

A

DISSERTATION REPORT

on

Design and Implementation of AMBA-AHB

based memory controller

by

RAKESH GEHALOT

2015PEV5103

Under the supervision of

Mr. RAKESH BAIRATHI

Associate professor, ECE Department

MNIT, Jaipur

Submitted in partial fulfillment of requirement of degree of

MASTER OF TECHNOLOGY

to the

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

JULY – 2017

© Malaviya National Institute of Technology Jaipur, 2017. All rights reserved.

Department of Electronics and Communication Engineering

Malaviya National Institute of Technology, Jaipur

Certificate

This is to certify that this Dissertation report entitled “Implementation and design of

AMBA-AHB based memory controller” by Rakesh Gehalot (2015PEV5103), is the

work completed under my supervision and guidance, hence approved for submission in

partial fulfillment for the award of degree of Master Of Technology in VLSI Design to

the Department of Electronics and Communication Engineering, Malaviya National

Institute of Technology, Jaipur in the academic session 2016-2017 for full time post

graduation program of 2016-2017. The contents of this dissertation work, in full or in

parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

 Mr. RAKESH BAIRATHI

 Associate professor, ECE Department

 MNIT, Jaipur

i

DECLARATION

We hereby declare that the Dissertation work entitled Implementation and design of

AMBA-AHB based memory controller, is an authentic record of work carried out as

requirements of Dissertation for the award of degree of M.Tech in VLSI Design from

Malaviya National Institute of technology Jaipur, under the guidance of Mr. Rakesh

Bairathi, during July, 2016 to July, 2017.

 (Signature of Student)

RAKESH GEHLOT
 (2015PEV5103)

ii

Acknowledgement

I take this opportunity to present my vote of thanks to all those guidepost who really

acted as lightening pillars to enlighten my way throughout this project that has led to

successful and satisfactory completion of this study. I am really grateful to my HOD for

providing me with an opportunity to undertake this project in this Institute and

providing all facilities. I am highly thankful to my mentor Mr. Rakesh Bairathi for his

active support, valuable time and advice, whole-hearted guidance, sincere cooperation

and pains-taking involvement during the study and in completing the assignment of

preparing the said project within the time stipulated. Lastly, I am thankful to all those,

particularly the various friends , who have been instrumental in creating proper, healthy

and conductive environment and including new and fresh innovative ideas for me

during the project, their help, it would have been extremely difficult for me to prepare

the project in a time bound framework.

RAKESH GEHALOT

(2015PEV5103)

iii

Abstract

Memory controller is a part of digital system. Memory controller works as a bridge

between microprocessor and memory. It is used to control the data flow (read and

write) between microprocessor as master and memory as slave. Traditionally memory

controllers were placed outside the microprocessor. External memory controller will

introduce more latency than on chip memory controller. Nowadays memory controller

is on same die as microprocessor which makes a system on chip and it reduce the

latency. A design of AMBA-AHB based memory controller is presented here. The

Memory controller is based on ARM Advance Bus Protocol and the concept of

interleaving is used to improve the throughput of memory controller. The result of

interleaving is compared with FIFO buffer for same purpose. The concept of

interleaving is to use memory access time or latency to access the next address from

another bank of memory. The controller given here significantly improves memory

access time also. The memory controller is designed and synthesized using Xilinx

design tool ISE. The Verilog language is used for design purpose. Detail synthesis

report is also generated by Xilinx tool which includes the maximum frequency and

delay path.

iv

Content

Declaration…………………………………………………………………………i

Acknowledgment…………………………………………………………………..ii

Abstract…………………………………………………………………………….iii

List of figures……………………………………………………………………...viii

List of tables………………………………………………………………………..x

Glossary……………………………………………………………………………xi

Chapter – 1 Introduction………………………………………………………….......1

1.1 Introduction……………………………………………………...………….1

1.2 Memory hierarchy…………………………………………………………...1

1.2.1 Primary memory………………………………………………...2

1.2.1.1 Cache memory……………………………………………….2

1.2.1.2 Main memory………………………………………………...2

1.2.1.2.1 SRAM………………………………………………3

1.2.1.2.2 DRAM……………………………………………...4

 1.2.1.3 Read only memory…………………………………….……..5

1.3 Memory transfer cycle………………………………………..………………..6

1.3.1 Memory read cycle……………………………..……………...7

v

1.3.2 Memory write cycle……………………………………………7

1.4 Main Memory and its influence on system performance………………..……8

1.5 Memory interfacing methods…………………………………………………9

1.6 Memory access method………………………………………………………9

1.7 Memory controller…………………………………………………………..10

1.7.1 Double data rate memory controller…….…………………...11

1.7.2 Dual channel memory controller………….………………….11

1.7.3 Fully buffered memory controller………….…………………12

1.7.4 Flash memory controller…………………….…..……………12

1.7.5 Direct memory access controller………….….……………….12

1.7.6 Interleaved memory.………………………..…………………13

1.8 Bus protocols…………………………………………..…………………….14

1.8.1 ARM bus protocol…………………….………………………14

1.8.1.1 APB………………………………...……………………..16

1.8.1.2 AHB………………………………………………………..16

1.8.1.3 AXI…………………………………………………….......16

1.8.1.4 ACE………………………………………………………..17

1.8.1.5 CHI………………………………………………………...17

1.9 Terminology…………………………………………………………………..17

vi

1.10 Outline…………………………………………………………………18

Chapter – 2 Literature Review……………………………………….……………...19

2.1 Objective……………………………………………….………………......19

2.2 Literature review of memory Controller….………….………………….…19

Chapter- 3 AMBA AHB protocol………..…………………….…………………….22

 3.1 Introduction…………………..……………………………………………22

 3.2 AHB Signals………………………………………………………………..23

 3.3 A typical AMBA AHB based microcontroller……………………………..28

 3.4 Basic transfer……………………………………………………………….30

 3.5 Transfer with Wait state…………………………………………………….31

 3.6 Control signals……………………………………………………………...32

 3.6.1 Transfer type……………………………………………………...33

 3.6.2 Transfer size………………………………………………….…...34

 3.6.3 Burst signals.……………………………………………….….….34

 3.6.4 Response type………………………………………………….…35

Chapter- 4 Design and implementation of memory controller……………………..36

 4.1 Introduction……………………………………………………………...…36

 4.2 Concept of interleaving……………………………………………………..37

 4.3 Finite state machine of memory controller………………………………….42

vii

Chapter – 5 Simulation and synthesis report………………………………………..48

 5.1 Simulation and wave forms………………………………………………...48

 5.2 Synthesis report……………………………………………………………..55

 5.2.1 Detailed Synthesis Report of 2 – Way Memory controller……….56

 5.2.2 Detailed Synthesis Report of 4 – Way Memory controller……….58

5.3 Gate level schematics………………………………………………………….62

Chapter – 6 Conclusion and future work……………………………………………63

 6.1 Conclusion …………………………………………………………………63

 6.2 Future work…………………………………………………………………64

 Bibliography ………………………………………………………………………….65

viii

List of Figures

1.1 Memory hierarchy……………………………………………………………….1

1.2 SRAM with six transistors…………………………………………..…………..4

1.3 Memory read cycle……………………………………………...……………….7

1.4 Memory write cycle………………………………………….…………………..7

3.1 AMBA AHB based system……………………………………………………..28

3.2 Multiplexed Signals in AMBA AHB system…………………………………...29

3.3 Basic transfer in AHB………………………...………………………………...30

3.4 Transfer with wait state………………………………………………………....31

4.1 Memory bank distribution in flat memory………………………………………39

4.2 Memory bank distribution in interleaved memory……………………………...40

4.3 High order address decoding in flat memory distribution………………………41

4.4 Lower order address decoding in interleaved memory distribution....…………41

4.5 Finite state machine for memory controller…………………………………….43

4.6 Block diagram of AHB based memory controller………………………………45

4.7 Memory Read cycle……………………………………………………………..46

4.8 Memory Write cycle…………………………………………………………….47

5.1 Write transaction wave forms – 1 (2-way MC)..…………………………….….49

5.2 Write transaction wave forms – 2 (2-way MC)..…………………………….….50

5.3 Write transaction wave forms – 3 (2-way MC)..…………………………….….51

5.4 Write transaction wave forms – 4 (4-way MC)..…………………………….….52

ix

5.5 Read transaction wave forms – 1 (2-way MC)..………………………………..53

5.6 Read transaction wave forms – 2 (4-way MC)……..…………………………..54

5.7 Gate level schematics……………………………………………………………62

x

List of tables

3.1 AHB signals……………………………………………………………………..25

3.2 AHB signals for multi master…………………………………………………...27

3.3 Transfer signals in AHB………………………………………………………...33

3.4 Transfer size in AHB……………………………………………………………34

3.5 Burst type in AHB.……………..……………………………………………….34

3.6 Response signals in AHB……….………………………………………………35

4.1 Memory address distribution in non interleaved memory………………………38

4.2 Memory address distribution in interleaved memory…………………………...39

5.1 Project Status………………………………………………………….…………55

5.2 Synthesis summary of 2-way MC (Device: 3s50pq208-5)………………………55

5.3 Synthesis summary of 2-way MC (Device: xc3s1000-4-fg320)....….…………..55

5.4 Synthesis summary of 4-way MC (Device: xc3s1000-4-fg320)………………...56

6.1 Comparison between results of different memory controller..…………………..63

xi

Glossary

AMBA: Advanced Microcontroller Bus Architecture is a popular bus protocol using

 in system on chip and design by ARM.

AHB: Advanced High-performance Bus Protocol is developed by ARM. It is used in

 high bandwidth devices.

APB: Advanced Peripheral Bus protocol is developed by ARM for low bandwidth

 devices in SoC.

AXI: Advanced extensible Interface protocol.

ACE: AXI Coherency Extensions.

CHI: Coherent Hub Interface 

CPU: Central processing Unit

DMA: Direct memory access

RTL: Resister Transfer Level, Hardware synthesized code used in hardware

description language.

SoC: System on chip, A large number of functional blocks on a single die.

VLSI: Very Large Scale Integration, A large number of transistor combined on a

 single die.

CRC: cyclic redundancy check is an error-detecting code generally used in storage

 devices and digital networks to detect changes in stored data.

xii

SSD: solid state drive, It is a secondary storage device.

HDD: Hard disk drive, It is a secondary storage device.

RAM: Random access memory.

ROM: Read only memory.

DDR: Double data rate, It is a feature of RAM to sample data at both positive and

 negative edge of system clock.

 MCU: Memory Control Unit, Memory control unit is used for efficient use of

 memory.

NOC: Network on chip.

 IP: Intellectual property

1

Chapter – 1

INTRODUCTION

1.1 Introduction

Memory is a physical device capable of storing data in the form of digit 1 and 0. This

data can be used for future actions.

Memory is used to store data or information for immediate use or for a long term use of

data. There are two broad categories of memory in computing first is the primary

memory and second is the secondary memory.

1.2 Memory hierarchy
In computer architecture design concept of discussing issues related to performance is

known as memory hierarchy. The memory hierarchy is divided into different levels

based on response time. Since complexity, capacity and response time are related, these

levels of memory hierarchy can also be distinguished by their controlling technology

and performance. In figure 1.1 memory hierarchy is shown.

 Figure 1.1: Memory hierarchy
[21]

2

1.2.1 Primary Memory

The computer uses the memory to store the program which will be executed in near

future. These programs are stored in primary memory by a computer to use frequently

in near future. Primary memory also called main memory or physical memory. In

computer speed of processor is higher than the memory device. To access the data from

memory will lead to slow down the overall throughput. The speed of primary memory

is higher than the speed of secondary memory. Computer continuous read and write

data from and to primary memory.

Main memory is connected to processor directly or via cache memory or registers. It

has two buses one for data transfer (DATA BUS) and another for an address (ADDR

BUS). The first CPU sends the address, the location where it wants to write or read

data. Then CPU sends data as information if it is a write cycle or if it is a read cycle

then it will retrieve the data from memory. In addition, we can use memory

management unit for translating virtual address to physical address which is used as

virtual memory.

1.2.1.1 Cache Memory

Cache memory is most tightly connected memory with computer processor. It is the

fastest memory but also more costly than any other category of memory. This memory

is used in fewer amounts inside the CPU because it is expansive. Most frequently used

information is copied from main to cache for increasing the performance. There can be

multilevel cache which has different locality with the processor.

1.2.2.2 Main Memory

Main memory is the memory used in the computer actively for storing the instructions

3

of multiple programs. When CPU needs data to perform the action it will copy that data

from secondary memory to main memory so that it can access it fast. A copy of that

data will be there in secondary memory also.

We cannot use secondary memory as main memory because access time of secondary

memory is more as compare to main memory. As we know main memory is volatile

memory if power is down then data stored in main memory will not retain. Main

memory is used for temporary data storage by the central processing unit. After CPU

finishes executing with that data it will clear that part of data from main memory and

load another required data for execution. We cannot copy all required data of all

application which are currently in action because of the limited size of RAM. So to use

the RAM in an efficient manner developer make their applications or program to use

fewer amounts of memory by copying only needed data from secondary storage to main

memory. In this method, data are swapped in between RAM and secondary storage

according to requirement. This technique called swapping. Deferent algorithms are

used to make room for important data and swap in main memory. Main memory also

called as RAM which stands for Random access memory or Physical memory as the

term used in the concept of virtual memory.

Types of main memory

There are two types of random access memory in the modern era of technology.

1.2.2.1.1 SRAM (static random access memory)

SRAM uses six transistors to store one bit of data. There is no need for any refresh

circuitry to retain data in a cell because it stores the data as long as power is switched

on. There is no leakage charge in SRAM. SRAM is more expansive than DRAM and it

takes more area per bit than DRAM but it is faster than DRAM. In computers SRAM

used as cache memory.

4

Static random access memory uses 6 transistors per cell. But there are 4T, 8T SRAM

also available. The SRAM with six transistors is shown in figure 1.2. There are four

transistors crossed coupled making inverters. Other two transistors are used for

read/write operation. There are two stable states 0 and 1. In transistors, there is a layer

of poly-silicon used for high resistance pull-up resistors.

Figure 1.2: SRAM with six transistors.
[12]

1.2.2.2.2 DRAM (Dynamic random access memory)

DRAM is a volatile memory used in computer and other devices. This memory uses

one transistor and one capacitor to store one bit of data. Because of the only one

transistor is used in DRAM. It will take less amount of area per cell as compare to

SRAM. DRAM is less expensive and higher density of bit cell than SRAM. There is

leakage of charge in capacitors of RAM so refresh circuitry is used to retain data in

memory. There is different state for recharging the cells in RAM.

DRAM consumes a large amount of power because it needs to refresh every cell in

5

each clock cycle. The sense amplifier is used to detect the level of charge stored in a

capacitor.

1.2.1.3 Read only memory

Read only memory is a non-volatile memory use to store data for a long time in the

computer or other electronic devices. Data can be stored in ROM multiple times but at

slow speed. This memory is a hard wired memory such as memory made of diode or

mask memory. Generally, data are written one time only inside the ROM. This is a

disadvantage in many application because there can be a need for an update of codes or

BIOS for security issues. But nowadays ROM can be rewritten many times.

In modern technology, there are ROMs in which data can be modified even after

writing multiple times. These ROMs called programmable read only memories. This

programmable ROM can be programmed multiple times but at slow speed.

ROMs are used for storing initial startup programs like BOOT sequence or factory

settings in electronic devices. There are many error check algorithms are used to detect

any failure in read only memory. For example: checksum.

ROM can be manufactured at low cost than the cost of a RAM. There is no write

operation so ROM is simpler than RAM and has low cost than RAM. In modern

computer, Programmable ROM is used so that BIOS can be upgraded if there is a need.

But for other electronics device like the keyboard, mouse the one time programmable

ROM is used.

There are many types of read only memories on the basis of number of rewriting or

technology used in fabrication.

1. Mask read only memory:

MROM is a one-time programmable memory. The Information is stored at the time

6

of manufacturing of memory. To write a bit in MROM, the mask is diffused. One

advantage of MROM is its cost. Per bit cost of this memory is significantly lesser

than other semiconductor memories. But if there is any error while writing the data

then memory is a waste. It cannot be used again.
[6]

2. Programmable read only memory:

This memory is one time programmable memory (OTP). Special PROM

programmer is used to write data in this memory. This programmer will destroy the

fuse inside the memory to write a bit.

3. Erasable programmable read only memory

This memory can be programmed multiple times. To erase the written data inside

memory UV light is used. Then rewriting process begins with high voltage to write

inside the memory.

4. Electrical erasable programmable read only memory

This memory is similar to EPROM. But it uses different way to erase the data from

memory. A block of data can be deleted from memory. There is no need of

removing the memory from CPU. High voltage is used to delete a bit from memory.

The process of erasing memory is very slow.

1.3 Memory transfer cycle
Memory transfer cycle is the transfer of addresses, control signals and data in single

clock cycle of system. CPU reads the instructions from memory by sending address and

control signals to memory. Memory will respond to CPU by providing the required data

after the access time of that particular memory. Time from sending address and control

signal to retrieving data from memory is called memory transfer cycle.

7

1.3.1 Memory Read cycle

In memory read cycle the CPU will first send the address of required data on address

bus. After that it will send the control signals like chip select, write enable, output

enable. Memory will drive the required data on data bus and assert the data strobe

signal to indicate that data is valid on data bus. Figure 1.3 shows a memory read cycle.

Figure 1.3: Memory read cycle

[13]

1.3.2 Memory write cycle

In memory write cycle the CPU writes the data to a particular location in memory. CPU

first sends the address on address bus. After that it will send the control signals like

write enable and output enable. Data are driven on data bus. Memory will send data

acknowledgement signal for verification of successful data write in the memory. In

figure 1.4 showing a data write cycle.

Figure 1.4: Memory write cycle

[13]

8

1.4 Main Memory and its influence on system performance

It has been seen that by increasing of a computer memory will increase the

performance. But if memory is lesser to accommodate all required information at a time

then computer will use the virtual memory. The virtual memory is a space reserved in

secondary memory to simulate additional RAM in the system. This concept of using

secondary memory as RAM is called swapping. Method of swapping makes the system

slower. The average time to access the RAM is 200ns and the average time to access

secondary memory is 12000000ns. This is equivalent to a normal tasks of 3 ½ minute

which will now take 4 ½ months to complete.
[11]

Technically RAM does not affect the performance of computer. RAM does not have

the power to increase system performance. The computer uses the RAM to store the

instruction of a program. Processor will search the instruction to be executed, in main

memory. If main memory is absence in the system then processor has to search the

instruction in secondary memory which will take more time to access the instruction. A

large amount of RAM means more programs can fit at time in memory. All present

computer system have multitasking concept where multiple programs can run at a time.

For example we can run notepad and browser at same time.

There are many situations when a program is larger than total available RAM at that

time system will store the extra amount of data into a swap file in hard disk. The

required data or instruction to be executed will be loaded into main memory from swap

area. This will introduce more latency in the system. The transfer rate of RAM is

roughly 800 MB/s as compared to hard disk which has transfer rate 30-100 MB/s. So

every time computer exchanges the data between swap and RAM it takes time. This

will affect the performance of the system.
[11]

9

1.5 Memory interfacing method
Interfacing the memory with the processor is a way of communicating between two

devices. Interfacing is of two types.

1. Memory mapped interfacing:

In memory mapped interfacing the address bus is shared with memory and other

peripheral devices. The address bus is used to decode chip select. Extra hardware is

required for decoding purpose. Arithmetic and logic operations can be directly

performed with memory and I/O devices.

2. I/O mapped interfacing:

In this interfacing, I/O devices are connected to a memory device. Generally, 8 bit of

address bus is used for interfacing. The processor uses same control signals and

instructions to access I/O as those of memory, here RD and WR signals are activated

indicating memory bus cycle. For address bus of width 8 bit, 256 of input or output

devices can be connected.

1.6 Memory access method

There are two type of memory access method

1. Synchronous memory access

 In synchronous memory access, method reference clock is used to access the memory.

The processor can access data from memory at any time with the reference clock. There

is no need of waiting for arbiter time. Data will be accessed with raising edge or falling

edge of the clock.

2. Asynchronous memory access

In asynchronous memory access data is accessed without reference clock. There can be

10

a random wait time of data arrival from memory. This random time is the latency of the

memory. If the CPU has transferred data while a window is open, and if a subsequent

clock cycle occurs while that window remains open, the CPU cannot transfer additional

data until the next window opens, thereby wasting that clock cycle. Asynchronous

operation forces the CPU to conform to a fixed schedule for transferring data, rather

than doing so whenever it wishes.

1.7 Memory controller

The memory controller is digital circuit used to manage the read and write operation

with system memory. Memory controller can be integrated on same die with processor

or it can be a separate chip. Memory controller also called memory control unit (MCU).

In past, memory controllers are designed separately from processor and it has off chip

latency to access the data from RAM. Integrated memory controllers are manufactured

with processor to reduce the latency and increase the system performance. The problem

is that memory controller will not be portable. Because of that we need to redesign the

memory controller for new type of RAM.

The concept of integrating memory controller with the same die of microprocessor is

not a new concept. In 1990s there are some microprocessors like Alpha 21066 had the

memory controller integrated with same die of microprocessor. This concept is used to

reduce cost of system, not to reduce the latency of the system. The external memory

controller will increase the cost of system.
[14]

Memory controllers are designed to control the read, write, refreshing of RAM.

Without refresh circuit the data stored in RAM will lose with time (time to refresh is 63

millisecond according to standard). Without memory controller CPU will spends all its

11

time in refreshing and deciding when to read or write the data to a RAM. So memory

controller allows CPU to know when it can write or read a data from RAM and it also

refreshes the memory each time at negative clock edge.

Reading and writing operation are done by selecting rows and columns of RAM. Data

are access on the data bus and address is provided on address bus. Data bus width can

be 8-bit, 16-bit, 32-bit depends on type of RAM. Address width is also 32-bit or 16-bit

depends on RAM type and processor. Number of bits in address can tell how much

amount of data can be accessed. For example if the address bus is 32 bit then 4 GB of

address can be accessed by this system. Sometime there is second type of address

translation used by memory controller as first translation is done by memory

management unit.

There can be multiple master wants to access the RAM for data. A memory controller

allows multiple masters to get it’s turn to access the data from RAM where hand shake

and bus grant signal are used to provide the access. A master can be CPU, Camera, and

LCD etc.

Different variant of memory controller

1.7.1 Double data rate memory controller

Double data rate MC is used in DDR RAM. In DDR RAM data are sampled at both

raising edge and falling edge of each clock cycle. DDR ram controller is more complex

than simple ram controller because of sampling the data at both negative and positive

edge. But have advantage of transferring data at double speed than simple ram

controller.

1.7.2 Dual channel memory controller

Dual channel memory controller is used when multiple masters are accessing the same

12

RAM simultaneously. It needs multiple data transfer channels for data transfer. More

channels can be added to increase the bandwidth of system. The length of every

channel should be equal so access time for each channel will be equal. So it’s more

difficult to increase the number of channel because it will introduce the line capacitance

and wire count.

1.7.3 Fully buffered memory controller

Fully buffered memory controllers are used, where buffer is placed at each memory

module unlike simple memory controller. Instant of parallel link, in buffered memory

controller serial link is used for data transfer, this will decrease the number of wire used

for buses. This will help to accommodate more memory controller on a single die

because less area is required for this type of memory controller. But this will also

increase latency. Memory controller will convert the serial link to parallel link at master

side.

1.7.4 Flash memory controller

Nowadays flash memory is for large data transfer in many devices like USB pen drive,

camera, mobile, memory card etc. Flash memory controller is used in flash memories to

transfer the large amount of data. Flash memory is generally slower than RAM.

1.7.5 Direct memory access controller

Direct memory access is the concept of accessing the RAM (read/write operations)

without interpreting the CPU for each read and write. Without DMA to access the data

from RAM, CPU will spend its all-time in reading and writing the data and cannot get

the bandwidth for other work. So DMA will help CPU to focus on other work while it

will handle the data transfer with RAM without interrupting again and again. CPU will

first initiate the data transfer sequence and then gives the command to DMA to transfer

the whole data. DMA will start transferring the data to ram to other place. After DMA

13

finishes it will interrupt the CPU to tell the data transfer is finished. This will give more

bandwidth to CPU for other important tasks.

Direct memory access has many applications in network cards, graphic cards, disk

drive, sound cards and cameras. DMA also used in intra chip data transfer. Computer

which has DMA channel can transfer data at minimum overheads with processor then

computer without DMA channel. Using DMA data can be transferred from memory to

memory without interrupting the processor.

In typical on chip system or embedded systems, the bus architecture is a complex

system used to connect all functional blocks like AMBA AHB protocol. There are two

types of components in AMBA AHB master and slave. A typical slave can be memory

chip or other peripherals. A master can be a processor or other controller like DMA

controller. A DMA will use interface for transaction between memory and system

without disturbing CPU.

A system which needs to transfer large amount of data like network devices can be

considered as master and salve. AHB do not support tri state buses.

1.7.6 Interleaved memory controller

In interleaved memory controller, memory is organized in multiple memory banks and

each bank is accessed in pipelined way. It will improve the overall throughput of data

transfer. Memory controller can n-ways interleaved if memory is divided in n number

of banks.

If there is n number of memory banks are present then memory location A will be at

memory bank A/n. In memory interleaving each consecutive address is at different

memory bank. For example, if we have four memory bank then memory address 00

will be at bank 0, memory address 01 will be at bank 1, memory address 10 is at bank 2

and memory address 11 is at memory bank 3.

14

1.8 Bus Protocols

Bus protocols are set of rules used to transfer the data between multiple devices in an

efficient way. Every bus protocol has some control signals, data bus, address bus.

Generally bus protocol need to perform read and write operations between different

devices.

1.8.1 ARM bus protocol

The ARM Advanced Microcontroller Bus Architecture (AMBA) is an open Source bus

protocol used in system on chip for connection and management of functional block.

ARM AMBA is designed for multiple masters and slave configuration for efficient

communication. This bus protocol used in microcontroller for accessing the memory

and many other peripherals. Nowadays AMBA is very popular bus protocol used on

different range of SOC and Application specific ICs for example smart phones,

cameras, embedded systems etc.

ARM AMBA was first developed by ARM in 1996. There are many AMBA protocols

used in system on chip. The first AMBA bus protocol is Advanced Peripheral Bus

(APB) and Advanced system bus (ASB). AMBA version 2 is introduced in 1999 which

includes AMBA High performance Bus (AHB). The AMBA version 3 protocol is

introduced in 2003 which is a third generation of AMBA protocol. This generation also

includes Advance Extensible Interface Protocol (AXI) and Advance Trace Bus (ATB)

for debug and trace solutions. The AMBA and AXI version 4 is introduced in 2011.
[16]

In system on chip there are number of components are designed as a block to increase

the portability and reuse of these functional blocks. Now to connect those large number

of blocks needs a good algorithm or protocol for communication in between them.

AMBA bus protocol gives solution for interfacing these functional blocks.

15

Features of AMBA protocol:

• Facilitate right-first-time development of embedded microcontroller products with

one or more CPUs, GPUs or signal processors.

• Be technology independent, to allow reuse of IP cores, peripheral and system macro

cells across diverse IC processes.

• Encourage modular system design to improve processor independence, and the

development of reusable peripheral and system IP libraries.

• Minimize silicon infrastructure while supporting high performance and low power

on-chip communication.
[17]

In Advanced Microcontroller Bus Architecture, there are multiple microcontrollers

masters along with multiple salve devices like RAM, ROM, external memory, DSP,

other peripherals like UART, USB, I2C, PCI are connected according to AMBA

specification.

Main motive of ARM bus protocol is to develop an efficient and standard way for

interconnecting the functional block with reusability capability in different design.

ARM AHB (Advanced High performance) or ASB (Advanced System Bus) protocol

are used for higher speed functional block like processor and an APB (Advanced

Peripheral Bus) protocol is used for low speed device like peripherals for example slow

RAM, UART etc.

AMBA bus protocols are introduced first time in 1996 by ARM. The evolution of

AMBA protocol till now the latest version is AMBA 5 protocol.
[17]

Following are the most popular AMBA protocols used nowadays and specification of

these protocols can be downloaded from ARM official website for free.

16

1.8.1.1 APB (Advanced Peripheral Bus)

 The Advanced Peripheral Bus (APB) is used to connect slow peripherals like RAM,

UART etc. In this protocol pipeline is not used. This protocol used as a bridge between

the fast processor and slow peripheral devices. Latest version of Advanced Peripheral

Bus is APB 2.0 and available at ARM official website.

1.8.1.2 AHB (Advanced High-performance Bus):

The Advanced High-performance Bus (AHB) is used with higher bandwidth devices

like processor. For example it can be a fast memory or DMA. AHB have many features

for example burst mode, protection, master lock, user privilege mode, split mode multi

master support etc.

There is also simpler AHB version AHB-lite. This protocol can be found at ARM

official website. The latest version is AHB 5.0.
[17]

1.8.1.3 AXI (Advanced Extensible interface)

The Advanced Extensible interface (AXI) is most advance protocol which is more

complex than AHB protocol. It is used for low latency and high bandwidth

interconnects. AXI protocol doesn’t share the bus like AHB, there is point to point

interconnection between multiple masters in AXI. AXI also have many features like

burst mode, separate read write, split mode etc.

a. AXI-lite protocol is a simplified version of AXI protocol and it will not support burst

transfer of data.

b. AXI-stream protocol is another type of AXI protocol that supports only streaming of

data from master to slave. In this protocol there is no separate read and write unlike a

AXI-lite or full AXI. Multiple data streams can be transferred across mater and slave.

And we can use interleaving method also for that.

The specification of full AXI and Lite AXI can be downloaded from ARM official

website for free.

17

For AXI stream there is another website to download specification given below.
[17]

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0051a/index.html

1.8.1.4 ACE (AXI Coherence extension)

AXI Coherence extension protocol is an extension of AXI4 protocol. It is used in

multicores which have cache also in same chip. In this protocol as it is extension of

AXI the read and write of data channels by introducing separate snoop address, snoop

response and snoop data channels.
[17]

Specification of this protocol can also be found at ARM official website for free.

1.8.1.5 CHI (Coherent Hub Interface)

The ACE protocol is an extension to AXI to support coherent interconnects.

CHI protocol is introduced in AMBA version 5 as a complete redesign of AXI

Coherence extension protocol for large number of coherent clusters on system on chip

like server SoC designs. CHI uses packets as a message and implements

protocol/physical/link layers based communication. This protocol is currently not freely

available.
[17]

1.9 Terminology

Defining some important terms.

1.9.1 Interleaving

Interleaving is way of increasing the system bandwidth by accessing the memory banks

simultaneously. This will significantly reduce the latency of memory.

1.9.2 Burst

Burst is the sequence of similar or consecutive data transfer in a single go without any

interrupt.

18

1.9.3 Protocol

Protocol is a set of rule defined for a design. This will increase the portability and

reusability of that design.

1.10 Outline

Chapter -2 is literature review. This chapter is study of AMBA AHB based memory

controller in which buffer (FIFO) used. In chapter-3 AMBA AHB protocol is

discussed. In chapter-4 the memory controller is designed and implemented. Chpater-5

is simulation and results. Chapter-6 is conclusion and future work.

19

Chapter – 2

Literature Review

2.1 Objective

The objective for reviewing the literature is to find a method to improve the memory

controller. Here it is tried to improve the performance of memory controller in term of

area and latency and make the design more portable and reusable with different type of

master and salve in vast area of system on chip. Constrains are area, speed/latency and

power. All three constrains are in trade off situation. AHB protocol is most popular bus

protocol nowadays used in system on chip. This protocol will make the design portable

and reusable at different functional blocks. This will also reduce time to market because

of already available verification IPs for the same.

2.2. Literature Review of memory controller

Ramagundam, Shashisekhar et al. "Design And Implementation Of High-

Performance Master/Slave Memory Controller With Microcontroller Bus

Architecture". 2014 IEEE International Instrumentation and Measurement

Technology Conference (I2MTC) Proceedings (2014).

The author of this paper says that memory controller is an intermediate device for a

processor as a slave. It will help processor to communicate with slow memory. Memory

controller will take commands from master and decode it in readable format which can

be understood by slow memory. Nowadays these all systems are not separate chips or

boards but these all are integrated on a single die which is called system on chip. In this

system there can be many processor, memories, input output devices, communication

20

RF devices etc.

Shobha R Hadimani ,Panchami , (2015) " Verilog Based Design Of High

Performance Data Access Amba Memory Controller " , International Journal of

Management and Applied Science (IJMAS).

In this paper the author designed a memory controller based on FIFO. The memory

controller is consisting of SRAM, ROM and CACHE. As microprocessor performance

has improved in recent years, it has become important to provide a high-bandwidth,

low-latency memory subsystem to achieve the full performance of these processors.

The memory controller is part of system and it controls the memory data transfer. The

aim is develop an architecture, design, and test AMBA AHB compliant Memory

Controller for ARM based EMBEDDED platforms. Memory access time is reduced to

a great extent by using AHB protocol thereby increasing the overall performance of the

memory controller.

Rishabh Singh Kurmi, Shruti Bhargava and Ajay Somkuwar. Article:Design of

AHB protocol block for Advanced Microcontrollers. International Journal of

Computer Applications 32(8):23-29, October 2011.

The design of an AMBA advanced high performance bus (AHB) protocol IP block is

presented in this paper. The AHB (Advanced High-performance Bus) is a high

performance bus in AMBA (Advanced Microcontroller Bus Architecture) family. This

AHB can be used in high clock frequency system modules. The AHB acts as the high

performance system backbone bus. AHB supports the efficient connection of

processors, on-chip memories and off-chip external memory interfaces with low-power

peripheral macro cell functions. In this work, the design of the Advanced High

Performance Bus Protocol is developed which has the basic blocks such as Master and

Slave.

21

Nowadays systems are made in different functional blocks and they are integrated on a

board. These blocks are called intellectual property (IP). These IPs need to connect

using bus protocol which should not affect the functionality of IP. Now with standing

memory device is slower than processor which will degrade the performance of

processor. Day by day speed of processor is getting increase. But the improvement in

memory is not matching with the performance of processor. Memory controller is

responsible for communication between memory and processor. The challenge is

interfacing memory controller with RAM in an efficient manner with less foot print in

SoC and minimum latency in system. There is need of an efficient way for

communication between memory and processor. The solution for this is to make an

efficient memory controller which can also be used with wide range IPs. This will lead

to make an AHB based memory controller. The FIFO based memory controller uses the

buffer to store data and commands in FIFO and wait for raising edge of memory clock

cycle to complete a transaction. This idle or wait is cause for system latency.
[4]

There are many approaches are used to design memory controller for example Buffered

memory controller and memory controller with interleaving concept.

22

Chapter – 3

AMBA AHB Protocol

3.1 Introduction

The Advanced microcontroller bus architecture is an open source bus protocol used to

interconnect and manage multiple functional blocks in system on chip. It is most

popular protocol used in system on chip and application specific designs nowadays. In

system on chip there are large number of functional blocks like processor, memories

and peripherals. These all functional blocks should meet required constrain like area

and speed. Solution is to use a good connectivity protocol like ARM AHB. AMBA

AHB protocol is designed for high bandwidth synthesizable system.
[5]

AMBA is introduced in 1996 by ARM. The first AMBA bus was advanced system bus

and advance peripheral bus. After that in 1999 the second version came, AMBA

version 2 which have high performance bus which is a single clock edge protocol. After

this in 2003 ARM developed AMBA version 3 which have AXI and ATB bus protocol

which have even more bandwidth than AHB. In 2010 AMBA version 4 came. In 2013

AMBA version 5 came. These protocols are nowadays used for wide range of 32 bit

system. We can find all these protocol available at ARM official website for free.
[5]

23

3.2 AHB signals
[5]

In AMBA, all signals have naming convention to make it more readable and distinguish

between other AMBA protocols. This will also help while reading and analyzing the

wave form of simulation results for input and output. In naming convention each signal

have a letter for that protocol. For example

AHB: H

ASB: B

APB: P

A lower case letter n in the signal name indicates that the signal is active low signal

otherwise signal name is always in uppercase letters.

Test signals have a prefix T regardless of the bus type.

H prefix indicates that it is AHB signal. For example: HBURST, HSIZE, HTRANS etc.

These signals are active high signals. HRESETn is active low signal because it includes

the lower case n letter in signal name.

The following signals are AHB signals shown in table 3.1.

24

25

Table 3.1: AHB signals

[5]

26

AHB also supports multiple bus masters for that extra signals are require for

communication between these masters. There are many arbitration signals which are

point to point. Suffix x indicates that this signal is related to master-x.

There will be a number of HBUSREQx signals in a system, for example HBUSREm1,

HBUSREQm2 and HBUSREQm3 related to master 1, master 2, master 3 respectively.

These signals are shown in table 3.2.

27

Table 3.2: AHB signals for multi master

[5]

AHB is a new generation bus protocol used to work with high speed processor as well

as with slow memory also for communication. For slow device we use AMBA APB

protocol over the AMBA AHB protocol. This will work as bridge between higher

bandwidth devices and low bandwidth devices. There are lots of features of AMBA

AHB which support for higher frequency system.

Features AHB supports

- Burst transfers

- Split transactions

- Single cycle bus master handover

- Single clock edge operation

- Non-tristate implementation

- Wider data bus configurations (64/128 bits).

28

3.3 A typical AMBA AHB-based microcontroller
[5]

A typical AMBA AHB based microcontroller system is shown in figure. Which consist

of high bandwidth memory interface, high frequency ARM processor, on chip RAM,

DMA bus master, a bridge between slow memory and high speed blocks, UART,

Keypad, Timer, external RAM and ROM. The AMBA based system is shown in figure

3.1.

.

Figure 3.1: AMBA AHB based system
[5]

Bus in AMBA AHB there is multiple master are connected with slaves via multiplexer,

arbiter and decoder. Multiplexer is used to connect multiple masters with multiple

slaves. Arbiter will decide which master should send the address and control signal

which indicates the transfer they want to perform.

Master should assert bus request before send address and command signal. If bus is

available then arbiter will grant the bus to that master for transfer. Otherwise master

will wait for bus grant signal. In AMBA based system buses are multiplexed for multi-

masters. These multiplexers are shown in figure 3.2.

29

Figure 3.2: Multiplexed Signals in AMBA AHB system
[5]

A decoder in system is used to controller the multiplexer for read. Control signal and

address provides the information about which slave should receive the data. These

signals also have information about size of transfer, type of burst etc.

There are two data bus one write data bus transfer the data from master to slave and

another read data bus read data from slave and transfer it to master.

30

Every transfer consists of:

- An address and control signals.

- One more cycles for the data.

The address cannot be extended so all slave should sample the address at every clock

cycle. We can extent data cycle by HREADY signal. When HREADY is low then this

is a wait state allow slave extra time to sample the data in next clock cycle.

3.4 Basic transfer
[5]

In AHB the master will start transaction after bus is granted to it. Master will first send

the address and then data in second cycle or after wait if HREADY is low. So there are

two sections one is address phase and another is data phase.

Figure 3.3: Basic transfer in AHB
[5]

31

The simple transfer without wait state is shown in figure 3.3

- Address and control signals are send by master after raising edge of HCLK.

- The slave sample these signal at next raising edge of HCLK.

- After sampling the address and control signal salve will generate the response

according to those singles and send it to HRESP bus.

- If slave is busy it will send HREADY low to master to extent the data phase.

3.5 Transfer with wait state
[5]

In AHB if slave is with other task then it will send the HREADY low. This is the

indication for master to wait for one cycle. Master will extend its transfer with same

address and control signals. A transfer with wait state is shown in figure 3.4.

Figure 3.4 Transfer with wait state
[5]

32

- First address A is send by master a raising edge of HCLK. In next clock slave will

sample the address and control signals. If it is a read transfer then data will be read by

master in this cycle (clock-1) otherwise data will be written in slave.

- After that address B will be sampled by slave with control signals. Slave will sample

the address but there is busy signal asserted by master so slave will assert HREADY

low indicating master to extend its transfer for next clock (clock-4) also.

- So data will be provided in next clock (clock-5) after HREADY is high.

- Address C will be sampled by slave in next clock cycle (clock-4) and further next

cycle (clock-5) data will be sampled by salve without any wait state.

3.6 Control Signals
[5]

3.6.1 Transfer Type

In AHB protocol transfer sends with transfer type which will be sampled by slave for

indication of burst-finish or wait state or idle state. There are four types of transfer. The

description of these signals is given in table 3.3.

33

Table 3.3: Transfer signals in AHB

[5]

34

3.6.2 Transfer Size

Transfer size indicates the size of transfer or significant data on data bus. This is 3 bit

long. Detail of these signals is given in table 3.4.

Table 3.4: Transfer size in AHB

[5]

3.6.3 Burst signals

In burst transfer data will be sent in a continuous burst. This signal is 3 bit long. In table

3.5 it is shown the burst type.

Wrapping burst: In wrapping type burst the address will wrap at a particular address

when boundary reached.

Incremental burst: In incremental burst will finish after number of beats completed. The

address of all beats is sequential.

Table 3.5: Burst type in AHB
[5]

HBURST[2:0] Type Description

3'b000 SINGLE Single transfer

3'b001 INCR Incrementing burst of unspecified length

3'b010 WRAP4 4-beat wrapping burst

3'b011 INCR4 4-beat incrementing burst

3'b100 WRAP8 8-beat wrapping burst

3'b101 INCR8 8-beat incrementing burst

3'b110 WRAP16 16-beat wrapping burst

3'b111 INCR16 16-beat incrementing burst

35

3.6.4 Response Type

During a transfer the slave sends the response signals to indicate success or failure of

transfer. This is 2 bit long signal. Description of these signals is given in table 3.6.

This signal name is HRESP [1:0].

Table 3.6: Response signals in AHB
[5]

36

Chapter - 4

Design and implementation of Memory

controller

4.1 Introduction

Memory controller is small digital device which controls the data transfer between two

systems. This can be separate digital chip or can be embedded with other circuit on

same chip. If a memory controller is on same die then it is called integrated memory

controller. The reason to use on same die is to reduce the data transfer latency between

master and salve. A master can be a typical processor and a salve can be a memory for

example RAM or ROM. In computers the memory controller is at North Bridge of

mother board. This is now replaced with integrated memory controller used with CPU

to reduce memory latency. But this also make it memory depended controller which

need to redesign the controller for new technology memory.
[14]

Memory controller generally handles the read and write of data with a memory which

can be an internal memory or external memory. The speed of memory can different

from speed of processor which will make it difficult to design. DRAM controller need

to refresh memory in every clock cycle which will allow processor to focus on

important task. Otherwise processor will spend its all time with accessing and

refreshing the memory. To access the memory we need to select memory chip

according to address and control signals. Then memory will decode it to rows and

columns for particular byte or depends on width of data bus. There can be a memory

response for telling that data is written successfully or there is an error while writing

37

data to that address for example if it is ROM address then data cannot be altered or

there can be an address which is not connected to any memory device.

4.2 Concept of interleaving

Main memory is typically divided in series of memory banks. The number of banks is

in the range of power of 2 in the most of system. Access a data from flat memory is

requires time equal to the memory bank access time. If we access the memory banks

simultaneously then bandwidth can be increase by number of memory bank and speed

of accessing single data from one bank. If there is K number of banks then K request

can be send simultaneously to memory bank. Here K is 2
n
.

[18]

For example if there is two banks in memory. If interleaving is not used then we first

access the data from first address and then we send second address to memory. This

will introduce the latency in system. If we use interleaving then data can be accessed

simultaneously from bank while another bank is preparing data. This will increase the

bandwidth of system and reduce the latency. Addresses are continuously asserted with

raising edge of system clock to memory banks so each bank will receive the address at

different clock and provide the data after memory clock cycle.

Comparing with old simpler memory controller used in past where data are sending one

by one. This is a bottleneck condition sometime because master works at higher

frequency than the memory device. But in AHB based memory controller there is

feature of burst mode which will send contiguous data in a single burst. AHB also have

error handling features, split mode, protection mode, bus lock etc. Combining AHB

with interleaving will significantly improve the performance of system.

However if there is 32 bit for addresses then we can access 4 GB of memory location

which is a large amount of memory. In past, when CPU only supports less than 4 GB of

38

location then we need to send a single back to CPU for invalid address. This is handled

as error for AHB master.

Let's assume that our CPU can only access 8K of RAM. The amount of memory is

quite small, but makes it easy to illustrate the concept of interleaved memory.

In table 4.1 Memory addresses are distributed in a non-interleaved system.

Table 4.1: Memory address distribution in non interleaved memory

To find the bank for an address

If address is A and number of bank is N, then bank number:-

Bank Number = A / 1024

Flat memory distribution: In this memory address are continuous in a memory bank.

The higher order address is used for chip select of memory banks. The higher order

memory distribution is shown in figure 4.1.

Bank-0 Bank-1 Bank-2 Bank-3 Bank-4 Bank-5 Bank-6 Bank-7

0 1024 2048 3072 4096 5120 6144 7168

1 1025 2049 3073 4097 5121 6145 7169

… … … … … … … …

1023 2047 3071 4095 5119 6143 7167 8192

39

Figure 4.1: Memory bank distribution in flat memory
[18]

Interleaved memory distribution: In this memory address is alternative in both memory

banks. This is a two way memory interleaving.

Memory address divided in interleaved system is shown in table 4.2.

Bank-0 Bank-1 Bank-2 Bank-3 Bank-4 Bank-5 Bank-6 Bank-7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

… … … … … … … …

8185 8186 8187 8188 8189 8190 8191 8192

Table 4.2: Memory address distribution in interleaved memory

We divided this 8K memory in 8 banks. The address is accessible from A[0] to

A[8192].

If address is A and number of bank is N, then bank number:-

40

Bank Number = A % N

For example address 123 will be in bank 123 % 8 = Bank-3.

The lower order memory address bits are used for chip select logic of memory banks. It

is shown in figure 4.2.

Figure 4.2: Memory bank distribution in interleaved memory
[18]

41

Figure 4.3: High order address decoding in flat memory distribution
[18]

In figure 4.3 a higher order memory distribution is shown. In this memory distribution

higher memory address bits are used for chip select of memory banks.

Figure 4.4: Lower order address decoding in interleaved memory distribution
[18]

42

In figure 4.4 a lower order memory distribution is shown. In this memory distribution

lower address bits are used for chip select. This is called interleaved memory.

In interleaving the chip select logic is decoded using LSB of address bus. So that

alternative address is spread over different memory bank. Even addresses are in

memory bank-0 and odd addresses are in memory bank-1. There can be more number

of memory banks like 4, 8 or 16. The memory latency can be hide by using interleaving

where time to access is less than the one clock cycle of system clock multiple by

number of banks.

4.3 Finite state machine of memory controller

Finite state machine for memory controller based on AHB and concept of interleaving

is implemented. FSM is the heart of memory controller. It will change the state

according to data, address and control signal send by master and memory. After

receiving these all signal it will generate appropriate responses.

There are total six states in memory controller. Concept of interleaving introduced with

AHB bus protocol. AHB master will send a transaction to memory controller to process

and provide required information and data. Memory controller will change its state

according to that transaction. If there is no transaction then memory controller will be

in idle state and sends okay response. The Finite state machine of memory controller is

shown in figure 4.5.

43

Figure 4.5: Finite state machine for memory controller

IDEL_S state: In this state memory controller will not transfer any data. Memory

controller will send OKAY response to master in this state. It’s will change its state

according to control signals. If there is a NONSEQ or SEQ transfer then memory

controller will go to next state in R_SEQ or W_SEQ according to HWRITE signal.

Otherwise it will be in same state.

W_SEQ state: In this state memory controller will write the data in memory. It will

also generate control signals for memory in this state. If master is busy in between a

44

burst transfer then master will send BUSY signal on HTRANS bus. So memory

controller will change its state to IDEL_S. If there is any mismatch with upcoming

address and raising edge of corresponding memory bank then memory controller will

change its state to BUSY_S. If there is an address which is not available in memory

then memory controller will change its state to Error_1. Otherwise it will be in the same

state.

R_SEQ state: In this state memory controller will read the data from memory. It will

also generate control signals for memory in this state. If master is busy in between a

burst transfer then master will send BUSY signal on HTRANS bus. So memory

controller will change its state to IDEL_S. If there is any mismatch with upcoming

address and raising edge of corresponding memory bank then memory controller will

change its state to BUSY_S. If there is an address which is not available in memory

then memory controller will change its state to Error_1. Otherwise it will be in the same

state.

BUSY_S state: In this state memory controller will send HREADY low. This indicates

that memory controller is in busy state and it cannot transfer the data. If there is an

address which is not available in memory then memory controller will change its state

to Error_1.

ERROR_1 state: In this state memory controller will sent HREADY signal low. And

it will also send HRESP signal with ERROR. This will be inferred by master that there

is an error in transfer. Master will reinitiate its transfer. It will change its state to

Error_2. Because in AHB a slave will send two clock cycle response if there is an error.

ERROR_2 state: In this state if there is a SEQ or NONSEQ transfer then it will

change it change its state to R_SEQ or W_SEQ according to HWRITE signal. If there

is error then it will change its state to Error_1 state. Otherwise it will go in IDEL_S

state.

45

Figure 4.6: Block diagram of AHB based memory controller

In figure 4.6 block diagram of memory controller is shown. Memory Bridge will

convert the AHB signals to memory readable format. This will also introduce the

interleaving. In read and write state, if sampled address is synced with clock of RAM

then there is no need of inserting HREADY low otherwise need to insert HREADY low

which will send memory controller in BUSY_S state. For example if address is even

and clock cycle for even clock is low then we can’t send data in next clock because of

that we need to insert one wait state. For that master will extend its transfer to next

clock. If it is an odd address then next clock is in favor of transfer so memory controller

will go into R_SEQ or W_SEQ according to HWRITE signal. After first clock, it can

AHB

Master

 Memory

 Controller

RAM

AHB

Slave

Memory

Bridge

HADDR

HWDATA

HTRANS

HSIZE

HBURST

HPROT

HLOCK

HWRITE

HRESP

HREADY

HRDATA

HCLK

ECLK

RADDR

RWDATA

 OE

WE

RRDATA

 Bank-0

 Bank-1

 CS-0

 CS-1

HRESETn

OCLK

46

continuously read and write for single burst but if data it in single transfer then there

can be wait state. This will introduce the concept of interleaving.

The specification of RAM is used from IBM SRAM Document. In which reading from

memory will be done by sending appropriate control signals to RAM. To read a data

from memory we need to first select correct memory bank. The address, write enable

and output enable should be provided before clock edge. The data will be sample by

memory controller after next raising edge of memory clock. In figure 4.7 a memory

read cycle is shown.

Figure 4.7: Memory Read cycle
[19]

47

In write cycle, we need to first select correct memory bank according to sampled

memory address. Data, address and control signals will be sampled by memory at

raising edge of memory clock. Memory needs at least one memory clock cycle to

properly write the data in memory bank. We cannot send another data and control

signals in between the memory cycle. The output enable signal should be high because

it is an active low signal. The write enable signal should be low because it is an active

low signal. In figure 4.8 a memory write cycle is shown.

Figure 4.8 Memory Write cycle
[19]

48

Chapter - 5

Simulation and Synthesis Report

5.1 Simulation and Wave forms

The simulation of AHB based memory controller is done in Xilinx ISE software (ISE v

12.1 April 19, 2010 student version) which is freely available for students. The Xilinx

version used for simulation and synthesis is. This Xilinx tool is used to synthesis and

analysis of timing performance of RTL design written in Verilog or VHDL. There is

ISIM simulator used for waveform analysis.

49

Write transaction wave forms (simulation results):

In figure 5.1 the first NONSEQ burst started with address 0x14(green color). Slave will

sample the address and data after one clock cycle (Blue color). Data value 0x48 will be

written in memory. The address 0x14 is related to memory bank-1. So it will be

sampled by memory at raising edge of clke.

Figure 5.1: Write transaction wave forms – 1(2-way MC)

50

In figure 5.2 SEQ-burst is sending continuous addresses (green color). Slave will

sample the address 0x20 and 0x24 at 185ns and 195ns. Data will be written in memory

at next cycle (Blue color).

Figure 5.2: Write transaction wave forms – 2 (2-way MC)

51

In figure 5.3 there is an IDLE cycle (Red color). In IDLE cycle chip select is no

activated (Green color).

Figure 5.3: Write transaction wave forms – 3 (2-way MC)

52

In figure 5.4, data write cycle is shown in 4-way memory controller. (Red Color) Data

will be written in memory at 180 ns. The address 0x14 is related to memory bank-1. So

it will be sampled by memory at raising edge of clk1. This is shown in yellow color.

Figure 5.4: Write transaction wave forms – 5 (4-way MC)

53

Read transaction wave forms (simulation results):

In figure 5.5 Read burst is started with address 0x14. Data will be sampled by master at

555 ns (Green color). The addresses are 0x14 and 0x18 and corresponding data are

0x48 and 0x65 read from memory.

Figure 5.5: Read transaction wave forms – 1 (2-way MC)

54

In figure 5.6 read burst is shown. (Red color) Sequentially data are read from memory

in 4-way memory controller. (Blue color). The first address 0x14 is sampled at 560 ns

by memory controller. Then next three more addresses are received at 570ns, 580ns and

590ns. Corresponding data are read at 610ns, 620ns, 630ns and 640ns respectively.

Figure 5.6: Read transaction wave forms – 2 (4-way MC)

55

5.2 Synthesis Report

Xilinx standard synthesis report for RTL design shown in table 5.1 and table 5.2.

Project File: mem.xise Parser Errors: No Errors

Module Name: memc Implementation State: Synthesized

Target Device: xc3s1000-4fg320 Errors: No Errors

Product Version: ISE 12.1 Warnings:

Design Goal: Balanced Routing Results:

Design Strategy: Xilinx Default Timing Constraints:

Environment: System Settings Final Timing Score:

Table 5.1: Project status

Synthesis summary of Memory controller is given in table 5.2. The target device used

for this is Spartan-3 (3s50pq208-5). This device is also used in FIFO based memory

controller. But this device is not suitable for this design because numbers of available

IOBs are less then number of used IOBs. So target device used for this design is

xc3s1000-4fg320.

Logic Utilization Used Available Utilization

Number of Slice Registers 86 768 11%

Number of Slice LUTs 122 1536 7%

Number of fully used LUT-FF pairs 156 1536 10%

Number of bonded IOBs 191 124 154%

Number of BUFG/BUFGCTRLs 1 8 12%

Table 5.2: Synthesis summary of 2-way MC (Device: 3s50pq208-5)

Device xc3s1000-4-fg320 have 221 bonded IOBs. This is enough for this design.

Logic Utilization Used Available Utilization

Number of Slices 86 7680 1%

Number of Slice Flip Flops 122 15360 0%

Number of 4 input LUTs 156 15360 1%

Number of bonded IOBs 191 221 86%

Number of GCLKs 1 8 12%

 Table 5.3: Synthesis summary of 2-way MC (Device: xc3s1000-4-fg320)

56

Logic Utilization Used Available Utilization

Number of Slices 136 7680 1%

Number of Slice Flip Flops 165 15360 1%

Number of 4 input LUTs 247 15360 1%

Number of bonded IOBs 197 221 89%

Number of GCLKs 2 8 25%

Table 5.4: Synthesis summary of 4-way MC (Device: xc3s1000-4-fg320)

5.2.1 Detailed Synthesis Report of 2 – Way Memory controller

Release 12.1 - xst M.53d (nt64)

===

* Final Report *

===

Final Results

RTL Top Level Output File Name : memc.ngr

Top Level Output File Name : memc

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

IOs : 201

Cell Usage :

BELS : 164

GND : 1

INV : 3

LUT2 : 67

LUT3 : 37

LUT3_D : 1

LUT3_L : 16

LUT4 : 30

LUT4_L : 2

MUXCY : 5

MUXF5 : 1

VCC : 1

FlipFlops/Latches : 154

FD : 84

FDC : 68

FDS : 2

Clock Buffers : 1

BUFGP : 1

IO Buffers : 190

IBUF : 103

OBUF : 87

57

===

Timing Summary:

Speed Grade: -4

 Minimum period: 5.570ns (Maximum Frequency: 179.520MHz)

 Minimum input arrival time before clock: 7.571ns

 Maximum output required time after clock: 8.337ns

 Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default period analysis for Clock 'HCLK'

 Clock period: 5.570ns (frequency: 179.520MHz)

 Total number of paths / destination ports: 286 / 75

Delay: 5.570ns (Levels of Logic = 3)

 Source: hready_rnm0 (FF)

 Destination: curstate_FSM_FFd3 (FF)

 Source Clock: HCLK rising

 Destination Clock: HCLK rising

 Data Path: hready_rnm0 to curstate_FSM_FFd3

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 FDS:C->Q 53 0.720 2.041 hready_rnm0 (hready_rnm0)

 LUT3:I2->O 1 0.551 0.827 curstate_FSM_FFd3-In20

(curstate_FSM_FFd3-In20)

 LUT4_L:I3->LO 1 0.551 0.126 curstate_FSM_FFd3-In28

(curstate_FSM_FFd3-In28)

 LUT4:I3->O 1 0.551 0.000 curstate_FSM_FFd3-In95

(curstate_FSM_FFd3-In)

 FDC:D 0.203 curstate_FSM_FFd3

 --

 Total 5.570ns (2.576ns logic, 2.994ns route)

 (46.2% logic, 53.8% route)

===

Timing constraint: Default OFFSET IN BEFORE for Clock 'HCLK'

 Total number of paths / destination ports: 243 / 132

Offset: 7.571ns (Levels of Logic = 5)

 Source: HTRANS<1> (PAD)

 Destination: curstate_FSM_FFd1 (FF)

 Destination Clock: HCLK rising

 Data Path: HTRANS<1> to curstate_FSM_FFd1

58

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 IBUF:I->O 68 0.821 2.398 HTRANS_1_IBUF

(HTRANS_1_IBUF)

 LUT4:I0->O 1 0.551 0.000 curstate_FSM_FFd1-In461

(curstate_FSM_FFd1-In461)

 MUXF5:I0->O 1 0.360 1.140 curstate_FSM_FFd1-In46_f5

(curstate_FSM_FFd1-In46)

 LUT2:I0->O 1 0.551 0.996 curstate_FSM_FFd1-In63_SW0

(N50)

 LUT4:I1->O 1 0.551 0.000 curstate_FSM_FFd1-In75

(curstate_FSM_FFd1-In)

 FDC:D 0.203 curstate_FSM_FFd1

 --

 Total 7.571ns (3.037ns logic, 4.534ns route)

 (40.1% logic, 59.9% route)

===

Timing constraint: Default OFFSET OUT AFTER for Clock 'HCLK'

 Total number of paths / destination ports: 86 / 86

Offset: 8.337ns (Levels of Logic = 1)

 Source: hready_rnm0 (FF)

 Destination: HREADY (PAD)

 Source Clock: HCLK rising

 Data Path: hready_rnm0 to HREADY

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 FDS:C->Q 53 0.720 1.973 hready_rnm0 (hready_rnm0)

 OBUF:I->O 5.644 HREADY_OBUF (HREADY)

 --

 Total 8.337ns (6.364ns logic, 1.973ns route)

 (76.3% logic, 23.7% route)

===

Total REAL time to Xst completion: 7.00 secs

Total CPU time to Xst completion: 6.45 secs

-->

Total memory usage is 244956 kilobytes

5.2.2 Detailed Synthesis Report of 4 – Way Memory controller

Release 12.1 - xst M.53d (nt64)

===

* Final Report *

===

59

Final Results

RTL Top Level Output File Name : memc.ngr

Top Level Output File Name : memc

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

IOs : 211

Cell Usage :

BELS : 271

GND : 1

INV : 4

LUT2 : 104

LUT2_L : 1

LUT3 : 98

LUT3_L : 2

LUT4 : 25

LUT4_D : 4

LUT4_L : 9

MUXCY : 5

MUXF5 : 17

VCC : 1

FlipFlops/Latches : 197

FD : 84

FDC : 104

FDR : 9

Clock Buffers : 2

BUFGP : 2

IO Buffers : 195

IBUF : 100

OBUF : 95

===

Timing Summary:

Speed Grade: -4

 Minimum period: 5.848ns (Maximum Frequency: 170.999MHz)

 Minimum input arrival time before clock: 7.550ns

 Maximum output required time after clock: 8.223ns

 Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default period analysis for Clock 'HCLK'

 Clock period: 5.848ns (frequency: 170.999MHz)

60

 Total number of paths / destination ports: 476 / 120

Delay: 5.848ns (Levels of Logic = 3)

 Source: curstate_0 (FF)

 Destination: curstate_1 (FF)

 Source Clock: HCLK rising

 Destination Clock: HCLK rising

 Data Path: curstate_0 to curstate_1

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 FDC:C->Q 16 0.720 1.576 curstate_0 (curstate_0)

 LUT3:I0->O 1 0.551 0.869 curstate_mux0003<1>51 (N8)

 LUT4:I2->O 1 0.551 0.827 curstate_mux0003<0>21_SW1

(N30)

 LUT4:I3->O 1 0.551 0.000 curstate_mux0003<2>1

(curstate_mux0003<2>)

 FDC:D 0.203 curstate_1

 --

 Total 5.848ns (2.576ns logic, 3.272ns route)

 (44.0% logic, 56.0% route)

===

Offset: 5.470ns (Levels of Logic = 2)

 Source: HRESETn (PAD)

 Destination: st_FSM_FFd2 (FF)

 Destination Clock: clk0 rising

 Data Path: HRESETn to st_FSM_FFd2

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 IBUF:I->O 1 0.821 0.801 HRESETn_IBUF (HRESETn_IBUF)

 INV:I->O 105 0.551 2.271 HRESETn_inv1_INV_0

(HRESETn_inv)

 FDR:R 1.026 st_FSM_FFd2

 --

 Total 5.470ns (2.398ns logic, 3.072ns route)

 (43.8% logic, 56.2% route)

===

Timing constraint: Default OFFSET OUT AFTER for Clock 'HCLK'

 Total number of paths / destination ports: 94 / 94

Offset: 8.223ns (Levels of Logic = 1)

 Source: hready_rnm0 (FF)

 Destination: HREADY (PAD)

 Source Clock: HCLK rising

61

 Data Path: hready_rnm0 to HREADY

 Gate Net

 Cell:in->out fanout Delay Delay Logical Name (Net Name)

 -- ------------

 FDR:C->Q 33 0.720 1.859 hready_rnm0 (hready_rnm0)

 OBUF:I->O 5.644 HREADY_OBUF (HREADY)

 --

 Total 8.223ns (6.364ns logic, 1.859ns route)

 (77.4% logic, 22.6% route)

===

Total REAL time to Xst completion: 7.00 secs

Total CPU time to Xst completion: 6.98 secs

-->

Total memory usage is 247452 kilobytes

62

5.3 Gate level schematics

Figure 5.7: Gate level schematics for 2-way MC.

63

Chapter – 6

Conclusion and future work

6.1 Conclusion

The memory controller is successfully designed. AMBA AHB bus protocol is used for

this design. This protocol is most popular protocol used nowadays in the industry.

Previously used FIFO based memory controller has latency. But introducing concept of

interleaving will reduce the latency in system and increase the throughput. This will

significantly improve the performance of memory controller. The wave form for read

and write show that memory controller is working according to its specification. The

critical path delay can be found in synthesis report generated from Xilinx design tool

ISE. Number of LUTs used in design can also found in synthesis report which will be

indication for area used for design on a die.

Logic
Utilization

Available Used Utilization

FIFO
Based

MC

Interle
aved
MC

2-Way

Interlea
ved MC
4-Way

FIFO
Based

MC

Interleav
ed MC
2-Way

Interlea
ved MC
4-Way

FIFO
Based

MC

Interleav
ed MC
2-Way

Inter
leav
ed
MC
4-

Way

Number of
Slice
Registers 768 7680 7680 160 86 136 20% 1% 1%

Number of
Slice LUTs 1536 15360 15360 111 122 165 7% 0% 1%

Number of
fully used
LUT-FF pairs 1536 15360 15360 273 156 247 17% 1% 1%

Number of
bonded IOBs 124 221 221 79 191 197 63% 86% 89%

Number of
BUFG/BUFGC
TRLs 8 8 8 3 1 2 37% 12% 25%

 Table 6.1: Comparison between results of different memory controllers

64

In FIFO based AHB memory controller initially FIFO is empty after transfer begins

master will start filling data and commands in FIFO. After some time FIFO will be full.

Master will wait for FIFO to become empty. This will introduce bubble or stall in

system.
[1]

 After comparing with FIFO based AHB memory controller it has been seen

that there is need of extra chip area to accommodate FIFO circuit in SoC. This will

increase area of die. And the maximum frequency for FIFO based memory controller is

155.67MHz (Critical path delay is 6.425ns).
[1]

 Now comparing with 2-way Interleaved

AHB based memory controller, the maximum frequency is 179.520 MHz and critical

path delay is 5.570 ns can be referred in synthesis report in chapter 5. Comparing with

4-way interleaved AHB based memory controller the maximum frequency of 4-way

memory controller is 170.999 MHz and critical path delay is 5.848 ns. This is

significantly improvement in terms of speed as compared to FIFO based memory

controller.

6.2 Future work

The memory controller can be made n-way interleaved by increasing number of banks

in memory. We can also make parameterized memory controller. Instant of using AHB

protocol we can use AXI bus protocol which can increase more bandwidth for system.

Memory control can also be made independent of types of memory.

65

Bibliography

[1] Ramagundam, Shashisekhar et al. "Design And Implementation Of High-

Performance Master/Slave Memory Controller With Microcontroller Bus

Architecture". 2014 IEEE International Instrumentation and Measurement Technology

Conference (I2MTC) Proceedings (2014): n. pag. Web. 27 June 2017.

[2] Shobha R Hadimani ,Panchami , (2015) " Verilog Based Design Of High

Performance Data Access Amba Memory Controller " , International Journal of

Management and Applied Science (IJMAS) , pp. 88-91, Volume-2, Issue-5

[3] Rishabh Singh Kurmi, Shruti Bhargava and Ajay Somkuwar. Article:Design of

AHB protocol block for Advanced Microcontrollers. International Journal of

Computer Applications 32(8):23-29, October 2011. Full text available. BibTeX

[4] C. Sharma, Archana. "Construct High-Speed SDRAM Memory Controller Using

Multiple FIFO's For AHB Memory Slave Interface". International Journal of Emerging

Technology and Advanced Engineering volume 3.Issue 3 (2013): 1-10. Web. 28 June

2017.

[5] https://soc.eecs.yuntech.edu.tw/Course/SoC/doc/amba.pdf

[6] "Read-Only Memory". En.wikipedia.org. N.p., 2017. Web. 28 June 2017.

[7] Khalifa, Khaled et al. "Memory Controller Architectures: A Comparative

Study". 2013 8th IEEE Design and Test Symposium (2013): n. pag. Web. 11 June 2017.

[8] Rao, Shilpa. "Testing Of AMBA Compliant Memorycontroller Using Pattern

Generator/ Logicanalyser". Rroij.com. N.p., 2017. Web. 26 June 2017.

[9] "What Is Hard Disk Drive (HDD)? - Definition From Whatis.Com". SearchStorage.

N.p., 2017. Web. 26 June 2017.

[10] "What Is SSD (Solid-State Drive)? - Definition From

Whatis.Com". SearchSolidStateStorage. N.p., 2017. Web. 26 June 2017.

[11] "Memory (RAM) And Its Influence On

Performance". Computermemoryupgrade.net. N.p., 2017. Web. 27 June 2017.

66

[12] "Static Random-Access Memory". En.wikipedia.org. N.p., 2017. Web. 28 June

2017.

[13] "Read Write Processor Bus Cycles". Eventhelix.com. N.p., 2017. Web. 28 June

2017.

[14] "Memory Controller". En.wikipedia.org. N.p., 2017. Web. 28 June 2017.

[15] "ARM | Corelink DMC-520 Dynamic Memory Controller". ARM | The

Architecture for the Digital World. N.p., 2017. Web. 28 June 2017.

[16] "Advanced Microcontroller Bus Architecture". En.wikipedia.org. N.p., 2017. Web.

28 June 2017.

[17] "AMBA Open Specifications - ARM". Arm.com. N.p., 2017. Web. 28 June 2017.

[18] https://www.cs.vassar.edu/~jones/Stallings/E-InterleavedMemory.pdf

[19] https://www.ece.cmu.edu/~ece548/localcpy/sramop.pdf

[20] En.wikipedia.org. (2017). Memory hierarchy. [online] Available at:

https://en.wikipedia.org/wiki/Memory_hierarchy [Accessed 29 Jun. 2017].

[21] SUN, GUANGYU. Exploring Memory Hierarchy Design With Emerging Memory

Technologies. [Place of publication not identified]: SPRINGER INTERNATIONAL

PU, 2016. Print.

%16
SIMILARITY INDEX

%16
INTERNET SOURCES

%6
PUBLICATIONS

%10
STUDENT PAPERS

1 %2
2 %1
3 %1
4 %1
5 %1
6 %1
7 %1
8 %1
9

Design and Implementation of AMBA-AHB based memory
controller
ORIGINALITY REPORT

PRIMARY SOURCES

opencores.org
Internet Source

www.ukessays.com
Internet Source

anysilicon.com
Internet Source

ensino.univates.br
Internet Source

www.mikrocontroller.net
Internet Source

Submitted to Liverpool John Moores University
Student Paper

access.ee.ntu.edu.tw
Internet Source

web.cecs.pdx.edu
Internet Source

blog.swanspace.org

%1
10 %1
11 <%1
12 <%1
13 <%1
14 <%1
15 <%1

16 <%1
17 <%1
18 <%1
19 <%1

Internet Source

www.ijesmjournal.com
Internet Source

Submitted to CSU, Fresno
Student Paper

www.xilinx.com
Internet Source

documents.mx
Internet Source

Submitted to BITS, Pilani-Dubai
Student Paper

Submitted to Visvesvaraya Technological
University
Student Paper

wiki.scinethpc.ca
Internet Source

share.pdfonline.com
Internet Source

Submitted to University of Birmingham
Student Paper

vlsi1.engr.utk.edu
Internet Source

en.wikipedia.org

20 <%1
21 <%1
22 <%1
23 <%1
24 <%1
25 <%1
26 <%1
27 <%1

28 <%1

Internet Source

innovexpo.itee.uq.edu.au
Internet Source

www.dtic.mil
Internet Source

www.kanecomputing.co.uk
Internet Source

dspace.thapar.edu:8080
Internet Source

csl.anthropomatik.kit.edu
Internet Source

excamera.com
Internet Source

S PASRICHA. "On-Chip Communication
Architecture Standards", On-Chip
Communication Architectures, 2008
Publicat ion

Divekar, Shraddha, and Archana Tiwari.
"Interconnect matrix for multichannel AMBA
AHB with multiple arbitration technique", 2014
International Conference on Green Computing
Communication and Electrical Engineering
(ICGCCEE), 2014.
Publicat ion

29 <%1
30 <%1
31 <%1
32 <%1
33 <%1
34 <%1
35 <%1
36 <%1
37 <%1
38 <%1

diva-portal.org
Internet Source

www.ijetch.org
Internet Source

alexfreed.com
Internet Source

www.gregwhaley.com
Internet Source

univagora.ro
Internet Source

www.ijsps.com
Internet Source

l3.elfak.ni.ac.rs
Internet Source

docplayer.net
Internet Source

wiki.musl-libc.org
Internet Source

Divekar, Shraddha, and Archana Tiwari.
"Multichannel AMBA AHB with multiple
arbitration technique", 2014 International
Conference on Communication and Signal
Processing, 2014.
Publicat ion

39 <%1
40 <%1
41 <%1
42 <%1

43 <%1
44 <%1

45 <%1
46 <%1
47 <%1

www.gaisler.com
Internet Source

digital.lib.usf.edu
Internet Source

www.slideshare.net
Internet Source

Sungju Park. "Design of Test Access
Mechanism for AMBA-Based System-on-a-
Chip", 25th IEEE VLSI Test Symmposium (VTS
07), 05/2007
Publicat ion

www-artist.imag.fr
Internet Source

Vani, R.M., P.V. Hunagund, and M. Roopa.
"UART controller as AMBA APB slave",
National Conference on Challenges in
Research & Technology in the Coming
Decades (CRT 2013), 2013.
Publicat ion

developer.apple.com
Internet Source

www.scribd.com
Internet Source

github.com
Internet Source

48 <%1

49 <%1
50 <%1
51 <%1
52 <%1
53 <%1
54 <%1
55 <%1

Udipi, Aniruddha N., Naveen Muralimanohar,
Rajeev Balasubramonian, Al Davis, and
Norman P. Jouppi. "Combining memory and a
controller with photonics through 3D-stacking
to enable scalable and energy-eff icient
systems", ACM SIGARCH Computer
Architecture News, 2011.
Publicat ion

www.eng.auburn.edu
Internet Source

www.elitebastards.com
Internet Source

arm.com
Internet Source

www.bg-informatika.com
Internet Source

www.coursehero.com
Internet Source

burgath.com
Internet Source

Microcomputer Systems Using the STE Bus,
1989.
Publicat ion

EXCLUDE QUOTES ON

EXCLUDE
BIBLIOGRAPHY

ON

EXCLUDE MATCHES OFF

	Design and Implementation of AMBA-AHB based memory controller
	ORIGINALITY REPORT
	PRIMARY SOURCES

