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Abstract

Crankshaft is a sophisticated engine component. Many analysis method has been reported in
last few years. FEM is most reliable method used for crankshaft analysis but its main drawback
is its complexity and cost for analysis. So in this study for vibration analysis of crankshaft a
simpler method is proposed. Here crankshaft is modeled by a set of jointed structures
consisting of simple round rods and simple beam blocks of rectangular cross-section. The front
pulley, timing gear, and the fly-wheel is idealized by a set of masses and moments of inertia.
The main journal bearings is idealized by a set of linear springs and dash-pots. For each
constituent member, the dynamic stiffness matrix was derived using the governing differential
equation. Then the dynamic stiffness matrix for the total crankshaft system was constructed,

and the natural frequencies and mode shapes were calculated.

Keywords: Vibration analysis of crankshaft, Transfer matrix method, Dynamic stiffness

matrix method.
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Chapter 1 : Introduction

1.1 Background

Crankshaft of single cylinder engine is used to convert the reciprocating motion of piston into
rotational motion. Crankshaft has a crank throw or crank pin, additional bearing surface whose

axis is offset from the crank, to which big end of connecting rod is attached.

It is typically connected to a flywheel to reduce the pulsation characteristic of the four-stroke
cycle at one end and at other end, pulley and gear (for cam shaft) is mounted. Sometimes a
vibrational damper is also used to reduce torsional vibration often caused along the length of

the crankshaft.

In recent years, noise vibration and harshness of engine is becoming integral part of engine
design process along with the traditional issues of durability and performance. Extensive static
and dynamic analysis is performed on engine component as crankshaft and engine block in

order to improve their durability and NVH performance.

MMount for Main journal Crankpin ) Flywheel

camshaft oibway to Py " mounting
drive sprocket] [lube crankpin ~— '::.’\\ 9 flange
" e\ o -
Crank nose \% \ S - - :w‘q
for pulley - o / | S/
= |\ 8BTS
vibration I~ % A\ N . g g U T A
damper

mounting| & _': : Crankpin o
i ; ’ oil hole

Counterweights

Figure 1.1 Crankshaft
In our study, we present the procedure for measuring the natural frequencies and mode shapes
of single cylinder engine crankshaft. MATLAB is used to calculate the natural frequency and
mode shape of the crankshaft. FEM (Finite Element Method) has been the only versatile
approach for such analysis. However, even for a relatively simple crankshaft, modeling and
computation by FEM is very tedious and expensive. To overcome these shortcomings of FEM
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analysis, Nagamatsu et al., developed the "Reduced Impedance Method™ (RIM), in which they
modeled the crank journal and crankpin with round bars, and derived impedance matrices,
using the "Transfer Matrix Method" (TMM). Thus, they used FEM analysis only for the crank
arm and counterweight.

To simplify the analysis by RIM, and to eliminate FEM from analysis, we idealized the crank
arm and counterweight as a set of jointed structures consisting simple beam blocks, along with
above modeling for the crankpin and crank journal. After idealizing each constituent member
of crankshaft as a beam block we derive the dynamic stiffness matrix (DSM) for each member
of crankshaft. DSM is a matrix which relate nodal force vector to nodal displacement vector.
The front pulley, crank gear, and the flywheel, were each idealized as a set of masses and
moments of inertia. The main journal bearings are idealized by a set of linear springs and dash-
pots system. Finally, the dynamic stiffness matrix for the total idealized jointed structure was
constructed by the method of superposition, and the natural frequencies and mode shapes were
calculated.

The result obtained using DSM method is in good agreement with the results obtain from FEM

result with fewer element.

1.2 Thesis Outline

Chapter 1 introduces the background of modelling of crankshaft used in single cylinder engine.
Chapter 2 includes literature review, research gaps and also research objectives. Chapter 3
includes modelling of crankshaft and theoretical analysis along with brief discussion of co-
ordinate transformation and newton bisection method for finding natural frequencies and mode
shapes. Chapter 4 contains the derivations of dynamic stiffness matrix for different type of
elements. In chapter 5, mathematical modelling of crankshaft is discussed by using dynamic
stiffness matrix method. Chapter 6 contains the results and discussions followed by

conclusions and future works in chapter 7.



Chapter 2 : Literature Review

2.1 Literature review

Kang et al. [2], “Modal Analyses and Experiments for Engine Crankshafts”, investigates the
coupled modes including coupled torsional flexural vibration and coupled longitudinal flexural
vibration for non-rotating crankshafts which are free-free suspended. The finite element
models of those are generally used in two categories beam elements and solid elements. By
using these two models the natural frequencies and mode shapes of two crankshafts are
determined. Results show that the solid element is more appropriate than the beam element in
the modal analysis of crankshafts. Solid element modelling in crankshaft analysis produces
much better results.

Y.Yu, Feng, L.Yu [11] showed the analysis of the three-dimension vibrations of reciprocating
compressor crankshaft system under working conditions using a spatial finite element model
based on 3-node Timoshenko beam. The crankshaft was idealized by a set of jointed structures
consisting of simple round rods and simple beam blocks, the main journal bearings were
idealized by a set of linear springs and dash-pots, and the flywheel and motor were idealized
by a set of masses and moments of inertia.

In this study, Mourelatous [3] “An efficient Crankshaft Dynamic Analysis using Sub
structuring with Ritz vectors” described a structural analysis using dynamic sub structuring
with Ritz vectors for predicting the dynamic response of an engine crankshaft, based on the
finite-element method (FEM). A two-level dynamic sub-structuring is performed using a set
of load-dependent Ritz vectors. So FEM has been the only versatile approach for analysis of
crankshaft or structure. However, even for a relatively simple crankshaft, tedious modeling
and expensive computation costs are inevitable. To overcome these shortcomings of FEM
analysis, Nagamatsu et al., developed the "Reduced Impedance Method™ (RIM), in which they
modeled the crank journal and crankpin with round bars, and derived impedance matrices,
using the "Transfer Matrix Method" (TMM). They used FEM analysis only for the crankarm
and counterweight. To simplify the analysis by RIM, and eventually to eliminate FEM from
the analysis, the crankarm and counterweight also is idealized as a set of jointed structures
consisting of simple beam blocks, along with the above modeling for the crankpin and

crankjournal. Then using TMM, they derived the DSM for each constituent member. For the
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free vibration analysis of beams with various attachments, the lumped-mass (model) transfer
matrix method (LTMM) is one of the most popular approaches.

Mourelatos et al. [4], formulate a finite element based modelling for the dynamic behavior of
a rotating flexible shaft supported by a flexible support structure. The interaction between the
rotating shaft and the flexible support is modelled by either linear or non-linear springs
distributed around the circumference of the shaft. The coupling between the flexibility of the
shaft and the flexibility of the support structure are considered. He developed a system
approach to formulate the dynamic response of a rotating shaft supported by a flexible support
structure.

Wu and Chen [5], “A lumped-mass TMM for free vibration analysis of a multi-step
Timoshenko beam carrying eccentric lumped masses with rotary inertias” proposed a modified
LTMM so that one may easily determine the natural frequencies and the corresponding mode
shapes of a multistep Timoshenko beam with various boundary (supporting) conditions and
carrying various concentrated elements with eccentricity of each lumped mass considered, by
using the same formulation developed from a beam with “‘free—free’” boundary conditions.
Based on the formulation for a ‘‘free—free’” beam carrying a number of sets of concentrated
elements with each set consisting of a lumped mass (with or without rotary inertia and/or
eccentricity), a translational spring and a rotational spring, one may easily determine the lowest
several natural frequencies.

Wu and Chen [6], “A continuous-mass TMM for free vibration analysis of a non-uniform
beam with various boundary conditions and carrying multiple concentrated elements”
presented a modified continuous-mass (model) transfer matrix method (CTMM) to determine
the natural frequencies and associated mode shapes of a uniform or non-uniform beam with
various classical (or non-classical) boundary conditions and carrying multiple sets of
concentrated elements with each set consisting of a point mass (with eccentricity and rotary
inertia), a translational spring and a rotational spring.

Charles et al. [7], in “Crankshaft Torsional Vibration of Diesel engines” presents an
investigation of the diesel engine combustion related fault detection capability of crankshaft
torsional vibration. In this paper he has discussed two typical experimental studies on 16- and

20-cylinder engines, with and without faults.



Yasin Yilmaz, Gunay Anlas [8] study the effects of counterweight mass and position on main
bearing load and crankshaft bending stress of an in-line six-cylinder diesel engine using
Multibody System Simulation Program, ADAMS. In the analysis, rigid, beam and 3D solid
crankshaft models are used. The load from gas pressure rather than inertia forces is the

parameter with the most important influence on design of the crankshaft.

Zhang et al. [9], describes two system models—a rigid body model and a flexible body model
for predicting torsional vibrations of the crankshaft under different engine powers and
propeller pitch settings. In the flexible body model, the distributed torsional flexibility and
mass moment of inertia of the crankshaft are considered using the finite element method. He
proposed theoretical and experimental procedures for investigating the torsional vibration of
the crankshaft in an engine propeller dynamical system.

Hoisnard et al. [10], “Model-based diagnosis of large diesel engines based on angular speed
variations of the crankshaft” work aims at monitoring large diesel engines by analyzing the
crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with
crankshaft natural frequencies within the operating speed range. Due to the crankshaft
flexibility, torsional vibrations are superimposed on the rigid rotational motion of the
crankshaft and complicate the analysis.

Meng et al. [12], in their study “Finite Element Analysis of 4-Cylinder Diesel Crankshaft”
found the stress analysis and modal analysis of a 4-cylinder crankshaft using finite element
method. The relationship between the frequency and the vibration modal was explained by the
modal analysis of crankshaft. The crankshaft deformation was mainly bending deformation
under the lower frequency. And the maximum deformation was located at the link between
main bearing journal and crankpin and crank cheeks.

Bulatovic et al. [13], presents the procedures for measuring and analyzing the angular velocity
variation of twelve-cylinder diesel engine crankshaft on its free end and on the power output
end. In addition, he deals with important aspects of the measurement of crankshaft torsional
oscillations. In this paper “Measurement and analysis of angular velocity variations of twelve-
cylinder diesel engine crankshaft” original procedure of measuring and analyzing the angular
velocities variation of crankshaft of V46-TKA twelve-cylinder diesel engine at two

proximities, with two different sensors is presented.



Fonte et al. [14], in his work “Failure mode analysis of two crankshafts of a single cylinder”
reports an investigation carried out on two damaged crankshafts of single cylinder diesel
engines. He firstly presents a short review on fatigue power shafts for supporting the failure
mode analysis to determine the root cause of failure. Finite element analysis was done in order
to find the critical zones where high stress concentrations are present. Results showed a clear
failure by fatigue under low stress and high cyclic fatigue on crankpins.

Anyaegbunam, and Osadebe [15], discussed about a simple and direct approach for the
formulation of the dynamic stiffness matrix of a beam-column element. They considered the
model as a system with distributed mass thereby, treating the system as having an infinite
number of degrees of freedom. The differential equation of motion of this system, in which the
axial compressive force is accounted for, is derived by applying Newton's second law of
motion. By imposing the appropriate boundary conditions, the dynamic stiffness matrix which

includes the effect of axial compressive force is synthesized.

2.2 Research Gaps

Meng et al. investigated the stress and modal analysis of 4-Cylinder diesel engine crankshaft
by using FEM. Yu et al. studied the vibration analysis of reciprocating compressor crankshaft
system using spatial finite element model. Mourelatous calculated the dynamic response of
engine crankshaft using sub structuring with Ritz vectors. Wu et al. investigated the vibration
analysis of non-uniform beam by using continuous mass TMM and lumped mass TMM. Kang
et al. investigated the coupled modes vibration for non-rotating crankshaft with the help of
experimental analysis. Yasin et al. studied the effect of counterweight mass and crankshaft
bending stress of an inline six cylinder diesel engine. Hoisnard et al. described the effect of
angular speed variations of the crankshaft on the natural frequencies. Fonte et al. investigated

the failure mode analysis of two crankshafts of a single cylinder.

No one has discussed about the mode shapes and natural frequencies of the crankshaft for In

plane and Out of plane mode by assuming the bearings as isotropic spring dashpot system.



2.3 Research Objective

Finite element modelling of crankshaft will be developed and derive the dynamic stiffness
matrix for the whole system by considering crankshaft as an assembly of round rods and
rectangular cross-section blocks. Natural frequencies and mode shapes of crankshaft will be

find out by using the newton bisection methods for In plane and Out of plane mode.



Chapter 3 : Modeling and Analysis

3.1 Modeling

a)

b)

Crankshaft: The crankshaft is considered to be a set of rigidly jointed structures
consisting of round rods and blocks of rectangular cross-section, instead of assemblage
of finite elements as in FEM. Crank journal and crank pin is idealized by rod of length
L;j and L, and diameter Dj and Dy. Here Dj and Dy are taken as their original diameters,
while Lj and Ly measured from the centre plane of crankarm (L; is taken as equal to the
length between the two centre plane of crankarms of single cylinder engine crankshaft).
Crankarm and counterweight is idealized by block of rectangular cross section. The
dimension of block are determined so as to keep their centres of gravity as well as their
original masses and moment of inertia at their original positions.

Front Pulley, Crank Gear and Flywheel: The front pulley, crank gear and flywheel are
assumed as a idealized set of masses and moments of inertia about three orthogonal
axes attached at their original center of gravity.

Crankshaft Main Bearing: Main bearing (journal bearing) is idealized by an isotropic
oil film which is considered as a set of linear springs and dashpots in vertical and

horizontal directions attached at the crank journal axis.

3.2 Analysis

The vibration behavior of idealized jointed structure of a single cylinder crankshaft can be

analyzed in different ways. The Dynamic Stiffness Matrix method (DSM) is probably the

simplest method and it is well established. We have applied this method to the single cylinder

engine crankshaft and obtained sufficient agreement between the calculated and experimental

results. Dynamic stiffness matrix can be derived by different methods, but there are two main

methods:

a)
b)

By transfer matrix method

By the governing differential equation of element (discussed in next chapter)



Transfer Matrix Method:

Transfer matrix method is an approach to matrix structural analysis that uses a mixed form of
the element force-displacement relationship and transfers the structural behavior parameters
the joint forces and displacement from one end of the structures of line element to other.
However, that description by TMM is not compatible with description by other methods like
FEM because in TMM there are different arrangement of forces and displacement vectors. So,
to form the dynamic stiffness matrix we have to rearrange the force and displacement vector
of TMM as shown in following,

The displacement and force vector are defined by

T

d=[u, v, w, 6,, 6, 6]
f=I[P V,Q T M M]"

Let the two end points be: i — 1 and i. Then, we can derive the following expression
[di] _ [[tn] [t12]] [di—l]
fi [t21]  [t22ld Lfiva
fi—l] _ [[kn] [k12]] [di—l
fi [k21] [k22] di
Here [di-1 fi-1]" and [di fi]" are the state vector at point i — 1 and i, and [t;j] is element of transfer

matrix and [fi-1,fi]" and [di-1,di]" are the force and displacement vectors, and [Kij] is element of

dynamic stiffness matrix.
Where,
[k11] = —[t12] 7 [t11], [K12] = [t12] 7,
[k21] = [t21] — [t22][t12] 7 [tra], [R22] = [t22][t12] 7

After the derivation of dynamic stiffness matrix for each constituent members in local
coordinate, we transform dynamic stiffness matrix in local coordinate to global coordinate

using transformation matrix (coordinate transformation). Using this dynamic stiffness matrix



in global coordinate, we construct the dynamic stiffness matrix for total crankshaft by the

method of superposition.

Finally, by solving the determinant of the dynamic stiffness matrix of total crankshaft system,
we determined the natural frequencies of the system. The mode shapes corresponding to each
of the natural frequencies is calculated by substituting each natural frequency back into the

dynamic stiffness matrix.

3.2.1 Beam Element
In this study, both the idealized round rods and rectangular blocks treated as homogeneous

Euler Bernoulli beam elements of uniform cross section.
Because of symmetry of cross section, we can consider the following vibration mode

1. Axial mode along the x axis
2. Torsional mode about X axis
3. Bending mode in x-z plane
4

Bending mode in x-y plane

Now we know that dynamic stiffness matrix is a matrix which relates the nodal force vector to

nodal displacement vector.
1. Axial mode along x-axis
fa — Kada
Where, d® = [ulluZ]T, % =[P, P,]" and K% is a2 X 2 square matrix.
2. Torsional mode about x axis
ft — tht
Where, dt = [6F, 6517, f* = [T, T,]" and K% is a 2 X 2 square matrix.
3. Bending mode in x-z plane

fxz = K*24xz

10



Where, d¥? = [w, 67, w,, 923’]T, ¥ = [Q4, My, Q,, M,]T and K* is a 4 X 4 square matrix.

4. Bending mode in x-y plane

fxy = KXy dxy
Where, d = [v, 67, v,, eg]T, Y = [V, MZ,V,,M%]T and K*¥ is a 4 X 4 square matrix.

Therefore, for a beam element,

{ﬁ—ll} _ ghbeam {dcli_ll}

s ki 0 0 0 0 0 Kk 0O 0O 0 0 07,
Vi kyy 0 0 0 ky; 0 ki3 0 0 0 kyllv
0, k% 0 k% 0 0 0 k% 0 k¥ 0 |jw
T, kKK, 0 0 0 0 0 ki, 0o o0 ]6F
M, k3 0 0 0 ki 0 ki 0 (|6
M| _ kyy 0 kyy 0 0 0 Kk |lef
P, Sym. k% 0 0 0 0 0 ||%
% Ky 0 0 0 k¥
2 kg0 kg0 |
T ki, 0 0 %2
2 koo ||%
LM ] * v | 167

44 -

The derivations of k*? , k>

a t : :
ij ki kijand kj; are given in next chapter.

3.2.2 Lumped Masses and Moment of Inertia

The pulley, crank gear and the flywheel are idealized as a set of lumped masses and MOI
attached at their centers of gravity. Since a set of inertia forces and inertia torques induced
depending upon their linear and angular acceleration at frequency w, following is the dynamic

stiffness matrix,
f=K"d

Where,d = [u, v, w, 6y, 6, 6,].f=I[P, V, Q, T, M, M,]",and

11



KM = —w? diag(m, m,m, Jxx, Jyy,J)22) 1S the set of dynamic stiffness matrix for a set of

lumped masses and moment of inertia.

3.2.3 Linear Spring and Dash-Pots

The oil film of crank journal bearing is assumed to be isotropic and idealized by a set of linear
springs and dash-pots. Assuming only spring forces and damping forces in y and z directions

for each set of spring-dashpot, following is the dynamic stiffness matrix,
f =K%
Where,d = [u, v, w, 6y, 6, 6,],f=1[P, V, Q, T, M, M,]",and

K*® =diag(0,K,, + jCyw,K,, + jC,,®,0,0,0) is the set of dynamic stiffness matrix for

springs and dash-pots.

3.3 Coordinate Transformation and Construction of DSM for Total
Crankshaft System

Let us assume a point P whose co-ordinate is (X, z) in x-z coordinate system. If we rotate this
coordinate system by an angle a, then the coordinate of same point P with respect to the new

coordinate system is (x, Z) as shown in fig. 3.1.

iy
=X /\‘ -
b

Figure 3.1 Representation of a point in local and global coordinate

OB=0A+AB=0A+CD

X = xcosa + zsina

12



PB = PD — BD = PD — AC

Z = Zcosa — xSina
[JZ] _ [ cosa sina] [x]
Z —sina cosallz

cosa sina O
—sma cosa O l l
0

Then, the displacement is given as

cosa sina 0]ru

[ ] [—sma cosa 0] Wl

0 11L6
(Y11 [ cosa sina 0 0 0 Ors
W1 —sina cosa 0 0 0 0f|W1
6.1 _| o 0 1 0 0 0}|6:
| 1 o 0 0 cosa sina O0lluz
w, 0 0 0 -sina cosa Of|wW2
0, | 0 0 0 0 0 116,

{c?} = [Tr]{d}
[K){d} = {F}
{F} = [Tr]{F)
[RI[Tr{d} = [Tr]{F}
[Tr]* [R1[Tr]{d} = {F}
So from local to global coordinate transformation, we get
[K] = [Tr]*[K][T7]

After the construction of DSM for each element in global coordinate and stepwise
superposition of the DSM for each member, we can finally construct the DSM for total

crankshaft system:

13



f=K(w)d
Where, f is the force vector[fy, f>, ... ... ... f.]7, d is displacement vector[d,, d, ... ... ... d,]" and

K (w) is dynamic stiffness matrix of total crankshaft system in global coordinate.

3.4 Natural Frequency and Mode Shape using Newton Bisection Method
We calculate the natural frequencies of total crankshaft system by solving the following
equation for ®, by “Newton bisection method”

det K(w) =0

Newton bisection method is a numerical method of finding root or solution of an equation in
the form of f(x) = 0 in which f(x) is a continuous function defined in interval [a, b]. Where,
f(a) and f(b) have opposite signs or we say f(a)f(b) < 0, then we say that at least one root

“c” must lie between a and b.
c € (a,b) such that f(c) =0

_a+b
‘=

Algorithm:

1. Define aand b such that f(a)f(b) < 0.

2. Definec = asz.

3. If b — ¢ < ethen stop and accept c as the root. ¢ is error tolerance i.e. the absolute error
in calculating the root must be less than e.
4. If f(a)f(c) < 0 then set ¢ as the new b. Otherwise set ¢ as the new a. Return to the

stepl.

14



Chapter 4 : Dynamic Stiffness Matrix

4.1 Dynamic Stiffness Matrix for Rod

Consider an elastic rod of length | with uniform cross sectional area A, as shown in Fig.4.1.
We consider a small element of length dx, the force acting on the cross section of that element
is given by P and P + dP with

ou

P=0,A=EA
Ox ox

Where, o, is the axial stress, E is Young’s modulus of elasticity, u is the axial displacement
(displacement in x-direction), and du/dx is axial strain. If an external load f(x,t), per unit

length is applied, then the summation of forces in x-direction is

0%u
(ox +do A+ f(x,t)dx — 0,A = pAdxF
4
flx,t)
Pruy i g ’ .‘ - g
L > -— Pz, 'H: 4
} dx
- dx >
oA (o, +do,)A

Figure 4.1 Standard rod element with nodal DOF

Where, p is the density of the rod. For free vibration of the rod, f(x,t) = 0.

15



So,

0%u
do, A= pAde
o, = E¢
_ Eau
Ox ox
0%u
dO'x = EW dx
0?2 u
EA—— = pAdx—
oz P e
EAaZu 0%u — 0o
dx2 at2
5 0°u  0%u “ o 111
c %z PV UVTRURRSR (C- 25 0% B

Where, ¢ = EA/pA. Equation (4.1.1) is the governing partial differential equation of free
vibration of the rod. The governing PDE is separable partial differential equation. The solution

of displacement field in separable form is assumed as
u(x,t) = Ux)T(t)

Where, the function U (x) represents the normal mode and depends only on x and the function
T(t) depends only on t. Therefore, substituting this assumed solution of u(x, t) in equation
(4.1.1) gives,

¢ d?U(x) 1 d*T(t)
U(x) dx2 — T(t) dt2

Now, setting each side of equation equal to an unknown constant gives two ordinary

differential equations

c? d*U(x) _
UG dx?

e (£1.2)

16



1 d°T(t)

T e (41.3)

First assuming the temporal solution for T(t) and substituting in equation (4.1.3)

T(t) = Ge'®t
d?T(t)
Tz T(t)a=0

—w?Ge't — Getag =0
Simplifying and solving for unknown coefficient a gives,
a=—w?

So,

¢z d*U(x) 1 &*T®)
U(x) dx?>  T(t) dtz

Similarly, for spatial ordinary differential equation (4.1.2) (substituting the value of unknown

coefficient a found from temporal solution), we have

d?U(x) w?
122 + C_Z Ulx)=0
U
w2
B? = ==
w?pA
2 _
B =
—w P
b=owlg

Assuming the solution for the spatial ordinary differential equation and substituting in equation
(4.1.4) gives,

17



U(x) =Ce*
Cs? e + B%Ces* =0
s?+ B2=0
s = *if
U(x) = Ce % + C,e'hx
U(x) = [e~ihx  iBx] gl]
2
Now, applying the boundary condition,

U=Ujatx=0and U =U,atx =1
C
v =0=0 17
2
N
U@ = U, = e ool ]]
2

ol =[] =l illc]

{d} = [DI{C}

Similarly, evaluating the spatial force and substituting the boundary condition,

dU o
P(x) = EAE = EA(—Lﬁcle—lﬁx + lﬁCZel[j’x)

P(x) = EA[—iBe~f* iBelf¥] [gﬂ

P(0) = (—EA %)mzo = EA[iB —ip] gﬂ

18



T ] 2 IR Al ]

i} =[FIC}

We know that dynamic stiffness matrix is that which relate nodal force vector to nodal

displacement.
{f} = [Kayn]{d}
[FI{C} = [Kayn][D]{C}
[Kayn] = [F1[D]™*

iB —ip 1 1717t
[Kdyn]=EA [_iﬁe—iﬁl iﬁeiﬁl] [e—iﬁl eliBl

From Trigonometry,
e™ = cosx + isinx
e”* = cosx — isinx

After using these relations and solving through MATLAB, we get,

I[ﬁcosﬁl - ]I
inpl infl
[Kdyn] =EA STBB ﬁSCl;lfﬁl‘
sinfl  sinfl
[cosﬁl -1
_ sinpl sinpl
[Kayn] = EA’Bl -1 cosBlJ
sinBl sinfl

19



[cos,Bl -

[Kayn] = EAw\/glsTfl i(l)?[ﬂ;ll! where 8 = f
lsinﬁl sm,BlJ

4.2 Dynamic Stiffness Matrix for Torsion

For a shaft of length | with a uniform cross sectional area A, let us consider a small element of

length dx as shown in fig 4.2. If polar mass moment of inertia of the shaft per unit length is I,

2
and angular twist is 6, the inertia torque acting on the element of length dx is Iodszf

(assuming no external torque is acting). Balancing the torques, we get

0%6

(T+dT) =T = lodx—

™ 0 ran

&
v

dx

Figure 4.2 Standard torsional element with nodal DOF

2

dT = IOdXF

dT —aTd
_axx

If polar moment of inertia of area for beam is I, and modulus of rigidity is G, then

20



e ro T
, 020 9%6

Where, = \/GI,/I, . Equation (4.2.1) is the governing partial differential equation of free

vibration of torsion of shaft and I, = pL,. Therefore,

It can be seen that the above PDE in egn. (4.2.1) is similar to the PDE of axial vibration of rod

obtained in egn. (4.1.1). By analogy,

E-G
A-1
S0 [Kpyn| in case of torsion is

cospl -1

_ [smﬁl sinﬁl]
[Kayn] = \/7 cosf lJ

sm,Bl sinpfl

Where, = \/g )

4.3 Dynamic Stiffness Matrix for Beam

Consider a beam element of length dx of cross sectional area A, and mass density p, as shown
in Fig.4.3, where, V is shear force, M is bending moment and f(x, t) is external load per unit

length applied on beam element. Since the inertia force acting on the beam element of the beam

is pAdx at2

21



=
-

dx ":J Vidy

Figure 4.3 Infinitesimal beam element with nodal DOF

Then equating the force, we get

2

0
V—-—W+dV)+ f(x, t)dx = pAdxa—t‘;V

2

da“w
—dV + f(x,t)dx = pAdx —

ot?
dV = aVd
© Ox x
ov 0w
——dx + f(x,t)dx = pAdx —-

0x ot2

2

e RPN C XX §

v + f(x,t) = pA
ox fluo)=p
Equating the moment about point O
dx
(M +dM) — (V +dV)dx +f(x,t)dx7— M=0

Eliminating the terms involving second power in dx

dM —Vdx =0
dM—aMd
T ox X
oM
—dx—Vdx =0
0x

22



V=%
oV a*M
Ox  0x2
Substituting in egn. (4.3.1),
0°M D) Aa2
a2 T/t =pdg
62
M =FEl —
0x2
2
OZ(EIg—VZV 2

For free vibration

flx,t) =0
92w
62(El—ax2 B AaZW
%2 P2 52
02w
GZ(EIW N Aazw_o
o2 PEez =
E164W+ Aazw—o
axt P52
264W 02w — o
“oxt T o2

. (43.2)

Equation (4.3.2) is the governing partial differential equation of motion of beam element.

Where,
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Assuming the solution in variable separable form and substituting in equation (4.3.2),
w(x, t) = W(x)T(t)

¢ d*'w _ —1d°T
W(x) dx* — T(t)dt?

= a(assume)
Now, setting each side of equation equal to an unknown constant gives two constant coefficient
ordinary differential equations

—1 d2T(¢) L dw
Tt dtz W) dx*

Assuming temporal solution and substituting in above PDE

T(t) = Ge'®t
d2T(t)
a2 +T(t)a=0

—w2Ge't 4 Ge~lwtg =
2

a=w

c? d*'w  -1d°T
W(x) dx*  T(t)dt?

Similarly, for spatial ordinary differential equation (substituting the value of unknown

coefficient a found from temporal solution)

d*w
Tl —B*W(x)=0
. PA®®
= EI
a'w -,
e —-p*W(x)=0

Assuming the solution and substituting in the above equation gives,
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W(x) = Ces*
Cs*es® — B*Ces* = 0

s*—p*=0

Hence the solution is,

W(x) = [e7iBx o=Bx giBx oBx] c
3
Cy

aw . .
0() = ——= —iBCie % — BC,e™P* + iBC;eP* + BC,eP*

Gy

dw . . C

() = ——= [—iBe * —Be P ipetF* PBeP*] Cz
Cy

For transverse shear force and bending moment for fig. 4.3

d*w

M = EI
dx?

dM

dx

a2w

V =EI
dx3

25



And

aw ; j

dx —ipCre~ ¥ — BCreP* + iBCse'P* + BCLeP*
dZW .2 »2 —iBx 2 —Bx 1202 Lfx 2 X
dx? =i“B°Ce iB + p°Cye Ax i B C3elﬁ +B C4eﬁ
d3W .33 _: 3 — .3 03 i 3
=B Ce Bx — B3C,e~P* + i3B3CseP* + B3C,eP*

d>w . .
M(x) = EI = EI(i?B?Cie™P* + B2C e B + i2B2C3e'P* + B2C,eP™)

dx?
2 M .
M(x) = El—— = EI(=p>Cre ™% + B2Ce ™% — B2Cse'P* + B2C,eP)
C1
M(x) — EI[_'BZe—iﬁx ﬁze—ﬁx _ﬁzeiﬁx ﬁzeﬁx] g;
Ca
3 ] )
V(x) = EI T3 EI(—i3B3C,e B* — B3C,eP* + i3B3C;e™P* + B3C,eP¥)

V(x) = EI(iB3Ce™"* — B3C,e P> — iB3Ce™P* + B3C,eFY)

Gy
Co

Cs
Ca

V(x) = El[ip3eFx —p3e~Fx —ip3elh* p3ehx]

The equations shown above are the expressions for the displacement (w), slope (8), bending

moment (M), and shear force (V) for the Euler Bernoulli beam element respectively.
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4.3.1 Beam Element in x-z plane

& 7

(’ 6", M, 8, M, w

¢z

¥
>

Figure 4.4 Beam element in x-z plane with nodal DOF

'
. . c,
W(x) = [e~iBx o=Bx oifx ofx] C
3
[Cy
Cy
¢,
W, =w@=1[1 1 1 1] C
3
Cy.
Gy
. . ¢,
W, =W() =[e~iBl =Bl ¢iBl ohl] c
3
Cy
C
aw ) ) C
0Y = —— = [—iRe-iPx _Re—Bx [BeiBx Bx 2
T2 [—iBe Be ife pef*] Cy
[Cy
Ci
aw C
67 =—<—) = [i —ip  —pB1|
7 ax )y [iB B B —p] Cs
Cyl
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daw _ . C
y — _ (2L — [ipo—iBl -Bl  _ip il _p Bl "2
0, (dx)atx=l lipe Be ife peFt] Cs
Cy
So nodal displacement and slope of Beam element are
o]
107 |
A =
=,
162 |
1 1 1 1 Ci
ne| P B —ip =B |]|C;
{d} = o~ iBL e—BL Bl Bl Cs
iﬂe‘iﬁl ﬁe—ﬁl —iﬁeiﬁl _Beﬁl C,
{d} = [D]{C}
Gy
2 . . C,
M:Elxz e :Elxz[_ﬁze—lﬁx ﬁze—ﬁx _ﬁzelﬁx ﬁzeﬁx] C3
Cy
C1
d*w C
M1:<E1sz> = ElL,[-B*> B> —-B*> PB?] Cz
at x=0
Cy
C1
d*w . .
M2:_<E1xzﬁ> :_Elxz[_ﬁze—Lﬁl ﬁze—ﬁl _ﬁzelﬁl ,Bzeﬁl] gz
x at x=1 3
Cy
Gy
=E]xz[ﬁze—iﬁl _ﬁze—ﬁl ﬁzeiﬁl _ﬁzeﬂl] gz
3
Cy
G
d3 C,
Shear force Q, = Elxzﬁ =EL,[ip® —-p> —ip® p3] c
x at x=0 C3
4
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d>w . .
Q, = —| EL = —El,[ip%e™t —pie7Ft —ipet piefl]| .
at x=1

Z dx3

&)
:Elxz[_iﬁ3e—iﬁl ﬁ3e—ﬁl iﬁ3€iﬁl _ﬁBeﬂl] gz
3
Cy

Q1

_ | My

{f}_ QZ

M,

[ ips - =i B
e e E S
lﬁze‘i’” —p2eFt  p2ef! —ﬁzeﬁlJ
{f} = [FI{¢}
From the definition, Dynamic Stiffness Matrix is
U} = [Koyn|{d}
[F1{C} = [Kpyx][DI{C}

[KDyn] = [F] [D]_l

[Kpyn]
ip? —p? —ip? pg? 1 1
=E]I _'32 BZ _ﬁz ﬁz Lﬁ ﬁ
T | _ig3emiBl 3Bl p3glBL  _g3oBL|| emiBL  oFl
ﬁze—iﬂl _ﬁze—ﬁl ﬁzei[)’l —ﬁzeﬁl iﬁe—iﬁl ﬁe—ﬂl
From Trigonometry,

e* = coshx + sinhx

e * = coshx — sinhx

29
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Gy
C;
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e™ = cosx + isinx
e” ™ = cosx — isinx

After putting these expression for [KDyn] and solving through MATLAB

Xz Xz X2 Xz
11 12 14

Xz Xz |-XZ Xz
24

[KDyn]_[kxz kizz k?a,cg kécf
Lz Kz kg kg

k¥ = k¥?B3(cospl sinhBl + coshBl sinBl)
k¥ = k¥ = —k{*B? sinpl sinhpl
= k3% = —k¥*B3(sinBl + sinhpl)
k¥ = ki% = —k{*B?(cosBl — coshpl)
75 = —k{?B(cosBl sinhBl — coshBl sinfl)
kY% = k¥% = —k{*B?(cosBl — coshpl)
= ki3 = —k{?B(sinpBl — sinhfl)
kY% = k¥?B3(cospl sinhBl + coshBl sinBl)
32 = k¥%2 = k§?B? sinfl sinhpl
ki = —k{?B(cosPl sinhfBl — coshfl sinfl)

Where,

El
k§? = = & B = Vw2pA/El,

" 1 — coshpl cospl

4.3.2 Beam Element in x-y plane
Boundary condition of slope, shear force and bending moment in x-y plane as shown in fig.4.5

is different from that of x-z plane.
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87, M{
(/ S rg:f-M:f

Figure 4.5 Beam element in x-y plane with nodal DOF

Therefore,
,
. . C,
v(x) = [e7iBx  g=Bx oifx  oPx] C
3
[Cy
Ci
C,
vy=v0)=[1 1 1 1]C
3
Cyl
Cy
. . G,
vy =v(l) = [e7Bl =Bl QiBl ohl] C
3
Cy
Gy
dv ) . C
i=(%) =16 -5 i Bl
at x=
Cy
Gy
dv . ) C
Qz:<_) [_ipa—iBl  _pa—Bl ipaiBl piy| 2
3 i) [—iBe Be ife peP!] Cy
Cy
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d?v C
Mf=—<EIxyw) =ELylp* —-p* B> —B°1|.
at x=0

Cy
Gy
d*v . .
MZZ — (Elxy ﬁ) — EIx [_’Bze—LBl Bze—ﬁl _'Bzelﬁl ,Bzeﬁl] gZ
x at x=1 3
Cy
G
d3v C
Shear forceV, = <E1xy F) =EL,[ip> B> —ip* P3] CZ
x at x=0 3
Cy
Gy
d3v . . C
V2 = — (Elxy E) — Elxy[—i,33e_lﬁl ﬂ3e_ﬁl iﬁ3elﬁl _B3eﬁl] CZ
at x=1 C3
4
[KDyn] = [F] [D]_l
[Kpyn]
ip? -p® —ip® p? 1 1 1 1 97t
T I AR L Lol | I/ A R
- Hixy _iBSe—iﬁl ﬁ3eﬁl iﬁ3eiﬂl _ﬁ3eﬁl e—iﬁl e—Bl eiﬁl eﬁl

—B2eiBl B2e=Fl  _pg2oifl  p2eBl —ife Bl _Be~Bl iBeifl Rehl

After solving this we see that each elements of K,y is same as elements of Ky, only Iy, is
replaced by Iy (moment of inertia of area about z-axis), and reversing the sign of the k7%, k17,

k5%, k3% and these symmetrical elements.
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Chapter 5 : Mathematical Modeling for Crankshaft

Mathematical modeling of single cylinder engine crankshaft using Dynamic Stiffness Matrix
Method and to determine the natural frequency and mode shapes of the crankshaft using
MATLAB. Material for crankshaft is alloy steel and free vibration analysis is performed.

Material:

Material used for crankshaft is AISI 4340 alloy steel. The mechanical property of AISI 4340

alloy steel is given below:

Table 5.1 Properties of Alloy steel

Properties Value

Density(p) 7800 kg/m?®
Elastic Modulus(E) 210 Gpa
Shear Modulus(G) 77 Gpa

Table 5.2 Chemical composition for AISI 4340 Alloy steel

Element Content (%)
Iron, Fe 95.195-96.33
Nickel, Ni 1.65-2.0
Chromium, Cr 0.700-0.900
Manganese, Mn 0.600-0.800
Carbon, C 0.370-0.430
Molybdenum, Mo 0.200-0.300
Silicon, Si 0.150-0.300
Sulfur, S 0.0400
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Table 5.3 Dimension of member elements of a single cylinder engine crankshaft as

shown in fig.5.1 [1]

Element Dimension(mm)
1 ¢ 20 x 50
2 ¢ 25x59
3,5 33x17x28.5
4 026 x 52
6 © 25 x 39
7 022x 15
8 ¢ 18x 25
9 ¢ 13x 18
10,11 33x17x15
12,13 70x13x 35

Here, ¢ denotes the diameter of element

Table 5.4 Mass and Moment of inertia for front pulley and flywheel

Parts Mass Moment of inertia(kg m?)
(kg) Ix ly I
Front pulley 2.01 6.38 x 10’ 3.65x 10 3.65x 10°®
Flywheel 10.15 0.15 075 075
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E=-

U

10

(b)

Figure 5.1 Rough sketch and idealized model of single cylinder engine crankshaft [1]
Above figure (5.1) shows a sketch of single cylinder engine crankshaft and its model idealized
with 13 constituent member element. The dimension of each element are also shown in Table
5.3.

In the planar-structure crankshaft, two kinds of coupled vibration are induced independently.

1) Inplane mode: In this mode, coupled vibration of the bending mode in the crank throw
plane(x-z plane) and the axial mode along the x-axis.
2) Out of plane mode: In this mode, coupled vibration of the bending mode in the plane

orthogonal to the crank throw plane (x-y plane) and the torsional mode about x-axis.

In plane Mode:

For in plane mode, the dynamic stiffness matrix for coupled vibration of bending mode in x-z

plane and axial mode along x-axis is given as follows

For axial mode
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P1] _ [kﬁ
Pyl kS,

For bending mode in x-z plane

Q1] [kiT kiZ ki3 kig]Wiy
M| k¥ k3 kE k|67 |
Q; ‘[ ¥ OkE kg J WzJ
Mol kg ki kiz kyglley

So, K matrix for coupled vibration of bending mode in x-z plane and axial mode is

Py [k 0 0 kL 0 0ty
0 |0 k¥ KZ 0 kZ Kg||w
M| |0 k% kE 0 kE k¥)6)
P, k% 0 0 k% 0 0 [lu
QI [0 k¥ kZ o kF Kg||w
Ml Lo k7 kg o kg kgl

The values of all the element of K®and K** have been given in chapter 4.

Out of plane mode:

Similarly, the dynamic stiffness matrix for out of plane mode is,

For torsional mode,

For bending mode in x-y plane

)=

4 kit
M7 k3T
Vo |~ |k
M3 kX

So, K matrix for coupled vibration of the bending mode in x-y plane and the torsional mode is

t
kll
t
k21

kiz
k33
k37
kiz
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Xz
13
Xz
23

Xz
k33
Xz
ka3

kfz] [95]
07

t
k22

Xz
k14
Xz
k24
Xz
k34

%1

VA
01
VU,

xz z
kis 03



r o [k 0 0 ki O 0 o,
: 0 kY kY o kY k2|
|4 11 12 13 14 | vq
M| 10kt k0 kyy kypl|6f
T, ki, 0 0 ki 0 0 (|6F
1\‘;‘; 0 Kyl ki 0 ki ki o
B i X X X X L B
2lo Ky k00 kg kil

Procedure:

Stepl: Derive the dynamic stiffness matrix for each element for in plane mode and out of plane

mode in local coordinate.

Step 2: Transform the dynamic stiffness matrix from local coordinate to global coordinate

using coordinate transformation (transformation matrix) as described in chapter 3.

Step 3: Assemble the dynamic stiffness matrix for each element to make the dynamic stiffness

matrix for whole crankshaft.
For example for in plane mode,

Dynamic stiffness matrix for element 1

PV kKD 0 0 KXY o0 0 J[u]
o I v = A B vl vl
Mfl) B 0 k;ff(l) k;f;(l) 0 k;cg(l) k;f:(l) ely(l)
PV kS o o KXV o 0 ||u®
I i e R e i
_Mz(l)_ 0 kfff(l) kif;(l) 0 kicg(l) kﬁ(l)_ _0231(1)_

Superscripts represent the element number

Dynamic stiffness matrix for element 2
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PP k(P 0 0 kP 0 0 [u®]
o I B o B I el orid
M§2) ~ 0 k;“f(z) k;c;(Z) 0 k;f(z) k;c:(Z) 92y(2)
PO k2 0o 0 kP 0 o ||u?
o I N = B e I vl (7
_M§2)_ 0 kfff(z) kﬁ(z) 0 kﬁ(z) kﬁ(z)_ _93y(2)_

Dynamic stiffness matrix for element 1 & 2

P, = Pl(l) ] [ u, = ugl)
Q1 = 51) wy = Wl(l)
My, =M 67 = 7™
P, =P +p® uy = us? +ulP
02 = 09 + 02 | = [Koyal, g, | wa = wl® + w®
My = MV + MP 6] =67V + 6@
P; = P3(2) Uz = ugz)
Q3 = éz) w3 = w3(2)
My =MP | | 6 =6]?
[KDV”L&Z
kXD 0 0 k2 0 0 0 0
0 K KEY o e GO 0
0o KEY KEY o e 0 0 o
KXo 0 k& 4 i@ 0 0 KX® 0
=| o k;cf(l) k;c;(l) 0 k;c;(l) + kff(z) k;ci(l) + kicZZ(Z) 0 kicg(Z)
0 KEY KEY 0 kY EOekE® o kg®
0 0 0 k2P 0 0 KX® 0
0 0 0 0 k2@ k2@ 0 kY@
|0 0 0 0 k2@ k2@ 0 k2@

Using the same procedure, assembling is done for whole crankshaft system, for both in plane

mode and out of plane mode. MATLAB is used for assembling, which is in the form,
f=Kw)d

38




Where, f is force vector [fi, fo, cov oo .. f.%, q is displacement vector[d,, d, ... ... ... d,]” and

K (w) is the dynamic stiffness matrix of total crankshaft system in global coordinate.

Step 4: Put K (w) = 0 and find the natural frequencies for both in plane mode and out of plane

mode. Newton Bisection method is used for solving K (w) = 0.

Step 5: The mode shapes can be calculated by substituting the o back into the equation
K(w)d = 0 and solving for d.
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Chapter 6 : Results and Discussions

Table 6.1 Natural frequencies of a single cylinder engine crankshaft In Plane Mode

(free-free)

Mode Measured(Hz) Calculated(Hz) Calculated(Using
Matlab in Hz)
1% 1250 1259 1128.5
2nd 2500 2567 1512.5
3™ 2950 3528 2755.5
4 3950 3842 3224.5
5 5200 4500 3504.5
3851.5
4070.5
4373.5
4408.5

Obtained natural frequencies for In plane mode are closely matched with the calculated and
measured natural frequencies [1]. However, first natural frequency 1128.5 Hz is less than the
measured natural frequency of 1250 Hz. But second and third natural frequencies 2755.5 Hz
and 3504.5 Hz are greater than the measured natural frequencies 2500 Hz and 2950 Hz
respectively. Now the fourth and fifth natural frequencies 3504.5 Hz and 4408.5 Hz are less
than the natural frequencies of 3950 Hz and 5200 Hz respectively.
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Mode shapes for In Plane Mode:

Mode shape for natural frequency 1125.5 Mode shape for natural frequency 15125
T T T T T B T T
|l
A
F ] - L
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|
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|
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L | i
|
| R i
o e ——f o T | I ——— —g—Ff
1 1 1 1 1 1

Figure 6.1 Mode shapes for natural frequencies 1128.5 & 1512.5 Hz

hode shape for natural frequency 27555 Mode shape for natural frequency 3224.5
T —— T T T T T T T
r By
L | 4 L
|
It SUNPPEE. 0———8--00 1 iz = = ——8a—a——+
1 1 1 1 1 1 1 1 1 1
Figure 6.2 Mode shapes for natural frequencies 2755.5 & 3224.5 Hz
Mode shape for natural frequency 3504 5 Mode shape for natural frequency 3851.5
=% i
Ik = —— B——=8-g—Ff 1 i = —F L p==B_g

Figure 6.3 Mode shapes for natural frequencies 3504.5 & 3851.5 Hz

41



Maode shape for natural frequency 4070.5 Mode shape for natural frequency 4373.5

3 1]

-
-
L -

- -~ |

Figure 6.4 Mode shapes for natural frequencies 4070.5 & 4373.5 Hz

Mode shape for natural frequency 4408.5

@ =)

Figure 6.5 Mode shapes for natural frequency 4408.5 Hz
The above figures show the mode shapes of crankshaft for In plane mode. The mode shapes
obtained at one natural frequency is different from the other mode shape. However, the mode
shape for natural frequencies 1128.5, 2755.5, 4373.5 Hz are looks similar and the mode shape
for natural frequencies 3224.5, 3504.5, 3851.5 are looks similar and the remaining mode
shapes are different. It means the movement of each element of crankshaft is in different

manner.
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Table 6.2 Natural frequencies of a single cylinder engine crankshaft Out of Plane Mode
(free-free)

Mode Measured(Hz) Calculated(Hz) Calculated(Using
Matlab in Hz)
18 1650 1444 1314.5
2" 3050 2847 1819.5
31 3900 3812 21225
4t 5050 4840 2303.5
5t 5700 5810 3877.5
4024.5
4305.5
4525.5
4810.5
6002.5

Obtained natural frequencies for Out of plane mode are closely matched with the calculated
and measured natural frequencies [1]. However, first, second, third and fourth natural
frequencies 1314.5, 2303.5, 3877.5, 4810.5 Hz are less than the measured natural frequencies
of 1650, 3050, 3900, 5050 Hz respectively. But the fifth natural frequency 6002.5 Hz greater

than the measured natural frequencies of 5700 Hz.
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Mode shapes for out of plane mode:

Mode shape for natural frequency 13145
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hode shape for natural frequency 1819.5
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Figure 6.6 Mode shapes for natural frquencies 1314.5 & 1819.5 Hz

Mode shape for natural frequency 2122.5
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Mode shape for natural frequency 2303.5
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Figure 6.7 Mode shapes for natural frquencies 2122.5 & 2303.5 Hz

Mode shape for natural frequency 3877.5
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Figure 6.8 Mode shapes for natural frequencies 3877.5 & 4024.5 Hz
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Figure 6.9 Mode shapes for natural frequencies 4305.5 & 4525.5 Hz

Mode shape for natural frequency 481005 Mode shape for natural frequency 60025
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Figure 6.10 Mode shapes for natural frequencies 4810.5 & 6002.5 Hz

The above figure shows the mode shapes of crankshaft for Out of plane mode. The mode
shapes obtained at one natural frequency is different from the other mode shape. However, the
mode shape for natural frequencies 1314.5, 2303.5, 3877.5 Hz are looks similar except the
right hand side element of crankshaft and the mode shape for natural frequencies 2122.5,
4810.5 and 6002.5 Hz are looks similar and the remaining mode shapes are different. It means

the movement of each element of crankshaft is in different manner.
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Chapter 7 : Conclusions and Future Works

7.1 Conclusions

1) A simple modeling and analysis procedure is proposed for three dimensional free
vibrations analysis of single cylinder engine crankshaft system.

2) The DSM for beam element can be derived either from TMM or by the governing
differential equation of beam in the form of K (w) and also derived from FEM model
in the form of [K — w?M]. However, the latter might have more merits in that one can
examine the overall distribution of masses and stiffness in the system but the
computational cost of analysis by FEM is high.

3) There are good agreement between calculated and experimental results for the natural
frequencies.

4) The natural frequency for both in plane mode and out of plane mode is above 1000 Hz
and the natural frequency of a running engine is very low <100 Hz. So crankshaft and
engine is never in resonant condition

5) We hope that this simple modeling and analysis procedure can be readily used for the

practical studies of actual engine crankshafts.

7.2 Future Works

This method can be used for the forced vibration analysis of single cylinder, inline four
cylinder engine & V-engine crankshaft. The crankshafts which are used in compressor and
other application are also be analyzed by this method. FEM method may also be used for

modeling for crank arm, counterweight or whole crankshaft.
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Appendix

MATLAB PROGRAME
APPENDIX 1

clc
% Derivation of element of k matrix for xz plane
syms b 1 E I
al = cos(b*1l);
a2 = sin(b*1l);
a3 sinh (b*1);
a4 = cosh(b*1l);
D= [1111;
li*b b -1i*b -b;
al-1i*a2 a4-a3 al+li*a2 a4+a3;
li*b*(al-1i*a2) b*(ad4-a3) -1li*b*(al+li*a2) -b*(ad+a3)];
F = E*I*[1i*b"3 -b"3 -1i*b"3 b"3;
-b"2 b"2 -b"2 b"2;
-1li*pb"3* (al-1i*a2) b"3*(ad4-a3) 1li*b"3*(al+li*a2) -b"3*(a3+ad);
b"2* (al-1i*a2) -b"2*(ad4-a3) b"2*(al+li*a2) -b"2*(a3+ad)l;
swl = F/ (D)

APPENDIX 2

clc
% Derivation of element of k matrix for xy plane
syms b 1 E T
al = cos(b*1l);
a2 = sin(b*1l);
a3 = sinh(b*1);
a4d cosh (b*1);
D= [1111;
-1li*b -b 1i*b b;
al-li*a2 a4-a3 al+li*a2 ad+a3;
-li*b*(al-1i*a2) -b*(ad4-a3) 1li*b*(al+li*a2) b*(ad+a3)];
F = E*I*[1i*b"3 -b"3 -1i*b"3 b"3;
b"2 -b*"2 b"2 -b"2;
-1i*b"3* (al-1i*a2) b"3*(ad4-a3) 1li*b"3*(al+li*a2) -b"3*(a3+ad);
-b"2* (al-1i*a2) b"2*(ad4-a3) -b"2*(al+li*a2) b"2* (a3+ad)];
swl = F/ (D)

APPENDIX 3

clc
% Derivation of K matrix of whole crankshaft for in plane mode
function [stiffness,kl] = Axial finall (w)

B=[12345%6;4506728 9748 910 11 12;10 11 12 13 14 15; 13 14 15 16
17 18; 16 17 18 19 20 21; 19 20 21 22 23 24; 22 23 24 25 26 27; 25 26 27
28 29 30;7 8 9 31 32 33; 16 17 18 34 35 36;31 32 33 37 38 39; 34 35 36 40
41 427;

stiffness = zeros (42);

rho = 7800*107-9;
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* sin(gama_xz)

(1
* cos (gama_xz)
* sin(gama_xz)

(cosh (gama_ xz)

+ sin(gama xz));

- cos(gama_ xz))

* cos (gama_xz)
- cos(gama_ xz))
- sin(gama_xz))

* cos(gama_xz)

E = 210000;

$ For element 1

d = 20;

Ixz = pi*d"~4/64;

A = pi*d”~2/4;

1 = 50;

beta xz = (w*2*rho*A/ (E*Ixz))".25;
gama xz = beta xz * 1;

k = E * Ixz * beta xz"3 /
k 11 = k * (sinh(gama_xz)
k 12 = -k * sinh(gama_xz)
k 21 = k 12;

k 13 = -k * (sinh(gama xz)
k 31= k 13;

k 14 = -k * (cosh(gama xz)
k 41 = k_14;

k 22 = -k * (sinh(gama_ xz)
/ beta xz"2;

k 23 = k * (cosh(gama_xz)
k 32 = k _23;

k 24 = k * (sinh(gama_ xz)
k 42 = k _24;

k 33 = k * (sinh(gama_ xz)
beta xz;

k 34 = k * sinh(gama_ xz)

k 43 = k_34;

k 44 = -k * (sinh(gama_ xz)

/ beta xz"2;

P
k a
c

k el

0 k 23 k_24; k a(2,1

e

0.5 * w *
(rho * E) ~ 0.5
[k a(l,1) 0 0 k a
) 00

k 42 0 k_43 k_44];

k1l

k_

ele;

theta = 0;

(

* cos (gama_xz)

s Derive the element of k a matrix
(rho / E)
A*
os (P)/sin(P)];

1;

* w * [cos(P)/sin(P)

) 00

;2 ;
a(2,2) 0

1
k

+ cosh(gama_ xz)
/ beta xz;

- cosh(gama_ xz)

+ cosh(gama xz)

- cosh(gama_ xz)

* cos(gama_xz)));

/ beta xz;

* sin(gama_xz))

/ beta xz;

/ beta xz"2;

* sin(gama_xz))

/ beta xz;

* sin(gama_xz))

-1/sin(P) ; -1/sin (P)
12 0 k 13 k_14; 0 k 21 k_22
k 32 0 k 33 k_34; 0 k_41

* sin(gama_xz));

a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans
000 171;

k g inv(trans)*k ele * trans;
indice=B (1, :);

stiffness(indice, indice)=stiffness(indice, indice)+k g;

* cos(gama xz)));
+ cosh(gama_ xz)
/ beta xz;

% For element 2

d = 25;

Ixz = pi*d*4/64;

A = pi*d*2/4;

1 = 59;

beta xz = (w"2*rho*A/(E*Ixz))".25;

gama xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh(gama xz)
k 11 = k * (sinh(gama_xz) * cos(gama_ xz)

k 12 = -k * sinh(gama_xz) * sin(gama_ xz)

k 21 = k 12;

k 13 = -k * (sinh(gama xz) + sin(gama xz));
k 31= k 13;
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k 14 =
k 41
k 22 =
/ beta
k 23 =
k 32 =
k 24 =
k 42 =
k 33 =
beta x
k 34 =
k 43 =
k 44 =
/ beta
k a =

cos (P)
k ele

0 k 23
k 42 0
theta

a=cos (
b=sin(
trans

00O

k g =

indice

-k * (cosh(gama xz) - cos(gama_xz)) / beta xz;
k 14;

-k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz)
- xXz"2;

k * (cosh(gama xz) - cos(gama_ xz)) / beta xz;

k 23;

k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 24;

k * (sinh(gama xz) * cos(gama xz) + cosh(gama xz)
Z;

k * sinh(gama xz) * sin(gama_ xz) / beta xz;

k 34;

-k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz)
xz”2;P = (rho / E) ~ 0.5 * w * 1;
A * (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin (P)

/sin(P)];

= [k a(1,1) 0 0 k
k 24; k a(2,1) 0
k_43 k_447;

= 0;

theta*pi/180) ;

theta*pi/180) ;

,2) 00 ; 0 k1
a 0;

; 11 k1
(2,2) 0 0; 0 k 31

2 0 k 13 k_14;
k 32 0 k 33 k_34; 0 k_41

* sin(gama_xz))

* sin(gama_xz))

* sin(gama_xz))

; -1/sin (P)

0 k 21 k 22

/

= [ab0000;,-ba0000;001000;000ab0;000=-ba6o;00
117

inv(trans)*k ele * trans;

=B(2,:);

stiffness(indice, indice)=stiffness(indice, indice)+k g;

For

= 33
17
Xz =

= b*
= 28
beta x
gama_Xx
k = E

k 11 =
k 12 =
k 21 =
k 13 =
k 31=
k 14

k 41

k 22 =
/ beta
k 23 =
k 32 =
k 24 =
k 42 =
k 33 =
beta x
k 34 =
k 43 =
k 44 =
/ beta
P = (r

= > H D O o
Il

element 3

b*h"3/12;

h;

.5;

z = (w*2*rho*A/ (E*Ixz))".25;
z = beta xz * 1;

* Ixz * beta xz”3 / (1 - (cosh(gama xz) * cos(gama xz)));

k * (sinh(gama xz) * cos(gama_xz) + cosh(gama xz)
-k * sinh(gama xz) * sin(gama_xz) / beta xz;

k 12;

-k * (sinh(gama xz) + sin(gama_xz));

k 13;

-k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 14;

-k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz)
_xXz"2;

k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 23;

k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 24;

k * (sinh(gama xz) * cos(gama xz) + cosh(gama xz)
Zy

k * sinh(gama xz) * sin(gama_ xz) / beta xz;

k 34;

-k * (sinh(gama_xz) * cos(gama xz) - cosh(gama_ xz)
Xz"2;
ho / E) ~ 0.5 * w * 1;

51

* sin(gama_xz));

* sin(gama_xz))

* sin(gama_ xz))

* sin(gama_xz))
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k a=2A%* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)
cos (P) /sin (P)1;
k ele = [k a(l,1) 0 0 k
0 k 23 k 24; k a(2,1) 0
k 42 0 k_43 k 44];
theta = 270;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [ab 00 00;-ba0000=0;001000;,000ab0;000=-ba60;00
000 11;
k g = inv(trans)*k ele * trans;
indice=B (3, :);

stiffness(indice, indice)=stiffness (indice, indice)+k g;

k 13 k 14; 0 k_21 k 22
32 0 k 33 k 34; 0 k 41

=
~ N
w o

% For element 4

d = 26;

Ixz = pi*d~4/64;

A = pi*d"2/4;

1 = 52;

beta xz = (w*2*rho*A/(E*Ixz))".25;

gama_ xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh (gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama_ xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_xz));
k 12 = -k * sinh(gama_xz) * sin(gama_ xz) / beta xz;

k 21 = k 12;

k 13 = -k * (sinh(gama xz) + sin(gama_xz));

k 31= k 13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k 14;

k 22 = -k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

k 23 = k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 32 = k 23;

k 24 = k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 42 = k 24;

k 33 = k * (sinh(gama xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama xz) / beta xz;

k 43 = k 34;

k 44 = -k * (sinh(gama xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 *w * 1;

k a =A* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin(P) ];
k ele = [k a(1,1) 0 0 k_
0 k 23 k 24; k a(2,1) 0
k 42 0 k 43 k 44];
theta = 0;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 000O0;-ba0000=0;001000;,000ab=0;000-ba6o0;00
000 171;
k g = inv(trans)*k ele * trans;
indice=B (4, :);

stiffness(indice, indice)=stiffness (indice, indice)+k g;

( k 13 k 14; 0 k_21 k 22

,2) 00 12 0
a 1 k 32 0 k 33 k_34; 0 k_41

; 11
(2,2) 0 0; 0 k

a(l
0 k

% For element 5
b = 33;
h = 17;
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Ixz = b*h*3/12;

A = b*h;

1 = 28.5;

beta xz = (w*2*rho*A/(E*Ixz))".25;

gama_ xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh(gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama_xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_ xz));
k 12 = -k * sinh(gama xz) * sin(gama xz) / beta xz;

k 21 =k 12;

k 13 = -k * (sinh(gama xz) + sin(gama_xz));

k 31= k _13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k 14;

k 22 = -k * (sinh(gama xz) * cos(gama xz) - cosh(gama xz) * sin(gama xz))
/ beta xz"2;

k 23 = k * (cosh(gama _xz) - cos(gama xz)) / beta xz;

k 32 = k _23;

k 24 = k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 42 = k 24;

k 33 = k * (sinh(gama_xz) * cos(gama_xz) + cosh(gama xz) * sin(gama_ xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama xz) / beta xz;

k 43 = k 34;

k 44 = -k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz) * sin(gama xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 * w * 1;

k a =A* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin (P)];

k ele = [k a(1,1) 0 0 k a(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41
k 42 0 k 43 k 447;

theta = 90;

a=cos (theta*pi/180) ;

b=sin (theta*pi/180);

trans = [a b 0 0 0 0;-ba00O0@0;00100@0;000ab@0;000=-ba6o0;00
000 1];

k g = inv(trans)*k ele * trans;

indice=B (5, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 6

d = 25;

Ixz = pi*d"4/64;

A = pi*d*~2/4;

1 = 39;

beta xz = (w"2*rho*A/(E*Ixz))".25;

gama xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh(gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama_xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_xz));
k 12 = -k * sinh(gama xz) * sin(gama xz) / beta xz;

k 21 = k 12;

k 13 = -k * (sinh(gama xz) + sin(gama xz));

k 31= k 13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k 14;

k 22 = -k * (sinh(gama xz) * cos(gama xz) - cosh(gama xz) * sin(gama xz))
/ beta xz"2;

k 23 = k * (cosh(gama xz) - cos(gama xz)) / beta xz;
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k 24 = k * (sinh(gama_xz) - sin(gama xz)) / beta xz"2;

k 42 = k_24;

k 33 = k * (sinh(gama xz) * cos(gama xz) + cosh(gama xz) * sin(gama xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama_ xz) / beta xz;

k 43 = k_34;

k 44 = -k * (sinh(gama xz) * cos(gama xz) - cosh(gama xz) * sin(gama xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 *w * 1;

k a=2* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P)/sin(P)];

k ele = [k a(1,1) 0 0 k a(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k 43 k _44];
theta = 0;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 00 00;-ba00000;001000;,000wab0;000-ba6o0;00
000 171;
k g = inv(trans)*k ele * trans;
indice=B (6, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 7

d = 22;

Ixz = pi*d~4/64;

A = pi*d"2/4;

1 =15;

beta xz = (w*2*rho*A/ (E*Ixz))".25;

gama_ xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh(gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama_ xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_ xz));
k 12 = -k * sinh(gama_ xz) * sin(gama xz) / beta xz;

k 21 = k_12;

k 13 = -k * (sinh(gama xz) + sin(gama_xz));

k 31= k 13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k_14;

k 22 = -k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

k 23 = k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 32 = k _23;

k 24 = k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 42 = k_24;

k 33 = k * (sinh(gama xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama xz) / beta xz;

k 43 = k_34;

k 44 = -k * (sinh(gama_xz) * cos(gama_ xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 * w * 1;

k a =A * (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin (P)1;

k ele = [k a(l,1) 0 0 k. a(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k_14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 kK 32 0 k 33 k 34; 0 k 41

k 42 0 k_43 k_44];
theta = 0;
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a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 00 00;-ba0000=0;001000;,000ab=0;000-ba60;00
000 131;
k g = inv(trans)*k ele * trans;
indice=B (7, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 8

d = 18;

Ixz = pi*d~4/64;

A = pi*d”~2/4;

1 = 25;

beta xz = (w*2*rho*A/(E*Ixz))".25;

gama xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh (gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama_xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_xz));
k 12 = -k * sinh(gama xz) * sin(gama_xz) / beta xz;

k 21 = k 12;

k 13 = -k * (sinh(gama xz) + sin(gama xz));

k 31= k 13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k_14;

k 22 = -k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

k 23 = k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 32 = k _23;

k 24 = k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 42 = k 24;

k 33 = k * (sinh(gama_xz) * cos(gama xz) + cosh(gama xz) * sin(gama_ xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama xz) / beta xz;

k 43 = k_34;

k 44 = -k * (sinh(gama xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 *w * 1;

k a =A* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin(P) ];

k ele = [k a(1,1) 0 0 k a(1,2) 00 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k 43 k _44];
theta = 0;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [ab 000 0;-ba0000;001000;000ab0;000=-ba6o0;00
000 171;
k g = inv(trans)*k ele * trans;
indice=B (8, :);
stiffness(indice, indice)=stiffness (indice, indice)+k g;

% For element 9

d = 13;

Ixz = pi*d"4/64;

A = pi*d"2/4;

1 = 18;

beta xz = (w*2*rho*A/ (E*Ixz))".25;

gama Xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh(gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama xz) * cos(gama xz) + cosh(gama xz) * sin(gama xz));
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k 12 = -k * sinh(gama xz) * sin(gama_xz) / beta xz;

k 21 = k 12;

k 13 = -k * (sinh(gama xz) + sin(gama xz));

k 31= k 13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k_14;

k 22 = -k * (sinh(gama_xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

k 23 = k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 32 = k _23;

k 24 = k * (sinh(gama_xz) - sin(gama xz)) / beta xz"2;

k 42 = k _24;

k 33 = k * (sinh(gama xz) * cos(gama xz) + cosh(gama xz) * sin(gama_ xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama xz) / beta xz;

k 43 = k_34;

k 44 = -k * (sinh(gama_xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

P = (rho / E) »~ 0.5 * w * 1;

k a=A* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin(P)1;

k ele = [k a(1,1) 0 0 k a(1,2) 00 ; O k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k_43 k_44];
theta = 0;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 000 0;-ba0000;001000;,000ab0;000-ba6o0;00
000 11;
k g = inv(trans)*k ele * trans;
indice=B (9, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 10

b = 33;

h = 17;

Ixz = b*h"3/12;

A = b*h;

1 =15;

beta xz = (w*2*rho*A/ (E*Ixz))".25;

gama xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh(gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_ xz));
k 12 = -k * sinh(gama xz) * sin(gama_xz) / beta xz;

k 21 = k_12;

k 13 = -k * (sinh(gama_xz) + sin(gama_xz));

k 31= k_13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k _14;

k 22 = -k * (sinh(gama_xz) * cos(gama_ xz) - cosh(gama xz) * sin(gama_xz))
/ beta xz"2;

k 23 = k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 32 = k 23;

k 24 = k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 42 = k_24;

k 33 = k * (sinh(gama xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_ xz)) /
beta xz;
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k 34 = k * sinh(gama xz) * sin(gama_ xz) / beta xz;

k 43 = k_34;

k 44 = -k * (sinh(gama xz) * cos(gama xz) - cosh(gama xz) * sin(gama xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 *w * 1;

k a=2A* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P)/sin(P)];

k ele = [k a(1,1) 0 0 k a(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k 43 k _44];
theta = 90;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 00 00;-ba0000=0;001000;000ab0;000-ba6o0;00
000 171;
k g = inv(trans)*k ele * trans;
indice=B (10, :);
stiffness(indice, indice)=stiffness (indice, indice)+k g;
For element 11

b = 33;

h =17;

Ixz = b*h"3/12;

A = b*h;

1 =15;

beta xz = (wr2*rho*A/ (E*Ixz))".25;

gama_ xz = beta xz * 1;

k = E * Ixz * beta xz"3 / (1 - (cosh (gama xz) * cos(gama xz)));

k 11 = k * (sinh(gama xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama_xz));
k 12 = -k * sinh(gama_xz) * sin(gama xz) / beta xz;

k 21 = k 12;

k 13 = -k * (sinh(gama xz) + sin(gama_ xz));

k 31= k 13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k_14;

k 22 = -k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

k 23 = k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 32 = k 23;

k 24 = k * (sinh(gama xz) - sin(gama xz)) / beta xz"2;

k 42 = k 24;

k 33 = k * (sinh(gama xz) * cos(gama_ xz) + cosh(gama xz) * sin(gama xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama_ xz) / beta xz;

k 43 = k_34;

k 44 = -k * (sinh(gama_ xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 * w * 1;

k a=2A%* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin (P)1;

k ele = [k a(1,1) 0 0 k a(1,2) 00 ; O k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 k32 0 k 33 k 34; 0 k 41

k 42 0 k_43 k_44];
theta = 90;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180) ;
trans = [a b 00 O0O0;-ba0000=0;001000;,000ab0;000-ba6o0;00
000 11;
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k g =
indice=B(1

1,:);

inv(trans)*k _ele * trans;

stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 12

b = 70;

h = 13;

Ixz = b*h*3/12;

A = b*h;

1 =15;

beta xz = (w*2*rho*A/ (E*Ixz))".25;
gama_ xz = beta xz * 1;

k = E * Ixz * beta xz"3 /
k 11 = k * (sinh(gama xz)
k 12 = -k * sinh(gama_ xz)
k 21 = k 12;

k 13 = -k * (sinh(gama_xz)
k 31= k 13;

k 14 = -k * (cosh(gama xz)
k 41 = k 14;

k 22 = -k * (sinh(gama_ xz)
/ beta xz"2;

k 23 = k * (cosh(gama_ xz)
k 32 = k 23;

k 24 = k * (sinh(gama_xz)
k 42 = k_24;

k 33 = k * (sinh(gama_ xz)
beta xz;

k 34 = k * sinh(gama xz)

k 43 = k 34;

k 44 = -k * (sinh(gama_xz)
/ beta xz"2;

P = (rho / E) ~ 0.5 * w *
k a =A* (rho * E) ©~ 0.5
cos (P) /sin (P) ];

k ele = [k a(1,1) 0 0 k_ a
0 k 23 k 24; k a(2,1) 00

k 42 0 k_43 k_44];

theta

= 90;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180) ;

trans =
000 11;
k g =
indice=B (1

2,:);

(

1

(cosh (gama_xz)

* cos (gama_ xz)
* sin(gama_xz)

/ beta xz;

+ sin(gama_xz));

- cos(gama_ xz))

* cos (gama_xz)

- cos(gama_xz))

- sin(gama_xz))

* cos (gama_xz)

* sin(gama_xz)

* cos (gama_xz)

inv(trans)*k ele * trans;

/ beta xz;

- cosh(gama_ xz)

/ beta xz;

/ beta xz"2;

* sin(gama_xz));

* cos(gama_xz)));
+ cosh(gama xz)

* sin(gama_xz))

+ cosh(gama_xz) * sin(gama_xz))
/ beta xz;
- cosh(gama_ xz) * sin(gama_xz))
/sin(P) -1/sin(P) ; -1/sin (P)
k 11 k 12 0 k 13 k 14; 0 k 21 k 22
;0 k 31 k 32 0 k 33 k 34; 0 k 41

stiffness(indice, indice)=stiffness(indice, indice)+k g;

= 70;
= 13;
= b*h”"
b*h;

= 35;
beta xz =
gama_xz =
k =
k 11 =
k 12 =
k 21 =

k *

k 1

For element 13

3/12;

(w"2*rho*A/ (E*Ixz))".25;
beta xz * 1;
E * Ixz * beta xz"3 /

(sinh (gama_ xz)

2;

-k * sinh(gama xz)

(

1

(cosh (gama_xz)
* cos (gama_ xz)
* sin(gama_ xz)
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+ cosh(gama_xz)
/ beta xz;

* sin(gama_ xz));

/
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k 13 = -k * (sinh(gama_xz) + sin(gama_xz));

k 31= k 13;

k 14 = -k * (cosh(gama xz) - cos(gama xz)) / beta xz;

k 41 = k_14;

k 22 = -k * (sinh(gama_xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

k 23 = k * (cosh(gama _xz) - cos(gama xz)) / beta xz;

k 32 = k _23;

k 24 = k * (sinh(gama_xz) - sin(gama_xz)) / beta xz"2;

k 42 = k 24;

k 33 = k * (sinh(gama xz) * cos(gama xz) + cosh(gama xz) * sin(gama xz)) /
beta xz;

k 34 = k * sinh(gama xz) * sin(gama xz) / beta xz;

k 43 = k_34;

k 44 = -k * (sinh(gama_xz) * cos(gama xz) - cosh(gama xz) * sin(gama_ xz))
/ beta xz"2;

P = (rho / E) ~ 0.5 * w * 1;

k a=2A%* (rho * E) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin (P)];

k ele = [k a(1,1) 0 0 k a(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k a(2,1) 0 0 k a(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k 43 k _447];
theta = 90;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 00 0 0;-ba 00O0O0;001000;000ab©0;000=-bato0;00
000 1];
k g = inv(trans)*k ele * trans;
indice=B (13, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;
% For Front Pulley & Flywheel
indice = [1 2 3 28 29 30];
load = -w"2 * blkdiag(2,2,2*3650,10.15,10.15,2*75000) ;

stiffness (indice, indice)=stiffness (indice, indice) +load;
% For Spring & Dash Pot
spring = blkdiag(0,1075,0,0,1075,0);
stiffness(indice, indice)=stiffness (indice, indice) +spring;

APPENDIX 4

clc

Eigen Vector & Mode shape for in plane mode

= [50 59 28.5 52 28.5 39 15 25 18 15 35];
[0 50 109 109 161 161 200 215 240 258];

y = [0 0 0 28.528.50000 0];

plot (x,v)

set (gca, 'XTickLabel','-");

set(gca, 'YTickLabel','1");

hold on

[stiffness,kl] = Axial finall(1128.5);

f = det(stiffness);

a = stiffness(2:42,2:42);

b = [0;0; stiffness(4,1) 0o, 0; 0; 0; 0O0; O; 0O; 0; 0O; 0; 0O; 0; 0O; 0; 0; O

0

c

Y oo

; 0; 0; 0; O; O; O; O; O; O; O; O; O; O; O; O; O; O; O; O; O; O1;
1 = inv(a) *b;
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cl = 10*[1 c1']"

x new = [x(1)+cl(l) x(2)+cl(4) x(3)+cl(7) x(4)+cl(10) x(5)+cl(13)
x(6)+cl (16) x(7)+cl(19) x(8)+cl(22) x(9)+cl(25) x(10)+cl(28)1];

y new = [y(1l)+cl(2) y(2)+cl(5) y(3)+cl(8) y(4)+cl(1ll) y(5)+cl(14)
y(6)+cl(17) y(7)+cl(20) y(8)+cl(23) y(9)+cl(26) y(10)+cl(29)]

$Add effect of theta

x new = [x new(l) x new(l)+ 1(1)*cos(cl(3)) x new(2)+ 1(2)*cos(cl(6))
x new(4)+ 1(3)*sin(cl(9)) x new(4)+ 1(4)*cos(cl(1l2)) x new(6)-
1(5)*sin(cl(15)) x new(6)+ 1(6)*cos(cl(18)) x new(7)+ 1(7)*cos( (21))
x new(8)+ 1(8)*cos(cl(24)) x new(9)+ 1(9)*cos(cl(27))];

y new = [y new(l) y_ new(2) 1(1)*sin(cl(3)) y new(3)- 1(2)*sin(cl(6))
y new(3)+ 1(3)*cos(cl(9)) y new(5)- 1(4)*sin(cl(1l2)) y new(5)-
1(5)*cos(cl(15)) y_ new(7)— 1(6)*sin(cl(18)) y new(8)- 1(7)*sin(cl(21))
y new(9)- 1(8)*sin(cl(24)) y new(1l0)- 1(9)*sin(cl(27))];
plot(x new,y new,'--rs')

title ('Mode shape for natural frequency 1128.5")

APPENDIX 5

clc

% Derivation of K matrix of whole crankshaft for out of plane mode
function [stiffness,kl] = Torsional finall (w)
B=[123145%;4506789;78 9 10 11 12;10 11 12 13 14 15; 13 14 15 106

17 18; 16 17 18 19 20 21; 19 20 21 22 23 24; 22 23 24 25 26 27; 25 26 27
28 29 30;7 8 9 31 32 33; 16 17 18 34 35 36;31 32 33 37 38 39; 34 35 36 40

41 42];

stiffness = zeros(42);

rho = 7800*10"-9;

E = 210000;

G = 77000;

% For element 1

d = 20;

Ixy = pi*d*4/64;

A = pi*d"2/4;

1 = 50;

Ip = pi*d~4/32;

beta xy = (w*2*rho*A/ (E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh(gama xy) * cos(gama xy)));

k 11 = k * (sinh(gama xy) * cos(gama xy) + cosh(gama xy) * sin(gama_ xy));
k 12 = k * sinh(gama xy) * sin(gama xy) / beta xy;

k 21 = k_12;

k 13 = -k * (sinh(gama_ xy) + sin(gama_xy));

k 31= k 13;

k 14 = k * (cosh(gama xy) - cos(gama_xy)) / beta xy;

k 41 = k_14;

k 22 = -k * (sinh(gama_xy) * cos(gama_ xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xyAZ;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k_32 =k 23;

k 24 = k * (sinh(gama xy) - sin(gama_xy)) / beta xy"2;

k 42 = k_24;

k 33 = k * (sinh(gama xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama_ xy) / beta xy;

k 43 = k_34;
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k 44 = -k * (sinh(gama_xy) * cos(gama_ xy) - cosh(gama xy) * sin(gama_ xy))

/ beta xy"2;

% Derive the element of k t matrix

P = (rho / G) ~ 0.5 * w * 1;

k t =1Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin (P) 1;

k ele = [k t(1,1) 0 0 k t(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k t(2,1) 0 0 k. t(2,2) 0 0; 0 k 31 k 32 0 k 33 k_34; 0 k_41

k 42 0 k_43 k_44];
kl = k ele;
theta = 0;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 00 00;-ba0000=0;001000;000ab0;000-ba6o0;00
000 171;
k g = inv(trans)*k ele * trans;
indice=B (1, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;
For element 2

d = 25;

Ixy = pi*d*4/64;

A = pi*d"2/4;

1 =59;

Ip = pi*d~4/32;

beta xy = (wr2*rho*A/ (E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh (gama xy) * cos(gama xy)));

k 11 = k * (sinh(gama xy) * cos(gama xy) + cosh(gama xy) * sin(gama_ xy));
k 12 = k * sinh(gama_xy) * sin(gama_ xy) / beta xy;

k 21 = k 12;

k 13 = -k * (sinh(gama_ xy) + sin(gama_xy));

k 31= k 13;

k 14 = k * (cosh(gama xy) - cos(gama_xy)) / beta xy;

k 41 = k_14;

k 22 = -k * (sinh(gama_ xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 32 = k 23;

k 24 = k * (sinh(gama xy) - sin(gama_xy)) / beta xy"2;

k 42 = k _24;

k 33 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama_xy) / beta xy;

k 43 = k_34;

k 44 = -k * (sinh(gama_ xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

P = (rho / G) ~ 0.5 * w * 1;

k t =1Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)
cos (P) /sin (P)1;

k ele = [k £(1,1) 0 0 k
0 k 23 k 24; k t(2,1) 0
k 42 0 k_43 k_44];
theta = 0;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180) ;
trans = [a b 00 0O0;-ba00000;001000;,000ab0;000-ba6o0;00
000 11;

12 0 k 13 k_14; 0 k 21 k 22
1 k 32 0 k 33 k 34; 0 k_41
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k g = inv(trans)*k ele * trans;
indice=B (2, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 3

b = 33;

h =17;

Ixy = h*b"*3/12;

A = b*h;

1 = 28.5;

Ip = (h*b"3/12) + (h"3*b/12);

beta xy = (w*2*rho*A/(E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh(gama xy) * cos(gama_xy)));

k 11 = k * (sinh(gama xy) * cos(gama xy) + cosh(gama xy) * sin(gama_ xy));
k 12 = k * sinh(gama xy) * sin(gama xy) / beta xy;

k 21 = k 12;

k 13 = -k * (sinh(gama xy) + sin(gama_xy));

k 31= k _13;

k 14 = k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 41 = k 14;

k 22 = -k * (sinh(gama_xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 32 = k 23;

k 24 = k * (sinh(gama xy) - sin(gama xy)) / beta xy"2;

k 42 = k 24;

k 33 = k * (sinh(gama_xy) * cos(gama_xy) + cosh(gama xy) * sin(gama xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama_xy) / beta xy;

k 43 = k 34;

k 44 = -k * (sinh(gama_xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

P = (rho / G) ~ 0.5 * w * 1;

k t =1Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)
cos (P) /sin(P) ];

k ele = [k _t(1,1) 0 0 k_t(
0 k 23 k 24; k_t(2,1) 0 0
k 42 0 k_43 k_44];

theta = 90;

a=cos (theta*pi/180) ;

b=sin (theta*pi/180);

2) 00 ; 0 k 11
t(2,2) 0 0; 0 k_

4

1 k 12 0 k 13 k_14; 0 k 21 k_22
k 31 k 32 0 k_33 k _34; 0 k_41

trans = [a b 0O 0 0 0;-ba00O0@O0;00100@0;000ab¢0;000=-ba6o0;00
000 17;
k g = inv(trans)*k ele * trans;

indice=B (3, :);
stiffness (indice,indice)=stiffness(indice, indice)+k _g;
% For element 4

d = 26;

Ixy = pi*d"~4/64;

A = pi*d"2/4;

1 = 52;

Ip = pi*d~4/32;

beta xy = (w*2*rho*A/(E*Ixy))”".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh(gama xy) * cos(gama xy)));

k 11 = k * (sinh(gama xy) * cos(gama xy) + cosh(gama xy) * sin(gama xy));
k 12 = k * sinh(gama xy) * sin(gama xy) / beta xy;
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k 21 = k_12;

k 13 = -k * (sinh(gama_xy) + sin(gama_xy));

k 31= k_13;

k 14 = k * (cosh(gama xy) - cos(gama _xy)) / beta xy;

k 41 = k 14;

k 22 = -k * (sinh(gama_xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 32 = k _23;

k 24 = k * (sinh(gama_xy) - sin(gama xy)) / beta xy"2;

k 42 = k 24;

k 33 = k * (sinh(gama xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_ xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama_xy) / beta xy;

k 43 = k 34;

k 44 = -k * (sinh(gama_xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

P = (rho / G) ~ 0.5 * w * 1;

k t =1Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P)/sin(P) ];

k ele = [k t(1,1) 0 0 k t(1,2) 0 O ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k t(2,1) 0 0 k t(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k_43 k_44];
theta = 0;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180);

trans = [a b 000 0;-ba000@0;001000;000ab=0;000--bado;00
000 1];
k g = inv(trans)*k ele * trans;

indice=B (4, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 5

b = 33;

h =17;

Ixy = h*b"3/12;

A = b*h;

1 = 28.5;

Ip = (h*b"3/12) + (h"3*b/12);

beta xy = (w*2*rho*A/ (E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh(gama xy) * cos(gama xy)));

k 11 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_ xy));
k 12 = k * sinh(gama xy) * sin(gama xy) / beta xy;

k 21 = k_12;

k 13 = -k * (sinh(gama xy) + sin(gama_xy));

k 31= k 13;

k 14 = k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 41 = k_14;

k 22 = -k * (sinh(gama_xy) * cos(gama_ XxXy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 32 = k 23;

k 24 = k * (sinh(gama xy) - sin(gama_xy)) / beta xy"2;

k 42 = k_24;

k 33 = k * (sinh(gama xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama_ xy) / beta xy;
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k 43 = k_34;

k 44 = -k * (sinh(gama_ xy) * cos(gama_xy)

/ beta xy”"2;
P = (rho / G) ~ 0.5 * w * 1;

- cosh(gama_xy)

k t =1Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P)

cos (P) /sin (P) 1;

k ele = [k t(1,1) 0 0 k
0 k 23 k 24; k t(2,1) 0
k 42 0 k_43 k_44];
theta = 90;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180);

k_
;0

1

1
k_

k
3

1

-1

* sin(gama_xy))

/sin(P) ; -1/sin (P)

k 13 k 14; 0 k_21 k 22

12 0
k 32 0 k_33 k_34;

0 k_41

trans = [a b 00 00;-ba0000=0;001000;,000ab=0;000=-ba60;00

000 131;
k g = inv(trans)*k ele * trans;
indice=B (5, :);

stiffness(indice, indice)=stiffness(indice, indice)+k g;

For element 6

d = 25;

Ixy = pi*d*4/64;

A = pi*dr2/4;

1 = 39;

Ip = pi*d~4/32;

beta xy = (w*2*rho*A/(E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh(gama xy) * cos(gama xy)));
k 11 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama_ xy)

k 12 = k * sinh(gama_xy) * sin(gama_xy) / beta xy;

k 21 = k 12;

k 13 = -k * (sinh(gama xy) + sin(gama_xy));

k 31= k 13;

k 14 = k * (cosh(gama_ xy) - cos(gama xy)) / beta xy;

k 41 = k 14;

k 22 = -k * (sinh(gama xy) * cos(gama Xy) - cosh(gama xy)

/ beta xy"2;

k 23 = -k * (cosh(gama xy) - cos(gama_ xy))

k 32 = k_23;

k 24 = k * (sinh(gama_xy) - sin(gama_ xy))

k 42 = k_24;

k 33 = k * (sinh(gama_xy) * cos(gama_ xy)
beta xy;

k 34 = -k * sinh(gama_xy) * sin(gama_ xy)
k 43 = k_34;

k 44 = -k * (sinh(gama_ xy) * cos(gama_ Xxy)

/ beta xy"2;
P = (rho / G) ~ 0.5 * w * 1;

/ beta xy;

/ beta xy”"2;

+ cosh(gama_xy)

/ beta xy;

- cosh(gama_xy)

k t =1Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P)

cos (P) /sin (P)1;

k ele = [k t(1,1) 0 0 k
0 k 23 k 24; k t(2,1) 0
k 42 0 k_43 k_44];
theta = 0;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180);

0
3

-1

/sin(P) ; -1/sin(P)
k 13 k_14; 0 k 21 k_22
20 k 33 k 34; 0 k_41

* sin(gama_xy));

* sin(gama_xy))

* sin(gama_xy))

* sin(gama_xy))

/

trans = [a b 00O0O0;-ba0O00=0;001000;,000ab0;000-ba6o0;00

000 1];
k g = inv(trans)*k ele * trans;
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indice=B (6, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 7

d = 22;

Ixy = pi*d~4/64;

A = pi*d”~2/4;

1 =15;

Ip = pi*d"4/32;

beta xy = (w*2*rho*A/(E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh (gama xy) * cos(gama xy)));

k 11 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_ xy));
k 12 = k * sinh(gama_xy) * sin(gama xy) / beta xy;

k 21 = k 12;

k 13 = -k * (sinh(gama_xy) + sin(gama_xy));

k 31= k _13;

k 14 = k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 41 = k 14;

k 22 = -k * (sinh(gama_ xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 32 = k _23;

k 24 = k * (sinh(gama xy) - sin(gama xy)) / beta xy"2;

k 42 = k 24;

k 33 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama xy)) /
beta xy;

k 34 = -k * sinh(gama_xy) * sin(gama_xy) / beta xy;

k 43 = k 34;

k 44 = -k * (sinh(gama xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

P = (rho / G) ~ 0.5 *w * 1;

k t =Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin (P) ];

k ele = [k t£(1,1) 0 0 kK t(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k £t(2,1) 0 0 k t(2,2) 0 0; 0 k 31 k32 0 k 33 k 34; 0 k 41

k 42 0 k_43 k_44];
theta = 0;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180);

trans = [a b 0O 0 0 0;-ba 000=0;00100@0;000ab@0;000=-ba6o0;00
000 1];
k g = inv(trans)*k ele * trans;

indice=B (7, :);
stiffness(indice, indice)=stiffness(indice, indice)+k g;

For element 8

= 18;
xy = pi*d~4/64;

= pi*d~2/4;

= 25;

Ip = pi*d~4/32;
beta xy = (w"2*rho*A/(E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh (gama xy) * cos(gama_ xy)));
k 11 = k * (sinh(gama_ xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_xy));
k 12 k * sinh(gama xy) * sin(gama_ xy) / beta xy;

k 21 = k 12;

k 13 = -k * (sinh(gama xy) + sin(gama xy));

= X H Q. o°

65



k_31=
k 14
k 41

k 22 =

/ bet
kK 23

k 32 =

k_24
k_42

k 33 =

beta

k 34 =

k 43

k 44

/ bet
P = (
k t =
cos (P
k ele
0 k 2
k 42

theta
a=cos
b=sin
trans
0 0O
k g =
indic

k 13;
= k * (cosh(gama xy) - cos(gama xy)) / beta xy;
=k 14;
-k * (sinh(gama_ xy) * cos(gama xy) - cosh(gama_ xy)
a xy"2;
= -k * (cosh(gama xy) - cos(gama xy)) / beta xy;
k 23;
= k * (sinh(gama xy) - sin(gama xy)) / beta xy"2;
= k 24;
k * (sinh(gama xy) * cos(gama_xy) + cosh(gama_ xy)
XY ;

-k * sinh(gama xy) * sin(gama xy) / beta xy;
k_34;
= -k * (sinh(gama xy) * cos(gama Xxy) - cosh(gama xy)
a xy"2;
rho / G) ~ 0.5 * w * 1;

Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P)
)/sin(P) ];

= [k _t(1,1) 0 0 k_t(
3k 24; k t(2,1) 00
0 k 43 k_441;

= 0Q;

(theta*pi/180) ;
(theta*pi/180) ;

2) 00 ; 11
t(2,2) 0 0; 0 k

4

1
k

12 0 k 13 k_14;
1 k 32 0 k 33 k_34; 0 k_41

* sin(gama_xy))

* sin(gama_xy))

* sin(gama_xy))

; -1/sin (P)

0 k 21 k_22

/

= [ab0000;-ba000=0;001000;000ab?o0;000--babo;00
11;

inv(trans)*k ele * trans;
e=B(8,:);

stiffness(indice, indice)=stiffness(indice, indice)+k g;

[

s For
1

d
Ixy =
A
1

p
1

element 9
3;
pi*d~4/64;
i*d~2/4;

8;

Ip = pi*d~4/32;

beta _
gama
k =E
k 11
k 12
k 21

k 13 =

k_31=
k 14
k 41

k 22 =

/ bet
k 23

k 32 =

k 24
k 42

k 33 =

beta
k 34
k 43

k 44 =

/ bet

Xy = (w"2*rho*A/ (E*Ixy))".25;
Xy = beta xy * 1;

* Ixy * beta xy”3 / (1 - (cosh(gama xy) * cos(gama xy)));

= k * (sinh(gama_xy) * cos(gama xy) + cosh(gama_ xy)
k * sinh(gama xy) * sin(gama_xy) / beta xy;

=k 12;

-k * (sinh(gama xy) + sin(gama_ xy));

k 13;
= k * (cosh(gama_xy) - cos(gama_xy)) / beta xy;
=k 14;
-k * (sinh(gama_ xy) * cos(gama_xy) - cosh(gama xy)
a xy"2;
= -k * (cosh(gama xy) - cos(gama xy)) / beta xy;
k 23;
= k * (sinh(gama xy) - sin(gama xy)) / beta xy"2;
= k _24;
k * (sinh(gama xy) * cos(gama xy) + cosh(gama xy)
XYr

= -k * sinh(gama xy) * sin(gama_ xy) / beta xy;

= k 34;

-k * (sinh(gama xy) * cos(gama_xy) - cosh(gama xy)
a xy"2;
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P = (rho / G) ~ 0.5 * w * 1;

k t =1Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin (P) ];

k ele = [k t(1,1) 0 0 k. t(1,2) 0 0 ; 0 k. 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k t(2,1) 0 0 k t(2,2) 0 0; O k 31 k 32 0 k 33 k 34; 0 k_ 41

k 42 0 k 43 k 44];
theta = 0;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180);
trans = [a b 00 0 0;-ba0O000;001000;000wab¢o0;000-ba6oO;00
000 171;
k g = inv(trans)*k ele * trans;
indice=B (9, :);

stiffness(indice, indice)=stiffness(indice, indice)+k g;

$ For element 10

b = 33;

h=17;

Ixy = h*b"3/12;

A = b*h;

1 =15;

Ip = (h*b"3/12) + (h*b"3/12);

beta xy = (wr2*rho*A/ (E*Ixy))".25;

gama xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh(gama_ xy) * cos(gama_xy)));
k 11 = k * (sinh(gama_ xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_ xy)):;

k 12 = k * sinh(gama_ xy) * sin(gama xy) / beta xy;
k 21 = k_12;

k 13 = -k * (sinh(gama xy) + sin(gama_ xy));

k 31= k_13;

k 14 = k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 41 = k_14;

k 22 = -k * (sinh(gama_ xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy"2;

k 23 = -k * (cosh(gama_xy) - cos(gama xy)) / beta xy;

k 32 = k _23;

k 24 = k * (sinh(gama_xy) - sin(gama xy)) / beta xy"2;

k 42 = k_24;

k 33 = k * (sinh(gama_xy) * cos(gama xy) + cosh(gama xy) * sin(gama_ xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama_xy) / beta xy;

k 43 = k 34;

k 44 = -k * (sinh(gama_ xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy”"2;

P = (rho / G) ~ 0.5 * w *x 1;

k t =Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin(P) ];

k ele = [k t(1,1) 0 0 k t(1,2) 0 0 ; 0 k. 11 k 12 0 k 13 k _14; 0 k 21 k 22
0 k 23 k 24; k t(2,1) 0 0 k. t(2,2) 0 0; 0 k 31 k 32 0 k 33 k_34; 0 k_41

k 42 0 k_43 k_44];
theta = 90;
a=cos (theta*pi/180) ;
b=sin (theta*pi/180) ;
trans = [a b 0 0 0 0;-ba 000O0;,001000;0004ab=0;000=-bao0;00
000 171;
k g = inv(trans)*k ele * trans;
indice=B (10, :);
stiffness (indice,indice)=stiffness(indice, indice)+k _g;
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% For element 11

b = 33;

h =17;

Ixy = h*b"3/12;

A = b*h;

1 =15;

Ip = (h*b"3/12) + (h*b"3/12);

beta xy = (w*2*rho*A/(E*Ixy))".25;

gama xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh (gama xy) * cos(gama xy)));

k 11 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_xy));
k 12 = k * sinh(gama xy) * sin(gama xy) / beta xy;

k 21 =k 12;

k 13 = -k * (sinh(gama xy) + sin(gama xy));

k 31= k 13;

k 14 = k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 41 = k_14;

k 22 = -k * (sinh(gama_ xy) * cos(gama Xxy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy”"2;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 32 = k _23;

k 24 = k * (sinh(gama xy) - sin(gama xy)) / beta xy"2;

k 42 = k 24;

k 33 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_ xy))
beta xy;

k 34 = -k * sinh(gama_xy) * sin(gama_xy) / beta xy;

k 43 = k_34;

k 44 = -k * (sinh(gama xy) * cos(gama xy) - cosh(gama xy) * sin(gama_ xy))
/ beta xy”"2;

P = (rho / G) ~ 0.5 * w * 1;

k t =Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P)
cos (P) /sin(P) ];

k ele = [k t(1,1) 0 0 k_t(
0 k 23 k 24; kX _t(2,1) 0 0
k 42 0 k_43 k_44];

theta = 90;

a=cos (theta*pi/180) ;

b=sin (theta*pi/180);

2) 0 0 ;
t(2,2) O

4

1
k

12 0 k_13 k_14;
1 k 32 0 k 33 k _34; 0 k_41

; —1/sin (P)

0 k 21 k_22

/

trans = [a b 000 0;-ba0000;001000;000wab?-0;,000-badoO;00

000 1];
k g = inv(trans)*k ele * trans;
indice=B (11, :);

stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 12

b = 70;

h = 13;

Ixy = h*b"3/12;

A = b*h;

1 =15;

Ip = (h*b"3/12) + (h*b"3/12);

beta xy = (w"2*rho*A/(E*Ixy))".25;

gama_ xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh (gama xy) * cos(gama_ xy)));
k 11 = k * (sinh(gama_ xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_xy));

k 12 k * sinh(gama xy) * sin(gama_ xy) / beta xy;
k 21 = k 12;
k 13 = -k * (sinh(gama xy) + sin(gama xy));
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k 31= k_13;

k 14 = k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 41 = k_14;

k 22 = -k * (sinh(gama xy) * cos(gama Xxy) - cosh(gama xy) * sin(gama xy))
/ beta xy"2;

k 23 = -k * (cosh(gama xy) - cos(gama xy)) / beta xy;

k 32 = k 23;

k 24 = k * (sinh(gama xy) - sin(gama_ xy)) / beta xy"2;

k 42 = k_24;

k 33 = k * (sinh(gama xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama xy) / beta xy;

k 43 = k_34;

k 44 = -k * (sinh(gama xy) * cos(gama Xxy) - cosh(gama xy) * sin(gama xy))
/ beta xy"2;

P = (rho / G) ~ 0.5 *w * 1;

k t =Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)

cos (P) /sin(P) ];

k ele = [k t(1,1) 0 0 k £(1,2) 0 0 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
0 k 23 k 24; k t(2,1) 0 0 k t(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k_43 k_44];
theta 90;

a=cos (theta*pi/180) ;
b=sin (theta*pi/180);

000O0;,001000;00¢04ab®O0;000=-bao0;00@0

trans = [a b 0 0 0 O0;-b a
000 1];
k g = inv(trans)*k ele * trans;

indice=B (12, :);

stiffness(indice, indice)=stiffness(indice, indice)+k g;

% For element 13

b = 70;

h = 13;

Ixy = h*b"3/12;

A = b*h;

1 = 35;

Ip = (h*b"3/12) + (h*b"3/12);

beta xy = (w"2*rho*A/(E*Ixy))".25;

gama xy = beta xy * 1;

k = E * Ixy * beta xy"3 / (1 - (cosh(gama xy) * cos(gama_xy)));

k 11 = k * (sinh(gama_xy) * cos(gama_ xy) + cosh(gama xy) * sin(gama_ xy));
k 12 = k * sinh(gama xy) * sin(gama xy) / beta xy;

k 21 = k 12;

k 13 = -k * (sinh(gama xy) + sin(gama_xy));

k 31= k 13;

k 14 = k * (cosh(gama_ xy) - cos(gama_xy)) / beta xy;

k 41 = k _14;

k 22 = -k * (sinh(gama xy) * cos(gama xy) - cosh(gama xy) * sin(gama xy))
/ beta xy"2;

k 23 = -k * (cosh(gama_ xy) - cos(gama xy)) / beta xy;

k 32 = k 23;

k 24 = k * (sinh(gama xy) - sin(gama xy)) / beta xy"2;

k 42 = k _24;

k 33 = k * (sinh(gama xy) * cos(gama_xy) + cosh(gama xy) * sin(gama xy)) /
beta xy;

k 34 = -k * sinh(gama xy) * sin(gama_ xy) / beta xy;

k 43 = k_34;
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44 = -k * (sinh(gama_xy) * cos(gama_xy) - cosh(gama xy) * sin(gama_ xy))
eta xy"2;
(rho / G) ~ 0.5 * w * 1;

k 4
/ b
P =
k t Ip * (rho * G) ~ 0.5 * w * [cos(P)/sin(P) -1/sin(P) ; -1/sin(P)
cos
k e
0 k_

(P)/sin(P) ];
le = [k t(1,1) 0 0 k £(1,2) 00 ; 0 k 11 k 12 0 k 13 k 14; 0 k 21 k 22
23 k 24; k t(2,1) 0 0 k t(2,2) 0 0; 0 k 31 k 32 0 k 33 k 34; 0 k 41

k 42 0 k_43 k_44];
theta = 90;
a=cos (theta*pi/180)
b=sin (theta*pi/180)
trans = [a b 00 0 0;-ba 0000;001000;,000abi0;000=-ba6o0;00
000 131;
k g = inv(trans)*k ele * trans;
indice=B (13, :);
stiffness(indice, indice)=stiffness (indice, indice)+k g;
% For Front Pulley & Flywheel
indice = [1 2 3 28 29 30];
load = -w"2 * blkdiag(6380*2,2.01,3650*%2,150%*%2,10.15,75%*2);
stiffness(indice, indice)=stiffness (indice, indice)+load;
% For Spring & Dash Pot
spring = blkdiag(0,1075,0,0,1075,0);
stiffness(indice,indice)=stiffness(indice, indice) +spring;

APPENDIX 6

clc
% Eigen Vector & Mode shape for out of plane mode

1 = [50 59 28.5 52 28.5 39 15 25 18 15 35];
b4 [0 50 109 109 161 161 200 215 240 258];
y = [0 00 28.528.500000];

plot (x,v)

set (gca, 'XTickLabel','-");

set(gca, 'YTickLabel','I");

hold on

[stiffness,kl] = Torsional finall(2122.5);

f = det(stiffness);

a = stiffness(2:42,2:42);

b = [0;0; stiffness(4,1);

0; 0; 0; O

cl = inv(a
.1

; 0; 0; 0; O; O; O; O; O; O; O; O; O; O; O; O; Oy
; 0; 0; O0; O; O; O; O; O; O; O; O; O; O; O; O; O; O; O]
(a) *b;
* [1 cl1']!
[v(1)+cl(2) y(2)+cl(5) y(3)+cl(8) y(4)+cl(1ll) y(5)+cl(14)
17) y(7)+cl(20) y(8)+cl(23) y(9)+cl(26) y(10)+cl(29)];
ect of theta
ew = [x(l) (l)+ 1(1)*cos(cl(3)) x(2)+ 1(2)*cos(cl(6)) x(4)+

(c

(c

(c

[

+

(

*cos (cl (1 )) x(7)+ 1(7)*cos(cl(21)) x(8)+ 1(8)*cos(cl(24)) x(9)+
1(27))1;

y new(l) y_ new(

n
3) *sin(cl (9 x(4)+ 1(4)*cos(cl(1l2)) x(6)- 1(5)*sin(cl(15)) x(6)+
6
9

*cos
new = y— 1(1)*sin(cl(

2 1 *sin(cl(6))
) y new(5)- 1(4)*

)

)

(2
yinew(5)
1(7
1;

new(
w(3) 1(1

_new (3) cos (cl(9
(5) *cos

1 )
cl(15)) y new (7
y_new(9) 1(8) sin(cl (24
plot(x,y new,'--rs')

title('Mode shape for natural frequency 2122.5")

) y 3
in 2)
) y _new (8 *sin(cl(21))

3) ) —
_ s )
- 1(6)*sin(cl(18) n ) —
) vy new(10)- 1(9)*sin(cl(27))

’
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