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Abstract 

 

This thesis contains the formulation of a geared system dynamic model for an epicyclic gear 

train. The two dimensional spur gear model is developed using one orientation angle. A 6X6 

mesh stiffness matrix is derived for each meshing pair like sun gear-planet gear, ring-planet gear 

and carrier-planet gear. Its effect is considered in the vibration of the whole geared system. 

Natural frequencies are determined and compared with the Matlab results. Hence, using the 

formulation of this paper, the robust rotor dynamic model for an epicyclic geared system is 

developed. Mode shapes and some important graphs are plotted. 
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1 Introduction 

 

This chapter contains the introduction to planetary (epicyclic) geared system. 

1.1 Introduction 

 Gear drive is a positive drive which is used to transmit the power, provided when the two 

shafts are at the short distance. It is used in many power transmission systems like a helicopter, in 

automobile to transmit the power from engine to wheels, watches, some power generating devices 

like turbines, aircrafts, in other industrial systems and many household appliances. 

 A critical failure of the rotor system can result in the massive damage to the system and in 

some cases, may result in the loss of life. So, for the sake of maintenance and reliability it is 

needed to predict resonating frequency of these systems. In many of these systems, various 

components like gear box can cause some difficulties in calculation and prediction of these 

resonating frequencies. Different gearboxes have different configurations and various complex 

configurations. 

 Since the starting period of rotational systems, gear has been a must part of it. However, 

many characteristics of the gearbox still need the better conception. In the geared rotor system, 

usage of gears can generate as well as transmit vibrations throughout the given system. Various 

factors like the excitation forces produced due to some unbalance or misalignments can change the 

stiffness properties. 

 The study of gear dynamics in the systematic and scientific way started in the late 1920s. 

Basic objectives of the gear dynamics are extensive. It includes various phenomena like pitting, 

scoring, corrosive wear, bending stress, reliability, gyroscopic effect and expected gear life. Gear 

dynamic model as the spring-mass system got emerged in late 1950s. It took 1970s for the first 

finite element model. Formulation of a geared system as a spring mass system brought it closer in 

the continuum system formation. 

 Basically, epicyclic gear system is a set of gears in which a gear called as a planet rotates 

around the centrally mounted gear called the sun gear. There can be as many numbers of the 

planets as per the application. Carrier is used to connect the centers of these two gears. Epicyclic 

geared system can be assembled so that the planet rolls inside the outer gear called as the ring gear. 

The epicyclic train in which the planet gear meshes with the central gear ‘sun’ as well as the outer 

gear ‘ring’ is known as ‘Planetary Gear Train’. 
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 While epicyclic gears consist of planets which are turned around by the rotating carrier, 

they can also use the outer gear ‘ring’ which meshes with the planets. Planetary gears can be 

divided as simple planets and compound planets. Simple planetary system has one central sun 

gear, one carrier, one outer ring gear and a set of planets. On the other hand, compound planetary 

system has been categorized as: 

• Meshed planets system- Consists of two or more planets in the mesh. 

• Multi stage system- The system consists of two or more planets. 

• Stepped planet system- Planets are connected by shafts in each planet train. 

All the gears are usually coaxial but in some cases, shafts can be inclined with each other. In the 

epicyclic system consisting two planets meshing with each other, one planet meshes with the sun 

while the other one with the ring. In a particular case, if the carrier is fixed, sun and the outer ring 

gear rotate in the same direction and give the reverse output when compared with the standard 

epicyclic geared system. 

 Epicyclic gears can have various arrangements in which the input as well as output 

members can be changed. 

• Less speed more torque- In this configuration, the input is given to the sun gear, while the 

carrier is kept stationary and output is obtained from the ring. 

• More speed less torque (Same Direction) - In this configuration, Carrier is the driving 

member, while the ring is kept stationary and the driven member is the sun gear. 

• More speed less torque (Reverse Direction) - In this configuration, Ring gear is the driving 

member, carrier is kept stationary while the sun gear is the driven member. 

 These gears are basically used in the aircraft engines, choppers and marine vehicles. 

Epicyclic gears dominates parallel gears in many fields like compactness, transmission of higher 

torques, distributed load on planets and thus very small loads on the shaft bearings as well as 

reduced vibrations and lower noise level due to relatively smaller system components.  

 This work includes the finite element model with 6 degrees of freedom per element. Mesh 

stiffness matrix with the order 6x6 has been formed for each meshing pair i.e. sun-planet, planet-

ring and carrier-planet. Mesh stiffness value is determined using the analysis software for the 

epicyclic geared system. Equations are developed for various mesh stiffness components. 

Thereafter natural frequencies of the given system are determined and matched with the research 

paper. 
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1.1 Thesis Outline 

1. Chapter 1 contain basic introduction about the gear dynamics. 

2. Chaper 2 contain a comprehensive literature review on the epicyclic gear dynamics and 

discuss scope and objective of the work. 

3. Chapter 3 contain a method to find non-linearity of the gear-mesh stiffness during the one 

mesh cycle. By using FEA software average gear mesh stiffness for the epicyclic gear can 

be found. 

4. Chapter 4 provides a detailed discussion of development of 6 DOF gear mesh stiffness. 

5. Chapter 5 contains some important results like mode shapes and sensitivity of natural 

frequencies. 

6. Chapter 6 provides conclusion, limitation and recommendation of gear-mesh model of spur 

helical gear. 
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2 Literature Review, Scope and Objective 

 

2.1 Literature Review 

 A detailed dynamic analysis of epicyclic gears started in the early 1980s, (August 1983). 

Gear dynamics including free vibration investigation and vibration analysis was done, (Cunliffe et 

al., 1974; Botman, 1976). Cunliffe used thirteen degree of freedom system and found out the 

natural frequencies as well as vibration modes. More analytical work was performed after 1990s. 

A time-varying and nonlinear model was developed by Kahraman (1994a) and extended to the 

three dimensional model. Kahraman also investigated mesh phasing and load sharing between the 

planetary gears. This formulation permits the analysis of the planet meshing with the carrier, ring 

or sun with any numbers of the planetary gears which are placed at the arbitrary positions. 

 In some analyses (Botman 1976, Kahraman 1994), gyroscopic effects on the proposed 

lumped parameter models have not been considered. It was found that these effects can cause 

much difference when the system works at the higher speeds. Free vibration analysis is a critical 

analysis which calculates some important factors such as system natural frequencies and vibration 

mode shapes. Botman (1976), Frater et al. (1983), Kahraman (1994) have done work this field.  

 Kahraman (1994) formulated a system with 6X6 mesh stiffness matrices for the given gear 

mesh. While Botman (1976) formulated spur planetary gear system having eighteen degrees of 

freedom. All these vibration modes can be categorized into translational, rotational and planet 

modes. Effects of planet bearing stiffness as well as rotation of carrier on the natural frequencies 

were studied numerically.  

 Frater et al. (1983) extended Botman’s work about natural frequencies by considering the 

unequal planet mesh stiffness. David Blake Stringer (2008) presents methodologies for rotor 

dynamic modeling of rotary-wing transmission based on the first principle. He developed three-

dimensional finite element model of gear mesh stiffness for spur and helical gears. Another finite 

element formulation to determine the coupled vibration characteristic of a geared rotor system is 

proposed by Rao(1995). His work on sensitivity analysis of various parameter on system natural 

frequencies and mode shape such as pressure angle etc. 

 S.B. Wadkar (2005) examined the effect of various parameters on the variation of the gear 

mesh stiffness. He proposed a method to find mesh stiffness from the combined torsional mesh 

stiffness of the gear pair.He explains how is the mesh stiffness of the gear pair increases when the 

second pair of gear tooth are in contact.  

 While calculating the natural frequency, mesh stiffness variations can become complicated 

due to many factors such as transmission error excitation (Smith, 1983) as well as contact loss non-

linearity (Blankenship and Kahraman, 1995). Time varying mesh stiffness value can be calculated 

using the formulation by Fourier’s series. While in most of the cases, it is safe to assume that there 

is no teeth contact loss as it takes place for the quite smallest time period. 
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2.2 Research Objective 

 This study primarily focus on the non-linear mesh stiffness of different gear pairs in the 

epicyclic gear set like sun-planet, planet-ring and planet-carrier affecting the overall stiffness and 

hence the vibrational characteristics of the system. The gear mesh stiffness effect is taken into 

account using 6X6 gear mesh stiffness matrix for each meshing pair. To conduct all this analysis,  

Matlab codes are to be developed to determine the natural frequencies of the system.  
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3 Methodology for Calculating Gear Mesh Stiffness 

 

This chapter contains a calculation of the gear mesh stiffness for the spur gear using the 

methodology provided and softwares such as ANSYS Workbench 15.0 and Inventor Professional 

2016. The equations provided for mesh stiffness calculation are then modified for each meshing 

pair in the epicyclic gear set. 

3.1 Gear Mesh Stiffness Calculation for Spur Gear 

3.1.1 Methodology 

Torsional stiffness and linear tooth mesh stiffness are related. The gear mesh stiffness can be easily 

understood by the torsional and transverse motion of the gear system. Figure 3.1 shows relation 

between transverse and torsional motion. 

 

Figure 3.1: Coupling between the transverse and torsional motions of the gear    
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Where, 

Tin= Torque input (Nm) 

r1 = Base circle radius of gear 1 (m)  

θ1= Angular displacement of gear 1 (rad) 

r2= Base circle radius of gear 2 (m) 

θ2= Angular displacement of gear 2 (rad) 

Km= Linear tooth mesh stiffness (N/m) 

LOA= Line of action 

When the gear pair meshes, torsional meshing stiffness is the important factor. It is assume that, 

during the meshing, pitch circle of the first gear rolls on the other one without slipping.  

 

Figure 3.2: Meshing gears 

Where, 

T1 = Input torque (Nm) 

θ1 = Angular displacement of gear 1 (rad) 

 r1p = Pitch radius of gear 1 (m) 
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N1 = Number of teeth of gear 1 

T2 = Output gear torque (Nm) 

θ2 = Angular displacement of gear 2 (rad) 

r2p = Pitch radius of gear 2 (m) 

N2 = Number of teeth of gear 2 

 

The length of displaced arc will remain same for the meshing gears, which gives the following 

equation, 

 r1 θ1 = r2 θ2 (3.1) 
 

 N1

N2
=

r1
r2

=
θ2

θ1
 

 

(3.2) 

Assuming that there is no power loss, 

 

 T1θ1 = T2θ2 (3.3) 
 

 N1

N2
=

T1

T2
=

θ2

θ1
 

 

(3.4) 

Torsional mesh stiffness can be given as the ratio of the applied torque and the angular deflection 

of the same. 

 
Kt =

T

θ
=

T2

θ2
=

T1

θ1
 (3.5) 

Where,  

T = Applied torque (N/m) 

θ = Angular deflection (rad) 

Kt = Torsional mesh stiffness (Nm/rad) 

The linear tooth mesh stiffness is given by the ratio of force along the ‘Line of Action’ (Fn ) and 

the linear deflection of gear along a base circle (S). 

 
Km =

Fn

S
 

 
(3.6) 

Km = linear tooth mesh stiffness (N/m) 

Fn = Normal force along the line of action (N) 
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S = Arc length of the base circle of gear (m)   

Mathematically, torque is given by the cross product of the force vector and the position vector , 

which in the case here is base circle radius r1. Thus, T = Fn x r1b. Furthermore, assuming θ is very 

small, θ = S / r1b. S is an arc length of the base circle of the gear 1. Hence, linear tooth mesh 

stiffness is given as, 

 

 

Km =
Fn

s
=

T
r1b

r1b ∗ θ
=

T

θ ∗ r1b
2

= 
KT

r1b
2

 

 

(3.7) 

Linear tooth mesh stiffness is given by the ratio of torsional tooth mesh stiffness and square of 

base circle radius of the gear 1. 

 

 
Km =

KT

r1b
2
 (3.8) 

 

3.1.2 Modeling of Spur Gear Using Inventor Professional 2016 

 Model must be created by using appropriate dimensions, boundary conditions (constraints), 

forces, selection of appropriate mesh, element choice, etc. There two methods to construct finite 

element model. One of that method includes the creation of Computer Aided Design model using 

modeling softwares such as Solidworks, or CATIA and export a model to ANSYS Workbench 

with appropriate file formats such as IGES or Parasolid for analysis. The another method includes 

modeling using any analysis software to build that particular model. The basic disadvantage of this 

method is that user can not generate a complex model easily. 

 In this work, Inventor professional 2016 used to create a model of the spur gear pair  and 

ANSYS Workbench 15.0 is used for the Finite Element Analysis of this gear system.  Basically, 

this analysis has been done to calculate the meshing stiffness between meshing gear pairs like sun 

gear and planet as well as planet and ring gear. They are afterwards compared with the analytical 

methods (spott’s equation). 

Model is constructed using the dimensions shown in Table 3.1 

All dimensions are in mm  

Pressure angle = 20 ֯ 
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Table 3.1: Parameters used to create epicyclic gear in Inventor professional 2016 

 

Parameters 

 

 

Sun Gear 

 

Planet 

 

Ring Gear 

Pitch Circle Diameter (d) 160 220 600 

Base Circle Diameter(db = d X cos(PA) ) 150.351 206.732 563.816 

Number of teeth,(N) 16 22 60 

Diametral Pitch ,(P) 0.1 0.1 0.1 

Addendum , (a =1/P) 10 10 10 

Outside Diameter , (dₒ = d +2a) 180 240 620 

Circular Pitch , (p = 3.1416/P) 31.416 31.416 31.416 

Whole Depth, (ht = 2.157/P) 21.57 21.57 21.57 

Deddendum  ,(ded = ht –a) 11.57 11.57 11.57 

Root Diameter ,(dᵣ = d -2b) 136.86 196.86 576.86 

Tooth width,(b) 10 10 10 

 

CAD model for the epicyclic gear was constructed. It includes one spur gear, one planet gear, one 

ring gear and the carrier. This model was created using the ‘Inventor Professional 2016’. 

 

 

Figure 3.3: CAD model: Epicyclic Gear Set 
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3.1.3 Various Boundary Conditions, Applied Loads and Displacements 

 Boundary conditions are applied to the various components like rotational degree of 

freedom is given to the one whose displacement we have to calculate. While the other meshing 

component is fixed so that it creates the stress and the strain fields. Fig. 3.4 gives the general idea 

about the meshing gears and applied boundary conditions. 

 

Figure 3.4: Boundary conditions and applied load (input torque) for the analysis  

 

Figure 3.5: Boundary conditions in ANSYS Workbench 15.0 for ring-planet mesh 
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Figure 3.6: Displacement field in ANSYS Workbench 15.0 for ring-planet mesh 

 

Figure 3.7: Boundary conditions in ANSYS Workbench 15.0 for sun-planet mesh 
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Figure 3.8: Displacement field in ANSYS Workbench 15.0 for sun-planet mesh 

 Above boundary conditions have been applied to obtain a result in Ansys workbench 15.0. 

Displacement field in the Ansys is used to calculate the mesh stiffness for the given ring-planet 

pair as well as sun-planet pair in the epicyclic gear. 

Displacement field is calculated: 

Applied moment= 10Nm 

3.1.4 Results and Comparison 

3.1.4.1 Ring-planet mesh 

Planet Gear Dimensions (For calculations) 

Addendum radius, ra = 240 mm 

Base circle radius, rb = 206.732 mm  

Torque applied T = 10 Nm 

Calculations: 

Displacement of the planet gear (s): 0.516 X 10-6 m 

Angular displacement (θ =
S

ra
): 

0.516 X 10−6 

0.240
 = 2.15 X 10-6 rad 

Torsional Stiffness (Kt = 
T

θ
): 

10

2.15 X 10−6
 = 4.651163 X 106 Nm/rad 

Mesh stiffness (Km = 
Kt

rb
2): 

4.651163 X 106

0.2067322  = 108.83 X 106 N/m 
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3.1.4.2 Sun-planet mesh 

Sun Gear Dimensions (For calculations) 

Addendum radius, ra = 180 mm 

Base circle radius, rb = 150.351 mm  

Torque applied T = 10 Nm 

Calculations: 

Displacement of the planet gear (s): 0.75 X 10-6 m 

Angular displacement (θ =
S

ra
): 

0.75 X 10−6 

0.180
 = 4.16667 X 10-6 rad 

Torsional Stiffness (Kt = 
T

θ
): 

10

4.16667 X 10−6
 = 2.4 X 106 Nm/rad 

Mesh stiffness (Km = 
Kt

rb
2): 

2.4 X 106

0.1503512 = 106.17 X 106 N/m 

 

3.1.4.3 Comparison  

 Calculated results are compared with the Spotts (1985) equation, which states average the 

mesh stiffness of the gear pair. 

Average gear mesh stiffness obtained: 

1. Ring-planet mesh: 

  Km = 108.83 MN/m 

2. Sun-planet mesh: 

Km = 106.17 MN/m 

3. By using Spott's equation of average mesh stiffness: 

 

 
Km  =

b

9
∗

E1 ∗ E2

E1 + E2
 (3.9) 

        = 111.11 MN/m 

           Where, 

           E1 = Elastic modulus of 1st gear = 200 GPa 

           E2 = Elastic modulus of 2nd gear = 200 GPa 

4. By using modified Spotts equation of average mesh stiffness: 

 

 
Km  = C. R.  ∗

b

9
∗

E1 ∗ E2 

E1 + E2
   (3.10) 
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I. Ring-planet mesh: 

                                   Km  =   1.55 X 111.111   
                                                          = 172.22 MN/m 

Where, 

 C.R. = Contact ratio = 1.55 

II. Sun-planet mesh: 

                                    Km  = 1.40  X 111.111 

                                            = 155.55 MN/m 

Where, 

 C.R. = Contact ratio = 1.40 

 

From the above calculations, it is concluded that Spotts equation for mesh stiffness can be used to 

calculate the mesh stiffness of the given gear pair and it gives an approximate value of the mesh 

stiffness. 
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4 Gear-Mesh Model Methodology with Application  

 

 This chapter has the methodology for deriving 6 order mesh stiffness matrices for each 

meshing pair like sun-planet, ring-planet as well as carrier-planet. This approach used technique 

proposed by Lao (1996) and it also includes some aspects presented by Choi (1993) and 

Blankenship (1995). Mesh stiffness matrices for each pair are derived by resolving forces and 

displacement of a pitch point.  

4.1 Gear Mesh Model Methodology 

4.1.1 Development of Gear Mesh Forcing Function   

 Figure 4.1 represents the finite element system of the meshing gear with shafts. 

 

Figure 4.1: Finite element representation of a Gear Pair 

 Both the gears act as rigid disks on shafts. Two centers of the respective gears act as 

separate nodes for the finite element analysis. A force vector {F} can be modeled as function of a 

gear mesh stiffness matrix [K]mesh and displacement vector {q} acts on a node i and j. 

 

 
{
Fi

Fj
} = [K]mesh {

qi

qj
} = Km [

[Kii] [Kij]

[Kji] [Kjj]
] {

qi

qj
} (4.1) 
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4.1.2 Geometry and Loading Conditions  

 The mesh between two gears is represented by a spring mass system. Line of action is the 

path along which the force between these two gears is transmitted and it is given by the tangent 

joining the base circles of the two meshing gears. 

 

Figure 4.2: Epicyclic Gear Model 

 The intersection of two lines, lines connecting two centers of the given gear pair and the 

tangents connecting two base circles (Line of Action) gives the pitch point. In spur gears, contact 

load is distributed evenly, not like helical gears in which the contact area varies accordingly and 

hence the transmitted load. The force transmission is assumed to be taking place at the pitch point 

p. 

 Location of the given gear pair is taken into account using the variable. If the given gear 

pair is horizontal, it is given as, ht= 0 and if the given gear pair is arranged vertically, ht= ri+rj or at 

any given orientation ϕ. 

 In this method, the mesh stiffness value for the given meshing gear pair is assumed to be 

derived from the experimental results or can be calculated from the documented data of the given 

system. It basicaaly depends on the materials of two meshing gears. The whole geometry of each 

meshing gear pair can be explained and related using the given variables: Orientation angle (φ) and 

the pressure angle (α). 

 In the case of the spur gear, problem can be solved in two dimensions or x-y plane by 

ressolving the forces. Force components are basically the functions of the pressure angle (α) and 

these local force components are related with the global components using the orientation angle 

(φ). 
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Figure 4.3: Forces acting on the spur gear 

 The local forces are the function of the direction cosines. Direction cosine angles can be 

written in the form the pressure angle (α). The force components along x’ and y’ and axes are 

determined by equations 5.2. The role of prime coordinates (x’ and y’) is very vital. 

Fx′ = Fncosϕx 
 

Fy′ = Fncososϕy 

 

 

(4.2) 

 

  

                                                y’                            

                                

                                                                                                         

                                                         Fy’      𝜙𝑦                      Fn                                                                                                                                                                                  

                                                                    𝜙𝑥 

                                                  O                  Fx’                       x’           

Figure 4.4 Force Components 

Where,  

 cosϕx = cosβ cosα 

cosϕy = sinα 

cosϕz = 0            

(4.3) 
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The equation relating the force vector to displacement vector is 

 {F}mesh = −[K]mesh{u}LOA (4.4) 

 

 Forces in the global coordinate system is brought to the left hand, so the negative sign is 

present. 

 

4.1.3 Gear-Mesh Coordinates System 

 The coordinate axes (x’ as well as y’) are local to the pitch point. It is shown in the figure. 

The orientation angle (φ) decides the direction of these prime coordinates. While, the pressure 

angle decides the force components. In the case of epicyclic gear, the orientation angle keeps 

changing for each sun-planet gear. It keeps rotating about the gear center i.  

 
Figure 4.5: Relation between Local and Global Axes 

 As shown above, prime coordinates can be resolved in both the global x as well as y axes. 

Similarly, forces have the components in the global axes accordingly. Afterwards, these can be 

related accordingly to find out the stifness matrices for each meshing pair. 
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4.1.4 Force and Moment Equations  

 The foces acting on the node i, can be resolved in the x and y (global axes) direction. 

While, the moment can be found out by multiplying the respective forces with their moment arm 

around the given node. As in the spur gear, there is no force acting in the axial direction, Fz in not 

present. The moments about the global x and y axes contain the force term Fz, so they are absent as 

well. 

             Fxi = Fx′ sinφ + Fy′ cosφ  

Fyi = −Fx′ cosφ + Fy′ sinφ                                                             (4.5) 

                  Fzi = 0  

Moments, 

Mxi =  0 

Myi = 0 

Mzi = Fyi ricosφ − Fxi ri sinφ 

(4.6) 

The forces acting on the j node are equal in the magnitude and opposite to those acting on the i 

node. While the moments are equal and opposite only if the gear ratio is unity. So, the forces and 

moments acting on the meshing j node of the gear pair are given as: 

Fxj = −(Fx′ sinφ + Fy′ cosφ) 

Fyj = −(−Fx′ cosφ + Fy′ sinφ) 

Fzj =  0 

(4.7) 

     Mxj =  0 

       Myj = 0 

Mzj = Fyj rjcosφ − Fxj rj sinφ 

 

(4.8) 
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4.1.5 Displacement Method 

4.1.5.1 Sun-Planet Mesh (Forces on the sun gear) 

 

Figure 4.6: Contribution of displacements to the Line-of-Action (sun-planet mesh) 

 There are total 6 DOF per gear pair mesh. They all contribute to the movement of the pitch 

point along the ‘Line of Action’. Positive displacements of the nodes i and j of the respective gears 

along the x-direction result in the components along the line of action. 

 The pitch point gets shifted due to these translational moctions along the given axes. 

Rotational motion about an axis rotates pitch point about the respective axes. 

 

Figure 4.7: Contribution of the rotational motion about zi in the movment of the pitch point 

 The displacement method is applied to the each meshing gear pair in the epicyclic gear 

train which yields the 6 X 6 mesh stiffness matrix for each meshing pair. The pitch point 
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displacement can be resolved into the global coordinate system using the appropriate 

transformations. The pressure angle (α) helps to resolve the components along the prime (local) 

coordinate system while the orientation angle (φ) gives the relationship between the prime and 

global coordiante system. The applied displacement method gives the following equations: 

sxs = xs(sinφcosϕx − cosφcosϕy) 

                                                             = xs sin φs                                                                             …..    (φs  = φ – αs ) 

 

(4.9) 

   sys = ys(−sinφcosϕy − cosφcosϕx) 

                                                             = -ys cos φs 

(4.10) 

The rotational displacement: 

For rotation about z axis: 

 xs = −rscosφ + rscos (φ + θzs) 

 
(4.11) 

 ys = −rssinφ + rssin (φ + θzs) 

 
(4.12) 

Due to the small rotating angle assumption, 

For rotation about (z): 

 xs = −rsθzssin (φ) 

 
(4.13) 

 ys = +rsθzscos (φ) 

 
(4.14) 

By substituting these equations into the translational displacement equation we get, 

              sθzs = −rsθzscosαs 

 
(4.15) 

Forces acting on the sun gear are: 

Fx = Fn sin φs 

Fy = Fn cos φs 

Mz = - Fn rs cos αs 

 (4.16) 
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4.1.5.2 Ring-Planet Mesh (Forces on the ring gear) 

 

Figure 4.8: Contribution of displacements to the Line-of-Action (ring-planet mesh) 

Similar procedure is applied for the ring-planet mesh, 

The applied displacement method gives the following equations: 

sxr = xr(sinφcosϕx + cosφcosϕy) 

                                                             = -xr sin φr                                                                            …..    (φr  = φ + αr ) 

 

(4.17) 

    syr = yr(−sinφcosϕy + cosφcosϕx) 

                                                             = -yr cos φr 

 

(4.18) 

The rotational displacement: 

For rotation about z axis: 

 xr = −rrcosφ + rrcos (φ + θzr) 

 
(4.19) 

 yr = −rrsinφ + rrsin (φ + θzr) 

 
(4.20) 

Due to the small rotating angle assumption, 

For rotation about (z): 

 xr = −rrθzrsin (φ) 

 
(4.21) 

 yr = +rrθzrcos (φ) (4.22) 
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By substituting these equations into the translational displacement equation we get, 

              sθzr = −rrθzrcosαr 

 
(4.23) 

Forces acting on the ring gear are: 

Fx = Fn sin φr 

Fy = Fn cos φr 

Mz = - Fn rr cos αr 

 (4.24) 

 

4.1.5.3 Carrier-Planet Mesh (Forces on the carrier) 

4.1.5.3.1 Vertical Force Acting on the Carrier 

 

Figure 4.9: Contribution of vertical force to pitch point movement (carrier-planet mesh) 

Similar procedure is applied for the carrier-planet mesh, 

The applied displacement method gives the following equations: 

sxcy = xcy(sinφcosφ − cosφsinφ) 

                                                                = 0                                                                             
(4.25) 

    sycy = ycy(−sinφsinφ − cosφcosφ) 

                                                               = -ycy  
(4.26) 
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The rotational displacement: 

For rotation about z axis: 

 xcy = −rccosφ + rccos (φ + θzcy) 

 
(4.27) 

 ycy = −rcsinφ + rcsin (φ + θzcy) 

 
(4.28) 

Due to the small rotating angle assumption, 

For rotation about (z): 

 xcy = −rcθzcysin (φ) 

 
(4.29) 

 ycy = +rcθzcycos (φ) 

 
(4.30) 

By substituting these equations into the translational displacement equation we get, 

              sθzc = −rcθzcycos(φ) 
 

 

(4.31) 

Forces acting on the carrier are: 

Fx = 0 

Fy = - Fy 

Mz = 0     

(As carrier rotation has no rotational effect on the pitch point movement) (4.32) 
 

4.1.5.3.2 Horizontal Force Acting on the Carrier  

 

 

Figure 4.10: Contribution of horizontal force to pitch pt movement (carrier-planet mesh) 



26 
 

The applied displacement method gives the following equations: 

sxcx = xcx(sinφsinφ + cosφcosφ) 

                                                                 =  xcx                                                                           

                                                          sxp = −xpx 

 

(4.33) 

    sycx = ycx(−sinφcosφ + cosφsinφ) 

                                                                 = 0  

 

(4.34) 

The rotational displacement: 

For rotation about z axis: 

 xcx = −rccosφ + rccos (φ + θzcx) 

 
(4.35) 

 ycx = −rcsinφ + rcsin (φ + θzcx) 

 
(4.36) 

Due to the small rotating angle assumption, 

For rotation about (z):  

 xcx = −rcθzcxsin (φ) 

 
(4.37) 

 ycx = +rcθzcxcos (φ) 

 
(4.38) 

By substituting these equations into the translational displacement equation we get, 

              sθzc = −rcθzcxsin(φ) (4.39) 

Forces acting on the carrier are: 

Fx = Fx  

Fy = 0 

Mz = 0     

(As carrier rotation has no rotational effect on the pitch point movement) (4.40) 
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4.1.5.4 Sun-Planet Mesh (Forces on the planet gear) 

 

Figure 4.11: Force on the planet gear due to sun-planet mesh 

The applied displacement method gives the following equations:  

(As, linear displacements due to node i and j are the same) 

sξ = −ξ(sinα𝑠) (4.41) 

   sɳ = −ɳ(cosα𝑠) (4.42) 

For rotation about (z): 

              sθzp = −rpθzpcosαs (4.43) 

Forces acting on the sun gear are: 

Fξ = Fn sin αs 

Fɳ = Fn cos αs 

Mz = -Fn rp cos αs 

 (4.44) 
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4.1.5.5 Ring-Planet Mesh (Forces on the planet gear) 

 

Figure 4.12: Force on the planet gear due to ring-planet mesh 

The applied displacement method gives the following equations:  

(As, linear displacements due to node i and j are the same) 

sξ = ξ(sinαr) (4.45) 

   sɳ = −ɳ(cosαr) (4.46) 

For rotation about (z): 

 sθzp = rpθzpcosαr (4.47) 

Forces acting on the sun gear are: 

Fξ = -Fn sin αr 

Fɳ = Fn cos αr 

Mz = Fn rp cos αr 

 (4.48) 
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4.1.5.6 Carrier-Planet Mesh (Forces on the planet gear) 

4.1.5.6.1 Vertical Force Acting on the Planet 

 

Figure 4.13: Vertical force on the planet gear due to carrier 

The applied displacement method gives the following equations:  

(As, linear displacements due to node i and j are the same) 

sξ = −ξ(sinφ) (4.49) 

   sɳ = −ɳ(cosφ) (4.50) 

For rotation about (z): 

              sθzp = 0 (4.51) 

Forces acting on the sun gear are: 

Fξ = Fy sin φ 

Fɳ = Fy cos φ 

Mz = 0 

 (4.52) 
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4.1.5.6.2 Horizontal Force Acting on the Planet 

 

Figure 4.14: Horizontal force on the planet gear due to carrier 

The applied displacement method gives the following equations:  

(As, linear displacements due to node i and j are the same) 

sξ = ξ(cosφ) (4.53) 

   sɳ = −ɳ(sinφ) (4.54) 

For rotation about (z): 

              sθzp = 0 (4.55) 

Forces acting on the sun gear are: 

Fξ = -Fx cos φ 

Fɳ = Fx sin φ 

Mz = 0 

 (4.56) 

  

This procedure can be repeated for n number of the meshing planet gears. Applying the same 

formulation method, suitable stiffness matrices can be found out. The only varying element present 

is the orientation angle and the realted terms. 
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4.1.6 Influence Coeffiecient Method 

Each element of the mesh stiffness matrix for each meshing pair can be calculated by assuming 

only one component of displacement vector {q} has a unit displacement, and all the other 

remaining components of the displacement vector {qi} and {qj} are zero. Then we put the values of 

Fn in term of force vector components. Negative value of force vector component represents the 

particulat element stiffness value. By applying each of three different unit displacements in {qi} 

will yield a 3×6 matrix. Similarly, using the same method to each of the variables in {qj} yields 

another 3×6 matrix. Combining all these matrices, we can get a matrix of 6x6. 

It can be written as, 

[K]mesh = Km [
[Kii] [Kij]

[Kji] [Kjj]
] (4.57) 

 

The element of the four submatrices in Equation 4.57 for each meshing pair are presented in 

Appendix B 

 

4.1.7 Finding out the meshing frequency 

The meshing frequency for the given system can be found out in such a way that the whole system 

(carrier, ring, sungear, planet 1, planet 2, ……, planet n)displacement parameters are arranged and 

matched up with the meshing matrix.  

Km =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 

∑[Kc1]
i

n

i=1

0 0 [Kc2]
1  [Kc2]

2 [Kc2]
3 [Kc2]

4

0  ∑[Kr1]
i

n

i=1

0 [Kr2]
1 [Kr2]

2 [Kr2]
3 [Kr2]

4

0 0 ∑[Ks1]
i

n

i=1

[Ks2]
1 [Ks2]

2 [Ks2]
3 [Ks2]

4

[Kc3]
1 [Kr3]

1 [Ks3]
1 [Kpp]1 0 0 0

[Kc3]
2 [Kr3]

2 [Ks3]
2 0 [Kpp]2 0 0

[Kc3]
3 [Kr3]

3 [Ks3]
3 0 0 [Kpp]3 0

[Kc3]
4 [Kr3]

4 [Ks3]
4 0 0 0 [Kpp]4]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                                                                                                (4.58) 

 

The above sub-matrices are given in the Appendix A.  
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4.2 Application 

4.2.1 System and System Parameter 

The formulated meshing stiffness matrices for the given epicyclic system can be incorporated in 

the finding out the natural frequency of the system. The formulation in this paper is used to verify 

the meshing frequencies of the system used in the U.S. Army’s helicopter OH-58. 

 

Table 4.1: System Parameters 

Parameters Sun Ring Carrier Planet 

Mass (kg) 0.4 2.35 5.43 0.66 

𝐈
𝐫𝟐⁄  (kg) 0.39 3.00 6.29 0.61 

Base Diameter (mm) 77.42 275.03 177.8 100.35 

Teeth Number 27 99  35 

Mesh Stiffness (𝐍 𝐦⁄ ) ksp = krp = km = 5 x 𝟏𝟎𝟖 

kp = ks= kr= kc=   𝟏𝟎𝟖 

kru= 𝟏𝟎𝟗, ksu= kcu=  𝟏𝟎𝟗 

αs = αr = 24.6 

Beating Stiffness (𝐍 𝐦⁄ ) 

Torsion Stiffness (𝐍 𝐦⁄ ) 

Pressure Angle (º) 

 

4.2.2 Results of Meshing Epicyclic Gears 

Natural Frequency results obtained using the MATLAB software are: 

Table 4.2: Natural Frequencies (Hz) of Meshing Epicyclic Gears 

Multiplicity Mode Natural Frequency 

(Hz) 

Frequency 

Number 

 

 

m=1 

 

 

Pure Rotation of 

Carrier, Ring and Sun 

0 1 

1536.5 6 

1970.6 10 

2625.7 13 

7773.6 18 

13071 21 

 

 

m=2 

 

 

Pure Translation of 

Carrier, Ring and Sun 

727.27 2,3 

1091.2 4,5 

1892.8 8,9 

2342.5 11,12 

7189.9 16,17 
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10458 19,20 

 

m=1 

 

Planet Modes 

1808.28 7 

5963.8 14 

6981.7 15 

 

 

 

4.2.3 Validation  

These obtained natural frequencies are compared and validated with th previous study by J. Lin 

and R. G. Parker. Comparison of these natural frequencies is given in the following table. From the 

comparison, it is given that the method developed for the formulation of the meshing stiffness 

matrices and hence the meshing frequencies gives the exact same results. 

Table 4.3: Comparison of Natural Frequencies 

Natural Frequecy 

Number 

Frequecy by J. Lin 

and R. G. Parker (Hz) 

Calculated Natural 

Frequency (Hz) 

Difference (%) 

1 0 0 0.00 

2,3 727.0 727.27 0.037 

4,5 1091.0 1091.2 0.018 

6 1536.6 1536.5 0.007 

7 1808.2 1808.28 0.004 

8,9 1892.8 1892.8 0.00 

10 1970.6 1970.6 0.00 

11,12 2342.5 2342.5 0.00 

13 2625.7 2625.7 0.00 

14 5963.8 5963.8 0.00 

15 6981.7 6981.7 0.00 
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16,17 7189.9 7189.9 0.00 

18 7773.6 7773.6 00.00 

19,20 10437.6 10438 0.004 

21 13071.1 13071 0.001 
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5 Results 

 

 Natural frequencies help us to understand the system behavior in details. 

 

5.1 Mode Shapes 

The obtained natural frequencies can be divided in the following categories: 

i. Rotational Modes: These modes have multiplicity m=1 for the given system. That implies 

that these modes don’t repeat themselves. The related vibration modes have pure rotation 

of carrier, ring and sun. While planets have the same motion. 

 
Figure 5.1: Rotational Mode (R. G. Parker and J. Lin) 

 

Table 5.1: Rotational Mode Natural Frequencies 

Multiplicity 1 

Frequency 

No. 

1 6 10 13 18 21 

Frequency 

(Hz) 

0 1536.5 1970.6 2625.7 7773.6 13071 
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Table 5.2: Rotational Mode Shapes (Matlab) 

Frequency 

No. 

1 6 10 13 18 21 

Mode Shapes 

Carrier 

X Disp -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 

Y Disp 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 

Rotational 

Disp 

-0.5499 -0.5752 0.2419 -0.2220 -0.0274 0.0012 

Ring 

X Disp -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

Y Disp -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Rotational 

Disp 

0.0000 -0.3637 0.1074 1.0000 -0.9863 -0.0096 

Sun 

X Disp 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 

Y Disp 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 

Rotational 

Disp 

-1.0000 1.0000 -0.7802 0.2456 -0.4326 1.0000 

Planet 1 

Radial Disp 0.0000 -0.6103 -1.0000 -0.2739 -0.4002 -0.0673 

Tangential 

Disp 

-0.5499 0.2678 -0.3412 0.7283 1.0000 -0.1278 

Rotational 

Disp 

0.5000 -0.9924 0.0303 0.3156 0.9740 0.1711 

Planet 2 

Radial Disp 0.0000 -0.6103 -1.0000 -0.2739 -0.4002 -0.0673 

Tangential 

Disp 

-0.5499 0.2678 -0.3412 0.7283 1.0000 -0.1278 

Rotational 

Disp 

0.5000 -0.9924 0.0303 0.3156 0.9740 0.1711 

Planet 3 

Radial Disp 0.0000 -0.6103 -1.0000 -0.2739 -0.4002 -0.0673 

Tangential 

Disp 

-0.5499 0.2678 -0.3412 0.7283 1.0000 -0.1278 

Rotational 

Disp 

0.5000 -0.9924 0.0303 0.3156 0.9740 0.1711 

Planet 4 

Radial Disp 0.0000 -0.6103 -1.0000 -0.2739 -0.4002 -0.0673 

Tangential 

Disp 

-0.5499 0.2678 -0.3412 0.7283 1.0000 -0.1278 

Rotational 

Disp 

0.5000 -0.9924 0.0303 0.3156 0.9740 0.1711 
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ii. Translational Modes: These modes have multiplicity m=2 for the given system. The related 

vibration modes have pure translational displacement of carrier, ring and sun. While all the 

planets have radial, tangential as well as the rotational displacement. 

 
Figure 5.2: Translational Mode (R. G. Parker and J. Lin) 

 

Table 5.3: Translational Mode Natural Frequencies 

Multiplicity 2 

Frequency 

No. 

2,3 4,5 8,9 11,12 16,17 19,20 

Frequency 

(Hz) 

727.27 1091.2 1892.8 2342.5 7189.9 10438 
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Table 5.4: Translational Mode Shapes (Matlab) 

Frequency 

No. 

2 3 4 5 8 9 11 12 16 17 19 20 

Carrier 

X Disp 0.8354 -

0.0986 

-

0.1764 

-

0.1764 

0.0371 -

0.2193 

0.4131 0.0305 -

0.0005 

0.0214 0.0024 -

0.0000 

Y Disp -0.0660 0.8335 -

0.2596 

-

0.2596 

-

0.1924 

-

0.0000 

-

0.0000 

-

0.4193 

-

0.0216 

0.0000 -

0.0000 

-

0.0024 

Rotational 

Disp 

0.0000 0.0000 -

0.0000 

0.0000 -

0.0000 

-

0.0000 

-

0.0000 

0.0000 0.0000 -

0.0000 

0.0000 -

0.0000 

Ring 

X Disp 0.6305 -

0.4631 

-

0.3981 

-

0.3981 

0.1202 0.2586 -

0.1431 

-

0.0172 

0.0339 0.5539 -

0.0124 

-

0.0181 

Y Disp 0.3459 0.5516 1.0000 1.0000 0.2584 -

0.1869 

-

0.0066 

0.1447 -

0.5591 

0.0454 -

0.0182 

0.0126 

Rotational 

Disp 

0.0000 -

0.0000 

-

0.0000 

0.0000 -

0.0000 

-

0.0000 

-

0.0000 

0.0000 0.0000 0.0000 -

0.0000 

-

0.0000 

Sun 

X Disp 0.2573 0.1856 -

0.5535 

-

0.5535 

1.0000 -

0.7265 

-

1.0000 

-

0.2779 

-

0.3063 

0.3006 1.0000 0.1050 

Y Disp -0.2402 0.2998 -

0.6103 

-

0.6103 

-

0.4681 

-

1.0000 

-

0.2012 

1.0000 -

0.2966 

-

0.2975 

0.1123 -

1.0000 

Rotational 

Disp 

-0.0000 -

0.0000 

-

0.0000 

-

0.0000 

-

0.0000 

-

0.0000 

-

0.0000 

0.0000 0.0000 0.0000 0.0000 -

0.0000 

Planet 1 

Radial 

Disp 

1.0000 -

0.1064 

-

0.0973 

-

0.0973 

-

0.7748 

0.3676 -

0.8939 

0.2553 -

0.3620 

-

0.1327 

-

0.0726 

0.1210 

Tangential 

Disp 

-0.0367 0.6112 0.1180 0.1180 0.0727 -

0.8124 

-

0.3165 

0.4873 1.0000 0.3621 -

0.1206 

0.2014 

Rotational 

Disp 

0.5044 0.1296 0.9159 0.9159 -

0.2467 

0.6787 -

0.0527 

-

0.2548 

0.8712 0.3152 0.1818 -

0.3034 

Planet 2 

Radial 

Disp 

-0.0908 1.0000 -

0.4357 

-

0.4357 

0.1851 0.8124 0.3165 0.9305 0.1415 -

0.3621 

0.1206 0.0716 

Tangential 

Disp 

-0.6150 0.0842 0.1186 0.1186 -

0.7251 

0.0737 0.5032 0.3583 -

0.3863 

1.0000 0.2007 0.1190 

Rotational 

Disp 

-0.2324 0.5409 -

0.3430 

-

0.3430 

0.5699 0.1504 -

0.2473 

0.0352 -

0.3363 

0.8712 -

0.3023 

-

0.1794 

Planet 3 

Radial 

Disp 

-1.0000 0.1064 0.0973 0.0973 0.7748 -

0.3676 

0.8939 -

0.2553 

0.3620 0.1327 0.0726 -

0.1210 

Tangential 

Disp 

0.0367 -

0.6112 

-

0.1180 

-

0.1180 

-

0.0727 

0.8124 0.3165 -

0.4873 

-

1.0000 

-

0.3621 

0.1206 -

0.2014 

Rotational 

Disp 

-0.5044 -

0.1296 

-

0.9159 

-

0.9159 

0.2467 -

0.6787 

0.0527 0.2548 -

0.8712 

-

0.3152 

-

0.1818 

0.3034 

Planet 4 

Radial 

Disp 

0.0908 -

1.0000 

0.4357 0.4357 -

0.1851 

-

0.8124 

-

0.3165 

-

0.9305 

-

0.1415 

0.3621 -

0.1206 

-

0.0716 

Tangential 

Disp 

0.6150 -

0.0842 

-

0.1186 

-

0.1186 

0.7251 -

0.0737 

-

0.5032 

-

0.3583 

0.3863 -

1.0000 

-

0.2007 

-

0.1190 

Rotational 

Disp 

0.2324 -

0.5409 

0.3430 0.3430 -

0.5699 

-

0.1504 

0.2473 -

0.0352 

0.3863 -

0.8712 

0.3023 0.1794 

 



39 
 

iii. Planet modes: These modes have multiplicity m=1 for the given system. There is no 

displacement of sun gear, carrier as well as a ring gear. While planet motion takes place. 

Here, radial mode includes the radial displacement of the planets as well as their rotational 

displacement. While, tangential mode has only tangential displacements of the planets. 

While the rotational planet mode contains a little radial planet displacement as well. 

 

 
Figure 5.3: Radial Planet Mode 

 

                                  

Figure 5.4: Translational Planet Mode 
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Figure 5.5: Rotational Planet Mode  

Table 5.5: Planet Mode Natural Frequencies 

Multiplicity 1 

Frequency 

No. 

7 14 15 

Frequency 

(Hz) 

1808.28 5963.8 6981.7 
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Table 5.6: Planet Mode Shapes (Matlab) 

Frequency 

No. 

7 14 15 

Carrier 

X Disp -0.0000 -0.0000 -0.0000 

Y Disp -0.0000 -0.0000 -0.0000 

Rotational 

Disp 

-0.0000 -0.0000 -0.0000 

Ring 

X Disp -0.0000 -0.0000 -0.0000 

Y Disp -0.0000 -0.0000 0.0000 

Rotational 

Disp 

-0.0000 -0.0000 -0.0000 

Sun 

X Disp -0.0000 -0.0000 -0.0000 

Y Disp -0.0000 -0.0000 -0.0000 

Rotational 

Disp 

-0.0000 -0.0000 -0.0000 

Planet 1 

Radial Disp -1.0000 0.0000 -0.4176 

Tangential 

Disp 

-0.0000 1.0000 -0.0000 

Rotational 

Disp 

-0.4519 0.0000 1.0000 

Planet 2 

Radial Disp 1.0000 0.0000 0.4176 

Tangential 

Disp 

-0.0000 -1.0000 -0.0000 

Rotational 

Disp 

0.4519 0.0000 -1.0000 

Planet 3 

Radial Disp -1.0000 0.0000 -0.4176 

Tangential 

Disp 

-0.0000 1.0000 -0.0000 

Rotational 

Disp 

-0.4519 0.0000 1.0000 

Planet 4 

Radial Disp 1.0000 0.0000 0.4176 

Tangential 

Disp 

-0.0000 -1.0000 -0.0000 

Rotational 

Disp 

0.4519 0.0000 -1.0000 
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5.2 Sensitivity of Natural Frequency 

Natural frequencies of the epicyclic gear can be affected by many factors. Here, the natural 

frequency can be plotted against many factors like the meshing stiffness, inertias and masses of the 

components. 

 It was found that by plotting the natural frequencies against the inertia of the sun gear, only 

the rotational frequencies produced a curve. While lower frequencies showed almost no change, 

higher frequencies have a tendency of variation against the changing value. 

 These analyses are very important, since they can show us the change in the natural 

frequencies and hence the behavior of the entire system. 

Various design guidelines can be summarized from these sensitivity curves and can be used to 

predict the effect of various system parameters on planetary gear free vibrations.  

 

5.2.1 Sensitivity due to Change in the Sun Gear Mass 

 

Figure 5.6:  ω (rad/s) vs. ms (kg) 

 

 

 

 

 

 

 



43 
 

5.2.2 Sensitivity due to Change in the Ring Gear Mass 

          

Figure 5.7:  ω (rad/s) vs. mr (kg) 

 

 

5.2.3 Sensitivity due to Change in the Planet Gear Mass 

 

Figure 5.8:  ω (rad/s) vs. mp (kg) 
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If we compare these results, we can observe that the variation in the planet gear mass affects the 

system vibration behavior most. As we get a clear idea about the effects of these parameters on the 

vibration of the epicyclic gears, this analysis is considered as an important one.  
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6 Conclusions and Recommendations 

 

This research presented a methodology to calculate the meshing stiffness matrices for each 

meshing pair in the epicyclic gear set. 

6.1 Conclusions 

Some primary conclusions obtained from the research are given: 

1. The obtained 6-DOF mesh stiffness matrix was used for coupling two node of the finite 

element analysis. This matrix can use both linear and non-linear mesh stiffness coefficient 

values into model. 

2. This model is able to provide the contribution of all DOFs of the spur gear pair to a global 

coordinates system. 

3. Meshing stiffness of the each gear pair depends on the number of meshing gear teeth in 

contact at a time. When the one pair of teeth is in contact at that time, the mesh stiffness of 

each gear pair decreases but as number of pairs in contact increase, the mesh stiffness value 

of gear pair increases. 

4. Average value of the gear mesh stiffness is largely depends upon materials parameter of 

meshing gears. 

5. The primary terms in the meshing stiffness matrix for each planet remain the same. Few 

terms like orientation angle and other dependent terms get changed. 

6. Basically, the meshing [kij] and [kji] matrices of each gear pair are transpose of each other. 

 

6.2 Limitation 

Some limitations of this research were: 

1. This model did not include the effect of the sliding action or friction and all the forces were 

assumed to operate at the pitch point along the LOA. 

2. Proposed methodology was used to calculate the meshing stiffness of the meshing spur 

epicyclic gear pairs. It did not include load sharing factor amongst planets, tooth 

transmission errors and meshing teeth were assumed to be in contact all the time. 
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6.3 Recommendations 

1. The effect of the sliding action and hence the friction can be used in the model. 

2. The effect of non-linear mesh stiffness on the dynamic response of the meshing gear pairs 

in the epicyclic geared systems can be studied in detailed.  

3. Inclusion of the backlash and transmission error would give more robust mathematical 

model. 

4. Methodology can be extended to find out the meshing frequencies of the helical epicyclic 

gears. 
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Appendix A: Finite Element Matrix Equations 

 

The given equations present the sub-matrices in the equation 4.58. All of these matrices are 

derived from the formulated equations. 

A.1 3-DOF Meshing Matrices 

The meshing sub-matrices are given as: 

 

[Kc1]
z = kpz [

1 0 −sinφ
z

0 1 cosφz

sinφz cosφz 1
]                                                                                   (A.1) 

 

[Kc2]
z = kpz [

−cosφz sinφ
z

0

−sinφ
z

−cosφz 0

0 −1 0

]                                                                                      (A.2) 

 

[Kc3]
z = kpz [

−cosφz −sinφ
z

0

sinφ
z

−cosφz −1

0 0 0

]                                                                                   (A.3) 

 

Here, [Kpp]z = [Kc4]
z + [Kr4]

z + [Ks4]
z                                                                                 (A.4) 

 

[Kc4]
z = kpz [

1 0 0
0 1 0
0 0 0

]                                                                                                           (A.5) 

 

 

[Kr1]
z = krz [

sin2φrz −cos φr
z
sin φr

z
−sin φr

z

−cos φr
z
sin φr

z
cos2φrz cos φr

z

−sin φr
z

cos φr
z

1
]                                                  (A.6) 

 

[Kr2]
z = krz [

−sin φr
z
sinαr sin φr

z
cosαr sin φr

z

cosφrzsinαr −cosφrzcosαr −cosφrz
sinαr −cosαr −1

]                                                       (A.7) 

 

[Kr3]
z = krz [

−sin φr
z
sinαr cosφrzsinαr sinαr

sin φr
z
cosαr −cosφrzcosαr −cosαr

sin φr
z

−cosφrz −1
]                                                           (A.8) 

 



49 
 

[Kr4]
z = krz [

sin2αr −cosαrsinαr −sinαr

−cosαrsinαr cos2αr cosαr

−sinαr cosαr 1
]                                                                 (A.9) 

 

[Ks1]
z = ksz [

sin2φsz −cos φs
z
sin φs

z
−sin φs

z

−cos φs
z
sin φs

z
cos2φsz cos φs

z

−sin φs
z

cos φs
z

1
]                                                (A.10) 

 

[Ks2]
z = ksz [

sin φs
z
sinαs sin φs

z
cosαs −sin φs

z

−cosφszsinαs −cosφszcosαs cosφsz
−sinαs −cosαs 1

]                                                      (A.11) 

 

[Ks3]
z = ksz [

sin φs
z
sinαs −cosφszsinαs −sinαs

sin φs
z
cosαs −cosφszcosαs −cosαs

−sin φs
z

cosφsz 1
]                                                           (A.12) 

 

[Ks4]
z = ksz [

sin2αs cosαssinαs −sinαs

cosαssinαs cos2αs −cosαs

−sinαs −cosαs 1
]                                                                    (A.13) 
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