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ABSTRACT

This thesis contains total 6 chapters along with two appendices including zero
chapter which provides an introduction to the topic of study and includes a
brief survey of the contribution made by many authors on the earlier matter
presented in the thesis. Besides the zero chapter there are five more chapters

whose outlines are as follows:

e In Chapter 1, we introduce a new Mittag-Leffler (M-L) type function
named FE-function. Then we establish its conditions of convergence
and obtain two interesting special cases (generalized sine and cosine
function) which are believed to be new and important. Further derive
Mellin-Barnes type contour integral representation of E-function and
finally establish some integral transforms like Mellin transform, Laplace
transform, Euler-Beta transform and Whittaker transform of the newly

defined function.

e In Chapter 2, we prove efficiency and usefulness of the E-function,
by establishing relations of E-function with well-known special func-
tions such as generalized hypergeometric function, Fox’s H-function,
H-function and Wright function. Further we obtain known M-L type
functions as special cases of the E-function. Finally we obtain Bessel
function, Bessel Maitland function, generalized Bessel Maitland func-
tion, Bessel Clifford function, Lommel function, Hurwitz zeta function,
Riemann zeta function, Struve function, modified Struve function, Dot-
senko function, Rabotnov’s function and Mellin-Ross function as par-

ticular cases of the E-function.

e In Chapter 3, we define two fractional integral operators whose ker-
nels involve generalized multivariable polynomial and the E-function.
We define a pair of multidimensional fractional integral operators I and
J and give the conditions of existence. Then under these operators we
obtain images of important functions. After this, we prove two the-
orems connecting the multidimensional generalized Stieltjes transform
and the newly introduced integral operators here. Then, we establish

Mellin transform, Mellin convolutions and inversion formulae of these



operators. Finally, we study three composition formulae of the mul-
tidimensional fractional integral operators and obtain two dimensional

analogue of second composition formula.

In Chapter 4, we establish Riemann-Liouville, Erdélyi-Kober and a
more generalized fractional integral transformation of the E-function
and then obtain various special cases. Finally discuss the second form
of Mellin-Barnes type contour integral representation of the E-function

and then obtain various special cases.

In Chapter 5, we discuss essentials of fractional calculus and operate
a generalized Saigo-fractional derivative operator upon the E-function.
Finally establish some important theorems on fractional differentiation
of the E-function and at the end of the chapter we give a concluding

remark.
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CHAPTER 0

INTRODUCTION

The main object of this chapter is to provide an introduction to the topics of
study and include a brief survey of the contribution made by many authors
on the earlier matter presented in the thesis. A short chapterwise description
of the thesis has also been added at the end of the chapter.

Throughout this thesis, let C, R, N, Z; be the sets of complex numbers,
real numbers, positive and non-positive integers, respectively and Ny :=

N U {0}.

0.1 THE GAUSSIAN HYPERGEOMETRIC FUNCTION
AND ITS GENERALIZATIONS

The term ‘hypergeometric’ (from the Greek word vmep for hyper, above or
beyond) first used by John Wallis in 1655 in the work Airthmetica Infinito-
rum, to present any series which was advancement of the ordinary geometric
series 1 + = 4+ 2% + 2% + .... In particular, he studied the series
l+a+a(a+1l)+a(a+1)(a+2)+....

A large number of functions of this kind have been defined and studied,
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but the most common are the hypergeometric functions. In 1812, the well
known mathematician C. F. Gauss defined and studied the following infinite
series which is an extension of the earlier defined geometric series and called

Gauss series or Gauss hypergeometric series

= (a), (b), , a-(a+1)-b-(0+1) ,
;(<2”n(n)!”z =l+—z+ g 2.6)'((:4&1) )24 (0.1.1)
where
(a)n:H(a—i—r—l):a(a+1)...(a+n—1) (0.1.2)

a#0,neN; (a),=1; c#0,-1,-2, ...

The function (a), is called the factorial function (or Pochhammer sym-
bol).

Gauss denoted this series by o F1 (a, b; ¢; z), where a, b, ¢ and z may
be real or complex. The function reduces to a polynomial, if either of the
numbers a or b takes a value as non-positive integer, but if ¢ takes a value
as non-positive integer then the function does not remain defined since all

but a finite number of terms of the series become infinite.

If we replace z by z/b and let b — 0o in equation (0.1.1)), then we get

D .,

and we obtain the following well known Kummer’s series

Dy oy, 0, a(at])
n!

( a
() e 1:2-¢c-(c+1)

> 24 (0.1.3)
n=0 n

it is known as confluent hypergeometric function and denoted by 1 Fi (a; ¢; 2).



0.1 THE GAUSSIAN HYPERGEOMETRIC FUNCTION AND ITS
GENERALIZATIONS

Note: If k is a positive integer and n is a non-negative integer, then

(@ =" (5) (O‘Zl)n (%’HL (0.1.4)

Generalization of oF) is the generalized hypergeometric function ,Fy,

which is defined by this series

aaaa"'aap; > Qg ), ---\Q n
o 2 :Z( oo (@), 22 (0.1.5)
— (b)), ---(b,), !
by,0y,...,0,; n=0 " /n
where z is a variable and all the parameters a,,a,,...,a,; b,,b,,...,b_ are

real or complex numbers such that no denominator parameter is negative
integer or zero, and p and ¢ are either positive integers or zero, and an
empty product is interpreted as unity,

The conditions of convergence of the function ,F;, are as follows:

1. When p < ¢, then the series on the right hand side of eqution (|0.1.5]

is convergent for all values of z.

2. When p = ¢ + 1, then the series (0.1.5)) is convergent if | z |< 1 and

divergent when | z |> 1, and on the circle | z |= 1, the series (0.1.5)) is

(a) Absolutely convergent if R (w) > 0;
(b) Conditionaly convergent if —1 < R (w) < 0 for z # 1;

(c) Divergent if R (w) < —1,

where
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3. When p > ¢ + 1, then the series (0.1.5) never converges except when

z = 0 and the function is defined only when the series terminates.

A detailed description of the functions 9F1,1F, and ,Fj can be found
in the works of Exton [39], Luke [112], Rainville[I56], and Slater [186]

and their applications can be found in Mathai and Saxena [125].

0.2 THE FOX HA-FUNCTION

To explore the study in the direction of condition p > ¢ + 1, in the series
(0.1.5)), C.S. Meijer defined and studied a more generalized function which
are now well known in the literature as G-function [125]. Although the G-
function contains many special functions as its particular cases, even though
many functions such as Lorenzo Hartley R and G-functions [110], reduced
Green function [116], Mittag-leffler function [133], Wright generalized hy-
pergeometric function [216], Wright generalized Bessel function [217], and
many other functions do not form its particular cases.

In 1961, Charles Fox [43] introduced and studied a more generalized func-
tion, named H-function, since then it has become well known in literature.
Usefulness of this function has been published in many research articles and
books during the last five decades and a vast collection of the work on H-
function can be seen in the literature by Kilbas and Saigo [90], Mathai and
Saxena [126], and Srivastava, Gupta and Goyal [196].

The Fox H-function is introduced by means of the following Mellin-

Barnes type of contour integral as follows:
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(aj, A
m,n _ L s
HW™ | 2 =5 LA(s)z ds, z#0. (0.2.1)
| (b, Bi)y |
Here

[Ir @, = Bs) [T (1 —a, + A,s)

A(s) = —— — , (0.2.2)

H L(1-b,+Bs) HF(aj—Ajs)
j=m+1 Jj=n+1

where m,n,p and, g are non-negative integers satisfying 0 < n < p, 0 <
m < ¢ and empty products are taken as unity. Also, A;(j = 1,...,p)
and B;(j =1,...,q) are positive real numbers for standardization purpose,
aj(j =1,...,p)and b;(j = 1,...,q) are complex numbers satisfying A;(bj,+
v) # Bp(a;—n—1) for v,k =0,1...;h=1,...,m;j =1,...,n. The contour
L in C is such that the poles of I'(b; — B;s)(j = 1, ..., m) are separated from
the poles of I'(1—a; + A;s)(j = 1,...,n) such that the poles of I'(b; — B;s)
lie to the left of £, while the poles of I'(1—a; + A;s) are to the right of L.
The poles of the integrand are assumed to be simple. The H-function is an
analytic function of z for every |z| # 0 when p > 0 and for 0 < |2| < 1/B
when p = 0, where p and 8 are defined as

n=> Bi—Y A (0.2.3)

J=1 J=1
and

B (0.2.4)
1

p=A"

q
Jj=1 Jj=
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A large number of special functions of one variable are special cases of
the H-function, so each formula derived for the H-function becomes a key
formula from which several results involving other simple special functions

can be developed by suitably specializing the parameters involved.

0.3 THE H-FUNCTION

A function more general than the Fox H-function has been defined in 1987
by Inayat Hussain [79]. A comprehensive account of this function can
be found in the work by Buschman and Srivastava [14], Gupta, Jain and
Agrawal [67], Rathie [158], Saxena [165], and Saxena et al. [168], 172]. This

function is called H-function and defined as follows:

—m,n (aj7 Aj; a/j)zl; (aj’ AJ')Z-H 1
H,, z‘ q = 2—ﬂ@/ﬁx(s)z ds, (0.3.1)
(bj7Bj) ;(bﬁBj;ﬁj)anl

m
1

1

2 # 050 = /(1) x(5) == — g )
H {F(l_bj+BjS)}6j H F(aj—Ajs)

j=m+1 Jj=n+1
(0.3.2)

f[r (b, — B,s) f[l {T(1—a,+As)}"

where a;, b; are complex parameters and m, n, p and, g are integers satisfying
0<n<p 0<m<gq,it contains fractional powers of some of the Gamma

functions involved. Here, and in what follows, the parameters

A >0 (j=1,...,p) and B,>0 (j=1,...,q),
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not all zero simultaneously and the exponents
a (7=1,...,n) and B, J=m+1,...,q),

can take on noninteger values, and £ = L) is a Mellin-Barnes type
contour starting at the point 1 — 200 and terminating at the point t + 700
(t € R) with the usual indentations to separate one set of poles from the
other set of poles. The sufficient condition for the absolute convergence of

the contour integral in (0.3.1]) was established by Buschman and Srivastava

[14], p. 4708] as follows:
m n q p
Q=>"1B|+> |4 = Y 18B]- > |4]>0.  (033)
j=1 j=1 j=m+1 j=n+1
which provides the exponential decay of the integrand in (0.3.1)), and the

region of absolute convergence of the contour integral in (0.3.1)) is given by

1
larg(2)] < Sl

where  is defined by ((0.3.3)).

0.4 GENERAL CLASS OF POLYNOMIALS

Jacobi, Laguerre, Hermite, Konhauser polynomials are the classical orthog-
onal polynomials and extended Jacobi polynomials, Brafman polynomials
are hypergeometric polynomials and also several other polynomials play vi-
tal role in the study of many branches of mathematical sciences and other

sciences. Almost all the above given polynomials can be obtained as partic-
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ular cases of the following general class of polynomials defined by Srivastava
[188]

oo

A
Z Uk ot k’ (V:O717> ’ (041)
k=0

where the coefficients Ay, are arbitrary constants (real or complex) and U
is an arbitrary positive integer. At the end of this thesis a detail of some of
the particular cases of the above given class of polynomials has been given

in the Appendix-B.

0.5 THE MULTIVARIABLE GENERALIZATIONS OF
THE SU POLYNOMIAL

In the present thesis we shall study the following generalization of the S¥
polynomial (0.4.1)) introduced and defined by Srivastava and Garg [195],

p. 686, Eq. (1.4)] as follows:

zk:UiRiSV
i=1 LR
Uty :
Sy, = ) <_V)iUR» AV, Ry, ..., Ry) BT’ (0.5.1)
Ri,...,Ri=0 PR !
where V= 0,1,...; Uy,..., Uy are arbitrary positive integers and the coeffi-
cients A (V, Ry,..., Ry) are arbitrary constants (real or complex). Several

single and general multivariable polynomials can be obtained as special cases
of general multivariable polynomial Sgl """ x1,...,x)) by replacing coeffi-

cients A (V, Ry, ..., Ry) occuring in ((0.5.1)) with a suitable function. Further

details of this polynomial and its special cases can be seen in Appendix B.
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0.6 FRACTIONAL CALCULUS

In the year 1695, Marquis de L’Hospital asked a question to Gottfried Wil-
helm Leibniz regarding a solution of derivative 3;—3{ for n = % On September
30" of 1695, Leibniz replied to L’Hospital “This is an apparent paradox from
which one day, useful consequences will be drawn”. It was the begining of
a new concept of fractional calculus (calculus of integrals and derivatives of
any arbitrary real or complex order). Between 1695 and 1819 several math-
ematicians such as Euler in 1730, Lagrange in 1772, Laplace in 1812 and S.
F. Lacroix in 1819, had studied it. The real journey of progress of fractional

calculus started in 1974, when the first article on fractional calculus was

published [I41].

A detailed description of the development and applications in the field
of fractional calculus can be seen in literature by Caputo [18], Gorenflo
and Vessella [53], Kiryakova [94], McBride [129], Miller and Ross [132],

Nishimoto [135], Podlubny [146] and Samko, Kilbas and Marichev [164].

The fractional calculus is useful in several fields of science and engineer-
ing, including the quantitative biology, fluid flow, rhelogy, electromagnetic
theory, electro-chemistry, scattering theory, electrical networks, chemical
physics, diffusion transport theory and statistical probability theory, poten-
tial theory and many more branches of mathematical sciences like integral
and differential equations, univalent function theory and operational calcu-

lus.

The analysis of fractional calculus is based upon the study of the known
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fractional integral operator ,D¢ introduced by Lavoie et al. [I11] and Ross

[159] as follows:

DU = s [0 W R@ <0 (060
:C;i—mmaDgf(z), R(a)>0, (0.62)

where the above involved integral exists and m is the least positive integer

greater than R («).

For a = 0, the fractional integral operator defined by (0.6.1)) becomes the
classical Riemann Liouville fractional integral operator of order (—«) and
when a — oo, it can be reduced to the definition of the well known Weyl

fractional integral operator of order (—a).

On account of the significance of the fractional calculus operators (FCO)
in many problems of mathematical physics and applied mathematics, several
generalizations of the FCO defined by Riemann-Liouville and Weyl have
been analysed from time to time by many authors like Erdélyi [31, B32],
Garg [49], Garg and Purohit [48]|, Gupta [64], Kalla [83], Kalla and Saxena
[85], Koul [100], Kober [98], Manocha [122], Raina and Kiryakova [155],

Saigo [160], Sneddon [187].

Details of several fractional integral operators studied by many researchers
can be seen in the work of Srivastava and Saxena [202]. In the present work
we have defined and studied two unified fractional integral operators whose
kernels involve the product of a multivariable polynomial S‘(jl

newly defined Mittag-Lefller type E-function in this thesis.

10
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0.7 MITTAG-LEFFLER FUNCTION

The H-function [126] is the generalized solution of integer order differential
equations. On the other hand, Mittag-Leffler function [133] is recognized as

solution of fractional differential and fractional integral equations [132].

The Mittag-Leffler (M-L) function introduced in 1903 due to Gosta Mittag-
LefHler is a generalization of the exponential function e*. The first signifi-
cance of this function was noticed in 1930, when Hille and Tamarkin [76]
provided a solution of the Abel-Volterra type integral equation of the 2nd

kind in terms of the M-L functions.

Barret [7, (1954)] has proved the most remarkable application of M-L
type functions by presenting the general solution of the linear fractional
differential equation with constant coefficients in terms of the M-L type
functions. Caputo and Mainardi [20, 21, (1971)] have shown that when
constitutive equations of linear viscoelastic body involve derivatives of frac-

tional order, then they provide a solution in the form of M-L type functions.

Recently some pioneer work on M-L type functions has been done by
Camargo et al. [16], who studied the fractional Langevin equation in terms
of the three-parameter M-L function, and also presented the corresponding

relaxation function in terms of the convenient M-L functions.

Mittag-LefHler type functions of several parameters have been studied by
many authors due to its applications in certain problems such as telegraph
equation [I7], random walks and anomalous diffusion [I31] and kinetic equa-

tion [146] in a fractional version and many other problems of mathematics,

11
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Physics, Biology and other sciences [105, 106}, 116, 119, 219].

The journey of M-L function started as a generalization of exponen-
tial function and later its many generalizations were developed and stud-
ied by Kiryakova [95], Prabhakar [148], Shukla-Prajapati [180], Srivastava-
Tomovski [204], and many other authors and they have proved its impor-

tance in many physical phenomena.

0.7.1 Journey of Mittag-Leffler Type Functions (1903-2015)

e In 1903, Gosta Mittag-Leffler [I33] introduced the function E,(z):

Eo(2) = gmzn (0.7.1)

3

where z,a € C;R(a) > 0 and |z] < oo.

e In 1905, Wiman [215] extended (0.7.1) in the form

Eop(z) = Z m 2" (0.7.2)

n=0

where z,a, 6 € C; R () > 0 and R(8) > 0.

e In 1953, Humbert and Agarwal [78] have studied the properties of a

slightly more general function defined by

R =R 1 0
" a(2) =2 ZF(aTH—ﬁ)Z : (0.7.3)

n=0

where z,a, 5 € C;R () >0 and R (5) > 0.

12



0.7 MITTAG-LEFFLER FUNCTION

e In 1960, Dzrbashjan [29] proposed a generalization of the M-L function

in the form

> 1
s " 0.7.4
1813 2752 ;F a n—}—ﬁl)F(OéQTl"—ﬁg)Z ( )

where a,,, > 0;3,,8, € R and z € C.

e In 1971, Prabhakar [I48] introduced a generalization of (0.7.1)) in terms

of series representation as

’I’L

Z ' (an —I— B) nl’ (0.7.5)

n=0

where z, o, 5,7 € C; R (a) > 0,R () >0 and R(y) >0

e In 1995, Kilbas and Saigo [89] introduced and studied a further gener-
alization of M-L type function in the form

co n—1

a(jm+1) + 1]
Eam —1 ", .
" +;]11) a(im+1+1)+ 1]Z (0.7.6)

where z,a € C,R (o) > 0,m >0 and [ € R.

e In 2000, Kiryakova [95] has studied “multiindex M-L functions” defined

by

2 2 (0.7.7)

> 1
(e:) ZF (s +py) - T +/p0)

n=

where m > 1, is an integer, p,,...,p, > 0 and pu,,...,pn  are real numbers.

13
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e In 2002, Kilbas, Saigo and Trujillo [93] considered the following gener-

alized M-L function

(0.7.8)

H?
T (o +8)
1

EP[(61a0_1),-..,( q,aq);z}zz - (p>n <

J

where (aj) >0, R (BJ) >0,7=1,...,q

e In 2007, Shukla and Prajapati [I80] have studied a generalization of

(0.7.5)) in the following form

ZF an+5 n'

n=0

EY4( (0.7.9)

where z,, 5,7 € C; R (a) > 0,R () > 0,%(y) >0 and ¢ € (0,1)UN.
e In 2009, Srivastava and Tomovski [204] introduced and studied another
generalization of M-L function in the form

(0.7.10)

where z, , 5,7, € C; R(«v) >max{0, R(J) — 1}, R(S) > 0,R(y) > 0 and
() > 0.
e In 2010, Saxena and Nishimoto [I71] studied a function as follows:

E%H[(al?ﬁl)v""(am? m)?z] :Z (7)7% 2—7:7

=0 ﬁF (ajn + 53) "

j=1

(0.7.11)

where z,a,, 38,7 € C, Z?R )>R(k)—1,7=1,...,mand R(k) >0

j=1

14



0.7 MITTAG-LEFFLER FUNCTION

e In 2011, Saxena, Kalla and Saxena [169] defined a function as

e In 2012, Kalla, Haidey and Virchenko [84] introduced multiparameter

M-L type function in the following form

- N 00 (_1>n 2\ An+M
HE\ 33 (2) = Z r (K)

., (0.7.13)

<

where p, € C, A\, >O,i:1,...,r;2ui =M and Z)\i = A.
i=1

=1

e In 2012, Salim and Faraz [163], see also [162]] defined a function as

oo

E75q
aﬁp ZFan+6 )

n=0

2, (0.7.14)

where z, o, #,7,6 € C; min{R(a), R(5), R(7), R(0)} > 0;p,q > 0 and

q < R(a) +p.

e In 2013, Khan and Ahmad [88, see also [87]] have defined a function as

e.¢]

(7)
P54 § : qn n

n=0

where 2, a, 8,7, 6, i1, v, p,0 € C;p,q > 0; ¢ < R(a) +p and

min{R (o), % (8), R (7), R (0), R (1), R (¥),R(p), R (o)} > 0.

15
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0.8 INTEGRAL TRANSFORMS

If f(z) is a function defined on a given interval [a, b] and K (x, s) is a definite
function of x on the same interval for each value of parameter s, so the linear

integral transform 7" [f(z); s| of the function f(z) is defined as follows:

b
T[f (x);s] = / K(z,s)f(z)dz, (0.8.1)

where the domain of parameter s and the class of functions are so pre-
scribed that the above integral exists. K (z, s) is the kernel of the transform,
T[f(x);s] is the image of f(x) and f(z) is the original of T[f(x);s]. When

an integral equation can be so obtained that

B
f(x) = / b (s,2) TIJ (2); slds, (08.2)

then (0.8.2)) is called the inversion formula of ((0.8.1]).

0.8.1 Mellin Transform

The Mellin transform [187] of the function f (z) with respect to ¢ is given
by

NCHE| T @A =), RO>0 (083)

0

and the inverse Mellin transform of f* ({) with respect to z is given by

y+ioco

M) = / SO = (), yeR, (0.84)

- 2m

y—1i00

provided that both the integrals exist.
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0.8.2 Laplace Transform

If the function f (z) = O (e**), z— oo for some « then the Laplace transform

[187] of the function f (z) with respect to s, is given by

Lf(2);s] = /OOO e ¥f(z)dz=F(s), R(s) > a, (0.8.5)

it can be obtained by appealing to Euler-integral of the IT kind

/OO e Ay = 2 (/\A) ; min{R (\),R(s)} >0 (0.8.6)
0 s

and the inverse Laplace transform of F'(s) with respect to z is given by

c+i00

L7VF(s);2] = QLm/ e*F (s)dz = f (2), ceR, (0.8.7)

c—1i00

provided that both the integrals exist.

0.8.3 FEuler-Beta Transform

The generalized Euler-Beta transform [187] of the function f (z) with respect

to u and v is given by
b
B Gimviatl= [ (=™ (-2 f)ds (089
provided the integral exists and generalized Beta function is defined as

b
/ (z—a)" ' (b—2)"""dz=(b-a)"""'B(uv)

= (b—a)*! % (0.8.9)

where R (¢) > 0,R (v) > 0, a,b € R.

17
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0.8.4 Whittaker Transform

The Whittaker transform [214] of the function f (z) with respect to A, u

and v is given by

WIf (2);\ p,v] = /000 e" 22" Wy L, (2) f (2) dz, (0.8.10)

provided the integral exists, where W) ,(z) is Whittaker’s confluent hy-
pergeometric function and associated integral is given in [36, p.215], the

equation ((0.8.10)) can be solved by appealing the following integral

F(v+p+H)T(v—p+3)

T A4 ) , (0.8.11)

/ e 22"y, (2) dz =
0

where R (v + ) > —1.

0.8.5 Riemann-Liouville Fractional Integral Transform

The Riemann-Liouville fractional integral transform (Ii\lf) (x) [164] is de-

fined as
(I’ ) (2) = G / ’ (z — )" W (t) dt, (0.8.12)

where § € Cand R () > 0.

0.8.6 Erdélyi-Kober Fractional Integral Transform

The Erdélyi-Kober fractional integral transform (EZf f) (x) [164] is defined

as

(Z07) () = ““;:7;; /0 St (1)t (0.8.13)

where 7,0 € C; R (n) > 0 and R (6) > 0.

18
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0.9 SOME IMPORTANT SPECIAL FUNCTIONS

0.9.1 Ordinary Bessel Function J, (2)

The ordinary Bessel function J, (z) of the first kind of order v [12§] is defined

as follows:

©© —1 n z 2n+v
h@=2 n!r(y(z +)u +1) (5) ’ (09.1)

n=0

where v > 0.
0.9.2 Bessel Maitland Function J¥ (z)

The Bessel Maitland function J# (z) [128] is defined as follows:

> —1)" 2"
T (2) = nZ:O n!r((w )+ 7D (0.9.2)

where v > 0, u > 0.
0.9.3 Generalized Bessel Maitland Function J}, (2)

The generalized Bessel Maitland function .J}, (z) [128] is defined as follows:

00 (_1)n (%)V—I—Q)\—I—Qn
Jfk(z):nz_or(n+>\+1)r(nu+y+A+1)’ (09.3)
where v > 0, u > 0, A > 0.
0.9.4 Bessel Clifford Function C,, (z)
The Bessel Clifford function C,, (z) [10] is defined as follows:
O (2) = i n!l'(n j—nm +1)’ (0.9.4)

n=

where m > 0.
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0.9.5 Lommel Function s, , ()

The Lommel function s, (z) [112] is defined as follows:

on+1

(u—v+1)(p+v+1) nz: “’/*3 (“*g*i”)

00 z 2n+p+1
)" (3) : (0.9.5)

Spw (2) =

where pu +v # —1, -2,

0.9.6 Hurwitz Zeta Function ( (p,v)

The Hurwitz zeta function ¢ (p,v) [86] is defined as follows:

Z L (0.9.6)

n=0

where R (p) > 1;v € C\ Z, .

0.9.7 Riemann Zeta Function ( (v)

The Riemann zeta function ¢ (v)[86] is defined as follows:

oo

(0.9.7)

v
)
n=0

where R (v) > 1

0.9.8 Struve Function H, (z)

The Struve function H, (2)[143] is defined as follows:

where R () > 0
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0.9.9 Modified Struve Function L, (2)

The Modified Struve function L, (z) [143] is defined as follows:

ZF F(n-l—a-l— )(2

n=0

2n+a—+1
Z) , (0.9.9)

where R (a) > 0
0.9.10 Dotsenko Function ,R7 (a,b;c; 2)

The Dotsenko function o Rj (a, b; ¢; z) [124] is defined as follows:

oo

ZF a+n)T(b+ ) 2"

2l (a,b;¢;2) [ (c+ ) n!’

(0.9.10)

where |z| < 1.
0.9.11 Rabotnov’s Function R, (/,t)

The Rabotnov’s function R, (5,t) [152] is defined as follows:

N Bntoﬂ—l
a (B,t) =1 ZI‘{1+a n+(1+a)}’

(0.9.11)

where R (o) > 0, R(8) >0
0.9.12 Mellin-Ross Function E,(v,b)

The Mellin-Ross function Fy(v,b) [124] is defined as follows:

0.9.12
z:: 1/+n—1—1 ( )

where R (v) > 0, R(b) > 0
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CHAPTER 1

A FAMILY OF
MITTAG-LEFFLER TYPE
FUNCTIONS AND THEIR
PROPERTIES

Publications:

1. A family of Mittag-Leffler type functions and its properties, Palestine
Journal of Mathematics 4, No.2(2015) 367-373.

In this chapter, we first introduce some Mittag-Leffler type functions and
then give definition of various integral operators. Next, we define a Mittag-
Leffler type function named E-function [IT] and also we establish its condi-
tions of convergence. Then we define two more functions (generalization of
sine and cosine function) as special cases of earlier defined E-function which
are also believed to be new and important. Further derive Mellin-Barnes
type contour integral representation of the E-function. Finally establish
some integral transforms like Mellin transform, Laplace transform, Euler-

Beta transform and Whittaker transform of the newly defined F-function.
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1. A FAMILY OF MITTAG-LEFFLER TYPE FUNCTIONS AND
THEIR PROPERTIES

1.1 INTRODUCTION

1.1.1 Mittag-Leffler Type Functions

e In 1903, Gosta Mittag-LefHler [133] introduced the function E,(z), de-

fined as

RO p—— (1.1.1)

where z,a € C;R(a) > 0and |z| < oo.
e In 1905, Wiman [215] extended ([1.1.1)) in the form

o) = Zmz”, (1.1.2)

n=0

where z,, 5 € C; R () > 0and R (5) > 0.

The journey of M-L function started as a generalization of the expo-
nential function e and later its many generalizations were developed and

studied by Prabhakar [I4§], Kiryakova [95], Srivastava-Tomovski [204] and

many other authors.

1.1.2 Integral Transforms

e Mellin transform

The Mellin transform [I87] of the function f(z) with respect to ( is

given by

M= [ @0, RO>0 (1L
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1.1 INTRODUCTION

and the inverse Mellin transform of f* ({) with respect to z is given by

y+ioco

M Qs =on [ FPOU =1, 9ER (119)

2w

provided that both the integrals exist.

Laplace transform

If the function f(z) = O (e**), z— oo for some «, then the Laplace
transform [I87] of the function f (z) with respect to the parameter s,

is given as follows:

Lif(z);s] = /000 e ¥f(z)dz=F(s), R(s) > a, (1.1.5)

it can be obtained by appealing to the Euler-integral of the II kind

/OO e Ay = 2 (/\A) ; min{R (\),R(s)} >0 (1.1.6)
0 s

and the inverse Laplace transform of F'(s) with respect to z is given
by

c+ioco

L7 YF(s);z2] = L/ | e**F (s)dz = f (2), ceR, (1.1.7)

271

provided that both the integrals exist.

Euler-Beta transform

The generalized Euler-Beta transform [I87| of the function f (z) with
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respect to p and v is given by

b
B[f(z);u,u:a,b]:/ (z—a)" " (b—2)""f(2)dz,  (1.1.8)

where R (¢) > 0, R (v) > 0; a,b € R,

provided the integral exists and the generalized Beta function is defined

as

b
/ (z—a)""(b—2)"""dz=b- )" ' By, v)

pt+rv—1 r (:u) I (V)

=(b-a) T (n+v)

, (1.1.9)
where R (1) > 0,8 (v) > 0; a,b € R.

e Whittaker transform

The Whittaker transform [214] of the function f (z) with respect to A,

i and v is given by

WIf (2);\p,v] = /000 e 22" Wy, (2) f (2) dz, (1.1.10)

provided the integral exists, where W) ,, (2) is the Whittaker’s confluent
hypergeometric function, and associated integral is given in the litera-
ture [60], p. 823, Eq. (11)], Equation ([1.1.10)) can be solved by appealing
to the following integral

F(v+p+d)T(v—p+3)
F'(v—XA+1)

/ e722" YWy, (2)dz = o (1.1.11)
0

where R (v + p) > —1.
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1.2 DEFINITION, CONVERGENCE CONDITIONS AND SPECIAL
CASES OF THE E-FUNCTION

1.2 DEFINITION, CONVERGENCE CONDITIONS AND
SPECIAL CASES OF THE E-FUNCTION

Definition 1. The E-function [11] is defined as follows:

(:07 a) ; (717Q1731> yee e (’Vh?qhash)

h
— TE]C /Z

(aaﬁ) ) (5j,p], ]> 1k (Oé,ﬁ) ) (51’p17rl> R (5k7pk’rk>

[(%)qln] : {(%)%n] ” {(%)qhn] o (—1)P" ant
=60, 6),,] " (6, ] T ents)

: (1.2.1)

where

z,a,3,7,,0;, € C;R(a) > 0,R(B) > 0,R(,) > 0,R(5,) >0,q >0,

pjZO,SZZO,rj20;@,16R;p6{0,1},<2q5 <Zpr + R (« ) or

Jj=1

h k -
(qu —Zw + R (a) when ] (4. [aaﬂ (pj)%] 2 < 1>.

fori=1,....,h;j=1,... k. (1.2.2)

1.2.1 Domain of Convergence

Equation ((1.2.1)) can be denoted as

(p,a); (v, 4,5 8,)
=Y (1.2.3)

where

(1.2.4)
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Now applying results due to Olver [142] p. 118-119], Tricomi and Erdélyi

cn+1

[210}, p. 133, Eq. (1)] in the ratio then after simplification, we get

n

h [ K

Coi q (27, +¢q, =1 1
= =[] g |1+ ( T e ‘< e

n i=1 i q,n
k P;7, _1 (26j+pj—1) O 1 T;

XH (p]n) + 2p;m - '(p n)Q’
j=1 : )
C(am) @ |14 2@ Fazl) h) (=129, (1.2.5)
2an )(an)2’

Now taking the limit n — oo, we have

h E q;8;,— E p;T;
q S, p]T] —CK a| lim =1 j:1
=[T@™ 1], |2 5 oom

i=1 j=1

lim
n—00

TL

(1.2.6)

Now applying D’Alembert’s simple ratio test, we get
(i)

lim Cn+ 1

n—oo

=0 provided Z q,s, < Zp r, + R () , then the given

i=1

n

h k
series is convergent for all finite values of H (q,)%" lao‘H (p,)"" ] |29].

i=1 j=1

(i)

lim Cn+1

n—oo

h
<1 provided Z% Zp 7, + R (), then

1=1

n

h k
the given series is convergent for H (q,)%% lao‘H (p,)"” TJ] 2% < 1.
i=1
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1.3 MELLIN-BARNES TYPE CONTOUR INTEGRAL
REPRESENTATION OF E-FUNCTION

1.2.2 Special Cases

I.Put h=1,5, =0; k=1,r, =0, in (1.2.1) we get generalized Sine

function as

Zan—i— T

(=1 [ (an+ 5)

(p,a);(7,4,,0) >0
=2

(a7/8) ; (517p170>

Ei |z = sin”*(2).

=0

3

(1.2.7)

2.Put h=1,5, =0; k =1,r, =0; 1=0, in (1.2.1) we get generalized

Cosine function as

ZCLTL

(p,a); (7,4,,0) >0
-y

(o, 8);(0,,p,,0) n=0

0B |2 (=)™ I = cos*(2).

an + )

(1.2.8)

where sin®(z) and cos*(z) are defined as generalization of sine and cosine

functions respectively.

1.3 MELLIN-BARNES TYPE CONTOUR INTEGRAL
REPRESENTATION OF E-FUNCTION

Theorem 1. If convergence conditions are satisfied then the
E-function TE,? [z] can be represented as the Mellin-Barnes type integral as

follows:

k

(:a) s (V0 @1, 81) s+« s (s G 1) [Imre)r
T (v )™

<

—_

El | 2 =
(a7/8> ; (617p17711>7"'7<5k7pk;7/’nk;>

[

u
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1 [<—1>p<—za>rC d¢, (1.3.1)

where L is a suitable contour of integration that runs from ¢ — ioo to ¢ +
100, ¢ € R and intended to separate the poles of the integrand at ( = —n for

all n € Ny (totheleft) from those at ( =n+1 and at ( = %qun,i =1,...h;

%

for all n € Ny (totheright) .

Proof. Rewriting the definition in the form

(pa a) ; (’717%?51) yeees (’7h7qh75h)

(C)é?B) 7 (517p17701)7" "(6k’pk7rk)

k h
s I e eV ] LINCARRADIR
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1.4 SOME INTEGRAL TRANSFORMS

where
h
| J NCAAS)
g(C) - =1 . . (135)
P@=aQ ]I -p0)]
Then
k
h (p7a>;(717611751)7---;(7h,qh,8h) Ul;[l[r (5v)] ’
Ly |2 -l
(a,ﬂ);(51,]91,7"1),.-.,(5k,pk,7‘k) H [F (f),u)]su
h
T H ’7 _Q<
8 Qirz/L k:Z:1 [(—1>p(—za)]*C d¢.  (1.3.6)
B=aQ ][0 =p,0)]

This completes the proof. [

1.4 SOME INTEGRAL TRANSFORMS

Theorem 2. (Mellin transform) Let conditions associated with Mellin-
Barnes type contour integral representation of the E-function are

satisfied and R () > 0, then the Mellin transform of the E-function is

1 Clb (pva);(717%781)7-~-7(7h7qh75h)

{(=1) (=2)}* (@, 8): (B pir) oo (5. par)
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_TQra-9x
I'(8 — a()

: (1.4.1)

provided that the parameters are adjusted in such a way that the right-hand

side is meaningful.

Proof. According to Theorem [I] the E-function can be written as follows:

(pa CL) ; (717q1751)7~ < (7h7qh78h)

By | (=1 (=2)}
} (a,ﬁ);((51,p1,r1),...,(5k,pk,rk)

N N SIORE S (14.2)

- 2mi ),

where

(1.4.3)

Then by using definition of the Mellin transform in (|1.4.2]), we have

LHS =M"'[g();2], (1.4.4)

or

M 1 TEh {(—1)/)(—2)}% <p7a>;(717q17$1)7"'?(7117%173}1)

(a76) 7 (517p17/r1>"' '7(6k7pk771k)
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1.4 SOME INTEGRAL TRANSFORMS

h
:r[c]r[ C]E o) 1 (1.4.5)
[T}

This completes the proof. []

Theorem 3. (Laplace transform) If conditions associated with Mellin-

Barnes type contour integral representation of E-function are satis-

fied then the Laplace transform of the E-function is

(pva) ; (717‘]1751)>~~'7(7h7qh73h)

(aﬂﬁ) 7 (517p17r1)?‘ "7(5k7pk7rk)

L |z Bl | 22 v

1 ﬁ
:J(F) L —
Ilro

)}‘ (0,1;1), (1 = p— o, 0a;1), (1 —7,,q,;8,)" s ——

(0,1): (1- Ba:1), (1—6,,p,;7,)}
(1.4.6)

—1,h42 T
XHh+2 k42 (_1),) {_ (—

provided that the function on the right-hand side is convergent and has a

meaning.

Proof. We obtain the Laplace transform of the E-function as follows:

(p,a); (V1,6 8) ooy (Vs Qs S1)
I Z'u_lTE]}cl e 1941521 h?4no Oh »

(a76>;(517p17rl>7" ° (5k;7plg7/rk)

33



1. A FAMILY OF MITTAG-LEFFLER TYPE FUNCTIONS AND
THEIR PROPERTIES

e (p’a);(f)/?q’s)a"w(fy’(_lﬂg)
—/ e B | a2 S v e, R(v)>0
0

(a7/8> ; (517p17711) VAR (5k7pk;7’rk;)
(1.4.7)

Now using ((1.3.1)) and interchanging the order of integrations, which is

permissible under suitable convergence conditions, we have

LHS =1 o Lo 11 = @ne{ [T ermmerecias g
[1r e

(1.4.8)
where ¢ () can be written as

h
PO+OTA=0= [ {1—0-7)—qd]*

1=1

9(¢) = - - (1.4.9)
P (-8 - aq[[IN (1= (1 -8) -0}

Now applying gamma integral (1.1.6)) and replacing ¢ by —¢ and contour

L by other suitable contour then comparing it with the definition of Inayat-

Hussain H-function (0.3.1)), we get

071;1)7<1_:u_0-1:70a;1)7<1 Yir4;5 S z)h

(0,1); (1~ B,a51), (1= 6,,p,;7,)}
(1.4.10)

—1,h+2 T\ (
<At e (- (2]
This completes the proof. [
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1.4 SOME INTEGRAL TRANSFORMS

Theorem 4. (Euler-Beta transform) If conditions associated with Mellin-

Barnes type contour integral representation of E-function are satis-

fied then the Fuler-Beta transform of the E-function is

k
(0,0); (Vs @s 51 [T,

B | El| z2° v 0,1 =T (v) (2)° UZI
(Oé,ﬁ)?( i PisT J) H[F(Fyu)]su
u=1
h .
—1,h+2 (_1)/’ (0,1;1),(1—,&—0"6,0'&; 1)7(1_’717%7 1) -
Hh+2 k+3

(—x%) (0,1);(1—5,04;1),(1—,u—y—ar,aa;l),(l 0,,p,;7 j)k
(1.4.11)

provided that the function on the right-hand side is convergent and has a

meaning.

Proof. Using definition (|1.1.9), we obtain the Euler-Beta transform of

the E-function as follows:

B TE]? xz° (p’a);(%’ql’sl)""7(7h’qh’8h)

s, 0,1
(a7/8);(517p17,r.1>7"'7(5k7pk7?ﬁk;)

(pJ a’) 7 (717QI781> AR (7h7qh7sh)
dz.

— / Z,u—l (1 — z)y_l TEZ’ xz°
’ (a76);(617p177nl)7"'7(5k7pk7rk)
(1.4.12)

Now using ((1.3.1)) and interchanging the order of integrations, which is

permissible under suitable convergence conditions, we have
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= v;l 271_”- /Lg (€)z® [(_1)[) (_xa)]—C l/o Lhtot—oa(—1 (1- Z)l/—l dz| dc,
[T e
- (1.4.13)

where ¢ () can be written as

h
FO+OTA-0-Q ][ {1-0=7)-ac
g(¢) = = L (14.14)
Fl—-(@1-5)—ad H —9,) = p,0)]"

Applying Beta integral (1.1.9)), we get

(p7a) ; (717Q1781)7' ° '7(’yh7qh’8h)

(a7/8) ; (517p17711>7' "7(5k7pk;7/rk;)

B TE,? xz° s, v 0,1

== l ' (u+ot—oal)T (v) P ay—C
) s '/Lg(C)(F(M‘i‘UT—FV—JaC))K_l) (—a)] > dc.

(1.4.15)

Now by replacing ¢ by —( and contour £ by other suitable contour

then comparing it with the definition of Inayat-Hussain H-function of one

variable (0.3.1), we get
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h

(—x%) (0,1);(1—B,a;l),(l—u—u—at,aa;l),(l 6,0, ])k
(1.4.16)

This completes the proof. []

Theorem 5. (Whittaker transform) If conditions associated with Mellin-

Barnes type contour integral representation of the E-function are

satisfied then the Whittaker transform of the E-function is

]

(pva);(717(]1751)7~'-7(7h7qh73h) v=1
A v | =at

(aaﬁ);(517p17r1)""7((5k7pk7rk) lﬁ‘[[r('}/u)]su

=1

W | El | x2°

e

(071§1)>(%iﬂ_7/_0770a§1)7(1 Vi 45 S z)h T

—=1,h+3 a
XHyg s | (=17 (—=2%) i
0,1);(1=8,51), (A —v —o0r,0a;1), (1 —0,,p,57 ])

(1.4.17)
provided that the function on the right-hand side is convergent and has a

meaning.

Proof. The proof can be done on the lines similar to that of Theorem [3} [
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CHAPTER 2

MITTAG-LEFFLER TYPE
E-FUNCTION AND
ASSOCIATED

SPECIAL FUNCTIONS

Publications:

1. A family of Mittag-Leffler type functions and its relation with basic special
functions, International Journal of Pure and Applied Mathematics 101, No.

3(2015), 369-379.

2. Mittag-Lefller type E-function and related functions, International Jour-
nal of Mathematical Sciences and Enginnering Applications 8, No. 6(2014),
69-79.

In this chapter, we prove efficiency and usefulness of the E-function [12].
For this we establish relations of the E-function with well known special
functions such as generalized hypergeometric function, Fox’s H-function,
H-function and Wright function. Further we obtain known M-L type func-
tions as special cases of the E-function. Finally, we obtain Bessel function

Jy (2), Bessel Maitland function J¥ (2), generalized Bessel Maitland function
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2. MITTAG-LEFFLER TYPE E-FUNCTION AND ASSOCIATED
SPECIAL FUNCTIONS

J} 5 (2), Bessel Clifford function Ci, (z), Lommel function s, (z), Hurwitz
zeta function ( (p, v), Riemann zeta function ¢ (v), Struve function H, (2),
modified Struve function L, (z), Rabotnov’s function R, ((,t), Dotsenko
function QRF (v,0;60,w; 1; z) and Mellin-Ross function E;(v,b) as particular

cases of the F-function defined in this thesis.

2.1 DEFINITIONS

2.1.1 The H-Function

The Fox’s H-function 126, p. 1] is defined by means of the following Mellin-

Barnes type of contour integral

(aj, A7)
m,n 1 S
HW™ | 2 =5 LA(S)Z ds, =z #0. (2.1.1)
| (o, Byt |
Here

o @, -Bs) [JT (1—a, +A,s)

A(s) = —= - : (2.1.2)

H F(l—bj+Bjs) HF(aj—Ajs)
Jj=m+1 j=n+1

where m,n,p and, ¢ are non-negative integers satisfying 0 < n < p, 0 <
m < ¢ and empty products are taken as unity. Also, A;(j = 1,...,p)
and B;(j =1,...,q) are positive real numbers for standardization purpose,
aj(j=1,...,p)and b;(j = 1,...,q) are complex numbers satisfying A;(b,+
v) # Bp(a;—x—1) forv,x=0,1,...;h=1,...,m;j =1,...,n. The contour

L in C is such that the poles of I'(b; — B;s)(j = 1,...,m) are separated from
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the poles of I'(1—a; + A;s)(j = 1,...,n) such that the poles of I'(b; — B;s)
lie to the left of £, while the poles of I'(1—a; + A;s) are to the right of L.
The poles of the integrand are assumed to be simple. The H-function is an
analytic function of z for every |z| # 0 when p > 0 and for 0 < |2| < 1/B
when p = 0, where p and 8 are defined as

n=> Bj—Y A (2.1.3)

Jj=1 Jj=1
and

B (2.1.4)
1

o= 1147

q
Jj=1 Jj=

2.1.2 The H-Function

Inayat Hussain defined a more general function named H-function [79] in

following manner:

—m.,n (aj7 Aj; aj)?; (aj’ Aj)i 1 1
H,, z‘ Tl = 5 / X(s)z%ds, (2.1.5)
. . q K L

(b5 B;)y 5 (b By B)),,14

m
1
where

[Ir &, = Bs) [T (1= 0, + A9)}
27 05 = /(=1);x(s) == f]:l j=1

H {F(l_bj+BjS)}6j ﬁ F(aj—Ajs)’

+1 J=n+1

J=

(2.1.6)
where a;, b; are complex parameters and m, n, p and, ¢ are integers satisfying

0<n<p 0<m<gq, it contains fractional powers of some of the Gamma
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functions involved. Here, and in what follows, the parameters

A >0 (j=1,...,p) and B,>0 (j=1,...,q),

not all zero simultaneously and the exponents

a (7=1,...,n) and B, (J=m+1,...,q9),

can take on noninteger values, and £ = L) is a Mellin-Barnes type
contour starting at the point 1 — 200 and terminating at the point t + 700
(t € R) with the usual indentations to separate one set of poles from the
other set of poles. The sufficient condition for the absolute convergence of
the contour integral in (2.1.5) was established by Buschman and Srivastava

[14, p.4708| as follows:

m n q p
Q:Z|Bj|+2|ajAj| - Z 18,8, - Z 4, >0, (2.1.7)
j=1 j=1 j=m+1 j=n+1

which provides the exponential decay of the integrand in (2.1.5)), and the

region of absolute convergence of the contour integral in (2.1.5)) is given by
1
larg(2)| < §7TQ,

where  is defined by ((2.1.7)).

A comprehensive account of this function can be found in the work by
Buschman and Srivastava [14], Gupta, Jain and Agrawal [67], Rathie[15§)],

Saxena [165], and Saxena et al. [168], 172].
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2.2 RELATION WITH BASIC SPECIAL FUNCTIONS

2.2 RELATION WITH BASIC SPECIAL FUNCTIONS

Theorem 1. (Generalized hypergeometric function) Let condition (|1.2.2))
is satisfied with restriction s, v, € No, ¢« = 1,...,h;j = 1,...,k then the

E-function can be written as follows:

] e (nans) - (s @ s0)

Ly |z
(o, 8);(0y,0,57,) 5o (0,0, 7,)

_ . i

a(_1 P q;3;

2" A7) s =) 1;[1(%)
=Tt ) ,(2.2.1)
A(aaﬁ)a[AQ)Jaé] lk’ O‘H prj

R j=1 |

where

h
. . 5 B+1 6—1—2 ﬂ+oz—1
¢ => qs+Lp —erJroe A, B) = , o :
=1

(6] (6] «
j=1
s, times s, times
(A7) 0 = A7) e A Y- (G, s A (G
and
[A(p,, (5])74']17/,€ =A (py,6,),--., A (pl,éll, ...... ;A (e, 6,), .- A(p,, 5k2.
rlt;;zes rk?irmes
(2.2.2)

Proof. The E-function is defined by (1.2.1)) as follows

] ea)s (s s) s (445 8,)

|z
(a7/6);(517p17711)7" ° (6k7pk7/rk>
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< o), ][] [ow, ] e
-y § i _ .
n=0 |:(61>p1n] [(52)p2n:| |:(5k)pkn:| F(Oén + B)

Now applying ((0.1.4)), then by comparing result with definition of gener-

(2.2.3)

alized hypergeometric function (0.1.5)), we get

h
a _1 P ] q;S;
z" [A(qw %)Si]l,h 5 1; © ( ) H (ql)

- . (2:24)
M) (A0 i (@) T ()"

where

h k
q :ZQ'LSz_'_]‘?p :erpj‘i‘()é;A(Of,ﬁ):a e, ———
1=1

- (6] (6 (0
j=1
s, times s, times
(A7) 0 = A7) s AT A7) - A (g )
and
[A(pj, 5j)’ﬂj]17k = \A (py,6,),--., A (p175127 ...... ,\A (e, 6,),-- - A(p,, 5@
r,times T, times

(2.2.5)

Theorem 2. (Fox’s H-function and H-function) Let condition (1.2.2) is
satisfied with restriction s, v, € No, © = 1,...,h;j = 1,...,k then the

E-function can be written as follows:

k

)]
w1 (ea)s (s asn) s (s @s,) ﬂl—_[l[ 0.)
rEk z =z 3
(o, B)5(0,,0y571) 5o o5 (0,300, 7,) H[F(%ﬂsl
I=1
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* (071)7<A7B)
1,n P a
< HYO | (<1)7 (=2 , (2.2.6)
(071)7<1_ﬂ70‘)7(C>D>
where
s, times s, times
(AaB) = (1_717(]1)7'"7(1_717Q1>7 """" 7(1_7h7qh>7"'7(1_7h7qh);
(C,D)=1=6,p),....0=6,,p,),...... ,(1=46,p,),.-..(1=6,,p,) ;
rltzrfnes rk%es
h k
n* = Z s, +1 and ¢ = er + 2. (2.2.7)
i=1 j=1

Also, let condition (1.2.2)) is satisfied then the E-function can be written

as follows:
k
(0,
h (paa);(717Q1731)7---7(7h7qh73h) rrl_zll
rEk z =z 3
(aaﬂ);(517p17r1)7"'7(5k7pk7rk) H[F(vl)]sl
=1

h
(O’ ]-7 1) ’ (1 — % 4,5 Si)l —_—

(0,1);(1— 8,051), (1= 3,,p,;7,)"

—1,ht1 a
X Hpq o (—=1)7 (=2

. (2.2.8)

Proof. Using (1.3.1)) the E-function .E} [2] can be written as follows

(p7 a) ) (717QI781>7‘ "7(f}/h7qh7sh)

(a76);(517p17711)7" ° (5k7pk7/rk>

h
|z
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k
[Lreor
_ el o [y e 22)
[1r 6o
=1

where

FO+OT{-0-G ][I {1 -0 -2 —ad)”
9(¢) = . (2.2.10)
H1=0-7 —@GIIF{L—l—->—mGYf

Now by comparing (2.2.9)) with definition of H-function (2.1.1)), we get

k
NN
ALwear 0,1, (4, B)
L.H.S. =z"=— H, o | (=17 (=2%)
[T Gor (0,1),(1=5,0),(C, D)
=1
(2.2.11)
where
s, times s, times
(AaB) :(1_717(]1)7'"7(1_717(]137 """ »(1—’quh),-~,(1—%;qh3;
(C,D)=1=6,p),....0=0b,,p,),...... ,(1=46,p,),-..,(1=6,,p,) ;
rltz;nes rkt;;les
h k
= Z s, +1 and q = er + 2. (2.2.12)
i=1 Jj=1

Again by comparing ( - Wlth definition of H-function , we get

LHS =2

f_l
[1ro

=1
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h
—1,h+1 (071;1)a(1_%7qz’ 1) T

X Hy g o | (—1)7 (=27) i
(071);<1_B7a;1>7(1_5]7p37 ])
(2.2.13)

Theorem 3. (Wright function) Let condition (1.2.2)) is satisfied with re-
striction s, v, € No, i = 1,...,h;j = 1,... k then the E-function can be

written as follows:

k
T (,)]
h (p7a>;(’717(]1781)7---7(7h7qh73h) rﬂl:Il
Ly |2 =2
(aaﬁ);(éppmrl)a'"7(6k7pk7rk) H[F(rylﬂsl
B sy times s times 7
(171>7(717@[1)""7(71)(]135 """ azfyh?qh)r"?(f)/}Nth;
S (—1)° 2"
(67 ) (51;]91),---,(51,]71)7 """ 7<5k7pk)7 7(5k7pk)7
L r;i?:zes Tkt;;ws
(2.2.14)

h k
where Pt = Z s,+1 and q = Zfrj—i—l.
i=1

Proof. The E-function is defined by (1.2.1)) as follows

(:07 a) ; (717611751) Yoo (,yh7qh7sh)

<a7/8);(51’p17r1)7" °) (6k7pkz’7nk:>

h
Ly |z

— Z =1 2T (2.2.15)
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k h
[[r@) . (~)"Trd+n) H T (7, + qn)]

ot o0 Lan
= 7= Z - il (2.2.16)
[Treore ™= Ten+) ]I, +pn)]"
=1 7=1

Now comparing ([2.2.16]) with definition of Fox-Wright function |34}, p. 183],

we get
k
[[rE
m=1
LHS =z -
| J NG
=1
B sy times shtimes T
(LD, (d) s (@) (V@) (0 @)
Xp*\Ifq* (_1),0 Za )
(/87 a) 7&517191) AR (617p127 """ 7\(5k7pk;) AR (5k7pk;)/7
L rytimes r times

h k
where Pt = Z s,+1 and q- = er—l—l.
i=1

2.3 MITTAG-LEFFLER FUNCTIONS AS SPECIAL CASES
OF THE E-FUNCTION

L.LPuth=1,s =0k=1r,=0;a=1p=0;0=1;1=01in (1.2.1),

then we get Mittag-Leffler function E, (z) defined in (0.7.1)), as

oEL |z (0:1): (%, 4.,0) = E, (z). (2.3.1)

(o, 1)5(d,,p,,0)
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E-FUNCTION

2. Puth=1,5,=0k=1,7r=0;a=1;p=0;7=01n (1.2.1), then we

get generalized Mittag-Leffler function E, g (2) defined in (0.7.2)), as

(0,1)5 (%, 4, 0)
oE] |2 =E,z5(2). (2.3.2)

(a7/8) 7 (517p170)

3. Puth=1,s,=0;k=1,r, =0;a=1;p = 0; =51 in (1.2.1), then

«

we get Mittag-Lefller type function E, 3 (2) defined in (0.7.3)), as

0,1);(n:4,0)
s B | 2 o = E4(2). (2.3.3)

N (o, B);(d,,p,,0)

«

4. Put h=1,5, =0 k=1r =16, = B,,p, =a,a=1;p=0; 1 =

0;a = ay; 6 = B, in (1.2.1), then we get Mittag-Leffler type function

Eo, p,:0,.8, (2) defined in (0.7.4)), as

(0,1); (7, %,0)

(0[1,/81);(52,0[2,1)

OE% Z - F (62) Ealvﬁl;agvﬁg (Z) : (2'3'4)

5. Put h = 1781 = 1:/71 =74 = 17 k= ]‘?Irl = 1751 = 17p1 = 1;@ =

Lp=0; t=0;in (1.2.1), then we get E ;(2) defined in (0.7.5), as

(0,1)5(y,1,1)
0B |2 = E 5(2). (2.3.5)
(o, 8):(1,1,1)
6. Puth=1,s, =0 k=m—-1,r,=...=r_ =10, =pu,...,0, , =

Moy s P = 1/917"'7pm71 = I/qu;a = 1;/) =0; 1=0a= I/Pm;ﬁ = H,,
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in (1.2.1), then we get E(l/p_) (1) (z) defined in (0.7.7)), as

(O 1) (717q170)

(1/pma,um) ; (Ml?l/p17 1) Yo (Mm—l?l/pm—17 1)

1

=T (u,)...T0(p,,_,) E(l//’i)v(“i) (2). (2.3.6)

7. Put h = ]-751 = 1771 =74 = 4, k = 17T1 = 1751 = 1ap1 = 1;@ =

1;p=0; T—Om , then we get E% (2 )deﬁnedln,as

(0,1)5 (7,4, 1)

(Oz,ﬁ) ; (la I 1)

1

— B9 (2). (2.3.7)

8. Put h = 1,5, = 1,7 =7v,¢q, = 0; k = Lr = 1751 =1,p, = la=

1;p = 0; t = 0 in (1.2.1), then we get function Egg (z) defined in

(0.7.10)), as

(0,1);(7,6,1) .5
0Bl |2 = E)5(2). (2.3.8)
(a, 8):(1,1,1)
9 Pt h=1s, =17, =vq¢ =K, k=m,r, =... =71, =10, =
/817'75m:ﬁm7p1:a17'7pm:Qm7a:17p:O;T:07a:

1;8=11in (1.2.1)), then we get E,  [(o,,5,),. .., (,,B,.); 2] defined
n (0.7.11)), as

1 0.1): (7. K. 1)
()Em z
(1’1>;(517a1a1)7"'7( m’am’l)
:F(ﬁl)r(ﬁm)EmK [(a17ﬁl)7"'7(am7 m);z]' (239)
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2.4 OTHER SPECIAL FUNCTIONS AS SPECIAL CASES OF THE
E-FUNCTION

10. Puth=1,5, =0;k=v-1,r,=...=1r,_, = 1,0, :1+,u1,...,571:

v

1+Mv—1ap1 :)‘17"'7]71;—1 = v 1’G_Z>\ _Ap_lt_zﬂ -

M; o = X;8 =1+ pu, and replace z by in -7 then we get

:” (z) defined in (0.7.13)), as

z (17A);(’ylaQ170)

()\v71+lu’v) ; (1 +Iu’17>\171)7' "7(1 +Mv717)\1;7171)

=T (L4p). . T(+p_)HE' " (). (2.3.10)

11. Put h = 1a31 = 1771 =74 = 4 k= 1,’/“1 = 1761 = 5,]91 =D

a=1p=0; t=0in (1.2.1), then we get function E?%¢ (z) defined

o,fB,p
n (0.7.14), as

0Bl |2 0.1): e 1) = E)% (2). (2.3.11)

(o, B); (0, p, 1)

2.4 OTHER SPECIAL FUNCTIONS AS SPECIAL CASES
OF THE E-FUNCTION

I.Puth=1,5,=0;k=1,r, =10, =1L,p,=La=1Lp=La=1;=

v+1; ©= 5 and replace z by %2 in (1.2.1), then we get Bessel function

Jv(2) (0.9.1), as

1 22 (1 1) (’717Q170) > (-1)71 2\ 2n+v
vEy | — = = =J,(2).
[ (Ly+1)5(1,1,1) X (2)
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2.Puth=1,5,=0;k=1r, =10 =1Lp =La=1p=La=wp=

v+ 1; v = 0 in (1.2.1), then we get Bessel Maitland function J¥ (z)

(1,1);(7,4q,0) > )" 2n
OE% z v g + +1)—J[f(z).
7’L 1%
v+ 1);(L11) | o WL Tl

3. Puth=1s=0k=1r =10 = A+1p, =La=1p=1a=

whB=v+A+1;, 1= i;)‘ and replace z by % in (1.2.1)), then we get

generalized Bessel Maitland function J}, (z) (0.9.3), as

2 (L1)5 (0, a,0)
Bl |7
(v +A+1);(A+1,1,1)
o0 V2420
ST+ (5)7
=I(\+1)J" . (2.4
ZF n+)\+1 JT(np+v+A+1) (A+1)J),(2). (243)

n=0

4. Put h=1,5,=0;k=1,r, =10, =1L,p,=La=1p=0a=1;6=
m+ 1; T = 0 in ((1.2.1), then we get Bessel Clifford function C,, (z)

(07 1) ; (717Q1’0) >
0B} z‘ Z =Ch (2).
(IL,m+1);(1,1,1) n= "

5. Puth=1,s =17 =1, =L k=21, =11, =1,6 =25, =

p+rv+3
)

5D = Lp,=la=2p=1 1=p+1;a=1;8 =1 and replace
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z by % in (1.2.1)), then we get Lommel function s, (2) (0.9.5)), as

2 (1,2);(1,1,1)
1B 5
(1,1); (=55, 1,1), (572, 1,1)
I SN ) N R0 I VRS2 N
— (u—;+3)n (u+;+3)n r (n + 1) ou+1 ["n% .
(2.4.5)

Put h = 2751 = p,8, = 1771 =UV,7, = ﬁaq1 = 17(]2 = Q; k= 1,7’1

p,0, =v+1,p, =1,a=0;p=0; t=0in (1.2.1)), then we get Hurwitz

zeta function ¢ (p,v) (0.9.6), as

|| @Ol Gal) | 1 & ()]
041 — .
(a,B8);(v+1,1,p) '(8) n=0 [(v+1),,]
- 1 P
7. Put h = 1,31 = UV, = 2,(]1 = 17 k= Lrl — _V751 —_ 17p1 _ 1,CL _

0; t =0, =0;8=11in (1.2.1), then we get Riemann zeta

function ¢ (v) (0.9.7), as

(070);(2717_V) >
=> (n+1)7"=¢). (2.4.7)

1
n=0

(0,1);(1,1, —v)

8. Puthzl,sl:O;kzl,frl:1,(51:%,plzl;a:Q;pzl;azl;ﬁ:

v+ %; T = v+ 1 and replace z by % in 1) then we get Struve

No|
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function H, (z) (0.9.8)), as

2 (1,2)5(%,4,0) _ i (=1)" <Z>2n+l/+1

1B |5 3 3
SEOTZSRCERTE B Lt

_ TWHV (2). (2.4.8)

9. Put h=1,s, =0;k=1,r, =16, =3,p,=La=2p=0a=18=
v+ %; T = v + 1 and replace z by 5 in 1} then we get modified

Struve function L, (z) (0.9.9), as

1
V—HEI

2 0,2)5(%,4,0) > 2N 2ntvtl
: 0,2);(v,,49,,0 :Z 1 )()

(Ly+3):G L1 |

10. Put h =2,s, = 1,5, = 1,7, = 1,7, =0,q, = 1,q, = %; kE=1r =

1,6, = 6,p, :%;azl;p:O; t=0;a=1;6=11in (1.2.1)), then we

get Dotsenko function o R{ (v, 0; 0, w; p; 2) (0.9.10)), as

Y

2

F(V+n)F(U+°ﬁ’n> 2"

(0,1);(%1,1),(0,5,1) o i
(1,1); (9,%,1) INCORNC) n=0 F(Q-I—%n) n!

w

=R (v,0:0,w;;2) . (2.4.10)

1. Puth=1,s5,=0k=1,r,=0a=v+1lp=0t=rv,a=v+1;5 =

v+1 and replace z by t(v%l in (|1.2.1]), then we get Rabotnov’s function
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2.4 OTHER SPECIAL FUNCTIONS AS SPECIAL CASES OF THE
E-FUNCTION

R, (¢,t) (0.9.11), as

1 (07V + 1) ) (/717Q170) v o nt(v+1)n
e ZHQHE:FH§:D(+4H
v n
(V+17V+1);(517p170) n=0

= (7R, ((,t). (2.4.11)

122Puth=1s, =0k=1r, =0a=1p=0a=18=v+1l;t=v
and replace z by bt in (|1.2.1)), then we get Mellin-Ross function E(v,b)

(10.9.12)), as

0,1); (7,40 > ntv
B! w‘( ); (1,0, 0) iy e (bt) B,
Fl/+n+1) ’
(Lv+1):(6,,p,,0) n=0

(2.4.12)
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CHAPTER 3

MULTIDIMENSIONAL
FRACTIONAL INTEGRAL
OPERATORS INVOLVING
MULTIVARIABLE
POLYNOMIAL AND
MITTAG-LEFFLER TYPE
E-FUNCTION

Publications:

1. Fractional integral operators involving Mittag-Leffler type FE-function,
Journal of Rajasthan Academy of Physical Sciences 14, No. 3 & 4(2015),
309-322.

2. Composition formulae for the multidimensional fractional integral opera-

tors involving Mittag-Leffler type E-function, Communicated.

In this chapter, we define two fractional integral operators whose kernels

involve generalized multivariable polynomial 551 """ Uk (21, ...,7x) and the E-
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INVOLVING MULTIVARIABLE POLYNOMIAL AND
MITTAG-LEFFLER TYPE E-FUNCTION

function.

In the first section, we define a pair of multidimensional fractional inte-
gral operators I, and J, and give the conditions of existence. Then under
these operators we obtain images of important functions. After this, we
prove two theorems connecting the multidimensional generalized Stieltjes
transform and here defined integral operators. Then, we establish Mellin
transform, Mellin convolutions and inversion formulae of these operators.
Finally, we study three composition formulae of the multidimensional frac-
tional integral operators and obtain two dimensional analogue of second

composition formula.

The pair of multidimensional fractional integral operators I, and J, de-
fined in this chapter are generalized integral operators and these are exten-
sions and unifications of many results of earlier defined fractional integral

operators.

The kernels of multidimensional fractional integral operators involve gen-

eralized multivariable polynomial Sgl"“’U’“ (21, ..., xx) and Mittag-LefHler type
FE-function are general in nature and our work yields a number of corre-
sponding earlier derived results by many authors with simpler polynomials

and functions.

The results due to Erdélyi [33], Goyal and Jain [57], Goyal, Jain and
Gaur [58], Raina [154], and many others can be obtained as special cases of

three composition formulae.
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3.1 DEFINITIONS

3.1 DEFINITIONS

3.1.1 The General Multivariable Polynomials

Srivastava and Garg [195, p. 686, Eq. (1.4)] defined the multivariable poly-

nomial Sgl """ Uk (21, ..., 1) as follows:
k
Y UiR;<V
=1 xRZ
SUG Uk 1g ] = -V A(V,Ry,..,Ry) =, (3.1.1
Pt ] = 3 (V) AV R R B (B1D)
Ri,...,Ri=0 =
where V= 0,1,...; Uy,...,U; are arbitrary positive integers and the coef-

ficients A (V| Ry, ..., Ri) are arbitrary constants (real or complex). Several
single and general multivariable polynomial can be obtained as special cases
of general multivariable polynomial Sgl """ x1, ..., k) by replacing coeffi-

cients A (V, Ry, ..., Ri) occuring in (3.1.1)) with a suitable function. Further

detail of this polynomial and its special cases can be seen in Appendix B.

3.1.2 The H-Function

In 1987, Inayat Hussain [80] defined the H-function by Mellin-Barnes type

contour integral as follows:

L z—:j,wj;”fjiv, 5i’wii1 _
ol EIR R Ay T PR
(bj> ﬁj)l ’(bﬁ 0, Bj)MH
where
M N .
HF (b] - 1935) H [F (1 - 81 + wJé)] ’
— i=1 i=1
6(6)=—5 ’ — : (3.1.3)
H [P (1 - b] +19]£>] ’ H F (61 - wjg)
j=M+1 J=N+1
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where M, N, P and, () are non-negative integers satisfying 0 < N < P, 0 <
M < @ and empty products are taken as unity. Also, T;(j =1,...,P) and
Bij(j = 1,...,Q) are positive real numbers for standardization purpose,

gj(j=1,...,P)and b;(j = 1,...,Q) are complex numbers such that the

points & = bg;k (j =1,...,M;k = 0,1,...) which are the poles of I'(b; —
9,6)(j = 1,..., M) and the points £ = “=% (j — 1, N;k = 0,1,...)

Wi

which are the singularities of [F (1 —¢&, + wjf)]rj (7 = 1,...,N) do not

coincide.

The contour £ is the line from ¢ — ico to ¢ + ioco suitably intended to
keep the poles of I'(b; — ¥;€)(j = 1, ..., M) to the right of the path and the
singularities of [F (1 —¢, + wjﬁ)}Tj (7 =1,...,N) to the left of the path. If
T,=Bj=1(i=1,..,N;j=M+1,..,Q) the H-function reduces to the

familiar Fox H-function.

Gupta, Jain and Agrawal [67] have been given the sufficient conditions

for the absolute convergence of the defining integral for H-function given

by (3.1.2)), as follows:

(i) larg (2)] < 27Q and 2 > 0;
(1) larg (2)] = 47Q and 2 > 0;
and

(@) # 0 and the contour £ is so chosen that (cu+ A+ 1) < 0;

(b) =0 and (A+1) <0,

/

(3.1.4)

60
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where
P )
Q= 219 +Zw] 219 B — > wj
N+1
P
= Z%T + 2w 219 - ZﬁB
N+1 M+1 » \ (315)
A= Re(Zb+ZbB Zz—:] Zq)
M+1 N+1
%( M — Zl3+2ﬂ‘+P N)
M+1

/

The series representation of the H-function was given by Rathie [I58]:

- (g, w;; TN (g, w)E M oo
H%V | T =D0) 0(Sp.) 2P, (3.16)
(bj7 19]> (b 19 B >M+1 v=1D=0

where Sp, = % and 0 (Sp,,)

T (1—¢,4w5Sp,)] 7 (~1)

=
[»]

M
IT v, -9,50.)

j=Lj#v j=1

IT [t-0,+0,50.,)]" [ T, ~w,Sp.)DW,
j=M+1 j=N+1

for small and large values of z the behavior of the H-function is given by
Saxena [172, p. 112, Eqgs. (2.3) & (2.4)] as follows:

ﬁ]]\fév 2] =0 [\z|ﬂ for small z, where

bj
A = min Re ( ) (3.1.8)
1<j<M 19]
Hj\fév [2] = [| | }for large z, where
_ N
VA 1r§n%}]<vRe l’fj ( - >1 : (3.1.9)

details of series representation of the H-function can be seen in Appendix-A.
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3.1.3 [ and J— Integral Operators

In this chapter we assume that f(¢1,...,ts) € A represents the class of
functions f (1, ...,ts) for which fo |f (t1,...,ts)| dty...dts < oo for every

bounded s-dimensional region (), excluding the origin and

;

OIT (I51*)  max{l[} -0
fty, .. ty) = 7=l . i=1,..,s.

S
OTT (It57% e™Wl) min {115/} — oo
\ J=1

(3.1.10)

Now, we define a pair of multidimensional fractional integral operators
with kernels involving multivariable polynomial Sy, Ut,--Uk (21, ..., ) and the

E-function having general arguments as follows:

L (1, ta)] = TG [ (b1, t) 500, )

H\ @ H\ £\ & £\
g (L) (1-2) m () (- )]
1 g Ts Ts

S\ t\Y  (pya); (v s d)yy,
x Bl |z (i) ( ——J> | f oty ... ts)dty...dty
=1 <a75>7(5]7p]7 J) 1,k

(3.1.11)

where

\

(1)min Re(ej, fj,nja, Aja) > 0 not all zero simultaneously;

(2)min Re[l 4+ 7j + n;t + ;] > 0, min Re[o; + Ajt] > 0, e (3.1.12)

where 7 =1,...;s
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To [f (b1, oo ts)] = TRl A U (b ey t) 21,y 2]

_ (ﬁx? /:/:O [ﬁ t;" xj)ajll

S /o N\ NN (pa); (s d)
B2 (ﬂ) ( —ﬁ> | F b, o ty) dty..dts
(Oévﬁ)’((s]’pa’ J) k

(3.1.13)

where

(1)min Re(ej, fj,nja, Aja) > 0 not all zero simultaneously,

(2)min Re[mj + n;7 + ¢;] > 0, min Re [0 + A\jx] > 0, Re[W,;] =0 ¢

or Re [W;] > 0, min Re [0; + A\;jt] > 0, wherej =1, ... s

/

(3.1.14)

3.2 IMAGES OF INTEGRAL OPERATORS

Here we evaluate images of some functions Ht (hj +t;)" % under the op-
=1

erators defined by (3.1.11]) and ( as follows

k S
; [ (8))m Z =Y
I, Htjy,j (hj —I—tj)‘PJ] = Zrm:hl Z (_V)XS:U-Z% A(V, Ry, ...,R5>
j=1 [1[r (%)]dl Ri,...,Rs=0 e R
=1
R; o0 S n Vj oi+fiR;+XNjt—p;
X%‘ - 1 1 (_%) <x£j>(1+%)ﬂ Ri+Ajt—¢p;
il g Dn+ )j:1 j h; J
A*
—1,h43s+1 \ Aja
X Hyyasinkrasta | (—1)° (=2%) (1 + ‘Z—j) | ; (3.2.1)
B*
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where

A" =(—m; —vj — e;R; — njt,nja; 1) .1 =0 — fiR; —n, \ja; 1)175,

(pj —oj—mj—vi—(e;+ fj) Rj — (A\j+n;)t—n, (N +15) a; 1)1,57

(0,1;1),(1 —'yi,ql,dl)m;— (3.2.2)
and
B"=(0,1);(pj —oj —mj —v;—(ej + ;) By — (AN +mj) . (A +my) a3 1),
(_Uj — Ty —Vj— (€J+fj) ()‘ "‘77]) a(>‘j+77j) a§1)1757
(1_5J’pa’ 3)1,k7(1_6704;1) (323)
provided that
min Re (e;, fj,nja, Aja) > 0 not all zero simultaneously,
min Re [1 + 7 +n;t1 +v;] > 0, min Re [o; + A\jt] >0, (j =1,...,s).

Also

S

L (6)]'m ZUR<Y

k
I &
Vj . N—wi| . im=l .
S Ht] (hj+t]> =z h Z ( V)iUiRiA(VaRla'“vRs)
= MG midieo &5
R; S N n oi+fiRj+Ajt1—¢;
E H( vi— ‘PJ) ﬁ 14+ & v
jZl
A**
—1,h+3s+1 ) )\ja
X Hy goiikposie | (=1)7 (—29) (1 + Z—j) | , (3.2.4)
B**
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where

AT =(1 =05 — fiRj = Nt =, Njas 1) (L= 75 + v — ¢ Ry — T — 5, m50; 1)

1,87
(1—0']'—7Tj—(Gj—f—fj)Rj—FVj—()\j+?7j)T—n,(>\j+77j)a;l)1’s,

(071;1)7(1_in?qi;di)l’h;— (325)
and

B* :(0, 1);(1 —0; —T; +V; — (6]- —|—fj) Rj - ()\j +77j)‘t, ()\j—i—??j)a; 1)1757
(1—Uj—7Tj— (ej—f—fj)Rj—f—Vj— ()\j+17j)r—n,()\j+?7j)a;1)175,

(1 _5j7pj;7aj)17]€7<]‘ _Baa; 1) (326)

provided that

min Re (e;, fj,nja, Aja) > 0 not all zero simultaneously,

min Re [7; +n;1+ ¢; —v;] > 0, min Re [0 + A\j1] >0, (j =1,...,s).

Proof: To prove (3.2.1), we write down the [-operator in the integral

form as defined in equation (3.1.11)). After this, we write down multivariable

Uk(

polynomial Sgl"“’ x1,...,xx) as defined in the series form (3.1.1). Then,

interchange the series and ¢;-integrals and now using ({1.3.1]), we express the
Mittag-LefHer type E-function as Mellin Barnes type contour integral. Now
interchange the order of ¢ and ¢;-integrals (j = 1, ..., s) (which is permissible

under the earlier stated conditions) then we arrived at the following form

(say A)
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k s
[T [T (8] &= o
A=zt > (W) g AV R Be) 75
[T ()]" B0 & i
=1
1 — a S —oj—mj—(ej+fj)Rj—(Aj+n;)t—(Xj+nj)a
X 5= Le &) (=1 (== [ [=; (e5+F5) Ri= (g4 )= (As-+ny)aé
7=1

xr1 rs S
% {/ / Ht§j+Vj+€jRj+77jT+ma€ (z; — tj)oﬁijjJr)\jTJr)\ja&*l

x (hj+t;) "% dtl...dts} de. (3.2.

7)

Now, using known result [60, p.287, Eq.3.197(8)], we calculate the ¢;-

integral, then we get

I, [H £ (hy + ;)"
j=1

X B(Uj +ijj —f—)\jaf—‘r—)\j‘f,ﬂ'j —|-Vj +€jRj +T]]'a£+77j‘f+ 1)
ng,ﬂ'j —f—Vj +€jRj +77jT+77jCL€—|—1
><2F1 ;<
oj + i+ v+ (fi+e) B+ (g +m5) =+ (A +15) el +1
(3.2

where
‘arg (%)‘ <, Re (7Tj -|-77j‘t + Vj + ejRj +77ja§+ 1) > 0,

Re (O'j + /\j‘[ + ijj + )\jaf) > 0, fOI'j = 1, ey S
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3.3 THE MULTIDIMENSIONAL GENERALIZED STIELTJES
TRANSFORM WITH I AND J— INTEGRAL OPERATORS

Finally, with the help of transformation formula [156], p. 60, Eq. (5)] and
then reinterpreting the result thus arrived in terms of the H-function (3.1.2)),

and after a little simplification we easily achive the desired final result

B-2.1).

The proof of (3.2.1]) can be done easily on the similar lines as given above.

3.3 THE MULTIDIMENSIONAL GENERALIZED STIELT-
JES TRANSFORM WITH I AND J—- INTEGRAL
OPERATORS

The multidimensional generalized Stieltjes transform of a function ¢ (¢4, ..., t5)

is defined as

Swl ..... Ws (¢ h/17 / / ¢ tl;---, H(t]+h])_wj dtl...dt$7

(3.3.1)

provided that the integral exists.

The multidimensional generalized Stieltjes transform of the I and J—integral

operators can be obtained as follows:

Theorem 1. Let ¢ (t1,...,ts) € A, minRe (ej, f;,n;a, \;ja) > 0 not all
zero simultaneously and min Re [0+ X\j7] >0 (j =1,...,s), then

(a) For min Re [Wj +7]jf+wj] >0 (j=1,...,5), we have

Suwryqws (Le@) (M1, .. hs)

:/ O (21, ..y xs) Gy (21,0, Ts3 R, ooy hs) daydag s (3.3.2)
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(b) For minRe[l +m; +n;t >0, (j=1,...,s), we have
Swl ..... W (Jt¢) (hh sy hs)
:/ G (z1, ., 5) by (21, o, s P, ooy hg) dy . dg s (3.3.3)
0 0
where
k T
: 1 LG
by (21, o, sy by o hs) = Uy H (hj +t,)"" | = ztmfh
i=1 [T ()"
I=1
XS:UZ‘RZ‘SV
i=1 EIRZ o0 1 S . h n
X (—V).  A(V,Ry,..,Ry) an)(—i)
B\ R AT e ya A
x <1 + _j> Hy 31 pras2 | (—1)7 (—29) (1 + &> | :
x] T B*
(3.3.4)
here

At=Q1—-oj—m— (e + [}) Rj = (N +m)t—n, (A +m5) a; 1),
0T — wjnia; 1), o (1 =05 — fiRj — Nyt —n, Aja; 1),
(3.3.5)

(1—7Tj—€jRj—

(1 — Y 4,5 di)l,h ) (07 1; 1) —_—

and

B"=(0,1);(1—0; —m —(ej + f) Bj — (N + ) w (N +my) as 1),

(L—o;—mj+w;— (&5 + fi) By — (Nj +my) T —n, (A +m5) as 1)

(L=6,,p;37,) 1, (1= Bz 1) (3.3.6)
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Also

QI)Q («Tl;---;l‘s;hly---;hs) =1, [H (h —|—t> wj] :Ztmzl

P h d;
I= [T I ()]
I=1
iUiRigv
= Ef & 1 S —w i \"
X (—V).  A(V,Ry,..,Ry) (h.“’ﬂ) (——J)
Rl,--%;s—o z';UiRi RZ‘ n=0 I (7’L + 1) ]I:Il ’ hj
oi+fiRj+Ajt—w; A**
T, —1,h+3s+1 N\ Aja
x (1422 Hyy g1 prasi2 | (1) (—2%) (14 2 |
h, h]
B**
(3.3.7)
here
A =(w; —oj —m; = (5 + f) Bj — (A +m5) T —n, (A +m5) a; 1),
(1 mqladz)lha( - f] n)\a 1)1787
(—ﬂ'j — ejRj — 15T, 154, 1)173 , (O, 1; 1) T (338)
and
B =(0,1);(wj —oj —m — (ej + f3) By — (N +m5) © (A +m5) a; 1),
(—oj—mj— (&5 + i) By — (Nj+my) v —n, (A +m5) as 1),
(1 6]’pj’ J)Lk’(l_B?a;l) (339)

The integrals on the right hand side of equations and are

assumed to be exist.

Proof: By the definitions of I,,—operator and of multidimensional Stielt-

jes transform given by (3.1.11]) and - 3.3.1]) respectively, the LHS of -
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can be obtained as follows:

o0 o0 s t1 ts S
—Tm;—0j Uy o;i—1
:/ / [(Htﬁ ) / / Hl‘j (tj —[Bj> J
el fi €s fs
B(EY) (1=2)Y) e (E) (1-Z
tl tl ts ts

S e\ 2\ (pva);(%aqwdz)
<ot SI1(2) (1-2) |
7 J

(0476> ) (6J7p]7 J)l,k

X ¢(I1,...,Z’s) dxldxs] {(tj —f—hj)_wj}dtl...dts. (3310)

j=1
By interchanging the order of ¢; and x; integrals (under the conditions

stated with the theorem), we get

S /e \ T AN (pa); (V@ d)y
ey 5
s\t tj
Jj=1 <a76)7(6ﬂpj7 J) 1.k
x {(thrhj)wJ}dtl...dts] dz;...dz, . (3.3.11)

j=1
By writing the ¢;-integrals in terms of the operator defined by (3.1.13),
the above result (3.3.11]) can be transform as follows

/ / ¢ (w1, @ [H (t; + hj)~ ]d:cl...d:cs. (3.3.12)

j=1

S
To find the value of J, !H (t; + hj)wJ] , we use the result (3.2.4) with
j=1

v; = 0, then we achive the right hand side of (3.3.2)) .
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The proof of part (b) of Theorem 1 can be easily developed on the similar

lines as given above, with the help of definition of .J,—operator defined by

(3.1.13) and the result (3.2.1)) with v; = 0.

The I and J—integral operators of multidimensional generalized Stieltjes

transform can be obtained as follows:
Theorem 2. If ¢(t1,...,t;) € A, minRe(ej, fj,n;a,\ja) > 0 (j =

1,...,8) not all zero simultaneously, then
1. For minRe[l+m; +n;7 >0, (j=1,...,s)

I wl’ . t )(.131,...,.123)]

we® (t1, -,
/ / qb tl,..., q)z <t1,...,ts;3§’1,...,$3) dtl...dtsa (3313)

2. For minRe [mj + njt+w;] >0, (j=1,...,s)

Iy [Swr,ws @ (t15 s ts) (21, ., 25)]

/ / gﬁ tl,..., Ql)l (tl,...,ts;.%’l,...,iﬂs) dtl...dtsa (3314)

where Py (t1, ..., ts; 21, ..., xs) and Py (t1, ..., ts; 21, ..., Ts) are as given in
and respectively, provided that the integrals in the R.H.S. of

equations (m and (3.3.1/ (m) exist.
Proof: Results (3.3.13) and (3.3.14)) of Theorem 2 can be obtained on

the similar lines to the proof of Theorem 1.

Moreover, the one dimensional analogues of the Theorem 1 and 2 can be

easily derived.
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3.4 MELLIN TRANSFORMS, INVERSION FORMULAS
AND CONVOLUTION

Srivastava and Panda [199] part I, p. 125, Eq. (3.5)] defined the multidimen-

sional Mellin transform of the function f (¢1,...,ts) € A as follows:

M[f(tl,...,ts);91,...,08]:/ / Htfj‘lf(tl,...,ts)dtl...dts,
0 0 I
(3.4.1)

provided that the integral exists.

The multidimensional Mellin transforms, corresponding inversion formu-
las and convolutions of the I and J—fractional integral operators defined by
(3.1.11)) and respectively, can be obtained as follows:

Result 1

If the conditions of the existence of the operator I;g‘e/én)‘ [f (t1, ...y t5)]

are satisfied and M [I, {f (t1,...,ts); 01, ...,0s}] exists, then

M[Ix {f (tl,...,t5>;91,...,93}] = M[f (tl,...,ts);91,...,QS]X(€1,...,95),

(3.4.2)
where
k o S URi<V
1:[1 [F (6m)] " i=1 R;
X (01,...,05) = ZTm—h (_V)XS:UiRiA(V7 Ry, ..., Ry) }_él'
1T ()" RiveRe=0 =1
=1
C*
—1,h+2s5+1 a
X Hp o611 fpsto (=1)" (—==2) | ) (3.4.3)
D*
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here

C*=(1=o0;— fiR; = Njt, \jas 1), o, (=7 + 0 — ¢;R; — T, mja; 1),

(1 =7,q5d),,,(0,1;1);— (3.4.4)

and D" =(0,1);(—0; —m+0; — (e + ;) By — (N +mj) w. (Aj +my) a3 1),

(1_5J7p37 J) (1_5705; 1) (345)

Result 2

If the conditions of the existence of the operator J;gf,i"A [f (t1, ..., ts)]

are satisfied and M [J. {f (t1,...,ts);6h,...,0s}] exists, then

M [Jm {f (tl, ...,ts);gl, ,03}] = M [f (tl, ...,ts);Ql, ...,(95] X(l — 91, ceey 1— 95>,

(3.4.6)

where x (1 — 64, ...,1 — 65) can be determined by (3.4.9).

Proof: The multidimensional Mellin transform of the /-operator can be

obtained using equations (3.4.1) and ( , as follows:

M [Ix {f (tl, ,ts) ; 91, ceey 05}]

- /OOO /ooojli (x?j_1> [ﬁ (xj—wj_gj) /0:1:1 /O:cs ﬁt;” )

J=1 J=1

S t 77j t )\j (p7a’)7( 7,7q7,7d1>
J J

(CY,/B) ) (537p]7 ]) 1,k

X f(t1, oo ts) dty..dty] day...dx, | (3.4.7)
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3. MULTIDIMENSIONAL FRACTIONAL INTEGRAL OPERATORS
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Now, by interchanging the orders of ¢; and xz; integrals (which is per-

missible under the conditions stated above), we get the RHS of (3.4.7)) as

follows

0 0 j=1 j
i t €1 t fl ts €s ts fs
espet () (-5) () (-3)
X1 X1 Tg Tg
S\ tA\Y  (pa); (76, di)
X BN |z (-f) < ——J> | dry..dwg | diy..dts.
X, X
i=1 ’ ’ <a’ﬁ)’(5ﬂp3’ J) k

(3.4.8)

By applying the definition (3.1.13)), the above expression reduces to

/ /ftb..., (H:c )dh (3.4.9)

Again by using the result

S S S
]x [Ht;/] (.I'j . t])aj] _ (HI?VJ+5J+1> Jm [Htj(1+1/]+5j) (tj . xj)&j] '
j=1 j

(3.4.10)

The integral (3.4.9) reduces to

/ / oty H (t29 ‘1) I (f[g;j‘gj> dty...dty,  (3.4.11)

j=1 j=1

S

9] and then arrived at (3.4.2

with the help of (3.2.1]), we evaluate I; [Hx] 7
j=1

The proof of result 2 can be developed on similar lines.
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3.4.1 Inversion Formulas

The inversion formulas for I and J—operators (3.1.11)) and (3.1.13)) respec-

tively, can be obtained with the help of the inversion theorems for the mul-
tidimensional Mellin transform (3.4.1)), given by Srivastava and Panda [199]

part [, p. 125, Lemma 2| as follows:

Result 3
1
t1,....ts) = —
f( IREES ) (27‘(’1)
c1+1i00 Cs+i0o 0;
]1' t 7"'7ts ,9 ,...,93 d9 ...d¢957
c1—ioco /c—zoo X 91,...,9) [ {f(l ) 1 }] 1
(3.4.12)
Result 4
1
t1,....ts) = —
St ts) (2mi)
c1+ioo Cs+100 Hlt
J
M T t 7"'7ts ,(9 ,...,95 d& ...d(987
€1—100 co—ico X 1—91,... 95) [J {f( 1 ) 1 }] 1
(3.4.13)

where x (61, ...,05) and x (1 — 61, ...,1 — b;) can be easily derived by (3.4.9).

The conditions of validity for the inversion formulas (3.4.12)) and (3.4.13])
can be easily obtained from conditions of existence of multidimensional frac-
tional integral operators and their multidimensional Mellin transforms de-

fined earlier.
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3.4.2 Mellin Convolutions

The multidimensional Mellin convolutions of two functions f (t1, ...,ts) and

g (t1,...,ts) is defined as follows:

(fxg)(t1,....ts) = (g* f) (t1,..., ts)

:/ / (Ha:jl> f(t—l,...,t—s>g(:l:l,...,xs)dxl...dxsa (3.4.14)
0 0 i) 1 Ls

provided that the multiple integrals in right hand side involved in (3.4.14])

exist.

Let f(t1,...,ts) € A, then the I and J—fractional integral operators

defined by (3.1.11)) and (3.1.13)) respectively, can be written easily as mul-

tidimensional Mellin convolutions in the following forms:

Result 5

ITETA f (1, t) = (Inge, pimastvis * F) (21, 00y T5) | (3.4.15)

where
S

j=1

x Syl [E1 (1) (@ = D) LB (1) (2 — 1)f8}

5 (pua);(r)/‘vq‘ad)lh
— j_)\j )\j [3 (3 i s
< B 2] ()™ (= )Y | . (3.4.16)

(@, 8); (6;,2,57,) 1 4

here ©(x) is the Heaviside unit function .
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Result 6

TR (1, o te) = (Jrae finnastivis * ) (@1, 0, @) (3.4.17)

where

Uy O'j—].
Jr e fimhasUViz = <H L (1 — ;) O(1- x]))

j=1

I [ L I Ak BT

j=1 (@, 8) 5 (8,50557,) 14

here ©(x) is the Heaviside unit function .

Proof: Result 5, can be proved by writing the [-operator defined by

(3.1.11)) in the following form using the Heaviside’s unit function:

I;Tg;f;“f (tr, ..., ts)

A O [ORNCRRICR)
a(2) ) ()]

< H<—> (7~ )| (2r0)i o s )
(0476)7((5],]9]7 j) k

X f (tl, . Zfs) dtldts . (3419)

The result 5, can be easily deduced with the help of the equation (|3.4.16|)
and the definition of the Mellin convolutions given by (3.4.14)) in the above

equation. The proof of the result 6 can be developed on the similar lines.
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3. MULTIDIMENSIONAL FRACTIONAL INTEGRAL OPERATORS

INVOLVING MULTIVARIABLE POLYNOMIAL AND
MITTAG-LEFFLER TYPE E

—FUNCTION

3.5 COMPOSITION FORMULAE FOR THE MULTIDI-
MENSIONAL FRACTIONAL INTEGRAL OPERA-
TORS INVOLVING MITTAG-LEFFLER TYPE FE-
FUNCTION

Result 7

/ 7 / / /
e, fi\0 7w o se . f ;A0
Iﬂ-ao—?emfv ) {J Wt
z;U\Viz

I [f (t1, .y ts } (Slxj - 1>
/ / (Htﬂ']—H%T) <_ .. ) (t1, ..., ts)dty...d

(S +0>/ / (H” i 1)@

X f (tl, ...,t3> dtl...dtsv

(3.5.1)

where

)
_ m=1 m'=1 "
o h 0 % N1y
[T 11 |0 (7))
=1 I'=1
SSUiRi<V
=1 ERl
X Z (_ )ZUR A(Vlea 7RS) Rz'
R,..., Rs=0 =1
S UIR<V ,
= / / / _EYIRZ
_ R . ,R) i
<X (V) g AV R R
R),...,R.=0

A*
ejRj+n 51h+2s+1 p+1l _a Aja
Xt Hy oot ppasre | (1) 2 Ht'
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here

A = (—wj —Ajr—1;— A

/ i / I i
j T —€Rj—e;R; — Na Spy g, Aja; 1)

Y
1,s

(1 =9 q:5d)1 4, (1—7rj —Aj‘t—ﬂ'; —A;T/ — 0 — jr—a; —9;r/ -n

—(es+ S By = (€ + 1) By = (6,4 0)) /Sy (05 + Ay s 1)

1,s

(0,1;1);— (3.5.3)

and

!

B* = (0, 1) ; (1 o 5j7pj;rj)17k ) (1 - 6704; 1) ) (_ﬂ'j - AJT — Ty = Aj‘f
;=0 —n ey — (e 4 £) By = (04 85) a'Spr . e 1)

(1—7Tj—A]’T—Tf;-—A;-‘E/—O']'—Qj‘E—O';—Q;‘E/—(Gj—i—fj)Rj

— (e; + fjl) R;- — (9; + A/j) a/SD/J, (0 +Aj) a; 1) (3.5.4)

1,s

it is assumed that the composite operator defined by the L.H.S. of
exists, f(ti,....ts) € A and G (t1,...,ts) can be written from G (ti,...,1s)

from by interchanging the parameters with dashes with those without

dashes also Spy | and g(SD/J) can be obtained from (3.1.7) by replacing

parameters with suitable parameters with dashes and the following conditions

are satisfied:

(1)min Re[m; + Ajt] > —1, min Re [W; + A;-T/ + %’] > —1;

(2) min Reloj + 61| > 0, min Re [0; + G;r/] > 0;
S (3.5.5)
(3) Re[W;] > 0 or min Re [l +mj +0j + (j + Ajt+ 0] > 0,

Re[W;] =0, where (j =1,...,s) .
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Result 8
ror S ’ 1
056, f30,0 ose L f N0 e
g (i ) (T
j=1

. s z 7Tl» tl ts
t7 G| —, .., — t, ..., ts) dty...dtg 3.5.6
XA /0 (H j ) (1:17 71’3)][(17 ) ) 1 ( )

7=1
where
, ‘L'/ k , k:/ , r;n,
() 1w ear 11 [0 ()]
G (ty,....ts) = m m =1
(b1, s) h o N1y
[T @) T1 |0 (7))
=1 I'=1
S U Ri<V
=1 ERZ
<D (Vg AV R R 5
Ri,...,Rs=0 =
SSUIR, <V /
=1 , ) ) E/Rz
X —V)s A(V,R, ,R) P
: Z, ( S UK, bt R
Rl,...,RS:O i=1
e’} _ , ) a’ SD',l e/-RI-+A/-T/+A/-a/S )
% Z Q(SD/J) (_1)P { (Z) }] th G T i%Pp'
D'=0
y i F (O' + QJT + ij] + Qja SD/,l) (1 B t‘)Uj+0j'f+0';+9;T/—|—ijj+f]/-R;+0;a/SD,,1+n_]_
I'(n+1) /
n=0
—s+1,h+s+1 p a 5 9;a c*
X Hpp 951 k42542 (=17 (== )H(l—tj) | , (3.5.7)
j=1 D*
here

C"=(0,1;1), (1 =7,4:5d); . (1 =05 = bjv = fiR; —n,0ja; 1),

(—yrj —Ajv—ejRj+o;+ <ej + fj) R, +m; + (AJ + 9;) T

+ (A +6)) d'Sp i Aja) (3.5.8)

1,s
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and

D*:<0,1>,(—7Tj—AjT—€jRj+0';~+(€;+f;) R;+7r;~+n+ (A;-—i—@;-)T/

+ (A; + (9;) a/SD’,ija) (1= B8,a51), (1 = 0,5 1)1,k’

,S

(1=0y =0y == 0)x —n— [ — [, = 0,0/ Spy 1, j51)

,S

(3.5.9)

where Spy  and [ (SD’,1) can be obtained from (3.1.7) by replacing param-

eters with suitable parameters with dashes and the following conditions are

satisfied:

(1) min Re [1 + 7 + Ajt] > 0, min Re [1 + 7T; + A;-T/ + ;| >0,

(2) min Re[o; + 0;7] > 0, min Re [O'; + 6}11] > 0, where j =1, ..., s.

(3.5.10)

Result 9
A A Y s ,
,0 €, §A 7‘9 ,0,€, ;A,0 T
J:;Ua/—y;/’f/ {J;57‘6/'£ [f (tl, ceey ts)]} = (H x]])
7=1

o0 0 S _71’/._1 71 z,
t. — ., — t1,....ts) dty...dts > 5.11
></x1 /xs (H] >G(t17 7t8>f(1; ) ) 1 (35 )

where f (t1,...,ts) € A, the operator defined by the L.H.S. of (3.5.11|) exists,

G (t1,...,ts) is given by and following conditions are satisfied:

(1)Re [W;] > 0 or Re [W;] =0, minRe [l +mj + Ajt+ 0, + 60,7+ (| > 0,

(2)min Re [o; + 0] > 0, min Re [cr;- + 9;-1/] >0, wherej=1,..,s.

(3.5.12)
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Proof: To prove result 7, first of all we write I and J—multidimensional
fractional integral operators involved in the L.H.S. of equation (3.5.1)), in the

integral form by using the definition of I and J—fractional integral operators

(3.1.11]) and (3.1.13)) respectively, then we get the following integral:

056, f30,0 ol e

el {J;Ufy;,;j, f (tl,...,ts)]}

S o xr1 Ts S - -
= H%' s / / Hyjj(l’j—yj)‘”

j=1 0 0 |j=1

i el f1 €s fs
s () (1-2)" o () (1-2)'
1 Z1 Ts Ts

s y Aj y 0; s / 00 oo $ ro /
_ . . -y T —o 1
|11 (w_]> ( _x_3> ] ( yﬂ'j>/ / [1677 ¢ )
1 J J j=1 Y1 Ys j=1

j= = =

x Bl

B / / / /

/ / €1 fi €s fs
x SUU g () (1= L E (L) (-2
v t t ts ts

RN Y NC
x JE! 2H<%> (1_3/_]) F ity o ty) dtr...dtsdyy...dys .
j=1 N

t

(3.5.13)

After this, by interchanging the order of ¢; and y; integrals (which is

permissible under the conditions stated) we get

! / ! / / /
058, f 3,0 056, A0
ITgid {J;Ufy‘f,;f, [f (t1, ..., ts)]}

Ts t1 ts
/ {/ / Qdyldys}f(tl,,ts) dtldts
0 0 0 0
T1 Ts 0

0
:/ / [lf(tl,...,fs) dtl...dts—l—/ / I f (tl,...,ts)dtl...dtsa
0 0 1 Ts

(3.5.14)

x1
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and

t1 ts T1 Ts
0 0 0 0

Now to find I, involved in the integral on the R.H.S. of (3.5.14]), we write

both the multivariable polynomials Sgl"”’Us, Sg}""’US and the EZ, -function

involved in terms of their series expansion using equations (3.1.1]) and (|1.2.1])

respectively, the E-function is expressed in terms of the Mellin-Barne’s type
contour integral form defined by (1.3.1). Then interchanging the order of
summations and Mellin-Barne’s type contour integral with y;-integral and

further, evaluating the y;-integral, we have
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S URi<V )

=1 EIZ )
" R1,.-Z,f;s—0 (_V)iilUiRi AW, By Ry) R;!

ij{R;gv’ .

i=1 / o / EZ /
XD (—V)iUi,R;A(V,Rl,...,RS) o

R},...Re= i=1

> / a SD’,1

Lfmenov el )

H —eJRJ f]RJ A a S 2 9 a SD/ 1$_63R'_ijj_Aja£_9ja£
J J

tl ts 2 A, A7 +e;Rj+e; Ry+Ajaé+A5a S
/ / Hyﬂﬁ r+7r+ T—i-e] iteRj+Ajaé+Aa Sy |

yj)0j+9j1+ijj+9ja§—1 (t )

/ ’ 7 / / 7/

X (z; — dyy...dysd§ .

(3.5.17)

After this, we put y; = t;ju; in (3.5.17) and integrate it with the help of

the result [195, p. 47, Th. 1.6] we obtain the following equation:

/ / !

] =) (¢) f_{l T (6)]™ mﬁl ()]
| lﬁ [ ()] ﬁ T (fyc)}d”’

S Uiy

glei/R;<V .
Ry (V) g AV P 1) F

X {(_1)0 (_Za>}§ t;err‘AjT'FEjRj+Aja§$j—ﬂ'j—AjT—ejRj—Ajag—l
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r (7Tj + AT+ 7r;~ + A;-r/ +e;Rj + e;R;- + A;-a/SD/71 + Ajaé + 1)
U (7 + Ajr+ 7+ A7 40 + 07 + e;R;
r (a;. +07 + R, + e;a’SD,J)
(e + f5) By + (A +0)) 'Sy +1)

X

1—0']'—tng—f—ijj+(9ja€,1+7rj—|—AjT—|—7T;-
X oF

L4+ 7+ Ajt+ 7 + AT 40, + 0,7 +ejR;

+AT + e R+ e;R; + Nid Spy g + Ajaé
j (A A e S B | de. (3.5.18)
’ ’ / /! / / X

(&) B+ (A +0)) @S+ Agag

Finally, we transform RHS of (3.5.18)), using the following result [150],

p. 60, Eq. (5)]

2Fi(abiez) = (1—2) " yF (c—a,c— by 2), |z <1 (3.5.19)

and expand the 9F; thus deduced in the series form and re-arranging the

result in terms of H-function we obtain the solution of 1.

To find I, = Oxl Oxs Qdyy...dys, we follow the same procedure as it is

mentioned above with the only difference that we substitute y; = z;u; in

the corresponding expression to (3.5.17)). By writing the values of I; and I

in (3.5.14] ), we get the required result (3.5.1]).

To prove (§3.5.6)), we express the I operator present in the LHS of (3.5.6)
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in the integral form using the equation (3.1.11]), we have

/ / / / ! !
. .Aa . .A 9
g {1 el

=([]="" / / [[67 ) f(t, oo ts) Adty.dty s (3.5.20)
=1 0 0 \j=1

where

A:/ /
t1 ts

N S‘Iih...,Us E (@

e1 fi es fs
1 T T

/ /

/ ’ , t e/1 t fi , t €s t fs
v Sg},...,US B, (_1) (1 _ _1> . E, <_S) (1 — _5>
Y1 A Ys Ys
S A]' 0; , S A;‘ ‘9;'
r (Y Yj Wl tj j
x EM |z = - = B |z — -
o [ r (%) ( xj) Tk H(%) ( ?Jj)

J=1

X dyj...dys . (3.5.21)

To find A, first of all we express both the multivariable polynomials

!

/ ’
UyiUs QU Us oo : : :
Sy S and EZ,—functlon involved in terms of their respective

series with the help of equations (3.1.11]) and (3.1.13|) respectively, and ex-

press the E-function in terms of the Mellin-Barnes type contour integral
by using (3.1.1)). Then interchanging the order of summations and Mellin-

Barnes contour integral with y;-integral, we get
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U;R; <V

i=1 E,RZ
x Y (—V)iU_R_A(V,Rl,...,Rs) =

Ri,...,Rs=0 i=1 v v

S U RV ,

=1 /R,

/ / / / EZ o

< (—v)s , ,A(V,Rl,...,Rs) =

R,..,R.=0 LU i

Qo9 tls— =

1 B c o , / J SD’,1

P a p
x o= [ SO (=) D0 (Sp) |1 = (<)
“ D'=0

S x Ts S / 7 ! / 7
X'—I:L,_ngjAﬂeﬂejijjRj9ja€Aja£/ ' / Ht?fr/\j‘ ‘el +Aza Sy

1175 j

j=1 0 0 =1

[ o Ts B miem—o 4 Aji—AiT —057 +ejRj—e Ry~ fi R+ Ajaé—Ad S, —05d S
X/ Hyﬂ g3 J J ISy gty g JYPpia I D' 1

i
L 1 ts j:1
0,5+ f; R0 a6—1 10 R 40,4 S 1
oj+0;1+fiR;+0 a0 — o;+0;t +f;R;+6;a S, —

X () — gy) O TUTHBIAOET (_y yO Sy dyl...dys] €.

(3.5.22)

Now we put 2= = y; in (3.5.22) and calculate the u; integral thus
J J

obtained by using the following result [60, p. 287, Eq.3.197(8)]

1
_ 1
[ o a4y e = B ()R (—A, o —‘) '
0 a

(3.5.23)

Now rearranging the result thus obtained in terms of the H—function

and substituting the value in (3.5.20]), then we get the result (3.5.6)), after

little arrangements.

On the similar lines, the proof of result 9 can be developed, so we omit

the details.
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3.6 SPECIAL CASE OF COMPOSITION FORMULAE

Here, we show a two dimensional analogue of second composition formula.

By putting s = 2 and assuming the generalized class of polynomials as unity,

we get

A A N AN A
]7r7m70,n;7)7197)\aﬂ {]ﬂ' ,T)’/L N A T IR VO SN [f (U, ”U)]}

T,Y;z stz

T,Y32

) / / 1 / s t /_1 /_1
_ ]W,m,a,n,nﬂ97)\,u {S—TF 0 pmm —n / (S - ’LL)U (t N v)n
0 JO

/

ST 0 0= o s

/
X ‘\7/ EIZL/

= L e iié(sn,l) [(DP’{(,Z’)“IH

=1 I'=1
! 7 i r 7 I I /
00 —0—At—0 —A T —T -7 T —l—(’l] +A )a SD/ 1 roor A AN
% Zx T —n—pt—n —p T —m 7191717(19 +u)a Sy
r(+1)

(=0
’ ’r ’o ’ r ’ o T Yy o //S
XF(Oj—i—)\T +)\aSD/71>F(n + v +:“aSD’,1)/0 /OUWMTHM D1

/ ! 7 7
ot+o +ATHA T +A a SD/’I—&—l—l ( .

X (x —u)

—=3,h+3 " u\ A v\ AT
X Hy 5546 (=17 (== (1 - ;) (1 — ;) | f (u,v) dudv ,
B**

(3.6.1)

where

A" =1—-oc—=-AI—1Aa;1), (1 —n—ur—l,,u/a/;l) s (L =70a5d)1
(0,1;1); (—m+ m +n —dt+ (19/ - ,u/) T+ (19/ + ,u/) a/SD/J,i?a) :

(7r/ —T4o — nt + (77/ + )\/) T+ (77/ + )\/) a/SD/J, na) (3.6.2)
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3.7 CONCLUSIONS AND FUTURE WORK

and

B* = (m/ +n —m—dr+l+ (19’ +/j) T+ (19' +M/) a/SD/71,19a) ,
(7r/ N (77/ + )\l) T+ (77/ + )\/) a/SD/J,na> ,(0,1);
(1 —o—0 —At—A1 —1— )\/a/SD/,l,)\a; 1) , (1 —0,,D,;; 1)

Lk’

(1-5,a;1), (1 Ry g ula/SD/jl, La; 1) (3.6.3)
the appropriate conditions can be found from conditions ((3.5.10)).

3.7 CONCLUSIONS AND FUTURE WORK

From results 7 and 9, similar two dimensional formulae can be deduced. By
taking the E-function to unity, these formulae can be reduced to the results
derived by Raina [154, p.511-513, Egs. (2.8), (2.9) & (2.15)].

If we reduce both the generalized class of polynomials and the F-function
to unity, in these composition formula then we obtain the multidimensional
analogue introduced by Erdélyi [33] p. 166, Eq. (6.2); p. 167, Eq. (6.3)]. Also
we can obtain the corresponding result derived by Goyal and Jain [57, p. 253,
Eq. (2.4); p.254, Eq. (2.7); p.255, Eq.(2.12)] by reducing the generalized
class of polynomials to unity and the E-function to the generalized hyper-

geometric function.
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CHAPTER 4

FRACTIONAL INTEGRAL
TRANSFORMATIONS OF THE
E-FUNCTION

Publications:

1. Fractional integral transformations of Mittag-Leffler type FE-function,
South East Asian Journal of Mathematics and Mathematical Sciences 11,

No. 1(2015), 31-38.

2. The Mellin-Barnes type contour integral representation of a new Mittag-
Leffler type E-function, American Journal of Mathematical Science and Ap-

plications 2, No. 2(2014), 137-141.

An integral transform is useful if it allows to turn a complicated problem
into a simpler one. To be definite suppose that we want to solve a differential
equation, with unknown function f. One first applies the transform to the
differential equation to turn it into an equation one can solve easily often an
algebraic equation for the transform F' of f. One then solves this equation

for I’ and finally applies the inverse transform to find f.
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4. FRACTIONAL INTEGRAL TRANSFORMATIONS OF THE
E-FUNCTION

In this chapter, we study various fractional integral transformations of
the E-function [I1]. First we establish Riemann-Liouville fractional integral
transformation of the E-function then obtain various special cases. Further
establish Erdélyi-Kober and generalized fractional integral transformation
of the E-function then obtain various special cases. Finally discuss second
form of Mellin-Barnes type contour integral representation of the E-function

then obtain various special cases.

4.1 DEFINITIONS

4.1.1 Riemann-Liouville Fractional Integral Transform

The Riemann-Liouville fractional integral transform (If+\If) (x) [164] is de-

fined as follows:

(I’ ) (z) = ﬁ / ’ (z — )" W (1) dt, (4.1.1)

where § € Cand R () > 0.

4.1.2 Erdélyi-Kober Fractional Integral Transform

n

The Erdélyi-Kober fractional integral transform (E ? f) (x) [164] is defined

0+

as follows:

x 0

(E;’f f) @)= T0 /0 St (1)t (4.1.2)

where 1,0 € C; R (n) > 0and R (6) > 0.
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4.2 THE IMAGE OF E-FUNCTION UNDER THE
RIEMANN-LIOUVILLE (R-L) OPERATOR If+

4.2 THE IMAGE OF E-FUNCTION UNDER THE
RIEMANN-LIOUVILLE (R-L) OPERATOR I:

Theorem 1. If convergence conditions are satisfied also 6 € C and

R (0) > 0 then the R-L transform Ii of the E-function is

1
(t+ 1),

(17 [E} (t—0)]) (2) =

(p7 a) ; (r}/m q@‘) Si)l h> (‘L‘—f— 17 a, 1)
X gﬂE,}Q_Lll (x —¢) . (4.2.1)

(@, 8); (0,50;57,)1 4> (s +0+1,a,1)

Proof. We obtain the R-L transform Ii of the E-function as follows

(IZ[TE,?(t—c)D(x):ﬁ/j —t“Zcb (t — )" dt,

(4.2.2)

where

. 1 an 04
Z L (z — c)* 0+
—0

T—|—9—|—1)

(pya); (Vs @iy 8)1 gy » (1 + 1,a,1)

=~ [z -0
(@, 8); (6;,p,57,) 1 4 (40 4+ 1,a,1)
(4.2.4)
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4. FRACTIONAL INTEGRAL TRANSFORMATIONS OF THE
E-FUNCTION

4.2.1 Special Cases of Theorem 1

1. R-L transform Ij+ of the M-L type function ((0.7.7])

(0,1);(1,1,1)

xoE | (x —¢)
(l/pmvﬂm) ) (:uv 1/91’ 1) ) (:UJm—p l/pm717 1) ) (9 +1,1, 1)
(4.2.5)

0 .
2. R-L transform [, of the M-L type function (0.7.11)

{foi (B (e, B), s (e, B,) ;t]}} (@)= ————

(0,1)5(y,%,1),(1,1,1)

(L,1);(8,,a,,1),...,(6,,,,1),(0+1,1,1)

2
X 9Em+1 L

(4.2.6)

3. R-L transform I; of the M-L type function ((0.7.13)

(L,A); (M +1,A,1)

(Aw L+ :uV) : (1 + Foi s >\i7 1)1,1/—1 ) (M + 0+ 17A7 1)
(4.2.7)
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4.3 THE IMAGE OF E-FUNCTION UNDER THE ERDELYI-KOBER
(E-K) OPERATOR =,

4.3 THE IMAGE OF E-FUNCTION UNDER THE ERDELY]I-
KOBER (E-K) OPERATOR =’

Theorem 2. If convergence conditions are satisfied also n,0 €
C,R(n) > 0andR(0) > 0, then the E-K transform EZf of the E-function
18

1

(B 0) @ = gy

(pv CL) ; (fyz'?qiv Si)l,h ) <t+ 9 + 1,&, 1)

x Bt | (4.3.1)

(aaﬁ) ; (5j>pj77”j)1’k>(f+77+‘9+ 1,@, 1)

Proof. We obtain the E-K transform EZf of the E-function as follows

oo

/ e > @ (n) t"dt,  (4.3.2)
0

n=0

z 0

I'(n)

(=7 [BE0)]) (@) =

where

="m? _ 1 (T + 0+ 1)an an+t
(“0+ < (fﬂ) @)= erar). % R ey

(pa); (Vs @5 8:) 15 (xH 0+ 1,0,1)

(&76) ; (5j7pj7rj)1’k ) (T "‘77"‘ 0 + 1,@, 1)
(4.3.4)
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4. FRACTIONAL INTEGRAL TRANSFORMATIONS OF THE
E-FUNCTION

4.3.1 Special Cases of Theorem 2

1. E-K transform EZE of the M-L type function (0.7.7))

(0,1);(0+1,1,1)

XoE%ﬁL X
(l/f’mnum> ) (:Lbul/pl? 1) 1t (IU/m717 l/pm717 1) ) (77 + 0+ 1,1, 1)
(4.3.5)

2. E-K transform EZf of the M-L type function (0.7.11))

1

(0+1), HF (8,)

S B (@08 (0 8,) 11} (@) =

0,1);(v,k,1),(0+1,1,1)

(1,1):(8,,0,,1), ..., (8,0, 1), (n+0+1,1,1)
(433.6)

2
X OEm—H L

3. E-K transform =" of the M-L type function ((0.7.13])

0+

1

(M +6+1 nHF
1=1

(1LA); (M +60+1,A,1)

()‘w 1+ :ul/) ) (1 + Fois )‘w 1)1,1/—1 ) (M + Ui + 0 + 17A7 1)
(4.3.7)
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4.4 THE IMAGE OF E-FUNCTION UNDER THE GENERALIZED
INTEGRAL OPERATOR

4.4 THE IMAGE OF E-FUNCTION UNDER THE GEN-
ERALIZED INTEGRAL OPERATOR

Theorem 3. If convergence conditions are satisfied also n,0,0 €

C,R(n)>0,R(0) >0, R(c) >0, and t,x,v € R, then
/ (z—s)" (s—t)" FEl v (s —1)"}ds = (z — " B0+ o1,n)
¢

| (pa)s(vis s s ), (0407 0a,1)
X B (vl =) L (4.4.0)

(Oévﬁ) ) <5J7p]7 J>1,k ) (77 + 60+ ot,0aQ, 1)
Corollary 1. If convergence conditions are satisfied also n,60,0 €

C,R(n)>0,R(0) >0, R(c) >0, and x,v € R, then

T
/ (z— )" "L EM fus®Y ds = 2" B (0 + ot )
0

(p7 (I) ; (’ym Qz7 z)l,h 9 (9 + ot,0a, 1)

% Eh+1 v’

bt (4.4.2)

(O{?B) ) <5J7pj7 3)17k7(n+0+0t70-a7 1)

Corollary 2. If convergence conditions are satisfied also 0,0 €

C,R(0) >0,R(0) >0, and z,v € R, then

Y o1 o x’
L EL (0s7) ds =
/OS L (vs7) ds <0t+9>

(p.a); (V6,8 )1 (0 + 0,00, 1)

(Oé7ﬂ) ) (517]9]7 ])17k,(9+O"E+ 1,0'@, 1)

< Eh-l—l e

It (4.4.3)
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4. FRACTIONAL INTEGRAL TRANSFORMATIONS OF THE
E-FUNCTION

Proof. We prove the theorem as follows
/ (=8 (s— ) LEM v (s — )7} ds
t

- / ' (=" (s =" @) v {(s — )7} T ds,  (4.4.4)
t n=0

where
TN I I TN I [CA N R Ve

P (n> = - T : Ty T, ) (445)

60, @), ] [e), | Tlan+p)
Then

/t o s 0 B o (s - 1)) ds

D@ E =" SN g ) O e g poyans

N (t+1), o ( >(9+01+n)aan{ ( B}

= (z— )" B0 +0o1,1)
w4 (o b7 ‘ (p.a); (V4,8 )15 (0 +07,00,1) (4.46)

(@, 8) 5 (8,,9,,7,) 1, (n + 0+ 07,00,1)
4.4.1 Special Cases of Theorem 3

1. General integral transform of the M-L type function ((0.7.7)

0,1);(6,0,1
x 0B v (x—1)7 013 )

(1/pm, /‘Lm) ) (Mm 1/91'7 1)17m—1 ) (77 + 0,0, 1)
(4.4.7)
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4.5 MELLIN-BARNES TYPE CONTOUR INTEGRAL OF THE
E-FUNCTION

2. General integral transform of the M-L type function ({0.7.11]

/tx (w=9)"" (s =) Eyull@nB), (@, 8,) (s — )] ds

(x =)' B0,y _, (0,1);(7,5,1),(6,1,1)
= m 0Em+1 ((If - t)
IIr ) (L,1): (8, 0,1)y 4,5 (0 +0,1,1)
" (4.4.8)

3. General integral transform of the M-L type function ({0.7.13])

(z— )" B(O+0M,n)

/ (x =) (s =)' HER T [o(s — )7 ds =
t

v—1
HF (1+p,)
j=1
Y (LA);(0+0M,0A,1)
XME,} v(xA t)

(Am 1 + :ul/) ) (1 + i )‘1'7 1)]_7y—]_ ) (77 + 9 + O-Ma UA; 1)
(4.4.9)

4.5 MELLIN-BARNES TYPE CONTOUR INTEGRAL
OF THE E-FUNCTION

Theorem 4. Let convergence conditions are satisfied then the E-
function (ER[z] can be represented as the Mellin-Barnes type contour inte-

gral as follows:

k

h (p’a);(717Q1731),...,(’yh’qmsh) lill[F((SU)]v
rEk z e
L ()™

h
(Ot7ﬁ> ; (617p17T1> 3ty <5kapk7rk>

<

[

u
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4. FRACTIONAL INTEGRAL TRANSFORMATIONS OF THE
E-FUNCTION

h
Cllo+1D)Adr =+ 1] ] (= a.0)]
(,0‘|—1)Zr/ g ( )CdC
2mi c k
(5= aQ ] I0(5 = p,0)]

(4.5.1)
where £ is a suitable contour of integration that runs from c¢ — ioo to ¢ +

i00, ¢ € R and intended to separate the poles of the integrand at ¢ = —-15 for

all n € Ny (totheleft) from those at ( = "—H and at { = n,i =1,...,h

for all n € Ny (totheright) .

Proof. The proof can be done similarly to that of Theorem|[I]of chapter 1. [J

4.5.1 Special Cases of Theorem 4

I.Put h =1,s, =0k =1,r, =0,a = 1;p =0, = 1;T = 0 in

(4.5.1)), then we get M-L function E, (z) defined in 1903 by Gosta

Mittag-Leffler [133], as

(0,1); (3, ,0) . n
0Bl |2 :Z—
(@,1):(6,,p,,0) | wollan+d)
L [TOTO=Q e (.
B zm'/L Ti—ag (2 de=Eal2): (4.5.2)

2.Puth=1,5,=0;k=1,7r, =0;a=1;p=0;t=01in (4.5.1)), then we
get generalized M-L function E, g (2) defined in 1905 by Wiman [215],

as

(0,1)5(%,4,,0) > o
1
obi |2 ZF (an + ()
(a,8);(d,,p,,0) n=0
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4.5 MELLIN-BARNES TYPE CONTOUR INTEGRAL OF THE
E-FUNCTION

L TOTA=0, e
_Qm'/ﬁ T(G—ag) 2 do=Eas(z). (4.5.3)
3'PUth::l’Sl:O;k:m_lar1:...:T’m,l:1;51:M17~..75m,1:

M1, P = 1/917"' s Po1 = 1/Pm_1;a' - Lp - 07 T= 0,0é - 1/pm;ﬁ = W,

in (4.5.1)), then we get E, z) defined in 2000 by Kiryakova [95],
(o) (1)

as
1 (0 1) ('717(]170)
OEm—l <
(1/pm7lum);(ILL171/'017]‘)7""(/'I“m—1’1/pm717]‘)
w1 n— F Iu1+ /pl - (:u +n/pm)
m—1

u, 1
v=1 F(C)F(l —C) ¢
— — m (—2) " d( = H T (w,)] B, o )i (2).
2 /L-HJF(%%O] m
- (4.5.4)

4. Put h =1,s, = 1,7, =7v,q, =0k =1,r, = 1,0, = 1,p, = Lia =

I;p = 0; « = 0 in (4.5.1), then we get M-L type function Egg (2)

defined in 2009 by Srivastava and Tomovski [204], as

(0,1)5(7,0,1)

(o, £)5(1,1,1)

_ 1 T'()T (v —6¢) g (o
_F<v)2m/L TG a9 K=ELE). (455)

E} =
051 |# ZF an+ﬁ n‘

101






CHAPTER 5

FRACTIONAL DIFFERENTIAL
CALCULUS OF THE
E-FUNCTION

Publications:

1. Fractional differential calculus of Mittag-Leffler type the E-function (Com-

municated).

In this chapter, we study fractional differential calculus of the E-function
[11]. First we discuss essentials of fractional calculus [132] then give defini-
tion of fractional derivative in the Riemann-Liouville and the Caputo sense.

Next we mention a generalized Saigo fractional derivative operator and op-

fractional differentiation of the E-function.

5.1 DEFINITIONS

Here we provide the essentials of fractional calculus:

The following equation demonstrate the formula usually attributed to

103



5. FRACTIONAL DIFFERENTIAL CALCULUS OF THE
E-FUNCTION

Cauchy for evaluating the n'" integration of the function f (¢)

n  times

/ot /Ot"'/ot f ) drdr.dz = (n_11>! /Ot (t—7)"" f(r)ydr.  (5.1.1)

n  times

Let us first define the Riemann-Liouville fractional integral operator ;J*

of order >0

tJUf(E) = ﬁ/{) t =) f(r)dr, t>0. (5.1.2)

By convention ;J° = I (Identity operator). We can prove

(I TV = TV IR = TPy >0, (Semigroup Property) (5.1.3)

['(y+1)

JHY =
t D(y+p+1)

O >0, v>—1,t>0. (5.1.4)

The fractional derivative of order p > 0 in the Riemann-Liouville sense,

is defined as the operator ;D

tDNtJN = ], w > 0. (515)

If m denotes the positive integer such that m—1 < pu < m, we can obtain

(DFF(t) = D™ J"RE (), t >0 (5.1.6)
hence
dm t  f(r)dr
™ [F(mlu) fO (t—T()“)+1_m} ) m—1<p<m,
Czj—n; (t), w=m.
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5.1 DEFINITIONS

For completion ;D° = I. The semigroup property is no longer valid but

C(y+1)
[(y+1-p)

DT = T pw>0, v>-1,t>0. (5.1.8)

However the property ;D* = ;J7# is not generally valid. An alternative

definition of fractional derivative, which is due to Caputo, is

(DEF(E) = (J" 4, D™ f(#). (5.1.9)

We note in general that

(DM TR (8) A TR DM () (5.1.10)

1. Generalized Saigo Fractional Derivative Operator

Let 0 < a< 1, 8, n € RN, m € N then the generalized modified

fractional derivative operator due to Saigo [160] is defined as

B—a;1—mn;
d | am-n e m
DB _a _ m _ ymy=e 1—— | f@)dt™
0,z,m ('T) dr F(l —04)/0 (.I’ ) 241 om f()
1 —o;
) (5.1.11)

The multiplicity of (z™ — ™)™ in equation (5.1.11)) is removed by re-
quiring log (2™ — ™) “to be real when (z™ — t™) > 0, and is assumed to be
well defined in the unit disk. When m = 1 then the above operator reduces
to Saigo derivative operator D&f’n and Dy " f (x) = DS f (x).

On putting « = g and m = 1, in (5.1.11)), it reduces to the Riemann-

Liouville fractional derivative operator given by Miller and Ross [132].
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5. FRACTIONAL DIFFERENTIAL CALCULUS OF THE
E-FUNCTION

e Results Required

We will use following relations in establishing our results

Ly AT T
oDl (2M71) = = F(,u—a)x# " a (5.1.12)

m—1
[ (p+pk+1)
m #y = || pkm 1 5.1.13
k,a,a?(x) pIOF(,UJ“f’pk‘f’l_Oé)x ’ OZ%M‘F ( )

where o and k are not necessarily integers.
5.2 MAIN THEOREMS
Theorem 1. If convergence conditions are satisfied, then

Dl@\—,uﬂf {t)\ ISUl [wlt% v ’wst%] rEIi:L [Zt] f (xt)}

iUiR <V
- R © ac+t
w; A
= —V)e A(V,Ry,...,Rs) = dlc)—"
Rl.;—o( )ZlUiRi VoAt B ; (C)P(achﬂ)

rArmi1 7T L A+ A +91) > )"
Xt H T (it A+ 00) Z n! DzAf (@)}

n=

—n A+A A A+ (m— 1)
Xm+1Fm t , (521)
pH+A L+ A+ (m—1)1;

where

d (c) =

@), ]" [(52)1726]” [, ] riacts)

Rp+A+9)>0,RA+A+9]) >0t <1,

here A=@iRi+..+psRs+ac+7,9=0,....m—1;c=0,1,....

106



5.2 MAIN THEOREMS

Theorem 2. If convergence conditions are satisfied, then

S UiRi<V
Y e, A VIS ()
= —V) s V.Ry,...,Rs) = d(c) ———
Ri,...,Rs=0 i§1UiRi RZ' c=0 I ((l/C + ﬁ)
00 -n m—1
_ —t) FA+A+9)(1—pn—A—=19I)
t)\—I—A—l—ml 1 ( D" n n
8 nz_o n! ﬂ”{xf(x)}ﬁlilol“(u+A+ﬁl)(1—)\—A—ﬁl)n
—nA+A=—n,..  A+A+(m—1)1—n;
X ma1Fm t, (5.2.2)
p+A—n,. ..o u+A+(m—1)1—n;
where
S1 S2 Sh c
), e, ] o, ]y
q) (C) — T 27’2 hrk )
G0, |6, ] |6, ] Tac+ )
1 2 k
Rp+A+90—n)>0,RA+A+I—n)>0,[t| <1,
here A=@iR1+..+prRs+ac+7,9=0,....m—1;c=0,1,....
Proof. Let us consider the well-known Taylor’s expansion
- (t_ 1)” n myn
flat)=)  ~—=a"D{f (x)}. (5.2.3)

n=0

Multiplying both sides of (5.2.3) by tA~1SUv Vs [wit#r ... wgt?s] Bl [2t]
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5. FRACTIONAL DIFFERENTIAL CALCULUS OF THE
E-FUNCTION

”DZ {f (x)}} :
(5.2.4)

m A—1gUi,...,Us
= Dix—us {t Sy [wit?r, .. ] Ep |

nzO

(0.5.1)) and (1.2.1)) respectively, also expand (¢t — 1)" using binomial expan-

sion and changing the order of operator and summation, we obtain

DPy {tA—1Sgl ..... Us gt ... wgt?] BN [1] f(:z:t)}

SU;R; <V

=1 R;, ©© n n
B B wZ : (—n), x
= Z ( V)iUiRiA(V’ Ry, .. RZI Z nl A

Ri1,...,Rs=0 i=1 n=0 h=0

ac+t
n m Ath+p1 Ri+...+psRs+act+t—1
XZ(I) OéC-|—ﬁ)D {f( )}Dl,/\—u,t {t v v }
(5.2.5)

Now using ((5.1.13) in the RHS of ((5.2.5)), we get the following form

iUiRiSV

o R, °© n n
- uft S (1) ()t
= Y (Vg AVRLR) TS L

R Rs 0 i=1 n—0 h=0
X i P (c) Lﬂt’\JFthRl+-~+sosRs+acﬂ+ml—1

s [ (ac+ p)

T TN+ h+ @R+ ... +@Rs 4+ ac+ 1+ 1) P
H DH{f(@)}.  (5:26)
0 F(p+h+eiRi+ ...+ psRs + ac+ 1+ )

Further, recombining above result in terms of generalized hypergeometric
function pFy we get the RHS of ((5.2.1)).

Theorem 2 can be proved similarly by using the following expansion [27]

=3~ (1 _ %) D" (" f ()} . (5.2.7)

n:
=0
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5.3 THEOREMS ON FRACTIONAL DIFFERENTIATION

5.3 THEOREMS ON FRACTIONAL DIFFERENTIATION

Theorem 3. If convergence conditions are satisfied then for a,t,u €
R, pe C; such that t+u+1—-—peClZy and t+u+an+1+#0,—1,.

n € Ny, we have

(p.a); (Vi €5 81 T (c+u+1)

(a’ﬁ>’(5ﬁpy’ J) 1,k

DM | 2B}
Tk E C(c+u+1—p)

(p7a);<717qz7 1) 7<t+u+17a’7]‘)

X crupBl | 2 (5.3.1)

(C)é?ﬁ) ) <5]7p]7 ])Lk,(f-’—U"‘ 1 - L, a, 1)

Corollary 1. If convergence conditions are satisfied then for a,t €

R, pe C; such that t+1—p e ClZy andan+t+1#0,-1,...; n € Ny,
we have
(p’a’);(f%,’qz’ 7.) F 1
DV rEl}; < = (r_‘_)
I'(c+1—p)

(aaﬁ) ) (537])]7 ]) 1,k

(p7 ) (’}/zaqw z>1,h7(t+17a71)

(Oé,ﬁ) ) (53apﬁ J)l,k’(t+ 1 — U, a, 1)

Eh+1

ol P (5.3.2)

Proof. Let the convergence conditions (|1.2.2)) are satisfied and a,t,u € R,
peC; such that t+u+1—pe C\Zyand an+14+u+1#0,—1,..; n € Ny,

we have

(P a)s (Vi G5 5.) 10

(a’ﬁ>’(5ﬂpy7 J) 1,k

LDV z“rE,}j z
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5. FRACTIONAL DIFFERENTIAL CALCULUS OF THE
E-FUNCTION

_ Z z:lk 4G - D" (Zan+r+U) (5.3.3)
"I (an + B) H l ]
j=1
h S
MENCSE | RICAAN
_ Z E { ln} F(an+T+u+ 1) Zan+t+u7u (5.3.4)
—~ k T (an+t14+u+1—p)
" T (an + B) H l . 1
j=1

—-1)™ H [(%)qw}

'(~+u+1) io: i—1 (t+u+1),,

Zan+t+u—u

:F(T+u—|—1— T K H(ttutl—p),,
['(an + B) Hl 1
J=1
(5.3.5)
F(r—l—u+1) (P; ) (’Vzaqza z)l,hv(T+u+17a71)
= r—i—u—uEk <
F(T—I—u—i—l—,u)

(@, 8); (8,,0,7,) s (FHu+1—pa,1)
(5.3.6)

Theorem 4. If convergence conditions are satisfied then form,a, t,u €

N, such that a(c — 1) + t+u < m < ac+ v+ u where ¢ € N, we have

(P a)s (ViG55 8.) 1

(a’ﬁ)’((sﬁpa’ J) 1,k

m —Z u
2D EN | 2

h S.
I1[e,.]"

m ] ) (-1 r !
= (1) Bl () + S

1[0

j=1

]Tj (ac+ v+ u—m)!
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5.3 THEOREMS ON FRACTIONAL DIFFERENTIATION

Eh+1 (p7 ) (fY‘FCqZ?q'L’ Z)l,h’(1+ac+t+u7a7 1)

Xact+t+u—m k+1 z

(ev,ac+ B); (0, + e, pyu7y) s (L ac+ t+u—m,a,1)
(5.3.7)

Corollary 1. If convergence conditions are satisfied then form, a,t €

N, such that a (c — 1) + t < m < ac + t where ¢ € N, we have

h
(), .|
pr | g [ | @O0 dosd 1:[1[ o (=1)” (ac + 2!
) e i vy (ac+t—m)!
(@, 8) 5 (8,,2,,7,) 1 Hl(é") }
j=1
(p:a); (V4¢G5 8,) 1> (1 +ac+ t,a, 1)
Xactt— mE]fCLjr_ll z

(o, ¢+ B) (5 +cp;,p;, J)lk,(1+ac+t—m,a,1)
(5.3.8)

Proof. Let the convergence conditions (1.2.2)) are satisfied and m,a,t,u €

N, such that a (¢ — 1) + t+u < m < ac+ 1+ u where ¢ € N, we have

(pya); (Vs @5 S:)1m

(aaﬁ) ) (5j;p37 J) 1.k

= (—1)" e By (2)

sz e Z U Ek Py

N (_1)P(n+c) ﬁ [Wi)qi (Mc)] %

+e? Z =1 sz (Za(n+c)+r+u) (539)

h
1)P(n+c) H [(%)q-(nﬂ)] i

1=1

“T{a(n+c) +B}ﬁl (HC)]T
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5. FRACTIONAL DIFFERENTIAL CALCULUS OF THE
E-FUNCTION

) (an + ac+ 1+ u)! antacttu—m (5.3.10)
(an+ac+t+u—m)!
h s
[(%) } l

= (_1)m eizr—i—uElg (Z) + :

1[0

]Tj (ac+t+u—m)!
j=1

(107 ) (7+qu7q17 1)17h,(1—|—CLC+T—|—U,a,1)

X actt+u— mEki—ll <
(o, c + B) (5 +cp;,p;,r j)lk,(1+ac+r+u—m,a,1)

(5.3.11)
Theorem 5. If convergence conditions are satisfied then

(pya); (Vir @i 8 )1

(0576-'_ 1) 5 (51’])3’ J)l,k‘

(p7 ) (717qz7 z) d
B, E! z‘ + 222 B |

d
(Qvﬁ—i_l);(é]?pa’ J)l,k‘ "

(0 )5 (Vi @iy $:)10 ] (a)s (i s

(@,ﬁ+1),(5j,pj, J)Lk (0475>7(537p]7 J)l,k
(5.3.12)

Proof. Let the convergence conditions ([1.2.2)) are satisfied then

6TE£ Z‘ (p7 ) (fquza z) +%% TEI? ; (p,&);(’yz’ql’ Z)
(0 8105 (052007, ) 14 (0, B41)5(0;,,75) 14
aT <p7 ) (717%7 1) a zan—H
a (o, B+ )’<J,pj7 J)Lk =0 (an+ B)T (an + B)
O cm + T) an+t > San+t
Ez% (an+ 6)T (an—|—ﬁ Z CYn‘i‘ﬁ)F(Ozn—l—ﬁ)’

(5.3.13)
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5.3 THEOREMS ON FRACTIONAL DIFFERENTIATION

where

.
Il
—

Then (5.3.13]) can be written as

h
pnl_ﬂ } . (p,@) 5 (Vs @ 5.)1

H.S.:nZ_O ﬁ{ ] . T(an+08) (@, 8) 5 (8,,,,7,), Lk

7=1
(5.3.14)

CONCLUDING REMARKS

The present chapter provides a scope of defining M-L function of many
parameters as a MATLAB function. At present MATLAB provides MLF-

FIT2.M [I83], in which the M-L function in two parameters are used.

é MLFFIT2M 4ﬁ

[ E—

= out put

Mittag-Leffler function

[~ =] []

constant

Figure : MATLAB Simulation
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Appendix A

THE H-FUNCTION

In the present Appendix, we shall define a function which is more general
than well known Fox H-function. We also mention some special cases of
this function which are not particular cases of Fox H-function but have
practical applications. We shall denote this function by the symbol H.
The H-function was introduced by Inayat Hussain [S0] and later studied by
Buschman and Srivastava [14] and many others.

The H-function is defined and represented by Mellin-Barnes type contour

integral as follows:

Hpp |2 (o0 A), o)y | L 0 (€)24dg, (A1)
PQ w Q T omi ), ’
(b]761>1 ’(by?ﬁy? j>M+1

where

6(6)=—3— — L (A
H [F (1_b7 +ﬁj£)]B] H F(CLJ —04]5)
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M, N, P and, () are non-negative integers satisfying0 < N < P 0< M < Q
and empty products are taken as unity. Also, A;(j =1,...,P) and B;(j =
1,...,Q) are positive real numbers for standardization purpose, a;(j =

1,...,P) and b;(j = 1,...,Q) are complex numbers such that the points

- bj+k
g =t

the points & = a1k (7=1,..,N;k =0,1,...) which are the singularities

Qg

(j=1,..,M;k =0,1,...) which are the poles of I'(b; — B;s) and

of [F (1 —a; + ozjf)} 45 do not coincide.

The contour £ is the line from C — 700 to C + 200 suitably intended to
keep the poles of I'(b; — B;s) (j =1, ..., M) to the right of the path and the
singularities of [F (1 —a, + ajf)}Aj (j =1,...,N) to the left of the path. If
Ai=Bj=1i=1,..,N;j=M+1,..,Q) the H-function reduces to the

familiar Fox H-function.

The following sufficient conditions for the absolute convergence of the
defining integral for H-function given by ‘) have been recently given by

Gupta, Jain and Agrawal [67]

(1) |arg (z)] < 17Q and Q > 0;
2 (A-3)

(i) |arg (z)| = $7Q and Q > 0;
and
(a)u # 0 and the contour £ is so chosen that (cu+ A+ 1) < 0;

(b) =0 and (A+1) <0,
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where

M N Q P
Q= Zﬁj + Z%‘Aa‘ — 2. BiBj— > q
M+1 n+1
M Q
H = ZO‘JA + ZO‘J Zﬁj_ Zﬁij
n+1 M-+1 » \ (A—4)
<Zb + 3 B~ S, - )
M+1 N+1
+3 ( M — Z B; +2A + P — N)
M+1 J

The series representation of the H-function was given by Rathie [158]

and Saxena [165] has been used in the present work:

—M,N (aj7 CYj; Aj){v, (aj, Oéj)i ) M oo _
Heg |2 ¥ o T =)0 0(Sk) 2, (AB)
(bJ” /Bj)l 7(bj7 /8]'; Bj>M+1 v=17=0

where
M N ~
IT v, =8,Sw) [] [T (1 —a,+0a,8:.)]7 (-1)
7 j=Lj#v J=1
0(Sr) = " = :
IT T —b+85:.)]" ] T(a—a,S.) 75
j=M+1 j=N+1
S, = b”; il (A-6)

The following behaviour of the ﬁ]}fé\f [z] function for small and large

values of z as recorded by Saxena et al. [172, p. 112, Egs. (2.3) & (2.4)]

Hpg [2] = O]|2|"] for small z, where

o= min Re (bj > : (A-7)

1<j<M ﬂj
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F%g 2] =0 [|z|5] for large z, where

B = max Re lAj (“j — 1)] , (A-8)

1<j<N ;

provided that either of the following conditions are satisfied:

(i) p<0and 0 < |z| < o0;

(A-9)

(i) p=0and 0 < |z| < 67

where
N P M Q
(1) p=2 A+ > a; =325 — > BB,
1 N+l 1 M+l
N . P M 5 @ . (A-10)
(¢) 6 =1 (ay)" 11 () I1(B;) 7 I (B;) 777
1 N+1 1 M1

Special Cases

1. The Fox H-Function

IfA=B;=1(G=1,...,N;j=M+1,...,Q), the H-function reduces

to the familiar Fox H-function [196]:

P N P
a;, _ a;, a;1) (a;, a;
Hj]:\)/’[é)N Z| ( J ); :H]\P{é\f Z| ( M)1 ( )(;v+1
(bj’ ﬁj)l (bw 6;‘)1 7(bj’ B 1)M+1
(A-11)

The following special functions which are quite general in nature
and of our interest, are particular cases of H-function but not of Fox

H-function:
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2. The Generalized Wrignt Hypergeometric Function [68, p. 271,

Eq. (7)]
P 4
_ (a},a.;Aj)P; 0 ljl{r (a, +ajr) } o
ol T A =g P
(bw BﬁBa‘)l : r=0 Hl {F (bj —}—Bj?”)} !
J:
—1,P (1_a]'7 aj;Aj>fD

— HP,Q+1 —Z | o . (A—12>

0, 1), (1 = by, ﬁj;Ba)l
The function pWg reduces to pWq, the familiar Wright’s generalized
hypergeometric function [196] p. 19, Eq. (2.6.11)|, for A; = 1(j=1,...,P),

B; =1(j=1,...,Q).

3. A Generalization of the Generalized Hypergeometric Func-

tion [68, p. 271, Eq. (9)]:

,
_ a;, 1;Aj)
7| W
(bj’ 1;BJ>1 ;
iﬁmmwr L)y, | (1-a, 1,4)"
= o lipoy1 |74
rszlg[l{(bJ)r} J jﬁl{r(aj)}Ag 0, 1), (1 b, 1;B].)Q
Q B,
e [ )
= o Loz (A-13)
A,
[T{T(a,)}" (b, B;), ;

The function pFg reduces to well known pFy for A4; = 1(j=1,...,P),

B; = 1(j=1,...,.Q) in it.
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4. Generalized Wright Bessel Function [68| p. 271, Eq. (8)]:

(o
Iy (2) = TZ_;T! {T(1+X+vr)}

The function J" (z) reduces to the Wright’s generalized Bessel

function [196, p. 19, Eq. (2.6.10)] for u = 1.

5. The Generalized Riemann Zeta Function [34], p. 27, §1.11, Eq. (1);

A7, p.314-315, Egs. (1.6) & (1.7)]:

V4
2y =
¢( p 77) . 0(77_|_r)p
—1,2 (07171)7<1 -, 17p> S (171) ) (777p)7
:H2,2 —z | =n Poly z
(07 1) ) (_77; 1,p) (1 +777p)7

(A15)
On taking z = 1, in ({A-15]) the above function reduces to well known

Hurwitz zeta function ¢ (p,n) [34, p. 24, §1.10, Eq. (1)]:

C(p,n) =¢(1,p,1

(A-16)

and further on taking 7 = 1 in ({A-16)) it reduces to the Riemann zeta

function ¢ (p) [34, p. 32, §1.12, Eq. (1)]:

S (A1)
7“:0 r=1 re
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6. The Polylogarithm of Order p [34], p. 30, §1.11, Eq. (14); 47, p. 315,

Eq. (1.9)]
= " 1,1 (L, Lp+1)
F(Z,p) = T_p (/b(zapa 1) _H12 -z
r=1 (1,1),(0, 1;p)
_ 0,;p+1) _ | (Lp+1);
—ZHB —z | =21 z| . (A-18)
(07 1)7<_17 1>p> (2,]7),

The above function reduces into Euler’s dilogarithm [34], p.31,

§1.11.1, Eq. (22)], for p=2:

<

Lo (2) = F(2,2) 53%~ (A-19)

7. The g;-Function over the d-Dimensional Space [80] p. 4125, Eq. (20);

71, p. 98, Eq. (1.3)]:

F(m+ 1T (4F)

rfegmtdl ()T (4) T (v — 3)

g1 = (_1>mg(’77 n,t,m, Z)

e (1=711),(1-7y+355L1),0-n1L1+m)
X Hyz | =2 |
(0,1), (=5, 1:1) . (=n, L1 +m)
(A-20)
Further if we take v = 1 + 7/2 in Eq.(A-20), we have:
T I'(m+1)T (55)
1 PRI RS ) - 2 ) 1;
m('*zntmz W%THW(%1FO+%Vﬂzm+ 0
(A-21)
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8. The Function Associated with Gaussian Model Free Energy

[0, p. 4126, 4127, Egs. (23) & (28); 71, p. 98, Eq. (1.4)]:

BF (d ) —1 —1,2 1 ’ (0,1;2),(_1/2,1;d)
€)= L aettee | T 2
ant (1 +e) O™ 0,1, (L1114 9)
1 _ | (1,1;2),(3/2,1;d) 1
T free R
(2,1;1+d)
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Appendix B

A GENERAL CLASS OF POLYNOMIALS

Srivastava [I88] introduced the general class of polynomials (see also [189]
and [194]) defined as follows:

[V/u]

- A
SU 2= j( V)ngf VE R vV =0,1,.. (B-1)
R=0 '

where U is an arbitrary positive integer, the coefficients Ay p are arbitrary

constants, real or complex.

If =0, Ago=1, then SY [z] reduces to unity.

SPECIAL CASES OF THE POLYNOMIALS SY [z]

On suitably specializing the coefficients Ay p occurring in , the gen-
eral class of polynomials SY [x] can be reduced to the classical orthogonal
polynomials and the generalized hypergeometric polynomials as cited in the
papers referred to above.

We give below some of the important special cases of the Srivastava’s

polynomials SV [z]:
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1. Hermite Polynomial

If we take U = 2 and Ay g = (—1)% in (B-1)), we have

S (o] = 22 Hy (ﬁ) | (B-2)

where Hy (x) is the Hermite polynomial [208, p. 106, Eq. (5.5.4)], which

is given by:

[V/2] DBV (9)V 2R
_ 3 et

R (V —2R)!
-V V4l ]
v 2 0 2
= (233) 2F0 7_ﬁ
2. The Jacobi Polynomial
V+a
On taking U =1 and Ay r = % in (B-1)), we have
Vv
St [z] —» PP (1 —2z) (B-3)

where P‘(/a’ﬁ) is the Jacobi polynomial [208] p. 68, Eq. (4.3.2)|, which is

given by:

[ V+a VB8 | (o =1\ fa+1\""
t-F () ()
R=0\ V- R R

l+a)y e= (-V)p(l+a+8+V), [1—2\"
)
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Also the polynomials SY [z] defined by (B-1) can further be re-

duced to several special cases of the Jacobi polynomials P‘(,a’ﬂ ) (x), for

example, the Gegenbauer polynomial C}, (z), the Legendre polynomi-

als Py (z), the Tchebychef polynomials Ty (x) and Uy (x) of the first

and second kinds

-1

V -1/ 11
Ty (2) = P
%
V + 1/ 11
Uy (z) = = P ()
Vil

3. The Laguerre Polynomial

V+a

On taking U =1 and Ay p = m in
V

St ] — LY (x)

B-1

(B-7)

, we have

(B-8)

where L&f‘) (x) is the Laguerre polynomial [208] p. 101, Eq. (5.1.6)], de-

fined by:

L) @) = L
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4. The Bessel Polynomial

Taking U =1 and Ay p = (o« +V — 1), in (B-1)), we have

Sv 2] = vy (=B, a,8), (B-9)

where y,, (x,«, B) is the Bessel polynomial [101, p. 108, Eq. (34)], de-

fined as follows:

14 R
(o) =y S T ()

R=0

X9 Fy l—v;oH—V— 1;—;_—331 :

5. The Gould and Hopper Polynomial (Generalized Hermite Poly-

nomial)

Taking Ay r =1 in (B-1)), we have

SU o] — (—%)V/U gY [(-%) VU,h] , (B-10)

where ¢¥/ [z, h] is the Gould and Hopper polynomial [56, p. 58, Eq. (6.2)],

given by:

[vV/v] 1
U _ : R, V-UR
R=0
_U\Y
=T UFO A(U,—V),—,h<7>
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6. The Brafman Polynomial

Taking Ay r = % in (B-1)), we have

SY [x] — BY [al, o B, ...,Bq;xUU} , (B-11)

where BY. [, ..., ap; B1, ... 3, : o] is the Brafman polynomial [13] p. 186,

given by:

Bg (a1, o005 1, By s &) = vapFy [A(U; =V) ,an, .., 03 01, .0, By )

here A (U; V) abbreviates the array of U parameters %,%,- . -;%,
U > 1 the set A (0, V)being empty.
7. The Konhauser Biorthogonal Polynomial
If we take U =1 and Ay p = %% in (B-1f), we have
SL[2] = 7% (:cl/'“; k) , (B-12)

where Z{ (x;k) is the biorthogonal polynomial [99, p.304, Eq. (5)],

given by:
T(1+a+kV) AV kR
73 (s:k) = maLLEl S yREY
Vi 2 o | TO+a+kR)
(1+ ),y -V z\"
= 1By, 3
' A (k;a+1);
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8. Bedient Polynomials

(a) Taking U =2 and Ay g = (@'V (/\)R((/\l_—ﬁg)fv)R in (B-1)), we have

S2x] — xRy (6 A (B-13)

i)

where Ry (8, A; ) is the Bedient polynomial [198] p. 186, Eq. (48)],

given by:

: _ _ () (8) (I-a—p-V) :
(b) Taking U = 2 and Ay r = VO;(;’%)“// (A)R(l_afV)R(l_%_V)R in (B-1)),

we have

SZ[x] — xVhCh/< B (B-14)

i)

where Gy (v, 3; x) is the Bedient polynomial [9, p. 15, Eq. (2.5) and

p.44, Eq. (3.4)], given by:

(@)V(ﬁ)v (23;)V3F2 A(Q;—V),l—a—ﬁ—v;i
Vit By a-Vi-g-v. ©

V(&vﬁ;x) =
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9. Shively Polynomial

Taking U =1, Avp = “pp* iyt 2y in (B-1), we have

SU[x] = SV [a], (B-15)

where S‘(,’\) [z] is the Shively polynomial [198, p.187, Eq.(49); 179,

p. 54|, given by:

AN+ V —V,oq, ..., ap;
SI(/)\) [z] = wp-l—lpq-&-l x

>\ + V7 617 "'7ﬁq;

10. Bateman Polynomials

(a) Taking U =1 and Ay p = % in (B-1)), we have

Sy [x] — Zy [x], (B-16)

where Zy [z]| is the Bateman polynomial [198] p.183, Eq. (42)],

given by:

-V, V +1;
Zv[flj] = 2F2 X

L, 1;
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11.

12.

I(3+0+V+1)
VID(A+R+1)T(3+0+R+1)

(b) Taking U =1 and Ay r =

in (B-1|), we have

SU[x] = a7 2I (V) (B-17)
where J‘(,)"U) (x) is the Bateman polynomial [8, p. 574 & 575|, given
by:

A
s+o+V -V
)\70' 2 xA 9
J‘(/ ) (x) == m 1F2 $2
1% A+1,3+0+1;

Cesaro Polynomial

Taking U =1 and Ay p = % in (B-1)), we have
: R

St ] = ¢ (), (B-18)

where g‘(,s) (x) is the cesaro polynomial, [I98] p. 449, Eq. (20)], given by:

s+V -V, 1;

Generalized Hypergeometric Polynomial by Fasenmyer

~—

Taking U =1 and Ay p = g@?ﬁ ((%Sﬁgg:)g in (B-1)), we have

SY (2] — fv (a1, ooy a3 By ooy By ) (B-19)

where fy (aq, ..., ap; b1, ..., Bg; @) is the generalized hypergeometric poly-
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13.

14.

nomial [198], p. 182, Eq. (41); 41l p. 806, Eq. (1)], given by:

-V, V+1,aq,...,0p;
fV (Oéla"wap;ﬁlv"'?ﬁq;x) :p+2Fq+2 X

1/27 17 617 '--7ﬂq;

Krawtchouk Polynomial

Taking U =1 and Ay p = ((__ﬁ,)) in (B-1f), we have
R

Sy [z] = Kv (y,2~", N), (B-20)

where Ky (y,z, N) is the Krawtchouk polynomial [198, p. 75, Eq. (2)],

given by:

0<x<1,y=0,1,....N.

Meixner Polynomial

Taking U =1 and Ay p = é:%’; in (B-1)), we have

St [e] = My (y:5.(1-2)7"), (B-21)

where My (y, 3, x) is the Meixner polynomial [198] p. 75, Eq. (3)], given

by:
=V, ~y; .
MV(y7BJx):2F1 11—z )
B;

O<z<l,y=0,1,...N,3 > 0.
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15. Gould’s Polynomial

(p+1)cp—v+(U—1)RyRUV—UR .

: r
Taking Ay r = VTV (O =T) D) in (B-1)), we have

SY [x] — (—:cl/U)V Py (U, ey, p, C> , (B-22)

where Py (U, x,y,p,C) is the Gould’s polynomial [198, p. 77, Eq.(13);

5o, p.699], given by:

- p- R V-UR
Py (U,z,y,p,C) = ) CPVHU-DRYR ()Y VR

R=0 \ R V-UR

16. Gottlieb Polynomial

Taking U =1 and Ay p = (}% in (B-1)), we have

Sha] = (1= 2)" Iy (g log (1 — ), (B-23)

where Iy (y,t) is the Gottlieb polynomial [I98, p. 185, Eq. (47); 54,

p. 454, Eq. (2.3)], given by:

The polynomials S‘[} [z] can be reduced to other hypergeometric
polynomials such as extended Jacobi polynomials [201, part I, p.24;
201, part II, p. 106, Eq.(1.3)] and their generalizations [200, p.471,
Egs. (4.2) & (4.3)] and [201, part II, p.107, Eq. (1.11); 201, part II,
p. 108, Eq. (1.17)] etc. For details, one can refer to papers by Srivastava

and Singh [203, p. 158-162| and Srivastava and Garg [195, p. 686].
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MULTIVARIABLE ANALOGUE OF SV [x]

The generalized class of polynomials, Sgl """ x1, ..., ) introduced by

Srivastava and Garg [195, p. 686, Eq. (1.4)] is defined in the following

manner:

k
Y UR; <V

Ut,...U - "

150Uk _ _ ]

Sy w1, = ) (V)iUiRiA(V,Rb...,Rk)Ri!,
R1,...,Rp=0 =

(B-24)

where Uy, ..., Uy are arbitrary positive integers, V' = 0,1, ...; and the
coefficients A (V, Ry, ..., Ry) are arbitrary constants, real or complex.
By suitably specializing the coefficients A (V| Ry, ..., R;), occurring in
, the class of multivariable polynomials can be reduced to several

multivarialbe polynomials defined by different authors.

(a) Multivariable Hypergeometric Polynomials F l()k)

In (B-24), if we take

(B) Ry, - (Pr) Ry
(7)R1w1+..-+3k1/)k

Y

A(V,Ry,....,Ry) =

(B-25)
where Fl()k)is the first class of multivariable hypergeometric polyno-

mials defined by Carlitz and Srivastava [198, p. 462-463, Eq. 9.4(4)]
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and is given by:

Fé)k) (=V 2 Us) = (Biy @) 5 (7 = s) s 1.0

iUiRiSV

i=1 R

= > (W oy - B 71" 24" (B-26)
Ri,...,R=0 iglUiRi (7)R1¢1+"-+Rk'¢)k Rl' Rk"

(b) Generalized Lauricella Polynomial

In (B-24)), if we take
M M M
(1) (k)
I (6l)¢§1)R1+...+¢§’“)Rk Il (/81 )ng<1> (ﬁl )Rké(k)
A(V,Ry, ... By) = = o — l
e N Ny N
ll;ll <71)¢§1>R1+...+w§’“)Rk 1131 (% >31A§1> ll;ll (% )kagm

then

I (—V: Ul,...,Uk),

(% : %(1)’ ""wl(k)>17jv : (%(1)7)\1(1))1,N1 T (%(k)’ )\l(k))LNk i

(B-27)
where F' ]]\\,/‘[;\F,IIMR,M’“ is the polynomial form of generalized Lauri-

..... k

cella function of Srivastava and Daoust [194], p.454|, given by:
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I (—Vi Ul,...,Uk),

T

(1), (4047 (),

(o) (00), o ()
’ ’ " (B-28)

—=

k
Y UiRi<V

=1

(61)¢§1)R1+...+¢§’“>Rk

I
T
S
v
S
&
—=|I

(%)zpf”Rﬁ“.wf’“)Rk

N
I
—_

ﬁ k)> k R,
5k vy
Ry, xz; . (B—29)

=
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=
N———
=
Z
N>/
=
=z
/N
=
N——
=
>
=z
-
I
A

(c) Multivariable Jacobi Polynomial

In (B-24)), if we take Uy = ... = Uy = 1 and

k k
[T (4 ai)y [T (L4 ai+ 8+ V),

=1 1=

A(V,Ry,...,Rp) = =

)

1
k
(v 11 (1+i)p,

then

5‘1/7“.’1 [.Tl, ceey I’k] — P‘(}hﬂl;m’;ak’/jk (1 - 2I1> ceey 1 - 2Ik) ) (B_B())

where P‘i‘l’ﬂ 13000k ig the Jacobi polynomial of k variables defined
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by Srivastava [205], p. 65, Eq. (14)] and is given by:

P‘(}‘lhﬁl;-";akaﬁk (21, .., 2p) = i=1 Z (=V) &

k
1+a;i+B8i+V)g,

£

k
= 11
X
k
=1

1—=x; Ri
) (B-31)
[(1+ ), R i=1< 2 )

7

(d) Multivariable Bessel Polynomial

In (B-24)), if we take U; = ... = U, = 1 and

k
A (V7 R17 XS] Rk) = (1 + o1+ V)Rl H (1 + oy + ni)Ri ’
=2

then
Syt [, e ] = Y, (—2w1, ., —21) (B-32)
where y{'}lna’;lk is the Bessel polynomial of k variables [207, p. 164,

s k
i [0+ o+ V)
A1 y...,0 Bk}
Wy (T1500s Tk) = (=V) & IRy
2 ) Ry,..., R=0 i;Rl Rl Rk
: i x;\ Bi
<Jlo+asmpI(-5)"  ©
1=2 im1
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(e) Multivariable Hermite Polynomial

In (B-24)) if we take Uy = ... = Uy = 2 and
A(V,Ry,...,Ry) = (=1)ft+h

then

where

X1

- 2‘ /1 ’
and Hy (X3, ..., X) is the multivariable Hermite polynomial [206,

p. 97, Eq. (24)], defined by:

Xk:QRiSV
izlz (Q)V*Q(R1+...+Rk)
Hy (z1,...,75) = 35}/ (V).
. | |
Ri,..,Rp=0 Z_;QRz Ry!...R;!
1 R k . R;
2 - B-35

x1, ..., T can be obtained
by specializing its parameters, but we do not record them here explic-

itly.
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