESTORATION (WITHOUT DRS) 

Configuration/ 

contingency 

Network 

configuration 

Switching 

required 

Power loss Increase in 

loss (%) 

Vmin Vmax 

Nominal 

configuration 

7, 9, 14, 32, 37 - 139.51 - 0.9378 1.0 

Fault on line 8 6, 8, 9, 14, 37 4 165.97 18.96638 0.9107 1.0 

Fault on line 12 7, 9, 12, 32, 37 2 145.97 4.630492 0.9371 1.0 

Fault on line 16 6, 9, 14, 16, 37 4 150.11 7.598022 0.9271 1.0 

Fault on line 27 7, 9, 14, 27, 32  2 143.27 2.695147 0.9398 1.0 

B. Scenario 2: Distribution system with DRs 

The Distribution is assumed to be equipped with mix-DG model and SCs as given in 

Table 3.6. With this DR placement, the optimal configuration obtained is 7, 9, 17, 28 and 34. 

With this configuration the losses are found to be significantly reduced by about 86% with 

adequate enhancement in node voltage profile as that in the base case condition. Therefore, 

this DR placement enhances performance of the system to good margins.  The distribution 

network is optimally reconfigured for service restoration while considering each of the 

contingencies and the results obtained are presented Table 4.16. The table shows that the 

results of service restoration problem for the state 18 while contingencies are considered for 

lines 8, 12, 16 and 27. It can be observed from the table that the increase in loss is marginal 

using proposed method. However, the results obtained are better to that obtained without 

DRs. This can be compared from Fig. 4.4 It can be observed from the figure that proposed 

NR strategy is very effective in maintaining the performance of distribution systems in terms 

of loss reduction and voltage profile enhancement during contingencies, the increase in loss 

reduction is small enough and all node voltages are within prescribed limits. However, the 

performance of the network is found to be further enhanced during contingencies while 

considering the presence of DRs.  More specifically, NR causes almost same loss reduction 

during contingencies as during normal operating conditions with adequate DRs in the system. 
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A similar conclusion can be made while observing node voltages.  Therefore, optimal NR has 

significant importance during contingency conditions of active distribution systems.  

TABLE 4.16  

RESULTS OF SERVICE RESTORATION (WITH DRS) 

Case Network 

configuration 

Switching 

required 

Power loss Increase in 

loss (%) 

Vmin Vmax 

Normal 

reconfigured 

case 

7,  9, 17, 28, 34 - 28.44 - 0.97716 1.0 

Fault on line 8 7, 8, 14, 28, 35 6 32.76 15.18987 0.97716 1.0 

Fault on line 12 7,  8, 12, 17,28 4 29.07 2.21519 0.97716 1.0 

Fault on line 16 7, 8, 16, 28, 34 4 28.99 1.933896 0.973836 1.0 

Fault on line 27 7,  9, 17,27,34 2 28.72 0.984529 0.97580 1.0 

 

    

Fig. 4.4 Comparison of network performance during contingencies without and with DRs 

4.5 NETWORK RECONFIGURATION WITH LOAD SHADING  

With increasing penetration rates of DGs in distribution systems, an important issue to 

study is how to take advantage of DGs during the service restoration process [136]. DGs can 

play crucial role during fault and more specifically during grid failure to maintain supply of 

some important loads through optimal load shedding which is essentially the function of 

demand side management (DSM). In contemporary distribution systems, service restoration 

during grid failure is one of the most common issues. The problem of supply restoration has 

been handled by islanding certain area(s) of active distribution systems [193-196], without or 

with reconfiguring the network topology. However, such strategies to curtail critical loads 

whereas certain noncritical load(s) may remained live in service area.  The load shading using 

network reconfiguration instead of the network islanding seems to be more attractive option 

for service restoration in active distribution systems. In this section, the problem of service 

restoration is extended to take into account the presence of DG and the use of optimal load 

shedding through network reconfiguration.  The goal in this case is to find the optimal 
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network configuration that allows minimum load shedding. In the presented approach, load 

shedding is activated when the total power demand of the network exceeds available 

generation either due to fault or forced outage. The problem is formulated by considering 

mix-DR model consists of SPVs, WTs, MT, and SCs to provide a more realistic scenario and 

the system operation is observed under grid failure mode. Moreover, the effectiveness of 

network reconfiguration on loss reduction and voltage profile enhancement is also 

investigated.  A simple method is developed for load shading so that critical loads remains 

energized during grid failure. To formulate this problem all the loads are ranked according to 

their priorities and importance. The performance of distribution system is observed, both 

before and after NR. It has been assumed that system loads can be remotely controlled. The 

application result on modified standard test distribution system highlights the importance of 

proposed methodology. 

4.5.1 Proposed Methodology  

The active distribution systems are usually equipped with renewable DGs, mostly 

with SPVs and WTs. These renewable energy sources (RESs) are characterized by their 

intermittency in power generation and are non-dispatchable. Therefore, distribution planners 

suggest some alternative energy sources (AESs) such as micro turbines (MTs), fuel cells, 

small hydro turbines, etc. to make the combined sources dispatchable. The integration of such 

mix-DG model provides more reliable operation of distribution systems under normal 

conditions and may be very useful under grid failure condition as they can supply to critical 

loads of the systems. During grid failure, power output of DGs is usually not sufficient to 

meet out the current load demand of the system and so load shedding is inevitable. However, 

critical loads should not be shed. Therefore the model of service restoration of active 

distribution system requires defining priorities of system loads with following objectives: 

1. Minimum load shedding and making sure that high priority loads are served in order of 

priority 

2. Maintaining load and generation balance 

3. Maintaining connectivity and radial topology of the system. 

4. Network losses are as small as possible while satisfying the constraints of distribution 

system.   

The overall methodology of proposed method involves the following steps:  
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Fixing Load Priority 

In the present work all system loads are arranged in the order of their relative 

importance. The highest ranked node is the most critical one and the last one is the one which 

is least critical. This ranking will be helpful in framing load shedding strategy during the 

period of power shortage on account of planned or forced outage of some generation or grid 

failure.  

Load Shading and DG Power Control 

Several works have reported islanding for service restoration in active distribution 

systems by suggesting different strategies [194-196] where mainly the distribution network 

usually islanded into as many number as the number of DGs. These strategies have several 

shortcomings. For instance, certain loads/area remains energized even when they may have 

non-critical load(s) or certain de-energized area may contain some critical load. These 

problems may be overcome to some extent using optimal NR provided that all line switches 

are remotely operated, but is highly challenging task. However, the service restoration in 

distribution systems may be provided by load shading, instead of islanding the distribution 

network, if the distribution network is equipped with remotely controlled load switches. The 

load shading overcomes the general problems associated with islanded operation of 

distribution systems as the graph of the distribution system remains connected during load 

shading. In this view, load shading seems to be a better alternative of system operation during 

grid failure events.   

In load shading, the loads are curtailed by considering their order of priority in order 

to match power balance within distribution network. The power balance is essential to keep 

the system in normal state. However, it is not easy to achieve this task in grid-disconnected 

distribution systems equipped with high penetration of renewable DGs.  It happen because, in 

the prevailing system state, the forecasted generations from the renewable DG units may be 

assumed as the only known set of random variables whereas the loads to be shaded 

constitutes the set of unknown variables. In addition, network power loss remains unknown 

till the load flow is carried. While doing load flow, the source node cannot be taken as the 

slack bus for the grid-off distribution system. The renewable DGs cannot do the same job as 

have intermittent power generation. Therefore, MT is the only choice for the selection of the 
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slack bus during load flow. Therefore, the power output of this MT unit needs control to meet 

out the system losses and uncertainty in the power generation from renewable DGs. 

A simple algorithm is proposed to simultaneously determine the set of shaded loads 

and power control of MT unit. According to this algorithm, the load flow is carried while 

selecting suitable MT unit as the slack bus. The algorithm initiates with all loads assumed to 

be energized. The power supplied by the slack bus is then measured. If the slack bus power is 

found to be more than the pre-specified maximum limit of the MT unit, a load with least 

priority is curtailed and another load flow is carried. In this way, loads are curtailed in 

sequence and load flows are executed till the slack bus power becomes equal or less than the 

maximum limit of the MT unit. The results after final load flow simultaneously provides DG 

power control of the MT unit, the set of loads to be shaded and system losses.   

Pre-Estimated Load Demand 

Modern distribution systems are large and complex as they may  consists of several 

lines and hundreds or even thousands of nodes. The proposed algorithm may be 

computationally demanding for such large-scale distribution systems. The computational time 

of the algorithm can be significantly reduced if it is initiated with a pre-estimated load 

demand, instead that of total demand of the system. For this purpose, the possible generation 

from all dispatchable and non-dispatchable DGs is known and then the amount of load and 

corresponding losses are determined using proposed algorithm while keeping the pre-

estimated load demand always just higher than the difference of total generation and power 

losses. With this pre-estimation of load demand, the algorithm converges within few 

iterations. The pre-estimated load demand is given by the following relation: 

    –pre for for

D SPV WT MTP P P P Ploss      (4.40) 

Some forecasted error is always associated with the stochastic load demand and the 

power generation from renewable DGs. Therefore, a suitable reserve is required for MT unit 

being selected as the slack bus otherwise the solution provided for DG power control may not 

be able to cater excess load demand or the shortage of power generation from renewables as 
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per their forecasted values. The reserve proposed for the MT unit therefore should be selected 

with care and wisdom. The pre-estimated load demand is therefore redefined by the following 

relation: 

     –pre for for res

D SPV WT MT MTP P P P P Ploss      (4.41) 

 

Fig.4.5 Flow Chart for load shading 
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 Network Reconfiguration 

After obtaining the set of de-energized loads, MT power control, the distribution 

network is optimally reconfigured to minimize power losses and to enhance node voltage 

profile while considering available power generations from renewable DGs for the concerned 

state of the system. The distribution network remains disconnected from the grid, therefore 

the MT is used as the slack bus having a pre-specified maximum power generation limit as 

determined by DG power control. This time the power control of MT absorbs the change in 

loss due to NR so provides its final optimal dispatch for the state considered. In case the 

failure duration extends for more than one state, the network is optimally reconfigured for 

each of the concerned state separately. The GA developed in Chapter 3 can be applied 

without any change to solve NR problem. 

The flow chart of the proposed method for service restoration of active distribution 

system during grid failure is shown in Fig. 4.5. 

The mathematical formulation of the proposed method is as under. 

4.5.2 Problem Formulation 

Objective 1: To determine minimum load shading keeping load priority in to account under 

grid failure for the available power from renewable DGs and MTs. 

 
 

 ;  
DR Dq

Max P p q LP    (4.42) 

where, pDq is the load demand of the qth priority and PDR is the amount of load remains 

energized during grid failure condition. 

s. t. constraints 

Node voltage constraint 

 min max ;  ;jn cV V V n N j N       (4.43) 

Feeder current constraint  

 
max ;  ,jn j cI I n N j N      (4.44) 

power balance inequality constraint 

     gen

DR SPV WT MTP Ploss P P P      (4.45) 

MT generation limit constraint 

 0  –gen res

MT MT MTP P P   (4.46) 
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Objective 2: To operate distribution system in minimum loss configuration during grid failure 

for the available power from renewable DGs and MTs.  

  Max. ;in bn anF PLoss PLoss n N     (4.47)  

s. t. constraints 

power balance constraint 

 – –gen

MT DR SPV WTP P Ploss P P     (4.48) 

MT generation limit constraint 

  0  –gen res

MT MT MTP P P   (4.49) 

In addition, the constraints related to node voltage, feeder current and radial topology 

are taken as considered before. 

4.5.3 Simulation Results 

The simulations are carried on IEEE 33-bus test distribution system [30]. The base 

configuration of the distribution network is obtained by opening lines 33-37. The power loss 

for this system in base configuration is found to be 202.50 kW. The distribution system is 

equipped with DRs as shown in Table 3.6. The priority of all system loads are assumed as 

shown in the Table 4.17 

TABLE 4.17  

PRIORITIES OF LOADS 

Load 

Priority 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Nodes 24 32 7 31 11 12 3 2 15 14 29 30 4 17 16 21 

Load 

Priority 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Nodes 26 28 10 23 22 6 5 18 33 13 20 8 27 9 19 25 

The simulation is carried only for few selected system states, viz. 3, 7, 13, 19 and 22. 

These states are considered to cover possible combinations of variety in power generation 

from SPVs and WTs, and the variation in load demand of the system. The reserve capacity 

for MT unit is taken as 100 kW. The proposed methodology is applied to this system with 

network topology in base configuration. The distribution network is then optimally 

reconfigured using SSGA of Chapter 3. The results obtained are presented and compared. 

The population size and maximum generation for SSGA are taken as 50 and 100. The best 

result obtained after 100 trial runs is considered for analysis. 

The proposed algorithm runs with base configuration and the results obtained are 

presented in Table 4.18. The table shows the MT power and the set of loads to be shaded 
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during grid failure for each state considered. The table shows the power generation from 

renewable DGs and MT unit, total load demand available after load shading and the power 

loss incurred. It can be observed that the power balance is maintained in each state using 

proposed method while keeping MT generation within limits. The table also shows the nodes 

being de-energized on account of load shading and the percentage load to be shaded as 

suggested using proposed algorithm. It can be seen from the table that the percentage load 

shading varies from about 0 to 49% during different system states considered which is mainly 

governed by the power generation from renewable DGs. However, the self-sustainability of 

the system is about 50% with the given DG placement. Thus proposed algorithm can 

maintains supply to almost all important loads during grid failure. The table also shows that 

the distribution network remains efficient and also the node voltage profiles are maintained 

well within limits during grid failure events.  

TABLE 4.18  

DISTRIBUTION SYSTEM WITH BASE CASE 

S
ta

te
 

Power generation (kW) Available 

load 

demand 

(kW) 

Ploss 

(kW) 

Nodes 

de-

energized 

Shaded 

load 

(%) 

Loss 

reduction 

(%) 

V
m

in
 (

p
.u

.)
 

V
m

a
x

 (
p

.u
.)

 

SPV 

 

WT 

 

MT 

 

Total 

  

3  0 745.36 666.08 1411.44 1401.20 10.20 22, 6, 5, 

18, 33, 

13, 20, 8, 

27, 9, 19, 

25 

36.07 94.96 0.99 1.00 

7 13.44 611.38 690.50 1315.32 1305.11 10.22 26, 28, 

10, 23, 

22, 6, 5, 

18, 33, 

13, 20, 8, 

27, 9, 19, 

25 

43.31 94.95 0.99 1.00 

13 1624.56 1379.84 441.69 3446.10 3417.80 28.29 Nil 0 86.03 0.97 1.00 

19 0 1175.02 707.38 1882.4 1866.57 15.83 17, 16, 

21, 26, 

28, 10, 

23, 22, 6, 

5, 18, 33, 

13, 20, 8, 

27, 9, 19, 

25 

48.99 92.19 0.97 1.00 

22 0 1267.42 690.11 1957.53 1942.25 15.28 21, 26, 

28, 10, 

23, 22, 6, 

5, 18, 33, 

13, 20, 8, 

27, 9, 19, 

25 

38.49 92.45 0.97 1.00 

 
 

 



79 

 

TABLE 4.19  

DISTRIBUTION SYSTEM WITH OPTIMAL RADIAL TOPOLOGY 

State Optimal Configuration MT (kW) 

 

Ploss (kW) 

 

Loss 

reduction (%) 

Vmin (p.u.) Vmax (p.u.) 

3 5, 8, 9,  17,33 661.21 5.316 97.37 0.9944 1.00 

7 5, 7, 17,33, 34 685.46 5.183 97.44 0.9952 1.00 

13 5, 9, 16,21,33 430.44 17.04 91.58 0.9828 1.00 

19 17, 19, 27,34, 35 697.46 5.903 97.08 0.9917 1.00 

22 16, 21,25, 33,34 681.51 6.680 96.70 0.9914 1.00 

  

Fig. 4.6 Comparison of MT power, loss reduction and Vmin before and after NR 

Now the proposed SSGA is applied to operate the distribution system with optimal 

radial topology to minimize losses and to enhance node voltage profile. The best result 

obtained after 100 independent runs is presented in Table 4.19.  The table shows optimal 

radial topology and MT power and power losses for each system state. It can be observed 

from the table that after NR the system become more efficient with better node voltage 

profiles and with less power generation from MT units. This is quite obvious because NR 

provides load balancing among distribution feeders thus reduces power losses and enhances 

node voltage profiles. The amount of benefit obtained using NR can be observed from Fig 

4.6. It can be observed from the figure that MT power generation is marginally reduced after 

NR because NR causes marginal loss reduction in each system state. This fact can be verified 

from Fig 4.6 showing small but definite increase in loss reduction using NR. However, an 

important role is played by NR while comparing enhancement in node voltage profiles as 

shown in Fig 4.6. This enhancement is small but may be called significant as the minimum 

node voltages are found to be improved from say 0.9711 p.u. to 0.9917 p.u. during peak load 

condition (state 19). This shows the importance of NR in distribution systems equipped with 

adequate DRs.  

The proposed method efficiently provides the optimal set of loads to be de-energized 

by maintaining priority of each and every load, and also provides the corresponding power 
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control of dispatchable DG whether the distribution network is going to operate in base 

configuration or optimal radial topology during grid failure. The distribution network 

operator has a choice to operate the network in either of the topologies by considering the 

benefits of optimal NR. Though, simulation results validate power balance during grid 

failure, in practice it may not match on account of error present in the forecasted data of load 

demand and power generation from renewable DGs. Such errors can be taken in to account 

using suggested reserve capacity of the MT unit which has been considered here as 100 kW. 

The selection of this reserve capacity depends upon uncertainty in the power generation from 

renewables on account of geographical conditions, seasonal variations, etc., variability in 

load demand and system losses so may be taken with care to avoid further curtailment of 

certain other system load (s).   

4.6 SUMMARY 

Contemporary distribution systems are with high penetration of diverse distributed 

resources which effectively manage power flow among distribution system so enhances 

performance and reliability to good extent. In this chapter, the issues of reliability 

enhancement and service restoration of distribution system have been addressed using proper 

network reconfiguration strategies. Existing reliability indices have been modified to take 

into account the changing dynamics of contemporary distribution systems. New reliability 

indices gives due consideration to Joule’s heating in actual operating conditions of the 

distribution systems.  NR is a well-known operational strategy of radial distribution systems 

to enhance system performance and reliability by optimally managing power flow among 

distribution feeders. Attempts have been made in this chapter to investigate the applicability 

of NR to enhance system reliability and performance of contemporary active distribution 

systems. A multi-objective problem is framed in fuzzy framework to simultaneous optimize 

various power quality and reliability objectives while considering more realistic scenario 

pertaining to the variability and uncertainty in power generation and load demand among 

distribution buses. Moreover, new NR strategies are developed to enhance energy efficiency 

of radial distribution system while facing service restoration against on-grid and off-grid 

contingencies. Proposed methodologies are applied to standard test distribution system and 

the results on investigation are presented. The study reveals the importance of proposed 

methodologies, NR strategies and reliability indices proposed for contemporary distribution 

systems, that they reduce feeder power losses and enhances node voltage profiles by very 

good margins. In this context it is important to investigate the effectiveness of conventional 
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network reconfiguration strategy where the network topology is expected to vary with every 

predetermined changing state of the distribution system. In this chapter, a detailed 

investigation has been carried about CNR while considering different scenarios pertaining to 

the diversity in load demand and power dispatches from DGs. In addition, day-ahead network 

reconfiguration strategy is proposed where the distribution network reconfigured only once 

during 24 hours. A detailed comparison of CNR and DNR is provided while considering all 

scenarios and it has been observed that DNR strategy causes a marked reduction in switching 

operation of line switches, but at the cost of marginal increased energy losses, however, node 

voltage profiles not affected from practical point of view. This is true only when distribution 

system is equipped with adequate DRs. So DNR strategy may be an attractive alternative for 

DNOs to simultaneously provide simplicity and effectiveness in the operation and control of 

distribution systems while maintaining promising levels in both maintaining the network 

efficiency and quality power delivered to customers. 
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CHAPTER 5 

DAY-AHEAD NETWORK RECONFIGURATION STRATEGY FOR 

ACTIVE DISTRIBUTION SYSTEMS 

In contemporary distribution system are moving towards complete system automation 

for effective on line monitoring and control of distribution systems. One of the most 

important aspects the automation of contemporary distribution system is to cope up with 

uncertain generations from renewables DGs. The automated distribution systems adopt to 

changing generations and loads for optimal performance through network reconfiguration. 

For accurate implementation of distribution system reconfiguration proper modeling of 

renewable generations and loads are very important.  Among renewable DGs, SPVs and WTs 

are preferred on account of the access of better and economic DG technologies. However, 

renewable DGs are characterized by intermittency in power generation. Similarly loads on 

distribution system are stochastic in nature. Moreover, there exists a diversity in loads among 

distribution buses on account of different class of customers, i.e. residential, industrial, 

commercial customers, each having its characteristic load profile [8]. For so much diversity 

in generations and loads, the optimal operation of distribution systems demands frequent 

network reconfigurations in a day. However, frequent NR is neither advisable nor feasible in 

practice due to switching costs, over use of switches and prospective switching transients. 

Therefore, there is a need to develop planned network reconfiguration strategy based on 

forecasted load and generation data so as to optimize the number of switching. This leads to 

the idea of day-ahead network reconfiguration (DNR) strategy where the distribution network 

is to be operated in optimal number of topologies in a given time frame for optimal 

performance of distribution system.  In this chapter, a comprehensive comparative study is 

carried for conventional NR (CNR) and DNR while considering various scenarios pertaining 

to the presence of DRs in distribution system, their power control, and diversity and 

variability of load and power generation among distribution buses. The application results on 

a benchmark test distribution system show the importance of proposed DNR for 

contemporary distribution systems.  
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5.1 PROPOSED DAY-AHEAD NETWORK RECONFIGURATION (DNR) STRATEGY 

 The competitive deregulated environment and smart grid initiatives have imposed 

intense pressure on DNOs to achieve optimum efficiency and performance of distribution 

systems. The optimal NR is one of the operational strategies which can help to improve 

efficiency and performance of distribution systems to great extent and relief to DNOs.  

However, the distribution network cannot be frequently reconfigured with each and every 

varying state of the distribution system in the view of switching cost involved and the 

prospective switching transients. The later become crucial on shunt capacitors present to 

provide necessary reactive support. 

In recent there is a growing trends towards  vast deployment of DGs in distribution 

systems on account of environmental, economic and social concerns. The SCs have also been 

deployed along with DGs as they are relatively cheap energy sources as they are essential to 

supply reactive power support to several renewable DGs, which are the exclusive source of 

active power. These components have been usually placed optimally in the distribution 

system thus significantly affects power flow among distribution feeders. Several works [85-

97,102] have reported that these components can optimize the feeder power flows to such an 

extent that a power loss reduction of about 80-90% could be achieved. The presence of DGs 

and SCs have significantly reduced the effectiveness of network reconfiguration as far as 

system losses and voltage profile are concerned.  However, NR is indispensable as it serves 

many purpose in addition to loss reduction and voltage profile improvement such as load 

balancing, congestion management, service restoration, load shedding etc. In view of this, it 

is necessary to review the NR strategy for contemporary active distribution system. 

The operating states of contemporary distribution systems changes dynamically on 

account of inconsistency in power generation from renewable DGs and stochastic nature of 

load demand. For such system, the conventional network reconfiguration (CNR) suggests as 

many network topologies as the number of operating states. However, frequent NR for small 

reduction in losses and marginal improvement in load profile is neither advisable nor feasible 

on account of cost involved. Under such conditions day-ahead NR (DNR) strategy provides 

better alternative for DNOs. The DNR strategy is based upon the fact that the benefits of NR 

in contemporary distribution systems with high DG penetration are much less compared to 

that achieved in legacy passive distribution systems. 

In DNR strategy the forecasted data of loads and generation is analyzed for the next 

24 hours and on the basis of this analysis, an optimal  look up table for switching of 
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tie/sectionalizing switches is prepared for the next day. For formulation of DNR, stochastic 

nature of load demand, diversity of loads among buses and uncertain nature of the power 

generation from renewable DGs are taken into consideration. The variability and uncertainty 

in load demand and power generation from renewable DG units can be handled effectively 

using deterministic approach as discussed in Chapter 3. However, distribution buses possess 

definite load diversity due to different category of customers. To handles the diversity in load 

profiles of the buses, proper load modeling is required. 

The modeling of load profile is one of the important issues while dealing with any 

distribution system optimization problem.  Earlier efforts [197-200], and many others, have 

addressed these problems by modeling load profile of the system using piecewise multiple 

load levels. This provides probably the simplest modeling, but is not accurate as all loads are 

assumed to vary in unison that in practice occurs seldom. Distribution systems generally have 

a load class mix of various types of customers, i.e. residential, industrial, and commercial in 

which every bus of  the  system  has  a  different  type  of  load  connected  to  it  [164]. The 

distribution planners usually provide dedicated feeders to supply their particular class of 

customers. Since each customer has characteristic stochastic load pattern so the stochastic 

load demand pattern remains more or less same along particular feeders but differ from one 

feeder to another feeder.  A sample daily load profiles for the residential, industrial and 

commercial customers are shown in Fig. 5.1. The figure shows diversity of load that exists 

among these customers. The load profile of the system is determined by the sum of these 

profiles as shown in figure. The figure reveals that the shape of system load profile would be 

different if load diversity is ignored. Therefore in the proposed formulation of DNR, the 

diversity of loads among feeders is considered.  

 

Fig. 5.1 Daily load profile of (a) residential customers (b) industrial customers (c) commercial customers and  

(d) load profile of the system 
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5.2 FORMULATION OF DNR 

Distribution networks are conventionally reconfigured to minimize feeder power 

losses for the particular system states. Therefore, the objective function for the CNR strategy 

is formulated as 

 

2 2 2 2 2 2

, , , , , ,

2 2 2
1 1 1
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min  
i cr N NN

r n r n i n i n c n c nn

Loss r i c

r i c
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P R R R

V V V  

  
      (5.1) 

 

where the subscripts r, i and c refers to residential, industrial and commercial loads 

respectively. However, for proposed DNR strategy, all the system states pertaining to the 

typical day have to be taken into account. Therefore, the objective function is formulated to 

minimize energy loss incurred during the day, and is formulated as 

 1 

min
N

n

Loss

n

Loss n PE LD


  (5.2) 

where, N denotes total system states considered for the typical day. 

Subject to the following network operation constraints: 

1. Power flow equations 

The sum of the power purchased from utility grid and the total power generated by the 

different sources in the distribution system must be balanced by the local load demand and 

the power loss in the lines. For a radial network, a set of recursive equations are used to 

model the power flow in the network as given by (3)-(7). 
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1 1 1;  L

j j j cp p p j N       (5.6) 
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2. Node voltage constraint 

All node voltages Vjn of the nodes at state jmust be maintained within the minimum 

and maximum permissible limits i.e. Vmin and Vmax, respectively as defined below 

 min max ;  ;jn cV V V n N j N       (5.8) 

3. Feeder current constraint  

The current flow in each distribution line must be below or equal to the rated 

ampacity. This imposes feeder current constraints which can be expressed as  

 
max ;  ,jn j cI I n N j N    

 (5.9) 

4. Radial topology constraint 

The reconfigured network topology must be radial, i.e. with no closed path. 

Therefore, the radiality constraint for the ith radial topology at nth system state is defined as 

 
( ) 0;n nФ i N  

 
(5.10) 

Eq. (3.10) of Chapter 3 is used to model uncertainty in load demand and power 

generation from SPVs and WTs. The stochastic nature of residential, commercial and 

industrial load demand can also be modeled separately using similar equations. The synthetic 

data so produced for power generation and load demand among various distribution buses is 

used for simulation.  

5.3 SIMULATION RESULTS 

The proposed method is applied to IEEE 33-bus test distribution system [30].  This is 

a 12.66 kV radial distribution system with 32 sectionalizing lines (normally closed) and 5 tie-

lines (normally open). In base case the network configuration is made radial by opening all 

tie-lines which are numbered as 33-37 as shown in Table 5.1. The line voltage, active and 

reactive loading of the system are also shown in the table. The table also shows the 

classification of system feeders as residential, industrial and commercial and corresponding 

nodes, as in [156]. The unitized load factors of residential, industrial and commercial loads 

and the corresponding load durations considered for the daily load profile of the system is 

presented in Table 5.2. The data is based upon the aggregate daily load pattern as taken in 

[156]. Further it has been assumed that renewable DGs such as wind turbines (WTs) and 

solar photovoltaic (SPVs), micro turbines (MTs), and shunt capacitors (SCs) exist in this 

system. The allocation of these distributed resources in the system is presented in Table 5.3. 

It can be observed from the table that WTs of capacity 1540kWp, SPVs of capacity 1880kWp 
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and MTs of capacity 800 kW are installed in the distribution system and the total reactive 

power injection by SCs is 1200kVAr.   

TABLE 5.1  

INITIAL DATA OF IEEE 33-BUS SYSTEM 

Particular Value Feeder Nodes 

Line Voltage (kV) 12.66 Residential 1-15 

Nominal Active Demand (kW) 3715 Industrial 22-29 

Nominal Reactive Demand (kVAr) 2300 Commercial 16-21, 30-33 

Base Configuration 33 to 37 - - 

 

TABLE 5.2  

LOAD FACTORS AND LOAD DURATION FOR DAILY LOAD PROFILE 

State Residential Industrial Commercial State Residential Industrial Commercial 

1 0.4 0.8 0.4 13 0.8 1 0.8 

2 0.4 0.8 0.4 14 0.8 0.8 0.8 

3 0.4 0.8 0.4 15 0.8 1 0.8 

4 0.4 0.8 0.4 16 0.8 1 0.8 

5 0.4 0.8 0.4 17 0.8 1 0.8 

6 0.4 1 0.4 18 0.8 1 0.8 

7 0.6 1 0.4 19 0.8 1 1 

8 0.6 1 0.4 20 1 1 1 

9 0.6 1 0.4 21 1 1 1 

10 0.6 1 0.6 22 1 0.8 0.4 

11 0.6 1 0.6 23 0.4 0.8 0.4 

12 0.6 1 0.6 24 0.4 0.8 0.4 

TABLE 5.3  

ALLOCATION OF DRS ASSUMED IN EXISTING DISTRIBUTION SYSTEM 

SPV WT MT SC 

Node Capacity 

(kWp) 

Node Capacity 

(kWp) 

Node Capacity 

(kW) 

Node Capacity 

(kVAr) 

14 280 14 420 24 800 12 300 

24 840 24 700 - - 25 300 

30 560 30 420 - - 30 600 

 

Following four scenarios are considered to investigate the impact of day-ahead 

network reconfiguration while considering the effect of load diversity among distribution 

buses and power dispatches from renewable DGs: 

Scenario 1: NR without considering load diversity with intermittent power DGs 
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Scenario 2: NR without considering load diversity and with fixed power DGs 

Scenario 3: NR considering load diversity and with intermittent power DGs 

Scenario 4: NR considering load diversity and with fixed power DGs 

In scenarios 2 and 4, it has been assumed that the distribution system is equipped with 

adequate distributed storages (DSs) so that fixed power can be injected into the system using 

renewable DGs. Moreover, while load diversity among distribution buses is ignored, as in 

scenarios 1 and 2, the load factor for each bus is taken as the mean of load factors of various 

types of loads while diversity is considered. This provides identical daily load profiles of the 

system whether the diversity in load is considered or ignored. This measure is essential to 

provide valid comparison of results. The load profile therefore obtained is shown in Fig. 5.2. 

This load profile is considered for all scenarios. 

 
 

Fig. 5.2 Load profile considered for the system 

For each of the scenarios considered, the distribution network is optimally 

reconfigured to minimize power losses using both CNR and DNR strategies. While 

employing CNR strategy, the distribution network is independently optimally reconfigured 

for each system state. The results obtained using CNR and DNR strategies are compared and 

investigated. 

SSGA developed in Chapter 3 is employed to solve NR problem. The population size 

and maximum generation are set at 20 and 200, respectively after usual tradeoff. The 

crossover and mutation rates are taken as 0.9 and 0.1, respectively and the selection rate is 0.5 

and selection ratio is in the range of [1-4]. The best result obtained after 100 independent 

trials is used for investigation. Details of the platform used for computation is Intel(R) i5, 3.2 

GHz, 4GB RAM. 
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5.3.1 Scenario 1: NR without Considering Load Diversity and with Intermittent Power 

DGs  

Since load diversity among distribution buses is ignored, the load factors shown in 

Table 5.2 are valid for each system bus. The power generation factors for SPVs and WTs 

considered for a typical day are shown in Fig. 5.3. The capacity of MTs and SCs is taken as 

given in Table 5.3. The distribution network is optimally reconfigured using SSGA for each 

hour separately while employing CNR strategy. The best result obtained after 100 

independent trials of SSGA for each hour of the day are presented in Table 5.4.  

 

 

Fig. 5.3 Power generation factor data from renewable DGs for a day 

The table shows power losses before network reconfiguration are 2621.34 kWh, i.e. 

without DRs. These losses are found to be 576.37 kWh by placement of DRs. It implies that 

about 78% energy losses have been reduced by DR placement so very little margin is 

available for NR to further reduce the feeder power losses. The table also shows optimal 

feeder power loss and the corresponding network topology while reconfiguring distribution 

network using CNR strategy. It can be observed from the table that the daily energy losses 

are reduced from 576.37 kWh to 394.33 kWh using this NR strategy, but it require total 84 

switching operations. Therefore, total 84 switching operations are required to reduce about 

182 kW energy losses if CNR strategy is employed. 
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TABLE 5.4  

SIMULATION RESULTS USING CNR STRATEGY FOR SCENARIO 1 

State Power loss (kW) Configuration  

Base Case With DRs before 

NR 

With DRs after 

NR 

1. 55.65 12.68 7.29 2, 8, 17, 25, 34 

2. 55.65 13.27 7.59 8, 17, 25, 33, 34 

3 55.65 13.60 7.67 8, 17, 25, 33, 34 

4 55.65 14.08 7.88 8, 16, 25, 33, 34 

5 55.65 14.15 7.85 8, 17, 25, 33, 34 

6 71.92 17.11 9.33 8, 17, 25, 33, 34 

7. 90.09 25.43 13.67 7, 9, 22, 28, 34 

8. 90.09 18.77 10.61 8, 17, 25, 33, 34 

9. 90.09 15.33 11.45 16, 25, 33, 34, 35 

10. 107.30 18.13 14.80 9, 21, 25, 29, 33 

11. 107.30 23.60 20.70 5, 9, 16, 21, 33 

12. 107.30 29.82 26.85 5, 9, 16, 20, 33 

13. 150.68 32.06 29.41 5, 7, 9, 16, 21 

14. 125.76 31.16 28.50 5, 9, 16, 20, 33 

15. 150.68 26.15 22.79 7, 9, 21, 25, 29 

16. 150.68 23.73 17.22 8, 9, 25, 33, 35 

17. 150.68 25.24 16.60 8, 17, 25, 33, 34 

18. 150.68 29.85 17.83 7, 8, 17, 27, 34 

19. 173.40 42.41 24.46 7, 9, 17, 28, 34 

20. 202.50 53.17 31.02 7, 9, 17, 28, 34 

21. 202.50 52.01 30.41 7, 9, 17, 28, 34 

22. 110.12 19.73 11.77 7, 8, 17, 26, 34 

23. 55.65 12.30 9.17 5, 7, 9, 16, 33 

24. 55.65 12.58 9.46 5, 7, 9, 16, 33 

Total 2621.34 576.37 

 

394.33 

 

Total switching 

operations =   84 

Next, simulations are carried for day-ahead NR to obtain that single optimal topology 

which prevails throughout the day yet minimizes daily energy losses of the system. The best 

result obtained after 100 trial runs of SSGA shows optimal network topology by opening the 

lines 7, 8, 9, 25 and 16 that provides daily energy loss of 426.11 kWh. The comparison 

results of CNR and proposed DNR strategies are presented in Table 5.5.    
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TABLE 5.5 

COMPARISON RESULTS OF CNR AND DNR STRATEGIES FOR SCENARIO 1 
 

Particular CNR DNR 

Daily energy loss (kWh) 394.33 426.11 

Daily energy loss reduction (kWh) 182.04 150.26 

Daily energy loss reduction (%) 31.58 26.07 

Minimum node voltage (p.u.) 0.9744 0.9667 

Daily switching operations 84 4 

It can be observed from the table that daily energy losses are reduced by about 26% 

using DNR strategy which is about 32% using CNR strategy, but total switching operations 

are drastically reduced from 84 to 4 using DNR strategy. However, 6% additional energy 

losses accounts to 32 kWh for 80 additional switching operations which is quite small for this 

system having peak demand of 3715 kW. It is important to note that cost of 80 switching 

operation is much higher than the cost of additional saving of 32 kWh by even the most 

economic means of switching. It can also be observed from the table that DNR is capable to 

maintain nearly the same node voltage profiles as CNR as the minimum voltage obtained are 

0.9744 p.u. and 0.9667 p.u., respectively. Therefore, proposed DNR strategy seems to be 

promising for modern distribution systems well equipped with DGs and SCs.  

5.3.2 Scenario 2: NR without Considering Load Diversity and with Fixed Power DGs 

Modern distribution systems have renewable power sources having intermittency in 

power generations. The load demand is also stochastic in nature. Therefore, alternative 

energy sources such as MTs and battery storages are also installed in the system. The 

advantage of battery storages over MTs is that they can charge during off-peak hours and 

discharge during peak load hours thus also absorbs variations in the generations from 

renewables in a better way.  In this study, the distribution system is assumed to be equipped 

with sufficient battery storage so that fixed power can be taken from intermittent power 

generation sources such as SPVs and WTs. In this way, fixed power may be extracted from 

renewable DGs. For this scenario, the load demand and load profile, both are considered as in 

scenario 1 but it has been assumed that the system is well equipped with sufficient storages 

and control strategies to make time-invariant power injection during the day among 

distribution buses having SPVs and WTs. The power generation from MTs and SCs is also 

assumed to be constant during the day. The fixed power dispatches from these energy 

resources considered are presented in Table 5.6. 
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TABLE 5.6  

FIXED POWER DISPATCHES CONSIDERED FROM DRS 
 

SPV WT MT SC 

Node 
Power (kW) Node Power (kW) Node Power (kW) Node Power (kVAr) 

14 
110 14 220 24 600 12 300 

24 
300 24 360 - - 25 300 

30 
200 30 220 - - 30 600 

TABLE 5.7  

SIMULATION RESULTS USING CNR STRATEGY FOR SCENARIO 2 

State Power loss (kW) Configuration  

With DRs before NR With DRs after NR 

1. 9.69 7.7 5  7  8   9  16 

2. 9.69 7.7 5  7  8   9  16 

3 9.69 7.7 5  7  8   9  16 

4 9.69 7.7 5  7  8   9  16 

5 9.69 7.7 5  7  8   9  16 

6 10.54 7.5 16 25  33   34  35   

7. 13.16 8.74 17 25  33   34  35   

8. 13.16 8.7 17 25  33   34  35   

9. 13.16 8.7 17 25  33   34  35   

10. 16.81 10.8 8  17 25  33   34     

11. 16.81 10.8 8  17 25  33   34     

12. 16.81 10.8 8  17 25  33   34     

13. 29.47 18.2 7  9   17   27  34 

14. 21.69 13.65 7  8  17   27  34 

15. 29.47 18.2 7  9   17   27  34 

16. 29.47 18.2 7  9   17   27  34 

17. 29.47 18.2 7  9   17   27  34 

18. 29.47 18.2 7  9   17   27  34 

19. 37.52 23 7  9   17   28  34 

20. 48.85 29.9 7  9   17   28  34 

21. 48.85 29.9 7  9   17   28  34 

22. 17.50 11.2 8  17 25  33   34     

23. 9.69 7.7 5  7  8   9  16 

24. 9.69 7.7 5  7  8   9  16 

Total 490.08 318.54 Total switching operations =   40 
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The distribution network is optimally reconfigured using CNR strategy and the results 

obtained after 100 independent trials of SSGA are presented in Table 5.7. The table shows 

optimal network configuration and power losses before and after NR. It can be observed from 

the table that CNR strategy reduces daily energy losses from 490.08 kWh to 318.54 kWh, i.e. 

of about 172 kWh. When the distribution network is reconfigured using DNR strategy, the 

energy losses are found to be reduced from 490.08 kWh to 332.09 via optimal network 

configuration obtained by opening the lines 7, 8, 34, 26 and 17. This causes an energy loss 

reduction of about 158 kWh. A comparison between these two reconfiguration strategies is 

presented in Table 5.8. It can be observed from the table that DNR strategy for NR is looking 

more attractive alternative than the CNR strategy for this scenario also as it reduces 34 

switching operations against about 14 kWh additional daily energy losses in the system 

without much affecting the node voltage profiles. It is noteworthy that CNR strategy requires 

40 switching operations for the sample day which was 84 for scenario1. It happened because 

constant power is being tapped from DGs in this scenario so intermittency in power 

generation among distribution buses is not present. This shows that higher the variability in 

load and generation, more frequent switching operations are required to maintain network in 

optimal topologies under varying system states. 

 

TABLE 5.8  

COMPARISON RESULTS OF CNR AND DNR STRATEGIES FOR SCENARIO 2 
 

Particular CNR DNR 

Daily energy loss (kWh) 318.54 332.09 

Daily energy loss reduction (kWh) 171.54 157.99 

Daily energy loss reduction (%) 35.00 32.24 

Minimum node voltage (p.u.) 0.9755 0.9727 

Daily switching operations 40 6 

5.3.3 Scenario 3:  NR Considering Load Diversity and with Intermittent Power DGs 

In order to consider load diversity among distribution buses, the system nodes are 

considered to be divided into residential, industrial and commercial categories as shown in 

Table5.1 and the load factors assigned to these loads during the typical day are taken as 

presented in Table5.2.The table also shows the load duration corresponding to each load 

factor for different types of loads. The daily load profile so obtained for this system is 

presented in Fig. 5.1, and is used for simulations. The sizing and siting of DRs is considered 

same as in previous scenarios and the power generation profiles considered for SPVs and 
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WTs is taken same as in Fig. 5.3. The distribution network is optimally reconfigured using 

CNR strategy and the results obtained after 100 trial runs of SSGA are presented in Table 

5.9.The table shows that base case losses incurred in the day is found to be 2388.40 kWh 

which were 2621.34 kWh in the previous scenarios while load diversity was ignored. This 

shows a reduction in feeder power losses while load diversity is considered. Therefore, 

ignoring load diversity results in pessimistic feeder power loss which is of the order of about 

10% for this system. This shows the importance of considering load diversity among 

distribution buses. The table also shows that daily energy losses are reduced from 2388.40 

kWh to 483.43 kWh by DR placement and then further reduced to 351.77 kWh using CNR 

strategy. Therefore, a loss reduction of about 132 kWh can be achieved using CNR strategy, 

but it requires 90 switching operations during the typical day. It is interesting to observe from 

the table that minimum switching operations are required either during the off-peak hours or 

during peak hours of the day. It happened due to zero/negligible solar insolation and lack in 

load diversity among distribution buses, respectively. However, more switching operations 

are required for rest of the hours, where variability in load and solar insolation exist. 

When DNR strategy is employed, the losses are reduced to 383.74 kWh using optimal 

network configuration 7, 8, 9, 17 and 25.The comparison results for CNR and DNR strategies 

is presented in Table 5.10.The table shows that DNR strategy requires only 4 switching 

operations. Thus DNR strategy saves 86 switching operations against 32 kWh additional 

energy losses as compared to CNR strategy without much affecting node voltage profiles. An 

important observation has been made that the number of switching operations are not much 

affected by the variability in load and generation among distribution buses while employing 

DNR strategy though the same is not true for CNR strategy.  

 

Fig. 5.4 Load profiles for different  type of loads and load profile of the system 
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TABLE 5.9  

SIMULATION RESULTS USING CNR STRATEGY FOR SCENARIO 3 

State Power loss (kW) Configuration 

Base Case With DRs before NR With DRs after NR  

1. 46.72 8.87 6.13 7, 8, 9, 17, 26 

2. 46.72 9.28 6.13 7, 8, 9, 17, 26 

3 46.72 9.52 6.13 7, 8, 9, 17, 26 

4 46.72 9.89 6.13 7, 8, 9, 17, 26 

5 46.72 9.94 6.13 7, 8, 9, 17, 26 

6 57.63 10.37 7.13 7, 8, 22, 34, 36 

7. 71.90 17.01 10.90 7, 9, 17, 23, 34 

8. 71.90 11.47 8.15 7, 8, 9, 16, 26 

9. 71.90 9.86 8.58 7, 9, 15, 25, 33 

10. 93.49 12.56 11.43 7, 9, 16, 25, 33 

11. 93.49 18.77 17.12 5, 9, 16, 20, 33 

12. 93.49 25.47 23.03 5, 10, 16, 19, 33 

13. 141.42 28.49 26.86 5, 7, 9, 16, 21 

14. 125.76 31.16 28.50 5, 9, 16, 20, 33 

15. 141.42 22.21 20.58 9, 16, 21, 25, 33 

16. 141.42 19.30 15.14 9, 25, 29, 33, 35 

17. 141.42 20.49 14.59 7, 8, 9, 26, 35 

18. 141.42 24.77 16.03 7, 8, 17, 27, 34 

19. 175.23 41.98 25.32 7, 9, 28, 34, 36 

20. 202.50 53.17 31.02 7, 9, 17, 28, 34 

21. 202.50 52.01 30.41 7, 9, 17, 28, 34 

22. 94.43 17.19 11.44 7, 8, 14, 25, 34 

23. 46.72 9.63 7.30 7, 9, 17, 25, 33 

24. 46.72 10.02 7.59 5, 7, 9, 17, 33 

Total 2388.40 

 

483.43 

 

351.77 

0.9744 

Total switching 

operations =   90 

 

TABLE 5.10 

COMPARISON RESULTS OF CNR AND DNR STRATEGIES FOR SCENARIO 3 
 

Particular CNR DNR 

Daily energy loss (kWh) 351.77 383.74 

Daily energy loss reduction (kWh) 131.66 99.69 

Daily energy loss reduction (%) 35.00 32.24 

Minimum node voltage (p.u.) 0.9744 0.9701 

Daily switching operations 90 4 



97 

 

5.4.4 Scenario 4: NR considering load diversity and with fixed power DGs 

For this scenario, the load factors at various distribution buses and the fixed power 

dispatches from various energy sources are taken from Table 5.2 and Table5.6, respectively. 

The distribution network is optimally reconfigured using CNR strategy and the best result 

obtained after 100 independent trials of SSGA are presented in Table 5.11. It can be observed 

from the table that energy losses for the typical day are reduced from 410.29 kWh to 283.36 

kWh using CNR strategy thus saves about 127 kWh.  

TABLE 5.11  

SIMULATION RESULTS USING CNR STRATEGY FOR SCENARIO 4 

State Power loss (kW) Configuration 

With DRs before NR With DRs after NR 

1. 7.42 5.9190 7   9   16 25  33 

2. 7.42 5.9190 7   9   16 25  33 

3 7.42 5.9190 7   9   16 25  33 

4 7.42 5.9190 7   9   16 25  33 

5 7.42 5.9190 7   9   16 25  33 

6 6.55 5.3622 7   9  17  26  33 

7. 7.98 6.6169 7  8  9    17  25 

8. 7.98 6.6169 7  8  9    17  25 

9. 7.98 6.6169 7  8  9    17  25 

10. 10.81 8.5179 7  8  9    17  27 

11. 10.81 8.5179 7  8  9    17  27 

12. 10.81 8.5179 7  8  9    17  27 

13. 24.66 16.5805 7  8  17  28   34 

14. 21.69 13.6451 7  8  17  27  34 

15. 24.66 16.5805 7  8  17  28   34 

16. 24.66 16.5805 7  8  17  28   34 

17. 24.66 16.5805 7  8  17  28   34 

18. 24.66 16.5805 7  8  17  28   34 

19. 37.04 23.8666 7  9  28  34   36 

20. 48.85 29.8510 7  9  17  28   34 

21. 48.85 29.8510 7  9  17  28   34 

22. 15.74 10.9442 7  8 14  25  28 

23. 7.42 5.9190 7  9  16 25   33 

24. 7.42 5.9190 7  9  16 25   33 

Total 410.29 283.26 Total switching operations = 36 
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For this saving total 36 switching operations have to be performed during the day. 

Now the distribution network is reconfigured using DNR strategy and the optimal 

configuration obtained is 7, 8, 34, 26 and 17. The comparison results of CNR and DNR 

strategies are presented in Table 5.12. The table shows that for this scenario also both CNR 

and DNR strategies are producing quite comparable results. The DNR saves 28 switching 

operations at the cost of 14 kWh additional daily energy loses without much affecting node 

voltage profiles of the system. 

TABLE 5.12  

COMPARISON RESULTS OF CNR AND DNR STRATEGIES FOR SCENARIO 4 
 

Particular CNR DNR 

Daily energy loss (kWh) 283.26 297.58 

Daily energy loss reduction (kWh) 127.03 112.71 

Daily energy loss reduction (%) 30.96 27.96 

Minimum node voltage (p.u.) 0.9755 0.9727 

Daily switching operations 36 8 

5.4 DISCUSSION 

In the present study, investigations have been made to operate distribution network in 

optimal radial topology by employing CNR and proposed DNR strategies while fully 

considering variability and intermittency in load and power generation from renewable DGs 

through four scenarios. The comparisons of consolidated results are presented in Table 5.13 

and Fig 5.5.  

 

TABLE 5.13 

COMPARISON OF VARIOUS SCENARIOS 

Scenario Load 

diversity 

DG’s Power Daily energy 

loss reduction 

by NR (%) 

Energy loss reduction by 

NR (kWh/day) 

Vmin (p.u.) Total 

switching 

operations 

X Y X Y X-Y X Y X Y 

a Not 

considered 

Intermittent 31.58 26.07 182.04 150.26 31.78 0.9744 0.9667 84 4 

b Not 

considered 

Fixed 35.00 32.24 171.54 157.99 13.55 0.9755 0.9727 40 6 

c Considered Intermittent 27.23 20.62 131.66 99.69 31.97 0.9744 0.9701 90 4 

d Considered Fixed 30.96 27.47 127.03 112.71 14.32 0.9755 0.9727 36 8 

X: CNR, Y: DNR 
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(a) Intermittent power DGs (b) Fixed power DGs  

Fig. 5.5 Comparison of CNR and DNR strategies while considering load diversity in the presence of (a) 

intermittent power DGs (b) fixed power DGs 

Fig. 5.5 (a1) shows that proposed DNR strategy causes slightly less daily energy loss 

reduction when compared with CNR. The figure also shows that the consideration of load 

diversity causes reduced energy losses, which is due to the fact that power flow among 

distribution feeders is reduced while load diversity among distribution buses is taken into 

   
 (a1) Energy loss reduction (kWh/day) (b1) Energy loss reduction (kWh/day) 

   
 (a2) Daily energy loss reduction (%) (b2) Daily energy loss reduction (%) 

   
 (a3) Vmin (p.u.) (b3) Vmin (p.u.) 

   
 (a4) Total switching operations (b4) Total switching operations 
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account. Conversely, ignoring load diversity will leads to wrong signals for power loss 

calculation. The comparison with Fig. 5.5 (b1) reveals that fixed DG power results in 

marginal reduction in feeder power loss which is attributed to the optimal control setting of 

DGs. Similar conclusions may be drawn from Fig. 5.5 (a2) and (b2) showing comparison for 

the percentage daily energy loss reduction. The minimum node voltage occurred during the 

typical day are compared in Fig. 5.5 (a3) and (b3) which reflects the comparison of worst node 

voltage profile that prevailed during the day. The comparison reveals that node voltage 

profiles remains more or less same using CNR or DNR strategies and have no significant 

impact of considering load diversity or the type of power generation from DGs. 

This probably happen because of high penetration of DRs in the distribution systems 

which have already contributed a lot for node voltage profile enhancement. However, the 

type of DG power generation has a great impact on the number of switching operations as can 

be seen by comparing Fig. 5.5 (a4) and (b4) while considering CNR. It can be observed that 

the number of switching operations is almost halved using fixed power DGs, though the 

effect of load diversity is not perceptible. This leads to an important conclusion that 

variability of power generation is much more effective than load diversity while considering 

switching operations to achieve desired topology of distribution networks. Another marked 

observation is that total switching operations are drastically reduced using DNR strategy, 

especially while considering intermittent nature of DGs. Therefore, proposed DNR strategy 

seems to be superior to the CNR strategy as the energy loss reduction is marginally higher 

and node voltage profiles being maintained within permissible limits. 

Finally, in order to show the importance of proposed DNR in modern distribution 

systems, simulations are carried for the same distribution system without any DR integration. 

However, the load profile is considered as shown in Fig. 5.4 where load diversity is 

considered. SSGA is applied for CNR strategy and the best results obtained after 100 trial 

runs of SSGA are presented in Table 5.14. It can be observed from the table that optimal 

configuration obtained is 7, 9, 14, 32 and 37, except for the states 1-12 and 23-24 where it is 

7, 9, 14, 31, 37. Now DNR strategy is applied that provides optimal configuration 7, 9, 14, 32 

and 37. This shows that variability of load not causes insignificant variations in the optimal 

topology of the distribution networks. While comparing with previous studies, an important 
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conclusion can be drawn that intermittency in renewable sources leads to variation in optimal 

network topologies.  

TABLE 5.14  

SIMULATION RESULTS FOR CNR STRATEGY WITHOUT CONSIDERING DRS 

State Power loss (kW) Configuration 

1. 35.3102 7     9    14    37    31 

2. 35.3102 7     9    14    37    31 

3 35.3102 7     9    14    37    31 

4 35.3102 7     9    14    37    31 

5 35.3102 7     9    14    37    31 

6 44.5807 7     9    14    37    31 

7. 52.9346 7     9    14    37    31 

8. 52.9346 7     9    14    37    31 

9. 52.9346 7     9    14    37    31 

10. 68.9130 7     9    14    37    31 

11. 68.9130 7     9    14    37    31 

12. 68.9130 7     9    14    37    31 

13. 100.4416 7     9    14    37    32 

14. 87.5798 7     9    14    37    32 

15. 100.4416 7     9    14    37    32 

16. 100.4416 7     9    14    37    32 

17. 100.4416 7     9    14    37    32 

18. 100.4416 7     9    14    37    32 

19. 125.1101 7     9    14    37    32 

20. 139.5165 7     9    14    37    32 

21. 139.5165 7     9    14    37    32 

22. 62.0681 7     9    14    37    32 

23. 35.3102 7     9    14    37    31 

24. 35.3102 7     9    14    37    31 

Sum 1713.30 Total switching operations = 4 

 

TABLE 5.15 

COMPARISON RESULTS FOR CNR AND DNR STRATEGY WITHOUT CONSIDERING DRS 

Particular CNR without DRs DNR without DRs 

Daily energy loss (kWh) 1713.30 1718.53 

Daily energy loss reduction (kWh) 675.13 669.90  

Daily energy loss reduction (%) 28.27 28.05 

Minimum node voltage (p.u.) 0.9378 0.9378 

Daily switching operations 4 0 
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This fact can be observed from Table 5.15 showing comparison results for CNR and 

DNR strategies. The table reveals that CNR strategy demands total 4 switching operations for 

the typical day whereas it is zero for DNR strategy, but it causes marginal additional energy 

losses of about 5 kWh for this system.  In this view, CNR strategy may looks better than 

DNR strategy. However, in case the distribution system having high DG penetration the 

reverse may be very useful for DSOs. This shows the importance of proposed DNR strategy 

over the conventional CNR strategy for modern active distribution systems well-equipped 

with renewable DGs.  

5.5 SUMMARY 

Contemporary distribution systems are with high penetration of diverse distributed 

resources such as SPVs, WTs along with MTs and SCs. These DRs can effectively manage 

power flow among distribution system so reduce feeder power losses and enhances node 

voltage profiles by very good margins. In this context it is important to investigate the 

effectiveness of conventional network reconfiguration strategy where the network topology is 

expected to vary with every changing state of the distribution system. In this chapter, a 

comprehensive comparative study is carried for conventional NR (CNR) and DNR while 

considering various scenarios pertaining to the presence of DRs in distribution system, their 

power control, and diversity and variability of load and power generation among distribution 

buses. In addition, day-ahead network reconfiguration strategy is proposed where the 

distribution network reconfigured only once during 24 hours. A detailed comparison of CNR 

and DNR is provided while considering all scenarios and it has been observed that DNR 

strategy causes a marked reduction in switching operation of line switches at the cost of 

marginal increased energy losses with acceptable voltage profiles.  It is important to note the 

additional switching cost of CNR strategy is much higher than the additional energy loss cost 

as switching involves the operation of associated circuit breakers. The extensive simulation 

on a benchmark test distribution system shows the importance of proposed DNR for 

contemporary distribution systems. Therefore DNR strategy may be an attractive alternative 

in contemporary distribution system for DNOs to simultaneously provide simplicity and 

effectiveness in the operation and control of distribution systems while maintaining 

promising levels in both maintaining the network efficiency and quality power delivered to 

customers. 
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CHAPTER 6 

CONCLUSIONS 

The electric power industries have witnessed many reforms in recent years. There is a 

paradigm shift in the electric power generated, transmitted and distributed. At distribution 

level, the concept of smart distribution system is evolving with wide spread deployment   of 

renewable DGs and shunt capacitors. The major emphasis of distribution systems operators is 

on reliability efficiency, optimum assets utilization and quality of power delivery to the end 

users.  The Distribution System Network Reconfiguration (NR) is a well-known operational 

strategy that can help to improve the overall performance of distribution systems. In fact, 

distribution network reconfiguration has played vital role in service restoration, reliability and 

network performance improvement of distribution systems. However, the integration of 

uncertain renewable power generating sources with necessary dispatchable DGs at 

distribution level has changed the dimension of conventional distribution network 

reconfiguration problem. Therefore this thesis attempts to reinvestigate the problem of multi-

objective network reconfiguration for contemporary distribution systems. It aims to analyze 

the effect of reconfiguration on the overall performance of contemporary and future 

distribution systems and to reinvestigate solutions methodologies for network reconfiguration 

of contemporary and future distribution systems. This thesis addresses three crucial aspects of 

network reconfiguration for active distribution systems namely, reliability and power quality 

enhancement, service restoration and system performance improvement. New formulations 

and strategies are proposed for NR while considering realities and facts of existing 

distribution systems by duly addressing the variability, diversity and uncertainty in load 

demand and power generation among distribution buses. A detailed literature survey 

pertaining to distribution system reconfiguration is presented in chapter 2 of the thesis. 

In Chapter 3, different variants of GA and PSO (super sense GA) SSGA and (super 

sense PSO) SSPSO respectively have been developed by incorporating the human 

intelligence element in their basic models. Proposed SSGA and SSPSO incorporate human 

intelligence by sensing the quality of decision variables before they will participate in the 

computational process of the algorithms. This super sense feature intends well-guided search 

by providing a better balance between exploration and exploitation of the problem search 

space. It is noteworthy that only selection rules are modified in SSGA and SSPSO without 

affecting the internal mechanism of standard algorithms. Developed SSGA and SSPSO are 

applied to solve the NR problem for loss minimization. The application results are 

investigated on standard test distribution as well as real distribution systems. The application 
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results reveal the effectiveness of SSGA and SSPSO algorithms for large-scale optimization. 

Following conclusions are drawn from this chapter. 

1. The proposed SSGA and SSPSO are capable to efficiently solve the distribution 

reconfiguration problem of contemporary distribution systems and are found to be 

superior to the conventional GA and PSO respectively. 

2. For large scale complex optimization problem the performance of proposed SSGA is 

found to be superior to SSPSO. However, the performances of the two for small-scale 

optimization problems are comparable.   

3. The super sense element is found to be more beneficial for evolutionary algorithms 

than swarm intelligence algorithms. 

In Chapter 4, the reliability enhancement and service restoration aspects of 

contemporary distribution systems have been addressed through NR. Some new reliability 

indices are proposed by giving due consideration to the current flowing in distribution 

feeders. Since NR balances feeder currents, the proposed reliability indices provides better 

signal for system reliability than existing indices. The NR problem is solved by suggesting 

multi-objective formulation in fuzzy frame work to satisfy reliability and power quality 

indices of active distribution systems while considering the stochastic nature of load demand 

and power generation from renewable DGs. The application results obtained on standard test 

distribution system using proposed method are presented and compared with existing method. 

In addition, both on-grid and off-grid service restoration problems are solved by suggesting 

optimal NR. The NR problem is solved to enhance system performance during fault period. 

Separate algorithms are developed to efficiently handle optimal NR problems. The power 

balance constraint is satisfied by determining optimum critical load by suggesting iterative 

algorithm and proposing suitable spinning reserve of MT unit. The results of study are 

presented. Following conclusions are drawn from this chapter. 

1. The proposed reliability indices dynamically changes with the magnitude of system 

loading. It has been observed that proposed reliability indices are squarely related 

with system loading, thus truly reflects system reliability.  

2. Proposed multi-objective NR optimization methodology provides satisfactory 

compromising solution while dealing with conflicting objectives of reliability and 

power quality improvement 

3. There is substantial improvement in reliability and power quality through NR in 

passive distribution systems. However, in active distribution system the effect of NR 

on power quality and reliability attributes is comparatively less. This is due to the fact 
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that optimally placed DGs and SCs optimizes the power flow in distribution line and 

consequently improves power quality and reliability attributes. There is little scope 

left for further improvement through NR.  

NR enhances system reliability and power quality by about 10%, whereas optimally 

placed DGs and SCs contribute by about 60%, while investigating independently. 

4. For on-grid service restoration, NR maintains almost same performance of the 

distribution system, with adequate DRs, during contingencies as that during normal 

operating conditions.  

5. The proposed off-grid service restoration using load shading, instead of the 

conventional area shading, is found to be more attractive strategy for active 

distribution systems.  

6. The proposed strategy for load shading, MT power control and provision of spinning 

reserve on MT unit effectively manages to restore optimum critical loads by 

maintaining power balance during abnormal conditions. 

7. Proposed NR for the off-grid service restoration significantly reduces power losses 

and node voltage deviations in distribution systems.  

In Chapter 5, a new day-ahead NR (DNR) strategy is proposed for active distribution 

systems. More realistic framework is suggested by considering load diversity on distribution 

buses on account of the load diversity exist among residential, industrial and commercial 

loads, besides considering the stochastic nature of load demand and power generation from 

renewable DGs. A detailed investigation is made on standard test distribution system to 

compare proposed DNR strategy with conventional NR (CNR) strategy while considering 

different scenarios pertaining to diversity in load demand and nature of power dispatches 

from DGs. Following conclusions are drawn from this chapter. 

1. The consideration of load diversity is an important issue in the formulation of NR 

problem. The ignorance of load diversity among distribution buses shows optimistic 

performance of distribution systems. This may mislead the planning and operation of 

distribution systems. 

2. The system operation is found to be better with fixed power dispatches from DGs, but 

requires optimum installation of energy storage systems in distribution systems. 

3. Contemporary distribution systems are with high and optimal penetration of diverse 

distributed resources such as SPVs, WTs along with MTs and SCs can effectively 

manage power flow among distribution system thereby reduce feeder power losses 

and enhances node voltage profiles by very good margins.  
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4. DNR strategy seems to be an attractive alternative for DNOs for simplified but 

effective operation and control of distribution systems via minimal switching 

operations and associated switching transients while maintaining promising levels in 

both network efficiency and node voltage deviations. 

5. In active distribution system DNR strategy causes a marked reduction in switching 

operation of line switches at the cost of marginal increased energy losses with 

acceptable voltage profiles.  It is important to note the additional switching cost of 

CNR strategy is much higher than the additional energy loss cost as switching 

involves the operation of associated circuit breakers. Therefore in contemporary 

distribution system DNR provides a promising and economic tool to improve the 

performance of distribution systems. 

Salient Contributions 

Salient contributions of the thesis may be summarized as under:  

1. Proposed modified reliability indices by incorporating the effect of system loading to 

reflect actual operating condition of distribution system 

2. Developed and proposed SSGA for complex and large-scale NR optimization problems 

of distribution systems.   

3. Developed and proposed SSPSO for complex and large-scale NR optimization problems 

of distribution systems.   

4. Proposed multi-objective NR optimization methodology in fuzzy framework for 

simultaneous optimization of reliability and power quality objectives of active 

distribution systems 

5. Proposed both on-grid and off-grid service restoration strategies to enhance network 

performance using NR by suggesting load shading, DG power control and spinning 

reserve. 

6. Proposed day-ahead NR (DNR) strategy for active distribution systems by suggesting 

more realistic formulation while considering load diversity among distribution buses 

owing to different types of customers and the stochastic nature of load demand and power 

generation from renewable DGs.  

 

Future Scope 

1. In the present work, it has been assumed that renewable DGs are the source of active 

power alone and no energy storage devices are equipped in the distribution system.  This 

work can be extended by considering other types of DGs which are also capable to 
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generate reactive power, and energy storage devices. The NR problem can also be  

extended  by  considering  issues  related  to  carbon  footprints,  demand  response,  

smart  meter data, DG constraint management, and other more approaches to manage 

active distribution systems.  

2. The present work may be extended to include other aspects of distribution system 

performance such as congestion of management distribution network, voltage stability, 

micro-grid management overload management of Distributed Energy Resources (DERs), 

optimal switching of shunt capacitors, OLTC management etc. 

3. The present work can also be extended to develop a comprehensive methodology for 

multi-objective day ahead scheduling in distribution networks with high penetration of 

distributed renewable energy sources including energy storage taking into account the 

demand response, peak shaving and pricing aspects. 
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APPENDIX A 

The single-line diagrams, line and bus data of and other relevant data of various test 

distribution systems considered for simulation of different techniques throughout this thesis 

are given in this appendix. 

1. IEEE 33-BUS TEST DISTRIBUTION SYSTEM  

This test distribution system and its data are referred from [30]. It is a 12.66 kV 

distribution system with 32 sectionalizing switches and 5 tie-switches. The nominal active 

and reactive loadings are 3,715 kW and 2,300 kVAr respectively.  

 

Fig. A.1 Single line diagram of 33-bus system 
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TABLE A.1 

BUS DATA OF 33-BUS SYSTEM 

Bus 

number 

Load Bus 

number 

Load 

Active load 

(kW) 

Reactive load 

(kVAr) 

Active load 

(kW) 

Reactive load 

(kVAr) 

1 0.00 0.00 18 90.00 40.00 

2 100.00 60.00 19 90.00 40.00 

3 90.00 40.00 20 90.00 40.00 

4 120.00 80.00 21 90.00 40.00 

5 60.00 30.00 22 90.00 40.00 

6 60.00 20.00 23 90.00 50.00 

7 200.00 100.00 24 420.00 200.00 

8 200.00 100.00 25 420.00 200.00 

9 60.00 20.00 26 60.00 25.00 

10 60.00 20.00 27 60.00 25.00 

11 45.00 30.00 28 60.00 20.00 

12 60.00 35.00 29 120.00 70.00 

13 60.00 35.00 30 200.00 600.00 

14 120.00 80.00 31 150.00 70.00 

15 60.00 10.00 32 210.00 100.00 

16 60.00 20.00 33 60.00 40.00 

17 60.00 20.00    

TABLE A.2 

LINE DATA OF 33-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

1 1 2 0.0922 0.0470 400 

2 2 3 0.4930 0.2512 400 

3 3 4 0.3661 0.1864 250 

4 4 5 0.3811 0.1941 250 

5 5 6 0.8190 0.7070 250 

6 6 7 0.1872 0.6188 150 

7 7 8 0.7115 0.2351 150 

8 8 9 1.0299 0.7400 150 

9 9 10 1.0440 0.7400 150 

10 10 11 0.1967 0.0651 150 

11 11 12 0.3744 0.1298 150 

12 12 13 1.4680 1.1549 150 

13 13 14 0.5416 0.7129 150 

14 14 15 0.5909 0.5260 150 

15 15 16 0.7462 0.5449 150 

16 16 17 1.2889 1.7210 150 

17 17 18 0.7320 0.5739 150 

18 2 19 0.1640 0.1565 250 

19 19 20 1.5042 1.3555 250 
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TABLE A.2 (Continued…) 

LINE DATA OF 33-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

20 20 21 0.4095 0.4784 250 

21 21 22 0.7089 0.9373 150 

22 3 23 0.4512 0.3084 250 

23 23 24 0.8980 0.7091 250 

24 24 25 0.8959 0.7071 250 

25 6 26 0.2031 0.1034 250 

26 26 27 0.2842 0.1447 250 

27 27 28 1.0589 0.9338 250 

28 28 29 0.8043 0.7006 250 

29 29 30 0.5074 0.2585 250 

30 30 31 0.9745 0.9629 150 

31 31 32 0.3105 0.3619 150 

32 32 33 0.3411 0.5302 150 

33 8 21 2.0000 2.0000 150 

35 9 15 2.0000 2.0000 150 

35 12 22 2.0000 2.0000 150 

36 18 33 0.5000 0.5000 150 

37 25 29 0.5000 0.5000 150 
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2. 83-BUS TEST DISTRIBUTION SYSTEM 

It is an 11.4 kV practical distribution network of Taiwan Power Company [68]. The 

system consists of 11 feeders, 83 normally closed sectionalizing switches, and 13 normally 

open tie switches. The nominal active and reactive loadings are 28,350 kW and 20,700 kVAr 

respectively. 

 

Fig. A.2 Single line diagram of 83-bus system 
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TABLE A.3 

BUS DATA OF 83-BUS SYSTEM 

Bus number Load Bus number Load 

Active load  

(kW) 

Reactive load  

(kVAr) 

Active load  

(kW) 

Reactive load  

(kVAr) 

1 0.00 0.00 44 30.00 20.00 

2 100.00 50.00 45 800.00 700.00 

3 300.00 200.00 46 200.00 150.00 

4 350.00 250.00 47 0.00 0.00 

5 220.00 100.00 48 0.00 0.00 

6 1100.00 800.00 49 0.00 0.00 

7 400.00 320.00 50 200.00 160.00 

8 300.00 200.00 51 800.00 600.00 

9 300.00 230.00 52 500.00 300.00 

10 300.00 260.00 53 500.00 350.00 

11 0.00 0.00 54 500.00 300.00 

12 1200.00 800.00 55 200.00 80.00 

13 800.00 600.00 56 0.00 0.00 

14 700.00 500.00 57 30.00 20.00 

15 0.00 0.00 58 600.00 420.00 

16 300.00 150.00 59 0.00 0.00 

17 500.00 350.00 60 20.00 10.00 

18 700.00 400.00 61 20.00 10.00 

19 1200.00 1000.00 62 200.00 130.00 

20 300.00 300.00 63 300.00 240.00 

21 400.00 350.00 64 300.00 200.00 

22 50.00 20.00 65 0.00 0.00 

23 50.00 20.00 66 50.00 30.00 

24 50.00 10.00 67 0.00 0.00 

25 50.00 30.00 68 400.00 360.00 

26 100.00 60.00 69 0.00 0.00 

27 100.00 70.00 70 0.00 0.00 

28 1800.00 1300.00 71 2000.00 1500.00 

29 200.00 120.00 72 200.00 150.00 

30 0.00 0.00 73 0.00 0.00 

31 1800.00 1600.00 74 0.00 0.00 

32 200.00 150.00 75 1200.00 950.00 

33 200.00 100.00 76 300.00 180.00 

34 800.00 600.00 77 0.00 0.00 

35 100.00 60.00 78 400.00 360.00 

36 100.00 60.00 79 2000.00 1300.00 

37 20.00 10.00 80 200.00 140.00 

38 20.00 10.00 81 500.00 360.00 

39 20.00 10.00 82 100.00 30.00 

40 20.00 10.00 83 400.00 360.00 

41 200.00 160.00 84 0.00 0.00 

42 50.00 30.00 85 0.00 0.00 

43 0.00 0.00    
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TABLE A.4 

LINE DATA OF 83-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

1 84 1 0.1944 0.6624 500 

2 1 2 0.2096 0.4304 500 

3 2 3 0.2358 0.4842 500 

4 3 4 0.0917 0.1883 500 

5 4 5 0.2096 0.4304 500 

6 5 6 0.0393 0.0807 500 

7 6 7 0.0405 0.1380 250 

8 7 8 0.1048 0.2152 250 

9 7 9 0.2358 0.4842 250 

10 7 10 0.1048 0.2152 250 

11 84 11 0.0786 0.1614 500 

12 11 12 0.3406 0.6944 500 

13 12 13 0.0262 0.0538 250 

14 12 14 0.0786 0.1614 250 

15 84 15 0.1134 0.3864 500 

16 15 16 0.0524 0.1076 500 

17 16 17 0.0524 0.1076 500 

18 17 18 0.1572 0.3228 500 

19 18 19 0.0393 0.0807 500 

20 19 20 0.1703 0.3497 250 

21 20 21 0.2358 0.4842 250 

22 21 22 0.1572 0.3228 250 

23 21 23 0.1965 0.4035 250 

24 23 24 0.1310 0.2690 250 

25 84 25 0.0567 0.1932 500 

26 25 26 0.1048 0.2152 500 

27 26 27 0.2489 0.5111 500 

28 27 28 0.0486 0.1656 500 

29 28 29 0.1310 0.2690 250 

30 84 30 0.1965 0.3960 500 

31 30 31 0.1310 0.2690 500 

32 31 32 0.1310 0.2690 250 

33 32 33 0.0262 0.0538 250 

34 33 34 0.1703 0.3497 250 

35 34 35 0.0524 0.1076 250 

36 35 36 0.4978 1.0222 250 

37 36 37 0.0393 0.0807 250 

38 37 38 0.0393 0.0807 250 

39 38 39 0.0786 0.1614 250 

40 39 40 0.2096 0.4304 250 

41 38 41 0.1965 0.4035 250 

42 41 42 0.2096 0.4304 250 
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TABLE A.4 (Continued…) 

LINE DATA OF 83-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

43 84 43 0.0486 0.1656 500 

44 43 44 0.0393 0.0807 500 

45 44 45 0.1310 0.2690 500 

46 45 46 0.2358 0.4842 250 

47 85 47 0.2430 0.8280 500 

48 47 48 0.0655 0.1345 500 

49 48 49 0.0655 0.1345 500 

50 49 50 0.0393 0.0807 500 

51 50 51 0.0786 0.1614 500 

52 51 52 0.0393 0.0807 500 

53 52 53 0.0786 0.1614 250 

54 53 54 0.0524 0.1076 250 

55 54 55 0.1310 0.2690 250 

56 85 56 0.2268 0.7728 500 

57 56 57 0.5371 1.1029 500 

58 57 58 0.0524 0.1076 500 

59 58 59 0.0405 0.1380 250 

60 59 60 0.0393 0.0807 250 

61 60 61 0.0262 0.0538 250 

62 61 62 0.1048 0.2152 250 

63 62 63 0.2358 0.4842 250 

64 63 64 0.0243 0.0828 250 

65 85 65 0.0486 0.1656 500 

66 65 66 0.1703 0.3497 500 

67 66 67 0.1215 0.4140 500 

68 67 68 0.2187 0.7452 500 

69 68 69 0.0486 0.1656 500 

70 69 70 0.0729 0.2484 500 

71 70 71 0.0567 0.1932 500 

72 71 72 0.0262 0.0528 250 

73 85 73 0.3240 1.1040 500 

74 73 74 0.0324 0.1104 500 

75 74 75 0.0567 0.1932 500 

76 75 76 0.0486 0.1656 250 

77 85 77 0.2511 0.8556 500 

78 77 78 0.1296 0.4416 500 

79 78 79 0.0486 0.1656 500 

80 79 80 0.1310 0.2640 250 

81 80 81 0.1310 0.2640 250 

82 81 82 0.0917 0.1883 250 

83 82 83 0.3144 0.6456 250 

84 5 55 0.1310 0.2690 250 
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TABLE A.4 (Continued…) 

LINE DATA OF 83-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

85 7 60 0.1310 0.2690 250 

86 11 43 0.1310 0.2690 250 

87 12 72 0.3406 0.6994 250 

88 13 76 0.4585 0.9415 250 

89 14 18 0.5371 1.0824 250 

90 16 26 0.0917 0.1883 250 

91 20 83 0.0786 0.1614 250 

92 28 32 0.0524 0.1076 250 

93 29 39 0.0786 0.1614 250 

94 34 46 0.0262 0.0538 250 

95 40 42 0.1965 0.4035 250 

96 53 64 0.0393 0.0807 250 
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