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ABSTRACT

The use of clean energy in the transportation industry has gained substantial attention in

the last two decades with the increase in fuel price and harmful gases emitted by burning

fossil fuels in conventional vehicles. Electrical Vehicles (EVs) emit no greenhouse gas, and

hence they are a potential alternative to internal combustion engine (ICEs) automobiles.

However, the automobile industry had been limited to EVs with short range because of

less battery capacity, long charging time, and lack of charging infrastructure. Nowadays,

the advent of Li-ion batteries has reinforced the automobile sector to develop long-range

BEVs.

These batteries have superior performance concerning specific energy, energy density, cycle

lifespan, low self-discharge, and are environment-friendly. However, these batteries can be

dangerous if they are not operated within their safety operation window. Therefore, an

effective battery management system is indispensable for ensuring the safety of passengers.

In this thesis, a battery management system has been developed for EVs to ensure reliable,

efficient and consistent operation of batteries under different environmental and driving

conditions. Firstly, for the development of battery management system a high fidelity bat-

tery model dependent on different operating conditions is developed. Then battery model

parameters are identified using manufacturer data sheet without conducting expensive and

time-consuming experiments. Secondly, this research work focuses on the estimation of

internal states of batteries such as the State of Charge, State of Health and Remaining

Useful Life. Determination of internal states of batteries helps in maintaining battery

operation in safe operating window.

Automobile industry presently designs and produces single large pack EVs which offers an

extended range on the cost of a heavyweight vehicle with a high price. The researchers

have suggested EV having two different size batteries. The overall weight of the vehicle is

decreased for short-range travel by using smaller size fixed battery. The larger size battery

is swappable and is used for longer distances. As it is seldom used, it has longer lifetime

and its cost is distributed over the lifetime of the vehicle. In this research work, a power

management system is developed to effectively utilize power from both the batteries to

supply energy demanded by drivetrain of EVs.
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v) Gaussian measurement noise with mean zero and covariance
∑

v.

vp Velocity ofpth solution
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w Interia weight factor

wk ∼ N (w̄,
∑

w) Gaussian process noise with mean zero and covariance
∑

w.

x System state vector with mean x̄ and covariance
∑

x.

xp Population set

yk System measurement vector at time k.

A Coefficient vector for GWO

Afront Vehicle frontal area

C Coefficient factor for GWO

CR Crossover constant in DE

C1 Electrochemical diffusion capacitance

Cdl Double layer capacitance

Cdrag Aerodynamic drag coefficient

Cprob Crossover probability

Cr Current rate for charge process

Csei Surface film layer electrodes capacitance

Cv Control variable in GWO

D Number of parameters coefficient

Dr Current rate for discharge process

DOD Depth of discharge

Fad Aerodynamic drag force

Fhe Hill climbing force

Fla Linear acceleration force

Frr Rolling resistance force

Fte Tractive force on the vehicle

Fwa Rotational acceleration force

G Gear ratio of the transmission system

J Propulsion motor rotor inertia

IBL Battery load current with a positive value at discharging (IBL,d)

and a negative value at charging (IBL,c)

IRC Current through the RC network.

KG Kalman gain
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Mev EV mass

M Mutation factor for DE

Ms Mean solution in TLBO

Mprob Mutation probability for GA

Neff Effective sample size

Nth Threshold value for resampling

Nx Number of system states

Nu Number of input to system

Nv Number of process noise

Nw Number of measurement noise

NP Number of particles

P Number of population

Ps Number of optimal solution for GA

Pm Motor power

Pte Traction power

Pdem Power demanded by the drivetrain of the EV

Pj The power to be supplied by each of the battery j= SB, FB

Pmax Maximum power of the battery

Pmin Minimum power of the battery

Q(0) Initial charge stored in the capacitor.

Qpkc Battery capacity degradation representation by polynomial model

Qnom Nominal capacity of the battery

Qmax Maximum available capacity

Qmaxunused Maximum avaiable capacity of unused battery

Qpkc Battery capacity degradation representation by polynomial model

Qrated Rated capacity of the battery

R0 Battery internal ohmic resistance

R1 Electrochemical diffusion resistance

Rct Charge transfer resistance

Rbk Battery bulk resistance

Rsei Surface film layer electrode resistance
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SOCMk Measured SOC from Coulomb Counting method

SOCMk Estimated SOC

SOCFB SOC value for FB

SOCSB SOC value for SB

T0 The instantaneous temperature of the battery

Tr The reference temperature of the battery i.e. 25 ◦ C.

TF Teaching factor in TLBO

Voc Battery open-circuit voltage

Voc(SOC) Battery open-circuit voltage dependent of SOC

VM
Bt Battery terminal voltage value measured from the battery model

V C
Bt Catalog battery terminal voltage value provided by the manufacture

VDC DC link voltage

V REF
DC Reference value of DC link voltage

VRC Voltage across the RC network

ZW Warburg impedance





Chapter 1

Introduction

1.1 Motivation for the Present Work

The present world energy economy is at serious risk with the substantial depletion of fossil

fuels, rapid increase in the energy prices, effect on the environment with the emission

of Green House Gases (GHG) and the dependency on politically unstable fuel producing

countries [1]. Therefore, investments in the development of the exploitation of clean energy

resources are increasing worldwide. As per the report of the International Energy Agency

(IEA), approximately 14% of total energy-related CO2 emission (the primary cause of the

greenhouse effect) occurs from automobile industry [2]. The urgency for clean energy has

raised concern among government, automobile manufacturers and researchers. To promote

electrification of transportation, Electric Vehicles (EVs) are a potential alternative to the

internal combustion engine (ICEs) automobiles. In 2013, Indian government released

National Electric Mobility Mission Plan (NEMMP) 2020, to set guidelines for deploying

EVs in the country. According to the NEMMP, India aims to deploy 400,000 passenger

EVs by 2020 [3]. Effectively accomplishing this target can abstain India from bringing in

120 million barrels of oil and prevent 4 million tons of CO2 outflows by 2020 [4]. Moreover,

EVs will be a boon to plan a modern transport foundation in India for meeting the needs

of the nation’s tremendous and diversified population.

EVs, as the name suggest, are propelled by electric motor powered by electrical energy

source such as rechargeable batteries. Historically, the first EV came in the automobile

market in the mid-19th century. However, EVs witnessed declining popularity in the

automobile market during the first half of the 20th century due to technical limitations of

battery, lack of proper charging infrastructure and transistor-based electric technology [5].

1
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In the last decade, with the advancement of technology and policy support, EVs have

gained renewed attention in the automobile market. Table 1.1 shows the number of EVs

in 14 different countries in 2015 and targets committed to be achieved by 2020 [6]. The

number of EVs on the road in 2015 was extremely low (0.1%) compared with existing

passengers vehicle around the world [6]. Even achieving the committed target would lead

to EVs share increased to 3% only by 2020.

Table 1.1: EVs in 2015 and targets committed to achieve by 2020

Countries EVs in 2015 EVs target by 2020 EV share by 2020
(thousand) (million) in the market

Austria 5.3 0.2 4%

China 312.3 4.6 3%

Denmark 8.1 0.2 9%

France 54.3 2.0 6%

Germany 49.2 1.0 2%

India 6.0 0.3 1%

Ireland 2.0 0.1 3%

Japan 126.4 1.0 2%

Netherlands 87.5 0.3 4%

Portugal 2.0 0.2 5%

South Korea 4.3 0.2 1%

Spain 6.0 0.2 1%

United Kingdom 49.7 1.6 5%

United States 101.0 1.2 2%

Total 814.1 12.9 3%

The technological readiness of energy storage system, i.e., batteries, was the crucial prob-

lem in mass production and penetration of EVs in the automobile market [7]. Thus, to

realize an EVs paradigm shift, it is necessary to investigate the improvement and devel-

opment of the battery technologies. The popular battery technologies used in EVs till

dates are lead-acid, nickel-cadmium, nickel metal hydride, and Lithium-ion (Li-ion) bat-

tery [8]. Li-ion battery technology is considered superior to all other battery technologies

because of their high operating voltage levels, high energy and power density, wide range

of operating temperature, long service life, least self-discharge rate, and absence of the

memory effect [9]. Hence, over the last few years, automobile industries have driven the

development of EVs with Li-ion battery. However, the Li-ion battery cost and lifetime is

the primary concern and challenge in the fast-evolving and promising uptake of EVs in

the automobile markets. Top concerns for the potential battery-powered EV customers

are safety and reliability of the battery [10]. Improper operations such as over-voltage,

over-current and overcharging/over-discharging will cause the battery to combust due to
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volatility, flammability, and entropy change. These changes will cause noticeable accelera-

tion in the aging of battery and significant safety issues which can lead to fire or explosion

in EVs [11]. Hence for practical implementation in EVs, the battery must not only demon-

strate favorable performance and reliable characteristics, but they must also be accurately

monitored in situ to facilitate maintenance and operational decisions. An effective battery

management system is crucial for the safe, reliable, efficient and consistent operation of

the battery under different environmental and driving conditions.

Battery management system is a monitoring and control framework that maintains the

operation of the battery in the specified constraints, as well as performs the appropriate

safety steps in case of hazardous situations [12]. It utilizes a suitable battery model to

describe the dynamic behavior of the battery under different operating conditions. This

battery model also helps in the investigation of battery performance, lifetime and driving

range of the vehicle. Consequently, the derived model for battery management system

should be sufficiently simple but still capable of capturing the critical characteristics of

the battery. Moreover, if any abnormal situation such as over-voltage, over-current, and

overcharging/over-discharging are detected during the operation of EVs, battery manage-

ment system should notify to execute preset correction procedure [13]. For these safety

issues, battery management system requires accurate determination of various internal

states of the battery (such as State-of-Charge (SOC) and State-of-Health (SOH)) and its

Remaining Useful Life (RUL). Accurate estimation of internal states is also utilized as

the key decision factor for power distribution and energy management system of the EVs.

Development of effective battery management system requires a suitable battery model

and accurate estimation of internal battery states. This leads to the growing interest of

researchers to develop advanced battery management system with accurate battery model

and precise online estimation of internal battery states for the application in EVs.

Nowadays, automobile industries design and produce EVs with a single large-size battery

pack which offer extended range and high performance. However, these EVs are still in

the luxury segment with cost (> 40kUS $) out of which price of the battery represents

a significant share. In [14], the authors suggested the concept of dual-battery powered

EVs having two different size batteries. Small size battery pack was fixed, and big size

battery pack can be swapped according to the requirement. For short range, fixed small

size battery has been used which will reduce the mass of the EV and improve the energy

consumption per unit distance. For more extended range, both small and large size battery

packs are utilized simultaneously to power the drivetrain in the EV. The authors have also

analyzed the performance of the proposed dual-battery powered EV concept in comparison
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with single larger pack EVs and proved that there is a significant improvement in energy

consumption (up to 17 %), and economic benefits are achievable by distributing the cost

of the large battery pack over the lifetime of the vehicle. Benefits of using dual-battery

powered EVs will encourage further studies in the field of power management strategies

between different size batteries and development for battery swapping centers for the

further popularization of EVs in the automobile market.

1.2 Literature review

Design of battery management system for estimation of internal states of battery and

power management for the dual-battery powered EVs underpin the aims of this research

work. A summary of recent work has been provided through a comparative analysis of the

different estimation techniques for internal states identification and power management

methods used. This section begins with a description of the various battery technologies

used for EVs and their characteristics. The affect of operating voltage, and temperature

variation on the performance of the battery have been analyzed for determining the re-

quirements of an effective battery management system. To understand the significance of

the battery management system in detail, a dedicated section on its functioning has been

included. The next section provides a thorough review of the recently developed battery

models for reflecting the behavior of the battery under different operating conditions and

briefly explains their advantages and shortcoming. Battery models have parameters that

have to be identified either using experimental tests or with varying techniques of iden-

tification. Various techniques for evaluation of the battery model parameters reported

in the literature have been discussed. A discussion on different estimation methods used

to determine the internal states of battery has been included and the emphasis has been

given to model-based estimation methodologies that are deployed for the estimation of

internal states. A comprehensive review in the domain of power management of EVs has

been presented, and finally, the research objectives to be achieved in this thesis based on

research issues identified in the literature are presented.

1.2.1 Lithium Ion Battery

During initial years of development of EVs, their penetration in the automobile market had

been bottlenecked by their inefficient energy storage system. Popular types of batteries

used for energy storage in EVs include lead-acid, nickel-cadmium, nickel-metal hydride and
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Li-ion battery [15]. Indispensably required critical parameters for a comparison of different

battery technology are the power density, the energy density, service life, energy efficiency,

self-discharge, cost, and safety level [16]. Table 1.2 illustrates critical parameters and their

values for these popular battery types. It can be observed that each battery technology

dramatically differs from one to another [17,18].

Table 1.2: Main characteristics of popular battery types used in EVs

Battery Lead-Acid
Nickel
Cadmium

Nickel Metal
Hydride

Lithium-ion

Nominal Voltage [V] 2.1 1.25 1.25 3.6

Power Density [W/Kg] 180 150 1000 1800

Energy Density [Wh/kg] 30-50 50-80 60-120 100-270

Self-discharge/month [% ] 3 20 30 10

Charging Temperature [◦C] -35 to 40 0 to 45 0 to 45 0 to 45

Discharging Temperature [◦C] -20 to 60 -20 to 60 -40 to 60 -20 to 60

Service life [cycle] <350 1500 300-600 500-3000

Typical Battery cost [$] 25 50 60 100

Energy Efficiency [%] 75-85 60-80 65 85-97

Maintenance [months] 3 to 6 1 to 2 2 to 3 not req.

The lead-acid battery is a popular and well-developed battery technology. The main ad-

vantages of the lead-acid battery are low self-discharge rate, high energy efficiency, and

economical pricing [19]. They are more economical for large power applications where

weight is of less concern, such as backup power system and engine starting [7]. Nonethe-

less, they are not preferred for EVs because of some obvious technical drawbacks, including

low energy density, less service life, heavyweight and risk of toxic chemical leakage. The

lead used as the active material is toxic to both human bodies and environment [20]. The

requirement of a lighter, smaller and long cycle-life battery has grown significantly in the

automobile industry which demands development in the battery technology. To achieve

these requirements automobile industry moved towards the usage of the nickel-cadmium

battery. The nickel-cadmium is one of most rugged battery type which provides a large

number of charge/discharge cycle in economic pricing and can be charged with a higher

rate in a shorter time. These batteries are even small and light in weight [15]. But the

requirement of periodic maintenance prevents the large-scale application of this battery.

Moreover, they have a relatively low energy density, high self-discharge and memory effects

that reduces the usable capacity of the battery during its lifespan. The active material

”cadmium” is expensive and toxic which make them environmentally unfriendly. Hence,

the battery manufacturers of EVs diverted from nickel-cadmium to newer technologies [17].

In the 1990s, nickel-metal hydride battery was designed to substitute the nickel-cadmium

battery. Nickel-metal hydride battery has good power/energy density, and is less prone to
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memory effect compared to its counterpart nickel-cadmium. This battery type is consid-

ered environmental-friendly because it uses a hydrogen absorbing alloy as cathode instead

of cadmium. Because of these advantages they have been used in Hybrid EVs such as

Toyota Prius, and Chevrolet Malibu, as well as in Plug-in EVs such as General Motors’

EV1, Ford’s Ranger EV, and Honda’s EV Plus. These batteries are small in size, but

they require an improvement in their energy density and cell voltage. They also suffer

from several technical drawbacks such a limited service life, higher self-discharge rate,

high cost, and low energy efficiency [7]. Moreover, it generates a massive amount of heat

during fast charging leading to considerable battery capacity degradation. Li-ion battery

is significantly better than preceding battery types, especially in terms of high voltage,

high energy/power, higher energy efficiency, more service life, and low self-discharge [21].

Moreover, they require low maintenance and are composed of environmental-friendly met-

als. Therefore, next generation EVs are adopting Li-ion battery as the most promising

energy source.

The significant development in material science motivates the researchers to seek advanced

Li-ion battery technologies. Specifications of the battery are dramatically influenced by

the material used for the composition of the electrodes. Li-ion battery contains a positive

electrode composed of either lithium metal oxides such as cobalt (LCO) and manganese

(LMO) or compounds such as nickel manganese cobalt (NMC) or nickel cobalt aluminum

(NCA) and iron phosphate (LFP). Carbon and lithium titanate (LTO) are used as the

negative electrode. Summarized battery specifications for different types of Li-ion battery

have been provided in Table 1.3. From the table, it is concluded that each kind of Li-ion

battery has its advantages and disadvantages [22]. For the selection of the battery type for

particular applications demands trade-off between the properties of the battery types and

preference of the manufacturer. LCO is often found in hand-held electronic equipments

such as cell phones and laptop due to its higher specific energy (110 − 190 Wh/Kg) and

low discharge rate. LCO battery types are not preferred in the EVs because of less specific

power, low thermal stability, and less service life. Fast charging (applying high C-rate)

causes overheating inside the battery. Also, Cobalt metal is scarce and expensive. NCA

and NMA also have approximately same specific energy as LCO, but they have higher

capacity and high power, thus they can be used for longer driving range. But in these

batteries, the exothermic reaction will take place at the higher temperature which leads

to the thermal runaway. The use of cobalt and nickel in these battery types leads to an

increase in the cost of the battery. Hence, high cost and marginal safety prevent uses

of these batteries in the EVs. LMO and LFP are more beneficial and better choice for

the application of EVs as they are free from nickel and cobalt. High thermal stability
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and enhanced safety are the main benefits of these batteries. LMO batteries suffer from

drawbacks such as low calendar life and less capacity. Whereas, LFP have the long service

life and low resistance which offers fast charging and maximum discharge rate ability [23].

Nowadays LTO batteries are developed to improve the durability and performance of the

battery during the fast charging process due to the wide working temperature range and

long cycle life. However, LTO in EVs remains limited because they have low energy

density and highly expensive [9]. By comparing different types of Li-ion batteries, it has

been concluded that LFP battery will provide superior performance compared to other

types of Li-ion battery in the application of EV because of its lowest cost, high power

capability, long lifespan and high thermal capability.

The performance of Li-ion battery is influenced by operating voltage and temperature.

The operating voltage and temperature should be carefully controlled because excessively

high or low voltage as well as temperature can damage the battery. Figure 1.1 defines the

operating region for Li-ion battery, and the green box indicates the safe operation window

[13]. Safe operation window defines the values of voltage and temperature for reliable

operation of the battery. The operation of the battery outside the safe operating window

can permanently damage the battery. Voltage related damages could be categories as high

voltage impact (overcharging) and low voltage impact (over-discharging) [8]. During the

charging process, if the terminal voltage exceeds the recommended upper voltage limit,

then excessive current flow results in overheating, increase in temperature and lithium

plating. Lithium plating is the deposition of metallic lithium around the positive electrode

of Li-ion battery. Lithium plating results in irreversible capacity loss and reduction in

free Li-ions [13]. Dendrite formation of plating leads to an internal short circuit which

will damage the battery. On the other hand, over-discharging results in the progressive

breakdown of the negative electrode material. Breakdown of carbon will increase the

self-discharge rate of the battery [24]. When the battery is recharged, then copper ions

precipitate as metallic copper which leads to an internal short circuit.

Damage due to variation in temperature can be categories as follow: effect of low-temperature

; effect of high temperature and thermal runway. According to Arrhenius law, battery op-

eration at the low-temperature results in the reduction in chemical reaction rate at which

the active chemical is transformed in the battery [25]. Reduction in chemical reaction

rate influences power handling capacity as well as it prevents the adoption of aggressive

regenerative braking strategy because it can cause lithium plating. At high-temperature,

due to Arrhenius effect high power is demanded from the battery because of increasing the

reaction rate. But excessive current results in higher I2R heat dissipation [25]. Excessive
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Figure 1.1: Li-ion battery operation window

current and high temperature initialize the overheating process which will break down the

Solid-Electrolyte Interphase (SEI) layer on the negative electrode. Positive temperature

feedback will raise the temperature rapidly unless heat is removed at the faster rate than

it is generated. As indicated in Figure 1.1, when the temperature 90 − 120◦C, the SEI

film will start the exothermic reaction [26]. When the temperature exceeds 120◦C, heat

dissipation causes breakdown of organic solvents which will release combustible gases but

no oxygen [27]. At 130◦C, the separator will start melting which leads to an internal

short circuit. When the temperature rises beyond 150◦C, the decomposition of positive

electrode material releases oxygen which causes burning of present combustible gases in

the battery. Breakdown of the positive electrode is an exothermic reaction which will

increases the temperature even higher. When the temperature is above 200◦C, battery

starts to catch fire due to exothermic electrolyte oxidation which results in a dangerous
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thermal runaway [28].

By analyzing the safe operation window of a Li-ion battery, it has been concluded that

exposure to overcharging, over-discharging, and temperature variation results in catas-

trophic hazards, dramatic degradation in battery service life, loss in battery capacity and

premature failure such as the thermal runaway. Notwithstanding significant progress in

battery composition and chemical kinetics, an effective battery management system is

still required to ensure proper estimation of internal states, maintain the battery relia-

bility and safety, cell balancing and controlled charging/discharging [29]. It is believed

that the battery management system can significantly improve the efficiency of EVs by

extending service life as well as by reducing the operational cost of the battery. Next

section will discuss the significance of the battery management system and its function

during the operation of EVs.

1.2.2 Battery Management System

For electrification of the automobile, battery refers to core component for energy supply

which requires real-time supervisory monitoring and control system for reliable and safe

operations [30]. Battery management system is an electronic device that monitors and

controls the operation of the battery in the specified constraints as well as perform the

appropriate safety steps in case of catastrophic hazardous situations [13]. The battery

management system is the brain of the EVs which takes information from the various

sensors within the battery as well as external sensors available in the automobile [31].

And then transmit this information to the controllers for issuing control commands as

well as decision factors for the power management system. The main function performed

by the battery management system is [18,32]:

• Data acquisition: To measure operation parameters such as battery voltage, current,

and temperature, etc.

• State estimation: Monitoring the amount of charge stored (SOC), health condition

(SOH) and power capability.

• Safety Protection: Protection of the battery from out-of-tolerance conditions such

as overcharging over-discharging, thermal stress and thermal runaway, i.e., Maintain

battery operation within their operational limits to prolong its service life.

• Cell balancing: Using passive and active balancing techniques
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• Control charge/discharge: Ability to control the charging/discharging conditions of

the battery.

Figure 1.2: A typical information flow within battery monitoring System

Developing an effective battery management system has always been a big concern for

all the battery drive automobile manufacturers. Battery management system is respon-

sible for accurately monitoring of parameters and internal states of the battery for safe

and reliable operation of EVs. Battery parameters term refers to the system characteris-

tics quantities including electric quantities (resistance, capacitance) and chemical quanti-

ties (diffusion coefficients, solid phase conductivity, etc.) while the states of the battery

are the variables related to system evolution (such as SOC, SOH, RUL, and available

power) [12]. Basically, states provide knowledge about system history of usage. Different

cells in the battery pack are likely to have different capacity due to manufacture varia-

tions, degradation, and natural aging, etc. These variations in the cell capacity result cell

unbalancing which leads to overcharging, over discharging and overheating in a particular

cell [33]. Therefore, accurate estimation of internal states is the vital function of a battery

management system for critical onboard controls to maintain cell balancing, control charg-

ing/discharging and safety measures. Hence, efficient battery management system enables

the enhancement in the reliability of the energy storage device as well as maximization of

the battery service life.

The battery is the complex electrochemical device with distinct nonlinear behavior which

significantly depends on the various internal and external conditions and almost all battery

characteristics change considerably over the battery service life due to the aging effect [32].
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Hence, during the operation of the battery, continuous determination of its dynamic be-

havior with the variation of internal states is considered a foremost and critical function of

the battery management system [12]. Typical information flow within the battery monitor-

ing system has been shown in Figure 1.2 [34]. The critical technologies including battery

modeling and state estimation are required for designing an effective battery monitoring

system [35]. Firstly, the monitoring system requires a data acquisition unit for observing

measurable quantities such as battery current, voltage, and temperature for designing a

battery model for the dynamic behavior of the battery [31]. These measurable qualities

can be detected using the onboard current sensor, the voltage sensor, and thermocouple

conveniently. All these measurable quantities are then used to identify battery model

parameters as well as to estimation the internal battery states in later stages [35]. Bat-

tery parameters and states are influenced by the variation of temperature, discharge rate,

and operating cycles [36]. Therefore, the management system has an embedded battery

model that takes into account the effect of different factors on the dynamics of the battery.

Battery models are essential for both designs as well as runtime operation. During the

designing stage, the battery model helps battery technology specialist to develop robust

and reliable battery system whereas, during the runtime phase, accurate battery models

helps in delivering information about internal battery states. Building the battery model

required accurate identification of its parameters which represent electrochemical mecha-

nism inside the battery. The different relevant internal battery states could be estimated

by using developed the battery model and their parameters values. These states values

are essential to provide information about present charging and discharging level to safety

protection circuit as well as for the development of an efficient power management system

for the EVs with different energy sources. If any of the parameters exceeds the safe oper-

ational window or hazardous situation arises protection devices will perform. The power

management system will control the power-sharing between different sources based on

power demanded by EVs. This research work focuses on the development of efficient bat-

tery management system as well as a power management system for dual battery-powered

EVs.

1.2.3 Battery Modeling

A high-fidelity battery model is a prerequisite for the development of efficient battery

management system, to reflect and predict the performance of battery under varying load

and environmental conditions. While operation of EVs, main purpose of the battery

model is to reliably simulate the behaviour of the battery behaviour and estimate the
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internal states using battery management system. The main aspects to be considered while

choosing the appropriate battery model is that it should be accurate and precisely reflect

the characteristics and dynamic behavior of battery under different operation conditions

[37]. Another aspect is that it should be computationally easy and efficient to implement

in battery management system for estimating internal states of the battery. Throughout

the years, the researchers have numerous kinds of battery models consisting of different

accuracy level and competition complexity for describing the behaviour of the battery

[38–40]. These models have been primarily categorized as the electrochemical model,

data-driven and equivalent circuit model. This section outlines the state-of-the-art of

battery modeling and explains the advantages and disadvantages of different types of

battery model.

1.2.3.1 Electrochemical models

Electrochemical models simulate the electrochemical mechanism of the battery dealing

with concentration, movement of active material and the chemical reaction which take

place inside the battery [41, 42]. These models are structured based models that describe

the internal electrochemical process and physical construction of the battery by time-

varying spatial partial differential equations [43]. These models could be established by

using the macroscopic quantities such as local distributions, battery voltage and current

with microscopic parameters for the battery such as concentration distribution, current,

voltage, and temperature [44]. Depending upon desired accuracy and aim of battery model

different approximation methods are applied for the simplification of equations and their

solutions. The widely used electrochemical models are the one-dimension (1D) model

[45, 46], the pseudo two-dimensional (P2D) model [47], the quasi-three-dimensional full

order physical model and the first principle model. The main advantages of these model are

that they describe the electrochemical process within the battery more accurately [48]. Set

of time-varying spatial partial differential equations used to describe the electrochemical

process inside the battery are complex and needed large computational power and memory

for solving them. Hence, for modeling purpose explicit recognition of the electrochemical

mechanism of the battery requires in-depth knowledge of the chemical process. These

models provide high analytical insight about the battery which might interest material

scientist or battery technology specialist [49]. However, for electrical engineering such

in-depth insight of battery mechanism is not necessary. Hence, these models has been

predominantly followed by battery manufacturers and researchers in the chemistry field.
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1.2.3.2 Data Driven Models

The battery has the complicated internal electrochemical process and uncertain external

conditions which make battery modeling as a challenging task for the developer of battery

management system. To avoid the need for complex and nonlinear battery modeling,

data-driven battery models are developed by researchers [50]. For nonlinear and complex

system these model develop transfer functions with the help input-output experimental

training data [51]. Parameters of these models do not have any physical significance. Data-

driven battery model with generalization ability and acceptance accuracy demand large

experimental data [52]. Battery characteristic depends on varies internal and external

factors, hence, experimental data should cover enough battery operating conditions [53].

Generations of such as large amount experimental data for training is very time consuming

and tedious procedure. This battery model requires high computational power for real-

time application. However, once the training phase is completed, these model incur a

much lower computational power can achieve comparable accuracy [54].

1.2.3.3 Equivalent circuit-based models

Equivalent circuit-based models conceptualize the electrochemical mechanism of the

battery utilize passive linear elements such as resistance and capacitance, active elements

as the voltage source and non-linear elements as the Warburg impedance and diode that

strive to approximate the electrochemical behavior of the battery. The battery model

structure depends on the desired accuracy, the aim of battery modeling and method used

to determine the battery parameters such as Electrochemical Impedance Spectroscopy

(EIS) or pulse current charge-discharge behavior. Key features of equivalent circuit based

battery models are that they can be more intuitive in circuit simulation, provide real-time

implementation, robust in nature with different operating conditions and enable modeling

of battery nonlinearities using various circuit parameters [55]. Simple model structure and

relatively small number of model parameters are key features are much reason for the wide

adoption of equivalent circuit models by system integrators and electrical engineers. These

model can be further classified into simple models, Thevenin-based models, impedance-

based models, runtime-based models, and combined electrical circuit-based models [56].

Simple battery models are composed of the ideal voltage source (open circuit voltage

(OCV)) Voc connected in series with the constant internal resistance R0 as shown in Figure

1.3. Simple battery model parameters are constant and do not depend on the SOC [57].

This model is not capable of describing the voltage profile for the charging and discharging
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process [58]. Hence, this model work appropriate when the dependency on SOC is not

essential energy released from the battery is supposed to be infinite [59]. In practical

conditions, internal resistance changes concerning the change in load. The advanced simple

Figure 1.3: Simple battery model

battery model is obtained by adding dependency of internal resistance on the SOC and

temperature [33,59–61]. These models represent the static behavior of the battery. Many

researchers have utilized this model for monitoring of battery, but this model did not

explain the capacitance effect for representing transient current conditions. Modeling of

the lead-acid battery used in various application such as uninterpretable power supply is

performed by using this battery model [62].

Impedance-based battery models is another equivalent circuit based model also known

as 2nd order Randles circuit as shown in Figure. 1.4 (a) [63]. Internal impedance calculated

using EIS measurements to achieve the AC response of the battery at certain frequency

span [64]. EIS is performed by implementing a small amplitude sinusoidal current or

voltage signal to the system for different frequencies. Hence, in these models, small-signal

excitation allows for direct measurement of system response at any point of the operation

[65]. Results are depicted on the chart named Nyquist diagram as shown in Figure 1.4

(b) in which the real axis represents the resistance, and the imaginary axis represents

reactance of the battery [63, 66]. Each point on the graph represents the impedance

response at a specific frequency. Impedance variation from high frequency to low frequency

is represented from the left side of the plot to right side. Parameters of the impedance-

based models have the substantial meaning related to the electrochemical process.

Here, bulk resistance is represented by Rb describes the electric conductivity of the separa-

tor, electrodes, and the electrolyte. Surface film layer electrode resistance is represented by

Rsei and surface film layer electrodes capacitance is represented by Csei corresponding to

high-frequency impedances. The charges transfer and capacitance between electrode and

electrolyte are represented by charge transfer resistance Rct and double layer capacitance
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(a)

(b)

Figure 1.4: (a) 2nd order Randles circuit (b) Impedance measurement using AC response

Cdl respectively. Rct and Cdl demonstrate the medium frequency response. Diffusion phe-

nomena between the active material and electrolyte corresponding to the low-frequency

response are designated by Warburg impedance ZW . In some case, positive reactance

response at high frequencies is explained by adding inductance in series. The identifica-

tion of parameters of the battery model is made by fitting impedance spectra which is

the complex, difficult and nonintuitive process. The reason for using this method is to

keep the system in the linear region, i.e., the linear battery model is developed. Moreover,

the battery model exhibit performs of battery at constant SOC and temperature hence

impedance battery model cannot predict the dc response and battery runtime.

Thevenin battery model is another commonly used model which was designed to ac-

count for the transient behavior of the battery [67]. Thevenin battery model is composed

of an ideal voltage source Voc, an internal series resistance R0 for the instantaneous volt-

age drop, the various number of parallel resistance-capacitance (RC) network as shown in

Figure 1.5. All the parameters of the Thevenin battery model are considered to be con-

stant which is significant drawbacks of this model as battery behaviors depend on internal

and external operating conditions. Thevenin battery model captures transient response

but unable to achieve the steady state voltage variation as well as runtime information.
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Researchers have gained improvement in the derived models by adding additional compo-

nents to predict either runtime or dc response, but not both. In the research literature,

different forms of Thevenin based equivalent circuit models depending on the number of

RC network and considering dependency of battery parameters on the internal states of

battery, adding the effect of hysteresis and impact of aging, have been developed by re-

searchers [56, 68]. Accuracy and computational effort of Thevenin battery model depend

upon the number of parallels connected RC networks. The higher number of RC networks

increase the efficiency of the battery model, but at the same time, computational power

requirement also increases. Hence, to represent the battery model trade-off must be made

between accuracy and complexity [69,70]. Identification of the battery model is performed

by using a pulse charge-discharge technique or parameter estimation techniques.

Figure 1.5: Thevenin battery model

Runtime-based battery model is an equivalent circuit based model for simulating the

battery dc response and runtime for a constant discharge current [71]. This battery model

consists of three different circuits. The leftmost circuit indicates the dependency of total

charge quantity on the battery discharge current rate. It consists of transient elements

Rtrans and Ctrans referring to charge storage resistance and capacitance respectively and

battery discharge rate using Vc−rate. The middle part of the circuit indicates the battery

behavior dependency on SOC and battery self-discharge rate. It consists of Cuse represent-

ing battery capacity, Rs,dis representing battery self-discharge due to the loss in energy

after long storage, VLost to representing the loss due to self-discharge. Battery SOC ini-

tialization can be represented by an initial value of VSOC . Battery SOC 100% corresponds

to VSOC as 1V for fully charged battery and 0% corresponds to VSOC as 0V for fully dis-

charged. Hence voltage across capacitor Cuse represents the battery SOC and IBL is used

to charge and discharge capacitor corresponding to the charging and discharging process

respectively. Finally, the right circuit indicates the property of the simple battery model.
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Figure 1.6: Runtime-based battery model

A brief comparison and relevant characteristics of the different battery models developed by

the researcher are summarized in Table 1.4 [68,72]. From the table, the conclusion can be

drawn that none of the above-defined equivalent circuit based battery models can predict

both V-I performance and runtime behavior of the battery. Hence a comprehensive battery

model combining Thevenin battery models transient capabilities, impedance-based battery

models ac features and prediction of runtime information using runtime-based models is

desired for system integration, design, and optimization.

Table 1.4: Comparison of various equivalent circuit based models

Model Type DC AC Transient Effects Runtime

Thevenin No Limited Yes No
Impedance-Based No Yes Limited No
Runtime-based Yes No Limited Yes

Combined equivalent circuit-based model is proposed by Chen and Rincon-Mora

[72], which combines Thevenin, impedance-based model and runtime-based battery mod-

els. A schematic for the combined equivalent circuit-based model is shown in the figure

1.7. This circuit is composed energy balance circuit and voltage response circuit. The

elements of voltage response circuit of the battery model vary vigorously over the runtime

time of the battery and dependent upon many operating conditions such as SOC, C-rate

(capacity normalized current), temperature, number of cycle and hysteresis effect [73].

The voltage response circuit is similar to Thevenin based to simulate the transient re-

sponse of the battery. Energy balance circuit inherited from runtime based model consists

of capacitor Cuse, resistance Rdis and current-controlled current source IBL for modeling

battery runtime and DC response. Cuse is not an actual capacitance and just used to in-

dicates battery capacity. Battery self discharge is modeled by using resistance Rs,dis. The

voltage VSOC depends on the variation of charging and discharging current. Mapping of

SOC and OCV is the bridge between two circuits using a voltage-controlled voltage source
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Voc(VSOC). The value of VSOC varies between 0 and 1 which indicates battery SOC. This

battery model can be utilized for modeling the transient behavior of the battery using

a voltage balance circuit as well as prediction of battery SOC, and battery capacity are

performed by utilizing the energy balance circuit.

Figure 1.7: Combined Equivalent Circuit Battery Model

This review of related works in the battery model focus on three families of battery model

types: electrochemical models, data-driven models, and equivalent circuit based models. A

summary of different kinds of battery models developed by the researchers is summarized

in Table 1.5. From the table, it could be concluded that the suitability of the equivalent

circuit-based battery model is high in capturing the dynamic behavior of the battery with

medium complexity. The equivalent circuit based models are also capable of achieving

the non-linear and transient effect of the battery by predicting V-I performance This

review of related works. These models vary in complexity from simple battery model with

voltage source plus resistance as circuit elements to battery models with multiple dynamic

elements. Combined equivalent battery model that could model transient, DC response

and runtime behavior is considered to represent the dynamics of the battery model in this

research work.

Table 1.5: Detail description of important characteristics of different types of battery
model

Model Type Dynamics
Nonlinear
Effects

Transient
Effects

I-V
Characteristics

Design
Difficulty

Electrochemical Yes Yes Yes No High
Data-driven No Yes Yes No High

Equivalent circuit Yes Yes Yes Yes Medium
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1.2.4 Battery Model Parameters Identification

Battery model parameters including electric (resistance, capacitance) and chemical (diffu-

sion coefficients, solid phase conductivity, etc.) quantities describes the characteristics of

the battery. Parameters selection depends upon the type and topology of chosen battery

model [74]. A challenging task in battery modeling is how to obtain the value of model

parameters as for most of the parameters no sensors are available to measure them di-

rectly. Over the years, researchers have developed different methods for identification of

parameters values using different measurable qualities (such as terminal voltage, current,

and temperature) [75–77]. Human effort to set up necessary test and performing calcula-

tions as well as the requirement of hardware to implement the computation is the main

factor affecting the identification of the parameters. Hence, different parameter identifi-

cation methods proposed for optimizing different aspects (such as reliability, robustness,

simplicity, accuracy, and speed) have been discussed [78]. The review works in this sec-

tion discusses different techniques utilized for battery model parameter identification in

the literature [79]. Parameter identification techniques for equivalent circuit-based bat-

tery models can be categorized as follows: off-line and on-line (recursive) identification

methods.

The majority of researchers proposed parameter identification as off-line procedure based

on different experimental tests. The main concept of off-line identification methods is to

measure the quantities(i.e. current and voltage) over a specified period [80]. Then, store

these measurable quantities data in the memory for identification of battery parameters

and apply error minimization algorithms to fit with the measured data. The procedure

complexity depends upon experimental test process. The battery parameter identification

can be performed either using frequency-domain or time-domain parameter extraction ex-

periments [81]. For the frequency-domain parameter identification, EIS test process is com-

monly used [82]. As discussed earlier, the EIS method identifies parameters by analyzing

the AC frequency response of the battery. The EIS techniques are designed to understand

the electrochemical impedance characteristic of a battery. Impedance spectroscopy pro-

cess is performed in the laboratory utilizing the specialized electronic equipment [83]. This

method provides more accurate results, but the determination of impedance using system-

atic incidence of frequency is the primary challenge for this method. This method could

not consider dependency of the battery parameters on the current as the amplitude of ex-

citation current is low. Moreover, for charging and discharging process EIS measurement

methods require various AC responses of the battery at a specific frequency depending
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upon different operating condition. Parameter identification in time-domain is usually ob-

tained through fitting voltage response from either constant current charge-discharge test

or Pulse Current Charge-Discharge test (PCDT) [84] with polynomial-exponential based

function. PCDT involves alternate cycles of constant current charging and discharging

with rest periods [85]. Battery model parameters depend on the C-rate and temperature,

hence, repeated experimental tests were performed at different C-rate and temperature.

Experiment was performed for both charge and discharge condition due to the presence

of some hysteresis effect in the behavior of the battery. The drawback of this method is

ignorance of dynamic inputs in tests, hence results in large voltage errors when dynamic

inputs are applied. The benefit of off-line non-recursive identification methods is that bat-

tery model can be fractional as well as highly non-linear. As parameters are searched in the

batch of experimental data which provides high stability and accuracy to the identification

process. However, performing these experiments in the laboratory is time-consuming and

demands expertise. And data analysis requires high computation power and memory for

iterative search.

In recent years, some researchers considered battery parameters identification as a recur-

sive process. Hence, several on-line parameter identification techniques have been proposed

[86]. These identification techniques can be categorized as least square method [87, 88],

adaptive filters based method [89–91], Artificial Neural Networks (ANN) [92] and opti-

mization techniques. Least square methods have been applied to identify the unknown

battery model parameters by minimizing the sum of squared residuals. The employed vari-

ants of the least square filters include Recursive Least Squares (RLS) filter and weighted

RLS filter (WRLS) [93, 94]. The RLS is an adaptive filter which recursively updates sys-

tem parameters by incorporating the information at each sample interval. To improve the

performance of these filters, each time-varying parameter is assigned with one individual

optimized forgetting factor with Newton’s method [95]. Hence, RLS filter tune param-

eters of the time-varying system with a forgetting factor. Asymptotic memory length

decides the tuning speed for parameters identification [96]. Asymptote memory length is

the time constant for the sample time interval which provides information preserved in

the memory. Infinite asymptotic memory length refers that all information is preserved in

the memory. The advantage of this approach is the significantly lower computation power

demand. These method are affected by significant divergence problems when the battery

model inaccurately reproduces the behavior of the battery. In [86], a moving window

least-square approach was adopted to improve the convergence of the filter for battery

model parameters identification. This was achieved at the expense of more consumption

of memory for storage of battery data corresponding to a certain number of past steps
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(window). Implementation of KF based adaptive filter for parameter identification is more

accurate but computationally expensive process [90]. The KF-based adaptive filters are

recursive filters which combine analytical and probabilistic Bayesian models. The bat-

tery parameters have identified using measurable quantities which may have measurement

noise due to calibration of measuring device. KF-based adaptive filter identification meth-

ods have been utilized to eliminate these noise in measurement during identification of

parameters [91]. The battery parameter identification is a high dimensional non-linear

problem, and the KF-based identification methods assume the model equations to be lin-

ear or slightly non-linear. Thus, the high degree of non-linearity in the battery parameter

model leads to a lot of approximation errors while using these methods. Even these meth-

ods depend on system noise predetermined variable such as mean and covariance matrix.

Improper setting of these variables results in divergence and error. Although, the required

computational cost has to be significantly higher due to evaluation of inverse matrix which

may lead to numerical instability. Hence, these battery parameters values result in signif-

icant discrepancy on the accuracy of the battery model. On the other hand, the machine

learning algorithms are more accurate than KF-based adaptive filter based identification

methods, they require large amount of data and high computational power to properly es-

timate the model parameters [97]. Intensive computation requires high quality processors

which are too expensive to be used in battery management system. These algorithm also

depend upon the quantity and quality of the training data, which make these methods

computationally more expensive [98].

1.2.5 Battery Internal States Estimation

State-of-Charge (SOC)

Energy storage, i.e., the battery in EVs is equivalent to the fuel tanks in conventional inter-

nal combustion engine automobiles. Imagine vehicle without fuel gauge on the dashboard,

how inconvenient it would be for the driver that he doesn’t have the precise indicator of

how long the vehicle can still travel [99]. In vehicular analogy, SOC estimation of the

battery is similar to having dashboard for fuel gauge that shows the absolute level of fuel

remaining in the tank. Battery SOC corresponds to the amount of energy left inside a

battery to power the EVs [100]. As inaccurate estimation of SOC leads to overcharge and

discharge of battery which can damage or even causes explosion of the battery [101].

The battery SOC is defined as the ratio of remaining capacity over the maximum available

capacity of a battery when it has been fully charged. With a given starting point SOC(t0)
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and the battery maximum available capacity Qmax, it is relatively straightforward to

calculate the SOC using [102]:

SOC(t) = SOC(t0)− 1

Qmax

∫ tf

t0

IBL,Cdt (1.1)

Here, SOC(t) represents battery SOC at each sample time t; t0 represents the initial value

of time; IBL represents the instantaneous battery terminal current which is positive for

discharging and negative for charging process. If a battery is fully discharged then the value

of its SOC is 0% and if it is fully charged, its SOC value is 100%. In literature for calculation

of SOC of battery capacity has been defined as the rated/nominal capacity [35, 103].

Battery capacity is not constant and affected by the operation conditions and aging status.

Hence, the maximum available capacity of the battery is considered for calculation of

battery SOC.

The Depth of Discharge (DOD) is the alternative method of indicating the remaining

internal charges in the battery. The DOD represents the battery capacity percentage that

has been already discharges i.e. DOD = 1-SOC. The DOD can be expressed as [104]:

DOD(t) = DOD(t0) +
1

Qmax

∫ t

t0

IBL,Ddt (1.2)

Here SOC and DOD are utilized to keep track of internal charges of the battery in case

of charging and discharging respectively.

State-of-Health (SOH)

Battery aging leads to gradually deteriorates in battery performance due to irreversible

chemical changes with load variations [105]. Battery aging is an irreversible process and

eventually causes battery End-of-useful life (EUL) or battery failure. For battery degrada-

tion analysis, battery EUL is usually considered to occur when battery maximum available

capacity has reduced to 80% of maximum capacity for the fresh battery [44]. When inter-

nal battery states reach the specified threshold (i.e. EUL point) battery capacity degraded

exponentially leading to insulation damage and the partial short circuit which will cause

the explosion and spontaneous combustion [106]. Identification of battery states helps the

customer to maintain and replace batteries in advance to prevent the loss caused by the

unexpected failure of these batteries and help in reducing maintenance cost.
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SOH is battery parameters that indicates extent of aging in the battery system compared

to a unused battery. Battery aging can be characterized in term of internal states such

as degradation in capacity and rises in internal resistance [103]. As battery degradation

cannot be measured directly hence battery capacity and internal resistance are widely used

as an indicator of the battery health status. The SOH is estimated as the ratio of the

maximum capacity of battery i.e. Qi,max to the capacity of unused battery Qi,max unused.

Battery SOH can be express as follow [105]:

SOH(k) =
Qi,max

Qi,max unused
(1.3)

RUL can be described as a difference in the number of the cycle between the observa-

tion cycle and cycle at which battery EUL will occur [107]. Catastrophic failures can be

avoided by prediction of battery RUL and prognostic of battery health. Hence, determi-

nation of battery degradation is crucial for safety, accurate prediction of battery RUL and

improvement in battery performance [108].

Background

Battery is complex electrochemical device, and its performance high depends upon internal

and external conditions such as temperature variations, charge-discharge cycles and aging

effects, which makes the battery internal states estimation task very complicated and

challenging [109]. As well as no sensor is developed for direct measurement of the battery

internal states [34]. However battery voltage, current and temperature can be measured

directly using specified sensors. Thus, there is a requirement to develop an efficient and

robust method that can accurately estimate internal states of the battery in real time

applications by utilizing measurable quantities [110]. With the popularization of the EVs,

there is a growing demand for a software or hardware to estimate the remaining effective

capacity and loss in the maximum capacity of the battery. Hence precise estimation of

the battery internal states is the indispensable task for the safe and healthy operation of

the battery [65]. Early from the 1960s, the researchers have performed extensive research

and proposed numerous methods for accurate determination of the internal states for

different types of batteries. The response time required by estimation techniques is the

only difference between SOC and SOH estimation. SOC estimation requires fast response

time where as battery aging effect is slow process [34]. Similar estimation methods can be

utilized for estimation of battery SOC and SOH. This review presents the classification

of Li-ion battery internal states estimation methodologies as well as briefly elaborated
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Figure 1.8: Classification of battery internal states estimation methods

benefits and drawbacks of all estimation methods [34, 40, 65, 109, 111]. The classification

of existing methods has been illustrated in Figure 1.8 [65].

1.2.5.1 Conventional Mechanism Analysis Methods

The conventional mechanism analysis methods are based on physical signification and

concepts which involves a lot of parameters and complex calculation for accurate estimation

of SOC and SOH prognostics. These direct methods require controlled current discharge

which is not possible in the application of EVs [112]. In consequence, these methods are

useful in theoretical research and battery designation than in practical engineering [113].

Conventional estimation methods refer to direct identification of internal battery states

using some physical parameters such as battery terminal current, OCV, resistance, and

battery capacity.

The Ampere-hour (Ah) method also known as coulomb counting method determines

battery SOC by integrating the current entering during charge and leaving during the
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discharge process [114]. Ampere-hour method performance is highly reliant on the accurate

calibrations of the initial value of battery SOC. If initial SOC estimated inaccurately, then

all subsequent estimated values would be inaccurate. Thus precise estimation of initial

SOC demands high precision of current sensors [101]. And the capacity of the battery

varies with operating conditions and aging levels of the battery. Thus regular recalibration

of measurements and battery capacity is needed from time to time. The ampere-hour

counting has also used for estimation of the battery SOH [115]. By tracking counts of the

amount of ampere-hour transferred and remaining capacity during charge and discharge

process track for battery, SOH has also maintained. The drawback for estimation of SOH

is that tracking process requires high storage capacity as well as sometimes it is highly

time-consuming [116]. Also, ampere-hour method is open loop estimator, hence, it suffers

from an accumulation of measurement errors in the battery current measurement due to

integration term with the presence of random disturbances such as noise and temperature

drift. Indeed Ampere-hour method is the most simple, straightforward and convenient

method for internal state estimation if the accuracy of current measurement is maintained

and sufficient recalibration points are available [99].

Another way of determining the battery SOC is the OCV-SOC mapping. The OCV-

SOC mapping method determines battery SOC directly using the monotonous one-to-one

relationship between OCV and SOC under specified conditions [117,118]. Hence by mea-

suring battery OCV, the inference of battery SOC can be performed by using lookup table

having a relationship between OCV and SOC. The value of OCV has been calculated by

determining the true value of the voltage across the battery terminal after long resting time

till battery reached equilibrium [110]. For Li-ion batteries, this resting duration is around

two hours under low-temperature condition. EVs work continuously their is a very short

interval between consecutive use hence resting time become significant limitation for using

OCV-SOC estimation method. Further, sensitive of OCV-SOC mapping relationship with

uncertain aging status, operating temperatures condition and material characteristics also

reduce feasibility and the inference accuracy of the OCV-SOC method [100]. Specifically,

for LFP Li-ion battery type this OCV-SOC relationship curve is flat in between 20% to

80% SOC, hence, it is complicated to utilize OCV-SOC mapping for estimation of bat-

tery SOC. Even with the presence of hysteresis effect, there are different OCV value for

charge and discharge process corresponding to single battery SOC value. This estimation

method has been specifically performed in the laboratory environment by using lookup

table methods [119]. Battery SOH is independent of OCV hence determination of SOH is

not possible from OCV of the battery.
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Accordingly, battery capacity and internal resistance determine by applying standard ca-

pacity test or pulse current charge-discharge test [120]. Battery aging mechanism is de-

termined by calculating capacity fading and increment of its internal resistance. Hence

several researchers have made their research in order to determine the internal resis-

tance of the battery [121]. And then these internal resistance value utilized to evaluate

battery aging effect [122]. The battery internal resistance has been calculated by applying

pulse current and recording voltage variations across the battery. By following the Ohm’s

law [123]:

Ri =
∆I

∆V
(1.4)

Where ∆V represents voltage variation corresponding to applied pulse current. This way

internal resistance depending on the SOC and temperature is computed. The internal re-

sistance method requires a test component or circuit comprising high resolution measuring

equipment to ensure accurate measurement, which makes this method both cumbersome

and costly [124]. In addition, the method is applicable only to unused batteries, which

again prevents real-time measurement.

Another way for determining internal states of the battery is measuring battery impedances

using EIS. EIS diagnosis battery internal impedance as the function of frequency. The

battery impedance varies with battery aging and different dynamic conditions which tends

to affect EIS measurements at different frequency range [125]. With the variation of high

frequency to low frequency, battery impedance changes from inductive to resistive then

become capacitive at the lower frequency [83]. EIS methods determine the impedance of

battery by measuring the voltage responses of the when a small AC has applied on the

battery. This method can provide accurate for identical operating conditions [126]. How-

ever, these methods are not suitable for EVs having the different C-rate operation. Even

this method demands some specific measurement which needs complicated experiments to

be performed [127].

1.2.5.2 Data-driven estimation methods

Data-driven estimation methods utilize data-driven battery models which have the ability

to model a non-linear system through establishing a relationship between the input-output

data. The main benefits of these methods do not require complex battery models for

estimation of the battery internal states. Moreover, these have several benefits such as

the parallel distribution of processing, high computational rates and highly adaptive to

deal with complicated problems [98]. However, data collection for all possible operation
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conditions is very tedious, and time-consuming task even uncertainty in datasets affect the

robustness of the system model. Hence, data-driven methods are time-consuming, high

computation complexity, need an enormous amount of the samples. The standard data-

driven methods used for estimation purpose are the neural network [128], fuzzy controller

[129] and the support vector machine [130].

Artificial Neural Network (ANN) is a technique that tries to imitate the neural network of

the human brain. A typical ANN is composed of three different layers: an input layer, a

hidden layer, and an output layer [92]. Hidden layer has been formed of neurons that are

interconnected together to control the flow of the information between the network’s input

and the output layer [131]. The principal functions between different layers have simulated

with weights. Various techniques have been developed for training the ANN to determine

the appropriate values for these weights. ANN has an excellent capability to learn and

recognize patterns from experimental datasets [128]. ANN is often adopted to estimate

internal states of the battery due to its superior nonlinear approximation ability for the

complex nonlinear system. Its become popular tool for modeling to the complex system

because of its ability to handle a large amount of data with nonlinear dependencies [132].

Even ANN has universality properties as it not required to take into to consideration all

details about the battery while modeling. The biggest hinder in the implementation of

ANN techniques for estimation of internal states in the battery management system is

the requirement of a large amount of data and high computational power as well as more

number of neurons to increase the accuracy [133]. ANN technique does provide uncertainty

in the measurement results if trained ANN for one specific application is utilized for other

applications [134]. Hence, ANN is not effective in extrapolation. For EV applications ANN

is not considered suitable due to its length learning process and intensive computation.

Fuzzy-Logic (FL) is another powerful technique that presents the modeling of nonlinear

and complex systems with the help of training dataset by applying subjective rules of the

fuzzy logic theory [135]. The measured data can be categories by fuzzy or crisp sets. Fuzzy

sets have uncertainty in the data while crisp sets categories data with certainty. The sub-

sets classify under fuzzy sets are defined by their membership function [136]. The degree of

membership function linked with each fuzzy sets indicates the degree of belonging among

different subsets. Data fuzzification process determines the appropriate values of the real-

valued data [130]. The implementation of FL has four conceptual components which

include the rule-based relationship between input-output, membership function based on

data for defining the relationship, reasoning mechanism which performs inference proce-

dure and defuzzification process which transform output sets to crisps value [137]. Fuzzy
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rules and membership function are usually derived experience and intuition of human

being thus effectiveness of control decreases [138]. Though FL is a powerful method to

predict the non-linear model but it demands expertise in the field for describing the rule

sets and membership function [129]. FL methods demands large amount datasets and

complex computation which requires costly processing unit with large memory.

The Support Vector Machine (SVM) is the machine learning algorithm to predict the model

based on the statistical decision theory [139]. The basic idea to utilizes SVM to transform

the data into input space and then project data using the non-linear transfer function to

higher dimensional feature space [140]. Also, fit the sample data using the linear function

in feature space. For discrete-valued data, it represents a parametric classifier that finds

an optimally separating hyperplane to divide the training data into different classes [141].

The optimal hyperplane can then categorize unseen data points into one of the possible

classes [130]. For non-linearly separable training data, an SVM classifier uses a kernel

function that relates a subset of training data vectors to the testing data vectors [142].

1.2.5.3 Model Based Methods

Model-based estimation methods utilize for estimation of dynamic system states by using

generic battery model. Thus, the accuracy of these estimation approaches largely depends

upon the accuracy of the battery model. As discussed in battery modeling section that

several battery models have been developed by researchers with the development of battery

technologies to mimic the dynamic behavior of the battery. Existing battery management

systems have limited computation power which increases the demand for accurate and

straightforward equivalent circuit based battery model for estimation purpose. These

methods infer internal states of battery with relatively moderate computational effort and

simple measurement of battery terminal current and voltage [143]. The general flowchart

of the model-based internal states estimation method is shown in Figure 1.9 [65]. Model-

based estimation methods enhance the estimation process through the utilization state

space battery model for dynamic representation behavior as well as the aging effect of

the battery. Input/output measurements are used to measure the internal states of the

battery. The procedure has been performed by multiplying system gain with the error

between measured and estimated output.

In the case of SOC estimation, inaccurate estimation of battery SOC using ampere hour

methods develop error in the battery OCV measurement and than OCV error increases the

battery terminal voltage prediction error. Therefore, accurate estimation of battery SOC
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Figure 1.9: Model based internal states estimation

minimizes prediction error of the battery terminal voltage. The feedback compensation

for estimation of SOC is the battery terminal voltage prediction error. Hence, the method

is required to obtain the value of the feedback gain for compensating the uncertainty in

battery SOC estimation. Similarly in case of capacity degradtion estimation feedback gain

is obtained through comparison of measured and estimated battery capacity.

In the literature, different adaptive filters such as Kalman Filter (KF) , Unscented Kalman

Filter (UKF) [144], Sigma-Point Kalman Filter (SPKF) and Particle Filter (PF) [145]

and nonlinear observers such as Luenberger Observer (LO) [146], Proportional Integral

Observer (PIO) [147], H∞ , Slide Mode Observer (SMO) [148,149] were utilized to obtain

the value of feedback gain of the system. These model-based estimation methods have

high accuracy, self-corrective ability, closed-loop evaluation by providing measured voltage

signals as feedback, and good adaptability.

Non-linear Observer

Battery internal states estimation could be performed using different types of observers in-

cluding linear and non-linear [150]. Commonly linear observers are utilized. Nevertheless,

they will increase the internal states estimation error [149]. Hence, nonlinear observers

are recommending for linear systems with non-linear observation equations [146]. Exhaus-

tive understanding of battery dynamics is required for the appropriate selection of the

gains [113]. Proper gain affects the accuracy of estimation and convergence rate of the

observer. However, finding a proper gain matrix to reduce the error is a difficult task [151].
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Sliding Mode Observer (SMO) work effectively for the system with non-linearity as

well as guarantee robustness and stability against external disturbances including model

uncertainty [148, 152]. A feedback switching gain is designed to control sliding regime

to guarantee the robustness characteristics. The major drawback of SMO is chattering

problem which effects the stability of system and sensors [153]. A compromised solution

for reducing chattering magnitude is to increase the switching gain of the observer at the

cost of slow convergence [154].

Proportional-integral Observer (PIO) provides the solution to the problem utilizing

proportional-integral structure to replace the feedback system’s constant gain [155]. The

gain of the feedback system is mainly obtained through trial-and-error, and improper gain

settings may lead to system instability [147]. The advantages of this observers are to

estimation internal states of battery with less computation time. Also, this observer also

behaves robustly against the model uncertainty [156].

Adaptive Filter Algorithms

The adaptive filter algorithms estimate the needed state xk+1 based on the observations

y0:k+1 = [y1, y2...yk] under the rule of minimizing mean squared error between observa-

tion and estimated output. The current state xk+1 recursively updates through predicted

value of the previous state xk and current value of the measured input uk+1. Hence, adap-

tive filters considered states of systems as the dynamic variable which recursively updates

and its evolution is governed by dynamic equations of the systems perturbed by process

noise [49]. The basic idea of the adaptive filter based techniques is to compute the filter

gain by recursive computation according to statistical properties [157]. Kalman Filter

(KF) was the first adaptive filter developed by Rudolf E. Kalman in 1960, to provides the

effective method for estimation of the system states with the covariance matrix of the state

estimation error [158]. A large number of singular values in state covariance matrix indi-

cates high uncertainty in the estimated state whereas less number singular values indicate

more confidence [159]. KF deals with uncertainty in the estimation of internal battery

states as the state equations are repeatedly evaluated during system operation. KF is

the optimum state estimator which aims at linear Gaussian systems [160]. KF accuracy

reduces or might suffer from divergence problem when it comes to strong nonlinear system

and noise is non-Gaussian. The battery is a non-linear dynamic system hence nonlinear

variants of KF have been extensively purposed for addressing the issues in the estimation

of internal battery states. For instances, Plett et al. [30] introduces Extended Kalman

Filter (EKF) to estimate internal states of battery using different battery models [53].



Chapter 1. Introduction 32
T
a
b
l
e
1
.6
:

C
o
m

p
a
ri

so
n

o
f

In
te

rn
a
l

S
ta

te
s

E
st

im
a
ti

o
n

T
ec

h
n

iq
u

es

M
e
th

o
d

B
e
n
e
fi
ts

D
ra

w
b
a
ck

s
R

e
fe

re
n
c
e
s

A
H

M

E
a
sy

to
im

p
le

m
en

t

L
es

s
co

m
p
tu

ti
o
n
a
l

b
u
rd

en

th
e

cu
rr

en
t

m
ea

su
re

m
en

t
a
n
d

th
e

effi
ci

en
cy

is
p
re

-

ci
se

.

In
co

rr
ec

t
in

it
a
l

S
O

C
va

lu
e

re
su

lt
s

in
cu

m
u
la

ti
v
e

er
ro

r

A
cc

u
ra

cy
eff

ec
te

d
w

it
h

th
e

p
re

se
n
ce

o
f

u
n
ce

rt
a
in

d
is

tr
u
b
a
n
ce

s

D
em

a
n
d
s

h
ig

h
p
re

ci
si

o
n

o
f

cu
rr

en
t

se
n
so

rs
.

[9
9
,1

7
4
–
1
7
6
]

O
C

V

C
o
n
v
en

ie
n
t

im
p
le

m
en

ta
ti

o
n

M
o
re

a
cc

u
ra

te

A
lg

o
ri

th
u
m

n
o
t

re
q
u
ir

ed
fo

r
im

p
le

m
en

ta
ti

o
n

L
o
n
g

re
st

in
g

p
er

io
d

re
q
u
ir

ed
to

se
tt

le
a
t

o
p

er
a
ti

n
g

eq
u
il
ib

ri
u
m

.

A
p
p
li
ca

b
a
le

fo
r

st
a
n
d
in

g
m

o
d
e

o
f

th
e

v
eh

ic
le

[?
,6

4
,1

0
3
,1

1
7
,1

7
7
]

R
e
si

st
a
n
c
e

S
im

p
le

a
n
d

ea
sy

S
O

C
es

ti
m

a
ti

o
n

a
cc

u
ra

cy
is

h
ig

h
o
n
ly

d
u
ri

n
g

th
e

en
d

p
er

io
d

o
f

d
is

ch
a
rg

e
p
ro

ce
ss

V
a
ri

a
it

o
n

o
f

re
si

st
a
n
ce

is
h
ig

h
co

m
p
a
re

d
to

S
O

C

[6
3
,1

2
0
,1

2
1
]

E
IS

O
n
li
n
e

im
p
le

m
en

ta
ti

o
n
,

R
el

a
ti

v
el

y
ch

ea
p

B
et

te
r

a
cc

u
ra

cy
is

re
a
li
za

b
le

b
y

n
o
rm

a
li
zi

n
g

im
p

ed
a
n
ce

T
o

a
n
a
ly

se
a
g
in

g
a
n
d

te
m

p
er

a
tu

re
eff

ec
t

d
em

a
n
d
s

la
rg

e
n
u
m

b
er

o
f

ex
p

er
im

en
ta

ti
o
n

[8
3
,1

2
5
–
1
2
7
]

A
N

N
B

a
tt

er
y

m
o
d
el

n
o
t

re
q
u
ir

ed

E
ff

ec
ti

v
el

y
w

o
rk

fo
r

n
o
n
-l

in
ea

r
co

n
d
it

io
n

D
em

a
n
d

h
ig

h
q
u
a
n
ti

ty
a
n
d

q
u
a
li
ty

o
f

tr
a
in

in
g

d
a
ta

U
n
ce

rt
a
in

ty
in

m
ea

su
re

m
en

t
re

su
lt

s
in

in
a
cc

u
ra

cy

[9
2
,1

3
1
–
1
3
4
,1

3
7
,1

3
8
,1

7
8
]

F
L

E
ff

ec
ti

v
el

y
w

o
rk

fo
r

n
o
n
-l

in
ea

r
d
y
n
a
m

ic
sy

st
em

D
em

a
n
d

la
rg

e
m

em
o
ry

a
n
d

effi
ci

en
t

p
ro

ce
ss

in
g

u
n
it

H
ig

h
co

m
p
u
ta

ti
o
n
a
l

b
u
rd

en

[1
3
0
,1

3
5
,1

3
6
,1

3
9
]

S
V

M
W

el
l-

su
it

ed
fo

r
n
o
n
-l

in
ea

r
a
n
d

h
ig

h
d
im

en
si

o
n

m
o
d
el

s

H
ig

h
co

m
p
u
ta

ti
o
n

b
u
rd

en
.

T
im

e
co

n
su

m
in

g
tr

a
il

a
n
d

er
ro

r
p
ro

ce
d
u
re

re
-

q
u
ir

ed
to

a
d
ju

st
m

o
d
el

p
a
ra

m
et

er
s

[1
4
0
–
1
4
2
,1

7
9
–
1
8
1
]

S
M

O
Im

p
ro

v
ed

tr
a
ck

in
g

co
n
tr

o
l

en
a
b
le

s
st

a
b
le

o
p

er
a
-

ti
o
n

S
w

it
ch

in
g

g
a
in

a
d
ju

st
m

en
t

is
co

m
p
le

x
[1

4
8
,1

5
2
–
1
5
4
]

P
IO

C
o
m

p
u
ta

ti
o
n
a
ll
y

p
ow

er
fu

l

R
o
b
u
st

to
ex

te
rn

a
l

p
er

tu
rb

a
ti

o
n
s

Im
p
ro

p
er

d
es

ig
n
ed

co
n
tr

o
ll
er

re
su

lt
s

in
a
cc

u
ra

te

re
su

lt
s

[1
4
7
,1

5
5
,1

5
6
]



Chapter 1. Introduction 33

M
e
th

o
d

B
e
n
e
fi
ts

D
ra

w
b
a
ck

s
R

e
fe

re
n
c
e
s

K
F

P
re

ci
se

st
a
te

es
ti

m
a
ti

o
n

in
u
n
ce

rt
a
in

ti
es

(s
u
ch

a
s

G
a
u
ss

ia
n

n
o
is

e)

N
o
t

im
p
le

m
en

te
d

fo
r

st
a
te

es
ti

m
a
ti

o
n

o
f

n
o
n
-

li
n
ea

r
sy

st
em

D
em

a
n
d

co
m

p
le

x
m

a
th

em
a
ti

ca
l

ca
lc

u
la

ti
o
n

D
iv

er
g
en

ce
o
cc

u
rs

d
u
e

to
in

a
cc

u
ra

te
m

o
d
el

[4
9
,1

0
1
,1

5
7
,1

5
7
,1

5
9
,1

6
0
]

E
K

F
A

cc
u
ra

te
ly

es
ti

m
a
te

s
st

a
te

s
fo

r
n
o
n
-l

in
ea

r
d
y
-

n
a
m

ic
sy

st
em

.

L
in

ea
ri

za
ti

o
n

o
f

n
o
n
-l

in
ea

r
sy

st
em

re
su

lt
s

in
d
i-

v
er

g
en

ce

C
a
lc

u
la

ti
o
n

o
f

J
a
co

b
ia

n
m

a
tr

ix
is

re
q
u
ir

ed

[9
0
,1

0
2
,1

6
2
–
1
6
4
,1

8
2
]

U
K

F

P
re

ci
se

st
a
te

es
ti

m
a
ti

o
n

u
p
to

n
o
n
-l

in
ea

r
d
y
n
a
m

ic

sy
st

em
s

o
f

3
r
d

o
rd

er
.

C
a
lc

u
la

ti
o
n

o
f

J
a
co

b
ia

n
m

a
tr

ix
n
o
t

re
q
u
ir

ed

L
a
ck

s
ro

b
u
st

n
es

s
to

u
n
ce

rt
a
in

ti
es

.
[1

4
2
,1

6
5
–
1
6
8
]

C
D

K
F

C
a
lc

u
la

ti
o
n

o
f

J
a
co

b
ia

n
m

a
tr

ix
n
o
t

re
q
u
ir

ed

Im
p
ro

v
ed

ro
b
u
st

n
es

s
a
n
d

a
cc

u
ra

cy
H

ea
v
y

ca
lc

u
la

ti
o
n

[1
8
3
–
1
8
5
]

P
F

E
ffi

ci
en

tl
y

w
o
rk

w
it

h
n
o
n
-l

in
ea

r,
G

a
u
ss

ia
n

a
n
d

n
o
n
-G

a
u
ss

ia
n

sy
st

em
s

F
a
st

A
cc

u
ra

te
.

S
o
lu

ti
o
n

re
q
u
ir

es
im

p
le

m
en

ta
ti

o
n

o
f

co
m

p
le

x

m
a
th

em
a
ti

ca
l

a
lg

o
ri

th
m

s.
[1

6
9
–
1
7
3
,1

8
6
]



Chapter 1. Introduction 34

EKF utilizes Taylor’s series linearization process to approximate the non-linear system

with Linear Time-Varying (LTV) system [161]. Taylor’s series is approximated to first or

second order term is depending upon computation time and accuracy required by battery

management system designers [102]. Ignoring the higher order of Taylor series expansion

influence estimation error and requirement of solving Jacobian matrix for second order

results in instability of the filter [162]. This local linearization process results in degra-

dation in the accuracy of estimation methods [163]. Thus, EKF based estimation results

in moderate improvement as compared to commonly used KF [164]. To overcome this

local linearization and high computational problem, Sigma-Point Kalman filters (SPKF)

has developed. SPKF approximates statistical distribution characteristics of the nonlin-

ear system by Gaussian Random Variables (GRV) [165]. Theoretically, SPKF captures

higher order moments of distribution rather than linearization. The two common types

of SPKF are the Unscented Kalam filter (UKF) and the Central Difference Kalman filter

(CDKF). UKF utilizes the unscented transformation, and CDKF utilizes Sterling’s poly-

nomial interpolation methods for computing the approximate means and covariance for

the states of the system [165]. The attractive feature of the SPKF is that there is no

need for complex calculation of a Jacobian matrix [166]. As well SPKF predicts non-linear

system states up to third order which increases its accuracy compare to EKF [167]. How-

ever, SPKF doesn’t provide the true global approximation of the system because of the

small set of trial points and demand more computation power due to the evaluation of

Cholesky factorization on every step [168]. The main disadvantage associated with SPKF

is that noise in systems is assumed to be Gaussian [142]. However, this assumption may

not be true in real battery application. This assumption can lead to exacerbation of fil-

ters convergence [169]. In order to improve prediction accuracy, PF has been developed

for estimation of internal battery states [170]. PF approximates the non-linear system’s

probability density function by applying based on the Bayesian techniques with the Monte

Carlo simulation method [171]. PF uses a weighted set of samples (particles) for approxi-

mating the filtering distribution [172]. PF accurately estimate the states of the nonlinear

system with Gaussian as well as non-Gaussian noise [173].

1.2.6 Power Management Strategies

The power management system defines efficient control schemes to increase the perfor-

mance of the EVs at a lower cost by targeting multiple objectives simultaneously. The
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power management has described as a set of rules or an algorithm regulating the oper-

ation of the EV based on measured input to achieve the predefined goals and the con-

trolled outputs. The primary goals of the power management system include managing

the power-sharing among the available power sources while satisfying the power demanded

by drive-train of EVs. The power-sharing strategy can be determined either by the set

of predefined rules or by optimization based algorithms. Hence, so far, power manage-

ment strategies can be categorized as a rule-based and optimization-based approach for

dealing with power management problem as shown in Figure. This section outlines the

state-of-the-art for power management strategy in the various kinds of EVs and explains

their advantages and disadvantages [187–193].

Optimization-based approaches mainly formulate power management as an optimiza-

tion problem within feasible constraints. This method regulates the control variables

based on the objective function that is minimizing the power consumption over the fixed

driving cycle [194]. The optimization-based approaches further classified into global op-

timization and real-time optimization approach. Various global optimization-based ap-

proaches have been adopted to solve the power management problem as linear program-

ming [195], quadratic programming [196], dynamic programming [197], mixed integer pro-

gramming [198] and meta-heuristic optimization techniques [199]. Especially, dynamic

programming based on the optimal control theory generates the most effective solutions

while dealing with power management problem. However, global optimization techniques

require prior and future knowledge about the overall driving power demand for the given

driving cycle [197]. These approaches demands too much computational effort compared

with rule-based approaches. Therefore, global optimization cannot be applied to real-time

control due to its non-causal nature and heavy computational burden [187]. Moreover,

global optimization approaches usually serve as good theoretical benchmarks and use-

ful to tune design parameters for online control strategies [188]. Real-time optimization

approach defines instantaneous objective function instead of global objective function.

Instantaneous objective function depends only upon the current system parameters and

should include equivalent power consumption. Hence, the obtained solution are not glob-

ally optimal but it can be implemented in real-time. Real-time optimization approaches

are simple to implement with limited memory resources and computational cost. Real-

time optimization approach can be categories as the equivalent consumption minimization

strategy (ECMS) and model predictive control (MPC) [190]. ECMS is to formulate global

optimization into local optimization problem by minimizing equivalent fuel consumption.

The equivalent factor is proposed to convert electric energy to equivalent fuel energy [200].

The equivalence factor of ECMS is not known in advance hence, it is calculated based
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on average of power flow for given driving cycle. The equivalence factor influences the

performance power management system as proper estimation of equivalent factor depends

on battery SOC, driving cycle and direction of current [200]. This approach finds near-

optimal solution but it suffers from high sensitivity to statistical parameters hence the

approach requires fine tuning of parameters for driving cycle separately. MPC deal with

multivariate constrained control problems [189]. MPC is an optimization-based receding

horizon control strategy, which has the potential to maintain the computational burden

within an acceptable range and increase its adaptability for various driving cycles [191].

MPC is neither sensitive nor short-sighted due to its capability of solving optimization

problem over the future prediction horizon [193]. However, knowledge about future driv-

ing cycle is required in advance by driving prediction methods [192]. Even MPC utilize

the solution method of dynamic programming to find the optimal solution which provides

sub-optimal solution.

Table 1.7: Comparative study of different energy management schemes.

Scheme type Pros Cons

Deterministic
rule-based

Simple implementation; Intensive parameter calibration and
tuning is needed;

Computationally efficient Optimal solution is not assured;
Non-portability.

Fuzzy rule-based Robust to noise in measurements; Optimal solution is not assured;
Requires less computations; Adjusting membership function and

fuzzy rule is necessary;
Simple execution. Non-portability.

Real-time opti-
mization

Compatible for HEVs; Global optima unachievable;

Sub-optimal solutions are feasible. Complex integration in contempo-
rary vehicle control.

Global optimiza-
tion

Optimal solution attainable; Advanced information of driving cy-
cles is required;

Calibration not needed. Complex computation;
Direct integration not feasible.

Rule-based approaches is heuristic approaches which effectively control the flow of

power between energy sources by defining a set of rules [201]. These rules are formulated

based on human expertise, foreknowledge, operational limits and safety boundaries [202].

The main advantages of rule-based approaches are low computation requirement. The rule-

based approaches are the most direct and widely used approaches due to its easy imple-

mentation, high computation efficiency and does not requires knowledge about the future

driving cycle. Recently these approaches are used in Toyota Prius and Honda Insight [203].

The rule-based approach further classified into deterministic and fuzzy rule-based algo-

rithms. A deterministic rule-based power management strategy formulated in term of
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fixed rules defined using prior knowledge about the overall driving power demand [196].

Consequently, driving cycle prediction and recognition introduced to determine the driving

power demand [204]. The deterministic rule-based method implemented based on state

machine control logic, which has been composed by the number of states, transition and

transition condition. The states define possible driving situations, i.e., operation modes

and each state are connected to other by the transition. The transition condition depends

on battery SOC, request torque and pedal angle. Due to fixed rules, deterministic rule-

based approach lacks the flexibility to different driving cycles and ability to deal with

uncertainty caused by the model error of drivetrain. Fuzzy-logic rule-based power man-

agement approach formulates a collection of fuzzy rules based on expert knowledge and

reasoning [205]. These fuzzy rules offer a qualitative description of the controlled system

but depend on long development duration. Utilizing the fuzzy logic rule-based approach

removes the dependency of the control system on the precise mathematical model [206].

The main advantages of fuzzy logic rule-based approach are adaption as well as robustness

to measurement noise and component variability [207]. Fuzzy-logic rule-based approach

is suitable for the nonlinear, multi-domain and time-varying system [208]. However, it

difficult to appropriately derive membership function and fuzzy rules when power con-

trol depends on more variables [209]. Based on the above analysis, rule-based approaches

depends on employed rules which are difficult to define due to lacks any rigorous mathe-

matical analysis and theoretical basis. Furthermore, any optimization or minimization is

not involved, hence, the optimal solution cannot be guaranteed.

1.3 Research gaps

This research work mainly focuses on developing a battery monitoring system for effec-

tive battery management while driving. The primary function of the battery management

system is to monitor and regulate the internal battery states for developing power manage-

ment system of the dual battery-powered EVs. From the review of related research work,

it could be concluded that the prerequisite for estimation of internal battery states is to

build a battery model that could reflect the dynamic behavior of the battery. Through-

out the years, the researchers have developed numerous types of battery models with

different level of accuracy and complexity to predict the behavior of the Li-ion battery.

Electrochemical battery models were based on electrochemical methodologies involving

current densities at the electrodes, electrolyte concentration parameters and many other

electro-chemistry parameters implementation for battery modeling. All the electrochemi-

cal mechanism inside the battery is represented by a spatial partial differential equation.
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These equations require large computational power to solve them. Moreover, the data-

driven battery model train the sample dataset to approximate electrochemical model.

Data-driven models demands large amount of data analysis and more significant dataset

for training and testing of the battery model. Hence, accuracy of these models relies on the

quality training datasets. Equivalent circuit-based methods replace the chemical reaction

by circuit components. Equivalent circuit based battery model has gained a lot of interest

amongst battery management system designers for parameter estimation purpose because

of it’s simplified mathematical and numerical approach that minimizes the necessity for

the computationally intensive procedure. Hence in this research work, a tradeoff is made

over actual behavior and complexity in computations. The approach to be considered in

this work shall be combined equivalent circuit based battery model which can model tran-

sient, DC response and runtime behavior of the battery model. Developing an accurate

battery model requires the precise value of the parameters of battery model circuit com-

ponents. The values of circuit components vary rapidly over the runtime of the battery

and depend upon many operating conditions such as SOC, C-rate, temperature, number

of cycle and hysteresis effect. However, various empirical non-linear equations utilized to

describe the behavior of the battery in the literature were different. The authors have

modeled components with a combination of exponential functions and 2nd to 6th order

polynomial functions. Also, some authors have considered the influence of stress factors,

such as hysteresis effect and temperature. Consequently, depending on which effect of

the stress factor has to be taken into account, accuracy, and complexity of the model,

empirical non-linear equations are obtained from measurements data. For battery param-

eter identification, a set of EIS or charge-discharge tests were performed and then error

minimization algorithms were applied to fit with the measured data with tests results.

In other words, these parameters are identified using curve fitting on the data collected

using experimentation on hardware. These experimentations are time-consuming and re-

quire substantial financial investment. The focus of this work will be to develop a battery

model based on data provided by manufactures without performing the expensive exper-

iment. This battery model shall represent not only the static also the dynamic behavior

of the battery. Model-based estimation methods such as variants of KF [210], and neural

network-based methods analyze voltage responses in the time domain for varying operat-

ing conditions. Variants of KF require less computation power, but these methods assume

model equation to be linear or slightly non-linear whereas battery parameter estimation

problem is a high dimensional non-linear problem. Neural network based methods require

a large amount of training data and high computational power to estimate model param-

eters accurately. Various tests have to be performed under different operating conditions
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in a laboratory to obtain voltage responses for modeling battery using these methods.

The battery parameter modeling is a high dimensional non-linear problem which requires

intensive computation overhead for the solution using conventional methods. To avoid

time-consuming experimentation which requires substantial financial investment, param-

eter estimation is formulated as an optimization problem to identify parameters of the

battery using voltage characteristic data provided by manufactures. According to No Free

Lunch (NFL) theorem [211], a single optimization approach could not be considered suit-

able for solving all optimization problems hence comparison is performed for six heuristic

techniques for estimation of battery parameters. With the development of an accurate bat-

tery model with identified parameters battery management system demands to estimates

the battery internal states for safe operation of battery. The review mentioned in Section

1.2.5 investigates the various estimation methods of internal states of the battery. The

review identifies that internal battery states can be estimated by utilizing conventional,

data-driven and model-based methods. The conventional methods are easy to implement,

however, they are highly affected by external distributions. Data-driven methods perform

well with non-linear and high dimensional models with an ability to predict the internal

states accurately by using well computed training data for all possible operating condition.

Generation of large amount of data is the main drawback of data-driven methods which

demands large memory and complex computation. The nonlinear observer has enhanced

robustness against the disturbances and improved performance in terms of accuracy, con-

verge speed and computation cost. Nevertheless, the model could deliver inaccurate results

if the controller is not properly designed. Adaptive filters are the most favored techniques

since they can predict non-linear dynamics states with good precision, high efficiency and

less computational cost. As battery model is developed to represent the dynamic behavior

of the battery, hence, model-based adaptive filters are recognized as appropriate battery

internal states estimation methods. Different variants of adaptive filters are utilized for

estimation of battery internal states. In this research work, performance of different kinds

of adaptive filters are compared for estimation of battery internal states.

In [14] author suggested the concept of dual-battery powered EVs which improves energy

consumption and cost compared with EV with single battery pack. Utilization of dual

battery demands power management between them for optimal power supply to the EVs.

In the literature, various power management strategies have been developed for hybrid

EVs. On the basis of thorough analysis of different power management strategies, it could

be concluded that rule-based power management approach has been commercially adopted

due to its east implementation and high computational efficiency. However, as any op-

timization is not involved, the optimal solution cannot be obtained. Optimization-based
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approaches overcome inherent drawbacks of rule-based approach through the implemen-

tation of optimization control procedure. Optimization-based approaches demand high

computation power for real-time application. Practically, the hybrid power management

strategy should be developed which would not only have the optimal solution but also

readily applicable to real-time control. All power management strategies were analysed

for Hybrid EVs only, hence, it is required to develop a power management system for dual

battery-powered EVs.

1.4 Research Objectives

Battery management system is a very exhaustive field with many research topics, so scope

must be defined to limit the topics in the thesis. The research aim about this thesis work

is to design and validate a novel battery management system for condition monitoring

and power management system for Li-ion batteries to extend the lifetime, enhance the

reliability, and optimize the performance of battery systems. For developing the battery

management system and power management system following step by step, objectives have

been formulated:

1. To develop high-fidelity battery model for online condition monitoring and power

management of Li-ion battery by accurate measurements of model parameters.

2. To analyze model-based online condition monitoring algorithms for estimating of

internal states of Li-ion batteries.

3. Modeling a dual battery powered EV and its power management by controlled

DC/DC converter switching

1.5 Organization of the thesis

As mentioned in the earlier section, the prime focus of the thesis is to implement a battery

management system which includes the development of battery monitoring and power

management system. Figure 1.10 illustrates the flow of the thesis in the form of a block

diagram highlighting the significant portions covered in each chapter. The thesis has been

organized as follows:
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Chapter 1 The literature necessary to develop an insight of the topic, a brief outline of

the development of battery technologies and battery monitoring system has been given.

This chapter reviews the state-of-the-art and provides the reader with a background of the

battery management system, battery modeling and various techniques that are responsible

for the estimation of battery model parameters and internal states. Finally, different power

management strategies have been discussed in details.

Chapter 2 The primary objective of this research work is to develop a method which

can determine the critical parameters of the battery from the manufacture catalogue data

without conducting expensive and time-consuming experiments. The parameter estima-

tion is considered as an optimization problem and solution is obtained by utilization of six

different heuristic techniques. As a single optimization approach could not be regarded

as suitable for solving all optimization problems, hence comparison is performed for six

heuristic techniques for estimation of battery parameters. The efficacy of the proposed

method has been validated by comparing the obtained results with battery parameters

derived from standard Pulse-Current Charge-Discharge Test (PCDT). As well as the per-

formance of all heuristic optimization approaches has been examined by the quality of the

solution, the rate of convergence, computational error and statistical significance.

Chapter 3 This chapter presents a state estimator that can reflect the internal states

of the battery. Firstly battery SOC is estimated based on the state-space model from

the battery model developed in Chapter 2. Model-based estimation methods have been

compared regarding their robustness, accuracy and execution time. Then, the change

in battery capacity under specific working conditions is related to the battery SOH. To

determine the general model for capacity degradation empirical equations based models

are developed by using curve fitting techniques. With the help of empirical capacity

degradation model, the complexity of model tuning can be reduced notably. Finally, the

information about battery current SOH and RUL has been determined by using different

model-based estimation technique and the effectiveness of each method in estimation is

analyzed.

Chapter 4 This chapter presents the introduction to the proposed rule-based meta-

heuristic power management system for dual battery-powered EVs. The power man-

agement problem includes the real-time optimal power-sharing between two batteries pro-

moting the maximization of usage of batteries capacity while maintaining SOC of batteries

at adequate levels. Starting from a brief description of the modeling approach adopted

for computation of demanded power for a given driving cycle. Detailed description of the

developed architecture for power management with defined problem formation is presented
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in this chapter. The validation of the proposed power management system has been done

for normalized ECE 15 driving cycle depending on different initial SOC conditions.

Finally, Chapter 5 summaries the contributions of this thesis and highlights potential

future research opportunities.
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Chapter 2

Modeling and Parameter

Estimation of Battery

2.1 Introduction

The battery management system requires an accurate model of the battery for estimation

of its internal states such as State-of-Charge (SOC) and State-of-Health (SOH) in EVs.

Developing a battery model requires the accurate values of the parameters of the battery.

Since the parameters change with the variation in temperature, SOC and C-rate, it is nec-

essary to analyze the effect of parameter change on battery model [212]. Especially in the

applications of EVs, the change in parameters will be more significant than other applica-

tions because the C-rate and temperature changes are relatively higher [37]. The primary

purpose of this chapter is to introduce a simple and efficient methodology for accurate

battery modeling and the identification of the parameters of the battery. The combined

equivalent circuit model incorporates the benefits of Thevenin-based, impedance-based and

runtime-based model. Hence, it has been utilized to mimic the dynamic behavior of battery

during various operating conditions. Voltage response circuit part of combined equivalent

circuit is composed similarly to the Thevenin battery model which contain various active

and passive circuit elements to represent the electrochemical process taking place inside

the battery. Detailed modeling of voltage response circuit considering the dependency of

the battery on SOC, C-rate and temperature have been discussed in the Section 2.2. De-

pendency of model circuit elements has been described with a combination of exponential

functions and 2nd to 6th order polynomial functions [213, 214]. In the literature [89–91],

parameters of the equations are identified using curve fitting on the data collected using

45
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experimentation on hardware. These experiments are time-consuming and require sub-

stantial financial investment. The proposed method is an alternative way to identify the

parameters of the battery using voltage characteristic data provided by the manufactures.

The proposed parameter identification approach has been formulated as an optimization

problem which has been discussed in detail in the Section 2.3. This optimization prob-

lem is a high-dimensional and non-linear problem which requires a intensive computation

overhead for the solution using conventional methods. According to No Free Lunch (NFL)

theorem [211], a single optimization approach could not be considered suitable for solving

all optimization problems. Hence, the performance of six heuristic techniques for estima-

tion of battery parameters has been compared under similar execution conditions. Out

of these six heuristic techniques, Genetic Algorithm (GA) and Particle Swarm Optimiza-

tion (PSO) are time-tested techniques for optimization problems while Different Evolution

(DE), Teaching Learning Based Optimization (TLBO), Grey Wolf Optimization (GWO)

and Ageist Spider Monkey Optimization (ASMO) are state-of-the-art algorithms. An

overview of heuristic optimization algorithms utilized for the purpose of identification of

parameters has been discussed in Section 2.4. Following this, simulation results using the

proposed method for parameters estimation have been discussed in detail in the Section

2.5. The efficacy of the proposed method has been validated by comparing the obtained re-

sults with battery parameters derived from standard Pulse-Current Charge-Discharge Test

(PCDT). Further, the performance of all heuristic optimization approaches have been ex-

amined by the quality of the solution, the rate of convergence, computational error and

statistical significance using both parametric (t-test) and non-parametric tests (Wilcoxon

test) in the Section 2.5.3. Finally, the concluding remarks on the work carried out in this

chapter have been summarized in the Section 2.6.

2.2 Equivalent circuit model of Li-ion batteries

Equivalent circuit based battery model conceptualizes the electrochemical mechanism of

the battery using the SOC dependent voltage source, resistors, capacitor and non-linear

components like Warburg impedance and diodes to approximate the dynamics of the bat-

tery. A combined equivalent circuit model incorporates the energy balance circuit and

voltage response circuit as shown in Figure 1.7 for representing the dynamic behaviour of

the battery. The voltage response circuit represents the transient dynamics of the battery.

It is similar to Thevenin-based battery model as shown in Figure 2.1. It consists of a

voltage source Voc which denotes the Open Circuit Voltage (OCV), ohmic resistance R0,

electrochemical diffusion process resistance and capacitance represented by Rn and Cn
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respectively. Energy balance circuit models battery runtime and DC response by utilizing

capacitor Cuse, resistance Rdis and current-controlled current source IBL. The values of

circuit components vary over a large range during the runtime time of the battery. These

values depend upon many operating conditions such as SOC, C-rate (capacity normalized

current), temperature, number of cycles and hysteresis effect.

Figure 2.1: Voltage response part of the combined equivalent circuit based battery
model with 1 RC network

Practical equivalent circuit modeling demands that the components of the voltage response

circuit part should be related with the electrochemical process in the battery. In [66],

the authors suggested that the relationship between the battery model parameters and

the electrochemical process can be obtained by comparing given battery model with the

impedance-based model. Internal impedance calculated using Electrochemical Impedance

Spectroscopy (EIS) measurements were used to form 2nd order Randles circuit as shown

in Figure 1.4. Here, bulk resistance represented by Rbk denotes the electric conductivity

of the separator, electrodes, and the electrolyte. Surface film layer electrode resistance

and capacitance are represented by Rsei and Csei respectively. Charge transfer resistance

is represented by Rct, double layer capacitance is represented by Cdl and diffusion process

of the battery is represented by Warburg impedance ZW . In real-time EV application,

the sampling rate of data acquisition should be at least 1 Hz, since most of the existing

driving cycle also have 1 Hz speed-time signals [215]. However, the energy consumption

of a EV is evaluated at high sampling rates (1 Hz-10 Hz) to achieve more accurate and

reliable characterization of EV efficiency [216] as dynamics of the battery of the vehicles

can be evaluated more accurately at the high sampling rate [66]. Hence, this sampling

rate of the data acquisition system causes high frequency Rsei and Csei indistinguishable

from Rbk. In the voltage response circuit Rbk is represented by R0 [217]. Additionally,
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the ZW is approximated by the n number of parallel resistor-capacitor network where n

defines the order of voltage response circuit.

Equivalent circuit based battery model has gained a lot of interest amongst battery man-

agement system designers for parameter estimation purpose because of it’s simplified math-

ematical and numerical approach that minimizes the necessity for the computationally

intensive procedure. It gives a good trade-off between exactness, complexity, and usabil-

ity depending upon different RC networks used for voltage response circuit part of the

battery model. In the research literature, different forms of Thevenin’s equivalent circuit

based battery model depending on the number of RC pairs, the effect of hysteresis and

impact of aging, have been developed by researchers [56, 68]. In [218], the author com-

pared complexity versus modeling error for the Thevenin RC network circuit models, by

varying the number of RC pairs and concluded that increasing the number of RC pairs

decreases the error and increases the computation time. In [39, 68], the authors utilized

multi-objective particle swarm optimization to compare the practicality of different equiv-

alent circuit based model incorporating model accuracy and complexity. The comparison

between different equivalent circuit based models concluded that the first-order RC model

is most suitable for a Li-ion battery. The addition of more RC networks generally improves

the model accuracy but increases the computational burden. Hence, the first-order RC

model has been utilized for identification of battery model parameters.

The empirical non-linear equations utilized to describe the transient behavior of the battery

were not alike. The researchers have modeled components with a combination of expo-

nential functions and 2nd to 6th order polynomial functions [213, 214]. Some researchers

also considered the influence of stress factors, such as hysteresis effect and temperature.

Consequently, depending on effect of the stress factor, the accuracy, and complexity of

the model change. Equivalent circuit model of a Li-ion battery is presented in [72, 219],

consisting of empirical non-linear equations extracted from measurement data obtained

from experimental analysis. The first-order RC model parameters which are dependent

on state-of-charge, C-rate, and temperature are formulated using a polynomial equation

as given in equations (2.1)-(2.4), to exhibit the dynamic electrical performance of the

battery [66,72].

R0 =((a1 + a2x+ a3x
2)ea4y + (a5 + a6x+ a7x

2))ea32( 1
To
− 1
Tr

) (2.1)

R1 =((a8 + a9x+ a10x
2)ea11y + (a12 + a13x+ a14x

2))ea33( 1
To
− 1
Tr

) (2.2)

C1 =− ((a15 + a16x+ a17x
2)ea18y + (a19 + a20x+ a21x

2))ea34( 1
To
− 1
Tr

) (2.3)

Voc =(a22 + a23x+ a24x
2)ea25y + (a26 + a27 + a28y

2 + a29y
3)− a30x+ a31x

2 (2.4)
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Here, a1, a2...a34 represent the polynomial coefficients to be determined; T0 and Tr denote

the instantaneous and reference temperature of the battery respectively. The transient

behavior of the battery is different for charging and discharging process. Hence, for the

charging process, x (C-rate) and y (current charge state in battery) are substituted by

charging current rate Cr and SOC and for discharging process by discharge current rate

Dr and 1−DOD respectively. DOD represents depth of discharge which decreases with

increase in model terminal voltage VM
Bt . The C-rate for charging process (Cr) and dis-

charging process (Dr) can be expressed as [104]:

Cr =
IBL,c
Qnom

; Dr =
IBL,d
Qnom

; (2.5)

Here, Qnom is the nominal battery capacity provided by the manufacturer; IBL,c is current

flowing through battery terminals during charging process and IBL,d is current flowing

through battery terminals during discharging process.

Figure 2.2: Battery Model with 1 RC network represented in s-domain

The equation for terminal voltage is derived using Laplace transform of the voltage re-

sponse circuit. Figure 1.7 illustrates the s-domain representation of the voltage response

circuit part of the battery model. Using Krichhoff’s law, the dynamics of the circuit can

be expressed as follows:

In the mesh 1:

− VM
Bt (s) +

Voc
s
− IBL(s)R0 −

[
IBL(s)− IRC(s)

]
R1 = 0 (2.6)

−VM
Bt (s) +

Voc
s
− IBL(s)[R0 +R1] + IRC(s)R1 = 0
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IRC(s) =
VM
Bt (s)

R1
− Voc
R1s

+ IBL(s)

[
R0

R1
+ 1

]
(2.7)

In the mesh 2:

− VM
Bt (s) +

Voc
s
− IBL(s)R0 −

IRC(s)

C1s
− VRC

s
= 0 (2.8)

substituting value of IRC

− VM
Bt (s) +

Voc
s
− IBL(s)R0 −

VM (s)

R1C1s
+

Voc
R1C1s2

− IBL(s)

C1s

[
R0

R1
+ 1

]
− VRC

s
= 0 (2.9)

VM
Bt (s) =

Voc
s
− VRC

[
R1C1

1 +R1C1s

]
− IBL(s)

[
R0 +

R1

1 +R1C1s

]

VM
Bt (s) =

Voc
s
− VRC

[
1

s+ 1
R1C1

]
− IBL(s)

[
R0 +

1

C1

( 1

s+ 1
R1C1

)]
using inverse Laplace transform:

VM
Bt (t) = Voc − VRCe

−t
R1C1 − IBL(t)R0 −

1

C1

∫ ζ=t

ζ=0
Iζe

−(t−ζ)
R1C1

dζ
(2.10)

VM
Bt (t) = Voc − VRCe

−t
R1C1 − IBLR0 −

IBL
C1

[
R1C1e

−(t−ζ)
R1C1

]ζ=t
ζ=0

(2.11)

VM
Bt (t) = Voc − VRCe

−t
R1C1 − IBLR0 − IBLR1

[
1− e

−t
R1C1

]
(2.12)

For the constant current in the circuit, initial value of voltage across capacitor is repre-

sented by VRC = Q(0)
C1

where Q(0) is the initial charge across the capacitor.

VM
Bt (t) = Voc −

Q(0)

C1
e
−t

R1C1 − IBLR0 − IBLR1

[
1− e

−t
R1C1

]
(2.13)

Time-dependent nonlinear relation of the output terminal voltage VM
BL for the constant

current condition can be determined using equations (2.1)-(2.4). Output terminal voltage

is obtained by rearranging equation (2.13) and it follows a polynomial equation as: [48] :

VM
Bt =

(
Q(0)

C1
+ IBLR1

)
e−t/R1C1 + Voc − IBL(R0 +R1) (2.14)

Here t is sample time interval; IBL is charging (−ve)/discharging(+ve) current.
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The modeling of a battery is an offline problem. An accurate model mimics the behavior

of the battery under different operating conditions. Once a model has been estimated,

it is deployed in battery management system for online estimation of the states of the

battery. With the help of empirical equation discussed in this section, battery model with

describes the transient behavior of the battery at different SOC, C-rate and temperature

values. However, to utilize this model for further estimation of battery internal states

it is required to identify the parameter values of the empirical equation. The objective

of parameter identification is achieved by minimizing the error between expected catalog

voltage and the evaluated voltage from battery model at the different operating condition.

2.3 Objective function for optimization process

For battery modeling, one of the key challenges is to identify model parameters accurately.

Battery parameters can be identified by experimentation on hardware-setup and analysis

either in the frequency domain or in time domain [220]. The EIS testing method is per-

formed by applying a small amplitude ac current of varying frequency to the battery and

calculating impedance using voltage response [83]. The parameters of the battery are iden-

tified by impedance analysis in the frequency domain. Similarly, battery model parameters

are identified using curve fitting on the data collected using experimentation on hardware

using standard PCDT. These approaches are expensive and requires specialized electronic

equipment to perform the experiment. The requirement of expertise and high comput-

ing power hinders the applicability of the approach [83]. Model-based estimation methods

such as variants of Kalman filters [210], and neural network-based methods analyze voltage

responses in the time domain for varying operating conditions. Variants of Kalman filters

require less computation power, but these methods assume model equation to be linear (or

slightly non-linear); whereas battery parameter estimation problem is a high dimensional

non-linear problem. Neural network based methods require a large amount of training

data and high computational power to properly estimate model parameters. Various tests

have to be performed under various operating conditions in a laboratory to obtain voltage

responses for modeling battery using these methods. To avoid time-consuming experimen-

tation which requires substantial financial investment, parameter estimation is formulated

as an optimization problem to identify parameters of battery using voltage characteristic

data provided by manufactures. The battery parameter modeling is a high dimensional

non-linear problem which require intensive computation overhead for solution using con-

ventional methods. According to NFL theorem [211], a single optimization approach could

not be considered suitable for solving all optimization problems, hence, the performance
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comparison for six heuristic techniques has been examined. The motivation behind adopt-

ing mathematical optimization is to determine the coefficients of the polynomial equation

that are used to describe the parameters of the first order RC model given in equations

((2.1)-(2.4)). The objective function evaluation was done in terms of minimizing the dif-

ference between the expected catalog voltage and the evaluated voltage curve at various

temperatures. Thus this objective function was expressed as the Manhattan Euclidean

distance between value of the output voltage obtained from described battery model and

the voltage values given by the manufacturer at each sampling interval for both charging

and discharging process. The objective function can be mathematically expressed as:

min F (x) =
n∑
i=1

∣∣VM
Bt,i − V C

Bt,i

∣∣ (2.15)

Here V C
Bt,i denotes the catalog value given by the manufacturer and VM

Bt,i denotes the

output voltage value obtained from battery model at different SOC (or DOD) values.

The detailed description of various optimization algorithms utilized for identification of

the optimal values of coefficients of the polynomial equation has been included in the

following section. The concise information has been incorporated to familiarize with basics

of heuristic algorithms, while the pseudo-codes assists in understanding similarities and

differences in their implementation.

2.4 Meta-heuristic optimization algorithms for battery mod-

eling

The battery parameter optimization is a high dimensional multimodal optimization prob-

lem, and different stochastic optimization algorithms yield different approximations of the

optimal solution. Hence, six different meta-heuristic optimization techniques are utilized

to determine the optimal values of polynomial coefficients a1, a2...a34 for identification of

parameters of the battery model. The objective function, described in the previous sec-

tion, was modeled to incorporate the effect of various temperature levels, SOC and C-rate

on the battery modeling. The generalized problem formulation of parameter estimation

of the battery and its pseudo code has been added. A suitable meta-heuristic algorithm

(2-7) can be incorporated in step 12 of algorithm 1 to update the population.
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Algorithm 1 Pseudocode to estimate battery parameters

1: Read the battery data from manufacturer catalog for different temperature.
2: Define the upper bound (ubd) and lower bounds (lbd) for each parameter cofficient (ad)

for d = 1, 2, .....34.
3: Define Maximum iteration (maxiter).
4: Randomly initialize the population, represented by P solution sets, within the search

space defined by upper and lower bounds i.e. xp = [ap,1, ap,2...ap,34], p = 1, 2....P .
Here lbd ≤ ap,d ≤ ubd, d = 1, 2, 3....34.

5: for it = 0 : maxiter do
6: for p = 1 : P do
7: Calculate R0, R1, C1, Voc and VM

Bt using eq. (2.1)-(2.4), for pth solution (xp).
8: Calculate fitness fp = F (x = xp) for pth solution (xp).
9: end for

10: f∗ = F (x = x∗)
11: Update the population xp (p = 1, 2....P ) using one of the optimizer algo-

rithm: GA(Algorithm 2), PSO(Algorithm 3), DE(Algorithm 4), TLBO(Algorithm
5), GWO(Algorithm 6) or ASMO(Algorithm 7).

12: end for

2.4.1 Genetic Algorithm (GA)

GA was introduced by Holland et al. in 1988 [221] based on the principle of natural

selection and genetics. The process of natural selection starts with the selection of fittest

individuals from a population. In GA, a candidate solution to the optimization problem

is represented in the form of strings referred as chromosomes. The process is launched

by randomly initiating a set of chromosomes across the search space accompanied by

creating offspring population using a set of genetic operators such as selection, crossover,

and mutation to evaluate the fitness value over successive generations. The method of

implementing the algorithm is described in Algorithm 2.

In the algorithm, Ps is the number of selected optimal population that are retained in

the next iteration. r1, r2, rc and rm are random variables between 0 and 1. rc and rm

used for selection of crossover and mutation process. The various parameters affecting the

performance of GA were taken as follows: population size (P ) was taken as 1000, Ps was

taken as 100, crossover rate (Cprob) as 0.8 and mutation rate (Mprob) was selected to be

0.2. GA was initially developed to solve combinatorial optimization problems. Although

this makes it efficient in solving discrete optimization problems, but not that good for

continuous problems. By encoding the chromosomes in binary form and using binary

mutation and binary crossover, the GA can be used for discrete optimization problems.

For example, in a generation two parent chromosome encoded as: 000000 and 111111 can

result in offspring 000111 and 111000 in next generation through crossover after third
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Algorithm 2 Solution update using GA

1: Selection: Sort the population on the basis of fitness F (xp).
2: Crossover:
3: for p = Ps + 1 : P do
4: Select 2 solutions randomly from optimal solutions (Ps): a, bε[1, Ps].
5: for d = 1 : D do
6: if r1 < Cprob then
7: xp[d] = rc.xa[d] + (1− rc).xb[d]
8: else
9: xp[d] = xa[d]

10: end if
11: end for
12: end for
13: Mutation:
14: for p = 1 : P do
15: for d = 1 : D do
16: if r2 < Mprob then
17: xp[d] = lbd + rm ∗ (ubd − lbd)
18: end if
19: end for
20: end for

binary digit. Mutation can be implemented by swapping some of the digits from 0 to 1

and vice-versa.

2.4.2 Particle Swarm Optimization (PSO) Algorithm

PSO, introduced by Kennedy et al. in 1995 [222], is a swarm intelligence based method

simulating the intelligent movement and information-sharing behavior among the popula-

tion of different species throughout their food search. The optimization process comprises

of a population of particles that operate collectively through velocity and position up-

date influenced by personal best location and group past location to converge towards the

optimal solution. The method of implementing the algorithm is described in Algorithm 3.

Here vp is the velocity of the pth solution; w is an inertia weight factor that linearly

decreases from 0.9 to 0.1; c1 and c2 are acceleration constants with a value of 2 in this case;

r1 and r2 are stochastic component of the optimization and are chosen randomly between

0 and 1 in each iteration; pbp is the personal best position found by the pth solution and

gb is the global best position found so far. The population size (P ) was taken as 40. PSO

algorithm is more suitable for continuous optimization problems and is easy to implement,

but compared to GA, PSO lacks in solving discrete problems. Use of continuous values of
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Algorithm 3 Solution update using PSO

1: for p = 1 : P do
2: vp = w.vp + c1.r1.(pbp − xp) + c2.r2.(gb− xp)
3: xp = xp + vp
4: if F (xp) < F (pbp) then
5: pbp = xp
6: end if
7: if F (xp) < F (gb) then
8: gb = xp
9: end if

10: end for

inertia weight factor (w) and acceleration constants (c1 and c2) makes it difficult to use

velocity update equation for solution update in discrete optimization problems.

2.4.3 Differential Evolution (DE) Algorithm

DE was introduced by Storn et al. in 1997 [223] and is an evolutionary optimization

algorithm. The candidate population moves in the search space iteratively by three evo-

lutionary steps (Mutation, Crossover and Selection) given in equations (2.16), (2.17) and

(2.18).

Algorithm 4 Solution update using DE

1: for p = 1 : P do
2: Randomly select a, b, c ε[1, P ].
3: vd,p = xa +M.(xb − xc).
4: if rj ≤ CR or j = Ir then
5: up = vd,p
6: end if
7: if rj > CR or j 6= Ir then
8: up = xp
9: end if

10: if F (up) ≤ F (xp) then
11: xp = up
12: end if
13: end for
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vd,p = xa +M.(xb − xc) (2.16)

up =

vd,p if rj ≤ CR or j = Ir

xp if rj > CR or j 6= Ir

(2.17)

xp =

up if F (up) ≤ F (xp)

xp if F (up) > F (xp)
(2.18)

Here xa, xb and xc are randomly chosen candidate solutions, M is the mutation factor

(between 0 and 2) and vd is a donor vector. u is the trail vector, r is a random variable

between 0 and 1, Ir is random integer between 0 and T , and CR is crossover constant.

The population size (P ) was taken as 40. The algorithm can be implemented as given in

Algorithm 4. Compared to GA and PSO, DE is much more robust as it is good against

both discrete and continuous optimization problems. Further, similar to PSO an iteration

of DE is much faster than GA and other more complex algorithms described later on.

But compared to more advanced algorithms it lacks any capability to avoid stagnation

problems.

2.4.4 Teaching Learning Based Optimization (TLBO) Algorithm

TLBO was introduced by Rao et al. in 2012 [224] as a population-based optimization

algorithm inspired by the teaching-learning process in a class room. In this algorithm, the

influence of a teacher on the output of the learners in a class is evaluated. The algorithm

uses two modes of learning: (1) Teacher phase and (2) Learner phase. In this algorithm,

a population is a group of learners, design variables of the optimization are the subjects

offered and fitness value of optimization are the performance results of learners. The

method of implementing the algorithm is described in Algorithm 5.

Here TF is the randomly chosen teaching factor (its value is either 1 or 2); r and rp

are random variables within range of 0 and 1 and Ms is the mean solution value. The

population size (P ) was taken as 40. Although TLBO is much harder to implement

compared to PSO and DE, but due to implementation of hierarchical group based solution

update strategies it is more efficient against complex optimization problems.
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Algorithm 5 Solution update using TLBO

1: Ms = 1
P .
∑P

p=1 xp
2: for p = 1 : P do
3: dMs = r.(x∗ − TF .Ms)
4: x

′
p = xp + dM

5: if F (x
′
p) < F (xp) then

6: xp = x
′
p

7: end if
8: end for
9: for p = 1 : P do

10: Select q randomly between 1 and P .

11: Xp =

{
Xp + rp(Xp −Xq) if F (Xp) < F (Xq)
Xp + rp(Xq −Xp) if F (Xq) < F (Xp)

12: end for

2.4.5 Grey Wolf Optimization (GWO) Algorithm

GWO was introduced by Mirjalili et al. in 2014 [225]. It is meta-heuristic algorithm

based on social hierarchy, and hunting mechanism of grey wolves. For implementing

social hierarchy, four kinds of grey wolves ( alpha, beta, delta, and omega) are employed.

Following steps are considered to simulate hunting behavior: searching, encircling and

attacking prey. The method of implementing the algorithm is described in Algorithm 6.

Ap = 2.cv,p.r1 − cv,p (2.19)

Cp = 2.r2 (2.20)

Algorithm 6 Solution update using GWO

1: Update xα, xβ and xδ to assign them the best three solution parameters from the
population.

2: for p = 1 : P do
3: Calculate Aα, Aβ and Aδ using (2.19).
4: Calculate Cα, Cβ and Cδ using (2.20).
5: x1 = xα −Aα. |Cα.xα − xp|
6: x2 = xβ −Aβ. |β.xβ − xp|
7: x2 = xδ −Aδ. |Cδ.xδ − xp|
8: x = x1+x2+x3

3
9: end for

Here, cv is the control variable that linearly decreased from 2 to 0; A and C are coefficient

vectors; r1 and r2 are random variables within the range of 0 and 1. The population size
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(P ) was taken as 40. Compared to TLBO and ASMO, GWO is easier to implement. It

is much faster to iterate over the solutions in case of GWO, but it is inefficient against

complex optimization problems due to stagnation problems.

2.4.6 Ageist Spider Monkey Optimization (ASMO) Algorithm

Spider monkey optimization was introduced by Bansal et al. in 2014 [226]. It is swarm

intelligence-based method simulating foraging behavior of spider monkeys. In 2016, the

lead author of the article Sharma et al. [227] proposed a modified version of spider monkey

optimization which groups the population of spider monkey based on their ages. The

algorithm works by dividing the population into groups. Each group is assigned (based

on fitness value) a leader called Local Leader (LL). The overall leader of the population

(Global Leader or GL) is the Local Leader with best fitness. All the solutions are updated

Algorithm 7 Solution update using ASMO

1: GL = x∗

2: Update LL for each solution.
3: if LL is not changed for LLlimit then
4: Reinitialize the solutions with that LL
5: end if
6: if GL is not changed for GLlimit then
7: Split one of the groups and reassign Local Leader(LL) for new groups
8: end if
9: for p = 1 : P do

10: for d = 1 : D do

11: x
′
p[d] =


xp[d] + r1.(LLp[d]− xp[d]) if r2 ≥ pr1

+r2.(xr[d]− xp[d])
xp[d] if r2 < pr1

12: end for
13: if F (x

′
p) < F (xp) then

14: xp = x
′
p

15: end if
16: end for
17: for p = 1 : P do
18: for d = 1 : D do

19: x
′
p[d] =


xp[d] + r3.(GLp[d]− xp[d]) if r4 ≥ pr2

+r4.(xr[d]− xp[d])
xp[d] if r4 < pr2

20: end for
21: if F (x

′
p) < F (xp) then

22: xp = x
′
p

23: end if
24: end for
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in two steps based on the local leader and global leader positions. Further, to counter the

problem of stagnation, there are two more steps that can be taken. If a particular LL does

not move from its position for a particular number of iterations (LLlimit), the solutions

within it are reinitialized along with reassigning of the LL in that group. Further, if the

GL does not move from its position for a particular number of iterations (GLlimit), one of

the group in the population is split into two parts and each is assigned a LL. In case the

number of groups exceeds the limit, the algorithm combines the groups and reassign the

local leaders. The method of implementing the algorithm is described in Algorithm 7.

pr2 = 0.1 + 0.9.
F (x∗)

F (xp)
(2.21)

Here, r1 and r3 are random variables within the range of 0 and 1; r2 and r4 are random

variables within the range of -1 and 1. pr1(= 0.5) and pr2 are perturbation rates. pr2 is

calculated as given by equation (2.21).

The ASMO algorithm has an inherent group breaking and merging behavior within it

which prevents it from stagnating at a local optimum for a long time. In other words,

ASMO performs well against complex optimization problems and in most cases it easily

avoids stagnation problems due to its efficient multiple group fission-fusion solution update

strategies. These group splitting and merger strategies helps the algorithm in finding the

better solutions compared to other such algorithms and makes it more robust against

complex multi-modal optimization problems. Further, the group based design enables

easy parallel implementation of the algorithm to utilize multi-core systems effectively.

2.5 Results and Discussion

To evaluate the parameters of the battery model with the variation of temperature, a

Panasonic 3.1Ah 18650 cylindrical battery was used and operated over a wide range of

temperature (0◦C to 45◦C) in the simulation. Detail about the battery characteristics

values is given in Appendix A.For identification of battery model parameters dependent

on C-rate, SOC and temperature, six different meta-heuristic optimization techniques

(GA, PSO, DE, TLBO, GWO, and ASMO), as described in last Section were utilized.

The efficacy of the proposed method has been validated by comparing the obtained results

with battery parameters derived from standard PCDT. Further, the performance of all

heuristic optimization approaches have been examined and the conclusion obtained for

the specified battery has been tabulated and compared in Section 2.5.3.
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2.5.1 Estimated Parameters of the Battery Using Proposed Approach

For the purpose of evaluation, a particular algorithm is executed for ten identical trails

on a specific model ( charge or discharge) with an individual run consisting of 20,000

function evaluations. To reduce the effect of this randomness in comparing the results of

different algorithms, we had to take multiple results with each algorithm. Further, the

statistical tests like t-test work well on a sample size less than 30. Hence, considering

the limited applicability of statistical tests and keeping reasonable computational time,

we set the number of trials for each algorithm to 10. The battery model parameters

corresponding to the most optimal solution, evaluated using the objective function value

given in equation (2.15), are used for further model investigation. Figure 2.3 (a) and
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Figure 2.3: Predicted Characteristic Curve (a) For Charging (b) For Discharging (c)
Error for Charging at 25◦C (b) Error for Discharging at 25◦C



Chapter 2. Modeling and Parameter Estimation of Battery 61

Table 2.1: PC’s a1 to a34 for charging and discharging

Charging Discharging

GA PSO DE TLBO GWO ASMO GA PSO DE TLBO GWO ASMO

a1 0.513 0.012 0.237 0.006 0.009 0.007 0.189 0.000 0.038 0.002 0.003 0.019
a2 0.687 0.012 0.125 0.001 0.003 0.010 0.325 0.025 0.024 0.026 0.009 0.006
a3 0.175 0.054 0.144 0.005 0.047 0.016 0.336 0.099 0.025 0.013 0.013 0.009
a4 28.7 16.8 36.1 3.44 0.689 39.3 34.9 37.2 7.21 9.54 4.56 25.10
a5 0.008 -0.115 0.069 0.233 0.018 0.024 0.066 0.032 0.400 0.018 0.012 0.059
a6 0.110 -0.021 0.268 0.040 0.354 0.048 0.640 -0.074 0.094 0.027 0.005 0.027
a7 0.216 0.125 0.017 0.050 0.008 0.008 0.084 0.056 0.167 0.010 0.069 0.015
a8 0.336 0.468 0.276 0.003 0.033 0.028 0.122 0.096 0.064 0.316 0.000 0.060
a9 0.493 0.043 0.268 0.009 0.024 0.000 0.553 -0.012 0.005 0.181 0.532 0.236
a10 0.578 0.087 0.725 0.006 0.034 0.002 0.513 0.128 0.050 0.398 0.112 0.282
a11 15.3 37.6 35.9 5.7 23.4 39.6 15 12 2.95 0.357 1.09 1.13
a12 0.130 0.216 0.154 0.001 0.890 0.179 0.458 0.414 0.353 0.262 0.042 0.364
a13 0.077 0.179 0.116 0.294 0.010 0.234 0.559 0.400 0.496 0.372 0.190 0.728
a14 0.032 0.404 0.205 0.127 0.010 0.528 0.198 0.140 0.376 0.080 0.963 0.257
a15 293 389 72 2.63 12 238 13.6 194 11.9 5.19 7.71 18.3
a16 0.771 0.107 0.368 0.980 0.124 0.617 0.140 0.331 0.780 0.435 0.058 0.321
a17 0.261 0.038 0.879 0.013 0.027 0.159 0.191 0.797 0.546 0.231 0.002 0.211
a18 18.4 20.0 10.2 16.5 1.3 29.4 21.7 9.01 24.9 22.9 1.32 17.3
a19 416 570 646 338 360 689 629 691 697 547 688 698
a20 0.646 0.713 0.435 0.840 0.003 0.644 0.557 0.479 0.271 0.112 0.035 0.858
a21 0.703 0.635 0.531 0.384 0.574 0.803 0.653 0.853 0.895 0.132 0.005 0.796
a22 0.834 0.830 0.558 0.000 0.014 0.065 0.001 0.030 0.232 0.223 0.017 0.111
a23 0.492 0.050 0.567 0.009 0.011 0.091 0.905 0.822 0.055 0.004 0.034 0.010
a24 0.380 0.437 0.521 0.022 0.004 0.064 0.011 0.139 0.106 0.004 0.010 0.052
a25 13.1 15.9 25.6 2.81 19.5 39.8 29.8 13.2 28 2.6 13.9 14.6
a26 1.050 -0.166 0.408 0.125 0.018 0.143 0.783 1.200 0.086 0.000 0.006 0.182
a27 0.379 -0.086 0.083 0.189 0.169 0.051 0.215 0.432 0.096 0.001 0.046 0.228
a28 0.647 0.287 0.045 0.002 0.009 0.051 0.508 0.413 0.100 0.062 0.001 0.069
a29 0.827 0.062 0.083 0.000 0.001 0.012 0.692 0.240 0.129 0.058 0.018 0.032
a30 0.546 0.472 0.267 0.002 0.956 0.763 0.415 0.643 0.995 0.002 0.505 0.891
a31 0.340 0.920 0.038 0.217 0.013 0.422 2.520 0.187 0.034 0.005 0.164 0.036
a32 3.408 20.784 0.811 0.338 0.127 6.509 7.490 5.079 0.898 0.190 0.032 0.283
a33 16.461 2.028 2.161 2.378 1.181 0.625 8.563 3.267 0.115 0.031 0.006 0.004
a34 21.282 2.619 8.563 21.615 2.278 2.610 1.280 6.360 3.109 0.202 1.089 1.139

(b) correspond to closeness of the estimated voltage curve with expected catalog voltage

at various temperatures (0◦C, 25◦C and 45◦C) for both charge and discharge processes

respectively. Voltage-SOC characteristics have linear behavior in the middle SOC (0.2 to

0.8) values and hence require fewer sample points in that region. On the other hand, at

higher and lower SOC values, they have exponential behavior that requires more sample

points for accurate estimation of parameters. It can be observed from these curves that

the voltage characteristic curves obtained from the model are following the catalog curves

for all the measured temperatures. Due to the presence of non-linearity in the voltage

characteristics for the low and high SOC values, most of the estimation errors occur in

these region as represented by the small amount of deviations in the curves (Figure 2.3

(a) and (b)).

Error in the prediction of characteristic curves for battery terminal voltage at different
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Figure 2.4: Predicted Characteristic Curve Error For charging at (a) 0◦C (b) 25◦C (c)
45◦C
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Figure 2.5: Predicted Characteristic Curve Error For discharging at (a) 0◦C (b) 25◦C
(c) 45◦C
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temperature values (0◦C, 25◦C, 45◦C) for both charge and discharge process utilizing

different optimization techniques has been illustrated in Figure 2.4 and Figure 2.5 respec-

tively. The predicted voltage error is computed corresponding to different SOC values

within range 0 to 1 at different temperatures. The effect of non-linearity of voltage char-

acteristics is apparent in these curves, as for all the optimization techniques, most of the

error is present in the lower and higher SOC regions. The comparison between different

optimization techniques has been made using different coloured lines. The high perfor-

mance of ASMO and GWO algorithms are quite evident from these figures at all the

measured temperatures for both charge and discharge processes. ASMO algorithm shows

least error for most of the SOC values for all three temperature values compared to other

optimization algorithms for both tasks.

The values of battery polynomial coefficients corresponding to best accuracy of the voltage

characteristics obtained after optimization for both charging and discharging state have

been tabulated in Table 2.1. The given battery parameter optimization problem belongs

to a class of multimodal optimization problems. These problems, by nature, have a large

number of local optima. Further, the high dimensionality (34 in this case) of the objective

function, makes it almost impossible to find the global optima of the problem. In general,

the solutions for these problems are approximate, and the given evolutionary optimization

techniques are known to solve such problems by finding multiple approximate solutions

of such problems and finally selecting the best approximation. Not all methods are ca-

pable of finding equally good approximations of the solution, thus resulting in different

combinations of the parameter values for each solution. In general, each set of optimized

parameter represents different local optima in the objective function solution surface.

2.5.2 Validation of estimated battery parameters

The estimated parameter values obtained with the proposed model are cross-validated

by Constant-current Pulse Charge-Discharge Test (PCDT) in the present section. PCDT

involves alternate cycles of charging/discharging and relaxing the battery for calculation of

model parameters values. This test allows to observe the dynamic behavior of the battery

at different temperatures. The procedure of PCDT is as follows [228]: firstly, the battery

was fully charged using Constant-Current Constant-Voltage (CC-CV) charging technique.

During CC-CV charging, the battery was charged at constant current with 1 C-rate until

the terminal voltage of the battery reaches upper-threshold voltage 4.2 V. Thereafter, the

voltage was held constant, and the current decays exponentially to 0.01 C as the battery

begins to saturate [99]. Secondly, the battery was discharged by applying a positive pulse
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current (C/2-rate) for 712 seconds followed by a relaxation period with zero current for

7126 seconds with 10% change of SOC. The foregoing process was repeatedly performed

until the voltage reaches lower-threshold voltage 2.4 V. Finally, the battery was again

charged by following the same routine with negative pulse current (C/2-rate) until the

battery gets fully charged. The terminal voltage and current response of the battery for

PCDT at room temperature (25◦C) are shown in Figure 2.6 (a). In the same way, PCDT

was carried out for temperature 0◦C and 45◦C.

0 500 1000 1500 2000 2500

Time (mins)

2.4

2.8

3.2

3.6

4

4.4

V
o
lt

ag
e 

(V
)

-1.5

-1

-0.5

0

0.5

1

1.5

C
u
rr

e
n

t 
(A

)

Voltage

Current

Figure 2.6: Voltage and current profile for Pulse Charge-Discharge Test at 25◦C
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The terminal voltage of battery can be expressed as:
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VM
Bt (t) = Voc(t)− IBL(t)R0 − VRC(t) (2.22)

VRC(t) =

IBL(t)R1(1− e(t−t0)/R1C1) for t0 < t < td

Q(0)
C1

e−(t−td)/R1C1 for td < t < tr

(2.23)

Here, t0 and td denote time instant at the starting and end of the pulse respectively during

charging and discharging scenario; whereas tr denotes time instant at the end of relaxation;

VRC denotes voltage drop across R1C1.

0 0.25 0.5 0.75 1

SOC

2.7

3.1

3.5

3.9

4.3

O
h
m

s 
(Ω

)

(a)

0 0.25 0.5 0.75 1

SOC

0

0.1

0.2

0.3

0.4
O

h
m

s 
(Ω

)

(b)

0 0.25 0.5 0.75 1

SOC

0

0.03

0.06

0.09

0.12

O
h
m

s 
(Ω

)

(c)

0 0.25 0.5 0.75 1

SOC

0

375

750

1125

1500

F
a
ra

d
 (

F
)

(d)

0 0.25 0.5 0.75 1

SOC

Estimated: 0
°
 C Estimated: 25

°
 C Estimated: 45

°
 C Calculated: 0

°
 C Calculated: 25

°
 C Calculated: 45

°
 C

Figure 2.8: Plots for parameters estimated using proposed model and PCDT For Charg-
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The values of parameter identified for battery model at different temperatures and SOC/-

DOD during charging/discharging scenario are shown in Figure 2.8 and 2.9 respectively.

Voc is defined as the measured terminal voltage when the battery reaches steady-state.
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An assumption is made that all transients have settled by the time instant tr, and the

terminal voltage of the battery at time instant tr (i.e. V1 in Figure 2.7) is considered as

OCV (i.e. Voc) value during charging/discharging scenario.
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Figure 2.9: Plots for parameters estimated using proposed model and PCDT For Dis-
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Figure 2.8 (a) and 2.9 (a) show the relationships between Voc and SOC/DOD at different

temperatures and illustrate an agreement between values obtained from proposed method

and PCDT. The consistency of Voc at various temperatures indicates the low sensitivity of

Voc to temperature. Voc change rapidly with low values of SOC and high values of DOD.

Otherwise, there is approximately linear variation between Voc and SOC/DOD.

The values of R0, R1 and C1 were extracted from voltage drop obtained after subtracting

terminal voltage from OCV. The voltage drop can be divided in two portions as shown

in Figure 2.7 (b): firstly, the ohmic resistance voltage drop is the average of difference
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(V1 − V2) and (V3 − V4). It is considered as the voltage drop across resistance R0 of

the battery. The value of R0 can be calculated as the average of resistance obtained by

dividing difference of voltages by difference of current at corresponding instant of time [74].

From Figure 2.8 (b) and 2.9 (b), it can be observed that R0 is sensitive to temperature

but there is a small difference in the curves for different SOC and DOD indicating that

R0 is approximately independent of SOC and DOD. Secondly, the transient voltage drop

between (V2− V3) followed by voltage rise after V4 depends on the R1 of the battery. It is

difficult to experimentally measure the time constant for polarization.

From equation (2.23), it can be observed that during charging and discharging process,

VRC is represented by the exponential function. Non-linear Least Square Fitting (NLSF)

method is used to fit PCDT data with simulated terminal voltage obtained using equation

(2.23). NLSF approach minimizes the error and optimize the value of the parameters.
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Through this approach, the value of R1 and C1 can be determined. The plots in Figure

2.8 (c) and 2.9 (c) indicate the value of R1 and Figure 2.8 (d) and 2.9 (d) indicate the value

of C1 for charging and discharging scenario respectively estimated by NLSF approach and

proposed method. The similarity between the values of parameters R1 and C1 obtained

from the proposed method and PCDT indicates the effectiveness of the proposed work. As

shown in Figures R1 tends to decrease slowly with increasing SOC. Similarly, R1 increases

significantly with increase in DOD. High value of R0 and R1 at low temperature 0◦C

oppose the current flow in/form the battery which will limit the amount of extractable

energy in battery.

To validate the estimated parameters of the battery model, the battery terminal voltage

at 25◦C obtained with the PCDT is compared with the terminal voltage obtained from

equation (2.23) considering previously calculated value of the parameters. The plots of

corresponding voltage at room temperature 25◦C and predication error at various temper-

atures (0◦C, 25◦C , 45◦C) for both charging and discharging scenarios are shown in Figure

2.10. The maximum error in predicted voltage is less than ±0.3 at various temperatures.

2.5.3 Performance analysis of various optimization algorithms

For evaluation purpose, a particular algorithm was employed ten times on specific mod-

els (charge and discharge) with an individual run consisting of 20,000 function evaluations

based on convergence analysis. The sample size considered for GA was 1000, 40 for ASMO

and PSO, DE, TLBO, and GWO each were taken with a population of sample size 40.

The objective function for optimization given in equation (2.15) was adopted for compar-

ison of quality and accuracy of estimation of parameters through different optimization

techniques. The proposed model of identification of battery parameters is evaluated with

different optimization algorithms under similar execution conditions. Results are obtained

at three different temperatures, and the solution quality, computation efficiency, and con-

vergence characteristics of all algorithms are compared.

For comparing the computational burden of the algorithms, the average convergence plots

of different algorithms in case of charging and discharging scenarios have been given in Fig-

ure 2.11. In both scenarios, TLBO, GWO and ASMO algorithms converged more quickly

than PSO, GA and DE, thus proving themselves to be less computationally expensive.

The performance of the executed optimization approaches is analyzed in terms of best and

worst fitness function value, standard deviation and mean of the fitness function. Each

algorithm is executed for ten identical trails and the calculation of statistical performance
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Figure 2.11: Convergence curves for (a) Charging (b) Discharging

indices in the case of charging and discharging is presented Table 2.2. Compared to GA,

PSO, DE and TLBO algorithms, ASMO and GWO produced much lower mean error in

both the charging and discharging scenarios. This shows the robustness of these algorithms

in different scenarios (Charging and Discharging). Further, the much lower standard-

deviation values show that algorithms performed consistently over all the runs justifying

their reliability. ASMO marginally outperformed GWO algorithm in terms of mean error.

This is due to fusion-fission based group formation in the ASMO algorithm which helps it

to avoid the stagnation condition. The best fitness value obtained by ASMO is better than

best fitness value obtained by other methods for both charging (0.572) and discharging

(0.272) scenarios indicating the superiority of ASMO algorithm over other approaches.

Further, in both scenarios, the best result was given by the ASMO algorithm which was

used for plotting the predicted voltage characteristic curves (Figure 2.3 (a) and (b)).

Table 2.2: Error comparison for charge and discharge Model

GA PSO DE TLBO GWO ASMO

Charging

Mean 7.9904 81.5254 2.4461 1.0541 0.7750 0.6991
St.D 2.9043 26.0813 0.1674 0.2775 0.0594 0.0950

Worst 12.1405 121.8897 2.7140 1.5447 0.8868 0.8932
Best 2.9802 39.9198 2.2520 0.7680 0.6862 0.5724

Discharging

Mean 5.7681 23.3100 0.7406 0.4778 0.3269 0.2983
St.D 5.0248 1.8921 0.0848 0.0913 0.0287 0.0191

Worst 19.543 25.9502 0.8635 0.6658 0.3729 0.3373
Best 2.4044 21.2600 0.6060 0.3755 0.2869 0.2718
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Although classical performance metrics such as mean, standard deviation, best and worst

fitness value, convergence rate are suitable methods of comparing the algorithms, but they

are not sufficient to find the difference in performance of the algorithms. This can be seen

clearly in previous results that there is not much distinction between GWO and ASMO

algorithms. To compare the performance and statistical significance of computationally

intelligent algorithms, the popularity of parametric and nonparametric tests has increased

Table 2.3: T-test for charging scenario

GA PSO DE TLBO GWO ASMO

GA
t 0 -8.836 6.033 7.525 7.863 7.943
h 0 1 1 1 1 1
p 1 5.79× 10−8 1.05× 10−5 5.79× 10−7 3.13× 10−7 2.71× 10−7

PSO
t 8.836 0 9.558 9.726 9.760 9.769
h 1 0 1 1 1 1
p 5.79× 10−8 1 1.78× 10−8 1.37× 10−8 1.3× 10−8 1.28× 10−8

DE
t -6.033 -9.558 0 13.59 29.80 28.75
h 1 1 0 1 1 1
p 1.05× 10−5 1.78× 10−8 1 6.64× 10−11 9.02× 10−17 1.7× 10−16

TLBO
t -7.525 -9.726 -13.59 0 3.118 3.837
h 1 1 1 0 1 1
p 5.79× 10−7 1.37× 10−8 6.64× 10−11 1 5.94× 10−3 1.21× 10−3

GWO
t -7.863 -9.760 -29.80 -3.118 0 2.145
h 1 1 1 1 0 1
p 3.13× 10−7 1.3× 10−8 9.02× 10−17 5.94× 10−3 1 4.58× 10−2

ASMO
t -7.943 -9.769 -28.75 -3.837 -2.145 0
h 1 1 1 1 1 0
p 2.71× 10−7 1.28× 10−8 1.7× 10−16 1.21× 10−3 4.58× 10−2 1

Table 2.4: T-test for discharging scenario

GA PSO DE TLBO GWO ASMO

GA
t 0 -10.35 3.169 3.334 3.430 3.448
h 0 1 1 1 1 1
p 1 5.21× 10−9 5.32× 10−3 3.69× 10−3 2.99× 10−3 2.87× 10−3

PSO
t 10.35 0 37.56 37.99 38.28 38.33
h 1 0 1 1 1 1
p 5.21× 10−9 1 1.49× 10−18 1.22× 10−18 1.06× 10−18 1.04× 10−18

DE
t -3.169 -37.56 0 6.660 14.59 16.07
h 1 1 0 1 1 1
p 5.32× 10−3 1.49× 10−18 1 3× 10−6 2.05× 10−11 4.06× 10−12

TLBO
t -3.334 -37.99 -6.660 0 4.987 6.087
h 1 1 1 0 1 1
p 3.69× 10−3 1.22× 10−18 3× 10−6 1 9.56× 10−5 9.43× 10−6

GWO
t -3.430 -38.28 -14.59 -4.987 0 2.622
h 1 1 1 1 0 1
p 2.99× 10−3 1.06× 10−18 2.05× 10−11 9.56× 10−5 1 1.73× 10−2

ASMO
t 3.448 -38.33 -16.07 -6.087 -2.622 0
h 1 1 1 1 1 0
p 2.87× 10−3 1.04× 10−18 4.06× 10−12 9.43× 10−6 1.73× 10−2 1
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in last few years. T-test (Parametric) and Wilcoxon test (Non-Parametric) can be carried

out for comparing different algorithms. The key performance metrics include p-value, h-

value along with the corresponding t-value during statistical analysis that are calculated

by executing at least ten identical trails for all the algorithms. Table 2.3 and 2.4 show the

p-value, h-value along with the corresponding t-value of all algorithms in comparison to

each other for charging and discharging scenarios. The algorithms in the first column are

used as base algorithms in reference to which the algorithms in the first row have been

compared. p-Value represents the probability of rejection of the null hypothesis. Its value

lies in between 0 and 1. Lesser the p-value, more is the difference between the compared

algorithms. Hypothesis test or h-value also indicates the rejection of the null hypothesis.

h-value of 1 represents confirmation of the rejection of null hypothesis and thus indicates

that the compared algorithms are different. For hypothesis testing, a significance level of

5% was taken. The t-test assesses whether the mean of two groups of results is statistically

different from each other or not. For the purpose of testing, two-tailed t-test was adopted

Table 2.5: Wilcoxon-test for charging scenario

GA PSO DE TLBO GWO ASMO

GA
h 0 1 1 1 1 1
p 1 1.83× 10−4 1.83× 10−4 1.83× 10−4 1.83× 10−4 1.83× 10−4

PSO
h 1 0 1 1 1 1
p 1.83× 10−4 1 1.83× 10−4 1.83× 10−4 1.83× 10−4 1.83× 10−4

DE
h 1 1 0 1 1 1
p 1.83× 10−4 1.83× 10−4 1 1.83× 10−4 1.83× 10−4 1.83× 10−4

TLBO
h 1 1 1 0 1 1
p 1.83× 10−4 1.83× 10−4 1.83× 10−4 1 3.61× 10−4 8.77× 10−4

GWO
h 1 1 1 1 0 1
p 1.83× 10−4 1.83× 10−4 1.83× 10−4 3.61× 10−4 1 4.12× 10−4

ASMO
h 1 1 1 1 1 0
p 1.83× 10−4 1.83× 10−4 1.83× 10−4 8.77× 10−4 4.12× 10−4 1

Table 2.6: Wilcoxon-test for discharging scenario

GA PSO DE TLBO GWO ASMO

GA
h 0 1 1 1 1 1
p 1 1.81× 10−4 1.83× 10−4 1.83× 10−4 1.82× 10−4 1.82× 10−4

PSO
h 1 0 1 1 1 1
p 1.81× 10−4 1 1.81× 10−4 1.81× 10−4 1.80× 10−4 1.80× 10−4

DE
h 1 1 0 1 1 1
p 1.83× 10−4 1.81× 10−4 1 3.30× 10−4 1.82× 10−4 1.82× 10−4

TLBO
h 1 1 1 0 1 1
p 1.83× 10−4 1.81× 10−4 3.3× 10−4 1 1.82× 10−4 1.82× 10−4

GWO
h 1 1 1 1 0 1
p 1.82× 10−4 1.8× 10−4 1.82× 10−4 1.82× 10−4 1 2.1× 10−2

ASMO
h 1 1 1 1 1 0
p 1.82× 10−4 1.80× 10−4 1.82× 10−4 1.82× 10−4 2.1× 10−2 1
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with 5% significance level. The negative t-value with ASMO as base algorithm along with

low p-value and h-value of 1 with respect to all the other algorithms proves ASMO to

be significantly better than other algorithms including GWO. A further comparison has

been made in Table 2.5 and 2.6 using the Wilcoxon ranked sum test. For this test, the

comparison data was taken in normalized form with a significance level of 5%. This test

finds if there is a significant difference between the two compared algorithms. As evident

from the h-value of 1, there is a significant difference in the performance of the ASMO

algorithm and other algorithms including GWO.

T-test and Wilcoxon test clearly show that the ASMO algorithm performed significantly

better than all other tested algorithms. The lower mean fitness value and standard de-

viation of the ASMO prove its superioty in the battery parameter estimation scenario.

Further, the low computational requirements signify the robustness of the algorithm, thus

making it a prime choice for the task of battery parameter estimation.

2.6 Chapter Summary

An accurate determination of the parameters of battery model plays an indispensable part

in replicating the behavior of battery. In this chapter,a first-order RC battery model incor-

porating the effect of the temperature on the battery parameters with SOC and C-rate is

utilized. The parameter estimation is modeled in optimization framework as minimization

of the Manhattan distance between the voltage computed from the battery model and

catalog voltages supplied by the manufacturer. Six different meta-heuristic optimization

techniques (viz. GA, PSO, DE, TLBO, GWO, and ASMO) have been utilized to obtain

optimal parameters of the model. The performance of applied optimization techniques is

compared in terms of their ability and accuracy in the extraction of the battery model

parameters with a lower convergence rate. For the model, GWO and ASMO optimization

techniques proved to be more robust, reliable and gave an optimal solution in both charging

and discharging scenarios. The lower mean fitness value (charging:0.699/discharging:0.298)

and standard deviation (less than 1) of the Ageist Spider Monkey Optimization (ASMO)

proved its superiority in battery parameter estimation. For precise statistical investi-

gation of computational intelligence algorithms, parametric (T-test) and non-parametric

tests (Wilcoxon test) have been performed. From performance index and test-based study,

it was concluded that the ASMO algorithm functions more reliably than all other tested

algorithms. Further, the low computational requirements signify the simplicity of the al-

gorithm, thus presenting it as an appropriate option for the evaluation of battery model
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parameters. The values of parameters extracted using ASMO are validated with values

evaluated from PCDT. It is observed from the validation process that there is a similar-

ity between parameters values obtained from both the methods. Therefore, the proposed

technique can be used as an alternative for estimation of battery parameters.



Chapter 3

Online Assessment of Battery

Performance

3.1 Introduction

Accurate estimation of the State-of-Charge (SOC) and State-of-Health (SOH) are of great

significance in battery management system due to the requirement of ensuring safe and

reliable operation of a Li-ion battery in EVs. For driving purpose, it is essential for the

driver to have information about how long the driver can still drive with the present charge

in the battery. If the driver does not have the precise information, it will create a lot of

inconvenient if the charge gets finished before completion of the ride. Conventional inter-

nal combustion engine automobile has a dashboard for fuel gauge that shows the absolute

level of fuel remaining in the tank. Similarly, battery SOC corresponds to the amount

of energy left inside a battery to power the EVs. For EVs customers it is essential to

determine the current remaining available capacity so that driver can recharge or change

the battery for traveling. Moreover, another inevitable problem with the battery is that

their performance (health) deteriorate gradually with cycling (usage) and calendar life

(aging) due to irreversible chemical changes with load variations. With the determina-

tion of the current remaining available capacity of the battery, it is also vital to identify

battery current maximum available capacity ahead of time so that decision for battery

replacement could be made. In the combined equivalent circuit based battery model, the

energy balance circuit represents battery degradation with charging and discharging with

the help of Rs,dis and Cuse. Battery SOC variation is given by VSOC whose value changes

between 0 to 1. The accuracy of SOC estimation depends mainly on the fidelity of the

75
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battery model and the robustness of the estimation techniques. The review related to the

estimation of internal battery states identify that estimation can be performed by utilizing

conventional, data-driven and model-based methods. The conventional methods are easy

to implement, however, they are highly affected by external distributions. Data-driven

methods perform well with non-linear and high dimensional models with an ability to

predict the internal states accurately by using well-computed training data for all pos-

sible operating condition. Generation of a large amount of data is the main drawback

of data-driven methods which demands large memory and complex computation. The

nonlinear observer has enhanced robustness against the disturbances and improved per-

formance in terms of accuracy, converge speed and computation cost. Nevertheless, the

model could deliver inaccurate results if the controller is not properly designed. Adaptive

filters are the most favored techniques since they can predict non-linear dynamics states

with good precision, high efficiency and less computational cost. As the battery model

has been developed to represents the dynamic behavior of the battery, hence, model-based

adaptive filters recognized as appropriate battery internal states estimation methods. Dif-

ferent variants of adaptive filters are utilized for estimation of internal battery states. In

this work, comparison among the model-based estimation techniques such as Extended

Kalman Filter (EKF), Sigma-point Kalman Filter (SPKF) and Particle Filter (PF) for

estimation of battery SOC has been performed. The battery model developed in Chapter

2 has been used for analyzing the quality and execution time for the different variant

of KF. Model-based estimation methods have been compared regarding their robustness,

accuracy and computational time. The voltage response circuit of the combined equiva-

lent battery model primary intended to capture the short-term behavior of the batteries

in terms charging and discharging process. Whereas, battery capacity degradation is the

much slower chemical reaction. To mismatch in the complexity and time-scale, most bat-

tery capacity degradation model are based on pattern analysis of measured data rather

than the fundamental process modeling. To determine the general model for capacity

degradation empirical equations based models are developed by using curve fitting tech-

niques. With the help of empirical capacity degradation model, the complexity of model

tuning can be reduced notably. In this work, two different empirical capacity degrada-

tion models have been developed and their effectiveness in analyzed for representing the

degradation behavior of the battery. Empirical battery capacity degradation model was

developed by curve fitting using capacity degradation data obtained from the life-cycle

test. Information about battery current SOH and remaining useful life (RUL) has been

determining by using different model-based estimation technique and effectiveness of each

method in estimation is analyzed. This chapter deals with the estimation of internal
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states of the battery using model-based estimation methods. Problem formulation using

a state space model regarding the estimation of internal states of the battery has been

defined in Section 3.2. The state space model for estimation of battery SOC is realized

using the voltage response circuit developed in Chapter 2. Whereas the state space model

for battery SOH estimation is accomplished using the empirical model developed using

life-cycle test data. Detail description about process method and estimation techniques

has discussed in Section 3.3. Estimation results under different operating conditions are

shown in Section 3.4 to authenticate the validity of the proposed methods and conclusion

obtained regarding the estimation of SOC and SOH is given in the Section 3.5.

3.2 Problem Formulation for Estimation of Battery Internal

States

The model-based adaptive filter methods are designed to estimate internal states of the

battery based on the state-space model. The diagnostic models have configured for one-

step ahead prediction, which allow recursive estimation of battery states [157]. A general

discrete-time state-space model that describes characteristics of the system governed by

the non-linear stochastic difference equations are defined as follow [229]:

State Equation

xk+1 =f(xk, uk+1, wk) (3.1)

with a measurement

Measurement Equation

yk+1 =h(xk+1, uk+1, vk+1) (3.2)

Here, x ε Rn represents the n-dimensional unobserved state vector of the system; y ε Rm

represents the m-dimensional output measurement vector ; u ε RNu represents the known

(measured/deterministic) one-dimensional input vector of the system; random variable

w ∼ N (w̄,
∑

w),
∑

w ε RNw×Nw and v ∼ N (v̄,
∑

v),
∑

v ε RNv×Nv represents the Gaussian

process-noise and the Gaussian measurement-noise (respectively), describing uncertainty

in real system. Both process and measurement noise are assumed to be independent from

each other hence they have zero mean value and variance represented by
∑

w and
∑

v

respectively. Subscript k with variable indicates the value of that variable at the time tk

where tk = t0 +kδ and δ is the time step. Correspondingly, non-linear function f(.) relates



Chapter 3. Online Assessment of Battery Performance 78

the state at the previous time step k to the state at current time step k+ 1 and non-linear

function h(.) relates the state xk to the measurement yk . And the state x of the system

has mean x̄ and covariance
∑

x.

3.2.1 SOC estimation model

A battery can be modeled as a nonlinear, time-varying system with state variables that

describe states. The measurement are typically the voltage, current and temperature. In

the previous chapter, the battery model has been expressed by continuous time ordinary

differential equations. For the implementation of SoC estimation strategies, the discrete

form of battery model has to be utilized. To represent battery model by discrete-time

ordinary difference equations, assume sampling time ∆t to be small enough such that

current can be considered constant over sampling time. The battery model discrete state-

space equations describing dynamic effect derived from equation (1.1) and (2.12) can be

expressed as:

State Equation

[
SOCki+1

VRC,ki+1

]
=

1 0

0 exp
−∆t

R1,ki
C1,ki

[SOCki
VRC,ki

]
+

 −∆t
Qn

(1− exp
−∆t

R1,ki
C1,ki )R1

 (IBL,ki + wki)

(3.3)

Measurement Equation

VBt,ki+1 =Voc(SOCki+1)− IBL,ki+1R0,ki+1 − VRC,ki+1 + vki+1 (3.4)

Here, ki refers iteration number, the state vector is x = [SOC VRC ]T and the current IBL

and terminal voltage VM
Bt as the input and output variables respectively.

3.2.2 Capacity degradation model

Battery aging will reduce the maximum available battery capacity compared to the fresh

battery. Battery capacity degradation occurs with repeated charging and discharging

of the battery. Prognostic of battery failure can be performed by developing capacity

degradation model from life-cycle test data. The capacity degradation model is devel-

oped by using life-cycle test datasets for 18650 commercialized (LFP) Li-ion batteries.

Four different battery B1 − B4 has been examined to collect the datasets. The battery
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degradation datasets have been adopted from the Center for Advanced Life Cycle Engi-

neering (CALCE) battery research group of the University of Maryland. The life-cycle

test has been conducted sequentially by performing multiple charging-discharging cycles

under room temperature and repeated until capacity degraded to 80 % of maximum ca-

pacity of the unused battery. Using the battery test equipment, firstly the batteries were

fully charged at constant current with 1C charging rate (i.e., 1.1A) under standard con-

stant current-constant voltage mode. The batteries have been charged until the battery

voltage reaches to 4.2V then current has exponential drop till 0.05A while maintaining

batteries voltage at 4.2V. Discharging was carried out at a 1C rate until the batteries

voltage reaches 2.5V. The test was run at room temperature which was approximately

25◦C. The discharge capacity was recorded after each full charge-discharge process. Data

collection will terminate when battery full charge capacity reaches EUL point. The detail

specification of the battery is listed in Appendix A. Figure 3.1 shows capacity degradation

data obtained from the life-cycle test of four different battery.
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Figure 3.1: Capacity data set

Two empirical regression models have been considered to investigated the battery capacity

degradation behavior through life-cycle test data. A polynomial and exponential model

have been empirically established through fitting of battery degradation data using regres-

sion analysis.
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Polynomial model

Qpkc = p1 ∗ k2
c + p2 ∗ kc + p3 (3.5)

Exponential Model

Qekc = e1 ∗ exp(e2 ∗ kc) + e3 ∗ exp(e4 ∗ kc) (3.6)

Where kc refers the cycle number, parameters of polynomial model and exponential model

are represented thorough p1, p2, p3 and e1, e2, e3, e4 respectively.
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Figure 3.2: Curve fitting based on polynomial and exponential model.

To evaluate the goodness-of-fit of given models capacity data over the whole life (up to

EUL) was used. Models fitting is performed in MATLAB environment using curve fitting

tool. Based on the model’s characteristics polynomial model was estimated using linear
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least square method while the exponential model was determined using the nonlinear

least square method. Aim of both the methods is to minimize the sum of the square of

the errors. Figure 3.2 shows curve fitting for battery B1-B4 based on polynomial model

and exponential model. Figure 3.2 shows that exponential model fits well with data as

compared to polynomial model. Obtained mean parameters value for both polynomial

model and exponential model with lower bound and upper bound are shown in Table 3.2.

Fitted parameters are calculated with the bound of 95% confidence intervals. With help

of lower and upper bound parameters value variance of parameter can also be calculated

for further use.

The accuracy of prediction of battery performance and health depends upon the accuracy

of the capacity model. Model accuracy and goodness-of-fit of regression can be validated

by using two indices the adjusted R-square and RMSE. R2
adj is modification of Rsquare to

compensate for the extra variable included in the model. The best fit is indicated by“1”

in R2
adj and “0” in RMSE. Table 3.1 shows the value of adjusted R-square and RMSE for

both exponential and polynomial model. From the table, it can be an analyze that for

exponential model the adjusted R2 is more close to 1 and RMSE is near to 0 compared to

the polynomial model. This shows that the exponential model has better global regression

performance compare to the polynomial. Hence exponential model is suitable for analysis

degradation of battery capacity and predicting RUL.

Table 3.1: Goodness-of-fit for polynomial and exponential model

Battery
R2 RMSE Adjust R2

Polynomial Exponential Polynomial Exponential Polynomial Exponential

B1 0.9430 0.9861 0.0392 0.0194 0.9428 0.9861

B2 0.9812 0.9926 0.0367 0.0232 0.9812 0.9925

B3 0.9493 0.9918 0.0367 0.0147 0.9492 0.9918

B4 0.9439 0.9891 0.0418 0.0184 0.9438 0.9890

Accurate state estimation and prediction not only rely on a precise model but also de-

pend on the adjustments of model parameters to track the variation in the capacity fade.

Gradually estimated parameters value converges to their respective actual values when

more capacity data become available. Dynamic capacity fade characterization and esti-

mation of current capacity for prediction of RUL are performed by using adaptive filter

algorithm. Adaptive filter algorithm solves any estimation problem by minimizing the

mean-square-error of discrete state space model.

The discrete state space model to describe the dynamic behavior of capacity fading, in-

cluding the state transition and measurement equations can be expressed as follow:
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State Equation

xkc+1 =[e1,kc+1; e2,kc+1; e3,kc+1; e4,kc+1] (3.7)

e1,kc+1 =e1,kc + ωe1,kc

e2,kc+1 =e2,kc + ωe2,kc

e3,kc+1 =e3,kc + ωe3,kc

e4,kc+1 =e4,kc + ωe4,kc (3.8)

Measurement Equation

Qkc+1 = ykc+1 = e1,kc+1 ∗ exp(e2,kc+1 ∗ k)+e3,kc ∗ exp(e4,kc+1 ∗ k) + vkc+1

Where wei ∼ N (w̄ei,
∑

w,ei),
∑

w, ei ε RNw,ei×Nw,ei and v ∼ N (v̄,
∑

v),
∑

v ε RNv×Nv rep-

resents the process noise for each parameter and model measurement noise respectively. xk

refers parameters vector of capacity degradation model for cycle k and Qk refers to mea-

surement output which is battery capacity degradation data. With the measured capacity,

the unscented Kalman filter is incorporated to adjust the parameters and update states

value sequentially. In this process, predication of capacity is performed after the state

value is updated. The RUL prediction is performed by the difference between predicated

capacity cycle number and EUL cycle number:

RUL = kc,EUL − kc,MC (3.9)

Where kc,EUL is the cycle number at which predicated capacity hits the capacity value at

EUL point and kc,MC is the cycle number at which predication of RUL is performed.

3.3 Estimation Techniques

The adaptive filter algorithms estimate the needed state xk+1 based on the observations

y0:k+1 = [y1, y2...yk] under the rule of minimizing mean squared error between observation

and estimated output [229]. The current state xk+1 recursively updates through predicted

value of the previous state xk. and current value of the measured input uk+1. The state

of a system is a group of dynamic variables that evolve through time, and its evolution

through time is governed by a dynamic system, perturbed by process noise [230]. The

measurements are functions of the state and the measurement noise. The basic idea of the
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adaptive filter based techniques is the state space model, the system and measured signal

combined with white noise.

3.3.1 Extended Kalman filter (EKF)

For estimation purpose, Kalman Filter (KF) was developed in 1960 [158]. KF is a linear

filter the estimates states of the system by utilizing the measured value with noise and

uncertainty and produces the value that approaches closer to the true value [49]. KF

recursively updates the current state of the system through predicted value of the previous

state and current value of the measured input. Since the battery is a non-linear system,

linear KF cannot be utilized for SOC estimation purposes [164]. Hence to improve the

estimation accuracy, the nonlinear version called the EKF used for SOC estimation of

the battery. The EKF use Taylor-series to linearize the non-linear state equation and

transform the nonlinear problem to linear problem.

To implement EKF, nonlinear state equation are linearizes about the current mean and the

covariance using first-order Taylor-series expansion at each time step. Here assumption is

made that both f(.) and h(.) are differentiable at all operating points,

f(xk, wk, uk) ≈ f(xk, wk, uk) (3.10)

Âk = df(.)
dxk
|
xk=x̂+

k

B̂k = df(.)
dwk
|wk=w̄k

Ĉk = dh(.)
dxk
|
xk=x̂−k

D̂k = df(.)
dvk
|vk=v̄k

(3.11)

Here, Ak represents n× n system matrix; Bk represents n× 1 input matrix; Ck represent

m× n output matrix; Dk is m× 1 feed-forward matrix.

The detail computation process of EKF estimation strategies to develop an adaptive model-

based internal states estimation is illustrated in Figure 3.3

Here, KGk denotes the Kalman gain matrix, ŷk is the estimated measured output, x̂−k

and x̂+
k are for the prior estimate before the measurement and the posterior estimate after

the measurement respectively,
∑−

xk
and

∑+
xk

are covariance matrix of state estimation

error before and after measurement respectively. In the multi-dimensional Taylor-series

expansion, EKF obtained only first order accuracy in prediction of posterior mean and

covariance of states. EKF does not take into account inherent uncertainty in prior states

during the linearization process. In fact linearization around current state omits the
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Figure 3.3: EKF algorithm based SOC estimation approach

crucial expectation operators. These approximations often introduce substantial error in

evaluation of posterior mean and covariance of states which leads to divergence of the filter

and suboptimal performance.

Disadvantages:

1. In the EKF, state distribution is propagated analytically though the first-order Tay-

lor’s series expansion. The first-order approximation introduce substantial errors in

the prediction of posterior mean and covariance of states which leads to sub-optimal

performance and sometimes divergence of the filter. Hence EKF is difficult to tune

if model non-linearities are serve and leads to unreliable estimation of states.

2. EKF performance depends upon the accuracy of the system model and parameters.

Even EKF performance will decrease or even diverge if the system and measurement

noise don’t satisfy the Gaussian distribution.

3.3.2 Sigma Points Kalman filter (SPKF)

EKF based estimation methods have some shortcoming which results in the decrease in

the accuracy and leads to unstable filters. To overcome EKF shortcoming, SPKF utilizes

small fixed group of function (called sigma points) to linearize the nonlinear system [165].
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These sigma points are deterministically calculated using the mean and square-root de-

composition of the covariance matrix of the prior state. Based on characterizing method,

SPKF can be categorizes as follow: Unscented Kalman Filter (UKF) and Central Dif-

ference Kalman Filter (CDKF). UKF utilizes the unscented transformation and CDKF

utilizes Sterling’s polynomial interpolation methods for linearization of the nonlinear sys-

tem [231]. Using the these approaches, if the dimension of the state is Nx then to capture

first and second order moments of the prior states, 2Nx + 1 sigma point χk are required

with corresponding weights. Higher order moments can be captured, if so desired, at the

cost of using more sigma-points. SPKF will eliminate the computational burden of Jaco-

bian matrices and approximates up to second order. Hence, the calculation of derivatives

could be avoided which implies that original function need not to be differentiable. The

detail computation process of SPKF algorithmic is illustrated in Algorithm 3.4.

Figure 3.4: SPKF algorithm based SOC estimation approach

Here, γ is a scalar scaling factor that determines the spread of the sigma-points around the

prior mean; xak is the augmented random vector, x̂a,+k−1 is posteriori state estimate vector

defined as x̂a,+k−1 = [(x̂+
k−1)T , w̄, v̄]T ,

∑a,+
x̃,k−1 is posterior covariance defined as

∑a,+
x̃,k−1 =

diag(
∑a,+

x̃,k−1,
∑

w̃,
∑

ṽ) , w
(m)
i and w

(c)
i are weighting constant. Both the filters follows

same implementation procedure except the choice of sample points required more variable

in case of UKF (α, β, κ) than CDKF (h). Weights are determined for both the filters has

been shown in Table 3.3.
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Table 3.3: Parameters values for different SPKF filters

Method γ w
(m)
0 w

(m)
i w

(c)
0 w

(c)
i

UKF
√
L+ λ λ

L+λ
λ

2(L+λ)
λ

L+λ + (1− α2 + β) 1
2(L+λ)

CDKF h h2−L
h2

1
2h2

h2−L
h2

1
2h2

Here, λ = α2(L + κ) − L with 10−2 ≥ α ≥ 1 and value of κ is either between 0 and

3-L. β incorporates prior information. h may take any positive value but optimal value is

consider as h =
√

3 for Gaussian random variables.

3.3.3 Particle Filter (PF)

Accuracy of states estimation using EKF and SPKF depends on the accuracy of the model

parameters. These filter also fails if used with nonlinear non Gaussian applications. Hence,

to improve the robustness of estimation methods, Particle Filter (PF) was developed for

dealing with complex distribution other Gaussian distribution. PF is a recursive statistical

filter based on the Monte Carlo techniques and recursive Bayesian estimation. The Monte

Carlo method is applied to approximate required state posterior probability distribution

by a collection of random samples known as particles xik
N
i=1 with associated weight vector

wik
N
i=1. Its complicated to draw random particles directly from the true posteriori density

function. Alternative and easy process to generate random particles is recursively update

the posterior distribution using sequential importance sampling and re-sampling.

The PF algorithm is described as follows:

1. Initialization: Randomly draw NP initial state particles xi0(i = 1, 2, ..., Np) from

prior probability distribution p(x0) having N (x̄,
∑

x) and initial weight for particular

particles is assigned as wi0 = 1/Np. Large the NP the better the estimation but more

computation will be needed. Number of particles Np depend upon type of system

and computation cost. The threshold of re-sampling can be initialized as Nth = 2
3Np.

For k=1,2,...

2. Importance sampling: Update the value of states using state equation and update

the weight of the particle according to following equation:

wik+1 = wik
p(yk+1|xik+1)p(xik+1|xik)

q(xik+1|xiky1:k)
(3.12)
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3. Weight normalization update and normalize the important weights for each par-

ticle. calculate the ith particle’s likelihoods.

wik+1 =
wik+1∑Np
i=1w

i
k+1

(3.13)

4. Resampling: Each particle is reserved or abandoned selectively according to its

weight and then new set of particles is obtained.

Neff =
1∑Np

i=1(wik+1)2
(3.14)

If the effective sample size Neff is below the given threshold Nth, then resampling

procedure is performed to get the new particles.

5. State estimation: Using new set of NP particles and their associated weights,

propagates the state particles xik+1 to the next step by the system process equation.

x̂k+1 =

Np∑
i=1

w̄ik+1x
i
k+1 (3.15)

3.4 Results and discussions

The high power Li-ion batteries (LFP ) with a nominal capacity of 3.3 Ah and nominal

voltage 3.7 V of the 18650 cylinder type were used for evaluation of the accuracy of state

estimation methods. Capacity and life-cycle tests were executed for collecting reference

data for evaluating the efficiency of adaptive filters in the estimation of internal battery

states such as SOC and SOH respectively.

3.4.1 SOC estimation

A proper SOC estimation technique should be applicable of functioning efficiently during

different loading conditions. To simulate the dynamic performance of EVs battery for

actual driving load, US Advanced Battery Consortium (USABC) designed standard load

profiles. Driving cycles are standardized driving pattern defined as the test cycles applied

for evaluation and comparison of different types of drivetrains regarding their efficiency

and emissions. These are sequences of speed-time data points which represents the driving

behavior and traffic conditions in a specific area. Dynamic stress test (DST) driving
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cycle profile represents driving conditions for an urban city travel pattern. When battery

discharges from being fully charged (at 3.6V) to fully discharged (at 2V), the process

includes several cycles of the standard DST cycle. Figure 3.5 illustrates sequence cycles

for current and voltage of conventional DST profile at room temperature (25◦C). This

sequential driving profile is utilized for performance analysis of state estimator
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Figure 3.5: Voltage and current profile for DST driving cycles

Performance evaluation of different SOC estimation techniques is carried out with the

different initial guess for the battery SOC. First, SOC estimation performed with assuming

correct initial SOC value x̂+
0 = [100]T then assuming wrong initial SOC value x̂+

0 = [90]T .

Covariance of error was assumed as
∑+

x̃,k,0 = diag([1e−3]). For the execution of estimation

of SOC using EKF, UKF, CDKF, and PF, the value of the process
∑

p and observation
∑

m

noise covariance were deliberately selected by using the trial-and-error method to assure

convergence of the algorithms. For evaluation purpose white noise is assumed hence the

mean value of process and measurement noise are set to be zero, and the value for the

covariance of process noise
∑

p and measurement noise
∑

m are set to be 0.2. Particles for

PF are assumed to be 200, and the threshold value for re-sampling is 0.5.

The required current value for the typical driving cycle is applied to the battery termi-

nal in the laboratory, for simulating its dynamic discharge behavior during operation of

EVs. In this dissertation, DST driving profiles are considered for evaluating the perfor-

mance of adaptive filters methods for estimation of the battery SOC at different ambient
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Figure 3.6: Estimation results of different adaptive KF assuming correct initial SOC
value (a) −10◦C (b) 0◦C (c) 10◦C (d) 20◦C
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Figure 3.7: Estimation results of different adaptive KF assuming correct initial SOC
value (a) 25◦C (b) 30◦C (c) 40◦C (d) 50◦C
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temperatures. DST profile contains both processes discharging and charging with posi-

tive current defining discharge and negative current defining charge behavior of battery.

Figure 3.6 and 3.7 illustrates recorded capacity test data using controlled ampere-hour

method corresponding to the discharge of battery at different temperatures. In practical

application usually, batteries are operated in between 20% to 90% SOC values only hence

for estimation purpose data below 20% SOC is discarded.

Estimated SOC values with defining correct SOC initial value from adaptive filters at

various temperatures is illustrated in Figure 3.6 and 3.7. The red color graph represents

the true SOC value, while blue, brown, green and yellow graph represents the estimated

SOC value using EKF, UKF, CDKF, and PF filters. Figure 3.6 and 3.7 contains SOC

estimation values, zoom of SOC estimation graph and their errors in the estimated value

for different temperatures. It can be observed from graphs that the estimated SOC value

with correct initial SOC can track the true experimental SOC profiles more precisely with

EKF and PF. Maximum absolute SOC error value is 2% , 8% , 8% , 10% , 15% , 8%

, 6% and 5% ,and 5% corresponding to −10◦C, 0◦C, 10◦C, 20◦C, 25◦C, 30◦C, 40◦C

and 50◦C respectively for EKF, UKF and CDKF estimation methods. Whereas for all the

temperature maximum absolute SOC error is approximately less 4% in case PF estimation.

Hence, SOC estimation based on PF yields comparatively minor fluctuations. Error plots

also indicate that corresponding to the low value of SOC estimated SOC slowly divergences

away from reference SOC. The reason for large the difference between the values of SOC

at the end of the graph is the error in the measurement of quantities using sensors and

error due to Coulombic counting methods. Also, it’s illustrated by figures that as the

temperature value decreases battery discharges very fast compare to high-temperature

value. Since SOC of the battery is less than 10% at −10◦C whereas for another case

its approximately more than 20%. Hence, the performance of the battery decrease with

a decrease in the value of temperature. Hence a more accurate model to capture the

transient behavior of the battery at low temperature is worthy to investigate in the future

study.

Further quantification of estimators performance can be executed by determining root-

mean-square and mean absolute error between reference SOC value and estimated SOC

values. Mathematical, the root- mean- square error can be expresses by following equation:

RMSE =

√∑n
k=1(SOCMk − SOCEk )2

n
(3.16)
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Mathematically, mean absolute error can be expressed by the following equation:

MAE =
1

n

n∑
k=1

∣∣SOCMk − SOCEk ∣∣ (3.17)

Here, SOCMk stands for measured SOC value from Coulomb Counting method and SOCEk

stands for estimated SOC values from EKF, UKF, CDKF, and PF.

Table 3.4: Prediction error statistics at different temperature assuming correct initial
SOC value

RMSE MAE

EKF UKF CDKF PF EKF UKF CDKF PF

−10◦C 1.3624 1.1917 1.2058 2.0506 1.2983 1.1265 1.1392 1.1957

0◦C 1.3701 1.4033 1.4014 1.5598 0.7186 0.6740 0.6747 0.5744

10◦C 1.2276 1.2569 1.2592 1.6133 0.5538 0.5299 0.5314 0.4732

20◦C 1.4789 1.5253 1.5227 1.8996 0.5619 0.5796 0.5805 0.7218

25◦C 1.3627 1.5524 1.5094 1.6596 0.5152 0.5196 0.5132 0.6946

30◦C 1.2728 1.2947 1.2983 1.9615 0.5253 0.5488 0.5508 0.5994

40◦C 0.9012 0.9267 0.9287 1.5579 0.3243 0.3530 0.3539 0.3828

50◦C 0.9418 0.9669 0.9693 1.5062 0.4167 0.4561 0.4575 0.4431

Table 3.5: Execution time analysis (in secs) assuming correct initial SOC value

EKF UKF CDKF PF

−10◦C 2.3757 2.2658 3.1938 1.9929

0◦C 2.4426 2.3230 2.9864 2.0949

10◦C 2.6293 2.8861 3.6077 2.5205

20◦C 2.8277 2.5136 3.2501 2.5311

25◦C 3.1270 2.5391 3.1446 2.6841

30◦C 2.6307 2.5017 3.1987 2.2129

40◦C 2.7071 3.1231 3.1356 2.2897

50◦C 3.1084 2.5453 3.1657 2.2599

The value of root-mean-square and mean absolute error for different estimator is given

in Table 3.4. From the table, it can be concluded that maximum root-mean-square error

among all temperature for EKF is 1.37%, UKF is 1.55%, CDKF is 1.52 %, and PF is

2.05%. Maximum mean absolute error among all temperature using EKF us 1.2 %, UKF

is 1.2%, CDKF is 1.3%, and PF is 1.19 %. Hence, the precision of EKF based estimation

algorithm is higher than other algorithms for estimation of SOC at different temperatures.

The execution time of the estimation methods is determined using ”tic-toc” command in

MATLAB to evaluate calculation time required to run the script. The execution time

for performing battery SOC estimation is shown in Table 3.5. From the table, it can be

concluded that the maximum execution time taken by EKF is 3.12 sec, UKF is 3.1 sec,



Chapter 3. Online Assessment of Battery Performance 94

0 1000 2000 3000 4000 5000

Time (s)

0

20

40

60

80

100

120

S
O

C
 (

%
)

SOC estimation

SOC

EKF

UKF

CDKF

PF

3500 3600 3700 3800 3900 4000 4100

Time (s)

35

40

45

50

S
O

C
 (

%
)

Zoom

0 1000 2000 3000 4000 5000

Time (s)

0

2

4

6

8

10

S
O

C
 E

rr
o

r 
(%

)

Estimation error

EKF

UKF

CDKF

PF

(a) −10◦C

0 2000 4000 6000

Time (s)

0

20

40

60

80

100

120

S
O

C
 (

%
)

SOC estimation

SOC

EKF

UKF

CDKF

PF

44004516.66674633.333347504866.66674983.33335100

Time (s)

35

40

45

50

55

S
O

C
 (

%
)

Zoom

0 2000 4000 6000

Time (s)

0

5

10

15

20

S
O

C
 E

rr
o
r 

(%
)

Estimation error

EKF

UKF

CDKF

PF

(b) 0◦C

0 2000 4000 6000

Time (s)

0

20

40

60

80

100

120

S
O

C
 (

%
)

SOC estimation

SOC

EKF

UKF

CDKF

PF

4600 4700 4800 4900 5000 5100 5200

Time (s)

38

40

42

44

46

48

50

S
O

C
 (

%
)

Zoom

0 2000 4000 6000

Time (s)

0

5

10

15

20

S
O

C
 E

rr
o

r 
(%

)

Estimation error

EKF

UKF

CDKF

PF

(c) 10◦C

0 2000 4000 6000

Time (s)

0

20

40

60

80

100

120

S
O

C
 (

%
)

SOC estimation

SOC

EKF

UKF

CDKF

PF

4800 4900 5000 5100 5200 5300 5400

Time (s)

35

40

45

50

S
O

C
 (

%
)

Zoom

0 2000 4000 6000

Time (s)

0

5

10

15

20

S
O

C
 E

rr
o
r 

(%
)

Estimation error

EKF

UKF

CDKF

PF

(d) 20◦C

Figure 3.8: Estimation results of different adaptive KF assuming incorrect initial SOC
value (a) −10◦C (b) 0◦C (c) 10◦C (d) 20◦C
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Figure 3.9: Estimation results of different adaptive KF assuming incorrect initial SOC
value (a) 25◦C (b) 30◦C (c) 40◦C (d) 50◦C
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SPKF is 3.6 sec and PF is 2.5 sec. Hence although the PF takes more computation cost,

it is more robust than EKF to measure noise in the battery system.

The main drawback of Coulomb Counting method is that it depends upon initial SOC

values in the estimation of current battery SOC value. If the initial values identification

is not correct then estimated SOC values are not accurate. To identify the accuracy

and efficiency of SOC estimation methods the effect of the incorrect initial SOC values

is evaluated in this work. Estimated SOC values assuming incorrect SOC initial value

from adaptive filters at various temperatures is illustrated in Figure 3.8 and 3.9. Similar

to correct initial SOC values, the red color graph represents the true SOC value, while

blue, brown, green and yellow graph represent the estimated SOC value using EKF, UKF,

CDKF, and PF filters. Figure 3.8 and 3.9 contains SOC estimation values, zoom of SOC

estimation graph and their errors in the estimated value for different temperatures. It

can be observed from graphs that the estimated SOC value with incorrect initial SOC

can track the true experimental SOC profiles more precisely PF. Maximum absolute SOC

error value is 9% , 15% , 17% , 20% , 17% , 18% , 16% and 15% corresponding to −10◦C,

0◦C, 10◦C, 20◦C, 25◦C, 30◦C, 40◦C and 50◦C respectively for EKF, UKF and CDKF

estimation methods. Whereas for all the temperature maximum absolute SOC error is

approximately less 4% in case PF estimation. Hence, SOC estimation based on PF yields

accurate estimation of SOC for both correct and incorrect assumption of initial SOC

values. The accuracy of other estimator decreases with the incorrect assumption of initial

SOC values.

Table 3.6: Prediction error statistics at different temperature assuming incorrect initial
SOC value

RMSE MAE

EKF UKF CDKF PF EKF UKF CDKF PF

−10◦C 4.3076 4.3106 4.3058 2.0533 4.2392 4.2216 4.2238 1.4838

0◦C 5.9308 5.9890 5.9768 1.7938 5.5105 5.56106 5.5522 1.0995

10◦C 5.8593 5.8971 5.8864 1.7136 5.5108 5.5299 5.5248 0.7214

20◦C 6.1366 6.1799 6.1689 2.6904 5.6411 5.6630 5.6576 1.6184

25◦C 5.8978 5.9230 5.9154 1.3986 5.6411 5.6630 5.6576 1.6184

30◦C 5.5704 5.6820 5.6531 1.8870 5.4031 5.4492 5.4375 0.5012

40◦C 5.4584 5.4868 5.4786 1.7253 5.2189 5.2321 5.2281 1.0051

50◦C 5.4430 5.5418 5.5251 1.3590 5.2049 5.2504 5.2426 0.3365

The value of root-mean-square and mean absolute error for different estimator assuming

incorrect initial SOC values are given in Table 3.6. From the table, it can be concluded that

maximum root-mean-square error among all temperature for EKF is 6.13%, UKF is 6.17%,
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CDKF is 6.16 %, and PF is 2.6%. Maximum mean absolute error among all temperature

using EKF us 5.6 %, UKF is 5.66%, CDKF is 5.65%, and PF is 1.19 %. Hence, the precision

of PF based estimation algorithm is higher than other algorithms as its execution doesn’t

depends on the initial values of SOC. The execution time for performing battery SOC

estimation assuming incorrect initial SOC value is shown in Table 3.5. From the table,

it can be concluded that the maximum execution time taken by EKF is 3.5 sec, UKF is

5.0 sec, SPKF is 3.9 sec and PF is 2.7 sec. This demonstrates that the PF can estimate

the battery SOC with higher accuracy in less execution time with begin effect with initial

values of the battery SOC.

Table 3.7: Execution time analysis (in secs) assuming incorrect initial SOC value

EKF UKF CDKF PF

−10◦C 2.3756 5.0729 3.1253 1.9885

0◦C 2.5128 2.8560 3.1434 2.8249

10◦C 3.4919 2.4770 3.0679 2.9406

20◦C 2.6106 2.5814 3.8407 2.2680

25◦C 2.6827 2.6363 3.8939 2.5423

30◦C 2.9738 2.6230 3.2060 2.7540

40◦C 2.6809 2.6483 3.9108 2.3036

50◦C 2.6404 3.3102 3.4300 2.3752

3.4.2 SOH estimation

Performance of the adaptive filters estimation techniques for prediction of RUL is discussed

in this section. Four different batteries with same capacity has been utilize for analysis

of capacity degradation behavior and effectiveness of the different estimation methods.

Experimental data collected using lifespan test and exponential model of capacity degra-

dation model is utilized for estimation process. Figures 3.10, 3.11, 3.12 and 3.13 visualizes

predicted capacity using the exponential model utilizing different training data sets with

different estimation techniques for batteries B1-B4 on different prediction cycles. In these

graphs the green line indicates measured capacity data using life cycle test. The vertical

line in each graph refers to the end of training samples after which capacity prediction

performed using adaptive filters. The horizontal line in each graph refers the battery per-

formance endpoint (EUL). To investigate the prediction performance of the models three

different prediction points are used. Predication points are defined as the cycle at which

battery reaches 1/3, 1/2 and 2/3 of life cycle test data.

The prognostic results for battery B1 with 1/3 cycles (kc = 187), 1/2 cycles (kc = 280)

and 2/3 cycles (kc = 373) data point of life-cycle datasets are used to update the model
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Figure 3.10: Comparison of RUL prediction results under different prediction point

using different estimation methods and probability distribution graph obtained from PF

are shown in Figure 3.10 (a)-(d). Figure 3.10 (a) illustrate estimated capacity using NLLS
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Figure 3.11: Comparison of RUL prediction results under different prediction point

with different training data sets. From graph it is concluded that with less training data

sets NLLS provides very poor consistency in estimation. Where as with large training data
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Figure 3.12: Comparison of RUL prediction results under different prediction point

also results are will poor as it can be seen through graphs that battery has been already

reached to its EUL points where estimation still showing enough maximum capacity is
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Figure 3.13: Comparison of RUL prediction results under different prediction point

available. Figure 3.10 (b) illustrate outcomes using UKF with different training data

sets. From graph it is concluded UKF will provide approximately accurate estimation of
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capacity. Similarly 3.10 (c) shows the distribution of particle for estimation of capacity and

predicted capacity maximum capacity with each number of cycles with grey and red color

respectively for different training data set. Advantage of particle filters is it provide more

accurate estimation for all cycle values where as UKF diverted as from true capacity at

some number of the cycles. Similarly Figure 3.11 shows prognostic results for the batteries

B2 with the help of different data points of life-cycle test datasets for updating the model.

Figure 3.11 (a) shows more clearly that NLLS is not appropriate for capacity estimation

with all training data sets hence NLLS technique will be avoided for estimation of RUL

of battery. Figure 3.11 (b) and (c) its clear that UKF and PF both are appropriate for

estimation of battery maximum capacity with the variation of number of cycles. Figure

3.12 shows prognostic results for the batteries B3 with the help of different data points

of life-cycle test datasets for updating the model. Different estimation methods are used

are respective outcomes are shown in the graphs. Similarly prognostic results for B4 with

different training datasets using NLLS , UKF and PF are shown in Figure 3.13. From all

the analysis for capacity estimation for different batteries is concluded that UKF and PF

provides accurate battery capacity estimation with the variations of number of cycles.

For analysis effectiveness of NLLS, UKF and PF in estimation of battery RUL comparison

is shown in summarized in Table 3.8. Table contain information about actual failure cycle

from datasets, prediction cycle, estimated failure cycle and prediction error. Actual failure

cycle is the value of maximum battery capacity at EUL point for the capacity degradation

data obtained from life-cycle test. Table show actual failure life for four batteries having

same capacity and it can be seen that no two batteries will have same failure cycle number

even they are manufactured identically because of variation in environmental conditions.

Hence to identify SOH and RUL different of estimation are used. Prediction cycle is

Table 3.8: Performance comparison for RUL prediction using defined estimation meth-
ods

NLLS UKF PF

Battery
ID

Real Failure
cycle time

Prediction cycle
(% cycle)

Cycle
Number

Error
Cycle
Number

Error
Cycle
Number

Error

B1
560 187 (1/3) 434 126 546 14 533 27

280 (1/2) 612 -52 546 14 546 14
373 (2/3) 677 -117 545 15 551 9

B2
506 169 (1/3) 514 -8 516 -10 486 20

253 (1/2) 708 -202 514 -8 492 14
377 (2/3) 807 -301 516 -10 497 9

B3
566 189 (1/3) 435 131 578 -12 548 18

283 (1/2) 629 -63 578 -12 542 24
377 (2/3) 685 -119 578 -12 560 6

B4
585 195 (1/3) 556 29 581 4 568 17

293 (1/2) 691 -106 581 4 574 11
390 (2/3) 699 -114 580 5 574 11
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value of cycle number at which estimation process for RUL is performed. Cycle at which

battery reaches 1/3, 1/2 and 2/3 of life cycle test data are considered for calculating RUL

at different cycle number. Prediction cycle values for different batteries are shown in the

Table 3.8. Predicted RUL can be visualized as the cycle life from the end of the training

sample till corresponding cycle at which battery capacity hits EUL line. Predication error

is different between capacity values obtained from lifespan test and estimated capacity

value at the EUL point. Predication error is shown in Table 3.8 having both value positive

and negatives values. The positive error was showing that prediction on for battery EUL

is before the actual occurrence of EUL whereas negative error showing that the prediction

for EUL is after the actual EUL value. Early prediction of EUL will not affect battery, but

prediction after EUL will cause catastrophic failures. It is concluded from Table 3.8 that

predication error in case of NLLS and UKF are negative for most of cases hence NLLS

and UKF are not suitable estimation techniques for prediction of RUL and SOH of the

battery. Where as PF is having all positive value for predication error which shows that

PF estimation battery failure way ahead hence replacement of battery can be performed

by actually occurrence of it. PF particles probability distribution for prediction of RUL

is assumed as Gaussian whose variance shown in Figure 3.10 (d), 3.11 (d), 3.12 (d) and

3.13 (d). This distribution is obtained from estimated values using by different particles

in PF. For battery B1 estimation variance is 23 for 1/3 cycle , 24 for 1/2 cycle and 30

for 2/3 cycle data sets used for prediction. For battery B2 variances are 31 , 25 and 41

for training data set containing 1/3 cycle, 1/2 cycle and 2/3 cycle data points. Graph

for probability distribution for battery B2 using PF is shown in Figure 3.11. Similarly of

battery B3 and B4 probability distribution in prediction of RUL is shown in Figure 3.12

and 3.13 respectively for different training data points.

3.5 Chapter Summary

SOC estimation is the most significant function in battery management system which sig-

nifies residual range for recharge of battery and overcharge/overdischarge limit to enhance

the life of battery. The contribution of this chapter is to systemically compare SOC based

estimation strategies (EKF, UKF, CDKF and PF) in terms of SOC accuracy and individual

advantages. Battery SOC for different operational conditions are identified and validated

under DST driving cycle current profile. The comparison results confirmed at PF can be

robust in practice as it provide the high estimation and prediction accuracy with the wrong

initialized SOC values as well as correct initialized SOC. The results show that the PF can

maintain simultaneously small errors and relatively fast computation time for real-time
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applications compare to other non-linear filters. In addition, SOC estimation perform bet-

ter at high temperatures than at low, hence a more accurate model to capture dynamics of

battery at low temperature is worthy to investigate in future study. Battery aging leads to

gradually deteriorates in battery capacity due to irreversible chemical changes while charg-

ing and discharging process. Degradation of battery capacity after threshold points causes

insulation damage or catastrophic failures such as explosion and spontaneous combustion.

In this chapter, two empirical model has been analyses for modeling battery capacity

degradation over life-span of the battery. The exponential model inherently demonstrates

the superiority in representing capacity degradation behavior compared to the polynomial

model. Subsequently, the model has employed with NLLS, UKF and PF to deal with pre-

diction of RUL of the battery. Three different datasets (1/3, 2/3 and 2/3 of the life cycle)

are utilized for training, and remaining cycle datasets are utilized for prediction purpose.

To address the uncertainties, a NLLS, UKF and PF approach was considered to adjust the

model parameters and, hence, PF determined to be more accurate method to track the

capacity fade. PF used state estimates from training data creating a diversity of particles.

Adjustments were made to the weights of the particles, which affected the prediction PDF,

but the state estimates were not changed from data available for predictions. The final

RUL prediction can be obtained in the form of a probability density function so that the

confidence level of the prediction can be assessed. Thus, the results demonstrate that PF

provides the considerably accurate prediction of SOH and RUL with the less absolute error

for different training datasets of all the batteries.







Chapter 4

Power management for EV

Powered by Dual Battery System

4.1 Introduction

The use of clean energy in the transportation industry has gained substantial attention in

the last two decades with the increase in fuel price and harmful gases emitted by burning

fossil fuels in conventional vehicles. EVs emit no greenhouse gas, and hence they are a

potential alternative to the internal combustion engine (ICEs) automobiles. However, the

automobile industry had been limited to EVs with short range because of small battery

capacity, long charging time, and lack of charging infrastructure. Nowadays, the advent of

Li-ion batteries has reinforced the automobile sector to develop long-range EVs. Brands

such as Mercedes Benz, Nissan, Tesla, Toyota, and others are developing EVs with the

single sizeable Li-ion battery which leads to an oversizing of the battery and high initial

cost. However, in [14] author suggested the concept of EV having two different size battery

sources. Small size battery pack is fixed, and big size battery pack can be swape accord-

ing to requirement. For short range, fixed small size battery is used which will reduce

the mass of the EV and improve the energy consumption per unit distance. For more

extended range, small size battery with swappable large size battery pack is utilized to

power the drive train in the EV. The author has analyzed and evaluated the performance

of proposed EV concept in comparison with single larger pack EVs and proved that there

is a significant improvement in energy consumption ( up to 17 %), and economic benefits

are achievable by distributing the cost of the large battery pack over the lifetime of the

107
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vehicle. Benefits of using different size batteries encourage further studies in the develop-

ment of power management systems for the dual battery-powered EVs. The core concerns

of power management systems are to effectively provide energy from each battery source to

match the power demanded and stored energy in the battery sources during regenerative

braking. In this chapter, requested power computation for a given driving cycle has been

performed with detail modeling of dual battery power EVs is presented in Section 4.2. In

the literature, various power management strategies have been developed for hybrid EVs.

On the basis of thorough analysis about different power management strategies, it could

be concluded that rule-based power management approach has been commercially adopted

due to its east implementation and high computational efficiency. However, as any op-

timization is not involved, the optimal solution cannot be obtained. Optimization-based

approaches overcome inherent drawbacks of rule-based approach through the implemen-

tation of optimization control procedure. Optimization-based approaches demand high

computation power for real-time application. Practically, the hybrid power management

strategy should be utilized which would not only have the optimal solution but also read-

ily applicable to real-time control. In this chapter advanced and simple control rule-based

meta-heuristic optimization power management strategies are developed to achieve optimal

power distribution between dual battery sources while keeping the operation of battery in

the defined safety region. The transition between the vehicle’s operation modes has deter-

mined with the helps predefined rules based on the current operating condition. Whereas,

the power-sharing between the two batteries determined by utilizing optimization based

techniques. Problem formulation and architecture of the power management system for

dual battery powered EV are presented in Section 4.3. Discussion on outcomes of the

power management system is present in Section 4.4. The main conclusion and summary

of the chapter has been given in Section 4.5.

4.2 Test bed system modeling

A small dimension EV based on Toyota S model 85D is considered as test-bed to in-

vestigate the power management strategies developed for the dual battery-powered EVs.

The architecture of the power management system for dual battery powered EV is pre-

sented in Figure 4.1. In this test-bed modeling, the main components are two batteries

for power supply, two bidirectional DC-DC converters for controlling each battery source,

one power management system, propulsion motor drive and drivetrain of the EV. The

calculation of power demanded from energy sources is evaluated using detail modeling of

vehicle drivetrain in the present section.



Chapter 4. Power management for EV Powered by Dual Battery System 109

Figure 4.1: Architecture of the power management system for a dual battery powered
EV platform

4.2.1 Drivetrain modeling

The EV dynamics work on the fundamental principle of physics, i.e., Newton’s second

law of motion. Newton’s second law of motion states that the acceleration of an object

produced by a net force is directly proportional to the magnitude of the net force. The

first step in EV modeling to determine the value of resultant tractive effort applied by

drivetrain to overcome the resistive forces which try to retard the motion of the EV. The

tractive force (Fte) produces enough momentum in the contact area between the tires and

the road surface to drive the EV in the forward direction. The resistive forces that are

influencing the movement of the EV along a slope shown in Figure 4.2. The resistive forces

can be classified as follow: rolling resistance force (Frr), aerodynamic drag force (Fad),

hill climbing force (Fhe), linear acceleration force (Fla) and rotational acceleration force

(Fwa).

Rolling Resistance Force (Frr)

The rolling resistance forces are the friction forces that arise when the tires of the EV rolls

on the surface of the road. It is directly proportional to the weight of the EV hence its is

approximately constant and does not depends on upon the speed of the EV. The equation

for rolling resistance force can express as :
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Frr = µrrgMev (4.1)

Here Mev represents the mass of EV which include curb and cargo weight [kg]; g represents

standard gravity constant [9.81 m/s2]; µrr refers to rolling resistance coefficient of the tires.

The value of µrr depends upon the type of tires and pressure exerted on the tires.

Aerodynamic Drag Force (Fad)

The aerodynamic drag forces are the friction forces that arise due to motion of EV through

the air. It defined as the function of air density, shape, the frontal area of the EV and air

passages. The equation for the aerodynamic drag force can be expressed as:

Fad =
1

2
× ρair ×Afront × Cdrag × (νev)

2 (4.2)

Here Afront represents the cross-sectional area of the EV [m2]; νev is the speed of EV

[m/s]; Cdrag is a constant called the aerodynamic drag coefficient; ρair refers the density

of the air [kg/m3] and air density depends on the variations od temperature, humidity

and attitude. This thesis considers the value of air density to be 1.225 kg/m3 which has

been reported in the literature.

Hill Climbing Force (Fhc)

The hill climbing force arises when EV drives upon slope. This force includes EV weight

component acting along the direction of the slope. The equation for the hill climbing force

can be expressed as:

Figure 4.2: The resistive forces applied on a EV moving along a slope
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Fhc = g × sin(αgra)×Mev (4.3)

Here αgra refers the gradient of the road and all the other variables are same as defined

in Section 4.2.

Linear Acceleration Force (Fla)

According to Newton’s second law, if the vehicle velocity is changing, then it will generate

a force in addition to the forces illustrated in Figure 4.2. This additional force will cause

the linear acceleration of the vehicle. The equation for the linear acceleration force can be

expressed as:

Fla = Mev ×
dνev
dt

(4.4)

Rotational Acceleration Force (Fωa)

In addition to linear acceleration in the EV, rotational acceleration is also required to

considered. Rotational acceleration force is applied for the faster angular rotation of the

wheels. The equation for the rotational acceleration force can be expressed as:

Fωa = J
G2

r2
whηg

dνev
dt

(4.5)

Here G refers the gear ratio of transmission system; rwh refers the radius of wheel [m]; ηg

is efficiency of gear system and J refers propulsion motor rotor inertia.

Tractive Effort (Fte)

The Vehicle propulsion system must generate a tractive force (Fte) to overcome rolling

resistance force, aerodynamic drag force, hill climbing force, linear acceleration force and

rational acceleration force to accelerate the vehicle. The total tractive effort is the sum of

all these forces:

Fte = Frr + Fad + Fhc + Fla + Fωa (4.6)
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When EV slows down then linear acceleration force and rotational acceleration force will

consider as negative, and when the vehicle is coming down a slope, then hill climbing force

will be considered as negative.

To accelerate the vehicle the required traction torque (τte) [Nm] at wheels and angular

speed (ωwh) [rpm] of the wheels can be intuitively computed as follow:

τte = Fte × rwh (4.7)

ωwh =
60× νev
2πrwh

(4.8)

If desired speed values are defined, then the torque values can be compute using vehicle

dimensions and parameters data as listed in Appendix A.

Traction power Pte [W ]

To estimate the total power requirement by drivetrain can be calculated by using the

traction torque and angular speed (obtained from drive cycle)

Pte = Fte × νev (4.9)

A gear-box is placed in between the propulsion motor and the wheels to reduce the shaft

torque ωs [rpm] and to amplify the shaft torque τst [Nm]. The gear ratio is fixed during the

operation; thus, shaft torque, shaft angular velocity, and power Pm [W ] of the propulsion

motor can be expressed as:

τsh =

{
τte

ηg×G if Pte ≥ 0
τte×ηg
G if Pte < 0

(4.10)

ωsh =ωwh ×G (4.11)

Pm =
π

30
× τsh × ωsh (4.12)

Here G represents transmission ratio of gear-box.

The electrical power demanded from sources can be computed from drivetrain mechanical

power with taking into consideration the efficiencies of the propulsion motor (ηm), the

inverter (ηV FD), and the dc/dc converter (ηcon). The requested power from energy sources
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can be expressed as:

Pdem(t) =
Pm(t)

ηm(t).ηV FD(t).ηcon(t)
(4.13)

4.2.2 Driving cycle

Power demanded by a drivetrain or power requested from the source as a function of

time for ECE 15 urban driving cycles can be calculated using equation (4.9) and (4.13)

respectively. The detailed specification about vehicle body, transmission units, dynamic

and aerodynamics vehicle characteristics are given in Appendix A. In this work ECE 15

driving cycle speed profile νev(t), t ε [0, Tdc] with specified vehicle data are utilized to

determine the power demanded Pdem by the considered EV. Vehicle speed profile and

total power demanded from battery sources are shown in Figure 4.3. Detail parameters of

ECE 15 driving cycles are given in Table 4.1.

Table 4.1: Driving cycles main parameters

Driving Cycle Standing Driving Acceleration Speed Maximum Speed Total Distance Time
[%] [%] [km/h] [km/h] [km] [min]

ECE 15 [0 195] 23.08 76.92 18.4 50.07 5.968 19.5
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Figure 4.3: The speed and power demand for EV for ECE 15
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4.3 Power management system architecture

The primary objective of the power management system is to minimize the difference be-

tween power demanded and power supplied by the batteries while keeping the operation of

batteries in a defined safety region and without degradation of their lifespan. The power

management problem includes the real-time optimal power-sharing between two batteries

promoting to the maximization of usage of batteries capacity while maintaining SOC of

batteries at adequate levels. Another objective of power management problem is regu-

lating the DC link voltage at desired values. These two problems can not be decoupled

entirely and should be jointly tackled. To solve these problem power management system

is proposed for the dual battery powered EVs. The hierarchy structure of the subsystems

of integrated rule-based metaheuristic optimization power management approach is pre-

sented in Figure 4.1. The proposed power management system architecture consists of

three management levels: strategic level, action planning level, and operation level. Ini-

tially, in strategic level the search space is recursively constraints based on a set of rules.

These set of rules are developed on the basis of power demanded by EVs and present value

of SOC in the batteries. Action layer is formulated to address real-time power-sharing

optimization problems using metaheuristic techniques. The differential evolution meta-

heuristic is used to define an optimized power share without prior knowledge of power

demand. In the operational level, strategies for development of duty cycle for DC-DC con-

verters are presented. The reference power signal values for the controllers are obtained

by optimizing the power management problem in action planning level. Before discussing

the operation of each level in detail, problem formation for the power management system

is done in the next subsection.

4.3.1 Problem formulation

Batteries are the primary sources of power in proposed EV concept hence the overall

objective of power management system is to know how to optimally split the required power

between batteries in such a way that it leads to the maximization of usage of batteries

capacity while maintaining SOC of batteries at adequate levels. The instantaneous power

demanded by drivetrain is a linear combination of the instantaneously available power

acquired from both the batteries. In the proposed power management system the equation

for the fundamental power balancing equation can be expressed as:

Pdem(t) =
∑

j ε SB,FB

Pj(t) (4.14)
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Here Pdem(t) refers to the power demanded by the drivetrain of the EV and Pj(t) refers

to the power supplied from each of the battery where j is the specified battery.

The optimal quantity of the power supplied by each of the battery source for the given

demanded power by drivetrain can be obtained by identifying optimal solution for equation

(4.14). To limit the instantaneous power retrieves or supplied from each battery, a set of

constraints is defined based upon the specification and characteristics of each battery. The

set of constraints can be defined as:

Pminj ≤ Pj(t) ≤ Pmaxj with j ε SB, FB (4.15)

The power Pj(t) of each battery can be represented in terms of a power assignment factor

αj(t)

Pj(t) = αj(t).P
max
i ; αj(t) ε [LBj , HBj ] (4.16)

Here, αj(t) power assignment factors are control variable in the power management op-

timization problem which applies constraints on the power supplied by the batteries.

αj(t) varies between the lower and upper bound for the power sharing by the batter-

ies. αj ε [−1, 0] means that the battery j will absorb power and αj ε [0, 1] means that the

battery j will supply power.

Objective function

The fundamental objective of the power management system is to optimally share the

power demanded by the drivetrain of the EV. This objective can obtain by minimizing

the difference between power demanded and power provided by each the battery source

at each instant of time subjected to the constraints which establish the operation range

defined by the practical limits of each battery. Mathematically it can be expressed as:

minimize |Pdem(t)− [αSB(t)PSB(t) + αFB(t)PFB(t)]| (4.17)

subject to : αj ε [LBj , UBj ]

Pminj ≤ Pj(t) ≤ Pmaxj

SOCminj ≤ SOCj(t) ≤ SOCmaxj with j ε SB, FB (4.18)

For an online implementation of the power management problem, the constraints set αj

must redefine in each iteration depending upon Pdem and current SOC of each battery.

These set of constraints will restrict the search space to obtain the optimal solution for
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the power management optimization problem. Then, optimization techniques are used to

achieve optimal power-sharing by each battery to define the reference power signal values

for controlling of DC-DC converters. Thereby, the power management problem has been

subdivided into three levels, and each level is throughly discussed in next sections.

4.3.2 Strategy Level

The strategy level is related to restrict the search space by defining some sets of rules

which are determined mainly by experience and expert knowledge. These sets of rules are

designed to restrict the solution search space according to demanded power and the SOC

values for the batteries at every instant of time by mapping of SOC into search space. The

search space is restricted to help the optimization technique to determine a battery solution

quickly by narrowing down the search space to the regions of interests. The solution search

space is restricted by imposing lower and upper bound to power assignment factor αj(t).

Displacement of the vehicle can be divided into the following phases: standing phase, an

acceleration phase (light or high) and a deceleration phase. The sets of rules implemented

with if-then operation rules as a function of demanded power Pdem and SOCj using thresh-

olds values defined by a fine-tuning process with complete knowledge of the characteristics

and efficiency of the batteries are shown in Algorithm 8.

Algorithm 8 Set of rules for search space restriction scheme

1: Rule 1 : Standing
2: if Pdem = 0 then αSB ε [0, 0], αFB ε [0, 0]⇒ CASE A
3: if Pdem = 0∩SOCSB > τminSOCSB

∩SOCFB < τminSOCFB
then αSB ε [0, 1], αFB ε [−1, 0]⇒

CASE B
4: if Pdem = 0∩SOCSB < τminSOCSB

∩SOCFB > τminSOCFB
then αSB ε [−1, 0], αFB ε [0, 1]⇒

CASE C
5: Rule 2: Light Acceleration
6: if Pdem > 0 then αSB ε [0, 1], αFB ε [0, 1]⇒ CASE D
7: if Pdem > 0∩SOCSB > τminSOCSB

∩SOCFB < τminSOCFB
then αSB ε [0, 1], αFB ε [−1, 0]⇒

CASE E
8: if Pdem > 0∩SOCSB < τminSOCSB

∩SOCFB > τminSOCFB
then αSB ε [−1, 0], αFB ε [0, 1]⇒

CASE F
9: Rule 3: Deceleration or Braking

10: if Pdem < 0 then αSB ε [−1, 0], αFB ε [−1, 0]⇒ CASE G
11: if Pdem < 0 ∩ SOCFB < τminSOCFB

then αSB ε [0, 1], αFB ε [−1, 0]⇒ CASE H

12: if Pdem < 0 ∩ SOCSB < τminSOCSB
then αSB ε [−1, 0], αFB ε [0, 1]⇒ CASE I

To understand the underlying rationale for the each given set of rules based on expert

knowledge corresponding power flow, SOC map and constrained search space are shown
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(a)

(b)

(c)

Figure 4.4: Rules for strategy planning level

in Figure 4.4. Figure 4.4(a) presented power flow direction, SOC map and constrained

search space corresponding to rule 1 for the standing mode of EV. According to rule 1,

three cases (A,B,C) are considered depending upon Pdem and SOC values of batteries.

Case A states that when there is no power demand Pdem = 0, and both the batteries

have high SOC value, then the search space will be reduced to αj ε [0, 0]. Hence, nothing

will happen if both the batteries are well charged, and there is no power required by the

drivetrain. Whereas for the same power demand if the SOC value for the fixed battery
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SOCFB is below the threshold value τminSOCFB
while swappable battery is still have enough

energy i.e. (SOCSB ≥ τminSOCSB
) then the search space is defined to αSB ε [0, 1] and

αFB ε [−1, 0] (see Case B). This means the swappable battery will charge the fixed battery

to enable future acceleration requiring power peak to be supplied by the fixed battery.

Inversely, when the fixed battery have high SOC value SOCFB then the search space is

restricted to αSB ε [−1, 0] and αFB ε [0, 1]. Hence, the fixed battery will discharge to

the swappable battery for leveling the SOC values so that it could charge during braking

model of operation of the EV. Figure 4.4(b) presented power flow direction, SOC map

and constrained search space corresponding to rule 2 for the light acceleration mode of

EV. According to rule 2, three cases (D, E, F) are considered depending upon Pdem and

SOC values of batteries. Case D states that when there is power demand Pdem > 0, then

the search space will be reduced to αj ε [0, 1]. Hence, both batteries will be utilized to

supply the demanded power. Whereas for the same power demand if the SOC value for

the fixed battery SOCFB is below the threshold value τminSOCFB
while swappable battery

is still have enough energy i.e. (SOCSB ≥ τminSOCSB
) then the search space is defined to

αSB ε [0, 1] and αFB ε [−1, 0] (see Case E). This means the swappable battery will supply

the demanded power by charging the fixed battery to enable future acceleration requiring

power peak to be supplied by the fixed battery. Inversely, when the fixed battery have high

SOC value SOCFB then the search space is restricted to αSB ε [−1, 0] and αFB ε [0, 1].

Hence, the fixed battery will supply the demanded power by charging the swappable

battery. Figure 4.4(c) presented power flow direction, SOC map and constrained search

space corresponding to rule 3 for the declaration or braking mode of EV. According to rule

3, three cases (G, H, I) are considered depending upon Pdem and SOC values of batteries.

Case E states that when there is regenerative power Pdem < 0 due to braking, then the

search space will be reduced to αj ε [−1, 0]. Hence, both batteries will are utilized to

store the power generated from braking. Whereas for the same generated power if the

SOC value for the fixed battery SOCFB is below the threshold value τminSOCFB
then the

search space is defined to αSB ε [0, 1] and αFB ε [−1, 0] (see Case E). This means the

fixed battery will be charged from regenerative braking and swappable battery. Inversely,

when the swappable battery is below the threshold value SOCSB then the search space is

restricted to αSB ε [−1, 0] and αFB ε [0, 1]. Hence, the swappable battery will be charged

from regenerative power.
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4.3.3 Action Planning Level

The primary objective of action planning level of global power management system is to

feed the power request of EV with available energy continuously.

This level can be implemented by using optimization techniques having objective function

defines as the online power-sharing between both the batteries under the strict guidelines

developed by the power management system in strategy level. The aim of the action

planning level is to supply the demanded power without any interruption and reduced

degradation of batteries lifespan. Action planning level produces a set of the decisions

within the operation region constrained by strategy level depending upon power demanded

and SOC values of batteries. Therefore, action planning level determines the references

power signals to control the converters operations in the operational level of the power

management system. In this research work, the DE optimization approach has been im-

plemented to obtain the optimal solution for the formulated problem. Pseudo-code for

implementation of DE optimization technique is presented in Algorithm 4 of Chapter 2.

The objective function for power sharing is defined using equation (4.17). The initial so-

lution considered for implementation of optimization is αSB(t) = αFB(t) = 0. Depending

on the demanded power and SOC of each battery the power management systems reduce

the search space for optimization technique. The process of reducing search space will

increase the speed of optimization techniques. When the solution is converged to the op-

timal solution optimization techniques will stop and provides reference power signals of

operational level.

4.3.4 Operation Level

The operational level of power management system deals with dynamics and operations

of power electronics converters used in the dual battery powered EV. Power flow of each

battery sources is controlled by the individual bi-directional DC-DC converter for each of

them. The function of converters is to step up the input voltage and control the power

flow from each battery. The proposed control management for each DC-DC converters

is shown in Figure 4.5. The reference signals for controlling the converters are the set

points for the DC-link voltage and the swappable battery pack current. The controller for

the fixed battery is composed by a double loop controller with the combination of current

and voltage controllers, and for swappable battery, only current controller is used. The

double loop controller having a voltage controller as the outer loop will maintain constant

DC link voltage depending upon nature of the loads, i.e., voltage fed drive for the electric
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motor. Hence, voltage controller regulates the DC link voltage (VDC) to a constant voltage

reference value (V REF
DC ). Current controllers in both the controlling blocks control the

current flow in the battery by means of proportional integral controllers which develop

pulses for triggering of the gates with duty-cycles (dSB) and (dFB) for swappable and

fixed battery respectively.

(a)

(b)

Figure 4.5: Controlling strategies for DC-DC converter (a) Fixed battery (b) Swappable
battery

4.4 Results and Discussion

Dual battery powered EV testbed system based on the specification of Tesla Model S with

the Power management system has been implemented in MATLAB/Simulink as shown in

Figure 4.6. Simulink model contains three main blocks: one block for power management

systems, one for electrical components and one for mechanical components of considered

EV. The detail specification for vehicle model and both the batteries are given in Appendix

A. The reference load for simulated EV is defined by an ECE 15 driving cycle. Proposed

dual battery power management algorithm is validated by obtaining simulation outcomes

for the ECE 15 driving cycle with different initial SOC values of the batteries. Three

different initial values of SOCs considered for testing and validation purpose are

• Case I: When SOC of both battery are same

• Case II: When SOCSB > τminSOCSB
and SOCFB < τminSOCFB
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• Case III: When SOCSB < τminSOCSB
and SOCFB > τminSOCFB

The SOC threshold values were set as: τmaxSOCFB
= 0.85; τminSOCFB

= 0.35; τmaxSOCSB
=

0.85; τminSOCSB
= 0.35. Power management for dual battery powered EV is performed

with unknown demanded power until the end of the cycle. In all simulations, the DE al-

gorithm was parameterized with Ncycles=30. The control parameters of DE optimization

techniques have been tuned after extensive experimentation. For tuning purpose, present

SOC of each battery is considered. Figures 4.7 , 4.8 and 4.9 represents the results for ECE

15 cycle with different initial SOC values. These figures present the results for powers

sharing, SOCs evaluation, strategy level cases histogram, and power assignment factors.

Case I: When SOC of both battery are same

The ECE 15 driving cycle power-sharing decompositions between dual battery sources

when the initial SOCs values are equal i.e. SOCSB = SOCFB = 60% is presented in

Figure 4.7 (a). Simulation of ECE 15 driving cycle begins with Pdem = 0, and as both

the batteries are above the specified minimum threshold, then strategy level defines these

conditions as CASE A. Accordingly, the DE optimization techniques restricted the search

space where the solutions correspond to no power flow through the drivetrain. This aspect

is clear in the first part of the power-sharing graph. Hence when there is no demand

power and both the batteries SOC are above the specified minimum threshold, there will

be no change in SOC values also. The next EV operations are acceleration; now the

strategy level defines search space for DE optimization techniques referring to CASE D.

Power demanded by drivetrain is supplied by both the battery sources as above are having

sufficient SOCs. When there is power demanded and both batteries are having sufficient

SOCs then power is supplied by both of them with the same discharging rates. The

objective of using both battery source for supply demanded power is to avoid the burden

on single battery source because if the single battery is used to supply the power, it will

discharge at the high current rate compared with when both the batteries are used. The low

discharging rate will increase the battery lifespan. It is clear from Figure 4.7 (b) that both

the batteries sources are discharging with approximately same discharge rate hence one

single battery is overburdened. After acceleration, EV will operate in deceleration mode for

the given driving cycle. During deceleration, the strategy level restricts search space for DE

optimization techniques referring to CASE G. During regenerative braking, both batteries

are charged at same rate. The previously defined case will repeat in the next displacement

for given driving cycles since the battery SOC will remain above the threshold. The
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variation of operation cases depending on power demanded by the drive train and SOCs

values of each source are shown in Figure 4.7 (c). The graphical representation of the

power assignment factor depending on restricted search space computed by the power

management system is presented in 4.7(d).

Case II: When SOCSB > τmin
SOCSB

and SOCFB < τmin
SOCFB

The ECE 15 driving cycle power-sharing decompositions between dual battery sources

when the initial SOCs values for sizeable swappable battery is higher than minimum

threshold value, i.e., SOCSB = 80% and initial SOC values for fixed small battery is less

than minimum threshold value, i.e., SOCFB = 30% is presented in Figure 4.8 (a). At the

beginning of the ECE 15 driving cycle, the assumption that the fixed battery SOC will be

below minimum threshold leads the strategy level to guide the DE optimization technique

differently from the previous cases simulations. For this case, strategy level reduces the

search space for implementation of DE optimization to the region designated as CASE B

in Figure 4.4. At standing mode, when there is no power demand swappable battery will

charge the fixed battery pack so that both of them can be utilized when power demanded

by EV to maintain the low discharging rate. Whereas in Case I for the standing condition

of the EV strategy level define CASE A depending on the SOC condition of the batteries.

The DE optimization technique decides to charge fixed battery using swappable battery

such that SOCSB reduces and allows storing of the power in the next regenerative braking

mode. In the cruising phases strategy level reduces the search space to the region defined

by CASE E in Figure 4.4 where as for Case I it was CASE D in the simulation for the same

time interval. The DE optimization technique decides to supply demanded power using

swappable battery because it is having sufficient SOCs to maintain the power flow. In the

regenerative braking compared to last Case I strategy level to restrict the search space to

the region defined by CASE H. In this mode, fixed battery is charged using regenerative

braking power because its SOC level is less than the minimum threshold value. For the

ECE 15 driving cycle in the given time interval same cases will repeat for all next standing,

acceleration and regenerative braking mode. The variation of operation cases depending

on power demanded by the drive train and SOCs values of each source are shown in

Figure 4.8 (c). The graphical representation of the power assignment factor depending on

restricted search space computed by the power management system is presented in 4.8(d).
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Case III: When SOCSB < τmin
SOCSB

and SOCFB > τmin
SOCFB

In this case, the ECE 15 driving cycle power-sharing decompositions between dual bat-

tery sources is different with the last section. In this section, the initial SOCs values

for swappable battery is lower than minimum threshold value, i.e., SOCSB = 30% and

initial SOC values for fixed small battery is higher than minimum threshold value, i.e.,

SOCFB = 80%. Simulation results for powers sharing, SOCs evaluation, strategy level

cases histogram, and power assignment factors for this CASE are presented in Figure 4.9.

In this case, for standing mode strategy level restrict the search space to the region des-

ignated as CASE C in Figure 4.4. Since the SOC of swappable battery is less then the

minimum threshold value, it will get charge from small battery to supply the demanded

power in acceleration mode with low discharging rate. Otherwise full power demand by

drivetrain will be supplied by small battery at high discharging rate. Discharging with

high current rate will decrease the life of the battery. Other reason is for reducing fixed

battery SOC level is to allowing storing of the excess power in the regenerative braking

mode. In the cruising phases, strategy level reduces the search space to the region defined

by CASE F in Figure 4.4 bases of which the DE optimization technique decides to supply

demanded power using fixed battery because of higher SOCs level to maintain the power

flow. In the regenerative braking strategy level restrict the search space to the region de-

fined by CASE I. In this mode, swappable battery is charged using regenerative braking

power because its SOC level is less than the minimum threshold value. For the ECE 15

driving cycle in the given time interval same cases will repeat for all next standing, ac-

celeration and regenerative braking mode. The variation of operation cases depending on

power demanded by the drive train and SOCs values of each source are shown in Figure 4.9

(c). The graphical representation of the power assignment factor depending on restricted

search space computed by the power management system is presented in 4.9 (d).
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Figure 4.7: ECE 15 driving cycles results for initial SOC values SOCSB = 60% and
SOCFB = 60%
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Figure 4.8: ECE 15 driving cycles results for initial SOC values SOCSB = 80% and
SOCFB = 30%
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Figure 4.9: ECE 15 driving cycles results for initial SOC values SOCSB = 30% and
SOCFB = 80%
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4.5 Chapter Summary

This chapter proposes a rule-based heuristic optimization power management system for

optimally sharing demanded power between the batteries in the dual battery powered

EVs. In this approach, three level power management scheme has been formulated based

on strategy, action planning and operational levels. Firstly, strategy level restricted the

search space using a sets of rules and in action level this search space is utilized to identify

the reference power signals for controlling bidirectional converters used for given power

sources. In operational level, DC-DC converters are used to control the power supply from

each batteries depending on the demanded power. Validation of proposed power manage-

ment system tested for normalized ECE 15 driving cycle depending on different initial

SOC conditions. The simulation results prove the effectiveness of the proposed power

management system with allowing to fulfill the demanded power requirement among the

both the batteries. The power management system avoid the burden on single battery for

long distance, it share load among both the batteries with equal charging and discharging

rates. Low charging rate and discharge rate compared to single battery will increase the

life of batteries. Development of effective power management system help in increasing

range of batteries for extended range and increase the probability of using dual battery

powered EVs. Since Dual battery powered EVs have less weight for short range which

will also increase their battery life and long range covered compared to single large size

battery.



Chapter 5

Conclusions and Future Scope

5.1 Major Contributions of this Study

1. For enhancement of the functionality of battery management system, key issues such

as parameter estimation, SOC estimation, RUL prediction and health assessment

were analyzed.

2. Estimation of unknown battery parameters can be performed by utilizing the termi-

nal voltage data provided by manufacturers considering parameter estimation as an

optimization problem. Effects of C-rate, SOC and temperature were considered to

develop a practical and accurate model of battery.

3. The performances of applied optimization techniques are compared in terms of their

ability and accuracy in the extraction of the battery model parameters with a lower

convergence rate. For the model, GWO and ASMO optimization techniques proved

to be more robust, reliable and gave an optimal solution in both charging and

discharging scenarios. The lower mean fitness value (charging: 0.699/discharging:

0.298) and standard deviation (less than 1) of the ASMO proved its superiority in

battery parameter estimation. For precise statistical investigation of computational

intelligence algorithms, parametric (T-test) and non-parametric tests (Wilcoxon test)

have been performed. From performance index and test-based study, it was con-

cluded that the ASMO algorithm functions reliably than all other tested algorithms.

Further, the low computational requirements signify the robustness of the algorithm,

thus presenting it as an appropriate option for the evaluation of battery model pa-

rameters.

129
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4. The parameters values extracted using ASMO are validated with parameters values

evaluated from PCDT. It is observed from validation process that there is a similarity

between parameters values obtained from both the methods. Therefore, the proposed

technique can be used as an alternative for estimation of battery parameters.

5. Fast computation, high estimation and prediction accuracy even with incorrect ini-

tial SOC values shows that the PF is practically robust for real-time applications

compared to other non-linear filters. It is also noted from the results that the PF

offers good accuracy and shorter running time in online applications in comparison

to other non-linear filters.

6. Exponential model is considerably accurate for representing capacity degradation

trends in a battery.

7. NLLS, UKF, PF were tested for estimation of SOH of the battery using different

quantity of training data. PF shows superior performance by appropriately adapting

the weights of its particles. PF utilized estimates of system states derived from

training data generating a diversified pool of particles. The prediction PDF was

observed to be influenced by adjusting the weights of the particles. However, the

state estimates remained unchanged from data available for predictions.

8. The probability density function was used to assess confidence level in final RUL

prediction.

9. A rule-based power management system is developed for effective control of power

sharing between two batteries in a dual-battery powered EV. The proposed scheme

was implemented for standard driving cycles. The results of the complete manage-

ment system offer promising solution to the power sharing between the two sources.

5.2 Suggestions for Future Works in this Research Domain

1. The effectiveness of battery management system can be enhanced by incorporating

estimation of internal power of battery with varying operational conditions.

2. The model of battery can be upgraded by integrating the effect of degradation, hys-

teresis and self-discharge. Different objective functions can be evaluated for battery

parameter estimation.

3. SOC estimation perform better at high temperatures than at low, hence a more

accurate model to capture dynamics of battery at low temperature is worthy to
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investigate in future study. Even effect of capacity degradation trend on the estima-

tion of battery SOC needs to be investigated for that focus will on joint estimation

approach for together prediction of SOC and SOH.

4. SOH estimation may be even more enhanced by considering the effect of resistance

on the capacity.

5. An equivalent circuit model can be considered for assessment of remaining useful life

for further analysis of SOH.





Appendix A

Data Specification

Vehicle dimensions and parameters data for Tesla 85D cars is given as follow:

Parameters Unit Symbols 85D

Vehicle

Mass [kg] Mev 2108+482
Vehicle frontal area [m2] Afront 2.34

Rolling resistance coefficient µrr 0.0084
Aerodynamic drag coefficient Cdrag 0.24

Air Density [kg/m3] ρair 1.225
Auxiliary Power [W ] Paux 200
Wheel Radius [m] rwh 0.35

Gear Ratio G 9.73
Gear Inertia [kg/m2] 0.05

Gear efficiency ηg 0.96
Maximum velocity [km/h] 224

Acceleration [0-60mph] 5.4

Motor

Rated torque [Nm] 440
Rated power [kW ] 270
Rated speed [rpm] 5600

Maximum speed [rpm] 18400
Efficiency 0.95

Inertia [kg/m2] 0.2

Battery

Minimum Pack voltage [V ] 240
Nominal Pack voltage [V ] 345

Maximum Pack voltage [V ] 403
Pack Energy [kWh] 85

Pack Specific Energy [Wh/kg] 156

133
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A Panasonic 3.1Ah NCR18650A cylindrical battery is utilized for analysis purpose. The

detail about characteristics of the battery is given as follow:

Parameter Unit Value

Nominal capacity [Ah] 3.1
Nominal voltage [V ] 3.6

Maximum voltage [V ] 4.2
Minimum voltage [V ] 2.5

Nominal charging current [A] 1.65
Nominal discharging current [A] 0.62
Capacity at nominal voltage [Ah] 2.95
Temperature operation range ◦C −20 to +60

Weight Approx. g 40.7
Nominal dimension mm 68.9mm× 18.50mm

Dual-battery powered EVs requires two different size battery packs. Details characteristics

for both the batteries is given as follow:

Parameter Unit Fixed Battery Swappable battery

Energy [kWh] 21 64
Number of modules 16 16

Number of series battery 6 6
Number of parallel battery 18 56

Nominal capacity [Ah] 55 172
Nominal voltage [V ] 345 345

Maximum voltage [V ] 403 403
Minimum voltage [V ] 240 240



Bibliography

[1] Y.-J. Zhang, H.-R. Peng, Z. Liu, and W. Tan, “Direct energy rebound effect for road pas-

senger transport in china: a dynamic panel quantile regression approach,” Energy Policy,

vol. 87, pp. 303–313, 2015.

[2] I. P. on Climate Change, Climate change 2014: mitigation of climate change. Cambridge

University Press, 2015, vol. 3.

[3] V. Gulati, “National electric mobility mission plan 2020,” Department of Heavy Industry,

Ministry of Heavy Industries & Public Enterprises, Government of India, 2012.

[4] P. Commission et al., “Interim report of the expert group on low carbon strategies for in-

clusive growth,” Planning Commission, Government of India, New Delhi, India. Available

online at http://planningcommission. nic. in/reports/genrep/Inter Exp. pdf, 2011.

[5] W. Li, R. Long, H. Chen, and J. Geng, “A review of factors influencing consumer intentions

to adopt battery electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 78, pp.

318–328, 2017.
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