
ANALYSIS TECHNIQUES FOR INTRA AND INTER
APP(S) IN ANDROID

Ph.D. Thesis

SHWETA BHANDARI

ID No. 2014RCP9508

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR

NOVEMBER 2018

Analysis Techniques for Intra and Inter App(s) in Android

Submitted in

fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Shweta Bhandari

ID: 2014RCP9508

Under the Supervision of

Prof. Manoj Singh Gaur, MNIT Jaipur

Prof. Vijay Laxmi, MNIT Jaipur

Dr. Akka Zemmari, University of Bordeaux, France

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR

November 2018

©Malaviya National Institute of Technology Jaipur - 2018.

All rights reserved.

Declaration

I, Shweta Bhandari, declare that this thesis titled, “Analysis Techniques for Intra

and Inter App(s) in Android” and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a Ph.D. degree at

Malaviya National Institute of Technology, Jaipur.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at Malaviya National Institute of Technology, Jaipur or any

other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this Dissertation is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself, jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Date: Shweta Bhandari

(2014RCP9508)

CERTIFICATE

This is to certify that the thesis entitled “Analysis Techniques for Intra and Inter

App(s) in Android” being submitted by Shweta Bhandari (2014RCP9508) is a

bona-fide research work carried out under my supervision and guidance in fulfillment of

the requirement for the award of the degree of Doctor of Philosophy in the Department of

Computer Science and Engineering, Malaviya National Institute of Technology, Jaipur,

India. The matter embodied in this thesis is original and has not been submitted to any

other University or Institute for the award of any other degree.

Place: Jaipur

Date:

(Supervisors)

Prof. Manoj Singh Gaur

Professor

Department of Computer Science and Engineering

MNIT Jaipur

Prof. Vijay Laxmi

Professor

Department of Computer Science and Engineering

MNIT Jaipur

Dr. Akka Zemmari

Associate Professor

Bordeaux Laboratory of Research in Computer Science

University of Bordeaux, France

Acknowledgements

Foremost, I would like to express my sincere gratitude to my principal advisor Prof.

Manoj Singh Gaur, IIT Jammu, India, for his continuous support to my research,

for his patience, motivation, enthusiasm. I could not have imagined having a better

advisor and mentor for my Ph.D. Secondly, I would like to express my gratitude to my

external supervisor Dr. Akka Zemmari, University of Bordeaux, France, who helped

me through his profound feedback and comments that polished my ideas. His guidance

helped me in all the time of research and writing of this thesis.

My special thanks to Dr. Vijay Laxmi for teaching me the real meaning of research

and always motivated to research the solution until it reaches its full potential. The

progress, I achieved in research was mostly due to her thorough and critical reviews of

my manuscripts and thesis. She helped me to clarify and organize my research, which

was an essential step to preparing for my thesis work.

I would like to express my gratitude to Dr. Partha S. Roop, University of Auckland,

New Zealand, and Dr. Frederic Herbreteau, University of Bordeaux, France, who

introduced me to Formal Verification. The progress, I made in this direction is not

possible without their help. Thank you, both for reviewing my research papers and

providing valuable suggestions. Also, Dr. Girdhari Singh, Dr. Emmanuel S Pilli

and Dr. Vijay Janyani deserve special thanks as my research committee members

and advisors.

I was fortunate to meet wonderful friends and fellow researchers Rishab Gupta, Lovely

Sinha, Rekha, Smita Naval, Wafa Ben Jaballah, Vineeta Jain, Joey Pinto, Jyoti Gajrani,

Shweta Saharan, Garima Garg and Pranjal for helping me by their positive and impor-

tant suggestions during my low phases in both research and personal life.

Last but not the least, I could not have finished my study without the enduring support

of my family. I deeply appreciated the love and support of my husband, Dinesh, who

supported me in every possible way. Special thanks to my mother, father, brother, my

mother-in-law, and father-in-law for their direct and indirect support and love. I am

also grateful to my other family members and friends who have supported me along the

way.

A very special gratitude goes out to Ministry of Electronics and Information Technology,

Government of India for providing the funding for the work and Department of Computer

Science and Engineering, MNIT Jaipur for providing all the other resources required for

the work.

Place: Jaipur

Date: Shweta Bhandari

ii

iii

Abstract

With almost universal digital convergence, mobile devices provide an attractive attack surface

for cyber thieves as the devices hold personal details and have potential capabilities for eaves-

dropping. Android is the most popular mobile operating system and hence, is the target of

malicious hackers who use the Android app as a tool to gain access to private information. The

consequences of these attacks lead to damages that could be monetary or nonmonetary (loss of

reputation, physical or mental pain or suffering).

Academic researchers and commercial anti-malware companies are working vigorously to detect

malicious apps by proposing detection tools. These tools fail when the malicious behaviour

is scattered across more than one app. Also, Android framework is not designed to protect

the information that is going outside an app. In such a scenario, individual app shall appear

benign whereas it may leak private information in the presence of another specific app(s). This

phenomenon of data/information leakage is termed as collusion, and involved apps are termed as

colluding apps. In this thesis, we design and develop collusion analysis and detection techniques

for Android malware. We also propose formal methods based analysis for the detection of

maliciousness causing inter-app information leakage.

Firstly, we propose DRoid Analyst COmbo (DRACO), an Android app analysis mechanism to

inspire on-device analysis. DRACO extracts permissions, intent-filters, requested hardware,

accessed network addresses along with restricted, suspicious and unused API calls. In the end,

machine learning is used to classify the app as malicious or benign based on the extracted

features. It generates D-Score which is derived from the probability distribution of the apk

features towards maliciousness. Due to computational restrictions, thorough app analysis is not

possible on-device. Therefore, to increase the code coverage and detection accuracy, we have

further focused towards off-device analysis techniques.

Next, we propose a Semantic AWare AndrOid MalwaRe Detector (SWORD). It encapsulates the

semantics of Android apps using Asymptotic Equipartition Property (AEP) which are further

quantified to detect the malicious apps. Users are extending functionalities of their devices by

installing apps from various developers and vendor in an open ecosystem. These apps may

misuse the sensitive information stored on the phone or obtained from the sensors to violate

user’s privacy. There is a need to analyze the actual behaviour of apps with regard to privacy.

Static data flow analysis is a means for automatically enumerating the data flow inside a program.

We propose Android App Analysis via Data Flow: FlowMine that considers the data flow path

from a data source to a data sink, where ‘source’ is a non-constant data that marks the beginning

of the path, and ‘sink’ is the resource where the data reaches. We analyzed the data flow paths

in 2800 benign against 15000 malicious apps and assigned weights to each path, which is the

absolute difference between its use in benign and malicious samples.

In order to capture information leakage paths scattered across multiple apps, we propose Inter-

section Automata based Model for Android Application Collusion. In this technique, we represent

apps communication through ‘application automaton’ and identify policies based on the viola-

tion of permission model through ‘policy automaton.’ The intersection of the two automata will

detect the presence of collusion. The proposed technique has high false positive.

iv

v

Next, we propose Large Scale Klepto Apps Analysis: SneakLeak+. It statically analyzes the

reverse engineered intermediate code of each app, extracts relevant security information, and

represents the extracted information into a compact form suitable for formal verification. For-

mal analysis is used to verify the presence/absence of potential inter-app communication-based

leakage. To maintain scalability of the proposed method, we build an abstract model of the

apps that represent only potential leaks. To demonstrate the efficacy and scalability of our pro-

posal, we conduct a set of experiments on 11, 000 apps from Google Play Store and benchmark

datasets. Our experiments show that SneakLeak+ achieves highest precision (100%), highest

recall (93.3%) and highest F-measure (0.97) as compared to existing state-of-the-art approaches.

Currently, there is no standard app dataset available to verify efficacy and scalability of meth-

ods dealing with collusion detection. Therefore, we developed 64 wide-ranging apps exhibiting

collusion as our benchmark dataset, now, available as open-source. We have also formally de-

fined Dangerous Permissions, Sensitive API Calls, Inter-Component Communication Methods

and Resource-Permission Map function that is further used to define Communication, Commu-

nication Path, Sensitive Communication Path and Application Collusion.

vi

Dedications

dedicate my PhD Thesis to my mother Seema, father Kamal who taught me the

lessons of discipline, honesty and sincerity and my husband Dinesh without whom, I

would not have been able to pursue my doctoral research with utmost dedication.

Contents

Abstract iv

1 Introduction 1

1.1 Objectives . 3

1.2 Motivation and Thesis Impact . 4

1.3 Contributions . 4

1.4 Thesis Structure . 6

2 Analysis Techniques for Android App(s): A Review 7

2.1 Android App Composition . 7

2.2 Android Security Model . 9

2.2.1 App Signing . 9

2.2.2 Sandbox Environment . 9

2.2.3 App Permission Model . 9

2.3 Inter Component Communication (ICC) 10

2.3.1 Intents . 10

2.3.2 Content Provider . 11

2.3.3 Shared Preference . 11

2.4 Android Attacks . 12

2.4.1 Code Injection Attacks . 12

2.4.2 Intent Based Attacks . 12

2.4.2.1 Intent Spoofing . 12

2.4.2.2 Intent Hijacking . 13

2.4.3 Collusion Attacks . 13

2.5 Review of Analysis Techniques . 14

2.5.1 Static Analysis Techniques . 14

2.5.1.1 Resources . 14

2.5.1.2 Mechanism . 14

2.5.2 Dynamic Analysis Techniques . 16

2.5.2.1 Resources . 16

2.5.2.2 Mechanism . 16

2.5.3 Policy Enforcement Based Analysis 17

2.5.3.1 Resources . 17

vii

Contents viii

2.5.3.2 Mechanism . 17

2.6 Comparative Study . 18

2.7 Summary . 22

Part I Intra App Analysis 23

3 On-Device Static Analysis 25

3.1 DRACO: Overview . 26

3.1.1 App Features Extraction . 26

3.1.2 Dynamic Analysis Phase . 29

3.1.3 Feature Vector Construction . 30

3.1.4 Machine Learning Algorithm . 31

3.2 Evaluation . 32

3.2.1 Experimental Results . 32

3.2.2 Comparison with Existing Approaches 33

3.3 Summary . 33

4 Typical Path based Dynamic Analysis 35

4.1 Encapsulating App Semantics using System-Calls 35

4.2 Information Theory . 36

4.2.1 Asymptotic Equipartition Property 36

4.2.2 Ergodic Markov Chain . 37

4.3 Proposed Approach: SWORD . 40

4.3.1 Implementation Details . 40

4.3.1.1 System-Call Tracing . 41

4.3.1.2 Encapsulating Program Behavior 42

4.3.1.3 Statistical Analysis . 44

4.3.1.4 Train the Model . 45

4.3.2 Demonstrating Example . 45

4.4 Performance Evaluation . 49

4.4.1 Dataset Preparation . 49

4.4.2 Approximate All Path Computation 50

4.4.3 Detection Accuracy . 51

4.4.4 Comparison with Existing Approaches 52

4.4.5 Resiliency towards System-call Injection Attack 54

4.5 Summary and Limitations . 56

5 Data Flow based Privacy Leakage Analysis 57

5.1 Data Flow in an App . 57

5.1.1 Sensitive Sources and Sinks . 58

5.1.2 Taint Analysis . 59

Contents ix

5.2 Proposed Approach: FlowMine . 60

5.2.1 Motivating Example . 60

5.2.2 Implementation Details . 61

5.2.2.1 Mining Apps . 61

5.2.2.2 Flow Specificity . 62

5.2.2.3 Assignment of Ranks and Weight 63

5.2.2.4 Classification of an App 64

5.3 Experimental Evaluation . 65

5.3.1 Dataset Preparation . 65

5.3.2 Analysis Results . 65

5.3.3 Data Flow in Benign Apps . 66

5.3.4 Data Flow in Malicious Apps . 67

5.3.5 Accuracy . 68

5.4 Summary and Limitations . 68

Part II Inter App Analysis 69

6 ICC Primitives based Static Analysis 71

6.1 Introduction . 71

6.1.1 Threat Model . 72

6.1.2 Automaton Model . 73

6.1.3 Intersection Automaton . 73

6.2 Proposed Approach . 75

6.2.1 Application Automaton . 75

6.2.1.1 Constructing Application Automaton 75

6.2.2 Policy Automaton . 79

6.2.2.1 Constructing Policy Automaton 79

6.2.3 Collusion Detection . 80

6.3 Evaluation . 81

6.3.1 Dataset Preparation . 81

6.3.2 Analysis Results . 81

6.3.3 Timing Analysis . 83

6.3.4 Scalability . 84

6.4 Summary and Limitations . 84

7 Collusion Detection by Formal Model 87

7.1 Formalization . 88

7.1.1 Android App Collusion . 88

7.1.2 Formal Verification . 91

7.2 Proposed Approach: SneakLeak+ . 92

7.2.1 Extract App Information . 93

7.2.2 Sensitive DataFlow Analysis and Model Construction 94

7.2.2.1 Generate Collusion Model 95

7.2.2.2 Motivating Example . 97

7.2.2.3 Collusion Analysis using Model-Checking 98

7.2.3 Incremental analysis . 100

7.3 Evaluation . 100

7.3.1 Need of Interaction Analysis . 101

7.3.2 Comparison with the State-of-the-art Approaches 102

7.3.3 Performance and Timing . 104

7.3.4 Scalability . 105

7.4 Summary . 105

8 Conclusions and Future Work 107

8.1 Conclusions . 107

8.2 Pointers to Future Work . 108

8.3 Publications . 110

Appendices 113

A Benchmarking Colluding Apps for Analysis: DroidBench 3.0 115

A.1 Inter-App Communication Category . 116

A.1.1 DeviceId Leakage Apps . 117

A.1.2 Location Information Leakage Apps 117

A.1.3 Sink App: Collector . 117

B Brief Bio-Data 119

List of Figures

2.1 Collusion attack scenario . 13

3.1 Static Analysis Phase . 27

3.2 Dynamic Analysis Phase . 29

3.3 Analysis On Device . 33

3.4 Analysis Result . 33

3.5 Server Results . 33

x

4.1 Markov Chain Example . 39

4.2 SWORD Architecture . 41

4.3 SSG Example . 46

4.4 Typical Paths . 48

4.5 Path distribution w.r.t. to length in the malware and benign samples. . . 50

4.6 Injection Detection Accuracy . 55

5.1 FlowMine Architecture . 61

5.2 Total Number of Sources and Sinks . 65

6.1 msgRead app is colluding with msgSend app leads to privilege escalation . 72

6.2 Total Number of Sources and Sinks . 74

6.3 Intersection of Automata M and M′ that accepts {01} 74

6.4 Graph representation of apps . 77

6.5 Union of msgRead and msgSend apps’ graphs 77

6.6 Pruning of union graph in Figure 6.5 . 78

6.7 Application Automaton . 78

6.8 Policy Automaton . 80

6.9 Collusion Detection through Λ and Γ . 81

7.1 Model Checking Process . 92

7.2 Potential Threat Scenario: Sender app communicates data to Receiver

app through implicit intent (Android does not check for permission priv-

ileges while passing the data) . 97

List of Tables

2.1 Comparison among state-of-the-art approaches 20

3.1 Sample Manifest Features . 30

3.2 Sample DEX Features . 30

3.3 Sample Dynamic Features . 31

3.4 Accuracy of Machine Learning Models . 32

3.5 Detection rates (in %) of DRACO compared with other anti-malwares . . 34

4.1 Frequency of paths corresponding to the path lengths 46

4.2 Candidate paths from the graph . 47

4.3 AEP and ALBF value of candidate paths 47

xi

List of Tables xii

4.4 Detection Rates in % . 52

4.5 Comparison with related state-of-the-art approaches PD:PlayDrone,

GPS:Google Play Store, McGW: McAfee Goodware, GM: Genome

Project, SM:Self-made, CG:Contagio Minidump, SysCalls: SystemCalls . 53

5.1 Flows in Android Facebook app and com.keji.danti604 app 61

5.2 Flows in Android Facebook app, by SuSi categories 63

5.3 Sample Weight Lookup Table . 64

5.4 Categorized data flows (in %) for benign apps 66

5.5 Categorized data flows (in %) for malicious apps 67

6.1 DroidBench Inter-App Communication dataset 82

6.2 Google Play apps . 82

6.3 MNIT dataset . 83

7.1 Results of single-app analysis approaches on Device ID app and its vari-

ants

∗ = Risk Score (Scale 0-100) lesser is better, ∗∗ = Risk Score (Scale 0-1000)

lesser is better, † = Incompatibility issues. 101

7.2 Comparison of existing inter-app data leakage detection techniques 103

7.3 Performance and Timing Analysis of SneakLeak+ 105

A.1 DroidBench Releases . 115

A.2 Research Work uses Benchmarking Apps for Evaluation 116

Chapter 1

Introduction

With ever-increasing technological advancements, the smartphone has become one of

the essential components of our daily life. It has replaced not only the traditional

phones but also the watch, the alarm clock, the calendar, the organizer, the notebook,

the camera, and many other things. The popularity of smartphone is mainly due to

their extensibility that allows the user to download and install programs, called apps,

aimed at a particular function. As a consequence, more and more data is processed on

smartphones, including private, sensitive and confidential data. According to a study

made by Statista [1], by 2020, around 2.87 billion smartphone users will exist around

the globe. Nowadays, Android is the most popular smartphone OS that has captured

85% of the worldwide smartphone market, leaving its competitor iOS, Windows OS and

others far behind [2].

With this popularity, it is also becoming the key target for malware adversaries. Android

is vulnerable to many security risks. According to the recent OWASP mobile security

report [3], out of 91 reported security risks, 85 are recorded to be present in Android.

This makes Android security a serious concern. These risks are outcome of either mali-

ciously exploiting the legitimate procedures provided by android such as ICC, or taking

advantage of unchecked processes occurring in the system. Following are some of the

key reasons:

• Android offers open-sourced ecosystem that offers the information and source code

needed to create custom variants of the platform.

1

Chapter 1. Introduction 2

• Android mobiles are available at very affordable cost as there is no monopoly,

where one industry player could put restrictions.

• Hosting third-party apps are extremely affordable on Google Play Store.

Although, Google started a service, called ‘Bouncer’ to automatically scan the entire

Play Store (and all newly uploaded apps), malware writers keep on finding new ways

to circumvent the screening mechanism. According to a report published in September

2017 [4], there are dozens of malicious apps present on Play Store that sent fraudulent

premium text messages and charged people for fake services. Google also added ‘app

verification,’ a security feature in Android OS, yet banking trojans and other malicious

Android apps are still spreading. Recent years have witnessed, an upsurge of malicious

programs in the form of Android apps. For instance, Android malware like Cloak and

Dagger attack manipulates attributes of the operating system’s visual design and user

interface to hide malicious activity [5]. SlemBunk and Marcher attack actively targets

US financial institutions customers [6] and many more. Therefore, to ensure security

and privacy of an Android user, detection of malicious apps becomes primary line of

defence.

The main security mechanisms of Android are application sandboxing, application sign-

ing, and a permission framework to control access to (sensitive) resources. Android’s

security framework exhibits serious shortcomings:

• The burden of accepting app’s permissions is assigned to the end-user who in

general does not aware of the impact of prompted permissions on his privacy and

security. Thus, malware can be installed on end-user devices such as sending of text

messages to premium rate numbers or leaking of sensitive data in the background

of running games.

• Android does not enforce any permission on sharing data through inter-component

communication (ICC) mechanism (intents, shared preferences, and content

providers). Therefore, ICC across apps expose possibilities of various threats in-

cluding intent spoofing [7], component hijacking [7], confused deputy [8, 9], privi-

lege escalation [10], collusion [11, 12], etc. In these attacks, the malicious app may

send and/or receive sensitive data that it is not authorized to access and creates

leakage paths.

Chapter 1. Introduction 3

The consequences of these attacks lead to privacy leak that occurs if there is a secret

(without user consent) path from sensitive data as a source to statements that are

sending this data outside the application or device, called sink. This path may be

within a single component or across multiple components [11]. Thus it is necessary to

perform an inter-component and inter-app analysis of applications.

With the growing use of Android and the awareness of its security vulnerabilities, the

operating system is already providing various techniques to mitigate the risk of data

theft and misuse. Many techniques have been proposed in academic research papers,

both on the system level and on the application level. These research focus mainly on

the following parameters:

• Least privilege principle plays a vital role in the classification of benign and mali-

cious apps. The app with a lesser number of permissions is considered to be more

secure.

• Mostly techniques propose the detection of data/privacy leakage paths present in

an app. Almost no attention has been given to analyze multiple apps together.

Recent works have demonstrated that the main vulnerability comes from the fact that

leakage paths are exacerbated by several applications that can interact to leak data us-

ing the inter-app communication mechanism [10, 13–15]. The aforementioned security

risk could lead to the collusion attack resulting in privacy abuse [11]. The danger of

malware collusion is that each colluding malware only needs to request a minimal set

of privileges, which may make it appear benign under conventional screening mecha-

nisms [11]. Therefore most of the state-of-the-art approaches, and the associated tools

have long left out the security flaws that arise across the boundaries of single apps, in

the interaction between several apps. The major challenge lies in the multi-app analysis

is the search space posed by the possible combinations of apps.

1.1 Objectives

The purpose of this Thesis is to study state-of-the-art analysis tools, techniques and

develop techniques to detect effectively and precisely Potentially Harmful Applications

(PHA) on Android platform.

Chapter 1. Introduction 4

To achieve these goals, we analyze ‘single app’ and detect privacy leakage paths through

‘multiple apps.’ We focus on following objectives:

• Review the state-of-the-art techniques known for protecting user privacy and iden-

tify their shortcomings in doing so.

• Investigate and develop analysis techniques to complement existing single-app

analysis approaches with improved analysis coverage. Implement techniques that

effectively narrows down the search space of colluding apps candidates in order to

perform a large-scale multi-app analysis.

• Develop a standard app dataset to compare and benchmark efficacy and scalability

of methods dealing with collusion detection and make it available to the research

community.

1.2 Motivation and Thesis Impact

Mobile devices provide an attractive attack surface for cyber thieves as the devices hold

personal details and have potential capabilities for eavesdropping. Malicious hackers use

the Android app as a tool to gain access to private information. The consequences of

these attacks lead to damages that could be monetary or nonmonetary (loss of reputa-

tion, physical or mental pain or suffering).

The proposed analysis techniques presented in this Thesis will improve the detection

accuracy of potentially harmful apps for Android platform. Furthermore, it will allow

large-scale multi-app analysis to detect privacy leakage paths scattered across apps with

reasonably good accuracy. Finally, the open-source dataset exhibiting collusion attacks

can be used to verify efficacy and scalability of methods dealing with collusion detection.

1.3 Contributions

This Thesis is a step forward to protect the users’ privacy by detecting potentially

harmful apps that contain undesired data flow paths. We present techniques aiming

this goal as well as a mechanism to cope with the challenges in intra and inter app(s)

analysis. In summary, following are the motivations and contributions of this Thesis:

Chapter 1. Introduction 5

1. The proposed “DRACO” model is motivated by the fact that users want to analyze

the app on their device. We propose an on-device analysis app that classifies

malicious and benign apps based on the extracted features. It generates D-Score

which is derived from the probability distribution of the app features towards

maliciousness.

2. On-device analysis can produce the first level of warnings only, due to com-

putational restrictions. To increase the code coverage and detection accuracy,

server module needs to be equipped with off-device techniques. So, we propose

a “SWORD” that encapsulates the semantics of Android apps using Asymptotic

Equipartition Property (AEP) which are further quantified to detect the malicious

apps.

3. It has been observed that capturing the behaviour of apps with regard to privacy is

an important factor to differentiate malicious and benign apps in Android platform.

So, we propose “FlowMine” that models the behaviour of an app in terms of

sensitive data flow across execution path(s) of an app. The frequency of occurrence

of a source-sink pair across a number of malicious and benign apps is obtained to

determine if this pair can be used as a discriminant between malicious and benign

behaviour.

4. Since, the state-of-the-art approaches focus on single-app analysis and hence failing

to find security flaws arise across single apps boundary. We propose, “Intersection

Automata based Model for Android Application Collusion” that represents apps

communication through ‘application automaton’ and identify policies based on the

violation of permission model through ‘policy automaton.’ The intersection of the

two automata detects the presence of collusion.

5. To allow large-scale multi-app analysis by reducing the search space posed by the

combinations of apps, we propose “SneakLeak+” that models app representing po-

tential leaks only. It statically analyzes the reverse engineered intermediate code

of each app, extract security relevant information, and represent the extracted in-

formation into a compact form suitable for formal verification. The formal analysis

engine is used to experimentally verify the presence/absence of potential inter-app

communication-based leakage.

Chapter 1. Introduction 6

6. Currently, there is no standard app dataset available to verify efficacy and scal-

ability of methods dealing with collusion detection. Therefore, we developed 64

apps exhibiting collusion as our benchmark dataset, now, available as open-source

at DroidBench [16] (which was verified by peer group before hosting). This is our

contribution to the research community.

In this Thesis, our focus is to propose, design and implement analysis techniques for intra

and inter app(s) for Android platform. These methods help in improving the detection

rate of malicious apps and apps that can leak user’s private information in collaboration.

1.4 Thesis Structure

The remainder of the Thesis is organized as follows. Chapter 2 provides an inside

of Android and existing attacks due to its vulnerability. It evaluates state-of-the-art

analysis techniques and their comparative study. Based on the existing reviews, we

propose single as well as multi-app analysis techniques to improve the analysis coverage

and detection accuracy. This is reflected in two parts of the Thesis. Part I focuses on the

techniques proposed for intra-app analysis. In Chapter 3, we propose ‘DRACO,’ an on-

device app analysis to classify malicious and benign apps. Chapter 4 presents ‘SWORD’

that encapsulates app’s semantics using system-calls to categorize malicious/benign app.

Chapter 5 explores ‘FlowMine,’ our proposed approach based on data flow analysis to

detect apps that are maliciously leaking data to sensitive sinks. Part II of the Thesis

focuses on inter-app analysis. In Chapter 6, we propose collusion detection technique

for two apps based on the intersection of automata. Chapter 7 describes the design and

implementation of a formal model for collusion detection for multiple apps. Finally, we

conclude the Thesis with a pointer to the future direction.

Chapter 2

Analysis Techniques for Android

App(s): A Review

Android apps that handle personal or sensitive user data by collecting information about

the user (including personally identifiable information, financial and payment informa-

tion, authentication information, phonebook or contact data, microphone and camera

sensor data, and sensitive device data) [17] are considered as potentially harmful apps.

We are witnessing an exponential upsurge in malicious apps, growing use of potentially

harmful apps to create leakage paths that are scattered over several apps, banking frauds,

etc. are targeting Android smartphones.

In this chapter, we discuss the Android security mechanism, app’s composition, and

communication mechanism. The chapter provides a comprehensive assessment of the

strengths and shortcomings of the known state-of-the-art approaches to analyze and

detect potentially harmful apps. This chapter also provides a base towards proposing

techniques that can analyze single app as well as simultaneously analyze multiple apps

to detect data leaks. We will interchangeably use app(s) for application(s) in this Thesis.

2.1 Android App Composition

Android applications are distributed as binaries in a regular format based on zip files

with .apk as the file extension. It usually contains the following files and directories [18].

7

Chapter 2. Analysis Techniques for Android App(s): A Review 8

1. Manifest file: Manifest file is an XML configuration file (AndroidManifest.xml)

one per app. It is used to declare various components of an application, their

encapsulation (public or private) and the permissions required by the app. An-

droid APIs offer programmatic access to mobile device-specific features such as

the GPS, vibrator, address book, data connection, calling, SMS, camera, etc.

These APIs are usually protected by permissions. For example, the Vibra-

tor class, to use the android.os.Vibrator.vibrate(long milliseconds) func-

tion, which starts the phone vibrator for some milliseconds. The permission

android.permission.VIBRATE must be declared in the app Manifest file.

2. dex file: A Dalvik executable (classes.dex), which contains the bytecode of the

program.

3. res directory: Resources including string literals, their translations, and refer-

ences to binary resources.

4. layout directory: XML layouts describing user interface elements.

5. lib directory: The directory containing the compiled code that is specific to a

software layer of a processor.

6. assets directory: The directory containing applications assets, which can be

retrieved by AssetManager.

An android app is composed of any combination of the following four components:

• Activities: The Android libraries consists of a set of GUI components specifically

built for the interfaces of mobile devices, which have smaller screens and low power

consumption. One type of such component is Activities that represent screens

which are visible to the user;

• Services: They perform background computation;

• Content Providers: They act as database-like data stores;

• Broadcast Receivers: They handle notifications sent to multiple targets.

Chapter 2. Analysis Techniques for Android App(s): A Review 9

2.2 Android Security Model

Android security depends on restricting apps by combining app signing, sandboxing,

and permissions.

2.2.1 App Signing

App signing is a prerequisite for inclusion to the official Android market (Google Play

Store). App signature is the point of trust between Google and the third party developers

to ensure app integrity and the developer reputation. Most developers use self-signed

certificates that they can generate themselves, which do not imply any validation of the

identity of the developer. Instead, they enable seamless updates to applications and

enable data reuse among sibling apps created by the same developer [19].

2.2.2 Sandbox Environment

Android apps are executed in a sandboxed environment to protect the system, the user

data, the developer apps, the device, the network, and the hosted applications, from

malware [20]. Each app process is protected by an assigned unique id (UID) within an

isolated sandbox. The sandboxing restrains other apps or their system services from

interfering the app [21]. Apart from UID, a process may be assigned one or more

group id (GIDs). For example, if an app has permission for a network resource (e.g.,

Bluetooth), the app process is assigned to the corresponding network access id. An app

must contain a PKI certificate signed with the developer key. App signing procedure

places an app into an isolated sandbox assigning it a unique UID. If the certificate of

an app A matches with an already installed app B on the device, Android assigns the

same UID (i.e., sandbox) to apps A and B, permitting them to share their private files

and the Manifest defined permissions [22].

2.2.3 App Permission Model

App permission model regulates how applications access certain sensitive resources, such

as users’ personal information (e.g. phone book, gallery, etc.) or sensor data (e.g.,

camera, GPS, etc.). For instance, an application must have the READ CONTACTS

Chapter 2. Analysis Techniques for Android App(s): A Review 10

permission to read entries in a user’s phone [23]. System permissions are divided into

four protection levels. The two most relevant to this thesis are normal and dangerous

permissions. Normal permissions require when the app needs to access data or resources

outside the app’s sandbox but involve very little risk to the user’s privacy or the oper-

ation of other apps. For example, permission to set the alarm is a normal permission.

Dangerous permissions are required when the app wants data or resources that involve

user’s private information or could potentially affect user’s stored data or the operation

of other apps. For example, the ability to read user’s contacts is a dangerous permis-

sion [24].

2.3 Inter Component Communication (ICC)

Inter Process Communication (IPC) is known as Inter Component Communication

(ICC) in Android [25]. It is the key features of Android programming model. It allows

a component of an application to communicate and transfer data to another component

of same or other application. ICC allows developers to leverage services provided by

other applications. For example, a cab booking application can ask Google Maps for

client’s or driver’s location information. This communication between applications can

reduce developer’s burden and facilitate functionality reuse. To support inter-component

communication, there exist conventional methods viz Intents, Content Providers, and

Shared Preferences.

2.3.1 Intents

Intents are the preferred message passing mechanism for asynchronous IPC in Android.

ICC is widely facilitated through Intents [7]. Intents enable components of an application

to invoke other components of the same or different applications. It is also used to pass

data between different components through Bundles. It optionally contains destination

component name or action string, category and data. The Android API defines methods

called ICC methods that can accept intents and perform actions accordingly. For exam-

ple, startActivity(Intent), startService(Intent) etc. Based on the destination of

ICC calls, they are categorized into two broad categories:

Chapter 2. Analysis Techniques for Android App(s): A Review 11

Implicit Intent

Implicit intents are used when the receiver of the intent is not fixed [26]. When an app

wants to send the intent to all the registered components (registration is done using an

intent filter in the Manifest file) within and across the installed apps. In the following,

we present a sample code of implicit intent where "com.example.msgSendFirst" is the

action string:

1 Intent intent = new Intent(”com.exampke.msgSendFirst”);

2 startActivity (intent) ;

Explicit Intent

Explicit intents are used when receiver of the intent is fixed. When an app invokes

API call with explicit intent, the framework will deliver the intent to the compo-

nent that is mentioned in the intent. A Sample code of explicit intent where "this,

LoginActivity.class" is the address of the destination component:

1 Intent intent = new Intent(this,LoginActivity. class) ;

2 startActivity (intent) ;

2.3.2 Content Provider

Content Providers are used to transfer structured data across components of same or

different apps. It stores information in tables like relational databases. To access or

modify data in Content Provider, apps need ContentResolver objects. An app can

also attach read and write permissions to the content provider it owns.

2.3.3 Shared Preference

Shared Preference is an operating system feature that allows apps to store key-value

pairs of data. Its purpose is to be used to store preferences information. Apps can use

key-value pairs to exchange information if proper permissions are defined when accessing

and storing data.

Chapter 2. Analysis Techniques for Android App(s): A Review 12

2.4 Android Attacks

In Android, an attack is any attempt to expose, alter, steal or gain unauthorized access

of users’ personal or sensitive data or disable, destroy or gain unauthorized access of any

resource without users consent. Android ensures security through its sandbox model,

application signing and the permission model for managing IPC effectively and efficiently.

In spite of these measures, Android is vulnerable to many security risks. According to

the recent OWASP mobile security report [27], out of 91 reported security risks, 85

are recorded to be present in Android. This makes Android security a serious concern.

Following are some of the common attacks in Android:

2.4.1 Code Injection Attacks

Malware authors are injecting irrelevant or independent code at runtime to alter the

actual runtime sequence of events. This can evade existing malware detection tech-

niques because an injected application can redirect program control to some other code

and also can execute it. There are mainly three ways [28] to inject code into already

running Android application 1) using DexClassLoader, an Android app can invoke the

classes’ methods of any downloaded app during runtime, 2) invoking API named as

createPackageContext, an android app can load and invoke resources (images, files,

and codes) of other app [28] and 3) using OS shell [29].

2.4.2 Intent Based Attacks

We focus our attention on the security challenges of Android communication from the

perspectives of Intent sending and receiving. In section 2.4.2.1, we focus on the Intent

receiving and consider vulnerabilities related to receiving Intents coming from other

applications. In Section 2.4.2.2, we consider how sending Intents to the wrong application

can leak user information.

2.4.2.1 Intent Spoofing

Intent spoofing refers to a typical scenario where a vulnerable app has a component that

expects Intent from Android framework or itself. If the component is exposed, then

Chapter 2. Analysis Techniques for Android App(s): A Review 13

Figure 2.1: Collusion attack scenario

other malicious apps can send forged Intents, and then spoof this app in order to trigger

misbehaved actions. We can classify the Intent spoofing to three subclasses: malicious

broadcast injection, malicious activity launch, and malicious service launch [7].

2.4.2.2 Intent Hijacking

The Intent hijacking threat is illustrated when an Intent could not reach the intended

recipient via an implicit ICC, and then it may be hijacked by an unauthorized app [7].

We can classify this threat based on the type of the sending component: broadcast

receivers hijacking, activity hijacking, and service hijacking.

2.4.3 Collusion Attacks

Collusion refers to the scenario where two or more applications possibly (not necessary)

developed by the same developer, interact with each other to perform malicious tasks.

Figure 2.1, illustrates a collusion: there are two apps - Contact Manager and News.

Contact Manager includes permissions READ CONTACTS and WRITE CONTACTS. On the

other hand, News app possesses only INTERNET permission. They can communicate via

Intent. If Contact Manager sends an Intent carrying contact information as a payload to

News app which can transmit the information to the outside world using its permission.

Then, in such scenario, sensitive information can be leaked without violating any security

policies. The danger of malware collusion is that each colluding malware only needs to

request a minimal set of privileges, which may make it appear benign to current state-

of-the-art techniques that analyze one app at a time.

Chapter 2. Analysis Techniques for Android App(s): A Review 14

2.5 Review of Analysis Techniques

The analysis techniques based on the detection mechanism can be broadly categorized

into static, dynamic and policy based techniques. This section explains each category,

resources, and mechanism used in the analysis.

2.5.1 Static Analysis Techniques

Static analysis techniques act as a potential weapon for conducting the behavioural

analysis of an application. It consists of examining and auditing the code without

executing it [30]. Android apps are analyzed by inspecting the source code without

actually running them. Static analysis extensively explores data flows in a program and

subsequently detect paths through which information can be leaked.

2.5.1.1 Resources

To perform static analysis, information can be extracted from the Manifest file that

includes the name of the package, list of components, list of permissions, version, in-

formation about intents and intent-filters used for communication, level of API and

libraries required by an application for execution [31]. Dalvik executable file reveals in-

formation about the structure of an application and methods used by it. It is analyzed

to detect potentially malicious actions (such as sending SMS to premium numbers, use

of reflection or encryption, access to sensitive resources, etc.) [32]. Java libraries can be

statically analyzed in order to obtain data flow summaries of an application. It can be

useful to determine malicious flow in an application.

2.5.1.2 Mechanism

The mechanism employed to perform static analysis depends on the depth and pur-

pose of analysis. Various static analysis techniques used by researchers such as taint

analysis [33], dataflow analysis [34], entry point analysis [35] to name a few.

Taint analysis is also known as user-input dependency checking [33]. The concept behind

taint analysis is that any variable altered by the user becomes tainted and is considered

Chapter 2. Analysis Techniques for Android App(s): A Review 15

vulnerable. The taint may flow from variable to variable during a course of operations,

and if the tainted variable is utilized to perform some harmful operation, it becomes

a breach of security. Taint analysis detects the set of instructions that are affected by

user inputs. It helps in identifying sensitive information leakage. Data flow analysis

determines the information flow between various components. It is the essential analysis

need to detect leakage of sensitive data. For instance, for a variable, it can detect all

the possible sources of a variable’s value, i.e., where do values assigned to a variable

come from, all the possible values a variable can possess, all the sinks where its value

passes further, etc [36, 37]. Data flow analysis can be of various types depending on the

context of analysis:

• Context-sensitive data flow analysis [38] examines target of a function call by

focusing on calling context.

• Path sensitive data flow analysis [39] takes into account the branching statements.

It analyzes the information obtained by the state obtained at conditional instruc-

tions.

• Flow-sensitive data flow analysis [40] considers the order of instructions in a pro-

gram.

• Inter-procedural data flow analysis [41] takes into account the flow of information

between procedures. It is achieved by constructing call graphs

• Intra-procedural data flow analysis [42] involves the flow of information within a

procedure.

Entry point analysis [35] helps in determining where a program starts its execution. It is

very challenging to identify starting point due to the use of callbacks and multiple entry

points. Accessibility analysis [43] contributes in evaluating the likelihood of following a

path between two components [30]. It helps in building reachability graphs showing the

path followed through methods for execution of an application. A side-effect analysis is

performed to compute which variables of a method are affected by its execution [37].

Chapter 2. Analysis Techniques for Android App(s): A Review 16

2.5.2 Dynamic Analysis Techniques

Dynamic analysis refers to the analysis of a program by executing it [30]. Android apps

are examined and reviewed by actually executing them on real devices or emulators.

Static analysis may miss some information that is generated during actual run, for

example, network data stored in the heap memory during run time is not available

before executing app, obfuscated strings are hard to recognize from decompiled codes,

etc., therefore dynamic analysis is important to complement static analysis [44].

2.5.2.1 Resources

For dynamic analysis, the information about native code libraries, kernel parameters,

CPU parameters, memory parameters, dynamically loaded libraries, components and

processes currently running and invoked API calls, can be captured dynamically when

the program is running [45].

2.5.2.2 Mechanism

Dynamic analysis mechanism includes System hooking [46], Taint analysis [13], Instru-

mentation [47], System call tracing [48], Debugging [49], Code emulation [50], to name

a few.

System hooking involves altering or amplifying the functionalities of applications or

components of the application, by anticipating function calls, events and transmitted

messages between the components [51]. It is used to capture data flows, construct

event ordering, record the parameters of passed messages and store values of run-time

variables [52]. Dynamic taint analysis [53] starts by tainting the data that is initiated

from untrusted sources, specifically user supplied inputs. Later, these tainted variables

are stored, and whenever they carry sensitive data, they are tracked down to detect

sensitive paths [50]. The term instrumentation pertains to the capability of monitoring

or evaluating the performance of the product and interpreting errors [54]. Android apps

are instrumented to monitor actions of specific components such as logging number of

times a particular service is called, etc. It is achieved by injecting some code to keep a

log of actions of specific components. In order to perform system call tracing, a system

Chapter 2. Analysis Techniques for Android App(s): A Review 17

call tracer is embedded into the system that logs the invoked interrupts or APIs as the

program runs on the system [55]. In code emulation, the malicious code is executed on

virtual machines with replicated CPU and memory management system, rather than

real processor [55].

2.5.3 Policy Enforcement Based Analysis

Policy (a.k.a rule) enforcement based techniques make use of certain set of policies(rules)

that are considered as normal or benign. These policies can be represented either in the

form of regular expressions or any new policy language. The access of apps to any

policy protected resource is verified against the predefined policy-set [56]. Verification

can be done statically on the intermediate program code and can also be enforced at

install-time or run-time. If the resource access adhered to the policy-set, it is considered

benign. Any violation is referred as malicious behaviour [57]. The challenge posed by

this defense mechanism lies in identifying, defining and maintaining the policy-set. It

should not be very strict that may generate false-positives, but at the same time, it

should not be too liberal to generate more false-negatives [58].

2.5.3.1 Resources

For policy-based analysis, extraction of information depends on the nature of the policy-

set and where they are applied [59]. For example, if the policy set considers permissions

and their corresponding API call then, Manifest, dex files and libraries are sufficed to

extract relevant information. But, when policies are enforced at install-time or run-time,

hooking or instrumentation need to be done. In the later case, relevant information can

be extracted from system parameter like registers, CPU, etc.

2.5.3.2 Mechanism

The access control can be applied at various system abstraction layers viz. kernel-

layer, middle-ware layer, and application layer [60]. The access controls are of various

type viz. Mandatory Access Control (MAC), Discretionary Access Control (DAC), Role

Based Access Control (RBAC), Context Based Access Control (CBAC) and Attribute

Based Access Control (ABAC) [61, 62].

Chapter 2. Analysis Techniques for Android App(s): A Review 18

In MAC, whenever an app wants to access policy protected resource, Android kernel will

verify the access to predefined rule-set. The access is allowed only if it is authorized.

This rule-set is not modified by app or user. In DAC, user can define an access control list

(ACL) on specific resources. These resources can be accessed when the owner provides

permission. RBAC is based on the roles of an individual user. The user is assigning to

different positions, with permissions to use the resources. The user can access sensitive

data based on their assigned role. Till Android 5.1.1, once privileges are granted to

the applications, they cannot be revoked. Despite that in many cases, whether the

application gets a privilege or not depends on the user context and therefore CBAC

comes into existence in Android. It has the capability to give privileges with dynamically

granted or revoked to applications. In ABAC, granting privileges to the users is based on

attributes which combine with the policies. Authorization relies on a set of operations

that are determined by evaluating the attributes associated with the subjects, objects,

and requested services.

In addition to these analysis techniques, there exist few hybrid approaches that benefit

from the advantages of both static, dynamic and policy based techniques.

2.6 Comparative Study

Researchers have proposed various approaches for intra and inter-app analysis varying

from static [30, 38], dynamic [44] to policy enforcement [56, 58] based techniques. Ta-

ble 2.1 summarizes recent approaches under different criteria: (1) handled components,

(2) handled Intents, (3) examines native code or not, (4) resolves reflection or not, (5)

works on which code level, (6) conducts intra or inter-app analysis and (7) availability

of the tool. We believe this helps the reader to examine all the differences in one glance.

Most of the proposed approaches, handle Android components viz. Activities(A), Ser-

vices(S) and Receivers(R), whereas, Content Providers(C) are not handled by [7, 63–67]

as shown in column (1) of the table. These approaches consider only Intents as a medium

of communication. To access content providers, a unique resource identifier (URI) does

not use the Intent. Therefore, Intent specific approaches fail to handle content providers.

In particular, there are two approaches [68] and [69] that are not handling any compo-

nents other than activities. In [68], the authors have mentioned that their approach

Chapter 2. Analysis Techniques for Android App(s): A Review 19

can be similarly extended for other components whereas [69] have built a prototype on

activities and it is available commercially as a cloud service. In future the authors of

[69] may extend their approaches to handle all the other components.

There are broadly two types of Intents viz. Implicit(I) and Explicit(E). All the proposed

approaches can handle communication through Intents as they are the most popular

medium of communication used in Android as shown in column (2) of the table. Al-

though there is one approach [65] that is not considering implicit Intent. The reason

narrated by the authors of [65] is that they do not want to increase false positives. In

case of implicit Intent, the target is not fixed. If there are multiple receivers then at the

run-time one of the receivers is chosen.

Column (3) of table 1 presents the capability of proposed approaches to handle native

code. The native code refers to the code written in C/C++ and used by Android app

libraries for low-level interactions with the underlying Linux kernel. The native code

runs directly on the processor and hence not included in Dalvik executable that runs in

Dalvik virtual machine. Almost all the approaches convert dex into some intermediate

representation (IR) language but native code is not get converted into IR and hence,

cannot be handled by many tools. Flowdroid [38] can handle very limited native calls as

they defined some explicit rules for common invocation of native calls present in Java.

Tools like [26, 68, 70] leverage Flowdroid for analysis and therefore can handle native

calls partially.

The proposed approaches based on their ability to resolve reflection is depicted in column

(4) of the table. Reflection is a language’s ability to inspect and dynamically call classes,

methods, attributes, etc. at runtime. It is a dynamic phenomenon, and hence it is very

difficult for any static approach to handle it. Dynamic analysis approaches are needed

to capture related runtime behaviour features to resolve reflection. If an API is called

through reflection, it is passed as a parameter and hence become invisible for detection

tools. Although some static tools like [26, 70, 71] can handle reflection partially meaning

if the API calls are string constants, then they may be revealed otherwise if they are

called through variable where it is obfuscated or encrypted, these tools cannot resolve

such reflected calls.

Analysis tools based on the used intermediate representation (IR) for analysis are clas-

sified in column (5) of the table. Android apk file is converted to some IR prior to

Chapter 2. Analysis Techniques for Android App(s): A Review 20

P
ro

p
o
sed

A
p
p
ro

a
ch

es
C

o
m

p
o
n
en

ts
In

ten
ts

N
a
tiv

e
R

efl
ectio

n
C

o
d
e

In
ter-a

p
p

A
va

ila
b
ility

H
a
n
d
led

H
a
n
d
led

C
o
d
e

(4
)

L
ev

el
A

n
a
ly

sis
(7

)
(1

)
(2

)
(3

)
(5

)
(6

)

Static
M

R
-D

ro
id

[7
2
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

J
ava

B
y
teco

d
e

Y
es

-

D
etectin

g
In

ter-A
p
p

In
fo

rm
a
tio

n
L

ea
ka

g
e

P
a
th

s
[6

7
]

〈A
S

R
-〉

〈E
I〉

N
o

N
o

J
ava

B
y
teco

d
e

&
S
m

a
li

Y
es

-

T
ow

a
rd

s
A

u
to

m
a
ted

A
n
d
ro

id
A

p
p

C
o
llu

sio
n

D
etectio

n
[6

4
]

〈A
S

R
-〉

〈E
I〉

N
o

N
o

S
m

a
li

Y
es

-

IC
C

M
a
p

[7
3
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

J
im

p
le/

S
o
u
rce

co
d
e

Y
es

-

IccT
A

[2
6
]

〈A
S

R
C
〉

〈E
I〉

Y
es*

Y
es*

J
im

p
le

Y
es

+
O

p
en

-S
o
u
rce

P
erm

issio
n

F
low

[7
4
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

J
ava

B
y
teco

d
e

N
o

-

F
U

S
E

[7
1
]

〈A
S

R
C
〉

〈E
I〉

N
o

Y
es*

J
ava

B
y
teco

d
e

Y
es

C
o
m

m
ercia

l

A
m

a
n
D

ro
id

[6
3
]

〈A
S

R
-
〉

〈E
I〉

N
o

N
o

J
ava

B
y
teco

d
e

N
o

O
p

en
-S

o
u
rce

D
id

F
a
il

[6
8
]

〈A
-

-
-〉

〈E
I〉

Y
es*

N
o

J
ava

B
y
teco

d
e

Y
es

O
p

en
-S

o
u
rce

C
o
m

D
ro

id
[7

]
〈A

S
R

-
〉

〈E
I〉

N
o

N
o

J
ava

B
y
teco

d
e

N
o

O
p

en
-S

o
u
rce

Dynamic

In
telliD

ro
id

[6
5
]

〈A
S

R
-〉

〈E
-〉

Y
es

Y
es

J
ava

B
y
teco

d
e

N
o

-

In
ten

tD
ro

id
[7

5
]

〈A
-

-
-〉

〈E
I〉

Y
es

Y
es

J
ava

B
y
teco

d
e

Y
es

C
o
m

m
ercia

l

T
a
in

tD
ro

id
[1

3
]

〈A
S

R
C
〉

〈E
I〉

Y
es

Y
es

J
ava

B
y
teco

d
e

N
o

O
p

en
-S

o
u
rce

Policy Based

D
IA

L
D

ro
id

[7
0
]

〈A
S

R
C
〉

〈E
I〉

Y
es*

Y
es*

J
ava

B
y
teco

d
e

Y
es

O
p

en
-S

o
u
rce

In
tersectio

n
A

u
to

m
a
ta

B
a
sed

M
o
d
el

fo
r

A
n
-

d
ro

id
A

p
p
lica

tio
n

C
o
l-

lu
sio

n
[6

6
]

〈A
S

R
-〉

〈E
I〉

N
o

N
o

J
ava

B
y
teco

d
e

Y
es

-

F
la

sk
D

ro
id

[6
0
]

〈A
S

R
C
〉

〈E
I〉

N
o

N
o

-
Y

es
-

X
M

a
n
D

ro
id

[7
6
]

〈A
S

R
C
〉

〈E
I〉

Y
es

Y
es

-
Y

es
-

•
A

:
A

ctiv
ity,

S
:

S
erv

ice,
R

:
B

ro
a
d
ca

st
R

eceiv
er,

C
:

C
o
n
ten

t
P

rov
id

er
E

:
E

x
p
licit

In
ten

t,
I:

Im
p
licit

In
ten

t
•

Y
es*

:
T

h
e

d
eta

ils
a
re

ex
p
la

in
ed

in
sectio

n
2
.6

Y
es

+
:

If
it

is
u
sed

w
ith

A
P

K
C

o
m

b
in

er

T
a
b
l
e
2
.1
:

C
o
m

p
a
riso

n
a
m

o
n

g
sta

te-o
f-th

e-a
rt

a
p

p
roach

es

Chapter 2. Analysis Techniques for Android App(s): A Review 21

the analysis. There are four code levels on which analysis can be performed viz. Java

source code, Java bytecode, Jimple, and Smali. Java source code can be analyzed be-

cause applications are written in Java language. The source is available only if the apps

are open-sourced or self-developed. Android apps are compiled into Dalvik bytecode

called Dex, which is executed in Dalvik virtual machine. For analysis, Dalvik should

be converted to Java bytecode. This can be done by many apk to Jar converters like

dex2jar [77], ded [78] and Dare [79]. Jimple is a simplified version of Java bytecode. It is

a typed 3-address intermediate representation. It is used by Soot [80] which is a popular

static analysis framework for Java. Dexpler [81] is a plugin for the Soot framework that

translates Dalvik bytecode to Jimple. Smali is another IR used by very popular reverse

engineering tool developed by Google named Apktool [82].

Chapter 2. Analysis Techniques for Android App(s): A Review 22

2.7 Summary

Android is a modern operating system for smartphones with expanding market share.

The main security mechanisms of Android are sandboxing, signing, and a permission

framework to control access to (sensitive) resources as discussed in Section 2.2. An-

droid’s security framework exhibits serious shortcomings as discussed in Section 2.4.

The burden of approving application permissions is delegated to the end-user who in

general does not care much about the impact of prompted permissions on his privacy

and security. Thus, malware can be installed on end-user devices such as unauthorized

sending of text messages or leaking of sensitive data in the background of running games

as demonstrated in Section 2.4.

With the growing use of Android and the awareness of its security vulnerabilities, some

research contributions have led to tools for the intra-app analysis of Android apps.

Unfortunately, these state-of-the-art approaches and the associated tools have long left

out the security flaws that arise across the boundaries of single apps, in the interaction

between several apps. Based on the existing reviews in the chapter, we propose single

as well as multi-app analysis techniques to improve the analysis coverage and detection

accuracy. This is reflected in two parts of the Thesis. Part I focuses on the techniques

proposed for intra-app analysis whereas Part II focuses on inter-app analysis.

In the next chapter, we will discuss intra-app analysis proposal DRACO, an on-device

analysis technique to detect malicious apps.

Part I

Intra App Analysis

23

Chapter 3

On-Device Static Analysis

In the previous chapter, we discussed Android security model, its vulnerabilities, and

existing analysis techniques. In this chapter, we propose, DRACO, an app-based analysis

mechanism that utilizes the synergy of static, dynamic and machine learning based

classification techniques. DRACO statically extracts following features:

• From Manifest file:

1. Permissions

2. Hardware Components

3. Filtered Intents

• From Dex file:

1. Suspicious API calls

2. Restricted API calls

3. Used Permissions

4. Network Addresses

The proposed technique employs machine learning on the extracted features to quantify

the risk posed by the app by providing a risk score. The goal of this chapter is to

design an analysis technique capable of identifying risky apps (presence of restricted

and suspicious API calls, unused permissions, suspected IP addresses, etc.) on-device.

25

Chapter 3. On-Device Static Analysis 26

3.1 DRACO: Overview

Android apps developed by naive programmers and posted without regular testing have

exposed mobile devices to attacks like bugs, data-leaks, and confidential user data

breach. Malware app detection, prevention, and mitigation are important concerns

for anti-malware industries (like AVG, McAfee, etc.) and academia. Malware app de-

tection approaches are static, dynamic and hybrid. Static app analysis [83] is performed

by inspecting the complete code without executing it. Dynamic analysis [84] generates

temporal or spatial snapshots of processor execution, memory, network activity, system

call logs, SMSes sent, phone calls made, etc. to discriminate harmful app from normal.

Both the methods, although complementary, can be used in combination to increase the

code coverage.

Techniques proposed to analyze apps off-device cannot be replicated as it is on the

mobile platform because of the concerns of limited memory, constrained processing,

and restricted power availability. So, we propose, DRACO an Android app analysis

mechanism that analyzes apps statically to inspire on-device analysis and extend code

coverage, in combination with dynamic analysis. It has two modules, client module

which is in the form of an Android app and gets installed on mobile devices and a server

module to complement the analysis. The proposed methodology consists of following

steps:

• Reverse engineer the apk to extract Manifest and other binary files and convert

them to readable form

• Extract features of an application from the app’s code and the Manifest file

• Classify using linear support vector machine classification algorithm

• Quantify risk posed by the app by generating a risk score called ‘D-Score’

In the following subsections, we shall be discussing these steps in detail.

3.1.1 App Features Extraction

DRACO performs broad static analysis, gathering as many features of an application

as possible from the app’s code and the Manifest file. This step is performed by both

Chapter 3. On-Device Static Analysis 27

client as well as server module. Client module executes in a constrained environment

and should complete in a timely manner. Therefore, it extracts features only from

Manifest file whereas, server module extracts features from app’s code. The overall step

is illustrated in Figure 3.1 and is outlined as follows:

Figure 3.1: Static Analysis Phase

(a) Client Module : Client module sits on device and user can choose apk file from the

device for analysis. It statically inspects given apk and extracts different features from

the app’s Manifest. These features are explained below:

[D1] Requested Permissions: In Android, permissions allow an app to access

security-relevant resources. Permissions are actively granted by the user at the

time of installation or the run-time (from Android 6.0) and are declared in the

Manifest file of the app. Malicious software tends to request certain permissions

more often like SEND SMS permission or READ CONTACTS permission. So D1 is a

feature set that consists of all the permissions mentioned in the Manifest.

[D2] Filtered Intents: Intents are the messaging objects that facilitate communica-

tion between different app components like Activity, Service, Broadcast Receiver,

etc. An intent-filter is an expression in an app’s Manifest file that specifies the

type of intents the component would like to receive. Malicious software tends to

Chapter 3. On-Device Static Analysis 28

listen some specific intent messages like BOOT COMPLETED, ACTION SENDTO etc. So

D2 is a feature set that consists of all the intent-filters mentioned in the Manifest.

[D3] Hardware Components: Apps need to request hardware modules (like camera,

touchscreen, GPS, etc.) if needed, in the Manifest file. Requesting access to

specific hardware can cause security implications, as their combination may reflect

harmful behaviour. For example, if an app has access to camera and network, it

may leak pictures to the attacker.

(b) Server Module : Server module sits on the server and accepts apk from the client

module. The apk is disassembled into the smali format [85] (reverse engineered) to

extract features from the code and identify any suspicious information or activity. These

features are explained below:

[D4] Restricted API call: In Android, there are some API calls that are executed

only by the system apps (like REBOOT, DELETE PACKAGES, etc.). DRACO

searches the presence of such calls in the disassembled code as the use of such calls

may indicate that the malware is doing privilege escalation in order to surpass the

limitation imposed by the Android permission system. So D4 is the feature set

that consists of all the restricted API calls in the app’s code.

[D5] Unused Permissions: It may happen that the app is given a certain set of

permissions which remains unused. In such cases, we can call the app as over-

privileged. Thus, feature set D1 becomes a ground for this set and further in our

analysis we declare an app as suspicious. So D5 is the feature set that consists of

all the unused permissions.

[D6] Suspicious API calls: Android permission model of security is an important

measure to prevent unauthorized access to the sensitive resources. The app may

access sensitive API calls without requesting their permission in the Manifest file.

The use of such calls indicates that the app is under-privileged and can surpass

the limitation imposed by the Android permission system. So D6 is the feature

set that consists of all the suspicious API calls from app’s code.

[D7] Network addresses: This set consists of all the IP addresses, hostnames, and

URLs found in the disassembled code. Several organizations like Arbor Networks,

Chapter 3. On-Device Static Analysis 29

Google Safe Browsing APIs maintain and publish blocklists (a.k.a blacklists) of

IP addresses and URLs of systems and networks suspected of malicious activities

on-line. Many of these lists are available for free; some have usage restrictions. If

these addresses are present in the app, it becomes suspicious. So D7 is the feature

set that consists of all such network addresses.

Client module produces a score called DRACO score (D-Score). It is the measure of the

confidence with which the apk belongs to any class. It is calculated as the probability

with which the app lies in malicious class. If the app is benign, the score is towards 0

otherwise it is towards 1. In addition to this score, we also explain why scanned apk

was categorized as malware or benign. This is done using attribute weights. Learning

happened off-device and learned model is embedded into the app for classification. This

model gets updated on a regular basis.

3.1.2 Dynamic Analysis Phase

The second phase of DRACO is based on dynamic inspection of the app, in which the

client module collects logs of CPU usage, memory usage and file operations of the run-

ning apps from the device and send it to the server. In this phase client module is

responsible for collecting and uploading logs at regular intervals and server module is

responsible for classification and detecting anomalies in behaviour. The output of the

dynamic phase is in the form of push-notifications indicating any anomaly in running

apps. This phase is illustrated in Figure 3.2 and outlined as follows:

Figure 3.2: Dynamic Analysis Phase

(a) Client Module : All the devices in which DRACO app is installed, become our

users. For each user, we maintain the list of installed apps. Whenever the user runs

DRACO, we fetch the running state of all apps. In running state, we consider memory

consumption, CPU consumption and number of file operations of each app for that user.

Whenever a user gets connected to the internet, it sends those collected logs to the server

Chapter 3. On-Device Static Analysis 30

module.

(b) Server Module : This module considers per user analysis model to detect misbe-

haviour of any running app. The received logs become the input based on which, it

classifies the app as malicious or benign using machine learning model. A warning is

sent to the user for the malicious app.

3.1.3 Feature Vector Construction

This step focuses on embedding a feature vector (bit vector) using extracted Manifest

features vector DM = D1 ∪D2 ∪D3 as shown in Table 3.1

Manifest Features Present Or Not

android.hardware.wifi 0

android.hardware.telephony 1

android.hardware.camera 0

SEND SMS 1

INTERNET 1

... ...

Table 3.1: Sample Manifest Features

Similarly, dex features vector DD: As shown in Table 3.2, all are embedded in a joint

vector space DD such that: DD = D4 ∪D5 ∪D6 ∪D7

Dex Features Present Or Not

deletePackage() 1

SEND SMS 1

INTERNET 1

setWifiEnabled() 0

sendTextMessage() 1

Runtime.exec() 1

... ...

Table 3.2: Sample DEX Features

Likewise, dynamic features matrix DR: As shown in Table 3.3, CPU usage, memory

usage and number of files accessed information is logged and embedded into a matrix

DR.

Client side static model is prepared from DM , server side static model is prepared from

Chapter 3. On-Device Static Analysis 31

Running App Memory CPU Number of

Usage Usage (in %) File Operations

com.google.process.gapps 37592K 15 100

com.google.android.google 41084K 33 30

quicksearchbox:search

com.android.systemui 32692K 3 101

android.process.acore 22380K 30 80

com.whatsapp 29904K 0 16

net.nurik.roman.muzei.muik 16484K 0 78

...

Table 3.3: Sample Dynamic Features

DM ∪DD and server side dynamic model is prepared from DR. The state space of our

extracted features is very large, in static phase feature set D1 ∪D2 ∪ ... ∪D7 counts to

approximately 500. The state space will grow with the number of apps. So to predict

the behaviour of an app with such huge state space is complex and inefficient. Therefore,

we will infer such behaviour using machine learning techniques.

3.1.4 Machine Learning Algorithm

Benign and malicious samples are used to train the framework by recording behavioural

information. The collected features are trained on supervised learning based model.

There is an arsenal of machine learning methods that can be applied to learn a separation

between malicious and benign apps, but only a few are capable of producing efficient

results. We have chosen linear Support Vector Machine [86] for DRACO because of its

highest detection accuracy rate and low false positive rate. It is a supervised learning

model with associated learning algorithms that analyze data used for classification and

regression analysis. Given a set of training examples as points in space, each known

as belonging to one of two categories, an SVM training algorithm builds a model that

assigns new examples to one or the other category. The machine learning model used

10-fold cross-validation to discriminate malicious app from benign. Table 3.4 illustrates

machine learning classification results for 500 malware from Genome [87] and 500 benign

apps from Google Play store [88]. Since the reported accuracy of SVM is more than

Naive Bayes, we have done further experiments using SVM classifier.

Chapter 3. On-Device Static Analysis 32

Malware Benign Feature Set NaiveBayes (in %) SVM (in %)

Genome Play Store D1 93.2 97.8

Genome Play Store D2 94.3 93.2

Genome Play Store D3 83.6 91.2

Genome Play Store D1 ∪D2 95 98.2

Genome Play Store D2 ∪D3 90.2 93.1

Genome Play Store D1 ∪D3 95.5 97.3

Genome Play Store D1 ∪D2 ∪D3 97.2 98.4

Table 3.4: Accuracy of Machine Learning Models

3.2 Evaluation

All the experiments are done on DroidAnalyst server that is termed interchangeably as

DRACO server in this chapter. The machine learning off-line models are also prepared

on this machine. The configuration of DroidAnalyst server is: Processor i5 3.26GHz ×

4 with 16GB of RAM. We have tested DRACO on ten different mobile devices with

variation in brands, configuration, and Android OS version.

3.2.1 Experimental Results

Our dataset consists of 28,000 total sample apps out of which 18,000 are benign, and

10,000 are malware. Benign samples are collected from Play store using Akdeniz’s

google-play-crawler [89], and malware samples are collected from various sources like

VirusShare [90], Genome Project [87], Contagion mobile malware minidump [91] and

third party markets. The malware samples are categorized in 49 different families.

The training set consists of 22,000 samples and evaluation set consists of 6,000 samples.

On an average time took to do 10-fold cross validation for 22,000 training samples was 90

seconds per model. The time required to do an off-device static analysis of the app sent

by a user on DroidAnalyst is approximately 10 seconds. The detection accuracy of the

test data-set is 94.8%. Figure 3.3 shows the interface of selecting an app on-device for

analysis. Figure 3.4 illustrates on device analysis result with D-Score and the reasoning

behind the score. Whereas, in Figure 3.5, the alert notifications indicates the anomaly

found in running apps

Chapter 3. On-Device Static Analysis 33

Figure 3.3: Anal-
ysis On Device

Figure 3.4: Anal-
ysis Result

Figure 3.5:
Server Results

3.2.2 Comparison with Existing Approaches

We tested DRACO with a wide range of malware families and it was found to perform

better than many of the commercial anti-viruses. A comparison is shown in Table

3.5. We also compared our results with DREBIN[92] whose detection rate is given by

Mobile Sandbox[93]. To determine results of top ten anti-malware, we upload samples

from our test dataset on virus total[94] and record detection rate for each of them as

shown in Table 3.5. DRACO reports highest accuracy in Full Dataset and VirusShare.

On the MalGenome dataset, the anti-virus scanners achieve better detection rates as

these samples have been public for a longer period of time. Hence, almost all anti-virus

scanners provide proper signatures for this dataset [92].

3.3 Summary

In this chapter, we proposed and implemented a user-driven, on-device Android app

assessment application, DRACO. Proposed application combines the synergy of static

and dynamic analysis techniques to increase the code coverage and detection accuracy.

Installation of this app does not need any root/super-user privileges. Apk file is scanned

and a detailed analysis report is generated that classifies the app based on the features

extracted from Manifest file and the code. To improve classification rate, DRACO per-

forms dynamic analysis by using execution information of an app. Therefore, along with

Chapter 3. On-Device Static Analysis 34

Technique Full Dataset VirusShare MalGenome

DRACO (Our Approach) 94.80 93.90 96.30

DREBIN 93.90 92.50 95.90

AntiVir 96.41 90.40 98.63

AVG 93.71 91.40 98.90

Bit-Defender 84.66 91.20 98.28

ClamAV 84.54 83.60 98.07

ESET 78.38 82.50 98.66

F-secure 64.16 80.40 96.49

Kaspersky 48.50 62.30 94.49

McAfee 43.34 34.50 84.23

Panda 9.84 18.6 23.68

Table 3.5: Detection rates (in %) of DRACO compared with other anti-malwares

the static features, it considers dynamic features like file operations, network operations

and battery usage into consideration. Finally, reports and recommendations are sent to

the user.

On-device analysis can produce the first level of warnings only. Due to computational

restrictions, they are not capable of thorough app analysis. To increase the code coverage

and detection accuracy, server module needs to be equipped with off-device techniques.

In the next chapter, we present an off-device dynamic analysis method. The main

limitation of the dynamic analysis methods is identifying all execution paths and check

all these paths for the presence of malicious activity. Ensuring 100% code coverage is

difficult especially when paths containing malware code are executed under certain user

inputs and/or trigger conditions. Our proposal encapsulates an app as a collection of

information-rich execution paths. Details of identification of such path and their usage

in discrimination of benign and malicious app are presented next.

Chapter 4

Typical Path based Dynamic

Analysis

The evolving malware can exhibit multiple behaviours at run-time. As discussed in

Chapter 2, static analysis techniques are not applicable to apps that are encrypted,

reflected or obfuscated. Dynamic analysis techniques are needed to combat these lim-

itations. As a result, we capture the semantics of an app through dynamic analysis.

System and hardware resources can be accessed only through system-calls. Majority

state-of-the-art techniques rely on system-calls to model the running behaviour of apps.

In this chapter, we propose Semantic AWare AndrOid MalwaRe Detector (SWORD)

that encapsulates the semantically-relevant paths through the sequence of system-calls

invoked by the apps. These paths are extracted from a sequential system-call graph

derived from Android apps using Asymptotic Equipartition Property (AEP) inherited

from information theory domain. These paths are further quantified to classify malicious

apps from benign.

4.1 Encapsulating App Semantics using System-Calls

It becomes essential to capture the actual semantics (behaviour) of Android apps. It can

be captured by logging system-call sequences because in Android system-call sequences

are prevalent according to the family of malware. For example, Plankton is a malware

35

Chapter 4. Typical Path based Dynamic Analysis 36

family that uses the update methodology for its propagation and hence make exten-

sive use of system-call sequences like socket(), connect(), sendto(), recvfrom(),

socketpair(). DroidKungFu is a malware family that aims to take root privilege

fchown32(), umask(), flock(), fork(). Moreover, system-calls are independent of

Android’s compilation and running environment be it’s Dalvik virtual machine (DVM)

or Android runtime (ART). They provide a gateway to access system-level services and

are required to instigate malicious attacks such as premium calls, downloading other

malicious apps, transferring bank credentials and to name a few.

The majority of the dynamic analysis approaches make use of system-calls as these are

only available gateways for an app’s interaction with the operating system. Moreover,

system-calls can be easily monitored by extending emulators (for example, QEMU) with

strace and Monkey tool [95].

4.2 Information Theory

Our main objective is to define a metric that can quantify an app’s behaviour. For this,

SWORD employs asymptotic equipartition property (AEP) that is based on Shannon’s

entropy [96] widely deployed in the domain of information theory. AEP property states

that “there are few paths of a graph that concentrates almost all information of the

program under analysis”.

4.2.1 Asymptotic Equipartition Property

In information theory, the Asymptotic Equipartition Property, AEP for short, states

that if the system has independent, identically distributed (i.i.d. for short) random

variables, then the observed sequences can be divided into two sets, the typical set,

where the entropy is close to true entropy, and the non-typical set, which contains rest

of the sequences. The typical set will determine the average behaviour of large samples

with high probability [97] [98]. This is mathematically defined in Definition 4.1.

Definition 4.1. If (Xi)i=1,n are i.i.d. random variables, and

Pr (X1 = x1, X2 = x2, · · · , Xn = xn) is the probability of observing the sequence

Chapter 4. Typical Path based Dynamic Analysis 37

{x1, x2, · · · , xn}, then

− 1

n
logP (X1 = x1, X2 = x2, · · · , Xn = xn)→ H (X) in probability, (4.1)

where, H (X) is the entropy rate of X. Equation (4.1) is the AEP property [97]. Accord-

ing to this, in random processes, a small part of the sample sequences called a typical set

of sequences contain almost all the relevant information. This property can be applied

to only a few cases like i.i.d processes, stationary Markov chains and ergodic Markov

chains [99, 100]. By identifying the typical set sequences, there is a significant reduction

in the state space of the system under test.

4.2.2 Ergodic Markov Chain

Definition 4.2. A Markov chain is a discrete-time stochastic process (Xt)t≥0 s.t. each

random variable Xt takes values in a discrete set S, called space state, and for any s, s′

and s0, s1, · · · , st−1 ∈ S,

Pr
(
Xt+1 = s | Xt = s′, Xt−1 = st−1, · · · , X0 = s0

)
= Pr

(
Xt+1 = s | Xt = s′

)
(4.2)

If the set S is finite then the chain is said to be finite-state.

Remark 4.3. Equation (4.2) is called memoryless property and it simply means that, as

time goes by, the process loses the memory of the past.

The chain is characterized by the space state S and by its transition matrix P =

(pi,j)(si,sj)∈S×S , where,

pi,j = Pr (Xt+1 = sj | Xt = si) , ∀t ≥ 0, and ∀(si, sj) ∈ S × S.

Note that the transition matrix P verifies two properties: 1) its elements are all positive,

and 2) each row sums to 1.

It is always possible to represent a finite-state Markov chain by a transition graph G =

(S, τ) where S is the space state and τ corresponds to the transition matrix: for any

Chapter 4. Typical Path based Dynamic Analysis 38

pair of states si and sj in S, (si, sj) ∈ τ iff pi,j > 0. The graph G is, thus, an oriented

weighted graph. Given t ≥ 0, the distribution at time t of the Markov chain is given by:

π(t)
s = Pr (Xt = s) ,∀s ∈ S.

To characterize the chain completely, in addition to the space state S and the transition

matrix P , one needs to specify the initial distribution:

π(0)
s = Pr (X0 = s) ,∀s ∈ S.

Thus, knowing π0 =
(
π

(0)
s

)
s∈S

and P , allows to compute πt =
(
π

(t)
s

)
s∈S

. Indeed:

π(t) = π(t−1)P = π(0)P t, ∀t ≥ 1.

Definition 4.4. A state sj is accessible from a state si if the process, starting in state

si, has a non-zero probability of reaching state sj . This is equivalent to the following

property in the transition graph G: there is an (oriented) path from si to sj in G. The

Markov chain is said to be irreducible if all its states are accessible one to the other.

Equivalently, G has a single strong connected component.

• A state s is periodic with period d if d is the smallest integer s.t.

Pr (Xk = s | X0 = s) for all k that are not multiples of d. In case d = 1, the

state is said to be aperiodic.

• A state s is said to be transient if, given that the process starts in state s, there is

a non-zero probability that it will never return to s. A state s that is not transient

is said to be recurrent.

• Let s be a recurrent state and Ts be the first return time to s. If the expected

value of Ts, given that the process starts in state s, is finite, then state s is said

to be positive recurrent.

Now, we introduce the definition of ergodic Markov chains. This property is fundamental

in the rest of this chapter.

Definition 4.5. A state s is said to be ergodic if it is aperiodic and positive recurrent.

In other words, a state s is ergodic if it is recurrent, has a period of 1 and it has finite

Chapter 4. Typical Path based Dynamic Analysis 39

(a) A transition graph

P =

 0 1 0 0
1/3 1/3 1/3 0
0 1/2 0 1/2
0 0 1 0

(b) A transition matrix

Figure 4.1: Markov Chain Example

mean recurrence time. If all states in an irreducible Markov chain are ergodic, then the

chain is said to be ergodic.

Definition 4.6. A probability distribution π∗ = (π∗s)s∈S satisfying π∗P = π∗, i.e.,

π∗sj =
∑

si∈S π
∗
sipi,j for all sj ∈ S, is called a stationary distribution for the Markov

chain (Xt)t≥0.

Then, we have the following important theorem [99]:

Theorem 4.7. An ergodic Markov chain (Xt)t≥0 admits a unique stationary distribution

π∗. Moreover, this distribution is also a limiting distribution, i.e.,

lim
t←∞

πts = π∗s , ∀s ∈ S.

Example 4.1. In this example, we illustrate the notions we introduced above. Consider

a random walk in a set of sites s1, s2, s3 and s4. When the walker is in site s1 (or in

site s4), it moves to site s2 (or to site s3). When he is in site s2, he chooses uniformly

at random (u.a.r. for short) to move to s1, s3 or stay at s2. Finally, if he is in site s3,

he chooses u.a.r. one of the sites s2 or s4. At time t = 0, the walker is at site s1. The

random walk is then modelled by a Markov chain (Xt)t≥0. This chain can be completely

described by its space state S = {s1, s2, s3, s4}, the transition matrix P , and by the initial

distribution π(0) = (1, 0, 0, 0), or by π(0) and the transition graph in Figure 4.1(a) and

transition matrix in Figure 4.1(b).

Assuming the initial distribution π(0) = (1, 0, 0, 0), it is then easy to compute the dis-

tribution at time t = 1: π(1) = π(0)P = (0, 1, 0, 0), at time t = 2: π(2) = π(0)P 2 =

(1
3 ,

1
3 ,

1
3 , 0) and so on. This chain is ergodic. Indeed, state s2 is ergodic since it is re-

current and aperiodic and hence all the states of the chain are ergodic also. It results

Chapter 4. Typical Path based Dynamic Analysis 40

from this that there is a unique stationary distribution π∗ and one can solve the system

π∗P = π∗,
∑4

i=1 π
∗
i = 1 to find out π∗ =

(
1
7 ,

3
7 ,

2
7 ,

1
7

)
.

4.3 Proposed Approach: SWORD

Our proposed approach is a combination of program semantics and a classification en-

gine. We design our model on the top of QEMU [101] and Monkey tool [102] to au-

tomatically capture the run-time behavior of an Android app in terms of system-call

sequences. We assume that acquired system-call traces represent the ergodic Markov

chain and therefore we can apply the AEP concept to construct our semantic detector.

4.3.1 Implementation Details

SWORD’s architecture is illustrated in Figure 4.2 and the broad steps involved in de-

signing and implementing SWORD are the following:

1. System-call Tracing : Android apps are executed in the virtual environment to

extract the system-call traces. We preserved the order of invoked system-calls as

it will allow us to capture the actual behaviour of apps.

2. Typify Program Behavior : To typify the program behaviour, we construct Se-

quential System-call Graph (SSG) from the acquired traces by applying Markov

property [103]. Assuming first and last invoked system call as the start and end

node respectively, we compute all acyclic paths between them. Further, we apply

AEP on each path and w.r.t an arbitrary value ε we create multiple ε-typical sets.

Moreover, these typical sets will now be used to form our feature vectors.

3. Statistical Analysis: In this step, for each path in every typical set, we determine

ALBF value. This ALBF value denotes the semantic quotient of each path and

devise a reliable semantic detector. We apply histogram binning technique for

forming our feature vector table (FVT).

4. Train the Model : To prepare the decision model, each of the formed FVTs is

trained using a supervised learning algorithm.

Chapter 4. Typical Path based Dynamic Analysis 41

Figure 4.2: SWORD Architecture

4.3.1.1 System-Call Tracing

We extended QEMU [101] based Android emulator comes with Android SDK to cap-

ture behavior of the incoming apk. The behavior is captured by executing the app

with randomly generated events that resemble user triggers. These events are generated

by the attached monkey tool [95]. Monkey tool can generate pseudo-random events of

clicks, swipes, touch screens, gestures, etc., to a real device or an emulator [104]. In

our experiments, we configure Monkey to run 2500 events for each app. Whenever an

event is triggered, the operating system will invoke corresponding system-call in order

to serve the trigger. We log all these system-calls in the invoked order. We utilize

system-call invocations and ignore their parameters, as it will enhance the scalability

and sensitivity of our approach towards other system artifacts. We have considered

334 system calls which is the union of system-calls present in all the Android OS ver-

sions till Android 6.0. When we run each app (a total of 6000 traces), we observed

that only 72 calls were invoked during execution. The reason for lower number of

calls traced is that there are many services such as chmod, break, umount, setuid,

getuid, sched setscheduler, setpriority, reboot, getpriority to name a few

Chapter 4. Typical Path based Dynamic Analysis 42

are invoked by system apps. Access to these services require root privileges. Therefore,

the user apps (either benign or malicious) do not invoke system-services. Other services

like creat, link, unlink, chdir, lchown, stime, etc. are used by very specific

apps. Therefore, most of the system-calls are not invoked. Therefore, 72 system-calls

that are invoked are referred as the ‘frequent system-calls’, and other remaining 262

system-calls are referred as ‘rare system-calls’.

4.3.1.2 Encapsulating Program Behavior

In Android, only a single system-call will not suffice to capture the malicious be-

haviour [105]. But remembering the previous system-call in the sequences is impor-

tant as it represents specific behavior. Ex. 〈read(), write()〉 represents reading from

source and writing to sink, 〈write(), ioctl()〉 represents writing to Intent and send-

ing Intent, 〈Recvfrom(), SendTo()〉 represents sending SMS to premium numbers,

〈socket(), connect()〉 represents connecting to socket, etc. To capture these semantics

history-less nature of the Markov chain would be suffice. We create SSG by applying

Markov property.

Definition 4.8. SSG: A Sequential System-call Graph (SSG) G = (S,E) is a weighted

directed graph, where S represents the set of all possible (distinct) system-calls. In

Android, |S| = 334, i.e., S = (s1, s2, · · · , s334) and each system-call s ∈ S represents a

vertex in SSG. E is the set of weights and defined as follows:

E =
{
Eij |si

ρij−→ sj ; si, sj ε S
}
,

where, ρij denotes the transition probability from system-call si to system-call sj . The

transition probability ρij is computed as follows.

ρij =
count(si → sj)∑334
k=1 count(si → sk)

,

where, si → sj represents a transition from si to sj . As in Definition 4.8, in graph G,

the probability to transit from a state si ∈ S depends only on si and not on any of its

preceding states. Thus, SSG is satisfying Markov chain property as discussed earlier.

Chapter 4. Typical Path based Dynamic Analysis 43

Also, the next state from si can be in any state of set S. Since the graph is irreducible

to markov chain, we can say that all the paths in the graph G form ergodic markov

chains and we can access all the states (syscalls) in this graph. With this we can also

say that SSG will satisfy the following property.

∀i
334∑
j=1

ρij =

0 if all entries in ith row is zero

1 otherwise

.

Definition 4.9. Path: A path P = {s1, s2, · · · , sn} is an alternate sequence of nodes

and edges of G which starts from source s1 and ends at destination sn.

In our case, a path is the sequence of the system-calls starting from the source node

(i.e., the first system-call in the trace) to the destination node (i.e., the last system-call

in the trace). Since, we specified app’s behavior in terms of system-call sequences, one

iteration over a subsequence portrays the one of the behavior of an app. The cycle over a

same subsequence reflects the repetition of a behavior, therefore to capture a particular

behavior, cycle-free paths are sufficient. Moreover, the malicious apps do not repeat

their malignant behavior in order to avoid detection. Therefore, we considered only

cycle-free paths (all the intermediate nodes in the path are distinct) reachable paths

from source node to destination node. Let (Si)i=1,n be a walk in the graph G and let

P = {s1, s2, · · · , sn} be a path. In the sequal, we will denote Pr (s1, s2, · · · , sn) the

probability for the walk (Si)i=1,n, starting at S1 = s1 to follow the path P .

As mentioned in [99], we can apply AEP on SSG. According to AEP, in random pro-

cesses, a small part of the sample sequences called typical set of sequences contains

almost all the relevant information. To determine ε−typical path set, we apply follow-

ing property.

∣∣∣∣ 1n log
1

Pr (s1, s2,, sn)
− λ∗

∣∣∣∣ < ε,

where,

n is the total number of nodes in the path P ,

λ∗ is the maximal entropy rate of the apk under consideration,

ε is a real number greater than 0,

Chapter 4. Typical Path based Dynamic Analysis 44

Pr(P) is the path probability of path P , this is estimated simply by the frequency

of the paths of a given length in all the path set. It calculates the probability of a walk

in G follows path P , and it is given by:

Pr(P) = Pr(S1 = s1) · Pr(Sn = sn|Sn−1 = sn−1, ˙...., S2 = s2|S1 = s1)

= Pr(S1 = s1) · Pr(Sn = sn|Sn−1 = sn−1).

The Pr(S1 = s1) is the initial probability of node s1 . The initial probability of a node s1

is the probability of occurrence of s1 among all the system-calls invoked in the execution

trace. Maximal entropy λ∗ of the apk is given by

λ∗ = max

{
lim
n→∞

log (Tn)

n

}
,

where, Tn is the total number of paths of length n in G. Now, we apply AEP to select

typical paths from all the paths in the SSGs. This will significantly reduce the state

space. Typical paths are capable of depicting the behaviour of apk because they are

more probable than the other paths of the graph.

4.3.1.3 Statistical Analysis

This step aims to apply statistical analysis on the typical paths to train the model

that can distinguish malicious and benign apps. To facilitate statistical analysis, we

need numerical representation of the obtained typical paths. For this, we use Average

Logarithmic Branching Factor (ALBF) as it converges a constant value for the entire

problem space [106] i.e., paths in our case. ALBF of a path P is calculated by the

following equation:

logB (s1, s2,, sn)

n− 1
,

where B (s1, s2,, sn) =
∏n
i=1 b(si) and b(si) is the branching factor of node si. ALBF

metric of each path is used to construct the feature space as branching factor is a

good indicator of semantic relatedness. Further, we gather paths that share similar

characteristics using ‘histogram binning’ [107] as it can drastically reduce the feature

space, thereby improving the system performance. Also, it can handle slight variation

in the sequence of system-call traces. By considering only typical set of paths, we are

Chapter 4. Typical Path based Dynamic Analysis 45

reducing the noise of feature vector space and hence can increase the accuracy and reduce

the false rate.

4.3.1.4 Train the Model

In this module, to classify malware and benign Android apps, we employ supervised

learning techniques as we have labelled training dataset. Also, the supervised learning

algorithm analyzes the malicious training data and produces an inferred function, which

can be utilized for mapping new, unknown or zero-day malicious apps. On the other

hand, the unsupervised learning methods are useful for identifying hidden patterns in an

unlabeled dataset. In these methods, if the malicious apps are analysis-aware, these apps

will not reflect their malicious behaviour and terminate their execution showing benign

behaviour. In such scenarios, the unsupervised learning results in high false alarm rate.

Therefore, we considered supervised learning in our approach. To this extent, we have

used Waikato Environment for Knowledge Analysis (WEKA) [108]. In particular, we

have used Random Forest [109] classifier. The advantage is, as forest building progresses,

Random Forest generates an unbiased estimate of error [110]. Also, Delgado et al.,

experimented on 179 different machine learning techniques from 17 different families

and applied them to 121 diverse datasets. They reported that Random Forest is the

best classifier [111]. At the end of this module, we obtain a decision model that will be

used for further classification of apps.

4.3.2 Demonstrating Example

In this section, we illustrate our approach using a simplified example of dummy ordered

system-call trace. Let say there are in all 7 distinct system-calls {s1, s2, s3,

s4, s5, s6, s7} supported by an OS. Sample program trace ξ of a program based on this

OS is ξ = {s1, s3, s5, s7, s3, s1, s2, s5, s4, s2, s7,

s2, s2, s3, s3, s1, s3, s4, s7, s4, s4, s7, s1, s2, s5, s4, s2, s7, s1, s4,

s2, s3, s4, s7}. The execution trace does not contain the system-call s6, it means that s6

is not invoked during the execution of this program.

The program behavior is captured through the Sequential System-call Graph (SSG)

which is constructed from ξ. Each invoked system-call corresponds to one vertex of the

Chapter 4. Typical Path based Dynamic Analysis 46

(a) SSG Graph

Node s1 s2 s3 s4 s5 s6 s7
s1 0 2/5 2/5 1/5 0 0 0
s2 0 1/7 2/7 0 2/7 0 2/7
s3 1/3 1/6 0 1/3 1/6 0 0
s4 0 3/7 0 1/7 0 0 3/7
s5 0 0 0 2/3 0 0 1/3
s6 0 0 0 0 0 0 0
s7 1/3 1/6 1/6 1/6 0 0 0

(b) Transition Probability Matrix

Figure 4.3: SSG Example

SSG. As ξ has the sequence pairs (s1,s3), (s3,s5), (s5,s7), (s7,s3), (s3,s1), (s1,s2), (s2,s5)

and so on, then edges are added from node 1 to 3, node 3 to 5, node 5 to 7, node 7 to 3,

node 3 to 1, node 1 to 2 and node 2 to 5 and so on. SSG is a directed weighted graph as

illustrated in Figure 4.3(a) and Figure 4.3(b) represents transition probabilities of every

pair of nodes.

To typify program behavior, after constructing the SSG, all acyclic paths that are reach-

able from the source node (i.e., the first system-call in ξ) to the destination node (i.e.,

the last system-call in ξ) are extracted. Now, we select the candidates for typical path

set. This selection is based on the frequency of paths for a particular path length.

Path Length Frequency

2 2

3 4

4 5

5 2

Table 4.1: Frequency of paths corresponding to the path lengths

Table 4.1 shows the frequency of paths corresponding to the path lengths. To select

potential candidates for the typical path, we can remove the paths that are less frequent.

Chapter 4. Typical Path based Dynamic Analysis 47

In our example, the frequency of path length 2 and 5 is the 2, so we can remove them

from being the candidates for typical paths. Therefore P3, P4, P5, P6, P7, P8, P9, P10,

P11 are the candidate path set as highlighted in Table 4.2.

Path Number Path Trace

P1 s1 → s2 → s7

P2 s1 → s4 → s7

P3 s1 → s2 → s5 → s7

P4 s1 → s3 → s4 → s7

P5 s1 → s3 → s5 → s7

P6 s1 → s4 → s2 → s7

P7 s1 → s2 → s3 → s4 → s7

P8 s1 → s3 → s4 → s2 → s7

P9 s1 → s3 → s5 → s4 → s7

P10 s1 → s2 → s5 → s4 → s7

P11 s1 → s4 → s2 → s5 → s7

P12 s1 → s3 → s5 → s4 → s2 → s7

P13 s1 → s4 → s2 → s3 → s5 → s7

Table 4.2: Candidate paths from the graph

Now, to extract the typical (semantically-relevant) paths, AEP is applied on the can-

didate path set that is reachable from the source node to destination node. Table 4.3

gives the AEP property value and ALBF value for each path in the candidate path set.

Path Probability of Path AEP Value ALBF Value

P3:1-2-5-7 Pr(P3):0.0056 1.203 30.99

P4:1-3-4-7 Pr(P4):0.0084 1.057 34.33

P5:1-3-5-7 Pr(P5):0.0033 1.394 30.26

P6:1-4-2-7 Pr(P6):0.0018 1.612 35.07

P7:1-2-3-4-7 Pr(P7):0.0012 1.3605 32.77

P8:1-3-4-2-7 Pr(P8):0.0012 1.3605 32.77

P9:1-3-5-4-7 Pr(P9):0.0028 1.1161 29.71

P10:1-2-5-4-7 Pr(P10):0.0048 0.09605 30.27

P11:1-4-2-5-7 Pr(P11):0.0012 1.3605 30.27

Table 4.3: AEP and ALBF value of candidate paths

Till now we have constructed SSG from the program trace ξ and identified all acyclic

paths that are P1, P2, · · · , P13. Based on the frequency of paths per path length, we

Chapter 4. Typical Path based Dynamic Analysis 48

have selected some candidates for the typical path. Then we have calculated the value

of AEP property and ALBF value for each path. The minimum and maximum value of

AEP property value are 0.09605 and 1.612 respectively. To determine the typical path

set, we select the ε from the range 0.09605 to 1.612. For each selected ε, we select paths

whose value is less than equal to selected ε value and call that set of paths as typical

path set. For example, from Table 4.3, for ε = 1.4, the typical path set contains the

paths P3, P4, P5, P7, P8, P9, P10 and P11 because for these paths AEP value is less

than 1.4. Figure 4.4 illustrated typical paths (blue colored). We can vary ε within the

specified range and can evaluate the set of typical paths corresponding to that ε value.

Figure 4.4: Typical Paths

We have typified the program behaviour from the system-call traces to typical path sets

based on some specific ε value. Now to select the best possible ε value and construct the

model, we represent typical paths in the numeric model called feature vector. Based on

ALBF values range, we divide paths into certain bins that contain the frequency count

of those typical paths that belong to that bin. The data in these bins will be our feature

vector. For example, let the bin size is 1, that’s means bins are placed at an interval

Chapter 4. Typical Path based Dynamic Analysis 49

of 1. Suppose there are 8 such bins, {b1, b2, b3, b4, b5, b6, b7, b8}. For ε = 1.4, the typical

path set is {P3, P4, P5, P7, P8, P9, P10, P11}. So paths P5, P9, P10, P11 belong to b1,

P3 belongs to b2, P7, P8 belong to b4 and P4 belongs to b5. So the feature vector will

〈4, 2, 0, 2, 1, 0, 0, 0〉. Once this feature vector is constructed, we train our classification

model using Random Forest algorithm. Through experimentation, we select the best

value of the ε that differentiates malicious apps from benign apps. Therefore we select

the ε, where accuracy is higher and false rate is lower.

4.4 Performance Evaluation

All the experiments are carried out using benign and malware executable samples. To

conduct these experiments, we have used Intel core with 16 GB RAM on OS Ubuntu

14.04. The major challenge lies in multiple entry points of Android. In Android, there

does not exist a single entry point. Therefore each execution may lead to different

sequences of system-call traces. For this reason, all the apps were executed on the

emulator, i.e., virtual environment three times. We considered each trace as a different

app.

4.4.1 Dataset Preparation

Experimental Dataset consists of a total of 2000 android apps. Out of these 1000 are

benign, and 1000 are malicious apps. To maintain the diversity the samples and avoid

biases of the approach towards a single source, we have collected malicious dataset

from four different sources viz. Genome Project [87], Inter-Component Communication

Repository (IccRE) [112], New Malware Families 2015, Contagio Minidump [91]. To

form our dataset, 250 apps from each of four sources are collected. The experimental

dataset also contains 1000 benign apps that are chosen randomly from 12,000 apps of

Google Play Store. To check the non-maliciousness of these apps, all apps are scanned

on the VirusTotal [94]. VirusTotal is freely available online web service to scan the file

or URL to check that it is malicious or not.

Chapter 4. Typical Path based Dynamic Analysis 50

4.4.2 Approximate All Path Computation

We construct SSG using system-call trace of an Android app. The SSG is used to

determine the full acyclic path form the Sstart node to Send node. Sstart is the first

system-call invoked and Send is the last system-call invoked during the app execution. To

evaluate full path between two nodes in a graph is an NP-Complete problem [113]. But

the constructed SSG is sparse. The reason is that although there are 334 documented

system-calls used in Android while analyzing 2000 real-world apps, we observed that

only 74 system-calls are frequently used by most of the apps. In the graph, states are

represented by system-calls. We are not facing any issue of state space explosion because

system-calls are fixed. There is a difference between API-call and system-call. An app

can call any number of API-call, but the set of system-calls corresponding to API-calls

are limited.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 6 11 16 21 26 31 36 41 46 51 56

N
u

m
b
er

 o
f

p
at

h
s

in
 6

K
 e

x
ec

u
ti

o
n
 t

ra
ce

s

Path Length

Benign
Malware

Figure 4.5: Path distribution w.r.t. to length in the malware and benign samples.

We have statistically obtained the evenly (normally) distributed path distribution for

benign and malicious apps as illustrated in Figure 4.5. We utilized this distribution for

observing two important points, 1) the path distribution is evenly (normally) distributed,

therefore we can infer that our dataset is not biased for specific path-lengths, and 2)

the path distribution is less for boundary path lengths (higher and lower). Therefore

to discriminate malicious and benign apps, we can ignore the boundary path-lengths.

We observe that there is a variation in paths of benign and malware samples in the

path length ranging from 10 to 28. This variation in the number of paths can be used

Chapter 4. Typical Path based Dynamic Analysis 51

for differentiating malware and benign apps. Therefore, we compute candidate paths

instead of all paths to save path computation time for all the samples. So in this way,

we approximate our all path computation phase.

4.4.3 Detection Accuracy

After extracting candidate paths, we apply AEP on each path with different values

of ε ranging from 0.05 to 7.00. In this particular range, we construct various typical

sets. We aim to determine a proper typical set that differentiates malicious apps from

benign apps. All typical sets are transformed into FVTs and trained with 10-fold cross-

validation. Table 4.4 shows the true positive rate (TPR), false positive rate (FPR),

true negative rate (TNR), false negative rate (FNR), and accuracy of each of the FVTs

constructed. In our case, malware is a positive class, and benign is the negative class.

Therefore, TPR (TNR) is the true positive (negative) rate that indicates the rate by

which malware (benign) is classified as malware (benign). FPR (FNR) is the false

positive rate that indicates the rate by which malware (benign) is misclassified as be-

nign (malware). To select the best value of ε, we did thorough experimentation with

different values of ε with an increment of 0.5 in the previous value of ε as shown in

Table 4.4. The lower values of ε do not capture the semantically rich paths, and there-

fore, we get very low accuracy for small values of ε. At higher values of ε, typical-sets

contain semantically-rich paths as well as few paths that are also common to benign

samples. Therefore, the FVTs formed using these sets result in low accuracy. We select

the value of ε = 2.94 where accuracy is higher and false rate is lower in order to differen-

tiate malicious apps from benign apps. Also, the achieved accuracy of 94.2% indicates

that the typical set at ε value 2.94 produces diverse path distribution across the feature

vector table. Therefore, it can be marked as semantic-threshold for the testing phase.

To obtain a semantic-threshold value, we have performed exhaustive experimentation

for ε minimum range to maximum range. The lower values of ε do not capture the

semantically rich paths, and therefore, we get very low accuracy’s for small values of ε.

At higher values of ε, typical-sets contain semantically-rich paths as well as few paths

that are also common to benign samples. Therefore, the FVTs formed using these sets

result in low accuracy.

Chapter 4. Typical Path based Dynamic Analysis 52

ε TPR TNR FPR FNR Accuracy

1.00 50.0 90.0 10.0 50.0 70.0

1.50 62.0 85.0 15.0 38.0 73.0

2.00 85.0 71.5 28.5 15.0 78.3

2.50 87.0 82.0 18.0 13.0 84.5

2.70 96.5 87.6 12.4 03.5 92.1

2.86 94.5 90.8 09.2 05.5 92.7

2.90 93.3 92.3 07.7 06.7 92.8

2.94 95.8 92.6 07.4 04.2 94.2

2.98 97.3 89.6 10.4 02.7 93.5

3.20 95.0 90.8 09.2 05.0 92.9

3.50 91.0 83.9 16.1 09.0 87.5

4.00 89.0 80.5 19.5 11.0 84.8

4.50 93.3 78.0 22.0 06.7 85.7

5.00 91.3 80.5 19.5 08.7 85.9

5.50 90.5 81.0 19.0 09.5 85.8

6.00 89.3 81.7 18.3 10.7 85.5

6.50 89.8 81.9 18.1 10.2 85.9

7.00 89.8 81.9 18.1 10.2 85.9

Table 4.4: Detection Rates in %

4.4.4 Comparison with Existing Approaches

To show the efficacy of our approach, we compare with existing work from the ap-

proaches that claim to detect malicious Android apps using semantic features. Table 4.5

summarizes the evasion capability and accuracy w.r.t. to the dataset size used by the

approaches. MamaDroid [114] proposal relies on capture app’s behaviour through the

sequence of API calls invoked by the app as Markov chains. This sequence acts as fea-

tures to classify benign apps from malicious. Similar to ours, their intuition also relies

on the fact that malware exhibit different operations in different order than benign apps.

They experimented with a huge dataset and reported detection accuracy ranging from

75%-86%. However, the proposed approach is different from our in terms of analysis

technique and feature attribute selected for classification. MamaDroid is a static anal-

ysis technique and hence fails to capture the runtime context or malicious code that is

executed. They select API calls as the feature attribute for classification that can be

easily evaded by the self-defined packages that look similar to Android’s, Google’s or

Chapter 4. Typical Path based Dynamic Analysis 53

Proposed # Feature Feature Dataset Type & Origin Training/ Detection Handle

Approach Type Apps of Testing Accuracy Evasive

Dataset Distribution apps

(in %)

MamaDroid [114] 64 - 116,281 API calls 44000 8500B (PD [115]+GPS) 66.7/33.3 75%-86% N

(Static) 35500M (DB+VS)

DroidSeive [116] Resource

(Static) 634-859 Entropy + 9301 8041B (McGW) 67/33 92.38% Y

Cryptographic 1260M (GM)

Libraries

CrowDroid [117] 60 SysCalls 60 50B (SM) -NA- 85%-100% N

(Dynamic) 10M (SM)

ANDect [118] -NA- API calls 1000 750B (GPS) 90/10 88% N

(Dynamic) + SysCalls 350M (CG)

DroidScope [119] -NA- -NA- 7 DroidKunfu Family -NA- -NA- N

(Dynamic) DroidDream Family

CopperDroid [120] -NA- SysCalls 2900 1365 (McGW) -NA- 60% N

(Dynamic) 1612M (CG+GM)

DroidScribe [121] 110-254 SysCalls+ 5246 -NA- 84%-94% N

API Calls 5246M (DB)

(Static) +PER+SMS

+USR

SWORD 93 SysCalls 2000 1000B(GPS) 70/30 94.2% Y

(Our approach) 1000M (GM+

(Dynamic) IccRE+CG+NMF)

Table 4.5: Comparison with related state-of-the-art approaches
PD:PlayDrone, GPS:Google Play Store, McGW: McAfee Goodware, GM: Genome

Project, SM:Self-made, CG:Contagio Minidump, SysCalls: SystemCalls

Java’s packages. Whereas, we considered system-calls as the feature attribute that is

nonbypassable and hence giving an edge to our approach.

DroidSeive [116] is a static analysis based classifier to identify malicious app and its

family. Their main focus is on capturing obfuscated malware. When trained on samples

from malware genome [87] and McAfee goodware apps, the reported detection accuracy

is 92.38%. The accuracy decreases with time when new obfuscation techniques come

into play. The approach carries limitations of static analysis techniques as well.

Other approaches like CrowDroid [117] shows 100% on self-made apps. DroidScope

has very small dataset size, CopperDroid has not reported their accuracy. DroidScribe,

ANDect have a comparable size of the dataset and SWORD significantly outperforms

them.

Our work is inspired by Smita et. al [122] approach that detects Windows based desktop

malware. Although, due to difference in the architectural platform from desktop OS

Windows to Mobile OS Android, there are significant modifications in the proposal. For

example, the file format used in Windows is executable, and the execution has a single

Chapter 4. Typical Path based Dynamic Analysis 54

entry point, whereas in Android the file format is apk, and it has multiple entry points.

Each time when we run the app, it may exhibit different traces. It is a huge challenge

to capture the actual behaviour of the app with multiple entry points. Another major

challenge in Android is to identify the thin line between the behaviour of the malicious

and benign app. For example, in Android, each app will get connected to the remote

server for its update procedure. So we cannot consider it as malicious behaviour whereas,

in Windows, this can be easily considered as malicious.

In our approach, we achieved 94.2% due to the diverse nature of our feature vector. We

utilized several features to classify malicious behaviour. To select relevant features, we

applied AEP property under which few important metrics were computed for different

values of ε. For each value of ε, we obtain a different set of features (path sequences).

Then we employed learning algorithm on the obtained features. We observed the true

and false alarm rate. Our experiments showed that on ε = 2.94, we could discriminate

malicious and benign apps with reasonable accuracy.

4.4.5 Resiliency towards System-call Injection Attack

We used system-call injection attack to measure the robustness of the proposed approach.

The system-call injection attack is a variant of a code-injection attack. The code injection

refers to an attack where in an attacker is able to inject and execute malicious code by

exploiting vulnerability (OS or software). The semantics of modern operating system

(Android) prevents apps from having any outside effect unless they invoke system call.

Therefore, injected malicious code cannot damage the system without invoking system

call [123]. We, in our approach, considered the scenario where a malicious code is

injected for modifying the system-call sequence of a already running malicious app in

order to hide its malicious intent. For this experiment, we have selected a small set of

100 malware samples. As reported earlier, we divide system-calls into two categories,

i.e., rare system-calls (that were not invoked by any of the benign and malicious apps)

and frequent system-calls (that were invoked during benign and malware app execution).

The experiment is conducted in two parts. In the first part, we inject rare system-

calls into malware traces. In the second part, we insert frequent system-calls (randomly

selected from benign traces). For both the parts, we construct feature vector table and

compute the detection accuracy. We consider the trace-length of malware samples as a

Chapter 4. Typical Path based Dynamic Analysis 55

parameter to decide the number of calls to be injected. We inject 10%, 20%, · · · , 100%

of malware trace-length (which varies approximately from 1K to 29K) into malware

traces. Further, we closely monitor the fall in detection accuracy with these injection

rates. Figure 4.6 shows the detection accuracy for rare and frequent system-calls.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

D
et

ec
ti

o
n

 A
cc

u
ra

cy
 (

in
 %

)

Number of System Calls (%)

Rare System-calls
Frequent System-calls

Figure 4.6: Injection Detection Accuracy

It is observed from Figure 4.6, that upto 30% of call injection the detection accuracy

remain almost similar to 0% injection in case of rare system-calls. On the other hand,

in case of frequent system-calls, our approach sustains upto ∼10%. This difference

in detection accuracy is due to the nature of calls injected. The rare calls do not

modify path distribution, therefore, our approach can sustain upto 30%. But, in case

of frequent system-calls, the injected calls represent the benign sequences, therefore, the

path distribution is modified and resulted in less sustainability.

The discriminating component of our approach is neither a sequence of system-calls nor

a feature space linearly derived from these sequences. The discriminating component

of our method is composed of the ranges of ALBF values. As these values are accumu-

lated in bins, our feature space is non-linearly related to the sequence of calls. Multiple

semantically relevant paths imply different subsequence of calls being used in the con-

struction of feature space. Modification in one path shall not impact the performance of

the proposed model. Only large modifications in transitions of all semantically relevant

Chapter 4. Typical Path based Dynamic Analysis 56

paths will affect our model. The modification is complex as the attacker needs to iden-

tify all semantically relevant paths and to modify the path sequences in a way that it

substantially modifies ALBF bins. Therefore, our approach is resilient to the injection

attack.

4.5 Summary and Limitations

In this chapter, we proposed and implemented SWORD, a malware analysis technique

that relies on capturing the semantics of an Android app during its execution in a virtu-

alized environment. This semantics is further quantified to classify malicious and benign

apps. System-call injection is one of the major evasion techniques used by attackers to

alter control/data flow of the program at runtime. Our experimental results indicate

resiliency of our proposed approach towards such attacks.

With almost universal digital convergence, users are extending functionalities of their

devices by installing apps from various developers and vendor in an open ecosystem.

These apps may misuse the sensitive information stored on the phone or obtained from

the sensors to violate user’s privacy. There is a need to analyze the actual behaviour of

apps with regard to privacy. The static data flow analysis is a means for automatically

enumerating the data flow inside a program. Our next work will focus on analyzing

Android apps via data flow.

Chapter 5

Data Flow based Privacy Leakage

Analysis

In the previous chapter, our analysis is based on encapsulating semantically-relevant

paths to identify the behaviour of any app. Capturing the behaviour of apps with

regard to privacy is an important factor to differentiate malicious and benign apps.

In this chapter, we propose FlowMine that models the behaviour of an app in terms of

sensitive data flow across execution path(s) of an app. Such behaviour can be captured

by identifying the data flow path from a data source to a data sink, where ‘source’ is

a non-constant data that marks the beginning of the path, and ‘sink’ is the resource

where the data is destined to. The frequency of occurrence of a source-sink pair across

a number of malicious and benign apps is obtained to determine if this pair can be used

as a discriminant between malicious and benign behaviour. Each source-sink pair is

assigned a rank, which is indicative of its discrimination capability. Our method is a

static approach, and it is assumed that the app is free from any encryption/compres-

sion/reflection in its code.

5.1 Data Flow in an App

In Android, an app may have the capability to access data stored in the phone (includ-

ing identification information, financial or payment information, contact details, gallery

pictures, etc.) or access data from sensors (including GPS, microphone, camera, etc.).

57

Chapter 5. Data Flow based Privacy Leakage Analysis 58

It may also have the capability to transmit the data outside the device through SMS or

Internet.

Data flow is the path of the data from source to sink. Before any data flow analysis can

be conducted, these source and sink methods must be identified. Listing 5.1 illustrates

where the user’s device ID is read and sent as SMS message. Here, the getDeviceId()

method (called on Line 6) is the source and the sendTextMessage method (called on

Line 9) is the sink. One of the data flow paths is represented by lines 6 → 9. Another

data flow path is in lines 11→ 13, where the current time is written in the log file.

1 public void onStart(Intent intent , int startId)

2 {
3 /∗ Access sensitive data ∗/

4 TelephonyManager tm;

5 tm = (TelephonyManager) this.getSystemService(TELEPHONY SERVICE);

6 sensitiveData = tm.getDeviceId();

7 /∗ Leak the data ∗/

8 SmsManager smsMgr = smsMgr.getDefault();

9 smsMgr.sendTextMessage(”1800 8080”, null, sensitiveData, null, null) ;

10 /∗ Access non−sensitive data ∗/

11 Date currTime = Calendar.getInstance().getTime();

12 /∗ Write it on Log ∗/

13 Log.d(”Current time is ” + currTime);

14 }

Listing 5.1: Simple Data Leak Example

5.1.1 Sensitive Sources and Sinks

To detect privacy leakage, we are interested in the former data flow path as the data

accessed using sensitive source is leaked to potentially sensitive sink. For this we need

to formally define sensitive sources and sensitive sinks.

Android categorizes some permissions as ‘dangerous’. These permissions are used for

accessing data or resources that involve the user’s private information, or could poten-

tially affect the user’s stored data or the operation of other apps [124]. We call such

permissions as (DangerPerms). In our research work, any value, access of which requires

DangerPerms, is sensitive information and any API used for accessing this is termed ‘sen-

sitive API’ call. In other words, sensitive API calls (SAPICalls) denote the set of all API

calls whose invocation is protected with permission from DangerPerms. For example,

getDeviceId() is protected with dangerous permission READ PHONE STATE [125]. This

set SAPICalls is partitioned into SSources and SSinks

Chapter 5. Data Flow based Privacy Leakage Analysis 59

• Sensitive Sources: We let SSources denote the set of all sensitive API calls that

read and return a value. For example, getDeviceId() returns unique IMEI num-

ber of the device, and getLatitude() returns current latitude coordinates of the

device. A sensitive source hence retrieves information that is guarded by dan-

gerous permission and hence called sensitive information/data. Such information

should not be leaked.

• Sensitive Sinks: We denote SSinks as the set of all sensitive API calls that send

data out. For example, sendTextMessage(message) sends some message out of

the device. A sensitive sink thus outputs information using a medium that is

protected by dangerous permission. This medium presents the risk of leaking

information.

The goal of the data flow analysis is to identify the connections between accessing some

data (source) and transmitting that data (sink). For that, sensitive API calls (SAPICalls)

are categorized into sources and sinks. Manual partitioning is not feasible as Android

has more than 110,000 API methods. For this reason, we used SuSi [126], an auto-

mated machine learning based classifier that classifies all permission based Android API

methods [127] into sources, sinks, and neither for a given Android version.

5.1.2 Taint Analysis

Android phones being pervasive attracts malicious developers to embed code in Android

apps to steal sensitive data. For instance, a benign app may use our geographical location

to notify us regarding some weather knowledge, while a malicious app may collect such

information for the purpose of tracking an individual and stalking him/her.

In this scenario, taint analysis is the best approach to identify where the information

has been passed. Taint analysis is the analysis based on labelling/tainting sensitive data

and tracks the path of that data flow. It allows to trace if any source (geographical

location) can reach an undesired sink (URL of third-party server).

Taint analysis can be done either statically [117] or dynamically [53]. In static taint

analysis, the app code is analyzed, and a control flow graph of the same is constructed.

This approach taints the sensitive data sources and sinks, and follow the data flow until

it reaches a tainted sink from a tainted source. While dynamic taint analysis runs the

Chapter 5. Data Flow based Privacy Leakage Analysis 60

app and tries to analyze the flow of data. In this work, we leverage FlowDroid that uses

static taint analysis approach.

5.2 Proposed Approach: FlowMine

Our approach considers the behaviour of an app towards sensitive information. It em-

ploys Flowdroid [38] static analysis tool to identify the data flows in a variety of apps. To

classify apps, we consider the probable behavioural similarity (in terms of sensitive data

usage) of an unknown sample towards benignity or malignity. Checking for similarity is

done for both the behaviours, i.e., benignity and maliciousness, as one-sided similarity

check may result in wrong analysis.

5.2.1 Motivating Example

To establish the fact that the behaviour of apps towards sensitive data is an important

factor to differentiate benign apps from malicious, we considered Facebook1 app from

Google play store and com.keji.danti604 app from Virus Share and run static taint

analysis on them. Table 5.1 shows the extracted data flows. We observed that Facebook

app accesses sensitive data for the synchronization of various app components. The app

takes network and database information and passes them to logs or to other components

via intents. On the other hand, flows in com.keji.danti604 app directly leaks unique

identifier to the web server. Thus, we can determine the behavioural difference of a

benign-ware from a malware towards sensitive data.

1Version: 20.0.0.25.15

Chapter 5. Data Flow based Privacy Leakage Analysis 61

Facebook

Source Sink

AccountManager.get() ContentResolver.setSyncAutomatically()

SQLiteDatabase.query() Log.d()

Uri.getQueryParameter() Activity.setResult()

Uri.getQueryParameter() Log.w()

com.keji.danti604

Source Sink

TelephonyManager.getSubscriberId() URL.openConnection()

TelephonyManager.getSubscriberId() URL.openConnection()

Table 5.1: Flows in Android Facebook app and com.keji.danti604 app

5.2.2 Implementation Details

FlowMine’s architecture is illustrated in Figure 5.1 and the broad steps involved in

designing and implementing FlowMine are explained in the subsequent sections.

Figure 5.1: FlowMine Architecture

5.2.2.1 Mining Apps

FlowMine employs Flowdroid static analysis tool as shown in Figure 5.1 to identify the

data flows in an app. For each app under analysis, Flowdroid (using SuSi) determines

the connected sensitive data sources and sensitive data sinks. As a result, we get a set

Chapter 5. Data Flow based Privacy Leakage Analysis 62

called flowset, of the related source and sink pairs.

flowset(app) = {source1 sink1, source2 sink2, ...}

It is to be noted that one source may be connected to multiple sinks and many sources

can sink into a single sink. But, each pair in the flow set is unique. We mined 2800

benign apps extracted from Google Play Store and 15000 malware samples taken from

Virus Share [90] and Genome project [128]. For each app, we obtain the data flow paths,

i.e., the path from sensitive source to the sensitive APIs where the data sinks. Since

each app can have more than one source-sink pair in its flowset, we get an extremely

large number of such pairs.

5.2.2.2 Flow Specificity

In general, the sources and sinks are stated with complete signature and method name.

So, the data flow we determined in the previous step is studied on the basis of granularity,

from finest to broadest level. Each source or sink is a method having an appropriate

signature, and each method is a part of a particular class. Therefore, the specificity of

the flow can be described on the following basis:

• Method: This will consider the full method signature,

For example, LocationManager.requestLocationUpdates(...)

• Class: In this level, only class names are considered to express the flow

For example, TelephonyManager, LocationManager, etc.

• Category: This is the highest abstraction level in which SuSi categories are con-

sidered for determining the flows

For example, LOCATION INFORMATION, UNIQUE IDENTIFIER, etc.

We have a total of 17 abstract sources and 14 abstract sinks that makes a state space of

238 (17× 14) categorized source-sink pairs. Table 5.2 specifies the flows as per category

basis for the previous example of Facebook app discussed in Section 5.2.2.1.

Chapter 5. Data Flow based Privacy Leakage Analysis 63

Source Category Sink Category

ACCOUNT INFORMATION SYNCHRONIZATION DATA

DATABASE INFORMATION LOG

NETWORK INFORMATION INTENT

NETWORK INFORMATION LOG

Table 5.2: Flows in Android Facebook app, by SuSi categories

5.2.2.3 Assignment of Ranks and Weight

FlowMine assigns each path (SuSi source, SuSi sink pair) two ranks, viz., Benignity

Rank (RB) and Malignity Rank (RM). These ranks are assigned on the basis of the

frequency of usage in benign (malicious) apps. The popularity can be described in both

benign context and malicious context considering the fact that how much any categorized

source-sink pair is being used by benign apps and malicious apps respectively. On the

basis of data flow analysis of large number of samples, we observed that certain source-

sink pairs are more prevalent in benign group while some are prevalent in malware

group. The remaining pairs can not be associated with any single class as these occur

with almost same frequency in both benign/malicious apps and, as such, are not useful

from classification perspective.

If a pair of source and sink is mostly used by malicious families, then Malignity Rank

(RM) of that pair is considered to be the highest. If a source-sink pair is mostly used

by benign apps, then its Benignity Rank (RB) will be highest. We have in total 238

categorized source-sink pairs. So, the ranking is done on the basis of prevalence in

benign/malicious classes. It is not necessary that a source-sink pair having highest RM

rank will have lowest RB rank or vice versa. Rank in a respective category is based on

the frequency of occurrence of a pair relative to other pairs. A source-sink pair having a

high occurrence in the benign group can have a high occurrence in the malicious group

also. Such pairs are also not good discriminators when it comes to using this as a feature

for classification. We are interested in pairs having (i) high RB and low RM and (ii) high

RM and low RB. In addition, there are certain pairs which are used by both benign and

malicious apps approximately in same proportions (like DATABASE INFORMATION -> LOG),

and there are pairs which are used by neither of the two (like CALENDAR INFORMATION

-> BLUETOOTH).

Chapter 5. Data Flow based Privacy Leakage Analysis 64

For assigning the weight to each source-sink pair, FlowMine first calculates the usage

percentage of the pair in both benign samples and malicious samples. Then the weight

is calculated as shown in Listing 5.2

1 weight = abs(% use in benignware − % use in malware);

2 if (% use in benignware < % use in malware)

3 weight = −1 ∗ weight;

Listing 5.2: Weight Assignment

Hence, we get a static list of weights for each source-sink pair. This list is known

as Weight Lookup Table as shown in Table 5.3. Positive weight identifies that the

corresponding pair is mostly used by benign-ware while, negative weight shows that the

pair is mostly used by malware.

Categorized Source-Sink Weight

DATABASE INFO → INTENT +0.1263961

CONTENT RESOLVER → NETWORK -0.0366193

CONTACT INFO → SMS MMS -0.0388739

ACCOUNT INFO → SYNC DATA +0.023235

... ...

Table 5.3: Sample Weight Lookup Table

5.2.2.4 Classification of an App

To classify an app as benign or malicious, FlowMine determines a Character Score Ca

of the app. For calculating Ca, the app is analyzed by Flowdroid tool, where the flowset

of that app is determined. Weights for each pair of source-sink present in the flowset

are summed up. Let, the app has n source-sink pairs, the character score of the app x

is computed as:

Ca(x) =

n∑
i=1

W i
ss

If the character score of an app comes out to be positive, then FlowMine classifies input

app as a benign app as its behavior towards sensitive data is more similar to benign-ware

than malware. While, if the character score comes out to be negative, then it is classified

as malicious app.

Chapter 5. Data Flow based Privacy Leakage Analysis 65

5.3 Experimental Evaluation

We evaluated FlowMine on DroidAnalyst server [129]. Taking into consideration the fact

that static taint analysis technique consumes a lot of memory, we implemented FlowMine

with a simple ranking computation technique based on probability distribution.

5.3.1 Dataset Preparation

To identify the exhaustive list of sources and sinks, we analyzed all Android APIs from

version 7 to version 22. Figure 5.2(a) shows the number of sources corresponds to each

API level and Figure 5.2(b) shows the number of sinks. We took the union of the

extracted sources and sinks from all the analyzed Android APIs. That list we provide

as an input to our taint analysis tool. We extracted 2800 benign apps from Google Play

Store and 15000 malicious samples from Virus Share and Genome project.

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

7 8 10 11 12 13 14 15 16 17 18 19 20 21 22

T
o
ta

l
N

u
m

b
e
r
 o

f
S

o
u

r
c
e
s

API Level

(a) Total Number of Sources

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

7 8 10 11 12 13 14 15 16 17 18 19 20 21 22

T
o
ta

l
N

u
m

b
e
r
 o

f
S

in
k

s

API Level

(b) Total Number of Sinks

Figure 5.2: Total Number of Sources and Sinks

5.3.2 Analysis Results

FlowMine identifies the sensitive data flow paths in both malware samples and benign

samples. The difference found in the presence of these paths acts as a measure to

determine the degree of similarity of any unknown test app towards either of the two.

Chapter 5. Data Flow based Privacy Leakage Analysis 66

5.3.3 Data Flow in Benign Apps

We examined 2800 benign apps and analyzed the flows. Since each app has a flowset

associated with it and the set contains one or more source-sink pairs, we have a total

of 338619 pairs of sources and sinks. To reduce the complexity, we abstract sources and

sinks as per SuSi categorization. We also computed the percentage of each pair being

used across available benign and malicious apps in our dataset. Table 5.4 summarizes

data flows in our benign data set samples.

S
O

U
R

C
E

L
O

G

IN
T

E
N

T

N
E

T
W

O
R

K

F
IL

E

S
Y

S
S

E
T

A
C

C
S

E
T

S
M

S
M

M
S

A
U

D
IO

N
F

C

S
Y

N
C

D
A

T
A

C
A

L
E

IN
F

O

L
O

C
IN

F
O

DATABASE INFO 1.9618 1.8233 0.0375 0.0289 0.0318 0.0126 0.000 0.0180 0 0 0 0.0008

CALENDAR INFO 1.0422 2.1260 0.0720 0.0900 0.0558 0.0050 0 0.0035 0.0044 0 0.0218 0.0008

NETWORK INFO 1.4098 0.4515 0.0360 0.0206 0.0156 0.0109 0.0251 0.0070 0 0 0 0

LOCATION INFO 1.1098 0.3667 0.0109 0.0064 0.0035 0 0 0.0044 0.0005 0 0 0.0083

CONTENT RES 0.5224 0.2430 0.0218 0.0070 0.0064 0.0005 0.0014 0.0035 0.0011 0 0.0005 0.0002

UNIQUE ID 0.2350 0.1517 0.0050 0.0002 0.0005 0.0008 0.0002 0.0014 0 0 0 0

ACCOUNT INFO 0.1408 0.0779 0.0053 0.0005 0.0017 0.0785 0 0.0005 0 0.0236 0 0

CONTACT INFO 0.1151 0.0271 0 0 0 0.0014 0 0 0 0 0 0

FILE INFO 0.0738 0.0401 0.0011 0.0041 0.0014 0 0 0.0005 0 0 0 0

NFC 0.0156 0.0380 0.0020 0.0017 0 0 0 0 0.0215 0 0 0

BLUETOOTH INFO 0.0451 0.0067 0 0 0.0002 0 0 0.0005 0 0 0 0

SMS MMS 0.0124 0 0 0 0 0 0.0239 0 0 0 0 0

SYNCH DATA 0.0056 0 0 0 0 0 0 0 0 0.0029 0 0

IMAGE 0.0044 0 0 0 0 0 0 0 0 0 0 0

BROWSER INFO 0.0014 0.0008 0 0 0 0 0 0 0 0 0 0

SYSTEM SET 0.0014 0 0 0 0 0 0 0 0 0 0 0

Table 5.4: Categorized data flows (in %) for benign apps

We infer that most important sources are DATABASE INFORMATION,

CALENDAR INFORMATION, NETWORK INFORMATION. This signifies that most of the

Android apps interact with the outer environment by extracting information from the

databases. The frequently used sinks are LOGS and INTENT that constitute about 69%

of total sinks for all sources. This is due to the fact that logs and intents are highly

used for component interactions. LOG is a sink but is less harmful in newer Android

versions as these logs can only be accessed with administrative privileges. The least

frequently used sources are BROWSER, IMAGE, SYSTEM SETTING and they rarely end up in

sensitive sinks.

Chapter 5. Data Flow based Privacy Leakage Analysis 67

5.3.4 Data Flow in Malicious Apps

As per our analysis, we obtained 1493027 distinct source-sink pairs while analyzing 15000

malicious samples. We used SuSi categories to reduce the complexity and determine the

percentage of source-sink pairs being used. Table 5.5 summarizes the data flows in our

malicious data-set samples.

S
O

U
R

C
E

L
O

G

IN
T

E
N

T

N
E

T
W

O
R

K

F
IL

E

S
Y

S
S

E
T

A
C

C
S

E
T

S
M

S
M

M
S

A
U

D
IO

N
F

C

S
Y

N
C

D
A

T
A

C
A

L
E

IN
F

O

L
O

C
IN

F
O

DATABASE INFO 1.4054 1.6969 0.0268 0.0222 0.0021 0.0002 0.0072 0.0141 0 0 0 0

CALENDAR INFO 0.3779 0.2407 0.0062 0.0049 0.0040 0 0.0002 0.0044 0 0 0 0

NETWORK INFO 2.0025 0.2203 0.3461 0.0249 0.0048 0.0002 0.7896 0.0077 0 0 0 0

LOCATION INFO 1.5086 0.1225 0.0830 0.0004 0 0 0.0045 0.0009 0 0 0 0.0004

CONTENT RES 0.6621 0.2215 0.0574 0.0052 0.0019 0 0.0024 0.0059 0 0 0 0

UNIQUE ID 0.7347 0.0788 0.4421 0.0160 0 0 0.0388 0.0011 0 0 0 0

ACCOUNT INFO 0.0057 0.0076 0.0003 0 0.0001 0.0058 0 0.0001 0 0.0004 0 0

CONTACT INFO 0.0275 0.0184 0 0 0.0007 0 0.0388 0.0008 0 0 0 0

FILE INFO 0.0472 0.0170 0 0 0.00080288 0 0 0.0021 0 0 0 0

NFC 0.0024 0.0004 0.0001 0 0 0 0.0002 0 0.0007 0 0 0

BLUETOOTH INFO 0.0052 0.0148 0.0006 0.0004 0 0 0 0.0014 0 0 0 0

SMS MMS 0.0022 0.0012 0 0 0 0 0.0078 0 0 0 0 0

SYNC DATA 0.0002 0 0 0 0 0 0 0 0 0 0 0

IMAGE 0 0 0 0 0 0 0 0 0 0 0 0

BROWSER INFO 0.0010 0.0008 0 0 0 0 0 0 0 0 0

SYSTEM SET 0 0.0002 0 0 0 0 0 0 0 0 0 0

Table 5.5: Categorized data flows (in %) for malicious apps

From the table, we observed that most prominent source is NETWORK INFORMATION,

as it is used almost two times than the usage of DATABASE INFORMATION. Also, the

use of NETWORK INFORMATION is just double than its use in benign samples. The

CALENDER INFORMATION is accessed with just half the rate at which it is being used

in benign samples. The most astonishing sink used by malware is SMS MMS in compari-

son to its use in benign samples. Most of the sensitive sources leak into SMS MMS sink2.

Out of total app we analyzed, 22% of them use SMS as the sink to send sensitive source

data (like UNIQUE ID, LOCATION INFO, DATABASE INFO, etc.) and hence causing privacy

leakage.

2Premium SMS text message frauds are prevalent during this time

Chapter 5. Data Flow based Privacy Leakage Analysis 68

5.3.5 Accuracy

Our test dataset consists of both benign and malware samples. If we consider the over

classification, FlowMine classifies an unknown sample with an accuracy of 96.5%. A 10-

fold evaluation of FlowMine shows that it can correctly classify 96% of all benign apps

and 97.2% of novel malware samples. The higher detection rate for malware samples is

due to the fact that malware is self similar in nature. Different malware constitutes the

same attack again and again and may share similar code. Thus, its detection is higher

in our proposed method.

FlowMine classifies 97.2% of malware with a false positive rate of 3.5%. It determines

malware is leaking sensitive information with an accuracy of 98%. It is to be noted that

while evaluating a single app, each pair of flowset needs to be considered. Considering

only the most sensitive source/sink leads to higher false positive rate as malware can be

repackaged with same source ending on different sinks and vice versa.

5.4 Summary and Limitations

Static data flow analysis is a means for automatically enumerating the data flows inside

a program. FlowMine considers the data flow path from a sensitive source to a data sink.

These paths are further ranked by assigning weights, which is the absolute difference

between its use in benign and malicious samples. The higher difference means that path

plays a vital role in classifying apps. Our proposed approach is faster as the ranking

mechanism is simpler. It can do even better if, the rankings and weights assignment

mechanism can be more precise. So, considering more benign and malware samples

during analysis will help us to give more accurate results.

FlowMine focuses on the detection of the leakage path in a single app. But, an attacker

can pass sensitive information within a wrapper of a path that scattered across multiple

apps. An app can even bypass Android security model by exploiting transitive permis-

sion usage to escalate their privileges and leak sensitive information. Single app analysis

techniques are no longer able to detect such leakage paths. So, our next work will focus

on analyzing multiple apps together to detect privacy leakage through multiple apps.

Part II

Inter App Analysis

69

Chapter 6

ICC Primitives based Static

Analysis

As discussed in the previous chapters, single app analysis techniques dominate security

assessment in Android to detect malware. Although, an app can bypass Android security

model and leak sensitive data by colluding with other app [130]. We shall be discussing

collusion in detail in this chapter and proposing an approach to address such leakage.

6.1 Introduction

Android attracts a large number of users because of ease of using apps and enhanced

functionalities. In order to provide these, an app needs to access end user’s personal

information. For example, to locate nearby restaurants, the app needs to access user’s

location information, to share pictures, the app needs to access user’s photo gallery. To

develop rich apps, developers can leverage data and services provided by other apps.

For example, a cab booking app can ask Google Maps for client’s or driver’s location

information. This communication between apps can reduce developer’s burden and

facilitate functionality reuse. To provide such communication Android framework offers

message passing mechanism called Intents. Android app does not require any special

permission for communication. Also, Android framework is not designed to protect the

information that is going outside an app.

71

Chapter 6. ICC Primitives based Static Analysis 72

Inherent sharing of data in such communication exposes app(s) vulnerabilities like data

leak, confidential user data breach, unauthorized access, privilege escalation, etc. Mal-

ware writers may exploit permission model imposed by Android through Intent based

Inter-Component Communication (ICC). This is also known as Privilege escalation at-

tack at app level [131] or Collusion attacks [132], [133]. Collusion refers to the scenario

where two or more apps with a limited set of permissions communicate with each other

to gain indirect privilege escalation and can perform unauthorized actions. Android’s

security framework is not sufficient for transitive policy enforcement allowing privilege

escalation attacks as shown by many examples [7, 134–136].

6.1.1 Threat Model

To demonstrate collusion attack, we developed a motivation example as shown in Fig-

ure 6.1. In this example, there are two apps. The first app named msgRead needs to ac-

Figure 6.1: msgRead app is colluding with msgSend app leads to privilege escalation

cess users’ private data, i.e., SMS in this case. For that, the app developer mentions two

permissions android.permission.READ SMS and android.permission.RECEIVE SMS in

AndroidManifest.xml of this app. Similarly, the second app named msgsSend needs

to write and send permission, and they are mentioned in its AndroidManifest.xml as

android.permission.WRITE SMS and android.permission.SEND SMS. These two apps

Chapter 6. ICC Primitives based Static Analysis 73

can communicate with each other through intents. Individually both the apps have lim-

ited set of permissions as msgRead can read the SMS but cannot send it to the outside

world, and msgSend can send SMS but it cannot read any SMS.

In the attack scenario msgRead can read the text message and pass it as an intent

parameter. This intent is received by msgSend app, that can send the message to

the outside world. Although msgRead has no permission to send SMS, it can do that

transitively and hence escalate its privileges. msgSend app can be a genuine app or

malicious app. If it is genuine, it gets exploited by the msgRead app.

6.1.2 Automaton Model

As Android does not enforce any special permission for app communication, evaluating

the possibilities of attack due to inter-app communication becomes increasingly more

important. Our approach of ICC collusion detection is based on an automaton model.

The problem of collusion detection can be visualized as string searching and pattern

matching problem as any mismatch of permission between sender and receiver compo-

nents of an intent may lead to privilege escalation. Such problems can be solved by finite

automaton. To the best of our knowledge, this is the first work where the automata

approach has been used for collusion detection in Android.

A finite state automaton, denoted M , is a 5−tuple 〈S,Σ, δ, s0, F 〉 where S is a set of

finite states, Σ is the automaton alphabet (a set of finite symbols), δ : S ×Σ→ S is the

transition function, s0 ∈ S is start state and, F ⊆ S is the set of final states. The size

of automaton M is simply the number of its states. Let w be a word on the alphabet

Σ, that is w = a1, a2, · · · ak and w ∈ Σ∗. The word w is acceptable by automaton M iff

for w, there exists a sequence of state s1, s2, · · · , sk such that s1 = δ(s0, a1) and sk ∈ F ,

for all i ∈ {2, · · · , k}, si = δ(si−1, ai). The set of such words forms a language L(M)

that is recognizable by M. Example automata M is illustrated by Figure 6.2(a) where

Σ = {0, 1} and L(M) = {0, 01, 10} .

6.1.3 Intersection Automaton

Given two automata M = 〈S,Σ, δ, s0, F 〉 and M′ = 〈S′,Σ′, δ′, s′0, F ′〉, intersection au-

tomaton, I, of M and M′, denoted M∩M′, is defined as follows:

Chapter 6. ICC Primitives based Static Analysis 74

(a) Automata M that accepts {0, 01, 10} (b) Automata M′ that accepts {01}

Figure 6.2: Total Number of Sources and Sinks

I = 〈SI ,ΣI , δI , {s0, s
′
0}, FI〉, where

SI = {(s, s′) | s ∈ S and s′ ∈ S′},

ΣI = Σ ∪ Σ′,

FI = {(s, s′) | s ∈ F and s′ ∈ F ′}, and

δI : SI × ΣI → SI , with for all

((s1, s
′
1), (s2, s

′
2)) ∈ SI × SI , and a ∈ ΣI , δI((s1, s

′
1), a) = (s2, s

′
2) iff δ(s1, a) = s2 and

δ′(s′1, a) = s′2.

The intersection of automaton M and M′ of Figures 6.2(a) and 6.2(b) respectively

is illustrated in Figure 6.3. Let M1,M2, · · · ,Mm, be a collection of m finite state

Figure 6.3: Intersection of Automata M and M′ that accepts {01}

automata of sizes n1, n2, · · · , nm respectively. One interesting problem in automaton

theory is checking whether the intersection of their recognizable languages is empty,

i.e., decide on the following question: ∩mi=1L(Mi) = ∅? Let (Q) denote this question.

The standard algorithm for answering the above question involves constructing the fi-

nite state automaton corresponding to the intersection I =M1 ∩M2 ∩ · · · ∩Mm, and

solving the emptiness problem for I : L(I) = ∅. The size of the intersection automaton

I is O (n1 × n2 × · · · × nm). The last observation on the size of intersection automaton

shows that using such construction is memory consuming. We know from [137] that

there is no more efficient solution to answer question (Q).

Chapter 6. ICC Primitives based Static Analysis 75

6.2 Proposed Approach

In this section, we start with the explanation of preliminaries of our proposed approach

followed by detailing of each step and finally applying the approach on the motivating

example shown in Figure 6.1. A typical process to detect collusion proceeds by repre-

senting an individual app as a graph (application automaton). Application graphs of

two apps A and B are connected by an edge if any component of A is communicating

with any component of B via Intent. Such graphs are called application automaton. To

detect collusion we need to check that these edges do not violate permission model for

which we define some collusion policies and represent these policies as policy automaton.

Collusion detection is performed through the intersection of application automaton and

policy automaton.

6.2.1 Application Automaton

First, we formalize application automaton, the data structure used to represent all pos-

sible Intent based ICC interactions between apps.

Definition 6.1 (Application Automaton). An application automaton, or Λ, is a tuple

G = 〈S,Σ, δ, s0, F 〉 where S is the set of all the components present in all the apps under

analysis and one additional state s0, Σ is the set of permissions required by each app

under analysis, δ : S × Σ→ S is the transition function which takes permission needed

to move to the component. There is also a transition from s0 to all the other states in

S \ {s0}. All the states, except s0, are considered as final. That is F = S \ {s0}.

6.2.1.1 Constructing Application Automaton

Constructing app automaton is a crucial part of performing collusion detection. It

covers all possible intent based ICC interactions between apps. Following are the steps

to construct application automaton:

(a) Represent app as graph: In this step, we are capturing all the action strings as-

sociated with components of the app and all ICC calls (both implicit and explicit).

Let A be an app. We first define the following sets:

Chapter 6. ICC Primitives based Static Analysis 76

α, β, and γ are the set of all the activities, services, and broadcast receivers present

in A respectively. ξ is the set of intent API calls present in A , and ς(ξ) is the set

of all the action strings passed in ξ.

Therefore, we can define the set of vertices V as the set

V = α ∪ β ∪ γ ∪ ς(ξ) (6.1)

We also define the following two sets:

S(ξ) is the set of vertices which are sources of intents from ξ, that is

S(ξ) = {x ∈ {α ∪ β ∪ γ} | x initiates an intent i ∈ ξ},

T (ξ) is the set of vertices which are targets of intents from ξ, that is

T (ξ) = {x ∈ {α ∪ β ∪ γ} | xreceives an intent i ∈ ξ}.

Then, the set of edges E is defined as follows:

E = {(x, y) | x ∈ S(ξ) and y ∈ T (ξ)} ∪

{(x, y) | x ∈ S(ξ) and y ∈ ς(ξ)} ∪

{(x, y) | x ∈ T (ξ) and y ∈ ς(ξ)}

(6.2)

So, an app A can be represented as a directed graph G(V,E) where V and E are

defined by Equations 6.1 and 6.2 respectively. Visually apps msgRead and msgSend

can be represented as Figures 6.4(a) and 6.4(b) respectively.

(b) Union of the graphs: In order to resolve inter-app implicit intent calls, in this

step, we perform union operation on all the apps’ graph which are under analysis.

Say, there are n apps under analysis, and each of them is represented as graph by

step (a). The union graph Gu can be defined as:

Gu =
n⋃
i=1

Gi, Gi = (Vi, Ei) ∀i = 1 · · ·n

That is, it is the graph Gu = (V,E) with V = V1 ∪ V2 ∪ · · · ∪ Vn and E =

E1∪E2∪· · ·∪En∪E′, where E′ is the set of edges that encodes inter-app implicit

Chapter 6. ICC Primitives based Static Analysis 77

(a) msgRead app

(b) msgSend app

Figure 6.4: Graph representation of apps

intent calls. More formally, for any i 6= j ∈ {1, · · · , n}, let Ai and Aj be two apps

and Gi and Gj the corresponding graphs. Let ξi (resp. ξj) be the set of intent

API calls present in Ai (resp. Aj) and for k = i, j, let S(ξk) (resp. T (ξk)) denote

the vertices which are sources (resp. targets) of intents from ξk. Then we define

E′ as follows:

E′ = {(x, y) | ∃i, j ∈ {1, · · · , n}

s.t. x ∈ S(ξi) and y ∈ T (ξj) and i 6= j}

Union of graphs in Figure 6.4 are depicted in Figure 6.5.

Figure 6.5: Union of msgRead and msgSend apps’ graphs

(c) Prune the union graph: Now, the role of action strings (set ς) is complete,

therefore in this step we prune the graph Gu by removing all action string nodes.

Pruning the graph will help in improving the computational speed in further anal-

ysis. The rules to remove such nodes are: (a) If there is no incoming edge, then

Chapter 6. ICC Primitives based Static Analysis 78

just remove the node. (b) If there are incoming edges from components, then con-

nect incoming edge component to outgoing edge component directly and remove

the action string node. The pruned graph Gp(V p, Ep) can be defined as follows:

Ep = E ∪ {S(ξ)→ T (ξ) | S(ξ)→ x→ T (ξ), x ∈ ς}

\{{(x, y) | x ∈ S(ξ) and y ∈ ς(ξ)} ∪

{(x, y) | x ∈ T (ξ) and y ∈ ς(ξ)}}

V p = V − ς(ξ)

Pruned graph of Figure 6.5 is illustrated in Figure 6.6.

Figure 6.6: Pruning of union graph in Figure 6.5

(d) Convert pruned graph in automaton: Finally, graph Gp is converted to an

automaton Λ. All the nodes of Gp form the set F in Λ. Include one additional

state, that becomes s0 in Λ. S = F ∪ {s0} in Λ. δ includes transitions from

s0 → F with permissions required to access element of F and all the edges of Gp.

Application automaton of example apps is illustrated in Figure 6.7.

Figure 6.7: Application Automaton

Chapter 6. ICC Primitives based Static Analysis 79

6.2.2 Policy Automaton

Here, we define formally policy automaton, and the data structure used to represent

collusion policies.

Definition 6.2 (Policy Automaton). A policy automaton or Γ is a tuple G =

〈S,Σ, δ, s0, F 〉 where S is the set of all states in Γ (we will explain it later), Σ is the set of

dangerous permissions (cf. Section 2.2.3), δ : S×Σ→ S is the transition function which

takes x | x ∈ Σ and move to y | y ∈ S, s0 ∈ S is the first state of policy automaton, and,

F is the set of all states that led to collusion.

6.2.2.1 Constructing Policy Automaton

Constructing policy automaton defines the precision and accuracy of detection. It de-

picts inter-app order of permissions which may lead to collusion. To construct policy

automaton, first we need to define colluding rules. Collusion is said to have occurred if

dangerous permissions place in certain order within two or more apps. In our approach

we assume that if the first app has been granted some dangerous permission and is com-

municating with the app having permission to send data, as a result of ICC, dangerous

permissions are granted but not requested by the second app. To send data to the

outside world, an app requires any of the three permissions: WRITE EXTERNAL STORAGE,

SEND SMS and INTERNET.

If dangerous permission is followed by the above permissions or ε, where ε refers to

a null set of permission, there exists collusion. The sample policies are illustrated in

Listing 6.1.

1 READ PHONE STATE → INTERNET

2 ACCESS FINE LOCATION → SEND SMS

3 READ CONTACT → WRITE EXTERNAL STORAGE

4 ACCESS NETWORK STATE → ε

Listing 6.1: Sample Rules

Finally, as mentioned in Algorithm 6.1, these policies are converted into automaton Γ.

An example is shown in Figure 6.8.

Chapter 6. ICC Primitives based Static Analysis 80

Algorithm 6.1 Construct Policy Automaton

PolicyAutomata()

Define colluding policies ;

Γ = Policies2Automaton(); // Convert Policies to Automaton as explained in 6.2.2.1

return (Γ);

Figure 6.8: Policy Automaton

6.2.3 Collusion Detection

As illustrated in Algorithm 6.2, we make use of application automaton Λ and policy

automaton Γ to detect collusion.

Algorithm 6.2 Collusion Detection through Intersection Automaton

CollusionDetection(APPs)

Input: APPs is the set of all APKs under test

i = 0;

n = |APKs|; // Size of APKSet

repeat

Ai = ith APK of APPs;

Gi = App2Graph(Ai); // Convert APK to Graph

Gu = Gu ∪Gi;

until (i <= n)

Gp = Prune(Gu); // Remove all action strings

Λ = Graph2Automaton(Gp); // Convert Graph to Automaton

Γ = PolicyAutomata();

Ψ = Λ ∩ Γ;

if Ψ contains final states then

return (TRUE);

else

return (FALSE);

Chapter 6. ICC Primitives based Static Analysis 81

In Section 6.2.1, we built automaton machine that accepts the communication among

apps and in Section 6.2.2, we built a machine that only accepts colluding permission

sequence. Now, the intersection of the two will tell whether colluding permission se-

quence exists in the communication of apps or not. If the intersection has non-empty

final states, it means that the apps are colluding with each other as depicted in Figure

6.9.

Figure 6.9: Collusion Detection through Λ and Γ

6.3 Evaluation

In this section, we evaluate results from our experiments to judge the efficacy of our

proposed tool. During all the experiments we have used a PC with an Intel Core i3

2.0GHz CPU processor with 4GB RAM.

6.3.1 Dataset Preparation

Due to lack of availability of benchmark apps that exhibits collusion, we created our own

dataset of fourteen test examples that depict the real-time privilege escalation collusion

attacks. Out of fourteen, one is inter-device communication, others collude through

services and broadcast receivers. We named the dataset as MNIT dataset. We also

took three colluding samples from DroidBench [138] and four apps from Google Play

Store [88].

6.3.2 Analysis Results

In this section, we present results obtained by executing the proposed approach on

Droidbench Inter-App Communication dataset [138], some set of real-world apps from

Google Play Store [88], and MNIT dataset.

Chapter 6. ICC Primitives based Static Analysis 82

DroidBench: DroidBench test suite has thirteen categories, out of which one is inter-

app communication which consists of three apps. Our approach has successfully detected

two cases of collusion with the path of information leakage and one case of no-collusion.

Echoer app is colluding with the other two apps called sendSMS and startActivity-

ForResult1. It does not have any permission yet it possesses device ID and location

information. The results are shown in Table 6.1. (3) denotes the presence of collusion,

(7) denotes the absence of collusion.

Echoer sendSMS strtActForRslt1

Echoer - 3 3

sendSMS 3 - 7

strtActForRslt1 3 7 -

Table 6.1: DroidBench Inter-App Communication dataset

Google Play Apps: We also test our approach against real apps from Google Play

Store, which is considered to be benign and have download count in billions. We pick

four such apps from different categories, social networking (Facebook), Messaging (In-

stagram), Shopping (Amazon) and Movie(IMDB). Our approach can detect one case

of collusion and two cases of no-collusion out of five. We cannot detect the rest three

cases because Amazon showed incompatible issues while de-compression. The results

are shown in Table 6.2. (-NA-) denotes non-availability of the results.

Facebook Instagram Amazon IMDB

Facebook - 3 -NA- 7

Instagram 3 - -NA- 7

Amazon -NA- -NA- - -NA-

IMDB 7 7 -NA- -

Table 6.2: Google Play apps

MNIT Dataset: We tested the approach in 210 test cases illustrated by 14 apps.

Our approach successfully detects eight cases of collusion and 202 cases of no-collusion.

Results are shown in Table 6.3.

Chapter 6. ICC Primitives based Static Analysis 83

m
sg

S
en

d

m
sg

R
ec

ei
ve

ca
m

6

se
rv

er
S

o
ck

et

g
et

D
ev

g
et

L
o
c

g
et

Im
ag

e

g
et

F
D

a
ta

co
ll

ec
to

r

msgSend - 3 7 7 7 7 7 7 7

msgReceive 3 - 7 7 7 7 7 7 7

cam6 7 7 - 3 7 7 7 7 7

serverSocket 7 7 3 - 7 7 7 7 7

getDev 7 7 7 7 - 7 7 7 3

getLoc 7 7 7 7 7 - 7 7 3

getImage 7 7 7 7 7 7 - 7 3

getFData 7 7 7 7 7 7 7 - 3

collector 7 7 7 7 3 3 3 3 -

Table 6.3: MNIT dataset

6.3.3 Timing Analysis

Relevant information extraction from an app and representing that into an automaton

model is time-consuming but one time process. The average size of an app is ∼700

KB and it took around 20 sec to build the model. On the other hand, intersection of

application automaton with policy automaton to detect presence/absence of collusion

between different apps need to be done at max n2 times where n represents the number

of apps in a dataset. But the time taken by this step is negligible as compared to the

time taken by the first step. The maximum time taken to check Facebook and Instagram

app is 1.8 sec. We observed that on an average, there are around 20-26 user installed

apps in a device. Of these, many apps are common across many users and once their

application automata have been constructed, these need not be analyzed again. Use of

policy automaton allows us to enforce different policies at different levels by modifying

policy automaton accordingly. Our approach is scalable in terms of number of apps

as well as flexible in terms of security policy framework. Therefore, once we prepare

automaton model of top 100 apps, we need to incur a low overhead for each new user.

We can state that we can conclude that the proposed approach can perform reasonably

well in real time.

Chapter 6. ICC Primitives based Static Analysis 84

6.3.4 Scalability

The proposed method constructs automaton by considering information at a granularity

of component-level which means that each component represents one state in the au-

tomaton in contrast with app-level analysis [76] or method-level analysis [26, 71]. This

reduces state space and our automaton are compact and can be processed faster. App-

level analysis suffers from low precision (false positives), and method-level analysis is

not scalable to many apps. The size of application automaton is order of n, where n

is the total number of components in the apps under analysis. The policy automaton

also has finite number of states. Detecting the collusion is then done by intersection

of both application and policy automaton. This is linear and hence has O(n) memory

consumption.

The proposed approach shows its scalability against large apks. Facebook app is the

largest apk with respect to number of components among all the apks in datasets. It

has 391 components while checking collusion of Facebook with Instagram which has 53

components, total no. of states in the app automaton are 444 (391 + 53). This shows

that the no. of states in application automata is linear with respect to the total no. of

components in the apps under analysis. Thus we infer that the proposed approach is

scalable.

6.4 Summary and Limitations

Android app collusion poses a significant threat to user privacy. We developed a novel

collusion analysis model based framework that can detect ICC collusion. The model

statically analyzes different apps and retrieves inter-app communication, followed by

representing that communication in the form of a state machine to detect collusion. To

attain this objective, we developed a state machine for colluding policies. Our experi-

mental results demonstrate that colluding policies can be used as the pattern that can

be matched against the communication of apps to detect collusion.

Currently, we consider intent based ICC communication between two apps. This work

is extended in SniffDroid [139] that capture communication through shared preferences

Chapter 6. ICC Primitives based Static Analysis 85

and content providers. The involvement of more than two apps is also possible in collu-

sion. Our next work will focus on large-scale analysis of apps using formal verification

methods.

Chapter 7

Collusion Detection by Formal

Model

In the previous chapter, we discussed an approach to detect privacy leakage paths planted

between two apps through intent based ICC mechanism. However, construction of leak-

age path may involve more than two apps. But, the search space posed by possible

combinations of these apps is exponential. Therefore, there is a need to imply effective

methods to narrow down the search for collusion candidates of interest while ensuring

that no leakage path is missed.

In this chapter, we propose a novel approach, called SneakLeak+, to detect potentially

colluding apps. The tool extends a chain of existing tools to first extract Java byte-

codes from the apk files, then it extracts ICC based communication channels (intents,

content providers, and shared preferences) followed by identification of methods that

access sensitive data. All the extracted information is utilized to eliminate the non-

communicating apps and concentrate only on potential candidates for collusion in the

given set of apps under consideration. To ensure scalability, the stored information is

then processed to generate an abstract extended ICC model in a formal specification

language. Use of formal methods in any scenario requires a precise characterization and

representation of the relevant properties that need to be verified. We precisely express

colluding condition(s) and app model that could not be specified by existing formalism.

87

Chapter 7. Formal Model based Detection of Collusion 88

7.1 Formalization

This section formally presents how inter-app leakage path can be termed as app collusion.

Also, some background on formal verification and model checking is explained.

• Dangerous Permissions: As discussed in Section 5.1.1, we denote DangerPerms as

the set of over 130 pre-defined permissions provided by the Android platform [12].

• Sensitive API Calls: Let SAPICalls denote the set of all API calls whose invocation

is protected with a permission from DangerPerms (cf. Section 5.1.1). The set

SAPICalls is partitioned into SSources and SSinks:

– Sensitive Sources: We let SSources denote the set of all sensitive API calls

that read and return a value (cf. Section 5.1.1).

– Sensitive Sinks: We denote SSinks as the set of all sensitive API calls that

sends data out (cf. Section 5.1.1).

• Inter-Component Communication Methods: ICCom denotes the set of API meth-

ods that are used for inter-component (IC) communications. For instance,

startActivity(), bindService(), sendBroadcast() are some of the IC com-

munication methods.

• Resource-Permission Map: It is a surjective function γ : SAPICalls →

DangerPerms that maps any sensitive API call to the corresponding access per-

mission. In the sequel, we consider a fixed resource-permission map γ developed

using PSCout [140].

• Sensitive Information: Any value retrieved from a sensitive API call from SSources.

7.1.1 Android App Collusion

Sensitive information is retrieved, manipulated and exchanged by apps. Our goal is

to detect situations where sensitive information is leaked due to interactions between

several apps, which we call collusion.

Definition 7.1 (Collusion). A set {A1, . . . , An} of Android apps collude if they interact

to allow one of them, e.g. Ai, access and output sensitive data that is protected by

Chapter 7. Formal Model based Detection of Collusion 89

permissions that have not been granted to Ai. This is a minimal colluding set if no

proper subset of {A1, . . . , An} collude.

Our goal is to detect collusion. We focus on the situation where the information leaked

is obtained through inter-app communications. We build an abstract model of the apps

and their interactions to detect collusion. Our model is built from the control flow

graphs of the apps. We start by defining collusion in terms of the path in the control

flow graph of apps.

Following section 2.1, an Android app A consists of a set of components Comp(A) =

{C1, . . . , Cm}, and a set of sensitive resource access permissions: Perm(A) ⊆

DangerPerms. Each component Ci is a program. For each program, we extract its

control flow graph CFG(Ci)[141]. A control flow graph (CFG) of Ci is a finite directed

graph, where each vertex contains a statement1 from Ci, and the edges in the graph

represent jumps from a statement to the next statement. The control flow graph rep-

resents possible execution paths. While some of the paths may not be feasible when

the run-time value(s) of variables are taken into account, every execution of the pro-

gram corresponds to a path in its control flow graph. We denote CFG(A) the control

flow graph of A which consists of the disjoint union of the control flow graphs of its

components
⊎
i∈[1;m] CFG(Ci). We consider several Android apps at the same time. The

control flow graph of a set {A1, . . . , An} of apps is the disjoint union of their control flow

graphs: CFG({A1, . . . , An}) =
⊎
i∈[1;n] CFG(Ai). The control flow graph of a set of apps

is disconnected. Each connected component of CFG({A1, . . . , An}) corresponds to the

control flow graph of a component in one of the apps A1, . . . , An. On an Android device,

the components run in parallel and communicate with each other. The next challenge is

thus to identify communications between the connected components in the control flow

graph through IC communications.

Definition 7.2 (Communication). A communication is a pair (ms,mr) of IC commu-

nication methods from ICCom such that mr may receive the information sent by ms.

For example, startActivity(intent) and getIntent() form a communication, as

startActivity sends intent that is received by getIntent(). This communication

relies on Intents. Another example of communication is putInt("key", value) and

1To simplify the presentation, we consider CFGs where vertices correspond to a single statement. Our
approach can easily be adapted to CFGs where vertices consist of sequences of consecutive statements.

Chapter 7. Formal Model based Detection of Collusion 90

getInt("key"). The method putInt() associate value to key in a map. The value is

later retrieved (by another component) through a call to method getInt(). A complete

set of communications can be obtained from Android specifications [142].

A path in a control flow graph is a finite sequence v1, . . . , vk of vertices such that there

is an edge vi → vi+1 for every i ∈ [1; k − 1]. For a path p = v1, . . . , vk in a CFG, let

firstvertex(p) denotes the first vertex of the path (i.e. v1), and let lastvertex(p) denotes

its last vertex (i.e. vk).

Definition 7.3 (Communication path). Let {A1, . . . , An} be a set of Android apps, and

let CFG({A1, . . . , An}) be the corresponding control flow graph. A communication path

is a sequence of path segments p1, . . . , pk with k ≥ 2 such that:

• every path segment pi is a path in CFG({A1, . . . , An}), and

• for every i ∈ [1; k − 1], lastvertex(pi) and firstvertex(pi+1) form a communication.

We denote App(pi) the app Aj such that pi is a path in CFG(Aj), in other words, a

sequence of instructions from Aj .

A communication path thus models interactions between the components of a set of

Android apps. Observe that several path segments in a communication path may belong

to the same component, hence to the same app.

We are now interested in communication paths that lead to a leak. We need to track

sensitive information in order to detect leaks. To that purpose, we introduce a function

λ that maps every expression e in Android programs to the set of sensitive source calls

(hence sensitive information) required to evaluate e. We sketch a description of λ below.

For every sensitive source instruction s ∈ SSources, λ(s) = {s}. A non-sensitive value v

(literal, value obtain through a non-sensitive API call, etc) has λ(v) = ∅. For operators,

λ is defined as the union of the calls needed to evaluate the operands, e.g. λ(e1 + e2) =

λ(e1)∪λ(e2). Similarly for function calls, λ(f(e1, . . . , en)) is defined from λ(e1), . . . , λ(en)

taking into account the instructions of function f . For an assignment x = e, λ(x) = λ(e)

and λ(x = e) = λ(e). The function λ can be precisely defined from the grammar of the

Java language and Android APIs. Observe that a sensitive sink instruction f(e1, . . . , en)

of an Android app A leaks a sensitive information when λ(f(e1, . . . , en)) involves a

Chapter 7. Formal Model based Detection of Collusion 91

sensitive source call s with a permission γ(s) that is not granted to A, i.e. γ(s) 6∈

Perm(A).

Definition 7.4 (Sensitive communication path). A sensitive communication path for a

set {A1, . . . , An} of Android apps is a communication path p1, . . . , pk such that:

• the first instruction is a sensitive source: firstvertex(p1) ∈ SSources, and,

• the last instruction is a sensitive sink: lastvertex(pk) ∈ SSinks, and,

• the first instruction is needed to compute the leaked value: firstvertex(p1) ∈

λ(lastvertex(pk)), and,

• the last instruction is a leak: there is a sensitive source call s ∈ λ(lastvertex(pk))

such that γ(s) 6∈ Perm(App(pk)).

We aim at detecting sensitive communication paths from a model of {A1, . . . , An}. No-

tice that not all sensitive communication paths correspond to actual collusion. Indeed,

the paths in CFG({A1, . . . , Ak}) do not take into account the values of the variables.

Thus, a sensitive communication path may not be feasible when variables are taken into

account. But, every collusion corresponds to a sensitive communication path. In sec-

tion 7.2, we describe SneakLeak+, our approach to detect app collusion. It is based on

a formal verification approach to detect sensitive communication paths. We first briefly

introduce formal verification.

7.1.2 Formal Verification

The process of checking whether a system (software or hardware) conforms to or violates

a pre-specified set of desired properties (often referred to as the requirements) is called

verification [143]. In our case, properties refer to colluding conditions. We can apply

formal verification to prove the absence of colluding conditions in Android apps.

One approach for formal verification is model checking, which consists of a systematically

exhaustive exploration of the mathematical model. Model-checking [144] is a powerful

technique for the automated analysis of systems. It has been successfully applied to

both hardware and software. An overview of the model-checking approach is depicted in

Figure 7.1. It consists of modelling the program under consideration, and in specifying

Chapter 7. Formal Model based Detection of Collusion 92

the requirements in a formal language. The model represents the runs of the program,

whereas the formal specification represents the set of admissible runs. A model-checking

algorithm then exhaustively checks that all the runs in the model are admissible with

respect to the requirements. If it is not the case, a counterexample is provided that

exhibits a run and violates the requirements.

Property
SpecificationSystem Model

Model Checker

TRUE FALSE

Counter
Example

Figure 7.1: Model Checking Process

7.2 Proposed Approach: SneakLeak+

Our proposed tool SneakLeak+ is designed to detect potential collusion (Definition 7.1).

It detects sensitive communication paths (Definition 7.4). To that purpose, it identifies

communication paths (Definition 7.3), as well as the flow of sensitive data along those

paths. SneakLeak+ relies on the construction of an abstract model of the apps. Static

analysis is used to capture the flow of sensitive data. Finally, model-checking is used

to detect sensitive communication paths that lead to a leak. In the sequel, we describe

the three major phases of our approach: Extract App Information, Sensitive DataFlow

Analysis and Model Construction, and Interaction Analysis.

Chapter 7. Formal Model based Detection of Collusion 93

7.2.1 Extract App Information

As illustrated in Algorithm 7.1, this step extracts all the essential information needed

in the subsequent steps by performing static analysis. There are two main sources from

where the information is extracted from app A, that are Manifest and bytecode (cf. Sec-

tion 2.1). Line 1 will reverse engineering the app to extract its Manifest M and bytecode

B using DARE [79]. In lines 2-3, permissions Perm(A) and components Comp(A) are

extracted from the Manifest file. Then, in lines 4-8, program analysis and string analysis

is performed using IC3 [145] which is the most precise single-app IC communications

resolution tool in the literature. With this analysis, essential information are extracted

for each component. We extract sensitive API calls SCalls. Sensitive API calls are

identified based on the list provided by SuSi [126]. We also extract inter-process com-

munications performed via Intents, shared preferences and content providers. ICComIn

is the set of incoming IC communications which are identified by: getExtra attribute of

Intents, select queries of Content Providers, or calls to methods getInt, getString,

getLong, getFloat and getBoolean of Shared Preferences. Symmetrically, ICComOut

is the set of outgoing IC communications which consist in: putExtra attribute of In-

tents, queries insert and update of Content Provider, and calls to methods putInt,

putString, putLong, putFloat of Shared Preferences.

Chapter 7. Formal Model based Detection of Collusion 94

Algorithm 7.1 extractAppInfo

Input: A: Android App

Output: 〈B,Perm,Comp,SCalls, ICComIn, ICComOut〉 where B is the bytecode of app

A, Perm maps A to its set of permissions from DangerPerms, Comp is the set of

components in A, SCalls : Comp → 2SAPICalls maps every component to its set of

sensitive API calls, ICComIn : Comp → 2ICCom and ICComOut : Comp → 2ICCom

associate to every component the sets of incoming and outgoing IC communications

respectively.

Retrieve Manifest(M) and Bytecode(B):

1: M,B ← reverseEngineer(A)

Extract permissions and components:

2: Perm(A)← extractManifestPermissions(M)

3: Comp(A)← extractManifestComponents(M)

Extract sensitive API calls and communications for every compo-

nent in A:

4: for all C ∈ Comp(A) do

5: SCalls(C)← extractSensitiveAPICalls(C,DangerPerms, B)

6: ICComIn(C)← extractIncomingCommunications(C,B)

7: ICComOut(C)← extractOutgoingCommunications(C,B)
return 〈B,Perm,Comp,SCalls, ICComIn, ICComOut〉

7.2.2 Sensitive DataFlow Analysis and Model Construction

A straightforward approach to detect sensitive communication paths for a set of apps

{A1, . . . , An} is to explore the control flow graph CFG({A1, . . . , An}) for such paths.

Although, the control-flow graphs for average Android apps turn out to be huge. This

approach would not scale up to more than a few apps. Instead, we take a different

approach that consists in building a small abstraction of CFG({A1, . . . , An}). It relies

on sensitive dataflow analysis and static taint analysis to extract paths in the control-

flow graph, and the flow of sensitive information along those paths (the λ function in

Section 7.1.1).

Algorithm 7.2 describes the construction for a single component C from Comp(A). The

graph of app A, G(A), is obtained as the disjoint union of the components’ graphs⊎
C∈Comp(A) G(C). The graph G(C) abstracts CFG(C) in the sense that instructions from

Chapter 7. Formal Model based Detection of Collusion 95

Algorithm 7.2 buildComponentModel

Input: 〈C,B,SCalls, ICComIn, ICComOut〉 where C is a component, B is the app byte-
code and, SCalls, ICComIn and ICComOut associate to component C its set of sen-
sitive API calls, its set of incoming IC communications, and its set of outgoing IC
communications respectively.

Output: a finite graph G(C) = 〈V,E〉 that abstracts CFG(C)
Build graph vertices:

1: Vsources ← SCalls(C) ∩ SSources
2: Vsinks ← SCalls(C) ∩ SSinks
3: Vin ← ICComIn(C)
4: Vout ← ICComOut(C)
5: V ← Vsources

⊎
Vsinks

⊎
Vin
⊎
Vout

Extract Sensitive Paths Segments:
6: for all vertices (v, v′) ∈ (Vsources × Vout) ∪ (Vin × Vout) ∪ (Vin × Vsink) do
7: if sensitivePath(v, v′, B) then
8: add an edge v → v′ to E

return G(C) = 〈V,E〉

B that are irrelevant for sensitive paths analysis are abstracted away. Furthermore, G(C)

only preserves sensitive path segments (in the sense of Definition 7.3), but it does not

preserve the structure of CFG(C). G(C) is called the path segment abstraction of C.

The vertices of G(C) (lines 1-5) correspond to either sensitive API calls from

SCalls(C) (the sets Vsources and Vsinks), or incoming/outgoing IC communications from

ICComIn(C) and ICComOut(C) respectively (the sets Vin and Vout). The edges in CFG(C)

correspond to path segments in the sense of Definition 7.3. These are the paths from a

sensitive source to an outgoing IC communication (Vsources×Vout), or from an incoming

to an outgoing IC communication (Vin × Vout), or from an incoming IC communica-

tion to a sensitive sink (Vin × Vsink). These paths are identified using taint analysis:

sensitivePath(v, v′, B) is true when there is a path in bytecode B from instruction v

to instruction v′, and such that the evaluation of v′ depends on v, i.e. v ∈ λ(v′) (cf.

Section 7.1.1). In line 6-10, an edge is added to G(C) for every pair of vertices linked by

a sensitive path. Observe that the graph represents path fragments as edges, and that

there is no path of length more than one.

7.2.2.1 Generate Collusion Model

Algorithm 7.3 shows the last step of our approach. In the previous sections, we have

built an abstract model for a component in an Android app. In lines 1-8, we use

Chapter 7. Formal Model based Detection of Collusion 96

Algorithm 7.3 generateCollusionModel

Input: {A1, . . . , An} a set of Android apps
Output: 〈G, ρ〉 where G = (V,E) is a finite graph such that every communication path

in CFG({A1, . . . , An}) has a corresponding path in G, and ρ : V → 2DangerPerms label
each vertex v ∈ V with the permissions needed to evaluate the instruction v.

Build the apps model:
1: for all A ∈ {A1, . . . , An} do
2: 〈B,Perm,Comp,SCalls, ICComIn, ICComOut〉 ← extractAppInfo(A)
3: for all C ∈ Comp(A) do
4: G(C)← buildComponentModel(C,B,SCalls, ICComIn, ICComOut)

5: G(A)←
⊎
C∈Comp(A) G(C)

6: G←
⊎
i∈[1;n] G(Ai)

Build the communication model:
7: # let V i

in and V i
out respectively denote the ICComIn and ICComOut vertices in G(Ai)

8: for all vertices vs ∈ V i
out and vr ∈ V j

in with i 6= j do
9: if (vs, vr) is a communication then

10: Add an edge vs → vr to G

Build the permission flow:
11: # let V i

source denote the source vertices in G(Ai)
12: Vsource ←

⊎
i∈[1;n] V

i
source

13: for all vertex v in G do

14: ρ(v)←

{
γ(v) if v ∈ Vsource⋃
v′→v ρ(v′) otherwise

return 〈G, ρ〉

Algorithms 7.1 and 7.2 to build a finite graph G = (V,E) that is an abstract model for a

set of apps {A1, . . . , An}. We now need to detect sensitive communication paths in G (cf.

Definition 7.4). We reduce this problem to a reachability problem on an extension of G.

As a first step, in lines 9-14, we add edges to G that correspond to communications (cf.

Definition 7.2). Now, every communication path in CFG({A1, . . . , An}) is represented

as a path in G. As a second step, in lines 15-19, we build a map ρ : V → 2DangerPerms

that associate to every vertex v of G the set of dangerous permissions needed to execute

the instruction v. Notice that this includes the permissions needed to evaluate the

parameters of v, if any. Thus, a sensitive communication path corresponds to a path

in G that starts in a source vertex v, and that ends in a sink vertex v′ such that the

instruction in v′ requires permissions ρ(v′) which are not granted to its app. Notice that

this implies that v and v′ do not belong to the same app, hence the path takes at least

one communication edge. Let Perm(v) denote the set of permissions granted to app Ai

such that v is a vertex of G(Ai). Our model allows to detect sensitive communication

paths in the following sense:

Chapter 7. Formal Model based Detection of Collusion 97

Lemma 7.5. Let {A1, . . . , An} be a set of Android apps, and let 〈G, ρ〉 =

generateCollusionModel({A1, . . . , An}). Assuming that sensitivePath is complete2,

then every sensitive communication path in CFG({A1, . . . , An}) has a corresponding

path v → · · · → v′ in G such that n is a source vertex, n′ is a sink vertex, and

ρ(v′) 6⊆ Perm(v′).

Owing to the path segment abstraction used to model the components, the size of apps

model G({A1, . . . , An}) grows polynomially with the number of components. This allows

our method to scale to big sets of apps.

7.2.2.2 Motivating Example

In this section, we provide an example of threat scenario that is possible due to Android’s

ICC vulnerability. In the subsequent section, we will generate a model of this example

using our approach. Our threat scenario consists of two apps named Sender and Receiver

as shown in Figure 7.2.

Figure 7.2: Potential Threat Scenario: Sender app communicates data to Receiver
app through implicit intent

(Android does not check for permission privileges while passing the data)

Sender app has two components named MainActivity and sendService. Assume,

MainActivity is invoking sendService component of Sender app itself through an

explicit Intent. Once invoked, it calls getDeviceId() which is a sensitive API call that

requires permission READ PHONE STATE, and this permission is mentioned in the Manifest

file of Sender app. The output of this API call is the unique IMEI number of the device,

2sensitivePath(v, v′, B) is complete if it returns true whenever there is a path from instruction v to
instruction v′ in bytecode B.

Chapter 7. Formal Model based Detection of Collusion 98

which is then encapsulated in an implicit intent with action string “dummy string” and

sent. Any activity of any app installed on the device that has mentioned “dummy string”

in the <intent-filter> tag inside Manifest file can receive this intent.

Assume, MainActivity of Receiver app can take the intent with action string

“dummy string”. Therefore it can get the access to the sensitive information. Here,

Receiver app does not have permission to access unique IMEI number of the device, but

still, it can get this information through another co-existing app via intent. This is called

privacy leakage, it can lead to the threat when Receiver app sends this data outside. In

our example, when the app is writing this information to an external memory card.

7.2.2.3 Collusion Analysis using Model-Checking

In this section, we describe how we implement Algorithm 7.3 using model-checking. We

illustrate our approach on the threat model example from Section 7.2.2.2. Listing 7.1

shows a simplified PROMELA model built from this example. The model maintains a

boolean flag collusion (line 12) that becomes true when collusion is detected, and that

remains false otherwise.

We model communication edges and permission flow from Algorithm 7.3 using commu-

nication features of PROMELA. Communication edges are modelled by inter-process

communication channels. The process exchanges messages over the channels. In our

model, the messages consist of the dangerous permissions needed to access sensitive in-

formation that is exchanged by the processes (mtype in line 2). Apps permissions Perm

are defined in lines 5 and 6. The implicit intent is modelled in line 9 by a channel that

carries mtype messages. The explicit intent in Figure 7.2 is not modelled as it is not

used to exchange sensitive information.

There is one process (proctype) for each component. In lines 15-16, the process for

component Sender.mainActivity is empty since the component does not exchange

sensitive information. Component Sender.sendService is modelled in lines 19-25. It

has one path segment that corresponds to reading the phone state (line 22), then sending

the state using intents (line 23). The model for component Receiver.mainActivity also

has only one path segment that consists in receiving sensitive information that requires

permission perm (line 31), then writing this information to the SD card (lines 32). Since

Chapter 7. Formal Model based Detection of Collusion 99

writing to the SD card is a sensitive sink API call, it may lead to a leak. So, we check

in lines 33-41 that permission perm is among the permissions of app Receiver. If not,

a sensitive communication has been detected, and collusion is reported (line 40).

1 /∗ messages = DangerPerms, NAP=Not−A−Permission (service message) ∗/

2 mtype { READ PHONE STATE, WRITE EXTERNAL STORAGE, NAP};
3

4 /∗ permissions of applications Sender and Receiver, i .e. Perm(Sender) and Perm(Receiver) ∗/

5 mtype Sender PermSet[2] = {READ PHONE STATE, NAP};
6 mtype Receiver PermSet[2] = {WRITE EXTERNAL STORAGE, NAP};
7

8 /∗ intent modelled as a communication channel (handshake) ∗/

9 chan com example collector implicit = [0] of {mtype};
10

11 /∗ collusion detection flag (0 means false, other means true) ∗/

12 bool collusion = 0;

13

14 /∗ process modelling component Sender mainActivity, i.e. G(Sender.mainActivity) ∗/

15 proctype Sender.mainActivity() {
16 }
17

18 /∗ process modelling component Sender.sendService, i.e. G(Sender.sendService) ∗/

19 proctype Sender.sendService() {
20 mtype perm;

21 do

22 :: source read phone state: // sensitive source

23 com example collector implicit ! READ PHONE STATE;

24 od

25 }
26

27 /∗ process modelling component Receiver.mainActivity, i.e. G(Receiver.mainActivity) ∗/

28 proctype Receiver.mainActivity() {
29 mtype perm;

30 do

31 :: com example collector implicit ? perm; −> {
32 sink write SD card: // sensitive sink

33 // check that perm belongs to Perm(Receiver)

34 for (i : 0..1) {
35 if

36 :: perm == Receiver PermSet[i] −> goto ok;

37 :: else −> skip

38 fi

39 };
40 collusion = 1; // collusion detected

41 ok: skip;

42 }
43 od

44 }

Listing 7.1: Interaction model for example in Figure 7.2 (simplified model)

A PROMELA model describes a set of runs. The model in Listing 7.1 only has one run.

It consists in executing line 23 in process Sender.sendService synchronously with

line 31 in process Receiver.mainActivity, then executing lines 34 to 40, and detecting

a leak since permission READ PHONE STATE is not granted to app Receiver. Sensitive

communication paths, hence app collusion, are detected by checking if the boolean flag

Chapter 7. Formal Model based Detection of Collusion 100

collusion may be set to 1. This is achieved by a standard reachability check on the

model using the model-checker SPIN.

7.2.3 Incremental analysis

SneakLeak+ uses an incremental approach to scale up collusion analysis to sets of apps

that can be found on an average smartphone. Algorithm 7.4 shows how to add apps incre-

mentally during analysis. It relies on a straightforward modification of Algorithm 7.2.2.3

(line 3) that builds the communication model and the permission flow incrementally.

Algorithm 7.4 incrementalAnalysis

Input: {A1, . . . , An} a set of Android apps
Output: ”collusion” if a sensitive communication path is found, ”no collusion” other-

wise
1: 〈G, ρ〉 ← generateCollusionModel({A1})
2: for all i ∈ [2;n] do
3: extend 〈G, ρ〉 with G(Ai)
4: if G has a reachable vertex v s.t. ρ(v) 6⊆ Perm(v) then return ”collusion”

return ”no collusion”

7.3 Evaluation

To access the effectiveness of our proposed tool SneakLeak+, we conducted experiments

to address following research questions:

RQ1 What is the motivation for interaction analysis?

RQ2 How does SneakLeak+ perform compare to state-of-the-art inter-app vulnerability

detection tools (such as COVERT, IccTA+APKCombiner, DIALDroid) on the set

of benchmark apps?

RQ3 What is the overall accuracy of SneakLeak+ in detecting inter-app vulnerabilities?

RQ4 How SneakLeak+ can scale to perform interaction analysis of thousands of real-

world Android apps?

Chapter 7. Formal Model based Detection of Collusion 101

7.3.1 Need of Interaction Analysis

To motivate the need for interaction analysis, we conducted an experiment by download-

ing the Device ID3 app from Google Play. The app has permission to retrieve Device

info/ID, local IP, and MAC addresses. We analyzed the app on single-app analysis tools,

and results are shown in column(2) of Table 7.1. The app requests for six dangerous

permissions and consequently the risk score value is moderately high.

As a second step of our experiment, we developed the similar app by reducing the

permission from 6 to 1, more specifically, we retained only READ PHONE STATE permission,

which is needed to get all the required details and added one more permission required

to write on the external storage, i.e., WRITE EXTERNAL STORAGE. We have also added a

leakage code that writes the device id info to a file named leak.txt and stores it on

the SD card. We then performed the same analysis for the revised app. The analysis

results of this app on the same tools are shown in column(3) of Table 7.1. Surprisingly,

the score reduced by 60%. This demonstrates that the number of dangerous permissions

required by the apps is the key feature to calculate the risk possessed by the app.

Single-App Analysis Device ID DeviceId Collector DeviceId Service Collector

Approaches (2) (3) (4) (5)

VirusTotal

(Web-Service)
1/56 0/56 0/56 0/56

VisualThreat

(Web-Service)
30∗ 12∗ 7∗ 7∗

SandDroid

(Web-Service)
28∗ 12∗ 6∗ 6∗

Permission Checker

(Android App)

PersonalInfo

Leakage

PersonalInfo

Leakage
SAFE SAFE

Permission Friendly

(Android App)
700∗∗ 300∗∗ 100∗∗ 120∗∗

IccTA

(Open-Source Tool)

No Source

No Sink

No Source

No Sink

No Source

No Sink

No Source

No Sink

DroidSafe

(Open-Source Tool)
† Source and sink

No Source

No Sink

No Source

No Sink

FlowDroid

(Open-Source Tool)

No Source

No Sink

No Source

No Sink

No Source

No Sink

No Source

No Sink

HelDroid

(Web-Service)
† Malicious Benign Benign

Table 7.1: Results of single-app analysis approaches on Device ID app and its variants
∗ = Risk Score (Scale 0-100) lesser is better, ∗∗ = Risk Score (Scale 0-1000) lesser is

better, † = Incompatibility issues.

3https://play.google.com/store/apps/details?id=com.evozi.deviceid&hl=en

Chapter 7. Formal Model based Detection of Collusion 102

Some of the approaches have detected the leakage therefore as a third step, we have

divided the leakage path across two apps. Sensitive information is accessed via the first

app, and it is leaked to the file via a second app. This corresponds to the example in

Figure 7.2. Column (4) and (5) show the results of the analysis for both apps respectively.

None of the approaches can detect the leakage path as they rely on single app analysis.

This brings us to the conclusion that single-app analysis is not sufficient to detect leakage

paths that are distributed across multiple apps. Android framework does not check if an

app that is accessing the permission-protected resource through another app has itself

requested that permission. Each colluding app only needs to request a minimal set of

permissions, that may make it appear benign to most of the techniques. Therefore, there

is a need of interaction-app analysis that can identify such paths.

7.3.2 Comparison with the State-of-the-art Approaches

We conducted our experiments on virtual machine running Ubuntu 16.04 LTS with 16

core Intel(R) Xeon(R) E5-2699 v3 2.30GHz CPU, 360GB RAM. We evaluated both real-

world apps from Google Play and benchmark apps from DroidBench and ICC-Bench. We

analyzed two branches of DroidBench that contain apps with inter-app communications,

namely develop (DroidBench 3.0) [16] and iccta (DroidBench 2.0) [146]. In addition, we

have also released a set of 64 apps exhibiting inter-app communication for comparing

the detection capabilities for collusive data leaks4.

COVERT [12], IccTA [26]+APKCombiner [147] and DIALDroid [70] proposed inter-

app vulnerability detection techniques. Table 7.2 shows comparison of these techniques

with SneakLeak+ on DroidBench, self-made apps and ICC-Bench [148] datasets. As

compared to four tools, SneakLeak+ outperforms with the highest precision (100%),

highest recall (93.3%) and highest F-measure (0.97). COVERT reported highest false

positives due to the inaccurate mapping of sensitive data with intent and implicit intent

resolution. If any string operation is performed on sensitive data or intent, COVERT

loses that occurrence and misses leakage paths. It cannot detect any leakage paths in

DroidBench and our new benchmark dataset apps, hence having relatively low recall

value(33.3%). IccTA+APKCombiner performs poorly among all the tools. It crashes

4We have contributed the set of 64 apps to DroidBench

Chapter 7. Formal Model based Detection of Collusion 103

Source App Destination App COVERT IccTa+APK DIALDroid SneakLeak+

Combiner (Ours)

DroidBench 3.0

SendSMS Echoer © ©
StartActivityForResult1 Echoer © ©
DeviceId Broadcast1 Collector © †
DeviceId ContentProvider1 Collector © †
DeviceId OrderedIntent1 Collector © †
DeviceId Service1 Collector © † ©
Location1 Collector © †
Location Broadcast1 Collector © †
Location Service1 Collector © † ©

Incorrect app pairings (172) X ‡
Call Logs to SD Card through Implicit Intent (Self Made)

Task21 Service21 © † ©
Twin2 CallWritingImplicit © † ©
Twin7 SdReceiverimplicit © † ©
Twin10 ReceiverEx © † ©
Task14 Service14 © † ©
Task15 ServiceImp © † ©
Task17 ReceiverSd © † ©
Task20 ActivitySdImp © † ©
ReflectedTask21 Service21 © † © ©
ReflectedTwin2 CallWritingImplicit © † © ©

Incorrect app pairings ‡ (2) X

DroidBench (IccTA branch)

startActivity1 source startActivity1 sink

startService1 source startService1 sink

startbroadcast1 source startbroadcast1 sink

Incorrect app pairings (104) X ‡
ICC-Bench

implicit action implicit src sink †
implicit action implicit nosrc sink ©
implicit mix1 implicit mix2 © †
implicit src nosink implicit src sink ©
implicit src nosink implicit nosrc sink ©
implicit src nosink implicit action ©
implicit src sink implicit action †
implicit src sink implicit nosrc sink ©

Incorrect app pairings (47) X ‡
Sum, Precision, Recall and F measure

True Positive (), higher is better 10 3 18 28

False Positive (X), lower is better 323 0‡ 2 0

False Negative (©), lower is better 20 9 12 2

Precision, p = /(+X) 3.0% 100%‡ 93.3% 100%

Recall, r = /(+©) 33.3% 25% 60% 93.3%

F-measure = 2pr/(p+r) .06 .40 .75 .97

correct detection X false warning © missed detection † tool crashed ‡ cannot say

Table 7.2: Comparison of existing inter-app data leakage detection techniques

Chapter 7. Formal Model based Detection of Collusion 104

or misses the detection on most of the apps. It reported detection only on DroidBench-

IccTA dataset because it is developed by the same authors. It has the lowest recall value

(25%). DIALDroid performs reasonably well with precision (93.3%) and recall (60%).

The reason for false positive detection in DIALDroid is the use of regular expressions

for string search that checks only the occurrence of sub-string. The reason for false

negative is incomplete string handling. For example, in self-made apps, sensitive data

is serialized and hence detection is evaded by DIALDroid. It also fails to recognize

leaks via intermediate components. All the approaches are based on static analysis

including SneakLeak+ are restricted by anti-static-analysis techniques such as reflection,

dynamic code loading, and obfuscation. They make the call to sensitivePath(v, v′, B) in

Algorithm 7.2 incomplete. Thus all static analysis based approaches miss the detection

of reflected apps.

For completeness, we have also compared inter-app analysis runtime of existing state-

of-the-art on 98 randomly selected apps from Google Play. COVERT does not scale

for 4,753 pairs and hence crashed after 37 hours, IccTA+APKCombiner can combine

only 851 pairs and took 403 hours. DIALDroid took 21 hours to complete the analysis

whereas SneakLeak+ took 18.5 hours to complete.

7.3.3 Performance and Timing

SneakLeak+ performance analysis is done by analyzing preprocessing time and interac-

tion analysis time on different benchmark datasets and 30 popular apps from Google

Play. As illustrated in Table 7.3, a large proportion of the total analysis time is required

by preprocessing phase. But, each app has to undergo this phase only once.

There is a significant variation of time in benchmark apps, and Google play apps. Bench-

mark apps are developed to demonstrate the attack scenario and therefore contain lim-

ited data flows and ∼2 components per app on an average. Therefore, there are very

few states in the interaction model of benchmark apps set. Whereas, real-world apps

are larger in size (LOC) and composed of complex functionalities that increase prepro-

cessing time. Similarly, real-world apps composed of 30 − 400 components resulting in

a larger interaction model.

Chapter 7. Formal Model based Detection of Collusion 105

App Preprocessing Interaction

Name Time(in Min.) Analysis

Time (in Min.)

DroidBench3.0 (11 apps) 4.4 0.13

ICC-Bench (24 apps) 10.04 0.33

Self-Made (56 apps) 25.1 1.01

DroidBench-IccTA (95 apps) 39.6 3.07

Google Play (30 apps) 135 6.75

Table 7.3: Performance and Timing Analysis of SneakLeak+

7.3.4 Scalability

In the interest of scalability, SneakLeak+ limits the number of states to represent an app.

The states represent only those components that are involved in sensitive information

related communication (in/out). It has been observed that only a small proportion

of communication channels are sensitive. If the component is isolated or dealing with

non-sensitive data, we are not considering it into our model.

It is very important to construct small models as we did to allow the technique to scale

up to a reasonable set of apps. A smartphone has an average of 30 installed apps and as

shown in Table 7.3, it will take around 142 minutes to analyze the entire device. We have

also performed large-scale detection of app collusion on over 11, 000 apps and identified

many real-world collusion apps that are leaking private information. Therefore, it can be

clearly stated that our state model can scales well on an average set of apps as compared

to other state-of-the-art techniques.

7.4 Summary

In this chapter, we have presented SneakLeak+ that enacts interaction-app analysis to

detect inter-app ICC based privacy leak vulnerability. Our approach employs static

analysis to represent an app into a compact form suited for formal verification. The

formal analysis engine along with the threat specification is used to verify whether the

potential inter-app ICC communication is safe to the user (no privacy leak). The same

technique can be easily adapted to check privilege escalation instead of leaks. Like most

of the static analyzers, our approach is also limited by anti-static-analysis techniques

Chapter 7. Formal Model based Detection of Collusion 106

such as reflection, dynamic code loading, and obfuscation. Experimental results, on a

large-scale dataset demonstrate that SneakLeak+ achieves the highest precision (100%),

highest recall (93.3%) and highest F-measure (0.97) as compared with existing state-of-

the-art approaches. Besides better accuracy, our analysis detected real-world colluding

apps that are leaking private information.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this Thesis, we present analysis techniques for intra-app and inter-app for Android

platform. In Part-I of the Thesis, we propose three novel analysis techniques to detect

“single malicious app” which complement each other to improve analysis coverage. In

the first step, we propose ‘DRACO’ that analyzes features extracted from the Manifest

and code file of the app. Based on these features, classifier classify the app as malicious

or benign. This technique provides insight of on-device analysis mechanism.

On-device analysis can produce the first level of warnings only due to computational

restrictions. To increase the code coverage and detection accuracy, server module needs

to be equipped with off-device techniques. Therefore, in the second step, we propose

‘SWORD’ that encapsulates the semantics of Android apps using Asymptotic Equipar-

tition Property (AEP) which are further quantified to detect the malicious apps.

User’s personal information is new cash commodity in our times. It has been observed

that capturing the behaviour of apps with regard to privacy is an important factor to

differentiate malicious apps from benign. To analyze such data flow paths, we propose,

‘FlowMine’ that considers the behaviour of an app towards sensitive information. It

works on the principle that if the behaviour of a large number of benign and malicious

apps are already known, then this information can be used as a metric to classify an

unknown sample as benign or malicious. The frequency of occurrence of a source-sink

pair across a number of malicious and benign apps is obtained. It will determine if

107

Chapter 8. Conclusions and Future Work 108

this pair can be used as a discriminant between malicious and benign behaviour. Each

source-sink pair is assigned a rank, which is indicative of its discrimination capability.

The phenomena of information leakage pose a significant risk to the privacy of Android

device users. Till now, the focus is towards single-app analysis, however, malicious app

developers may create obscured leakage path scattered across multiple apps, making

detection more complex problem with a challenge to detection. Having considered this

challenge, in Part-II of the Thesis, we have extended our proposal to detect inter-app

data leakage paths. In the first step, we proposed an approach that represents apps

communication through ‘application automaton’ and identifies policies based on the

violation of permission model through ‘policy automaton.’ The intersection of the two

automata will detect the presence of collusion between two apps. But, for more than two

apps, the search space posed by possible combinations of apps is exponential. Effective

methods are needed to narrow down the search to collusion candidates of interest.

To allow large-scale multi-app analysis by reducing the search space posed by the combi-

nations of apps, we propose ‘SneakLeak+’ that models app representing potential leaks

only. It statically analyzes the reverse engineered intermediate code of each app, extract

security relevant information, and represent the extracted information into a compact

form suitable for formal verification. The formal analysis engine is used to verify the

presence/absence of potential inter-app communication-based leakage in a reasonable

time frame.

At present, there is no standard app dataset available to verify efficacy and scalability

of methods dealing with collusion detection. Therefore, we developed 64 wide-ranging

apps exhibiting collusion as our benchmark dataset. Now, this set is available as open-

source at DroidBench [16] and is currently used widely. Details of some of these apps

are provided in Appendix A.

8.2 Pointers to Future Work

In this Thesis, we attempted to cover research gap identified through the systematic

literature review described in Chapter 2, including the development of techniques that

allows single and multi-app analysis. As an avenue for the future research, we propose

investigating the following extensions:

Chapter 8. Conclusions and Future Work 109

• Obfuscation and reflection pose an important challenge for program analysis [149].

So, investigating techniques to identify vulnerabilities due to these programming

paradigm can improve the code coverage of analysis.

• The deviation of app’s behaviour from its description that is provided by the

developer is an important indicator to judge the security threats posed by the

app. This deviation can be calculated by extracting features, semantics and data

flow paths of the app.

• The technique proposed for multi-app analysis may have false positives as there

are paths that exist but may never execute in real. For this, Runtime Verification

based collusion detection techniques will be a helpful and possible direction of

work.

Finally, since the theoretical contribution of intra and inter app analysis for Android

platform is applicable to other mobile OS also. Thus, one needs to investigate the

applicability of the approaches, presented in this Thesis, to other platforms.

We conclude this Thesis in the hope that it can contribute a step in the direction of

securing mobile apps. We recommend users to analyze the apps before using as the app

developers may not be aware of prevailing security threats and may leave some loose

ends intentionally/unintentionally that can compromise user’s security.

Publications 110

8.3 Publications

1. Shweta Bhandari, Wafa Ben Jaballah, Vineeta Jain, Vijay Laxmi, Akka Zemmari,

Manoj Singh Gaur, Mohamed Mosbah, and Mauro Conti “Android inter-app com-

munication threats and detection techniques”. Computers & Security 70-2017,

392-421.

2. Shweta Bhandari, Rishabh Gupta, Vijay Laxmi, MS Gaur, Akka Zemmari.

“DRACO:DRoid Analyst Combo An Android Malware Analysis Framework”, in

Proceedings of the 8th International Conference on Security of Information and

Networks, pp. 283-289. ACM 2015, Sochi/Russia

3. Shweta Bhandari, Rekha Panihar, Smita Naval, Vijay Laxmi, Akka Zemmari,

Manoj Singh Gaur. “SWORD: Semantic AWare AndrOid MalwaRe Detector.”

Journal of Information Security and Applications 42 (2018): 46-56.

4. Lovely Sinha, Shweta Bhandari, Parvez Faruki, Manoj Singh Gaur, Vijay Laxmi,

Mauro Conti. “FlowMine: Android App Analysis via Data Flow”, in Proceedings

of the 13th Annual IEEE Consumer Communications & Networking Conference

(CCNC), 2016, pp 435-441, Las Vegas, USA.

5. Shweta Bhandari, Vijay Laxmi, Akka Zemmari, Manoj Singh Gaur. “Intersection

Automata based Model for Android Application Collusion”, in Proceedings of the

30th IEEE International Conference on Advanced Information Networking and

Applications (AINA), 2016, pp 901-908, Crans-Montana, Switerzland.

6. Shweta Bhandari, Frederic Herbreteau, Vijay Laxmi, Akka Zemmari, Manoj Singh

Gaur, and Partha S. Roop. “POSTER: Detecting Inter-App Information Leakage

Paths.” in Proceedings of the ACM Asia Conference on Computer and Communi-

cations Security (ASIACCS) 2017, pp 908-910, Abu Dhabi, UAE.

7. Shweta Bhandari, Frederic Herbreteau, Vijay Laxmi, Akka Zemmari, Partha S.

Roop, and Manoj Singh Gaur. “SneakLeak: Detecting Multipartite Leakage Paths

in Android Apps.” In Trustcom/BigDataSE/ICESS, August 1-4, 2017, Sydney

Australia IEEE, pp. 285-292.

8. Shweta Bhandari, Frederic Herbreteau, Vijay Laxmi, Akka Zemmari,

Partha S. Roop, and Manoj Singh Gaur. “SneakLeak+: Large-Scale

Publications 111

Klepto Apps Analysis” Future Generations Computer Systems (2018).

https://doi.org/10.1016/j.future.2018.05.047

Appendices

113

Appendix A

Benchmarking Colluding Apps

for Analysis: DroidBench 3.0

DroidBench [16] is an open benchmark suite developed and maintained by a research

group at Technical University Darmstadt, Germany. It contains toy Android apps that

exhibit challenges for data flow analysis tools. Android security research community uses

this benchmark suite to verify the effectiveness and accuracy of analysis tools. Table A.1

shows all the releases of DroidBench till now.

Version Year

3.0-develop -

2.0 Jan 23, 2015

1.1 Jul 6, 2013

1.0 May 8, 2013

Table A.1: DroidBench Releases

DroidBench 2.0 [138] is the collection of 174 testcases under 19 categories. DroidBench

3.0 [16] consists of 190 testcases. The samples are donated by different international

research groups all over the globe. Table A.2 shows some of the research work that uses

DroidBench apps for evaluating their proposed technique.

115

Appendices 116

Title Place Year

MalDroid [150] AsiaCCS 2017

DIALDroid [150] AsiaCCS 2017

SneakLeak [151] TrustCom 2017

Detecting Inter-App Leakage [67] AsiaCCS 2017

TEE [150] ICSE 2016

AspectDroid [152] CODASPY 2016

IACDroid [153] ICISA 2016

Harvester [154] NDSS 2016

IntelliDroid [65] NDSS 2016

PIFT [155] ASPLOS 2016

COVERT [12] IEEE TSE 2015

EdgeMiner [156] NDSS 2015

IccTA [157] ICSE 2015

DESCRIBEME [158] CCS 2015

DroidSafe [159] NDSS 2015

FlowDroid [160] ACM SIGPLAN 2014

Epicc [135] USENIX 2013

Table A.2: Research Work uses Benchmarking Apps for Evaluation

A.1 Inter-App Communication Category

Inter-App Communication is one the categories that contains apps exhibiting sensitive

information leakage through multiple apps (collusion). DroidBench 2.0 has three apps

involved in inter-app communication through activity component. Due to lack of avail-

ability of benchmark apps that exhibits collusion, we created our own dataset and made

them available as open-source which can be used for the assessment of tools to detect

privacy leakage through collusion.

We developed 64 new apps that are diverse in the components used for communication,

and type of Intent based communication channels (implicit, explicit, ordered). Out of

which 8 are the part of DroidBench 3.0. These samples perform inter-app communication

through intents using services, activities, broadcast receivers, content providers, implicit

intents, explicit intents and ordered intents. These apps access sensitive information and

send it to the Collector app where the data is leaked. Tools like Epicc[135], IccTA[157],

FlowDroid[160], DroidSafe[159] and AmanDroid[63] miss the detection of leakage as they

Appendices 117

perform single app analysis. A detailed description of the samples is presented in the

subsequent sections.

A.1.1 DeviceId Leakage Apps

• DeviceId Broadcast1: The device id is sent to a broadcast receiver and from

there on to the collector app.

• DeviceId ContentProvider1: The device id is stored in a content provider and,

independent from the content provider, sent to the Collector app.

• DeviceId OrderedIntent1: The device id is obtained and sent to a broadcast

receiver in the current app. There are multiple broadcast receivers with different

priorities. Only the higher-priority receiver relays the data to the Collector app,

the lower-priority receiver only shows the data to the user (no leak).

• DeviceId Service1: This app starts a service which sends the device id to the

Collector app where it is leaked.

• Location1: This app obtains the location data and sends it to the Collector app.

A.1.2 Location Information Leakage Apps

• Location1: This app obtains the location data through an activity which then

sends the data to the Collector app.

• Location Broadcast1: This app obtains the location data, and sends it to a

broadcast receiver in the same app. This broadcast receiver then sends the data

to the Collector app.

• Location Service1: This app obtains the location data, and sends it to a service

in the same app. This service then sends the data to the Collector app.

A.1.3 Sink App: Collector

• Collector: The data received through an intent is written into a file on the SD

card.

Appendix B

Brief Bio-Data

Shweta Bhandari received the Masters of Technology degree in Computer Science from

the Devi Ahilya University, Indore, in 2013. She is a research scholar at Malaviya Na-

tional Institute of Technology Jaipur, India in the Department of Computer Science

and Engineering under the supervision of Prof. Manoj Singh Gaur, MNIT Jaipur, CSE

Department, Prof. Vijay Laxmi, MNIT Jaipur, CSE Department and Dr. Akka Zem-

mari, Bordeaux Laboratory of Research in Computer Science, University of Bordeaux,

Talence, France. Her research work focuses on sensitive information exfiltration through

Android apps. She is also a part of Security Analysis Framework in Android Platform

Project (Grant:1000109932) funded by Ministry of Electronics and Information Tech-

nology (MeitY), Government of India.

119

Bibliography

[1] Report. http://www.statista.com/statistics/330695/number-of-smartphone-

users-worldwide/. [Online; accessed 15-November-2017].

[2] Report. https://www.idc.com/promo/smartphone-market-share/os. [Online; accessed

15-November-2017].

[3] OWASP Mobile Security Checklist. https://github.com/OWASP/owasp-mstg/blob/

master/Checklists/Mobile App Security Checklist-English.xlsx. [Online; accessed

10-November-2018].

[4] News. https://gadgets.ndtv.com/apps/news/apps-android-google-play-malware-

infected-sms-charges-premium-fake-services-1750785. [Online; accessed 18-

January-2018].

[5] Blog. https://www.kaspersky.com/blog/cloak-and-dagger-attack/16960/. [Online;

accessed 17-November-2017].

[6] FBI. Android malware slembunk and marcher actively target us financial institutions’

customers [online]. https://info.publicintelligence.net/FBI-SlemBunkMalware.pdf,

May 2016. [Online; accessed 19-January-2018].

[7] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing inter-

application communication in android. In Proceedings of the 9th international conference

on Mobile systems, applications, and services, pages 239–252. ACM, 2011.

[8] Norm Hardy. The confused deputy:(or why capabilities might have been invented). ACM

SIGOPS Operating Systems Review, 22(4):36–38, 1988.

[9] Dragos Sb̂ırlea, Michael G Burke, Salvatore Guarnieri, Marco Pistoia, and Vivek Sarkar.

Automatic detection of inter-application permission leaks in android applications. IBM

Journal of Research and Development, 57(6):10–1, 2013.

121

http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.idc.com/promo/smartphone-market-share/os
https://github.com/OWASP/owasp-mstg/blob/master/Checklists/Mobile_App_Security_Checklist-English.xlsx
https://github.com/OWASP/owasp-mstg/blob/master/Checklists/Mobile_App_Security_Checklist-English.xlsx
https://gadgets.ndtv.com/apps/news/apps-android-google-play-malware-infected-sms-charges-premium-fake-services-1750785
https://gadgets.ndtv.com/apps/news/apps-android-google-play-malware-infected-sms-charges-premium-fake-services-1750785
https://www.kaspersky.com/blog/cloak-and-dagger-attack/16960/
https://info.publicintelligence.net/FBI-SlemBunkMalware.pdf

Bibliography 122

[10] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. Automatically

securing permission-based software by reducing the attack surface: An application to an-

droid. In Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering, pages 274–277. ACM, 2012.

[11] Shweta Bhandari, Wafa Ben Jaballah, Vineeta Jain, Vijay Laxmi, Akka Zemmari,

Manoj Singh Gaur, and Mauro Conti. Android app collusion threat and mitigation tech-

niques. arXiv preprint arXiv:1611.10076, 2016.

[12] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. Covert: Compositional

analysis of android inter-app permission leakage. volume 41, pages 866–886. IEEE, 2015.

[13] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Lan-

don P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an

information-flow tracking system for realtime privacy monitoring on smartphones. ACM

Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[14] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study of

android application security. In Proceedings of the USENIX Security Symposium, volume 2,

2011.

[15] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Arturo Ribagorda.

Evolution, detection and analysis of malware for smart devices. IEEE Communications

Surveys & Tutorials, 16(2):961–987, 2014.

[16] DroidBench 3.0. https://github.com/secure-software-engineering/DroidBench/

tree/develop. [Online; accessed 02-September-2016].

[17] Sensitive Data. https://play.google.com/about/privacy-security-deception/

personal-sensitive/. [Online; accessed 01-December-2017].

[18] APK. https://en.wikipedia.org/wiki/Android-application-package. [Online; ac-

cessed 21-February-2016].

[19] Signing. http://developer.android.com/tools/publishing/app-signing.html. [On-

line; accessed 01-January-2016].

[20] Andre Egners, Ulrike Meyer, and Bjorn Marschollek. Messing with android’s permission

model. In Proceedings of the IEEE 11th International Conference on Trust, Security and

Privacy in Computing and Communications (TRUSTCOM), pages 505–514, Washington,

DC, USA, 2012. IEEE Computer Society.

https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://play.google.com/about/privacy-security-deception/personal-sensitive/
https://play.google.com/about/privacy-security-deception/personal-sensitive/
https://en.wikipedia.org/wiki/Android-application-package
http://developer.android.com/tools/publishing/app-signing.html

Bibliography 123

[21] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. Droidforce: Enforcing

complex, data-centric, system-wide policies in android. In Proceedings of the 9th Inter-

national Conference on Availability, Reliability and Security (ARES), pages 40–49. IEEE,

2014.

[22] SandBoxing. http://developer.android.com/training/articles/security-

tips.html. [Online; accessed 01-January-2016].

[23] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android

permissions demystified. In Proceedings of the 18th ACM Conference on Computer and

Communications Security (CCS), pages 627–638, New York, USA, 2011. ACM.

[24] Permissions. http://developer.android.com/guide/topics/security/

permissions.html. [Online; accessed 21-February-2016].

[25] William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding android security.

IEEE security & privacy, 1:50–57, 2009.

[26] Li Li, Alexandre Bartel, Tegawendé François D Assise Bissyande, Jacques Klein, Yves

Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick

McDaniel. Iccta: detecting inter-component privacy leaks in android apps. In Proceedings

of the 37th IEEE International Conference on Software Engineering (ICSE), 2015.

[27] OWASP Mobile Checklist Final 2016 . https://drive.google.com/file/d/

0BxOPagp1jPHWYmg3Y3BfLVhMcmc/view. [Online; accessed 02-March-2016].

[28] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Gio-

vanni Vigna. Execute this! analyzing unsafe and malicious dynamic code loading in android

applications. In Proceedings of the Network and Distributed System Security Symposium

(NDSS), volume 14, pages 23–26, 2014.

[29] Grant J Smith. Analysis and Prevention of Code-Injection Attacks on Android OS. PhD

thesis, University of South Florida, 2014.

[30] Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al. Securing android: a survey,

taxonomy, and challenges. ACM Computing Surveys (CSUR), 47(4):58, 2015.

[31] The AndroidManifest.xml File. http://lyle.smu.edu/~coyle/cse7392mobile/

handouts/s01.The%20AndroidManifest.pdf. [Online; accessed 21-May-2015].

[32] Henrik Søndberg Karlsen, Erik Ramsgaard Wognsen, Mads Chr Olesen, and René Rydhof

Hansen. Study, formalisation, and analysis of dalvik bytecode. In Informal Proceedings

of the 7th Workshop on Bytecode Semantics, Verification, Analysis and Transformation

(BYTECODE). Citeseer, 2012.

http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
https://drive.google.com/file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc/view
https://drive.google.com/file/d/0BxOPagp1jPHWYmg3Y3BfLVhMcmc/view
http://lyle.smu.edu/~coyle/cse7392mobile/handouts/s01.The%20AndroidManifest.pdf
http://lyle.smu.edu/~coyle/cse7392mobile/handouts/s01.The%20AndroidManifest.pdf

Bibliography 124

[33] Bernhard Scholz, Chenyi Zhang, and Cristina Cifuentes. User-input dependence analysis

via graph reachability. In Proceedings of 8th IEEE International Working Conference on

Source Code Analysis and Manipulation, pages 25–34. Sun Microsystems, Inc., 2008.

[34] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 49–61. ACM, 1995.

[35] Zhemin Yang and Min Yang. Leakminer: Detect information leakage on android with

static taint analysis. In Proceedings of the 3rd World Congress on Software Engineering

(WCSE), pages 101–104. IEEE, 2012.

[36] Analyzing Data flow. https://www.jetbrains.com/help/idea/2016.1/analyzing-data-

flow.html. [Online; accessed 25-April-2016].

[37] Suzanna Schmeelk, Junfeng Yang, and Alfred Aho. Android malware static analysis tech-

niques. In Proceedings of the 10th Annual Cyber and Information Security Research Con-

ference (CISR), pages 5:1–5:8, New York, USA, 2015. ACM.

[38] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In ACM

SIGPLAN Notices, volume 49, pages 259–269. ACM, 2014.

[39] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program verification in

polynomial time. In ACM Sigplan Notices, volume 37, pages 57–68. ACM, 2002.

[40] David Callahan. The program summary graph and flow-sensitive interprocedual data flow

analysis, volume 23. ACM, 1988.

[41] Eugene M Myers. A precise inter-procedural data flow algorithm. In Proceedings of the

8th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages

219–230. ACM, 1981.

[42] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.

New York University. Courant Institute of Mathematical Sciences. ComputerScience De-

partment, 1978.

[43] Antonia J Spyridi and Aristides AG Requicha. Accessibility analysis for the automatic in-

spection of mechanical parts by coordinate measuring machines. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1284–1289. IEEE, 1990.

[44] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and

Sotiris Ioannidis. Rage against the virtual machine: hindering dynamic analysis of android

https://www.jetbrains.com/help/idea/2016.1/analyzing-data-flow.html
https://www.jetbrains.com/help/idea/2016.1/analyzing-data-flow.html

Bibliography 125

malware. In Proceedings of the 7th European Workshop on System Security, page 5. ACM,

2014.

[45] Droidbox. http://code.google.com/p/droidbox/;. [Online; accessed 10-October-2015].

[46] Valerio Costamagna and Cong Zheng. Artdroid: A virtual-method hooking framework on

android art runtime. pages 24–32, 2016.

[47] Suhas Gupta, Pranay Pratap, Huzur Saran, and S Arun-Kumar. Dynamic code instru-

mentation to detect and recover from return address corruption. In Proceedings of the

International Workshop on Dynamic systems analysis, pages 65–72. ACM, 2006.

[48] Abhinav Pathak, Y Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. Fine-

grained power modeling for smartphones using system call tracing. In Proceedings of the

6th Conference on Computer Systems, pages 153–168. ACM, 2011.

[49] Pedro Machado, José Campos, and Rui Abreu. Mzoltar: automatic debugging of android

applications. In Proceedings of the International Workshop on Software Development Life-

cycle for Mobile, pages 9–16. ACM, 2013.

[50] Lok-Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis. In Proceeding of the USENIX

Security Symposium, pages 569–584, 2012.

[51] Mingshen Sun, Min Zheng, John Lui, and Xuxian Jiang. Design and implementation of

an android host-based intrusion prevention system. In Proceedings of the 30th Annual

Computer Security Applications Conference, pages 226–235. ACM, 2014.

[52] Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky. Android

security framework: Enabling generic and extensible access control on android. arXiv

preprint arXiv:1404.1395, 2014.

[53] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Dali Kaafar. On the effectiveness of

dynamic taint analysis for protecting against private information leaks on android-based

devices. Nicta, 2013.

[54] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. A gui crawling-based

technique for android mobile application testing. In Proceedings of the 4th International

Conference on Software Testing, Verification and Validation Workshops (ICSTW), pages

252–261. IEEE, 2011.

[55] Peter Szor. The art of computer virus research and defense. Pearson Education, 2005.

[56] William Enck, Machigar Ongtang, and Patrick McDaniel. Mitigating android software

misuse before it happens. Citeseer, 2008.

http://code.google.com/p/droidbox/;

Bibliography 126

[57] Rubin Xu, Hassen Säıdi, and Ross J Anderson. Aurasium: practical policy enforcement

for android applications. In Proceedings of the USENIX Security Symposium, volume 2012,

2012.

[58] William Enck. Defending users against smartphone apps: Techniques and future directions.

In Proceedings of the Information Systems Security, pages 49–70. Springer, 2011.

[59] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. Crepe: Context-related policy

enforcement for android. In Proceedings of the International Conference on Information

Security, pages 331–345. Springer, 2010.

[60] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and fine-grained manda-

tory access control on android for diverse security and privacy policies. In Proceedings of

the USENIX Security Symposium, pages 131–146, 2013.

[61] OWASP. https://www.owasp.org/index.php/Access Control Cheat Sheet. [Online; ac-

cessed 10-March-2017].

[62] A Ubale Swapnaja, G Modani Dattatray, and S Apte Sulabha. Analysis of dac mac rbac

access control based models for security. Analysis, 104(5), 2014.

[63] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. Amandroid: A precise and general

inter-component data flow analysis framework for security vetting of android apps. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications Security,

pages 1329–1341. ACM, 2014.

[64] Irina Mariuca Asavoae, Jorge Blasco, Thomas M Chen, Harsha Kumara Kalutarage, Igor

Muttik, Hoang Nga Nguyen, Markus Roggenbach, and Siraj Ahmed Shaikh. Towards

automated android app collusion detection. In Proceedings of the Workshop on Innovations

in Mobile Privacy and Security (IMPS), pages 29–37, 2016.

[65] Michelle Y Wong and David Lie. Intellidroid: A targeted input generator for the dynamic

analysis of android malware. In Proceedings of the Annual Symposium on Network and

Distributed System Security (NDSS), 2016.

[66] Shweta Bhandari, Vijay Laxmi, Akka Zemmari, and Manoj Singh Gaur. Intersection

automata based model for android application collusion. In Proceedings of the 30th In-

ternational Conference on Advanced Information Networking and Applications (AINA),

pages 901–908. IEEE, 2016.

[67] Shweta Bhandari, Frederic Herbreteau, Vijay Laxmi, Akka Zemmari, Partha S Roop, and

Manoj Singh Gaur. Poster: Detecting inter-app information leakage paths. In Proceedings

of the Asia Conference on Computer and Communications Security (AsiaCCS), pages

908–910. ACM, 2017.

https://www.owasp.org/index.php/Access_Control_Cheat_Sheet

Bibliography 127

[68] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android taint flow

analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop

on the State of the Art in Java Program Analysis, SOAP ’14, pages 1–6, New York, USA,

2014. ACM.

[69] Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic detection of inter-application com-

munication vulnerabilities in android. In Proceedings of the International Symposium on

Software Testing and Analysis (ISSTA), pages 118–128, New York, USA, 2015. ACM.

[70] Amiangshu Bosu, Fang Lio, Danfeng Yao, and Gang Wang. Collusive data leak and more:

Large-scale threat analysis of inter-app communications. In Proceedings of the ACM Asia

Conference on Computer and Communications Security (ASIACCS), pages 71–85. ACM,

2017.

[71] Tristan Ravitch, E Rogan Creswick, Aaron Tomb, Adam Foltzer, Trevor Elliott, and Ledah

Casburn. Multi-app security analysis with fuse: Statically detecting android app collusion.

In Proceedings of the 4th Program Protection and Reverse Engineering Workshop, page 4.

ACM, 2014.

[72] Fang Liu, Haipeng Cai, Gang Wang, Danfeng Yao, Karim Elish, and Barbara Ryder. Mr-

droid: A scalable and prioritized analysis of inter-app communication risks. In Proceedings

of the 7th Conference on Data and Application Security and privacy (CODASPY), 2017.

[73] Karim O. Elish, Danfeng Daphne Yao, and G. Ryder Barbara. On the need of precise

inter-app icc classificationfor detecting android malware collusions. In Proceedings of the

Security and Privacy Workshops, pages 116–127, 2015.

[74] D. Sbirlea, M.G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar. Automatic detection of

inter-application permission leaks in android applications. IBM Journal of Research and

Development, 57(6):10:1–10:12, November 2013.

[75] Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic detection of inter-application com-

munication vulnerabilities in android. In Proceedings of the 2015 International Symposium

on Software Testing and Analysis, pages 118–128. ACM, 2015.

[76] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-Reza

Sadeghi. Xmandroid: A new android evolution to mitigate privilege escalation attacks.

Technische Universität Darmstadt, Technical Report TR-2011-04, 2011.

[77] Dex2Jar. https://github.com/pxb1988/dex2jar. [Online; accessed 10-May-2015].

[78] Damien Octeau, William Enck, and Patrick McDaniel. The ded decompiler. Network and

Security Research Center, Department of Computer Science and Engineering, Pennsylva-

nia State University, University Park, PA, USA, Tech. Rep. NAS-TR-0140-2010, 2010.

https://github.com/pxb1988/dex2jar

Bibliography 128

[79] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting android applications to

java bytecode. Citeseer, 2012.

[80] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot framework for

java program analysis: a retrospective. In Proceeding of the Cetus Users and Compiler

Infastructure Workshop (CETUS), 2011.

[81] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. Dexpler: con-

verting android dalvik bytecode to jimple for static analysis with soot. In Proceedings of

the ACM SIGPLAN International Workshop on State of the Art in Java Program analysis,

pages 27–38. ACM, 2012.

[82] APKTool. http://ibotpeaches.github.io/Apktool/. [Online; accessed 21-March-2016].

[83] A-D Schmidt, Rainer Bye, H-G Schmidt, Jan Clausen, Osman Kiraz, Kamer A Yuksel,

Seyit Ahmet Camtepe, and Sahin Albayrak. Static analysis of executables for collaborative

malware detection on android. In Proceedings of the IEEE International Conference on

Communications (ICC), pages 1–5. IEEE, 2009.

[84] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss.

â€œandromalyâ€: a behavioral malware detection framework for android devices. Journal

of Intelligent Information Systems, 38(1):161–190, 2012.

[85] Smali format. https://code.google.com/p/smali. [Online; accessed 28-April-2015].

[86] S. Mika, C. Schafer, P. Laskov, D. Tax, and K.-R. Muller. Support Vector Machines.

[87] Malware Genome Project. http://www.malgenomeproject.org. [Online; accessed 20-

April-2015].

[88] Google Play Store. http://play.google.com. [Online; accessed 25-May-2015].

[89] Google Play App Crawler. https://github.com/Akdeniz/google-play-crawler. [On-

line; accessed 23-April-2015].

[90] Virusshare. http://virusshare.com. [Online; accessed 15-April-2015].

[91] Contagio Minidump. http://contagiominidump.blogspot.com/. [Online; accessed 23-

April-2015].

[92] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck.

Drebin: Effective and explainable detection of android malware in your pocket. In Pro-

ceedings of the Network and Distributed System Security Symposium (NDSS). The Internet

Society, 2014.

http://ibotpeaches.github.io/Apktool/
https://code.google.com/p/smali
http://www.malgenomeproject.org
http://play.google.com
https://github.com/Akdeniz/google-play-crawler
http://virusshare.com
http://contagiominidump.blogspot.com/

Bibliography 129

[93] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Johannes

Hoffmann. Mobile-sandbox: Having a deeper look into android applications. In Proceedings

of the 28th Annual ACM Symposium on Applied Computing, pages 1808–1815. ACM, 2013.

[94] Virustotal. http://virustotal.com/. [Online; accessed 10-May-2015].

[95] Android Developers. The developer’s guide. ui/application exerciser monkey, 2012.

[96] Guillermo Suarez-Tangil, Mauro Conti, Juan E Tapiador, and Pedro Peris-Lopez. De-

tecting targeted smartphone malware with behavior-triggering stochastic models. In Pro-

ceedings of the European Symposium on Research in Computer Security, pages 183–201.

Springer, 2014.

[97] Thomas M Cover and Joy A Thomas. Elements of information theory 2nd edition. Wiley-

interscience, 2006.

[98] AEPNotes. http://www2.isye.gatech.edu/~yxie77/ece587/Lecture5.pdf. [Online; ac-

cessed 10-March-2017].

[99] Cewei Cui, Zhe Dang, and Thomas R Fischer. Typical paths of a graph. Fundamenta

Informaticae, 110(1-4):95–109, 2011.

[100] Xi Xiao, Zhenlong Wang, Qing Li, Shutao Xia, and Yong Jiang. Back-propagation neu-

ral network on markov chains from system call sequences: a new approach for detecting

android malware with system call sequences. IET Information Security, 11(1):8–15, 2016.

[101] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the

USENIX Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[102] Hidetoshi Ishibashi, Sayaka Hihara, and Atsushi Iriki. Acquisition and development of

monkey tool-use: behavioral and kinematic analyses. Canadian journal of physiology and

pharmacology, 78(11):958–966, 2000.

[103] MarkovNotes. http://people.math.aau.dk/~jm/courses/PhD06StocSim/

Chapters2.4.5.pdf. [Online; accessed 10-April-2017].

[104] Monkey Tool. https://developer.android.com/studio/test/monkey.html. [Online; ac-

cessed 17-January-2018].

[105] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. Madam: Effec-

tive and efficient behavior-based android malware detection and prevention. IEEE Trans-

actions on Dependable and Secure Computing, PP(99):1–1, 2016.

[106] Stefan Edelkamp and Richard E Korf. The branching factor of regular search spaces. In

Proceeding of the AAAI/IAAI, pages 299–304, 1998.

http://virustotal.com/
http://www2.isye.gatech.edu/~yxie77/ece587/Lecture5.pdf
http://people.math.aau.dk/~jm/courses/PhD06StocSim/Chapters2.4.5.pdf
http://people.math.aau.dk/~jm/courses/PhD06StocSim/Chapters2.4.5.pdf
https://developer.android.com/studio/test/monkey.html

Bibliography 130

[107] Subhransu Maji, Alexander C Berg, and Jitendra Malik. Classification using intersection

kernel support vector machines is efficient. In Proceeding of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1–8. IEEE, 2008.

[108] WEKA. http://www.cs.waikato.ac.nz/ml/weka/. [Online; accessed 10-April-2017].

[109] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[110] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[111] Manuel Fernandez-Delgado, Eva Cernadas, Senen Barro, and Dinani Amorim. Do we need

hundreds of classifiers to solve real world classification problems? The Journal of Machine

Learning Research, 15(1):3133–3181, 2014.

[112] IccRE. https://sites.google.com/site/icctawebpage/dataset. [Online; accessed 26-

May-2016].

[113] Michael J Quinn and Narsingh Deo. Parallel graph algorithms. ACM Computing Surveys

(CSUR), 16(3):319–348, 1984.

[114] E. Mariconti, L. Onwuzurike, P. Andriotis, E.D. Cristofaro, G.J. Ross, and G. Stringhini.

Mamadroid: Detecting android malware by building markov chains of behavioral models.

In Proceedings of the 24th Network and Distributed System Security Symposium (NDSS),

2017.

[115] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google play. In

ACM SIGMETRICS Performance Evaluation Review, volume 42, pages 221–233. ACM,

2014.

[116] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes Kinder, Gior-

gio Giacinto, and Lorenzo Cavallaro. Droidsieve: Fast and accurate classification of ob-

fuscated android malware. In Proceedings of the 7th ACM on Conference on Data and

Application Security and Privacy, pages 309–320. ACM, 2017.

[117] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-based

malware detection system for android. In Proceedings of the 1st ACM workshop on Security

and privacy in smartphones and mobile devices, pages 15–26. ACM, 2011.

[118] Yiran Li and Zhengping Jin. An android malware detection method based on feature

codes. 2015.

[119] Lok Kwong Yan and Heng Yin. Droidscope: seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis. In Proceeding of the 21st USENIX

Security Symposium, pages 569–584, 2012.

http://www.cs.waikato.ac.nz/ml/weka/
https://sites.google.com/site/icctawebpage/dataset

Bibliography 131

[120] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. Copperdroid:

Automatic reconstruction of android malware behaviors. In Proceedings of the Network

and Distributed System Security Symposium (NDSS), 2015.

[121] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly Tam, Man-

sour Ahmadi, Johannes Kinder, and Lorenzo Cavallaro. Droidscribe: Classifying android

malware based on runtime behavior. In Proceeding of the IEEE Security and Privacy

Workshops (SPW), pages 252–261. IEEE, 2016.

[122] Smita Naval, Vijay Laxmi, Muttukrishnan Rajarajan, Manoj Singh Gaur, and Mauro

Conti. Employing program semantics for malware detection. IEEE Transactions on In-

formation Forensics and Security, 10(12):2591–2604, 2015.

[123] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael Franz.

Runtime defense against code injection attacks using replicated execution. IEEE Trans-

actions on Dependable and Secure Computing, 8(4):588–601, 2011.

[124] DangerousPermissions. https://developer.android.com/guide/topics/permissions/

overview.html#permission-groups. [Online; accessed 15-February-2018].

[125] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X Sean

Wang, and Binyu Zang. Vetting undesirable behaviors in android apps with permission use

analysis. In Proceedings of the ACM SIGSAC conference on Computer & communications

security, pages 611–622. ACM, 2013.

[126] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach for

classifying and categorizing android sources and sinks. In Proceedings of the Network and

Distributed System Security Symposium (NDSS), 2014.

[127] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing the

android permission specification. In Proceedings of the ACM conference on Computer and

communications security, pages 217–228. ACM, 2012.

[128] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolu-

tion. In Proceedings of the IEEE Symposium on Security and Privacy (SP), pages 95–109.

IEEE, 2012.

[129] DroidAnalyst. http://droidanalyst.org/. [Online; accessed 10-May-2015].

[130] Shweta Bhandari, Wafa Ben Jaballah, Vineeta Jain, Vijay Laxmi, Akka Zemmari,

Manoj Singh Gaur, Mohamed Mosbah, and Mauro Conti. Android inter-app commu-

nication threats and detection techniques. Computers & Security, 70:392–421, 2017.

https://developer.android.com/guide/topics/permissions/overview.html#permission-groups
https://developer.android.com/guide/topics/permissions/overview.html#permission-groups
http://droidanalyst.org/

Bibliography 132

[131] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi,

and Bhargava Shastry. Towards taming privilege-escalation attacks on android. In Pro-

ceedings of the Network and Distributed System Security Symposium (NDSS), 2012.

[132] Karim O Elish, Danfeng Daphne Yao, and Barbara G Ryder. On the need of precise

inter-app icc classification for detecting android malware collusions. In Proceedings of

IEEE Mobile Security Technologies (MoST), in conjunction with the IEEE Symposium on

Security and Privacy, 2015.

[133] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun. Analysis of

the communication between colluding applications on modern smartphones. In Proceedings

of the 28th Annual Computer Security Applications Conference, pages 51–60. ACM, 2012.

[134] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically vetting

android apps for component hijacking vulnerabilities. In Proceedings of the ACM conference

on Computer and communications security, pages 229–240. ACM, 2012.

[135] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques

Klein, and Yves Le Traon. Effective inter-component communication mapping in android

with epicc. An Essential Step Towards Holistic Security Analysis, 2013.

[136] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based detection

of android malware through static analysis. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 576–587. ACM,

2014.

[137] George Karakostas, Richard J. Lipton, and Anastasios Viglas. On the complexity of

intersecting finite state automata and NL versus NP. Theor. Comput. Sci., 302(1-3):257–

274, 2003.

[138] DroidBench 2.0. https://github.com/secure-software-engineering/DroidBench.

[Online; accessed 02-June-2015].

[139] Vineeta Jain, Shweta Bhandari, Vijay Laxmi, Manoj Singh Gaur, and Mohamed Mosbah.

Sniffdroid: Detection of inter-app privacy leaks in android. In Proceedings of the 16th In-

ternational Conference on Trust, Security and Privacy in Computing and Communications

(TRUSTCOM), pages 331–338. IEEE, 2017.

[140] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: Analyzing the

android permission specification. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS), pages 217–228, 2012.

[141] Frances E. Allen. Control flow analysis. volume 5, pages 1–19, New York, USA, July 1970.

ACM.

https://github.com/secure-software-engineering/DroidBench

Bibliography 133

[142] KeyValue. https://developer.android.com/training/basics/data-storage/

index.html. [Online; accessed 18-September-2017].

[143] Roopak Sinha, Parthasarathi Roop, and Samik Basu. Correct-by-construction approaches

for SoC design. Springer, 2014.

[144] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

[145] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel.

Composite constant propagation: Application to android inter-component communication

analysis. In Proceedings of the 37th International Conference on Software Engineering

(ICSE), 2015.

[146] DroidBench IccTA. https://github.com/secure-software-engineering/DroidBench/

tree/iccta. [Online; accessed 21-December-2016].

[147] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.

Apkcombiner: Combining multiple android apps to support inter-app analysis. In ICT

Systems Security and Privacy Protection, pages 513–527. Springer, 2015.

[148] ICC-Bench. https://github.com/fgwei/ICC-Bench. [Online; accessed 21-December-

2016].

[149] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise, Rahul Bob-

hate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza Karachiwala, Nolen Scaife,

et al. * droid: Assessment and evaluation of android application analysis tools. ACM

Computing Surveys (CSUR), 49(3):55, 2016.

[150] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roychoudhury. Automated

partitioning of android applications for trusted execution environments. In Proceedings of

the 38th International Conference on Software Engineering, pages 923–934. ACM, 2016.

[151] Shweta Bhandari, Frederic Herbreteau, Vijay Laxmi, Akka Zemmari, Partha S Roop, and

Manoj Singh Gaur. Sneakleak: Detecting multipartite leakage paths in android apps.

In Proceedings of the 16th International Conference on Trust, Security and Privacy in

Computing and Communications (TRUSTCOM), pages 285–292. IEEE, 2017.

[152] Aisha Ali-Gombe, Irfan Ahmed, Golden G Richard III, and Vassil Roussev. Aspectdroid:

Android app analysis system. In Proceedings of the 6th ACM Conference on Data and

Application Security and Privacy, pages 145–147. ACM, 2016.

[153] Nguyen Tan Cam, Pham Van Hau, and Tuan Nguyen. Android security analysis based

on inter-application relationships. In Information Science and Applications (ICISA) 2016,

pages 689–700. Springer, 2016.

https://developer.android.com/training/basics/data-storage/index.html
https://developer.android.com/training/basics/data-storage/index.html
https://github.com/secure-software-engineering/DroidBench/tree/iccta
https://github.com/secure-software-engineering/DroidBench/tree/iccta
https://github.com/fgwei/ICC-Bench

Bibliography 134

[154] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting runtime

values in android applications that feature anti-analysis techniques. In Proceedings of the

Annual Symposium on Network and Distributed System Security (NDSS), 2016.

[155] Man-Ki Yoon, Negin Salajegheh, Yin Chen, and Mihai Christodorescu. Pift: Predictive

information-flow tracking. In Proceedings of the 21st International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 713–725. ACM,

2016.

[156] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel,

Giovanni Vigna, and Yan Chen. Edgeminer: Automatically detecting implicit control

flow transitions through the android framework. In Proceedings of the ISOC Network and

Distributed System Security Symposium (NDSS), 2015.

[157] Li Li, Alexandre Bartel, Tegawendé François D Assise Bissyande, Jacques Klein, Yves

Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick

McDaniel. Iccta: detecting inter-component privacy leaks in android apps. In Proceedings

of the 37th IEEE International Conference on Software Engineering (ICSE), 2015.

[158] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. Towards automatic generation of security-

centric descriptions for android apps. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, pages 518–529. ACM, 2015.

[159] Michael I Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and Mar-

tin Rinard. Information-flow analysis of android applications in droidsafe. In Proceedings

of the Network and Distributed System Security Symposium (NDSS). The Internet Society,

2015.

[160] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In ACM

SIGPLAN Notices, volume 49, pages 259–269. ACM, 2014.

	Abstract
	1 Introduction
	1.1 Objectives
	1.2 Motivation and Thesis Impact
	1.3 Contributions
	1.4 Thesis Structure

	2 Analysis Techniques for Android App(s): A Review
	2.1 Android App Composition
	2.2 Android Security Model
	2.2.1 App Signing
	2.2.2 Sandbox Environment
	2.2.3 App Permission Model

	2.3 Inter Component Communication (ICC)
	2.3.1 Intents
	2.3.2 Content Provider
	2.3.3 Shared Preference

	2.4 Android Attacks
	2.4.1 Code Injection Attacks
	2.4.2 Intent Based Attacks
	2.4.3 Collusion Attacks

	2.5 Review of Analysis Techniques
	2.5.1 Static Analysis Techniques
	2.5.2 Dynamic Analysis Techniques
	2.5.3 Policy Enforcement Based Analysis

	2.6 Comparative Study
	2.7 Summary

	I Intra App Analysis
	3 On-Device Static Analysis
	3.1 DRACO: Overview
	3.1.1 App Features Extraction
	3.1.2 Dynamic Analysis Phase
	3.1.3 Feature Vector Construction
	3.1.4 Machine Learning Algorithm

	3.2 Evaluation
	3.2.1 Experimental Results
	3.2.2 Comparison with Existing Approaches

	3.3 Summary

	4 Typical Path based Dynamic Analysis
	4.1 Encapsulating App Semantics using System-Calls
	4.2 Information Theory
	4.2.1 Asymptotic Equipartition Property
	4.2.2 Ergodic Markov Chain

	4.3 Proposed Approach: SWORD
	4.3.1 Implementation Details
	4.3.2 Demonstrating Example

	4.4 Performance Evaluation
	4.4.1 Dataset Preparation
	4.4.2 Approximate All Path Computation
	4.4.3 Detection Accuracy
	4.4.4 Comparison with Existing Approaches
	4.4.5 Resiliency towards System-call Injection Attack

	4.5 Summary and Limitations

	5 Data Flow based Privacy Leakage Analysis
	5.1 Data Flow in an App
	5.1.1 Sensitive Sources and Sinks
	5.1.2 Taint Analysis

	5.2 Proposed Approach: FlowMine
	5.2.1 Motivating Example
	5.2.2 Implementation Details

	5.3 Experimental Evaluation
	5.3.1 Dataset Preparation
	5.3.2 Analysis Results
	5.3.3 Data Flow in Benign Apps
	5.3.4 Data Flow in Malicious Apps
	5.3.5 Accuracy

	5.4 Summary and Limitations

	II Inter App Analysis
	6 ICC Primitives based Static Analysis
	6.1 Introduction
	6.1.1 Threat Model
	6.1.2 Automaton Model
	6.1.3 Intersection Automaton

	6.2 Proposed Approach
	6.2.1 Application Automaton
	6.2.2 Policy Automaton
	6.2.3 Collusion Detection

	6.3 Evaluation
	6.3.1 Dataset Preparation
	6.3.2 Analysis Results
	6.3.3 Timing Analysis
	6.3.4 Scalability

	6.4 Summary and Limitations

	7 Collusion Detection by Formal Model
	7.1 Formalization
	7.1.1 Android App Collusion
	7.1.2 Formal Verification

	7.2 Proposed Approach: SneakLeak+
	7.2.1 Extract App Information
	7.2.2 Sensitive DataFlow Analysis and Model Construction
	7.2.3 Incremental analysis

	7.3 Evaluation
	7.3.1 Need of Interaction Analysis
	7.3.2 Comparison with the State-of-the-art Approaches
	7.3.3 Performance and Timing
	7.3.4 Scalability

	7.4 Summary

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Pointers to Future Work
	8.3 Publications

	Appendices
	A Benchmarking Colluding Apps for Analysis: DroidBench 3.0
	A.1 Inter-App Communication Category
	A.1.1 DeviceId Leakage Apps
	A.1.2 Location Information Leakage Apps
	A.1.3 Sink App: Collector

	B Brief Bio-Data

