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ABSTRACT 

 

Land use/ land cover (LULC) changes and urbanization are the natural and human-induced 

temporal land transformations and conversion processes, which are taking place under the 

influence of different natural and anthropogenic drivers. Increase in population, 

industrialization, migration of people from rural areas to urban areas in search of better 

livelihood, facilities and employment lead to urbanization. Therefore, to meet out the 

development needs of such an ever-increasing population in urban areas, more and more 

LULC conversion has to take place into urban land use class. Urban land use class can be 

defined as developed land (impervious /semi-impervious cover), and includes residential 

as well as commercial and industrial land uses that result in a developed or built landscape. 

LULC conversion and especially urbanization affects terrestrial ecosystems, causing 

ecological disturbances, habitat loss, fragmentation and interaction with other components 

of global change leading to many undesirable consequences. Therefore, LULC change & 

urban growth monitoring, assessment and modelling are very necessary and vital for 

optimal land use planning, generation of different developmental scenarios, a comparison 

of the pros & cons of different land use policy decisions, making adequate future provisions 

of urban services, estimation of resource requirements for development needs in different 

scenarios, impact assessment and identification of adaptations for adverse consequences 

related to climate, urban heat islands, ecological disturbances, and the hydrological cycle. 

Urban growth modelling is a tool to quantify and analyze urban growth and its 

patterns, to better understand the dynamics of urban systems, to develop hypotheses (to be 

tested empirically) and to predict urban growth in different scenarios. There are a variety 

of approaches and methods available for the assessment, monitoring, and modelling of 

LULC changes and urban growth. However, Cellular Automata based approaches have 

been found to be promising. The CA-based SLEUTH model is a popular model, calibrated 

and tested extensively throughout the world, however, it has limitations and research issues 

which need to be further studied. Therefore, in the presented research an attempt has been 

made to understand the sensitivity of SLEUTH with respect to a few important model 

parameters/ constants. Efforts have been made to improve the SLEUTH by incorporating 

an additional land suitability decision rule which explains the influence of a few important 

urbanization drivers, in the simulation process. Also, efforts have been made to develop a 
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new version i.e., SLEUTH-Density which is capable of estimating the urban intensity or 

built-up density. Further, the performance of improved versions of the model has been 

tested through a demonstration of the application of the model for Ajmer urban fringes.  

The present study includes GIS database creation, development of improved 

versions of the SLEUTH model to simulate urban growth more realistically and to estimate 

built-up density. The suitable GIS database at required spatial and temporal resolutions has 

been created to extract input parameters for parameterization of the SLEUTH model. The 

base version of SLEUTH with default parameter/ constant settings was conceptualized for 

the selected study area, successfully calibrated and urban growth was simulated for up to 

the year 2040. Various limitations of the model were shown, which include overestimation 

of urban areas at some places, inability to capture fragmented growth especially of smaller 

size development and different urban forms leading to lower accuracy and more false 

positives and negatives. Possible reasons of the lower performance of the available 

SLEUTH model have been identified as unsuitable values of a few model constants and 

parameters for which model sensitivity was not tested earlier and non-inclusion of 

important urbanization explanatory variables in the urban growth simulation process. To 

address these issues, first, model sensitivity for selected critical model constants/ 

parameters has been tested using an iterative procedure. The optimal values of selected 

constant/ parameters with respect to optimal model fitness measure (i.e. OSM), goodness 

of fit metrics, spatial and statistical measures and accuracy assessment are obtained as; 1.3, 

0.10, 0.90, and 1.25 for boom, bust, critical low and critical high respectively, the diffusive 

value parameter with 0.0055, the 60 no. of Monte Carlo runs, a range of 15-19 for critical 

slope, game of life rule with 1 cell in neighborhood and extended Moore Neighborhood of 

12 cell size. Performance has been found to be better with the optimal values of model 

constants/parameters obtained from the sensitivity analysis. The model currently simulated 

LULC changes and urban growth using only historical urban area, road, exclusions and 

slope in the decision making of urbanisation. In the present study, a newer version of the 

model i.e., SLEUTH-Suitability has been developed to include an additional land suitability 

decision rule in the simulation process. The land suitability decision variable layer has been 

developed to include the influence of few important urbanization drivers/ explanatory 

variables using the Analytical Hierarchy Process (AHP) method of Multi-Criteria 

Evaluation (MCE) techniques. Suitable method/algorithms have been developed and 

integrated with the existing model. Optimal weights (AHP) for the different urbanization 

explanatory variables were achieved from the sensitivity analysis of SLEUTH-Suitability 
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with respect to different combinations of weights. Optimum weights corresponding to 

acceptable model performance in comparison with the actual urban area have been found 

to as 44.7 for the slope, 5.06 for the distance from bus and railway stations, hospitals & 

recreational places and 20.05 for the distance from the main roads and land. The SLEUTH 

accuracy was found to improve from 79% in the case of base SLEUTH with default 

parameters to 80% (SLEUTH with optimum parameters) to 83% with SLEUTH-Suitability 

with respect to more than 100 randomly selected test pixels. Performance of improved 

versions has also been validated from the ground truthing and significant improvement in 

accuracy has been observed from the base SLEUTH model (56 %) to 68% for SLEUTH-

Suitability. 

Another version of SLEUTH i.e. SLEUTH-Density has been developed which is 

capable of capturing and prediction of the urban intensity or built-up density. The new 

algorithm has been developed and the code of the model is modified to include the density 

estimation algorithm. The built-up density was successfully validated with the field data 

and various statistical and other metrics of built-up density estimation. Performance and 

accuracy of built-up density estimated from SLEUTH-Density have been found to be 

satisfactory. The R2 value of 0.79 has been found from the relationship between normalized 

simulated built-up density and observed no. of floors of built-up features and the accuracy 

was found to be 75%. 

The present research has been found to be successful in addressing the research 

questions and in meeting the research objectives. The model application has been 

demonstrated successfully for simulating the urban growth and built-up density for a 

heterogeneous urban area i.e., Ajmer fringe. 

 

Keywords: Urban Growth, Land Use/ Land Cover, SLEUTH, Cellular Automata, Geo-

spatial.  
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CHAPTER 1 

INTRODUCTION 

 Prologue 

Land use/ land cover (LULC) changes are the natural and human-induced temporal land 

transformations and conversion processes, which are taking place under the influence of 

different natural and anthropogenic drivers. According to the Food and Agriculture 

Organization of United Nations1, Land use describes how the human being uses the land. 

Land cover is the observed (bio) physical cover on the Earth surface. In a natural and strict 

sense, the land cover can be confined to describe forest, vegetation, ocean etc.  

Various land cover classes like a forest, vegetation, open land, aquaculture, water 

bodies, and many others transforming into the built-up, open, agriculture, recreational areas 

etc. over the time is called land use/ land cover (LULC) change. Significant land cover 

conversions include the conversion of forest and open/waste land into agriculture, open 

areas, and built-up/semi-built-up land use classes. Impervious cover is a well-accepted 

indicator of urbanization (Wilson et al., 2003). 

Geographically, conversion of different LULC classes into built-up/semi-built-up 

areas may also be called urban growth which means expansion of built-up areas primarily 

for catering to the needs of human beings. Such a conversion is one of the significant and 

largest conversion, as a result of ever-increasing urbanization due to an increase in 

population, industrialization, migration of people from rural areas to urban areas in search 

of better livelihood, facilities, and employment. Therefore, to meet out the development 

needs of such an ever-increasing population in urban areas, more and more LULC 

conversion has to take place into the urban land use class. The urban land use class can be 

defined as developed land (impervious /semi-impervious cover), and includes residential 

as well as commercial and industrial land uses that result in a developed or built landscape. 

The built-up landscape can also be referred to as urban growth or sometimes urban sprawl. 

Urban sprawl can be referred to a type of land-consumptive pattern of urban development 

(Wilson et al., 2003).  

Such an ever increasing land use change and urbanization are causes of social and 

environmental challenges (Martellozzo and Clarke, 2011) affecting adversely natural 

                                                 

1 http://www.fao.org/docrep/003/x0596e/x0596e01e.htm 
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resources including land, water, vegetation (Pingle et al., 2014; Jat et al., 2008), public 

services (Carruthers and Ulfarsson, 2003), public health (Ewing et al., 2003), hydrological 

cycle (Jat et al., 2008), water availability (Srinivasan et al., 2013) and climate (Ewing et 

al., 2008, Pingle et al., 2014). More and more people are under the risk of such possible 

adverse impacts of LULC change and urbanization i.e., conversion of pervious surfaces 

into impervious in the form of developed land because of higher density of population in 

urban areas. Such adverse impacts are more pronounced and significant due to urbanization 

as compared to other land cover changes relatively. 

Accurate, consistent and timely assessment of urbanization and city growth are 

critical for assessing current and future needs with respect to urban growth and for setting 

policy priorities to promote inclusive and equitable urban & rural development. The urban 

growth assessment and prediction can provide critical information to the local authorities 

and other stakeholders to take appropriate decisions related to land use planning and 

development (Weber and Puissant, 2003). Assessment, modelling, and prediction of 

urbanization is a very active topic of research and discussion in the recent past, being one 

of the major land use change phenomena  and have very profound effects on human beings 

as discussed above (Wilson et al., 2003; Syphard et al., 2011; Akin et al., 2014; Jat et al., 

2017). Research on the causes and processes of LULC changes has been identified as one 

of the ten most important and challenging research areas in landscape ecology (Wu and 

Hobbs, 2002).  

Urban growth is a very complex and dynamical process associated with landscape 

change driving forces such as environment, politics, socio-economic aspects, geography 

and many others that affect urban areas at multiple spatial and temporal scales (Akin et al., 

2014). The spatial and temporal components of urbanization can be identified through 

modelling (Goldstein et al., 2005). LULC change modelling is the process of identifying 

changes in the state of land classes in the same geographical area at different time periods. 

Urban growth modelling is a tool to quantify and analyze urban growth and its patterns, to 

better understand the dynamics of urban systems, to develop hypotheses (to be tested 

empirically) and to predict urban growth and future scenarios. 

A variety of approaches and methods have been developed for the assessment, 

monitoring and modelling of LULC changes and urban growth, which includes Machine-

Learning and Statistical, Cellular Automata, Sector-based Economic, Spatially 

Disaggregate Economic, Agent-based and Hybrid approaches. Different approaches have 

their own framework to handle different type of drivers, variables, suitability, and 
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capability to handle complexity. There is no absolute agreement among users and the 

research community about the most appropriate approach. However, Cellular Automata 

based approaches have been found to be promising in modelling of LULC changes & urban 

growth, which is very much evident from the number of applications reported in the 

literature in recent past (Agarwal et al., 2002, Chaudhuri and Clarke, 2013; Jat et al., 2017; 

Saxena and Jat, 2018). In the recent past, many LULC changes & urban growth models 

have been developed and reported, which are capable of modelling this phenomenon at 

different spatial & temporal scales with different complexities like SLEUTH, DINIMICA, 

PLM, CLUE, CUF, LUCAS, CURBA UrbanSim etc. These models are developed based 

on one or more approaches listed above. Detailed review about these models can be found 

in Agarwal et al. (2002), Silva and Wu (2012) and NRC (2015).  

The SLEUTH model has been found to be a promising LULC change and urban 

growth model based on research interest from the research community and the number of 

applications reported from different countries. The SLEUTH urban growth model is a 

Cellular Automata based model and an acronym for the six required data inputs that 

include; slope, land use, excluded zones, urban extent, transportation, and hillshade. To 

date, SLEUTH has been applied world-wide to a variety of International urban regions for 

various type of applications (Akin et al., 2014; Saxena et al., 2016; Jat et al., 2017; Clarke, 

2017; Jat and Saxena, 2018; Saxena and Jat, 2018).  

Therefore, LULC change & urban growth monitoring, assessment and modelling 

are very necessary and vital for optimal land use planning, generation of different 

developmental scenarios, a comparison of the pros & cons of different land use policy 

decisions, making adequate future provisions of urban services, estimation of resource 

requirements for development needs in different scenarios, impact assessment and 

identification of adaptations for adverse consequences related to climate, urban heat 

islands, ecological disturbances, and the hydrological cycle.  

The proposed research is aimed to understand and study the LULC change and 

urbanization processes, drivers & mechanism of urban growth, different modelling 

approaches & models to develop an improved version of the SLEUTH model which is 

suitable in simulating the realistic urban growth and its prediction, considering selected 

drivers & variables.  
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 LULC Change and Urban Growth 

1.2.1. LULC change and urbanization processes  

Urban is a synonym of developed land which includes residential, industrial and 

commercial land uses which results in built-up activities or features. Urban growth can be 

classified into three categories i.e. infill, expansion, and outlying. Different types of urban 

growth and responsible drivers have been shown in Figure 1.1.  Outlying growth further 

can be classified into an isolated, linear branch, and clustered branch growth (Wilson et 

al., 2003). Here, distance and neighborhood variables play an important role in determining 

which kind of growth will take place.  

The urban growth processes can be defined in terms of landscape transformation (which 

include fragmentation, reduction of non-developed land) and the development of urban 

patches (Wilson et al., 2003). Infill growth is defined as a non-urban pixel is transformed 

into urban land use as a function of multiple drivers such as public facilities (sewer, water, 

roads, and other resources etc.) in already developed areas. Infill growth promotes 

urbanization at those places which are less developed and 40 % of the area has already 

developed (Wilson et al., 2003). An expansion growth is a type of growth when 

undeveloped pixel being transformed into urban land use, where not more than 40% of 

• Sewer 

• water, 

• electricity, 

• roads and 

• other resources 

• Neighborhood 

• Already built-up 

• Socio-economic 

• Leapfrog development 

• Due to population migration 

• Accessibility factor 

• Transportation system. 

• Railway,highway etc. 

• Land cost 

Fragmented 

Growth 

Outlying 

growth 

Expansion 

growth 

Infill growth 

Isolated growth 
Linear branch 

growth 
Cluster growth 

Figure 1.1: Urban growth processes and drivers (Wilson et al., 2003) 
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surrounded pixels are already urban. Expansion growth is also called fringe development. 

Land development in a unidirectional form can be called edge growth. Outlying growth is 

the by-product of infill growth and expansion growth. As the development takes place, the 

land cost will increase along with a reduction in open land and people start migrating to 

city outskirts which are known as fringe (Wilson et al., 2003).  The Isolated growth is a 

very first phase of outlying growth which begins when people start being attracted toward 

the outskirts of the city because of reduced land cost. Then linear branch growth takes 

place along the transportation facilities i.e., road and railway. Urban growth clusters will 

start forming with an increase in accessibility after the development of transportation 

facilities triggering population migration which leads to fragmented and leapfrog 

development. Leapfrog development is a sort of cluster development which is called a 

discontinuous settlement (Wilson et al., 2003) (Figure 1.1). 

1.2.2. LULC change and urbanization drivers  

Urbanization is a very complex, dynamic, heterogeneous and stochastic process, where 

multiple factors are in play (Akin et al., 2014). LULC change and urban growth is a function 

of different explanatory variables/drivers such as neighborhood, proximity, demographic, 

socio-economic, institutional, suitability, biophysical, and site-specific variables. 

Neighborhood variables, are such that a person would be more interested in constructing 

his/her house on the basis of neighboring conditions like near residential areas, city center 

etc. Proximity drivers like distance to market, distance to road, distance to hospitals, 

distance to railways, distance to highways, distance to schools etc. are the factors which 

everyone considers while making a choice about development. Demographic drivers 

include population and related variables which creates demand for development. Socio-

economic variables like land cost, time to travel, opportunity cost, tradition, status, 

education etc. influences the decision of development and also decides neighborhood. An 

institutional variable may comprise the decision taken by managerial authorities of or 

relating to the construction which takes place nearby to the already established industries 

and institutions. Suitability variable are land suitability for construction of a particular type 

of development like residential, industrial or agriculture etc. Economic variables like land 

tenure, farm size, income may be important factors contributing to the LULC change and 

urbanization. Climatic drivers like climatic variability and life zones are the factors which 

one considers while building their houses or businesses. Bio-Physical drivers like 

topography, elevation, slopes, soil types, altitude are considered while making a decision 
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of development and construction (especially in disaster-prone areas) and Restriction 

variables or site-specific variables may comprise a prohibited area for development such as 

a reserved forest, green belt, historical place, airport area etc. A list of urbanization 

explanatory variables is presented in Table 1.1. 

Table 1.1: LULC and urban growth explanatory variables 

S. no. Category of the 

explanatory variable 

LULC change & urban growth driver/explanatory 

variables 

1 Economic variables 1. Land tenure 

2. Farm size 

3. Distance to market 

4. Industrial activities 

2 Demographic variables 1. Population density 

2. Annual Income 

3. Occupational characteristics 

4. Cultural preferences 

3 Neighborhood variables 1. Distance to city center 

2. Distance from important facilities like 

railway station, school, hospital, Airport 

3. Distance from recreation facilities 

4. Distance from important roads 

4 Climatic & 

hydrological variables 

1. Water availability 

2. Meteorological variables 

3. Groundwater quality and status 

5 Biophysical variables 1. Topographical elevation & slope 

2. Soil type 

3. Water bodies 

6 Social & political 

variables 

1. Literacy 

2. Public sector investment in road and 

infrastructure 

3. Land ownership rights 

4. Land use zoning 

7 Site specific variables 1. Proximity variables 

 Urbanization and its Consequences  

Globally, more people are living in urban areas as compared to rural areas. As per an 

estimate, 54 percent of the world’s population was residing in urban areas in the year 2014 

(UNO, 2014). In the year 1950, 30 percent of the world’s population was urban, and by the 

year 2050, 66 percent of the world’s population is projected to be urban (UNO, 2014). India 
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has also experienced rapid urbanization in the last 60 years. In the year 1951, there were 

only 5 cities having a population of more than 1.0 million and only 41 cities greater than 

0.10 million population. In the year 2011, there are 3 cities with a population of more than 

10 million and 53 cities with a population greater than 1.0 million. As per an estimate by 

the year 2031, there will be more than 6 cities in India with a population of more than 10 

million (IIHS, 2011). 

Population growth is directly proportional to the growth in built-up activities which 

leads to land cover changes into impervious built-up/semi built-up areas. Built-up areas in 

major Indian cities have increased by 10% to 100% in a decade (IIHS, 2011). Such a rapid 

urbanization and LULC conversions have significant consequences on the surroundings 

and environment. 

On the positive side of consequences, the process of urbanization historically has 

been associated with other important economic and social transformations, which have 

brought greater geographic mobility, lower fertility, longer life expectancy, and population 

aging. Urban areas are important drivers of development and poverty reduction in both 

urban and rural areas, as they concentrate much of the national economic activity, 

government, commerce, and transportation, and provide crucial links with rural areas, 

between cities, and across international borders. Urban living is often associated with 

higher levels of literacy and education, better health, greater access to social services, and 

enhanced opportunities for cultural and political participation.  

On the negative side of consequences, rapid and unplanned urban growth threatens 

sustainable development, when the necessary infrastructure is not developed or when 

policies are not implemented to ensure that the benefits of urban life are equitably shared. 

Today, despite the comparative advantage of cities, urban areas are more unequal than rural 

areas and hundreds of millions of the world’s urban poor live in sub-standard conditions. 

In some cities, unplanned or inadequately managed urban expansion leads to rapid sprawl, 

pollution, and environmental degradation, together with unsustainable production and 

consumption patterns. The urban growth is generally uncontrolled and not planned in a 

proper way, therefore, negative consequences override the positive ones. Specific adverse 

consequences of urbanization (Portugali and Benenson, 1995; Waddell, 2002; Wilson et 

al., 2003; Weber and Puissant, 2003; Syphard et al., 2011; Lambin and Meyfroidt, 2011; 

Sankhala and Singh, 2014) are as follows: 

1. LULC changes & urbanization affect local, regional, and global climate processes. 

Choices about LULC patterns have affected and will continue to affect our 
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vulnerability to the effects of climate change like an increase in temperature, Urban 

Heat Island (UHI), heat waves and health consequences. 

2. Ecological disturbances. Urban sprawl decreases the amount of agriculture, forests, 

and water. Open space breaks up into small chunks which disrupt the habitat. Loss 

of farmland causes not only loss of agricultural land but also fresh food sources, 

species diversity, and habitat, 

3. The disparity in wealth occurs and there are differences between the development 

of urban areas (like metropolises) and the suburbs (like towns), 

4. Change in the hydrological regime, 

5. Reduction in forest and vegetation, 

6. Increase in pollution, and 

7. The increased infrastructure and public services cost. 

 The Necessity of Urban Growth Assessment and Modelling 

The principal advantage of simulation & modelling is that experiments are cheaper, faster 

and safer on silicon than in reality (Clarke, 2014). This is important for urbanization. We 

are not prepared and unwilling to build entire experimental urban areas, make daily or 

annual adjustment to land use policies, investment decisions, transportation networks or 

socio-economic activities. Once an urban area is built, it is reality and further experiments 

are not possible. However, without much disturbances and expenses digital urban areas can 

be created through simulation and modelling and different land use policies and impacts 

can be investigated. Through modelling and simulation of urban areas can explain the 

behavior of explanatory variables, forecast future and discover new structures, forms, and 

processes (Mills, 2000; Clarke, 2014a). Urban areas are also the center of cultural & social 

pathology, disease & crime, cure and learning.  Therefore, we need to model and simulate 

every aspect of urban areas to make better decisions related to optimal land use planning, 

infrastructure development, and to arrive at infrastructure investment estimates and 

environmental sustainability. Various LULC change and urban growth modelling 

approaches have been developed and reported in the recent past to address following 

questions; 

1. Which environmental, social and other variables contribute most to an explanation 

of land use/ land cover changes and urban growth — why? 

2. Prominent locations of change — where? 
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3. The rate at which land use change and urban growth are taking place — how much? 

4. What would be the future pattern of land use/ land cover change and urban growth—

when? 

Accurate, consistent and timely assessment of urbanization and city growth are critical for 

assessing current and future needs of resources with respect to urban growth and for setting 

policy priorities to promote inclusive and equitable urban and rural development. Specific 

requirements of urban growth assessment and modelling are discussed in detail below. 

Climate change studies: Urban growth simulation and modelling are required to ascertain 

the impact of LULC change & urban growth on climate regime and to select optimal 

adaptation strategies for reducing the harmful effects of possible change in micro-climate 

and urban heat islands. 

Land use policy making: Government authorities and Municipalities can use modelling 

and simulation of urban areas to arrive at optimum and suitable land use policies targeting 

decided development goals. Also, urban growth modelling can help in generating 

consequences of different land use policy decisions. 

Infrastructure development: For determining the requirement of infrastructure and public 

services for which urban growth assessment and prediction is necessary.  

Investment decisions: Investment requirement for the different types of developmental 

works in urban areas can be made only after having accurate information about expansion 

and growth of urban areas temporally.  

Natural Resources Planning and Optimum Utilization: Urban growth monitoring and 

modelling can help in estimating the requirement of natural resources and further their 

optimum development & use, which lead to optimum utilization of natural resources and 

development of sustainable cities. 

Sustainable planning: How the urbanization is taking place, what are the patterns of urban 

growth, which area is getting more urbanized, which area is less urbanized, urban density 

and growth rate of any particular area etc. are the prominent issues and crucial for 

sustainable development planning of any city which can be effectively assessed and 

understand by urban growth modelling. 

 Role of Geospatial Technologies 

Geospatial technologies and methods like remote sensing, geographical information 

systems (GIS), satellite-based positioning solutions and terrestrial scanning techniques 



10 

 

have opened a new era for geospatial data collection, data storage, manipulation, analysis 

of geospatial information and modelling of different processes and phenomena related to 

different areas especially for the phenomenon which has an association with the earth 

surface and geography. These technologies have provided a system for storing & retrieving 

a large volume of spatial data and to bring them to a common reference, scale, and format. 

They have helped in incorporating the spatial influences in the analysis of different 

problems, which is otherwise not possible. These techniques have also helped in 

incorporating the spatial and temporal variabilities of different input variables in modelling 

and analysis of a variety of problems and helped in reducing the uncertainties.  LULC 

change and urban growth assessment and modelling are geo-spatial phenomena and many 

of their drivers are also geographical in nature. Therefore, geospatial technologies have a 

very critical role in spatial data capturing, geo-referencing, integration of data from diverse 

sources and parameterization of LULC change and urban growth models.   

 Problem Statement 

A variety of approaches and methods have been developed for the assessment, monitoring, 

and modelling of LULC changes and urban growth.  Different approaches have their own 

framework to handle different type of drivers, variables, suitability, and capability to handle 

complexity. There is no absolute agreement among users and the research community about 

the most appropriate approach. The CA-based SLEUTH model is a robust LULC change 

and urban growth model successfully calibrated and tested extensively throughout the 

world and largely explored through sensitivity tests (Candau, 2002; Dietzel and Clarke, 

2004a; Goldstein et al., 2005; NRC, 2015; Saxena and Jat, 2018). Unresolved issues and 

problems in modelling of urban growth using SLEUTH have been examined and 

highlighted by Clarke (2008a, 2008b, 2014), Jantz et al. (2010) and Houet et al., (2016). 

Different aspects of SLEUTH have been investigated and how its limitations/problems 

have been resolved in the last 20 years are discussed in Chapter 2.  However, many research 

challenges still remained unresolved which need to be further studied and explored.  

1. SLEUTH is a very computationally intensive (Clarke, 2007, 2008, 2014; Houet et al., 

2016) model. 

2. SLEUTH does not consider many socio-economic variables in the modelling of urban 

growth like land cost, cost of land conversion and other economic variables, which 

affects land use decisions. The lack of socio-economic and demographic data in the 
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modelling leads to the model’s inability to capture the real world processes 

successfully, which in turn results in increased uncertainty of the predicted maps of the 

distant future (Chaudhuri and Clarke, 2015). 

3. Different authors have tried to incorporate the other important explanatory variables in 

the modelling of the urban growth using different approaches, which include multi-

criteria based weighing, logistic regression, empirical relationships and through 

calculating transition probabilities (Wu and Webster, 1998; Weber and Puissant, 2003; 

Aspinall, 2004; Mahiny and Clarke, 2012). SLEUTH does not consider a few 

neighborhood and proximity variables which affect the decision of individuals for land 

use and urbanization like distances from important facilities in urban areas like the city 

center, airport, railway line and distance from important roads. Also, SLEUTH does not 

consider human behavioral explanatory variables in urban growth modelling. However, 

these variables have not been incorporated into the SLEUTH model framework except 

in the exclusion layer while forecasting growth for scenario generation (Mahiny and 

Clarke, 2012).  

4. SLEUTH has not been able to capture the fragmented urban growth of smaller size 

built-up units, which is a common type of development in developing countries. It has 

been shown that refining spatial resolution increases model sensitivity to local 

conditions (Silva and Clarke, 2002). Therefore, the research question that what is the 

appropriate spatial resolution of input data to capture the different forms and structure 

of urban development having different built unit sizes needs to be investigated. 

5. SLEUTH uses historical land use data to calibrate the model, where it matches the land 

use category at individual pixels with observed status, however, it does not consider the 

form and structure of built-up form/development in calibration and validation. 

6. SLEUTH calibration has a limitation of scale sensitivity i.e., how well do the model 

results cross spatial scales (Jantz and Goetz, 2005; Clarke, 2014), temporal sensitivity 

i.e., sensitive is the model to the length, frequency, and irregularity of the spacing of 

time-slices used both as input data and output and sequencing i.e., does the model 

updates annually, once, synchronously in space or asynchronously in space (Clarke, 

2014; Houet et al., 2016). 

7. SLEUTH is also sensitive to the level of aggregation i.e., the model uses a hierarchical 

land use classification are the model results at the higher level of aggregation better 

than those at a lower level? (Dietzel and Clarke, 2006; Clarke, 2014), 
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8. SLEUTH is a stochastic model and its performance is a function of its computational 

pseudo-random number generator (Van Neil and Laffin, 2003), 

9. Model is also not capable of explaining the influence of biophysical variables except 

the slope in modelling of urban growth.  

10. The model is sensitive to temporal and spatial scale and it is not capable of determining 

the interior structure of cities, nor is it capable of creating urban density estimates within 

them. 

11. Various studies used the Monte Carlo method to estimate the uncertainty of models’ 

performances. Model accuracy not only depends on models’ performance but on the 

uncertainty of input data, urban history and accuracy of reference maps (Caglioni et al., 

2006; Gazulis and Clarke, 2006; Clarke et al., 2007; Chaudhuri and Clarke, 2014). 

There is an accounting for, but no explicit model of uncertainty in the SLEUTH model 

(Clarke, 2014).  

12. The clusters of the settlements at places, where highways intersect, for example, was 

not programmed into the model but happened anyway (Clarke, 2014). 

13. SLEUTH does not consider land use demand attributes (population density, incomes, 

employment potential, land prices etc.) in urban growth modelling. 

14. Unexplored dimensions of SLEUTH include more use of visualization on the model 

results, what constants might have been variables (like self-modification model 

parameters), exactly how changes in transportation impact growth, how dynamic 

probabilities of land use change could be included and how the model’s assumptions 

about topographic slopes are. 

15. SLEUTH does not have answers for time, a change propagation “wave” takes to get 

from any point in the model space to the most distant places (Clarke, 2014; Houet et 

al., 2016). 

16. SLEUTH is developed as a path dependent model as it mimics the historical trends and 

then forecasts the growth. SLEUTH assumes the same number and type of driving 

factors and their fixed influence during calibration and forecasting. However, urban 

systems are dynamic and may not be stationary. New drivers may come into force or 

their influence can change with respect to time (Mas et al., 2012; Houet et al., 2016). 

17. SLEUTH has not been further tested extensively so far for simulating different types of 

urban development in different countries having different socio-economic, cultural and 

human behavioral characteristics as suggested by Kumar et al. (2011) that SLEUTH 
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needs to be improved to simulate the urban growth in developing country conditions 

like India. 

18. What will be the effect of different sets of data resolution on the land use/ land cover 

change analysis? What data resolution set would be appropriate for a particular 

situation/ scenario like India where the growth is fragmented? 

Therefore, it can be concluded from the above discussion that, many research issues and 

challenges still need to be addressed for accurate urban growth assessment, modelling, and 

prediction.  Many approaches and models are available which are based on different 

assumptions, require different input parameters, have different suitability and are 

appropriate for particular spatial & temporal resolutions, consider different change drivers 

& processes and use different methods to model & predict the LULC change and urban 

growth. Many models developed and reported in the literature have not been tested for 

different socio-economic and geographical settings and the sensitivity of their parameters 

has not been evaluated so far. The following research questions have been formulated based 

on the research issues discussed above- 

✓ What are the important urbanization drivers and explanatory variables of urban 

growth? 

✓ How is the performance of the SLEUTH model in simulating the urban growth of 

cities/ towns or urban areas having socio-economic conditions of developing 

countries like India? 

✓ What is the SLEUTH model sensitivity with respect to different model constants 

and parameters? 

✓ How the performance of the SLEUTH model can be improved by incorporating 

other urbanization explanatory variables in the simulation process? 

✓ How built-up density/ urban intensity/density can be estimated and modelled? 

Therefore, in the presented research an attempt has been made to understand and study the 

LULC change and urbanization processes, drivers & mechanism of urban growth, different 

modelling approaches & models. Efforts have been made to develop an improved version 

of SLEUTH i.e., SLEUTH-Suitability, which is capable of simulating realistic urban 

growth considering the influence of additional urban growth explanatory variables (land 

suitability). An effort has also been made to improve and enhance the performance & 

capabilities of the SLEUTH model by examining its sensitivity to different model 

parameters and constants. Also, efforts have been made to develop a new version of the 
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model i.e., SLEUTH-Density to estimate the urban intensity or built-up density.  Further, 

model performance and application have been demonstrated through modelling and 

prediction of urban growth for Ajmer urban fringes.  

 Objectives 

The proposed research is aimed to understand and study the LULC change and urbanization 

processes, drivers & mechanism of urban growth, different modelling approaches and 

models to develop an appropriate model which is capable in simulating the realistic urban 

growth, considering selected drivers. An effort will be made to improve and enhance the 

performance and capabilities of CA-based SLEUTH model by examining its sensitivity to 

different model variables & constants, which has not been examined so far and by 

estimating the built-up density. Further, model performance and application will be 

demonstrated through modelling and prediction of urban growth for a selected urban area. 

Specific objectives of the proposed research are – 

• Review of the present state of knowledge of LULC change and urban growth 

modelling approaches and models, 

• Collection of suitable data with suitable spatial and temporal resolution required for 

parameterization, calibration, and validation of  CA-based SLEUTH Model, 

• Creation of GIS database for the urbanization explanatory variables used as input 

data for the SLEUTH model for the selected area, 

• Conceptualization, calibration, and validation of the SLEUTH model for the 

selected area, 

• Development of methods and techniques to improve the performance of the 

SLEUTH model to address the issues related to built-up density, parameter 

sensitivity, and the inclusion of important explanatory variables in urban growth 

simulation.  

• Comparative analysis of SLEUTH performance in modelling & prediction of urban 

growth before and after improvements.   

• Demonstration of the application of CA-based improved SLEUTH model for the 

selected real urban area. 

 The Scope of the Work 

Above mentioned research objectives have been achieved through steps given below;  
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i. Literature review to understand the present state of knowledge, and to find out 

the research issues & challenges in LULC change, urban growth assessment and 

modelling, 

ii. Collection of spatial and non-spatial data from different sources required for 

parameterization of SLEUTH,  

iii. Preparation of land use/ land cover maps for different years through digital 

image processing of multi-spectral satellite images of different years, 

iv. Creation of GIS database for required explanatory variables of urban growth, 

v. Conceptualizations and parameterization of CA-based SLEUTH model, 

vi. Calibration of a model for the base case with existing SLEUTH model for the 

test case study area, 

vii. Sensitivity analysis of a model for the selected model input variables and 

constants like the cellular neighborhood, diffusive value parameter, a game of 

life rule threshold value, critical slope and self-modification parameters etc., 

viii. Development of additional capability in the  SLEUTH to estimate urban/ built-

up density,  

ix. Development of improved version of SLEUTH model by incorporating selected 

explanatory variables (if possible) into the algorithm to improve the 

performance of the model in simulating realistic urban growth,  

x. Comparison of model performance before and after improvements in simulating 

the urban growth of the selected area, 

xi. Demonstration of the application of improved SLEUTH model for simulating 

the urban growth of a real urban area.  

 Material and Tools to be Used 

Following tools and data has been used to achieve the stated objective. 

1. Multi-spectral remote sensing images for a number of years for the selected study 

area 

2. Survey of India toposheets 

3. Secondary data related to biophysical variables of the selected study area 

4. Demographic and socio-economic data 

Following tools will be used in the proposed research – 

• ERDAS Imagine and ArcGIS 
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• SLEUTH Model 

 Organization of Thesis 

The above mentioned objectives for the proposed research have been organized into ten 

chapters. The contents of each chapter are briefly described below: 

Chapter 2 presents the literature review to understand the present state of knowledge 

related to LULC change & urban growth modelling approaches, issues and challenges. 

Chapter 3 describes the profile of the study area which was selected to demonstrate the 

application of present research work. The collection of spatial and non-spatial data from 

different sources required for parameterization of SLEUTH in achieving the different 

objectives have been included in this chapter. The salient details of the input data have been 

described. Processing of input data and preparation of land use/ land cover maps for 

different years through satellite images have been described here. Creation of a GIS 

database for required explanatory variables of urban growth and preparation of various 

thematic layers required for the parametrization of the model has been presented in this 

chapter. 

Chapter 4 is devoted to the detailed methodology for fulfilling the individual objective of 

present research. Methodology for conceptualizations and parameterization of CA-based 

SLEUTH model, calibration of the base model with default model parameters, sensitivity 

analysis of crucial parameters of the SLEUTH model, development of SLEUTH-Density 

and SLEUTH-Suitability have been discussed. Further, the methodology used to compare 

the performance of different versions of the model has also been presented in this Chapter. 

Chapter 5 deals with the sensitivity analysis of a model for selected model parameters and 

constants like self-modification constants, critical slope coefficient, cellular neighborhood, 

Monte Carlo iterations, a game of life rules, etc. 

Chapter 6 presents the development of the SLEUTH-Density model which is capable of 

simulating the built-up density. Development of a built-up density algorithm, development 

of programming code and its integration with the existing SLEUTH code, program testing, 

and demonstration of application have been discussed in the chapter.  

Chapter 7 presents the development of SLEUTH-Suitability model which includes the 

development of the algorithm, programming code and its integration with the existing 

SLEUTH code, program testing, and demonstration of application have been discussed in 
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the chapter. Derivation of land suitability decision variable using the AHP method of MCE 

technique has also been discussed in this chapter. 

Chapter 8 describes the comparison of model performance before and after improvements 

in simulating the urban growth of the selected area. Demonstration of the application of the 

improved SLEUTH model for simulating the urban growth of a real urban area has also 

been presented in this chapter.  

Chapter 9 presents conclusions drawn from the present research work along with 

limitations of the study and future scope of the work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Prologue 

Land use/ land cover change and urbanization are one of the most important anthropogenic 

processes affecting terrestrial ecosystems, causing ecological disturbances, habitat loss, 

fragmentation and interaction with other components of global change (Syphard et al., 

2005, 2011).  More and more people are under the risk of such possible adverse impacts of 

LULC change and urbanization i.e., conversion of pervious surfaces into impervious in the 

form of developed land because of higher density of population in urban areas. Such 

adverse impacts are more pronounced and significant due to urbanization as compared to 

other land cover changes relatively. Urbanization is a very complex, dynamic, 

heterogeneous and stochastic process, where multiple factors are in play (Akin et al., 2014). 

Accurate monitoring, assessment, and prediction of such LULC transformations are very 

necessary to deal with their adverse consequences. LULC and urban growth monitoring, 

assessment and modelling are very necessary and vital for optimum land use planning, 

generation of different development scenarios, estimation of resource requirements for 

development needs in different scenarios, impact assessment and identification of 

adaptations for adverse consequences related to climate, urban heat islands, ecological 

disturbances, and the hydrological cycle.  

A number of approaches and methods have been developed for the assessment, 

monitoring and modelling of LULC changes and urban growth which include Machine-

Learning, Statistical, Cellular, Sector-based Economic, Spatially Disaggregate Economic, 

Agent-based and Hybrid approaches. Different approaches have their own framework to 

handle different types of drivers, variables, suitability and capability to handle complexity. 

There is no absolute agreement among users and the research community about the most 

appropriate approach. This chapter is aimed to understand and study the LULC change and 

urbanization processes, drivers & mechanism of urban growth, different modelling 

approaches & models to develop an appropriate model suitable in simulating realistic urban 

growth and its prediction by considering selected drivers in different socio-economic 

conditions. Different issues and aspects related to LULC change and urban growth 

modelling have been discussed in the form of representative case studies. First of all 
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different LULC change assessment & modelling approaches were discussed and their 

comparison has been made to ascertain different research issues. Then salient features of 

different type of models available to deal with LULC change and the urban growth 

phenomenon have been presented. Further, a detailed review has been done to ascertain the 

present state of the knowledge and research issues with respect to different aspects of 

LULC change and urban growth like Land use/ Land Cover Change and Urban growth, 

land use/ land cover change and urban growth drivers, cellular automata based modelling 

and land use/ land cover change assessment using remote sensing. 

2.2 LULC Change & Urban Growth Assessment & Modelling 

2.2.1 LULC change and urban growth modelling approaches 

Various LULC change and urban growth modelling approaches have been developed and 

reported in the recent past, which aimed to address the following questions; 

1. Which environmental, social and other variables contribute most to an explanation of 

land use/ land cover changes and urban growth — why? 

2. Prominent locations of getting change — where? 

3. The rate at which land use change and urban growth are taking place — how much? 

4. What would be the future pattern of land use/ land cover change and urban growth—

when? 

The standard LULC change and urban growth modelling approaches have been 

reviewed and reported in the literature extensively (Agarwal et al., 2002; NRC, 2015). 

Various approaches to LULC change as classified by the NRC (NRC, 2015) are – 

2.2.1.1 Machine-learning and statistical approaches 

Such approaches use observations of past land use/ land cover changes to calibrate 

parametric or non-parametric relationships between those changes and spatially and 

temporally specific predictors (Brown et al., 2000; Millington et al., 2007; Carlson et al., 

2000; Ray and Pijanowski, 2010). 

2.2.1.2 Cellular automata based approaches 

CA-based approaches integrate land use/ land cover suitability maps with neighborhood 

effects and information about the amounts of change expected to project future LULC 

changes (Wolfram, 1984, 1986; White and Engelen, 1993; Clarke et al., 1997; Clarke and 
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Gaydos, 1998; Wu and Webester, 1998; Batty, 2000; Verburg et al., 2002; Clarke, 2014; 

Clarke, 2017, 2018). 

2.2.1.3 Sector-based economic approach 

Sector-based economic approaches use partial and general equilibrium structural models to 

represent supply and demand for land by economic sectors within regions based on overall 

economic activity and trade (van Tongeren et al., 2001; Hertel et al., 2009; Palatnik and 

Roson, 2009; van der Werf and Peterson, 2009; NRC, 2015).  

2.2.1.4 Spatially disaggregated economic approaches  

Spatially disaggregated economic approaches involve development of structural or reduced 

form econometric models to identify the causal relationships influencing the spatial 

equilibrium in land systems (Bockstael, 1996; Chomitz and Gray, 1995; Nelson and 

Hellerstein, 1997; Irwin and Bockstael, 2002; Towe et al., 2008; Lewis et al., 2009; Lewis, 

2010; Newburn and Berck, 2011; Wrenn and Irwin, 2012; NRC, 2015).  

2.2.1.5 Agent-based approaches  

Agent-based approaches simulate the decisions and actions of heterogeneous land-change 

actors that interact with each other and the land surface to make changes in the land system 

(Schelling, 1971; Parker et al., 2003, 2004; Gimblett, 2002; Brown, 2006; Niazi and 

Hussain, 2011; Hatna and Benenson, 2012; Clarke, 2014).  

2.2.1.6 Hybrid approaches  

Hybrid approaches encompass applications that include different approaches into a single 

model or modelling framework (Hilbert and Ostendorf, 2001; Li and Yeh, 2002; Hurtt et 

al., 2006, 2011; NRC, 2015). The first five approaches are arranged roughly in order from 

least to most focussed on processes. The approaches that rely on data about land-change 

patterns, including Machine Learning and Statistical, and Cellular, tend to use land cover 

information from satellite imagery and relationships based on observed changes in the past. 

These approaches are useful for projecting observed LULC changes over short periods into 

the future but often have limited ability to evaluate conditions not observed in the past. The 

more process-based approaches, such as Sector-Based Economic, Spatially Disaggregate 

Economic, and Agent-Based approaches, make greater use of social science information 

about land-change processes. These approaches provide more realistic representations of 

the processes of change that can be used to evaluate a wider range of alternative futures, 
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but their calibration and validation is more challenging and may provide only qualitative 

information about possible future LULC change outcomes (Agarwal et al., 2002; Brown et 

al., 2000; NRC, 2015).  Machine Learning & Statistical and Cellular Automata based 

modelling approaches are most suitable for problem identification because they lack the 

richer structural detail about the process needed to evaluate the effects of changes in policy 

structure, they are easy to implement and can provide valuable descriptions and projections 

of patterns and trends. Agent-Based and Structural Economic approaches are useful for 

intervention design because they provide a means for exploring interactions in the land 

system and for assessing the possible effects of policies or decisions based on predictions. 

Once policies or decisions have been implemented, the after-effects of these 

implementations can be evaluated using reduced-form econometric models that compare 

observable outcomes either before and after the intervention or in an intervention area and 

a comparable location. Understanding the underlying structures, assumptions, and data 

requirements of different modelling approaches are critical for understanding their 

applicability for various scientific and decision-making purposes. Generalized 

characteristics of different above-mentioned modelling approaches have been compared 

and discussed in Table 2.1. 

2.3 Land Use/Land Cover Change and Urban Growth Models 

A variety of LULC change and urban growth models have been available and reported in 

the literature based on one or more approaches as discussed above. A detailed review of 

different LULC change and urban growth can be found in Lambin et al. (2000), Silva and 

Wu (2012); Gaunt and Jackson (2003), Lambin et al. (2000), Chang (2006), Clarke (2014), 

and NRC (2015). LULC change and urban growth models have been classified into 

different categories based on their capability, suitability and used modelling approach as 

presented in Table 2.2. In a study, Matthews et al. (2007) presented the complete review of 

different agent-based models suitable in modelling of LULC change and urban growth. The 

main advantages of this modelling approach are; individual decision-making entities 

capability and interaction among variables that make this approach more realistic and 

robust in nature. Different ABLUM’s (Agent-Based Land use Models) such as LUCITA, 

FLORES, GEOLP, SHADOC, SLUDGE, MEJAN, CORMAS, LUCIM etc. are there. 

Pontius et al. (2008) have also analyzed the 13 modelling applications using different 

models by comparing actual with modeled outputs.
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Table 2.1: Generalized characteristics of different modelling approaches 

Modelling 

Approach 

Pattern/ 

Process 

Land cover, 

Land use 
Key Assumptions 

Typical Data 

Requirements 
Recommended Uses 

Machine 

Learning 

and Statistical 

Pattern 

Land cover Strong stationarity 

LC maps from at 

least two-time points 

Some number of maps of 

predictor variable(s) 

Make forecasts of land cover patterns 

under stationarity, 

Extrapolating past patterns 

Cellular 
Land cover 

and land use 

Stationarity, 

Strong spatial control 

and/or interaction, 

No market interactions 

A land LULC map at some 

point in time, some number of maps of 

the predictor variable(s) 

Forecast land cover patterns, 

Evaluate changes in spatial controls 

without market feedbacks 

Spatially 

Disaggregated 

Economic 

Models 

Land cover 

Utility or profit 

Maximization, 

Price and/or spatial 

Equilibrium, 

Heterogeneous agents 

sometimes specified 

Data on LC at one or more point(s) in 

time; Economic and biophysical 

variables that influence land demand and 

supply; any other required instrumental 

variables 

Reduced-form models: 

Identify the causal effect of key variables 

on land change outcomes 

Structural models: Simulate effects of 

policy changes on land market outcomes, 

including changes in prices and land use 

patterns 

Sector-Based 

Economic 

Models 

Process 

Land cover 

Heterogeneous agents 

sometimes specified, 

Utility or profit 

Maximization, 

Price equilibrium 

Representative agents 

Economic variables that 

influence aggregate demand and supply 

including prices of commodities and 

values of trade at a regional or country 

scale 

Forecast aggregate land 

changes under a variety of market-based 

changes that can affect demand and 

supply 

Agent-Based 

Models 

Land cover 

and land use 

Usually heterogeneous 

Agents, 

Variable interactions 

among agents 

Data describing characteristics of agents, 

Qualitative or quantitative 

data on decision processes, 

Data on land use or land 

cover at some point(s) in 

time 

Explore land change processes, often 

under stylized conditions; Explore the 

effects of exogenous change on a system, 

where it has not happened; Explore future 

scenarios where past patterns may be poor 

indicators of future outcomes 
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Table 2.2: Classification of LULC change and urban growth models       

(Source Lambin et al., 2000) 

What is 

already 

known on 

LUCC 

What one needs to 

know on LUCC 

Model 

category 

Modelling 

approach 

Where and 

when 

in the past 

When in the future 

(short-term) 
Stochastic 

Transition probability 

models 

Why in the past 

(proximate causes) 

Where in the future 

(short-term) 

Empirical, 

statistical 

Multivariate statistical 

modelling, 

Spatial statistical (GIS-

based) models 

Where, when 

and 

why in the past 

When in the future 

(long-term) 

When and where in 

the future (long-term) 

Process-based, 

mechanistic 

Behavioral models and 

dynamic simulation 

models, 

Dynamic spatial 

simulation models 

Why in the future 

(underlying causes) 

Why in the future 

(underlying 

causes; scenarios) 

Analytical, 

agent-based, 

economic 

Generalized von Thünen 

models, 

Deterministic and 

stochastic, optimization 

models 

Out of 13, 12 applications were found to have errors in modelling results. The study 

explained that validation is a very important phase for any modelling application. In the 

present study, a detailed comparison of different models using different approaches has 

been presented in ANNEXURE I. 

Further, the important LULC changes and urban growth models have been discussed in 

subsequent sections. 

1. Empirical Statistical Models 

2. Stochastic Models 

3. Optimization Models 

4. Dynamic Process Based Simulation Models 

5. Cellular Automata based Models 

6. Integrated Model 

2.3.1 Empirical statistical models  

Empirical, statistical approaches are used to establish a relationship between LULC change 

or urban growth and their explanatory variables. Relationships are derived empirically by 
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fitting statistical data to assess LULC change and urban growth explicitly. The multivariate 

analysis builds the relationship between explanatory variables of LULC change for 

potential contributions of empirically-derived growth rates. Multiple linear regression, 

logistic regression, multinomial regression, logit regression etc. are the popular techniques 

used for this purpose. The statistical relationship does not establish a significant causal 

relationship. The regression model that fits well for the coefficient ranges may poorly 

perform outside that region, therefore, models cannot be used for long-term predictions. 

This type of approach is better suited for analyzing land use change and urban growth 

patterns on the basis of historical data only, no further dynamism is considered, in most 

studies, this is not valid. Some of the empirically fitted models are PLM, CLUE, CLUE-

CR, and DINAMICA (Wang and Zhang, 2001; Verburg et al., 2006; Mas et al., 2012; Xu 

et al., 2013; NRC, 2015). 

2.3.2 Stochastic models 

LULC change and urbanization is a very complex process, heterogeneous and stochastic in 

nature. Such stochastic modelling approaches mainly incorporates transitional probabilities 

for each cell of land use/ land cover / urban growth and the decision of transition are based 

on a stochastic variable e.g. random number. The transition probabilities are measured by 

some statistical means, which determine changes from one LULC class to another. Such 

approaches are useful for top-down relationship based applications where impact 

assessment is an issue of concern. Effect of one variable on the phenomenon based 

relationship can be effectively developed by such approaches. Transition probability-based 

approaches are limited to their application as an intensification of LULC change cannot be 

determined by the method because it is purely based on recent past data only. However, for 

incorporating intensification into stochastic models some efforts have been made such as 

spatial diffusion models, which do appear to be effective on land use change intensification. 

Some of the empirically fitted models are CURBA, LUCUS, SimLand, and CUF (Landis 

et al., 1998; Landis and Zhang, 1998; Berry et al., 1994, 1996; Irwin et al., 2001; Silva and 

Wu, 2012; NRC, 2015). 

2.3.3 Optimization based models 

Optimization techniques are used to determine the optimum combination of explanatory 

variables and their value ranges to explain the LULC and urban growth phenomenon. 

Optimization techniques like linear and non-linear programming apply at the general 
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equilibrium, micro scale & macro scale and generally incorporated into economic models. 

In various applications such as a parcel of land given with its attributes and location then 

highest earned rent can be estimated using this approach. This modelling approach allows 

investigating the influence of various policies on LULC change and urban growth. It can 

be used for land allocation for optimal crop production. This modelling approach may 

suffer from the discretional definition of objective functions and non-optimal and 

ambiguous behavior of people such as differences in values, culture, and attitude. However, 

at a generalized level, this can be underestimated but are likely to be significant as one 

looks at small or fine scale LULC change processes. FASOM is an optimization-based 

model (Alig et al., 1997).  

2.3.4 Dynamic (process-based) simulation models 

These models are based on the interaction of socio-economic and biophysical processes. 

Change in LULC patterns with time and space is determined by these processes. The 

dynamic process-based simulation models incorporate the interaction among all 

components to develop a spatially explicit dynamic system. The complex aggregate system 

is formed by combining small chunks of analysis using differential equations. The prior 

understanding among variables is developed before simulation. This modelling approach 

is more powerful in establishing the relationship among variables and simulating the 

dynamic behavior of the system. The relationship cannot be built into the system in a 

straightforward way. For analyzing LULC change and urban growth it is complex as 

numerous interactions among variables take place. PRISM is an example of a process-based 

model (Alberti and Waddell, 2000; NRC, 2015). 

2.3.5 Cellular automata based models  

Cellular automata (CA) is a cell-based framework which includes cell states, transition 

rules, finite discrete cells, and neighborhood. CA-based models are very effective for 

addressing LULC change and especially urban growth. Urban growth is a dynamic and 

complex phenomenon and CA includes the capability to model a complex phenomenon in 

an easy and effective manner. It is difficult to simulate human behavior which is a very 

important variable which can be simulated using CA only. The integration of CA and 

Agent-based methods would be an effective approach in the field of LULC change and 

urban growth modelling. DUEM, CVCA, LOV, SLEUTH and LUSD are the examples of 

cellular automata based models (Clarke et al., 1997; Clarke and Gaydos, 1998, Batty et al., 
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1997; White, R. and Engelen, 2000; Silva, 2003; Silva et al., 2008; Kumar et al., 2011; 

Clarke, 2017, 2018). 

2.3.6 Integrated models 

Above discussion gives a straight forward classification of the various types of LULC and 

urban growth modelling approaches. The recent advancement includes the integration of 

more than one approaches for providing added attributes to the LULC change and urban 

growth modelling. Such modelling approaches are used where spatially explicit interaction 

and dynamic behavior including long-term prediction is required. It is very complex to 

hybrid two different modelling approaches for a large landscape as a number of interactions 

hugely increases. LUSD, SimLand, UrbanSim are integrated models (He et al., 2005, 2006; 

Wu, 1998; Waddell, 2000, 2002; Waddell et al., 2003; Duthie et al., 2007; Hepinstall et al., 

2008; Wang et al., 2011; NRC, 2015). 

The detailed review of the literature has been done for below-mentioned classes with the 

help of representative reported case studies 

i. Land use/ land cover change and urban growth assessment,  

ii. Land use/ land cover change and urban growth drivers 

iii. Cellular Automata based LULC change and urban growth modelling 

iv. Land use/ land cover change using remote sensing 

2.4 Land Use/ Land Cover Change and Urban Growth Assessment 

Gottmann (1957) explained the geography of megalopolis cities in detail by considering 

various social aspects of the present time. The urbanization has been increased especially 

in bigger and metropolitan cities in last few decades which tends to increase the number of 

industries, organizations, institutions, and hospitals. The study was found useful in 

improving the management of the complex process of urbanization. 

Lambin et al. (2001) discussed the opportunities and constraints derived by local as well as 

national markets and policies with respect to the LULC change and urban growth. The 

global forces become the main determinants of land-use change and economic 

opportunities. 
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Shen et al. (2001) discussed that an effective urban land use and regional planning are 

essential for the development of society. 

Couclelis et al. (2005) discussed various approaches, methods, and techniques to model 

urban growth such as agent-based, cellular automata, rule-based, neural network and logit 

modelling methods are available. Authors outlined the need for urban growth monitoring 

and modelling and found it to be very useful in the planning of urban land use scenarios, 

resources, land use, and budget and policy making etc.  

Jabareen (2006) analyzed different forms of sustainable urban growth along with models 

and theoretical concepts. A compact city, Neo-traditional development, Eco-city, Urban 

containment are the sustainable urban forms which have been discussed in this study. 

Moreover, compactness, sustainable transport, density, mixed land use, diversity, passive 

solar design, and greening are considered design concepts or urbanization drivers. 

Chu et al. (2010) have presented two empirical simulation methods such as ANN and 

Logistic Regression and used them to simulate land use change by incorporating ANN and 

Logistic regression in the CLUE-S i.e. Logistic CLUE-S and ANN CLUE-S models to 

predict the land use changes. The authors have also discussed various modelling approaches 

to land use change such as stochastic models, optimization models, dynamic process-based 

simulation model, cellular automata and empirical- statistical model. The authors have 

validated model results with respect to the landscape metrics and kappa coefficients. The 

study reveals that the ANN CLUE-S has a higher probability of generating accurate 

simulation and results are more accurate as compared to the Logistic CLUE-S model. Also, 

the urbanization demand was estimated in two ways i.e. CA-based SLEUTH model and 

Markov chain method. The study shows that CA-based SLEUTH model is more 

appropriate to calculate demand which further leads to the prediction of land use change 

using CLUE-S. In further research, a number of land use change models in place of 

SLEUTH and Markov model can be integrated to improve the performances of CLUE-S.  

Lambin and Meyfroidt (2011) stated that economic globalization combined with the 

looming global land scarcity increases the complexity of future pathways of land use 

change. Predictions of the expected land use impact of national policies have become more 

uncertain. The study analyze the land use change impacts on the environmental ecosystem, 

climate change, and global warming. 
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Gould et al. (2012) provide a comprehensive review of land use, land cover, population 

dynamics, and land-cover change processes. Population density and land use/ land cover 

change have been correlated to understand the complex phenomenon of urbanization. 

Rimal (2012) utilized GIS and Remote Sensing techniques to figure out the transition of 

land use classes. Change detection has been analyzed using different satellite imagery. A 

post classification comparison method was used to analyze the change detection. Lang 

(2012) explained the understanding of urban resilience in the perspective of socio-

economic crisis by urban change and determined it as a completely theoretical process of 

understanding.  

Chaudhuri and Clarke (2015) coupled the land use and road networks on the spatiotemporal 

dynamics of land use changes. The effect of road networks on land use change was analyzed 

using graph theory indices method. The comparative analysis of the overall results for 

Pordenone and Gorizia revealed that an unstable and vulnerable political environment in 

the historical past of an urban area does make a difference in the development of the road 

network and in land use change over time. 

Price et al. (2015) analyzed the urban sprawl effects i.e. urban heat island (UHI). The study 

reveals that due to excessive urban growth, the urban heat island effect is increasing. 

Qin et al. (2015) determined the 3D urban morphology by using geo-spatial techniques. 

The weighted average height of the buildings, volume of buildings, 3D expansion intensity 

and 3D fractal dimension were used to quantify the 3D urban morphology.  

Van Vliet et al. (2016) found that statistical analysis and automated procedures are the two 

most common calibration approaches in LULC change modelling, while expert knowledge, 

manual calibration, and transfer of parameters from other applications are less frequently 

used.  

2.5 Land Use/ Land Cover Change and Urban Growth Drivers 

Schelling (1971) explained that urbanization is a complex phenomenon to understand and 

depends on many variables such as transportation, facilities, social factors, and economic 

factors. 

Clark (1991) has refined the understanding of residential preferences and find out that 

neighborhood is one of the major explanatory variables. However, neighborhood possesses 
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some empirical phenomena like racial preferences, choices, and patterns. Survey analysis 

towards such issues have been plotted on curves and Clark analyzed the preferences and 

choices of residents. Authors have suggested a study of some more exploratory variables 

for analyzing residential choices. 

Knox (1991) has explained the relationship between landscape change with economic and 

socio-cultural change. The integration of land use and transportation models has been done 

to analyze the impacts of land use on transport by considering various driving factors. Some 

deriving forces such as human behavior (how people will change with their location and 

mobility according to land use policy, transportation costs etc.) were included in the 

decision making of the model. The human-induced decisions are implemented by using 

mathematical and logit based models.  

Serneels (2001) incorporated multiple driving forces of LULC change using the multiple 

logistic regression method in the simulation process. The study is able to determine the 

effect of various driving forces such as distance to road, distance to market, distance to 

river, population density, slope, elevation, intercept, soil suitability, distance to water, 

distance to village etc. on LULC change. However, LULC change predictions have not 

been done in the study.   

Veldkamp and Lambin (2001) discussed the contributing factors of urban growth like 

biophysical factors such as slope, soil type, and altitude. Socio-economic drivers were also 

found to be playing an important role in LULC change e.g. international environment treaty 

such as the Kyoto protocol may drive significant changes in determining land use land 

cover change. However, incorporating socioeconomic and political drivers into LULC 

change assessment may be hampered by a lack of spatially explicit data.  

Kok (2001) analyzed the influence of urbanization drivers on LULC change and 

urbanization. Influence of a number of drivers was studied and presented which includes 

the influence of  population density, distance to city, distance to roads; bio-physical drivers 

such as topography, elevation, slopes, soil types; climatic drivers such as climatic 

variability, life zones; political drivers such as land redistribution programs park protection, 

subsidy system; economic variables such as land tenure, farm size, income, distance to 

market; social drivers such as tradition, status, education; miscellaneous drivers such as 

diseases, civil war; physical conditions like topography, slope, soil, and rivers in the valley; 

public service accessibility: services available to the desired location such as, 
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transportation, electricity, education, drinking water, health services, commercial services, 

waste disposal, open spaces and recreation facilities; economic opportunities: high paying 

jobs, business opportunities in tourism, finance industry, education, health, wholesale and 

retails; land market: local people, land broker and real estate developers; population 

growth: high population influx; political situation; plans and policies: effectiveness of 

zoning, land reforms, land pooling, guided land development, economic and investment 

plans. Few drivers have been found to have significance as compared to others. 

Serra et al. (2008) assessed the LULC change as a function of biophysical and human 

factors. A logistic regression method has been studying the influence of different drivers as 

independent variables. Data from various sources were used for modelling, calibration, and 

validation of an urban growth model. Effect of different bio-physical, social and 

infrastructure driving factors (digital elevation model, slope map in percentage, distance to 

rivers, distance to industrial estates, distances to five urban centers. distances to highways 

and major roads, distances to the ring road, distances to feeder roads, distances to existing 

built-up surfaces and annual population growth rate) on the LULC change and urban 

growth was studied. To check the effect of each variable, the weight of evidence method 

has been used. Model results were validated using overlaying analysis and FOM (figure of 

merit) ratio. 

Bürgi and Turner (2002) have explored the contribution of various causative factors in 

changing the LULC. A multivariate linear regression method has been used with three 

abiotic and two socio-economic variables. The effect and importance of different driving 

factors for the study area have been determined. The study may be useful for analyzing 

anthropogenic relationships with cultural landscape change. 

Park et al. (2012) examined the role of topographic, geographic and social environment 

factors in urbanization. The Frequency Ratio (FR), Analytical Hierarchy Process (AHP) 

and Logistic Regression models (LR) have been used to quantify the effect of urbanization 

drivers into LULC change and urban growth. Also, future prediction for urban growth has 

been done. All three methods showed similar accuracy in urban growth simulation. 

Gharbia et al. (2016) analyzed LULC change using an integrated approach of CA and GIS. 

The study incorporates biophysical factors such as slope, proximity, population density, 

transportation and distance to the main road into the assessment process. The suitability 

maps were generated in the form of a restricted layer. Influence of urbanization drivers was 
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considered in the form of weights which were calculated by overlaying different maps on 

LULC maps. Nearest neighbor transition rules were also used in the study. Also, validation 

has been done by calculating kappa coefficients and overlaying the simulated maps over 

the actual land use maps. 

2.6 Cellular Automata based LULC Change and Urban Growth Modelling 

Wolfram (1984) stated that cellular automata is a very effective approach to modelling and 

simulating the behavior of changing patterns in various fields. The simulation includes the 

transition states of each cell at the end of every time state and the transition is determined 

by neighborhood states of each cell. However, its complexity increases with the increase in 

the size of cellular automata.  

White and Engelen (1993) discussed the evolution of simulation of fractals of urban areas 

using DLA (disaggregated land analysis) and CA. The CA is very much efficient in 

producing the real pattern of complex urban dynamics as complexity is a necessary 

behavior of cities. 

Batty and Xie (1994) stated that cities should be understood in terms of their local 

properties. The more local characteristics are involved the better the understanding of cities 

would be. This idea illustrates that local characteristics / variables of cities such as distance 

to roads, distance to city center and neighborhood would lead to the understanding of the 

global phenomenon. The CA provides insights into simulating the urban systems rather an 

alternative approach, it was used to represent cities as cells in this study for the very first 

time. The game of life rule was used in making a decision of state transition of cells. The 

study elaborates the performance of cellular automata in land use change modelling and 

also how the game of life proceeds for capturing urban patterns. Some issues related to 

urban growth simulation were flagged out in this study such as; it is important to understand 

the urban system at their local scale first to completely portray the global pattern of the 

urban system. But, it is very unlikely to include local scale phenomena into the study. 

Therefore, the value of this approach lies in focusing our attention on the understanding of 

urban patterns at a different scale. Also, the urban automata were in the form of 

undeveloped and developed, only two cell states and many states and extensions are needed 

to embrace into the urban CA. 
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Portugali and Benenson (1995) claimed the city as a complex, open and self-organized 

structure described on a cell space. The central property of a self-organizing system is 

uncontrollable by any of the factors such as economic, social and political.  

Clarke et al. (1996) described the extension of traditional cellular automata into self-

modifying cellular automata for urban growth simulation. Self-modification rules of 

cellular automata allow incorporating other growth influential variables into the model such 

as economic growth variable and global average temperature. Animation, description, and 

prediction strategies were used to analyze urban growth. The animation is used to analyze 

regional urban change, further which helped in analyzing natural and human-induced urban 

growth influencing factors. Model replications produced during the calibration phase have 

been used in predicting future urban growth. Self-modifying CA has made this study more 

valuable as now the S curve growth could be analyzed which was not possible in traditional 

CA. 

Batty et al. (1997) described the origin of cellular automata and game of life theory. CA 

and game of life theory were successfully implemented in an urban system using 

computational technologies. The game of life theory was first given by Von Neumann. 

Batty (1997) conceptualized the urban system simulation and replaced the mathematical 

model by the rule-based model. After knowing the relationship between cells and urban 

state transition, the first time urban system was implemented on a cell basis using cellular 

automata. A generic form of cellular automata for the urban system was described including 

a cell’s neighborhood, transition rules, and cell’s state. Some issues were flagged out such 

as; spatial interaction is important to understand the real and possible patterns of urban 

change. Also, it is important to understand the relationship between fractal dimension and 

density. Dimension and density both are different terms and produce different urban 

patterns. Fractals are basically identified by fragmented and outskirts growth and density 

indicate growth around urban centers.  

Batty and  Xie (1997) stated that understanding of the urban system is not only about 

simulating real patterns of urban phenomenon however, it is also about identifying potential 

or possible patterns of urban growth. This study includes the analysis of different urban 

forms using cellular automata. Aerial and linear growth models were separately developed 

for the urban system and then combined for getting integrated urban forms. The elementary 

urban automata were developed which included neighborhood game of life rule and 
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transportation networking link into the model. A road pixel was identified near an urban 

pixel randomly and neighboring pixels of that road pixel were analyzed for possible 

conversion of state of that neighboring pixel. The elementary urban automata are very much 

similar to the SLEUTH model developed by Clarke et al. (1997) but some extensions were 

embraced in the SLEUTH model. The transportation network was included in the form of 

weights to analyze possible urban growth near road side areas. The slope in percentage 

layer was included for providing topographic suitability factor into the model. Land use 

maps were used for providing land use change (for non- urban classes as well), the 

exclusion layer for providing restrictions on cells for not being transitioned into another 

class. Moreover, five growth coefficients i.e. diffusion, breed, spread, road gravity, and 

slope resistance were used in making decisions of a cell’s state change.  Although, the idea 

of SLEUTH was first conceptualized by elementary urban automata only. 

Clarke et al. (1997) presented cellular automata based urban growth model to analyze 

human-induced land use transformation. The urban growth model (SLEUTH) uses five 

growth controlling factors; diffusion, breed, dispersive, road influenced and slope resistant 

coefficient. Urban growth has been simulated through four growth rules; spontaneous, 

diffusive, organic and road influenced growth rules. In addition to these, the second level 

of growth rules called self-modification rules are also used to control the linear and 

exponential growth behavior of the model was included into the model.  

Takeyama and Couclelis (1997) introduced the concept of spatial dynamics by integrating 

GIS and CA with geo-algebra. The technique provided useful static, dynamic behavior into 

the modeling framework. Also, it proved effective in forming the complex spatial dynamics 

behavior of urban dynamics. The additional features such as multi-layer interactions and 

the inclusion of external input map layers can be consistently incorporated into map 

dynamics. An interactive map dynamics opens up the possibility of integrating into GIS 

new kinds of phenomena and behaviors such as design, learning, and gaming. 

Park and Wagner (1997) have coupled CA with GIS to provide an increased ability for 

dynamic spatial modelling in GIS. GIS suffer from poor handling of dynamic spatial 

modelling and temporal dimension.  

Wagner (1997) explained the limitation of GIS that it cannot handle temporal dimensional 

behavior and many numbers of variables. So, by integrating GIS with CA these limitations 
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can be overcome. Since GIS and CA have many similarities so, transition rules, 

neighborhood rules etc. can be implemented easily. 

White et al. (1997) specified that cellular automata are able to give a complex spatially 

detailed representation. The study is able to produce real patterns of urban growth and 

sensitivity analysis (by varying the number of iterations.) shows the reproducibility of the 

outcomes. Site characteristics, transportation network etc. variables were introduced into 

the study. 

Clarke and Gaydos (1998) have calibrated and predicted the urban growth of two study 

areas; San Francisco Bay area and Washington D.C./Baltimore using SLEUTH. The spatial 

and statistical measures were computed and compared for these areas. Pearson’s r-squared 

for urban pixels, Pearson’s r-squared for urban edges, Pearson’s r square for urban clusters 

and LeeSallee shape index were computed for statistical analysis and validation of 

calibration and urban growth prediction. 

Wu (1998) developed a prototype of a simulation model, SimLand, based on cellular 

automata (CA), multi-criteria evaluation (MCE) and integrated with GIS to simulate land 

conversion in the urban-rural fringe. In the study, MCE is not used to provide an optional 

solution to the land allocation problem, rather, it is used to mimic how land development 

potential is evaluated via the tradeoff of multiple developmental factors. A method, 

analytical hierarchy process (AHP) of MCE, is used to derive behavior-oriented rules of 

transition in CA. Simulation schemes of the model were a projection of land demand, 

identification of development factors, and preparation of development preference. 

Brown et al. (2000) included the Markovian transition probability method to simulate the 

historical trend. To simulate more realistically it is important to include restrictions on grid 

cells. But the Markovian method assumes that the system is spatially and temporally static. 

This study attempts to include socio-economic and bio-physical restrictions on grid cells 

as land use change is spatially and temporally dynamic in nature. Also, it leads to a more 

realistic simulation and prediction of urban change. 

Silva and Clarke (2002) calibrated the SLEUTH for two Portuguese cities; Lisbon and 

Porto and demonstrated the detailed and exhaustive calibration process to improve the 

performance of SLEUTH. Major findings of the study were, first, up to what extent the 

resolution for spatial data be improved, second, how we can improve the accuracy of spatial 
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data which is a major part of a SLEUTH calibration process that will definitely improve 

the performance of the urban growth model. Increasing the number of Monte Carlo 

simulations will make the model more sensitive to local conditions. Additionally, 

narrowing down the coefficient ranges may fit the spatial data to model data in a more 

realistic way. Third, cluster computing would also be a good approach for reducing 

computation time. 

Wu (2002) has demonstrated the use of stochastic cellular automata to determine the rural-

urban land conversion. The initial probability of land use change simulation has been driven 

by observed sequential land use simulation data. Furthermore, initial probability has been 

updated dynamically by incorporating local characteristics of land use in the form of 

strength of neighborhood development. Consequently, integration of global- static and 

local-dynamic factors have been used to produce a more realistic pattern of landscape 

change.  

Xiang and Clarke (2003) explained that scenario building is a major part of land use 

planning which leads to the sustainable planning of a city. 

Dietzel and Clarke (2004a) have shown the robustness of the SLEUTH model for urban 

growth simulation and LULC change analysis. The study shows that the SLEUTH model 

replicates the land use patterns in a better way both spatially and temporally. In this study, 

the LULC change has been handled by Deltatron model. 

Dietzel and Clarke (2004b) have investigated the effect of the spatial resolution of the input 

data sets on SLEUTH calibration and urban growth prediction. SLEUTH was 

parameterized, calibrated and growth was predicted and compared with input data of three 

spatial resolution. No significant difference has been observed in SLEUTH calibration and 

prediction performance except computational time, more time is required with finer 

resolution data. 

Solecki et al. (2004) analyzed the impact of LULC change on climate using the cellular 

automata based SLEUTH model. First of all, UGM and LCDM model of SLEUTH was 

calibrated and validated for the study area then some modifications into the source code 

were made to analyze the change on climate in term of surface albedo and soil factors. 

Herold et al. (2005) have described the role of spatial metrics in the field of land use change 

and urban growth modelling by integrating remote sensing and spatial metrics together. 



36 

 

The study shows that spatial metrics are very helpful in analyzing the spatial and temporal 

change of urban growth quantitatively. Also, it is utilized in the calibration and validation 

of the urban model. The hybrid approach of remote sensing, spatial metrics, and urban 

growth modelling is very promising in analyzing urban growth and LULC change. 

However, it is in its early phase, depends on the accuracy of spatial metrics so, further 

improvements will be required in the future. Also, the present research is needed to be 

tested for different geographical scales. 

Jantz et al. (2005) discussed the influence of spatial resolution and geographical extent on 

urban growth using the CA SLEUTH model. A detailed sensitivity analysis was carried out 

by simulating the effect of varying the cell size on urban patterns and growth. The 

resampled input data at different resolution (45m, 90m, 180m, and 360m) were used for 

exhaustive calibration and sensitivity testing. The study concluded that urban growth is 

affected by spatial resolution. 

Xian and Crane (2005) presented the use of sub-pixel imperviousness for land use change 

simulation. Sub-pixel imperviousness provides the spatial heterogeneous characteristics of 

land use change. This was later used in SLEUTH model to simulate the urban growth 

pattern in a more realistic way for future prediction of urban growth. 

Dietzel et al. (2005) provided empirical evidence to the dynamism of urbanization using 

landscape metrics calculated using FRAGSTATS. Also, results were compared with the 

results of the SLEUTH urban growth model. 

Goldstein et al. (2005) attempted to measure the optimal number of Monte Carlo iterations 

required for SLEUTH model calibration. The two metrics used for measuring the change 

in performance of model calibration for a different number of Monte Carlo iterations i.e. 

OSM (Optimal SLEUTH Metrics) and MCAWS derived diversity metrics. The exhaustive 

analysis of Monte Carlo runs for the calibration phase of the SLEUTH model reveals that 

10 to 25 number of Monte Carlo runs would be required for the optimal calibration of the 

SLEUTH model. 

Syphard et al. (2005) have forecasted the effects of urban growth on habitat pattern in 

southern California. The principal drivers of land use change considered in the study were 

population growth and economic expansion. The CA model has been calibrated using 

historical growth and urban growth was predicted for three urban growth scenarios from 
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2000 to 2050 with development prohibited on slopes greater than 25%, 30%, and 60% 

slope. 

Batty (2005) demonstrated the inclusion of agents and cells in simulating the patterns of 

city change in different modelling approaches. The study comprises a thorough review of 

different modelling approaches at different scales such as mesoscale, micro, and macro 

scale. The three driving factors were considered most important for identifying potential 

change i.e. employment, distance, and population. The study revealed that CA and agent-

based models are capable of implementing fully policy-based applications which are very 

limited in present time. Also, as the scale gets finer the number of agents and cells 

eventually increases which somehow increases the complexity of the model. The biggest 

problem common in all models is their lack of parsimonious nature. The richness of input 

data makes the calibration phase complex and prediction accuracy on the basis of past 

simulation is hard to validate. 

Caglioni et al. (2006) have investigated the sensitivity of parameters used in the SLEUTH 

model such as the diffusion coefficient, breed coefficient, spread coefficient, slope resistant 

and road gravity coefficient. The study performs the sensitivity analysis of SLEUTH model 

parameters by increasing and lowering the values of parameters to analyze the effect on 

landscape change. The study reveals that diffusion, breed, and spread are interrelated with 

each other. So, the individual performance of each growth type is difficult to interpret and 

therefore, only the reproduction of overall growth complexity can be observed. It shows 

that an increase in the spread coefficient by keeping lower values of breed and diffusion 

coefficients leads to forming high growth clusters. On the other side, by increasing the 

breed coefficient urban growth increases exponentially and linear growth takes place. 

Increasing diffusion value also leads to an increase in growth similar to the increased breed 

coefficient but with a lower rate. Road coefficients lead to the growth along road side areas. 

Self-modification growth rule is embedded into the model to control the linear and 

exponential growth.  

Li and Liu (2006) introduced an extended method of cellular automata (CA). Rule-based 

CA has been widely used to simulate urban growth. But there is a limitation in rule-based 

CA that it is unable to include local characteristics for a large complex region. For 

overcoming this limitation of rule-based CA an extended form of rule-based CA has been 

proposed in the present study i.e. Case-based Reasoning (CBR). The commonly used k-NN 



38 

 

algorithm of CBR has been modified to include the location factor which reflects the spatial 

variation in transition rules. 

Dietzel and Clarke (2006a) have worked on two types of model for calibrating and 

predicting urban growth. Calibration of urban growth was done by using urban/ non-urban 

classed data model and generated metrics which were used to predict urban growth. On the 

other side, calibration of urban growth was done using a disaggregating land use classed 

data model and by generating statistical metrics which were used to predict urban growth. 

The study shows a large difference in the statistical metrics calculated for the two different 

models. Also, there is much difference between both urban areas calculated from the two 

models. The reason for this huge difference in an urban area could be; in urban/ non-urban 

classed model urban is spreading outwardly from the existing urban centers or urban edges 

while in disaggregated land use model, the non-urban area is classified into various classes. 

So, there is a huge probability of transforming disaggregated classes into urban areas. 

Dietzel and Clarke (2006b) studied the model performance using the SLEUTH model with 

different operating systems such as Linux, Solaris, and windows. The study shows that the 

model is computationally efficient in Linux and Windows environment as compared to its 

native UNIX/ Solaris environment as faster processors are available in Windows/ Linux. 

Gazulis and Clarke (2006) have investigated the performance of the SLEUTH model for 

its data independency and growth behavior. The temporal sensitivity, data sensitivity, and 

effects of resolutions are highly recommended for future research. 

Clarke et al. (2007) presented a review of SLEUTH model applications for different cities 

worldwide and shared the different issues and challenges. This include; SLEUTH is a 

portable model which is globally acceptable as it has been applied in various continents 

and nations already. Increasing the spatial resolution of input dataset leads to more 

promising results and makes the model more sensitive towards local characteristics. 

Applying multistage brute force calibration is helpful for determining best fit coefficient 

values. Also, the parameters derived from the model can be compared with other model 

parameters which may lead to the foundation for understanding a complex growth system. 

SLEUTH can be coupled to combine different applications on the same platform. 

Moreover, it can be used to provide exploratory visualization. An important step was taken 

towards improving the computational time by Silva and Clarke, (2002). The study suggests 

that multi-dimensional sensitivity testing would be needed to analyze the performance of 
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SLEUTH in the near future. Moreover, issues related to the number of Monte Carlo 

iteration and robust sensitivity testing of input dataset scale, number of input data layers, 

parameters ranges, and different parameters like critical slope etc. would be required in the 

future. 

Dietzel and Clarke (2007) presented a composite goodness of fit landscape metric i.e., OSM 

(Optimal SLEUTH Metric) judging the calibration performance of SLEUTH.  The seven 

metrics were decided by plotting the relationship curve, the metrics with higher influence 

were chosen to combine with OSM. Fmatch was also included with OSM in case of land 

use change modelling. 

Hu and Lo (2007) compared the performance of a logistic regression based LULC change 

method and the CA-based SLEUTH model. The logistic regression is not temporally 

explicit and does not determine when the urban growth will take place. Authors have 

concluded that a specific resolution dataset is not able to produce all information about 

heterogeneous growth.   

Clarke (2008a) discussed the LULC change mapping using the SLEUTH model. SLEUTH 

has two modules i.e. UGM (urban growth model) and LCD (Land cover Deltatron model). 

The author has presented the various applications of the model. The study explains why 

LCD has not been widely applied in contrast to UGM in various applications. Performance 

of LCD module was examined by testing its performance with respect to two data sets. The 

LCD produced linear transition matrix which further needs to produce non-linear behavior 

as well. Also, inaccurate maps, misclassification and inconsistencies with the class 

definition is a serious problem of LCD. 

Clarke (2008b) has described the cellular automata approach for land use change 

modelling. The extended CA has been recently developed in various application of land 

use change modelling. The study reveals that cellular automata can be integrated with 

agent-based modelling to improve the functionality and prominent outcomes. 

Silva et al. (2008) integrated an ecological model with SLEUTH to investigate sustainable 

urban growth scenarios. CVCA is countervailing cellular automata model. It uses a set of 

landscape ecological strategies to counteract the urban growth at good to grow areas. The 

CVCA model requires the same input files as the SLEUTH model such as slope, land use, 

urban, transportation, and hillshade and excluded map. However, the excluded map is 
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different from the SLEUTH as the area is not restricted here to get urbanized as in SLEUTH 

model but the meaning is different here in CVCA. The outputs of CVCA are the same as 

in SLEUTH model but four more output classes are generated in CVCA such as protective, 

offensive, defensive, opportunistic and let it grow that matches five landscape planning 

strategies. 

Fan et al. (2008) presented a study of LULC change analysis and prediction using GIS and 

remote sensing. The study includes the use of multi-temporal satellite data which is 

classified into a number of land use classes then change detection from the base image is 

performed using a post-classification comparison method. Markov chain modelling was 

used to determine the transition probabilities of land use change classes, which assumes 

some predetermined stochastic variables. The Markov chain based modelling approach has 

some limitations like it does not consider exogenous and endogenous variables.   

Wu et al. (2009) analyzed the performance of the SLEUTH model with respect to three 

different methods i.e. ROC (Relative Operating Characteristic) method, Multiple 

Resolution Budget method, and landscape metrics. The study reveals that there are much 

fewer limitations of the SLEUTH model in the prediction of urban growth. First, the model 

is more focused on simulating edge growth and limiting the ability of simulating other 

urban growth. Second, the model is very time consuming and a different number of Monte 

Carlo simulations produces different statistical metrics which leads to different ranges set 

for the start step stop values for the calibration. Third, the metrics selection and deciding 

ranges for the simulation is user dependent which can falsify the prediction of urban 

growth. Fourth, it does not incorporate other driving factors of urban growth such as socio-

economic factors which can improve the performance and real forecasting of urban growth. 

Guan and Clarke (2010) developed a general purpose pRPL with any arbitrary 

neighborhood algorithm to parallelize raster processing so that non-specialist GIScientists 

can use SLEUTH for urban growth simulation. pRPL accepts multilayer algorithms which 

are common in geospatial applications nowadays. pRPL includes multiple data-

decomposition methods for users which enables raster processing less time taking by 

reducing communication overhead among processors. A parallel geographic CA model 

pSLEUTH using pRPL was developed to show the usability of pRPL in raster processing 

of a model. The study reveals that pSLEUTH greatly reduced computational time of the 

previous version of SLEUTH. 
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Irwin (2010) presented a review of different LULC change and urban growth modelling 

approaches (such as CA, agent-based modelling etc.). The study explains that it would be 

beneficial if one focus on individual behavior of land use change for small run equilibrium 

rather long-run equilibrium and should relax the assumption of equilibrium and yet retain 

the correspondence between individual location and aggregate economic outlet. 

Nong and Du (2011) simulated the urban growth using a logistic regression model and 

compared the performance with the logistic regression-based model. The authors have 

concluded that the logistic regression method is much more efficient while conducting 

urban growth modelling for a county-based area rather for a wide area. 

Kumar et al. (2011) simulated the urban growth for an Indian city CA-based SLEUTH 

model. The study reveals that SLEUTH is an appropriate model for coarse resolution data 

as well in Indian conditions. Also, the study suggests the minor changes to the SLEUTH 

model to improve the performance in the Indian context. 

Syphard et al. (2011) tested the sensitivity of different sources of input data for SLEUTH 

model calibration which may often contribute to the uncertainty in the prediction. Also, 

varying temporal resolution contributes to the differences in projected rates of 

development. The SLEUTH model was calibrated for two different sources of the input 

dataset. The parameter ranges have been found to be different from two different source 

data. The study revealed that the model is sensitive to the sources of datasets, class 

aggregation, and class definition. The study was not able to conclude which one source of 

input dataset gives better results. The study explains that model might be sensitive to the 

spatial resolution of input dataset also. 

Mahiny and Clarke (2012) introduced the concept of multi-criteria evaluation (MCE) to 

include multiple land suitability factors into the SLEUTH model in the form of the 

exclusion layer. The land suitability was derived as a function of 15 explanatory variables 

such as slope, aspect, pedology, geology, proximity to rivers and water-bodies, proximity 

to roads, proximity to town edges, land use or land cover, distance to geological faults, 

forest density, distance to protected areas, underground water depth, distance to villages 

and industrial sites, climate classification, minimum and maximum temperature and 

elevation. The MCE weighted scheme takes into account for deciding fuzzy weights (0-1) 

for each cell of a raster layer. The suitability layer then combined with the exclusion layer 

and weights were stretched between 1and 100 and the model simulated the land use change 
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and urban growth. The results were compared with landscape metrics for the validation of 

model output, for which both with and without MCE suitability layer were considered. 

Wu et al. (2012) studied the performance of the size of the neighborhood considered while 

simulating the urban growth using SLEUTH.   Nowadays, spatial scale for land use change 

analysis has been a major issue of concern. The study was done to determine the effect of 

neighborhood configuration characteristics and spatial scale on land use change analysis 

this study has been made. Cellular automata is a prominently used method for analyzing 

land use change. Different neighborhood configurations were tested for the land use change 

analysis such as Moore neighborhood, linear neighborhood, planner neighborhood, ribbon 

neighborhood etc. of different cell sizes (3*3, 4*4 etc.). The study revealed that as the size 

of CA neighborhood increases, the accuracy of land use changes analysis increases 

although computational complexity also increases. In the future, the SLEUTH model can 

be tested for different neighborhood configurations. 

Feng and Liu (2013) attempted to simulate LULC change using CA with the heuristic 

approach of simulation. The simulated annealing (SA) with CA has been integrated to 

provide dynamic optimization of the CA transition rules. In this approach, an objective 

function was constructed to form theoretical accumulated disagreement between simulated 

and actual land use change. The difference between simulated and actual land use change 

is minimized by using the SA method. SA optimization tool is developed in MATLAB and 

incorporated CA simulation in GIS as well to give an integrated SACA tool for simulation 

of land use change. The typical CA is based on a logistic regression model which was later 

compared with SACA, the study reveals that SACA is more accurate as compared to 

logistic CA. 

Chaudhuri and Clarke (2013) presented a detailed review of SLEUTH applications up to 

the year 2005. The technical modifications and versions of SLEUTH have been discussed. 

Riccioli et al. (2013) used the CA model for finding out the wine production areas. The 

study determines that there are three kinds of CA model i.e. deterministic CA, stochastic 

CA, and probabilistic CA. 

García et al. (2013) revealed that a large number of parameters are required to introduce 

the neighborhood effect in the CA-based LULC change and urban growth modelling 

applications which makes the CA model less flexible. This study proposes a more flexible 
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CA model by reducing the number of parameters required for the neighborhood effect by 

introducing a Genetic Algorithm (GA) into the urban CA model.  

Akın et al. (2014) explored the sensitivity of the SLEUTH calibration process with respect 

to different exclusion layers. The classification of satellite imagery was performed using 

object-oriented methods. Three exclusion layers of different weights were incorporated (1) 

no restriction, water body was excluded, (2) complete exclusion of water body, green belt 

and 250m buffer around water body, (3) weighted exclusion for each green belt class. The 

urban potential cells can be calculated by using some weights incorporated into the 

probability and a series of spatial variables can be included in the cellular automata. The 

study revealed that if these rules are used then it will affect the model prediction results.  

Clarke (2014b) discussed different aspects of LULC change and urban growth modelling 

using two approaches i.e. agent-based and cellular automata based modelling. The author 

has concluded that agent-based models are effective where behavioral processes need to be 

considered more prominently in the simulation process. On the other side, the cellular 

automata based method uses the neighborhood as an exploratory variable essentially. 

ABMs have the potential to integrate multiple models with similar computational methods 

and dealing with irregular shapes and for preserving heterogeneity across space and time. 

CA models are applicable to spatially distributed areas (such as diffusive and spread) where 

some predefined inputs and variables are required, also, scale, extent, geometry and time 

frame are strictly decided well before the basic behavior of the system starts. ABMs start 

with no prior input data, past data and system knowledge are absent. ABM based 

applications are more exploratory than CA-based methods.  

Deep and Saklani (2014) analyzed the urban growth pattern using LULC change detection. 

Furthermore, CA- Markov model has been used to predict urban growth for the future. 

Liao et al. (2014) presented a study based on the simulation of LULC change using cellular 

automata techniques. The transition rules have been determined using CA with Particle 

Swarm Optimization (PSO) techniques. The traditional CA is not able to include a 

neighborhood decay factor and optimal values for transition rules so, transition rules were 

optimized by incorporating a neighbor decay function with PSO algorithm. The study 

concluded that the results of PSO-NDCA are far efficient and accurate as compared to PSO-

CA.  
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Li et al. (2014) have assessed urban growth and LULC change using the CA-based method. 

Also, sensitivity analysis of CA transition rules, time steps and stochastic perturbation in a 

stepwise comparison were done to explore the performance of transition rules in different 

conditions. The study revealed that the transition rules are the core component of urban CA 

modelling. Also, the ensemble method (i.e. CART) is a feasible method to improve the 

performance of urban modelling using CA. In addition, to include the vertical growth 

phenomenon into LULC change a GIS-based CA model along with linguistic approach has 

been used in the study. A number of spatial variables in the model for determining the 

distribution of buildings in space and time have been used. Al-sharif and Pradhan (2014) 

presented the results of a LULC change study using Markov-CA based model. Markov 

modelling has been done to determine the land use transition probabilities and change area. 

Further, Markov-CA integrated model has been used to predict the land use change.  

Chaudhuri and Clarke (2014) assessed the accuracy of predicted land use change over a 

period. Model accuracy was assessed using three methods such as; kappa statistics, kappa 

simulation, and allocation disagreement and location disagreement. The study revealed that 

prediction accuracy not only depends on models’ performance but on the uncertainty of 

input data, urban history, and the accuracy of reference maps. 

Nouri et al. (2014) demonstrated the application of an integrated approach i.e. CA- Markov 

for urban growth monitoring and prediction. The study overcomes the limitation of a 

Markovian model of not incorporating spatial knowledge using cellular automata. The 

temporal changes were determined by calculating transition probability using a Markov 

model which was later used in cellular automata for the simulation of land use change. The 

study is very much effective in simulating the land use changes for the future which has 

been validated by sample urban growth comparison of observed and modelled land use 

changes.  

Jantz et al. (2014) studied the role of different exclusion/ attraction layers in assessing the 

impacts of urban growth in different scenarios like uncertainty related to population and 

employment forecasts. In addition to these, we can incorporate the other growth influential 

factors into the SLEUTH model. 

Yagoub and Al Bizreh (2014) presented a study of LULC changes analysis using Markov-

CA modelling. Markov model has been used to assess transition probability and CA has 

been used for prediction of LULC change. 
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Li et al. (2015) presented an integrated approach to an ensemble of urban CA models to 

improve the performance of a single model. The logistic regression based CA has been 

used first to create an uncertainty map for land use change. Furthermore, CART and ANN-

based models have been used to improve the performances of land use transition rules. 

Consequently, a self-adaptive k-NN (k nearest neighbor algorithm) has been used to refine 

the transition rules more accurately. Thereafter, final integrated transition rules were used 

to simulate land use change for the study area.  

Lu et al. (2015) presented a study of LULC change analysis using a vector based cellular 

automata method. The vector-based CA approach eliminates the scale sensitivity issues 

related to spatial data. The study reveals that vector-based CA is more accurate as compared 

to raster-based CA in simulating land use change when compared with real land use data.  

Han et al. (2015) predicted urban growth using the cellular automata based SLEUTH 

model. The model was calibrated and predicted for the year 2050 using two scenarios i.e. 

historical growth scenario and compact growth scenario. In the historical growth scenario, 

urban growth was simulated using the historical trend of urban areas. In the second i.e. 

compact growth scenario urban growth was simulated and predicted by reducing the spread 

and road gravity coefficient to 50% and then simulation was performed. Afterward, a 

comparison between both the scenarios was performed.  

Houet et al. (2016) developed a CA-based SLEUTH model which is able to produce trend 

breaking future scenario results and follows the non-path dependent approach. This latest 

version of SLEUTH introduced a new parameter i.e. land demand into the model which 

was calculated from a user-defined scenario file or external model. The model provides 

improved performance in the field of land use change modelling. 

Clarke, (2017) presented a new version of SLEUTH i.e., SLEUTH-GA in which brute force 

calibration method was replaced with a genetic algorithm (GA). The model was calibrated 

successfully and calibration performance from both the algorithms GA as well as the brute 

force was compared. GA based calibration has used very less computational time as 

compared to the brute force method. 

Jat and Saxena (2018) demonstrated the application of SLEUTH in deriving sustainable 

land use policies. Different types of targeted sustainability objectives were included in the 

exclusion layer and corresponding urban growth scenarios were generated. 
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Saxena and Jat (2018) presented a comparative study of calibration performance of brute 

force and GA based methods in simulating the urban growth of Ajmer city (India) in term 

of computational time required and ability to capture a different type of urban growths. 

Urban growth predicted from both methods was also compared to ascertain the change in 

model behavior from two different calibration methods. GA based calibration method has 

been found to be better in term of few aspects like computational efficiency, better 

goodness of fit landscape metrics and accuracy in term of hit-miss- false alarm. 

2.7 Land Use/ Land Cover Change Using Remote Sensing 

Singh (1998) compared the remote sensing based LULC change detection techniques.  

Performance of thresholding, digital change detection techniques (like univariate image 

differencing), image regression, image rationing, vegetation index differencing, Principal 

Component Analysis (PCA), Post Classification Comparison (PCC), direct multi-date 

classification, change vector analysis, background subtraction and other methods like 

Kolmogrov Smirnov test LULC change detection techniques have been analyzed. The 

study gives an overview of all the change detection outputs obtained from various change 

detection methods. But, there is a lack of quantitative and spatial assessment of land use 

change as no visual interpretation has been done in this study. Also, there should be a 

measure of accuracies obtained by all the methods of change detection so it would be better 

to judge the suitable method of change detection for the respective study area. 

Turner et al. (1989) analyzed the land use change pattern on different spatial scales using 

Shannon’s diversity index, dominance (D) and Contagion (C) methods. 

Prakash and Gupta (1998) gave a study on LULC change detection by using different image 

processing techniques. As for detecting vegetation NDVI differencing method is used. 

Band ratioing and image differencing methods were also applied for the assessment of 

change detection for all the land use classes using different years satellite imagery.  

Different authors like Su (1998), Jaiswal et al. (1999) , Jha et al. (2000), López et al. (2001), 

Ryavec (2001), Bisht and Kothyari (2001), Gautam et al. (2002), Wilson et al. (2003), and 

Bajracharya et al. (2010) presented the  role of GIS in urban growth simulation and LULC 

change assessment. How urban growth modelling can be integrated with GIS or GIS can 

be embedded in urban growth modelling has been discussed. Various issues like 

spatiotemporal scalability limitations have also been discussed.  
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Lambin et al. (2000) compared different land use change modelling approaches and the 

best approach for the prediction of land use change intensification have been identified. 

The dynamic process-based modelling approach seems better to predict the land use change 

intensification. Although, stochastic and optimization approaches may be useful to 

incorporate the decision making of land use change. 

Irwin and Geoghegan (2001) presented the theory, data, and methods of explicit economic 

interaction models of land use change detection. The study revealed the variables which 

can be incorporated for understanding the land use change phenomenon in a better way. 

The authors have concluded that a benefit of structural economic models is to model human 

behavior directly into the land use change model rather than the consequences of human 

behavior. Spatially explicit LULC change models were classified into three broad 

categories; simulation, estimation, and hybrid. Many of the simulation models found that 

the cellular automata approach based model lies in a category of a mathematical model in 

which behavior of the system is determined by some predefined set of deterministic and 

probabilistic growth rules which decide the state of each cell. The state of the cell in time 

t+1 is dependent on the state of that cell in time t, this condition is not true for vice-versa. 

Zhang et al. (2002) proposed a new method of the structural method using road density in 

combination with spectral bands for reducing the spectral confusion among built-up and 

non-built-up areas. The road density information was extracted from the Gradient Direction 

Profile Analysis (GDPA). The GDPA algorithm has been found to be useful in creating 

another spectral band for the road layer and then integrating with other spectral bands so 

that spectral confusion can later be reduced while doing LULC change detection. Spectral 

structural post-classification comparison (SSPCC) and spectral structural image 

differencing (SSID) methods were used and compared with change detection using the 

spectral only method. The proposed method SSPCC was found to be an efficient method 

for reducing the spectral confusion. This study revealed that the built-up can be better 

extracted from this method which can be further used in urban growth simulations.  

Petit and Lambin (2002) revealed that the integration of data leads to better analysis of the 

landscape pattern but there is some discrepancy in the results of different methods. Like, 

change detection results using data integration methods are far different from the change 

detection results estimated before the data integration. Also, after data integration, it is not 
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possible to analyze landscape pattern at the same resolution. Moreover, data integration 

using older data may often lead to coarser resolution data. 

Petrov and Sugumaran (2005) used an integrated approach of CA and Markov model to 

investigate the losses in agriculture filed due to urbanization. Also, the future prediction 

has been done to analyze the losses that may occur in near future due to rampantly growing 

urbanization.  

Dietzel et al. (2005) determined the spatiotemporal urban dynamics and validated through 

landscape metrics such as the index of contagion, the mean nearest neighbor distance, urban 

patch density, and edge density. The study also analyzed the diffusive and coalescence 

growth patterns using these metrics. The study suggests that spatial dynamics factor is a 

crucial one in determining the urban dynamics which must be incorporated in future 

research. 

Jat et al. (2008) analyzed urban sprawl using Shannon’s entropy, patchiness, urban density 

and landscape metrics. Quantification and pattern analysis have also been done using 

remote sensing and landscape metrics. Future studies can be done by incorporating more 

metrics. 

Beekhuizen and Clarke (2010) presented a geo-computational approach for satellite image 

classification. This approach aims to improve classification accuracy and revealed the 

uncertain areas. The classification was performed by different methods such as image 

texture and band ratioing. For each land use, class probability maps were prepared. By 

selecting the land use class with the highest class probability for each pixel, a hard 

classification was performed. Also, corresponding probabilities in a separate map were 

stored indicating the spatial uncertainty in the hard classification. By combining the 

uncertainty map and hard classification probability based land use map spatial uncertainty 

was quantified. The technique was tested for both the images of ASTER and Landsat 5.  

Otukei and Blaschke (2010) performed LULC change analysis using GIS and Remote 

sensing. The maximum likelihood classification (MLC), Support Vector Machine (SVM) 

and Decision Tree (DT) have been used for image classification and compared. Also, 

decision tree (DT) method was introduced for the first time for the assessment of land use 

change which shows faster results as compared to other methods. DT provides the freedom 

of statistical data distribution assumptions which make it more reliable. The accuracy of 
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DT was compared with the results of MLC and SVM and found to be 86%. Huang et al. 

(2010) demonstrated the use of Support Vector Machine tools (SVMs) for analyzing the 

LULC change. SVM uses a quadratic programming problem for classification of land use 

classes. For removing classification errors and including non-linearity and complexity of 

classification a kernel was also used. The SVMs proves its effectiveness in the field of land 

use change and prediction analysis by comparing it with logistic regression methods. 

Pandey et al. (2013) presented a study to examine the vertical growth aspect using Cartosat 

I stereo pair satellite data and a DEM for the study area. The vertical urban growth has been 

examined by comparing horizontal urban sprawl with high-density contours and slopying 

terrains. However, the study is not validated with any of the recognized methods which can 

be improved in further studies. 

Mao et al. (2013) analyzed LULC change using CA. Especially impacts of land use change 

on ecology has been analyzed by using LUESP (Land use Ecology Security Patterns) 

model. This study calculates some index and landscape metrics with the help of which 

secured ecology patterns have been developed. 

Hepinstall-Cymerman et al. (2013) presented a study to determine the LULC change and 

urban growth using landscape metrics, such as shape index, Shannon’s entropy etc. The 

land use change and urban sprawl have been compared region wise with population growth 

and economic growth. Also, urban sprawl outside the urban boundaries has been 

determined for the sustainable and smart growth of regions.  

Sankhala and Singh (2014) assessed urban sprawl and LULC change by classifying 

different years of satellite imagery. The urban area of different years was extracted and 

overlaid to analyze urban growth. The study reveals that urban sprawl has been taking place 

in an uncontrolled manner in the south and west directions. The impact of uncontrolled 

urban sprawl would be on slums and associated health hazards, traffic congestion, pollution 

and health hazards, reduced social interactions due to low-density sub-urban development. 

Alkimim et al. (2015) developed an alternative scenario of pastures land potential areas to 

be converted into sugarcane crops to meet the demand of Brazil’s national commodity. The 

sugarcane crops have been reduced in a large amount in last few decades in Brazil. The 

study utilizes a multi-criteria evaluation method to find out the suitable potential areas for 

sugarcane crops. Land suitability factors were taken into account for making multi-criteria 
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decision making (MCDM), these include soil suitability, climate, topography, biome, land 

use and socio-economic (education, age, employed people in farming, the value of 

agricultural production) and infrastructure variables. To support planning and decision 

making the analytical hierarchy process was used to incorporate MCE. Also, the GIS model 

builder has been used to compute MCE.  

Sar et al. (2015) assessed water logging hazard vulnerability and risk using a combined 

approach of GIS and Remote Sensing.  The Analytical Hierarchy Process (AHP) has been 

used along with GIS and remote sensing. The effect of the spatial pattern of green land 

cover on urban surface temperature has been assessed by linkages between structure, 

configuration, and composition of grass land cover and urban land surface temperature. 

Important landscape metrics such as nearest distance, patch area, the parameter to area 

shape index and core area index were chosen and applied to analyze the potential effects of 

grass land cover on urban surface temperature. The study reveals that all the metrics were 

significantly correlated with urban land surface temperature and nearest distance metrics 

found to be best correlated with urban land surface temperature. A stepwise multiple linear 

regression (R2) model was developed to explain the relationship between urban land 

surface temperature and green land cover. The NDVI (Normalized Difference Vegetation 

Index) and NDWI (Normalized Difference Water Index) were calculated to extract the 

green land cover and water bodies respectively.  

Zeng et al. (2015) determined the spatial pattern of urban sprawl by landscape metrics such 

as Shannon’s entropy, gravity center migration, and spatial autocorrelation index. Spatial 

autocorrelation of urban land measures the decentralization of urban areas, Shannon’s 

entropy is a well-accepted metric used to measure the degree of spatial concentration and 

dispersion of built-up land. Potential driving forces behind urban sprawl were determined 

by using time series data of the area (area affected by urban construction) and area of 

cultivated land. Two types of spatially explicit regression models were used for spatial 

modelling. First, a spatial lag model which takes into account spatial autocorrelation as an 

explanatory variable. Second, a geographically weighted regression model is a locally 

linear spatial model, the model can embody distances in the form of weights. 

Gilani et al. (2015) analyzed LULC change using GIS and Remote Sensing techniques. The 

object-oriented methods for classification of satellite imagery have been used which 

improved the accuracy of classification and land use change analysis. This study lacks in 
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the prediction capability of the method, but we can further integrate the prediction methods 

to the existing one. 

Nolè et al. (2015) analyzed the spatial pattern of urban sprawl using ASTER data of 15-

meter resolution and data of 14 bands including the thermal infrared band. Two different 

methods of image classification were compared i.e. maximum likelihood supervised 

classification and support vector machine (SVM). GRASS GIS, Q GIS software which was 

used for database implementation and R software which is basically a statistical software 

were used for implementing maximum likelihood and supervised algorithms. Different 

accuracy measures were incorporated in analyzing the accuracy of classified outputs such 

as the producer’s accuracy and consumer’s accuracy. In producer’s accuracy the ratio of 

the number of pixels accurately classified for the class/ total number of pixels of that class, 

whereas, in consumer’s accuracy we determine the ratio of the number of pixels accurately 

classified for the class/ the number of pixels classified for the class. 

Magarotto et al. (2016) identified 3-dimensional urban growth using 3 dimensional GIS 

techniques. The vertical urban growth has been identified by using volumetric index by 

considering floor heights and number of floors. Also, the prediction of vertical urban 

growth has been done. 

Keshtkar and Voigt (2016) demonstrated the LULC change using an integrated approach 

of Markov and CA model. Also, weight to the driving factors has been assigned using MCE 

(multi-criteria evaluation) for creating the land use change suitability maps.  

2.8  Concluding Remarks 

A variety of approaches and models has been reported which are capable of simulating 

LULC change and urban growth. Different aspects of LULC change and urban growth 

modelling and simulation were discussed through representative case studies. A 

comparative analysis was done about different modelling approaches and urban growth 

model as presented in Annexure I. Models have been found to be suitable for the different 

applications, have different input data requirements are suitable for different temporal & 

spatial scales, have different computational requirements and are based on different 

modelling approaches. There is no agreement among researchers and users about the most 

suitable model. An individual model is suitable in a set of conditions and has a different 

level of limitations also. The SLEUTH model has been found to be a promising LULC 
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change and urban growth model. To date, SLEUTH has been applied to a variety of 

international urban regions for various type of applications (Akin et al., 2014, Saxena et 

al., 2016). The SLEUTH model is a scale-independent, generalized and open source model 

available with its source code, which has motivated research to further improve and modify 

it for different applications. Details of reported applications of SLEUTH are presented in 

ANNEXURE II. 

In the Indian context, very few studies have been reported related to urban growth 

modelling and prediction (KanthaKumar et al. 2011; Sankhala, and Singh 2014: Saxena et 

al. 2016). Different Authors have used post-classification comparison methods for arriving 

at LULC changes and trends in urban growth for the different parts of the country (Singh, 

1989; Patra and Ghosh, 2008; Kumar and Kaur, 2013). Few authors have tried to study the 

urban growth form and sprawl using landscape metrics for different parts of the country 

(Sudhira et. al., 2005; Jat et. al., 2008). However, detailed investigation of urban growth 

and LULC change modelling using CA-based approaches are lacking from an Indian 

perspective.   

Research issues and challenges have been identified through the literature review 

which helped in deciding the research question to be addressed in deciding the research 

objectives. There are many research issues and challenges that still need to be addressed 

for accurate LULC change and urban growth modelling and prediction.  Many approaches 

and models are available which are based on different assumptions, require different input 

parameters, have different suitability and are appropriate for a particular spatial & temporal 

resolutions, consider different change drivers & processes and use different methods to 

model & predict the LULC change and urban growth. Many models developed and reported 

in the literature have not been tested for different socio-economic and geographical settings 

and the sensitivity of their parameters has not been evaluated so far.  The following research 

questions have been formulated based on the research issues discussed above- 

✓ What are the research issues in LULC change and urban growth assessment 

approaches and models? 

✓ What are the important drivers and factors of urban growth? 

✓ How is the performance of the SLEUTH model in simulating the urban growth of 

cities/ towns or urban areas having socio-economic conditions of developing 

countries like India? 
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✓ What is the SLEUTH model sensitivity for different model constants and 

parameters? 

✓ What are the important explanatory variables of urban growth and how the 

performance of the SLEUTH model can be improved by incorporating important 

explanatory variables of urban growth? 

✓ How the built-up density/ urban intensity can be simulated? 
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CHAPTER 3  

STUDY AREA AND GIS DATABASE CREATION 

3.1 Prologue 

Ajmer fringe including Pushkar town has been selected as the study area for the 

application demonstration of the improved SLEUTH Model. Pushkar municipal area has 

been used as the study area to develop SLEUTH-Density and SLEUTH-Suitability 

versions. Their application has been demonstrated for simulation of urban growth and 

estimation of built-up density for Ajmer fringe. “Smart cities” is the catch line nowadays 

in India, as the Government of India (GOI) has decided to develop 100 smart cities and 

Ajmer is one of them. Ajmer is situated in the central part of Rajasthan State in India. 

Ajmer is one of the important cities having great historical and cultural importance. Its 

population in the year 2011 was around 551360 and is expected to be 840,000 in the year 

2034, as per the present growth rate. The atmospheric conditions of Ajmer fringe are 

attributed to its arid environment with high temperature and erratic rainfall. 

The present study involves LULC change and urban growth modelling which 

requires historical LULC information as one of the key variables. In early days, LULC 

information was obtained from aerial maps and ancillary data, after the advancement in 

the field of geospatial technologies, improved data with better resolution and quality can 

be captured. Geospatial techniques like Remote Sensing (RS) enable us to capture multi-

date and multi-resolution satellite data, which are further processed digitally to extract the 

LULC information. 

In addition to the LULC information, other spatial and non-spatial data are also 

required for the study like slope, road network, the location of different facilities and land 

marks, hill shade etc. Spatial data are related to a geographic location such as slope, roads, 

topographical information etc. On the other side, non-spatial data are free from geometric 

considerations and contains attributes like population, land cost, distances etc. however, 

we can relate it with spatial data in a Geographic Information System (GIS). GIS provides 

a platform for integration of data from diverse sources, available in different formats and 

resolutions into a uniform and standard format suitable for modelling of LULC change 

and urban growth. A suitable GIS database with required attributes has been created for 

the parameterization of models. 
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The study utilizes a LULC change and urban growth model i.e. SLEUTH which is an 

acronym for its input layers Slope, Land use, Exclusion, Urban, Transportation and 

Hillshade for modelling of urban growth. The GIS database, which includes thematic 

layers of historical urban areas, road, DEM, slope, and hillshade etc. has been utilized for 

the parameterization of the SLEUTH model and its improved versions.  

  This chapter presents salient characteristics of the study areas i.e. Ajmer fringe and 

Pushkar in terms of location & their extent, topography, climate, water resources, 

transportation, tourism, population, education, urban growth, reserved areas, and land use. 

It further extends the details of software and data utilized for the processing and analysis 

of spatial and non-spatial data in the form of the raster, vector data, and text. Subsequently, 

extraction of LULC information and creation of the GIS database has been discussed in 

this chapter.  

3.2 Location and Extent of Study Area 

Ajmer fringe including Pushkar is located between 2620’N to 2635’N latitudes and 

7433’E to 7445’E longitudes (Figure 3.1). Ajmer is the 5th largest city of Rajasthan 

state and is the center of the eponymous Ajmer District. It is located 135 kilometers 

southwest of Jaipur, capital of Rajasthan, 190 km from Kota, 274 km from Udaipur, 

439 km from Jaisalmer, and 391 km from Delhi. Ajmer is situated between the two 

valleys, one formed by the Taragarh & Madar Hills and the other by the Madar Hill & 

Bhutia Dungar. Ajmer is situated along the Aravalli mountain ranges at an average of 

486.0 meters above MSL. Pushkar is located around 15 km from the Ajmer city Centre in 

the west direction. 

3.2.1 Population 

Ajmer fringe has a population of around 551,360 according to the 2011 census and it is 

expected to be 0.84 million in 2034, as per the present growth rate. Pushkar town lies in 

the Ajmer fringe and municipal boundary and its population is around 21,626.  

3.2.2 Climate 

Ajmer and Pushkar have a hot, semi-arid climate with over 55 centimeters (25.4 in) of 

average rainfall every year. Usually, rainfall occurs in the Monsoon season, which spread 

from the month of June to September. Average temperature remains relatively high i.e., 

http://en.wikipedia.org/wiki/Jaipur
http://en.wikipedia.org/wiki/Kota,_Rajasthan
http://en.wikipedia.org/wiki/Udaipur
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30 °C throughout the year. The winter months of November to February are mild and 

average temperature varies from 15 – 18 °C with little or no humidity. 

3.2.3 Tourism 

Anasagar Lake, Baradari, Dargah of Sufi saint, Moinuddin Chishti and Brahma Ji Temple 

in Pushkar are eminent tourist centers of the Ajmer fringe which attracts a large number 

of tourists and a source of income.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Study area 

3.2.4 Transportation 

Ajmer is well connected by road and railways. The Ajmer Junction is the main railway 

station situated in the city and was built during colonial times. A good road connectivity 

via Ajmer-Jaipur expressway i.e. NH-8 has also provided a way for many people to visit 

Ajmer from nearby locations. Kishangarh airport is situated on NH – 8 around 27 km 

North-East of Ajmer which connects to New Delhi on a daily basis. 

Pushkar 
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3.2.5 Socio-economic conditions 

Apart from having historic importance Ajmer is one of the major centers of higher learning 

and specialized education in Rajasthan. The official language is Hindi and another 

language is Marwari. Transportation, animal husbandry and tourism are the major sources 

of economy. 

3.2.6 Land use/ land cover in Ajmer 

As per the present master plan, the total urbanized area of Ajmer fringe is 53.8 sq.km of 

which 45.9 sq.km is the developed area, i.e. 85% of the total urban area. 5% of the total 

area is government reserved land under CRPF and Defense force. The remaining 10% area 

comprises open spaces and water bodies. Out of the total developed area, the largest land 

is under residential use (45%) followed by transport infrastructure (18%) and public & 

semi-public use (12%). Mixed land use is prominent, in the inner city (Joshi et al., 2011). 

There are seven (7) major LULC categories in Ajmer fringe including Pushkar like barren, 

open, rocky terrain, built-up, vegetation, water, and river sand. A number of water bodies 

exist in Ajmer fringe such as Anasagar, Foy Sagar, and Pushkar Lake, which forms the 

focal point of the city. The Anasagar zone consisting of Anasagar area, Vaishali Nagar 

and Chaurasiyawas have the lowest population density of fewer than 2,000 persons/sq.km. 

While the average population density of the city is 5,750 persons/sq.km.  

3.3 Data Used  

The present study utilizes seven years of multi-spectral satellite data procured from 

National Remote Sensing Centre (NRSC), United States Geological Survey (USGS) earth 

explorer and Global Land Cover Facility (GLCF). The study utilizes DEM (to create a 

slope map which has been prepared from a 1.0-meter contour map), Ajmer district map, 

Ajmer & Pushkar Master Plans and Survey of India (SOI) toposheets. Demographic data 

were obtained from the Census of India for the year 2011 and the land cost data were 

obtained from the Planning Commission of India and the Department of Revenue, 

Government of Rajasthan India. Details of the satellite data used in the study are presented 

in Table 3.1. 

Apart from satellite imagery, other data used in the study are an AutoCAD map of 

Ajmer city, 1.0 m contour map, SOI Toposheets, Ajmer master plan, and Google Earth 

satellite imagery (for preparing reference point file) as presented in Table 3.2. Few 

datasets used for the resent work have been presented in Figures 3.2 and 3.3. FCC (False 
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Color Composite) of the satellite imageries used in the present work has been presented 

in subsequent sections. 

Table 3.1: Salient details for 5 meter resolution satellite imagery 

3.4 Software Used 

The study, processing, and analysis of satellite imagery are very important processes to be 

followed for extracting LULC information and creation of a GIS database. All these tasks 

can be done using geospatial techniques, which are available in different image processing 

and GIS software. There are various image processing software like ERDAS Imagine, 

ENVI, eCognition, ILWIS etc. In the present study, ERDAS Imagine has been utilized for 

processing of imagery and ArcGIS has been used for the creation of a GIS database.  

Table 3.2: Salient details of other used data 

S. no. Input data Specifications Fig no. 

1 SOI Toposheet 1:25,000 scale (year1991) 3.2 

2 DEM 1.0 m resolution 3.2 

3 AutoCAD Map 1.0 m resolution 3.3 

4 Ajmer district plan map 1:1000000 scale (year 1991) 3.3 

S. no. Year Satellite and sensors 
Spatial resolution in 

meter (m) 

Spectral 

resolution 

1 1997 IRS 1C PAN + IRS LISS III 
PAN 5.8 Single band 

Multispectral 23.5 4 bands 

2 2000 
IRS 1D PAN + RS 1 LISS 

III 

PAN 5.8 Single band 

Multispectral 23.5 4 bands 

3 2004 Resourcesat  LISS IV Reflective 5.8 3 bands 

4 2008 
IRS 1D PAN + RS 1 LISS 

III 

PAN 5.8 Single band 

Multispectral 23.5 4 bands 

5 2013 Resourcesat 2 LISS IV Multispectral 5.8 3 bands 

6 2015 Resourcesat 2 LISS IV Multispectral 5.8 3 bands 

7 2018 Sentinel-2 Multispectral 10 4 bands 
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3.4.1 ERDAS Imagine 

ERDAS imagine is an image processing software developed by Leica Geosystems (USA). 

ERDAS Imagine has extensive image processing capabilities like image rectification, 

radiometric corrections, image enhancement, image classification and processing of stereo 

images (LPS module) in addition to limited GIS capabilities.   

Figure 3.2: DEM and SOI Toposheets 

Figure 3.3: AutoCAD map and town planning map 
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In the present work, ERDAS Imagine version 2013 has been used. ERDAS Imagine 

includes various modules for the processing and analysis of raster and vector data such as 

manage module for data management operations like import and export of data etc., raster 

module for processing of raster data like radiometric correction techniques e.g. haze 

reduction, noise reduction, LUT stretch, rescaling, histogram matching, topographic 

normalize resolution merge, image classification etc., vector module for the processing 

and analysis of vector data like creation of shape file, attribute data handling and analysis,  

terrain module  have tools for the processing of elevation information like preparation of 

the DEM and its derivatives, multi-spectral module consists of tools to deal with multi-

spectral data like layer stacking spectral & spatial profiles, contrast manipulation 

techniques etc., LPS module for the processing of stereo images and derivation of 

elevation information, in addition to a few more  modules available for different image 

processing functions.  

3.4.2 ArcGIS 

ArcGIS is the name of a group of Geographic Information System software developed by 

Environmental Systems Research Institute (ESRI). In the present study, ArcGIS version 

10.5 has been used, which has capabilities for data manipulation, editing, and analysis. 

ArcGIS is the highest level of licensing in the ArcGIS product line and provides full 

advanced analysis and data management capabilities including geostatistical and 

topological analysis tools. It includes and builds on the features of ArcReader, ArcView, 

and ArcEditor, adding geoprocessing functionality. It is a vector data based software, 

however, it can be used for raster data analysis also using the Spatial Analyst Module.  

ArcGIS comprises three basic modules; ArcMap, ArcCatalog, and ArcToolbox. 

ArcMap is very simple to use. Its capability of switching on the required module e.g. 

Spatial Analyst, 3D Analyst etc., at the time of need, made it computationally very 

efficient. ArcMap is used to display and query maps, create publication-quality hard 

copies, develop custom map applications, and perform many other map-based tasks. 

ArcMap provides an easy and natural transition from viewing a map to editing its 

geography. ArcCatalog is used to explore and manage the spatial data stored in folders on 

local disks or in relational databases that are available on your network. ArcToolbox 

provides an environment for performing geo-processing operations, like data conversion, 

import-export. Also, operations for recoding of data and overlaying of raster layers are 
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used in ArcMap. ArcMap's layout composer is used to prepare cartographic-quality maps 

for presentation. ArcGIS has very powerful customization capabilities using Arc Objects 

and Arc Macro Language (AML), Visual Basics (VB) and Python programming 

languages.  

3.4.3 Cygwin 

Cygwin is a software cum emulator used as an interface between two different operating 

systems like Windows and LINUX/UNIX. Cygwin provides a virtual UNIX environment 

in Windows to run the SLEUTH model, which is UNIX/ LINUX based.  

3.4.4 Other used software 

Other software such as Microsoft Word has been used for preparing documents and 

formatting of reports; Microsoft Excel is used for creating reports in tabular format; 

Notepad++, ERDAS Imagine produces accuracy reports and error matrices in text format 

and SLEUTH scenario files are large sized text files which can be best viewed in 

Notepad++. 

3.5 Analysis of Satellite Data 

LULC information extraction is the primary objective of satellite data analysis, which 

includes various crucial steps i.e. pre-processing of satellite data, rectification/ geo-

referencing and image classification. Pre-processing of satellite data includes radiometric 

and atmospheric corrections to be applied before processing the satellite data while 

rectification/ geo-referencing and classification is the post-processing of satellite data to 

obtain some meaningful information from the data. Classification of multi-spectral data is 

the process of sorting out the pixels based on its reflectance values into a finite number of 

LULC classes. These classes are LULC features available on the Earth surface like water, 

rocky-terrain, shrubs, forest, built-up, wetland, grassland etc. The pixels satisfying certain 

criteria are assigned to the respective classes which is known as image classification or 

segmentation (Jensen, 1996). An algorithm is implemented on a computing system to 

perform satellite image classification that is called digital image classification. In the 

present study, ERDAS Imagine software has been used to perform image classification. 
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The overall methodology of the satellite data analysis and LULC extraction is presented 

in Figure 3.4.  

Satellite Data  

Sub-setting 

Evaluation of training samples 

Training sample selection 

Spatial and spectral profiles 

Image registration 

Image processing 

Digitizing municipal boundary map  

Contingency matrix evaluation 

Separability analysis and feature selection 

Creating buffer of 1 km around municipal 

boundary  

 

Maximum Likelihood 

Supervised Classification  

Accuracy assessment  

Post classification refinement 

Expert System Classification 

Stratified random points 

generation 

Secondary data/Maps 

GIS Database Creation 

Selected information 

layer to be used for 

expert system 

LULC Map  

Figure 3.4: Overall methodology for the analysis of satellite data 
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3.5.1 Pre-processing of satellite data 

When satellite data is captured from sensors, it may have some kind of noise/ error like 

atmospheric and radiometric noise. Such noise can be reduced or removed through 

atmospheric and radiometric corrections. Satellite data used in the present study is free 

from such errors except for small cloud cover in an image which has been removed using 

haze and noise reduction tools available in ERDAS Imagine.  

3.5.2 Rectification and projection of satellite data 

After performing atmospheric corrections satellite imagery have been rectified and 

geometrically corrected corresponding to UTM WGS 84 coordinate and projection system 

(Zone 43). Accurate geometric correction of satellite imagery is an essential part before 

performing classification. All the images are processed for geometric corrections using 

ground control points (GCP’s) obtained from SOI toposheets. Some of the SOI toposheets 

are in Polyconic projection system which has first registered to UTM WGS 84 system 

using nearest neighborhood re-sampling algorithm and third order polynomial geometric 

model. 

The registration error i.e. RMS (Root Mean Square) error was found to be within 

the acceptable limits i.e. < 1.0 pixel. Further, satellite imagery of different years has been 

geo-referenced with respect to WGS 84 ellipsoid parameters and UTM projection system 

(Zone-43). Third order polynomial geometric model was used with 20 GCP’s obtained 

from rectified SOI toposheet. Registration error (RMS error) has been restricted to less 

than 1.0 pixel. The nearest neighborhood resampling method was used while geo-

referencing the images.   

3.5.3 Study of satellite images 

First of all, rectified satellite imagery was re-sampled for the study area extent, decided as 

municipal limit plus 1.0 km for Ajmer and Pushkar. Further, FCCs (False Color 

Composites) were prepared from the stacking of three band data corresponding to three 

primary colors. The near-infrared, red and green band were stacked corresponding to the 

red green and blue colors to prepare the color composite.  The FCCs prepared for Pushkar 

town and Ajmer fringe are presented in Figures 3.5 & 3.6, respectively. Since every single 

satellite image consists of multiple bands, we falsely change the order of bands to get a 

visually better image. The Green band is falsely assigned to blue, red band is falsely 

assigned to the green and near-infrared band is assigned to red color. We have chosen this 
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order to prepare FCCs because more vegetation differences can be clearly identified from 

the red color for which our eyes are more sensitive. The satellite imagery is explored and 

studied extensively to ascertain the identifiable LULC classes and their respective ranges 

of brightness value (i.e. reflectance or digital values). Spectral profiles have been drawn 

to check the separability and relative differences in brightness values of different LULC 

class pixels. This method gives an idea about the number of classes present in a landscape 

in imagery and also the separability of every LULC class in different bands.  

Spectral profiles for 5-meter spatial resolution satellite data of different years for different 

targeted LULC classes have been shown in Figure 3.7. It is evident from Figure 3.7 that 

the LULC classes like built-up, forest, rocky terrain, water, shrubs, sparse vegetation, 

paved, river sand and open are almost overlapping in bands 1 & 2 and have some 

difference in band 3. However, in band 4 almost land use classes can be identified 

separately with much differences in their brightness values observed. Thus, LULC classes 

are separable in band 4 for most of the years as shown in Figure 3.7 B & C.  

Significant differences in brightness values for different LULC classes in band 3 

have been found for the year 2013 and 2015 (LISS-IV sensor data), as shown in Figure 

3.7 D & E.  Thus, it is clear from the spectral profiles that band 3 and band 4 are the bands 

in which most of the LULC classes are separable. In addition, the brightness value of 

pixels related to different LULC classes has been explored through the inquire cursor in 

ERDAS Imagine to have an idea about the ranges of brightness values in different bands 

as shown in Table 3.3.  
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Figure 3.5: False Color Composites (FCCs) for 5 meter spatial resolution satellite imagery of Pushkar town 



66 

 

 
Figure 3.6: False Color Composites (FCCs) for 5 meter spatial resolution satellite imagery of Ajmer fringe 



67 

 

 

 

 

 

 

A 

B 



68 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 

D 



69 

 

 

  

  

 

 

 

 

 

 

 

 

 

Table 3.3: Brightness values for multiple temporal satellite imagery 

 

3.6 Preparation of Land use/ Land Cover Maps 

The LULC maps are prepared from the classification of imagery using ERDAS Imagine 

software. There are different classification approaches available which can be categorized 

on the basis of different criteria. Based on user intervention it can be broadly categorized 

into two i.e. unsupervised and supervised classification. In unsupervised classification, 

image pixels are grouped into a user-defined number of classes based on solely reflectance 

information using a clustering algorithm like ISODATA.  There is no user control over 

LULC Class 1997 2000 2004 2008 2013 2015 

Built-up 50-105 40-120 80-160 35-88 180-210 102-125 

Water 40-90 40-70 40-90 15-70 50-140 50-75 

Dense forest 50-100 38-88 80-100 20-43 115-300 75-195 

Sparse vegetation 50-112 48-101 70-130 10-85 150-301 75-275 

Shrubs 80-200 60-151 90-115 40-80 150-325 100-195 

Open 75-150 75-125 100-201 60-85 200-300 140-210 

River sand 120-180 100-200 135-250 80-125 210-340 150-250 

Rocky terrain 45-100 60-75 45-100 20-45 150-190 55-60 

Roads 50-110 40-125 80-145 30-50 190-210 100-125 

E 

Figure 3.7: Spectral profiles for different targeted LULC classes for different years for LISS-

IV sensor data 
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the classification process. Whereas a supervised classification method involves user 

intervention and it is based on parametric statistics. The user has to train the classification 

algorithm by providing signature information of respective LULC classes. The supervised 

classification has been found to be a more accurate and popular method in spite of being 

more complex and time-consuming. The present study has used the unsupervised 

classification method to identify the possible no. of LULC classes. Further, supervised 

classification has been used to classify the multi-spectral satellite imagery of different 

years. Further, classified outputs have been refined using expert system classification like 

a knowledge-based classifier. The methodology used for the extraction of LULC 

information and image classification workflow has been explained in Figures 3.4 and 3.8, 

respectively. 

3.6.1 Unsupervised classification 

In the present study, the ISODATA algorithm has been used to perform unsupervised 

classification to have an idea about separable LULC classes. It is an iterative process of 

clustering and uses spectral distance as in the sequential method, however, it iteratively 

classifies the pixels, redefines the criteria for an individual class, and classifies again so 

that the spectral distance pattern in data gradually emerges. Initially, a large number of 

targeted LULC classes (i.e. 30) along with a convergence threshold of 0.98 and 24 

iterations has been used. The convergence threshold is the maximum proportion of pixels 

whose cluster assignments can go unchanged between iterations. This threshold prevents 

the ISODATA utility of ERDAS from running indefinitely. Specifying a convergence 

threshold of 0.98, means that as soon as 98% or more of the pixels stay in the same cluster 

from one to the next iteration, the algorithm should stop processing. In other words, as 

soon as 2% or fewer of the pixels change clusters between iterations, the utility will stop 

processing. After classification, LULC classes are identified and given meaningful names. 

The unsupervised classification has been used to identify the targeted LULC classes and 

for the selection of signatures for the supervised training. 

3.6.2 Supervised classification 

3.6.2.1 Training of classification algorithm 

The supervised classification includes user controlled training of the algorithm for image 

classification using a Maximum Likelihood Classifier (MLC). It involves the selection of 

sample pixels for respective targeted LULC classes identified with the help of spectral 
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profiles and unsupervised classification methods. The process of collecting training 

sample pixels is called signature selection. Every signature corresponds to an individual 

LULC class further used to assign a LULC class to each image pixel. Signatures are of 

two types i.e. parametric and non-parametric.  Parametric signatures are based on 

statistical parameters like mean and the co-variance matrix while non-parametric 

signatures are based on discrete objects like polygons and rectangles in a feature space 

image. The supervised training is used to create both types of signatures. The parametric 

signatures are used to train MLC classifiers which are used in the present study.  

3.6.2.1.1 Signature Selection 

Nine LULC classes were identified from the study of satellite imagery such as Built-up, 

Forest, Water, Sparse vegetation, Shrubs, Open, Rocky terrain, River sand and Paved. For 

each LULC class, a homogeneous group of pixels having similar reflectance has been 

selected as a training sample for each LULC class. A minimum number of pixels selected 

for the training of one class is more than n*10, where n is the number of the spectral bands 

used. This method has been prescribed in various studies for better sample selection and 

the same has been followed in the present study (Congalton, 1999). The parametric 

signatures have been collected by on-screen digitization of training pixel polygons from 

the FCC of the satellite image to be classified using AOI drawing tool in ERDAS Imagine. 

Region growing tool has also been used to select a larger polygon of pixels having similar 

reflectance values by considering a spectral Euclidean distance of 5 tolerance limit and a 

seed pixel. This tool maintains the signature statistics within acceptable limits.  

3.6.2.1.2 Signature Evaluation 

After selection of training samples for each LULC class, signatures were evaluated using 

statistical characteristics to ascertain that the signatures are truly representing the classes 

to be classified. Evaluating selected samples/ signatures is an essential part of LULC map 

preparation to obtain accurate classified outputs. Signatures are evaluated to test whether 

the signature data are truly representing the pixels to be classified. Three evaluation 

criteria have been used to evaluate the collected signatures; (i) histogram plots, to examine 

various statistical parameters, like standard deviation and unimodality of the histogram, 

(ii) signature separability using transformed divergence (TD), and (iii) contingency 

matrix, which contains the number and percentage of pixels which are classified as 

expected. Signatures are refined, deleted, renamed and merged after evaluation to ensure 
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the unimodality of their histograms, satisfactory range of statistical parameters, TD and 

contingency matrix. 

3.6.2.1.3 Histogram Analysis 

Histograms for all the classes in different bands were plotted separately to check the 

quality of the training samples selected. A bell-shaped histogram with a single mode 

indicates good quality of signatures. Signatures having a bi-modal histogram and a large 

range of reflectance value have to be refined by deleting some training pixels and selecting 

another training group. Sample histograms plotted for signature evaluation have been 

shown in Figure 3.9. The same LULC class may have different reflectance range at 

different locations due to different characteristics e.g. water in different water bodies may 

have different depth or quality. This is a problem of geographical extension where the 

same LULC class may have different reflectance values due to change in their 

characteristics and their reflectance range becomes wide, leading to overlapping in 

reflectance range of different LULC classes. To deal with such a problem, initially, a 

number of sub classes of a LULC class can be considered. Their signatures should be 

collected separately and classified as a separate class. Later such similar classes can be 

merged into one class.  Histograms corresponding to signatures of different LULC classes 

show a relatively narrow range of pixel values indicating good quality of signatures.  

Moreover, the reflectance range for the same class varies in different years such as a built-

up class in Figure 3.9 ranges from 92 to 104. It may be due to new and old building or 

change in roof material (such as cement, marble or vegetation on the roof).  

3.6.2.1.4 Contingency Matrices 

The contingency matrix (error matrix) is another method used in the present study to 

assess the quality of training samples or signatures. Contingency matrix gives the 

percentage of misclassification among the signatures of different LULC classes i.e. error 

matrix which helps in identifying the mistakenly classified LULC classes. It was observed 

from the contingency matrices that few pixels of some classes like rocky terrain are 

wrongly classified into built-up classes for which signatures have been further refined and 

re-evaluated. However, some misclassification of signatures persists even after repeating 

the sampling process which is due to the similar reflectance of rocky terrain and built-up 

pixels. Also, some barren or vacant land which is named as open land were wrongly 

classified into the built-up class due to similar reflectance at some places. For LISS IV 
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images in different years, misclassification between barren land & rocky terrain, forest & 

sparse vegetation and built up & rocky terrain has been observed (Table 3.4). 

Misclassifications of signatures are due to the same reflectance among many classes, 

heterogeneous surfaces, the combined reflectance is different from the real one. Similarly, 

for the year 2000, 2004 and 2013 signature quality was assessed using contingency metrics 

as presented in Tables 3.4 and 3.5.  

The maximum misclassification in signatures has been found for the LISS IV 

image of the year 2015 and LISS III image of the year 2000. The probable reason for a 

misclassification is high heterogeneity. From the contingency matrices, misclassification 

has been observed between sparse vegetation & forest, between built-up & rocky terrain 

and between rocky terrain & barren land LULC class for the year 2015 (LISS-IV image). 

Similarly, in images of other years, misclassification among different signatures 

corresponding to the above mentioned LULC classes has been observed as presented in 

Table 3.5. Separability is slightly poor for the urban settlement as it is mixed with rocky 

terrain, exposed rocks, and wet alluvium soil land use/cover classes. Misclassification is 

due to heterogeneous character (different type of construction material and different type 

of impervious surfaces) of the urban area and surrounding hilly topography (exposed 

rocks, hills, where reflectance is similar to the built-up areas). Reflectance characteristics 

of water are overlapping with hill shadow and wet alluvium soil. Rocky terrain comprises 

of soil found on hilly slopes along with boulders, whose reflectance is similar to barren 

land in different moisture and vegetation conditions. However, no significant 

misclassification among signatures of other LULC classes has been observed. Therefore, 

final signatures have been found to be satisfactory.  

3.6.2.1.5 Separability analysis and feature selection 

The separability analysis is carried out to determine the optimum band combination which 

has the highest separability among signatures of different LULC classes. Signature 

separability is a statistical measure of distance between two signatures and applicable only 

for the statistical classifiers. It can be calculated for any combination of the spectral bands. 

If the spectral distance between two samples is not significant for any pair of spectral 

bands, then they may not be distinct enough to produce an acceptable classification.  In 

the present image analysis, Transformed divergence (TD) has been used to evaluate the 

signature separability. The formula for computing TD is as below (Swain and Devis, 

1978): 
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Where, i and j are the two signatures (classes) being compared, Ci is the covariance matrix 

of signature I, μi is the mean vector of signature I, tr is the truce function, and T is the 

transposition function. The TD gives an exponentially decreasing weight to increase the 

distance between the classes. The scale of the divergence values can range from 0 to 2000. 

As a general rule, if TD values for all land use/cover classes for a pair of spectral bands 

are greater than 1900, then the classes can be separated. 
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Figure 3.8: Image classification workflow 
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Figure 3.9: Histograms evaluation of training signatures 
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Table 3.4: Contingency matrix of the year 2015 and 2013 

Contingency Matrix of the year 2015 (LISS IV) 

Reference Data 

Classified 

Data 

Built

-up 

Dense 

forest 
Water Shrubs 

Sparse 

vegetation 

Barren 

land 

Rocky 

terrain 

River 

sand 

Built up 99.1 0 0.05 0 0 1.17 10.61 0 

Forest 0 97.14 0 0 15.12 0 0 0 

Water 0 0 99.46 0 0 0 0 0 

Shrubs 0 0 0 100 0 0 0 0 

Sparse 

vegetation 
0 2.86 0 0 84.88 0 0 0 

Barren 

land 
0.6 0 0.01 0 0 74.76 9.16 1.19 

Rocky 

terrain 
0.3 0 0.02 0 0 20.44 80.23 0.4 

River sand 0 0 0 0 0 3.63 0 98.41 

Contingency Matrix of the year 2013 

Reference Data 

Classified 

Data 

Built

-up 

Dense 

forest 
Water Shrubs 

Sparse 

vegetation 

Barren 

land 

Rocky 

terrain 

River 

sand 

Built up 100 0 0 0 19.57 0 0 0 

Forest 0 99.15 0.57 0 0 0 0 0 

Water 0 0 99.34 0 0 0 0 0 

Shrubs 0 0 0 100 0 0 0 0 

Sparse 

vegetation 
0 0 0 0 80.43 0 0 0 

Barren 

land 
0 0 0.07 0 0 82.43 0 0.81 

Rocky 

terrain 
0 0 0 0 0 0 100 0 

River sand 0 0 0 0 0 17.57 0 99.19 

 

If the value is between 1700 and 1900, the separation is fairly good. If values of 

TD are below 1700, separation is poor (Jensen, 1996). Thus, it is clear from Table 3.6 that 

both the TD values i.e. average and minimum are more than 1700 for individual year 

images which are in acceptable range. From the generated separability matrices the best 

separable bands for satellite images can also be identified.  
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Table 3.5: Contingency matrix of the year 2004 and 2000 

Contingency Matrix of the year 2004 

Reference Data 

Classified 

Data 

Built

-up 

Dense 

forest 
Water Shrubs 

Sparse 

vegetation 

Barren 

land 

Rocky 

terrain 

River 

sand 

Built up 100 0 0 0 0 0 0 0 

Forest 0 99 0 0 0 0 0 0 

Water 0 0 95.49 0 0 0 0 0 

Shrubs 0 0 0 100 0 0 0 0 

Sparse 

vegetation 
0 0 0 0 99.06 4.98 0 0 

Barren 

land 
0 0 0 0 0.94 95.02 0 0 

Rocky 

terrain 
0 0 0 0 0 0 100 0 

River sand 0 0 4.51 0 0 0 0 100 

Contingency Matrix of the year 2000 

Reference Data 

Classified 

Data 

Built

-up 

Dense 

forest 
Water Shrubs 

Sparse 

vegetation 

Barren 

land 

Rocky 

terrain 

River 

sand 

Built up 100 0 0 0 0 3.69 0 0 

Forest 0 93.42 0 0 0 0 31.69 0 

Water 0 0 100 0.27 0 0 0 0 

Shrubs 0 0 0 97.54 0 0 0 0 

Sparse 

vegetation 
0 0.27 0 0 100 0 0.13 0 

Barren 

land 
0 0 0 0.13 0 96.31 0 0 

Rocky 

terrain 
0 6.3 0 0 0 0 67.8 0.56 

River sand 0 0 0 0 0 0 0.38 99.44 

The optimum band combination for the year 2015 (LISS 3) and 2013 have been 

found to be 1, 3 and 4. For the year 2004 and 2000, optimum band combination 

corresponding to the highest separability has been found to be 2, 3 and 4. Optimum band 
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combination for the year 2015 (LISS 4) has been found to be 1, 2 and 3. Optimal band 

combination for all other images has been presented in Table 3.6. 

Table 3.6: Transformed Divergence for supervised classification for various years 

Image year No. Of bands 
Optimum band 

combination 

Average TD 

value 

Minimum TD 

value 

2015 (LISS 4) 3 1 2 3 1972 1911 

2015 4 1 3 4 1991 1879 

2013 4 1 3 4 2000 1998 

2008 4 2 3 4 1997 1990 

2004 4 2 3 4 1998 1879 

2000 4 2 3 4 1994 1761 

3.6.2.2 Maximum likelihood supervised classification 

Supervised classification is a closely user controlled process. After the finalization of 

signatures, pixels of the image are sorted into classes using a mathematical algorithm, 

which is also called the decision rule. Decision rules used in the supervised classification 

can be divided into two categories; (i) parametric decision rule, which is trained by the 

parametric signature, and (ii) non-parametric decision rule, which is trained by the non-

parametric signatures. Parametric rules are based on the properties of the data and every 

pixel is assigned to a class since it is a continuous decision space (ERDAS, 1994). The 

non-parametric decision rule is not based on the statistical properties of the data. This rule 

determines whether or not a pixel is located inside of the non-parametric signature 

boundary. After the finalization of sample signatures, each pixel of the image is classified 

into a class using Maximum Likelihood Classifier (MLC). The MLC is a statistics-based 

parametric method and includes the probability of a pixel of being in a particular class. 

The algorithm assumes that all classes have an equal probability of a pixel assignment and 

the pixel values are normally distributed in all the spectral bands. The MLC equation is as 

follows; 

  ( ) ))((5.0|)ln(|5.0)ln( 1

ccccc MXCovTMXCovaD −−−−= −
   (3.2) 

Where D is the weighted distance (likelihood), c is a particular class, X is the measurement 

vector of the candidate pixel, Mc is the mean vector of the sample of class c, ac is the 

percent probability that any candidate pixel is a member of class c, Covc is the covariance 

matrix of the pixels in the sample of class c, |Covc| is determinant of Covc (matrix algebra), 

Covc
-1 is the inverse of the covariance matrix, ln is natural logarithm function, and T is 
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the transpose function. The MLC based classification involves the assignment of a class 

to the individual pixel based on the lowest weighted distance i.e. likelihood.  Initially, nine 

LULC classes and their sub classes were considered separate LULC classes to address the 

geographic extension problem however finally they have been merged into nine classes 

i.e. Built-up, Forest, Water, Shrubs, Sparse vegetation, Open, Rocky terrain, River sand 

and Paved. Later, one more class was added i.e. Road. Thus, the images have been 

classified into 10 LULC classes. Classification accuracy of MLC was found low in spite 

of good separability of the training samples (signature). This is because of the 

heterogeneity of land use classes and overlapping of the range of spectral reflectance (DN 

values) in different spectral bands. Significant misclassification has been observed in 

rocky areas, exposed rocks, and urban settlement. This misclassification occurs due to 

similar statistical characteristics (mean, covariance) of reflectance values of the surfaces, 

like built-up areas and rocks, water and hill shadows, urban settlement and wet alluvium 

soil. Similarly, shallow water bodies and wet alluvium soil have similar spectral statistics, 

resulting in misclassification. 

3.6.2.3 Classification using an expert system 

In spite of good signature quality at the training stage of the classification algorithm 

misclassification was observed in classified outputs of the MLC based method. To 

improve the classification accuracy rule-based expert classification has been performed 

using ERDAS Imagine software. The expert system is a hierarchy of no. of rules or 

decision tree that constitutes constituent information defined by the user from which each 

pixel of the classified image has to pass and the adjacent decision is taken. The expert 

classification includes some hypotheses, rules, and variables defined by the user in the 

form of the raster, vector, spatial models etc. A rule is a sequence of conditional statements 

formed by user-defined variables. A hypothesis is a decision which has to be taken after 

passing through the rules for each pixel of a classified image. The expert classification 

may comprise a no. of variables, rules, and hypothesis which can be linked together to 

make the final decision or terminal hypothesis. Generally, these rules do not provide a 

definite decision for the class, therefore, binary values (0 & 1) are attached with each rule 

indicating how strongly it confirms or disconfirms a particular class or a set of classes in 

a classification scheme.  

In the present investigation, ERDAS Imagine software’s Expert Classifier has 

been used to implement the rule-based approach. This module has two components; (i) 
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Knowledge Engineer, which facilitates identification of variables, rules, output classes of 

interest and creates the hierarchical decision tree, (ii) Knowledge Classifier, which 

classifies the image using the knowledge base developed in Knowledge Engineer. The 

knowledge-based classification has been used in two ways; (i) classification using only 

spectral information, and (ii) post classification refinement with the integration of 

ancillary information. In the first case, spectral variation of the different land use classes 

in different spectral channels has been used as a criterion for the formulation of the 

knowledge base. The range of digital values for the different target land use classes in 

different spectral bands has been determined. A rule base was then built to exploit the 

spectral information available in different bands corresponding to different land use 

classes. In the second case, the rule-based approach was used for the post classification 

refinement i.e. an initially classified output was derived from the imagery by a standard 

algorithm (e.g. MLC) and then rule-based system applied in an attempt to modify and 

improve the classification. Ancillary information from the various sources has been 

integrated with spectral data for the preparation of the knowledge base. Spectral 

information alone has not been found adequate for the classification of some of the land 

use/cover classes e.g. urban settlement & exposed rocks, water & hill shadows, urban 

settlement & wet sand, exposed rocks & sand. While formulating the rule base, both image 

context and geographic context rules have been used. The former was concerned with 

enforcing spatial simplicity and spatial consistency in the image using local neighborhood 

information. The latter was concerned with exploiting background geographic knowledge 

to correct likely class errors i.e. where the geographical situation of a particular pixel was 

inconsistent with the class label initially assigned to it. A rule base was used to exploit 

these data layers in the post-classification process. For all the pixels more than one rule 

was used with equal class support value (i.e. 1). 

In the present study, the rules were formulated by using the DEM layer mainly to 

refine the misclassification between rocky terrain and built-up classes. The urban 

settlement is located at a relatively lower elevation as compared to exposed rocky areas. 

Using such hierarchical rules these two land use classes can be separated, which has not 

been separated using supervised classification (MLC). Finally, classification has been 

performed using the knowledge classifier module of the ERDAS Imagine software. It 

evaluates all the hypotheses at each location (calculating variable values if required) and 

assigns the hypothesis with the highest confidence value.  Further, details of this approach 

can be found in Willcinson and Megier (1990). A synoptic view of knowledgebase 
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formulated in Knowledge Engineer has been shown in Figures 3.10 & 3.11. 

Misclassification has been reduced by using the expert classification. A total of nine to 

ten LULC classes as discussed earlier, have been identified for all the images. 

3.6.3 Accuracy assessment  

Accuracy assessment is an important step in the classification of satellite imagery which 

includes a comparison of classified outputs with referenced geographical data which are 

assumed accurate in order to assess accuracy. There are various methods to assess the 

accuracy of classified imagery (Congalton and Green 1999; Foody 2002). The present 

study utilizes geographically referenced data collected from high-resolution satellite data 

and other ancillary data for comparing classified outputs. A set of sample pixels (110) 

distributed over the classified output were selected using stratified random sampling to 

check the accuracy of classified maps. It was ensured during the selection of sample data 

that each class has more than 10 sample pixels. The collected reference data was imported 

into the accuracy assessment module of ERDAS Imagine. The classified image was 

provided to the module which enables corresponding class values of the referenced pixel. 

Finally, accuracy assessment of sample pixels of classified output against referenced 

geographical data was performed. The accuracy assessment report comprises statistics of 

the accuracy percentage based on the error matrix and kappa statistics which express the 

proportionate reduction in the error produced by the classification method compared with 

the error of random classification (ERDAS Field Guide, 2016). Kappa statistics and 

accuracy percentage are the measures of accuracy. The accuracy assessment reports for 

different classified maps are given in Tables 3.7 & 3.8. 
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The rule-based post-classification refinement approach has been found to be most 

satisfactory for the classification of spectrally overlapping land use classes. Users and 

producers accuracy are almost the same for the rule-based approach, which indicates the 

consistency of classification. The overall accuracy of the rule-based post-classification 

refinement is highest and more than 80% for all the images irrespective of spatial 

resolutions. Classification accuracy for all the images of different years has been found to 

be satisfactory. Accuracy percentage for all the images has been found to be between. 80 

% to 94% for different years. The kappa statistics have been found to be 0.73 to 0.92 for 

all the images. A value of 0.92 as the kappa statistics implies that the classification method 

is avoiding 92% of the error that a completely random classification generates (Congalton, 

1991).   

 

Figure 3.10: Synoptic view of expert classification (a) 
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3.6.4 Preparation of land use/land cover maps 

The land use land cover maps obtained from the classification of satellite imagery of 

different years for Ajmer fringe including Pushkar are presented in Figures 3.12 & 3.13, 

respectively. Different LULC classes identified in Ajmer fringe and Pushkar are- 

Builtup 

This is one of the important land use information used in the present study for 

parameterization of SLEUTH model. 

 

Figure 3.11: Synoptic view of expert classification ( b) 
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Table 3.7: Accuracy assessment report for 5-meter resolution satellite data 

 1997 2000 2004 2008 2013 2015 

Land use 

Classes 
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Built-up 60.00 100.00 60.00 100.00 87.50 77.78 85.71 94.74 100.00 91.30 85.00 89.47 

Forest 80.00 75.00 80.00 75.00 100.00 72.73 100.00 84.62 100.00 100.00 90.48 95.00 

Water 84.62 91.67 84.62 91.67 92.31 100.00 100.00 100.00 100.00 100.00 92.86 100.00 

Shrubs 40.00 66.67 40.00 66.67 66.67 88.89 66.67 100.00 80.00 100.00 37.50 100.00 

Sparse 

vegetation 
81.25 92.86 81.25 92.86 90.00 90.00 50.00 63.33 50.00 100.00 100.00 100.00 

Open 90.91 64.52 90.91 64.52 84.44 74.51 87.10 81.82 93.94 83.78 92.86 74.29 

Rocky 

terrain 
100.00 94.44 100.00 94.44 100.00 100.00 100.00 100.00 88.24 100.00 100.00 100.00 

Sand 100.00 83.33 100.00 83.33 - - 100.00 50.00 - - 100.00 100.00 

Roads - - - - - - 50.00 100.00 33.33 100.00 100.00 80.00 

Table 3.8: Accuracy assessment report for 5-meter resolution satellite data 

Year Accuracy percentage Kappa statistics 

1997 82% 0.78 

2000 82% 0.78 

2004 80% 0.73 

2008 89% 0.86 

2013 93% 0.91 

2015 88% 0.85 

2018 94% 0.92 
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All types of constructions used for human habitation as well as working infrastructure 

such as buildings, industries, houses, concrete paved etc. comes under the built-up 

category. Housing construction, buildings, and industries have been classified as 

settlement and we have separated the paved and roads classes as discussed below. The 

settlement class is identifiable on the classified imagery by its magenta color.  

Forest  

The area with dense vegetation has been considered as forest in the present study. It 

includes forest areas as well as areas with thick vegetation in residential areas or along the 

roads.  In FCC, it appears dark red in color due to its FCC. However, we have signified 

forest as dark green in classified imagery.  

Water  

Natural and artificial water bodies have been classified as the water body class which 

includes lakes, ponds etc. Water can absorb much sunlight but negligible reflectance is 

there so, it looks black in satellite imagery. Water body class has been signified with a 

dark blue color.  

Shrubs  

The areas with higher topography like uplands or high grounds, having shrubs or bushes 

are classified as Shrubs. A shrub or bush is a horticultural rather than strictly botanical 

category of woody plant, distinguished from a tree by its multiple stems and lower height, 

usually less than 6 m tall. A large number of plants can be either shrubs or trees, depending 

on the growing conditions they experience.  

Tonal contrast of the shrubs depends on foliage cover. The areal spread varied in size with 

irregular and discontinuous shapes. These appeared pink to pink bluish in tone, intermixed 

with a coarse texture. The coarse to mottled texture has been observed which was due to 

thin vegetation cover and exposure of terrain underneath. The shrubs are confined mainly 

on hill slopes and barren land. Some of these areas are part of a reserved forest area.  

Sparse vegetation 

The thin vegetative areas have been classified as sparse vegetation. It has smooth red 

texture in FCC of satellite images. Though, it has been assigned a chartreuse green color 

in the classified output.    
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Open land 

The vacant land or land not in use and barren land have been classified as open land. It 

may have peculiar texture in FCC of satellite imagery like light green, yellow, dusky 

yellow, brown and many more. Although, it is orange in color in the classified images.  

Rocky terrain 

This is also a category of barren land. Areas with brownish red murram (soil in hilly 

slopes) with boulders with little vegetation are classified as rocky terrain. This appeared 

in dull greenish to yellow tone and medium to coarse in texture. This land cover category 

was found in hilly areas along with barren land and shrub land cover classes. This land 

cover class is extracted carefully as it mixes spectrally with the barren land, settlement, 

and exposed rocky terrain categories. 

River sand 

Areas, which have a substantial accumulation of sand, gravels etc. near the streams/ drains, 

are classified as River sand. This category is available dominantly along with the 

drain/Nala. These appeared in bright white to yellow with bluish to reddish tone, due to a 

varied amount of moisture. These were contiguous and linear in pattern. These areas were 

carefully classified, as their signatures were spectrally mixing with that of exposed rocky 

terrain. 

Paved 

A hard surface area generally used for footpaths has been considered as a paved class. It 

is made up of paving material that’s why somewhat similar reflectance has been observed 

as of settlement land use class. Sometimes, it is covered with a perforated hard surface so 

reflectance is very high and looks white in FCC. Paved is identifiable in classified images 

by a white color. 

Roads 

Roads can be identified as a long impervious strip in a satellite image. Its texture is much 

similar to paved areas for concrete roads. It can be identified as violet color in classified 

imagery.  



87 

 

 

Figure 3.2: Land use/ land cover maps for Pushkar town 
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Figure 3.3: Land use/ land cover maps for Ajmer fringe
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3.7 Geographic Database Creation in GIS 

A geographic database can be classified into two categories i.e. spatial and non-spatial 

databases. The spatial database stores the data and information related to the geographical 

objects and features and surfaces while data not containing the information related to the 

location on the earth surfaces are stated as non-spatial databases. Depending upon the 

application the geographic database need to be properly designed. A database should be 

consistent with its terminology, totality, and linkages between its various elements.  

3.7.1 Stages of geographic database design 

To design a geographic database there are three basic stages i.e. conceptual, logical and 

physical design (Rao and Jayaraman, 1995). Conceptual design deals with the needs of 

the user and end goal of the geographic database which is free from the use of hardware 

and software. The logical design deals with the logical structure of the database which 

includes specifications of the elements and procedure used in the database creation. 

Physical design includes the use of hardware and software to deal with file structure & 

management, system memory, disc space etc.  

3.7.2 Level of the geographic database 

A geographic database follows a level of aggregation to include scale or details of the 

contents. A macro-level database requires more details and it should be implicit in the 

statement of end objective and are characterized by the data used. 

In the present study, a geographic database for Ajmer fringe including Pushkar has 

been created at different scales. For individual thematic layers, the scale has been chosen 

based on the scale of data available. Most of the thematic layers have been generated at a 

scale of 1:2,500 to 1:25,000.  

3.7.2.1 Spatial elements of the geographic database 

The spatial elements of a geographic database are application specific and depend upon 

the end objectives. It comprises maps obtained from different sources and define the 

spatial database forming a part of the geographic database. The various spatial elements 

of the geographic database considered in the present study are: 

Land use/cover maps: showing land use/cover classes extracted for the different years 

using the satellite images of various sensors. 
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Urban map: prepared from on-screen digitization using high-resolution satellite image i.e. 

Google Earth (GeoEye sensor) for the year 2017 and 2018. The urban maps of the year 

1997, 2000, 2004, 2008, 2013 and 2015 have been extracted from respective years land 

use land cover maps. 

Road map: showing the road network connectivity of important roads in Ajmer fringe 

including Pushkar. The road maps have been prepared for the year 1997, 2000, 2004, 

2008, 2013 and 2015 from on-screen digitization from the Google Earth high-resolution 

image of respective years. 

Recreational places: showing the places which are used for some recreational purposes 

like a park, garden etc. in Ajmer fringe including Pushkar. The map is prepared by 

performing on screen digitization of the locations of recreational places using Google 

Earth. 

Hospitals: important hospitals in Ajmer fringe including Pushkar has been digitized by 

performing on screen digitization using Google Earth. 

Railway stations and bus stand map: important railway stations and bus stands in Ajmer 

and Pushkar with their locations have been digitized by again performing on screen 

digitization using Google Earth. 

Land cost map: important locations in Ajmer and Pushkar have been digitized by again 

performing on screen digitization using Google Earth and corresponding land cost value 

is assigned. 

Contour map: showing the topographic elevation in the form of contours, at 1.0 m contour 

interval. This map has been prepared through onscreen digitization in ArcGIS using Ajmer 

city map and SOI topographical maps (1:25000 scale). 

DEM map: showing the digital elevation values of a topographical surface and has been 

prepared from the contour map. 

Slope map: showing topographical slope in percent of the area. It has been prepared from 

the DEM (Digital Elevation Model). 

Municipal boundary map: showing spatial extent of municipal boundary of Ajmer. This 

map has been prepared from the Municipal boundary map obtained from internet sources. 

Ward map: showing spatial extent of different city wards (administrative zones) of Ajmer. 

This map has been prepared from the Municipal boundary map and ward boundary map 
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obtained from internet sources. 

3.7.2.2 Non-Spatial elements of the geographic database 

Similar to the spatial database, an actual number of non-spatial elements are also 

application specific and depends upon the end objectives. For example, a non-spatial 

database for LULC change and urban growth modelling may have data on population, 

land cost etc. The non-spatial data may be available at different levels like ward, cells, 

etc., but it is always desirable to collect the data at the lowest spatial unit of the area. The 

cell or pixel being the smallest spatial unit has been used as a basic unit in the present 

study for land use land cover change and urban growth analysis. Details of the non-spatial 

data used in the study have been presented in Chapter 7. 

3.7.3 Spatial database creation in GIS 

The various thematic information for the study area i.e. layers (shapefiles and geodatabase 

layers) are created using the ArcGIS package. The methodology of database creation has 

been shown in Figure 3.14. 

3.7.3.1 Digitization of features 

Separate layers have been prepared for each theme. The various features of different 

themes are digitized through onscreen digitization in the ArcMap module of the ArcGIS 

package and Google Earth. Snapping has been used while digitizing the features to ensure 

interconnectivity. Details of all the shapefiles/geodatabase layers prepared for the study 

area along with their spatial features have been presented in Table 3.9. 

Table 3.9: Details of GIS layers prepared for the study area 

S. no. GIS layer Feature type 

1 Municipal boundary Polygon 

2 Ward map Polygon 

3 Contour Polyline 

4 Land use/cover maps Polygon 

5 Road maps Polyline 

6 Urban maps 

 

 

 

Polygon 

7 Hospital map Point 

8 Recreational Places map Point 

9 Bus stand and railway station map Point 

10 Land cost map Point 

11 Exclusion map Polygon 
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3.8 Geographic Database 

The present study broadly deals with the land use/ land cover change and urban growth 

modelling which require a variety of data/information related to the earth surface i. e. 

Spatial framework 

Thematic data 

Registration 

Digitization (create Shapefile) 

Convert into geodatabase and construct Topology 

Convert into Shapefile 

Editing and conversion into geodatabase 

Re-construct Topology 

Convert into Shapefile 

Associate Attributes 

Layer 3 Layer 2 Layer 1 ….

….. 

No 

Yes 

Check for 

error 

Figure 3.4: Procedure used for the creation of geographical database 
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topography or geography of earth, which includes information related to land use/cover 

and urban growth, topographical slope, road, important places and infrastructure hubs and 

hillshade etc.  Geographical database created in the present study includes various 

thematic layers related to topographic surface representations (DEM, slope, and 

hillshade), physical boundaries (municipal boundary and ward map) and land use/cover, 

socio-economic parameters (population, density, land cost, location of hospital, 

recreations places, bus stand and railway station etc. Created databases are discussed in 

subsequent sections. 

3.8.1 Contour map 

The contour is a line joining the points of equal elevation. Generation of a contour map is 

a very important aspect of any study related to geographical earth surfaces. The contour 

map forms a base map for generating a number of GIS layers, such as DEM, slope and 

hillshade maps. The SOI topographic maps (45 N J/11/1, 3, 4, 5 and 45 N J/10/3, 6 at  

1:25,000 scale with contour interval of 10 m) and Ajmer city map (prepared from aerial 

survey with 1:2,500 scale and  1.0 m contour interval) have been used as the base map for 

the digitization of contours. The contours within municipal boundary were digitized in a 

newly created shape file having polyline spatial feature. This shapefile was assigned the 

same geo-referencing and coordinates as the registered SOI topographic maps.  The 

minimum elevation of contour was found to be 450 m, while the maximum elevation of 

the contour is 882 m. The digitized shapefile has been exported to coverage to construct 

the topology. The coverage then converted again to shapefile, which was ready to use for 

further analysis i.e. generation of DEM, slope and hillside map. The contour map is shown 

in Figure. 3.15. 

3.8.2 Slope map 

The DEM was used to generate a slope map (in percent) in raster format. Slope identifies 

the steepest slope for a location on a surface.  In the present study, the slope map has been 

prepared by using two DEMs, first created from above using digitized contour map (1-

meter contour interval) and other obtained from USGS earth explorer (30 m resolution) as 

digitized contours do not cover the entire fringe of Ajmer. The DEM of 30 m resolution 

has been resampled and merged with the above prepared fine resolution DEM to form a 

complete study area (Figure 3.15). 
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The output slope raster can be calculated as percent slope or degree of slope. 

When the slope angle equals 45 degrees, the rise is equal to the run and when it is 

expressed as a percentage, the slope of this angle is 100%. The slope has been generated 

in the 3D Analyst module of ArcGIS.  Classified slope map of the study area (in 

percentage) has been shown in Fig. 4.15. Topographic slope varies from flat (0%) to very 

steep (236.8%). Results reveal that about 25% of the area has more than 20% topographic 

slope which indicates hilly topography of the area.  

3.8.3 Municipal boundary and ward map 

The municipal boundary of Ajmer city is the geographical area notified by the Competent 

Authority (Municipal Corporation Ajmer and Town Planning Department) for the urban 

development. This area is revised from time to time depending upon the development 

needs. A municipal boundary map has been prepared as a polygon feature layer in GIS 

through manual onscreen digitization. Ajmer municipal boundary map obtained from 

Ajmer Town Planning Department has been used as the base map (Figure 3.16).  

Wards are the smallest administrative and planning zones formed by the Authority 

for each city/urban center. These are zones with limited extent decided based on 

population and other physical features like an important road or any other physical 

boundary. Wards are used as the basic planning unit while planning the overall 

development of the city. The ward map has been prepared as a polygon feature layer 

through manual onscreen digitization using the ward map as the base map. Presently, there 

are 60 wards in Ajmer (the year 2018) (Figure 3.16).  

 

θ 

rise 

run 

Slope in degrees θ = tan-1(rise/run) 

Slope in percentage = rise * 100/run 
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3.8.4 Road layers 

Road maps have been prepared by performing on-screen digitization of important roads 

in Ajmer for the year 1997, 2000, 2008, 2013 and 2015 (the additional year 2004 in case 

of Pushkar) and the maps are presented in Figure 3.17. 

3.8.5 Exclusion Layer 

The SLEUTH model incorporates an exclusion layer as one of the important input 

parameters which restricts land from becoming urbanized. Exclusion layer may include 

lands which would be restricted from urbanization in present and future as well like, 

reserved forests, water bodies, historical monuments, and land prohibited to construction. 

These features were digitized using SOI toposheet and town plan map and are presented 

in Figures 3.18 & 3.19 for Pushkar and Ajmer fringe, respectively. 

Figure 3.5: Contour map and DEM of the study area 
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3.8.6 Urban growth map 

Urban growth has been found to be increasing over a time period. In the present study, 

five classified satellite images of different years from 1997 to 2015 (six in the case of 

Puskar, the additional year 2004) have been used to extract the urban area in respective 

year (Figures 3.18 & 3.19). These urban maps from the years 1997 to 2015 will be used 

as input dataset for urban growth modelling. In addition to these, built-up of the year 2017 

(Figure 3.21) has been obtained from on-screen digitization using Google Earth for 

Pushkar and built-up of the year 2018 has been extracted from the classified image of 

Ajmer fringe including Pushkar. The urban maps of the year 2017 and 2018 of Pushkar 

and Ajmer fringe respectively have been used for the validation of modelling outcomes. 

Urban area statistics for Ajmer fringe are presented in Table 3.10.  Impervious area (built-

up area) has increased from 1059.63 km2 in the year 1997 to 3093.72 km2 in the year 2015 

in Ajmer fringe including Pushkar, however, Pushkar alone has been developed from 

116.15 km2 in the year 1997 to 480.17 km2 in the year 2015 in terms of urban growth. 

Urban growth for Ajmer fringe including Pushkar has been found to be 3411.53 km2 in 

Figure 3.6: Ward map and municipal boundary of the study area 
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the year 2018.  This implies that the land is being used for urbanization at a faster rate 

which refers to the utilization of all land for development initiatives, like commercial, 

industrial, educational, recreational and residential establishments. The urban growth in 

different years has been presented in Figures 3.18 & 3.19 for Pushkar and Ajmer fringe, 

respectively.  Built-up area obtained from the classification may have some error due to 

mixed class pixels. The classification algorithm designates a particular pixel to a particular 

land use class, depending upon its reflectance characteristics (standard deviation and co-

variance) and spatial resolution. The supervised classification used in this study does not 

deal with sub-pixel classification. However, results are further refined using knowledge-

based approach by reducing the problem of mixed pixels. 

Table 3.10: Built-up area of Ajmer fringe and Pushkar in different years 

Year Built-up area (km2) for Ajmer Built-up area (km2) for Pushkar 

1997 1059.63 116.15 

2000 1358.38 221.20 

2004 - 278.49 

2008 2328.68 320.97 

2013 2589.73 353.14 

2015 3093.72 480.14 

2017 - 539.29 

2018 3411.53 - 
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Figure 3.7: GIS database layers for different years 
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Figure 3.8: Input dataset prepared for Pushkar town 
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Figure 3.9: Input dataset prepared for Ajmer fringe 
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Figure 3.20: Location of different services/ facilities in Ajmer fringe 
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3.8.7 Locations of services and facilities 

Important locations related to recreational places, bus stand & railway station and 

hospitals in Ajmer fringe including Pushkar has been digitized and prepared thematic 

layers as given in Figure 3.20. These data layers have been used for estimation of distance 

maps and further used for the preparation of land suitability decision layer which is 

discussed in Chapter 7. 

3.9 Input Dataset Preparation  

SLEUTH is an acronym for its input layers viz. Slope, Landuse (In case of LCD module), 

Exclusion, Urban, Transportation, and Hillshade maps. For the parameterization of the 

SLEUTH model, all these layers are used as input datasets. Prepared thematic layers are 

Figure 3.21: Digitized urban map of Pushkar (year 2017) 
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converted into a required data and file format so they can be processed by the model. The 

model accepts the GIF file format thus, all the required input images have been converted 

into GIF file format and the complete dataset prepared for Pushkar and Ajmer fringe is 

presented in Figures 3.18 and 3.19, respectively. 

3.10 Concluding Remarks 

The database forms an essential component of any study-related earth surface like LULC 

transformation and urban growth. The spatial and non-spatial data both are required for 

LULC change and urban growth modelling. The spatial database given in this Chapter are 

prepared for the parameterization of different versions of the SLEUTH model. The 

methodology for the creation of the geographic databases is discussed in the chapter. 

Software used for the creation of a database in GIS has been briefly discussed. Basic 

thematic layers generated have been described in detail.  
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CHAPTER 4 

METHODOLOGY 

4.1 Prologue 

The present study is aimed to develop improved versions of SLEUTH model which are 

capable of simulating urban growth more accurately, able to capture different forms of 

urban growth and capable of estimating the urban density/ intensity. The overall 

methodology used in the present research is discussed in this chapter.  Methodology 

includes identification of research gaps and formulation of solution hypotheses to answer 

research questions formulated from an extensive literature review, base urban growth 

model development, calibration, growth prediction and accuracy assessment, sensitivity 

analysis for selected model constants and parameters, development of improved versions 

of SLEUTH i.e., SLEUTH-Density and SLEUTH-Suitability, demonstration of the 

application of different versions of SLEUTH for simulating the urban growth of Ajmer 

fringe and comparison of performance of different versions of SLEUTH.    

In the present study SLEUTH, a Cellular Automata model has been used and new 

versions are developed for the simulation of urban growth. Therefore, first of all salient 

features of the SLEUTH model and its working are discussed. Methodology followed to 

achieve the research objectives is further discussed in the subsequent sections.   

4.2 An Overview of SLEUTH Model 

The SLEUTH model is a cellular automata (CA) based LULC change and urban growth 

model which has been in use for more than 20 years (Clarke et al., 1996; Clarke and 

Gaydos, 1998). The model has been used to simulate LULC change and urban growth of 

different cities throughout the world. The SLEUTH model is an integration of two tightly 

coupled models i.e. Land Cover Deltatron Model (LCDM) and Urban Growth Model 

(UGM) and together they are known as the SLEUTH model. UGM runs independently, 

while LCD is dependent on the UGM model. The former is a classic CA based urban 

growth model, using a Moore neighborhood and simple sequential growth rules (Figure 

4.1). It uses weights for deciding probabilities, Monte Carlo (MC) simulation and growth 

feedback into the parameters through self-modification rules. The latter takes input of the 

quantity of land use transformation from the Urban Growth model and applies CA in 
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change space rather than geographic space. In doing so, it relaxes the single time-step rule 

and allows persistence and aging of cells for longer than one time step. 

SLEUTH is an acronym for its input raster layers i.e. slope, land use, exclusion, 

urbanization, transportation and hillshade.  The model is Unix / Linux based however, it 

can be implemented on windows using a Unix emulator such as Cygwin. The model 

utilizes land use/land cover maps of two different time periods to give class to class 

transition matrix among multiple LULC classes. At least four urban layers to represent 

historical urban growth are required during the calibration phase of the model. The 

exclusion layer is used to control the urbanization where it is restricted due to local and 

regional land use policies. Digital Elevation Models of the study area are used to create 

slope and hillshade maps while the role of the slope layer is to incorporate terrain 

information into the model and hillshade is for giving topographical background of the 

study area. Lastly, it requires transportation network information in terms of road layers 

of different time period to include influence of transportation facilities on urbanization.  

In the SLEUTH model, urban growth behaves like a living organism that is trained 

by its transition rules applied on a cellular basis in a form of nested loops. The outer loop 

executes Monte Carlo runs while the inner loop executes transition rules. The model 

utilizes input historical data and provides parametric values to compute how well model 

runs imitate land use transitions in between input years. The SLEUTH model is framed in 

a sequence of growth rules and modified Cellular Automata (CA). The SLEUTH includes 

five growth coefficients as controlling factors; (1) Diffusion coefficient, (2) Breed 

coefficient, (3) Spread coefficient, (4) Road gravity coefficient, and (5) Slope resistant 

coefficient. These growth coefficients constitutes four growth rules i.e. (1) Spontaneous 

Growth (2) New spreading center Growth, (3) Organic Growth, and (4) Road Influenced 

Growth. Growth coefficients and rules are discussed below in detail: 

4.2.1 Growth Coefficients 

1. Diffusion coefficient: Diffusion coefficient is responsible for overall outward 

expansion of urban growth. 

2. Breed coefficient: Breed coefficient determines the probability of newly urbanized 

pixels, urbanized in previous steps will further leads to urban growth.  

3. Spread coefficient: Spread coefficient is responsible for edge and infill urban growth. 

4. Road gravity coefficient: Road gravity coefficient is responsible for road influenced 

urban growth. 
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5. Slope resistance coefficient: Slope resistance coefficient is a slope based suitability 

criteria for each type of growth. 

 

4.2.2 Self-modification rules 

There are four self-modifying parameters i.e. boom, bust, critical low and critical high. 

The boom state occurs if the growth rate exceeds the critical high value. The bust state 

occurs if growth rate falls short of the critical low value.  

4.2.3 Structure of SLEUTH model 

4.2.3.1 Working of growth rules 

SLEUTH simulates urban growth by executing four growth rules sequentially. Growth 

rules of SLEUTH are – 

1. Spontaneous growth models the development of urban settlements in undeveloped 

areas. 

2. Diffusive growth permits the urbanization of isolated cells, which are flat enough to 

be desirable locations for new urban spreading centers. 

3. Organic growth promotes the expansion of established urban cells to their 

surroundings. 

4. Road influenced growth promotes the urbanization along the transportation network 

because of increased accessibility. 

Figure 4.1: At each cycle in the CA model, five sets of behavior rules are enforced. These are 

controlled by the factors and parameters shown and are applied in sequence for each one 

“year” iteration of the model (Source: Clarke, 2014) 
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The growth rules of the SLEUTH model are fixed but vary for its behavioral influence for 

individual parameter at each time step from zero to highest value. There are five growth 

controlling coefficients in SLEUTH model (as discussed above), each having an integer 

value within a range of 0 to 100. SLEUTH simulates urban growth satisfactorily at optimal 

value of these five constants. To reach out to the optimal set of five growth coefficients, 

the model employs four growth rules in sequence and the controlling year’s simulated 

urban growth is compared with reference LULC information. The calibration process of 

the SLEUTH model is automated and processes to finally obtain the optimal set of growth 

coefficient values.  

The optimal growth coefficient values were chosen after extensive trial and error 

testing. It includes parameters controlling random likelihood of being transformed from 

non-urban to urban (diffusion coefficient) pixel, the probability of pixels initiating their 

own growth trajectory independently (breed coefficient), the outward expansion of 

existing growth areas and infill (spread coefficient), the degree of resistance of being 

urbanized to growing up steeper slopes (slope resistance coefficient) and an attraction to 

urban development along the roads (road gravity coefficient). However, growth 

controlling coefficients are interrelated and controlled by the self-modifying rules, as the 

entire system grows faster or slower than critical high or low values, respectively. The 

effect of self-modifying parameters are to amplify rapid urban growth or retard which are 

termed as boom and bust stages, respectively. The working of growth rules is presented in 

Figure 4.2. 

  

Set 

coefficient 

values 

Self-

modification 

Growth 

rules 

Simulation 

Slope 

Land use 

Exclusion 

Urban 

Transportation 

Hillshade 
 
 
 
 
 
 

+ 

A set of 

coefficient 

values 
+ 

Initial conditions Generate growth cycles Conclude simulation 

Seed 

Figure 4.2: Working of growth rules 
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The growth rules are implemented in the SLEUTH model in a sequential manner and 

named as phase 1to3 (includes two growth rules itself), phase 4 and phase 5 as discussed 

below. The output of one phase is utilized in to the second phase and similarly it goes on 

executing further phases to generate urban growth patterns using historical urban area in 

different years as input or seed.  

▪ Phase 1-3 growth (Spontaneous and New Spreading Centre Growth) 

▪ Phase 4 growth (Edge Growth) 

▪ Phase 5 growth (Road Influenced Growth) 

▪ Self-modification Rules 

4.2.3.1.1 Phase 1-3 Growth (spontaneous and new spreading center growth) 

Phase 1-3 is composed of two sequential growth rules i.e. spontaneous and new spreading 

center growth rules. A chain of conditional loops are performed to execute this phase. 

Spontaneous growth utilizes diffusion and slope resistance coefficients to perform the rule 

in such a way as discussed below in a form of pseudo code; 

Spontaneous growth (diffusion coefficient, slope resistance coefficient) 

{ 

A loop over total diffusion coefficient values has been executed to randomly select a pixel 

for urbanization subject to the suitability conditions and growth rules. 

Then a new spreading center growth rule is applied on randomly urbanized pixels in the 

spontaneous growth rule. The new spreading center growth rule utilizes the breed and 

slope resistance coefficients to carry out new spreading center growth as discussed below; 

New spreading center growth (breed coefficient, slope resistance coefficient) 

{ 

If the pixel gets urbanized it tries to urbanize neighboring pixels by selecting some 

randomly to test the random breed coefficient test 

} 

}/* end of phase1-3 growth */ 

Here, the phase 1-3 growth ends. 

4.2.3.1.2 Phase 4 growth (edge growth) 

Phase 4 is basically an edge growth which incorporates spread and slope resistant 

coefficient to perform phase 4 growth as discussed below; 

Edge growth (Spread coefficient, slope coefficient) 
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{ 

A loop over all pixels of a grid selected sequentially to check whether it is urban and does 

it pass the random spread test. If both the conditions are met then total urban neighboring 

pixels are counted. Then game of life rule is applied to randomly select neighboring non-

urban pixels to urbanize. 

}/* end of phase 4 growth */ 

Here, the phase 4 growth ends. 

4.2.3.1.3 Phase 5 Growth (Road Influenced Growth) 

Phase 5 growth rule is composed of the utilization of diffusion, breed, spread, road gravity 

and slope resistant coefficients and perform in such a way as discussed below; 

Road influenced growth (diffusion coefficient, breed coefficient, spread coefficient, slope 

resistance coefficient, road gravity coefficient) 

{ 

If there is a new growth, begin processing the road trips. Determine the maximum search 

index and then select the newly growth pixel randomly to start a search for a road.  

If there is a road found then walk along a random distance. 

If the end pixel of road found - 

{ 

Try to urbanize its neighboring pixel. 

If urbanized 

{ 

For maximum three tries try to urbanize neighboring pixel of the neighboring pixel 

randomly. 

} 

} 

}/* end of phase 5 growth */ 

Here, the phase 5 growth rule ends. 

After performing primary growth rules i.e. spontaneous, new spreading center, edge and 

road influenced growth rule, secondary growth rules, self-modification is performed to 

incorporate dynamism into the SLEUTH modeling.  
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4.2.3.1.4 Self-modification rules 

The SLEUTH model also includes an another set of rules i.e. self-modification rules which 

are responsible for controlling rapid and depressed growth rates by using multiplying 

factors for growth coefficients.  

4.2.3.2  SLEUTH programming modules and operation 

The growth coefficients space is set into the scenario file, each coefficient value after the 

specified step value is called and setup by the coeff_obj.c program (Figure 4.3). The 

initialization of the model includes initialization of input grids, printing a banner 

statement, set up of flat memory, initialization of color tables, computation of base 

statistics, counting the total number of processing runs, initialization of p grids (processing 

grids) and reading of input data files. After setting up of the initialization it is checked 

whether the processing type is prediction or not. If processing type is prediction, the model 

is run in prediction mode (there are three modes in SLEUTH; test, calibrate and predict) 

in which it will set the stop year to the year up to which the urban growth prediction is to 

be done (Figure 4.3). The current growth coefficients values are also set and then the main 

simulation driving function starts working, which is denoted as ‘A’ in Figure 4.3. The part 

‘A’ has been explained in Figure 4.4. After completion of simulation runs the output ‘gif’ 

images and statistics are generated. If processing type is not a prediction mode a spiral 

chain of loops start to access each coefficient values one by one. For each individual 

coefficient settings the model simulation runs take place by calling the main simulation 

drive function represented as ‘A’. 

4.2.3.2.1 Simulation driver function – ‘A’ 

Inside the simulation driver function first the total number of pixels in each image is 

calculated. The driver function is mainly developed for dealing with the number of MC 

runs. The total number of MC runs decided by the user is invoked and for each run the 

model starts performing growth rules sequentially and this process gets repeated until the 

MC runs complete. After completion of each MC run the model produces a gif output 

which is temporarily stored in the working grids. When all the MC iterations are 

performed the cumulative form of all produced images into a single layer for every year 

gets generated. Along with gif outputs some predefined statistical measures are also 

generated with the gif images outcomes. The MC simulation itself is an important activity 
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into the model which is represented in Figure 4.5 as ‘B’. The details of MC iteration are 

given in preceding sections.  
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Figure 4.3: Working of SLEUTH program 
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4.2.3.2.2 Monte Carlo simulations – ‘B’ 

Monte Carlo simulations are a part of driver function and runs under the driver function. 

First, a function in called to get the total number of MC runs decided by the user and for 

this number a loop is formed so the simulations can be performed for each MC run. A 

loop starts and the current MC number is called. For this current MC number current 

growth coefficient values (i.e. diffusion, breed, spread, slope resistant and road gravity) 

are also set by calling the respective functions as given in Figure 4.5. For these current 

MC run and growth coefficients settings urban growth simulation is performed by calling 

grw_grow function which is a growth function. Inside this function, step by step rules are 

performed to simulate urban growth. The details of this growth function has been given in 

the preceding sections which also include another main function of performing growth 

rules i.e. spread. The growth function has been presented in Figure 4.6. The grw_grow 

function is presented as ‘C’. 

Figure 4.4: Working of Simulation driver function – ‘A’ 

 

 

Calculate total pixels 

mem_GetTotalPixels ( ); 

Z_cumulate_ptr 

pgrid_GetCumulateptr ( ); 

Monte Carlo Simulation drv_monte_carlo 

(z_cumulate_ptr, sim_landuse_ptr); 

Inside this drv_driver ( ) 

function 

Output Urban Images 

Output Cumulate probability 

images 

Output uncertainty images 

A 

B 



113 

 

4.2.3.2.3 Growth function (grw_growth) – ‘C’ 

Inside growth function two pgrids (processing grids) i.e. z_ptr for storing urban growth 

information, land1_ptr for storing land use change and D_ptr for built-up density related 

information are given as parameters of a function. Since the SLEUTH model is an 

integration of urban growth model (UGM) and land cover deltatron model (LCDM) as 

discussed previously. Therefore, these two parameters are passes into the grw_growth 

function. However, the primary focus of present research is urban growth simulation 

therefore, we would be more focusing on UGM rather LCDM model of SLEUTH.  
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Figure 4.5: Working of Monte Carlo simulations – ‘B’ 



114 

 

The prediction dates which are given in the model scenario file are invoked to set the 

prediction start and stop year which indicates the duration for which simulation is to be 

performed. The z_ptr and D_ptr grids are initialized with ‘0’. The cellular automata rules 

for this current year as given above starts computing by calling a main function (i.e. 

spread) of these CA rules. This spr_spread function is named here as ‘D’ and is separately 

discussed in further sections. The methodology for spr_spread function has been presented 

in Figure 4.7. 
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Figure 4.6: Growth function (grw_growth) - ‘C’ 
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4.2.3.2.4 Spread function (spr_spread) – ‘D’ 

The spread function is the major function to perform cellular automata based game of life 

rules to simulate urban growth. The CA growth rules are performed sequentially for each 

growth cycle. There are in total four growth rules to be performed sequentially which are 

interdependent as well and named as phase 1-3 which included two growth rules i.e. 

diffusive or spontaneous growth and new spreading center growth rules respectively. The 

phase 4 includes spread growth and phase five includes road influenced growth rules, as 

given in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4 Operations of SLEUTH model 

A Cellular Automata (CA) is a mathematical framework that allows computational 

experiments in a complex spatial system over time. The main components of a CA 

 
Setup workspace delta as growth array and 

initialize it as ‘0’ for this time period util_init 

(delta, 0); util_init (delta_density, 0); 

 

Get slope rates spr_get_slp_weights ( ); 

PHASE 1-3 growth spontaneous neighborhood growth 

and spreading center growth spr_phase1-3 ( ); 

PHASE 4 growth Organic growth spr_phase4 ( ); 

PHASE 5 Road influenced growth spr_phase5 ( ); 

Place the new growth into array; z_ptr [i] = delta [i]; 

D_ptr [i] = delta_desnity [i]; 

Calculate statistics number growth pixels, pop 

etc. 

D 

Figure 4.7: Spread function (spr_spread) – ‘D’ 
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framework are; a cell based structure usually raster cells or pixels covering a landscape, 

state of cells like urban and non-urban or in detail LULC classes (i.e. forest, urban, water, 

wetland etc.), transition rules that control the states of cells change over time, a system 

clock in which rules are applied to a state for a specific time period and base condition of 

the framework. The SLEUTH model is parameterized from historical urban area in 

different years in the form of a raster dataset. All the layers are set to a fixed spatial extent 

and resolution. A successive application of transition rules with system synchronous 

updates of each cell is considered as a year.  

The SLEUTH model calibration begins by first preparing model input information 

for the hind casting. The input data layers should be first geographically registered which 

include urban area maps for a minimum of four controlling years, transportation layers for 

two or more years, one exclusion layer, slope and hillshade map in raster format.  

Urban area layers are supplied to the model in the form of binary maps, 

representing urban and non-urban pixels. Similarly, road layers are also supplied in the 

form of binary or weights. One single run is equivalent to the sequential implementation 

of all growth rules, including all five growth parameters or coefficients. For an individual 

run, model behavior and performance is tested with the help of 13 measures of goodness 

of fit between the modelled and actual urban area. A composite measure of these measures 

of fit averaged over several Monte Carlo runs is further used to decide the coefficient set.  

The SLEUTH model simulates urban growth in three phases; test, calibration and 

the prediction phase. In the test phase, input data and model control parameters are tested 

for their appropriateness and readiness of the model for the calibration phase. The 

calibration phase uses brute force or GA based methods for the model the calibration. 

After completion of each years growth cycle, self-modification rules are applied which 

slightly alters the coefficient values to simulate accelerated or depressed urban growth. 

The Boom state occurs if the growth rate exceeds the critical high value. The Bust state 

occurs if the growth rate decreased to the critical low value. The growth rate is determined 

by Eq. 4.1;  

𝐺𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =  
number of growth pixel

total number of urban pixels
∗ 100                   (4.1) 

The operations of the SLEUTH model is explained in Figure 4.8. 
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4.3 Methodology 

The proposed research is aimed to understand and study the urbanization processes, 

drivers & mechanism of urban growth, different modelling approaches & models to 

develop an appropriate model which is suitable for simulating realistic urban growth and 

its prediction, considering selected drivers & variables using CA and geo-spatial 

techniques.  

An effort has been made to improve and enhance the performance & capabilities 

of the CA based SLEUTH model by examining its sensitivity to different model 

parameters & constants, which have not been examined so far, by estimating the urban 

density and by adding another decision rule i.e., the land suitability which explains a few 

important urbanization explanatory variables. Further, model performance and application 

will be demonstrated through modelling and prediction of urban growth for a selected 

urban area. The methodology followed to achieve the stated research objectives is 

explained in Figure 4.8 and briefly summarized below. 

i. Literature review to understand the present state of knowledge related to LULC 

change, urban growth modelling and research challenges, 

ii. Collection of spatial and non-spatial data from different sources required for 

parameterization of SLEUTH,  

iii. Preparation of land use/ land cover maps for different years through processing 

of satellite images, 

iv. Creation of GIS database for required explanatory variables of urban growth, 

v. Conceptualizations and parameterization of CA based SLEUTH model, 

vi. Calibration of model for base case with existing SLEUTH model and default 

constant values for the test case study area, 

vii. Sensitivity analysis of model for selected model input parameters and 

constants like spatial resolution of input variables, critical slope coefficient and 

self-modification constants etc., 

viii. Development of new version of SLEUTH model capable of estimating the 

built-up density/intensity,  

ix. Development of new version of the SLEUTH model by incorporating another 

decision rule which explains influence of selected important explanatory 

variables of urbanization to improve the performance of model in realistic 

urban growth simulation, modelling and prediction, 
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x. Comparison of model performance before and after improvements in 

simulating the urban growth of the selected area, 

xi. Demonstration of application of improved SLEUTH model for simulating the 

urban growth of a real urban area.  

Briefly, research work includes collection of spatial and non-spatial data required for the 

study, as discussed in Chapter 3. The required GIS database was created using appropriate 

methodology as discussed in Chapter 3 in detail and various thematic layers like LULC 

maps for different years, road layer, slope, hillshade etc. have been generated. Historical 

LULC information has been extracted from the satellite imagery using standard digital 

SLEUTH Model Input Parameters 

➢ Temporal Urban Maps 

➢ Transportation layers 

➢ Slope Layer 

➢ Exclusion Map 

➢ Hillshade Map 

SLEUTH Scenario File 

➢ Start date of Simulation 

➢ End date of Simulation 

➢ Slope controlling parameters 

➢ Growth coefficients (Start, End, 

Step) 

➢ Self-modification constant settings 

➢ Model log file flags 

Input Variable Information in SLEUTH 

Format 

SLEUTH Model Conceptualization & 

Parameterization 

Model Testing Multi-phase Model 

Calibration 

Model Log Files 

Calculation of OSM 
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growth  
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Self-modification 
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Modification of 

Growth Coefficients 

Urban Growth Prediction 

Figure 4.8: Working of SLEUTH model 
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image processing methods like image registration, rectification, training or classification 

algorithm and accuracy assessment. The other bio-physical, socio-economic and 

demographic data utilized as the attributes for the respective thematic layers are used as 

input datasets for parameterization, calibration or in development and testing of improved 

versions of the SLEUTH model.  

The SLEUTH model has been conceptualized for Pushkar and Ajmer areas in a 

base case scenario using the default model constants/ parameters. Base case model has 

been calibrated successfully and urban growth is predicted. Further, base model 

performance has been tested in predicting the urban growth of Ajmer and Pushkar through 

accuracy assessment with respect to reference data. Performance of the base model has 

been found to be fair and model limitations and their probable causes were identified. The 

model is not able to capture the fragmented urban growth and different form of 

urbanization well. It was observed that model performance can be enhanced by 

determining the optimal value of some of model constants through sensitivity testing. 

Model performance can further be enhanced by incorporating a few other important 

explanatory variables of urbanization in the urban growth simulations like land suitability 

as an additional growth rule which can be defined by land cost, distance from important 

roads, and distance from important places like railway station, bus stand, recreational 

places and city center.   

Rigorous sensitivity analysis has been carried out to judge the behavior of the 

model with respect to changes in a few selected model constants using the Pushkar data. 

Model sensitivity has been tested for some of the crucial parameters of the SLEUTH 

model such as self-modifying parameters (i.e. boom, bust, critical low and critical high), 

critical slope, Monte Carlo iterations, cellular neighborhood, game of life rules and 

diffusive value parameter using an iterative procedure. Details of the sensitivity analysis 

are discussed in Chapter 5 in detail and in subsequent sections of this chapter. Further, 

performance of SLEUTH with optimal model constants has been determined through 

accuracy assessment. Further, to improve the SLEUTH performance, efforts have been 

made to develop a new improved version of the SLEUTH model i.e., SLEUTH-Suitability 

which can simulate urban growth using an additional growth decision rule i.e., land 

suitability. A suitable algorithm is developed, required code was written and integrated 

with SLEUTH code. Land suitability decision variables includes influence of selected 

urbanization explaining variables. The SLEUTH-Suitability was developed and tested 

using the Pushkar datasets.   
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The performance of SLEUTH-Suitability was tested again through accuracy assessment 

with respect to two reference data sources (urban area obtained from classified satellite 

image of year 2018) and ground truth information collected from the field survey for both 

Pushkar and Ajmer fringes. Development, testing and application demonstration of 

SLEUTH-Suitability is discussed in the Chapter 7 in detail. 

A new version of the SLEUTH i.e., SLEUTH-Density has been developed by 

adding additional capability to the existing model to estimate and predict built-up density/ 

urban intensity. The new module has been developed by developing a density estimating 

algorithm, developing programming code and integrating with code of the existing 

SLEUTH model. Details of the SLEUTH-Density development, testing and application 

demonstration are presented in Chapter 6.  

Further, performance of different versions of SLEUTH i.e., base version with 

default constants, SLEUTH with optimal model constants and SLEUTH-Suitability has 

been examined by comparing urban growth simulations for the Ajmer fringe. Performance 

has been judged in the form of different statistical metrics, visual urban growth matching 

and accuracy assessment with respect to ground truthing. Comparative performance 

evaluation of different versions of SLEUTH is presented in Chapter 8. Methodology has 

been explained in detail in subsequent sections. 

4.3.1 SLEUTH parameterization 

To parameterize and conceptualize different versions of the SLEUTH, input data has been 

extracted in the required format (raster grid) at selected resolution from the GIS database. 

Input data includes urban & transportation maps of different years (five years, 1997, 2000, 

2008, 2013 and 2015) in binary format  like urban as 1 and non-urban as 0, percentage 

slope, exclusion map and hillshade map (Figure 4.9) for both the study areas i.e., Ajmer 

fringe and Pushkar. Creation of the GIS database and preparation of different thematic 

layers from where input data was extracted has been discussed in Chapter 3 in detail. Input 

data required for other versions like SLEUTH-Suitability and SLEUTH-Density was 

extracted from the GIS database. Additional input data prepared for SLEUTH-Suitability 

includes the data layers related to proximity, distances and land cost explanatory variables 

which are used to prepare an additional decision rule i.e., land suitability. These datasets 

have also been extracted from the GIS database in raster format and used during model 

calibration and urban growth prediction. Database related to years 2016, 2017 and 2018 
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have been prepared for evaluation of model performance for both Ajmer and Pushkar 

study areas. SLEUTH parameterization has been explained in Stage A & B in Figure 4.9. 

4.3.2 Model calibration and urban growth prediction 

The SLEUTH model simulates the urban growth in three phases i.e. test, calibration and 

prediction. In the test phase  all the input variables including input data layers are checked 

whether they are in the required format or not. After the test phase the model transfers the 

control to the calibration phase which is the crux of the model. Model calibration includes 

various tools and techniques which attempt to determine the model growth coefficient 

values at which model best replicates historical growth. The model utilizes different 

constants like diffusivity constant, self-modifying parameters, etc. which remain internal 

to the model and can be chosen in some specific conditions. It is the first stage of 

calibration to determine growth coefficients, as a part of model design. The model 

calibration also depends on growth coefficients (as discussed above) which are selected 

by the user based on the model fitness criterial and metrics in each phase. SLEUTH model 

calibration can be either performed by Brute Force or Genetic Algorithm (GA) based 

methods and it involves Moore Neighborhood (8-cell). SLEUTH-GA is the new version 

of the model which optimizes time complexity and has been released recently. 

The traditional method of calibration in SLEUTH is by brute force which is a 

sequential multi-stage optimization process. Every possible permutation and combination 

of growth coefficients for decided ranges is tested to reach an optimal solution (Silva and 

Clarke, 2002). Through the Brute Force method, the controlling growth coefficients are 

refined in different phases sequentially i.e. coarse, fine and final and the best fit coefficient 

values are determined on the basis of Optimal SLEUTH Metric (OSM), a composite 

model fitness metric. A number of possible combinations within a large growth 

coefficients’ space i.e. 0 - 100 is refined over a number of Monte Carlo iterations (i.e. 10). 

Initially, the model is calibrated for the coarse phase to refine the coefficient values, 

thereafter fine phase calibration is performed using refined coefficient values in the earlier 

calibration phase. In the fine phase refined coefficient values are further used for final 

phase calibration. The motive of the calibration phase is to refine the growth coefficient 

values for further growth prediction. Calibration process in Brute force method is user 

monitored through selecting the growth coefficient values manually for each calibration 

phase based on sorted model best fit statistics and subsequently selected growth 

coefficients are used for the next phase of calibration.  
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The Genetic algorithms (GA) is heuristic approach which can be used to simulate 

natural evolution to obtain an optimal result. GA has an advantage as it avoids human 

intervention completely from the calibration process. SLEUTH-GA iteratively explores 

the entire coefficient space in one go with no need to pass through multiple calibration 

phases (as in case of conventional SLEUTH). In SLEUTH-GA, coefficient and parameter 

values related to GA like crossover, mutation, fitness, evaluation and survival selection 

based constants (such as population size, generation, number of offspring, mutation rate 

and number replaced)  are needed to be selected during calibration. In GA, the 

chromosome is a string of growth coefficients in a predefined order i.e. diffusion, breed, 

spread, slope resistant and road gravity where individual values represent a gene. A set of 

genes is called as a chromosome which is evaluated one gene at a time. The initial 

population used to start the calibration process which is termed the seed population and 

further successive population forms a generation. The SLEUTH-GA has been set for its 

default parameter values which are extracted from a rigorous evaluation of best 

performing parameter values. In the present work, population size as 55, generations as 

100, mutation rate as 0.13, number of offspring as 55 and number replaced have been 

adopted as 50.  Each generation replaced the weakest gene in the old population with the 

strongest gene in the new population (Clarke, 2017, 2018) corresponding to the best fitness 

measure (i.e. OSM).2

 The SLEUTH model generates 13 goodness of fit metrics regressed between 

actual and simulated urban area (Table 4.1) for its individual calibration phase. For every 

possible set of growth coefficient values a corresponding 13 metrics values are generated. 

However, the highest fit value of a metric may often lead to the disagreement among other 

metrics. Therefore, Lee Sallee metrics which is an urban pattern index and OSM metrics 

(a product of  ‘compare’, ‘population’, ‘edges’, ‘clusters’, ‘slope’, ‘X-mean’, and ‘Y-

mean’) are the most preferred metrics for selecting optimum growth coefficient values. 

Deciding the number of Monte Carlo (MC) runs is also a crucial step in model calibration. 

In various studies, (Rafiee et al., 2009; Wu et al., 2009) 10 MC runs are set as model 

calibration to optimize the time and performance of model calibration and in present study 

also the same number of MC runs have been used in calibration. On final completion of 

calibration the best fit coefficient values averaged over a number of Monte Carlo runs are 

obtained and urban growth prediction (i.e. third phase of  SLEUTH simulation) is 

                                                 
2 http://www.ncgia.ucsb.edu/projects/gig/ 
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performed.  The prediction phase produces simulated urban growth for the desired year in 

the forms of raster maps presenting historic and future trends of urbanizations and 

statistics like urban area, growth rate etc. The flow of SLEUTH model run has been 

explained in Figure 4.10 which is considered as Stage-C in methodology. 

Present study has utilized both the calibration methods as SLEUTH-GA is recently 

developed and launched and it has been used in present study as well. 

Table 4.1: Model fitness metrics 

S.no. Metrics Description 

1 Compare Modeled population for final year/actual population 

2 Pop Least squares regression score for modeled urbanization compared 

to actual urbanization for the control years 

3 Edges Least squares regression score for modeled urban edge count 

compared to actual urban edge count for the control years 

4 Clusters Least squares regression score for modeled urban clustering 

compared to known urban clustering for the control years 

5 LeeSallee A shape index, a measurement of spatial fit between the model’s 

growth and the known urban extent for the control years 

6 Xmean Least squares regression of average x_values for modeled 

urbanized cells compared to average x_values of known urban 

cells for the control years 

7 Ymean Least squares regression of average y_values for modeled 

urbanized cells compared to average y_values of known urban 

cells for the control years 

8 Radius Least squares regression of standard radius of the urban 

distribution, i.e. normalized standard deviation in x and y 

9 OSM a product of  ‘compare’, ‘population’, ‘edges’, ‘clusters’, ‘slope’, 

‘X-mean’, and ‘Y-mean’ 

10 Mean 

cluster 

size 

least squares regression score for modeled average urban cluster 

size compared with known mean urban cluster size for the control 

years  

11 Average 

slope 

Least squares regression of average slope for modeled urbanized 

cells compared with average slope of known urban cells for the 

control years 

12 Urban (%) Least squares regression of percent of available pixels urbanized 

compared with the urbanized pixels for the control years 

13 F match A proportion of goodness of fit across land use classes. 

SLEUTH Model 

Test mode Coarse  Fine  

 

Final  

Stage - C 

Calibration 

Prediction 

 

Figure 4.10: Work SLEUTH calibration and growth prediction process 
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4.3.3 Sensitivity analysis  

The sensitivity analysis of selected SLEUTH model parameters/constants has been carried 

out using iterative process as explained in Figure 4.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Few crucial model constants/ parameters for which SLEUTH sensitivity has not been 

tested so far (Silva and Clarke, 2002; Jantz and Goetz, 2005; Kantakumar et al., 2011; 

Clarke, 2014; Houet et. al., 2016) are selected for the present sensitivity analysis. 

Sensitivity analysis has been carried out using an iterative procedure (Figure 4.11). The 

model has been parameterized, calibrated and urban growth was predicted for a range of 

selected model constants. Relative change in model response in term of change in 

simulated urban area and other statistical best fit metrics with respect to change in each 

constant value has been determined by running the model number of times for a range of 

values of each constant at a time, keeping other model constants at same level.  Six model 

constants have been selected for their sensitivity testing in the present study. These 

constants include; self-modifying parameters i.e. boom, bust, critical low and critical high, 

critical slope, diffusive value parameter, cellular neighborhood size, game of life rules and 

number of Monte Carlo runs. Methodology of sensitivity analysis has been presented in 

Figure 4.12. 
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Model sensitivity analysis includes model parameterization for a range of values of 

individual constant decided as the default value ±50% prescribed for that constant 

independently. Furthermore, calibration has been performed to obtain an optimal set of 

growth coefficient values on the basis of model fitness measure i.e. OSM and final urban 

growth  was predicted  up to year 2040 for each and individual constant range, 
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Figure 4.13: Methodology for sensitivity analysis 
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independently. Finally, accuracy of the predicted urban growth has been assessed to 

determine the optimum parameter values for which model is more accurate in imitating 

the real urban growth, able to capture different form of urban growth and patterns. The 

accuracy has been assessed on the basis of accuracy percentage, kappa statistics, goodness 

of fit metrics, spatial and statistical measures, OSM and visual analysis with reference to 

Google Earth image and input dataset based actual data for the respective years. 

Sensitivity analysis has been presented in detail in Chapter 5. 

4.3.3.1 Self-modifying parameters 

The SLEUTH model has four self-modifying parameters i.e. boom, bust critical low and 

critical high. The default value of boom constant is 1.01. For testing the model sensitivity 

to the boom constant, model has been run iteratively for a range of boom values from 0.5 

to 1.5 and relative change in model response (urban growth) has been determined for each 

value using the methodology explained above. Relative change in model response has 

been determined in terms of spatial and statistical metrics and accuracy assessment with 

respect to reference data. Optimum value of boom constant is the value at which model 

simulated growth has been found to be most satisfactory in term of criteria as explained 

above.  

Similarly, model sensitivity to other self-modifying parameters like bust, critical 

high and critical low was determined by simulating the urban growth iteratively for a range 

of these parameters individually and comparing simulated urban growth with the actual 

growth corresponding to default value of that particular parameter. Model sensitivity has 

been checked for bust constant for a range of 0.05 to 1.35 (default value is 0.09), for 

critical high for a range of 0.65 to 1.95 (default value is 1.3) and for critical low constant 

for a range of value from 0.5 to 1.5 (default value is 0.97).  

For each self-modifying parameter model sensitivity and optimum value have been 

obtained by comparing simulated urban growth for each value of individual constant with 

the urban growth corresponding to the default value and actual urban growth obtained 

from the reference data for year 2016 and 2017.  This rigorous sensitivity analysis has 

been done to improve existing knowledge of the model behavior as a function of these 

constants. The total 39 sets of different values of self-modifying parameters have been 

tested for sensitivity. The 39 sets leads to (39 * 3) 117 calibration and growth prediction 

runs.  
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4.3.3.2 Monte Carlo runs 

The SLEUTH urban growth model is a stochastic model therefore, to include 

randomization into the modelling, Monte Carlo simulation has been adopted. It provide 

an estimate of variances in outputs. For a single set of coefficients multiple simulation 

runs are generated to have an idea about the quantitative and qualitative variances in 

outcomes. Deciding the number of Monte Carlo runs for model calibration is always a 

complex decision and a set of model results are generated for different sets of parameter 

combination in order to determine the best fit coefficient set. In a few studies, it has been 

reported that 10 ⁓ 100 number of MC runs are used in practice, however the higher number 

of MC runs the more the requirement of computational resources (Goldstein et al., 2005(. 

To investigate the influences of different MC runs on model performance during 

calibration, model sensitvity to the number of MC iterations has been tested by running 

the model with the same input dataset and model constants for a range of MC runs i.e., 10 

to 300 and determining the relative chnage in model response  with respect to calibration 

performance and in resulting urban growth prediction. This is discussed in detail in 

Chapter 5. 

4.3.3.3 Cellular neighborhood 

The cellular automata based SLEUTH model has the capability to effectively include the 

neighborhood influences on urbanization while simulating the urban growth. The size of 

cellular neighborhood plays an important role to quantify the extent of neighborhood 

influences on urban growth. Presently, the SLEUTH model is utilizing 8 cell Moore 

neighborhood extent. There may be some other sizes of cellular neighborhood which can 

incorporate the neighborhood extent influence correctly in the urban growth simulation. 

Thus, to identify the effect of extent of neighborhood on model response (urban growth) 

urban growth for an area (with same input data and model constants) was simulated 

considering different sizes of cellular neighborhood in SLEUTH i.e. Von Neumann 4 cell 

neighborhood, 8 cell Moore Neighborhood and 12 cell extended Moore neighborhood. 

For all the three neighborhood sizes, the SLEUTH model code was modified separately 

and the model redeveloped. Optimum value of neighborhood extent size was determined 

by comparing the model outcomes and model fitness metrics with the actual urban area 

extracted from reference datasets and their respective metrics. A particular extent size for 

which spatial and statistical metrics calculated from reference data and simulated growth 

are comparable with minimum difference will be the optimum neighborhood size.   
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4.3.3.4 Game of life rules 

There is another crucial parameter of the CA based SLEUTH model i.e. game of life rule 

which play a crucial role in modelling of urban growth. CA has the ability to easily 

incorporate complexity and dynamism of urbanization influencing phenomenon where 

human behavior is involved. The SLEUTH model incorporates game of life rules for 

simulating urban growth. The game of life rules helps in determining the state of a cell/ 

pixel based on the neighborhood conditions in the form of birth, survival and death. The 

birth state implies a non-urban pixel becomes urban, survive state infers an urban pixel 

remains urban and death state is when an urban pixel becomes non-urban. The threshold 

value in game of life rules plays an important role in imitating the urban growth of a study 

area.  Urbanization is a function of many socio-economic, cultural and topographical 

characteristics of an area. Game of life rule which is capable in simulating the urban 

growth of a particular country with a particular socio-economic characteristics may not be 

suitable for other countries having different socio-economic characteristics like developed 

countries and developing countries. Therefore, model sensitivity to the game of life rule 

has been tested by running the model iteratively for three type of game of life rules i.e., 

Type I, Type II and Type III. Suitable game of life rules for correctly simulating the urban 

growth in socio-economic conditions like India has been determined by comparing the 

spatial and statistical metrics computed from simulated growth corresponding to different 

rules and metrics calculated from reference data sets. Detailed discussion and results of 

sensitivity analysis are discussed in Chapter 5. 

4.3.3.5 Critical slope 

The critical slope parameter in the SLEUTH model is responsible to include the effect of 

less chances of urbanization on locations with steeper slope into urban growth simulation. 

It is used for deciding slope weights in a look up table with the help of the slope resistant 

coefficient which takes part in decision making of urban growth in terms of growth rules. 

Currently, the SLEUTH model uses 15 as the default critical slope value. The model 

sensitivity to the critical slope parameter has been determined using the methodology 

discussed above by calculating the change in model response (change in urban growth) 

for different critical slope values i.e., 1 to 29. The optimum value of the critical slope 

parameter will be that particular value at which spatial and statistical metrics calculated 

from the simulated urban growth is nearest to the metrics calculated from the reference 

data. The details are presented in Chapter 5. 
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4.3.3.6 Diffusive value parameter 

The SLEUTH model uses four growth rules for simulation of urban growth i.e. diffusive, 

new spreading center, spread or edge and road influenced growth. These four types of 

growth rules are constituted by five growth coefficients i.e. diffusion, breed, spread, slope 

resistant and road gravity coefficients as discussed above. The first growth rule i.e. 

diffusive growth is responsible for spontaneous urban growth and it is enforced by the 

diffusion coefficient as given in Eq. 4.2. 

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 = ((diffusion coefficient × 0.005) × √𝑛𝑟𝑜𝑤𝑠2 + 𝑛𝑐𝑜𝑙𝑠2)       (4.2) 

The diffusive growth rule attempts to urbanize non-urban cells or pixels and how many 

times this attempt will be made for a single run is calculated in terms of diffusive value to 

be calculated using  Eq. 4.2. For calculating diffusive value the current diffusion 

coefficient is multiplied with 0.005 times the image diagonal (i.e. square root of the sum 

of squares of number of rows and columns). The numeric value of ‘0.005’ which is called 

the diffusive parameter value remains constant throughout the urban growth simulation. 

For different geographical locations urban growth forms and patterns may vary. The 

diffusive growth parameter value may also be different for urban areas of different socio-

economic and topographical settings. Therefore, SLEUTH sensitivity to diffusive growth 

parameter has been studied using methodology discussed above by determining the 

relative change model response corresponding to a range of values (0.0025 to 0, 0.0075) 

of this parameter.  

4.3.4 Development of SLEUTH-Suitability 

To incorporate the influence of other LULC change and urban growth explanatory 

variables in urban growth simulations, a newer version of SLEUTH i.e. SLEUTH-

Suitability has been developed using the methodology presented in Figure 4.13. The input 

data layers prepared in stage B (Figure 4.4) were used for preparing different layers of 

explanatory variables like land cost, proximity from main roads, railways, recreational 

places, bus stand and hospitals and topographical variables like slope, which were further 

used to prepare another decision input dataset i.e., land suitability. A land suitability layer 

has been prepared using AHP based Multi-criteria Evaluation (MCE) technique. The AHP 

weights were decided based on the available literature. Preparation of the land suitability 

layer has been discussed in detail in Chapter 7. The SLEUTH model algorithm has been 

improved to include one additional growth rule based on land suitability for urbanization. 
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Suitable code has been developed and integrated with the base SLEUTH code to develop 

SLEUTH-Suitability version. The details describing the methodology of suitability 

module in to the SLEUTH model is explained in Chapter 7. In addition preparation of 

MCE and AHP based suitability layers for different years has also been explained in 

Chapter 7.  

The code/ program of SLEUTH-Suitability has been tested for a small size demo input 

dataset to check the consistency of the SLEUTH-Suitability model. Initially, the model is 

calibrated and the urban growth has been simulated for a demo input dataset and the output 

maps are printed at each stage to check the influence of land suitability on urban growth. 

After successful implementation of SLEUTH-Suitability for a demo input dataset the land 

suitability layers as a function of different urbanization explanatory variables have been 

Development of method/ logic 

Writing suitability module 

Program 

Integration of suitability module 

to SLEUTH program 

Modification in SLEUTH 

program 

Program/ code testing 

Development of SLEUTH-

Suitability Input dataset/ demo input dataset 

Demonstration of application of 

SLEUTH-Suitability 

Model calibration 

Urban growth mapping 

Accuracy assessment 

Explanatory variable layers 

Suitability layers using MCE based 

AHP method 

GIS Database 

Figure 4.14: Methodology used for development of SLEUTH-Suitability 
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prepared using  AHP based MCE technique. Moreover, the application of SLEUTH-

Suitability has been demonstrated for a larger study area i.e. Ajmer fringe using prepared 

input data layers. The SLEUTH-Suitability has been calibrated to obtain the optimal 

growth coefficient values and further urban growth was predicted for year 2040. Model 

results have been checked through accuracy assessment as discussed in subsequent 

sections.  

4.3.5 Accuracy assessment 

Accuracy assessment is an important step in modeling. Accuracy of simulated urban 

growth has been assessed by using different methods like percentage of accuracy & kappa 

statistics for a set of random test pixels, model best fit statistics i.e., OSM and Lee Sallee 

goodness of fit metrics, spatial & statistical measures, hit-miss-false alarm method and 

visual analysis (Figure 4.14).  

• The accuracy assessment has been performed for the simulated outcomes using several 

methods that validate the success of the model. The model has utilized the input data 

of year 1998, 2000, 2008, 2013 and 2015 for the conceptualization and calibration of 

the and based on that urban growth has been predicted or simulated up to year 2040. 

The simulated urban growth of year 2018 (current year) has been used for the accuracy 

assessment. The accuracy percentage and kappa statistics are determined by 

comparing the simulated land use of more than 100 stratified random test points with 

reference urban area obtained from high resolution Geo-eye (GE) satellite image of 

year 2018.  

• The test pixels were overlaid on the GE image and the actual land use information in 

terms of binary numbers has been collected. The classification is done for urban and 

non-urban pixels/ points as ‘1’ and ‘0’ respectively. The confusion matrix is prepared 

for observed and simulated urban area for year 2018 to calculate the users and 

producers accuracies. The kappa statistics and accuracy percentage has been 

computed. 

• Furthermore, model performance was checked through ground truthing also. Land use 

information of randomly selected locations was collected from the field and compared 

with the land use obtained from simulated results. Ground truth obtained from 78 

locations as shown in Figure 4.15. Further accuracy assessment has been discussed in 

Chapter 8  
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• The accuracy assessment on the basis of field observations has also been performed 

for year 2018 in two ways i.e. for only newly constructed locations in year 2017-18 

and for overall urban features construction to know whether the model simulated the 

urban growth well. During a field visit it was planned to capture only those sites which 

seem to be under construction or newly constructed in year 2017 - 18 so that accuracy 

of urban growth happened in 2017-18 can be determined. 

• Model performance has also been validated using Hit-Miss-False alarm method in 

term of seven metrics, hit (H), miss (M), false alarms (F), HOC, MOC, FOC and FOM.  

• Hit, miss, false alarms and null successes are the components of correctness and errors 

which are statistically computed and visually analyzed. The quantitative comparison 

between the simulated urban areas for a given year and reference data has been done. 

Further, identifying how much of the simulated urban growth is correct i.e. hit (H), 

how much urban growth has been missed by the model which actually exist i.e. miss 

(M), how much urban growth is falsely simulated by the model i.e. false alarms (F) 

and the null successes (observed persistence simulated as persistence). Moreover, 

three metrics i.e. HOC (hits to observed change (eq 4.3), MOC (misses to observed 

change, (eq 4.4) and FOC (false alarms to observed change (eq 4.5) which represent 

hits to observed change, misses to observed change and false alarms to observed 

change have been computed.  Another metric i.e. FOM (Figure of Merit (eq 4.6) which 

assesses the agreement of urban growth has been calculated. The above-discussed 

metrics were computed using the following formulae; 

o 𝐻𝑂𝐶 =  
𝐻

𝐻+𝑀
… … … … … ..  (4.3) 

o 𝑀𝑂𝐶 =  
𝑀

𝐻+𝑀
… … . … . … … (4.4) 

o 𝐹𝑂𝐶 =  
𝐹

𝐻+𝑀
… … . . … . … … (4.5) 

o 𝐹𝑂𝑀 =  
𝐻

𝐻+𝑀+𝐹
… … . … . . (4.6) 

In modelling the visual comparison between modeled and actual maps is an important 

step. It is helpful to analyze the efficiency of the model in capturing the roadside 

development, fragmented, scattered and other urban growth forms.  
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4.3.6 Comparison of performance of different SLEUTH versions 

Performance of the three versions of the SLEUTH model i.e., SLEUTH with default 

model parameters, with optimum parameters obtained from sensitivity analysis and 

SLEUTH-Suitability has been tested by comparing the urban growth simulations for the 

Ajmer and Pushkar towns in term of accuracy achieved which is estimated using different 

methods as discussed in previous section.  All three versions of the model were 

parameterized using the same input data of the Ajmer fringe, calibrated and urban growth 

was predicted for year 2040 using the methods presented in Figure 4.14. Further, accuracy 

assessment has been done for the urban growth simulated from the three versions and the 

performance was compared in term of percentage accuracy, kappa statistics, spatial & 

statistical metrics, hit, miss & false estimated for the simulated growth and reference urban 

areas obtained from reference data (urban maps obtained from LULC maps, urban area 

digitized from high resolution satellite data). Accuracy assessment has also been done 

with respect to ground truth collected from the field survey held in the month of June-

July, 2018 for a number of randomly selected pixels (Figure 4.15). Performance evaluation 

of three versions of model is discussed in detail in Chapter 8. 
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• Hit-Miss-False Alarm Method 

✓ Identifying how much of the simulated built-up growth is correct 

i.e. hit (H),  

✓ how much built-up growth has been missed by the model which 

actually exist i.e. miss (M), 

✓ how much urban growth is falsely simulated by the model i.e. 

false alarms (F)  

✓ HOC (hits to observed change),  

✓ MOC (misses to observed change) 

✓ FOC (false alarms to observed change) 

✓ FOM (figure of merit) 

 

• Accuracy percentage and kappa statistics using remote sensing data 

(Google Earth) as referenced data 

• Field validation of overall modelled built-up growth in year 2018 

• Field Validation of newly constructed locations in year 2018 

Figure 4.15: Accuracy assessment methods 
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Figure 4.16: Field observation points 
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4.3.7 Development of SLEUTH-Density and estimation of built-up density  

Methodology adopted for development of new version of SLEUTH-Density and 

estimation of built-up density/ intensity has been explained in Figure 4.16. Required 

algorithm has been developed for estimation of built-up density/intensity. Suitable code 

was developed in the C++ programming language and integrated with the existing 

SLEUTH code. Further, code has been tested for a demo data set and each stage of model 

outcome was verified manually. The model was developed and tested using the small size 

input demo dataset. After satisfactory performance of SLEUTH-Density version, its 

application was demonstrated for the estimating the built-up density for different years up 

to year 2040 for the Ajmer fringe including Pushkar.  

 

 

Figure 4.17: Methodology used for development of SLEUTH-Density 
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Further, simulated built-up density/ intensity has been validated using different methods 

like Spectral bands, Spectral metrics, Built-up indices, Land surface temperature and 

accuracy assessment from ground truthing as explained in Figure 4.16. Development of 

SLEUTH-Density and demonstration of its application is discussed in detail in Chapter 6. 

4.4 Concluding Remark 

The present chapter includes the complete methodology aimed to achieve the objectives 

of the present research. The objective wise methodology has been discussed in respective 

sections. Further details can be find in respective chapters. 
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CHAPTER 5 

SENSITIVITY ANALYSIS 

5.1 Prologue 

The SLEUTH model is a cellular automata based computer simulation model that utilizes 

historical land use/ land cover (LULC), slope, road, and hillshade information to calibrate 

and simulate the land use/land cover change and urban growth. The SLEUTH model has 

been widely used throughout the world in the recent past. In addition to historical LULC 

information the model also utilizes parameters to derive the behavioral (model urban 

growth) coefficient values that best capture the landscape structure and dynamics of the 

LULC change history.  

Over the years several modifications and improvements have been made to the 

SLEUTH model by analyzing the sensitivity of scale, temporal scale in terms of length, 

frequency, irregularity of the spacing of time-slices used both in input data & output and 

level of aggregation of LULC classification (Candau, 2002; Goldstein et al., 2005; Dietzel 

and Clarke, 2006; Clarke et al., 2007; Clarke, 2008b). Apart from these other important 

model parameters like self-modifying parameters, number of Monte Carlo runs, cellular 

neighborhood size, diffusive value parameter, game of life rule and critical slope value 

are key model parameters/constants which affects SLEUTH model behavior critically and 

their sensitivity has not been tested so far. Sensitivity testing is helpful in determining the 

influence of these crucial parameters on modelling outcomes for different parametric 

settings. Sensitivity analysis also helps in determining the relative contribution of 

uncertainties of model input parameters into the model results. Such information helps 

decision makers in knowing about the consequences of possible errors in the model results 

so that informed decisions about land use policies can be made.  

In the present study, model sensitivity to the self-modifying parameters like 

critical low, critical high, boom and bust has been tested for a range of values and relative 

change in model response in comparison to the default parameter values. The model 

sensitivity to the diffusive value has been tested by simulating the urban growth of selected 

study area for a range of value i.e., default value ± 50% and comparing model response 

with urban growth obtained from the default value of 0.005. Such an investigation also 

helps in determining the model capability to capture different types of urban growth like 
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fragmented, clustered, road influenced and new spreading center growth and to determine 

the best diffusive value for a developing country scenario. The critical slope also varied 

for a range to capture the significant influence of rocky terrain to model the actual urban 

growth scenario. The number of Monte Carlo simulations plays a crucial role in 

modelling. To determine the model sensitivity to MC runs, the urban growth of the 

selected area has been simulated considering a different number of MC run settings.  

The cellular neighborhood has a significant influence on urban growth simulation 

using SLEUTH and currently it works on an 8 cell Moore neighborhood. In what way 

does cellular neighborhood affect the model performance? To find out the answer, the 

model was developed with 4 cell von Neumann and 12 cell extended Moore neighborhood 

and urban growth is simulated for the selected study area and the model response has also 

been compared with actual growth to determine the model sensitivity to the size of the 

cellular neighborhood. Model sensitivity to the game of life rules has also been 

investigated by simulating urban growth corresponding to different rules and comparing 

model outcomes.  

In the present study, a univariate sensitivity approach has been used for the 

sensitivity analysis in which model outcomes were analyzed with respect to the variation 

of one parameter/constant at a time while other modelling parameters remain constant. 

The changes in modelling outcomes relative to different parametric settings have been 

measured and model performance was evaluated by computing landscape metrics for both 

the actual and modelling outcomes for respective years. Also, accuracy assessment has 

been done using % accuracy and kappa statistics to determine the change in the model 

performance with a different value of model constants. A particular set of values model 

parameters when model performance is best, have been selected as the optimum parameter 

values. 

The chapter includes discussion on the parameterization of the base SLEUTH 

model corresponding to default parametric settings for the study area. Afterwards, urban 

growth of the selected area was simulated corresponding to a range of above mentioned 

parameter values and model constants to test the sensitivity of the model by comparing 

model output with actual urban area in term of spatial and statistical measures (i.e. urban 

area, no. of clusters, co. of edges, mean cluster size and radius), goodness of fit metrics 

(Lee Sallee, OSM, pop, cluster, edge, radius, mean cluster size), kappa statistics, accuracy 

percentage and visual matching of urban patterns.  
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5.2 The significance of Modelling Parameters Selected for Sensitivity Analysis 

5.2.1 Self-modifying parameters 

The SLEUTH model has a self-modification capability, which is intended to more 

realistically simulate urban growth rates over different time periods. Three model growth 

coefficients i.e., diffusion, breed, and spread are multiplied by a multiplier coefficient 

when the growth rate exceeds or reduces as compared to an already specified critical 

threshold of the growth rate (Clarke et al., 1997). When the growth rates exceed the critical 

high, the three model growth coefficients are multiplied by a factor greater than one, 

simulating a ‘boom’ cycle. This increase imitates the tendency of an expanding system to 

grow even more rapidly. Likewise, when the growth rate falls below an already specified 

critical threshold (critical low), the growth coefficients are multiplied by a factor less than 

one, simulating a ‘bust’ cycle, causing growth to taper off as it does in a depressed and 

saturated system. Without this capability of self-modification, SLEUTH may not be able 

to produce non-linear growth rates and it would be producing linear growth rate till the 

availability of land belittles. As urbanization takes place the availability of land decreases 

and the growth rate also. Due to the self-modification rule, new values for the growth 

coefficients become active from the beginning of next annual growth cycle, effectively 

lowering down these values and retarding growth during a bust cycle. Likewise, when 

SLEUTH enters the boom cycle, it signifies that more land is available for urbanization 

and a multiplier greater than one is applied to the growth coefficients. Critical low and 

critical high are the thresholds which are utilized in the bust and boom cycle of self-

modification in the SLEUTH model. To understand the sensitivity of the model with 

respect to self-modification rules and its critical parameters, the model has been run for a 

range of self-modifying parameter values sequentially by changing one parameter at a time 

and determining the relative change in model response as compared to growth 

corresponding to default values of these parameters. 

5.2.2 Number of Monte Carlo runs 

The SLEUTH model is stochastic in nature and utilizes the Monte Carlo method to 

produce multiple urban growth simulated outcomes for each unique set of growth 

coefficients. Model best-fit statistics are averaged over the Monte Carlo trials (Goldstein 

et al., 2005). To obtain spatial variability and computational efficiency, while maintaining 

the rigorous calibration procedure, it is essential to perform sensitivity of the number of 
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Monte Carlo (MC) iterations by simulating urban growth for a selected area corresponding 

to different MC runs and then comparing the model outcomes.  

5.2.3 Diffusive value parameter 

While simulating urban growth using the SLEUTH model, diffusive/ spontaneous and 

edge / organic growth dominates the system and both are dependent on the number of 

pixels randomly selected for potential spontaneous urban development at a particular time 

step. Such spontaneous urbanization attempts are controlled by the diffusive value, a 

constant multiplier of the image diagonal embedded in the SLEUTH program (Clarke et 

al., 1997; Clarke and Gaydos, 1998). How diffusive value is affecting the random selection 

of spontaneous urban growth pixels is discussed in later sections. The diffusive value 

constant reflects the unique spatial characteristics of the study area. For different sub-

regions, the default diffusive value parameter (0.005) may not efficiently capture urban 

growth and overestimate or underestimate the number of urban pixels. When the diffusive 

value parameter is increased or decreased, the spontaneous urbanization attempts may 

vary accordingly. To analyze such a significant influence of diffusive value on SLEUTH 

performance, it is very crucial to understand the spatial interaction through sensitivity 

analysis. 

5.2.4 Critical slope value 

The critical slope in the SLEUTH model has the ability to include topographical influence 

in simulating the urban growth. The critical slope is a threshold value above which no 

urban development should take place. By modifying this value, the model allows 

developing different planning scenarios as it directly influences the decision making of 

urban development. Appropriate critical slope value can be best identified by rigorous 

sensitivity analysis. While the SLEUTH model presently has a default critical slope value 

as 15 which may not be suitable in different socio-economic and geographical settings. 

Model sensitivity to this parameter needs to be understood. Therefore, urban growth has 

been simulated for a range of critical slope values and relative change in urban growth is 

determined to understand the relative impact of this parameter on urban growth 

simulations.  

5.2.5 Size of cellular neighborhood 

In cellular automata modelling, the size of the cellular neighborhood plays an important 

role in simulating the behavior of a phenomenon considered. The size should be uniform 
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throughout the modelling space and it must be the closest set of cells. In urban growth 

modelling systems, the cellular neighborhood must be extended as per the regional and 

local considerations. When the cellular neighborhood size is extended, the distance decay 

effect is incorporated in the simulation and the influence of neighboring cells minimizes 

(Li and Liu, 2006; Li et al., 2014; Liao et al., 2014). Likewise, when cellular 

neighborhood size is reduced the distance decay effect reduces and the distant cells 

become a part of less consideration as compared to neighboring cells or pixels. While the 

SLEUTH model utilizes 8 cell Moore neighborhood and therefore, it is of interest to check 

the model sensitivity to cellular neighborhood size in simulating the urban growth. The 

default cellular neighborhood size i.e. 8 cell Moore neighborhood may or may not be 

suitable for all type of development in different socio-economic settings and capturing 

different urban forms. Therefore, the SLEUTH model has been developed for two 

different sizes of a cellular neighborhood in addition to the default and urban growth is 

simulated for the individual. The relative change in urban growth is determined to 

understand the relative impact of the different size of the cellular neighborhood on urban 

growth simulations.  

5.2.6 Game of life rules 

The urban growth simulations in a CA-based model depend on the current state of cells, 

their neighbors and the transition rules. The game of life rules allows a cell to urbanize or 

de-urbanize by implying a set of transition rules. The game of life rules supports the urban 

growth system to behave like a living organism. Any living entity grows where 

surroundings persist and it demolishes due to overcrowding of that place. Likewise, urban 

growth phenomenon can be understood as urban development takes place where 

surroundings are already urbanized. As in CA, cells represent the state of land use class in 

the form of urban/ non-urban and a non-urban cell becomes urbanized only after passing 

through the game of life rules. The SLEUTH model urbanizes a non-urban pixel as per 

the game of life rules if it has at least 3 neighboring urban cells/ pixels. However, the 

numeric value of 3 may or may not be suitable in all conditions of urban development in 

different socio-economic settings. To understand the influence of this parameter it is 

essential to determine the model sensitivity with respect to the different critical threshold 

values in a game of life rules. Model sensitivity has been tested by modifying the SLEUTH 

code and running model corresponding to the different game of life critical threshold 

values. The relative difference in model performance in capturing urban growth for 
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different critical threshold values of the game of life rule has been determined to quantify 

the sensitivity.    

5.3 Development of Base SLEUTH Model 

As discussed in methodology presented in Chapter 4, the SLEUTH model simulated urban 

growth by applying 04 growth rules (i.e. spontaneous/ diffusive, new spreading center, 

edge, and road influenced growth) sequentially. Growth rules are controlled by five 

growth coefficients (i.e. diffusion, breed spread, slope resistance, and road 

gravity).  Further, non-linearity of the growth is ensured by performing secondary rules 

i.e., self-modifying parameters (i.e. boom, bust, critical high and critical low). The model 

calibration is performed to determine the optimal value of growth coefficients by running 

the model for a range of growth coefficients and comparing the simulated growth with the 

historical actual growth for different years. Secondary self-modifying parameters once set 

in the model scenario file remains constant throughout the simulation runs. The default 

values of constants and parameters of the model i.e. self-modifying (critical low, critical 

high, boom and bust), diffusive value, critical slope, a game of life critical threshold, 

cellular neighborhood size and Monte Carlo runs have been given in Table 5.1.  

Table 5.1:  Default values for model constants / parameters 

 

5.3.1 Model calibration  

Present version (Base) of the SLEUTH model was parameterized using required input 

datasets for the Pushkar town as discussed in the methodology section of Chapter 4. 

SLEUTH model calibration was performed using GA based algorithm by utilizing input 

dataset of 5.0-meter spatial resolution and 10 MC runs. The constants/ parameters were 

set as default values, as presented in Table 5.1. The calibration was completed in 6 hours 

53 minutes on a 64 bit windows 7 operating system with Intel (R) Xeon (R) CPU E5- 2699 

S.no. Parameter/ constant Default value 

1 Self-modifying  

Boom 1.01 

Bust 0.09 

Critical low 0.97 

Critical high 1.3 

2 Diffusive value  0.005 

3 Critical slope 15 

4 Game of life critical threshold 3 cells 

5 Cellular neighborhood size 8 cell Moore neighborhood 

6 Monte Carlo runs 5-100 
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v3 @ 2.30 GHz processor. The time elapsed in calibration was significantly reduced in 

SLEUTH-GA as compared to brute force method in SLEUTH. Computational efficiency 

of GA based SLEUTH model motivated us to perform repeated calibration (in three 

phases) by keeping all GA parameters as constant to achieve better calibration with better 

model fitness. Three phases of calibration phases were named as coarse, fine and final.   

The optimal values of growth coefficients are determined with respect to the 

composite fitness criteria i.e. OSM, total fitness (overall model fitness) and standard 

deviation. In the coarse phase, the optimal value of the diffusion coefficient has been 

found to be low which indicates reduced spontaneous growth. However, breed and slope 

resistance coefficient are high and indicates new spreading center growth and maximize 

the chances of urban development at a steeper slope. The OSM fitness measure has been 

found to be 0.258 corresponding to optimal growth coefficients and having a low standard 

deviation i.e. 0.06. The overall model fitness attained was 10.711. The fitness criteria show 

a good fit, though we repeated the calibration further in the fine and final phase to see in 

what way it influences the model performance. The investigation was found to be helpful.  

The model fitness improved from 0.258 to 0.263 and standard deviation (i.e. from 

0.06 to 0.055) value was also reduced. However, total fitness was somehow reduced from 

10.711 to 9.748. Again the model was calibrated in final phase with same GA 

constants and input dataset. The results were exciting as model fitness improved further 

from 0.263 to 0.276 with an even better standard deviation which has reduced further from 

0.055 to 0.053. Also, the total fitness increased slightly in the final and third phase of 

calibration from 9.748 to 10.279. Among three phases of calibration, we observed that 

OSM has given better fitness value in the final phase as compared to the other two phases 

and the standard deviation was found to be 0.053 in the final phase.  

Therefore, final phase calibration has been accepted.  The diffusion and breed 

coefficients were found to be 49 and 45, respectively indicating moderate spontaneous 

and new spreading center urban growth. Also, these values lie in between other 

coefficients values obtained from two calibration phases with a better model fitness. While 

slope resistance value was significantly reduced in the final phase as compared to other 

two calibration phases i.e. from 95 in fine phase to 68 in the final phase. It was evident 

from multi-phase calibration that optimized growth coefficient set in the final phase is 

optimal one with improved model fitness (Table 5.2).  

The model simulated urban growth was compared with the actual urban growth 

captured from satellite images of respective years to validate the modelling outcomes. In 
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addition, a ratio based metric was also computed for the respective years to have an idea 

about the closeness of simulated and actual urban growth. Variation between actual and 

simulated urban growth has been presented in Figure 5.1(a). The simulated urban growth 

has been found to be under captured for almost years i.e. the year 2000, 2004, 2008 and 

2015, while it is over captured for the year 2013.  

The ratio between actual and simulated urban area with default model constants 

has given an idea about the accuracy of simulated outcomes for respective years and 

it was found to be slightly better for the year 1997, 2013 and 2015 as compared to the year 

2000, 2004 and 2008 as presented in Figure 5.1 (b). Simulated and actual growth 

comparison has been presented in Figure 5.1 (a) and (b). 

Table 5.2: Base model calibration with the default parameter setting 

 

Accuracy has been found to be reduced for years 1997-2000 and 2000-

2004. However, accuracy has been found to be better for the year 2005-2008, 2008-2013 

and 2013-2015 (Figure 5.2). With the increased time between input datasets, model 

accuracy has been found to be reduced, whereas accuracy has been found to be improved 

with a lesser time gap between input datasets.  

The investigation indicates that the temporal gap of the seed (input) data affects 

the simulation accuracy, as revealed by the model fitness metrics and through the visual 

examination of simulated and actual urban area. Significant differences between 

simulated and actual urban area have been observed at specific locations during different 

years, as presented in Figure 5.1 (a) and (b). It was evident that fragmented urban growth 

and small size built-up area, as well as different forms of the urban growth, were not 

captured well by the model.  

 

 

Coefficient 

values 
Diffusion Breed Spread 

Slope 

resistance 

Road 

gravity 

Best 

OSM 

Total 

fitness 

Standard 

deviation 

Coarse phase calibration 

0.258 10.711 0.06 Best fit 

value 
6 87 30 82 45 

Fine phase calibration 

0.263 9.748 0.055 Best fit 

value 
69  51 14 95 85 

Final phase calibration 

0.276 10.279 0.053 Best fit 

value 
49  45 25 68 46 
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Figure 5.1(a): Comparison between actual and modeled urban area 
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Figure 5. 1(b): Spatial differences between actual and simulated urban growth for 

different years 
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The urban growth simulation might be improved by the suitable values of model 

constants/parameters which can be determined through model sensitivity testing for other 

important parameters as discussed earlier.  

It can be concluded from the above discussion that multi-phase GA calibration 

may enhance the model performance by optimizing growth coefficients more efficiently 

as compared to single phase calibration. Final phase calibration outcomes have been 

accepted to simulate urban growth for the future i.e. up to the year 2040. 
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Model sensitivity has been tested using the dataset of Pushkar study area for the selected 

model constants/ parameters using the methodology as discussed in Chapter 4 and in 

subsequent sections using the base model with default model parameters/constants. 

5.4 The methodology of Sensitivity Analysis 

Sensitivity analysis of important selected SLEUTH parameters is required to assess 

relative change in model outcome with respect to change in the value of constants/ 

parameters (in both positive and negative side of default value). The methodology adopted 

for the sensitivity analysis has been presented in Figure 5.3. The model calibration is 

assessed based on the goodness of fit metrics and model simulation/ prediction capability 

has been analyzed by the comparing spatial and statistical measures obtained from 

simulated results and same statistics calculated from original/ actual data. It measures the 

sensitivity of chosen model constant and model accuracy & performance can be improved 

by determining the optimal value of constant at which difference between spatial and 

statistical measures calculated from simulated urban growth and actual urban area 

(obtained from reference data) is minimum and the value of goodness of fit metrics are 

closer to ‘1.0’. In addition, accuracy percentage, kappa statistics, and visual analysis have 

also been involved in deciding the optimal values of constant/ parameters while 

performing sensitivity testing. 

The study includes preparation of the input dataset (slope, exclusion, urbanization, 

transportation, and hillshade) for Pushkar study area for SLEUTH parameterization. These 

input layers were resampled to 5.0 m spatial resolution and utilized for model calibration. 

First, the base SLEUTH model was run while the base term represents the SLEUTH model 

with default parametric settings. The model calibration was done in three phases as 

discussed earlier. The calibration results were validated by using OSM, standard 

deviation, and total fitness. The optimized growth coefficient values were used for urban 

growth prediction. The results were assessed by using spatial and statistical measures, 

spatial symmetrical differences and ratio of actual and modeled urban growth. Afterward, 

the SLEUTH model sensitivity for the selected parameters has been tested. Model 

sensitivity to the selected parameters was examined for a range of values of each 

parameter, decided as default constant value ± 50%. The model was calibrated in three 

subsequent phases i.e. coarse, fine and final, further urban growth has been simulated for 

a range of values of each parameter, changing one parameter at a time iteratively.  
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Each model calibration outcome determined on the basis of OSM, total fitness, and 

standard deviation.  

The best performing calibration phase produced optimized growth coefficients 

which were utilized for the final simulation of urban growth. Nearness of simulated results 

SLEUTH input dataset 

Model calibration 

• Coarse 

• Fine 

• Final 

Validation 

• Fitness measure (OSM) 

• Total fitness 

• Standard deviation 

 

Parameterization of SLEUTH model 

Crucial SLEUTH modelling parameter range 

(default value ±50%) 

• Self-modifying parameters (boom, 

bust, critical low and critical high) 

• Monte carlo runs 

• Diffusive value parameter 

• Cellular neighborhood size 

• Game of life rules 

• Critical slope parameter 

 

Performance evaluation  

• Accuracy percentage 

• Kappa statistics 

• Goodness of fit metrics and statistics 

• Spatial symmetrical difference 

• Ratio (actual/ modeled) 

• OSM 

• Visual analysis 

Simulated urban growth using 

optimized best fit model 

coefficient 

Estimation of metric 

from actual urban 

area 

Comparison of actual and 

simulated performance 

Optimum parameter values 

Estimation of metrics 

from simulated urban 

area 

Figure 5.3 Methodology for sensitivity analysis 
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for each parameter value in different model runs was determined by comparing accuracy 

and statistically based criteria calculated from simulated results with the same measures 

calculated from the actual urban area from reference datasets (seed urban area of the year 

2015 and urban area digitized from high-resolution image for the year 2017). Each 

individual simulated outcomes produced from different parametric settings was also 

evaluated with the actual urban area in different years by means of kappa statistics, 

accuracy percentage, spatial and statistical measures, the goodness of fit metrics, spatial 

symmetrical difference, the ratio (actual/ modeled), OSM and visual analysis. 

Sensitivity analysis has been carried out using the above mentioned methodology 

for following parameters and discussed separately in subsequent sections.  

1. Self-modifying Parameters 

2. Monte Carlo Runs 

3. Diffusive Value Parameter 

4. Cellular Neighborhood Size 

5. Game of Life Rules 

6. Critical Slope Parameter 

5.4.1 Quantifying sensitivity in terms of spatial and statistical measures 

The closeness of simulated urban growth corresponding to a particular set of model 

constants with the actual urban growth has to be determined to ascertain the value of model 

constant for which model is simulating urban growth most near to the actual urban growth. 

Statistical and spatial measures like actual urban area, urban edges, urban clusters, mean 

cluster size, and cluster radius were estimated from the model simulated urban growth 

corresponding to each set of model constants and compared with the values of these 

measures calculated from the actual urban area in respective years to determine the value 

of model constants for which simulated urban growth that is most near to the actual 

growth. Measures corresponding to the actual urban growth were estimated from two 

reference datasets; one obtained from the digitization of the urban area from high-

resolution Geo-eye satellite image of the year 2017 and the second obtained from 

classified satellite image of the year 2015 which was used as input urban maps to the 

model. For analyzing different urban forms, urban area, urban clusters, urban edges, 

cluster radius and mean cluster size statistics were computed against different parameter 

values. The area is calculated as a total number of urban pixels, urban clusters are 

representing a group of two or more urban pixels which indicates clustered or spread 
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growth. Urban edges are calculated as the number of pixels which are neighbors of an 

urban pixel representing the fragments of urban growth. Cluster radius is basically a 

representation of infill growth of an urban cluster. Mean cluster size is an indication of an 

average size of the compact urban form.   

5.4.2 Quantifying sensitivity in terms of accuracy percentage and kappa statistics 

Accuracy assessment is a general term used to compare the simulation results with the 

reference geographical data, which is assumed to be true in order to determine the 

accuracy of simulated outcomes. Various methods are available for the accuracy 

assessment of simulated outcomes and have been discussed in detail in many studies 

(Congalton and Green, 1999; Foody, 2002). For each set of model constants, accuracy 

assessment has been carried out by determining the percentage of randomly selected urban 

pixels correctly captured by the model.  Reference ground truth data was obtained from 

high-resolution GeoEye satellite data for the years 2016 & 2017. Agreement and 

disagreement between actual and simulated outcomes in term of percentage accuracy 

and kappa statistics were calculated.  To evaluate the accuracy, a set of random sample 

points (more than 100) has been used. Reference pixels have been selected using a 

stratified random sampling technique to avoid any biases. In this type of sampling, the 

number of points selected are stratified to the distribution of the simulated output. Then 

an accuracy assessment cell array was created to compare urban simulated map with 

reference data. The cell array is a simple list of class values (in terms of urban (1) and 

non-urban (0)) for the pixels in the simulated map and the class values corresponding to 

the reference pixels. Class values of the simulated pixels have been set manually after 

examining each simulated pixel against to the reference data. Further, the Kappa statistic 

has been calculated which expresses the proportionate reduction in the error generated by 

the simulation outcomes compared with the error of a random simulation. 

In addition, the visual analysis was also carried out to establish the closeness 

between simulated and actual urban growth.  First of all base statistics (bs) (for above 

discussed spatial and statistical measures) have been calculated from the actual urban area 

obtained from two reference datasets as mentioned above.  Subsequently, selected spatial 

statistical measures were calculated from the simulated urban growth corresponding to 

different set of model constants values. Comparison of above mentioned spatial and 

statistical measures will reveal how closely the model is able to simulate the urban growth 

or is able to imitate the historical urban growth in different years and corresponding to 
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which value of model constant, indirectly giving the optimal parameter value. Such an 

exercise also gives model sensitivity with respect to different model parameters/constant. 

5.5 Sensitivity Analysis of Self-Modifying Parameters  

Self-modifying parameters in SLEUTH like critical low and critical high are set as 

boundary conditions for the growth rate that if modelling outcomes violate these 

conditions it will take some requisite actions to get a required trend of urban growth by 

avoiding linear or exponential growth. In logical terms it can be understood, as if the 

growth rate falls below the critical low value it should be tapered off and if it increases 

above the critical high then it should be boom, even more, to gain an increased urban 

growth rate as described in pseudo code below;  

If (growth rate < critical low) 

{ 

Code to implement - Multiply growth coefficients with a bust parameter to taper off the 

growth rate 

} 

Else if (growth rate > critical high) 

{ 

Code to implement - Multiply growth coefficients with boom parameter to increase 

growth rate even more 

} 

Else 

{ 

No change 

} 

The self-modification invokes by increasing growth coefficients (diffusive, breed and 

spread)  by a multiplier greater than one in case of boom phase and growth 

coefficients (diffusive, breed and spread) are decreased by a multiplier less than one in 

case of the bust cycle. The detailed methodology of sensitivity analysis of self-modifying 

parameters has been presented in Figure 5.4. To test the sensitivity a range of default value 

± 50% was decided as presented in Table 5.3. With varying step values for individual 
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coefficients range was decided and to have a number of possible combinations to calibrate 

separately. SLEUTH was run to simulate with all possible values of the individual 

parameter for the whole range iteratively, keeping other model constants/ parameters 

same. For boom, 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5; for bust, 0.05, 0.06, 0.08, 0.10, 0.12, 0.35, 

0.65, 0.95, 1.25 and 1.35; for critical low, 0.50, 0.70, 0.75, 0.80, 0.90, 1.0, 1.25 and 

1.50; and for critical high, 0.65, 0.90, 0.95, 1.05, 1.20, 1.25, 1.35, 1.50, 1.55, 1.75 and 

1.95 have been tested. Thirty-five (35) combinations were decided to calibrate 

independently and individual calibration itself was passed through the three phases, so, in 

total 105 calibration runs were performed to arrive at optimal self-modifying parameter 

settings corresponding to the improved performance of the model. 

Table 5.3: Sensitivity analysis parameters and selective ranges 

Self-modifying parameters Default values Decided ranges 

Boom 1.01 0.5- 1.5 

Bust 0.09 0.05- 1.35 

Critical Low 0.97 0.5- 1.5 

Critical High 1.3 0.65- 1.95 

If  

growth rate < critical 

low 

If  

growth rate > critical 

high 

The growth coefficients (diffusive, breed and spread) are decreased by a 

multiplier less than one (1) to taper off the growth rate as it does in depressed 

and saturated system 

Yes 

Growth coefficients (diffusive, breed and spread) are increased by a 

multiplier greater than one (1) to imitate a rapid urban growth system 

No 

Modified growth coefficients are applied from the next growth cycle 

Yes 

Figure 5.4: Methodology for sensitivity analysis of self-modifying parameters 
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The decided range for each coefficient was used for calibrating the SLEUTH-GA one at 

a time by keeping other as the default value. In this way, a large number of calibrations 

has been performed for carrying out robust sensitivity testing. 

Table 5.4: Sensitivity analysis of self-modifying constants and best-fit values 

Self-modifying 

parameters 

Diffusion 

coefficient 

Breed 

coefficient 

Spread 

coefficient 

Road gravity 

coefficient 

Slope resistant 

coefficient 

Best 

OSM 

Boom 0.50 100 28 32 62 17 0.26 

Boom 0.70 35 90 23 87 38 0.08 

Boom 0.90 64 89 93 54 37 0.18 

Boom 1.01 49  45 25 68 46 0.28 

Boom 1.10 6 11 60 92 55 0.28 

Boom 1.30 12 1 12 12 12 0.32 

Boom 1.50 16 60 2 88 54 0.25 

Bust 0.05 2 53 96 83 37 0.28 

Bust 0.06 60 74 18 97 45 0.27 

Bust 0.08 2 71 88 90 5 0.28 

Bust 0.09 49  45 25 68 46 0.28 

Bust 0.10 69 22 39 51 31 0.29 

Bust 0.12 34 12 66 0 28 0.29 

Bust 0.35 16 19 79 82 50 0.27 

Bust 0.65 56 48 32 98 32 0.28 

Bust 0.95 34 66 34 58 18 0.27 

Bust 1.25 28 35 54 91 5 0.26 

Bust 1.35 30 71 36 78 24 0.27 

Critical Low 0.50 72 10 49 1 73 0.33 

Critical Low 0.70 79 9 59 3 51 0.31 

Critical Low 0.75 57 37 37 85 30 0.28 

Critical Low 0.80 2 97 90 93 1 0.30 

Critical Low 0.90 73 8 51 2 0 0.34 

Critical Low 0.97 49  45 25 68 46 0.28 

Critical Low 1.0 80 18 39 83 87 0.27 

Critical Low 1.25 60 36 30 2 16 0.30 

Critical Low 1.50 48 19 48 40 39 0.27 

Critical High 0.65 39 40 39 71 40 0.26 

Critical High 0.90 48 58 29 48 1 0.29 

Critical High 0.95 64 41 30 53 45 0.28 

Critical High 1.05 1 50 90 82 35 0.28 

Critical High 1.20 45 70 28 78 25 0.26 

Critical High 1.25 58 53 28 98 70 0.28 

Critical High 1.30 49  45 25 68 46 0.28 

Critical High 1.35 76 79 15 95 37 0.28 

Critical High 1.50 45 26 47 85 57 0.28 

Critical High 1.55 3 27 91 85 58 0.27 

Critical High 1.75 5 61 79 99 9 0.25 

Critical High 1.95 68 28 36 64 36 0.28 
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Since SLEUTH-GA has better computation efficiency so it would be easier for one to 

evaluate as many numbers of calibrations for reaching out to the best parameter settings 

which will eventually lead to the improved model accuracy.  All sets of parameters 

selected for sensitivity were applied iteratively to derive the best fit coefficients for urban 

growth prediction. The prediction was done up to the year 2040 for each parametric 

setting. It would be a tedious task to quote and discuss 105 calibration results so as to 

optimize this only best-attained coefficient set against best OSM have been discussed and 

presented in Table 5.4. 

The rigorous calibration was performed and the best fit coefficient values were 

obtained as presented in Table 5.4. Model fitness was observed in between 0.08 to 0.32 

for different values of boom constant. For different values of the bust, critical low and 

critical high OSM value was found to be between 0.26 to 0.29, 0.27 to 0.34 and 0.26 to 

0.29 respectively. Since the SLEUTH model is a stochastic model and randomization is 

involved in its functionality to represent human behavioral aspects, no clear trend was 

observed for its growth coefficients by increasing or decreasing the self-modifying 

parameters. However, it has given an idea of best performing parameter values at which 

the model imitate urban growth more accurately as compared to default constant values.  

Value of boom constant as 1.30 was found more suitable as compared to default 

value i.e. 1.01 which signifies that growth rate will be increasing due to the availability of 

land to get urbanized. A difference was observed in model fitness values as OSM achieved 

corresponding to boom value of 1.30 was 0.32 which is better than the value obtained 

corresponding to the default (OSM achieved as 0.28 for boom 1.01) value (Table 5.4). 

The optimal value of bust constant has been found to be 0.10 to 0.20 corresponding to the 

best value of OSM i.e., 0.29. Higher bust values i.e. 0.10 and 0.12 were found appropriate 

for the modeling which are more capable of imitating the current urban development 

scenario as compared to default i.e. 0.09 for developing Pushkar town. However, other 

bust settings lead to poor model fitness for the study (Table 5.4).  

Pushkar town has just started developing in the recent past and it is more likely to 

get urbanized in the near future due to the availability of suitable land and increased 

tourism activities. The high boom value clearly indicates that the urban growth rate will 

be increasing in upcoming years until the availability of land suitable for urbanization is 

reduced. However, the growth rate may be tapered off after a few decades when all 

suitable land will get occupied. While there may be chances of vertical growth in Pushkar 

after significantly expanding horizontally. Better model fitness against high bust values 
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supports the conclusions drawn from best boom values as discussed above. A significant 

difference was observed in the case of different critical low constant values. The optimal 

value of critical low has been found to be as 0.90 in place of 0.97 (default value) with an 

improved fitness value (OSM) from 0.28 to 0.34. When growth rate is less than 0.90 then 

growth coefficients should be decreased to taper off the urban growth to imitate the 

urbanization process accurately. As discussed earlier that Pushkar town is a small and 

newly developing town and there may be the situation of declining growth rate in the 

future after less availability of urban suitable land. The analysis reveals that the growth 

rate may be less than 0.90. In such a case model should be able to incorporate such changes 

to accurately imitate the urban growth. The best model fitness (OSM) has been found to 

be 0.29 corresponding to the optimal value of the critical high (1.25). This indicates that 

if the growth rate increases beyond the critical high i.e. 1.25 then growth coefficients of 

the model should be increased even more for accurately imitating the urban growth. The 

above discussion was based on model fitness in term of OSM metric, however, to validate 

these findings closeness of simulated results with the actual phenomenon (urban growth) 

in terms of spatial & statistical measures and visual analysis is also necessary which has 

been discussed in next section. 

5.5.1 Comparison between spatial and statistical measures computed from input 

dataset and simulated outcomes 

To determine the model sensitivity with different parameter/constants and to obtain best 

constant value from a range selected for sensitivity testing, spatial and statistical measures 

calculated from simulated urban growth corresponding to a different set of model 

constants have been compared with the measures calculated from two reference data sets 

as discussed in the previous section. Spatial statistics calculated from simulated urban 

growth results against different parameter values are very much different from the base 

statistics bs (calculated from actual data (i.e. classified maps of remote sensing image of 

the year 2015) and it is indicated from the yellow color in the graphs). In addition, it was 

identified that default parametric/ constant settings may not be so appropriate for 

simulating the urban growth of cities and towns in developing countries with different 

socio-economic conditions.  The fitness measure i.e., OSM may give an idea of overall 

model fitness but it may not correctly imitate the different forms of urban growth. 

Therefore, to ascertain model capability to capture different forms of urban growth spatial 

and statistical measures can be helpful.  
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The yellow color in the graph is indicating statistical measure corresponding to the 

reference data i.e., bs while red color indicates statistics measured against default 

parameter values. The blue color is for statistics measured against selected constant values 

(Figure 5.5- 5.8).  

A significant difference has been observed between urban area calculated 

corresponding to different boom values and base area. The urban area for default boom 

value i.e. 1.01 was able to imitate only 41470.92 ha which is significantly less than the 

actual area i.e. 48014 ha (Figure 5.5). The default boom value is not capable of simulating 

the urban growth correctly. However, the model is able to capture urban area more 

accurately corresponding to the value of 0.5 and 1.3 (Figure 5.5).  The best model fitness 

i.e., OSM was achieved at boom value of 1.3 i.e. 0.32.  The number of urban clusters i.e. 

clustered growth and an urban cluster radius, indicating infill growth, are better captured 

at boom values of 1.1 and 1.3, respectively. While the number of urban edges which 

represents fragmented urban growth are better captured at a boom value of 0.5 as 

compared to 1.3.  The analysis suggests that the overall model fitness may be helpful in 

giving an idea about urban growth. However, to analyze and quantify different urban 

forms, it is important to closely identify each urban form against different boom values. 

The default bust value i.e. 0.09 is not able to capture urban area well. However, 

the bust value of 0.05 and 0.06 are able to capture urban area more accurately. Clustered, 

fragmented infill and compact growth are more accurately captured for bust value at 0.35, 

0.1, 0.05, and 0.12 respectively. It was identified through model calibration that the model 

was the best fit against the bust value of 0.10 and 0.12, corresponding to higher (OSM) 

model fitness i.e. 0.29 for both the values. The optimal bust value was decided based on 

the higher OSM model fitness along with the ability to capture different urban forms 

accurately. Thus, corresponding to higher model fitness (i.e. OSM 0.29) the bust values 

i.e. 0.10 and 0.12 were analyzed more closely for capturing different forms of urban 

growth. The urban area was more satisfactorily captured at the bust value of 0.12 as 

compared to bust 0.10 (Figure 5.6). However, the bust value of 0.10 is able to closely 

capture a number of urban edges representing fragmented growth and urban clusters with 

a better model fitness (Figure 5.6). 

It is evident from the analysis that different bust values can capture different urban 

forms well, however, a single value may not be able to accurately capture all the forms of 

urban growth together. Thus, it’s difficult to suggest a single bust value that would be 

fitted best and able to capture different urban forms. However, the sensitivity analysis 
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gives an idea of an optimal value of the constant for which the model may imitate overall 

urban growth well and be able to capture some of the urban forms. Here, we may say that 

the bust value of 0.10 is the optimal value simulating urban growth satisfactorily and also 

can capture fragmented and clustered urban growth well. 

The study reveals that urban area is captured well against best fitted critical low 

value i.e. 0.90 as compared to other critical low values. However, we found some closer 

combinations capturing urban growth well but the overall model fitness for those are not 

as good as at critical low value of 0.90. In addition, the critical low value of 0.90 is also 

able to capture fragmented, urban clustered, compact and infill growth well (Figure 5.7).   

In the case of critical high, the best model fitness was achieved as 0.29 

corresponding to the default value of 1.3. However, targeting different urban forms a 

critical high value of 1.25 has been found to be more suitable (Figure 5.8). The urban 

edges i.e. fragmented urban growth, urban clusters, urban cluster radius and mean cluster 

size are satisfactorily captured at a critical high value of 1.25 as compared to other values 

(Figure 5.8) along with a higher model fitness.  

The overall sensitivity analysis of self-modifying parameters gives an idea about 

the values for which the model would be simulating urban growth well and satisfactorily 

in agreement with actual urban growth. The boom value of 1.3, the bust value of 0.10, the 

critical low value of 0.90 and critical high value of 1.25 have been found to be optimal in 

capturing the urban growth, and different forms of the growth in a better way as compared 

to other constant values.  

However, the choice of parameter selection may be done according to urban 

development practices. All types of urban forms may not be of interest for one as in a 

developing country scenario, fragmented growth is of most common interest. So, by 

targeting specific urban forms one may change self-modifying parameters accordingly. 

Moreover, the best obtained individual self-modifying coefficient value may produce 

better urban form capturing results. 

5.5.2 Comparison between spatial and statistical measures computed from Geo-

eye data and simulated outcomes 

To investigate the accuracy of the above-discussed outcomes, sensitivity results have been 

validated and compared in terms of spatial and statistical measures estimated from the 

reference urban area obtained through manual digitization from the Geo-Eye satellite data 

obtained from Google Earth for the year 2017. Spatial and statistical measures were 
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computed from the urban area captured from reference data and compared with the 

simulated outcome based statistics. Such an investigation has led to a better clarity of the 

optimal self-modifying constants values. With finer resolution data very small size built-

up areas and edges of urban growth have been well captured as compared to the input 

dataset prepared from the classified satellite imagery. Also, urban cluster numbers may 

not be correctly captured from the manual onscreen digitization of urban patches. Thus, it 

is genuine to find the differences in computed spatial and statistical measures from the 

two i.e. actual urban area (Geo-Eye, 0.5 m resolution data) and simulated urban area (5.0m 

resolution).  

However, a relative comparison of spatial and statistical measures between actual 

and simulated outcomes may be found useful to decide the optimal values of the self-

modifying constant.  The default boom i.e. 1.01 has been found to be poorly capturing the 

urban growth area than different values of boom except for boom value of 0.7. The boom 

value of 0.5, 0.9, 1.1 and 1.3 has been found to be more closely capturing urban growth 

area however, boom value of 1.3 is found to be more accurate with better model fitness 

(i.e. OSM 0.32) value (Figure 5.9). The number of urban edges, clusters and mean cluster 

size have been better captured for boom values of 0.9, 0.7 and 1.1, respectively with poor 

model fitness value. However, at 1.3 boom value satisfactory spatial and statistical 

measures have been found with a better model fitness value. While urban cluster radius 

has found to be accurately captured at 1.3 boom value. (Figure 5.9). The similar outcomes 

were obtained from input dataset based comparisons which validate the current findings 

also. The best model fitness was achieved for the bust value of 0.1 and 0.12 as discussed 

above. Among different bust values, only two were able to give best model fitness i.e. 

0.10 and 0.12.  However, spatial and statistical measures computed against input datasets 

revealed that bust value of 0.10 is more suitable to capture different urban forms in a 

different socio-economic condition like scenarios. The Geo-Eye (GE) data based statistics 

also reveal the same findings as area computed against GE data and urban area captured 

corresponding to the bust value of 0.10 are quite closer with better model fitness (Figure 

5.10). The number of urban edges and mean cluster radius are also better captured at the 

bust value of 0.1 (Figure 5.10). The simulated number of urban clusters and mean cluster 

size seem to be mismatched with the actual no. of urban clusters and mean cluster size 

computed from the GE data due to on-screen digitization (Figure 5.10).  

The default critical low value i.e. 0.97 has not been able to capture urban area as 

well as compared to other critical low values (Figure 5.11).  
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The urban area has been found to be satisfactorily captured at 0.9, 1.25 and 1.3 critical 

low values, however, higher model fitness values were achieved at 0.9 critical low value. 

The number of edges representing fragmented growth has been captured well at 0.90 

critical low value with better model fitness value. However, simulated mean cluster size 

and number of urban clusters have shown many differences with the actual statistics 

computed from GE data against all the critical low values. The cluster radius representing 

infill growth has been more accurately captured with 0.97 critical low value (Figure 5.11). 

The urban growth simulated with default critical high value i.e. 1.3 has not been 

found to be satisfactory as compared to other critical high values.  The urban area has 

been better captured at 1.25 critical high value with a better model fitness (Figure 5.12). 

The no. of urban edges indicating fragmented growth has been found to be accurately 

captured for a critical high of 1.25. However, other urban forms like clustered, compact 

and infill growth have shown differences between statistics calculated from actual and 

simulated urban area (Figure 5.12).  

5.5.3 Accuracy Assessment 

The optimum value of the constant/ parameter is one corresponding to which the accuracy 

of the model is highest and better than accuracy obtained from model outcome with the 

default parameter value.  Accuracy assessment has been performed by testing the urban 

growth of a number of test pixels selected through a stratified random sampling technique. 

Simulated LULC of test pixels was compared with LULC of the same pixels in the 

reference datasets i.e., high-resolution images obtained from Google Earth for the year 

2016 & 2017. The lowest accuracy has been achieved at 1.01 default boom value in both 

the years i.e. 2016 & 2017 i.e., 73 % and 77%, respectively. The simulated urban growth 

has been found to be more accurate with at 1.3 boom value with 81% and 83% percent 

accuracy for the year 2016 and 2017, respectively. The accuracy percent for simulated 

urban growth at 0.09 default bust value has found to be low in both the years i.e. 2016 & 

2017 i.e., 73% and 77%, respectively. The best percentage accuracy has been achieved at 

0.10 bust value for both years i.e. 2016 & 2017 as 81% and 86%, respectively. The 

accuracy percentage has been improved from default value of critical low at 0.97 in year 

2016 & 2017 i.e. 73% & 77% to 80% & 85% in year 2016 & 2017, respectively with a 

critical low value of 0.10.  
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Finally, better accuracy, 76% & 86% for the year 2016 & 2017 respectively have been 

obtained from a critical high value of 1.25 as compared to the accuracy achieved with 

default critical high value of 1.3. Details are presented in Figure 5.13. 

The kappa statistics representing the proportionate reduction in the error generated 

by simulated urban growth compared with respect to the error of a random simulation 

have also been computed for different sets of self-modifying constant values. The kappa 

statistics have been found to be better with a boom value of 1.30 (0.52 and 0.62 for the 

year 2016 and 2017 respectively) as compared to kappa statistics obtained for the urban 

growth simulated corresponding to the default boom value of 1.01 (0.41 and 0.42 for the 

year 2016 and 2017 respectively). Best kappa statistics (0.40 and 0.60 for the year 2016 

& 2017 respectively) have been obtained for the urban growth corresponding to 0.10 bust 

value as compared to 0.41 and 0.42 obtained with the default value of 0.09 for the year 

2016 and 2017 respectively. Details are presented in Figure 5.14. 

Likewise, better kappa statistics (0.55 and 0.60) have been obtained corresponding 

to the 0.90 critical low value as compared to the kappa statistics obtained with 0.97 default 

critical low value  (0.41 and 0.42) for the year 2016 and 2017, respectively. Similarly, 

better kappa statistics (0.44 and 0.45) have been obtained corresponding to the 1.25 

critical high value as compared to the kappa statistics obtained with 1.3 default critical 

high value  (0.41 and 0.42) for the year 2016 and 2017, respectively (Figure 5.14). 

5.5.4 Visual analysis 

The visual analysis of simulated urban maps at optimal parameter values for the year 2015 

was compared with the actual urban growth obtained from remote sensing data of the year 

2015. The simulated urban growth at default parameters has shown many differences with 

the actual urban growth in the year 2015 (please refer to the Figure 5.15). However, 

simulated urban maps against individual best self-modifying parameter values reveal very 

realistic urban patterns for the optimal self-modifying parameters obtained from 

sensitivity analysis. However, at a few places some urban edges and small size clusters 

were inaccurately formed which may be due to the limitation of the stochastic nature of 

the modelling approach and the misclassification present in classified LULC maps as it 

was evident from the satellite images that some vegetation shadows fall over built-up land 

which was not identified as urban by remote sensing but was observed in simulated maps. 

Since, CA rules are applied over a 3*3 neighborhood at a time, therefore, due to a higher 

probability of neighboring pixels getting urbanized it automatically simulated those non-
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urban pixels as urban which was not visible as urban but in reality persists. This is the 

beauty of CA at best replicating a complex urban system that even can forecast urban 

future as well. The present study investigated the influences of different self-modifying 

parametric/ constant values on urban growth simulation outcomes. Optimal values of 

different constants/ parameters have been determined on the basis of best model fitness, 

comparison of spatial and statistical measures computed from actual (two reference 

datasets) and simulated outcomes, accuracy percentage and kappa statistics. The model is 

able to simulate urban growth more realistically and is able to capture different forms of 

urban growth with optimum self-modifying parameters determined through sensitivity 

analysis. 

5.6 Sensitivity Analysis of Diffusive Value Parameter 

The SLEUTH model uses four growth rules sequentially to simulate LULC change and 

urban growth.  The first rule simulated diffusive growth which affects the behavior of the 

remaining three growth rules. Therefore, any uncertainty in diffusive growth may lead to 

incorrect overall growth simulated by the model.  Diffusive growth is responsible for 

determining the overall dispersion of urban growth, spontaneously taking place at a 

suitable landscape and it is the first growth rule to be performed in SLEUTH modelling.  

Figure 5.15: Comparison between actual & simulated urban growth for year 2015 
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In CA, a landscape is considered as a cellular structure, the smallest unit is a cell 

represented by a pixel and it has a state in terms of urban or non-urban. Transition rules 

are applied on a pixel or cell basis selected randomly or sometimes sequentially based on 

the growth rules to be performed. The diffusive growth takes place in such manner as 

explained below; 

For (k = 0; k < 1 + (int) diffusive value; k++) 

  { 

A pixel will be randomly selected from overall raster grid and will be attempted to get 

urbanized by passing through suitability conditions like slope and exclusion. 

} 

Diffusive or spontaneous growth is controlled by a parameter i.e., a Diffusive value which 

is estimated using equation 5.1 as mentioned below. Here, the diffusion coefficient is the 

value sequentially selected from the coefficient space i.e. 0 - 100, for the first run it would 

be ‘0’. 

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 = ((diffusion coefficient × 0.005) × √𝑟𝑜𝑤𝑠2 + 𝑐𝑜𝑙𝑠2)...… 5.1 

When the diffusion coefficient is maximum i.e. 100, the diffusive value will be maximum 

and would be equal to 50% of the image diagonal. However, the diffusive value is a 

function of 0.005, a multiplying parameter/constant which may be called as the diffusive 

value parameter. The model sensitivity with respect to the diffusive value parameter has 

not been tested and its optimum value may be different for different geographical and 

socio-economic settings. By default, the value of this parameter has been adopted as 0.005 

in equation 5.1. Therefore, an effort has been made to investigate the model sensitivity in 

term of change in model response as a function of the diffusive value parameter.  An 

iterative procedure has been used to test the sensitivity of diffusive value parameter by 

simulating urban growth of Pushkar town for a range of diffusive value parameter and 

quantifying the relative change with respect to the growth simulated corresponding to its 

default value. The detailed methodology for performing a sensitivity analysis of diffusive 

value parameters has been discussed in detail in a subsequent section. The methodology 

adopted for the sensitivity analysis of the model with respect to the diffusive value 

parameter is presented in Figure 5.16. The diffusion coefficient is responsible for 

spontaneous growth, new spreading center growth and road influenced growth.  
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The growth rules are performed in a sequential manner and each is dependent on the 

previously captured urban growth. In present study, a range of diffusive value parameter 

i.e., default value (0.005) ± 50% (0.0025, 0.0030, 0.0035, 0.0040, 0.0045, 0.0050 

(default), 0.0055, 0.0060, 0.0065, 0.0070 and 0.0075) has been selected for performing 

sensitivity testing. For the individual parametric setting, the SLEUTH program has been 

modified and calibrated independently. Further, calibration was judged based on the 

goodness of fit metrics and optimal growth coefficient values are determined and urban 

growth has been predicted for up to the year 2040 for the individual setting.  

To determine the optimal value of diffusive value parameter the simulated outcomes have 

been compared with the actual urban area obtained from two reference data on the basis 

of spatial and statistical measures calculated from both simulated growth and actual urban 

area, as discussed earlier. Optimum parameter values have also been determined by 

comparing the accuracy of urban growth for different parameter values with the 
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percentage accuracy obtained for the default parameter. Optimum diffusive value 

parameter value will be that at which percentage accuracy of simulated growth is highest.  

Calibrated value of growth coefficients for a range of diffusive value parameter has been 

presented in Table 5.5.  Due to the stochasticity in the modeling, no significantly 

increasing or decreasing trend was observed in best-fit growth coefficient values. 

Although, the study is able to give the optimal value of diffusive value parameter. 

Table 5.5: Best fit growth coefficient values for individual diffusive growth parameters 

Diffusive 

Growth 

Parameter 

Best fit 

Diffusion 

Coefficient 

Best fit 

Breed 

Coefficient 

Best fit 

Spread 

Coefficient 

Best fit 

Slope 

Resistant 

Coefficient 

Best fit 

Road 

Gravity 

Coefficient 

Best 

OSM 

0.0025 54 54 43 54 54 0.28 

0.0030 1 93 13 98 90 0.27 

0.0035 44 24 60 89 87 0.26 

0.0040 77 37 34 76 38 0.28 

0.0045 73 34 32 45 23 0.27 

0.0050 49 45 25 68 46 0.28 

0.0055 53 19 47 10 30 0.37 

0.0060 57 22 49 3 27 0.28 

0.0065 32 10 66 2 7 0.25 

0.0070 55 39 29 79 45 0.28 

0.0075 45 51 24 42 1 0.27 

 

The highest model fitness i.e. OSM, 0.37 has been achieved for diffusive value parameter 

at 0.0055 which is far better than remaining other values of diffusive value parameter 

including the default. The optimal growth coefficient value has been achieved at diffusive 

value parameter 0.0055 as 53, 19, 47, 1 and 3 for diffusion, breed, spread, slope resistance, 

and road gravity coefficients, respectively. The diffusion coefficient based spontaneous/ 

diffusive growth and spread coefficient based organic/ spread growth have been found to 

be dominating the urban growth. The model sensitivity to the diffusive value parameter 

has been determined by calculating the relative change in urban growth simulated for its 

different values keeping other constants the same. Further, spatial and statistical measures 

have been calculated for all values of the diffusive value parameter. Percentage accuracy 

and kappa statistics were also estimated corresponding to the different values of the 

diffusive value parameter.  
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5.6.1 Comparison between spatial and statistical measures computed from input 

datasets and simulated outcomes 

The present section discusses the comparison between actual and simulated urban area for 

different years in term of spatial and statistical measures to determine the optimal set of 

the diffusive value parameter. The simulated urban growth for default diffusive value 

parameter i.e. 0.005 has been found to be 41354 ha as compared to 48014 ha urban area 

obtained from reference data for the year 2015, however at 0.0045 value urban area has 

been found to be better. The urban growth has been more accurately captured at 0.0055 of 

diffusive value parameter with improved model fitness i.e. OSM of 0.37. The urban 

growth at 0.0055 value of diffusive value parameter has been found to be more realistic 

as indicated by a more accurate no. of urban clusters, edges, urban cluster radius and mean 

cluster size statistical measures with a better Optimal SLEUTH Metric (OSM), model 

fitness i.e., 0.37 as compared to 0.27 value obtained from default value (0.005)  (Figure 

5.17). The urban cluster radius has been found to be better captured at 0.0055 with better 

model fitness value. The difference between actual and simulated mean cluster size has 

been found lesser at 0.0035 however with lesser model fitness, therefore, diffusive value 

parameter at 0.0055 with higher model fitness value i.e. 0.37 is found to be more reliable 

and optimum for capturing the urban growth.  

5.6.2 Comparison between spatial and statistical measures computed from Geo-

eye data and simulated outcomes 

To determine the optimum value of diffusive value parameter, spatial and statistical 

measures have been estimated for the simulated urban area corresponding to different 

values of diffusive value parameter and compared with measures calculated from the 

urban area extracted from high-resolution image of Geo-eye satellite for the year 2017 

(actual urban area).  At 0.0055 value of diffusive value parameter, an urban growth area, 

edges and mean cluster radius have found to be satisfactorily in agreement with measures 

calculated from reference urban area with an improved model fitness i.e. 0.37. 

The difference between the actual and simulated number of urban clusters and 

mean cluster size has been observed because clusters may be lost while digitizing the 

urban areas from high-resolution GE data (Figure 5.18). 

The present investigation revealed that different values of the diffusive value parameter 

may affect the model performance in capturing the different type of urban growth or form.  
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The diffusive value parameter i.e., 0.0055 has been found to be optimum and the model is 

able to capture different forms of urban growth corresponding to different socio-economic 

conditions of developing countries.  The optimum value of diffusive value parameter as 

0.0055 has been arrived at based on the closeness of the spatial and statistical measures 

calculated from the simulated urban growth and reference datasets corresponding to the 

year 2015 and 2017.  

5.7 Sensitivity Analysis for Monte Carlo Runs  

In the modern world of the computer, geo-simulation has become possible by a powerful 

tool like Monte Carlo simulations. Generally, the stochastic model assumes Gaussian 

behavior and runs multiple times to produce a distribution of outputs that describe the 

randomness and variability into the modeling outcomes against model goodness of fitness 

metrics. However, in geostatistics, there is no standard heuristics to identify the 

appropriate or best number of Monte Carlo iterations a model should run. A greater 

number of MC runs will have good model diversity however at the expense of model 

computational resources.  On the other side, very few numbers of Monte Carlo simulation 

runs may steal the opportunity of reaching out to the best model calibration. Also, how it 

affects the model calibration performance and simulated growth eventually has not been 

evaluated well so far.  

Evaluation of model calibration behavior against the number of Monte Carlo runs on the 

basis of model goodness of fit and different spatial metrics or statistical measures may be 

helpful in deciding an appropriate number of MC runs for a modelling exercise. 

The CA-based SLEUTH model utilized less Monte Carlo runs (i.e. 6-10) for its calibration 

phases due to higher computational overhead. Many efforts have been made to improve 

the computational efficiency of the SLEUTH model recently. The SLEUTH sensitivity to 

MC iterations has been tested by running the model for a range of MC runs i.e., 10 to 300; 

10 – 100 with an equal interval of 10 and three simulations with 150, 200 and 300 MC 

iterations. The SLEUTH model has been calibrated for 13 different sets of MC runs 

independently and urban growth was predicted with the same input dataset. The model 

has been calibrated for each Monte Carlo set independently and change in model 

performance was analyzed on the basis of goodness of fit metrics such as compare, urban 

population (pop), edges, clusters, mean cluster size, Lee Sallee and cluster radius, model 

fitness measure (i.e. OSM), kappa statistics, accuracy percentage and visual analysis. 
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An optimal number of MC iterations is that number where simulated urban growth is in 

close agreement with reference urban area of the respective years in term of above-

mentioned goodness of fit metrics and OSM value.  The detailed methodology for the 

sensitivity analysis with respect to MC iterations has been presented in Figure 5.19. 

The model fitness measure i.e. OSM has been evaluated for an individual set of 

different MC iterations and it has been observed that model calibration is not affected 

significantly by the number of MC iterations. Highest model fitness measure i.e., 0.30 has 

been achieved for 60 number of MC iterations and 10, 20, 70, 80, 100 and 300 MC number 

of iterations it was found to be 0.27 or less, as presented in (Figure 5.20).  It can be 

concluded that the model is able to capture better diversity at 60 MC iterations. In addition 

to OSM value, several goodness of fit metrics are computed to determine the SLEUTH 

sensitivity to the MC iterations as discussed above and details of each can be found in 

Chapter 4. 

Figure 5.19: Methodology of sensitivity analysis of Monte Carlo analysis 
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The compare metric compares the simulated and actual urban extent of control years and 

it achieved the best in the case of 60 MC runs i.e. 0.99. The lowest urban extent 

comparison is achieved in the case of MC 80 and 200, i.e. 0.76 (Figure 5.20). Due to the 

stochastic nature of the model, no specific trend for the goodness of fit metrics has been 

observed as a function of MC iterations and the urban extent comparison metric lies in the 

range of 0.76 to 0.99. The pop (urban population/ no. of urban pixels) metric gives the 

regression score of comparison between actual and simulated urban pixels. In the present 

study, a pop metric calculated for an individual set of MC runs has been found in between 

0.87 and 0.88 with respect to the model outcome for different MC iterations. Again, no 

significant effect has been observed on pop metric for a different number of MC iterations. 

However, at MC 60 iterations urban pop metric has been found to be closer to the same 

computed from reference data. The Lee Sallee shape index represents spatial fit between 

simulated urban growth patterns and actual urban growth pattern. In the present 

investigation, the highest Lee Sallee value achieved as 0.33 which is a good shape measure 

value for such a heterogeneous landscape (Rafiee et al., 2009; Hui-Hui et al., 2012; Akın 

et al., 2014; Dezhkam et al., 2014).  However, not many differences in Lee Sallee shape 

index have been noticed during model calibration performed with different MC runs 

(Figure 5.20).  

The edge metric measures the least square regression fit between actual and 

simulated urban edge count which has been observed lying in between 0.11 and 0.92. The 

highest edge metric value achieved in the case of 200 MC iterations and the lowest edge 

metric was achieved at 50 MC iterations.  Significant variation in values of the urban edge 

metric has been observed for different MC iterations. However, the highest value of urban 

edge metric i.e., 0.90 has been found at 60 MC iterations, which is closer to the best value 

achieved (i.e. 0.92) (Figure 5.20).  

The urban cluster radius which compares the average radius of the simulated and 

actual urban pixels enclosed circle has been found to be highest i.e. 0.9 for the calibration 

performed at 60 MC iteration and the lowest radius metric is achieved as 0.8 for calibration 

performed at 30 MC iteration. The calibration performed at other MC runs resulted into 

the similar value of radius metric i.e. 0.89 (Figure 5.20).  

The investigation reveals that calibration performed at different MC iterations has 

not been given any significant trend in term of different goodness of fit metrics computed 

during the model calibration with respect to an individual set of MC iterations. However, 

calibration performed at 60 MC iteration has been found to be more consistent and 
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goodness of fitness landscape metrics calculated from the simulated urban growth are 

closer to the metrics calculated from the reference urban area for the reference year i.e., 

2015. 

In addition to the goodness of fit metrics and model fitness measure i.e. OSM the 

effect of different sets of MC runs on model calibration has been analyzed through visual 

analysis. The visual comparison of simulated urban growth map using different sets of 

MC runs with the actual urban map for reference year i.e., 2015 is presented in Figure 

5.21. It is evident from Figure 5.21 that the model has been able to capture urban growth 

nearest to the actual growth at 60 MC iterations. Calibration performed at MC runs 70, 

80, 90, 100, 150, 200 and 200 has over captured the urban growth despite obtaining good 

goodness of fit metrics (Figure 5.21). Beyond the optimum number of MC, iterations 

model starts repeating the previously obtained growth coefficient values and similar urban 

patterns which gets superimposed over the number of MC runs.  

The sensitivity of MC runs might be useful for deciding the suitable number of 

runs for a specific modelling application. Knowing the optimum number MC iterations 

required for model calibration may lead to better model simulation and prediction 

accuracy. It was observed that MC 60 is the most appropriate value for performing model 

calibration and therefore, obtained refined parameter set from the calibration is used for 

predicting urban growth for up to the year 2040.  

Further, accuracy assessment has been done for the simulated outcomes at MC 

runs 60 with respect to the GE data as reference dataset by using random sample points as 

discussed earlier.  The accuracy in percent and kappa statistics have been computed for 

the year 2016 and 2017. The accuracy percent for an urban simulated map of the year 

2016 & 2017 has been obtained as 82 % and 87% respectively which is quite good for a 

model application. The computed kappa statistic achieved as 0.63 and 0.71 for the year 

2016 and 2017 respectively (Table 3.7) which is stating that simulated outcomes are able 

to avoid 63% and 71% chances of error that may incur by a complete random modelling 

process. Obtaining such good kappa statistics and overall accuracy percentage is very 

crucial in modelling. The urban growth predicted maps have been presented in Figure 

5.22.It is evident from the predicted urban growth for the year 2040 (Figure 5.23) that 

urban growth of Pushkar will spread horizontally outward, especially in the north-west 

direction with a very high probability i.e. above 90%.
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Figure 5.20: SLEUTH sensitivity to number of Monte Carlo iterations in term of goodness of fit metrics 
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The area along Sardarshahar – Ajmer road and Ajmer- Nagpur road may be developed 

with a probability of 61 -70%. Area along the Brahma Temple road may be developed 

rapidly due to the tourist inflow being a religiously important area. In general, Pushkar 

will develop rapidly along the important road where suitable land is available for 

development and provide better transportation connectivity as revealed in Figure 5.23. 

Urban growth prediction indicates an ongoing trend of development of Pushkar town. The 

Pushkar is developing at a fast pace due to migration from nearby areas in the aspiration 

of a better livelihood, increased tourist activities being a religious importance because of  

Brahma temple at Pushkar Ghat. Though, there is not a significant difference it has been 

observed in the calibration performance of the model as a function of a number of MC 

iterations. However, model sensitivity to MC iterations gives an optimum number of MC 

iterations at which the model is satisfactorily able to capture the diversity of the urban 

development and helps in reducing the uncertainties in selecting the MC iterations. 

Table 5.6: Accuracy assessment report for modelling outputs using mc 60 suite 

Monte Carlo iterations  
Accuracy percentage (%) Kappa statistics 

2016 2017 2016 2017 

60 82 87 0.63 0.71 

Figure 5.21: Simulated urban growth for year 2015 for different Monte Carlo Iterations 
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(a) 

(b) 

Figure 5.22: Model simulation outcomes for year 2015 to 2040 for different Monte Carlo 

iterations 
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5.8 SLEUTH Sensitivity with Respect to Game of Life Rules 

Cellular Automata (CA) has evolved as an important tool for LULC change and urban 

growth modelling techniques owing to its simplicity, ease of implementation and ability 

to incorporate dynamism and complexity of the urban growth phenomenon. The CA based 

SLEUTH model uses game of life rules as a core process in urban growth simulation. As 

discussed previously, SLEUTH uses five growth coefficients i.e. diffusion, breed, spread, 

slope resistance and road gravity coefficient and four growth rules i.e. diffusive, new 

spreading center, edge or spread and road influenced growth while simulating the urban 

growth. The game of life rules helps in determining the state of a cell/ pixel based on the 

neighborhood conditions in the form of birth, survival and death of a living organism i.e., 

urbanization. The birth state implies a non-urban pixel becomes urban, survive state infer 

an urban pixel remains urban and death state is when an urban pixel becomes non-urban. 

The threshold value in game of life rules plays an important role in imitating the urban 

growth of an area. Currently SLEUTH implements the game of life rules for determining 

spreading growth in such a manner that a non- urban pixel or cell will get urbanized if it 

is surrounded by at least two urban neighboring pixels this state is known as the active 

state. SLEUTH has been used to simulate the urban growth of different cities, most of it 

Figure 5.23: Urban growth prediction for year 2040 with 60 MC iterations 



188 

 

in developed countries using such a game of life rule with threshold value of 2 urbanized 

pixels to urbanize a non-urban pixel. This threshold value of 2 pixels may not be suitable 

to simulate the urbanization of other cities having different socio-economic conditions. 

Therefore, to simulate the urban growth of cities having diverse socio-economic 

conditions, a suitable game of life rule with appropriate threshold value for active state 

needs to be determined or the sensitivity of the model with respect to different threshold 

values of the active state threshold need to be determined. Model sensitivity with respect 

to game of life rule has been tested in the present research work by determining the relative 

change in simulated outcome corresponding to different game of life rules. Sensitivity 

analysis also helped in determining the optimum game of life rule at which model 

simulates urban growth more realistically.  

The methodology followed for testing the SLEUTH model sensitivity for a game 

of life rule has been discussed in subsequent sections.   

5.8.1 Methodology for sensitivity analysis for game of life rules 

As discussed earlier that SLEUTH is a CA-based model and a landscape is represented in 

a form of cellular structure in which each cell represent the state of land use class. While 

the present study incorporates urban growth modeling only, therefore, we have considered 

a landscape in a form of urban and non-urban. The flexibility in CA allows simulating 

urban growth more realistically by modifying transition rules in the SLEUTH model. To 

facilitate model sensitivity to a game of life, model code has been modified for three 

different game of life rules i.e., type I, type II and type III. The model is calibrated for the 

individual set and the urban growth has been simulated up to the year 2040.  The method 

to perform sensitivity analysis has been implemented as discussed below. 

5.8.1.1 Type-I game of life rule 

Type-I rules state that the state of each cell is a function of its current state and its 

neighbor’s state. It can be implemented exclusively by counting the number of urban cells 

in a specified cellular neighborhood.  In the type-I rule, a non- urban pixel will get 

urbanized if it is surrounded by at least one urban pixel. This rule has been successfully 

added into the SLEUTH source code and pseudo code is as follows; 

If ((urban count >= 1) && (urban count <= 8)) 

{ 

Try to urbanize 
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} 

From a cellular grid which represents a landscape, a pixel is tested for performing a game 

of life transition rules. First, the pixel or cell is selected to check whether it is urban or not. 

If this state gives true i.e. yes the pixel is urban then it further checks the state of other 

neighboring pixels in an 8 cell neighborhood (default cellular neighborhood size). For 

implying type-I rule it is considered that in a developing country housing may be of very 

small size and only a single urban pixel will be capable enough to start spreading at its 

edges. If in the 8 cell size neighborhood the total urban pixels are in between 1 and 8 (both 

inclusive) then a randomly selected non-urban pixel will be urbanized if found suitable to 

the set of conditions (Figure 5.24). Otherwise, it will not be urbanized and this process 

will remain to continue till all the cells of the grid are traversed. 

5.8.1.2 Type-II game of life rules 

Type-II game of life rule is implemented in the original SLEUTH source code in such a 

way that a non-urban pixel will get urbanized if it is surrounded by at least two urban 

pixels in an 8 cell neighborhood. In place of 1 urbanized pixel in the type-I rule, the 

Select a pixel in a sequential manner 

If selected pixel == urban 

&& do we pass the 

random spread test 

No 

Yes 

No 

Yes 

Try to urbanize a randomly selected 

non-urban pixel in the same 8 cell size 

neighborhood 

If  

8 <= urban count in a 8 cell 

size neighborhood >= 1 

 

Figure 5.24: SLEUTH code for sensitivity testing for type-I game of life rule 
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minimum threshold for the active state has increased to 2 pixels, while simulating the 

urban growth. The rest of the steps remain same as discussed in a type-I game of life rule 

(Figure 5.25) sensitivity testing explained above.  

If ((urban count >= 2) && (urban count <= 8))  

{ Default case 

Try to urbanize 

} 

5.8.1.3 Type-III game of life rules 

 

 

Type-III game of life rule is implemented in the original SLEUTH source code in such a 

way that a non-urban pixel will get urbanized if it is surrounded by at least three urban 

pixels in an 8 cell neighborhood. In place of 2 urbanized pixels in the type-II rule, the 

Select a pixel in a sequential manner 

If selected pixel == urban 

&& do we pass the random 

spread test 

No 

Yes 

No 

Yes 

Try to urbanize a randomly selected non-urban pixel in 

the same 8 cell size neighborhood 

If  

8<= urban count in a 8 cell 

size neighborhood >= 2 

 

Figure 5.25: SLEUTH code for sensitivity testing for type-II game of life rule 
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minimum threshold for the active state has increased to 3 pixels, while simulating the 

urban growth. The rest of the steps remain same as discussed in a type-II game of life rule 

(Figure 5.26) sensitivity testing explained above.  

If ((urban count >= 3) && (urban count <= 8)) 

{ 

Try to urbanize 

} 

 

The type-III game of life rules was implemented in similar ways as explained in section 

5.8.1.1 and 5.8.1.2 only the minimum threshold values were modified to analyze the 

influence of different game of life rules on simulated urban growth and effect of models 

ability to capture a different type of urban forms (Figure 5.26). 

Select a pixel in a sequential manner 

If selected pixel == 

urban && do we pass 

the random spread test 

No 

Yes 

No 

Yes 

Try to urbanize a randomly selected non-

urban pixel in the same 8 cell size 

neighborhood 

If  

8<= urban count in a 8 cell 

size neighborhood >= 3 

 

Figure 5.26: SLEUTH code for sensitivity testing for type-III game of life rule 
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5.8.2 The sensitivity of game of life rule 

For the individual type of game of life rules i.e. type-I, type-II & type-III the program code 

of SLEUTH–GA model has been modified as discussed in the previous section. The model 

has been calibrated in three subsequent phases to refine the growth coefficient space and 

to obtain optimal growth coefficient values against best model fitness value i.e. OSM for 

each game of life rule. Among three phases of calibration, one best-fitted calibration phase 

is selected for an individual game of life rule. The study reveals that high diffusion 

coefficient value i.e. 52 was achieved in case of type-III game of life rule, it reduced 

slightly to 45 in case of a type-II game of life rule and further found to be reduced 

significantly up to 7 for a type-I game of life rule. It is evident from the study that diffusive 

growth will be increasing when an increase in the threshold value for the active state which 

means it increases the possibility of spontaneous/ diffusive urbanization attempts. In a 

developing country scenario fragmented urban growth and smaller size built-ups are very 

common. Thus increasing the lower threshold value will eventually shift the possibility of 

spread growth towards diffusive growth therefore, higher diffusion coefficient value is 

observed in the case of type-III game of life rule. The value of breed coefficient has been 

found to be very much less in a type-I game of life rule (3) as compared to type-II (65) 

and type-III game of life rule (97). Spontaneous diffusive urban growth starts developing 

new urban centers to form isolated clusters i.e. breed growth. Type-III game of life rule 

consequently increased the diffusive growth coefficient which showed the possibility for 

newly spontaneous urbanization to become a new spreading center. Therefore, a higher 

value of the diffusion coefficient led to the increased possibility of new urban center 

growth i.e. higher breed in type-III game of life rule. In the type-I game of life rule, the 

diffusive urbanization attempts are found to be decreasing which however did not lead to 

an increase in the spread of urbanization due to some spatial suitability constraints. 

According, to type-I rule, the lower threshold value has been reduced to 1 urbanized pixel 

that means at least one urban pixel should be in the neighborhood to spread urban growth 

and form large urban clusters. However, it is evident that spread growth has been reduced 

as a consequence of lower threshold value for the active state in the game of life rule 

(Figure 5.27).  For developing spread growth it is not necessary only to get surrounded by 

a few urban pixels while there may be some important land suitability factors involved. 

Likewise, the slope resistance coefficient has also observed a lower value of 4 in the case 

of a type-I game of life rule as compared to type-II (11) and type-III (94). Reverse 
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implications were observed on the road gravity coefficient except for type-I. The road 

gravity coefficient was found highest for a type-II game of life rule i.e. 71, for type-I and 

type-III it was found to be 5 and 9, respectively. For type-I, spread coefficient was found 

highest among all the growth coefficients as the chances of spread growth increased by 

lowering the threshold value of the game of life rule. For type-II and type-III game of life 

rule, breed coefficient was found the highest. For high slope resistant value low road 

gravity coefficient has been observed and vice versa for type-II and type-III game of life 

rules. 

The highest model fitness i.e., OSM has been found for the type-I game of life rule 

(0.34) and lowest OSM has been found for the type-III game of life rule (0.25) (Figure 

5.28). The type-I game of life rules have been found to be optimal for simulating more 

accurate urban growth patterns in different socio-economic conditions. The type-II game 

of life rule (default in original SLEUTH source code) may not be appropriately imitating 

the different forms of urban growth for scenarios that persists in developing countries.  

To further support the game of life sensitivity results, as discussed above, the 

accuracy of simulated growth corresponding to the different game of life rules have been 

estimated and compared. The accuracy of simulated urban growth has been determined in 

term of percentage accuracy and kappa statistics with respect to a reference dataset 

captured from the high-resolution Geo-eye satellite through manual onscreen digitization, 

as discussed below-. 
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The modelling outcomes obtained from the individual game of life rules have been 

assessed for accuracy with respect to urban area captured from a high-resolution Geo-eye 

image obtained from Google earth images years 2016 and 2017. The stratified random 

sampling method was used to select the test pixels for both the years and their urbanization 

status was checked from reference data. The statistics of agreement and disagreement 

between actual and simulated urban area was calculated and an overall agreement in the 

form of kappa statistics has been computed for different game of life rules as presented in 

Table 5.7. Also, accuracy percentage has been calculated for the year 2016 and 2017 for 

individual setting of the game of life rules. The accuracy assessment results strongly 

support the type-I game of life rule as we got the highest accuracy percentage and kappa 

statistics for both the years as compared to other game of life rules.     

Table 5.7: Accuracy assessment for a different game of life parametric settings 

Game of life rules 
Accuracy percentage (%) Kappa statistics 

2016 2017 2016 2017 

Type I 82 80 0.54 0.48 

Type II 73 77 0.41 0.42 

Type III 79 78 0.3 0.4 
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5.9 Model Sensitivity with Respect to Size of Cellular Neighborhood 

As discussed in Chapter 4, the extent of the cellular neighborhood used while 

implementing the different growth rules in SLEUTH model for simulation of LULC 

change and urban growth has been a very important parameter and affects the ability of 

the model to simulate urbanization.  The size of the cellular neighborhood remains a static 

and geometrically closest set of cells throughout the modelling. To capture different forms 

of growth correctly in areas with different socio-economic conditions optimal extent of 

affecting neighborhood may be different than the default 8 cell size neighborhood 

available in SLEUTH.  Increasing the size of the cellular neighborhood will reduce 

neighborhood effect of urbanization on non-urbanized pixels. However, it is difficult to 

determine what should be an appropriate size of a cellular neighborhood in urban land use 

change modelling. Sensitivity analysis for different size of the cellular neighborhood may 

provide an opportunity to determine the optimum value of the extent of the neighborhood.  

CA-based SLEUTH model is a widely used model, however, its sensitivity with 

respect to the size of the cellular neighborhood has not been tested so far. Therefore, model 

sensitivity to the size of the cellular neighborhood has been determined by determining 

the change in the ability of the model to correctly simulate the urban growth with different 

sizes of the cellular neighborhood. The urban growth was simulated for three cellular 

neighborhood sizes i.e.,4 cell neighborhood (Von Neumann neighborhood), 8 cell 

neighborhood (Moore neighborhood) and 12 cell neighborhood (Extended Moore 

neighborhood) (Figure 5.29) and growth was compared with the reference urban area 

Figure 5.29: different Cellular Neighborhood (a) 4 cell Von Neumann Neighborhood, (b) 

8 cell Moore Neighborhood and (c) 12 cell Extended Moore Neighborhood 
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(actual urban area) extracted from a high-resolution Geo-eye image of the year 2017 

through manual digitization.  

5.9.1 Methodology for sensitivity analysis of the size of the cellular neighborhood 

The SLEUTH model has been developed for three different cellular neighborhood i.e. 4 

cell neighborhood (Von Neumann neighborhood), 8 cell neighborhood (Moore 

neighborhood) and 12 cell neighborhood (Extended Moore neighborhood) (Figure 5.29). 

The SLEUTH model code was modified to simulate urban growth for three different sizes 

of the cellular neighborhood.  The details have been discussed in the form of pseudo code 

in the respective sections.  

5.9.1.1 Von Neumann (4 cell-based) cellular neighborhood 

The transition rules are influenced by the size of the cellular neighborhood directly and 

indirectly both. Some of the transition rules in SLEUTH like breed coefficient responsible 

for new spreading center growth and spread coefficient responsible for organic or edge or 

spread growth are directly influenced by the size of the cellular neighborhood. However, 

some of the transition rules are dependent on these rules i.e. diffusion and road gravity 

coefficient responsible for spontaneous or diffusive and road influenced growth 

respectively are indirectly influenced by the size of the cellular neighborhood. For 4 cell 

Von Neumann neighborhood pseudo code used in the present work has been given below,  

Breed coefficient 

{ 

For (max_tries =0; max_tries <4; max_tries++) 

{ 

Try to urbanize neighboring pixels of the selected urban pixel 

} 

} 

Spread coefficient 

{ 

If ((urban count >= 2) && (urban count < 4)) 

{ 
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Try to urbanize 

} 

} 

5.9.1.2 Moore Neighborhood (8 cell-based) cellular neighborhood 

Similarly, for 8 cell it implies in a manner that transition rules can be implemented in an 

8 cell Moore neighborhood.  

Breed coefficient 

{ 

For (max_tries =0; max_tries <8; max_tries++) 

{ 

Try to urbanize neighboring pixels of selected urban pixel 

} 

} 

Spread coefficient 

{ 

If ((urban count >= 2) && (urban count < 8)) 

{ 

Try to urbanize 

} 

} 

5.9.1.3 Extended Moore Neighborhood (12 cell based) cellular neighborhood 

Likewise, for 12 cell size Extended Moore neighborhood transition rules are implemented.  

Breed coefficient 

{ 

For (max_tries =0; max_tries <12; max_tries++) 

{ 
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Try to urbanize neighboring pixels of the selected urban pixel 

} 

} 

Spread coefficient 

{ 

If ((urban count >= 2) && (urban count < 12)) 

{ 

Try to urbanize 

} 

} 

These individual cellular neighborhoods have been implemented into the SLEUTH-GA 

to perform the sensitivity analysis. The model has been calibrated in three consecutive 

phases to obtain the optimal growth coefficient values against the optimal model fitness 

measure i.e. OSM and from among three phases, one best set of growth coefficient values 

have been selected for urban growth simulation for individual cellular neighborhood 

independently. Model sensitivity has been determined by estimating the change in 

simulated urban growth and calibrated growth coefficients corresponding to three cellular 

neighborhood sizes.  

5.9.2 Model Sensitivity to the size of the cellular neighborhood 

It was observed that the diffusion coefficient was highest in the case of 12 cell 

neighborhood (i.e. 60) due to its increased possibility of spontaneous urbanization because 

of the increased number of random selection of pixels for urbanization attempt during the 

implementation of different growth rules.  A higher cellular neighborhood increases the 

possibility and lower cellular neighborhood reduces the possibility of spontaneous 

urbanization. Also, it is clearly evident from the study that spontaneous urbanization will 

eventually reduce when we move from higher to lower cellular neighborhood size i.e. 

from 60 in 12 cell to 45 in 8 cell to 33 in 4 cellular size neighborhood. The breed 

coefficient is responsible for new spreading center growth which takes place around newly 

spontaneously urbanized cells. However, increasing the cellular size of the neighborhood 

may not be able to introduce neighborhood decay effect for new spreading center growth 
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to take place. Therefore, a lower value of breed coefficient was noticed for the 12 cell 

neighborhood. The growth coefficients are influenced by neighborhood and distance 

decay in neighborhood effect. 

The effect of distance decay can be best reflected in case of the diffusion coefficient as it 

is responsible for spontaneous urbanization. Therefore, in cases of higher cellular 

neighborhood i.e. 12 cell breed and spread coefficients have been found to be reducing as 

compared to other cellular neighborhoods. Similarly, due to the distance decay effect 

slope resistant and road gravity coefficient have also been found to be the lowest in the 

case of 12 cell Extended Moore neighborhood (Figure 5.30). While the highest spread 

coefficient is achieved in case of 4 cell neighborhood i.e. 72. Currently, the SLEUTH 

model utilizes an 8 cell neighborhood to perform its transition rules. However, we have 

identified that some of the growth rules are dependent on the distance decay effect and 

some are influenced by the neighborhood decay effect. To incorporate a distance decay 

effect into the modelling it is important to implement transition rules on a 12 cell 

neighborhood, however, for introducing a neighborhood decay effect a 4 cell 

neighborhood size would be appropriate. If the modeler is well aware from the socio-

economic & geographical conditions and urban practices of the study area he/ she can 

suggest the size of cell neighborhood to better simulate the urban growth patterns. In 

developing countries, the size of urban development is relatively less and diffusive growth 

takes place at large. So, for socio-economic simulations like developing countries, a 12 

cell neighborhood would be an optimal size to simulate urban growth more appropriately 

using the SLEUTH model. 
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The model fitness has an important role in establishing that which size of the cellular 

neighborhood is responsible for simulating urban growth and its different forms more 

accurately. The study can be well supported by comparing the model fitness measure 

calculated from individual cellular neighborhood size i.e. Von Neumann, Moore, and 

Extended Moore cell neighborhood. Among the three the best model finesses has been 

observed in the case of the Extended Moore neighborhood (12 cell) i.e. 0.33 (Figure 5.31). 

            Further, accuracy has been assessed for simulated urban growth obtained from 

individual settings of cellular neighborhood i.e. 4 cell, 8 cell and 12 cell with respect to 

reference data of the year 2016 and 2017.  

5.9.3 Sensitivity through accuracy assessment 

The modelling outcomes obtained from individual cell neighborhood method have been 

assessed by comparing percentage accuracy and kappa statistics for the simulated growth 

corresponding to the different size of the cellular neighborhood. Reference urban area has 

been obtained from the high-resolution Geo-eye satellite images obtained from Google 

earth for the year 2016 and 2017. The stratified random sampling method is used for 

spreading random test pixels for these two years and reference information in terms of 

urban and non-urban was recorded from reference data. The statistics of agreement and 

disagreement between actual and modeled urban were calculated and an overall agreement 

in the form of kappa statistics was computed for different cell neighborhood as presented 

in Table 5.8. The 12 cell neighborhood has been found to be more accurate as compared 

to other two cell neighborhood as the accuracy percentage achieved was 82% and 83% 
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and the kappa statistics as 0.43 and 0.66 for the year 2016 and 2017, respectively (Table 

5.8). 

Table 5.8: Accuracy assessment for a different game of life parametric settings 

Cellular neighborhood values 
Accuracy percentage (%) Kappa statistics 

2016 2017 2016 2017 

4 cell 80 78 0.28 0.28 

8 cell 73 77 0.41 0.42 

12 cell 82 83 0.43 0.66 

5.10 Sensitivity Analysis of Critical Slope 

There is one another important parameter in the SLEUTH model i.e. critical slope which 

takes care of the effect of topographic slope in the simulation of urbanization through 

deciding the slope weights in the look-up table with the help of slope coefficient values. 

The urban development takes place at lower slopes rather than steeper slopes (Figure 

5.32). When percent slope will be at that level where urban development is near 

impossible is known as critical slope. The relative pressure to build upon steeper slopes 

is dynamic and related to the proportion of flatland available and the steeper area's 

proximity to an already established settlement. When a location is being tested for 

suitability of urbanization, the slope at that location is considered. Instead of enforcing a 

simple linear relationship between the percent of slope and urban development, the slope 

coefficient acts as a multiplier.  

However, a critical slope with a default value of 15 remains constant throughout the 

simulation. The modification in its critical slope value may influence the possibility of 

Figure 5.32: Relation between critical slope and probability of urbanization (Hui-Hui et 

al., 2012)  
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urbanization at locations having different slopes. The influence of different values of 

critical slope on modelling outcomes can be determined by performing sensitivity analysis 

and an optimal critical slope value can also be determined. For a range of value of critical 

slope SLEUTH model was developed, calibrated, validated and urban growth was 

predicted. The performance of simulation outcomes has been analyzed in terms of model 

fitness measure, accuracy percentage and kappa statistics.  

5.10.1 Methodology for sensitivity analysis of critical slope parameter 

The detailed methodology for carrying out a sensitivity analysis of different critical slope 

values in SLEUTH modelling has been discussed in Figure 5.33.  

The same input dataset used for sensitivity analysis of other model parameters has been 

used for critical slope also. The sensitivity analysis has been performed for a range of 

critical slope values i.e. from 1 to 29 with a step value of 2 is used. The model response 

was simulated for a total of 15 different values of critical slope and relative change in 

model-simulated growth in term of model fitness measure i.e. OSM and other goodness 

of fit metrices has been determined.  

The way of selecting best fit coefficient values remain same throughout the sensitivity 

process of critical slope value as well. Afterward, the influence of critical slope values on 
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Figure 5.33: Methodology adopted for sensitivity analysis for critical slope value 
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model performance has been analyzed by determining the relative change in urban growth 

simulated in term of the goodness of fit metrics. Finally, sensitivity in term of change in 

urban growth prediction accuracy for different critical slope values has been determined 

by estimating percentage accuracy and kappa statistics.  

5.10.2 Model sensitivity in term of the goodness of fit metrics with respect to 

critical slope 

The crucial findings of the present study are that the critical slope values influence 

modelling performance and its optimum value may be different for an area having 

different socio-economic, construction practices and topographical characteristics. The 

model calibration with different sets of critical slope values resulted in different best fit 

growth coefficient values against optimal model fitness measure i.e. OSM. The lowest 

OSM value has been obtained at critical slope 1 which signifies poor model fitness. 

Pushkar town is surrounded by rocky terrain and development at steeper slopes cannot 

take place. For introducing the intricacy of the topographical characteristics into the 

model, the critical slope should not be 1 but above this value.  

The highest OSM is achieved at the critical slope of 19 i.e. 0.35 (Figure 5.34). At 

critical slope value of 19, the value of slope resistance coefficient is obtained as 17 which 

allowed urban development at topographical suitable locations only. The diffusion 

coefficient was achieved as 30. The breed and spread coefficients have been observed as 

69 and 83, respectively. For the critical slope of 19 spread coefficient is higher as 

compared to other coefficient values which suggest higher spread or edge growth in the 

study area.   
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However, there are some other values which give average model fitness e.g. default 

critical slope value (i.e. 15) i.e. 0.28. How well a model captures different urban forms 

cannot be answered on the basis of the optimal fitness of model i.e. OSM. No specific 

trend has been observed with different values of critical slope, as the urbanization process 

is stochastic and governed by the behavior of many random variables.  

Further, different spatial and statistical measures computed from the simulated 

outcomes and the actual urban area obtained from two reference sources have been 

compared for different sets of critical slope value. The optimal value of the critical slope 

is that value at which the difference in statistical measures calculated from simulated urban 

growth and reference urban area for a given year is minimum. Here, the statistics 

computed from actual data is called as base statistics (bs) indicated by the yellow color in 

graphs and the statistics calculated against default critical slope value is called as default 

indicated by the red color in the graph. It is evident from Figure 5.36 that urban growth 

has been simulated more accurately at the default critical slope value i.e. 15 as compared 

to other critical slope values. In spite of higher model fitness for critical slope value of 

19, it is not able to capture urban area as accurately as at critical slope value of 15. Urban 

edges which basically represents fragmented urban growth have been captured more 

accurately at critical slope value of 15 as compared to any other critical slope value 

(Figure 5.36). Significant differences in statistical measures lead to the conclusion that 

optimal model fitness may be helpful in determining average fitness for urban growth 

pattern but may not be adequate to establish appropriateness for different forms of urban 

growth. Urban clusters which represent clustered growth have been captured satisfactorily 

at the default value of the critical slope. However, critical slope values of 1 and 17 also 

seem closer to the base statistics of the urban cluster but for other spatial measures, it is 

not appropriate. The mean cluster size indicates compact urban growth which is also 

captured satisfactorily at default critical slope value as evident from Figure 5.36.  

The urban cluster radius indicates the infill growth that is captured well at the 

default critical slope value i.e. 15 (Figure 5.36). So, the sensitivity analysis of critical 

slope values is not a mere exercise but gives some crucial findings which would help 

modelers to work on it. The study suggests that before projecting urban growth through 

modeling it is utmost important to verify the suitability of the critical slope value. 
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The default critical slope value used in the model may not be suitable for other 

geographical conditions. Thus, to perform a sensitivity analysis of critical slope to find 

out the suitable value at which model is able to produce not only accurate urban growth 

pattern but would be helpful in determining different urban forms. From the present 

investigation default value of critical slope has been found to be an optimum value. 

5.10.3 Model sensitivity in terms of accuracy for different critical slope values 

The accuracy has been assessed with respect to the referenced data obtained from GE 

satellite. The accuracy percentage and kappa statistics for simulated growth corresponding 
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to different critical slope values have been determined for two reference years 2016 & 

2017 as presented Figure 5.37 & 5.38. The optimal values of different model constants/ 

parameters have been determined by performing sensitivity testing which is able to 

simulate urban growth and different urban forms more accurately (Table 5.9). 

Table 5.9 Default values for model constants / parameters 

S.no. Parameter/ constant Default value Optimal values 

1 
Self-

modifying  

Boom 1.01 1.3 

Bust 0.09 0.10 

Critical 

low 
0.97 0.90 

Critical 

high 
1.3 1.25 

2 Diffusive value  0.005 0.0055 

3 Critical slope 15 15 

4 
Game of life critical 

threshold 
3 cells 1 cell 

5 
Cellular neighborhood 

size 

8 cell Moore 

neighborhood 

12cell Extended Moore 

neighborhood 

6 Monte Carlo runs 5-100 60 

5.11 Concluding Remarks 

SLEUTH sensitivity to some of the important model parameters/constants like self-

modification (i.e. boom, bust, critical low and critical high), diffusive value parameter, 

number of MC iterations, a game of life rule, size of the cellular neighborhood and critical 

slope has been studied in the present work. Model sensitivity to such parameters has not 

been reported so far. An iterative process has been used to determine the model sensitivity 

to a range of parameters decided as the default value ± 50% at a suitable step.  The model 

was rigorously calibrated for each value of every parameter independently keeping other 

parameters constant and model sensitivity was determined in term of relative change in 

model performance indicating goodness of fit metrics like (area, urban edges, urban 

clusters, mean cluster size and urban cluster radius). Furthermore, a comparison between 

statistical measures calculated from the reference urban area and simulated urban growth 

for the year 2017 & 2015 respectively have been made to determine the model sensitivity. 

Reference urban area for the year 2017 was captured from high-resolution Geo-eye 

satellite data obtained from Google Earth through manual digitization. Urban clusters and 

cluster size may have not been correctly captured in the digitized datasets. Further, model 

sensitivity to the model parameters was also determined in term of relative change in 
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accuracy and kappa statistics for simulated urban growth corresponding to a range of 

values of model parameters selected for sensitivity testing.   

The overall study took a lot of CPU hours (around 5-6 hours per model calibration 

on a 64-bit windows 10 operating system with Intel(R) Core (TM)i5 CPU, 650 @3.20GHz 

3.19 GHz) to calibrate the model multiple times for performing exhaustive sensitivity 

analysis. The optimum value of different model parameters has been determined at which 

model is able to capture the urban area as well as different forms of the urban growth more 

satisfactorily as compared to the same obtained from default values of those parameters. 

The study revealed that there is a significant influence of different model parameters on 

model performances. There is no definite trend in model performance found during 

sensitivity analysis because of the possible stochastic process involved in urbanization and 

urban growth simulation.   

The optimal values of this constant/ parameter (Table 5.9) have been further tested 

and used to demonstrate the application of SLEUTH model for a larger study area i.e. 

Ajmer fringe including Pushkar town of similar socio-economic conditions and have been 

discussed in Chapter 8.  
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CHAPTER 6 

ESTIMATION OF BUILT-UP DENSITY 

6.1 Prologue 

Urban growth is a complex spatiotemporal phenomenon that includes built-up activities 

horizontally, and vertically in different forms and patterns. The density of the built-up 

activities may be different at a different location as a function of desirability and suitability 

of location in term of quality of public services available, availability of good infrastructure, 

neighborhood, the vibrancy of socio-economic & cultural characteristics, connectivity with 

other areas and other important factors.  

In many cities in India and worldwide, it has been seen that few localities were 

planned & developed for specific land use and density, however, in due course of time low 

built-up density areas are converted into high then to very high dense built-up areas because 

of increased demand of that area on account of change in desirability of that locality in term 

of the factors mentioned above. Different public & infrastructure facilities like water 

supply, sewerage system and space for parking & recreational activities which were 

designed to support a particular population and built-up densities become inadequate 

leading to a variety of problems. Such conditions may lead to an increase in pollution, 

traffic congestion, low level of public services and many climate implications like urban 

heat islands (UHI). Upgrade of facilities may further require huge funds and lead to lots of 

landscape disturbances, conflicts, and problems (Mills and Tan 1980; Cohen 2004; 

Kantakumar et al., 2011).  

Increase in built-up densities in different parts of cities is one of the serious issues 

in developing countries like India, China, Nepal, Sri Lanka etc.as it overpowers the meager 

natural resources & public facilities and leads to unsustainable situations. Such a problem 

can be avoided by considering land suitability/desirability and resulting built-up densities 

in due course of time into land use planning decisions. Moreover, land use planning, 

planning & provisioning of public services, budget estimation, and estimation of natural 

resources requirements like water, ascertaining land use related adaptation measures to deal 

with the increase in temperature or UHI on account of climate change etc. are also function 

of population and built-up densities. 

Therefore, estimation of built-up density/urban intensity for upcoming years, in 

advance, as a function of land suitability/ desirability which may be obtained in term of 
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different urbanization drivers, is very necessary and may help planners, and land use policy 

decision makers in making optimum and sustainable land use policy decisions while 

making appropriate provisions for the services as per the probable increase in built-up or 

population densities. Thus, it is important to develop such a tool/technique for the 

estimation and prediction of built-up densities or urban intensity for sustainable land use 

planning and development of smart cities. LULC change and urban growth modelling may 

help in dealing with such problems. Various LULC change and urban growth models have 

been developed which simulate LULC change processes or urban growth, primarily in 

terms of land use of a particular place or cell and how it changes over time. Models are not 

available or have not been reported which are capable of simulating the built-up density or 

urban intensity or density including vertical development. The CA-based SLEUTH model 

is widely known and popular model for LULC change and urban growth modeling. 

However, in its present form, it is not able to simulate urban/built-up density (Dovey and 

Pafka 2014). 

Therefore, an effort has been made in the present research to improve the capability 

of the SLEUTH model to estimate and simulate the built-up density as a function of a few 

selected geo-spatial urbanization drivers. A new version of SLEUTH i.e., SLEUTH-

Density has been developed, tested and demonstrated in its application for simulating the 

urban growth and built-up-density for a fast developing city in India i.e., Ajmer. 

Development of SLEUTH-Density, which includes the development of a density algorithm, 

writing the appropriate programming code and integration with the existing SLEUTH code, 

testing of algorithms and code is discussed in this Chapter in subsequent sections. Further, 

demonstration of the application of SLEUTH-Density is also discussed.  

6.2 Understanding Built-up Density 

Built-up density is one of the serious issues and challenges in developing countries where 

urbanization is taking place rapidly (Mills and Tan 1980; Cohen 2004; Kantakumar et al., 

2011). In those urban centers which experienced huge demand for development and wish 

to further grow or develop, vertical growth or increase in built-up density/ urban intensity 

are the only option with limited land availability. Also, the built-up density can relate with 

the population or household of the respective areas. How much the area is densely 

urbanized is also proportional to the population i.e. population density, In addition, built-

up development on a unit area i.e. urban intensity can also be a built-up density (Dovey and 

Pafka 2014). In more general terms, further development of a location/ region due to its 
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higher suitability may lead to increased built-up activities within available land either 

horizontally or vertically can be called built-up density. Further development may be in 

terms of urban intensity or density or vertical growth, all commutatively can be defined as 

built-up density. 

Cellular automata is a cell-based structure on which a few rules are implemented to 

simulate the transition of cells from one land use to another to simulate the LULC change 

and urban growth (White and Engelen 1997; Batty 2007). Since urbanization is a 

probabilistic phenomenon, thus, randomization is involved in the selection of non-urban 

pixels for transition into urban pixels based on some growth rules. However, in this random 

process, a pixel can be selected for urbanization multiple times due to its higher suitability 

for development in terms of better public services, infrastructure facilities, neighborhood 

etc. The number of times a pixel/ cell is selected for urbanization out of the total number of 

attempts made for urbanization for all the pixels/ cells in CA-based LULC change and 

urban growth simulation can be related to or called built-up density in relative terms. So, 

the idea is to calculate the no. of attempts in which a cell has been selected for urbanization 

out of the total attempts made for urbanization may give a relative idea of desirability or 

suitability of that particular cell or location which in turn can be related to the possible 

built-up density at that location.  

6.2.1 Defining urban or built-up density 

Urban/built-up density has been defined in many ways by researchers belonging to different 

disciplines or specializations (Godefroid and Koedam 2007; Dovey and Pafka 2014). In 

physics, density can be defined as mass per unit volume. As applied to urban studies, built-

up density can be understood as a certain quantity of built-up activity in term of land use 

per unit land area (Mills, 1970; Harrison and Kain, 1974). The built-up quantity can be 

anything related to urbanization like dwellings, building volume or floor area, impervious 

areas of any form as a part of urbanization. In architecture and planning, FAR (floor area 

ratio) which is the ratio between total floor area and site area is commonly used (Pan et al., 

2008) as the measure of built-up density or urban intensity. In planning and social sciences, 

dwelling density i.e. residential unity per hectare is used for built-up density or urban 

intensity. These densities may be either net or gross. The density calculated at a 

development site is called net density while density calculated at a wider scale 

incorporating public space is termed as gross density (Yu et al., 2010). The two other terms 

related to density are internal and external density which depends on persons per room or 
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floor area and neighborhood, respectively. These density concepts are quantifiable and 

referred to as measured density which is different from perceived density mainly used in 

perception based environmental studies. A number of floors of a building may also be 

referred to as built-up or urban density which is synonymous to vertical growth (Li et al., 

2014; Perini and Magliocco, 2014).  

Thus, quantification of the probability of a land piece being converted into urban is 

a function of land suitability is termed as urban or built-up density (Palme and Ramírez, 

2013). In the present study, estimation of built-up density cumulatively is gives the 

prospectus or probability of a particular area being of higher developmental potential which 

may be in terms of more people residing or more built-up or even possible vertical growth. 

So far, numerous significant research studies has been made in the area of LULC change 

and urban growth modelling where land use change of one particular location was targeted. 

However, the estimation of urban density/ intensity/ vertical urban growth is still lacking 

in urban growth modelling (Salvati et al., 2013; Li et al., 2014).  

6.2.2 Approaches and methods to estimate urban intensity or built-up density 

Estimation of built-up density is commonly done by the methods of built-up extraction 

(land coverage) from remote sensing data which involves major concern of the accuracy of 

the classification method used (Han-qiu, 2005; Xu, 2007, 2008). The built-up extraction is 

possibly a very challenging task since numerous urban structures may exhibit similar 

spectral and textural characteristics like roads, built-up etc. In addition, the viewing angle 

of the remote sensor is often incapable of capturing the real built-up footprints (Zhang et 

al., 2002). Generally, most of the built-up areas are best captured in visible bands and the 

vegetation is responsive in NIR (Near Infrared) bands. Moreover, multi-spectral bands and 

spectral differences have much potential to identify built-up and non-built-up features 

which can be utilized in built-up density estimation (Sudhira et al., 2012).  

In numerous studies, remote sensing data has been actively utilized for built-up 

density estimation. A remote sensing based technology i.e. LiDAR (Light detection and 

ranging) is capable of providing surface elevation estimation accurately which can produce 

accurate building footprints helpful in precisely calculating built-up density. However, it 

incurs the extraordinary cost of data collection and processing (Rottensteiner and Briese, 

2002, 2003; Hu et al., 2004; Vu et al., 2009). Another remote sensing type of data obtained 

from synthetic aperture radar may also be used to calculate built-up density by taking 

textural and polarization information into consideration (Quartulli and Datcu, 2004). 
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However, the scattering phenomenon in urbanization may reduce the accuracy of SAR for 

built-up density estimation. By the advancement in remote sensing technology and 

availability of VHR (optical very high resolution) images providing rich geospatial data 

and also has opened the various possibilities of accurate built-up density estimation. Thus 

far, most of the previous research has emphasized built-up area extraction and built-up 

detection without quantitative detailing of built-up density information (Franceschetti et 

al., 2007).   

Mathematical morphology related to set theory is helpful in dealing with numerous 

remote sensing problems of land use classification and segmentation. Since built-ups areas 

are bright structures which cast shadows and produce high local contrast, geographical and 

structural characteristics of built-ups are easily captured as they are morphological features 

(Weidner and Förstner, 1995; Sohn and Dowman, 2007). The differential morphological 

profiles are used to establish the co-occurrence relationship between built-up areas and their 

shadows as they are capable of highlighting the dark and bright built-up features. Textural 

information of geographical features is also helpful in identifying built-ups and so for built-

up density estimation. The tonal variation signifies the relative built-up density and an 

important technique of image processing and their interpretation (Chao et al., 2016). GIS-

based cellular automata models were used to explore the vertical growth by taking into 

account a number of important urbanization drivers including accessibility, population 

density, and building density & height (Lin et al., 2014). Using regression analysis, 

descriptive statistics and a PCA (Principal Component Analysis) method, the change in 

vertical profiles of the building was observed by different researchers (Salvati et al., 2013). 

In another study, the Floor Area Ratio (FAR) and Building Coverage Ratio (BCR) were 

extracted from satellite images of high resolution to have an idea about built-up intensity 

(Pan et al., 2008).  

In the present study, we have attempted to develop an algorithm for built-up or 

urban density estimation by using geospatial technologies and the cellular automata based 

SLEUTH model. Therefore, an effort has been made to develop a new version of SLEUTH, 

i.e., SLEUTH-Density which is capable of simulating the urban growth and urban density 

or built-up density. The model algorithm was developed, tested and its programming code 

was integrated with the code of the original SLEUTH. It was discussed earlier that visible 

and near infra-red bands have the capability to capture the built-up signatures well and can 

be used to identify the built-up area or built-up density relatively, therefore, different 

spectral difference based metrics have been utilized to validate the simulated built-up 
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density/ urban intensity using newly developed SLEUTH-Density (Zha et al., 2003; Xu, 

2008). Another method which shows a strong relationship between built-up intensity is the 

LST (Land Surface Temperature), LST is proportional to the built-up density or impervious 

hard surface (Morabito et al., 2016). Therefore, LST has been compared with the urban 

density or built-up density to further validate the model results.  

6.3 Methodology 

The overall methodology for the development of SLEUTH-Density includes the 

development of method/ logic, programming implementation, integration of program with 

the SLEUTH model, program/ code testing, demonstration of SLEUTH-Density for the 

study area and finally validation of obtained simulated maps of built-up density with the 

traditional approaches of density estimation. Each step of the methodology is discussed in 

detail in subsequent sections and presented in Figure 6.1. 

6.3.1 Development of algorithm 

The SLEUTH program has been modified to develop SLEUTH-Density model which is an 

improvised version of SLEUTH model. The basic structure of the SLEUTH model has been 

discussed in detail in Chapter 4. 

6.3.1.1 Workflow of SLEUTH-Density 

The overall methodology adopted for the development of SLEUTH-Density and estimation 

of built-up density has been presented in Figure 6.1. The built-up density algorithm has 

been developed and SLEUTH code was modified to integrate the built-up density 

estimation program into the SLEUTH model (Figure 6.1). 

The growth rules are implemented in the SLEUTH model in a sequential manner 

and named as phase 1-3 (includes two growth rules itself), phase 4 and phase 5 as discussed 

in Chapter 4 in detail. The output of one phase is utilized into the second phase and 

similarly, it goes on executing further phases to generate simulated urban growth and built-

up density using historical urban area in different years as input or seed. The working of 

growth rules and a complete structure of SLEUTH has been discussed in detail in Chapter 

4. Following growth, rules are implemented in SLEUTH-Density. 

▪ Phase 1 - 3 growth (Spontaneous and New Spreading Centre Growth) 

▪ Phase 4 growth (Edge Growth) 

▪ Phase 5 growth (Road Influenced Growth) 
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▪ Self-modification Rules 

Here, z_ptr and D_ptr are the parameters of an urban density estimation function used for 

storing urban growth information and for built-up density related information respectively 

(Figure 6.1). Functioning of the SLEUTH model along with execution of different growth 

rules, initiation of the model, the setting of parameters in scenario file and details about 

different program function have been explained in detail in section 4.2.4 in Chapter 4. 

6.3.1.2 Programming implementation  

A number of successful urbanization attempts for a location/ pixel out of the total number 

of attempts as a function of higher suitability/desirability or demand can be referred to as 

built-up/urban density. Development in the form of either urban intensity or density or 

vertical growth commutatively has been referred to as built-up/urban density. 

Setup workspace delta as growth array and initialize it as ‘0’ for this time period 

util_init (delta, 0); util_init (delta_density, 0); 

Get slope rates spr_get_slp_weights ( ); 

PHASE 1-3 growth spontaneous neighborhood growth and spreading center growth 

spr_phase1-3 ( ); 

PHASE 4 growth Organic growth spr_phase4 ( ); 

PHASE 5 road influenced growth spr_phase5 ( ); 

Place the new growth into array; z_ptr [i] = delta [i]; D_ptr [i] = delta_density [i]; 

Calculate statistics number growth pixels, pop etc. 

Urban / Built-up density 

Figure 6.1: Methodology for built-up density estimation module 
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The number of times a pixel/ cell is selected for urbanization out of the total number of 

attempts made for urbanization has been defined as built-up density in relative terms. So, 

the suitable logic/algorithm has been developed based on the hypothesis i.e., a number of 

attempts found suitable for urbanization of each pixel out of total number of attempt in all 

Monte Carlo iterations will be the possible built-up density. A pixel selected number of 

times for possible urbanization randomly and further checked for its suitability, indicating 

the potential of that pixel/ location being in higher demand for possible urbanization, means 

more no. of people are interested in that place which can be represented in term of the 

probability of development or urbanization or urban growth. The probability of higher 

chances of development of an area or a pixel for the development is the number of times a 

pixel is randomly selected for possible urbanization out of a total number of Monte Carlo 

iterations. So this probability can be considered as a relative measure of built-up density.  

The main module of SLEUTH-Density is composed of sub-modules of different 

functionality and are essential for the integration and execution of the built-up density 

module. The model utilizes processing grids (p grids) to process the simulation runs and 

working grids (w grids) are used as a memory buffer to store intermediate stage outcomes. 

The number of p grids and w grids are utilized as per the requirement of the application and 

is initialized with “0”. After initialization of p grid and w grid, a driver module is invoked 

by the system to perform a number of simulations runs i.e. MC runs identified by the system 

by calling drv_monte_carlo (function). The growth rules are performed for the decided 

number of MC runs for a number of desired years. For individual MC runs all the growth 

rules are performed in a sequential manner as explained in Chapter 4. The two p grids were 

used to storing and processing of urban growth and built-up density named as z_ptr and 

D_ptr respectively. Inside MC loop, z_ptr and D_ptr are initialized with “0” as shown in 

Figure 6.2.       

Main function () 

Initialization of all p grids (processing grids) w grids (working grids) memory maps and 

input grids. 

Then calling drv_drive function 

Call drv_drive function () 

{ 

Start Monte Carlo iterations by calling drv_monte_carlo function 

drv_monte_carlo (z_cumulate_ptr, sim_landuse_ptr) 
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{ 

Inside this 

Call z p grid and D p grid in z_ptr and D_ptr p grid respectively; 

z_ptr = pgrid_GetZptr (); 

D_ptr= pgrid_GetDptr (); 

Now, start Monte Carlo iteration loop; 

For (imc=0; imc< scen_Getmontecarlo (); imc++) 

{ 

Reset the coefficient values; 

Run Simulation; 

Call grw_grow function; 

grw_grow (z_ptr, land1_ptr, D_ptr) 

{ 

Inside this 

Initialize the p grids with ‘0’; 

                              Z_ptr                                           D_ptr 

                                                                          

 

 

   

Figure 6.2: Initialization of Z_ptr and D_ptr with “0” 

util_init_grid (z_ptr, 0); 

util_init_grid (D_ptr, 0);    

After initializing grids with ‘0’; 

Now, call spr_spread function for applying growth rules in five phases which will run in 

a sequence as, phase 1n3, phase 4 and phase 5. These growths will be assigned with 

respective numbers as given below; 

PHASE 1G - 4 

PHASE 2G - 5    

PHASE 3G - 6    

PHASE 4G - 7    

PHASE 5G - 8   

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
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spr_spread (&average_slope, &num_grow_pix, &sng, &sdc, &og, &rt, &pop, z_ptr, 

D_ptr); 

{ 

Inside this 

Setup workspace; 

delta = workspace1; 

delta_density = workspace2; 

urban_seed_layer = igrid_GetUrbanGridPtr (__FILE__, func, __LINE__, 0); 

urban_seed_test = urban_seed_layer; 

urban_seed_layer is the base urban layer  and suppose, urban seed layer is as in Figure 6.3.  

Here, ‘1’ is showing urban pixel and ‘0’ is showing non-urban pixel. 

For running the spread module two working grids are taken and named as delta and delta 

density for storing temporary working files of urban growth and urban density module 

respectively. Initially, it has been set to “0” as given in Figure 6.4. 

                                                      urban_seed_layer 

 

 

 

 

 

init_grid (delta, 0); 

init_grid (delta_density, 0); 

                            delta                                                        delta_density 

 

 

 

 

Figure 6.4: Working Grids of delta and delta_density 

Now, initialize delta_density grid with seed urban pixels by calling util_condition_gif 

function as it is urbanized once in the base year so, it would be initialized in delta_density 

1 0 1 

0 1 0 

0 1 0 

Figure 6.3: Example of the urban seed layer 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
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grid also util_condition_gif (total_pixels, urban_seed_test, GT, 0, delta_density, 1) (Figure 

6.5); 

 delta_density 

 

 

 

 

Now, apply phase1n3 growth rules by calling spr_phase 1n3 (); 

spr_phase 1n3 (diffusion_coefficient, breed_coefficient, Z_ptr, D_ptr, delta, 

delta_density, slp, excld, swght, sng, sdc); 

{                                                                                                                 Get current diffusion 

value (calculation of diffusive value has been explained further)                                                                                              

For (k=0; k<1+diffusion_value; k++) 

{ 

Randomly selects a pixel (i, j) as shown in Figure 6.6; 

delta 

 

 

 

 

Now, it tries to urbanize a pixel (i, j) by calling spr_urbanize function for PHASE 1G 

growth 

spr_urbanize (i, j, z, D_ptr, delta, delta_density, slp, excld, swght, PHASE 1G, sng) 

…eq (1) 

{ 

Inside this it checks a set of conditions for the randomly selected pixel (i, j) 

if (z[OFFSET ((row), (col))] == 0) 

  { 

    if (delta[OFFSET ((row), (col))] == 0) 

1 0 1 

0 1 0 

0 1 0 

Figure 6.5: Initialized seed urban in delta_density 

0 (i, j) 0 

0 0 0 

0 0 0 

Figure 6.6: Randomly selected pixel to get urbanized in delta grid 
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    { 

      if (RANDOM_FLOAT > swght[slp[OFFSET ((row), (col))]]) 

      { 

        if (excld[OFFSET ((row), (col))] < RANDOM_INT (100)) 

        { 

          delta [OFFSET (row, col)] = pixel_value;                               

          (*stat)++; 

At this stage, if all conditions are true then delta grid becomes (Figure 6.7), 

delta 

 

 

 

 

 

if (delta[OFFSET (row, col)] > 0) 

            { 

                  delta_density [OFFSET (row, col)] ++;  

            } /* end of delta [OFFSET (row, col)] */ 

And at this stage delta_density grid becomes (Figure 6.8); 

delta_density 

 

 

 

 

stats_IncrementUrbanSuccess (); 

        } /* end of excld [OFFSET ((row), (col))] */ 

        else 

        { 

          stats_IncrementExcludedFailure (); 

        }  

      } /* end of RANDOM_FLOAT */ 

0 4 0 

0 0 0 

0 0 0 

Figure 6.7: Decision of randomly selected pixel to get urbanized in delta grid 

1 1 1 

0 1 0 

0 1 0 

Figure 6.8: After making a decision of pixel to get urbanized in delta_density grid 
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      else 

      { 

        stats_IncrementSlopeFailure (); 

      }  

    } /*end of delta [OFFSET ((row), (col))] == 0 */ 

    else 

    { 

        stats_IncrementDeltaFailure (); 

        delta_density [OFFSET (row, col)] ++; 

     } 

  } /*end of z [OFFSET ((row), (col))] == 0 */ 

  else 

  { 

        stats_IncrementZFailure (); 

       delta_density [OFFSET (row, col)] ++; 

   }  

  }/* end of spr_urbanize function */ 

if (RANDOM_INT (101) < (int) breed_coefficient) 

{ 

max_tries =8; 

for (tries=0 ; tries < max_tries; tries++) 

{ 

Urbanized = FALSE; 

Urbanized = spr_urbanize_neighbor (); 

Inside spr_urbanize_neighbour function, it selects a neighboring pixel randomly by 

calling spr_get_neighbor () function then it tries to urbanize that neighboring pixel with 

PHASE 3G growth by calling spr_urbanize () function 

Suppose, in above step it randomly selected pixel (2) to get urbanized by calling the 

spr_urbanize function as discussed above. But this pixel is already urbanized in the delta 

grid so according to the conditions specified above, only a non-urban pixel can get 

urbanized. So, it fails the if (delta [OFFSET (row, col)] > 0) test and automatically goes to 

execute else statement which is; 

else 
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    { 

        stats_IncrementDeltaFailure (); 

        delta_density [OFFSET (row, col)] ++; 

     } 

This else statement defines that those pixels which are already urban can be counted for 

built-up density and register themselves in delta_density grid. Here, the idea is if an already 

urbanized pixel is being attempted for urbanization again it would be suitable for further 

development/ urbanization. However, it cannot be urbanized in delta grid. So, that pixel (2) 

increases its counter in delta_density grid, however delta grid remains unchanged (Figure 

6.9). 

                             delta                                                              delta_density 

 

 

 

 

Figure 6.9: After making a decision of a pixel to get urbanized in delta and delta_density 

grid 

Now, in the second attempt of max_tries loop suppose, it selected pixel (1) in delta grid to 

get urbanized by calling spr_urbanize (eq 1) function and it passes all the conditions 

specified in the spr_urbanize function. So, it becomes urban (by PHASE 3G i.e. ‘6’) now 

in delta grid and in delta_density counter increases by ‘1’ and both grids become (Figure 

6.10); 

                 delta                                                                delta_density 

 

 

 

 

Figure 6.10: making decision of pixel to get urbanized in delta and delta_density grid 

} /* end of max_tries loop */ 

} /* end of for loop for diffusion value */ 

0 

(1)
 

4 

(2) 
0 

0 0 0 

0 0 0 

1 

(1) 

2 

(2) 
1 

0 1 0 

0 1 0 

2 

(1) 

2 

(2) 
1 

0 1 0 

0 1 0 

6 

(1)
 

4 

(2) 
0 

0 0 0 

0 0 0 
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}/* end of spr_phase1n3 function */ 

 Suppose, at the end of spr_phase 1n3 function applying the same rules throughout the 

whole process we get the following delta and delta_density grids (Figure 6.11); 

                                   delta                                                               delta_density                                                           

 

 

 

Figure 6.11: delta and delta_density grid after completing phase1n3 growth rule 

Now, apply phase4 growth rules by calling spr_phase 4 (); 

spr_phase4 (spread_coefficient, z, D_ptr, excld, delta, delta_density, slp, swght, og);  

{ 

Inside this  

Loop over the interior pixels looking for urban from which to perform organic growth; 

For (row=1; row < nrows; rows++) 

{ 

For (col=1; col< ncols; col++) 

{ 

Sequentially selects pixels and checks if it is an urban pixel and does it pass the random 

spread test  

If ((z [OFFSET (row, col)] > 0 && (RANDOM_INT (101) < spread_coefficient)) 

{ 

Now, examine the eight cell neighbors spread at random if at least two are urban pixel must 

be urban (3) 

urb_count = util_count_neighbors (z, row, col, GT, 0); 

if (urb_count >= 2) && (urb_count < 8) 

{ 

Randomly selects a pixel and try to urbanize that pixel by calling spr_urbanize ( ) with 

PHASE 4G 

} /* end of urb_count statement */ 

} /* end of z [OFFSET (row, col)] > 0 && (RANDOM_INT (101) < spread_coefficient */ 

} /*end of for loop for col */ 

} /*end of for loop for row */ 

6 4 0 

0 6 0 

0 0 0 

3 2 1 

0 2 0 

0 1 0 
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} /* end of spr_phase 4 growth */     

Suppose, at the end of spr_phase 4 function applying same rules throughout the whole 

process we get the following delta and delta_density grids (Figure 6.12); 

                                   delta                                                            delta_density 

 

 

 

Figure 6.12: delta and delta_density grid after completing phase4 growth rule 

Now, apply phase5 growth rules by calling spr_phase 5 (); 

spr_phase5 (road_gravity, diffusion_coefficient, breed_coefficient, z, D_ptr, excld, 

delta, delta_density, slp, swght, rt, scratch_gif3);  

{ 

Inside this 

Now, determine the total growth count and save the row and col location of the new growth 

pixels; 

If there is new growth, begin processing road trips; 

If (growth_count > 0) 

{ 

For (iii=0; iii < breed_coefficient; iii++) 

{ 

Determine the maximum search index; 

Randomly select a growth pixel to start search for road; 

Search for road about this growth point; 

If there is a road found then walk along it; 

If the end of road pixel found,  

{ 

Try to urbanize the neighboring pixel of road with PHASE 5G growth; 

If urbanized; 

{ 

Max_tries = 3; 

For (tries=0; tries < max_tries; tries++) 

{ 

6 4 0 

7 6 0 

7 0 0 

3 2 1 

1 3 0 

1 1 0 
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Urbanized = spr_urbanize_neighbor (with PHASE 5G growth); 

} /* end of max_tries loop */ 

} /* end of urbanized statement */ 

} /* end of end road pixel found */ 

} /* end of road pixel found */ 

} /* end of breed_coefficient loop */ 

} /* end of growth_count statement */ 

} /* end of spr_phase 5 growth */ 

Suppose, at the end of spr_phase 5 function applying same rules throughout the whole 

process we get following delta and delta_density grids (Figure 6.13); 

 

                                   delta                                                             delta_density 

 

 

 

 

Figure 6.13: delta and delta_density grid after completing phase5 growth rule 

 

Now, place the growth (delta) array into the current array (z) (Figure 6.14); 

For (i=0; i< total_pixels; i++) 

{ 

If ((z[i] ==0) && (delta[i] > 0)) 

{ 

z[i] = delta[i]; 

                           z                                                                    delta 

 

 

 

 

3 2 1 

1 3 1 

1 1 0 

6 4 0 

7 6 8 

7 0 0 

6 4 0 

7 6 8 

7 0 0 

0 0 0 

0 0 0 

0 0 0 
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                                                                 z 

 

 

 

 

Figure 6.14: z Grid after completing all the phases of growth rules 

} /* end of if statement */ 

if (delta_density[i] > 0) 

{ 

D_ptr[i] = delta_density[i]; 

Now, place the delta_density array into current density (D_ptr) array (Figure 6.15); 

} /* end of if statement */ 

} /* end of for loop */ 

  

                                D_ptr                                                      delta_density 

 

 

 

 

                                                                 D_ptr 

 

 

 

Figure 6.15: D_ptr grid after completing all the phases of growth rules 

} /* end of spr_spread function */ 

Now, perform grw_non_landuse ( ) function; 

grw_non_landuse (z_ptr); 

{ 

Inside this 

6 4 0 

7 6 8 

7 0 0 

3 2 1 

1 3 1 

1 1 0 

3 2 1 

1 3 1 

1 1 0 

3 2 1 

1 3 1 

1 1 0 
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cumulate_monte_carlo = workspace1; 

Now, check for first Monte Carlo iteration; 

if (proc_GetCurrentMonteCarlo ( ) == 0) 

{ 

Zero out the accumulation grid (Figure 6.16); 

util_init_grid (cumulate_monte_carlo, 0); 

 

cumulate_monte_carlo 

 

 

 

 

Figure 6.16: Initialization of cumulate_monte_carlo grid with “0” 

} /* end of (proc_GetCurrentMonteCarlo () == 0) statement */ 

else 

{ 

Read in the accumulation grid; 

Sprintf (gif_filename, "%scumulate_monte_carlo.year_%u", scen_GetOutputDir (), 

proc_GetCurrentYear ()); 

inp_slurp (gif_filename, cumulate_monte_carlo, memGetBytesPerGridRound ()); 

} /* end of else statement */ 

Now, accumulate z over Monte Carlos; 

for (i = 0; i < mem_GetTotalPixels (); i++) 

    { 

      if (z_ptr[i] > 0) 

      { 

        cumulate_monte_carlo[i] ++; 

      } /* end of if statement */ 

    } /* end of for loop */ 

After completing first Monte Carlo iteration cumulate_monte_carlo becomes (Figure 6.17); 

cumulate_monte_carlo 

0 0 0 

0 0 0 

0 0 0 
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Figure 6.17: After completing first Monte Carlo iteration cumulate_monte_carlo grid 

When Monte Carlo iterations get completed; 

if (proc_GetCurrentMonteCarlo () == num_monte_carlo - 1) 

{ 

Suppose, after completing total Monte Carlo (Let 5) iterations cumulate_monte_carlo grid 

is as (Figure 6.18); 

cumulate_monte_carlo 

 

 

 

 

Figure 6.18: After completing all Monte Carlo iterations cumulate_monte_carlo grid 

Print urban image using util_WriteZProbGrid (); 

util_WriteZProbGrid (cumulate_monte_carlo, name); 

if (proc_GetCurrentMonteCarlo () != 0) 

      { 

        Sprintf (command, "rm %s", gif_filename); 

        System (command); 

      } /* end of if statement */ 

} /* end of proc_GetCurrentMonteCarlo () == num_monte_carlo – 1 statement */ 

Else 

{ 

Dump accumulation grid to disk; 

Sprintf (gif_filename, "%scumulate_monte_carlo.year_%u", scen_GetOutputDir (), 

proc_GetCurrentYear ()); 

out_dump (gif_filename, cumulate_monte_carlo, memGetBytesPerGridRound ()); 

} /* end of else statement */ 

1 1 0 

1 1 1 

1 0 0 

5 2 1 

2 4 3 

1 0 0 



230 

 

} /* end of grw_non_landuse */ 

Now, perform grw_density () function; 

grw_density (D_ptr); 

{ 

Inside this 

cumulate_density_monte_carlo = workspace3; 

Now, check for first Monte Carlo iteration; 

if (proc_GetCurrentMonteCarlo ( ) == 0) 

{ 

Zero out the accumulation grid (Figure 6.19); 

util_init_grid (cumulate_density_monte_carlo, 0); 

cumulate_density_monte_carlo 

 

 

 

Figure 6.19: Initialization of cumulate_density_monte_carlo grid with “0” 

} /* end of (proc_GetCurrentMonteCarlo () == 0) statement */ 

else 

{ 

Read in the accumulation grid; 

Sprintf (gif_filename, "% cumulate_density_monte_carlo.year_%u", scen_GetOutputDir 

(), proc_GetCurrentYear ()); 

inp_slurp (gif_filename, cumulate_density_monte_carlo, memGetBytesPerGridRound ()); 

} /* end of else statement */ 

Now, accumulate D_ptr over Monte Carlos (Figure 6.20); 

for (i = 0; i < mem_GetTotalPixels (); i++) 

    { 

      cumulate_density_monte_carlo[i] = D_ptr[i] + cumulate_density_monte_carlo[i]; 

} /* end of if statement */ 

    } /* end of for loop */ 

Same as, when Monte Carlo iterations get completed; 

if (proc_GetCurrentMonteCarlo () == num_monte_carlo - 1) 

0 0 0 

0 0 0 

0 0 0 
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{ 

Suppose, after completing total Monte Carlo (Let 5) iterations 

cumulate_density_monte_carlo grid is as (Figure 6.21); 

Print density image using util_WriteDProbGrid (); 

util_WriteDProbGrid (cumulate_density_monte_carlo, name); 

                           D_ptr                                     cumulate_density_monte_carlo 

 

 

 

 

 

 

cumulate_density_monte_carlo 

 

 

 

Figure 6.20: cumulate_density_monte_carlo Grid 

    

 cumulate_density_monte_carlo 

 

 

 

 

Figure 6.21: Final cumulate_density_monte_carlo grid 

if (proc_GetCurrentMonteCarlo () != 0) 

      { 

        Sprintf (command, "rm %s", gif_filename); 

0 0 0 

0 0 0 

0 0 0 

3 2 1 

1 3 1 

1 1 0 

3 2 1 

1 3 1 

1 1 0 

5 6 4 

7 3 1 

4 1 0 
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        System (command); 

      } /* end of if statement */ 

} /* end of proc_GetCurrentMonteCarlo () == num_monte_carlo – 1 statement */ 

Else 

{ 

Dump accumulation grid to disk; 

Sprintf (gif_filename, "%s cumulate_density_monte_carlo.year_%u", scen_GetOutputDir 

(), proc_GetCurrentYear ()); 

out_dump (gif_filename, cumulate_density_monte_carlo, memGetBytesPerGridRound 

()); 

} /* end of else statement */ 

} /* end of grw_density function */ 

}/ * end of grw_grow function */ 

}/* end of for loop for Monte Carlo iterations */ 

} /* end of drv_monte_carlo function */ 

}/* end of drv_drive function */ 

6.3.1.3 Built-up density algorithm/ program testing 

Model algorithm/ program testing is equally important in model development to verify or 

validate the outcomes of the model for which it is developed. The algorithm and 

programing code was tested to verify whether it is giving the outcomes for which it is 

developed. In the present study, to test the algorithm programming code a small size demo 

input dataset of 16*11 grid size was prepared with input layers such as urban (for year 

1997, 2000, 2004, 2008, 2013 and 2015), transportation (for year 1997, 2000, 2004, 2008, 

2013 and 2015), exclusion, slope and hillshade at 5 meter spatial resolution (Figure 6.22). 

The demo input dataset has been used for the parameterization of the SLEUTH-Density. It 

passed through the four growth rules driven by five growth coefficients (as discussed  in 

Chapter 4), which sequentially executes in a loop for a total number of Monte Carlo 

iterations and at each stage the simulated outcomes were printed to check the progression 

of the density estimation algorithm. This process gives an insight about the internal working 

of the density estimation method. In addition, to validate the method, the cumulate of all 

the intermediate grids generated, must be equal to the single output grid which gives urban 

growth for the respective year.  
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For the demo input dataset, randomly selected best-fit growth coefficient values suitable 

for the growth prediction have been adopted for testing the algorithm. Best fit values for 

diffusion, breed, spread, slope resistance and road gravity dummy values used are 15, 24, 

20, 60 and 70, respectively.  

The decision of a pixel being urbanized passes through a set of conditions/rules at 

all five stages in SLEUTH-Density program similar to the original SLEUTH model. Five 

empty grids have been taken for storing each decision at every single stage of growth rules 

and named as one, two, three, four and five. In addition, for intermediate attempts of 

urbanization in the individual grid, it is numbered starting from 0 as a suffix (e.g. One0, 

One1, Two0, Two1 and so on). 

First, the model passes through phase 1-3 rules, which itself includes diffusive 

growth and new spreading center growth, therefore, grid One and Two will be produced to 

store intermediate stages of density estimation. The diffusive value was first calculated 

using equation 6.1 to perform diffusive growth.  

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 = ((diffusion coefficient × 0.005) × √𝑟𝑜𝑤𝑠2 + 𝑐𝑜𝑙𝑠2)...… 6.1 

Here, the best-fit diffusion coefficient, and number of rows and columns are 15, 11 and 16, 

respectively. So, a calculated diffusion value would be 1.45. Diffusive growth can take 

place till the diffusion value does not reach this value as; 

for (k = 0; k < 1 + (int) diffusion_value; k++) 

Figure 6.22: Demo input dataset used for model cost testing 
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(Here, diffusion value is 1 and the loop will continue up to 2 diffusion value) 

{ 

For the first diffusion value, a random pixel from the grid is attempted to get urbanized.  

} 

If this random pixel is already an urban pixel, it is added to the density grid. The 

number of times the same pixel is attempted to get urbanized, it increments its density 

which shows the probability of that pixel to get urbanized even vertically also due to some 

suitable conditions. In the case of first diffusion value, the attempted pixel was already an 

urban so it incremented to 2 (One0) (Figure 6.23 (a)). Since the attempted pixel was already 

urban pixel so, it will not be evaluated for spreading center growth further and will pass the 

counter to the next diffusion value i.e. 2. Again, it randomly selected the pixel to get 

urbanized and this time also, the selected pixel was already urban so, the density of that 

pixel incremented to 2 (One1). Phase 1-3 will be terminated here, as no new pixel got 

urbanized and the control will pass to phase 4. In phase 4, the whole grid is checked one 

pixel at a time to pass the random spread test for becoming a spreading center. It checks 

whether the first pixel is urban and it passes the random spread test, if this condition is true 

it further checks for the game of life rules i.e. whether it has at least 2 urban neighbors but 

not more than 8. After, positively passing through these phases, in its 8-bit neighborhood 

it randomly attempted a pixel to get urbanized. In a given grid, first two urban pixels are 

not urbanized and it may possibly have not found the suitable pixel to get urbanized in the 

first row of the grid. In the second row, the fourth column of the grid, it found a suitable 

pixel to get further urbanized and this phase 4 program remained to continue till every pixel 

gets checked for random spread test and the game of life rules (Figure 6.23(a)). In between, 

it successfully encountered 11 in total pixels to get urbanized. The Three_0, Three_1 and 

Three_2 grids captured the already urban pixel to get further urbanized one at a time and 

its density incremented to 2. In grid Three_3, a new non-urban pixel got urbanized while, 

in Three_4, an already urbanized pixel got urbanized and the density of that pixel 

incremented to 2. In grid Three_5, that pixel has incremented its density to 3 as well. In 

grid three_6, a new pixel got urbanized, in grid three_7, an already urbanized pixel got 

urbanized and its density incremented to 2. In grid Three_8, a new pixel got urbanized and 

in grid Three_9 and Three_10, the already urbanized pixels incremented its density to 2 by 
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an attempt made for these to get further urbanized. After terminating phase 4, phase 5 is 

evoked in which at two places a pixel is checked to get urbanized. In phase 5 first of all, 

the total number of growth pixels were calculated and if no new growth has been taken 

Figure 6.23(a): Model outcome produced at each stage 
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place in the last phase then phase 5 terminates here. But, currently, the new growth pixels 

were observed in previously performed growth rules as shown in Figure 6.23(b).   

The breed coefficient would be used to calculate the road influenced growth here in 

phase 5. The breed coefficient is 24, so, it will be passing through 25 times to randomly 

attempt a pixel to get urbanized. Using the road gravity value which is calculated by eq 6.2, 

the maximum road search index was determined using eq no. 6.2, 6.3, 6.4, 6.5 and 6.6). 

The road pixel would be searched for this maximum search index. 

𝑟𝑔_𝑣𝑎𝑙𝑢𝑒 = (𝑟𝑔_𝑐𝑜𝑒𝑓𝑓/𝑀𝐴𝑋_𝑅𝑂𝐴𝐷_𝑉𝐴𝐿𝑈𝐸 ) ∗ ((𝑟𝑜𝑤 + 𝑐𝑜𝑙)/16.0)………... (6.2) 

𝑖𝑛𝑡_𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑠𝑝𝑟_𝐺𝑒𝑡𝑅𝑜𝑎𝑑𝐺𝑟𝑎𝑣𝑉𝑎𝑙𝑢𝑒(𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦) … … . … … … … . (6.3) 

max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥 = 4 ∗ (𝑖𝑛𝑡_𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ∗ (1 + 𝑖𝑛𝑡_𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦)) … … (6.4) 

max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥 = 𝑀𝐴𝑋(max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥, 𝑛𝑟𝑜𝑤𝑠) … … … … … … … … . . . (6.5) 

max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥 = 𝑀𝐴𝑋(max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥, 𝑛𝑐𝑜𝑙𝑠) … … … … … … … … . . . (6.6) 

If the road pixel is found then it will check its neighboring pixels to get urbanized. If it 

becomes true, it further checks its surrounding pixels for a maximum three times to 

urbanize. Here, in current case grid Four_0, Four_1, Four_2, Four_3, and Four_4 have 

incremented density to 2 of a pixel, one at a time. Since no growth took place in each of the 

intermediate stages, it will not go to the fifth rule further. In grid Four_5, a new pixel was 

urbanized and the control was transferred to the fifth rule in which surrounding pixels were 

tested to become urbanized for a maximum three times.  

 Grid Five_0 has observed a new urbanized pixel, grid Five_1 

and Five_2 observed an already urbanized pixel one at a time and incremented its density 

to 2. Now, the control is transferred back to rule four. Grid Four_6 has observed an already 

urbanized pixel and incremented its built-up density to 2, however, in grid Four_7 density 

has incremented to 3 (Figure 6.23 b). Further urbanization has been attempted in grid 

Four_0. Similarly, in grid Four_8, Four_9 and Four_10 urban density has been incremented 

but no new growth was taken place. So, it was not checked for rule five further. In grid 

Four_11, a new pixel was urbanized, so its density becomes 1 and the control was 

transferred to rule five. Its neighboring pixels have been tried to urbanize for maximum 

three times to get urbanized. In Grid Five_3, Five_4 and Five_5 urban density have been 

incremented by one as presented in Figure 6.23(b)).  
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Figure 6.23(b): Model outcome produced at each stage  
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6.4 Built-up Density Estimation using SLEUTH-Density 

After successful testing of the developed SLEUTH-Density model, it has been 

parameterized for the input dataset prepared for Ajmer fringe including Pushkar town and 

required model parameters including self-modifying parameters obtained from the rigorous 

sensitivity analysis as discussed in Chapter 5. The model has been calibrated in three 

consecutive phases to refine the growth coefficient values and finally, a set of optimal 

coefficient values has been obtained. The more details of model parameterization can be 

found in Chapter 4.  

6.4.1 Calibration 

For reducing the subjectivity in making choices of the growth coefficients, the Genetic 

Algorithm (GA) method calibration method has been used in the SLEUTH-Density in place 

of the brute force calibration method. The GA calibration populates a chromosome with 

five coefficient combinations i.e. genes. These coefficient combinations are utilized for 

model calibration runs and the optimal combination is selected for mutation while the worst 

performing combination is replaced with randomly selected values. The optimal value of 

the growth coefficient i.e.,  diffusion, breed, spread, slope resistance and road gravity for 

the Ajmer fringe has been found to be as 87, 100, 100, 60 and 44, respectively while their 

values for Pushkar has been found to be 26, 7, 9, 41 and 26, respectively. Growth coefficient 

values for Ajmer fringe has been found to be higher as compared to Pushkar which indicates 

relatively higher urban growth in Ajmer.  

The goodness of fit landscape metrics has been used to judge the performance of 

the model calibration and to obtain the optimum growth coefficients. Compare metric has 

been found to be 0.57 for Ajmer and 0.99 for the Pushkar. The compare and Pop metrics 

refer to the similarity between seed urban area referred to as actual and simulated urban 

area which has been found to be satisfactory for both  Ajmer fringe and Pushkar except the 

value of Compare (i.e. 0.57) in the case of Ajmer fringe. The modeled no. of urban clusters 

regressed against the known no. of urban clusters estimated from seed urban area has been 

found to be 0.96 and 0.69 for Ajmer fringe and Pushkar, respectively. The Edge metric 

which indicates a correlation between modeled and actual no. of urban edges for the control 

years has been found to be 0.97 and 0.88 for Ajmer fringe and Pushkar, respectively. The 

LeeSallee metric indicating the degree of shape (pattern) match between seed urban area 

and modeled urban growth was found to be 0.52 and 0.25 for Ajmer fringe and Pushkar, 

respectively. Landscape metrics obtained from the calibration were found in line with other 
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studies reported (Rafiee et al., 2009; Wu et al., 2009; Akin et al., 2014). The OSM 

composite metric includes the multiplication of compare, population, edges, clusters, slope, 

X-mean, and Y-mean metrics (Dietzel and Clarke, 2007) is found to be 0.08 for Ajmer 

fringe and 0.26 for Pushkar, respectively. Lower OSM value for Ajmer fringe can possibly 

the indicator of heterogeneous urban growth (Clarke, 2017). The landscape metrics 

indicating the goodness of fit measure like LeeSallee, Pop, Edges, Clusters, Mean cluster 

size, Xmean and Radius are found to be better for Ajmer fringe as compared to Pushkar 

which indicates the success of SLEUTH calibration for a larger study area. However, OSM, 

compare, slope and Ymean are found to be a little less in the case of Ajmer fringe (Table 

6.1) indicating more heterogeneous growth. The initial control parameters and goodness of 

fit metrics show that the general growth characteristics of both the study areas are distinct 

as Ajmer fringe dominates the new spreading center and organic/spread growth while 

Pushkar has experienced majorly diffusive or dispersive growth in the controlling years.  

6.4.2 Urban growth prediction  

The developed model i.e., SLEUTH-Density was first implemented to estimate built-up 

density for a smaller town i.e. Pushkar which is also a part of Ajmer fringes. Built-up 

density for Pushkar town has been estimated using 100 Monte Carlo simulations and input 

dataset with 5m spatial resolution. Urban /Built-up density for Ajmer fringe has been 

simulated using input data of 15 m spatial resolution to reduce the computational time 

during model calibration.  After performing rigorous calibration, urban growth and built-

up/ urban density were simulated up to the year 2040 for both the areas. 

The predicted change should be identical to the observed change to judge the 

modelling accuracy. With respect to the difference between spatial and statistical measures 

like an urban area, no. of edges & clusters, radius and mean cluster size estimated from 

simulated growth and from reference urban area including the year 2018, the performance 

of the SLEUTH-Density model has been found to be consistent and satisfactory. Urban 

area for the year 2018 was not used as input data for the model calibration therefore, to 

check how well model is capable of predicting urban growth, predicted urban growth for 

the year 2018 is compared with the actual urban growth in the year 2018 which is obtained 

from the LULC map obtained from classification of satellite image of the year 2018 (Figure 

6.24). The SLEUTH model predicted 3037.45 km2 of the total urban area for Ajmer fringe 

in the year 2018, which is less compared to the observed urban area of 3411.53 km2. The 

number of Edges representing fragmented growth is predicted to be 1872 for the year 2018 
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as compared 1496 Edges obtained from the referenced urban area of the year 2018. The no. 

of urban clusters were found to be 266 in the year 2018 from simulated growth as compared 

to 257 obtained from a referenced urban area. The cluster radius representing infill growth 

has been found to be 311 as compared to 330 obtained from referenced or actual urban year 

in the year 2018. Modeled urban area, edges, clusters, and cluster radius have been found 

to be satisfactory and model performance is consistent.  Cluster size for the year 2018 has 

been predicted as 11 while actually, it is 13 in the year 2018 (Figure 6.24). The reasonable 

error may be due to the misclassification in classified outputs. Thus, the SLEUTH model 

has shown strong and consistent performance.  

The rapid and rampant urbanization in developing countries is posing severe 

stresses on resources and environment which often outpaces the planning processes 

(Pathiranage et al., 2018). The study shows that rapid urban growth is taking place in Ajmer 

along the Jaipur road (NH8), the area near the highway has grown more rapidly through 

the years (Figure 6.25). The area around Ana Sagar Lake has urbanized at a faster rate in 

the past few years as the population density of that area has grown rapidly. The area nearby 

Foy Sagar depicted very high urban growth which may be due to the development of new 

colonies in relatively flat areas. Pushkar bypass Road is showing road influenced growth 

as new development has taken place recently and is likely to further grow in the near future. 

Madar area which is in a North-East direction to Ana Sagar Lake is also showing growth 

in huge amounts as new railway colonies have been developed and is more likely to get 

developed in the future. Beawar Road, which is in south direction is also showing road 

influenced growth. Many educational institutes are developing along highway due to which 

nearby development is also taking place. So, the study area will be developing at a faster 

rate in upcoming years. Nasirabad Road is in the east direction also shows urban growth at 

a faster rate in the past few years. The area around Bisal Sagar has grown rapidly as a huge 

amount of population is shifting to earn their livelihood. Areas nearby Khanpura Pond is 

also likely to get developed at a smaller pace as many industrial activities are taking place 

at this region. The Pushkar region is one of the most important places in Ajmer fringe which 

is depicting higher growth in upcoming years. Pushkar region is a religious and popular 

place, commercialization is being increased and also the urban density is getting higher at 

this place. In upcoming years it will be growing rapidly (Figure 6.25 & 6.26). 
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Table 6.1 Model calibration parameterization 

 

 

 

 

 

 

 

 

  

Best fit 

Coefficient 

Values 

Diff Brd Sprd Slp RG LeeSallee OSM Compare Pop Edges Clusters X_mean Y_mean Rad 

Ajmer 87 100 100 60 44 0.51 0.08 0.57 0.98 0.97 0.93 0.95 0.52 0.98 

Pushkar  26 7 9 41 26 0.25 0.26 0.99 0.89 0.88 0.69 0.95 0.88 0.9 
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6.4.3 Urban density estimation for Ajmer  

In the previous section, the prominent locations which became urbanized rapidly in the 

past few years have been identified. Urban growth analysis is useful to have an idea about 

horizontal urban growth or sprawl but a vertical expansion, urban intensity and built-up 

density at different locations which are essential for land use and urban planning have not 

been simulated through various modelling approaches. The newly developed SLEUTH-

Density is capable in estimating the built-up/urban density of a landscape for the present 

as well as for future. Built-up density has been simulated for Ajmer fringe and results are 

presented in Figure 6.25 & 6.26.  

Built-up density for the year 2018 has been shown in Figure 6.25. It is very exciting 

to see the built-up density results as it is well validated with the traditional built-up density 

retrieval approaches and higher density values are achieved where rapid urban growth has 

been observed in past few years. It surprisingly achieved higher built-up density values at 

edges rather than a central part of Ajmer. The reason is quite certain as we have observed 

urban sprawl approaching outskirts of Ajmer and the central Ajmer has not grown further 

significantly in past few years due to the unavailability of suitable land. So, the outer 

Ajmer has the major possibility of urban development in the future. Built-up density is 

higher at edges, along with major roads, important colonies, and newly centered clusters.  

Built-up density was simulated up to the year 2040 and it was evident that the 

density of a location has been increased over the years. In the year 2018, Ajmer fringe is 

having a maximum of 113 as relative density which has increased to 131 in the year 2040. 

Here, the density value is relatively explaining the probability of having a chance of 

density in the future (Figure 6.25 & 6.26). 

Further, built-up density simulated from the SLEUTH-Density for the year 2017 

has been compared and relationships were established with the urban densities estimated 

from other conventional approaches using reference data of the year 2017. Simulated 

built-up density has also been compared and related with few reflectances in particular 

wave length based indices, spectral indices, built-up indices and land surface phenomenon 

like land surface temperature (LST) to validate the model results indirectly.   Different 

type of indices used to validate the built-up density results has been presented in Figure 

6.27. SLEUTH-Density validation has been discussed in subsequent sections.
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Figure 6.25: Urban growth and density for year 2018 
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Figure 6.26: Urban growth and density for year 2040 
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6.4.4 Validation of simulated built-up density from SLEUTH-Density  

Model result validation is an exercise carried out to determine how well a model simulates 

the inherent characteristics of a real system in means of model integrity, replicability and 

prediction. Built-up density is a complex phenomenon to determine and there are very few 

approaches which can give an idea of built-up density. For validating the built-up density 

results obtained from SLEUTH-Density various methods as presented in Figure 6.27 have 

been utilized and discussed in subsequent sections. Results of the built-up density have 

been validated by comparing the relative built-up density at more than 100 randomly 

generated points with the value of respective indices at those points for the year 2017. 

More than 100 points have been selected using stratified random sampling throughout the 

study area. Further, built-up density values have been recorded from these points and one 

by one compared with the values of different indices estimated from the reference image 

of the year 2017 to judge the quality of model simulation. 

6.4.4.1 Validation of built-up density results using spectral bands 

Remote sensing has the capability to capture reflectance of spatial features in multiple 

wavelength bands. The built-up area appears brighter because of higher reflectance in the 

visible bands while non-built-up area appears darker (Rottensteiner and Briese, 2002, 

2003; Hu et al., 2004; Vu et al., 2009). Therefore, we have considered the band in which 

reflectance from built-up areas is the highest. It is understood that the higher the brightness 

Spectral bands

Blue band

Spectral Indices

n(Green-
Blue)

n(Red-Blue)

n(Red-
Green)

Built-up Indices

NDBI

UI

Land surface 
phenomenon

Land surface 
temperature 

(LST)

Figure 6.27: Built-up density indices used for SLEUTH-Density validation 
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value of the built-up feature will be proportional to the built-up density. It can be seen in 

Figure 6.28, that locations having higher reflectance also have the higher built-up density 

for the year 2017, which indicates that the model is able to capture the built-up density 

satisfactorily.  

6.4.4.2 Validation of built-up density results using spectral indices 

Built-up density results have also been validated in term of different spectral indices which 

can differentiate the built-up and non-built-up areas. Model results of built-up density can 

be correlated with the results of the spectral indices in term of their relative values for the 

year 2017 at different locations like locations with a higher value of built-up density have 

a higher value of spectral indices. Spectral indices are the band ratio images obtained using 

Eq. 6.7 to Eq. 6.9 for the reference year 2017.  A higher value of indices indicates more 

the built-up. The higher the value of indices may indicate higher built-up density for 

different locations (Figure 6.28). 

𝑛(𝐺𝑟𝑒𝑒𝑛 − 𝐵𝑙𝑢𝑒) =
(𝐺𝑟𝑒𝑒𝑛 − 𝐵𝑙𝑢𝑒)

(𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)
… … … … … … … … … … … … … … . . … … . . . (6.7) 

𝑛(𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒) =
(𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒)

(𝑅𝑒𝑑 + 𝐵𝑙𝑢𝑒)
… … … … … … … … … … … … … … … … . . … … … . (6.8) 

𝑛(𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛) =
(𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛)

(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛)
… … … … … … … … … … … … . … … … … … … (6.9) 

It can be seen from Figure 6.30 that the trend of simulated built-up density for the year 

2017 matches quite satisfactorily with the trend of spectral indices estimated from the 

satellite image of the same year. Matching trend indicates locations having higher built-

up density values also have higher built-ups estimated from the indices. 

6.4.4.3 Built-up indices 

Few built-up indices were developed to extract built-up information from a satellite image 

such as NDBI (Normalized Difference Built-up Index), UI (Urban Index), IBI (Index 

based Built-up Index) etc. (eq. 6.10 to 6.11). These indices have been used to extract 

information about the built-up density (Godefroid and Koedam, 2007). In the present 

study, NDBI and UI indices have been used to extract built-up areas from a satellite 

imagery of the year 2017 (Figure 6.29). Model built-up density results can be assumed to 

be satisfactory if built-up density values at a number of test points are following the trend 
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of values of built-up indices.  Results presented in Figures 6.35 &36 indicate a good 

matching trend in values of simulated built-up density and built-up indices for a number 

of test points (Figure 6.35 & 36). 

𝑁𝐷𝐵𝐼 =  
(𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅)
… … … … … … … … … … … … … … … … … … … … … . . (6.10) 

𝑈𝐼 =  
(𝑆𝑊𝐼𝑅2 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅2 + 𝑁𝐼𝑅)
… … … … … … … … … … … … … … … … … … … … … … … (6.11) 

The matching trend revealed that model performance in simulating built-up density for 

the year 2017 is satisfactory and acceptable. 

6.4.4.4 Land surface phenomenon 

LULC changes have a significant influence on land surface temperature and also 

temperature varies from one land use class to another. The urban or built-up surfaces are 

made of concrete or stones or bricks which are impervious in nature and absorbs more 

radiations during daytime and re-radiate longwave radiation in the night causing an 

increase in nighttime temperature, It has been reported in a few studies that the built-up 

density can be correlated with the land surface temperature (Weng et al., 2004; Couttset 

et al., 2007). Built-up density values at different points can be correlated with the land 

surface temperature values (during daytime or night time). The simulated value of urban 

density should be proportional to the Land Surface Temperature (LST) at same locations. 

Higher the LST value will be the representation of densely built-up areas. While 

correlating the simulated built-up density of more than randomly selected points for the 

year 2017 with LST values, the performance of SLEUTH-Density has been found to be 

consistent.  There are various methods available for estimation of LST from thermal band 

images like a single window, split window method etc. The thermal band image of remote 

sensing data was utilized to estimate the LST. However, there is a limitation of coarse 

spatial resolution in the thermal band data available from different satellites like band 10 

and 11 (Thermal Infrared 1 and Thermal Infrared 2 respectively) of Landsat 8 have a 

spatial resolution of  100 m, however it has been resampled to 30 m spatial resolution to 

match the Operational Land Imager (OLI) bands. The Landsat collects data around 5:30 

am in the morning from India therefore, reverse behavior of LST has been obtained from 

the Landsat thermal band. 
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Figure 6.28: Built-up density indices maps 
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Since the Landsat satellite passes over the Indian region in the early morning and at that 

time impervious surfaces are cooler as compared to other surfaces it results in lower LST 

values from the built-up areas. Further LST was estimated from the Aster satellite data 

(90m spatial resolution) for daytime and compared with the simulated built-up density 

results. Further day time as well as night time LST has been estimated for the year 2017 

using MODIS (Moderate Imaging Spectroradiometer) satellite data (250m, 500m 1km 

spatial resolution). Since MODIS is capable of providing moderate spatial resolution data 

therefore, the LST data products were resampled equal to the spatial resolution of the other 

input datasets of the model. Simulated built-up density at 100 randomly selected points 

has been correlated with the values of LST at the same points, as presented in Figure 6.29 

& 30. It is evident from the comparison of the trend of simulated built-up density and LST 

for number points that built-up density is proportional with the LST and trends are 

matching satisfactorily.  

6.4.4.5 The relationship between simulated built-up density and traditional 

approaches of built-up density retrieval used for model validation 

To establish the relationship between the simulated built-up density obtained from 

SLEUTH-Density model and density indicative indices estimated from the traditional 

approaches (which may not be technically upgraded), their values at more than 100 sample 

points selected through stratified random sampling method were compared. The 

comparison of modeled built-up density and values of density indicative indices calculated 

using traditional approaches is useful to validate the efficiency of the SLEUTH-Density. 

The range of absolute value of built-up density estimated from the SLEUTH-

Density and different other indices are quite different. Therefore, they cannot be compared 

in terms of their absolute value. Thus, to determine the relative relationship in their trend, 

values have been normalized and then they have been compared to find out the 

relationship between estimated built-up density and calculated from other methods for 

model result validation. The LST values of 100 random sample points for both day and 

night time in the year 2017 were compared with the corresponding estimated built-up 

density values from the SLEUTH-Density model. The established relationship between 

day and night time LST and estimated built-up density was found to be quite similar to 

the trend for both, matched quite well. For higher LST values the estimated density was 

also found to be higher and vice-versa (Figure 6.29 & 30).  
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For the same random sample points the values of spectral metrics i.e. n(Red-Green), 

n(Red-Blue) and n(Green-Blue) were extracted and compared with the estimated built-up 

density by SLEUTH-Density model. A consistent relationship between individual spectral 

metrics and estimated or simulated built-up density by the model was found as evidence 

in the Figures 6.31, 6.32 and Figure 6.33. The trend was found to be matching quite well 

which states that the estimated built-up density by the SLEUTH-Density model is well 

capable in representing the actual built-up density. It can be found from Figure 6.31, 6.32 

and 6.33 that for values of individual spectral indices are following the trend of normalized 

values of simulated built-up density. The matching trend is justifying the success of the 

SLEUTH-Density model in simulating the actual built-up density. Furthermore, for the 

same random test sample points the values of spectral band i.e. blue band which is 

considered as a good representation of built-up density in conventional approaches has 

also been compared with the estimated/ simulated built-up density for the same points. 

The relationship between the spectral band and the estimated density through the 

SLEUTH-Density model was found to be matching quite well. A consistent relationship 

for the same was found as clear from Figure 6.34.   

Additionally, the built-up indices i.e. UI and NDBI which are used for analyzing 

built-up density in conventional ways have also been compared with the estimated/ 

simulated built-up density obtained from SLEUTH-Density model for the same more than 

100 random sample test points. A well-matching trend was found for both the built-up 

indices which indicates that the estimated built-up density values from the SLEUTH-

Density model are representing actual built-up density relatively (Figure 6.35 & 6.36). 

The study indicates that SLEUTH-Density model with its prolific skills enabled to 

determine the relative built-up/urban density which means relatively higher built-up 

density indicates the possibility of a location of being relatively highly dense is populated 

or developed because of locations suitability in term of different characteristics discussed 

previously like topographical, socio-economic, neighborhood related and biophysical 

variables. Similarly, moderate and lower density values would be indicating relatively 

moderate and lower suitability of that location respectively. The exact density value may 

neither refer to the vertical growth in terms of no. of floors nor built-up intensity (change 

in built-up per unit area) nor urban density (no. of household living per unit area). 

However, the estimated built-up density by the SLEUTH-Density model would have the 
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capability of giving a combined relative information of all the three indicators of density 

i.e. vertical growth, urban intensity and urban density in the name of built-up density. 
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Figure 6.29: Relationship between modeled built-up density and daytime LST 

Figure 6.30: Relationship between modeled built-up density and daytime LST 
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Figure 6.32: Relationship between modeled built-up density and spectral index 

n(Red-Blue) 
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The conventional approaches of built-up retrieval methods were used to retrieve built-up 

density in different ways. However, the present study has come up with the prolific skills 

of the SLEUTH model to estimate/ simulate built-up density in the name of SLEUTH-

Density that is an enhanced capability of the existing widely applied and popular model 
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Figure 6.33: Relationship between modeled built-up density and spectral index 

n(Green-Blue) 

Figure 6.34: Relationship between modeled built-up density and spectral blue band 
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in the area of urban growth modelling. The study found a consistent relationship between 

simulated built-up density obtained from SLEUTH-Density and retrieved density from 

other conventional approaches. Thus, the SLEUTH-Density may be utilized to simulate 

the built-up density for different regions and for future as well.  

 

 

Furthermore, the estimated built-up density has been validated with the field observed 

data as well to set assure the outcomes of improvised SLEUTH-Density model. The next 
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Figure 6.35: Relationship between modeled built-up density and NDBI index 

Figure 6.36: Relationship between modeled built-up density and UI index 
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section includes the more detailed discussion of field validation of estimated built-up 

density. 

Similarly, urban growth and built-up density were also estimated for Pushkar up 

to the year 2040. Simulated urban growth and built-up density maps for different years for 

Pushkar have been presented in Figure 6.37 and 6.38. 

Built-up density results obtained from the model were also validated for the 

Pushkar town as well. The same methodology has been used as discussed for the validation 

of results for the Ajmer. A number of random test locations (100) have been selected using 

stratified random sampling and simulated built-up density values at these locations for the 

year 2017 were compared with the values of individual built-up density representative 

indices presented in Figure 6.37. The trend in simulating density for different test points 

have been plotted and compared with the trends of the results of different representative 

indices, as shown in Figure 6.39 to Figure 6.46. The relationship between simulated built-

up density from SLEUTH-Density and the conventional method were found to be 

consistent and satisfactory for the Pushkar town as well.  

Therefore, it can be concluded that SLEUTH-Density results are satisfactory and 

considered as validated, as results have been validated for two cities of different size.
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Figure 6.37: Urban growth and built-up density for Pushkar for year 1998, 2000, 2008 and 2013 
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Figure 6.38: Urban growth ad built-up density for Pushkar for year 2015, 2016, 2017 and 2018 
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Figure 6. 39: Relationship between modeled built-up density and daytime LST 

 

 

Figure 6. 40: Relationship between modeled built-up density and nighttime LST 
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Figure 6.41: Relationship between modeled built-up density and spectral index n(Red-

Blue) for Pushkar 

 

 

Figure 6.42: Relationship between modeled built-up density and spectral index n(Red-

Green) for Pushkar  
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Figure 6.43: Relationship between modeled built-up density and spectral index n(Green-

Blue) for Pushkar  

 

 

Figure 6.44: Relationship between modeled built-up density and spectral blue band for 

Pushkar  
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Figure 6.45: Relationship between modeled built-up density and NDBI index for 

Pushkar  

 

Figure 6.46: Relationship between modeled built-up density and UI index for Pushkar  
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6.4.4.6 Built-up density validation with field observed data 

The hypothesis for the field validation of simulated built-up density includes establishing 

a correlation between a number of floors of built-up features at different locations 

randomly selected with the simulated built-up density at those points in relative terms. In 

field validation, a count of no. of floors in a building at a location has been determined 

and correlated with estimated/ simulated built-up density values. Since the exact no. of 

built-up density has nothing to do with the no. of floors (as discussed earlier). Only the 

normalized relative built-up density information can be correlated with the field 

observations. Thus, both the no. of floor count and the estimated built-up density were 

classified into 10 classes with an equal interval to normalize them and the consistency in 

the relationship was examined. 

A total of 78 locations (ground control points - GCP) in Ajmer fringe were 

randomly visited and the no. of floor counted in the built-up feature for the respective 

locations was recorded using a handheld GPS tool. The GCPs taken for the density 

validation are presented in Table 6.2 which is shows the GCP coordinates and the no. of 

observed built-up storeys and corresponding class values based on the no. of floors. To 

validate the built-up density the simulated built-up density map of the year 2018 was taken 

and again it was normalized into 10 classes of equal interval. Furthermore, the correlation 

between the simulated/ estimated built-up density values and the field observed number 

of floors of the built-up locations was established.  

The analysis reveals that there is a quite good relationship between observed and 

simulated built-up density class values. The trend of observed no. of floors class values 

are matching with the trend of simulated/estimated built-up density class values, as shown 

in Figure 6.47. The lower no. of floors, class values are also found to be matching with 

the low estimated built-up density class value. The results as discussed above indicate the 

satisfactory performance of the SLEUTH-Density model in simulating the built-up density 

and results are well validated with the field observed built-up density values. The study is 

giving us an idea of built-up density which can well relate with the no. of floors well. For 

validating this fact statistically, regression analysis has been carried out between observed 

and simulated built-up density class values. The statistical relationship was found to be 

satisfactory with an R2 value of 0.74, which is satisfactory and acceptable (Figure 6.48). 

In addition, the accuracy for simulated/estimated built-up density with field validated data 
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was assessed and found to be 75% that is quite acceptable for such applications (Table 

6.3). 

Moreover, some sample pictures have been presented that are also showing built-

up features (multi-storey buildings) which were also simulated successfully by the 

SLEUTH-Density model and simulated density class values are also matching with a 

number of floors class value (Figure 6.49, 6.50, 6.51). Figure 6.51 is representing the view 

of a multi-storey building at Pancheel Nagar location which is successfully captured by 

the SLEUTH-Density model with a higher density class value of 10. It is clear from the 

Figure 6.49 that the same coordinate i.e. 74° 38' 13.51" E 26° 30' 34.96" N was observed 

in Google Earth image as well as for the same GCPs and simulated density has a higher 

class value of 10. Figure 6.50 is showing a multi-storey building on Pushkar road that is 

successfully captured by the SLEUTH-Density with higher density class value i.e. 10. The 

same coordinate i.e. 74° 33' 32.64" E 26° 29' 24.82" N was observed on Google Earth 

map, GCPs and modeled density map with higher built-up density class value.  

In another Figure 6.51, a multi-storey in Panchsheel Nagar block 2 was 

successfully captured with higher density class value by the SLEUTH-Density model and 

the GCPs i.e. 74° 38' 10.64" E 26° 30' 34.95" N are also validated with the Google Earth 

imagery. In Vaishali Nagar, a multi-storey named as Castle Royal was also successfully 

captured by the SLEUTH model with higher built-up density values i.e. 10. The 

coordinates of the location i.e. 74° 37' 36.70" E 26° 29' 43.29" N were also validated with 

Google Earth image (Figure 6.52). 
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Table 6.2: Ground control points for built-up density validation 

X-coordinate Y-coordinate Comment Storeys No of floors 

74° 35' 32.667" E 26° 31' 38.006" N Kanas village near push needevdl new multi-storey  10 

74° 39' 42.319" E 26° 31' 21.255" N Multistorey pushar road three storey 3 

74° 40' 55.347" E 26° 31' 9.256" N Sai jyoti nagarnew const three storey new  3 

74° 38' 5.043" E 26° 31' 8.062" N Rajgharana residency two storey  2 

74° 40' 56.492" E 26° 31' 3.925" N New development green colony three storey 3 

74° 35' 10.947" E 26° 31' 0.299" N Boodhapushakar single storey new  1 

74° 41' 1.139" E 26° 30' 41.002" N Nee construction near jaipur road two storey new  2 

74° 41' 1.206" E 26° 30' 40.447" N Multi storey construction jaipur two storey  2 

74° 40' 58.048" E 26° 30' 45.221" N Kesr kripa vihr coloney consruti three storey  3 

74° 38' 8.354" E 26° 30' 32.858" N Panchsheel ngar two storey  2 

74° 38' 10.646" E 26° 30' 34.951" N Panchsheel nagar2 multi storey  10 

74° 38' 13.514" E 26° 30' 34.969" N Panchsheel nagare multi-storey 10 

74° 38' 27.431" E 26° 30' 32.907" N Panchsheel nagar5 new construction multi-storey 10 

74° 38' 26.856" E 26° 30' 33.419" N Panchsheel naar6 multi-storey 10 

74° 38' 56.381" E 26° 30' 15.792" N Near globl public school new three storey  3 

74° 40' 56.064" E 26° 30' 17.588" N Mds university jipur road three storey  3 

74° 40' 57.210" E 26° 30' 18.183" N New consgfunctuon mds road new multi-storey  10 

74° 37' 36.705" E 26° 29' 43.290" N Castle royal vaishli ngr new multi-storey  10 

74° 37' 27.513" E 26° 29' 37.083" N Vaisali nagar 1 new three storey  3 

74° 37' 23.923" E 26° 29' 37.119" N Vaishli nagar 2 new two storey  2 

74° 37' 23.262" E 26° 29' 37.699" N Vaishali nagar3 new two storey  2 

74° 33' 11.970" E 26° 29' 34.237" N Newconstru tionpush new two storey  2 

74° 33' 32.643" E 26° 29' 24.822" N Multistoreupushroad four storey  4 

74° 33' 16.069" E 26° 29' 26.439" N Muktistryconspushar multi storey 10 

74° 39' 0.631" E 26° 29' 18.651" N Vishwamitra bhavan lohagarh road five storey  5 

74° 39' 0.509" E 26° 29' 18.076" N Shastri nagar 2 five storey  5 

74° 34' 8.154" E 26° 29' 19.340" N Pushkar road newmulti three storey  3 
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74° 33' 57.067" E 26° 29' 16.788" N Pushlar roadmuktistry tajgardn two storey  2 

74° 33' 45.076" E 26° 29' 15.569" N Pushkarzbaktideephsptl five storey  5 

74° 33' 46.207" E 26° 29' 14.894" N Multistrypushfoad five storey  5 

74° 33' 39.840" E 26° 29' 12.965" N Muktistriespushrdbithside five storey  5 

74° 36' 35.049" E 26° 28' 56.878" N Haribhau nagar new construction three storey  4 

74° 36' 35.020" E 26° 28' 55.881" N Haribhahu  multi2 five storey  5 

74° 36' 33.938" E 26° 28' 52.651" N Haribhau multi3 six storey  6 

74° 36' 4.501" E 26° 28' 47.956" N Haribhau multistorey houses three storey  4 

74° 36' 0.385" E 26° 28' 47.427" N Haribhahu  upadhyay nagar  multi three storey  4 

74° 36' 2.172" E 26° 28' 32.359" N Azad ngr multi redidential multistoreys 10 

74° 35' 50.640" E 26° 28' 22.977" N Pragati nagar multiresidential multistoreys 10 

74° 35' 29.907" E 26° 28' 23.910" N Pragati nagar multistprey constr multistoreys 10 

74° 36' 8.012" E 26° 28' 19.794" N Azad ngr multi multistoreys 10 

74° 38' 51.051" E 26° 28' 6.259" N Rilwaycoloneymultistories mmultistoreys 10 

74° 36' 56.593" E 26° 27' 56.884" N Krishna coloney ramnagar three storey 4 

74° 36' 47.335" E 26° 27' 47.260" N Foysagar road multi,storey new four storey  4 

74° 36' 45.752" E 26° 27' 47.536" N Foy sagar road multistorey three storey  3 

74° 35' 38.843" E 26° 27' 22.064" N Foy sagar rawat nagar hotel grand multistorey _6-7floor 6 

74° 40' 10.357" E 26° 27' 10.241" N Madarroad twostories three storey  3 

74° 35' 15.780" E 26° 26' 56.106" N Near foy sagar ddvelopmnt twos storey  1 

74° 39' 53.070" E 26° 26' 44.740" N Singlestoriess two storey 3 

74° 39' 9.731" E 26° 26' 29.052" N Mehu road underconstruction two storeys 2 

74° 38' 57.124" E 26° 25' 41.391" N Bihari gnjmultistorey three storeys 4 

74° 39' 3.522" E 26° 25' 25.081" N Adarshnaar multistorey two storeys 3 

74° 39' 1.781" E 26° 25' 28.704" N Adarshngr construction multistory new three storey  4 

74° 39' 11.311" E 26° 25' 5.522" N Adarsh nagar new,construction new three storey  5 

74° 39' 5.642" E 26° 24' 7.574" N Single stories bewar road single storey  2 

74° 38' 22.953" E 26° 23' 31.514" N Bewar road new four storey  5 



267 

 

 

Figure 6.47: Relationship between field observed no. of floors and modeled built up 

density for the same GCP’s  

 

Figure 6. 48: Relationship between field observed no. of floors and modeled built up 

density for the same GCP’s on a scatter plot 
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The above discussion leads to the successful field validation of simulated built-up density 

results obtained from SLEUTH-Density. The results are quite good and satisfactory in 

simulating the built-up density. At a few places, some differences between the no. of floors 

and built-up density class value have been noticed. However, these differences were not 

so significant as to misinterpret the density values.  

Table 6.3: Accuracy assessment of estimated built-up density with field validation 

Accuracy assessment (%) 

SLEUTH-Density 75% 
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Figure 6. 49: A picture showing multi-storey at Pushkar road 

Further research is required to validate the SLEUTH-Density results for different study 

areas in different socio-economic conditions. Also, the land use change and urban growth 

modelling are regional application-based study and having a closer idea or approximation 

of built-up density for a location by the modelling would be a good approach in giving 

solutions to many urban planning issues. 
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Figure 6. 50: A picture showing multi-storey at Panchsheel Nagar 
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Figure 6. 51: A picture showing multi-storey at Panchsheel Nagar 2 
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Figure 6. 52: Picture showing multi-storey ‘Castle Royal’ at Vaishali Nagar 

6.4.5 Demonstration of application of SLEUTH-Density Model 

The application of SLEUTH-Density has been demonstrated for Ajmer fringe. The built-

up density was simulated for up to the year 2040 after successful model parameterization 

and calibration. The study is successful in identifying the probable locations which are 

prone to get denser built-up activities in upcoming years.  
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Ajmer fringes are quite large spatially and therefore, to better interpret the 

estimated built-up density results were classified ward-wise and related with the 

demographic characteristics. The present study has used an updated municipal corporation 

ward map of Ajmer obtained from the official website. The map was first geo-referenced 

in ArcGIS software using municipal boundary map as a reference map. The UTM WGS 

84 zone 43°N was used as projection and coordinate system. The ward map was digitized 

then and respective ward numbers were assigned to each ward. In addition, ward 

population was also stored against respective wards of Ajmer. The current ward map 

includes 60 wards and the newly added 6 wards of Ajmer lacks various details like 

population, literacy rate, male and female population etc. 

In the present study, built-up density has been related to the three identifiers of 

density i.e. urban intensity, urban density, and vertical growth. Here, the cumulative term 

i.e. built-up density is representing all the three indicators of density.  To establish the 

relationship of simulated built-up density with urban density, intensity, and vertical 

growth ward wise interpretation has been done.  

6.4.5.1 Ward wise built-up density 

Present section discusses built-up density in different wards. The study reveals that ward 

numbers 1, 2, 3, 60, 59, 58, 46, 45, 42, 41, 21, 23, 26 and 27 have observed increased 

built-up density over the years as compared to other wards. The built-up density was found 

to be higher over the years for outer wards than inner wards. This analysis suggests that 

built-up density would be higher in outer wards which lies on edges rather than in the 

central part of Ajmer. Such a result has also been in agreement with the validation of 

model results using other indices. The central part of Ajmer includes ward no. 50, 51, 54, 

55, 56, 57, 43, 44, 33, 34, 35 and 19 which are showing very low built-up density and 

supports the model results. Here, lower built-up density does not suggest that these areas 

are vacant and no built-ups are there.  

However, these areas have developed fully and growth has not been observed in 

the past few years, therefore, there is the least possibility of further development or vertical 

growth of the central part of Ajmer (Figure 6.53). The study signifies that outer areas of 

Ajmer along the main roads are developing rapidly as compared to the central part and 

have a higher probability to have higher built-up densities in the near future.   
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Since output maps are raster data and each cell represents different density values. To 

normalize the density number for an individual ward the mean built-up density for each 

ward was calculated which enhanced the understanding of ward-wise built-up density. 

6.4.5.2 Ward wise mean built-up density 

The ward-wise means built-up density was estimated for each ward which supported the 

inferences and helped in identifying the highly built-up wards. The mean built-up density 

for individual wards indicates the probability of getting denser in terms of horizontal as 

well as vertical urban growth and no. of people residing in relative terms. In the year 2018, 

mean built-up density for outer wards was found to be higher as compared to the inner 

wards. For ward no. 2, 5 and 53 the mean built-up density was found to be 50, 53 and 54 

respectively which are the highest mean built-up density values in the year 2018. These 

wards have experienced rapid urbanization in the last few years due to the availability of 

residential and occupational suitable conditions.  

The Pragati road in ward no. 2 connects to NH 89 which further connects to Ajmer-

Pushkar road and based on historical data as well more urban growth has been experienced 

in these areas. Higher mean density values also validate the rapid urbanization in ward no. 

2. The Kirti Nagar road in ward no. 5 connects to Foy Sagar road which has experienced 

a lot of urban development in recent years, therefore, a simulated density map has also 

shown relatively higher mean built-up density in ward no. 5. Ward no. 53 is connected to 

Dargah bypass road and dargah bazar road which is relatively high in mean built-up 

density. Ward no. 3, 8, 11, 20, 21, 22, 23, 25, 26, 27, 34, 39, 41, 42, 45, 46, 49 and 59 

have experienced mean density values as 43, 42, 47, 45, 45, 50, 44, 40, 50, 44, 40, 50, 40, 

47, 44, 46 and 40, respectively which are also representing relatively higher mean built-

up density in these wards but not as high as ward no. 2, 5 and 53. These wards have also 

been found to be relatively more urbanized than the remaining wards, however, few 

among them have not experienced much change in built-up density due to the 

unavailability of suitable conditions for urbanization. Ward nos. 22, 23, 25, 26, 34, 39, 41, 

45, 46, 49 and 59 have experienced a very small change in mean built-up density, as these 

are inner wards and have already densely urbanized years before thus, not much scope for 

further urban expansion horizontally as well as vertically. Therefore, built-up density 

simulation has also shown a higher density for these areas. The mean built-up density 

values for different wards is presented in Figure 6.54. 
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Figure 6. 53: Urban density in different wards in the year 2016, 2017, 2018 and 2040 
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Figure 6.54: Mean urban density in different wards in the year 2016, 2017, 2018 and 

2040 

6.4.5.3 Wards with higher built-up density 

For identifying wards which have a higher probability of high built-up density, ward-wise 

classification of built-up density was performed. The built-up density was classified into 

five classes i.e. very low, low, medium, high and very high based on the change in density 

from the year 2017 to 2018. The present study identifies the wards which have become 
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denser in the year 2018 than others. The study revealed that ward 45 and 60 have become 

denser than any other wards in the year 2017 which lie in the outer part of Ajmer city. 

Although, the inner or central wards have experienced a very low change in built-up 

density which includes ward no. 1, 2, 7, 9, 13, 14, 19, 22, 23, 25, 26, 28, 29, 30, 32, 33, 

34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 

and 60. Wards 4 and 15 have medium built-up density class. Built-up density has been 

found to change in wards 10 and 12 significantly. Highest change in built-up density from 

the year 2017 to 2018 has been observed for ward number 16 (Figure 6.55). The overall 

analysis clearly indicates that as moving from a very core part of Ajmer to slightly outer, 

significant increase in built-up density has been observed from the year 2017 to the year 

2018. The outer wards are denser than inner wards and more likely to become denser in 

upcoming years. The obvious reason for getting built-up density higher at outer wards is 

the development of the transportation system, industries, educational institutions and 

colonies in these wards. The inner wards include older architecture and highly populated 

areas and further growth of those areas is near to impossible. Therefore, the only 

possibility of further development lies in the outer wards of Ajmer due to the higher 

suitability like open spaces, transportation facilities, and public services in these wards.  

Furthermore, how the built-up density in different wards has been increased from the year 

2017 to 2018 and most likely to be in the year 2040 also has been presented in Figure 6.56 

and 6.57.  

6.4.5.4 The relationship between built-up density and population (i.e. urban density) 

To understand the estimated built-up density by the SLEUTH-Density model in terms of 

urban density (no. of household residing on per unit area) correlation has been established 

between built-up density and population for different wards. Figure 6.58 is showing that 

for high population built-up density is higher and vice-versa. However, it has been seen 

that few highly populated wards have shown lower built-up density. The possible reason 

is that the wards lie in the core part of Ajmer which is highly populated but in past few 

years, no further built-up development has been noticed in those wards i.e., 54 and 55. 

The SLEUTH-Density based built-up density module estimates density on the basis of 

urban growth taken place in the past few years. However, the outer wards are correctly 

matching the built-up density with the population density which further validates the 

model results (Figure 6.58 & 6.59). 



278 

 

Figure 6.55: Change in built-up density from the year 2017-2018 
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Figure 6. 56: Urban density in different years
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Figure 6. 57: Ward wise built-up density in the year 2017 and 2018  
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Figure 6.58: Relation between population and built-up density in different wards in the year 2017 and 2018  
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Figure 6. 59: Relation between change in urban growth (1997-2018) and built-up density in the year 2018 i.e. urban intensity

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

0

500

1000

1500

2000

2500

3000

B
u
il

tu
p
 d

en
si

ty

Wards

B
u
il

ty
p
 g

ro
w

th
 (

in
 p

ix
el

s)
Relationship between builtup growth from year 1997 to 2018 and builtup density in year 2018 in different wards

Change in builtup (1997-2018) builtup density 2018



283 

 

6.4.5.5 The relationship between built-up density and change in urban growth (i.e. 

urban intensity) 

The relationship has also been established between change in urban growth from the year 

1997 to 2018 and built-up density estimated using SLEUTH-Density. It can be seen from 

Figure 6.59 that the wards which have experienced low urban growth also have lower 

built-up density. On the other side, the wards which have experienced higher urban growth 

also have a higher built-up density (Figure 6.59).  Results indicate that urban growth trend 

from the year 1997 to 2018 is satisfactorily matching with the built-up density in the year 

2018. Such a relationship improves the understanding that as the urban growth takes place 

the built-up density will also increases, which suggests vertical growth. Here, built-up 

density can also be correlated with vertical growth or urban intensity. However, urban 

intensity and vertical growth are two different terms and it can be used with different urban 

planning perspectives. Built-up density is related to urban change which is higher for 

higher urban growth change wards which may directly relate with the term intensity. On 

the other side, for different years built-up density values have changed (mostly increased) 

for an individual ward without expanding into areal terms (Figure 6.57). Thus, the built-

up density may possibly represent vertical growth which took place due to the higher 

suitability of those locations to further get urbanized. The suitability factors of SLEUTH-

Density are roads, slope and new spreading centered clusters which help in selecting only 

those pixels repeatedly which fell into these suitability conditions. If a number of pixels 

are getting selected again and again for urbanization even after it has already urbanized, 

it indicates the potential of vertical growth. As we have observed from the ward-wise  

built-up density results that urban growth has not been taken places horizontally in the 

area, but have higher built-up density. Thus it indicates the possibility of vertical growth 

which can now easily be simulated using SLEUTH-Density model.  

6.4.5.6 Visual analysis 

The estimated built-up density was also validated visually by overlying built-up density 

map of the year 2018 over Google Earth image and the density values were compared with 

the ground condition. It was evident from Figure 6.60 that the area near Srinagar road has 

experienced urban growth of relatively higher built-up density (i.e. 50-90 density values) 

as compared to the rocky terrain side development i.e. built-up density (i.e. 1-10 density 

values). As revealed from the Figure 6.60, that near Chungi road higher built-up density 
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values were found to the corresponding high rise buildings. The area near Foy sagar has 

found to be of lower density as compared to the outer part of Foy Sagar area (Figure 6.60). 

Figure 6. 60: Visual analysis of simulated/estimated built-up density 

Figure 6. 61: Visual analysis of simulated/estimated built-up density 

From a closer view of different locations (Figure 6.61) it can be seen that higher 

built-up densities have been found at the locations where multi-storey buildings are 

visible. The low rise buildings are having relatively lower density values as seen Figure 

6.61. 
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6.5 Concluding Remarks 

The SLEUTH model has been improved and a new version named SLEUTH-Density has 

been developed, which is capable of simulating the built-up/ urban density in addition to 

simulating the urban growth. A suitable algorithm has been developed to estimate built-

up density, required programming code be written and integrated with the base SLEUTH 

code. SLEUTH-Density code was further tested for a demo dataset and found to be 

satisfactory and acceptable. The SLEUTH-Density model was successfully parameterized 

and calibrated using the methodology as discussed in Chapter 4.  Further, built-up density 

was simulated up to the year 2040 for Ajmer fringes. Results indicate urban growth with 

higher built-up densities in outer areas of Ajmer along the main roads as compared to the 

central part of Ajmer. Since the central part of Ajmer has developed long before and it 

does not have suitable land and infrastructure facilities like good roads. Built-up density 

results have been validated with respect to a number of spectral and built-up indices which 

are representative of built-up density including LST. Normalized built-up density values 

at more than 100 randomly selected locations have been correlated with the values of 

different indices including LST. Trends of simulated built-up density are satisfactorily 

matching with the trends of the different indices including LST, which indicates the 

satisfactory and acceptable performance of SLEUTH-Density. Model results were also 

validated through the ground truthing and found to be satisfactory. The further model 

application was demonstrated by simulating the built-up density for Ajmer fringe. Built-

up density was also analyzed at the ward scale. Results indicate that outer wards may have 

a higher built-up density as compared to the central part because of availability of suitable 

land, better infrastructure facilities, and road connectivity.  
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CHAPTER 7 

DEVELOPMENT OF SLEUTH-SUITABILITY 

 Prologue 

While simulating urban growth using the original SLEUTH model with its default model 

parameters, it was observed that performance of the model can be further improved by 

addressing two possible limitations.  First, suitable values of model parameters need to be 

identified and second, the influence of a few important LULC change and urban growth 

explanatory variables (identified from the literature) should be included in the simulation 

process like land cost, distance from main roads, distance from facilities like bus stand, 

railway station, recreational sites etc. as discussed in Chapter 2. The present version of 

SLEUTH simulates urban growth by considering four growth rules which operate upon few 

input variables i.e., slope, land use, urban, road network and exclusions. However, there 

are many important variables, as mentioned above, which affect the urbanization process 

significantly and urban growth can be better modelled by their inclusion in the simulation 

process. Considering all such variables in terms of land suitability growth decision rules, 

the present version of model can be improved so that it can capture different forms of urban 

growth like fragmented, scattered, road influenced, small size urban growth etc. more 

realistically. A land suitability variable represents the relative desirability of a particular 

piece of land for development for different uses. The first limitation of the model was 

addressed by determining optimal values of different model parameters and by testing their 

sensitivity, as discussed in Chapter 5. To address the second limitation of the model, an 

effort has been made to develop a newer version of the SLEUTH i.e., SLEUTH-Suitability 

by developing a suitable algorithm to include a new growth rule in terms of land suitability 

into the simulation process. The effect of few important urbanization explanatory variables 

like land cost, important proximity variables like distance from main roads, distance from 

facilities like bus stands, railway stations, recreational sites etc. have been integrated into a 

land suitability decision variable using AHP based on the MCE technique. Appropriate 

code has been written to implement the land suitability growth rule and integrate it with the 

existing SLEUTH code.  Development of the SLEUTH-Suitability model which includes 

development of the algorithm, writing of code, integration of the code with the existing 

model and model testing is discussed in this chapter. Further, development of a land 

suitability decision layer using AHP based on MCE technique, sensitivity testing of AHP 
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weights and model accuracy assessment is also discussed in this chapter in subsequent 

sections. 

 Introducing Land Suitability into SLEUTH Decision Making 

SLEUTH, despite being a popular model for LULC change and  urban growth modelling, 

can further be improved  by incorporating the influence of important urbanization 

explanatory variables/ drivers  like land cost, proximity to important roads, hospitals, 

recreational places, bus stands and railway stations into the simulation process. In a study, 

Wu and Webster (1998) proposed an integrated approach of MCE (Multi-criteria 

Evaluation) and Cellular Automata (CA) to employ transition rules for urban growth 

simulation. Li et al. (2008) integrated MCE with CA to simulate urban growth for the Pearl 

River Delta. Li and Liu (2008) applied agent-based modelling in conjunction with CA to 

develop alternative growth patterns for the Pearl River Delta. However, very few studies 

have been reported in which major growth influencing variables were included into urban 

growth modelling using the SLEUTH model. Mahiny and Clarke (2012) proposed an 

integrated approach of MCE and SLEUTH which combined the land suitability layer with 

the exclusion layer to simulate urban growth. Yin et al. (2015) applied different ecological 

sustainable scenarios through the exclusion layer in SLEUTH to incorporate the ecological 

sustainable policies in urban growth simulations. Mahiny and Clarke (2013) came up with 

an idea of incorporating hydrological influence on urban growth with the help of MCE in 

SLEUTH modelling. Mahiny and Gholamalifard (2011) also integrated MCE with the 

SLEUTH model for the dynamic allocation of sites. Although, inclusion of some important 

explanatory variables into the SLEUTH model actually can improve the urban growth 

modelling in consideration with sustainable policies still needs to be studied in detail. In 

most of the previous studies, urban growth was simulated by considering land suitability 

and other variables as a part of exclusion layer to reflect the effect of land use policies on 

urban growth. There were no studies found which can employ urban suitability considering 

various explanatory variables into the urban growth modelling process. Inclusion of land 

suitability as a decision rule will eventually enhance the reliability of the model by 

enforcing modelling outcomes towards more realistic growth predictions. Multi-criteria 

Evaluation (MCE) is specifically used for integrating multiple raster layers to arrive at a 

single land suitability layer. The inclusion of the urban suitability layer prepared from MCE 

considering various socio-economic, proximity, topographic and ecological variables into 
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the SLEUTH modelling may entail more desirable modelling outcomes. The SLEUTH 

model derives growth rules in calibration phases followed by self-modifying rules. Since 

the model requires less user intervention to devise the growth rules therefore, studies only 

modified or combined the exclusion layer with the suitability layer to reflect suitability in 

to modelling outcomes. However, to combine the exclusion layer with suitability may not 

give impressive results as transition rules will perform randomly and suitability factor 

cannot be treated as a random phenomenon but deterministic. Therefore, a new version of 

the model i.e., SLEUTH-Suitability has been developed to include one more growth rule 

i.e., land suitability into simulation process at each stage of urban growth rules decision 

making during model calibration as well as prediction phases. In doing so, the suitable code 

was written in the C programming language to include the land suitability algorithm into 

the existing code of SLEUTH successfully and named as SLEUTH-Suitability. Further 

SLEUTH-Suitability code was tested and validated at each stage of the growth rule 

implementation during calibration to arrive at whether it is giving outcomes for what it is 

developed.  

 Materials and methods used for development of SLEUTH-Suitability 

Ajmer fringe has been selected as the study area for the demonstration of the application of 

SLEUTH-Suitability and to investigate the land suitability decision rules sensitivity to the 

AHP weights for individual urbanization explanatory variables. Required model input 

layers for the preparation of the land suitability decision layer and model parameterization 

have been extracted from the GIS database, as discussed in Chapter 3. Input data used in 

the present work includes the slope layer in percent, hill shade for depicting background, 

historical urban maps of year 1997, 2000, 2008, 2013 and 2015, road network layers of 

year 1997, 2000, 2008, 2013 and 2015, the exclusion layer which prohibit important natural 

reserves from being urbanized and land suitability layers of year 1997, 2000, 2008, 2013 

and 2015 which includes LULC change and urban growth explanatory variables with 

relative desirability or potential of land for development.  

7.3.1 LULC change and urban growth drivers and factors 

LULC change and urban growth is a function of different drivers/explanatory variables 

such as neighborhood, proximity, demographic, socio-economic, institutional, suitability, 

biophysical drivers and restrictive variables (Park et al., 2011; Romano et al., 2005; Li et 

al., 2018; Wentz et al., 2018) 
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• Neighborhood variables include human choices and preferences for building houses, 

for example, a person would be more interested in constructing his/her house on the 

basis of neighboring conditions like proximity to residential areas, city center 

cleanliness etc.  

• Proximity variable includes distance to market, distance to road, distance to hospitals, 

distance to railways, distance to highways, and distance to schools etc. which influences 

the urbanization process. 

• Demographic variables like population density, literacy and other variables related to 

population represent demand for development and also affects urbanization process and 

urban growth.  

• Socio-economic variables and drivers like land cost, time to travel, opportunity cost, 

tradition, status, education etc. affect the development decisions and choices of 

individuals about the development 

• Institutional variable affects the decision taken by managerial authorities relating to 

the construction, nearby already established industries and institutions. 

• Suitability of land for different purposes also affects the developmental choices.  

• Economic variables like land tenure, farm size, income may be important factors to be 

considered while making choices of development.  

• Climatic drivers like climatic variability, life zones are the factors which individual 

consider while building their houses.  

• Bio-Physical drivers like topography, elevation, slopes, soil types, altitude also affect 

the decision making of development and construction and  

• Restriction variables which comprise a prohibited area for development such as 

reserved forest, green belt, historical places, airport side area etc. The detailed list of 

explanatory variables and driving factors of LULC change and urban growth is 

presented in Table 7.1. 

A LULC changes and urban growth drivers are important and may be applicable in general 

for all locations and urban areas like topographical slope, land cost, proximity to public 

services and transportation network, neighborhood variables and demographic factors like 

population growth. Population growth has been one of the major growth influential 

parameters which increases the demand for development and also affects the land and 

infrastructure. Proximity to important roads has been another growth influential parameter 

and applicable to every city and town. With development and improvement in road 
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transportation, networking terms of increased road/railway connectivity with important 

places and suburbs promoted the urbanization at fringes and outskirt. Thus, proximity to 

main roads influences urbanization extensively. 

Table 7.1 Explanatory variable of land use change and urban growth (Park et al., 2011; 

Romano et al., 2005; Li et al., 2018; Wentz et al., 2018) 

S.no. 
Class of Explanatory 

Variables 

Variables 

1 Neighborhood 
proximity to residential areas, city center cleanliness 

etc. 

2 Proximity 

distance to market, distance to road, distance to 

hospitals, distance to railways, distance to highways, 

and distance to schools etc. 

3 Demographic 
population density, literacy and other variables related 

to population 

4 
Socio-economic 

variables 

land cost, time to travel, opportunity cost, tradition, 

status, education etc. 

5 Institutional variable Industries and institutions. 

6 Suitability 
land suitability factor for building houses, agriculture 

etc. 

7 Economic variables land tenure, farm size, income 

8 Climatic drivers climatic variability, life zones 

9 Bio-Physical drivers topography, elevation, slopes, soil types, altitude 

10 Restriction variables 
reserved forest, green belt, historical places, airport 

side area etc. 

 

Other important facilities like educational, recreational market and job potential also 

promote migration of people into cities and thus affects the process of urbanization and 

demand for development.   

Some other parameters like proximity to hospitals, recreational places and bus stand 

& railway stations also affect the demand for the development of any place and play a 

crucial role in decision making for urbanization. Therefore, in the present work few 

important urbanization explanatory variables like topographic slope, land cost, proximity 

in term of distance from road network, distance from facilities like railway station, bus 

stand and recreational places and hospitals have been selected to develop the land suitability 

decision layer which will make the basis of land suitability growth rule in SLEUTH-

Suitability.  



291 

 

 Development of Urban Suitability Module  

The SLEUTH-Suitability model development consists of the development of an algorithm 

to include one more urban growth decision variable i.e., land suitability in the simulation 

process, development of the computer program and integration with the existing SLEUTH 

code. SLEUTH-Suitability uses six raster input data layers i.e. land suitability, slope, urban 

area, exclusion, transportation layers and hillshade for different control years. The land 

suitability growth decision variable explain the influence of different selected urbanization 

explanatory variables as discussed in previous sections. The SLEUTH code has been 

modified to include another land suitability urban growth decision rule in the growth 

simulation process. The model is a scale-independent CA, the growth rules are uniformly 

employed throughout a gridded structure of a geographical space and applied on a cellular 

basis. One iteration of the CA corresponds to a single time span and all changes are applied 

at the end of each time period synchronously. The initial conditions and the set of growth 

rules are integral to the data set being used since they are defined in terms of the natural 

and physical characteristics of the area under study. The calibration process evokes the 

model adapting its local environment with the help of explanatory variables and rules. The 

urban seed layer is the initial condition to start the process, the growth occurs one pixel or 

cell at a time with the independent role of each cell. The urban patterns emerge during 

growth cycles as the urban organism learns more about its surroundings and neighborhood. 

The initial year layer is the seed urban information and the extent is decided based 

on historical maps. The rules are applied on a cell at a time and the complete cellular grid 

is updated at the completion of an annual iteration. The modified array forms the basis for 

further urban expansion in every succeeding year. The potential of cells or pixels for 

urbanization is checked by selecting pixels randomly. The growth rules check the potential 

of cells and their neighbors like whether they are already urban or not, what their 

topographical slope is, how near they are to a road, whether it is a part of the exclusion 

layer and what their land suitability weight is. The decision of a pixel to become urban is 

based on a set of weighted probabilities along with mechanistic growth rules that inhibit or 

encourage growth. 

Five growth coefficients i.e. diffusion, breed, spread, slope resistance, and road 

gravity control the system behavior as explained in Chapter 4 in detail. The diffusion 

coefficient determines the overall dispersion of the urban distribution outwardly; breed 

coefficient specifies how likely a newly detached urban cell is to begin its own growth 
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cycle; spread coefficient controls how much organic expansion occurs from the existing 

urban; slope resistance coefficient influences the likelihood of urban growth extending up 

steeper slopes and road gravity coefficient attracts new urbanization towards and along 

roads.  

There are four growth rules constituted by the model i.e. spontaneous, new 

spreading center, organic and road influenced. The spontaneous growth occurs when a 

randomly drawn pixel falls in a suitable location for urbanization and simulates the 

fragmented urban forms with the influence of existing urban on their surroundings. The 

new spreading center growth allows these newly spontaneous urban pixels to start their 

own growth cycle on land which is flat enough and suitable for the desirable location of 

urban development.  

The phase 1 n 3 comprises these two growth rules i.e. spontaneous and new 

spreading center growth. The organic or spread growth promotes outward expansion from 

the existing urban cores which reflects the nature of all urban areas to expand. Phase 4 

includes organic or spread growth. The road influenced growth encourages road side urban 

development which reflects increased accessibility and it falls under phase 5 as given in 

Figure 7.1.  

Each rule passes through a set of conditions which include, whether the pixel or cell 

is already urban or not, whether the slope of that pixel is suitable for urbanization, whether 

it is a part of prohibition or exclusion and whether the pixel lies in the desirable range of a 

weighted land suitability decision variable. Land suitability decision variable participates 

in urbanization decision of pixels after each growth rule through 1 to 5. The decision of 

urbanization of each pixel by any rule has to pass the land suitability decision rule. In the 

present study, initially, the decision of the slope variable is executed separately. Further, 

the slope variable was integrated with the land suitability decision variable as one of the 

urban growth explanatory variables. After successfully passing through each urban growth 

decision the pixel becomes urbanized which ensures more realistic urbanization due to an 

added decision of land suitability variable into the simulation process. 

SLEUTH-Suitability version also uses the same calibration process as SLEUTH. 

Calibration performance and selection of optimum growth coefficients have been measured 

in a similar way with the help of a model fitness metric i.e., OSM. The visual analysis is 

one of the most important parts in the initial phases of calibration to establish growth 

coefficient ranges and to have a rough idea about the parameter settings. It is also important 
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to verify the fact that the model is actually replicating the urban spatial pattern and extent 

of historical growth which couldn’t be determined by statistical measures alone. Once 

several initial parametric settings passed the visual maps, the model was again passed 

through the goodness of fit comparisons of various spatial and statistical measures & 

metrics. The comparison of visual maps played an important role during initial phases of 

calibration. Statistical metrics consisted of computing Pearson’s correlation coefficient (r2) 

for several parameters e.g. area, edges, clusters, cluster size, radius, slope, xmean, ymean, 

%urban etc. for the modeled and actual urban area in the controlling years. Methodology 

of model calibration and development of SLEUTH-Suitability has been explained in 

Chapter 4.  

The programming code has been written for the inclusion of land suitability growth 

decision variable and was tested at each stage to check the consistency with the model 

outcomes.  

Model Calibration 

Monte Carlo Runs 

Growth Rules 

Phase 1 - 3 growth rules 

  Slope 

Hill-shade 

Urban 

Exclusion 

Transportation 

Land Suitability 

Growth Coefficients 

  

• Diffusive 

• Breed 

• Spread 

• Slope Resistant 

• Road Gravity 

Phase 4 growth rules 

Phase 5 growth rules 

Figure 7.1: Methodology for the development of SLEUTH-Suitability 
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 Testing of SLEUTH-Suitability Program 

After the development of the land suitability version of SLEUTH, it was tested using a 

demo input dataset to ascertain its correct functioning. The land suitability growth decision 

variable has been incorporated in the algorithm for making urbanization decisions of 

unorganized pixels along with each urban growth rule. The land suitability decision rule is 

directly involved in all the growth rules of the model during all the calibration phases. The 

algorithm validation has been performed roughly for a demo dataset of small extent. The 

dataset was prepared which included four years of historical urban maps (i.e. 2000, 2008, 

2013 and 2015), two years of roads layers (i.e. 2013 and 2015), one slope, one exclusion, 

and one land suitability layer. Here, we have prepared a dummy suitability layer of a grid 

size of 14*12 and cell size of 16 meters by assigning land suitability weights by some 

random numbers in between 1-12 to each cell (Figure 7.2).  

Model testing includes generating urban growth output maps at each step of the 

implementation of each growth rule after parameterization of the model with the required 

data (demo data). This process gives an insight about the internal working of the SLEUTH-

Suitability algorithm. In addition, cumulative growth from each stage of growth rule 

implementation was also compared with a single output grid which was generated after 

completing the prediction of growth for the respective year. The urban growth model 

consists of four growth rules driven by five growth coefficients, which sequentially 

executes in a loop for a total number of Monte Carlo iterations. For the input dataset, we 

assumed prediction best fit coefficient values for testing of the SLEUTH-Suitability 

algorithm.  

Best fit values for diffusion, breed, spread, slope resistant and road gravity growth 

coefficients were adopted as 15, 24, 20, 60 and 70, respectively. The decision of a pixel 

being urbanized passes through a set of conditions including land suitability also at five 

stages of urban growth simulation. The idea is to check whether the newly inserted land 

suitability decision grid works well with all the growth rules. For just evaluating we put up 

a condition in programming that an attempted pixel should be urbanized if it lies in between 

5 and 10 value of land suitability weights. We took empty grids for storing each decision 

taken at every single stage of growth rules and named it as, one, two, three, four and five. 

In addition, for intermediate attempts of urbanization in the individual grid is numbered 

starting from 0 (i.e. One_0, One_1 and so on). 
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First, the SLEUTH-Suitability passes through growth phase 1 n 3 rules which itself includes 

diffusive growth and new spreading center growth, therefore, grid One and Two will be 

produced to store intermediate stages of employing growth rules with suitability. The 

diffusive value was first calculated to perform diffusive growth using Eq. 7.1.  

diffusive_value = ((diffusion_coeff * 0.005) * sqrt (rows_sq + cols_sq))    …          7.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, the best-fit diffusion coefficient, number of rows and number of columns are 15, 12 

and 14, respectively for the demo data. So, the calculated diffusive value would be 1.45. 

Diffusive growth can take place until the diffusive value does not reach as; 

for (k = 0; k < 1 + (int) diffusive_value; k++) 

(Here, the diffusive value is 1 and the loop will continue up to 2 tries) 

{ 

Figure 7.2: Demo input dataset for SLEUTH-Suitability program testing 
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For first diffusive value, a random pixel from the grid is attempted to get urbanized.  

} 

This randomly selected pixel will pass through a set of conditions if it finds all true then 

only it may get urbanized. The set of conditions are as, 

if (selected pixel is not already an urban pixel in input grids) 

  { 

    if (it is not urbanized in previously  performed growth rules) 

    { 

      if (it passes through a slope weights conditions) 

      {         

        if (it is not a pixel from the exclusion layer) 

        { 

 if ( the land suitability weight lies between 5 and 10) 

    { 

   Pixel will get urbanized; 

     }}}}} 

The first pixel attempted to get urbanize in a grid One_0 was rejected and could not be 

urbanized due to the land suitability value for the pixel does not lie between 5 and 10. In 

the second attempt i.e. One_1, a pixel found suitable with the suitability of 8 and became 

urbanized. After becoming urbanized the counter passed through the random test for new 

spreading center growth rule (i.e. if (RANDOM_INT (101) < (int) breed_coefficient)) in 

which a randomly generated number is found greater than the breed coefficient value, 

therefore, it could not pass the breed test. Again, for the next diffusive value, a pixel was 

attempted to get urbanized and it successfully became urbanized with the land suitability 

value of 9 (i.e. > 5). Now, the diffusive value completes and the counter will go to the next 

phase of growth rule i.e. random spread coefficient test. The first pixel of the grid was 

attempted and passed through the random spread test as if ((pixel is already an urban pixel) 

&& (RANDOM_INT (101) < spread coefficient)). Since the first pixel of the grid is not an 

urban so it could not pass this ‘if’ condition and also couldn’t proceed for the urban land 
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suitability decision rule. Similarly, the process will go on for each pixel of the grid and 

whenever it passes an ‘if’ statement successfully as discussed above it will again check for 

a set of conditions. In our case, only a single time was a pixel attempted to finally urbanize 

but rejected due to some conditions but not because of land suitability (see the grid Three_0 

in Figure 7.3). After completing phase 1 n 3 and phase 4 rules the counter pass to the phase 

5 rules. 

The breed coefficient would be used to calculate the road influenced growth here in phase 

5 as given below; 

For (iii = 0; iii < 1 + (int) (breed_coefficient); iii++) 

    { 

Determine the max index into the glb_rd_search_indices array using Eq. 7.2-7.6 and for 

this search radius start making the search for road pixel. If road found then try to urbanize 

neighboring pixels. 

     } 

The breed coefficient is 24, so, it will be passing through 25 times to randomly attempt a 

pixel to get urbanized. Using the road gravity value which is calculated by Eq. 7.2, 

maximum road search index was determined (using Eq. 7.2 to 7.6). The road pixel would 

be searched for this maximum search index. 

 𝑟𝑔_𝑣𝑎𝑙𝑢𝑒 = (𝑟𝑔_𝑐𝑜𝑒𝑓𝑓/𝑀𝐴𝑋_𝑅𝑂𝐴𝐷_𝑉𝐴𝐿𝑈𝐸 ) ∗ ((𝑟𝑜𝑤 + 𝑐𝑜𝑙)/16.0)…………. (7.2) 

𝑖𝑛𝑡_𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑠𝑝𝑟_𝐺𝑒𝑡𝑅𝑜𝑎𝑑𝐺𝑟𝑎𝑣𝑉𝑎𝑙𝑢𝑒(𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦) … … . … … … … . (7.3) 

max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥 = 4 ∗ (𝑖𝑛𝑡_𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ∗ (1 + 𝑖𝑛𝑡_𝑟𝑜𝑎𝑑_𝑔𝑟𝑎𝑣𝑖𝑡𝑦)) … … (7.4) 

max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥 = 𝑀𝐴𝑋(max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥, 𝑛𝑟𝑜𝑤𝑠) … … … … … … … … … . (7.5) 

max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥 = 𝑀𝐴𝑋(max _𝑠𝑒𝑎𝑟𝑐ℎ_𝑖𝑛𝑑𝑒𝑥, 𝑛𝑐𝑜𝑙𝑠) … … … … … … … … … . . (7.6) 

If the road pixel is found, then it will check its neighboring pixels to get urbanized. If it 

becomes true, it further checks its surrounding pixels for a maximum three times to get 

urbanized.  

 In the first attempt of phase 5 rules a pixel couldn’t pass the set of urbanization tests and 

is rejected for becoming an urbanized pixel but not because of suitability conditions (see 

grid Four_0 in Figure 7.3). In the next attempt of phase 5 rules, a pixel was attempted to 

get urbanized but rejected because of suitability failure (see grid Four_1 in Figure 7.3). In 
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another attempt, again a pixel couldn’t be urbanized due to lesser suitability i.e. 5 as in grid 

Four_2 in Figure 7.3. Again, a pixel was not successfully urbanized due to the failure in the 

set of conditions of urbanization but not because of the suitability in next few attempts as 

in grid Four_3 and Four_4. In the next attempt, a pixel was successfully urbanized with the 

suitability of 6 i.e. grid Four_5. In grid Four_5, a new pixel was urbanized, therefore, the 

control now will be transferred to another rule of phase 5 in which surrounding pixels were 

tested to become urbanized for a maximum three times.  

In the first attempt, a pixel was urbanized as its suitability is 8 (see grid Five_0 in 

Figure 7.4) and the second attempt rejected the pixel from becoming urbanized as land 

suitability is 4 (see grid Five_1). In the third attempt of this rule, a pixel couldn’t be 

urbanized due to the failure of a set of conditions of urbanization but not because of the 

land suitability decision rule (see grid Five_2). After completing the second phase of phase 

5 rules the control was transferred to the first phase of phase 5 rules. In an attempt, a pixel 

was rejected due to the suitability failure (see grid Four_7). In another attempt pixels were 

rejected from becoming urbanized due to the failure of urbanization conditions (see grid 

Four_8 and Four_9). However, in the next attempt a pixel got urbanized as the suitability 

of the pixel was 7 (see grid Four_10; Figure 7.5). Whenever a pixel successfully gets 

urbanized in the first phase of growth rule 5, it is intended to pass through the second phase 

of phase 5 rules which are performed in three consecutive steps. In the first attempt, a pixel 

was rejected from being urbanized due to land suitability failure (see grid Five_6). In the 

next attempt a pixel was urbanized as land suitability of that pixel was 6 and the third 

attempt did not succeed in making a pixel urbanized due to the failure of sets of conditions 

of urbanization excluding the land suitability decision rule (see grid Five_7 and Five_8). 

After completing this second phase of phase 5, again control was transferred to the first 

phase of phase 5.  

The next three attempts resulted into the unsuccessful attempts to urbanize due to 

the failure in the set of conditions of urbanization but not because of the land suitability 

decision rule (see grid Four_11, Four_12 and Four_13 in Figure 7.6 & 7.7). In the next 
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attempt also an unsuccessful attempt for urbanization was made however, this time it failed 

because of the land suitability decision rule (see grid Four_14).  

In the next two attempts also, the pixels didn’t get urbanized due to the failure of 

urbanization conditions excluding land suitability decision (see grid Four_15 and Four_16).  

Figure 7.3: SLEUTH-Suitability program testing outcomes (a) 
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Figure 7.4: SLEUTH-Suitability program testing outcomes (b) 
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Figure 7.5: SLEUTH-Suitability program testing outcomes (c) 
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Figure 7.6: SLEUTH-Suitability program testing outcomes (d) 
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In the next attempt also pixel was unsuccessful to get urbanized due to land suitability 

decision failure (see grid Four_17). In addition, the next three attempts were failed to 

urbanize the pixels due to the failure of urbanization conditions (see grid Four_18, Four_19 

and Four_20). 

The above discussion leads to the successful examination of the SLEUTH-Suitability 

model. Testing of the model revealed that SLEUTH-Suitability is functioning well and all 

the growth rules, MC iterations and goodness of fitness metrics are implemented as desired 

and consistently producing desired model outcomes at each stage. SLEUTH-Suitability has 

been found to be working well and its application can be demonstrated for simulating the 

urban growth of any city or town. SLEUTH-Suitability requires six input data layers i.e., 

slope, urban, transportation, exclusion, land suitability, and hillshade. 

SLEUTH-Suitability requires a land suitability decision variable which needs to be 

prepared to account for the aggregate influence of (land cost, distance from road network, 

and distance from important facilities like railway station, bus stand, hospital, and 

recreational places) selected urbanization explanatory variables. The land suitability 

decision layer has been developed using the AHP method based on MCE technique and 

information of selected urbanization explanatory variables.  

The GIS-based multi-criteria evaluation (MCE) method is a process enables to 

integrate and transform geographic map criteria and judgment values in terms of 

preferences of decision makers and uncertainties to obtain an overall analysis for choosing 

among a number of alternatives or locations. 

There are various MCE based methods for the preparation of suitability map e.g. 

Boolean overlay, weighted linear combination, ordered weighted averaging and analytical 

Figure 7.7: SLEUTH-Suitability program testing outcomes (e) 
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hierarchy process (AHP). Development of land suitability decision variable has been 

discussed in the subsequent section. 

7.5.1 Preparation of land suitability layers 

Land suitability for urbanization can be defined as a set of information items required to 

make informed choices of urban development. Urban suitability analysis helps in 

identifying suitable sites for urban development that meet the prerequisite conditions by 

considering different urban growth explanatory variables. This exercise greatly reduces the 

time and efforts to be put otherwise manually. As discussed above that numerous 

explanatory variables play an important role in urbanization can be classified into five 

categories; natural, demographic, infrastructure services, social and land use. However, all 

the variables may not be contributing to urbanization equally therefore, equal weight should 

not be given while deciding the overall land suitability. For deciding the weights of every 

individual variable considered to derive land suitability like slope, distance from main roads 

(DMR), bus stands & railway station (DBR), recreational places (DRP), distance from 

hospitals (DH) and land cost variables has been evaluated for assigning weights using MCE 

method in the present study.   

 Multi-Criteria Evaluation (MCE) 

MCE is basically a raster-based technique employed on multiple geospatial variables (input 

maps) intended to affect the suitability of a location for urbanization. Using MCE, raster 

layers of different explanatory variables are prepared. MCE has the ability to facilitate 

decision making for a complex set of numerous choices. In various studies, integration of 

MCE and GIS has been proposed which utilizes geo-referenced data for developing and 

structuring the platform for analysis with the aim of supporting urban planning. Identifying 

urban suitable land and incorporating this suitability factor in urban growth modelling and 

simulation help in the better simulation of urban growth. Through land suitability, urban 

growth corresponding to different land use policy scenarios can be investigated and arrive 

at optimum developmental decisions. Preparation of a land suitability layer using GIS and 

AHP based on the MCE technique has been discussed in subsequent sections. Methodology 

adopted to derive the land suitability has been presented in Figure 7.8.  

Boolean overlay, which implies that all the factors and constraints be combined by 

some logical operators like union (OR) and intersection (AND) to produce discrete Boolean 

maps. Weighted linear combination is an aggregation approach that allows the variability 
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of discrete and continuous factors to be retained which requires all the factors standardized 

to a common numeric range and then combined by weighted averaging. Ordered weighted 

averaging allows for the continuous adjustment between intake level of risk and tradeoff 

between the criteria which gives a complete control along risk and tradeoff to make out the 

decisions. The Analytical Hierarchy Process (AHP) is crucial in determining the weights 

for a large no. of variables and is used to calculate the weight factors in association with 

criterion layers with the help of a preference matrix, where all the relevant criteria are 

compared with all others using a pairwise comparison method. Various MCE based 

approaches are available to deal with such problems. In the present study the AHP method 

of MCE has been used for determining land suitability considering selected urbanization 

explanatory variables, as discussed above. Land suitability preparation is discussed in detail 

in subsequent sections. 

Figure 7.8: Urban suitability analysis using MCE 
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 Analytical Hierarchy Process (AHP) 

The Analytical Hierarchy Process (AHP) is a technique which can be used to determine 

MCE weights. It can be implemented in a GIS environment in two ways i.e. factor weights 

are calculated for an individual parameter with the help of a preference matrix which is 

prepared by computing pairwise comparison matrix and the AHP can aggregate the priority 

at each hierarchy level representing alternatives. The principal steps include (Figure 7.9) 

identifying and defining the goal or objective of the problem and decomposing an objective 

into hierarchical order. After decomposition, identifying and specifying the relative 

importance of various urban growth explanatory variables in terms of their contribution to 

the achievement of the overall objective. 

7.5.1.2.1 Synthesis 

The synthesis of values as performed in four steps, as presented in Figure 7.10; first, the 

summation of all the values present in each column was done and then the pairwise 

comparison of the matrix was completed. Second, each variable in the matrix was divided 

by its column total which gives the normalized pairwise comparison matrix. Third, 

computation of the average of the variables present in each row of the normalized matrix. 

This exercise gave an estimate of the relative priorities of the variables being compared. In 

the fourth step, the consistency check of the pairwise comparison matrix is needed which 

is elaborated in subsequent sections. The detailed procedure for individual synthesis steps 

is described in respective sections below; 

Principal Steps 

Step1: Identifying & defining goal/ objective of the problem 

Step2: Decompose an objective into hierarchical order 

Step3: Specifying relative importance of various criteria in terms of 

their contribution to the achievement of the overall goal. 

A 

Figure 7.9: Principal steps of AHP 
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7.5.1.2.2 Pairwise comparison matrix 

Pairwise comparison of the matrix has also been performed in five steps (Figure 7.11). The 

first step includes analyzing the preferences for individual explanatory variables and 

preparation of a matrix constituting all variables like element Cij of the matrix shows the 

measure of preference of the item in row i when compared to the item in column j. In the 

second step, a value of 1 is assigned to all the diagonal elements of the matrix because of 

the fact that if we compare any item with itself, the judgments should be equally preferable. 

In the third step, preference value of element Cji is assigned as the reciprocal of element 

Cij. The preference value of 2 indicates that alternative i is twice as important as alternative 

j. Thus, the alternative j must be one-half as important as alternative i. In the fourth step, 

according to the above rules, the number of entries actually filled in by decision makers is 

(n2 – n)/2, where n is the number of elements to be compared. In the final step, preference 

ratings to various items are given according to the scale suggested by Saaty, 1986, as 

presented in Table 7.2.  

7.5.1.2.3 Consistency ratio 

The consistency ratio needs to be checked to ascertain the consistency of the weights 

assigned to an individual variable. To compute the consistency ratio is determined in a few 

steps as presented in Figure 7.12, first, by multiplying each value in the first column of the 

pairwise comparison matrix by the relative priority of the first item considered. Similarly, 

it can be calculated for other items 

 

Step (I): Sum the values in each column of the pairwise comparison matrix.  

Step (II): Divide each element in the matrix by its column total. The resulting 

matrix is referred to as the normalized pairwise comparison matrix. 14 

Step (III): Compute the average of the elements in each row of the normalized 

matrix. These averages provide an estimate of the relative priorities of the 

elements being compared.  

Step (IV): The last step is all about checking the Consistency of each Pairwise 

Comparison Matrix involved in the overall process to reach the goal and 

provide priority rankings to each of the alternatives with respect to their overall 

preferences. 

Synthesis  B 

Figure 7.10: Synthesis process of AHP 
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Table 7.2: Saaty’s degree preference table 

Degree of 

Preference 
Equal 

Mode-

rate 
Strong 

Very 

Strong 

Extremely 

Strong 
Intermediate 

Less 

Important 

Relative 

Importance 
1 3 5 7 9 2,4,6,8 

Reciproca

ls 

 

 

Sum the values across the rows to obtain a vector of values labeled “weighted sum.” 

Second, divide the elements of the vector of weighted sums obtained in Step 1 by the 

corresponding priority value. Third, Compute the average of the values computed in step 

2. This average is denoted as ʎmax. Fourth, compute the consistency index (CI) using eq.7.7.  

𝐶𝐼 = ((𝜆𝑚𝑎𝑥 − 𝑛))/((𝑛 − 1))…………………………………………….……….. (7.7) 

Where n is the number of items being compared. In the final step, consistency ratio (CR) 

can be computed using Eq. 7.8.  

𝐶𝑅 = 𝐶𝐼/𝑅𝐼 ………………………………………………………………………… (7.8) 

7.5.1.2.4 Consistency check and development of priority ranking 

The consistency of weights assigned to the different variables have been checked using CR 

and found to be acceptable, as it is less than 0.12. Further, the priority ranking map was 

developed. In the present research work, the land suitability layer was prepared by 

aggregating the effect of land cost, slope, and distance from recreational places (DRP), 

distance from main roads (DMR), distance from hospitals (DH), distance from bus station 

and railway station (DBR) in deciding the desirability of land for development. 

Less Importance More 
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Pairwise comparison matrix 

Element Cij of the matrix shows the measure of preference of the item in 

row i when compared to the item in column j. 

Preference ratings to various items are given according to the following 

fundamental scale table suggested by Saaty 

According to above rules, the number of entries actually filled in by 

decision makers is (n2 – n)/2, where n is the number of elements to be 

compared. 

Preference value of element Cji is assigned as the reciprocal of element 

Cij. (For e.g., if the preference value of 2 indicates that alternative i is 

twice as important as alternative j. Thus, it is to be followed that alternative 

j must be one-half as important as alternative i. 

A value of 1 is assigned to all the diagonal elements of the matrix because 

of the fact that if we compare any item with itself, the judgements should 

be equally preferable. 

C  

Consistency ratio D  

Step 1: Multiply each value in the first column of the pairwise comparison matrix 

by the relative priority of the first item considered. Same procedures for other 

items. Sum the values across the rows to obtain a vector of values labelled 

“weighted sum.”  

Step 2: Divide the elements of the vector of weighted sums obtained in Step 1 by 

the corresponding priority value. 

Step 3: Compute the average of the values computed in step 2. This average is 

denoted as ƛmax.  

Step 4: Compute the consistency index (CI):  

CI = (ƛmax−n) / (n−1)  

Where, n is the number of items being compared.  

Step 5: Compute the consistency ratio (CR):  

CR = CI / RI 

Figure 7.11 Pairwise comparison matrix 

Figure 7.12: Consistency ratio 
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Slope 

The slope map is prepared from DEM which ranges from 0 - 810 %. However,                                                                                                                

urbanization generally cannot take place on land where the slope is more than 20%. Thus, 

more than 20% was given lower class values.  

The slope map has been classified into 10 classes at an interval of 5% as given in 

Table 7.3. The classification has been done in such a way that lower slope values are 

assigned higher class values representing higher suitability for urbanization e.g. class value 

‘10’ represents the highest suitability for urbanization. 

Table 7.3: Slope class values 

S.no Slope class range (%) Class value S.no Slope class range (%) Class value 

1 0-5 10 6 25-30 5 

2 5-10 9 7 30-35 4 

3 10-15 8 8 35-40 3 

4 15-20 7 9 40-45 2 

5 20-25 6 10 > 45 1 

Land cost  

Land cost for different years i.e. 1997, 2000, 2008, 2013 and 2015 was obtained from 

official website of  Registration and Stamps,  Department of Revenue, Govt. of  Rajasthan, 

India and NITI Aayog (Govt. of India) for various places in Ajmer. A GIS point layer was 

prepared for the cost data. Further, point cost data were interpolated using IDW (Inverse 

Distance Weighted) interpolation technique in ArcGIS.  

The land cost (DLC rates) per sqm ranges from Rs. 7.48 - 2901.42 for year 1997, 

9.22 - 3576.62 for year 2000, 14.07 - 5458.64 for year 2008, 54.09 - 8413.69 for year 2013 

and Rs. 60.88 to 9468.80 for the year 2015. Further, the land cost layer was reclassified 

into 10 classes to assign class values for the suitability. The number 10 was assigned to the 

lowest class of land cost and so on, where 10 represents the highest suitability (Table 7.4). 

Distance from Main roads  

The road transportation layer has been prepared by onscreen digitization using satellite data 

of respective year i.e., 1997, 2000, 2008, 2013 and 2015 obtained from Google Earth.  

Further, a distance of each pixel from the nearest road was determined using Euclidian 

distance algorithm in ArcGIS and a distance raster layer was generated for each year. 
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Table 7.4: Land cost (per sq. m) class values 

S.no Land cost (Rs) Class 

value 1997 2000 2008 2013 2015 

1 7.48-296.87 9.22 - 

365.96 

14.07 - 

558.53 

54.09 - 

890.05 

60.88 - 

1001.67 

10 

2 296.87 - 

586.27 

365.96 - 

722.70 

558.53 - 

1102.98 

890.05 - 

1726.01 

1001.67 - 

1942.46 

9 

3 586.27 - 

875.66 

722.70 - 

1079.44 

1102.98- 

1647.44 

1726.01 - 

2561.97 

1942.46 - 

2883.25 

8 

4 875.66 - 

1165.05 

1079.44 - 

1436.18 

1647.44- 

2191.90 

2561.97 - 

3397.93 

2883.25 - 

3824.05 

7 

5 1165.064 - 

1454.45 

1436.18 - 

1792.92 

2191.90- 

2736.35 

3397.93 - 

4233.89 

3824.05 - 

4764.84 

6 

6 1454.45 - 

1743.84 

1792.92- 

2149.66 

2736.35 - 

3280.81 

4233.89 - 

5069.85 

4764.84 - 

5705.63 

5 

7 1743.84- 

2033.24 

2149.66 - 

2506.40 

3280.81 - 

3825.27 

5069.85 - 

5905.81 

5705.63 - 

6646.43 

4 

8 2033.24- 

2322.63 

2506.40 - 

2863.14 

3825.27 - 

4369.72 

5905.81 - 

6741.77 

6646.43 - 

7587.22 

3 

9 2322.63 - 

2612.03 

2863.14 - 

3219.88 

4369.72 - 

4914.18 

6741.77 - 

7577.73 

7587.22 - 

8528.01 

2 

10 2612.03 - 

2901.42 

3219.88- 

3576.62 

4914.18- 

5458.64 

7577.73 - 

8413.69 

8528.01 - 

9468.80 

1 

The obtained distance maps were again classified into the ten number of classes with 10 as 

highest suitability assigned to the nearest distance class (Table 7.5).  

Distance from recreational places (DRP) 

A point thematic layer of various recreational places in Ajmer was prepared from the 

manual digitization in ArcGIS using Google Earth data as a reference map. Further, a 

distance raster map was generated by determining the Euclidian distance of each pixel from 

recreational places in ArcGIS. Further, recreational distance maps were reclassified into 10 

classes, and class values are assigned as inversely proportional to the distance from the 

recreational place.  (Table 7.6).  

Distance from Bus and Railway Station (DBR) 

Similarly, distance raster maps were prepared for the distance from bus and railway 

stations. A Euclidian distance algorithm was used to prepare raster distance map in ArcGIS. 

Further, distance maps were reclassified into 10 classes, and class values are assigned as 

inversely proportional to the distance from the bus and railway station (Table 7.7). 
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Table 7.5: Distance to main roads class values 

S.no 
Distance to Main Roads (DMR) Range (m) Class 

value 1997 2000 2008 2013 2015 

1 0 -395.61 
0 -

1395.61 

0 -

1395.61 
0 - 834.70 0 - 652.93 10 

2 
1395.61 -

2791.22 

1395.61-

2791.22 

1395.61-

2791.22 

834.70 -

1669.41 

652.93 -

1305.86 
9 

3 
2791.22 -

4186.83 

2791.22-

4186.83 

2791.22-

4186.83 

1669.41 -

2504.12 

1305.86 -

1958.79 
8 

4 
4186.83 -

5582.44 

4186.83-

5582.44 

4186.83-

5582.44 

2504.12 -

3338.82 

1958.79 -

2611.72 
7 

5 
5582.44 -

6978.05 

5582.44-

6978.05 

5582.44-

6978.05 

3338.82 -

4173.53 

2611.72 - 

264.65 
6 

6 
6978.05 -

8373.66 

6978.05-

8373.66 

6978.05-

8373.66 

4173.53 -

5008.24 

3264.65-

3917.59 
5 

7 
8373.66 -

9769.27 

8373.66-

9769.27 

8373.66-

9769.27 

5008.24 -

5842.94 

3917.59 - 

4570.52 
4 

8 
9769.271-

11164.88 

9769.27-

11164.88 

9769.27-

11164.88 

5842.94 -

6677.65 

4570.52 - 

5223.45 
3 

9 
11164.88-

12560.49 

11164.88- 

12560.49 

11164.88-

12560.49 

6677.651 -

7512.36 

5223.45 - 

5876.38 
2 

10 
12560.49-

13956.1 

12560.49-

13956.1 

12560.49-

13956.1 

7512.36 -

8347.07 

5876.38 - 

6529.31 
1 

 

Table 7.6: Distance to recreational places class values 

S.no Distance to Recreational Places (DRP) Range (m) Class value 

1 0 - 2031.4 10 

2 2031.4 - 3828.5 9 

3 3828.5 - 5547.4 8 

4 5547.4 - 7188.3 7 

5 7188.3 - 8829.1 6 

6 8829.1 - 10548.0 5 

7 10548.0 - 12266.9 4 

8 12266.9 - 14064.0 3 

9 14064.0 - 16095.5 2 

10 16095.5 - 20002.2 1 

Distance from the Hospitals (DH) 

A point thematic layer of various health facilities (Hospitals) in Ajmer was prepared from 

the manual digitization in ArcGIS using Google Earth as a reference map. 
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Table 7.7:  Distance to bus and railway station (DBR) class values 

S.no 
Distance to Bus and Railway Station Ranges (DBR) 

(m) 
Class value 

1 0 - 2661.1 10 

2 2661.1 - 4790.1 9 

3 4790.1 - 6830.3 8 

4 6830.3 - 8693.1 7 

5 8693.1 - 10644.6 6 

6 10644.6 - 12596.2 5 

7 12596.2 - 14547.7 4 

8 14547.7 - 16587.9 3 

9 16587.9 - 18805.6 2 

10 18805.6 - 22708.6 1 

Further, distance raster map was generated by determining the Euclidian distance of each 

pixel from health facilities in ArcGIS. Further, distance maps were reclassified into 10 

classes, and class values are assigned as inversely proportional to the distance from the 

location of hospitals (Table 7.8). 

Table 7.8: Distance to hospital (DH) ranges class values 

S.no Distance to Hospitals (DH) (m) Class value 

1 0 - 2392.4 10 

2 2392.4 - 4519.0 9 

3 4519.0 - 6468.4 8 

4 6468.4 - 8417.8 7 

5 8417.8 - 10278.6 6 

6 10278.6 - 12050.8 5 

7 12050.8 - 13911.6 4 

8 13911.6 - 15949.6 3 

9 15949.6 - 18430.6 2 

10 18430.6 - 22683.8 1 

The different LULC change and urban growth explanatory variable raster layers have been 

prepared as discussed above and presented in Figure 7.13. Furthermore, the prepared 

explanatory variable raster layers are classified into 10 classes as discussed above and 

suitability class weights were assigned (Figure 7.14).  
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Figure 7.13: Different land use change and urban growth explanatory variables layers 
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After preparing each LULC change and urban growth explanatory variables defining land 

suitability layer and classifying them into ten number of classes the pairwise comparison 

Figure 7.14: Suitability weights for different variables 
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matrix was prepared based on the prior understanding of weights given to individual 

parameters. In the present investigation, two types of land suitability layers have been 

prepared i.e. suitability layer with a slope as an explanatory variable and land suitability 

layer without slope as an explanatory variable.  It was observed in the literature (Svoray et 

al., 2005; Kumar et al., 2013; Youssef et al., 2011) that slope is given three times higher 

preference than main roads, seven times higher than the distance from hospitals, 

recreational places, bus stands, and railway stations. While distance from main roads was 

preferred three times more than the distance from hospitals & recreational places and seven 

times of distance from bus and railway stations. However, the land cost was given 2 times 

higher priority than the distance from main roads, hospitals, and recreational places. The 

complete pairwise comparison matrix used in the present study is presented in Table 7.9. 

Table 7.9: Pairwise comparison matrix 

Urbanization explanatory variables Slope DMR DH DRP Land cost DBR 

Slope 1 3 7 7 1 7 

DMR 1/3 1 3 3 1/2 7 

DH 1/7 1/3 1 1 1/2 1 

DRP 1/7 1/3 1 1 1/2 1 

Land Cost 1 2 2 2 1 1/2 

DBR 1/7 1/3 1 1 2 1 

After pairwise comparison, consistency ratio was computed against weights of variables 

and it was found to be 0.12 that is near optimal solution (i.e., 0.10). Weights to selected 

variables have been finalized corresponding to a consistency ratio of 0.12. The weight of 

the topographic slope has been found to be highest as 41.37 which is quite obvious due to 

hilly surroundings of Ajmer and development is not allowed at the higher slope. The 

distance from the main roads has the weight of 16.48, distance from hospitals has a weight 

of 6.54, distance from recreational places has 6.54 weight, land cost has second highest 

weight at 18.41 and distance from bus and railway station has 10.63 weight. The details of 

weights are given in Table 7.10.  

Table 7.10: Suitability weights for a set of variables including slope 

Urbanization explanatory variables Weights 

CR = 0.12 

Slope 41.37 

Distance from main roads (DMR) 16.48 

Distance from hospitals (DH) 6.54 

Distance from recreational places (DRP) 6.54 

Distance bus stand & railway station (DBR) 18.41 

Land cost 10.63 
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On the basis of assigned weights to the individual urbanization explanatory variable, the 

land suitability layer was prepared as shown in Figure 7.8. It was clear from the land 

suitability layer that higher suitable locations were found near the core of Ajmer and its 

fringes excluding rocky areas. 

Table 7.11: Pairwise comparison matrix for without slope layer 

Urbanization 

explanatory variables 
DMR DH DRP 

Land 

cost 
DBR 

DMR 1     

DH 2 1    

DRP 1/3 1 1   

Land Cost 1/2 1 1 1  

DBR 1 1 4 2 1 

However, in a few other studies distance from the roads was given 3 times more 

weight than the distance from recreational places, hospital, land cost and distance to bus 

stand & railway station were preferred 4 times over distance from recreational (Hart, 1997; 

Georgiadou et al., 2005). Based on these a weighted pairwise comparison metric was 

prepared (Table 7.11) and finally, weights for an individual variable were obtained as; 

distance from main roads 22.95, hospitals 22.4, recreational places 9.22, and Bus Stand & 

Railway Station 26.67 and for land cost 18.74 (Table 7.12). 

Table 7.12: Suitability weights for a set of variables excluding slope 

Urbanization explanatory 

variables 
Weights 

CR = 0.10 

DMR 22.95 

DH 22.4 

DRP 9.22 

Land Cost 18.74 

DBR 26.67 

 Land Suitability Mapping for Urban Growth 

As discussed above a new urban growth decision variable i.e., land suitability has been 

developed using AHP based on MCE technique. A land suitability variable layer has been 

prepared and the suitability algorithm & required programme code are developed and 

integrated with the original SLEUTH code. While developing the land suitability decision 

variable and simulating urban growth using SLEUTH-Suitability, topographical slope was 

considered in two ways i.e., as a part of land suitability variable, without part of land 

suitability. Also, the sensitivity of SLEUTH-Suitability with respect to the land suitability 

weights was also investigated to arrive at the optimum weights for different urbanization 
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explanatory variables included into the land suitability decision rules. Model sensitivity as 

a function of land suitability weights has been quantified in terms of relative change in the 

goodness of fit metrics and nearness with the statistical measures calculated from the actual 

urban areas corresponding to the input data of control years and the urban area obtained 

from the classified output of the year 2018. Sensitivity analysis has also been tested with 

respect to the accuracy of urban growth prediction with respect to reference data of the year 

2018.   

7.6.1 Insertion of suitability layer in different ways 

The topographic characteristics significantly influence urbanization. SLEUTH model 

simulated growth as a function of slope also. To determine the optimal way of considering 

the effect of slope in urban growth simulation in the SLEUTH-Suitability four experiments 

were conceptualized and model performance was studied. These are; (1) slope in both land 

suitability decision variable as well as in decision of urbanization, (2) slope only in land 

suitability decision but not in decision of urbanization, (3) slope only in decision of 

urbanization but not in land suitability decision variable and (4) only slope in urbanization 

decision without land suitability decision variable. For the first three scenarios, the 

suitability layer was prepared and accordingly the SLEUTH-Suitability model was 

calibrated for individual scenario independently. In the fourth scenario, the model was 

calibrated without the land suitability decision variable. The motive of this process was to 

arrive at an optimal way of using topographical slope in urban growth simulation. These 

scenarios have been discussed in more detail in the following sections. 

 Scenario 1: Slope in land suitability decision variable as well as in decision of 

urbanization 

This scenario includes the land suitability variable prepared by combining slope with other 

important explanatory variables into a single land suitability decision variable using AHP 

based on the MCE method. Along with the land suitability variable, the decision of 

urbanization also will pass through the slope weight layer, which is an integral part of the 

SLEUTH model urban simulation. The land suitability decision variable map prepared in 

both ways is presented in Figure 7.15. 
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 Scenario 2: slope only in land suitability decision variable and not in the 

decision of urbanization 

In this scenario, the land suitability variable has been prepared to incorporate slope with 

other important explanatory variables. However, the slope has been removed from the 

urbanization decision process of the model. In this scenario, the slope decision variable has 

been replaced with the land suitability decision variable and a suitable code of SLEUTH-

Suitability was modified. The model has been calibrated and urban growth is predicted 

using the methodology presented in Chapter 4. 

 Scenario 3: slope only in the decision of urbanization but not in suitability 

layer 

In this scenario, the slope was not considered in the land suitability decision variable and 

considered as separate decision rule in urban growth simulation, as it does in the present 

version of SLEUTH. Model code was modified suitably. Further, the model was calibrated 

and urban growth was predicted using the methodology presented in Chapter 4. 

 Scenario 4: without suitability layer 

This includes the calibration of the SLEUTH model without incorporating land suitability 

decision variable means using the original SLEUTH version with optimum model 

parameters obtained from sensitivity analysis. This scenario has been explored to check the 

Figure 7.15: Land suitability variable weights with slope and without slope 
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influence of the land suitability decision variable on correctly simulating the urban growth 

for a case study area using the existing SLEUTH model. 

7.6.2 Model performance in different scenarios of slope and land suitability 

For each scenario, suitable logic has been developed and accordingly programming code 

of the SLEUTH-Suitability was modified. For each scenario model calibrated successfully, 

urban growth was predicted.  The accuracy of the modelling outcomes for each scenario 

was assessed independently. Performance of the model was assessed in terms of relative 

change in few spatial and statistical measures through the relative change in model accuracy 

in predicting the urban growth. Accuracy was assessed with respect to the urban area 

obtained from a classified satellite image of the year 2018. Important spatial and statistical 

measures like urban area (in km2), total no. of urban edges (in 100s), total no. of urban 

clusters (in 100s), urban cluster radius and mean cluster size was estimated from the 

simulated outcomes for different years i.e. 1997, 2000, 2008, 2013 and 2015 and compared 

with the same metrics calculated from the input data (urban area) for the respective years 

to judge the quality of the model calibration.  This comparison basically gives an idea of 

the model’s capability of replicating the historical urban growth thus the performance of 

the model calibration. The scenario for which differences between values of these 

landscape metric (calculated from simulated urban growth and input datasets) is minimum 

has been adopted as the final configuration for the SLEUTH-Suitability. The performance 

of the model in term of comparison of spatial and statistical measures, for different 

scenarios, is presented in Figure 7.16. 

It is evident from Figure 7.16 that urban area captured for the year 2000 in different 

scenarios is close to the reference (considered as actual) urban area. However, urban growth 

in succeeding years seems to be varying in case of scenario 1 which includes slope both in 

land suitability variable and decision of urbanization. It may have excess influence in 

making urbanization decisions which resulted in lesser urbanization as compared to the 

actual area. The urban area was optimally captured for scenario 2 which includes slope in 

suitability layer and replaces the additional slope layer into the SLEUTH model as 

compared to the other scenarios. Scenario3 which excludes slope in suitability layer but 

includes in the decision of urbanization as an additional slope layer was not able to capture 

urban area well as compared to scenario 2. However, it performed better than scenario 1 as 

the urban area is much closer to actual in the case of scenario 3 than scenario 1. The scenario 

4 which doesn’t include suitability module has not been able to capture urban area well as 
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compared to scenario 2 and 3. However, it was better in capturing urban area compared to 

scenario 1. Comparison of results in different scenarios revealed that SLEUTH-Suitability 

version is better (scenario 2) in simulating the urban growth as compared to the original 

version of the model (scenario 4). In Scenario 2, with land suitability decision variable 

simulated urban edges are closely matching with urban edges computed from the input data 

indicates that SLEUTH-Suitability is better in capturing fragmented growth. The difference 

in urban clusters and mean cluster size indicates that pixels are grouped in large clusters in 

the reference urban area as it is obtained from the LULC maps prepared from the classified 

satellite images (Figure 7.16). However, scenario 2 gives a much closer no of captured 

urban clusters as compared to other scenarios. Furthermore, cluster radius was more 

accurately captured in the case of scenario 2 than other scenarios. The mean cluster size 

showed many differences between actual mean cluster sizes. The sequence of performances 

of different scenarios remained the same as in case for the urban area. The inclusion of an 

additional slope layer in urbanization decision and not including in land suitability decision 

variable also (scenario 3) has not been found better than scenario 2. In addition, it requires 

more time in simulating the urban growth as compared to scenario 2 during calibration. 

Therefore, it can be concluded that model performance is better in scenario two where the 

slope is considered as an explanatory variable in the land suitability decision variable and 

slope decision variable in replaced with the land suitability decision rule in the SLEUTH-

Suitability. The study gives some important insights about the model performances, these 

are; (1) the inclusion of land suitability decision rule into the SLEUTH model is helpful in 

better simulation of urban growth than the existing SLEUTH model, (2) the land suitability 

decision variable must have slope as one of the urbanization influencing variable and no 

need of  slope as an additional decision rule in the model (i.e. scenario 2), (3) Relatively 

poor performance of the model in capturing urban clusters and mean cluster size indicates 

aggregation of pixels in large size clusters in the reference urban area during image 

classification. Thus it cannot represent the poor model performance.  
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Figure 7.16: Comparison of spatial and statistical measures computed from actual and modeled outcomes for different scenarios 
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Performance of the SLEUTH-Suitability may be further improved by exploring more 

explanatory variables in the land suitability decision variable or by identifying better 

weights for the individual urbanization influencing variables considered in the derivation 

of land suitability variable through sensitivity testing of the model for AHP weights.  

7.6.3 Sensitivity analysis of land suitability variable threshold 

Land suitability decision variables participate in the urbanization decision and 

implementation stage of each growth rule in the model. A pixel will be urbanized if it has 

land suitability weight more than a particular threshold value i.e., 5 in the present case. 

The suitable value of this threshold needs to be examined. The SLEUTH-Suitability model 

was tested with different values of land suitability variable threshold i.e., 4, 5, 6 and 7. For 

the individual case, the program of SLEUTH-Suitability model is modified and for 

individual case, the model has been calibrated and urban growth predicted. Change in 

model performance and ability to capture urban growth correctly during calibration and 

prediction with respect to different threshold values of land suitability decision rule was 

compared in term of spatial and statistical measures as discussed in previous sections. In 

addition, urban growth results with different threshold values have been compared with 

the actual growth by superimposing simulated growth over a satellite image of respective 

year in Google Earth. It was observed that at a threshold value of 4 and below, that 

unsuitable terrain like rocky areas, water bodies etc. were captured as urban areas by the 

model which is not in line with the actual urban area. Similarly, for threshold values 7 and 

more, urban area at many locations have not been captured leading to significant 

underestimation of urban areas. The results revealed that a land suitability threshold of 5 

is appropriate and produces satisfactory urban growth as compared to growth with other 

threshold values. Less than or equal to 4 value has over captured the urban whereas at 6 

and 7 threshold suitable locations were left out from the urbanization i.e., poorly captured 

the fragmented growth.  

7.6.4 Sensitivity analysis for urbanization explanatory variable AHP weights 

As discussed above, the performance of SLEUTH-Suitability can be further improved by 

using appropriate weights to each urbanization explanatory variables participating in land 

suitability variable. Appropriate weights for the variables can be determined through 

sensitivity analysis.  An iterative procedure has been used to perform a sensitivity analysis 

by simulating urban growth with different land suitability variables derived with different 
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combinations of weights for different explanatory variables. For each combination of 

weights land suitability decision variable layers are prepared for every control year i.e. 

1997, 2000, 2008, 2013 and 2015. Each set of suitability layers has been utilized for 

performing model calibration and urban simulations independently. The no. of 

combinations of weights of different variables are decided in the form of gradually 

increasing or decreasing weights for an individual variable by keeping remaining variables 

as constant. In such a way, 16 no of combinations are decided, named as scenario ‘a’ to 

‘q’ and land suitability decision layer named with prefix ‘suitability_’ e.g. suitability_a) 

and for each combination of weights land suitability layers of controlling years were 

prepared using AHP method in GIS. The suitability weights calculated for individual land 

suitability decision variable layers are presented in Table 7.13 to 7.29. In scenario 

suitability_a, the highest priority has been given to the slope over the distance from bus 

stand & railway station (DBR), hospital (DH), recreational places (DRP), main roads 

(DMR) and land cost (Table 7.13). Second highest priority has been given to the land cost 

and then to the distance from the main roads (DMR). The remaining three variables 

belongs to services and facilities and therefore, kept all three variables with similar 

preference. In this way, weights calculated for slope, land cost, and distance from main 

roads are 28.02, 22.13 and 17.48, respectively. For the remaining three variables weight 

is 10.78 each. These weights were calculated with a good CR i.e. 0.022. 

Table 7.13: Pairwise comparison matrix and weights for Suitability_a scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      28.02 

DBR 0.5 1     10.78 

DH 0.5 1 1    10.78 

DRP 0.5 1 1 1   10.78 

DMR 0.5 2 2 2 1  17.48 

Land cost 0.5 2 2 2 2 1 22.13 

CR = 0.022 

Suitability_b layer was prepared again with the highest slope weight i.e. 49.77, and 

assigning the same weight to land cost and main roads as 15.39. The remaining variables 

were given a weight equal to 6.48. For this scenario, CR has been found to be 0.023. In 

Suitability_b the slope variable has higher weight as compared to other variables as 

presented in Table 7.14. 
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Table 7.14: Pairwise comparison matrix and weights for Suitability_b scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      49.77 

DBR 0.1 1     6.48 

DH 0.1 1 1    6.48 

DRP 0.1 1 1 1   6.48 

DMR 0.5 2 2 2 1  15.39 

Land cost 0.5 2 2 2 1 1 15.39 

CR =0.023 

Suitability_c was prepared by giving highest weight to the land cost variable i.e. 28.02 

then second highest weight was assigned to slope variable i.e. 22.13 and third highest 

weight was assigned to the distance from main road (DMR)  as 17.48. The remaining three 

variables were assigned the same weights i.e. 10.78 each (Table 7.15). 

Table 7.15: Pairwise comparison matrix and weights for Suitability_c scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      22.135 

DBR 0.5 1     10.785 

DH 0.5 1 1    10.785 

DRP 0.5 1 1 1   10.785 

DMR 0.5 2 2 2 1  17.483 

Land cost 2 2 2 2 1 1 28.027 

CR = 0.022 

The suitability_d layer was prepared in such a manner that land cost should have a higher 

weight as compared to variables. Then the distance from main roads (DMR) and slope 

variables was given second and third highest weights i.e. 10.43 and 8.24, respectively. The 

distance from bus railway (DBR), hospital (DH) and recreational variables (DRP) were 

given low weights equal to 5.08 (Table 7.16). 

Table 7.16: Pairwise comparison matrix and weights for Suitability_d scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 
Final 

weights 

Slope 1      8.242 

DBR 0.5 1     5.085 

DH 0.5 1 1    5.085 

DRP 0.5 1 1 1   5.085 

DMR 2 2 2 2 1  10.436 

Land cost 10 10 10 10 10 1 66.067 

CR = 0.022 
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Suitability_e layer was prepared with the highest land cost suitability i.e. 28.23 then main 

roads and slope with 19.9 and 15.15 respectively. The weight of the remaining three 

variables were increased 12.23 each (Table 7.17).  

Table 7.17: Pairwise comparison matrix and weights for Suitability_e scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 
Final 

weights 

Slope 1      15.154 

DBR 0.9 1     12.234 

DH 0.9 1 1    12.234 

DRP 0.9 1 1 1   12.234 

DMR 2 2 2 2 1  19.905 

Land cost 2 2 2 2 2 1 28.239 

CR = 0.013 

In suitability_f scenario distance from main roads (DMR) were given higher weight i.e. 

44.52 then land cost and slope variables were second and third highest weight as   25.25 

and 15.71, respectively. The remaining three variables were given very low weights as of 

4.83 (Table 7.18). 

Table 7.18: Pairwise comparison matrix and weights for Suitability_f scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      15.712 

DBR 0.2 1     4.835 

DH 0.2 1 1    4.835 

DRP 0.2 1 1 1   4.835 

DMR 6 6 6 6 1  44.523 

Land cost 4 4 4 4 0.4 1 25.259 

CR = 0.079 

In suitability_g scenario, a higher weight was assigned to the slope as 57.29. The distance 

from main roads and land cost variables were given equal weights as 13.92 each. The 

distance from bus railway (DBR), hospital (DH) and recreational places (DRP) were again 

given lower and equal weights of 4.95 (Table 7.19). 

Table 7.19: Pairwise comparison matrix and weights for Suitability_g scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 
Final 

weights 

Slope 1      57.279 

DBR 0.1 1     4.958 

DH 0.1 1 1    4.958 

DRP 0.1 1 1 1   4.958 

DMR 0.2 3 3 3 1  13.923 

Land cost 0.2 3 3 3 1 1 13.923 

CR = 0.004 



327 

 

In suitability_h scenario, distance from main roads (DMR) and land cost were assigned 

weight of 17.1 and distance from bus railway (DBR), hospital (DH) and recreational 

places (DRP) were assigned weights of 5.42 each. The highest weight was assigned to the 

slope as 49.52 (Table 7.20). 

Table 7.20: Pairwise comparison matrix and weights for Suitability_h scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 
Final 

weights 

Slope 1      49.52 

DBR 0.1 1     5.426 

DH 0.1 1 1    5.426 

DRP 0.1 1 1 1   5.426 

DMR 0.4 3 3 3 1  17.101 

Land cost 0.4 3 3 3 1 1 17.101 

CR = 0.002 

In suitability_i scenario again the order of weights was kept similar to the suitability_h 

but the weight of the slope layer was slightly reduced to 42.49 and the weights of 

remaining variables increased. The distance from bus railway (DBR), hospital (DH) and 

recreational places (DRP) were assigned weights of 5.62 while the distance from main 

roads and land cost were assigned similar weights of 20.31 (Table 7.21). 

Table 7.21: Pairwise comparison matrix and weights for Suitability_i 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      42.49 

DBR 0.1 1     5.62 

DH 0.1 1 1    5.62 

DRP 0.1 1 1 1   5.62 

DMR 0.8 3 3 3 1  20.31 

Land cost 0.8 3 3 3 1 1 20.31 

CR = 0.027 

Suitability_j layer distance from bus n railway (DBR), hospital (DH) and recreational 

places (DRP) were assigned weights of 5. The slope was set to 34.24 with the highest 

weight. The distance from main roads (DMR) and land cost were given weights of 25.52 

(Table 7.22). 

In preparing suitability_k land suitability decision layer the distance from main 

roads was given higher weight i.e. 53.79, slope and land cost variables were given almost 

equal weight as 13.79 and 12.86, respectively. The remaining three variables were given 

weights of. 6.51 each (Table 7.23). 
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Table 7.22: Pairwise comparison matrix and weights for Suitability_j scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      34.24 

DBR 0.2 1     4.90 

DH 0.2 1 1    4.90 

DRP 0.2 1 1 1   4.90 

DMR 0.5 6 6 6 1  25.52 

Land cost 0.5 6 6 6 1 1 25.52 

CR = 0.021 

 

Table 7.23: Pairwise comparison matrix and weights for Suitability_k scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      13.793 

DBR 0.3 1     6.515 

DH 0.3 1 1    6.515 

DRP 0.3 1 1 1   6.515 

DMR 10 3 3 3 1  53.795 

Land cost 1 3 3 3 0.1 1 12.868 

CR = 0.169 

 Suitability_l was prepared with the highest weight assigned to the distance from main 

roads (DMR) but slightly smaller to what was assigned in the suitability_k i.e. 43.48. The 

weights to slope and land cost variables have been kept as 17.89 and 16.77, respectively. 

The remaining three variables were again kept at the same weight but slightly increased 

to 7.28 (Table 7.24). 

Table 7.24: Pairwise comparison matrix and weights for Suitability_l scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      17.894 

DBR 0.3 1     7.284 

DH 0.3 1 1    7.284 

DRP 0.3 1 1 1   7.284 

DMR 5 3 3 3 1  43.481 

Land cost 1 3 3 3 0.2 1 16.772 

CR = 0.08 

In suitability_m the highest weight was again given to distance from main roads (DMR) 

i.e. 33.37 however, reduced compared to scenario l. The slope and land cost variables were 

assigned slightly increased weights i.e. 30.9 and 22.14, respectively. The remaining three 

variables were kept at weight of 4.52 each (Table 7.25). 
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In suitability_n scenario, the land cost variable was assigned highest weight i.e. 53.76. 

The slope and distance from main roads (DMR) were assigned weights of 13.11 and the 

remaining three variables were also set to the weights of 6.67 each (Table 7.26). 

Table 7.25: Pairwise comparison matrix and weights for Suitability_m scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      30.906 

DBR 0.111 1     4.524 

DH 0.111 1 1    4.524 

DRP 0.111 1 1 1   4.524 

DMR 2 5 5 5 1  33.374 

Land cost 1 5 5 5 0.5 1 22.148 

CR = 0.034 

 

Table 7.26: Pairwise comparison matrix and weights for Suitability_n scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      13.112 

DBR 0.333 1     6.674 

DH 0.333 1 1    6.674 

DRP 0.333 1 1 1   6.674 

DMR 1 3 3 3 1  13.106 

Land cost 10 3 3 3 10 1 53.76 

CR = 0.016 

In suitability_o, the weight to the land cost variable was slightly reduced to 43.51 as 

compared to scenario n. The weights DMR and slope variables was slightly increased to 

17.03. The weight of the remaining three variables was also increased to 7.47 (Table 7.27). 

Table 7.27: Pairwise comparison matrix and weights for Suitability_o scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      17.038 

DBR 0.333 1     7.473 

DH 0.333 1 1    7.472 

DRP 0.333 1 1 1   7.472 

DMR 1 3 3 3 1  17.031 

Land cost 5 3 3 3 5 1 43.514 

CR = 0.074 

In suitability_p, the land cost was again assigned highest weight but less than scenario o 

as 31.70. The weights of DMR and slope variables were again given weights of 21.90 but 

slightly increased as compared to the previous scenario. Slightly increased weight to the 

remaining three variables was assigned as 8.16 (Table 7.28). 
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Table 7.28: Pairwise comparison matrix and weights for Suitability_p 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      21.906 

DBR 0.333 1     8.166 

DH 0.333 1 1    8.166 

DRP 0.333 1 1 1   8.166 

DMR 1 3 3 3 1  21.894 

Land cost 2 3 3 3 2 1 31.703 

CR = 0.013 

In suitability_q, the distance to main roads was given the highest weight as 42.81 and 

slope and land cost variables were given similar weights i.e., 20.14. Other variables were 

assigned weight of 5.41 (Table 7.29). 

Table 7.29: Pairwise comparison matrix and weights for Suitability_q 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      20.143 

DBR 0.2 1     5.414 

DH 0.2 1 1    5.414 

DRP 0.2 1 1 1   5.414 

DMR 5 4 4 4 1  42.813 

Land cost 1 5 5 5 0.3 1 20.802 

CR = 0.079 

With each combination of the weights assigned to different selected urbanization 

explanatory variable, the land suitability decision variable layer was prepared for each 

control year i.e., 1997, 2000, 2008, 2013 and 2015. Therefore testing the SLEUTH-

Suitability sensitivity to weights of variables/drivers used in land suitability decision 

variable, a total of 85 times the model was calibrated and urban growth simulated. Land 

suitability layers prepared for the year 2015 are presented in Figure 7.17-7.20. Locations 

with higher weight are suitable for urbanization. 
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Figure 7.17: Land suitability layers for different weightage scenarios (a-e) for year 

2015 
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Figure 7.18: Land suitability layers for different weightage scenarios (f-j) for year 

2015 
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Figure 7.19: Land suitability layers for different weightage scenarios (k-o) for year 

2015 
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Figure 7.20: Land suitability layers for different weightage scenarios (p-t) for year 

2015 
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7.6.5 SLEUTH-Suitability sensitivity for AHP weights of urbanization drivers 

Each land suitability layer was then converted into GIF file format to bring them into the 

same file format as other input layers to meet the prerequisite conditions of the SLEUTH-

Suitability model. The SLEUTH-Suitability was parameterized for each combination of 

urbanization driver weights using land suitability decision variable layer of a particular 

scenario at a time and other standard input layers like historical urban maps, road 

transportation layer, exclusion layer, and hillshade for all control years i.e., 1997, 2000, 

2008, 2013 and 2015. 

SLEUTH-Suitability uses a GA based calibration method. Optimum model 

parameters/ constant values (e.g. self-modifying parameters) obtained from the sensitivity 

analysis were used in the model. The model was calibrated for all combinations and 

optimum growth coefficients values were obtained for each land suitability scenario. 

According to Dietzel and Clarke (2007) out of the 12 goodness of fit metrics available in 

original SLEUTH model, OSM is a composite metric obtained from a subset of seven 

metrics that can be used to judge the calibration performance of the model.  However, 

twelve metrics along with OSM have been used in the present study to evaluate the 

performance of SLEUTH-Suitability calibration. These 12 metrics are the goodness of fit 

measure and their value near 1 is indicative of finer model fitness.  

Performance of the SLEUTH-Suitability in simulating the urban growth was 

assessed in term of spatial and statistical measures like urban population, urban edges, 

urban clusters, cluster mean size and cluster radius etc., as discussed in chapter 4.  

The compare metric has found to be highest desirable in case of suitability_c and 

suitability_i i.e. 0.88 and 0.82, respectively.  Pop is mostly above 0.9 for almost all 

suitability scenarios showing the consistency of the SLEUTH-Suitability model. The edge 

metrics is found to be greater for suitability_c, suitability_k and suitability_l i.e. 0.96, 0.96 

and 0.94, respectively. However, it is high in almost all suitability combinations. The 

Clusters metrics has found to be the highest i.e. 0.96 in the case of suitability_b, 

suitability_d and suitability_h and almost in all combinations model fitness is good. Only 

a few suitability combinations were found to be below 73% in capturing urban clusters 

i.e. suitability_j, suitability_m, suitability_o and suitability_p with 0.69, 0.58, 0.65 and 

0.39, respectively. The comparison of SLEUTH-Suitability model calibration for an 
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individual set of input layers based goodness of fit metrics i.e. Compare, Pop, Edges and 

Clusters is presented in Figure 7.21. 

Moreover, the Leesallee spatial metric which represents an urban pattern index is 

found to be above 0.45 for all the suitability scenarios and above 0.5 for suitability_c, 

suitability_h, suitability_i, suitability_j, suitability_m, suitability_o and suitability_p. It is 

quite difficult to achieve such a high LeeSallee value, achieving more than 0.45 indicates 

good model performance (Rafiee et al., 2009; Hui-Hui et al., 2012; Akın et al., 2014; 

Dezhkam et al., 2014). The Xmean was achieved more than 95% for suitability_a, 

suitability_b, suitability_c, suitability_e, suitability_h, suitability_i, suitability_k, 

suitability_l, suitability_o, suitability_p and suitability_q. the Highest Ymean was 

achieved for suitability_d, suitability_p i.e. 0.82, 0.93 and 0.89 respectively. The Radius 

was achieved greater than 0.93 for all the suitability scenarios except suitability_d. The 

goodness of fit metric OSM which is a combination of seven metrics has been found to be 

satisfactory (0.23) for suitability_b, suitability_h, and suitability_n. However for other 

scenarios like suitability_g, suitability_i, and suitability_o OSM values have been found 

to be on the lower side as 0.19, 0.14 and 0.15, respectively. Getting higher composite 

OSM values is also a crucial factor in SLEUTH modeling. In various studies, lower OSM 

values were found to be satisfactory for urban growth simulations using the SLEUTH 

model (Clarke, 2017). Comparison of different metrics like LeeSallee, Xmean, Ymean, 

Radius and OSM corresponding to different suitability scenarios are presented in Figure 

7.21  

A higher value of Pop, Edges, Xmean and radius metrics (i.e., > 0.9) and Compare, 

clusters and Ymean goodness of fit (50%-95%) in almost all suitability combinations 

indicates a very good calibration performance of the SLEUTH-Suitability which is a good 

improvement over the original SLEUTH model.  

Furthermore, in addition to good calibration performance of the model in term of 

the goodness of fit metrics, SLEUTH-Suitability model performance in simulating the 

urban growth (prediction phase outcome) can be judged in term of few spatial and 

statistical measures like an urban area, no. of edges, clusters, radius and mean cluster size. 

Further, the sensitivity of SLEUTH-Suitability with respect to AHP weights to the 

urbanization drivers used in land suitability decision variable can be determined with 

respect to a relative change in urban growth predictions which can be quantified in term 
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of relative change in spatial and statistical measures for all suitability scenarios i.e., a to 

p.  

The comparison of spatial & statistical measures has been done with respect to the 

similar statistics calculated from the urban area of the same year (obtained from classified 

outputs of remote sensing data) for every individual input dataset prepared from varying 

combination of suitability weights of different explanatory variables. This comparison has 

been performed for every control year (i.e., 1997, 2000, 2008, 2013 and 2015) as well as 

for the year 2018 for predicted urban growth which indicates the performance of the model 

in urban growth prediction as presented in Figure 7.22 - 7.25.  The suitability weight 

scenario for which difference in spatial and statistical measures calculated from the 

simulated urban growth and measures calculated from the reference urban area extracted 

from the LULC map of control years as well as for the year 2018 (assumed as correct one) 

is minimum, has been adopted as the optimum land suitability decision variable layer and 

corresponding weights to the participating urbanization drivers as optimum AHP weights. 

Different combinations of suitability layers and the calibration & simulation-based 

statistics have been represented with a series of alphabetical characters (i.e., a-q) as 

presented in Figure 7.22-7.25.  The suitability layer combination a-f are presented in 

Figure 7.22. The urban area, no. of clusters, cluster radius and mean cluster size captured 

against scenario suitability_c have been found to be closest to the statistical measures 

calculated from the actual urban area as compared to other scenarios   ’a’, ‘b’, ‘d’, ‘e’ and 

‘f’. However, urban edges have found to be more accurately captured in scenario ‘a’ as 

compared to the ’b’, ‘c’, ‘d’, ‘e’ and ‘f’ (Figure 7.22).    

The comparison of results for suitability layer combinations g to j is presented in 

Figure 7.23. The urban area, no. of urban clusters, mean cluster size and radius are more 

accurately captured in case of scenario ‘i’ than ‘g’, ‘h’ and ‘j’. However, no. of edges are 

more accurately captured in case of scenario ‘h’.  
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Figure 7.21: Comparison of different spatial and statistical goodness of fit metrics for 

different land suitability scenarios 
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Figure 7.22: Comparison of statistical measures computed from actual and modeled with different suitability layers outcomes (a) 
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Figure 7.23: Comparison of statistical measures computed from actual and modeled (with different suitability methods) outcomes (b) 
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Figure 7.24: Comparison of statistical measures computed from actual and modeled (with different suitability methods) outcomes (c) 
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Figure 7.25: Comparison of statistical measures computed from actual and modeled (with different suitability methods) outcomes (d) 
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The comparison of statistical measures obtained from modelling outcomes of suitability 

scenarios k to m and actual data is presented in Figure 7.24. The urban area has not been 

found as close with the reference urban area in any of the scenarios i.e. scenario k to m 

that may be due to the inappropriate weight combinations of the individual explanatory 

variable in these scenarios. The no. of urban edges and clusters, however, captured well 

for the scenario ‘k’ as it is showing a closer match with the actual no. of edges and clusters 

respectively as compared to scenario ‘l’, and’. The mean cluster size and radius have also 

shown much variation between reference urban area and modeled urban area for all the 

scenarios i.e. k-m in almost all years.  

For suitability scenarios from n to q statistical measures have been compared with 

the measures calculated from the reference area as given in Figure 7.25. The comparison 

between actual urban area (reference) and modeled statistics indicates variations for urban 

area, mean cluster size and radius. Only the no. of urban clusters and edges are found to 

be closely matched with the reference urban area.  

Important inferences can be drawn from the above-discussed results of the 

sensitivity analysis of SLEUTH-Suitability as a function of AHP weights assigned to 

individual urbanization drivers in the land suitability decision variable.  

• Year wise trend has not been observed in statistical measures for different years for 

different suitability scenarios. Model performance inferences have been drawn 

corresponding to the year 2018 to judge the prediction performance. 

• It can be concluded that a particular combination of weights to the urbanization drivers 

in land suitability layer may not be appropriate in capturing all the forms of the urban 

growth. So, further suitable weights assigned to the urbanization drivers can be 

identified or refined to capture a particular type of urban growth in a better way.   

• Thus, it is required to further refine the weights of different explanatory variables in 

the land suitability decision layer.  

As discussed above a few new weight combinations based on the understanding 

achieved from the sensitivity analysis may be explored to arrive at better model 

performance.  Three new suitability layer combinations have been prepared to identify 

more refined weights for the selected urbanization drivers (i.e., suitability_r, suitability_s 

and suitability_t). The model was calibrated and urban growth was predicted for these 

three suitability scenarios keeping other model inputs the same. 
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In suitability_r, slope driver was assigned the highest weight i.e 32.93. The land cost and 

slope variables were assigned weights of 24.29 and 32.93, respectively. Weights assigned 

to different drivers are presented in Table 7.30. 

Table 7.30: Pairwise comparison matrix and weights for Suitability_r scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      32.932 

DBR 0.2 1     8.182 

DH 0.2 1 1    8.182 

DRP 0.199 1 1 1   8.176 

DMR 0.9 2.2 2.2 2.2 1  18.229 

Land cost 0.9 2.2 2.2 2.2 2.3 1 24.299 

CR = 0.027 

 In the suitability_s scenario higher weight was assigned to the slope as 44.7. The DMR 

and land cost variables were the same weights as 20.0.5. The remaining three variables 

were the same weight as 5.06, as presented in Table 7.31.  

Table 7.31: Pairwise comparison matrix and weights for Suitability_s scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 

Final 

weights 

Slope 1      44.709 

DBR 0.1 1     5.06 

DH 0.1 1 1    5.06 

DRP 0.1 1 1 1   5.06 

DMR 0.55 3.7 3.7 3.7 1  20.056 

Land cost 0.55 3.7 3.7 3.7 1 1 20.056 

CR = 0.004 

 The suitability_t scenario 8.4 has been assigned as a weight to distance from bus & 

railway station, distance from recreational places and hospital variables. The weight for 

the slope was assigned 22.18 and distance from main roads and land cost variables were 

assigned weights of 24.53 and 28.08, respectively (Table 7.32). 

The newly formulated pairwise comparison matrix has given final weights for respective 

suitability weight scenario and land suitability layers are prepared for all control years as 

presented in Figure 7.20 for the year 2015, as a sample. Furthermore, the SLEUTH-

Suitability model was calibrated and urban growth was simulated for each suitability 

scenario independently. The model has produced similar statistical metrics as already 
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discussed in the above sections and these metrics are compared to determine the best 

weight combination scenario.  

Table 7.32: Pairwise comparison matrix and weights for Suitability_t scenario 

Urbanization 

expl. variables 
Slope DBR DH DRP DMR 

Land 

cost 
Final 

weights 

Slope 1      22.182 

DBR 0.7 1     8.401 

DH 0.7 1 1    8.401 

DRP 0.7 1 1 1   8.401 

DMR 0.6 4 4 4 1  24.535 

Land cost 0.65 4 4 4 1.5 1 28.08 

CR = 0.067 

 

A good value of Compare, Pop, Edges, Clusters, Xmean and Radius have been obtained 

(0.94) for the suitability_s scenario. In addition, an improved LeeSallee value of 0.52 has 

been achieved which is quite good for urban growth modelling applications using 

SLEUTH (Rafiee et al., 2009; Hui-Hui et al., 2012; Akın et al., 2014; Dezhkam et al., 

2014). The OSM achieved as 0.17 for set ‘s’ that is far improved from the other two 

combinations i.e. ‘r’ and ‘t’.  The goodness of fit measure favors the suitability weight 

combinations of set‘s’ (please refer to Figure 7.26). 

In addition, the statistical measures have also been compared with respect to the actual 

data as discussed in the above sections. The urban area, no. of clusters, edges, radius and 
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Figure 7.26: Comparison of different spatial and statistical goodness of fit metrics 
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mean cluster size is found to be closely matched with the actual data based respective 

statistics for set ‘s’ as compared to the set ‘r’ and ’t’ (please refer to Figure 7.27).  

The current section dealt with the sensitivity analysis of the combination of 

weights of different urbanization explanatory variables. The individual combination of 

suitability weight layers has been introduced into the model as one of the input variable 

layers and the model is calibrated and simulated for each combination independently. The 

above discussion about the sensitivity analysis of the combination of weights gives an idea 

about the optimal weights combination which best reflects the socio-economic, bio-

physical and topographic characteristics of the study area in modelling outcomes. It is 

identified that slope weight of 44.709 with highest preference, distance from main roads 

and land cost with lesser weight of 20.056 and distance from bus n railway, distance from 

recreational places and hospitals with equal weight as 5.06 are the optimal weights to 

derive the land suitability decision variable for the cities and towns having Ajmer like 

socio-economic & topographical characteristics (Table 7.33). 

Table 7.33: Optimal weights to urbanization drivers participating in land suitability 

Variable Slope Land Cost DMR DRP DBR DH 

Weight 44.7 20.05 20.05 5.06 5.06 5.06 
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 Concluding Remarks 

The SLEUTH-Suitability model has been successfully developed by developing an 

algorithm to include the land suitability decision rule in the simulation process, 

programming code was written and integrated with the existing SLEUTH. SLEUTH-

Suitability model was successfully tested on a demo input dataset. Important urbanization 

drivers and explanatory variables have been identified and land suitability decision 

variable layer has been derived using AHP based MCE method. SLEUTH-Suitability 

models sensitivity to the weights of urbanization drivers in land suitability decision layer 

has been determined by determining the relative change in models calibration and urban 

growth prediction performance for different suitability scenarios (with different weights 

to urbanization drivers) in term of the goodness of fit of landscape metrics and spatial & 

statistical measures. Optimum weights for the different urbanization drivers have been 

determined as presented in Table 7.33.  Improved model performance has been achieved 

from the SLEUTH-Suitability with a good LeeSallee i.e. 0.52 and OSM i.e. 0.2 values. 

The new version of the model i.e., SLEUTH-Suitability has performed well as compared 

to original SLEUTH during calibration as well as in urban growth predictions on account 

of the inclusion of more urbanization drivers in the simulation process. The new model 

has been found to be better and satisfactory in capturing the fragmented and small size 

developments in addition to other forms of urban growth. However, the SLEUTH-

Suitability further needs to be tested for modelling of the urban growth of different cities 

in different socio-economic and geographical conditions. 
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CHAPTER 8 

DEMONSTRATION OF MODEL APPLICATION AND 

PERFORMANCE COMPARISION 
 

8.1 Prologue 

The SLEUTH model works with a strict structure of growth coefficients, rules which 

operate upon input layers (i.e. slope, land use, exclusion, urban, transportation and hillshade 

in SLEUTH; plus one additional layer i.e., land suitability in SLEUTH-Suitability) as 

discussed in detail in Chapter 4. However, the original SLEUTH model has some 

limitations as discussed in Chapter 4 and 5, which have been improved in the present 

research work by identifying the appropriate value of model parameters/constants through 

sensitivity analysis (discussed in Chapter 5) and further by incorporating an additional 

urbanization decision rule i.e., land suitability, which is a function of important 

urbanization drivers, into the LULC change and urban growth simulation process, as 

discussed in Chapter 7. A new improved version of model SLEUTH-Suitability has been 

successfully developed to incorporate the land suitability urbanization decision variable.  

Application of three different versions of the SLEUTH model i.e. base SLEUTH 

model with default parameters (i.e. version 1), SLEUTH model with optimum model 

constants & parameters (i.e. version 2) and SLEUTH-Suitability (i.e. version 3) have been 

demonstrated for Ajmer fringe, a medium-size developing city situated in Rajasthan state 

of India. Three versions of the model have been parameterized using the same input data 

of the Ajmer fringe independently, calibrated using the GA based method and urban growth 

was predicted for up to the year 2040 using the methodology as discussed in Chapter 4.  

Further, the performance of three versions of the SLEUTH model has been 

compared in term of their performance during calibration, in urban growth prediction and 

in term of their capability in capturing the different type of urban growth. Also, the 

improvement in performance from original SLEUTH to SLEUTH-Suitability has been 

determined in terms of different metrics, measures, and accuracy. The overall comparison 

was done on the basis of several criteria i.e., criteria 1: goodness of fit landscape metrics to 

compare calibration performance; criteria 2: spatial and statistical measures i.e. urban area, 

no. of edges and clusters, mean cluster size and cluster radius to judge the performance of 

urban growth prediction; criteria 3: growth coefficients; criteria 4: hit-miss-false alarm 

method; criteria 5: accuracy assessment on the basis of random sample points overlaid on 
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high resolution Geo-eye satellite image; criteria 6: accuracy assessment on the basis of 

GCP’s collected from field and criteria 7: visual analysis. 

8.2 Application Demonstration  

8.2.1 The base version of SLEUTH model with default parameters 

The application of the base SLEUTH model with default parameter/ constant (i.e. boom 

1.01, bust 0.09, critical low 0.97 and critical high 1.3, diffusive value parameter 0.005, 

critical slope 15, Monte Carlo 10, game of life critical threshold 2 cells and cellular 

neighborhood size 8 cells) settings has been demonstrated for Ajmer fringe including 

Pushkar town. The model has been parameterized for the prerequisite conditions and 

calibrated satisfactorily to obtain the optimal growth coefficient values utilized in 

simulating the urban growth up to the year 2040 using the methodology discussed in detail 

in Chapter 4. Model performance in calibration and urban growth prediction has been 

assessed in terms of different metrics, measures, and accuracy as discussed in section 8.1. 

After successful model calibration in phases, optimum growth coefficients (Table 8.1) have 

been obtained corresponding to the goodness of fit landscape metrics and one composite 

metric i.e., OSM (Table 8.1). The model calibration has been found to be satisfactory in 

terms of goodness of fit metrics i.e. compare, pop, edges, clusters, LeeSallee, Xmean, 

Ymean, Radius and OSM (Table 8.1).  The optimal growth coefficients have been obtained 

as 16, 98, 100, 36 and 52 for diffusion (diff), breed (brd), spread (sprd), slope resistance 

(slp) and road gravity (rg) coefficients, respectively. The major contributing coefficients 

are breed and spread coefficients indicating more new spreading center and organic/ spread 

growth for the study area. The simulated urban growth maps of the year 1998, 2000, 2008, 

2013, 2015 and 2018 are presented in Figure 8.1. The trend of urban growth of Ajmer has 

been presented in Figure 8.2. Urban growth for control years (i.e. the year 2000, 2008, 2013 

and 2015) has been simulated as 1260.42, 1602.89, 1793.63 and 1872.71 (in km2) 

respectively while actual urban growth obtained from the classified satellite images of 

respective years as 1358.38, 2328.68, 2589.73 and 3093.72 (in km2). For the predicted 

urban growth in the year 2018, it has been simulated as 1996.86 km2 while actually, it is 

3411.53 km2 (extracted from the classified image of the year 2018). Urban growth map for 

Ajmer in the year 2040 has been presented in Figure 8.3. Urban growth of Ajmer may reach 

to 3176.18 km2 up to the year 2040. Urban growth will increase exponentially in the near 

future in the urban fringe.
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  Figure 8.1: Simulated urban growth for year 1997. 2000, 2008, 2013, 2015, 2016, 2017 and 2018 using base version 1 of SLEUTH 
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Figure 8.2: Predicted urban growth area for a period (1998-2040) using base SLEUTH version1 
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The study shows that rapid urban growth is taking place in Ajmer along the Jaipur road 

(NH8), the area near the highway has grown more rapidly through the years (Figure 8.3). 

The area around Ana Sagar Lake has urbanized at a faster rate in the past few years as 

Figure 8.3: Predicted urban growth area for year 2040 using base SLEUTH version 1 
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population density of that area has grown rapidly. The area nearby Foy Sagar depicted 

very high urban growth which may be due to the development of new colonies in relatively 

flat areas. Pushkar bypass Road is showing road influenced growth as new development 

has taken place recently and is likely to further grow in the near future. Madar area which 

is in a North-East direction to Ana Sagar Lake is also showing growth as new railway 

colonies have been developed and more are likely to get developed in the future. Beawar 

Road which is in the south direction is also showing road influenced growth. Many 

educational institutes are developing along highways due to which nearby development is 

also taking place. So, the study area will be developing at a faster rate in upcoming years. 

Nasirabad Road is in the east direction also showing urban growth at a faster rate in the 

past few years. The area around Bisal Sagar has grown rapidly as a huge amount of 

population is shifting to earn their livelihood. Areas nearby Khanpura Pond is also likely 

to get developed at a smaller pace as many industrial activities are taking place at this 

region. The Pushkar region is one of the most important places in Ajmer fringe which is 

depicting higher growth in upcoming years. Pushkar region is a religious and popular 

place, commercialization is being increased and also the urban density is getting higher at 

this place. In upcoming years it will be growing at large. 

8.2.2 SLEUTH model with optimum model constants & parameters 

The SLEUTH model’s sensitivity to a few selected model parameters and constants have 

been determined and their optimum values are estimated (i.e. boom 1.3, bust 0.10, critical 

low 0.90 and critical high 1.25, diffusive value parameter 0.0055, critical slope 15, Monte 

Carlo 60, game of life critical threshold 1 cells and cellular neighborhood size 12 cells). 

Sensitivity analysis has been discussed and presented in Chapter 5 in detail. Improvement 

in the base SLEUTH model with optimum model parameters has been further examined 

by simulating urban growth of Ajmer fringe which also includes Pushkar town using the 

same input data as used in application demonstration of SLEUTH with default model 

parameters. The model has been parameterized for the prerequisite conditions and 

calibrated using the GA based calibration process to obtain the optimal growth coefficient 

values corresponding to optimal model fitness measure i.e. OSM using the methodology 

discussed in Chapter 4. The goodness of fit metrics obtained from the calibration are found 

to be 0.57, 0.98, 0.97, 0.93, 0.51, 0.95, 0.52, 0.98 and 0.08 for compare, pop, edges, 

clusters, LeeSallee, Xmean, Ymean, Radius and OSM respectively. In this case, optimal 

growth coefficients have been obtained as 87, 100, 100, 60 and 44 for diffusion, breed, 
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spread, slope resistance, and road gravity coefficients, respectively. The major 

contributing growth coefficients are found to be breed and spread coefficients indicating 

more new spreading centers and organic/ spread growth. In addition, higher values of 

diffusion, slope resistance, and road gravity coefficients are also indicating greater 

diffusive/ spontaneous and road influenced growth in the study area. Further, optimum 

growth coefficient values (as presented in Table 8.2) utilized in simulating the real urban 

growth patterns and based on the existing growth scenario urban growth is predicted for 

up to the year 2040. The simulated growth from this version of the model for a different 

year like 1998, 2000, 2008, 2013, 2015 and 2018 has been presented in Figure 8.4. Urban 

growth for the control years (i.e. the year 2000, 2008, 2013 and 2015) has been simulated 

as 1298.3, 1910.78, 2417.05 and 2652.2 (in km2) respectively while actual urban growth 

obtained from the classified satellite images of respective years as 1358.38, 2328.68, 

2589.73 and 3093.72 (in km2). For the predicted urban growth in the year 2018, it has 

been simulated as 3037.45 km2 while actually, it is 3411.53 km2 (extracted from the 

classified image of the year 2018). The trend of urban growth area (km2) and urban growth 

map for Ajmer in the year 2040 are presented in Figure 8.5 & 8.6 respectively. Urban 

growth of Ajmer may reach to 6486.8 km2 up to the year 2040. Urban growth will increase 

exponentially in the near future in the urban fringe. 

The study shows that rapid urban growth is taking place in Ajmer along the Jaipur 

road (NH8), area nearby highway has grown more rapidly through the years (Figure 8.6). 

The area around Ana Sagar Lake has urbanized at a faster rate in the past few years as 

population density of that area has grown rapidly. The area nearby Foy Sagar depicted 

very high future urban growth as compared to the growth predicted by the base version of 

the SLEUTH model. Small size development has been captured well from this version of 

the model (Figure 8.6). The area along the Jaipur road and Pushkar bypass will be 

developed rapidly up the year 2040. Large amounts of growth may take place in this area 

on account of various factors like the establishment of two universities on the Pushkar 

bypass road, better road connectivity with the surrounding areas and availability of flat 

land. Another locality which may develop significantly is the Beawer and Nasirabad Road 

on account of favorable conditions like good roads and flat land availability.  
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Figure 8.4: Simulated urban growth for year 1997. 2000, 2008, 2013, 2015, 2016, 2017 and 2018 using version 2 
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Figure 8.5: Predicted urban growth area for a period from 1998-2040 using optimum model parameters i.e. version 2 
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Figure 8.6: Predicted urban growth area for the year 2040 using version 2 
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8.2.3 SLEUTH-Suitability  

As discussed in Chapter 5, SLEUTH model performance can be improved by 

incorporating the effect of other important urbanization drivers/ explanatory variables into 

urban growth simulation process to simulate urban growth more accurately and simulating 

small size development and fragmented growth in a better way, in different socio-

economic conditions.  Thus, an attempt has been made in the present study to develop a 

newer version of SLEUTH i.e., SLEUTH-Suitability by adding one more urban growth 

decision rule i.e., land suitability in the simulation process. The methodology adopted in 

developing SLEUTH-Suitability has been discussed in detail in Chapter 4 and Chapter 7. 

Further, application of the SLEUTH-Suitability has been demonstrated by simulating the 

urban growth of Ajmer fringe. Also, improvement in performance of SLEUTH-Suitability 

as compared to the base SLEUTH model performance has also been quantified as 

discussed in subsequent sections.  

         The SLEUTH-Suitability model was parameterized for the prerequisite conditions 

with the required input dataset including a land suitability decision variable layer and 

optimum model parameters/ constants obtained from sensitivity analysis. SLEUTH-

Suitability was calibrated using the GA based algorithm and urban growth was simulated 

up to the year 2040 using the methodology discussed in Chapter 4 and 7. Optimum growth 

coefficients have been obtained corresponding to the optimal model fitness measure i.e., 

OSM.  Further model accuracy in simulating urban growth and different forms of 

urbanization has been tested using different methods as explained in Chapter 4. Model 

performance has been found to be good and improved as compared to the base version of 

SLEUTH. The accuracy assessment of the modelling outcomes has been performed in 

many ways that validate the model performance.  

         After calibrating SLEUTH-Suitability optimal growth coefficients have been 

obtained as 51, 6, 26 and 74 for diffusion, breed, spread, and road gravity coefficients, 

respectively. The major contributing coefficients are diffusion and road gravity 

coefficients indicate more spontaneous and road influenced growth as compared to the 

clustered and new spreading center growth. the goodness of fit metrics obtained from the 

calibration are found to be 0.95, 0.97, 0.97, 0.94, 0.52, 0.97, 0.53, 0.98 and 0.2 for 

compare, pop, edges, clusters,  LeeSallee, Xmean, Ymean, radius and OSM respectively. 
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Table 8.1: Optimal values of model growth coefficients corresponding to different goodness of fit metrics for base SLEUTH case 

 

Table 8.2: Optimal values of model growth coefficients corresponding to different goodness of fit metrics for SLEUTH-Sensitivity 

 

Table 8.3: Optimal values of model growth coefficients corresponding to different goodness of fit metrics for SLEUTH-Suitability 

 

Metrics/ coefficient Compare Pop Edges Clusters LeeSallee Xmean Ymean Radius OSM diff brd sprd slp rg 

Values 0.57 0.98 0.97 0.93 0.51 0.95 0.52 0.98 0.08 87 100 100 60 44 

Metrics/ coefficients Compare Pop Edges Clusters LeeSallee Xmean Ymean Radius OSM diff brd sprd slp rg 

Values 0.59 0.97 0.95 0.8 0.5 0.95 0.52 0.98 0.07 16 98 100 36 52 

Metrics/ coefficients Compare Pop Edges Clusters LeeSallee Xmean Ymean Radius OSM diff brd sprd rg 

Values 0.95 0.97 0.97 0.94 0.52 0.97 0.53 0.98 0.2 51 6 26 74 
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Figure 8.7: Simulated urban growth s for year 1997, 2000, 2008, 2013, 2015, 2016, 2017 and 2018 using SLEUTH-Suitability i.e. version 3 
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Figure 8.8: Predicted urban growth for Ajmer fringe up to the year 2040 using SLEUTH-Suitability i.e. version 3 
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Figure 8.9: Predicted urban growth for Ajmer in the year 2040 using SLEUTH-Suitability 

The simulated urban growth for different years i.e., 1998, 2000, 2008, 2013, 2015 and 2018 

has been presented in Figure 8.7. Urban growth for control years (i.e. the year 2000, 2008, 

2013 and 2015) has been simulated as 1261.64, 2207.15, 2921.39 and 3248.81 (in km2) 
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respectively while actual urban growth obtained from the classified satellite images of 

respective years as 1358.38, 2328.68, 2589.73 and 3093.72 (in km2). For the predicted 

urban growth in the year 2018, it has been simulated as 3798.26 km2 while actually, it is 

3411.53 km2 (extracted from the classified image of the year 2018). The urban growth has 

been predicted up to the year 2040 and it is indicating exponential urban growth in the 

coming years as presented in Figure 8.8. Urban growth map for Ajmer in the year 2040 has 

been presented in Figure 8.9. The urban growth of Ajmer may reach 10765 km2 up to the 

year 2040. Urban growth results obtained from this version of the model have been found 

to be consistent as per the actual growth available on the ground for the year 2018. Ajmer 

will develop significantly along the main roads like Pushkar bypass, Jaipur road, Jaipur 

bypass, Beawar road. More development has been predicted for the year 2040 in areas 

where land suitability is better like flat land in Foy Sagar area, Pancheel area and Pushkar 

bypass, which indicates land suitability representing urbanization drivers are playing a 

significant role in urban growth simulation. 

8.3 Comparison of Performance of Different Versions of SLEUTH Model 

8.3.1 Methodology for performing a model performance comparison 

A comparative analysis of three versions of the SLEUTH model has been made to 

understand how the performance of the SLEUTH model has been improved from one 

version of a model to another. The base SLEUTH model with default parameters (i.e. 

version 1) has been first parameterized and calibrated to reach out to the optimal growth 

coefficient values which are called as best fit coefficient values. These optimal set of 

coefficient values are used for the simulation and prediction of urban growth up to the year 

2040 using the methodology as discussed in Chapter 4. Further, to identify the appropriate 

range of crucial model constants and parameters rigorous sensitivity testing has been 

performed and the obtained optimal values of parameters have been used to again 

parametrize and calibrate the model i.e., version 2. The more refined growth coefficient 

values against the improved OSM and LeeSallee values have been used to simulate urban 

growth up to the year 2040. Further, a newer version of model i.e. SLEUTH-Suitability 

(version 3) has been developed to incorporate an additional LULC change and urban 

growth decision variable i.e. land suitability which incorporates the influence of important 

urbanization driver into the simulation process. A suitable framework has also been 

developed to derive land suitability decision variables using AHP based MCE technique. 
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In addition, SLEUTH-Suitability model sensitivity testing with respect to the combination 

of weights assigned to different selected urbanization drivers participating in the land 

suitability variable has been performed to obtain the appropriate weights for the individual 

explanatory variable at which the land suitability decision variable is appropriate and model 

performance improves for simulating the different urban growth forms and patterns. 

Performance of three versions of the SLEUTH has been compared using the 

methodology presented in Figure 8.10. The red, green and blue color lines are showing the 

work flow for version 1, version 2 and version 3, respectively while black lines are 

indicating the common flow for each version of SLEUTH model. Comparison of the 

models has been made for their performance in calibration measured in terms of the 

goodness of fit landscape metrics, model prediction performance was compared in terms 

of spatial and statistical measures and overall performance of the model versions in terms 

of percentage accuracy, kappa statistics, Hit-Miss-False alarm method, ground truthing and 

visual analysis. Seven criteria are conceptualized to compare the performance of different 

versions of the model, as discussed in subsequent sections of the chapter.   

8.3.1.1 Criteria 1: a Model comparison in term of the goodness of fit metrics 

All three versions of the model (base SLEUTH model, SLEUTH with optimum parameters 

and SLEUTH-Suitability) were parameterized using the required input data of the same 

study area i.e. Ajmer fringe and calibrated independently. The calibration performance of 

three model versions has been assessed based on several goodnesses of fit metrics i.e. 

Compare, Pop, Edges, Clusters, LeeSallee, Xmean, Y mean, Radius and OSM. Details of 

the metrics have been presented in Table 4.1 in Chapter 4.  The metrics value closer to ‘1’ 

is indicative of a better model fit during calibration. The Compare metrics showing the ratio 

of simulated urban population for a final year over actual urban (seed urban area) 

population in the respective year has been found to be the highest for the SLEUTH-

Suitability (Figure 8.11 as ‘suit’) i.e. version3.  In figures, three versions of the model are 

referred def for as base SLEUTH with default parameters (referred as version 1), sens for 

base SLEUTH with optimum constant/ parameters (referred as version 2), and suit for 

SLEUTH-Suitability (referred as version 3), (Figure 8.11). It is evident from Figure 8.11 

that the calibration performance has gradually improved from the base version (referred as 

version 1) to SLEUTH –Suitability (referred as version 3). 
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Figure 8.10: Methodology used for the comparison of two improved version of SLEUTH 

model with respect to the default version i.e. version 1 
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The performance of model version 1 and 2 are almost the same in capturing the urban 

population but not as good as version 3, Urban population metrics value has been found to 

be around 0.6 for version 1 and version 2 however, it has improved to 0.96 for version 3 

which is quite good. The Pop metric showing the least square regression score for modelled 

urbanization as compared to reference urban area provided as seed urban area for the 

control years has been found to be almost similar in all the three versions of SLEUTH 

model i.e. 0.97, which is quite good. The higher value of Pop indicates that all the three 

version of SLEUTH have the capability to imitating the historical urban growth for the 

controlling years. However, it is difficult to say that all the three versions can predict urban 

growth equally well. To analyze the capability of all the three versions of the model in 

urban growth prediction, some other spatial and statistical measures (discussed in later 

sections) have also been considered. The Edge metric showing the least square regression 

score for modelled urban edges count as compared to the edge count estimated from the 

seed urban area for each control year. The edge metric has been found to be the highest for 

version 3 (0.97) as compared to version 1 (0.95) and 2 (0.96). The difference in 

performance of the model in term of edge metric has not been so significant however, 

version 3 has produced marginally better urban edges means it is better in capturing the 

small size development and fragmented growth. The Clusters metric showing the least 

square regression score for modelled urban clusters as compared to the known urban 

clusters for the controlling years estimated from the seed urban area has been found to be 

quite good in case of version 2 i.e. 0.96 as compared to other versions.  

The LeeSallee metric which represents a spatial fit between the model simulated urban 

growth and the known urban extent for the control years (seed urban area obtained from 

LULC maps) has found to be improving from 0.5 to 0.51 and 0.52 respectively for version 

1, 2 and 3. Getting such higher LeeSallee values is quite difficult in urban growth 

modelling. The value of LeeSalle more than 0.30 has found to be acceptable in urban 

growth modelling applications. A higher value of LeeSaalee indicates that all versions of 

the SLEUTH are capable of simulating the urban growth satisfactorily and version 3 has 

been found to be better. The Xmean and Ymean metrics are the least square regression of 

average x and y values for modelled urbanized cells as compared to average x and y values 

estimated from the seed urban area for different control years.  Version 3 has been found 

to be better in terms of Xmean and Ymean metrics as shown in Figure 8.11. The Radius 

metric showing the least square regression of standard radius of the urban distribution i.e. 

normalized standard deviation in x and y has been found to be 0.98 in all the three versions 
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of the SLEUTH model. The OSM metric is a multiplication of seven metrics (Dietzel and 

Clarke, 2007) which is used to select the optimum growth coefficients during the model 

calibration.  Calibration performance of version 3 has been found to be better with 0.20 

OSM value as compared to   OSM value of 0.07 and 0.08 for version 1 and 2, respectively. 

Better OSM for version 3 i.e. SLEUTH-Suitability model indicates better model calibration 

performance which may have improved because of the inclusion of important urbanization 

drivers in the simulation process in the form of the land suitability variable. 

Moreover, the calibration statistics obtained from the calibration of an individual 

version of SLEUTH model are the indicators of success in simulating urban growth for the 

controlling years. The SLEUTH-Suitability has been found to be comparatively better in 

the calibration stage in term of the goodness of fit landscape metrics like Compare, Pop, 

Edges, LeeSallee, Xmean, Ymean Radius and OSM (Figure 8.11). Version 3 is imitating 

the historical growth of the control years well. 

8.3.1.2 Criteria 2: a Model comparison in term of spatial and statistical measures 

Performance of three versions of the SLEUTH model have been further compared in term 

of relative differences among spatial and statistical measures which indicate the capability 

of a model to capture the different forms of urban growth, calculated from predicted urban 

growth and from reference urban area obtained from LULC maps prepared from 

classification of satellite data for control years as well as for year 2018. Comparison of 

spatial and statistical measures corresponding to simulated growth and reference urban area 

is presented in Figure 8.12. The capability of capturing different urban forms has been 

consistently improved from version 1 to 2 to 3. It is evident from Figure 8.12 that modeled 

urban area is closely matching to the reference urban area for version 3. The performance 

of SLEUTH with optimum parameters i.e. version 1 has been found to be better than base 

i.e. version 1 of the model. Urban growth predicted for years other than seed years has been 

found to be better for version 3 as compared to the other two versions. Performance of the 

version 2 model has also been found better as compared to version 1. In term of urban 

growth predicted for the year 2018, version 1 has been found to be closer to the actual 

growth in the year 2018 obtained from a classified satellite image. The no. of urban edges 

captured from version 2 was found closer to actual no. of urban edges as compared to the 

other two version of models.  
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For capturing urban edges in the sensitivity based SLEUTH model i.e. version 2 is found 

to be more reliable than the remaining two. The number of urban clusters is most 

appropriately captured by the case of version 2 and 3 of SLEUTH model as it shows the 

closest match with the urban clusters calculated from reference urban area. The cluster 

radius captured for version 3 (SLEUTH-Suitability) has been found to be better and in close 

agreement with the cluster radius obtained from reference urban area for different years as 

compared to the other two versions. The mean cluster size is captured a little greater than 

that obtained from reference urban area in case of SLEUTH-Suitability, however, better 

than the two other versions.  

Figure 8.11: Comparison of three versions of SLEUTH model using spatial and 

statistical metrics. A: compare, pop, edges, clusters; B: Lee Sallee, Xmean, Ymean, 
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It can be concluded from the comparative analysis of spatial and statistical measures that 

SLEUTH-Suitability is able to simulate urban growth better and it is also capable of 

capturing the different forms of urban growth. A continuous improvement in the model has 

been observed from base version 1 to optimal constant/ parameter based version 2 and 

SLEUTH-Suitability i.e. version 3. 

8.3.1.3 Criteria 3: a Model comparison in term of growth coefficients 

As discussed earlier each version of the model was calibrated independently and optimum 

growth coefficients have been obtained corresponding to optimum model fitness (OSM).  

Urban growth coefficients affect overall model performance in the prediction phase. 

Optimum growth coefficients obtained for different versions of the model are presented in 

Figure 8.13. The breed and spread coefficients are the major controllers of the urban growth 

in the case of version 1 and 2. However, the road gravity coefficient seems to be controlling 

the urban growth in SLEUTH-Suitability. In addition, along with road gravity, diffusive 

and spread coefficients are also contributing to the growth in term of disaggregated and 

organic growth. It has observed that SLEUTH-Suitability is able to capture fragmented 

growth in a better way with a diffusive value of 51 for which goodness of fit metrics are 

also found to be better than other versions of the model (as discussed above).  

8.3.1.4 Criteria 4: Comparison of the models using Hit-Miss-False alarm method 

Hit-Miss-False Alarm method has also been used to determine the performance of the 

different versions of the model in simulating the urban growth. A number of hits indicates 

correctly captured urban pixels in percentage, miss indicates urban pixels which were left 

out and false alarm are the pixels wrongly captured by the model as urban pixels. This 

method has been discussed in detail in Chapter 4. The component of correctness, error, ratio 

indices and statistical measures for version1 (def), version2 (sens) and version3 (suit) of 

SLEUTH (% landscape) obtained from Hit-Miss-False alarm method are presented in Table 

8.4. Results presented in  Table 8.4 indicates a better  spatial match between simulated 

urban growth and reference urban area for respective years for the SLEUTH-Suitability 

version of the model.  
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Figure 8.12:   Comparison of three versions of SLEUTH model using spatial and statistical measures 
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Table 8.4: Comparison of components of correctness, error, ratio indices and statistical 

measures for different versions of the SLEUTH model (% landscape) 

 2000 2008 2013 2015 2018 

 def Sens suit def sens suit def sens suit def sens suit def sens suit 

H 3.8 3.8 3.8 4.4 4.4 5 4.5 4.6 5.6 4.7 4.9 6.2 4.9 5.1 6.8 

M 0.2 0.9 0.9 3.4 3.4 2.7 4.1 4.1 3 5.6 5.5 4.2 6.4 6.3 4.6 

F 0.5 0.6 0.5 0.9 1.7 2.2 1.3 2.7 3.8 1.3 3.1 4.1 1.5 3.8 5.2 

HOC 0.9 0.8 0.8 0.6 0.6 0.6 0.5 0.5 0.7 0.5 0.5 0.6 0.4 0.4 0.6 

MOC 0.1 0.2 0.2 0.4 0.4 0.4 0.5 0.5 0.3 0.5 0.5 0.4 0.6 0.6 0.4 

FOC 0.1 0.1 0.1 0.1 0.2 0.3 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.5 

FOM 84.3 71.4 72.5 50.1 46.5 50.6 45.5 40.4 45.4 40.5 36.1 42.8 38.1 33.5 41.1 

Model performance has been found to be improving from base version 1 to version 2 and 

further it has improved in SLEUTH-Suitability i.e. version 3, which means that the land 

suitability decision rule has improved the model performance.  More hits i.e. 6.8  and a 

lesser misses i.e. 4.6 have been observed for the year 2018 from the SLEUTH-Suitability 

as compared to two other versions of the SLEUTH. However, A greater false alarms have 

also been observed for version 3 model as compared to version 1and 2. 

The HOC metric has improved from 0.4 in version 1 and 2 to 0.6 in version 3 for 

the year 2018. The MOC metric also showed improvement from 0.6 in version 1 and 2 to 
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Figure 8.13: Urban growth behavior in terms of growth coefficients for different 

versions of SLEUTH model 
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0.4 in version 3. The overall FOM metric for the year 2018 has shown improvement from 

38.1 in version 1 to 41.1 in version 3 i.e., SLEUTH-Suitability. 

In addition to these, the present study has also tried to visually analyze the 

locations of urban growth which are successfully captured by the individual version of the 

SLEUTH model. Also, the locations which either missed out from capturing or were 

falsely captured by the individual version of the model have also been identified as 

presented in Figure 8.14- 8.16. Lesser no. of hits and false alarms can be seen from Figure 

8.14 from the base SLEUTH model as compared to version 2 and 3. However, the no. of 

hits are increased especially at the edges and road side areas in the SLEUTH_Suitability 

i.e. version  3 indicates better capturing of fragmented and diffusive growth as compared 

to the growth obtained from version 1 and 2. Version 2 is found to be better in term of no. 

of hits than version 1, though, not as good as version 3. Moreover, fewer misses are noticed 

in the case of version 3 than version 1 and 2. But, again version 2 is found better than 

version 1 in term of misses. Therefore, it can be concluded from the results of Hit-Miss-

False Alarm method that SLEUTH-Suitability has performed better in simulating the 

urban growth as compared to the other two versions. The base SLEUTH model with 

optimum model constants/parameters (version 1) has been found to be better as compared 

to SLEUTH with default parameters (version 2).  

8.3.1.5 Criteria 5: a Model comparison in term of accuracy assessment using Geo-

Eye (GE) image as reference data 

Performance of three versions of SLEUTH has also been compared in term of percentage 

accuracy and kappa statistics for simulated urban growth. Accuracy assessment of 

simulation growth from three versions was tested by determining the number of urban test 

pixels correctly captured. Land use of more than 100 randomly selected test pixels was 

checked with the correct land use of the same pixels in the reference data i.e., a high 

resolution satellite image of Geo-eye satellite obtained from Google Earth for model 

results of all three versions for the year 2018. The test pixel locations were overlaid on the 

GE image and the correct ground feature information in terms of binary numbers has been 

collected. The classification is done for urban and non-urban pixels/ points as ‘1’ and ‘0’ 

respectively.  
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Figure 8.14: Urban growth map showing urban hits, misses and false alarms for default 

SLEUTH model i.e. version1 
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Figure 8.15: Urban growth map showing urban hits, misses and false alarms for 

sensitive parameters based SLEUTH model i.e. version2 
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The confusion matrix is prepared in between observed and modeled urban pixels for the 

year 2018 to calculate the users and producers accuracy. The kappa statistics and accuracy 

percentage have been computed for all the three versions of the SLEUTH model by 

following the same process. The percentage accuracy achieved with respect to reference 

Figure 8.16: Urban growth map showing urban hits, misses and false alarms for 

suitability based SLEUTH model i.e. version3 
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GE data (which is considered as quite good) has shown improvement from version 1 to 2 

to 3. The model accuracy has improved from 79% for version 1 to 80% for version 2 to 

83% for SLEUTH-Suitability i.e. version 3. Moreover, the kappa statistics has also found 

to be improving from version 1 to 2 to 3 i.e. 0.55, 0.57 and 0.61, respectively. SLEUTH-

Suitability has been found to be better in term of percentage accuracy and kappa statistics, 

as indicated by the results in Table 8.5. Model simulated growth with more than 80% 

percentage accuracy and 0.61 kappa statistics have been quite satisfactory and acceptable 

(Table 8.5). 

Table 8.5: Accuracy percentage and kappa statistics for different versions of the 

SLEUTH model using GE data as reference 

The year 2018 Accuracy (%) Kappa coefficient 

Version 1 79 0.55 

Version 2 80 057 

Version 3 83 0.61 

 

8.3.1.6 Criteria 6: a Model comparison in term of % accuracy on the basis of field 

observations 

Performance of the three versions of SLEUTH has also been compared in term of 

percentage accuracy and kappa statistics achieved through ground truthing.  Status of 

urbanization of a number of randomly selected locations collected through field survey 

was compared with land use obtained from the model results for the year 2018. The 

accuracy assessment on the basis of field observations has also been performed for the 

year 2018 in two ways i.e. accuracy with respect to the pixels urbanized in the year 2017-

18 means newly constructed locations in the year 2017-18 and percentage of locations 

which are correctly identified by the model that were urbanized up to the year 2018. 

During field visits, it was planned to capture only those sites which seem to be under 

construction or newly constructed sites in the year 2018 for the first case so that they can 

be validated with the simulated urban growth which have taken place only in the year 

2018. Percentage accuracy achieved with reference to field verification for three versions 

of the model has been presented in Table 8.6. Accuracy was assessed using the 

urbanization status of ground control points which are presented in Table 8.7.   
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Table 8.6: Sample sites selected for the accuracy assessment based on field observation 

S.no. Sites X_cordinate Y_cordinate 

1 new multistoreydevelopmnt pushrd 74° 39' 45.786" E 74° 39' 45.786" E 

2 kanas village near push needevdl 74° 35' 29.784" E 74° 35' 29.784" E 

3 multistorey pushar road 74° 39' 41.816" E 74° 39' 41.816" E 

4 new construction aradhna colonry 74° 40' 58.601" E 74° 40' 58.601" E 

5 sai jyoti nagar newddvelopmnt 74° 40' 51.739" E 74° 40' 51.739" E 

6 sai jyoti nagarnew const 74° 40' 46.387" E 74° 40' 46.387" E 

7 new development gfeen colony 74° 40' 55.136" E 74° 40' 55.136" E 

8 vidya vihar coloney new develop 74° 40' 50.126" E 74° 40' 50.126" E 

9 new developmng near kayad road 74° 40' 47.097" E 74° 40' 47.097" E 

10 boodhapushakar 74° 35' 10.947" E 74° 35' 10.947" E 

11 new construction  saraswati naga 74° 41' 6.956" E 74° 41' 6.956" E 

12 new construction sarswati road 74° 40' 58.305" E 74° 40' 58.305" E 

13 nee construction near jaipur roa 74° 41' 0.021" E 74° 41' 0.021" E 

14 multi storey construction jaipur 74° 41' 0.608" E 74° 41' 0.608" E 

15 panchsheel nagar5 74° 38' 26.799" E 74° 38' 26.799" E 

16 construction point1 74° 38' 6.717" E 74° 38' 6.717" E 

17 near globl public school 74° 38' 56.465" E 74° 38' 56.465" E 

18 new consgfunctuon mds road 74° 40' 58.341" E 74° 40' 58.341" E 

19 castle royal vaishli ngr 74° 37' 35.901" E 74° 37' 35.901" E 

20 ganpati nagarpushjar 74° 33' 50.792" E 74° 33' 50.792" E 

21 ganpati nagar multistoreypushkar 74° 33' 51.332" E 74° 33' 51.332" E 

22 vaishli nagar 2 74° 37' 23.449" E 74° 37' 23.449" E 

23 vaishali nagar3 74° 37' 22.362" E 74° 37' 22.362" E 

24 newconstru tionpush 74° 33' 13.799" E 74° 33' 13.799" E 

25 vaishali ngar two storey 74° 37' 1.458" E 74° 37' 1.458" E 

26 haribhau nagar new constryctiin 74° 36' 35.049" E 74° 36' 35.049" E 

27 new development  haribhau 74° 35' 54.573" E 74° 35' 54.573" E 

28 pragati nagar multistprey constr 74° 35' 29.907" E 74° 35' 29.907" E 

29 foysagar road multi,storey 74° 36' 48.674" E 74° 36' 48.674" E 

30 mehu road underconstrionmultistr 74° 39' 9.731" E 74° 39' 9.731" E 

31 bihari gnjmultistorey 74° 38' 57.124" E 74° 38' 57.124" E 

32 adarshnaar multistorey 74° 39' 4.823" E 74° 39' 4.823" E 

33 adarshngr construction multistor 74° 39' 3.615" E 74° 39' 3.615" E 

34 adarsh nad new,constrmulistiry 74° 39' 11.311" E 74° 39' 11.311" E 

35 single stories bewar road 74° 39' 5.642" E 74° 39' 5.642" E 

36 bewar road 74° 38' 22.953" E 74° 38' 22.953" E 
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Figure 8.17: Comparison among three versions of SLEUTH model 
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Figure 8.18: Comparison among three versions of SLEUTH model 



381 

 

 

Figure 8.19: Visual comparison of modeled urban growth in year 2018 
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Figure 8.20: Visual comparison of modeled urban growth in year 2018 
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Highest accuracy has been achieved for the SLEUTH-Suitability (83%) in capturing the 

urban growth that took place only in the year 2017-18 as compared to moderate accuracy 

achieved from version 2 (67%) and base version 1 of SLEUTH (58%) (Table 8.7).  

Table 8.7: Accuracy percentage for newly constructed locations in the year 2017-18 for 

different versions of the SLEUTH model using field observations 

Year 2018 Accuracy (%) 

Version 1 58 

Version 2 67 

Version 3 83 

With respect to overall urban growth (till the year 2018), again highest accuracy has been 

achieved for SLEUTH-Suitability i.e. version 3 (68%), as compared to version 2 (56%) and 

base SLEUTH model i.e. version 1 (56%).  The accuracy is found to be improving from 

version 1 (52%) to version 2 (56%) to version 3 (68%) as presented in Table 8.8. It is quite 

clear from Figure 8.17 & 8.18 that the no. of GCP’s correctly captured has gradually 

increased from base SLEUTH model i.e. version 1  to  SLEUTH-Suitability i.e. version 3 

for predicted growth of the year 2018 for which reference data is available and captured 

from the field.  

Table 8.8: Accuracy percentage for overall urban growth in year 2018 for different 

versions of the SLEUTH model using field observations 

Year 2018 Accuracy (%) 

Version 1 52 

Version 2 56 

Version 3 68 

8.3.1.7 Crieteria7: Visual comparison 

Further, visual analysis was carried out to determine the relative difference in the 

performance of the three versions of the SLEUTH model as presented in Figure 8.19- 8.20. 

Visual comparison of a few locations indicates that the default version of the SLEUTH 

model is not able to capture the roadside development which is better captured in case of 

version 2 and even more accurately captured by the SLEUTH-Suitability. In addition, 

fragmented urban growth at a few places is also better captured by the SLEUTH-Suitability 

as compared to base version 1 of SLEUTH with default parameters and version 2, base 

SLEUTH with optimum model parameters. 
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8.4 Concluding Remarks 

Application of three versions of the SLEUTH model has been successfully demonstrated 

in modelling the urban growth of Ajmer fringe. The performance of three versions of the 

SLEUTH model i.e. default, improved model with sensitivity analysis based optimal 

parameters and land suitability based improved version i.e., SLEUTH-Suitability are 

compared in term goodness of fit landscape metrics, spatial and statistical measures, Hit-

Miss-False alarm method and accuracy assessment with respect to reference data obtained 

from Geo-Eye satellite and ground truthing obtained from field visit. Performance of the 

SLEUTH-Suitability has been found to be better and satisfactory as compared to base 

version 1 of the SLEUTH. Better performance of SLEUTH-Suitability also indicates the 

role of selected urbanization drivers incorporated into urban growth simulation through a 

new land suitability decision rule. The inclusion of a land suitability decision rule further 

enhanced the model capability in capturing of the small size development, fragmented and 

roadside growth.  
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CHAPTER 9 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

The present chapter includes the conclusions of the present study and the recommendations 

for future research. 

9.1. Conclusions 

The present study has been successful in accomplishing its research objectives. The 

proposed research was aimed to understand and study the LULC change and urbanization 

processes, drivers, different modelling approaches and models to develop an appropriate 

model which is suitable in simulating realistic urban growth considering different LULC 

change and urbanization drivers using Cellular Automata and geospatial techniques. 

Possible reasons of the lower performance of the available SLEUTH model have been 

identified as unsuitable values of a few model constants and parameters for which model 

sensitivity was not tested earlier and the non-inclusion of a few important explanatory 

variables of LULC change and urban growth in the model algorithm. Rigorous sensitivity 

testing of various crucial model parameters/ constants has been performed to identify the 

appropriate optimal values of those parameters at which the model has produced more 

realistic and accurate urban growth. An improved version of SLEUTH i.e. SLEUTH-

Suitability has been developed incorporating land suitability decision growth rule in model 

simulation that further improved the accuracy of  simulated urban growth including smaller 

size built-up and fragmented growth. In another effort, the capability of the SLEUTH model 

has been improved to estimate the built-up density. A new version of the model i.e., 

SLEUTH-Density has been developed, tested which is capable of simulating the built-up 

density/ intensity as a function of few selected geo-spatial urbanization drivers. SLEUTH-

Density application has been successfully demonstrated for Ajmer and Pushkar cities and 

found to be very useful in determining the future needs of urban services, infrastructure 

facilities, investment to be made and other optimum land use policy decisions. The study 

has been successful in finding out the answers to the research questions as presented below. 

• The understanding of the present state of knowledge of LULC change and urban 

growth phenomenon has been improved by reviewing literature extensively (please 

refer to Appendix II). The important LULC change and urban growth explanatory 

variables were identified.  
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• Different approaches, methods, and models capable of simulating LULC changes and 

urban growth were studied thoroughly to know the intricacy of individual models and 

identify the suitable method and model to simulate complex phenomenon of LULC 

change and urbanization for socio-economic conditions of developing countries. The 

CA-based SLEUTH model has been found to be more robust and widely used in many 

cities worldwide and was selected for carrying out the present research.  

• A suitable GIS database at required spatial and temporal resolutions was prepared for 

the parameterization of the SLEUTH model and improved versions.  

• The SLEUTH model was conceptualized for the selected study area and successfully 

calibrated. Various limitations of the SLEUTH were determined, which include 

overestimation of urban areas at some places, unable to capture fragmented growth 

especially of smaller size built-up features, unable to capture all forms of the urban 

growth leading to lower accuracy and more false positives and negatives. 

• Possible reasons of the lower performance of the available SLEUTH model have been 

identified as unsuitable values of a few model constants/ parameters for which model 

sensitivity was not tested earlier and non-inclusion of a few important explanatory 

variables of LULC change and urban growth in the model simulation.  

• Rigorous model sensitivity testing of crucial model constants/ parameters has been 

performed to determine the optimal values/ ranges of those parameters i.e. self-

modifying parameters, diffusion value, no. of Monte-Carlo iterations, critical slope, 

a game of life rule and cellular neighborhood size. The model performance has been 

found to be better with the optimum model constants in term of capturing fragmented 

urban growth and smaller built-up features more accurately, more no. of hits, accuracy 

percentage and kappa statistics than the base model with default parameters.  

• A new version of the model i.e., SLEUTH-Suitability has been developed to include 

the land suitability decision variable rule into the simulation process. The SLEUTH 

code has been modified and a land suitability decision variable has been integrated 

with the existing SLEUTH model to incorporate the effect of land cost, distance from 

the road, distance from the railway stations, bus stands and distance from recreational 

places as urbanization drivers. The program of SLEUTH-Suitability was successfully 

tested for a demo input dataset and the application of SLEUTH-Suitability was 

demonstrated for Ajmer fringe including Pushkar town by utilizing the input dataset 

of Ajmer and optimal parameters/ constant values obtained from the sensitivity 
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analysis. Performance of the SLEUTH-suitability has been found to be better as 

compared to conventional SLEUTH model with default model constants and with 

optimum parameters obtained from sensitivity analysis. The new version of the model 

has also been found to be capable of capturing the different forms of urban growth, 

small size fragmented growth and also results are more realistic and near to the actual 

growth. Therefore, the SLEUTH Model has been improved successfully in the present 

work and performance of the newly developed model (SLEUTH-Suitability) has been 

found to be significantly better. 

• A new version of the model i.e., SLEUTH-Density has been developed which is 

capable of simulating and predicting the urban intensity or built-up density. The new 

algorithm has been developed and program code has been modified to include the 

simulation and prediction of built-up density. The built-up density was successfully 

validated with the field data and various statistical and other metrics of built-up 

density estimation. 

Salient findings and inferences of the present research work have been explained below; 

1. Different issues related to LULC change and urban growth modelling and simulation 

using the SLEUTH model were identified. 

2. Historical LULC maps have been generated for different years i.e. 1997, 2000, 2004, 

2008, 2013 and 2015 and a GIS database was created and raster layers were generated 

for model parameterization which includes urban maps, road layer, slope, restricted 

areas, distance to main roads, hospitals, railway & bus stations, recreational places, 

slope, and land cost. 

3. Input dataset for Pushkar has been used for the development and testing of newly 

developed SLEUTH versions and application of the models have been demonstrated 

for Ajmer fringe (which itself includes Pushkar town).  The SLEUTH model with 

default constants/ parameters values has been calibrated and the optimal growth 

coefficient values were obtained as 49, 45, 25, 68 and 46 for diffusion, breed, spread, 

slope resistance, and road gravity coefficients respectively corresponding to 0.28 as 

OSM fitness measure for Pushkar town. For Ajmer fringe optimum growth coefficient 

from the base SLEUTH model have been found to be as 16, 98, 100, 36 and 52 for 

diffusion, breed spread, slope resistance, and road gravity coefficients, respectively 

with a lower OSM fitness measure i.e. 0.07.  However, the spatial pattern index i.e. 

LeeSallee was achieved as 0.3 and 0.5 for Pushkar town and Ajmer fringe, respectively. 
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4. The model calibration performance was evaluated on the basis of different goodness of 

fit metrics for both the study areas.  For Pushkar town Compare, Pop, Edges, Clusters, 

LeeSallee, Slope, Xmean, Ymean, Radius and OSM have been obtained as 0.9, 0.9, 

0.88, 0.7, 0.27, 0.57, 0.96, 0.89, 0.91 and  0.28 respectively while for Ajmer fringe 

values of landscape metrics were 0.59, 0.97, 0.95, 0.8, 0.5, 0.32, 0.95, 0.52, 0.98 and 

0.07 respectively.  

5. The performance of the base version of the SLEUTH was found to be lower in capturing 

different forms of urban growth like fragmented and scattered growth. The Model has 

underestimated the urban growth of Ajmer for the year 2018. Simulated growth 

(1996.86 Km2) for the year 2018 has been found to be significantly less as compared to 

the actual urban area (3411.53 Km2). 

6. It has been observed that model performance can be improved by using an appropriate 

range of model constants/ parameters for which model sensitivity was tested. 

Performance of the SLEUTH model can further be improved by considering different 

LULC change and urbanization explanatory variables in the simulation process.  

7. The model sensitivity for selected critical model constants/ parameters has been tested 

using an iterative procedure. The optimal values for self-modifying parameters such as 

for boom, bust, critical low and critical high have been obtained as 1.3, 0.10, 0.90, and 

1.25, respectively. The optimum value of diffusive value parameter has been found to 

be as 0.0055. Sixty (60) Monte Carlo runs, a range of 15-19 for critical slope, a game 

of life rule threshold value of 1 and extended Moore Neighborhood of 12 cell size have 

been found to be the optimum.   

8. SLEUTH simulates LULC change and urban growth as a function of four urbanization 

drivers like slope, urban area, road, and restricted areas. However, it was revealed from 

a literature review that there are some crucial urban growth explanatory variables which 

should be included in SLEUTH to improve its performance. The new version of 

SLEUTH i.e., SLEUTH-Suitability has been developed by integrating the land 

suitability decisions variable in the urban growth simulation. Land suitability decision 

variable includes the influence of other important urban growth explanatory variables 

like slope, land cost, distance to main roads, hospitals, railway and bus stations, and 

recreational places. The land suitability decision layer has been developed based on 

considering relative weight of each explanatory variable in the land suitability value 

arrived using the Analytical Hierarchy Process (AHP) based on Multi-Criteria 

Evaluation (MCE) techniques. 
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9. The appropriate weights for the new explanatory variables have been determined by 

sensitivity testing for a range of weights for each explanatory variable. The optimal 

weights achieved for new explanatory variables considered were 44.7 for the slope, 5.06 

for the distance from bus and railway stations, hospitals & recreational places and 20.05 

for the distance from the main roads.  

10. Application of the SLEUTH-Suitability was demonstrated for both Ajmer city and 

Pushkar Town. Performance of the SLEUTH-Suitability was examined through 

accuracy assessment and by comparing results with the results obtained from the 

conventional SLEUTH model with default parameters and optimum parameters. The 

optimal growth coefficient values obtained for Ajmer are 51, 6, 26 and 74 for diffusion, 

breed, spread, and road gravity coefficients, respectively corresponding to the goodness 

of fit metrics like Compare Pop, Edges, Clusters, Xmean, Ymean and Radius which 

were achieved as 0.95, 0.97, 0.97, 0.94, 0.97, 0.53 and 0.98, respectively.  

11. The improved SLEUTH-Suitability version has performed better in simulating the 

different forms of urban growth in term of overall accuracy with respect to different 

statistical metric, ground truthing, and reference information as compared to 

conventional SLEUTH model with default model parameters and with optimum model 

coefficients obtained from sensitivity analysis. 

12. The SLEUTH performance has improved in capturing more hits i.e. from 4.9 in base 

SLEUTH model with default parameters/ constant to 5.1 in SLEUTH with optimal/ 

constant values to 6.8 in SLEUTH-Suitability. The overall figure of merit (FOM) has 

improved from 38.1 in SLEUTH with default settings to 41.1 from the SLEUTH-

Suitability. The accuracy percentage obtained with respect to reference data of 100 

stratified random sampling GCPs for the year 2018 has improved from 79% (SLEUTH 

with default settings) to 80% (SLEUTH with optimal parameters/ constants) to 83% 

(SLEUTH-Suitability). The kappa statistics has improved from 0.55(SLEUTH with 

default settings) to 0.57 (SLEUTH with optimal parameters/ constants) to 0.61 

(SLEUTH-Suitability). The accuracy percentage with respect to the ground truthing 

(randomly field observation sites) has improved from 52% (SLEUTH default settings) 

to 56% (SLEUTH with optimal parameters/ constants) to 68% (SLEUTH-Suitability). 

In addition, the accuracy percentage for newly constructed locations for the year 2018 

with respect to the ground truthing (using filed observation data) has improved from 

58% (SLEUTH default settings) to 67% (SLEUTH with optimal parameters/ constants) 

to 83% from SLEUTH-Suitability. 
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13. A new version of the SLEUTH model has been developed to estimate built-up intensity 

or density. The model has been demonstrated for Ajmer fringe for simulating built-up 

density from the year 1997 to 2040. Application of the built-up density version was 

validated and accuracy assessment was performed with respect to spectral band indices, 

built-up density indices, LST, population density, actual vertical growth at different 

locations. Built-up density has been found to be proportional with LST and other urban 

indices & population density. Accuracy assessment has also been done by comparing 

simulated normalized built-up density and actual built-up density in term of vertical 

growth (multistory built-up activities) obtained from field data. Performance and 

accuracy of built-up density estimated from SLEUTH-Density have been found to be 

satisfactory. The R2 value of 0.79 has been found for the relationship between simulated 

built-up density and observed no. of floors and the accuracy was found to be 75%. The 

built-up density/ intensity for different future years may help urban planners, 

development authorities in making of appropriate services provision like parking 

requirements, roads, and transportation requirement, water supply & sanitation services, 

open spaces corresponding to increased density in future. 

14. The present study has been successful in improving the existing SLEUTH model and 

new SLEUTH versions have been developed i.e. SLEUTH-density and SLEUTH-

Suitability. 

9.2. Limitations and Future recommendations of the study 

9.2.1 Limitations  

1. Optimum values of self-modifying parameters obtained from sensitivity testing may be 

suitable only for the urban growth forms in similar socio-economic conditions as of 

Ajmer. This set of the coefficient may not be suitable to capture all the forms of urban 

growth.  

2. To capture different forms of urban growth the optimum value of diffusivity coefficient 

may be different. However, for the overall performance of the model one value has been 

arrived as 0.0055.  

3. To reach out to the near optimal solution of modeling relying only on the model fitness 

may not be suitable, as it only gives an idea about urban growth form. How well a model 

captures different urban forms may not be answered on the basis of one optimal fitness 

of model criteria i.e. OSM only. 
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4. It may not be possible to identify all the urban forms for the same parametric settings. 

One parametric setting may be appropriate for capturing one type of urban form but 

may not be able to capture all other urban forms.  

5. The SLEUTH-Density model does not incorporate the additional land suitability 

decision variable.  

6. The developed new versions of SLEUTH need to be tested for urban areas having 

different socio-economic conditions. 

7. Model results have uncertainties of misclassification in land use land cover information 

extracted from satellite images. 

8. The model still requires large computational resources and CPU hours. 

9.2.2 Future recommendations of the study 

1. The sensitivity of the model parameters should be tested for the different urban areas 

having different socio-economic conditions. 

2. Influence of the spatial resolution of the input data may be further studied on model 

performance. 

3. A suitable range of model coefficients can be determined which is suitable to capture a 

different type of urban form. 

4. SLEUTH-Density version may be further improved to incorporate a few more urban 

growth explanatory variables as a decision variable in the simulation process like land 

suitability.  

5. SLEUTH-Suitability and SLEUTH-Density versions should be further tested for the 

urban areas/ cities and towns of different size and having different socio-economic 

conditions. 

6. Other important urban growth explanatory variables may be included in the SLEUTH 

and their influences may be studied. 

7. Urban growth is based on historical information of urban growth assuming same land 

use policies and developmental decisions will be followed in future as well, future road 

networks, infrastructure level of facilities like roads, built-up zonation restrictions have 

been assumed at the level of year of 2015. 
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ANNEXURE - I 

S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

1 
CLUE (Verburg et al., 

2006; Xu et al., 2013) 

Dynamic, 

Spatially 

explicit model 

Socio-economic, 

Bio-physical drivers 

The relation 

between land use 

and its driving 

factors are 

evaluated using 

step-wise logistic 

regression. 

In the form of 

independent 

variables in a 

logistic regression 

equation, it has been 

included. 

Relative influence of 

driving factors on land use 

change is determined 

thereafter probability of 

land use change in 

probabilistic terms has 

determined. 

2 
CURBA (Landis et al., 

1998) 

A detailed 

Spatially 

explicit model 

Demographic 

factors, topographic 

factors, socio-

economic factors 

site-specific factors, 

distance to road 

factors 

The relation 

between land use 

and drivers has 

been analyzed by 

developing logit 

models under 

statistical 

packages. 

Construction and 

development of 

various logit models 

are done under 

statistical packages 

like SPSS or SAS. 

By including driving 

forces various landscape 

metrics are calculated 

which thereafter use to 

predict future urban 

growth. 

3 

LUCAS (Berry et al., 

1994, 1996;Irwin et al., 

2001) 

A spatially 

explicit 

stochastic 

model 

Ecological, Socio-

economic factors, 

Demographic, 

Topographic factors 

The relation 

between drivers 

and land use 

change in the form 

of transition 

probabilities are 

determined. 

The transition 

probabilities were 

determined using 

multinomial logit 

models. 

This research has not 

provided prediction results 

yet, like how much change 

is likely to occur in near 

future. 

Also, it can be well 

implemented for urban 

growth only by including 

some driving forces and 

also by applying some 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

restrictions like 

development away from 

the drainage area would be 

preferred etc. 

The LUCAS model can 

include both type of 

transition pixel based 

(grid-based) and cluster 

(patch based transition). 

The study has been made 

for pixel-based transition 

only. However, the patch-

based transition is more 

difficult because of the 

task of patch 

identification. 

4 

DINAMICA (Wang and 

Zhang, 2001; Mas et al., 

2012) 

Spatially 

explicit model 

Socio-economic 

factors, 

Infrastructure factors 

The relationship 

between driving 

factors and land 

use change is 

analyzed by 

overlaying the 

driving factors 

maps over the land 

use maps. 

 

The driving factors 

have been included 

in the form of 

weighted evidence. 

Thereafter Bayesian 

empirical methods 

are adopted to find 

the land use change 

probability. 

In this model 

implementation, the main 

focus has been given to 

compute transition 

probabilities by assigning 

weights to the variables. 

Also, this study can give 

stochastic as well as 

deterministic results by 

integrating CA with 

SPRING GIS. 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

5 

UrbanSim (Waddell, 

2000, 2002; Waddell et 

al., 2003; Duthie et al., 

2007; Hepinstall et al., 

2008; Wang et al., 

2011) 

Spatially 

explicit model 

Economic factors, 

Demographic 

factors, Employment 

factors, Household 

mobility, Location 

choice factors 

The relationship 

between driving 

forces and land 

use change is 

analyzed in the 

form of 

probabilistic 

terms. 

In the form of 

independent 

variables, the 

driving forces have 

been included. 

Adopts an equilibrium 

formulation in which the 

market price is 

endogenous and 

determined by the highest 

bid for each site among all 

consumers. The 

multinomial logit model is 

used to predict the 

probability. 

6 SimLand (Wu, 1998;) 

The spatially 

explicit 

transition 

model 

Socio-economic 

factors, Topographic 

factors 

The relationship 

between land use 

and driving factors 

are determined 

using variables in 

multinomial logit 

models that 

determine the 

suitability of land 

use change. 

In the form of 

transition rules of 

land use change, it 

has been included. 

AHP the method of MCE 

is used to include 

behavioral decision 

making that transition 

rules can be implied in a 

more realistic way. 

The limitation of a CA-

based model; 

Since the form and 

function are linked 

through a nonlinear, 

dynamic process, it is still 

not clear to what extent the 

two correspond with each 

other. Sensitivity is also an 

issue which is worth 

exploring. Statistical 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

methods can be introduced 

as a method for defining 

transition rules, which 

calibrates the simulation 

on the basis of past 

development paths. All 

these issues need to be 

addressed in future 

applications of 

CA to spatial analysis. 

7 

DUEM (Batty et al., 

1998; Kuang et al., 

2011) 

CA-based 

dynamically 

spatially 

explicit 

Distance, population 

density, direction 

and mutation 

probabilities 

The drivers have 

been included in 

the form of CA-

based transition 

rules. 

In the form of 

transition 

probabilities. 

The transition rules help in 

simulation the urban 

growth. 

8 
FASOM (Alig et al., 

1997) 

Dynamic 

optimization 

model 

Economic factors 

Optimization 

techniques have 

been used. 

Nonlinear 

mathematical 

programming 

methods that 

maximize the 

problem functions. 

This perfect 

Knowledge and 

assumptions regarding 

economics allow optimal 

selection of resource 

management actions. 

 

9 GEM (Fitz et al., 1996) 

The explicit 

spatial 

simulation 

model 

Biological, physical 

and/or biotic and 

abiotic factors. 

Rule-based 

transition 

algorithms are 

used to simulate 

the changes 

The GEM requires a 

large number (~ 

100) of parameters 

that may change 

with ecosystem 

The range of scales and 

ecosystems for which the 

model is suitable depends 

upon the questions being 

addressed, but this version 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

(habitat) type, and 

ongoing sensitivity 

analyses indicate 

which parameters 

are most important 

to quantify for 

application to 

particular systems. 

is being applied to wetland 

and upland terrestrial sites 

to evaluate basic system 

dynamics. 

10 
PLM (Vinov et al., 

1999) 

Spatially 

explicit 

Ecological, 

economic factors 

The economic 

model allows 

human decisions 

in the form of 

economic and 

ecological 

functional 

variables. 

These are based on 

empirically 

estimated 

parameters and 

spatially 

heterogeneous 

probabilities of land 

use change. 

 

Based on empirically 

estimated parameters, 

spatially heterogeneous 

probabilities of land 

conversion are modeled as 

functions of predicted land 

values 

11 
PRISM (Alberti and 

Waddell, 2000) 

Process-based 

and Spatially 

explicit 

dynamic 

model 

Demographic, 

economic, 

environmental and 

policy scenarios 

In the form of 

economic models 

thereafter the 

output of this is 

taken as input to 

find out the land 

use transition 

probabilities. 

Produced land use 

maps were used to 

analyze the impact 

of land use change 

on habitat species 

etc. 

The proposed models aim 

to improve the existing 

urban models also 

improves the ability to 

represent biophysical 

factors into the model. 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

12 

CUF (Landis and 

Zhang, 1998; Silva and 

Wu, 2012) 

Multinomial 

logit model 

Site characteristics, 

site accessibility, 

community 

characteristics, 

policy factors, 

relationship to 

neighboring sites 

These contributing 

factors to urban 

growth determine 

the real pattern of 

urban dynamics. 

In the form of 

multinomial logit 

variables. 

The model efficiently 

replicates the urban 

dynamics and helpful in 

predicting future 

landscape patterns. 

Binomial logit model later 

extended to the 

multinomial logit model 

which improves the 

efficiency of the CUF 

model. However, a 

multinomial logit model is 

very complex as each 

variable includes multiple 

coefficients and difficult to 

interpret the outputs of the 

model. 

13 
CVCA (Sliva, 2003; 

Silva et al., 2008) 

The spatially 

explicit 

transition 

model 

Nearest neighboring 

conditions and the 

CVCA model 

requires the same 

input files as the 

SLEUTH model 

requires such as 

slope, land use, 

urban, transportation, 

It uses a set of 

landscape 

ecological 

strategies to 

counteract the 

urban growth at 

good to grow 

areas. 

Cellular automata 

based transition 

rules are applied 

The outputs of CVCA are 

the same as in SLEUTH 

model but four more 

output classes are 

generated in CVCA such 

as protective, offensive, 

defensive, opportunistic 

and let it grow that 

matches five landscape 

planning strategies. 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

and hillshade and 

excluded map. 

 

14 
LOV (White, R. and 

Engelen, G., 2000) 

CA-based 

Dynamic, 

spatially 

explicit model 

Demographic, 

economic 

The model 

generates regional 

demands for 

population and a 

number of 

economic 

activities. These 

demands are 

translated into 

demands for cell 

space, which the 

CA then attempts 

to locate. 

Cellular automata 

based transition 

rules are applied 

Helps in designing 

Planning Support System 

(PSS) 

15 
LUCITA (Deadman et 

al., 2004) 

Agent-Based 

Model, 

spatially 

explicit 

Social interaction, 

decision making, and 

environmental 

factors 

Driving factors are 

used in the form of 

regression 

variables. 

Heuristic decision 

making 

The urban heterogeneity 

effects have been 

monitored by including 

ecological effects such as 

soil and burn qualities into 

this model which shows 

the realism of the 

simulation of urban 

growth. 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

16 
LUCIM (Matthews et 

al., 2007) 

Agent-Based 

Model, 

spatially 

explicit 

Transportation 

variables, Social 

interaction, decision 

making, and 

environmental 

factors 

Driving factors are 

used in the form of 

regression 

variables. 

Heuristic decision 

making 

The urban heterogeneity 

effects have been 

monitored by including 

ecological effects such as 

soil and burn qualities into 

this model which shows 

the realism of the 

simulation of urban 

growth. 

17 
LUSD (He et al., 2005, 

2016) 

Integration of 

CA and 

system 

dynamics, 

spatially 

explicit 

Interaction of 

Capital, population, 

socio-economic 

factors. 

Driving factors are 

used in the form of 

regression 

variables. 

Regression method 

is used for the 

prediction of urban 

growth as it is 

simpler and requires 

fewer variables. 

Allocation module 

of LUSD model uses 

CA-based 

neighboring 

transitions rules. 

Regression method is used 

for the prediction of urban 

growth as it is simpler and 

requires fewer variables. 

And gives the better 

utilization of driving 

factors for urban growth 

modelling and prediction. 

18 
GEOMOD2 (Pontius et 

al., 2001; ) 

Empirical-

based  

 biogeophysical 

factors 

GEOMOD2 uses 

digital raster maps 

of biogeophysical 

attributes, as well 

as digital maps of 

existing land-use, 

to extrapolate the 

To incorporate this 

rule into the model, 

GEOMOD2 creates 

a “suitability” map 

empirically, by 

using several 

attribute maps and 

GEOMOD2 creates the 

suitability map by 

computing for each grid 

cell a weighted sum of all 

the reclassified attribute 

maps. 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

known pattern of 

land-use from one 

point in time to 

other points in 

time. 

one land-use map. 

The suitability map 

has high values at 

locations that have 

biogeophysical 

attributes similar to 

those of disturbed 

land and has low 

values at locations 

that have 

biogeophysical 

attributes similar to 

those of undisturbed 

closed-cover forest. 

19 

SLEUTH (Clarke et al., 

1997; Clarke and 

Gaydos, 1998; 

Jeannette, 2000; Silva 

and Clarke, 2002; Xiang 

and Clarke, 2003; 

Dietzel and Clarke, 

2004; Solecki et al., 

2004; Jantz et al., 2005; 

Xian and Crane, 2005; 

Silva and Clarke, 2005; 

Dietzel et al., 2005; 

Goldstein et al., 2005; 

Cellular 

automata 

model 

The extent of urban 

areas, Elevation, 

Slope Roads 

SLEUTH is a 

cellular automaton 

(CA) model that 

predicts the spatial 

extent of urban 

expansion based 

on repeated 

application of 

growth rules and 

weighted 

probabilities that 

encourage or 

inhibit growth. 

In the form of 

growth rules applied 

on a cellular basis. 

Each cell acts 

independently, but 

according to rules that take 

spatial properties of 

neighboring locations into 

account. 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

Caglioni et al., 2006; 

Dietzel and Clarke, 

2006; Gazulis and 

Clarke, 2006; Clarke et 

al., 2007; Dietzel and 

Clarke, 2007; Hu and 

Lo, 2007; Clarke, 2008; 

Guan, 2008; Silva et al., 

2008; Wu et al., 2009; 

Guana and Clarke, 

2010; Nong and Du, 

2011; KantaKumar et 

al., 2011; Kim and 

Batty, 2011; 

Martellozzo and Clarke, 

2011; Syphard et al., 

2011; Mahiny and 

Clarke, 2012; Manca 

and Clarke, 2012; 

Onsted and Clarke, 

2012; Wu et al., 2012; 

Chaudhuri and Clarke, 

2013; Al-shalabi et al., 

2013; Akın et al., 2014; 

Clarke, 2014; 

Chaudhuri and Clarke, 

2014; Jantz et al., 2014; 
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S.no. Model’s Name Model’s 

structure 

Driving Factors Relation with 

Urban Growth 

In what way the 

driving forces have 

been included in 

the method 

The relative 

contribution of driving 

factors 

Han et al., 2015; Houet 

et al., 2016) 
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ANNEXURE-II 

S. no. Location Research Group/ 

Affiliation 

Application Reference 

1 Albuquerque, 

NM 

USGS/GD/RMMC Urban Change Hester 1999; Hester 

and Feller 2002 

2 Alexandria, 

Egypt 

Newcastle 

University 

Urban Change Azaz 2004 

3 Atlanta, GA Florida State 

University, 

Tallahassee, 

Department of 

Urban Change Yang and Lo 2003; 

Yang 2004 

4 Austin,TX USGS/GD/RMMC* Urban and 

land use 

change 

USGS/RMMC 2004 

5 Chester 

County, PA 

Penn State 

Meteorology and 

Atmospheric Science 

Coupled 

modelling 

Arthur et al. 200; 

Arthur 2001 

6 Chicago, IL USGS Urban 

Dynamics 

Urban Change Xian et al. 2000 

7 Colorado 

Front range 

USGS/GD/RMMC* Urban and 

land use 

change 

USGS/ RMMC 2004 

8 Detroit, MI USGS Eros Data 

Center 

Urban Change Richards 2003 

9 Houston, TX Texas A&M 

University 

Urban Change Oguz et al. 2004 

10 Lisbon, 

Portugal 

University of 

Massachusetts 

Urban Change Silva 2001; Silvaa 

and Clarke 2002 

11 Mexico City, 

Mexico 

Paola Gomez, UCSB 

Bren School 

Urban Change UCIME 2001 

12 Modeling 

Monterey 

Bay, 

California 

UC Santa Cruz 

Environmental 

Studies 

Biodiversity 

loss/ model 

integration 

Cogan et al. 2001 

13 Netherlands Beriage Institute Urban Change Tack 2000 

14 New York, 

NY 

Montclair state 

university 

New York 

Climate and 

Health Project 

Olveri 2003; Soleckl 

and Ollveri 2004 

15 New York 

City, NY 

USGS/GD/RMMC* Urban Change USGS/RMMC 2004 

16 Oahu, HI University of Hawaii 

at Manoa 

 

Urban Change James 2004 
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17 Phoenix, AZ Arizona State 

University, school of 

Life Sciences 

Urban Change Brelling-wolf and Wu 

2004 

18 Porto, 

Portugal 

University of 

Massachusetts, 

University of Santa 

Barbara 

Urban Change Silva 2001; Silva and 

Clarke 2002 

19 Porto Alegre, 

Brazil 

The University of 

Melbourne 

Department of 

Geomatics 

Coupled 

clustering 

Leao et al 2001, 2004 

20 San Antonio, 

TX 

USGS/GD/RMMC* Urban and 

land sue 

change 

USGS/RMMC, 2004 

21 San 

Francisco, 

CA 

UCSB Geography/ 

USGS Urban 

Dynamics 

Urban Change Clarke et al. 1997 

22 San Joaquin 

Valley, CA 

UCSB Geography Urban 

Change/ 

Calibration 

testing 

Dietz and Clarke 

2004 a; Dietzal et al. 

In press 

23 Santa 

Barbara, CA 

UCSB Geography Urban 

Change/ 

coupled 

modelling 

Canadau and Clarke 

2000; Goldstein et al. 

2000,2004: Herold et 

al. 2002, 2003 

24 Santa Monica 

Mountains, 

CA 

San Diego State 

University 

Vegetation 

successin 

Syphard et al, in press 

25 Seattle, WA USGS/GD/RMMC* Urban Change USGS/RMMC 2004 

26 Sioux Falls, 

SD 

UCSB Geography Development 

of GA 

Goldstein 2004a 

27 Sydney, 

Australia 

The University of 

Southern Qeensland 

Urban Change Liu and Phinn 2004 

28 Tampa/S. 

Florida 

USGS/GD/RMMC* Urban Change USGS/RMMC 2004 

29 Tijuana, 

Mexico 

University Paul 

Valery 

Urban Change Le Page 2000 

30 Washington, 

DC/Baltimor

e 

University of 

Maryland, college 

Park, Department of 

Geography 

Urban Change Jantz et al. 2003 

31 Washington/

Baltimore 

USGS/GD/RMMC*/

UCSB Geography 

Urban 

Change/ 

Acevedo 1997; 

Clarke et al. 1997 
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Change 

Visualization 

32 Yaounde, 

Cameroon 

University of 

Melbourne, School 

of Anthrology 

Urban Change Stechiping 2004 

33 Santa 

Barbara 

University of 

California, Santa 

Barbara, Santa 

Barbara 

Urban Change Gazulis, N. et al 2006 

34 San Joaquin 

County (CA) 

University of 

California—Santa 

Barbara 

Land use and 

urban change 

Dietzel, C., & Clarke, 

K. (2006) 

35 Palermo, 

Italy 

piazza Leonardo da 

Vinci 

Urban Change Caglioni, M. et al 

2006 

36 Demo City University of 

California – Santa 

Barbara 

Land use 

change and 

urban change 

Dietzel, C., & Clarke, K. 

C. 2007 

37 Santa 

Barbara 

University of 

California, Santa 

Barbara 

Land use 

change and 

urban change 

Guan, Q. G. (2008) 

38 Demo City University of 

California, Santa 

Barbara 

Land use 

change and 

urban change 

Clarke, K. C. (2008) 

39 Santa 

Barbara 

University of 

Nebraska-Lincoln, 

University of 

California, Santa 

Barbara 

Land use 

change and 

urban change 

Guan, Q., & Clarke, 

K. C. (2010) 

40 Pune City, 

India 

Institute of 

Environment 

Education and 

Research, Bharati 

Vidyapeeth 

University 

Urban change KantaKumar, L. N. et 

al (2011) 

41 Italy McGill University, Urban change Martellozzo, F., & 

Clarke, K. C. (2011) 

42 Gorgan 

Township 

Gorgan University 

of Agricultural 

Sciences and 

Natural Resources, 

Beheshti Avenue; 

UC Santa Barbara , 

Land use 

change 

Mahiny, A. S., & 

Clarke, K. C. (2012) 
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43 United States Florida International 

University , Miami; 

UC Santa Barbara , 

Urban Change Onsted, J., & Clarke, 

K. C. (2012) 

44 Sardinia George Mason 

University; 

University of 

California, Santa 

Barbara 

Urban Change Manca, G., & Clarke, 

K. C. (2012) 

45 Unite States 

and other 

nations 

University of 

Wisconsin-La 

Crosse; University 

of California Santa 

Barbara 

Land use 

change and 

urban change: 

a review 

Chaudhuri, G., & 

Clarke, K. (2013) 

46 Gorizia-Nova 

Gorica 

University of 

Wisconsin-La 

Crosse; University 

of California Santa 

Barbara 

Urban Change Chaudhuri, G., & 

Clarke, K. C. (2014) 

47 Adana, 

Turkey 

Bursa Technical 

University, 

University of 

California, Cukurova 

University, 

Urban Change Akın, A. et al (2014) 

48 Toulouse Université Toulouse 

le Mirail; Université 

de Strasbourg; Ecole 

Spéciale des 

Travaux Publics; 

Toulouse Tech 

Transfer, Maison de 

la Recherche et de la 

Valorisation; 

University of 

California, Santa 

Barbara 

Land use 

change and 

urban change 

Houet, T. et al (2016) 
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