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ABSTRACT

A sustained performance while designing high-performance single-processor has become infeasible. The com-

putational density of single but more powerful complex processor does not scale power with higher clock speed.

Computational gain with conventional single processor had ended about a decade ago. Then computer paradigm

shifted from a complex single-processor to multi-core processor. The continuous advancements in CMOS technol-

ogy have grown the fabrication of a large number of cores within the same die. Cores in multi-core or many-core

processor can compute faster, although the interconnect delay limits overall performance of these cores. Networks-

on-Chip (NoC) is popularly used on-chip interconnect with the growing number of cores. It is designed to provide

high performance, and low power inter-core communication to/fro shared caches and off-chip memory. Modern

processor designs feature one of the NoC architectures, Single physical network (S-NoC), or Multiple physical

networks (Multi-NoCs).

Our dissertation explores multi-NoCs for the better power and energy efficiency of general-purpose manycore

processors. Multi-NoCs are known for multiple NoC networks which facilitate efficient separation of different

on-chip messages towards the multiple traffic flows. Each traffic flow is fully dedicated to its NoC network. Phys-

ical resources and physical link width of single NoC network split into multiple physical networks to construct

multiple simple, independent and parallel NoC networks. These multiple networks can separate different message

classes at logical (virtual channel) and physical levels. As each nanometer technology significantly increases the

contribution of static power in total processor power, we have proposed a static power efficient custom-made 2-

network-NoC architecture. The proposed multi-NoC also expands the design space to improve energy efficiency

through the placement of network selector. As a message request demultiplexed on any one NoC among the mul-

tiple NoCs, we have rechristened network selector as network demultiplexer. In traditional multi-NoCs, network

interface segments messages into flits and transmit them to multi-NoCs using network demultiplexer. We place

network demultiplexer along with routing unit and switch allocator of the router to explore the optimal placement

of network demultiplexer. Other than placement, existing issues and challenges for provisioning of traffic distri-

bution of multi-NoCs are identified through an extensive survey on traditional static traffic distribution. We have

proposed a case study for different combinations of static traffic distribution to analyze its impact on power and

energy efficiency of multi-NoCs. We realize that static message distribution is not suitable while running different

applications on general-purpose computers. Runtime variation in the number of messages varies runtime critical-

ity of messages. These limitations overcome through our proposed runtime adaptive traffic distribution. We devise

message criticality of NoC traffic using message dependency of caches through fine grain analysis of cache state

space. Our proposal captures the channel utilization and redirects the traffic towards the underutilized channel of

NoC networks. Towards the end, our experiments show the effectiveness of proposed solutions for current and

future NoC architectures.
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Chapter 1

Introduction

1.1 Evolution of Manycore Processors and Present Challenges

Modern computers shape after a radical reform from the 1930s to till date. The first generation

of computers evolved with the invention of vacuum tubes for electronic circuits. In 1947,

the invention of the transistor was a historic invention by Shockley and his colleagues at Bell

Labs. The inventors were awarded Noble Prize as this marvelous invention began the second

generation of computers. A real explosion in computer history was the invention of Integrated

Circuits (ICs) by Jack Kilby in 1960s. This was the third generation of computers that had

transistors fabricated on a chip and founded the base for current processor architecture.

In the 1980s, the microprocessor was fabricated as a single Very Large Scale Integration

(VLSI) chip and founded the fourth generation of computers. The IBM System/360 with Intel

microprocessor in 1981 was the first commercially available Personal Computer (PC) [5]. Con-

tinued advancements in transistor technology resulted in Ultra Large Scale Integration (ULSI)

era, and it became feasible to fabricate billions of transistors on a chip. These advancements

reduced the required space in a computer and significantly increased computational speed. One

of the factors affecting performance was delay of processor memory interface. For keeping

cost down, memory is much slower than CPU speed. Caches emerged as a solution to address

this problem. At architectural level, caches were invented to speed up the memory accesses

and consequently computations. Caches were faster memories placed between CPU and main

memory to reduce the access time for faster computation of instructions/data. A good amount

1
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of cache capacity and multiple levels of cache hierarchy significantly speed up the computa-

tion. A higher power dissipation became the limiting factor for the processing speed of a single

processor. As a result, research shifted to lightweight multiple cores processor. Evolution of

different characteristics with each generation of computers is shown in Fig 1.1.

Figure 1.1: Generations of computers: invented technology and characteristics from first(1942) to fifth
(till date) generations of computers.

For seeking ever-faster chips, multicore designs transformed to manycore processors. Another

paradigm shift was from Complex Instruction Set Computers (CISC) to Reduced Instruction

Set Computers (RISC). Doubling the number of cores does not necessarily result in doubling

the performance. Fig 1.21 shows the trade-off between performance and the number of cores

since 1970.

Figure 1.2: Impact of semiconductor scaling on processor design metrics such as the number of transis-
tors, thread performance, frequency, power, and the number of cores since the 1970s to till date.

1Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L.
Hammond, and C. Batten. New plot and data collected for 2010-2015 by K.Rupp.
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To improve the performance, hardware industry is trying to address the challenges of other per-

formance limiting factors like caches, offchip memory, and interconnect communication delays

that limit the data/instruction access time and consequently, processor computation speed.

With the advancement in both computing architectures and processor technology, many-core

architectures are begin designed with going to have hundreds of cores into a single chip. By

increasing the number of Processing Elements (PEs) in the chip, there is a need for efficient

and scalable communication infrastructure. The communication delay and power consumption

of traditional interconnections have become the major bottleneck. The networks-on-chip can

address many of the on-chip communication issues such as performance limitations of bus in-

terconnects and integration of a large number of PEs on a chip [147]. Modern networks-on-chip

uses customised architectures for effective communication techniques to meet modern proces-

sor design objectives. As can be seen from Fig 1.32, the performance gain of the processor is

almost flattening now.

Figure 1.3: Growth in processor performance with different computer eras such as CISC, RISC, Dennard
scaling, Amdahl’s law, and Moore’s law since the late 1970s

2Original data up to 2010, source: Computer Architecture-A Quantitative Approach John L. Hennessy and David A.
Patterson.
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1.2 Networks-on-Chip (NoC)

Manycore processors have two primary on-chip components: core and uncore. Core compo-

nents are also known as processing elements. These elements are made up of engines which

perform computations through vector units. On the other hand, uncore constitutes accelerators,

caches, memory controllers, and interconnects. Networks-on-Chip (NoC) has emerged as a fea-

sible and scalable interconnect to connect an ever-increasing number of varied on-chip cores

and uncore components. It transports the messages between the core-uncore component(s).

Computation speed of cores is significantly dependent on the efficiency of NoC. Providing a

scalable, high performance, and energy efficient NoC is a key research area for manycore pro-

cessors.

1.2.1 Contemporary Computing Challenges

Processors evolved in different computing directions with the advent of the Internet. NoCs

are popularly used for all computing domains, and its challenges vary with various computing

domains of processors as discussed below:

• Embedded Computers are designed for a specific purpose. A microprocessor inte-

grates with a device to control its operations. These computers are installed in smart

appliances, telecommunication, and automobiles to perform special operations. Modern

large embedded systems are considering Multi-Processor System-on-Chip (MPSoCs)

architectures [26]. These processors are designed to fulfill the unique requirements of

embedded applications. They use multiple CPUs along with other hardware subsystems

to implement a system. The growing complexity of MPSoC requires NoC communication

infrastructure to attain more component integration in less space along with modularity

and scalability that make it preferable to buses and point to point communication for large

systems. As embedded systems run specific applications, it is convenient to customise

NoC for specific traffic patterns that help to attain the objective of more performance,

functionality, and flexibility for less cost, lower power consumption and smaller footprint.

• General Purpose Computers are designed to meet the need of a variety of applica-

tions. They can be programmed to perform the same functions as that of a special
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purpose computer to solve a particular scientific and engineering problems. Desktop,

notebooks, tablets, and smartphones are underlying personal computers that use Chip

Multi-Processor (CMP) to System-on-Chip (SoC) processor architectures [27, 28].

These computers run a vast variety of applications. It is hard to design NoC that works

efficiently with a variety of traffic patterns, especially with the constraint that these

devices may not always be placed in an air-conditioned environment. Heat dissipation

is, therefore, a major challenge. In such a case, NoCs have more emphasis on good

power-performance trade-off and energy efficiency.

• Cloud, Server, and Enterprise Systems are accessed by personal computer for an

individual computing needs that are accessed through Internet facility. Cloud service

providers operate as a utility, and these services are charged on a usage basis. Enterprise

systems are large computers which are shared by a potentially large number of users.

Most of the algorithms are parallel as they are designed for high performance and low

energy execution of the application on manycore processors. NoCs for these processors

have an emphasis on performance efficiency as these systems provide services to

clients [29–31]. Presence of air conditioning makes other metrics secondary issues for

these systems.

• Supercomputers and Grid Computers are the most expensive, and physically the

largest category of computers that normally offer the highest performance. They are

used for the highly demanding computations like weather forecasting, scientific work,

and engineering design and simulation. Grid computers provide a more cost-effective

alternative. They combine a large number of personal computers and disk storage units

in a physically distributed high-speed network, called a grid. As performance is a major

concern for these computers, NoC infrastructure is primarily designed to achieve perfor-

mance efficiency to speed up the processors [32].

The wide use of general purpose processors motivates us to address NoC design objectives for

these processors.
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1.2.2 NoC Objectives

The following NoC objectives are important in meeting the design objective of general purpose

processors:

• Scalability. NoC provides communication infrastructures for manycore architectures. As

network size increases, communication in one machine cycle does not remain possible.

Message delivery cycles increase for cores placed at the far ends of the chip. Ensuring

NoC scalability in respect of consistent growth in the number of cores that can sustain

increasing parallel workloads remains a challenge. So the researcher prefers only those

architectural designs and methods that do not impose additional overheads on increasing

network size.

• Limited Power Budget. Modern power budget of the chip does not permit to switch

on all the transistors at the same time despite the abundance of transistors. With each

successive process generation, the percentage of a chip that can switch at full frequency

drops exponentially due to power constraints. This utilization wall is known as dark

silicon, which is under-clocked or not used silicon all the time [76]. The power dissipation

raises the core temperature, which affects the performance and reliability of a chip. Power

dissipation of NoC approaches roughly 19-35% of total chip power in modern manycore

processor designs [76]. Due to power budget constraints, power efficient NoC design is a

big challenge for the manycore processors.

• Energy Efficiency. Modern range of supporting clock frequency and growing number

of on-chip cores set much tighter power budgets for all system components according to

the International Technology Roadmap for Semiconductors (ITRS) and Semiconductor

Industry Association (SIA) roadmaps [149]. Device scaling depicts benefit in computa-

tion and storage components. However communication energy does not scale down. So,

minimization of communication-energy is a growing concern in modern technologies.

• Heterogeneous Applications. Heterogeneous nature of applications implies different

computing requirements. Some applications have a large memory footprint that regularly

generates cache misses. These applications are categorized as communication bound

workloads. Performance of these applications is closely related to the efficiency of NoC.
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Whereas, processor bound applications run with smaller memory footprint meeting over-

all performance metrics (such as throughput, delay, etc.) in a mix of both memory and

processor bound heterogeneous applications is another challenge for NoC architects.

• Selection of Performance Metrics. Selection of performance metrics is important for

evaluating different NoC designs. In previous research, a major shortcoming was clas-

sifying NoC performance in application-agnostic metrics such as message transmission

latency and memory bandwidth instead of processor performance metrics such as execu-

tion time and throughput [78, 79].

• Chip Area. Die area directly impacts the manufacturing cost. The designing cost of

manycore chips has been growing alarmingly. For example, as the chip area increases the

yield3 reduces. A good NoC design must acquire a minimal area for targeted performance.

• Co-Design of On-chip Memory Component and Networks-on-Chip. Performance of

on-chip shared caches is closely coupled with NoC architecture. Any cache miss ne-

cessitates a data transfer through NoC. As a result, NoC interconnects primarily decides

the performance of memory hierarchy. Exploring a combined design space for on-chip

caches, memory controllers, and NoC is another important dimension needed to be ex-

plored for a good NoC design.

1.3 Thesis Overview

This section discusses thesis motivation and research plan at hardware and software levels. This

is followed by a discussion on thesis contributions to achieve our measurable objectives. By

the end of the section, we elaborate organisation of the rest of the thesis chapters.

1.3.1 Thesis Motivation

In the future many-core era, the Networks-on-Chip (NoC) power consumption is expected to

increase because of the availability of more computation resources. Many of these would have
3Non-defective chips or number of good dies
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to be switched off while inactive to keep power consumption and chip temperature low. How-

ever, the NoC infrastructure must be kept alive to serve shared caches and memory accesses.

A recent study shows that the proportion of NoC power consumption becomes appreciable

in comparison to computation counterpart. A 32 core chip at 45nm substantially raises NoC

power (∼ 42%) among the remaining on-chip active resources (cores, shared caches, memory

controllers, PCIe controllers) [33]. Therefore, low power becomes the primary objective of

modern NoC designs.

In total NoC power budget, static power comprises of more than 74% of the total NoC power

at high network utilisation on 22nm technology [34]. The proportion of the static power further

increases on low network utilisation. This figure is expected to increase in future technology

generations. Reducing static power consumption is another design objective of NoC interface

between processor and memory cores.

Multiple Networks-on-Chip (Multi-NoCs) offer independent parallel data flows through

more than one NoC interconnects. Freedom of different hardware customisations along with

flexibility in fine-grain traffic distribution makes multi-NoCs more power and energy efficient

as compared to bandwidth equivalent single-NoC [38]. Many multi-NoCs customisations

are made to address the modern research challenges of dark silicon [94, 122], hardware

accelerators [109], reconfiguration [90, 91], fault tolerance [57], security [47], and power

gating [46, 93]. Real processor implementation of multi-NoCs is MIT’s RAW [68] and

TRIPS [69] research prototypes. In commercial chip product series, Tilera [70] and Adapteva

Epiphany [71] processors have implemented multi-NoCs.

Multi-NoCs are primarily implemented for application-specific processors e.g., SoC4, MPSoC5,

and FPGAs6. General-purpose processors have not been much explored for multi-NoCs im-

plementations. CMPs7 run a wide variety of applications with unpredictable heterogeneous
4System-on-Chip
5Multi-Processor System-on-Chip
6Field-Programmable Gate Arrays
7Chip Multi-Processor
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runtime traffic variations8. For these processors, it is difficult to design a static power effi-

cient customised multi-NoC that should dynamically adapt to the traffic distribution according

to runtime variations of fine-grain messages from computation bound to communication and

memory-bound applications. In this thesis, our objective is to design an energy efficient multi-

NoC suited for a general purpose computer

1) exploration of static power efficiency through possible customisation in multiple NoC at

the hardware level.

2) able to deal with a mix of memory-bound, communication-intensive, and CPU-bound

workloads in an adaptive manner.

1.3.2 Research Plan

Conventional multi-NoC architectures are shown in Fig 1.4. There are two distinct categories

shown as ‘customised multi-NoC version1 (v1)’ and ‘customised multi-NoC version2 (v2)’.

Both the architecture versions are derived through customisation of single-NoC. Architecture

v1 consists of two NoC planes, each plane having its NI (Network Interface), routers and links

connecting routers, connected to the core/tile.

Whereas architecture v2 shares routers in the two NoC networks. Here only NI and links are

duplicated. The figure shows multi-NoC architectures where requisite resources are duplicated.

But this can be extended to wherein resources are quadrupled or replicated to the necessary

depth. Both the architectures partition the traffic through multiple networks, albeit in different

ways. The v1 cannot provide runtime adaptivity to traffic. Once traffic is separated at NI and

injected into one of the networks, it cannot be diverted/jumped to another network as there is

no link between routers of two NoC planes. Whereas v2 can move/change (or interchange) the

traffic between the networks at runtime (at any point of time). So it is more flexible in terms

of traffic distribution. The NoC challenges like congestion, traffic hotspot, faults can be better

handled with v2. Therefore, we keep v2 as our baseline multi-NoC design.

8Traffic has control and data types of messages. These messages further divided into few more subclasses. The volume
of these messages vary from application to application and reflects at runtime in terms of wide variations and impact the
performance of NoC.
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Figure 1.4: Customisation of multiple NoCs from single-NoC. This figure illustrates two architectural
variations of 2-NoC network. (v1) customised multi-NoC version1 wherein resources of single-NoC are
entirely partitioned and form two NoCs in different planes; and, (v2) customised multi-NoC version2
wherein router is shared though internal resources of router and physical links are partitioned between

both the NoCs.

Fig 1.5, shaded part, presents our research plan, and the leaf nodes summarise our action

plan to meet thesis objectives. In our case, NoC is an electrical interconnect as optical,

and wireless alternatives are not commercially available. As Multi-NoCs favor a number of

simple, independent and parallel data flows, we use multi-NoC rather than single-NoC as our

architectural choice.

By replication at various levels of the network hierarchy, different types of multiple-network

configurations can be achieved. Such networks can be classified under multi-plane-NoC and

multi-network-NoC.
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Figure 1.5: In our research plan, we target both hardware customisation and traffic customisation for
multiple-NoC. In a 2-network-NoC, we explore placement of network demultiplexer for selection of the
one of the NoC network from the energy efficiency viewpoint. We also explore how traffic distribution

across these two networks affect NoC performance.

Different multiple NoCs as presented in Fig 1.6 9,10 can be categorized as

1) MPN (Multi-Planar-NoC): Complete NoC including routers and links are replicated and

can be viewed as a stack of NoCs, each NoC in a different plane of the stack.

2) MNN (Multi-Network-NoC): All links including NoC as well as NI links are replicated.
9The symbols N, E, S, and W represents the directions North, East, South, and West in mesh topology wherein routers

are connected with other routers of the topology. Whereas diagonal symbol C represents the direction of router connection to
‘Local Core’ through NI.

10For the sake of simplicity in representation, we assume single NI that is connected to the router through a single NI link
(C). In actual network, modern processors use more than one NI links corresponding to their NIs. Multiple levels of on-chip
cache hierarchy cause different respective cache controllers and one directory controller. Each one is required individual NI to
forward traffic through NoC.
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Figure 1.6: The different router9 architecture derived from single-NoC router (center), (i) Multi-Plane-
NoC (MPN): a) Bi-planar-NoC, b) Triple-planar-NoC c) Quad-planar-NoC, (ii) Multi-Network-NoC
(MNN): a) Dual-Network-NoC, b) Triple-Network-NoC c) Quad-Network-NoC, (iii) Multi-Switch-
NoC (MSN): a) Dual-Switch-NoC, b) Triple-Switch-NoC c) Quad-Switch-NoC, (iv) Multi-Router-NoC

(MRN): a) Dual-Router-NoC, b) Triple-Router-NoC c) Quad-Router-NoC

3) MSN (Multi-Switch-NoC): Only switching hardware within router (for example, crossbar

switch) is replicated.

4) MRN (Multi-Router-NoC): Only routers are replicated, they are connected through single

links in the network.

Depending upon the degree of replication, networks can be dual (only duplication of the re-

sources), triples (three units instead of one), and quad (each resource is replicated four times).

For the sake of simplicity in hardware implementation, we limit11,12 our implementation up to

dual-network NoC.
11We have compared dual-NoC hardware implementation with quad-NoC in Chapter 2 (Page 50).
12In brief, in Chapter 5 (Page 116), we have discussed the impact on hardware implementation with an increasing number

of NoC networks.
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1.3.3 Thesis Objectives

The thesis motivation discussed in Subsection 1.3.1 identifies currently unexplored issues of

NoC power efficiency and traffic distribution of general purpose chip multiprocessor. The

objective of our thesis is to primarily explore NoC efficiency for CMPs at the hardware and

software levels using multiple NoC networks.

1) Architectural Customisations at Hardware Level

Our thesis investigates static power efficiency through architectural customisations at the

hardware level. The following questions need to be answered in the perspective of dif-

ferent goals and commonplace use of dual-network NoCs for manycore general-purpose

processors:

• Is it possible to make dual-network NoCs more static power efficient over traditional

and state-of-the-art multi-NoCs through customisation of these architectures?

• Can we place the of network selection hardware unit somewhere other than the con-

ventional network interface placement in customised dual-network NoC architec-

tures? Is there any impact of placement on static power and energy efficiency?

2) Traffic Distribution at Software Level

NoC performance is significantly affected by traffic distribution as efficient distribution

balances traffic across the routers and links of the network. In the case of dual-network

NoC, the conventional traffic distribution methods need to be re-explored to address mod-

ern challenges. Therefore, exploring a new traffic distribution techniques is our another

thesis objective. We shall explore the following questions in the thesis at software level:

• What is the impact of retrospective static traffic distribution variation on dual-

network NoCs? Is there any impact on performance and energy efficiency? If so,

how do we capture such impact/limitations with real benchmarks of general-purpose

applications?

• Is there any method to improve the shortcomings of static traffic distribution? Can

we improve the underutilization of dual-network NoC networks at runtime?
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• How do we make dual-network NoC adaptive to runtime traffic variations of appli-

cations on general-purpose processors? How do we analyse NoC traffic at the fine-

grain level to devise criticality/urgency of messages? How do we decide fine-grain

messages distribution to utilize underutilized NoC network?

1.3.4 Thesis Contributions

In our thesis, we have explored static power and energy efficiency at hardware and software

levels. We have customised dual-network NoCs for static power efficiency that is further ex-

plored for energy efficient placement of NoC network selector. On exploring such custom

implementations at hardware levels, we accompany it with software level energy efficient traf-

fic distributions. For CMPs, exploration of traffic distribution is equally important as hardware

customisations. Through these proposals, we primarily target power, energy, and area efficiency

without any significant impact on latency, execution time, and throughput of NoC. We achieve

these measurable objectives in Chapter 4, 5, 6, and summarize these contributions in Chapter 7.

Our novel contributions are as fol lows:

1) Customised Dual-Network NoC Architecture to Attain Power Efficiency. In multiple

NoCs, networks carry parallel traffic flows through external NI links and internal network

links. We customise13,14,15 multi-channel NoCs through keeping a single NI link. Only

router-to-router links are replicated as shown in Fig 1.7. Such customisation reduces the

static power without impacting traffic distribution flexibility of multiple NoCs. Backpres-

sure mechanism automatically fills the buffers of both NoC since core and NI are faster in

message processing than NoC. Thus, single NI links shall not affect traffic injection rate,

and duplication of NoC links speed up communications through the availability of two

parallel links at each port. The static power advantage comes from half of the external NI

links that reduce the number of I/O ports of the router, the number of Virtual Networks

(VNs) and Virtual Channels (VCs), routing logic and control logic overhead, size of the

crossbar, etc.
13A. Sharma, Y. Gupta, S. Yadav, M. S. Gaur, L. Bhargava, V. Laxmi, “A Power, Thermal and Reliability-Aware Network-

on-Chip,” in Proc. of IEEE-iNIS, IEEE, Bhopal, Dec. 2017.
14S. Yadav, V. Laxmi, M. S. Gaur, “C2-DLM: Cache coherence aware dual link mesh for on-chip interconnect,” in Proc. of

19th Int. Symp. on VLSI Design and Test (VDAT), IEEE, pp.1-2, 26-29 June 2015.
15S. Yadav, V. Laxmi, and M. S. Gaur, “A Power Efficient Dual Link Mesh NOC Architecture to Support Nonuniform

Traffic Arbitration at Routing Logic,” in Proc. of the 29th Int. Conf. on VLSI Design (VLSID), IEEE, Kolkata, pp. 69-74, Jan.
4-8, 2016.
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Figure 1.7: Proposed customisation in multi-network-NoC architecture (a) proposed 2-network-NoC
(b) 3-network-NoC (c) 4-network-NoC

In the proposed architecture, dual networks originate from the router using network links,

so we have placed network selection hardware unit along with the routing unit of the

router rather than conventional network interface placement. This customisation is scal-

able with network size and results in following improvements–

• Through synthesis, we achieve 62% and 58% improvement in static power, and 30%

and 25% area efficiency with proposed 2-network-NoC over conventional dual-

network-NoC and single-NoC respectively at 32nm technology.

• Experiment on PARSEC16 benchmarks finds 45% efficiency in total router power at

(65nm, 1GHz). The power efficiency approaches 58% as technology shrink to 32nm

at 1GHz frequency. In contrast, the power efficiency limits to 40% as frequency

increases to 2.5GHz at 65nm technology.

2) Target 2-Network NoC Architecture. The placement17 exploration of the network se-

lection hardware unit has not been reported prior to our work in multi-NoC. As a flit is

demultiplexed to any of the multiple NoC networks through network selection hardware

unit, we named it as Network Demultiplexer (Net-Demux). The conventional multi-NoCs

design places Net-Demux at the network interface, whereas our proposed 2-network-NoC

places Net-Demux along with routing unit of the router. The network interface places

Net-Demux in the datapath whereas at the router the placement is possible at the control

unit. The placement at the control unit of the router reduces area and power overhead. In a

router, the critical path delay is dominated by the crossbar. The placement of Net-Demux
16Princeton Application Repository for Shared mEmory Computers
17S. Yadav, V. Laxmi, H. K. Kapoor, M. S. Gaur, and M. Zwolinski, “A Power Efficient Crossbar Arbitration in Multi-NoC

for Multicast and Broadcast Traffic,” in Proc. of IEEE-iSES’18, IEEE, Hyderabad, IN, Dec. 17-19, 2018. (Best Paper Award)
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at the switch allocator18 (schedules the crossbar connections between input and output

ports for flit traversal) is more efficient as compared to the routing unit placement. The

experimental results show–

• Through synthesis, we achieve switch allocator placement is 21% and 41% static

power efficient over network interface placement of dual-Network-NoC and single-

NoC, respectively. This is 29% improvement over routing unit placement.

• Experiments with PARSEC benchmark show that switch allocator, routing unit, and

network interface placements are 46%, 40% and 30% energy efficient over single-

NoC on PARSEC benchmarks.

• The placement at switch allocator and routing unit are respectively 33% and 26%

more energy efficient over conventional network interface placement.

• The placement at switch allocator improves the critical path delay by 33% over con-

ventional NI placement.

3) Case Study on Static Message Distribution Problem of CMPs and Proposed Runtime

Adaptive Fine Grained Message Distribution for Improved Runtime Utilisation of 2-

Network-NoC. Most of the multi-NoCs uses static communication infrastructure. Static

traffic distribution is the simplest offline message distribution method. We have conducted

and present a case study19 for different combinations of static traffic distribution to find its

impact on performance and energy efficiency of multi-NoCs. We observe that it is hard

to find the best solution from all the feasible choices. Efficient static message distribution

can be determined for a single benchmark, but the same distribution policy is not neces-

sarily the best solution for the rest of the applications. We have following conclusions

with the case study using general-purpose applications of PARSEC benchmark–

• Communication intensive benchmarks like swaptions (in power), x264 (in energy),

and rtview (in throughput) show significant ≈ 5× variations.
18S. Yadav, V. Laxmi, M. S. Gaur, and H. K. Kapoor “Late Breaking Results: Improving Static Power Efficiency via

Placement of Network Demultiplexer over Control Plane of Router in Multi-NoCs,” in Proc. of Int. Conf. Design Automation
Conference (DAC), ACM/EDAC/IEEE, Las Vegas, NV, US, June 2-6 2019.

19S. Yadav, V. Laxmi, M. S. Gaur, and H. K. Kapoor, “Adaptive On-the-Fly redistribution of Traffic with Multi-NoC for Fair
Distribution of Traffic in Chip Multiprocessor,” in Journal of System Architecture, Elsevier, February 2019. (Communicated)
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To alleviate these deficiencies, we also propose runtime adaptive message distribution20

for customised multi-NoCs. The proposed adaptive method considers the runtime dy-

namics and balances the traffic between multiple NoC network. Adaptivity utilises the

flexibility of multiple NoC architecture and allows messages to change the NoC networks

at runtime on underutilisation of NoC networks. We compare the benefits of adaptive

approach with two state-of-the-art traffic distribution as follows.

• Runtime adaptive traffic distribution attains energy saving up to 36% and

14% compared to the single-NoC and static traffic distribution respectively for

communication-intensive PARSEC benchmarks suite.

• The link utilisation improves 16% and 21% over static message distribution and

single-NoC.

We have implemented customised multiple NoC in GARNET21 that is integrated with Gem5

simulator. The results are evaluated using PARSEC benchmarks in full-system simulation. The

area and power of hardware implementation are estimated through synthesis using Synopsis

Design Compiler.

1.4 Thesis Organization

Chapter 2 presents a detailed review on multiple networks-on-chip. We have classified and

compared various multiple NoC architectures from the perspective of result metrics, processor

types, their design objectives, and addressed NoC problems.

Chapter 3 compared the traffic distribution of dual NoC with single-NoC. We have briefly

discussed our experimental setup and simulation tools. A brief introduction is presented on

essentials for designing multiple networks-on-chip.

Chapter 4 describes in detail the proposed 2-network-NoC architecture. In this design, the

network selection hardware unit is needed to place along with the routing unit of the router.

The efficiency of proposed NoC architecture is compared with single-NoC architecture.
20S. Yadav, V. Laxmi, M. S. Gaur, and H. K. Kapoor, “Comprehensive State Space Model of Caches with respect to On-Chip

Interconnect Traffic,” in Proc. of Int. Conf. on (RIEECE), IEEE, Bhubaneswar, IN, July 2018. (in press)
21A detailed cycle-accurate network-on-chip model inside Gem5 full-system simulator.
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Chapter 5 covers how the placement of network selection hardware unit impacts power, perfor-

mance, and energy efficiency of multi-NoCs micro-architecture. It also shows that the proposed

routing unit and switch allocator placements are more energy efficient over network interface

placements.

Chapter 6 describes the proposed case study for static traffic distribution on 2-network-NoC.

This case study shows the limitations of static traffic distribution and its impact on power,

performance, and energy efficiency of NoC. We propose a runtime adaptive traffic distribution

to overcome the limitations of static traffic distribution. Router adapts itself with the runtime

variations of messages for different traffic classes across various applications of general purpose

computing.

Chapter 7 concludes the thesis and discuss future research directions.



Chapter 2

Multiple-NoC Overview

In this chapter, we have presented a detailed literature review on multiple networks-on-chip.

These architectures are inspired from earlier proposed multiple interconnects such as multiple

buses, multiple rings, and modern hybrid wireless interconnects. Few additional customised ar-

chitectures are also surveyed wherein additional signal lines are inserted to carry forward some

messages. All these customised architectures were proposed for achieving different power-

performance tradeoff within the constraint of their architectural limitations.

Using multiple networks-on-chip, various NoC research problems are resolved. We have clas-

sified their literature according to targeted processor types, performance metrics, various ar-

chitectural customizations to meet the specific objective of application areas. In addition to

hardware level customisations, we have also reviewed the conventional and modern traffic dis-

tribution methodologies used by various multiple networks-on-chip architectures.

2.1 Introduction

One way to improve performance is to use multiple hardware resources in parallel. Replicat-

ing hardware, however, multiplies the cost and power of the circuit. So it is not a practical

approach to gain performance. Alternatively, rather than doubling the hardware resources slice

the resources to form parallel lightweight interfaces for parallel operations. Slicing of hard-

ware resources was initially implemented for Arithmetic Logic Unit (ALU) to improve the

performance through multiple parallel computations. Bit-sliced ALUs process k-bit data that

are divided into m slices of k
m bits. For example, a 64-bit data can be sliced into four ALUs, and

19
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each computes (64
4 )=16-bits. The example of these processors is General Purpose Graphical

Processing Unit (GPGPU). The bit-slice approach simplifies the circuit structure and reduces

the hardware cost.

Recent work on NoCs has focused on utilizing replication to increase throughput without any

latency penalty for multithreaded and shared workloads. The duplication of the network can

double throughput while using the spare area of tile after mapping of the basic router. Plane

replication is not a new idea, the mad postman network [8] used four independent planes to

forward packets in a 2D mesh, but it has not been explored before due to its silicon cost.

2.2 Multiple Networks-on-Chip

Multiplanes are going to play an important part in modern and future NoCs as they are able

to utilize the unused area in tiled architectures, exhibit low power dissipation rates and could

simplify the critical path by reducing/removing virtual channel arbitration [148].

Table 2.1: Different Processors with Multiple NoCs

Parameters Configuration
CMP C. Gomez et al. [127], 2008; A. K. Abousamra et al. [106],

2012; M. Lodde et al. [130], 2012; J. S. Miguel et al. [8],
2015; Z. Li et al. [109], 2016

MPSoC F. Gilabert et al. [39], 2010; H. Bokhari et al. [123], 2014;
V. Akhlaghi et al. [110], 2015

SoC S. Noh et al. [119], 2006; J. Wu et al. [124], 2016; Y. J.
Yoon et al. [131], 2017, J. Wu et al. [93], 2017

FPGA B. Sethuraman et al. [128], 2005; P. Ezhumalai et al. [121],
2010

2.2.1 Multiple NoCs for Various Processors

The work on multiple networks-on-chip has been reported for various processor types as listed

in Table 2.1. The processors are designed specifically to the applications they run. Therefore,

the architecture of multiple networks-on-chip is customized according to the workloads carried

by the network.
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CMPs. Chip multiprocessors integrate tens or even hundreds of processor cores onto the same

die. It constitutes an alternative to traditional monolithic designs with better levels of per-

formance, scalability, and performance/energy ratio [52]. Higher clock frequencies and the

increasing transistor density have necessitated power dissipation and temperature as critical

design issues in current and future architectures.

In CMP systems, all the processor cores and other support components (memory components,

accelerators, memory controllers) are interconnected using a high-speed on-chip network. Ex-

amples include prototypes such as the 48-core Single-chip Cloud Computer developed by Intel

and real products such as the Tilera’s 100-core TILE-Gx100 processor.

MPSoCs. Multi-Processor Systems-on-Chip (MPSoCs) represents a much more resource-

constrained domain. Area and power-efficient implementations are of paramount importance

to fulfill the requirements of embedded system platforms like those for multimedia, broadband,

and networking applications. Operating frequencies are typically lower. In this domain, re-

source overprovisioning to meet predefined performance constraints is not affordable, therefore

VCs are an attractive solution to maximize link utilization. MPSoCs are most sensitive to their

area and power overheads.

SoCs. System-on-Chip features an increasing number of processing elements (PE) and other

components. The entire system, which is required to run a device, is integrated into a single

chip that is known as SoC. The leading manufacturers like Qualcomm, Samsung, Apple, and

MediaTek are manufacturing SoCs for smartphones and tablets. The fundamental challenge

of using NoCs is that systems often have very different constraints than other processors. The

primary objective of NoC is to lowering the thermal and power issues of SoC and provide just

enough performance to accommodate specific tasks. Therefore, thrift is a virtue in designing

NoC while targeting power and area reduction.

FPGA. NoCs were introduced into the FPGA domain mainly to simplify tile-based reconfigu-

ration and its effective communication architecture. Research in [5] [6] address the capabilities

of FPGAs to support NoC based multi-processor applications. Hilton et al. [4] incorporate

flexibility into their design for FPGA based circuit-switched NoCs.
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2.2.2 A note on terminology and quality metrics

Partitioned/sliced/multiple/layers/multi/subnetworks are the different terms used by researchers

to describe communication infrastructures that simultaneously employ more than one NoC net-

works.

2.3 Multiple/Parallel Networks Architectures

In this section, we review how multiple networks evolved from multiple interconnects to mul-

tiple NoCs to address various research challenges.

2.3.1 Multiple Ring Architectures

In the 90s, multi-ring networks were explored in a lot of research work. Few of them are

discussed here. The ring interconnection network, as shown in Fig 2.1 (a), has many attractive

properties. One important property is that each processor in a ring requires a fixed number of

links (only two) irrespective of the size of the network that makes ring interconnection network

truly scalable. Such systems have simpler wiring and are therefore relatively inexpensive to

build. These networks have one serious drawback of inefficient interprocessor communication

between processors that are not neighbors. Therefore, broadcasting at interconnection level is

a problem. The MultiRing network, as shown in Fig 2.1 (b) provides an efficient and general

interprocessor communication and broadcasting mechanism at the interconnection level, unlike

the simple ring network.

Figure 2.1: Outer and Inner Rings

In 2002, M. Junginger et al. [99] proposed that data communication can be improved by ap-

plying overlay networks wherein a topology consists of multiple rings, backup links and dual
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mode links as shown in Fig 2.1 (c). Backup links are activated when the system detects the

broken links that were connected to the failed node. The activated backup link is converted to

a regular link. The proposed multi-ring improves performance and scalability of peer group

communication.

In 1997, H. R. Arabnia [103] proposed a reconfigurable multi-ring network (RMRN), as shown

in Fig 2.2 (a). It is designed for more complex parallel algorithms. The RMRN is a viable

architecture for image processing and computer vision problems. The network was designed

to address the problem of stereo correspondence, known as the stereocorrelation operation.

Stereocorrelation is one of the most computationally intensive imaging tasks required in many

applications, including remote sensing, geographic information systems, and robot vision.

Figure 2.2: (a) Reconfigurable Multi-ring Network (b) Multi-stage Ring Networks

In 1999, D. Yoo et al. [100] presented a new multiple ring network for multiprocessors, called

the Multistage Ring Network(MRN), as shown in Fig 2.2 (b). The MRN has a 2-level hierarchy

of rings, and its interconnection of global rings forms a type of the multistage network.

In 1998, A. S. T. Lee et al. [104] proposed a heuristic for designing a set of stacked rings given

an arbitrary set of node-to-node demands. A stacked ring set, as shown in Fig 2.3, is one where

several rings are routed around the same topology but each ring may adopt different sizes with

the overall aim to reduce the total node count. A random search scheme is employed to find

feasible routing and wavelength assignment for connections on individual rings.

In 2006, M. A. Wani et al. [105] published a parallel algorithm for polygon approximation

targeted at reconfigurable multi-ring hardware, as shown in Fig 2.4 (a).
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Figure 2.3: WDM Stacked Rings

Figure 2.4: (a) Reconfigurable multi-ring for polygon approximation (b) Ring-based routers composing
TornadoNoC wherein a box denotes a ring-based router, and a filled circle denotes a ring. An inter-ring
hardware interface at each router provides the communication between horizontal and vertical rings of

the mesh.

In 2013, J. Lee et al. [97] proposed a TornadoNoC having multiple ring-based router microar-

chitecture, as shown in Fig 2.1(b). The proposed architecture is a lightweight and scalable

on-chip network architecture for the manycore processors. To prevent livelocks and deadlocks,

a sequence numbering scheme and a dynamic ring inflation technique are proposed, and their

correctness is formally proven. The primary objective of TornadoNoC is to achieve substan-

tial gains in (a) scalability to manycore systems and (b) the area/power footprint, as compared

to current state-of-the-art router implementations. The new router is demonstrated to provide

better scalability to hundreds of cores than an ideal single-cycle wormhole implementation and

other scalability-enhanced low-cost routers. Extensive simulations using both synthetic traffic

patterns and real applications running in a full-system simulator corroborate the efficacy of the

proposed design. Finally, hardware synthesis analysis using commercial 65nm standard-cell
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libraries indicates that the area and power budgets of the new router are reduced by up to 53%

and 58%, respectively, as compared to existing state-of-the-art low-cost routers.

During the 90s a number of multi-ring architectures have been proposed. During that

generation, the design was focused on replication of hardware resources to form multiple

networks. In the 20th century, area and power became a big issue with the advent of

manycore processors.

2.3.2 Multiple Interconnects

Flores et al. [52] propose heterogeneous interconnects for energy-efficient message manage-

ment in CMPs. Continuous improvements in integration scale have made major microprocessor

vendors moving to designs that integrate several processing cores on the same chip as the inter-

connection network significantly impacts overall performance and energy consumption [142].

Authors propose a heterogeneous interconnect to efficiently manage messages for performance

and energy efficiency. Such proposal consists of two approaches. The first is Reply Partitioning,

a technique that splits replies with data into a short Partial Reply message that carries a subblock

of the cache line that includes the word requested by the processor plus an Ordinary Reply with

the full cache line. This technique allows all messages used to ensure coherence between the

L1 caches of a CMP to be classified into two groups: critical and short, and noncritical and

long. The second approach is the use of a heterogeneous interconnection network composed of

low-latency wires for critical messages and low-energy wires for noncritical ones.

Detailed simulations of 8 and 16-core CMPs obtain average savings of 7% in execution time

and 70% in the Energy-Delay squared Product (ED2P) metric of the interconnect over previous

works (from 24 to 30 percent average (ED2P) improvement for the full CMP).

2.3.3 Additional networks with Networks-on-chip

In 2012, M. Lodde et al. [130] design a fast and simple gather control network (GCN) as shown

in Fig 2.5 along with the NoC that collects all the acknowledgement messages of the L1 caches.

The main NoC is still used to transport requests, responses (including messages with data) and

coherence requests. However, all the acknowledgement messaging associated with coherence
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Figure 2.5: Additional Networks [130]

requests is separated from the NoC and sent through the gather network. Experimental results

demonstrate on a 16-tile system with the control network that execution time improves up to

17%, with an average improvement of about 7.5%. The control network has a negligible impact

on the area when compared to the switches.

2.3.4 Multiple Routers for Networks-on-Chip

NoCs can consume a considerable share of chip power. Moreover, diverse applications are

executed in these multicores, where each application imposes different communication require-

ments on the NoC. To realize a NoC which is Energy and Delay efficient, in 2015, H. Bokhari

et al. [129] propose Malleable NoC as shown in Fig 2.6 that is composed of multiple Voltage

Frequency (VF) optimized routers instead of single router per node in traditional NoCs. At

runtime, depending on application profile, they select one of VF optimized routers to form con-

Figure 2.6: Multiple Routers [129]
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stantly changing energy efficient NoC fabric. It enables utilizing one router from each node to

create an adaptable NoC at runtime. They use the multi-Vt optimization technique to design

routers for different VFs. Low Vt cells can switch faster but consume high energy, whereas

high Vt cell consumes low energy but switch at a much lower frequency. Multi-Vt optimisation

is a technique to improve the power efficiency of circuits wherein low Vt cells are inserted on

circuit logic paths with negative slack to meet the latency constraint. And, high Vt cells replace

normal cells on circuit paths with positive slack to save energy.

A variety of multi-program benchmarks executing on Malleable NoC exhibit a reduction in

Energy Delay Product (EDP) as much as up to 46% for widely differing workloads.

These schemes adopt many switching voltage regulators to scale the voltage. However, these

switching voltage regulators are expensive for chip area. At the same time, it is necessary to

add some special buffers to connect the routers in different clock domains.

2.3.5 Hybrid Wireless Networks-on-Chip Architecture

Heterogeneous System Architectures (HSA), in Fig 2.7, integrate cores of different architec-

tures (CPU, GPU, etc.) on single chip that are gaining significance for many high-performance

applications. NoCs in HSA are monopolized by high volume GPU traffic, penalizing CPU

bound application performance. In addition, building efficient interfaces between systems of

different specifications while achieving optimal performance is a demanding task. Homoge-

neous NoCs are widely used for many core systems, though, they fall short in meeting these

communication requirements. To achieve high-performance interconnection in HSA, S. H.

Gade et al. [96], in 2017, propose HyWin topology using mm-wave wireless links. The pro-

posed topology implements sandboxed heterogeneous sub-networks, each designed to match

the needs of a processing subsystem, which are then interconnected at second level using the

wireless network. The sandboxed sub-networks avoid conflict of network requirements while

providing optimal performance for their respective subsystems. The long-range wireless links

provide low latency and low energy inter-subsystem network to provide easy access to memory

controllers, lower level caches across the entire system. By implementing proposed topology,
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Figure 2.7: Heterogeneous subnetworks interconnected by mm-wave wireless interfaces [96]

authors improve application performance by 29% and reduce latency by 50%, while reducing

energy consumption by 64.5% and area by 17.39% as compared to baseline mesh1 [96].

2.3.6 Shortcut Paths Through Long-Range Links along with Regular NoC

Similar to multiple NoCs, Teimouri et al. [126] divide the n-bit wide network resources in

a router, such as links, buffers, and a crossbar, into two parallel n
2 -bit sub-networks to sup-

port reconfigurable shortcut paths. These networks, along with regular networks, are useful

for application specific processor where network traffic communication is known a priori, and

shortcut paths through long-range links are inserted accordingly. A good volume of throughput

is achieved, albeit on additional hardware cost and power.

2.4 Multiple NoC Implementations

The work on multiple networks-on-chip can be broadly classified between physical implemen-

tation and academic proposals by researchers.
1In baseline mesh topology, the CPU tiles (single CPU tile consists of CPU core associated with L1 and L2 caches), GPU

tiles (single GPU tile has four GPU cores and L2 cache), memory controllers tiles and tiles of the last level shared caches are
arranged in a grid layout, and each tile is connected with a router.
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Figure 2.8: Router architecture with reconfigurable shortcut paths [126]

2.4.1 Physically Implemented Multiple Networks-on-Chip

Table 4.1 summarizes list of multiple NoCs designed and physically implemented in real. In

the following paragraphs, details of each are discussed briefly.

Table 2.2: Multiple NoCs Based Real IC Designs

Architecture Year
Mad Postman Routing Chip
(MP1)

Computer Systems Research
Group [120], 1992

The RAW Microprocessor M. Taylor et al. [68], 2002; J. S. Kim et
al. [133], 2003, M. Taylor et al. [134],
2004

On-Chip Interconnection Net-
works of the TRIPS Chip

P. Gratz et al. [69], 2007

On-Chip Interconnection Ar-
chitecture of the Tile Proces-
sora

D. Wentzlaff et al. [35, 70], 2007

Adapteva Epiphanyb A. Varghese et al. [71], 2011

aTILE-Gx processor series continue bringing new products based on TILE-Gx.
bAdapteva Epiphany continues in the market with new series of manycore processors.

1) Mad-Postman Routing Chip (MP1)

In 1992, Computer Systems Research Group at the University of Surrey [120] fabricated

Mad-Postman Routing Chip (MP1) prototype that is the first step in the development of

fine-grain scalable parallel computers. The four routers are configured into grid or torus

networks.
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The MP1 design takes the advantage of mad-postman flow control and adaptive routing

to handle the congestion of the network. Both features together promise a significant

reduction in latency to design a fast network chip for parallel computers.

It is is not an optimal implementation.

2) Raw Microprocessor

In 2002, another multi-NoC chip prototype was designed and known as MIT’s RAW [68]

architecture. It uses two static networks for operands and other two dynamic networks

for remaining traffic.

Performance, energy efficiency, and cost-effectiveness are gained through the design of

multi-NoC for RAW architecture. For scalar codes with a moderate degree of instruction-

level parallelism, C and Fortran compiler of RAW is effective at exploiting parallelism by

automatically partitioning the program graph, placing the operations, and programming

the routes for the static router. The speedup is attained from 6× to 11× versus a single tile

on Specfp applications for a 16-tile Raw processor and 9× to 19× for 32 tiles.

Applications with a minimal (two- or three-way) amount of instruction-level parallelism

generally do not benefit much from running on Raw. This is because inter-tile latency is

great enough that it is cheaper to compute locally than to distribute the computation to a

neighbor tile.

3) TRIPS

Subsequently, in 2007, the TRIPS (Tera-op, Reliable, Intelligently adaptive Processing

System) prototype chip contains two data networks: the OCN (On-Chip Network) and the

OPN (OPerand Network). The OCN attaches two processor cores to a single second-level

cache, various IP blocks, and I/O units. Their primary NoC requirement was low latency,

implying a single-cycle-per-hop router. Another requirement was network-addressing

flexibility to use shared cache in multiple modes. So OCN network is dedicated to the

communication of memory traffic. Another OPN network transmits operands. Each OPN

message consists of a control and data phit, where a phit is the amount of data processed

by the OPN router in a cycle. The OPN supports different physical wires for the control

and data phit. Each OPN message consists of one flit, split into a control phit and a data

phit.
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The OPN router has five inputs and five outputs. Each input has two four-entry-deep FIFO

buffers. One for control phits and one for data phits. The local input has no FIFO buffer

that eliminates a cycle from the insertion of packets into the network. The OCN packet’s

control and data phits have separate 5 × 5 crossbars.

This system consisting of two types of NoCs delivers high bandwidth and low latency to

achieve system performance goals.

In both the OPN and OCN routers, the input FIFO buffers dominate the routers, consum-

ing 75 percent of the router area. The OCN routers are more than twice the size of the

OPN routers because of the extra buffering required for virtual channels. Therefore, the

networks’ overall area and power consumption were higher because of the wide input

FIFO buffers required by the wide channel widths.

4) Tilera

In 2007, Tilera [35, 70] manufactured a Tile processor architecture with multi-NoC named

as iMesh on-chip interconnect. It connects the multicore processor tiles with five 2D

mesh networks, each specialized for different use. These networks isolate communication

among different sub-systems. Memory traffic is separated from user-specified on-chip

traffic. User Dynamic Network (UDN) and STatic Network (STN) are used for operands

and messages, I/O Dynamic Network (IDN) is used for IO and system traffic, Memory

Dynamic Network (MDN) and Tile Dynamic Network (TDN) are used for the memory

and cache coherence for attaining high on-chip communication bandwidth.

5) Adapteva Epiphany

In 2011, Adapteva 2 Epiphany [71], [50] launched a chip with three independent NoC

mesh networks that carry different traffics such as rMesh for on-chip read, cMesh for

on-chip write, xMesh for off-chip write.

This was claimed to be the world’s first low-power chip design.

A typically 64 cores Adapteva chip consumes 70 GFLOPS/W power, 8.1 mm2 area and

88 GFLOPS/S performance.
2Recently, Epiphany-V chip is arrived in the market, and Adapteva has joined the kilo-core club with 1024 chips. Also,

announces ’The Brain’ project with 5,00,000 core on a chip at 3nm.
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2.4.2 Academically Proposed Multiple Networks-on-Chip

Different proposals to design multiple networks-on-chip by researchers across the globe are

summarized in Table 2.3. The common factor in all such proposals is of creating multiple

networks for an efficient flow of traffic. Researchers have evaluated their work using different

performance metrics. Table 2.4 presents proposed multiple NoC architecture along with per-

formance metric it improves. The work is classified as per the major gain in evaluation metric

as multiple objectives are achieved with some designs. Different works achieve specific NoC

performance metric in the targeted application domain by employing different customization as

discussed in the following paragraphs.

Table 2.3: Multiple Networks-on-Chip strategies proposed academically in different works.

Classification References
Express cube topologies B. Grot et al. [115]
Multiple Subnetworksa R. Das et al. [Catnap [46], 2013], J. Wu

et al. [Chameleon [95], 2015]; Lian
S et al. [BoDNoC [139], 2017]; J. S.
Miguel et al. [8], 2015; V. Akhlaghi et
al. [110], 2015

Concentration and Channel Slicing P. Kumar et al. [112], 2009
Customized multiple NoCs Architecture T. C. Xu et al. [108]
Multimode on-chip interconnect H. Bokhari et al. [Supernet [117],

2015]
Multiplanes Networks-on-Chipa Noh et al. [119]; A. K. Abousamra et

al. [106], 2012; J. Wu et al. [93], 2017
Multi-Switch Approach F. Gilabert et al. [39], 2010
Hybrid two layer router architecture J. Wu et al. [124], 2016
Physical channel replication Carara et al. [118], 2007
Runahead NoC as an accelerator with baseline NoC Z. Li et al. [109], 2016
Hybrid buffered and bufferless NoCb J. Fang et al. [98], 2018
Multi-Clock On-Chip Networks P. Ezhumalai et al. [121], 2010
DarkNoC Layers H. Bokhari et al. [123], 2014
Direction-Sliced Subnetworks F. Wang et al. [125], 2015
Hybrid multiple Networks-on-Chipa J. Wu et al. [92], 2017
Parallel Sub-links C. Gomez et al. [127], 2008

aThe work is also reported in the year 2017.
bThe work proposed in the 2018.
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1) Multiple Subnetworks

R. Das et al. [46] propose Catnap architecture, which consists of synergistic subnet se-

lection and power-gating policies. Unlike a single-network, a multiple-network design is

more amenable to power gating as its subnetworks (subnets) can be power gated without

compromising the connectivity of the network. Catnap maximizes the number of consec-

utive idle cycles in a router while avoiding performance loss due to overloading a subnet.

They evaluate a 256-core processor with a concentrated mesh topology. The average

network power of a power-gating optimized multiple-network design with four subnets

could be 44% lower than a bandwidth equivalent single-network design for an average

performance cost of about 5%.

The limitations of Catnap design and its suitability vary for different processor con-

figurations. They argued that multi-NoC design is attractive for large processors with

high network bandwidth requirements. As the number of cores reduces, the network

bandwidth requirement reduces, and fewer subnets are necessary to satisfy the proces-

sor’s per-core bandwidth. The opportunities for power gating is proportional to the

number of subnets. Benefits of these policies are lower for smaller processors. They

use concentrated topology because concentration is a simple and effective way to reduce

network latency and power. These policies are effective for a 64 cores processor, ben-

efits of a multi-NoC design with power gating are higher as the number of cores increases.

Table 2.4: Gain in result metrices with different multiple NoC architectures

Parameters Configuration
Powera R. Das et al. [46], J. Wu et al. [Chameleon [95], 2015],

M. Buckler et al. [116]; H. Lu et al. [90], 2015; H. Lu et
al. [91], 2018

Energy V. Akhlaghi [110], P. Kumar et al. [112]; A. K. Abousamra
et al [106], 2012; T. C. Xu et al. [108], J. S. Miguel et al [8],
2015

Execution Time J. Lee et al. [111]
Latency J. Lee et al. [111], V. Akhlaghi [110], T. C. Xu et al. [108]
Area J. Lee et al. [111], P. Kumar et al. [112]
Bandwidth P. Ezhumalai et al. [121], 2010

aThe work of 2018 target the gain in power.
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J. Wu et al. [95] propose Chameleon, a novel heterogeneous Multi-NoC design.

Chameleon employs a fine-grained power gating algorithm which exploits power saving

opportunities at different levels of granularity simultaneously. Thus, they propose a

performance-aware traffic allocation policy for multiple NoCs. This proposal delivers an

average of 3.39% higher performance than Catnap, the best contemporary alternative.

It consumes an average of 17.16% less power than Catnap [46]. However, the coarse-

granularity power-gating is inefficient for energy-proportional design.

Lian S et al. [139] propose a multi-granularity memory system that provides mul-

tiple access granularity for the applications with various spatial localities. In the

multi-granularity access pattern, the one-size-bandwidth NoC design cannot utilize the

bandwidth efficiently. They propose a novel NoC design, called BoDNoC, which can

merge multiple narrow subnets to provide various bandwidths. Experimental results show

that BoDNoC can improve the throughput by 23.5% and reduce energy consumption by

37.2% in comparison with one-size-bandwidth NoC design. However, the results are

evaluated only with synthetic traffic. The approach is not validated with real traffic.

J. S. Miguel et al. [8] model a theoretical, ideal NonCritical Networks-on-Chip (NoC-

NoC) where every word is fetched such that its fetch latency is equal to its access latency.

Caches fetch data in bulk (blocks of multiple words). Depending on the application’s

memory access patterns, some words are needed right away (critical) while other data

are fetched too soon (non-critical). So NoCNoC addresses this issue and ensures that all

the data shall be delivered just at the right time, no earlier than needed. In NoCNoC,

the baseline NoC is divided into multiple subnetworks wherein each subnetwork is op-

erating at a different frequency and voltage. The subnetworks split the baseline 128-bit

channel width. Each subnetwork is assigned to fetch a subset of words that share a com-

mon access latency. The subnetwork’s frequency is then configured such that the fetch

latency is equal to the access latency. A brute-force search is performed with all possible

subnetwork configurations to find the one that yields the lowest energy. They employ

Dynamic Voltage-Frequency Scaling (DVFS) to slow down the non-critical subnetwork.

This allows the system to save energy on words predicted to be non-critical since they can

tolerate a higher fetch latency.
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The criticality-aware NoCNoC achieves up to 60.5% energy savings with no loss in per-

formance. Furthermore, 62.3% of energy is wasted in fetching data that is not used by the

application.

Authors also perform a limit study of the impact of data criticality in NoC design and

limit study to estimate the amount of energy wasted in using traditional, criticality-

oblivious NoC designs. They have used six subnetworks in the design of multiple NoC.

A large number of subnetworks increase the control logic overhead.

J. Wu et al. [93] propose Multi-NoC (Multiple Network-on-Chip) that behaves well in

power gating for reducing leakage power, which constitutes a significant fraction of NoC

power. They propose CRA a novel Multi-NoC design with distinct routing algorithms for

different subnets. Integrated with a congestion-aware power gating and packet schedul-

ing policy. The CRA can achieve low power without degrading performance at varying

network utilization.

The experimental results with proposed multi-NoC show that CRA consumes an average

of 15.58% less power than Catnap, the state of the art power efficient Multi-NoC design,

and the EDP (Energy-Delay Product) is 8.59% lower than Catnap on average.

A proposal by V. Akhlaghi et al. [110] consists of two network layers where one layer is

dedicated to the packets transmitted to near destinations, and the other layer is used for

the packets transmitted to far destinations. The actual physical channel width connecting

the cores is divided between the two layers. The locality is defined based on the number

of hops between the nodes. The relative significance of the two types of communications

determines the optimum ratio for the channel width division. Their result showed that

for the link width of 128 bits and local communications of more than 30%, the proposed

network architecture outperformed the conventional one, on average, by 56%, 60%, and

70%, in terms of the average network latency, energy consumption, and EDP, respectively.

2) Channel Slicing

Channel slicing is used together with concentration by P. Kumar et al. [112]. Concen-

tration and slicing are well-known techniques in interconnection networks that have been



Chapter 2. Multiple-NoC Overview 36

adopted in different off-chip networks such as the Cray X1 [113] and the Cray Black-

Widow network [114]. To achieve trade-off between complexity and performance, hy-

brid implementations of concentration and channel slicing can be used to reduce the cost

of NoC while maintaining requisite performance. NoC with the concentrated network has

wider channels that may result in poor channel utilization because of some small pack-

ets in the on-chip network. For example, while cache lines can exceed 512–1024 bits in

width, request packets, control packets, or coherency messages are much narrower.

P. Kumar et al. [112] show how the poor channel utilization introduced by concentration

can be mitigated by channel slicing in NoC. Because concentration shares the channels

between multiple nodes that lead to performance degradation. The use of channel slicing

increases utilization of the wiring resources and improve performance. They propose vir-

tual concentration wherein concentration and channel slicing are combined to reduce the

cost of the network further. Their proposed virtual concentration save area and energy by

69% and 32% compared to baseline mesh and 88% and 35% over baseline concentrated

mesh.

J. Lee et al. [111] propose a novel router micro-architecture, i.e., Sharded Router that

employs fine-grained bandwidth “sharding” (i.e., partitioning) and stealing in order to

mitigate the elevation in the zero- load latency caused by slicing in four physically sep-

arated networks. Consequently, the zero-load latency of the Sharded Router becomes

identical to that of a conventional router, whereas its throughput is markedly improved by

fully utilizing all available bandwidth. Detailed experiments using a full-system simula-

tion framework indicate that the proposed router reduces the average network latency by

up to 19% and the execution time of real multi-threaded workloads by up to 43%. Finally,

hardware synthesis analysis verifies the modest area overhead of the Sharded Router over

a conventional design.

3) Multimode On-Chip Interconnect

H. Bokhari et al. [117] illustrate how dark silicon can be exploited to realize a mul-

tilayered NoC where each layer is optimized for a particular voltage-frequency (V–f)

level using the multi-Vt optimizations. This architecture is named as SuperNet. When

the chip is switched on, Fabric Manager (FM) by default initializes the SuperNet in

the normal mode, i.e., one of NoCs powered with a pre-defined operating value for

voltage-frequency tuple. Depending on various factors such as power budget, reliability
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requirement, etc., SuperNet can be activated in one of the available modes; each mode

reflects operating at a certain V–f pair.

4) Multiplanes Networks-on-Chip

Few works on multiplane NoCs compare the possible alternatives of VC-less multiplanes,

a single plane with more virtual channels and multiplanes with less virtual channels.

Noh et al. [119] propose a multiple-plane router with modified switch allocator, which can

provide better latency and performance in NoC environment. By adding more crossbar

switches in router architecture, the complexity of switch allocator is increased. Increase

in complexity is offset by better performance. They also compare the single plane router

with more number of VCs and double-plane router. The experiment results indicate the

increase of a number of planes is better than an increase in the number of virtual channels

in one port from the performance and complexity point of views.

Y. J. Yoon et al. [57] compared multiplane architectures with a fixed wire and buffer

constraint, and showed multiplanes are more efficient than VCs when the input buffer

storage is limited; besides, they provided higher per-watt efficiency for regular traffic

patterns.

A. K. Abousamra et al. [106] propose deja vu switching for multiplane NoC wherein

control and data planes are separate. They present the argument that instead of having

one interconnect plane to serve all traffic, power can be saved if the NoC splits into two

planes. A fast plane through circuit switching dedicated to the critical messages and a

slower by reducing the voltage and frequency, more power-efficient plane assigned only

to the non-critical messages. This split can be beneficial to save energy only if system

performance is not significantly degraded by the slower plane. They explore the need for

timely delivery of the non-critical messages. They analyze the constraints that govern

how slow the power-efficient plane can operate without negatively impacting system

performance. They evaluate design through simulations of 16 and 64 core CMPs. They

achieve an average NoC energy savings of 43% and 53%, respectively.

5) Multi-Switch Approach

F. Gilabert et al. [39] explored different architectures for deterministic wormhole routing:
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a traditional VC design, the multi-switch approach in which a VC-less switch is replicated

as many times as virtual channels, and the multi-network approach which corresponds

to the multiplane design with both link width and buffer constraints. They argue that

the multi-switch approach provides better performance than an equivalent multi-network

with only a small area overhead.

6) Physical channel replication

Carara et al. [118] discuss trade-offs on using circuit and packet switching, arguing in

favor of the former with a fixed packet size. Next, it proposes and justifies the replacement

of virtual channels by replicated channels, based on the abundance of wires expected in

current and future deep sub-micron technologies.

7) Runahead NoC as an accelerator with baseline NoC

In Runahead NoC configuration [109], the author has used a single Baseline64 network,

which carries 100% of the injected packets, along with the proposed Runahead network

that carries latency-sensitive packets (i.e., single-flit packets and critical words). As de-

livery is not guaranteed in the Runahead network, duplicate injection of latency-sensitive

packets into both networks is required. The total channel width, in this case, is 18 bytes

(8 bytes for the Regular network and 10 bytes for the Runahead network).

Two extra bytes to the Runahead network channel width are accounted for any additional

metadata for supporting critical word forwarding. This does not give Runahead network

any performance advantage since all packets are single-flit; in fact, it incurs a power and

area disadvantage.

8) Hybrid buffered and bufferless NoC

J. Fang et al. [98] proposed a hybrid NoC with a dedicated bufferless NoC and a buffered

NoC, as well as an application-aware mechanism to choose optimally efficient NoC. They

proposed a new metric NC (Network-Computation) ratio to classify big data load in

latency-sensitive and non-latency-sensitive. NC ratio refers to the ratio of the average

length of the network stages to the average length of the computing stages during the

measurement period. It reflects the network feature of different applications in several

stages as the characteristics of the application vary at different stages. They use NC ra-

tio=2 as the cut-off point to classify the request into two types. They examined both
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the 64-thread and 128-thread system, and their proposed mechanism shows significant

improvements in system performance.

However, heterogeneous NoCs lack flexibility, as there is no fairness in resource distri-

bution. This may cause hotspots of traffic and may result in congestion. Also, routers

may generate heat when more traffic activity exists in the networks. As a consequence,

several issues like more number of faults, thermal issues, and reliability affect the system.

Therefore, heterogeneous NoC is sometimes not a suitable architectural choice.

9) Hybrid multiple Networks-on-Chip

J. Wu et al. [124] propose a hybrid Multi-NoC design called HM-Mesh that adopts a hy-

brid CMesh and Mesh architecture and leverages CMesh network for power efficiency

at low network utilization. HM-Mesh is able to adaptively schedule packets to different

subnets according to the network load, and smartly perform power gating to achieve good

energy efficiency. Each computational node is connected to a corresponding router in the

Mesh subnet. A central controller is connected to the control network. The controller in

the node keeps track of the buffer occupancy of the corresponding router in the CMesh

subnet, and if congestion is detected, it signals the central controller, which will broad-

cast a signal to all controllers to turn on the Mesh subnet. When the central controller

detects there is no packet in the Mesh subnet for a number of consecutive cycles, it broad-

casts a signal to all controllers to turn off the Mesh subnet. The power gating process is

periodically performed by the central controller.

The experimental results show that HM-Mesh delivers an average of 4.87% higher per-

formance than Catnap, the state of the art power efficient Multi-NoC design. More im-

portantly, HM-Mesh consumes an average of 29.2% less power than that of Catnap [46].

J. Wu et al. [92] argue that the core count grows rapidly, therefore, NoC consumes an

increasing fraction of the modern processors/SoCs power. It is thus very important to de-

sign energy-efficient NoC architecture. They propose Chameleon, a novel heterogeneous

Multi-NoC design. Chameleon employs a fine-grained power gating algorithm which

exploits power saving opportunities at different granularity levels simultaneously. Inte-

grated with a congestion-aware traffic allocation policy, Chameleon can achieve both high

performance and low power at varying network utilization.
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10) Multi-Clock On-Chip Networks

P. Ezhumalai et al. [121] design and implement an NoC framework for FPGAs, Multi-

Clock On-Chip Network for Reconfigurable Systems (MoCReS). They propose a novel

microarchitecture for a hybrid two-layer router that supports both packet-switched com-

munications, across its local and directional ports as well as time multiplexed circuit-

switched communications among the multiple IP cores directly connected to it.

They have placed and route VHDL models of the advanced router architecture show an

average improvement of 20.4% in NoC bandwidth (maximum of 24% compared to a

traditional NoC). Authors develop a library of network components that can parameterize

the hybrid router model using a different number of ports, channel width, and depth of

buffers.

11) DarkNoC Layers

H. Bokhari et al. [123] propose I number of network layers, where a network layer con-

sists of m routers. At a given time, only one of the network layers is illuminated (acti-

vated), while the rest of the network layers remain dark (deactivated). When a network

layer is illuminated, all of its routers are active, and thus, at a given time, only m routers

are active. Each network layer is optimized at design-time to operate in a certain Voltage-

Frequency (VF) range. That is, multi-Vt circuit optimization of CAD tools is used to

optimize all the routers of a network layer for a particular VF range. All the layers in a

region are managed by a hardware-based darkNoC Layer Manager (dLM). The function

of the dLM is to switch between network layers when directed by the system-level DVFS

manager.

However, physically different routers, leveraging the extra transistors available due to

dark silicon.

12) Parallel and Partitioned Networks

B. Grot et al. [115] propose the MECS topology describes their topology using S=2

sliced topology as they evaluate MECSx2. They propose the Multidrop Express Channels

(MECS) topology and discuss an implementation based on two parallel and partitioned

networks (MECS-X2).
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T. C. Xu et al. [108] propose a heterogeneous network that is designed to separate the

message classes. A unicast/multicast capable router processes multicast invalidation mes-

sages and other unicast/multicast control messages, whereas another unicast only router

processes unicast/multicast data messages.

Their proposed multiple NoC design is compared with the homogeneous baseline network

as well as two other network designs. Experimental results show that the average network

latency and energy-delay product of the proposed design have improved 24.4% and 10.2%

compared with the baseline network.

13) Direction-Sliced Subnetworks

F. Wang et al. [125] propose the direction-slicing scheme into the 2D torus and mesh

network, respectively. For the direction-slicing in the 2D-torus network, all X+ channels

(West In and East Out), Y– channels (South In and North Out), and Local channels in

each router are split into ever-on slices and form the ever on subnet to guarantee full

connectivity. While remaining X– channels (East In and West Out) and Y+ channels

(North In and South Out) are the gated slices. Contrary, the 2D torus shows the different

direction-slicing, considering both symmetrical topology and simple routing design. All

X+ channels in even rows, X– channels in odd rows, Y– channels in even columns, Y+

channels in odd columns, and local channels are utilized to constitute the ever-on subnet,

and other remaining channels which belong to gated slices can be power-gated to pursue

the leakage power-saving.

14) Parallel Sub-links

C. Gomez et al. [127] analyze the option of distributing the wires among several parallel

links connecting the same two switches. This technique is known as Space Division Mul-

tiplexing (SDM). The number of parallel sub-links and their width are two key parameters

that are studied together with the relationship with the mean packet size. They propose

that SDM is a technique to take into account in on-chip networks. It allows to highly

increase the network accepted traffic at the expense of a small latency increase or even no

increase. Moreover, in some networks, it allows reducing the network hardware, provid-

ing similar performance results, which results in a reduction in the consumption of area

and power. They divide the wires into several parallel links connecting to the same two

routers to improve the network throughput while improving area occupation and power

dissipation.
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B. Sethuraman et al. [128] propose a competitive NoC architecture in FPGAs. The area

occupied by the network should be kept to a minimum. This ensures that the maximum

area can be utilized by the logic while maintaining the performance of the router network.

Reducing area also reduces power consumption. They propose implementation of a par-

allel router which can support five simultaneous routing requests at the same time with an

area overhead of only 352 Xilinx Virtex-II Pro FPGA slices (2.57% of XC2VP30).

2.5 Application Areas of Multiple NoCs

The research on multiple networks-on-chip has targeted various research domains, as listed in

Table 2.5.

Table 2.5: Application Areas of Multiple NoCs

Parameters Configuration
Congestion Y. J. Yoon et al. [57], 2013
Fault Tolerance Y. J. Yoon et al. [57], 2013
Network Reconfigurationa H. Lu et al. [90], 2015; H. Lu et al. [91], 2018
Security J. Sepúlveda et al. [47], 2015
Dark Siliconb S. Hesham et al. [94], 2017; M. Shafique et al. [122], 2017

Power Gatingb R. Das et al. [46], 2013; J. Wu et al. [93], 2017
Big Dataa J. Fang et al. [98], 2018
Accelerator Z. Li et al. [109], 2016

aThe targeted application area of multiple NoC in the year 2018.
bThe multiple NoC target the problem in the year 2017.

2.5.1 Congestion

The congestion control is one of the most challenging issues when designing a high-throughput

low-latency NoC. The incoming traffic often exceeds the outgoing bandwidth resulting in queu-

ing delay, packets loss, and blocking of new connections. The proposed solutions suggest to

increase the size of the buffers, but this causes an area overhead. Limiting buffers size degrades

the NoC performance in terms of latency and throughput. Y. J. Yoon et al. [57] propose the

utilization of multiple NoCs for path adaptivity, i.e., the ability of a router to dynamically adapt

the path of a packet according to the current status of the network. When the router detects that
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an output port is congested, it dynamically changes the routing policy so that following packets

can avoid the blocked channel. Path adaptivity relies on the extensive use of virtual channels

because they can be used to implement refined solutions for deadlock avoidance or recovery.

2.5.2 Fault Tolerance

The tolerance to temporary and permanent faults in the NoC components is an issue of grow-

ing importance for complex SoCs. The virtual channel renaming is a technique to support

fault tolerance across different virtual channels [132]. With VC renaming, the number of VCs

recognized by the routers and NIs can be larger than the number of physical queues used to

implement them. This solution is particularly effective when VCs are used to partition incom-

patible traffic patterns for deadlock avoidance, but it is limited to handle faults that occur in

VC components. Instead, Y. J. Yoon et al. [57] propose that multiple NoCs offer additional

fault-tolerance options: e.g., the network interfaces can avoid routing packets to a plane with

faulty routers and/or links by choosing a different plane. Since all planes are isolated from one

another, multiple NoCs can tolerate faults caused by links, crossbars, and switch allocators.

2.5.3 Network Reconfiguration

The temporal and spatial heterogeneity of on-chip traffic cannot adapt to existing NoC power

consumption as per its traffic intensity and hence lead to suboptimal power efficiency. Existing

approaches either resort to over-provisioned NoC design for the spatial distribution of traffic or

coarse-grained power gating that only serves traffic temporal variation. H. Lu et al. [90, 91] pro-

pose ShuttleNoC for boosting on-chip communication efficiency by enabling localized power

adaptation. ShuttleNoC architecture permits packets shuttling between multiple subnetworks

to achieve localized power adaptation.

It could achieve optimal power efficiency with up to 23.5% power savings and 22.3% perfor-

mance boost in comparison with traditional heterogeneity-agnostic NoC designs.
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2.5.4 Security

Ensuring security in Multi-processors Systems-on-Chip (MPSoCs) leads to several design chal-

lenges due to their intrinsic complexity. Distributed and collaborative MPSoC computing forces

the application to span across the computing resources. As a result, sensitive information is ex-

changed among the different computation components through the Networks-on-Chip (NoCs).

Security zones can be built for wrapping the sensitive IPs. However, these zones may not

always be physically close. J. Sepúlveda et al. [47] propose an architecture for creating NoC-

based disrupted security zones. They propose a reconfigurable security architecture for dis-

rupted protection zone in NoC-based MPSoCs. One network (Data) transmits the data among

the IPs of the MPSoC, while other (Service) uses for security services (Different flit widths and

buffer depth). A group-wise key agreement technique at NoC level is employed to create se-

cure and dynamic communication channels among the hardware components. They efficiently

manage dynamic security domains while presenting a low impact on the performance and cost

of MPSoCs.

2.5.5 Dark Silicon

S. Hesham et al. [94] explores the use of Circuit-Switched (CS) NoCs as a low complex-

ity energy-efficient solution for future platforms in the Dark-Silicon (Si) era. They present

a thorough analysis for circuit-switched NoCs from hardware synthesis perspective at differ-

ent threshold voltage (Vth) and supply levels. The proposed NoC is implemented as a mixed

Vth double layered design, where each layer is optimized for a frequency level at a different

supply voltage. Layer switching is explored on a per-router-port granularity level; links are

either activated on the fast or the slow layer based on the speed requirements, while the other

layer is kept dark. The proposed NoC architecture show energy savings up to 34% compared

to conventional single-layer single supply CS-NoCs.

M. Shafique et al. [122] propose that dark silicon can be exploited to realize a multilayered NoC

where each layer is optimized for a particular voltage-frequency (V–f) level using the multi-Vt

optimizations. Depending upon the network load, an appropriate layer is selected, while other

NoC layers are kept dark. To support efficient runtime operation, a lightweight NoC layer
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switching and flushing strategy and corresponding architectural support are proposed in these

works.

2.5.6 Power Gating

As the development of processors/SoCs, NoC consumes an increasing fraction of the mod-

ern processors/SoCs power. Thus, designing energy-efficient NoC architecture is imperative.

Multi-NoC (Multiple Network-on-Chip) behaves well in power gating for reducing leakage

power, which constitutes a significant fraction of NoC power. J. Wu et al. [93] propose Com-

bined Routing Algorithms (CRA), a novel multi-NoC design with distinct routing algorithms

for different subnets. Integrated with a congestion-aware power gating and packet scheduling

policy, CRA is able to achieve low power without degrading performance at varying network

utilization. The experimental results show that CRA consumes an average of 15.58% less power

than Catnap, the state of the art power efficient multi-NoC design, and the EDP3 is 8.59% lower

than Catnap on average. However, power gating schemes introduce significant wake-up delay

because of the loss of network connectivity.

2.5.7 Big Data

Big data demands application-aware network-on-chip framework. IoT and cloud computing re-

quires exascale computing systems with high performance and low power consumption to pro-

cess massive amounts of data. J. Fang et al. [98] propose a hybrid NoC framework, combining

buffered and bufferless NoCs to make the NoC framework aware of applications’ performance

demands. An optimized congestion control scheme is also devised to satisfy the requirement in

energy efficiency and the fairness of big data applications. They use trace-driven simulation to

model big data applications. Compared with the classical buffered NoC, the proposed hybrid

NoC can significantly improve the performance of mixed applications by 17% on average and

24% at the most, decrease the power consumption by 38% and improve the fairness by 13.3%.

But the heterogeneous NoCs have lack of flexibility.4

3Energy-Delay Product
4As explained in Subsection 2.4.2, architecture 8) hybrid buffered and bufferless NoC (Page 38).
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2.5.8 Accelerator

With increasing core counts and higher memory demands from applications, it is imperative that

networks-on-chip (NoCs) provide low-latency, power-efficient communication. Conventional

NoCs tend to be over-provisioned for worst-case bandwidth demands leading to ineffective use

of network resources and significant power inefficiency; average channel utilization is typically

less than 5% in real-world applications. In terms of performance, low-latency techniques often

introduce power and area overheads and incur significant complexity in the router microarchi-

tecture. Z. Li et al. [109] propose that both low latency and power efficiency are possible by

relaxing the constraint of lossless communication. This is inspired by internetworking where

best effort delivery is commonplace. They propose the Runahead NoC, a lightweight, lossy net-

work that provides single-cycle hops. Allowing for lossy delivery enables an extremely simple

bufferless router microarchitecture that performs routing and arbitration within the same cycle

as link traversal. The Runahead NoC operates either as a power-saver that is integrated into

an existing conventional NoC to improve power efficiency or as an accelerator that is added on

top to provide ultra-low latency communication for selected packets. Runahead NoC reduces

power consumption by 1.81x as a power-saver and improves runtime and packet latency by

1.08x and 1.66x as an accelerator. However, bufferless router designs have low throughput.

2.6 Remarks on Multiple-NoC Architecture Customisations

Multiple interconnects, multiple-NoC architectures, and their targeted application domain have

been discussed in Section 2.3 to Section 2.5. The proposed implementations are customised

to achieve the desired result metric of a specific application domain. The variety of customi-

sation shows the flexibility of these multiple NoC/interconnect architectures. It indicates these

architectures are full of scope for different customisations to solve modern and near future NoC

research problems.

These architectures can be customised for

1) Different processor designs such as for CMPs, SoCs, MPSoCs, FPGA, etc.

2) Homogeneous as well as heterogeneous architectures.
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3) Exploiting spatial and temporal locality of traffic and parallelism through multiple NoC.

4) Any NoC result metric such as power, area, bandwidth, latency, execution time, and en-

ergy improvement through customisations.

In our work, we employ the customization for homogeneous multi-NoC networks for general

purpose processors as the homogeneous networks are easily scaled to the same die area [74].

2.7 Traffic Distribution in Multiple Networks-on-Chip

Networks-on-chip is a communication substrate between the cores. NoC not only serves the

request between source to destination cores but also maintain the consistency between shared

caches and offchip memory. Therefore on-chip traffic is directly decided by spatial and tem-

poral locality of data. These factors affect the delay in addressing a cache miss. On a cache

miss, core searches for the data in other shared caches, and in offchip memory if a search is

unsuccessful. Single-NoC has single physical channels and cannot support the distribution of

messages across multiple networks as in multiple NoC. As the traffic has multiple message

classes as per the cache coherence protocol, it is interesting to explore how messages distribu-

tion across multiple NoCs affect network efficiency. Reported work in this employ either static

or dynamic distribution strategies. A brief overview is as follows:

2.7.1 Static Traffic distribution

In previous work [8, 36, 57, 74] of multi-NoCs, the traffic is statically distributed on multiple

NoC networks as follows.

• Control messages are assigned to one NoC network, and the other NoC network is for

data messages [36].

• Uniform distribution of messages on both NoC networks [74].

• One to one mapping between message classes and physical channels can be used to assign

messages on multi-NoCs [8, 57].
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In other static traffic distribution approaches for multiple NoCs, A. K. Mishra et al. [79] pro-

pose a heterogeneous dual NoC network wherein one NoC network is designed for bandwidth-

sensitive applications and another for latency-sensitive applications. However, these designs

do not allow the different classes’ packets through the same network, which makes a waste of

bandwidth and throughput.

M. Buckler et al. [116] propose power reduction by differentiating among different kinds of

traffic (such as one-to-many, many-to-one or request/response) and optimizing for each type.

None of the multiple NoCs architecture has explored static traffic distribution in detail, espe-

cially where the workload is a mix of computation intensive and memory intensive applications

and its impact on power-performance efficiency of these networks.

2.7.2 Adaptive Single-NoC Traffic Distribution and Other System Level Approaches

In single-NoC, the dynamic traffic distribution was limited to VC exploration. Z. Fang et al. [58]

and C. A. Nicopoulos et al. [64] propose the runtime distribution of messages. They not only

prioritize VCs for the defined class of critical messages but also dynamically allocate VCs, and

buffer resources according to network traffic conditions.

Likewise, the VC controller and VC allocation modules are proposed by M. Lai et al. [65]

that is modified to introduce congestion aware dynamically-allocated VCs architecture. The

statically allocated VC structure lacks flexibility on various traffic conditions that cause low

buffer utilisation. If the router is configured with deep VCs, head-of-line blocking will lead

to low throughput. Inversely, shallow VCs have distributed packets over a large number of

routers. In a low traffic rate, the packet transfer is interrupted by many contentions and increase

the latency. Therefore, M. Lai et al. proposed the use of shared buffers among VCs whose

structure varies with traffic condition. In low traffic rate, VC depth is extended to reduce packet

latency while in high traffic rate, the number of VCs increases to avoid congestion situations

to improve throughput. In the proposed approach, all the buffers are shared by linked lists, and

each VC is associated with a list for the single packet from different sizes according to traffic

conditions.
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Other than single-NoC dynamic traffic distribution, few research works are done on dynami-

cally adaptive schemes to exploit parallel execution for the processor and adaptive cache-line

granularity for memory architectures

Initially, processor and memory architectures have used different runtime adaptive methods at

the system level. During the execution of a processor, it can switch the execution from in-

order to out-of-order or vice-versa, and it can also vary the pipeline depth throughout program

phases to better support different levels of Instruction-Level Parallelism (ILP) or Task-Level

Parallelism (TLP). The examples of these architectures are MorphCore, CoreFusion, Compos-

able Lightweight Processors, and ARM big.LITTLE architecture [18]. The idea to dynamically

adapt resources according to program phase behaviour has been exploited for several microar-

chitectural units, such as the issue queue, reorder buffer, caches, and branch predictors that

improve the flow in instruction pipeline [141]. These techniques rely on the fact that conven-

tional microprocessors are designed to maximize performance for a wide range of applications.

However, a program rarely fully utilizes every microarchitectural resource to achieve high per-

formance and reducing the sizes of those underutilized microarchitectural resources may turn

into a penalty of energy reduction and performance impacts.

Subsequently, caches have different dynamically adaptive proposed schemes. Caches can dy-

namically select properties between inclusive and exclusive for the Last-Level Cache (LLC)

depending on application characteristics. The cache line granularity can be adjusted at run-

time according to the spatial locality in the workload, or partition the LLC adaptively between

cores depending on how beneficial additional cache size would be for a particular core. All

of these techniques take advantage of runtime variations in application behavior and adapt the

microarchitecture to extract better performance or power efficiency.

Runtime variation in working set sizes, spatial locality, and ILP and TLP also change commu-

nication characteristics and application’s memory access and data sharing behavior. Similar

effects of phase behavior and underutilization of hardware resources are seen in NoC traffic

with the advent of manycore architectures, although these behaviors have largely gone unex-

plored prior to our work. Traditional NoCs with rigid structures are unable to accommodate

such changes properly. Changing minor architecture will lead to radical changes in the system’s

communication demands. Though, it can be handled through runtime adaptive NoCs.
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We have explored adaptive traffic distribution for multiple NoCs architecture as these archi-

tectures facilitate multiple physical networks for traffic distribution. The implementation chal-

lenges of adaptive approaches are different for multiple NoCs as compared to processor, mem-

ory, and single-NoC.

2.8 Architecture of Network Selection Hardware Unit and Its Placement

None of the works reviewed here have explored the architecture of the network selection unit

and the impact of its placement on power-performance efficiency of the multiple NoC networks.

Few works have discussed memory controller placement, thermal-aware IP core placement,

and energy-aware task mapping.

D. Abts et al. [86] were the first who explored the impact of placement of Memory Controllers

(MCs). In a given system, a number of cores are more abundant than that of MCs. They inves-

tigate the on-chip design space to find the optimal number of the memory controller and their

placement relative to mesh and torus topologies, different routing algorithms, and workloads.

The placement of MCs can reduce contention, hot spots, and lower the variance in latency for

memory-intensive applications.

Likewise, W. Hung et al. [87] employ a genetic algorithm to minimize thermal hot spots through

optimized IP placement. While application-specific researchers J. Hu et al. [88] and K. Srini-

vasan et al. [89] find the optimal mapping of tasks to cores, and the optimal static routes between

these cores to achieve bandwidth and latency requirements. The communication patterns are

known a priori and can be specifically targeted based on communication graphs and also use

optimal algorithms for energy minimization.

2.9 Design Space of Multiple NoC Networks

Different proposals on multiple NoCs discussed under Section 2.4 have used a different number

of multiple NoC networks. The choices are based on different objective and application areas

of their work. Other than these works, A. Ejaz et al. [43] have explored multiple NoC architec-

ture itself by comparing the power efficiency of quad-network-NoC with dual-network-NoC by

doing synthesis.
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Other than the power overheads, an increasing number of NoC networks add up new control

tasks to the critical path that raises network delay and hence leads to a higher critical path

delay [39, 57]. Therefore, dual NoCs are suggested by A. Ejaz et al. [43] over quad NoCs.

Architecture of dual-network-NoC is more power efficient over both types of quad channel

NoCs as compared in Table 2.6.

Table 2.6: Synthesis results for different design choices of multi-NoCs (These results are based on A.
Ejaz et al. [43] for a single router)

XXXXXXXXXXX

NoC→ Single NoC Dual NoC Quad NoC
XXXXXXXXXXXMet.a↓

Size→
Dual-network Bi-planar Quad-network Quad-planar

1 × 1 × 1281 × 1 × 1281 × 1 × 128b 1 × 2 × 641 × 2 × 641 × 2 × 64 2 × 1 × 642 × 1 × 642 × 1 × 64 1 × 4 × 321 × 4 × 321 × 4 × 32 4 × 1 × 324 × 1 × 324 × 1 × 32
Power (mW) 30.1 32.6 56.1 36.12 62.2
Clock (GHz) 2.1 1.52 3.2 1 2.1

aMet- Metric
b The first parameter indicates a number of planes in multiple NoC. The middle parameter is used to specify the number

of NoC networks and the last parameter specify the bandwidth of each NoC network.

These results were obtained on default wire load model. Each type of multiple NoC is corre-

sponding to architectures, as demonstrated in Fig 2.9. The size of NoC specifies three dimen-

sions of the network i.e., the number of planes, the number of NoC networks, and bandwidth

of each NoC network, respectively.

Dual-network-NoC (1 × 2 × 64) has approximately same power efficiency as of single-NoC.

Though, it is the most power efficient as compared to bi-planar-NoC (2×1×64) and quad NoC

networks. These power results are obtained by Ejaz et al. when the total number of physical

resources (physical links, link-width, buffers) are kept constant across these NoC architectures.

Though, the power efficiency of dual NoCs decreases with an increase in the number of net-

works, as observed in Table 2.6. This is because of the increase in hardware resources (NI

including wires in case of dual-network) and routers + NI in case of bi-planar networks shall

increase power consumption. Therefore, Our selection of dual-network-NoC as a baseline mul-

tiple NoC architecture is implied through this study.
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Figure 2.9: Different types of multiple NoC networks up to quad networks as compared in Table 2.6,
according to A. Ejaz et al. [43].

2.10 Concluding Remarks

In this chapter, we have discussed a literature review on commercially and academically imple-

mented multi-NoCs architectures. In all the discussed architecture, the multi-NoC itself power

is comparable with single-NoC architecture. All the advantage in result metric is achieved by
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applying different implementation techniques through customizing each network for specific

tasks. Existing approaches in multiple NoCs improve network efficiency (power or execution

time or both) by

1) using different network for specific tasks.

2) designing different networks with different power gating and using one network at a time.

3) using VF scaling for different networks.

Except for a couple of researchers, none of the work enlights multi-NoC architecture itself.

None of the work has explored possible customizations in multi-NoC architectures to make

architecture itself power and energy efficient. None of the work has explored the architecture

and placement of network selection hardware unit that is the primary and essential integration

of hardware unit in multi-NoC.

The traditional static methods of traffic distribution also remain unexplored experimentally.

None of the work to the best of our knowledge reported the impact of static distribution on

multi-NoC result metric. Hypothetically, the messages are distributed as

1) separate networks dedicated to control/request and data/response.

2) a number of networks dedicated to each message class.

3) uniform distribution of messages between the networks.

None of the work has explored dynamically adaptive traffic distribution wherein a traffic class

can change the network on underutilization of the network except the recent proposal

1) H. Lu et al. [91], 2018 propose a reconfiguration hardware unit that is introduced between

the physical links of the multiple NoCs. At runtime, if the router faces congestion, then

another network is powered on, and a portion of traffic is redirected through another

network.

Though, such proposal has the additional hardware cost of reconfiguration unit that causes addi-

tional power penalty. Whereas, in our proposal, we keep the runtime adaptive traffic distribution

mechanism simple to avoid any additional cost.
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We also made our choice to study up to two networks with dual-network-NoC architecture that

is employed by following observations/arguments:

1) Dual-network-NoC is power efficient as compared to bi-planar-NoC and quad NoCs [43].

2) With up to dual NoC, no additional area overhead as there is enough space between tiles

of the chip to accommodate two networks while the die area keeps constant [74].

3) With dual NoC, control logic overhead is lower than the more number of NoC networks

that can be considered as negligible.

4) Dual-network-NoC has more flexibility to explore adaptivity as traffic can easily change

the network with these architectures as compared to bi-planar-NoC.

Thus, dual-network-NoC uses dual physical networks on the same chip and has the flexibility to

efficiently separate traffic classes of cache coherence protocol to improve the performance [36,

38, 43, 57].

In the next chapter, we shall do traffic analysis on dual-network-NoC and compare it with

respect to single-NoC. Our experimental methodology and tools set up shall be introduced in the

next chapter. In short, all the discussion on dual-network-NoC traffic analysis and experimental

methodology lay the foundations for the work presented in rest of the chapters.
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Preliminary Studies

The main objective of this chapter is to identify parameters for NoC simulation framework for

evaluation of our proposals in later chapters. Towards this end, we investigate communication

traffic patterns across NoC for different types of applications working under different workload

conditions. This study forms the basis of our work on message distribution in later Chapter 4,

Chapter 5, and Chapter 6. There we show that NoC performance can be improved by dividing

messages across a dual-network-NoC by reserving a given NoC network for a subset of message

classes. For our simulation, we use Gem5 with Garnet NoC interconnect.

3.1 Introduction

In the previous chapter, we have discussed various multiple interconnects and NoC architec-

tures. We have chosen traditional multiple-NoC architectures [38, 43, 57, 131] for further ex-

ploration. As we have discussed in Chapter 1 (Page 9) dual-network-NoC has more traffic dis-

tribution flexibility, and also it has a power-efficient hardware implementation as compared in

(refer to Page 50, Chapter 2) with dual-plane and designs with more number of NoC networks.

In this thesis, we limit exploration to dual networks. In this chapter, we present experimental

methodology and explore NoC traffic distribution between single-NoC and dual-network-NoC.

NoC traffic is one important factor that significantly impacts the power consumption. In fol-

lowing paragraphs, we shall be using term power efficiency to denote less power consumption.

System A is said to be more power efficient than system B if A’s power consumption is less

than that of B.

55
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The selection of NoC traffic for performance analysis is extremely important as it leads to

inferences about applicability of the methodology of the architecture. Traditional synthetic

traffic patterns with their regular stochastic models fail to capture the dynamics of real, multi-

threaded CMP workloads in terms of variations in source/destination patterns and injection rate

fluctuations and are therefore ineffective in predicting real-world NoC performance [18]. To

ensure more realistic NoC behaviour, most recent NoC-related research uses real application

traffic from benchmark suites, such as the PARSEC (Princeton Application Repository for

Shared-mEmory Computers) [44]. PARSEC has a diverse mix of applications making this

benchmark suitable for devising and evaluating message distribution schemes for more efficient

communication protocols.

We compare the traffic distribution of dual NoCs with single-NoC. Through experiments with

real traffic, we analyze the impact of benchmark parameter and hardware configuration on

performance and power efficiency of the network. Such analysis is utilized for experimental

setup and simulation parameter selection for our work presented in subsequent chapters. Thus,

in this chapter, we have covered all the important aspects of traffic distribution for dual-network-

NoC and their experiments that lay the foundation for the next chapters.

In summary, our key contributions are:

• Setup for our experimental methodology with various tools integration and simulation

mechanism with real traffic.

• Study of NoC performance with real traffic and its input workloads.

• Comparison of dual-network-NoC performance vis-a-vis traffic with respect to single-

NoC using different benchmark parameters and NoC hardware configurations to select/-

fix/prepare our experimental framework/parameters. So that the proposed architectures in

next chapter use these foundations/basis for their incremental customize contributions.

• Categorizing the messages of cache coherence protocol into different classes and study

the impact of the distribution of these classes through NoC on its performance. This lays

the foundation of message distribution strategies presented in Chapter 4 and 6.

This preliminary study helps us identify NoC architectural parameter to be used in subsequent

chapters.
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3.2 Experimental Methodology

For these preliminary studies, we have used Gem5 [41] that is a most extensively used open

source simulator. It facilitates the execution of benchmarks for evaluating the efficiency of

manycore processors. Gem5 simulator is an integration of M5 and GEMS simulators [41]. M5

supports CPU models, Instruction Set Architecture (ISAs), input/output devices, infrastructure

whereas GEMS supports interconnect models including cache coherence protocols. Gem5 is

suited for evaluating the performance of manycore processor architectures. For our thesis, we

employ other tools with Gem5. This is depicted in Fig 3.1.

Figure 3.1: Schematic representation of our simulation framework

Networks-on-Chip. Garnet is a detailed interconnection network model that supports bus,

crossbar, point-to-point interconnects to mesh and torus networks-on-chip topologies. Mesh is

popular among all topologies due to its simplicity and scalability up to hundreds of cores. Gar-

net simulates a detailed router micro-architecture model, as discussed in Appendix C (Page 185)

and requisite components of on-chip networks. Hardware parameters of these components1 can

be configured with different values in Garnet during the simulation. For the implementation of

dual-network-NoC, we needed to make significant changes in the Garnet code. These changes

were required at mesh topology, NI, and link slicing as well as router micro-architecture code.

Cache and Memory. For cache and memory models, Gem5 includes a flexible Ruby in-

frastructure and a domain specific language, SLICC is used for specifying cache coherence

protocols. Using Ruby, a developer can expressively define cache hierarchies and coherence

protocols, including those expected in emerging heterogeneous processors.
1Virtual channels, buffer size, link-width, etc., we have discussed these components in Subsection 3.5.2.3 (Chapter 3,

Page 74), Subsection 3.5.2.2 (Chapter 3, Page 73), and Section 4.3 (Chapter 4, Page 83).
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Power. Gem5 is integrated with ORION 2.0 simulator for NoC power and area estimation. Mc-

PAT (Multicore Power, Area, and Timing) is also an integrated power, area, and timing mod-

eling framework for multithreaded, multicore, and manycore architectures. It models power,

area, and timing simultaneously and consistently and supports comprehensive early stage de-

sign space exploration for multicore and manycore processor.

Benchmarks. We have integrated Gem5 with PARSEC benchmark for real-time analysis of

our proposals. The full-system simulation runs the parallel section of benchmarks, and it is our

most important performance metric. The simulation consists of three phases in chronological

order.

• Warm up phase: Initially, all caches are empty or filled with non-relevant data. Any

application at the onset of execution shall generate lots of cache miss. This phase is not

used for analysis of the performance of communication infrastructure or cache coherence

protocol [57] as this is a transient state.

• Region of Interest (RoI): This phase is relatively steady-state, and the cache miss is likely

to be an outcome of techniques to implement coherence for given communication infras-

tructure.

• Cleanup phase: This phase is encountered when an application has almost run or com-

pleted. This is used by operating system for garbage collection.

All results and discussion pertain to statistics generated over RoI phase for only the parallelized

versions of each workload. The thesis thus uses full-system simulations instead of trace-driven

ones. However, limitations of the Gem5 [41] simulator restrict us from running simulations for

more than 64-cores.

3.2.1 Processor and Memory

In Gem5, the processor hardware configuration parameters are listed in Table 3.1. For

networks-on-chip, gem5 is integrated with a detailed cycle-accurate GARNET [40] model. It

provides support for modeling of packet-switched NoC with pipelined routers following either

wormhole [73] or virtual channel flow controls (Appendix C). Gem5 also facilitates execution

of benchmarks in Full System (FS) that allows real device drivers and operating systems to be
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Table 3.1: Processor Simulation Parameters

Parameters Configuration
Cores 16/64 cores @ 2 GHz, ALPHA-21264 ISAa, Out-of-Order

(OoO)b, six pipeline stages: Fetch-Decode-Rename-Issue-
Execute-Writeback, Issue 4 instructions/cycle, reorder up
to 80 instructions on the fly

Networks-on-Chip GARNETc

Power ORIONd 2.0, 32nm Technology, 1 Volt
Benchmark PARSECe (medium workload, 16 threads)

aISA-Instruction Set Architecture.
bOut-of-Order (OoO)- execution allows instructions-level parallelism and improves processor performance.

Out-of-order execution makes sure that some other instruction which is independent of the missed one is exe-
cuted so that the CPU does not waste clock cycles by living in idle state.

cGARNET-A cycle accuRate iNtErconnection neTwork simulator.
dORION-A pOwer-perfoRmance IntercOnnection Network simulator.
ePARSEC-Princeton Application Repository for Shared-mEmory Computers.

run, not just user-level programs. It models bare hardware and privileged instructions. Appli-

cations can execute both user-level and kernel-level instructions. To experiment with Gem5

in full system simulation, a Linux 2.6.27 kernel image is booted with ALPHA instruction set

architecture in detailed out–of–order CPU mode.

Table 3.2: Memory parameters for on-chip cache and off-chip memory

Parameters Configuration
Caches Split into L0 (instruction) and L0 (data), each 64KB per

core, private, 4-way set associative, 64-B block size, 3-
cycle latency, L1 Caches: 2MB, shared, 8-way set as-
sociative, 64-byte block size, 20-cycle bank latency, 20
MSHRsa L2 Caches, 16MB, shared, 16-way set associa-
tive, 64-byte block size, 32-cycle bank latency, 32 MSHRs,
cache line size 64-B

Cache Coherence multicast (Directory) miss is solved in three hops
Main Memory ddr3 1600 x64, 8 memory controllers, data transfer rate

12.8 GB/S, 80 cycles access latency, block size 64 B

aMSHR-Miss Status Holding Register.

The cache and memory parameters2 in Gem5 are listed in Table 3.2. For good support of caches,

three levels3 of cache hierarchy (Appendix A) are used with MESI cache coherence protocols
2They are used with ruby memory model.
3Hierarchy of cache levels plays a major role in faster memory access compared to direct main memory access [21]. Intel’s

Nehalem, Haswell-E, Core i7 processor and AMD’s K10 (Barcelona) are the examples of processor that have used three-levels
of cache hierarchy [22].
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(Appendix B). The three levels of cache hierarchy are used wherein L0 and L1 are private, and

L2 is shared and distributed between the cores. L0 cache is split into data and instruction caches.

The size of L0 (L1) cache is 64KB (2MB) with 2-way (8-way) set associative and L2 cache is

16KB with a 16-way set associative. The hit latencies for the caches are 3, 20 and 32 cycles

respectively. The Gem5 uses 512 MB size of memory with ruby memory model that has 80

cycles of hit latency. The Gem5 is integrated with ORION 2.0 [61] at 32nm technology to

estimate the power consumption of NoC.

3.2.2 Networks-on-Chip

Networks-on-Chip are formed with links and routers. We assume that flit traverse physical link

in a single cycle. Our router model uses the four-stage pipeline for running medium to high

workloads. The details of NoC hardware configuration for the router, physical links, flit width,

routing, and network topology are listed in Table 3.3 for single-NoC and Dual-network-NoC.

Different stages traversed in every single cycle of the router are:

• Buffer Write (BW) and Route Computation (RC)

• Virtual Channel Allocation (VA)

• Switch Allocation (SA)

• Switch Traversal (ST)

Our choice of employing a four-stage pipelined router is governed by the following observa-

tions.

• Two-stage and three-stage pipelined router designs are suited only for low traffic loads.

Under high workloads, speculation cost offsets any advantages gained by the reduction in

pipeline length and may lead to larger critical path delay [63].

• Likewise, a single-cycle router is suitable only when (a) input buffer is not full, (b) flits

to be transmitted next are available in the buffer, (c) and no conflict for input and output

ports for existing flits. Practically, such ideal conditions are difficult to achieve.

Thus, four stage pipelined router model is used for our work to avoid any performance penalty

due to the pipeline structure with medium and high workload benchmarks.



Chapter 3. Preliminary Studies 61

3.3 NoC Traffic Analysis

We have analyzed NoC traffic through full system simulation of benchmarks for a more accurate

evaluation of the NoC system as compared to trace based and synthetic traffic based simulation.

Full system simulation for all applications in the benchmark suite takes a long time. In full

system simulation, the hardware of computer system is simulated at the level of the details such

that the complete software stacks from real systems can run on the simulator. We have chosen

Princeton Application Repository for Shared mEmory Computers (PARSEC) [55] benchmark

as it is suitable and most commonly [136] used for studies of chip multiprocessors as compared

to other similar benchmarks such as SPEC [138] and SPLASH-2 [44].

PARSEC is better suited among all the benchmarks for the evaluation of manycore processors

since it consists of applications requiring small, medium, and high workloads. PARSEC reposi-

tory continues to be maintained and updated by the developers for sustaining compatibility with

emerging workloads. It includes emerging applications in the fields of pattern recognition, data

mining, and system applications that mimic large multi-threaded programs commonly used in

the industry (e.g., Intel) as listed in Table 3.5.

The benchmark suite covers a wide range of parallelization models, synchronization primitives,

working set sizes, data locality, communication-to-computation ratios, and off-chip traffic. The

Table 3.3: NoC Configuration in Garnet

Parameters Configuration
Network router four-stage pipelined, virtual channel flow control, three

VNa for multicast MESIb directory protocol, four VCsc per
port for single-NoC, two VCs per port for dual-network-
NoC, five flits buffer depth, 8 × 8 and 16 × 16 crossbar for
single-NoC and dual-network-NoC respectively

NoC Networks Single-NoC/Dual-Network-NoC (single-plane)
Physical link/flit width 16-B for single-NoC and 8-B for dual-network-NoC, link

latency 1 cycle, for single-NoC control flit is 8-B and data
flit is 16-B, for dual-network-NoC both control and data
flits are 8-B

Routing Dimension Order XY
Network Topology 8x8 mesh, each node has a router and core

aVN-Virtual Network.
bMESI-Modified-Exclusive-Shared-Invalidation.
cVCs-Virtual Channels.
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benchmark also provides analysis of the traffic in the context of cache memory, on-chip commu-

nication, and off-chip memory of manycore processor. Therefore, it is popularly used bench-

mark for modern processors actual performance evaluation. Its input data are large enough

with a high degree of concurrency/multithreading suitable for evaluating the performance of

manycore processor. It focuses on emerging workloads since more powerful processors will be

available in the near future.

As the number of processor cores increases, applications, too, grow in terms of the size of

working datasets, degree of concurrency, inter and intra-thread communication to accommo-

date user demands. To ensure efficient resource utilization of manycore processors, efficient

traffic distribution is needed to utilize NoC network effectively and to make the execution of

cores faster. In manycore architectures, communication is the bottleneck, and improving its

performance shall improve processing efficiency also. The traffic distribution can be improved

through an efficient classification of NoC traffic.

Table 3.4: Different Characteristics of Applications

Characteristicsa,b Type1 Type2 Type3 Type4

Data Sharing (DS) Low (Lo) High (H)
Exchange (E) Low (Lo) Medium (M) High (H)
Granularity (G) Coarse (C) Medium (M) Fine (F)
Data Pattern (DP) Parallel (P) Pipelined (PL) Unstructured (Un)
Working Set (WS) Small (S) Medium (M) Large (L) Unbounded (U)

aThe listed characteristics define the traffic patterns of PARSEC applications.
bThese characteristics are used in Table 3.5.

Analysis of application behavior is essential to identify the requisite size, quantity, and multi-

plicity of network resources like buffers, virtual channels, and physical links. We have run the

PARSEC benchmark using full system simulation for experiments throughout the thesis as it

represents a wide range of traffic patterns for manycore processor. State of the art application’s

data exhibits variability in respect to granularity, sharing, size of working data sets, as shown

in Table 3.4. The different characteristics [137] of application are as follows:

1) Data Sharing: It defines all synchronization primitives used inside the application of

benchmark suite like locks, barriers, and wait conditions. The total count of these primi-

tives categorizes application under low or high data sharing.
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Table 3.5: The PARSEC Benchmarks of various application domains with working data set and their
detailed functionality

Application Domain Working Data Set Characteristicsa

(DSb/Ec/Gd/DPe)
Functionality

Blackscholes Financial
Analysis

in 16.txt (1KB), in 64k.txt
(4.1MB)

Lo/Lo/C/P Intel RMS benchmark that calcu-
lates prices for portfolio with a
Blackscholes Partial Differential
Equation

Bodytrack Computer
Vision

SequenceB 1
(2.5MB),SequenceB 3
(9.9MB)

H/M/M/P Tracks a 3D pose of a human
body through multiple cameras
that includes video surveillance &
character animation

Canneal Engineering 100.nets (2.2KB),
400000.nets(14.3MB)

H/H/F/Un Uses cache aware Swapped
Atomically (SA) to minimize the
routing cost of a chip design

Dedup Enterprise
Storage

medias.dat (10.6MB), me-
diam.dat (32.2MB)

H/H/M/PL Deduplication is a method to gen-
erate backup storage system simi-
lar to real–world

Ferret Similarity
Search

queriess (65.9KB),
corelm(18.4MB) &
corels(4.6MB)

H/H/M/PL Content based image similarity
search of feature rich data set, i.e.,
audio, image, video, 3D shapes

Fluidanimate Animation in 15k.fluid (545kB),
in 300k.fluid (11MB)

Lo/M/F/P Smoothed Particle Hydrodynam-
ics (SPH) method to simulate an
incompressible fluid

Freqmine Data Mining T10I4D100k 1k.dat
(40.3KB), kosarak500k.dat
(16.2MB)

H/M/M/P Frequent Pattern (FP) growth
method that uses different data
mining techniques

Streamcluster Data Mining none Lo/M/M/P A large amount of data is orga-
nized under real conditions, i.e.,
intrusion detection system

Swaptions Financial
Analysis

none Lo/Lo/C/P Employs Monte Carlo (MC)
simulation to compute portfolio
prices to asset interest variation
for risk management

Vips Media
Processing

barbados 256 × 288.v
(295.5KB), big-
ben 2662 × 5500.v
(295.5KB)

Lo/M/C/P VASARAI Image Processing Sys-
tems (VIPS) uses transformation
& convolution

X264 Media
Processing

eledream 64 × 36 3.y4m
(10.4KB), eledream 640 ×
360 3.y4m (11.1KB)

H/H/C/PL The image of the Elephant Dream
movie is used to create the input
videos for the X264.

Rtview Computer
Graphics

bunny.obj (2.5 MB),
happy buddha.obj (42.4
MB)

H/M/M/P Models 3D scans of real physical
objects. It is used for collision &
visibility detection.

aRefer Table 3.4 for characteristics details.
bDS-Data Sharing
cE-Exchange
dG-Granularity
eDP-Data Pattern

2) Exchange: The communication volume of traffic between threads can be low, medium,

and high. According to working data set, efficient data exchange for some PARSEC

applications through shared caches is constrained by cache capacity.



Chapter 3. Preliminary Studies 64

3) Granularity: The granularity of input data can be defined as coarse, medium, and fine. In

fine-grained data, coarse-grained or medium-grained data chunk up into fine-grained seg-

ments. For example, at the coarse-grain, the traffic can be divided into on-chip cache

and NoC, and offchip memory traffic types. Whereas in medium-grain4, these types

are further divided into subclasses such as control, request control, response

control, writeback control, response data, and writeback data. Finally,

fine-grain5 traffic is the cache messages such as load, store, acknowledgements,

etc., fine-grain messages are present at the last level of granularity as no further segmen-

tation is possible. Likewise, PARSEC benchmark suite uses three possible granularity of

input data during computation according to the type of job/function performed by differ-

ent applications.

4) Data Pattern: PARSEC application data pattern can be categorized under parallel,

pipelined, and unstructured. The parallelism is dependent on the proportions of the par-

allelizable application code. Different parallelization models are used in the PARSEC

benchmark suite. The amount of parallelism is also dependent on the working set size

and the cache block size used for an application. Whereas, pipelined data patterns use a

complex heterogeneous parallelization model wherein specialized threads execute differ-

ent functions with different characteristics at the same time. Applications which employ

a pipeline have dedicated thread pools for each parallelized pipeline stage. Unstructured

data patterns do not have fixed types of runtime behavior. For some cycles, these pat-

terns show sequential (or serialized) behavior, for another few cycles, they may exhibit

parallelized or pipelined behavior.

5) Working Set: It defines working data set of benchmark application. PARSEC put it under

the category of testing (test, simdev), simsmall, simmedium, simlarge, and unbounded

(native) input data. For these working sets, the volume of data increases in ascending

order. The full system simulation time also increases with the volume of data (from one

day to 20 days for small to large working data set).

PARSEC applications fall into the category of streaming, general purpose, mobile, server, sci-

entific, engineering, and graphical applications as listed in Table 3.5. Different characteristics
4Medium granularity of traffic is discussed in Section 3.6 (Page 77).
5Fine-grain granularity of traffic shall be discussed in Chapter 6 (Page 136).
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of applications are one of the cause for different volumes and types of traffic generated inside

the network [137].

Recent manycore processors are using shared distributed caches to keep a coherent and consis-

tent view of memory to all cores. Details on communication of distributed shared caches for

manycore processor architecture can be found in Appendix-B. Cache coherence protocol coor-

dinates spatially distributed caches and ensures up-to-date multiple cached copies of data. Dis-

tributed memory hierarchy consists of a memory bank, three levels of cache hierarchy to reduce

the overall access time to write (read) data to (from) processor cores from (to) cache/memory.

Execution of any application is limited by the time to access data from memory. On-chip cache

structure reduces this access time.

Figure 3.2: Cache and NoC traffic (64 processor cores traffic with PARSEC benchmark).

A scalable and efficient NoC is required to handle the volume of traffic generated to/fro cache(s)

during updating shared caches, in a cache coherence protocol. The number of transmitted flits

through NoC is dependent on cache coherence traffic propagated in the network. Fig 3.2 and

Fig 3.3 show the NoC traffic, cache traffic and memory traffic for different applications of

PARSEC (refer for details on application to Table 3.5).

Fig 3.2 and Fig 3.3 depict overall communication traffic for cache and memory. It needs to be

seen if it is possible to parallelize part of this traffic for improving performance. NoCs support
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Figure 3.3: Memory traffic (64 processor cores traffic with PARSEC benchmark).

delivery of messages in parallel but identifying parallelism requires to investigate what mes-

sages are non-overlapping in a given cache coherence protocol. This traffic classification is im-

portant to quantify NoC traffic as the system performance can be improved by faster communi-

cation among the cores. Impact of traffic distribution on the performance of computation bound,

communication bound, and memory bound applications is also explored. PARSEC benchmark

consists of all three categories-computation bound, communication bound and memory bound

of applications.

3.4 NoC Deadlock and Head-of-Line(HoL) Blocking

Modern NoC architecture uses buffers, virtual channels, and virtual networks to avoid traffic

deadlock and head-of-line blocking problem as discussed in the following subsections:

3.4.1 Buffers

A significant evolution primarily starts with the introduction of FIFO queue (buffers) in single-

NoC router microarchitecture as shown in Fig 3.4(a). The buffers are used to temporarily store

incoming flits before these can be forwarded to destinations. Traffic can be broadly categorized

into request and response messages. Sometimes, single buffer architecture is congested when

the network is flooded with request messages.
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Cores which initiate request messages wait for responses. Both types of messages use the

same network resources. Responses may not make progress in case of congestion and may

result in a deadlock. Since requesting cores are waiting for responses, and response cannot

be sent/forwarded due to unavailability of resources (buffer space) at the destined core(s). For

Figure 3.4: NoC hardware provisions to avoid traffic deadlock and head-of-line blocking (a) single-NoC
single-buffer (b) single-NoC with virtual channels (c) single-NoC with virtual networks. Where H, B,
T represent Head, Body, and Tail flits respectively. The single buffer and single VC terms are used

interchangeably.

example, in Fig 3.4 (a), the core C1 is waiting for the reply (RPC 1) from core C0 which cannot

send the reply (RPC 1) as the buffer of core C1 is full with request messages (RQC 0). Similarly,

core C0 is waiting for reply (RPC 0). Thus, deadlock may occur if a resource dependency exists

between different classes of messages. One possible solution to deal with deadlock is the

addition of virtual channel, discussed in the next subsection, as shown in Fig 3.4 (b).

3.4.2 Virtual Channels

Buffer associated with each physical link is partitioned into several small queues/buffer stor-

age to form virtual channels rather than a single deep queue. The virtual channels associated

with each physical link are allocated independently but compete with each other for the physi-

cal bandwidth. They decouple buffer resources from transmission resources. This decoupling

allows active messages to pass blocked messages by using a different VC. This improves the

utilization of network bandwidth that would otherwise be left idle. Virtual channels are intro-

duced in NoC for resolving Head-of-Line (HOL) blocking problem [73]. For example, the dual

buffers (virtual channels) as in Fig 3.4(b) can resolve the head-of-line blocking by facilitating
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more than one virtual channels for inter-core communication. Thus, they can increase network

throughput by utilizing idle buffer space.

3.4.3 Virtual Networks

Virtual Networks (VN) are introduced in NoC to avoid deadlock between messages because

of the message dependency in cache coherence protocol [73]. They also reduce the queuing

delay of coherence messages by separating control (request) and data (response) traffic. All the

message classes use the same single physical network although, the request and response traffic

classes are separated at VN level and transmitted via different virtual networks to avoid the

protocol level deadlock. Performance due to logical separation is, however, limited by a single

physical channel between routers. The request and response messages are also subdivided

between the different class of messages with the advancement of cache coherence protocols.

The class of request message can be mapped to VN-0, and the class of response message can

be assigned to VN-1 as shown in Fig 3.4 (c). Thus, virtual networks help to avoid deadlock due

to message dependency. The traffic distribution with multiple virtual networks is significantly

limited in a single-NoC network as physical links are not replicated.

3.5 Traffic Analysis: Dual-Network vs Single NoC

The limitation of the single physical NoC as discussed in previous section can be resolved

with dual-network-NoC that comprises of two physical NoC. These architectures can help in

deadlock prevention as well as do efficient traffic distribution.

Manycore general-purpose processors employ variety of workloads including pipelined multi-

threaded workloads as discussed in previous Section 3.3. These workloads have a large number

of concurrent transactions for distributed shared caches. This results in increase of the com-

munication traffic volume across the network. Both single-NoC and dual-network-NoC rely

on Virtual Networks (VNs) for parallel transmission of different class/categories of cache co-

herence messages. These networks logically separate message classes to avoid deadlock in

coherence protocols. Buffers are placed in these networks to hold the flits of a packet over

a channel. Instead of a single buffer, multiple buffers are used corresponding to each chan-

nel which are known as Virtual Channels (VCs). Though VCs increase critical path delay,
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Figure 3.5: There are four NI links (three level of cache hierarchy and one for directory controller)
between core and router. In dual-network NoC, these links are replicated. Also, router-router links are

replicated. These are shown as red and blue respectively.

power dissipation and area, they simplify network operation and address HoL (Head-of-Line)

blocking problem.

Dual-network-NoC not only partitions the physical link width but also splits the respective

number of VCs between dual network though they keep the same number of virtual networks.

Dual networks speed up the communication of network traffic. Rather than initiating few paral-

lel transmission with complex VC allocation logic, dual-network-NoC favor the dual networks

with simple, independent and parallel data flows. The physical link width of single-NoC is

divided by two as there are two networks in dual-network-NoC. Total physical link-width re-

mains same for both single-NoC and dual-network-NoC. This ensures a fair comparison of the

two architectures.

3.5.1 Benchmark Parameters and Hardware Configuration Impact on NoC Traffic

We analyze throughput variations between single-NoC and 2-network NoC for all the applica-

tions of PARSEC benchmark in full system simulations. In following subsections, we present

how throughput varies with workloads, number of threads, number of cores, NoC buffer size,

NoC virtual channels, and instruction set architectures to analyze the impact of these parame-

ters on NoC traffic. Throughput is computed as the number of bytes received per unit of time,

picoseconds, i.e., 10−12s in our case. In all our results presented in this chapter, both single-NoC

and dual-network-NoC consists of 16 and 64 processors.
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3.5.1.1 Workloads Choices

PARSEC allows an application to be run with three different types of workload – Low, Medium,

and High. To see the impact of workload variation, we have experimented with two ex-

treme cases of Low (L) and High (H) workload conditions. For most applications save for

Figure 3.6: Throughput comparison for Low (L) and High (H) workloads with PARSEC benchmark.
Results are evaluated with 16 core processor.

computation-bound ones, increase in workload is likely to increase traffic to/from caches. From

Fig 3.6, we observe that dual-network-NoC exhibits an overall 1.6x more throughput as com-

pared to single-NoC for high workloads. Applications like bodytrack, streamcluster, and fre-

qmine have improved throughput since they have more number of read and write operations.

We observe that the number of messages that pass through NoC has increased in high workload

Figure 3.7: Number of flits variation from Low (L) to High (H) workloads for different PARSEC bench-
marks. Results are evaluated with 16 core processor.

scenario as shown in Fig 3.7, and throughput is also increased as compared to low workload.

For low workloads, performance of dual-network-NoC is comparable with that of single-NoC.
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This is expected as message density of cache coherence protocols is not high enough to require

parallel transfer.

3.5.1.2 Number of Threads

As we increase the number of threads from 8 to 64, we observe that throughput is improved

for both single-NoC and dual-network-NoC for most of the applications, i.e., blackscholes,

swaptions, x264, dedup, fluidanimate, and ferret. In few cases for 64 threads, dual-network-

NoC does not perform better than single-NoC.

Figure 3.8: Throughput when number of threads are 8 and 64 with PARSEC benchmark. In x-axis, S
and D with benchmark indicate Single-NoC (S) and Dual-Network NoC (D). Results are evaluated with

64 core processor.

On increasing number of threads, all the message types do not increase in the same proportion

when compared to those for 8 threads. The message distribution for dual-network-NoC as was

assigned for the case of 8 threads may not remain effective. Few applications, i.e., rtview, dedup

and streamcluster do not perform well. This is due to increase in synchronization overhead

with increase in number of threads for these applications. Therefore, throughput is decreased.

Contrary, application like canneal exhibits significant improvement in throughput because of

inherent parallization as compared to other applications, and hence on average 1.5x throughput

gain is achieved with dual-network-NoC although no gain is observed with single-NoC.
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3.5.2 Selection of NoC Hardware Configuration

In this section, we investigate performance in respect of variations in number of core, size of

buffer and number of VCs.

3.5.2.1 Number of Cores

In Fig. 3.9, throughput of 16 core and 64 core processors are compared. As the number of

cores increases, throughput gain is expected. The dual-network-NoC with 64 core exhibits 1.6x

more throughput as compared to 16 core processor. There is an improvement in all applications

since multiple threads are easily mapped to 64 cores. PARSEC benchmark applications are best

mapped according to number of cores [49]. Increasing number of cores shall, however, not ben-

Figure 3.9: Throughput comparison between 16 and 64 core processor with PARSEC benchmark. In
x-axis, S and D with benchmark indicate Single-NoC (S) and Dual-Network NoC (D).

efit an application if it does not have high enough degree of parallelism to exploit availability of

more cores. For applications like dedup, freqmine, and streamcluster significant improvement

in throughput is observed since they have more parallel support for multithreading. With 64

cores processor, we observe minimum gain with vips whereas we get best throughput improve-

ment of 23x in rtview for 2-network. From Fig 3.9, we also infer that throughput improves for

64 cores single-NoCs compared to 16 cores processor, but this improvement is less as compared

to dual-network-NoC.
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3.5.2.2 NoC Buffer Size

The buffers are used to hold the flits awaiting for channel bandwidth. A single buffer can

hold multiple flits. To accommodate a single flit, the provisioned space for buffer should be

equivalent to the size of flit. So the total buffer size should be at least the product of flit size

and the maximum number of flits it can store. The selection of buffer size significantly impacts

the efficiency of the network. The total amount of buffering space required is the product of

the number of virtual channels multiplied by the individual virtual-channel depth. By virtual

channel depth, we mean, buffer/queue size that is the capacity of a buffer to accommodate a

number of flits. The buffers contribute a lot to area and power consumption of NoC [19]. The

variation in throughput with respect to buffer size is shown in Fig 3.10. In our experiments, we

Figure 3.10: Throughput when buffer size 2/4/6 in a 16 core processor using PARSEC benchmark. In
x-axis, S and D with benchmark indicate Single-NoC (S) and Dual-Network-NoC (D).

denote buffer size as number of flits it can store. We have experimented with buffer sizes of 2,

4, 6 to identify the suitable buffer size that supports the overall benchmark suite performance

for both single-NoC and dual-network-NoC. In all three cases of buffer size (2, 4 and 6), dual-

network-NoC outperforms single-NoC. Fig 3.10 demonstrates that, overall, dual-network-NoC

gives 1.7x throughput compared to single-NoC when buffer size is 6. Some applications such

as blackscholes and streamcluster on single-NoC and applications on dual-network-NoC, i.e.,

bodytrack, fluidanimate and ferret exhibit better performance with buffer size = 4 as compared

to buffer size = 6. This is due to the fact that critical messages are delayed by waiting in the

queue while these messages should be prioritized in delivery. So queuing latency increases

with buffer size = 6. Contrary, too small buffer size = 2 does not accommodate a good volume

of flits on the NoC network that results in drop in the performance. Other applications such as
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canneal, x264, and specific on single-NoC, i.e., bodytrack, rtview, vips, and on dual-network-

NoC, i.e., blackscholes, fluidanimate, swaption exhibit negligible improvement with increase

in buffer size. Except for rtview, performance with buffer size = 2 is much less as compared

to other buffer sizes. Any application that generates intermittent traffic shall remain almost

immune to buffer sizes as flits density is not too high to warrant storing them in buffer. For

communication bound applications, buffer size matters and filled buffers are responsible for the

performance bottleneck. Buffer sizes cannot be too large owing to the area and power overhead

they incur.

3.5.2.3 NoC Virtual Channels

Virtual Channels allow the upstream router to use a second free lane (a VC with buffer space

available) when a first packet is blocked in downstream router [20]. Thus, virtual channels are

used to resolve head-of-line blocking and for improving throughput of the network. The com-

parison between throughput when a number of virtual channels are 2/4/6 is shown in Fig 3.11.

We observe that overall throughput is best with 6 virtual channels, i.e., 1.9x for dual-network-

Figure 3.11: Throughput when number of virtual channels are 2/4/6 in a 16 core processor using PAR-
SEC benchmark. In x-axis, S and D with benchmark indicate Single-NoC (S) and Dual-Network NoC

(D).

NoC compared to single-NoC. For most applications, throughput steadily rises with increase in

number of virtual channels. Although some applications such as rtview (2 VC, dual-network-

NoC), vips (4 VC, dual-network-NoC), and streamcluster (4 VC, single-NoC) exhibit better

performance with lower and middle number of VCs. Application dedup on a single-NoC does

not show any improvement with increase in number of virtual channels. Whereas some applica-

tions such as x264 and specific on single-NoC, i.e., canneal, fluidanimate, freqmine, swaption,
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dedup, vips do not show any appreciable increase in performance when virtual channels are

increased from 4 to 6. Increase in hardware resource can improve the performance only of the

application has inherent requirement for these resources as well as capability to exploit this

availability.

3.5.2.4 Instruction Set Architecture

Towards the end, we have compared two different instruction set architectures ALPHA and x86

as shown in Fig 3.12. A real-time simulation of PARSEC shows the difference in results for

these instruction set architectures. The throughput gain is more with ALPHA compared to x86.

Figure 3.12: Throughput comparison between ALPHA and x86 processor architectures.

3.5.3 Discussions

Inferences from our experiments as discussed earlier are as follows. In the following discussion,

we relate these inferences to the choices for our simulation framework as used in subsequent

chapters.

• NoC traffic is higher for ALPHA instruction set because ALPHA based on RISC and

x86 uses CISC architecture [155]. As a result, we have selected ALPHA over x86 as

evaluation with higher NoC traffic shall be a better validation of our proposals.
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• Ideally, high workload generates more traffic and is likely to be more reliable for vali-

dating NoC results. But executing applications at high workload requires a considerable

amount of time. As a trade-off, we have selected medium workload to get time bound

results.

Table 3.6: Low/Middle/High range specification for cache parameters.

Characteristicsa Lowb Middle Highc

Cache Size-L0 (I/D)d 8/16 KB 32/64 KB 128/256 KB
Cache Size-L1 256/512 KB 2/4 MB 8/16 MB
Cache Size-L2 4/8 KB 16/32 MB 64/128 MB
Cache Line Size 8/16 32/64 128/256
Set Associativity-L0 (I/D) 1 2/4 8/16
Set Associativity-L1 2/4 8/16 32/64
Set Associativity-L2 4/8 16/32 64/128
Cache Hierarchy Levels one two/three four

aThe low, middle, and high range specified as per the study of few works of literature. Though
slight variations are possible in the specified range of these specifications.

bThe range mentioned in the table or lower values.
cThe range specified in the table or above values.
dI-Instruction Cache and D-Data Cache

• The variation in cache size, cache line size, selection of set associativity, and its number

of cache hierarchy levels per core also impact the volume of NoC traffic. Traffic analysis

with these cache patterns/parameters has already been reported in PARSEC benchmarks

literature review [136]. On the basis of this review, we have selected parameter values

that lie in middle range, i.e., neither too low nor too high. The selection of low values

of these parameters generates a lot of traffic due to a higher number of cache misses.

Though this is aligned with our requirement of high volume of NoC traffic, these smaller

values of cache parameters are not realistic approach. When we look at the options of too

large value of these parameters. Again, this is also not realistic parameters due to power-

performance and area trade-off constraints. These extreme choices significantly increase

the cost. Therefore, we have selected the middle value of these parameters as listed in

Table 3.6 which generates a good volume of NoC traffic for correct evaluations of NoC

designs.

• Selection of the number of threads has maximum limit dependent on the parallelization

supported by the application and number of cores. So we have selected 16 threads which
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are supported by all applications in benchmark suite and also good for the number of 16

and 64 processor cores simulations.

• Buffer size also should be carefully selected as it may significantly impact the throughput,

and queuing delays under high workloads. Larger size may increase the queuing delays

and smaller size accommodate less number of available flits, and thus it may impact the

throughput. So we have selected buffer size = 4 which is neither too low nor too high.

• The number of virtual networks help to resolve the protocol level message depen-

dency. For MESI (Modified, Exclusive, Shared, and Invalidation) cache coherence pro-

tocol [135], we need atleast three virtual networks to resolve protocol level dependency

of messages. In Appendix B, we explain this protocol and justify the need for three VNs.

• Several small queues/buffers are used to form virtual channels. Buffers are significant

contributor in NoC area and power, so usually a large number of VCs are not used in NoC

networks. As virtual channels decouple the buffers to increase throughput by allowing

active messages to pass blocked messages, they cannot be limited to a too small number.

By taking care of power-performance trade-off, we have employed four virtual channels

for single-NoC. The number of virtual channels are two for dual-network-NoC as we

partition the VCs between 2-networks to keeps the same number of total VCs between

both 2-network and single-NoC.

When we create dual-network-NoC, we keep cache parameters, number of cores, workload,

number of threads, number of virtual networks6 and size of the buffer keep the same as used in

single-NoC. The only varied parameters are the number of virtual channels, link width, and flit

width. Total number of virtual channels, total link width and total flit width remain same across

dual-network and single NoCs

3.6 Mid-level Granularity of Message Classes

Flits that traverse NoC networks belong to different message classes. The number of mes-

sage classes depends on the cache coherence protocol. We have used MESI directory protocol
6The number of virtual networks is dependent on the cache coherence protocol. The minimum number of required vir-

tual networks is decided by the protocol designer. For MESI directory protocol, atleast three VNs are essentially required
irrespective of NoC networks to avoid protocol level deadlock.
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wherein MESI (Modified, Exclusive, Shared, and Invalidation) cache states maintain consis-

tency with memory data through multicast invalidations to shared copy of data hold by other

caches [135] This protocol requires three hops in the critical path before the requested data

block is obtained. Details of the protocol are presented in Appendix A, which also details

the message classes for MESI. We have selected multicast for our experiments as the power

consumption overhead due to repeated injections of the same type of messages is less with

multicast over broadcast protocols [83]. The invalidation messages are considerably high in

the broadcasting protocol that significantly increases the unnecessary NoC traffic and power

consumption of the network.

Figure 3.13: A comparison of inter and intra benchmarks PARSEC suite, percentage-wise distribution
of the number of flits belongs to mid-level of granularity of message classes for MESI protocol.

All the volume of NoC traffic with MESI can be put into the following major classes:

1) Control (C) -This class of messages belong to MESI protocols only. The cache state

invalidation and upgradation events are classified under control messages. These events

are generated when the data block is modified. It invalidates the rest of the older copies

of the data block.

2) Request Control (R C) - It initiates data block replacement events at shared caches only.
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3) Response Control (Resp C) - The acknowledgment messages are generated by memory

and cache in the response of memory writeback and response data. The cache state un-

block event messages also be classified into this category.

4) Writeback Control (WB C) - It initiates data block replacement event at private cache

when cache consists of the unique/modified copy of data.

5) Response Data (Resp D) - If the data block is a unique copy of the data, this event of

messages changes the state of the cache to modified state. When the cache requires the

memory data, the response data messages initiate the request to memory.

6) Writeback Data (WB D) - It initiates data block replacement event at the cache and writes

the data to the memory.

The count of the different class of messages varies in the PARSEC benchmark, as can be seen in

Fig. 3.13. Delay sensitive messages such as control, request control, and writeback

control are scarce in quantity but have a larger impact on performance. Control initiates

invalidation for caches, request control messages unblock the data from blocking states

and writeback control initiates the replacement of cache block for memory. Although such

messages are less in number but critical from a performance point of view.

Figure 3.14: Message count of NoC traffic
with Low(L)(Canneal L, Blackscholes L) and
High(H) (Canneal H, Blackscholes H) work-

load of benchmarks.

Figure 3.15: Middle-grain message
classes distribution for benchmarks while
Low(L)(Canneal L, Blackscholes L) and
High(H) (Canneal H, Blackscholes H)
variations observed in the total number of

messages.

Fig 3.14 shows the message count of NoC traffic with Low(L) and High(H) workload for

blackscholes and canneal benchmarks. Here, we observe the smallest and largest variations

in the total number of messages. Fig 3.15 shows the message distribution at mid-level granu-

larity (we shall be referring to this as middle grain).
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Figure 3.16: Number of messages variation
when the number of threads varies from 8 to

64 during throughput analysis.

Figure 3.17: Middle-grain message class anal-
ysis when the number of threads varies from 8

to 64 during throughput analysis.

Likewise, Fig 3.16 shows the number of messages variation when the processor core varies

from 8 threads to 64 threads during throughput analysis of freqmine and rtview benchmarks. As

the maximum hike observed with freqmine and minimum with rtview benchmarks. Therefore,

we have selected these two benchmarks for our middle-grain analysis. A significant hike

is observed across all message classes whereas, for rtview except control and writeback

data, we observe the increase in rest of the message classes, as shown in Fig 3.17.

Middle-grain message class variation between ALPHA and x86 ISA with respect to a number

of messages received during throughput analysis across different benchmarks is shown in

Fig 3.18. We observe x86 ISA shows less number of messages received as compared to

ALPHA during throughput analysis. We observe significant variation in response control

and response data messages as compared to the rest of the message classes, as shown in

Fig 3.19. Also, a significant variation observed for request control only for the bodytrack

benchmark. As bodytrack belongs to computer vision application, its traffic patterns are

different than other applications.

We shall use middle-grain analysis in subsequent Chapter 4 and Chapter 5 to define static traffic

distribution for our proposed customized NoC architectures. Further, the middle-grain analysis

shall be extended up to fine-grain analysis in Chapter 6 up to the last level of granularity for

message criticality analysis. The adaptive message distribution hardware unit shall shall utilise

such study by for efficient traffic distribution on our proposed custom-made NoC architecture.
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Figure 3.18: Comparison of ALPHA and x86 architecture’s message volume in NoC traffic.

Figure 3.19: Middle-grain message classes distribution in the generated number of the messages for
ALPHA and x86 processor.

3.7 Conclusions

In this chapter, we have introduced our experimental setup, evaluation methodology, and bench-

marks. The necessary background about different characteristics of benchmark traffic is dis-

cussed to analyse NoC traffic characteristics for different applications of benchmarks. We figure

out the proportion of NoC traffic over on-chip cache and off-chip memory traffic using PAR-

SEC benchmark. The NoC traffic analysis helps to choose the experimental NoC parameters

and benchmark parameters.

NoC traffic is analyzed with respect to single and dual NoC networks. We experiment both

single NoC and dual NoC networks with benchmark parameters such as workload, number of

threads, etc. We also vary NoC hardware configurations such as buffer size, the number of

virtual channels to analyze the impact on NoC performance. Moreover, we examine message
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classes of PARSEC benchmark to understand middle-grain message distribution for different

applications.

The discussed experimental methodology is used in all subsequent chapters to experiment with

our research contributions. In the next chapter, we customise dual-network-NoC architecture

to achieve static power efficiency. As we have surveyed different customisations of these ar-

chitectures in Chapter 2 (Page 46), we shall explore customisation with dual-network-NoC

architecture.



Chapter 4

Proposed 2-Network-NoC Architecture

In the previous chapter, we have observed that dual-network-NoC performs better than a single-

NoC. Keeping networks to 2 in a multi-network NoCs is a cost-effective solution as area and

power overheads remain comparable to single-NoC [43, 74]. In this chapter, we shall propose

customisation in traditional dual-network-NoC to improve power efficiency.

In dual-network-NoC, the number of links from the core to router and router to router are

doubled as compared to single-NoC, but each link retains half the bandwidth of its counterpart

in single-NoC. For any router connected to source core, traffic injection is from the core which

can generate traffic only at a certain rate. As more and more traffic is injected and buffers are

filled, the backpressure mechanism shall send requests to source(s) to reduce the rate of data

generation. So there is a limit on the maximum rate at which data can be injected into the

network by a core.

In proposed customization to dual-network-NoC, only router-to-router links are doubled (sim-

ilar to dual-network-NoC), but the number of core to/fro router links remain unchanged, i.e.,

same as that of single NoC and half of dual-network-NoC. The bandwidth, however, remains

the same as that of a dual-network-NoC, i.e., half of that of a single NoC. In this chapter, we

evaluate the performance of our proposal with the traditional single and dual-network-NoC. We

shall refer to links between core and router as NI (Network Interface) links.

Reducing the number of NI links means half the bandwidth. If the injection rate is higher

than the communication rate, buffers at NoC router shall begin to fill up, and the backpressure

mechanism shall signal the core to reduce packet injection rate. The rate at which injected

83
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packets are routed shall ultimately limit the rate of packet injection into NoC. Thus, single

NI links shall not affect traffic injection rate, and duplication of NoC links would speed up

communications through the availability of two parallel links at each port. Less number of NI

links shall mean less number of buffers and lower area overhead as well as power consumption.

This is the motivation of our proposed customisation. We named the proposed customisation of

dual-network-NoC as 2-network-NoC since only network-links (between router-to-router) of

NoC participate in the formation of dual NoC networks. In the rest of the chapter, we evaluate

the performance of our proposal.

4.1 Motivation and Contributions

The dual-network-NoC can be customized in different ways to achieve different performance

metrics. As our objective is to address the modern processor’s static power challenges, we

have customised traditional dual-network-NoC architecture for this purpose. In this chapter,

we explore the various aspects of dual-network-NoC and compare it with similar architectures.

To understand the functionality of dual-network-NoC, how it is extended and customised from

single-NoC, it is important to understand the hardware characteristics of single-NoC briefly.

Using this, we propose a customized dual-network-NoC (i.e., 2-network-NoC) design that is a

more cost-optimized version of dual-network-NoC networks.

Thus, our main contributions are:

• The dual-network-NoC is customised to proposed 2-network-NoC.

• We have placed a network selector hardware unit along with the routing unit to distribute

message classes between 2-network-NoC.

• A detailed discussion to devise a suitable static traffic distribution for our proposed 2-

network-NoC architecture.
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4.2 Proposed Customisation in dual-network-NoC

In generic terms, an NoC be represented as D × P × B wherein D is the number of planes, P is

a number of NoC networks per plane, and B = link−width
P is the bandwidth of a physical link. So

in a single-NoC, D = P = 1, and a multiple-NoC1 D = 1, P > 1 and a multi-plane NoC D > 1.

For the dual-network-NoC and 2-network-NoC, the value of P is 2 as shown in Fig 4.1.

Figure 4.1: Proposed customisation in dual-network-NoC router to form 2-network-NoC.

Routers are connected with two types of links, namely i) network links which connect the

router to another router and ii) NI links which connect router to a core. In single NoC (refer

to Fig 4.1), four NI links connect the router to L0 cache (l0), L1 cache (l1), L2 cache (l2), and

directory controller (l3) through NI. These links are used for inter core’s cache communication.

Dual-network-NoC is formed through slicing/partitioning of single-NoC which is sliced along

NI links as well as networks links. As shown in Fig 4.1 (middle figure), NI links {l0, l1, l2, l3}

and network links {N1, E1, S 1, W1} interconnect the router with rest of the network and form

NoC1. Likewise, NI links {l4, l5, l6, l7} and network links {N2, E2, S 2, W2} interconnect the

router with rest of the network and form NoC2. However, router and its primary components

such as input unit, routing unit, switch allocator, crossbar and output unit are not replicated.

Fig 4.1 depicts how our proposed 2-network-NoC is different from traditional dual-network-

NoC. Our proposal borrows number of NI links from single NoC and network links from dual-

network-NoC with a difference that all links in our architecture have half the bandwidth of

the counterpart in single NoC. The NI links are now single {l0, l1, l2, l3} and have same link-

width as in dual-network-NoC (half of the single-NoC). So this customisation improves the
1To understand the evolution of different multiple NoCs from single NoC, please refer to Fig 1.6 (12).
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static power of 2-network-NoC as the number of NI links are half as compared to traditional

dual-network-NoC.

Two different NoC networks originate from router. The network links {N1, E1, S 1, W1} inter-

connect the router with rest of the network and form NoC1 and network links {N2, E2, S 2, W2}

interconnect the router with rest of the network and form NoC2. As network links are doubled

unlike NI links, two NoC networks originate from the router. Therefore, network selector is

placed along with the Routing Unit (RU) of the router instead of NI in 2-network-NoC.

4.3 Proposed 2-network-NoC vs. Existing Dual-network-NoC

The difference in hardware configuration of proposed 2-network-NoC vis-a-vis single NoC and

dual-network-NoC are shown in Fig 4.2. The links between core to NI, NI to router, and router

to router are respectively known as core links, NI links, and network links.

Single-NoC in Fig 4.2(a), consists of a single physical link between NI to router and router to

router. Each link has B-width and transferred data can be demultiplexed to N number of VCs.

The link-width of each link in dual-network-NoC is N
2 and the number of virtual channels is V

2

corresponding to each link as shown in Fig 4.2(b).

Table 4.1: Realization of 2-network-NoC from single-NoC through customisation in dual-network-NoC
architecture.

Architecture Net-Demux Link Type Physical links (L) Link-width a,b VCs
Single-NoC Not needed Core link 1 M –
(Y.J. Yoon et al. [57]) NI link 4 B N

Network link 1
Dual-Network-NoC Needed Core link 1 M –
(J. Balfour et al. [74]) at NI NI link 8 B/2 N/2

Network link 2
Proposed 2-Network-NoC Needed Core link 1 M –

at Router NI link 4 B/2 N/2
Network link 2

aM� B, link-width unit is bits. Link-width is similar to bus-width.
bLink-width defines a group of links/wires that propagates signals, each link carry one-bit signal/information.

NI links and network links form two NoC networks, i.e., NoC1 and NoC2. A Network-

Demultiplexer (Net-Demux), not needed in single-NoC, is generally placed at NI to distribute
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Figure 4.2: Evolution of 2-Network-NoC from Dual-Network-NoC and formation of Dual-Network-
NoC from Single-NoC.

the traffic to either NoC1 or NoC2. A Net-Demux is also known as network selector mod-

ule/unit. As Net-Demux and ‘network selector module’ are synonyms, we shall be using these

interchangeably.

The proposed 2-network-NoC as shown in Fig 4.2(c) has a similar configuration of link-width

and virtual channels as in dual-network-NoC but the number of NI links are halved. Therefore

two NoC are formed only with network links that connect the routers. Table 4.1 summarises

the architectural differences between these NoC architectures.

In this chapter, we shall be evaluating proposed NoC architecture viz-a-viz dual-network-

NoC [74]. On comparing, we find proposed 2-network-NoC is a subset of dual-network-NoC
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that necessitates placing Net-Demux at router due to a single NI links as shown in Fig 4.2(c).

In essence, our proposal differs from existing NoC in two main respects

1) No duplication of links at NI though link-width is half

2) Requirements of a Net-Demux at router

4.4 Proposed 2-Network-NoC: Micro-architectural Details

Fig 4.3 demonstrates 2-network-NoC that is arranged in 4 × 4 mesh tiled2 architecture of chip

multiprocessor. The single physical link-width and respective resources like virtual channels

of single-NoC are partitioned between the networks to form a 2-network-NoC. The number of

router ports are doubled to connect routers through network links but port capacity is partitioned

between the networks in proportion of link-width. These are the light ports as compared to

single-NoC.

Figure 4.3: A typical 4 × 4 2-network-NoC mesh in tiled architecture of chip multiprocessor. Each
router is connected with core through caches and directory controller. These components communicate
with router through network interface whereas router-router communicates through network links that

are arranged in a tiled architecture.

The router has four pipeline stages to route the flits [40]. The network selector hardware unit

along with routing unit classify the traffic and distributes it between both mesh networks. The

XY deterministic dimension order routing route the traffic between the source to destination

cores. The virtual channel allocator and switch allocator select the winner flit for output channel
2More details of core, cache, and tiled chip multiprocessor architecture can be found in Appendix A.
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Figure 4.4: A comparison of different components of router micro-architecture for (a) Single-NoC, (b)
Dual-Network-NoC and, (c) 2-Network-NoC.

among the contending flits by following round robin scheduling. We have considered virtual

channel flow control to monitor the flit traversal through the network.
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4.4.1 System based Comparison

The router microarchitecture of the single-NoC, contemporary dual-network-NoC, and pro-

posed 2-network-NoC is shown in Fig. 4.4. The single-NoC router connects with NI through

C number3 of NI links, i.e., {i0, · · · iC−1}. It connects with rest of the network via N number4

of network links, i.e., {iC · · · i(C+N−1)}. The existing dual-network-NoC replicates both NI links

(2 × C = 2C), i.e., {i0, · · · i2C−1} and network links (2 × N = 2N), i.e., {iC · · · i2N−1}, so to-

tal links are {i0 · · · i2(C+N)−1}. Here, the router of single-NoC contains total (C + N) links, and

dual-network-NoC router contains total 2(C + N) links.

Table 4.2: A system based comparison of proposed 2-network-NoC with Dual-Network-NoC and
Single-NoC. BC and BN are bandwidth (in bits) of NI and network link respectively.

NoC Parameters Single-NoC Dual-Network-NoC 2-Network-NoC

Total Bandwidth (BW) of all NI Links CBC CBC
C×BC

2
Total Bandwidth (BW) of all Network Linksa BN BN BN

Bandwidth (BW) of a single NI Link C×BC
C =BC

C×BC
2C =

BC
2

C×BC
2C =

BC
2

Bandwidth (BW) of a single Network linka BN
BN
2

BN
2

Number of NI Links C 2C C
Number of Network Links N 2N 2N
Number of Creditb Links C + N 2(C + N) C + 2N
Number of Virtual Networksc VN VN VN

Number of Virtual Channelsc VC
VC
2

VC
2

Buffer Size (Q) (in terms of number of flits) Q Q Q
Flit Size (in bits) F F

2
F
2

Buffer Capacity Q × F Q × F
2 Q × F

2
Number of Links to RUd/VAe/SAf C + N 2(C + N) C + 2N
Number of Links to Crossbar C + N 2(C + N) C + 2N

aIn each direction
bCredit Links- These are the signal lines along with physical links that are placed between the routers to notify upstream

router when a buffer is vacated. They help upstream router to keep track of the number of buffers available in the downstream
router by sending a credit count (available buffer space).

cCorresponding to Each NI or network Link
dRU-Routing Unit
eVA-Virtual channel Allocator
fSA-Switch Allocator

In contrast, proposed 2-network-NoC replicates only network links (2 × N = 2N), i.e.,

{iC · · · i(C+2N−1)}. The NI links are C {i0, · · · iC} that is similar to single-NoC. Thus, a typically

4 × 4 mesh has the number of links as follows:

Single-NoC (C + N) < 2-Network-NoC (C + 2N)< Dual-Network-NoC 2(C + N).
3The value of C depends on cache hierarchy, in our case C=4.
4For mesh, the maximum number of network links is N = 4.
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The proposed 2-network-NoC is a subset of dual-network-NoC. The bandwidth variations of

the NI and network links are already discussed in Section 4.2 (Page 85) and Section 4.3 (Page

86). Other than NI and network links characteristics, router’s micro-architectural components

are also affected due to customisation in dual-network-NoC in our proposed architecture. The

number of credit links changes in the same proportion as the total number of NI and network

links changes. The number of virtual networks (VN) remains same across each NoC architecture

design as the minimum number of requisite virtual networks is fixed for each cache coherence

protocol as discussed in Chapter 3 (Page 75).

The flits are stored in the buffer during the traversal of the network. If a buffer can accommodate

N number of flits then total buffer capacity shall be number of flits (N) × buffer size (Q) × flit

size (F). Since the buffers are associated with each input and output links, number of buffers

needed in 2-network-NoC is less than dual-network-NoC and single NoC. Also, the number of

virtual channels is half because of NI links being halved in 2-network-NoC. The total buffer

capacity remains same for network links in each direction of router. Buffers are one of the

major contributors to total router power consumption and router area.

Other control units that operate the flit traversal through router are routing unit (RU), virtual

channel allocator (VA) and switch allocator (SA) as shown in Fig 4.4 (for more details refer

Appendix C, Page 185). These units are also simplified in 2-network-NoC because of reduction

in total number of input and output links. Likewise, crossbar size is also reduced. These micro-

architectural variations of 2-network-NoC significantly contribute to total router area and power

gains when compared with single and dual-network-NoC.

4.4.2 Port Number Allocation

Port numbering is used by the router to send the flits/packets to next router in the path5 of

destined router. Router ports bind with links to prepare communication channel corresponding

to both NoC networks connected in mesh topology. Using port numbering, 2-network-NoC is

connected with rest of the routers during formation of topology.

The port allocation of routers for proposed 2-network-NoC is devised from the single-NoC. The

single-NoC router port numbers can be seen in Fig. 4.5 (i) and its directions of connectivity,
5Traversal direction is computed through routing unit (Section 4.5.1).
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Figure 4.5: Port allocation of (i) Single-NoC in Mesh, (ii) router directions (North, East, South, West,
NI/Core) in mesh, (iii) values (store in array P) that will add in single-NoC port values to find 2-network-

NoC port numbers (iv) 2-network-NoC.

i.e., North, East, South, West, and NI/Core in mesh is shown in Fig. 4.5 (ii). The router port

numbers start with value 4 as port numbers 0, 1, 2, 3 are assigned for NI6 links.

In terms of neighborhood connectivity, routers in a 2D mesh NoC can be classified as

1) corners: a router with 2 ports
6Port number 0 is for l0 cache, 1 is for l1 cache, 2 is for l2 cache, and 3 is for directory controller.
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2) border: a router with 3 ports

3) interior: a router with 4 ports

This classification is based on the placement positions of the routers in the mesh topology.

After port numbering, the links connect the subsequent routers through binding of links with a

given port number of neighboring router. At every router, first four ports 0–3 are reserved for

NI links. Port 4–7 are assigned to NoC1 and port 8–11 are assigned to NoC2. For example, the

port 4 (in East) of router 0 is binded with port 4 (in West) of router 1. Another port 5 (in South)

of router 0 is connected with port 4 (in North) of router 4. Once the connection is done router

0 is connected with router 1 and router 4.

Similar to single NoC, port numbering is requisite for dual network mesh. We derive an algo-

rithm for proposed 2-network-NoC to assign the port numbers of routers corresponding to the

second link. The corner router ports of the second link will take the increment of +2, border

router will add +3 and rest of the middle routers will take the increase of +4, that is shown

in Fig. 4.5 (iii). After doing all such increments in port values of single-NoC, we get the port

numbers for the proposed 2-network-NoC, as shown in Fig. 4.5 (iv). The network links connect

the routers through these port numbers.

Now, for second NoC port binding, the links are connected with routers similar to single NoC

but with different port numbers. For example, for NoC2, the port 6 (in East) of router 0 is binded

with port 7 (in West) of router 1. Another port 7 (in South) of router 0 is connected with port 7

(in North) of router 4. Now the router 0 is connected with router 1 and router 4 through NoC1

and NoC2 networks. The routers 0 is ready to communicate with router 4 and router 5 using

two networks. Likewise, ports of the rest of the routers are binded with links and prepare a dual

NoC network in mesh topology.

4.4.3 Network Selector Module

Routing unit does the route computation for the router. It comprises routing logic that computes

the route for head flit. It connects with all channels of the input unit to route the traffic towards

the destination. We have assumed XY routing in all NoC networks for their comparison. The

following subsections explain the details of network selector logic:
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4.4.3.1 Logic Design

The schematic diagram, in Fig. 4.7 shows all inputs (North, East, S outh, West, m0, m1, b,

S ) and output (out′) of the network selector logic. Lets assume this is the logic of router 5

(Fig. 4.5(i)) so port values of a 3-bit multiplexer (MUX(4:1)) initialize to (North = 4, East = 6,

S outh = 7, West = 5). The port value 0, 1, 2 is for l0, l1, l2 caches7 and port value 3 is used for

the directory controller.

The OR gate identifies the message class that we want to send on NoC2 of 2-network-NoC.

The variables m0 and m1 are used for selection of 2 message classes out of 6, i.e., control and

writeback control as discussed in next Section 4.5 (Page 98). The flag value of m0 and m1

are set to true at the NI corresponding to C (m0 = 1) and WB C (m1 = 1) messages. The flag m

enables for specified class of messages. Further, an DEMUX makes the decision according to

Figure 4.6: Block diagram of network selector logic comprising of 1 MUX (4:1) with four inputs (3-bits
each) and one output (y) of 3-bits, 1 OR (2:1) with two inputs (m0 and m1) and one output (m) of one-bit
each, 1 AND (2:1) with two inputs (one 3-bit and another is 1-bit) and one 3-bit output, and 1 ADDER
(2:1) (one half and two full adders as they perform the addition of three bits) with two 3-bit inputs and
two outputs of out′ (sum) 3-bits and one msb (carry) of 1-bit. So final output is 4-bits to accommodate

the port value of NoC2 network.

select line m if the flag m = 1 is enabled then the message is redirected on O1 to add the value

of P (in Fig. 4.5(ii)) in existing port value of input. The output of adder is 4-bit O’1 port value

of NoC2 and final output out′ is assigned with port value of NoC2. If flag m = 0 then O0 line

is selected by DEMUX. One MSB8 as a fourth bit with value 0 is padded with 3-bit port value
7Three levels of the cache hierarchy.
8Most Significant Bit



Chapter 4. Proposed 2-Network-NoC Architecture 95

of NoC1. Since m = 1 the O’0 port value of NoC1 is forwarded as a final output out′ and hence

NoC1 is selected for traversal on input flit.

For example, let’s say XY routing unit selects the output port for NoC1 at router 5, i.e., the west

port West = 5 is selected as the output of MUX, so y = 5. The message class belongs to C

then flag m0 = 1, so m = 1. Therefore, the 3-bit output of DEMUX will be O = 5(101) on

O1 line. Now to calculate the port value of NoC2 of 2-network-NoC the value of array P = 4

is added via ADDER so out′ = 9(1001) that is the port number of NoC2. Finally, the message

is redirected on NoC2 of 2-network-NoC. If the message class does not belong to C and WBC

messages then flag m0 = 0 or m1 = 0, so m = 0. Therefore, the 3-bit output of DEMUX will

be O = 5(101) on O0 line. Now one zero bit is padded as a fourth bit MSB in input port value

of NoC1. The 2:1 MUX selects O’0 input line as a output because of select line m = 0. So the

message is redirected on NoC1 of 2-network-NoC.

4.4.3.2 RTL Synthesis

We have done Register Transfer Level (RTL) synthesis in two steps. Initially, we use the

Xilinx ISE framework to synthesize our logic on the Xilinx XC6VLX75T device of Virtex

6 family that is a Field Programmable Gate Array (FPGA) implementation. The area of the

network selector logic in terms of the number of LookUp Tables (LUTs) is 4. Further, we

do Application Specific Integrated Circuits (ASIC) synthesis with Cadence RTL Encounter

Figure 4.7: Schematic diagram of network selector logic with synthesis results at 90nm.

Design Compiler [42] with TSMC 90nm technology and target clock frequency set to 1GHz.

The number of cells is five that occupy 23um2 area. The leakage power of logic is 55nW, as
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shown in Fig. 4.7. The dynamic power of logic can only be an estimate since the flow of the

traffic also affects the switching activities of the network. So actual dynamic power can vary

accordingly. The critical path delay with network selector logic is 0.324ns.

Table 4.3: Hardware Synthesis Parameter Configuration

Parameters Configuration
Synthesis Tool Synopsis Design Compiler (version L-

2016.03)
Hardware Design Register Transistor Level (RTL) synthesis us-

ing Verilog
Cell Technology Low Voltage Threshold (LVT)
NoC Networks Single-NoC, Dual- and 2-Network-NoC
Nanometer Technology 32 nm

4.4.4 Synthesis Results

To compare the proposed 2-network-NoC architecture with single-NoC, and dual-network-

NoC, we have synthesized them on Synopsys Design Compiler (version L-2016.03). The syn-

thesis results are evaluated on the 32nm library with Low Voltage Threshold (LVT) transistor

cells.

Table 4.4: Synthesis results of different router architectures when path slack is zero.

hhhhhhhhhhhhhhhhh

NoC Architecture Single-NoC Dual-Network-NoC 2-Network-NoC
hhhhhhhhhhhhhhhhhParameters

Slicing D.a
1 × 1 × 2561 × 1 × 2561 × 1 × 256 1 × 2 × 1281 × 2 × 1281 × 2 × 128 1 × 2 × 1281 × 2 × 1281 × 2 × 128

Area (µm2) 3507 3766 2650
Leakage Power (µW) 74.47 77.66 54.73
Dynamic Power (µW) 11.57 12.22 24.91
Total Power (µW) 86.04 89.88 79.64
Clock Periodb 0.2 0.24 0.12
Critical Path Delayc (�) 0.18 0.23 0.10

aSlicing D-Slicing Dimensions
bThe unit of clock period is nanoseconds.
cThe unit of critical path delay is nanoseconds.

Table 4.4 shows the synthesis results on different clock periods as each design can run at differ-

ent clock frequencies. The running frequency of a circuit is decided by its path slack that is the
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difference between the time data arrives, and the time the data is required. A clock frequency is

known to be best if path slack is positive or ideal if slack is zero when the data arrival and data

required by the circuit coincide.The lower value of a clock period shows a faster circuit as the

clock period is inversely proportional to the clock frequency.

Table 4.5: Synthesis results for different router architectures at 2GHz clock frequency.

hhhhhhhhhhhhhhhhh

NoC Architecture Single-NoC Dual-Network-NoC 2-Network-NoC
hhhhhhhhhhhhhhhhhParameters

Slicing D.a
1 × 1 × 2561 × 1 × 2561 × 1 × 256 1 × 2 × 1281 × 2 × 1281 × 2 × 128 1 × 2 × 1281 × 2 × 1281 × 2 × 128

Area (µm2) 3529 3516 2643.8
Leakage Power (µW) 74.1 76.55 54.2
Dynamic Power (µW) 4.51 6.53 5.7
Total Power (µW) 78.61 83.08 59.9
Critical Path Delayb (�) 0.21 0.28 0.12

aSlicing D-Slicing Dimensions
bThe unit of critical path delay is nanoseconds.

As can be seen from Table 4.5, 2-network-NoC can run on a lower clock period as compared to

single-NoC and dual-network-NoC. So it is fastest among these architectures on zero path slack.

In addition to that, 2-network-NoC is more efficient in the area, total power, and critical path

delay as compared to other NoC architectures. However, the dynamic power9 consumption of

2-network-NoC is higher compared to other architectures. The higher clock frequency increases

the switching activity of the circuit. Higher speed in our proposal comes at the cost of higher

dynamic power. In next paragraph, we observe how our proposed architecture performs when

clock frequency is kept the same for all architectures. When we fix the clock frequency (2

GHz) and synthesize these architectures, we get approximately same dynamic power for all

these architectures as shown in Table 4.5. Our proposal 2-network-NoC exhibits more benefits

in area, leakage and total power, and critical path delay. As can be seen here, 2-network-NoC

area is reduced by 24.8%, leakage power is reduced by 29.2%, total power is reduced by 28%

and critical path delay gets reduced by 57% as compared to dual-network-NoC. As compared

to single-NoC, 2-network-NoC area is reduced by 25%, leakage power is reduced by 27%, total

power is reduced by 24% and critical path delay gets reduced by 57%. There is an increase in
9As synopsis uses default wire load models for dynamic power evaluation, these dynamic power results are not reliable.

We get the correct dynamic power during full system simulations with benchmarks when the traffic stresses hardware.
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dynamic power as compared to single-NoC but that was to be expected owing to increase in

number of network links. Though the dynamic power is less than that of dual-network NoC.

4.5 Message Classification, Distribution and Routing

Traffic can be classified on the basis of (i) volume and (ii) quality. The volume and quality of

NoC traffic significantly affect the performance and dynamic power of the network. Earlier,

the researchers have classified traffic on the volume basis because of limited support for cache

coherence. The volume based distribution can be

1) Uniform10. The traffic is equally divided between both networks. The evenly distributed

message classes are divided in the ratio of 3:3 combinations along both NoC networks of

2-network-NoC.

2) Nonuniform. The different combinations of messages can be distributed across either

NoC networks. It can be further categorized into, (i) Control and Data (ii) Request and

Response (iii) Read and Write (iv) Onchip and Offchip messages.

We have investigated the impact of message classification and distribution over our proposed

2-network-NoC using canneal benchmark which is a randomly selected benchmark. We want

to find the best distribution of message for NoC2 of 2-network-NoC. Cache traffic can be clas-

sified under six message classes as discussed in Chapter 3 (Page 77) for MESI multicast cache

coherence protocol. Of these six message classes, NoC1 can be reserved for K (K < 6) classes

and NoC2 for the rest. If we set K = 4, NoC2 is reserved for 2 message classes. There can

be 6C2 = 15 possible combinations. Similarly, if NoC2 is reserved for 3 classes, there are 20

possible combinations (for details refer Appendix D).

To identify a suitable combination, we have selected a random application from benchmark and

run our simulation. Selected benchmark in this case was canneal. Fig 4.8 shows throughput

for both single and 2-network NoCs. Fig 4.9 presents latency for both these NoC architectures.

These results have been obtained for 4, 8, 16 and 32 core processors. In both figures, leftmost

bar labelled 1-link shows results for single NoC. Subsequent bars represent performance for a

given distribution of message classes across two networks.
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Figure 4.8: Throughput of Canneal benchmark with single-NoC and proposed 2-network-NoC (x-axis
of graph show the possible static message distribution, refer Appendix D).

Figure 4.9: Queuing latency of Canneal benchmark with single-NoC and proposed 2-network-NoC
(x-axis of graph show the possible static message distribution, refer Appendix D).

After experimentation with canneal benchmark, we have compared throughput and latency of

2-class as well as 3-class combinations of messages for 2-network-NoC with single-NoC. We

observe that 2-class combination performs better than 3-class combination. However, 3-class

combination is more suited from the perspective of queuing latency. We find that C + WB C

is the best message combination while considering both throughput and queuing latency for

2-network-NoC.

The message distribution between NoC1 and NoC2 are employed as Control and Writeback

Control messages on NoC1 and rest of the messages, i.e., Request Control, Response

Control, Writeback Data, and Response Data on NoC2.

4.5.1 Impact on Routing

The routing unit of a router gives the output direction for the input flit. Routing logic routes

the flit through intermediate routers to the destination router which forwards the flits to its

core. The route computation differs between dual-network-NoC and 2-network-NoC in terms

of the number of total links participation. The number of NI links are half in 2-network-NoC
10Please note, here uniform message distribution means that half of the message classes are transmitted through NoC1 and

rest through NoC2 irrespective of number of messages in that class.
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as compared to dual-network-NoC (in Table 4.611 ) whereas network links are same between

existing and proposed NoC (in Table 4.7).

Table 4.6: Routing logic overhead in Dual-Network-NoC as compared to 2-Network-NoC because of
the double NI links. The 8indicates the incoming/outgoing traffic at NI. Total eight NI links participate
in route computation in Dual-Network-NoC whereas only four NI links participate in route computation

for 2-Network-NoC.
`````````````̀

NoC→ Dual-Network-NoC 2-Network-NoC
`````````````̀

Link Types→ NI Links NI Links
`````````````̀

Direction→ Local to Core Local to Core
`````````````̀

Network→ NoC1 NoC2 NoC
`````````````̀Msga↓

Link IDs→
l0l0l0 l1l1l1 l2l2l2 l3l3l3 l4l4l4 l5l5l5 l6l6l6 l7l7l7 l0l0l0 l1l1l1 l2l2l2 l3l3l3

Control - - - - 8 8 8 8 8 8 8 8

Request Control 8 8 8 8 - - - - 8 8 8 8

Response Control 8 8 8 8 - - - - 8 8 8 8

Writeback Control - - - - 8 8 8 8 8 8 8 8

Response Data 8 8 8 8 - - - - 8 8 8 8

Writeback Data 8 8 8 8 - - - - 8 8 8 8

aMsg=Message Classes

Table 4.7: The number of network links remain same in Dual-Network-NoC and 2-Network-NoC. So
there is no difference in route computation because of these links. The Xindicates the messages for

network links on either NoC networks.
`````````````̀

Link Types→ Network Links
`````````````̀

Direction→ North South East West
`````````````̀

Network→ NoC1 NoC2 NoC1 NoC2 NoC1 NoC2 NoC1 NoC2
`````````````̀Msga↓

Link IDs→
l8(N1)l8(N1)l8(N1) l9(N2)l9(N2)l9(N2) l10(S 1)l10(S 1)l10(S 1) l11(S 2)l11(S 2)l11(S 2) l12(E1)l12(E1)l12(E1) l13(E2)l13(E2)l13(E2) l14(W1)l14(W1)l14(W1) l15(W2)l15(W2)l15(W2)

Control - X - X - X - X
Request Control X - X - X - X -
Response Control X - X - X - X -
Writeback Control - X - X - X - X

Response Data X - X - X - X -
Writeback Data X - X - X - X -

aMsg=Message Classes

The 2-network-NoC routing logic shall be different as follows. In 2-Network-NoC, the number

of NI links are four that is half of the dual-network-NoC. The NI links in 2-networks-NoC

carry all types of messages whereas in dual-network-NoC these links carry separate traffic. The
11Table 4.6 and Table 4.7 list all NI links and network links. The NI links direction is Local to Core and network links

connect the router with other routers in North, South, East, and West directions. The link IDs of both NI links and network links
are associated with respective NoC networks. Here, we can see that separate networks links are used for NoC1 and NoC2 either
in existing and our proposed NoC. Whereas, separate NI links are used for NoC1 and NoC2 in dual-network-NoC but same NI
links of 2-network NoC are associated with router. Therefore, NI links of 2-network-NoC carry all type of messages and traffic
is separated at the router. Whereas, NI links of dual-network-NoC are dedicated for specific message classes. Therefore, the
traffic is separated from the the NI.



Chapter 4. Proposed 2-Network-NoC Architecture 101

participation of the number of links is more in dual-network-NoC as compared to 2-network-

NoC. Thus, architectural customisation of dual-network-NoC impacts a number of inputs and

outputs of routing of 2-network-NoC.

4.6 Experimentation

In this section, we shall discuss the results of performance metrics (discussed below) evaluated

with PARSEC benchmark.

4.6.1 Performance Metrics

We employ following performance metrics to evaluate proposed 2-network-NoC vis-a-vis sin-

gle NoC.

1) Router Static Power: The power consumed by router component even without any cir-

cuit activity is static12 power of the router. Static power is a big challenge for modern

researchers with latest nanometer technology. It is drastically increasing as compared to

dynamic power on shrinking of transistors. Therefore, saving of router static power is the

primary objective of this chapter.

2) Router Dynamic Power: The internal13 router components do switching activity to take

decisions for flits traversal. During the switching activity, circuit changes the inputs and

outputs from 0 to 1 and 1 to 0 with runtime variations of traffic. In higher traffic, the

dynamic power is high otherwise it is low with lower router traffic.

3) Link Dynamic Power: Links that connect the NoC routers are also one of the power

hungry component. The dynamic power dissipation in links is the major contributor to

the NoC link power. Flit traversal affects switching and capacitance of the links. In the
12For more details on static power, please refer Appendix C (Page 187).
13The internal router component (as discussed in Appendix C) such as buffers perform read and write operations for the

incoming flit. The routing logic performs the route computation for the head flit. The virtual channel allocator assigns the ID
of the VC to the head flit during traversal to the output unit. Switch allocator selects the winner for crossbar traversal from
the contending flits for the the crossbar input channel. So that flit reaches to the output unit through traversing crossbar of the
router.



Chapter 4. Proposed 2-Network-NoC Architecture 102

results (Subsection 4.6.2), we will compare the links dynamic power of the 2-network-

NoC with single-NoC. As like router dynamic power, link dynamic power is dependent

on the volume of traffic in the network.

4) Router Total Power: The total router power consumption includes static power consump-

tion, dynamic power consumption, and clock power consumption of the router. With

nanometer technology advancement, static power is more severe component in total

power consumption. In our experiments with benchmarks, we have evaluated the im-

pact through total router power. We evaluate the router power with 65nm technology and

1 GHz frequency.

5) Scalability: To understand the scalability of our proposed 2-network-NoC, we have com-

pared the nanometer technology impact on total router power by evaluating it at 45nm

and 32nm. The impact of frequency is also compared with 2GHz and 2.5GHz frequency.

6) Queuing Latency: The waiting time of a packet in the buffer of the router is queuing

latency. Ideally, a packet expects zero load latency on the router before transmitting to

the downstream router. Though this is possible only when buffers are not present on the

router. We consider this metric as related works have employed it.

7) Throughput: It is defined as the volume of traffic (in bytes/flits) delivered to the destina-

tion of the network per unit14 of time. If the network is below saturation, all the offered

traffic is accepted by the network but the important factor is time required for routing it.

In another words, throughput is the rate of offered traffic to reach its destination in the

network. We have compared the throughput of 2-network-NoC with single NoC in the

next subsection.

4.6.2 Results and Discussion

We have used the experimental methodology and tools as discussed in Table 3.1, Table 3.2 and

Table 3.3. For the proposed architecture, the network router is configured as two VCs per port

and 12 × 12 crossbar size. The physical link-width is 8-B and both control and data flits are

8-B.
14The unit of time is picoseconds in Gem5.
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In Gem5, we have run PARSEC benchmark suite in full system simulation with 16 threads

for a 8 × 8 mesh. We experiment with simmedium input data working set. Primarily, we are

comparing the results of 2-network-NoC with single-NoC. We keep the total number of buffers

constant in the 2-Network-NoC as compared to Single-NoC.

For example, if the Single-NoC consists of 6 virtual networks, each virtual network consist

of four virtual channels (Single-NoC 6vn 4vc) then 2-Network-NoC consists of 6vn and

2vc corresponding to each link since the total number of virtual channels remain invariant

across 2-Network-NoC and Single-NoC. Additionally, we vary the number of virtual channels

(Single-NoC 6vn 3vc), and virtual networks (Single-NoC 3vn 4vc) of Single-NoC to see the

impact of resource variation in comparison of 2-Network-NoC.

Normalised Results Representation. Let’s say A is the power15 consumption of single-

NoC and B is the power consumption of proposed 2-Network-NoC. The power benefits for B

is calculated as follows:

1) Normalize the power consumption of A to unity (1). The power consumption value (Q)

of B re-scales over A’s power consumption (P). B’s proportion or normalized power con-

sumption over A is P′ = Q/P.

2) The power improvement of B with respect to A is P′′ = 1 - P′.

3) The percentage (%) power improvement of B is P′′x100%.

Each red bar in the figures, shows the individual normalized power consumption of B over A,

for 13 different benchmarks. Let’s denote them as b1 (Blackscholes), b2 (Swaptions), ...., b13

(Rtview) from left to right. The average of normalized power consumption for B is shown

(Avg.(z) =((b1+b2+....+b13)/13) as the rightmost last red bar in each of the graphs.

For example, Fig 4.10 shows the router dynamic power consumption of benchmark ’Blacksc-

holes’ is b1 and A is normalized to 1. If A=1 and b1=0.82, the power improvement is ((1-

0.82)/1)x100% = 18%.

Power Benefits. Fig 4.10 to Fig 4.12 show the power gain in 2-Network-NoC for all the appli-

cations of PARSEC benchmark suite. The results of different hardware resource combinations

for Single-NoC and 2-Network-NoC are normalized with respect to Single-NoC 6vn 4vc.
15To understand the normalised representation of results, we take the example of power consumption calculations.
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• Static Power: The static power and clock power of 2-Network-NoC are 58% and 29% ef-

ficient compared to Single-NoC 6vn 4vc, respectively. We have already estimated static

power during system level analysis of design Subsection 4.4.1 and through hardware syn-

thesis in Subsection 4.4.4. These are validated with full system simulation.

Figure 4.10: Dynamic router power comparison of proposed 2-Network-NoC with Single-NoC on PAR-
SEC benchmarks.

• Router Dynamic Power: The improvement in router dynamic power of 2-Network-NoC

is 29% as compared to Single-NoC 6vn 4vc as shown in Fig. 4.10. Other hardware con-

figuration of Single-NoC perform similar to Single-NoC 6vn 4vc except fluidanimate and

x264. So other opted hardware configurations are not suitable for these benchmarks.

Figure 4.11: Link dynamic power comparison of proposed 2-Network-NoC with Single-NoC on PAR-
SEC benchmarks.

• Dynamic Link Power: The improvement in dynamic link power of 2-Network-NoC is

37% as compared to Single-NoC 6vn 4vc as shown in Fig. 4.11. The trends in dynamic

link power consumption for Single-NoC are similar to the trends observed in router dy-

namic power. Though, 2-Network-NoC shows more power benefits throughout all the

applications.
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Figure 4.12: The total router power comparison of proposed 2-Network-NoC with Single-NoC on PAR-
SEC benchmarks.

• Router Total Power: The total router power includes all components, i.e., static power,

dynamic power, and clock power. Hence, total router power is 45% less compared to

Single-NoC, as in Fig. 4.12. The 2-Network-NoC outperforms over Single-NoC 3vn 4vc

and Single-NoC 6vn 3vc for all the applications of PARSEC.

The performance and other graphs are calculated in a similar way as we have computed power

benefits.

Performance. The network performance is evaluated through measuring queuing latency and

throughput of the network. Fig. 4.13 shows an average queuing latency faced by a single packet

across the routers till its destination.

Figure 4.13: Latency comparison of proposed 2-Network-NoC with Single-NoC on PARSEC bench-
marks.

In Fig. 4.13 and Fig. 4.14, there is a minor decrease in normalized latency (4%) and normalized

throughput (5%) since the bandwidth of the core link in 2-Network-NoC is half of the Single-

NoC and dual-network-NoC. While, the Single-NoC 6vn 3vc and Single-NoC 3vn 4vc have

better queuing latency and throughput than 2-Network-NoC, because of, the better support

provided to cache coherence classes by 3 virtual channels/networks.
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Figure 4.14: Normalized throughput comparison of proposed 2-Network-NoC with Single-NoC.

Although, queuing latency for 2-Network-NoC is 45% better than Single-NoC

(Single-NoC 6vn 2vc) because 2-Network-NoC has the support of two NoC networks

with 2-Network-NoC 6vn 2vc. Because of the queuing latency, the throughput of the network

is affected. Thus power advantage of 2-network-NoC is achieved at a minor performance cost.

Figure 4.15: A normalized queuing latency of proposed 2-Network-NoC compared to Quad-Network-
NoC with buffersize(Q) 4 and 16 [38, 57].

Comparison of queuing latency of proposed 2-Network-NoC with existing quad-network-

NoC. Fig. 4.15 compares the queuing latency of 2-Network-NoC with quad-network-NoC16 of

buffer size Q = 4 and Q = 16 [38, 57]. While the buffer size of 2-Network-NoC is Q = 4 and

number of NoC networks are dual. The buffer size Q=4 and Q=16 show that each queue buffer

can store up to 4 and 16 flits, respectively.
16For more details on quad-network-NoC, please refer Chapter 1 (Page 9) and Chapter 2 (Page 50).
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The benchmark bodytrack and canneal has high communication latency because they are

more communication intensive. They are facing more congestion because of only two NoC

networks in 2-Network-NoC.

Scalability of proposed 2-network-NoC with technology advancements. Technology scal-

ing reduces lateral and vertical dimensions of the transistor. The supply voltage is scaled down

to reduce power dissipation, proportionally threshold voltage is also scaled down to main-

tain the performance [140]. This significantly increases static power contribution in total chip

power, contrary, modern multithreaded workload increases dynamic power of the chip. There-

fore, consideration of both power factors are equally important in total chip power. Fig. 4.16

show that the total router power gain increases and approaches 58% as nanometer technology

decreases.

Figure 4.16: Normalized total router power for various nanometer (nm) technology.

Figure 4.17: Normalized total router power for various frequencies.

Frequency of the circuit is another important factor that decides the performance and power of

the circuit. The scaling/increasing of frequency is limited by the heat dissipation of processor.
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One possible solution adopted in modern processors is scaling of the frequency as per the

workload [150]. For example, Turbo Boost technology of Intel Core i7 processor with the

workload variation of the processor.

For the proposed 2-Network-NoC, the power gains are limited to 40% as shown in Fig. 4.17. As

switching activities of the router components increase with the frequency. Dynamic power gain

of the router is reduced as operating frequency increases. Still, its power benefits are sufficient

enough to make it suitable for modern processor technology.

4.7 Inferences

We have proposed 2-network-NoC architecture by customising dual-network-NoC. The num-

ber of NI links in 2-network-NoC is half of the dual-network-NoC. In single-NoC, the band-

width is B-bit corresponding to each link while the bandwidth of dual-network-NoC and 2-

network-NoC is B
2 -bit. The total bandwidth is constant in each direction of network links across

these architectures, though total bandwidth varies for NI links. We find that total bandwidth for

NI links in 2-network-NoC < single-NoC ' dual-network-NoC. So the bandwidth cost of NI

links in our proposal lies between that of single-NoC and dual-network-NoC. We named the

proposed architecture as 2-network-NoC since 1) we replicate only network links so separate

networks exist only at the network link level, 2) we have sliced/partition NI links and removed

half of the links, though the core is still connected through two NoC interconnects. The

customisation seems simpler at an abstract level, but its consequences are significant.

1) The network selection hardware unit, placed in existing architecture at NI, needs to be

placed at the router. We embed the network selection hardware unit at the routing unit

of the router. Once the routing unit takes the decision of direction for the flit, one of the

NoC networks is also selected for the traversal of the flit. In proposed 2-network-NoC,

the routing unit hardware becomes simpler as customisation reduces the total number of

input and output NI links that participate in the routing decisions.

2) These micro-architectural changes result in a significant reduction in static power con-

sumption and surface area of the network. Since the hardware resources such as the

bandwidth of NI links, number of credit links, number of virtual channels, buffer ca-

pacity, number of links for routing unit, VC allocator, switch allocator, and crossbar are
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less for 2-network-NoC as compared to dual-network-NoC and single-NoC. The system

based comparison and hardware synthesis show the efficiency of proposed architecture

over existing ones.

3) The synthesis results are validated by running the PARSEC benchmark in full system

simulation. The total router power benefits are 45% for 65nm that approach 58% for

32nm technology. Although the increase in frequency at 65nm limits the power gain to

40%. There is a minor performance overhead, throughput decreases (5%), and latency

increases (4%) since the bandwidth of NI links are half of the single-NoC. The static

power gains increase with each nanometer technology. We get a low power router based

customised dual-network-NoC architecture, i.e., 2-network-NoC.

In the next chapter, we shall further explore alternate placement locations of network selection

hardware unit (Net-Demux discussed in Section 4.3) other than routing unit on the router. As

the placement impacts the digital characteristics of the circuits, it is interesting to explore such

an impact in the next chapter.





Chapter 5

Placement of Network Selector

In the previous chapter, the proposed 2-network-NoC distributes traffic between two networks

at the routing unit of the router. Architectural customization makes it mandatory to place a

network selector somewhere on the router. One possible placement at the routing unit was

presented in the previous chapter. As placement changes the characteristics of the digital circuit,

it directly impacts the power-performance efficiency of the circuit. In this chapter, we explore

alternate placement for the network selector.

5.1 Introduction

To the best of our knowledge, exploration for placement of network selector is done for the

first time for multi-NoCs. Network selector behaves similarly to the digital demultiplexer.

Demultiplexing is the process of taking the information from one input and transmitting the

same over one of several outputs. Likewise, the network selector transmits different message

classes1 along physically different networks, in parallel wherever possible. In the following

paragraphs, we shall be using the term Network Demultiplexer (Net-Demux) for this hardware

unit. This is a more appropriate term as input message is demultiplexed into one of the available

physical networks.
1Control, Request Control, Response Control, Writeback Control, Response Data, Writeback

Data (MESI protocol).

110
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Dual NoCs communicate messages of cache misses through the single physical channel to dual

networks. Network selector requires Net-Demux to distribute the traffic between dual NoC

networks.

In this chapter, we propose an improved placement of Net-Demux at switch allocator of the

router as an alternative to the network interface and routing unit. Improvement is in terms

of power efficiency. Placement changes the average number of signal transitions in a single

cycle of the circuit, and hence it varies the switching activity of the circuit. Power dissipation

at Net-Demux is related to the difference in input or output switching activity. The network

selector in all proposed multiple NoC architectures is placed at the network interface. Exploring

alternate placement of network selector at the router is a novel contribution. Following are the

key contributions presented in this chapter:

1) Exploration of placement of network selector.

2) Analysis of network selector architecture with different placement.

3) Comparison of different placements with the traditional one.

5.2 Problem Formulation

Fig 5.1 shows the placement of Net-Demux in three different NoC architectures. Placement is

necessary as each NoC architecture has to divide the traffic between dual NoC networks. The

difference in placement of Net-Demux is driven through NoC architecture as discussed below:

1) Dual-network-NoC. The Net-Demux shall be placed at NI, as shown in Fig 5.1(a). The

links of both NoC networks are connected with different NIs as follows- NI 0 (l0, l4),

NI 1 (l1, l5), NI 2 (l2, l6), and NI 3 (l3, l7). Every NI has a choice of traffic distribution

between any one of NoC networks, so four hardware units of Net-Demux shall be placed

corresponding to each NI.

2) 2-network-NoC. The Net-Demux shall be placed only at the router, as shown in

Fig 5.1(b). The 2-networks are formed through routers. A single link connects differ-

ent NIs with a single router as follows- NI 0 (l0), NI 1 (l1), NI 2 (l2), and NI 3 (l3). So

Net-Demux shall be placed on the router.



Chapter 5. Placement of Network Selector 112

Figure 5.1: Placement of Net-Demux in (a) dual-network-NoC at NI 0, NI 1, NI 2, NI3 (b) 2-network-
NoC at the router.

Therefore, placement not only changes the location of Net-Demux but also changes the ar-

chitecture of Net-Demux hardware according to the functionality of the hardware unit where

Net-Demux will be placed. In Chapter 4, we have proposed the placement at the routing unit of

the router. In this chapter, we shall explore other placement possibilities within the router and

compare them.

5.3 Placement Impact on Circuit Design Techniques

Messages are demultiplexed into different networks only after Net-Demux. Demultiplexing

just at NI requires that parallel data streams be maintained at the router for sustaining perfor-

mance gains. This shall require replication of all router components adding to cost. Another

alternative is to demultiplex within the router, so that demultiplexing is part of router pipeline

or switch allocation. Physical data flow is directly affected by the placement of Net-Demux.

An inferior placement assignment might degrade the overall efficiency. Typical placement ob-

jectives include the improvement in timing delay, static and dynamic power for the overall gain

in energy efficiency.
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The dynamic power of a logic gate can be reduced by minimizing the physical capacitance

and the switching activity. The physical capacitance can be minimized in a number of ways,

including circuit style selection, transistor sizing, placement and routing, and architectural opti-

mizations [151]. These are being part of the fabrication so beyond the scope of this thesis. The

switching activity, on the other hand, can be minimized at all level of the design abstraction and

is the focus of this chapter. In the following subsections, we discuss the parameters that affect

the selection of placement location for Net-Demux.

5.3.1 Logic Restructuring

The topology of a circuit affects the overall power dissipation. The implementations of logic

network O = X·Y·Z·W is possible in two alternate ways, as shown in Fig 5.2. Lets assume that

Figure 5.2: Switching activity variation due to circuit topology as illustrated through (a) chain structure,
and (b) tree structure. The output transition probability is uniform, i.e., (P1 (X, Y, Z, W) = 0.5) for all the

inputs.

all primary inputs (X, Y, Z, W) are uniformly distributed (i.e., P1 (X, Y, Z, W) = 0.5), i.e., P (X=1)

= 0.5 and this holds good for all other inputs as well.
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For an AND gate with input X and Y, the probability that the output is 1, i.e., P1 (X, Y) =

P1 (X) × P1 (Y). The probability that output is 0, i.e., P0 (X, Y) = 1 − P1 (X, Y). and the transition

probability is

P(0→1) (X, Y) = P0 (X, Y) × P1 (X, Y) (5.1)

Likewise, the output signal transition probabilities P0−>1(O1), P0−>1(O2), P0−>1(O) is calculated in

Fig 5.2(a). The output signal transition probability P0−>1(O2) for output O2 changes in a tree

structure, as demonstrated in Fig 5.2(b). On comparing chain and tree topology, the results in-

dicate that the chain implementation will have lower switching activity in intermediate outputs

than the tree implementation as observed with random inputs. The lower switching activity

during intermediate outputs is important as these intermediate signals may become the input of

other circuits, therefore, they propagate the switching activity.

As Net-Demux integrates with different hardware modules of the NoC circuit, switching activ-

ity may significantly vary with placement of Net-Demux.

5.3.2 Input Signal Ordering

Another parameter affecting switching activity is the order of input signals. Fig 5.3 illustrates

the impact of reordering of input signals on switching activity. Both the circuits in Fig 5.3

are identical in topology, but their output switching activity is different because of the input

signal X is swapped with Z. The probabilities of input signal being 1 are P(X=1) = 0.8, P(Y=1) =

0.2, P(Z=1) = 0.1.

1) Circuit (a). In the first circuit the output signal transition probability can be calculated

as (1 − 0.8 × 0.2) (0.8 × 0.2) = 0.1344. The final output transition is (1 − 0.1344 ×

0.1) (0.1344 × 0.1) = 0.0132.

2) Circuit (b). In the second case, the probability that a 0 → 1 transition takes place is

(1−0.2×0.1) (0.2×0.1) = 0.0196. The final output transition is (1−0.0196×0.8) (0.0196×

0.8) = 0.0154.
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Figure 5.3: Reordering of input signals affects the output switching activity of the circuit (a) input
are ordered as X, Y, Z (b) input order changes as Z, Y, X. The ∆P0−>1 shows the reduction in output

switching activity over intermediate output switching activity.

Reduction in signal transition rate at output vis-a-vis intermediate output is 0.098 for (a) and

0.78 for (b). We observe a substantial reduction in switching activity in the circuit (b) as com-

pared to the circuit (a). So we conclude that it is beneficial to postpone the introduction of

signals with a high transition rate [151]. A simple reordering of the input signals significantly

reduces the signal transition rate (switching activity).

5.3.3 Timing Delay of Signal Path

A signal delivers from input pads to gate outputs and proceeds from the output pad to gate

input [80]. So the delay of a path is the sum of interconnect and gate delays that make up the

path. ‘Timing delay’ is referred to how much time a signal requires to reach from input to

output pin of the circuit. The longest path that introduces maximum timing delay is known as

‘critical path’ of the circuit.

Delay along critical path is a significant parameter of circuit design as it decides the time pe-

riod of the clock or, alternately, the maximum operating frequency of the circuit. For reliable

operation of the circuit, difference between two clock arrivals should be more than the critical

path delay. While integrating net-demux with the circuit, care should be taken that placement

does not increase critical path delay. Placement of Net-Demux at various locations varies the

following characteristics of signal paths

1) Length of the signal path. The integration of Net-Demux changes the length of the path

itself.
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2) Total number of signal path. If the total number of paths in the circuit is ρn and the

number of paths in Net-Demux is qn. The total number of paths of the hardware unit shall

be changed due to addition of more qn paths.

3) Critical path delay may change. The integration of Net-Demux may be along the criti-

cal path or the non-critical path. Due to addition of new paths of Net-Demux, the timing

properties of the circuit may change.

Therefore, it is significantly important that

1) Net-Demux is integrated with a signal path that is not a critical path.

2) An optimal integration should avoid the critical path and also avoid any non-critical path

that would become a new critical path. Violating longest path delay shall change circuit

timing characteristics that may result in excess power dissipation.

Besides the path delay, the input signal ordering as per the switching activity needs to be con-

sidered during placement of Net-Demux on NoC. Though, we consider all these properties at

the abstraction level of the micro-architecture. In the next section, we shall explore the impact

on the architecture of Net-Demux with placement.

5.4 Architectural Implications of Net-Demux with Placement

The Net-Demux can be placed in either control2 plane or data3 plane. We need to provide a

provision in NoC hardware to separate the traffic between NoC networks through Net-Demux.

Data plane has external data Input/Output (I/O), as well as a control I/O to/from the control

planes. In Fig 5.4 (a) and (b), we have compared the variation in hardware implementation

overhead4 in Net-Demux with placement through demonstrating architectural variations in a

single demultiplexer with control vs. data plane. A small5 bus-width let’s say C-bit input/output
2We shall synonymously use the term control plane or control path. Control planes refer to the part of the hardware that is

responsible for generating control signals, i.e., coordinating the movement of packets through the data plane.
3Likewise, data plane or data path handles the storage and movement of packets. It comprises of a set of input and output

buffers located in network interface as well as routers/switches.
4Placement also changes the architecture of the Net-Demux according to the functioning of the hardware unit where it is

placed.
53 and 4-bits for our proposed architecture.
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Figure 5.4: Demultiplexer in (a) control plane (b) data plane (c) control v/s data plane placement in
single NoC, dual- and 2-network-NoC.

is sufficient to find the NoC network as compared to a large6 bus-width input/output, let’s say

B−bit input/output, on placing demultiplexer in data plane. In Fig 5.4 (c), we have compared

the hardware implementation overhead of data plane (for dual-network-NoC) and our proposed

control plane (for 2-network-NoC) placement and observe a significant overhead7 with data

plane placement.

The static power and area are affected by placement as follows:

1) Placement in the control plane is independent of the network link-width.8

2) The benefit with control plane is (INI × B)/(IR ×C) times more over data plane placement

hardware overhead. Where INI = 4 is the number of NI links input to the router, and

IR = 4 is the number of inputs from other routers (for one NoC as another NoC has
6128/256/512-bits (128-bits for our proposed architecture).
7Large area and static power as compared to control plane because of a wide bus-width is used for input/output of Net-

Demux hardware.
8Recent NoC architectures are using higher bandwidth networks (for example, a link width of 512 bits is required to sustain

today’s per-core bandwidth [46]). So the placement in data path significantly increases hardware overheads.
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already separated traffic). The placement in control plane shall be (4 × B)/(4 ×C) = B/C

times beneficiary as compared to data plane placement since link-width B>>C.

3) As the number of NoC networks increases, the width of select line as well as the number

of output lines of Net-Demux increase. This shall be a huge overhead if the placement is

in a data path. Contrary, the control path has a minor impact due to a lower input link-

width C, which is sufficient to implement the functioning of Net-Demux with negligible

overheads.

5.5 Hardware Implementations of Net-Demux with Placements

Placement causes the variations in circuit paths. The physical design of circuit significantly

impacts power dissipation, area, and timing delays of a circuit. Incompatible placement de-

grades the overall efficiency, which cannot be offset even with intelligent routings. Placement

of Net-Demux impacts the control and data path differently. As discussed in the previous sec-

tion, placement in data plane significantly affects the area and static power, whereas placement

in control path affects the switching power of the circuit. As static power saving is more signif-

icant for modern processors, we have restricted Net-Demux placement exploration to control

path only.

5.5.1 Network Interface (NI)

Till date, all commercial [68–71] and academic [57] architectures consist of parallel NI and

network links, therefore Net-Demux is placed at NI to distribute the traffic between multiple

NoCs. Network Interface (NI) is located between the core and router. Core messages enter into

NI, and then into the router through NI links as shown in Fig 5.5. A router consists of eight

core links and eight networks links for dual-network-NoC. The odd-numbered links constitute

NoC1 network whereas the even-numbered links represent NoC2 network.

Messages are the logical unit of communication and may be arbitrarily long. They are divided

into packets that are further segmented into fixed length FLITs (FLow control unITs). If the

number of generated packets is k, then single packet size is S = M−2
k and flit size is N = M−2

k× f

for the f number of flits per packet. On receiving a message at NI, the flits are checked for the
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Figure 5.5: Network interface with Net-Demux hardware implementation details and interface with
router for dual-network-NoC. FG refers to flit generator.

Control or Data packets since the Control and Data flits are generated separately. A Control

packet is composed of one control flit. It consists of a coherence command and the memory

address. On the contrary, data packets are made up of five9 flits. It consists of a head flit that

contains the destination address, three body flits and a tail flit that indicates the end of a packet

and triggers a signal for generating next flit. In the case of data packet, the first flit is Head

flit. The control packet is a single flit though it keeps all the required information of destination

similar to head flit. So only control flit, and head flit keep the control and routing information.

The Data and Tail flits follow the Head flits status to reach their respective NoC networks.

These flits consist of payload, however, the last data flit is padded with zeros (if required).

Every message is prepended with two bits identifying the message class as per encoding speci-

fied in column 3 of Table 5.1. These bits are passed to inputs i1[0] and i2[0] of the Net-Demux

circuit shown in Fig 5.5. These two bits are XORed. Output m of XOR gate is connected to

two AND gates A1 and A2. The other input to these gates is a message. So whenever message

belongs to Control or Writeback Control, m = 1 AND gate A2 passes message bits. This
9Five flits for our NoC architecture
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Table 5.1: Flag bits setting for different message classes. The fourth column depicts m bit computed
from these flag bits. Network selection is decided by the value of m bit.

Type Message Classes 2-bit Encodinga mb NoC Network
1 Control b0 = 0, b1 = 1 1 NoC2
2 Writeback Control b0 = 1, b1 = 0 1
3 Request Control b0 = 0, b1 = 0 0 NoC1
4 Response Control
5 Writeback Data
6 Response Data

a2-bit codes assigned
bm-flag that indicates message type

ensures the selection of NoC2 for these messages. For other message classes, NoC1 is selected.

Figure 5.6: Comparison of Network Interface (a) with placement of Net-Demux in dual-network-
NoC (b) without placement in single and 2-network-NoC. This comparison demonstrates the over-
head in power, area and timing delay at NI with placement of Net-Demux as compared to without
any Net-Demux. The circuit design flow of Net-Demux also demonstrates the complexity of place-

ment over NI on comparing timing delay of both the circuits a > b.

The Net-Demux is integrated with Flit Generation (FG) as shown in Fig 5.6 (a) as compared to

single-NoC Fig 5.6 (b). Once the credit signal indicates the availability of empty VC, the FG

check the counter(c), if it is zero, the first flit is checked for signal m. If m is true, the outport

address of NoC2 is assigned to flit, else NoC1 address is allocated. The complete Net-Demux

circuit design flow from the incoming of a message in NI to a selection of NoC network for the

packet is shown in Fig 5.6 (a). Placement of Net-Demux at NI increases the critical path delay

as NI is on the critical path itself. As a result, the timing delay with placement a is larger than
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the timing delay b without placement of Net-Demux at NI. Since the a > b, the placement of

Net-Demux increases the critical path of the circuit.

5.5.2 Router

Conventional placement of Net-Demux is at NI that is part of the data plane. On the router,

placement is possible at both control as well as data plane. In the datapath, the placement

is possible at the input/output of the crossbar, but it is costly in area and power consumption

as compared to control plane. The required number of Net-Demux hardware units shall be

as many as the number of inputs to NoC1 from the router, and area and static power shall

be proportional to the data path width. Due to high hardware cost, we have not explored the

placement of Net-Demux at crossbar. In the control plane, we propose placement at switch

allocator of the router because it selects the outport on the crossbar for flit traversal.
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5.5.2.1 Routing Unit (RU)

Flits are divided into head, body, and tail flits. The least significant three bits of head flit store

the information of the destination. This information is stored in status registers and is utilised

during route computation. After computation of routing Status Registers (SR) are updated with

output port information. The port encoder of Net-Demux hardware unit converts this into four-

bit outport. The port encoder is made of one half adder and two full adders. As in single-NoC,

the possible directions for the router is eight (four network links and four NI) for 2-network-

NoC. In the case of dual NoC, twelve directions are possible (eight network directions and four

NI).

In 2-network-NoC, Net-Demux is placed at the routing unit of the router. Routing unit reads

the status register to get the routing information for Head flit. As illustrated in Fig5.7 (a),

two control lines read the destination address xd and yd from the status register and feed this

information to the input of Net-Demux that checks the message class of current Head flit and

assign its NoC network. The selection of NoC network is dependent on signal m1. If signal m1

holds the value zero, the outport of NoC1 is selected by Net-Demux, else the outport of NoC2

network.

The flowchart in Fig5.7(b) illustrates the control path of the routing unit. The dashed line shows

the critical path delay of the control path of the circuit. Integration of Net-Demux increases the

length of each path for routing unit.

5.5.2.2 Switch Allocator (SA)

Switch Allocator (SA) schedules the crossbar connections which are established between input

and output ports for flit traversal in each cycle. Timing arc (red dash-line) exhibits a critical

path which lies between three submodules: local arbiter, global arbiter, and masking logic as

shown in Fig 5.8. The local arbiter selects a winner among the competing Virtual Channels

(VCs) at each input port. The output of local arbiter becomes the select line of MUX1 that

selects only one wire consisting of outport information with respect to flit of winner VC.



Chapter 5. Placement of Network Selector 123

Figure 5.8: Net-Demux placement at switch allocator of the router. Three half adders are sufficient to
implement switch encoder logic. The flowchart demonstrates the selection of either of NoC networks

with the placement of Net-Demux.

The Net-Demux is placed in between local and global arbiters. A 1-bit select line m does the

selection of NoC network according to a type of message class as listed in Table-5.1. If m is

‘0’, flit proceeds to NoC1, else to NoC2 network.

The competition between different inputs requesting for the same output physical channel is

resolved by Global Round-Robin (G-RR) arbiter. Each input bit processed through G-RR

arbiters corresponding to each output channel. The grants generated by global arbiter are used

to set up the crossbar control registers.

The output of global arbiter is also fed into the input of mask logic. Another input of mask

logic is V-bit input line from the local arbiter. The masking logic activates the next VC request

in lieu of recent VC.
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5.6 Comparative Analysis of Placement

In this section, we shall compare the variation in the architecture of Net-Demuxwith placement.

The first comparison is made in respect of hardware component and is shown in Table 5.2.

Impact of placement on hardware metrics is compared in Table 5.3. In the first part, we discuss

the placement at network interface with respect to placement at the router. Then, in the second

part, we compare placement within the router, i.e., routing unit vs. switch allocator.

Table 5.2: Comparative changes in hardware components architectures with different placements of
network selector.

Hardware Com-
ponents

Network Interface Routing Unit Switch Allocator Comments

Input Signals N-bits input K-bits input K-bits input N >> K
Demultiplexer One with N-bits One with K-bits One with K-bits Total required four
Encoder None Port Encoder Crossbar Switch

Encoder
Negligible over-
head

Adder None 5 half adder (2 full
and 1 half adder)

3 half adder Switch allocator
adder is more
efficient

Multiplexer None One with K-bits One with K-bits Negligible over-
head

f

Table 5.3: Gain in hardware metrics with different placement of network selector.

Hardware Metric Network Interface Routing Unit Switch Allocator Comments
Critical Path Delay Increase path

length
No impact No impact Router critical path

decided by cross-
bar so no impact of
other components

Minimum required
units

4 4 4 NI input overheads
are four times more

Power Overheads 4 × N 4 × K 4 × K NI overhead is
much higher

Area Overheads 4 × N 4 × K 4 × K NI overhead is
much higher

5.6.1 Network Interface vs. Router Placement

At the network interface, Net-Demux is placed in the data plane whereas at the router the

placement is possible at the control plane. The placement at the control plane of the router is

beneficiary over network interface placement as the data plane placement of network interface

requires more area and power overhead for the implementation of Net-Demux as we can see in

Table 5.2. This is reflected as overhead in area and power hardware metrics in Table 5.3.
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5.6.2 Routing Unit vs. Switch Allocator Placement

The Net-Demux can be placed on the router either at the routing unit or at switch allocator. The

architecture of Net-Demux varies with placement. Each functional unit of the router performs

a specific task accordingly, Net-Demux inputs and outputs vary. For example, the routing

unit computes the outport for the incoming header flit. On the other side, switch allocator

resolves the contention between channels and enables the switch of the crossbar that forwards

the flit across the crossbar. In Table 5.2, we can see the encoder for both the placement shall

be different, and accordingly, the minimum number of required half adders is different. The

architecture of Net-Demux is less complicated for switch allocator placement as compared to

routing unit placement. Though, the inputs signals are of the same width for these placements.

5.6.3 Impact on Digital Circuit Characteristics

Though, we have not explored backend impact of placement in detail. We can presume impacts

with following brief discussion.

1) Input Signal Ordering. The placement of Net-Demux at the switch allocator is more ef-

ficient compared to routing unit placement. This is concluded from the digital circuit

characteristics of input signal ordering. It is beneficial to postpone the introduction of

input signals with a high transition rate, as discussed in Subsection 5.3.2. Thus, the out-

put of the routing logic becomes the input of Net-Demux because signal passes through

routing algorithm then becomes the input of Net-Demux the input signal transition rate is

higher as compared to the signal for switch allocator. At the switch allocator signal just

passes through one multiplexer and become the input for Net-Demux. Such input signal

ordering becomes the deciding factor, and it is beneficiary to introduce a low transition

rate signal early for the Net-Demux.

2) Timing Delay. Critical path delay is affected by network interface placement, as dis-

cussed in Table 5.3. The router microarchitecture is the four-stage pipelined architecture.

The critical path delay is dominated by the crossbar of the router. The placement of the

Net-Demux does not add to the critical path delay of the crossbar of the router. Since the

frequency does not need to change on placement, so there shall not have any impact on

data arrival in each cycle of the router.
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3) Topology of Circuit. The topology of the circuit is decided by the optimisation algorithms

used by the backend tools. Therefore, with placement, the topology of the circuit changes

as discussed in Subsection 5.3.1 and hence switching activity10 that is the primary factor

affecting the dynamic power.

5.6.4 Impact on Scalability

Latest technology breakthrough makes NoC more fault-prone, more severe congestion, traffic

hotspot, and thermal issues. So routings of these processors are more complex. The complex

routing circuits have high switching activity because of the more number of digital units in

every path. It is better to place Net-Demux at switch allocator of the router.

5.7 Experimental Results

In this section, we discuss our experiment for different placements. The power and changes in

the signal paths are evaluated through synthesis of the circuit. For the dynamic power compari-

son, we have extended Gem5 and Garnet simulator for comparing the placement of Net-Demux

with PARSEC benchmarks.

Table 5.4: Hardware Synthesis Parameter Configuration

Parameters Configuration
Synthesis Tool Synopsis Design Compiler
Hardware Language System Verilog
Hardware Design Register Transistor Level (RTL) synthesis
Cell Technology Low Voltage Threshold (LVT)
NoC Networks Single-NoC, dual- and 2-Network-NoC
Nanometer Technology 32 nm
Clock Frequency 2 GHz

10Switching activity has two components 1) a static component – the function of the logic topology, and 2) a dynamic
component – the function of the timing behavior (glitching). We are not detailing dynamic component as it is out of the scope
of the thesis.
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5.7.1 Synthesis Result Analysis

The configuration of hardware synthesis parameters is listed in Table 5.4. We have done Reg-

ister Transistor Level (RTL) synthesis to evaluate the hardware area, power and critical path

delay of the RU (Routing Unit) and SA (Switch Allocator) placement of Net-Demux in 2-

network-NoC and this is compared with dual-network-NoC. We have written these hardware

RTL designs using system verilog. We have used 32nm standard-cell libraries for synthesis

using LVT11 cell technology with Synopsys Design Compiler. Target clock frequency was set

to 2Ghz.

A number of signal paths (execution paths) are compared in respect of slack values. Table 5.5

shows a different number of execution paths and respective variations in slack values. When we

compare slack variations and number of paths between NI, RU, and SA, we find a significant

difference between the number of paths and slack values for different placements of NI. These

slack values are measured in nanoseconds (ns).

Table 5.5: Path Slack variations in different execution paths due to Net-Demux placements.

Placement of Net-Demux

at NIa at RUb at SAc

# Paths ∆Slackd (10−3) # Paths ∆Slack (10−2) # Paths ∆Slack (10−2)

32 0-0.1 8 0.36-0.4 32 0.5-0.6
4 0.32-0.35 8 0.45-0.56 8 0.6-0.7
14 0.78-0.88 20 0.62-0.70 10 0.11-0.14

14 0.72-0.78

aNetwork Interface
bRouting Unit
cSwitch Allocator
dThe unit of slack measurement is picoseconds.

A slack shows the permissible delay of a cell activity without delaying overall circuit output.

So path slack is the difference of time when data arrives, and data is required. When the data

arrival coincides with the time this data is required, slack is zero (ideal). However, the paths

that are close to zero slack values are critical. If a higher number of paths in a circuit are

close to zero, a slight variation in the slack may render the circuit unreliable at times. The

time when a signal arrives can vary due to variation in input data, variation in temperature and

voltage, manufacturing differences in the exact construction of each part. Hence the design
11Low Voltage Threshold [117]
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should ensure that despite these variations, all signal will arrive neither too early nor too late.

The positive slack implies the arrival time of a cell may be postponed by slack value without

affecting the overall delay of the circuit. It shows that data arrives before being required by

the circuit. So the researchers emphasize on the structuring of a schematic for fewer equally

critical paths. Instead of looking at the slack of just the most critical path, the design should

consider the entire distribution of slacks [81]. The path slack value for NI is of the order of

10−3 ns which is very close to zero slack as compared to RU and SA. Rest of the positive slack

values reduces the risk of violating timing delay of a circuit [154].

Likewise, the endpoint slack is an observation point at the end of a path. The primary output

or scan flipflop referred to as an endpoint [82]. Each endpoint is associated with a path delay

distribution. Due to the complexity of finding all paths to an endpoint, only least slack path to

each endpoint is considered.

Table 5.6: Endpoint Slack variations for different Net-Demux placements.

Placement of Net-Demux

at NIa at RUb at SAc

# Paths ∆EP-Slackd # Paths ∆EP-Slack # Paths ∆EP-Slack

256 0-0.042 144 0-0.05 32 0-0.5
8 0.24-0.31 948 0.37-0.42 8 0.32-0.37
4 0.32-0.36 1004 0.38-0.42

1260 0.37-0.42

aNetwork Interface
bRouting Unit
cSwitch Allocator
dThe unit of endpoint slack measurement is picoseconds.

Table 5.6 shows the number of endpoints with the least slack divided across the entire cycle

period for the clock. Execution paths that have positive sufficient slack values are safe paths as

the probability of violating the delay is lower. The NI has 256 paths, RU has 144 paths, and SA

has 32 paths that are close to zero endpoint slack value. It shows that SA is less sensitive for

slack variation and uncertainty. These variations in slack values also cause variation in critical

path delay, which is important because the clock frequency of a circuit is decided by its critical

path.
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5.7.1.1 Area

The area of different components of a circuit for various Net-Demux placements is compared

in Fig 5.9. The total area is the sum of four factors: Combinational, Noncombinational, Net

Figure 5.9: Area comparison

Interconnect area, and Buffers (Buf). The area due to logic cells in design is shown by the com-

binational logic gates like ANDs, ORs, etc., whereas the noncombinational factors are registers.

The third factor affecting the area is the wires connecting these cells that is net interconnect area

defined/computed by the library of wire load models. The buffer is the primary contributor to

area as compared to other NoC components. The total gain 12 in the area is 39% in SA over NI

and 36% in RU over NI placement.

5.7.1.2 Energy Analysis

The energy consumption is proportional to the network capacitance (E ∝ CNet). Higher values

of network capacitance indicate higher energy consumptions. Placement of Net-Demux signif-

icantly affects the energy consumption of dual NoCs, and our proposed optimally sliced NoC.

For example, 4050 networks in NI and 2795 networks in RL have 0-140 picofarad capacitance,

which is significantly higher than SA, as shown in Table 5.7. On comparing the network ca-

pacitance, we can infer that Net-Demux placement at switch allocator is more energy efficient.
12The actual area advantage would be more for SA over NI. We get these area results when we have skipped the virtual

channels and virtual networks in the circuit.
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Table 5.7: Variation in net capacitance depict the energy consumption for various placements of
Net-Demux.

Placement of Net-Demux

at NIa at RUb at SAc

# Nets Capacitanced # Nets Capacitance # Nets Capacitance

4050 0-140 2795 0-140 2658 0-120
1 950-1050 1 950-1055 1 950-1055

aNetwork Interface
bRouting Unit
cSwitch Allocator
dThe unit of capacitance is picofarad.

Thus, with the help of Table 5.7, we conclude that Net-Demux placement significantly affects

the energy efficiency13 of a circuit.

5.7.1.3 Power and Critical Path Delay

We compare Net-Demux placements at NI in dual-network-NoC with RU and SA placement in

2-network-NoC. These placements are compared in respect of the area, power, and critical path

delay. The area is the total of combinational, non-combinational, net interconnect and buffers

area.

The total power dissipation is the static/leakage power and switching/dynamic power. The

leakage power is dependent on the static current flows from voltage supply to ground in the

absence of switching activity. It consists of (dis)charging of the capacitor and short circuit

power. It varies according to the switching activities of the circuit. Critical path delay is also

an important design metric. It affects the arrival of data to the input of the circuit. It determines

the NoC frequency by estimating the worst path taken by the data.

We normalized the results of placements with respect to single-NoC by considering all values

of design metrics are considered as ‘1’ for single-NoC to estimate the gain with dual-network-

NoC and 2-network-NoC.

Table 5.9 is drawn from Table 5.8 to show the percentage improvement in the area, power, and

delay for different placements (in row2) whereas row3 of the table depicts the architectures

without Net-Demux placement. The ‘+’ sign indicates the advantage, ‘-’ shows the drawback.
13These results are validated when we evaluate energy gains in full system simulation with PARSEC benchmark for SA

with respect to NI and RU.
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Table 5.8: Area-power and delay comparison relative to single-NoC for different placements (area-
power and delay of single-NoC is normalized to one unit time).

Placement of Net-Demux

Hardware Metric
NIa RUb SAc

NoC
single dual-netd 2-nete dual-net 2-net dual-net 2-net

Area 1 0.52 0.47 0.68 0.55 0.80 0.64
Total Power 1 0.51 0.48 0.66 0.56 0.89 0.68
Static Power 1 0.50 0.47 0.61 0.52 0.75 0.59
Dynamic Power 1 0.51 0.48 1.13 0.96 1.46 1.04
CPf Delay 1 1.08 1 1.13 0.96 1 0.67

aNetwork Interface
bRouting Unit
cSwitch Allocator
ddual-network-NoC
e2-network-NoC
fCritical Path Delay

Table 5.9: Improvement in area-power and delay for different placements.

Hardware Metric
% Improvement in

dual-network-NoC 2-network-NoC 2-network-NoC
Net-Demux placement at

NIa RUb SAc

gain over gain over gain over
single 2-netd single dual-nete single dual-net

Area +48 -10 +45 +19 +36 +20
Total Power +49 -6 +44 +15 +32 +24
Static Power +50 -6 +48 +15 +41 +21
Switching Power +49 -6 +4 +15 -4 +29
Critical Path Delay -8 -8 +4 +15 +33 +33

aNetwork Interface
bRouting Unit
cSwitch Allocator
d2-network-NoC
edual-network-NoC

The advantage in the area and static power with all three placement at NI, RU, and SA are quite

high over respective single-NoC. Because the flit-width in dual-network-NoC and 2-network-

NoC are half of the single-NoC and the buffer size is determined in the proportion of flit-width.

A significant gain is observed as buffers are the primary component of area occupation and

static power consumption [73].

However, the downside is perceived in the design metrics of NI placement in dual-network-NoC

over 2-network-NoC. The number of core links is eight, whereas 2-network-NoC has only four
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core links. Less number of links imply less number of buffers. Therefore, NI placement in

dual-network-NoC has more area and static power as compared to 2-network-NoC.

The area and power overhead of Net-Demux are the same for either of RU and SA placements

of 2-network-NoC, though they are different than NI placement of dual-network-NoC. Former

places Net-Demux in the data plane whereas later places it in the control planes of the router.

So overall gain in the area and static power is observed with 2-network-NoC placement over

dual-network-NoC.

Adding Net-Demux at Network Interface (NI) shall increase critical path delay as shown in

Table 5.9. The data arrival due to NI placement in dual-network-NoC is delayed by 8% over

single-NoC and 2-network-NoC. However, the increase in critical path delay at RU and SA

does not impact the overall router frequency. As the router has a pipelined14 architecture, its

clock frequency shall not be affected.

Different placements vary switching power because of the variation in input and output switch-

ing activity. Except for the SA placement in 2-network-NoC over single-NoC, switching power

gain is observed with rest of the placements. As these results are calculated with the default

wire load15 model of low traffic, we evaluate the results with a larger workload of PARSEC

benchmark as well.

Table 5.10: Configuration of Simulation Parameters

Parameters Configuration
Simulator Gem5 (Full System Simulation)
NoC simulator GARNET
Cores 64 cores
ISAa ALPHA
Topology 8 × 8 Mesh
NoC Networks Single-NoC, dual- and 2-Network-NoC
Routing Dimension Order XY
Caches Three levels of cache hierarchy
Cache Coherenceb Directory-based MESI protocol
Power ORION 2.0
Benchmark PARSEC (medium workload, 16 threads)

aISA-Instruction Set Architecture
bFor more details, refer to Appendix B.

14The crossbar of the router dominates critical path of the router.
15Sometimes the default wire load model shows incorrect dynamic power.
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5.7.2 Result Analysis with Benchmarks in Full System Simulation

To validate our proposal under larger workload, we compare the energy efficiency of router

placement with NI placement using PARSEC benchmark. For full system simulation, we have

used Gem5 simulator integrated with GARNET NoC simulator. A Linux 2.6.27 kernel image

is booted with ALPHA instruction set architecture. For power results, GARNET is integrated

with ORION.

The simulation configuration16 parameter details are listed in Table 5.10. The volume of mes-

sages varies across different message classes as well as different applications of PARSEC

benchmark. A specific NoC is assigned to each message class during inter-core communi-

cations as we get the static17 message distribution with our initial profiling with canneal bench-

mark.

Figure 5.10: Energy consumption with different placements for communication-intensive PARSEC
benchmarks. Here energy consumption of S-NoC is normalized to 1 unit.

The energy efficiency of distinct placements with communication intensive PARSEC bench-

marks is shown in Fig 5.10. The rightmost bar shows the geometric(G) mean18 of different

placements. It shows that under PARSEC workload conditions SA, RU, and NI [8] placements

are 46%, 40% and 30% efficient over single-NoC. Also, we observe SA and RU are approxi-

mately 33% and 26% more energy efficient over NI.
16For more details of Gem5 simulator, memory, and NoC parameters refer to Table 3.1, 3.2 and Table 3.3 of Chapter 3

(Page 58).
17Refer to Chapter 4 (Page 98).
18A geometric mean is a suitable measurement to summarize the normalized values of benchmarks [153]. The geometric

mean of N values is the (1/N)th power of the product of all values.
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Figure 5.11: Execution time for different placements (the execution time of Single NoC is normalized
to one unit time).

We also compare the execution time for the placement at NI [8], RU and SA (please refer

to Fig 5.11). Minor degradation of 10% and 4% is observed in execution time for NI and

RU. However, 6% improvement is achieved with SA over single-NoC, and also RU and SA

placements are 6% and 14% efficient over NI.

5.8 Inferences

Different multiple dual- and 2-network-NoC (our proposed architecture) require to place a net-

work selector to distribute traffic between NoC networks. We named network selector as net-

work demultiplexer (Net-Demux) since it demultiplexes input messages into one of the NoC

networks. In this chapter, we propose Net-Demux placement at switch allocator of the router

for 2-network-NoC and compare it with the routing unit placement on router and conventional

Network Interface (NI) placement of dual-network-NoC. We infer that

1) placement of Net-Demux at NI comes into the data plane. On router, placement is pos-

sible at both control plane and data plane. As we have a choice at the router, we have

selected the hardware units of control planes that are routing unit and switch allocator.

Since placement modifies the architecture of Net-Demux according to the functionality

of hardware units, we observe switch allocator placement has the lowest hardware im-

plementation overhead in Net-Demux architecture as compared to routing unit and NI

placement.
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2) placement also impacts digital circuit characteristics such as input/output wire-width and

critical path delay of the circuit. The placement in control plane requires a small bus-

width of wires as well as small size of respective registers as compared to data plane

Net-Demux hardware unit. Similarly, placement on the control plane of router does not

impact critical path delay as the router is a pipelined architecture. Contrary, Net-Demux

at NI increase critical path delay up to the length of the Net-Demux hardware critical

path.

3) on comparing synthesis results, we observe significant benefits with switch allocator

placement in a number of execution paths, path delay, area, and energy as compared

to conventional placement. Switch allocator placement improves 21% static power, 29%

dynamic power, and 33% critical path delay of the circuit over conventional placement.

4) with PARSEC benchmark, the Net-Demux placement at switch allocator, routing unit,

and network interface [8] is 46%, 40% and 30% efficient over single-NoC. The placement

at switch allocator and routing unit are approximately 33% and 26% more energy efficient

over NI. The execution time with switch allocator placement improves 6% over single-

NoC. Subsequently, the routing unit and switch allocator placement improves execution

time 6% and 14% over NI. Thus, hardware synthesis and PARSEC benchmark results

favor to place Net-Demux at switch allocator of the router for 2-network-NoC.

In the next chapter, we shall explore software level issues for 2-network-NoC. Traffic distribu-

tion is the next essential part for dual networks NoC architectures. We have briefly explored

static traffic distribution for 2-network-NoC in Chapter 4 (Page 98) with a single benchmark of

PARSEC. We shall analyze static traffic distribution impact on power-performance efficiency

through a case study with general purpose PARSEC applications. Such case study with general

purpose applications of PARSEC benchmark shows a significant impact of traffic distribution

on power-performance and energy efficiency of the network. To mitigate the limitations of

static traffic distribution, we shall propose a runtime adaptive traffic distribution in the next

chapter.
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Runtime Adaptive Traffic Distribution

In Chapter 4 and Chapter 5, we have explored hardware-based approaches to improve power

or energy efficiency of NoC. In this chapter, we shall explore traffic distribution at the software

level of the NoC. In Chapter 4 (Page 98), we have defined traffic distribution policy on the basis

of the experiment on Canneal benchmark. Static approach of Chapter 4 transmits control

and writeback control messages through one NoC network and the rest through another

NoC network. In Chapter 5, we have explored suitable placement of NoC (NoC1 or NoC2)

selector hardware unit on router for 2-network-NoC. It follows the same traffic distribution

policy as devised in Chapter 4.

This chapter highlights the limitations of static traffic distribution and proposes solutions in

terms of adaptive-traffic distribution, which can adapt itself to runtime dynamics of messages

contrary to the static approach. Modern chip multiprocessor applications are divergent in

message volume1 and traffic patterns, for example, web traffic is more bursty in nature

(asymmetric request-response) than video traffic (symmetric). Different traffic patterns vary

the volume of control and data messages. Static traffic distribution cannot yield good results

for different traffic patterns as are encountered in general purpose multiprocessor chips.

Static traffic distribution rules are based on initial profiling of network traffic at design time

according to overall traffic statistic. Static traffic distribution is popular for multiple NoCs

because it is simple and easier to implement. It is very efficient for application specific
1The number of messages

136
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processors. But for general purpose processors, it may show poor power-performance tradeoff

for various applications.

In this chapter, we propose an adaptive on-the-fly traffic distribution that automatically inter-

cepts NoC traffic communication and distributes traffic accordingly to improve network perfor-

mance. These techniques consider underlying NoC architecture, available resources and their

utilization, data characteristics, especially in terms of criticality to estimate the underutilization

(overutilization) of one NoC (another NoC) network.

Our key contributions are:

1) We identify the limitations of conventional static traffic distribution for multiple NoCs

through a case study on the impact of static traffic distribution on power-performance and

energy efficiency with PARSEC benchmark.

2) We propose a novel adaptive on-the-fly traffic distribution to overcome the limitations of

static message distributions.

3) To automate the adaptation, we also propose a policy for traffic distribution through anal-

ysis of fine-grained cache state messages.

4) The proposed technique is evaluated against two existing techniques: static traffic dis-

tribution (Chapter 4) and single-NoC [73]. Our experimental results show the improve-

ment in energy efficiency and link utilisation of multiple NoCs with proposed adaptive

approach.

6.1 Static Traffic Distribution

The static policy of traffic distribution is based on a priori knowledge of NoC architecture

and traffic analysis. Static traffic distribution is consequential only when the best probabilistic
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distribution of traffic is devised resulting in efficient resource allocation. The static message

distribution distributes the following message classes2 on dual NoC networks3.

1) Control (CC)

2) Request Control (RQC )

3) Response Control (RPC )

4) Writeback Control (WC)

5) Response Data (RPD)

6) Writeback Data (WD)

The static message distribution for dual NoC network classifies the message classes in two sets.

One that is sent on NoC1 and another is forwarded on NoC2. This non-overlapping distribution

of message classes on both NoC networks does not change with time.

The possible number of ways4 to distribute six different subclasses of messages on 2-network-

NoC is as computed in the following expressions (1) - (3).

(NoC1 : NoC2) = if


(1 : 5)→ 6C1

→ 6 · · · (1) /*Of six classes of messages, one is

(2 : 4)→ 6C2
→ 15 · · · (2) transmitted via NoC1 and rest via

(3 : 3)→ 6C3
→ 20 · · · (3) NoC2*/

As Cn
r = Cn

n−r, and there are only two physical channels in dual-network, C6
4 shall generate

the same combinations as C6
2 albeit role of NoC1 and NoC2 shall be reversed. As a result, the

total number of distinct combinations5 are 41 only. For complete PARSEC benchmark suite

consisting of 13 applications, a total number of 13 × 41 = 533 full system simulations are

needed for analyzing the impact of static message distribution on 2-network-NoC.
2Control (CC) messages are associated with invalidation and upgrade events. Request Control (RQC ) messages are

generated at shared caches for data block replacement. Response Control (RPC ) are acknowledgements which are initiated
on receiving of response data. Writeback Control (WC) are acknowledgements that originate from memory and inform
private caches about the modified copy of data. Response Data (RPD ) carry data messages between on-chip caches and
off-chip memory to cache. Writeback Data (WD) traverse from cache to off-chip memory.

3We have used MESI cache coherence protocol that classifies messages in six message classes (for more details refer to
Appendix B).

4The possibilities may vary with cache coherence protocol and a number of networks in multiple NoC.
5The details of distinct distribution are listed in Table D.1 of Appendix D.
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Table 6.1: Percentage improvement in the distribution of control messages with respective variance in
result metric (∆<) for PARSEC benchmark.

Benchmark Proportion of Message Classes (P) (in %) ∆<̂ (in %)†

CC RQC RPC WC ΣC RPD WD ΣD ∆ξ ∆τ ∆ρ

Blackscholes 2.8 7.64 38.32 0.05 48.81 41.29 9.9 51.19 28 36 55
Swaptions 2.39 6.28 37.84 0.03 46.54 41.45 12.01 53.46 40 27 500
Canneal 2.38 6.97 37.96 0.08 47.39 41.44 11.17 52.61 42 58 66
Fluidanimate 0.78 6.16 37.89 0.33 45.16 42.51 12.33 54.84 59 55 18
X264 2.07 4.81 38.41 0.1 45.39 39.1 15.51 54.61 511 69 96
Freqmine 1.73 4.6 39.97 0.11 46.41 34.18 19.41 53.59 9 3 2
Streamcluster 0.01 8.87 33.14 0.02 42.04 52.81 5.15 57.96 60 34 1
Bodytrack 0.61 3.11 35.12 0.09 38.93 46.86 14.21 61.07 9 26 1
Dedup 0.17 3.58 38.32 0.03 42.1 40.02 17.88 57.9 25 21 2
Facesim 0.87 0.33 30.86 0.09 32.15 42.33 25.52 67.85 12 78 27
Ferret 0.65 1.31 42.31 0.12 44.39 34.23 21.38 55.61 233 18 5
Vips 0.54 1.9 38.93 0.35 41.72 40.06 18.22 58.28 50 40 1
Rtview 4.94 7.88 43.58 0.13 56.53 34.69 8.78 43.47 560 30 76

Variation (∆ν) 4.93 8.54 13.7 0.33 24.4 18.6 20.4 24.4 551 75 499

†
η = Cluster no., ∆<̂ = Variance in result metric, ξ = Energy, τ = Throughput, ρ = Power

6.1.1 Case Study to Unveil the Problems of Static Traffic Distribution with CMPs

We have done a case study with all 13 applications of PARSEC benchmark to identify how static

traffic distribution impacts power, performance, and energy efficiency. The different message

classes viz. CC, RQC , RPC , WC, RPD , and WD for all the applications of PARSEC suite have

different percentage6 of messages as listed in Table 6.17. The variation can also be seen in the

benchmark graph, Fig 6.1.

The benchmarks are kept into three clusters according to the proportion of control messages

45% ≤
∑

C ≤ 55% (top),
∑

C < 45% (middle), and
∑

C > 55% (bottom). To observe the

impact on result metric with variation in the proportion of messages. We can see the minimum

to a maximum proportion of messages classes8 in the column of proportion of message classes

in Table 6.1 across the PARSEC benchmark. On comparing the proportion of total control (
∑

C)

and Data (
∑

D) messages columns, a significant difference is observed in Bodytrack, Facesim,
6We shall interchangeably use the term percentage/fraction/ratio/proportion.
7We have used different types of lines for boxes wherein dotted box exhibits volume of control messages. Whereas the

percentage improvement/variance of result metric is highlighted with blue lined boxes as shown towards the rightmost column
of the table.

8In column CC , RQC , RPC , WC , RPD , and WD of Table 6.1.
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Figure 6.1: Variation in the quantity of Control (
∑

C) messages in PARSEC benchmark for a MESI
protocol of cache coherence. The message classes are explained in Section 6.2 (Results are computed

on 8 × 8 mesh in full system simulation).

and Rtview benchmarks as compared to other benchmarks. For specified proportional distribu-

tion of messages, the static message distribution changes according to expressions (1) - (3). The

variance in result metric across 41 static message distribution is listed in the rightmost column

of the table corresponding to each benchmark.

Thus, variance in result metric9,10 (∆<̂) measures the variation in percentage improvement of

energy, throughput, and power for 2-network-NoC over single-NoC when 41 combinations of

static message distribution run for each application.

6.1.2 Experiment Result Discussion on Impact of Power-Performance Efficiency

Table 6.1 as discussed in the previous section shows the upper and lower bounds for ΣC and ΣD

message proportion as well as the variance for ∆<̂with 41 different combinations of static mes-

sage distribution for PARSEC benchmark. The maximum variation (∆ν) within
∑

C is 13.7%

(for RPC ),
∑

D is 20.4% (for WD), and ∆<̂ is observed 551% (for ∆ξ).

9The benchmarks highlighted with red fonts show maximum variance for at least one out of three metrics in ∆<̂ from each
cluster.

10Overall variation (∆ν = VMax − VMin) for each message subclass is computed in the last row. The three different circled
value from left to right shows the highest variance among control messages, data messages, and in result metric.
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We have drawn following inferences with the proposed case study on general purpose applica-

tions of PARSEC benchmark:

1) Communication intensive benchmarks such as swaptions (power), x264 (energy), and

rtview (throughput) show a significant approximately 5× variations in result metric.

2) Power varies between 3% to 78%, throughput varies 1% to 500%, and energy varies 9%

to 560%. This indicates that a single static distribution strategy may not benefit general

purpose applications alike.

3) The benchmark freqmine has a negligible variance for all result metrics as it is a compu-

tation intensive application. Therefore, it exhibits negligible impact of traffic distribution

variations. Similarly, relatively computation intensive. Benchmarks such as bodytrack

and dedup display minor variations in result metrics.

Table 6.1 results show that the static message distribution does not provide universally optimum

message distribution for general purpose processors. This case study illustrates how unfair

static traffic distribution can be while considering the execution of different types of application

on the general purpose processor. It shows that offline implementation with the assumption of

hardware agnostic static traffic distribution may not be the right way to decide traffic distribution

for multiple NoC networks.

Network power can be as high as 150W for a manycore die [53]. So a high proportion of

chip power is consumed by NoC. It continues rising with the increasing number of cores and

communication traffic. Due to the impact of static message distribution on power-performance

trade-off and thus energy efficiency, a significant investment [50, 51] is being made to improve

the energy efficiency of modern manycore NoC designs. The static message distribution is

implicitly limited as

1) it does not provide a universally optimum message distribution for all applications.

2) it does not remain an ideal traffic distribution even for the entire11 execution time of

a given application as the volume of different messages classes often varies during the

execution of the application.
11This is discussed in detail in the following section.
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Then, what could be the right way to segregate different classes? How to assign message

classes to dual NoC networks for resolving unfair message distribution. To find the solution, it

is important to understand traffic characteristics in more details as we do in the next section.

6.2 Criticality Analysis of Fine-Grain Messages of Caches

In this section, we demonstrate runtime variations in the volume of message classes that further

motivates us to study messages at their finer granularity. We demonstrate the inter-dependency

in the sequence of fine-grain messages during serving of messages in response to a cache miss.

Ordering, as well as inter-dependency of these messages, is result of cache state transitions

dictated by coherence protocol. Cache states trigger a variety of fine-grain cache message12 to

maintain the coherence between caches and memory. We identify criticality priority of these

fine-grain messages.

6.2.1 Runtime Dynamics of NoC Traffic

We observe the runtime variation in the volume of different message classes across different

applications. We randomly selected traces of ‘Swaption benchmark’ to demonstrate runtime

variations in message volume. In Fig 6.2, the y-axis shows the cumulative number of injected

flits and the x-axis shows the simulated number of Instructions Per Seconds (IPS) that are

ranging from 1 × 106 to 9 × 106.

As shown in Fig 6.2, the volume of transmitted Response Control (RPC ) and Response

Data (RPD) flits are less during 5 × 106 − 6 × 106 IPS as compared to 6 × 106 − 7 × 106 IPS. If

static message distribution is employed, performance degradation may occur.

Therefore, non-flexibility of static traffic distribution techniques are inadequate to handle the

runtime changes in the volume of individual message class. This motivates to consider the

runtime variability and unpredictability of traffic volume for designing adaptive message distri-

bution.
12These messages belong to six message classes for MESI.
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Figure 6.2: Runtime traffic traces of Swaption benchmark on 8 × 8 mesh with Gem5 simulator.

6.2.2 In-Transit Cache State Fine-Grain Messages

When a processor core does not find requested data in cache, a cache miss occurs and a request

for data message is transmitted through Networks-on-Chip. Additional coherence messages

also traverse through NoC to maintain the consistency between caches and memory data. Every

message is associated with a cache state transition that occurs on a cache miss. Since the

transition between different cache states results in different types of messages, an exploration

of fine-grain messages during cache state transition is really important.

6.2.2.1 Message Flow

The number of messages is dependent on the cache coherence protocol, the property of cache

hierarchy, and method of sharing among caches.

• Cache coherence protocol. We consider strictly inclusive MESI cache coherence pro-

tocol [135] (Appendix B). This is a multicast cache coherence protocol used with three

levels of the cache hierarchy, i.e., L0 private, L1 private and L2 shared among the cores.

• Inclusive property of cache hierarchy. We have used inclusive property for the hierar-

chy of caches of the same core. The message block existing in a lower level cache needs
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to be forwarded to the higher level cache. Similarly, if a block is evicted from a higher

level cache, it has to be evicted from lower level cache too.

• Sharing status. We have used multicast protocol wherein core valid bits are used by

shared L2 for each block to maintain the sharing status of the cache block.

In following paragraphs we briefly summarize events in case of a cache miss.

1) L0 is empty. Initially, when core fetches an instruction and data cache L0 is empty, it will

check the data in L1 and load the data from shared L2 or memory. The cache block would

be in Exclusive (E) state (since this is the only copy of data in cache identical to memory

copy). When this block is modified with a write operation, it is converted to Modified

(M) state. When a cache block is replaced, a PUT X event is generated to write the block

into the memory to maintain consistency only if it is in a modified state.

2) L0 is a Hit. Data is available in L0 cache, so it is serviced to the core.

3) L0 is a Miss, L1 is a Hit. When a miss occurs at L0, the data request is forwarded to L1

cache. Either exclusive or shared copy is sent back to L0 cache.

4) L0 is a Miss, L1 is a Miss, L2 is a Hit. L1 Miss is forwarded to L2 shared cache. Shared

data or exclusive data is sent back to the L1 cache of requested core and, then, it is serviced

to L0 cache by L1 cache.

5) L0 is a Miss, L1 is a Miss, L2 is a Miss. The L1 miss is forwarded to L2 and data is

fetched from memory and serviced back to L0 cache of the requested core. The stable

states, i.e., Invalidation (I) and M of MESI three level coherence protocol are used by

every individual cache. Transient states, i.e., IM, S M, MT , MT MB are used to recycle

and enqueue–dequeue cache request queue during transition among stable states.

Fig 6.3 illustrates cache state transitions on L1 miss. In this simulation, miss happens at

core 0 and requisite data is in L3 cache of core 3. A request for data is initiated by core 0

on L1 miss, the request is forwarded to L2 cache by using control messages. Once again

miss at shared L2 cache of core 0 denotes the nonavailability of data in L2 cache. In this

simulation scenario, the requested copy is available with L2 cache of core 3. Core 0 sends

the request to L2 cache of core 3, but before receiving the request, the copy is replaced at
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Figure 6.3: A test case scenario for NoC traffic communication with cache state transitions when L0 is
a miss, L1 is a miss, and L2 is a miss (NoC–Networks-on-Chip).

L2 cache of core 3. Then, L2 cache miss of core 0 is handled in the following steps while

maintaining cache coherence.

• When L2 cache of core 3 is replaced, the request of core 0 is forwarded to memory

through GETS control message.

• The L2 cache of core 3 fetches the data from memory and as a response gets

MEM DAT A from memory.

• Now MEM DAT A message is forwarded to requested L2 cache of core 0. The

inclusive property triggers the cache event DAT A EXCLUS IVE to L1 and L0 caches

of core 0 The state of both these caches are changed to M on triggering of the cache

event DAT A EXCLUS IVE message because this block is modified with a memory

write operation.

• A response control, i.e., EXCLUS IVE UNBLOCK is sent by L1 of core 0 to L2

cache of core 0 as an acknowledgement.

• The L1 PUT X is initiated by L2 cache of core 3 to replace the block that is modified

by L1 cache of local core (if any).

• Whereas the L1 WRIT EBACK is initiated by core 0 before replacing the only copy

of the block that is modified by L1 cache of core 0.

• Repeat steps subsequently on L2 miss, again.

Message flow in the above example shows how NoC traffic vis-a-vis messages classes vary and

is dependent on cache state transitions. In the next section, we prioritise messages according to
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their criticality13 that is devised through the proportion of generated messages and their inter-

dependency.

6.2.3 Criticality-Aware Prioritisation of Fine-Grain Messages

The fine-grain cache messages include load, store, acknowledgements etc. The switching be-

tween two stable cache states is followed by multiple transient states. Every state transition

stable-to-transient (transient-to-stable) generates such messages.

These messages related to

1) cache itself and local cache hierarchy14 updation: Control and Writeback Control

belong to local cache updation. Writeback Control communicates with L0 and L1 local

caches for cache block replacement on the eviction of the block from L2 cache. Whereas

Control messages are communicated by all local L0, L1, and L2 caches to communicate

with each other to update local caches.

2) updation of other on-chip shared caches and offchip memory: Request Control mes-

sages communicate between the caches having shared copies of the cache block. The

Response Control messages originate at both local as well as other shared caches be-

fore replacement of original copy to invalidate stale data.

Figures 6.4 and 6.5 show cache state transition diagrams for L2 and L3 caches

respectively. As different messages are generated for different transitions, we

shall call these as fine grain messages. These messages can be mapped to

six message classes (Control, Request Control, Response Control, Writeback

Control, Response Data, Writeback Data), which shall be referred to as mid-level

messages. Mapping of fine grain message to middle-grain or mid-level messages is shown

in Figures 6.4 and 6.5, a different color is used for mapping to a given mid-level message.

From the cache state transition diagram, we can see that

1) each cache can switch between Stable and Transient states. Two additional states are

used by L2 cache, i.e., Blocking and L2 Replacement because of its shared nature.
13How promptly an application uses data after its required message is fetched from memory.
14Forwarded to/fro lower level caches.
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2) fine-grain messages are triggered in-between cache state transitions by the cache con-

troller.

3) these messages can be aggregated as mid-level class/category of messages, i.e., Control,

Request Control, Response Control, Writeback Control, Response Data, and

Writeback Data. Every class of fine-grain messages is highlighted with background

color (blue, orange, yellow, green, peach, gray) as per the category.

4) the red text indicates the messages generated on a cache hit and blue text indicates the

messages on a cache miss.

Figure 6.4: State space diagram of L1 cache for MESI 3–level cache coherence protocol.
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Figure 6.5: State space diagram of L2 for MESI 3–level cache coherence protocol.

Additional states, i.e., blocking and replacement states in L2 cache-state space block the

transitions while waiting for data and replace a cache block with Least Recently Used (LRU)

replacement policy.
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The proportion of these messages vary as per the memory access pattern of the application 15.

To identify the criticality of messages, we

1) compare the proportion of fine-grain message mapping to each class (mid-level granular-

ity) of messages.

2) understand the inter-dependency of messages to discern the order, i.e., which messages

need to be sent first so that data transfer is not delayed.

6.2.3.1 Analysis using Proportion of Fine-Grain Messages in-between Cache States Transitions

On comparing the proportion of the messages in Fig 6.4 and Fig 6.5, our observations with

fine-grain messages in-between cache state transitions are as follows:

1) We find data messages16 are more than control messages17. Because of the bulk of pro-

portion of these messages, we have considered them as noncritical messages as these are

preceded by control messages.

2) The proportion of Writeback Controlmessages is less18 as compared to Controlmes-

sages, so we prioritize them over Control messages. As these messages belong to local

caches, the quick arrival of these messages speeds up the communication. We consider

these messages urgent, so we keep them as high priority messages.

3) The proportion of Request Control is less, i.e., RQC < RPC as compared to Response

Control messages. As the proportion of Response Control is the highest among the

control messages, we put them at low priority among the control messages.

We also observe that the proportion of fine grain messages independent of benchmark parameter

variations. Our discussed comparative proportion of messages is also scalable19 for the higher

volume20 of traffic as demonstrated in Fig 6.621.
15In the gem5, there is a cache coherence protocol rules, messages, and their transitions are defined under protocol directory.

We have used these rules to draw cache state space graphs.
16Split into multiple flits (five flits for our NoC architecture).
17Single flit
18Messages are generated less frequently.
19Criticality prioritisation is independent of the volume of traffic.
20The number of messages
21In Fig 6.6, the legends represent the fine-grain messages of Fig 6.4 and Fig 6.5. The name of the legend exhibits message

class, message type and belongingness with the cache. For example, in legend of fine-grain message WB DAT A INV , the
WB DAT A (first word of the name) is Writeback Data message class, and message type is INV (invalidation), and the
message belongs to the L2 cache. In case of presence of L1 label in legend name, the message belongs to L1 cache.



Chapter 6. Runtime Adaptive Traffic Distribution 150

1) On varying workload from low to high in Fig 6.622 (a), the volume of messages signif-

icantly increases though their prioritisation order still remains the same. For example -

in Fig 6.6 (a) with canneal benchmark, we get huge volume increase for R C L1 GET X.

These messages are classified under Response Control (low priority among the control

messages) and belong to L1 cache.

2) Similar trends are observed when the traffic increases on a varying number of threads

from 8 to 64, as shown in Fig 6.623 (b).

Figure 6.6: Message variations (a) with Low (L)(canneal s, blackscholes s) and High (H) (canneal h,
blackscholes h) workloads of the benchmarks (b) for freqmine and rtview benchmarks when the number

of threads vary from 8 to 64.

Other factors such as the number of cores, Instruction Set Architecture (ISA) of a processor,

cache hierarchy levels, cache type and size, type of cache coherence protocol, etc., also influ-

ence the variation in proportion of various message classes in the traffic.

6.2.3.2 Analysis-Based on Quality of Messages

In our another perspective of analysis, our consideration is the quality of message instead of

volume/proportion of messages. We devise the criticality through an understanding of the
22refer Appendix E for the tabular representation of data
23refer Appendix F for tabular representation of data
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inter-dependency of messages. The control messages are more critical over data messages

(Criticality∑
C
> Criticality∑

D
) as the state-of-the-art literature reported [58–60]. The request

for data is initiated with control messages and is followed by data responses. Once the data

messages are received, the ACK24 is sent back to the sender.

For all control messages, the criticality priority (P) within subclasses of control messages (
∑

C)

is considered as P(
∑

C) ⇒ WC > CC > RQC > RPC by analyzing the necessity of messages for

caches/cores. The most important undertaking by cache coherence is cache block replacement

and eviction of the block from shared cache through writeback control (WC) messages.

Once these messages are received, caches proceed to write the latest modified data to the rest

of the caches. Next, control messages (CC) are considered as top priority messages. These

messages invalidate the older copies of the data and update the caches. Otherwise, it may lead

to inconsistency between caches. Receiving of these messages are significantly important for

initiating another coherence event. The dependence of other messages on these message classes

(WC and CC) combinedly make them the most critical (S 0) messages.

The remaining control messages are considered as middle-level critical (S ′). Among these the

request controlmessages (RQC ) are prioritized, these messages unblock or allow the caches

for further read/write operations. Then response control messages (RPC ) are considered

that are the acknowledgments of the cache writes whereas the data messages are considered as

non-critical (S 1).

6.3 Strategy for Runtime Adaptive Message Distribution

Prior analysis of criticality shall be utilised to devise traffic distribution policy for hardware

implementation of runtime adaptive scheme. Out of six message classes of MESI protocol, we

define three levels of criticality priority (P) as follows

P = if



Most (S0) :
{

WC

CC
; Flags

m0=1

m1=1
· · · (4)

Middle (S′) :
{

RQC

RPC

; Flags

m2=1

m3=1
· · · (5)

None (S1) :
{

WD

RPD

· · · (6)

24Acknowledgement
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Each level comprises of two messages classes. Their priorities are defined under the set S 0

(Most), S ′(Middle), and S 1 (non-critical/none) as discussed in the previous section25 . The

set S 0 and S 1 are dedicated to NoC1 and NoC2 networks. The set S ′ is adaptive, it can be

assigned to either NoC1 or NoC2. The selection of NoC network according to message classes

are demonstrated through Algorithm 1.

Algorithm 1 Runtime Adaptive Message Distribution
Input: m0,m1,m2,m3,M′, i, θ

Output: Selection of NoC (either NoC1 or NoC2) for input Message M ′

Initialize: i← 0 //Global initialization

1: while network active do

2: m0 ← 0,m1 ← 0,m2 ← 0,m3 ← 0 //Local initialization

3: if M′ = WC then

4: m0 ← 1 //WC message sends through NoC1

5: i← i + 1

6: else if M′ = CC then

7: m1 ← 1 //CC message sends through NoC1

8: i← i + 1

9: else if i < θ && i ≥ 0 then

10: if M′ = RQC then

11: m2 ← 1 //RQC transfers through NoC1 when i < θ

12: i← i + 1

13: else if M′ = RPC then

14: m3 ← 1 //RPC transfers through NoC1 when i < θ

15: i← i + 1

16: else

17: i← i − 1

18: end if

19: else

20: i ← i − 1 /*This condition indicates arrival of either a data message RD/WD or control

message RQC /RPC while i > θ that transfers through NoC2*/

21: end if

22: end while

25As the message criticality is defined through consideration of message volume/quality.
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Figure 6.7: Schematic of adaptive message distribution logic (a) hardware implementation of NoC
selection logic for each message M′ (b) pseudocode demonstrates the functioning of NoC selection for
the messages belong to different priority levels along with hardware implementation. (Where COM:
Comparator, +: Adder, –: Subtractor, A: AND Gate, and O: OR Gate). The highlighted red color circuit
is for S ′ set of messages while S 0 and S 1 set of messages logic are on top (in black) and bottom (in

blue) of S ′ circuit/logic.

If the message type is either Writeback Control (WBC) (step 4) or Control (C) (step 7),

the messages always traverse through NoC1 network.

Data messages (Response Data (RespD) and Writeback Data (WBD)) always dedicated

to NoC2 network. Whereas remaining control messages (Request Control (RQC) and

Response Control (RPC)) adaptively changes NoC network according to the number of

messages of NoC1 network. Initially, these messages traverse through NoC2 network. The

decision to change the NoC network for these messages is taken through a threshold value θ

that declare the underutilisation of NoC1 network. Once the condition i< θ && i≥ 0 is true

(where i is a counter), it indicates the underutilisation of NoC1 network. The messages of
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middle level critical switch to traverse through NoC1. Meanwhile, counter i is incremented on

traversing messages through NoC1. But if messages traverse through NoC2, the counter i is

decremented. Thus, counter i is continuously updated and results in a right prediction of under-

utilisation of NoC1 network. The hardware implementation of the algorithm is shown in Fig 6.7.

We design a hardware logic for adaptive traffic distribution using the defined priority/criticality

of messages. The hardware implementation for selecting three different sets S 0, S ′, and S 1 of

message classes are shown in Fig 6.7 (highlighted with three different colors), and its working

is already explained in Algorithm 1. The flag of corresponding message class M′ is enabled

to identify respective network. Initially, all flags {m0, m1, m2, m3} are initialized with zero.

The most critical messages are assigned to NoC1, and non-critical messages always traverse

through NoC2 whereas middle-level messages are initially assigned on NoC2. But network

selection changes with runtime dynamics of traffic and utilisation of NoC networks.

In the next section, we monitor the runtime dynamics of traffic for the selection of NoC net-

works of middle level critical messages.

6.3.1 Monitoring of Runtime Traffic Dynamics for Implementation of Adaptivity

Ideally, at every execution instance, both NoC networks should be minimally underutilised or

overutilised. The adaptive scheme is expected to balance the traffic between multiple NoC

networks. Though, this is entirely dependent on the prediction accuracy of

1) message criticality: we have defined criticality through analysis of the proportion of fine-

grain messages of cache state transitions, and it is also validated through the analysis of

inter-dependency of messages.

2) over/under utilisation measurement threshold value θ: when NoC1 channel is underuti-

lized (overutilized), the middle-level messages start to traverse through NoC1 (NoC2).

So adaptive method balances the utilization of both networks. As middle level messages

traverse on the underutilized NoC network, they can switch between NoC1 and NoC2 ac-

cording to network traffic conditions. We have done the offline analysis of threshold value

θ with multiple enough number of samples.
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3) offline sampling for threshold θ: we have done an offline sampling for selecting threshold

θ by taking θ = {2, 4, 8, 16}. This sampling helps to find an exact value of θ that

can monitor the most recent traffic trends. If we take it too small, it will not exploit the

utility of adaptivity, or if we take it very large, it will increase the hardware cost while

benefits are the same as with the lower value of θ. With experiments, we observe that

threshold value θ = 8 is sufficient to give the latest or the most recent observations about

the traffic behavior of the network. For example, we can observe in Fig 6.10 – Fig 6.12,

the energy saving and improvement in throughput (in Fig 6.13 – Fig 6.14) is the same as

for θ = {8, 16}.

Network assigned to S ′ depends on the runtime utilization of NoC1 evaluated through a

threshold θ. For the implementation of adaptivity, a certain threshold value needs to be

check when specific NoC network can be declared as underutilised/overutilised. If the

condition θ is True (False), S ′ is forwarded through NoC1 else NoC2. The utilization (U)

of NoC1 is measured via a counter i locally evaluated against the threshold θ at a router. If

(i < θ && i ≥ 0) =⇒ UNoC1 , ∀ i ∈ {0, 1, · · · , θ − 1}, θ ∈ N. if the condition 0 ≤ i < θ is

true, it shows the underutilization of NoC1.

Initially counter i = 0, if the condition 0 ≤ i < θ is true and flag m2 or m3 is enabled,

then the messages are sent on NoC1. The counter i is incremented by one if the message is

forwarded through NoC1 else it is decremented by one if any message is sent through NoC2

as shown in Fig 6.7 and explained in steps 10-17 of Algorithm 1. It shows adaptive message

distribution at runtime for dual NoC networks, and it employs feedback correction mechanism

by incrementing/decrementing the counter as per channel utilization of NoC1.

The adaptive mechanism continuously monitors NoC networks for improving underutilisation

of the networks. This runtime adaptation of traffic makes network better with the more balanced

workload on each channel.
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Figure 6.8: Runtime adaptive message distribution mechanism, the flit (red box) at the router selects the
NoC network (a) when flag m0 or m1 is enabled, the NoC1 is selected (b) when all flags are disabled, the

NoC2 is selected.

6.3.2 A Walkthrough Example

We have demonstrated working of adaptive message distribution in Fig 6.8 and Fig 6.9 with a

walkthrough example using different test cases of message classes. The red box at the router

shows the flit that selects the NoC networks as per the decision of adaptive message distribution

hardware unit. This hardware unit is embedded with the routing unit, and a decision of NoC

selection is taken as per message class of the flit just after the route computation. Once the

network is selected, the flit traverses in the destined direction as computed through routing

logic. The routing can handle only the volume of data traffic, but the proposed adaptive method

can handle both quality, volume, and utilization of NoC networks with runtime traffic.
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Figure 6.9: Runtime adaptive message distribution mechanism, the flit (red box) at the router selects
the NoC network (a) when flag m2 or m3 is enabled while i < θ, the NoC1 is selected because of its
underutilisation and (b) when flag m2 or m3 is enabled while i ≥ θ, the NoC2 is selected as message

counter exceeds θ.

The signal lines (each 1-bit) along with links from NI to the router carry information (flag

bits) to identify the message classes (S 0 and S ′). Signal lines are enabled on the arrival of

the messages as defined in expressions (4)-(6). If the message type belongs to the class S 0, the

message will redirect on NoC1 as shown in Fig 6.8(a) which is decided by the adaptive message

distribution hardware unit; if all flags/signals are disabled, it belongs to S 1 then redirect it on

NoC2 as shown in Fig 6.8(b). If the class is S ′ and i < θ, then the message is forwarded on

NoC1 else on NoC2 as demonstrated in respective Fig 6.9(a) and Fig 6.9(b).

6.4 Experimental Evaluation

The full system simulation configuration parameters26 with Gem5 are listed in Table 6.2.
26For detailed parameter configuration, refer Table 3.1 to Table 3.3 of Chapter 3 (Page 58). Table 3.1 contains the details

of the processor and benchmark parameters. Table 3.2 lists cache and memory details such as cache hierarchy levels, cache
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Table 6.2: Configuration of Simulation Parameters

Parameters Configurationa

Simulator Gem5 integrated with GARNET for NoC
interconnect

Cores 64 cores
Topology 8 × 8 Mesh
NoC Networks Single-NoC/2-Network-NoC
Routing Dimension Order XY
Traffic Distribution Runtime Adaptiveb

Caches Three levels of cache hierarchy (two are
private and last level is shared)

Cache Coherence Directory-based MESI protocol
Main Memory ddr3 1600 x64
Benchmark PARSEC (medium workload, 16 threads)

aThe hardware implementation cost is measured through synthesis using Synopsis
Design Compiler.

bAdaptive distribution is compared with Static Traffic Distribution of Chapter 4.

The network traffic follows MESI cache coherence protocol which multicasts the coherence

messages across the on-chip cores. We run multithreaded PARSEC benchmark in full system

simulation of Gem5. The benchmarks are classified into three clusters as per the characteristics

of the traffic as follows:

1) Communication-intensive workloads of PARSEC are blackscholes, swaptions, canneal,

fluidanimate, x264, and rtview. These benchmarks generate a comparatively high volume

of shared data. So communication traffic is high in NoC.

2) Offchip memory-intensive workloads are observed in vips, facesim, and ferret. These

benchmarks generate a comparatively high volume of Writeback Data.

3) Computation-intensive workloads find in bodytrack, dedup, and freqmine. Such remain-

ing benchmarks of PARSEC suite generate less number of on-chip traffic. So they are

considered as computation-intensive applications.

Thus, we have compared proposed adaptive approach using different types of workloads.

size, associativity, and cache coherence protocol. Table 3.3 contains single- and dual-NoC parameters such as topology, its
layout/size, number of routers, router pipeline, flow control, etc. The total hardware resources are kept the same between
single- and dual-NoC for a fair comparison of both networks.
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The PARSEC benchmarks with 16 threads and medium workloads require simulation time

varying from 2-5 days with 64-bit Ubuntu 14.10, on HP ProLiant BL460c G7–Xeon

E5649@2.53–2.93GHz blade server, having 6 Cores, 1TB Disk, and 16 GB memory for a

single run of PARSEC application(s) with medium workloads27. Machine with 16 GB RAM is,

sometimes, insufficient for large dataset, and time taken is more than a week for a single run of

any benchmark. For the sake of experimental feasibility28, we have selected medium workloads

for all benchmarks.

6.4.1 Experiment Results and Discussions

In this section, we shall compare energy, throughput, and link utilisation of proposed adaptive

approach with static traffic distribution and single-NoC. Fig 6.10 – Fig 6.12 demonstrate the rel-

ative energy consumption viz-a-viz single NoC. In these graphs, the static message distribution

on NoC1 and NoC2 is compared with the runtime adaptive message distribution with different

samples of threshold value θ = {2, 4, 8, 16} (Case I – IV). The additional energy consumption

overhead of the adaptive distribution circuit is considered in results for the case I, case II, case

III and case IV, however, the overall gains in energy with proposed approach make the overhead

negligible.

The rightmost histogram of graphs indicates geometric mean29 for all cases (static distribution,

runtime adaptive distribution with different θ values) computed over all applications of the

benchmark suite. The different graphs of static, dynamic, and total energy include the energy

of the following NoC components.

• Static energy graph shows the total static energy consumption for the link, router, and

clock energy of the network.

• Dynamic energy graph exhibits the links and router’s dynamic energy.

• Total energy manifests static and dynamic energy for all the links and routers of 8 × 8

mesh network.
27Input dataset as in terminology of PARSEC.
28We were able to run all 41 combinations, as explained in Section 6.1.
29The geometric mean is only correct mean when averaging normalized results. The ranking/efficiency remains to preserve

in comparison by the geometric mean, stays the same as the one obtained with unnormalized values [153].
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The architecture of 2-network-NoC is more static energy efficient as compared to single NoC

due to half of the core link-width. Since every router is connected to a core, this energy saving

is appreciable as supported by experimental results. Likewise, crossbar energy of each router

is proportional to (flit-width)3 [61]. The flit-width is used in the proportion of link-width in

2-network-NoC that improves the saving in crossbar energy consumptions. Hence, the savings

in router energy consumption contributed to an overall gain in energy consumption.

Figure 6.10: Static energy consumption for PARSEC benchmark suite. Each application compares
runtime adaptive message distribution for the case I, case II, case III, and case IV on θ = 2, 4, 8, 16
respectively with static message distribution (Chapter 4) and single-NoC [46] (The energy consumption

of single-NoC scales to 100%, it depicts in graph with red dashed line).

The static energy consumption is saved up to 43%, as shown in Fig 6.10, and the dynamic

energy consumption is saved up to 23%, as shown in Fig 6.11 as compared to single-NoC. The

benefits in static energy come through the crossbar as data transmission bit rate (R) and the

maximum number of data flow (N) across the switching fabric is different for 2-network-NoC

as compared to single-NoC. The total power consumption of N × N crossbar is proportional to

R3 × N [66]. The value of R and N for single-NoC30 (2-network-NoC) is 16 (8) and 8 (12).

Thus, power consumption for single NoC router crossbar is 32768 nW31, and 2-network-NoC

crossbar is 5144 nW. This is a significant gain in 2-network-NoC because of reducing the value

of R and N as compared to single-NoC.
30Refer to Table 3.3
31nW-nanowatt
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Figure 6.11: Dynamic energy consumption for PARSEC benchmark suite. The rightmost histogram
compares the geometric mean for all the cases.

Figure 6.12: Saving in total energy (ξ) consumption for communication-intensive benchmarks.

On average, best results are obtained for adaptive traffic distribution with threshold θ = 8.

For this value of θ, we observe a maximum reduction in static energy up to 8% as shown in

Fig 6.10 and dynamic energy consumption up to 5% as shown in Fig 6.11 as compared to static

distribution.

The dynamic energy reduces because of the adaptivity in the selection of a network

{NoC1, NoC2} that reduces waiting time of control messages in buffers. The total energy, as
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shown in Fig 6.12, comprises the total of static and dynamic energy of all the links and router

components of the network. For accurate analysis, we are more focused on communication-

intensive applications of PARSEC as it comprises communication-intensive, memory-intensive,

and computation-intensive workloads.

Figure 6.13: Percentage-wise improvement in throughput (τ) for communication-intensive benchmarks
across static (Chapter 4) and runtime adaptive cases.

Communication-intensive applications show 14% improvement in mean total energy that is

more than the memory-intensive (10%) and the computation-intensive (4%) application’s ben-

efits. The proposed adaptive approach reduces the communication latency of the channel

by supporting the communication of coherence traffic. Therefore, we get more benefits in

communication-intensive applications as compared to other PARSEC applications.

With the proposed adaptive scheme, throughput (τ) improves 36% as shown in Fig 6.13 for the

communication-intensive and improves 23% (in Fig 6.14) for the memory-intensive applica-

tions of PARSEC as opposed to static approach wherein 10% decrease is observed32.

Except for the swaption, communication intensive benchmarks have no delay overhead33. The

maximum variance of 5× is observed for swaption benchmark (refer Fig 6.15). This shows

that the proposed traffic distribution or threshold θ34 value is not suitable for the swaption
32We are not considering the throughput improvement for computation-intensive workloads as they have a minor gain for

the same.
33The flit size of single-NoC is 16 B whereas the flit size for 2-network-NoC is 8 B.
34case-III (θ = 8)
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Figure 6.14: Percentage-wise improvement in throughput (τ) for memory-intensive benchmarks across
static (Chapter 4) and runtime adaptive cases.

Figure 6.15: Percentage improvement in the execution time of 2-network-NoC, which is normalized
with respect to single-NoC.

benchmark. While for the computation-intensive benchmarks, the execution time of 2-network-

NoC does not exceed the time of single-NoC.

In memory-intensive benchmarks, the execution time for facesim and ferret have some over-

head with static distribution over single-NoC. The proposed adaptive approach is effective for
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communication intensive benchmarks. We get 8% average gain in execution time over single-

NoC. While static distribution has the 3% delay over single-NoC.

Figure 6.16: Percentage improvement in the link utilization of 2-network-NoC with respect to single-
NoC and static traffic distribution.

The link utilization also increases by 16% and 21% over static message distribution and single-

NoC, respectively, with proposed adaptive approach, as shown in Fig 6.16. It shows the percent-

age improvement on the average of all the link utilization values. A link is known as utilized

if it sends a flit during a particular clock cycle. The average link utilization value indicates the

efficiency of NoC to utilize hardware resources and thus links of NoC networks. Hence, the

improvement in link utilization shows more utilization of physical channels and remains less

idle as compared to single-NoC architectures. Although the benefits are different for individual

PARSEC benchmarks, as each application has different runtime traffic patterns, so it causes the

variation in results.

We have also done synthesis of adaptive message distribution hardware unit and static traffic

distribution in Verilog using Synopsys Design Compiler35 to compare their hardware overheads.

The area and power overhead for adaptive distribution are 81.1 × 10−12 m2 and 78.89 × 10−6 w

respectively. The power consumption of our proposed approach is 13% less as compared to
35At 90nm technology library
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static distribution due to gain in dynamic power though area overhead is 4% more as compared

to static traffic distribution. But, it can be considered almost negligible.

Thus, the offered flexibility of 2-network-NoC can exploit traffic characteristics to efficiently

distribute workload between the networks. The proposed adaptive scheme is flexible, scalable,

efficiently handle real-time variations in traffic dynamics.

6.5 Inferences

Static traffic distribution for multiple NoC network is suitable for only application-specific pro-

cessors. For general purpose processors, static traffic distribution is unsuitable. This limitation

is substantiated by the case study of static traffic distribution on the PARSEC benchmark. Since

static traffic is configured once at design time without taking into account the traffic dynamics.

One NoC network is underutilised while another network is suffering from over-utilisation by

traffic.

We propose the integration of an adaptive message distribution hardware unit to the router to

alleviate the deficiencies of static traffic distribution. The router can adapt itself for traffic distri-

bution between NoC networks with workload variations at different execution instances of the

underlying application(s). Adaptive hardware unit offers the ability to create customised work-

load flows at runtime between multiple NoC networks. The workload variations are dynamic,

and there is a continuous variation while the application is running on the processor because of

the fine-grained traffic variations. These messages are generated during the transition between

cache states.

We monitor the runtime dynamics of the traffic through adaptive hardware unit to adapt fine-

grain message distribution between multiple networks of multi-NoCs. The adaptivity policy is

devised through analysis of the volume and quality of fine-grain control messages using cache

states transitions. The adaptive message distribution hardware unit enables efficient utiliza-

tion of multiple NoC networks for high throughput execution of network resources. It quickly

detects underutilised NoC at run-time, and it switches the mid-level critical messages to un-

derutilised NoC. The most critical and noncritical are dedicated to individual NoC networks.

The three levels of criticality are devised through analysis of fine-grain messages. The allowed
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window size of checking for underutilised/overutilised is done through offline sampling. Thus,

adaptive router quickly responds to variations under dynamic workload and resource variations.

Our proposed adaptive traffic distribution attains energy saving up to 36% and 14% as com-

pared to the single-NoC and static traffic distribution respectively for communication-intensive

PARSEC benchmarks suite, and the link utilization improves 16% and 21% over static message

distribution and single NoC. The proposed adaptive technique can further optimize for different

power-performance or energy tradeoff as it considers unknown dynamic workload scenarios,

diverse application requirements, and characteristics.

Thus, software level solutions proposed in this chapter complements the hardware level custom

implementations proposed in Chapter 4 and 5. The next chapter summarizes our contributions

proposed throughout the thesis.





Chapter 7

Conclusions

In this last chapter of the thesis, we review the primary findings. We present a consistent overall

picture of our novel contributions. We also detail here a few remaining open problems and some

interesting future research ideas for continuation of this thesis work.

7.1 Thesis Contributions and Outcomes

The objectives of modern general purpose processors are

1) achieving good power-performance tradeoff and energy efficiency

2) efficient distribution of traffic through NoC while considering the variety of workloads.

Our novel thesis contributions include the following.

1) Proposed custom-made NoC architectures to improve static power efficiency. Increase

in static power with increased miniaturization of IC components is more as compared to

dynamic power.

2) Efficient traffic distribution even when workload is a mix of computation, communica-

tion, and memory-bound applications. Another problem of CMPs as the workload varia-

tions are not taken into consideration by conventional static traffic distribution methods.

The older workloads, based on multiprogramming, used for performance evaluation were

167
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largely computation intensive. Recent multithreaded workloads on shared cache architec-

tures may be communication intensive owing to memory-bound traffic that needs to be

catered by NoC.

Therefore, recent research is more focused on improvement of power and energy metrics by

custom hardware implementations and efficient traffic distribution through NoCs. These objec-

tives are achieved using multiple NoC architectures. Various research prototypes and commer-

cial implementations motivate us to work on multiple-NoC and customise these architectures

at hardware and software levels in different ways to achieve aforementioned design objectives.

The most of the multi-NoC work has targeted application specific processor, we, however,

address power-performance efficient multiple NoC for the general purpose processors. In brief,

the outcomes of this thesis work are

1) a novel custom-made 2-network-NoC architecture for improved static power efficiency

(Chapter 4).

2) placement of network demultiplexer on non-critical path along router for improving static

power efficiency (Chapter 5).

3) an adaptive message distribution technique for fair distribution of traffic (Chapter 6).

In Chapter 4, we customize dual-network-NoC for static power efficiency without affecting the

flexibility of dual networks. These NoC architectures have parallel dual NoCs which originate

from NI. In proposed customisation, NI links remain single and now parallel NoC networks

start from the router. We named our proposed architecture as custom-made 2-network-NoC

architecture.

The single/common NI links carry the traffic of both NoC networks. Backpressure mechanism

ensures that nearly-full buffers trigger a signal to reduce injection rate at the source core. Thus,

single NI links shall not affect traffic injection rate, and duplication of NoC links speed up

communications through the availability of two parallel NoC networks.

This significantly reduces hardware cost (area) and improves static power and energy because

of half number of the core links that reduces the number of I/O ports of the router, the number

of VNs and VCs, routing logic and control logic overhead, size of the crossbar, etc.
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In addition to these changes, we need to place a network selector hardware unit somewhere on

router. We propose its placement at the routing unit within the router. For synthesized proposed

NoC

• The results show 62% and 58% improvement in static power, and 30% and 25% area

efficiency of proposed 2-network-NoC over conventional dual-network-NoC and single-

NoC respectively at 32nm technology.

• Experiment on PARSEC benchmarks finds 45% efficiency in total router power at

(65nm, 1GHz). The power efficiency approaches 58% as technology shrink to 32nm at

1GHz frequency. In contrast, the power efficiency limits to 40% as frequency increases

to 2.5GHz at 65nm technology.

• A minor performance overhead incurred as throughput decreases (5%) and latency in-

creases (4%) since the bandwidth of core links is half of the single-NoC.

Our objective of low power router design with dual NoC networks is successfully achieved.

In Chapter 5, placement of network selection hardware unit is explored for static power and

energy efficiency with proposed 2-network-NoC router design. We have proposed placement

of Net-Demux at the switch allocator of the router for 2-network-NoC rather than routing unit.

As the input and output of network demultiplexer are driven by different modules of the circuit,

placement changes the switching of the circuit through variation in the average number of

signal transitions per cycle. We have compared switch allocator placement with routing unit

and traditional network interface placements and have obtained the following results.

• Through synthesis, we determine that the switch allocator placement is 21% and 41%

static power efficient over network interface placement of dual-Network-NoC and single-

NoC respectively. This is 29% improvement over routing unit placement.

• Experiments show that switch allocator, routing unit, and network interface placements

are 46%, 40% and 30% energy efficient over single-NoC on PARSEC benchmarks.

• We also observe switch allocator and routing unit are approximately 33% and 26% more

energy efficient over the network interface.
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• We achieve 6% improvement in execution time with switch allocator over single-NoC

whereas routing unit and switch allocator placements are 6% and 14% faster over the

network interface.

Thus, our proposed switch allocator and routing unit placement significantly improve the en-

ergy efficiency of proposed NoC.

In Chapter 6, we propose adaptive traffic distribution to consider runtime dynamics of mes-

sages. For general purpose processor, static message distribution offers limited benefits to

accommodate the worst-case traffic requirements, or inevitably lead to a degradation in final

power-performance and energy efficiency. Static message distribution may cause underutili-

sation of one NoC network during different runtime instances while another NoC network is

overutilised due to an imbalance in traffic loads assigned to two networks. This makes traffic

traversal slower and degrades the performance while underutilised network resources are not in

use. Our proposed case study on static traffic distribution using PARSEC benchmark shows up

to ≈ 5× variation in power and energy.

To alleviate these deficiencies, we have proposed runtime adaptive traffic distribution. Adaptiv-

ity allows messages to change the NoC networks as per their utilization status. The hardware

area and power overhead of proposed microarchitecture are measured by implementing in Ver-

ilog and synthesized at 90 nm technology.

• Compared to the static method, adaptive hardware has a minor area overhead of 4%

whereas it is 13% power efficient.

• Adaptive method offers energy saving up to 36% and 14% compared to the single-NoC

and static distribution of traffic on multiple NoCs, respectively.

• The link utilization improves 16% and 21% over static message distribution and single-

NoC.

Thus, our proposed adaptive traffic distribution overcomes the limitations of static traffic dis-

tribution. It reshuffles the traffic distribution on both the networks to improve the runtime

underutilisation/overutilisation of the network.

Our thesis contributions are scalable with large network size, static power, energy, and area

efficient hardware and software level implementation of 2-network-NoC. Our contribution at
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software level traffic customisations exploits criticality of fine-grain messages of cache memory

hierarchy for distributing NoC traffic communication.

7.2 Future Directions

Some interesting open problems that are related to the work in this thesis are as follows.

7.2.1 Routing Customisations

The 2-network-NoC architectures can be explored for different routing algorithms. Different

routings on separate NoC networks distribute the workload across the network. These may

reduce traffic hotspots and improve network performance. The proposed architecture can also

be extended for increasing the number of NoC networks and compare its power performance

trade-offs with other multi-NoC networks.

7.2.2 Crossbar and 2-/dual-network-NoC Customisations

As the crossbar of the router primarily consumes power and covers a large area, a variety of

crossbar integration such as thin versus wide links of multiple crossbars for energy efficiency

can be explored for different multi-NoC architectures. Different placements of Net-Demux

with a different number of the crossbar and multiple NoC networks may be explored. These

changes in the router architecture affect the area, power and path delay of NoC. Therefore, these

customised architectures have different power-performance trade-offs.

It will be interesting to explore the impact of placement on critical path delay of the router

designed with different pipelined architectures. Significant research has been done on reduc-

ing router pipeline stages through bypassing and speculation techniques for improving network

throughput. As bypassing or speculation failure results in a longer critical path delay, explo-

ration of placement with reduced pipelined router architecture is suitable only for low traffic

workloads.
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7.2.3 Traffic distribution with approximate load balancing

Other than architectural improvements, analysis of traffic distribution methods plays a vital

role in improving multi-NoC efficiency. The proposed case study on static traffic distribution,

in Chapter 6, can also be extended for broadcast cache coherence protocols.

Approximate load balancing algorithms can be used for further improvement in runtime under-

utilization of network links as in Chapter 6. These algorithms can be used to further explore

the runtime variations in mid-level critical messages by allowing runtime changes in message

priorities and the threshold value. Though the careful design is required for approximate al-

gorithms to maintain power-performance trade-off.

7.2.4 3D planar 2-Network-NoC

The advantage of using 3D is the decreased hop count due to smaller network size in each

layer. Though, these architectures scale inefficiently because of the area and power overhead

with a higher number of ports of the router. This increases the complexity of microarchitecture

components, i.e., crossbar, buffer space, routing logic and arbitration logics (in both virtual

channel allocation (VA) and switch allocation (SA)) [20]. Though, our proposed 2-network-

NoC can be extended in 3D planar to combine the benefits of plane extension with multiple

NoC to achieve area, power, and energy efficiency over conventional 3D planar single-NoC.

7.2.5 Asynchronous 2-Network-NoC

The proposed 2-network-NoC can be extended for asynchronous multiple NoCs architec-

tures that partitioned networks into multiple independent frequency domains. Each domain is

clocked synchronously, while inter-domain communication is achieved through specific circuit

design techniques.
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Chip Multi-Processor Architecture

Chip Multi-Processor (CMP) are designed as arrays of identical building blocks known as tiles.

Each tile comprises a processing core, caches, network interface, and router. The routers of all

tiles are connected through a mesh NoC interconnect. The tiled architecture of CMPs supports

families of products with varying number of tiles by including the option of connecting multiple

separately tested dies within a single package. Therefore, they become the choice for modern

many-core CMPs. In our thesis, we have considered a tiled CMP with three levels of cache

Figure A.1: Tiled architecture of chip multi-processor with three level of cache hierarchy and one di-
rectory along with core and router. The presented tiled architecture of CMP is extended from two level

cache hierarchy architecture proposed in [143].

hierarchy as shown in Fig A.1. The L0 and L1 cache is private to its local processing core.

In contrast, the third one (L2 cache) is logically shared but physically distributed among the

processing cores. Therefore, each cache block maps to a particular L2 cache bank, which is

called the home tile for that block. The home bank of each block is obtained from its address

bits. The bits chosen for the mapping to a particular bank are the less significant ones without

considering the block offset [144–146].
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Directory-Based MESI Protocol

Each tile includes an on-chip directory cache that stores the sharing and owner information for

the blocks that it manages. This cache is used for the blocks that do not hold a copy in the

shared cache. Besides the tags’ part of the shared cache also includes a field for storing the

sharing information of those blocks that have a valid entry in that cache. The directory-based

protocol1 keeps track of the sharer through a full-map (or bit-vector) that allows the protocol

to send invalidation messages just to the caches currently sharing the block. On every cache

miss, the core that causes the miss sends the request only to the local home tile, which is the

serialization point for all requests issued for the same block.

Once the home tile decides to process the request, it accesses the directory, and it performs

the appropriate coherence actions. These coherence actions include forwarding the request to

the owner tile and invalidating all copies of the block in case of write misses. When a tile

receives a forwarding request, it provides the data to the requester if it is already available or,

in another case, the request must wait until the data is available. Since the home tile sends this

information that knows the number of invalidation messages issued to the requester along with

the forwarding and data messages. When the requester receives all acknowledgments and the

data block, data can be accessed.

Fig B.1 shows an example of how Directory-CMP solves a cache-to-cache transfer miss. The

request (1.GetX) is sent to the home tile, where the directory information is stored. Then,

the home tile forwards (2.Fwd) the request to the provider of the block, which is obtained

from the directory information. The provider sends the unblock message (3.Unbl) to the home
1Example of directory protocol implementation is Piranha. This is a research prototype developed by Compaq [152].
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Figure B.1: Directory Protocol (a) cache to cache transfer miss required minimum three hops to resolve
a request (b) tasks performed in cache coherence protocols by local home tile (c) the cache line state of

local home cache varies the states between M, E, S, and I.

tile to allow subsequent requests to be processed, and it also sends the data (3.Data) to the

requester. When the data block arrives at the requester, the miss is considered solved. As we

can see, although this protocol introduces three hops in the critical path of the miss to solve

cache misses, few coherence messages are required to solve them which eventually translates

into savings in network traffic and less power consumption2.

The following tasks are performed in directory coherence protocols by local home tile, as illus-

trated in Fig B.1 (b).

1) Order requests: Cache coherence maintenance requires to serialize the requests issued by

different cores to the same block. Directory protocols assign this task to the home tile of

each memory block.
2This characteristic allows the directory protocol to scale up to a higher number of cores.
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2) Keep coherence information: Coherence information is used to track blocks stored in

private caches. Directory protocols store coherence information at the home tile, where

cache coherence is maintained.

3) Provide the data block: If the valid copy of the block resides on chip, data is always

provided by the owner tile, since it always holds a valid copy. The owner of a block is

either a tile holding the block in the exclusive or the modified state, the last core that

wrote the block when there are multiple sharers or the shared cache bank within the home

tile in case of an eviction of the owner block from private cache.

4) Provide off-chip storage: When the valid copy of a requested block is not stored on a

chip, off-chip access is required to obtain the block. The local home tile is responsible for

detecting that the owner copy of the block is not stored on chip. It is also responsible for

sending the off-chip request and receiving the data block.

We have used the MESI protocol to maintain cache coherence [84]. The selected cores share

the same copy of data in multicast communication, and these cores communicate with each

other through NoC. Each home tile cache states vary between M (Modified), E (Exclusive), S

(Shared), and I (Invalidation). The protocol is named after the four states a cache line can be in

when using the MESI protocol.

1) Modified (M): The local core has modified the cache line. This also implies it is the only

copy in any cache.

2) Exclusive (E): The cache line is not modified but known not to be loaded into any other

cache.

3) Shared (S): The cache line is not modified and might exist in another core’s cache.

4) Invalid (I): The cache line is invalid, i.e., stale copy of data.

The cache line does transition between these four stable states by triggering fine-grained mes-

sages to communicate with local/other caches and memory. These messages maintain the data

consistency as well as cache coherence among all the shared caches and off-chip memory.

The fine-grained3 messages perform the specific job of respective mid-level message class as
3Here, we have not discussed fine-grained messages because of nonrelevance with the scope of this section.
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highlighted with their matching color in Fig B.2. This figure is the L0 cache state graph that

demonstrates all cache state transitions and respective messages (control and data types).

Figure B.2: State space diagram of L0 cache for MESI 3–level cache coherence protocol.

Each mid-level message class of MESI is associated with specific functionality as follows.

1) Control (CC) messages are associated with invalidation and upgrade events.

2) Request Control (RQC ) messages are generated at shared caches for data block replace-

ment.

3) Response Control (RPC ) are acknowledgements initiated on receiving response data.

4) Writeback Control (WC) informs private caches about the modified copy of data.

5) Response Data (RPD) carry data messages between on-chip caches and off-chip memory

to cache.

6) Writeback Data (WD) traverse from cache to off-chip memory.

Initially, all cache lines are empty and hence also Invalid. If data is loaded for writing, the cache

state changes to Modified. If the data is loaded for reading from another core, the new cache
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state is Shared, otherwise Exclusive. If a Modified cache line is read from or written to on the

local core, the instruction can use the current cache content, and the state does not change. If

another core wants to read from the cache line, the first core has to send the content of its cache

to another core and then it can change the state to Shared. The data sent to another core is also

received and processed by the memory controller, which stores the content in memory.

If another core wants to write to the cache line of the first core. It sends the cache line content

and marks the cache line locally as Invalid. Performing this operation in the last level cache,

just like the I→M transition is comparatively expensive. Since this transition happens between

multiple shared caches located on a different core; basically, this is one-to-many (many-to-one)

transition occurs for multicast MESI protocol.

If a cache line is in the Shared state and the local core reads from it, no state change is necessary,

and the read request can be fulfilled from the cache. If the cache line is locally written to the

cache line can be used as well but the state changes to Modified. It also requires that all other

possible copies of the cache line in other cores are marked as Invalid. If the cache line is

requested for reading by another core, nothing has to happen. The main memory contains the

current data, and the local state is already Shared. In case, another core wants to write to the

cache line that will be marked as Invalid.

The Exclusive state is mostly identical to the Shared state except a local write operation does not

have to be announced on the NoC. The local cache copy is known to be the only one. This can

be a huge advantage so the core will try to keep as many cache lines as possible in the Exclusive

state instead of the Shared state. The latter is the fallback in case the information is not available

at that moment. The Exclusive state can also be left out completely without causing functional

problems. It is only the performance that will suffer since the E→M transition is much faster

than the S→M transition.

From this description of the state transitions, it should be clear where the costs specific to

manycore operations are. Yes, filling caches is still expensive but now we also have to look out

for M→I transition. Whenever such a message has to be sent, things are going to be slow.





Appendix C

Network-on-Chip: Preliminaries

This section introduces Network-on-Chip, and discusses its basics in sufficient detail for un-

derstanding the thesis. Necessary background on metrics of NoC design validation is also

presented that will be used by thesis chapters to assess our contributions.

C.1 Evolution of Networks-on-Chip

Traditional buses interconnect cores through a single communication channel. Few examples of

the bus interconnect architectures are ARM, AMBA [9], IBM CoreConnect, and Tensilica PIF

Interface [76]. The simplicity of buses makes them resource efficient, but scalability is limited

to a modest number of cores. Per core capacity of bus interconnect is defined as C = 2BB
N = 2bBC

N ,

where BB is bisection bandwidth, N is the number of cores, b is channel bandwidth, and BC is

bisection channel bandwidth. An AMD Athlon1 processor is exemplified in Fig C.1 wherein

two cores are connected through the bus interconnect having bandwidth 8GB
s as illustrated in

Fig C.2. Further increase in the number of cores reduces per core capacity of delivered band-

width. The bus reaches its practical limit after a certain extent. Bandwidth is saturated and

finally network traffic jams on exceeding delivered bandwidth (BD) over the offered bandwidth

(BO), BD ≥ BO, as shown in Fig C.3.

Crossbar implementation of IBM Cyclops64 emerges as an alternative interconnect architec-

ture. It connects 80 custom processors and about 160 memory banks. A 4 × 4 crossbar is

exemplified in Fig C.4, and its floorplan in Fig C.5 wherein each core is connected with rest of
1http://www.overclock.net/products/athlon-64x2-6400-black-edition
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Figure C.1: AMD Athlon1 X2 6400+ dual–
core processor(90nm technology, 8GB/s on
chip bandwidth, 20.8 GB/s offchip bandwidth,

3.2GHz clock frequency)

Figure C.2: 1 Dimensional (D) bus connects
two cores1

Figure C.3: Relation between Network Bandwidth vs Latency3

the cores. Floorplan of 128 × 128 crossbar at 90nm technology is proposed by Passas2 et al.,

it provides 24/s bandwidth at the expense of 150mm2 area. The complexity of area = O(N2W),

delay = O(N
√

W), and power = O(N2) make it unsuitable due to the non-linear relation between

the number of ports, latency and wire costs [3] for the increasing number of cores. Where N is

the radix of a node, and W is the width.

Network on Chip (NoC) emerges as a promising interconnect solution for manycore proces-

sors over the last decade. NoC is a subset of a broader class of interconnection networks

that facilitate the transporting of data between cores. It consists of routers, links and network

interfaces that are arranged in some specific pattern. Scalability, modularity and structured na-

ture of wires are the main advantages of NoC interconnect in comparison to traditional means

of communication. MIT’s RAW was the first chip with four on-chip mesh networks [68].

STNoC is the product of ST Microelectronics [14]. It is targeted to replace the widely-used

STBus in MultiProcessor Systems-on-Chip (MPSoCs) using ring topology for interconnec-

tions. Subsequently, Tilera’s TILE64 and TILE64Pro architectures [12, 13] are optimized for

intelligent networking, multimedia and cloud applications, and delivers remarkable computing
2G. Passas, M. Katevenis, D. Pnevmatikatos, “Crossbar NoCs Are Scalable Beyond 100 Nodes,” Computer–Aided Design

of Integrated Circuits and Systems, IEEE Transactions on , vol.31, no.4, pp.573-585, April 2012.
3www.ece.eng.wayne.edu/ czxu/ece7660 f05/network.pdf
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Figure C.4: A 4 × 4 crossbar interconnect

Figure C.5: Floorplan of 4 × 4 crossbar2. Cen-
tralized crossbar interconnect tiles (Ps denote

processors and Ms memories.)

and Input/Output (I/O) with complete System-on-a-Chip (SoC) features. For better scalability,

Tilera GX series SoCs have adopted tiled architecture. Each tile comprises a processor en-

gine, cache engine, and switch engine that is capable of running an operating system. These

components are connected in parallel and conform the four mesh networks.

Intel TeraFLOPS [15, 16] is targeted for exploring future processor designs with high core

counts. It is a 65nm, 275 mm2 chip with 80 tiles running at a targeted frequency of 5GHz

connected through 10 × 8 mesh. Each tile has a Processing Engine (PE) connected to an on-

chip network router. Intel’s Single Chip Cloud (SCC) computer are connected through a 4 × 6

mesh NoC that features 48 cores of the x86 architecture.

C.2 Network-on-Chip (NoC) Basics

The design of NoC encompasses various basic building blocks, i.e., topology, routing, flow

control, and router architecture. In the next few subsections, we briefly explain these basic

building blocks.

C.2.1 Topology

Topology specifies the placement and connections between routers and wires. It affects the

routing, latency, throughput, and hence execution time of the network. A 2-D mesh is a single

core non-uniform edge symmetric direct network. It is non-uniform since every router does not

have the same number of ports. Corner routers have two ports, peripheral routers have three
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ports, and remaining routers have four ports to connect with rest of the network. Mesh is a

direct network since each tile behaves as a router as well as Intellectual Property (IP) core. It

is edge symmetric because there exists an auto-morphism that maps any channel a (let’s say)

into another channel b (let’s say). A typically 4 × 4 mesh, as shown in Fig 2.6 is arranged in

a two-dimensional grid layout. It becomes popular because of its simplicity and regularity. IP

core is a hardware block (processor, memory, controller, etc.) that is instantiated in a design

by purchasing from third parties. The router routes the packet in a network that is connected

through channels. These channels carry parallel signals between routers and cores. A number

of traversed routers between the source-destination pair are considered as the hop count of a

network whereas the maximum distance between any two routers is considered as diameter.

A set of channels that divides the network into two halves are known as bisection bandwidth.

And, the maximum number of links removal which disconnects the router/core is known as the

connectivity of the network. These different topology terminologies are discussed in Table C.1

using an example of 4 × 4 mesh, as shown in Fig 2.6.

FIGURE 2.6: 2-D Mesh topology

N/W Parameters n × n 4 × 4
# IP cores (m)? m2 16
# of NI m2 16
# of routers (n) n2 16
IP core–router m2 16
Router–2 Links 2n(n − 1) 24
Total Links 2n(n − 1) + m2 40
Switch ports 2, 3, 4 2, 3, 4
Path Diversity† D!

Hx!×Hy! 20‡

Diameter (D) 2(n − 1) 6
Bi. Bandwidth n 4
Connectivity 2, 3, 4 2, 3, 4

Table C.1: Parameters of Mesh4

In the early 1960s, machines like Solomon, Illiac, and MPP, were based on simple 2–D mesh or

torus networks because of their physical regularity [73]. In the late 1970s, hypercube [24] net-

works became popular because of their low diameter. It is adopted by Ametek, Cosmic Cube,

the nCUBE computers [25], and Intel iPSC series machines. In the mid-1980s, due to realistic

packaging constraints, low-dimensional networks outperformed compared to hypercubes. So

most of the machines returned to 2-D or 3-D mesh or torus networks. The examples of these
4? Here n = m, † Hx– # hops in X dimension, Hy– # hops in Y dimension, ‡ Path diversity is 20 when Source(0)–

Destination(15)
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machines are J-machine, Cray T3D and T3E, Intel DELTA, and Alpha 21364. Mesh is still a

popular topology due to its simplicity.

C.2.2 Routing

The routing unit of the router computes the route between a source and the destination node

using a routing algorithm. A route is a path that a message will take through the network to

reach its destination. These routes are decided by the routing algorithm which computes the

available feasible paths through the network topology. Routing algorithm finds the sequence

of routers traversed by a flit between source and destination. Flow controL unIT (FLIT) is

the smallest unit of a packet. The selection of a routing algorithm is based on the objective of

power-performance metric that wishes to achieve. A good routing algorithm evenly distributes

the traffic across all the routers to maximize the saturation throughput of the network. Power

can be optimized by keeping the routing circuit simple and work in less hop count. Routing

algorithms can broadly be classified as deterministic, oblivious, and adaptive methods. Dimen-

sion order XY routing is an example of deterministic routing. Its simplicity makes it popular

wherein all flits follow the same path from a particular source to a destination. In our proposed

Figure C.6: XY routing turn restrictions

work, we have used XY dimension-ordered routing for the mesh topology. Flit always traverses

the X direction either in the West (left) or East (right) first and then turns towards Y either in

the North (top) or South (bottom). Other oblivious and adaptive routings allow flit traversal for

different routes between source and destination. These routing methods have different priority

metrics like adaptive schemes monitor network congestion while oblivious schemes prioritize

link utilization or randomness. All routing schemes conform to turn model [17], which disal-

lows certain turns to avoid cyclic resource dependency to avoid deadlocks. Fig C.6 shows the

turn models for three deadlock-free routing algorithms viz. XY dimension-ordered, West-First

and South-Last with the disallowed highlighted turns.
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C.2.3 Flow Control

Flow control determines the allocation of network resources to messages during traversal of

flits through the network. The buffers and channel bandwidth allocation is the responsibility

of a flow control mechanism, which regulates resource utilization through ensuring efficient

sharing of resources during flit traversal. The buffer space requirements of the flow control

scheme directly affect performance and hardware implementation cost in terms of area and

power consumption of each router [18]. We have used Virtual Channel (VC) flow control

which allocates flits to channel and buffers rather than packets. The primary advantage of VC

flow control is its degree of freedom in buffer allocation from one router to another router as

illustrated in Fig C.7. At a given time, the different flits of the same packet may be queued

on different routers. When a flit of packet B is blocked at router-3, the VC1 of router-3 is

allocated to flit of packet A if it gets the chance to proceed first. It moves from VC0 of router-2

whereas flit of packet B wait for either unblocking of VC0 of router-3 or availability of VC1

at router-3 with its turn to transfer flit. So VC flow control primarily relies on VCs for high-

Figure C.7: Virtual channel flow control

performance and deadlock-free communications [57]. Each VC is composed of multiple flit

buffers. It efficiently manages the flit buffers by allowing packets to pass blocked packets by

using idle virtual (logical) channel bandwidth.

VC based routing prevents the head-of-line blocking and enhances throughput using multiple

VCs for different flows at the router. A head flit allocates a VC and arbitrates for the output

physical channel bandwidth before it proceeds to the next router. The body and tail flits use the



Appendix C. Network-on-Chip: Preliminaries 185

same VC, but still, need to compete for the channel bandwidth with flits in other VCs. A VC is

freed once the tail flit leaves.

For buffer management, an upstream router sends flits to its downstream (neighboring) router

on receiving a credit signal that indicates the number of free buffers at its adjacent downstream

router. When a flit leaves the downstream router, it sends a credit bit back to the upstream router

which increments its credit count. For VC flow control, the credit count is maintained on each

downstream router for individual VCs, and each credit signal carries credit bit, VC id, and an

additional bit to indicate the availability of VC.

C.2.4 Router Architecture

A router has datapath and different control units which implement routing and flow control

functions. These control units operate datapath operations of flit that are buffered and for-

warded to their destinations. Whereas datapath form collectively with registers, switches, and

functional units. As earlier networks were not demanding high throughput, a very simple un-

pipelined router model was used. They had a limited buffering without virtual channels to lower

the area and power overhead. Modern routers expect low latency and high throughput networks

that cause complex router design. Modern router architecture consists of input buffers, virtual

channels, routing logic, allocators, and a crossbar, as shown in Fig C.8.

Figure C.8: Router architecture



Appendix C. Network-on-Chip: Preliminaries 186

As the routers are connected in a mesh topology, each single-NoC baseline router has four

input and output ports that connect the router with rest of the routers through network links.

The router connects to the core using other additional ports wherein core inject/eject traffic

to the router through core links. The router pipeline consists of the Buffer Write (BW), the

Route Computation (RC), the Virtual channel Allocation (VA), Switch Allocation (SA), Switch

Traversal (ST) and Link Traversal (LT) stage.

Flit arrival at the router is decoded and buffered to its specified input virtual channel in BW

stage. Route computation is performed in the second stage RC to determine suitable output port

through routing unit. Next VA stage arbitrates flits for a virtual channel as the previous stage

already determined the output port. Once a virtual channel has been successfully allocated, the

flit proceeds to the fourth SA stage. Here, the flit arbitrates for access to switch based on its

input-output port pair. Once the switch has been allocated to the flit, fifth stage ST proceed the

flit from the crossbar towards the router output. Finally, link traversal stage LT carries the flit

to the next router in its path on receiving credit signal from the downstream router.

As each packet splits into several flits, the head flit is responsible for route computation and

virtual channel allocation whereas body and tail flits reuse such computation and allocation.

C.3 Performance Assessment Metrics for NoC Design

General purpose desktop computing still covers the largest market. Desktop computing spans

from low-end systems to high-end, heavily-configured workstations. Fig C.3.1 shows the power

contribution of NoC in processor power that is rapidly increasing as compared to other on chip

components with each generation of processor.

Figure C.9: Comparison of NoC power between two different general purpose processors
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C.3.1 Power

The scaling down of silicon technology facilitates a phenomenal increase in the number of pro-

cessing cores (Moore’s Law). Scaling improves processor functionality, and performance, but

it results in high power dissipation. Each generation of processor significantly advances power

consumption. The first microprocessors consumed tenths of watts. A Pentium-4 operating on 2

GHz frequency is close to 100 watts. The fastest workstation in the year 2001 consumes power

between 100 and 150 watts. In the near future, it is expected that power consumption rather

than raw transistor count will become the major limitation since distributing power, removing

heat, and preventing hot spots are increasingly difficult challenges for designing energy-efficient

processors.

Reduction in inter-transistors physical distance and consequently, a thinner insulating layer

contributes to an increase in static power dissipation. Fig C.10 shows that the gap between

static and dynamic power continue increasing with shrinking nanometer technology. NoC con-

tributes significantly to the total chip power, in fact up to 40% in RAW [36, 37] architecture.

Figure C.10: Static and dynamic power (a) yearwise analysis and (b) variations with shrinking gate
length5

Excessive power dissipation increases packaging and cooling costs, and adversely affects hard-

ware reliability by elevating temperature [23] that contradict one of the objectives of NoC to

work under tight power budget. The power consumption of a Complementary Metal-Oxide

Semiconductor (CMOS) circuit is defined as

PCMOS = Pd + Ps

5http://www.mdpi.com/2079-9268/1/1/131/htm
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The dynamic power is Pd = Ce ×
2
DD × × δ. This is power consumed whenever the output of the

logic gate changes. VDD is the supply voltage, f is the operating frequency and δ is the average

number of output transitions. The term Ce is the total effective capacitance of the CMOS gate.

It is calculated as Ce = Cg + Cn + Ci Where Cg is the sum of all internal gate capacitances, Cn

is the capacitance of interconnecting wires between outputs of the transistors and input of the

next stage, and Ci is the input capacitance of all the gates connected to the output of this gate.

The dynamic power is consumed whenever capacitance Ce is charged.

Technology advancements have resulted in a large share of static power contributions in total

processor power. It is essential to reduce static power for sustaining continuous scaling of the

CMOS process. As gate length reduces with nanometer technology advancements, it results in

lower threshold voltage. This leads to a significant increase in sub-threshold leakage current,

and thinner gate oxides increase the gate tunneling leakage current. Static power is Ps = VDD×l

wherein the power consumed irrespective of output switching. Where Il = Ir + Is + Ig, Ir is the

reverse current induced due to the PN junction characteristic of transistors, Is is the current due

to carrier diffusion between the source and drain regions of a transistor, and Ig represents the

current flowing from gate oxide to substrate and vice versa [11].

C.3.2 Execution Time

The duration between the start time and the completion of an event is referred to as execution

time. One realistic measure of performance is the execution time of applications. As perfor-

mance and execution time are reciprocals, increasing performance decreases execution time.

We usually say ‘improve performance’ or ‘improve execution time’ when we mean increase

performance and decrease execution time. Whether we are interested in throughput or response

time, the key measurement is time. The computer that performs the same amount of work in

the least time is the fastest.

C.3.3 Energy

Energy efficiency is one of the primary design challenges for processors. It is significantly

dependent on the power and execution time of the network

Energy = Power × Time
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A better match between the workload and the execution hardware can improve overall energy

efficiency. The required energy for a transistor is proportional to the product of the transistor

load capacitance, switching frequency, and the square of the voltage. Variation in the num-

ber of transistors changes switching frequency from one process to the next that varies load

capacitance and voltage.

C.3.4 Area

Computation of the router area includes the input unit, output unit, buffers, and crossbar of the

router. We use SRAM-based First In First Out (FIFO) buffer whose area is the product of word

line and bit line lengths of the buffer.

A f i f o = Lword−line×bit−line

The word line is Lword−line = F × (wcell + 2 × (Pr + Pw)×w) where F, wcell, dw, Pr, and Pw are flit

size in bits, memory cell width, wire spacing, number of read ports and number of write ports,

respectively. Whereas bit line is Lbit−line = B × (hcell + (Pr + Pw)×w), where B is buffer size,

and hcell is memory cell height. To calculate the total area for a B entry buffer and flit size F,

the gate area model [72] is used to calculate hcell and wcell. Other router components, namely,

crossbar and arbiter firstly decompose into gate-level netlist to estimate the area of individual

circuit components, and finally, the area of the entire block is computed.

The area occupied by links is due to wires and repeaters. We use the gate area model to estimate

the area of repeaters. The area of global wiring is calculated as

Alink = F × (ww + sw) + sw

where Alink denotes the wire area, F is the flit size in bits, and ww and ss are the wire width and

spacing that are computed from the layer width and spacing of the global or intermediate wires

which are routed as per the design style.
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C.4 Conclusions

This section introduces the evolution of networks-on-chip with a brief discussion on commer-

cial NoC architectures. The basic building blocks of network-on-chip such as topology, routing,

flow control, and router architecture are discussed on which we have implemented our proposed

work in thesis chapters. The metrics for NoC design validation is discussed.
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Static Message Distribution
Table D.1: Each row except the first row indicates static message distribution out of 41 combinations.

The static message distribution is Not Applicable (NA) for the single-NoC (first row).

Control Messages Data Messages
Control Request Response Writeback Response Writeback

(CCC) (R CR CR C) (Resp CResp CResp C) (WB CWB CWB C) (Resp DResp DResp D) (WB DWB DWB D)
1 NA NA NA NA NA NA
2 X X - - - -
3 X - X - - -
4 X - - X - -
5 X - - - X -
6 X - - - - X
7 - X X - - -
8 - X - X - -
9 - X - - X -
10 - X - - - X
11 - - X X - -
12 - - X - X -
13 - - X - - X
14 - - - X X -
15 - - - X - X
16 - - - - X X
17 X X X - - -
18 X X - X - -
19 X X - - X -
20 X X - - - X
21 X - X X - -
22 X - - X X -
23 X - - - X X
24 - X X X - -
25 - X - X X -
26 - X - - X X
27 X - X - X -
28 X - X - - X
29 X - - X - X
30 - X X - X -
31 - X X - - X
32 - X - X - X
33 - - X X X -
34 - - X X - X
35 - - X - X X
36 - - - X X X
37 X - - - - -
38 - X - - - -
39 - - X - - -
40 - - - X - -
41 - - - - X -
42 - - - - - X
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Message Variation with Workloads

Table E.1: Message variations with Low (L)(canneal s, blackscholes s) and High (H) (canneal h,
blackscholes h) workloads of the benchmarks.

Messages Canneal sCanneal sCanneal s Blackscholes sBlackscholes sBlackscholes s Blackscholes hBlackscholes hBlackscholes h Canneal hCanneal hCanneal h
C L1 GETS 536918 536152 601004 1444118
C L1 GETX 107984 103271 189577 882106
Resp C DATA FROML1 162879 161770 197290 355408
Resp C DATA ALL Ack 725183 716826 1838556 3066199
Resp C Inv 473280 471737 857885 1991832
RESP C WB ACK 46 45 58 97
RESP C ACK ALL 157340 156224 191081 302102
C Data 23187 22815 34707 54842
L1 PUTX 3857879 3837198 16223126 45244117
L1 putx old 3857879 3837198 16223126 45244117
L1 upgrade 14 14 16 23
WB C L1 Replace 40724 40505 108464 639728
R C L1 GETX 99253 98483 122733 152930
R C L1 Upgrade 134134 133386 156343 226973
R C MEM Inv 432 423 369 482
R D FWD GETS 162879 161770 197290 355408
R D FWD GETX 76026 75625 87978 98024
R D MEM INV 34255 33877 34405 34180
R D ACK ALL 325 357 366 29904
R D WB DATA 122 118 167 6868
R D WB DATA CLEAN 76 76 49 905
R D L1 GETS 564360 560745 1595708 2140911
R D L1 GETX 4803771 4778689 26549376 53334665
WB Data L1 REPLACE 3817155 3796693 16114662 44604389
WB DATA INV 198 194 216 8989
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Message Variation with Threads

Table F.1: Message variations for freqmine and rtview benchmarks when the number of threads vary
from 8 to 64.

Messages Freqmine 8Freqmine 8Freqmine 8 Rtview 8Rtview 8Rtview 8 Freqmine 64Freqmine 64Freqmine 64 Rtview 64Rtview 64Rtview 64
C L1 GETS 554056 594833 540571 576411
C L1 GETX 379508 332473 1489189 312866
Resp C DATA FROML1 359587 177881 1840240 938632
Resp C DATA ALL Ack 944880 2296450 3891718 3251208
Resp C Inv 494486 434899 15014795 22223803
RESP C WB ACK 34 40 531 109
RESP C ACK ALL 352161 172316 1823720 930912
C Data 17979 22828 911697 197910
L1 PUTX 4476803 21280149 19261894 21140479
L1 putx old 4476803 21280149 19261894 21140479
L1 upgrade 10 11 56 37
WB C L1 Replace 45037 285594 134901 659793
R C L1 GETX 132328 95181 1648757 480453
R C L1 Upgrade 333551 148933 912013 733002
R C MEM Inv 596 501 267 234
R D FWD GETS 359587 177881 1840240 938632
R D FWD GETX 114334 72337 731345 282057
R D MEM INV 4341 9019 23301 26780
R D ACK ALL 1525 1200 427 162
R D WB DATA 174 292 152 15
R D WB DATA CLEAN 24 55 4 57
R D L1 GETS 469017 1914468 2582881 2854195
R D L1 GETX 4819685 21443288 35615929 48885380
WB Data L1 REPLACE 4431766 20994555 19126993 20480686
WB DATA INV 209 359 156 72
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PUTE ’14). ACM, New York, NY, USA, Article 18, 6 pages.

13) S. Yadav et al. “Tool Chain for Performance Analysis of Chip-Multiprocessor (CMP),” in

29th National Convention of Computer Engineers and National Seminar on ETICE-2015,

Organized by IET and SKIT Jaipur, India. February 7-8, 2015.

Posters

1) Poster presented on “Traffic Distribution in Multi-NoCs,” in International Workshop on

Network on Chip supported by INDO-UK project HiPER NIRGAM, December 10-12,

2015, MNIT Jaipur, India.
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2) Participating Creating Effective Poster from Project/Paper/Research, Sponsored by

TEQIP-II, SVNIT Surat, Gujrat, April 16-18, 2015.

3) One Day Workshop on Network on Chip, March 29, 2015, IIIT Delhi, India.

Achievements

1) DAC 2019 (Secured 3rd position out of 18 selected papers)

2) iSES 2018 (Best Paper Award)

3) DATE 2019 PhD-Forum (Travel Grant)

Research Outcome

We develop a multiple-NoC based full system simulation tool using conventional Gem5 and

GARNET1 simulator for industry and academic research on multiple NoC. It supports up to

four multiple mesh NoC (for more networks it can be extended). It is integrated with PARSEC

benchmark to run in full system simulation.
1A detailed cycle-accurate network-on-chip model inside Gem5 full-system simulator





Glossary

Network Interface It is located between core and router. Core messages enter into NI, and

then into the router through NI links. Messages are the logical unit of communication

that may be arbitrarily long. NI divides these messages into packets which are further

segmented into FLITs (FLow control unITs). 9

Virtual Networks These networks logically separate message classes to avoid deadlock in

coherence protocols. 68

Buffers A buffer holds the flit and also used to save its state needed to coordinate the handling

of the flits of a packet over a channel. 68

Multi-Network-NoC All links including NoC as well as NI links are replicated. 11

Multi-Planar-NoC Complete NoC including routers and links are replicated and can be

viewed as a stack of NoCs, each NoC in a different plane of the stack. 11

Multi-Router-NoC Only routers are replicated, they are connected through single links in the

network. 12

Multi-Switch-NoC Only switching hardware within router (for example, crossbar switch) is

replicated. 12

Virtual Channels Virtual channels allow the upstream router to use a second free lane (a VC

with buffer space available) when a first packet is blocked in downstream router [20]. 74
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