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Abstract 

Adverse effects of short term and long term vibration exposure on human body 

has been documented in numerous studies. Multitudinous experiments on human 

subjects, to quantify vibration dose value leading to various injuries, are not 

recommended due to varied nature of external excitations as well as ethical 

concerns. Estimation of body segments or locations that are prone to vibration 

injuries is only possible through simulation. 

This thesis attempts to investigate the effects of vibrations transmitted to a person 

due to road undulations while travelling on different transportation system, with 

emphasis on the rider of a motorcycle. Towards this objective, initially multi 

degree of freedom vibratory models of human body in different postures are 

developed and vibratory model of sitting posture is incorporated with motorcycle 

to analyze dynamic of motorcycle-rider system running in a straight line. 

Existing vibratory models of human body are either lumped parameter models that 

have limited resemblance with actual body structure or continuum models that 

have large number of elements/degree of freedom, with main focus on the spine. 

For better correspondence with actual human body, in the present work, vibratory 

models that resemble anatomical structure and based on anthropometric 

measurements have been developed. 

In the first stage, lumped parameter model of subject in standing posture is 

developed by representing human body segments as truncated ellipsoids. Using 

experimental measurements of driving point impedance parameters, an iterative 

scheme has been developed to identify modal damping ratios of body segments. In 

second stage, a finite element (FE) vibratory model of standing subject under 

vertical excitation is formulated. FE model is preferred as these models better 

represent continuous nature of human body and also enable identification of 

locations prone to vibration related injuries. For FE formulation also, truncated 

ellipsoids elements are used to represent different parts of human body. Shape 

functions of truncated ellipsoidal finite elements have been derived based on exact 
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solution of deformation of an ellipsoid under uni-axial load. Modeling individual 

body segments as viscoelastic elements, Hamilton’s principle is employed to 

derive equations of motion. Driving point mechanical impedance values computed 

from FE model of standing subject matched available experimental 

measurements; therefore, FE model of seated person was formulated following 

similar procedure. Driving posture of a motorcycle rider was imitated by inclusion 

of a lumped parameter model of human arm in FE model of seated person. After 

validation, seated model of human body is combined with multi-body dynamic 

model of motorcycle in the final stage; motorcycle-rider moving along a straight 

line. Comparison of results between two motorcycle models, first one assuming 

the rider as rigid body attached to the vehicle and second one modeling the rider 

using FE vibratory model developed in this study; clearly establishes the effect of 

flexibility of human body on dynamic response of combined motorcycle-rider 

system. 

The methodology developed in this thesis enables formulation of human body 

vibratory models that are simple to formulate, have low degrees of freedom and 

resemble the anatomical structure. Employing anthropometric measurements and 

mass of the person, subject specific vibratory models in different postures can be 

developed to estimate locations in human body susceptible to vibration prone 

injuries due to vertical excitation and undulations coming from the road through 

vehicle suspension and seat. 
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Chapter 1 

Introduction 

 

The human body is subjected to external excitations while driving, travelling, 

operating different machineries and performing other day to day activities. Many 

researchers have pursued studies related to Whole Body Vibration (WBV) of human 

subjects to estimate adverse effects due to vibration amongst industrial (i.e., machine, 

hand-tool) operators, motorist, passengers etc. Short term exposure to WBV leads to 

discomfort, headaches, reduced concentration, back pain; whereas long term exposure 

can result in lower back injuries, spinal dislocation, white finger syndrome, and other 

muscular disorders. Since a human body is continuous, flexible and energy absorbing 

system from vibrations point of view; the literature survey showed the clear need and 

possibility of improving human body vibratory model. It was also felt that considering 

driver’s body as a flexible structure to study the vibration effects is still not explored 

systematically, so it aroused interest in human body vibration as potential research 

area. Also, the area relates to the safety and comfort of a person. My research 

supervisor, based on previous experience in experimental and theoretical studies of 

vibration effects on human body, also endorsed choosing human body vibration as the 

field of research. 

In the present thesis, the aim was to develop a subject-specific dynamic model 

of combined motorcycle-rider system, capable of predicting human body 

segments/locations more susceptible to vibration related injuries. Compared to a 

person travelling in a four-wheeler, the mass of average motorcycle rider (and 

passenger if applicable) is significant vis-à-vis the mass of motorcycle itself. Also, the 
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human body behaves essentially as a multi degree of freedom vibratory system. 

Therefore, dynamic properties of human body can have a significant effect on the 

response of motorcycle-rider system. The inclusion of human body characteristics into 

dynamic model of motorcycle becomes necessary in order to have a true assessment 

of the road induced motorcycle oscillations on the human being (rider).  

During literature survey it was found that the mathematical models of the human 

body, available in the literature, are not appropriate and sufficient to couple with 

motorcycle models. So, the development of human body vibratory became a 

requirement and substantial part the present research work. Considering the 

availability of experimental studies in the literature, first the vibratory models for the 

standing and sitting posture were developed, with the proposed modelling procedure 

and then were established. Once the proposed idea of modelling human body as 

truncated ellipsoidal segments using anthropometric data got established; it was 

extended to motorcycle-rider system while including few additional modifications for 

the hands and upper legs. Thus the motorcycle rider model consists of 1) truncated 

viscoelastic ellipsoidal finite elements, 2) rigid rods for upper legs and 3) spring-mass-

damper system for arms holding the motorcycle handle. It is to note that the 

motorcycle model does not mix different methods; instead, in this modelling 

established models for different parts of human body have been used. 

The research work has broadly been divided into two steps; first step was the 

establishment of a validated human body vibratory model for motorcycle rider system 

and second step was to combine the human body model with a detailed motorcycle 

model; so that effects of human body on response of complete system can be 

estimated.  It was hypothesized that a procedure should be established to develop 

human  body models that represent its anatomical structure sufficiently (form 
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vibration point of view) and also enables construction of subject specific (or group 

specific) models. These models should take into account effect of the ‘build’ (height, 

dimensions of body segments, mass, active nature of person etc.) of human body upon 

its dynamic response. Therefore, it was decided to emphasize development of human 

body models that were simple to construct, having low degrees of freedom while 

having correspondence with anatomical structure, and which take into account at least 

some aspects of the ‘build’ of human body. 

1.1 Outline of Research Work 

Initially, a lumped parameter vibratory model of standing subject under vertical 

excitation was developed. The human body was partitioned into fifteen ellipsoidal 

segments, each ellipsoidal segment representing a distinct section of the human body. 

Model parameters were computed using anthropometric measurements and total mass 

of the subject. Damping was included in the vibratory model, first using damping ratio 

of individual segment and thereafter through modal damping ratios identified from 

experimental measurements available in the literature. Satisfactory match between 

experimental data and theoretical computation based on anthropometric lumped 

parameter model was achieved.  

To improve the equivalence between experimental measurements and theoretical 

predictions calculated from anthropometric human body vibratory model; and also to 

incorporate continuous nature of actual human body; a finite element (FE) based 

model of standing subject was developed. Human body segments were approximated 

as two noded truncated ellipsoidal finite elements, whose dimensions were again 

determined from anthropometric measurements. Shape functions for ellipsoidal 

elements were derived from the exact solution of a truncated ellipsoid under uni-axial 
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load. Using Kelvin-model of viscoelasticity, governing equations for a standing 

subject under vertical excitation were derived using Hamilton’s principle. Better 

correspondence between experimental measurements and theoretically computed 

driving point impedance parameters using finite element vibratory model was 

achieved. Subsequently, using similar methodology, finite element vibratory model of 

seated person was developed with arms in vertical hanging position. To correspond 

with the posture of a motorcycle rider (specifically arms at an angel to vertical), the 

seated FE model was modified slightly by including existing lumped parameter model 

of bent arm. Finally, the FE model of motorcycle rider in a seated driving posture was 

combined with a straight line model of motorcycle and effects on dynamic response of 

the vehicle were studied.   

1.2 Contributions of the Present Research Work 

Main contributions of the research work can be summarized as follows: 

1. Computation of driving point mechanical impedance and acceleration 

transmissibility for anthropometric human body vibratory model. 

2. Development of novel iterative scheme to estimate modal damping ratios 

using experimental measurements of transmissibility and its application to 

human body vibratory model. 

3. Reference values for elastic moduli of human body segments in standing 

posture. 

4. Development of truncated ellipsoidal finite elements for FE vibratory model of 

human body in standing and sitting posture using shape functions based on 

exact solution of uni-axial deformation of ellipsoid. 
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5. Estimation of elastic moduli and average dynamic viscosity of human body 

segments for finite element vibratory model with low d.o.f., in standing and 

sitting posture. 

6. Development of seated human body vibratory model in normal driving posture 

of a motorcycle rider. 

7. Study of vibrations transmitted to head of the rider driving a motorcycle, due 

to road undulations, considering human body as flexible multi degrees of 

freedom system.  

1.3 Thesis Organization The thesis is organized into seven different chapters which 

are briefly described below: 

Chapter 1: Introduction 

This chapter describes motivation behind the current research work. Scope of 

the research problem and the steps followed for solving the same are outlined. 

It also lists major contributions of the research work and describes 

organization of thesis in brief. 

Chapter 2: Literature Survey 

Previous studies concerning Whole Body Vibration of humans and motorcycle 

modeling are reviewed in this chapter. Experimental studies dealing with 

measurement of different parameters for person subjected to external 

excitations are discussed. Thereafter theoretical studies dealing with 

development of human body vibratory models, both lumped parameter and 

finite element based are described. The limitations and scope for improvement 

of these studies are pointed out to identify research gaps. Finally, a brief 
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review of different approaches to motorcycle modeling is provided to identify 

straight line motorcycle model adopted in the present thesis. 

Chapter 3: Lumped Parameter Models of Standing Subject 

The chapter details the methodology used to develop lumped parameter human 

body vibratory models for a standing subject under vertical excitation from 

feet-platform interface. Scheme to partition human body into ellipsoidal 

elements; comparable with actual human body segments, and identification of 

model parameters from anthropometric data is described. Standing human 

vibratory models based on damping ratio and modal damping ratios are 

developed and methodology used for identification of model parameters is 

illustrated.  

Chapter 4: Finite Element Model of Standing Subject 

Improving upon lumped parameter human body vibratory model, development 

of finite element model of a standing subject is described in this chapter. 

Procedure to generate shape functions from exact solutions and derivation of 

governing differential equation from Hamilton’s principle are detailed. 

Identification of average parameters of ellipsoidal finite elements using 

optimization is explained and mode shapes for a standing subject under 

vertical excitation are drawn. 

Chapter 5: Finite Element Model of Seated Subject 

Building on the FEM model of standing subject, Chapter 5 details the finite 

element model of seated subject under simultaneous excitation form feet and 
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pelvis. Development of vibratory model of a seated person in with hands in 

straight down posture is expounded upon in this chapter.  

Chapter 6: Straight Line Model of Motorcycle and Dynamic Analysis of 

Motorcycle-Rider Model 

Vibratory model of motorcycle rider through inclusion of a lumped parameter 

model of bent arm is developed in this chapter. It also describes the straight 

line motorcycle model adopted in present study. Lagrangian approach to 

develop the multi-body model of motorcycle is detailed and numerical scheme 

to solve for straight line motion is explained. Finally multi-body model of 

motorcycle is combined with FEM model of seated human body and results 

are examined to show the effects of human body on dynamic response of 

motorcycle.  

Chapter 7: Conclusions 

The final chapter summarizes the findings of human body vibratory models 

developed in research study. It also research contributions and scope of further 

improvement.  

 Appendices 

The studies reviewed in Chapter 2 as well as other studies referred to in 

different chapters are listed. Appendices contain data related to human body 

vibratory models and motorcycle model.  
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Chapter 2 

Literature Survey 

 

2.1 Introduction  

This chapter reviews studies related to WBV of human body and different 

approaches employed by researchers to construct motorcycle model. Classification of 

human body vibration studies and basic terminologies related to the same are 

introduced in section 2.2 and 2.3 respectively. In section 2.4, these studies are 

reviewed in detail to identify different methods employed by the researchers to 

quantify adverse effects of external excitations on people. In section 2.5, different 

motorcycle models available in the literature are reviewed to identify a suitable model 

for dynamic analysis of motorcycle-rider model. Research Gap based on literature 

survey of different studies is discussed in section 2.6 and section 2.7 lists primary 

objective of proposed work. 

2.2 Human Body Vibration 

Different approaches employed by researchers to investigate adverse effects of 

vibration exposure on health and well-being of people can be broadly classified into 

three categories: 

a) Statistical studies or field surveys: Substantial data has been gathered by 

conducting field surveys among heavy vehicle operators, construction 

workers, miners, travelling passengers etc. to understand effects of long term 

vibration exposure on human health. Attempts have been made to correlate 

nature, magnitude and duration of exposure with the different types of 
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vibration injuries reported. These studies have played an important role in 

issuance of regulatory guidelines about safe vibration dose values for people 

who are continuously exposed to WBV in their day to day environment.  

b) Experimental studies: Numerous experimental studies have been conducted 

on groups of people, under controlled environment, to identify effect of 

various factors related to vibration exposure on the dynamic response of 

human body. These factors can be broadly classified as ones related to the 

input excitation and other related to the human body. Important factors related 

to input excitation that have been investigated through experimental studies 

are magnitude, direction and nature of applied excitation.  Mass, age, gender, 

body structure and its posture are the main factors related to human body 

whose effect on dynamic response has been studied in experimental settings. 

These experimental studies have identified ‘resonant frequencies’ i.e., those 

frequency of applied excitation at which human body response exhibit distinct 

peaks. Also the effect of aforementioned factors on resonant frequencies and 

magnitude of dynamic response at resonant frequencies has been measured 

through experimental studies.  

c) Theoretical modeling: Primarily, due to ethical concerns and due to the 

varied nature of external excitations, it is not possible to conduct experimental 

studies for identifying safe vibration level for persons in different work 

environments. Theoretical vibratory models of human body or some of its 

parts, both lumped parameter and continuous, have been developed to 

overcome this limitation. Parameters of these vibratory models are chosen 

such that their dynamic response imitates the response measured in 

experimental studies under similar excitation conditions. After validation, 
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these models are employed in lieu of actual human being for design and 

comfort studies related to different environments. 

2.3 Biodynamic Response Terminologies: 

Different terminologies have been defined by researchers to study vibration effects on 

human body quantitatively and also to enable comparison between experimental 

measurements and theoretical predictions computed using human body vibratory 

models.  

a) Driving point mechanical impedance: Ratio of the force transmitted at the 

force platform (seat/floor)-person interface and velocity at the same interface.  

b) Seat to head transmissibility: Ratio of the acceleration measured at the force 

platform (seat/floor)-person interface and acceleration measured at person’s 

head. 

c) Apparent mass: Ratio of the force transmitted at the force platform 

(seat/floor)-person interface and acceleration at the same interface. 

d) Normalized Apparent mass: Ratio of the apparent mass and static weight of 

person in the case of standing subject or Ratio of the apparent mass and 

apparent mass at very low frequencies (generally taken as 0.5 Hz) 

2.4 Human Body Vibration Studies 

The effects of vibratory stimulus on human body are assessed by the quantitative 

analysis of parameters such as Apparent Mass, Driving Point Mechanical Impedance 

(DPMI), Seat/Platform-to-Head Transmissibility, Absorbed Energy etc. (Griffin, 

1990) through theoretical and experimental studies. Experimental measurement of 

these parameters are conducted by subjecting a person to external excitations under 
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controlled environment while accounting for factors such as body posture, magnitude 

and axis of the excitation. Experimental studies are then used to develop lumped 

parameter multi degree of freedom (d.o.f.) vibratory models of the human body.  

Amongst early researchers, Garg and Ross (1976) measured platform-to-head 

transmissibility of 12 subjects in standing posture. The input harmonic vibrations to 

the platform were in the frequency range of 1-50 Hz with small amplitude. A 16 mass 

linear lumped parameter model of the standing subject was developed. Mass and 

stiffness parameters of the model were estimated from published literature (Hirsch & 

Nachemson, 1954; Coermann, 1962; Suggs & Abrams, 1973; Dempster 1995) and 

damping parameters were determined through matching average experimental 

frequency response with the theoretical response. Muskian and Nash (1976) 

formulated a three degree of freedom (d.o.f) lumped parameter seated human body 

model undergoing sinusoidal vibrations. The mass of three bodies in the model 

representing head, body and pelvis were based on the methodology reported by 

Hertzberg and Clauser (1964). The stiffness and damping parameters were estimated 

by fitting the theoretically computed values of seat to head acceleration ratios with 

experimentally measured values published in the literature (Magid et al 1962). 

Moreover, damping coefficients were taken as a function of frequency of excitation so 

as to have a better match with the experimental data. Considering the fact that 

dynamic behavior of human body depends upon the physical parameters of the human 

being; Nigam and Malik (1987) developed a 15 d.o.f. undamped vibratory model for 

standing posture based on anthropometric data of human body (Bartz & Gianotti, 

1975). 

 



 

12 
 

Author Posture Impedance 

Parameter  

Model Description Dataset Used for 

Parameter Estimation / 

Identification 

Resonant 

Frequencies 

Figure of Model 

Garg and 

Ross (1976) 

Standing 

, Erect 

Feet to Head 

Transmissibility 

Lumped Parameter 

Spring-Mass-Damper 

Model with Sixteen 

Mass Elements 

Matching of Theoretical 

Response Curve with 

Experimentally Measured 

Average Feet to Head 

Transmissibility of Eight 

Persons (Garg & Ross, 1976) 

1.99 Hz, 6.14 

Hz, 19.4 Hz 

 

Muskian 

and Nash 

(1976) 

Seated, 

Erect 

Head  to Seat 

Acceleration 

Ratio  

Lumped Parameter 

Spring-Mass-Damper 

Model with Three  

Mass Elements 

Matching of Theoretical 

Response Curve with 

Experimentally Measured 

Acceleration Ratio and 

Natural Frequencies (Magid et 

al, 1976 and Goldman & 

Gierke, 1961) 

6 Hz 
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Nigam and 

Malik 

(1987) 

Standing, 

Erect 

None Lumped Parameter 

Spring-Mass Model 

with Fifteen  Mass 

Elements 

(Undamped) 

None; Only Matching of 

Resonant Frequency of  Body 

Segments Using 

Anthropometric Data 

13.82 Hz; 23.92 

Hz, 28.77 Hz, 

29.53 Hz 

 

Qassem et 

al.  (1994) 

Seated, 

Erect 

Seat to Hand 

Transmissibility 

and Hand to 

Elbow 

Transmissibility 

Lumped Parameter 

Spring-Mass-Damper  

Model with Eleven  

Mass Elements 

(Connected with both 

horizontal and 

vertical springs and 

dampers) 

Matching of Theoretical 

Response Curve with 

Experimentally Measured 

Acceleration Ratio and from 

Available Literature Natural 

Frequencies (Mizrahi & Susak 

1982, Nigam & Malik 1987, 

Patil et al. 1978) 

1.38 Hz, 2.7 Hz, 

1.85 Hz, 1.38 

Hz ( for 

different body 

segments, not 

the whole body) 

 

Wei and 

Griffin 

(1998) 

Seated Mean 

Normalized 

Apparent Mass 

Lumped Parameter 

Spring-Mass-Damper  

Model with Rigid 

Support 

Matching of Theoretical 

Response Curve with Modulus 

and Phase of Mean 

Normalised Apparent Mass of 

60 subjects ( Fairely & Griffin 

1989) 

~ 5 Hz 
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Boileau and 

Rakheja 

(1998) 

Seated  Both Driving 

Point 

Mechanical 

Impedance and 

Seat to Head 

Transmissibility 

Lumped Parameter 

Spring-Mass-Damper  

Model  

Matching of Theoretical 

Response Curve with 

Experimental Modulus and 

Phase of DPMI &STHT  in 

the same study  

~ 5 Hz 

 

Fritz (2000) Standing 

, Erect 

with 

Hands on 

Steering 

Wheel 

Transfer 

Functions 

Between 

Ground & 

Ankle/Hip/Knee 

Joint 

Rigid Body Model 

with 27 Bodies 

having 103 d.o.f. 

From Published Literature       

( Markoff 1970, Anderson et 

al. 1985 etc.) and STHT 

matching from ISO/CD 5982 

data  

~5-6 Hz 

 

Cho & 

Yoon 

(2001) 

Seated, 

with 

Back 

Support 

Hip and Back 

Transmissibility 

in Multiple axis 

9 d.o.f. Model with 

Three Rigid Bodies 

Connected with 

Spring-Dampers 

From Anthropometric Data of 

Korean males and 

Transmissibility Measurement 

from the Same Study 

~4-5 Hz 
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Matsumoto 

& Griffin 

(2001) 

Seated Normalized 

Apparent Mass, 

Vertical & Fore-

Aft 

Transmissibility 

Four & Five d.o.f. 

Models connected 

with Vertical and 

Rotational Springs 

and Dampers 

From Modal Data of Kitzaki 

& Griffin, 1997 and  Matching 

of Experimental Data 

(Matsumoto & Griffin, 1998) 

2.53 Hz, 5.66 

Hz, 8.62 Hz, 

11.5 Hz 

 

Kitzaki and 

Griffin 

(1997) 

Seated Modal Analysis 

and Normalized 

Apparent Mass 

Two Dimensional 

Finite Element Model 

with Beam Elements 

for Spinal Chord 

Matching of Experimental 

Modal Values from Kitzaki & 

Griffin (1997) and Inertial 

Data Available ( Liu & 

Wickstrom, 1973;  Williams 

& Belytschko 1997 etc.) 

0.28 Hz, 1.49 

Hz, 2.86 Hz, 

5.06 Hz 

 

Kong & 

Goel (2003) 

N.A. Modal Analysis 

and 

Transmissibility 

at Different 

Points 

Finite Element Model 

of Human Spine with 

Beam Elements 

connected with Joints 

having Torsional , 

Lateral, Axial  

Stiffness 

Inertial and Stiffness Data 

from Computer Topography 

Scan of Spine and Available 

Literature (Panjabi et al. 1976, 

Closkey et al., 1992) 

6.82 Hz to 8.91 

Hz 
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Arnoux et 

al. (2003) 

Seated, 

with 

Back 

Support 

and  

hands in 

Driving 

Posture 

None Detailed 3-d Finite 

Element Model of 

Human Anatomy 

with 25000 shell/ 

solid elements 

Form Literature ( Yamada 

1970, Fung 1993, Linde 1994 

etc.) and Special Purpose 

Experimental Studies  

N.A. 

 

Liu et al. 

(2015) 

Seated, 

Erect 

In-Line and 

Cross-Axis 

Apparent Mass 

Finite Element Model 

with Five Rigid 

Bodies Connected 

with Revolute Joints 

and Finite Elements 

for Soft Tissues  

From Literature ( Dempster 

1967, Reynolds 1981) and 

From Transmissibility Data of 

Matsumoto & Griffin 2001 

1.7 Hz, 6.2 Hz 

and 13 Hz 

 

Table 2.1: Summary of Human Body Models Available in the Literature  
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Bartz & Gianotti (1975) assumed the human body segments to be of ellipsoidal 

shape to determine the inertial properties of different segments of human body model. 

Extending this, Nigam and Malik (1987) evaluated the stiffness parameters of the 

model and then natural frequencies of 50th percentile U. S. male were determined.  

To understand the effects of foot-rest, back-rest, posture, muscle tension and 

vibration magnitude on the dynamic behavior of human body in sitting posture, 

Fairley and Griffin (1989) conducted experiments upon 60 subjects in seated posture 

to measure their Apparent Mass while undergoing random excitation in vertical 

direction. Excitation frequency was from 0-20 Hz and the root mean square (r.m.s) 

magnitude ranged from 0.25 m-sec
-2

 to 2.0 m-sec
-2

. Theoretical and experimental 

studies were conducted by Qassem et al. (1994) to study the effects of vertical and 

horizontal vibrations coming from seat and hand on the human body. Experiments 

were performed on 15 seated male students with excitation-frequency 5-500 Hz and 

transfer functions for arm, torso and head were plotted. For the same, theoretical 

results were computed using a 12 d.o.f human body model, whose parameter were 

determined following the scheme available in the literature (Muskian & Nash, 1976; 

Nigam and Malik, 1987; Bartz & Gianotti, 1975 ). Modeling the human spine as 

interconnected finite elements, Kitzaki and Griffin (1997) developed a 2-dimensional 

human body finite element model to investigate modes of vibration of seated human 

body. They identified modes of vibration at frequencies ranging from 0.28 Hz to 10 

Hz having nodes at C1-C5, T1-T12 and L1-L5 of the spinal column. Model 

parameters i.e. mass, stiffness and damping were taken from published literature (Liu 

& Wickstrom, 1973; NASA, 1978; Williams & Belytschko, Kitazaki & Griffin, 1997) 

and experimental modal analysis.    
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 Simplified 1 d.o.f. and 2 d.o.f lumped parameter human body models for 

predicting seat transmissibility were proposed by Wei and Griffin (1998). Curve 

fitting the experimental values of Apparent Mass obtained by Fairley & Griffin (1989) 

with the theoretical expression, inertial and dynamic parameters of models were 

determined. In these lumped parameter models, elements were not related to body 

segments in particular; thus the models only show equivalent mechanical properties of 

whole human body and are not intended to attribute the contribution of specific body 

segments.  For studying vibration effects on a vehicle driver, Boileau and Rakheja 

(1998) measured DPMI of seated humans in 0.625-10 Hz range with hands in driving 

position and a corresponding 4 d.o.f. linear human body model was developed to 

predict DPMI and STHT. Model parameters were obtained by minimizing the 

difference between experimental and theoretical results of seated human body for both 

DPMI and STHT simultaneously. Subsequently the model was modified to a semi-

definite 3 d.o.f. model with body mass dependent parameters (Boileau et al, 2002). 

Experimental results were grouped in three different body mass categories, and 

constraint optimization was performed to acquire model parameters for different 

groups.  

To understand the effects of vibration on joints of a standing person, Fritz (2000) 

used a 103 d.o.f. model with 27 rigid bodies whose parameters were identified from 

published literature ( Markoff, 1970; Punjabi et al., 1976; Anderson et al., 1985; Luo 

& Goldsmith, 1991) and through fitting STHT to the results reported in ISO/CD 5982 

(1999) for sitting posture. The model was then used to calculate transfer functions 

between ground excitation and different body segments for a person in standing 

posture. Comparison of transfer functions of different segments indicated that ankles 

and spine withstood higher forces than knees and hips during vibration. For examining 
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quality of vehicle ride, Cho and Yoon (2001) measured transmissibility between floor 

& hip surface, floor & back surface and floor & head for 10 subjects under random 

vibrations ranging from 1-25 Hz in vertical direction. The seated human body was 

modeled by three rigid masses having total 9 degrees of freedom. The inertial 

parameters for the 9 d.o.f. model were estimated using the published anthropometric 

data for Korean adults (Park et al., 1999). Dynamic properties of the model were 

determined by fitting the experimental data for transmissibility with the theoretical 

results obtained for the model.  

For mathematical modeling of human body in proximity to resonance frequency of 

about 5 Hz, Matsumoto and Griffin (2001) developed 4 d.o.f and 5 d.o.f lumped 

parameter human body models including rotational degree of freedom. Geometrical 

and inertial parameters of the model were obtained from earlier work (Kitazaki & 

Griffin, 1997) and dynamic parameters were determined by matching experimental 

results (Matsumoto & Griffin, 1998) with theoretical results for Apparent Mass and 

transmissibility. Modal analysis identified the principal resonant mode to be the 

vertical motion of legs and pelvis combined with pitching motion of pelvis. To 

identify body segments prone to injuries due to ship shock motion, Zong and Kim 

(2002) used a 4 d.o.f. nonlinear biodynamic model coupled with ship structure. In 

their model, each lumped mass represented a group of body parts whose parameters 

were identified from earlier experimental results (Liu et al, 1998). The results showed 

that body segments in direct contact with ship structure are at increased risk of injury. 

Matsumoto and Griffin (2003) developed theoretical 1 d.o.f. and 2 d.o.f lumped 

parameter model for standing posture. Parameters of the model were determined by 

minimizing the difference between theoretical and experimental values (Matsumoto & 

Griffin, 1998] of Apparent Mass for standing persons.  
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To develop biomechanical models for ride quality simulation, Kim et al. (2005) 

conducted experiments on five seated subjects undergoing random vibration in 

vertical direction in the range of 1-50 Hz. Results of the experimental study were used 

to develop a 14 d.o.f human body model with 6 rigid bodies representing human body 

segments. Inertial properties of the model were determined through data available in 

the literature (Park et al, 1999; Privitzer & Belytschko, 1980; Adrian & Cooper, 

1995). Stiffness and damping properties of the model elements were determined by 

optimizing transmissibility values of theoretical model with experimental results. To 

identify the effects of vibration input from seat backrest while driving, Rakheja et al. 

(2006) conducted experiments on 24 subjects in driving posture. A 4 d.o.f. human 

body model coupled with inclined seat and pan was developed to study vibration 

interaction with seat backrest. Theoretical expression for Apparent Mass was derived 

and model parameters were identified by grouping experimental results in different 

weight categories and optimizing the difference between theoretical and experimental 

results. 

To estimate effects of magnitude of applied excitation and standing posture on 

Apparent Mass, Subashi et al. (2006) conducted experiments on 12 standing male 

subjects. The experimental results indicated that the frequency, at which Apparent 

Mass and cross-axis Apparent Mass were maximum, varied with the magnitude of the 

applied excitation and also with the position of bent knees. The authors later used 

these experimental results to construct 5 d.o.f and 7 d.o.f lumped parameter human 

body models for simulating response of a standing human body to vertical vibration 

(Subhashi et al, 2008). In these models, lumped masses represented few segments of 

the human body. Inertial and geometrical parameters of the model were determined 

from published literature. Stiffness and damping values for model were estimated by 
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minimizing difference of NAMS and cross-axis Apparent Mass of theoretical model 

with the experimental values (Subashi et al., 2006). 

Extending the undamped anthropometric model reported by Nigam and Malik 

(1987), Gupta (2007) estimated damping coefficients of ellipsoidal body segments 

based on comparison of experimental results for acceleration ratio of head to feet with 

the values computed from anthropometric vibratory model. Damping parameters were 

estimated for 50
th
 percentile U. S. male and a group of Indian males. This 

anthropometric model, based on geometric dimensions of body segments, can provide 

a better understanding of vibration effect on humans.   

To study effects of multi-axis excitation on ride comfort, Kim et al (2011) 

conducted experiments on a seated person with excitation in the range of 1-20Hz. The 

person was subjected to translational excitation in two mutually perpendicular axes 

and rotational excitation about the axis perpendicular to both translational excitation 

axes. A 5 d.o.f. lumped parameter model was developed whose parameters were 

obtained through matching experimental and theoretical results for apparent inertia 

matrix. These parameter values are not representative of physical values related to 

human body segments. To study effects of backrest on a seated person during multi-

axis vibration, Zheng et al (2011) developed 7 d.o.f multi-body human body model. 

The rigid bodies used in model represented some human body segments whose 

inertial parameters were obtained from literature (Dempster & Gaughran, 1967; Qiu & 

Griffin, 2009). Dynamic parameters of the model were obtained by using 'fmincon' 

optimization in MATLAB to fit experimental data (Qiu & Griffin, 2009) for vertical 

and cross-axis Apparent Mass of the human body. 
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To understand resonance behavior of the human body, Kitazaki and Griffin (1999) 

applied random vibration of constant power spectra on eight male subjects in the 

seated posture and measured normalized apparent mass vis-à-vis frequency of applied 

excitation. Experimental data suggested a principle resonant frequency around 4.9 Hz 

corresponding to an entire body mode. Subsequently, authors used measured 

experimental data to develop a finite element (FE) model of a seated body (2001) 

consisting of 134 elements and 87 degrees of freedom (d.o.f.). Inertial and stiffness 

data of different beam, spring and mass elements were obtained from existing 

literature and modal damping ratios were estimated by comparing theoretical apparent 

mass with the experimental measurements. 

Subhasi et al (2001) measured NAMS and cross-axis apparent mass (CAMS) of 

twelve male subjects in different standing postures at multiple root mean square 

(r.m.s.) values of random excitation and investigated the effect of posture and muscle 

tension on the dynamic response of human body. Resonant frequencies of both NAMS 

and CAMS were affected by the r.m.s. value of excitation and posture of the subject. 

Same authors later developed five and seven d.o.f. lumped parameter models (2003) 

of standing subjects based on the experimental measurements. Inertial and geometrical 

parameters of the model were adopted from existing literature and stiffness and 

damping properties were estimated from comparison of theoretical response curve 

with experimental data. Modal analysis revealed that the dominant peak of NAMS is 

associated with the undamped natural frequency of 6.13 Hz.  

 A finite element model of human body for head-to-sacrum, including the rib cage, 

thorax and cervical spine, was developed to predict vibration response of spinal 

column by Kong and Goel (2003). In this model, beam elements were used to model 

thoracic and cervical segments which are rigidly interconnected. Numerical 
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simulations showed that the first resonant frequency for vertical vibration decreases as 

the contribution of self-weight of lower body segments is increased.  

A detailed 3-D finite element model of the human body consisting bones, ligaments, 

muscles, tendons etc. was developed as part of the HUMOS project to replicate injury 

mechanism of crash victims (Arnoux et al & Behr et al). Body constituents like bones, 

ligaments, skin were modeled using shell/solid elements whereas soft tissues such as 

muscles, internal organs, tendons etc. were modeled as elastic/ viscoelastic material. 

Constituent properties of this exhaustive human body model were obtained either 

from the existing literature (Yamada, 1970; Shuck and Advani, 1972; Fung, 1993; 

Linde, 1994) or from some special purpose experimental studies (Arnoux et al., 2001). 

Comparatively large size of the model (25000 elements) along-with the time step 

required for simulation (1μsec), limits the usefulness of this model for WBV studies. 

Liu et al (2015) developed a 3-D finite element model of the seated person to 

estimate body-seat interaction i.e., pressure distribution. The model consisted of five 

rigid bodies joined by revolute joints and surrounded by deformable elements 

representing soft tissues. Geometrical parameters and mass of the body segments were 

taken from existing literature (Dempster 1967, Reynolds 1981). Stiffness and damping 

parameters of the model were adjusted to fit experimentally measured value of 

vertical in–line and cross-axis apparent mass of a person seated on a rigid seat.  

The results of experimental studies have shown that in addition to the frequency of 

applied excitation, dynamic response of the human body is dependent on magnitude of 

applied excitation, type of excitation applied (harmonic, random, single-axis, multi-

axis), posture of the person and body mass of the person among other factors. 

Experimental studies on different groups of seated subjects exposed to vertical 
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excitations have exhibited some consistent patterns during measurement of driving 

point mechanical impedance (DPMI), normalized apparent mass (NAMS) and seat to 

head transmissibility (STHT) etc. ( Coermann 1962, Fairley and Griffin 1989, Paddan 

and Griffin 1993). The first and second resonant peaks are found between 4 to 6 Hz 

and 8 and 12 Hz respectively. Also, the response has been found function of vibration 

magnitude and sitting posture. The data recorded during these studies has formed the 

basis of developing models of human body to replicate experimental observations. 

Model development is desirable to reduce adverse effects of vibration by design 

modifications of systems generating vibratory environments and also to develop a 

better mechanism of vibration isolation/reduction based on simulation using the 

models developed. Lumped parameter models developed in studies discussed above 

have little to no resemblance to human anatomy for both seated and standing posture. 

The physical and mechanical properties of body such as mass, stiffness and damping 

have been estimated either experimentally or by fitting the experimental dynamic 

response with the theoretical model based response. Although simple to formulate, 

these models lack in their ability to provide an accurate description of effects of 

vibration on various segments of the human body. Finite element models that are 

developed to generate modal information of human body are complex in nature. It is 

desirable to develop models that can be related readily to human body segments thus 

being useful in developing a more realistic understanding of effects of vibration on 

human health. 

2.5 Motorcycle Modeling: The preceding section dealt studies related with WBV of 

human body and modeling of the same. In the present work, dynamic analysis of 

motorcycle-riser system has been performed utilizing an existing rigid body 
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motorcycle model. Therefore, a short overview of various approaches used to model a 

two-wheeler is provided. 

An experimental study was conducted by Chen et al (2009) on twelve two-

wheelers at different speeds to measure vibration dose value (VDV) to motorcycle 

riders due to road undulations. The experiments were conducted with different types 

of scooters and motorcycles on roads with different profiles. The tri-axial acceleration 

of riders was recorded at pelvis location to determine VDV. The study indicated that 

compared to riders of four wheelers, two-wheeler riders are exposed to much higher 

VDV keeping same road profile and speed and this value was found depending 

significantly on type of road and speed of the two- wheeler. Moreno et al (2011) 

conducted an experimental study to understand effects of WBV on motorcycle riders 

and effects of rider’s age, mass, size of motorcycle engine and type of road. Using 

neural networks and ANOVA, vibration exposure time for safe riding was determined 

based on threshold exposure according to European standards.  Results indicated that 

old motorcycles with small engines travelling on city roads (with high traffic and 

bumps) resulted in greater vibration exposure for motorcycle riders. 

Verma et al. (1980) investigated dynamics of an uncontrolled motorcycle on a level, 

straight road. Twp lumped masses representing rear frame (with rider) and the front 

frame were connected by springs with rear wheel and front wheel respectively, to 

model the motorcycle and include frame compliance. By solving a set of thirty two 

linear first order differential equations, eigenvalues and eigenvectors of weave, 

wobble and capsize mode were calculated for a commercial motorcycle. 
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Author Methodology Used  Model Description Rider Description 

 

Results Calculated Figure of the Model 

Verma et 

al. (1980) 

Eight d.o.f. multibody 

model using 

Lagrangian dynamics 

and natural coordinates 

approach 

Modeled motorcycle as 

four rigid bodies having 

eight natural coordinates; 

EOM derived using 

energy and virtual work 

approach.  

Rider rigidly connected 

to motorcycle frame 

and its mass was added 

to rear frame.  

Lateral Dynamics of 

motorcycle and Eigen 

values associated with 

different modes. Also 

effect of frame compliance 

on eigenvalues.  

Sharp & 

Limebeer 

(2001)  

Multi Body Model 

using AutoSim ® 

Using Koenen (1983) 

tyre model, steering 

behavior of motorcycle 

in straight and steady 

turning motion. 

Rider upper body was 

included as a point 

mass in model. 

Root Locus Plots for 

Straight and steady 

turning. Quasi equilibrium 

state for the same. 

 

Sharp et 

al.  (2004) 

Multi Body Model  Inclusion of Frame 

compliance, mono-shock 

suspension and Magic 

tyre formula in Sharp & 

Limebeer (2001) model   

Lower body was taken 

as part of main frame 

and upper body was 

modelled as having roll 

d.o.f. 

Results for Steady turning 

and Straight line motion. 

Parametric  study of 

motorcycle behaviour  
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Cossalter 

et al. 

(1995) 

Three d.o.f linear 

model treating vehicle 

as two separate 

functional blocks. 

Maneuverability and 

handling  of motorcycle 

determined for straight 

running using  tyre force 

computation   

Rider was not included 

in the model; except as 

a source of steering 

torque. 

Transfer functions between 

tyre forces  and lateral 

displacement as a function 

of frequency 

 

Cossalter 

et al. 

(2000) 

Seven d.o.f. multibody 

model using 

Constrained 

Lagrangian dynamics 

and natural coordinates 

approach 

Modeled motorcycle as 

four rigid bodies having 

ten natural coordinates; 

EOM derived using 

energy and virtual work 

approach.  

Rider rigidly connected 

to motorcycle frame 

and its mass was added 

to C.G. of frame.  

Suspension Parameters and 

Braking Torque that 

minimize the stopping 

distance. 

 

Cossalter 

et al. 

(2002) 

Eleven d.o.f. multibody 

model using 

Constrained 

Lagrangian dynamics 

and natural coordinates 

approach 

Fortran code Fastbike ®. 

Motorcycle composed of 

six bodies with forty five 

natural coordinates; A 

new tyre model. 

Rider rigidly connected 

to motorcycle frame 

and its mass was added 

to C.G. of frame. 

Steering angle, steering 

torque and roll angle for 

lane change and Slalom 

maneuvers were 

calculated.  
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Lai et al. 

(2003) 

Multibody Model of 

Motorcycle with six 

d.o.f. using Newton 

mechanics 

Electric Motorcycle 

composed of three rigid 

bodies with linearized 

equation and tyre forces. 

The upper body of 

rider is included having 

only lean angle of 

rotation. 

Root locus and Bode plots 

of different transfer 

functions for straight line 

motion and cornering.  

 

Zhu et al. 

(2012) 

Non-linear state space 

model with ten degree 

of freedom. 

Motorcycle model with 

four rigid bodies 

connected with rider 

upper body and  non-

linear tyre model. 

Lower torso  with rear 

frame and upper torso 

mass connected with 

rotational spring and 

dampers  

Effect of  rider lean on 

steady turning and stability 

of motorcycle on road 

surfaces with different 

friction coefficients 
 

Sequenzia 

et al. 

(2015) 

Multibody ADAMS ® 

model of motorcycle 

and virtual rider. 

Motorcycle model with 

11 rigid and one flexible 

body(chassis) and rider 

model with fifteen rigid 

bodies having 28 d.o.f.  

Kinematic model of 

rider. 15 rigid bodies 

connected by fixed, 

spherical, revolute and 

planar joints.  

Simulation of motorcycle 

maneuvers/controls on an 

entire lap effect of rider 

movement of bike’s roll 

moment.  
 

Table 2.2: Summary of Motorcycle Models Available in the Literature  
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Sharp & Limebeer (2001) developed a mathematical model of motorcycle with rider 

as a part of rear frame and the wheels were modelled as rigid discs. Using parameter 

values from Koenen (1983) model, three out of plane modes of vibration of a 

motorcycle; weave, wobble and capsize, were identified which were dependent on the 

speed of motorcycle. 

The effect of sideslip of tire on the stability of these modes was also studied. In a 

significant advancement, Pacejka and Bakker (1989) provided magic formula tire 

model based on extensive measurements and study of tire deformations under 

different load conditions. The magic formula, modified later on (Pacejka & Bakker, 

1992), provides an empirical relationship from which the forces and moments acting 

from road to tire can be calculated for pure lateral slip, pure longitudinal slip and 

combined lateral and longitudinal slip. Sharp et al. (2004) made improvements to the 

earlier model by increasing degree of freedom for main frame, a rigid body for upper 

body of rider and dynamic tires. Analysis of the model using AUTOSIM, a multibody 

modelling package, showed that different modes of steering oscillations can be caused 

depending upon particular wavelength of road undulations.  

Zhou et al (2009) developed a 5 degree of freedom (d.o.f.) motorcycle model and 

simulated response for road undulations. Modelling the motorcycle as lumped 

parameter system with rider modelled as rigid mass connected by springs and dampers 

and using Lagrange’s formulation; state space equations of the motorcycle-rider 

system were derived. The response of the system was simulated for vertical 

excitations of the road which was in agreement with experimental measurements by 

the same authors.    
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Cossalter et al (1995) developed a three d.o.f. mathematical model for motorcycle 

handling and maneuverability which treated the vehicle as two separate functional 

blocks. Steering system and vehicle system were treated as two separate functional 

blocks which were connected through tire forces; mass of the rigid rider was included 

in total mass of the motorcycle. The model accounted for basic inertial properties of 

the vehicle and estimated forces required to perform a given maneuver. Later on, a 

seven d.o.f. mathematical model for in-plane dynamic analysis was developed 

(Cossalter et al, 2000). Using a natural co-ordinates approach, motorcycle was 

modelled as consisting of four rigid bodies; and the rider was attached rigidly to the 

rear frame. Equations of motion were derived using Lagrange’s multiplier approach 

and tire forces were taken as function of tire deformation. Using this model, 

suspension parameters were optimized to minimize the stopping distance during 

braking.  

Based on the same modeling hypothesis, Cossalter & Lot (2002) developed a detailed 

eleven d.o.f. multibody motorcycle model which simulated both in-plane and out of 

plane dynamics of the motorcycle. Dividing the motorcycle into a system of six 

bodies, and by developing an original model for tire forces; a state space formulation 

of motorcycle dynamics, having 130 variables, was implemented in a Fortran code 

called FastBike. Theoretical predictions for roll angle, steering angle and steering 

torque during lane change and Slalom maneuver matched experimental measurements 

for the same. This model was further improved by inclusion of flexible bodies, various 

types of suspension linkages and compliance of transmission mechanism (Cossalter et 

al, 2009) 

Using the multibody model developed in Cossalter & Lot (2002), frequency response 

functions (FRF’s) for saddle to road excitations were constructed for frequency range 
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of 1-20 Hz. Treating the human body as a rigid attachment, and accounting for 

wheelbase filtering (Cossalter et al., 2006) ; comfort for straight travel of a motorcycle 

on asphalt roads was also computed. Bevilacqua et al. (2013) and Doria et al. (2013) 

developed one, three and five d.o.f. biomechanical models of mock-motorcycle with 

rider to study the effects of roll and yaw oscillations of the motorcycle. Using the 

measurements collected from specialized tests on mock-setup for roll and yaw 

oscillations, response to sine sweep oscillation was measured and biomechanical 

models were developed whose parameters were identified using optimization. 

Lai et al. (2003) studied the differences in design and control of electric motorcycles 

vis-à-vis a conventional motorcycle due to difference in mechanical characteristics of 

an electric motorcycle. Dividing the electric motorcycle in three different rigid bodies, 

constant velocity motion of motorcycle was studied, ignoring aerodynamic drag 

forces. Equations of motion were derived using Newton’s law with rider upper body 

assumed to having roll degree of freedom. Root locus and Bode plots for three modes 

of motorcycles were plotted and effect of various design parameters, including lower 

weight of electric motorcycles on perceived rider comfort was analyzed. A nonlinear 

state space model of motorcycle was developed by Zhu et al. (2012) to study effect of 

rider motion (lean of upper torso) on motorcycle. Dividing the motorcycle into five 

rigid bodies with ten d.o.f. and including a nonlinear tyre model, equations of motion 

were solved to analyze motorcycle motion during steady turning. Stability analysis 

using a linearized model showed that rider’s upper body motion changes the stability 

of weave modes.     

Sequenzia et al (2015) constructed a motorcycle model with flexible frame and rigid 

mutli-bodies using MDI/ADAMS to simulate the effects of frame flexibility on 

response of different components during turning and travelling over speed bumps. The 
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frame was modelled with approx. 12000 shell elements, suspensions were modelled as 

spring-dampers elements connected by revolute joints, wheels were modelled as discs 

with gyroscopic effects and rider was composed of 13 rigid parts linked by bushings 

etc. The model predicted that flexural and torsional deformation of the frame and 

acceleration of suspension and steering column was lower for model with flexible 

frame compared to one with rigid frame.  

2.6 Research Gap: From the literature survey regarding human body vibration and 

motorcycle modeling, following research gaps can be listed:  

1. Existing Human body vibratory models are either too complicated or they do 

not resemble with anatomical structure of human body. 

2. Anthropometric vibratory models need to be developed and fine-tuned 

according to the required application i.e. standing; sitting on a car seat; driving 

a motorcycle.  

3. Existing continuums models of human body have large no. of d.o.f. which is 

not desirable. 

4. Motorcycle models have not considered dynamic properties of rider body on 

overall response of the system.  

2.7 Research Objectives:  

1. Development and validation of lumped parameter anthropometric vibratory 

models of human body. 

2. Development and validation of finite element based continuum model of 

human body in standing and sitting posture based on anthropometric data. 

3. Development of a finite element based model of motorcycle rider with hands 

in driving posture.  
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Chapter 3 

Lumped Parameter Models of Standing Subject 

 

In chapter 2, review of existing literature related to WBV studies of human 

body indicated a need for vibratory models that not only have some correspondence 

with the physical structure of human body but are simple to formulate having limited 

number of degrees of freedom. Existing models of human body can be improved such 

that individual or group specific vibratory models can be easily formulated. In the 

present chapter, as a first attempt, lumped parameter models of a standing person 

subjected to vertical vibration to feet-platform interface, are formulated based on 

anthropometric data and average properties of human body. 

3.1 Human Body Segmentation: Anthropomorphic model of Bartz and Gionatti 

(1975), which consists of fifteen ellipsoidal segments connected with fourteen joints, 

shown in Fig.3.1, is adopted to categorize physically distinct segments of a human 

body. This model assumes that human body segments can be approximated as 

ellipsoids in shape whose dimensions can be calculated from anthropometric 

measurements. Bartz and Gionatti (1975) used this model to develop a computer 

program to calculate average dimensional and inertial parameters of group of males 

and females. 
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Fig. 3.1: Anthropometric human body model - ellipsoidal elements  

      (H: Head, N: Neck, UT: Upper Torso, CT: Central Torso, LT: Lower Torso, LUA: Left Upper Arm, RUA: 

Right Upper Arm, LLA: Left Lower Arm, RLA: Right Lower Arm, LUL: Left Upper Leg, RUL: Right Upper 

Leg, LLL: Left Lower Leg, RLL: Right Lower Leg, LF: Left Foot, RF: Right Foot) 

 

3.1.1 Ellipsoidal Segments: Dimensions of ellipsoidal body segments are determined 

employing minimum number of anthropometric measurements, necessary to 

completely define the model; generally available in anthropometric surveys also. For 

 

H 

N 
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i
th

 ellipsoidal body segment; ai, bi , ci   are the semi-axes of the ellipsoid as depicted in 

Fig. 3.2.  

 

Fig. 3.2: Ellipsoidal segment of human body showing semi axes 

Formulae to determine semi-axes (ai, bi, ci) of ellipsoidal segments using 

anthropometric measurements of a subject are given in Table A of Appendix. In Table 

A, Lk (k = 1, 2, …, 30) refers to anthropometric dimensions of human body. Table B 

of the Appendix lists meaning of each Lk and the corresponding values for 50
th

 

percentile U.S. male and average Indian male, used for computation of ellipsoidal 

dimensions in this chapter as well as subsequent chapter of the thesis. As the mass 

densities of different body parts are almost same (Bartz and Gionatti, 1975); therefore 

all the ellipsoidal segments can be taken as of equal density. Volume of i
th

 ellipsoidal 

body segment is
4

3
i i i iV a b c ; mass of the segment (Mi) is obtained by multiplying its 

volume fraction with static mass (Mtotal) of the subject 

15

1

*                      1,2...15i
i total

i

i

V
M M i

V


 
 
  
 
 
 


                         (3.1) 
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For lumped parameter vibratory models of human body, ellipsoidal body 

segments are considered as homogenous, isotropic, and linearly elastic bodies. Since 

the platform is restricted to move in vertical direction only, the vibrations along 

vertical axis of ellipsoids are considered to be dominant. Experimental measurements 

of transmissibility along different axis for standing persons undergoing vertical floor 

vibration (Paddan & Griffin, 1993) also confirm that the motion of head occurs 

primarily in the vertical axis. For this, the stiffness of ellipsoids along vertical axis 

plays major role. Neglecting deformation due to self-weight, the extension of i
th

 

ellipsoidal segment ( iL ) due to tensile force (F) applied along vertical axis (z axis) is  

   

i

i

c

i

i ic

F
L dz

E A





                  (3.2) 

where, Ei is the Elastic modulus and Ai is the cross-sectional area of i
th

 body segment. 

Thus the axial stiffness (Si) of ellipsoidal body segment in vertical direction can be 

written as (Gupta, 2007) 

 
 

               1,2...15

ln

i i i
i

i ii
i

i i

F E a b
S i

c dL
c

c d


  

  
  

            (3.3) 

In Eq. (3.3), 0.95 i id c represents 5 % truncation of the ellipsoidal segments 

to account for overlapping contact area of adjacent human body parts. Area contact of 

truncated ellipsoids represents the actual physical reality of human body segments 

than point contact due to un-truncated ellipsoidal segments. Damping of ellipsoidal 

body segments is calculated as: 
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    2                         1,2...15i i i iB S m i         (3.4) 

where, i  is the corresponding damping ratio for individual ellipsoidal segment.  

3.2 Anthropometric Human body vibratory model: The lumped parameter 

vibratory model for standing subjects, as shown in Fig. 3.3, is constructed by 

replacing ellipsoidal body segments by rigid masses which are inter-connected 

through linear springs and dampers. Elemental mass for the model is equal to the mass 

of corresponding ellipsoidal body segments, determined from Eq. (3.1). Stiffness and 

damping parameters of connecting springs and dampers in Fig. 3.3 are determined by 

series combination of stiffness of adjacent segments. The formulae for the stiffness 

and damping of various elements are given in Table 3.1(Nigam &Malik, 1987). 

Table 3.1: Scheme to Combine Ellipsoidal Segments for Lumped Parameter Vibratory Model  

j Ellipsoidal Segments combined (Body Segment No. i) Kj Cj 

1 Head (1) S1 B1 

2 Neck (2) & Upper Torso (3) S2S3/(S2+S3) B2 B3/(B2+B3) 

3 Upper Torso (3)& Central Torso (8) S3S8/(S3+S8) B3 B8/(B3+B8) 

4 Upper Torso (3) & Right Upper Arm (4) S3S4/(S3+S4) B3B4/(B3+B4) 

5 Upper Torso (3) & Left Upper Arm (5) S3S5/(S3+S5) B3B5/(B3+B5) 

6 Right Lower Arm (6) S6 B6 

7 Left Lower Arm (7) S7 B7 

8 Central Torso (8) & Lower Torso (9) S8S9/(S8+S9) B8B9/(B8+B9) 

9 Lower Torso (9) & Right Upper Leg (10) S9S10/(S9+S10) B9B10/(B9+B10) 

10 Lower Torso (9) & Left Upper Leg (11) S9S11/(S9+S11) B9B11/(B9+B11) 

11 Right Upper Leg (10) & Right Lower Leg (12) S10S12/(S10+S12) B10B12/(B10+B12) 

12 Left Upper Leg (11) & Left Lower Leg (13) S11S13/(S11+S13) B11B13/(B11+B13) 

13 Right Foot (14) S14 B14 

14 Left Foot (15) S15 B15 
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It is to be noted that in Table 3.1, the counter ‘j’ stands for spring and damper element 

shown in Fig. 3.3 whereas the counter ‘i’ stands for ellipsoidal segment shown in Fig. 3.1. 

 

 

Fig. 3.3: Anthropometric vibratory model of standing human subjected to base excitation 
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Thus inertial and stiffness properties of the human body vibratory model are 

determined using anthropometric data, mass of the person and elastic moduli & 

damping coefficient of ellipsoidal body segments. Rigid masses of vibratory model 

(Fig. 3.3) represent actual human body segments and their responses in vibratory 

environment are representative of the response of actual body segments. 

Determination of Ei and i (Eqs. 3.3 and 3.4 respectively) enables us to completely 

determine parameters of anthropometric human body vibratory model. 

3.3 Dynamic Response of a standing subject under vertical excitation: For a 

person in standing posture undergoing vertical vibration from supporting platform, as 

shown in Fig. 3.3, it is contended that there is no relative motion between the rigid 

platform and the feet of subject. This assertion is further supported by the description 

of experimental procedure for measurement of TR by Garg & Ross (1976) (‘… subject 

was comfortable but restrained from changing the position of his feet during the 

experiment…’) and by Gupta (2007) (‘…subject stands on table with feet strapped to 

table…’). Thus feet motion in the vibratory model is equivalent to the motion of rigid 

platform itself and thus the fifteen d.o.f anthropometric human body model under 

vertical excitation at feet is reduced to a thirteen d.o.f. positive definite system with 

support motion as shown in Fig. 3.3.  

For the system shown in Fig. 3.3, equations of motion under support excitation are 

             13x13 13x1313x13
13x1 13x1 13x1 13x1

  x x x FM C K             (3.4) 

where,  
13x13

M ,  
13x13

K ,  
13x13

C are the mass, stiffness and damping matrix 

respectively of thirteen d.o.f. vibratory model shown in Fig. 3.3. 
13x1

F  and  
13x1

x
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are the column vectors corresponding to the force generated due to platform motion 

(y)  and the absolute displacement of vibratory model elements respectively.  

 

   

T

13 13 14 1413x1

T

1 2 3 4 5 6 7 8 9 10 11 12 1313x1

0 0 0 0 0 0 0 0 0 0 0 k y c y k y c y

x x x x x x x x x x x x x

    
      

    



            

            

F

x

         (3.5) 

Similar to the case of support motion of single d.o.f. system, here y and  𝑦̇ 

represent displacement and velocity of the platform. Due to the symmetry of 

anthropometric model, k13 = k14 and c13 = c14. For harmonic excitation of the platform; 

    
j ty Y e                  (3.6) 

the apparent mass (AM) for vibratory model is given as: 

13 15

1 14

  j j j

interface j j

m x m y
F

AM

y y

 



 

 
              (3.7) 

By dividing apparent mass by the static weight of person; normalized apparent mass 

(MNMS) is determined.  

NMS

total

AM
M

M
                  (3.8) 

Transmissibility of a human body related to vibrational studies is defined as 

‘… the non-dimensional ratio of response amplitude of a system in steady-state forced 

vibration to the excitation amplitude expressed as a function of the vibration 

frequency…’ (Griffin,1990). For a person standing in upright posture subjected to 

vertical excitation from the rigid platform, an important parameter is platform-to-head 

transmissibility ratio (TR) and defined as the ratio of steady state acceleration of head 
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and acceleration of vibrating platform. For harmonic excitation of platform (Eq. 3.6); 

platform to head transmissibility (TR) of a standing subject is defined as:  

2
1 1

2

x X
TR

Yy




                (3.9) 

X1 and Y are in general complex quantitates representing displacement amplitudes of 

head and platform respectively and therefore computed value of TR in Eq. (3.9) is also 

a complex quantity having both modulus and phase. 

3.4 Anthropometric vibratory model with constant E: As detailed in previous 

sections, driving point impedance parameters for anthropometric human body 

vibratory model of a standing subject (Fig 3.3) can be computed , for given E and ξ 

values of individual ellipsoidal segments. Nigam & Malik (1987), Singh et al. (2015) 

and Gupta (2007) used constant value of elastic moduli, i.e. the geometric mean of 

elastic modulus of bones (Eb) and tissues (Et) of human body, for all ellipsoids. With 

Eb = 22.6 GN/m
2
 and Et = 7.5 kN/m

2 
(Goldman & Gierke,

 
1961), geometric mean is 

G b tE E E  
 
= 13.02 MN/m

2
. The elastic moduli of bone (Eb ) is in GPa whereas that 

of tissue (Et ) is in kPa; geometric mean gives a meaningful way of accounting for 

contribution of both moduli as compared to arithmetic or harmonic mean.  Using Ei = 

EG for all ellipsoidal segments in Eq. (3.3) and following the scheme given in Table 

3.1, stiffness of spring elements of vibratory model are calculated; and listed in of 

Table 3.3. Anthropometric parameters of 50
th

 percentile U.S. male (listed in Table B 

of Appendix) were used for computation of the semi-axis of ellipsoidal segments. To 

calculate Bi values for ellipsoidal segments (Eq.  3.4), corresponding values of 

damping ratios (ξi) are required. As an initial estimate, damping ratio values of 
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ellipsoidal segments listed in Table 3.2 are used. These values were determined by 

Gupta (2007) based on the sensitivity of resonant peaks relative to damping ratios of 

the ellipsoidal segment at different natural frequencies. 

Table 3.2 Damping ratios for ellipsoidal segments 50
th

 percentile US male (Gupta, 2007) 

Body 

Segment 
H N UT 

RUA, RLA,  

LUA, LLA 
CT LT 

RUL, RLL, 

LUL, LLL 
LF, RF 

Damping 

Ratio (ξ) 

ξ1 ξ2 ξ3 ξ4, ξ5, ξ6, ξ7 ξ8 ξ9 ξ10, ξ11, ξ12, ξ13 ξ14, ξ15 

Value 0.004 0.015 0.002 0.001 0.05 1.0 1.5 1.5 

 

Table 3.3 lists the computed values of different parameters for vibratory model 

of standing subject for anthropometric data of 50
th
 percentile U.S. male. 

Table 3.3: Anthropometric Vibratory Model Parameters of 50
th

 percentile U. S. male with Ei = EG

 

Employing the values listed in Table 3.3, MNMS for 50
th
 percentile U.S. male in normal 

standing posture undergoing vertical vibration is calculated for frequency range of 0-

20 Hz with a step of 0.05 Hz. Figs. 3.4(a) & 3.4(b) show the comparison between the 

computed modulus and phase of MNMS value and experimentally measured mean value 

of MNMS (Matsumoto & Griffin, 1998) for a group of subjects. Experiments were 
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conducted on twelve male subjects standing in comfortable upright posture over a 

rigid platform undergoing random vibration of 1.0 ms
-2

 r.m.s. in the vertical direction. 

   

Fig. 3.4:  MNMS computed from anthropometric vibratory model (for ξ values of Table 3.2) and 

mean experimental data (Matsumoto & Griffin, 1998) (a) modulus of MNMS (b) phase of MNMS   

Fig. 3.4(a) exhibits good agreement, for the resonant frequency of MNMS 

modulus, between the experimental values reported in the literature and the values 

calculated from the anthropometric vibratory model. The difference between 

magnitudes of experimentally measured and theoretically computed values of MNMS 

modulus requires further investigation. Fig. 3.4(b) also exhibits good match, for the 

magnitude of MNMS phase, between the two curves in the frequency range of 0-5 Hz 

but variation is observed for the frequency range of 5-20 Hz. In the vibratory model, 

all parameters are based on anthropometric data of 50
th

 percentile US male except for 

the damping ratios of ellipsoidal body segments. These results indicate that the value 

of damping ratio of ellipsoidal body segments, i.e. ‘ i ’ should be modified to achieve 

better correspondence with experimental results for MNMS. 

3.4.1 Optimization of damping ratio for ellipsoidal segments: Assigning i  for 

different body segments as design variables, optimization was performed to improve 

 (a)  
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agreement between the MNMS values determined from experimental measurements and 

anthropometric vibratory model respectively. Objective function (Q) was defined as 

the sum of difference in magnitude and phase of MNMS between the experimental 

results and the values obtained from vibratory model: 

Minimize    m pQ Q Q              (3.10) 

 where, mQ
 
and pQ  is the difference between experimental and theoretical values, of 

modulus and phase of MNMS respectively. 

     

    

      

2

NMS NMSex
1

2

NMS NMSex
1

M M

M M

N

m i i

i

N

p i i

i

Q

Q

 

   





  
  

  
  




           (3.11)  

where,  NMS ex
M i ,   NMS ex

M i  is mean experimental values of the modulus and 

phase respectively, for vibration magnitude of 1.0 ms
-2

 r.m.s. (Matsumoto & Griffin, 

1998) and  NMSM i ,   NMSM i  is the modulus and phase respectively, 

determined from Eq.
 
(3.8) for the anthropometric vibratory model. ‘N’ is the number 

of discrete values of frequency in the range of 0-20 Hz.  Constraints upon ξ during 

optimization are: 

4 5 6 7 10 11 12 13 14 15

0                    1,2...15

 ; ;  ; ;

i i

         

 

    
            (3.12) 

The lower bound of i  is based on fact that for human body segments, 

damping ratios are nonnegative. Equality constraints for i  between different 

ellipsoidal segments are due to the symmetry of human body about mid-sagittal plane. 

Optimized values of damping ratio were determined through Genetic Algorithm (GA) 
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technique, which is a global search technique and is provided within MATLAB 

(Mathworks Inc.). The values of i  corresponding to the minimum value of objective 

function are listed in Table 3.4 

Table 3.4: Optimized damping ratios for ellipsoidal body segments (50
th

 percentile US male)  

Damping 

Ratio (ξ) 
ξ1 ξ2 ξ3 ξ4, ξ5, ξ6, ξ7 ξ8 ξ9 ξ10, ξ11, ξ12, ξ13 ξ14, ξ15 

 

Value 
0.024 0.037 2.492 0.007 0.002 2.954 2.994 1.997 1.598 0.425 

.  

Figure 3.5 shows the comparison between theoretical and experimental values 

of MNMS for both modulus and phase. 

 

Fig. 3.5: MNMS modulus and phase for standing person subjected to base excitation (-- -- -- 

experimental mean value;                  vibratory model value; ▫▫▫▫▫▫ experimental upper and lower limit) 

As observed from Fig. 3.5, the correspondence between the theoretically predicted 

MNMS and median experimental MNMS still needs to be improved. Therefore, keeping 

the basic scheme of human body segmentation same as detailed in section 3.1 and 3.2; 

an improved anthropometric vibratory model of standing subject is formulated. 

3.5 Anthropometric vibratory model with optimized Ei and modal damping: 

Modal analysis technique was used for computing results from anthropometric 
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vibratory model of a standing person under base excitation for the improved model. 

Using modal analysis, system response is written as 

        
13

1

r

r

r

u t


 x U η              (3.13) 

where, 
r

u  is the normalized modal vector and  r t represents solution of decoupled 

single d.o.f. equation corresponding to r
th

 mode. Substituting from Eq. (3.13) in Eq. 

(3.4) and pre-multiplying by  
T

U  yields 

          
 

   
    

  

_
2

rη + η + λ η = PI C              (3.14) 

where,      
T

P = U F , is the generalized force vector and λr is the modal frequency 

of r
th

 mode for undamped system.  Assuming Rayleigh model of proportional 

damping, equations of motion for the system are decoupled; resulting in thirteen 

linearly independent equations: 

  
2

  2               1,2,....,13r r r r r r rP r                     (3.15) 

where, r is the modal damping ratio associated with r
th

 mode. For harmonic excitation 

of support; 

 .cosy Y t               (3.16) 

where, Y is the amplitude of support motion and ω is the frequency of applied 

excitation. Solution of Eq. (3.15) for r
th

 mode can be written as 

    .cosr r rC t                 (3.17) 
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Using the solution r from Eq. (3.17), the dynamic response can now be 

determined from Eq. (3.13), which is 

         
13 13

1 1

cos
r r

r r r

r r

u t u C t  
 

   x                     (3.18) 

In the present case, under vertical harmonic excitation, platform-to-head 

transmissibility ratio (TR) for the vibratory model is expressed by Eq. (3.9) which is 

reproduced here as 

   

2
1 1

2

x X
TR

Yy




                (3.19) 

where, 𝑥̈ is the acceleration of head (m1) determined from Eq. (3.18) and 𝑦̈ is the 

acceleration of supporting platform derived from Eq. (3.16).  As stated before, X1 and 

Y are complex quantitates representing displacement amplitudes of head and platform 

respectively and therefore computed value of TR in Eq. (3.19) is also a complex 

quantity. The modulus of TR is used for comparison with experimental data vis-à-vis 

frequency of applied excitation. The phase difference between support excitation and 

motion of head varies with the frequency of excitation; but comparison is based on the 

amplitude for ratio of excitation and response solely. 

Numerical simulation of platform-to-head transmissibility ratio (TR) using 

modal analysis revealed that the mode whose frequency is closest to the frequency of 
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peak in TR-frequency curve has dominant participation in dynamic-response i.e. TR 

value and the contribution of other modes is negligible. Keeping this in view, the 

modal damping ratios were determined from experimentally measured TR-frequency 

plots available in the literature.  

 3.5.1 Modal damping ratios: As discussed in the preceding section, only one mode 

is dominant at/near different peaks of transmissibility response for multi d.o.f. system. 

Accordingly, modal damping ratio corresponding to each peak of the response curve 

can be determined from the methodology devised, in the following section, for the 

support motion analysis of single d.o.f. system.  

The transmissibility ratio (TR) for a single d.o.f system subjected to harmonic support 

motion is (Rao & Gupta, 1999): 

  
 

   

2

2 22

1 2

1 2

rx
TR

r ry






 

 
           (3.20) 

where, ξ is the damping ratio, r = ω/ωn is the frequency ratio and n is the natural 

frequency of system. The frequency ratio corresponding to peak value of TR (Rao & 

Gupta, 1999) is expressed as 
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           (3.21) 

 The dynamic magnifier for forced vibration of single d.o.f system is:  

     

   
2 22

1

1 2st

X
DM

X r r

 

 

           (3.22) 

and the frequency ratio corresponding to peak value of DM is given by 



49 
 

    21 2

DM

pkDM

pk

n

r





               (3.23) 

 

Fig. 3.6: Response of single d.o.f. system (a) for forced vibration and (b) under support excitation 

Modulus of TR and DM are plotted as a function of frequency ratio (r) in Fig. 

3.6, for ξ =0.3. It is evident from Fig. 3.6 that the frequencies corresponding to peaks 

for TR and DM are quite close to each other and in close proximity to the natural 

frequency of the system (r = 1.0). For example, if ξ =0.3 and
n k m   =10 rad/s for 

vibratory systems shown in Figs. 3.6(a, b); the frequency corresponding to respective 

peaks, calculated using Eqs. (3.21, 3.23), comes out to be: 9.30TR

pk   and

9.05 DM

pk  . The difference between TR

pk and DM

pk is found to be less than 3%. 

Hence, peaks in TR plots can be considered to be located nearly at the natural 

frequencies of system and therefore the estimated value of modal damping ratios 

using the iterative scheme described in the next section can be attributed to respective 

natural frequencies.  The correspondence between estimated modal damping ratio and 
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natural frequency is essential for determining modal damping ratios of those natural 

frequencies for which peaks in the experimental plots are suppressed.  

3.5.2 Iterative scheme to determine modal damping ratios: A sample plot of TR as 

a function of excitation frequency (ω) of support motion is shown in Fig. 3.7.  

 

Fig. 3.7: Sample plot for response of single d.o.f. system under support excitation  

In Fig. 3.7, TR

pk  is the excitation frequency for peak value of TR and ω1 & ω2 

are excitation frequencies on either side of TR

pk  having the same value of TR, i.e. TReq. 

Using these data from Fig. 3.7, an iterative algorithm is developed to determine 

damping ratio corresponding to any specific peak of TR.  Firstly, Eq. (3.20) is 

rearranged as  

    
 

 

2
2 2

2

1 1
1 *

2 1

r TR

r TR


 



            (3.24) 

Frequency ratio corresponding to peak value of TR is: 
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            (3.25) 

Now an initial guess of damping ratio is made, say ξ
(0 )

. From Eq. (3.25): 
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This value of natural frequency is substituted in Eq. (3.24) to estimate ξ. As Eq. (3.24) 

is valid for both ω1 & ω2, we can write 
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1  and 2  are estimated values of damping ratios at excitation frequencies 1 and 2

respectively. Taking the average of these two damping ratios, 
(1) is determined for 

the subsequent iteration as 

    
(1) 1 2

2

 



              (3.28) 

Using modified value of damping ratio i.e.
(1) , above steps from Eq. (3.26) to 

Eq. (3.28) are repeated to determine the value of damping ratio
(2) . The iterative 

process continues until the difference between values of damping ratios calculated 

from two successive iterations is less than a very small predefined value, which has 

been taken equal to 0.001 in the present study. To check validity of   thus 
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determined, it is substituted in Eq. (3.20) along with the corresponding value of ωn 

and the computed value of TRpk is compared with TRpk measured from experimental 

TR-frequency response curve. As discussed earlier, for a multi d.o.f. system, this value 

of   estimated from the iterative scheme, will be equal to modal damping ratio for the 

mode whose frequency is closest to the frequency of peak in TR-frequency curve.  

Assuming proportional damping for thirteen d.o.f. vibratory model, damping ratio for 

r
th

 mode is given by  

2 2
r

r

r

 



                (3.29) 

where α, β are unknown constants and λr is the natural frequency corresponding to r
th

 

mode. Using the iterative scheme, two modal damping ratios are estimated for any 

two peaks of experimental TR-frequency response curve. Thereafter, ξr for all the 

remaining modes can be determined by using Eq. (3.29).  

3.5.3 Optimal Value of Elastic Moduli: Incorporating modal damping ratios and 

corresponding natural frequencies in Eq. (3.19), the TR are computed at different 

excitation frequencies through modal analysis. The optimal values of elastic moduli 

for ellipsoidal body segments are achieved by comparison of theoretically computed 

values of TR with the experimental results, for 50
th
 percentile U.S. male. The objective 

function taken for optimization is 

    
2

1

Minimize    
N

i iex th
i

Q TR TR 


  
            (3.30) 

 where  i ex
TR  is the mean experimental value of the platform-to-head 

transmissibility ratio and  i th
TR  is theoretically computed value for the same. ‘N’ is 
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the number of discrete values of frequencies, taken in optimization process, in the 

range of 0-25 Hz. Fig. 3.8 shows flow chart of the scheme used for estimation of 

elastic moduli for different ellipsoidal body segments using optimization. 

 

Fig. 3.8: Optimization Scheme for Elastic Moduli for Anthropometric Vibratory Model 

 

3.5.4 Apparent Mass of standing person: As mentioned earlier, the parameters 

based on the driving point response, such as Apparent Mass, DPMI,  have also been 
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used to quantify effects of vibratory stimulus on human body. Apparent Mass (AM) of 

a person under support excitation is defined as (Boileau & Rakheja, 2002): 

    

interfaceF
AM

y

                (3.31) 

where,  Finterface is the force at driving point interface and 𝑦̈ is the acceleration of 

supporting platform/interface. Rewriting Eq. (3.15): 
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The dynamic response can be written as 
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For the vibratory model, shown in Fig. 3.3, under harmonic support excitation; 

      

13 15

1 14

  interface j j j

j j

F m x m y
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                          (3.34) 

Substituting Eq. (3.33) and Eq. (3.34) in Eq. (3.31), Apparent Mass of a standing 

subject under support excitation can be determined. As the dynamic response 

calculated from Eq. (3.33) is a complex quantity, AM determined from Eq. (3.34) is 

also a complex quantity containing both modulus and phase.    
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3.5.5 Modification of Segment Elastic Moduli: The transmissibility ratio of 

vibratory model for a standing subject is investigated for 50
th
 percentile U.S. male, 

whose anthropometric measurements are listed in Table-B, Appendix I. Using Eq. 

(3.1) and formulae listed in Table-A (Appendix), the mass and semi-axes of different 

ellipsoidal segments are calculated and tabulated in Table 3.5.  

Table 3.5: Mass & semi-axis of ellipsoidal segments (for 50
th

 percentile U.S. male; Mtotal = 74.9 kg) 

Segment 

No. 
Body 

Segment 

ai 

(cm) 

bi 

(cm) 

ci 

(cm) 

Mi 

(kg) 

1 H 7.785 7.785 9.930 2.861 

2 N 6.040 6.040 1.240 0.215 

3 UT 16.445 11.660 18.770 17.109 

4,5 RUA, LUA 5.239 5.239 18.770 2.449 

6,7 RLA, LLA 4.628 4.628 24.345 2.479 

8 CT 14.110 10.755 21.558 15.551 

9 LT 17.715 11.595 12.173 11.885 

10,11 RUL, LUL 5.927 5.927 27.825 4.646 

12,13 RLL, LLL 5.303 5.303 23.115 3.090 

14,15 RF, LF 4.675 12.700 3.455 0.975 

 

The stiffness value computed using Ei = EG for all ellipsoidal segments (as 

done for previous model) are listed in column 3 of Table 3.6. These stiffness values 

are compared, with the stiffness values reported in the literature, representing 

connecting springs between similar segments of human body. Although the specific 

values of stiffness differ from the values found in literature, but their order of 

magnitude are same. This result justifies the assumption of taking EG as the geometric 

mean of elastic moduli of bone and tissue. 

The assumption of taking equal elastic moduli (i.e. G b tE E E ) for all 

segments is relaxed for the present model. From physiological structure of the human 
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body, it can be asserted that the elastic moduli for the bony parts like legs, limbs, 

upper and lower torso would be higher than for the fleshy parts like central torso, neck 

and feet.   

Table 3.6: Comparison of stiffness of spring elements for vibratory models of human body 

Spring 

Element 

(Fig. 3.3) 

Interconnected 

Body Segments 

Initial 

Stiffness                

(Ei =EG) 

(kN/m) 

Garg & 

Ross 

(1976)] 

(kN/m) 

Qassem et 

al. 

(1994) 

(kN/m) 

Amirouche 

et al. (1994) 

 

(kN/m) 

Modified 

Stiffness 

(Ei Table 3.7) 

(kN/m) 

k1 
Head & Neck 

681.38 175.12 52.62 120 613.2 

k2 
Neck  & Upper 

Torso 
846.54 175.12 52.62 120 610.5 

k3 
Upper Torso & 

Central Torso 
465.27 3.15 52.62 105 292.3 

k4 = k5 
Upper Torso & 

Upper Arm 
142.82 26.25 67.54 50 142.8 

k6 = k7 
Upper Arm & 

Lower Arm 
98.23 26.25 67.54 50 98.2 

k8 
Central Torso & 

Lower Torso 
554.55 37.25 53.49 105 334.8 

k9 = k10 
Lower Torso & 

Upper Leg 
131.13 358.75 25.01 50 193.3 

k11 = k12 
Upper Leg & 

Lower Leg 
69.16 358.75 - 50 103.8 

k13 = k14 
Lower Leg & 

Foot 
1918.49 358.75 - - 1630.7 

 

Estimated values of k1 and k2, given in column 3 of Table 3.6, having 

contribution from neck-stiffness, are much higher than the stiffness values reported in 

the literature (Columns 4, 5 and 6; Table 3.6). Moreover, the neck is essentially a 

tissue structure with small fraction of it occupied by cervical vertebrae. The cervical 

extends into the head and upper torso as well. Therefore, the effective Young’s 

modulus for neck and head should be lowered from EG.  

The central torso is largely a tissue structure which gets support from the 

backbone. Gupta (2007) has taken the stiffness of central torso equal to the parallel 
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combination of stiffness of complete torso with i b tE E E  and stiffness of central 

torso with Ei=Et.  This modification resulted in lower values of stiffness of spring 

elements connecting central torso with the upper torso and the lower torso and 

consequently better match of theoretical response with the experimental results. 

Similar improvement in present vibratory model can be produced by taking smaller 

fraction of EG for the determination of stiffness of central torso.  Moreover, comparing 

the values of k3 and k8 in column 3 of Table 3.6, which represent stiffness of spring 

elements connecting the central torso with upper torso and lower torso respectively, it 

is observed that the values for present vibratory model are quite high with regard to 

the stiffness values published in the literature, as shown in columns 4 to 6. Therefore 

the effective value of E for the central torso should also be reduced from the value 

used by Nigam & Malik (1987).  

Furthermore, comparing the stiffness values k9 to k14 of column 3 with column 

4 to 6, it seems that the elastic moduli of upper leg and lower leg must be increased 

whereas for the feet it should be decreased. For a person in standing posture, load in 

upper and lower legs is mainly supported by the bony parts, suggesting for higher 

elastic moduli of legs. The presence of fat pads at heel and ball of the feet also 

rationalizes using lower value of elastic modulus for the feet.  

Based on the above discussion and considering the presence of active muscles; 

the elastic moduli/stiffness of different parts of human body should be taken in 

decreasing order as follows: Legs, Lower torso, Arms, Upper torso, head, feet, central 

torso and neck. Accordingly, the values of elastic moduli for different ellipsoidal 

segments have been modified, while keeping in view Eq. (3.2) and the scheme given 

in Table 3.1, and shown in Table 3.7.   
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Table 3.7: Modified elastic modulus of ellipsoidal body segments ( G b tE E E )  

Using the elastic moduli listed in Table 3.7, the stiffness of spring elements of 

vibratory model are recalculated and shown in column 7 of Table 3.6.  

3.5.6 Modal damping ratio:  Experimental measurements of platform-to-head 

transmissibility ratio for a group of standing subject under vertical excitation from 

platform (Garg & Ross, 1976) has been employed to estimate modal damping ratios 

corresponding to the first few natural frequencies of human body in upright posture. 

Fig. 3.9 shows average value of transmissibility ratio measured for eight U.S. persons 

standing on a platform subjected to vertical harmonic motion. Experiments were 

conducted on a total of twelve people but the results of four subjects were excluded 

from the averaging process as their dynamic response differed substantially from other 

subjects. The average frequency response was constructed by lateral (frequency axis) 

shift of individual plots such that the peaks of individual plots occurred at the average 

frequency of corresponding peaks of all the eight subjects. Two successive peaks of 

transmissibility ratio are chosen in Fig. 3.9 i.e., point B (close to 6 Hz) and point C 

(close to 18 Hz), to identify damping ratios using iterative scheme discussed in section 

3.5.2. 

Body 

Segment  

H N UT RUA, 

LUA 

RLA, 

LLA 

CT LT RUL, 

LUL 

RLL, 

LLL 

RF, 

LF 

Modified 

Elastic 

Modulus 

* EG 

0.9 0.4 1.0 1.0 1.0 0.5 1.2 1.5 1.5 0.85 



59 
 

 

Fig. 3.9: Experimental data for average platform-to-head transmissibility ratio of U.S. male 

(Garg & Ross, 1976)  

The first peak at point A (near 2 Hz) has been ignored for estimating modal 

damping ratios and further comparison of results, as different experimental studies of 

standing subjects (Paddan & Griffin, 1993; Harazin & Grzesik, 1998; Coermann, 

1962) have not reported this peak. Also this peak near 2 Hz may be attributed to the 

bending motion of human body (Amirouche & Ider, 1988). Whole-body vibration 

analysis of a seated person using a finite element model (Kitazaki & Griffin, 1997) 

indicated a mode near 2.8 Hz corresponding to bending of neck-spinal column.  

Experimental measurements of transmissibility for standing person (Matsumoto & 

Griffin, 1998) also indicated a peak around 3 Hz for transmissibility to the knee only 

in the legs bent posture. This peak was attributed to significant bending of knee and 

pitching motion of upper body. In the present mathematical model, rotational motion 

of body segments has not been taken into account; therefore the first peak 

corresponding to 2 Hz has not been considered for the estimation of modal damping 

ratios. The data utilized for iterative scheme, corresponding to points B and C, and the 

modal damping ratios estimated thereof are shown in Table 3.8. Using estimated 
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values of damping ratios, TRpk and ωn value are determined from Eq. (3.20) and Eq. 

(3.26) respectively as shown in last two columns of Table 3.8. Computed values of 

TRpk are found to be in good agreement with the measured values. Thus it validates 

the proposed iterative scheme, for the identification of damping ratios from 

experimentally measured transmissibility ratio of multi d.o.f. systems.  

Table 3.8: Data used for iterative scheme and estimated modal damping ratios 

Peak 
TR 

point 

ωpeak                                         
(Hz) 

TRpk            
( Fig. 
3.9) 

Value for the 
left side of 

peak 

Value for the 
right side of 

peak 

Modal 
Damping 
ratio (ξ)  

using 
iterative 
scheme 

TRpk         

(Eq. 
3.20) 

Computed 
ωn            

(Eq. 3.26)                
(Hz) ω1 

TR1 
ω2 

TR2 
(Hz) (Hz) 

 Point B 6.083 1.745 4.224 1.241 7.776 1.228 0.377 1.714 6.75 

 Point C 18.86 1.637 15.32 1.292 24.12 1.292 0.422 1.604 21.328 

  

Estimated value of modal damping ratios, i.e. ξ1 = 0.377 and ξ2 = 0.422 and 

corresponding value of ωn’s are substituted in Eq. (3.29) to determine α and β for 

proportional damping model. Using natural frequencies of standing subject 

determined from eigenvalue analysis and calculated values of α (=3.6569) and β 

(=0.0316), modal damping ratios corresponding to thirteen modes of vibratory model 

are determined, which are listed in Table 3.9. Since the estimated values of first two 

natural frequencies from iterative scheme are slightly different from natural 

frequencies determined from Eigen-value analysis, therefore, the computed values of 

damping ratios for first two modes, as shown in Table 3.9, are marginally different 

than the values estimated from iterative scheme. 
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Table 3.9: Modal damping ratios and natural frequencies for thirteen d.o.f. vibratory model 

 

Employing mass of ellipsoidal segments from Table 3.5, modified values of 

spring stiffness from column 7 of Table 3.6 and, corresponding modal damping ratios 

from Table 3.9, the transmissibility ratio of thirteen d.o.f. damped vibratory model is 

determined from Eq. (3.21). In the present investigation, the amplitude of harmonic 

support excitation (Y) is taken as unity, i.e. 

 1.cosy t  

In Eq. (3.5), we require the values of k13, k14 and c13, c14 to compute 12
th
 and 

13
th
 elements of force vector. Values of k13 and, k14 are already calculated and listed in 

Table 3.6 column 7. It should be noted that the effect of c13 and c14 in damping matrix 

[C] is carried forward in the dynamic response through proportional damping in 

modal analysis but the availability of only r ’s as listed in Table 3.9 does not 

facilitate determination of c13 and c14.  

The value of c13 and, c14, corresponding to the dampers connecting feet and 

lower legs, are taken equal to the damping constants of ellipsoidal feet segments (B14 

and B15) from Eq. (3.4).Only for the determination of B14 and B15, the ellipsoidal 

segments are taken as uncoupled single d.o.f systems.  
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Damping ratio ξj in Eq. 3.4 are assumed equal to the lowest value of modal 

damping ratios calculated. The premise for this assumption is mainly bony structure of 

legs and feet, indicated by higher values of k13 and k14 in Table 3.6, resulting to low 

energy dissipation during vibration. Using the lowest value of modal damping ratio 

i.e. 0.392, from Table 3.9, B14 and B15 are calculated which are equal to c13 and c14 as 

mentioned earlier. 

Now from Eq. (3.19), the platform-to-head transmissibility ratio (TR) is 

determined as a function of excitation frequency (ω) and compared with the average 

experimental transmissibility ratio, as shown in Fig. 3.10. It is observed in Fig. 3.10 

that with the estimated values of Ei in Table 3.7 and modal damping ratios determined 

from experimental response, the theoretical TR-frequency curve does not match with 

experimental curve. The frequency corresponding to the first peak of TR in theoretical 

response curve is lesser than the frequency for corresponding peak in experimental 

measurements and value of TR at first peak is much lower for theoretical plot. For the 

range of 10-25 Hz, the two curves diverge markedly and second peak for TR is not 

evident in the response calculated for vibratory model. So it is required to further 

modify the elastic moduli for various segments, which is conducted by optimization 

process while enforcing constrains based on the physiological structure as discussed 

earlier.   

3.5.7 Optimal Values of Ei:  To estimate optimal elastic moduli of ellipsoidal 

segments, Genetic Algorithm (GA) technique, and a global search method available in 

Matlab®; was utilized for optimization. The objective function for optimization of 

elastic moduli is given by Eq. (3.30).  
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Fig. 3.10: Comparison of TR for vibratory model (modified Ei) and average experimental TR 

The constraints upon Ei during optimization were: 

3, 5 7 9 10 12

1 2 8 14

2 7

14 12

0.01 , , , ,E   10            

0.01 , , ,

G G

G G

E E E E E E E

E E E E E E

E E

E E

 

 





          (3.35) 

The limits and constraints for individual Ei’s have been decided keeping in view that 

the stiffness of spring elements determined (using Table 3.1) are of the same order as 

available in the literature and also taking into account the foregoing discussion about 

the order of elastic moduli for different body segments. It is to be noted here that 

although the human body has been divided into 15 ellipsoidal segments (Fig. 3.1); 

only ten unique values of Ei are being optimized due to the symmetry present in 

anthropometric vibratory model. Because output (set of Ei) from GA is not unique; 

therefore, 50 trials were performed for the minimization of objective function. The 

optimal values of Ei have been expressed as a fraction of EG in Table 3.10.  
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Table 3.10: Optimal value of elastic modulus for ellipsoidal body segments (as fraction of EG) 

Using optimal values of Ei from Table 3.10, α, β determined from Table 3.8 

and mass of ellipsoidal segments from Table 3.7; different parameters for the 

anthropometric vibratory model are calculated and given in Table 3.11. Comparing 

Table 3.11 with Table 3.6; it is observed that the stiffness values k1, k8, k13 calculated 

using optimal elastic moduli are substantially lower than those listed in column 7 

Table 3.6. Also these values are closer to the ones available in literature for similar 

elements of human body model for a standing person.  

Table 3.11: Vibratory model parameters using optimal Ei values (50
th

 percentile U.S. male) 

 

This outcome reinforces the rationale adopted for the order of elastic moduli for 

individual body segments as discussed earlier and evident in Eq. (3.35). 

Body 

Segment  

H N UT RUA, 

LUA 

RLA, 

LLA 

CT LT RUL, 

LUL 

RLL, 

LLL 

RF, LF 

Elastic 

Modulus 

0.104 0.409   1.072     0.014     2.407     0.518 0.102     4.131 9.990     0.143 
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Now, platform-to-head TR is computed for the model with parameters listed in 

Table 3.11 and compared with the experimentally measured TR as function of 

excitation frequency, as shown in Fig. 3.11.  

 

Fig. 3.11: Comparison of TR for vibratory model (optimal Ei) and average experimental TR 

The equivalence between the two curves has improved near the first peak vis-

à-vis that attained in Fig. 3.10, but the two curves still differ substantially around the 

second peak at nearly 18 Hz. Theoretical response curve does show a peak near 17-18 

Hz in Fig. 3.11 but the peak is barely perceptible. Eigenvalue analysis of vibratory 

model with Ei values before and after the optimization process indicated a natural 

frequency in the range of 18-20 Hz. But, as can be observed from Fig.3.10 and Fig. 

3.11, the peak corresponding to this frequency is not well-defined in the theoretical 

simulation results for TR. This suggests that contribution of the mode/modes 

neighboring the frequency of 18-20 Hz is being heavily damped. Therefore, numerical 

simulations were carried out to investigate this aspect further, by modifying the 

damping ratios of different modes, one at a time. It was found that upon reducing ξ4, 

which corresponds to the mode having natural frequency around 18-20 Hz, to 50% of 

its original value; excellent match was obtained between theoretical and experimental 
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TR, as shown in Fig. 3.12. This remarkable change in TR due to ξ4 modification 

substantiates the fact established from numerical simulation in this work, that the TR 

response around the peak is dominated by the mode corresponding to natural 

frequency closest to peak location.  

 

Fig. 3.12:  TR for vibratory model (optimal Ei & modified ξ4) and average experimental TR 

Thus, the anthropometric measurements along with elastic moduli, and modal 

damping ratios concluded in Table 3.10 and Table 3.11 (ξ4 as 50%) respectively; 

completely facilitate us to construct the lumped parameter damped vibratory model 

for human body in standing posture under vertical excitation from feet. Reduction of 

modal damping ratio corresponding to dominant 4
th
 mode, so as to improve the match 

for second peak, was based on detailed theoretical simulations. It was found that the 

estimated value of modal damping ratios from experimental measurements was 

sensitive to the vertical gap between response peak and line AB (refer Fig. 3.7). 

Accordingly the values of α, β and all thirteen ξ’s also changed and thus affect the 

participation of individual modes in theoretical response, particularly around the peaks 

of transmissibility. Also due to this, there will be a substantial effect upon estimated 
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values of modal damping ratio even if there was a minor error during experimental 

measurements. Since the average frequency response for 50
th
 percentile U.S. male was 

obtained by lateral shifting of individual response curves, this influences modal 

damping ratio values estimated for U.S. male.  

3.5.8 TR for Indian male:  The anthropometric measurements of average Indian 

males (Mtotal =58.2 kg), used for determining parameters of ellipsoidal segments, are 

given in Table-B of Appendix. The optimal values of elastic moduli estimated for 50
th

 

percentile U.S. male, listed in Table 3.10, have been used to determine stiffness of 

spring elements for vibratory model of Indian male.  

Table 3.12: Mass, stiffness of spring elements and modal damping ratios (Average Indian male) 

 

  Then, following the procedure discussed above, the modal damping ratios have been 

estimated from the experimental measurements of TR.  The average TR-frequency 

response, for a group of 100 Indian male, measured by Gupta (2007) is taken from the 

literature. Table 3.12 lists the value of different parameters of the vibratory model for 

an average Indian male.  With these parameters, platform-to-head TR of Indian male is 

calculated and compared with envelop of the experimental results (Gupta, 2007) and shown in 

Fig. 3.13.  
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Fig. 3.13: TR from vibratory model (optimal Ei) and experimental TR envelop for Indian male 

From Fig. 3.13, it can be discerned that the theoretical response for an Indian 

male is within the range of experimental results. During simulation, the value of 

damping ratio for fourth mode (ξ4) was reduced by 50% to exhibit the peak related to 

fourth mode noticeable. This outcome substantiates the methodology used in the 

present study to develop human body vibratory model using anthropometric 

measurements and modal damping ratio based on experimental response.  

3.5.9 Apparent Mass for 50
th

 percentile US male: The estimated values of optimal 

elastic moduli and modal damping ratio, as described above, can further be 

established / validated by comparing modulus of Apparent Mass (AM) of a standing 

subject with experimental results available in the literature. Using the same 

parameters as in Table 3.12, the Apparent Mass of the vibratory model is calculated 

for 50
th

 percentile U.S. male and compared, as shown in Fig. 3.14, with the 

experimental data synthesized by Rakheja et al (2010). Rakheja et al selected the 

dynamic response (AM) of 55 adult males subjected to vertical excitation in standing 

posture to determine upper and lower limits of experimental response envelop.  
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Fig. 3.14: Apparent Mass of US male from vibratory model (optimal Ei) and experimental 

Apparent Mass envelop (Rakheja et al. , 2010) 

In the present work, similar to the case of TR for U.S. male; theoretical AM is 

computed by reducing ξ3 (modal damping ratio corresponding to natural frequency of 

6.19 Hz) to 55% of its original value. Figure 3.14 shows that the vibratory model 

response curve matches quite well with the lower limit of experimental data up to 7.5 

Hz and particularly around the peak. Lower value of theoretical Apparent Mass, at 

excitation frequency more than 7.5 Hz, may be attributed to varied mass distribution 

and anthropometric measurements of the human beings involved in experimental 

studies. It is to noted that modal damping ratios were determined from the 

transmissibility plots and elastic moduli were determined through optimization based 

on experimental data of transmissibility. The set of parameters, i.e. damping ratio and 

elastic moduli, employed for determination of Apparent Mass are same as that for TR. 

Therefore, little dissatisfaction for the agreement between experimental and 

theoretical values of Apparent Mass is acceptable as the trend of theoretical curve is 

analogous to the experimental envelope. 
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This comparison for Apparent Mass further validates the modal damping 

ratios, optimized values of elastic moduli and methodology employed to determine 

inertial and elastic properties from anthropometric data. Also the optimal elastic 

moduli estimated for individual body segments, listed in Table 3.10, can serve as 

indicative values for the purpose of human body modelling. 

3.6 Conclusions:  

Lumped parameter models of human body which evolve from its physical 

measurements are straightforward to formulate and could deliver subject specific 

simulations to predict the effects of vibratory stimulus encountered in our day-to-day 

activities. Towards this goal, a thirteen d.o.f. damped vibratory model of standing 

person under vertical excitation has been formulated in this chapter and 

transmissibility ratio is calculated as a function of frequency of vibrating platform.  

Simplicity of the model lies in the fact that inertial and stiffness parameters are 

determined from the physical properties and anthropometric measurements of human 

body.  

Relaxing the assumption used by earlier researchers, of constant elastic moduli 

to calculate stiffness of all segments; different values of elastic moduli have been 

proposed for individual ellipsoidal segments. Initially different elastic moduli are 

estimated by comparing stiffness of spring elements in the vibratory model with the 

values available in the literature and also taking into account the physiological 

structure of human body. These values are later optimized by comparing 

transmissibility response of vibratory model and experimentally measured response 

curves. Energy dissipative characteristics inherent in human body are incorporated in 

the model through modal damping ratios. Unlike to previous endeavors for 
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determination of damping constants based solely on optimization, this paper illustrates 

a novel scheme to determine modal damping ratios from experimentally measured 

transmissibility response.  

For optimization of elastic moduli, the theoretical transmissibility response for 

50
th
 percentile U.S. male is compared with available experimental results. Also, 

numerical simulations have been performed to investigate the contribution of 

individual modes in theoretical response. It was found that reduction in the damping 

ratio for the mode neighboring second peak of experimental response resulted to close 

match between theoretical transmissibility ratio calculated with optimal Ei’s and 

experimental measurements, in the frequency range of 4-22 Hz. While studying 

standing subjects, researchers have observed predominant peaks in this frequency 

range for dynamic response. Hence the anthropometric vibratory model established in 

this investigation emulates the behavior of human body for the range of foremost 

interest in vibrational studies.  

Furthermore, transmissibility ratio of average Indian male in standing posture 

was simulated using optimal elastic moduli determined for 50
th

 percentile U.S. male. 

An acceptable match between model response and envelop of experimental response 

was achieved. Apparent Mass of standing subject calculated using the same 

parametric values of vibratory model is found to be in satisfactorily agreement with 

the experimental response envelop; authenticating the present methodology of 

constructing human body vibratory model from anthropometric data, optimal values 

of elastic moduli of individual body segments and experimentally estimated modal 

damping ratios.  
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After further refinements, the thirteen d.o.f anthropometric vibratory model 

developed in this study can be used to predict interactive forces generated between 

adjacent parts of the human body; as a first step towards studies for vibration injuries 

of standing subjects. To improve the confidence interval for values estimated through 

optimization; present work should be extended in future to include sensitivity analysis 

of Transmissibility Ratio and Apparent Mass against optimal values of elastic moduli. 

Furthermore, similar models can be developed for persons in sitting posture thereby 

exploring the effect of posture on the parameters of human body model. 
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Chapter 4 

Finite Element Vibratory Model of Standing Subject 

 

In Chapter 3; lumped parameter vibratory models of standing subject under 

vertical excitation from platform-feet interface have been developed. These models, 

developed from physical measurements of subjects, deal primarily with overall 

dynamic response to WBV. For reliable estimation of the human body 

segments/locations prone to vibration related injuries, continuum models of human 

body are preferable. As discussed in chapter 2, existing human body FE models have 

significantly high d.o.f. In this chapter, a finite element vibratory model of standing 

subject is formulated based on anthropometric data with relatively low d.o.f. 

 

4.1 Human Body Segmentation and Element Formulation 

A FE model for human body consisting of fifteen truncated ellipsoidal 

elements, which correlate with anatomical structure, is formulated.  This model, as 

shown in Fig. 4.1, is used to calculate the dynamic response of subjects standing in 

normal posture and undergoing WBV due to vertical excitation (along z axis) at feet-

platform interface.  
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Fig. 4.1 Human body model constructed using truncated ellipsoidal elements  

(H: Head, N: Neck, UT: Upper Torso, CT: Central Torso, LT: Lower Torso, LUA: Left Upper Arm, RUA: Right 

Upper Arm, LLA: Left Lower Arm, RLA: Right Lower Arm, LUL: Left Upper Leg, RUL: Right Upper Leg, 

LLL: Left Lower Leg, RLL: Right Lower Leg, LF: Left Foot, RF: Right Foot) 

 

Semi-axes of un-truncated ellipsoids (a, b, c), as shown in Fig. 4.2 (a), are 

calculated from the anthropometric measurements of subjects by employing the 

scheme developed by Bartz and Gianotti (1975), and listed in Table A of Appendix. 

Since actual body segments have overlapping area contact instead of point 

contact; therefore, the ellipsoids have been assumed to be truncated at both ends along 
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the vertical axis, as shown in Fig. 4.2 (b). For the present work, a truncation factor of 

5% has been taken at both ends, i.e. the lower and upper nodes (Nodes A and B) are 

taken at z = -d and z = +d respectively; where d = 0.95 c. 

 

Fig. 4.2 (a) Un-truncated ellipsoid showing semi-axes (b) Truncated ellipsoidal finite element 

Individual truncated ellipsoidal elements are assumed to be homogenous, 

isotropic and viscoelastic. Experimental studies (Shuck & Advani, 1972; Hayes & 

Mockros, 1971; Linde, 1994; Johnson et al., 1994; Saraf et al., 2007; Jaimson IV et 

al., 2013) on human body constituents such as muscles, tissues, spinal column etc., 

have shown a strain rate dependent response when subjected to external loading. 

Consequently, researchers have used these constituents as viscoelastic material in 

conjunction with bones to model human body segments (Terry & Roberts, 1968; 

Rosen & Arcan, 2003; Fard et al., 2003, Forlani et al., 2015) for studying their 

response under impact/dynamic loading in numerous studies. In the present study, the 

ellipsoidal body segments are assumed to be viscoelastic with an average elastic 

moduli and average dynamic viscosity. The Kelvin-Voigt model for viscoelastic 
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materials is adopted here to incorporate both stiffness and damping in the human body 

vibratory model. For uni-directional strain along z-axis (Fig. 4.2(b)), the total stress (

 ) is given as (Christensen, 1982): 

    E vis z zE
t

     


   


             (4.1) 

where, E , vis , z  are the elastic stress, time varying viscous stress, and axial strain 

respectively; along the vertical  z-direction; E is the elastic modulus and η is the 

average dynamic viscosity of individual body segment. For standing subjects under 

vertical excitation at platform-feet interface, elemental deformation along the z axis is 

considered to be dominant (Nigam & Malik, 1987; Gupta, 2007) and therefore cross-

axis deformations can be neglected. With this assumption, the resulting stress/strain 

fields become uni-directional.  

4.1.1 Shape Functions:  For FE modeling of ellipsoidal elements, shape functions are 

derived from the exact solution for deformation of an ellipsoid under uni-axial load. 

The change in length ( dzL ) of an elliptical strip of length dz at a distance z form the 

origin, as shown in Fig. 4.2(b), under the action of unit load at node B is given by 

2

2

(1)

( )

1

dz

dz

dz
L

E A z

dz
L

z
E ab

c



 



 
 

  
 

             (4.2) 

Total deformation ( zL ) of a partial segment of ellipsoid up to a distance z 

from the lower end of truncated ellipsoid can be written as 
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             (4.3) 

where, τ is used as a dummy variable. Integration of Eq. (4.3) yields 

 
1 1

     ln ln
2 1 1

z

dz
c c cL z

z dEab
c c



    
     
     

    

            (4.4) 

Total deformation of truncated ellipsoidal element, as shown in Fig. 4.2(b), for

max 0.95z z d c    : 

   max   7.3271
2

z

c
L z d

Eab
               (4.5) 

From Eq. (4.4) and Eq. (4.5), normalized deformation (   L z ) for partial 

segment of ellipsoid up to a distance z can be expressed as 

 
 
 max

1 1 1
  ln ln

  7.3271 1 1

z

z

dzL z c cL z
z dL z

c c

    
      
      

    

       (4.6) 

As z d c  for all values of z; applying Taylor series expansion to Eq. (4.6) 

yields 

 
3 5 7 9

1

1 1 1 1 1
2*

7.3271 3 5 7 9

z z z z z
L z G

c c c c c
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   (4.7) 

where G1 is a constant and given by 

   1

1
ln 3.66356 for 0.95

1

d
cG d c

d
c

 
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 
 
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Using the first five terms in Taylor series, the difference between the exact 

solution given by Eq. (4.6) and the approximate solution given by Eq. (4.7) is very 

small, as shown in Fig. 4.3. 

 

Fig. 4.3: Normalized displacement using exact solution (Eq. 4.6) & Taylor series expansion (Eq. 4.7)  

For 0.90z
c
 , error is less than 2.5% and maximum difference between the two 

curves is 7.4% for . For d = 0.95 c, Eq. (4.7) can be written as 

 
       

3 5 7 9

3 5 7 9

1

0.95 0.95 0.95 0.951
2* 0.95

7.3271 3 5 7 9
L G     

  
        

  
  

 (4.8)

 where 
z

d
                              (4.9) 

ξ is the non-dimensional natural co-ordinate used for FE formulation. 

Referring to Fig. 4.2(b), ξ = -1at z = -d and ξ = +1at z = +d. From Eq. (4.8), after 

conforming with the basic definition of a shape function; i.e.  1
0BN

 
  and

 1
1BN

 
 , shape function NB corresponding to the node B comes out to be 

0.95z
c

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 
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3.1207 2* 0.95

6.2412 3 5 7 9
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      (4.10) 

Following the same steps, shape function corresponding to the node A is 

 
       

3 5 7 9

3 5 7 90.95 0.95 0.95 0.951
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  
       

  
  

         (4.11) 

Fig. 4.4 shows the comparison between normalized displacement fields along 

the vertical axis of ellipsoid using the exact solution given by Eq. (4.6) and shape 

functions NA, NB  based on Taylor series given by Eqs.(4.10) and (4.11) respectively. It 

is clearly observed that displacement fields predicted using NA and NB are in 

satisfactory match with the normalized deformation of truncated ellipsoid determined 

using exact solution. It has been confirmed that 1A BN N  for 1 1   ; satisfying 

the basic requirement for shape functions. 

 

Fig. 4.4 Normalized displacement of a point along vertical axis due to axial load at respective 

nodes of truncated ellipsoid 
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Now, the internal displacement field (u(ξ)) of ellipsoidal finite element can be 

expressed, in terms of nodal displacements, as 

     ( ) Nu   q                  (4.12) 

where,   [  ]N A BN N is the shape function matrix and   [  ]T

A Bq qq  is the 

corresponding nodal displacement vector. Axial strain due to the displacement field 

u(ξ) is given by 

   
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N q

 

 [ ]Bz  q                  (4.13) 

where, [ ]B is the element strain-displacement matrix given as 

         
3 5 7 92 4 6 82

[ ] 0.95 0.95 0.95 0.95 0.95 1  1
6.2412

B
d

         
      (4.14) 

4.2 Equations of Motion for Ellipsoidal Element: The governing equations of 

motion for a standing subject under vertical excitation at feet-platform interface have 

been derived using Hamilton’s principle (Cheng et al., 2007; Petyt, 2010), which is 

given by 

    
2

1

0

t

vis ext

t

T U W W dt                 (4.15) 

where, δT is the first variation of the kinetic energy, δU is the first variation of elastic 

strain energy, δWvis  is the virtual work done by internal viscous forces (i.e. non-
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conservative forces) and δWext is the virtual work done by external forces. In 

following sections, these terms are derived for a truncated ellipsoidal finite element. 

 4.2.1 Strain Energy (U): For viscoelastic materials that follow constitutive stress-

strain relationship given by Eq. (4.1); strain energy (U) stored in the element 

corresponds to the elastic component of stress, i.e. E . The first variation of strain 

energy δU is given by 

   E z z z
v v

U dv E dv                  (4.16) 

Substituting Eq. (4.13) into Eq. (4.16) yields   
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Using Eq. (4.14),   
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4.2.2 Kinetic Energy (T): Assuming uniform density ρ of human body, kinetic 

energy (T) of ellipsoidal element is expressed as 

   
2 2

1 1
  

2 2v v

T dm u dv u  
            (4.18) 

The first variation of kinetic energy is given by 
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2
1

   
2 v v

T u dv u u dv    
 

  
 
            (4.19) 

 Substituting Eq. (4.12) into Eq. (4.19) yields  

   

   
1

22 2

2 2

1

[ ] [ ]

     1

N N

T

T

v

T

A A B

A B B

T dv

N N Nd
abd d

c N N N

 


  







   
     
     









q δq

q δq

  

Simplifying and using Eqs. (4.10) and (4.11), the first variation of kinetic energy 

comes out to be  

   0.3921 0.3071
 

0.3071 0.3921

T

T abd 
 

  
 

q δq                           (4.20) 

4.2.3 Work done by viscous forces (Wvis): Using Kelvin-Voigt model of 

viscoelasticity as expressed by Eq. (4.1), the virtual work done by internal non-

conservative viscous forces is given by 

z
visc vis z z

v
v

W dv dv
t


    


   





           (4.21) 

Substitution from Eq. (4.13) into Eq. (4.21) yields   

        

   

   
1

2 2

2

1

[ ] [ ]

         [ ] [ ] * 1

B B

B B

T

T

visc

v

T

T

W dv

d
abd d

c

 


  





 

 
   

 









q δq

q δq

  

  

Using Eq. (4.14),  



83 
 

   
  1 1

 
1   13.6733*

T

visc

ab
W

d




 
     

q δq              (4.22) 

4.2.4 Work done by external forces (Wext): WBV of a standing subject due to 

excitation from supporting platform is essentially a case of support motion; external 

force is applied on the platform, not on the human body per se. The external force 

acting on an ellipsoidal finite element is the gravity force acting downwards (in –z 

direction as shown in Fig.4.2 (b)). The virtual work done by the gravity is, 

                 ext G
v v

W W dm g u dv g u       
     

   
            (4.23) 

Using the value of displacement field from Eq. (4.12) and simplifying yields  

                             0.6992 0.6992extW abd g   δq             (4.24) 

Substituting contributions of different energies and forces in Eq. (4.15), yields; 

             

2

0.3921 0.3071  1 1   1 1 0.6992
0

0.3071 0.3921 1   1 1   1 0.69923.6733* 3.6733*

1

t

T T
E ab abT

abd abd g dt
d d

t

 
  

 
   

 

        
                 





q δ q q δq q δq δq (4.25) 

Integrating by parts the first term of Eq. (4.25) and employing   
1 2

0
t t
 δq δq , 

       

2

0.3921 0.3071  1 1   1 1 0.6997
0

0.3071 0.3921 1   1 1   1 0.69923.6733* 3.6733*

1

t

T T
E a b a bT

a bd a bd g dt
d d

t

 
   

 
    

 

        
                 






q q q δq   (4.26) 

As the virtual displacements  δq  are arbitrary; therefore the bracketed part in 

Eq. (4.26) can be put equal to zero and it represents the equations of motion of an 

individual ellipsoidal element 
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           M Η K

T T
T 

   
 

Gq q q F             (4.27) 

where,  M ,  Η ,  K represent elemental mass, viscoelastic damping and stiffness 

matrices respectively and  GF  is the equivalent gravitation force vector acting on 

respective nodes. It can be observed in Eq. (4.27) that accounting for gravity force 

results in a non-homogeneous differential equation. Here, 

       
0.3921 0.3071   1 1  1 1 0.6992

  ; ;   ; 
0.3071 0.3921 1   1 1   1 0.69923.6733* 3.6733*

a b E a b
a b d a b d g

d d

 
   

 
   

 

       
       
       

M Η K F
G (4.28) 

It is to be noted that in Eq. (4.28), E and η are average elastic modulus and 

average dynamic viscosity of an individual element, whereas ρ is the average density 

of whole body, i.e. constant for all the elements. 

4.3 Response of standing subject under vertical excitation: Table 4.1 lists the 

connectivity matrix of for the FE model of standing subject, required to assemble 

global matrices of mass  M , viscoelastic damping  H , stiffness  K   and gravity 

force  GF  vector. 

Table 4.1: Element Connectivity matrix showing local nodes and global nodes for respective 

elements 

Element 

 Name 

H N UT RUA LUA RLA LLA CT LT RUL LUL RLL LLL RF LF 

Node A  

(qA) 

1 2 3 3 3 5 6 4 9 10 10 11 12 13 14 

Node B 

(qB) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

  

Figure 4.5 shows a schematic representation of human body FE model 

developed in the present paper. It is to be noted that in Fig. 4.5; nodes 3, 3r and 3l are 
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one and same and shown displaced only for the clarity of representation. Same caveat 

applies for the nodes 10, 10l and 10r.  

 

Figure 4.5: Schematic diagram for FE model of standing subject under vertical excitation 

After element assembly using Table 4.1, equations of motion for a standing subject 

under vertical excitation at feet-platform interface are 

         16 16 16 16 16 16
16 1 16 116 1 16 1

M H K
X X X

X XX X

   
     

   
Gq q q F           (4.29) 

Excitation of human body is caused by the imposed/prescribed displacement 

of rigid platform and there is no relative motion between plantar aspects of subject’s 

feet and the vibrating platform. This boundary condition is premised on the relative 

position of human body on the vibrating platform for experimental studies (Garg & 
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Ross, 1976; Gupta, 2007). Thus, the motion of lower nodes of subject’s feet, as shown 

in Fig. 4.5, is equal to the motion of platform (y). 

15 16q q y                     (4.30) 

Accordingly column matrix of nodal displacements ( 
16 1X

q ) can be split into 

prescribed/specified nodal displacements ( 
2 1X

sq ) and unknown/remainder nodal 

displacements ( 
14 1X

rq ) (Petyt, 2010). 

   
 

 
 

 

14 1

16 1

2 1

T

1 2 13 14X

TX

15 16
X

q q ... q q

q q

      
    
     

r

s

q
q

q
           (4.31) 

Eq. (4.29) can also be partitioned as, 

M M H H K K

M M H H K K

      
            

              
                 

      

rr rs rr rs rr rs Grr r r

sr ss sr ss sr ss
s s Gss

Fq q q

q q Fq

          (4.32) 

Separating equations of motion corresponding to unknown nodes and prescribed 

nodes, Eq. (4.32) becomes 

  M H K M H K s

   
        

   
rr r rr r rr r rs s rs s rs Grq q q q q q F           (4.33) 

Equation (4.33) represents a set of fourteen simultaneous, linear, non-

homogenous, second order differential equations. Using Eq. (4.33), unknown nodal 

displacements rq are computed as function of prescribed nodal displacements sq

i.e. motion of the platform. Nodal displacements rq and sq combined with Eq. 

(4.12), which defines field variable in terms of nodal variable, completely describe the 
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dynamic response at every point of the human body in vertical direction for standing 

posture under vertical support excitation. Assuming harmonic excitation of rigid 

platform as 

j e ty Y                (4.34) 

where, Y and ω are the amplitude and the frequency of vibrating platform 

respectively. From Eq. (4.30) 

     15 j

16

1
 e

1

t
q

Y
q

   
    

  
sq               (4.35) 

For harmonic excitation of the platform (i.e. feet), represented by Eq. (4.35), general 

solution of unknown nodal displacements can be written as, 

        je t r r rq Q C              (4.36) 

where,  
14 1X

rQ  are the complex amplitude of unknown nodal displacements due to 

harmonic excitation (solution of the homogeneous part), calculated as,   

       1
2 2

1
j j  

1
K M H K M H Y   

   
             

  
r rr rr rr rs rs rsQ      (4.37) 

 
14 1X

rC are the particular solution related to  GrF .  As  GrF is due to constant gravity 

force (not function of time and frequency of applied excitation); thus resulting  rC  

are also constant. 

4.3.1 NAMS of standing subject: Using dynamic response of standing subject, as 

determined in section 4.3, driving point parameters such as NAMS, transmissibility 
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etc. can be computed. NAMS of a standing subject (MNMS) under support excitation is 

defined as  

   
 

 
 

1 fp

NMS

total

F
M

M y





 
 
 
 

             (4.38) 

where, Mtotal is the mass of the subject,  fpF  is the frequency dependent force at feet-

platform interface and   
 

y   is the applied acceleration at feet-platform interface. For 

the present FE model, shown in Fig. 4.5, fpF is equal to the frequency dependent force 

generated due to vibration of all the ellipsoidal elements i.e., 

   

15

1

         1,2,....,15fp

i
v

F dm u i


 
    

  
 






i

          (4.39)  

For an individual element, using Eq. (4.12) 
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dm u abd q q 
  

    
   





          (4.40) 

 For harmonic excitation of the platform, values for Aq and Bq of individual 

elements are extracted from Eqs. (4.35) and (4.36) and corresponding inertial force is 

calculated using Eq. (4.40). Then, the complex value MNMS for the standing subject is 

determined using Eq. (4.38).  
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4.3.2 Optimal Elastic Moduli and Dynamic Viscosity: Stiffness and viscoelastic 

damping matrices of individual finite elements are calculated using Eq. (4.28) while 

assigning specific values to elastic modulus (E) and dynamic viscosity (η) of different 

body segments. The values of E and η for all the elements are optimized, defining the 

objective function as the difference between theoretically computed values of MNMS 

for 50
th

 percentile U.S. male and the experimental results available in the literature 

(Matsumoto & Griffin 1998). The objective function is 

          
2 2

1 1

Minimize    
NMS NMS

N N

NMS l NMS l M l M lex th ex th
l i

R M M     
 

      
     

     (4.41) 

where,  NMS l ex
M  and  

NMSM l ex
  are the modulus and phase respectively, for the 

median experimental values of NAMS (Matsumoto & Griffin 1998)  of standing 

subject.  NMS l th
M  and  

NMSM l th
  are corresponding theoretical values  of NAMS 

computed using Eq.(4.38) for the present anthropometric FE model.  Matsumoto and 

Griffin (1998) recorded experimental measurements of twelve male subjects in 

different standing postures under vertical excitation at the feet and MNMS was 

calculated at five different r.m.s. values of random vibration. In this study, median 

MNMS measured at 1.0 ms
-2 

r.m.s. value in normal standing posture has been selected 

as the experimental data required for optimization. The objective function is evaluated 

at N number of discrete frequencies in the range of 0-20 Hz.  

4.3.3 Transmissibility: To confirm and establish the optimal elastic moduli and 

dynamic viscosity estimated using Eq. (4.41); transmissibility at nodes joining 

different FE elements has been computed and compared with the experimentally 

measured transmissibility at similar locations/joints of standing subject (Matsumoto & 
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Griffin 1998, Paddan & Griffin 1993). For harmonic support excitation, 

transmissibility at r
th
 node (

r
TR ) is 

   
2

2
       =1,2,...14r r

r

q Q
TR r

Y
y




              (4.42) 

Substituting rQ values from Eq. (36), which is based on optimal elastic moduli and 

dynamic viscosity, theoretical value of 
r

TR  is computed using Eq. (42). 

4.4 Results and Discussion:  Anthropometric measurements of 50
th
 percentile U.S. 

male (Table-A Appendix) have been used to calculate NAMS for finite element 

vibratory model of a standing subject. Applying the scheme listed in Appendix Table-

B and using truncation factor of 5% (di= 0.95 ci); dimensions of ellipsoidal finite 

elements have been computed and listed in Table 4.2. 

Table 4.2: Dimensions of truncated ellipsoidal finite element (50
th

 percentile U.S. male) 

Element 

No. 
Body 

Segment 

ai 

(cm) 

bi 

(cm) 

di 

(cm) 

1 H 7.785 7.785 9.434 

2 N 6.040 6.040 1.178 

3 UT 16.445 11.660 17.832 

4,5 RUA, LUA 5.239 5.239 17.832 

6,7 RLA, LLA 4.628 4.628 23.128 

8 CT 14.110 10.755 20.480 

9 LT 17.715 11.595 11.564 

10,11 RUL, LUL 5.927 5.927 26.434 

12,13 RLL, LLL 5.303 5.303 21.959 

14,15 RF, LF 4.675 12.700 3.282 

 

Mass matrices  M of individual elements are calculated from Eq. (4.28) using 

data listed in Table 4.2 and density (ρ) of the human body. In this study, ρ has been 

calculated as ratio of the mass of subject (Mtotal) and the total volume of all truncated 

ellipsoids. For 50
th

 percentile U.S. male, with Mtotal =74.9 kg;  comes out to be 
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1.1390*10
-3 

kg/cm
3
. This value is within the range of values available in literature for 

density of human body segments (Bartz &Gianotti, 1975; Liu & Wickstrom, 1973).  

4.4.1 Optimal Values of E and η: As discussed in section 4.2, stiffness and damping 

matrices of finite elements of vibratory model for 50
th

 percentile U.S. male are 

constructed through Eqs. (4.17) and (4.22) respectively and then optimization process 

is executed using Eq. (4.41) in section 4.3.2. In the present study, Jaya algorithm 

(Rao, 2016; Rao & Waghmere, 2017) for constrained optimization has been employed 

to estimate E and η of all the body segments. Jaya algorithm is a global search 

method, and does not require any algorithm specific control parameters. During 

optimization process, upper and lower limits of design variables i.e. Ei and ηi were 

taken as 

2 8

0.01   10       =1,2,3... 14,15 

       10   10         =1,2,3... 14,15

G i G

i

E E E i

i

 

 

   

 

where, EG=13.02 MN/m
2 

is the value of elastic moduli used by Nigam and Malik 

(1987), same for all ellipsoidal segments. The undamped vibratory model developed 

Nigam and Malik (1987) predicted natural frequencies of standing subject to a fair 

degree of accuracy. Same value of elastic moduli, i.e. EG was further established by 

Gupta (2007) based on the dynamic response of standing subjects undergoing vertical 

vibration. Therefore limits for Ei were decided keeping EG as a reference value. To the 

best of ones’ knowledge, FE vibratory model of human body assuming average value 

of dynamic viscosity for a body segment such as arm or leg or torso etc., is being 

attempted for the first time. Although value of dynamic viscosity for human body 

constituents such as specific ligaments, muscles, tissues etc. are available in literature, 

there is no such data available for body segments. Therefore, the limits on ηi (in N-
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sec/m
2
) during optimization are solely based on numerical simulations conducted by 

the authors, which were observed to be quite wide. Symmetry of anthropometric 

human body model about mid-sagittal plane was ensured by applying constraints 

listed below 

 4 5 6 7 10 11 12 13 14 15

4 5 6 7 10 11 12 13 14 15

;  ;  ;  ;  

;  ;  ;  ;  

E E E E E E E E E E

         

    

    
                   (4.43) 

Table 4.3 lists the optimal values for Ei and ηi estimated after multiple trials using 

Jaya algorithm. Figure 4.6 shows the comparison between experimental measurements 

of normalized apparent mass MNMS from Matsumoto & Griffin (1998) and 

theoretically computed value for the same. 

Table 4.3: Optimal value of Ei and ηi for truncated ellipsoidal finite element 

 

 

Figure 4.6: Normalized apparent mass for FE model (optimal Ei and ηi) and experimental data 

( ------ median experimental values;                  FE model values; ▫▫▫▫▫▫▫ experimental upper and lower limit) 

 

Ellipsoidal 

Segment 
H N UT 

RUA, 

LUA 

RLA, 

LLA 
CT LT 

RUL, 

LUL 

RLL, 

LLL 

RF,    

LF 

Elastic 

Modulus  

(* EG)  MN/m
2
 

0.101 0.143     0.748     0.038     5.683     0.250     0.102     3.988     4.294     0.026 

Average 

Dynamic 

Viscosity(*10
2
) 

KN-sec/m
2 
 

3.588 2.258 3.644 0.062 3.028 0.456 0.254 0.717 0.368 2.976 
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It is observed in Fig. 4.6 that with the optimized values of Ei and ηi listed in 

Table 4.3, theoretical curve for both modulus of MNMS and its phase matches closely 

with the median experimental curves for the same. Theoretically computed values of 

MNMS lie within the experimental envelop for the frequency range of 0-20 Hz. 

Moreover, the agreement between the two curves, in the proximity of the resonant 

frequency (~ 6-7 Hz), is quite good. These results validate the methodology used and 

values of Ei and ηi estimated, in the present chapter, to develop FE vibratory model of 

standing subjects based on their anthropometric data.    

4.4.2 Transmissibility: The optimized values of Ei and ηi listed in Table 4.3 are 

further established through comparison of theoretical values of TR with the 

experimentally measured TR. Using Eq. (4.42), 
r

TR values for head(r=1) and 

shoulder(r=3) were calculated and compared, as shown in Fig.7, with experimental 

data available in the literature (Matsumoto & Griffin 1998, Paddan & Griffin 1993).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Comparison of transmissibility for FE model (optimal Ei and ηi) and experimental envelop 
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It is to be noted here that Paddan and Griffin (1993) showed phase data, as 

shown in Fig. 4.7(c), for the head transmissibility of one specific subject standing with 

legs in locked position and undergoing vertical vibration. As evident from Fig. 4.7, 

theoretical transmissibility with respect to different locations of human body lies 

within envelop of experimental data reported in the literature. These results further 

establish the scheme for the development of FE vibratory model of standing person 

using anthropometric data and also establish the optimal values of elastic moduli and 

average dynamic viscosity for different body segments.  

It is important to emphasize here that the anthropometric data, used to 

optimize elastic moduli and dynamic viscosity, essentially belongs to the 50
th

 

percentile U.S. male. The experimental results available in the literature for NAMS 

and transmissibility belong to two different groups of people. Moreover, FE model 

has been developed assuming dominant motion in vertical direction. For some of the 

body segments like hip and knee, the local pitch motion of joints, which is not 

included in present scheme, substantially affects experimental measurements of 

transmissibility. Availability of anthropometric data of the group of subjects 

participating in experimental study and also the inclusion of rotational motion in 

present model should lead to better correspondence between theoretical results and 

experimental datasets of transmissibility. 

4.4.3 Mode Shapes of standing subject: Mode shapes of a standing subject under 

vertical excitation have been plotted using optimal elastic moduli listed in Table 4.3 

for the present FE model. Natural frequencies (ωn) of undamped FE model are listed 

in Table 4.4 and corresponding mode shapes (only for ωn<100 Hz) are plotted and 

shown in Fig. 4.8. 
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In Fig. 4.8, dotted lines represent the reference position of standing human 

body (refer Fig. 4.5) and solid lines represent the mode shapes corresponding to 

different natural frequencies. For clarity of representation, displacement of nodes 

along z axis (Fig. 4.1) has been shown in horizontal plane in Fig. 4.8. It is to be noted 

that Fig. 4.8 is not to the scale, i.e., lengths of ellipsoidal finite elements along vertical 

axis shown in the figure are not proportionate to the values of di as listed in Table 4.2.  

Table 4.4: Natural frequencies of FE model using optimal Ei value for truncated ellipsoids 

Mode 

No. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Natural 

Freq. ωn 

(Hz) 

4.55 7.16 8.1 17.7 37.5 47.14 56.24 99.88 137.60 206.52 233.48 254.23 266.09 284.03 

As shown in Fig. 4.8, except the modes corresponding to 7.16 Hz and 56.24 

Hz, all other modes for vertical vibration of standing subject are whole body modes. 

For the mode at 7.16 Hz, motion of the arms is dominant whereas the mode relating to 

56.24 Hz shows only motion of the legs.  Comparing the natural frequencies listed in 

Table 4.4 with the location of peaks in the experimental and theoretical results for 

NAMS in Fig. 4.6, it appears that the modes corresponding to 4.55 Hz, 7.16 Hz and 

8.09 Hz must have major contribution to response near dominant peak of NAMS 

whereas the mode corresponding to 17.71 Hz is damped.  As mentioned earlier, 

Fig.4.8 doesn’t show different body segments proportionate to their actual length 

along the vertical axis, therefore, the exact locations of nodes have to be calculated for 

different mode shapes. The presence of node indicates completely cyclic stress within 

a body segment, implying critical fatigue stresses. 

It is emphasized here that actual mode shapes of any human body subjected to 

vertical vibration will depend on many parameters like mass distribution in different 

body segments, age, active nature etc. of the human-being. Therefore, exact prediction 



96 
 

of mode shape is only possible when subject specific anthropometric data are 

available. Nevertheless, estimated mode shapes shown in Fig. 4.8 are important means 

to identify locations susceptible to vibration injuries in case of WBV.  

 

Figure 4.8: Mode Shapes of standing subject under vertical excitation using FE model 

(                      undeformed;                     mode shape) 



97 
 

4.5 Conclusion 

The finite element modeling, proposed in this chapter, represents human body 

by fifteen truncated visco-elastic ellipsoidal elements and requires only 

anthropometric measurements and visco-elastic parameters. Following this 

methodology, person specific vibratory models can be developed. Shape functions for 

the elements are based on exact solutions for deformation of truncated ellipsoid under 

vertical axial load. As shown in Fig. 4.8, this model is also effective for identifying 

locations in standing subject corresponding to completely cyclic (fatigue) stresses. 

The anthropometric data of 50
th
 percentile U.S. male is used to optimize elastic and 

damping properties of each ellipsoidal element through comparison of experimental 

data and computed values of normalized apparent mass. The elastic moduli and 

dynamic viscosity concluded are given in Table 4.3. Computed values for 

transmissibility of head and shoulder with reference to the platform also lie within 

envelops of experimental measurements. The correspondence between experimental 

measurements and theoretically predicted driving point mechanical impedance values 

can be made better provided the anthropometric data of group of people actually 

participating in experimental studies is available. The proposed model can be further 

improved by inclusion of rotational degrees of freedom, particularly for body 

segments having appreciable pitch motion. 

 

 

 

 



98 
 

Chapter 5 

Finite Element Vibratory Model of Seated Subject 

 

Finite Element model of a standing person based on anthropometric data was 

developed in the previous chapter. As one of the primary objective of present research 

work is to study effects of road undulation on vehicle rider (especially two-wheeler 

rider), it is obligatory to develop a similar model for a seated person. In the present 

chapter, following a step by step approach; a FE vibratory model of seated person 

with hands in the vertical position is formulated.  

5.1 Introduction  

A FE model of the human body is formulated to estimate dynamic response of 

a seated person in normal upright posture with hands in straight down position, under 

vertical excitation from the feet and the pelvis. As described in chapter 2, the human 

body has been divided into fifteen physically distinct segments considering its 

anatomical structure, whose mass and geometrical parameters are determined from 

anthropometric measurements and average density of the human body.  

For a sitting individual, only thirteen individual segments are approximated by 

truncated ellipsoidal elements (Nigam & Malik, 1987; Gupta, 2007) and the remaining 

two body segments (upper legs) are represented by rigid rods (Liu et al., 2015). 

Similar to the FE model of a standing subject, whole of the truncated ellipsoid with 

two nodes (one at each end) is taken as a finite element and Kelvin-Voigt model for 

viscoelastic materials is used to incorporate stiffness and energy dissipation (damping) 

in ellipsoidal elements. Elastic moduli and average dynamic viscosity of individual 
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segments are optimized by minimizing the difference between normalized apparent 

mass (NAMS) calculated from the FE model and experimental data available in the 

literature (Fairley & Griffin, 1989). Thereafter, transmissibility at different joints of 

seated subjects has been investigated as a function of excitation frequency. Mode 

shapes are constructed to locate the critical areas of fatigue stresses. 

5.2 Human Body Segmentation and Element Formulation 

Figure 5.1 shows the connectivity of different truncated ellipsoids for seated 

human body and Fig. 5.2 represents the schematic of human body used for FE 

modeling in the present work. The model consists of fifteen finite elements having 

sixteen nodes in total. It is to be noted that in Fig. 5.2; nodes 3, 3r and 3l remain at the 

same level (w.r.t. to z axis) during motion. The same restriction is applicable to nodes 

10, 10l and 10r. In FE model, RUL and LUL are represented by rigid rods, which are 

connected between 10l and 11 and 10r and 12 respectively, by torsional springs and 

dampers to adjacent ellipsoidal elements (Fig. 5.3(b)). Truncated ellipsoid segments, 

as shown in Fig. 5.3(a), are assumed (for subjects under vertical excitation) to deform 

dominantly along the z axis and cross-axis deformations have been neglected. For 

vertical excitation of sitting person, the motion of upper body (from head to lower 

torso) contributes significantly to experimental measurement of apparent mass 

(Kitazaki & Griffin, 1997). Upper leg segments, horizontal in sitting posture, 

contribute little to apparent mass for vertical excitation of seated human body and 

hip/knee joints behave as pin joints (Matsumoto & Griffin, 2001; Pankoke et al., 

1998). Therefore, all body segments of a seated person which are vertical are modeled 

as truncated ellipsoidal elements and remaining body segments (horizontal) are 

modeled as rigid rods connected with rotational springs/dampers.  
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Fig. 5.1 Ellipsoidal segmentation of seated human body;         Fig. 5.2 Human body stick model  

(H: Head, N: Neck, UT: Upper Torso, CT: Central Torso, LT: Lower Torso, LUA: Left Upper Arm, RUA: Right 

Upper Arm, LLA: Left Lower Arm, RLA: Right Lower Arm, LUL: Left Upper Leg, RUL: Right Upper Leg, 

LLL: Left Lower Leg, RLL: Right Lower Leg, LF: Left Foot, RF: Right Foot) 

 

5.2.1 Shape Functions for Truncated Ellipsoids: For un-truncated ellipsoid, semi-

axes (a, b, c) have been computed from anthropometric measurements of the subjects 

using scheme developed by Bartz & Gianotti (1975). Ellipsoids are truncated at both 

ends, as shown in Fig. 5.3(a), to represent area contact of actual body segments. 

Truncation factor of 5% has been adopted, i.e. nodes A and node B are at z = -d and z 

= +d respectively; where d = 0.95 c. 

1 

 

3 

3r 

3l  

4 

5 

6 

7 

8 

9 

10 

10r 

10l 

11 

13 

15 

12 

14 

16 

H 

N 

UT 

LT 

CT 

RF 

LF 

RUA 

LUA 

LLA 

RLA 

RUL 

RLL 

LUL 
LLL 

q
app

 

q
app

 



101 
 

 

   

        Fig. 5.3 (a) Truncated ellipsoidal finite element (b) Rigid rod element 

Stress-strain behavior of truncated ellipsoids has been modelled assuming 

individual body segments as homogenous, isotropic and viscoelastic members having 

average elastic moduli (E) and average dynamic viscosity (η).  In numerous 

experimental and theoretical studies, behavior of human body constituents has been 

modeled as viscoelastic member (Johnson et al, 1994; Kubo et al., 2001; Saraf et al., 

2007; Marini et al., 2017). Ellipsoidal body segments are assumed to follow Kelvin-

Voigt model of viscoelastic materials in present work. Total stress ( ) resulting from 

uni-directional strain along z-axis (Fig. 5.3(a)) is: 

    ela vis z zE
t

     


   


              (5.1) 

where; ela , vis , z  are the elastic stress, time dependent viscous stress, and axial 

strain respectively. E and η are average elastic moduli and average dynamic viscosity 

qAR q
BR

 

L
R
 

Node A Node B 

C.G 

0.5 L
R
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of individual body segments. For vertical excitation of body segments, neglecting 

cross-axis deformations, resulting stress/strain field is taken as uni-directional.  

The shape functions for truncated ellipsoidal finite elements are based on the 

exact solution for deformation field of an ellipsoid under uni-axial load. For an 

elliptical strip of length dz, as shown in Fig. 3(a), deformation ( dzL ) due to unit load 

at node B is  

2

2

(1)

1

dz

dz
L

z
E ab

c


 
 

  
 

              (5.2) 

For partial segment of ellipsoid, from the lower end up to a distance z, deformation (

zL ) is 

     
2

2
1

z

z

d

d
L z

E ab
c








 
 

  
 






             (5.3) 

Integrating Eq. (5.3) and taking d = 0.95 c 

 
1 1 0.95

     ln ln
1 1 0.95

zL


 


    
     

    
           (5.4) 

where, and   =
2

c z

Eab c
 


  

Normalized deformation (   L  ) for the partial segment of ellipsoid mentioned 

above is, 

 
 
 max

 1 1 1 0.95
  ln ln

  7.3271 1 1 0.95

z

z

L
L

L

 


 

     
      

     
            (5.5) 
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As 1  for every segment of truncated ellipsoid, Eq. (5.5) can be written as  

  
3 5 7 91 1 0.95

2* ln
7.3271 3 5 7 9 1 0.95

L
   

 
    

          
   

           (5.6) 

For 0.90  , difference between  L  computed from Eq. (5.5) and Eq. 

(5.6) is less than 2.5%. Maximum difference between two values, at 0.90  , is 

7.4%.
  
Eq. (5.6) can be written in terms of non-dimensional natural co-ordinate  (

z

d
  ) as 

 
       

3 5 7 9
0.95 0.95 0.95 0.951 1 0.95

2* 0.95 ln
7.3271 3 5 7 9 1 0.95

L
   

 
                   

   (5.7) 

From Eq. (5.7), for node B, shape function (NB) is 

 
       

3 5 7 9
0.95 0.95 0.95 0.951

3.1207 2* 0.95
6.2412 3 5 7 9

BN
   

 
  
       

  
  

(5.8) 

Similarly, shape function (NA) for node A is 

 
       

3 5 7 9
0.95 0.95 0.95 0.951

3.1207 2* 0.95
6.2412 3 5 7 9

AN
   

 
  
       

  
  

  (5.9) 

From Eq. (5.8) and Eq. (5.9), using shape function matrix [N] (   [  ]N A BN N ) 

and nodal displacement vector displacement  [  ]T

A Bq qq ; internal displacement 

field (u(ξ)) for truncated ellipsoidal finite element is written as: 

      ( ) Nu   q               (5.10) 
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Corresponding strain along vertical axis (  z )  

 [ ]Bz  q               (5.11) 

where, [ ]B  elemental strain-displacement matrix, is 

         
2 4 6 82

[ ] 0.95* 1 0.95 0.95 0.95 0.95 1  1
6.2412d

         
 

B     (5.12) 

5.3 Equations of Motion:  For a subject sitting in upright posture on a seat with legs 

supported on the seat-platform interface, governing equations of motion under 

synchronous vertical excitation at seat and feet-platform interface have been derived 

using Hamilton’s principle (Petyt, 2010):  

 
2

1

0

t

vis ext

t

T U W W dt
 

    
 
 
     (5.13) 

where, T , U, Wvis and Wext are the kinetic energy, the elastic strain energy,  the virtual 

work done by viscous forces and the virtual work done by external forces 

respectively. In section 5.3.1, these terms are derived for viscoelastic finite elements 

representing vertical body segments and in section 5.3.2, for rigid rods elements 

representing horizontal upper legs. 

5.3.1Truncated Ellipsoidal Element: 

5.3.1.1 Strain Energy (Ue): The strain energy (Ue) of elements with viscoelastic 

materials, following stress-strain relationship as given by Eq. (5.1); is only due to the 

elastic component of stress, i.e. ela . The first variation δUe is  

   e ela z z z
v v

U dv E dv                  (5.14) 
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Substituting Eq. (5.11) into Eq. (5.14) yields   

      
 1 1

 
1   13.6773*

T

e

Eab
U

d




 
   

q δq            (5.15) 

5.3.1.2 Kinetic Energy (Te): First variation of kinetic energy ( eT ) for an ellipsoidal 

element assuming constant density ρ is,  

2
1

   
2

e
v v

T u dv u u dv    
 

  
 
                              (5.16) 

Simplifying using Eq. (5.10), 

   0.3921 0.3071
 

0.3071 0.3921

T

eT abd 
 

  
 

q δq           (5.17) 

5.3.1.3 Work done by viscous forces (Wvis_e): For ellipsoidal elements, the virtual 

work by non-conservative forces arises due to time varying viscous stresses ( vis ) and 

is given by  

_
z

vis e z
v

W dv
t


  


 







            (5.18) 

After simplification,  

   _

  1 1
 

1   13.6733*

T

vis e

ab
W

d




 
     

q δq             (5.19) 

5.3.1.4 Work done by external forces (Wext_e):  Gravity applies a constant downward 

force on all human body elements and its effect on the total response of the human 

body is equivalent to the addition of a constant to elemental displacement, 

independent of time and frequency of the applied excitation. Moreover, experimental 

data for dynamic response, reported in the literature, is based on the signal collected 
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from load cells between supporting plate and vibrating platform, which does not 

account the static gravity load. The signals from load cells communicate variation in 

force with time. Therefore, the effect of gravity on driving point impedance 

measurements will be zero. Nonetheless, for completeness of mathematical modeling, 

the work done by gravity and its first variation is as follows: 

 _  ext e G
v

W W dv g u    
   

 
             (5.20) 

From Eq. (5.10) 

  _ 0.69917 0.69917ext eW abd g   δq           (5.21) 

Thus, Eq. (5.13) for a truncated ellipsoidal element becomes  

             

2

1

0.3921 0.3071  1 1   1 1 0.69917
0

0.3071 0.3921 1   1 1   1 0.699173.6733* 3.6733*

t

T T
T

t

Eab ab
abd abd g dt

d d

 
 
         

                    





q δq q δq q δq δq    (5.22) 

Simplifying and noting    
1 2

0
t t
 δq δq  ; 

       

2

1

0.3921 0.3071  1 1   1 1 0.69917
0

0.3071 0.3921 1   1 1   1 0.699173.6733* 3.6733*

t

T T
T

t

Eab ab
abd abd g dt

d d

 
 

         
                     





q q q δq    (5.23) 

In matrix form Eq. (5.23) can be written as,  

           
T T T

e e

 
   

 
e GM C K Fq q q             (5.24) 

where;  Me ,  eC ,  Ke  and  GF are given by,  
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       
0.3921 0.3071   1 1  1 1 0.69917

  ;   ;  : 
0.3071 0.3921 1   1 1   1 0.699173.6733* 3.6733*

e e

ab Eab
abd abd g

d d

 
 

        
                  

eM C K GF

     
(5.25) 

and represent the mass matrix, the viscoelastic damping matrix, the stiffness matrix 

and the equivalent gravitation force vector acting on individual nodes respectively; for 

the ellipsoidal element.  

5.3.2 Rigid Rod Element: Liu et al (2015) modelled femurs as rigid rods surrounded 

with soft tissue to represent upper legs of a seated person subjected to vertical 

vibration. In the present model also, both the upper leg segments of seated person 

have been modelled as rigid rod connected with rotational spring and dampers, as 

shown in Fig. 5.3(b). Dimensions and inertial parameters of these rods are scaled with 

reference inertial parameters given in literature Liu et al (2015), for bonny part of 

upper leg, and using anthropometric measurements employed in present work. As 

mentioned earlier, it is assumed that upper legs have only rotational motion for a 

seated person during vertical vibration from seat-platform interface. Figure 5.4 shows 

the rigid rod element with nodal displacements and location of centre of gravity (at 

midpoint) used for deriving equation of motion of upper leg segments. 

 

Fig. 5.4 Rigid rod finite element with location of nodes and centre of gravity 
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5.3.2.1 Strain Energy (UR): The upper leg segments, modelled as rigid rods are 

connected to the adjacent truncated ellipsoidal elements by torsional springs and 

dampers. The first variation of strain energy, stored in torsional springs is given by:  

 2 21 1

2 2
R B R A R B R A RU K K K K        

 
    

 
          (5.26) 

where, is the angular rotation of rigid rod about C.G. (Fig. 5.3(b)). For small 

rotations ( tan sin     ); 

BR AR

R

q q

L



                (5.27) 

where,  BRq  and  ARq  are the nodal displacements at each end of rigid rod as shown in 

Fig. 5.3(b) and RL is the length of rigid rod. Therefore Eq. (5.26) can be written as: 

  
   2

B R A R

AR BR RR

R

K K
U q q q

L

  
  

 
  

             (5.28) 

where,      
T

R AR BRq q q    

5.3.2.2 Kinetic Energy (TR): The first variation of kinetic energy for a rigid rod is 

given by: 

 
2 2

1 1

2 2
CG CG CGR CG R CG RT I m z I m z z      

    
       

    
          (5.29) 

where, CGI is moment of inertia about lateral axis of the rigid rod, Rm is the mass of 

rigid rod and CGz is the vertical displacement at center of mass of rigid rod (Fig. 

5.3(b)). Substituting Eq. (5.27) and writing CGz in terms of nodal displacement,  
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   2 2
CG R

AR BR R AR BR RR

R R

I m
T q q q q q q

L L
     

 
      

           (5.30) 

5.3.2.3 Work done by viscous forces (Wvis_R): Following similar analysis as for the 

strain energy stored in torsional springs, work done by torsional dampers attached to 

the ends of rigid rod is: 

  
   _ 2

B R A R

AR BR Rvisc R

R

K K
W q q q

L

  
  

 
  

            (5.31) 

5.3.2.4 Work done by external forces (Wext_R): The rod representing upper leg is 

assumed to be rigid with a constant diameter and constant density. The variation of 

work done by gravity at c.g. ( 0R  ) is 

_

0

1 1
*

2 2
R

R R
ext R R AR BRW m g q q



 
 



     
     

    
 

             _ 1 1
2
R

ext R R

m g
W  δq              (5.32) 

Using Hamilton’s principle, equation of motion for the rigid rods in matrix 

form is  

           
T T T

RR R R R RC
 

   
 

GRM K Fq q q            (5.33) 

where;  MR ,  RC ,  KR and  GRF are  

   
 

 
 

 2 2 2

1 1 1 12
; ; ;  

1 1 1 12 2

B R A R B R A RCG R R R
R R R

R R R

C C K KI m L m g
C

L L L

              
            

        
GRM K F

     
(5.34) 
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5.4 Response of seated person under vertical excitation: Table 5.1 shows 

connectivity matrix of anthropometric FE model of seated subject developed in 

present study 

Table 5.1: Connectivity matrix of anthropometric FE model for seated person 

Element 

 Name 

H N UT RUA LUA RLA LLA CT LT RUL LUL RLL LLL RF LF 

Node A  

(qA) 

1 2 3 3 3 5 6 4 9 10 10 11 12 13 14 

Node B 

(qB) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 

After assembly of global mass  M , stiffness  K , viscoelastic damping  C

matrices and force vector  GF due to gravity using Table 5.1, equations of motion for 

a seated subject under synchronous vertical support excitation from seat and feet 

interface are 

         16 16 16 16 16 16
16 1 16 116 1 16 1

X X X
X XX X

   
     

   
M H K Gq q q F           (5.35) 

Although, the case of WBV of a seated subject due to excitations from 

supporting platform is essentially a case of support motion; but while considering the 

human body and platform as system, the external forces from seat and footrest will be 

considered as applied forces. These forces (FP) are added at appropriate locations in 

the force vector.  

In experimental studies related to WBV effects on a seated person, a 

prescribed motion/displacement is imposed on seat with legs resting on vibrating 

platform and it is assumed that there is no loss of contact between the seat and the 

pelvis and also between the plantar of subject’s feet and the vibrating platform. Thus, 
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for nodes 10, 15 and, 16 as shown in Fig. 5.2, displacement is equal to the excitation 

applied (qapp). 

10 15 16 appq q q q                (5.36) 

  It is to be noted that in Eq. 5.36, displacement of nodes 10, 15 and 16 (q10, q15 

and q16) has been taken equal to each other and it is applicable if the hips and legs are 

in contact with the vibrating platform. If the seat has spring action, displacement of 

node 10 might be different from nodes 15 &16 and the equation (5.36) will have to be 

modified accordingly. Now,  
16 1X

q is split into ( 
3 1X

sq ) and ( 
13 1X

rq ) as shown in 

Petyt (2010); where,  sq  is the displacement vector of nodes with imposed/applied 

displacement and  rq is the displacement vector for remaining nodes.   

  
 

 
 

 

13 1

16 1

3 1
1 1 1

T

1 2 9  11  12  13  14X

TX

app
X

q q ... q q q q q

q

      
    
     

r

s

q
q

q
     (5.37) 

Separating equations of motion corresponding to un-prescribed and prescribed 

nodes, Eq. (5.35) becomes 

0

P
F

      
            

              
                        

M M C C K K

M M C C K K

rr rs rr rs rr rs Grr r r

sr ss sr ss sr ss
s s Gss

Fq q q

q q Fq

          (5.38) 

From Eq. (5.38), extracting first equation in matrix form  

 s

   
        

   
M C K M C Krr r rr r rr r rs s rs s rs Grq q q q q q F           (5.39) 
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It may be noted that Eq. (5.39) is sufficient to determine 13 unknown nodal 

displacements and the force acting from seat and footrest (Fp) is not required. Thus, 

the present case becomes a vibratory system with support motion. 

 rq ’s can be determined from Eq. (5.39) provided  sq is known as a 

function of time and frequency of imposed displacement. Solution of Eq. (5.39) along 

with Eq. (5.10) defines dynamic response of a seated human body under vertical 

support excitation using FE anthropometric vibratory model developed in the present 

study. Assuming harmonic excitation  

je t

app appq Q               (5.40) 

where, appQ  and ω are the amplitude and the frequency of excitation respectively. 

From Eq. (5.36) 

    
10

j

15

16

1

e 1

1

t

app

q

q Q

q



   
   

    
   

  

sq              (5.41) 

General solution of unknown  rq  can be written as; 

        je t P r rq Qr              (5.42) 

where,  
13 1X

rQ  is the solution of homogeneous part of Eq. (5.39) and   
13 1X

rP is the 

particular solution due to non-homogeneous part  GrF . It is important to note that 

 rQ is complex quantity with both magnitude and phase whereas  rP  is a constant 

quantity because  GrF  is independent of time & frequency of applied excitation. 



113 
 

5.4.1 NAMS of subject in sitting posture: Normalised apparent mass of a seated 

subject can be computed from the dynamic response, computed as described in section 

5.4 above, to the vertical excitation. NAMS of a subject sitting in a upright posture 

(MNMS)) under synchronous excitation from pelvis/seat interface and the feet is (Wei 

& Griffin, 1998) 

   
( )1

( )

fp

NMS

total
app

F
M

M
q





 
 
  
 

             (5.43) 

where, fpF  is the sum of the forces  at pelvis/seat interface, 
 

appq  is the acceleration 

applied at the interface and  Mtotal is mass of the subject. For anthropometric vibratory 

model, as shown in Fig. 5.2, fpF is the sum of inertia force of all human body 

segments modelled as either truncated ellipsoidal finite elements or rigid rods, 

   

15

1

         1,2,....,15fp

i
v

F dm u i


 
    

  
 






i

          (5.44)  

Using nodal dynamic response computed from Eq. (5.42), sum of inertial 

forces can be determined. Then, using Eq. (5.43), NAMS for the seated subject is 

computed. As  rQ is a complex quantity, therefore, NAMS is also complex quantity 

having both magnitude and phase.  

5.4.2 Estimation of Elastic Moduli and Dynamic Viscosity: Specific values to E 

and η for individual ellipsoidal finite elements are required to compute elemental 

matrices (Eq. (5.25)). E and η values of ellipsoidal elements are estimated using Jaya 

algorithm of optimization, by minimizing difference between the theoretically 
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computed MNMS of 50
th
 percentile U.S. male and the available experimental results for  

group of seated person (Fairley & Griffin, 1989) . Objective function (R) is defined as 

         
2 2

exp exp
1 1

Minimize    
N N

k k NMS k NMS kfe fe
k k

R NMS NMS     
 

      
     

     (5.45) 

where,  k fe
NMS  and  NMS k fe

  are theoretically computed values of modulus and 

phase respectively; and  
expkNMS  and  

expNMS k  are corresponding median 

experimental values of NAMS (Fairley & Griffin, 1989) for a seated subject. In the 

experimental study referred above, measurements were conducted on sixty subjects in 

various seated postures under vertical excitation of the seat with feet in different 

resting positions. To compute objective function i.e., R; median NMS measured by 

Fairley & Griffin (1989) at 1.0 m s
-2

 r.m.s. value in normal seated posture with feet 

resting on the vibration platform is selected as the required experimental data. N is the 

number of discrete frequencies at which the difference between two quantities is 

calculated. 

5.4.3 Transmissibility of Seated Subject: Transmissibility at different joints of the 

human body indicates acceleration generated at those location in human body, relative 

to the applied excitation. In the present study, STHT of human body FE model has 

been computed using the optimal elastic moduli and dynamic viscosity estimated 

using Eq. (5.45). Theoretically computed STHT is compared with the experimentally 

measured STHT of seated subject (Paddan & Griffin, 1988). Transmissibility at r
th

 

node for FE model, under harmonic excitation (
r

TR ) is  

 

2

2
       r =1,2,...14r r

r

q Q
TR

Y
y




                      (5.46) 
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5.5 Results and Discussion: NAMS of a seated subject with hands in vertical position 

has been computed using anthropometric data of 50
th
 percentile U. S. male (Table-A 

Appendix). The dimensions of ellipsoidal finite elements, as shown in Table 5.2, are 

calculated  based on the scheme listed in Appendix Table- B while using di= 0.95 ci. 

Table 5.2: Dimensions of truncated ellipsoidal human body segments (50
th

 percentile U.S. male) 

Element 

No. 
Body 

Segment 

ai 

(cm) 

bi 

(cm) 

di 

(cm) 

1 H 7.785 7.785 9.434 

2 N 6.040 6.040 1.178 

3 UT 16.445 11.660 17.832 

4,5 RUA, LUA 5.239 5.239 17.832 

6,7 RLA, LLA 4.628 4.628 23.128 

8 CT 14.110 10.755 20.480 

9 LT 17.715 11.595 11.564 

10,11 RUL, LUL 5.927 5.927 26.434 

12,13 RLL, LLL 5.303 5.303 21.959 

14,15 RF, LF 4.675 12.700 3.282 

Using Table 5.2, mass of an individual element is calculated based on the 

volume of element and the average density (ρ) of human body, assumed constant for 

all segments. Average density (ρ = 1.1390*10
-3 

kg cm
-3

), calculated by taking ratio of 

the mass of the subject (Mm = 74.9 kg) and the total volume of all truncated ellipsoids, 

is within the range available in literature (Bartz &Gianotti, 1975; Liu & Wickstrom, 

1973). As RUL and LUL are modelled as rigid rods in the present work, length (di) 

and mass (mi) of these segments are assigned to rigid rod elements. Dynamic 

properties of torsional spring and dampers, listed in Table 5.3, are scaled up from the 

values given in literature (Liu et al., 2015) and then minor adjustments are made for 

better correspondence between theoretical normalized apparent mass and 

experimental values. 
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Table 5.3: Properties of rigid rods segments to model Upper Leg  

 

5.5.1 Optimized E and η: Elastic moduli and dynamic viscosity for individual 

ellipsoidal body segments were optimized such that theoretically calculated NAMS 

corresponds with the experimental measurements available in literature (Liu et al., 

2015). Jaya algorithm ((Rao, 2016; Rao & Waghmere, 2017), a global search method 

independent of algorithm specific parameters, is employed for optimizing objective 

function (Eq. (5.45)). Upper and lower limits of Ei and ηi   during optimization were: 

2 8

0.01   10       =1,2,3... 14,15 ; 10,11

       10   10         =1,2,3... 14,15  ; 10,11

G i G

i

E E E i i

i i

  

  

 

 

where, EG=13.02 MN m
-2

 i.e. reference value of elastic moduli for ellipsoidal 

elements used by Nigam and Malik (1987). Dynamic viscosity for human body 

segments is not available in literature; therefore, limits on the same (in N s m
-2

) 

became a necessity to keep quite wide as observed during numerous trials conducted 

by the authors. Because of the symmetry of human body about mid-sagittal plane, 

following equivalence constraints were applied on design variables: 

 
4 5 6 7 12 13 14 15

4 5 6 7 12 13 14 15

;  ;   ;  

;  ;  ;  

E E E E E E E E

       

   

   
           (5.47) 

Estimated values of Ei and ηi, after multiple runs using Jaya algorithm, are listed in 

Table 5.4.  

 

Property 
LR 

(m) 
Rm  

(kg) 

ICG 

 (kg m
2) 

KAθ 

(N m rad
-1 

) 

KBθ 

( N m rad
-1 

) 

CAθ 

(N m s 
rad

-1
) 

CBθ 

( N m s 
rad

-1
) 

Value 0.264 4.64 0.323 488.5 303.2 45.2 148.7 
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Table 5.4: Optimal Ei and ηi for truncated ellipsoidal finite element 

Theoretically computed values of NAMS, using optimized Ei & ηi and experimental 

measurements of NAMS for group of seated persons are compared in Fig. 5.5:

 

Figure 5.5: Comparison of normalized apparent mass for FE model (optimal Ei and ηi) and 

experimental data (a) Modulus (b) Phase 

Fig. 5.5 shows conformity for modulus and phase of NAMS, between values 

computed from FE model and median experimental data. International standards 

regarding WBV effects on human body (ISO 2631-1, 1997; ISO 2631-1, 2004) have 

shown that vibration dose value (VDV), which determines limits of safe vibration 

exposure for people, is dependent heavily on driving point impedance values near the 

resonant frequency. A human body model that accurately predicts dynamic response 

near the resonant frequency is desirable for studies related to comfort and injuries. It 

can be observed from Fig. 5.5 that the present FE model provides an excellent match 

to the experimental measurements in the vicinity of the resonant frequency (~ 5-7 Hz) 

for NAMS. Thus the FE vibratory model of seated person developed in this chapter 

Ellipsoidal 

Segment 
H N UT 

RUA, 

LUA 

RLA, 

LLA 
CT LT 

RLL, 

LLL 

RF,    

LF 

Elastic Modulus  

(* EG)  

 MN m
-2

 

0.09 0.123 0.648     0.538     4.683     0.350     0.202     3.294     0.056 

Average Dynamic 

Viscosity(*10
2
) 

KN s m
-2 

 

3.088 1.258 2.644 0.162 2.018 0.556 0.454 0.268 2.176 
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and estimated values of Ei and ηi can be used in further studies for response of seated 

person under vertical excitation. 

5.5.2 Transmissibility: Seat to head transmissibility of a seated person is computed 

based on the optimized values of Ei and ηi listed in Table 5.4, and compared with 

experimental data available in literature for the same (Paddan & Griffin, 1988). Fig. 

5.6 shows the comparison for theoretical values of STHT, calculated using Eq. (5.46) 

for r =1, and envelope of experimental measurements for twenty seated subjects under 

vertical excitation. It is to be noted that experimental measurements for phase of 

transmissibility in Paddan & Griffin (1988) were reported only for a single subject. 

It is observed from Fig. 5.6 that theoretical transmissibility with respect to head lies 

within the bounds of experimental data reported in the literature. This result along-

with the excellent match between theoretical and experimental values of NAMS near 

the resonant frequency, establishes anthropometric FE vibratory model of a seated 

person developed in present study. The average values for different body segments, 

established in present work, can be used as a base value for further studies regarding 

seated human body dynamic behavior under vertical vibration.  

 

Figure 5.6: STHT of a seated person under vertical excitation (a) Modulus (b) Phase  
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Authors’ would like to note here that the dynamic response and also mode shapes for 

any subject undergoing WBV depend upon various parameters like age, length, mass 

of different body segments,  active nature etc. of that person etc. Experimental 

measured response (Fairley & Griffin, 1989; Paddan & Griffin (1988)) used for 

comparison of NAMS and STHT, does not belong to the same groups of people 

whose anthropometric data is used to compute dynamic response for the comparison 

shown in Figs. 5.5 and 5.6. Better agreement between computed value and 

experimental measured value for driving point mechanical impedance can be expected 

if subject specific anthropometric data is available.   

5.5.3 Mode Shapes of seated subject: Table 5.5 lists the natural frequencies (ωn) of a 

seated person computed using  optimized Ei and Fig. 5.7 shows the corresponding 

mode shapes at different natural frequencies(only for ωn<150 Hz). 

Table 5.5: Natural frequencies of seated FE model using optimal Ei  

Mode 

No. 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Natural 

Freq.    

ωn (Hz) 

4.92 5.32 9.15 33. 7 43.2 53.3 53.3 121.3 195.9 195.9 218.1 252.3 271.1 

 

Reference position of seated person under vertical excitation is shown by dotted lines 

and mode shapes for different natural frequencies is shown with solid lines (Fig. 5.6). 

For ease of visualization, vertical displacement of nodes along z axis is shown in 

horizontal plane (along x axis). The mode shapes shown in Fig. 5.7 are not to the 

scale, and only show a representative sketch of seated human body. 

It is observed from Fig. 5.7, that for seated subjects under vertical excitation, motion 

of upper body segments (from head to lower torso) is decoupled from motion of lower 
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body segments (upper legs to feet). Except for the two modes corresponding to 53.3 

Hz, at which only legs exhibit motion, all other modes show displacement of upper 

body segments only. From the analysis of theoretical results of NAMS shown in Fig. 

5.5, seat to head transmissibility (STHT) shown in Fig. 5.6 and mode shapes shown in 

Fig. 5.7 combined with natural frequencies listed in Table 5.5; it is evident that upper 

body modes contribute heavily towards driving point mechanical impedance values in 

the frequency range of interest i.e. 0-20 Hz. This result is in agreement with other 

studies of seated person under vertical vibration (Kitazaki & Griffin, 1998; Liu et al., 

2015) which showed the contribution of only upper body segments in the range of 0-

20 Hz.  As the mode shapes in Fig. 5.7 are not drawn to the scale, so, the locations of 

nodes in individual body segment have to be calculated based on segment dimension. 

Presence of node in the mode shape indicates the area within a body segment 

subjected to completely cyclic stress, implying fatigue stresses. Thus, Fig. 5.7 serve as 

important indicator of areas susceptible to vibration injuries in seated human body 

under vertical excitation. 
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Figure 5.7: Mode Shapes of seated subject under vertical excitation using FE model                                  

(                 undeformed;                     mode shape) 
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5.6 Conclusions: 

In the finite element model of seated person, proposed in this chapter, a human body 

is idealized by truncated visco-elastic ellipsoidal elements and rigid rods. Exact 

solution for deformation of a truncated ellipsoid under vertical load is used to develop 

shape functions of ellipsoidal elements. Lesser number of elements is required while 

using such shape functions.   Following the proposed methodology, person-specific 

vibratory models can be developed from anthropometric measurements and 

parameters optimized in this research work, for individual body segment. Optimized 

values of elastic moduli and dynamic viscosity, concluded in Table 5.4, and 

established from the comparison between theoretical and experimental values of 

NAMS and seat to head transmissibility, can be used as reference values for studies 

related to WBV exposure of a seated person. Modal analysis indicates decoupled 

motion of upper and lower body segments of the seated human body in proximity to 

resonant frequency of NAMS. Theoretical values of driving point mechanical 

impedance can have a better correspondence with experimental measurements, 

provided the anthropometric data of people participating in experimental studies are 

available. 
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Chapter 6 

Straight Line Model of Motorcycle and Dynamic Analysis of 

Motorcycle-Rider Model 

 

 In the previous chapter, an anthropometric vibratory model of a person in 

sitting posture, which is composed of ellipsoidal finite elements, was established. In 

this model, the hand is in hanging state and represented by two elements for lower 

arm and upper arm. The present chapter is towards development of vibratory model of 

motorcycle-rider system. The human body is considered as multi flexible body system 

as discussed in previous chapter but the arm is modeled as three mass lumped 

parameter spring-damper system. Comparing to the rigid body rider-motorcycle 

system taken up by the previous researchers, the effect of considering the human body 

of rider as flexible vibratory system is characterized through dynamic analysis of 

motorcycle-rider system. 

6.1 Seated Human Body Vibratory Model with Hands in Driving Posture: The 

arms of a seated person in the vibratory model shown in Fig. 5.1 are represented as 

truncated ellipsoidal finite elements in straight down posture (along z axis) with 

vertical displacements only. In normal driving posture of a motorcycle rider, the arms 

are not straight and each hand is fixed on either side of the steering column (i.e. on 

steering handle). Experimental studies (Rakheja, 2002, 2004) have shown that the 

dynamic response of human body is dependent upon the sitting posture of a person 

i.e., whether the arms are in vertical position or in driving posture. Also, while riding 
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a motorcycle, arms of a subject can undergo vertical, horizontal as well as rotational 

displacement. 

For better correspondence with real driving posture of a motorcycle rider; the 

upper arm, lower arm and hand cannot be taken as connected through line springs and 

dampers along a straight line. Instead, the segments of human arms have to be 

modeled at an angle relative to each other and connected through combination of line 

and rotational springs and dampers. Therefore, a spring-mass-damper model of human 

arm developed by Fritz (Fritz 1991) has been incorporated in the rider’s 

anthropometric vibratory model, after some modifications. As shown in Fig. 6.1, 

human arm consists of three lumped masses representing hand, lower arm and upper 

arm connected with springs and dampers in x, z and θ direction. The original spring 

mass damper model proposed by Fritz, 1991 has four mass segments; first two 

segments represented the fingers and the palm tissue separately whereas the remaining 

two segments modeled the forearm and the upper arm. Fingers and palm tissues were 

modeled separately to estimate the internal forces transmitted between them during 

operations that involved gripping of large handles by industrial workers. In the present 

analysis, the internal forces between fingers and palm are not of concern; therefore, 

the first two mass segments have been combined to represent hands of motorcycle 

rider.  
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Figure 6.1: Human arm model in Bent Position for the Rider of a Motorcycle 

Each arm of the person has total nine d.o.f; with each mass segment having three 

d.o.f. Although Fig. 6.1 shows spring and dampers in horizontal (x) direction only; all 

three mass segments are interconnected by springs and dampers in horizontal (x), 

vertical (z) and rotational (θ) direction. LH, LLA, LUA are the half lengths of hand, 

lower arm and upper arm respectively.  

6.1.1 Equations of Motion for Hand Segment:  

For mass segment representing human hand (mH);  xH, zH and θH represent horizontal, 

vertical and rotational displacement of hand segment respectively whereas xLA, zLA and 

θLA represent horizontal, vertical and rotational displacement of lower arm segment 

respectively. Neglecting horizontal displacement due to small angles of rotation i.e. 

small θH and θLA, equations of motion for hand segment can be written as: 
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     (6.2) 

6.1.2 Equations of Motion for Lower Arm Segment:  

For mass segment representing lower arm of a motorcycle rider (mLA); xUA, zUA and 

θUA represent horizontal, vertical and rotational displacement of upper arm segment 

respectively. For small angles of rotations, equations of motion for lower arm segment 

can be written as: 
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(6.3) 

6.1.3 Equations of Motion for Upper Arm Segment:  

As shown in Fig. 6.1,    is the angle between upper arm segment and x-axis. Also, 

the upper arm segment is connected to lower arm at one end and the truncated 

ellipsoidal finite element representing upper torso on the other end. It is assumed that 

only vertical motion i.e. ZUT is transmitted from upper arms of motorcycle rider to the 

upper torso through nodes 3r and 3l. For small angles of rotations, equations of 

motion for upper arm segment can be written as: 
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  (6.4) 

Combining Eqs. 6.2. 6.3 and 6.4; equations of motion for bent arm of a motorcycle 

rider, as shown in Fig. 6.1, are written as: 

        
10 1 10 19 10 9 10 9 1010 1 10 1 X XX X XX X
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             (6.6) 

Eq. (6.5) represents nine equations with ten variables, due to the inclusion of ZUT in 

equations for upper arm. Fritz (1991) used fixed support in place of upper torso 

displacement i.e., 0UTZ  , to solve for internal forces between different segments of 

human arm. In this study, this arm model has been incorporated in the human body FE 

model shown in Fig. (5.1). In Eq. (5.35), all four segments representing two arms of a 

person  (RUA, LUA, RLA, LLA) and their corresponding EOM’S are replaced by 9x2 
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= 18 equations of hand-arm model (Eq. 6.5).  As previously stated, it is assumed that 

only vertical motion is transmitted from arms to upper torso segment through node 3r 

and 3l.  The modified equations of motion for human body model with bent arms are 

given as: 

         30 30 30 30 30 30
30 1 30 130 1 30 1

X X X
X XX X

   
     

   
M H K Gq q q F              (6.7) 

Following the same methodology of matrix partition into known and unknown 

displacement variables, as described in previous chapter; theoretical vibration 

response of human body model represented by Eq. (6.7) was calculated for 

synchronous harmonic excitations from seat-pelvis interface and feet-platform 

interface. Dimensions and inertial parameters of human arm model (Fig. 6.1) are 

scaled from the anthropometric measurements of arm given by Fritz (1991) and 

employed for theoretical calculations. The angle of bent upper arm from the horizontal 

i.e. x-axis (γ) is taken equal to 60
0
. Table 6.1 lists the values of parameters used for 

bent-arm model.  

Table 6.1: Parameter Values for Bent Arm Model 

 

6.2 Straight Line Motorcycle Model: The human body model of motorcycle rider 

developed above is coupled with a straight line model of motorcycle to analyze the 

effects of dynamic properties of human body on overall response of vehicle-rider 
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system. In the context of motorcycle dynamics, straight line model implies that the 

motorcycle is considered as elastically suspended rigid body (Cossalter, 2000) and 

lateral dynamics of the motorcycle is not analyzed. The effects of yaw angle, slip 

angle, steering angle on dynamics of system are not considered and also, the 

motorcycle is assumed to be moving along a straight line without turning or 

performing any maneuvers. An in-plane multi-body model of the motorcycle 

developed by Cossalter et al (2000) has been adopted. The model, as shown in Fig.6.2, 

was used (Cossalter et al, 2000) to determine optimal braking performance of a 

motorcycle in straight running.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2 Motorcycle multi body model with rider  

G31 G
34

 

P
32

 

G
33

 

B 

A 

  

S 

Cr C
f
 

Ground 

Rear Wheel 
Swinging Arm Motorcycle 

Frame 
Front Wheel 

ε 



130 
 

6.3 Equations of Motion for Straight Line Motorcycle Model: The motorcycle was 

divided into four rigid bodies; the front wheel, the rear wheel, the frame of motorcycle 

and the swinging arm connecting rear wheel with frame; having a total of seven d.o.f. 

Initially, the rider was assumed to be rigidly attached to the frame and only his mass 

was considered while analyzing motion of the system. Ten natural coordinates 

(Shabana, 2005) were used to describe geometry of the system. These coordinates are  

a. x31, z31 and θ31: coordinates of real wheel center G31 and wheel rotation 

respectively. 

b.  x32 and z32 : coordinates for point P32 common to frame and swinging arm. 

c. s33 and c33 :  direction cosines of unit vector 33u  fixed to frame. 

d. x34, z34 and θ34:  coordinates of front wheel center G34 and wheel rotation 

respectively.  

It is to be noted that s33 and c33 represent sin(θ33) and cos(θ33) respectively, where 

θ33  is the angle between 33u  and global x axis. Objective of this work is to incorporate 

the model of seated human with bent arm, developed in section 6.1, into motorcycle 

model. Therefore, for clarity, these co-ordinates have been numbered from 31 

onwards. Constraint equations for three redundant co-ordinates are: 

   
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Here, Eq. 6.8(a) represents unit modulus of vector 33u ; Eq. 6.8(b) represents 

that the distance between point G31 and point P32, called swinging arm length (lSA), 

remains constant; and Eq. 6.8(c) represents the link between the frame and the front 

wheel by fixing point G34 on front suspension axis. ‘l’ is the distance between point 
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P32 and front suspension axis and ‘ε’ is the castor angle for motorcycle. First two 

constraint equations are straight forward and the derivation of third constraint 

equation is given in Appendix B. 

Equations of motions for straight line motion of motorcycle were derived using 

Lagrange equations for constrained multibody dynamics: 

 

3
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0 1,2...
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j i

j
i i i

d T T
Q i n

dt q q q
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
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   
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             (6.9) 

where, T is the kinetic energy of the system, βj are the constraint equations , j are the 

unknown Lagrange multipliers corresponding to the constraint equations, Qi are the 

generalized forces, qi are the generalized co-ordinates and n is the number of 

generalizes co-ordinates. For the straight line motorcycle model, n = 10 and 

   31 31 31 32 32 33 33 34 34 34

T

iq x z x z s c x z             (6.10) 

Constraint equations (βj) are already established by Eq. 6.8. Expressions for kinetic 

energy of different rigid bodies (T) and its required derivatives i.e., &

i i

d T T

dt q q
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; 

derivatives of constraint equations
j

iq

 
 
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 and generalized forces (Qi) acting on 

motorcycle are derived below: 

6.3.1 Kinetic Energy (T): Kinetic energy of different rigid bodies of the motorcycle 

has been derived using the co-ordinate transformation approach (Cossalter & Lot 

(2002)). In this approach, to determine the kinetic energy of a particular rigid body; a 

local reference frame is fixed in the body with origin at the point whose co-ordinates 
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have been taken as natural co-ordinates. Thereafter, kinetic energy of rigid body is 

calculated in terms of natural co-ordinates and known body parameters. If the origin 

of local reference frame is not coincident with the centre of mass of particular rigid 

body, transformation matrix is used to determine kinetic energy in terms of natural co-

ordinates and known body parameters. After the expression for kinetic energy of a 

particular rigid has been derived, it is differentiated with respect to natural co-

ordinates to determine first two-terms of Lagrange’s equation (Eq. 6.9). 

6.3.1.1 Rear Wheel (T31): For the rear wheel, local reference frame is fixed having 

origin at the centre of wheel body (point G31) which is also the center of mass of rear 

wheel. Therefore the kinetic energy of rear wheel is given as: 
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              (6.11) 

Differentiating Eq. (6.11) with respect to natural co-ordinates and their first 

derivatives, we get: 
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                     (6.12) 

It is to be noted that only non-zero derivatives/coefficients of kinetic energy (T31) 

w.r.t. natural co-ordinates have been listed in Eq. 6.12. All other coefficients are zero.  

6.3.1.2 Rear Swinging Arm (T32):  In the straight line model, swinging arm of the 

motorcycle has been taken as a rigid rod with only rotational inertia. Mass of the rod 
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has been distributed between the rear wheel and frame of the motorcycle. The angular 

velocity 32  of rear swinging arm is given as 
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Therefore its kinetic energy is written as: 
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where, I23 is the moment of inertia of rear swinging arm. Differentiating Eq. (6.13) 

with respect to natural co-ordinates and their first derivatives, we get: 
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        (6.14) 

6.3.1.3 Motorcycle Frame (T33):  The center of mass of motorcycle frame is not 

coincident with point P32 whose co-ordinates have been taken as natural co-ordinates. 

Therefore, to derive expression of kinetic energy in terms of natural co-ordinates; a 

local reference frame (X-Z) is attached to motorcycle frame with origin at point P32 

and X axis parallel to 33u (with direction cosines c33 and s33). The co-ordinates of 

motorcycle centre of mass (point G33) in this local reference frame (a33, b33) are 
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constant as the frame is assumed to be rigid. Therefore the kinetic energy of 

motorcycle frame is 
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where, i


and k


are the unit vectors along global x-z frame and I


and K


are the unit 

vector along local X-Z frame with origin at point P32. Simplifying, 
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  (6.15) 

Differentiating Eq. (6.15) with respect to natural co-ordinates and their first 

derivatives, we get: 
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 6.3.1.4 Front Wheel (T34): Following similar steps as for rear wheel, kinetic energy 

for front wheel is given as: 

  

2 2 2

3434 3434 34 34

1 1
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T m x z I 
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             (6.17) 

Differentiating Eq. (6.17) with respect to natural co-ordinates and their first 

derivatives, we get: 
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                 (6.18) 

6.3.2 Derivatives of Constraint Equation
j

iq

 
 
 

: For multibody systems having 

natural coordinates greater than system degree of freedom, unknown Lagrange 

multipliers (λi) are used to incorporate constraint equations into system equation. As 

mentioned before, derivatives w.r.t. natural coordinates not shown are zero.  

 6.3.2.1 For Constraint Equation β1: From equation 6.8 (a), we can write:   
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         (6.19) 

6.3.2.2 For Constraint Equation β2: From equation 6.8 (b), we can write:   
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6.3.2.3 For Constraint Equation β3: From equation 6.8 (c), we can write:   
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6.3.3 Generalised Forces (Qi): Generalized forces (Qi) required for Lagrange’s 

equation (Eq. 6.9) are determined from the virtual work ( W ) principle:  

   
1

n

i i

i

W Q q 


           (6.22) 

Expressions for virtual work done by the different forces acting on the motorcycle in 

straight running are determined (Cossalter, 2002) and the coefficients of individual 

iq are combined to evaluate respective Qi.   

6.3.3.1 For Gravity Load (G):  The virtual work done by gravitational force acting 

on different rigid bodies of the motorcycle is: 

    

34

31

iG i

i

W m g G 


              (6.23) 

where, mi is the mass and iG  is the position vector for centre of mass of the i
th
 body 

and g is the gravity vector for 2-D co-ordinate system given as: 

                                                    0 1g g                                               (6.24) 
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Following the same procedure as used for deriving kinetic energy expression of rear 

wheel, rear swinging arm, motorcycle frame and front wheel ( in section 6.3.1); the 

virtual work due to gravity is: 

   31 33 33 33 33 34 31 33 33 34*
T

GW g m m a m b m z s c z              (6.25) 

It is to be noted here that in the present model, the mass of rear swinging arm has been 

distributed between rear wheel and motorcycle frame; therefore m32 doesn’t appear in 

Equation (6.25). 

6.3.3.2 For Rear and Front Tyre Load (FTf ,FTf):  The virtual work done by rear 

tyre force (FTr) and front tyre force (FTf) acting on the contact point of ground and 

front tyre (C31) & rear tyre (C34) respectively, is given by: 

31 34 31 31 31 31 34 34 31 31 x ( )  x ( )TF Tr Tf Tr TfW F G F G G C F T T G C F T T                  (6.26) 
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Therefore the virtual work by tire forces is given by: 
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T

W S N S N S r S r

x z x z


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   
        (6.28) 

6.3.3.3 For Rear Suspension Torque (MSr):  This torque acts between the 

motorcycle frame and the swing arm. The virtual work done is given by: 
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6.3.3.4 For Front Wheel and Rear Wheel Breaking Torque (MFf & MFr):  These 

forces act between the front wheel and motorcycle frame and the rear wheel and fork 

respectively. The virtual work done is given by: 
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6.3.3.5 For Front Suspension Force (Fsf):  These forces act between the front wheel 

and motorcycle frame.  The virtual work done is given by: 

   
 

 

 

 
   

 

33 32 34 33 32 34

33 33 33 33 33 33 33 33

33 33 33 33

32 32 33 33 34 34

cos sin sin cos cos sin sin cos
sin cos sin cos

* (6.31)

Fsf sf

T

c y y s y y
W F s c s c s c s c

s c s c

x z c s x z

        
   

     

  
         

  

                                                                                                                                     

Substituting all the derivatives derived in section 6.3.1, 6.3.2 and 6.3.3 into Eq. (6.9); 

total ten differential equations are obtained for thirteen unknowns (including three 

Lagrange multipliers). Substituting all expressions in Eq. (6.9) by collecting terms for 

different natural co-ordinates; the equations of motion for rigid body model of 

motorcycle is given as: 
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               … (6.32) 

More detailed form of the derivation of these equations can be found in literature 

(Cossalter & Lot, 2002). Together Eqs 6.8 and 6.32 form a set of 13 differential 

algebraic equations (D.A.E.’s) which can be solved for obtaining the response of 

motorcycle model. For solving D.A.E’, the constrained equations (Eq.6.8) are 

differentiated twice resulting in thirteen governing differential equations for 

motorcycle system written as: 
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                 (6.33) 

Newmark-β scheme of numerical integration (Bathe, 1996) is applied to solve these 

equations in time domain. For motorcycle with rigid rider; longitudinal tire forces are 

modelled using Pacejka magic formula. Normal forces were modelled using simple 

spring-damper relationship. Data for different parameters of motorcycle model is 

given in Appendix B. Subsequently sitting FE model with arms in bent position is 

coupled with the multibody motorcycle code. Response to vertical road excitation 

using wheelbase filtering is computed for motorcycle model with rigid rider and 

motorcycle with anthropometric model developed in this study. 

 

 

It is evident from Fig. 6.3 that the computed values of acceleration ratios at 

motorcycle C.G. are different when FE model of rider is incorporated compared to the 

values computed with rigid body model of a rider. Moreover, this anthropometric 

vibratory model enables us to determine dynamic response at different locations of 

rider body which is not possible with a rigid body model. 

Fig. 6.3: Acceleration Ratio at Motorcycle C.G. Fig. 6.4: Acceleration Ratio at Head of Motorcycle Rider 
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6.4 Conclusion: An in-plane motorcycle-rider vibratory model been adopted to study 

the effect of human body characteristics on the response of overall system. The 

motorcycle is modelled as a multi-body system comprising of front wheel, rear wheel, 

swinging arm and motorcycle frame. Initially, the rider has been considered as a rigid 

attachment to the motorcycle frame. Equations of motion for this model have been 

derived from principles of constrained multibody dynamics using Lagrange’s 

multipliers. For straight running, motorcycle is assumed to be moving at constant 

speed and subjected to road undulations at different excitation frequencies.  

Newmark-β scheme of numerical integration has been employed to compute the 

dynamic response of the system. Thereafter, human body vibratory model of seated 

person in driving posture is employed to replace the rigid rider. This modified model 

of motorcycle-rider system is analyzed for the same speed and road undulations as the 

ones employed for rigid rider model. Comparison of results for the two different 

models, as shown in Fig 6.3, clearly establish that the acceleration of motorcycle 

center of gravity is affected by including human body characteristics in overall model 

of the system. Numerous experimental studies regarding human body vibration have 

established human body as a dynamic system having its own characteristics. It has 

also been observed in experimental studies that dynamic characteristics of human 

body depend on attributes of external excitation and also on the posture of human 

body. Therefore, effects of road undulations on response of motorcycle-rider system 

as well vibration exposure of motorcycle rider can be assessed accurately only if we 

include human body human body characteristics in overall model of the system. 
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Chapter 7 

Conclusions 

 

This dissertation work was undertaken to investigate effects of road undulations 

on human body, especially on the rider of a motorcycle. After extensive review of 

available literature (chapter 2), the major objectives of research study were decided as: 

 Development and validation of lumped parameter anthropometric vibratory 

model of human body. 

 Development and validation of continuum model of human body in standing 

and sitting posture based on anthropometric data. 

 Development of a continuum model of motorcycle rider with his hands in 

driving posture and its integration with a multi degrees of freedom motorcycle 

model.  

Human body segments have been represented as truncated ellipsoidal segments, 

with dimensions computed from anthropometric data (Chapter 3). Initially, following 

the methodology proposed by Nigam and Malik (1987), ellipsoidal segments are 

combined to develop lumped parameter vibratory model of standing subject 

undergoing vertical excitation from feet-platform interface. Estimation of model 

parameters for human body vibratory models is always a challenging task, especially 

as it relates to the damping present in body segments. In the present research work, a 

novel iterative scheme has been formulated to estimate modal damping ratios from 

experimental results available (Section 3.5.2). Reference value of elastic moduli for 

ellipsoidal body segments have been optimized from the minimization of the 

difference between experimental measurements of seat to head transmissibility and 
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theoretical values computed from anthropometric vibratory model. Optimized values 

of elastic moduli (Table 3.10) can be used as reference values for individual body 

segments for human body vibratory modeling. Theoretical predictions of STHT 

computed using this lumped parameter vibratory model can be made use to determine 

vibration dose value for passengers of public transportation.  

In chapter 4, finite element vibratory model of standing subject has been 

formulated to parallel the continuous nature of actual human body. Two noded 

truncated ellipsoidal elements, with shape functions based on the exact solution of 

uni-axial deformation of truncated ellipsoid, have been used to model body segments. 

Kelvin-Voigt model of viscoelasticity is employed to model behaviour of individual 

body segment under vertical excitation. Concluded values of average elastic moduli 

and average dynamic viscosity of individual body segments (Table 4.3) can be put to 

use as initial estimates for human body modelling purpose. Comparison of results for 

normalized apparent mass (Fig. 4.6) and mode shapes (Fig. 4.8) computed using finite 

element model of standing subject suggest dominant contribution of different whole 

body modes near resonant frequency of normalized apparent mass.   

FE models for seated human body (chapter 5) have been developed using similar 

methodology (chapter 4) with some modifications. Modal analysis of vibratory model 

for seated posture (Fig. 5.7) exhibit  decoupling of motion of upper body segments 

(from head to lower torso) from the motion of lower body segments (upper legs to 

feet) near resonant frequency. Driving point impedance parameters computed from 

anthropometric vibratory model (seated human with hands in vertical posture) 

demonstrate satisfactory match with the envelop of experimental measurements. 

Therefore, these models can be used for design and comfort analysis of vehicle riders.  
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In chapter 6, vibratory model for a person with hands in driving posture of a 

motorcycle rider is developed and incorporated in a multi-body model of motorcycle. 

First equations of motion for motorcycle with a rigid rider are derived based on 

constrained multibody dynamics using Lagrange multipliers and thereafter rigid rider 

is replaced with vibratory model of a seated person with arms in motorcycle driving 

posture. Evaluation of results computed from these two models show noticeable effect 

of human body flexibility (Fig. 6.3) on the dynamic response of the motorcycle-rider 

system. Transmissibility of human head due to excitations from road undulations (Fig. 

6.4) exhibit peaks at different frequencies of road excitations. Therefore, it is essential 

to incorporate the dynamic characteristics of different parts of human body into 

combined model of motorcycle-rider system for realistic simulation of the system. 

7.1 Contributions of Research Work 

The contributions of the present research study can be summarized as follows: 

1. Computation of driving point mechanical impedance and acceleration 

transmissibility for anthropometric human body vibratory model. 

2. Development of novel iterative scheme to estimate modal damping ratios 

using experimental measurements of transmissibility and its application to 

human body vibratory model. 

3. Reference values for elastic moduli of human body segments in standing 

posture. 

4. Development of truncated ellipsoidal finite elements for FE vibratory model of 

human body in standing and sitting posture using shape functions based on 

exact solution of uni-axial deformation of ellipsoid. 
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5. Estimation of elastic moduli and average dynamic viscosity of human body 

segments for finite element vibratory model with low d.o.f., in standing and 

sitting posture. 

6. Development of seated human body vibratory model in driving posture of a 

motorcycle rider. 

7. Analysis of motorcycle-rider system to study effects on dynamic response of 

combined system and effect of road undulations on human body.  

7.2 Recommendation for Future Work 

The human body vibratory models developed in this dissertation are based on 

body characteristics that can be measured readily, i.e. total mass and dimensions of 

body segments. Following this methodology, person specific or group specific 

vibratory models in different posture can be developed with ease and used for WBV 

studies of human body. Further work, however, is required for better understanding of 

effects of vibration on human body. Few suggestions for future work are given below: 

1. Anthropometric data, used for development of vibratory models in the present 

work, belonged to 50
th
 percentile U.S. male whereas experimental 

measurements of driving point impedance parameters used for comparison 

didn’t belong to the same group. For better assessment of anthropometric 

vibratory models developed in this study, experimental studies must be carried 

out on a group of people whose anthropometric measurements are also 

available.   

2. Motorcycle model used in the present study approximates it as composed of 

four rigid bodies. More detailed models of motorcycle that take into account 

the frame compliance and elastic tyre deformations can be used for better 
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approximations of system dynamics, both in straight line motion and motion 

along a curve.  

3. Ellipsoidal finite elements used to model human body segments are assumed to 

undergo only uni-axial displacement under application of vertical excitation. 

Experimental studies have suggested pitching motion of some body segments 

under vertical excitation of human body, in addition to vertical motion. 

Predicted values of impedance parameters from vibratory models developed in 

this study can be improved by inclusion of rotational motion for ellipsoidal 

segments. 

4. Horizontal segments of seated human body have been modeled as rigid rod 

elements connected with rotational springs/ dampers, undergoing only 

rotational motion. Elements that represent deformation of horizontal body 

segments more accurately can be identified and incorporated in FE vibratory 

model.  
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Appendix A 

Table A: Formulas used for determining semi-axes of ellipsoidal body segments  

Segment 

No. 

Body Segment Formulae  

ai bi   ci 

1 Head (H) L7/2 L7/2 L6/2 

2 Neck (N) L9/2π L9/2π (L1-L2-L6)/2 

3 Upper Torso (UT) L12/2 L11/2 L17/2 

4,5 Right Upper Arm (RUA), 

Left Upper Arm (LUA) 

L19/2π L19/2π L17/2 

6,7 Right Lower Arm (RLA), 

Left Lower Arm (LLA) 

L21/2π L21/2π L18/2 

8 Central Torso (CT) L14/2 L13/2 (L17+L18)/4 

9 Lower Torso (LT) L16/2 L15/2 L18/4 

10,11 Right Upper Leg (RUL), 

Left Upper Leg (LUL) 

L25/2 π L25/2π  (L2-L17-L23) /2 

12,13 Right Lower Leg (RLL), 

Left Lower Leg (LLL) 

L27/2 π L27/2π  (L23-L29)/2 

14.15 Right Foot (RF), Left Foot 

(LF) 

L30/2 L31/2 L29/2 
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Table B: Anthropometric measurements, symbols thereof & their values 

Anthropometric 

Measurement 

Symbol Value (cm)          

50
th

 percentile U.S. 

male[34] 

Value (cm)   

Average Indian 

male [39] 

Standing Height                    L1 168.67 170.28 

Shoulder Height                    L2 146.33 146.75 

Armpit Height                       L3 136.02 133.75 

Waist Height                         L4 108.38 103.75 

Seated Height                        L5 92.96 89.18 

Head Length                          L6 19.86 19.85 

Head Breadth                        L7 15.57 16.95 

Head to Chin Height             L8 23.24 24.41 

Neck Circumference             L9 37.95 34.43 

Shoulder Breadth                  L10 46.20 42.6 

Chest Depth                          L11 23.32 20.03 

Chest Breadth                       L12 32.89 30.64 

Waist Depth                          L13 21.51 18.0 

Waist Breadth                       L14 28.22 28.93 

Buttock Depth                      L15 23.19 20.92 

Hip Breadth                          L16 35.43 34.09 

Shoulder to Elbow Length    L17 37.54 35.75 

Forearm Hand Length           L18 48.69 48.93 

Biceps Circumference           L19 32.92 25.0 

Elbow Circumference           L20 31.42 24.27 

Forearm Circumference        L21 29.08 24.39 

Wrist Circumference             L22 17.86 16.65 

Knee Height                          L23 53.14 53.69 

Thigh Circumference            L24 50.52 47.4 

Upper Leg Circumference    L25 37.24 37.9 

Knee Circumference             L26 36.20 35.92 

Calf Circumference               L27 33.32 31.87 

Ankle Circumference            L28 21.06 22.09 

Ankle Height                         L29 6.91 10.01 

Foot Breadth                          L30 9.35 10.7 

Foot Length                           L31 25.40 25.95 

 



158 
 

Appendix B 

This section shows the derivation of third constraint equation β3 (i.e. Eq. 6.8(c)) and 

the data used for straight line motorcycle model. The third constraint equation is: 

             3 34 32 33 33 34 32 33 33sin cos cos sin 0x x c s y y s c l                     (B.1) 

As stated in chapter 6, this equation represents the link between the motorcycle frame 

and the front wheel of motorcycle by fixing point G34 on the front suspension axis. 

Figure B.1 shows the portion of motorcycle frame and front wheel used for deriving 

constraint equation β3.  In Fig. B.1; x-z represents the global co-ordinate axis and X-Z 

represents the local co-ordinate system with origin at point P32 and X axis parallel to 

vector 33u . The line P32A is perpendicular to the steering axis G34A, and the line AB 

is parallel to the local Y axis. Castor angle (ε) of the motorcycle is the angle between 

the steering axis (S-A) and the line AB.  

 

Fig. B.1    Portion of motorcycle frame and front wheel 
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Since the X axis has been taken parallel to vector 33u ; unit vectors I


 and K


 

for local co-ordinate system, in terms of global unit vectors ( i


and k


), are defined as: 

33 33

33 33&

I c i s k

K s i c k

  

  

 

  
                      (B.2) 

The points P32 and G34 have co-ordinates (x32, z32) and (x34, z34) respectively in 

global co-ordinate system. Therefore, the vector along line segment P32G34 is: 

   32 34 34 32 34 32P G x x i z z k
 

                              (B.3) 

A unit vector ( p


) along line segment P32A can be written as: 

   

33 33 33 33

33 33 33 33

cos sin

cos sin

cos sin cos sin (B.4)

p I K

c i s k s i c k

p c s i s c k

 

 

   

  

   

  

 

   
       

   

    

 

For the condition that point G34 lies on the steering axis SA always, the projection of 

32 34P G on the segment P32A should be constant. If ‘l’ is taken as the vertical distance 

between the point P32 and the front suspension axis, i.e. the length of line segment 

P32A, then:  
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       

     

32 34

34 32 34 32 33 33 33 33

34 32 33 33 34 32 33 33

cos sin cos sin

cos sin cos sin 0 (B.5)

P G p l

x x i z z k c s i s c k l

x x c s z z s c l

   

   



   



   
       

      

       

 

Equation (B.5) is the constraint equation 6.8(c), which fixes point G34 to remain on the 

steering axis (S-A) of the motorcycle during straight line motion. 

Table C: Data for Straight Line Motorcycle Model 

Motorcycle total mass 186 kg Front wheel moment of 

inertia 

0.54 kg m
2 

Horizontal distance from 

rear axle to c.o.m. 

0.637 m Rear wheel moment of 

inertia 

0.85 kg m
2 

Height of c.o.m. 0.633 m Rear arm moment of inertia 0.28 kg m
2 

Wheel-Base 1.35 m Front suspension stiffness 14000 N/m 

Castor angle 0.4 rad Front suspension damping in 

extension 

1100 N-sec/m 

Front wheel radius 0.299 m Front suspension damping in 

compression 

550 N-sec/m 

Rear wheel radius 0.318 m Rear suspension stiffness 70000 N/m 

Rear arm length 0.560 m Rear suspension damping in 

extension 

6000 N-sec/m 

Co-ordinated (a33, b33) of 

frame/driver c.o.m 

(0.09, 0.26) 

m 

Rear suspension damping in 

compression 

3000 N-sec/m 

Mass of frame and rider 156 kg Radial stiffness of front tyre 100000 N/m 

Front wheel mass 14 kg Radial damping of front tyre 70 N-sec/m 

Rear wheel mass 16 kg Radial stiffness of rear tyre 130000 N/m 

Frame and rider moment of 

inertia 

23.00 kg m
2 

Radial damping of front tyre 100 N-sec/m 
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