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Abstract 

The dynamic performance improvement, i.e., smooth motor torque requirement, less 

vibration, etc. of the thresher machine, is presented in this thesis. Cleaning mechanism, 

threshing drum, and flywheel are considered to improve the dynamic performance of the 

thresher machine. The cleaning mechanism is balanced by optimizing the inertial 

properties of each moving link modelled as the dynamic equivalent system of point 

masses. The shaking force and shaking moments developed in the cleaning mechanism are 

derived in term of point mass parameters. Thus, the multi-objective optimization problem 

to minimize the shaking forces and shaking moments is formulated by considering the 

point mass parameters as the design variables. The formulated optimization problem is 

solved using a posteriori approach based algorithm as non-dominated sorting Jaya 

algorithm (NSJAYA) and a priori approach based algorithms like Jaya algorithm and 

Genetic algorithm (GA) under suitable design constraints. It is established that NSJAYA 

is computationally more efficient than the GA and Jaya. The optimal Pareto set for the 

balancing of the mechanism is determined and outlined. Hence, the user can select any 

solution based on the importance of the objective function. ADAMS Software is used for 

the validation of the balanced cleaning mechanism. Besides, the balancing of the threshing 

drum can improve the dynamic performance of the thresher machine and treated as rigid 

rotor due to its low speed of rotation. Therefore, the optimum two-plane discrete balancing 

procedure is proposed for the rigid rotor. The discrete two-plane balancing in which rotor 

is balanced to minimize the residual effects or the reactions on the bearing supports using 

discrete parameters such as masses and their angular positions on two balancing planes. A 

multi-objective optimization problem is formulated by considering reaction forces on the 

bearing supports as multi-objective functions and discrete parameters as the design 

variables. These multi-objective functions are converted into a single-objective function 

using appropriate weighting factors. The formulated problem is solved using the proposed 

modified Jaya algorithm. It is found that the modified Jaya algorithm is computationally 

more efficient than the GA algorithm. A number of masses per plane are used to balance 

the rotor. A comparison of reaction forces using the number of masses per plane is also 

investigated. The effectiveness of the proposed methodology is tested by the balancing 

problem of rotor available in the literature. It is also applied for the balancing of the 

threshing drum. ADAMS software and experimental tests are used for validation of a 

developed balancing approach. 
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The shape synthesis of the flywheel is another approach to improve the dynamic 

performance of the thresher machine. Thus, the optimal shape synthesis procedure of the 

flywheel using a cubic B-spline curve is proposed. The flywheel plays a vital role in storing 

kinetic energy in modern machines. Thus, the kinetic energy is an essential parameter to 

measure flywheel performance and can be improved by optimal thickness distribution of 

the flywheel, generally known as shape optimization. Therefore, the shape optimization 

model of the flywheel with maximization of the kinetic energy is formulated using a cubic 

spline curve under the design constraints like the mass of the flywheel and maximum 

values of Von Mises stresses. A flow chart is proposed to solve the two-point boundary 

value differential equation for calculation of Von Mises stress at each point between the 

inner and outer radius of the flywheel. The control points of the cubic B-spline curve are 

taken as design variables. Then the formulated problem is solved using particle swarm 

algorithm (PSO), genetic algorithm (GA), and Jaya algorithm. The effectiveness of the 

proposed approach is investigated through the design of flywheel taken from the literature 

and the flywheel design of the thresher machine. 
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Introduction 

Threshing is the essential post-harvest process and used to remove the edible part of 

grains from the harvested crops. It can be done either by the conventional methods or 

the thresher machine. Hand-beating and bullock-treading of harvested crops are 

convention methods of threshing (Joshi, 1981). But, these methods are time-consuming, 

uneconomical, and laborious. 

Fig. 1.1. A CAD Model of the thresher machine 

Therefore, the thresher machine has been developed to overcome the difficulties of 

the conventional methods. It was first invented in 1786 by Scottish mechanical engineer 

Andrew Meikle. Generally, it is designed for multi-crops like mustard, wheat, millet, 

etc.  and can be operated by the animal power or a diesel engine and tractor PTO (power 

take off) shaft (Ghaly, 1985). But, animal operated threshers have low cleaning 

efficiency and low output capacity. Thus, the diesel engine and tractor PTO shaft 

operated threshers have become more popular and used to detach the grains from the 

harvested crops with minimum time and minimum efforts. Normally, a thresher has 

three mechanisms, namely, feeding, threshing, and cleaning, as shown in Fig.1.1. In the 

feeding mechanism, dry crops feed manually using a suitable conveyor system or 

feeding hopper to threshing mechanism (Stout and Cheze, 1999). Threshing mechanism 

consists of a threshing drum with beaters. Rotation motion of the threshing drum 
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detaches the grains from the harvested crops by combined actions of impact and beating 

(Olaoye et al., 2010). After that, the grains pass through a concave into the cleaning 

mechanism. Generally, the cleaning mechanism is a four-bar crank-rocker mechanism 

in which sieves are attached to the rocker that separates grains from the husk and foreign 

materials (Test Code IS:6284, 1985).   

The improvement in the dynamic performance of a thresher machine is a 

challenging task. In this study, the dynamic performance of the thresher machine is 

improved by balancing of cleaning mechanism, balancing of threshing drum, and the 

shape synthesis of the flywheel.  

1.1. Balancing of cleaning mechanism 

The dynamic performance of thresher machine can be improved by balancing of 

cleaning mechanism. Cleaning mechanism consists of three sieves which remove grains 

from straw and plant debris by the oscillation of sieves and operated by PTO shaft of 

the tractor as shown in Fig.1.1. This oscillation of sieves generates the vibrations. As a 

result, the unbalanced shaking force and shaking moment are developed on the support 

of the machine. Thus, balancing of cleaning mechanism is essential for its dynamic 

performances. Generally, cleaning mechanism is a four-bar crank-rocker mechanism. 

It consists of four links, namely, pulley driven by the belt as link #1, connecting rod as 

link #2, sieves carrier as link #3, and frame of thresher as link #0 as shown in Fig. 1.2.  

Figure 1.3 represents the four bar crank-rocker linkage for cleaning mechanism.  

The balancing of shaking force and shaking moment in the cleaning mechanism 

depends on the redistribution of moving link masses. However, complete shaking force 

balancing can be done using either counterweight (Walker and Oldham, 1978) or the 

redistribution of the masses (Kochev, 1987). But, this balancing method increases other 

dynamic quantities in the mechanism while combined shaking force and shaking 

moment balancing methods like disk or inertia counterweights (Berkof, 1973; Esat and 

Bahai, 1999), moment balancing idler loops (Bagci, 1979), and a duplicate mechanism 

(Arakelian and Smith, 2005) increase the weight and complexity of the mechanism.  

To overcome these difficulties; formulation of the multi-objective optimization 

problem has been proposed to reduce the shaking force and shaking moment. 

Conventional and evolutionary optimization algorithms are used to solve the 

formulated problem. 
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Fig. 1.2. Cleaning mechanism in thresher machine 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. Schematic diagram of four-bar crank-rocker linkage for cleaning mechanism 

Note that conventional optimization algorithms require the initial solutions to find 

an optimal solution. Thus, these algorithms give the local solution to balance the 

mechanism. While evolutionary optimization algorithms use the priori approach, 

generally, the multi-objective optimization problem can be solved using two 

approaches as a priori approach and a posteriori approach (Rao et al., 2019). In a priori 

approach, the multi-objective optimization problem is converted into a single objective 

optimization problem using appropriate weights for each objective function (Rao and 

Saroj, 2016). This approach gives a unique optimal design in each simulation run. Thus, 

it generates multiple optimal solutions by running the algorithm multiple time with a 

different combination of weights (Deb et al., 2002).  
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Moreover, the optimum results obtained by this approach depend on weights 

assigned to objective functions. Assigning the weights to objective functions is difficult 

for an uncertain scenario. These limitations are eliminated by the posteriori approach. 

In this approach, weights are not assigned to the objectives before the start of the 

algorithm. It provides Pareto optimal solutions in a single run of the algorithm, and a 

designer can choose appropriate solutions based on the importance of objective 

functions. Moreover, the posteriori approach is computationally more efficient than the 

priori approach. Therefore, a posteriori approach based optimization algorithm is 

required to develop for the balancing problem of the mechanism. 

1.2. Balancing of the threshing drum 

Besides the balancing of the cleaning mechanism, the balancing of the threshing drum 

plays a vital role in the improvement of the dynamic performance of the thresher 

machine. The threshing drum is an essential element of the thresher machine. It removes 

the grains from the panicles by its combined action of impact and rubbing. The 

threshing drum consists of two wheels with blades attached between them. Generally, 

it can be classified like hammer mill or beater type, rasp bar type, wire loop type, 

syndicator type, spike tooth/peg type based on the design of the blades as shown in Fig. 

1.4. Recently, spike tooth/peg type threshing drum is used for threshing of the harvested 

crop in India due to low power requirement, lower human injuries, and good quality of 

the chaff. But, the rotation action of this threshing drum develops the harmful vibration 

effects on the bearings. These vibration effects enhance human accidents and torque 

requirement, and also affect productivity. Therefore, the balancing of the threshing 

drum becomes an essential task for designers and engineers. Generally, individual 

wheel of the threshing drum is balanced statically using hit and trial method in which 

material is removed from a large spot (Prashad and Sharma, 1985). Thus, this method 

of balancing increases the computational time and also decrease the strength of the 

drum. However, the threshing drum is balanced in a similar manner of a rigid rotor due 

to its low speed of rotation. Generally, the rotor can be classified as rigid and flexible. 

Although, rigid rotors have negligible deformation owing to the high ratio of diameter 

to length and low speed of rotation, while flexible rotors have deformations because of 

high speeds of operation and long lengths (Darlow, 1989).  

Further, the threshing drum can be balanced by attaching correction masses at a 

single plane and two planes. There are various balancing methods for balancing of 
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threshing drum as off-line, online or active, and optimization methods. However, off-

line balancing methods need more time for calculation of correction masses and do not 

change the position of the unbalance during operation. Moreover, online or active 

balancing methods increase the cost of the system due to design the specific bearings 

and mass redistribution devices. 

Besides experimental and theoretical balancing methods, researchers have been 

focused on the optimization methods to find the optimal correction masses. However, 

these optimization methods provide real values for correction masses and the 

corresponding angular positions to balance the threshing drum. Moreover, the discrete 

solution nearest to the continuous optimal solution is generally used due to a limited set 

of available standardized mass values. Thus these solutions induce a dynamic effect 

and residual unbalance. This dynamic effect and residual unbalance can be decreased 

by recalculating and applying additional correction masses to the balance planes. But, 

this iterative process increases the balancing cost and time.  

To overcome these difficulties; mixed variable optimization problems are explored. 

Whereas the multi-objective optimization problem is formulated to minimize the 

reaction forces on the bearings for the balancing of the threshing drum and the number 

of discrete masses per plane and corresponding predefined angular positions are treated 

as the design variables.   

Generally, the optimization problems can be classified as a continuous variable, 

discrete/integer variable, and mixed variable optimization problems. In continuous 

variable optimization problems, variables are spaced within the bounds. Further, 

discrete/integer variables have the predefined set of standard values. Whereas, mixed 

variable optimization problems deal with the integer/discrete and continuous variables. 

Most of the researchers have been made efforts on continuous variable optimization 

algorithms. But, these algorithms are not sufficient to solve the practical design 

problems like structural design, a number of bolts for a connection, a standard diametric 

pitch of the gear, a number of the teeth of a gear, etc. in which variables are discrete 

and integer (Arora et al., 1994). Therefore, in recent years, mixed variable optimization 

methods are developed for practical design optimization problems. However, mixed-

variable optimization problems can be solved by classical and evolutionary techniques. 

Sequential linear programming, Branch and bound methods, rounding-off techniques 

based on continuous variables, etc. are classical techniques (Guo et al., 2004). But, these 
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methods include more computational efforts due to the determination of derivatives and 

Hessian matrixes, and also provide the local solution. 

Fig. 1.4. Different types of threshing drum 

(a)  Hammer or Beater type cylinder 
 

(b) Rasp bar type Cylinder 

  

        (c) Wire loop type cylinder (d) Spike or Peg type cylinder 

(e) Syndicator type cylinder 
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Recently, evolutionary optimization algorithms are used to solve mixed-variable 

optimization problems. However, performances of these algorithms depend on the 

requirement of algorithmic parameters for their convergence. The selection of these 

parameters enhances the complexity of algorithms. Moreover, these algorithms cannot 

guarantee to give global solutions within a definite time. Further, the convergence of 

these algorithms is slow, thus increases the computational efforts.  

Therefore, the original Jaya algorithm is modified for solving mixed variable 

optimization problems. Initially, it is proposed for continuous variable optimization 

problems by Rao (Rao, 2016). It does not need any algorithmic parameters for its 

convergence. Thus, the proposed algorithm can handle all types of variables and is 

suitable for the balancing of a threshing drum.  

1.3. Shape synthesis of flywheel 

The shape synthesis of the flywheel is the other approach to improve the dynamic 

performance of the thresher machine. The flywheel plays a vital role in the thresher 

machine and minimizes the variations in the speed of PTO shaft due to torque 

fluctuations in a threshing drum with the help of its kinetic energy. Therefore, the 

design of the flywheel should be efficient, so that fuel consumption, vibrations, and 

human accidents could be minimized. Performance of the flywheel can be improved by 

increasing its kinetic energy.  Further, kinetic energy (1/2 Iω^2) depends on its rotating 

speed, material density, and geometry. But, high rotating speed will transfer undesirable 

centrifugal force, as a result of that, high stresses will develop in the machine. 

Recently, the large mass of flywheel is used to increase the kinetic energy in the 

conventional thresher machine. However, the available space of machine limits the 

large mass of the flywheel, and it also transfers large force on the bearings.  

Thus, researchers have been made efforts on the shape optimization of the flywheel 

rotor geometry. It is an efficient method to increase the kinetic energy by optimizing 

the rotor thickness distribution along a radial direction. In literature, Polynomial 

expansion, Fourier series, Fourier sine series, and Bezier curves have been used for the 

representation of the thickness distribution of the flywheel as shown in Fig.1.5. 

Unfortunately, the polynomial expansion, Fourier series, and Fourier sine series are 

limited by the number of coefficients and do not describe the degree of the resulting 

curve. However, Bezier curves describe the degree of the curve, but these curves are 

controlled globally and are limited by control points. Moreover, conventional 
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optimization techniques and finite element analysis have been used to find the optimal 

thickness distribution of the flywheel. These methods increase the computational 

efforts and are also less efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5. Thickness profile of the flywheel 

In this research, the shape optimization model of the flywheel is formulated using 

a cubic B-spline curve. The B-Spline curves have local control and are not limited by 

control points. Then, the optimization problem is solved by GA, PSO, and Jaya 

algorithm. The proposed approach is tested by flywheel design taken from literature 

and the flywheel design of an agricultural thresher machine. It is observed that the Jaya 

algorithm provides better results than the other algorithms and stores more energy 

compared to that of the original flywheel.  

1.4. Contributions of the Research  

The contributions of this research work are described below. 

1. A multi-objective optimization problem formulation for the balancing of the 

cleaning mechanism is proposed. 

2. A posteriori approach based algorithm as a non-dominated sorting Jaya 

algorithm (NSJAYA) is applied to find the optimal mass distribution of the 

links for the proposed multi-objective optimization problem. 
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3.  A discrete optimization problem for two-plane balancing of the rigid rotor 

is proposed. 

4. A modified Jaya algorithm is proposed to find the optimal discrete solutions. 

ADAMS software and the experimental test are used for validation.  

5. A shape optimization model for the flywheel using the cubic B-spline curve 

is proposed.  

6. Particle swarm algorithm (PSO), genetic algorithm (GA), and Jaya 

algorithm are used to solve the shape optimization problem. It is observed 

that Jaya algorithm is computationally more efficient than GA and PSO. 

1.5. Thesis Outline 

This thesis contains seven chapters structured as follows: 

Chapter 1: Introduction 

The aim and motivation of the research work to evolve the procedure for balancing of 

the cleaning mechanism and threshing drum, and shape synthesis of the flywheel is 

described in this chapter. A posteriori based optimization approach, Jaya algorithm for 

mixed variables, and nature-inspired algorithms are also introduced. The main 

contributions of the research work and the organization of the thesis are also highlighted 

in this chapter. 

Chapter 2: Literature Survey 

This chapter surveys the research work on various mechanisms of the cleaning unit, 

balancing methods of mechanisms, threshing drum balancing methods, mixed variables 

optimization algorithms, shape synthesis methods of the flywheel, and natural-inspired 

optimization algorithms. Finally, research gaps are outlined based on the literature 

surveys.  

Chapter 3: Optimal Balancing of the Cleaning mechanism 

The dynamic balanced mechanism for cleaning mechanism used in the thresher 

machine using a dynamically equivalent system of point masses is explained in this 

chapter. In order to balance the mechanism, the multi-objective optimization problem with 

minimization of shaking forces and shaking moments is formulated by considering the 

point mass parameters as the design variables. Also, the optimal Pareto set for the 

balancing of the mechanism is measured and outlined in this chapter.  
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Chapter 4: Mixed Variable Optimization Algorithms 

This chapter explains the classical and evolutionary mixed variable optimization 

algorithms. It discriminates the influence of the algorithmic control parameters to find 

the optimal solution for mixed variable optimization algorithms. Moreover, the 

modified Jaya algorithm is proposed to solve the mixed variable optimization problems. 

The efficiency of the proposed algorithm is tested through the design problems taken 

from the literature.  

Chapter 5: Optimal Two-Plane Discrete Balancing 

Two-plane discrete balancing procedure for the rigid rotor is explained in this chapter. 

A multi-objective optimization problem is formulated by considering reaction forces 

on the bearing supports as multi-objective functions and discrete parameters on each 

balancing plane as design variables. The effectiveness of the proposed methodology is 

tested by the balancing problem of rotor available in the literature, and, it is also applied 

to the unbalanced threshing drum of the thresher machine. This chapter also investigates 

a comparison of reaction forces using the number of masses per plane.  

Chapter 6: Optimal shape synthesis of the flywheel 

This chapter presents the optimal shape synthesis of the flywheel using a cubic B-spline 

curve. The shape optimization model is formulated to maximize the kinetic energy of 

the flywheel. This chapter also describes the effectiveness of the proposed approach 

through the numerical problem of the flywheel design taken from literature and the 

existing flywheel design of the thresher machine. 

Chapter 7: Conclusions 

This chapter presents the important results obtained in this research work. The 

contributions and future scope of this research work are also highlighted. 

1.6. Summary  

The balancing method for the cleaning mechanism and threshing drum, the shape 

optimization of the flywheel, and corresponding optimization algorithms are explained 

in this chapter. It highlights the objective and motivation of the current thesis and, brief 

information about the thesis outline is also provided. 
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Literature Survey 

This chapter presents the detailed review for various cleaning mechanisms used in 

thresher machine, different balancing methods of these mechanisms, threshing drum 

balancing methods, and the shape synthesis methods of the flywheel. It also explores 

the review of the mixed variable optimization algorithms to find the optimal discrete 

solutions for balancing of threshing drum. Further, the methods for flywheel shape 

synthesis are also reviewed.  

2.1. Cleaning mechanisms used to the thresher machine 

Generally, there are different agricultural operations, but the cleaning of grains from 

husk and foreign materials is an essential agricultural operation. It can be done by 

natural air and mechanical fan (Simonyan and Yiljep, 2008).  But, natural air is limited 

by its speed and random direction as a result of that the losses of grains. Moreover, the 

grains from the chaff and plant debris are separated using air generated by the 

mechanical fans (Gorial and O’callaghan, 1991a, 1991b). But, these fans increase the 

cost, complexity of the system, and labor requirement.  

Therefore, the grains are separated from husk and foreign materials using the 

cleaning mechanism incorporate in the thresher machine. The cleaning mechanism 

consists of three sieves which separate grains from husk and foreign materials by the 

oscillating motion of sieves. Although, different cleaning mechanisms are used in the 

thresher machine and some of these are explored here. 

Fig. 2.1. Slider-crank mechanism (Garvie and Welbank, 1967) 
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A slider-crank mechanism is introduced for cleaning mechanism as shown in the 

Fig.2.1. It is the oldest mechanism and converts the rotational motion of the crank into 

the reciprocating motion of the sieves (Garvie and Welbank, 1967). Sieves are driven 

by the crank through the connecting rod. The reciprocating motion of sieves is used for 

cleaning of grains. But, this mechanism requires more power for its operation and 

develops excessive vibrations. 

 

 

 

 

 

 

 

Fig. 2.2.  Mechanism for the cleaning unit (Joshi, 1981) 

Further, the cleaning mechanism is developed by the researcher (Joshi, 1981). In 

this mechanism, sieves are attached to the four hinged rods and, reciprocate by an 

eccentric crank through connecting rod as shown in Fig.2.2. But, the mechanism is 

limited by grain losses and unwanted vibrations.  

 

Fig. 2.3. A crank pitman drive (Tan and Harrison, 1987) 

𝑙 = Length of the connecting rod 

r= radius of the crank 
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A crank pitman drive is applied to the oscillation of the sieves as shown in Fig.2.3. It is 

concluded that this drive is better than other mechanisms based on the kinematic 

analysis (Tan and Harrison, 1987). However, the mechanism generates excessive 

vibrations. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. A four-bar cleaning mechanism in the thresher machine 

A four-bar mechanism has been designed for cleaning mechanism (Madan Lal, 2012; 

Test Code IS:6284, 1985). It consists of four links namely; offset pulley driven by the 

belt as link 1, connecting rod as link 2, sieves carrier as link 3, and frame of thresher as 

link 4 as shown in Fig.2.4. Offset pulley converts the rotary motion into oscillation 

motion through the connecting rod. Further, connecting rod is rigidly connected to the 

sieves carrier defined as the rocker that separates the grains from the husk by its 

oscillations.  

But, these oscillations in the mechanism develops the forces and moments on the frame 

of the machine defined as shaking forces and moments. These forces and moments 

increase the vibration, driving torque, fatigues, etc. in the mechanism. Thus, the 

balancing of these mechanisms become a challenging task in the existing thresher 

machine. However, various methods have been developed for the balancing of the 

mechanisms explained in the next section. 
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2.2.  Methods for balancing of mechanism 

The cleaning mechanism is balanced to improve the dynamic performance of 

thresher machine by balancing of the shaking force and shaking moment. Recently, the 

complete balancing of shaking forces and shaking moments is the challenging task. 

Many techniques have been developed to balance the shaking forces and moments 

using various principles.  

The shaking force can be wholly balanced by making the total mass center of the 

mechanism as stationary (Chaudhary H, Saha, 2009). Generally, the redistribution of 

moving link masses and counterweights (Fig.2.5) are applied to balance the shaking 

force. Different methods like the method of principle vector (V.A.Shchepetil’nikov, 

1968), method of linearly independent vectors (Berkof and Lowen, 1969), the 

counterweights (Walker and Oldham, 1978), ordinary vector algebra based method 

(Kochev, 1987), etc. have been used to trace and make the total mass center of the 

mechanism stationary. But, complete force balancing procedure increases driving 

torque and shaking moment in the mechanism (Lowen et al., 1974). Hence, only 

complete force balancing is not effective. Therefore, the balancing of the shaking 

moment balance is also required.  

 

 

 

 

 

 

 

Fig. 2.5. Application of counterweights for complete force balancing (Berkof and 

Lowen, 1969) 

In order to balance the mechanism, the shaking moment can be balanced completely 

by eliminating the angular momentum of the moving links along with the complete 

force balance. The total angular momentum is not eliminated by adding counterweights 

and link mass distribution (Kochev, 2000). Therefore, the moment can be wholly 

balanced using a cam-actuated oscillating counterweight (Kamenskii, 1968), physical 

pendulum (Berkof, 1973), moment balancing idler loops (Bagci, 1982), inertia 

counterweights (Tricamo and Lowen, 1983a, 1983b), geared counterweights (Esat and 

Counterweight for Link 2 
Counterweight for Link 4 
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Bahai, 1999; Ye and Smith, 1994), and a duplicate mechanism (Arakelian and Smith, 

1999). 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6. Complete shaking force and shaking moment balancing using mass 

redistribution and inertia counterweights (Feng, 1990) 

The complete shaking force and shaking moment balancing can be achieved by the 

extended method of linearly independent vectors developed by researchers (Elliott and 

Tesar, 1977). Moreover, the shaking force and moment have been balanced using mass 

redistribution and addition of the geared inertia counterweights (Feng, 1990)  as shown 

in Fig.2.6. The shaking force and shaking moment have been completely balanced using 

an analytical method. In this method, the necessary and sufficient conditions for 

balancing are derived using computer algebra (Gosselin et al., 2009). It is observed that 

these methods enhance the weight, cost, and complexity in the mechanisms. 

Besides the complete balancing of shaking force and shaking moment, the 

optimization of each moving link's inertial properties is an alternate way to reduce the 

shaking force and the shaking moment. Generally, the dynamic quintiles like driving 

torque, shaking forces, shaking moments, etc. depend on the inertial properties of 

moving link (Chaudhary and Saha, 2007a). An optimization method has been proposed 

to minimize the root mean square (RMS) value of shaking moment in a fully force-

balanced four-bar mechanism (Lowen and Berkof, 1971). This method further is 

extended by restricting the limit of the link parameters (Carson and Stephens, 1978). 

The RMS values of the shaking moment have been minimized within the physical limits 

of the link parameters (Haines, 1981). The shaking moment has been partially balanced 

using the counterweight (Arakelian and Dahan, 2001). However, these optimization 
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methods have been applied to a fully force-balanced four-bar mechanism and consider 

only the shaking moment as a single objective. 

Further, researchers have been made efforts on the multi-objective optimization 

problem to balance the mechanisms. The different approaches are available to convert 

the multi-objective problem into a single objective problem like weighted sum method, 

lexicographic method, weighted global criterion method, physical programming, 

weighted min-max method, exponentially weighted criterion, weighted product 

method, goal programming methods and bounded objective function method (Marler 

and Arora, 2004). Generally, the weighted sum method is more suitable in which proper 

weighting factors are assigned to all the objectives. A set of optimal solutions defined 

as Pareto-front has been obtained by different combinations of the weight factors to 

objectives (Marler and Arora, 2010). Then optimization problem may be solved using 

conventional and evolutionary optimization algorithms. There are some conventional 

optimization techniques outlined here, i.e., conventional optimization techniques based 

on Lagrangian approach have been applied to solve the optimization problem 

formulated for the combined balancing of shaking force, shaking moment, and torque 

using two-point mass model  (Lee and Cheng, 1984; Pennestri and Qi, 1991).  

Further, an optimization problem with minimization of the shaking force and 

shaking moment is formulated to find the optimal mass distribution of each moving 

link using three equimomental point mass system (Chaudhary and Saha, 2007b). Point-

mass parameters and the weighted sum of the RMS values of the normalized shaking 

force and shaking moment are considered as design variables and objective function, 

respectively (Chaudhary and Saha, 2007b). Optimal balancing of combined shaking 

force and moment is achieved using the counterweight parameters determined by a 

convex optimization technique (Demeulenaere et al., 2009). A method for a planar 

mechanism has been proposed to examine the sensitivity of the shaking force and the 

shaking moment with respect to design variables(Chaudhary and Chaudhary, 2015a). 

The shaking force, shaking moment, the ratio of shaking moment to mass center 

distance of links, and inertial parameters of the links are considered as objective 

functions and design variables, respectively (Li, 1998). 

But, these convention optimization techniques require an initial start point to find 

the optimum solution and give the local solution near to start point. 

Some of the evolutionary optimization algorithms, i.e., Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) have been applied to solve the multi-
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objective optimization problem based on the inertia counterweights and the physical 

pendulum approaches in order to balance the mechanism. Moreover, the multi-

objective optimization problem is formulated to balance the planar four-bar mechanism 

and solved using the GA. The kinematic and dynamic parameters of the mechanism are 

considered as the design variables. Further, the optimization problem has been 

formulated by considering the shaking force and the shaking moment as multi-objective 

functions using the equimomental system of point-masses for each moving link. This 

multi-objective optimization problem is converted into a single objective optimization 

problem using the weight factors. Point-mass parameters are treated as the design 

variable. Then, the optimization problem is solved using the Teaching learning-based 

optimization (TLBO) algorithm (Chaudhary and Chaudhary, 2016) and GA 

(Chaudhary and Chaudhary, 2014) under the appropriate design constraints. 

But, these evolutionary optimization algorithms use the priori approach and 

increase the computational efforts due to the different combination of the weighting 

factor for each objective function. Therefore, a posteriori approach based multi-

objective optimization algorithm is required to develop for balancing problem of the 

mechanism. Besides the balancing of the cleaning mechanism, balancing methods for 

the threshing drum of the thresher machine are explored. 

2.3. Methods for balancing of threshing drum 

The balancing of the threshing drum plays an essential role in the dynamic performance 

improvement of the thresher machine. However, the threshing drum is balanced similar 

manner as the rigid rotor due to its low speed of rotation. Various methods (Fig.2.7) 

can be applied to balance the threshing drum. These methods with limitations are 

explored here.  

Off-line balancing methods like vector method, four run method, and influence 

coefficient method have been used to calculate the correction masses for balancing. In 

the vector method, the correction balance masses are measured from the graph plotted 

between amplitude and phase. While the four-run method requires amplitude only and 

not phase angles. The correction masses are determined by measuring the amplitudes 

from the graph (Foiles et al., 1998). Generally, the influence coefficient method uses 

two approaches. Two-plane balance problem is considered in the first approach. 

Correction masses at two balance planes are calculated using influence coefficients 

which determined from the trial weights at two planes. The second approach considers 
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two single balance plane problems defined as a static-couple method. In this approach, 

static and couple influence coefficients are calculated to predict the correction masses 

at the two-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Classification of balancing methods (Zhou and Shi, 2001) 

Moreover, the two-plane balancing method without phase measurement is the 

extension of the four-run method and used to balance the rigid rotor (Everett, 1987). 

Further, multi-plane influence the coefficient experiment method (Kang et al., 2008) 

and modal-balancing method have been developed to balance the rotor (Morton, 1985). 

In both methods, the numbers of trial weights are used to find the vibration responses 

in different correction plane. Moreover, the unified balancing method is the 

combination of the modal method and the influence coefficient balancing method and 

used to find a better result with fewer runs (Darlow, 1989). But, off-line methods of 

balancing is required more time for calculation of correction masses and cannot change 

the situation of unbalance during operation. Further, the application of modal balancing 

is limited due to the known running mode shape. 

To overcome these difficulties; researchers focused on active or online balancing 

methods. It can be classified as magnetic force balancing and mass redistribution 

balancing. In mass redistribution balancing, mass redistribution devices are used to 

reduce the unbalance response of the rotor during operation (Shiyu Zhou and Jianjun 
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Shi, 2001; Van de Vegte, 1981) while in magnetic force balancing, electromagnetic 

force has been applied to compensate rotor unbalance using electromagnetic bearings 

directly (Knospe et al., 1996). Further, a ball bearing, also known as a self-

compensating balancing device, is used to balance the rigid rotors and provides the 

numerical solutions for the dynamic imbalance (Rodrigues et al., 2008). But, active or 

online balancing methods increase the cost and complexity of the system.  

Besides experimental and theoretical works based on different balancing methods, 

the researchers focused on the optimization procedure of balancing. The weighted sums 

of the squares of the residual vibration have been minimized using the least squares 

optimization (Goodman, 1964). Moreover, the influence coefficient method is used to 

estimate the unbalance of rigid rotors by measuring the optimum vibration amplitude 

on two-balance planes (Everett, 1997). Further, an optimization problem has been 

formulated for the rotor using the modal balancing method without test runs. This 

problem is solved using a genetic algorithm to evaluate the balancing masses (Xu et al., 

2000). The rigid rotor is balanced using the one-plane balancing procedure. In this 

method, the imbalance of the system is estimated during the acceleration period.  

Further, an ordinary recursive least-squares estimation method has been applied to 

solve the problem (Zhou and Shi, 2002). However, an optimal procedure is developed 

for the flexible rotor. This rotor has been balanced using multi-balance planes, and 

optimum results are validated experimentally (Dyer et al., 2002). Holospectrum and 

genetic techniques are presented to balance the rotor systems (Liu and Qu, 2008). 

However, the optimization problem of the rigid rotor is solved by the GA algorithm. 

Optimal discrete masses at a corresponding angular position are applied for balancing 

of the rotor (Messager and Pyrz, 2013). Unfortunately, the optimization techniques used 

in the balancing are based on only continuous variables and give continuous solutions 

of the balance masses and corresponding angular positions for the balance planes. These 

solutions are converted into the nearest discrete solution due to a limited set of available 

standardized mass values. Thus these solutions induce a dynamic effect. This dynamic 

effect can be decreased by recalculating of the correction masses. But, this iterative 

process increases the balancing cost and time.  Therefore, optimization algorithms are 

explored which handle all types of the variables, i.e., continuous, discrete, and integer 

known as mixed variables. 
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2.4. Mixed variables optimization algorithms 

Various optimization problems deal with the integer, discrete, and continuous 

variables, known as mixed-variable optimization problems, although many practical 

design problems consider only discrete and integer variables.  

Table 2.1. Algorithms proposed to solve mixed variable optimization variables 

S.No. Algorithms 
Type of 

algorithm 
References 

1. Sequential  linear programming Classical 
Loh and Papalambros, 

1991 

2. Branch and bound methods Classical 

Borchers and Mitchell, 

1994; Leyffer, 2001; 

Sandgren, 1990 

3. A penalty function based algorithm Classical 
FU et al., 1991; Shin et 

al., 1990 

4. Lagrangian relaxation Classical 
Geoffrion, 1974; Jeet and 

Kutanoglu, 2007 

5. Integer programming Classical Arora, 2000 

6. Differential Evolution 

Natural 

Inspired or 

Evolutionary 

Lampinen and Zelinka, 

1999 

7. Evolutionary programming 

Natural 

Inspired or 

Evolutionary 

Cao, 2000 

8. Evolutionary algorithm 

Natural 

Inspired or 

Evolutionary 

Deb, 1997 

9. Simulated annealing (SA) 

Natural 

Inspired or 

Evolutionary 

Zhang and Wang, 1993 

10. 
Genetic algorithms based on mixed 

variables 

Natural 

Inspired or 

Evolutionary 

Wu and Chow, 1995 

11. 
Genetic algorithms based on 

discrete variables 

Natural 

Inspired or 

Evolutionary 

Rajeev and 

Krishnamoorthy, 1992 

12. Particle swarm optimization 

Natural 

Inspired or 

Evolutionary 

Guo et al., 2004; He et 

al., 2004 

13. Ant colony optimization 

Natural 

Inspired or 

Evolutionary 

Camp and Bichon, 2004 

14. Artificial bee colony 

Natural 

Inspired or 

Evolutionary 

Sonmez, 2011 
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 Such as structural design, the number of bolts for a connection, balancing of the rotor 

using a set of the balance masses on each plane and standard diametric pitch of the gear 

are some examples of discrete variable optimization problems due to a predefined set 

of standard values. Integer variables are often used for identical elements in engineering 

design problem such as the number of the teeth of a gear (Beck et al., 1995). 

Most of researchers have been focused on continuous variable optimization 

algorithms, where optimum values of design variables lie within their bounds. But, 

these algorithms are not sufficient for practical design problems due to their continuous 

behavior. Therefore, in recent years, the mixed variable optimization methods are 

developed for these practical design optimization problems. However, mixed-variable 

optimization problems can be solved by two classes of optimization techniques, like 

classical and natural-inspired optimization algorithms as presented in Table 2.1.  

Classical algorithms, such as sequential linear programming (Loh and Papalambros, 

1991), Branch and bound methods (BBM) (Borchers and Mitchell, 1994; Leyffer, 2001; 

Sandgren, 1990), a penalty function approach (FU et al., 1991; Shin et al., 1990), 

Lagrangian relaxation (Geoffrion, 1974; Jeet and Kutanoglu, 2007), rounding-off 

techniques based on continuous variables, cutting plane techniques and zero-one 

variable techniques (integer programming) (Arora, 2000) have been applied to mixed 

variable optimization problems in order to find out the optimum design variables.  

But, these methods include more computational cost, low efficiency, and 

complexity due to the determination of derivatives and the Hessian matrix of the 

objective function (Arora et al., 1994). Moreover, most of these algorithms work on 

continuous and differentiable objective function. Further, these give an optimal local 

solution due to converge on optimal solution near to start point (Arora, 2004).  

Recently, natural-inspired optimization algorithms are considered as a useful tool 

for mixed-variable optimization problems. The Differential Evolution (DE) (Lampinen 

and Zelinka, 1999), Evolutionary programming (EP) (Cao, 2000), Evolutionary 

algorithms (EA) (Deb, 1997), simulated annealing (SA) (Kripka, 2004; Zhang and 

Wang, 1993), Genetic algorithms (GAs) based on mixed variables (Coello et al., 2001; 

Rao and Xiong, 2005; Wu and Chow, 1995), and discrete variables (Rajeev and 

Krishnamoorthy, 1992),  Particle swarm optimization (PSO) algorithms applied to 

mixed variables (Guo et al., 2004; He et al., 2004; Kitayama et al., 2006; Nema et al., 

2008; Sun et al., 2011) and discrete variables (Li et al., 2009) , ant colony optimization 

(Camp and Bichon, 2004), artificial bee colony (ABC) (Sonmez, 2011), and Teaching-
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learning based optimization (TLBO) (Dede, 2014) are some natural-inspired 

optimization algorithms. Moreover, these algorithms do not require any calculation of 

derivatives and the Hessian matrix as in the case of classical optimization algorithms. 

The non-convex and non-differentiable objective function can also be handled using 

these algorithms. 

But, the performance of these algorithms can be affected due to the requirement of 

algorithmic parameters for its convergence, i.e., GA needs a crossover, mutation rate; 

PSO needs inertia factor and social parameters; ABC needs limit value; while, 

crossover constant and scaling factor are required in DE. The selection of these 

optimization parameters increases the complexity of algorithms. However, these 

algorithms cannot guarantee to give global solutions within a definite time. Further, the 

convergence of these algorithms is slow, thus increases the computational efforts. 

Contrast to these techniques, TLBO algorithm is not required any algorithmic 

parameter for its convergence. It converges fast by changing the existing solution into 

the best solution of iteration. But, the optimization problems have been solved using 

two phases (teacher phase and learner phase) (Rao et al., 2011; Rao, 2015). It is also 

applied to only discrete optimization problems. 

Thus, there is a requirement to develop a parameter-less nature-inspired 

optimization algorithm for mixed variable optimization problems and apply it to the 

balancing problem of the threshing drum. Further, the dynamic performance of the 

thresher machine can also be improved using the shape synthesis of the flywheel. Thus 

the shape synthesis methods of the flywheel are explored in the next section. 

2.5. Shape synthesis methods of the flywheel 

The function of the flywheel in the thresher machine is to smooth the torque 

fluctuations of the threshing drum by storing and releasing energy. The performance of 

the flywheel can be by its rotating speed, material density, and geometry. However, 

high rotating speed develops undesirable centrifugal force and high stress in the 

machine. 

In order to increase the kinetic energy, three large flywheels have been used in the 

conventional thresher machine (Ahmad et al., 2013). Recently, the manufacturers have 

replaced three large flywheels into one heavy flywheel because three large flywheels 

increase the manufacturing cost of the flywheel (Madan Lal, 2012; Prashad and 

Sharma, 1985; Singh, 1978). Moreover, a material with high density can significantly 
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increase the flywheel mass and thus increase its energy storing capacity. But, a large 

mass of the flywheel is restricted by the space of the machine and also transfers the 

unreasonable large gravity force to the bearings (Jiang et al., 2016). 

Fortunately, the geometry of a flywheel rotor can also influence the storage capacity 

of kinetic energy for the same flywheel mass. Composite materials (Danfelt et al., 1977; 

Metwalli et al., 1983; Takahashi et al., 2001; Tzeng et al., 2006) are widely used to 

achieve long life and high performance in the design of the geometry of a flywheel. 

But, the cost of composite materials is high compared to metallic materials, and the 

forming process is also relatively complex. Therefore, metallic materials are generally 

used to design for the various geometries of flywheels due to its low price and a simple 

manufacturing process.  

Recently, researchers have been focused on shape optimization of the metallic 

flywheel rotor geometry cross-section. It is an efficient approach to increase the kinetic 

energy by optimizing the rotor thickness along a radial direction (Jiang and Wu, 2017a). 

To achieve optimal thickness distribution along the radial direction, the shape 

optimization problem with objectives of minimizing the volume, maximizing the 

kinetic energy, and minimizing the stresses has been formulated under suitable design 

constraints using polynomial expansion. The coefficients of polynomial expansion of 

thickness are taken as design variables. Further, the formulated problem is solved using 

conventional optimization technique (Sandgren and Ragsdell, 2016).  

 

Fig. 2.8. General shape of the flywheel 
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In another study, coefficients of a Fourier series and Fourier sine series are 

considered as design variables. The ratio of inertia to volume and kinetic energy are 

regarded as objective functions with constraints of the maximum allowable stress, 

maximum thickness, and maximum mass for the optimal shape of the flywheel. These 

series represent the thickness as a function of the radius. However, the radial and 

tangential stresses of the flywheel are computed using a two-point boundary value 

differential equation (Ebrahimi, 1988; Ghotbi and Dhingra, 2012) as shown in Fig. 2.8. 

However, these curves, i.e., polynomial expansion, Fourier series, and Fourier sine 

series do not describe the degree of the resulting curve.  

The exact optimal shape is determined under the constraints of the geometry, which 

is derived from arbitrary design parameters, rotational speeds and the strength of disk, 

using discrete optimization (Berger and Porat, 2017). An injection island genetic 

algorithm is used to search for the optimal shape of the flywheel with the maximum 

kinetic energy (Eby et al., 1999). However, the shape of the flywheel is optimized for 

different kinds of heterogeneous materials using conventional optimization techniques 

(Huang and Fadel, 2000). The optimum radius of the multi-ring flywheel is obtained 

by considering the maximization of the stored energy as an objective function (Kyu Ha 

et al., 2001). The bi-objective optimization problem is formulated using a Bezier curve. 

Thickness points and volume fraction are considered as the design variable. bi-

objectives are converted into a single objective using weighted Tchebycheff method 

(Huang et al., 2002). Further, a nonlinear optimization problem is formulated to 

maximize the energy density (stored energy per unit mass) using the parametric 

geometry modeling method. Then, the downhill simplex method has been used to solve 

this problem (Jiang et al., 2016).  

But, Bezier curves are controlled globally and also increase the computation cost 

due to the control points. Further, the conventional optimization techniques have been 

applied for the shape optimization of the flywheel. 

In addition to the optimization, finite element analysis has been applied for the 

optimum shape of the flywheel; a two-dimensional finite-element model is used to find 

out the optimal thickness distribution for the shape of flywheel along radially centrally 

bored flywheel under the purpose of reaching an even stress distribution (Kress, 2000). 

Six different geometries of the flywheel are studied and compared by kinetic energy 

using finite element analysis (Arslan, 2008). The solid disk profiles of the flywheel are 

modeled by using cubic splines. The control points of cubic splines are determined to 



  

  25 

find out the maximum kinetic energy using finite element analysis (Mahdi, 2010). 

Optimization approach which acts on the two-dimensional axisymmetric finite element 

model is used to minimize the mass and maximize the kinetic energy to find out the 

optimum shape (Pedrolli et al., 2016). However, finite element analysis for the optimal 

shape of the flywheel increases the computational cost and is also less efficient. 

 

 

 

 

 

 

 

 

 

Fig. 2.9. Topology optimization model of the flywheel (Jiang and Wu, 2017b) 

Besides the shape optimization of the flywheel, the topology optimization method 

has been developed to optimize the flywheel rotor geometry layout in order to increase 

the energy storage capacity as shown in Fig.2.9. In this method, the flywheel rotor is 

divided into design domain, inner ring, and outer ring. Then, a series of optimized 

flywheel layouts based on the variable density method is obtained using finite element 

analysis under different constraints (Jiang and Wu, 2017b). Topology optimization of 

the rotor for a flywheel energy storage system has been applied to find the best rotor 

structure using a genetic algorithm (GA). But, the topology optimization method is 

limited by the initial shape of the flywheel. 

2.6. Summary 

Various cleaning mechanisms have been designed to the thresher machine as 

reviewed in Section 2.1. It is observed that the balancing of these mechanisms is a 

challenging task. Thus, Section 2.2 explores the balancing methods for the mechanisms. 

Based on the literature review, the complete shaking force balancing is not effective 

due to the increment of other dynamic quantities in the mechanism. Another approach, 

i.e., complete shaking force and shaking moment balancing minimizes the other 

dynamic quantities. But this balancing method increases the complexity and weight of 

the mechanism. Thus, the optimal balancing procedure has been used to reduce the 
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shaking force and shaking moment.  However, the conventional and evolutionary 

optimization algorithms can be applied for the balancing of the mechanisms. But, these 

convention optimization techniques require an initial start point to find the optimum 

solution and give the local solution near to start point.  In contrast, evolutionary 

optimization algorithms are based on the priori approach and also increase the 

computation time due to the combination of the weight factors for each objective 

function. Therefore, post-priori based optimization algorithm is applied for the 

balancing of the mechanism and minimizes the computational efforts.   

In Section 2.3, the methods used for balancing of the threshing drum are reviewed, 

and it is observed that the off-line balancing methods increase the computational efforts 

due to the calculation of correction masses whereas active or online balancing methods 

increase system's complexity and cost. However, optimization techniques have been 

applied to overcome these difficulties. But, these optimization techniques are based on 

continuous variables and give the optimal continuous solutions of the balance masses 

and corresponding angular positions. These solutions are recalculated for the nearest 

discrete solution due to a limited set of available standardized mass values. Thus this 

iterative process increases the balancing cost and time.  

Therefore, the algorithms based on mixed variables are explored and reviewed in 

Section 2.4. However, classical and natural-inspired optimization algorithms can be 

applied to mixed variable optimization problems. But, classical optimization algorithms 

increase the computational cost due to Hessians and derivatives calculations and also 

have less probability of global optimum solution. In contrast, natural-inspired 

optimization algorithms are affected by the algorithmic control parameters for their 

convergence. Therefore, a parameter-less nature inspired mixed variable optimization 

algorithm is required for the balancing of the threshing drum and also reduces the 

balancing cost and time.  

The dynamic performance of the thresher machine can also be improved using 

shape synthesis of the flywheel and methods used for shape synthesis of the flywheel 

are reviewed in Section 2.5. It is concluded that the optimization methods for flywheel 

shape synthesis are based on the conventional approach, and curves used for optimal 

thickness distribution of the flywheel rotor are restricted by control points, coefficient 

parameters, the degree of the resulting curve, etc. while finite element analysis and 

topology optimization approaches require an initial design and also increase the 

computation efforts. 
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Optimal balancing of the cleaning mechanism 

This chapter proposes the dynamically balanced cleaning mechanism for the thresher 

machine using the concept of a dynamically equivalent point-mass system. The cleaning 

mechanism is balanced by optimizing the inertial properties of each link which defined 

by the dynamic equivalent system of point masses. The shaking force and the shaking 

moments developed in the cleaning mechanism are derived in term of point mass 

parameters. Thus, the multi-objective optimization problem with minimization of 

shaking forces and shaking moments is formulated by considering the point mass 

parameters as the design variables. The formulated optimization problem is solved 

using a posteriori approach based algorithm as non-dominated sorting Jaya algorithm 

(NSJAYA) and a priori approach based algorithms like Jaya algorithm and Genetic 

algorithm (GA) under suitable design constraints. The optimal Pareto set for the 

balancing of the mechanism is calculated and outlined. 

3.1. Dynamic equations of motion for the rigid body 

The 𝑖th moving rigid link of the mechanism is modeled as a rigid body in 𝑥𝑦 plane for 

kinematic and dynamic analysis as shown in Fig.3.1.  𝑜𝑥𝑦 and 𝑜𝑖𝑥𝑖𝑦𝑖 are the global and 

local coordinate systems, respectively. The link length is the distance between joints 𝑜𝑖 

and 𝑜𝑖+1 denoted by 𝒓𝒊. 

 

 

 

 

 

 

 

 

 

Fig. 3.1. The 𝑖th moving link of the mechanism 

The mass and moment of inertia of link about 𝑜𝑖  are represented as 𝑚𝑖 and 𝐼𝑖, 

respectively. The position of mass center 𝐺𝑖 is defined by 𝒓𝒊𝒈 at an angle θi made from 
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axis 𝑜𝑖𝑥𝑖 fixed to the link. The axis 𝑜𝑖𝑥𝑖 is at an angle 𝛿𝑖 from the axis 𝑜𝑥 and aligned 

between joints 𝑜𝑖 and 𝑜𝑖+1. The bold faces represent the vectors. 

The resultant forces at 𝑜𝑖  and moment of 𝑖th moving rigid link about 𝑜𝑖 are 

determined using Newton-Euler (NE) equations ‘(Chaudhary H, Saha, 2009).’  

 

[

0 0 0
−𝑚𝑖𝜔𝑖𝑟𝑖𝑔 𝑐𝑜𝑠(𝜃𝑖 + 𝛿𝑖) 0 0

−𝑚𝑖𝜔𝑖𝑟𝑖𝑔 𝑠𝑖𝑛(𝜃𝑖 + 𝛿𝑖) 0 0
] [

𝜔𝑖

𝑣𝑖𝑥

𝑣𝑖𝑦

]

+ [

𝐼𝑖 −𝑚𝑖𝑟𝑖𝑔 𝑠𝑖𝑛(𝜃𝑖 + 𝛿𝑖) 𝑚𝑖𝑟𝑖𝑔 𝑐𝑜𝑠(𝜃𝑖 + 𝛿𝑖)

−𝑚𝑖𝑟𝑖𝑔 𝑠𝑖𝑛(𝜃𝑖 + 𝛿𝑖) 𝑚𝑖 0

𝑚𝑖𝑟𝑖𝑔 𝑐𝑜𝑠(𝜃𝑖 + 𝛿𝑖) 0 𝑚𝑖

] [

𝜔𝑖̇
𝑣̇𝑖𝑥

𝑣̇𝑖𝑦

]

= [

𝑀𝑖

𝑓𝑖𝑥
𝑓𝑖𝑦

]                                                                                  

(3.1) 

Where ωi is the angular velocity, 𝑣𝑖𝑥 and 𝑣𝑖𝑦  are the components of the linear 

velocities. ωi̇ , 𝑣̇𝑖𝑥 , and 𝑣̇𝑖𝑦 represent the angular acceleration and the components of 

the linear accelerations, respectively. The resultant moment about 𝑜𝑖 and the 

components of the resultant force at 𝑜𝑖 are represented by 𝑀𝑖 ,  𝑓𝑖𝑥, 𝑎𝑛𝑑 𝑓𝑖𝑦, 

respectively. 

3.2. Equations of motion for dynamically equivalent point mass system 

The shaking force and the shaking moment in the mechanism are determined using 

the dynamically equivalent system of point masses for each moving link as shown in 

Fig.3.2. The dynamically equivalent system can improve the dynamic performance of 

the mechanism using the mass distribution of the moving links that represent the inertial 

properties, i.e., mass center position, mass, and inertia of each moving link (Routh, 

1905). However, the planar and spatial mechanism can be balanced using the two-point-

masses (Wenglarz et al., 1969) and four point-masses (Huang, 1983). Thus, mass 

distribution can be obtained using the methods of optimization (Sherwood and Hockey, 

1969).  

The criteria for dynamically equivalent systems is that the center of mass, the 

moment of inertia, and mass of the original link must be equal to those of point mass 

system (Chaudhary H, Saha, 2009). The 𝑝 point masses 𝑚𝑖𝑗 , make the angles 𝜃𝑖𝑗 from 

the axes 𝑜𝑖𝑥𝑖 located at distances 𝑎𝑖𝑗.  
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The criteria for the equivalent system of point masses for the rigid link is expressed 

as 

 ∑∑𝑚𝑖𝑗

𝑝

𝑗

𝑛

𝑖

= 𝑚𝑖 (3.2) 

 ∑∑𝑚𝑖𝑗𝑎𝑖𝑗𝑐𝑜𝑠 (𝜃𝑖𝑗 + 𝛿𝑖)

𝑝

𝑗

𝑛

𝑖

= 𝑚𝑖𝑟𝑖𝑔𝑐𝑜𝑠 (𝜃𝑖 + 𝛿𝑖) (3.3) 

 ∑∑𝑚𝑖𝑗𝑎𝑖𝑗𝑠𝑖𝑛 (𝜃𝑖𝑗 + 𝛿𝑖)

𝑝

𝑗

𝑛

𝑖

= 𝑚𝑖𝑟𝑖𝑔𝑠𝑖𝑛 (𝜃𝑖 + 𝛿𝑖) (3.4) 

 ∑∑𝑚𝑖𝑗𝑎𝑖𝑗
2

𝑝

𝑗

𝑛

𝑖

= 𝐼𝑖 (3.5) 

 

Where i denote the number of links, and j defines the point masses for the ith link. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Dynamically equivalent point mass systems for 𝑖th moving link of the 

cleaning mechanism 

The Eq. (3.1) can be redefined for the equivalent system of point masses of the ith 

link using Eqs. (3.2-3.5) as: 
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(3.6) 

 

The parameters, 𝑚𝑖𝑗,  𝑎𝑖𝑗 and 𝜃𝑖𝑗 are considered as design variables. There are total 

3𝑝𝑛 parameter where 𝑝 and 𝑛 are point masses and the number of moving links, 

respectively.  

3.3. Dynamic analysis of the cleaning mechanism 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Reaction forces and moments with respect to fixed link in cleaning 

mechanism 

This section describes developed shaking forces and shaking moments in the 

cleaning mechanism as shown in Fig.3.3. The vector sum of reactions of all inertia 
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forces is defined as the shaking force. Whereas, the shaking moment is defined as the 

resultant of inertia couple and moment of inertia forces (Chaudhary H, Saha, 2009). It 

is considered that only driving torque is acting about the joint 𝑜1. Thus, the shaking 

force and the shaking moment transmit to the fixed link, #0 with respect to 𝑜1, are 

expressed, respectively, as:  

 𝐟𝐬𝐡 = −(𝐟𝟎𝟏 + 𝐟𝟎𝟑) (3.7) 

 𝑀𝑠ℎ = −𝑇𝑑 − 𝒓𝟎 × 𝒇𝟎𝟑 (3.8) 

 

Where vectors 𝐟𝟎𝟏and 𝐟𝟎𝟑 are the reaction forces of fixed link 0 acting on links 1 

and 3, respectively, while 𝑻𝒅 represents the driving torque about joint 1. 𝒓𝟎 is the vector 

from 𝑜1 to 𝑜4.  

As reaction forces, shaking force and shaking moment have different magnitudes 

and units. To harmonize them, the forces and moments are normalized correspond to 

the parameters of the reference link as (Chaudhary H, Saha, 2009): 

 𝑓𝑠ℎ̅̅ ̅̅ =
𝒇𝒔𝒉

𝑚1𝑟1𝜔1
2  (3.9) 

  𝑀𝑠ℎ
̅̅ ̅̅ ̅ =

𝑀𝑠ℎ

𝑚1𝑟1
2𝜔1

2 (3.10) 

3.4. Formulation of the optimization problem  

A priori and posteriori based optimization problems with minimization of the 

shaking force and the shaking moment are formulated using a concept of dynamically 

equivalent point mass system. Each link is represented using the 𝑝 point mass system. 

Total 3𝑝 parameters for each link needs to specify the point masses. The design 

vector 𝐱𝐢, for the 𝑖th link, is described as 

 𝒙𝒊 = [𝑚𝑖1  𝑎𝑖1  𝜃𝑖1 𝑚𝑖2  𝑎𝑖2  𝜃𝑖2 ∙∙∙∙∙  𝑚𝑖𝑝  𝑎𝑖𝑝  𝜃𝑖𝑝]
𝑇
 (3.11) 

Although, the design variable vector 9𝑝, 𝒙 for mechanism having 3 moving link is 

given as 

 𝒙 = [𝒙𝟏
𝑻  𝒙𝟐

𝑇  𝒙𝟑
𝑻 ]

𝑇
  (3.12) 

Where 𝑚𝑖𝑗 is the 𝑗𝑡ℎ point mass for the 𝑖𝑡ℎ link, 𝑎𝑖𝑗 and 𝜃𝑖𝑗 are the corresponding 

lengths and angular position of 𝑚𝑖𝑗 

The priori approach based optimization problem is considered the weighted sum of 

the RMS values of normalized shaking force, 𝑓𝑠ℎ̅̅ ̅̅ ,𝑟𝑚𝑠 and the shaking moment, 

𝑀𝑠ℎ
̅̅ ̅̅ ̅,𝑟𝑚𝑠 as objective function, while the posteriori approach based optimization 
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problem is not required any weighting factors and minimizes the RMS values of 

shaking force,  Fsh,rms  and the shaking moment, 𝑀𝑠ℎ,𝑟𝑚𝑠, simultaneously. The priori 

and posteriori based optimization problems are stated under the appropriate constraints, 

respectively, as:  

 Minimize 𝑍(𝒙) = 𝑤1𝑓𝑠ℎ̅̅ ̅̅ ,𝑟𝑚𝑠+ 𝑤2 𝑀𝑠ℎ
̅̅ ̅̅ ̅̅ ,𝑟𝑚𝑠 (3.13) 

 
Minimize 𝑓

1
(𝑥) = 𝐹𝑠ℎ,𝑟𝑚𝑠

Minimize 𝑓
2
(𝑥) = 𝑀𝑠ℎ,𝑟𝑚𝑠

 } (3.14) 

 

Subjected to 

 

𝑔1𝑖(𝒙) = 0.25𝑚𝑖
𝑜 − ∑𝑚𝑖𝑗 < 0

𝑗

𝑔2𝑖(𝒙) = ∑𝑚𝑖𝑗 − 1.5𝑚𝑖
𝑜 < 0

𝑗

𝑔3(𝒙) = 𝑟1𝑔 − 𝑟1 < 0

𝑔4(𝒙) = 𝑟2𝑔 − 𝑟2 < 0

𝑔5(𝒙) = 𝑟3𝑔 − 10𝑟3 < 0

𝑔6(𝒙) = 2.5𝑟3 − 𝑟3𝑔 < 0

𝑔7𝑖(𝒙) = 𝐼𝑖 − 𝐼𝑖
𝑜 < 0

𝑔8(𝑥) = 𝜃3 − 𝜃3
𝑜 ≤ 0

𝐿𝐵𝑟 ≤ 𝑥𝑟 ≤ 𝑈𝐵𝑟      𝑟 = 1,∙∙∙∙ 𝑁

   

}
 
 
 
 
 
 

 
 
 
 
 
 

𝑓𝑜𝑟 𝑖 = 1,2,3 𝑎𝑛𝑑 𝑗 = 1,2 ,⋯ , 𝑝 (3.15) 

Where 𝑤1 and 𝑤2 represent the weighting factors that assigned to objective 

functions based on relative importance, respectively, generally, these are used in a priori 

based optimization problem and convert the multiple objective functions into the single 

objective function (Marler and Arora, 2010). The designer can take any values of these 

factors like 0, 1, between 0 and 1 for different objectives based on an application. 

Moreover, the design constraints depend on the permissible values of the parameters of 

the link. The maximum and minimum masses of the 𝑖th link are decided by the strength 

of links. Similarly, the limiting values of the moment of inertias determine the limits 

on parameters, 𝑎𝑖𝑗.  𝑈𝐵𝑟 and 𝐿𝐵𝑟 are the upper and lower limits on the 𝑟th design 

variable, the number of design variables is denoted by N, and the superscript “o‟ 

indicates the parameters of the original mechanism. 

To obtain an optimum solution, a priori and posteriori based constrained 

optimization problems are converted into an unconstrained problem using penalty 

function (Singh et al., 2017). A significant penalty value is added to the objective 

function for each constraint violation. As a result, the objective function proceeds 

toward an infeasible solution. Hence, the global optimum solution is obtained by 

satisfying all the constraints using a suitable optimization algorithm. The original 
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constrained optimization problem is then stated as an unconstrained optimization 

problem in which the first and second terms describe the objective function and the 

penalty function, respectively. Finally, a priori based optimization problem is 

formulated as: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍(𝒙) = 𝑤1𝑓𝑠ℎ̅̅ ̅̅ ,𝑟𝑚𝑠+ 𝑤2 𝑀𝑠ℎ
̅̅ ̅̅ ̅̅ ,𝑟𝑚𝑠+ ∑𝐹𝑐

𝑛𝑐

𝑐=1

(𝑃𝑓)
𝑐
   (3.16) 

Where 𝑛𝑐 is the number of constraints, while 𝑃𝑓 is the penalty value of the order of 

106 which assigned to objective function if the constraints are not satisfied. Boolean 

Function 𝐹𝑐 is defined as  

𝐹𝑐 = {
1       𝑖𝑓 𝑔𝑐(𝒙) ≤ 0
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

While a posteriori based optimization problem is formulated as 

 Minimize 𝑓1(𝑥) = 𝑓𝑠ℎ,𝑟𝑚𝑠 + 𝑃𝑓 × ∑max (0, 𝑔𝑐(𝑥))

𝑛𝑐

𝑐=1

 (3.17) 

 Minimize 𝑓2(𝑥) = 𝑀𝑠ℎ,𝑟𝑚𝑠 + 𝑃𝑓 × ∑max (0, 𝑔𝑐(𝑥))

𝑛𝑐

𝑐=1

  (3.18) 

 Minimize Z(x)  = [𝑓1(𝑥)  𝑓2(𝑥)]
𝑇 (3.19) 

 𝐿𝐵𝑟 ≤ 𝑥𝑟 ≤ 𝑈𝐵𝑟      𝑟 = 1,∙∙∙∙ 𝑁 (3.20) 

3.5. Optimization algorithm 

The formulated problem described in the previous section is solved by a priori and 

posteriori based algorithms. The optimization problem defined in Eq. (3.16) is solved 

using a priori based algorithms like GA and Jaya algorithm. However, the GA algorithm 

requires the algorithmic parameter for its convergence. 

Further, these algorithms converge to a global solution, but there is no guarantee 

that the solution is optimal (Singh et al., 2017). While Jaya algorithm does not require 

any algorithmic parameters and, is also easier to implement (Rao, 2019). It converges 

fast to the optimal global solution by updating the best and worse solutions. It is more 

computationally efficient than GA. The detailed procedure of this algorithm is 

explained in Fig.3.4.  

 Whereas formulated problem defined in Eq.(3.19) can be solved by some posteriori 

based algorithms like GA(Ani et al., 2013; Coello, 2000), MPSO (Feng et al., 2012), 

PSO (Parsopoulos and Vrahatis, 2002), NSGA-II (Deb et al., 2002), etc. Although these 

algorithms give a global solution, it is no assurance that the solution is optimal (Singh 
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et al., 2017). Moreover, these algorithms need algorithmic control parameters which 

affect their performance (Rao, 2019). However, NSJAYA algorithm is also the 

posteriori based algorithm. It does not need any algorithmic control parameters. The 

solutions obtained using this algorithm are improved in a similar way as in Jaya 

algorithm which proposed by Rao in 2016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. A flow chart of Jaya algorithm for balancing of the cleaning mechanism 

Moreover, NSJAYA algorithm handles the multi-objectives using crowding 

distance computation mechanism and non-dominated sorting approach given in ref. 
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′
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Is current 
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′
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solution, 𝒙 
 E 
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(Rao et al., 2018). Although the determination of the best solution in multi-objectives 

is difficult due to the multiple opposing objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. A flow chart for the non-dominated sorting Jaya algorithm 

Therefore, NSJAYA algorithm is developed to find the best solutions for the 

balancing of the cleaning mechanism. In this algorithm, these solutions are selected by 

comparing the rank of solutions using the crowding distance value and the non-

dominance concept. In starting, initial solutions “p,” are randomly created. Then, initial 
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solutions are arranged in ascending order with rank using the non-dominance approach 

(Rao, 2019). In this approach, non-dominance solutions are identified based on the 

criteria such as a solution 𝑥∗ is considered a non-dominate than other solution 𝑥 if and 

only if solution 𝑥∗  is better than solution 𝑥 with respect to all the objectives and the 

solution 𝑥∗ is strictly better than solution 𝑥 in at least one objective. Thus these non-

dominance solutions are arranged in ascending order with ranks. The higher rank 

(rank=1) and lower rank solution are chosen the as best and worse solution, 

respectively. If solutions have the same rank, then crowding distance value is calculated 

for these solutions. Generally, crowding distance (CD) is a measure of "density of 

solutions surrounding a particular solution in the population" and calculated as: 

The crowding distance (𝐶𝐷1 = 𝐶𝐷𝑙=∞) is assigned to the first and last solution of the 

non-dominant solution. Where 𝑖 = 2. , . , . , 𝑙 − 1 and 𝑗 = 1⋯ ,𝑚. 𝑚 represents the 

number of objective functions. 

The solution with the low value of crowding distance is considered as the worse 

solution and vice versa. The solutions are modified according to the general equation 

of Jaya algorithm (Rao et al., 2018). Then, the population based on updated solutions 

is merged with the initial solutions, and 2p populations are generated. Combined 

solutions are sorted and ranked again, and the crowding distance value of each solution 

is calculated (Rao, 2019). The best solutions are chosen according to the new rank and 

value of crowding distance. The solution of the higher rank and high value of crowding 

distance is considered as best compared to other solution(Rao et al., 2017). The 

dominance concept for finding the rank of solutions, the computation of crowding 

distance, and operator of crowding comparison are detailed in refs. (Deb et al., 2002; 

Rao et al., 2018, 2017). 

The termination criteria of this algorithm are described by function evaluations and 

the number of iterations. The product of the number of iterations and initial populations 

is known as the number of function evaluations (Rao, 2019). So, function evaluations 

are not affected by design variables, but the computational time of the algorithm can be 

enhanced. The flowchart of this algorithm is presented in Fig.3.5. Further, this 

algorithm decreases the computational time than the other multi-objective optimization 

techniques and a priori base optimization algorithm like GA and Jaya algorithm. 

𝐶𝐷𝑖 = 𝐶𝐷𝑖 +
fj
i+1 − fj

i−1

fj
max − fj

min
   (3.21) 
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Moreover, the first time it is applied to the dynamic balancing of the planar mechanism 

in this study. 

3.6. Results and discussions 

In this section, the proposed optimization approach is applied for the balancing of 

the cleaning mechanism used thresher machine (Singh, 1978; Varshney, 2004). In this 

study, each link of the mechanism is modelled using a three-point mass system for 

better mass distribution. However, more than three-point mass system can be applied, 

but it will enhance the evaluation time of the objective function and constraints. 

Moreover, The five parameters out of nine parameters of each link for the three-point 

mass model are assigned to reduce the dimension of the problem (Chaudhary H, Saha, 

2009), as:  

𝜃𝑖1 = 0; 𝜃𝑖2 = 120°; 𝜃𝑖3 = 240° 𝑎𝑛𝑑 𝑎𝑖1 = 𝑎𝑖2 = 𝑎𝑖3 

Hence, 𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3, and 𝑎𝑖1, other parameters of each link are taken as the 

design variables. Hence there are 12 design variables and, limits on these design 

variables are considered for both priori and posteriori based optimization problems, as:  

𝑚𝑖1 ∈ [0.05, 5];  𝑚𝑖2 ∈ [0.05,1.0];𝑚𝑖3 ∈ [1.0,15]; 𝑎𝑖1 ∈ [0.25𝑎𝑖1
𝑜 , 2𝑎𝑖1

𝑜 ], 𝑖 = 1,2,3 

In the cleaning mechanism, the input motion is given to pulley as a link 1 by PTO 

shaft of the tractor using V-belt that rotates at the constant speed of 250 rpm (26.18 

rad/s). The link parameters of the original cleaning mechanism are presented in Table 

3.1 (Singh, 1978; Varshney, 2004). 

Table 3.1. Link parameters of the cleaning mechanism 

Link 

𝑖 
Link 

length 

Total 

link mass 

Moment of 

inertia 

Mass center location 

 𝑟𝑖 (𝑚) 𝑚𝑖(𝑘𝑔) 𝐼𝑖
𝐺(kg-𝑚2) 𝑟𝑖𝑔 (𝑚) 𝜃𝑖  (𝑑𝑒𝑔) 

#1 0.020 0.6288 5.2975e-04 0.0238 0 

#2 0.2397 0.3513 1.76e-03 0.11984 0 

#3 0.1393 24.075 1.973e+01 0.7782 84.143 

#4 0.2169 - - - - 

Three different cases are applied to balance the mechanism in the priori based 

optimization problem described in Eq. (3.16). In case 1 and 2, the total force balancing 

is considered, and the values of weighting factors are taken as 𝑤1 = 1 and 𝑤2 = 0.0.  

 In case 1, links 1 and 3 are chosen for the point mass system, while the parameters 

of link 2 are considered as its original values. The point masses of links, #1 and #3 are 

considered as the design variables. Then, optimization problem are solved under the 

constraints 𝑔1𝑖(𝑥) and 𝑔2𝑖(𝑥) defined in (Eq. 3.12). The optimum results are compared 
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with full analytical force balancing conditions proposed by Berkof and Lowen (R. S. 

Berkof and G. G. Lowen, 1969) given as: 

 
𝑚1𝑟1𝑔 = 𝑚2𝑟2𝑔

′
𝑟1
𝑟2

𝜃1 = 𝜃2
′

}    (3.22) 

 
𝑚3𝑟3𝑔 = 𝑚2𝑟2𝑔

𝑟3
𝑟2

𝜃3 = 𝜃2 + 𝜋
}  (3.23) 

All parameters are shown in Figs. 3.1 and 3.3. 

While all three moving links are modelled using the point-mass system in case 2. 

In case 3, the combined shaking force and shaking moment balancing is considered. 

Thus 𝑤1 = 0.5 and 𝑤2 = 0.5 are considered in this case. All three moving links are 

considered for the point-mass system in this case.  

Table 3.2.  Optimized values of link parameters for the balanced mechanism for all 

cases 

Cases    Link 𝑖 

Total link 

mass 
Mass center location 

Mass distance 

product 

𝑚𝑖(𝑘𝑔) 𝑟𝑖𝑔 (𝑚) 𝜃𝑖 (𝑑𝑒𝑔) 𝐼𝑖
𝐺(kg-𝑚2) 

Case 1; (𝑤1 = 1,𝑤2 = 0) 

Link 1 and 3 are considered 

#1 0.2851 0.0104 180   0.000458 

#3   28.2743 0.0010 180 57.0541 

Case 2; (𝑤1 = 1,𝑤2 = 0) 

All links are considered 

#1 0.6903   0.0307 256.65 7.3118e-04 

#2 0.1505 0.1672 358.59 0.0024 

#3 6.0243 0.5984 56.0169   7.1975 

Case 3; (𝑤1 = 0.5, 𝑤2 = 0.5) 

All links are considered 

#1 0.4202 0.0068 120.00 1.3005e-05 

#2 0.2501 0.1459 0.0114 9.0812e-04 

#3 6.0455 0.3763 84.1344    5.1685 

The formulated problem for all cases is solved using Jaya algorithm and GA. These 

algorithms are coded in MATLAB 2014. A laptop having 3GB RAM and processor 

with 2.20 GHz is used to run these algorithms. The number of iterations and population 

size are chosen as 300 and 100 for GA, respectively, while Jaya algorithm takes the 

population size of 100 and the number of iteration as 280. Both algorithms take the 10 

independent runs to find out the best objective function value with respect to the design 

variables corresponding to the best run. The computational efficiency of the algorithms 

for all three cases is shown in Fig.3.6. GA gives the best objective function value at 

30000 function evaluations, while Jaya algorithm reaches to best objective function 

value at 28000 function evaluations. The algorithm is considered more efficient if it 

takes fewer function evaluations to find the optimum solution (Singh and Chaudhary, 
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2019). Hence, Jaya algorithm is comparatively more efficient and takes 93.6% function 

evaluations compared to GA. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 3.6. Convergence of the best values of the objective function for GA and Jaya 

algorithm in all cases 
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Fig. 3.7. Variation in shaking force, shaking moment and driving torque with time for 

one cycle of the crank 
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The optimum solutions obtained by Jaya algorithm are used to determine inertial 

properties for the balanced mechanism using Eqs (3.2-3.5); those are presented in Table 

3.2. The RMS values of the shaking force, shaking moment, and input torque for each 

case are compared with those of the original mechanism as presented in Table 3.3. 

Fig.3.7 shows the variation in shaking force, shaking moment, and input torque for one 

cycle of the crank. The optimized results of the balanced mechanism for case 1 satisfy 

the analytical conditions given by Eqs. (3.22-3.23). But, the total force balancing (case 

1) enhances the RMS values of driving torque and shaking moment up to 16.48% and 

4.53%, respectively. The best solutions achieved in case 3 decrease the RMS values of 

driving torque, shaking force, and shaking moment up to 82.48%, 87.76%, and 

83.037%, respectively. Hence, combined shaking force and shaking moment balancing 

is more effective compared to the total force balancing. 

Table 3.3. The RMS values of the balanced mechanism for all cases 

Cases 

Type of     

balancing 

Input 

Torque  

(N-m) 

Shaking 

force (N) 

Shaking 

moment  

(N-m) 

Original 

Mechanism 
226.96 1503.00 3067.80 

Case 1 

 
Force balance 

264.36 

(+16.48%) 

0.00078         

(-99%) 

3207.6 

(+4.53%) 

Case 2 

 
Force balance 

48.4011  

(-78.67%) 

176.52           

(-88.25%) 

616.645     

(-79.92%) 

Case 3 

 

Force and 

moment balance 

39.7603 

(-82.48%) 

184.0337 

(-87.76%) 

520.39 

(-83.037%) 

 

A priori based optimization algorithm requires the combination of the weighting 

factors to objective functions. This process increases the computational time of the 

algorithm. Moreover, the user should be aware of the importance of each objective in 

advance that is a difficult task due to the uncertain scenario. Therefore, a posteriori 

based optimization algorithm NSJAYA is applied to balance the cleaning mechanism 

of the thresher machine. A posteriori based optimization problem defined in Eq. (3.19) 

is solved using this algorithm. It takes 100 population size and the number of iterations 

equal to 200 for finding the non-dominated solutions (Pareto front). The non-dominated 

solutions are shown in Fig.3.8 and reported in Table 3.4. Two solutions based on the 

importance of objective function are considered from Table 3.4, i.e., solution 1 gives a 

maximum priority to the minimization of the shaking moment, while solution 2 gives a 
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maximum priority to the minimization of the shaking force. The RMS values of shaking 

force, shaking moment and input-torque based on solutions 1 and 2 are likened with 

those of original mechanism and the RMS values obtained by the priori based algorithm 

(GA and Jaya) for combined balancing (case 3), as presented in Table 3.5. Table 3.5 

shows that the dynamics quantities of the cleaning mechanism are significantly 

improved. It is observed that solution 2 increases other dynamic quantities, i.e., shaking 

moment, driving torque compared to those of solution 1. Thus, solution 1 is considered 

for balancing of the cleaning mechanism. The variations of the driving-torque, shaking 

force and the shaking moment for one cycle of the crank are shown in Fig.3.9. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. Pareto front for a cleaning mechanism 

Table 3.4.  Non-dominated solutions acquired by NSJAYA 

S.No. Shaking Force (N) Shaking Moment (N-m) 

1 183.2835 520.18 

2 176.8933 566.8568 
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4 177.7891 546.2714 

5 183.0148 520.3353 

6 181.0292 520.6953 

7 178.3699 522.4427 
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176 177 178 179 180 181 182 183 184
520

530

540

550

560

570

Shaking Force (N)

S
h
a
k
in

g
 M

o
m

e
n
t 

(N
-m

)

 

 

NSJAYA



  

  43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. Dynamic performance of the cleaning mechanism for one cycle of the crank. 
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of the original mechanism. It shows that NSJAYA algorithm provides better results 

than those of GA and Jaya. Moreover, the multiple optimal solutions are obtained by 

running the GA and Jaya algorithm multiple time with a different combination of 

weights. As a result of that, the computation time of algorithms will increase. Hence, 

NSJAYA is computationally more efficient than the GA and JAYA algorithm. 

The balancing of the cleaning mechanism is done numerically using optimum 

redistribution of link masses by choosing any solution out of the optimal Pareto set of 

solutions. The optimum parameters of the cleaning mechanism are determined by 

applying the condition of the dynamic equivalent point mass system and presented in 

Table 3.6. 

Table 3.5. The RMS values of the dynamic quantities for the cleaning mechanism 

 

Driving torque 

(N-m) 

Shaking force 

(N) 

Shaking moment (N-

m) 

Original Mechanism 226.96 1503.00 3067.80 

GA  

(w1 = 0.5,w2 = 0.5) 
44.3056                

(-80.45%) 

175.86 

(-88.16%) 

575.2204 

(-81.25%) 

Jaya algorithm 

(w1 = 0.5,w2 = 0.5) 

39.7603 

(-82.48%) 

184.0337 

(-87.76%) 

520.39 

(-83.037%) 

Solution 1 
39.71 

(-82.50) 

183.28  

(-87.80%) 

520.18 

(-83.05%) 

Solution 2 
43.69 

(-82.50) 

176.89 

      (-87.80%) 

566.86  

(-83.05%) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10. Simulation of the cleaning mechanism using ADAMS software 

#1 

#2 

#3 
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Fig. 3.11.  Input torque variation in the original and optimized cleaning mechanism 

for the complete cycle of crank 

The original and optimized configurations of the mechanism is modelled and 

simulated using MSC ADAMS software as shown in Fig.3.10. The input torque 

variation of the original and optimized mechanism is obtained using ADAMS Software 

as shown in Fig. 3.11. Generally, the input torque is generated by PTO of the tractor to 

run the mechanism. Therefore, it must be minimum for better performance of the 

thresher machine. It is found that the optimized mechanism reduces the maximum and 

minimum values of input torque about 82.49 %, and 82.50% corresponds to the original 

value. 

Table 3.6. Optimum parameters of the balanced cleaning mechanism using solution 1 

Link i 𝒓𝒊 (m) 𝒎𝒊 (kg) 𝑰𝒊
𝑮 (kg-𝒎2) 

Mass center location 

rig 

(m) 

θi 

(deg) 

#1 0.020 0.668 4.62e-05 0.0089 245.445 

#2 0.239 0.302 7.12e-04 0.1244 359.78 

#3 0.139 6.022 5.1683 0.3761 84.1161 

#0 0.216 - - - - 

 

3.7. Summary 

In this chapter, the multi-objective optimization problem with minimization of the 

shaking force and shaking moment developed in the cleaning mechanism of the thresher 

machine is formulated using the concept of the dynamically equivalent point mass 
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system. The parameters of this system define the inertial properties of each moving link 

and are also considered as the design variables in the formulated optimization problem. 

The priori approach based algorithms like GA and Jaya, and the posteriori approach 

based algorithm as non-dominated sorting Jaya algorithm (NSJAYA) are applied to 

solve the formulated problem. It is observed that NSJAYA is computationally more 

efficient than the GA and Jaya algorithm. In this study, NSJAYA is used the first time 

for the balancing problem of the planar mechanism. The RMS Values of the shaking 

force and shaking moment are reduced using the optimum design parameters of solution 

1 up to 87.80%, and 83.05%, respectively correspond to those of the original 

mechanism.  

The original and optimized configurations of the mechanism is modelled and 

simulated using MSC ADAMS software. It is found that a balanced mechanism reduces 

the maximum and minimum values of input torque about 82.49 %, and 82.5% 

corresponds to the original value.  

The proposed approach helps the designer for choosing the more alternatives based 

on the importance of objectives. Other planar and spatial mechanisms can also be 

balanced efficiently using the proposed approach. 
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Mixed variable optimization algorithms 

The mixed variable optimization problems consist of the continuous, integer, and 

discrete variables generally used in various engineering optimization problems. These 

variables increase the computational cost and complexity of optimization problems due 

to the handling of variables. Moreover, there are few optimization algorithms which 

give a globally optimal solution for non-differential and non-convex objective 

functions.  

This chapter proposes a modified Jaya algorithm for solving mixed variable      

optimization problems. Initially, the Jaya algorithm was developed by Rao in 2016, but 

it is used for continuous variable optimization problems. Therefore, the Jaya algorithm 

is further extended to solve mixed variable optimization problems. In the proposed 

algorithm, continuous variables remain in the continuous domain while continuous 

domains of discrete and integer variables are converted into discrete and integer 

domains applying bound constraint of the middle point of corresponding two 

consecutive values of discrete and integer variables. The effectiveness of the proposed 

algorithm is evaluated through examples of mixed variable optimization problems 

taken from the previous research works, and optimum solutions are validated with other 

mixed variable optimization algorithms.  

4.1. Formulation of mixed variable optimization problems 

This section describes the formulation of mixed variable optimization problems. 

Generally, these optimization problems are formulated similarly as general 

optimization problems, the only difference that variables may be any form of an integer, 

discrete and continuous. The optimization problems based on continuous and discrete 

variables are known as continuous and discrete optimization problems, respectively, 

while problems associated with discrete, integer, and continuous variables are known 

as mixed variable optimization problems.  

The mixed variable optimization problems are defined in mathematical form as: 
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 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑍(𝒙), 

             𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜:    𝑔𝑠(𝒙) ≤ 0,    𝑠 = 1,2,⋯ , 𝑐𝑖𝑛 

𝒙 = [𝐱𝐜, 𝐱𝐢𝐧𝐭, 𝐱𝐝]𝐓

= [x1
c, x2

c . , , xnc
c  , x1

int, x2
int. , . , . , , xnint

int , x1
d, x2

d. , . , . , . , xnd
d ] 

𝑥𝑖
𝑑 ∈ 𝐷𝑖 , 𝐷𝑖(𝑑𝑖1, 𝑑𝑖2, 𝑑𝑖3 …………𝑑𝑖𝑚𝑖

),   𝑖 = 1, . , . 𝑛𝑑                                      

𝑥𝑖
𝑖𝑛𝑡 ∈ 𝐺𝑖, 𝐺𝑖(𝑔𝑖1, 𝑔𝑖2, 𝑔𝑖3 …………𝑔𝑖𝑞𝑖

),   𝑖 = 1, . , . , . , . 𝑛𝑖𝑛𝑡 

𝑥𝑖
𝑐𝐿 ≤ 𝑥𝑖

𝑐 ≤ 𝑥𝑖
𝑐𝑈;  𝑥𝑖

𝑑𝐿 ≤ 𝑥𝑖
𝑑 ≤ 𝑥𝑖

𝑑𝑈;  𝑥𝑖
𝑖𝑛𝑡𝐿 ≤ 𝑥𝑖

𝑖𝑛𝑡 ≤ 𝑥𝑖
𝑖𝑛𝑡𝑈     

(4.1) 

Where Z(𝐱) and g(𝐱) denotes the objective functions and non-equality constraints, 

respectively. ‘𝑐𝑖𝑛’ denotes the numbers of total inequality constraints. 𝐱 =

[𝐱𝐜, 𝐱𝐢𝐧𝐭, 𝐱𝐝]𝐓 is the vector of design variables. 𝐱𝐜, 𝐱𝐝, 𝐚𝐧𝐝 𝐱𝐢𝐧𝐭 present the vector of 

continuous, discrete and integer variables, respectively. nc, 𝑛𝑑  and 𝑛𝑖𝑛𝑡 present the 

number of continuous, discrete and integer variables, respectively. The total number of 

variables is given as n = nc + 𝑛𝑖𝑛𝑡 + 𝑛𝑑. dij and gij are the 𝑗𝑡ℎ discrete and integer 

values for 𝑖𝑡ℎ  variable, respectively. mi and qi are the number of discrete and integer 

values for 𝑖𝑡ℎ variable, respectively. Di and Gi are set of discrete values and integer 

values for the 𝑖𝑡ℎ  variable, respectively. Although, the number of discrete values may 

be different for each variable. xi
cL, xi

dL, and xi
intL are the lower bounds of the 

𝑖𝑡ℎ continuous, discrete and integer variables, respectively. xi
cU, xi

dU, and xi
intU are the 

upper bounds of the 𝑖𝑡ℎ continuous, discrete and integer variables, respectively. If there 

are any equality constraints in the optimization problem, these can be converted into 

inequality constrained.  

The constraint optimization problem described in Eq. (4.1) is changed into an 

unconstrained optimization problem using penalty function (Singh et al., 2017). The 

objective function is penalized for an infeasible solution for each constraint violation. 

Hence, the global optimum solutions, those satisfy all the constraints, are obtained. 

Finally, the unconstrained optimization problem is posed as a combination of the 

objective function and penalty function.  

 𝜑(𝑥) = 𝑓(𝒙) + ∑𝐶𝑗 ∗ 𝑝𝑗

𝑐𝑖𝑛

𝑗=1

 (4.2) 

 𝒙𝒊
𝑳 ≤ 𝒙𝒊 ≤ 𝒙𝒊

𝑼  (4.3) 
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Where p𝑗 (𝑗 = 1. , . , 𝑐𝑖𝑛) presents the penalty value of 105 assigned to objective 

function for constraint violation. The Boolean Function (Mundo et al., 2009) is 

represented by Cj defined as: 

 Cj = {
0     if gs(x) ≤ 0 
1           otherwise

 (4.4) 

4.2. A modified Jaya algorithm for mixed variable optimization problems 

This section describes a modified Jaya algorithm proposed for mixed variable 

optimization problems. However, the original Jaya algorithm was developed by Rao in 

2016. It is a population-based evolutionary algorithm that does not require any 

parameter for its convergence. It works only on one phase compared to TLBO that 

works on two phases (teacher and learner phases). This algorithm converges rapidly 

toward the optimal solution in each iteration (Rao, 2019; Rao, R. V. et al., 2017). The 

readers may use reference (Rao, 2016) for the flowchart of original Jaya algorithm. 

Generally, continuous variables are converted into noncontiguous variables using 

rounding off operators. Rounding-off operation of a continuous variable may violate 

the constraints due to the existence of optimal continuous solutions on the boundaries 

of the functional constraints. Further, researchers are checked optimum values for 

integer and discrete variables before rounding-off corresponding continuous variables 

so that constraints are not violated after rounding-off. Although, this operation 

increases calculation time. 

Therefore, the original Jaya algorithm is modified to handle the various design variables 

in optimization problems without violation of constraints. This algorithm has not any 

algorithmic parameter and converges fast to the optimal global solution. This algorithm 

begins with the initialization of parameters. Initial solutions of all variables are 

generated in continuous space randomly. Further, continuous variables remain in 

continuous space while the continuous domain of discrete/ integer variables is 

converted into discrete domain by using the bound constraint of a middle point of 

corresponding two consecutive values of discrete and integer variables. Such as 

continuous solutions of discrete and integer variables (𝑥𝑖𝑗
𝑛𝑐) lie 

between corresponding discrete values  𝑥𝑛𝑐(𝑘) and 𝑥𝑛𝑐(𝑘 + 1). Then, continuous 

solutions of discrete and integer variables are converted into discrete solutions as If 

𝑥𝑖𝑗
𝑛𝑐 ≤

𝑥𝑛𝑐(𝑘)+𝑥𝑛𝑐(𝑘+1)

2
, 𝑥𝑖𝑗

𝑛𝑐 = 𝑥𝑛𝑐(𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑥𝑖𝑗
𝑛𝑐 = 𝑥𝑛𝑐(𝑘 + 1) as shown in 

Fig.4.1. Further, best and worse solutions of the objective function are compared with 
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previous solutions at each iteration. Thus, the best solution is stored, and the worse 

solution is updated in each iteration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. A modified Jaya algorithm for mixed variable optimization problems 

The procedure of this algorithm continues until the termination criteria are satisfied. 

The termination criteria are described by function evaluations and the number of 
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𝑐  
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2
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  𝑥𝑖
𝑑 ∈ 𝐷𝑖 , 𝐷𝑖(𝑑𝑖1, 𝑑𝑖2, 𝑑𝑖3 …………𝑑𝑖𝑚𝑖

),   𝑖 = 1, . , . , . , . 𝑛𝑑                 𝒙
𝑳 ≤ 𝒙 ≤ 𝒙𝑼 

𝑥𝑖
𝑖𝑛𝑡 ∈ 𝐺𝑖 , 𝐺𝑖(𝑔𝑖1, 𝑔𝑖2, 𝑔𝑖3 …………𝑔𝑖𝑞𝑖

),   𝑖 = 1, . , . , . , . 𝑛𝑛𝑖𝑛𝑡    Set the termination criteria 

 

Evaluate the fitness function (Eq. (4.2)) and extract the best 𝑥𝑏𝑒𝑠𝑡  and worse 𝑣𝑎𝑙𝑢𝑒𝑠 
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Is bound constraint, 

 Eq. (4.3), satisfied? 𝑥𝑖𝑗
′ = 𝑚𝑖𝑛(𝑈𝑖 , 𝑥𝑖𝑗

′ ) 

𝑥𝑖𝑗
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generations. The number of function evaluations is the product of the number of 

iterations and initial populations or population size, i.e. (The number of function 

evaluations=  population size × no. of iterations). So, function evaluations are not 

affected by design variables, but the computational time of the algorithm can be 

increased. Generally, an algorithm is efficient if it takes the fewer number of function 

evaluations. The detailed procedure of this algorithm is explained by the flowchart as 

shown in Fig. 4.1.  Moreover, this algorithm reduces the computational effort than the 

other mixed optimization algorithms. However, the first time it is applied to mixed 

optimization problems in this study. 

4.3. Design Problems 

In this section, the effectiveness of the proposed algorithm as described in the previous 

section is validated through five design problems taken from literature. These design 

problems have been tested by other evolutionary mixed optimization algorithms such 

as EP(Cao, 2000), EA(Deb, 1997), GAs(Coello et al., 2001; Rajeev and 

Krishnamoorthy, 1992; Rao and Xiong, 2005; Wu and Chow, 1995), PSOs(Guo et al., 

2004; He et al., 2004; Kitayama et al., 2006; Li et al., 2009; Nema et al., 2008; Sun et 

al., 2011), ACO (Camp and Bichon, 2004) , ABC (Sonmez, 2011), TLBO (Dede, 2014), 

SAs(Kripka, 2004; Zhang and Wang, 1993). However, these problems involve 

continuous, discrete, and integer variables. Moreover, the optimum results of the 

proposed algorithm are validated to optimum solutions achieved by other algorithms. 

This algorithm is implemented in Mat Lab 2014. 

4.3.1. Example 1: Design of a welded beam 

This design problem includes mixed variables taken from (Lampinen and Zelinka, 

1999; Nema et al., 2008) and objective of this example is to determine the minimum 

cost of the welded beam design shown in Fig.4.2. There are seven nonlinear and linear 

constraints. The length of the welded joint (𝑙), the thickness of the weld (ℎ), the bar 

breadth (b) and the bar thickness (𝑡) are taken as design variables. 𝑙 and ℎ are two 

integer variables, while b and t are two discrete variables whose values are multiples of 

0.5. These design variables are defined in vector form as 𝒙 = [ 𝑥1, 𝑥2, 𝑥3 , 𝑥4]
𝑇 =

[𝑙, ℎ, 𝑏, 𝑡]𝑇 
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Fig. 4.2. Welded beam design (Nema et al., 2008) 

The optimization formulation of this design is given as  

 

min 𝑓(𝑥) = 1.10471𝑥2
2𝑥1 + 0.04811𝑥3𝑥4(14 + 𝑥1) 

Subjected to 

𝑔1(𝑥) = 𝑥2 − 𝑥3 ≤ 0

𝑔2(𝑥) = 𝜎(𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0

𝑔3(𝑥) = 0.10471𝑥2
2 + 0.04811𝑥3𝑥4(14 + 𝑥1) − 5.0 ≤ 0

𝑔4(𝑥) = 𝜏(𝑥) − 𝜏𝑚𝑎𝑥 ≤ 0

𝑔5(𝑥) = 0.125 − 𝑥2 ≤ 0

𝑔6(𝑥) = 𝑃 − 𝑃𝑐(𝑥) ≤ 0

𝑔7(𝑥) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥 ≤ 0
0.1 ≤ 𝑥1 ≤ 10.0
0.1 ≤ 𝑥2 ≤ 2.0
𝑥3, 𝑥4 ∈ [0.5,1.0,1.5,2.0,2.5, . , . , . , . , . , . , . , . , . , . , .9.5,10.0] }

 
 
 
 
 

 
 
 
 
 

 

(4.5) 

Where 

𝛿(𝑥) =
4𝑃𝐿3

𝐸𝑥4
3𝑥3

, 𝜎(𝑥) =
6𝑃𝐿

𝑥3𝑥4
2  , 𝑃𝑐(𝑥) =

4.013√𝐸𝐺(𝑥4
2𝑥3

6 36⁄ )

𝑙2
(1 −

𝑥4

2𝐿
√

𝐸

4𝐺
)  

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ (𝜏′′)2 , 𝜏′ =

𝑃

√2𝑥1𝑥2

, 𝜏′′ =
𝑀𝑅

𝐽
,𝑀 = 𝑃 (𝐿 +

𝑥1

2
) , 𝑅

= √
𝑥1

2

4
+ (

𝑥2 + 𝑥4

2
)
2

 

𝐽 = 2√2𝑥1𝑥2 (
𝑥1

2

12
+ (

𝑥2 + 𝑥4

2
)
2

) 

The design parameters are taken as  

𝑃 = 6000𝑙𝑏, 𝐸 = 30 × 106𝑙𝑏𝑓 𝑖𝑛2⁄ , 𝐺

= 12 × 106𝑙𝑏𝑓 𝑖𝑛2, 𝐿 = 14 𝑖𝑛, 𝜏𝑚𝑎𝑥 = 13600 𝑙𝑏𝑓 𝑖𝑛2⁄ ,⁄ 𝛿𝑚𝑎𝑥

= 0.25𝑖𝑛, 𝜎𝑚𝑎𝑥 = 30000 𝑙𝑏𝑓 𝑖𝑛2⁄  
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Table 4.1. Optimum designs of the welded beam 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. Convergence graph of best and mean values of objective function for welded 

beam design 

20 initial populations and 30 iterations are chosen for this design example. The best 

objective function values and the mean of all function values corresponding to the best 

run are obtained in 20 independent runs. Convergence performance of best and mean 

values of the objective function is presented in Fig.4.3. The best and mean values of the 

objective function are obtained in 600 function evaluations as 4.3521and 4.3521, 
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respectively. The optimum solutions of the welded beam design are validated with the 

optimum solutions of other algorithms as shown in Table 4.1. Table 4.1 presents that 

the proposed algorithm gives a better optimum design than that of (Rao and Xiong, 

2005) and equal to that of (Nema et al., 2008; Sun et al., 2011). But, the proposed 

algorithm takes less function evaluation for finding the best objective function value 

compared to other evolutionary optimization algorithms. 

4.3.2. Example 2: Pressure Vessel Design 

This design deals with the pressure vessel design taken from the literature 

(Sandgren, 1990) as shown in Fig.4.4. The objective of this design is to minimize the 

manufacturing cost of the pressure vessel with specific design constraints. The design 

variables are taken as shell thickness(′𝑇𝑠′), spherical head thickness (′𝑇ℎ′), radius (′𝑅’), 

and shell length (′𝐿’).  𝑇𝑠 and 𝑇ℎ are the discrete variables whose values are multiples 

of 0.0625 inches while 𝑅 and 𝐿 are defined as continuous variables. Design variables 

are described in vector form as  

𝒙 = [ 𝑥1, 𝑥2, 𝑥3 , 𝑥4]
𝑇 = [ 𝑇ℎ, 𝑇𝑠, 𝑙 , 𝑅]𝑇 

 

 

 

 

 

Fig. 4.4. Pressure vessel design (Sandgren, 1990) 

The optimization problem is posed (Sandgren, 1990) as: 

min    𝑓(𝒙) =0.6224𝑥2𝑥3𝑥4 + 1.7781𝑥1𝑥4
2 + 3.1661𝑥2

2𝑥3 + 19.84𝑥2
2𝑥4 

Subjected to 

𝑔1(𝒙) = 0.0193𝑥4 − 𝑥2 ≤ 0

𝑔2(𝒙) = 0.00954𝑥4 − 𝑥1 ≤ 0

𝑔3(𝒙) = 1296,000 − 𝜋𝑥4
2𝑥3 −

4

3
𝜋𝑥4

2 ≤ 0

𝑔4(𝒙) = 𝑥3 − 240 ≤ 0
10 ≤ 𝑥3 ≤ 200
10 ≤ 𝑥4 ≤ 200

 𝑥1, 𝑥2 ∈ [0.0625,0.1250,0.1875, 0.2500, . , . , . , . , . , . ,6.00,6.0625,6.1250,6.1875]}
 
 
 
 

 
 
 
 

 

(4.6) 
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Fig. 4.5.  Convergence of best and mean values of objective function for pressure 

vessel design 

Table 4.2.  Optimum solutions for design of pressure vessel  

Design 

variables 

(𝒙) 

EP 

(Cao, 

2000) 

EA 

(Deb, 

1997) 

GA 

(Coello 

et al., 

2001) 

PSO 

(He et 

al., 

2004) 

HPB 

(Nema et 

al., 2008) 

 MPSO 

(Sun et 

al., 2011) 

This 

Study 

𝑥1 0.625 0.5 0.4375 0.4375 0.4375  0.4375 0.4375 

𝑥2 1 0.9345 0.8125 0.8125 0.8125  0.8125 0.8125 

𝑥3 90.7821 112.679 176.654 176.6366 176.6366  176.636792 176.636792 

𝑥4 51.1958 48.329 40.0974 42.09845 42.09845  42.098446 42.098446 

𝑓(𝑥) 7108.616 6410.381 6059.946 6059.714 6059.714  6059.718932 6059.700 

Function 

Evaluations 

100000 42000 30000 30,000 4013  4,00000 2000 

Constraints 

violation 

None None None None None  None None 

 

The number of iterations and initial populations are considered as 100 and 20 

respectively for this example. Ten independent runs are chosen to find the best values 

of the objective function and mean of all objective function value corresponding to the 

best run. The convergence rate of best and mean objective function values are shown 
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in Fig. 4.5. The best and mean values of the objective function are obtained in 2000 

function evaluations as 6059.70 and 6059.74, respectively. The optimum results for the 

design of pressure vessel are shown in Table 4.2. Table 4.2 shows that the optimum 

value of the objective function is better than that of other optimization algorithms.  

Moreover, the proposed algorithm takes less function evaluation for finding the best 

objective function value compared to different evolutionary optimization algorithms.  

4.3.3. Example 3: 10-Bar Planar Truss design 

A 10 bar planar truss design is taken as an optimization problem shown in Fig.4.6 

(Rajeev and Krishnamoorthy, 1992). In this truss structure design, a minimization 

optimization problem is formulated by considering the weight of the truss as the 

objective function with the constraints of displacements at each nodal point and the 

stress induced in each member. This problem is based on discrete optimization 

problems in which cross-sectional areas of each member are discrete variables. The 

nodes 2 and 4 are subjected to a vertical nodal load of 100 kips. Modulus of elasticity 

of the material of each bar and density are considered as E = 10,000 ksi and ρ =

0.1 lb/in3 respectively. The allowable displacements for the free nodes and the 

allowable stress for all members are taken as ± 2 inch. in both directions and ± 25 ksi 

respectively. 10 discrete design variables and their values are selected from the standard 

values 𝐷 =  1.62, 2.38,1.99, 1.80, 2.13, 2.62,2.88, 3.09, 2.93, , 2.63,3.13, 3.38, 3.47, 

3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 

11.5, 13,5, 14.2, 13.9, 15.5, 16.0, 16.9, 18.8, 1.99, 22.0, 22.9, 26.5, 30.0, 33.5} (inch2) 

[10]. The vector form of design variables is expressed as: 

𝒙 = [xi] = [Ai]   𝑖 = 1 𝑡𝑜 10 

 

 

 

 

 

 

 

 

 

Fig. 4.6.  A planar 10 bar truss structure(Rajeev and Krishnamoorthy, 1992) 
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The formulation of the problem is presented as: 

𝑚inimize weight (f) = ∑ρxiLi

n

i=1

 

Subjected to  

   

σi

σa
− 1 ≤ 0

ui

ua
− 1 ≤ 0

} 

(4.7) 

 

Where 𝐿𝑖, 𝜎𝑖, 𝑢𝑖 and 𝐴𝑖 are the length, stresses, deflection and of cross-sectional 

area ith member respectively. 

For this problem, the initial populations and the number of iterations are set to 10 

and 95, respectively. 10 independent runs are performed to find out the best values of 

the objective function, and the mean of all objective function values correspond to the 

best run. The best and mean values of the objective function in 10 runs are 5,490.74 

and 5,493.54, respectively. This algorithm takes 950 function evaluations.  

Convergence plot of best and mean values of the objective function is shown in Fig.4.7. 

The comparison of optimum solutions for planar 10 bar truss is presented in Table 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7. Convergence of best and mean values of objective function for planar 10-

bar planar truss 
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Table 4.3. Comparison of Optimum solutions for planar 10-bar truss structure 

 

Table 4.3 shows that the optimum objective function value is better than that of (Rajeev 

and Krishnamoorthy, 1992), (Li et al., 2009) and close to that of (Camp and Bichon, 

2004), (Sonmez, 2011), (Dede, 2014), (Kripka, 2004), and (Rao, 2016) . But, the 

proposed algorithm takes less function evaluation for finding the best objective function 

value compared to other evolutionary optimization algorithms. Thus, the proposed 

approach is more efficient and reduces the computational efforts. 

4.3.4. Example 4: A helical spring design 

This example consists of the design of helical spring under the constant and axial 

load as shown in Fig.4.8 (Nema et al., 2008). The minimization of spring weight is 

considered as an objective function with certain inequality constraints. The number of 

spring coils (N), the outside diameter of the spring (D), and the spring wire diameter 

(d) are the design variables. This problem involves integer, discrete and continuous 

variables. Where, the number of coils (N) is an integer variable, outside diameter of the 

spring (D) is a continuous variable and the spring wire diameter is a discrete variable, 

whose standard values are chosen. Design variables are in vector form as: 

 𝒙 = [ 𝑥1, 𝑥2, 𝑥3 ]
𝑇 = [𝐷, 𝑁, 𝑑]𝑇 

The formulation of the optimization problem is posed as: 

Design 

variables 

(in2) 

GA 

(Rajeev 

and 

Krishna

moorthy

, 1992) 

SA 

(Kripka, 

2004) 

HPSO 

(Li et 

al., 

2009) 

ACO 

(Camp 

and 

Bichon, 

2004) 

ABC 

(Sonme

z, 2011) 

TLBO 

(Dede, 

2014) 

Jaya 

(Rao, 

2016) 

This 

study 

A1 33.5 33.5 30     33.5 33.5 33.5 33.5 33.5 

A2 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

A3 22 22.9 22.9 22.9 22.9 22.9 22.9 22.9 

A4 15.5 14.2 13.5 14.2 14.2 14.2 14.2 14.2 

A5 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

A6 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 

A7 14.2 7.97 7.97 7.97 7.97 7.97 7.97 7.97 

A8 19.9 22.9 26.5 22.9 22.9 22.9 22.9 22.9 

A9 19.9 22 22 22 22 22 22 22 

A10 2.62 1.62 1.8 1.62 1.62 1.62 1.62 1.62 

W(lb) 5,613.84 5,490.74 5,531.9 5,490.74 5,490.74 5,490.74 5,490.74 5,490.74 

Function 

Evaluation 
N/A N/A 50,000 10,000 25,800 1,000 950 950 

Constraints 

violation 
none none none none none none none none 



  

  59 

min f(x) =
π2x2x1

2(x3 + 2)

4
 

Subjected to 

g1(x) =
8CfFmaxx2

πx3
3 − S ≤ 0

g2(x) = lf − lmax ≤ 0

g3(x) = dmin − x3 ≤ 0

g4(x) = x2 − Dmax ≤ 0

g5(x) = 3.0 −
x1

x3
≤ 0

g6(x) = δ − δm ≤ 0

g7(x) = δ +
Fmax − F

K
+ 1.05(x2 + 2)x3 − lf ≤ 0

g8(x) = δw −
Fmax − F

K
≤ 0

0.6 ≤ x1 ≤ 3
1 ≤ x2 ≤ 70
x3 ∈ [.009,0.0095,0.0104,0.0118,0.0128,0.0132,0.014,0.015,0.0162,0.0173,0.018,0.020,0.023,
0.025,0.028,0.032,0.035,0.041,0.047,0.054,0.063,0.072,0.080,0.092,0.105,0.120,0.135,0.148

0.162,0.177,0.192,0.207,0.225,0.244,0.263,0.283,0.307,0.331,0.362,0.394,0.4375,0.500]
 }

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

(4.8) 

 

Where  

Cf =
4 (

x1

x3
) − 1

4 (
x1

x3
) − 4

+
0.615x3

x1

, K =
Gx3

4

8x2x1
3 , δ =

F

K
, lf =

Fmax

K
+ 1.05(x2 + 2)x3 

 

The values of predefined parameters of spring are given as 

Fmax = 1000.0 lb, lmax = 14.0 in, dmin = 0.2 in, S = 189000.0 lbf in2⁄ , dmax = 3.0 in, F

= 300.0 lb        

δm = 6.0 in, δw = 1.25 in, G = 11.5 × 106lbf in2⁄  

 

 

Fig. 4.8. Design of helical spring (Nema et al., 2008) 
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Table 4.4.  Optimal solutions comparison for the spring design 

Design 

variables (x) 

EA 

(Deb, 

1997) 

DE(Lampinen 

and Zelinka, 

1999) 

PSO (He 

et al., 

2004) 

HPB(Nema 

et al., 2008) 

MPSO 

(Sun et al., 

2011) [6] 

This 

study 

𝑥1 1.226 1.223041 1.223041 1.223041 1.223041 1.2231 

𝑥2 9 9 9 9 9 9 

𝑥3 0.283 0.283 0.283 0.283 0.283 0.283 

𝑓(𝑥) 2.665 2.65856 2.65856 2.6585 2.6585 2.6586 

Function 

Evaluations 
30000 30000 30,000 835 10,000 800 

Constraints 

violation 
None None None None None None 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9. Convergence characteristic of objective function for spring design 

For this design problem, the number of iterations and initial populations are set to 40 

and 20, respectively. Twenty independent runs are chosen to find the best values of the 

objective function and mean of all objective function values corresponding to the best 

run. Convergence performance of best and mean objective function values are shown 

in Fig.4.9. The best and mean values of the objective function are obtained in 800 

function evaluations as 2.6585 and 2.7746, respectively. The optimum design of the 

spring is validated with the results obtained by other algorithms as shown in Table 4.4. 
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Table 4.4 shows that the proposed algorithm gives a better optimum value of the 

objective function than that of (Deb, 1997) and equal to that of (Lampinen and Zelinka, 

1999), (He et al., 2004; Nema et al., 2008; Sun et al., 2011). But, the proposed algorithm 

takes less function evaluation for finding the best objective function value compared to 

other evolutionary optimization algorithms. 

4.3.5. Example 5: Compound gear train design  

 

Fig. 4.10. Gear train design (Guo et al., 2004) 

The purpose of this design is to obtain the optimum gear ratio of the gear train 

arrangement as presented in Fig.4.10 (Guo et al., 2004). The ratio of the output shaft 

angular velocity to the input shaft angular velocity is known as the gear ratio of the gear 

train. The effective overall gear ratio 𝐺𝑟 is expressed as; 

𝐺𝑟 =
𝜔𝑜𝑢𝑡

𝜔𝑖𝑛
=

𝑇𝑏𝑇𝑑

𝑇𝑎𝑇𝑓
 

Where ωin and ωout represent input and output shafts angular velocities, 

respectively, and, the number of teeth of each gear is represented by ‘T’. Each gear's 

teeth number is taken as design variables. However, all design variables are integers 

whose values lie between 12 and 60. A vector form of design variables is expressed as  

𝒙 = [𝑇𝑏 𝑇𝑑 𝑇𝑎 𝑇𝐹]
𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4]

𝑇 

The optimization problem is posed as: 

Min 𝑓(𝑥) = (
1

6.931
−

𝑥1𝑥2

𝑥3𝑥4
)
2

  

12 ≤ 𝑥𝑖 ≤ 60 ,     𝑖 = 1 𝑡𝑜 4 

(4.9) 

The initial populations of 150 and the number of iterations of 100 are decided for 

this example. The best value of the objective function and the mean of all function 

values corresponding to the best run are obtained for 30 independent runs. Convergence 

performance of objective function values is shown in Fig. 4.11. The best and mean 

values of the objective function are obtained in 15000 function evaluations as 2.7 ×
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10−12 and 1.4311 × 10−7, respectively. The optimum design of the gear train is 

validated with the design achieved by other algorithms as shown in Table 4.5. Table 

4.5 presents that the proposed algorithm gives nearly same optimum solution of the 

objective function to that of the different evolutionary algorithm. But, it minimizes the 

percentage of error known as the difference between the mean and best values of 

objective functions, compared to other optimization algorithms. Thus, the proposed 

algorithm can be effectively applied to integer optimization problems. 

 

Fig. 4.11. Convergence graph of best and mean values of objective function for gear 

train design 

Table 4.5. Optimal design for the compound gear train 
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Design 

variables 

(x) 

SA(Zhang 

and Wang, 

1993) 

EP(Cao, 

2000) 

HSIA(Guo et 

al., 2004) 

MPSO (Sun 

et al., 2011) 

Jaya (Rao, 

2016) 
This study 

x1
 30 30 16 16 16 16 

𝑥2
 15 15 19 19 19 19 

𝑥3
 52 52 43 43 43 43 

𝑥4
 60 60 49 49 49 49 

𝑓(𝑥) 2.36 × 10−6 2.36 × 10−6 2.7 × 10−12 2.7 × 10−12 2.7 × 10−12 𝟐. 𝟕 × 𝟏𝟎−𝟏𝟐 

Function 

Evaluations 
- - - 4,00000 18000 15000 

% error 0.033 0.033 0.0011 0 9.8 × 10−13 𝟗. 𝟖 × 𝟏𝟎−𝟏𝟑 

Gear ratio 0.14423 0.14423 0.14428 0.14428 0.14428 0.14428 
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4.4. Summary 

In this chapter, a modified Jaya algorithm is proposed for the mixed variable 

optimization problems. Original Jaya algorithm has been developed for continuous 

optimization problems. Therefore, Jaya algorithm is further extended for solving the 

mixed variable optimization problems. In the proposed algorithm, continuous variables 

remain in the continuous domain while continuous domains of discrete and integer 

variables are converted into discrete and integer domains applying bound constraint of 

the middle point of corresponding two consecutive values of discrete and integer 

variables.  

Furthermore, the efficiency of a modified Jaya algorithm is demonstrated by five design 

problem taken from literature. Moreover, the optimum results obtained from the 

proposed algorithm are compared with those of well-known optimization algorithms. 

The results show that it takes fewer function evaluations without violation of the design 

constraints and gives the better and nearly close results compared to other optimization 

algorithms. Other mixed, continuous, and discrete variable optimization problems can 

also be effectively solved using this algorithm. Hence, a modified Jaya algorithm may 

be an essential tool for a wide range of mixed variables problems. 
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Optimal two-plane discrete balancing  

This chapter presents the optimum two-plane discrete balancing procedure for the rigid 

rotor. The discrete two-plane balancing in which rotor is balanced to minimize the 

residual effects or the reactions on the bearing supports using discrete parameters such 

as masses and their angular positions on two balancing planes. A multi-objective 

optimization problem is formulated by considering reaction forces on the bearing 

supports as multi-objective functions and discrete parameters as the design variables. 

These multi-objective functions are converted into a single-objective function using 

appropriate weighting factors. The formulated problem is solved using a modified Jaya 

algorithm explained in chapter 4. It is found that the modified Jaya algorithm is 

computationally more efficient than the genetic algorithm (GA). A number of masses 

per plane are used to balance the rotor. A comparison of reaction forces using the 

number of masses per plane is also investigated. The effectiveness of the proposed 

methodology is tested by the balancing problem of rotor available in the literature. It is 

also applied for the balancing of the threshing drum. Automated dynamic analysis of 

mechanical systems (ADAMS) software and experimental tests are used for validation 

of a developed balancing approach. 

5.1. Dynamic model of rigid rotor 

The balancing of the rotor using the numbers of masses at a corresponding angular 

position is investigated in this section. The rigid rotor requires two planes for its 

balancing, while the flexible rotor requires multiple planes for its balancing. Further, 

reaction forces acting on the bearings are calculated using Newton-Euler equation. A 

rigid rotor of mass (M) is mounted on bearings P and Q shown in Fig.5.1. A coordinate 

system (𝑥 𝑦, 𝑧) is fixed coordinate system while rotating coordinate system (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) 

is attached to the shaft rotating at a constant angular velocity ω about the z-axis. The 

origin of the coordinate system is denoted by the point ’O.’ Two balance planes are 

considered which are centered at points 𝑐1 and 𝑐2,  respectively.  The center of mass of 

the rotor ‘G’ is eccentric at a distance of ‘e’ from the axis of rotation due to unbalance 

of the rotor. 𝑭𝑷 and 𝑭𝑸 are the unbalance reaction forces acting at angle 𝜃𝑃 and 𝜃𝑄 on 

the bearings P and Q, respectively.  𝑙𝑃 and 𝑙𝑄 are lengths from ‘O’ to the bearings P and 
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Q respectively. Numbers of discrete masses 𝑚𝑖𝑗  (𝑗 = 1 𝑡𝑜 𝑁𝑖) placed at radius 𝑅𝑖 and 

angular positions 𝛼𝑖𝑗 measured from the 𝑥-axis, as shown in Fig. 5.1 on balance 

plane 𝑖 (𝑖 = 1,2) for rigid rotor, while (𝑖 = 1,⋯ , 𝑝) for flexible rotor. Where 𝑝 

represents the number of planes. 

The center of mass (‘G’) position is given as: 

OG(𝑒𝑥, 𝑒𝑦) 

𝑤ℎ𝑒𝑟𝑒 𝑒𝑥 = ecos(θ + ωt); 𝑒𝑦 = esin(θ + ωt) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Rigid rotor model 

Newton-Euler equations of motion (Chaudhary and Saha, 2009) for the rigid body are 

written as 

M𝐯̇ = 𝐟𝐎  (5.1) 

𝑰𝑮𝝎̇ + 𝝎̃𝑰𝑮𝝎 = 𝑴𝑶 (5.2) 

 

Where 𝐟𝐎 is the resultant of external forces which acting at supports, 𝐯̇ is linear 

acceleration of center of mass, 𝛚̇ is angular acceleration and 𝐌𝐎 is the resultant of all 

the external moments about point O. 𝐼𝐺  is Inertia tensor of the rotor given as 

 

𝐼𝐺 = [

Ixx Ixy Ixz
Ixy Iyy Iyz
Iyz Iyz Izz

] (5.3) 

The components of the reaction forces in 𝑥 and 𝑦 directions at supports of the rotor 

are determined using Eqs. (5.1) and (5.2), given in matrix form as 

Plane1 Plane2 

𝑥 

ω 
𝑧 = 𝑧𝑟 

      e G 
O 

θ 

𝑥𝑟 

yr 

𝜔𝑡 

𝑙1 𝑙2 

𝛼11 

 𝛼1𝑗 

𝑚12 

𝑚1𝑗 
𝑚11 

 

𝛼12 c

R2 𝛼21 

 𝛼2𝑗 

 

𝑚21 

 

𝛼22 

c

θQ θP 
𝑙𝑄 𝑙𝑃 
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[
 
 
 
1 0 1 0
0 1 0 1
𝑙𝑃 0 𝑙𝑄 0

0 𝑙𝑃 0 𝑙𝑄]
 
 
 

[
 
 
 
𝐹𝑝𝑥

𝐹𝑝𝑦

𝐹𝑄𝑥

𝐹𝑄𝑦]
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑀𝜔2𝑒𝑥+𝜔2 ∑∑(𝑚𝑖𝑗𝑅𝑖𝑐𝑜𝑠𝛼𝑖𝑗)

𝑁𝑖

𝑗=1

𝑝

𝑖=1

𝑀𝜔2𝑒𝑦+𝜔2 ∑∑(𝑚𝑖𝑗𝑅𝑖𝑠𝑖𝑛𝛼𝑖𝑗)

𝑁𝑖

𝑗=1

𝑝

𝑖=1

−𝐼𝑦𝑧𝜔
2 +𝜔2 ∑∑(𝑚𝑖𝑗𝑅𝑖𝑐𝑜𝑠𝛼𝑖𝑗)

𝑁𝑖

𝑗=1

𝑝

𝑖=1

𝑙𝑖

𝐼𝑥𝑧𝜔
2 +𝜔2 ∑∑(𝑚𝑖𝑗𝑅𝑖𝑠𝑖𝑛𝛼𝑖𝑗)

𝑁𝑖

𝑗=1

𝑝

𝑖=1

𝑙𝑖
]
 
 
 
 
 
 
 
 
 
 
 
 

   (5.4) 

 

Note that 𝑚𝑖𝑗 is the jth mass at the ith plane and 𝛼𝑖𝑗 is the angular position of 𝑚𝑖𝑗 

Now, the reaction forces at supports P and Q of the balanced rotor are obtained as 

FP = √FPx
2 + FPy

2   (5.5) 

FQ = √FQx
2 + FQy

2   (5.6) 

 

Where 𝐹𝑃𝑥, 𝐹𝑃𝑦 , 𝐹𝑄𝑥 ,and 𝐹𝑄𝑦 are the component forces at supports P and Q in 𝑥 and 𝑦 

directions, respectively, for balanced rotor. Further, the reaction forces at supports P 

and Q for unbalance rotor (when the number of balance mass per plane is zero) are 

calculated using Eq. (5.4) as 

FPO = √FPxO
2 + FPyO

2  (5.7) 

FQO = √FQxO
2 + FQyO

2    (5.8) 

Where 𝐹𝑃𝑥𝑂, 𝐹𝑃𝑦𝑂 , 𝐹𝑄𝑥𝑂 ,and 𝐹𝑄𝑦𝑂 are the component forces at supports P and Q, 

respectively, for unbalanced rotor. The reaction forces at supports P and Q are 

normalized in order to formulate the objective function of the optimization problem. 

The normalized forces FP,norm and  F𝑄,norm with respect to FPO and FQO are written 

respectively, as: 

FP,norm =
FP

FPO
    (5.9) 

FQ,norm =
FQ

FQO
  (5.10) 
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5.2. Formulation of discrete optimization problem  

Balancing of the rigid rotor using masses per balance plane is formulated as the 

optimization problem in this section. The main purpose of balancing is to minimize 

vibration effects. Therefore, the minimization of the reaction forces 𝐹𝑃 and 𝐹𝑄 acting at 

supports is expressed as multi-objective functions with discrete constraints on design 

variables. These multi-objective functions are transformed into a single objective 

function using appropriate weighting factors. The rotor is balanced by placing the 

masses at different angular positions at a fixed radius taken from the finite sets of 

masses and available angular positions, on each balancing plane. These masses and 

angular position per plane are taken as design variables, a 2𝑁𝑖-vector, 𝐗𝐢 of design 

variable for the ith plane is defined as: 

𝑿𝒊 = [mi1  αi1 mi2  αi2    mi3  αi3 …  miNi
  αiNi

]
𝑻
 (5.11) 

 Where 𝑚𝑖𝑗 and 𝛼𝑖𝑗 are 𝑗𝑡ℎ mass and corresponding angular position in the ith plane, 

respectively. Hence, the design variable 2∑ Ni
p
i=1 -vector, X, for a rotor having 𝑝 

balancing planes in case of the flexible rotor is given by: 

𝑿 = [𝑿𝟏
𝑻  𝑿𝟐 

𝑻  ⋯⋯𝑿𝒑 
𝑻 ]

𝑻
 (5.12) 

However, the rigid rotor requires two planes for its balancing. There are total 2 ∑ Ni
2
i=1  

design variables for the rigid rotor. They are expressed in vector form as  

𝑿 = [𝑿𝟏
𝑻   𝑿𝟐 

𝑻 ]
𝑻
 (5.13) 

Hence, the balancing procedure and the optimization formulation of the rotor will 

remain the same when the condition of the rotor changes from the rigid rotor to the 

flexible rotor. But, the design variables will be different for both rotors.   

Now, the optimization problem is posed as a weighted sum of the reaction forces acting 

at supports given as: 

Minimize 𝑍 = 𝑤1𝐹𝑃,𝑛𝑜𝑟𝑚 + 𝑤2𝐹𝑄,𝑛𝑜𝑟𝑚 

Discrete constraints defined as 

𝑋𝑖𝑗 ∈ 𝑑𝑖𝑗;  𝑑𝑖𝑗 = [𝑑𝑖𝑗1, 𝑑𝑖𝑗2, 𝑑𝑖𝑗3,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙, 𝑑𝑖𝑗𝐷𝑖𝑗
 ]  ;  𝑑 ∈  mij αij 

mij ∈  m1; m2; m3 …………… . ;𝑚𝐷1
 

αij ∈  α1; α2; α3 …………… . ; 𝛼𝐷2
  

}  for i = 1,2 and  j = 1,2. , . , . , . , . 𝑁𝑖  
}
 

 
 

(5.14) 

𝐿𝐵𝑖𝑗 ≤ 𝑋𝑖𝑗 ≤ 𝑈𝐵𝑖𝑗       (5.15) 

 

Where 𝑑𝑖𝑗 represents the set of discrete values for 𝑋𝑖𝑗 design variable, 𝐷𝑖𝑗 is the number 

of discrete values for 𝑋𝑖𝑗 design variable. 𝑑𝑖𝑗𝐾 represents the 𝑘𝑡ℎ  discrete values for 𝑋𝑖𝑗 
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design variable taken from the available discrete values of masses and corresponding 

angular positions. 𝐷1 and 𝐷2 are total numbers of discrete values of masses and discrete 

values of corresponding angular position, 𝑁𝑖 is the number of balancing masse for 

ith plane, 𝐿𝐵𝑖𝑗 and 𝑈𝐵𝑖𝑗 are the lower and upper bounds on the 𝑋𝑖𝑗 design variable, w1 

and w2 are the weighting factors assigned to forces acting at supports. The number of 

objective functions transforms into a single function using this approach. The various 

approaches for selection of the weighting factors are presented by (Marler and Arora, 

2004, 2010). The weights represent the relative importance of the various objectives. 

However, both the objective functions have equal importance. Therefore, 𝑤1 = 0.5 and 

𝑤2 = 0.5  are chosen for this study. 

5.3. Results and Discussions 

In this section, the effectiveness of the proposed methodology is tested through the 

numerical problems of static and dynamic unbalanced rigid rotor taken from the ref. 

(Messager and Pyrz, 2013) and, it is also applied to the unbalanced threshing drum. 

5.3.1. Numerical problem of the rigid rotor  

In this problem, a 60 kg rotor is rotating at a constant speed of 1500 rpm about the z-

axis. Dimensions and parameters of the static and dynamic unbalance rigid rotor are 

shown in Tables 5.1 and 5.2, respectively. The total discrete values of masses and 

corresponding angular positions are 𝐷1 = 7 and 𝐷2 = 12, respectively as 

mij(grams) ∈ [0; 10; 20; 50; 100; 200; 300] 

αij(Degrees) ∈ [30; 60; 90; 120; 150; 180; 210; 240; 270; 300; 330; 360] 

Table 5.1. Dimensions of the rigid rotor in (m) 

𝑙𝑃 𝑙𝑄 𝑙1 𝑙2 𝑅1 𝑅2 

-0.2 0.3 -0.25 0.35 0.15 0.15 

Table 5.2. Parameters of a rigid rotor  

S.No. 
Unbalanced 

Problem 

e 

(mm) 
𝜃 

(degree) 
𝐼𝑥𝑧 

(kg-m2) 

𝐼𝑦𝑧 

(kg-m2) 

𝐹𝑝0  

(N) 

𝐹𝑄0  

(𝑁) 

1 Static 1.04 14 0 0 915.6 610.4 

2 Dynamic 1.04 14 -0.004 -0.01 742.3 1017.3 

 

The rotor can be balanced using a set of 𝐷1 predefined mass values and placed at 𝐷2 

their angular positions on balance planes. Thus, static and dynamic unbalanced rotor 
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have been analyzed using the number of masses N1and N2 at corresponding angular 

positions placed on the balancing planes 1 and 2, respectively. Total numbers of design 

variables depend upon the number of masses. Lower and upper limits of design 

variables are considered as lower value and higher value of available discrete values. 

Moreover, the number of balancing masses 𝑁𝑖 for the ith plane is predefined by the 

user. Then, this balancing problem has (𝐷1 × 𝐷2)
∑ 𝑁𝑖

2
𝑖=1  number of possible 

combinations. For example, 𝐷1 = 8, 𝐷2 = 10  and  𝑁1 =  𝑁2 = 2 two masses per 

plane, there are more than 4 × 107 possible combinations. The identification of the best 

combination of masses and corresponding angular positions is complicated and time-

consuming due to the high number of possible combinations. Therefore, the modified 

Jaya algorithm explained in section 5.2 is applied to solve the formulated discrete 

optimization problem. This algorithm is coded in MATLAB 2014. The effectiveness of 

the algorithm is compared with GA for the same problems using three cases as case I 

(N1 = N2 = 1), case II (N1 = N2 = 2), and case III (N1 = N2 = 3). The parameters 

of GA and modified Jaya algorithm for optimization procedure are shown in Table 5.3.  

However, GA requires its control parameters whereas Jaya is a parameter-less 

technique.  In the case of GA, the population size in three cases is taken as 50,150, and 

300 while the number of iterations are taken as 400, 1600, and 4000, respectively for 

unbalanced problems. 20 independent runs of GA have been carried out to find out the 

best value of the objective function corresponding to the design variables. The function 

evaluations for the three cases are 4 × 105,4.8 × 106 and 2.4 × 107, respectively. 

However, the modified Jaya algorithm takes population size for three cases as 20, 100 

and 200 while the number of iterations are taken as 100, 500 and 3000, respectively for 

unbalanced problems. 20 independent runs of Jaya algorithm have been carried out to 

find out the best value of the objective function corresponding to the design variables 

as shown in Figs. 5.2 and 5.3. The function evaluations for the three cases 

are 2 × 105,2 × 106 and 1.5 × 107, respectively. The function evaluations of modified 

Jaya algorithm for three cases are compared with those of GA as presented in Table 

5.3. Moreover, Jaya algorithm requires 95%, 58% and 38% fewer function evaluations 

for all three cases than those required by GA. Hence, the computational efficiency of 

the modified Jaya algorithm is better than the GA algorithm.  
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Fig. 5.2. Convergence of the best objective function values in different cases of static 

balancing 

 

 

Fig. 5.3. Convergence of the best objective function values in different cases of dynamic 

balancing 

Further, the number of masses (N1 = N2 = 4 ) as a case IV is analyzed for the same 

problems of static and dynamic unbalance. Optimization parameters for this case are 

taken as the population size of 300 and 3000 number of iterations. 20 independent runs 

of Jaya algorithm have been carried out to find out the best value of the objective 

function corresponding to the design variables. The best value of the objective function 
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is compared with those of the previous cases. Thus, the reaction forces acting on the 

support are further reduced for static and dynamic balancing problems. Hence, the 

optimal solutions depend on the number of masses, so reaction forces decrease as the 

numbers of balance mass increase. The convergence to the optimum solution for static 

and dynamic balancing for all cases is shown by the plots between function values and 

function evaluations in Figs.5.2 and 5.3, respectively and optimum discrete balancing 

solutions for all cases of static and dynamic balancing are presented in Table 5.4.   

Using optimum values of design variables obtained by modified Jaya algorithm, the 

reaction forces at supports are analyzed. The reaction forces at supports P and Q are 

reduced by 70.85% and 65.70 % for case I, 92.13% and 93.62 % for case II, 98.76% 

and 99.69% for case III, and, 99.85% and 99.56% for case IV, respectively, correspond 

to those of the static unbalanced rotor. Similarly, 72% and 80 % for case I, 92.7% and 

93.6 for case II, 99.3% and 98.7% for case III, and, 99.4% and 99% for case IV, 

respectively, correspond to those of the dynamic unbalanced rotor as shown in Table 

5.4.   

Table 5.3. Parameters of GA and Discrete Jaya algorithm for numerical problems 

Algorithm 
Number of 

masses 

Population 

size 

Number 

of 

Iteration 

Number of 

Function 

Evaluations 

Possible 

solutions 

GA 

N1 = N2 = 1 50 400 4 × 105 7056 

N1 = N2 = 2 150 1600 4.8 × 106 49.8 × 106 

N1 = N2 = 3 300 4000 2.4 × 107 3.51 × 1011 

Modified 

Jaya 

N1 = N2 = 1 20 100 
2 × 104 

(-95%) 
7056 

N1 = N2 = 2 100 500 
2 × 106 

(-58%) 
49.8 × 106 

N1 = N2 = 3 200 3000 
1.5 × 107 

(-38%) 
3.51 × 1011 

N1 = N2 = 4 300 3000 3.2 × 107 2.48 × 1015 

 

Using optimum values of design variables obtained by modified Jaya algorithm, the 

reaction forces at supports are analyzed. The reaction forces at supports P and Q are 

reduced by 70.85% and 65.70 % for case I, 92.13% and 93.62 % for case II, 98.76% 

and 99.69% for case III, and, 99.85% and 99.56% for case IV, respectively, correspond 

to those of the static unbalanced rotor. Similarly, 72% and 80 % for case I, 92.7% and 

93.6 for case II, 99.3% and 98.7% for case III, and, 99.4% and 99% for case IV, 
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respectively, correspond to those of the dynamic unbalanced rotor as shown in Table 

5.4.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4. Modeling of the rigid rotor in MSC ADAMS 

A static and dynamic unbalance rigid rotor is modeled and simulated in MSC 

ADAMS using optimum values of design variables for all cases as shown in Fig. 5.4. 

ADAMS is a multi-body dynamic analysis program that is ideal for modeling of a rigid 

body.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5. Validation of reaction forces in 𝑥 and 𝑦-directions at supports P using 

ADAMS for static balancing 
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Table 5.4. Comparison of modified Jaya algorithm to GA (Messager and Pyrz, 2013) for all 

cases 

 

 

 

Algorithm 

Number of 

masses 

 

Plane1 

 

 

Plane2 

 FP (N) F𝑄 (N) 

N1 N2 
m1j   

(grams) 

α1j           

(degree) 

m2j 

(grams) 

α2j   

(degree) 

Static unbalance 915.6 610.4 

GA 

1 1 200 180 200 180 266.89 209.36 

2 2 
200 180 200 180 

72.03 38.97 
50 240 50 300 

3 3 

200 180 200 180 

11.32 1.879 50 240 20 240 

20 240 50 330 

Modified 

Jaya 

1 1 
200 180 200 180 

266.89 

(-70.85%) 

209.36     

(-65.70%) 

2 2 

200 180 50 300 
72.0          

(-92.13%) 

38.97 

(-93.62%) 50 240 200 240 

3 3 

50 240 50 330 
11.32 

(-98.76%) 

1.879 

(-99.69%) 
200 180 200 180 

20 240 20 240 

4 4 

10 210 50 330 

1.370 

(-99.85%) 

2.673 

(-99.56%) 

200 180 10 240 

10 270 10 240 

50 240 200 180 

Dynamic  unbalance 742.3 1017.3 

GA 

1 1 200 150 300 210 208.01 204.15 

2 2 
100 150 50 360 

15.16 13.11 
100 180 300 210 

3 3 

200 150 20 120 

4.473 
13.14 

 
50 240 300 180 

10 330 200 300 

Modified  

Jaya 

1 1 200 150 300 210 
208.01      

(-72%) 

204.15        

(-80%) 

2 2 
100 180 300 210 15.16        

(-92.7%) 

13.11          

(-93.6%) 100 150 50 360 

3 3 

200 150 20 120 
4.473      

 (-99.3%) 

13.14 

(-98.7%) 
50 240 200 300 

10 330 300 180 

4 4 

20 360 10 150 

4.042 

(-99.4 %) 

10.01          

(-99%) 

10 270 300 210 

100 300 50 360 

300 150 10 300 
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Fig. 5.6. Validation of reaction forces in 𝑥 and 𝑦-directions at supports Q using 

ADAMS for static balancing 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 5.7. Validation of reaction forces in 𝑥 and 𝑦-directions at supports P using 

ADAMS for dynamic balancing 
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Fig. 5.8. Validation of reaction forces in 𝑥 and 𝑦-directions at supports Q using ADAMS for 

dynamic balancing 

Moreover, the reaction forces in 𝑥 and 𝑦 directions at supports P and Q as 𝐹𝑃𝑥, 𝐹𝑃𝑦, 

𝐹𝑄𝑥, and 𝐹𝑄𝑦 are validated using MSC ADAMS software for all cases in static and 

dynamic balancing as shown in Figs. 5.5, 5.6, 5.7, and 5.8, respectively. Figures 5.5 

and 5.6 show that the values of 𝐹𝑃𝑥, 𝐹𝑃𝑦, 𝐹𝑄𝑥, and 𝐹𝑄𝑦 for the unbalanced rotor (actual 

case), case I, case II, case III, and case IV obtained from theoretical model match 

precisely to those obtained from simulation with MSC ADAMS software, respectively, 

for static balancing. It is observed that the maximum values of 𝐹𝑃𝑥 and 𝐹𝑃𝑦 are reduced 

up to 70.85% and 70.85% for case I, 92.13% and 92.13% for case II, 98.76% and 

98.76% for case III, and, 99.85% and 99.85% for case IV, respectively, correspond to 

those of the static unbalanced rotor as shown in Fig.5.5. While the reduction in 

maximum values of 𝐹𝑄𝑥 and 𝐹𝑄𝑦 is 65.70 % and 65.70 % for case I, 93.62 % and 93.62 

% for case II, 99.69%  and 99.69% for case III, and, 99.56% and 99.56% for case IV, 

respectively, correspond to those of the static unbalanced rotor as shown in Fig.5.6. 

Similarly, Figures 5.7 and 5.8 present that the values of 𝐹𝑃𝑥, 𝐹𝑃𝑦, 𝐹𝑄𝑥, and 𝐹𝑄𝑦 for all 

cases obtained from simulation with MSC ADAMS software and theoretical model are 

in good agreement for dynamic balancing, respectively, and the maximum values of 

𝐹𝑃𝑥 and 𝐹𝑃𝑦 are reduced by 72% and 72% for case I, 92.7% and 92.7% for case II, 
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99.3% and 99.3% for case III, and, 99.4% and 99.4% for case IV, respectively, 

correspond to those of the dynamic unbalanced rotor as shown in Fig.5.7, while the 

maximum values of 𝐹𝑄𝑥 and 𝐹𝑄𝑦 are reduced up to 80 % and 80 % for case I, 93.6 % 

and 93.6 % for case II, 98.7%  and 98.7% for case III, and 99 % and 99 % for case IV, 

respectively, correspond to those of the dynamic unbalanced rotor as shown in Fig.5.8. 

Hence, theoretical and simulation results show that the proposed methodology gives a 

certain decrease in reaction forces at supports. 

5.3.2. Application - Balancing of the threshing drum 

The methodology developed in this chapter is applied for balancing of the threshing 

drum (Prashad and Sharma, 1985). The dimension of the threshing drum is presented 

in Table 5.5.  It rotates at a constant speed of 460 rpm about the z-axis and has a total 

mass of 120 kg.  

Table 5.5. Dimensions of the threshing drum in (m) 

 

 

 

Balance masses and corresponding angular positions are chosen from the set D1 =
7 and D2 = 18, respectively, given as 

mij(grams) ∈ [0; 10; 20; 50; 100; 200; 300],   

αij(Degrees) ∈ [20: 20: 360] 

The threshing drum is balanced statically by placing the number of masses N1 and N2 

at corresponding angular positions on the balancing planes 1 and 2, respectively. The 

eccentricity values (ex, ey) in mm and products of inertia (Ixz, Iyz) in kg − m2 for the 

threshing drum are given as (−0.154, 1.12) and (0,0), respectively.  

A modified Jaya and GA algorithms are used to find the optimal balancing masses and 

corresponding angular positions on two planes for three different cases of masses as 

case 1 (N1 = N2 = 1), case2 (N1 = N2 = 2), and case 3(N1 = N2 = 3).  In case of 

GA, the population size in three cases is taken as 20, 150, and 500 while the number of 

iterations is chosen as 100, 100, and 3000, respectively for this unbalanced problem. 

Thus, GA takes 2000, 15 × 103 and 15 × 105 function evaluations for three cases, 

respectively to find the optimal results. While, modified Jaya algorithm takes 

population size of 10, 100 and 300, and the number of iterations similar to 100, 100 and 

3000 for all three cases, respectively. Hence, the number of function evaluations for 

three cases equal to 1 × 103, 10 × 103 and 9 × 105, respectively, are required by the 

𝑙𝑃 𝑙𝑄 𝑙1 𝑙2 𝑅1 𝑅2 

-0.48 0.44 -0.35 0.33 0.33 0.33 



  

  77 

modified Jaya algorithm. The convergence of the best objective function values in both 

algorithms is shown in Fig.5.9. Figure 5.9 indicates that the modified Jaya algorithm 

provides better optimal solutions by taking 50%, 33.33% and 50%  fewer number of 

function evaluations for case 1, case 2 and case 3, respectively, than those of GA. 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 5.9. Convergence of the best objective function values in different cases for GA 

and modified Jaya algorithm 

Using optimum values of design variables obtained by discrete Jaya algorithm, the 

reaction forces at supports are analyzed. The reaction forces at supports P and Q are 

reduced by 89.88% and 89.87 % for case 1, 98.34% and 98.37 % for case 2, 99.45% 

and 99.27% for case 3, respectively, correspond to those of the unbalanced drum 

(Original case) as shown in Table 5.6.  Moreover, the variation of the reaction forces in 

𝑥 and 𝑦 directions at supports P and Q as 𝐹𝑃𝑥, 𝐹𝑃𝑦, 𝐹𝑄𝑥, and 𝐹𝑄𝑦 for all cases are shown 

in Figs. 5.10 and 5.11, respectively. Figure 5.10 shows that the maximum values of 𝐹𝑃𝑥 
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and 𝐹𝑃𝑦 are reduced up to 89.86% and 89.86% for case 1, 98.34% and 98.34% for case 

2, and, 99.45% and 98.46% for case 3, respectively likened with those of the unbalanced 

drum. While the reduction in maximum values of 𝐹𝑄𝑥 and 𝐹𝑄𝑦 is 89.87 % and 89.87 % 

for case 1, 98.37 % and 98.36 % for case 2, and,  99.26%  and 99.27% for case 3, 

respectively compared with those of the unbalanced drum as shown in Fig.5.11. 

Table 5.6. Comparison of modified Jaya algorithm to GA for all cases 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10. Variation of reaction forces in 𝑥 and 𝑦-directions at support P for the 

balancing of the threshing drum 
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of masses 
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m1j    
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α1j           

(degree) 

m2j 
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(degree) 

Unbalance drum 161.11 175.77 

GA 
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2 2 
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20 260 200 260 

Modified  

Jaya 

1 1 200 260 200 260 
16.31 

(-89.88%) 
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Fig. 5.11. Variation of reaction forces in 𝑥 and 𝑦-directions at support Q for the 

balancing of the threshing drum 

An unbalance rigid threshing drum is also modeled and simulated in MSC ADAMS 

using optimum values of design variables for all cases. ADAMS is a multi-body 

dynamic analysis program that is ideal for modeling of a rigid body (ADAMS, 2014). 

Results obtained from the theoretical model match precisely to those obtained from 

simulation with MSC ADAMS software. Hence, the proposed methodology gives a 

certain decrease in reaction forces at supports. 
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manufactured by Schenck Rotech India limited is used to measure the balancing masses 

at corresponding angular positions on the two balance planes for an unbalanced 
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Fig. 5.12. The experiment setup for the unbalanced threshing drum 

At starting, two accelerometers are attached to the bearings P and Q as presented in 

Fig.5.12. These measure vibration amplitudes at bearings P and Q as VP,rms and VQ,rms 

and, optical key-phasor measures the angular position of the balance mass and the 

angular speed of the unbalanced drum. Accelerometer and optical KeyPhasor are linked 

to the smart field balancer. This balancer indicates vibration amplitudes at bearings P 
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and Q as VP,rms and VQ,rms and the continuous balancing values for unbalanced drum 

such as 𝑚̆1, 𝛼̆1, 𝑚̆2, and 𝛼̆2. Initially, unbalanced threshing rotates at its balance speed 

of 460 rpm. The smart field balancer provides the initial vibration amplitudes VPo,rms =

3.109 and VQ0,rms=4.785 (in mm/s). After that, trial weights 400 gram at 00 are applied 

at both planes 1 and 2 for the calibration of the smart field balancer. Finally, this 

balancer gives the continuous balancing solutions as 𝑚̆1 = 170.2 (gram), 𝛼̆1 =

700, 𝑚̆2 = 292.2 (gram), and 𝛼̆2 = 1130 and vibration amplitudes at bearing P and Q 

as VP,rms = 0.685 (mm/s ) and VQ,rms = 0.545 (mm/s), respectively. 

In the analysis of this practical problem, a discrete multi-objective optimization 

problem with minimization of the difference between the balancing 

components (𝑚𝑖𝑗𝑅𝑖) and corresponding continuous balancing components (𝑚̆𝑖𝑅𝑖) 

in x and y directions, respectively, is formulated.  The masses and corresponding 

angular position per plane are taken as design variables, and are expressed in Eq. (5.11). 

The objective functions are expressed as  

Minimize f1(𝐱) = ∑∑|(mijRicosαij −  m̆iRi cos ᾰi)|

Ni

j=1

2

i=1

 

Minimize f2(𝐱) = ∑∑|(mijRi sin αij −  m̆iRi sin ᾰi)|

Ni

j=1

2

i=1

 

 Where, i = 1,2 and j = 1,2… . Ni 

(5.16) 

 

The number of objective functions transforms into a single function using the 

weighting factors (Marler and Arora, 2004, 2010). Finally, optimization problem is 

formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) = 𝑤1 𝑓1(𝒙) + 𝑤2 𝑓2(𝒙)  (5.17) 

Where weighting factors w1 and w2 represent the relative importance of the various 

objectives. However, both the objective functions have equal importance. Therefore, 

w1 = 0.5 and 𝑤2 = 0.5  are chosen for this practical problem. 

Discrete constraints to design variables are defined by Eq. (5.14). Total discrete 

values of masses and corresponding angular positions are chosen from given discrete 

sets  

mij(grams) ∈ [0; 10; 20; 50; 100; 200; 300]  

αij(Degrees) ∈ [20: 20: 360] 
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Fig. 5.13. Convergence of the best objective function values in different cases 

Table 5.7.  Optimal solutions for all cases 
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masses 
Plane1 Plane2 

𝑓(𝒙) 
VP,rms 

(mm/s) 

VQ,rms    

(mm/s) 
N1 N2 

m1j    

(grams) 
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It is observed that the modified Jaya algorithm is computationally more efficient 

than GA. Therefore, the modified Jaya algorithm is applied to solve the formulated 

optimization problem using different cases of masses as case 1 (N1 = N2 =

1), case2 (N1 = N2 = 2), and case 3(N1 = N2 = 3). To find the optimal solutions, it 

takes the population size of 20, 100 and 300, and the number of iterations similar to 

100, 100 and 2500 for all three cases, respectively. Hence, the number of function 

evaluations for three cases equal to 2 × 103, 1 × 104 and 75.× 105, respectively, are 

taken by this algorithm. Convergence of the best objective function values is shown in 

Fig.5.13. The optimum solutions for all cases are presented in Table 5.7.  

For all cases, the optimum values of discrete masses at the corresponding angular 

position are placed at the balance planes 1 and 2 of the threshing drum. Smart field 

balancer is used to measure vibration amplitudes of the bearings P and Q 

as VP,rms and VQ,rms (in mm/s),    respectively. The vibration amplitudes of bearings P 

and Q are reduced up to 82.57% and 90.63% for case 1, 89.74% and 94.56% for case 

2, and 94.62% and 96.24% for case 3, respectively with respect to those of the 

unbalanced thresher drum as presented in Table 5.7. Hence, the number of masses per 

plane improves the vibration amplitudes of the threshing drum. As a result of that, the 

fuel consumption and dynamic performance of machines will improve and also human 

accident will minimize.   

5.4. Summary 

In this chapter, optimum two-plane discrete balancing procedure is developed for 

the rigid rotor. The multi-objective problem is formulated to minimize the reaction 

forces at supports, and discrete parameters such as masses and corresponding angular 

positions on each balancing plane are considered as design variables. The effectiveness 

of the proposed approach is demonstrated by a numerical problem taken from literature, 

and it is also applied to the threshing drum model of the thresher machine. The proposed 

modified Jaya algorithm and GA are used as solvers for these balancing problems. It is 

observed that a modified Jaya algorithm takes fewer function evaluations and gives the 

better and nearly close results than those of GA for all cases. The reaction forces at 

supports P and Q are reduced up to 70.85% and 65.70 % for case I, 92.13% and 93.62 

% for case II, 98.76% and 99.69% for case III, and 99.85% and 99.56% for case IV 

corresponding to the static unbalanced rotor, respectively.  
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Similarly, 72% and 80 % for case I, 92.7% and 93.6 for case II, 99.3% and 98.7% 

for case III, and 99.4% and 99% for case IV correspond to the dynamic unbalanced 

rotor, respectively. Hence the reaction forces at supports decrease, as the number of 

balance mass per plane increases.  

   In case of the threshing drum balancing problem, reaction forces at supports P and Q 

are reduced by 65% and 87.32 % for case 1, 98.28% and 98.15 % for case 2, 99.78% 

and 98.74% for case 3, respectively, correspond to those of the unbalanced threshing 

drum.  

The unbalanced and balanced rotors are simulated using MSC ADAMS software. It is 

found that the simulation and theoretical results of the component forces are in good 

agreement without variation. Besides the analytical study of the threshing drum, the 

experimental study is also investigated. The experimental study shows that the number 

of discrete masses per plane decreases the vibration amplitudes of the unbalanced 

threshing drum. Thus the dynamic performance of the thresher machine can be 

improved. The proposed approach is quite general and equally applicable to the rigid 

and flexible rotors.  
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Optimal shape synthesis of the flywheel 

This chapter presents the optimal shape synthesis procedure of the flywheel using a 

cubic B-spline curve. The flywheel plays a vital role in storing kinetic energy in modern 

machines. Thus, the kinetic energy is an essential parameter to measure flywheel 

performance and can be improved by optimal thickness distribution of the flywheel, 

generally known as shape optimization. Therefore, the shape optimization model of the 

flywheel with maximization of the kinetic energy is formulated using a cubic spline 

curve under the design constraints like the mass of the flywheel and maximum values 

of Von Mises stresses. A flow chart is proposed to solve the two-point boundary value 

differential equation for calculation of Von Mises stress at each point between the inner 

and outer radius of the flywheel. The control points of the cubic B-spline curve are 

taken as design variables. Then the formulated problem is solved using particle swarm 

algorithm (PSO), genetic algorithm (GA), and Jaya algorithm. The effectiveness of the 

proposed approach is investigated through the design of flywheel taken from the 

literature and the flywheel design of the thresher machine.  

6.1. A shape optimization model of the flywheel 

In this section, the thickness profile of the flywheel is represented by the cubic B-

spline curve as shown in Fig.6.1. 𝑅1 and 𝑅2 are the inner radius and outer radius of the 

flywheel respectively. The flywheel is axial symmetric in X and Y directions, and 

thickness distribution along the radial direction is represented by cubic B-splines curve. 

The control points describe the vertices of the polygon of the B-spline curve. A set of 

control points as 𝑝1, 𝑝2,……, 𝑝𝑛 approximates or interpolates the curve as defined in 

Eq. (6.1) (Mortenson, 2006; Zeid, 1991). X and Y coordinates of control points 

represent the radial and thicknesses points, respectively. 

𝒑(𝑢) = ∑𝑁𝑖,𝑘(𝑢)𝒑𝒊

𝑛

𝑖=1

,   0 ≤ 𝑢 ≤ 𝑆 (6.1) 

Where parameter k controls the degree of curve and the value of k for a cubic B-

spline curve is 4. Ni,k(u)
′s are B-spline blending functions, which are defined by the 

following expression: 
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Fig. 6.1. 2D symmetric model of flywheel 

Moreover, a composite sequence of curve segments (S = n − k + 1) defines the cubic 

B-spline curve that connected with C2 continuity. Further, it blends two curve segments 

with the same curvature as shown in Fig.6.2. 

 

 

 

 

 

 

 

Fig. 6.2. B-spline curve segments 

𝑁𝑖,𝑘 = (𝑢 − 𝑢𝑖)
𝑁𝑖,𝑘−1(𝑢)

𝑢𝑖+𝑘−1 − 𝑢𝑖
+ (𝑢𝑖+𝑘 − 𝑢)

𝑁𝑖+1,𝑘−1(𝑢)

𝑢𝑖+𝑘 − 𝑢𝑖+1
    (6.2) 

𝑁𝑖,1 = {
1,            𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1 
0,                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (6.3) 

Where, 𝑁𝑖,1 is a unit step function and 𝑢𝑖 are called the parametric knots. The values of 

𝑢𝑖 depend on whether the B-spline curve is an open (non-periodic) or periodic curve. 

The periodic B-spline curve does not pass through any of control points, while a non-
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periodic B-spline curve passes through the two end points. The knot values for periodic 

and non-periodic B-spline curves are given by: 

For periodic B − spline curve   𝑢𝑖 = 𝑖 − 1, 𝑖 − 1 ≤ 𝑆 (6.4) 

For non − periodic B − spline 𝑢𝑖 = {
0,                                           𝑖 < 𝑘
𝑖 − 𝑘 + 1,                     𝑘 ≤ 𝑖 < 𝑛
𝑛 − 𝑘 + 1,                            𝑖 > 𝑛

 (6.5) 

Where  1 ≤ 𝑖 ≤ 𝑛 + 𝑘 

The coordinates of any point on the 𝑖th segment of the curve for periodic B-spline 

curves are determined using Eqs. (6.1-6.4) and are given as: 

𝑟𝑖(𝑢) =
𝑎1𝑟𝑖 + 𝑎2𝑟𝑖+1 + 𝑎3𝑟𝑖+2 + 𝑎4𝑟𝑖+3

6
 (6.6) 

𝑡𝑖(𝑢) =
𝑎1𝑡𝑖 + 𝑎2𝑡𝑖+1 + 𝑎3𝑡𝑖+2 + 𝑎4𝑡𝑖+3

6
 (6.7) 

Where 

a1 =   −u3 + 3u2i − 3ui2 + u3 

  a2  = 3u3 + u2(3 − 9i) + u(9i2 − 6i − 3) − 3i3 + 3i2 + 3i + 1

 a3 = −3u3 + u2(9i − 6) + u(−9i2 + 12i) + 3i3 − 6i2 + 4

  a4 = u3 + u2(−3i + 3) + u(3i2 − 6i + 3) − i3 + 3i2 − 3i + 4 }
 
 

 
 

 𝑖 − 1 ≤ 𝑢

≤ 𝑖 

(6.8) 

The coordinates of any point on the 𝑖th segments of the curve for non-periodic B-

spline curves are determined using Eqs. (6.1-6.3) and 6.5 and are given as: 

𝑟𝑖(𝑢) = 𝑎1
𝑖 𝑟𝑖 + 𝑎2

𝑖 𝑟𝑖+1 + 𝑎3
𝑖 𝑟𝑖+2 + 𝑎4

𝑖 𝑟𝑖+3 (6.9) 

𝑡𝑖(𝑢) = 𝑎1
𝑖 𝑡𝑖 + 𝑎2

𝑖 𝑡𝑖+1 + 𝑎3
𝑖 𝑡𝑖+2 + 𝑎4

𝑖 𝑡𝑖+3 (6.10) 

Where 𝑎1
𝑖 , 𝑎2

𝑖 , 𝑎3
𝑖  𝑎𝑛𝑑 𝑎4

𝑖  are obtained by solving Eqs. (6.2-6.3) and (6.5) for each 

segment in MAT LAB. 

6.1.1. Parameters of the flywheel 

The volume (𝑣), mass (𝑚), and kinetic energy (𝑒𝑘) are the parameters of the flywheel, 

which also describe the performance of flywheel. These parameters, for each segment, 

are calculated using the expression of 𝑟𝑖(𝑢) and 𝑡𝑖(𝑢) of periodic B-spline as: 

𝑣𝑖 = 2𝜋𝜌 ∫ 𝑡𝑖(𝑢)𝑟𝑖(𝑢)
𝑑𝑟𝑖(𝑢)

𝑑𝑢
𝑑𝑢

𝑢𝑖

𝑢𝑖−1

 (6.11) 

𝑚𝑖 = 2𝜋𝜌 ∫ 𝑡𝑖(𝑢)𝑟𝑖(𝑢)
𝑑𝑟𝑖(𝑢)

𝑑𝑢
𝑑𝑢

𝑢𝑖

𝑢𝑖−1

 (6.12) 
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𝑒𝐾
𝑖 = 𝜋𝜌𝜔2 ∫ 𝑡𝑖(𝑢) (𝑟𝑖(𝑢))

3 𝑑𝑟𝑖(𝑢)

𝑑𝑢
𝑑𝑢

𝑢𝑖

𝑢𝑖−1

 (6.13) 

Where ρ is the density of the material and ω represents the angular velocity of the 

flywheel. 

Further, the whole volume (𝑉), mass (𝑀), and kinetic energy (𝐸𝐾) of flywheel are 

calculated by the summing of volume, mass, and kinetic energy of each segment, 

respectively as: 

𝑉 = ∑ 𝑣𝑖

𝑛−𝑘+1

𝑖=1

 (6.14) 

𝑀 = ∑ 𝑚𝑖

𝑛−𝑘+1

𝑖=1

  (6.15) 

EK = ∑ eK
i

n−k+1

i=1

 (6.16) 

6.1.2. Stress analysis of flywheel 

A non-periodic uniform B-spline cubic curve is used for stress analysis of the flywheel. 

It passes through the end points. Stresses at the inner radius and outer radius are 

calculated using this curve. While a periodic uniform B-spline cubic curve does not 

pass through the endpoints, it does not give information about stresses at an inner and 

outer radius of the flywheel. However, tangential and radial stresses occur due to 

centrifugal forces during the operation of the flywheel. The following relationship 

between tangential and radial stresses for each segment has been obtained, based on the 

force balance on each small element of the flywheel (Timoshenko and Goodier, 1970). 

𝑑

𝑑𝑟𝑖(𝑢)
(𝑡𝑖(𝑢)𝑟𝑖(𝑢)𝜎𝑟

𝑖) − 𝑡𝑖(𝑢)𝜎𝜃
𝑖 + 𝜌(𝑟𝑖(𝑢))

2
𝑡𝑖(𝑢)𝜔2 = 0      (6.17) 

(𝜎𝜃
𝑖 − 𝜎𝑟

𝑖)(1 + 𝜐) + 𝑟
𝑑𝜎𝜃

𝑖

𝑑𝑟𝑖(𝑢)
− 𝑟𝑖(𝑢)𝜐

𝑑𝜎𝑟
𝑖

𝑑𝑟𝑖(𝑢)
= 0        (6.18) 

 

Where 𝜎𝑟
𝑖 and 𝜎𝜃

𝑖  are tangential and radial stresses for each segment, respectively. 𝑡𝑖(𝑢) 

and 𝑟𝑖(𝑢) are the thickness and radius of the flywheel for each segment given in Eqs. 

(6.9) and (6.10) for non-periodic B-spline. 

Let us define a stress function 𝐹𝑖  for each segment as: 

𝐹𝑖 = 𝑡𝑖(𝑢)𝑟𝑖(𝑢)𝜎𝑟
𝑖    (6.19) 

𝜎𝑟
𝑖      =

𝐹𝑖

𝑡𝑖(𝑢)𝑟𝑖(𝑢)
  (6.20) 
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Substituting Eq. (6.20) in Eq. (6.17) and solving for 𝜎𝜃 as 

𝜎𝜃
𝑖 =

1

𝑡𝑖(𝑢)
(

𝑑𝐹𝑖

𝑑𝑟𝑖(𝑢)
+ 𝜌(𝑟𝑖(𝑢))

2
𝜔2𝑡𝑖(𝑢)) (6.21) 

 

A second ordinary differential equation is obtained by solving the Eqs. (6.18), (6.20) 

and (6.21) as: 

𝑟2
𝑑2𝐹

𝑑𝑟2
+ 𝑟

𝑑𝐹

𝑑𝑟
− 𝐹 + (3 + 𝜐)𝜌𝑟3𝜔2𝑡 −

𝑟

𝑡

𝑑𝑡

𝑑𝑟
(𝑟

𝑑𝐹

𝑑𝑟
− 𝜐𝐹) =  0 (6.22) 

 

Thus, Eqs. (6.21) and (6.22) are written in parametric form for each segment by 

converting the independent variable 𝑟 into u by using chain rule of differentiation as 

𝜎𝜃
𝑖 =

1

𝑡𝑖(𝑢)
(

𝑑𝐹𝑖

𝑑𝑢
𝑑𝑟𝑖(𝑢)

𝑑𝑢

+ 𝜌(𝑟𝑖(𝑢))
2
𝜔2𝑡𝑖(𝑢)) (6.23) 

(𝑟𝑖(𝑢))2
𝑑𝑟𝑖(𝑢)

𝑑𝑢

𝑑2𝐹𝑖

𝑑𝑢2

+ {𝑟𝑖(𝑢) (
𝑑𝑟𝑖(𝑢)

𝑑𝑢
)

2

− (𝑟𝑖(𝑢))
2 𝑑2𝑟𝑖(𝑢)

𝑑𝑢2

−
(𝑟𝑖(𝑢))

2

𝑡𝑖(𝑢)

𝑑𝑟𝑖(𝑢)

𝑑𝑢

𝑑𝑡𝑖(𝑢)

𝑑𝑢
}
𝑑𝐹𝑖

𝑑𝑢

+ {𝜐
𝑟𝑖(𝑢)

𝑡𝑖(𝑢)

𝑑𝑡𝑖(𝑢)

𝑑𝑢
(
𝑑𝑟𝑖(𝑢)

𝑑𝑢
)

2

− (
𝑑𝑟𝑖(𝑢)

𝑑𝑢
)

3

} 𝐹𝑖

+ (3 + 𝜐)𝜌𝜔2𝑡𝑖(𝑢) (𝑟𝑖(𝑢))
3

(
𝑑𝑟𝑖(𝑢)

𝑑𝑢
)

3

= 0   

(6.24) 

The Eq. (6.24) is the second order differential equation with the independent variable 

‘u’ and dependent variable ‘F. In case of flywheel design, two boundary conditions as 

radial stresses equal to zero at the inner radius and outer radius are usually known. 

Then, the Equation (6.24) becomes a two-point boundary value problem with a second 

order differential equation. If the equation is represented for the whole range, the 

number of numerical methods are available to solve the equation such as the finite 

difference method and the shooting method (Ahsan and Farrukh, 2013; Kharab and 

Guenther, 2012). Furthermore, a MATLAB inbuilt function as ode45 is directly used 

to solve this equation. But, Equation (6.24) is piecewise equation which different for 

each segment or sub-range due to the variation of ‘u’. Then the equation is difficult to 

solve by the above methods, and fewer researchers have been reported to solve for this 
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type of equations. Therefore, a flowchart is proposed for solving the piecewise equation 

with two-point boundary value condition to find out the tangential and radial stresses 

at each point of each segment along the radial direction, is shown in Fig.6.3. The 

detailed procedure for solving is the piece wise equation with two-point boundary value 

is described as: 

Step 1: set the n, k, S, tolerance 𝜖 = 10−3 and two boundary conditions as radial stresses 

are zero at the inner and outer radius. From Eq. (6.19) 

𝐹1|𝑢=0 = 𝑡1(𝑢)𝑟1(𝑢)𝜎𝑟
1 = 0 ;    𝑟1(𝑢)|𝑢=0 = 𝑅1    𝜎𝑟

1 = 0  

𝐹𝑆|𝑢=𝑆 = 𝑡𝑆(𝑢)𝑟𝑆(𝑢)𝜎𝑟
𝑆 = 0 ;    𝑟𝑆(𝑢)|𝑢=𝑆 = 𝑅2    𝜎𝑟

𝑆 = 0         

Step 2: guess the initial slop as  
𝑑𝐹1

𝑑𝑢
|𝑢=0 = 𝑠1 

Step 3: divide each segment into the number of points by taking step size as h. Solve 

the differential Eq. (6.24) for each segment for slope 𝑠1 using Runge Kutta method by 

applying B-Spline properties as 

𝐹1
𝑖|𝑢=𝑖 = 𝐹1

𝑖+1|𝑢=𝑖 

𝑑𝐹𝑖

𝑑𝑢
|𝑢=𝑖 =

𝑑𝐹𝑖+1

𝑑𝑢
|𝑢=𝑖  ; 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆 

Step 4: if 𝐹𝑆|𝑢=𝑆 ≤ 𝐹1
𝑆|𝑢=𝑆 , set slope as  

𝑑𝐹1

𝑑𝑢
|𝑢=0 = 𝑠2 =

𝑠1 +
𝑑𝐹𝑆

𝑑𝑢
|𝑢=𝑆

2
 

Otherwise  
𝑑𝐹1

𝑑𝑢
|𝑢=0 = 𝑠2 =

𝑠1 −
𝑑𝐹𝑆

𝑑𝑢
|𝑢=𝑆

2
 

Step 5: Solve the differential Eq. (6.24) for each segment for slope 𝑠2 using Runge-

Kutta method by applying B-Spline properties as: 

𝐹2
𝑖|𝑢=𝑖 = 𝐹2

𝑖+1|𝑢=𝑖 

𝑑𝐹𝑖

𝑑𝑢
|𝑢=𝑖 =

𝑑𝐹𝑖+1

𝑑𝑢
|𝑢=𝑖 ;  𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆 

Step 6: update the stress function and slope  

𝑠3 = 𝑠1 + (𝑠2 − 𝑠1) ×
𝐹𝑆 − 𝐹1

𝑆

𝐹2
𝑆 − 𝐹1

𝑆 |𝑢=𝑚 

𝑠1 = 𝑠2;  𝑠2 = 𝑠3;  𝐹1
𝑆 = 𝐹2

𝑆|𝑢=𝑆 

Step 7: If 𝑎𝑏𝑠(𝐹𝑆 − 𝐹2
𝑆)|𝑢=𝑆 ≤ 𝜖 

Radial and tangential stresses are calculated at each point of each segment using Eqs. 

(6.20) and (6.23) from known values of stress function 𝐹2
𝑖|𝑢=𝑖 and slope 

𝑑𝐹𝑖

𝑑𝑢
|𝑢=𝑖  

Otherwise, go to step 5 
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Once radial and tangential stresses are known at each point of each segment, the 

Von Mises stresses at each point are calculated using the application of distortion 

energy theory as: 

𝜎𝑡 = (𝜎𝑟
2 + 𝜎𝜃

2 − 𝜎𝑟𝜎𝜃)
1/2

  (6.25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3. A flow chart for solving the piece wise equation with two-point boundary 

value condition 

Y

es 

 

N

o 
abs(FS − F2

S)|u=S ≤ ϵ 

Set slope as  
𝑑𝐹1

𝑑𝑢
|𝑢=0 = 𝑠2 

Y

es 

 

 

    

𝐹𝑆|𝑢=𝑆 ≤ 𝐹1
𝑆|𝑢=𝑆 

 

 

  

F 

      

 

Radial and tangential stresses are calculated at each point of each segment using Eqs. 

(6.20) and (6.23) from known values of stress function 𝐹2
𝑖|𝑢=𝑖 and slope 

𝑑𝐹𝑖

𝑑𝑢
|𝑢=𝑖, then 

Von Mises stresses is calculated using Eq. (6.25) 

 

𝑠2 =
𝑠1 +

𝑑𝐹𝑆

𝑑𝑢
|𝑢=𝑆

2
 s2 =

s1 −
dFS

du
|u=S

2
 

Solve the differential Eq. (6.24) applying B-Spline properties as; (take slope s1 and step size h) 

𝐹1
𝑖|𝑢=𝑖 = 𝐹1

𝑖+1|𝑢=𝑖 ; 
𝑑𝐹𝑖

𝑑𝑢
|𝑢=𝑖 =

𝑑𝐹𝑖+1

𝑑𝑢
|𝑢=𝑖    𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆 

 

N

o 

Solve the differential Eq. (6.24) using B-Spline properties as (take slope s1 and step 

size h) 

 𝐹2
𝑖|𝑢=𝑖 = 𝐹2

𝑖+1|𝑢=𝑖
𝑑𝐹𝑖

𝑑𝑢
|𝑢=𝑖 =

𝑑𝐹𝑖+1

𝑑𝑢
|𝑢=𝑖       𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆

Update the stress function and slope as  𝑠3 = 𝑠1 + (𝑠2 − 𝑠1) ×
𝐹𝑆−𝐹1

𝑆

𝐹2
𝑆−𝐹1

𝑆 |𝑢=𝑆 

𝑠1 = 𝑠2;  𝑠2 = 𝑠3;  𝐹1
𝑆 = 𝐹2

𝑆|𝑢=𝑆 

 

Guess initial slope  as 
dF1

du
|u=0 = s1   

 

Start 

  Set; n, k, S, 𝜖 = 10−3 and two boundary conditions are given as  𝐹1|𝑢=0 = 𝐹𝑆|𝑢=𝑆=0   
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6.2. Formulation of the optimization problem 

A nonlinear constrained shape optimization problem for optimal distribution of 

thickness along the radial direction is formulated using the cubic B-spline. The various 

design parameters of the flywheel and global coordinate system, OXY are described in 

Fig.6.1. Radial points ( 𝑟1, 𝑟2…, 𝑟𝑛) and thickness points( 𝑡1, 𝑡2…….,𝑡𝑛) are defined 

in the X and Y directions, respectively. 

6.2.1. Design variables 

The radial points of the flywheel between 𝑅𝑖 to 𝑅𝑜 are equally spaced. Thus, the radial 

points are fixed and given by Equation as  ri = r1 +
(r2−r1)(i−1)

n−1
  where 𝑖 = 1,… . . . . , 𝑛  

Furthermore, thickness points (Y coordinates of the control points) are considered as 

the design variables and are defined in vector form as: 

𝐱 = [t1 t2 t3 ………… . . tn]
T (6.26) 

 

Where 𝑛 represents the control points or design variables spaced between 𝑅1 to 𝑅2.  

6.2.2. Objective function and constraints 

In general, the flywheel should store as much kinetic energy as possible for its better 

performance. Although the kinetic energy stored in the flywheel can be improved by 

the shape of the flywheel. Therefore, the kinetic energy is considered as objective 

function and the mass of the flywheel and the maximum value of Von Mises stresses 

are taken as the design constraints in this shape optimization problem. 

 Thus, the kinetic energy of the flywheel is determined by using Eq. (6.16) and 

design constraints as mass and the maximum value of Von Mises stress are determined 

using Eqs. (6.15) and (6.25), respectively. However, a mass constraint is defined as the 

mass of the flywheel should be less than the maximum mass (𝑀𝑚𝑎𝑥) of the flywheel 

g1(𝐱) = M ≤ Mmax (6.27) 

While stress constraint is defined as the maximum value of Von Mises stress at all 

points of each segment in the radial direction should be less than the allowable 

stress(𝜎𝑎). 

𝑔2(𝒙) = max(𝜎𝑡) ≤ 𝜎𝑎 (6.28) 

Finally, the optimization problem is posed as 

Minimize f(𝐱) = −EK  

Subjected to      
(6.29) 
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 g1(𝐱) = M − Mmax ≤ 0     
g2(𝐱) = max(σt) − σa ≤ 0  

𝐿𝐵𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐵𝑖             𝑖 = 1,……… , 𝑛 (6.30) 

 

The negative sign in the expression for the objective function implies that the function 

𝐸𝑘 is being maximized. 𝐿𝐵𝑖 and 𝑈𝐵𝑖 are the lower and upper bounds on the 𝑖𝑡ℎ design 

variable, and 𝑛 represents the number of design variables.  To obtain an optimum 

solution, the constrained problem, as defined in Eq. (6.29), is converted into an 

unconstrained problem by using a penalty function (Singh et al., 2017). A significant 

penalty value is added to the objective function for each constraint violation. As a result, 

the objective function proceeds toward an infeasible solution. Hence, the global 

optimum solution is obtained by satisfying all the constraints using a suitable 

optimization algorithm. The original constrained optimization problem is then stated as 

an unconstrained optimization problem in which the first and second term describes the 

objective function and the penalty function, respectively. Finally, the shape 

optimization problem of the flywheel is formulated as: 

Minimize f(𝐱) = −EK + ∑ CB

2

B=1

(C)B (6.31) 

 𝐿𝐵𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐵𝑖             𝑖 = 1,……… , 𝑛 (6.32) 

Where 𝐶 is the penalty value of the order of 106 which assign to objective function if 

the constraints are not satisfied and 𝐶𝐵 is defined as (Singh et al., 2017) 

𝐶𝐵 = {
1       𝑖𝑓 𝑔𝐵(𝒙) ≤ 0
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

6.3. Optimization algorithm 

After formulating the optimization problem, it can be solved either by classical methods 

or nature-inspired optimization algorithms. The traditional methods involve the 

computational complexity in calculating the gradient of the objective function 

correspond to the design variables. Moreover,  these methods give only a local optimum 

solution (Arora, 2004). 

Nature-inspired optimization algorithms have less computational complexity 

compared to classical methods. There are some nature-inspired optimization 

algorithms, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and 
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Ant Colony Optimization (ACO). Moreover, these algorithms converge to a global 

minimum, but there is no guarantee of an optimal global solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4. A flow chart of Jaya algorithm for the shape of the flywheel 
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Initialize population size (p), number of design variables (n), upper and lower 
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Generate the initial solution as 𝑥𝑖𝑗 = LBi + 𝑟𝑎𝑛𝑑 × (UBi − LBi) wℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 𝑝 
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es 

Y
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𝑗
 

Identify the best 𝑥𝑏𝑒𝑠𝑡 and worse 𝑥𝑤𝑜𝑟𝑠𝑒 solutions  

Update the solution based on best and worse solutions 

𝑥𝑖𝑗
′ = 𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑 ×  𝑥𝑏𝑒𝑠𝑡 − |𝑥𝑖𝑗| − 𝑟𝑎𝑛𝑑 ×  𝑥𝑤𝑜𝑟𝑠𝑒 − |𝑥𝑖𝑗|  
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Some of the algorithms such as GA, PSO, and ACO have algorithmic control 

parameters, which affect the performance of algorithms (Rao and Savsani, 2012). 

Furthermore, the Jaya algorithm is a parameter-less algorithm that has only one phase, 

unlike the two phases of the TLBO algorithm (Chaudhary and Chaudhary, 2015b; Rao, 

2015). It gives the optimal solution rapidly and updates the worst solution (Rao, 2016; 

Venkata Rao and Waghmare, 2016). A flow chart of Jaya algorithm for the shape of 

the flywheel is shown in Fig. 6.4. Here, the stopping criterion for Jaya algorithm is 

considered as the number of iterations and number of function evaluations.  

The number of function evaluations depends on population size and the number of 

iterations. The number of function evaluations is equal to the product of the iteration 

numbers and population size. Therefore, design variables do not affect the function 

evaluations but may affect the computational time of the algorithm. The detailed 

procedure of GA and PSO applied in this study is explained by (Chaudhary and 

Chaudhary, 2014) and (Pathak et al., 2017), respectively. However, the first time it is 

implemented for the optimal design of a flywheel in this study. 

Notations used in the Jaya algorithm are defined as follows:  

p =population size  

LBi, UBi, = Lower and upper bounds for the ith design variables  

xi = ith design variable  

xij= ith design variable for jth population 

𝑓𝑗= An objective function value of the jth population Eq. (6.31) 

 rand = Any random number in the range of 0 and 1 

6.4. Flywheel design problems 

The proposed optimization procedure for the shape of the flywheel is applied for a wide 

variety of problem formulations. The effectiveness of this approach is illustrated by the 

numerical example of the flywheel design taken from the literature (Jiang et al., 2016) 

and the flywheel design of the thresher machine. Design variables are equal to the 

control points that are divided between the inner and outer radius. The eight control 

points are taken for the optimal shape of the flywheel. Von Mises stresses at each point, 

as expressed in Eq. (6.25), are solved by taking the number of segments (S=5) and step 

size (h) =0.1. A total of 51 points are taken between the inner radius and outer radius 

for this study. Moreover, the homogenous material is considered for the design of 

flywheel. 
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6.4.1. Numerical example of the flywheel design  

A numerical problem of flywheel design (Jiang et al., 2016) is solved using the 

proposed method. Material properties and design parameters of the flywheel are given 

in Tables 6.1 and 6.2, respectively. 

The upper and lower limits of the design variables are taken as 

0.050 ≤ 𝒙𝒊 ≤ 0.200   𝑤ℎ𝑒𝑟𝑒 𝑖 = 1. , . , . , . ,8. 

Table 6.1. Material properties of the flywheel 

Material 
Density 

(𝑘𝑔/𝑚3) 

Elastic modulus 

(𝐺𝑝𝑎) 
Poisson’s ratio 

Low alloy carbon steel 7850 210 0.3 

 

Table 6.2. Design parameters of the flywheel 

Control points 

𝑛 

Inner radius 

𝑅1 (m) 

outer radius 

𝑅2 (m) 

Angular velocity      

𝜔 (rad/sec) 
𝑀𝑚𝑎𝑥 
(kg) 

𝜎𝑎(𝑁
/𝑚𝑚2) 

8 0.150 0.800 188.50 1849 120 

 

The nonlinear shape optimization problem as explained in Eq. (6.31) is solved using 

GA, PSO, and Jaya algorithm. These algorithms are coded in MAT LAB. In order to 

find the best objective values, population size and the number of iterations in these 

algorithms are chosen as 10 and 100, respectively. However, the controlling parameters 

are required for their convergence in case of PSO and GA while Jaya algorithm is not 

required such controlling parameters. These algorithms are run for 1000 function 

evaluations to obtain the best objective function value and corresponding design 

variables.  GA, PSO, and Jaya reach to the optimum value of the objective function 

at−1.246E + 07, -1.308E+07 and -1.373E+07, respectively, as shown in Fig. 6.5.  

These optimum results obtained from these algorithms are compared with those of the 

conventional method (Jiang et al., 2016) as given in Table 6.3, and the best value of the 

objective function is shown in boldface. Table 6.3 shows that the Jaya algorithm gives 

better results compared with those of the conventional method, GA, and PSO. 
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Fig. 6.5. Convergence of the best objective function value in PSO, GA, and Jaya. 

 

The optimized shape of the flywheel using the optimum design parameters obtained 

from the Jaya algorithm stores the maximum energy compared to that of the 

conventional method. The optimal thickness distribution of the flywheel with respect 

Jaya algorithm and the conventional method is presented in Fig. 6.6 and the comparison 

of optimized shape with that of the conventional method is shown in Fig.6.7. Figure 6.7 

shows that the profile of flywheel is thin in the middle section and thicker at the inner 

and outer section. 

Table 6.3. The optimum value for the shape of the flywheel 

Optimum Values Conventional 

Method  

(Jiang et al., 

2016) 

GA PSO Jaya 

𝑡1(𝑚) 0.122 0.0585 0.200 0.083 

𝑡2(𝑚) 0.065 0.1413 0.050 0.050 

𝑡3(𝑚) 0.056 0.0508 0.050 0.050 

𝑡4(𝑚) 0.052 0.0653 0.050 0.050 

𝑡5(𝑚) 0.064 0.1029 0.050 0.050 

𝑡6(𝑚) 0.133 0.1751 0.200 0.174 

𝑡7(𝑚) 0.195 0.1186 0.152 0.200 

𝑡8(𝑚) 0.197 0.1922 0.200 0.200 

M (kg) 1849 1848.51 1848.81 1848.30 

𝐸𝐾(𝐽) 1.35E+07 1.246E+07 1.308E+07 1.373E+07 

𝑓(𝐱) -1.35E+07 -1.246E+07 -1.308E+07 -1.373E+07 
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Fig. 6.6. Optimal thickness distribution along the radial direction 

 

 

Fig. 6.7. Optimized shape correspond to Jaya and conventional method 

Stress distribution along the radial direction in all sections of the optimized shape 

of the flywheel is shown in Fig 6.8. Generally, the maximum value of Von Mises 

stresses occurs near the inner section of flywheel due to the central hole. But, it is 

reduced by increasing the thickness in the inner section as shown in Fig.6.8.  Moreover, 

the middle section is more stressed compared to other section of the flywheel. The 

stresses decrease at the outer section due to increase in thickness. 
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Fig. 6.8. Stress distribution along the radial direction for the optimized shape of the 

flywheel 

6.4.2. The flywheel design of the thresher machine 

The proposed approach is applied to the flywheel of the thresher machine. The function 

of the flywheel in a thresher machine is to minimize the variations in the speed of the 

PTO shaft due to torque fluctuations of the threshing drum by storing or releasing 

kinetic energy. The material properties and design parameters of the flywheel are given 

in Tables 6.4 and 6.5, respectively (Varshney, 2004). The upper and lower limits of the 

design variables are taken as 

0.010 ≤ 𝐱𝐢 ≤ 0.060   where i = 1 to 8 

Table 6.4. Material properties of flywheel 

 

 

 

 

Table 6.5. Design parameters of the flywheel 

Control points 

𝑛 

Inner radius 

𝑅1 (m) 

outer radius 

𝑅2 (m) 

Angular velocity   

𝜔 (rad/sec) 

𝑀𝑚𝑎𝑥 

(kg) 

𝜎𝑎(𝑁

/𝑚𝑚2) 

8 0.060 0.500 65.45 115 6.4 

 

Material 
Density 

(𝑘𝑔/𝑚3) 

Elastic modulus 

(𝐺𝑝𝑎) 

Poisson’s 

ratio 

grey cast iron 7250 210 0.3 
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The Jaya algorithm was coded in MATLAB. In order to compare the efficiency of the 

algorithm, GA, and PSO are also applied to the same flywheel design problem. All 

three algorithms were run for 100 iterations to find the best objective function value 

and corresponding design variables. GA, PSO, and Jaya give the best of the objective 

function as -28950, -32896.25, and -41624.8, respectively. The convergence plots of 

the best objective function values are shown in Fig.6.9. The optimum results, obtained 

from these algorithms, are compared with the original design (Varshney, 2004) in Table 

6.6, and the best value of the objective function is shown in boldface. It was found that 

Jaya gives better results compared to the results obtained from GA and PSO.   

The optimized shape of the flywheel stores 36.55% more energy compared to the 

existing flywheel shape (Ghaly, 1985; Madan Lal, 2012). As a result of this, less torque 

and fuel consumption will be required to run the thresher machine. Comparison of the 

optimized shape of the flywheel correspond to the Jaya algorithm with the original 

shape of thresher machine flywheel is shown in Fig.6.10. The profile of the optimized 

flywheel is divided into three sections like thin in the middle section and thicker at inner 

and outer section, while the original flywheel has a constant thickness profile over the 

entire section. Further, the optimal values of the thicknesses are also effectively 

converted into physically possible shapes of the flywheel using PTC Creo 3.0 as shown 

in Fig.6.11. Hence, the optimized shape of flywheel with respect to Jaya algorithm 

stores the maximum energy compared with the existing flywheel of thresher machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.9. Convergence of the best objective function value in PSO, GA, and Jaya. 
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Table 6.6. The optimum value for the shape of the flywheel 

Optimum 

Values 

Original  

(Varshney, 

2004) 

GA PSO Jaya 

𝑡1(𝑚) 0.020 0.0267 0.01 0.0189 

𝑡2(𝑚) 0.020 0.0122 0.01 0.01 

𝑡3(𝑚) 0.020 0.0228 0.06 0.01 

𝑡4(𝑚) 0.020 0.0292 0.01 0.01 

𝑡5(𝑚) 0.020 0.0248 0.01 0.01 

𝑡6(𝑚) 0.020 0.0182 0.01 0.01 

𝑡7(𝑚) 0.020 0.013 0.01 0.0246 

𝑡8(𝑚) 0.020 0.0211 0.0489 0.06 

M (kg) 115 115 115 115 

𝐸𝐾(𝐽) 30483.66 28950 32896.25 
41624.88 

(36.55%) 

𝑓(𝐱) - -28950 -32896.25 -41624.88 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10. Original shape and optimized shape of the flywheel 

The stress distribution of radial, tangential, and Von Mises stresses along the radial 

direction in the original and optimized flywheel in all sections is shown in Fig.6.12. 

Figure 6.12 shows that the optimized shape of the flywheel develops less stress 

compared to those of the original shape of the flywheel. Thus, the material of the 

optimized flywheel will not fail during its operation.  
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Fig. 6.11. A Cad model of the Optimized flywheel 

 

 

 

 

 

 

 

 

 

 

Fig. 6.12. Stress distribution along the radial direction in (a) original flywheel (b) 

optimized flywheel 

The original and optimized configurations of the flywheel of the thresher machine 

was simulated using MSC ADAMS software (ADAMS, 2014). The Input torque 

variations for the original and optimized flywheel are shown in Fig.6.13.  The input 

torque is generated by the PTO of a tractor to run the thresher machine.  So, the input 

torque must be minimum for better performance of the thresher machine. It was seen 
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that the optimized shape of the flywheel reduced the maximum and minimum values of 

input torque up to 15.65%, and 16.58% compared to the original values. 

 

 

 

 

 

 

 

 

 

Fig. 6.13. Torque variation in the original and optimized flywheel 

6.5. Summary 

The shape optimization procedure of the flywheel using a cubic B-spline is 

described in this chapter. The shape optimization problem with maximization of the 

kinetic energy is formulated by considering the design constraints of the mass of the 

flywheel, and the maximum value of Von Mises stresses. To the analysis of stresses, a 

flowchart is proposed to solve the two-point boundary value differential equation for 

stress distribution at each radial location. The proposed approach is tested by the 

flywheel design taken from literature and the flywheel design of the thresher machine. 

The proposed method also demonstrates Jaya, PSO, and GA as a solver for the shape 

optimization of the flywheel. It is found that Jaya gives better results compared to 

results obtained using GA and PSO. The optimized shape of flywheel obtained by Jaya 

algorithm stores the maximum kinetic energy compared to that of the conventional 

method. The stress distribution in the middle section of the optimized flywheel shape 

is more compared to the near the shaft and outer sections. While the optimized shape 

of the flywheel for the thresher machine stores 36.55% more energy compared with that 

of the original flywheel, without potential failure of the material during its operation. 

The optimal value of thicknesses is also effectively converted into physically possible 

shapes of the flywheel using any CAD software. The MSC ADAMS software was also 
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used for simulation of the optimized shape of the flywheel. It was found that the 

maximum and minimum values of torque are reduced up to 15.65%, and 16.58% 

compared with the original values. Thus, farmers can use the optimized shape of the 

flywheel in place of the existing flywheel. As a result of this, dynamic performance 

(like vibrations, torque fluctuation) of the existing thresher machine will improve, and 

also accidents involving humans will be reduced. 
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Conclusions 

This thesis presents the dynamic performance improvement of the thresher machine to 

minimize fuel consumption and human accidents. The moving parts or mechanisms 

namely, cleaning mechanism, threshing drum, and the flywheel are considered for the 

improvement in the dynamic performance of the thresher machine. The multi-objective 

optimization problem is formulated to minimize the shaking force and shaking moment 

developed in the cleaning mechanism as described in Chapter 3. The cleaning 

mechanisms is balanced using the optimal inertial properties of each moving link. These 

inertial properties are represented by the dynamically equivalent point-mass system. 

The parameters of this system are considered as the design variables in the formulated 

optimization problem. The priori approach based algorithms like GA and Jaya, and the 

posteriori approach based algorithm as non-dominated sorting Jaya algorithm 

(NSJAYA) are applied to solve the formulated problem. It is established that NSJAYA 

is computationally more efficient than the GA and Jaya algorithm. In this study, 

NSJAYA is used the first time for the balancing of the planar mechanism. The RMS 

values of the shaking force and shaking moment are reduced using the optimum design 

parameters of solution 1 up to 87.80% and 83.05%, respectively correspond to those of 

the original mechanism. The designer can choose more alternatives based on the 

importance of objectives. 

In chapter 4, a modified Jaya algorithm is proposed for balancing of threshing drum 

using mixed variable optimization problems. Original Jaya algorithm has been 

developed for continuous optimization problems. Thus, Jaya algorithm is further 

extended for solving the mixed variable optimization problems. The efficiency of the 

proposed algorithm is demonstrated by five design problem taken from literature. It is 

found that the proposed algorithm are compared with those of well-known optimization 

algorithms. The results show that it gives the better and nearly close results compared 

to other optimization algorithms with fewer function evaluations. In chapter 5, optimum 

two-plane discrete balancing procedure is developed for the rigid rotor to improve the 

dynamic performance of the thresher machine. The multi-objective problem is 

formulated to minimize the reaction forces at supports, and discrete parameters such as 

masses and corresponding angular positions on each balancing plane are considered as 
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design variables. The effectiveness of the proposed approach is demonstrated by a 

numerical problem taken from literature, and it is also applied to the threshing drum 

model of the thresher machine. The proposed modified Jaya algorithm and GA are used 

as solvers for these balancing problems. It is observed that a modified Jaya algorithm 

takes fewer function evaluations and gives the better and nearly close results than those 

of GA for all cases. The reaction forces at supports P and Q are reduced up to 70.85% 

and 65.70 % for case I, 92.13% and 93.62 % for case II, 98.76% and 99.69% for case 

III, and 99.85% and 99.56% for case IV corresponding to the static unbalanced rotor, 

respectively. Similarly, 72% and 80 % for case I, 92.7% and 93.6 for case II, 99.3% 

and 98.7% for case III, and 99.4% and 99% for case IV correspond to the dynamic 

unbalanced rotor, respectively. Hence the reaction forces at supports decrease, as the 

number of balance mass per plane increases.  

   In case of the threshing drum balancing problem, reaction forces at supports P and 

Q are reduced by 65% and 87.32 % for case 1, 98.28% and 98.15 % for case 2, 99.78% 

and 98.74% for case 3, respectively, correspond to those of the unbalanced threshing 

drum.  

The unbalanced and balanced rotors are simulated using MSC ADAMS software. 

It is found that the simulation and theoretical results of the component forces are in 

good agreement without variation. Besides the analytical study of the threshing drum, 

the experimental study is also investigated. The experimental study shows that the 

number of discrete masses per plane decreases the vibration amplitudes of the 

unbalanced threshing drum. Thus the dynamic performance of the thresher machine can 

be improved. The proposed approach is quite general and equally applicable to the rigid 

and flexible rotors.  

The optimal shape synthesis procedure of the flywheel using a cubic B-spline is 

other approach to improve the dynamic performance of the thresher machine as 

described in chapter 6. The shape optimization problem with maximization of the 

kinetic energy is formulated by considering the design constraints of the mass of 

flywheel, and the maximum value of Von Mises stresses. To analysis of stresses, a 

flowchart is proposed to solve the two-point boundary value differential equation for 

stress distribution at each radial location. The proposed approach is tested by the 

flywheel design taken from literature and the flywheel design of the thresher machine. 

The proposed method also demonstrates Jaya, PSO, and GA as a solver for the shape 

optimization of the flywheel. It is found that Jaya gives better results compared to 
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results obtained using GA and PSO. The optimized shape of flywheel obtained by Jaya 

algorithm stores the maximum kinetic energy compared to that of the conventional 

method. The stress distribution in the middle section of the optimized flywheel is are 

more compared to the near the shaft and outer sections. While the optimized shape of 

the flywheel for the thresher machine stores 36.55% more energy compared with that 

of the original flywheel, without potential failure of the material during its operation. 

The optimal value of thicknesses is also effectively converted into physically possible 

shapes of the flywheel using CAD software. The MSC ADAMS software is also used 

for simulation of the optimized shape of the flywheel. It was found that the maximum 

and minimum values of torque are reduced up to 15.65%, and 16.58% compared with 

the original values. Thus, farmers can use the optimized shape of the flywheel in place 

of the existing flywheel. As a result of that, dynamic performance (like vibrations, 

torque fluctuation) of the existing thresher machine will improve, and also accidents 

involving humans will be reduced. 

The contributions of this research work are summarized as follows: 

1. A multi-objective optimization problem for the balancing of the cleaning 

mechanism is proposed. 

2. A posteriori approach based algorithm as a non-dominated sorting Jaya 

algorithm (NSJAYA) is applied to find the optimal mass distribution of the 

links for cleaning mechanism. 

3.  A discrete optimization problem for two-plane balancing of the rigid rotor 

is proposed. 

4. A modified Jaya algorithm is proposed to find the optimal discrete solutions. 

The results are validated by the experiments and commercial software.  

5. A shape optimization problem for the flywheel using the cubic B-spline 

curve is proposed.  

6. Particle swarm algorithm (PSO), genetic algorithm (GA), and Jaya 

algorithm are applied for the shape optimization problem. It is established 

that Jaya algorithm is computationally more efficient than GA and PSO. 

 

Future Scope of the Work 

1. The elastic deformation and clearance in joints may be considered for the 

links of the cleaning mechanism 
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2. The experimental study may be used for the simulation of the cleaning 

mechanism. 

3. A multi-objective discrete optimization algorithm can be applied to balance 

the rigid rotor 

4. In this research work, single objective functions are considered for the shape 

of the flywheel. The application of multi-objective functions may render 

useful results.  
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                                                                                             Appendix A 

MATLAB Code for Non-Dominated Sorting Jaya Algorithm (NSJAYA)   

NSJAYA is a posteriori approach based optimization algorithm and optimize the 

objective functions simultaneously. The MATLAB code of the NSJAYA algorithm is 

presented here. 

clc; close all; clear all; 

max_run=10; 

for run=1:max_run 

xl_temp= []; ub=[];lb=[]; 

pop=[]; % size of population 

%objective function is considered 0 for minimization and 1 for maximization% 

min= [0 0];  

UB=ub; %upper limit on design variables 

LB=lb; %lower limit on design variables 

dim=numel (LB); % number of design variables 

n=numel (min); %number of objective Function 

%Algorithm start here% 

%% Initialize population 

for i=1:dim  

    cxl(:,i)=LB(i)+(UB(i)-LB(i))*rand(pop,1); 

end 

xl_new=quasi(LB,UB,xl); 

xl=[xl;xl_new]; 

xl(:,dim+1:dim+n)=objective(xl); 

xl_temp =xl; 

xl=[]; b=[]; 

%Find out Non_dominated solutions% 

xl=nd(n,dim,temp_xl,min); 

xl=xl(1:pop,:); 

xl_temp =[]; 

for iter=1:max_iteration;  

     a=[]; 

    b=[];  
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    a= xl(:,dim+n+1)==1;  

    b=find(xl(a,dim+n+2)==100);  

    count=numel(b); 

%Updation of solutions% 

    xl_temp =updation(xl(:,1:dim),count);  

%handling boundary violations% 

    xl_temp =boundary (LB, UB, xl_temp);  

    xl_temp (: dim+1: dim+n) =objective (xl_temp);  

    comb_xl=cat (1, xl (: 1: dim+n), xl_temp);  

    xl_temp = []; xl= [];  

    xl=nd(n,dim,comb_xl,min); 

    xl=xl(1:pop,:); 

    comb_xl=[]; 

    xl_temp =quasi (LB,UB,xl(:,1:dim));  

    xl_temp (:,dim+1:dim+n)=objective(xl_temp);  

    comb_xl=cat(1,xl(:,1:dim+n), xl_temp);  

    xl_temp =[];  

    xl=[];  

    xl= nd(n,dim,comb_xl,min); 

    xl=xl(1:pop,:); 

    comb_xl=[];  

    xl=cat(2,xl,constraint(xl(:,1:dim)));  

end 

end 

%Plotting of Pareto front % 

figure(1);  

    plot(xl(:,dim+1),xl(:,dim+2),'*');  

    xlabel('objective_1');  

    ylabel('objective_2'); 
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                                                                                                  Appendix B 

MATLAB code for modified Jaya algorithm  

A modified Jaya algorithm handles all types of variables. The MATLAB code of the 

modified Jaya algorithm is illustrated through the discrete two-plane balancing of the 

threshing drum. 

clc;clear all;close all 

tic % Start Stopwatch 

%%Discrete set for design variables%% 

mij=[0.0 .010 .020 .050 .100 .200 .300]; 

phij=[20:20:360]; 

%Upper and lower Bound on design variables% 

LB=[0.0 0.0 0.0 0.0 0.0 0.0 20 20 20 20 20 20]; 

UB=[0.300 0.300 0.300 0.300 0.300 0.300 360 360 360 360 360 360]; 

%% number of variables and population size%% 

variables =12; 

population_size =300; 

maxrun=20; 

%%initialize the population size %% 

for run=1:maxrun 

for i=1: variables 

for j=1: population_size 

 x0(i,j)=LB(j)+rand()*(UB(j)-LB(j)); 

end 

end 

%%discrete operator%% 

for n=1: population_size 

for l=1: size(x0,2)-6 

for s=1:size(mij,2)-1 

if mij(s)<x0(n,l)&&x0(n,l)<mij(s+1) 

if x0(n,l)<(mij(s)+mij(s+1))/2 

x0(n,l)=mij(s); 

else 

x(n,l)=mij(s+1); 
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end 

end 

if x0(n,l)==0 

x0(n,l)=mij(s+1); 

end 

end 

end 

for o=7:12 

for p=1:size(phij,2)-1 

if phij(p)<x0(n,o)&&x0(n,o)<phij(p+1) 

if x0(n,o)<(phij(p)+phij(p+1))/2 

x0(n,o)=phij(p); 

else 

x0(n,o)=phij(p+1); 

end 

end 

end 

end 

end 

%% set maximum number of iteration%% 

maxite=3000; 

for i=1:n 

f0(i,:)=objective_fun(x0(i,:)); 

end 

f3=f0(:,3); [fbest,indexb]=min(f3); [fworst,indexw]=max(f3); 

% intial Best and initial worst 

best=x0(indexb,:); worst=x0(indexw,:); 

% % Jaya algorithm---------------------------------------------------start 

for k=1:maxite 

for i=1: variables 

for j=1: population_size 

% update the design variabe 

x(i,j)=(x0(i,j)+rand()*(best(1,j)-abs(x0(i,j)))-rand()*(worst(1,j)-abs(x0(i,j)))); 

if x(i,j)<LB(j) 
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x(i,j)=LB(j); 

elseif x(i,j)>UB(j) 

x(i,j)=UB(j); 

end 

end 

end 

%%discrete operator%% 

for n=1: population_size 

for l=1: size(x0,2)-6 

for s=1:size(mij,2)-1 

if X(s)<x(n,l)&&x(n,l)<X(s+1) 

if x(n,l)<(X(s)+X(s+1))/2 

x(n,l)=X(s); 

else 

x(n,l)=X(s+1); 

end 

end 

if x(n,l)==0 

x(n,l)=X(s+1); 

end 

end 

end 

for o=7:12 

for p=1:size(phij,2)-1 

if x1(p)<x(n,o)&&x(n,o)<x1(p+1) 

if x(n,o)<(x1(p)+x1(p+1))/2 

x(n,o)=x1(p); 

else 

x(n,o)=x1(p+1); 

end 

end 

end 

end 

end 
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for i=1:n 

f1(i,:)=objective_fun(x(i,:)); 

end 

f2=f1(:,3); 

for i=1:n 

if f2(i,1)<f3(i,1); 

f3(i,1)=f2(i,1); 

x0(i,:)=x(i,:); 

end 

end 

fmen=mean(f3); ffmen(k,run)=fmen; 

% finding out the best and worse 

[fbest1,indexB]=min(f3); [fworst1,indexW]=max(f3); 

%  updating gbest and best fitness 

if fbest1<fbest 

fbest=fbest1; 

best=x0(indexB,:); 

end 

if fworst1<fworst 

worst=x0(indexW,:); 

end 

end 

sol=objective_fun(best); f_value=sol(:,3); fff(run)=f_value; rbest(run,:)=best; 

end 

[best_function,best_run]=min(fff); 

best_variables=rbest(best_run,:); 

design=objective_fun(best_variables); 
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