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ABSTRACT

The spread and acceptance of mobile devices, specifically smartphone and tablets

have exploded since launch of Google Android. The Internet enabled mobile de-

vices offer rich services like location tracking, wearable computing, multimedia

services and a comprehensive Application Programming Interface (API) frame-

work. The exponential increase of Android devices has attracted the attention of

malware authors to leverage monetary benefits by targeting the Android OS. The

malicious software evades mobile device security once it gains access to sensitive

resources.

Malware authors use obfuscation and targeted infection techniques to infect the

users. The traditional computing resources have mature detection capabilities.

However, their direct adaptation on mobile devices is a challenge on account of

limited processing capability, limited memory and battery constraints. These is-

sues make the replication of Personal Computer (PC) based detection methods

infeasible for mobile Operating System (OS). Furthermore, cloud-based detection

scenarios have their privacy invasion concerns. In this Thesis, we propose, design

and develop multiple static and dynamic analysis and detection techniques for

Android malware. A single analysis technique can be evaded by a targeted, ad-

versarial malware. The use of multiple analysis and detection techniques improves

the code coverage.

In the first step, we propose ApPRaISe, Android permission-based n−Set analysis

technique to identify the sequence of dangerous permissions for classifying the

malicious apps. In particular, we extract the Androidmanifest permissions and

map the defined permissions to its use in the Dalvik bytecode to identify the over-

privileged apps. The proposed methodology evaluates 8,341 benign Google Play

and 6,298 malicious apps with a reasonable accuracy. However, it was observed

that the permission based malicious app detection incurs high false positives.

Next, we developed AndroSimilar, a robust byte based statistical feature signature

to detect repackaged malware. The proposed approach generates a variable size

signature to identify repackaged malicious apps. The fixed-size byte sequence is

based on empirical probability of entropy computed using sliding window. The val-

ues are computed in a sliding window fashion. The popular features are identified

according to their neighborhood rarity. We extend the AndroSimilar algorithm

for malware family detection to reduce the number of signatures. We cluster the
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malware variants with high similarity and generate a variant signature discarding

the common features.

The evolving malware threats circumvent the signature-based techniques. To re-

view the importance of advanced and targeted infection capabilities such as ob-

fuscation and repackaging, we developed an Android bytecode obfuscator “Droid-

sHornet”. We analyze the impact of trivial code obfuscation techniques on our

proposed solution AndroSimilar. In fact, the proposed AndroSimilar identified the

malicious apps from Google Play that remained undetected from the top commer-

cial anti-malware.

Second, we propose detection of malicious apps that perform covert operations

such as sending SMS, making voice calls, recording audio/video, clicking pictures

without the user knowledge or consent. We identify such covert actions as sensitive

feature misuse. Our proposal CONFIDA is an inter-component-communication

based malware analysis technique to detect the sensitive feature misuse employed

by evolving Android malware. We generate a precise Dalvik bytecode Inter-

Component Communication (ICC) based Component Interaction Graph (CIG)

considering the asynchronous nature of ICC API. Furthermore, we perform re-

verse reachability analysis to identify if the feature usage or behavior is initiated

with legitimate user interaction or hidden malicious behavior.

The techniques like environment detection, reflection and dynamic code loading

evades the static analysis. The malware identifies analysis system and evades the

analyzer with a benign behavior. The existing machine learning classification tech-

niques select malicious apps randomly without considering their arrival pattern,

downgrading the classification performance during real time detection. We over-

come the limitations of static analysis with proposed dynamic analysis Sandbox

to identify runtime information and detect environment-aware malware.

The proposed Sandbox modifies the existing static properties of the default emu-

lator and resembles a real Android device to reveal the hidden malicious behavior.

We emphasize the importance of timeline in malware dataset selection to under-

line its influence on the machine learning-based malware classification techniques.

We have experimentally evaluated 6,743 Google Play and 2,786 malicious apps

with classification accuracy better than the existing approaches reported in the

literature. The multiple proactive analysis is useful in early detection and defense

against the emerging malware threats.
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Chapter 1

Introduction

Android smartphone OS has captured nearly 2/3 smartphone market, leaving its

competitors iPhone Operating System (iOS), Windows Mobile OS and Black-

berry far behind [8, 9]. The smartphones have been prevalent in the previ-

ous decade. However, the launch of Android and iOS generated enormous at-

traction among the users and developers worldwide. Smartphones have become

ubiquitous due to broad connectivity options such as Global System for Mobile

communications (GSM), Code Division Multiple Access (CDMA), Wireless Fi-

delity (Wi-Fi), Global Positioning System (GPS), Bluetooth and Near Field Com-

munication (NFC). The Gartner ’15 smartphone sale reports 42.3% increase of

Android devices compared to previous year [9]. The Android device market share

increased from 66% to 78%, a substantial rise of 12% [8]. The nearest Android

competitor iOS share declined 4% from 19 to 15 percent [8]. The ubiquitous In-

ternet connectivity, a wealth of personal information (contacts, messages, social

network access, browsing history and banking credentials) has attracted malware

developers to target Android platform. The Android premium-rate SMS Tro-

jans, spyware, botnets, aggressive adware has also spread through Google Play

[2, 10, 11].

Mobile Malware: According to [12], malware an acronym for malicious software is

“deliberately fulfilling the harmful intent of an attacker”. The personal computer

correlates malware, according to its functionality such as Virus, Worm or Trojan.

The initial days of malware development were motivated to demonstrate problems

within the system to earn respect. The systems are shifting to online computing,

web-based transactions, banking and online bill payments; hence, the prime focus

1
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is monetary gain [13]. The Android malware growth has turned exponential due

to the availability of obfuscation and protection tools [14]. In [15], the authors

predicted similar trends.

1. Smartphone growth is phenomenal as they have become accessible, powerful,

cheap and easy to use with the growth of wireless networks. The introduction of

Android, an open source mobile OS has fuelled the growth.

2. Google Android has a liberal app vetting procedure. The malware authors

misuse the facility and infect online app stores to propagate malicious apps [4, 10,

16].

3. A Smartphone is strictly personal device consisting sensitive information such

as Phone numbers, SMS, Payment information, Login credentials, and a dearth

of personal information unlikely on a PC. Moreover, the Mobile Internet Devices

(MID) are exposed to various attacks due to the large number of facilities available

on a single device [15, 17].

Google Play, the official Android app market hosts third-party developer apps for

a nominal fee. Google Play hosts more than 1.5 million apps with a large number

of downloads each day [18]. Unlike Apple, Google Play does not vet the uploaded

apps manually. The official market employs Bouncer [19, 20], a dynamic analy-

sis engine. The Bouncer protects Google Play against the malware; however, it

does not perform vulnerability analysis [21]. Malware authors take advantage and

exploit such vulnerable apps and divulge the private user information to inad-

vertently harm the app store and developer reputation. Moreover, Android open

source philosophy permits the installation of third-party market apps, stirring up

dozens of regional and international app-stores [22, 23]. However, the adequate

protection methods and app quality at the third-party app store is a concern [11].

Exponential increase in malicious apps have forced the anti-malware industry to

carve out robust and efficient methods suited for on-device analysis in spite of

the existing constraints. The existing commercial anti-malware solutions employ

signature-based detection due to its implementation efficiency and simplicity [24].

The signature-based methods can be evaded by code obfuscation; necessitating a

new signature for each malware variant [25]; Thus, it coerces the anti-malware

client to update the signature database at regular intervals. Furthermore, the

mobile OS resource constraint mandates the use of distributed computing [26,
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27]. The exponential increase of malware variants necessitates automated analysis

methods.

Off-device malware analysis methods are needed to understand the malware func-

tionality. The samples can be analyzed manually to extract the malware signa-

tures. Automated analysis helps the malware analyst generate a timely response

for detecting malicious application. Static analysis can quickly and precisely iden-

tify malware patterns. Still, static analysis is evaded by code transformations

and Java reflections [28]. Thus, dynamic analysis approach can be employed to

extract stealthy malicious behavior. The researchers have proposed solutions to

analyze and detect the Android malware threats. Some of these are even available

as open-source. These solutions can be characterized using the following three

parameters:

1. Goal of the proposed solution can be either app security assessment, analysis

or malware detection. The app security assessment solutions determine the

vulnerabilities, which if exploited by an adversary, harms the user and device

security. The analysis techniques verify the malicious behavior; however,

detection solutions aim to prevent the on-device installation.

2. Methodology to achieve the above goals can be either static or dynamic anal-

ysis. Control-flow and data-flow analysis are examples of formal static anal-

ysis [27]. In dynamic analysis, apps are executed/emulated in a sandboxed

environment, to monitor the activities and identify anomalous behaviors that

are difficult with static analysis.

3. Deployment of the above discussed solutions.

1.1 Objectives

The purpose of this Thesis is to study analysis tools, techniques and develop

multiple static and dynamic analysis techniques to analyze and detect “single

malicious app” with improved analysis coverage.

To achieve the goal, we focus the following objectives:
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1. Review the malware growth and present state of malware on Android Plat-

form. Identify the available analysis techniques for detection of Android

malware.

2. Propose, develop and implement analysis and detection techniques to im-

prove the existing static and dynamic analysis for malware detection from

app markets, emphasizing automated analysis and detection techniques.

3. Identify the complementary use of static and dynamic analysis techniques

to detect evolving malicious apps from a large number of ever increasing

malware. The sophisticated malware includes repackaged malware, covert

malicious behavior executed without user knowledge, analysis environment-

aware malware to name a few.

1.1.1 Thesis Impact

The proposed analysis techniques presented in this Thesis will improve the de-

fense against individual Android malware detection. Furthermore, the proposed

research will aid the third party developer and device user analyze the potential

app. Finally, the multiple analysis techniques can be used to generate analysis

reports for app vetting within an organization.

1.2 Motivation and Contributions

In this Thesis we have identified issues like ever increasing malicious apps, growing

use of obfuscation, code protection and sophisticated evasion techniques targeting

the Android devices. Based on extensive literature review of the challenges in

malware analysis, following are the motivations and contributions of this Thesis:

1. The motivation of the “ApPRaISe” model is derived from the fact that An-

droid Security depends on mandatory permission-based mechanism to pro-

tect sensitive resources. The existing state-of-the-art considered the individ-

ual permissions to detect malicious apps. We propose an n−Set Permission

model identify the app risk. We employ Android Permission Risk Model to

filter the applications that do not extensively use n−Set dangerous permis-

sions. Furthermore, we extended the n− Set permissions model to map the
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declared Permissions with their use in Dalvik bytecode. The second part

identifies the over-privileged APK files.

2. The repackaged Android apps pollute the application markets. It is difficult

to identify the repackaged applications based on the permission analysis.

Jiang et al. [29] report 86% repackaged malware from the Android mal-

ware GENOME [29] dataset. Hence, we propose “AndroSimilar”, a robust

byte-based statistical signature to detect the repackaged applications. The

proposed approach generates a variable size signature to identify repackaged

malicious apps. The fixed-size byte sequence is based on empirical probabil-

ity of entropy computed using sliding window.

3. We extend the aforesaid “AndroSimilar” considering the ever increasing ma-

licious applications. We cluster the malware variants with high similarity and

generate a variant signature discarding the common features. The proposed

robust signature is effective against unseen variants of known malware.

4. Since the ICC forms the core of Android application development model we

propose a novel static analysis approach CONFIDA to identify the covert-

malicious behavior employed by advanced Android malware. The proposed

CONFIDA generates CIG considering the ICC and data flow analysis. The

proposed approach can detect advanced malware evading the important user-

interaction, a necessity to invoke sensitive functionality such as sending SMS,

Phone call, or audio/video recording without user knowledge.

5. The evolving Android malware (e.g., Anserver, FakeNetFlix, FakeFacebook)

employ code obfuscation, repackaging and anti-analysis techniques to evade

the anti-malware. To analyze the impact of obfuscation techniques, we devel-

oped a prototype implementing popular x86 Transformation techniques [30]

and generated unseen malware. In particular, we evaluated the anti-malware

techniques against our proposal AndroSimilar signature and Androguard, a

robust semantic based static-analysis tool. Our proposal AndroSimilar per-

forms better than the existing anti-malware techniques. Furthermore, we

discuss the limitations of AndroSimilar when evaded by a particular code-

transformation.

6. The evolving malicious apps [31] have inbuilt capability to identify the anal-

ysis based emulated environment. Once the app identifies the analysis sand-

box or virtual environment, it behaves benign hiding the malicious function-
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ality. To uncover such environment aware malware, we propose a framework

that makes a malware believe that it is being executed on the real Android

device instead of the emulator, an alibi for development or an analysis sys-

tem. We target the Android system features with modified static emulator

properties and enrich the virtual device with essential user information. To

explore the execution paths, we integrate user input simulation with intent

broadcasts.

In particular, we propose the detection of analysis aware Android malware

within a modified Sandbox to reveal the hidden behavior. We argue that

random malware sample selection strategies employed by the existing tech-

niques deteriorates the detection performance.

In this Thesis, our focus is to propose, design and develop multiple static and

dynamic analysis techniques for Android malware detection. We believe that a

single method can be evaded by a targeted, adversarial malware. However, multi-

ple analysis methods improving the detection rate.

1.3 Thesis Organization

The remainder of this Thesis is organized as follows. Chapter 2 evaluates the

existing work on Android security, issues and malware penetration with an em-

phasis on single malware app detection. In Chapter 3, we propose a permission

based n−Set analysis technique to differentiate malicious and potential risky apps

from a large set of submitted applications. Chapter 4 presents a robust statisti-

cal signature to detect repackaged applications and variants of Android malware

plaguaging the Android distribution system. Chapter 5 explores CONFIDA, our

proposed Component Interaction Graph technique to detect covert malicious be-

havior. In Chapter 6 we evaluate the impact of code transformation techniques

against existing static analysis tools. To leverage the dynamic analysis, Chapter 7

describes the design and implementation of a dynamic analysis technique to detect

analysis environment aware apps. Finally, we conclude the Thesis with pointers

to the future directions.



Chapter 2

A Review of Android Malware

Analysis

Android devices have gained enormous market share due to the open architecture

and its popularity among users and third party developers. The increased pop-

ularity of the Android devices and associated monetary benefits have attracted

the attention of malware developers, resulting in a tremendous rise of the An-

droid malware from 49 families in 2010 to 273 families, an increase of 676% unique

malicious instances in 2014 [6, 7, 32].

In this chapter, we discuss the Android security enforcement mechanisms, mal-

ware threats and related issues for applications popularly called apps. We will

interchangeably use apps for application in this Thesis. The chapter details an

insight into the strength and shortcomings of the known research methodologies

and provides a base towards proposing novel malware analysis and detection tech-

niques.

2.1 Android App and Security Architecture

Google developed Android under Android Open Source Project (AOSP) and is

promoted by the Open Handset Alliance (OHA). The OHA is a consortium of

Original Equipment Manufacturer (OEM), chip-makers, carriers and application

developers. The Android apps are developed in Java; however, the native code

and shared libraries are developed in C/C++. The Android OS architecture is

7
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illustrated in Figure 2.1. The bottom-most layer, the Linux kernel is customized

for the embedded environment. Android is developed on top of Linux kernel due to

its robust driver model, efficient memory & process management and networking

support. Currently, Android supports two instruction set architectures:

1. Advanced RISK Machines (ARM), prevalent on Smartphone and Tablets.

2. x86, more frequently used among the MID.

As illustrated in Figure 2.1, at the top of the kernel, resides shared native code

and libraries developed in C/C++.

Figure 2.1: Android architecture envisaged by Google [1].

Android app code developed in Java language is converted to Dalvik bytecode

which is executed on the Dalvik Virtual Machine (DVM) as illustrated in Fig-

ure 2.1. The Virtual machine based architecture provides process isolation, an

important security feature of Android platform. Once the OS boot completes, the

first parent process known as zygote initializes the Dalvik VM by pre-loading the

core libraries. The zygote loads the newly forked processes to speed up the app

loading. Finally, the application framework provides a uniform and concise view
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of the Java libraries to the app developers. Android protects the sensitive func-

tionality such as telephony, GPS, network, power management, radio and media

as system services with the permission-based model.

2.2 Android APK

The Android PacKage File (APK) is a zip archive illustrated in Figure 2.2. In

particular, the AndroidManifest.xml stores meta-data such as: (1) Package name;

(2) Resource permissions; (3) Components; (4) version support; and (5) shared

libraries. res stores icons, images, string/numeric/color constants, UI layouts,

menus, animations compiled into a binary. assets stores the non-compiled re-

sources. Executable file classes.dex stores the Dalvik bytecode to be executed

inside the Virtual Machine. META-INF stores the signature of the app developer

certificate to verify the third party developer identity.

Archive

Assets CERT.RSA

CERT.SF

MANIFEST.MF

lib

Meta-INF

res Drawable

Layout

Other
XML Files

AndroidManifest.xml

classes.dex

resources.arsc

App

Figure 2.2: Android PacKage (APK) structure.

During the application development, Java code is compiled to generate corre-
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sponding .class files. dx tool merges the .class files into a single Dalvik EXe-

cutable (DEX). The .dex stores executable Dalvik bytecode to be executed on the

DVM. The app archive installation is based on permissions defined in the APK. A

user must approve all permissions to install an app. The Android platform does

not support individual dangerous permission revocation till Android Lollipop 5.0.

The approved permissions cannot be revoked once the app is installed on device.

The Android architecture is aware of the permission type and its use requested

by the APK developer. A user must be aware of the implications of dangerous

permissions, and its actual use by the app requesting a permission.

2.2.1 App Components

An Android app is built from four basic components discussed below. Component

is made accessible to the other apps by explicitly exporting it for code reuse by

the same developers. The declared component(s) can be invoked or executed inde-

pendently since the app component communication is asynchronous. Android app

has multiple entry-points depending on the number of components an application

defines.

• Activity : It is the user interface component of an app. Any number of

activities can be declared within the manifest depending on the developer

requirements. Apart from some pre-defined task, an activity can also return

the result to its caller. Activity(s) can be launched using the Intent.1.

• Service: A Service component is used to run a background task. The long

running tasks such a playing music, data download, updating an applica-

tion or uploading videos can be achieved using the Service. The Service

component does not need any User Interface (UI). Service normally gives

notifications to the user. The Service component can be launched by: (i)

Attaching Service to a particular Activity. Here, the Service ends as soon

as an Activity stops. (ii) Run the Service independently of any app. In this

case, the Service component keeps running even if the app is stopped.

1Intent: The Android Intent is a conceptual description of an operation to be performed.
Intent provides a facility for performing late runtime binding between the code between different
apps using high-level abstraction for Inter-Process Communication (IPC), internally handled by
the Binder IPC. Intent is used to launch components like activity, service and system broadcast.
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• Broadcast Receiver : This component listens to the Android system-generated

events of the device. For example, BOOT COMPLETED, SMS RECEIVED is a sys-

tem event. Other apps can broadcast their application-defined events, which

can be handled by other apps using the Service component. A Broadcast

Receiver can be used to develop apps such as Caller Number finder or a

Short Message Service (SMS) blocker

• Content Provider : Content provider, also known as the data-store provides

a consistent interface for data access within and among different apps. The

Content Provider allows data use. The default Android Contact app is an

example of the Content Provider. The device contacts can be made available

to multiple apps like the SMS app and Phone Dialer. Data store is accessible

through the app-defined Uniform Resource Identifier (URI). The Content

Provider provides encapsulated data access.

A Component is made accessible to the other apps by explicit export to the man-

ifest file. However, the exportting is static, which cannot be changed at runtime.

A Component can be protected explicitly by manifest permission. An unprotected

Component becomes vulnerable to the misuse by malicious apps. Furthermore,

inter-app component misuse attacks can be launched to evade anti-malware still

employing “single” malicious app analysis and detection techniques.

2.2.2 Inter-Component Communication (ICC)

The Android Security protects apps and data using a combination of system-

level and ICC [33]. App components interact with each other at a high-level

abstraction of IPC using Intent, handled by the Binder IPC driver. An app runs

with a unique user-id within the Android Sandbox. The Android middleware

mediates the ICC between application and components. The access to components

is restricted with a ‘permission label’. When a component initiates ICC, the

reference monitor looks at the permission labels assigned to its container app. If

the target component access permission label is in the collection, it allows ICC

to be initiated. If the label does not belong to the Group IDentifier (GID), ICC

establishment is refused even if the component is declared within the same app.

The app developer define security policy, whereas assigning permission(s) to the

components in an application specifies an access policy to protect its resources.
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The Apps invoke activities, services and send the broadcast events using the In-

tents that refer to an explicit address of the receiver components using class/pack-

age name field. Depending upon the type of action, category and data fields, the

system sends implicit Intents to one or more matching receiver components. A

Component registers itself to receive the Intent(s) using one or more intent-filter

defined in the Android manifest. It is also specified if the intent can accept the

kind of action category.

2.3 Android Malware Threat Perception

Figure 2.3 illustrates the timeline of some notable malware families of Android

during 2010-2013. The premium rate SMS Trojans have successfully penetrated

the Google Play by evading the Bouncer, the official market anti-malware [29].

A large number of malware apps have exploited root-based attacks such as rage-

against-the-cage [34], gingerbreak [35] and z4root [36] to gain superuser privileges

and control the device. Another notable exploit master-key attack [37] has suc-

cessfully evaded anti-malware on Android devices from OS versions 1.6 to 4.4.

Each quarter, the commercial anti-malware reports exponential increase in the

new families and existing malware variants [38, 10]. Lookout Inc. reports global

malware infection rate likelihood as 2.61% [16]. In [39] the authors, used smart-

phone Domain Name Resolution (DNS) traffic from United States and reported

0.0009% infection. Furthermore, Truong et al. [40] instrumented Carat app [41]

and report 0.26% and 0.28% for McAfee and Mobile-Sandbox malware dataset

respectively. The present Android threat perception and malware infection rate

report significant variation with the commercial anti-malware studies.

2.4 Malware Survival Techniques

The malware analysis is either static or dynamic. The static analysis techniques

parse the source code without executing the app to identify malicious behavior.

Static analysis covers all execution paths of an app, which is valuable in secu-

rity analysis. However, static analysis techniques can be evaded by obfuscation,

protection and encryption methods. The dynamic analysis is a black box method-

ology that identifies the traces of executed app with the system. Dynamic analysis
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Figure 2.3: Android malware chronology [2, 3, 4, 5, 6, 7]

techniques are effective against obfuscated and encrypted malware. The malware

authors have recently adopted Dalvik bytecode transformations and analysis envi-

ronment detection techniques to evade the dynamic analysis based anti-malware.

In this section, we summarize the popular Android malware survival and stealth

techniques to evade existing analysis.
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2.4.1 Repackaging Popular Apps

Repackaging is a process of reverse engineering a popular app from the app mar-

kets. The malicious payload is added to rebuild the APK. The trojan app is

disseminated from the less monitored local app markets. The repackaging proce-

dure is illustrated in Figure 2.4. The following section discusses the main steps

involved in app repackaging:

1. Download the popular free/paid app from the popular app store(s).

2. Obtain the assembly code of the APK with apktool disassembler [42].

3. Generate a malicious payload, convert it in Dalvik bytecode with the dx [43]

tool.

4. Add the malware payload into a benign app. Modify the AndroidManifest.xml

and/or resources if required.

5. Assemble modified source again using apktool.

6. Distribute the repackaged app as a free app or free version of popular app

from less monitored third party markets.

Repackaging is one of the most common malware app generation technique. More

than 80% samples from the Malware Genome Dataset have repackaged malware

variants [11] of the legitimate official market apps. Repackaging can be used to

generate large number of malware variants. It can also be used to spawn un-

seen variants of the already known malware. As the signature of each malware is

unique, the commercial anti-malware can be easily evaded by the unseen malware.

Repackaging is a big threat as it can pollute the app market and hurt the devel-

oper reputation. The malware authors divert the revenues by replacing their own

advertisements in place of the developer advertisements.

AndroRAT APK Binder [44] repackages and generates a trojanized version of a

popular and legitimate APK adding remote access functionality. The adversary

can remotely force the infected device to send SMS messages, setup voice calls,

reveal the device location, record audio, video and access the device files.
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Figure 2.4: App repackaging.

2.4.2 Drive-by Download

An attacker can employ social engineering, aggressive advertisements having ma-

licious URL to force or lure the user to download malware. Optionally, a drive-by

download may disguise as a legitimate application and coax the user to install the

malicious app. Android/NotCompatible [45] is a well known drive-by-download

app.

2.4.3 Dynamic Payload

An app can also embed malicious payload as an executable apk/jar in encrypted

or plain format inside the APK resources. Once installed, the app decrypts the

payload. If the payload is a jar file, malware loads DexClassLoader API and

execute dynamic code. The user unknowingly installs the embedded apk disguised

as important update. The app can execute native binaries using Runtime.exec

API, an equivalent of Linux fork()/exec(). BaseBridge [29] and Anserverbot [29]

malware employ the above discussed technique. Some malware families do not

embed malicious payload as a resource, but rather download them from the remote
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server and successfully evade detection. DroidKungFuUpdate [29] is a notable

example of dynamically executing payload going undetected with existing static

analysis methods.

2.4.4 Analysis-aware Malware detection

Android is developed for resource constrained environment keeping in mind the

availability of limited battery of the underlying smartphone. On device, anti-

malware apps cannot perform the deep real-time analysis, unlike their desktop

counterpart. Malware authors exploit the device resource limitations by obfus-

cating the malicious payloads to evade static analysis, efficient detection methods

and commercial anti-malware. Stealth techniques such as code encryption, key

permutations, dynamic code loading, analysis-environment detection, reflection

code and native code execution remain a matter of concern for signature-based

anti-malware solutions.

Following the trends of the desktop platform, code obfuscation is evolving on

Android [46, 47]. Obfuscation techniques are employed to:

• Protect the proprietary algorithm from rivals by making the reverse-engineering

difficult.

• Protect Digital Rights Management (DRM) of multimedia resources to re-

duce piracy.

• Obfuscate the apps and make them compact, thus faster in execution.

• Hide the already known malware from anti-malware scanners so that it can

propagate and infect more devices.

• Block or atleast delay human analyst and automatic analysis engines.

Dalvik bytecode is amenable to reverse engineering due to the availability of type-

safe information such as class/method types, definitions, variables, registers, literal

strings and instructions. Code transformation methods can be easily implemented

on Dalvik bytecode with protection tool like Proguard [48]. Proguard is an opti-

mization tool that removes unused classes, methods and fields. The meaningful

class/method/fields/local variable names are replaced with unreadable information
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to harden the reverse engineering. Dexguard [49] is a commercial Android code

protection tool. It can be used to implement code obfuscation techniques such

as class encryption, method merging, string encryption, control flow mangling to

protect an app from being reverse-engineered. Code transformation techniques

can be used to hinder the malware detection approaches [46, 47]. Faruki et al. [50]

proposed an automated Dalvik bytecode transformation framework to generate

unseen variants of already known malware.

In the following, we cover various code transformation methods used to obfuscate

the existing known malware. Some of these methods evade the existing disassembly

tools [51]. Figure 2.5 illustrates a detailed outline of the prevalent code obfuscation

and protection techniques:

2.4.4.1 Junk code insertion

Junk code or no-operation code (NOP) insertion changes the app size and evades

the anti-malware signature database. The technique is popular due to its simplicity

and ease of use. The Junk code insertion preserves the semantics of the original

app by altering the opcode sequence. The opcode can be reordered with the goto

instructions in-between the functions and alter the control flow, preserving the

original execution semantics. These methods can be used to evade the signature-

based or opcode-based detection solutions [46, 47]. Figure 2.6 illustrates junk code

insertion technique to evade the analysis.

:label A

goto       :label C

:label B

goto       :label D

:label C

goto       :label B

:label D

goto        :label A

1

2

3

4

Figure 2.6: Junk code injection.
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2.4.4.2 Package, Class, Method renaming

Android app has a unique package name. The Dalvik bytecode is typesafe, hence

preserves the class and method names in the dex file. The commercial anti-

malware use trivial signatures such as package, class or method names of known

malware as its signature [52]. The trivial obfuscation like class or method renaming

evades the existing signature-based detectors [47].

2.4.4.3 Altering Control-flow

Some anti-malware use semantic signatures such as control and data flow analysis

to detect the malware variants employing simple transformation techniques [52].

The control flow of a program can be modified with (1) goto instructions; (2) insert

and call the junk methods and (3) merging two or more methods into one. Though

trivial, such techniques evade the commercial anti-malware [47]. Figure 2.7 illus-

trates the control-flow obfuscation.

Figure 2.7: Control flow obfuscation.

2.4.4.4 String Encryption

The literal strings like messages, URLs, and shell commands reveal a lot about

the app. The plain text strings can be encrypted and made unreadable to prevent

the analysis. During the string encryption, multiple encryption methods (or keys)

evade the decryption. The literal strings can be made available during the code

execution, thus evading the static analysis. Listing 2.1 and 2.2 illustrate code

snippets of original string and after the encryption.
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1 // original code

2

3 public void onClick(DialogInterface arg1 ,

4 int arg2) {

5 try {

6 Class.forName("java.lang.System")

7 .getMethod("exit", Integer.TYPE)

8

9 .invoke(null , Integer.valueOf (0));

10 return;

11

12 } catch :( Throwable throwable) {

13 throw throwable.getCause ();

14 }

15 }

Listing 2.1: Original snippet from [53].

// String encryption

public void onClick(DialogInterface arg1 ,

int arg2) {

try {

Class.forName(COn. (GCOn. [0xA],

COn. [0x09], GCOn. [0xB]))

.getMethod(COn. (i1, i2, i2 | 6),

Integer.TYPE)

.invoke(null , Integer.valueOf (0));

return;

} catch :( Throwable throwable) {

throw throwable.getCause ();

}

}

Listing 2.2: after. snippet from [53].

2.4.4.5 Class Encryption

Decompilers tend to crash when the class names are too long or written in non-ASCII

format [54]. Few malicious apps have demonstrated the same by using long class

names to defeat reverse engineering tools. The technique is mentioned in [55],

with new malware Android/Mseg.A!tr.spy reportedly employing class encryp-

tion. The relevant information such as product license-check, paid downloads,

and DRM can be hidden by encrypting the entire classes [49].

2.4.4.6 Resource Encryption

Content of resources folder, assets and native libraries can be altered as unread-

able, hence they must be decrypted at runtime [49]. For example, Android/SmsZom

bie.A!tr hides a malicious package in a JPEG file named a33.jpg in the assets di-

rectory [56]. Furthermore, Android/Gamex.A!tr conceals an encrypted malicious

package in an asset named logos.png an image file [56].

2.4.4.7 Reflection API

Static analysis methods search sensitive Android API within the malware apps

to map the malicious behavior. User apps permit Java reflection allowing the

creation of class instances and method invocation with literal strings. To identify

the class or method names data-flow analysis is necessary. However, the literal
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strings can be encrypted, making it difficult to identify the reflection API. Such

techniques can easily evade static analysis approaches.

2.5 Malware Analysis and Detection

Android security solutions such as vulnerability assessment, malware analysis and

detection techniques are divided into 1) Static; 2) Dynamic; and 3) Hybrid. Static

analysis methods analyze code without executing. This may result in false pos-

itives. The dynamic analysis techniques monitor the executed code and inspect

its interaction with the system. Though time-consuming they are effective for

analyzing obfuscated malware. The Hybrid approach leverages the synergy of the

static and dynamic analysis.

The security solutions can be categorized as rule-based [57] or feature extraction

based machine-learning models [58]. Inappropriate feature selection can degrade

the performance of the model and generate false-positives (i.e., false detection of

benign as malicious). Moreover, the number of features under the problem must

be small sized and effective as an On-device anti-malware. Feature reduction

methods employing statistical measures such as mean, standard deviation, chi-

square, haar transforms can be used to identify the prominent malicious attributes.

The learning models can be developed by analyzing the processor, memory usage,

battery consumption, system call invocation and network activities. Then, it

can be used with the clustering or classification algorithms to predict anomalous

behavior. In the following, we discuss some of the methods in detail.

2.5.1 Static analysis

Static analysis based approaches work by disassembly and decompilation without

actually executing the APK. This approach is undermined by the use of various

code transformation techniques discussed in Section 2.4.4.

2.5.1.1 Signature-based Malware detection

The existing commercial anti-malware employs signature-based malware detection

by extracting interesting syntactic or semantic features [59]. The signature-based



Chapter 2 A Review of Android Malware Analysis 22

methods are time-efficient but, fail to detect unseen variants of known malware.

Moreover, the signature extraction process being manual, its efficacy in the wake of

the exponential malware outbreak leaves the device vulnerable for malware attacks.

Another downside is the continuous increase in the size of signature database

necessitates regular update. Furthermore, the exponential increased database size

affects the time-efficiency.

2.5.1.2 Component-based Analysis

To perform detailed app security assessment or analysis, an app can be disas-

sembled to extract the AndroidManifest.xml, resources, and Dalvik bytecode.

The Manifest file stores important meta-data about such as a list of the compo-

nents (i.e. activities, services, receivers) apart from the requested permissions,

intent and intent-filters. The app security and assessment solutions can analyze

the components using their definition and bytecode interaction to detect malicious

app [60, 61, 62].

2.5.1.3 Permission-based Analysis

Requesting permission to access a sensitive resource is the central design of the

Android security model. No application by default has any permission that can af-

fect user security. However, identifying the requested dangerous permission alone

is not sufficient to detect the malicious app [63, 64]. Sanz Borja et al. [65] em-

ploy <uses-permission> and <uses-features> tags in AndroidManifest.xml

to identify malicious app. The authors utilized machine learning algorithms like

Naive Bayes, Random Forest, J48 and Bayes-Net on a dataset of 249 malware

and 357 benign apps. In [66] authors mapped the requested and used permissions

from the manifest and their corresponding Dalvik bytecode API. The features are

evaluated with machine learning algorithms on a reasonable size dataset. Enck et

al. [67] developed Kirin to identify the combination of specific dangerous permis-

sions to detect malicious apps.



Chapter 2 A Review of Android Malware Analysis 23

2.5.1.4 Dalvik Bytecode Analysis

The Dalvik bytecode has rich semantic information. The classes, methods and in-

structions type information can be leveraged to identify malicious behavior. The

control-flow and data-flow analysis can identify privacy leakage and telephony ser-

vice misuse [57, 68, 69]. The control and data flow analysis are useful in rebuilding

de-obfuscated bytecode to nullify the effect of trivial transformation [70].

Bytecode control-flow analysis identifies the possible paths that an app takes. The

jump, branch and method invocation instructions alter the Dalvik bytecode ex-

ecution. An intra-procedural (within a single method) or inter-procedural (i.e.

spanning across multiple methods) analysis can generate a precise control-flow

graph to identify the execution pattern. Karlsen et al. [70] formalized the Dalvik

bytecode constructs and performed control-flow analysis to identify malware. For

example, a malware app sending premium rate SMS to a pre-defined hard coded

number can be detected with the constant propagation data-flow analysis [57].

Taint analysis, another type of data-flow analysis method tracks the uranine (col-

ored) variables holding the sensitive information and track their flow within the

program to identify privacy leakage [69]. The sensitive API-call tracing within

the bytecode is useful in malicious behavior detection [71] and APK clones [72].

Zhou et al. [11] utilized the sequence of Dalvik opcodes to identify the repackaged

malware.

2.5.1.5 Re-targeting Dalvik Bytecode to Java Bytecode

The availability of Java decompilers [73, 74, 75], Soot and WALA [76, 77, 78] based

static analysis tools have motivated the researchers to re-target the Java source

extracted from the Dalvik bytecode. Enck et al. [79] developed ded tool to con-

vert Java source from the Dalvik bytecode. Later, they performed static analysis

based control and data flow analysis of Java code with Fortify SCA framework [78].

In [80], authors developed Dare tool to convert the Dalvik bytecode to Java byte-

code with 99% accuracy. Bartel et al. [81] developed the Dexpler plugin for Soot

framework [76]. Dexpler converts the Dalvik bytecode to Jimple code. However, it

is unable to handle the optimized dalvik executable (ODEX) files. Gibler et al. [82]

employed ded and dex2jar [83] to convert the Dalvik bytecode into Java bytecode

and source code respectively. WALA [77] framework identifies the privacy leakage

within Android apps on a fairly large experimental data.
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2.5.1.6 Privacy Leakage detection

Apposcopy [59], is a static analysis based semantic signature technique to detect

apps stealing user sensitive private information. The proposed approach generates

class and method level signatures to describe the malware family characteristics.

Apposcopy signature matching algorithm combines static taint analysis and ICC

based Call graph to detect inter-component-communication (ICC) properties. The

authors evaluated proposed approach on a real-world Android apps to demonstrate

the efficacy of Apposcopy. IccTA [84] leverages inter-component data-flow based

static taint analysis to identify privacy leak among the app components. The

author tracks uranine(tainted) variables called sources and trace them to the pos-

sible vulnerable functions called sinks to detect user-sensitive data ex-filtration.

Proposed approach has high precision and recall values compared to the exist-

ing state-of-the-art. Furthermore, the proposed technique is useful in identifying

inter-app based privacy leakage.

In [85], authors propose a reduced discovery of inter-component communication

(ICC) on Android platform. Authors propose inter-component communication

specifications based on location and substance. Experimental evaluation identi-

fies more than 93% ICC locations with reasonable time. Furthermore, the Epicc

tool identifies ICC vulnerabilities with low false positive compared to the existing

techniques reported in literature. FlowDroid [86] is a context-, object- and field

sensitive static analysis tool that formalizes the components life-cycle to detect

privacy leaking apps. Flowdroid detects privacy invasion by explicitly tracking

the data-flow analysis.

2.5.2 Dynamic analysis

Static analysis and detection techniques can be evaded by encrypted, polymorphic

and code transformed malware. The dynamic analysis methods execute the app

in a protected environment, providing all the emulated resources it needs, thereby

learning from the interaction with system to identify malicious activities. Some

dynamic analysis methods have been implemented, but the resource constraints

of a smartphone limit such execution methods. Android app execution being

event-based with asynchronous multiple entry points, it is important to trigger

those events. User Interface (UI) gestures such as tap, pinch, swipe, keyboard,
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and back/menu keypress need to be automatically triggered to initiate the app

interaction. Android SDK has inbuilt monkey [87] tool, to automate some of the

gestures discussed above. To perform an in-depth monitoring, one may need to

modify the framework by inserting the tracking code known as Instrumentation.

A serious drawback of the dynamic approach is that some malicious execution

paths are not invoked on account of the missed events. If a malware triggers at a

specified time, such event may not be captured and evades the analysis sandbox.

Anti-emulation techniques such as Sandbox detection [88, 89], analysis environ-

ment timeout, delaying the malware execution evades the dynamic analysis. The

dynamic analysis techniques can be classified as follows:

2.5.2.1 Profile-based Anomaly Detection

Malicious apps create Denial of Service (DoS) attacks by keeping hardware re-

sources busy with unnecessary tasks. The parameters such as CPU usage, mem-

ory usage, network traffic pattern, battery usage may be an indication of such

attack. The discussed parameters and system calls are collected from the Android

subsystem. The analysis techniques use machine learning methods to distinguish

the anomalous behavior [58, 90, 91].

2.5.2.2 Malicious Behavior Detection

Specific malicious behaviors like sensitive data leakage, sending SMS/emails, voice

calls without user consent can be accurately detected by monitoring the particular

features of interest [92, 93, 94, 95, 96].

2.5.2.3 Virtual Machine Introspection

Virtual machine introspection techniques regenerate the context of guest machine

from the virtual machine monitor [97, 98]. This task is possible by extracting the

data-structure information at the kernel. In [99], authors proposed a monitoring

technique by mimicking the execution from outside the guest machine [99]. Droid-

Scope [100] traverses the Android kernel data-structures to recreate the OS view.

Furthermore, DroidScope generates Java and native app components simultane-

ously. The downside of app behavior monitoring from an emulator (VM) is, an
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emulator itself is susceptible against the malicious app that defeats the analysis

purpose. Virtual Machine Introspection approaches can be employed to detect

app behavior by observing the activities outside the emulator [100].

2.6 Deployment of Anti-malware

Security assessment, malware analysis and detection methods can be deployed

at different places. Such assessment and analysis methods range from On-device

solution to a completely Off-device or Cloud based analysis techniques.

2.6.1 On-Device

Signature-based malware is simple and efficient. The detailed assessment and anal-

ysis remains constrained on a mobile as compared to the desktop anti-malware.

The lightweight risk assessment solutions may be devised by analyzing the compo-

nents and permissions for an On-device solution [67]. Following are the limitations

of an On-device anti-malware:

• Anti-malware apps run as a normal app without any special privileges. As

a result, they are also under the purview of process isolation. They cannot

directly scan other app memory, files read/written and private files during

anti-malware scanning.

• Android permits execution of background app services. However, it can stop

anti-malware app services if it runs out of hardware resources. Similarly,

privileged apps can forcibly stop the anti-malware app execution.

• Without acquiring the root privileges, the anti-malware app cannot create

system hooks to monitor the file-system modification or network access.

• Without acquiring root privileges, the anti-malware app cannot uninstall any

other app. They depend on the user for removing the app.
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2.6.2 Distributed (On- and Off- Device)

On the fly analysis and detection is performed on the device; detailed and compu-

tationally expensive analysis can be carried out on the remote server. Profile-based

anomaly detectors, measure resource usage parameters on the device; then send

back to the server for detailed analysis. The analysis result is sent back to the

device [58, 93]. The uninterrupted Internet availability and associated cost is a

concern. In case of unavailability of network resources, host-based detection ap-

proach can protect the device from malware attack [91].

2.6.3 Off-Device

It is important to automate the deep static analysis of a new malware sample to

enable the human analysts identify and mitigate the malware. Such automated

deep analysis solutions need computational power and memory. Hence, they are

usually deployed off-device [57, 69, 100, 28].

2.7 App assessment, Analysis and Detection

Industry and academia have proposed several solutions for Android malware anal-

ysis and detection. In this section, we survey and examine promising reverse-

engineering tools and detection approaches.

2.7.1 Comparing analysis techniques

Table 1 compares different analysis and detection techniques to identify the lim-

itations of existing state-of-the-art in “single malware” based on 3 parameters:

(1) goal; (2) methodology; and (3) deployment. Androguard is a static analy-

sis framework employed by many methods to detect malicious apps. Andromaly,

Crowdroid and Paranoid Android use machine learning based anomaly detection

to identify malicious apps based on benign properties. Table 1 compares the static

and dynamic analysis techniques. The analysis of the existing state-of-the-art is

detailed in Appendix A.
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Androguard[52] 4 4 4 4 4 Free

Andromaly[58] 4 4 4 4 Free

AndroSimilar[101] 4 4 4 –

Andrubis[102] 4 4 4 4 4 4 4 Free

APKInspector[103] 4 4 4 Free

Aurasium[104] 4 4 4 4 Free*

CopperDroid[105] 4 4 4 4 4 4 Free*

Crowdroid[93] 4 4 4 4 4 –

DroidBox[106] 4 4 4 4 4 Free

DroidScope[100] 4 4 4 4 4 4 Free

Drozer[107] 4 4 4 4 Free/Paid

JEB [108] 4 4 4 Paid

Kirin[67] 4 4 4 Free

Paranoid Android[109] 4 4 4 4 –

TaintDroid[92] 4 4 4 4 4 Free

2.7.2 Library based malware analysis

The third party app developers earn revenues on free apps by using the in-app

advertisement libraries. The advertisement agencies provide the advertisement

libraries to the app developers for inclusion to earn revenues, the only source of

income for free apps. AdRisk [110] detected a few aggressive ad libraries perform-

ing targeted advertisements at the cost of user privacy. There have been instances

of ad-affiliate networks getting classified as suspicious either due to: (i) targeted

advertisements; (ii)sending malicious advertisements; compromising the user se-

curity [10]. Thus, it is equally important to detect such ad libraries within an app

to make an informed decision. AdDetect [111] is a promising semantic approach

that detects the presence of in-app ad library with reasonable accuracy compared

to existing approaches.

2.7.3 Miscellaneous Techniques

Damopoulos et al. [91] proposed a combination of host and cloud-based Intrusion

Detection System (IDS). In particular, authors highlight the importance of such

a system to protect the smartphone. If the network resource availability is low,

it performs host-based detection. If the device battery is drained, the prototype

intelligently opts for the cloud-based detection to leverage the infinite processing

and memory. In [112], authors proposed PERCEPT-V, a smartphone-based UI
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visual tags with a sampling algorithm for lighting, ambiance and usage angle

environment.

SMS Trojans capable of sending messages to premium-rate numbers are growing to

maximize monetary benefits. Elish et al. [94] devised a static anomaly detector to

identify illegitimate data dependence between arguments of user input call-backs

to sensitive functions. Using this approach they demonstrated the detection of

some Android malware that send messages without user knowledge or consent. As

the authors do not consider inter-component communication they fail to detect

elusive SMS Trojans [113]. AsDroid [95] is a static analysis tool that detects

stealth behavior leveraging semantic mismatch between the user-interface text

and corresponding sensitive feature misuse.

2.7.4 Analysis Environment Detection

Vidas et al. [89] proposed a system to identify the analysis environment. The

authors identify the behavior differences, performance evaluation, the absence of

smartphone sensors and typical software capabilities. Such a system highlights the

importance of employing analysis aware malware to reveal the hidden behavior.

Faruki et al. [114] proposed a platform-neutral Sandbox to detect the stealth

Android malware identifying the analysis system. Authors also propose a machine

learning model to predict the resource hogger apps. Furthermore, [115] proposed

a novel solution based on a behavior-triggering stochastic model to detect the

targeted and advanced malware.

Rattazi et al. [116] proposed a systematic approach for identifying critical objects

disallowing access control. Authors performed specific experiments to test their

hypothesis and concluded that the newer capabilities are yet to mature for deploy-

ment on mobile internet devices. Petsas et al. [117] demonstrate advanced mal-

ware apps evade emulated environment hindering the analysis systems. Authors

patched the existing malware apps with anti-analysis features and demonstrated

the shortcoming of the existing frameworks [105, 118, 119, 120, 121, 122]. In [123],

authors proposed a comparison framework for existing dynamic analysis Sand-

boxes and identified the limitations of automated malware analysis techniques.

They concluded that advanced and targeted malware can evade existing sandbox

approaches.
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2.7.5 Comparing Web based analysis Tools

Table 2 lists existing Sandbox prototypes available as web services. Andrubis [102]

and Copperdroid [105] are implemented on top of (i) Taintdroid [92], an on-device

privacy leakage detector; and (ii) Droidbox [106], a dynamic analysis technique.

The Mobile Sandbox [124] is an automated malware analysis and detection ap-

proach incorporating native code analysis, a facility unavailable with the existing

prototypes. Droidanalyst [125] is an anti anti-analysis sandbox to detect analysis

environment aware malware. Apps are classified as resource hoggers based on the

data transmitted/received. The approaches using Taintdroid or Droidbox have to

modify Android OS. The Appendix A elaborates popular static and dynamic tools

and techniques available for Android malware analysis.

Property AASandbox Andrubis
Apps

Playground
CopperDroid DroidAnalyst ForeSafe SmartDroid

Platform Modification 7 4 4 7 7 7 4

Resource Hogger analysis 7 7 7 4 4 7 7

GUI Interaction 7 7 7 7 4 4 4

API Hooking 7 4 4 7 4 4 4

Logcat analysis 7 7 7 7 4 4 7

System call analysis 4 7 7 7 4 4 4

Risk Prediction with 4 4 7 4 4 7 7

Machine learning model

Anti Anti-Analysis Sandbox 7 7 7 7 4 7 7

Identifying Data Leakage 7 4 4 7 4 4 4

Identifying SMS/Call Misuse 7 7 4 7 4 7 7

Network Traffic Analysis 7 4 7 7 4 4 7

File Operations Monitoring 7 4 7 7 4 4 7

Native Code Analysis 7 7 7 7 7 7 4

On Device Analysis 7 4 7 7 7 4 7

2.8 Summary

The Android mobile OS is a core delivery platform providing ubiquitous services.

The monetary gains have prompted malware authors to employ various attack vec-

tors to target Android. The massive increase in unique malware app signature(s)

and limited capabilities within Android evades the analysis. The signature-based

techniques are insufficient against unseen, cryptographic and transformed code.

The researchers have proposed static, dynamic and hybrid analysis techniques to

protect the centralized app markets. In this chapter, we discussed Android security
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architecture and its issues, malware penetration and various malware stealth tech-

niques. In Section 2.5 we discussed relevant static and dynamic malware analysis

techniques. Both approaches can be used separately with each incurring specific

limitations.

The static analysis can be evaded by encryption, transformation and code protec-

tion techniques as discussed in Section 2.4.4. The dynamic analysis can be evaded

by several anti-emulation techniques covered in Section 2.5.2. We also covered

prominent malware analysis and detection approaches as summarized in Table 1

according to their goal, methodology, and deployment. We conclude that a sin-

gle analysis technique can be evaded by a targeted malware. To identify a wide

variety of new malware, a comprehensive evaluation framework incorporating the

complementary static and dynamic analysis techniques can improve the analysis

coverage. Based on the existing reviews in the chapter, we propose to integrate the

synergy of multiple static and dynamic analysis techniques to improve the analy-

sis coverage. We propose multiple techniques based synergic static and dynamic

analysis framework to analyze the Android malware.

In the next chapter, we will discuss our proposal ApPRaISe, an Android permission

analysis technique to detect over-privileged and malicious apps.
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ApPRaISe: Static Analysis of

Android Malware

In the previous chapter, we discussed the Android security model and existing mal-

ware analysis techniques. The Android permission model secures the applications

and protects sensitive devices resources. In this chapter, we propose ApPRaISe,

an Android app Permissions risk classification technique. The ApPRaise statically

extracts permissions declared in the Android manifest and important bytecode fea-

tures to identify the risk that dangerous permissions pose if used inappropriately

by the app developer. The proposed technique employs the declared permissions

and their use within the Dalvik bytecode to determine over-privileged apps and

susceptibility to their misuse. The goal of this chapter is to design an analysis

technique capable of identifying the dangerous permission use and associate the

risk posed in wake of ever increasing Android apps.

3.1 ApPRaISe: Overview

The Android permission model is an important security measure to prevent unau-

thorized access to the sensitive device resources. Permissions can be defined by the

Android OS and third party app developers. The Android System defined permis-

sions provides control over the sensitive information through the framework API

to invoke protected resources (access device hardware, read device ID, modify de-

vice settings etc.). The Android Kitkat version 4.4 has defined 145 permissions,

out of which 128 permissions are available to the app developers [1].

32
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The Android permissions are defined with 4 protection levels associating a risk

to necessitate permission usage at install time. Android security model classifies

the permissions into (1) Normal; (2) Dangerous; (3) Signature; and (4) Signa-

tureOrSystem. Among the four levels, ‘Normal’ group is granted by default; and

‘Dangerous’ permissions require explicit user approval at install time. The Android

‘Dangerous’ category perform sensitive functionality that costs money or acquires

sensitive resources such as camera, phone, network or sending SMS. In respect of

permissions, Android adopts either ‘accept all’ to permit app installation or ‘ac-

cept none’ to deny the installation. A naive user may not realize whether an app

is requesting some unnecessary permission(s). The user may not be fully aware of

the implications for the device security.

For an example, it is uncommon for a game app to request SEND SMS permissions.

A naive user, unaware of the consequences, may install the app requesting multiple

dangerous permission approval. A single isolated dangerous permission alone may

not be harmful. However, a combination of two or more dangerous permissions

requested by an app need to be analyzed carefully. For example, an app either

using INTERNET or READ SMS permission may not pose a risk to the device. If

the app requests both the permissions together, privacy leakage can happen as

the SMS can be read and forwarded to other user(s) via Internet misusing the

permissions pair.

Hence, we propose ApPRaISe, an app permission assessment model that identifies

the risk associated with dangerous permissions. To improve the accuracy of risk as-

sessment, presence of important bytecode features native, dynamic, cryptographic

and reflection code observed more among the malicious apps are considered. We

perform the n−Set permission usage analysis and identify the risk associated with

dangerous permissions. The proposed methodology consists of following steps:

1. Extract manifest binary and convert it to readable form.

2. Extract dangerous Permissions declared in the manifest.

3. n− Set construction for benign and malicious dataset.

4. Frequency analysis to determine discriminatory n− Sets.

5. Identify contributing Permission n− Set.
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6. Disassemble the Dalvik bytecode and map the declared Permission and its

actual use in the Dalvik bytecode.

7. Identify over-privileged APK if inconsistent define-use mapping.

8. Identify risky and malicious apps based on permission usage.

In the following subsections, we shall be discussing the steps in detail.

3.1.1 n-Set Permissions Usage Analysis

In the first step, we extract the Androidmanifest binary from the APK and convert

the manifest to readable form. Declared permissions are extracted from this file.

This procedure is repeated for the benign and malicious dataset. For an example,

app A manifest has requested [INTERNET, SEND SMS, READ SMS] permissions. 1−
Set is constructed with [INTERNET], [SEND SMS] and [READ SMS] permissions. 2−
Set is illustrated by [INTERNET SEND SMS], [INTERNET READ SMS] and [SEND SMS

READ SMS] group. Figure 3.1 illustrates individual permissions requested by the

benign and malicious apps respectively.

Similarly, 3 − Set is constructed with [INTERNET SEND SMS READ SMS] permis-

sions. Similarly, we generate upto 5-Set requested permissions from the manifest

declared permissions. In the next step, we compare the frequency of analysis

of benign and malicious apps for single permission (1 − Set), combination of 2

permissions (2 − Set) and combination of 3 permissions (3 − Set) is evaluated

against 8,341 benign Google Play [126] and 6,298 real malware from public reposi-

tories [2, 127, 128]. Figure 3.1 illustrates a comparison of different declared 1−Set
permissions. 1 − Set (Figure 3.1) lists SEND SMS, READ SMS and READ HISTORY

BOOKMARKS requested by malicious apps in substantial number compared to be-

nign apps.

Figure 3.2 illustrates 2-Set frequency distribution among benign and malware. The

[INTERNET READ PHONE STATE] and [INTERNET READ SMS] are requested more of-

ten by the malware as compared to benign apps. If the [READ PHONE STATE] is

followed by [INTERNET], the collected sensitive user information may be diverted

to remote location. Similarly, the read SMS messages can be sent to the remote

server. We identified top 70 permission combinations discriminating between the

benign and malicious class. Furthermore, to improve the analysis accuracy, we
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Figure 3.1: Comparative analysis for 1-Set permission.

have included the following Dalvik bytecode features, after experimentally evalu-

ating 21,472 apps identifying their significant presence among malware.
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Figure 3.2: Comparative analysis for 2-Set permission.
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1. Cryptographic Code: This feature is present if the strings are encrypted

in an APK file.

2. Native Code: This feature is present if an app contains native (C/C++)

code embedded as library or executable.

3. Dynamic Code: This feature is present if an app can load external Java

classes at runtime.

4. Reflection Code: This feature is present if an app uses Java Reflection

API in the code.

Figure 3.3 illustrates 3-Set frequency distribution among of benign and malicious

apps. The permissions [INTERNET READ PHONE STATE WRITE EXTERNAL STORAGE]

and [INTERNET READ PHONE STATE SEND SMS] are the two top permissions re-

quested by malicious apps compared to the benign. If the [READ PHONE STATE] is

followed by [WRITE EXTERNAL STORAGE] and [INTERNET] permissions, the sensi-

tive device information is first written to the external storage and ex-filtrated using

[INTERNET] permission. Similarly, [READ SMS] permission followed by [WRITE EXT

ERNAL STORAGE] and [INTERNET] can read the private user information and ex-

filtrate the data when Internet is available. The other permission set can be

inferred from Figure 3.3.

3.1.2 Identifying Over-privileged APK

A developer declared dangerous permissions explicitly in the Androidmanifest.

The security model ensures the declaration of dangerous permission in the app, if

a sensitive resource need to be accessed by the APK. The mapping between the de-

clared permission from the manifest and its actual use in the Dalvik bytecode iden-

tifies unused permissions. Based on the androidmanifest.xml defined and Dalvik

bytecode use permission policy, an analyst can determine the over-privileged and

malicious apps. In other words, an app must request a minimal set of permissions

to perform the intended functionality. Each dangerous permission is associated

with a corresponding Android API that restricts and controls the sensitive resource

use [21]. To map the permission usage in the Dalvik bytecode, we need a relatively

complete database that map permissions to their corresponding APIs. For exam-

ple, we correspond a define and use only if RECEIVE BOOT COMPLETED permission
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Figure 3.3: Comparative analysis for 3-Set permission.

receives the android.intent.action.BOOT COMPLETED intent message. We lever-

age PScout [129] and manual mapping for permissions-to-API and Intent message

mapping upto Android Kitkat OS version 4.4.

To identify the unused permissions ApPRaISe model performs the following steps:

1. Lookup API, intent-filters or content providers corresponding to the permis-

sion from the androidmanifest.xml file and map the use of Dalvik byte-

code in classes.dex. If no reference of declared permissions is found in

the Dalvik bytecode, we conclude that the permission is unused, else run

step 2. The presence of unused permission imply the app under inspection

is over-privileged.

2. Perform reverse path reachability using synchronous and asynchronous con-

trol flow and locate the bytecode where the permission is used. For each

method invoked in the Dalvik bytecode, we compare the API name with the

method.

3. If the topmost method found in the path is an entry point method called

by the Android framework (e.g., onClick, onCreate, onBind), we conclude
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that permission declared in the manifest file has been used in the app code.

Otherwise, permission is treated as declared but unused. In the latter case,

the APK is labeled as over-privileged.

3.2 Experimental Evaluation

The manifest permission features for benign and malicious apps are extracted and

evaluated against a classification model by collection and experimental evaluation

of nearly 20,000 apps collected from Google play and real malware from known

repositories. In the first experiment, we extracted manifest permissions from the

benign and malicious dataset. Then, we ranked the permissions and their n−Set
based on their usage in malicious compared to benign. In the second experiment,

we analyze and map the use of declared permission in the manifest file.

3.2.1 Dataset Preparation

Table illustrates the dataset to classify the n−Set permission model. We crawled

32 categories of Google Play and selected top apps from each benign category.

The malware apps are gathered from sources listed in the Table below:

Source # of Apps

Malicious Apps 6298

Malware Genome Project [2] 1260
Contigiominidump [127] 654
VirusShare [128] 3784

Benign Apps 8341

Google Play [126] 7235
Asian Third Party markets [130, 131] 1106

Table 3.1: Dataset for ApPRaISe model.

3.2.2 Performance Evaluation

We evaluated the ApPRaISe model on 73 features (permissions and bytecode fea-

tures) extracted from 11,639 apps and trained them with the RandomForest [132]
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decision tree classifier. RandomForest is selected to balance the performance trade-

off. Permission modeling results are illustrated in Table 3.2, enlisting acceptable

low false positives.

To improve the efficiency of ApPRaISe, we reduced feature space through a fea-

ture selection method. We employed minimum redundancy Maximum Relevance

(mrMR) [133]. The mrMR removes the redundant features and incorporates the

relevant features to improve analysis efficacy. We selected top 20 features to in-

vestigate the effect of reduced feature space on the accuracy of the approach.

Table 3.3 illustrates that 85% accuracy can be achieved by identifying risky apps

based on permissions and important bytecode features with an acceptable false

positive rate.

Actual Class
Predicted Class

Malware Benign

Malware 81.3% 18.7%
Benign 2.8% 97.2%

Table 3.2: Performance of ApPRaISe on 73 features.

During app evaluation, we observe that ACCESS NETWORK STATE permission is

paired with the INTERNET permission. More than 72% apps requested [ACCESS C

OARSE LOCATION ACCESS FINE LOCATION] permission set. Even the benign wall-

paper APK requested both permission necessitating justification. Some applica-

tions required excess permission such as reading the browsing history, bookmarks,

read phone storage, even though the app category did not necessitate such action.

Hence, the ApPRaISe developed n− Set analysis technique to identify risky and

malicious apps.

Actual Class
Predicted Class

Malware Benign

Malware 84.6% 15.4%
Benign 7.7% 92.3%

Table 3.3: Experimental evaluation: ApPRaISe with top 20 features.
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3.3 Inference and Discussions

The proposed ApPRaISe evaluation answers the following:

• Is the distribution of permissions set among benign and malicious apps sig-

nificantly different ?

• Is the proposed technique capable of filtering benign apps from further

scrutiny ?

• Can permission be the sole criteria to classify malicious apps from benign

• Reasons for false alarms.

In this section, we analyze the proposed app classification model and reasons for

inaccuracies in the analysis.

3.3.1 Security Analysis

The ApPRaISe evaluation shows malicious apps use INTERNET ACCESS WIFI STATE

more frequently compared to benign, the permission pair is useful for sending sen-

sitive information over the network proxy. The READ PHONE STATE is also used

more often, as one can access the device-id, Phone number and SIM ID. Fur-

thermore, READ LOGS, ACCESS FINE LOCATION and ACCESS COARSE LOCATION are

more frequently visible among malicious apps. We also identify INTERNET fol-

lowing READ PHONE STATE permission used more often by malicious apps to send

sensitive device information to a remote host.

The INTERNET is the most used permission among the free Google Play apps. The

main reason is the inclusion of third party libraries for advertisement revenues.

Thus based on a single permission the analysis technique incur False alarms. If

one tries to reduce False Positive (FP), the malware will be missed by the detector.

Hence, our proposed technique consider the n−Set permission analysis and maps

the manifest declared permissions against the Dalvik bytecode to reduce the false

alarms. We have identified top 20 permission pairs requests occurring more often

among malicious apps illustrated in Figure 3.2
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The proposed ApPRaiSe is useful in detection of over-privileged apps and mal-

ware based on the declared and used n − Set permission analysis. The mapping

of defined permissions with their actual use within the Dalvik bytecode, identi-

fies the surplus permissions. Based on the surplus permissions and its protection

level, we identify whether the app can be potentially misused by other malicious

applications. We infer the define and use permission to analyze the potential mis-

use of existing benign applications. The proposed model identifies over-privileged

benign apps using permissions not actually required for the normal functioning.

However, the proposed approach incurs false positive even if permissions and im-

portant bytecode instructions are used for analysis. The proposed model captures

the def-use permission relationship of an APK under inspection. A possible source

of inaccuracy arises when the inspected APK declares a superfluous permission and

makes use of the particular permission.

For example, we observe ACCESS NETWORK STATE permission is paired with the

INTERNET permission. More than 72% apps requested ACCESS COARSE LOCATION

and ACCESS FINE LOCATION. Some applications required excess permission such

as reading the browsing history, bookmarks, read phone storage, even though the

app category did not necessitate such action. Furthermore, we have experimentally

evaluated larger permission set of 28,946 malicious apps and identified the per-

mission pairs used more frequently among malware. The legitimate apps may also

require some pairs of dangerous permission raises the possibility of false alarms.

For example, legitimate calendar app has declared INTERNET permission not used

in the code. The component using the app has not defined it. Hence, a malicious

app can misuse the vulnerable app.

3.3.2 Google Play app Category as analysis Feature

Google Play, the official Android app market allows the users to browse free and

paid apps distributed into 32 categories (Books, Games, News etc.) We performed

experimental evaluation to identify the prevalent use of particular permissions

within a specific category. For example, Figure 3.4 illustrates top permissions re-

quested by Tools category apps. The figure illustrates INTERNET, ACCESS NETWORK

STATE and WRITE EXTERNAL STORAGE at the top.

In case of the free Google Play apps, Dalvik bytecode analysis reveals the per-

mission requests are on account of third-party advertisement networks and an-
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Figure 3.4: Requested permissions for Google Play Tools category.

alytics services. Hence, we define a parameter θ to depicts the minimum per-

centage apps requesting a particular permission within same category. Figure 3.4

illustrates θ = 20 set for Tools category requesting VIBRATE permission. The

ApPRaISe model identifies the app as non-risky. If the same app additionally

requests ACCESS FINE LOCATION permissions, then ApPRaISe identifies it risky as

only 13% (less than 20%) apps request that permissions within Tools category. A

permission that is requested by more than θ percent of apps within some category

is permissible for the app in same category. However, the Tools category apps do

not use the above permission.

Figure 3.5 illustrates permissions requested by Communication category apps. The

Communication category frequently requests SEND SMS and READ SMS permission

necessary for communication functionality. We have experimentally evaluated

benign apps with several θ values as illustrated in Table 3.4. To decide suitable

θ, we analyzed permissions usage for each benign category. The communication

category READ SMS permission is requested by 16% apps and SEND SMS by 22%

apps. The SMS read/write functionality falls under under communication, which

suggests that θ = 15 is suitable for this category.

We set ApPRaISe experimental θ = 15 to balance the apps risk and FP. The
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Figure 3.5: Percentage permissions: Communication category.

inclusion of app category features reduced to 5.65% from 7%. Table 3.3 illustrates

7.7% FP. To lower the FP, ApPRaISe analyzed benign app category as a feature.

θ Value –NA– 25 20 15 10

FP Rate 7.00% 6.64% 6.03% 5.65% 5.25%

Table 3.4: ApPRaISe FP rate for θ values.

3.3.3 Inaccuracy in Permission Classification

Over-estimating the permission fails to identify potential malware. Some permis-

sion pairs may be necessary for legitimate app functionality. The similar pairs

being used by malware generates False Negative (FN). For example, an app using

INTERNET or READ SMS permission individually may not pose a risk to the user de-

vice. However, if the app requests both the permissions together, the permissions

pair can be misused. Conversely, under-estimating the triggers may cause false

positives. For instance, legitimate APK uses a permission pair more frequently

observed in malicious apps. Hence, the genuine app is identified malicious.
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3.3.4 Comparing Permission based App Analysis

The Permission based access control to access sensitive resources (SMS, Call, Cam-

era, WiFi etc.) is core of Android security model. However, naive users cannot

judge the appropriateness of permissions and do not have the privilege to reject

a single dangerous permission [134, 135]. Mapping the manifest permission re-

quests, it may not possible to identify a malicious app. Nevertheless, permission is

an important feature to identify the risk associated by granting them all [63, 64].

Sanz Borja et al. [65] used <uses-permission> and <uses-features> tags

present in AndroidManifest.xml file as features. They applied machine learning

algorithms Naive Bayes, Random Forest, J48 and Bayes-Net on a dataset consist-

ing of 249 malicious and 357 benign apps. To demonstrate that such permission

based analysis model is not always robust, we experimentally evaluated the mod-

ified malware dataset (by adding benign app permissions to malware) with the

classification algorithm again. In each malicious app manifest, we declared top 5

permissions of the benign dataset and the remaining content is kept unmodified.

When the features are evaluated with the WEKA classifiers, the False Negative

Rate (FNR) (FNR: malware missed by detector) increases and classification rate

drops to 71%.

Huang et al. [66] evaluated the requested permissions and the manifest meta-data

features using machine learning algorithms on a dataset of 1,25,249 malicious and

benign apps. Enck et al. [67] developed permission certification tool Kirin consist-

ing a set of rules regarding combination of permissions in their database. The app

installation is rejected, if some app requests a certain combination of permissions

considered dangerous in the rule database. However, the rules need to be manually

added into the Kirin according to the requirements. Kirin also provides nine sam-

ple security rules to mitigate malware. The proposed ApPRaISe is an automated

n−Set based permission classification technique to associate permission pair risk

based on dangerous permission use. For example, READ PHONE STATE can access

the Device-ID, Phone number and SIM ID. Furthermore, INTERNET followed by

READ PHONE STATE is handy to send sensitive information over the network.

Sarma et al. [63] proposed several risk signals based on permissions requested by

apps that are useful in alarming users. In particular, Category-based Rare Critical

Permissions signal, denoted CRPC(θ), is triggered when any app requires a critical

permission that is requested by less than θ percent of apps in the same category.
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In the same way, Rare Critical Permissions signal, denoted RPC(θ), is triggered

when an app requests a critical permission that is requested by less than θ percent

of all apps. However, dataset of just 121 malware is very primitive in order to

understand their permission request patterns in comparison to benign apps.

Felt et al. [21] observed that developers often declare extra permissions. They de-

veloped Stowaway that identifies extra permissions and helps developer rectifying

their mistakes. They evaluated 940 Android apps and reported 33% over-privileged

apps. Au et al. [129] built a version independent PScout tool that extracts permis-

sion specification from the Android OS source code using static analysis. PScout

generates a more complete permission specification than Stowaway. We build on

the existing techniques to further improve the analysis

We observed previously that permissions in Android are coarse-grained in nature.

Jeon et al. [136] proposed a new approach to understand and implement fine-

grained permissions on the Android OS. They presented RefineDroid, Mr. Hide,

and Dr. Android, tools that infer and implement finer-grained permissions on

Android without requiring platform modifications.

3.4 Summary

In this chapter, we proposed ApPRaISe to automatically analyze the Danger-

ous permissions declared and used among Android apps. The proposed technique

achieves thorough analysis of permission distribution and its potential misuse. Un-

like the existing approaches, we perform fine-grained analysis to map the defined

manifest permissions to their actual use in Dalvik bytecode. We have experimen-

tally evaluated Android permission define-use mapping to identify over-privileged

and malicious apps.

The proposed model can analyze large number of apps to automatically detect

over-privileged and malicious apps. However, repackaged malware may evade the

analysis as the transformation does not remain limited to the androidmanifest.xml.

The permission based analysis techniques can be evaded with Dalvik bytecode

modification. To overcome the limitations and detect repackaged malware, we

propose a byte-level file similarity approach AndroSimilar in the next chapter.



Chapter 4

AndroSimilar: Robust Statistical

Signature for Android Malware

In this chapter, we propose AndroSimilar, a robust statistical feature signature to

detect repackaged malware and unseen variants of known malware families. We

characterize a bloom filter based file signature to detect repackaged and unseen

malware variants. Furthermore, we experimentally demonstrate the efficacy of

AndroSimilar in identifying obfuscated malware.

4.1 Threats and consequence of Repackaging

The current Android anti-malware use Signature-based detection techniques. The

commercial anti-malware has limited capabilities due to Sandboxing on Android.

The anti-malware solutions does not enjoy platform level privileges similar to Desk-

top OS. This necessitates alternative techniques to counter the zero-day malware.

The ever increasing malware instances render the manual analysis impractical and

infeasible.

The malware employs code obfuscation and app repackaging techniques and dis-

tribute malware towards less monitored third-party app markets [10]. Repackag-

ing is a process of inserting malicious payload inside a benign app using reverse

engineering techniques. The conventional signature-based approach has worked

effectively to prevent known malware families. However, they can be evaded by

trivial code transformation techniques.

46
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4.2 AndroSimilar: Overview

In this chapter, we present a robust statistical approach that explores byte fea-

tures [137] for capturing code homogeneity among variants of known malware

families. We assume that variants of an existing family share some common at-

tributes. The obfuscated malware variants are marginally dissimilar from each

other. The minor dissimilarity is enough to evade the existing signature-based

anti-malware. The proposed approach captures code similarity by identifying the

rare features only present in the variants of families or related files. AndroSim-

ilar, a byte-level approach generates variable length signatures to detect unseen,

zero-day samples crafted out of the known malware.

4.3 Proposed Methodology

Figure 4.1 illustrates the AndroSimilar signature generation approach based on

the hypothesis that two unrelated files have a low probability of having common

features. The fixed-size byte sequence features are extracted based on the empiri-

cal probability of occurrence of their entropy values. The values are computed in

a sliding window fashion. The popular features are identified according to their

neighborhood rarity [137]. When two unrelated files share some characteristics,

the features are considered weak generating false positives [138]. Initially, we gen-

erate signatures of known malware families in the existing representative malware

database. Then, we compare the similarity score of an unknown app with the

existing malware signature database. If the signature from database match with

the unknown app beyond an experimental threshold, the application is labeled

malicious. The proposed methodology is discussed below:

1. Submit Google Play, third-party, and obfuscated malicious app as input to

AndroSimilar.

2. Generate entropy values for every byte-sequence and normalize them in

[0, 1000] range.

3. Select statistically robust features according to the similarity digest scheme

as a representative to the app.
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4. Store extracted features into Bloom Filters. The sequence of Bloom Filters

is a signature of an app.

5. Compare the signature with the database to detect the match with known

malware family. If the similarity score is beyond a given threshold, mark it

as malicious (or repackaged) sample.

Figure 4.1: Proposed approach.

4.3.1 Normalized Entropy

Entropy is a useful tool for extracting robust statistical features [138]. As single

byte (8-bits) can have a ASCII in range of [0...255], we approximate the probability

P(n) as occurrence of n in a given sequence of bytes B. For example, in a byte

sequence [23, 45, 23, 78, 54, 23, 90, 23], P (23) = 4/8, P (45) = 1/8 and P (30) = 0/8.

Once the probabilities have been computed for all the values in range [0...255],

entropy of the byte sequence is given as:

H(S) =
255∑
i=0

P (Xi) ·
(

1

log(P (Xi))

)

values of Xk ∈ [0...255] and Xi 6= Xj∀i 6= j. The proposed approach normalizes

the entropy into a range 0 to 1000 using:

Hnormal =

⌊
1000 · H(S)

log2B

⌋

B is 64 bytes, the size feature block for robust feature selection. Figure 4.2 illus-

trates the entropy calculation for B = 64. Successive entropy values are computed



Chapter 4 AndroSimilar: Robust Statistical Signature for Android Malware 49

Figure 4.2: An example: Entropy calculation.

for sequences shifted by one byte. The entropy difference of one byte change due

to related content has negligible variation. Normalizing the entropy values into

a much larger range, [0 · · · 1000], enhances the difference and facilitates robust

feature extraction. 0 is the minimum entropy and 1000 is the maximum entropy

value. The entropy distribution between [0 · · · 1000] is the probability of occur-

rences of each normalized entropy value (i.e., occurrences/total). When entropy

is measured for byte sequences of smaller size, variation is reduced. Hence, the

features are not easily distinguishable and incurs longer processing time [138]. If

a big length byte sequences is considered less features are obtained.

As illustrated in Figure 4.2, normalized entropy stream is generated for given byte

sequence spanning an app in sliding window fashion. In our case, the window size

is B = 64 bytes, and slide occurs by 1 byte. The Sliding window allows us to

calculate the normalized entropy of a byte sequence using the value of previous

byte sequence. Some apps may also consist of repeated sequence of similar byte-

code. Such attribute occurrence results in False Positives (FP). The removal of

ambiguous features helps to reduce the false positive without affecting the fea-

ture selection. The entropy-based statistical analysis approach suffers from false

positive. The proposed methodology considers the rare statistical features that

represent the similarity between two related files to reduce the FP.
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4.3.2 Precedence Rank Values

To find the rare features from normalized byte sequences, a Precedence Rank Rprec

is assigned to each normalized entropy value, such that former is proportional to

latter’s probability of occurrence [138]. The precedence rank generation maps a

lower probability value to a higher rank (1 to 1000) and higher probability value

to a low rank. The precedence rank calculation is like calculating a reverse expo-

nential function. We apply, 1000 ∗ (1− exp(−prob ∗ 1000)) function for the same.

To generate Rprec table, we need to analyze entropy distribution of benign and

malicious APK files. Figures 4.3 and 4.4 illustrate normalized entropy distribu-

tion with B=64 and 128 bytes for a random set of benign and malicious apps.

The benign entropy distribution is illustrated with blue and malware distribution

is red color in the graph.

Figure 4.3: Normalized APK entropy distribution for B=64.

We can see high-peak at lower entropy values indicating the occurrence of re-

peated byte sequences, essentially weak features. The values are computed on

the relevance of a given entropy value to differentiate malicious app from benign.

Similarly, peak at the higher entropy values depicts compression tables with high

randomness, indicative of weak features. The weak features do not discriminate

between benign and malware; contributing towards false alarms. Removing such

weak features reduces false-positives and improved feature selection. We assign

Rprec to each normalized entropy in the range of 1 to 1000 by eliminating weak

features. The lower Rprec indicates least likely discriminant feature. An example

of Rprec stream is illustrated in Figure 4.5.
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Figure 4.4: Normalized APK entropy distribution for B=128.

4.3.3 Statistically Robust Features

Considering a complete Rprec may not successfully extract rare features only

present in two related files. Hence, we extract persistent local minima to pick

the robust features. A local minimum is determined in a sliding window fashion.

As stated earlier, lower the value of Rprec, higher the ranking in feature discrimi-

nation. To avoid superfluous features, we consider only those minima that persist

among the multiple adjacent windows. After generating Rprec stream, it is not

just important to consider features with lowest ranks. For each Rprec value, we

maintain a popularity score Rpop. We consider a window size of W slid over the

Rprec stream. In each window, left-most minimum Rprec is selected and its Rpop is

incremented. Thus, if Rpop of a feature is k, (k ∈ [1 · · ·W ]), it is the local minimum

within a window of size W + k − 1, which further emphasizes the relative rarity

of that particular feature [139]. For illustration, let us consider Figure 4.5.

Figure 4.5: Robust statistical features.

As illustrated, Rprec stream of corresponding features of length B-bytes is shown

in each row. Window W spans consecutive Rprec values and left-most lowest one is

selected. In the first row, this minimum corresponds to Rprec = 807. The Rpop of
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the feature with Rprec = 807 is incremented in window shifted to the right. Next

window (in Row 2) picks up the local minimum with Rprec = 807 and increments

the corresponding Rpop by one again. The procedure continues until the Rpop

values of all the local minima are calculated. The mapping of a “local minimum

to a feature occurs only if the Rpop is above a particular threshold value”. The

threshold for Rpop is considered such that it enables collection the of statistically

robust features [139]. For the above example, if the minimum popularity threshold

is 3, we consider the feature with Rprec = 834 as statistically robust. Algorithm 1

illustrates AndroSimilar signature generation.

Algorithm 1: AndroSimilar signature generation.

Input : mal sign db – Signature database.
appset – Apps to be checked.
threshold – Similarity threshold.

Output: malicious set – Set of tuples as (appName, familyName).

1 foreach app in the appset do
2 score results← an empty array;
3 app sign← generate improbable features sign(app);
4 foreach malicious sign in the mal sign db do
5 score← compare signatures(app sign, malicious sign);
6 score results.add(score);

7 end
8 best similarity score← find best score match(score results);
9 if best similarity score >= threshold then

10 tuple← (app.name, best similarity score.familyName);
11 malicious set.add(tuple);

12 end

13 end

The robust features selected using above technique are hashed and then inserted

inside bloom filters for compression. To aid efficient searching, 256 features are

inserted in a single bloom-filter. The sequence of bloom filters becomes a statistical

signature of the app. Two signatures of similar apps are then compared to find

a similarity score ranging [0..100], with 0 being not similar and 100 as complete

match [139]. The features stored within the Bloom filters are put together to

generate the AndroSimilar signature. The robust feature signature generated from

the APK file is variable length on account of unique features extracted from an

app.
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4.4 Signature-Set reduction

SDHash [138] signature is 2-3% of the actual APK file. The increased number of

Android malware necessitate a signature for each malware. Instead of maintaining

one signature for each malware, the proposed approach is capable of extracting a

family signatures from multiple variants of a known malware family. This is done

by clustering the same category app (malicious/benign) on the basis of similarity.

The representative or a family signature is selected based on app signatures having

more statistically robust features than any other app signature in the cluster,

discarding the signatures of other family members.

The clustering within each malware family is performed with SDHash similarity.

The distances between sample signatures in a single cluster is small (i.e., high

similarity). The minimum value is chosen based on an empirically chosen inter-

app similarity threshold. From each cluster, we select a single point capable of

representing all the apps in the cluster. The dissimilar apps are represented as a

separate cluster.

For an example, let us consider eight apps A1, A2, ..., A8 that are variants of

malicious family A with similarity score listed in Table 4.1. The underlying as-

sumption is, the similarity score of app signature for the variant of same family is

higher than the those from a different family.

SDHash Similarity App Name App Name
Score(%)

70 A1 A2

65 A1 A3

90 A2 A3

94 A4 A5

97 A5 A6

20 A2 A5

30 A1 A6

Table 4.1: Similarity between app family.

4.4.1 An Example

To simplify the analysis, we map these feature similarity as a distance vector. Ta-

ble 4.1 illustrates the signature similarity calculated by AndroSimilar signature al-

gorithm based on SDHash similarity. The AndroSimilar signature (App1, App2) =

70, (App1, App3) = 65, (App4, App5) = 94 and so on. The signature similarity
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suggests that 70% (App1, App2) features are similar. To calculate the family sig-

nature, we find the distance between the apps within the cluster. The distance

parameter is inversely proportional to similarity. We calculate the dissimilarity

among the apps to remove least similar apps, retaining the most similar features

among the closest apps. We calculate the distance score as:

Distance(App1, App2) = 100− SimScore(App1, App2)

Table 4.2 values calculated from the AndroSimilar signature similarity illustrates

the distance matrix of the apps from malware family A. As given in the Table, app

A1 is 100% similar to itself. Hence, the similarity score SimScore(App1, App2) is

100. The distance formula, Distance(App1, App1) = 100−SimScore(App1, App1)
gives 0. The first row in Table 4.2 maps (App1, App1) result as 0. Similarly,

further mapping App2, App3, ...App8 gives the score [30, 35, · · · 100] respectively.

The higher distance indicates low similarity and vice versa. A conceptual view of

this matrix is illustrated in Figure 4.6.

A1 A2 A3 A4 A5 A6 A7 A8

A1 0 30 35 100 100 70 100 100
A2 30 0 10 100 80 100 100 100
A3 35 10 0 100 100 100 100 100
A4 100 100 100 0 5 100 100 100
A5 100 80 100 5 0 3 100 100
A6 70 100 100 100 3 0 100 100
A7 100 100 100 100 100 100 0 100
A8 100 100 100 100 100 100 100 0

Table 4.2: Distance-Matrix in initial state.

Figure 4.6: Conceptual view of Distance-Matrix.
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4.4.2 Clusters: Family Signature

We say two apps are similar only if there is a significant overlap of robust statistical

features, i.e. similarity score of those apps is greater than a desired experimental

similarity threshold. For example, if the threshold is 35, maximum distance Dmax

between apps within a cluster would be 100− 35 = 65.

Using distance matrix, we compute ‘neighborhood count’ Nc for each app by count-

ing how many of its neighbors are within Dmax. In every iteration, we consider

an app with maximum neighborhood count max(Nc) as cluster center and its

neighbors occupying the same cluster. Thus, a large cluster is formed in the first

iteration. There might be cases where there would be same neighborhood count

for multiple apps. In that case, we calculate the total cost of neighbors Tcost, which

is the sum of distances to its neighbors, and the app having smallest Tcost would

qualify for cluster center.

Table 4.3 illustrates the state after a single iteration. A5 has highest Nc and lowest

Tcost. A5 with neighbors A4 and A6 form a cluster with A5 being the representative

of the cluster. Thus, the signature can detect all the apps within the cluster as

illustrated in Figure 4.7. Once the cluster is formed, we remove the respective

points from the distance matrix also as shown in Table 4.4.

Figure 4.7: Forming cluster with A5 as representative.

A1 A2 A3 A4 A5 A6 A7 A8 Nc Tcost

A1 0 30 35 100 100 70 100 100 2 65
A2 30 0 10 100 80 100 100 100 2 40
A3 35 10 0 100 100 100 100 100 2 45
A4 100 100 100 0 5 100 100 100 1 5
A5 100 80 100 5 0 3 100 100 2 8
A6 70 100 100 100 3 0 100 100 1 3
A7 100 100 100 100 100 100 0 100 0 -
A8 100 100 100 100 100 100 100 0 0 -

Table 4.3: Distance-Matrix after one iteration.
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A1 A2 A3 A7 A8 Nc Tcost

A1 0 30 35 100 100 2 65
A2 30 0 10 100 100 2 40
A3 35 10 0 100 100 2 45
A7 100 100 100 0 100 0 -
A8 100 100 100 100 0 0 -

Table 4.4: Distance-Matrix after forming cluster A5.

After second iteration of this process, new cluster A1, A2, A3 is formed with A2 as

representative point as shown in Figure 4.8 and its corresponding distance matrix

in Table 4.5.

Figure 4.8: Forming cluster with A2 as representative point.

A7 A8 Nc Tcost
A7 0 100 0 -
A8 100 0 0 -

Table 4.5: Distance-Matrix after forming cluster A2.

The clustering process is terminated when there are no neighbors of any point.

The apps with entry in the distance matrix are the ones which do not belong to

any cluster. These apps are placed in new clusters as shown in Figure 4.9. We

are left with the reduced set of signatures {A2, A5, A7, A8}, instead of complete

set {A1, · · ·A8}. This signature is sufficient for detecting variants of a malware

family.

Algorithm 2 illustrates the Signature set reduction. The input to the algorithm is

the existing malware signature database, variant signatures and the minimum sim-

ilarity threshold. This minimum threshold is an experimentally evaluated value.

The algorithm generates the reduced signature database removing the unimportant

variant signatures to identify the variants with a reduced number of signatures.
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Initially, we find the neighbor apps to generate a cluster within the family. This

procedure eliminates the signatures with minimum similarity. The apps with sig-

nature matching beyond the threshold are clustered together. If maximum number

of clusters is reached, then we insert the signature in the distance matrix.

Further, we find the cost of the cluster within the family and repeat this process

for signature reduction.

Algorithm 2: Signature Reduction Algorithm.

Input : mal sign db – Signature database.
intra fam match(Appi) – Intra-family signature
match results for every app-i against other apps
in the same family.
threshold – Similarity threshold.

Output: redu sign db – Reduced signature-set.

1 mal fam set← set of all malware families to which intra fam match(Appi)
belong;

2 foreach family in mal fam set do
3 repeat
4 Nc ← An empty array for holding number of neighbor apps;
5 Tcost ← An empty array for holding sum of distances to neighbor apps;
6 cl core pts← = Points that are at the cores of clusters;
7 rep point← Representative point for the cluster;
8 new cl pts← Points of newly formed cluster;
9 dist mat← create distance matrix(family);

10 foreach app in family do
11 Nc[app]← find neighbor counts(dist mat, app);
12 end
13 if max(Nc) == 0 then
14 Insert signatures of all apps in dist mat to redu sign db;
15 break;

16 end
17 foreach app in fam do
18 find total costs(dist mat, app);
19 end
20 cl core pts← find apps with highest neighbor count(Nc);
21 rep point← find apps with least total count(dist mat, cl core pts,

threshold);
22 Insert signature of rep point to redu sign db;
23 new cl pts← find neighbors of(rep point, threshold);
24 Append rep point to new cl pts;
25 Remove new cl pts from dist mat;

26 until dist mat is not empty ;

27 end



Chapter 4 AndroSimilar: Robust Statistical Signature for Android Malware 58

Figure 4.9: Total clusters created after completion of algorithm.

4.5 Experimental Evaluation

The True Positive (TP) and False Positive (FP) rates are performance indices of

a malware detector. For the purpose of evaluation, we have collected a dataset

of 15,993 Google Play, 3,309 malicious and 5,139 third-party apps summarized in

Tables 4.6, 4.10 and 4.7 respectively.

Category #Apps Category #Apps Category #Apps Category #Apps

Arcade & Action 638 Education 600 Music & Audio 535 Sports 491
Books & Reference 593 Entertainment 485 News & Magazines 552 Sports Games 415
Brain & Puzzle 642 Finance 579 Personalization 642 Tools 731
Business 524 Health & Fitness 614 Photography 498 Transportation 519
Cards & Casino 541 Libraries & Demo 435 Productivity 661 Travel & Local 606
Casual 642 Lifestyle 528 Racing 233 Weather 405
Comics 325 Media & Video 596 Shopping 458
Communication 619 Medical 356 Social 530

Table 4.6: Category wise Google Play app distribution.

Among the 3309 malicious apps, 1242 belong to 49 families of Malware Genome

Project. The effectiveness of the proposed AndroSimilar is tested against ob-

fuscated malicious variants. Following code obfuscation techniques are used to

generate transformed malware: 1) Method renaming; 2) Junk method insertion;

3) Control-flow altering; and 4) String Encryption. The experimental inter-app

similarity threshold is kept 25. If the signature of a particular sample matches with

malware signature with similarity score ≥ 25, the sample is identified as malicious.

We shall also discuss the implication of changing this threshold later.

Following are the parameter values we considered for experimentation:
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App Store #App App Store #Apps

android.d.cn [140] 489 gfan.com [131] 1733
hiapk.com [141] 534 mumayi.com [130] 2363

Table 4.7: Source wise Third party app distribution.

• Feature-size B is 64 and 128 bytes.

• Rprec tables generated for APKs with B as 64 and 128. The Rprec is also

generated for DEX files with B as 64.

• Popularity window size W and B = 64.

• Rpop threshold value is 16.

• Bloom filter size is 256 bytes.

• The maximum number of features per bloom filter is 160.

• Inter-app similarity threshold is 25.

4.5.1 Byte-sequence length B = 64 vs. B = 128

The APK experimental evaluation is performed using byte sequence length: (1)

B = 64; and (2) B = 128. We must remember that smaller value of B requires

more processing and generates weak features. The larger value of B will generate

less features not sufficient for robust signatures [138]. Hence, we have considered

B = 64. Roussev et al. [138] experimentally evaluated the SDHash and recom-

mend B as 64 or 128 bytes considering the typical network-packet length. Our

experimental evaluation suggests that AndroSimilar with B = 64 performs better

compared to B = 128. The normalized entropy distribution for B = 64 of both

benign and malicious apps is illustrated in Figures 4.3 and 4.4 respectively.

4.5.1.1 Evaluating Unknown Variants

Table 4.8 illustrates the experimental evaluation of unseen malicious apps against

2,854 malware signatures. The training set consists of 2,854 signatures and eval-

uation set has 455 unseen malware. The test set evaluation is illustrated in the
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third column of Table 4.8. We can see that the True Positive is 91.43% for the

block size B = 64. When the apps are evaluated with block size B = 128 the

result drops by 4% to 86.85.

The same experiment is carried out for the classes.dex alone. The sixth column

shows TP rate dropping nearly 10% compared to the APK files. DroidMOSS [11]

extracted the Dalvik opcode to propose DEX file based signature to identify the

repackaged malware. To evaluate the opcode based analysis signature, we ex-

tracted the DEX files from the APK archive and trained the signature with Dalvik

bytecode. We performed evaluation on 455 classes.dex files and obtained 78.25%

TP rate.

% TP % TP % TP
Category Signature Set Test Set APKs APKs DEX

64 byte features 128 byte features 64 byte features

Unknown Malware 2854 455 91.48 86.85 78.25

Table 4.8: Experimental evaluation of unseen malware.

4.5.1.2 Evaluating Obfuscated Malware

classes.dex is the app executable file. To implement the code obfuscation, the

executable file classes.dex must be modified. In the first stage, we extract

classes.dex from the benign and malicious APK. We generated AndroSimilar sig-

nature for APK archive and DEX file to evaluate malware signature for both the

archive and DEX file. Table 4.9 illustrates the detection rate for each the APK

file with block size B = 64 and 128. As illustrated, the obfuscated APK are iden-

tified with TP rate 89.62%, 87.77% for B = 64 and 79.35% and 77.92% in case

of B = 128 against method renaming and junk code insertion. The evaluation

against other transformation methods is listed in the Table 4.9.

It is important to note that the analysis of only DEX files reduce the TP rate

drastically to 5.23%, which is nearly 90% less than its APKs counterpart as listed

in the last column. This evaluation is important, as the existing approaches have

experimentally evaluated the DEX bytecode signature as and claimed their effi-

cacy [11].



Chapter 4 AndroSimilar: Robust Statistical Signature for Android Malware 61

% TP % TP % TP
Category Signature Set Test Set APKs APKs DEX

64 byte features 128 byte features 64 byte features

Code Obfuscation

Method Renaming 3309 234 89.62 79.35 5.56
Junk Method Insertion 3309 234 87.77 77.92 5.13
GOTO Obfuscation 3309 230 88.17 78.70 6.52
String Encryption 3309 158 89.11 76.42 8.23
All Obfuscations at Once 3309 157 84.34 75.97 0.00

Overall 3309 1013 87.802 77.67 5.23

Table 4.9: Evaluating Obfuscated malware.

4.5.2 Signature-Set Reduction

We evaluated the proposed custom signature-set reduction algorithm on 1,242

samples from 49 Genome Project malware families [2]. The proposed signature

reduction algorithm reduces the signature size up to 42% per family as illustrated

in Figure 4.10. The maximum reduction is achieved is 88% for Gone60 and 87%

for the AnserverBot family. It is important to note that it is possible to detect all

the 1,242 malicious samples using just 519 signatures instead of single signature

for each malware. The signature reduction improves the analysis speed to identify

new variants.

Reduced Reduction Reduced Reduction
Malware Family #Apps No. of Rate (%) Malware Family #Apps No. of Rate (%)

Signatures Signatures

GingerMaster 4 2 50.00 Geinimi 69 63 8.70
ADRD 22 14 36.36 GoldDream 47 42 10.64
AnserverBot 187 23 87.70 Gone60 9 1 88.89
Asroot 8 6 25.00 GPSSMSSpy 6 5 16.67
BaseBridge 122 22 81.97 HippoSMS 4 3 25.00
BeanBot 8 4 50.00 jSMSHider 16 12 25.00
Bgserv 9 3 66.67 KMin 52 10 80.77
CruseWin 2 2 0.00 NickySpy 2 2 0.00
DroidDream 16 14 12.50 Pjapps 58 35 39.66
DroidDreamLight 46 44 4.35 Plankton 11 9 18.18
DroidKungFu1 34 11 67.65 RogueLemon 2 2 0.00
DroidKungFu2 30 14 53.33 RogueSPPush 9 2 77.78
DroidKungFu3 309 98 68.28 SndApps 10 5 50.00
DroidKungFu4 96 45 53.13 YZHC 22 5 77.27
DroidKungFuSapp 3 1 66.67 zHash 11 6 45.45
FakePlayer 6 4 33.33 Zsone 12 10 16.67
Others 2067 NA NA

Table 4.10: Android Malware Genome dataset.
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4.5.3 Comparing AndroSimilar

Software similarity is a measurement to detect plagiarism at the file level to iden-

tify similar content. Our approach works at file level for extracting robust statis-

tical features to detect repackaged malware, variants of known malicious families

and obfuscated malware. DroidMOSS [11] is based on Context Trigger Piecewise

Hashing (CTPH) [142], a fuzzy hashing technique used to identify spam emails.

DroidMOSS generates an 80-byte signature from the Dalvik opcode to identify

repackaged malware. Suspected app features are verified against the original apps

using the edit-distance algorithm to identify the similarity score.

The proposed AndroSimilar generates normalized entropy features such that they

rarely occurs among unrelated files. We have experimentally evaluated the Droid-

MOSS signature on the AndroSimilar database to assess the performance. Con-

clusively, Vassil Roussev found that Similarity Digest Hashing (SDHash) outper-

forms SSDEEP with precision rates of 94% and 68% respectively [139]. Due to

the fixed-length signature, SSDEEP performance depends on the file size. The

SSDEEP algorithm can reliably co-relate that file size upto 3 MB. The SDHash

has the upper limit of 1GB for the large file. The experimental evaluation of

AndroSimilar which is based on SDHash outperforms DroidMOSS.

Section 4.5.3 discusses the advantage of AndroSimilar. DroidMOSS considers

classes.dex opcode to detect repackaged malware. However, AndroSimilar con-

siders the complete APK file as the androidmanifest.xml, assets and APK re-

sources are easy targets for repackaging the malicious apps. Furthermore, Droid-

MOSS can be easily evaded by simple code obfuscation techniques as the Dalvik

methods and classes are rearranged during the transformation. The repackaged

apps have almost the same resources, but bytecode is modified by obfuscation to

evade the DroidMOSS signature. The opcode sequence does not consist high-level

semantic information contributing towards false negatives.

DroidAnalytics [72] proposed a static analysis framework for effective detection of

obfuscated Android malware. Signature generation is done at method, class and

app level in sequence to detect obfuscated or repackaged malware. The approach

is effective against simple obfuscation techniques like method renaming, control

flow goto-obfuscation, and string encryption. The proposed framework for static

analysis does not perform detailed app analysis.
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The DroidAnalytics considers Dalvik “Opcode” targeting the DEX files. We have

evaluated the DroidAnalytics against the experimental dataset for comparison

with AndroSimilar. The proposed AndroSimilar outperforms DroidAnalytics ap-

proach in identifying repackaged and obfuscated malware. The DroidAnalytics is

more suitable for general purpose malware detection. The proposed AndroSimilar

is suitable for identifying a particular class of malicious apps like repackaged mal-

ware, variants of existing malicious apps and code transformed malware. Further-

more, DroidAnalytics approach does not report correct malicious app detection or

inaccuracy in the signature extraction methodology.

RiskRanker [28] is a multi-step heuristics signature technique to analyze apps

exhibiting dangerous behavior. The method identifies class path as a malware

feature to detect multiple code mutations. The Riskranker approach is a two

phased system to: (1) identify known malicious payload by storing their signa-

ture and use heuristics for the variant of existing malware; (2) identify practices

rarely observed among legitimate apps like unsafe bytecode and native code load-

ing. However, the heuristics can be evaded by changing the opcode pattern with

execution order. The proposed AndroSimilar is a file feature extraction technique

for generating robust statistical features using a novel signature algorithm.

4.6 Discussions

In this Section, we discuss and evaluate the reasons for selecting the complete

app for signature instead of the Dalvik bytecode considered by other analysis

approaches.

4.6.1 APK Signature vs DEX Signature

classes.dex in the APK archive stores Dalvik executable bytecode. It is small size

compared to an APK. If only DEX file can generate statistically robust features,

the efficiency of scanning and detection can improve further. Fuzzy-hashing based

approach [11] evaluated the Dalvik-opcodes within DEX files to detect unseen

malware and repackaged apps. Following the insight, we evaluated AndroSimilar

with DEX input. Rprec table is generated from the entropy distributions of benign
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and malicious DEX illustrated in Figure 4.10 for 1,500 benign and 1,242 malware

respectively.

Figure 4.10: Normalized DEX file entropy distribution.

We can see negligible concentration at the higher entropy end; weak features are

removed at the lower entropy end. AndroSimilar generates signatures for apps

to identify unseen variant and obfuscated malware. We have observed empirical

distribution and results for both 64 and 128 byte-length features. Based on experi-

mental evaluation as suggested in [138], 64-byte features gives reasonable detection

rate. We analyzed AndroSimilar classes.dex executable bytecode. However, con-

sidering the DEX files reduces the detection rate. The repackaged applications

modifies the manifest, assets, resources, pictures or dynamically load executable

code. Considering only Dalvik bytecode reduces the possibility of identifying the

robust features. It also gives low detection rate for repackaged variants, contrary

to fuzzy-hashing based approach [11] used to detect repackaged apps.

4.6.2 Comparing the Block size

Experimental evaluation demonstrates AndroSimilar’s effectiveness in detecting

zero-day malware. The Signature generation is automated to scale the increased

unique malware instances. We checked samples collected from Google Play and

third-party app stores against the signature set of 3309 malware: B = 64 and

B = 128. The results illustrated in Table 4.11 report 157 Google Play apps and

152 third-party apps identified malicious.

The manual analysis identifies them as benign. 43 Google Play and 128 third-

party apps were reported original versions of their malicious counterparts. Hence,
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we concluded that malware authors reverse-engineered the original apps from app

stores, added malicious payloads and repackaged them. The remaining samples

detected malicious with AndroSimilar signature were false-positive (Google Play:

0.71%, Third-party market apps: 0.47%). Table 4.12 lists unseen repackaged mal-

ware identified malicious with AndroSimilar signature. The proposed AndroSimi-

lar signature identifies the third party app used for malicious repackaging. Hence,

the proposed AndroSimilar can be used to identify cloned and repackaged apps.

% FP % FP
Category Signature Set Test Set APKs APKs

64 byte features 128 byte features

Google Play 3309 15993 0.98 0.78
Third-Party 3309 5139 2.96 2.30

Table 4.11: Detection Results of Google Play and Third-Party apps.

Signature size of an app is also an important factor due to the storage constraints of

a smartphone. Signature size depends on Rpop, the popularity threshold retaining

rare features. Higher the threshold, less the number of features retained [138],

reducing the signature size. Furthermore, the byte-sequence length B also controls

the signature size. Higher the value of B, lower the granularity [138], reducing

the signature size. We performed experimental evaluation based on the SDHash

algorithm [138] with Rpop 16 as threshold. Experimental evaluation on a larger

dataset demonstrates that Block size B = 64 gives better detection rate with

reasonable performance.

Evaluation of AndroSimilar for DEX files reduces the detection rate for obfuscated

app (TP rate less than 4%). However, considering the complete APK, the same

obfuscated malware, TP rate is beyond 90%. The reasons for ineffectiveness is

the inability to identify modifications among resources, assets, and manifest. The

inter-app similarity threshold is experimentally selected value 25 to balance the

false alarm rate (FP and FN) [137]. The similarity threshold can be set according

to the analysis system necessity. Table 4.12 lists unseen malware variants identified

as malicious apps from the third party market apps. The above malware samples

were detected benign by the commercial anti-malware and existing signature based

analysis techniques. Hence, AndroSimilar can be employed as a malware detector

at online app markets.
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Third Party App Malicious App Comment

SHA-1:2ea5f6dc465cf89caab438ae8bcb5b42de3e444f SHA-1: bdd581d2d57ad71b0bf6401e76c8120cd5dc0173 Disguised as updated version
MD-5: ee8be1b7f2761f42957bb22b2a0f6414 MD5: 5d27c7d0c5630f4c7a8b7a8f45512f09 Original Main launcher receiver changed
Package Name: com.requiem.armoredStrike Package Name:com.requiem.armoredStrike Dangerous permissions added: ACCESS FINE LOCATION,

Malware Family : Geinimi ACCESS GPS, CALL PHONE, READ/WRITE CONTACTS
READ/SEND SMS, READ/WRITE HISTORY BOOKMARKS.

SHA-1: fc438c6d0cabc2190c26b41e9dc5d3d3843274eb SHA-1: 00983aad12700be0a440296c6173b18a829e9369 Service added:Intent receivers for SMS RECEIVED,
MD5: ec3b45dc3ebda87cc420722f1895e75c MD5: 513971a8cde07e145a85a8707f83e4b5 WAP PUSH RECEIVED.
Package Name: com.camelgames.hyperjump Package Name: com.camelgames.hyperjump Dangerous permissions added: RECEIVE SMS, RECEIVE MMS,

Malware Family : Pjapps SEND SMS, NEW OUTGOING CALL,
READ/WRITE HISTORY BOOKMARKS, INSTALL PACKAGES.

SHA-1: 97bc745f247da451995a0be635150eb71a3c0f2f SHA-1: 1f522d9ab07fc716e7f201fad12ccea396987a83 Very minor change in package name and activities added.
MD5: 07e640792506d889b67e4a7061a9aff7 MD5: 6ea15fdda8ba208b19e5c7131e9d413f Intent receiver for BOOT COMPLETED, SMS RECEIVE,
Package Name: jp.hudson.android.militarymadness Package Name: jp.hudson.android.militarymadnes PHONE STATE, NEW OUTGOING CALL added.

Malware Family: GoldDream Dangerous Permissions added: RECEIVE SMS, READ SMS,
INSTALL PACKAGES, RECEIVE BOOT COMPLETED,
HISTORY BOOKMARKS.

SHA-1: 2b11e7d3bc8421da143deab57acaea03e0a83b1c SHA-1: b9d992b88ef1a4a75362f8f5d069716ea7a3321e Original Main launcher receiver changed.
MD5: 21d81b064951e9ed7beff98d6879e55a MD5: 025a55c1bcbd3be2ca03aa314ce9a4c2 Advertisement Publisher ID changed, along with the ad-library
Package Name: jpcom.wuxi.GoldMiner.domob Package Name: jpcom.handcn.GoldMiner.free Dangerous permissions added: CALL PHONE,

Family: Geinimi INSTALL SHORTCUT, READ/WRITE CONTACTS,
SEND/READ SMS, READ/WRITE HISTORY BOOKMARKS,
ACCESS GPS, ACCESS LOCATION.

SHA-1: 9ef6fc25d9e599ce6bfa7c3fb4d21a775f5cf98f SHA-1: ef140ab1ad04bd9e52c8c5f2fb6440f3a9ebe8ea Many new activities and services added.
MD5: c9caebc6cb727d720e04cb77ce1e042e MD5: e5b7b76bd7154dea167f108daa0488fc Receiver for SMS RECEIVED, BOOT COMPLETED,
Package Name: com.camelgames.mxmotorlite Package Name: com.camelgames.mxmotor PICK WIFI WORK added.

Family: AnserverBot Dangerous Permissions added:READ/RECEIVE/WRITE SMS,
RECEIVE BOOT COMPLETED, READ/WRITE CONTACTS,
CALL PHONE, READ PHONE STATE.

SHA-1: 218af28eeb168dd16df6d0faacb3f77f51fc66df SHA-1: b9891ab782cf643c81f0f1c130ea119384dbefe1 Original Main launcher receiver changed.
MD5: 4b0c93b1a14b5fdad60715a8a6b1987e MD5: 8498984d8f9b7260fd032d6f0a2534aa Receiver for BOOT COMPLETED event added.
Package Name: com.moregame.drakula Package Name: com.moregame.drakula Dangerous permissions added: ACCESS FINE LOCATION,

Family: Geinimi CALL PHONE, READ/WRITE CONTACTS,
READ/SEND SMS, READ/WRITE HISTORY BOOKMARKS,
ACCESS GPS, ACCESS LOCATION added.

Table 4.12: Third Party apps detected malicious by AndroSimilar.

4.7 Selecting Signature Threshold

The proposed AndroSimilar experimental similarity threshold is set to 25 as opti-

mal value for unseen variant detection. The value has been determined empirically

after experimenting a range of threshold (20-47) to achieve high TP and low FP.

The SDHash algorithm correctly detect the malicious variant with zero FN; hence,

malicious app cannot circumvent the AndroSimilar signature.

We performed empirical evaluation of different threshold on 3309 malware and

2732 Google Play apps. The threshold value 25 gives optimal TP and reduced

FP [137] during the real test. Figure 4.11 illustrates the results of experimental

evaluation for different threshold values.

Figure 4.11 is a comparison of TP and FP values to justify empirical threshold

value. As the similarity threshold increases, FP reduces at the cost of TP. Hence,

we have selected 25 as signature similarity threshold. However, one can modify the

threshold value as per the requirement of the detector.
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Figure 4.11: Effect of similarity threshold on True-Positives and False-Positives.

4.8 Summary

In this chapter we proposed and evaluated AndroSimilar to detect variants of

known Android malware families, obfuscated malware and repackaged apps. The

proposed method utilizes statistically robust features generated using SDHash

algorithm. The proposed technique generates a variable-length signature for the

suspect APK file. AndroSimilar effectively detects known malware and variants

of existing malware families with an True Positive > 90%.

The proposed signature is resilient to trivial transformation methods like string

encryption, method renaming, junk method insertion and control-flow obfuscation.

We also report the false-positives generated from Google Play and third-party app

stores were the original apps of their malicious counterparts. The AndroSimilar

can be employed to detect repackaged apps from app stores. Our evaluation is also

consonant with experimental evaluation in [138] suggesting 64-bytes feature size

better suited compared to 128-byte feature. We evaluated our custom algorithm

to reduce signature-set against 49 malware families from Malware Genome Project

[2] and report 42% signature reduction. We also applied AndroSimilar to just DEX

files. The analysis evaluation reports reduced detection rate in case of obfuscated

malware. We suggest analysis of APK rather than the Dalvik bytecode.



Chapter 5

CONFIDA: COvert Feature

Misuse analysis using ICC

In the previous chapter, we discussed AndroSimilar, a signature based detection

technique for repackaged malware and variants of malicious apps. The evolving

malware employs functionality such as covert SMS sending, dial premium-rate

numbers, record audio/video and click pictures without user consent or knowledge.

We identify such covert actions as sensitive feature misuse. In this chapter, we

propose Android ICC based CIG technique to detect covert feature misuse evading

the existing anti-malware. The encouraging results on one thousand notable SMS

Trojans and Spyware indicates that the proposed technique can be deployed as a

static app vetting framework for app markets.

5.1 Android Inter-Component Communication

The proposed approach identifies sensitive functionality necessitating explicit user

intervention. Android platform being event-driven, capturing every possible control-

flow path is a challenge. The Android components are asynchronous and commu-

nicate using ICC. In this chapter, the term “covert malicious” behavior is defined

as app activity executed without explicit user consent.

68
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5.1.1 Inter-Component Communication

To enforce secure communication, Android facilitates communication and sharing

of data among apps via Inter-component communication API [33]. When a com-

ponent initiates ICC, the reference monitor looks at the permission labels assigned

to its container app. If the target component access permission label matches the

said collection, Android framework permits the ICC. In case the label is not a part

of the collection, ICC is refused even if the app is signed with the same certifi-

cate. The app components interact using Intent, a higher level intra and inter app

communication abstraction. The developer creates Intent object that contains the

address of the target component. An explicit intent reaches the desired component

that claims to carry out an action. In case of multiple targets, user is allowed to

select the component of the same priority.

5.1.2 ICC based Component-Interaction Graph (CIG)

The Dalvik bytecode reverse engineering is easy due to the presence of high level

semantic information such as type and name of variables, fields and methods.

Hence, the proposed technique analyzes Dalvik bytecode to identify covert be-

havior using Component Interaction Graph. The CIG is a directed graph, where

a node represents a sequence of Dalvik bytecode instruction block. The APK is

represented as a graph G(V, E) where V represents a node and edge E is the path

dependency between the two nodes. The CIG edges illustrated in Figure 5.1 are

represented as:

• Conditional edge (if, for, etc.) from one node to another within a

method.

• Synchronous edge represents a direct flow from one node in method m1 to

another node in method m2 of a graph. The method invocation in Java is

an example of synchronous flow.

• Asynchronous edge represents an indirect flow from a node in method m1 to

another node of methodm2 in a graph. For example, forking a java.lang.Th

read or scheduling a java.util.TimerTask is an asynchronous flow.
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Figure 5.1: ICC Control flow.

• ICC edge represents the interaction between different components of an app.

For example, an activity component interacts with a service component using

startService() API call.

As illustrated in the Figure 5.1, the CIG construction starts with the Android

framework entry point. The nodes representing the code block are connected

with synchronous, asynchronous, and ICC edges. The schematic representation

in Figure 5.1 illustrates different line styles to indicate the communication mode

(synchronous, asynchronous, or ICC). When a method is invoked, it is represented

by the solid line. A dotted line represents an indirect, asynchronous control flow

between the two methods. The dashed edges illustrates the interaction between

components.

5.1.3 Motivation for proposed CONFIDA

In this Section, we illustrate a motivating example of a real world Android malware

FakeInstaller in Listing 5.1. It is one of the top ten malware employing extensive

obfuscation evading the existing approaches [94, 95, 86, 84, 143]. As illustrated,

the line number 5 checks for the presence of emulator used for app analysis or de-

velopment. Presence of such environment impede the real device infection. In line

number 9, the class and method names are obfuscated to erase the program seman-

tics. For example, a random string value “VQIf3AInVTTnSaQI+R]KR9aR9”, is
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decrypted to android.telephony.SmsManager class loaded via reflection API to

send premium-rate SMS without explicit user consent.

This is visible in the line number 26, as the string “BaRIta*9caBBV]a” is decrypted

to the SendTextMessage method. Furthermore, in line number 25, getMethod

sends SMS using text from the parameters declared in line number 1. Hence, the

most relevant work proposed in [94, 95] fail to address such complex behavior.

Furthermore, AsDroid [95] can be easily defeated by replacing the text UI with an

image or icon as discussed in [144].

1public static boolean gdadfjrj

2(String paramString1 ,String paramString2 ){ [...]

3

4// Anti analysis check to evade emulator

5if (zhfdghfdgd ()) return;

6

7// Get class instance

8Class clz = Class.

9forName(gdadfjrj.gdafbj("VQIf3AInVTTnSaQI+R]KR9aR9"));

10Object localObject = clz.getMethod(gdadfjrj.

11gdadfjrj("]a9maFVM .9"), newClass [0])

12.invoke(null , new Object [0]);

13

14// Get the method name

15String s = gdadfjrj.gdadfjrj("BaRIta *9 caBBV]a");

16

17// Build parameter list

18Class c = Class.forName(gdadfjrj.

19gdadfjrj("VQIf3AInVTTnSaQI+R]KR9aR9"));

20

21Class[] arr = new Class[]

22{nglpsq.cbhgc , nglpsq.cbhgc , nglpsq.cbhgc , c, c };

23

24// Reflection for invoking the method to send SMS

25clz.getMethod(s, arr). invoke(localObject , newObject []

26{ paramString1 , null , paramString2 , null ,null });

Listing 5.1: Motivation for CONFIDA [145, 31]

We consider the invocation of sensitive resource without user consent as a trigger

for deviation from the benign behavior. To illustrate this, Figure 5.2 compares

the behavior of a normal SMS app with HippoSMS, a premium-rate SMS Trojan

subscribing the premium SMS service without explicit user consent. Figure 5.2 (i)

sends sendTextMessage() upon receiving the user input through user interface.

Figure 5.2 (ii) illustrates SMS sending without any user approval, a typical SMS

Trojan behavior. The app subscribes premium SMS service to a hard-coded tele-

phone number. The sendSMS() method is invoked without user-interaction with

a pre-defined number in the string s0. Similar covert behavior such as call record-

ing, audio/video recording and picture click are leveraged by the evolving Android

malware [113]. The malware authors are heavily employing environment detection



Chapter 5 CONFIDA: COvert Feature Misuse analysis using ICC 72

techniques and using transformation methods to evade the analyzer. Furthermore,

the employed tricks provides the malware more infection and propagation time.

Figure 5.2: Illustrating legitimate and feature misuse.

5.2 Proposed CONFIDA

Following is the summary of contributions of CONFIDA:

1. We propose to identify Android apps employing covert malicious behaviors

such as sending SMS, dial premium rate numbers, audio/video recording and

clicking pictures without explicit user consent. We generate a component-

interaction graph to identify the covert feature misuse.

2. We design a novel automated approach CONFIDA, a static analysis tech-

nique for precise CIG based analysis, considering the ICC and asynchronous

Android API. The component-interaction-graph is an ICC based graph lever-

aging data flow analysis and asynchronous Android API to identify covert

feature misuse.

3. CONFIDA performs interprocedural Dalvik bytecode data-flow analysis to

generate CIG. Furthermore, the proposed methodology considers the asyn-

chronous Android API such as java.lang.Thread and AsyncTask callback

onPreExecute, onPostExecute and onProgressUpdate methods.
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Table 5.1: Entrypoints with corresponding API.
Android

Component
Entrypoint Corresponding API

Activity
onCreate, onStart,
onPause

startActivity, startActivityForResult,
onActivityResult

Service
onCreate, onBind,
onStartCommand,
onDestroy

startService, bindService, stopService

Content Provider onCreate query, insert, update

BroadcastReceiver onReceive
sendBroadcast, sendStickyBroadcast,
sendOrderedBroadcast

4. We analyze 1,154 Google Play and 954 real-world malware from Android

malware genome [2], contagiodump [127], droidbench [146] and IccRE [84]

dataset and identify the feature misuse evading the existing anti-malware.

Here, we justify the use of ICC-based control-flow analysis for sensitive feature ex-

traction. The proposed approach analyzes the sensitive resource invocation listed

in Table 5.2 captures the feature misuse invoked without explicit user consent.

The Dalvik bytecode is converted systematically into a control-flow graph (CFG),

where each node of the graph represents a block of Dalvik instructions. The

control-flow analysis identifies the execution semantics of the program. The data-

flow analysis is important to understand the program behavior. Hence, we aug-

ment the CFG with ICC information using interprocedural data-flow analysis dis-

cussed in [147].

Feature API(s)

Sending SMS
android.telephony.SmsManager::sendTextMessage()
android.telephony.SmsManager::sendDataMessage()
android.telephony.SmsManager::sendMultipartTextMessage()

Phone Calls
Intent callIntent = new Intent(Intent.ACTION CALL, Uri.parse(number));
startActivity(callIntent);

Device Information

android.telephony.TelephonyManager.getDeviceId;
startActivity(android.telephony.TelephonyManager.getCellLocation);
android.telephony.TelephonyManager.getSimSerialNumber;
android.telephony.TelephonyManager.getLine1Number ;

Recording Audio
android.media.MediaRecorder::setAudioSource()
android.media.MediaRecorder::start()

Recording Video
android.media.MediaRecorder::setVideoSource()
android.media.MediaRecorder::start()

Taking Pictures android.hardware.Camera::takePicture()

Table 5.2: Sensitive features and corresponding API used by CONFIDA.

The features of interest that can be misused by the evolving malware are listed in

Table 5.2. In particular, we identify sendTextMessage(), sendDataMessage()

methods to detect premium rate SMS misuse. The premium rate phone number di-

aling is a user activity. Hence we monitor the startActivity to identify misuse of call



Chapter 5 CONFIDA: COvert Feature Misuse analysis using ICC 74

feature. Similarly, setAudioSource(), setVideoSource(), takePicture() and

start() methods are monitored during the analysis.

5.2.1 Implementation Details

A normal application performs sensitive operations such as sending SMS, phone

call, audio/video recording, call recording, picture click with explicit permission

from the user. However, the advanced malware SMS Trojans and spyware covertly

abuse the sensitive features bypassing the most significant user consent trigger, a

prime necessity to activate the sensitive functionality. If our hypothesis holds, the

control-flow dependence analysis between the user initiated action and a particular

operation can identify the anomaly from benign behavior. For example, the user

action can be (i) click send button for SMS sending; (ii) provide input text; or

(iii) click a button to record the audio. We consider the sensitive API calls on

user interface returning the user input as explicit consent and interaction triggers

listed in Table 5.2. Figure 5.3 illustrates steps to detect covert feature misuse.

Figure 5.3: CONFIDA approach: (1) Identify features of interest. (2) generate
ICC based CIG. (3) ICC and data dependence analysis. (4) Reverse reachability
analysis (UI or callback entry point).
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The steps given below gives an overview of the analysis procedure:

1. Disassemble the APK file to extract the Androidmanifest.xml and Dalvik

bytecode from classes.dex. Identify the app components declared in the

manifest file.

2. Identify the methods (features of interest) that invoke sensitive functionality

within the Dalvik bytecode. The features of interest are listed in Table 5.2.

3. Build a precise and complete control-flow considering the asynchronous na-

ture of Android API and the ICC.

4. Perform control-flow dependence analysis from the Dalvik bytecode consider-

ing the inter- component communication. Perform reverse path reachability

in the CIG toward the top-level methods. Identify the user initiated input

trigger.

5. Classify the top-level methods as: user triggered or framework entry point

callbacks.

6. If the entry point callback is received, the application has a covert access to

the sensitive functionality.

In the first step, we decompile the Dalvik bytecode and generate programmable

structures including interprocedural control-flow graph. Initially we construct the

graph by splitting the Dalvik instructions of the methods into basic blocks. The

basic block consists of instructions having a single entry and exit point respectively.

The Java exceptions present in the Dalvik bytecode must be considered properly

as the exceptions blocks do not have parents. Once we build the CFG, we have to

perform the data-flow analysis. The data-flow based analysis converts the Dalvik

bytecode order to propagate information between the CFG blocks. Hence, we

augment this control-flow with asynchronous information.

In the next step, we perform the inter-procedural data-flow analysis to identify

the Android system callbacks. More precisely, we consider Thread, Runnable,

TimerTask, CountDownTimer, AsyncTask and Handler API calls. As illustrated

in the Figure 5.3, we further augment the control-flow with the ICC information.

We build the app CIG considering the interprocedural data-flow analysis [147] on

the sensitive API listed in Table 5.2. The node of the CIG represents a component,
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whereas edge from one node n1 to other n2 represent the fact that component n1

launches n2.

Initially, we search for the source components within the Dalvik bytecode that use

ICC API calls. Once the feature of interest is identified, we analyze the arguments

using data-flow analysis. The constant argument values are further analyzed to

identify the potential target components launched from the source. As the content

providers produce data related services, we exclude its information while building

the CIG. The class hierarchy analysis resolves the virtual functions, an important

parameter to generate a precise control-flow. For example, a method start() is

invoked using an object type Thread. This method would resolve to any class

derived from the Thread. Then we identify the method callback toward the top-

level methods.

5.2.2 Augmenting the Control-Flow

We augment the control-flow by (i) invoking implicit methods and (ii) ICC us-

ing the Android Intents. The proposed approach performs control-flow analysis

to identify framework callback. The idea is to determine the reachability of the

user initiated triggers. The intent based control-flow analysis captures the depen-

dence relation between the apps and its defined components. An Intent can create

a new activity (startActivity, startActivityForResult), methods and com-

municates between the components. Explicit Intent gets delivered to the desired

component. The implicit Intent is delivered to any component performing the

required operation.

For an explicit Intent, the target component is already known. Hence, we identify

the source and destination components. The target component is linked to the

intent to capture the component control-flow. The intent object constructor is an-

alyzed to extract the provided target component. In case it is not given, we find the

parameters from the methods of intent object (setClass(), setComponent(),

setAction()) to identify the target components. This information is used to aug-

ment the graph by identifying the source and target components for all explicit

Intents.

For an implicit Intent, a component that declares its ability to handle a method

becomes the target component. Android system determines existence of the tar-
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get component by specifying inside the Androidmanifest.xml. The proposed

approach handles implicit intents by extracting the components from Android

manifest and actions associated with them to identify target component. Implicit

invocation is communicated to the framework by using registration method. For

example, onClick callback employs setOnClickListener method to bind with the

UI. When a user taps the button, Android framework invokes the onClick. The

proposed approach considers the Android event handlers to augment the graph

with data flow information. However, encrypted code, reflections, dynamic code

loading are out of scope for static analysis and hence necessitate dynamic analysis

functionality.

5.2.3 CIG Reachability

The reachability analysis identifies the unreachable code that (class/method) is

never executed. Hence, we construct an inter and intra control-flow analysis to

identify the execution path possibilities. In particular, we move up toward the

entry point through the top level methods listed in Table 5.2 to identify the user-

initiated trigger and corresponding API reachable from the main activity.

5.3 Evaluating CONFIDA

In this Section, we present the evaluation of proposed CONFIDA. The idea is

to create a complete and precise control-flow graph using ICC to detect covert

malicious behaviors missed by the existing methods. We evaluate the effectiveness

of CONFIDA by analyzing some notable and notorious SMS Trojans and Spyware

apps. Moreover, we take benign representative apps from Google Play to ascertain

the legitimate usage of sensitive features and report the false positives.

5.3.1 Experimental Setup

Experiments are performed on Intel Core i7 machine with 8 GB RAM. We evaluate

the proposed approach against: (i) Droidbench testsuite [146]; (ii) known malware

apps; (iii) Google Play apps; and (3) Obfuscated malware. We conducted the first
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experiment on 1,260 malware genome [2], 207 VirusShare repository [128] and 35

contagiominidump [127] malware.

5.3.2 Evaluating known Malware

We conducted the first experiment on 1,260 malware from Android Genome [2],

207 malware from VirusShare [128] and 35 contagiominidump [127]. The dis-

cussed repositories have real Android malware app instances collected from various

sources including third party regional app stores, the likely malware sources [140,

141, 131]. Table 5.3 enlists the package name, sensitive features, number of an-

alyzed samples and number of execution paths triggered without explicit user

approval.

Package Name
Sensitive
Feature(s)

# of Sensitive
Feature Paths

Total
Without User

Triggered
Events

Correctly
Detected by
CONFIDA

Malware Apps

com.ku6.android.videobrowser (HippoSMS) SMS 2 2 2 4

org.me.androidapplication1(FakePlayer) SMS 1 1 1 4

kagegames.apps.DWBeta (Dog Wars) SMS 1 1 1 4

t4t.power.management (GGTracker) SMS 1 1 1 4

com.talkweb.ycya (RogueSPPush) SMS 1 1 1 4

com.mobile.app.writer.zhongguoyang (Pjapps) SMS, Audio 3 3 3 4

com.software.application (SMS Boxer) SMS 7 3 3 4

com.parental.control.v4 (Dendroid)
SMS, Call,

Audio, Video,
Photo

6 6 6 4

Table 5.3: Evaluating known malware.

As illustrated in Table 5.3 illustrates notable malware apps employing covert fea-

ture misuse. The HippoSMS com.ku6.android.videobrowser invokes two sensi-

tive feature paths. The proposed CIG identifies both the paths invoked without

user triggers. Similarly Dendroid malware (com.parental.control.v4) has SMS,

call, audio, video and Picture click misuse paths. The CONFIDA detect all 6 fea-

ture misuse paths invoked without user consent. The other known malicious with

feature misuse are listed with corresponding details in the Table given above.

Analyzing the Google Play app com.wn.message and com.me.phonespy illustrated

in Table 5.4, we find sensitive features invoked without user consent. superdial
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and callrecorder invoke the sensitive functionality to dial a number to auto-

matically record Phone call. If a user approves the installation and gives explicit

consent, these apps generate false positives.

Package Name
Sensitive
Feature(s)

# of Sensitive
Feature Paths

Total
Without User

Triggered
Events

Correctly
Detected by
CONFIDA

Benign Apps

cn.menue.superredial1 Call 2 1 2 4

com.wn.message SMS 3 0 0 4

polis.app.callrecorder1 Audio 1 1 1 7

com.me.phonespy1 Photo 1 1 1 4

com.Rainbow.hiddencameras Photo 1 0 0 4

Table 5.4: Evaluating Google Play apps.

The Phonespy app (com.me.phonespy) has a picture misuse path apart from the

call recording feature. This Google Play app has no reason to have hidden picture

click capability. Similarly, com.rainbow.hiddencameras package also has a pic-

ture click misuse path correctly identified with CONFIDA. The polis.app.callre

corder records the call and writes to the external storage. This facility is already

defined in the features.

Evaluation results of CONFIDA on a dataset of 2108 apps (951 malware and 1,137

benign) is illustrated in Table 5.5. The benign apps include popular apps such

as Whatsapp, Viber, True Caller and spying apps (i.e., Hidden Camera and Call

Recorder) from the Google Play. CONFIDA generated 11 false positives. However,

10 of the 11 apps are spying apps where the user explicitly consents to a task that

does not require intervention.

To evaluate the existing malware, we experimented a larger dataset consisting

benign and malicious apps listed in Table 5.5. The Table lists family name, number

of samples analyzed for the particular family with false negative and false positives

for the family. False negative is generated when the proposed approach misses a

known malware. False positive is produced if a benign app is identified malicious.

CONFIDA results are evaluated against the known malware families, Google Play

and third-party market apps.

As illustrated in Table 5.5, the overall accuracy of proposed approach is > 95%.

However, evaluating YZHC Trojan and Spyware families incurs 17% and 08% false
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Family
Type

Sensitive
Feature(s)

Total
Apps

True
Positive

Rate

False
Negative,Positive

Rate

Dendroid
SMS, Call,

Audio, Video,
Picture

30 100% 00, –

DogWars SMS 37 100% 00, –
FakePlayer SMS 38 91% 09, –
GamblerSMS SMS 39 100% 00, –
GGTracker SMS 35 100% 00, –
GPSSMSSpy SMS 26 100% 00, –
HippoSMS SMS 34 100% 00, –

Pjapps
SMS, Audio,

Picture
45 100% 00,–

RogueLemon SMS 31 100% 00, –
RogueSPPush SMS 33 100% 00, –
SMS Boxer SMS 288 94% 06,–
SMS Foncy SMS 25 89% 11, –
SMS Replicator SMS 11 100% 00, –

SMS Trojans & Spyware
SMS, Call,

Audio
257 92% 08, 00

YZHC
SMS, Call,

Audio
22 83% 17,–

Benign Apps
SMS, Call,

Audio, Video,
Picture

1157 97.9% –, 2.1%

Total 2108 97.7% 2.3, 2.1%

Table 5.5: Evaluating CONFIDA. (FN, – for malware evaluation); (–, FP for
benign app evaluation).

alarm respectively. The manual analysis reveals reveals the reason. The use of

dynamic code loading to evade static analysis is the cause of false negatives. In

addition, reflection API not resolved statically contribute to the false negative.

The aggregate detection rate is still above > 95% suggesting CONFIDA can be

deployed as a static app vetting tool.

5.3.3 Evaluating Google Play apps

Here, we illustrate two Google Play apps invoking sensitive functionality with and

without user interaction. Figure 5.4 illustrates the app cn.menue.superredial

with a single feature misuse path. The app has declared pre-specified number

redial facility. The app also has a covert picture click feature misuse path not

specified in the documentation. The second app com.wn.message is a typical

SMS app. We observe that all paths get initiated from user triggered events.

As depicted in Table 5.5, CONFIDA experiment evaluated 537 Google Play apps,

out of which 11 suspicious samples were reported. To validate the same, we sub-
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Figure 5.4: Feature misuse in benign Google Play app.

mitted the apps at VirusTotal [148]. The commercial anti-malware reported 7

malicious apps. The remaining were detected benign. The false positive gener-

ated by CONFIDA approach records audio, dials a prespecified number

without user consent. These apps have declared the said functionality at install

time and already known to the user indicating CONFIDA has low false alarm

against unseen malware. For example, cn.menue.superredial app permits only

a single phone number for automatic redial. Similarly, banking apps and spy-

ing apps may also have auto-redial and auto-send SMS functionality. CONFIDA

detects such actions and labels them malicious.

5.3.4 Evaluating Obfuscated apps

To substantiate that CONFIDA is resilient against trivial code obfuscation, we

compared the proposed approach with commercial anti-malware on the code ob-

fuscated malware. The obfuscated variants were produced using popular x86 trans-

forms like string encryption, method renaming, register renaming [14]. Table 5.6

illustrates the experimental evaluation of the proposed approach against the top

anti-malware products. We chose three known malware instance from each family,

transformed them to evaluate CONFIDA.

As illustrated in Table 5.6, commercial anti-malware are easily evaded by the ob-

fuscated variants of known malware. The commercial anti-malware have a poor

detection rate ranging between 7-35%. Compared to the existing commercial anti-

malware and analysis techniques, CONFIDA is resilient to simple code transfor-

mation techniques.Tick mark 4 indicates that the compared methods can detect
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the transformed samples. The cross 7 means that the compared tools is evaded by

the obfuscated malware. Table 5.6 exhibit the CONFIDA resilience with trivial

code obfuscation. Hence, the proposed approach can be used as an automated

app vetting tool.

Malware Family Avast AVG ESET Dr. Web Kaspersky McAfee Symantec
Proposed

CONFIDA

Dendroid 4 7 7 7 7 7 7 4

DogWars 7 7 4 7 7 7 4 4

FakePlayer 7 7 7 7 7 4 7 4

GamblerSMS 7 4 7 7 7 7 7 4

GGTracker 7 7 7 7 7 7 7 4

GPSSMSSpy 4 7 7 7 7 4 7 4

HippoSMS 7 4 7 7 7 7 4 4

PJapps 7 7 7 7 7 7 7 4

RogueLemon 7 7 7 7 7 4 7 4

RogueSPPush 4 4 4 7 7 7 7 4

SMSBoxer 4 7 7 7 7 4 4 4

SMSFoncy 7 7 7 7 7 7 7 4

SMSReplicator 7 7 7 7 4 7 7 4

jSMSHider 7 7 7 7 7 4 7 4

SMS Trojan and Spyware 7 4 7 4 4 7 4 4

Detection % 21.4 28.57 14.28 7.14 14.28 35.71 28.57 100

Table 5.6: Evaluating CONFIDA and anti-malware with obfuscated malware.

5.4 Discussions

CONFIDA performs rich semantic information compared to the existing state of

the art. CONFIDA extracts a combination of synchronous, asynchronous and ICC

API to generate precise information compared to the current program artifacts.

We detect malicious applications performing covert behavior from Google Play

so far evading the existing analysis techniques. Moreover, the proposed approach

identifies feature misuse among the Google Play and third-party app markets.

The proposed novel analysis technique identifies a new class of evolving malware

implementing covert behaviors. Such samples remain undetected with the existing

state of the art and commercial anti-malware.

However, CONFIDA is not a panacea for the mobile malware detection and has

its own share of limitations. The proposed analysis technique checks the covert

behaviors by relating the sensitive feature misuse with corresponding user triggered

inputs. If CONFIDA finds the correct relation, it concludes that the feature use

is legitimate. If a Trojan apps sends SMS messages tricks the user to click with
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social engineering technique, the proposed method considers such action as user

consented and hence legitimate. For example, a more recent variant of FakeInst

malware tricks users to purchase paid content by clicking on a UI element (e.g.,

a button). However, the information provided is fake. The UI element sends an

SMS to a premium-rate number without user knowledge. The cases where a user

is tricked to click are considered out of scope of the proposed CONFIDA.

5.4.1 Comparison with state-of-the-art

Table 5.7 illustrates a comparison of proposed CONFIDA with similar approaches

in the literature. There are quite a few static and dynamic analysis approaches for

analysis, security assessment, data-flow analysis or app consistency. The IccTA

leverages static taint analysis to identify tainted variables (sources) and trace them

to the possible vulnerable functions (sinks) to detect sensitive data ex-filtration.

However, we propose an ICC based control-flow analysis on a reasonable dataset.

The proposed approach analysis performs better compared to the existing methods

reported in literature, as illustrated in Table 5.7.

Detector Target
Analyis

Technique
Features

Classification
Technique

# Samples Repository Accuracy

AndroLeaks [149] Confidentiality Static Dangerous API
Map sensitive data
with dangerous API

B#: 24000
Google Play,
Third party markets

FP: 35%

Andromaly [58] Anomaly detection Dynamic Device features
Tree based machine
learning classification

M#: 4
Self developed
malware

FP:17.8%

Amos et al. [150]
Malware
classification

Dynamic
CPU, memory,
battery features

Real-time testing

Train:
M#:1400,B#:49
Test:
M#:24 B#: 23

GNOME,
VirusTotal,
Google Play

FP: 15%
FN: 12%

AndroSimilar [101]
Signature based
variant detector

Static
Byte based
statistical similarity

Robust features for
malware variants

B#: 3300
M#: 2200

GNOME,VirusShare,
Google Play

FP: 5%
FN: 6%

AsDroid [95]
UI based
stealthy behavior

Static
UI text mapping
with stealthy behavior

WALA based java
code analysis

B#: 74
M#: 96

GNOME,VirusShare,
Google Play

TP: 85%
DR: 88%

CrowDroid [93]
Malware
classification

Dynamic System call traces
Crowdsourcing based
system call trace

developed#: 03
real M#: 02

VirusTotal,
Synthetic malware

FP: 20%

Drebin [151]
Malware
classification

Static
Permissions,Hardware,
Network, URL, API

multiple APK features
B#: 0.12 million
M#: 5560

Google Play,GNOME,
Malware blogs

FN: 6%
FP: 1%

IccTA [84]
Sensitive data
ex-filtration

Static
Inter-component
privacy leakage

ICC Taint Analysis
B#: 15,000
M#: 1260

Google Play,GNOME
PR#: 96.6%
RC#: 96.6%

Elish et al. [96]
Anomaly of User
initiated triggers

Static
ICC Control
and Data-flow

user initiated triggers
B#: 2684
M#: 1433

Google Play,GNOME,
VirusShare

FP: 2.0%
FN: 2.1%

RiskRanker [28]
Anomalous code
and behavior

Signature,
Heuristics

Behavior tracing weight based features B#: 0.118 million
GooglePlay,
Third party markets

FN: 9%

FlowDroid [86]
Sensitive data
ex-filtration

Static Sensitive user data
Field and object
based taint analysis

V#: 150 DroidBench RC: 93%

Proposed
CONFIDA

Covert
behavior with
sensitive API

Static
ICC based control
and data flow

Anomalous covert,
malicious behavior

B#: 1157
M#: 951

GooglePlay,GNOME,
VirusShare

FP:2.1%,
FN: 2.3%

Table 5.7: CONFIDA comparison with recent analysis techniques.

Table 5.7 compares the analysis techniques based on the following parameters.

The detection technique targets a particular malware app class, analysis method

employed, features extracted, number of samples and reported accuracy. The
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AndroLeaks targets the confidential user data by mapping the dangerous API

calls based on requested permissions on 2,400 benign apps. The analysis technique

incurs 35% false positive. Andromaly is an on-device dynamic analysis framework

to detect malicious apps based on important features. The authors evaluated 7 self

developed synthetic malware reporting 17.8% FP. Our proposal considers control

and data flow analysis to identify invocation of sensitive feature misuse incurring

a low false alarm compared to the existing work in literature.

5.5 Summary

The Android OS is a prominent platform for the emerging technologies like In-

ternet of Things (IoT) and smart city infrastructure services. The malware au-

thors are targeting the Android platform with evasive techniques, providing fertile

ground for malware attacks. In this chapter, we proposed CONFIDA, a high pre-

cision inter-component communication based detection of sensitive feature misuse

perpetrated by the evolving Android malware. The proposed approach identi-

fies sensitive functionality necessitating explicit user intervention. We generate a

precise Dalvik bytecode analysis technique considering the component-interaction

graph (CIG) and Android ICC API.

Furthermore, we perform reverse reachability analysis to identify if the feature

usage or behavior is initiated by the legitimate user interaction. The encouraging

results on the dataset of about one thousand notable SMS and spyware indicate

that CONFIDA can be deployed as a static app vetting framework for Android

app market. We evaluated 951 malicious and 1,157 benign apps with classifica-

tion accuracy with 2.3% false negative rate and 2.1% False Positive Rate (FPR),

superior than the existing approaches.



Chapter 6

Evaluating Anti-malware against

Dalvik bytecode Obfuscation

In the previous chapter, we performed static evaluation of the covert behavior

employed by the Android malware. However, if the malware author employs code

obfuscation, static analysis methods must perform the de-obfuscation before anal-

ysis. In this Chapter, we evaluate the capabilities of code obfuscation on Android

apps to identify the resilience of existing anti-malware and static analysis tech-

niques. Furthermore, we evaluate our existing proposal AndroSimilar, a robust

statistical feature signature against Dalvik bytecode obfuscation.

6.1 Dalvik Bytecode Obfuscation

Code obfuscation has been reported as an alternative code protection technique.

The Code obfuscation is intended to render the code unreadable or at least make

the original code difficult to decipher. Code obfuscation transforms the code by

changing its physical appearance while preserving the intended program behav-

ior. In short, code obfuscation can be used to protect the software from reverse

engineering. The malware developers have also leveraged the obfuscation in de-

veloping recent malware apps [113, 152] evading the commercial anti-malware.

The rich bytecode semantics and easy availability of reverse engineering tools con-

tribute to the exponential increase of Android malware [153]. Obfuscated malware

threat has prompted the requirement of robust anti-malware techniques.

85
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Code obfuscation is treated as changing control flow, data flow or layout changes

of an executable maintaining the original semantics. Malware writers use code

transformation methods to propagate unseen variants and evade the anti-malware.

Malware app, Mapp consists of random malicious functions like sending SMS with-

out user consent, ex-filtrating sensitive user data without his knowledge. The

malicious app is defined as:

Mapp = m1,m2,m3, · · · ,mn. (6.1)

Here, m1, m2 .. mn are functions within an app where one or more functions are

malicious. A variant may introduce arbitrary number of additions, modifications

or deletions in the code by inserting malicious functions, maintaining the original

semantics. A malware variant is represented as:

Mapp = m1,mmod 2,m3,madd 1,madd 2, · · · ,mn, (6.2)

where madd 1, madd 2 are the new functions inserted in the code and mmod 2 is the

corresponding code modification m2, maintaining the intended functionality. The

newly added function may not necessarily be malicious. In general, anti-malware

solutions use the blacklisting approach to tackle malware and avoid false positives

(i.e., detection of an innocent app as malware). The malware authors anticipate

this fact to bypass such lists and generate obfuscated variants of the existing

malware.

The Dalvik bytecode executes inside the DVM. The complete type information

availability makes Dalvik bytecode amenable to reverse-engineering and code ob-

fuscation attacks. apktool is used to disassemble and convert Dalvik bytecode into

intermediate smali mnemonics [42]. After making changes, the same tool can be

used for assembling the obfuscated app. Dalvik bytecode can be retargeted to Java

bytecode [154] subject to the availability of intermediate code obfuscator [48].

Rastogi et al. [155] proposed DroidChameleon, a trivial code obfuscator on a small

set of 5 malicious apps against top commercial anti-malware. The authors em-

ploy multiple obfuscation in sequence to evade the anti-malware. The authors

randomly selected trivial transformation techniques without considering the rep-

resentative Control, Data and Layout obfuscation class. Our proposal identifies

representative obfuscation techniques from the 3 categories and evaluates static

analysis techniques and commercial anti-malware performance. Furthermore, we
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select a reasonable dataset for evaluation compared to the existing analysis tech-

niques DroidChameleon [155] and ADAM [47] reported in the literature.

6.2 DroidsHornet: Dalvik Bytecode Obfuscator

In this section, we discuss the implementation of the obfuscation prototype and

evaluate our proposed static analysis technique against commercial anti-malware

and static analysis techniques. The existing analysis techniques retarget the Dalvik

bytecode to Java constructs for analysis. The conversion process eliminates im-

portant fine-grained details present in the intermediate bytecode. To preserve the

finer details, our proposal obfuscates the bytecode.

Collberg et al. [156] classify the obfuscation techniques as: (1) Control flow;

(2)Data flow; and (3) Layout. Control-flow (CT) obfuscation aims to confuse

the analyst by changing the control-flow of the source code. The functional blocks

are broken apart to confuse the reverse engineering. The Data obfuscation (DT)

techniques modifies the structure by modifying the data values. The Layout trans-

formation (LT) targets the lexical structure of the program such as variable names

or formatting the source code.

6.2.1 Proposed Obfuscator Design

Figure 6.1 illustrates the automated procedure for app disassembly, code transfor-

mation and APK re-assembling. The obfuscated apps are evaluated against An-

droSimilar [101] our proposal for obfuscated app detection and Androguard [52]

a state-of-the-art static analysis tool. The proposed Transformation evaluates the

performance of existing techniques against Control (CT), Data (DT) and Layout

(LT) transformations. We evaluate the performance of anti-malware solutions on

apps obfuscated with different permutations of Control, Data and Layout tech-

niques.

Figure 6.1 illustrates the automated procedure for generating the code obfuscated

variants. An input APK is disassembled with APKTool [42] to convert the byte-

code in smali format. The smali file represents intermediate code of the Java class

declared in the app. In the next step, our code obfuscation program modifies the
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Figure 6.1: Proposed analysis Technique.

smali code with the implemented obfuscation techniques. The modified smali code

is assembled and re-signed. The new APK file is the semantic equivalent of the

original malware with a different syntax structure. The disassembing procedure,

code obfuscation and APK regeneration is automated in the prototype. The orig-

inal and modified APK samples are submitted at VirusTotal [148] to evaluate the

commercial anti-malware.

In the following, we discuss the implemented code obfuscation techniques and

evaluate the obfuscation effect the analysis technique.

6.3 Control Transformations

The Control flow obfuscation breaks up the control flow of the source code. Func-

tional blocks broken apart or intermingled to confuse the reverse engineering. Con-

trol flow transformation changes the execution paths of a program, maintaining

its intended functionality.

6.3.1 Altering Control Flow

Listing 6.2 illustrates control flow obfuscation by inserting unconditional jumps to

circumvent the disassembly and evade static analysis.
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1 // GoldDream malware unobfuscated code

2 .method private IsClearLocalWatchFiles ()V

3 .locals 2

4 .annotation system Ldalvik/annonation/Throws;

5 value={ Ljava/io/IOException ;}

6 .end annotation

7 ...

8 .line 224

9 .local v1,"objSmsFile;Ljava/lang/String;"

10 const -string v0,"/data/data/com.dchoc.tuxdo/files/zjphonecall.txt"

11 ...

12 .line 227

13 .local v0,"objCallFile;Ljava/lang/String;"

14 invoke -direct {p0,v1},Lcom/GoldDream/zj/zjService;>CheckAndClearFile(Ljava/lang/String ;)V

15 ...

16 .end method

Listing 6.1: GoldDream malware smali code before obfuscation.

The smali code of a disassembled Java class is illustrated in the above listing.

When we employ control flow obfuscation, the goto unconditional jump instruction

changes the flow of a particular class.

1//Control -flow obfuscation

2.method private IsClearLocalWatchFiles ()V

3.locals 2

4.annotation system Ldalvik/annonation/Throws;

5value={ Ljava/io/IOException ;}

6.end annotation

7.prologue

8

9goto :goto_1

10.line 223

11goto :goto_0

12goto :goto_0

13const -string v1 ,"/data/data/com.dchoc.tuxdo/files.zjsms.txt"

14...

15goto_1

16goto : goto_0

17...

18.end method

Listing 6.2: After control flow obfuscation.

The Control flow represents the path an app may traverse during execution. We

alter the control flow of the bytecode, changing the file signature. The bytecode

modifications change the structure without affecting the original functionality.
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6.3.2 No Operation (NOP) Insertion

The No-operation code instruction is used to change the opcode sequence and

thwart the n − gram based static analysis. Insertion of nop instruction also

wastes the CPU execution cycle. The Dalvik nop instruction is randomly added

to the disassembled methods preserving the semantics. This obfuscation evades

anti-malware solutions employing Dalvik opcode sequence as malware signature.

Listing 6.1 and 6.3 illustrates the original code and nop insertion respectively.

1 //no operation code $nop$ insertion

2 .method private IsClearLocalWatchFiles ()V

3 nop

4 nop

5 .locals 2

6 ...

7 nop

8 .prologue

9 ...

10 .line 224

11 .local v1,"objSmsFile;Ljava/lang/String;"

12 nop

13 ...

14 .end method

Listing 6.3: No Operation obfuscation.

6.3.3 Dead Code Injection

Inserting dead-code is another technique to evade the analysis. A programmer can

insert code that is never executed or may not contribute to the functionality of

the program [157]. This code can include extra methods or few lines of irrelevant

code [158]. For instance, the code snippet before the Add Dead-code Switch

Statements (ADSS) [101] is illustrated in the Listing 6.4.

The Java bytecode switch construct can be used to insert control flow switch

that is never executed [159]. However, the switch increases the connectedness

and complexity of the method. Thus, the obfuscation evades the decompiler that

cannot remove the dead switch. Listing 6.5 illustrates the ADSS obfuscation [159].
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1 // before inserting ADSS obfuscation

2 if (writeImage != null) {

3 try {

4 File file = new File("out");

5 ImageIO.write(writeImage , "png", file);

6 }

7 catch (Exception e) {

8 System.exit (1);

9 }

10 }

11 System.exit (0);

Listing 6.4: before ADSS.

1// ADSS obfuscated code

2

3if(obj != null) {

4try {

5

6ImageIO.write (( RenderedImage)obj ,png ,

7new File(out));

8}

9

10catch(Exception exception2) {

11++i;

12obj = exception2;

13i += 2;

14System.exit (1);

15}

16}

17

18label_167:

19

20{ while(lI1.booleanValue () == ___)

21{

22switch (i) {

23default: break;

24case 3: break label_167;

25case 1: ++i;

26obj = exception2;

27i += 2;

28System.exit (1);

29continue;

30case 2:

31i += 2;

32System.exit (1);

33continue;

34}

35}

36System.exit (0);

37}

Listing 6.5: ADSS Obfuscation [160].



Chapter 6 Evaluating Anti-malware against Dalvik bytecode Obfuscation 92

6.4 Data Transformation

6.4.1 Realign/Repack

zipalign tool, a part of Android SDK realigns the app for better performance.

In case of repacking, an app is disassembled using apktool, reassembled and re-

signed without any bytecode changes. Such trivial changes evades the commercial

anti-malware signature. Listing 6.6 illustrates GoldDream malware with realigned

obfuscation. It is important to note that realigning the APK has no effect on the

smali code.

1 // APK realign

2 .method private IsClearLocalWatchFiles ()V

3 .locals 2

4 .annotation system Ldalvik/annonation/Throws;

5 value={ Ljava/io/IOException ;}

6 .end annotation

7 ...

8 .line 224

9 .local v1,"objSmsFile;Ljava/lang/String;"

10 const -string v0,"/data/data/com.dchoc.tuxdo/files/zjphonecall.txt"

11 ...

12 .line 227

13 .local v0,"objCallFile;Ljava/lang/String;"

14 invoke -direct {p0,v1},Lcom/GoldDream/zj/zjService;>CheckAndClearFile(Ljava/lang/String ;)V

15 ...

16 .end method

Listing 6.6: No effect of Realign obfuscation.

6.4.2 Variable Compression

x86 platform executable compressors are used to pack malware payload inside an

arbitrary section of the target file. Malware payload is uncompressed when the file

is loaded into the memory. We implement data flow transformation by encasing

the numeric constants. This transformation is based on opaque condition [156]

where numeric constants are compressed into an external packer class.
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6.4.3 Native Call Wrapping

Native libraries (.so) are used to perform CPU intensive tasks. For a unique

method, a wrapper function is constructed to redirect native calls. Call wrapping

evades control flow as functions call to the libraries are scattered. As the number

of malware app using native calls low, few transformed apps are generated.

6.4.4 Resource Encryption

Content of resources, assets and native libraries can be encrypted, but needs mod-

ification within bytecode to decrypt at runtime. Android runtime Exploits [34,

35, 36] are native code based encrypted payloads to exploit the device and evade

anti-malware.

6.5 Layout Transformation

6.5.1 Method Insertion

In this transformation, a dummy method is inserted in every class of Dalvik byte-

code maintaining the actual behavior. Method insertion increases bytecode size

and modifies the Dalvik method table to alter its binary footprint. Listing 6.7 illus-

trates the obfuscated bytecode after inserting dummy method in the GoldDream

malware class.

1 .method public static DummyMethod(Ljava/lang/String;Ljava/lang/String ;)V

2 /lang/String;Ljava/lang/String ;)V

3 .register 2

4 .parameter ‘‘tag’’

5 .parameter ‘‘msg’’

6 .line 28

7 invoke -static p0,p1.Landroid/util/Log; > d(Ljava/lang/String;Ljava/lang/String ;)I

8 .line 29

9 return -void

10 .end method

11 . method private IsClearLocalWatchFiles () V

12 .....

13 . prologue

14 ...

15 .end method

Listing 6.7: Method Insertion.
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6.5.2 String Encryption

String encryption encodes literal strings and renders them unreadable. This trans-

formation decrypts encoded strings during the app execution. We store the strings

in a byte array, encrypt and store the bytes instead of strings. Transformed strings

are not stored inside the string ids, making it hard to discover. Listings 6.1 illus-

trates original malware code and Listing 6.8 illustrate effect of string encryption.

1 const -string v1,"nkdk/nkdk/myw.nmrym/dehny/psvoc/jtcwc.dhd"

2 invoke -static(v1), Lcom/mnit/jaipur;$->$

3 Decrypt(Ljava/lang/String ;) Ljava/lang/String ;}}*)

4 move -result -object v1

5 ...

6 invoke -static v0, Lcom/mnit/jaipur;$->$

7 Decrypt(Ljava/lang/String ;) Ljava/lang/String;

8 move -result -object v0

9 .line 227

10 .local v0,"objCallFile;Ljava/lang/String;"

11 invoke -direct (p0,v1), Lcom/GoldDream/zj/zjService;>CheckAndClearFile(Ljava/lang/String ;)V

12 ...

13 .line 229

14 .return -void

15 .end method

Listing 6.8: String Encryption.

6.6 AndroSimilar Signature

AndroSimilar signature generation approach is based on the hypothesis that two

unrelated files have a low probability of having common features. Fixed-size byte

sequence features are extracted based on the empirical probability of occurrence

of their entropy values. The values are computed in a sliding window fashion.

The popular features are identified according to their neighborhood rarity [137].

When two unrelated files share some characteristics, the features are considered

weak contributing to the false positives [138]. Initially, we generate signatures of

known malware families in the existing representative malware database. Then,

we compare the similarity score of an unknown app with the existing database. If

the signature database matches the unknown signature beyond an experimental

threshold, the application is labeled malicious. In the following, we evaluate and

compare our proposed approach with commercial anti-malware and Androguard,

a robust static analysis technique.
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6.7 Experimental Evaluation

In this Section, we evaluate the obfuscated apps against our proposal AndroSimi-

lar, Androguard static analysis tool and commercial anti-malware. We obfuscate

the benign Google Play apps and malware samples from known families discussed

in Section 6.7.1. Figure 6.2 gives an overview of the proposed transformation

to generate new malware variants automatically. An app is disassembled with

Figure 6.2: Evaluating Transformation techniques.

Baksmali [161] where each class is represented by a .smali file preceded with

a $. Smali stores extracted Dalvik bytecode mnemonics. We transform smali

mnemonics and assemble all the classes into a single Dalvik EXecutable (DEX).

DEX, resources and meta information is re-signed to generate a obfuscated app.

Authors in [47, 155] randomly select trivial techniques and bytecode transforms

whereas proposed evaluation prototype considers representative samples of Con-

trol, Data and Layout transformation techniques discussed in [162].

6.7.1 Dataset for Evaluation

Table 6.1 illustrates the data source whereas, Table 6.2 lists benign apps and

known malware families. We select 15 malware families from Genome Project [2]

with 10 representatives samples from each family. Samples were downloaded from

VirusShare [128] and Contagiominidump [127] to add representative malware con-

firming their signature with commercial anti-malware engines. We have generated

764 malware variants using the proposed obfuscation prototype.
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Source # of Samples
Malware Genome Project 150
VirusShare 10
Contagiominidump 10

Table 6.1: Android Malware Dataset.

Obfuscated apps are evaluated against 52 commercial anti-malware on Virusto-

tal [148]. We compare the performance of obfuscated apps with Androguard

code similarity module. The method calculates Normalized Compression Dis-

tance (NCD). The AndroSimilar is based on SDHash algorithm to identify ob-

fuscated malware using robust statistical signature. The evaluation is carried out

against code obfuscated malware apps and Trojanized Google Play apps. Trans-

formed apps are evaluated with 52 commercial anti-malware at VirusTotal, a web

based anti-malware interface.

6.7.2 Google Play apps

According to [157], profit motives and poor code protection techniques expose the

apps for misuse and abuse from malware authors. We selected two popular apps

with minimum 10,000 downloads from 32 Google Play categories. The selected

apps were obfuscated and evaluated against static analysis techniques.

Malware Source & Families Google Play Apps

AnserverBot GoldDream Arcade & Action Entertainment Personalization
BeanBot HippoSMS Books & Reference Finance Photography
DroidKungFu Kmin Brain & Puzzle Health & Fitness Productivity
DroidKunguFuUpdate PJApps Business Libraries & Demo Racing
DroidKungFu2 SpitMO Cards & Casino Lifestyle Shopping
EndofDay ZitMO Casual Media & Video Tools
FakeNetFlix Contagiominidump Comics Medical Transportation
FakePlayer VirusShare Communication Music & Audio Travel & Local
GGTracker Education News & Magazines 7 weather

# Apps per Family 10 # Apps per Category 2

Table 6.2: Google Play & Malware dataset.

6.7.3 Evaluating anti-malware techniques

Evaluation results of anti-malware are shown in Table 6.3. Original and obfuscated

apps were submitted to Virustotal [148] in first two weeks of March 2014. Table 6.3

illustrates aggregated 52 anti-malware evaluation. Table 6.3 second column evalu-

ates 52 commercial anti-malware detection. The unobfuscated Anserver malware
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samples detection rate is 88%. The results indicates commercial anti-malware do

not perform frequent signature updates.

Family Name Original Repacking
Obfuscations Methods

DC CF MI SE VP NCW NOP

AnserverBot 88 42 30 34 38 36 23 27 31
BeanBot 72 38 22 28 36 32 32 29 26

DroidKungFu 76 46 54 28 38 34 31 30 27
DroidKunguFuUpdate 52 28 22 20 32 32 33 25 23

DroidKungFu2 82 44 24 22 38 34 30 28 24
EndofDay 86 48 20 22 40 36 24 26 24

FakeNetFlix 76 38 22 20 36 38 27 27 24
FakePlayer 82 40 26 24 38 38 31 32 29
GGTracker 74 48 34 24 36 34 26 24 25
GoldDream 68 40 32 22 32 38 23 21 22
HippoSMS 74 40 28 32 30 38 24 23 26

Kmin 60 48 36 30 44 42 22 26 28
PJApps 74 44 20 24 42 36 23 23 24
SpitMO 78 46 32 30 30 36 34 31 32
ZitMO 78 42 32 32 36 32 31 29 26

Contagiominidump 72 38 20 26 32 42 30 23 26
VirusShare 54 40 28 32 34 38 26 23 21

Table 6.3: Cumulative detection (%). DC–Dead Code, CF–Control-flow altering,
NOP–No operation code, MI–Method Insertion, SE–String Encryption, NCW–
Native code Wrapping, RR–Register reassignment VP–Variable compression.

When we re-evaluated the repacked apps, the anti-malware detection drops by

50%. Testing code obfuscated malware families fails maximum number of anti-

malware with aggregate detection dropping to 21%. Top rated anti-malware Avast,

AVG and Dr. Web performed comparatively better. The impact of code trans-

formation against additional methods is illustrated with background color. Eval-

uation against AnserverBot family malware drops to 30% in case of simple nop

obfuscation.

The trivial obfuscation techniques variable compression and nop evades the com-

mercial Android anti-malware. Similar trends are visible for Control Flow altering,

Method Insertion and String Encryption. The samples evaluated with static anal-

ysis techniques AndroSimilar and Androguard outperform the commercial anti-

malware. AndroSimilar, our proposed malware variant detection approach per-

forms better than commercial anti-malware. When the obfuscated samples are

evaluated against Androguard, it detects the transformed samples with reason-

able accuracy.
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6.7.4 Commercial anti-malware & Analysis Techniques

Moving further, we evaluate and compare top commercial anti-malware [163]

against static analysis techniques rather discussing aggregated results. This proce-

dure tests the resilience of anti-malware against additional techniques implemented

so far on x86 platform. Background color illustrates performance of AntiY, Cla-

mAV, Microsoft and Symantec as poor. Testing Avast, AVG and Dr. Web results

show that they are resilient against individual transformation techniques.

Additional
Methods

Anti Malware Products (AM) Static Analysis Tools

AntiY Avast AVG ClamAV Dr. Web McAFee Microsoft Symantec
Trend
Micro

Andro
guard

Andro
Similar

NOP 7 4 4 7 4 7 7 7 7 4 4

NCW 7 4 4 7 4 4 4 4 4 4 4

RR 7 4 4 4 7 4 4 7 7 4 4

VP 7 7 7 7 7 7 7 7 7 4 4

NOP+NCW 7 4 4 7 4 7 7 7 7 4 4

NCW+RR 7 7 4 7 4 7 7 7 7 4 4

NCW+VP 7 4 4 7 4 7 7 7 7 4 4

NOP+VP 7 7 4 7 7 7 7 7 7 7 7

+RR
NOP+NCW 7 7 7 7 7 7 7 7 7 4 7

+RR+VP

Table 6.4: Evaluation:7: anti-malware evaded by obfuscation. 4 Technique is
resilient. NOP–No operation code, NCW–Native code Wrapping, RR–Register
re-assignment VP–Variable packing/compression.

Table 6.4 compares the performance of AndroSimilar with popular commercial

anti-malware employing CT, DT and LT transformations and their combinations

thereof. In particular, Avast fails to detect variable compression and combination

of control, data, and layout obfuscation. We employ a combination of Control,

Data and Layout transformation rather than evaluating repetitive transformations.

AVG and Dr. Web exhibit similar trends with poor detection rate against the

additional obfuscation methods.

Table 6.4 illustrates the comparative performance of AndroSimilar, our proposed

solution and static analysis tool, Androguard. Both analysis techniques outper-

form the commercial anti-malware. Encrypted code and dynamic loading obfusca-

tion evade the Androguard. The only case where Androguard fails is a combination

of nop, VP and RR. AndroSimilar, a robust file based statistical signature based

approach outperforms the commercial anti-malware.

Here, we discuss the performance comparison of Control, Data and Layout trans-

formation methods against anti-malware techniques. Table 6.5 depicts the evalu-

ation of techniques individually, and permutations of C, D and L methods. The
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known anti-malware AntiY, ClamAV, McAfee, Symantec, and Trend micro are

evaded by the combinations of control, data, and layout transforms. Depicted in

row 2 and 3, Avast and AVG fail against permutation of control, data, and layout

transformation. Dr. Web is reasonably resistant to code transformation, suggesting

that top rated anti-malware incorporate robust feature selection methods.

Anti Malware
Transformation Class Combined Classes
C D L C + D C + L D + L C + D + L

AntiY 7 7 7 7 7 7 7

Avast 7 7

AVG 7

Clam-AV 7 7 7 7 7 7 7

Dr. Web 7 7 7

McAFee 7 7 7 7 7

Microsoft 7 7 7 7 7 7 7

Symantec 7 7 7 7 7 7 7

TrendMicro 7 7 7 7 7 7 7

Androguard 7

AndroSimilar 7 7

Table 6.5: Evaluating anti-malware Techniques. 7: transformation evaded. C–
Control, D–Data and L–Layout Transforms.

Androguard and AndroSimilar outperform the top commercial anti-malware con-

sistently against permutations of control, data, and layout categories. Table 6.5

illustrates that static analysis techniques can evade with a combination of multiple

obfuscation techniques. AndroSimilar generates robust signatures by extracting

statistically robust features to detect malicious apps.

AndroSimilar finds regions of statistical similarity with known malware to detect

unknown malware variants using syntactic similarity, rather than embedded DEX

file employed by known fuzzy hashing approaches. Androguard is a semantics

normalized compression distance based software similarity tool to identify the

similarity among malware variants. As the approach is NCD based, it takes more

time to identify similar methods compared to AndroSimilar.

Figure 6.3 illustrates the resilience of AndroSimilar and Androguard. The cumu-

lative data gathered suggest that AntiY performs worst among all commercial

anti-malware. Avast and AVG perform comparatively better. Androguard and

AndroSimilar outperform the commercial anti-malware. This evaluation suggests

improvements and remedial solutions to perform effective malware detection.
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Figure 6.3: Resilience of anti-malware and static analysis Techniques.
C = Control, D = Data, L = Layout, Transforms.

6.8 Discussions

In this Section, we discuss the important observations during the experimental

evaluation of anti-malware and our proposal AndroSimilar.

1. ADAM [47] reports commercial anti-malware AntiY effective at analyzing

code obfuscated malware. We have experimentally evaluated the AntiY with

750 transformed samples. AntiY, a known anti-malware can be evaded with

very trivial code obfuscation techniques illustrated in Table 6.4. Similarly,

the top commercial anti-malware performed poor. The same unseen malware

were evaluated at VirusTotal after 2 weeks of the initial submission. The

results of top anti-malware improved drastically. This suggests anti-malware

signature are updated regularly; hence, the signature update at intervals im-

prove the detection.

2. The commercial anti-malware are evaded with multiple code obfuscation

applied in sequence. DroidChameleon [155] employs repetitive naive obfus-

cation until the technique evades the anti-malware. This approach renders

the malware unusable on account of repeated obfuscation. However, if the

obfuscation is class based, the sample remains consistent.
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3. Rastogi et al. [155] rated AVG as poor performer against the 5 obfus-

cated malware. We have evaluated nearly 750 malware. We observed that

AVG performed much better even among the top 10 anti-malware. Droid-

Chameleon evaluated five samples, a subset of our 760 malware app dataset.

4. The commercial anti-malware are improving the detection with heuristic

techniques. However, only few have maintained consistent performance. We

have evaluated AndroSimilar, our static analysis signature proposal on the

same dataset. The popular features are identified according to their neigh-

borhood rarity. Hence, we extract persistent local minima to pick the robust

features in sliding window fashion. The file features with lowest presence get

high rank. Similarly, extreme presence gives low rank. To avoid superflu-

ous features, we consider only those minima that persist among the multiple

adjacent windows. Identifying the app with such rare features generates a

robust statistical signature.

5. The aggregated results of AndroSimilar and static analysis tool AndroSimilar

outperforms the existing commercial anti-malware by a big margin. Andro-

guard performs better due to it similarity based Dalvik bytecode analysis.

The comparison of static analysis techniques suggest a need for improving

the analysis and incorporate Dalvik bytecode semantics to counter app ob-

fuscation.

6.9 Summary

In this chapter, we have evaluated the limitations of existing static analysis tech-

niques against trivial code obfuscation. We implemented a Dalvik bytecode ob-

fuscation techniques popular on the x86 platform. Furthermore, we evaluate the

effectiveness of robust static analysis techniques AndroSimilar and Androguard.

We compared the resilience of Androguard’s code similarity [52] and AndroSim-

ilar’s statistical feature signature [101] against a combination of different code

transforms. The limitations of static analysis techniques prompt the use of com-

plementary dynamic analysis methods to improve the analysis coverage.
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Analysis environment-aware

Malware Detection

As discussed in the previous chapter, malware authors are adopting Dalvik byte-

code transformations, encryption and code protection methods. The transformed

malware is equipped with analysis environment detection techniques to evade static

analysis and signature-based detectors. These techniques are collectively defined

as analysis environment detection techniques. In this Chapter, we propose an au-

tomated dynamic analysis framework to make a malware believe that it is being

executed on the real Android device instead of the emulator, an alibi for develop-

ment or an analysis system. We target the Android system features with modified

static emulator properties and enrich the virtual device with user information.

To explore the execution paths, we integrate user input simulation with intent

broadcasts.

7.1 Dynamic analysis Sandbox

The evolving malicious apps have the capability to identify the emulated, virtual

and analysis environment. Once the app identifies itself within the analysis system,

it behaves benign without revealing malicious functionality. To counter the hidden

malicious behavior, we execute the apps in an emulated environment augmented

with capabilities to entrap the analysis environment-aware malware to reveal the

hidden malicious behavior. In addition to modification of emulator properties, we

monitor the (1) file operations; (2) app downloads; (3) native payload installation;

102
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(4) encrypted strings; and (5) SMS sent/received, to correlate malicious activities

predominantly present among malicious apps [102, 105].

Android app execution is event-driven, asynchronous with multiple entry triggers.

The main activity or the launcher activity is considered default entry point

of the app. Hence, the malware authors employ techniques to execute the mali-

cious functionality from the launcher activity. The user interface gestures such as

tap, pinch, swipe and keypress must be automatically triggered to initiate the app

interaction. The proposed dynamic analysis sandbox incorporates multiple anal-

ysis methods as illustrated in Figure 7.1 to improve analysis coverage. When an

app is submitted to the analysis sandbox, a modified and refreshed virtual device

is launched. The Android Virtual Device (AVD) manager [164] permits emulator

create, execution, load, save and restore states.

A real Android device stores contacts, SMS, Google Play market app and default

apps, and customized user settings not available with the emulated device. Hence,

to resemble a real device, we customize the emulator with (i) Google Play and

default device apps; (ii) customize the wallpaper; (iii) add contacts and SMS; and

(iv) customize the user settings. The modified device is launched with custom

settings when a new APK is submitted for analysis. The sandbox starts the

emulator(s) with a save-to-snapshot state with wallpaper, messages, contacts and

setting custom device settings. Each time an app is submitted for analysis, clean

emulator snapshot is loaded.

As illustrated in Figure 7.1, the Framework core controls the components for

feature collection and facilitates the AVD loading. Dalvik Dynamic Instrumenta-

tion (DDI) hooking libraries attach the methods with DVM to monitor the strings.

7.1.1 Environment-aware malware detection

The evolving Android malware families defend themselves from the analysis envi-

ronment to avoid revealing the malicious behavior [31]. We modify the IMEI, IMSI

and other static properties that exclusively identify a virtual device. We modify

the geo-location properties, system time, configure e-mail account, add images and

audio/video files. Table 7.1 compares the static parameters identified to detect

analysis environment. The analysis systems employ the default emulator. The

malware authors identify the below listed attributes before revealing the malicious
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behavior. We extracted the corresponding device parameters of Samsung Galaxy

S4, Nexus 7 Tablet, Micromax A2 and Karbonn A4 devices.

Property Value Default AVD Real Android Device

IMEI 000000000000000 911315462535214

IMSI 310260000000000 925117254763458

Phone Number 15555525554 121314115554

Serial Number 98101430121181100000 54215E52C54525851254

Network Android Tmobile

ro.build.id ICS MR0 IMM76I

ro.build.display.id
sdk-eng 4.0.2 ICS MR0229537
testkeys

TBW592226 8572 V000225

ro.build.version.
incremental

229537 TBW592226 8572 V000225

ro.build.version.sdk 19 17

ro.build.version. release 4.0.2 4.2.2

ro.build.date Wed Nov 23 22:46:18 UTC 2011 2013 01 25 15:53:21 CST

ro.build.date.utc 1322088378 1359100401

ro.build.type eng user

ro.build.user android-build ccadmin

ro.build.host vpbs2.mtv.corp.google.com BUILD14

ro.build.tags test-keys test-keys

ro.product.model sdk msm7627a

ro.product.brand generic qcom

ro.product.name sdk msm7627a

ro.product.device generic msm7627a

ro.product.board 7x27

ro.board.platform msm7627a

ro.build.product generic msm7627a

ro.build.description
sdk-eng 4.0.2 ICS MR0 229537
testkeys

msm7627a-user 4.0.4 IMM76ITBW592226
8572 V000225 testkeys

ro.build.fingerprint
generic/sdk/generic:4.0.2/ICS MRO/
229537:eng/test-keys

qcom/msm7627a/msm7627a:4.0.4/IMM76I/
TBW592226 8572 V000225: user/test-keys

net.bt.name Android Airtel

Table 7.1: Static parameters: Android AVD and Smartphone.

Furthermore, we replaced the default static emulator values with the real Android

device information. This technique had the desired effect on analysis environment

aware malware. The AnServer, BgServ and Dendroid malware samples that do

not reveal malicious behavior on popular web based services [102, 105, 165] exhibit

malicious behavior assuming being run on real Android device.
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7.1.2 Analysis tools

The Android SDK has useful and inbuilt analysis tools. In the following, we briefly

discuss tools available within the Package:

• Logcat: to access system logs and debug the output.

• Tcpdump: to intercept the packets sent/received over the network.

• Monkey: to Simulate user events.

• Strace: to trace System calls.

• Dumpsys: to collect the emulator state, snapshot, and components.

7.1.3 Behavioral Analysis

After recording the app actions, we analyze them with logcat to detect installed

APK, new process spawn and SMS sent. We scan the traffic (.pcap) files to

analyze malicious Uniform Resource Locator (URL) and sensitive data leakage.

The System call analysis relate file and network activities. We use Dalvik Dynamic

Instrumentation (DDI) to keep track of dynamic operations. The DDI is used to

monitor encrypted string operations. The bind and connect system calls are

prominently visible among malicious apps. The following background activities

like sending SMS and e-mail is considered malicious. The activities prominently

present among the malicious apps are:

• Sending confidential device information (International Mobile Equipment

Identity (IMEI), International Mobile Subscriber Identity (IMSI), Phone

number, etc.).

• Using executable and shell files.

• Modify Permission for any of its files.

• Block app removal after installation.

• Use of System calls prominently used by the malicious APK files.
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7.1.4 Network Activity

Android emulator natively supports the network traffic capturing. The proposed

approach integrates TCPDump [166] to capture the network traffic into a PCAP

file. The bytes sent/received, URL connected to and messages sent to hard coded

numbers are monitored to identify suspicious activities. Further, the host con-

nected to, port used to connect, and data sent is identified. The malicious do-

mains are identified by comparison with the URL blacklists. The PCAP content

classifies the network activity during the post processing.

7.2 Experimental Evaluation

The proposed analysis technique is deployed as an Off-Device Linux-based analysis

system installed on Intel Pentium Core i7 processor, 16 GB RAM with multiple

virtual clones running in parallel.

The dynamic module takes an average 7-12 minute execution time. The execution

time limit is 15 minutes. The emulator takes about 50 seconds to reboot the

clean state and load the modified virtual device for subsequent execution. The

Android Monkey [164] is a part of Android SDK to automate the user gestures

during development. We leverage the Monkey to spend an average 5 minutes for

app interaction. The post processing techniques need about 2 minutes to extract

features from the execution logs. The extracted information is classified with Tree

based machine-learning classifiers. The proposed technique is capable of running

eight emulation instances in parallel; However, it can be scaled further according

to the analysis requirements.

7.2.1 Evaluating Environment aware malware

Android malware identifies the emulated or virtual environment and behaves be-

nign to evade the analysis system. Various static and dynamic techniques exist

to detect the emulated analysis systems. Figure 7.2 illustrates the Anserver mal-

ware code snippet checking the default emulator presence based on IMEI and

Build.Model values. If a malware identifies emulated environment, it behaves be-

nign hiding the malicious payload. The same malware executes inside the modified
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virtual device and starts sending IMEI and confidential user data to the remote

server.

Figure 7.2: Anserver emulator detection code.

Figure 7.3 illustrates detection of emulated environment by the Anserver, a ma-

licious bot. The default emulator is treated as analysis environment from the

parameters listed in Table 7.1

Figure 7.3: Existing frameworks evaded by malware behaving benign.

Figure 7.4 illustrates Anserver revealing hidden malicious behavior assuming the
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proposed sandbox as a real Android device. The Anserver bot sends the IMEI and

device information to a remote server, thus revealing malicious behavior.

Figure 7.4: Proposed technique reveals malicious behavior.

7.2.2 Machine Learning Evaluation

We select representative benign Google Play apps and malware from known repos-

itories. These apps are used to train the framework by recording behavioral in-

formation. The collected features are trained on Tree based machine learning

classifiers. The Random Forest classifier [132] is a nearest neighbor regression pre-

dictor and classifier that constructs multiple decision trees. The Random forests

forms a strong learner from a group of weak learners [132]. Hence, Tree-based

Classifiers are considered for accurate classification. The machine learning model

used k-fold cross–validation to discriminate malicious APK from benign.

Table 7.2 illustrates machine learning classification results for 246 analysis envi-

ronment aware malware and 125 benign apps.

Model Model Correct Incorrect True False True False
Type Name Prediction Prediction Positive Negative Negative Positive

(%) (%) (%) (%) (%) (%)
Trees J48 85.36 14.64 80.17 19.83 90.40 9.60
Trees Random Forest 86.17 13.82 84.30 15.70 88.00 12.00
Trees Random Tree 85.36 17.64 83.47 16.53 87.20 12.80
Trees REPtree 85.36 17.64 80.99 19.01 89.60 10.40

Table 7.2: Classification of environment aware malware.

7.3 Discussions

In this Section, we discuss the following aspects of the experimental evaluation:

(i) app stimulation; (ii) system correctness; (iii) performance evaluation; (iv)

environment-aware malware detection; and (v) scalability analysis.
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7.3.1 App Stimulation effects

The system stimulates the app to respond the interaction with analysis system.

To evaluate the stimulation effect, we selected 172 Google Play and 165 mali-

cious apps. We forcefully invoke the main activity component. In the first stage,

individual stimulation techniques (invoke only; main activity, monkey tool, app

stimulation and DDI hooking) were applied. The effect of different stimulation is

illustrated in Figure 7.5.

The first bar illustrates the invoking main activity. The second stimulus is based

on monkey gestures and main activity. The third bar displays the response to

differently implemented stimulation techniques. The last bar illustrates the effect

of combined stimulation techniques. We can see the effect of combined stimulus has

high code coverage. For example, random clicks generated by the Android Monkey

triggers SMS-sending activities. However, services are triggered with the service

iterators. It is also interesting to note that combination of multiple techniques

has high coverage as compared to a single method. Hence, the integration of the

synergy of static and dynamic analysis is justified.
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7.3.2 System correctness

The system correctness methodology ensures that the logs of an APK are generated

when such action deemed to have been performed. We select random 10 samples

from known families performing varied malicious activities. Anserverbot malware

checks for IMEI and Model.build to verify the presence of analysis environment. If

the app detects emulator based on static properties, it hides the malicious behavior.

If the malicious APK identifies random numeric values, it sends the IMEI to a

remote server.

FAkeInstaller malware sends premium rate SMS messages without user consent.

RootSmart malware employs root exploits and executes native calls to exploit the

device. FakeInst and AdSMS sends premium SMS messages apart from sending

the IMEI and IMSI numbers to the remote server. The TapSnake malware family

misuse the user location for targeted advertisements. The above information is

verified and reported by the leading commercial anti-malware and malware re-

searchers. The reason for the improved effect is due to synergic use of static and

dynamic analysis techniques.

7.3.3 Scalability

The third parameter tests the scalability. The scalability is evaluated against apps

crawled between February 2013 and December 2014. A total 47,342 apps were

crawled from Google Play, Anzhi and other third party Asian markets; 26,469

malicious are downloaded from VirusShare, contagiominidump and other third

party markets. We also received 312 new malware samples based on user uploads.

Out of the total, we randomly selected 6,743 benign and 2,786 from the malware

dataset.

We performed analysis on intel core i7 8 GB memory. 217 Google Play apps

were labeled malicious with the proposed analysis technique. These apps were

already labeled benign by the commercial anti-malware. More samples belonged

to FakeInstaller, AnServer, Kmin and FakePlayer families using premium-rate

SMS service or user data ex-filtration.
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7.3.4 Scope for improvements

The absence of device sensors can be used to detect the emulated environment.

Hence, it is a challenge for malware authors to adopt smart techniques to evade

the analysis environment. To reduce the false alarm, we would develop an on-

device analysis system with important features to improve the real time malware

detection accuracy.

7.4 Comparison with Existing Work

Table 7.3 illustrates comparative analysis of known dynamic analysis frameworks

with our proposal. We compare the analysis techniques based on (1) scalability;

(2) resource consumption; (3) API hooking; (4) encrypted text monitoring; (5) file

operations; and (6) sensitive data ex-filtration.

Property AASandbox [121] Andromaly [58] Apps Droidbox [106] Andrubis [118] Proposed
Playground [165] Approach

Scalability 4 4 4

Resource use 4 4

API Hooking 4 4 4 4

Logcat analysis 4

System call 4 4

analysis aware 4 4 4 4

malware
Data exfiltration 4 4 4 4

SMS misuse 4 4

Traffic analysis 4 4 4

File Operations 4 4 4

monitoring

Table 7.3: Comparing Proposed approach.

Droidbox and TaintDroid form base of other existing dynamic frameworks such

as Andrubis, Apps Playground, and SmartDroid. Our proposal modifies the de-

fault Android emulator to analyze the environment-aware malware without mod-

ifying the Android OS. CopperDroid [167] is a system call based analysis frame-

work to monitor inter-process communication using Virtual Machine Introspection

(VMI) technique. The proposed technique evaluates 1,260 samples from 49 An-

droid Genome [2] malware repository. The Proposed framework utilizes strace

to record system calls. We utilize Dalvik Dynamic Instrumentation (DDI) [168] to

monitor the cryptographic and sensitive API calls. Andrubis [118] is a web-based

service for analyzing malicious apps using both static and dynamic analysis.
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Petsas et al. [117] compare advanced malware evading the virtual/emulated en-

vironment. The authors patched existing malware apps with anti-analysis fea-

tures to evade the existing analysis techniques [167, 118, 121, 122]. The proposed

Sandbox addresses the concern to propose environment-aware malware detection

framework that uncovers evolving threats. We have compared the proposed anal-

ysis technique based on 10 parameters to compare the relevant dynamic analysis

techniques illustrated in 7.3.

7.5 Summary

In this Chapter, we discuss the intricacies of a user-driven, dynamic analysis frame-

work that uncovers analysis environment aware Android malware. The proposed

technique employs an improved Android Virtual Device based dynamic analysis

that successfully reveals hidden behavior prevalent among the evolving Android

malware. The dynamic analysis module counters the obfuscated and encrypted

payloads to uncover the advanced malware threats without modifications to the

Android framework.
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Conclusions and Future directions

8.1 Conclusions

In this Thesis, we present malware analysis and detection techniques as a synergic

combination of static and dynamic analysis. We propose multiple novel analysis

and detection techniques to detect “single malicious app” which complement each

other to improve analysis coverage. In the first step, we analyze the Android

manifest file permissions and map them with their actual usage in the Dalvik

bytecode. This technique identifies over-privileged apps that can be misused by

the malware authors.

In the second step, we propose AndroSimilar, a robust statistical signature to iden-

tify repackaged malware and unseen variants of known Android malware families.

The proposed AndroSimilar utilizes statistically robust features generated using

SDHash algorithm to create variable-length signatures for detection of repackaged

malware and unseen variants of known malware. The proposed methodology is

robust against trivial string encryption, method renaming, junk method insertion

control flow obfuscation techniques. In fact, we were able to identify repackaged

applications evading the existing anti-malware techniques.

However, the recent emerging malware employs covert behavior to execute mali-

cious functionality such as sending SMS, dialing premium-rate numbers, record-

ing audio/video, taking pictures without explicit user consent. We identify such

covert actions as sensitive feature misuse. To identify such hidden malicious ac-

tion, we proposed CONFIDA, an inter-component communication-based detector

114
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for identifying sensitive feature misuse. The proposed approach identifies sensitive

functionality necessitating explicit user intervention. We generate Dalvik byte-

code ICC based component-interaction graph to identify the misuse of sensitive

Android API. We evaluated 951 malicious and 1157 benign apps with classifica-

tion accuracy 2.3% false negative rate and 2.1% false positive rate, superior to the

existing approaches in the literature. However, obfuscation, dynamic class loading

and reflection API limits the static analysis.

To identify the resilience of proposed techniques against obfuscation, in the next

step we proposed an automatic obfuscator “DroidSHornet”. Furthermore, we eval-

uated the Dalvik bytecode obfuscator resilience against Android bytecode trans-

formations. The top rated anti-malware are vulnerable against permutations of

control, data and layout obfuscation. The proposed analysis technique is supe-

rior in comparison to the existing analysis techniques presented in [46, 47]. Our

proposal AndroSimilar outperforms the existing anti-malware techniques evaded

by the obfuscated malware. The limitations of existing static analysis approach

motivated the proposal for a complementary dynamic analysis to aid and improve

the code coverage.

The evolving malware have inbuilt capability to identify the emulated analysis

environment. Once the app identifies the analysis sandbox or virtual environment

it behaves benign. To uncover such environment aware malware, we propose a

framework with modified static emulator properties and enrich the virtual device

with essential user information. The experimental evaluation shows a marked

improvement in analysis efficacy due to the synergic use of static and dynamic

analysis techniques in comparison to the state-of-the-art “single malware” app

detection.

The proposed techniques reduce false alarms and improves the detection capabil-

ities. The implementation of multiple, synergic and proactive analysis techniques

presented in the Thesis allow defenders to stay ahead of malware authors in the

attack defense race. The analysis techniques have been integrated into DroidAna-

lyst, an app analysis engine briefly discussed in Appendix B. Similarly, additional

techniques can be integrated into APK analysis to improve the code coverage.
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8.2 Future Work

The are many future directions to to extend our work. We envision to extend

the work presented in this Thesis in several directions. The analysis techniques

have been applied for detection of a “single malicious app”. We envision that the

proposed techniques can be applied to detect “colluding apps”, a new paradigm

in malware research. Furthermore, obfuscation and code protection techniques on

Android pose an important challenge for the static and dynamic program analysis

techniques.

The proposed techniques can be implemented on other popular mobile platforms.

Synergic use of static and dynamic analysis techniques ensures the improved anal-

ysis and detection coverage. The dynamic analysis can complement the static

analysis if reflection code, dynamic code loading, or presence of native code. There

are few additional extensions for future work:

1. Simulate sensor features to strengthen the default emulator.

2. Facilitate lightweight, on-device malware app analysis.

3. Detection of malware samples performing audio/video recordings and sensor

based malicious behaviour.

4. Perform API monitoring using Dalvik bytecode hooking technique.

5. Integrate the proposed methodology as a real-time malware app detection

framework.

Finally, we plan to extend the evaluation and interpretations of multiple analysis

techniques towards improving the existing analysis system. The synergic use of

complementary techniques will aid the human analyst attain detailed insight to

analyze multiple apps and rationale behind the false alarms.



Appendix A

Android Analysis Tools and

Techniques

A.1 Android Threats

AOSP is committed to a secure Android Platform. However, it can be attacked

with social-engineering tricks. Once the app is installed, it may create undesirable

consequences on the device security. Following is the list of malicious activities

that have been reported or can be employed in subsequent Android versions.

1. Privilege escalation attacks were leveraged by exploiting publicly available

Android kernel vulnerabilities to gain root access of the device [169]. An-

droid exported components might be used to obtain access to the dangerous

permissions.

2. Privacy leakage or sensitive user information theft occurs when users grant

dangerous permissions to malicious apps and unknowingly allows access to

sensitive data and ex-filtrate them without user knowledge and consent.

3. Malicious apps can also spy on the users by monitoring the voice calls, SM-

S/MMS, bank mTANs, recording audio/video without user knowledge or

consent.

4. Malicious apps can earn money by making calls or subscribe to premium

rate number SMS without the user knowledge or consent.

117
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5. Compromise the device to act as a Bot and remotely control it through a

server.

6. Aggressive ad campaigns may entice users to download Potentially Unwanted

Apps (PUA) or malware apps [170].

7. Colluding attack happens when a set of apps, signed with the same cer-

tificate, gets installed on a device. These apps would share Unique IDen-

tifier (UID) with each other. Also, any dangerous permission(s) requested

by one app can be shared by the colluding malware. Collectively, these

apps perform malicious activities, whereas, their individual functionality is

benign. For example, an app with READ SMS permission can read SMSes

and ask the colluding partner with INTERNET permission to ex-filtrate the

sensitive information to a remote server.

8. DoS attack can happen when the app(s) overused already limited CPU,

memory, battery and bandwidth resources and restrains the users executing

standard functions.

A.2 Fragmentation Problems

Android Open Source Project led by Google upgrades and maintains the OS code.

A Patch, an update or major upgrade distribution is the responsibility of OEM.

The OEM branches out updated versions of the OS and customize them. In some

countries, the wireless carriers customize the OEM OS to suit their requirements.

Such an update chain takes months before the patch reaches the end-users. This

phenomenon is called Fragmentation, where different versions of Android remain

scattered due to the unavailability of updates. Specifically, handsets with older

and unpatched versions remain vulnerable to the known exploits.

A.2.1 Native Code Execution

Android allows native code execution through libraries implemented in C/C++

using Native Development Kit (NDK). Even though native code executes outside

Dalvik VM, it is sandboxed through user-id/group-id(s) combination. However,

the native code has the potential to perform privilege escalation by exploiting
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platform vulnerabilities [34], [36, 171, 172, 35, 173]. The attacks has been demon-

strated in the recent past [29].

A.3 Android Platform Security enhancements

In the view of security issues, vulnerabilities, and reported malware attacks, AOSP

releases patches, updates, enhancements, and upgrades. Here, we discuss notable

security fixes and features incorporated in the subsequent Android OS versions up

to Android Kitkat 4.4:

1. Android prevented stack buffer and the integer overflow in the OS version

1.5. In version 2.3, Android fixed string format vulnerabilities and added

hardware based No eXecute (NX) support to stop the execution of code in

stack and heap [1].

2. In Android 4.0 Address Space Layout Randomization (ALSR) was added to

prevent the return-to-libc and memory related attacks [1].

3. Information ex-filtration by connecting the device to a PC using the Android

Debug Bridge (ADB). The ADB is developed as a debugging tool. However,

it permits app installation, read system and partitions even when the device

is locked but connected to PC. To prevent such unauthorized access, Android

4.2.2 authenticates an ADB connection with an RSA keypair [174]. The user

response is prompted on the device screen if the ADB connection accesses

the device. Thus, if the device is locked, an attacker would not be able to

gain the control.

4. To prevent the malware from silently sending premium-rate SMS messages,

Android 4.2 introduced an additional notification feature to prompt the user

before a user app sends an SMS [175].

5. Android proposed a significant capability addition to the version 4.2 (API

version 17). This version permits Multiple Users (MU) on a single de-

vice [109]. The Restricted Profile (RP) access capability was introduced

added in Android 4.3 (API version 18) in July 2013. These modifications

were placed keeping in mind the usage of sharable mobile devices such as

tablets to provide private space to multiple users on a single mobile device.
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For each user, a separate account, the user selected apps, custom settings,

personal data and file space. This capability enables the multiple users share

a single device. In the MU scenario, the primary account is the owner of the

mobile. Using the device settings, the device owner creates additional MU.

The first user is permitted to create, modify or delete the additional user.

6. Android 4.3 removed the setuid()/setgid() programs [174] as they were

vulnerable to the root exploits.

7. Android 4.3 experimented with Security Enhanced Linux (SELinux) to pro-

vide the enhanced security [176]. Android 4.4 introduced SELinux with

enforcing mode for multiple root processes. SELinux imposed Mandatory

Access Control (MAC) policies in place of the traditional Discretionary Ac-

cess Control (DAC). In DAC, resource owner decides which other interested

subjects can access it. However, in MAC the system (not the users) autho-

rizes the subject to access a particular resource. Thus, MAC has the poten-

tial to prevent the malicious activity(s) even if the root access of the device

is compromised. Thus, MAC substantially reduces the effect of kernel-level

privilege escalation attacks.

A.3.1 Third-party Security Enhancements

Many independent Android security enhancements have been proposed [177, 178,

179, 180]. These mechanisms allow an organization to create fine-grained security

policies for their employee devices. Contextual information such as device loca-

tion, app permissions, and inter-app communication can be monitored and verified

against the already declared policies. In this chapter, we investigate the Android

security, malware issues and defense techniques.

A.3.2 Reverse-Engineering Tools

The content of Android package is in binary format. Before the assessment, anal-

ysis or detection task initiates, it is important to disassemble it for further pro-

cessing. There are some tools to disassemble and decompile the Android app. In

the following section, we discuss some known reverse-engineering tools considering

their strengths.
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1. apktool [42] can decode the binary content of an APK into nearly origi-

nal form in the project-like directory structure. It disassembles the binary

resources and converts bytecode within classes.dex and smali [161] byte-

code. It can also repackage it back into an APK. This tool is one of the best

open-source reverse-engineering tools.

2. dex2jar [83] is a disassembler to parse both the .dex and optimized dex file,

providing a light-weight API to access it. dex2jar can also convert dex to a

jar file, by re-targeting the Dalvik bytecode into Java bytecode, for further

manipulation. Moreover, it can also re-assemble the jar into a .dex after

the modifications.

3. Dare [181] project aims at re-targeting Dalvik bytecode within classes.dex

to traditional .class files using strong type inference algorithm. This .class

files can be further analyzed using a range of traditional techniques devel-

oped for Java applications, including the decompilers. Octeau et al. [80]

demonstrated that Dare is 40% more accurate than dex2jar.

4. Dedexer [182] disassembles the classes.dex into Jasmin-like syntax and cre-

ates a separate file for each class maintaining the package directory structure

for easy reading and manipulation. However, unlike the apktool, it cannot

re-assemble the dis-assembled intermediate class files.

5. JEB [108] is a leading professional Android reverse-engineering software

available on Windows, Linux, and Macintosh platforms. It is a GUI-based

interactive decompiler analyzes the reversed malware app content. App in-

formation such as manifest, resources, certificates, literal strings can be ex-

amined in Java source by providing an easy navigation through the cross-

references. JEB converts the Dalvik bytecode to Java source from the Dalvik

bytecode. Exceptionally, JEB can also de-obfuscate Dalvik bytecode to make

disassembled code more readable in comparison to its counterparts [83, 42].

JEB supports Python scripts or plugins by allowing access to the decom-

piled Java code Abstract Syntax Tree (AST) through API. This feature is

helpful in automating the custom analysis. According to us, it is the best

reverse-engineering tool so far.



Appendix A Android Analysis Tools and Techniques 122

A.4 Android Analysis Tools

In this Section, we discuss the most popular open source static and dynamic

analysis tools available on Android platform.

A.4.1 Androguard

Figure A.1 illustrates Androguard [52] an open-source, static analysis tool can

reverse engineer to disassemble and decompile Android apps. It generates the

control flow graphs for each method and provides access through Python-API on

the command line and graphic interface. Androguard NCD approach finds similar-

ities and differences of two suspected clones reliably, which is also helpful to detect

repackaged apps. It provides Python APIs to access the disassembled resources

and static analysis structures like basic-blocks, control-flow and instructions of

an APK. An analyst can develop his static analysis framework using the Python

APIs. Following are some of the features explained below.

Figure A.1: Androguard features.

A.4.1.1 App code similarity

Androguard finds similarities between two apps by calculating Normalized Com-

pression Distance between each method pairs and calculates a similarity score

between 0-100, where 100 means identical apps. It displays IDENTICAL, SIM-

ILAR, NEW, DELETED and SKIPPED methods of the two suspected clones.

In the same way, it displays differences between two methods by comparing each

basic blocks pairs. More specifically, to calculate differences between two similar

methods, it first converts each unique instruction in the basic block into a string.

Then, it applies Longest Common Subsequence algorithm on these strings of two

basic blocks to find differences between them [183].
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A.4.1.2 Risk Indicator

Risk Indicator calculates the fuzzy risk score of an APK from 0 (low risk) to 100

(high risk). It considers following parameters:

• Native, Reflection, Cryptographic and Dynamic code presence in an app.

• Number of executables/shared libraries present in an app.

• Permission requests related to privacy and monetary risks.

• Other Dangerous/SystemOrSignature/Signature permission requests.

A.4.1.3 Signature of Malicious Apps

Androguard manages a database of signatures and provides an interface to ad-

d/remove signatures to/from the database in JSON format. It contains a name

(or family name), set of sub-signatures and a Boolean formula to mix different

sub-signatures.

A.4.2 Andromaly

In [58], Shabtai et al. have proposed a light-weight Android malware detection

system based on machine learning approach. It performs real-time monitoring of

CPU usage, transferred data, the number of active processes and battery usage.

As illustrated in Figure A.2, Andromaly has four main components:

• Feature Extractors: Collects the feature metric by communicating with An-

droid kernel and application framework. Feature Extractors are triggered to

collect new feature measurements by the feature manager. Feature Manager

may also perform some pre-processing on the raw feature data.

• Processor: It is an analysis and detection unit. It receives the feature vectors

from Main Service, analyze them and perform the threat assessment and pass

it on to Threat Weighting Unit (TWU). The Processors can be rule-based,

knowledge-based classifiers or anomaly detectors employing machine learning

methods. TWU applies ensemble algorithm on the analysis results received
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from all the processors to derive a final decision on the device infection. Alert

Manager smoothes the results to reduce the false alarms.

• Main Service: The main service co-ordinates feature collection, malware de-

tection and alert process. It handles requesting new feature measurements,

sending new feature metrics to the processors and receives final recommen-

dations from the alert manager. Loggers can log information for debugging,

calibration and experimentation. Configuration Manager configures an app

(for example, active processors, alert threshold, and sampling intervals). The

Processor Manager activates/de-activates the processors. The Operation

Mode Manager switches the application from one mode to another for the

purpose of feature extraction. This change in operation modes occurs due

to change in resource levels.

• Graphical User Interface (GUI): The GUI configures application param-

eters, activates/deactivates the app, sends threat alerts, explores collected

data. Experiments were carried out using few categories of artificial malware,

thus working model needs testing by real malware.

Figure A.2: Architecture of Andromaly.
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A.4.3 Andrubis

Andrubis [102] is a web-based malware analysis platform, built on top of Droid-

box [106], TaintDroid [92], apktool [42] and Androguard [52]. Users can submit

suspicious apps through the web-based interface. After analyzing the app at the

remote server, Andrubis returns analysis reports. Andrubis also provides app

behavior rating between 0-10, where 0 indicates benign, and 10 specifies high

malicious rating.

To study the Andrubis functionality, a custom developed SMS botnet was uploaded

on the Andrubis web service. This research prototype rated custom SMS bot with

a score 9.9/10. However, none of the commercial anti-malware at the VirusTotal

portal detect the hidden malware. Furthermore, Vidas et al. [89] reports many

static anti-analysis techniques evading the Andrubis web service.

A.4.4 APKInspector

APKInspector [103] is a full-fledged Android static analysis tool, consisting Ded [184],

smali/baksmali [161], apktool [42] and Androguard [52]. It provides a rich GUI and

has following features:

• App meta-data

• Analysis of sensitive permissions

• Displays Dalvik bytecode and Java source code

• Displays control-flow graph

• Displays call-graph, displaying call-in and call-out structures

• Static instrumentation support by allowing modification to the smali code

A.4.5 Aurasium

Aurasium [104] is a powerful technique that takes control of the execution of apps,

by enforcing arbitrary runtime security policies. To be able to do that, Aurasium
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repackages the Android apps with the policy enforcement module. Aurasium Se-

curity Manager component can apply policies on the individual and multiple apps.

Any security and privacy violations are reported to the user. Thus, it eliminates

the need for manipulating Android OS to monitor app behavior.

Aurasium is limited evaded by stealth malware, i.e. it can be detected by apps

based on signature modification and presence of the predefined native library.

Malware app may not reveal its malicious behavior if it identifies the presence of

Aurasium, hence avoids the detection. Aurasium depends on repackaging; it fails

to disassemble (or assemble) a code transformed app.

A.4.6 Bouncer

Google protects the Google Play with its own anti-malware known by the name

Bouncer. The Bouncer is a virtual machine based dynamic analysis platform to

test the uploaded third-party developer apps, before availing them to the users for

download. It executes app to look for any malicious behavior and also compares

it against previously analyzed malicious apps. The internal functioning docu-

mentation is not available with the researchers. However, Oberheide et al. [88]

fingerprinted the Bouncer environment with a custom command and control app.

The authors reported that, the dynamic code loading techniques can evade the

Bouncer [19] scrutiny.

A.4.7 CopperDroid

Reina et al. proposed CopperDroid [90], an Android based system call-centric

Virtual Machine Introspection interface. To address the path coverage problem,

they supported the stimulation of events as per the specification in the app man-

ifest. The authors reported experimental evaluation regarding accuracy of the

proposed detection approach. They have also provided a web interface for other

users to analyze apps [105]. However, Vidas et al. [89] demonstrate the identifi-

cation of CopperDroid’s virtual environment by employing advanced anti-analysis

techniques.
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A.4.8 Crowdroid

Crowdroid [93] is a behavior-based malware detection system. It has two compo-

nents, a crowd-sourcing app that need to be installed on the mobile and a remote

server for malware detection. The crowd-sourcing app sends the behavioral data

(i.e., system-call details) in the form of an application log file to the remote server.

Strace, an on-device system utility collects the system-call details. The applica-

tion log file consists of basic device information, a list of installed applications and

behavioral data. At the remote server, this data is processed to create feature

vectors that could then be analyzed by 2-means partition clustering to predict the

app as either benign or malicious. An app report is generated and stored in the

database of the remote server.

Figure A.3: Crowdroid Architecture.

Results of Crowdroid are accurate for self-written malware and promising for some

of the real malware. If the malware is very active, then it is possible to have a

significant difference in system calls, which can help in detection for the same.

However, it also suffers from false-positives, as demonstrated by authors using

Monkey Jump2, an app with HongTouTou malware.

The crowd-sourcing app must always be available for monitoring which drains

the available resources. The technique is yet to be tested on the known malware

families.

A.4.9 Droidbox

Droidbox [106], illustrated in Figure A.4 is a dynamic analysis tool developed on

top of TaintDroid [92]. It modifies the Android framework for API call analysis.
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Figure A.4 displays the static and dynamic analysis operations. App analysis be-

gins with the static-pre-checking, which includes parsing permissions, activities,

and receivers. The app under analysis is executed in a virtual analysis environ-

ment. Taint-analysis involves labeling (tainting) private and sensitive data that

propagates through the program variables, files, and interprocess communication.

The Taint-analysis keeps track of tainted data that leaves the system from the

network, file(s) or SMS. API monitoring involves API logging with its parameters

and return values. The results consist the following parameters:

Figure A.4: Droidbox features.

• App hash values

• Network data transferred or received

• File read and write operations

• Data leaks

• Circumvented permissions

• Broadcast receivers

• Services started, and classes loaded through DexClassLoader

• SMS sent and dialed calls

• Cryptographic operations implemented with Android API

• Temporal operations order
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• Treemap for similarity analysis

Limitation: Droidbox can only monitor the tasks performed within the Android

Framework. If the native code leaks the sensitive data, the existing system cannot

detect and hence, the user data is ex-filtrated.

A.4.10 DroidMOSS

DroidMOSS [11] is an app repackaging detection prototype employing semantic

file similarity measures. More specifically, it extracts the DEX opcode sequence of

an app and generates a signature fuzzy hashing [142] signature from the opcode. It

also adds developer certificate information, mapped into a unique 32-bit identifier

in the signature. Suspected app features are verified against the original apps

using the edit-distance algorithm to identify the similarity score. The proposed

approach is discussed and illustrated in Figure A.5.

Figure A.5: DroidMOSS Methodology.

Intuition behind DroidMOSS using the opcodes feature is, it might be easy for

adversaries to modify operands, but very hard to change the actual opcodes [11].

This approach has several disadvantages. First, it only considers DEX bytecode,

ignoring the native code and app resources. Second, the opcode sequence does not

consist high-level semantic information and hence generates false negatives. The

smart adversary can evade this technique using code transformation techniques

such as inserting junk bytecode, restructure methods and alter control flow to

evade the DroidMOSS prototype.
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A.4.11 DroidScope

DroidScope [100] is a Virtual Machine Introspection (VMI) Android OS based

dynamic analysis framework. Unlike other dynamic analysis platforms, it stays

out of the emulator and monitors the OS and Dalvik semantics. Hence, even the

privilege escalation attacks on the Android kernel can be detected. It also makes

the attackers task of disrupting analysis difficult. DroidScope is built upon QEMU

emulator with a rich set of APIs to customize the malware analysis prototype. An-

droid malware families DroidKungFu and DroidDream were analyzed and detected

with this technique. However, DroidScope’s effectiveness against other malware

families remains to be tested.

A.4.12 Drozer

Drozer [107] is a comprehensive attack and security assessment framework for An-

droid devices, available as an open-source and a professional version. It allows

security enforcement agencies to exploit Android devices and identify vulnerabil-

ities of the Android OS. Figure A.6 displays the Drozer functionality. Following

features are supported by the Drozer:

Figure A.6: Working of Drozer.

• It installs an Agent app on the devices which executes exploitation mod-

ules using Java Reflection API. At server-side, one can create their custom

modules in Python and send it to Agent app to perform exploitation.

• It can interact with the Dalvik VM to discover installed packages and related

app components. It also allows interaction with the app components like

services, content providers and broadcast receivers to identify vulnerabilities.

Drozer creates a remote shell to control the device.
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• It is capable of generating known exploits taking advantage of the already

known rooting vulnerabilities.

A.4.13 Kirin

In [67], authors proposed a security policy enforcement mechanism, Kirin, an on-

device app vetting framework. Kirin defines a set of rules based on the combination

of certain dangerous permissions requested by the app. If an app fails to satisfy

the Kirin security rules, installation is prevented.

A.4.14 TaintDroid

TaintDroid [92] extends the Android platform to track the privacy-sensitive infor-

mation leakage in the third-party developer apps. The sensitive data is automati-

cally tainted (or labeled) to keep track whether the labeled data leaves the device.

When the confidential data leaves the system, TaintDroid records the label of the

particular information and the app that sent the data along with its destination

address. Figure A.7 illustrates the concept. Taint Propagation has granularity

at; 1) Variable-level, 2) Method-level, 3) Message-level and 4) File-level. Variable-

level tracking uses variable semantics for necessary context to avoid taint propa-

gation. In message-level tracking, the taint on messages is tracked to prevent IPC

overhead.

Figure A.7: Taint propagation in TaintDroid.

Finally, the file-level tracing ensures the integrity of file-access activities by check-

ing whether taint markings is retained. First, the information of the trusted app
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is labeled according to its context. A native method interfaces with the Dalvik

VM interpreter to store the taint markings in a virtual paint map.

Every interpreter simultaneously propagates the taint tags, according to data flow

rules. The Binder Library of the TaintDroid is modified to ensure the tainted

data of the trusted application is sent as a parcel having a taint tag reflecting the

combined taint markings of all contained data. The kernel transfers this parcel

transparently to reach the Binder Library instance at the untrusted app. The taint

tag is retrieved from the parcel and marked to all the contained data by the Binder

Library instance. Dalvik bytecode interpreter forwards these taint tags along with

requested data towards untrusted app component. When that app calls the taint

sink (for example, network) library, it retrieves taint tag and marks that activity

as malicious.
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DroidAnalyst: Malware Analysis

and Detection Engine

B.1 DroidAnalyst

The appendix gives a brief overview of DroidAnalyst, an automated app vetting

and malware analysis framework that integrates the synergy of static and dy-

namic analysis. DroidAnalyst generates a unified analysis model that combines

the strength of the complementary approaches with multiple detection methods.

The APK analysis engine employs state-of-the-art static and dynamic analysis

techniques displays results in a human readable format. Thus, it helps determine

human analyst to take an informed decision about analysis results of a suspect

APK file.

B.2 DroidAnalyst: Brief overview

The DroidAnalyst can be used by the malware analysts in a local network by

following the standard installation procedure.

• For creating a new user, Click on Sign Up button and fill the necessary

details. After successful submission, a verification link is sent to the email

address provided.

133



Appendix B DroidAnalyst: Malware Analysis and Detection Engine 134

Figure B.1: DroidAnalyst Framework

Figure B.2: Uploading .apk file for analysis

• Click the verification link to start using DroidAnalyst.

• Login to your account and upload the .apk file.

• At present we allow the maximum size of .apk as 20 MB.

• Once the file is uploaded successfully; the framework adds the sample to

the service queue, internally managed by DroidAnalyst. User Home tab

illustrates the analysis status as shown in Figure: B.3

• Possible status:

– Not Started: Analysis yet to begin.

– In Progress: Analysis has started but not yet completed.
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Figure B.3: Home tab APK analysis status

Figure B.4: Analysis: Summary and Activities

– Partially Completed: Analysis is over but one or more modules did

not respond properly.

– Completed: Analysis completed. Result can be viewed by clicking

Completed link.

– ICC based Component Interaction Graph

– Permission based analysis with: ApPRaIse

– Novel malware variant signature: AndroSimilar
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Figure B.5: Analysis: Service, Broadcast Receivers, Content Providers and Intent
Filters

Figure B.6: Analysis: Certificate and String Literal
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Figure B.7: Analysis: Component Interaction Graph

Figure B.8: Analysis: ApPRaIse and AndroSimilar
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B.3 Capabilities

DroidAnalyst disassembles the Dalvik bytecode of an .apk file. The framework

analyzes dangerous permissions, performs interprocedural control flow analysis,

detect permission over privileges and integrates commercial antimalware with the

analysis from virus total. The present functionality of DroidAnalyst is given below:

• Disassemble Android app.

• Each component (Activity, Services, Permissions, Content Providers, Broad-

cast Receivers, Intent filters) is highlighted if any dangerous permission usage

is identified.

• Developer Certificate is extracted and presented in human readable format.

• String literals including URLs are extracted and categorized into “Normal”

and “Interesting” categories.

• Predict app risk based on permissions requested and important bytecode

parameters native code, reflection code, and dynamic code loading.

• Find top malicious apps that are similar to the uploaded app by extracting

robust statistical features. It is done using AndroSimilar.

• Perform control flow and interprocedural data flow analysis on Dalvik Byte-

code to identify Telephony, Camera, and Audio/Video misuse.

• Perform Taint Analysis to identify privacy leakage.

• Extract embedded APK files inside resources/assets of an uploaded app and

automatically analyses them.

• Check uploaded APK at VirusTotal using the Google API.

At present, DroidAnalyst identifies “single malicious app”. However, the popular-

ity of Android apps has motivated the malware authors to develop attacks based

on colluding apps. There is a scope for further improvements in the analysis engine

to identify and analyze the malicious app collusion.
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B.4 MNIT Android Dataset

The experimental evaluation requires a substantial dataset of benign and mali-

cious apps. We implemented a web-based APK crawler to gather the apps. 27,432

benign apps were crawled from Google Play, Anzi, HiAPK, and other Asian app

markets. A total 47,342 apps were crawled from Google Play, Anzhi, and other

third party Asian markets between January 2013 and September 2014; 26,469 ma-

licious apps are downloaded from virus share, contagiominidump, and other third

party markets. We also received 312 unique malware samples at DroidAnalyst

based on anonymous user uploads.

We obtained malicious apps from known malware repositories Android malware

genome [2], Droidbench [146] and IccRE [84]. Furthermore, the APK crawler

data and user submissions were classified into MNIT Android malware database

consisting 647 malware. We labelled the crawled and received malicious apps and

classified them into 70 malware families. The MNIT dataset prepared in 2014-

2015 is available to the researchers on request. Table B.1 lists the MNIT malware

dataset.

Table B.1: MNIT Classified Malware dataset

MNIT Android Malware Dataset

Legacy Lotoor Luckycat Mania Oldboot

51cool AdSmS FakeDoc NandroBox OpFake

Ackposts Agent FakeFacebook Nyleaker SimpleLocker

cawitt Airpush FakeFlashPlayer Penetho Skullkey

Cellspy Antammi FakeInst Pincer SmsSilence

Chuli Antares FakeMart Scavir SMSSniffer

Cosha ArSpam FakeRegSms Seaweth Steek

CounterClank BadNews FakeTimer Tetus Stiniter

DroidSheep FakeAngry FakeUpdates Updtkiller Suspicious

Flexispy FakeAV Fatakr Uracto Tascudap

Gamex FakeBank Fidall Uten Biige

Gedma FakeDaum FinSpy WalkinWat MMarketPay

Imlog FakeDefender Fjcon Zeahache

Killermob Koler Ksapp Nandrobox
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B.5 List of Acronyms

ALSR Address Space Layout Randomization

ADB Android Debug Bridge

AOSP Android Open Source Project

API Application Programming Interface

ARM Advanced RISK Machines

APK Android PacKage File

AVD Android Virtual Device

AST Abstract Syntax Tree

CIG Component Interaction Graph

CTPH Context Trigger Piecewise Hashing

CDMA Code Division Multiple Access

CFG control-flow graph

DAC Discretionary Access Control

DRM Digital Rights Management

DEX Dalvik EXecutable

DVM Dalvik Virtual Machine

DNS Domain Name Resolution

DDI Dalvik Dynamic Instrumentation

DoS Denial of Service

FP False Positive

FN False Negative

FNR False Negative Rate

FPR False Positive Rate
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GSM Global System for Mobile communications

GPS Global Positioning System

GUI Graphical User Interface

GID Group IDentifier

ICC Inter-Component Communication

IPC Inter-Process Communication

IDS Intrusion Detection System

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

IoT Internet of Things

iOS iPhone Operating System

MID Mobile Internet Devices

mrMR minimum redundancy Maximum Relevance

MU Multiple Users

MAC Mandatory Access Control

NFC Near Field Communication

NOP no-operation code

NDK Native Development Kit

NX No eXecute

NCD Normalized Compression Distance

OHA Open Handset Alliance

OEM Original Equipment Manufacturer

OS Operating System

ODEX optimized dalvik executable
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PC Personal Computer

PUA Potentially Unwanted Apps

RP Restricted Profile

SDHash Similarity Digest Hashing

SELinux Security Enhanced Linux

SMS Short Message Service

TP True Positive

TWU Threat Weighting Unit

UI User Interface

UID Unique IDentifier

URI Uniform Resource Identifier

URL Uniform Resource Locator

VMI Virtual Machine Introspection

Wi-Fi Wireless Fidelity
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Çamtepe, and Sahin Albayrak. An android application sandbox system for

suspicious software detection. In MALWARE, pages 55–62, 2010.



BIBLIOGRAPHY 158

[122] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xin-

hui Han, and Wei Zou. Smartdroid: An automatic system for revealing

ui-based trigger conditions in android applications. In Proceedings of the

Second ACM Workshop on Security and Privacy in Smartphones and Mo-

bile Devices, SPSM ’12, pages 93–104, New York, NY, USA, 2012. ACM.

[123] Sebastian Neuner, Victor Van der Veen, Martina Lindorfer, Markus Huber,

Georg Merzdovnik, Martin Mulazzani, and Edgar R. Weippl. Enter sandbox:

Android sandbox comparison. In Proceedings of the IEEE Mobile Security

Technologies Workshop, MoST. IEEE, 5 2014.

[124] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck,

and Johannes Hoffmann. Mobile-sandbox: Having a deeper look into android

applications. In Proceedings of the 28th Annual ACM Symposium on Applied

Computing, SAC ’13, pages 1808–1815, New York, NY, USA, 2013. ACM.

[125] Parvez Faruki. Droidanalyst: Apk analysis engine. https://www.

droidanalyst.org, 2014.

[126] Google Play. Official Android Market. https://market.android.com, On-

line; accessed June 2013.

[127] Contagiodump. Contagio Malware Dump. http://contagiodump.

blogspot.in/, Online; accessed March 2013.

[128] virusshare malware repository. Virus Share Malware Repository. http:

//www.virusshare.com/, Online; accessed March 2014.

[129] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout:

Analyzing the android permission specification. In Proceedings of the 2012

ACM Conference on Computer and Communications Security, CCS ’12,

pages 217–228, New York, NY, USA, 2012. ACM.

[130] Mumayi.com. Third-party app-store, china. http://www.mumayi.com/, On-

line; accessed January 2014.

[131] gfan.com. Third-party app-store, china. http://www.gfan.com/, Online;

accessed January 2014.

[132] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.



BIBLIOGRAPHY 159

[133] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on

mutual information criteria of max-dependency, max-relevance, and min-

redundancy. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 27(8):1226–1238, 2005.

[134] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon Jung,

Norman M. Sadeh, and David Wetherall. A conundrum of permissions: In-

stalling applications on an android smartphone. In Jim Blythe, Sven Diet-

rich, and L. Jean Camp, editors, Financial Cryptography Workshops, volume

7398 of Lecture Notes in Computer Science, pages 68–79. Springer, 2012.

[135] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,

and David Wagner. Android permissions: user attention, comprehension,

and behavior. In Lorrie Faith Cranor, editor, SOUPS, page 3. ACM, 2012.

[136] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel,

Nikhilesh Reddy, Jeffrey S Foster, and Todd Millstein. Dr. android and

mr. hide: fine-grained permissions in android applications. In Proceedings

of the second ACM workshop on Security and privacy in smartphones and

mobile devices, pages 3–14. ACM, 2012.

[137] Vassil Roussev. Data Fingerprinting with Similarity Hashes. Advances in

Digital Forensics., 2011.

[138] Vassil Roussev. Building a better similarity trap with statistically improba-

ble features. In System Sciences, 2009. HICSS’09. 42nd Hawaii International

Conference on, pages 1–10. IEEE, 2009.

[139] Vassil Roussev. An Evaluation of Forensic Similarity Hashes. Digit. Investig.,

8:S34–S41, August 2011.

[140] Android Third party app store. Third-party app-store, china. http://www.

android.d.cn/, Online; accessed January 2014.

[141] Hiapk.com. Third-party app-store, china. http://www.hiapk.com/, Online;

accessed January 2014.

[142] Jesse Kornblum. Identifying Identical files using Context Triggered Piece-

wise Hashing. Digital Investigation., 3:91–97, Sept. 2006.

[143] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. Scandroid: Auto-

mated security certification of android applications, 2012.



BIBLIOGRAPHY 160

[144] Ruchna Nigam Axelle Apvrille. Obfuscation in android malware,

and how to fight back. http://www.strazzere.com/papers/

DexEducation-PracticingSafeDex.pdf, Online; accessed September

2014.

[145] Fakeinstaller leads the attack on android

phones. https://blogs.mcafee.com/mcafee-labs/

fakeinstaller-leads-the-attack-on-android-phones, Online; 2012.

[146] Droidbench-benchmarks — secure software engineering. http://sseblog.ec-

spride.de/tools/droidbench/, Online; accessed February 2015.

[147] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium

on Principles of programming languages, pages 238–252. ACM, 1977.

[148] VirusTotal. https://www.virustotal.com/, Online; accessed February 2013.

[149] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androi-

dleaks: Automatically detecting potential privacy leaks in android applica-

tions on a large scale. In Proceedings of the 5th International Conference

on Trust and Trustworthy Computing, TRUST’12, pages 291–307, Berlin,

Heidelberg, 2012. Springer-Verlag.

[150] Brandon Amos, Hamilton A. Turner, and Jules White. Applying ma-

chine learning classifiers to dynamic android malware detection at scale.

In Roberto Saracco, Khaled Ben Letaief, Mario Gerla, Sergio Palazzo, and

Luigi Atzori, editors, IWCMC, pages 1666–1671. IEEE, 2013.

[151] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Kon-

rad Rieck. Drebin: Effective and explainable detection of android malware

in your pocket. In NDSS. The Internet Society, 2014.

[152] Backdoor.AndroidOS.Obad.a. http://contagiominidump.blogspot.in/2013/06/

backdoorandroidosobada.html, Online; accesed December 2013.

[153] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. Fast,

Scalable Detection of ”Piggybacked” Mobile Applications. In Proceedings of

the Third ACM Conference on Data and Application Security and Privacy,

CODASPY ’13, pages 185–196. ACM, 2013.



BIBLIOGRAPHY 161

[154] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android

Applications to Java Bytecode. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering, FSE

’12, pages 6:1–6:11, New York, NY, USA, 2012. ACM.

[155] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. DroidChameleon: Evaluat-

ing Android Anti-malware Against Transformation Attacks. In Proceedings

of the 8th ACM SIGSAC Symposium on Information, Computer and Com-

munications Security, ASIA CCS ’13, pages 329–334, New York, NY, USA,

2013. ACM.

[156] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfusca-

tion, Watermarking, and Tamperproofing for Software Protection. Addison-

Wesley Professional, 1st edition, 2009.

[157] Aleksandrina Kovacheva. Efficient code obfuscation for android. In Borworn

Papasratorn, Nipon Charoenkitkarn, Vajirasak Vanijja, and Vithida Chong-

suphajaisiddhi, editors, IAIT, volume 409 of Communications in Computer

and Information Science, pages 104–119. Springer, 2013.

[158] Mark Stamp and Wing Wong. Hunting for metamorphic engines. Journal

in Computer Virology, 2(3):211–229, December 2006.

[159] Michael Batchelder and Laurie J. Hendren. Obfuscating java: The most

pain for the least gain. In Shriram Krishnamurthi and Martin Odersky,

editors, CC, volume 4420 of Lecture Notes in Computer Science, pages 96–

110. Springer, 2007.

[160] Sable Mcgill. Java obfuscation techniques. www.sable.mcgill.ca/JBCO/

examples.html, Online; accessed June 2015.

[161] BakSmali. Reverse Engineering with Smali/Baksmali. https://code.

google.com/smali, Online; accessed March 2013.

[162] Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu. A Framework

for Evaluating Mobile App Repackaging Detection Algorithms. In TRUST,

pages 169–186, 2013.

[163] AV-Test. AV-Test, The Independent IT-Security Institute. http://www.

av-test.org/en/home/, Online; accessed March 2014.



BIBLIOGRAPHY 162

[164] Google. Android tools: Adb, emulator, avd manager, android, mksdcard,

monkey, logcat. https://tools.android.com, 2009.

[165] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: Auto-

matic security analysis of smartphone applications. In Proceedings of the

Third ACM Conference on Data and Application Security and Privacy, CO-

DASPY ’13, pages 209–220, New York, NY, USA, 2013. ACM.

[166] TCPDump. Tcpdump public repository. http://www.tcpdump.org/

#latest-release, Online; accessed October 2014.

[167] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-

centric analysis and stimulation technique to automatically reconstruct an-

droid malware behaviors. In Proceedings of the 6th European Workshop on

System Security (EUROSEC 2013), Prague, Czech Republic, 2013.

[168] Collin Mulliner. Dalvik dynamic instrumentation, October 2013.

[169] CVE. http://cve.mitre.org/, Online; accessed February 2013.

[170] Goujon Andre and Pablo Ramos. BOXER SMS Trojan. Technical report,

ESET Latin American Lab, 2013.

[171] Android Trickery. http://c-skills.blogspot.com/2010/07/android-

trickery.html, Online; accessed February 2013.

[172] Zimperlich Sources. http://c-skills.blogspot.in/2011/02/zimperlich-

sources.html, Online; accessed February 2013.

[173] zergrush. http://forum.xda-developers.com/showthread.php?t=1296916,

Online; accessed February 2013.

[174] Security Enhancements in Android 4.3.

http://source.android.com/devices/tech/security/ enhancements43.html,

Online; accesed December 2013.

[175] Security Enhancements in Android 4.2.

http://source.android.com/devices/tech/security/ enhancements42.html,

Online; accesed December 2013.

[176] Validating Security-Enhanced Linux in Android.

http://source.android.com/devices/tech/security/se-linux.html, Online;

accesed December 2013.



BIBLIOGRAPHY 163

[177] Mauro Conti, Bruno Crispo, Earlence Fernandes, and Yury Zhauniarovich.
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