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thus mobility of the interface is reduced or removed. During 
the drainage of liquid from the film in the presence of an elec-
trolyte, surface tension gradient is established. Under such a 
situation, surface shear stress is created which retards surface 
mobility and, therefore, opposes film drainage and control 
drainage rate from the liquid film. This factor may contrib-
ute to the bubble stabilization process and possibly reduce the 
bubble size. For bubble coalescence inhibition, bubble size 
depends on the critical concentration of aqueous solution of an 
electrolyte (Prince and Blanch 1990; Tsang et al. 2004; Chan 
and Tsang 2005). In fact, the critical concentration decreases 
with increasing bubble size. Therefore, to prevent coalescence, 
critical concentration increases as the equivalent diameter of 
bubbles decreases. In the electrolyte systems, interfacial area 
is 3–4 times higher as compared to the coalescing air–water 
system (Cents et al. 2005).

Surface tension and surface tension gradient 
of single‑electrolyte solution

In this paper, the effect of electrolyte concentration on 
bubble coalescence behavior has been studied using the Ta
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Fig. 8  Qualitative comparisons between strong  (CaCl2·2H2O and 
 Na2SO4) and moderate (NaCl and  MgSO4·7H2O) electrolytes

Table 6  Incremental transition concentration values of electrolytes in 
comparison to  MgSO4 (most moderate electrolyte)

This analysis indicates towards that there is only on incremental ben-
efit of using a strong electrolyte over the most moderate electrolyte 
irrespective of its cost

Electrolyte Percent incremental gas holdup 
enhancement at transition concentra-
tion, Ctrans

CaCl2 86
Na2SO4 64
NaCl 27
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parameter (d� ∕dC)2 , where dσ is the change in surface 
tension and dC is the change in bulk concentration of the 
electrolyte. The excess surface tension 

(

�
el
− �w

)

 due to the 
presence of electrolytes can be used to predict gas holdup 
enhancement. It can also be used to estimate transition 
concentration.

Plots of excess surface tension vs electrolyte concen-
tration and parameter C(d� ∕dC)2 vs electrolyte concen-
tration for strong electrolytes  (CaCl2·2H2O and  Na2SO4) 
are presented in Figs. 9 and 10, respectively. Similarly, 
plots of excess surface tension vs electrolyte concentration 
and parameter C(d� ∕dC)2 vs electrolyte concentration for 
moderate electrolytes (NaCl and  MgSO4·7H2O) are pre-
sented in Figs. 11 and 12, respectively. Curves for excess 
surface tension vs electrolyte concentration for strong 
and moderate electrolyte were fitted using a non-linear 

polynomial fitting technique. The resulting algebraic equa-
tions were differentiated with respect to concentration to 
obtain (d� ∕dC)2 values. Further, the requisite parameter 
C(d� ∕dC)2 values for strong and moderate electrolyte were 
plotted against concentration. In the absence of the bubble 
size distribution of the system, simple, algebraic equations 
of excess surface tension for different electrolyte concen-
tration are presented in Table 7. Empirical correlation 
based on dimensional analysis may be proposed in future, 
if bubble size distribution is available.

The curve for excess surface tension vs electrolyte con-
centration for strong electrolytes  (CaCl2·2H2O and  Na2SO4) 
shown in Fig. 9 increases initially up to an electrolyte con-
centration of 0.15 and 0.20 mol/L for  CaCl2·2H2O and 
 Na2SO4, respectively, and becomes almost constant there-
after at an excess surface tension value of 3.89 mN/m for 
 CaCl2·2H2O and 2.95 mN/m for  Na2SO4. A similar behavior 
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Fig. 9  Variation of excess surface tension of solution with electrolyte 
concentration for strong electrolytes  (CaCl2·2H2O and  Na2SO4)
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Fig. 10  Variation of parameter C(d�∕dC)2 with electrolyte concentra-
tion for strong electrolytes  (CaCl2·2H2O and  Na2SO4)

Moderate electrolytes
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Fig. 11  Variation of excess surface tension of solution with electro-
lyte concentration for moderate electrolytes (NaCl and  MgSO4·7H2O)
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Fig. 12  Variation of parameter C(d�∕dC)2 with electrolyte concentra-
tion for moderate electrolytes (NaCl and  MgSO4·7H2O)
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was observed for moderate electrolytes, namely NaCl and 
 MgSO4·7H2O (Fig. 11). In this curve, value of excess sur-
face tension becomes constant at 2.52 mN/m for NaCl and 
1.56 mN/m for  MgSO4·7H2O corresponding to electrolyte 
concentration of 0.0.20 mol/L and 0.15 mol/L, respectively. 
Figures 9 and 11 show that surface tension reaches a pla-
teau at an electrolyte concentration range of 0.2–0.3 M. The 
excess surface tension values of aqueous solutions of elec-
trolytes observed in the present work are in agreement with 
those reported earlier (Syeda and Reza 2011).

Figures 10 and 12 show plots for parameter C(d� ∕dC)2 
vs electrolyte concentration for strong and moderate elec-
trolytes. It is obvious from these figures that parameter 
C(d� ∕dC)2 has higher values for strong electrolytes indi-
cating a strong effect on bubble coalescence than moderate 
electrolytes.

These experimental observations are in line with those 
reported by Syeda and Reza (2011). It is significant to note 
that the concentrations at which maximum gas holdup 
occurs exactly matches with or close to the transition con-
centrations corresponding to the peak values of C(d� ∕dC)2 
(Table 5). This implies that the peak value of C(d� ∕dC)2 can 
be used effectively to determine the transition concentration 
corresponding to the maximum gas holdup. A comparison of 
transition concentrations ( C

trans
 ) estimated by two methods 

in the present study with those reported in the literature and 
other properties of electrolytes is presented in Table 5.

For NaCl solution, the concentration corresponding to 
the maximum value of C(d� ∕dC)2 obtained in the present 
study is similar to that using gas holdup value reported by 
Syeda and Reza (2011). Hence, the concentration at which 
the maximum value of C(d� ∕dC)2 occurs may be used to 
approximate the transition concentration for different elec-
trolytes. The concentration corresponding to the maximum 
value of C(d� ∕dC)2 in  MgSO4·7H2O solution was found 
to be 0.025 mol/L which is close to 0.020 mol/L reported 
by Craig et al. (1993a, b). The values of Ctrans reported in 
literature vary from 0.037 mol/l (Craig et al. 1993a, b) to 
0.075 mol/l (Syeda and Reza 2011) for  CaCl2·2H2O solu-
tion (Table 5). In the present study, the value of electrolyte 
 (CaCl2·2H2O) concentration corresponding to maximum 
value of C(d�∕dC)2

max
 is 0.075 mol/L which is similar 

to that reported by Syeda and Reza (2011). For  Na2SO4 
solution, the corresponding transition concentration is 
0.05 mol/L at which C(d�∕dC)2

max
 occurred in the present 

study which is close to Ctrans value of 0.051 mol/L reported 
by Zahradnik et al. (1995). In essence, the value of transi-
tion concentration of different electrolytes estimated in the 
present study is in line with those reported in the literature.

Gas holdup enhancement in aqueous solutions 
of mixed electrolytes

Experimental data of gas holdup enhancement were gener-
ated using two sets of binary mixtures of electrolytes, viz., 
 CaCl2 + NaCl and  Na2SO4 + NaCl. The combination of elec-
trolytes is comprised of one strong and one moderate elec-
trolyte. The aqueous solution of mixed electrolytes contained 
equimolar concentration of both electrolytes. Gas holdup 
enhancement values corresponding to maximum gas flow 
rate of the present study (27.5 L/m) were used in the estima-
tion of transition concentration for a mixture of electrolytes. 
Gas holdup enhancement data for the two combinations of 
electrolytes  (CaCl2 + NaCl and  Na2SO4 + NaCl) were plotted 
against total molar concentration of mixed electrolytes and 
are shown in Figs. 13 and 14. From Fig. 13, it is obvious that 
gas holdup enhancement trends of a single (individual) and 
mixed electrolytes are similar. It has been observed from 
Fig. 13 that the value of transition concentration shifted from 
0.075 to 0.1 mol/L in mixed electrolyte  (CaCl2 + NaCl) sys-
tem whereas transition concentration shifted from 0.05 to 
0.075 mol/L for mixed electrolyte  (Na2SO4 + NaCl) system 

Table 7  Algebraic equations 
of excess surface tension for 
different electrolytes

Electrolyte Algebraic equations

NaCl �aq. − �w = 2085 C5 − 1429 C4 + 467.5 C3 − 140.1 C2 + 29.47C + 0.134

MgSO4·7H2O �aq. − �w = 4.98 C5 − 1592 C4 + 1255 C3 − 34804 C2 + 40.02C − 0.041

Na2SO4 �aq. − �w = 154.4 C3 − 122.8 C2 + 32.85C − 0.005

CaCl2·2H2O �aq. − �w = −19404 C5 + 17347 C4 − 5236 C3 + 520.5 C2 + 16.99C − 0.033

Mixed electrolyte system at 27.5 L/min
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Fig. 13  Comparison of gas holdup enhancement for mixed electrolyte 
 (CaCl2·2H2O + NaCl) system with individual electrolytes
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as compared to their components, viz.,  CaCl2 and  Na2SO4, 
respectively. The flow regime transition points in gas holdup 
curve based on the swarm velocity and drift-flux methods 
are also reported in the literature (Besagni et al. 2017a, b, 
c, d; Besagni et al. 2018). The present study was aimed at 
determination of transition concentration of electrolytes for 
bubble coalescence inhibition; therefore, the selected gas 
velocity range was narrow. Consequently, flow regime tran-
sition points were not determined.

Excess surface tension and surface tension gradient 
in aqueous solution of mixed electrolytes

Comparison of plots of excess surface tension values and 
electrolyte concentration for mixed electrolyte sets and their 
individual electrolytes are presented in Figs. 15 and 16. The 
behavior of the curve was found similar to that of single-
component electrolyte solutions which increases initially up 
to an electrolyte concentration of 0.15 mol/L and 0.20 mol/L 
for  CaCl2·2H2O + NaCl and  Na2SO4 + NaCl, respectively. 
The curve becomes almost constant, thereafter at an excess 
surface tension value of 3.61 mN/m for  CaCl2·2H2O + NaCl 
and 3.11 mN/m for  Na2SO4 + NaCl, respectively. Parameter 
C(d�∕dC)2 was also plotted against the total concentration 
of the two sets of mixture of electrolytes and is presented in 
Figs. 17 and 18. From Fig. 17, it can be observed that there 
is no shift in transition concentration for  CaCl2·2H2O + NaCl 
mixed electrolyte system whereas transition concentration 
shifted from 0.05 to 0.1 mol/L for  Na2SO4 + NaCl mixed 
electrolytes system (Fig. 18). Algebraic equations of excess 
surface tension for mixed electrolyte system and comparison 
of transition concentration, C

trans
 , of mixed electrolytes with 

their components are presented in Tables 8 and 9, respectiv
ely.

Mixed electrolyte system at 27.5 L/min
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Fig. 14  Comparison of gas holdup enhancement for mixed electro-
lytes  (Na2SO4 + NaCl) system with individual electrolytes

Mixed electrolyte system

Concentration, C(mol/L)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

E
xc

es
s 

su
rfa

ce
 te

ns
io

n,
 

el−
 σ

σ
w
 (m

N
/m

)

0

1

2

3

4

5

CaCl2.2H2O
NaCl
CaCl2.2H2O + NaCl

Fig. 15  Comparison of excess surface tension of mixed electrolytes 
 (CaCl2 + NaCl) with individual electrolytes
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Fig. 16  Comparison of excess surface tension of mixed electrolytes 
 (Na2SO4 + NaCl) with individual electrolytes
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Fig. 17  Comparison of parameter C(d�∕dC)2 for mixed electrolyte 
 (CaCl2 + NaCl) system with individual electrolytes
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Surface elasticity values for single and mixed 
electrolytes

Surface elasticity of bubbles is related to bubble coalescence 
inhibition. Therefore, Gibbs elasticity and surface elasticity 

values at critical coalescence concentration for the mixed 
and component electrolytes solutions are presented in 
Table 10. Surface elasticity was calculated as outlined in 
Craig (2011). Large value of parameter (d�∕dC)2 inhibits 
bubble coalescence and its value depends upon ion separa-
tion in the interfacial area (Henry et al. 2007). But the mech-
anism behind electrolyte inhibition of bubble coalescence is 
still unresolved. It is obvious from Table 10 that the higher 
value of  CaCl2·2H2O indicates strong bubble coalescence 
inhibition as compared to other electrolytes used in the study. 
For a combination of two electrolytes featuring three ionic 
species, combinations of  CaCl2·2H2O + NaCl and  Na2SO4 + 
NaCl was utilized for inhibition of  bubble coalescence. The 
value of surface elasticity of combination of mixed electro-
lytes  (CaCl2 + NaCl) decreases to 442.24(mN/m)2/(mol/L)2 
from 535.33 (mN/m)2/(mol/L)2 than that of  CaCl2 alone. 
The reduction in surface elasticity from a single compo-
nent  (CaCl2) is due to the addition of a moderate electro-
lyte (NaCl) whose contribution to surface elasticity value 
is small as compared to strong one  (CaCl2). Reduction in 
surface elasticity will result in a decrease in bubble coa-
lescence inhibition phenomena. Similar observation was 
found in aqueous solution of  Na2SO4 + NaCl system. Surface 
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Fig. 18  Comparison of parameter C(d�∕dC)2 for mixed electrolyte 
 (Na2SO4 + NaCl) system with individual electrolytes

Table 8  Algebraic equations of excess surface tension for mixed electrolyte system

Electrolyte Algebraic equations

CaCl2·2H2O + NaCl �aq. − �w = −9552 C5 + 9733C4 − 3367 C3 + 381.7 C2 + 14.39 C − 0.005

Na2SO4 + NaCl �aq. − �w = 9925 C5 − 7847 C4 + 2216 C3 − 318.2 C2 + 37.86 C − 0.132

Table 9  Comparison of 
transition concentration, Ctrans , 
of mixed electrolytes with their 
component

Mixed electrolyte/com-
ponent

Peak value Transition concentration, Ctrans 
(mol/L)

Based on (ɛ/ɛw)max Based on C(dσ/
dC)2

max

Based on (ɛ/ɛw)max Based on 
C(dσ/dC)2

max

CaCl2 1.69 80.30 0.075 0.075
Na2SO4 1.61 23.61 0.05 0.05
NaCl 1.47 16.78 0.05 0.05
MgSO4·7H2O 1.37 15.42 0.0375 0.25
CaCl2 + NaCl 1.65 66.34 0.1 0.075
Na2SO4 + NaCl 1.65 20.38 0.075 0.1

Table 10  Gibbs elasticity and 
surface elasticity at transition 
concentration of electrolytes

Electrolyte Bubble coales-
cence inhibition

(d�∕dC)2 ≈ Gibbs elasticity

(mN/m)2/(mol/L)2
Surface elasticity =  
(1∕2) × (d�∕dC)2 (mN/m)2/
(mol/L)2

NaCl Yes 335.51 167.76
MgSO4·7H2O Yes 616.71 308.36
Na2SO4 Yes 472.11 236.06
CaCl2·2H2O Yes 1070.66 535.33
CaCl2·2H2O + NaCl Yes 884.48 442.24
Na2SO4 + NaCl Yes 203.76 101.88
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elasticity values estimated in the present work could not be 
compared with those reported in the literature (Craig 2011 
and Henry et al. 2007) as values reported earlier were not 
estimated at critical coalescence concentration.

Analysis of variance (ANOVA)

In the present study, trial version of Statistical Design soft-
ware (Minitab version 17) was used for regression and analy-
sis of variance (ANOVA). Using analysis of variance, it was 
found that the gas flow rate, concentration of electrolytes, 
and the chemical nature of the electrolytes have significant 
effects on the average gas holdup. However, the gas flow rate 
and electrolyte concentration are the most sensitive variables 
and the largest source of variation, as shown in Table 11.

It is obvious from Table 11 that the electrolyte concentra-
tion and gas flow rate are the most sensitive variables and 
the largest source of variation. The fact that P values for 
gas flow rate, concentration of electrolytes, and the chemi-
cal nature of the electrolytes in this table are less than the 
confidence level (0.05) and the P value for the lack of fit 
is higher than 0.05 indicates the adequacy and significance 
of the model. Residual plots of gas holdup are presented in 
Fig. 19.

It can be seen from Fig. 19 that the residuals versus fits 
plot verifies the assumption that the residuals are randomly 
distributed and have constant variance, because the points 
fall randomly on both sides of 0, with no recognizable pat-
terns in the points. The normal probability plot of the residu-
als displays the residuals versus their expected values when 
the distribution is normal. Normal probability plot of residu-
als verifies the assumption that the residuals are normally 
distributed as the residuals approximately follow a straight 
line. The residuals versus observation order plot verifies 
the assumption that the residuals are independent from one 
another as the residuals on the plot fall randomly around 
the center line. The histogram of the residuals shows the 
distribution of the residuals for all observations. The experi-
mental data of the average gas holdup for each of the cases 
studied have a log-normal distribution, as their distribution 

frequency is not symmetrical. Histogram of the residuals 
confirms that the data are not skewed and do not include 
outliers.

Conclusion

In the present work, study of coalescence inhibition was tar-
getted by applying gas holdup enhancement and surface ten-
sion gradient approaches for aqueous solutions of single and 
binary mixtures of electrolytes. The concentration at which 
bubble coalescence is inhibited was determined in a 3.0-L 
distilled water bubble column for a series of coalescence 
inhibiting inorganic (NaCl,  MgSO4·7H2O,  CaCl2·2H2O, 
and  Na2SO4) electrolytes. For a single-electrolyte system, 
maximum gas holdup (ε/εw) enhancement for a strong elec-
trolyte  (CaCl2) reached a maxima of 69% at a concentration 
of 0.075 mol/L and at a gas flow rate of 27.5 L/m. Similar 
behavior was observed with 61% gas holdup enhancement 
in  Na2SO4 solution corresponding to a concentration of 
0.05 mol/L. In case of moderate electrolytes (NaCl), 47% 
gas holdup enhancement was observed at a concentration of 
0.05 mol/L. A similar trend with 38% gas holdup enhance-
ment was found in  MgSO4 solution at a concentration of 
0.035 mol/L. A qualitative comparison of these electrolytes 
revealed that strong electrolytes yield gas holdup enhance-
ment ≥ 60% whereas moderate electrolytes give a gas holdup 
up enhancement values ≤ 46%. It has also been found that 
the value of transition concentration for different electrolytes 
is of the same order in most of the cases and in line with 
those reported in the literature. In case of strong electrolyte 
solution, higher peak is indicative of a strong effect on bub-
ble coalescence. In case of moderate electrolyte solution, 
peak with shorter height indicated moderate effect on bubble 
coalescence.

In addition, the effects of electrolytes on bubble coales-
cence were studied using the parameter C(d� ∕dC)2 for the 
electrolyte. It was verified that as long as the value of param-
eter C(d� ∕dC)2 is large, the electrolyte will inhibit bubble 
coalescence, and if it is small, bubble coalescence remains 

Table 11  Analysis of variance Source Degrees of 
freedom

Sum of squares Mean square F value P value

Gas flow rate, Ug 4 0.219258 0.054815 1646.92 0.000
Electrolyte concentration, C 6 0.103789 0.017298 519.73 0.000
Chemical nature of the electrolytes, N 2 0.002774 0.001387 41.68 0.000
Ug.C 24 0.012143 0.000506 15.20 0.000
Ug.N 8 0.000744 0.000093 2.79 0.009
Error 75 0.002496 0.000033
Lack of fit 45 0.001777 0.000039 1.65 0.076
Pure error 30 0.000719 0.000024
Total 119 0.453817
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moderately affected. The importance of parameter (d� ∕dC)2 
in bubble coalescence has been related to the elasticity of the 
interface of electrolyte film drainage. The drainage rate of 
film reduced because the duration of stability in film thick-
ness increases due to change in elasticity of an interface. The 
variation in surface tension with the addition of electrolytes 
can be directly used to predict gas holdup enhancement. It is 
also useful for the identification of electrolyte concentration 
for attaining highest gas holdup.

In addition, the effect of mixed electrolytes 
 (CaCl2·2H2O + NaCl and  Na2SO4 + NaCl) on gas holdup was 
also studied. From the experimental results, it was found that 
trends of gas holdup enhancement for single (individual) 
and mixed electrolytes are similar. It has been observed 
that the value of transition concentration shifted from 0.075 
to 0.1 mol/L in mixed electrolytes  (CaCl2 + NaCl) sys-
tem whereas transition concentration shifted from 0.05 to 
0.075 mol/L for mixed electrolyte  (Na2SO4 + NaCl) system 
as compared to their components, viz.,  CaCl2 and  Na2SO4, 
respectively.

Besides, parameter C(d� ∕dC)2 was also plotted against 
the total concentration of the two sets of mixtures of elec-
trolytes. It can be observed that there is no shift in transi-
tion concentration for  CaCl2·2H2O + NaCl mixed electro-
lyte system whereas transition concentration shifted from 
0.05 to 0.1 mol/L for  Na2SO4 + NaCl mixed electrolytes 

system. In addition, surface elasticity of bubbles is 
related to bubble coalescence inhibition. Large value of 
parameter (d� ∕dC)2 inhibits bubble coalescence and its 
value depends upon ion separation in the interfacial area. 
Reduction in surface elasticity will result in a decrease 
in bubble coalescence inhibition phenomena. The value 
of surface elasticity of combination of mixed electrolytes 
 (CaCl2 + NaCl) decreased because the reduction in sur-
face elasticity from a single component  (CaCl2) is due to 
the addition of a moderate electrolyte (NaCl) whose con-
tribution to surface elasticity value is small as compared 
to strong one  (CaCl2). Similar observation was found 
in aqueous solution of  Na2SO4 + NaCl system. Surface 
elasticity values estimated in the present work could not 
be compared with those reported in the literature (Craig 
2011 and Henry et al. 2007) as values reported earlier 
were not estimated at critical coalescence concentration. 
The density difference between the electrolytes used in 
the present study is not significant; therefore, the varia-
tion in the densities of their aqueous solutions will also 
not be considerable. Thus, difference in buoyant forces 
exerted by aqueous solutions of different electrolytes will 
be negligible regardless of the bubble size at atmospheric 
pressure. Furthermore, analysis of variance (ANOVA) 
was employed to estimate significance of parameters (gas 
flow rate, electrolyte concentration and chemical nature of 

Fig. 19  Residual plots for gas holdup
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electrolyte) on average gas holdup. It was found that all the 
parameters have significant effects on average gas holdup.
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