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ABSTRACT 

 

Imaging sensors are a valuable resource in today’s world. Further, a single 

sensor cannot provide complete information about the environment in many 

applications. The role of image fusion in current image processing systems is 

increasing due to the growing variety of image acquisition techniques. Image Fusion 

is the process of combining substantial information from several sensors using 

mathematical techniques to create a single composite image that will be more 

comprehensive and thus, more useful for a human operator or other computer vision 

tasks. Latest technology in imaging sensors provides a broad kind of information 

that may be extracted from a located scene. Images which have been captured using 

different sensor modalities reveal numerous characteristics, such as the form of 

degradation, salient features, texture properties and many others. The automated 

procedure of conveying all the meaningful information from the input sensors to a 

final composite image is the goal of a fusion system, which appears to be an 

essential preprocessing stage for many applications, such as aerial and satellite 

imaging, medical imaging, robot vision and vehicle or robot guidance. The basic 

purpose of the image fusion or pansharpening methods is to improve the spatial 

quality and reduce the spectral distortion in the fused image. Some of the schemes 

achieve this objective by performing filtering in the time domain or joint time-

frequency domains. 

  
The objective of present research work is to develop efficient techniques for 

improving the spatial and spectral quality of the fused image. For attaining these 

objectives, image fusion/pansharpening algorithms are developed using three 

techniques-Hilbert vibration decomposition (HVD), fractional Fourier transforms 

(FRFT) and graph signal processing (GSP). 

  
Initially, the HVD technique is used for developing the three new image 

fusion/pansharpening schemes for improving the spatial and spectral quality of the 

fused image. These proposed techniques are closer to the filtering based approaches 
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used in the many of the existing image fusion/pansharpening schemes. The HVD 

decomposes a wideband input signal into many signals in the decreasing order of the 

energy in terms of instantaneous amplitude and frequency components. The 

instantaneous amplitude of the first signal in a decomposition obtained through the 

HVD is similar in shape to the lowpass filtered version of a signal. This lowpass 

signal obtained through the HVD happens to be the highest energy component of the 

original signal, and it is instantaneous frequency-based lowpass filtering of the 

signal. On the other hand, the output signal obtained through the conventional 

lowpass filtering does not take the energy of the input/output signal into account and 

is based on the frequency content of the input signal only. This signal energy 

dependent and instantaneous frequency, based filtering are the main advantages of 

the HVD over conventional lowpass filtering based image fusion/pansharpening 

approaches. In the HVD based pansharpening schemes, the filtered signal of the 

panchromatic (PAN) and multispectral (MS) images used for increasing the spatial 

information to MS images. The tuning factor of the pansharpening model is 

optimized using particle swarm optimization (PSO) technique. The criteria chosen 

for optimization are the minimization of relative dimensionless global error 

(ERGAS) which essentially is a measure of spatial distortion between MS and fused 

image. In the HVD based image fusion scheme, the HVD decomposes the source 

images into instantaneous amplitude and frequency components. Amplitude 

components of the first and second signals in the decomposition of the original 

images are used to generate the fused images. Performance evaluation of fused 

images is done by computing fusion quality metrics, and the fusion results are 

compared with other existing fusion schemes. It is seen that the performance of the 

proposed schemes is better as compared to the existing fusion schemes. 

 
The initial stage is followed by implication of second intermediate FRFT 

technique. Using 2D-discrete FRFT (2D-DFRFT) three novel image fusion/ 

pansharpening approaches are proposed, which improves the spatial and spectral 

quality of the fused image. The 2D-DFRFT is a generalized version of the 

conventional Fourier transform which provides the representation of a given signal 
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in intermediate domains between spatial and fast Fourier transform (FFT) domains. 

The angle parameters associated with the 2D-DFRFT provide additional degrees of 

freedom. Smaller values of angle parameters of a signal are similar in shape to the 

low pass filtered version of a signal, and hence it can be considered as fractional 

domain filtering of the signal. The 2D-DFRFT provides different representations of 

the given signal/image corresponding to different angles which can be optimized for 

better results. In the 2D-DFRFT based proposed pansharpening schemes, fractional 

domain filtered signal of the PAN image used for adding the spatial information to 

the MS images for pansharpening purpose similar to other MRA based approaches. 

The angle parameters associated with the 2D-DFRFT provide additional degrees of 

freedom which are optimized by a single objective PSO algorithm for finding better 

pansharpening results. In the 2D-DFRFT based image fusion scheme, input source 

images are transformed using 2D-DFRFT and then subtracted from the respective 

source images to obtain the detailed images. The detailed images are further used to 

generate the fused image using an appropriate fusion rule. The additional degree of 

freedom in terms of its angle parameters associated with the 2D-DFRFT exploited 

for obtaining better results in the proposed fusion scheme. It is observed that the 

proposed image fusion/pansharpening schemes provide improved spectral and 

spatial quality as compared to the existing schemes. The effects of aliasing and mis-

registration errors on the proposed pansharpening methods are also investigated and 

compared with existing pansharpening methods. It is seen that the proposed methods 

are robust against aliasing and mis-registration errors. 

  
The intermediate technique followed by the implication of third and last 

technique GSP/spectral graph wavelet filterbank (SGWF). Using the multistage 

multichannel SGWF, two new image fusion/pansharpening approaches are 

proposed. In the SGWF based proposed pansharpening method, the PAN image 

decomposed by the multistage $M$-channel SGWF, and then the weighted 

combination of lowpass component signals in the multistage SGWF decomposition 

is used to generate the pansharpened image using appropriate pansharpening rule. 

Simulation results of the proposed technique using different wavelets such as spline 
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wavelet (SW), Mexican-hat wavelet (MHW), Meyer wavelet (MW) and simple tight 

frame wavelet (SPW) are also presented and compared with existing pansharpening 

methods in terms of both visual perception and objective metrics such as Q-index 

(Q4), spectral angle mapper (SAM), relative dimensionless global error (ERGAS) 

and quality with-no reference (QNR). It is observed that the proposed pansharpening 

scheme provides better pansharpening results using MHW filterbank as compared to 

some of the existing schemes. In the proposed SGWF based image fusion scheme, 

lowpass signal generated from multistage multichannel of SGWF decomposition is 

used to add additional information in the source images using fusion rule. 

Performance evaluation of fused image is done by computing fusion quality metrics, 

and the fusion results are compared with other existing fusion schemes. It is seen 

that performance of the proposed schemes is better as compared to the existing 

fusion schemes. 

 
In a nutshell, the present research work investigates image fusion/ 

pansharpening schemes to develop efficient techniques for improving the spatial 

quality and reducing the spectral distortion in the fused image. We demonstrate 

application of the HVD, FRFT and GSP techniques in image fusion/pansharpening 

schemes. The comparative analysis of the simulation results shows that the GSP 

based proposed image fusion/pansharpening scheme provides better simulation 

results as compared to the HVD and FRFT based image fusion/pansharpening 

schemes. 
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Chapter 1

Introduction

Image fusion is a well-recognized and a conventional field of image processing. It is designed

to combine multiple input images into a fused image, which is expected to be more informative

for human or machine perception as compared to any of the input images. The main objective

of any image fusion is to improve the visual appearance, increase reliability, give robust sys-

tem performance, provide compact representation of information in different applications like

medical imaging [1], remote sensing [2], biometrics [3] and military [4] etc. Many applications

that require analysis of two or more images of a scene have benefited from image fusion. For

instance, in remote sensing applications, the synthesis of a low resolution multispectral (MS)

image and a high resolution panchromatic (PAN) images are used to obtain a fused/pansharp-

ened image for achieving the goal of high spatial and spectral resolution in a single image, many

pansharpening schemes have been proposed [5, 6, 7]. The pansharpening scheme refers to the

fusion of information derived from PAN and MS images captured simultaneously over the same

area [7, 8]. In medical imaging applications, images from multiple modalities can be fused to-

gether for a more reliable and accurate medical diagnosis. In surveillance applications, image

fusion can fuse the information across the electromagnetic spectrum, (e.g., visible and infrared

band) for night vision. In response to the requirements in real applications, the researchers
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have been very active in proposing more effective image fusion methods. The advancement

in the image fusion can be attributed to the evolution of various signal processing and analy-

sis theory techniques which include multi-scale decompositions (MSD) [9] , multi-resolution

analysis (MRA) [10], intensity hue saturation (IHS) [11], principal component analysis (PCA)

[12], dictionary learning [13], Brovey transform [6], hybrid methods [14], transform domain

methods [15] and methods in other domains. In the beginning, in 1997, a general introduction

to image fusion in the multisensor domain was given by Hall and Llinas [16]. In [17] Zhang and

Blum gave a set of image fusion methods based on multi-scale decomposition. Then, providing

a complete edge over multi-scale decomposition methods, the advantageous multi-resolution

properties of wavelet transform made them extremely popular in image processing [18, 19]. To

maintain the directional features of the images, the wavelet transform was further improvised

in the form of discrete wavelet transform [20]. Wavelet decomposition is a widespread method

used for image fusion [21]. Wavelet decomposition uses basis functions or different filters that

are fixed and create influence in the fused image. In [21], the wavelet transforms experience

problems when analyzing high frequency content, thus tending to lose spatial information. The

artificial neural networks (ANN) and image blocking algorithms have also been exploited in

terms of image fusion [22]. The Shearlet and counterlet transform have been very efficiently

used in non-sub-sampled domain in the context of image fusion [23, 24]. Along with devel-

oping mathematical tools and fusion rules, the image fusion methods are continually being

renewing.

1.1 Applications of Image Fusion

In recent years, image fusion has been attracting a large amount of attention in a wide variety

of applications such as concealed weapon detection (CWD), remote sensing, medical diagnosis

and military surveillance. Some applications of image fusion are given below:
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• In the remote sensing application using image fusion/pansharpening improves the spec-

tral and spatial resolution of the fused image. Fig. 1.1(a) shows a high spatial resolution

panchromatic (PAN) image. Fig. 1.1(b) shows a low spatial resolution multispectral (MS)

image of the same scene. Using image fusion or pansharpening, we can obtain a high res-

olution MS image which combines the spectral characteristic of the low-resolution MS

image with the spatial resolution of the PAN image, as shown in Fig. 1.1(c).

(a) (b) (c)

FIGURE 1.1: For IKONOS image satellite dataset (a) PAN image, (b) MS image, (c) Pansharp-
ened image.

• Concealed weapon detection (CWD) application is an important topic in the general area

of law enforcement, and it appears to be a critical technology for dealing with terrorism,

which seems to be the most significant law enforcement problem for the next decade.

Since no single sensor technology can provide acceptable performance in CWD applica-

tions, image fusion has been identified as a key technology to achieve improved CWD

procedures. Fig. 1.2 shows a pair of visual and 94 GHz MMW images. The visual image

provides the outline and the appearance of the people while the MMW image shows the

existence of a gun. From the fused image, there is considerable evidence to suspect that

the person on the right has a concealed gun underneath his clothes.

• Medical diagnosis application, medical imaging has a positron emission tomography

(PET) and a magnetic resonance image (MRI) from the brain of the same patient. The
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(a) (b) (c)

FIGURE 1.2: (a) MMW, (b) visible source images and (c) fused image

first is a functional image displaying the brain activity, but without anatomical informa-

tion, while the second provides anatomical information but without functional activity.

Moreover, although the two images come exactly from the same brain area, the PET has

less pixels than the MRI, i.e. we can say that the first has less spatial resolution than

the second. The goal of fusion scheme for the proposed example is to achieve a unique

image with functional and anatomical information with the best resolution [25, 26, 27].

Fig. 1.3 shows an example of MRI and computed tomography (CT) image fusion.

(a) (b) (c)

FIGURE 1.3: (a) MRI, (b) CT source images and (c) fused image

• Multifocus image fusion application is useful to enhance digital camera images. Inex-

pensive cameras may have difficulty in obtaining images which are in-focus everywhere

in some situations due to the limited depth-of-focus of the employed lenses. To overcome
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this problem, we can take several images with different focus points and combine them

together into a single composite image using fusion. Fig. 1.4 shows a pair of digital

camera images. In one image, the focus is on the left clock. In the other image, the focus

is on the right clock. In the fused image, both the clocks are in focus.

(a) (b) (c)

FIGURE 1.4: (a) and (b) Multi-focus clock source images, (c) fused image

• Military surveillance application is a head-tracked vision system for night vision applica-

tions. The multiple imaging sensors employed can enhance a driver’s overall situational

awareness. Fig. 1.5 shows a scene captured by the head-tracked vision system during

a field exercise. This scene includes a person, a road, a house, grass, and trees. Fig.

1.5(a) shows the corresponding thermal imaging forward-looking-infrared (FLIR) sensor

image of the scene and Fig. 1.5(b) shows the image intensified charged coupled device

(IICCD)/visual sensor image of the same scene. These images contain complementary

features as illustrated by the fused image shown in Fig. 1.5(c).

1.2 Image Registration

Image registration is an essential part of image fusion. In a majority of image fusion research,

it is assumed that the source images are perfectly aligned. In fact, this is difficult to achieve
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(a) (b) (c)

FIGURE 1.5: (a) IR, (b) visible source images and (c) fused image

in many practical situations. The task of image registration is to align the reference images to

one another images. During the image fusion process, it is difficult to align the images. It is

overcome, by insuring the accurate registration between source images during preprocessing

of image fusion. Over the years, a broad range of techniques have been developed for vari-

ous types of sensors and applications. There are two general types of differences between the

images to be registered. The first type is due to changes in acquisition, which cause the im-

ages be spatially misaligned. In the second type, the difference cannot be modeled by a spatial

transform alone. The differences which are not due to spatial misalignment can be attributed to

factors such as lighting changes, using different types of sensors, using similar sensors but with

different parameters, object movements, or scene changes. Registration will not remove the

differences which are not due to spatial misalignment, but they make the registration more diffi-

cult as there is no longer an exact match between two images, even after spatial transformation.

Existing image registration techniques can be classified into two categories: intensity-based

methods, and feature-based methods. In the intensity-based methods, the images are essen-

tially registered by selecting many windows in high-variance areas of one image, locating the

corresponding windows in the other image, and using the window geometric centers or mass

centers as control points to determine the registration parameters. Feature-based methods ex-

tract and match the common features from the source images. Frequently used features include

edges, corners, and contours. The feature-based approach has received more attention for the
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purpose of multisensor image registration.

1.3 Performance Parameters

Performance parameters [28, 29], [30] are used to compare the effectiveness of the fusion

scheme which are discussed below.

• Average Pixel Intensity (API) or mean (F̄ ) calculate the contrast level in the image is

given by [28, 29]

API = F̄ =
1

MN

M∑
m=1

N∑
n=1

F (m,n), (1.1)

where F (m,n) is pixel intensity at (m,n) and M ×N is the image size.

• Standard Deviation (SD) is the square root of the variance which reflects the spread in

data. Standard deviation measures the contrast in the fused image. An image with high

contrast would have a high standard deviation and is given by [28, 29]

SD =
1√
MN

√√√√ M∑
m=1

N∑
n=1

(F (m,n)− F̄ )2, (1.2)

• Average gradient (AG) measures the degree of clarity and sharpness and is given by

[28, 29]

AG =
1

MN

M∑
m=1

N∑
n=1

√
(F (m,n)− F (m+ 1, n))2 + (F (m,n)− F (m,n+ 1))2,

(1.3)

• Entropy (H) estimates the amount of information present in the image. A higher value

of entropy implies that the fused image is better than the reference image and is given by
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[28, 29]

H = −
255∑
k=0

pk log2 (pk) , (1.4)

where pk is the probability of intensity value k in an 8-bit image.

• Mutual information (MI) is used to measure the similarity of image intensity between the

fused and source images [29], which is given by

MI = MIUF +MIV F , (1.5)

where MIUF =
∑

k

∑
l pU,F (k,l) log2

(
pU,F (k,l)

pU(k)pF (k)

)
is the mutual information between

source image U and fused image F , and MIV F =
∑

k

∑
l pV,F (k,l) log2

(
pV,F (k,l)

pV (k)pF (k)

)
is

the mutual information between source image V and fused image F .

• Information symmetry or fusion symmetry (FS) is an indication of how symmetric the

output image is with the input image. If the final fused image is equally symmetric to

both the source images, value of fusion symmetry will be closer to 2 and the quality of

fusion will be better and is given by [28, 29]

FS = 2− |MIUF
MI

− 0.5| (1.6)

• Correlation coefficient (CC) measures the relevance of fused image to source images.

The value of CC should be close to +1, which indicates that the reference and fused

images are same. Variation increases when the value of CC is less than 1 and is given by

[28, 29]

CC = (rUF + rV F ) /2, (1.7)

where

rUF =
∑

m

∑
n(U(m,n)−Ū)(F (m,n)−F̄)√

(
∑

m

∑
n(U(m,n)−Ū)

2
)(
∑

m

∑
n(F (m,n)−F̄)

2
)

and

rV F =
∑

m

∑
n(V (m,n)−V̄ )(F (m,n)−F̄)√

(
∑

m

∑
n(V (m,n)−V̄ )

2
)(
∑

m

∑
n(F (m,n)−F̄)

2
)
,
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• Spatial frequency (SF) is computed by calculating the row frequency and column fre-

quency of the fused image. Higher value of SF indicates that the input images and the

fused image are similar and is computed as [28, 29]

SF =
√
RF 2 + CF 2, (1.8)

where RF =
√

1
mn

(
∑

m

∑
n(F (m,n)− F (m,n− 1))2) and

CF =
√

1
mn

(
∑

m

∑
n(F (m,n)− F (m− 1, n))2)

• QUV/F [30], metric measures the amount of edge information from source images to

fused image, and is given by [30]

QUV/F =

∑M
m=1

∑N
n=1(QUF (m,n)wU(m,n) + (QV F (m,n)wV (m,n))∑M

m=1

∑N
n=1(wU(m,n) + wV (m,n))

, (1.9)

where QUF indicates the similarity between two images U and F in terms of width and

direction of edge and QV F (m,n) indicates the similarity between two images V and F in

terms of width and direction of edge. The closer the value to 1, the higher the quality of

the composite image.

• LUV/F [30], metric measures the amount of loss edge information from source images to

fused image.

• NUV/F [30], metric measures the amount of Noise or artifacts added in fused image due

to fusion process.

It is to be noted that total fusion performanceQUF , fusion loss LUV/F and fusion artifacts

NUV/F are complimentary indicating that the sum of all these should result in unity.

QUV/F + LUV/F +NUV/F = 1 (1.10)
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1.3.1 Quantitative Assessment of Remote Sensing Image Fusion

Accurate quantitative assessment is difficult when a reference high-resolution MS image does

not exist in remote sensing fusion applications. However some metrics have been in use to

measure the quantitative quality of fused images using with or without the reference image.

The quality metrics generally provide two types of assessment: (i) Degraded scale assessment,

(ii) Full scale assessment.

1.3.1.1 Degraded Scale Assessment

As per Wald’s protocol [31] the PAN and MS images are degraded to a lower resolution to

compare the fused image with the reference original MS image [32]. Therefore the PAN image

is degraded in resolution such that the resulting pansharpening image has the same size as MS

image and used as a reference.

• The Universal Image Quality Index (UIQI) or Q-index [33], measures the degree of linear

correlation, closeness of the mean luminance and the contrasts of the images Mr and Fr.

It is given by [33]

Q(Mr, Fr) =
σMrFr

σMrσFr

2M̄rF̄r

(M̄r)
2

+ (F̄r)
2

2σMrσFr

(σMr)
2 + (σFr)

2 , (1.11)

where σMrFr is the sample covariance of Mr and Fr, M̄r and F̄r are the sample mean of

Mr and Fr respectively. The Q-index varies in the range [-1, 1], with 1 denoting the best

fidelity to reference [33].

• The Spectral Angle Mapper (SAM) [34] index determines the spectral similarity between

two spectral vectors as a spectral angle and it is given by [34]

SAM(M{r}, F{r}) = arccos(
〈M{r}, F{r}〉
‖M{r}‖.‖F{r}‖

), (1.12)
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where M{r} = [M1,{r},M2,{r}, ...,MN,{r})] and F{r} = [F1,{r}, F2,{r}, ..., FN,{r})] are the

two pixel vectors of the input MS image and fused image respectively, and SAM value

for the whole image is obtained by averaging the single measures over all the pixels. The

optimal value of the SAM index is zero [34].

• The relative dimensionless global error in synthesis (ERGAS) is a normalized version of

root mean square error (RMSE) designed to calculate the spatial distortion [31] and is

expressed as

ERGAS = 100
h

l

√√√√ 1

N

N∑
r=1

(
RMSE(Mr, Fr)

µ(Mr)
)2, r = 1, 2, ..., N, (1.13)

where, h/l is the ratio of resolution of PAN and MS images, µ(r) is the mean of the rth

band. It is used to compute the quality of fused image in terms of normalized average

error of each band of processed image [31]. Increase in the value of ERGAS indicates

distortion in the fused image, lower value of ERGAS indicates that the fused image is

similar to the reference image [31].

• The peak signal to noise ration (PSNR) measures the spatial reconstruction quality [35,

36] and it is given by

PSNRi = 10 log10

(MAX2
i

MSEi

)
, (1.14)

where MAXi is the maximum pixel value in the ith band image and

MSEi =
1

N

N∑
r=1

(Mr − Fr)2
i,r, (1.15)

where index (i, r) indicates the rth pixel in the ith band. A larger PSNR value indicates

a higher spatial reconstruction quality.
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1.3.1.2 Full Scale Assessment

The quality with-no reference (QNR) protocol calculates the quality of the pansharpened

images without requiring a high-resolution reference MS image [37]. The QNR com-

prises two indexes, one pertaining to spectral distortion and other to spatial distortion.

The two distortions may be combined together to yield a unique quality index [37].

• The spectral distortion Dλ is calculated between the low-resolution MS images and the

fused MS images [37] using

Dλ = p

√√√√ 1

N(N − 1)

N∑
l=1

N∑
r=1

|Q(Mr,ML)−Q(Fr, FL)|p. (1.16)

• The spatial distortion DS is determined by calculating Q-index between each MS band

and the PAN image degraded to the resolution of MS (PL) and again between fused MS

and full resolution PAN (P) [37] and computed as

DS = q

√√√√ 1

N

N∑
r=1

|Q(Mr, PL)−Q(Fr, P )|q. (1.17)

The exponent p and q in (1.16) and (1.17) are generally chosen as one [37].

• The QNR index is defined as [32]

QNR = (1−Dλ)
u(1−DS)v, (1.18)

where u and v are the weighted coefficients which are usually taken as unity [37]. The

higher the QNR index, the better the quality of the fused product. The maximum theo-

retical value of this index is 1, when both Dλ and DS are equal to zero [37].
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1.4 Challenges of the Image Fusion Schemes

After an in-depth and critical literature survey, the present study found that to design an image

fusion scheme one needs to take care of the following Challenges:

• The fusion process should maximize the amount of relevant information in the fused

image while minimizing the amount of irrelevant details, uncertainty, and redundancy in

the fused image.

• Incorporate essential information from different modality sensors into a composite image

to obtain both high spatial and spectral resolution in a single image.

• Provide an effective way of reducing the increasing volume of information while at the

same time extracting all the useful information from the source images.

• The generated fused image is more suitable for human/machine perception, and for fur-

ther image-processing tasks such as segmentation, object detection or target recognition.

1.5 Motivation

For many applications the information provided by individual sensors is incomplete, inconsis-

tent, or imprecise and additional sources may provide complementary data. Fusion of different

information results in better understanding of the observed site thus decreasing the uncertainty

related to the single sources. Over a period of a decade, remote sensing, medical imaging,

surveillance systems, etc. are a few applications areas that were benefited by these multi-

sensors. As the number of sensors increases in an application, the proportionate amount of

image data collected. A sensor grabs multiple images of a location, and one of them can be

considered for analysis. However, the considered image may not have good spatial and spec-

tral resolution. To overcome this and to generate a fused image with high spatial and spectral
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resolution, this thesis identifies the need for image fusion/pansharpening by developing new

methods to improve the performance of existing fusion methods which are given below:

• Recently, Hilbert vibration decomposition (HVD) has been proposed by M. Feldman et

al. [38], for analyzing non-linear and non-stationary signals. It decomposes a wideband

input signal into many signals in a decreasing order of the energy in terms of instan-

taneous amplitude and frequency components. The HVD estimates the frequency of a

signal by averaging the instantaneous frequency of the signal components [38]. The

HVD has higher frequency resolution than the empirical mode decomposition (EMD)

based approaches for a given signal [38]. Since most of the sensors or image acquisition

devices are sensitive to energy as well as frequency of the signals, it would be interesting

to investigate the use of HVD for image fusion/pansharpening of images.

• The fractional Fourier transform (FRFT), which is a generalized version of the conven-

tional Fourier transform. It provides representation in these intermediate domains, and

the 2D discrete FRFT (2D-DFRFT) of a signal provides infinite representations of the

given signal in different DFRFT domains for corresponding angles, and the DFRFT pro-

vides a free degree of freedom in terms of its angle parameters. The 2D-DFRFT has been

applied in many image processing applications [39, 40, 41, 42, 43, 44, 45, 46, 47] but the

use of discrete fractional Fourier transform (DFRFT) in image fusion/pansharpening has

not been investigated so far.

• The graph signal processing (GSP) and the spectral graph wavelet filterbank (SGWF)

have been shown to be promising in many areas [48, 49] utilizing the ability to decom-

pose images into different subbands via the spectral characteristics of the images in the

graph domain. The GSP exploits internode/interpixel dependence and it can be the rea-

son for the improved results with the GSP. The time-frequency localization property and

filterbanks of conventional wavelet transform have also been extended to GSP as SGWF
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and associated filterbanks but its use in image fusion/pansharpening has not been inves-

tigated so far.

1.6 Problem Statement

Fused/pansharpened images obtained by the existing fusion/pansharpening schemes may suffer

from the spatial and spectral distortion problems. Existing fusion schemes improve the spatial

quality and reduce the spectral distortion in the fused image obtained by performing filtering

in time domain or joint time-frequency domains [50, 51]. For attaining these objectives, some

new image fusion/pansharpening algorithms are developed using three techniques in this thesis,

that are as follows:

• Investigating the image fusion/pansharpening schemes based on the use of Hilbert vibra-

tion decomposition (HVD).

• Investigating the image fusion/pansharpening schemes based on the use of two dimen-

sional discrete fractional Fourier transform (2D-DFRFT).

• Investigating the image fusion/pansharpening schemes based on the use of graph signal

processing (GSP)/spectral graph wavelet filterbank (SGWF).

1.7 Thesis Contribution

The original contribution made in this thesis is to develop new pansharpening methods for

remote sensing applications based on HVD, 2D-DFRFT and GSP techniques for improving

the spatial quality and reduce the spectral distortion in the pansharpened image to make it

more suitable for human/machine perception, and for further image-processing tasks such as

segmentation, object detection or target recognition. For medical diagnosis, concealed weapon
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detection (CWD), military surveillance, etc. applications also develop image fusion schemes

based on HVD, 2D-DFRFT, and GSP which have maximum information of the source images

taken by the different sensors or cameras while minimizing the amount of irrelevant details,

uncertainty, and redundancy in the fused image.

1.8 Organization of Thesis

Chapter 2 introduces the background of the image fusion/pansharpening schemes for different

types of applications like medical images, remote sensing images etc.

Chapter 3 proposes three approaches for image fusion/pansharpening. The proposed tech-

niques are based on the recently developed signal decomposition technique known as Hilbert

vibration decomposition (HVD). In the proposed pansharpening methods, PAN and MS images

are decomposed into many instantaneous amplitude and frequency components in the decreas-

ing order of energy using the HVD. The instantaneous amplitude of the first component (having

highest energy) in a decomposition of the PAN and MS images are used to generate the pan-

sharpened image using pansharpening model. Experimental results of the proposed technique

are presented for AVIRIS, Pleiades, IKONOS and GeoEye-1 satellite images and compared

with existing pansharpening methods in terms of both visual perception and objective metrics

such as Q-index, spectral angle mapper, relative dimensionless global error, peak signal-to-

noise ratio and quality with no-reference (QNR).

It is observed that the proposed pansharpening schemes have improved spectral and spatial

quality as compared to the existing schemes. The effects of aliasing and misregistration errors

in the proposed methods are also investigated and it is observed that the proposed methods

are robust against aliasing and misregistration errors as compared to other existing methods.

In the image fusion technique, the HVD decomposes the source images into instantaneous

amplitude and frequency components with decreasing energy values. Amplitude components
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of the first and second signals in the decomposition of the source images are used to generate the

fused images using appropriate fusion rule. Performance evaluation of fused images is done by

computing fusion quality metrics and the fusion results are compared with other existing fusion

schemes. It is seen that the performance of the proposed scheme is better as compared to the

existing fusion schemes.

In Chapter 4, three approaches for image fusion/pansharpening based on 2D-discrete fractional

Fourier transform (2D-DFRFT) are proposed. In the proposed pansharpening methods, PAN

and MS images are transformed using the 2D-DFRFT and further used to generate the pan-

sharpened image using appropriate pansharpening rule. The angle parameters associated with

the 2D-DFRFT provide additional degrees of freedom which are optimized for finding better

pansharpening results. Simulation results of the proposed technique carried out in MATLAB

are presented for IKONOS and GeoEye-1 satellite images and compared with existing fusion

methods in terms of both visual perception and objective metrics such as Q-index (Q), spec-

tral angle mapper (SAM), relative dimensionless global error (ERGAS) and quality with-no

reference (QNR).

It is observed that the proposed pansharpening scheme provides improved spectral and spatial

quality as compared to the existing schemes. The effects of aliasing and mis-registration errors

on the proposed methods are also investigated and compared to existing pansharpening meth-

ods. It is seen that the proposed methods are robust against aliasing and mis-registration errors.

In the proposed image fusion scheme, input source images are transformed using 2D-DFRFT

and then subtracted from the respective source images to obtain the detail images. The detail

images are further used to generate the fused image using appropriate fusion rule. An addi-

tional degree of freedom in terms of its angle parameters associated with the 2D-DFRFT is

exploited for obtaining better results in the proposed fusion scheme. Performance evaluation of

fused images is done by computing fusion quality metrics and the fusion results are compared

to other existing fusion schemes. It is seen that performance of the proposed scheme is better

in terms of the fusion quality metrics as compared to the existing fusion schemes.
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In Chapter 5, two novel image fusion/pansharpening approaches based on graph signal pro-

cessing GSP/spectral graph wavelet filterbank (SGWF) are proposed. In the proposed pansharp-

ening method, the PAN image is decomposed by the multistageM -channel SGWF, and then the

weighted combination of lowpass component signals in the multistage SGWF decomposition

are used to generate the pansharpened image using appropriate pansharpening rule. Simula-

tion results of the proposed technique using different wavelets such as spline wavelet (SW),

mexican-hat wavelet (MHW), meyer wavelet (MW) and simple tight frame wavelet (SPW) for

GeoEye-1 satellite images are also presented and compared with existing pansharpening meth-

ods in terms of both visual perception and objective metrics such as Q-index (Q), spectral angle

mapper (SAM), relative dimensionless global error (ERGAS) and quality with-no reference

(QNR).

It is observed that the proposed pansharpening scheme provides better pansharpening results

using MHW filterbank as compared with some of the existing schemes. In the proposed im-

age fusion scheme, input source images are decomposed by the multistage M -channel SGWF

and the weighted combination of lowpass component signals in the multistage SGWF decom-

position are added to the respective source images to obtained the detail images. The detail

images are further used to generate the fused image using appropriate fusion rule. Simulation

results of the proposed technique are obtained using mexican-hat wavelet (MHW) filterbank

and compared with existing fusion methods. Performance evaluation of fused images is done

by computing fusion quality metrics and the fusion results are compared with other existing

fusion schemes. It is seen that the performance of proposed scheme is better in terms of the

fusion quality metrics as compared to the existing fusion schemes.

Chapter 6 concludes all the proposed image fusion/pansharpening schemes. Simulation results

of the proposed technique based on SGWF provide better results as compared to the HVD and

2D-DFRFT based proposed techniques in terms of qualitative and quantitative analysis.
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Literature Review

This chapter represents past research efforts in the area related to image fusion. An extensive

study of the existing literature which forms the guidelines for the development of new method-

ologies discussed in the image fusion has been performed. We begin with the definition of

the process of fusion and discuss some of the nomenclatures in the field of image fusion. An

overview of various techniques of image fusion is also presented. The purpose of this chap-

ter is to study and document the different methodologies used for image fusion, although not

necessarily for remote sensing applications alone. This chapter also explores the existing per-

formance measures for an assessment of fusion techniques.

During the past century, we have witnessed a rapid growth in the advancement of technology.

The invention of a vast number of sensors has resulted in high volumes of data collection.

These datasets, obtained from multiple sensors provide complementary information about the

scene or objects being imaged. The performance of many intelligent systems and devices has

significantly improved with the availability of the multi-sensor input. However, instead of

processing individual data from all the sensors, it would be desirable to extract and merge the

useful information from the set of sensors and process this particular information to achieve
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higher throughput [52]. The primary objective of fusing images is to obtain an image that is

more useful and more significant to the particular application [53].

2.1 Classification of Image Fusion and Pansharpening Tech-

niques with Explanation

The classification of techniques helps in understanding the concepts related to fusion in a better

manner. We discuss some of the fusion categories here.

Based on Processing Level

An image assists in providing a decision, such as diagnosis of a disease, presence of security

threatening objects, or existence of water bodies within some areas. Accordingly, images can

be fused at pixel-level, feature-level, or decision-level. We can categorize fusion techniques

concerning the level of processing at which the actual fusion takes place. This categorization

is particularly important because it decides the level of image representation where the actual

fusion takes place.

General data can be analyzed and fused at the signal level which is the most fundamental level

of understanding and processing the data. The pixel level fusion regarded as the counterpart of

signal level operations in the field of data fusion is the lowest level of image fusion. Images

from multiple sensors capture their observations in the form of pixels which are then combined

to produce a single output image. Thus, the pixel-level fusion algorithms operate directly on

input images.

Feature level fusion requires feature extraction from input images with the use of advanced

image processing operations such as region characterization, segmentation, and morphological
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operations to locate the features of interest. The choice of features plays an important role

here, which is primarily decided by the end application. The regions or features are represented

using one or more sets of descriptors. Multiple sets of such descriptors provide complementary

information, which is then combined to form a composite set of features. These techniques are

less sensitive to pixel-level noise [54].

For a decision level fusion, the input images and/or feature vectors are subjected to a classi-

fication system which assigns each detected object to a particular class (known as the deci-

sion). The classifier systems associate objects to the particular class from a set of pre-defined

classes. Decision fusion combines the available information for maximizing the probability of

correct classification of the objects in the scene which is achieved using statistical tools such as

Bayesian inference.

Based on Domain

This type of categorization is of two types: Spatial domain and Transform domain. A fusion

algorithm can operate over the spatial data, fusion rules are directly applied into the images on

the basis of pixel level and feature level. In the spatial domain methods, gradient basis [55],

principal component analysis [56], singular value decomposition [57], empirical mode decom-

position [58], etc. are used in the image fusion. Alternatively, using different transforms such

as Fourier transform, one may transform the set of input images into frequency domain. The

fusion algorithm processes the frequency domain data to produce the result of fusion in the fre-

quency domain. This result requires a reverse transformation such as inverse Fourier transform

to obtain the fused image. In the transform domain methods, discrete cosine transform [59],

wavelet transform [60], curvelet transform [15], etc. are used for image fusion.
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Based on Nature of Images

This categorization is somewhat different from the previous ones. Here one is more concerned

about the type of the data rather than type or technique of fusion. The sources of images can

be very different. Most of the real world scenes encompass a very high dynamic range (HDR).

Most of the digital cameras are not able to capture these scenes due to their limited dynamic

range. However, one can capture multiple images of the location with varying exposure set-

tings of the camera. This set of low dynamic range (LDR) images when appropriately fused,

generates a single image that provides an HDR-like appearance [61, 62]. Such type of fusion

is often regarded as multi-exposure image fusion. Similarly, the finite size of the aperture of

the camera leads to defocused objects in the image. Due to the physics behind the camera lens,

only the regions at a certain distance from the focal plane of the camera can be captured in

focus for a given setting of the camera focus. To obtain a single image where all objects are

in focus, we may capture multiple images by suitably varying the focus of the camera, and

fuse them later. This multi-focus image fusion operates on different principles than those of

multi-exposure images due to the difference in the formation of these images.

In remote sensing, one often comes across multispectral image fusion where typically 4-10

bands of a multispectral image are combined to yield a compact description of the scene. Ad-

vanced hyperspectral imaging sensors capture the scene information in hundreds of bands de-

picting the spectral response of the constituent materials of the scene. Hyperspectral image

fusion refers to the combining of these bands into a single image that retains most of the fea-

tures from input hyperspectral bands. The medical community makes use of images obtained

from different sensors (e.g., Positron emission, X-rays) providing complementary information

about the scene. The fused image which has proved to be quite useful in medical diagnosis

combines and enhances features from the input images. This class of fusion is referred to as

multi-modal image fusion. The medical community has greatly benefited from the feature en-

hancement characteristics of image fusion. Medical diagnosis can be improved by the use of
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complementary information provided by the multimodal images such as computed tomography

(CT), magnetic resonance imaging (MRI), and Positron emission tomography (PET). Fusion

helps in enhancing features which are impossible to detect from a single image, and thus im-

proves the reliability of the decisions based on the composite data [45].

Based on Resolution

Remote sensing images are characterized by four types of resolution: spatial resolution, spectral

resolution, radiometric resolution, and temporal resolution.

• Spatial resolution: In digital image sensors, the analog images produced by the optical

system are spatially sampled by the detector. Spatial resolution is a measure of the op-

tical sensor’s ability to record closely spaced objects such that they are distinguished as

separate objects. If the imaging scenes are oversampled with a spatial frequency higher

than the Nyquist frequency, it results in a high resolution image.

• Spectral resolution: Spectral resolution refers to the frequency or spectral resolving

power of a sensor and is defined as the smallest resolvable wavelength difference by

the sensor. Spectral resolution represents the width of the band within the electromag-

netic spectrum that can be sensed by a sensor. As the bandwidth becomes narrower, the

spectral resolution becomes higher. The spectral resolution plays an important role in

satellite imaging. High spectral resolution images captured by remote sensing camera

provide more detailed information about mineral resources and geographical structures

of the earth or any other planet under observation.

• Radiometric resolution: Pixels carry information of the image intensity in form of binary

digits called ‘bits’. The intensity at any location in a real world scene may vary from zero

to infinity. However in digital image it is not possible to represent this entire range. A

binary image has two levels-black and white, hence requires only one bit for each pixel.
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A gray scale image is usually quantized using 256 grey levels with each level represented

using 8 bits. Similarly, if each color plane of an RGB image requires 8 bits then at least

24 bits are needed for representing each pixel.

• Temporal resolution: The term temporal resolution is related to video signals. A video

of an event is a sequence of images (frames) captured at regular and short time interval

between them. Temporal resolution, also known as frame rate, is the measure of the

capability of displaying smallest movement/ motion of the moving objects in the video.

Thus it refers to the number of frames captured per second. A video captured with low

temporal resolution exhibits flicker or transitions of the moving objects in the scene/event.

With high temporal resolution, the movement of the moving objects appears smooth and

continuous. For a given duration of time, a high temporal resolution video requires more

memory for storage and large bandwidth for transmission. In remote sensing, temporal

resolution refers to the frequency at which a given geographical area is imaged. Higher

temporal resolution enables monitoring the occurrence of rapid changes such as forests,

floods, etc. This also improves the probability of obtaining cloud-free imagery over areas

that experience frequent cloud cover.

Based on Methodology

In the remote sensing based on methodology, image fusion/pansharpening schemes are most

commonly classified into four categories:

• Component substitution (CS) method: The CS approach relies on the substitution of

a component (obtained by a spectral transformation of the input image) of the MS im-

ages by the PAN image. The CS based pansharpening methods based on intensity-hue-

saturation (IHS) transformation, Gram-Schmidt (GS) orthogonalization and principal

component analysis (PCA), Brovey transform (BT), etc. are discussed in [5, 63, 64, 65].
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These approaches usually provide high spatial details in the fused image [66] and they

are, in general, fast and easy to implement. However, these are not able to account for lo-

cal dissimilarities between the PAN and MS images originated by the spectral mismatch

between the PAN and MS channels of the instruments [32, 67].

• Multiresolution analysis (MRA) method: The MRA approach is based on the injec-

tion of the spatial details which are obtained through filtering of the PAN image into

the MS images. These algorithm limits the spectral distortion of the fused image which

can be quantified by the spectral angle between fused and interpolated MS, and belong

to the spectral distortion minimization family [32, 68]. The MRA based pansharpening

schemes using wavelet packet, nonsubsampled shearlet transform have also been pre-

sented in [69, 70].

• Hybrid analysis method: The hybrid pansharpening methods make use of the advan-

tages of both CS and MRA techniques by combining them as discussed in [71], [72],

etc.

• Model based methods: The model based pansharpening methods based on online cou-

pled dictionary learning (OCDL), spatial correlation modeling, MRF model, compressive

sensing-based (CS) technique, etc. are discussed in [73, 74, 75, 76].

The most direct or easy technique of fusion is to sum and average the input images. The

averaging method explicitly assumes an equal amount of information to be present in the input

images. It is computationally most efficient. However, it fails to produce an output of the

desired quality [77]. The infrared (IR) image brings out very different information from the

scene that does not get captured by a standard RGB camera. However, an average-based fusion

would superimpose the features in IR image by the RGB image, and thus, reduce the contrast

and information content. Therefore, an averaging-based fusion works well only when both

the inputs are similar, and lacks contrast when the inputs are different. This information from

multiple images causes a destructive interference which reduces the contrast. Therefore, despite
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its simplicity and computational efficiency, this method is rarely used in practice. Fusion would

be effective when the important spatial and radiometric features from the constituent images get

retained, or are appropriately enhanced during the process of fusion. Thus, one needs to extract

the spatial features from images as the first step.

To capture the unique features in an input image, Toet proposed the use of a Laplacian pyra-

mid [78, 79]. The authors have proposed a hierarchical technique which decomposes each

of the input images into a set of primitives defined by perceptually relevant patterns. This

technique generates a pyramidal decomposition of each of the input images through filtering

and subsampling. The successive images in the pyramid are the reduced versions of the input

image, and hence this representation is also referred to as the multi-resolution representation.

The successive levels of the image pyramid represent image details and features with coarser

approximations. The pyramidal representations of all the input images are then appropriately

combined at every level using a pre-defined fusion rule. The fusion rule might be the same or

different at every level, however, typically, one comes across two sets of rules. A fusion rule

defined for all but the highest level of the pyramid is the same, and a different fusion rule is

established for the final or the first level image in the corresponding image pyramid. However,

it is possible to have a combination of more fusion rules. The combining process generates an

image pyramid where each level represents the fusion of images at that particular level. The

final resultant image can then be reconstructed by applying the reverse transformation on the

fused image pyramid.

Another popular pyramidal structure is obtained by convolving the current approximation of

the image with the Gaussian filter. The pyramid so obtained is called a Gaussian pyramid. In

[66], the filtering and sampling have been combined into a single operation resulting in the

Gaussian weighted average. However, in [78], it has been argued that the linear filters alter the

intensities of the pixels near the object boundary, and therefore, their applicability is limited

when the precise measurements of the shape and size of the objects are needed. Their scheme

employs a morphological multi-resolution decomposition of images using size-selective filters.
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It is claimed that morphological filters are more suitable for shape extraction of the objects

in the fused image due to their property of removing the image details without adding any

gray level bias. In [77], proposed aageneralized multisensor fusioniusing the gradient pyramid

where an image pyramid has been created by the pyramid transform. Using the basis functions

of gradient-of-Gaussian pattern, the pyramid transform is applied to the input images. Two

fusion rules are used to combine the information of the multiple decompositions at the locations

where the source images are similar; the fusion is achieved by averaging two images, while if

the images are significantly different, the fusion rule selects the feature pattern with maximum

saliency and copies it for the fused image.

In [80], the use of a steerable pyramid for fusion of remote sensing images has been demon-

strated. The steerableapyramid is a multi-scale and multi-orientationadecomposition with trans-

lation and rotation invariant sub-bands [81]. The low frequency orathe coarsest approximation

is fusedabased on the magnitudeaof the images at theacorresponding locations. A region-based

technique in a multi-resolution framework as an extension of the pixel-based technique [54].

This work provides multi-resolution fusion techniques. The input images are first segmented

which is a preparatory step toward the actual fusion. The other quantity is the match measure

which quantifies the similarity between the corresponding coefficients of the transformed im-

ages. This structure encompasses most of the pixel-based and region-based multi-resolution

techniques. For an efficient fusion, the salient features from multi-scale image decomposition

are extracted. The wavelet transform has proved to be a highly popular tool for fusion. A

discrete wavelet transform (DWT) based fusion technique offers distinct advantages such as

orthogonality, compactness, and directional information [21]. This technique is superior to the

Laplacian pyramid-based techniques. It does not produce any visible artifacts in the fused im-

age. Similar to the multi-resolution fusion approaches, the wavelet-based fusion techniques

first decompose the set of input images into different multi-resolution coefficients that preserve

image information. These coefficients are appropriately combined at each level to obtain new

coefficients of the resultant image. This image is then recovered via an inverse discrete wavelet
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transform (IDWT) to generate the final fused image. In [78, 79], the fusion rule has been de-

fined to select the maximum of the corresponding coefficients of the ratio pyramid of input

images, while the fusion rule that selects the maximum across discrete wavelet coefficients of

the input images has been proposed in [21].

Wavelets have probably been the most successful family of fusion techniques. Wavelet-based

fusion techniques have been implemented for various other application areas. In [82], several

applications of DWT-based fusion for forensic science have been demonstrated. Another appli-

cation of wavelet decomposition for fusion of multi-focus images using the log-Gabor wavelets

has been described by Redondo et al. [83]. The wavelet-based fusion techniques have also

proved to be useful for fusion of medical images. Performance of various multi-resolution

techniques for fusion of retinal images has been analyzed in [25, 26]. In [27], wavelets have

been shown to be useful for fusion of CT and MRI images. The à trous wavelet transform

(ATWT) is a non-orthogonal undecimated multiresolution decomposition. It is used by several

pansharpening techniques [84] to avoid injection of undesired spatial details in the pansharp-

ened image by context driven thresholding of correlation coefficients between the images to

be fused in the wavelet domain [84]. The undecimated wavelet decompositions (UDWT) and

Laplacian pyramids have proven to be effective is implementing fusion at different resolutions

[71, 84]. Wavelet decomposition is a widespread method used for image fusion [21]. Wavelet

decomposition uses basis functions or different filters that are fixed and create influence in

the fused image. In [21], the wavelet transforms experience problems when analyzing high

frequency content, thus tending to lose spatial information.

Another technique, empirical mode decomposition (EMD) proposed by Huang et al. [85], adap-

tively decomposes a signal into the simplest intrinsic oscillatory components. In [86], the EMD

based image fusion method has been shown to give excellent performance as compared to the

wavelet and PCA based approaches, particularly in retaining edge-based information from the

different image modalities. The empirical mode decomposition (EMD) is however incapable

of separating frequencies components which are closely spaced or weak at high frequencies.
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Recently a fast Fourier transform (FFT) based pansharpening scheme was proposed in [87].

This method is based on IHS transform with FFT filtering of both the PAN image and intensity

image component of the original MS images. It may be mentioned here that due to finite spatial

size of MS and PAN images, these images will not be band limited in FFT domain and therefore

FFT based pansharpening may not be suitable in such cases. The compressive sensing-based

fusion technique can greatly reduce the processing time and guarantee the quality of the fused

image using fewer non-zero coefficients. However, directly fusing sensing measurements may

bring greater uncertain results with high reconstruction error. Moreover, using single fusion

rule may result in the problems of blocking artifacts and poor fidelity.

In [76], a novel image fusion approach based on compressive sensing is introduced to solve

these problems. In this fusion framework, in the first step, the multi-scale transform is per-

formed on each of the preregistered source images to obtain their low-pass and high-pass coef-

ficients. In the second step, the low-pass bands are merged with a sparse representation based

fusion method while the high-pass bands are fused using the absolute values of coefficients

as activity level measurement. Finally, the fused image is obtained by performing the inverse

multi-scale transform on the merged coefficients. This method is superior to the individual

multi-scale transform or sparse representation based methods.

In [88], a remote sensing image fusion method based on the ripplet transform and the com-

pressed sensing theory to minimize the spectral distortion in the pansharpened MS bands with

respect to the original ones is proposed. Authors extracted the spatial details from the PAN

image by means of ripplets and then injected them into MS bands by the proposed injection

model named compressed sensing based injection. Authors in [89] designed an optimal filter

that is able to extract relevant and non-redundant information from the PAN image. Compared

with other kernels such as wavelets, the optimal filter coefficients extracted from statistical

properties of images are more consistent with type and texture of remotely sensed images.

An online coupled dictionary learning (OCDL) approach for image fusion has been introduced

in [73]. The OCDL makes full use of the available lower spatial resolution MS image and the
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high spatial resolution PAN image to decrease the spectral distortion and preserve the spatial

information of the MS image. A superposition strategy is adopted in the OCDL method to

produce two intermediate images for the coupled dictionary construction for each band. An

iterative update method is utilized to update the coupled dictionaries, which can be referred to

as an online dictionary learning process.

In remote sensing images, demands for spectral and spatial resolution vary from region to re-

gion. Regions with abundant texture and well-defined boundaries (like residential areas and

roads) need more spatial details to provide better descriptions of various ground objects while

regions such as farmland and mountains are mainly discriminated by spectral characteristic.

However, most existing fusion algorithms for remote sensing images execute a unified process-

ing in the whole image, leaving those important needs out of consideration. The employment

of diverse fusion strategy for regions with different needs can provide an effective solution to

this problem. In [90], proposes a new saliency-driven fusion method based on complex wavelet

transform. Firstly, an adaptive saliency detection method based on clustering and spectral dis-

similarity to generate saliency factor for indicating diverse needs of the two kinds of resolu-

tions in regions. Secondly, they combine nonlinear intensity–hue–saturation transform with

multiresolution analysis based on dual-tree complex wavelet transform in order to complement

each other’s advantages. Finally, saliency factor is employed to control the detail injection in

the fusion, helping to satisfy different needs of different regions.

In [91], the fuzzy c-means algorithm based pansharpening scheme is proposed to reduce color

distortion. This scheme consider mixed pixels not belonging to any distinct class. Here mul-

tispectral images are clustered into several classes using spectral and spatial features, and then

linear regression with non-negative coefficients is used to calculate summation weights for each

class of pixels.

In [92] proposes a fusion scheme to combine Landsat and MODIS remote sensing data at the

decision level. Multiresolution segmentations on the two kinds of remote sensing data are

performed to identify the landscape objects and are used as fusion units in subsequent steps.
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Then, fuzzy classifications are applied to each of the two different resolution data sets and

the classification accuracies are evaluated. According to the performance of two data sets in

classification evaluation, a simple weight assignment technique based on the weighted sum

of the membership of imaged objects is implemented in the final classification decision. The

weighting factors are calculated based on a confusion matrix and the heterogeneity of detected

land cover. The algorithm is capable of integrating the time-series spectral information of

MODIS data with spatial contexts extracted from Landsat data, thus improving the land-cover

classification accuracy.

Deep convolutional neural networks (DCNNs) have recently emerged as the highest perform-

ing approach for a number of image classification applications, including automated land cover

classification of high-resolution remote-sensing imagery. In [93] investigate a variety of fusion

techniques to blend multiple DCNN land cover classifiers into a single aggregate classifier.

While feature-level fusion is widely used with deep neural networks. Here train three different

DCNNs: CaffeNet, GoogLeNet, and ResNet50 dataset is used. The effectiveness of various

information fusion methods, including voting, weighted averages, and fuzzy integrals, is eval-

uated.

To address the problem of change detection for remote sensing images from the perspective of

visual saliency computation. In [94] method incorporates low-rank-based saliency computation

and deep feature representation. Firstly, multilevel convolutional neural network (CNN) fea-

tures are extracted for superpixels generated using saliency map indicating change (SLIC), in

which a fixed-size CNN feature can be formed to represent each superpixel. Secondly, low-rank

decomposition is applied to the change features of the two input images to generate saliency

maps that indicate change probabilities of each pixel. Finally, binarized change map can be

obtained with a simple threshold. To deal with scale variations, a multiscale fusion strategy is

employed to produce more reliable detection results.

In [95] based on the deep convolutional neural network, a remote sensing image fusion method

that can adequately extract spectral and spatial features from source images is proposed. The
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major innovation of this study is that the fusion method contains a two branches network with

the deeper structure which can capture salient features of the MS and PAN images separately.

This method mainly consists of two procedures. First, spatial and spectral features are respec-

tively extracted from the MS and PAN images by convolutional layers with different depth.

Second, the feature fusion procedure utilizes the extracted features from the former step to

yield fused images.

In the proposed method [96], the spatial details are first extracted from the multispectral (MS)

and panchromatic (PAN) images through à trous wavelet transform and multiscale guided filter.

Different from the traditional detail injection scheme, the extracted details are then sparsely

represented to produce the primary joint details by dictionary learning from the sub-images

themselves. To obtain the refined joint details information, subsequently design an adaptive

weight factor considering the correlation and difference between the previous joint details and

PAN image details. Therefore, the refined joint details are injected into the MS image using

modulation coefficient to achieve the fused image.

Recently, approaches based on fully convolutional networks (FCN) [97] have achieved state-

of-the-art performance in the semantic segmentation of very high resolution (VHR) remotely

sensed images. One central issue in this method is the loss of detailed information due to

downsampling operations in FCN. To solve this problem, introduce the maximum fusion strat-

egy that effectively combines semantic information from deep layers and detailed information

from shallow layers. Furthermore, this letter develops a powerful backend to enhance the result

of FCN by leveraging the digital surface model, which provides height information for VHR

images.

In the field of pan-sharpening, only limited studies have been undertaken in recent years to

introduce deep learning models. Examples are the sparse deep neural network [98] and the

pan-sharpening neural network (PNN) [99] that have achieved impressive performance gains.

Along with being developing of mathematical tools and fusion rules, image fusion methods are

continually being renewed.
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2.2 Summary of the Survey

Fusion scheme Advantage Disadvantage

Averaging techniques

[77, 171, 172]

Computationally most effi-

cient, easy to implement, easy

to understand

It reduces the resultant image

quality consequently by intro-

ducing noise into fused image.

It leads to unwanted side effects

like reduced contrast.

Maximum Pixel Value

Technique [171, 172],

Max- Min Technique

[170], Simple Block

Replace Algorithm

[170]

Easy to implement These methods produce blurred

output which in turn affects the

contrast of the image. Therefore

these techniques are not suitable

for real time applications.

Weighted averaging

technique [169]

Improves the detection relia-

bility

It can increase the signal to noise

ratio (SNR) of the fused image

Principal component

analysis algorithm

[56, 167, 168]

Very simple, computation-

ally efficient, faster process-

ing time and high spatial

quality

Results in spectral distortion
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Fusion scheme Advantage Disadvantage

IHS based scheme

[172]

Very simple, computation-

ally efficient, faster process-

ing and high sharpening abil-

ity

It only processes three multi-

spectral bands and results in

spectral distortion

Brovey transform [171] Very simple, computationally

efficient and faster process-

ing time. It produces RGB

images with higher degree of

contrast

Spectral distortion in the fused

image

Guided filtering [162] Very simple, computationally

efficient, suitable for real ap-

plications

Spectral distortion in the fused

image

Discrete cosine trans-

form (DCT) method

[166]

It reduces the complexity and

decomposed images into se-

ries of waveform. This algo-

rithm can be used for real ap-

plications

Fused image is not of good qual-

ity if block size is less than 8x8

or equivalent to the image size it-

self

Discrete Wavelet

Transform (DWT)

with Haar based fusion

[163, 164, 165]

It provides a good quality

fused image and better Signal

to Noise Ratio. It also mini-

mizes spectral distortion

The fused image has less spatial

resolution.
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Fusion scheme Advantage Disadvantage

Stationary Wavelet

Transform (SWT)

[159, 161]

This method provides good

result at level two of decom-

position

It is time-consuming

Fusion using Lapla-

cian/ Gausian Pyramid

[78, 79, 157, 158]

Pyramid methods provide

good visual quality of

the image for multi-focus

images.

The number of decomposition

levels affects image fusion re-

sult.

Discrete wavelet de-

composition based

image fusion [21]

Provides high spatial and

spectral quality at low fre-

quency

Basis functions or different fil-

ters that are fixed and create in-

fluence in the fused image, expe-

rience problems when analyzing

high frequency content, lose spa-

tial information

Empirical mode de-

composition (EMD)

based fusion scheme

[86]

Gives excellent performance

particularly in retaining edge-

based information from the

different image modalities

Loses spatial information at high

frequencies

Fast Fourier transform

(FFT) based scheme

[87]

Reduces noise in the fused

images

Multispectral images will not

be band limited in FFT domain

and therefore FFT based fusion

scheme provides spectral distor-

tion
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Fusion scheme Advantage Disadvantage

Compressive sensing

based fusion technique

[76, 88]

Minimize spectral distortion

in the fused image, greatly re-

duce the processing time

Problems of blocking artifacts

and poor fidelity

Optimal filter based fu-

sion [89]

High spatial resolution Spectral distortion in fused im-

age

An online coupled

dictionary learning

(OCDL) approach for

image fusion [73]

Decrease spectral distortion

and preserve the spatial infor-

mation of the MS image

High execution time, require

large dataset

Fuzzy c-means algo-

rithm based pansharp-

ening scheme [91]

Reduce color distortion in the

image

Requires more computation time

The weight assignment

using fuzzy algo-

rithm technique based

scheme [92]

Improve the classification ac-

curacy

Requires more computation time

The deep convolutional

neural networks (DC-

NNs) based scheme

[93, 95]

High spatial and spectral de-

tail in fused image

Large training dataset required,

takes more computation time
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Fusion scheme Advantage Disadvantage

Multilevel convolu-

tional neural network

(CNN) based method

[94]

Incorporates low computa-

tion, reliable results

The dictionary learning

based scheme [96]

High spatial detail image Spectral distortion in the fused

image

Fully convolutional

networks (FCN) [97]

based scheme

Very high resolution (VHR)

image

Loss of detailed information

Neural network based

fusion scheme [98, 99]

High spatial and spectral res-

olution fused image

Requires iterative computing,

which is time-consuming and

may cause incidental errors, es-

pecially for the images with a

large size
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Hilbert Vibration Decomposition Based

Image Fusion/Pansharpening Schemes

In this chapter, a recently developed signal decomposition technique known as the Hilbert vi-

bration decomposition (HVD) based image fusion/pansharpening schemes is presented. The

objective of these research work is to develop efficient image fusion/pansharpening techniques

which have high spatial and spectral quality of the fused image. For attaining these goals, ini-

tially, the HVD technique is used for developing three image fusion/pansharpening algorithms

in which two pansharpening and one image fusion techniques are presented. The structure of

this chapter is as follows: in section 3.1, introduction and a brief literature review is presented;

in Section 3.2, details of the HVD method is explained; Section 3.3 provides details of the pro-

posed pansharpening scheme-I and simulation results which provides a comparative analysis

of the proposed scheme with existing schemes; Section 3.4 describes aspects of the proposed

pansharpening scheme-II with simulation results; Section 3.5 describes the proposed image fu-

sion method with simulation results which gives a comparative analysis of the proposed scheme

with existing schemes. Conclusions are drawn in Section 3.6.
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3.1 Introduction

Remote sensing satellites capture many types of images using different types of cameras/sen-

sors such as panchromatic (PAN), hyperspectral (HS) and multispectral (MS) images [100]. It

is a well known fact that PAN images have high spatial and low spectral resolution while MS

(few bands) and HS (more than one hundreds bands) images have low spatial and high spectral

resolution [31]. In addition, the HS images provide more accurate spectral information than MS

images which is necessary for applications such as change detection [101, 102], object recog-

nition [103, 104], visual image analysis [105] and scene interpretation [106], etc. High spatial

resolution images give information of the shape and structure of the objects and high spectral

resolution provides information about the details of land coverage. Images having both high

spatial and spectral resolution are generally not provided by the satellite imaging systems. Due

to this limitation, many of the pansharpening techniques have been investigated and presented

in the literature [5, 6, 107]. With the increased availability of hyperspectral systems, these

methods are now extended to the fusion of hyperspectral and panchromatic images [32, 100].

A fast Fourier transform (FFT) based pansharpening scheme is proposed in [87]. This method is

based on IHS transform with FFT filtering of both the PAN image and intensity image compo-

nent of the original MS images. However, the Fourier transform is suitable for stationary signal

only [108]. The bi-dimensional empiricalamodeadecomposition (BEMD) basedaimage fusion

method is presented in [109] and it has better performanceaasacomparedato the waveletaand

PCAabasedaapproaches, particularlyain retainingaedge-basedainformationafrom theadifferent

imageamodalities. The empirical mode decomposition (EMD) is however incapable of sepa-

rating frequencies components which are closely spaced or weak at high frequencies.
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3.2 Overview of HVD

The Fourier Transform (FT) converts a time domain signal into its frequency domain repre-

sentation. However, this method is applicable for stationary signals [108]. To overcome this

drawback, short time Fourier transform (STFT) is proposed which maps a signal into a two-

dimensional function of time and frequency [110]. The STFT extracts time and frequency

information of a signal, but the disadvantage is that the size of the window and hence, the time

and frequency resolution is fixed for all frequencies [111]. The wavelet analysis represents a

windowing technique with variable time frequency resolution of the signals but it varies with

the wavelet function chosen [111]. The EMD, which has been recently introduced, is an adap-

tive method, which provides a powerful tool to extract intrinsic mode functions (IMF) from a

wideband signal [85]. The EMD decomposes a wideband signal into IMFs in the decreasing

order of frequency, i.e., from high frequency to low frequency, but it does not take into ac-

count the energy of IMFs into account [112]. These characteristics bring on the incapability of

separating components which include closely spaced frequencies or weak high frequencies.

The HVD decomposes a non-stationary wideband signal into many signal componentsawith

slow varying instantaneous amplitudesaandafrequencies in the decreasing order of energy [38].

The HVD has much higher frequencyaresolutionathanatheaEMDabased approaches for signal

decomposition [113].

The HVD decomposition is based on the facts that, (a) the underlyingasignal isaformed byaa

superpositionaof symmetricaquasi-harmonicafunctions; (b) the envelopesaof each oscillating

component differ from each other; (c) theatotal length of each componentaspans severalaperiods

of the corresponding slowestacomponents [38]. The HVD can be described as an iterative

method as shown in Fig.3.1. The first step in the HVD is estimation of instantaneous frequency

(IF) ω(t) of the signal.
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This is done using the analytical signal representation of a given real signal [114]. The analyti-

cal signal Z(t) of a real signal H(t) is a complex signal as given by [114]

Z(t) = H(t) +HH(t) = A(t)eiφ(t), (3.1)

where the real part corresponds to the original signal H(t) and the imaginary part HH(t) is the

Hilbert Transform of H(t). From (3.1), the instantaneous amplitude A(t) and instantaneous

phase φ(t) are obtained as

A(t) =
√
H(t)2 +HH(t)2, (3.2)

φ(t) = tan−1
(HH(t)

H(t)

)
. (3.3)

The instantaneous frequency ω(t) is the derivative of φ(t) in (3.3) expressed as

ω(t) =
d

dt
φ(t) =

H(t)ḢH(t)− Ḣ(t)HH(t)

H2(t)−H2
H(t)

. (3.4)

The signal ω(t) is lowpass filtered to obtain the signal ω1(t). Using ω1(t), the instantaneous

IF Estimation

Largest

Component

Synchronous

Demodulation

IF low-pass 

filtering
H(t)

(t)

A1(t)

1(t)

H1(t)

H(t)

H(t)-H1(t)

Initial 

signal

Summer

1(t)

_

FIGURE 3.1: Block diagram of the HVD method
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amplitude (IA) of the highest component in the decomposition, i.e., A1(t) is determined using

synchronous demodulation procedure [114]. Finally the highest energy component is generated

with A1(t) and ω1(t), and a new signal is obtained by subtracting the highest component from

the original signal and the process is repeated iteratively. After jth iteration, the decomposition

of the signal h (t) using HVD can be expressed as

h (t) =
∑
j

Aj (t) cos

(∫
ωj (t) dt

)
, (3.5)

whereAj (t) isainstantaneousaamplitude (IA) andaωj(t)ais theainstantaneousafrequency (IF)aof

jacomponents.

3.3 Proposed Pansharpening Scheme-I

The basic purpose of the image fusion or pansharpening methods are to improve the spatial

quality and reduce the spectral distortion in the fused image. Some of the pansharpening

schemes achieve this objective by performing filtering in time domain or joint time-frequency

domains [50, 51]. In this chapter, HVD based pansharpening approach is proposed to improve

the spatial and spectral quality of the fused image which is closer to the filtering/MRA based

approach used in many of the existing pansharpening schemes given in [87], [115], [50]. The

operation of obtaining instantaneous amplitude components of the signal through HVD can be

considered as a filtering operation on the input signal.

In fact, the instantaneous amplitude of the first signal in the decomposition obtained through

HVD is similar in shape to the lowpass filtered version of a signal. To explain the point fur-

ther, the rectangular pulse and first instantaneous amplitude component of its HVD are shown

in Fig.3.2 (a) and 3.2(b) respectively. The output of the Butterworth lowpass filter with rect-

angular pulse as input is shown in Fig.3.2(c). It is clear from these figures that the shape of

the signals in Fig.3.2(b) and 3.2(c) are very close to each other. This lowpass signal obtained
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FIGURE 3.2: (a) Rectangular pulse, (b) Hilbert vibration decomposition of rectangular pulse
and (c) Low pass filtering of rectangular pulse,

through the HVD happens to be the highest energy component of the original signal and it is

instantaneous frequency based lowpass filtering of the signal. On the other hand, output signal

obtained through the conventional lowpass filtering does not take the energy of the input/out-

put signal into account and is based on frequency content of the input signal only. This signal

energy dependent and instantaneous based filtering are the main advantages of the HVD over

conventional lowpass filtering based pansharpening approaches.

The filtered PAN signal (first instantaneous amplitude component) can be used for injecting

additional spatial information from PAN image into the MS/HS images for pansharpening pur-

pose similar to other MRA based approaches. It may be observed that in the MRA based

pansharpening approaches one has to take decisions regarding the choice of the wavelet func-

tion to be used and the type of filters (such as FIR/IIR) whereas in the proposed technique no

such decisions are to be taken.

The block diagram of proposed scheme is shown in Fig.3.3. First MS/HS input image is co-

registered to the PAN image and re-sampled to the pixel spacing of the PAN image by using

interpolation [116].
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FIGURE 3.3: Block diagram of the proposed pansharpening scheme-I

Using given MS/HS images, the intensity (I) image is obtained by

I =
N∑
r=1

1

N
M̃Sr, (3.6)

where M̃Sr are the rth MS images interpolated at the scale of PAN image and N denotes the

total number of band images (the value of N is usually four to combine red, blue, green and

infrared component images). The high spatial resolution PAN image is histogram matched

with the I component of MS/HS image obtained by (3.6) to eliminate the effect of atmosphere,

illumination, or sensor differences and the resulting histogram matched image P is obtained.

Histogram matched image P is then converted into 1D vectors HP by column ordering. The
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vector HP is decomposed using discretized version of (3.5) as given by

HP (i) =
∑
j

APj
(i) cos(

∑
j

ωPj
(i)), (3.7)

where APj
is the instantaneous amplitude and ωPj

is the instantaneous frequency (IF) of jth

component.

Using (3.7), the first energy component of HP (i) vector is obtained as given below

HP1(i) = AP1 (i) cos
(∑

ωP1 (i)
)
. (3.8)

Now convert the amplitude vector AP1 appearing in (3.8) into images Phvd1 , where Phvd1 is

the first image amplitude component of P image. Injection coefficients Gr are obtained from

the regression coefficients between each of the MS bands and image Phvd1 . The injection

coefficients Gr are calculated as [66]

Gr =
cov(M̃Sr, Phvd1)

var(Phvd1)
, r = 1, 2, ..., N, (3.9)

where var(Phvd1) is the variance of Phvd1 image and cov(M̃Sr, Phvd1) indicates the covariance

between two images M̃Sr and Phvd1 .

Using (3.9), we propose the HVD based pansharpening model as follows

M̂Sr = M̃Sr + α Gr(P − Phvd1), r = 1, 2, ..., N, (3.10)

where M̂Sr is the pansharpenedaimageawithahighaspatial andaspectral details and α is the tun-

ning factor. Thus the relevant and additional spatial details available in the PAN image P are

injected into the MS/HS image controlled by the tunning factor α giving us improved spatial
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and spectral details as compared to the existing fusion techniques. The tunning factor α appear-

ing in (3.10) can be optimized by single objective optimization technique using fitness function

involving the quality metrics such as relative dimensionless global error in synthesis (ERGAS),

spectral angle mapper (SAM) [31], [34], etc. In this scheme, we have used particle swarm op-

timization (PSO) technique and ERGAS as quality metric in the fitness function. The ERGAS

is a measure of spatial distortion between the MS/HS and pansharpened images. Therefore the

objective of optimization is to minimize the ERGAS metric to obtain the pansharpened image

with minimum spatial distortion.

The steps of the proposed algorithm are summarized below.

Algorithm 1 HVD based pansharpening algorithm-I
1: Obtain up-sampled MS/HS images of the size of PAN image;
2: Compute the intensity image (I) using up-sampled MS/HS images by averaging;
3: Obtain histogram matched image (P ) using input PAN and intensity image;
4: Compute the image Phvd1 using HVD of P image;
5: Calculate the regression coefficients Gr for use in pansharpening model;
6: Obtained the high spatial and spectral resolution MS/HS image using pansharpening model
M̂Sr = M̃Sr + α Gr(P − Phvd1), r = 1, 2, ..., N, where α is the tunning factor.

7: Optimize α using PSO for obtaining the minimum spatial distortion using objective func-
tion ERGAS.

3.3.1 Simulation Results

The simulations of the proposed pansharpening scheme for the multispectral and hyperspectral

images are carried out in MATLAB and the results are given below:

Multispectral Pansharpening Results

To test the proposed HVD based pansharpening method, datasets collected by the Pleiades,

IKONOS and GeoEye-1 satellites are used. The site locations selected for Pleiades, IKONOS,
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.4: PAN and EXP images for Pleiades, IKONOS and GeoEye-1 satellite datasets are
(a) and (b), (c) and (d), (e) and (f) respectively.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.5: Pansharpened images using different pansharpening methods for Pleiades satel-
lite dataset are (a) Proposed HVD F1 (α = 0.6628), (b) OMF, (c) AIHS, (d) Indusion, (e)

ATWTM2 and (f) MTF-GLP methods.
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.6: Pansharpened images using different pansharpening methods for IKONOS satel-
lite dataset are (a) Proposed HVD F1 (α = 0.4972), (b) OMF, (c) AIHS, (d) Indusion, (e)

ATWTM2 and (f) MTF-GLP methods.

GeoEye-1 satellite are Toulouse, France (2006) [32, 117], China-Sichuan (May, 2008) and

Hobart, Tasmania, Australia (Feb, 2009) respectively. The spatial resolution of MS and PAN

images for IKONOS satellite are 4 m and 1 m. Corresponding values for Pleiades and GeoEye-

1 satellites are 60 cm and 80 cm, and 2 m and 0.5 m respectively. The size of MS images

for IKONOS, Pleiades and GeoEye-1 satellites are 320 × 320, 1024 × 1024 and 320 × 320

respectively.

The tunning factor α in the proposed pansharpening model (3.10) is optimized by single ob-

jective PSO algorithm using fitness function involving quality metric ERGAS. The optimized
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.7: Pansharpened images using different pansharpening methods for GeoEye-1 satel-
lite dataset are (a) Proposed HVD F1 (α = 0.4564), (b) OMF, (c) AIHS, (d) Indusion, (e)

ATWTM2 and (f) MTF-GLP methods.

values of α obtained using PSO algorithm for Pleiades, IKONOS and GeoEye-1 satellite im-

ages are 0.6628, 0.4972 and 0.4564 respectively.

The input reference and the image obtained through the re-sampling of the MS image to the size

of the PAN image using interpolation [116], labeled as EXP image, for Pleiades, IKONOS and

GeoEye-1 satellites dataset are shown in the Fig.3.4(a)(b), 3.4(c)(d) and 3.4(e)(f) respectively.

The pansharpened image obtained using proposed HVD scheme-I is labeled by HVD F1 and

these images obtained for Pleiades, IKONOS and GeoEye-1 satellites data set are shown in

Fig.3.5(a), 3.6(a) and 3.7(a) respectively.
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Simulationsaareaalsoaperformedatoacompareatheaproposedapansharpeningascheme with the ex-

isting pansharpening schemes based on optimal filter (OMF) [89], generalized Laplacian pyra-

mid with modulation transfer function matched filter (GLP-MTF) [115], decimated wavelet

transform using an additive injection model (Indusion) [118], adaptive IHS (AIHS) [5] and a

trous wavelet transform using the model 2 (ATWTM2) [50]. The pansharpened images ob-

tained by these methods are shown in Fig.3.5(b)-3.5(f), Fig.3.6(b)-3.6(f) and Fig.3.7(b)-3.7(f).

Qualitative observation of the pansharpened image shown in Fig.3.5(a) reveals additional spa-

tial information than the pansharpened images obtained by the existing methods. Similarly

spectral quality of the fused image shown in Fig.3.5(a) is better than the simulation results ob-

tained by the other existing methods. Similar remarks hold good for the other set of images

shown in Fig.3.6 and Fig.3.7. The proposed method generated fused images which are better

matched in color information of the input MS images with improved edge information.

TABLE 3.1: The Spectral quality assessment of the pansharpened images for Pleiades data set
(α = 0.6628)

Degraded scale
Q4 SAM ERGAS Time(S)

Ref.val. 1 0 0 0
HVD F1 0.9210 4.7457 4.1150 19.97

OMF 0.8865 5.4812 4.7993 26.71
AIHS 0.8241 5.4395 5.8659 1.22

Indusion 0.8251 5.8322 5.6366 1.06
ATWTM2 0.8300 5.1505 5.4053 10.54
MTF-GLP 0.8786 5.2343 5.1103 6.78

The performance metrics Q-index, SAM, ERGAS and QNR for the images shown in Fig.3.5,

3.6 and 3.7 are computed and results obtained are tabulated in Tables 3.1, 3.2 and 3.3. It is seen

from tabulated results using the proposed and existing techniques that the proposed method

gives improved spatial as well as spectral quality of the MS image. The best values of the

performance measures in tables are highlighted as bold face numerals.
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TABLE 3.2: The Spectral quality assessment of the pansharpened images for IKONOS data set
(α = 0.4972)

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
HVD F1 0.6583 3.0817 2.6049 0.1158 0.1409 0.7597

OMF 0.5479 3.3195 3.0876 0.1548 0.2419 0.6407
AIHS 0.5245 4.4030 3.1710 0.2007 0.2125 0.6295

Indusion 0.5572 3.2295 2.9811 0.1728 0.2177 0.6472
ATWTM2 0.5968 3.2991 2.7752 0.1676 0.1930 0.6718
MTF-GLP 0.6287 3.2477 2.7783 0.2496 0.3606 0.4798

TABLE 3.3: The Spectral quality assessment of the pansharpened images for GeoEye-1 dataset
(α = 0.4564)

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
HVD F1 0.7682 3.8888 2.8608 0.0654 0.0976 0.8434

OMF 0.6656 4.4149 3.4972 0.0412 0.1243 0.8396
AIHS 0.5524 4.7684 3.3077 0.1401 0.1409 0.7388

Indusion 0.6420 4.2838 3.5680 0.0828 0.0963 0.8288
ATWTM2 0.6810 4.6050 3.1848 0.0840 0.1094 0.8157
MTF-GLP 0.7236 4.4309 3.1200 0.1984 0.2281 0.6188

Effect of Aliasing and Misregistration Errors

The effects of aliasing and mis-registration errors in the proposed methodology and existing

pansharpening methods are evaluated for IKONOS satellite dataset given in Fig.3.5(b),(e) and

the results are shown in Fig.3.8 and 3.9. It can be seen from Fig.3.8(a) that Q metric increases

with increasing Nyquist frequency initially but becomes all most constant for higher Nyquist

frequencies beyond 0.3 Hz. Similarly SAM in Fig.3.8(b) and ERGAS in Fig.3.8(c) varies upto

the same Nyquist frequency of about 0.3 Hz but becomes insensitive to higher frequency val-

ues. For misregistration errors, it can be observed from Fig.3.9(a) that the parameter Q attains

almost a constant value after the displacement error beyond 15m. On the other hand for pa-

rameter SAM shown in Fig.3.9(b) and ERGAS in Fig.3.9(c) the values have remained almost
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(a) (b)

(c)

FIGURE 3.8: Quality/distortion indexes for increasing amounts of aliasing, measured by the
amplitude at nyquist frequency of the Gaussian-like low-pass filter simulating the modulation

transfer functions of the multispectral instrument using image Fig.3.6.

constant irrespective of displacement error. Thus it is observed that the proposed method pro-

vides better results and robustness against registration error and aliasing effect. The robustness

of the proposed technique against misregistration and aliasing errors may be attributed to the

higher energy in the first component of the HVD used in the pansharpening technique here.

To compare the HVD block in the proposed pansharpening scheme (shown in Fig.3.3) with

other lowpass filtering techniques such as Gaussian lowpass filter (GLF) and the discrete wavelet

transform (DWT) decomposition based lowpass signal (using Daubechies wavelet function).
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(a) (b)

(c)

FIGURE 3.9: Quality/distortion indexes for increasing amounts of misregistration between MS
and PAN images. Misregistration is measured in meters (32m=2 pels for IKONOS MS data at

degraded spatial scale) using image Fig.3.6.

Simulation results have been performed for GeoEye-1 satellite dataset and obtained the pan-

sharpened images using HVD, GLF and DWT in the proposed method are shown in Fig.3.10(a),

3.10(b) and 3.10(c) respectively. Qualitative observation of the image shown in Fig.3.10(a)

reveals additional spatial information and spectral quality than the images obtained by the

Fig.3.10(b)-3.10(c).

The performance metrics Q-index, SAM, ERGAS and QNR for the images shown in Fig.3.10

are computed, and results obtained are tabulated in Tables 3.4. It is seen that the proposed

method provides better results in terms of all the quality metrics except QNR.
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(a) (b) (c)

FIGURE 3.10: Pansharpened images for GeoEye-1 satellite dataset using (a) Proposed
HVD F1 (α = 0.4564), (b) GLF and (c) DWT.

TABLE 3.4: The Spectral quality assessment of the pansharpened images for GeoEye-1 dataset
(α = 0.4564)

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
HVD F1 0.7682 3.8888 2.8608 0.0654 0.0976 0.8434

GLF 0.7378 3.9789 2.9238 0.0277 0.0425 0.9310
DWT 0.7020 4.1596 3.1382 0.0081 0.0425 0.9497

Hyperspectral Pansharpening Results

To test the proposed HVD based fusion method for HS image, the dataset collected by the

Moffett field, CA, in 1994 by the JPL/NASA airborne visible/infrared imaging spectrometer

(AVIRIS) [119] is used. The size of the reference image and spatial resolution are 185× 185×

176 and 400 to 2500 nm respectively [35]. This image was initially composed of 224 bands

that have been reduced to 176 bands after removing the water vapor absorption bands. This is a

semisynthetic dataset where PAN image has been synthesized by averaging the first fifty bands

of the reference image. The HS images for the pansharpening scheme have been generated by

applying a Gaussian filter (with zero mean and standard deviation σ = 2.1) and downsampling

operation into each band of the reference image [100].
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.11: Pansharpened images using different pansharpening methods for AVIRIS HS
satellite dataset are (a) Reference image, (b) EXP image, (c) Proposed HVD F1 (α = 0.6), (d)

GS, (e) PCA and (f) GFPCA methods.

The optimized values of tunning factor α obtained using PSO algorithm is 0.6. The pansharp-

ened image obtained using the proposed HVD method is labeled by HVD F1 and image ob-

tained through the re-sampling of the HS image to the size of the PAN image using interpolation

[116] is labeled by EXP image. The input reference and EXP images for AVIRIS dataset are

shown in the Fig.3.11(a) and 3.11(b) respectively.

Simulationsaareaalsoaperformed toacompareatheaproposed pansharpeningaschemeawithathe ex-

istingapansharpening schemes based on gram-schmidt transformation (GS) [63], principal com-

ponent analysis (PCA) [64, 120] and guided filter PCA (GFPCA) [121]. Pansharpened images
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for proposed and existing methods are shown in Fig.3.11(c) and Fig.3.11(d)-3.11(f) respec-

tively. It can be observed from the image shown in Fig.3.11(c) that this pansharpened image

provides additional spatial information than the pansharpened images obtained by the existing

methods. Similarly spectral quality of the pansharpened image shown in Fig.3.11(c) is better

than the simulation results obtained using other existing methods.

TABLE 3.5: The Spectral quality assessment of the pansharpened images for AVIRIS HS satel-
lite dataset (α = 0.6)

Degraded scale
SAM ERGAS PSNR

HVD F1 12.1573 8.0314 28.3287
GS 15.6685 10.6276 27.9004

PCA 16.8785 11.4708 27.7743
GFPCA 13.9946 12.0718 23.0541

The original HS images are used as reference for quality assessment. The quality metrics for

evaluating the quality of the HS pansharpened images are SAM, ERGAS and PSNR, which

are measured between reference images and the pansharpened images. The above mentioned

performance metrics for the images shown in Fig.3.11 are computed and the results obtained

are tabulated in Table 3.5. It is seen from tabulated results using the proposed and existing tech-

niques that the proposed method gives improved spatial as well as spectral quality of the HS

images. Theabestavaluesaof theaperformanceameasuresaareahighlightedaas boldaface numer-

als. The proposed method generated pansharpened images which are better matched in spectral

information with input HS images and provide improved spatial information.

3.4 Proposed Pansharpening Scheme-II

The basic objective of the pansharpening methods are to improve the spatial and spectral qual-

ity in the pansharpened image. In this section, HVD based hybrid pansharpening approach

is proposed which is a modified scheme of HVD based pansharpening scheme-I [122]. The
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work presented in the HVD based pansharpening scheme-I is based on multi-resolution anal-

ysis (MRA) approach whereas in the present methodology, it is based on hybrid approach of

pansharpening scheme. The operation of obtaining instantaneous amplitude components of the
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FIGURE 3.12: Block diagram of the proposed pansharpening scheme-II

signal through HVD can be considered as a lowpass filtered signal and has the highest energy

of the original signal [122]. This is the main advantage of the HVD over conventional lowpass

filtering. In the proposed scheme, the HVD filtered PAN and MS images (first instantaneous

amplitude component) are used for injecting additional spatial information into the MS images

for pansharpening purpose similar to the existing scheme [123].

The block diagram of the proposed scheme is shown in Fig.3.12. Here the input MS images

are up-sampled and interpolated to the size of PAN image by using the scheme described in

[116]. Using (3.6), intensity (I) image is obtained by given MS images. The interpolated MS

images M̃Sr are converted into 1D vectors HMSr by column ordering and then vectors HMSr

are decomposed using discretized version of (3.5) as given by

HMSr(i) =
∑
j

AMSjr
(i) cos(

∑
j

ωMSjr
(i)), r = 1, 2, ..., N, (3.11)
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where AMSjr
are the instantaneous amplitudes and ωMSjr

are the instantaneous frequency (IF)

of jth component.

Using (3.11), the first energy component of HMSr(i) vectors are obtained as given below

HMS1r
(i) = AMS1r

(i) cos
(∑

ωMS1r
(i)
)
, r = 1, 2, ..., N. (3.12)

Now the amplitude vectors AMS1r
appearing in (3.12) are converted into images M̃r, where M̃r

images are the first amplitude component of M̃Sr images.

Using given M̃r images, the intensity (Ihvd1) image is obtained by

Ihvd1 =
N∑
r=1

1

N
M̃r, (3.13)

Similarly the HVD is applied on PAN image (P ) using discretized version of (3.5) to obtain

the first image amplitude component Phvd1 of the P image. The injection coefficients Gr are

obtained using (3.9).

Using (3.9), we propose the HVD based pansharpening model as follows

M̂Sr = M̃Sr + α Gr[(P − Phvd1)− β(I − Ihvd1)], r = 1, 2, ..., N, (3.14)

where M̂Sr isathe pansharpened imageawithahighaspatialaand spectral details and α, β are

the tunning factors. Thus the relevant and additional spatial details are injected into the MS

images controlled by the tunning factors α, β giving us improved spatial and spectral details as

compared to the existing pansharpening techniques.
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3.4.1 Simulation Results

The proposed pansharpening scheme tested on GeoEye-1 satellites dataset given in Fig.3.4(e)-

(f) is used and for evaluating the pansharpening results, we follow the Wald’s protocol [31].

The values of the tunning factor α, β in the proposed pansharpening rule (3.14) are 0.51, 0.55.

(a) (b) (c)

(d) (e) (f)

FIGURE 3.13: Pansharpened images obtained using proposed and existing pansharpening
methods for GeoEye-1 satellite dataset are (a) Proposed HVD F2, (b) HVD F1, (c) OMF, (d)

AIHS, (e) Indusion, (f) ATWTM2 methods.

They are obtained by the simulation trails. The input PAN and EXP images for GeoEye-1

satellite dataset are shown in Fig.3.4(e)-(f). The pansharpened image obtained using proposed

scheme-II is labeled by HVD F2.
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Simulationsiareialsoiperformeditoicompareitheiproposedipansharpeningischemeiwith the exist-

ing pansharpening schemes based on Hilbert vibration decomposition (HVD F1) [122], optimal

filter (OMF) [89], decimated wavelet transform using an additive injection model (Indusion)

[118], adaptive IHS (AIHS) [5] and a trous wavelet transform using the model 2 (ATWTM2)

[50]. The pansharpened images obtained by the proposed and existing methods are shown in

Fig.3.13(a)-3.13(f). Qualitative observation of the pansharpened image shown in Fig.3.13(a)

reveals that the fused image generated by the proposed method is better matched in color infor-

mation of the input MS images with improved edge information.

TABLE 3.6: The Spectral quality assessment of the pansharpened images for GeoEye-1 dataset

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
HVD F2 0.7693 3.8860 2.8589 0.0798 0.1615 0.7716
HVD F1 0.7682 3.8888 2.8608 0.0654 0.0976 0.8434

OMF 0.6656 4.4149 3.4972 0.0412 0.1243 0.8396
AIHS 0.5524 4.7684 3.3077 0.1401 0.1409 0.7388

Indusion 0.6420 4.2838 3.5680 0.0828 0.0963 0.8288
ATWTM2 0.6810 4.6050 3.1848 0.0840 0.1094 0.8157

The performance metrics Q4, SAM, ERGAS and QNR for the images shown in Fig.3.13 are

computed and results obtained are tabulated in Table 3.6. It is seen from tabulated results using

the proposed and existing techniques that the proposed method gives improved spatial as well

as spectral quality of the MS image.
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3.5 Proposed Image Fusion Scheme

The role of the image fusion in current image processing systems is increasing due to the

growing variety of image acquisition techniques. Image Fusion is the process of combining

substantial information from several sensors using mathematical techniques to create a single

composite image that will be more comprehensive and thus, more useful for a human opera-

tor or other computer vision tasks. The latest technology in imaging sensors provides a broad

kind of information that may be extracted from an located scene. Images which have been

captured using different sensor modalities reveal numerous characteristics, such as a form of

degradation, salient features, texture properties and many others. The automated procedure of

conveying all the meaningful information from the input sensors to a final composite image

is the goal of a fusion system, which appears to be an essential preprocessing stage for many

applications, such as aerial and satellite imaging, medical imaging, robot vision and vehicle or

robot guidance. In [77], proposed a generalized multisensor fusion using the gradient pyramid

where image pyramid has been created by the pyramid transform. Using the basis functions

of gradient-of-Gaussian pattern, the pyramid transform is applied to the input images. Two fu-

sion rules are used to combine the information of the multiple decompositions at the locations

where the source images are similar; the fusion is achieved by averaging two images, while if

the images are significantly different, the fusion rule selects the feature pattern with maximum

saliency and copies it for the fused image. In [80], author have demonstrated the use of a steer-

able pyramid for fusion of remote sensing images. The steerable pyramid is a multi-scale and

multi-orientation decomposition with translation and rotation invariant sub-bands [81]. The

low frequency or the coarsest approximation is fused based on the magnitude of the images

at the corresponding locations. A region-based technique in a multi-resolution framework as

an extension of the pixel-based technique [54]. This work provides multi-resolution fusion

techniques. The input images are first segmented which is a preparatory step toward the ac-

tual fusion. The other quantity is the match measure which quantifies the similarity between
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FIGURE 3.14: Block diagram of the proposed fusion scheme

the corresponding coefficients of the transformed images. This structure encompasses most

of the pixel-based and region-based multi-resolution techniques. For an efficient fusion, the

salient features from multi-scale image decomposition are extracted. The wavelet transform

has proved to be a highly popular tool for fusion. A discrete wavelet transform (DWT)-based

fusion technique offers distinct advantages such as orthogonality, compactness, and directional

information [21]. Wavelet decomposition uses basis functions or different filters that are fixed

and create influence in the fused image. In [21], the wavelet transforms experience problems

when analyzing high frequency content, thus tending to lose spatial information. In [86], the

EMD based image fusion method has been shown to give excellent performance as compared to

the wavelet and PCA based approaches, particularly in retaining edge-based information from

the different image modalities. A recent technique, Hilbert vibration decomposition (HVD)

[38], analyses non-linear and non-stationary signals. It decomposes the input signal into am-

plitude and frequency components. The HVD method is based on the Hilbert transform (HT)

presentation of the instantaneous frequency. The HVD has much higher frequency resolution

than the EMD based approaches for signal decomposition [38, 117].

The block diagram of the proposed image fusion algorithm is illustrated in Fig.3.14, U and

V source images are converted intoicolumnivectors HU and HV respectively. These vectors

64



Chapter 3

areidecomposed using discretized version of (3.5) as expressed by

HU(n) =
2∑

m=1

AUm(n) cos(
2∑

m=1

WUm(n)), (3.15)

HV (n) =
2∑

m=1

AVm(n) cos(
2∑

m=1

WVm(n)), (3.16)

whereAUm andAVm are instantaneous amplitudes andWUm andWVm are the instantaneousifrequencies

(IF)iof mth componentsiof U and V images respectively. Using (3.15) and (3.16), the first and

second components of each of the vectors, i.e., HU1 , HU2 , HV1 and HV2 are obtained.

The amplitude vectors AU1 , AU2 , AV1 and AV2 are converted into the images Uhvd1 , Uhvd2 , Vhvd1

and Vhvd2 respectively. Images Uhvd1 and Vhvd1 are the highest amplitude components of U and

V images respectively which give most of the spatial information of the edges, while Uhvd2 and

Vhvd2 images are the second highest amplitude components giving lesser spatial information of

the edges as compared to first amplitude component. Now using the maximum selection rule

on Uhvd1 , Uhvd2 , Vhvd1 , Vhvd2 , and U , V images as given by

UVhvdl(m,n) =

Uhvdl(m,n), ifUhvdl(m,n) ≥ Vhvdl(m,n), l = 1, 2

Vhvdl(m,n), ifUhvdl(m,n) < Vhvdl(m,n)

(3.17)

UV (m,n) =

U(m,n), ifU(m,n) ≥ (m,n),

V (m,n), ifU(m,n) < (m,n)

(3.18)

The fusion rule for obtaining fused images in the proposed method are given by

F (m,n) = UV (m,n) + αUVhvdl(m,n), l = 1, 2, (3.19)
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where F is the fused image and α = 0.01. The fused image obtained by first decomposition

component (l=1) is HVD FS1 and for second decomposition component (l=2) is HVD FS2.

3.5.1 Simulation Results

Simulation results of the proposed fusion method are obtained using MATLAB. It is applied on

five pairs which are divided into two groups:

1. Multi-spectral images

(a) Millimeter wave (MMW) and visible source images

(b) Infrared (IR) and visible source images

(c) MRI and CT source images

2. Multi-focus images and

(a) Book source images

(b) Clock source images

These image pairs are available at [124], which are widely used in different applications. These

images are used to validate the efficacy of the proposed image fusion scheme. Simulation

results of the proposed scheme are compared with existing image fusion schemes adaptive

sparse representation (ASR) [125] and Discrete cosine harmonic wavelet transforms (DCHWT)

[29] based image fusion schemes.

The first experiment is performed on multi-spectral images:

Concealed weapon detection (CWD) application is an important topic in the general area of

law enforcement, and it appears to be a critical technology for dealing with terrorism, which

seems to be the most significant law enforcement problem for the next decade. Since no single
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.15: (a) MMW and (b) visible source images, fused image obtained by the (c) Pro-
posed HVD FS1, (d) Proposed HVD FS2, (e) ASR and (f) DCHWT schemes

(a) (b) (c)

(d) (e) (f)

FIGURE 3.16: (a) IR and (b) visible source images, fused image obtained by the (c) Proposed
HVD FS1, (d) Proposed HVD FS2, (e) ASR and (f) DCHWT schemes
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.17: (a) MRI and (b) CT source images, fused images obtained by the (c) Proposed
HVD FS1, (d) Proposed HVD FS2, (e) ASR and (f) DCHWT schemes

(a) (b) (c)

(d) (e) (f)

FIGURE 3.18: (a) and (b) Multi-focus Book source images, fused images obtained by the (c)
Proposed HVD FS1, (d) Proposed HVD FS2, (e) ASR and (f) DCHWT schemes
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.19: (a) and (b) Multi-focus Clock source images, fused images obtained by the (c)
Proposed HVD FS1, (d) Proposed HVD FS2, (e) ASR and (f) DCHWT schemes

sensor technology can provide acceptable performance in CWD applications, image fusion has

been identified as a key technology to achieve improved CWD procedures. Figs. 3.15(a), (b)

show a pair of MMW and visual images. Fig.3.15(b) shows visual image, provides the outline

and appearance of the people while the Fig.3.15(a) MMW image shows the existence of a

gun. Fig.3.15(c)-(f)-the fused images obtained from the proposed and existing schemes show

that there is considerable evidence to suspect that the person on the right has a concealed gun

underneath his clothes. By observing Fig.3.15(c),(d), it is clear that the images obtained using

the proposed fusion technique are better in visual appearance than the images obtained using

the existing techniques.

Military surveillance application is a head-tracked vision system for night vision applications.

The multiple imaging sensors employed can enhance a driver’s overall situational awareness.
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TABLE 3.7: Performance comparison of fused images

API SD AG H MI FS CC SF
MMW and visible source images

HVD FS1 7.8499 6.5217 3.105 4.3959 3.3194 1.9 0.668 3.9212
HVD FS2 7.2199 6.084 3.0601 4.2804 3.8122 1.8919 0.6752 3.8754

ASR 4.183 3.953 2.6103 3.6018 1.6531 1.9122 0.7009 3.2981
DCHWT 5.4467 4.9544 2.7494 3.9545 1.7975 1.9702 0.6767 3.4529

IR and visible source images
HVD FS1 122.8502 31.8585 7.1818 6.7979 4.6808 1.9289 0.7712 9.8086
HVD FS2 112.5993 30.0497 7.214 6.7159 4.9378 1.9239 0.7685 9.8344

ASR 90.7209 24.096 6.4558 6.3054 1.7018 1.8968 0.7968 9.1921
DCHWT 90.1042 24.696 6.7305 6.2967 1.6022 1.8344 0.7701 9.0485

MRI and CT source images
HVD FS1 63.4209 63.2239 10.0173 6.7163 4.6649 1.6188 0.6726 17.8766
HVD FS2 58.7009 60.0945 9.9189 6.6073 5.0771 1.6205 0.6753 17.5533

ASR 31.4959 39.1903 8.3337 6.1865 2.7663 1.6602 0.6919 14.6749
DCHWT 38.0233 41.9861 8.0346 6.5888 1.9772 1.7133 0.6845 13.3888

Book source images
HVD FS1 94.2561 63.7642 14.6263 7.473 8.2588 1.9879 0.9901 23.7482
HVD FS2 86.0642 59.2935 14.4392 7.3815 8.5378 1.986 0.99 23.4365

ASR 83.1806 59.3426 16.7913 7.3419 8.4621 1.9904 0.9893 29.2452
DCHWT 83.0109 59.1883 16.0855 7.3315 8.1143 1.9841 0.9901 27.7148

Clock source images
HVD FS1 110.8424 54.152 6.9568 7.4939 7.7809 1.9862 0.9869 10.5717
HVD FS2 101.2756 50.4336 6.8822 7.3092 7.8648 1.9832 0.9874 10.515

ASR 96.9211 50.5028 9.0741 7.321 7.511 1.9579 0.9879 15.4741
DCHWT 96.6567 50.2248 8.8556 7.3868 7.0283 1.9693 0.9888 14.6276

Figs. 3.16(a), (b) image pair shows infrared (IR) and visible source images. In Figs. 3.16(a)

scene includes a person, a road, a house, grass, and trees and shows the corresponding IR

sensor image of the scene and Figs. 3.16(b) shows the visual sensor image of the same scene.

These images contain complementary features as illustrated by the fused images shown in Figs.

3.16(c)-(f) which are obtained from the proposed and existing schemes. By observing Figs.

3.16(c),(d), it is clear that the image obtained using the proposed fusion technique is better in

visual appearance than the images obtained using the existing techniques.

Medical diagnosis application, medical imaging has a computed tomography (CT) and mag-

netic resonance images (MRI) from the brain of the same patient. The goal of fusion scheme
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TABLE 3.8: Performance comparison of fused images

QUV/F LUV/F NUV/F1 ans
MMW and visible source images

HVD FS1 0.9043 0.0933 0.2216 1
HVD FS2 0.9015 0.0972 0.1073 1

ASR 0.7907 0.2092 0.0109 1
DCHWT 0.9241 0.0756 0.0141 1

IR and visible source images
HVD FS1 0.6739 0.301 0.1768 1
HVD FS2 0.6743 0.2962 0.195 1

ASR 0.7345 0.2621 0.0166 1
DCHWT 0.7335 0.2612 0.0189 1

MRI and CT source images
HVD FS1 0.8641 0.1249 0.5143 1
HVD FS2 0.8672 0.1223 0.4241 1

ASR 0.8555 0.1426 0.0286 1
DCHWT 0.8145 0.182 0.0297 1

Book source images
HVD FS1 0.9791 0.0164 0.0174 1
HVD FS2 0.9813 0.0159 0.0114 1

ASR 0.9704 0.0276 0.0077 1
DCHWT 0.978 0.0212 0.0024 1

Clock source images
HVD FS1 0.7354 0.2617 0.0199 1
HVD FS2 0.735 0.2616 0.0214 1

ASR 0.9137 0.0833 0.022 1
CBF 0.9257 0.0742 5.67E-04 1

for the proposed example is to achieve a unique image with functional and anatomical informa-

tion with the best resolution [25, 26, 27]. Figs. 3.17(a), (b) shows MRI and CT source image

pairs. The fused images obtained using the proposed and existing schemes are shown in Figs.

3.17(c)-(f). From Figs. 3.17(c), (d), it is clear that in the proposed schemes the edges of the

fused image are very clear and sharp as compared to the existing methods.

The second experiment is performed on multi-focus images:

Multifocus image fusion application is useful to enhance digital camera images. Figs. 3.18(a),

(b) and Figs. 3.19(a), (b) show multi-focus book and clock image pairs of digital camera. In

one image, the focus is on the left side. In the other image, the focus is on the right side.

Figs. 3.18(c), (f) and Figs. 3.19(c), (f) show the fused images obtained using the proposed and

existing schemes in which both the sides are in focus. By observing Fig.3.18(c), (d) and 3.19(c),
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(d), it is clear that the fused images obtained using the proposed method are comparable to the

images obtained using the existing techniques.

The performance of fused image is shown in Table 3.7 and 3.8. In section 2.6, performance

parameters such as API, SD, AG, H, MI, FS, CC, SF, QUV/F , LUV/F and NUV/F are given.

Using these parameters, the performance of the proposed and existing fusion methods is com-

pared. In the Table 3.7 and 3.8, the best values of the performance measures are highlighted as

bold-face numerals. It is observed from Table 3.7 and 3.8 that in majority of the experiments,

the proposed scheme provides better results as compared to the existing schemes.

3.6 Conclusions

In this chapter, using the HVD technique two pansharpening and one image fusion schemes are

presented. The proposed pansharpening scheme-I is also extended for the HS images and pro-

posed scheme-II is the modified approach of scheme-I. The pansharpening scheme-I is based on

multi-resolution analysis (MRA) approach whereas scheme-II is based on a hybrid approach.

The tunning factor associated with the pansharpening model is optimized by single objective

PSO algorithm. Experimental results of the proposed techniques demonstrate that the proposed

fusion schemes have improved spectral and spatial quality as compared to the existing schemes.

The effects of aliasing and misregistration errors on our proposed methods are also investigated

and it is observed that the proposed methods are robust against aliasing and misregistration

errors as compared to other existing methods. In the proposed image fusion scheme, first and

second highest amplitude component of the decomposition of the source images are used to

generate the fused image using fusion rule. It is seen that the performance of the proposed

scheme provides better simulation results when the first highest amplitude component (l=1) is

used to generate the fused image. Performance evaluation of fused images is done by comput-

ing fusion quality metrics and the results are compared with other existing fusion schemes and

it is observed that the proposed image fusion scheme is an efficient technique for improving the
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visual appearance and it provides a robust system performance, compact representation of in-

formation in different applications like remote sensing, medical imaging, military surveillance

and concealed weapon detection, etc.
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The intermediate technique followed by the implication of third and last technique GSP/spectral

graph wavelet filterbank (SGWF). Using the multistage multichannel SGWF, two new image

fusion/pansharpening approaches are proposed. In the SGWF based proposed pansharpen-

ing method, the PAN image decomposed by the multistage M -channel SGWF, and then the

weighted combination of lowpass component signals in the multistage SGWF decomposition

is used to generate the pansharpened image using appropriate pansharpening rule. Simula-

tion results of the proposed technique using different wavelets such as spline wavelet (SW),

Mexican-hat wavelet (MHW), Meyer wavelet (MW) and simple tight frame wavelet (SPW)

are also presented and compared with existing pansharpening methods in terms of both visual

perception and objective metrics such as Q-index (Q4), spectral angle mapper (SAM), relative

dimensionless global error (ERGAS) and quality with-no reference (QNR). It is observed that

the proposed pansharpening scheme provides better pansharpening results using MHW filter-

bank as compared to some of the existing schemes. In the proposed SGWF based image fusion

scheme, lowpass signal generated from multistage multichannel of SGWF decomposition is

used to add additional information in the source images using fusion rule. Performance eval-

uation of fused image is done by computing fusion quality metrics, and the fusion results are

compared with
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Fractional Fourier Transform Based

Image Fusion/Pansharpening Schemes

In this chapter, new approaches for fusion/pansharpening based on 2D-discrete fractional Fourier

transform (2D-DFRFT) are proposed. The 2D-DFRFT is a generalized version of the conven-

tional Fourier transform which provides the representation of a given signal in intermediate

domains between spatial and fast Fourier transform (FFT) domains. The angle parameters as-

sociated with the 2D-DFRFT provide additional degrees of freedom. Smaller values of angle

parameters of a signal are similar in shape to the low pass filtered version of a signal and hence

it can be considered as fractional domain filtering of the signal. The 2D-DFRFT provides dif-

ferent representations of the given signal/image corresponding to different angles which can

be optimized for better results. Using 2D-DFRFT, three novel image fusion/pansharpening

approaches in which two pansharpening and one image fusion schemes are presented, which

improves the spatial and spectral quality of the fused image. The structure of this chapter is as

follows: In section 4.1, introduction and brief literature review is presented; in Section 4.2, the

details of the FRFT and PSO methods are explained; Section 4.3 provides details of the pro-

posed pansharpening scheme-I and simulation results which provides a comparative analysis
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of the proposed scheme with existing schemes; Section 4.4 describes details of the proposed

pansharpening scheme-II with simulation results; Section 4.5 describes the proposed image fu-

sion method with simulation results which gives a comparative analysis of the proposed scheme

with existing schemes. Conclusions are drawn in Section 4.6.

4.1 Introduction

Many of the remote sensing satellites, such as SPOT, IRS, Landsat 7, IKONOS, QuickBird,

Pléiades, and Worldview-2, capture a lot of images for topographic mapping and map updating,

land use, agriculture and forestry, flood monitoring, ice and snow monitoring etc. These images

can be categorized into multi-spectral (MS) and panchromatic (PAN) images. The MS images

have high spectral resolution and low spatial resolution while PAN image has high spatial res-

olution and low spectral resolution of the same captured area [126]. It is difficult to obtain an

image directly from the satellite sensors having both high spatial and spectral resolution of the

captured area due to some technical constraints [127]. Many pansharpening schemes have been

proposed for achieving the goal of high spatial and spectral resolution in a single image [128].

A fast Fourier transform (FFT) based pansharpening scheme is proposed in [87]. This method

is based on IHS transform with FFT filtering of both the PAN image and intensity image com-

ponent of the original MS images; one of the drawbacks of this algorithm is that original MS

images have to contain only three bands. It reduces the general applicability of this algorithm

to very few cases like LANDSAT and SPOT satellite images in which multispectral sensor has

three bands of the visible spectrum and a fourth band on the infrared. The infrared sensor has

a spatial resolution much lower than the three visible sensors. It is usually discarded for tasks

related to the production of visual products or applications [71]. It may be mentioned here that

due to finite spatial size of MS and PAN images, these images will not be band limited in FFT

domain and therefore FFT based pansharpening may not be suitable in such cases. In addition,

the PAN and MS images collected through different sensors satellite environment suffer from

different types of noise which may not be stationary in nature. Therefore conventional Fourier
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transform is not suitable for handling such non-stationary signals and noise [129, 130]. The

fractional Fourier transform (FRFT) is known to handle such non-stationary noise in a more

effective way than the conventional Fourier transform [131]. It would, therefore, be interesting

to investigate the intermediate domains (known as FRFT domains) between spatial and FFT

domains for pansharpening purpose. The FRFT is a generalized version of the conventional

Fourier transform. The angle parameter of 2D-DFRFT can be varied to provide infinite repre-

sentations of the given signal in different 2D-DFRFT domains, each corresponding to different

values of the angle parameter. The 2D-DFRFT provides a free degree of freedom in terms of

its angle parameters. The 2D-DFRFT has been applied in many image processing applications

[39, 40, 41, 42, 43, 44, 45, 46, 47] but the use of discrete fractional Fourier transform (DFRFT)

in pansharpening has not been investigated so far.

4.2 Review of FRFT and PSO

4.2.1 FRFT

The fractional Fourier transform (FRFT) is a generalization of the conventional Fourier trans-

form [132] and has attracted a lot of attention of the researchers in different applications

[41, 42, 43]. The FRFT is a linear operator which provides a representation of the signal along

the axis making an angle α with the time axis [133] and it reduces to conventional Fourier

transform for an angle parameter equal to π/2.

The 2D continuous FRFT with the orders a′u for the u′ axis and a′v for the v′ axis, for 0 < |a′u| <

2 and 0 < |a′v| < 2, respectively, is defined as [132]

Fα,β(u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(u′, v′)Kα,β(u′, v′, u, v)du′dv′, (4.1)
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FIGURE 4.1: Time-frequency plane and a set of coordinates (u, v) rotated by an angles α and
β relative to the original coordinates (u′, v′).

Kα,β(u′, v′, u, v) = Kα(u′, u)Kβ(v′, v), (4.2)

Kα(u′, u) = Aαexp[iπ(u′2cotα− 2u′ucscα + u2cotα)], (4.3)

Kβ(v′, v) = Aβexp[iπ(v′2cotβ − 2v′vcscβ + v2cotβ)], (4.4)

Aα =
exp[−i(πα̂/4− α/2)]

(|sinα|) 1
2

, (4.5)

Aβ =
exp[−i(πβ̂/4− β/2)]

(|sinβ|) 1
2

, (4.6)

where α = a′uπ/2, β = a′vπ/2, α̂ = sgn(α) and β̂ = sgn(β). The angles α and β appearing in

(4.1) provide additional degree of freedom in the 2D continuous FRFT domain representation

of signals which can be optimized in specific applications.

The algorithms for 2D-discrete FRFT (2D-DFRFT) have also been proposed [132] and have

obtained similar results as those of 2D continuous FRFT as given in (4.1).

The 2D-DFRFT transform of input image h(i, j) of size A×B is computed as
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Hα,β(m,n) = Fα,β[h(i, j)] =
A−1∑
i=0

B−1∑
j=0

h(i, j)Rα,β(i, j,m, n) (4.7)

whereRα,β(i, j,m, n) is the 2D transform kernel defined as

Rα,β = Rα ⊗Rβ, (4.8)

where Rα,Rβ are the 1D-DFRFT transformation matrix and symbol ⊗ denotes Kronecker

product of matrices given in [134, 135]. The angle parameters α and β appearing in (4.7) can

also be varied for obtaining better signal representation.

For α = β = π/2, the 2D-DFRFT reduces to the conventional 2D-discrete Fourier transform

(2D-DFT) while for α = β = 0, the 2D-DFRFT provides the original signal itself.

The inverse 2D-DFRFT is computed as

h(i, j) =
A−1∑
m=0

B−1∑
n=0

Hα,β(m,n)R−α,−β(i, j,m, n), (4.9)

4.2.2 PSO

The particle swarm optimization (PSO) is a population based search algorithm similar to the

other swarm techniques. It is inspired by the food searching techniques employed by birds. The

main features of PSO technique include ease of implementation, robustness to control param-

eters, and computational efficiency as compared with other existing heuristic algorithms such

as genetic algorithm in a continuous problem [136]. It is well-known that PSO technique can

be applied to non-differentiable, non-linear, huge search space problems giving better results

with good efficiency [136]. This optimization technique has been employed to solve complex

problems in various application areas, such as image segmentation [137], image watermarking

[138] and image pansharpening [139].
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In this approach a set of random solutions are selected as particles and each particle is associated

with certain velocity. The performance of each particle is evaluated based on some fitness

function. Design of the algorithm begins with initialization of particles and let Nv denote the

population size. The position and velocity of kth particle are D-dimensional vectors P k =

(P k
1 , P

k
2 , P

k
3 , .....P

k
D) and vk = (vk1 , v

k
2 , v

k
3 , .....v

k
D) respectively, where k = 1, ...Nv and D the

search space dimensionality. The velocity and position are updated in order to achieve an

optimal solution using

vkj (t+ 1) = w.vkj (t) + c1.r1.(PL(t)− P k
j (t)) + c2.r2.(PG(t)− P k

j (t)), (4.10)

P k
j (t+ 1) = P k

j (t) + P k
j (t+ 1), j = 1, 2, ..D, (4.11)

wherew is the linear decreasing inertia weight [140], [136] controlling the influence of previous

velocities on the current velocities, c1 and c2 are learning factors that control the contribution

of cognitive and social information to the local and global solutions, respectively and r1 and

r2 are random values distributed between 0 and 1, parameter t is the iteration counter, vkj (t)

and P k
j (t) are the current velocity and position of the kth particle and vkj (t + 1) and P k

j (t + 1)

are the updated velocity and position of the kth particle, PL(t) is the local best position of the

kth particle and PG(t) is the global best position among the whole particles in the swarm. The

design of the algorithm is based on both social and personal factors that decide the convergence

[141, 142].

4.3 Proposed Pansharpening Scheme-I

The images captured from different sensors in remote sensing applications may suffer from

spatial and spectral distortion problems. Some pansharpening schemes improve the spatial

quality and reduce the spectral distortion in the pansharpened image obtained from the MS

and PAN images by performing filtering in time domain or joint time-frequency domains [50].
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These filtering based pansharpening schemes however assume that the image is band limited

in conventional Fourier domains. However the finite size of the images acquired precludes

this assumption to hold true. Therefore it would be interesting to extend the filtering based

pansharpening approach to intermediate domains called FRFT domains.

In this section we present pansharpening scheme for remote sensing images using 2D-DFRFT

based filtering scheme. The proposed technique is closer to the MRA approach and the filter-

ing provided in the proposed method is totally different than conventional filtering approaches

based on wavelet transform. The motivation for this also stems from the fact that the absolute

value of 2D-DFRFT of a signal (for smaller values of angle parameters) is similar in shape to

the low pass filtered version of a signal.

(a) (b) (c)

FIGURE 4.2: (a) Rectangular pulse, (b) Fractional Fourier transform of rectangular pulse, (c)
Low pass filtering of rectangular pulse

To explain the point further, the rectangular pulse and absolute value of its 2D-DFRFT is shown

in Fig.4.2 (a) and 4.2(b) respectively. The output of the Butterworth low pass filter with rect-

angular pulse as input is shown in Fig.4.2(c). It is clear from these figures that the shape of

the signals in Fig.4.2(b) and (c) is very close to each other and hence low pass filtering can

be implemented and approximated using the 2D-DFRFT technique. This lowpass filtering can

also be considered as fractional domain filtering of the signal [131]. Thus fractional domain

filtered PAN signal can be used for injecting additional spatial information from PAN image

into the MS images for pansharpening purpose similar to other MRA based approaches.
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FIGURE 4.3: Block diagram of the proposed panshapening scheme

It is worthwhile to mention that in the wavelet based MRA approach the pansharpening results

vary from the wavelet function chosen for filtering purpose. One has to take decisions regarding

the filter specifications such as type of filters (FIR/IIR) whereas in the proposed technique no

such decisions are to be taken. The additional advantage of 2D-DFRFT based pansharpening

approaches is that different representations of the given signal/image corresponding to different

angles can be used for obtaining better pansharpening results.

The block diagram of the proposed method is given in Fig.4.3. Here MS input images are

up-sampled and interpolated to the size of PAN image by using the scheme described in [116].
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Using these interpolated MS images, intensity (I) image is obtained from

I =
N∑
r=1

αrM̃Sr, (4.12)

where αr are weighting coefficients and M̃Sr are the rth MS images interpolated at the scale

of PAN image and N denotes the total number of band images (the value of N is usually four

to combine red, blue, green and infrared component images). These weighting coefficients αr

can be selected in different ways as discussed in [32]. In the present work we have chosen to

compute this weight coefficient using the method given in [5] because this method is known to

provide improved spectral resolution.

The high spatial resolution PAN image is histogram matched with the I image for preserv-

ing radiometry [143] and the resulting histogram matched image is denoted by P . Histogram

matched image P is then transformed using 2D-DFRFT defined in (4.7) as given below:

P̂α1,β1(m,n) =
∣∣∣Fα1,β1 [P (i, j)]

∣∣∣ =
∣∣∣ A−1∑
i=0

B−1∑
j=0

P (i, j)Rα1,β1(i, j,m, n)
∣∣∣, (4.13)

where P̂α1,β1 is the magnitude of the 2D-DFRFT domain representation of image P correspond-

ing to angles α1 = a1π/2 and β1 = b1π/2.

Using (4.13), we propose the following pansharpening rule as

M̂Sr(α1,β1) = M̃Sr + γGr(P − P̂α1,β1), r = 1, ..., N, (4.14)

where M̂Sr(α1,β1) is the fused image with high spatial and spectral details, γ is a constant whose

value will be determined experimentally for images obtained from different satellites, Gr are

the injection coefficients obtained from the regression between each MS band image and image
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P̂α1,β1 [32]. The injection coefficients are calculated using

Gr =
cov(M̃Sr, P̂α1,β1)

max(var(M̃Sr), var(P̂α1,β1))
, r = 1, ..., N, (4.15)

where var(M̃Sr) and var(P̂α1,β1) are the variance of M̃Sr and P̂α1,β1 images respectively and

cov(M̃Sr, P̂α1,β1) indicates the covariance between two images M̃Sr and P̂α1,β1 . The quality

of pansharpened image M̂Sr(α1,β1) depends not only on low pass filtered PAN image but on

interpolated MS images. Therefore the variance of M̃Sr images can also play a role in the final

quality of the pan-sharpened image.

In the proposed pansharpening rule given in (4.14) the pansharpened image is dependent on

the angle parameters α1, β1 of the 2D-DFRFT. These angle parameters are optimized by single

objective optimization technique using fitness function involving the quality metrics such as

relative dimensionless global error in synthesis (ERGAS), spectral angle mapper (SAM) etc.

[31], [34]. In this scheme we have used particle swarm optimization (PSO) technique and

ERGAS as quality metric in the fitness function. The ERGAS is a measure of spatial distortion

between the reference MS and pansharpened images. It is given by

ERGAS = 100
h

l

√√√√ 1

N

N∑
r

(
RMSE(MSr,MSr(α1,β1))

µ(MSr)

)2

, (4.16)

where r = 1, ..., N,, MSr are the rth reference MS images and MSr(α1,β1) is the pansharpened

image obtained using proposed pansharpening rule applied at the degraded scale as per the

Wald’s protocol [31]. Here h/l is the ratio of resolution of PAN and MS images, µ(MSr) is the

mean of the rth band, RMSE(A,B) stands for root mean square error between images A and B.

Therefore the task of optimization is to minimize the ERGAS metric to obtain the fused im-

age with minimum spatial distortion. The fitness function f for the optimization problem is
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formulated as

f = minimize
(α1,β1)

[
ERGAS

]
, α1 6= 0, β1 6= 0 (4.17)

The reason for excluding the values of α1 = 0 and β1 = 0 in the fitness function in (4.17) is due

to the fact that ERGAS reaches its minimum value of zero if no fusion is done and no additional

information will be added to MS images from PAN image. Thus using (4.14) the relevant and

additional spatial details available in the P image are injected into the MS image optimized by

the α1, β1 giving us improved spatial and spectral details in the fused image as compared to the

existing fusion techniques.

The steps of the proposed algorithm are summarized as below:

Algorithm 2 2D-DFRFT based pansharpening algorithm-I
1: Obtain up-sampled MS images of the size of PAN image;
2: Compute the intensity image (I) using up-sampled MS images by weighted mean;
3: Obtain histogram matched image (P) using input PAN and intensity image;
4: Compute the image P̂α1,β1 using 2D-DFRFT corresponding to angles α1 and β1;
5: Calculate the regression coefficients Gr for use in fusion rule;
6: Obtain the high spatial and spectral resolution MS image using pansharpening rule
M̂Sr(α1,β1) = M̃Sr + γGr(P − P̂α1,β1), r = 1, ..., N,
where γ = 0.9, 1.2 for IKONOS and GeoEye-1 images respectively.

7: Optimize angle parameters α1 and β1 using PSO associated with the 2D-DFRFT for ob-
taining the minimum spatial distortion using objective function ERGAS.

4.3.1 Simulation Results

The proposed 2D-DFRFT based pansharpening scheme is tested on IKONOS and GeoEye-1

satellites dataset given in Fig.3.4(c)-(d) and Fig.3.4(e)-(f) respectively, are used. To evaluate

the pansharpening results, we follow the Wald’s protocol [31].

Simulationsiare alsoiperformed toicompare the proposed pansharpening scheme with the exist-

ing pansharpening schemes based on optimal filter (OMF) [89], adaptive IHS (AIHS) [5], dec-

imated wavelet transform using an additive injection model (Indusion) [118], a trous wavelet
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.4: For IKONOS satellite dataset obtained the pansharpened images using proposed
and existing pansharpening schemes are (a) Proposed 2D-DFRFT F1, (b) OMF, (c) AIHS, (d)

indusion, (e) ATWTM2 and (f) MTF-PP schemes.

86



Chapter 4

(a) (b)

(c) (d)

(e) (f)

FIGURE 4.5: For GeoEye-1 satellite dataset obtained the pansharpened images using proposed
and existing pansharpening schemes are (a) Proposed 2D-DFRFT F1, (b) OMF, (c) AIHS, (d)

indusion, (e) ATWTM2 and (f) MTF-PP schemes.
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(a) (b)

FIGURE 4.6: Convergence plot (ERGAS versus number of iterations) of PSO in the proposed
pansharpening scheme for (a) IKONOS and (b) Geoeye-1 satellite images.

transform using the model-2 (ATWTM2) [50] and generalized Laplacian pyramid with mod-

ulation transfer function matched filter and multiplicative injection model (MTF-PP) [115].

The pansharpened image obtained using proposed 2D-DFRFT scheme-I is labeled by 2D-

DFRFT F1.

The angles α1, β1 in (4.14) of the proposed method are optimized by single objective PSO

algorithm using fitness function involving ERGAS. The details of the parameters chosen for

PSO algorithm [136, 140] are given in Table 4.1. These parameters can be selected in different

ways discussed in [136, 140, 144, 145]. In the present work we have computed these parameters

given in [144] because these parameters provide better balance between the global and local

search.

TABLE 4.1: Parameter settings of PSO in the proposed pansharpening algorithm

Parameters Value
Particle numbers/Population 20

Iteration 100
c1 and c2 2

Inertia weights Adaptive [0.9 0.4]

The optimized values of angle parameters (α1,β1) obtained using PSO algorithm for IKONOS
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and GeoEye-1 satellite images are (0.0689π/2, 0.0710π/2) and (0.0851π/2, 0.0991π/2) re-

spectively. To evaluate the convergence of PSO algorithm in the proposed method, the conver-

gence plots (ERGAS versus number of iterations) for IKONOS and GeoEye-1 satellite images

are shown in Fig.4.6(a) and Fig.4.6(b) respectively. It can be seen from the Fig.4.6(a) and

4.6(b) that the value of the ERGAS quality metric is almost constant after the twentieth itera-

tion demonstrating its convergence.

The image obtained through the re-sampling of the MS image to the size of the PAN image

using interpolation [116] is labeled by EXP image. The proposed method is given in (4.14)

using γ = 0.9 and 1.2 for IKONOS and GeoEye-1 satellite images. The values of parameter γ

have been selected experimentally by performing many simulation trials.

The input PAN and EXP images (having four bands red, blue, green and infrared) for IKONOS

and GeoEye-1 data set are shown in the Fig.3.4(c),(d) and 3.4(e),(f) respectively. The pansharp-

ened images obtained using the proposed method are shown in Fig.4.4(a) and 4.5(a), respec-

tively. The pansharpened images obtained by the existing methods are shown in Fig.4.4(b)-

4.4(f) and Fig.4.5(b)-4.5(f).

TABLE 4.2: The Spectral quality assessment of the fused images for IKONOS dataset at de-
graded and full scale optimized 2D-DFRFT angle parameters α1 = 0.0689π/2 and β1 =

0.0710π/2.

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
2D-DFRFT F1 0.6003 3.1918 2.7637 0.1789 0.1734 0.6787

OMF 0.5478 3.3223 3.0877 0.1548 0.2395 0.6427
AIHS 0.5245 4.4030 3.1710 0.2007 0.2094 0.6320

Indusion 0.5573 3.2315 2.9799 0.1728 0.2153 0.6491
ATWTM2 0.5969 3.3004 2.7740 0.1676 0.1906 0.6738
MTF-PP 0.6287 3.2490 2.7778 0.2476 0.3524 0.4872

It can be observed from middle portion of the image shown in Fig.4.4(a) that this fused image

reveals additional spatial information than the fused images obtained by the existing methods.

Similarly spectral quality of the fused image shown in Fig.4.4(a) is better than the simulation
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TABLE 4.3: The Spectral quality assessment of the fused images for GeoEye-1 dataset at
degraded and full scale optimized 2D-DFRFT angle parameters α1 = 0.0851π/2 and β1 =

0.0991π/2.

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
2D-DFRFT F1 0.7515 4.0120 2.9165 0.0781 0.0466 0.8789

OMF 0.6656 4.4149 3.4972 0.0412 0.1234 0.8405
AIHS 0.6950 4.6806 3.2969 0.1036 0.0999 0.8069

Indusion 0.6420 4.2838 3.5680 0.0828 0.0954 0.8296
ATWTM2 0.6809 4.6050 3.1848 0.0840 0.1086 0.8165
MTF-PP 0.7234 4.4309 3.1200 0.1953 0.2213 0.6266

(a) (b)

FIGURE 4.7: Quality/distortion indices for increasing amounts of (a) aliasing, measured by the
amplitude at nyquist frequency of the Gaussian-like low-pass filter simulating the modulation
transfer functions of the multispectral instrument, (b) misregistration between MS and PAN

images using image shown in Fig.4.4.

results obtained by the other existing methods. Similar remarks hold good for the other set of

images shown in Fig.4.5 particularly the left corner portion of it.

Using the above pansharpened images shown in Fig.4.4(a) and 4.5(a) the quality metrics Q,

SAM, ERGAS for degraded scale assessment and Dλ, DS , QNR for full scale assessment are

computed and the results are tabulated in Table 4.2 and 4.3.

It can be seen from the quantitative results (shown in boldface digits) given in Table 4.2 and

4.3 that the proposed method outperforms the other methods in terms of all the quality metrics
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considered in this scheme except Dλ. The proposed method also provides pansharpened image

which is better matched in color information of the input MS images with improved spatial

details.

(a) (b) (c)

(d) (e) (f)

FIGURE 4.8: For GeoEye-1 satellite dataset (a) Filtered PAN (P ) image using 2D-DFRFT, (b)
Spatial details extracted from PAN (P ) image using 2D-DFRFT, (c) Pansharpened image using
2D-DFRFT, (d) filtered PAN image using GLF, (e) Spatial details extracted from PAN image

using GLF, (f) Pansharpened image using GLF.

The effects of aliasing and mis-registration on our proposed methods are evaluated for IKONOS

data set given in Fig.3.4(c),(d) and the results are compared with existing pansharpening meth-

ods as shown in Fig.4.7(a),(b). It can be seen from Fig.4.7(a) that Q4 metric increases with

increasing Nyquist frequency initially but becomes almost constant for higher Nyquist fre-

quencies beyond 0.3 Hz. For misregistration errors, it can be observed from Fig.4.7(b), that the

parameter Q4 has attained almost a constant value after the displacement error beyond 15m.

Thus it is observed that the proposed method provides better results and robustness against
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registration error and aliasing effect. This robustness of the proposed technique against mis-

registration and aliasing errors may be attributed to the transform domain (fractional domain)

filtering involved here.

To compare the 2D-DFRFT in the proposed pansharpening scheme (shown in Fig.4.3) with

Gaussian lowpass filter (GLF) and performed the simulation results for GeoEye-1 satellite

dataset. The filtered PAN (P ) images extracted spatial details from the PAN (P ) image and

pansharpened images using 2D-DFRFT and GLF are shown in Fig.4.8(a)-4.8(f) respectively.

The image shown in Fig.4.8(e) reveals additional spatial and spectral quality than the image

obtained by the Fig.4.8(f).

TABLE 4.4: The Spectral quality assessment of the pansharpened images for GeoEye-1 dataset

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.Val. 1 0 0 0 0 1
2D-DFRFT F1 0.7515 4.0120 2.9165 0.0781 0.0466 0.8789

GLF 0.7152 4.1467 3.0937 0.0220 0.0314 0.9473

The performance metrics Q-index, SAM, ERGAS and QNR for the images shown in Fig.4.8

are computed, and results obtained are tabulated in Tables 4.4. It is seen that the proposed

method provides better results in terms of all the quality metrics except QNR.

4.4 Proposed Pansharpening Scheme-II

The images captured from different sensors in remote sensing applications may suffer from

spatial and spectral distortion problems [32]. Pansharpening schemes improve the spatial qual-

ity and reduce the spectral distortion in the pansharpened image obtained from the MS and

PAN images by performing filtering in time domain or joint time-frequency domains [50, 51].

These filtering based pansharpening schemes however assume that the image is band-limited
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in conventional Fourier domains. However finite size of the images acquired precludes this as-

sumption to hold true. In addition, the PAN and MS images collected through different sensors

satellite environment suffer from different types of noise which may not be stationary in na-

ture. Therefore conventional Fourier transform is not suitable for handling such non-stationary

signals and noise [129, 130]. The FRFT is known to handle such non-stationary noise in a

more effective way than the conventional Fourier transform [131]. The angle parameter of 2D-
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FIGURE 4.9: Block diagram of the proposed panshapening method
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DFRFT can be varied to provide infinite representations of the given signal in different DFRFT

domains each corresponding to different values of the angle parameter. The DFRFT provides

a free degree of freedom in terms of its angle parameters. Therefore it would be interesting

to extend the filtering based pansharpening approach to intermediate domains called FRFT

domains.

In this section we present a generalization of fast Fourier transform (FFT) based pansharpening

scheme proposed in [87]. This method is based on 2D-DFRFT filtering of both the PAN image

and intensity image component of the original MS images.

The block diagram of the proposed method is given in Fig.4.9. In this method, low resolution

MS input images are up-sampled to the size of PAN image by using interpolation scheme

described in [116]. These up-sampled MS images are converted into the intensity image (I)

using averaging operation. The intensity image (I) is transformed using 2D-DFRFT defined in

(4.7) as given below

Îα1,β1(m,n) =
A−1∑
i=0

B−1∑
j=0

I(i, j)Rα1,β1(i, j,m, n), (4.18)

where Îα1,β1 is the 2D-DFRFT domain representation of image I corresponding to angles α1 =

a1π/2 and β1 = b1π/2.

The image Îα1,β1 given in (4.18) is filtered by the highpass filter and then the filtered image

Iα1,β1 is transformed using the inverse 2D-DFRFT (2D-IDFRFT) given in (4.9) to obtain

I ′α1,β1
(i, j) =

A−1∑
m=0

B−1∑
n=0

Iα1,β1(m,n)R−α1,−β1(m,n, i, j). (4.19)

where image I ′α1,β1
is the 2D-IDFRFT domain representation of filtered image Iα1,β1 .
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The high resolution PAN image P is transformed using the 2D-DFRFT to obtain P̂α1,β1 given

in (4.13). The image P̂α1,β1 is filtered by highpass filter and then the filtered image Pα1,β1 is

transformed using the inverse 2D-DFRFT (2D-IDFRFT) defined in (4.9) as given below

P ′α1,β1
(i, j) =

A−1∑
m=0

B−1∑
n=0

P̂α1,β1(m,n)R−α1,−β1(m,n, i, j), (4.20)

where image P ′α1,β1
is the 2D-IDFRFT domain representation of the filtered image Pα1,β1 .

The high frequency filtered P ′α1,β1
image given in (4.20) and I ′α1,β1

image given in (4.19) are

added for obtaining the new image I ′′α1,β1
as given by

I ′′α1,β1
(i, j) = P ′α1,β1

(i, j) + I ′α1,β1
(i, j), (4.21)

In (4.21), image I ′′α1,β1
has spatial information of both the PAN and MS images.

Using image I ′′α1,β1
, we propose the following pansharpening rule as

M̂S(α1,β1)r = M̃Sr + β Gr I
′′
α1,β1

, r = 1, 2, ..., N, (4.22)

where M̂S(α1,β1)r is the high spatial and spectral pansharpened image, M̃Sr is the rth interpo-

lated MS images in the given total number of N band images, β is the tunning factor obtained

by the simulation trials and Gr are the injection coefficients obtained from the regression be-

tween each MS band image and image I ′′α1,β1
[32]. The injection coefficients are calculated

using [66]

Gr =
cov(M̃Sr, I

′′
α1,β1

)

var(I ′′α1,β1
)

, r = 1, ..., N, (4.23)

where var(I ′′α1,β1
) is the variance of I ′′α1,β1

image and cov(M̃Sr, I
′′
α1,β1

) indicates the covariance

between two images M̃Sr and I ′′α1,β1
.
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Algorithm 3 2D-DFRFT based pansharpening algorithm
1: Obtain up-sampled MS images of the size of PAN image;
2: Obtain the IHS images using up-sampled MS images by RGB to IHS conversion;
3: Compute the image Îα1,β1 using 2D-DFRFT of I image corresponding to angles α1, β1;
4: Compute the image Iα1,β1 using lowpass filtering;
5: Obtain the image I ′α1,β1

using inverse 2D-DFRFT of Iα1,β1 image;
6: Compute the image P̂α1,β1 using 2D-DFRFT of P image corresponding to angles α1, β1;
7: Compute the image Pα1,β1 using highpass filtering;
8: Obtain the image P ′α1,β1

using inverse 2D-DFRFT of Pα1,β1 image;
9: Obtain the I ′′α1,β1

by adding I ′α1,β1
and P ′α1,β1

images;
10: Calculate the injection coefficients Gr;
11: Obtained the high spatial and spectral pansharpened image M̂S(α1,β1)r using pansharpening

rule
M̂S(α1,β1)r = M̃Sr + β Gr I

′′
α1,β1

, r = 1, 2, ..., N,

where β is the tunning factor.

4.4.1 Simulation Results

The proposed 2D-DFRFT based pansharpening scheme using the IKONOS and GeoEye-1

satellites is given in Fig.3.4(c),(d) and Fig.3.4(e),(f) respectively. For obtaining the pansharp-

ening results, we follow the Wald’s protocol [31].

In the block diagram of the proposed scheme shown in Fig.4.9 using the highpass filters are

chosen as first order Butterworth filters with cutoff radius 40 and 350 at degraded and full scale

respectively, and the values of the tunning factor β are 2 and 4 for IKONOS and GeoEye-1

satellite images respectively. The selection of cutoff radius and tunning factor β have been

done using the simulation trials. The input PAN and EXP images for IKONOS and GeoEye-1

satellite dataset are shown in the Fig.3.4(c),(d) and Fig.3.4(e),(f) respectively. The value of N

is four in the MS images; it combines red, blue, green and infrared component images.

Simulation results of the spatial information image I ′′α1,β1
given in (4.21) in the proposed scheme

using different values of the angle parameters (α1, β1) of the 2D-DFRFT for IKONOS satellite

dataset are shown in Fig.4.10(a)-(f) and the pansharpened images using different values of

96



Chapter 4

the angle parameters (α1, β1) of the 2D-DFRFT are shown in Fig.4.11(a)-(f). It can be seen

from the Fig.4.10(c) and 4.11(c) for the values of the angle parameters α1 = β1= 0.98π/2

of the 2D-DFRFT provide the images with maximum spatial information as compared to the

other images and Fig.4.10(d) and 4.11(d) for the angle parameters α1 = β1= π/2 of the 2D-

DFRFT condition of the conventional Fourier transform provide the images with some spatial

distortion. The quality assessment of the pansharpened images of the proposed scheme shown

in Fig.4.11(a)-(f) using different values of the angle parameters (α1, β1) of the 2D-DFRFT is

tabulated in the Table 4.5 in terms of Q4, SAM and ERGAS. It can be observed from the Table

4.5, for the values of the angle parameters α1 = β1= 0.98π/2 of the 2D-DFRFT quality metrics

Q4, SAM and ERGAS provide the best results as compared to the other values of the angle

parameters.

TABLE 4.5: The quality assessment of the pansharpened images of the proposed scheme us-
ing different values of the angle parameters (α1, β1) of the 2D-DFRFT for IKONOS satellite

dataset.

Degraded scale
(α1, β1)(α1, β1)(α1, β1) Q4 SAM ERGAS
Ref.val 1 0 0

(0.94π/2, 0.94π/2) 0.5039 4.1241 4.2090
(0.96π/2, 0.96π/2) 0.5975 3.3061 2.8762
(0.98π/2, 0.98π/2) 0.6448 3.0752 2.6041

(π/2, π/2) 0.6300 3.1214 2.7332
(1.02π/2, 1.02π/2) 0.6429 3.0815 2.5920
(1.04π/2, 1.04π/2) 0.5665 3.5869 3.1673

Simulation results are also performed to compare the pansharpened images using proposed

pansharpening scheme for the values of the angle parameters α1 = β1= 0.98π/2 of the 2D-

DFRFT with the existing pansharpening schemes based on Hilbert vibration decomposition

(HVD F) [122], optimal filter (OMF) [89], adaptive IHS (AIHS) [5], decimated wavelet trans-

form using an additive injection model (Indusion) [118], and a trous wavelet transform using

the model-2 (ATWTM2) [50]. The pansharpened images obtained by the scheme-II are labeled

by 2D-DFRFT F2.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.10: Spatial information image I ′′α1,β1
for IKONOS satellite dataset at different val-

ues of angle parameters of the 2D-DFRFT are (a) α1=β1=0.94π/2, (b) α1=β1=0.96π/2, (c)
α1=β1=0.98π/2, (d) α1=β1=1π/2, (e) α1=β1=1.02π/2, (f) α1=β1=1.04π/2.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.11: Pansharpend images of the proposed scheme for IKONOS satellite
dataset at different values of angle parameters of the 2D-DFRFT are (a) α1=β1=0.94π/2,
(b) α1=β1=0.96π/2, (c) α1=β1=0.98π/2, (d) α1=β1=1π/2, (e) α1=β1=1.02π/2, (f)

α1=β1=1.04π/2.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.12: Pansharpened images using different pansharpening methods for IKONOS
satellite dataset are (a) Proposed 2D-DFRFT F2, (b) HVD F1, (c) OMF (d) AIHS, (e) Indusion

and (f) ATWTM2 methods.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.13: Pansharpened images using different pansharpening methods for GeoEye-1
satellite dataset are (a) Proposed 2D-DFRFT F2, (b) HVD F1, (c) OMF (d) AIHS, (e) Indusion

and (f) ATWTM2 methods.
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The pansharpened images obtained using the proposed method for value of angle parameters

α1 = β1= 0.98π/2 of the 2D-DFRFT and existing methods are shown in Fig.4.12(a)-4.12(f)

and Fig.4.13(a)-4.13(f). It can be observed from the middle portion of the image shown in

Fig.4.12(a) that this fused image reveals additional spatial information than the fused images

obtained by the existing methods. Similarly spectral quality of the fused image shown in

Fig.4.12(a) is better than the simulation results obtained by the other existing methods. Similar

remarks hold good for the other set of images shown in Fig.4.13, particularly the left corner

portion of it. Using the above pansharpened images shown in Fig.4.12(a) and 4.13(a), the qual-

ity metrics Q, SAM, ERGAS for degraded scale assessment and Dλ, DS , QNR for full scale

assessment are computed and the results are tabulated in Table 4.6 and 4.7. The bestivaluesiof

theiperformanceimeasures areihighlighted as bold face numerals. It can be seen from the quan-

titative results given in Table 4.6 for IKONOS dataset that the proposed method outperform

the other methods in terms of SAM, ERGAS, DS and QNR quality metrics while in Q4 and

Dλ are comparable in values obtained for other existing methods. Similarly from the results

give in Table 4.7 for the GeoEye-1 image dataset, it can be observed that the proposed method

outperforms the other methods in terms of Q4, SAM, ERGAS, DS and QNR quality metrics

while the Dλ comparable in value obtained for other existing methods.

TABLE 4.6: The Spectral quality assessment of the pansharpened images for IKONOS dataset
at degraded and full scale optimized 2D-DFRFT angle parameters α1 = 0.98π/2 and β1 =

0.98π/2.

Degraded scale Full scale
Q4 SAM ERGAS Time(S) Dλ DS QNR

Ref.val. 1 0 0 0 0 0 1
2D-DFRFT F2 0.6448 3.0752 2.6041 2.28 0.1206 0.1136 0.7795

HVD F1 0.6583 3.0817 2.6049 5.04 0.1158 0.1409 0.7597
OMF 0.5479 3.3195 3.0876 2.02 0.1548 0.2419 0.6407
AIHS 0.5245 4.4030 3.1710 0.61 0.2007 0.2125 0.6295

Indusion 0.5572 3.2295 2.9811 0.16 0.1728 0.2177 0.6472
ATWTM2 0.5968 3.2991 2.7752 1.02 0.1676 0.1930 0.6718

The pansharpening results are obtained using the proposed method for the values of angle

parameters (α1,β1) of the 2D-DFRFT for IKONOS and GeoEye-1 satellite images and it is

observed that pansharpened images of the proposed method for the values (0.98π/2, 0.98π/2)
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TABLE 4.7: The Spectral quality assessment of the pansharpened images for GeoEye-1 dataset
at degraded and full scale optimized 2D-DFRFT angle parameters α1 = 0.98π/2 and β1 =

0.98π/2.

Degraded scale Full scale
Q4 SAM ERGAS Time(S) Dλ DS QNR

Ref.val. 1 0 0 0 0 0 1
2D-DFRFT F2 0.7713 3.8639 2.8078 1.63 0.0451 0.0409 0.9158

HVD F1 0.7682 3.8888 2.8608 5.78 0.0654 0.0976 0.8434
OMF 0.6656 4.4149 3.4972 2.3 0.0412 0.1243 0.8396
AIHS 0.5524 4.7684 3.3077 0.63 0.1401 0.1409 0.7388

Indusion 0.6420 4.2838 3.5680 0.17 0.0828 0.0963 0.8288
ATWTM2 0.6810 4.6050 3.1848 1.04 0.0840 0.1094 0.8157

provided the best quality and hare robust against the effect of aliasing and misregistration errors

as compared to the existing schemes.
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4.5 Proposed Image Fusion Scheme using FRFT

Image fusion is the process of synthesizing two or more images of the same object which

comes from different cameras into a new image, and the new image can describe the object

more accurately. Image fusion has been widely used in military, remote sensing, robot vision,

medical image processing, and other areas. The existing image fusion methods are mainly

classified into transform domain and spatial domain methods. In the spatial domain meth-

ods, gradient basis [55], principal component analysis [56], singular value decomposition [57],

Hilbert vibration decomposition [146], empirical mode decomposition [58] etc. are used in

the image fusion. Fusion rules are directly applied into the images on the basis of pixel level

and feature level. In the transform domain methods, discrete cosine transform [59], wavelet

transform [60], curvelet transform [15] etc. are used for image fusion. Waveletidecomposition

isia widespreadimethod used for image fusion [21]. Waveletidecomposition uses basis func-

tions or different filters that are fixed and create influence in the fused image. In [21], the

wavelet transforms experienceiproblems whenianalyzingihighifrequency content, thusitending

toiloseispatialiinformation. Along with developing mathematical tools and fusion rules, the im-

age fusion methods are continually being renewed. The fractional Fourier transform (FRFT),

which is a generalized version of the conventional Fourier transform. It provides representation

in these intermediate domains, and the 2D discrete FRFT (2D-DFRFT) of a signal provides

infinite representations of the given signal in different DFRFT domains for corresponding an-

gles, and the DFRFT provides a free degree of freedom in terms of its angle parameters. The

2D-DFRFT has been applied in many image processing applications [39, 40, 41, 42, 43, 44, 45,

46, 47].

This section describes the image fusion technique based on 2D-DFRFT. The additional in-

formation obtained through 2D-DFRFT operation is added in the fused image obtain to the

conventional fusion rule. The additional degree of freedom in terms of its angle parameters
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associated with the 2D-DFRFT is exploited for obtaining better results in the proposed fusion

scheme.

The maximum selection rule is one of the commonly used fusion rule in the image fusion

applications. In the proposed method, additional information obtained through 2D-DFRFT

operation is added in the image obtained through maximum selection fusion rule. The proposed

Image U
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selection

rule

Image V

2D-DFRFT

2D-DFRFT

Maximum 
selection

rule

Fusion 
rule

EUV
Fused 
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FIGURE 4.14: Block diagram of the proposed fusion scheme

image fusion algorithm is illustrated in Fig.4.14, where source images U and V are transformed

using 2D-DFRFT defined in (4.7) as given below

Uα1,β1(m,n) = |
A−1∑
i=0

B−1∑
j=0

U(i, j)Rα1,β1(i, j,m, n)|, (4.24)

Vα1,β1(m,n) = |
A−1∑
i=0

B−1∑
j=0

V (i, j)Rα1,β1(i, j,m, n)|, (4.25)

where Uα1,β1 and Vα1,β1 are the magnitudes of the 2D-DFRFT domain representation of images

U and V corresponding to angles α1 = a1π/2 and β1 = b1π/2 respectively.
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Then detailed imagesEA andEB are obtained using Uα1,β1 and Vα1,β1 given in (4.24) and (4.25)

as given by

EU(m,n) = U(m,n)− Uα1,β1(m,n), (4.26)

EV (m,n) = V (m,n)− Vα1,β1(m,n). (4.27)

Applying the maximum selection rule on U , V and the obtained UV image as given in (3.18),

and maximum selection rule is apply on EU , EV images is expressed by

EUV (m,n) =

EU(m,n), if EU(m,n) ≥ EV (m,n),

EV (m,n), if EU(m,n) < EV (m,n),

(4.28)

The final fused image in the proposed method is obtained by

F (m,n) = UV (m,n) + α EUV (m,n), (4.29)

where F is the fused image and α is the tunning factor. The image EUV provides most of the

edge information of the source images U and V . The extracted detail image EUV given in

(4.28) and UV image given in (3.18) are added for obtaining the high detail image F .

4.5.1 Simulation Results

This section performed the Qualitative and quantitative assessment of the proposed method.

In this section, simulation results are obtained using five source image pairs (given in section

3.5.1) to compare the proposed scheme with existing fusion schemes such as (i) adaptive sparse

representation (ASR) based image fusion scheme [125], (ii) Discrete cosine harmonic wavelet

transforms (DCHWT) based image fusion scheme [29] and (iii) cross bilateral filter (CBF)

based image fusion [28].
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Simulations are carried out for different values of angle parameters (α1,β1) of the 2D-DFRFT

and it is observed that the values (0.88π/2, 0.88π/2) provide better quality of the fusion results.

In the proposed fusion rule given in (4.29), the value of tunning factor α is taken as 0.02 which

is selected through multiple simulation trials.

(a) (b) (c)

(d) (e) (f)

FIGURE 4.15: (a) MMW and (b) visible source images, fused image obtained by the (c) Pro-
posed 2D-DFRFT, (d) ASR, (e) DCHWT and (f) CBF based schemes

In the first experiment, fusion is performed on multi-sensor image pairs.

• The MMW and visible source images are shown in Figs. 4.15(a) and 4.15(b). Figs.

4.15(c) shows the fused image obtained using the proposed method, and Figs. 4.15(d),(e),(f)

show fused images using existing schemes given in [28, 29, 125].

• The IR and visible source images are shown in Figs. 4.16(a) and 4.16(b). Figs. 4.16(c)

shows the fused image obtained using the proposed method, and Figs. 4.16(d), (e), (f)

show fused images using existing schemes given in [28, 29, 125].
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.16: (a) IR and (b) visible source images, fused image obtained by the (c) Proposed
2D-DFRFT, (d) ASR, (e) DCHWT and (f) CBF based schemes

(a) (b) (c)

(d) (e) (f)

FIGURE 4.17: (a) MRI and (b) CT source images, fused image obtained by the (c) Proposed
2D-DFRFT, (d) ASR, (e) DCHWT and (f) CBF based schemes
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.18: (a) and (b) Multi-focus Book source images, fused image obtained by the (c)
Proposed 2D-DFRFT, (d) ASR, (e) DCHWT and (f) CBF based schemes

(a) (b) (c)

(d) (e) (f)

FIGURE 4.19: (a) and (b) Multi-focus Clock source images, fused image obtained by the (c)
Proposed 2D-DFRFT, (d) ASR, (e) DCHWT and (f) CBF based schemes
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• The MRI and CT medical images are shown in Figs. 4.17(a), 4.17(b). Figs. 4.17(c)

show the fused images obtained using the proposed method and fusion results of existing

schemes given in [28, 29, 125] are shown in Figs. 4.17(d), 4.17(e), 4.17(f) respectively.

By observing these figures it is clear that the images obtained using the proposed fusion tech-

nique are better in visual appearance than the images obtained using the existing techniques.

In the second experiment, the fusion is performed on multi-focus Book and Clock source image

pairs.

TABLE 4.8: Performance comparison of fused images

API SD AG H MI FS CC SF
MMW and visible source images

2D-DFRFT 7.189 6.0515 3.0547 4.2717 3.8951 1.905 0.6759 3.869
ASR 4.183 3.953 2.6103 3.6018 1.6531 1.9122 0.7009 3.2981
CBF 6.305 5.4303 2.916 4.1355 2.352 1.8994 0.6659 3.7107

DCHWT 5.4467 4.9544 2.7494 3.9545 1.7975 1.9702 0.6767 3.4529
IR and visible source images

2D-DFRFT 113.8201 30.5919 7.2281 6.76 5.8549 1.9571 0.771 9.8446
ASR 90.7209 24.096 6.4558 6.3054 1.7018 1.8968 0.7968 9.1921
CBF 89.673 27.0939 8.6559 6.4852 1.6967 1.8342 0.7532 11.3652

DCHWT 90.1042 24.696 6.7305 6.2967 1.6022 1.8344 0.7701 9.0485
MRI and CT source images

2D-DFRFT 58.8409 60.4562 9.9293 6.1919 5.7489 1.6333 0.6747 17.567
ASR 31.4959 39.1903 8.3337 6.1865 2.7663 1.6602 0.6919 14.6749
CBF 52.875 55.5312 12.8419 6.7777 5.3686 1.6227 0.6592 22.0091

DCHWT 38.0233 41.9861 8.0346 6.5888 1.9772 1.7133 0.6845 13.3888
Book source images

2D-DFRFT 86.9253 59.9457 14.4993 7.3769 9.2547 1.9831 0.9899 23.5665
ASR 83.1806 59.3426 16.7913 7.3419 8.4621 1.9904 0.9893 29.2452
CBF 82.8529 58.9722 15.3524 7.3034 8.2881 1.9922 0.9906 26.0827

DCHWT 83.0109 59.1883 16.0855 7.3315 8.1143 1.9841 0.9901 27.7148
Clock source images

2D-DFRFT 102.4419 50.549 6.8458 7.2874 8.9195 1.9749 0.9876 10.4878
ASR 96.9211 50.5028 9.0741 7.321 7.511 1.9579 0.9879 15.4741
CBF 96.5074 50.1742 10.4601 7.31 8.015 1.9622 0.9882 16.8638

DCHWT 96.6567 50.2248 8.8556 7.3868 7.0283 1.9693 0.9888 14.6276

• The multi-focus Book and Clock images are shown in Figs. 4.18(a), 4.18(b) and 4.19(a),

4.19(b). Figs. 4.18(c) and 4.19(c) shows the fused images obtained using the proposed
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TABLE 4.9: Performance comparison of fused images

QUV/F LUV/F NUV/F1 ans
MMW and visible source images

2D-DFRFT 0.9011 0.0981 0.0416 1
ASR 0.7907 0.2092 0.0109 1
CBF 0.9369 0.0619 0.0328 1

DCHWT 0.9241 0.0756 0.0141 1
IR and visible source images

2D-DFRFT 0.6731 0.3002 0.1922 1
ASR 0.7345 0.2621 0.0166 1
CBF 0.7223 0.2312 0.1371 1

DCHWT 0.7335 0.2612 0.0189 1
MRI and CT source images

2D-DFRFT 0.8663 0.1211 0.5511 1
ASR 0.8555 0.1426 0.0286 1
CBF 0.8816 0.1082 0.1004 1

DCHWT 0.8145 0.182 0.0297 1
Book source images

2D-DFRFT 0.9813 0.0154 0.0152 1
ASR 0.9704 0.0276 0.0077 1
CBF 0.982 0.018 3.78E-05 1

DCHWT 0.978 0.0212 0.0024 1
Clock source images

2D-DFRFT 0.7324 0.2646 0.0188 1
ASR 0.9137 0.0833 0.022 1
CBF 0.9257 0.0742 5.67E-04 1

DCHWT 0.9102 0.0881 0.0091 1

method and fusion results of existing schemes given in [28, 29, 125] are shown in Figs.

4.18(d), 4.18(e), 4.18(f) and Figs. 4.19(d), 4.19(e), 4.19(f).

By observing Fig.4.18 and Fig.4.19, it is clear that the fused images obtained using the proposed

method are comparable to the images obtained using the existing techniques.

From Figs. 4.15- Fig.4.19, it is clear that in the proposed scheme edges of the fused image are

very clear and sharp as compared to the existing methods. In the proposed fusion scheme, it

combines the edge information present in the high frequency component to the source images

and resulting fused images have better spatial quality as compared to the existing methods.

Table 4.8 and 4.9 shows the performance of the fusion on multi-sensor and multi-focus image

pairs. The performance of the existing and proposed fusion methods are compared with the
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objective fidelity criterion measures such as API, SD, AG, H, MI, FS, CC, SF, QAB/F , LAB/F

and NAB/F . It is well known that for better fusion performance values of the API, SD, AG, H,

MI, SF,QAB/F should have higher value and LAB/F ,NAB/F should have lower value. In Tables

4.8 and 4.9 the best value of the performance measures are highlighted as bold face numerals.

It can be observed from Tables 4.8 and 4.9 that the performance metrics API, SD, AG, H, MI,

FS, CC, SF, QAB/F measures are highest values and LUV/F , NAB/F are lowest values for the

proposed scheme in both of the experiments conducted. The comparative analyses show that

the visual quality of the fused images are improved in the proposed method as compared to the

existing methods.

4.6 Conclustions

In this chapter, two 2D-DFRFT based pansharpening and one image fusion schemes are pro-

posed. In the proposed pansharpening scheme-I, the additional degree of freedom in terms of

its angle parameters associated with the 2D-DFRFT is optimized by single objective particle

swarm optimization (PSO) algorithm for obtaining the best results in the proposed pansharp-

ening scheme. The optimized values of angle parameters (α1,β1) obtained using PSO algorithm

for IKONOS and GeoEye-1 satellite images are (0.0689π/2, 0.0710π/2) and (0.0851π/2, 0.0991π/2)

respectively. In scheme-II, pansharpening results obtained using the proposed method for the

values of angle parameters (α1,β1) of the 2D-DFRFT for IKONOS and GeoEye-1 satellite

images and it is observed that pansharpened images of the proposed method for the values

(0.98π/2, 0.98π/2) provide the best quality.

The qualitative and quantitative analysis of the presented simulation results shows that the pro-

posed technique provides improved spectral and spatial quality fused image as compared to

some of the existing pansharpening techniques for the IKONOS and GeoEye-1 satellite im-

ages. The effects of aliasing and mis-registration errors on our proposed methods are also

investigated and compared with other existing pansharpening methods. It is also seen that the
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proposed methods are robust against aliasing and mis-registration errors. In the proposed image

fusion scheme, additional information obtained through 2D-DFRFT operation is added in the

image obtained through maximum selection fusion rule. Simulation results are carried out for

different values of angle parameters (α1,β1) of the 2D-DFRFT and it is observed that the values

(0.88π/2, 0.88π/2) provide better quality of the fusion results. The qualitative and quantita-

tive analysis of the presented simulation results shows that the proposed technique provides

improved spatial quality fused image as compared to some of the existing fusion techniques.
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Graph Signal Processing Based Image

Fusion/Pansharpening Schemes

In this chapter, the recently developed Graph signal processing (GSP)/spectral graph wavelet

filterbank (SGWF) based image fusion/pansharpening schemes are presented. The graph rep-

resentations of the regular signals have been shown to be promising in practice recently [48].

Digital images can also be interpreted as graphs where every pixel in the image with its neigh-

boring pixels (nodes) and by interpreting pixel values as the values of the graph-signal at each

node. The advantage of this interpretation of images as graphs is in terms of the flexibility

of linking pixels in arbitrary ways, leading to different filtering/downsampling patterns [48].

Recently, two-channel graph filterbank has been introduced [147] and has shown improved

performance in different applications [49, 148, 149]. The structure of this chapter is as fol-

lows: In section 5.1, introduction and a brief literature review is presented; in Section 5.2,

the details of the SGWF method are explained; Section 5.3 provides details of the proposed

pansharpening scheme and simulation results which gives a comparative analysis of proposed

scheme with existing schemes; Section 5.4 describes the proposed image fusion method with

simulation results which gives a comparative analysis of the proposed scheme with existing
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schemes. Section 5.5 provides the comparison between proposed pansharpening and image

fusion techniques, Conclusions are drawn in Section 5.6.

5.1 Introduction

Remote sensing satellite sensors collect imagery with different spatial and spectral resolutions

in multispectral (MS) and panchromatic (PAN) images. The PAN image has low spectral and

high spatial resolution, while the MS images have low spatial and high spectral resolution [123].

The MS sensors with high spatial resolution are limited by technical constraints of the remote

sensing satellite system [127]. Due to these constraints the high spatial resolution MS images

are obtained by the pansharpening method, which combines information in MS images with

information derived from higher spatial resolution PAN image [67]. One of the pansharpen-

ing scheme is based on multiresolution analysis (MRA). The multiresolution-analysis (MRA)

based methods employ spatial filters to extract the high frequency information from the PAN

image [150]. This high frequency information is added into the upscaled MS images, possibly

weighted using a suitable injection model [151]. Wavelet transform (WT) [6], high pass filter-

ing (HPF) [152], generalized Laplacian pyramid (GLP) [84], etc. are examples of MRA based

pansharpening schemes. The undecimated wavelet decompositions and Laplacian pyramids,

have proven to the effective in implementing fusion at different resolutions [71, 84].

In this chapter, a new pansharpening scheme using two-channel graph filterbank is proposed.

The highpass component in the graph filterbank can be used for adding the spatial information

from PAN image to MS images for pansharpening purpose. Simulations are carried out us-

ing MATLAB on IKONOS and GeoEye-1 satellite datasets. The results using different types

of two-channel graph filterbank in the proposed method are compared with the existing pan-

sharpening schemes based on decimated wavelet transform using an additive injection model

(Indusion) [118] and additive wavelet luminance proportional (AWLP) [6], a-trous wavelet

transform using the model 2 (ATWTM2) [50]. In the proposed pansharpening method, we have
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FIGURE 5.1: Critically sampled two-channel graph filterbank.

investigated the effect of aliasing and misregistration errors and compared it with other existing

pansharpening methods using the methodology discussed in [143].

5.2 Review of SGWF

Graphs are mathematical structures representing a set of objects related to each other. The ob-

jects are represented by vertices or nodes and the relations are encoded by edges interconnecting

the nodes [147]. The objects and the interconnections vary depending on the application of in-

terest. To be explicit, a graph G of size N , is an ordered pair (V , E), where V is the set of N

vertices of the graph indexed from 0 to (N − 1) and E is the set of all edges in the graph [147].

Digital images have also been interpreted as graph signals where every pixel is considered a

node and the pixel value as the value of the graph signal at the corresponding node [147]. The

advantage of this interpretation of images as graphs is in terms of the flexibility of linking pix-

els in arbitrary ways, leading to different filtering/downsampling patterns [48] with improved

results in different applications. A two-channel wavelet filterbank on a graph provides a de-

composition of any graph signal into a lowpass and a highpass graph signal component [147].

The two channels of the filterbank are characterized by the graph filters {Li, Hi}iε{0,1} and the

downsampling operations JβH and JβL [48] as shown in Fig.5.1. The L0 and H0 act as a low-

pass and highpass filters respectively. The filtering operations in each channel are followed by
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downsampling operations JβH and JβL described in detail in [147]. The output signals in the

lowpass and highpass channels, after reconstruction are expressed as [147]

P̂L =
1

2
L1(I + JβL)L0P, (5.1)

P̂H =
1

2
H1(I + JβH )H0P (5.2)

respectively. To describe the operation of two-channel filterbank as shown in Fig.5.1, let us

denote the entire operation in (5.1) as an operator O2
L(.) operating on input signal P for the

sake of brevity. Therefore (5.1) can be written as

P̂L = O2
L(P ). (5.3)

The overall output P̂ of the filterbank is the sum of outputs of the two channels, i.e., P̂ =

P̂L + P̂H = TP , where T is the overall transfer function of the filterbank given by [48]:

T =
1

2
L1(I+JβL)L0+

1

2
H1(I+JβH )H0,=

1

2
(L0L1+H0H1)+

1

2
(L1JβLL0+H1JβHH0). (5.4)

In (5.4), the spectral folding term (L1JβLL0 + H1JβHH0) arising from downsampling and

upsampling must be zero. In addition, T = IN should be satisfied for perfect reconstruction,

where IN is an N ×N identity matrix.

The decomposition scheme shown in Fig.5.1 has also been extended for M -channels and mul-

tiscale decomposition [153].
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5.3 Spectral Graph Wavelet Filterbank Based Proposed Pan-

sharpening Algorithm

The aim of the pansharpening scheme for remote sensing images is to generate the pansharp-

ened MS images with high spatial and spectral resolution. Some pansharpening schemes

achieve this by adding the spatial information from the PAN image into the MS images. The

spatial information of the PAN image is extracted by some filtering technique using Fourier

transform, wavelet transform etc. In the present pansharpening scheme we propose the use of

SGWF for extracting the information from the PAN image. In the proposed method the low-

pass signal generated from multistage multichannel of SGWF decomposition will be used to

add additional information in the MS images using appropriate pansharpening rule. The block

diagram of the proposed pansharpening method is given in Fig.5.2. Here the input MS images

are up-sampled and interpolated to the size of PAN image by using scheme described in [116].
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FIGURE 5.2: Block diagram of the proposed panshapening method

The interpolated PAN image P is decomposed by the SGWF (as shown in Fig.5.2). The details

of the SGWF decomposition block is given in Fig.5.3. Here, an Mk-channel SGWF decompo-

sition operator similar to the operator appearing in (5.3), giving us lowpass component of the

input signal is denoted as OMk
L (.). The relationship between output lowpass component and
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FIGURE 5.3: SGWF decomposition

input signal at kth stage of decomposition in Fig.5.3, therefore, can be written as

P̂
Mk+1

L = O
Mk+1

L (P̂Mk
L ), (5.5)

where k = 1, 2, ..., K−1 and K−1 are the total stages in the SGWF decomposition and Mk+1

denotes the number of channels at kth stage in the SGWF decomposition. Therefore, for the

first stage in the decomposition P = P̂M1
L .

The output image PL after the SGWF decomposition block in Fig.5.2 is obtained using

PL =
K−1∑
k=1

αkP̂
Mk+1

L , (5.6)

where αk are the weighting coefficients. The coefficients αk are obtained by optimizing single

objective optimization technique using fitness function involving the quality metrics such as

relative dimensionless global error in synthesis (ERGAS), spectral angle mapper (SAM) etc.

[31], [34]. In this scheme we have used ERGAS as quality metric in the fitness function.

Therefore the task of optimization is to minimize the ERGAS metric to obtain the pansharpened

image with minimum spatial distortion. The fitness function f for the optimization problem is

formulated as

f = minimize
(αk)

[
ERGAS

]
, k = 1, 2, ..., K − 1 (5.7)
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The ERGAS in (5.7) is a measure of spatial distortion between the reference MS and pansharp-

ened images (obtained by applying Wald’s protocol at degraded scale) and is given by [31]

ERGAS = 100
h

l

√√√√ 1

n

n∑
r

(
RMSE(MSr,MSr)

µ(MSr)

)2

, (5.8)

where r = 1, 2, ..., n,. Here h/l is the ratio of resolution of PAN and MS images, MSr are

the rth reference MS images and n denotes the total number of band images (the value of n is

usually four to combine red, blue, green and infrared component images), µ(MSr) is the mean

of the rth band image, RMSE(A,B) stands for root mean square error between images A and

B, and MSr is the pansharpened image obtained using proposed pansharpening rule applied at

the degraded scale as per the Wald’s protocol [31]. It is assumed that the weighting coefficients

αk obtained at degraded scale using Wald’s protocol will continue to be same for the full scale

proposed pansharpening rule given below.

Using (5.6), we propose the following pansharpening rule as

M̂Sr = M̃Sr + γ Gr (P − PL), r = 1, 2, ..., n, (5.9)

where M̂Sr is the pansharpened image, γ is the tunning factor obtained through simulation

trials, M̃Sr are the rth interpolated MS images at the scale of the PAN image and Gr are the

injection coefficients obtained from the regression between each MS images and image PL [32].

The injection coefficients Gr are calculated using [66]

Gr =
cov(M̃Sr, PL)

var(PL)
, r = 1, ..., n, (5.10)

where var(PL) is the variance of image PL and cov(M̃Sr, PL) indicates the covariance between

two images M̃Sr and PL.

Thus the relevant and additional spatial details extracted from the P image is injected into
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the MS images by SGWF, giving us improved spatial and spectral details in the pansharpened

image as compared to the existing pansharpening techniques.

5.3.1 Simulation Results

To test the proposed pansharpening scheme, dataset collected by the GeoEye-1 satellites is

used. The size of the MS image for GeoEye-1 is 324× 324.

To evaluate the pansharpening results, we follow the Wald’s protocol [31]. According to this

protocol, the PAN and MS images are degraded to the lower resolution to compare the pan-

sharpened image with the reference original MS images [32]. The quality metrics for evaluating

the quality of the pansharpened images obtained through the proposed method considered in

this scheme are Q-index (Q4) [33], spectral angle mapper (SAM) [34], relative dimensionless

global error (ERGAS) [31], and quality with no-reference (QNR). The QNR is composed of

a spectral (Dλ) and spatial (DS) distortion indices, without requiring high-resolution reference

MS images [37].

(a) (b)

FIGURE 5.4: Input images for GeoEye-1 satellite dataset are (a) PAN image, (b) EXP MS
images.

In the proposed pansharpening rule given in (5.9), the value of tunning factor γ is taken as

0.73 which is selected through multiple simulation trials. The number of decomposition stages
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

FIGURE 5.5: The Spectral quality assessments of the pansharpened images obtained by the pro-
posed method using multistage multichannel decomposition are (a) M2 = 2,M3 = 0,M4 = 0,
(b) M2 = 3,M3 = 0,M4 = 0, (c) M2 = 4,M3 = 0,M4 = 0, (d) M2 = 2,M3 = 2,M4 = 0,
(e) M2 = 2,M3 = 3,M4 = 0, (f) M2 = 3,M3 = 3,M4 = 0, (g) M2 = 3,M3 = 4,M4 = 0,
(h) M2 = 2,M3 = 3,M4 = 4, (i) M2 = 2,M3 = 2,M4 = 2, (j) M2 = 3,M3 = 3,M4 = 3,

(k) M2 = 4,M3 = 4,M4 = 4.

(K−1) is taken as three since it is observed that larger values of decomposition stages increases

the computational cost without significantly improving the quality of the pansharpened images.

The image obtained through the re-sampling of the MS images to the size of the PAN image

using interpolation [116] is labeled by EXP MS image. The input PAN and MS images for

GeoEye-1 satellite dataset are shown in Fig.5.4(a) and (b).
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(a) (b)

(c) (d)

FIGURE 5.6: Pansharpened images obtained by the proposed pansharpening scheme using
different filterbanks (a) SWF, (b) MHWF, (c) MWF, (d) SPWF.

The simulations are performed for different values of parameters M2,M3, and M4 using the

multistage multichannel MHWF. The obtained pansharpened images are shown in Fig.5.5(a)-

5.5(k). The quality metrics Q4, SAM and ERGAS for degraded scale assessment are computed

for Fig.5.5(a)-5.5(k) and results are tabulated in Table 5.1. The best values of the performance

measures are highlighted as boldface numerals. It can be seen from the Table 5.1 that for

parameter values of M2 = 2,M3 = 3 and M4 = 4, the quality metric SAM is turning out to be

better than the other values of parameters for M2,M3 and M4. It can be observed that quality

metrics Q4 and ERGAS values are almost same for different combinations of M2,M3 and M4.

To evaluate the performance of the proposed pansharpening schemes for filterbanks based on

different wavelets such as SW filterbank (SWF), MHWF, MW filterbank (MWF) and SPW

filterbank (SPWF), simulations are carried out for parameter values M2 = 2,M3 = 3 and
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(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 5.7: Pansharpened images obtained using proposed and existing pansharpening
schemes (a) Proposed MHWF, (b) ATWT, (c) AWLP, (d) ATWTM2, (e) MTF-GLP, (f) GLP-PP,

(g) GLP-HPM, (h) GLP-CBD.

M4 = 4, and the results are shown in Fig.5.6(a)-5.6(d), respectively. It can be seen from the

pansharpened image obtained by the MHWF shown in Fig.5.6(b) has better spatial and spectral

details than the other filterbanks.
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TABLE 5.1: The quality assessment of the pansharpened images obatined using multistage
multichannel decomposition at degraded scale.

Weighting coefficients Degraded scale
M2,M3,M4 α1, α2, α3 Q4 SAM ERGAS

Multi-stage (K-1)=1
2, 0, 0 1, 0, 0 0.7627 3.6841 2.7077
3, 0, 0 1, 0, 0 0.7714 3.7676 2.8587
4, 0, 0 1, 0, 0 0.7713 3.7727 2.8644

Multi-stage (K-1)=2
2, 2, 0 0.01, 0.9944, 0 0.7631 3.6811 2.7112
2, 3, 0 0.3885, 0.6066, 0 0.7722 3.6935 2.7717
3, 3, 0 1, 0.01, 0 0.7707 3.7690 2.8546
3, 4, 0 1, 0.01, 0 0.7707 3.7691 2.8546

Multi-stage (K-1)=3
2, 3, 4 0.781, 0.135, 0.083 0.7681 3.6669 2.7150
2, 2, 2 0.023, 0.980, 0.012 0.7615 3.6811 2.7175
3, 3, 3 0.991, 0.010, 0.010 0.7706 3.7715 2.8564
4, 4, 4 0.983, 0.012, 0.013 0.7707 3.7764 2.8630

Using the above pansharpened images shown in Fig.5.6(a)-5.6(d) the quality metrics Q4, SAM,

ERGAS for degraded scale assessment and Dλ, DS , QNR for full scale assessment are com-

puted and the results are tabulated in Table 5.2. It can be seen from the quantitative results

given in Table 5.2 that the MHWF provides the better result in terms of Q4, SAM, ERGAS

quality metrics as compared to the other filterbanks.

TABLE 5.2: The quality assessment of the pansharpened images obatined using different filter-
banks at degraded and full scale.

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref. value 1 0 0 0 0 1
SWF 0.7514 3.7259 2.7243 0.0337 0.0598 0.9086

MHWF 0.7681 3.6669 2.7150 0.0509 0.0942 0.8597
MWF 0.6753 4.0924 3.1383 0.0023 0.0626 0.9353
SPWF 0.6751 4.0927 3.1390 0.0017 0.0642 0.9342

To compare the simulation results obtained by proposed pansharpening method using param-

eter values M2 = 2,M3 = 3 and M4 = 4 with multistage multichannel MHWF with the

existing pansharpening schemes based on additive à trous wavelet transform with unitary in-

jection model (ATWT) [51], additive wavelet luminance proportional (AWLP) [6], à trous
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TABLE 5.3: The quality assessment of the pansharpened images using proposed and existing
pansharpening schemes at degraded and full scale.

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
MHWF 0.7681 3.6669 2.7150 0.0509 0.0942 0.8597
ATWT 0.7557 3.6680 2.7674 0.1203 0.1495 0.7482
AWLP 0.7445 3.7842 2.7860 0.1247 0.1493 0.7447

ATWTM2 0.6728 4.4373 3.0822 0.0761 0.0984 0.8330
MTF-GLP 0.7548 3.661 2.7608 0.1214 0.1467 0.7497
GLP-PP 0.7198 4.2476 3.002 0.1819 0.2083 0.6477

GLP-HPM 0.7515 3.7105 2.7822 0.1216 0.1474 0.7489
GLP-CBD 0.7591 3.7318 2.8534 0.0668 0.1077 0.8326

wavelet transform using the model-2 (ATWTM2) [50], generalized Laplacian pyramid (GLP)

with modulation transfer function (MTF) matched filter using unitary injection model (MTF-

GLP) [154], multiplicative injection model and post-processing (GLP-PP) [115], multiplicative

injection model (GLP-HPM) [68], and regression based injection model (GLP-CBD) [155] are

shown in Fig.5.7(a)-5.7(h).

It can be seen from the pansharpened images obtained by the proposed method shown in

Fig.5.7(a) that it provides additional spatial and spectral information as compared to the ex-

isting pansharpening methods. Simulation results of the quality metrics using these images are

tabulated in Table 5.3. It can be seen from the quantitative results given in Table 5.3 that the

proposed method outperforms the other methods in terms of all the quality metrics considered

in this scheme except SAM. Optimizing the weighted combination of subband information

provided by the SGWF in the proposed pansharpening rule is the main reason for improved

pansharpening results here.

In the proposed method, effects of aliasing and misregistration errors are evaluated by comput-

ing Q4 metric as a function of Nyquist frequency and Q4 metric as a function of misregistra-

tion displacement respectively. The simulation results of the proposed and existing schemes are

shown in Fig.5.8. For aliasing error, it can be seen from Fig.5.8(a) that Q4 metric increases with
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(a) (b)

FIGURE 5.8: Quality index (a) for increasing amounts of aliasing, measured by the amplitude
at nyquist frequency of the Gaussian-like low-pass filter simulating the modulation transfer
functions of the multispectral instrument, and (b) for increasing amounts of misregistration

between MS and PAN images.

increasing Nyquist frequency values initially but becomes almost constant for higher Nyquist

frequency values beyond 0.3 Hz. For misregistration errors, it can be observed from Fig.5.8(b),

the parameter Q4 has attained almost a constant value after the displacement error beyond 15m.

Thus it is observed that the proposed method provides better results and robustness against reg-

istration error and aliasing effect.
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5.4 Proposed image fusion scheme

In the present scheme, we propose the use of SGWF for extracting additional information

from source images. In the proposed image fusion scheme, the lowpass signal generated from

multistage multichannel of SGWF decomposition will be used to add additional information

in the source images using appropriate fusion rule. The proposed image fusion algorithm is

Image U

Maximum 

selection

rule

Image V

SGWF

SGWF

Maximum 

selection

rule

Fusion 

rule

Fused 

image 

F

UL

VL

FIGURE 5.9: Block diagram of the proposed fusion scheme

illustrated in Fig.5.9. The source images U and V are decomposed by the SGWF (as shown in

Fig.5.2). The details of the SGWF decomposition block is given in Fig.5.3. The output lowpass

component and input signal at kth stage of decomposition in Fig.5.3, therefore, can be written

as

Û
Mk+1

L = O
Mk+1

L (ÛMk
L ), (5.11)

V̂
Mk+1

L = O
Mk+1

L (V̂ Mk
L ), (5.12)

where k = 1, 2, ..., K − 1 and K − 1 is the total stages in the SGWF decomposition and Mk+1

denotes the number of channels at kth stage in the SGWF decomposition. Therefore, for the

first stage in the decomposition U = ÛM1
L .

Now by applying the maximum selection rule on ÛMk+1

L , V̂ Mk+1

L images are expressed by
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ÛV
Mk+1

L (m,n) =

Û
Mk+1

L (m,n), if Û
Mk+1

L (m,n) ≥ V̂
Mk+1

L (m,n),

V̂
Mk+1

L (m,n), if Û
Mk+1

L (m,n) < V̂
Mk+1

L (m,n),

(5.13)

Using UV and ÛV
Mk+1

L images given in (3.18) and (5.13) respectively, the final fused image is

obtained:

F (m,n) = UV (m,n) + α ÛV
Mk+1

L (m,n), (5.14)

where F is the fused image and α is the tunning factor. The images ÛV
Mk+1

L and UV provide

additional information of the source images U and V .

5.4.1 Simulation Results

Simulation results of the proposed fusion method based on SGWF are performed using MAT-

LAB. The proposed fusion method is applied on five source image pairs which are divided into

two groups (given in section 3.5.1). Simulations are also performed to compare the proposed

scheme with other fusion schemes such as (i) adaptive sparse representation (ASR) based im-

age fusion scheme [125], (ii) Discrete cosine harmonic wavelet transforms (DCHWT) based

image fusion scheme [29] and (iii) cross bilateral filter (CBF) based image fusion [28]. The

mexican-hat wavelet filterbank (MHWF) is used in the proposed fusion scheme. In the fusion

rule given in (5.14), the value of tunning factor α is taken as 0.5 which is selected through

multiple simulation trials. The number of channels Mk+1 and decomposition stages (K − 1)

are taken as two and one respectively, since it is observed that larger values of channels and de-

composition stages increase the computational cost without significantly improving the quality

of the fused image.

In the first experiment, fusion is performed on multi-sensor source image pairs. The MMW and

visible source images are shown in Figs. 5.10(a) and 5.10(b). Figs. 5.10(c) shows the fused
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(a) (b) (c)

(d) (e) (f)

FIGURE 5.10: (a) MMW and (b) visible source images, fused image obtained by the (c) Pro-
posed MHWF, (d) ASR, (e) DCHWT and (f) CBF based schemes

(a) (b) (c)

(d) (e) (f)

FIGURE 5.11: (a) IR and (b) visible source images, fused image obtained by the (c) Proposed
MHWF, (d) ASR, (e) DCHWT and (f) CBF based schemes
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(a) (b) (c)

(d) (e) (f)

FIGURE 5.12: (a) MRI and (b) CT source images, fused image obtained by the (c) Proposed
MHWF, (d) ASR, (e) DCHWT and (f) CBF based schemes

(a) (b) (c)

(d) (e) (f)

FIGURE 5.13: (a) and (b) Multi-focus Book source images, fused image obtained by the (c)
Proposed MHWF, (d) ASR, (e) DCHWT and (f) CBF based schemes
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(a) (b) (c)

(d) (e) (f)

FIGURE 5.14: (a) and (b) Multi-focus Clock source images, fused image obtained by the (c)
Proposed MHWF, (d) ASR, (e) DCHWT and (f) CBF based schemes

image obtained using the proposed method, and Figs. 5.10(d),(e),(f) show fused images using

existing schemes given in [28, 29, 125].

The IR and visible source images are shown in Figs. 5.11(a) and 5.11(b). Figs. 5.11(c) shows

the fused image obtained using the proposed method, and Figs. 5.11(d), (e), (f) show fused

images using existing schemes given in [28, 29, 125].

The MRI and CT medical images are shown in Figs. 5.12(a) and 5.12(b). Figs. 5.12(c) show

the fused images obtained using the proposed method and fusion results of existing schemes

given in [28, 29, 125] are shown in Figs. 5.12(d), 5.12(e), 5.12(f) respectively.

In the second experiment, fusion is performed on multi-focus Book and Clock source image

pairs. The multi-focus Book and Clock images are shown in Figs. 5.13(a), 5.13(b) and 5.14(a),

5.14(b). Figs. 5.13(c) and 5.14(c) shows the fused images obtained using the proposed method
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and fusion results of existing schemes given in [28, 29, 125] are shown in Figs. 5.13(d), 5.13(e),

5.13(f) and Figs. 5.14(d), 5.14(e), 5.14(f).

By observing Fig.5.13 and Fig.5.14, it is clear that the fused images obtained using the proposed

method are comparable to the images obtained using the existing techniques.

TABLE 5.4: Performance comparison of fused images

API SD AG H MI FS CC SF
MMW and visible source images

MHWF 7.8048 6.7815 3.979 4.4143 2.723 1.8812 0.6679 5.0877
ASR 4.183 3.953 2.6103 3.6018 1.6531 1.9122 0.7009 3.2981
CBF 6.305 5.4303 2.916 4.1355 2.352 1.8994 0.6659 3.7107

DCHWT 5.4467 4.9544 2.7494 3.9545 1.7975 1.9702 0.6767 3.4529
IR and visible source images

MHWF 114.7432 32.3668 9.3547 6.8001 3.1917 1.9374 0.77 12.9256
ASR 90.7209 24.096 6.4558 6.3054 1.7018 1.8968 0.7968 9.1921
CBF 89.673 27.0939 8.6559 6.4852 1.6967 1.8342 0.7532 11.3652

DCHWT 90.1042 24.696 6.7305 6.2967 1.6022 1.8344 0.7701 9.0485
MRI and CT source images

MHWF 61.7319 65.186 12.0362 6.7645 3.7959 1.6216 0.6734 22.1834
ASR 31.4959 39.1903 8.3337 6.1865 2.7663 1.6602 0.6919 14.6749
CBF 52.875 55.5312 12.8419 6.7777 5.3686 1.6227 0.6592 22.0091

DCHWT 38.0233 41.9861 8.0346 6.5888 1.9772 1.7133 0.6845 13.3888
Book source images

MHWF 87.2041 64.3846 20.8155 7.53 5.647 1.9839 0.9787 34.3782
ASR 83.1806 59.3426 16.7913 7.3419 8.4621 1.9904 0.9893 29.2452
CBF 82.8529 58.9722 15.3524 7.3034 8.2881 1.9922 0.9906 26.0827

DCHWT 83.0109 59.1883 16.0855 7.3315 8.1143 1.9841 0.9901 27.7148
Clock source images

MHWF 102.7995 52.4396 9.3678 7.4717 6.236 1.9838 0.9862 14.8475
ASR 96.9211 50.5028 9.0741 7.321 7.511 1.9579 0.9879 15.4741
CBF 96.5074 50.1742 10.4601 7.31 8.015 1.9622 0.9882 16.8638

DCHWT 96.6567 50.2248 8.8556 7.3868 7.0283 1.9693 0.9888 14.6276

Table 5.4 and 5.5 shows the performance of the fusion on multi-sensor and multi-focus image

pairs. The performance of the existing and proposed fusion methods are compared with the

objective fidelity criterion measures such as API, SD, AG, H, MI, FS, CC, SF, QAB/F , LAB/F

and NAB/F . It is well known that for better fusion performance values of the API, SD, AG,

H, MI, SF, QAB/F should have higher value and LAB/F , NAB/F should have lower value. In

the Table 5.4 and 5.5 the best value of the performance measures are highlighted as bold face

numerals. It can be observed from the Table 4.8 and 4.9 that the performance metrics API,
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TABLE 5.5: Performance comparison of fused images

QUV/F LUV/F NUV/F1 ans
MMW and visible source images

MHWF 0.9345 0.0514 0.7002 1
ASR 0.7907 0.2092 0.0109 1
CBF 0.9369 0.0619 0.0328 1

DCHWT 0.9241 0.0756 0.0141 1
IR and visible source images

MHWF 0.7149 0.2162 0.3647 1
ASR 0.7345 0.2621 0.0166 1
CBF 0.7223 0.2312 0.1371 1

DCHWT 0.7335 0.2612 0.0189 1
MRI and CT source images

MHWF 0.8666 0.109 0.6507 1
ASR 0.8555 0.1426 0.0286 1
CBF 0.8816 0.1082 0.1004 1

DCHWT 0.8145 0.182 0.0297 1
Book source images

MHWF 0.9277 0.0068 0.1792 1
ASR 0.9704 0.0276 0.0077 1
CBF 0.982 0.018 3.78E-05 1

DCHWT 0.978 0.0212 0.0024 1
Clock source images

MHWF 0.8102 0.1578 0.1443 1
ASR 0.9137 0.0833 0.022 1
CBF 0.9257 0.0742 5.67E-04 1

DCHWT 0.9102 0.0881 0.0091 1

SD, AG, H, MI, FS, CC, SF, QAB/F measures are the highest values and LUV/F , NAB/F are

lowest values for the proposed scheme in both of the experiments conducted. The comparative

analyses show that the visual quality of the fused images is improved in the proposed method

as compared to the existing methods.
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5.5 Comparison of the Proposed Schemes

This section compares the proposed image fusion/pansharpening schemes using HVD, 2D-

DFRFT and SGWF techniques. The comparison is categorized into (i) pansharpening schemes

and (ii) image fusion schemes.

5.5.1 Pansharpening Schemes

(a) (b)

(c) (d) (e)

FIGURE 5.15: Pansharpened images obtained for GeoEye-1 satellite dataset using proposed
pansharpening schemes are (a) HVD F1, (b) HVD F2, (c) 2D-DFRFT F1, (d) 2D-DFRFT F2,

(e) MHWF

To test the proposed pansharpening schemes, dataset collected by the GeoEye-1 satellites is

used. The size of MS image is 324 × 324. To evaluate the pansharpening results, we follow
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the Wald’s protocol [31]. According to this protocol, the PAN and MS images are degraded

to a lower resolution to compare the pansharpened image with the reference original MS im-

ages [32]. The quality metrics for evaluating the quality of the pansharpened images obtained

through the proposed method considered in this scheme are Q-index (Q4) [33], spectral angle

mapper (SAM) [34], relative dimensionless global error (ERGAS) [31], and quality with no-

reference (QNR). The QNR is composed of spectral (Dλ) and spatial (DS) distortion indices,

without requiring high-resolution reference MS images [37].

TABLE 5.6: The quality assessment of the pansharpened image for proposed pansharpening
schemes at degraded and full scale for GeoEye-1 satellite dataset

Degraded scale Full scale
Q4 SAM ERGAS Dλ DS QNR

Ref.val. 1 0 0 0 0 1
HVD F1 0.7578 3.7614 2.7778 0.0632 0.0945 0.8483
HVD F2 0.7598 3.7471 2.7648 0.0801 0.1545 0.7778

2D-DFRFT F1 0.7430 3.8497 2.8213 0.0655 0.0388 0.8982
2D-DFRFT F2 0.7590 3.7253 2.7192 0.1623 0.0964 0.7569

MHWF 0.7681 3.6669 2.7150 0.0509 0.0942 0.8597

Simulations are performed to compare the results of the proposed pansharpening methods using

HVD, 2D-DFRFT and SGWF techniques. The HVD based pansharpening scheme-I and II are

denoted by the HVD F1 and HVD F2 respectively. Similarly, for 2D-DFRFT based proposed

pansharpening scheme-I and II are labeled by the 2D-DFRFT F1 and 2D-DFRFT F2 respec-

tively, and the SGWF/GSP based scheme is MHWF. The obtained pansharpened images are

shown in Fig.5.15(a)-5.15(e). It is observed from the image shown in Fig.5.15(e) (obtained by

the SGWF based pansharpening scheme) that the image has higher spatial and spectral resolu-

tion as compared to the other proposed methods shown in Fig.5.15(a)-5.15(d).

Simulation results of the quality metrics using images shown in Fig.5.15(a)-5.15(e) are tab-

ulated in Table 5.6. It can be seen from the quantitative results given in Table 5.6 that the

proposed method using MHWF outperforms in terms of the quality metrics Q4, SAM, ERGAS

except QNR.
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In degraded scale, the performance parameters Q4, SAM, and ERGAS are measure the quality

index, spectral and spatial distortion of the fused image respectively [31, 33, 34] and in the

full scale QNR comprises two indexes, one pertaining to spectral distortion (Ds) and other

to spatial distortion (Dγ). For the better simulation results, both the full and degraded scale

performances needs to provide the highest value [156]. The MHWF based proposed scheme

provides better performance in degraded scale while the 2D-DFRFT F1 gives best result in the

full scale. There are minor differences in the QNR values of the MHWF and 2D-DFRFT F1.

Therefore, MHWF based proposed scheme has better results as compared to the other proposed

schemes.

5.5.2 Image Fusion Schemes

This section compares the simulation results of the proposed image fusion schemes using HVD,

2D-DFRFT and SGWF techniques. The proposed fusion methods are applied on five source

image pairs which are divided into two groups: (i) Multi-spectral source images and (ii) Multi-

focus source images.

In the first experiment, fusion is performed on multi-spectral images:

(a) (b) (c)

FIGURE 5.16: (a) MMW and (b) visible source images, fused image obtained by the proposed
schemes using (a) HVD FS1, (b) 2D-DFRFT, (c) MHWF
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(a) (b) (c)

FIGURE 5.17: (a) IR and (b) visible source images, fused image obtained by the proposed
schemes using (a) HVD FS1, (b) 2D-DFRFT, (c) MHWF

(a) (b) (c)

FIGURE 5.18: (a) MRI and (b) CT source images, fused image obtained by the proposed
schemes using (a) HVD FS1, (b) 2D-DFRFT, (c) MHWF

(a) (b) (c)

FIGURE 5.19: (a) and (b) Multi-focus Book source images, fused image obtained by the pro-
posed schemes using (a) HVD FS1, (b) 2D-DFRFT, (c) MHWF
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(a) (b) (c)

FIGURE 5.20: (a) and (b) Multi-focus Clock source images, fused image obtained by the
proposed schemes using (a) HVD FS1, (b) 2D-DFRFT, (c) MHWF

TABLE 5.7: Performance comparison of fused images

API SD AG H MI FS CC SF
MMW and visible source images

HVD FS1 7.8499 6.5217 3.105 4.3959 3.3194 1.9 0.668 3.9212
2D-DFRFT 7.189 6.0515 3.0547 4.2717 3.8951 1.905 0.6759 3.869

MHWF 7.8048 6.7815 3.979 4.4143 2.723 1.8812 0.6679 5.0877
IR and visible source images

HVD FS1 122.8502 31.8585 7.1818 6.7979 4.6808 1.9289 0.7712 9.8086
2D-DFRFT 113.8201 30.5919 7.2281 6.76 5.8549 1.9571 0.771 9.8446

MHWF 114.7432 32.3668 9.3547 6.8001 3.1917 1.9374 0.77 12.9256
MRI and CT source images

HVD FS1 63.4209 63.2239 10.0173 6.7163 4.6649 1.6188 0.6726 17.8766
2D-DFRFT 58.8409 60.4562 9.9293 6.1919 5.7489 1.6333 0.6747 17.567

MHWF 61.7319 65.186 12.0362 6.7645 3.7959 1.6216 0.6734 22.1834
Book source images

HVD FS1 94.2561 63.7642 14.6263 7.473 8.2588 1.9879 0.9901 23.7482
2D-DFRFT 86.9253 59.9457 14.4993 7.3769 9.2547 1.9831 0.9899 23.5665

MHWF 87.2041 64.3846 20.8155 7.53 5.647 1.9839 0.9787 34.3782
Clock source images

HVD FS1 110.8424 54.152 6.9568 7.4939 7.7809 1.9862 0.9869 10.5717
2D-DFRFT 102.4419 50.549 6.8458 7.2874 8.9195 1.9749 0.9876 10.4878

MHWF 102.7995 52.4396 9.3678 7.4717 6.236 1.9838 0.9862 14.8475

1. In the millimeter wave (MMW) and visible source image fusion, Figs. 5.16(a)-(c) show

the fused images obtained using the HVD, 2D-DFRFT and SGWF based proposed image

methods.

2. In the infrared (IR) and visible source image fusion, Figs. 5.17(a)-(c) show fused images

obtained by the proposed schemes using HVD, 2D-DFRFT and SGWF techniques.
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TABLE 5.8: Performance comparison of fused images

QUV/F LUV/F NUV/F1 ans
MMW and visible source images

HVD FS1 0.9043 0.0933 0.2216 1
2D-DFRFT 0.9011 0.0981 0.0416 1

MHWF 0.9345 0.0514 0.7002 1
IR and visible source images

HVD FS1 0.6739 0.301 0.1768 1
2D-DFRFT 0.6731 0.3002 0.1922 1

MHWF 0.7149 0.2162 0.3647 1
MRI and CT source images

HVD FS1 0.8641 0.1249 0.5143 1
2D-DFRFT 0.8663 0.1211 0.5511 1

MHWF 0.8666 0.109 0.6507 1
Book source images

HVD FS1 0.9791 0.0164 0.0174 1
2D-DFRFT 0.9813 0.0154 0.0152 1

MHWF 0.9277 0.0068 0.1792 1
Clock source images

HVD FS1 0.7354 0.2617 0.0199 1
2D-DFRFT 0.7324 0.2646 0.0188 1

MHWF 0.8102 0.1578 0.1443 1

3. In the MRI and CT source image fusion, Figs. 5.18(a)-(c) show fused images obtained

by the proposed schemes using HVD, 2D-DFRFT and SGWF techniques.

From Figs. 5.16-5.18, it is clear that in the SGWF based proposed fusion technique is better in

visual appearance than the images obtained using the other proposed fusion techniques.

In the second experiment, fusion is performed on multi-focus Book and Clock source image

pairs, fused images obtained using HVD, 2D-DFRFT and MHWF based proposed image fusion

schemes are shown in Fig.5.19(a)-(c) and Fig.5.20(a)-(c) respectively.

By observing Fig.5.19(c) and Fig.5.20(c), it is clear that the fused images obtained using the

SGWF based proposed method is better in visual appearance as compared to the HVD and

FRFT based proposed images fusion techniques.
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Table 5.7 and 5.8 show the performance of the fusion on multi-spectral and multi-focus images.

The comparative analyses show that the visual quality of the fused images are improved in the

SGWF based proposed method as compared to the HVD and FRFT based methods.

5.6 Conclusions

In this chapter, pansharpening and image fusion schemes using the multistage multichannel ap-

proach based on graph signal processing (GSP)/spectral graph wavelet filterbank (SGWF) are

proposed. In the proposed pansharpening method, the PAN image is decomposed by the multi-

stage M -channel SGWF, and then the weighted combination of lowpass component signals in

the multistage SGWF decomposition is used to generate the pansharpened image using the ap-

propriate pansharpening rule. Simulation results of the proposed technique using the different

number of channels and different filterbanks based on SW, MHW, MW and SPW for GeoEye-1

satellite images are also compared with existing pansharpening methods. It is observed that the

proposed pansharpening scheme provides better pansharpening results using MHW filterbank

as compared to the existing schemes. The qualitative and quantitative analysis of the presented

simulation results shows that the proposed technique using parameter values M2 = 2,M3 = 3

and M4 = 4 and MHWF provides improved spectral and spatial quality pansharpened image as

compared to some of the existing pansharpening techniques for the GeoEye-1 satellite images.

It is also seen that the proposed method is robust against aliasing and misregistration errors. In

the proposed image fusion scheme, lowpass signal generated from multistage multichannel of

SGWF decomposition is used to add additional information in the source images using appro-

priate fusion rule. The qualitative and quantitative analysis of the presented simulation results

show that the proposed technique provides improved spatial quality fused image as compared

to some of the existing fusion techniques. The comparative analysis of the proposed image

fusion/pansharpening schemes using HVD, 2D-DFRFT and SGWF techniques shows that the
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SGWF based schemes give better quantitative and qualitative results as compared to the HVD

and 2D-DFRFT techniques.
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Conclusions and Future Scope

Image fusion is a well-recognized and a conventional field of image processing. It is designed

to combine multiple input images into a fused image, which is expected to be more informative

for human or machine perception as compared to any of the input images. The main objective

of any image fusion is to improve the visual appearance, increase reliability, give robust system

performance, provide a compact representation of information in different applications like

medical imaging, remote sensing, biometrics and military, etc. Image fusion or pansharpening

scheme in the remote sensing application is to keep maximum spectral details from the original

images while increasing the spatial resolution. Spectral distortion is a significant issue for

remote sensing, in the medical field, etc. Many algorithms are developed in these areas for

better performance of the fused images.

The objective of the present research work is to developed efficient techniques for improving

the spatial and spectral quality of the fused image. For attaining these objectives, image fu-

sion/pansharpening algorithms are developed using three techniques-Hilbert vibration decom-

position (HVD), fractional Fourier transforms (FRFT) and graph signal processing (GSP).
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6.1 Summary of the Significant Findings

Some of the major findings of the present research work are described as follows:

• The HVD technique is used for developing the three new image fusion/pansharpening

schemes for improving the spatial and spectral quality of the fused image which is closer

to the filtering based approaches used in the many of the existing image fusion/pansharp-

ening schemes. The HVD decomposes a wideband input signal into many signals in the

decreasing order of the energy in terms of instantaneous amplitude and frequency com-

ponents. The instantaneous amplitude of the first signal in the decomposition obtained

through the HVD is similar in shape to the lowpass filtered version of a signal. This low-

pass signal obtained through the HVD happens to be the highest energy component of the

original signal, and it is an instantaneous frequency-based lowpass filtering of the signal.

On the other hand, the output signal obtained through the conventional lowpass filtering

does not take the energy of the input/output signal into account and is based on the fre-

quency content of the input signal only. This signal energy dependent and instantaneous

based filtering are the main advantages of the HVD over conventional lowpass filtering

based image fusion/pansharpening approaches. Performance evaluation of fused images

is done by computing fusion quality metrics, and the fusion results are compared with

other existing fusion schemes. It is seen that the performance of the proposed schemes is

better as compared to the existing fusion schemes.

• The 2D-discrete FRFT (2D-DFRFT) technique based three novel image fusion/pansharp-

ening approaches are proposed for improving the spatial and spectral information of the

fused image. The 2D-DFRFT is the generalized version of the conventional Fourier

transform which provides the representation of a given signal in intermediate domains

between spatial and fast Fourier transform (FFT) domains. The angle parameters asso-

ciated with the 2D-DFRFT provides the additional degrees of freedom. Smaller values
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of the angle parameters of a signal are similar in shape to the low pass filtered version of

a signal, and hence it can be considered as fractional domain filtering of the signal. The

2D-DFRFT provides different representations of the given signal/image corresponding to

different angles which can be optimized for better results of the image fusion/pansharp-

ening. The fractional domain filtered signals of the source images are used for adding the

spatial information to the input images for image fusion/pansharpening purpose similar

to other filtered based existing approaches. The angle parameters associated with the 2D-

DFRFT provide additional degrees of freedom which are optimized by single objective

PSO algorithm for finding better pansharpening results. It is observed that the proposed

image fusion/pansharpening schemes provide improved spectral and spatial quality as

compared to the existing schemes. The effects of aliasing and misregistration errors on

the proposed pansharpening methods are also investigated and compared to existing pan-

sharpening methods. It is seen that the proposed methods are effective against aliasing

and misregistration errors.

• Using the multistage multichannel GSP/SGWF, two new image fusion/pansharpening ap-

proaches are proposed. The SGWF have been utilizing the ability to decompose images

into different subbands via the spectral characteristics of the images in the graph domain.

The GSP exploits internode/interpixel dependence and it can be the reason for the im-

proved results with the GSP. The time-frequency localization property and filterbanks

of conventional wavelet transform have also been extended to GSP as SGWF and asso-

ciated filterbanks. In the SGWF based proposed image fusion/pansharpening method,

the source images are decomposed by the multistage M -channel SGWF, and then the

weighted combination of lowpass component signals in the multistage SGWF decom-

position is used to generate the fused image. Simulation results of the proposed tech-

nique using different wavelets such as spline wavelet (SW), mexican-hat wavelet (MHW),
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meyer wavelet (MW) and simple tight frame wavelet (SPW) are also presented and com-

pared with existing pansharpening methods in terms of both visual perception and objec-

tive metrics such as Q-index (Q4), spectral angle mapper (SAM), relative dimensionless

global error (ERGAS) and quality with-no reference (QNR). It is observed that the pro-

posed image fusion/pansharpening scheme provides better results using MHW filterbank

(MHWF) as compared with some of the existing schemes. Performance evaluation of

fused image is done by computing fusion quality metrics, and the fusion results are com-

pared with other existing fusion schemes. It is seen that the performance of the proposed

schemes is better as compared to the existing fusion schemes.

In a nutshell, the present research work investigates image fusion/pansharpening schemes to de-

velop efficient techniques for improving the spatial quality and reducing the spectral distortion

in the fused image. We demonstrate the applicability of the HVD, FRFT and GSP techniques

in image fusion/pansharpening schemes.

6.2 Future Scope of the Research Work

In the contemporary age,the fusion of multimodality video sequences provided by a network of

multimodal cameras is becoming increasingly important for surveillance purposes, navigation,

and object tracking applications. The complementary information supplied by these sensors

needs to be fused to obtain a more accurate estimate in order to use them more efficiently

in various tasks, such as detection, recognition, tracking and situation assessment. From the

fused representation of multimodality video sequences, it is possible to create a more complete

and accurate representation of the perceived scene, resulting in a larger degree of situation

awareness. The proposed algorithms could be extended for efficient fusion of video sequences.
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Chanussot, Nicolas Dobigeon, Sophie Fabre, Wenzhi Liao, Giorgio A Licciardi, Miguel

Simoes, et al. Hyperspectral pansharpening: A review. IEEE Geoscience and remote

sensing magazine, 3(3):27–46, 2015.

[101] Carlos Souza, Laurel Firestone, Luciano Moreira Silva, and Dar Roberts. Mapping forest

degradation in the eastern amazon from spot 4 through spectral mixture models. Remote

Sensing of Environment, 87(4):494–506, 2003.

[102] Francesca Bovolo and Lorenzo Bruzzone. The time variable in data fusion: A change de-

tection perspective. IEEE Geoscience and Remote Sensing Magazine, 3(3):8–26, 2015.

[103] Ali Mohammadzadeh, Ahad Tavakoli, Valadan Zoej, and J Mohammad. Road extraction

based on fuzzy logic and mathematical morphology from pan-sharpened ikonos images.

The photogrammetric record, 21(113):44–60, 2006.

[104] Miaomiao Liu, Xinde Li, Jean Dezert, and Chaomin Luo. Generic object recognition

based on the fusion of 2d and 3d sift descriptors. In Information Fusion (Fusion), 2015

18th International Conference on, pages 1085–1092. IEEE, 2015.

[105] Mrinal Kanti Bhowmik, Barin Kumar De, Debotosh Bhattacharjee, Dipak Kumar Basu,

and Mita Nasipuri. Multisensor fusion of visual and thermal images for human face

identification using different svm kernels. In Systems, Applications and Technology Con-

ference (LISAT), 2012 IEEE Long Island, pages 1–7. IEEE, 2012.
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