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Abstract

Molecular electronics is emerging as one of the promising alternatives to the present

CMOS technology. Such a device is fabricated by chemical self-assembly of mono

or multiple layers of single or array of molecules, to manifest the behavior of a

wire, a switch or a latch. Researchers have demonstrated the switching behavior of

these molecules and have fabricated simple logic functions as well as memory by

using such programmable molecules. However, the characteristics of single or few

molecular devices are extremely sensitive to the external parameters such as con-

tacts, nanogap, environment, etc. Such a sensitivity poses a serious design challenge

to realize the reliable molecular devices. In contrast to other molecular devices, a

nanocell consists of conducting metal nanoparticles connected via self assembled

monolayer of molecules. Tour et al. [1] demonstrated that the nanocell device has

an in-built defect tolerance, ultra high density, post fabrication programmability

through mortal training and hence lack the need for precise molecular ordering.

These features make the nanocell a good choice for future nano-scale devices.

One of the primary goals of this thesis is to develop modeling and post fabrication

synthesis algorithms for a nanocell based molecular memory device. Also, in this

thesis we have analytically proved that such a memory can withstand environmen-

tal uncertainties. A model has been developed on the basis of already proposed

analytical framework for molecular devices. The model is based on circuit behav-

ior of nitro-substituted Oligo (Phynylene Ethynylene) (OPE) molecule. This model

is subsequently used to simulate crossbar molecular devices as well as nanocell

based 1-bit molecular memory and verified using HSPICE. The concept is further

augmented by post fabrication synthesis of 2-bit molecular memory using external
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control signal voltages. Most suitable high and low voltage values for these control

signals is a design space search problem. This search is handled by Genetic Al-

gorithm such that some of the molecules switch to ′ON′ or to ′OFF ′ state and the

nanocell is programmed to behave as a 2-bit memory cell. Our results demonstrated

that the proposed methodology is versatile enough to train nanocell for multi-bit

storage functionality.

Further, a computational framework is proposed to compute the probability of re-

trieving the stored data bits correctly at the output terminal of the proposed nanocell.

During exploration, this nanocell configuration is simulated by systematically vary-

ing the number of nanoparticles and molecular switches. It is observed that, the

probability of existence of at least one path, from input to output, approaches close

to unity with presence of at least 20 or more nanoparticles in the nanocell. Dur-

ing memory model validation, 1000 samples of 1-bit memory (consisting of 20

nanoparticles) are generated using Monte Carlo simulation and verified for read and

write operations. It is observed that such a memory cell can successfully perform

read and write operations for more than 99.5% of the untrained nanocell based 1-bit

memory samples. Thus, it can be stated that the model verification results obtained

for this memory cell closely matches to those obtained using analytical results from

probabilistic graph model.

A novel extension over the continuous parameter birth-death model is also proposed

to estimate the reliability of a nanocell, in presence of transient errors. On the ba-

sis of our model, an algorithm is developed and implemented in MATLAB, PERL

and HSPICE, to generate a representation for a given nanocell. Theoretical results

for reliability estimations are validated by simulating HSPICE model of nanocell in

presence of varying defect rates. It is observed that the device reliability increases

with increase in the number of nanoparticles and molecules, which is validated by

theoretical formulation.
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Chapter 1

Introduction

Urge for high performance and more functionality in modern designs, drive the

semiconductor technology to increasingly smaller dimensions. Continued dimen-

sional and functional scaling of CMOS aims to build a smaller, cheaper as well as

faster transistor that consumes less power and thus, results in increased chip den-

sity. Also, integrated circuits demand high speed information processing. For high

processing speed, high density is required and it is achieved by reducing the device

size. Eventually, dimensional scaling will approach the fundamental limits in near

future. Henceforth, intense research is going on to replace the present CMOS de-

vices by new devices for data storage and information processing. New emerging

technologies are being explored for heterogeneous integration of multiple functions,

which is termed as "More-than-Moore". Also, as shown in Figure 1.1 [2], the

new emerging information processing devices as well as architectures are known as

"Beyond CMOS" technologies. The heterogeneous integration of "Beyond CMOS"

and "More-than-Moore" into "More Moore" will extend the CMOS platform func-

tionality to form ultimate "Extended CMOS" [2]. As predicted by technical report

on Emerging Research Devices (ERD 2013) [2], the two-dimensional scaling of

SRAM and FLASH memories will reach definite limits within the next few years.
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Figure 1.1: Evolution of Extended CMOS: relationship between "More Moore",
"More-than-Moore" and "Beyond CMOS" - Reproduced from [2]

Figure 1.2: Taxonomy for nanoscale emerging information processing devices -
Reproduced from [2]
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Figure 1.3: The hierarchical classification of emerging memory devices - Repro-
duced from [2]

These limits are compelling to expedite the development of new memory technolo-

gies as well as to replace CMOS based SRAM and FLASH memories in next few

years. Henceforth, a technology breakthrough is required in order to identify the

most promising alternative to present semiconductor memories. The future mem-

ory devices are expected to be electrically accessible with precision, consume low

power, must have high density and speed, can be either volatile or non-volatile.

1.1 Taxonomy of Emerging Memory Devices

The Figure 1.2 [2] depicts the taxonomy of new nanoscale emerging information

processing devices. Further, as shown in Figure 1.3 [2], Ferroelectric, Carbon,

Mott, Macromolecular, Molecular Memories, etc. are some of the "Beyond CMOS"

memory technologies which are being explored for future memory devices. Among

these, Ferroelectric RAM (FeRAM) is a non-volatile, low power memory with fast

write performance (< 3ns) and large endurance (> 108). However, FeRAM has

3



Chapter 1: Introduction

lower density and it is sensitive to contamination. When a field is applied to a crys-

tal of Pervoskites material in the required plane, the atom in its center will move

in the direction of the plane. The position of the atom determines the state of the

material. The operation of Nano-Electro-Mechanical (NEM) memory devices is

based on the binary position of a nano-size mechanical beam to close or open an

electrical contact, thereby completing or opening a circuit path [2]. Low energy

dissipation, near zero leakage current very low subthreshold slope, etc. are some

of the advantages of NEM memory switch. However, there are lots of obstacles in

scaling FeRAM and NEM switch below 16nm. Magnetic RAMs are non-volatile,

high speed, ultra dense memories which can be easily integrated to backend CMOS

process.

MRAMs make use of electron spin to store data. Data are written by small electrical

currents in the magnetic write lines that create magnetic fields, which flips electron

spins in the spin dependent tunnel junction storage storage layer, thus changing the

junction resistance. Data is read by tunneling current or resistance through tunnel

junction. MRAMs are non-volatile, high speed, ultra dense memories which can

be easily integrated to backend CMOS process. However, they require 0.8-2.0 nm

thick 10-12 different layers deposited by physical vapour deposition process and

thus it is difficult to scale them beyond CMOS.

Operation mechanism of Macro-molecular or polymer memories is not known in

detail. Memory effect originates from oxide while polymer acts as current limiter.

These memories can be easily processable by printing, coating, etc., have flexible

substrate and are disposable. Switching time is less than 1µs and data retention

time of more than 1 month has been reported. Al2O3-Polymer memory cell is ap-

prox. 100nm in size. But they suffer from low yield and high variability in operating

conditions. Also, these are sensitive to oxygen and have low on/off ratio ( approx.
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10).

In molecular memory, the one bit of information is stored into the molecule. When

an external voltage is applied to the molecule, a conformational change occurs and

it causes the molecule to transit from high conduction state to low or vice-versa.

Data is read by measuring the change in resistance of the molecule. Thus, one bit of

data can be stored in the space of a single molecule and thus, extremely high den-

sity memories can be obtained. The molecular switches of same type are expected

to have identical device characteristics. This will reduce the component’s variabil-

ity problem. Emerging molecular crossbar technology offers high density, regular

array-like and non-volatile memory structure [7–13]. These devices consume low

power, offer low programming voltage and high switching speed. Non-volatility

feature provided by these molecular devices, permits memory to be used as pro-

grammable elements within a logic device. The bottom-up approach is used for

fabrication of nano-scale devices and it lacks precision in molecular device order-

ing. Thus, such crossbar molecular devices are inherently defective.

1.2 Historical Perspective: Molecular Electronics

In late 1950s, Arthur R. von Hippel and his research group at MIT proposed to

grow single molecules which may function as an electronic circuit or a component

and thus miniaturize the electronic circuits [14]. Ease of fabrication, fast switching

speed and smaller size were expected to be key advantages of molecular circuits

over silicon integrated circuits. Thus, funded research projects began to develop

solid state “molecular" circuits from doped inorganic crystals. Researchers at West-

inghouse promised to grow a crystal of germanium that would behave as a complex

circuit. However, failure to deliver such a device and continual success of Silicon

ICs led to disappearance of the first wave of molecular electronics.
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In 1974, Arieh Aviram and Mark Ratner proposed a single molecule rectifier [15,16]

using organic charge transfer salts. The proposed molecular rectifier was similar to

semiconductor PN-junction diode. This molecular rectifier consists of a donor and

an acceptor group which is separated by a tunneling bridge. Once connected be-

tween similar metal leads, the difference in electron affinity between the two ends

of the molecule was expected to result in asymmetric current transport. Forrest

Carter, a chemist at U.S. Navel Research Laboratory took the idea and generated

wide publicity for potential of molecular electronics. He brought a diverse set of

chemists, physicists, electrical engineers,funding agencies, etc. under a single um-

brella. However, all such efforts were in vain as no one managed to synthesize even

a single molecular diode or a transistor. Carter died in 1987. Meanwhile, contin-

uing his research, Aviram started organizing a series of conferences on molecular

electronics.

In 1991, Mark Reed, a specialist in microfabrication from Yale met James M. Tour,

a synthetic chemist from University of South California, at one of such confer-

ences. Combining their ideas, Reed and Tour submitted a research proposal to

Jan “Xan" Alexander, a grant officer at the Defense Advanced Research Projects

Agency (DARPA). DARPA also funded similarly directed groups at Hawlett-Packard,

IBM, Northwestern, Penn State, etc. Later, Reed and Tour with several other col-

leagues cofounded Molecular Electronics Corp. and even filed a patent for a “molec-

ular computer" in 2000. They contributed several research publications [1, 17–22].

Reproducability of similar current transport characteristic and synthesis of similar

molecular circuits was the biggest challenge. Hence, many researchers faced criti-

cism for their work. In this context, Paul Weiss [21], one of the Tour’s collaborator

at Penn State, told the journal Science that some of the Reed and Tour’s earlier re-

sults on molecular electronic properties were not as solid as [17] had implied. R.
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Stanely Williams of Hawlett-Packard as well as James Heath and Fraser Stoddart of

University of California also faced criticism for their work on fabrication of Cross-

bar Molecular Memories using Rotaxane molecules [9, 11–13]. Moreover, a series

of discoveries in molecular electronics and claim of synthesis of single-molecule

transistor, in particular, by Jan H. Schon proved to be false. Schon’s fraud was dis-

astrous to many working in this field and most of the fundings were stopped.

Today, bulk ensembles of molecular electronics have made their way into com-

mercial displays. Recent break through of single molecule light emitting diodes

and carbon nanotube transistors coupled to silicon in a monolithic integrated circuit

have been reported [14].

1.3 Motivation

Experts predict that high defect density of nano-scale devices is due to quantum

physical defects, reduced noise margin, fabrication defects, environmental factors,

thermal perturbation, etc. The defects can occur at fabrication time, called struc-

tural faults or can be introduced later due to alpha particles, cosmic rays, radiation,

crosstalk, noise, thermal perturbation, etc., called transient errors. The unreliable

nature of the device requires some fault tolerant approaches to be introduced, to

make the system reliable. The present day semiconductor devices have lower defect

rates, i.e., between 10−7 to 10−9. Thus, the reliability can be achieved by introduc-

ing defect tolerance in the circuit. Modern defect tolerant techniques are reconfig-

uration, spatial and temporal redundancy, Built In Self Test (BIST), Built In Self

Repair (BISR), etc. Since, defect rate for nano-scale devices is expected to be in

the range 10−3 to 10−7, such traditional fault tolerant approaches will eventually

fail or might be impractical, in near future. Problems in traditional fault tolerance
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approaches are:

1. Fixed modular redundancy is not effective in presence of transient faults, as

defect rate will vary with time. N Modular Redundancy (NMR), Cascaded

Triple Modular Redundancy (CTMR) and NAND Multiplexing are impracti-

cal for high defect rates of Nano-scale devices [23].

2. The majority voting circuit used for NMR is generally assumed to be fault

free, but this circuit will be faulty in presence of high defect density.

3. While reconfiguration requires least amount of redundancy but it cannot han-

dle transient faults or runtime defects.

4. Using Built-In Self Test (BIST) for defect map generation and fault recovery

can be time consuming with such a high defect rate and ultra high device

density.

5. Again, circuitry required for BIST is generally CMOS based, as in literature

[24, 25]. In these hybrid CMOS/Nano fault tolerant architecture, majority of

the device area will be occupied by the BIST circuitry. Hence, overall device

density will be reduced.

6. Built-In Self Repair (BISR) used for embedded memories, is not applicable in

case of nano-scale memories as spare rows and columns can also be defective.

In this context, a nanocell molecular device [1, 20] provides the in-built defect tol-

erance, high density, post-fabrication programmability through mortal training.

Since, a molecule is the smallest component whose electrical properties can be engi-

neered, it is easy to conclude that the ultimate integrated circuit will be constructed

at the molecular level. This fact has been the driving force behind molecular elec-

tronics research from decades. However, these molecular devices are still viewed as
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a long term research goal. To use these molecules in future electronic devices, it is

necessary to understand the electronic properties, dynamics, and interactions of the

molecules in pure and mixed monolayers. It is required to develop implementations

tailored to these properties. These molecular devices are constructed by bottom-

up chemical self assembly and exploiting the electrical properties of one or more

molecules. For design, synthesis, and development of next generation molecular

materials, improved understanding of the required structural and electronic proper-

ties of the molecular material are needed [2].

1.4 Scope of work

We concentrate our efforts on probabilistic modeling, post fabrication synthesis and

analysis of molecular memory. One of the primary goal of this thesis is to de-

velop modeling and post fabrication synthesis algorithm for nanocell based molec-

ular memory device. Also, to analytically explore if such a memory can withstand

environmental uncertainties. These objectives can be elaborated as:

• To develop a model of OPE molecule and use it to propose a nanocell model.

• To propose an algorithm to train a nanocell as 1-bit memory while assuming

that we can switch the state of individual molecules (omnipotent assumption).

In other words, aim of this experiment is to find an optimal configuration of

nanoparticles and molecules within a randomly assembled nanocell such that

it behaves as a n-bit memory.

• To find proof of the concept of mortal training which to our understanding

has not been tried yet. In this case, the nanocell is assumed to be a black box

to the training algorithm and voltage signals are applied externally to switch

the state of the molecules.
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• To extend this concept of single bit storage to multi-bit storage.

• To theoretically compute spatial and temporal reliability of nanocell based

molecular memory.

A brief survey of organic molecules, which exhibit non linear transport character-

istics, is presented in the thesis. We also discuss their properties, synthesis pro-

cess and modeling approaches. In the thesis, the device model of nitro-substituted

Oligo (Phynylene Ethynylene) (OPE) molecule or 2′-amino-4,4′di(ethynylphenyl)-

5′-nitro-1-benzenethiol [17–19] has been described using Verilog-A. This molecular

device model is used to model crossbar and nanocell based molecular devices de-

scribed in HSPICE. In earlier works [1], a nanocell device was omnipotently trained

to behave as simple logic devices. By omnipotence, we mean to say that, the internal

topology of the nanocell is priori known to us and we can easily switch the individ-

ual molecules to ′ON′ or ′OFF ′ state. However, due to extremely small size of the

molecules and the nanoparticles, it would be impossible to switch the conduction

state of an individual molecule. Thus, to realize the nanocell devices it is necessary

to develop an alternate method such as mortal training of nanocell. Mortal training,

implies that, the nanocell is assumed to be a black box to the training algorithm and

voltage signals are applied externally to switch the state of the molecules. Hence,

the focus here is on (i) omnipotent, as well as (ii) mortal training of the nanocell in

order to make it behave as a memory device with read, write and erase capabilities.

Further, the review of various probabilistic modeling approaches for nanoelectron-

ics devices is presented in the thesis. The computational framework for Markov

Random Field (MRF), Probabilistic Transfer Matrices (PTM) and Probabilistic De-

cision Diagrams (PDD) is developed using MATLAB. The HUGIN Lite tool [26]

is used for Bayesian networks (BN) based circuit design and analysis. Under these

frameworks, each logic variable has finite, but random probability of being logic ′0′
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or ′1′ and/or a certain error probability is associated with each logic gate. A design

library has been developed for modeling this probabilistic behavior of nanodevices.

A computational framework is proposed to compute the probability of retrieving

the stored data bits correctly, at the output terminal of the nanocell buffer. Further,

a novel extension over the continuous parameter birth-death model is proposed to

evaluate the reliability of a nanocell, in presence of transient errors. For this math-

ematical framework, the steady state probability and probability of being in each

sub-state is computed. The proposed approach is extended to compute the expected

lifetime and availability of the nanocell using the birth-death model of molecules

and their spatial connectivity.

1.5 Contributions of the thesis

This thesis investigates the aspects of designing a nanocell based molecular mem-

ory. A model has been developed on the basis of already proposed analytical

framework for molecular devices. The model is based on circuit behavior of nitro-

substituted Oligo (Phynylene Ethynylene) (OPE) molecule. This model subse-

quently forms basis to simulate nanocell based 1-bit molecular memory and is veri-

fied using HSPICE. Due to hysteresis characteristics of OPE molecule, it is observed

that even an untrained nanocell behaves as 1-bit memory cell. The simulation re-

sults of a 1-bit memory are compared against results obtained using analytical prob-

abilistic modeling approach for the nanocell based memory devices. The proposed

nanocell molecular memory demonstrates read, write and erase capability.

The concept is further augmented by post fabrication synthesis of 2-bit molecular

memory using external control signal voltages [27]. The post fabrication synthe-

sis of a nanocell is similar to that of a Field Programmable Gate Array (FPGA).

As in case of FPGA, first a Hardware Descriptive Language (HDL) code for a
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desired functionality is written, simulated and synthesized (technology mapped).

After placement and routing, this HDL code is converted to Electronic Data Inter-

change Format (EDIF) and it is downloaded to program the FPGA. In this way, the

FPGA is programmed for a particular functionality. Similarly, the nanocell is fab-

ricated in a laboratory and later it can be adapted anywhere (in field) for a given

functionality by applying appropriate external Control Voltage Signals (CVS).

Most suitable high and low voltage values for these control signals is a design space

search problem. This search is handled by Genetic Algorithm such that some of the

molecules turn to ′ON′ or ′OFF ′ state and the nanocell is programmed to behave as

a 2-bit memory cell. It is observed that to successfully train a 2-bit molecular mem-

ory, the number of control signals should be more than approximately one-fourth of

total number of nanoparticles. Our results demonstrate that the proposed methodol-

ogy is versatile enough to train nanocell for multi-bit storage functionality.

A computational framework is proposed to compute the probability of retrieving

the stored data bits correctly at the output terminal of the proposed nanocell [27].

This graphical model for the nanocell is simulated by systematically varying num-

ber of nanoparticles and molecular switches. It is observed that, the probability of

existence of at least one path, from input to output, approaches close to unity with

presence of at least 20 or more nanoparticles in the nanocell. An algorithm is pro-

posed to (i) generate an instance of nanocell consisting of N nanoparticles and (ii)

compute the probability that at least one path is present between input and output

node of nanocell (iii) bounds on reliability of the nanocell.

Further, a novel extension over the continuous parameter birth-death model is also

proposed to estimate the reliability of a nanocell, in presence of transient errors [28].

In this computational framework, the steady state probability and probability of be-

ing in each sub-state is computed. The proposed approach is augmented to theo-
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retically determine the expected lifetime and availability of the nanocell using the

birth-death model of molecules and their spatial connectivity. The lower and upper

bounds for nanocell reliability are calculated. An algorithm is proposed to automat-

ically generate the proposed model representation for a given nanocell and use it to

estimate the success_ratio as well as the nanocell reliability, while considering the

uncertainties. It is observed that as long as, molecular failure rate is less than its

repair rate, the nanocell functions correctly. Also, the device reliability increases

with increase in the number of nanoparticles and molecules which is validated by

theoretical formulation.

1.6 Organization of thesis

In Chapter 2, first we review the characteristics of organic molecules which are used

as an active device in molecular nanoelectronics. This is followed by the synthesis

and modeling of nitro-substituted Oligo (Phynylene Ethynylene) (OPE) molecules

and gold nanoparticles, as proposed in literatures. Further, the crossbar molecular

devices and their modeling approaches are reviewed. In the end of this chapter, we

present the review of major proposed approaches, available in the literature, related

to probabilistic modeling and analysis of the nano-scale devices.

In Chapter 3, a detailed methodology for nanocell molecular memory modeling and

synthesis is presented. Then, we discuss the probabilistic analysis of the nanocell

in spatial and temporal domain in Chpter 4. Conclusions are presented in Chapter

5, where possible extensions to our work are also enumerated.
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Chapter 2

State of the Art

This chapter is broadly classified into three parts. First, the literature review on

organic molecules working as an active device, change in their characteristics with

various functional groups and mechanism to switch to high/low conduction states

with externally applied voltage, synthesis process, etc. is presented in Section 2.1.

Besides, a brief description of the molecular device modeling techniques, in par-

ticular, the Universal Device Model (UDM), is discussed. We have developed this

device model using VerilogA. Then, it is used to model the behavior of molecular

diodes as well as negative differential resistors, and their simulation results are il-

lustrated in the thesis.

In Section 2.2, a brief literature review on crossbar molecular nanoelectronic de-

vices is discussed. This is followed by the experimental setup for crossbar logic

devices. In Section 2.3, we present the literature review on probabilistic modeling

approaches for nano-scale devices. These approaches are evaluated and simula-

tion results are presented in this section. These modeling approaches are Markov

Random Field, Bayesian Networks, Probabilistic Transfer Matrices, Probabilistic

Decision Diagrams. Finally, the conclusions are summarized in Section 2.4.
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Figure 2.1: Structures of (a) oligo(phenylene-ethynylene)s (b) alkanes (c)
phenylenes with thiol end groups

2.1 Organic Molecule: an active device

A molecule is the smallest component whose electrical properties can be engineered

and thus it is expected that the ultimate integrated circuit will be constructed at the

molecular level. This fact has been the driving force behind moletronics research

[14]. In recent years, researchers have demonstrated the switching behavior of these

molecules and have fabricated simple logic functions as well as memory by using

such programmable molecules.

However, these molecular devices [29] are viewed as a long term research goal.

It is required to properly understand the special properties of such molecules and

develop implementations tailored to these properties. For design, synthesis, and

development of next generation molecular materials, improved understanding of the

required structural and electronic properties of the molecular material are needed

[2]. In this context, characteristic properties of organic molecules functioning as an
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active device are presented here.

2.1.1 Characteristics and Synthesis

Table 2.1: Comparison of properties and applications of (a) Alkanes and (b) OPEs

Alkanes Oligo(Phenylene-Ethynylene)
Properties
Alkanes are σ -bonded saturated
molecules and are thus poor conduc-
tors with no obvious electronic device
potential, other than as a tunneling barrier.

The extended π-conjugation of OPEs
make them theoretically much better con-
ductors than alkanes.

Comparatively less rigid as there is no
triple bond in alkanes.

The triple bond between the phenyl rings
in OPE molecules enhances the coupling
between them, thus making OPEs more
conductive as well as rigid than oligo-
phenyls of equivalent length.

Applications
Alkanes can also be commercially ob-
tained in a variety of lengths and suitable
for electron transport measurements.

The conductivity and structural rigidity
makes OPE a potential molecular wire.

The low conductivity of alkanes has been
exploited as a gate dielectric in the fabri-
cation of a hybrid (organic/Si) field-effect
transistor.

OPEs have been reported to exhibit
switching , negative differential resistance
(NDR), and memory (hysteresis) effects.

The characteristic properties of the organic molecules depend on their chemical

structure and functional groups attached. It is observed that saturated molecules

like alkanes have low conductivity [30]. This is due to σ -bonding and hence these

molecules can be used for gate dielectric in fabrication of a hybrid (organic/Si) field-

effect transistor. The alkanethiolates (Fig. 2.1(b)) can be commercially synthesized

in a variety of lengths. However, the extended π-conjugation of Oligo(Phynylene

Ethynylene)s (OPEs) (Fig. 2.1(a)) make them theoretically much better conductors

than alkanes. Table 2.1 gives a brief comparision of Alkanes and OPEs. Theoret-

ical work shows that the triple bond between the phenyl rings in OPE molecules

enhances the coupling between them. In this way, OPE molecules become more
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Figure 2.2: Structure of oligo(phenylene-ethynylene) (OPE) molecule with different
functional groups (a) Dithiolated OPE (b) nitro OPE (c) amino-nitro OPE

conductive than oligo-phenyls (Fig. 2.1(c)) of equivalent length. Due to its struc-

tural rigidity, OPEs can be used as molecular wire. As shown in Fig. 2.2, the OPEs

can be synthesized to possess donor groups, acceptor groups or heterocyclic interi-

ors and thus modify their electronic structure. OPEs have been reported to exhibit

switching, negative differential resistance (NDR), and memory (hysteresis) effects.

This is due to varying chemical properties of these functional groups, for example:

• Nitro (NO2) functional group is electron withdrawing (Fig. 2.2(b)).

• Amino (NH2) functional group is electron donating (Fig. 2.2(c)).

• Thiol (SH) group is binds the molecule to transition metals such as gold (Au)

or palladium (Pd).

There are two types of metal-molecule contacts, namely, physisorbed contact and

chemisorbed contact. Physisorbed contacts involve only electrostatic (e.g. van der
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Waals) forces between the molecule and the electrode. However, it is compara-

tively a weak contact. On the other hand, chemisorbed contacts involve a chemical

bond between the molecule and the electrode, as is the case with self-assembled

monolayers (SAMs). Chemisorbed contacts can be further categorized by the type

of electrode and molecular alligator clip. The exact nature of chemisorbed contacts

can have a large influence on the measured properties of the molecular device. There

are two types of alligator clips: (i) isonitrile, and (ii) thiol end groups. Among these,

“thiol-Au" is the de-facto standard contact. However, experimental results confirm

that Pd provides a better contact than Au for both alligator clips. It is also observed

that by increasing the S-Au bond distance, an exponential decay in conductance oc-

curs.

Wold et al. [30] investigated that self assembled monolayer of Oligo phenylene thi-

olates shows linear current voltage transport characteristics. It is observed that for

saturated and unsaturated molecules, the resistance increase exponentially with in-

crease in molecular length, according to the relation:

R = R0exp{β s} (2.1)

where, R0 is an effective contact resistance, β is structure dependent factor that de-

pends on bonding and functional group patterns in the molecules, s is inter-electrode

separation defined by molecular length. It is observed that β is almost double for

saturated molecules. This provides an experimental proof for lower conductivity of

alkanes.

Chen et al. [17,18] reported that the amino-nitro oligo molecule, i.e., Oligo(phynylene

ethynylene) (OPE) molecule (Fig. 2.2(c)) shows negative differential resistance (NDR)

characteristics. This shows that nitroamine redox center is liable for negative dif-
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ferential resistance characteristics of these molecular devices. The nitro substituted

oligo molecule (Fig. 2.2(b)) also show the NDR behavior while it was found to be

absent in oligo molecule with only amino (NH2) group. Thus, we can conclude

that the nitro (NO2) group is liable for this current-voltage characteristics of the

molecule. Also, it is investigated that increase in temperature causes decrease in

peak - to- valley (PVR) ratio of the molecule. It is observed that for OPE molecules,

the PVR is 1030 : 1 at 60 K and it reduces to 1.5 : 1 at 300 K. However, such de-

vices are highly unstable and it is difficult to reproduce the similar characteristics

at a given temperature. It is expected that in near future, technology will be de-

veloped to overcome this problem. Kiehl et al. [31] showed that a self-assembled

monolayer of 2’-amino, 5’-nitro oligo(phenylene ethynylene) (An-OPE) deposited

on an Au electrode coupled to a Hg electrode covered with a tetradecane-thiolate

leads to a well defined and stable NDR at room temperature and bias voltage of 0.6

V. Reed et al. [19] demonstrated the storage of charge in a self assembled layer of

OPE molecules. Such a device is reported to be operated as a random access mem-

ory RAM) with bit retention time of > 10 min.

Both alkanes and oligo molecules can be made functional for self assembly and they

form well packed, ordered monolayers. Majumdar et al. [22] studied the electrical

behavior of nitro substituted OPE molecule in pure and mixed monolayer. In mixed

monolayer, the nitro OPE molecules were separated by dodecanethiol molecules.

The hysteresis NDR characteristics is found to be present in case of pure mono-

layer of nitro OPE molecules. It is observed in [22] that the electrical switching

with memory behavior is a phenomenon that only occurs when a large group of

molecules is present in a pure monolayer. Also, the magnitude of molecular con-

duction varies with environmental factors, e.g. temperature, type of monolayers,

etc.
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As reported in literatures [21,22,32], it is argued that the conductance in molecules

is due to the conformational change in molecular state. Kim et al. [32] investi-

gated the mechanism for molecular conformational changes. It is reported that such

changes cause the sweep rate dependent hysteresis in the NDR. The transition be-

tween the high and low conduction states is due to interaction between electrical

field and molecular dipole moment of the middle benzene ring in amino-nitro sub-

stituted oligo (An-OPE) molecule. The experimental results show that during the

voltage sweep cycles, the kinetic effect of the molecular amino-nitro OPE SAM is

responsible for the the NDR characteristics of these molecules. As reported in [32],

the rotation of the second phenyl ring of the amino-nitro OPE molecules is influ-

enced by the forward voltage sweep and it results in a planar to twisted phase tran-

sition. However, backward voltage sweep influences the twisted to planar phase

transition. This rotation of the second phenyl ring restrains the π orbital overlaps

between phenyl rings. This results in the lower electrical conductance of the twisted

phase compared to the planar phase.

Chen et al. [17, 18] reported the detailed synthesis process for OPE molecule with

different functional and end groups. The synthesis of OPE molecule is out of the

scope of this thesis. But the method proposed in [17, 18] can be utilized for large

scale synthesis of nitro-substituted OPE molecule. A lot of literatures are avail-

able for synthesis of capped and uncapped gold nanoparticles of < 100 nm diam-

eter [33–38]. For using the gold nanoparticles in nanocell architecture, these are

required to be capped with −SH or −COOH group. Since, the focus of this thesis

is to model and theoretically analyze the nanocell molecular memory in presence of

transient errors, we next discuss an empirical device model for OPE molecule.
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2.1.2 Modeling Approaches

Rose et al. [39–42] proposed a Universal Device Model (UDM) based on the equa-

tions (2.2), (2.3), (2.4) and few other equations. This UDM model can be used to

capture the Current Voltage characteristics of a molecule behaving as a linear or a

non-linear diode or negative differential resistance. We have used these three equa-

tions to model the electrical characteristics of an OPE molecule in Verilog-A. We

have modified the parameters of these equations to model the behavior of the OPE

molecule, appropriately. Table 2.2 describes the meaning of the parameters used in

these equations.

IR(V ) =V/R (2.2)

ID(V ) = Is.

{
exp
(

V
nVT

)
−1
}

(2.3)

IT (V ) = Ip.exp

{
−(V −Vp)

2

2σ2
p f−+2σ2

n f+

}
(2.4)

Here,

f−(V ) =
1

1+ exp
[
(V−Vp)

S f

] and f+(V ) =
1

1+ exp
[
−(V−Vp)

S f

]

The positive differential resistance (PDR) region and negative differential resistance

(NDR) region typically have different slopes, which lead to asymmetry in the curve.

This asymmetry can be included in the model by having two width parameters: one

for the PDR region and the another for the NDR region. Since each of the width

parameters ( f− and f+) is only relevant to one of the two regions, step functions are
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Table 2.2: Summary of Model parameters

Resistor
R Resistance

Diode
Is Saturation current
n emission coefficient

VT KT/q, symbols have their usual meaning
NDR
Vp Peak Voltage
Ip Peak Current

σp,σn Width parameter
S f Step rise

used to filter out unwanted contributions to the other region. Two of the parameters

of equation 2.4 are the peak current Ip and the peak voltage Vp, which specify the

point at which the PDR region transitions to the NDR region. The width of this

Gaussian can be specified by using the parameters σp and σn, for the PDR and

NDR regions, respectively. In general, the slope parameter should be as small as

possible so that the functions exhibit sharp steps thus keeping the width parameters,

and thus the PDR and NDR regions, independent of one another. S f is associated

with the slope of the rising edges of the step functions used to separate the width of

the PDR region from that of the NDR region.

The nanocell based memory has been designed using the device model of gold nano-

particles and OPE molecular switches. The verilogA model of OPE molecule gives

the IV characteristics as shown in Figure 2.5(b) which almost matches to actual

molecule curve as in fig. 3 of ref. [1]. The NDR model of the molecule proposed

in [43] shows the IV curve in fig.6 of [43] which is similar to our curve. The em-

pirical model used here is general and can be used to fit any curve. By varying the

parameters of equation (2.2), (2.3) and (2.4) the behavior of an example molecule

has been depicted in Figure 2.4. Here, the assumed parameter values are: Vp = 3.5V ,
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(a) (b)

Figure 2.3: (a) Nitro substituted Oligo molecule (OPE) (b) I-V curve obtained using
device model. The black dots represent the ′ON′ state of the molecule. In ′OFF ′

state, approximately zero current flows.

Ip = 1.5, Is = 1e−10 and n = 2. We can argue that by adjusting the parameter val-

ues, the desired electrical behavior of the molecule can be modeled.

Jha et al. [43] discusses omnipotent training of a nanocell to behave as logic gates.

In their work, they have proposed a device model of OPE molecule in HSPICE. This

model gets complicated when generalized for linear or non-linear electrical behavior

of different organic molecules. Kim et al. [32] modeled the An-OPE molecule and

validated this model with experimental results. The I-V performance of each con-

formation (Planar and Twisted) of the molecule is calculated by combining Green’s

function theory with DFT Hamiltonian that are determined from the SeqQuest cal-

culation with Perdew-Burke-Ernzerhof (PBE)generalized gradient approximation

exchange-correlation density functional. This quantum mechanical model explains

how the such conformational changes are responsible for NDR behavior of OPE

molecules. However, this type of molecular device model to be integrated with

HSPICE model of nanocell. Barepour et al. [44] extended the UDM model to model

the hysteresis effects. The proposed SPICE model is comprised of a differentiator

circuit, two switches and two resistors/UDM modules followed by an integrator cir-
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Figure 2.4: Current Voltage Characteristics of an example molecule behaving as
NDR: Simulation results obtained using equation (2.3) and (2.4) . Here, Vp = 3.5V ,
Ip = 1.5µA, Is = 1e−10A and n = 2.

cuit.

2.2 Crossbar based Molecular Devices: design and
modeling

In crossbar architecture [9,13,45–48], a self-assembled monolayer of bistable molecules

is inserted between orthogonally placed nanowires, such that there is a molecule at

cross-section of each of these nanowires. This is depicted from Figure 2.5. A

Nanowire (NW) [7,8,49,50] is a long, thin semiconducting wire that can be used as

both an active device as well as interconnect wires. Its diameter could be as small

as few nanometer and length from tens to thousands of microns. Silicon, germa-

nium, gold, gallium phosphide, gallium nitride, indium phosphide, etc. can be used

to fabricate nanowires. The nanowires can be grown from hundred to thousands of
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(a) (b)

Figure 2.5: A cartoon of crossbar molecular device. Here, a molecule is present
between each cross-section of orthogonally placed nanowires.

microns in length. As reported in [7, 8], the density greater than 108gateequiv/cm2

can be achieved for crossbar devices. Recently, Guilera et. al. [51] have fabricated

single-nanowire-based gas sensors, photodetectors, and field-effect transistors using

metal-oxide nanowires.

Chen et al. [9] fabricated a molecular rewritable nonvolatile memory with density

6.4 Gbits cm−2. Rotaxane molecules are sandwiched between bottom Ti(3 nm) /

Pt(5 nm) and top Ti(11 nm) / Pt(5 nm) nanowires. Data retention time of 2months

has been achieved in this case. The ‘ON’ resistance was roughly 500 KOhms and

‘OFF’ resistance 9 MOhms. Green et al. [12] have demonstrated a 160 kbit molecu-

lar memory offering 33 nm pitch with density 1011bits cm−2. This crossbar memory

25



Chapter 2: State of the Art

array is comprised of a monolayer of Rotaxane molecule sandwiched between 400

x 400 Phosphorous doped Si bottom nanowires (16 nm) and Ti top nanowires (16

nm). Such crossbar molecular memories, based on Rotaxane molecules, offers cell

size of approx. 0.0011µm2. The best projected read time of < 10 ns and write/erase

time of < 40 ns has been achieved [10]. Green however demonstrated write/erase

time of 0.2 s. The voltage required for reading the data bit is 0.3−0.5 v [10,11] and

write operating voltage 1.5 v [11]. Such molecular memories are non-volatile, low

power and ultra dense memories with high retention period [2]. We have simulated

the crossbar devices in HSPICE, using the molecular device model.

Different read circuit are proposed in literatures [42, 46–48] for crossbar molecular

memories. Here value of V0 varies, for eg. Chen et al. [9] used V0 = VDD/2 while

Csaba et al. [52] and Mustafa et al. [53] used V0 = (Vo f f T hr−VonT hreshold)/4 in their

designs.

We have implemented the crossbar molecular logic gates in HSPICE using the de-

vice model of molecule (as discussed in previous section). The Figure 2.6 shows the

experimental results for crossbar molecular OR gate and AND gate. This is similar

to programmable logic arrays (PLAs). The simulation results for these logic gates

are shown in Figure 2.7. Similar to the approach as proposed by [42], we have also

tried to simulate the crossbar molecular memory. The ultra high density crossbar

molecular memory modeling and synthesis is part of our future work.

A novel high functional density Graphene nanoribbon crossbar architecture is

proposed and analytically simulated by [54, 55]. Similar to crossbar devices, the

horizontal and vertical layers of this nanoribbon were assumed to have linear resis-

tance while their cross-section were assumed to have NDR behavior. It is analyt-

ically demonstrated that the GNR-based crossbar circuits outperform conventional

CMOS circuits in low power applications [55]. Vourkas et al. [56] demonstrated a
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Figure 2.6: Experimental setup for crossbar molecular (a) OR gate (b) AND gate

Figure 2.7: Simulation results for crossbar molecular OR and AND gate
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memresistor (concatenation; of “memory resistor") based crossbar framework wiht

encoders and decoders as design example. Gholipour et al. [57] presents a brief

review and comparison of different crossbar based architectures.

However, the crossbar memories suffer from high defects as it is difficult to chemi-

cally self-assemble the nanowires perfectly, with the available bottom-up approaches.

Several redundancy based [23] and reconfiguration based defect tolerance tech-

niques have been proposed to handle the soft and hard errors. However, at nanoscale,

the defect density will be high and thus traditional fault tolerant techniques will fail.

Intense research is going on to deal with defects in emerging technologies. Many

defect mapping techniques have been proposed to identify the defective devices and

replace them by spare devices. Dehon et al. [7] has proposed the similar approach

for crossbar architectures. That is, to replace the defective rows or columns by spare

rows and columns. Jeffery et al. [58] proposed error control codding techniques

to provide defect tolerance in crossbar devices. However such techniques intro-

duce large area overhead of defect tolerance circuitry. Recently Wang et. al. [59]

has proposed hybrid redundancy allocation technique for defect tolerant crossbar

molecular memory systems. The proposed approach combines temporal and spatial

redundancy. The simulation results demonstrate significant improvement in defect

tolerance, efficiency and scalability of the proposed approach. Zamani et al. [60]

has proposed variation and defect tolerant logic mapping on crossbar molecular ar-

chitectures. The proposed ILP formulation can be used for both diode based and

FET-based crossbars. A set of ILP formulations have been proposed for efficient

logic mapping in order to minimize variation effects, tolerate defects, and increase

reliability of a circuit implemented on crossbar nano-architectures. In short, the

defect tolerance techniques are required to be improved or some other architecture

is required to be proposed which does not need such precise molecular ordering.
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One such architecture for molecular devices is proposed by Tour and it is named as

nanocell. In this thesis, we concentrate on nanocell molecular memory modeling,

synthesis and probabilistic analysis in presence of high defect rate. The nanocell

modeling and synthesis is discussed in next chapter.

2.3 Probabilistic Modeling Approaches for Nano-scale
Sub-Systems

2.3.1 Markov Random Field (MRF)

A Markov Random field (MRF) [61,62] is a Markov-type two dimensional process.

It is defined as a set of random variables X = {X1,X2, . . . ,Xn} satisfying Markov

property on a rectangular lattice L. Given, the present state of a random variable

and some of its past states, any stochastic random process has Markov property

if conditional probability distribution of future states depends only on the present

state and is independent of the past states. This definition of Markov property can

be extended to MRF as a random variable Xi has Markov property if and only if it

is conditionally dependent only on its neighbors.

Next, we define the Markov blanket (or neighborhood) of Xi as ηi, such that ηi ⊂ X

and each Xk ∈ ηi is neighbor of Xi. The positivity condition for existence of MRF is

stated in equation (2.5) and Markov property is given in equation (2.6).

P(Xi = x)> 0,∀Xi ∈ X . (2.5)

P(Xi = x|X−Xi) = P(Xi|ηi). (2.6)

A random variable Xi ∈ X defined on {L,ηi} is called a Gibbs Random Field (GRF)
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if and only if its joint probability mass function is of the form as in equation (2.7),

P(Xi = x) =
1
Z

e(−
1

KBT E(x))
, (2.7)

where KB is Boltzmann constant; T is temperature constant; Z is normalization

constant, known as partition function; E(x) = ∑c∈C Uc(xi) is called clique energy

function; c is a clique; C is set of all cliques of {L,η}; Uc(x) is the potential associ-

ated with clique c. It is stated that X is a MRF with respect to η and P(X = x)> 0

for all x, if and only if X is a GRF with respect to η and associated cliques. This

is known as Hammersley and Clifford theorem, first stated and proved by Hammer-

sley and Clifford in their unpublished work and later proved by Besag [63]. It is

deduced from the equations (2.5), (2.6) and (2.7) that GRF implies MRF. As proved

by Besag [63], the overall joint probability P(X = x) can be expressed in terms

of conditional probabilities (or, local characteristics) P(Xi|ηi), as given in equation

(2.8).

P(X1,X2 . . .Xn) = ∏
i=1...n

P(Xi|ηi). (2.8)

Markov Random Field based probabilistic computing for nanoelectronic devices is

proposed by Bahar et al. [61]. Each logic variable of a digital circuit is represented

as a node and statistical dependence between these variables is modeled as an edge

of MRF Graph. A clique in an undirected graph G = (V, E) is a subset of the vertex

set C ⊆ V , such that for every two vertices in C, there exists an edge connecting

the two. This is equivalent to saying that the subgraph induced by C is complete.

The clique energy expression E(x0,x1,x2) = −∑cUc(x0,x1,x2), where Uc = 1, is

obtained by the negative sum over minterms from valid states in logic compatibility

table, and these minterms are transformed using the Boolean ring rules. The energy
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of invalid logic states is greater than that of valid states. For an n-input gate, the

number of rows in logic compatibility table are 2n+1 and number of columns are

n+ 2. Each variable has some random probability of occurrence of logic zero and

logic one. At the primary output, joint probability is calculated using equation (2.8)

and for each intermediate node marginal probability is calculated using the belief

propagation algorithm [64, 65]. For example, for a two input XOR gate with input

x0 =
′ 0′, x1 =

′ 1′ and output x2 =
′ 1′ is called a Valid state. But, if output is x2 =

′ 0′

for same inputs, then it is called an invalid state. The clique energy for two input

XOR gate is computed as:

E(x) = −(1− x0)(1− x1)(1− x2)− (1− x0)x1x2− x0(1− x1)x2− x0x1(1− x2)

= −1+ x0 + x1 + x2−2x0x1−2x1x2−2x2x0 +4x0x1x2 (2.9)

Bhaduri and Shukla [66, 67] designed NANOLAB toolbox in MATLAB, based on

theoretical work proposed by Bahar et al. [61]. The NANOLAB can calculate node

probability, clique energy and entropy in presence or absence of noise. It provides

fault tolerant techniques like Triple Modular Redundancy (TMR), Cascaded Triple

Modular Redundancy (CTMR), NAND multiplexing, etc. However, it lacks se-

quential circuit modeling. The NANOLAB tool is evaluated for structural faults

and bridge faults in [68]. The results are compared with that of deterministic ap-

proach.

Nepal and Bahar [69–72] used the MRF approach to implement CMOS based de-

vices at nanoscale. The MRF based logic gates at 70 nm are designed and device

characteristics are compared with CMOS based logic gates, in presence of noise

and soft errors in [69]. The reliability is thus achieved on the cost of size. For ex-

ample, a four transistor NAND Gate implementation requires 60 transistors using
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MRF approach, as suggested by Nepal [69]. Further, in [71,72], the modified clique

energy function is proposed and this new implementation of 2-input NAND Gate re-

quires only 28 transistors. Also, as shown in Table 4 of [72], the power is greatly

reduced (by 33%) for larger circuits using MRF mapping. Error correcting codes

technique (Hamming code (6,3)) is introduced to enhance reliability at lower power

with reduced device area as compared to previous works of Nepal et al. [69]. The

feedback path in MRF, reinforces the logic values and the authors claim to fix all

one-bit deviations from correct codeword by reinforcing principle of MRF circuit.

However, the reconvergent fanouts induce delay to the circuit.

We have implemented Markov Random Field based approach using MATLAB for

combinational and sequential circuits design. All 2-input logic gates are modeled

using this approach. The NANOLAB toolbox is augmented with the flipflop library

for designing sequential circuits [73]. In next Section, we discuss the experimental

setup and simulation results for 2:1 multiplexer based combinational and sequential

circuit design.

2.3.2 Proposed work for reliability analysis using MRF approach

The NANOLAB tool is explored to design TMR and CTMR based logic gates. It is

used to study the effects on device output in presence of noise. The NANOLAB tool

is augmented to include 2:1 multiplexer as a basic building block. Thus, a design

library is developed to model multiplexer based logic gates and for this necessary

changes are made to the logic compatibility table. In order to enhance the system

reliability, each multiplexer based logic gate is modeled by Triple Modular Redun-

dancy (TMR). Various flip flops are modeled using logic gates and a design library

is created. A 4-bit Serial-In-Serial-Out (SISO) right shift register is used as a ve-

hicle to exemplify our approach. The combinational circuits designed using MRF

based approach, are analyzed for fixed redundancy (TMR) at different levels of ab-
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Figure 2.8: A 2:1 multiplexer based logic gate design (a) AND gate (b) XOR gate

straction while considering fixed defect rate. A 4-bit ripple carry adder having TMR

at each Module (T MRM) and at each logic gate level (T MRG) are compared to an

adder without redundancy. Secondly, with varying levels of redundancy (No_MR,

T MR, 5MR, 7MR, 9MR) the adder is analyzed for varying defect rates. In this case,

hardware redundancy is applied to each full adder.

2.3.2.1 Combinational circuit design

We consider a design of an 8-bit ripple carry adder using mux-based logic gates. The

TMR is provided at each logic gate level. As discussed earlier, necessary changes

are made to logic compatibility table of gates to model them using a multiplexer.

The logic compatibility table of 2:1 multiplexer based AND gate and XOR gate is

given in Table 2.3 and Table 2.4, respectively. These multiplexer based logic gates

are giving same equations for Gibbs Energy and same entropy values as in case of

basic logic gates approach. All multiplexer based logic gates, except XOR gate,

offer the advantage that one of their input lines can be directly connected to Vdd or

Gnd. Hence, their logic compatibility table is reduced by half which decreases the

search time for valid states during simulation. The 1-bit full adder, as shown in

Figure 2.9, has triple modular redundancy at each logic gate level. Using this 1-bit

full adder, an 8-bit ripple carry adder is designed and it is compared to an 8-bit ripple

carry adder using simple logic gates. Both adders have TMR at each logic gate. The
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Table 2.3: Logic compatibility table for 2:1 mux-based AND gate

Input Input Select Output Valid/Invalid
0 A B Z (1/0)
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 1

Table 2.4: Logic compatibility table for 2:1 mux-based XOR gate

Input Input Select Output Valid/Invalid
B 1-B A Z (1/0)
0 0 0 0 1
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0

two adders are simulated for different input values. It is observed that for all input

combinations, the probabilities of sum and carry values are same up to 2 places after

decimal, for both the adders. As depicted from Table 2.5, the mux-based circuits

show higher probabilities for logic ′0′. When input bit-vector A = “11101010” and

B = “11011111” with input carry Cin =
′ 1′, the expected output sum is “11001001”.

In such a case, the probabilities of sum for mux and non-mux based 8-bit ripple carry

adders are given in Table 2.5. At input side, logic ′1′ is represented by probability

vector[0.2 0.8] and logic ′0′ by [0.8 0.2]. The similar results can be obtained for
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Figure 2.9: A 1-bit Full Adder with TMR at each mux-based logic gate

Table 2.5: Probabilities of getting logic ′1′ at sum output for mux-based and non-
mux based 8-bit ripple carry adder with input A= “11101010” and B= “11011111”
and Cin =

′ 1′

Adder Output Mux-based Adder Non-Mux Based Adder Logic value
s(7) 0.738954 0.739023 1
s(6) 0.682778 0.682954 1
s(5) 0.284839 0.284728 0
s(4) 0.260738 0.260673 0
s(3) 0.686478 0.686591 1
s(2) 0.282181 0.282115 0
s(1) 0.172751 0.172673 0
s(0) 0.724985 0.724022 1
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other circuits also.

2.3.2.2 Sequential circuit design

We designed a MATLAB library of all flip flops and latches based on MRF ap-

proach. The results of a NOR based SR flip flop are shown here as an example.

The probabilities of Set and Reset are taken as an input and probability of next state

output is generated. When p(set = 1) = 0.9 and p(reset = 1) = 0.1 the plot in

Figure 2.10(a) is generated and next state probability for logic ′1′ is estimated as

0.8235 which can be accepted as logic ′1′. Thus, flip flop is in set state. Similarly,

Figure 2.10(b) shows reset conditions and next state probability for logic zero is

0.8353. When p(set = 1) = 0.1 and p(reset = 1) = 0.1 and present state probabil-

ity for logic ′0′ as 0.9, the next state probability is calculated as 0.8353, as shown

in Figure 2.10(c). This can be accepted as logic ′0′ and we get no change in state

as desired by given input conditions. Now, these flip flops and latches can be used

to design sequential circuits. We here discuss a 4-bit Serial-In-Serial-Out right shift

register to exemplify our approach. A D flip flop is used as a memory element in

the design of SISO. We assume that there is 90% probability of occurrence of logic

′0′ at the input Sin, then this data is shifted out serially and obtained at Sout after a

delay of four flip flops. The plots generated at each flip flop from FF0 to FF3 are

shown in Figure 2.11.

2.3.2.3 Reliability enhancement using redundancy

Fixed Modular Redundancy v/s Fixed Defect Rate

Three different MRF based 4-bit Ripple Carry Adders have been designed. These

adders have TMR at varying levels of granularity. Although adder1 has no redun-

dancy, adder2 and adder3 have been designed with TMR at each 1-bit Full adder
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Figure 2.10: Simulation results: Probability of getting correct output for a NOR
based SR flip flop

Figure 2.11: Simulation results: Probability of next state Qn+1 for a 4-bit Serial-In-
Serial-Out right shift register when p(Sin = 0) = 0.9
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Figure 2.12: Simulation results: Probability of obtaining logic ′1′ on Sum(3) for
a 4-bit ripple carry adder for varying defect rate at each simulation run. Total test
cases are 50 and simulation is done for (a) No redundancy (b) TMR at each 1-bit
adder (c) TMR at each logic gate

and TMR at each logic gate, respectively. The probability that correct input appears

on primary input is assumed to be 0.7. The transient faults are injected randomly

at any potential fault site. For fixed redundancy, various combinations of inputs are

applied and faults are injected randomly. Total numbers of simulations are 50. It

is observed that for some input combinations and fault sites, T MRM is less reliable

than T MRG and vice versa. For varying redundancy, let us consider inputs to the

adder be A = “0011” and B = “0110” with input carry Cin =
′ 1′. The probability of

logic ′1′ occurring on output (sum) is plotted with increasing faults in Figure 2.13.

As expected, modular redundancy increases the circuit’s reliability. However, as

depicted from Figure 2.12, for most of the input combinations and fault sites, TMR

at module level (adder2) is less reliable than TMR at gate level (adder3) [74].

Varying Modular Redundancy v/s Increasing Defect Rate

Here, four different MRF based 4-bit Ripple Carry Adders have been designed,

namely adder0mr, adder3mr, adder5mr and adder7mr. The modular redundancy has

been introduced at gate level. This means adderimr has been designed with mod-
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Figure 2.13: Simulation results: Probability of logic ′1′ at Sum(0), Sum(1), Sum(2),
Sum(3) and Cout with increasing fault rate and varying levels of modular redun-
dancy. Plots are for cases: (i) no redundancy, (ii) T MR (iii) 5MR (iv) 7MR

ular redundancy i at each logic gate, for i = {0,3,5,7}. The defects have been

introduced randomly and increased by one at each simulation run. Let us consider

inputs to these adders be A = “0011” and B = “0110” with input carry Cin =′ 1′.

The probability of logic ′1′ occurring on output has been plotted with increasing

faults in Figure 2.13. It has been observed that, although the reliability increases

with modular redundancy, sometimes we get wrong results with this approach.
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2.3.3 Other Probabilistic Modeling Techniques

2.3.3.1 Bayesian Network (BN)

Bayesian Networks (BNs) based probabilistic approach is proposed by Bhanja et

al. [4, 75–79] for modeling nano-domain circuits. Bayesian Networks are graphi-

cal models representing the joint probability function over a set of random variables,

using a Directed Acyclic Graph (DAG) structure [80]. The nodes of this DAG repre-

sent random variables and node to node arcs denote direct conditional dependencies.

Both Bayesian Network and Markov Random Field makes use of belief propaga-

tion algorithm [64] to calculate joint and marginal probabilities of primary output

and intermediate nodes. A conditional dependency is associated with nodes in both

frameworks. Both Bayesian Network and Markov Random Field can generate Junc-

tion trees, but by using BN, we can arrive at smallest Junction Tree [79].

Bhanja et al. [75] modeled each logic gate using conditional probability table (CPT).

If input signal states of a gate are given, then a CPT models the probability of

gate output signal being at a logic state zero (or one). Signal probabilities in a

Bayesian Network model are computed using local message passing. The inference

problem becomes complicated if the underlying undirected graph has cycles. The

network compilation process ensures generation of a loop free tree of cliques known

as Junction Tree. The Junction Tree helps in local message passing at the cost of

increased complexity. A Bayesian network is converted to moral graph followed by

triangulation to generate a Junction Tree.

The probabilistic modeling of nano-scale circuits as a Bayesian Network finds its

application in computing output error probability and switching activity estimation.

The Bayesian network preserves dependencies and can be applied to Networks hav-

ing casual flow, for example Nano-CMOS, CNT, RTD, etc. The average case com-

plexity of Bayesian Networks is least among most of the probabilistic models. The
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worst case space complexity of BN is linear, i.e., O(nFmax) where n is number of

nodes and Fmax is maximum fan-in. The time complexity is also linear, i.e., O(nN)

where N is the number of samples for stochastic inference scheme [4,75–79]. Time

and space complexities of Bayesian Network are independent of gate error prob-

abilities. Hence, we can conclude that the Bayesian network model is faster than

other probabilistic models.

The tools used in [4,75–79] for inferencing are SMILE (Structural Modeling, Infer-

ence, and Learning Engine), GeNIe, HUGIN Lite, SAMIM (Sensitivity Analysis,

Modeling, Inference and More), etc.

We have used Hugin Lite software for probabilistic modeling of combinational cir-

cuits using the methodology proposed by Bhanja et al.. Under this framework, all

logic gates are modeled and used for combinational circuit design and reliability

analysis in presence of soft transient errors.

2.3.3.2 Probability Transfer Matrix (PTM)

To estimate the effects of soft transient errors on logic circuits, another compu-

tational framework based on Probabilistic Transfer Matrices is proposed in litera-

tures [5, 81]. This transfer matrix formulation represents parallel composition of

logic gates with tensor products. Instead of probabilistic input signals as in MRF,

the PTM approach assumes gate error probabilities. With this methodology, we can

compute probability of output signal value and overall probability of correctness

for a nano-domain circuit [5]. The Probability Transfer Matrix and Ideal Transfer

Matrix model the fault prone and fault free behavior of logic gates, respectively. A

probabilistic transfer matrix P represents probability of four states of a logic signal,

i.e., P00 = correct0, P01 = incorrect0, P10 = incorrect1 and P11 = correct1. A matrix

representing all possible input probabilities can be computed by Kronecker product
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of the input signal probabilities [5]. The PTMs for logic circuits can be calculated

by multiplying the PTMs of gates connected in series and tensoring the PTMs of

gates connected in parallel. The gate PTMs are combined by considering signal

dependencies between gates. These signal dependencies use the joint and condi-

tional probabilities, within the circuit. As reported in [5], the Probabilistic Transfer

Matrices gives accurate information about output error probability, reliability and

signal observability of the circuit. Under this framework, all input combinations are

computed simultaneously and exact error probabilities are calculated.

The extremely large memory usage limits the performance and usage of PTM ap-

proach to smaller circuits. As reported in [5], PTM representation requires O(2n+m)

memory space for a gate in n inputs and m outputs. Such performance bottlenecks

can be handled by using some matrix compression technique like Algebraic Deci-

sion Diagrams or by applying some heuristic techniques like Dynamic Weighted

Averaging Algorithm and Multi-pass approach [81] for approximate analysis. Still

the memory usage is large or results are obtained at the cost of approximations.

Franco et al. proposed an SPR tool which computes the signal reliability of com-

binational circuit based on SPR model proposed in [81]. The SPR tool works with

standard cell generated logic. Here, the intrinsic signal reliability of each cell is

supposed to be known a priori. The circuit description generated by the synthesis

tool is evaluated for computing the reconvergent fanout signals, cell logical ordering

and signals that will be considered for the reliability analysis. In brief, the SPR tool

computes signal reliability of complete circuit and calculates the theoretical results

which can be used for a reliability driven design process.

We have designed the Probabilistic Transfer Matrices using MATLAB for proba-

bilistic analysis of nano-scale circuits. The basic logic gates, modeled with Prob-

abilistic Transfer Matrices approach can be used for combinational circuit design
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and reliability analysis. An 8-bit ripple carry adder is designed this methodology.

The results are provided in Section 2.3.4

2.3.3.3 Probability Desicion Diagram (PDD)

Abdollahi et al. [3] proposed a computational framework based on Binary Deci-

sion Diagrams (BDD) for representing probabilistic behavior of circuits with faulty

gates. This is known as Probabilistic Decision Diagrams (PDD). In this methodol-

ogy [3], a probabilistic inverter is attached at output of each logic gate to model its

probabilistic behavior. Thus, output function f of this gate changes to f ′ with prob-

ability p of probabilistic inverter. Abdollahi et al. [3] describes how to construct

Probability Decision Diagrams of different logic gates and circuits and extracting

output probabilities and other information from a PDD. The Probability Decision

Diagram is used to encode probabilities into the decision diagrams using weights of

the edges. A PDD is a weighted graph with directed edges and it has a single termi-

nal node which represents constant ′0′. The terminal node has no outgoing edges.

All other nodes have two outgoing edges and a decision variable x. In contrast to

other models, both nodes and edges of a Probabilistic Decision Diagram represents

a function. The function f ′ of an edge is determined by ∗ operation on weight of

edge p and function f of its end node. The ∗ operation on two probability values

a and b is given by equation (2.10). Table 2.6 gives sum and carry probabilities for

different input combinations of a half adder modeled by PDD approach. Here, p

denotes the gate probability.

a∗b = (1−a)b+a(1−b). (2.10)

Abdollahi et al. [3] explains the construction of a PDD for a probabilistic circuit

and extracting output error probabilities and other information from it. The time
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Table 2.6: Probability of sum and carry nodes of a half adder modeled by PDD

Input A Input B fsum(A,B) fcarry(A,B)
0 0 p∗0∗0 = p p∗0 = p
0 1 p∗0∗1 = 1− p p∗0 = p
1 0 p∗1∗0 = 1− p p∗0∗0 = p
1 1 p∗1∗1 = p p*0*1 = 1-p

complexity is comparatively less in PDD model. However, reconvergent fanouts in

the circuit increase the runtime.

We have modeled the Probabilistic Decision Diagram methodology in MATLAB.

The Probability Decision Diagrams for all logic gates are designed and simulated.

These logic gate PDDs are used to make combinational circuits.

2.3.4 Models Evaluation

The probabilistic framework based on Markov Random Field, Probabilistic Transfer

Matrices and Probabilistic Decision Diagrams is developed using MATLAB [6,82].

The two-input logic gate library is developed following these three methodologies,

one at a time. These logic gates are used for combinational circuit design and relia-

bility analysis in presence of soft transient errors.

Lets consider a 1-bit full adder. Suppose, the probability of logic ′1′ and logic ′0′ on

primary inputs of this adder to be 0.5. When such an adder is modeled by Markov

Random Field, the probability of sum is obtained as 0.4908. For modeling this

adder using Probabilistic Transfer Matrix, the gate probability is assumed to be 0.9.

Therefore, Probability Transfer Matrix for sum and carry is computed as:

sum =

 0.41 0.09

0.09 0.41

carry =

 0.2921 0.0829

0.0729 0.5521


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Table 2.7: Probability of sum of 8-bit ripple carry adder using MRF when inputs are
A = “11101010” and B = “11011111” and Cin = ′0′

i PMRF(sum(i) =′ 1′) Logic
0 0.724022 1
1 0.172673 0
2 0.282115 0
3 0.686591 1
4 0.260673 0
5 0.284728 0
6 0.682954 1
7 0.739023 1

Table 2.8: Probability of obtaining logic ′1′ (P11) on output sum of 8-bit ripple carry
adder using PTM (assuming input probabilities = 0.5 and gate probability = 0.9)

P(correct0) P(incorrect0) P(incorrect1) P(correct1)

sum(0) 0.4100 0.0900 0.0900 0.4100
sum(1) 0.3739 0.1886 0.1886 0.3739
sum(2) 0.3706 0.2154 0.2154 0.3706
sum(3) 0.3716 0.2232 0.2232 0.3716
sum(4) 0.3724 0.2256 0.2256 0.3724
sum(5) 0.3729 0.2264 0.2264 0.3729
sum(6) 0.3731 0.2267 0.2267 0.3731
sum(7) 0.3731 0.2268 0.2268 0.3731

Here, probability of obtaining logic ′1′ (P11) on sum and carry are computed as 0.41

and 0.5521, respectively.

An 8-bit ripple carry adder is modeled using Markov Random Field and Probabilis-

tic Transfer Matrices approaches. Table 2.7 shows the signal probabilities computed

by Markov Random Field for this adder. In this case, we assume that probability of

getting correct logic value at primary inputs is 0.9. Table 2.7 gives the probability

of getting logic ′1′ on sum when inputs are A = “11101010” and B = “11011111”

and Cin =
′ 0′. For implementing this adder using PTM approach, the probability of

correct logic on primary inputs is taken as 0.5 and gate probability is assumed to
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be 0.9. Table 2.8 shows the output probabilities of obtaining logic ′1′ (P11) on sum.

With same input probabilities, the probability of sum is obtained as 0.4908 for all

8 bits, using MRF model. However, it is inferred from Table 2.8, that error propa-

gated through the circuit is also modeled with PTM approach. Hence, as compared

to approaches discussed in this manuscript, the PTM model is more accurate.

Table 2.9: Probability Decision Diagram: results for example circuit in Figure 9
of [3]

Node F X Y
Left child probability 0.05 0.15 0
Right child probability 0.068 0.15 1

Table 2.10: Comparison of probabilistic modeling approaches based on run time
[3–5]

Circuits BN time(s) PDD time(s) PTM time(s)
C17 0.0 0.001 0.076
pcle 0.07 0.002 74.9
decod 0.14 − 56.9
cu 0.56 − 93.87
count 1.14 0.010 −
alu4 1.87 1.049 −
9symml − 0.220 1758

Further, all logic gates are also designed using Probabilistic Decision Diagram us-

ing MATLAB. The example circuit discussed in Figure 9 of [3] is implemented and

results are included in Table 2.9. The edge weights of left and right child’s of parent

node F are taken as p = 0.1 and q = 0.2. The weight associated with parent node is

r = 0.05.

In Table 2.10 the Bayesian Network, Probabilistic Transfer Matrices and Probabilis-

tic Decision Diagrams based approaches are compared for benchmark circuits. The

data in this table is obtained from [3–5].
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2.4 Conclusions

In this chapter, we have presented the state of the ark work for molecular devices

modeling and analysis. We have presented the literature review on the characteristic

properties of saturated and unsaturated organic molecules being used as electronic

device and the plausible mechanism for current transport in such devices. It is

concluded that Oligo(Phynylene Ethynylene) molecule can be a good candidate for

being used as a molecular switch. It shows NDR as well as hysteresis characteris-

tics. The methods to synthesis this OPE molecule and Gold nanoparticles of (< 100

nm diameter) are available in the literatures. An empirical device model for this

molecule is developed in VerilogA. It is used for modeling crossbar and nanocell

molecular devices. The high density crossbar molecular memories have been fab-

ricated. However, these memories suffer from large defects as precise molecular

ordering of nanowires and molecules is not achieved with available bottom-up tech-

nology. The crossbar architecture based basic logic gates and 4x4 memory devices

are modeled and their simulation results are presented.

Then we have briefly reviewed some of the probabilistic modeling techniques for

nanoscale devices. The computational framework for Markov Random Field, Prob-

abilistic Transfer Matrices and Probabilistic Decision Diagrams is developed using

MATLAB. Under these frameworks, each logic variable has finite, but random prob-

ability of being logic ’0’ or ’1’ and/or a certain error probability is associated with

each logic gate. A design library is developed for modeling this probabilistic behav-

ior of nanodevices. An 8-bit ripple carry adder is taken as a design example. The

NANOLAB tool has been used for probabilistic modeling of combinational circuits

using MRF. Both hard errors and soft transient errors, with time varying defect prob-

ability, have been assumed to be present during simulation. The NANOLAB tool

is augmented to include multiplexer based logic gate and flip flop library. These
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design entities can be directly used for combinational and sequential circuit de-

sign. Instead of 2:1 multiplexer, 4:1 multiplexer or bigger ones can be used as basic

building block. The fault tolerant approach, N-Modular Redundancy (NMR) has

been compared at different levels of granularity and for varying levels of redun-

dancy. It is observed that NMR fails to make the device fault tolerant when defect

rate is much higher than threshold value. A proposal for augmenting Markov Ran-

dom Field based modeling approach is evaluated for designing sequential circuits.

Table 2.11: Comparison of probabilistic modeling approaches [6]

Approach Time & Space Accuracy Scalability
Complexity

PDD least better more difficult
BN less better very easy
MRF high better difficult
PTM highest best most difficult

The HUGIN Lite tool is used for Bayesian networks based circuit design and anal-

ysis. It has been observed that Bayesian Network and Probabilistic Decision Dia-

grams have least time complexity among these approaches. The Probabilistic Trans-

fer Matrices require a lot of memory for data storage and long simulation time.

However, PTM approach is comparatively accurate. It is observed that:

1. time complexity of PDD and BN is less than that of MRF and PTM.

2. PTM has highest memory requirement as compared to other approaches.

3. in contrast to other approaches, time and space complexity of PTM model are

dependent on gate error probabilities.

4. PTM approach is difficult to scale because of memory limitations.

5. time complexity of PDD is better than Bayesian Network.

48



Chapter 3: Proposed Modeling and Synthesis Approaches

6. PTM, BN and PDD assumes gate error probabilities while MRF considers

probabilistic inputs only.

7. MRF logic can be implemented in modified CMOS-logic based circuitry.

We thus conclude that, the traditional fault tolerant techniques fail to provide reli-

ability under high defect rates, at nano-scale. Although nano-scale devices possess

ultra high density, so hardware is not an issue. Self reliable and self resilient circuits

are required to be designed to withstand the high defect rate at nano-scale.
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Proposed Modeling and Synthesis
Approaches

Emerging molecular crossbar technology offers high density, regular array-like and

non-volatile memory structure [7–12]. These devices consume low power, offer low

programming voltage and high switching speed. Non-volatility feature provided by

these molecular devices, permits memory to be used as programmable elements

within a logic device. However, the bottom-up approach employed for device fab-

rication at nano-scale, lacks precision in molecular device ordering and hence such

crossbar molecular devices are inherently defective. The programmable nanocell

based approach [1] circumvents this problem. In a nanocell architecture, the molec-

ular switches need not be assembled deterministically but they are randomly ori-

ented and interconnected via gold nanoparticles. In this chapter, we present the

modeling and synthesis approach for nanocell molecular memory. Similar to Field

Programmable Gate Arrays (FPGAs), a nanocell can be trained for a given func-

tionality after fabrication. This postfabrication training of the nanocell, considers

nanocell to be a black box. The nanocell is trained via external control voltage

signals. An algorithm is proposed in this chapter for postfabrication synthesis or

training of the nanocell.
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The outline of this chapter is as follows. We first present in brief the literature re-

view of the nanocell in Section 3.1. This is followed by design and verification

of 1-bit molecular memory. In Section 3.2, we illustrate the omnipotent training

algorithm for molecular memory. In Section 3.3, we illustrate a noval mortal train-

ing algorithm for synthesizing the nanocell molecular memory via external control

voltage signals. The experimental setup and simulation results are also reported for

both the training algorithms. Then, we conclude the chapter in Section 3.4.

3.1 Nanocell Molecular Memory Design Approach

3.1.1 Nanocell Molecular Devices

In contrast to molecular crossbar devices, a nanocell [1, 20, 43, 83] consists of con-

ducting nanoparticles connected via randomly placed molecules and addressed by

relatively small number of leads located at the edges. These molecules exhibit re-

programmable negative differential resistance (NDR) characteristics. The spacing

between nanoparticles and insertion of molecules between nanoparticles is con-

trolled by chemical self assembly. A monolayer of alkanethiols that coats each

nanoparticle, prevents them from coalescing into a multi-particle array. The elec-

trical contacts between adjacent nanoparticles and between nanoparticles and I/O

leads is established via molecule-metal chemical bonding. A typical nanocell would

contain 250-1000 nanoparticles and 750-10,000 molecular switches approximately.

Tour et al. used gold nanoparticles of diameter 60nm and spacing of 3nm. The

size of a typical nanocell is approximately 1µm2. The post fabrication training of a

nanocell (omnipotently or mortally [1]) can be formulated as an optimization prob-

lem. The optimization process would require as an input the nanocell to be trained,

the target logic in the form of a truth table and the I-V characteristics of the ′ON′ and

′OFF ′ states of the molecular switch. Search space for omnipotent training would
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include all possible combinations of ′ON′ and ′OFF ′ molecules and all possible

assignments of input and output pins. Tour et al. [1] provides quantitative proof in

support of the probabilistic feasibility of extracting logic from the random arrange-

ment of nanoparticles and issues pertaining to reliability of nanocells. The in-built

defect tolerance, small size, post fabrication programmability through mortal train-

ing and lack of requirement of precise molecular ordering features makes it a good

choice for future nanoscale devices.

3.1.2 Design and Verification of 1-bit Molecular Memory Cell

As an initial attempt, a 1-bit molecular memory cell model has been designed using

nanocell based approach. Figure 3.1(a) shows schematic of a nanocell based mem-

ory, which has an Address (Ad), Write/Read (W/R), Data_In (In) and Data_Out

(Out) ports. As explained earlier, the nanoparticles are connected to the molecules

via metal-molecule chemical bonding. When Address bit is set to high voltage (2V )

and the memory is in write mode (Ad = 2V and W/R = 0.5V ), the data on the

Data_In port is stored to the memory. Now, when the memory is switched to read

mode (Ad = 2V and W/R= 2V ), the data stored in the memory can be read out from

Data_Out port. Initially, the nanocell is designed in HSPICE using VerilogA model

of the Oligo (Phynylene Ethynylene) molecule, as discussed in Section 2.1.2. The

molecular connections in this nanocell are done using the directed acyclic graph

generated by Nanocell Reliability Prediction Algorithm(NRPA) (to be explained in

Section 4.1.2, Algorithm 4). For molecular connections, the following assumptions

are made:

1. A certain/fixed number of nanoparticles are present inside the nanocell.

2. Molecules are spatially distributed following the Gaussian Distribution within

the nanocell.
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Figure 3.1: Nanocell based 1 - bit molecular memory cell (a) Schematic (b) Simula-
tion results for Address (Ad), Write/Read (W/R), Data_In (In) and Data_Out (Out)
terminals. Here, 2V and 0.5V represent logic ′1′ and logic ′0′, respectively.

3. Between two nanoparticles Ni and N j, only single molecular switch Mi j is

present.

4. When voltage (≥ Vthreshold) is applied on Ni, the conformational changes oc-

cur in the molecule Mi j. This changes its resistance value and current flows

through Mi j to the nanoparticle N j, (as shown in Figure 1(b) of [19]). Thus,

we say that, the molecules in the nanocell are unidirectional i.e. directed in

the direction of current flow (from the set of input nodes to the output node).

Considering these assumptions and using the VerilogA model of the OPE molecule,

we have modeled a nanocell molecular memory in HSPICE. Figure 3.1(b) de-

picts the simulation results for a 1-bit molecular memory cell, which consists of 7

nanoparticles and 10 molecular switches. The nanocell molecular memory instance

is simulated for {(w1,r1),(w0,r0)} operations. The high and low input voltage lev-

els are defined as 2.0V and 0.5V , respectively. Further, one thousand samples of

proposed 1-bit molecular memory cell with 20 nanoparticles are generated using

Monte Carlo simulation. The input signals for {(w1,r1),(w0,r0)} operations are

given on the input terminals and output is observed on the Data_Out terminal. Also,
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Figure 3.2: Simulation results for 1000 samples of 1-bit memory cell. The left and
right y-axes represents Data_Out voltage for Read 1 and Read 0, respectively

the simulation results for Read 1 (r1) and Read 0 (r0) are plotted in Figure 3.2.

The output voltage range for r1 operation falls between 1.989 V and 1.994 V . It

is inferred that even for an untrained memory cell, bit 1 is always read correctly

and bit 0 is read correctly for more than 99.5% cases in the range of 0.490 V to

0.495 V . Thus, we can conclude that even an untrained nanocell, consisting of 20 or

more nanoparticles and a monolayer of OPE molecules, behaves as a reliable mem-

ory device. This observation is theoretically proved in the Chapter 4. However,

in order to obtain the behavior of multi-bit storage, the nanocell is required to be

trained. The algorithms for training the nanocell molecular memory are discussed

Section 3.2 and Section 3.3.

3.2 Omnipotent Training of Molecular Memory

In this Section, we will discuss the omnipotent training of a nanocell to behave as
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a multi-bit memory. By omnipotence, we mean to say that, the internal topology

of the nanocell is priori known to us and individual molecules can be switched to

′ON′ or ′OFF ′ state. Most suitable ′ON′ and ′OFF ′ states of these molecules is a

design search problem. This search is handled by Genetic Algorithm (GA). The GA

is a method for solving both constrained and unconstrained optimization problems

that is based on natural selection, the process that is derived emulating the biological

evolution. The GA repeatedly modifies a population of individual solutions. At each

step, the genetic algorithm selects individuals at random from the current population

to be parents and uses them to produce the children for the next generation. Over

successive generations, the population “evolves" toward an optimal solution.

The goal in training a nanocell is to find configurations within a randomly assembled

nanocell that will perform as a memory. The set of molecular switches and their

locations within the nanocell is passed as initial population to the algorithm. The

algorithm switches these molecules to ′ON′ or ′OFF ′ state, to find the optimal set

of ′ON′ molecular switches for which the nanocell behaves as n-bit memory.

The Algorithm 1 discusses the omnipotent training of nanocell memory using Ge-

netic Algorithm. In this algorithm, the initial population is a set of sequences of ′1′

and ′0′ bits and these sequences are randomly generated. Each sequence constitutes

a ‘chromosome’ or an ‘individual’, representing the state of molecular switches

connected between the nanoparticles within the nanocell. The length of each chro-

mosome is equal to number of molecules in the nanocell instance. A ′1′ value at the

ith position in this population represents that the ith molecule is present in ′ON′ state

in the nanocell. Similarly, ′0′ represents that the molecule is in ′OFF ′ state. Mul-

tiple sequences of M bit are generated randomly, to represent the multiple nanocell

instances. The nanocell is then simulated using HSPICE. The values of the output

voltage are then used to calculate the fitness scores of each of the individuals. The
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ALGORITHM 1: Omnipotent training of n-bit memory using Genetic Algorithm
1: inputs
2: untrained_MEM:= an untrained sample of a nanocell,
3: initial_P:= initial population of states of M molecular switches in the nanocell,
4: /* It defines the desired output voltage levels for Write/Read modes of n-bit

memory */
5: num_GEN:= number of generations,
6: max_GEN:= maximum number of generations
7: outputs
8: trained_MEM:= A trained n-bit memory device
9: do

10: Initialize Genetic Algorithm (GA) with population initial_P,
11: for num_GEN = 1 to max_GEN do
12: (i): Modify the states of molecular switches in untrained_MEM,
13: (ii): Simulate the modified untrained_MEM using HSPICE,
14: (iii): Store output voltage (Out) values for Read and Write operations for all n

bits in voltage_VAL,
15: (iv): The GA evaluates fitness function f itness_MEM() using voltage_VAL,
16: (v): It quantifies the fitness of each individual and generates new population
17: end for
18: The GA converges and provides as output:
19: (i): the optimal set of states of M molecular switches
20: (ii): the trained_MEM by setting the molecules of the nanocell to ‘ON’ and

‘OFF’ state, as obtained above
21: return (trained_MEM)
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methodology of computing the fitness scores is based on the calculation of the mag-

nitude of deviation from the expected/desired response as described in [43]. The

fitness function defines the desired output voltage levels for Write/Read modes of

n-bit memory. The genetic algorithm quantifies the fitness of each individual and

generates new population. These steps repeat with new population and process stops

after max_GEN generations. This algorithm is implemented in MATLAB, HSPICE

and PERL.

To exemplify the approach, consider a nanocell which contains 20 nanoparticles

interconnected by 242 molecules. For omnipotent training, the size of each individ-

ual is equal to number of molecules (i.e., 242) and 200 instances of this individual

are randomly generated. The individual is specified in ‘bitstring’ format, where

molecule in ′ON′ state is denoted by ′1′ and ′OFF ′ state is denoted by ′0′. So,

in MATLAB simulations, the initial population for GA is 200x242. In MATLAB

script for nanocell training, the options used for ′ga′ function are:

options = gaoptimset(′InitialPopulation′,y,′TolFun′,1.0000e−020,′Generations′,

10,′PlotFcns′,@gaplotscores;@gaplotbest f ,′PopulationSize′,20,

′SelectionFcn′,@selectiontournament,′Display′,′ diagnose′,′ StallGenLimit ′,

In f ,′ StallTimeLimit ′, In f ,′PopulationType′,′ bitstring′);

As we are providing the initial population ′y′ to GA, so we have not used creation

function (′CreationFcn′) here. Creation function specifies the function that creates

the initial population for ′ga′ and selection function (′SelectionFcn′) specify how

the genetic algorithm chooses parents for the next generation. We have used tour-

nament selection (′@selectiontournament ′). Tournament selection chooses each

parent by choosing tournament size players at random and then choosing the best
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individual out of that set to be a parent. Tournament size must be at least two and its

default value is four. We have used two plot functions, namely (i) ′@gaplotscores′

and (ii) ′@gaplotbest f ′. The ‘@gaplotscores′ plots the scores of the individuals at

each generation and ′@gaplotbest f ′ plots the best function value versus generation.

The algorithm stops if

1. the average relative change in the best fitness function value over Stall gener-

ations (′StallGenLimit ′) is less than or equal to Function tolerance (′TolFun′,

1.0000e-020), or,

2. there is no improvement in the best fitness value for an interval of time in

seconds specified by Stall time limit (′StallTimeLimit ′ ), as measured by CPU

time.

Information is displayed at each iteration because we have chosen ′diagnose′ option

for ′Display′. These options along with fitness function are given as input to the ′ga′

function which computes an optimal set of ′ON′ molecules as output with which

the nanocell behaves as memory. A fitness of zero indicates that the individual

successfully functions as the target memory device.

3.2.1 Experimental Setup

Consider a nanocell consisting of 20 nanoparticles and 242 molecules. Assume an

initial set of connection of these molecules to the nanoparticles. Let this nanocell

is to be trained to behave as a 1-bit memory using omnipotent training. Then, the

algorithm stated above can be applied to compute the set of ′ON′ molecules (out of

242) such that the nanocell behave as 1-bit memory cell. The simulation results of

trained memory cell are similar to the one shown in Figure 3.1. In order to train

such a nanocell as n-bit memory, only the fitness function is required to be changed.
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Figure 3.3: Nanocell based 2 - bit molecular memory cell: Simulation results for
Address 1 (A1), Address 2 (A1), Write/Read (W/R), Data_In (In) and Data_Out
(Out) terminals. Here, 2V and 0.5V represent logic ′1′ and logic ′0′, respectively.

A n-bit memory device consists of n Address lines (Ai, ∀ i = 1 to n), a Write/Read

(W/R), a Data_In (In) and a Data_Out (Out) ports. Whenever ith Address line

(Ai = 2V ) is high, the Write (wi
a) or Read (ri

a) operation is performed for the ith bit

(a = 0 or 1). The fitness function is modified thus accordingly to depict such be-

havior. The Figure 3.3 shows the simulation results of an omnipotently trained two-

bit memory device. The output of Out port for {(w1
1,r

1
1),(w

1
0,r

1
0),(w

2
1,r

2
1),(w

2
0,r

2
0)}

operations on bit 1 (A1 = 2V and A2 = 0.5V ) and then on bit 2 (A1 = 0.5V and

A2 = 2V ) have been plotted. The noise margin high and low are assumed to be

NMH = NML = 0.4. As shown in Figure 3.3, the voltage value on Out port for Read

1 (ri
1) and Read 0 (ri

0) is within this noise margin for both the bits (i = 1 and 2).

Applying this methodology, we have successfully trained up to 4-bit memory.
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Figure 3.4: Schematic to design multi-bit memory by using multiple n-bit Memory
Cells (represented by green square box). Each Memory Cell consists of N nanopar-
ticles (red circles) and M molecular switches (black arrows). [Note: Not drawn to
scale]

Figure 3.4 illustrates how, in general, n-bit memory cells could be used in mesh

formation to construct multi-bit memory. In this figure, each block (named as n-bit

Memory Cell) represents a nanocell having 20 nanoparticles and it has been trained

as 2-bit memory device. We have trained a 64-bit memory by using thirty two such

2-bit memory cells, as illustrated in Figure 3.4. The higher order memory devices

can also be trained using similar concepts.

3.3 Mortal Training of Molecular Memory

As stated earlier, for On-Chip training or postfabrication of the nanocell, it would

be impossible to switch the individual molecules to ′ON′ or ′OFF ′ state. This is due

to extremely small size of the molecules and the nanoparticles. Hence, the nanocell

must be trained by mortal assumption. By mortal training, we mean to say that, the

nanocell is assumed to be a black box to the training algorithm and voltage signals
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ALGORITHM 2: Mortal training of n-bit memory using Genetic Algorithm
1: inputs
2: untrained_MEM: an untrained sample of a nanocell,
3: initial_C: initial population of randomly generated k Control Voltage Signals

(CVS),
4: /* These CVS are denoted as Ci, ∀i = 1 to k
5: /* Each Ci value is either low (Vlow) or high (Vhigh) */
6: num_GEN: number of generations,
7: max_GEN: maximum number of generations
8: outputs
9: trained_MEM: A trained n-bit memory device

10: do
11: Initialize Genetic Algorithm (GA) with population initial_C
12: for num_GEN = 1 to max_GEN do
13: (i): Modify the values of Control Voltage signals in untrained_MEM
14: (ii): Simulate the modified untrained_MEM using HSPICE
15: (iii) Store output voltage (Out) values for Read and Write operations for all n bits

in voltage_VAL
16: (iv): The GA evaluates fitness function f itness_MEM() using voltage_VAL
17: (v): It quantifies the fitness of each individual and generates new population
18: end for
19: The GA converges and provides as output:
20: (i): the optimal set of control voltage (Ci) values
21: (ii): the trained_MEM by using these control voltage values
22: return (trained_MEM)
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are applied externally to switch the state of the molecules. This methodology for

mortal training of the nanocell using Genetic Algorithm (GA) is proposed in this

Section.

The Algorithm 2 discusses the Genetic Algorithm (GA) based mortal training of

the molecular memory. Initially, the set of nanoparticles (out of 50) which are to be

connected to the CVS ports are chosen randomly. For this, the Gaussian distribution

with µ = 25 and σ = 20 is used. A DC voltage (i) Vlow = 0.5V , or (ii) Vhigh = 2.0V ,

is applied to all these Control Voltage Signals (Ci, ∀i = 1 to 20). The number

of individuals are kept constant throughout all generations (i.e. number of CVS

= k = 20). Other options are same as we have choosen for omnipotent training

(as discussed in previous Section). The GA trains the nanocell for a maximum of

max_GEN generations. The fitness function f itness_MEM() computes whether the

Out voltage for read operation is obtained in acceptable noise margin or not. In the

end, the GA converges to optimal set of Control Voltage (Ci) values (high or low)

for which the nanocell behaves as a n-bit memory. By this we mean to say that, a

DC voltage value (i) Vlow = 0.5V , or (ii) Vhigh = 2.0V , is assigned to each Ci, such

that the nanocell, trained_MEM, behaves as a n-bit memory.

3.3.1 Experimental Setup

Consider a nanocell consisting of 50 nanoparticles and 644 molecular switches.

Suppose this nanocell is to be trained mortally to exhibit the behavior of a 2-bit

memory device. The schematic of a 2-bit memory is shown in Figure 3.5. As

depicted from this figure, the internal molecular connections of the nanocell are

assumed to be unknown for mortal training. The Address 1 (A1), Address 2 (A2),

Write/Read (W/R), and Data_In (In) are the input ports and Data_Out (Out) is the

output port. There are twenty Control Voltage Signals (CVS), denoted as Ci, ∀i =

1 to 20 in Figure 3.5. A set of high or low voltage signals are applied to these
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Figure 3.5: Schematic of proposed mortally trained 2-bit memory device consisting
of 20 control signals [Note: Not drawn to scale]

CVS ports which are used to externally switch the state of molecules to ′ON′ or

′OFF ′. The set of CVS values for which the nanocell behaves as a 2-bit memory is

computed by utilizing the Algorithm 2. In this way, the nanocell is mortally trained

to behave as a 2-bit memory. The simulation results of 2-bit memory device for read

and write operations are similar to those obtained by omnipotent training, as shown

in Figure 3.3.

3.3.2 Design space exploration

As a proof of concept, an experiment is preformed to analyze the mortal training

approach in complete design space of a nanocell, consisting of N nanoparticles

and M molecular switches. Suppose such a nanocell is to be trained for storing

2-bits of data. Then, as depicted from Figure 3.5, there will be five input-output

nodes and five or more Control Voltage Signals (CVS) that can be chosen from
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ALGORITHM 3: Mortal training of n-bit molecular memory
1: inputs
2: untrained_MEM:= an untrained sample of a nanocell consisting of N nanoparticles,
3: num_C:= number of Control Voltage Signals,
4: num_C_LOC:= number of nanoparticles to which Control Voltage Signals (CVS)

can be applied
5: /* num_C_LOC ⊂ N */
6: /* num_C_LOC ≤ (N− IO), where IO denotes number of input and output nodes

other than CVS*/
7: /* num_C_LOC ≥ num_C*/
8: outputs
9: trained_MEM: set of all successfully trained n-bit memory devices,

10: num_MEM: number of trained n-bit memory samples in the set trained_MEM
11: do
12: Generate_C(num_C)
13: for i = 1 to num_C do
14: Generate a set S which consists of all bipartitions of num_C Control Voltage

Signals, Ci.
15: for j = 1 to sizeo f (S) do
16: Assign {Vlow or Vhigh} to each C j

i
17: end for
18: Save these in CV S_VALUES.
19: end for
20: Generate_C_Loc(num_C_LOC, num_C)
21: (i):Generate all possible combinations of num_C_LOC nanoparticles to which

num_C control voltage signals can be connected.
22: (ii):Save these in LOCAT IONS.
23: Generate_Mem(untrained_MEM, LOCAT IONS)
24: (i): Modify untrained_MEM by using Control Voltage Signal location specified

in LOCAT IONS.
25: (ii): Save all memory samples in MEM_MODIFIED.
26: Generate_Spfiles(MEM_MODIFIED, CV S_VALUES)
27: (i): For each memory sample in MEM_MODIFIED, assign Control Voltage

values from CV S_VALUES.
28: (ii): Save all newly modified memory samples in SP_FILES.
29: Simulate_Mem(SP_FILES)
30: (i): Simulate all memory samples in SP_FILES using HSPICE.
31: (ii): Save output in OUT _FILES.
32: Fetch_Mem2bit(OUT _FILES)
33: (i): Select all those memory samples, for which n-bit memory read and write is

done in acceptable noise margin, using the OUT _FILES.
34: (ii): Copy all selected memory samples to trained_MEM.
35: return (trained_MEM, num_MEM)
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remaining N − 5 nanoparticles. Let num_C and num_C_LOC denote the number

of CVS and the number of nanoparticles to which CVS can be assigned, respec-

tively. Again, num_C_LOC ≤ (N − 5). So, a total of Cnum_C_LOC
num_C combinations

in which num_C Control Voltage Signals can be applied to the untrained mem-

ory (untrained_MEM). Thus, all possible combinations of num_C_LOC nanoparti-

cles to which num_C Control Voltage Signals can be connected are generated using

the sub-routine: Generate_C_Loc(num_C_LOC, num_C), as shown in Algorithm 3.

Further, on these num_C Control Voltage Signals, a DC voltage (i) Vlow = 0.5V ,

or (ii) Vhigh = 2.0V is to be applied. The sub-routine Generate_C(num_C) is used

to find all possible bipartitions of num_C control signals. Total number of unique

bipartitions for num_C control signals are 2num_C−1− 1. Here we have excluded

all low voltage and all high voltage. These bipartitions are stored in LOCAT IONS.

Then, CV S_VALUES and LOCAT IONS, obtained in step 12 and 20 of this algo-

rithm, are used to modify the untrained_MEM and generate the memory samples,

as explained in steps 23 and 26. Further in step 29, these memory samples are simu-

lated in HSPICE and results are saved in OUT _FILES. Finally in step 32, all spice

files which successfully perform read and write operation on both bits are selected.

These are the set of trained memory files for a given noise margin. In Algorithm 3,

all directory names are written in capital, to distinguish them from variables. The

functions (or sub-routines) are written in bold with a brief description beneath them.

These functions are implemented in MATLAB, HSPICE and PERL.

To exemplify this approach, consider a nanocell consisting of twenty nanoparticles

and six CVS which can be connected to any of the twelve nanoparticles. Then,

total combinations in which six CVS signals can be connected is C12
6 = 924, cal-

culated using sub-routine Generate_C_Loc(num_C_LOC, num_C). Also, the sub-

routine Generate_C(num_C) computes 26−1−1 = 31 bipartitions in which high or
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Table 3.1: Number of successfully trained nanocell configuration for 2-bit memory
read and write operation. Here, noise margin for Data read operation on output
voltage node is considered as 0.4V

No. of nano- No. of No. of successfully trained
particles per molecules nanocell instances with i CVS
Nanocell (N) (M) 6 CVS 8 CVS 10 CVS 12 CVS

20 97 2 0 0 0
20 104 1 0 0 0
30 223 27 13 5 0
30 214 33 19 4 0
40 399 103 55 13 2
40 392 98 43 10 1

Total 6x31x924 6x127x495 6x511x66 6x2047x1

low voltage is applied to six CVSs. Using this, a total of (31 x 924) modified mem-

ory samples are simulated for {(wi
1,r

i
1),(w

i
0,r

i
0)}, for both the bits (i = 1 and 2).

The process is repeated by (i) varying the number of CVS (6, 8, 10, 12), and (ii) in-

creasing the number of nanoparticles (20, 30, 40). That is, consider three nanocells,

each consisting 20, 30 and 40 nanoparticles, respectively. It is observed from Figure

4.2(a) that the probability of at least one path from input to output is close to unity

for most of the cases, when N = 20 or more. Hence, for mortal training, we have

chosen N=20, 30 and 40. Any other value for N (> 20), can also be chosen. Then,

for each value of N, two samples of nanocell are generated using NRPA algorithm

(Algorithm 4) (to be explained in Section 4.1.2). So, two nanocell samples with

M = 97 and M = 104, respectively, are generated. It is deduced from Table 4.2, that

if N = 20, the number of molecules in nanocell sample may vary from 67 to 123,

with mean 95. So, we have generated a total of six memory samples with varying

number of nanoparticles. Now, for each of these memory samples, generate four

memory instances by varying number of CVS, namely, 6, 8, 10 and 12 CVS respec-

tively. So, a total of 24 memory samples are generated. However, any other value
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of CVS can also be chosen for design space exploration. Then, for each case apply

Algorithm 3 and obtain number of successfully trained memory samples. The total

number of successfully trained 2-bit memory samples are listed in the Table 3.1.

The last row of this table depicts the total number of memory samples (SP_FILES)

simulated for 6, 8, 10 and 12 CVS, respectively. It is inferred from this table that

to successfully train a 2-bit memory, the number of CVS must be approximately

one-forth of the total number of nanoparticles. In this way, we can conclude that, if

a nanocell contains N nanoparticles and IO input/output ports, then upper limit on

CVS is (N− IO) and lower limit is (N/4). Also, it is observed that as we increase

the number of CV S signals, nanocell’s overall functionality is decreased.

3.4 Conclusions

In chapter 3, the nanocell molecular memory modeling and synthesis approach is

presented. The device model of this OPE molecule [17–19] is described in Ver-

ilogA and used for modeling the nanocell molecular memory in HSPICE. Due to

the hysteresis property of the OPE molecule, it is observed that even an untrained

nanocell behaves as a buffer or a latch, provided that at least one path is present be-

tween input and output node. The 1-bit molecular memory cell is verified for 1000

random configurations generated using Monte Carlo Simulation. It is observed that

such a memory cell can successfully perform read and write operation for more than

99.5% of the samples.

The concept is further extended and applied for post fabrication synthesis of the

nanocell by (i) omnipotent as well as (ii) mortal training. The Genetic Algorithm

(GA) is used for training the nanocell. In the proposed approach for mortal training,

the external Control Voltage Signals (CVS) are applied to some of the nanoparticles

in the nanocell. All possible combinations of high and low voltage values are ap-
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plied to these (CVS). Finally, a set of CVS voltage values are obtained for which the

nanocell behaves as a n-bit memory. Since, the search space exponentially increases

with the increase in number of nanoparticles and number of CVS, the proposed Ge-

netic Algorithm based mortal training algorithm can be applied to successfully train

a nanocell in polynomial time. However, a considerable amount of noise margin is

present in the trained 2-bit memory device. Our methodology is flexible and easily

scalable to synthesize the nanocell for multi-bit storage functionality.

However, there are certain limitations associated with our theoretical modeling

pproach. These are listed below:

• The molecular device model used in this thesis is based on empirical equa-

tions as proposed by [39–42]. In practical, the change in conduction states

of the molecule depends on its conformational changes as discussed by [32].

Thus, it is a dire necessity to propose an enhanced as well as efficient molec-

ular device model that captures these conformational changes. Also, it should

be flexible enough to be used in nanocell or crossbar device model. Hence, it

is expected that the updated molecular memory model, will be close to real-

istic behavior of molecule.

• We have assumed that between any two nanoparticles only one molecule is

present. However, when a self assembled monolayer of molecules is inserted

between randomly placed gold nanoparticles, it will be quiet impossible to

have single molecular connection between two nanoparticles. Thus, in order

to make a robust nanocell model, such an assumption must be removed. It is

required to analyze the effects of multiple edges and self loops in a nanocell.

• We have not focused on optimally tuning the parameters of Genetic Algorithm

(GA). As explained in Section 3.3.2, the search space is very large and it takes
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a couple of days to find a near optimal solution. Hence, we used GA to find

the best optimal solution in polynomial time for both the training algorithms.

However, it is observed that the Genetic Algorithm consumes large amount of

time for convergence, even for training a small nanocell of 50 nanoparticles.

It is required to explore adaptive learning algorithms to reduce the training

time.

• The proposed mortal training needs to be applied for training large nanocell

molecular memory.
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Chapter 4

Probabilistic Analysis of Nanocell
Molecular Memory

In nano-scale devices, the soft transient errors play a vital role [2]. The defect rate

can be in the range 10−3 to 10−7 in nano-scale devices [7, 8]. These defects can

occur due to hard errors or soft errors. The hard errors or structural defects are

caused during the device fabrication and later due to aging effects. Noise, thermal

perturbation, cosmic rays, etc. are the environmental factors that may cause a soft

transient error to occur. As compared to other nano-scale devices, a nanocell is de-

fect tolerant even in presence of high defect rate [1,20]. This is because of multiple

redundant conducting paths present between input and output node of a nanocell.

Thus, even if some of the molecules fail, the device functions correctly until no

such path is present. As we know, effect of transient errors is for a short while, so

the failed molecules may get repaired after sometime. Throughout this thesis, by

molecular failure, we mean to say that it has turned ′OFF ′. This can happen because

of (i) broken chemical bond (connection) between nanoparticle and molecule, or (ii)

the transient errors cause a conformational change to the molecule and it switches

to a low conducting state. Similarly, repairing of a molecule denotes that it turns

′ON′ and now it is functioning properly. The external electric field applied to the
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molecule is responsible for the transition between high and low conductance states.

The electric field changes the molecular dipole moment of middle phenylene ring in

OPE molecule and thus the transition of the states takes place [22, 32]. Henceforth,

this failure and repair behavior of the molecules within the nanocell can be modeled

as a continuous parameter birth-death process [84, 85]. A birth-death process is a

Markov chain with states {0,1, . . .} for which transitions from state Sn may go only

to either state Sn−1 or state Sn+1. That is, only one step transitions are allowed in a

birth-death process.

In this chapter, we present the probabilistic modeling and analysis of nanocell. In

section 4.1, a computational framework is proposed to compute the probability of

retrieving the stored data bits correctly at the output terminal of the nanocell buffer.

Also, the bounds on reliability of nanocell at any instant of time are computed.

The necessary and sufficient conditions for correct functioning of a nanocell are de-

rived. An algorithm is proposed and evaluated to automatically generate a nanocell

instance and compute the probability that at least one path is present between in-

put and output. This algorithm is implemented in MATLAB, HSPICE and PERL.

Moreover, the experimental setup for the nanocell’s reliability estimation is pre-

sented and results are discussed.

Further, an augmented continuous parameter birth-death model is proposed in sec-

tion 4.2 and it is used for reliability evaluation of a nanocell in presence of tran-

sient errors. For this mathematical framework, the steady state probability and

probability of being in each sub-state is computed. The proposed approach is ex-

tended to compute the expected lifetime and availability of the nanocell using the

birth-death model of molecules and their spatial connectivity. An algorithm is pro-

posed and implemented in MATLAB, PERL and HSPICE, to automatically gener-

ate the proposed model representation for a given nanocell and use it to estimate the
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success_ratio as well as the nanocell reliability, while considering the uncertainties.

Conclusions along with the limitation of theoretical modeling are presented in sec-

tion 4.3

4.1 Reliability Analysis of Nanocell in Spatial Domain

A nanocell may have multiple paths connecting input to output ports. At least one

of the minimal path must be present between these ports. This is a necessary con-

dition for correct functioning of the nanocell based device. It is sufficient to have

multiple paths from inputs to outputs and some of which may or may not intersect.

The presence of multiple paths introduce redundancy and increase probability of

getting correct output.

Let us model the nanocell as a planar graph G(V,E), where nanoparticles are the

nodes and molecular switches in ′ON′ state are the edges. The graph G(V,E) is

assumed to be a directional graph such that all the molecules are oriented in same

direction, i.e. from input to the output (as explained in Chapter 3). The primary

input port is the root node and the primary output port is the leaf vertex of the graph

G(V,E). Consider a nanocell with ′N′ nanoparticles and ′M′ molecular switches.

Assume that these nanoparticles are always present and molecular switches are

distributed by Gaussian distribution within the nanocell. A molecular switch i is

present in ′ON′ state with probability pi.

P{Xi = 1}= pi, ∀i = 1 to M (4.1)

This probability that ith molecule is present in ′ON′ state is called reliability of that

molecule at that instant of time, denoted as R(pi). So, the probability that there is

no edge (or connection) between two nodes (or nanoparticles) is (1− pi). Again,
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the probability that at least one edge is present between two nodes is given by:

P{Xi ≥ 1}= 1− (1− pi), ∀i = 1 to M (4.2)

To exemplify the proposed approach, a small nanocell is considered. Let us suppose

that it consists of three molecular switches (m1, m2 and m3) and three nanoparticles

(A, B and C), as shown in Figure 4.1(a). Here, input voltage is applied on A and

received on C. This can be done via two minimal paths: (i)
−−→
ABC = {A−m1−

B−m2−C}, or (ii)
−→
AC = {A−m3−C}. Correct output will be received on C

via path
−−→
ABC if both molecules m1 and m2 are present. Similarly, data will be

correctly received on C via path
−→
AC if the molecule m3 is in ′ON′ state. These are

the two redundant paths and at least one of them should be working correctly to

obtain correct output. Thus, the probability of receiving correct data on node C is

given by:

Ppath = (Probability that both m1 and m2 are present in ’ON’ state

on path
−−→
ABC) or (Probability that m3 is present in ’ON’

state on path
−→
AC)

= 1− (1− pm1 pm2)(1− pm3) (4.3)

= pm3 + pm1 pm2− pm1 pm2 pm3 (4.4)

In this example, the nanocell is working as a buffer. The low and high voltage

applied on input node A are 0.5 V and 2.0 V , respectively. Table 4.1 shows the

low and high voltage values received on node C when either none or some of the

molecules are missing. Out of eight test cases, correct output is received for five

cases only. In other words, 5/8 = 0.625 or there are 62.5% chances of getting
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Figure 4.1: A small network of nanoparticles and molecular switches (a) 3-particles,
3-switches, 2-paths between node A to node C (b) multiple particles and switches,
multiple paths between node A to node F

Table 4.1: Simulation results for an example nanocell configuration when none or
some of the molecules are missing

Missing Molecules V(low) V(High) Ppath

None 0.4935 1.9935 0.625
m1 0.4951 1.9951 0.500
m2 0.4951 1.9951 0.500
m3 0.4902 1.9902 0.250

m1, m2 0.4951 1.9951 0.500
m2, m3 0 0 0.000
m1, m3 0 0 0.000

m1, m2, m3 0 0 0.000

correct output voltage. Theoretically, on substituting pmi = 0.5, ∀i = 1,2,3 in the

above equation, we get Ppath = 0.625. Thus, our theoretical and experimental results

are matching. The last three cases in the Table 4.1 denotes the minimal cut sets for

this nanocell, denoted by, C1 = {m2,m3}, C2 = {m1,m3} and C3 = {m1,m2,m3}.

As depicted from Table 4.1, output voltage is not received for these cases.

Further, to evaluate the reliability of a trained nanocell, we assume that there are

k redundant paths from input to output. Each of these paths may vary in length.

The length of any path i can be represented by variable li, ∀i = 1 to k. That is,

each path consists of li molecules connected in series and such k paths are working

in parallel. For correct functioning of the system, at least one of the i paths must
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function correctly. Consider an indicator variable x ji which denotes the state of

molecular switch j on path i, such that:

x ji =


′1′ if molecule j on path i is ‘ON’,

′0′ otherwise.
(4.5)

We define a structure function φ(x)i for path i as:

φ(x)i =
li

∏
j=1

x ji = φi, ∀i = 1 to k (4.6)

Then, structure function of the whole system can be given as:

φ(X) = max(φ1,φ2, . . . ,φk) (4.7)

Hence, the reliability R(p) of the whole system at any instant of time is given as:

R(p) = P{φ(X) = 1} (4.8)

= 1−
k

∏
i=1

(1−∏
j∈li

p j) (4.9)

Let’s consider another example having multiple paths from input to output, as shown

in Figure 4.1(b). The node A is input and node F is output. The structure function

for all minimal paths from A to F are {x31x81, x22x52x82, x23x63x93, x24x74, x15x45x75,

x16x46x66x96, x17x47x57x87}. We can say that, at least one of the minimal path from A

to F must be present to receive correct output at F . This can be defined as necessary

condition for a workable nanocell. It is sufficient to have more than one path from
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A to F . The structure function for this system is given as:

φ(X) = max(x31x81, x22x52x82, x23x63x93, x24x74, x15x45x75,

x16x46x66x96, x17x47x57x87) (4.10)

and, the reliability is computed as:

R(p) = P(φ(X) = 1)

= 1− (1− p3 p8)(1− p2 p5 p8)(1− p2 p6 p9)(1− p2 p7)

(1− p1 p4 p7)(1− p1 p4 p6 p9)(1− p1 p4 p5 p8) (4.11)

4.1.1 Bounds on reliability of a Nanocell

Let {path1, path2, . . . , paths} denote minimal path sets connecting input node to the

output node and we define Ei, ∀ i = 1 . . .s as Ei = {at least one molecular connection

on path pathi has failed}.

By failing of the molecular connection, we mean to say that, molecule is in ′OFF ′

state. If at least one of the molecules in the minimal path set has failed, the system

will fail eventually. Mathematically, it is denoted as:

1−R(p) = P(E1E2 . . .Es) (4.12)

= P(E1)P(E2|E1) . . .P(Es|E1E2 . . .Es−1) (4.13)

Henceforth, it can be easily derived that failure of at least one molecule in minimal

path pathi can increase the probability of failure of at least one molecule in path

path j. This would be the case if both paths pathi and path j overlap. So, we can
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write:

P(E j|Ei)≥ P(E j) (4.14)

Similarly, we can say:

P(Ei|E1E2 . . .Ei−1)≥ P(Ei) (4.15)

Substituting in equation (4.13), we get:

1−R(p)≥
s

∏
i=1

P(Ei) (4.16)

On simplifying above equation, we obtain:

R(p)≤ 1−
s

∏
i=1

[
1− ∏

j∈pathi

p j

]
(4.17)

Again, let {cut1,cut2, . . .cutr} denote the minimal cut sets. We define the events

C1,C2, . . . ,Cr by Ci = {at least one molecular device in cuti is functioning}. Since,

the nanocell will function iff all of the events Ci occur, we say:

R(p) = P(C1,C2 . . .Cr) (4.18)

= P(C1)P(C2|C1) . . .P(Cr|C1 . . .Cr−1) (4.19)

≥
r

∏
i=1

P(Ci) (4.20)

Hence,

R(p)≥
r

∏
i=1

[
1− ∏

j∈cuti

(1− p j)

]
(4.21)
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So, bounds on reliability function are given as:

s

∏
i=1

[
1− ∏

j∈cuti

(1− p j)

]
≤ R(p)≤ 1−

r

∏
i=1

[
1− ∏

j∈pathi

p j

]
(4.22)

Considering the same example as shown in Figure 4.1(a), the reliability bounds are

expressed as:

(1− (1− pm2)(1− pm3))(1− (1− pm1)(1− pm3))

(1− (1− pm1)(1− pm2)(1− pm3))

≤ R(p)≤ 1− (1− pm1 pm2)(1− pm3)) (4.23)

Substituting pmi = 0.5 ∀ i = 1,2,3 we get:

0.4922≤ R(p)≤ 0.6250 (4.24)

These reliability bounds match the values computed in column 4 of Table 4.1. This

example can be generalized for nanocells consisting of more than three nanoparti-

cles and molecules and similar results can be obtained.

4.1.2 Experimental setup for Reliability Prediction in Spatial

Domain

We have proposed a Nanocell Reliability Predication Algorithm (NRPA) in this sub-

section. This Algorithm 4 computes set of all minimal paths connecting the input

node to the output node of a nanocell and return as an output, the probability Ppath

of at least one path being present between input and output node. The NRPA algo-

rithm is based on probabilistic analysis of nanocell in spatial domain and it is im-
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ALGORITHM 4: Nanocell Reliability Prediction Algorithm (NRPA)
1: inputs
2: N := Number of Nanoparticles,
3: IP := Primary Input Node ,
4: OP := Primary Output Node,
5: Pmol := Probability of a molecule being present between two nanoparticles and

found in ’ON’ state
6: outputs
7: Ppath := Probability that at least one path exists between IP and OP,
8: do
9: Initialization.

10: Generate a NxN random array (Adjacency Matrix) with Gaussian Distribution
(µ =1,σ =0.9); Adj_Matrix= Generate_Matrix(N,N,µ ,σ ).

11:12: Convert this Adjacency Matrix to Edge Matrix;
13: Edge_Matrix = Convert_to_EdgeMatrix(Ad j_Matrix).
14: Remove self loops and backward pointing edges from this matrix;
15: Fwd_pointing_array = Generate_Dag(Edge_Matrix).
16: Calculate Number of Molecules, denoted as ’M’;
17: M = size(Fwd_pointing_array,1).
18: Add weight to each connected edge = Pmol and unconnected edge = ∞ of

Fwd_pointing_array;
19: Nanocell_Mat[N][N] = Weighted_Matrix(Fwd_pointing_array,Pmol).
20: Calculate k shortest paths from IP to OP using modified Dijkstra algorithm;
21: shortest_path = Dijkstra_k(Nanocell_Mat,IP,OP,k).
22: Assign probabilities to each molecule;
23: PM = Assign_Prob(Pmol).
24: Calculate probability Ppath, using equation (4.9);
25: Ppath = Compute_Prob(shortest_path, PM).
26: return (Ppath)

79



Chapter 4: Probabilistic Analysis of Nanocell Molecular Memory

plemented in MATLAB. The parameters such as number of nanoparticles (N), input

(IP) and output (OP) terminals of the nanocell and the probability of presence of a

molecule and subsequently of being found in ′ON′ state between two nanoparticles

(Pmol) are given as an input to the algorithm. First, a graph G(V,E) for the nanocell

is generated. The nodes of the graph are the nanoparticles and directed edges are

the molecules, which points from the input to the output node. It is assumed that

the molecules are distributed with Gaussian Distribution within the nanocell. As we

assume that, between two nanoparticles only one molecular connection is present

and these molecules are directed from input to the output. Thus, all the multiple

edges and self loops are removed from the graph to obtain a directed acyclic graph

in the step 4 of the NRPA algorithm. Thereafter, the probability Pmol = 0.5 is as-

signed to each molecule. Further, the Dijkstra’s shortest path algorithm is modified

and utilized to find set of all paths from the input node to the output node in step 7.

This NRPA algorithm finally computes the probability that at least a path is present

between input and output node of the nanocell device, denoted as Ppath, using equa-

tion (4.9).

A single input single output memory element is considered as a test case for ex-

emplifying the algorithm. The number of nanoparticles are increased from 1 to 20.

For each case, 10000 samples are generated using NRPA algorithm. It has been

observed that Ppath approaches to unity with increase in number of connected paths

between input and output nodes. The number of connected paths depend on N and

M. With 20 nanoparticles, Ppath is close to one, for majority of the samples. The

simulation results for nanoparticles from 5 to 20 are summarized as boxplots in Fig-

ure 4.2. Further, Table 4.2 depicts the simulation results for 1 to 20 nanoparticles.

Theoretically, it can be proved from (9.10) of [85] that the probability of a random
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Figure 4.2: Simulation results for samples generated using NRPA algorithm (a)
Probability of existence of at least one minimal path in a nanocell (Ppath) (b) Number
of molecules (M) in a nanocell. Here, (i) the central mark is the median (ii) the
edges of the box are 25th and 75th percentiles (iii) the whisker extend to the most
data points which are not considered as outliers (iv) the unfilled dots represent the
outliers

graph with n nodes to be connected is given by:

1−Pn ≈ nqn−1 as n→ ∞

For n = 20 and q = 0.5, the probability Pn is computed as 0.99998.

Further, the NRPA algorithm is augmented to compute the upper and lower bounds

on reliability using equation (4.22). The number of nanoparticles are varied from 7

to 15 and using modified NRPA algorithm 5000 samples of nanocell, for each value

of N, are generated. For these samples upper and lower bounds on probability the

nanocell reliability are computed. The boxplots for the reliability bounds are shown

in Figure 4.3. It is observed that as the number of nanoparticles increase, the upper

bound on reliability approaches to one and for most of the nanocell samples, the

lower bound on reliability is close to 0.25. Here, we have assumed that Pmol = 0.5.

However these bonds on reliability will vary with the probability of the molecule,

that is, Pmol .
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Table 4.2: Simulation results for path probability (Ppath) and number of molecules
(M) w.r.t. number of nanoparticles (N) in a nanocell

No. of nano- Probability that at least No. of molecules
particles per a path exists (Ppath) per Nanocell (M)
Nanocell (N) min. avg. max. min. avg. max.

1 0.0000 0.0000 0.0000 0 0 0
2 0.0000 0.5000 0.5000 0 1 1
3 0.0000 0.3434 0.6250 1 2 3
4 0.0000 0.3654 0.7542 1 3 6
5 0.0000 0.4111 0.8679 1 5 10
6 0.0000 0.4714 0.9390 1 7 14
7 0.0000 0.5412 0.9781 3 10 19
8 0.0000 0.6100 0.9832 4 14 25
9 0.0000 0.6712 0.9961 6 18 29

10 0.0000 0.7434 0.9999 9 22 36
11 0.0000 0.7969 1.0000 13 27 40
12 0.0000 0.8473 1.0000 18 32 47
13 0.0000 0.8909 1.0000 22 40 54
14 0.0000 0.9234 1.0000 28 45 63
15 0.0000 0.9472 1.0000 33 52 73
16 0.0000 0.9669 1.0000 38 60 83
17 0.0000 0.9783 1.0000 47 70 90
18 0.1250 0.9871 1.0000 56 76 97
19 0.1250 0.9924 1.0000 60 85 113
20 0.0000 0.9952 1.0000 67 95 123

In this section, we have discussed the probabilistic modeling and analysis of nanocell

in spatial domain. It is observed that the presence of at least one minimal path from

input to output is a necessary condition for correct functioning of the device. Again,

it is sufficient to have multiple minimal paths to obtain the desired output. These

multiple paths add redundancy to the nanocell device and thus make it defect tol-

erant. It is observed that the probability of the existence of at least one path from

input to output approaches close to unity with presence of 20 or more nanoparticles

in a nanocell. Also, the bounds on reliability are computed. In this section, we have

assumed that a molecule is present between two nanoparticles with a constant prob-
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Figure 4.3: Simulation results for samples generated using NRPA algorithm. (a)
Upper bound on probability Ppath (b) Lower bound on probability Ppath. Here, (i) the
central red mark is the median (ii) the edges of the box are 25th and 75th percentiles
(iii) the whisker extend to the most data points which are not considered as outliers

ability of 0.5. But, in reality, this probability (Pmol) will follow some distribution

and it will depend on time as well as environmental uncertainties. Therefore, in next

section, we discuss the probabilistic modeling and analysis of nanocell in temporal

domain, while considering the transient errors.
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4.2 Reliability Analysis of Nanocell in Temporal Do-
main

4.2.1 Probabilistic Modeling of Nanocell

Consider a nanocell having N nanoparticles connected via M molecular switches.

Let χ(t) denote the number of ′ON′ molecules at time t. The functional behav-

ior of the nanocell depends on χ(t) as well as on the combinations in which these

molecules are connected. This is also called spatial connectivity of the molecules.

Let at any time t, χ(t) = m, where m ≤M. Then, there are MCm ways in which m

out of M molecules are ′ON′ at time t.

Further, assume that at any time t, the nanocell is in super-state S j if (M − j)

molecules are ′ON′ (or j molecules are ′OFF ′) and Sk
j,∀k = 1,2, . . . ,a j are a set

of sub-states of this super-state. In other words, the sub-states of super-state S j de-

note the combinations in which these (M− j) molecules are ′ON′ and there can be a j

= MC j = MCM− j possible combinations. The transient errors can occur at any instant

of time, because of which the system can transit from a given state to another state.

In this way, the nanocell can be modeled as a continuous time birth - death process.

Let the state space of this process be I = {0,1,2, . . . M} and T = {t|0 ≤ t < ∞} be

its parameter space. Thus, as shown in Fig. 4.4(b), at any time t, nanocell in one of

the sub-states Sk
j, k = 1 to a j of a super-state S j, can make:

1. a down transition to one of the (M− j) out of MC j+1 sub-states of S j+1 super-

state, with failure rate λ j.

2. an up transition to one of the j out of MC j−1 sub-states of S j−1 super-state,

with repair rate µ j.
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Figure 4.4: Continuous time birth - death model for Nanocell (a) abstract model
with only super-states (b) detailed model with sub-states (c) Here, each circle repre-
sents a sub-state and a set of sub-states at each level combine to form a super-state,
which is represented by an ellipse (d) bidirectional arrows between these states rep-
resents two unidirectional arrows, one for failure and another for repair.

So, (M− j)+( j)=M edges are connected to each sub-state. As shown in Fig. 4.4(d),

each bidirectional arrow between sub-states represents two unidirectional arrows,

one for failure and another for repair. Hence, the total in-degree and out-degree

for each sub-state is 2xM. Also, each sub-state of S j has j parent sub-states and

(M− j) child sub-states. The total number of super-states are M+1 and sub-states

are ∑
M
j=0

MC j = 2M. The Fig. 4.7 in sub section 4.2.3 shows the state transition

model for an example nanocell consisting of 5 molecules and Fig. 4.5 depicts this
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example nanocell.

Let the repair rate for all the states be equal and be denoted by µ . Also, let the fail-

ure rate for all states be equal and be denoted by λ . We here define a non-negative

continuous function q j(t) defined by:

q j(t) = − ∂

∂ t
p j j(v, t)|v=t

= lim
h→0

p j j(t, t)− p j j(t, t +h)
h

= lim
h→0

1− p j j(t, t +h)
h

, since p j j(t, t) = 1 (4.25)

Here, p j j is defined as the conditional probability of being in same state j. Similarly,

for each j, ( j 6= k) there is a non-negative continuous function q jk(t) defined by:

q jk(t) =
∂

∂ t
p jk(v, t)|v=t

= lim
h→0

p jk(t, t +h)− p jk(t, t)
h

= lim
h→0

p jk(t, t +h)
h

, since p jk(t, t) = 0 (4.26)

The q jk(t) is also known as transition rate and p jk denote the conditional transition

probability from state j to k. Then, the transition rate and the transition probabilities

are related by:

p jk(t, t +h) = q jk(t) ·h+o(h), j 6= k; (4.27)

p j j(t, t +h) = 1−q j(t) ·h+o(h), j = k; (4.28)

Here, o(h) denote the probability that two or more transitions occur in time (t, t+h].

Also, for this birth-death model, the transition rates for each sub-state are related to
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their failure and repair rates by following equations:

q j = λ +µ (4.29)

q j, j−1 = µ (4.30)

q j, j+1 = λ (4.31)

Now, consider that at time t, the system is in sub-state k of super-state j (i.e., Sk
j).

Then, using equations (4.28) and (4.29) conditional probability that the system will

remain in same sub-state at time (t+h] is:

p j j(t, t +h) = 1− ( jµ +(M− j)λ ) ·h+o(h) (4.32)

Similarly, using equations (4.27), (4.30) and (4.31), the conditional probability that

system makes up or down transitions to Sk
j in the interval (t+h] is given by:

p j+1, j(t, t +h) = (M− j)µ ·h+o(h) (4.33)

p j−1, j(t, t +h) = jλ ·h+o(h) (4.34)
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Then, using equations (4.32), (4.33) and (4.34), the total probability that the nanocell

is in sub-state Sk
j at time (t+h] is computed as:

P(χ(t +h) = j) = Pj(t +h)

= Pj(t)p j j(t, t +h)+Pj−1(t)p j−1, j(t +h)+

Pj+1(t)p j+1, j(t +h)+o(h)

= Pj(t)[1− ( jµ +(M− j)λ ).h+o(h)]+

Pj−1(t)[ jλ .h+o(h)]+Pj+1(t)[(M− j)µ

+o(h)]+o(h) (4.35)

Dividing both sides of equation (4.35) by h and taking limh→0, we obtain:

d
dt

Pj(t +h) = −( jµ +(M− j)λ )Pj(t)+ jλPj−1(t)

+(M− j)µPj+1(t) (4.36)

Thus, we can write differential equation for initial and final state as:

d
dt

P0(t) = −MλP0(t)+MµP1(t) (4.37)

d
dt

PM(t) = −MµPM(t)+MλPM−1(t) (4.38)

4.2.1.1 Steady state probability

Let the derivative dPj(t)/dt = 0, then the steady-state probability that the system is

in state k, is denoted by pk, where

pk = lim
t→∞

Pk(t) (4.39)
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Substituting this steady-state probability in differential-difference equation (4.37),

we obtain:

0 = −Mλ p0 +Mµ p1 (4.40)

p1 =
λ

µ
p0 (4.41)

Similarly, from equation (4.38),

pM =
λ

µ
pM−1 (4.42)

Then, the steady-state probability expression obtained from equation (4.36) can be

rewritten as:

(M− j)λ p j− (M− j)µ p j+1 = jλ p j−1− jµ p j

. . . = λ p0−µ p1

As we know, λ p0−µ p1 = 0 (from equation (4.41)), we can write:

jλ p j−1 = jµ p j

p j =
λ

µ
p j−1

p j =

(
λ

µ

)(
λ

µ

)
p j−2

p j =

(
λ

µ

)(
λ

µ

)(
λ

µ

)
p j−3
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Thus, steady state or limiting probability of super-state S j is given as:

p j =

(
λ

µ

) j

p0 (4.43)

Since ∑
M
k≥0 pk = 1,

(
λ

µ

)0

p0 +

(
λ

µ

)1

p0 +

(
λ

µ

)2

p0 + . . .+

(
λ

µ

)M

p0 = 1[
M

∑
j≥0

(
λ

µ

) j

p0

]
= 1

p0 =
1

∑
M
j≥0

(
λ

µ

) j =
1−ρ

1−ρM+1 (4.44)

where ρ = λ

µ
and ρ 6= 1. If ρ = 1, then p0 = 1

M+1 . Hence, we have derived the

expression for steady state probability.

Using the properties of modified geometric distribution, mean and variance of num-

ber of molecules present in the nanocell is given as [84, 85]:

E[χ] =
ρ

1−ρ
(4.45)

VAR[χ] =
ρ

(1−ρ)2 (4.46)

For system to be stable, ρ < 1, that is, or mean time to repair should be less than

mean time to failure (λ < µ).
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4.2.1.2 Total probability being in a given sub-state

Let initial state of the system is S0, then P0(0) = 1 and Pk(0) = 0 for k ≥ 1. Taking

Laplace Transform of equations (4.37) and (4.38), [84] we get:

sP̄0(s)−P0(0) = −Mλ P̄0(s)+MµP̄1(s)

(s+Mλ )P̄0(s) = 1+MµP̄1(s)

P̄0(s) =
1

s+Mλ
+

Mµ

s+Mλ
P̄1(s) (4.47)

Similarly,

sP̄M(s)−PM(0) = −MµP̄M(s)+Mλ P̄M−1(s)

(s+Mµ)P̄0(s) = Mλ P̄M−1(s)

P̄M(s) =
Mλ

s+Mµ
P̄M−1(s) (4.48)

In this way, by taking Laplace Transform of equation (4.36), we get the generalized

equation as:

P̄j(s) =
jλ

s+ jµ +(M− j)λ
P̄j−1(s)+

(M− j)µ
s+ jµ +(M− j)λ

P̄j+1(s) (4.49)

This equation can be solved to determine the time domain expression for probability.

For example, consider that in a nanocell only two nanoparticles (N = 2) are present

connected by one molecule (M = 1). So, there are only two super-states and 21 = 2

sub-states, namely S1
0 and S1

1. As defined in Section 4.2.1, S1
0 and S1

1 denote that

molecules is in ′ON′ and ′OFF ′ states, respectively. The state diagram for this case

can be represented by Fig. 4.4(d), by substituting j = k = l = 1, i = 0. Substituting
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M = 1 in equations (4.47), (4.48) and (4.49), we can derive the following expression:

P̄0(s) =
(

µ

λ +µ

)
1
s
+

(
λ

λ +µ

)
1

s+λ +µ
(4.50)

Then, on inverting the transform to the time domain, we obtain:

P0(t) =
(

µ

λ +µ

)
+

(
λ

λ +µ

)
e−(λ+µ)t (4.51)

since P0 +P1 = 1, we get

P1(t) =
(

λ

λ +µ

)
+

(
λ

λ +µ

)
e−(λ+µ)t (4.52)

In this way, we can derive the expression for total probability of a nanocell, being

in a given state, for any value of M. We know that, the nanocell will function with

reliability as long as at least one path is present between input and output nodes.

For this, we have to find the sub-states at which at least one path is available and

nanocell’s probability of being in these states at time t. Then, compute their joint

probability to derive the expression for reliability at time t. In contrast to this, we

can also compute the probabilities of being ′ON′ and ′OFF ′ of a single molecule

(computed by equation (4.51) and (4.52)) and based on their spatial connectivity,

we can derive the expression for upper and lower bounds on reliability, expected

nanocell lifetime and nanocell availability. The mathematical framework for this

approach is discussed in the next subsection.
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4.2.2 Lifetime Analysis of Nanocell

4.2.2.1 Expected Lifetime

The system lifetime is defined as the time up to which the system is correctly func-

tional [84, 85]. A system is comprised of one or more components and its lifetime

is dependent on the lifetime of each of these individual components as well as on

their spatial connectivity. For example, in our case, the nanocell will function cor-

rectly as long as one of the conducting path is present between its input and output

node. Thus, it depends on (i) the lifetime of the individual molecule and (ii) their

spatial arrangement. Let Fi(t), i = 1,2, . . . ,M denote the lifetime distribution of the

molecule mi and F̄i(t) = 1−Fi(t). Here, individual molecule can be modeled as a

two-state continuous time birth-death model as shown in Fig. 4.4(d), by substituting

j = k = l = 1, i = 0. The lifetime of the molecule mi is the duration up to which it

is in ′ON′ state, i.e., S1
0. We represent this for molecule mi by probability Pi

0 . Then,

from equation (4.51), we write:

Fi(t) = Pi
0(t) =

(
µ

λ +µ

)
+

(
λ

λ +µ

)
e−(λ+µ)t (4.53)

Then, the reliability of the nanocell can be expressed by its molecule’s lifetime, as:

R(F̄(t)) = P(Nanocell > t) (4.54)

where F̄(t) = {F̄1(t), F̄2(t), . . . , F̄M(t)}. Then, by definition, the expected lifetime

of a nanocell is:

E(Nanocell) =
∫

∞

0
R(F̄(t))dt (4.55)
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Let {path1, path2, . . . , paths} denote minimal path sets connecting input node to the

output node and we define Ei, ∀ i = 1 . . .s as Ei = {at least one molecular connection

on path pathi has failed}. If at least one of the molecules in the minimal path set

has failed, the system will fail eventually. Mathematically, it is denoted as:

1−R(F̄(t)) = P(E1E2 . . .Es)

= P(E1)P(E2|E1) . . .P(Es|E1E2 . . .Es−1)

Henceforth, it can be easily derived that failure of at least one molecule in the mini-

mal path pathi can increase the probability of failure of at least one molecule in the

path path j. This would be the case if both the paths pathi and path j overlap. So,

P(E j|Ei)≥ P(E j)

Similarly,

P(Ei|E1E2 . . .Ei−1)≥ P(Ei)

Substituting in equations stated above we get,

1−R(F̄(t))≥∏
i

P(Ei)

or,

R(F̄(t))≤ RUB(F̄(t)) = 1−∏
i

[
1− ∏

j∈pathi

P j
0

]
(4.56)

In this way, we have derived the expression of upper bound on reliability of nanocell.

Let {cut1,cut2, . . .cutr} denote the minimal cut sets. We define the events C1,C2, . . . ,Cr

94



Chapter 4: Probabilistic Analysis of Nanocell Molecular Memory

by Ci = {at least one molecular device in cuti is functioning}. Since, the nanocell

will function iff all of the events Ci occur, we say,

R(F̄(t)) = P(C1,C2 . . .Cr)

= P(C1)P(C2|C1) . . .P(Cr|C1 . . .Cr−1)

≥ ∏
i

P(Ci)

Hence,

R(F̄(t))≥ RLB(F̄(t)) = ∏
i

[
1− ∏

j∈cuti

(1−P j
0 )

]
(4.57)

As we know, the nanocell will work as long as at least one of the conducting paths

is present between input and output node. Thus, we can rewrite the expression of

expected lifetime of nanocell as:

EUB(Nanocell) =
∫

∞

0

[
1−∏

i

{
1− ∏

j∈pathi

Fj(t)

}]
dt (4.58)

ELB(Nanocell) =
∫

∞

0
∏

i

[
1− ∏

j∈cuti

(1−Fj(t))

]
dt (4.59)

Thus, we get the lower and upper bounds on expected system lifetime for an exam-

ple nanocell, as shown in Figure 4.5, we get

EUB(N1) =
∫

∞

0

[
1−{1−P1

0 (t)P
4
0 (t)}{1−P3

0 (t)}{1−P2
0 (t)P

5
0 (t)}

]
dt (4.60)

ELB(N1) =
∫

∞

0

[
1−{1−P1

0 (t)}{1−P3
0 (t)}{1−P2

0 (t)}
][

1−{1−P1
0 (t)}

{1−P3
0 (t)}{1−P5

0 (t)}]
[
1−{1−P4

0 (t)}{1−P3
0 (t)}{1−P5

0 (t)}
]

[
1−{1−P4

0 (t)}{1−P3
0 (t)}{1−P2

0 (t)}
]

dt (4.61)
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Figure 4.5: An example nanocell consisting of four nanoparticles and five molecular
switches. Here, the unfilled (white) circles represent the nanoparticles and the filled
(black) circles with arrows represent the molecular switches. The direction of the
arrows denotes the current flow. The nanoparticles A and D are the input and output
nodes, respectively.

Figure 4.6: Upper bound on reliability (RUB), from t = 0 to t = 10000 units, for the
example nanocell

Equation (4.56) denotes the upper bound on Reliability of a nanocell. On substi-

tuting Pi
0 by 0.5 (∀i = 1 . . .5) and ρ = 0.2 in equation (4.53), we have obtained the

probability that molecule mi is in ′ON′ state. Then, these probability values are used

in equation (4.56) to plot the upper bound on reliability for the example nanocell, as

shown in Figure 4.5. This RUB isobtained by simulation (MATLAB) and Figure 4.6

is plotted for time t varying from 0 to 10000 units. It is observed from the plot that

the reliability of the nanocell attains a constant value (= 0.984) after t = 100 units.

In this example, the failure rate λ (= 0.01) is less tan the repair rate µ (= 0.05),

thus the nanocell has very high reliability of 0.984 and maintains this value. How-
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ever, this may not be the scenario when λ > µ . Hence, another necessary condition

for nanocell reliability is that the failure rate must be less than repair rate.

4.2.2.2 Availability

The nanocell availability, at any time t, can be defined as the probability that it is

functioning properly at t and it is denoted as:

A(t) = P{nanocell is working at t} (4.62)

Since, all molecules act independently, A(t) can be expressed in terms of reliability

function as follows:

A(t) = R(A1(t), . . . ,An(t)) (4.63)

where

Ai(t) = P{molecule i is ’ON’ at t} (4.64)

=

(
µi

λi +µi

)
+

(
λi

λi +µi

)
e−(λi+µi)t (4.65)

The equation (4.65) is obtained from equation (4.51). Assuming constant failure

and repair rates for all molecules, i.e., λi = λ and µi = µ for i = 1,2,3, . . .. Thus,

Ai(t) =
µ

λ +µ
+

λ

λ +µ
e−(λ+µ)t (4.66)

Then, limiting or steady-state availability for each molecule is

Ai = lim
t→∞

Ai(t) = r
(

µ

λ +µ

)
(4.67)
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Using the equations (4.56) and (4.57), we can determine the upper and lower bounds

on nanocell availability as

AUB(t) = 1−∏
i

[
1− ∏

j∈pathi

P j
0 (t)

]

= 1−∏
i

[
1− ∏

j∈pathi

{
µ j

λ j +µ j
+

λ j

λ j +µ j
e−(λ j+µ j)t

}]
(4.68)

and

ALB(t) = ∏
i

[
1− ∏

j∈cuti

(1−P j
0 (t))

]

= ∏
i

[
1− ∏

j∈cuti

{
λ j

λ j +µ j
(1− e−(λ j+µ j)t)

}]
(4.69)

The bounds on the steady state availability of the Nanocell are given as

AUB = 1−∏
i

[
1− ∏

j∈pathi

{
µ j

λ j +µ j

}]
(4.70)

ALB = ∏
i

[
1− ∏

j∈cuti

{
λ j

λ j +µ j

}]
(4.71)

4.2.3 Experimental setup for Reliability Analysis in Time Do-

main

To exemplify the proposed model, consider a small nanocell which contains four

nanoparticles (A,B,C,D) connected via five molecular switches (1, 2, 3, 4, 5), as

shown in Figure 4.5. There are three conducting paths which connects input node

A to output node D, namely (i)
−−→
ABD = {A− 1−B− 4−D}, (ii)

−−→
ACD = {A−

2−C− 5−D}, and (iii)
−→
AD = {A− 3−D}. Let at t = 0, all five molecules are

functioning.
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Figure 4.7: Representation of the example nanocell in the proposed model. Here,
the circles represent the sub-states and the set {i, j, . . .} corresponding to each
sub-state, represents the set of ′ON′ molecules in that state. The filled sub-states
are the nanocell − f ailure− states and remaining sub-states are the nanocell −
f unctioning− states. The patterned filled circles represent one of the possible se-
quence in which the nanocell may make transition.
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This means, the nanocell is in the initial state of the proposed model and this state

is denoted by S1
0. At next level, one of the five molecules may fail, due to some

soft transient error. As stated earlier, the rate of failure is denoted by λ and rate of

repair by µ . When nanocell is in super-state S1, it is actually in one of the 5C1 = 5

different sub-states. Similarly, at S3, 5C2 = 10 sub-states are possible, and so on. In

all, there are six super-states and ∑
5
j=0

5C j = 25 = 32 sub-states. Each of the super-

states can make one-step up or down transition, but one-step transition among the

sub-states at same level is not possible. However, initial and final states can make

only down and up transitions, respectively. Thus, in general, with every sub-state,

a set of parent and child sub-states are associated, and it can transit to only these

states. This scenario for the example nanocell is depicted from the Figure 4.7. As

shown in this figure, there are nine sub-states for which no path is present between

input and output node of the nanocell. The light filled circles represent these sub-

states and we will call these states as the nanocell− f ailure−states. The remaining

23 states are called nanocell− f unctioning− states. The steady state probability

that the nanocell is in one of the super-state can be calculated by equations (4.43)

and (4.44) derived in previous subsection.

First, this nanocell is modeled and it is simulated in HSPICE. The high (Vhigh =

2.0V ) and low (Vlow = 0.5V ) voltages are applied to the input node A and received

at the output node B with acceptable noise margin. That is, output voltage for read

′1′ is 1.9927 V and for read ′0′ is 0.4927 V. Thirty-two instances of this nanocell are

generated, each depicting the behavior of one of these 32 sub-states. On simulating

the nanocell instances corresponding to the nine nanocell− f ailure− states sub-

states, zero voltage value is received at the output node.

Let at t0, the nanocell is in S1
0 sub-state, i.e., all molecules are ′ON′ initially. Then,

corresponding nanocell instance is simulated in HSPICE. After some time t1, due
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Figure 4.8: Simulation results for the sequence of sub-states of the example nanocell
with constant λ and µ in each case. The p f is exponentially distributed and it is
explored for different values between 0 to 1. One thousand Monte Carlo simulations
are done for each case. Here, (i) the central mark is the median (ii) the edges of the
box are 25th and 75th percentiles (iii) the whisker extend to the most data points
which are not considered as outliers (iv) the unfilled dots represent the outliers.

to soft errors it may move to one of its child sub-state, say S2
1, with probability of

failure p f . Again at t2, it may move to either its parent state with repair rate µ or to

one of its child state (say S4
3) with failure rate λ . This transition path is represented

by pattern filled circles in the Figure 4.7. The repair probability is represented by

pr and ps = 1− (p f + pr), where ps is probability that it will continue to be in same

state. Here, p f and pr are exponentially distributed with mean λ and µ , respectively

and let ps = 0. The p f is explored for eleven different values between 0 to 1 and

10000 Monte Carlo Simulations are done in each case. The sequence of states

and corresponding output voltages for read ′1′ and ′0′ are saved for each run. It is

observed that, if p f < pr or λ < µ , then the nanocell is in nanocell− f unctioning−

states for most of the time. For these states, the acceptable output voltage is always

received. We here define success_ratio as the ratio of correct read ’1’ and ’0’ to

the number of simulation. Hence, for ρ < 1, success_ratio is close to unity. This is

depicted from the Figure 4.8 and Figure 4.9.

This simulation procedure is discussed in Reliability Evaluation Algorithm for Nanocell
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ALGORITHM 5: Extended Continuous Parameter Birth Death Model Generation for
Nanocell (Model_Generation)

1: inputs
2: N := Number of Nanoparticles in the nanocell,
3: M := Number of molecules in the nanocell,
4: IP := Primary Input Node,
5: OP := Primary Output Node,
6: outputs
7: NANOCELL[] := A set of Nanocell instances corresponding to each SUBSTAT E ,
8: SUBSTAT E[] := A set of substates in the nanocell model
9: PARENT [] := A set of parents corresponding to each SUBSTAT E in the model,

10: CHILD[] :=A set of children corresponding to each SUBSTAT E in the model,
11: do
12: Call the subroutine NRPA(N, IP, OP, 1);
13: /* Generate an instance of a nanocell (NANOCELL) consisting of N nanoparticles

connected by M molecular switches using NRPA algorithm described in
Algorithm 4 */

14: num= 0;
15: for i = 0 to M do
16: for j = 1 to MCi do
17: SUBSTAT E(num) = Generate a sub-state when (M− i) out of M molecules

are present in ’ON’ state;
18: NANOCELL(num) = Create an instance of nanocell corresponding to

SUBSTAT E(i);
19: num = num + 1;
20: end for;
21: end for;
22: for i = 1 to 2M do
23: PARENT (i) = Compute set of parents for SUBSTAT E(i);
24: CHILD(i) = Compute set of children for SUBSTAT E(i);
25: end for;
26: return (NANOCELL, SUBSTAT E, PARENT , CHILD);
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ALGORITHM 6: Reliability Evaluation Algorithm for Nanocell (REAN)
1: inputs
2: N := Number of Nanoparticles in the nanocell,
3: M := Number of molecules in the nanocell,
4: IP := Primary Input Node,
5: OP := Primary Output Node,
6: MAX_RUNS := Maximum number of simulation runs;
7: outputs
8: success_ratio := Number of times correct output is received for Max_Num

simulations;
9: STAT E_SEQUENCE := Array of sequence of sub-states visited by nanocell in

MAX_RUNS simulations;
10: do
11: [NANOCELL, SUBSTAT E, PARENT , CHILD] = Model_Generation(N, M, IP,

OP);
12: Initialization;
13: /* In the nanocell, (i) all M molecules are ’ON′, (ii) STAT E_SEQUENCE(1) =

SUBSTAT E(1), (iii) present_state=1 */
14: for k = 1 to MAX_RUNS do
15: Simulate NANOCELL(SUBSTAT E(present_state));
16: DATAOUT (k) = output voltage of NANOCELL(SUBSTAT E(present_state));
17: STAT E_SEQUENCE(k) = present_state;
18: Generate the value of p f and pr by exponential distribution using the Inverse

Transform Method;
19: Compute ps = 1− p f − pr;
20: if p f + pr ≤ 1 then
21: if ps > pr and ps > p f then
22: Stay in same state;
23: else if pr > p f then
24: present_state = PARENT(present_state), that is make an UP transition to

any one of the parent sub-state;
25: else
26: present_state = CHILD(present_state), that is make an DOWN transition

to any one of the child sub-state;
27: end if
28: else
29: GOTO step 18;
30: end if
31: end for
32: success_ratio = Compute number of times correct output is received using array

DATAOUT (1 : MAX_RUNS);
33: return (success_ratio, STAT E_SEQUENCE)

103



Chapter 4: Probabilistic Analysis of Nanocell Molecular Memory

Figure 4.9: Simulation results for success_ratio for different values of failure prob-
ability (p f ).

(REAN) as shown in Algorithm 6. The Algorithm 6 first calls the Algorithm 5

to generate the birth death model for a nanocell having N nanoparticles. This

Model_Generation subroutine calls the NRPA algorithm 4 to generate a nanocell

instance and outputs the DAG with N nanoparticles and M molecules. For this

nanocell instance, Algorithm 5 computes the total number of sub-states as vector

SUBSTAT E and a nanocell instance corresponding to each of these sub-states as a

vector NANOCELL. Also, a set of parents and children for each sub-state is calcu-

lated and saved as vectors PARENT and CHILD. Then, in REAN Algorithm 6, the

nanocell instance corresponding to initial state is simulated and output voltage is

stored in vector DATAOUT . The probabilities p f and pr are generated by exponen-

tial distribution using the Inverse Transform Method [85]. Then, if p f > pr, then

we say, one of the molecule fail and nanocell instance corresponding to one of the

child state is simulated in HSPICE. Otherwise, one of the molecule is assumed to be

repaired and nanocell instance corresponding to one of the parent state is simulated.

The vectors STAT E_SEQUENCE and DATAOUT are updated. The process is re-

peated to MAX_RUNS times. In the end, we compute the success_ratio which is

defined as the number of times the correct output is received and for this we use the
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Table 4.3: Simulation results for the example nanocell for different values of failure
probability p f . The success_ratio represents the ratio of number of successful read
′1′ and ′0′ out of 10000 simulations. Upper and lower bounds on reliability are
represented by RUB and RLB, respectively.

p f ρ = λ

µ
success_ratio RUB RLB

0.05 0.02 0.9998 0.9999 0.9999
0.15 0.09 0.9973 0.9979 0.9978
0.25 0.21 0.9826 0.9843 0.9816
0.35 0.41 0.9109 0.9315 0.9099
0.45 0.75 0.7318 0.8051 0.7204
0.55 1.34 0.4851 0.6153 0.4352
0.65 2.44 0.2565 0.4052 0.1711
0.75 4.82 0.1178 0.2159 0.0348
0.85 11.67 0.0464 0.0891 0.0023
0.95 58.40 0.0064 0.0152 0.00001

array DATAOUT (1 : MAX_RUNS). The success_ratio and STAT E_SEQUENCE

are returned as output. These algorithms are implemented in MATLAB, HSPICE

and PERL.

Table 4.3 shows the success_ratio obtained for each value of p f . Also using the

equations (4.56) and (4.57), the upper and lower bounds on reliability are com-

puted in MATLAB, for t = 0 to t = 10000 units. It is observed that, success_ratio

obtained by using the proposed model lies within the range [RUB, RLB]. So, our

proposed model computes the nanocell reliability efficiently. Also, any of the two

methods, discussed here, can be used for estimating the nanocell lifetime.

Again, consider the same example nanocell. Assume that p f and pr are distributed

exponentially and for each simulation run the values of λ and µ change. Also, let

the probability ps = 1− p f − pr and ρ < 1. Then, starting from the initial state,

we perform simulations ten different times, each for 10000 runs. Then, as shown

in the Figure 4.10, for each of the 10 cases, the median lies in the range (12,20).
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Figure 4.10: Simulation results for example nanocell for 10 different cases. For
each case, simulations are done for 10000 times, with varying λ and µ .

The sub-states for this range are nanocell− f unctioning− states. Further, as the

number of nanoparticles (N) and molecules (M) will increase, the number of con-

nected paths between input and output node will increase exponentially. Also, total

number of sub-states and number of nanocell− f unctioning−states sub-states will

increase. This will result in large state-space for the nanocell. Thus, with increase

in number of molecules, the probability of transiting to nanocell− f ailure− state

will decrease. For example if M = 20, total number of sub-states are 220 = 1048576,

which are extremely large number of states. For such a system, the probability that

at least one path is present between input to output is close to unity (pg. 592 of [85]).

So, the number of successful read ′1′ and ′0′ increases exponentially. Hence, the

nanocell reliability increases with increase in number of molecules. Hence, we can

conclude that, under high variability and uncertainties, the nanocell will remain re-

liable and defect tolerant as long as ρ < 1.

In this section, the probabilistic modeling and analysis of Nanocell in temporal do-

main is presented. While considering the transient errors, the nanocell is modeled as

an extended continuous parameter birth death model. The mathematical expression
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for expected nanocell lifetime and its availability, in presence of transient errors is

computed. On the basis of our model, an algorithm is developed and implemented

in MATLAB, PERL and HSPICE, to automatically generate the proposed model

representation for a given nanocell. It is used to estimate the success ratio as well

as the nanocell reliability, while considering the uncertainties induced by transient

errors. The theoretical results for reliability are validated by simulating HSPICE

model of nanocell in presence of varying defect rates. It is observed that the device

reliability increases with increase in the number of nanoparticles and molecules. A

lower and upper bounds for nanocell reliability are calculated in theory which is

validated in simulations.

4.3 Conclusions

In this chapter, a novel extended continuous parameter birth-death model is pro-

posed to evaluate the reliability of a nanocell, in presence of transient errors. For

this mathematical framework, the steady state probability and probability of being

in each sub-state is computed. The proposed approach is extended to compute the

expected lifetime and availability of the nanocell using the birth-death model of

molecules and their spatial connectivity. On the basis of our model, an algorithm

is developed and implemented in MATLAB, PERL and HSPICE, to automatically

generate the proposed model representation for a given nanocell. It is used to es-

timate the success_ratio as well as the nanocell reliability, while considering the

uncertainties induced by transient errors. It is observed that as long as, molecular

failure rate is less than its repair rate, the nanocell functions correctly. Also, with

increase in number of molecules, the nanocell reliability increases. Thus, we can

conclude that, a nanocell device remains defect tolerant and it works reliably in

presence of transient errors as long as (i) at least one path is present between in-
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put and output node, (ii) the failure rate of molecules is less than their repair rate.

To satisfy the first condition, the number of nanoparticles must be greater than 20.

Hence, we can argue that, at nano-scale, the nanocell device can function reliably

and can withstand high defect rates due to transient errors.

In this Chapter, we have assumed that a molecule is present between two nanopar-

ticles with a constant probability of 0.5. Also, the repair rate and failure rate are

assumed to be constant for all molecules. But, in reality, these parameters will fol-

low some distribution and their values will depend on time as well as environmental

uncertainties. Also, more than one molecule may be present between two nanopar-

ticles. Thus, lower and upper bounds on reliability will slightly deviate from our

results.
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Chapter 5

Conclusions and Future Work

The future memory devices are expected to be electrically accessible, higher density,

higher speed, lower power, volatile and/or non-volatile RAM. Since, a molecule is

the smallest component whose electrical properties can be engineered, it can be ar-

gued that the ultimate integrated circuit will be constructed at the molecular level.

This fact has been the driving force behind molecular electronics research of re-

cent times. In principle, one bit of information can be stored in the space of a

single molecule and thus, extremely high density memories can be obtained. As all

molecules of one type are identical, the molecular switches should have identical

characteristics. This will reduce the problem of variability of components. Emerg-

ing molecular crossbar technology offers high density, regular array-like and non-

volatile memory structure [7–12]. These devices consume extremely low power,

offer low programming voltage and high switching speed. Non-volatility feature

provided by these molecular devices, permits memory to be used as programmable

elements within a logic device with high density.

In our work, we have developed the HSPICE as well as probabilistic models for

nanocell molecular memory. An attempt has been made to develop a CAD tool for

synthesis of such molecular memories which are posing interesting and promising

109



Chapter 5: Conclusions and Future Work

research challenges at futuristic cutting edge of technology spectrum. During explo-

ration, it has been observed that the probability of existence of at least one path from

input to output, approaches close to unity with presence of 20 or more nanoparticles

in the nanocell. Due to hysteresis property of the OPE molecule, it has been ob-

served during memory model validation that even an untrained nanocell depicts the

behavior of 1-bit memory cell. Further, to train 2-bit molecular memory, number of

control voltage signals must be more than one-forth of total number of nanoparti-

cles. The proposed methodology is versatile enough to train nanocell for multiple

bit storage functionality. Extended Continuous Parameter Birth-Death model has

been proposed to estimate the reliability of nanocell, in presence of transient errors.

5.1 Future Work

The molecular memory design and synthesis is viewed as a long term research

goal. Although, the problem of nanocell molecular memory modeling, synthesis

and analysis has been throughly explored in this thesis, there are still some potential

improvements that should be explored.

A model is a conceptual notion that describes the system behavior. The molecu-

lar device model used in this thesis is based on empirical equations as proposed

by [39–42]. In practical, the change in conduction states of the molecule depends

on its conformational changes as discussed by [22,32]. Thus, it is a dire necessity to

propose an enhanced as well as efficient molecular device model that captures these

conformational changes. Also, it should be flexible enough to be used in nanocell

or crossbar device model. Hence, the updated molecular memory model, will be

close to realistic behavior of molecule.

Some of the assumptions made for nanocell modeling in this thesis are perhaps im-

practical. For example, we have assumed that between any two nanoparticles only
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one molecule is present. However, when a self assembled monolayer of molecules

is inserted between randomly placed gold nanoparticles, it will be quiet impossible

to have single molecular connection between two nanoparticles. Thus, in order to

make a robust nanocell model, such an assumption must be removed. To analyze

the effects of multiple edges and self loops in a nanocell has been left as a future

work.

The aim of our experiment is to find proof of the concept of mortal training which to

our understanding has not been tried yet. Hence, we have not focused on optimally

tuning the parameters of Genetic Algorithm (GA). As explained in Section 3.3.2,

the search space is very large and it takes number of days to find a near optimal

solution. Hence, we used GA to find the best optimal solution in polynomial time

for both the training algorithms. However, it is observed that the Genetic Algorithm

consumes large amount of time for convergence, even for training a small nanocell

of 50 nanoparticles. As a future work, we will explore adaptive learning algorithms

to reduce the training time. The proposed mortal training needs to be applied for

training large nanocell molecular memory.

To realize a nanocell device, several issues related to connection of macroscopic

input-output pads to the 50 nm gold nanoparticles are required to be addressed. In-

stead of directly connecting them, we have proposed to use nanowires as shown

in Figure 3.5 on page 51. The proposed hybrid CMOS-NANOCELL architecture

needs to be realized. Again the issues related to connecting the two nanocells to-

gether must be addressed in near future. Although, the present CMOS read/write

circuitry can be used for the proposed nanocell molecular memory, the nano-scale

read/write circuitry must be proposed and realized.

We had tried to use Markov Random Field (MRF) based powerful probabilistic

modeling technique for nanocell molecular memories. However, this modeling ap-
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proach could not offer spatial as well as temporal domain analysis of naocell mem-

ory. Hence, we did not explored it further. The Markov Random Process in time and

space is to be explored and remains part of our future work. Further, the extended

continuous birth death model proposed in this thesis must be augmented to include

effects of the aging and fabrication defects on the nanocell molecular memory re-

liability. Such a model can be used for estimating the data retention time of the

nanocell memory. Also, the mathematical framework proposed in this thesis, needs

to be validated by fabricated nanocell in presence of environmental uncertainties

and aging effects.
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