
ASPECT ORIENTED APPROACH FOR

TESTING SOFTWARE APPLICATIONS AND

AUTOMATIC ASPECT CREATION

Ph.D. Thesis

MANISH JAIN

ID No. 2012RCP9513

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

August 2018

Aspect Oriented Approach for

Testing Software Applications and

Automatic Aspect Creation

Submitted in

ful�llment of the requirements for the degree of

Doctor of Philosophy

by

Manish Jain

ID: 2012RCP9513

Under the Supervision of

Dr. Dinesh Gopalani

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

August 2018

© Malaviya National Institute of Technology Jaipur - 2018

All rights reserved.

CERTIFICATE

This is to certify that the thesis entitled �Aspect Oriented Approach for Test-

ing Software Applications and Automatic Aspect Creation� being submit-

ted by Manish Jain (2012RCP9513) is a bona�de research work carried out

under my supervision and guidance in ful�lment of the requirement for the award

of the degree of Doctor of Philosophy in the Department of Computer Science

and Engineering, Malaviya National Institute of Technology, Jaipur, India. The

matter embodied in this thesis is original and has not been submitted to any other

University or Institute for the award of any other degree.

Place: Jaipur Dr. Dinesh Gopalani

Date: Associate Professor

Department of Computer Science and Engineering

MNIT Jaipur

DECLARATION

I, Manish Jain, declare that this thesis titled, �Aspect Oriented Approach

for Testing Software Applications and Automatic Aspect Creation� and

the work presented in it, are my own. I con�rm that:

� This work was done wholly or mainly while in candidature for a research

degree at this university.

� Where any part of this thesis has previously been submitted for a degree or

any other quali�cation at this university or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exceptions of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself, jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Date:

Manish Jain

(2012RCP9513)

ACKNOWLEDGEMENT

It is a matter of great pleasure for me to thank all those people who inspired me

and gave their kind hearted support at every stage of my research work. First and

foremost, I bow in great reverence to almighty God, the most gracious, the most

merciful, whose bounteous blessings enabled me to accomplish this thesis.

I would like to express my deep and sincere gratitude to my esteemed guide, Dr.

Dinesh Gopalani, Malaviya National Institute of Technology for his invaluable

guidance and spending precious hours for my work. His excellent cooperation and

suggestion through stimulating and bene�cial discussions provided me with an

impetus to work and made the completion of this work possible.

My sincerest thanks to all faculty members of Department of Computer Science

and Engineering, MNIT Jaipur, for their constant support and imparting me the

best of knowledge during my Ph.D. research work.

I would like to thank all non-teaching sta� members of Department of Computer

Science and Engineering, MNIT Jaipur and all those people whose favours I have

received for completing this research work.

Thanks go to my family for providing the support and encouragement that I can

always count on. I thank my friends who have directly or indirectly contributed

by giving their valuable suggestions.

I am humbled by all the support I received in making this research work a reality.

ABSTRACT

Due to the availability of abundant platforms and the accelerating pace at which

the software applications are being developed, testing software for quality assur-

ance becomes extremely important. Software testing is carried out in order to

ensure that the developed software conforms to the stated requirements and op-

erates elegantly when put to use in the real environment with divergent operating

systems, variety of devices, di�erent browsers and concurrent users. There are

various types of software testing classi�ed based on the knowledge of the system,

phase at which testing is being performed, extent of automation, source code ex-

ecution or non-execution, functional or non-functional behavior of the software

etc. However, carrying out the di�erent types of testing of software applications

manually is quite labour-intensive and error-prone and thus it becomes necessary

to deploy automated software testing techniques. This thesis proposes the use of

Aspect Oriented Programming (AOP) for automating di�erent types of software

testing. Our basis of proposing AOP for the purpose of software testing is that

aspects in AOP can be used to capture execution points within the program's

modules where we suspect bugs and further testing code can be written within

the aspect to test such captured components. We establish that AOP alone suf-

�ces for carrying out most of the types of software testing and thus obliterates

the need of using distinctive tools for di�erent types of testing. One of the ma-

jor drawbacks of the existing automated testing tools is that the testers need to

acquire the required level of pro�ciency for writing testing codes using these au-

tomation tools. In order to reduce the learning curve associated with acquiring

the AOP skills, we have also developed a domain speci�c language, named Testing

Aspect Generator Language (TAGL) using which the testers, without having the

knowledge of AOP, can write the testing codes in the form of simple English-like

statements. The TAGL statements are converted into testing aspects using the

lexical analyser and parser which we have developed using lex and yacc. Further

we used AspectJ, the de-facto standard of AOP, for the testing of widely used

open source Java projects like JDownloader, JFreeChart, NetC, JScreenRecorder

etc. and found remarkable bugs into them. We posted the discovered bugs to

their respective developer teams upon which they assured to debug the reported

bugs and make appropriate changes in the future releases of their applications.

We have also provided detailed quantitative as well as qualitative comparisons of

our approach with the conventional testing methodologies in this thesis. The key

bene�ts of our proposed approach are reduced number of lines of testing code,

decreased test execution time and improved source code coverage.

Contents

List of Figures i

List of Tables iii

List of Source Codes iv

List of Abbreviations vi

1 Introduction 1
1.1 Software Testing . 1

1.2 Aspect-oriented software development 3

1.3 Motivation . 4

1.4 Aims and Objectives . 5

1.5 Contributions . 7

1.6 Thesis Structure . 11

2 Background and Related Work 12
2.1 Fundamentals of Aspect Oriented Programming 12

2.2 Aspect Oriented Languages . 15

2.2.1 AspectJ . 16

2.2.2 AspectC++ . 17

2.2.3 AspectMatlab . 18

2.2.4 Aspect Python . 19

2.2.5 AOP-PHP . 19

2.3 Importance of Software Testing . 21

2.4 Literature Review . 23

2.4.1 Conventional Automated Testing 23

2.4.2 Testing using AOP Techniques 25

2.4.3 Additional Related Work . 27

2.5 Summary . 28

3 Proposed Aspect Oriented Approach for Software Testing 29
3.1 White Box Testing . 29

3.1.1 Aging Testing . 30

3.1.2 Concurrency Testing . 33

3.1.3 Invariant Testing . 35

3.1.4 Application Programming Interface (API) Testing 37

3.1.5 Loop Testing . 38

3.1.6 Basis Path Testing . 42

3.2 Black Box Testing . 44

3.2.1 Boundary Value Testing . 45

3.2.2 All Pairs Testing . 47

3.2.3 Orthogonal Testing . 49

3.2.4 Fuzz Testing . 51

3.2.5 Fault Injection Testing . 54

3.2.6 Equivalence Partitioning Testing 55

3.3 Non Functional Testing . 56

3.3.1 Load Testing . 59

3.3.2 Security Testing . 61

3.4 Testing at di�erent levels of the software development process . . . 63

3.4.1 Unit Testing . 64

3.4.2 Integration Testing . 65

3.4.3 Acceptance Testing . 66

3.5 Agile Testing . 68

3.6 Smoke Testing . 69

3.7 Regression Testing . 70

3.8 Summary . 71

4 Applying AOP Approach for Testing Open Source Applications 72
4.1 Testing NetC . 73

4.2 Testing JDownloader . 76

4.3 Testing JScreenRecorder . 78

4.4 Testing JFreeChart . 81

4.5 Summary . 82

5 Testing Aspect Generator Language 83
5.1 Why Domain Speci�c Language? 84

5.2 Types of Domain Speci�c Languages 85

5.3 Learning curve of testing tools and TAGL 86

5.4 TAGL Syntax . 88

5.4.1 TAGL for Creating Black Box Testing Aspects 90

5.4.2 TAGL for Creating Memory Leakage Testing Aspect 101

5.4.3 TAGL for Concurrency Testing 102

5.4.4 TAGL for Creating Null Pointer Exception Checking Aspect 103

5.4.5 TAGL for Creating Load Testing Aspect 104

5.4.6 TAGL for Creating Servlet Testing Aspect 106

5.5 Lexical Analyser and Parser . 109

5.6 Summary . 115

6 Comparison with Conventional Technologies:Qualitative Analy-
sis 116

6.1 Resemblance with JUnit: most popular testing tool for Java appli-
cations . 117

6.2 Advantages of the proposed AOP and TAGL approach 120

6.2.1 Learning Curve . 120

6.2.2 Modi�cation of source code for testing 124

6.2.3 Testing Private Members . 126

6.2.4 Performing Integration Testing 130

6.2.5 Performing Invariant Testing 130

6.2.6 Testing for Memory Leaks 131

6.2.7 Performing Servlet Testing 132

6.2.8 Performing Load Testing . 134

6.2.9 Testing of Concurrent Applications 135

6.2.10 Context Collection for the Purpose of Debugging 137

6.3 Summary . 140

7 Comparison with Conventional Technologies:Quantitative Analy-
sis 143
7.1 Lines of Testing Code . 143

7.2 Test adequacy criteria and code coverage 148

7.2.1 Types of test adequacy criteria 152

7.2.2 Comparing code coverage for various test adequacy criteria . 155

7.3 Test Execution Time . 159

7.4 Summary . 161

8 Conclusion and Future Work 162
8.1 Summary and impact of the research 162

8.2 Limitations and future work . 164

Appendix 176

A Source code for the ChartPanel class of JFreeChart 177

B Important tokens generated by the lexical analyser 180

C TAGL Grammar 183

Brief bio-data 187

List of Figures

1.1 Aspect Weaving . 4

1.2 Automation across the software testing life cycle 8

1.3 Automatic conversion of TAGL statements into testing aspects . . . 8

2.1 Code Tangling . 13

2.2 Code Scattering . 14

3.1 White box testing . 30

3.2 AspectMatlab Loop Joinpoints . 41

3.3 Black box testing . 44

3.4 Flow chart for fuzz testing . 52

3.5 File fuzzing: Insert fuzz values into the input �le 54

3.6 File fuzzing: Overwrite a speci�ed �eld of the input �le 54

3.7 File fuzzing: Replace a speci�ed �eld of the input �le 55

3.8 Top down integration testing . 65

3.9 Top down integration testing with stubs 66

4.1 Load testing NetC by creating multiple chat users using aspect . . . 75

4.2 NetC: Private Message Window . 75

4.3 JDownloader: Snapshot of Analyse and Add Links GUI 77

4.4 JDownloader: Snapshot of bug acceptance 78

4.5 JScreenRecorder: Snapshot of multiple capture area selector form
opened simultaneously . 80

5.1 Cost incurred using DSL vs. GPL 86

5.2 Learning curve of DSL vs. GPL . 87

5.3 Automatic conversion of TAGL into testing aspect using lex and yacc110

6.1 Learning curve of novice testers for TAGL and JUnit 122

6.2 Types of software requirements and corresponding documents . . . 125

6.3 Accessing a private method using privileged aspect and Java re�ec-
tion mechanism . 129

6.4 Reduced execution times with multi-threaded programming on mul-
tiple core CPUs . 136

7.1 Reduced number of lines of testing code with AspectJ and TAGL . 148

7.2 Test assessment process . 150

i

LIST OF FIGURES ii

7.3 Di�erent types of test adequacy criteria 153

7.4 Di�erent metrics of source code coverage of FileKit class using JUnit
test cases . 157

7.5 Di�erent metrics of source code coverage of FileKit class using As-
pectJ testing aspects . 158

7.6 Instruction, branch and method coverage for the testing of FileKit
class . 158

7.7 Improved instruction coverage for various classes of JGAP with As-
pectJ testing aspects . 159

7.8 Improved branch coverage for various classes of JGAP with AspectJ
testing aspects . 159

7.9 Improved method coverage for various classes of JGAP with As-
pectJ testing aspects . 160

7.10 Test execution times for testing a 2-argument function using JUnit
and AspectJ . 160

List of Tables

3.1 AspectMatlab Loop Pointcuts . 41

3.2 Boundary value test cases with two variables X and Y 46

3.3 All Pairs Testing: Variables and their possible values 48

3.4 Orthogonal Testing: Variables and their possible values 50

3.5 Standard Orthogonal Array L9(3
4) 50

3.6 Orthogonal Test Cases L9(3
4) . 51

5.1 DSL Domains . 83

5.2 Order of boundary value test cases in the auto-generated testing
aspect . 98

6.1 Collecting context useful for debugging 138

6.2 JUnit vs Our approach: Qualitative Comparison 141

7.1 Lines of test code : lines of source code 144

7.2 JUnit vs Our approach: Quantitative Comparison 161

8.1 Test automation problems . 163

B.1 Important tokens returned by lexer to the yacc parser 180

iii

List of Source Codes

2.1 AspectJ: Example Aspect . 16

2.2 AspectC++: Example Aspect . 17

2.3 AspectMatlab: Example Aspect . 18

2.4 Aspect Python: Example Aspect 20

2.5 AOP-PHP: Example Aspect . 20

3.1 Aging testing using AspectJ-Example I 32

3.2 Aging testing using AspectJ-Example II 33

3.3 Aging testing using AspectJ-Example III 33

3.4 Concurrency testing using AspectJ-Example I 34

3.5 Concurrency testing using AspectJ-Example II 35

3.6 Runtime invariant testing using AspectJ-Example I 36

3.7 Compile time invariant testing using AspectJ 36

3.8 Runtime invariant testing using AspectJ-Example II 37

3.9 Testing the Youtube API . 39

3.10 Loop testing with AspectMatlab . 42

3.11 Loop testing with AspectJ . 43

3.12 Black box testing using AspectJ . 45

3.13 Black box testing using Aspect Python 46

3.14 Boundary value testing using AspectJ 47

3.15 All pairs testing using AspectJ . 49

3.16 Fuzz testing using AspectJ . 53

3.17 Fault injection testing using AspectJ 56

3.18 Measure execution times using AspectJ 58

3.19 Measure memory usage using AspectJ 58

3.20 Aspect to monitor method call by a null object 59

3.21 Load testing of a shopping cart application-I 60

3.22 Load testing of a shopping cart application-II 60

3.23 RequestWrapper class for servlet testing 62

3.24 Aspect for servlet testing . 63

iv

LIST OF SOURCE CODES v

3.25 Aspect for testing access control . 63

3.26 Writing stub for Integration Testing using AspectJ 67

3.27 Regression testing example . 71

4.1 AspectJ: NetC Load Testing . 74

4.2 AspectJ: Testing Input Validation 76

4.3 JScreenRecorder mouse pressed event simulation 79

4.4 JScreenRecorder null pointer handling test 81

5.1 Generated testing aspect to test the ComputeInterest method of the

Banking class . 92

5.2 Equivalence partitions testing aspect 100

5.3 Testing for unhandled null pointer exceptions 104

5.4 Servlet with two form parameters 108

5.5 Aspect for testing servlet with two form parameters with null values 109

5.6 Example lexical rule from lex program 111

5.7 Yacc grammar snippet for matching a method signature 112

5.8 Yacc grammar snippet for generating memory leakage testing aspect-

I . 113

5.9 Yacc grammar snippet for generating memory leakage testing aspect-

II . 114

5.10 Yacc grammar snippet for generating memory leakage testing aspect-

III . 114

6.1 Testing a method in Student class using JUnit 118

6.2 Testing a method in Student class using AspectJ 119

6.3 Aspect equivalent to the @BeforeClass annotation in JUnit 119

6.4 Ignoring the execution of a testing advice alike JUnit 120

6.5 A private method with an algorithm 127

6.6 Testing private members using privileged aspect 128

6.7 Servlet Testing using JUnit . 133

6.8 Collecting context useful for debugging 139

7.1 Testing a method in Student class with multiple inputs using AspectJ145

7.2 Testing a method in Student class with multiple inputs using JUnit 146

7.3 Testing a method in Student class with multiple inputs using TAGL 147

A.1 JFreeChart: paintComponent method leaks memory 177

C.1 TAGL Grammar . 183

List of Abbreviations

AOP Aspect Oriented Programming

OOP Object Oriented Programming

POP Procedure Oriented Programming

NFR Non-Functional Requirement

TAGL Testing Aspect Generator Language

LALR Look Ahead LR Parser

PARC Palo Alto Research Center

AJDT AspectJ Development Tools

ACDT AspectC/C++ Development Tools

SRS Software Requirement Speci�cation

GUI Graphical User Interface

API Application Programming Interface

JSP Java Server Page

HTML Hypertext Markup Language

URL Uniform Resource Locator

SQL Structured Query Language

HTTP Hyper Text Transfer Protocol

LAN Local Area Network

DSL Domain Speci�c Language

GPL General Purpose Languages

CSS Cascading Style Sheets

EC Equivalence Classes

BRD Business Requirements Document

URD User Requirements Document

DIDUCE Dynamic Invariant Detection ∪ Checking Engine

GC Garbage Collection

XML eXtensible Markup Language

CSV Comma Separated Values

vi

Chapter 1

Introduction

A program or software is written by humans and humans are bound to make

mistakes. As human lives have become increasingly dependent on software, testing

the software for quality assurance is paramount. Software testing increases the

customer's reliability and satisfaction regarding the quality of product and also

ensures lower maintenance cost. But the relative cost of testing a software as

compared with the overall cost of developing it, is quite high. Therefore it is

important to explore techniques that reduce the testing e�orts as well as the

inherent complexities of the testing process. We have proposed Aspect-Oriented

Programming (AOP) as a mechanism for automating the testing process in an

e�ective way and further established that AOP is solely suitable for performing

various types of software testing.

1.1 Software Testing

Software testing is of utmost importance in the software development life cycle

for several reasons. Most important reason being that software have become an

inevitable part of human life. Statistically looking at all the known utilisation

of software in the human life, there have been remarkable aid in the way we can

communicate, transact business, and carry out scienti�c and engineering work.

Besides, it is paramount to ensure that a software does not lead to failures because

such failures can prove to be very expensive in future and become a cause of

rework in the later stages of software development. Furthermore, producing quality

software has been identi�ed as the key factor in the success of the organisations and

quality can only be assured by testing software for conformance to the speci�ed

1

Chapter 1 Introduction 2

design requirements. Any deviations from the speci�ed requirements that emerge

up in software are called bugs. Software testing is carried out with the intent of

�nding out such bugs as early as possible and to �x them prior to the release of

the software. The software testing life cycle comprises of identifying, isolating and

lastly rectifying the bugs [1].

Software testing is categorised into di�erent types [1, 2]. On the basis of the phase

at which it is being performed, software testing is classi�ed as Unit Testing, Inte-

gration Testing, Functional Testing, System Testing and Acceptance Testing. In

unit testing, a small portion of the application is tested in isolation and its be-

haviour is veri�ed independently from other parts. Integration testing further en-

sures that the di�erent parts of the system work seamless when grouped together.

Integration testing is done to test the data and control �ow among modules and

�nd out the interaction bugs. Integration testing can be done using the Big Bang

approach in which all the modules are integrated when they are fully ready and

then tested. Another approach for integration testing is the incremental approach

in which individual modules are grouped one by one. Incremental approach can

be further of two types: Top Down and Bottom Up. Functional Testing is con-

ducted in order to ensure that the software has all the required functionality as

speci�ed within its requirement speci�cation. System testing comprises of testing

for both functional as well as non-functional requirements. Acceptance testing is

the testing performed directly by the end users of the application using the real

time production data.

When classi�ed in accordance with the knowledge of the system, software testing

can be Black Box Testing, White Box Testing or Grey Box Testing. Black box

testing is based solely on the requirements and speci�cations and is performed

without the knowledge of the internal structure of the application. In white box

testing, the test cases are prepared based on the knowledge of the internal paths,

code structures, and the implementation of the software being tested. Grey box

testing is a blend of black and white box testing in which the application is tested

by knowing limited information about its internals. Grey box testers depend on

the interface de�nition, internal data structures and algorithms of the application

and not on the actual source code.

Corresponding to the extent of automation used, software testing can be Manual

or Automated Testing. In manual testing, test cases are executed by the human

resources without using any tool or script and therefore it is time consuming.

Manual testing is useful only when the test cases are to be executed once or twice,

Chapter 1 Introduction 3

and frequent repetition is not necessary. Automated testing, on the other hand,

is conducted with the automation tool support and becomes advantageous when

the tests are to be executed repetitively. For example, for regression testing where

code changes frequently, automated testing is the preferred approach as the test

cases can be reused.

Furthermore, other types of software testing also exist which are de�ned based on

the procedure used, source code execution or non-execution, functional or non-

functional behavior of the software etc.

1.2 Aspect-oriented software development

Aspect-Oriented Programming (AOP) is a new programming methodology beyond

the existing software development approaches which is receiving considerable at-

tention from the research and practitioner communities. With the use of AOP,

programmers can map the software requirements to the programming constructs

in a more logical and natural way and thus aspect-oriented software development

has made a profound impact in the area of software development in the past few

years. AOP provides a mechanism for separation of crosscutting concerns from

the core concerns. A concern is actually a functionality necessary in a software

system. Any software system is thus a realisation of one or more concerns. For

example, in a typical banking system, the concerns could be Saving Account man-

agement, ATM management, Current Account management, Internet Banking,

Fixed Deposit management, Customer Care and many more. There are two types

of concerns:

� Primary Concern: These are the business logic concerns, also called the core

concerns

� Secondary Concerns: These are the system level concerns, also called the

crosscutting concerns

Crosscutting represents a situation when a particular requirement of the software

is met by placing code into objects (code structures) throughout the system but

this code doesn't directly relate to the functionality de�ned for those objects. The

crosscutting concerns neither �t cleanly into the Object-Oriented Programming

Chapter 1 Introduction 4

(OOP) [3] nor the Procedure-Oriented Programming (POP). In AOP, we intro-

duce a new unit of modularisation - an aspect - within which we implement the

crosscutting concerns instead of fusing them into the core modules [4]. Aspects

thus provide a non-invasive way of dealing with the crosscutting concerns. An

aspect weaver which is a compiler like entity combines the core and crosscutting

modules as shown in Figure 1.1 through a process called weaving.

Figure 1.1: Aspect Weaving

1.3 Motivation

Even the best software programmers might leave mistakes in the programs they

develop, which can only be caught in the testing phase. Testing adds real value to

software and results in high quality product but due to the increasing size of the

software, it actually happens to be the most expensive and time consuming step

in the software development life cycle. Software testing is an important �eld of

research within computer science and signi�cant work is going on in the direction of

understanding the costs of testing and developing e�ective techniques that detect

di�erent types of bugs with least amount of time and e�orts.

Following are the key challenges from the �eld of software testing in which research

is ongoing:

Chapter 1 Introduction 5

� To maximise the test coverage which is a promising measure of test e�ec-

tiveness that tells us how much of a codebase is covered by the test cases

� Developing new testing techniques that reduce testing e�orts and aid for au-

tomated test execution, regression testing, test documentation and analysis

of test results

� Testing concurrent systems where the system's behaviour depends on the

interleaving of the concurrently running events

� To identify the non-functional requirements (NFR) and develop software

testing approaches dealing with testable NFRs

� Developing tools that simulate the behaviour of surrounding environment

while performing integration testing of a complex system

� Managing the learning curve of software testers so as to facilitate them to

become familiar and e�cient in the use of the tool

� Improve testability of a system by modeling the development in such a way

that testing requires less e�ort and becomes more e�ective

The main motive behind our research work is to use AOP and establish it as a

technique for carrying out automated testing of software applications which not

only reduces the e�orts required for testing process but also overcomes various

limitations of the conventional testing technologies. Our proposed testing tech-

nique addresses almost all of the areas of interest of researchers enlisted above.

We have proposed that execution points in the source code can be captured using

constructs available in AOP and further the desired testing code can be written

within the aspects.

1.4 Aims and Objectives

Few well built testing tools are available for performing testing of functional re-

quirements but for non-functional requirements like reliability, recovery, memory

Chapter 1 Introduction 6

limitations, security, invariant conditions, logging etc., either their testing has to

be done manually or else distinctive tools for each type of testing are required.

Moreover, testing a software for ful�lment of such crosscutting requirements re-

quires the original source code to be instrumented at several places. AOP provide

us with aspects which can be used to capture the desired execution points within

the program. These captured execution points can be then instrumented with

the testing code written within the aspects. This alleviates the need to alter the

source code for the purpose of testing.

A test adequacy criterion is a predicate that de�nes which attributes of a program

should be exercised in order to formulate a comprehensive test [5]. Using conven-

tional techniques, selecting the code that is covered by a test adequacy criterion is

not easy because the parts of covered code could be scattered across the program.

Use of AOP constructs make it possible to capture multiple execution points of a

program simultaneously and thus AOP simpli�es the selection of distinct program

elements speci�ed in the test adequacy criteria in a non-invasive manner.

Moreover, the conventional testing techniques require the tester to learn and ac-

quire the necessary skills for using the technique. Excessive length of testing code

is another issue. In a nutshell, the conventional testing techniques su�er from

various shortcomings. Thus, in order to address these issues associated with the

conventional techniques, we present AOP testing technique and Testing Aspect

Generator Language (TAGL) in this thesis with the following objectives:

1. To identify the applicability of Aspect Oriented Programming for performing

various types of testing of software applications.

2. To establish that AOP alone su�ces for carrying out most of the types of

software testing.

3. To apply AspectJ (the Java-based de-facto standard for Aspect Oriented

Programming) for testing of widely used open source projects in Java and

attempt detecting bugs into them.

4. To develop a Testing Aspect Generator Language (TAGL) which can be

used by the Java application's testers without the knowledge of AspectJ to

delineate the testing aspects.

5. To develop a lexical analyser and parser using lex and yacc that take state-

ments written in our TAGL as input and automatically produce the corre-

Chapter 1 Introduction 7

sponding AspectJ testing aspects to test the source code of the Java appli-

cations.

6. To compare our proposed approach for software testing with the available

conventional testing techniques and establish the quantitative as well as qual-

itative bene�ts of using the former over the later.

Thus, the main aim of our research is to address the various shortcomings of the

conventional testing techniques using aspect-oriented testing approach.

1.5 Contributions

In this thesis, we have presented a novel approach for software testing using aspects

in AOP. Using aspects in AOP, execution points in the program under test where

bugs are suspected to exist can be captured and the testing code to determine

these bugs can be written. We propose that AOP can be used for test automation

across the software testing life cycle as depicted in Figure 1.2. Our methodology

can be used to automate the generation of test cases, write the test script (using

our Testing Aspect Generator Language as explained later in Chapter 5), execute

the test cases and further compare the results with the expected results and pre-

pare a test report. Test cases can be provided directly by the tester, or in some

cases generated using aspects. For example, aspects can be written to generate

random noise to test for concurrency related errors or to generate load by creating

multiple users for load testing. Likewise orthogonal, all-pairs or boundary value

test inputs can also be generated. Further the code for testing the application un-

der test can be written within the aspects. We have also devised our own domain

speci�c language, named Testing Aspect Generator Language (TAGL) using which

the testers without the knowledge of AOP can write the test code in the form of

English-like TAGL statements which are automatically converted into testing as-

pects. The testing aspects are weaved with the source code of application under

test and then executed. We also used aspects for comparing the actual results

with the expected results and to produce a test report specifying the successful

and failed tests.

Chapter 1 Introduction 8

Figure 1.2: Automation across the software testing life cycle

Figure 1.3 shows the sequence diagram of our proposed methodology. The tester

writes the testing code in the form of TAGL statements. The expected results

can also be speci�ed using our TAGL. Our Look-Ahead LR parser (LALR) parser,

which has been written using lex and yacc, converts these TAGL statements into

the testing aspects. The aspect weaver weaves these testing aspects with the source

code under test. Further this instrumented source code is executed and the actual

results obtained are compared with the expected results as speci�ed by the tester.

Based on this comparison, a simple test report giving details about the successful

and failed tests is prepared. Context collection constructs are also available that

can be used within the testing aspects to capture the context for failed test cases

and such context information later proves to be helpful for debugging.

Figure 1.3: Sequence diagram depicting the automatic conversion of TAGL state-
ments into testing aspects which are then weaved with the source code

A summary of the main contributions of this thesis is provided hereunder:

1. We reviewed literature in order to �nd out the challenges in the �eld of

software testing and areas demanding research. We found that research is

going on to develop automated testing techniques which reduce the testing

Chapter 1 Introduction 9

e�orts and provide for provisions like creating surrounding environment for

integration testing, regression testing, analysis of results etc. [6, 7]. We have

proposed the AOP technique for testing which addresses several shortcom-

ings of the existing testing methodologies and simpli�es the testing process.

2. There are numerous tools arising to support testing process which can be

used in di�erent areas of testing but it is di�cult to distinguish which testing

tools should be used in accordance with the organisation's process or the

software project. We have proposed the AOP technique which alone su�ces

for carrying out most of the types of software testing. Using conventional

methods, not all types of testing can be carried out using single tool and

di�erent types of testing requires distinctive tools [1, 8, 9, 10]. For example,

for unit testing Java applications, JUnit would su�ce but it does not support

load testing or security testing.

3. For carrying out certain types of testing like non-functional testing, the

source code is required to be modi�ed [11, 12]. Using our technique, the

crosscutting non-functional testing concerns can be captured within aspects

and tested and the original source code remains unmodi�ed.

4. Testing for concurrency related bugs like deadlocks or race conditions with

conventional techniques requires creating complex testing environment with

multiple processors or users [13, 14]. We simpli�ed such concurrency testing

using our AOP approach by inducing heuristically controlled sleep using

aspects for producing interleavings that might cause errors.

5. Use of AOP makes the selection of code based on a speci�ed test adequacy

criteria easy [15]. We used wild card pointcuts (explained in Chapter 2)

to select scattered code which is to be exercised in order to formulate a

comprehensive test.

6. Code coverage is an important metric for analysis of test quality and many

development groups advocate high coverage to achieve quality targets [16].

We compared the code coverage of test cases written using AOP technique

with that of exiting testing techniques using the EclEmma Java code cover-

age tool and observed that with AOP, we could achieve better code coverage

with lesser number of lines of testing code.

7. We applied AspectJ (the AOP extension for Java) on the testing of widely

used open source projects like JDownloader, JFreeChart, JScreenRecorder,

NetC, JGAP etc. and identi�ed remarkable bugs into them. The bugs

Chapter 1 Introduction 10

discovered were posted into the bug reporting forums of the respective ap-

plications or mailed to their developers and got acknowledged.

8. Domain speci�c languages are easier for domain experts to use than the

general purpose languages [17]. We have developed our own domain speci�c

language, named Testing Aspect Generator Language (TAGL) which can

be used by the testers to describe their testing code. TAGL minimises the

learning curve and also reduces the number of lines to be written for the

testing code. We have written a LALR parser using lex and yacc which

automatically converts the TAGL statements into the testing aspects.

9. We used the context collection mechanism of AOP languages [18] to collect

necessary context information regarding the execution point where a bug has

been identi�ed. This context information proves to be useful while carrying

out the challenging task of bug resolution [19].

Publications

The list of �ndings and publications as a part of this research work are enlisted

here:

� M. Jain and D. Gopalani, �Use of aspects for testing software applications,�

IEEE International Advance Computing Conference (IACC), Bangalore, In-

dia, 2015, pp. 282-285. doi: 10.1109/IADCC.2015.7154714

� M. Jain and D. Gopalani, �Memory leakage testing using aspects,� Inter-

national Conference on Applied and Theoretical Computing and Commu-

nication Technology (iCATccT), Davangere, India, 2015, pp. 436-440. doi:

10.1109/ICATCCT.2015.7456923

� M. Jain and D. Gopalani, �Aspect Oriented Programming and Types of

Software Testing,� Second International Conference on Computational In-

telligence and Communication Technology (CICT), Ghaziabad, India, 2016,

pp. 64-69. doi: 10.1109/CICT.2016.22

� M. Jain and D. Gopalani, �Testing Application Security with Aspects,�

International Conference on Electrical, Electronics, and Optimiza-

tion Techniques (ICEEOT), Chennai, India, 2016, pp. 3161-3165. doi:

10.1109/ICEEOT.2016.7755285

Chapter 1 Introduction 11

� Accepted: M. Jain and D. Gopalani, �Domain Speci�c Language for

Automatically Generating Testing Aspects,� IEEE International Confer-

ence on Emerging Trends in Computing and Communication Technologies

(ICETCCT), Dehradun, India, 2017.

� M. Jain and D. Gopalani, �Automated Java Testing: JUnit versus AspectJ,�

International Journal of Computer and Systems Engineering: International

Science Index, Volume 11:11, 2017, pp. 1153-1158. dai:10.1999/1307-

6892/100082245

1.6 Thesis Structure

The rest of this thesis is organised as follows. In Chapter 2, we have described the

fundamentals of our proposed AOP approach, listed out languages whose AOP

extensions are available and also explained the importance of software testing.

Further in this chapter, we provide a brief description of the related work carried

out in the domains which are connected to our proposed technique. Thereafter in

Chapter 3, we describe the suitability of applying AOP for performing di�erent

types of software testing with appropriate illustrations. In Chapter 4, we have

described the application of AspectJ as an example AOP language, to perform

di�erent types of testing of certain popular open source Java software and detected

phenomenal bugs into them. Details of the deployed open source software, their

usage and features are given. In Chapter 5, we have explained the concept of

domain speci�c languages and proposed our own domain speci�c language, named

Testing Aspect Generator Language which can be used for automatic creation of

testing aspects. This chapter provides an explanation of the syntax of the TAGL

which is simple to learn and use and can be used by the testers for describing

their testing code. We have also provided details of our lexical analyser and

parser which have been developed using lex and yacc respectively and convert

the TAGL statements into testing aspects. Chapter 6 and 7 evaluate our AOP

approach for testing by providing a detailed comparison with the conventional

testing techniques. The qualitative and quantitative bene�ts of using our AOP

approach for testing have been listed. Chapter 8 provides the conclusions drawn

based on the work with directions for possible future work. At last, we have

provided a list of the references.

Chapter 2

Background and Related Work

Aspect Oriented Programming (AOP), like Object Oriented Programming (OOP)

and Procedure Oriented Programming (POP), is a programming methodology in

its own right. AOP aims at separating the secondary concerns like logging, security,

authentication etc., which are crosscutting in nature, from the primary business

logic. In this chapter, we will �rst discuss the fundamentals of aspect oriented

programming and then the importance of software testing in detail. Important

AOP languages are described with suitable illustrations. Then after, this chapter

reviews the work in the �eld of automated software testing techniques and their

shortcomings and further the use of AOP for software testing.

2.1 Fundamentals of Aspect Oriented Programming

Cristina Lopes and Gregor Kiczales who hailed from Palo Alto Research Center

(PARC) which is a subsidiary of the Xerox Corporation participated in the initial

development of Aspect Oriented Programming (AOP). Gregor was the leader of

the team that developed the original AspectJ at PARC and also gave the term

�AOP� in 1996 [20]. Currently, eclipse.org which is an open source community is

providing updates and maintaining support for the AspectJ project.

AOP is a programming methodology which improves the modularity of the soft-

ware by separating the crosscutting concerns from the core concerns. A crosscut-

ting concern is either a characteristic expected from the software like security or it

could be a behaviour which one or all classes must exhibit like logging. Crosscut-

ting concerns are not correlated to the main business logic of the application. If

12

Chapter 2 Background and Related Work 13

we take example of a banking application, handling the various type of accounts,

managing the transactions, interest calculation, online banking services shall be

the primary concerns which will form the main business logic. But at the same

time, there would be certain concerns like logging to avoid accidental data loss,

security to check authorisation of users, caching for performance optimisation

that shall span across multiple modules. These system wide concerns that span

across multiple modules are called crosscutting concerns.

The scenario of crosscutting is inherent in most complex systems. It can lead to is-

sues like code tangling or code scattering. Code tangling refers to the phenomenon

when a single module or component in an application contains code related to mul-

tiple concerns (see Figure 2.1). For example, a business logic module in a banking

application implemented using OOP methodology might contain code for security,

logging and recovery as well.

Figure 2.1: Code Tangling

Code scattering is the term given to the situation when the code for a concern is

spread across multiple modules or components (see Figure 2.2). For example, the

code for logging concern, which logs the execution of each account transaction in

a banking application, shall be spread across various modules of the application

like in the internet banking module, deposit module, withdrawal module, ATM

Chapter 2 Background and Related Work 14

module etc.

Figure 2.2: Code Scattering

Although OOP is a good methodology for managing the core concerns but it does

not provide any mechanism to handle the crosscutting concerns in a modular way.

With OOP, these system wide crosscutting concerns are spread throughout the

application and cannot be modularised. The basic idea of AOP arises from the fact

that the concerns that are crosscutting too have a clear purpose and therefore they

can be modelled into certain programming structure in a modular way. Aspects

in AOP are a new unit of modularisation that provide a mechanism to modularise

the crosscutting concerns. The crosscutting concerns are implemented inside the

aspects in order to avoid them from intermixing in the business logic modules.

AOP is becoming an increasingly popular programming methodology. AOP is

being used by developers in the real projects to introduce features like security,

logging, for improving the performance, for providing data transfer functionality,

for implementing authorisation rules and so and so forth. Use of AOP in the

real projects has produced impressive results as it enhances the modularity of the

code and at the same time reduces both the amount of code and time required to

create the software [18]. AspectJ which is the aspect oriented extension of Java

has got wide acceptance because the latest version of AspectJ (1.8.10) has got

Chapter 2 Background and Related Work 15

all the required functionality that a language should possess in order to make it

possible to work with real life projects.

AOP is actually built on top of the existing OOP and POP technologies and thus

expands them with the capabilities to address the system wide spread crosscutting

concerns. Thus, developers which use AOP implement the primary concerns using

the base methodology only and then modularise the crosscutting concerns using

AOP constructs. There are a total of four constructs in AOP [18] which form the

basis to specify the crosscutting concerns in a modularised way. We discuss them

hereunder:

� Aspect - The aspect is the central unit, just like the class in OOP languages.

It contains the code that expresses the weaving rules.

� Jointpoint - A joinpoint is any identi�able point in the execution of a

program.

� Pointcut - A pointcut is a construct that selects the joinpoints.

� Advice - Advice is the code to be executed at the joinpoint captured by the

pointcut. Advice can execute before, after or around the joinpoint.

All of the above four are the building blocks that form the basis of our proposal

to use AOP for software testing. Aspects can be used to capture one or more

execution points using pointcuts which can further be tested by writing testing

code within advices.

2.2 Aspect Oriented Languages

Although AspectJ is the most popular aspect oriented language extension meant

for Java, AOP implementations for other popular programming languages are also

available. In what follows, we discuss the AOP implementations for the widely

used programming languages.

Chapter 2 Background and Related Work 16

2.2.1 AspectJ

AspectJ is a general purpose aspect-oriented extension to Java that o�ers a great

deal of power and improved modularity to the programmers. AspectJ development

can be made easier using the Eclipse AspectJ Development Tools (AJDT) plug-in.

A wizard is provided for creating a new AspectJ project or we can also convert

an Java project into an AspectJ project by right-clicking the project from the

package explorer view. AJDT provides us with the Cross Reference view which

exhibits the crosscutting relationships for the various program elements. AJDT

also supports the annotation style of declaration, known as @AspectJ style.

In AspectJ, we have aspects within which we write the pointcut to capture the de-

sired execution points and advice to write the code to be executed at the captured

points. We have before, after, after returning, after throwing and around advices

in AspectJ. The code snippet in Listing 2.1 shows an example of around advice

which executes around the withdrawal method of the AccountClass to con�rm that

the balance is more than the withdrawal amount.

Listing 2.1: AspectJ: Example Aspect

public aspect withdrawalAspect
{

pointcut checkBalance(int amount, AccountClass account) :
call(boolean AccountClass.withdrawal(int)) &&

↪→ args(amount) && target(account);

boolean around(int amount, AccountClass account) :
↪→ checkBalance(amount, account)

{
if (account.balance < amount)
{

return false;
}
return proceed(amount, account);

}
}

AspectJ also provides us with wildcard pointcuts which can be used to capture

multiple execution points having di�erent signatures, return types, arguments etc.

simultaneously. For example, in order to cover calls to all the methods of a par-

ticular class and all its subclasses irrespective of their return types and number of

arguments, we can use a wildcard pointcut like call(* ClassName+.*(..)).

Chapter 2 Background and Related Work 17

2.2.2 AspectC++

The latest version 2.2 of AspectC++ was launched on 10th March'2017 [21]. It is

an aspect oriented extension for C and C++ languages. AspectC++ has a source

to source compiler which translates the code written in AspectC++ into C++

code. Regarding syntax and semantics, the constructs in AspectC++, namely,

aspect, joinpoint, pointcut, advice etc. are quite similar to that of AspectJ. Further,

there is provision of introduction of new data members or methods into one or

more classes which are matched by the given pointcut expression. Alike AspectJ,

AspectC++ pointcuts also support wildcards. The aspect can be also be ordered

using the order advice. Aspect inheritance is also supported. AspectC++ plug-in

named AspectC/C++ Development Tools (ACDT) is available for Eclipse.

Listing 2.2 shows how an aspect in AspectC++ can be used to separate the concern

�check whether the stack is full� from the Push method. The logic to check whether

stack top has reached is written in the aspect within an around advice.

Listing 2.2: AspectC++: Example Aspect

#de�ne MAX 100
aspect stackPush
{

//st captures the Stack object in context
pointcut isFull (Stack st) = call("void Stack::Push(int)") &&

↪→ target(st);
advice isFull (st) : around(Stack st)
{

if (st .top == MAX−1)
{

cout<<"Stack is full!";
return;

}
else
{

tjp−>proceed();
}

}
};

Chapter 2 Background and Related Work 18

2.2.3 AspectMatlab

The team of Toheed Aslam, Jesse Doherty, Anton Dubrau and Laurie Hendren at

Sable Research Group developed AspectMatlab as an aspect oriented language for

MATLAB which is a dynamic language commonly used by the scientists [22]. Alike

classes, aspects in AspectMatlab can have properties and methods. AspectMatlab

provides us with patterns which are meant for capturing the execution points in

the source code and named actions within which we write the code to be executed

at the captured execution point. Unlike AspectJ, actions in AspectMatlab are

declared with a name. Patterns can not only be used to capture call and execution

but also support get and set patterns to deal with arrays. For example, the pattern

set(arr) can be used to match all the assignment statements to an array arr. Also

there are loop, loophead, loopbody patterns to capture the executions of both for

and while loops which are important structures in scienti�c programs. Further,

there are selectors which can be used to collect context information.

The team developed an amc compiler which translates the source code written in

AspectMatlab into MATLAB code that can be run on any MATLAB platform.

Listing 2.3 shows an example of how aspect in AspectMatlab can be used to capture

call to a function MethodDoubleArguments with two arguments using patterns.

The aspect further bypasses the execution of the instrumented method using an

around advice inside actions and executes another functionMethodSingleArgument

which takes only one argument in place of it, with the �rst of the two arguments

captured using args.

Listing 2.3: AspectMatlab: Example Aspect

aspect myAspect
patterns

callMethodDoubleArguments : call(MethodDoubleArguments(*,*));
end

actions
actcall : around callMethodDoubleArguments : (args)

MethodSingleArgument(args{1});
end

end

Chapter 2 Background and Related Work 19

2.2.4 Aspect Python

For python, we have aspectlib aspect oriented programming library which can be

used to bring about desirable changes in the behaviour of existing python code.

The latest version of the library is aspectlib 1.4.2 which was released on 10th May

2016 [23]. The aspectlib library provides two core tools to do AOP: aspect and a

weaver. An aspect can be created by decorating a generator function. The gener-

ator yields advices which are used to bring about the desirable behavioural change

in the original python code. An aspect instance is a simple function decorator

and decorating a function with an aspect will change the function's behaviour

according to the advices yielded by the generator. Using the advices available in

aspectlib, we can call a function multiple times, or with di�erent arguments or

even make a function return a desired value. The weaver patches the classes and

functions in the python source code with the given aspect. The aspectlib library

also provides with aspectlib.test.mock and aspectlib.test.record which can be used

for the purpose of testing.

The aspect in Listing 2.4 written using the aspectlib library bypasses the execution

of the method it instruments. In this example, when the function �leread is

called with any �le name as argument, its bona�de execution is bypassed and the

function is executed with the �le name (/home/�lename.txt) as speci�ed in the

instrumenting aspect.

2.2.5 AOP-PHP

AOP-PHP (a PHP Extension Community Library extension) is the easiest way

of integrating AOP with PHP. Besides AOP-PHP, there exists many other imple-

mentations of AOP in PHP like FLOW3, aspectPHP, Go! etc.

AOP-PHP version 0.2.2b1 is the latest which was released on 18th November' 2012

[24]. AOP-PHP provides us with advices like aop_add_before, aop_add_after,

aop_add_around that can intercept the function calls and perform a desired action

like modifying arguments during execution or changing return variables when the

execution of the function has been completed. We can use the getArguments()

method to grab the original arguments, modify them and then pass new arguments

using the setArguments() method. AOP-PHP also allows for wildcard pointcuts

to simultaneously match a bunch of methods.

Chapter 2 Background and Related Work 20

Listing 2.4: Aspect Python: Example Aspect

import aspectlib

@aspectlib.Aspect
#here *k means any number of arguments in the advised function.
def bypass_�leread(*k):

#yield is like return only
#Proceed bypasses the execution of the instrumented method and executes

↪→ it with the speci�ed arguments
yield aspectlib .Proceed("/home/�lename.txt")

def �leread (name):
#this function simply opens the �le with name "name" and returns its

↪→ contents to the caller
return open(name).read()

#we weave the aspect with the advised function using weave method in aspectlib
from aspectlib import weave
patch = weave(�leread, bypass_�leread)

Listing 2.5: AOP-PHP: Example Aspect

<?php
class person
{

public function displayName($name)
{

echo "{$name}";
}

}

function greetingAdvice(AopJoinPoint $joinPoint)
{

$args = $joinPoint−>getArguments();
$str = 'Hello' ;
$args [0] = $str. ' ' .$args [0];
$joinPoint−>setArguments($args);

}

aop_add_before(' person−>displayName ()', 'greetingAdvice');

$p = new person();
$p−>displayName ('John');

Chapter 2 Background and Related Work 21

Listing 2.5 shows the basic syntax how an advice can be added to execute before the

function of a class. In this example, we ensure that each time the method display-

Name of class person is called using its object, AOP-PHP will execute the function

greetingAdvice before the called method. Inside the function greetingAdvice, we

use AopJoinPoint to capture the advised function displayName's argument and

change it such that a �Hello� greeting is added before the name. On the same

lines, AOP-PHP can be used to implement complex crosscutting system concerns

too. For example, by using an appropriate aop_add_before advice, we can ensure

that the authorisation permissions of a session user are always checked before a

particular function is called.

Here we would like to propound that there exists AOP implementations for other

programming languages as well like Ruby, LISP, Perl, Ada, Uni�ed Modeling Lan-

guage (UML), .NET framework languages etc. but as their AOP implementations

are less popular (due to limited AOP constructs), we shall use examples only from

the aforementioned AOP languages in the following chapters.

2.3 Importance of Software Testing

With numerous organisations like banking, educational institutions, automobile

industries, smartphone companies etc. becoming dependent on software appli-

cations for their business, research, development and for providing prompt and

satisfactory services to their customers, software that do not work as expected can

have a large impact on an organisation. Faulty software can put the organisations

into problems of varying nature like loss of time, loss of business or even human

hazards in case of safety-critical systems. Therefore it becomes important that

the errors are caught well in advance before deploying the software in the real

production environment.

The important reasons that make testing of a software essential are explained

hereunder:

� To err is human: Software are coded by human beings and human beings

commit mistakes in any process. It is always good to identify the fault and

errors in the software caused by human mistakes during its development

phases. Testing is the best way to identify our mistakes and rectify them

before they end up costing us. As a classical example of human error leading

to defects, there could be a situation when a developer while developing a

Chapter 2 Background and Related Work 22

new feature into an application may simply forget and break a legacy feature.

Regression testing can catch such errors before the application is put to use.

� In order to ensure that the software meets the expectations as speci�ed in

the requirement speci�cation: Regardless of the development methodology,

the ultimate goal of testing is to ensure that a software works as per the user

expectations. As an initial step of the Software Development Life Cycle,

a Software Requirement Speci�cation (SRS) document is prepared which

precisely de�nes the expectations and understanding of a customer's software

requirements. The SRS depicts various types of requirements of the system

like functional, performance, resources, maintainability etc. and therefore

the Test Plan is prepared on the basis of SRS [25]. The test plan enumerates

the various test cases that are required to ensure that the features of the SRS

have been implemented bug free. Further, it is also important that testers

understand every detail speci�ed in the SRS in order to avoid faults in the

test cases and their expected results.

� In order to ensure that a software works �ne in the real environment with

di�erent operating systems, devices, browsers: In the current era of technol-

ogy, we have variety of devices ranging from tablets, smartphones, laptops,

desktops etc. which run over di�erent operating systems. Further in order

to access web based applications, there are several web browsers available

which become a big challenge in their design and development. Therefore,

testing ascertains that the application is compatible on multiple platforms

and ensures that its functionality remain una�ected on variety of operating

systems, devices and browsers.

� In order to evaluate the application's behaviour under load of several users:

An application may work �ne with one user but it may not render expected

results when hundreds (or more) of users use it simultaneously. A software

should always accomplish what it is expected to do, no matter how many

users use it. Load testing is conducted by putting simulated demand on an

application in order to determine its behaviour under load conditions. There

are various automated tools like Apache JMeter, Load Runner etc. which

help in performing load testing of applications. Upper limit of database, mis-

management of memory, bu�er over�ow, delayed response etc. are common

issues which arise when multiple users hit an application simultaneously.

� Producing quality software has been identi�ed as the key factor in the suc-

cess of the organisations: Delivering quality software after proper testing

Chapter 2 Background and Related Work 23

increases end user's satisfaction and helps in gaining their con�dence. Bugs

like the one which compromises user's privacy or crashes the computer or

leads to denial of access or service etc. have a measurable adverse impact on

the customer satisfaction. A product free from anomalies, which can only be

ensured by its thorough testing, invites lesser number of complaints and thus

greater customer satisfaction [26]. Organisations that produces well tested

quality solutions are likely to get more recognition and more customers.

It is odd but true that the time and cost incurred for software testing are often

comparable to that incurred for the software development. Software testing costs

usually lies between 25 to 40 percent of the total project cost. Further, Beizer

[27] reported that �half the labour expended to develop a working program is typ-

ically spent on testing activities�. But at the same time, delivering well tested

quality software to the client is inevitable. Therefore it is important to explore

techniques that minimise the e�orts required for testing and improve the overall

testing process. In this direction, we propose the use of Aspect Oriented Program-

ming methodology for performing automated software testing.

2.4 Literature Review

We identi�ed and read the key papers of research work related to our topic. The

purpose of the review was to understand the limitations of the conventional soft-

ware testing methodologies and further conceive AOP as a solution to address the

same. Literature review carried out in three di�erent areas related to our approach

and the �ndings thereof are discussed in detail hereunder.

2.4.1 Conventional Automated Testing

Hooda et. al [1] in their research paper on testing types and techniques have

speci�ed the development of a generic testing framework as a work of future scope

by stating �a research and study can be done on the software testing to propose a

generic testing framework and techniques to support functional, performance and

security testing for object oriented development framework �. Bamotra et. al [8]

have stated that �Various types of tools are used for automated testing and they

can be used in di�erent areas of testing�. Mustafa et.al [9] noted that there are

many testing tools which can be used for di�erent types of testing. For many years,

Chapter 2 Background and Related Work 24

researchers and practitioners have proposed a variety of testing tools which can

be used to automate the testing process. They have classi�ed these testing tools

based on their intended usage. They collected 135 software testing tools from the

internet, studied and classi�ed them into di�erent types. During their research,

they also observed that testing tools for certain testing methods, for example se-

curity testing of application software products, are quite limited and restricted.

Similarly, the main objective of Uspenskiy in his Master's thesis [10] was to de-

scribe the software testing tools and their corresponding use. He has provided a

presentation of validation activities and classi�cation of supportive software tools.

He came to a conclusion that the tools are often designed to support one or more

software testing methods and are varying in scope from supporting individual tasks

to covering the complete testing cycle. However, the AOP approach proposed by

us is a versatile technique which supports numerous software testing methods like

unit testing, integration testing, load testing, invariant testing, security testing

etc. and covers almost every important phase across the software testing life cycle

as shown in Figure 1.2 of Chapter 1.

Ra� et. al [28] in their review paper investigated the views regarding the bene�ts

and limitations of test automation. They projected tool selection, automation

setup and training the testers as the main limitations of automated testing. After

conducting a survey of the practitioner's view of software test automation bene�ts

and limitations, they have stated that the tester should have enough technical

skills to build successful automation. To overcome such limitation while using

our proposed approach of AOP for software testing, we have developed our own

domain speci�c language, named Testing Aspect Generator Language using which

the tester without any expertise of AOP can still write the testing code with ease.

The authors also stated that most of the testing tools available in the market are

incompatible and do not provide what you need or �ts in your environment.

Srivastava et. al [29] have mentioned in their paper that the adequacy of a test

is determined by the source code coverage measure that describes the degree to

which an application's source code has been tested. Source code coverage analysis

is the most mentioned quantitative metric for the assessment of testing process.

They further state that if a coverage is not met, then more test cases have to be

designed to test the items that were missed and increase the coverage. We have

shown in our work that AOP provides better source code coverage based on one

or more test criteria with lesser number of lines of testing code.

Shivaprasad et. al [30] worked upon the unit testing of concurrent Java programs

Chapter 2 Background and Related Work 25

and found that conventional unit testing practises focuses on testing program

modules sequentially and are likely to miss concurrent bugs. They have mentioned

that even the most widely used unit testing frameworks for Java - like JUnit or

TestNG - do not provide good support for testing concurrent issues. We simpli�ed

concurrency testing using our AOP approach by inducing heuristically controlled

sleep using aspects for producing interleavings that might cause errors.

2.4.2 Testing using AOP Techniques

Duclos et al. [12] have pointed out that making changes to the source code of ap-

plication for conducting testing is an issue because this can modify their behavior.

For example, in order to test for the presence of memory leakages in C++ which

arise when the programmer forgets to call the destructor for every constructed ob-

ject of the class, the tester needs to add counters at several places in the program.

An increment is made to the counter when the object is constructed and likewise

an decrement is made whenever it is destructed. A positive value of the counter

at end of the program indicates a leak of memory. The authors used aspects in

AspectC++ to capture all the points in the program where an object is created

or destructed and further increased or decreased the value of the counter within

the advice without altering the source code directly. Using an aspect, they found

a memory leak in a complex C++ software program, NOMAD, which is used in

both industry and research.

Bruel et. al [31] de�ned an approach, covering the whole development life cycle, to

incorporate testing functionality into aspect-oriented components. The paper has

focused on contract testing in which the components of a system can validate that

the servers to which they are "plugged" dynamically at deployment time will ful�l

their contract. They describe testability as a non-functional requirement which is

better suited to be implemented as an aspect. They have proposed each test to be

implemented as an aspect. They have provided an illustration wherein they used

the aspects to introduce attributes to the STACK class like IsEmpty method and

also to provide particular values for parameters the user wants to test.

Stamey et. al [32] suggested the use of AspectJ for implementing non-invasive

debugging for Java Programs without altering the source code. In their paper,

they proposed the use of AOP technique for tracing the execution of loops, meth-

ods and constructors with suitable illustrations and implemented two important

elements of debugging, namely variable tracing and inspection. The use of aspects

Chapter 2 Background and Related Work 26

to implement debugging eliminates the learning curve to install and use the new

debugging packages for code tracing.

Yang [33] in his article has proposed an AOP-based alternate white box test strat-

egy. He replaced the traditional way of adding test hooks and logs for white box

testing by aspects. As a case study, he worked upon ASP.NET MVC 4 web ap-

plication and conducted essential tests in the areas of security, localisation and

content using AOP as the test infrastructure. He claims to have created a test au-

tomation engine using AOP that can be used throughout the product development

life cycle.

Pesonen et. al [34] while performing testing of Symbian OS observed that one

problem with conventional testing techniques is that although it is easy to gen-

erate test cases automatically, not all the generated test cases are important and

often include huge number of unnecessary ones. An insight is required to dis-

tinguish between the important and the unnecessary test cases. However, from

his use of aspects for testing the Symbain OS, he observed that AOP provides a

variety of di�erent expressions with combination of pointcut which makes aspects

an impressive tool for capturing the testability concerns.

Metsa et. al [35] discussed those non-functional requirements of applications which

can be more e�ciently tested using AOP approach than the conventional tech-

niques and recommend aspect-orientation as a technology which has got great

potential to facilitate the automated execution of tests. Although there are sev-

eral established tools for performing functional testing, comparatively less support

exist for testing non-functional requirements.

Xie [36] used AOP to conduct the test process automatically according to the

given test data. He argued that as aspect can e�ect the behaviour of a module,

it lays a good foundation for software test. He created a driver module as a mock

of the calling module using the around advice which contained the test cases and

the loop test conditions. Further, the development process can be adjusted well

in time according to the mock feedback.

All of the above discussed literature signify preliminary ideas regarding the use

of AOP as an alternative testing strategy for one or the other type of software

testing and indicate that with regular advancement in aspect oriented software

development and methodologies, advance test automation solutions can be con-

ceived using AOP. We have proposed AOP as a complete solution for carrying out

various types of software testing and established its usefulness with experimental

Chapter 2 Background and Related Work 27

results in this thesis.

2.4.3 Additional Related Work

Metsa et al. [37] suggests that testability of a software system can be increased

by using Aspects instead of Macros, which are used to enable the inclusion or

exclusion of test code or even Interfaces, which provide easy access to the compo-

nents hiding their internal implementation. They have stated that aspects can be

used for insertion of new variables which can record the system states at various

instances and also that the removal of test related functions implemented using

aspects is trivial. Sioud in his Master's thesis [38] has worked upon implement-

ing the missing garbage collection mechanism in C++ language using its aspect

oriented counterpart AspectC++. Wehrmeister [39] proposed an approach com-

bining Model Driven Engineering and aspect oriented programming concepts so

that the functional and non-functional requirements can be dealt in a modularised

way. He made use of aspects and developed a Distributed Embedded Real Time

Aspect Framework wherein each of the non-functional requirements (NFRs) were

handled using an aspect. Upgrading this idea, we have proposed the use of aspects

for performing testing of non-functional requirements like security, recovery, per-

formance etc. Pesonen [40] used aspects to measure the product line correctness

and e�ciency of the embedded system. He has recommended the use of aspects

for implementing and handling the new features of expanding embedded product

families.

Other than testing using AOP methodology, testing aspect oriented software itself

has also been a matter of interest for many researchers. Because of its new con-

struct and properties like weaving etc., AOP brings about new challenges which are

not present while testing programs from other programming paradigms like OOP.

Ghani et.al [41] in their work explored various ways of testing the aspect oriented

programs. They have discussed various issues on testing aspect-oriented programs,

presented the fault models and fault types for aspect-oriented programs and pro-

posed automated tools for testing them. Sokenou [42] considered two aspect ori-

ented languages, AspectJ and ObjectTeams/Java and proposed an approach for

testing aspects using aspects. On the other hand, we have used the AOP domain

itself and veri�ed its suitability for testing various software applications written

in Java, C++, Python, Matlab etc.

Chapter 2 Background and Related Work 28

2.5 Summary

In this chapter, fundamentals of Aspect Oriented Programming and various avail-

able Aspect Oriented Languages which lay the basis for discussions and illustra-

tions in the forthcoming chapters were described. We discussed about the impor-

tance of software testing and stated the �ve principal reasons that make software

testing essential. Further, we provided the literature review wherein based on the

related work carried out in the �eld of software testing, we explained the various

limitations and shortcomings of the conventional testing methodologies. Related

work in the area of testing using AOP has also been probed into.

Chapter 3

Proposed Aspect Oriented

Approach for Software Testing

There are various types of software testing classi�ed based on the knowledge of

the system, phase at which testing is being performed, extent of automation,

source code execution or non-execution, functional or non-functional behavior of

the software etc. as we explained in Chapter 1. In this chapter, we identify the

applicability of AOP for performing di�erent types of software testing. AOP lan-

guages provide us with pointcuts which can be used to capture joinpoints from the

program code. Using suitable pointcuts, we can capture joinpoints of interest from

the program code which need to be tested. There are wildcard pointcuts available

in AOP languages which can be used to capture multiple joinpoints that are to

be tested simultaneously as discussed in Chapter 2. Further, advice can be used

to write the appropriate testing code which shall be executed before/after/around

the captured joinpoints and attempt to discover bugs.

We propose the application of AOP to carry out di�erent types of testing e�ciently

and render most of the illustrations using AspectJ as it is the most developed and

popular AOP language so far.

3.1 White Box Testing

White-box testing which is also known as clear box testing, glass box testing,

transparent box testing and structural testing, is a technique based on the analysis

of the internal structure of the system. The mechanism of white box testing is

29

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 30

shown in Figure 3.1. It focuses on the �ow of input and output through the

application. After understanding the code of the system under test, bugs due to

internal security holes, memory leaks, poorly structured coding paths, improper

functionality of conditions and loops etc. are discovered in the process of white

box testing. The principal advantage of white box testing is that the testing of the

system can be started at an early stage as there is no need to wait for complete

development or a completed Graphic User Interface (GUI).

Figure 3.1: White box testing [43]

3.1.1 Aging Testing

Software exhibits a common phenomenon that closely resembles human aging. A

software system may slow down with time caused by failure to release the allocated

memory or because a routine does not release the complete memory that was

allocated. Another reason could be that the strategy of releasing the acquired

resources while execution is not fail safe. Such problems are usually caused by the

programmer's mistake of forgetting to write the code for clean up or releasing the

resources. Aging testing, also known as age testing, evaluates a software's ability

to perform in the future. In aging testing, primarily the software is tested to

discover issues related to memory leaks because as a result of successive memory

leaks arising from application's execution over time, problems like high response

times or system crashes surface up [44].

AOP is well suited to �nd memory leaks. Lets take example of memory leak in an

Java application. When a programmer provides for its own �nalization method

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 31

named �nalize() to carry out important clean up duties before destructing a class'

objects but if he/she forgets to call this self written method and few objects of the

class are left undestructed, then it leads to a situation of memory leak.

The aspect as shown in Listing 3.1 can be used to �nd out the existence of such a

memory leak. In this example, the pointcut creation() captures the call to all the

constructors for the class person and increments a static counter by one whenever a

constructor is called. Similarly the pointcut destruction() captures the calls to the

�nalize method written by the programmer for clean up activities and decrements

the counter by one whenever it is called. If the value of the static counter is greater

than zero, then it means that the programmer forgot to call the �nalize for one or

more constructed objects and it re�ects a memory leak.

By recording the context information at the time of creation and destruction in

suitable data structures, the objects left to be destructed can be exposed. AspectJ

provides a special reference variable, thisJoinPoint that contains useful context in-

formation about the current joinpoint. We used two arrays of string to store the

created objects with their source location (using AspectJ context collection con-

struct thisJointPoint.getsourcelocation().toString()) and the destructed objects.

At the end, the two arrays were compared to spot the undestructed objects' name

and their source locations.

Java allows us to de�ne and use objects of a class inside another class and at times,

application requirement makes it necessary for the programmer to do so. For e.g.

a programmer may de�ne a point class's object within a line class. We can have

as many objects of di�erent classes within a class de�nition. Di�erent memory

blocks are allocated for all such objects within the class and all such objects may

have di�erent lifetimes [45].

When we use object of a class within another class and it is not required for

the complete life cycle of the later class, the memory allocated for the former

class is not made free up to the time the object of later class is live. This is a

situation of memory leak which cannot be detected by available tools for memory

analysis. It is so because this memory leakage is caused due to a logical mistake

of the programmer which is hard to discover. Although such memory leak may

appear small, but it may gradually increase over time if the application is run

continuously and this unused block of memory adds up. The e�ects of this type

of memory leakage shall be more pronouncing if the class of unreferenced object

has high memory requirements. In that case, the big memory block allocated for

the object shall remain engaged until the scope of the later class is �nished.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 32

Listing 3.1: Aging testing using AspectJ-Example I

public aspect testMemoryLeak
{

static int count=0;
pointcut creation(person obj) : execution(public person.new(..))

↪→ && this(obj);
after(person obj) : creation(obj)
{

count++;
//Record object name into suitable data structure for further

↪→ analysis
}
pointcut destruction(person obj) : execution(protected void

↪→ person.�nalize(..)) && this(obj);
after(person obj) : destruction(obj)
{

count−−;
//Record object name into suitable data structure for further

↪→ analysis
}

}

We used aspects to identify such memory leaks which are caused due to objects

created within a class but not dereferenced after their use is over. If object of a

class say ClassB is created within another class say ClassA, then whenever object

under execution is that of ClassA, we increase a counter and when object of ClassB

is used, we reinitialise the counter to zero. A positive value of the counter indicates

that use of object of ClassB was �nished before the life cycle of ClassA and thus

it can be dereferenced earlier in the code of the class. Listing 3.2 shall make our

point clear.

An array out of bound is another memory related issue which occurs when the

index of the array is referred to with a negative value, or otherwise a value which is

greater than or even equal to the size of the array. It is so because when referring

to such a location, we actually refer to a memory location that doesn't exist. A

simple aspect as shown in Listing 3.3 can be used to test the array's index if the

de�ned limits are crossed while accessing it. The listed testing aspect assumes

that the array is accessed using an index variable at all instances and a global

MAX is de�ned.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 33

Listing 3.2: Aging testing using AspectJ-Example II

public aspect testMemoryLeakUnreferencedClassB {
int counter = 0;
pointcut secclass() : withincode(* ClassA.useB()) &&

↪→ !within(testMemoryLeakUnreferencedClassB) &&
↪→ target(ClassB);

before() : secclass ()
{

counter=0; //when classB's object is used
}
pointcut priclass() : withincode(* ClassA.useB()) &&

↪→ !within(testMemoryLeakUnreferencedClassB) &&
↪→ target(ClassA);

before() : priclass ()
{

counter++; //when classA's object is used
}

}

Listing 3.3: Aging testing using AspectJ-Example III

before(int newval) : set(int Array.index) && args(newval)
{

if (newval>= MAX || newval<0)
System.out.println("Array out of bound error");

}

3.1.2 Concurrency Testing

With the advent of multi-core machines, development of software using multi-

threaded design has becoming quite popular. Such design allows maximum utili-

sation of the available processor cores. Threads that belong to the same process

share the resources among themselves. For example, the process memory is shared

among all the threads of one process and this makes communication among shar-

ing threads easier and faster. But such ease comes with the cost of possible errors

that might surface up due to concurrency.

Testing for concurrent errors like race conditions or deadlocks that may occur while

programming with multiple threads using the conventional techniques and tools

is not easy. It is so because the nature of threads is non-deterministic and thus

the number of possible interleavings is high. Trying all of the interleavings is not

practically possible. The probability of producing an interleaving that causes a

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 34

concurrent error is low and further reproducing such an interleaving will again be

equally di�cult [46]. Moreover, the multithreaded programs executed even with

the same input values may produce di�erent outputs at di�erent instances [13].

AOP is well suited for concurrency testing. Aspects can be used for increasing

the number of di�erent interleavings by noise injection. Noise can be injected into

the test execution either randomly or based on some heuristics techniques without

making any changes to the source code. The injected noise causes a delay in the

execution of thread captured by the pointcut. This in turn gives the other threads,

which are ready to run, an opportunity to progress. Thus, this non-invasive noise

injection using aspects makes it possible to test the various possible scheduling

scenarios of the concurrent programs.

As an example let us consider an application with two threads which operate on a

variable. One of the threads divides the value of the variable and the other thread

augments this value with the synchronisation condition that the division function

must precede the augment function. We have instrumented the run method of the

division and augment threads with controlled sleep in order to check for concurrent

errors that could lead to break of the synchronisation condition. This introduced

sleep acts as noise and can be used to test the application as shown in Listing

3.4. In this example listing, we introduce heuristic sleep after the run of Division

thread with a probability of 1%.

Listing 3.4: Concurrency testing using AspectJ-Example I

pointcut noise_Division() : execution(void Division.run());
after() : noise_Division()
{

try
{

if (rand.nextInt(100)==1)
Thread.sleep(rand.nextInt(35));

}
catch (InterruptedException ex)
{

System.err.println(ex.getMessage());
}

}

Similarly, the aspect shown in Listing 3.5 tests the possibility of bugs when shared

variables are used in a concurrent application and the synchronisation imposition

is neglected by the programmer. It instruments all the accesses to shared vari-

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 35

able �a� with heuristic noise. Furthermore, as we shall see in Chapter 5, tester

can simply specify basic information regarding the desired test using our Testing

Aspect Generator Language (TAGL) which is then automatically converted into

the concurrency testing aspect.

Listing 3.5: Concurrency testing using AspectJ-Example II

private static Random r = new Random();
pointcut noise_set_a() : set(private int Shared.a);
after() : noise_set_a()
{

try
{

Thread.sleep(r.nextInt(20)) ;
}
catch (InterruptedException e)
{

e.printStackTrace();
}

}

On the same lines as illustrated above, we instrumented the synchronisation func-

tions like wait, notify etc. used in concurrent applications with the call or execution

joinpoints and tested for concurrency related errors.

3.1.3 Invariant Testing

An invariant can be de�ned as a condition or guideline that is mandated to hold

true for a program component or may be even for the whole program structure

[47]. Testing code for checking of such invariant conditions may lead to scattered

code throughout the application under test. We used pointcuts in AOP to capture

all the execution points where the invariant condition is supposed to be true and

further used suitable advice to check for the correctness of the invariant condition

at all such points. This doesn't require any modi�cations to be made in the source

code. Using aspects, invariant conditions imposed at both compile time as well as

run time can be tested.

For example, using a simple aspect, we tested the runtime invariant condition that

one (or all) methods of a class and all it subclasses should never return a null value

as shown in Listing 3.6. The after returning() advice captures the return value of

all the methods de�ned by the pointcut and if it is null, an error message is shown.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 36

The method getSignature() of the thisJoinPoint reference variable returns the

signature for the executing join point. Likewise, the method getSourceLocation()

allows access to the source location information of the joinpoint. We have used

the getSignature() and getSourceLocation() methods in this example to get the

signature of methods which return null and the corresponding source code line

number where null is returned.

Listing 3.6: Runtime invariant testing using AspectJ-Example I

public aspect runtimeinvariant
{

after () returning (Object obj) : call (Object Classname+.method(..))
{

if (null == obj)
{

String error = "Null value returned at " +
↪→ thisJoinPoint.getSignature() + " from " +
↪→ thisJoinPoint.getSourceLocation();

System.out.println(error) ;
}

}
}

Compile time invariant conditions can also be checked using AOP. There could be

compile time invariant conditions which should hold true for a part of or complete

source code like a particular API should never be called or a particular optimised

method should be considered for objects of an class or that a private member

should not be set outside a setter function. AspectJ provides us with declare

warning and declare error which are static crosscutting instructions that we used

to generate compile time warnings or errors respectively when a particular usage

pattern is detected in the source code of the application. We used the code snippet

shown in Listing 3.7 to issue a compile time warning whenever the value of any of

the private members of a class, say Classname, is set outside the setter function.

Listing 3.7: Compile time invariant testing using AspectJ

public aspect compiletimeinvariant
{
declare warning : within(Classname) && set(!public * *) && !withincode(*

↪→ set*(..)) :
"private �eld should be accessed only through a setter function" ;

}

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 37

Similarly, in order to ascertain another runtime invariant condition that a non-

static �eld inside a class in Java should be set only within a constructor and not

outside constructor, we used the aspect as shown in Listing 3.8.

Listing 3.8: Runtime invariant testing using AspectJ-Example II

public aspect runtimeinvariant
{

pointcut staticFieldAccess () : set (!static * Classname.*);
pointcut creation() : execution(Classname.new(..));
before() : staticFieldAccess () && !c�ow(creation())
{

throw new Error("non static �eld should be accessed only
↪→ within a constructor");

}
}

3.1.4 Application Programming Interface (API) Testing

API testing is performed on APIs produced by the software development team as

well as the third-party APIs. It is performed to check the seamlessness of API

calls used in the software. If the APIs used by an application are not tested

properly, it can lead to issues not only within the API application but also in the

calling application. APIs are tested to verify their return value based on the input

condition, successive call to another event/API or any data structure updated by

the API. The three key points that need to taken care of while performing API

testing are:

� It is important to understand which all API calls need to be tested and how

the application in context is using them.

� The input to be provided for testing the API should be identi�ed ensuring

that the API's functionality is veri�ed and failures are exposed.

� A suitable tool can be used to generate meaningful inputs for testing and

further call the API with these inputs.

The goal of API testing is to verify the correct performance of an external software

component before it is integrated with the application. API testing, unlike other

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 38

software testing methodologies, primarily focuses on the business logic layer. API

testing does not focus on the design and look of the API under test. Whereas

we apply inputs from keyboards or �les in case of other types of testing, in API

testing we need some mechanism to send calls to the API and evaluate its response.

Generally a testing tool is deployed which drives the API and also sets up the initial

environment when required.

In the context of Java, an API is a collection of pre-written packages, classes,

and interfaces which consists of essential methods, �elds and constructors. For

the purpose of API testing of Java applications, we wrote drivers using aspect and

around advice in AspectJ [36, 48] which not only drives the API but also sends the

required input parameters. Using aspects, various type of API outputs as listed

hereunder were veri�ed:

� An API may return a value based on the input parameters. This situation

is comparatively easy to test as the actual output obtained upon test can be

compared with the expected output.

� An API might trigger another event, interrupt or API. In this case, the

listener of that event, interrupt or API has to be tracked.

� An API may update a data structure or database. It can be veri�ed by

accessing the corresponding resource.

As an example, in Listing 3.9 we test the Youtube API for its proper functioning.

We �rst setup the necessary authorisation in the setup method and then create

an object of the Youtube API within an around advice that executes round the

method calling API. Di�erent youtube channel IDs are passed to get their cor-

responding channel titles which can be tested for correctness as per the known

values by implementing the comparison logic in compareResult method.

3.1.5 Loop Testing

Loop testing is the test performed to validate the loops in the program for problems

related to:

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 39

Listing 3.9: Testing the Youtube API

public aspect APITest {
private static YouTube ytObject;
List<String> range =

↪→ Lists.newArrayList("https://googleapis.com/auth/youtube");
Credential crd;

void setup()
{

try {
crd = Auth.authorize(range, "APITest");

}
catch(IOException e) {

System.err.println("IOException: " + e.getMessage());
e.printStackTrace();

}
}
void around() : execution(void APICallerClass.APICallerMethod())
{

setup();

//YouTube API Request Object
ytObject = new

↪→ YouTube.Builder(Auth.HTTP_TRANSPORT,
↪→ Auth.JSON_FACTORY,crd).setApplicationName
↪→ ("APITest").build();

String Id [] = {"UCB9_VH_CNbbH4GfKu8qh63w",
↪→ "UCPDXXXJj9nax0fr0Wfc048g",....};

for(int i=0; i<Id.length;i++)
{

System.out.print("Title for Channel ID " + i + " is:
↪→ " + getChannelTitle(Id[i])) ;

compareResult(i, getChannelTitle(Id[i])) ;
}

}
}

� Initialisation: If due to programmer's mistake, there exists uninitialised vari-

ables at the beginning of the loop, they are identi�ed when running the loop

tests.

� Performance bottlenecks: If loops are increasing the execution time of the

application considerably, then it can be determined while loop testing.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 40

� Loop repetition: If a loop is repeatedly executing for excessively high or

in�nite number of times, it is discerned with loop testing and can be �xed

up.

Loop testing can be done, for example, by trying to have a loop executed with a

fewer than minimum, as well as a larger than maximal number of iterations. In

general, a simple loop is tested in the following manner:

� Skip the execution of the loop completely

� Only 1 pass through the loop

� Only 2 passes through the loop

� �x<n� passes through the loop where n the maximum number of allowed

passes through the loop

� n, n-1, n+1 passes through the loop

We propose that AOP can be used for carrying out loop testing. For example,

aspects in AspectMatlab can be deployed for testing Matlab applications where the

loops are extensively used. AspectMatlab provides us with the ability to capture

the loops through a range of pointcuts namely: loop, loopbody and loophead [49].

The scope of these three pointcuts has been depicted in Figure 3.2 and explained

in Table 3.1.

Since loops cannot be named in Matlab, therefore loop iterator variables are used

to capture a loop pattern. Further since the names for loops iterator variables used

in source code are often quite general (usually i or j), therefore we used the within

pattern to restrict the scope of matching to desired and meaningful joinpoints. For

example, pointcut loopsMyClass : loop(i) & within(class, myClass) can be used to

capture all the loops written in the class myClass which iterate over the iterator i.

Likewise, the pointcut patternMethodCallInsideLoops : call(func) & within(loops,

*) can be used to capture every call to the func method inside any of the loops in

the program.

For testing loops in Matlab, we used the AspectMatlab's loopiterator construct to

replace or modify the value held by the loop iterator variable and assign desirable

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 41

Figure 3.2: AspectMatlab Loop Joinpoints

Table 3.1: AspectMatlab Loop Pointcuts

Pattern Crosscuts
loop(i) Captures execution of loops which iterate over i
loophead(j) Captures the header of all loops that iterate over j
loopbody(*) Captures the body of every loop in the program

values for testing. For example, the aspect snippet shown in Listing 3.10 captures

all the loops that iterate over i and are within the class myClass. The construct

args collects the values of loop iterator variable i. The captured loops are then

made to iterate with a halved value of the iterator using the body call which is

similar to the proceed call in AspectJ and is used to execute that portion of code

which corresponds to the body of the loop.

Although AspectJ does not provide any pointcut patterns to capture the loop

joinpoints directly [18], still we could use it for loop testing by changing the value

of the loop variable using appropriate pointcuts within aspects and then make it

run one or more times, as desirable. Listing 3.11 shows example of an aspect which

captures the loop iterator variable i and makes the loop inside the loopRunMethod

function of the class myClass run only once. The value of iterationsRequired in

this aspect can be adjusted to change the number of runs of the loop. The loop

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 42

Listing 3.10: Loop testing with AspectMatlab

patterns
loopsMyClass : loop(i) & within(class, myClass);

end
actions

hal�terator : around loopsMyClass : (args)
for loopiterator = args/2

body() %Run the loop with halved value of i
end

end
end

testing aspect shown in Listing 3.11 assumes that the loop iterator variable is

declared as a class member.

3.1.6 Basis Path Testing

Exhaustive testing can be carried out by testing each and every path through

every module at least once, but this is not impractical from the point of view of

time taken and enormous number of possible paths. Thus di�erent strategies exist

to select the paths of an application for testing. Basis path testing is one such

technique that is based on the cyclomatic complexity to determine the number of

independent paths.

Basis path testing is the oldest white box testing technique �rst proposed by Tom

McCabe [50] that uses the control �ow of the program to design test cases. The

code is converted into a control �ow graph model which is used to derive the

independent test paths. Each possible linearly independent path in the program

is then tested for correctness. A basis path is a unique path through the software

in which there are no iterations. When all of these paths have been executed, we

can be sure that every statement in the code (under test) has been executed at

least once and that every branch has been exercised for true and false conditions.

In essence, basis path testing involves the following 4 steps:

1. Compute the �ow graph G

2. Calculate the cyclomatic complexity V(G)

3. Select a basis set of independent paths

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 43

Listing 3.11: Loop testing with AspectJ

public class myClass {
int i ;
void loopRunMethod()
{

for(i=0; i<100; i=i+1)
{

//Java statements to be executed
}

}
}
public aspect LoopTest {

static int j = 0;
int iterationsRequired = 1;
Object around(int i) : set(int myClass.i) && !within(LoopTest) &&

↪→ args(i)
{

if (j<iterationsRequired)
{

i = 0;
j++;

}
else
{

i = 100;
}
return proceed(i);

}
}

4. Generate test cases for each of these paths and execute these to �nd bugs

For the second step above, the cyclomatic complexity is calculated using the below

formula:

V (G) = e− n+ p (3.1)

where e is the number of edges, n is the number of vertex and p is the number of

connected areas in the graph G.

As basis path testing involves �nding all possible independent test paths through

the source code and exercising and testing each path at least once, we propose that

a tracing aspect [18] can be written which �nds out all the possible execution paths

in a program and further another aspect can be used to execute selected paths

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 44

using di�erent input parameters. Pointcuts with wild cards in AOP can be used

to select the desired (one or more) execution points and perform the basis path

testing. For example, the pointcut * Account+.*(..) captures all the methods in

the Account class as well as its subclasses. This will also match any new method

that has been introduced in the Account class' subclasses.

3.2 Black Box Testing

Black box testing is the counterpart of white box testing. We need to have com-

bination of both black box and white box testing techniques to cover maximum

bugs in the application. Black box testing is called so because therein we test

without having knowledge about the internal structure, the process undertaken or

any other internal aspect of the system under test. For example, we test a search

engine simply by providing di�erent values for the search query text without wor-

rying about how the search engine algorithm internally fetches the resultant web

links. Black box testing is thus mainly focused on the functionality of the system

under test and the results. The bugs found using black box testing are generally

bugs related to functionality, validation or Graphical User Interface (GUI). The

mechanism of black box testing is depicted in Figure 3.3.

Figure 3.3: Black box testing

We performed black box testing using AOP as shown in Listing 3.12. In this

AspectJ example, the around advice replaces the execution of the function that

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 45

matches the de�ned pointcut viz. ClassName.Function. An array of inputs is

created and then proceed is called which executes the matched function with these

inputs one by one. The output obtained is captured and further compared with

the expected output as per software requirement speci�cation (SRS). The function

compareResult written inside the aspect compares results obtained from every

input with the expected outputs.

Listing 3.12: Black box testing using AspectJ

int around(int origArg) : call(int ClassName.Function(int)) &&
↪→ args(origArg)

{
int[] testInput = new int[] {−1,0,1,100,10000,2147483647};
for (int i = 0; i < testInput.length; i++)
{
int actualResult = proceed(testInput[i]); //invoke test
compareResult(testInput[i], actualResult);
}
return proceed(origArg); //proceed with original arguments

}

void compareResult(int input, int actualResult)
{

//implemented as per the speci�cations laid down in the SRS
}

Similarly the source code in Listing 3.13 shows how we can use Aspect Python to

perform the black box testing of a method in python class that reads and returns

the content of a �le. Upon testing, we observed that although the tested method

passed the test and generated an exception when the argument �le did not exist

but it could not handle the case when null (None in python) was passed for the

�le name.

3.2.1 Boundary Value Testing

Boundary value testing is a type of black box testing which is performed to check

the defects at the boundary conditions. It is based on the idea that the errors

usually occurs at the boundary values of inputs because the programmer fails to

cater the special processing required for such boundary values. We used aspects

to specify the boundary values test cases and further execute such test cases and

compare the results in a manner similar to that shown in Listing 3.12. In case if

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 46

Listing 3.13: Black box testing using Aspect Python

import aspectlib

@aspectlib.Aspect
def strip_return_value(*k):

#Test Case 1: File exists
content1 = yield aspectlib.Proceed("�lename.txt")
print(content1)
#Test Case 2: File does not exists
content2 = yield aspectlib.Proceed("/*.txt")
print(content2)
#Test Case 3: Null value passed
content3 = yield aspectlib.Proceed(None)
print(content3)

class �le_read :
@strip_return_value
def read(name):

try:
fp = open(name,'r')
return fp.read()

except IOError:
print("File could not be opened")

(two or more) variables with input domains are present, then the boundary value

test cases are determined by selecting nominal value for one of the variables and

then selecting minimum, slightly above the minimum, maximum, slightly below

the maximum and one nominal value for the other variable as enlisted in Table

3.2.

Table 3.2: Boundary value test cases with two variables X and Y

X Value Y Value
Xnom Ymin

Xnom Ymin+

Xnom Ymax

Xnom Ymax−
Xmin Ynom

Xmin+ Ynom

Xmax Ynom

Xmax− Ynom

Xnom Ynom

Listing 3.14 shows an example for the boundary value testing of a function which

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 47

takes date, month, year (in the 100 year range of 1917 to 2017) as input and

returns the corresponding day.

Listing 3.14: Boundary value testing using AspectJ

public aspect boundaryValueTestingAspect {
String around(int date,int month,int year) : execution(String

↪→ DateToDay.returnDay(int,int,int)) && args(date,month,year)
{

int [] dateTestValues = {15,15,15,15,15,15,15,15,15,1,2,30,31};
int [] monthTestValues = {6,6,6,6,6,1,2,11,12,6,6,6,6};
int [] yearTestValues =

↪→ (1917,1918,1967,2016,2017,1967,1967,1967,1967,1967,
↪→ 1967,1967,1967};

int i=0;
String actualDay="";
for (i=0;i<dateTestValues.length;i++)
{

actualDay = proceed(dateTestValues[i],
↪→ monthTestValues[i],yearTestValues[i]);

compareResult(dateTestValues[i],monthTestValues[i],
↪→ yearTestValues[i], actualDay);

}
return proceed(date,month,year);

}

void compareResult(int date,int month,int year,String actualDay)
{

//as per the speci�cation of the function returnDay
}

}

As we shall see in Chapter 5 later, tester can simply specify the range of values

for the parameters and the expected values using our Testing Aspect Generator

Language (TAGL) code which is then automatically converted into aspects with

boundary value test cases (test cases with values on the boundaries of input domain

and values just above and below the extreme edges of input domain) and an around

advice to compare the results.

3.2.2 All Pairs Testing

It is impractical to test for all the possible combinations of values for all the

parameters of a method. For example, if there is a page in an application with

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 48

a listbox which can take any of the listed ten values, a text box which can take

numerical values between 1 to 100 and further a checkbox which can be either

checked or unchecked. Now to test such a page for its proper functionality, the

total number of possible test cases would be 10 Ö 100 Ö 2 = 2000, but it would

be practically cumbersome and time taking to test for all of these. In fact, this

number shall go further high if we consider the negative or invalid inputs as well

for the purpose of testing.

The idea behind all pairs testing, which is also called pairwise testing, is that

it is enough to test using combinatorial method wherein we test with all the

possible discrete combination of the involved interacting parameters. The values of

variables in the test cases are permuted to achieve coverage of all the possible pairs

and thus reducing the number of tests to perform. Pairwise-generated test cases

identify all the pair combinations and cover all such combinations of two. Pairwise

testing is basically based on the principle of coupling e�ect which suggests that if

there is a fault that manifests with a speci�c setting of con�guration variables, it

is most likely caused actually by only a small subset of those variable values.

Table 3.3 lists the possible values for the three arguments of the sanctionLoan

method of the class loanClass which determines whether loan can be sanctioned or

not based on the borrower's characteristics, namely number of kids, occupation and

borrower's loan history. Listing 3.15 shows how an aspect can be used to perform

all pairs testing of this method. The around advice executes the pairwise test cases

and then calls the compareResult method to compare the obtained results with the

expected results. Further, using our TAGL (as explained later in Chapter 5), the

tester just needs to specify the various possible values for the involved parameters

and the generated aspects shall automatically produce the test cases based on the

all pairs testing algorithm.

Table 3.3: All Pairs Testing: Variables and their possible values

Variable name Possible values
Number of Kids (no_of_kids) 2, 3, 4
Occupation (occupation) Job, Business
Loan History (�rstloan) True, False

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 49

Listing 3.15: All pairs testing using AspectJ

public aspect allPairsTestingAspect {
boolean around(int no_of_kids,String occupation,boolean �rstloan)

↪→ : execution(boolean loanClass.sanctionLoan(int,String,
↪→ boolean)) && args(no_of_kids,occupation,�rstloan)

{
int [] no_of_kids_Array = {2, 2, 3, 3, 4, 4};
String [] occupationArray = {"Job", "Business", "Job", "

↪→ Business", "Job", "Business"};
boolean[] �rstLoanArray = {true, false, false, true, true,

↪→ false};
int i=0;
boolean decision;
for (i=0;i<no_of_kids_Array.length;i++)
{

decision = proceed(no_of_kids_Array[i],
↪→ occupationArray[i],�rstLoanArray[i]);

compareResult(no_of_kids_Array[i],occupationArray[i
↪→],�rstLoanArray[i], decision);

}
return proceed(no_of_kids,occupation,�rstloan);

}

void compareResult(int no_of_kids,String occupation,boolean
↪→ �rstloan,boolean decision)

{
//as per the speci�cation of the function sanctionLoan

}
}

3.2.3 Orthogonal Testing

Orthogonal testing is based on the fact that interactions are a major source of

defect and that most of the defects arise from simple interactions. Orthogonal

testing involves selecting input combinations using orthogonal array technique

which guarantees pairwise coverage of all variables. The test set created using

orthogonal array technique is concise with fewer test cases as compared to testing

with all possible combinations of variables. For example, lets suppose that we have

a system where we have four variables - lets say temperature, pressure, humidity

and rainfall and each of which can take three values as shown in Table 3.4. Now

the total number of test cases in the exhaustive test set shall be 81 (3 X 3 X 3 X

3). However, the test set created using the orthogonal array technique shall have

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 50

only 9 test cases as explained below.

An orthogonal array is represented by the following three elements:

� Runs (N) - Number of rows in the array, which represents the number of test

cases.

� Factors (K) - Number of columns in the array, which correlates to the max-

imum number of variables under consideration.

� Levels (V) - Maximum number of values that can be taken by any single

variable.

A typical representation of an orthogonal array is LRuns(Levels
Factors). For the

above example with four variables having three values, the orthogonal array shall

be L9(3
4). Table 3.5 shows a standard orthogonal array with four factors and three

levels:

Table 3.4: Orthogonal Testing: Variables and their possible values

Variable name Possible values
Temperature 100C, 150C, 200C
Pressure 2psi, 5psi, 8psi
Humidity Absolute, Relative, Speci�c
Rainfall Low, Moderate, Heavy

Table 3.5: Standard Orthogonal Array L9(3
4)

Exp. No. Factor A Factor B Factor C Factor D
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Now in order to generate the orthogonal test cases, we can map the factors and

values in Table 3.5 with the actual variables and their values as shown in Table 3.4.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 51

For our example, the test cases so generated are shown in Table 3.6. As evident

from this table, the total number of test cases shall be only 9. In the orthogonal

array, the permutations of various factors and their levels are chosen in such a way

that the responses obtained are not correlated. Therefore, each test case generated

using this technique renders a unique piece of information and fewer test cases are

su�cient to catch the fault.

Table 3.6: Orthogonal Test Cases L9(3
4)

Test Case No. Factor A Factor B Factor C Factor D
1 100C 2psi Absolute Low
2 100C 5psi Relative Moderate
3 100C 8psi Speci�c Heavy
4 150C 2psi Relative Heavy
5 150C 5psi Speci�c Low
6 150C 8psi Absolute Moderate
7 200C 2psi Speci�c Moderate
8 200C 5psi Absolute Heavy
9 200C 8psi Relative Low

We performed black box testing with orthogonal test cases by using aspects and

results were compared in a way similar to explained in Section 3.2.2. Moreover, as

we shall see later in Chapter 5, the tester can simply specify the various possible

values for the variables under test in the form of TAGL statements and then

testing aspect with appropriate test cases as per the orthogonal array technique

are automatically generated.

3.2.4 Fuzz Testing

Fuzz testing is to test using massive unexpected or random data as inputs, for

example test inputs like 31/2/2014 or long strings etc. Based on the process of

generation of inputs, fuzzing can be mutation-based (modify parts of the known

valid input �les or arguments) or generation-based (generate malformed �les or ar-

guments automatically based on known formats). Fuzzing aims to discover failures

caused by malformed insensible values that the programmer might have missed to

code for. Fuzz testing monitors the e�ect of such inputs on the system under test,

speci�cally for system crashes, hangs or any other abnormal reaction.

We used AOP to perform fuzz testing. Aspects were used to generate random

inputs and further compare the obtained results with the expected results. There

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 52

Figure 3.4: Flow chart for fuzz testing

could be commonly used libraries or �les of di�erent formats processed by the

target software which can be fuzzed to test the system for robustness. For example,

for a function in an application which reads input from a text �le, one sample test

case could be �check that if the �le content is fuzzed or modi�ed by an attacker,

then is the application robust enough to handle/detect such an alteration�. We

used aspects with a before advice to fuzz the content of an input �le with random

data before its contents are read and further test whether the application is able to

detect the alteration or not. File fuzzing aspect shown in Listing 3.16 substantiates

our point.

The input generated for �le fuzzing should be semi-valid or in other words, it

should be valid enough such that it is not detected by the application and at the

same time erroneous enough to cause the application to fail. If the application

fails, then such fuzzing input is saved, bug reported and the following iteration

with next fuzz inputs is started as shown in the �ow chart in Figure 3.4. For

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 53

Listing 3.16: Fuzz testing using AspectJ

public aspect FileWriteAspect {
pointcut readFile() : execution(void FileOperation.ReadFile());
before() : readFile()
{

//The path of the �le to fuzz
String �leName =

↪→ "/home/administrator/inputdir/�lename.txt";
FileReader �leReader = new FileReader(�leName);
//Character array to read data from �le
char[] bu�er = new char[1000];
Bu�eredReader br = new Bu�eredReader(�leReader);
br.read(bu�er) ;
br. close () ;
//Unusual characters array, supplied based on tester 's

↪→ experience and application 's context
char[] fuzzData = {'\', '%', '0' , '1' , '\' , '%', '0' , '2' ,

↪→ '\' , '%', '0' , '3' , '\' , '%', '0' , '4'};
//Randomize the above array
Random random = new SecureRandom();
char [] fuzz = new char[array.length];
for (int i = 0; i < array.length; i++)
{

fuzz [i] = array[random.nextInt(array.length)];
}
System.arraycopy(fuzz, 0, bu�er , 5, fuzz .length);
FileWriter �leWriter = new FileWriter(�leName);
Bu�eredWriter bw = new Bu�eredWriter(�leWriter);
//Write the modi�ed bu�er array into the �le
bw.write(bu�er) ;
bw.close() ;

}
}

�le fuzzing, there could be three options, namely: insert, overwrite, replace [51].

In case of insert, the fuzz input is inserted before or after a speci�ed �eld of the

input �le as shown in Figure 3.5. In case of overwrite, the fuzz input overwrites a

part of a speci�ed �eld of the �le as shown in Figure 3.6. In case of replace, the

�eld speci�ed by the tester is completely replaced by the fuzz input as shown in

Figure 3.7. The aspect shown in Listing 3.16 is an example of overwrite where the

content of the input �le starting from position 5 is overwritten by the fuzz input.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 54

Figure 3.5: File fuzzing: Insert fuzz values into the input �le

Figure 3.6: File fuzzing: Overwrite a speci�ed �eld of the input �le

3.2.5 Fault Injection Testing

Fault injection testing focuses on the error handling capabilities of a software.

Fault injection testing helps to test certain code paths which shall otherwise be

rarely executed when testing with the routine cases. In order to test for the error

handling capability, we need to generate test cases with erroneous inputs and some

amount of code instrumentation is always necessary [52]. Suitable aspects can be

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 55

Figure 3.7: File fuzzing: Replace a speci�ed �eld of the input �le

written for this purpose for e.g. we used aspects to produce a representative set

of transactions that contains errors or to bring about corruption in the network

packets or to make an assertion false during program execution. Using pointcuts,

we inserted such faults at desirable execution points. For example, the pointcut

shown in Listing 3.17 can be used to test the behaviour of a banking application

upon inserting the fault of depositing or withdrawing null amount. The after

throwing advice shown in listing is meant to collect the context of the program

where the error occurs and the method throws an exception.

3.2.6 Equivalence Partitioning Testing

Equivalence partitioning is yet another type of black box testing in which the test

data is classi�ed into equivalence classes. In case of equivalence class partitioning,

the domain of input values is partitioned in such a way that the behaviour of

the application is same for every value belonging to the same equivalence class.

For example, for a method that takes as input the candidate's annual income and

calculates the tax, there are various income tax slabs and we can de�ne di�erent

equivalence classes of input values for income based on the tax slabs. We used

aspects to de�ne test cases from the partitions of equivalent data and further

execute these test cases and compare the results in a manner similar to that shown

in Listing 3.12. Moreover, as we shall see later in Chapter 5, tester can specify the

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 56

Listing 3.17: Fault injection testing using AspectJ

public aspect faultInjectionAspect {
void around(Long amount) : (execution(*

↪→ BankingClass.depositMethod(Long)) || execution(*
↪→ BankingClass.withdrawMethod(Long))) && args(amount)

{
amount = null;
proceed(amount);

}

after() throwing(Throwable ex) : (execution(*
↪→ BankingClass.depositMethod(Long)) || execution(*
↪→ BankingClass.withdrawMethod(Long)))

{
Signature sig = thisJoinPointStaticPart.getSignature();
System.err.println(sig .getDeclaringType().getName() + "." +

↪→ sig.getName() + "LOC: " +
↪→ thisJoinPoint.getSourceLocation());

}
}

range of input parameters in the form of TAGL statements and then aspects with

appropriate test cases from equivalence partitions are automatically generated.

3.3 Non Functional Testing

Although existing testing techniques are worthwhile for functional testing, but the

non functional requirements which are increasingly surfacing up in recent soft-

ware applications set urge for new e�ective methodologies for testing. Non func-

tional testing is about verifying the proper implementation of the non-functional

requirements of an application like performance, robustness, recovery etc. The

implementation of these non-functional requirement is mostly crosscutting in na-

ture and therefore testing these with conventional techniques shall require heavy

instrumentation of the original source code at various places. Since AOP addresses

the issues arising from crosscutting concerns well, we propose its use for testing

the non-functional requirements of software applications.

Based on the non-functional requirements as per the software requirement spec-

i�cation (SRS), the testing objectives are formulated and grouped into di�erent

categories on the basis of their characteristics and the non-functional concern they

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 57

correspond to. We modularised the testing of such crosscutting non-functional

concerns by capturing them using testing aspects. For example:

� To carry out performance testing of an application, we used aspects to �nd

out the memory usage or measure execution times and assessed the quality

of the implementation.

� To test the system for robustness under variety of failure conditions, we used

the aspects to create situations of starvation like sudden disconnection from

network.

� To test the system reliability under speci�ed conditions for a speci�ed pe-

riod of time, we used aspects to generate repeated inputs and execute for

a designated period of time to �nd out how long the software will execute

without failure.

� To perform penetration testing in order to test the software for safety against

intruders, we used aspects to gather information about the target program

before the test, identify possible entry points, attempt to break in and re-

porting back the �ndings.

� For monitoring purpose, we used a monitor aspect which can, for example,

capture dangling null-pointers anywhere in the software system like unex-

pected calling of a method by a null object or creation of an object without

initialisation.

The example in Listing 3.18 shows how we implemented aspects for measuring

the execution times of various methods of a class which can be used to test the

performance requirements.

Likewise, aspect shown in Listing 3.19 can be used to measure the memory usage

of the various methods of a class, say Student.

The example in Listing 3.20 shows how we implemented aspects for monitoring

call to any method by a null object anywhere within a class.

In the following subsections, the two most important types of non functional test-

ing, namely load testing and security testing are discussed and usefulness of aspects

to carry out these testing is presented.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 58

Listing 3.18: Measure execution times using AspectJ

public aspect �ndExecutionTimeAspect
{

pointcut captureAllMethodCalls(Object object) : call(*
↪→ Classname.*(..)) && target(object);

before(Object object): captureAllMethodCalls(object)
{

System.out.println("Method called using " + object);
}

Object around(Object object) : captureAllMethodCalls(object)
{

System.out.println("Method " + thisJoinPoint + " started at "
↪→ + System.currentTimeMillis());

proceed(object);
System.out.println("Method " + thisJoinPoint + " completed

↪→ at " + System.currentTimeMillis());
}

}

Listing 3.19: Measure memory usage using AspectJ

public aspect memoryUseAspect {
pointcut captureAllMethodCalls(Object object) : execution(*

↪→ Student.*(..)) && target(object);

before(Object object): captureAllMethodCalls(object)
{

System.out.println("Method called using " + object);
}

Object around(Object object) : captureAllMethodCalls(object)
{

long memStart = Runtime.getRuntime().totalMemory() −
↪→ Runtime.getRuntime().freeMemory();

Object retObject = proceed(object);
long memEnd = Runtime.getRuntime().totalMemory() −

↪→ Runtime.getRuntime().freeMemory();
long memUse = memStart − memEnd;
System.out.println("Memory usage by Method: " +

↪→ thisJoinPoint + "is: " + memUse);
return retObject;

}
}

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 59

Listing 3.20: Aspect to monitor method call by a null object

public aspect monitorAspect
{

pointcut nullPointerTest(Classname obj) : call(* Classname.*(..)) &&
↪→ target(obj);

before(Classname obj) : nullPointerTest(obj)
{
if (obj==null)

System.out.println("Null pointer exception in : " +
↪→ thisJoinPoint + " at: " +
↪→ thisJoinPoint.getSourceLocation());

}
}

3.3.1 Load Testing

This type of non-functional testing tests the behaviour of a software application

under normal and peak input loads. The main goal of load testing is to examine

the extremum of application in terms of database, network, hardware etc. It helps

to identify the bottlenecks in the system and database components under various

workloads which should be recti�ed before the system is put to real use. Load

testing is generally performed by creating virtual and distinct users that emulate

workload for the system under test.

We used aspects in AOP to generate the load required for testing. For example, in

order to test the performance of a shopping cart application, an aspect to create

multiple cart users all of whom performed the shopping operation concurrently

was written. The simple aspect code snippet shown in Listing 3.21 demonstrates

the same. In this aspect, one thousand cart users are created using the addUser

method of the shopping class.

As another example, a single user of the cart can be made to purchase multiple

items to test how well the application handles large purchase values as shown in

Listing 3.22.

Moreover, ramp testing, which is a strategy of load testing in which we check the

performance of the software with constantly increasing load, is also possible using

aspects. For example, the shopping cart application can be ramp tested using an

aspect which increases the numbers of cart users over a given period of time. This

way we can determine the maximum number of users the application can sustain

before it starts producing error messages. We performed the testing of popular

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 60

Listing 3.21: Load testing of a shopping cart application-I

public aspect loadTestShoppingCartI {
pointcut testShoppingCart(shopping s) : call(void

↪→ shopping.addUser(User)) && target(s) &&
↪→ !within(loadTestShoppingCartI);

void around(shopping s) : testShoppingCart(s)
{

User[] userArray = new User[1000]; //Create 1000 new
↪→ dummy users

for(int j=0;j<1000;j++)
{

userArray[j] = new User();
s .addUser(userArray[j]);

}
}

}

Listing 3.22: Load testing of a shopping cart application-II

public aspect loadTestShoppingCartII {
int around(User u) : call(int User.shop(Item)) && target(u) &&

↪→ !within(loadTestShoppingCartII)
{

Item[] itemArray = new Item[5000]; //Purchase 5000 items
int shopAspectValue = 0;
for(int j=0;j<5000;j++)
{

itemArray[j] = new Item();
shopAspectValue = u.shop(itemArray[j]);

}
return shopAspectValue;

}
}

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 61

Java chatting application NetC using this mechanism and plotted a graph for the

application's behaviour having axes of number of users vs. RAM usage. This shall

be discussed in detail in Section 4.1 of Chapter 4.

3.3.2 Security Testing

Security testing is performed to test the authorisation mechanism of the software

and evaluate the provisions of software against attacks. AOP allows the security

testers to develop and inject separate modules within aspects for conducting secu-

rity testing of the applications, independent of their business logic [53]. Moreover,

security is a cross cutting concern and thus code to implement this concern shall

be spread all over the program. AOP, by its de�nition, handles cross cutting con-

cern well and thus is most suitable for security testing while avoiding the issue of

test code scattering.

In the context of Java, there are Servlets or Java Server Page (JSP) applications

which take user parameter in the form of strings and render Hypertext Markup

Language (HTML) pages with these string inputs. The attacker can create Uni-

form Resource Locator (URL) with malicious javascript code as input which shall

be written into the HTML response page. If a user is made to click on such a URL,

the malicious javascript code shall be executed in the user's browser. Malicious

script code can be written to access client's cookies, redirect the client to harmful

sites, or even for session hijacking.

In our work, we used aspects for the purpose of testing Java Servlets. Java servlets

are used to create web applications with dynamic content and they reside on

the web server. As servlets exist on world wide web, these are prone to various

security attacks like resource tampering, denial of service attack, structured query

language (SQL) code injection etc. The servlets need to be tested for existence

of vulnerabilities which may arise due to unawareness of or mistake left by the

programmer. Thus, it is necessary to perform security testing of the servlets with

proper test cases.

A servlet container like Apache Tomcat maps the Hyper Text Transfer protocol

(HTTP) request to the corresponding servlet. For this purpose, the container

creates light-weight threads for handling the multiple client requests to a single

instance of the servlet. The client browser uses two methods, namely GET Method

and POST Method, to pass user information to the web server. Accordingly,

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 62

the servlet handles the client requests with information using the doGet() or the

doPost() method.

We propose the use of aspects which implement the Filter interface to capture

desirable execution points within the Java servlets and perform their security

testing. We �rst create a RequestWrapper class that extends the HttpServletRe-

questWrapper class of the Java Servlet package. Within this RequestWrapper class,

we override the getParameter() method to pass parameters for the purpose of se-

curity testing to the Servlet. Listing 3.23 shows how the RequestWrapper class is

written extending the HttpServletRequestWrapper.

Listing 3.23: RequestWrapper class for servlet testing

public class RequestWrapper extends HttpServletRequestWrapper
{

public RequestWrapper(�nal ServletRequest request)
{

super((HttpServletRequest) request);
}

//The getParameter method is overridden here
@Override
public String getParameter(�nal String name)
{

//Write Code for passing testing parameters
...

}
}

Thereafter, we used the aspect shown in Listing 3.24 to implement the Filter

interface and create an object of the RequestWrapper class within the doFilter()

method.

The aspect shown in Listing 3.24 along with the RequestWrapper class can be

used to pass di�erent parameters to the Servlet and thereby testing it for possible

vulnerabilities. For example, to test the servlet for SQL injection attack, we can

pass malicious SQL commands using the getParameter() method in the Request-

Wrapper class. Further the test results obtained by passing di�erent parameters

or the exceptions so generated can also be monitored using aspects.

As another example of security testing using aspects, we propose that aspects

can also be used to test the access control mechanism intended in an application.

For example, if it is intended in a banking application that the methods of the

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 63

Listing 3.24: Aspect for servlet testing

public aspect testAspect implements Filter
{

public void doFilter(ServletRequest request,ServletResponse
↪→ response,FilterChain chain) throws
↪→ IOException,ServletException

{
//RequestWrapper class constructor called
chain.doFilter(new

↪→ RequestWrapper((HttpServletRequest)request),response);
}
@Override
public void destroy()
{

//Necessary to implement
}
@Override
public void init(FilterCon�g arg0) throws ServletException
{

//Necessary to implement
}

}

BankAccount class should be accessible only from the BankAccountHolder class,

then the aspect shown in Listing 3.25 can be used to test such access control.

Listing 3.25: Aspect for testing access control

public aspect BankAccountAccessControlTest
{

declare error : (call(* BankAccount.deposit*(..)) || call(*
↪→ BankAccount.withdraw*(..)) || call(*
↪→ BankAccount.transfer*(..))) && !within(BankAccountHolder) :
↪→ "Unintended access to BankAccount";

}

3.4 Testing at di�erent levels of the software de-

velopment process

Each phase of the software development life cycle goes through testing and thus

there exists various levels of testing [54]. Unit level testing is done to test the

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 64

individual components or modules. Integration level testing is done to evaluate

the e�ect of one module over the other and involves testing software components

in combination with other components. Acceptance testing is carried out to verify

that the software meets the customer speci�ed requirements. We shall discuss the

usefulness of AOP to perform these software testing types which are performed at

di�erent levels of the software development process in the following subsections.

3.4.1 Unit Testing

In unit testing, the smallest units of code are tested independently so that when-

ever an error is detected its cause can be identi�ed and isolated to one particular

method or class. As the unit testing is typically performed on every method of

every class in the target program, therefore it is a cross cutting concern and the

testing code using conventional techniques shall be scattered. AOP, by its de�ni-

tion, can be used to modularise this cross cutting concern by writing the testing

code within aspects [48]. We performed several unit tests on independent program

units using white box and black box strategies with the help of aspects.

JUnit is the most popular Java automated testing tool [55] which is largely used by

the testers for unit testing. We mapped the testing annotations in JUnit, namely

@Test, @Before, @BeforeClass, @After, @AfterClass onto the around, before, after

and adviceexecution advices available in AspectJ. The pre-conditions can be setup

in the before advice, the reset or release of resources can be performed in the after

advice and the method to be tested can be instrumented and tested with desired

input values using the around advice. Regarding this analogy, that we utilised

for performing unit testing with aspects, we shall discuss in detail in Chapter 6

wherein we have compared our proposed technique with the conventional testing

techniques.

Moreover, when a private method contains an algorithm which requires more unit

testing than it is possible through the public interfaces, then it becomes necessary

to directly test the operations of the private method as well. Using AspectJ, the

private methods can be easily accessed and tested in the testing aspect by declaring

the testing aspect as privileged. Code inside privileged aspects has access to all

members of the captured object, even the private ones.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 65

3.4.2 Integration Testing

When separate modules of a software are integrated together and tested as a

group for issues like data communication, defects in interfaces etc., it is called

Integration Testing. The prime motive behind Integration Testing is to discover

inconsistencies arising due to shared data areas and inter process communication

between the various modules. Integration testing of large applications comprises

of combining many modules together which are tightly coupled with each other.

Integration testing is not conducted at the end of the cycle, rather it is conducted

simultaneously with the development process and therefore few modules may not

be actually available for integration. Integration testing can be performed using

two approaches: Top Down Integration Testing or Bottom Up Integration Testing.

Stub is a piece of code used during Top Down Integration Testing which simulates

the behaviour of the �called program� which is either not available or resource

extensive. Figure 3.8 and 3.9 throw light on the concept of stubs used during Top

Down Integration Testing of six modules (symbolically named as A, B, C, D, E

and F). Similarly drivers imitate the functionality of an unavailable upper level

module or the �calling program� and are used in Bottom Up Integration Testing.

Figure 3.8: Top down integration testing

We propose that aspects can be written to create good stub and drivers and are

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 66

Figure 3.9: Top down integration testing with stubs

thus useful in Integration Testing. We used the around advice within aspects to

capture the module to be replaced with the stub implementations. For example,

consider an application with a Login module which is dependent on the back-end

Database module such that the login and password values passed by the Login

module are matched in the application database by the Database module and it

returns a true on a match (false otherwise). The Login module has been coded

and is ready to be tested, but the Database module is not prepared. We created a

stub in the form of aspect using the around advice which mocked the functionality

of the Database module and returned appropriate value to the Login module [48].

Listing 3.26 shows the source code for our aspect stub.

3.4.3 Acceptance Testing

Acceptance testing can be alpha testing (internal acceptance) and beta testing (ex-

ternal acceptance) which are both possible to be conducted using AOP techniques

as described hereunder.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 67

Listing 3.26: Writing stub for Integration Testing using AspectJ

public aspect stubAspect {
String loginArray[]={"tom","john","peter"};
String passwordArray[]={"12345","abcd","@pqr123"};

pointcut stub(): call(* Database.checkCredentials(..)) ;
boolean around(): stub()
{

Object args[]=thisJoinPoint.getArgs();
String login=(String)args[0];
String password=(String)args[1];
boolean userExists=false;
//System.out.println(login + " " + password);
for(int i=0;i<loginArray.length;i++)
{

if (login .equals(loginArray[i]))
{

userExists = true;
if (password.equals(passwordArray[i]))
{

return true;
}
else
{

return false;
}

}
}
return userExists;

}
}

3.4.3.1 Alpha Testing

Alpha testing is basically the term given to internal acceptance testing done at the

developer's site which is performed before release of the software and towards the

end of the development process. The main motive of alpha testing is to simulate

the real users by using black box and white box techniques. The focus is to

generate test cases which are similar to the possible inputs by a typical user.

Alpha testing ensures that the end users get a high quality application which

performs the intended functionalities without errors. The testers are usually the

employees of the organisation i.e. in-house skilled engineers who might not be

members of the development team.

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 68

Most of the testing processes which are carried out in alpha testing can be per-

formed using AOP. As alpha testing is based on either white box or black box

testing strategies and since AOP can be used to perform both of them as ex-

plained above in Section 3.1 and 3.2, therefore AOP is suitable for performing

alpha testing as well. Also as alpha testing is done before the release of the soft-

ware and when the development work is about to complete, AOP becomes useful

to implement the functionality of modules which are yet not fully developed. Al-

though alpha testing is usually performed by highly skilled testers, still if the alpha

testers do not have the required knowledge of AOP, our TAGL as explained later

in Chapter 5 can be used to generate the testing aspects and execute the alpha

test cases.

3.4.3.2 Beta Testing

Beta is the second letter of the Greek alphabet and therefore beta testing is the

name given to the external acceptance testing which immediately follows alpha

testing. Beta testing is the pre-release testing performed with limited number of

external users with the intention to integrate the customer input to improve the

quality of the software and ensure release readiness. Beta testing is carried out

under real environment and real working conditions with real customers (end users

of the software). Testers can be naive or pro�cient end users of the software. Beta

testing typically uses black box testing. AOP is suitable for beta testing because it

is carried out using black box strategy for which AOP can be applied as explained

above in Section 3.2. Further our TAGL, with its low learning curve as we shall

see in Chapter 5, enables the end users to execute complex and extensive beta

test cases even though they aren't pro�cient in the �eld of software development

or testing.

3.5 Agile Testing

Recently the methods for agile software development are getting widely acceptable

in the software industry. In agile development, the total software development

period is divided into large number of short iterations called sprints [56]. The

software is then developed incrementally and at the beginning of each sprint, the

requirements from customers is analysed and the software (obtained from the

previous iteration) is improved to satisfy those requirements. Thus at the end

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 69

of every sprint, an incrementally enhanced software is delivered. Requirements

analysis in each sprint is the most signi�cant feature of agile software development.

Agile Testing is the practice of testing software for bugs within the backdrop of

agile software development process. Since agile processes are based on sprints

that do not take into account the future or unknown requirements, agile teams

test continuously as this is the only way to be sure that the features expected from

a given iteration are properly implemented. Bugs detected in an iteration are �xed

within the same iteration and thus the source code remains clean. By coupling

testing along with development phase, agile methods produce more robust code

more quickly.

Our proposed AOP testing methodology makes agile testing easier. If AOP is used

for testing issues which are system wide and e�ect all or most of the modules of a

system, then the testing code shall be con�ned within the testing aspect only. For

example, if a performance testing aspect has been written using wildcard pointcuts

which collects the memory usage and the execution times of each function call in

the whole program, it will be equally functional without any modi�cations even

when the application is added with new functions in the successive sprints.

Further, incremental changes in the source code at every iteration of the agile

process shall require changes to the testing code localised in the testing aspects

only. Lets take example of a web service which provides city name upon entering

the zip code. In United States, the zip code is that of 5 digits. Now if after one

of the sprints, a new requirement is discovered to handle 6-digit pin codes as well

(the application is expected to accommodate Indian zip codes too) then we need

to perform testing with test cases having 6 digits in addition to the existing test

cases. These new test cases can be simply added to the existing array of test cases

in the testing aspect (refer Section 3.2). Likewise, crosscutting non-functional

properties like security, reliability, performance etc. can be tested incrementally

using AOP based testing techniques.

3.6 Smoke Testing

In smoke testing, only the initial test cases are executed in order to check the most

important functionalities of the software before going ahead with the complete

testing in detail. The name �smoke testing� is derived from the hardware testing

phenomenon where it is checked that smoke should not be emitted on the initial

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 70

switching of the device. Smoke testing is carried out with test cases that test the

major functional areas of the system. The testing team actually builds a set of test

cases which should be run every time a new release of the software is developed.

The smoke test ideally include at least one test case for every feature or function of

the application. Primary features like �creation of a new user�, �whether the GUI

is responsive or not�, �buttons in a window work as intended or not�, �successful

login�, �successful logout� etc. are tested under the umbrella of smoke testing.

We executed the aforesaid smoke tests cases using aspects and found that AOP is

suitable for smoke testing as well.

3.7 Regression Testing

Regression testing is carried out when some changes are made to the existing

application. Regression testing is required in one of the following cases:

� When new features are added or existing features are deleted from the ap-

plication

� When the software is adapted in accordance with the new environment and

conditions

� When a discovered bug is �xed, it might accidentally result into introduction

of new bug(s)

� When an optimisation is carried out in the application

Whenever such a change is made in an application's module, the test suite asso-

ciated with the module has to be modi�ed: either new test cases are to be added

replacing the existing test cases and/or the existing test cases need to be modi�ed.

It is so because when a software S is modi�ed to S', all the tests developed for S

may not be always applicable for S'. Foremost reason is that there is not enough

time available to run all the tests. Further, the input data or its format for S

might be di�erent from that of S'. Moreover, the output expected from S'could be

di�erent from what was originally expected from S.

With our proposed AOP based testing, the tester can select and modify the test

code written within aspects according to the change in the application [57]. New

Chapter 3 Proposed Aspect Oriented Approach for Software Testing 71

test cases (in addition to the older test cases) can be added to the testing aspect.

Moreover, the tester can test whether state invariant is preserved or not after

bringing up the new changes by using the set and get pointcut. For example, if

after bringing about a modi�cation in an application's module, the tester suspects

that a particular variable in the module might have been a�ected, then the set

pointcut can be used to verify that the values of the variable still remain within

the desired constraints whenever its value is written in the module as shown in

Listing 3.27. Similarly the c�ow pointcut can be used to test for any incorrect

modi�cation in the control dependencies. In AspectJ, we can use c�ow to deter-

mine the joinpoints that fall under the control �ow of a particular pointcut. We

used this to ascertain that the same control �ow is maintained even after making

the changes in the application.

Listing 3.27: Regression testing example

public aspect regressionTest {
int min=_expectedminvalue_, max=_expectedmaxvalue_;
void around(int datamember_value) : set(int

↪→ classUnderTest.datamember) && args(datamember_value)
{

if (!(datamember_value>=min &&
↪→ datamember_value<=max))

{
System.out.println("Test failed ");

}
}

}

3.8 Summary

In this chapter, we discussed about the di�erent types of software testing and

proposed the use of AOP technique for carrying out these. Suitable illustrations

of Java programs and their testing using aspects in AspectJ have been provided in

the chapter to substantiate our proposed testing methodology. It can be inferred

from the discussion in this chapter that AOP is suitable to carry out most of the

types of software testing and that too in a non-invasive manner.

Chapter 4

Applying AOP Approach for

Testing Open Source Applications

In order to establish the bene�ts of using AOP for testing and to evaluate our

approach over conventional testing techniques, we carried out di�erent types of

testing of few widely used open source software. As AspectJ is the de-facto stan-

dard for AOP created for Java programming language, we selected projects like

NetC, JDownloader, JScreenRecorder, JFreeChart, JGAP etc. which are all writ-

ten in Java and are available in open source community. The total number of

downloads of all these software has been quite signi�cant which signi�es their

popularity. Using our proposed AOP methodology of testing, we could detect

remarkable bugs into these software.

The main idea behind applying our AOP approach on testing of open source ap-

plications was to analyse the e�ectiveness of our approach. We performed various

types of testing on the aforesaid open source applications rigorously like black box,

memory leakage, load testing etc. with numerous input test cases. We intended

to �nd out bugs using our proposed AOP technique of testing and establish the

usefulness of this approach. As an outcome of this work, we could �nd out phe-

nomenal bugs into the aforesaid applications which we noti�ed to their developers

through their bug reporting forums or via email. All the bugs reported by us were

acknowledged and almost all were considered as important bugs by the developers

of their respective applications. The developers not only acknowledged but also

assured to rectify the reported bugs in their future releases.

In the following sections, we provide brief description about the open source appli-

cations that we used for the purpose of evaluating our approach. The date when

72

Chapter 4 Applying AOP Approach for Testing Open Source Applications 73

last updated, lines of code, number of downloads etc. of these applications indi-

cate that their uses are quite widespread. Further, we discuss the procedure how

we performed testing using our AOP technique through which we could discover

bugs in these applications. We provide details about the module in which the bugs

were discovered along with their causes. Also the comments of the developers on

our bug reports have been spelled out.

4.1 Testing NetC

NetC is a popular chat software that can be used over local area network (LAN)

and was last updated on 23rd April 2014. It is multi-platform and works on

di�erent operating systems. It provides all the necessary and basic chat function-

alities like group chat, smiley, user status, �le transfer etc. NetC has been claimed

as a server-less chat software by its developers, i.e., no server is required for its

operations [58]. The total number of lines of code in NetC are 5510.

NetC is available open source and has got 33 di�erent Java classes. Till date (30th

January 2018), it has been downloaded 43641 number of times since its upload

on www.sourceforge.net. The number of downloads in the last year (2017) have

been 771. The number of download of this application has been signi�cant so far

which prompted us to choose this software for applying our proposed approach

and perform di�erent types of testing of its di�erent classes. We used AspectJ to

write the testing aspects.

While performing the load testing of the ChatConnection class of NetC using

the AOP technique on a system with Windows XP Service Pack 3 (SP3) having

Intel T6670 Processor and 4GB RAM, we observed that the application is not

able to handle excessive user load in a professional way. The load testing aspect

written for this purpose is shown in Listing 4.1. The aspect with an after advice

which executed after the connect method of the ChatConnection class, creates

multiple users inside a for loop. For every new user created, a new socket is

opened. During such load test, we observed that until we keep the number of

newly created users limited to 1500, the software works �ne. But after that as we

increase the number of users and reach to 1800 users, the software starts hanging

and the same behaviour continues up to 4000 chat users as shown in Figure 4.1.

Beyond 4000 users, the software is not able to create more users and starts giving

the Connection Refused exception unexpectedly. In fact, such a case of excessive

Chapter 4 Applying AOP Approach for Testing Open Source Applications 74

load should have been handled rightly with a proper message to the new users

which attempt to use the application after the possible limit.

Listing 4.1: AspectJ: NetC Load Testing

public aspect loadTestingAspect {
pointcut chatServerConnection() : execution(public void

↪→ com.dgtalize.netc.net.ChatConnection.connect());
after() : chatServerConnection ()
{

int port=41517;
int i=0;
//Load can be varied by changing value of n
int n=100;
for(i=0; i < n;i++)
{

try
{
Socket socket = new Socket("localhost", port);
ByteBu�er paquete = ByteBu�er.allocate(512);
DataOutputStream sockOut = new

↪→ DataOutputStream(socket.getOutputStream());
sockOut.write(paquete.array(), 0, paquete.limit()) ;
}
catch (UnknownHostException e)
{
e.printStackTrace();
}

}
}

}

Secondly, we also carried out black box testing of the PrivateMsgWindowUI class

of NetC which provides functionality of private messaging to a speci�c user avail-

able (see Figure 4.2). When a user provides the name of another user to send the

private message to, then the validateInput method of the PrivateMsgWindowUI

class validates whether such user exists or not. If the user exists, a new private

chat window is opened or else if the speci�ed user doesn't exist, an error message

is shown to the user. We tested the validateInput method with various inputs as

shown in the pointcut in Listing 4.2 and found that the method produces error

message when the user doesn't exist and the input is of alphabetical nature. Even

the special character inputs (including null and blank spaces) have been handled

well but the applied validation fails to give any error message at all when the input

is numerical like �123� etc.

Chapter 4 Applying AOP Approach for Testing Open Source Applications 75

Figure 4.1: Load testing NetC by creating multiple chat users using aspect, per-
formed on a system with Windows XP SP3 having Intel T6670 Processor and 4GB
RAM

Figure 4.2: NetC: Private Message Window

Chapter 4 Applying AOP Approach for Testing Open Source Applications 76

Listing 4.2: AspectJ: Testing Input Validation

pointcut
↪→ userNameValidationTest(com.dgtalize.netc.visual.PrivateMsgWindowUI
↪→ p) : execution(private boolean
↪→ com.dgtalize.netc.visual.PrivateMsgWindowUI.validateInput()) &&
↪→ target(p);

boolean around(com.dgtalize.netc.visual.PrivateMsgWindowUI p) :
↪→ userNameValidationTest(p)

{

String saveInput = p.recipientText.getText();

String [] testinput = new String[] { "Ram", "abcdefghijklmnop", ".",
↪→ "***", " ", null, "123" };

for (int i = 0; i < input.length; i++)
{

p.recipientText .setText(testinput [i]) ;
boolean result = proceed(p); // invoke test

}
p.recipientText .setText(saveInput);
return proceed(p); // do original processing

}

We reported both of these issues to the developer of NetC (namely, Diego Gurpegui)

at email to which he responded by writing: ..it seems that the errors you reported

could in fact happen.

4.2 Testing JDownloader

JDownloader [59] is an open source download management tool written in Java

which simpli�es the process of downloading �les for Internet users. JDownloader

provides with provisions for starting/stopping/pausing downloads, theme selec-

tion, setting up the bandwidth limitations, auto-extraction of archives and �lter-

ing the downloaded contents. The two main advantages of using JDownloader is

that it boosts the speed of the Internet downloads and that it reduces the time it

takes to start a download. Also the features and interface of this application are

easily comprehensible.

JDownloader has got 973165 lines of source code and is maintained by a large

development team. From www.sourceforge.net alone, till date (30th January 2018)

Chapter 4 Applying AOP Approach for Testing Open Source Applications 77

it has been downloaded 30858 times and there have been 476 downloads in the last

year (2017). In 2009, the website of JDownloader http://www.jdownloader.org/

was the 100 most visited website of Spain and it was ranked among the top 50

downloaded applications. There are di�erent versions available for download for

Windows, Linux and Mac operating system. For all these reasons, we considered

JDownloader as a good candidate for analysing the application of our approach.

We could perform various types of testing of the di�erent classes of JDownloader

using our approach and found one important bug in the AddLinksDialog class.

The AddLinksDialog class of JDownloader provides us with the functionality of

adding a new link and downloading all the downloadable items from this link. The

GUI snapshot of this feature is shown in Figure 4.3. We performed the black box

testing of this class using our aspect approach. For this, the validateForm method

of the AddLinksDialog class was instrumented using an around advice. As the

validateForm method is protected, we used privileged aspect to capture it. The

input member of this class was set to various Uniform Resource Locators (URLs)

to test the proper working of this functionality.

Figure 4.3: JDownloader: Snapshot of Analyse and Add Links GUI

JDownloader worked �ne with almost all URLs except the small single letter URLs

to which the Continue button for starting the download did not get enabled (see

Figure 4.3). When input URLs like �t.co� (twitter's shortened link), �y.co� (pop-

ular yacht selling website), �c.tv� (Internet future technology innovators), �i.tv�

(TV guide app for iPhones) were used, the Continue button did not get enabled

and thus the JDownloader function of downloading from the provided link could

not be used. We could infer that this functionality won't work for single letter

Chapter 4 Applying AOP Approach for Testing Open Source Applications 78

domain names at all and there are numerous examples of such single letter pre-

mium domains. We reported this bug in the JDownloader's bug reporting forum

to which their developers responded, accepted and opened a new bug # 82418 in

their bug tracker system (see Figure 4.4). Further, JDownloader exhibits memory

leakage problems (excessive RAM usage) after downloading large number of �les

which we observed by load testing it with numerous download links that we input

using aspects.

Figure 4.4: JDownloader: Snapshot of bug acceptance

4.3 Testing JScreenRecorder

JScreenRecorder [60] is an open source Java application available under the Lesser

GNU Public License. It provides the functionality of screen recording using which

we can record speci�c part of or the complete Windows desktop screen in the form

of a video �le. We can choose from a list of 128 mouse cursor designs. Custom

textual watermarks can also be created. Mouse cursor and watermark both can

be included in the recorded video. The application runs in a compact window

and the features can be availed through its self-explanatory icons. Before starting

the recording of the screen, few settings like frames per second, path of output

directory etc. can be set. The recorded video is encoded in MP4 format.

The software is available at popular open source projects' sites like sourceforge,

github etc. We downloaded the source �les of JScreenRecorder from

www.sourceforge.net. The application has got 30 Classes and 3863 lines of Java

code. Till date (30th January 2018), it has been downloaded total 22,422 times

Chapter 4 Applying AOP Approach for Testing Open Source Applications 79

from www.sourceforge.net alone, with its maximum downloads from United States

(29% of total). It was last updated on 20th November 2015.

We performed various types of testing of JScreenRecorder using our AOP ap-

proach. While performing the simulation of mouse pressed event using our testing

aspect, we detected a remarkable bug into the application which we also later

intimated to its developer Deepak P K. JScreenRecorder provides with a �se-

lect capture area� button using which the part of desktop screen that has to be

recorded can be selected. In the JScreenRecorder application, this functional-

ity has been implemented in the RecordControlPanel class. When we tested the

RecordControlPanel class with our testing aspect by instrumenting the captureAre-

aButton_MousePressedEvent method with an around advice as shown in Listing

4.3, we observed that even after one �Capture Area Selector� form is open, still

another such form can be opened by passing a MouseEvent (see Figure 4.5). Al-

though this should not be the case. Since the JScreenRecorder application allows

only one screen recording operation at a time, opening two such forms is of no use.

Moreover, only the last opened form is considered by the software for deciding

the screen space for recording. The expected behavior is that once a �Capture

Area Selector� form is opened, the �select capture area� button should either be

disabled or else an error message should be generated when another MouseEvent

is passed.

Listing 4.3: JScreenRecorder mouse pressed event simulation

pointcut pcMousePressEvent(java.awt.event.MouseEvent evt) :
↪→ execution(private void
↪→ captureAreaButton_MousePressedEvent(java.awt.event.MouseEvent))
↪→ && args(evt);

void around(java.awt.event.MouseEvent evt) : pcMousePressEvent(evt)
{

//Create a new mouse event to simulate a mouse press
java.awt.event.MouseEvent e = null;
//Pass the new mouse event as argument
proceed(e);
//Proceed with the original mouse press event to see whether the

↪→ application generates an error message
proceed(evt);

}

Similarly, while testing for null pointer exception handling in JScreenRecorder,

we observed that null values have not been well dealt with in the various classes

Chapter 4 Applying AOP Approach for Testing Open Source Applications 80

Figure 4.5: JScreenRecorder: Snapshot of multiple capture area selector form
opened simultaneously

of JScreenRecorder. For example, we tested the setVideoLength method of the

RecordCon�g class to verify how shall it handle if, for some reason, the video

length happens to be null. There could be cases like when disk space is full or

when there are insu�cient permissions for the destination directory, the video shall

not be recorded and its value could be null. The testing aspect shown in Listing

4.4 passes a null value as argument to the setVideoLength method upon which the

application raises a java.lang.NullPointerException as there exists no mechanism

for handling the null values.

We posted both of these observed bugs (multiple capture area screen issue and

unhandled null pointers) through email to the developer of JScreenRecorder on

25th December 2016 and the bugs were acknowledged. Developer Deepak P K

responded to our email and wrote: Thanks for your feedback. Will look into it and

make appropriate changes for the next release.

Chapter 4 Applying AOP Approach for Testing Open Source Applications 81

Listing 4.4: JScreenRecorder null pointer handling test

public aspect testNullHandling
{
pointcut testNullPC(long videoLength): execution(*

↪→ com.jscreenrecorder.core.con�g.RecordCon�g.setVideoLength(long))
↪→ && args(videoLength);

void around(long videoLength) : testNullPC(videoLength)
{

videoLength = (Long)null;
proceed(videoLength);

}
}

4.4 Testing JFreeChart

JFreeChart [61] is an open source Java library that supports a wide variety of

charts which can be used by the developers in their applications. JFreeChart

supports pie charts (2D and 3D), bar charts (horizontal and vertical, regular and

stacked), line charts, scatter plots, time series charts, high-low-open-close charts,

candlestick plots, Gantt charts, combined plots, thermometers, dials and more.

JFreeChart can be used in client-side and server-side applications. This project is

maintained by David Gilbert [62].

The latest available version of JFreeChart is 1.0.19. It can be easily downloaded

from popular project hosting repositories like github, sourceforge, mvnrepository

etc. Since its upload in 2001, it has been downloaded 4,303,727 number of times

from sourceforge alone which clearly indicates the usefulness of the library. This

open source application has got 319,071 lines of Java code. The total number of

source �les are 1017.

We performed various types of testing of JFreeChart using our AOP approach.

During the memory leakage testing, we detected a memory leak in the ChartPanel

class. Various objects of Graphics2D are created within this class for which it is

necessary to call the dispose method which abandons this graphics context and

releases the system resources used by it. When we used our �testMemoryLeak�

aspect (as illustrated in Section 3.1.1 of Chapter 3) to test the creation and disposal

of all Graphics2D objects in this class, we observed that although a total of 5

objects of Graphics2D class are created for which the dispose method should be

called, it has been called only 4 times. For one of the Graphics2D objects, namely

bu�erG2, created within the paintComponent method of the ChartPanel class,

Chapter 4 Applying AOP Approach for Testing Open Source Applications 82

the dispose function has not been called which becomes reason for a memory leak.

Moreover, this leak shall lead to aging issues with the application's execution over

time. The source code for the ChartPanel class is provided at Appendix A.

We posted this memory leakage bug at github on 6th February 2017: ...we observed

that although a total of 5 objects of Graphics2D class have been created in this class

for which the dispose method should be called, it has been called only 4 times....

David Gilbert replied: Thanks for the report Manish. I �xed it, details you can

see via your bug report at GitHub: https://github.com/jfree/jfreechart/issues/38.

Another small but important issue that we observed while black box testing of the

createPieChart method of the ChartFactory class in the JFreeChart application.

When we provided negative value in the dataset to be used for the testing of

createPieChart method, it was simply ignored while creating the pie chart and the

pie chart was plotted simply using the rest of the positive values of the testing

dataset. Contrary to this behavior, the application should have generated an error

message as it is impractical to plot a pie chart with negative values.

We posted this bug as well at github on 7th February 2017: In the createPieChart

method of the ChartFactory class: if a negative value is provided in the dataset

to be used for the pie chart, it is simply ignored while creating the pie chart and

JFreeChart plots the pie chart using the rest positive values of the data set. Con-

trary to this behavior, the application should generate an error message as it is

impractical to plot a pie chart with negative values. To this David Gilbert re-

sponded by writing: I think you are correct that it is better to �fail-fast� if the pie

dataset contains negative values.

4.5 Summary

In this chapter, we have discussed regarding the practical utilisation of the pro-

posed testing technique using AOP on open source software projects whose us-

ages are widespread. Di�erent types of testing were conducted using aspects and

signi�cant bugs were detected in the selected software projects. The positive ac-

knowledgements from the developers and the bug report forum managers of these

selected software projects established the usefulness of our proposed testing tech-

nique for conducting various types of software testing.

Chapter 5

Testing Aspect Generator Language

Domain speci�c languages (DSLs) are little languages tailored for a particular pur-

pose which shield the users from much of the complexity of explicitly programming

in the general purpose languages (GPLs). A GPL is suited to multiple domains

whereas a DSL is designed for a particular domain. There are various DSLs which

are widely used in speci�c domains like Structured Query Language (SQL) for

query writing, Latex for document writing, Verilog for hardware description and

many more. Important application domains for which DSLs have been created by

researchers and developers are listed in Table 5.1. Writing DSL for a particular

domain is worthy because programming using a well designed DSL is much eas-

ier and it also helps collaboration between the programmers and the experienced

domain experts. Our proposed Testing Aspect Generator Language (TAGL) is

presented in this Chapter. TAGL is a domain speci�c language that is speci�cally

useful in the domain of testing of Java applications by automatically generating

the testing aspects. TAGL has been implemented using lex and yacc and can be

used for the purpose of conducting various types of software testing.

Table 5.1: DSL Domains

Pattern Matching Job Scheduling
DBMS Style Sheet
Hardware Description Parsing
Text Processing Telecommunications
Graphs UML Diagrams
Web Layout Visual Modeling
Document Layout Logic
Robotics Graphics

83

Chapter 5 Testing Aspect Generator Language 84

5.1 Why Domain Speci�c Language?

A DSL is designed in such a way that the available language constructs are easy to

remember. DSL thus enhances the speed of development and also the ease of use.

For example for most DSLs, natural language is used as syntax. Moreover, syntax

is chosen such that it best �ts the problem. DSLs are created for easier human

understanding and therefore they are made such so that human can conveniently

edit and carry out the necessary development out of real words. In a nutshell,

DSLs are designed to render a natural way to express the solutions to speci�c

problem spaces and thus improve the productivity of the software developers.

In order to understand how DSLs make life easier for the developers, let us take

example of regular expression which is a commonly used DSL [63]. The following

regular expression is suitable to match most email address patterns:

[A− Z0− 9._%+−] + @[A− Z0− 9.−] + .[A− Z]{2, 4} (5.1)

This regular expression does not appear to be very cryptic. Imagine if the same

logic is coded using a GPL, it shall require several lines of code. And further

it shall also be cumbersome to understand and modify that code if required at

a later stage. On the contrary, the above regular expression is quicker to write,

easier to comprehend, simpler to modify and less likely to be bug-prone. From

this example, it is apparent that a well written DSL can save a lot of developer's

e�orts.

As most of the times, DSLs are written in form of natural language, the programs

written therein become easily comprehensible for the end customers as well, who

are generally non programmers. Thus by the way of DSLs, the application code

can be exposed to domain experts who may not have programming knowledge

but understand the business logic very well. If a domain expert can read and

understand the application code then he or she can aptly guide the coder regarding

the expectations, correctly understanding which had always been a great di�culty

for the coders. However, such goals using DSLs are achievable only by a proper

and elegant design.

Thus to summarise, DSLs are particularly important for the following reasons:

� Make development easy

Chapter 5 Testing Aspect Generator Language 85

� Enhance the speed of development

� Less error-prone code

� Simplify the maintenance of code

� Helps improve the communication between the coders and the end customers

The above listed bene�ts resemble the bene�ts as claimed for high level languages.

Thus, it can be inferred that DSLs are simply very high level languages [64].

Further we would like to emphasise that the overall cost incurred in the process of

software development is less when we use DSL as compared to GPL as depicted in

Figure 5.1. In the initial phases of the software development life cycle, when the

DSL is designed and implemented for the particular application domain, the cost

is high for obvious reasons. But as we move ahead in the development cycle, the

cost for software maintenance and testing reduces considerably. This is so because

code written using DSL (which generally resembles natural language) is easier to

read and understand. Also as the DSL code is easily comprehensible, it increases

the collaboration between the developers and end customers. This further reduces

the development cost as the customer requirements can be understood well. Thus

aggregate cost for software development using DSL is considerably less.

5.2 Types of Domain Speci�c Languages

DSLs are mainly of two types: external and internal [65]. External DSLs are

those which are parsed independently of the host GPL. Cascading Style Sheets

(CSS), Cucumber, Regular Expressions are examples of external Domain Speci�c

Languages. They are not built on top of any language, rather they have a syntax

of their own. A good parser is required to be built for such external DSLs which

understands the language and translates it to another one. External DSLs are

quite common in the Unix/Linux community. On the contrary, internal DSLs

are built on top of the host GPL. In other words, DSLs that modify the host

language in such a way that makes them di�erent and useful for a speci�c domain

are internal DSLs. The syntax of the internal DSLs is mostly restricted by the

host language. Development in internal DSL's is done through a particular form

Chapter 5 Testing Aspect Generator Language 86

Figure 5.1: Cost incurred using DSL vs. GPL
[64]

of API in the host GPL. Unlike external DSLs, the user is not required to learn

the grammar for internal DSLs. JMock is a good example of internal DSL.

There are various ways a DSL can be designed and implemented [17]. Tools like

Scala, F# etc. can be used to write internal DSLs. External DSLs can be written

with tools like Eclipse Xtext, Lex-Yacc etc. When using lex and yacc, one develops

a lexer and a parser which then generate the executable code in some GPL. Taking

use of lex and yacc makes the job of writing a DSL easier as compared to writing

the same from scratch. Further, use of lex and yacc gets the job done quickly and

in a more maintainable way. We have used lex and yacc in our work to implement

our external DSL named Testing Aspect Generator Language for the automatic

creation of the testing aspects.

5.3 Learning curve of testing tools and TAGL

Learning curves have been studied for decades in order to reduce the cost factors.

Figure 5.2 shows the comparison of the learning curve of a DSL with that of a

GPL. It is evident from the �gure that the length of time required to acquire a

pro�cient skill set or a high level of comprehension of DSL is considerably less.

Chapter 5 Testing Aspect Generator Language 87

Figure 5.2: Learning curve of DSL vs. GPL

[66]

Learning curves not only apply to software development or software usage but also

to software testing. Technical skills are required to accurately design and further

maintain the test automation framework and the test scripts. As noted by Ra�

et. al [28], one of the important disadvantages of automated testing is that the

testers need to acquire the required level of pro�ciency for writing the testing code

using the automation tool. Besides the need for domain knowledge, the �tools and

techniques� and the �process and methods� also need to be learnt [67]. There are

learning curves associated with all testing tools; for few like JUnit the learning

curve is medium, but for others likes Selenium the learning curve is high, i.e.,

requires more learning e�orts [68]. In fact, the AOP approach, proposed by us in

Chapter 3 for conducting various types of software testing, requires the tester to

acquire the programming skills necessary for writing the testing code using AOP.

Since AOP is a new programming paradigm, not all developers or testers may be

familiar with this technology and therefore using it practically shall entail certain

learning curve.

Such learning curves for software testing e�ect the complete software development

cycle and software time-lines and budgets can't be matched. Usually the time and

budget available for testing are constrained and thus if a domain speci�c language

Chapter 5 Testing Aspect Generator Language 88

is designed that reduces the e�orts required for learning the testing tools and

approach, the actual testing process of bug �nding can be accelerated. In this

chapter, we describe one such DSL devised by us which we have named as Testing

Aspect Generator Language (TAGL). TAGL has been implemented keeping in

mind the speci�c domain of testing Java applications and has got quite an intuitive

and natural language-like syntax. Thus it reduces the learning curve associated

with testing Java applications. Using TAGL, even the Java testers who do not

have expertise in AspectJ can still avail the bene�ts of testing Java applications

using AspectJ.

As we shall discuss in the next Section 5.4, TAGL statements are written in the

form of comments and thus do not e�ect the compilation behaviour of the original

source code. These comment-like statements are parsed by the lexical analyser

and parser which have been written using lex and yacc as we shall discuss in

Section 5.5. This in turn produces the testing aspects in AspectJ language which

are used to test the system under test. Our TAGL is speci�c to our proposed

approach and easy to learn and write. Learning a new automation tool is indeed

a time taking process. This can be avoided by selecting a testing tool which o�ers

minimal learning curve and our TAGL is one such tool, which shall be apparent

from the discussion regarding its straightforwardness and utility in the following

sections.

5.4 TAGL Syntax

Using our TAGL, the testers who do not have the knowledge of AspectJ can write

the testing code for testing Java applications in the form of TAGL statements.

Moreover, the syntax of TAGL is quite instinctual, natural language-like and based

on �xed patterns.

In TAGL, all the statements are to be written starting with �////�. As our TAGL is

only meant for generating testing aspects, it is desirable that the TAGL statements

does not cause any changes to the source program under test. Since statements

written with �//� in Java are considered as comments and since �////� is used

as start pattern for the TAGL statements, therefore such TAGL statements shall

not be compiled and thus shall not e�ect the compilation behaviour of the source

code. Further, we use these forwarded slashes-duo twice in order to distinguish

these from the comments written by developers. The lexical analyser and parser

have been implemented in such way that every statement that starts with �////�

Chapter 5 Testing Aspect Generator Language 89

is interpreted as a TAGL statement and other statements are simply ignored and

no action is taken.

All the statements in a particular TAGL denotation, that is meant to generate

one testing aspect, are to be written in running fashion, i.e., one after the other.

Further, the statements in a TAGL denotation are of the form ////itemname:

itemdescription. Here �itemname� signi�es the entity that has to be described

whereas �itemdescription� contains the values or description of this entity. The

colon is used to separate the two. For example, in order to specify the signature

of a simple display method that has to be tested, the corresponding statement in

TAGL denotation would be:

////methodsignature : public void display() (5.2)

Similarly, TAGL statement to particularise the expected outcomes (for di�erent

inputs) from a method can be written like this:

////expected : 0, 1, 10, 1000,−1, 4096 (5.3)

The �rst line of a TAGL denotation signi�es what type of testing is to be performed

by the corresponding testing aspect. The item name to denote the type of testing

is type and then after we provide the name of type of testing in the description

which is written after the colon (:). For example, if the TAGL denotation is to be

written for carrying out fuzz testing, then the �rst TAGL statement would be of

the form:

////type : fuzztesting (5.4)

Likewise, there are di�erent TAGL statements which are written at the start of a

TAGL denotation to indicate the type of testing to be performed. For performing

di�erent types of testing, di�erent value of type has to be used. The following

TAGL statement, i.e., the second statement is used to provide a name for the

testing aspect that shall be generated. To provide a name for the generated testing

aspect, the TAGL statement shall be of the form:

////aspectname : fuzzingAspect (5.5)

However, such statement for naming the generated testing aspect is optional. If

the statement exists, then the generated aspect is given the name speci�ed in

Chapter 5 Testing Aspect Generator Language 90

the statement or else a default name based on the type of testing provided in

�rst TAGL statement is given, which is of the form type_of_testingAspectN.

Here the su�x N denotes the number of generated testing aspect. For example,

fuzztestingAspect1. If it is the �rst aspect of a particular testing type, then the

su�x shall be 1 and for further aspects meant for similar type of testing, this value

shall continue to increase.

Further, the rest of TAGL statements are written to manifest the complete testing

aspect. The syntax to be used for writing the TAGL denotation for di�erent

types of testing is simple and quite easy to learn as we shall demonstrate in the

forthcoming subsections.

5.4.1 TAGL for Creating Black Box Testing Aspects

The primary objective of carrying out black box testing is to assess that the

application or its component under test does what it is supposed to do. In black

box testing, the tester is usually not the programmer or author of the program.

The tester has access to the artifact's external interface only and the internal state

cannot be examined. The results of the tests are observed in the artifact's output.

Thus, in black box testing, the tester can be even non-technical as he/she is only

expected to focus on the user actions or inputs [69].

Black box testing is performed to see if the application (or its component) under

test meets the user's requirements and thus, speci�ed inputs are provided and the

actual output obtained is compared with the expected output as per the software

requirement speci�cation (SRS). The inputs provided can be valid or even invalid

and tests are conducted for various combinations of such inputs. The intent of

a black box tester is to devise all possible set of input conditions that shall fully

exercise the functional requirements.

As we explained in Chapter 3, AOP can be used to perform black box testing. In

the AspectJ example provided in Listing 3.12 of Chapter 3, the around advice in

the testing aspect replaces the execution of the function that matches the de�ned

pointcut. Further arrays of input combinations are created and then proceed is

called with these inputs one by one to test the desired function. Also the output

obtained can be captured and compared with the expected output as per the SRS.

As the black box testing is mainly based on providing inputs to the external

interface of the program under test, we have devised our TAGL such that it can be

Chapter 5 Testing Aspect Generator Language 91

used by the tester to specify the testing inputs. The TAGL denotation speci�ed by

the tester is automatically converted into the testing aspect (by the lexical analyser

and parser) with the required pointcut and around advice. As an example, for

performing black box testing of a simple two argument function �ComputeInterest�

of the �Banking� class written in Java which calculates interest for a year, we can

write the TAGL in the following way:

////type: blackbox

////aspectname: blackBoxTestComputeInterest

////classname: Banking

////methodsignature: public �oat ComputeInterest(�oat principal,�oat rate)

////argumentname: rate

////values: 0, 1, 7.5, 10, 1000, -1, 4096

////expected: -1, 1000, 7500, 10000, 1000000, 4096000

In the above TAGL denotation, the ////type: blackbox indicates that the testing

to be performed is black box testing. The following statement is optional in which

the tester may specify the name to be used for the testing aspect that shall be gen-

erated. In this TAGL example, we have provided blackBoxTestComputeInterest as

the name to be used for the generated testing aspect. If no name is speci�ed, the

automatic aspect generator generates a default name for the testing aspect which

shall be blackboxAspect1 in this case. Next statement speci�es the name of the

class which is to be tested. The fully quali�ed class name (along with package

structure, if any) has to be provided. Then after the tester speci�es the signature

of the method that has to be black box tested. Using ////argumentname:, the

tester provides the name of the argument for which the method shall be executed

for di�erent input values and tested for proper functionality as per the requirement

speci�cation. Next the tester provides with the various values that are to be used

for the speci�ed argument (each one by one) to test the speci�ed method. Option-

ally, if the tester is willing to compare the actual output with the expected output

as per the requirement speci�cation, which is mostly the case, then the expected

outcome for each input value can be provided using the keyword ////expected: . If

such expected outcome values are provided by the tester, then our lexical analyser

and parser generates a function in the output testing aspect that compares every

actual outcome with the corresponding expected outcome value provided by the

tester and reports whenever it encounters a mismatch.

The above TAGL code is converted into the corresponding testing aspect code as

shown in Listing 5.1. Based on the information provided in the TAGL denotation,

Chapter 5 Testing Aspect Generator Language 92

the required pointcut that captures the method to be tested, the around advice

with the various values to be used for black box testing and method that compares

the actual output with the expected output are created.

Listing 5.1: Generated testing aspect to test the ComputeInterest method of the
Banking class

public aspect blackBoxTestComputeInterest {
�oat around(�oat p,�oat r) : call(public �oat

↪→ Banking.ComputeInterest(�oat,�oat)) && args(p,r)
{

�oat [] input= new �oat[] {0, 1, (�oat) 7.5, 10, 1000, −1,
↪→ 4096};

for (int i = 0; i < input.length; i++)
{

�oat actual_result = proceed(p, input[i]);
validateResult(i , actual_result);

}
return proceed(p,r);

}

void validateResult(int i , �oat actual_result)
{

�oat [] expected_output = new �oat[] {−1, 1000, 7500,
↪→ 10000, 1000000, 4096000};

if (actual_result!= expected_output[i])
{

System.out.println("Error at " + i + "th Input");
//Store in a suitable data structure for test report

↪→ preparation
}

}
}

Di�erent input combinations can also be provided using our TAGL for testing the

system under test. For example, in order to test a method of a Triangle class

that determines the type of a triangle (returns 1 for isosceles, 2 for equilateral,

3 for scalene etc. and -1 if invalid inputs), it might be required to provide test

cases with various input combinations for the length of the three sides of the

triangle. Following is an example TAGL code that performs testing with such

input combinations:

Chapter 5 Testing Aspect Generator Language 93

////type: blackbox

////aspectname: blackBoxTestGetType

////classname: Triangle

////methodsignature: static int GetType(int side1,int side 2,int side3)

////argumentname: (side1,side2,side3)

////values: (12,12,7),(-1,-1,-1),(0,0,0)

////expected: 1,-1,-1

Likewise, the tester can provide various type of combinations of inputs. For ex-

ample, there could be a case where one of the input parameter has to be �xed and

testing has to be performed by varying values of the rest of the input parameters.

For example, if for testing the GetType method of the Triangle class as discussed

above, the tester desires to keep the value of one input say side1 �xed and further

test with combinations of values for the other two inputs, then the following TAGL

code can be used:

////type: blackbox

////aspectname: blackBoxTestGetType

////classname: Triangle

////methodsignature: static int GetType(int side1,int side 2,int side3)

////argumentname: side1=1,(side2,side3)

////values: (1,1),(-1,-1)

////expected: 2,-1

And for the same example, if the values of only one parameter are to be altered and

the tester wants to keep the other two inputs at �xed values, then the following

TAGL code can be used:

////type: blackbox

////aspectname: blackBoxTestGetType

////classname: Triangle

////methodsignature: static int GetType(int side1,int side 2,int side3)

////argumentname: side1=1,side2=1,(side3)

////values: -1,-32768, 1

////expected: -1,-1,2

Using our TAGL, it is possible to perform black box testing even with complex

data types. The tester can provide di�erent types of click events, keystrokes,

voice, data �les, tree, graphs or any other form of input as applicable to the

Chapter 5 Testing Aspect Generator Language 94

system under test. For example, testing a browser will require multiple Hypertext

Markup Language (HTML) pages which can be provided using the same TAGL

syntax as discussed above. Also an optional ////setup: statement can be used

for carrying out necessary set up activities (like setting values for particular data

members of a class) before the method under test is executed. An example TAGL

code is provided hereunder in which three methods namely, setMarks1, setMarks2,

setMarks3 are provided in the ////setup: statement so that the marks of the

student (marks1,marks2,marks3 are data members of class Student) are set with

given values before the getAverage method of the class is tested:

////type: blackbox

////aspectname: TestCaseMultipleInputs

////classname: Student

////methodsignature: public double getAverage()

////setup: public void setMarks1(int m), public void setMarks2(int m), public

void setMarks3(int m)

////argumentname: marks1,marks2,marks3

////values: 4,5,6

////expected: 5

We indicated in Chapter 3 that TAGL simpli�es the task of carrying out various

types of black box testing like Fuzz Testing, Boundary Value Testing, All Pairs

Testing, Orthogonal Testing, Equivalence Partitioning Testing etc. In the following

subsections, we shall provide examples of TAGL denotations that can be used to

create the corresponding testing aspects for these black box testing types.

5.4.1.1 TAGL for Creating Fuzz Testing Aspect

Fuzz testing, which is a type of black box testing and is carried out in order to �nd

out how a system behaves when executed with insensible inputs, can be performed

with ease using our TAGL. We wrote fuzzing aspect in Listing 3.16 of Chapter

3 which is used to inject some fuzz values into the text �le associated with an

application which reads input from such �le. The following TAGL code can be

used to generate such fuzz testing aspect automatically which fuzzes the input �le

and tests the response of the target application with the resultant abnormal input

�le:

Chapter 5 Testing Aspect Generator Language 95

////type: fuzztesting

////aspectname: fuzzTestReadFile

////classname: FileOperation

////methodsignature: public void ReadFile()

////�lepath: �/home/administrator/inputdir/�lename.txt�

////fuzzlocation: 5

////fuzzvalue: \%01\%02\%03\%04

In the above TAGL code, the �rst statement, as in the previous examples, indicates

the type of testing to be performed. The following line which is optional speci�es

a name for the generated testing aspect and can be even omitted. Next statement

speci�es the class name which is to be tested and likewise the following statement

speci�es the signature of the method which reads the input �le that has to be

fuzzed. Then after the fully quali�ed path for the �le which is to be fuzzed is

provided using ////�lepath: . The next two statements ////fuzzlocation: and

////fuzzvalue: , which the tester speci�es based on his experience, knowledge and

the intent of testing, are the location in the �le from where the input has to be

fuzzed and the values that have to be used for such fuzzing.

Further, fuzzing of input �le can be performed in various ways as we depicted in

Figures 3.5, 3.6 and 3.7 of Chapter 3. These di�erent types of fuzz testing can

be carried out by introducing a new TAGL statement with item name fuzztype

in the above TAGL denotation. In case of overwrite, the fuzz values provided by

the tester are simply overwritten in the input �le starting from the provided fuzz

location. The TAGL code in the example above is simply the case of overwriting

the fuzz value. For the case of overwriting, the value of fuzztype can be omitted

or else it can be provided as overwrite. If no value of fuzztype is speci�ed (as in

the above example), then the corresponding testing aspect considers it to be the

case of overwritten fuzzed values only.

Further, there could be case of insertion of fuzz values into the input �le which can

be done before or after a speci�c �eld of the �le. In this case, the tester provides

the fuzztype as either insertbefore or insertafter depending upon whether the in-

sertion of the fuzz values has to be done before or after the speci�ed �eld of the

�le. Moreover, both the starting and ending location of the �eld in whose neigh-

bourhood the fuzz input has to inserted are also to be speci�ed in a fuzzlocation

statement separated by a comma. Following is an example of TAGL code whose

corresponding generated testing aspect inserts the provided fuzz value before a

given �eld:

Chapter 5 Testing Aspect Generator Language 96

////type: fuzztesting

////aspectname: fuzzTestReadFile

////classname: FileOperation

////methodsignature: private void ReadFile()

////�lepath: �/home/administrator/inputdir/�lename.txt�

////fuzztype: insertbefore

////fuzzlocation: 5,50

////fuzzvalue: \%01\%02\%03\%04

Also the particular contents of the �le can be completely replaced by the provided

fuzz values. In this case, the tester provides the fuzztype as replace and addition-

ally, both the starting and ending location of the �eld of �le to be replaced in the

fuzzlocation statement separated by a comma. Example TAGL code for replace-

ment of a speci�c portion of the input �le is shown hereunder:

////type: fuzztesting

////aspectname: fuzzTestReadFile

////classname: FileOperation

////methodsignature: private void ReadFile()

////�lepath: �/home/administrator/inputdir/�lename.txt�

////fuzztype: replace

////fuzzlocation: 5,50

////fuzzvalue: \%01\%02\%03\%04

Moreover, here we would like to state that the generated testing aspect randomises

the fuzz value provided in the fuzzvalue statement to create an unexpected invalid

input and then injects it into the valid �le as speci�ed.

5.4.1.2 TAGL for Boundary Value Testing

Let us consider a NumeralType class which has got several methods that clas-

sify the input integer as positive/negative, prime/non-prime, palindrome/non-

palindrome etc. Suppose we want to boundary test the isPrime method which

takes an integer in the range [1,100] as input and outputs 0 if the number is not

prime and 1 otherwise. The following TAGL denotation can be used to perform

such testing with boundary values:

Chapter 5 Testing Aspect Generator Language 97

////type: boundaryvaluetesting

////aspectname: boundaryValueTestingAspect

////classname: NumeralType

////methodsignature: public int isPrime(int num)

////argumentname: num

////nominal: num=53

////values: (1,100)

////expected: (0,1,0,0,1)

In the above TAGL denotation, ////argumentname: is used to specify the argu-

ment name for which boundary value test cases are to be generated. The following

statement gives the allowed range for this argument. A new keyword ////nom-

inal: is introduced here which is used to provide the nominal value to be used

while boundary value testing.

The ////expected: statement in this TAGL provides the values for expected

outputs which are matched with the actual outputs obtained from the boundary

tests. Here we would like to state an important peculiarity of the testing aspect

generated by the TAGL denotation of the type boundaryvaluetesting. The testing

aspect creates an array of the boundary values for the given argument in a par-

ticular order viz. minimum value, a value just higher than the minimum value,

maximum value, a value just lower than the maximum value and at last a nominal

value as provided by the tester himself/herself. Thus, the tester should provide

the expected output values in the TAGL denotation based on this order.

Likewise, the following TAGL denotation can be used to generate the testing aspect

that tests the returnDay method of the DateToDay class as discussed in Section

3.2.1 of Chapter 3:

////type: boundaryvaluetesting

////aspectname: boundaryValueTestingAspect

////classname: DateToDay

////methodsignature: public String returnDay(int date, int month, int year)

////argumentname: date, month, year

////nominal: date=15, month=6, year=1967

////values: (1,31), (1,12), (1917,2017)

////expected: (Thursday,Friday,Friday,Invalid,Sunday,Wednesday,Wednesday,

Friday,Friday,Saturday,Wednesday,Thursday,Thursday)

Chapter 5 Testing Aspect Generator Language 98

Table 5.2: Order of boundary value test cases in the auto-generated testing aspect

Date Value Month Value Year Value
1 6 1967
2 6 1967
30 6 1967
31 6 1967
15 1 1967
15 2 1967
15 11 1967
15 12 1967
15 6 1917
15 6 1918
15 6 2016
15 6 2017
15 6 1967

The generated testing aspect shall produce and execute the boundary test cases

in a particular order as depicted in Table 5.2 which is self explanatory. The tester

needs to provide the expected values accordingly.

Here we would like to state that the boundary value testing performed using TAGL

assumes that the arguments whose boundary values are to be tested shall be of

integer type only and thus is not suitable when the boundary value testing is to

be performed with �oat or string type of arguments [70].

5.4.1.3 TAGL for All Pairs and Orthogonal Testing

TAGL can be used for all pairs testing as well. The following simple TAGL

denotation is automatically converted by our lexical analyser and parser into the

all pairs testing aspect that we showed in Listing 3.15 of Chapter 3:

////type: allpairstesting

////aspectname: allPairsTestingAspect

////classname: loanClass

////methodsignature: public boolean sanctionLoan(int no_of_kids,String occu-

pation,boolean �rstloan)

////argumentname: no_of_kids, occupation, �rstloan

////values: (2,3,4),(Job,Business),(true,false)

////expected: as per SRS

Chapter 5 Testing Aspect Generator Language 99

The statements in the above TAGL denotation are similar to the previous TAGL

denotations except for the ////type: statement. Moreover, if the type statement

in the above TAGL denotation is changed to ////type: orthogonaltesting, a testing

aspect with test cases based on the standard orthogonal array shall be generated

by the TAGL which shall perform the orthogonal testing of the speci�ed method.

5.4.1.4 TAGL for Equivalence Partition Testing

Equivalence partition testing is based upon classifying the input domains into

valid and invalid and then selecting representative values from each partition as

test cases. In order to understand how our TAGL simpli�es the process of carrying

out equivalence testing, let us take an example of a method nextDate in a class

named Calendar which takes as input the current date and returns the next date.

Let us assume that for this method, the possible values of year are restricted

between 1917 to 2017. The following TAGL denotation is su�cient to generate a

testing aspect to carry out the equivalence partition testing:

////type: equivalencepartitiontesting

////aspectname: equivalencePartitionTestingAspect

////classname: Calendar

////methodsignature: public String nextDate(int date,int month,int year)

////argumentname: date,month,year

////values: (1,31),(1,12),(1917,2017)

Following shall be the input range for this method:

1 ≤ date ≤ 31

1 ≤ month ≤ 12

1917 ≤ year ≤ 2017

TAGL heuristics partitions the input range of arguments into di�erent equivalent

classes in such a manner that testing with a particular representative value from

one class is equivalent to testing of the other values from the same class. For

example, TAGL partitions the input domain in above example into nine di�erent

equivalence classes (EC) in the following way:

Chapter 5 Testing Aspect Generator Language 100

EC1 = {1 ≤ date ≤ 31}

EC2 = {1 ≤ month ≤ 12}

EC3 = {1917 ≤ year ≤ 2017}

EC4 = {date < 1}

EC5 = {date > 31}

EC6 = {month < 1}

EC7 = {month > 12}

EC8 = {year < 1917}

EC9 = {month > 2017}

Based on the above 9 equivalence classes, our lexical analyser and parser prepares

the test cases within the testing aspect such that a test case covers maximum valid

input classes (EC1, EC2, EC3) and there exists a separate test case for each invalid

class. The testing aspect generated from the above written TAGL denotation on

the basis of test cases determined from these equivalence classes is shown in Listing

5.2.

Listing 5.2: Equivalence partitions testing aspect

public aspect equivalencePartitionTestingAspect {
String around(int date,int month,int year) : execution(String

↪→ Calendar.nextDate(int,int,int)) && args(date,month,year)
{

int [] dateTestValues = {15,0,32,15,15,15,15};
int [] monthTestValues = {6,6,6,0,13,6,6};
int [] yearTestValues = (1967,1967,1967,1967,1967,1916,2018};
int i=0;
String next_date="";
for (i=0;i<dateTestValues.length;i++)
{

next_date = proceed(dateTestValues[i],
↪→ monthTestValues[i],yearTestValues[i]);

//Store the output and the test case in a suitable
↪→ data structure for further analysis

}
return proceed(date,month,year);

}
}

Here we would like to state a limitations of TAGL for the type equivalencepar-

titiontesting that the tester cannot provide the values for the expected outputs

because the values of test cases chosen by TAGL heuristics is not known in ad-

vance. Therefore the generated testing aspect cannot compare the actual output

Chapter 5 Testing Aspect Generator Language 101

obtained with the expected output. However, the actual outputs obtained are

recorded along with the equivalence partition's test cases in a data structure by

the testing aspect which can be used by the tester to compare with the expected

output as per the SRS visually. Also the TAGL assumes that the arguments whose

domains are partitioned into equivalent classes shall be of integer type only.

5.4.2 TAGL for Creating Memory Leakage Testing Aspect

Java garbage collector (GC) takes care about the memory allocation and deallo-

cation issues. Nevertheless, there are certain memory leaks which can still escape

the GC. For example, if the programmer has written his/her own code for �nalize

method overriding the system's �nalize() method in order to perform certain clean

up duties before the object destruction and he/she forgets to call such method for

the destruction of one or more of the objects created, then it shall lead to mem-

ory leakage. We suggested use of AOP to determine such leakage in Section 3.1.1

of Chapter 3 and provided example of AspectJ's aspect which we used for this

purpose.

The tester can determine such memory leakage caused due to one or more for-

gotten call to the developer written �nalize method by writing a straightforward

denotation in TAGL. The following three simple TAGL statements shown here-

under are automatically converted into the memory leakage testing aspect by the

TAGL lexical analyser and parser:

////type: countobjectstesting

////aspectname: testMemoryLeak

////classname: person

The generated testing aspect comprises of a static count variable and two di�erent

pointcuts to capture the creation and destruction of the objects of the provided

class name and is similar to the aspect listed in Listing 3.1 of Chapter 3. Thus, it

is apparent that a simple TAGL denotation, which is quite easy to learn and write,

can be used by testers without the knowledge of AOP (AspectJ, in particular) to

test their applications and �nd out the existence of undestructed objects.

One more type of memory leakage which occurs in Java programs is when we use

object of a class, say ClassB within another class, say ClassA and it is not required

for the complete life cycle of ClassA. We discussed this type of memory leakage

in Section 3.1.1 of Chapter 3. TAGL can be used to determine such kind of a

Chapter 5 Testing Aspect Generator Language 102

memory leak which surfaces due to logical mistake of the programmer. Simple

TAGL statements specifying only the type of testing, the name of the testing

aspect that shall be generated (this statement is optional though), the name of

the inner class (i.e. the class whose object has been created inside another class),

method signature and the name of the outer class as shown hereunder are su�cient

to generate the corresponding testing aspect:

////type: unusedobject

////aspectname: testMemoryLeakUnreferencedClassB

////innerclass: ClassA

////methodsignature: public void useB()

////outerclass: ClassB

The above TAGL denotation is converted into a testing aspect which has got a

static counter and two pointcuts as shown in Listing 3.2 of Chapter 3 and which

is capable of indicating a memory leak in case when the use of object of ClassB

was �nished before the life cycle of ClassA.

5.4.3 TAGL for Concurrency Testing

The following TAGL denotation can be used to generate the testing aspect shown

in Listing 3.4 of Chapter 3:

////type: introducenoise

////aspectname: noiseInjectionAspect

////threadname: Division

////insertnoise: after

////probabilitypercentage: 1

////sleep: Random(35)

In the above TAGL denotation, ////threadname: statement provides the name

of the thread under consideration. The following statement is used to indicate

before/after, i.e., with respect to the thread run, when the noise has to be injected.

The next statement regarding probability of noise injection is optional and is

used to implement the heuristics associated with noise injection. With the above

example denotation, noise is inserted with a probability of 1%. ////sleep: in the

last statement is used to indicate how long the thread has to be made to sleep for

Chapter 5 Testing Aspect Generator Language 103

testing. It can be used to provide a random value as shown in this denotation or

even a �xed integer sleep duration (like ////sleep: 35).

Likewise, the following TAGL denotation can be used to generate the testing aspect

which is used to insert heuristic noise after every shared variable access as shown

in Listing 3.5 of Chapter 3:

////type: introducenoise

////aspectname: noiseInjectionAspect

////threadname: Shared

////sharedvariable: a

////insertnoise: after

////sleep: Random(20)

The ////sharedvariable: statement is used to provide the name of the shared

variable. Other statements are similar to the previous TAGL denotation shown

above.

5.4.4 TAGL for Creating Null Pointer Exception Checking

Aspect

When a programmer uses a reference that points to a null location in the memory,

a null pointer exception is raised. Such a situation usually arises when the pro-

grammer refers to a null object for calling a method of the class or for accessing a

�eld value of such object. Following straightforward TAGL denotation can be used

by the tester for testing the complete source code of an application for undesirable

calls to any method or setting of a data member of a particular class using an

uninitialized null object of that class, anywhere within the code:

////type: nullpointerexception

////aspectname: testNullPointerException

////classname: testClass

The above TAGL denotation is converted into a testing aspect with a pointcut

that captures calls to all the methods and setting of all the data members of

the class and further uses the target pointcut to capture the execution object.

If the execution object is null, the AspectJ construct thisjoinpoint captures the

context information regarding its location. This context information happens to

Chapter 5 Testing Aspect Generator Language 104

be useful for the tester to detect the cause of the null pointer issue. The code of

the generated testing aspect is shown in Listing 5.3.

Listing 5.3: Testing for unhandled null pointer exceptions

public aspect testNullPointerException {
pointcut NullPointerCheck(testClass obj) : (call(* testClass .*(..))

↪→ || set(* testClass .*)) && target(obj);
before(testClass obj) : NullPointerCheck(obj)
{

if (obj==null)
{

System.out.println("Null pointer exception in : " +
↪→ thisJoinPoint + " at: " +
↪→ thisJoinPoint.getSourceLocation());

System.exit(0);
}

}
}

5.4.5 TAGL for Creating Load Testing Aspect

Load testing entails creating dummy users or requests and testing the application

with these to get an insight how the application under test will perform under load

conditions. TAGL is useful for the load testers for testing the performance of Java

applications under dummy load. In the TAGL denotation for load testing, the

////type: has to be speci�ed as loadtesting. The class whose multiple objects the

tester wants to create as dummy users followed with the number of such objects

have to be mentioned using item names ////classload: and ////numberofobjects:

respectively. In the example given in Listing 3.21 of Chapter 3, we have load

tested a shopping cart application with multiple users. In particular, the addUser

function of the shopping class has been tested with 1000 number of users. The

following TAGL denotation can be used to generate the same load testing aspect:

////type: loadtesting

////aspectname: testShoppingCart

////classname: shopping

////methodsignature: public void addUser(shopping s)

////classload: shopping

////numberofobjects: 1000

Chapter 5 Testing Aspect Generator Language 105

Similarly, the following TAGL can be used to perform load testing of the shopping

cart application with 5000 number of items shopped by a single user:

////type: loadtesting

////aspectname: testShoppingCart

////classname: User

////methodsignature: public int shop(Item i)

////classload: Item

////numberofobjects: 5000

The above simple TAGL denotation can be used to generate the testing aspect as

shown in Listing 3.22 of Chapter 3 which creates 5000 objects of the Item class

and calls the shop method of the User class.

There are testing scenarios when before calling the method to be load tested with

the created dummy objects, the dummy objects so created are required to be

initialised or in other words, certain data members of such dummy objects have to

be set before they can be put to use for the purpose of load testing. In such cases,

the required initialisations should be speci�ed in the form of Java statements using

////loadtestinginitialsetup: Java statements. One example TAGL code, where the

id and salary of the objects of the Employee class are to be set before using them

for the load testing of the CalculateIncomeTax method is shown hereunder:

////type: loadtesting

////aspectname: testCalculateIncomeTax

////classname: Employee

////methodsignature: public void CalculateIncomeTax()

////classload: Employee

////numberofobjects: 1000

////loadtestinginitialsetup:

{

Random rn = new(Random);

for(i=1;i<=1000;i++)

{

e.id=i;

e.salary = rn.nextInt(10000,100000);

}

}

Chapter 5 Testing Aspect Generator Language 106

The above TAGL code generates a load testing aspect which creates one thousand

dummy objects of the class Employee and sets each object's id and salary before

calling the CalculateIncomeTax method that has to be load tested. Thus, in this

way TAGL can be used to carry out the initial set up that is required to be done

before using the dummy objects for load testing.

5.4.6 TAGL for Creating Servlet Testing Aspect

Servlets in Java are used for generating dynamic content on the Web and have

native support for the Hypertext Transfer Protocol (HTTP). In servlet program-

ming, input from the user that is entered in �elds like textbox, combobox etc. on

the HTML page is forwarded to the servlet which further stores this information

into the database or does other necessary processing as per the context.

In the Section 3.3.2 of Chapter 3, we explained how AspectJ can be used for

performing servlet testing. We used aspects to capture the desirable execution

points within the servlet to be tested and for this purpose we have implemented

the Filter interface. Further, we have overridden the getParameter() method to

pass suitable test parameters to the servlet for the purpose of security testing.

Such servlet testing aspect can be easily generated with a simple denotation using

our TAGL. We only need to specify the name of the HTML form parameter that

we want to test by providing di�erent input values and further the various values

that have to be used for the servlet testing. Following is a sample denotation to

understand the TAGL syntax for servlet testing:

////type: servletesting

////aspectname: testServlet

////parametersname: username

////values: "1;DROP TABLE users","' OR '1'='1"

In the above TAGL for servlet testing, the ////parametersname: statement

provides the name of the form parameter that has to be tested. This example

denotation is used for testing the username input text box. The ////values:

statement is used to provide the various values that have to be used for testing

the vulnerabilities of the servlet. In this example TAGL denotation, we have used

two SQL values that are injected in the username form parameter. These SQL

test cases checks for the existence of incorrectly �ltered escape characters left by

the developer in the code. The �rst test case manipulates the SQL query in the

Chapter 5 Testing Aspect Generator Language 107

servlet code in such a way that an additional query to drop the users table (if

such table exists) is run. And the second test case simply returns all the records

as it appends the insecure query written by the programmer with an always true

condition.

Tester might require to provide combination of values for di�erent form parameters

at a time; for example when a particular servlet has to be tested for combination

of (username,password) values. TAGL can also be used in such a case where

values of two form parameters are to be provided simultaneously. Following sample

denotation spells out the TAGL syntax:

////type: servletesting

////aspectname: testServlet

////parametersname: (username,password)

////values: (" OR ""="," OR ""=")

The above TAGL denotation is quite similar to the syntax explained earlier for

the testing of servlet with di�erent values for one form parameter, only except

for the fact that we have provided names of two parameters and their values for

testing has been provided within brackets to be used as one combination, i.e., a

single test case. The input combination provided in the example TAGL syntax

will manipulate the following insecure query written by the developer and fetch

all rows from the table of users since OR ""="" is always true:

'SELECT * FROM usertable WHERE Name ="' + userName + '" AND Password

="' + password + '"'

Likewise, the following TAGL can be used to test the servlet shown in Listing 5.4

that processes two form parameters, username and password, and stores them into

mysql database, with null values for both the parameters:

////type: servletesting

////aspectname: testServlet

////parametersname: (username,password)

////values: (null,null)

The generated testing aspect is shown in Listing 5.5. It is used to test the servlet

code and determine whether the developer has handled the case of null values in

the servlet code or not.

Chapter 5 Testing Aspect Generator Language 108

Listing 5.4: Servlet with two form parameters

@WebServlet("/DBServlet")
public class DBServlet extends HttpServlet {

private static �nal long serialVersionUID = 1L;

public DBServlet() {
super();

}

protected void doGet(HttpServletRequest request,
↪→ HttpServletResponse response) throws ServletException,
↪→ IOException {

doPost(request, response);
}

protected void doPost(HttpServletRequest request,
↪→ HttpServletResponse response) throws ServletException,
↪→ IOException {

response.setContentType("text/html");
response.setHeader("Cache−Control", "no−cache");
//get params
String userName=request.getParameter("username");
String passwrd=request.getParameter("password");
try {

//Load the database driver
Class.forName("com.mysql.jdbc.Driver");
java. sql .Connection con =

↪→ DriverManager.getConnection("jdbc:mysql://
↪→ localhost:3306/test", "admin", "******");

PreparedStatement ps = con.prepareStatement("insert
↪→ into Customer values(?,?)");

ps. setString (1, userName);
ps. setString (2, passwrd);
int result = ps.executeUpdate();
//send response as result
response.getWriter().write(Integer .toString(result)) ;

}
catch (Exception e2) {

System.out.println(e2);
}

}
}

Chapter 5 Testing Aspect Generator Language 109

Listing 5.5: Aspect for testing servlet with two form parameters with null values

public aspect testAspect implements Filter
{

public void doFilter(ServletRequest request,ServletResponse
↪→ response,FilterChain chain) throws
↪→ IOException,ServletException

{
chain.doFilter(new

↪→ RequestWrapper((HttpServletRequest)request),response);
}
@Override
public void destroy()
{
}
@Override
public void init(FilterCon�g arg0) throws ServletException
{
}

}
public class WrapperRequest extends HttpServletRequestWrapper {

public WrapperRequest(�nal ServletRequest request) {
super((HttpServletRequest) request);

}
@Override
public String getParameter(�nal String name) {

if (name.equals("username")) {
return null;

}
//When the request(string) has got password
else {

return null;
}

}
}

5.5 Lexical Analyser and Parser

In order to convert the TAGL denotations written by the testers into the testing

aspects, we have written lexical analyser and parser using lex and yacc tools. The

lexical analyser written in lex reads the TAGL statements and breaks them into

tokens. The parser written using yacc receives these tokens, imposes the grammar

rules de�ned in the yacc �le and takes necessary actions to generate the testing

aspects as speci�ed. The process of automatic aspect generation from TAGL input

Chapter 5 Testing Aspect Generator Language 110

using lex and yacc is depicted in Figure 5.3. yylex() is the name provided by lex

to the main entry point for the lexical analyser generated by it. yyparse() is the

function created by yacc which causes parsing to occur.

Figure 5.3: Automatic conversion of TAGL into testing aspect using lex and yacc

The TAGL statements to be converted into testing aspects can be written within

the original source code of the system under test (in the same way the developer

writes the program comments) or in separate �les, if so desired. As all the state-

ments in our TAGL start with 4 backslashes �////�, the Java compiler considers

them as comments and are thus not executed but these are still distinguishable

by our lexical analyser and parser while producing the testing aspects. As per the

rules speci�ed with regular expressions in the lex program and the grammar in the

yacc program, a new TAGL statement is said to be detected whenever a �////� is

encountered in the TAGL denotation.

If the TAGL statements have been embedded within the original source code of

the system under test, then the complete source code �le is parsed by our lexical

analyser and parser and whenever it �nds a TAGL denotation, it creates the

corresponding testing aspect from it. If the TAGL statements have been speci�ed

in a separate �le, then such �le is read by our lexical analyser and parser in order

to generate the testing aspects. Here we would like to highlight that at least one

blank line gap is necessary to be left between two consecutive TAGL denotations.

The lexical analyser has been prepared using the lex tool which reads the strings in

the TAGL statements and produces meaningful tokens based on the rules speci�ed

in the form of various regular expressions. Important tokens that have been de�ned

in the lex program along with their descriptions are listed in Appendix B. Our

Chapter 5 Testing Aspect Generator Language 111

lexical analyser produces these meaningful tokens from the TAGL statements and

communicates to the parser.

An example on how the lexical analyser reads the TAGL statements and gener-

ates relevant tokens for the parser is shown in Listing 5.6. In this lexical rule

which is de�ned within our lex program, whenever a primitive type like int, �oat,

double etc. is encountered in the TAGL denotation, it is judged whether it is

return type of a method or the type of its arguments. Accordingly a token RE-

TURNTYPE or METHODARGTYPE is passed to the parser. The statement

yylval.string=strdup(yytext) is meant to pass the name of the primitive type viz.

int, �oat, double etc. to the parser.

Listing 5.6: Example lexical rule from lex program

byte|short| int |long| �oat |double|boolean|char|void {
if (state==methodsignature && startmakingargumentlist==OFF)
{

yylval . string=strdup(yytext);
return RETURNTYPE;

}
/*whenever a opening bracket is encountered in the method

↪→ signature,startmakingargumentlist is turned ON*/
if (state==methodsignature && startmakingargumentlist==ON)
{

yylval . string=strdup(yytext);
return METHODARGTYPE;

}
}

Further, we specify the TAGL rules and the code to be invoked when these rules

are recognised in the grammar in the yacc program. These rules, which are com-

monly called production rules, describe the allowable structures in TAGL. The

grammar is read by the yacc tool to produce a Look-Ahead LR parser (LALR)

parser. When one of the rules speci�ed in the parser has been recognised, then

the code supplied in the action part for this rule is executed and all such actions

combined together generate the testing aspect from the TAGL statements. For

example, following are the grammar rules starting with the start symbol S that

match the TAGL denotations for performing memory leakage testing (////type:

countobjectstesting) as well as null pointer exception checking discussed in Section

5.4:

Chapter 5 Testing Aspect Generator Language 112

S : MLTANDNPETDENOTATION

Further the rule for MLTANDNPETDENOTATION is shown hereunder:

MLTANDNPETDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT

CLASSNAMESTMT

In the above grammar rule, the non-terminal ASPECTTYPESTMT corresponds

to the type statement in the TAGL denotation which is used to specify the type

of testing to be performed. The non-terminal ASPECTNAMESTMT corresponds

to the name to be used for the generated aspect. And the non-terminal CLASS-

NAMESTMT corresponds to the class for which memory leakage has to be checked

or whose uninitialized null objects are to be explored.

A snippet of grammar rule, that is meant for matching a method signature pro-

vided by the tester in the TAGL denotation, as de�ned in our yacc �le is shown

in Listing 5.7.

Listing 5.7: Yacc grammar snippet for matching a method signature

METHODSIGNATURE : ACCESSSPECIFIER RETURNTYPE
↪→ METHODNAME METHODARGLISTS

{
strcpy(methodreturntype,$2);
strcpy(methodname,$3);
}

;
METHODARGLISTS :

| METHODARGLISTS METHODARGLIST
;

METHODARGLIST : METHODARGTYPE METHODARGNAME
{
strcpy(funcArgTypeTable

↪→ [funcArgSymbolTableIndexY], $1);
strcpy(funcArgSymbolTable

↪→ [funcArgSymbolTableIndexY], $2);
funcArgSymbolTableIndexY++;
}

;

Here, we would like to state that there are separate grammar rules for all the non-

terminals in the yacc program. These rules are matched as and when the terminals

are received from the lexical analyser. Terms that appear on the left hand side of

a grammar rule, like METHODSIGNATURE, are non-terminals. Terms such as

Chapter 5 Testing Aspect Generator Language 113

ACCESSSPECIFIER or RETURNTYPE are terminals which appear on the right

hand side of a grammar rule. Terminals represent the basic symbols of which the

language is composed of. Terminals are compared to the grammar rules at every

step and when one of the rules is recognised, the action code supplied for the rule

is invoked. Further, the value held by the ith symbol in a rule can be accessed

using �$i�.

In order to get a complete insight into how the yacc parser actually works, we are

providing snippets of our yacc program that su�ce for producing a memory leakage

testing aspect in Listing 5.8, 5.9 and 5.10. The source code for the WriteAspect-

nameInAspectFile and WriteClassnameInAspectFile methods which are called in

the action part of the grammar rules written in Listing 5.8 are shown in Listing

5.9 and Listing 5.10 respectively. The complete grammar of our TAGL has

been provided at Appendix C.

Listing 5.8: Yacc grammar snippet for generating memory leakage testing aspect-I

S : ASPECTTYPESTMT ASPECTNAMESTMT

↪→ CLASSNAMESTMT

;

ASPECTTYPESTMT : COMMBLOCK TYPE COLON ASPECTTYPE

{

strcpy(aspecttype,$4);

}

;

ASPECTNAMESTMT : COMMBLOCK NAME COLON ASPECTNAME

{

WriteAspectnameInAspectFile($4);

}

;

CLASSNAMESTMT : COMMBLOCK CLASSNAMETAG COLON

↪→ CLASSNAME

{

strcpy(classname,$4);

if (strcmp(aspecttype,"countobjectstesting")==0)

WriteClassnameInAspectFile($4);

}

;

Chapter 5 Testing Aspect Generator Language 114

Listing 5.9: Yacc grammar snippet for generating memory leakage testing aspect-II

void WriteAspectnameInAspectFile(char *aspectname)

{

char �leName[100];

strcpy(�leName,aspectname);

strcat (�leName,".aj");

fp=fopen(�leName,"w");

fprintf (fp,"public aspect ");

fprintf (fp,"%s\n{\n",aspectname);

}

Listing 5.10: Yacc grammar snippet for generating memory leakage testing aspect-

III

void WriteClassnameInAspectFile(char *classname)

{

fprintf (fp," static int count=0;\n");

fprintf (fp,"pointcut creation(%s obj) : execution(public ",classname);

fprintf (fp,"%s",classname);

fprintf (fp,".new(..)) && this(obj);\n");

fprintf (fp,"after(%s obj) :

↪→ creation(obj)\n{\ncount++;\n}\n",classname);

fprintf (fp,"pointcut destruction(%s obj) : execution(protected void

↪→ ",classname);

fprintf (fp,"%s",classname);

fprintf (fp,". �nalize (..)) && this(obj);\n");

fprintf (fp,"after(%s obj) :

↪→ destruction(obj)\n{\ncount−−;\n}\n",classname);
fprintf (fp,"after () : execution(public static void main(..))\n{\n");

fprintf (fp," if (count>0)\n{\n");

fprintf (fp,"System.out.println(\"Memory Leak!\");\n}\n");

fprintf (fp,"else\n{\n");

fprintf (fp,"System.out.println(\"No Memory Leak!\");\n}\n");

fprintf (fp,"}\n");

fprintf (fp,"}\n");

}

Chapter 5 Testing Aspect Generator Language 115

5.6 Summary

There are di�erent patterns of the TAGL statements based on the grammar rules

for performing di�erent types of testing but all of them have got obvious syntax

that is quite natural language-like and thus easy to learn. Testers without the

knowledge of AOP can still reap the bene�ts of using AOP for software testing

with the help of our easy to write TAGL statements which are automatically

converted into testing aspects by the lexical analyser and parser that we have

developed using lex and yacc. The friendly learning curve of our TAGL allows the

tester to get started quickly and instantly perform productive testing.

Chapter 6

Comparison with Conventional

Technologies:Qualitative Analysis

Growing dependency of mankind on software technology increases the need for

thorough testing and automated techniques that support testing activities. In our

research work, we have outlined a novel testing strategy for performing various

types of software testing using Aspect Oriented Programming. Further, we have

developed a Testing Aspect Generator Language (TAGL) that can be used by

the testers without the knowledge of AOP for writing test scripts in the form of

natural language like statements. In this Chapter, we shall asses the usefulness of

our proposed approach by comparing it with the existing testing methodologies.

We shall compare our approach with the conventional techniques on the basis of

functionality, ease of use, learning curve, �exibility, aid for bug resolution, lines of

testing code, code coverage, test execution times, types of testing covered, support

for complex data types and non functional requirements etc. A complete qualita-

tive analysis (in this Chapter) as well as quantitative analysis (in the next Chapter

7) shall be carried out in order to evaluate our proposed AOP approach for per-

forming various types of software testing and establish the bene�ts thereof. We

shall also discuss the e�ectiveness of our approach when applied to real world soft-

ware applications and elucidate for what all type of programs shall our proposed

approach be best suited. Substantially we have used AspectJ for the purpose of

comparison as it has become the de-facto standard for AOP.

116

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 117

6.1 Resemblance with JUnit: most popular testing

tool for Java applications

Automated testing tools simplify the testing e�orts because the tester has to write

the minimum test script and repetitive execution of test cases is simpli�ed. Also

automated testing tools provide for means of comparing the actual output with the

expected output. In a nutshell, automated testing tools make the testing process

faster and more e�cient. For testing Java applications, JUnit is the most popular

and extensively used open source automated testing tool which targets individual

methods and classes [55, 71, 72].

AspectJ, the AOP extension for Java, has become the de-facto standard for AOP

by emphasising simplicity and usability for end users [73]. Our proposed AOP ap-

proach for testing Java applications using AspectJ has got profound resemblances

with JUnit on many facets and as such covers all sort of testing functionality

provided by JUnit. In JUnit, the tester creates the test classes within which the

testing code is written. Similarly when using our approach for testing, the tester

writes the testing code within the aspects in AspectJ which are quite class-like

concept [74]. Aspects in AspectJ behave like Java classes with the di�erence that

these can have pointcuts and advices within them. Class is the unit of modularity

in Object Oriented Programming and aspect is the basic building block in Aspect

Oriented Programming that modularises the concerns.

JUnit provides with annotations which are like meta-tags that can be added to

the testing code. JUnit annotations are meant to identify when or in which order

the various methods in the test class are to be executed. For example, the @Test

annotation is used to specify the test method that has to be run as test case. In

AspectJ, the same functionality is achieved by the around advice in which the

method to be tested can be instrumented and tested with desired input values.

This analogy has been depicted in Listing 6.1 and 6.2.

The annotations @Before and @BeforeClass in JUnit are used to indicate the

methods which setup the necessary pre-conditions required for the execution of

the test methods. The @Before annotation is used with a method that has to run

before every test case in the test class. We have before advice in AspectJ that

serves the same purpose like @Before annotation as evident from Listing 6.1 and

6.2. Code written within a before advice with appropriate pointcuts that capture

the methods to be tested shall be executed before the testing code written within

the around advices. Similarly, the method marked with annotation @BeforeClass

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 118

in JUnit is executed once before the test class. In these example listings, the

marks of the student in three subjects are set using the @Before annotation in

JUnit class TestCase and using the before advice within the aspect testAspect

before the method that calculates the average can be tested.

Listing 6.1: Testing a method in Student class using JUnit

import static org.junit.Assert.*;
import org.junit.*;

public class TestCase {
Student s = new Student();

@Before
public void doBefore()
{

s .setMarks1(5);
s .setMarks2(6);
s .setMarks3(7);

}

@Test
public void test()
{

double avg = s.getAverage();
assertEquals (6.0, avg, 0);

}
}

When a JUnit test class comprises of multiple methods which are marked with

@Test annotation and which all require certain necessary precondition to be setup,

then a method which sets up the pre-condition marked with �@BeforeClass� anno-

tation is used. To achieve the same functionality in AspectJ, we used the adviceex-

ecution pointcut within an aspect which captures the execution of all the advices

within the testing aspect. Further a before advice was used to execute the desired

pre-condition setup code before the execution of advices in the testing aspect as

shown in Listing 6.3. In this example listing, the static variable i has been used

to ensure that the setup code executes exactly once.

Likewise, the annotations @After and @AfterClass are used to indicate the meth-

ods which get executed after execution of the tests methods and perform cer-

tain cleanup tasks like delete temporary variables, reset variable, disconnect from

database etc. These JUnit annotations can be directly mapped onto the after and

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 119

Listing 6.2: Testing a method in Student class using AspectJ

aspect testAspect
{

Student s = new Student();
before() : execution(public double Student.getAverage())
{

s .setMarks1(5);
s .setMarks2(6);
s .setMarks3(7);

}

double around(Student st) : execution(public double
↪→ Student.getAverage()) && this(st)

{
double x = proceed(s);
if (x!=6) System.out.println("Error: expected output: 6 and

↪→ actual output: " + x);
return proceed(st);

}
}

Listing 6.3: Aspect equivalent to the @BeforeClass annotation in JUnit

public aspect beforeTestingAspect {
static int i = 0;

pointcut beforeAll() : adviceexecution();
before() : beforeAll() && !within(beforeTestingAspect)
{

if (i++ == 0)
{

//Do the desired pre−condition setup here
}

}
}

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 120

adviceexecution advices available in AspectJ along with appropriate pointcuts, on

the same lines as discussed for @Before and @BeforeClass. Suitable code to per-

form the desired reset or release of resources is written within these after and

adviceexecution advices.

Sometimes while running a test class the source code under test is not completely

ready. The @Ignore annotation in JUnit is meant to ignore the execution of a

particular test method. Methods annotated with @Test that are also annotated

with @Ignore are not executed as tests. The same functionality can be achieved in

AspectJ by adding a simple �&& if(false)� to the pointcut so that the corresponding

advice shall not be executed [18]. The example code snippet in Listing 6.4 shows

the syntax for nullifying an advice.

Listing 6.4: Ignoring the execution of a testing advice alike JUnit

pointcut selectedJoinpoints() : within(package.*) && if(false);
before() : selectedJoinpoints ()
{

//Testing operations (these shall not be executed)
}

As discussed above, all the annotations in JUnit can be equated with one of the

available constructs in AspectJ. Thus, the functionality of JUnit and the types

of testing of Java applications that can be carried out using JUnit are equally

possible with AspectJ.

6.2 Advantages of the proposed AOP and TAGL

approach

Furthermore, there are several advantages of using AspectJ over JUnit for per-

forming software testing that we shall discuss hereunder.

6.2.1 Learning Curve

Although there are several bene�ts of using automated testing tools but still new

costs surface up like the implementation and training costs. Moving to test au-

tomation means that the way of working of the testers shall change and de�nitely

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 121

training on the automated testing system would be required. The most important

among the reasons for failed automation is the inexperience of testing team with

the automation tool and thus proper training of the tool is required [75]. More-

over, before such training it is important to convince testers that the automation

of the manual practises shall bring real bene�ts and will not be much additional

burden [76].

Douglas Ho�man [77] states that Writing of automated tests is more di�cult than

manual tests and requires a super set of knowledge and experience over manual

testing. Not all members of an existing test group are able to make such changes.

There are various tools that help software teams build and execute automated

tests but the team is required to acquire pro�ciency in writing the test scripts

using the tool. For example, for tools like JUnit, TestNG, Selenium etc. meant for

testing Java applications, the tester is �rst required to learn them before starting

to use. In a nutshell, the biggest drawback for all the automated testing tools is

that these increase the expected skill-level from the testers. Thus for improving

the testing process, it is important to improve the automation tool and make it

easier to learn and use.

We have proposed AOP for the purpose of automating the process of software

testing. AspectJ, which is the most popular and in-practise language for AOP, is

easy to learn and use [78, 79]. AspectJ's syntax is quite similar to that of Java

except for the new constructs meant for capturing the crosscutting concerns and

thus Java application testers can pursue its use for testing without putting in too

much e�orts. Further to instigate a new level of abstraction, we have developed our

Testing Aspect Generator Language (TAGL) which can be used by Java application

testers for delineating the test cases to test their applications. TAGL statements

are converted into AspectJ testing aspects automatically by the lexical analyser

and parser that we have written using lex and yacc. As we explained in Chapter

5, the syntax of our TAGL is quite intuitive and thus the testers can quickly

learn TAGL and start writing the testing code in natural language-like TAGL

statements.

In order to evaluate the usability of our TAGL, we selected 30 students from the

�nal year batch of an engineering college who were novice in the �eld of testing

and had little or no knowledge of the testing tools and techniques. We made them

to learn both JUnit and our TAGL and then test several Java programs in the

laboratory. As the students were not skilled in both the techniques, they had to

�rst acquire the level of pro�ciency to start writing the testing code using these

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 122

techniques. The basic programs included for the purpose of testing comprised

of sorting programs, stack and queue classes, calculator, simple servlet programs,

banking and library applications developed by the students themselves during their

curriculum.

After a regular learning and usage of 30 days, the students were asked to rate both

the techniques. Following is a summary of the observations:

� Ability to meet the objectives: As per the student tester's experience, both

TAGL and JUnit could meet the primary objective of software testing; how-

ever, TAGL could cover many di�erent types of testing. They could detect

bugs related to memory leaks, interference and also perform load testing

using TAGL whereas with JUnit, they could only perform testing of the

modules with the input test data and use assertion methods for correctness.

� Ease of learning: All the 30 students commended that TAGL has got quite

natural-language like syntax and thus is far easy to learn as compared to

JUnit. The same is evident from Figure 6.1 which shows the learning curves

of these students for TAGL and JUnit.

Figure 6.1: Learning curve of novice testers for TAGL and JUnit

� Memorability: Memorability refers to the property of an artifact that mea-

sures how easy is it to remember when a user returns to the artifact after not

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 123

using it for a certain period of time. We made the student testers to return

and use the testing techniques after a period of not using it for 7 days, 83%

of them remembered our TAGL syntax su�cient enough to use it e�ectively

for the next time. It is so because we have kept the TAGL syntax instinctual

and the constructs of the language quite natural-language like. However, in

case of JUnit, 60% of them had to start over again to learn everything.

� Ease of use: Ease of use refers to the extent to which a user can use an artifact

to achieve speci�ed goals with satisfaction. When the students wanted to test

their programs with multiple input value combinations simultaneously, they

had to use the Parameterized class in JUnit which they found quite complex

whereas they found it simple to provide multiple inputs using TAGL. Overall,

the natural language like syntax of TAGL makes it easy to use for novice as

well as experienced testers.

� Time taken for writing the code: Time taken by the students for writing the

testing code using JUnit is more because the syntax involves use of various

annotations and punctuations.

� Error messages: Regarding error messages generated upon wrong statements

in testing code, most of the students advocated that JUnit provides better

and more meaningful error messages which are helpful in debugging the

testing code. TAGL falls weak on this perspective. However, the number of

syntax errors made by the student testers was lesser with TAGL because the

syntax is quite natural-language like and uncomplicated to write test code

with.

� Test reports: Test report shows the comparison of test results with expected

results. From the student's experience, reporting of failures by our technique

was simple and easy to understand. Although the test reports produced by

JUnit were more informative but they happen to be complex.

� Task completion rate: Testing tasks given to students included fault injec-

tion testing in deposit and withdraw modules of banking application, testing

of the calculator program like divide by zero or negative number, testing of

bubble sorting program with di�erent input combinations like empty list,

repeated numbers in list etc., testing the push and pop operations of stack,

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 124

testing for stack over�ow, testing operations of a circular queue. Addition-

ally TAGL speci�c testing tasks were also assigned like memory leakage

testing of library application's classes, interference testing of the parallel

sorting programs etc. which cannot be performed using JUnit. After being

reasonably trained on TAGL as well as JUnit, on an average 93% students

could complete the given tasks successfully using our TAGL. However, the

mediocre students faced di�culties in using JUnit and on an average only 16

of the total 30 students could accomplish the given testing activities. (Note:

such average was calculated as the summation of number of students that

performed each task divided by the total number of tasks)

6.2.2 Modi�cation of source code for testing

For carrying out certain types of testing like non-functional testing, memory leak-

age testing, invariant testing, interference testing etc., the source code is required

to be modi�ed [12, 80]. The tester need to bring about changes in the original

source code and the testing code has to be written in various modules.

Various types of software requirements and the level at which the non-functional

requirements come into picture are depicted in Figure 6.2. Non functional re-

quirement of a software are those which determine how a software will function

(and not what the software will do). Non functional requirements describe the

performance constraints, external interfacing conditions, scalability and security

needs, robustness etc. These are catalogued by the people of technical know-how

like the developers or team leaders. Despite the fact that lot of work has been

carried out that emphasises the importance of the non-functional requirements,

the testing approaches available for the evaluation of non-functional requirements

are not many [11].

Non-functional properties of software are realised by code that is spread across the

complete application. Thus, testing for such requirements is either not possible

with tools like JUnit or else entails scattering of testing code at number of places

within the application's original source code when speci�cally designed test tools

are used. For example, there could be a non-functional pro�ling requirement of an

application that the response time of various procedures to service requests should

be within speci�ed time limits. For this it would be required to track the executions

of various procedures and prepare execution time pro�les. For testing for such

requirement, it would be required to insert testing code (to calculate functions'

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 125

Figure 6.2: Types of software requirements and corresponding documents

execution times) at several places, namely before and after the execution of every

function. However, using aspects we can capture the execution of all the functions

by using a wild card pointcut within a pro�ling aspect and then further calculate

the execution times using a before and after advice. Similarly, we can check for the

memory footprint of various modules using aspects without modifying the source

code to test that the memory consumption is within the allowed limits.

Likewise if we talk about robustness which is yet another non-functional require-

ment and thus testing for it shall involve substantial instrumentation of the system

under test. However, using AOP we can write aspects that contain the code for

simulating users or connections to test for robustness. To illustrate, lets take an

example of a servlet which opens a database connection but does not close it and

relies upon the Java garbage collection for release of the database objects. As the

number of connections to a database could be limited, an attacker can make use of

this vulnerability to create multiple servlet calls and bring about a situation of de-

nial of service when the application is overburdened with numerous live database

connections. Aspects in AspectJ can be used to test the application for robustness

against denial of service by loading it with multiple calls to the servlets.

Moreover, it is equally important to mention here that modi�cations to source

code for the purpose of testing may lead to maintenance issues as well as surprises

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 126

for the end user of the application if the developer or tester forgets to delete these.

Using AOP for testing rescues the developers and testers from worrying about

these issues.

6.2.3 Testing Private Members

JUnit does not provide upfront mechanism for testing the private methods. As

private methods can only be accessed within the class they belong to, thus there

is no way to test them from the test class in JUnit. On the other hand, it becomes

necessary to directly test the operations of the private method in case of following:

� When a private method contains an algorithm which requires more unit

testing than it is possible through the public interfaces.

� When to enhance modularity, developers create private utility methods which

do not act on the instance data but simply work upon the passed arguments

to produce a desired result.

� When the level of abstraction furnished by public methods of a class could

be too high such that the algorithm of private method could not be easily

targeted.

� If an error caused by a private method is identi�ed while testing a public

method, at times it might take really long to �nd out the exact location of

the error.

One such example of a private method is shown in Listing 6.5. In this example,

the showURLInfo method of the ProcessURL class calls the private replaceSpaces

method which replaces the unwanted spaces from the input string with %20 be-

fore creating an object of the Java URL class from it. We can test the public

showURLInfo method of this class with JUnit (or other conventional technolo-

gies) but as the replaceSpaces method is private, it cannot be tested. However,

as we can see that the private method in this example implements the intricate

algorithm of replacing the spaces with %20, it becomes important to directly test

it as well. For example, test cases like string containing multiple spaces at the end

or two (or more) consecutive spaces in middle, should be checked directly upon

the replaceSpaces method.

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 127

Listing 6.5: A private method with an algorithm

public class ProcessURL {
public void showURLInfo(String str)
{

String urlString = replaceSpaces(str);
try {

URL url = new URL(urlString);
System.out.println(url .getProtocol()) ;
System.out.println(url .getHost());
System.out.println(url .getDefaultPort());

} catch (MalformedURLException e) {
e.printStackTrace();

}
}
private String replaceSpaces(String str)
{

int noOfSpaces = 0, i;
for(i = 0; i < str.length() ; i++)

if (str .charAt(i) == ' ')
noOfSpaces++;

while (str.charAt(i−1) == ' ')
{

noOfSpaces−−;
i−−;

}
int index = ((i−1) + noOfSpaces * 2 + 1) − 1;
char[] charArray = new char[index+1];
for (int j=i−1; j>=0; j−−)
{

if (str .charAt(j) == ' ')
{

charArray[index] = '0' ;
charArray[index−1] = '2';
charArray[index−2] = '%';
index = index − 3;

}
else
{

charArray[index] = str.charAt(j);
index−−;

}
}
return String.valueOf(charArray);

}
}

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 128

In order to assist unit testing of private components in JUnit, the Java Re�ection

API can be used as a �ll in. The java.lang and java.lang.re�ect packages provide

necessary classes for Java re�ection. However, there are several disadvantages

of this approach. Firstly, using Re�ection API is not easy [81]. The test code

becomes verbose, harder to understand and maintain when the re�ection API is

deployed. Apart from this, since java re�ection involves the types that are dynam-

ically resolved at run time, the associated operations have slower performance as

certain Java virtual machine optimisations can not be exercised [82]. For all these

reasons, using re�ection mechanism is not recommended by most of the software

developers [83].

However when testing the Java applications using the AspectJ approach, the pri-

vate members can be easily accessed within the testing aspect by adding privileged

keyword to the aspect. Code inside privileged aspects has access to all members

of the captured object, even the private ones. For example, we used a privileged

aspect to test the Java open source download management tool JDownloader. Par-

ticularly we tested the validateForm method of the AddLinksDialog class. In this

AddLinksDialog class, there is a private member input which is an object of Ext-

TextArea. We were able to access this private data member using our privileged

aspect and provide di�erent values for web links for the purpose of testing the

functionality of the validateForm method of the AddLinksDialog class as shown in

Listing 6.6.

Listing 6.6: Testing private members using privileged aspect

public privileged aspect testJDownloaderAddLinksDialog
{

pointcut Test4(AddLinksDialog t) : execution(protected void
↪→ org.jdownloader.gui.views.linkgrabber.addlinksdialog.
↪→ AddLinksDialog.validateForm()) && target(t);

void around(AddLinksDialog t) : Test4(t)
{

String [] testinput = new String[] { "www.mnit.ac.in",
↪→ "www.google.co.in", "y.to", "i.tv", ".", "***", null,
↪→ "123", };

for (int i = 0; i < testinput.length; i++)
{

t .input.setText(testinput [i]) ;
proceed(t);

}
}

}

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 129

Furthermore, the execution time taken for accessing private method of a class

using Java re�ection in case of JUnit is higher when compared to that of accessing

it using a privileged aspect in AspectJ [84]. This di�erence becomes signi�cant

when the number of times a private method is accessed is high. The classes (JUnit)

and aspects (AspectJ) meant for testing a method are executed several numbers

of times while performing testing. This is either because of multiple test cases for

the method or because the test cases have to be re-run every time after bringing

about changes in the method under test. Thus if there is a private method under

test, it shall be accessed several times while performing testing and hence the total

test execution time with testing aspects will be considerably less as compared to

that with JUnit test class using re�ection mechanism. The bar graph shown in

Figure 6.3 depicts a comparison of the execution time taken when a private method

with extensive activities (updating considerable number of tuples in a database)

is accessed several times using privileged aspect as well as re�ection mechanism.

It is apparent from this bar graph that when the number of accesses to the private

method increased, the gain in execution time using privileged aspect also increased

from 11% to 22%.

Figure 6.3: Execution time taken for accessing a private method using privileged
aspect and Java re�ection mechanism, performed on a system with Windows XP
SP3 having Intel T6670 Processor and 4GB RAM

By the de�nition of a unit testing, it is apparent that a unit test suite should

test every unit of code which should be irrespective of its scope. Since AOP has

provisions for accessing the public as well as private components of the class within

the testing aspects, therefore it is a better choice to perform thorough unit testing.

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 130

6.2.4 Performing Integration Testing

While testing Java applications, JUnit performs well for conducting tests at unit

level only but using AspectJ we can carry out testing at other levels too. Inte-

gration testing, which is conducted simultaneously with the development process

when all the necessary modules may not be actually available for test, can be car-

ried out using AspectJ. Use of AspectJ simpli�es the integration testing phase and

it can be applied for integration testing of all types of Java applications. Using

aspects in AspectJ, we could create stub or driver in lieu of an application module

which is either not fully developed yet or needs extensive resources for execution

as discussed in Section 3.4.2 of Chapter 3. Such a stub or driver is useful for

performing Integration Testing. AspectJ provides us with around advice which

we used to write stubs that completely bypass the execution of the captured join-

point. Around advice was utilised to write the functionality of a missing module

that has to be integrated or to implement a light-weighted alternative of a module.

Likewise, we also created drivers using aspects which were used to call a particular

API or module under test with the required arguments. Moreover, aspects can

also be utilised to mock a known state of database while performing integration

testing.

With JUnit there is no such provision for writing stub or driver in lieu of an appli-

cation module. Thus integration testing is not well supported by JUnit [55]. Other

available integration testing tools are meant for speci�c domain only like embedded

systems (VectorCAST), critical software (LDRA) or message based applications

(Citrus) but our proposed technique can be used for the integration testing of all

type of applications. Integration testing involves setting up the whole environment

which resembles the situation in which the system is �nally deployed and around

advice written within aspects is very useful for this purpose.

6.2.5 Performing Invariant Testing

Invariant testing involves examining conditions that are expected to hold true for a

program component or may be for the whole program implementation. Invariants

conditions could be run time like a newly created object should not be null or the

return value of a method should be within a speci�ed range or a particular method

should not be called from any class other than the allowed class. The context at

a joinpoint can be captured with the help of constructs like args, after returning

advice or within in AspectJ and such context can be used to ascertain the imposed

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 131

run time conditions. Static invariant conditions that are required to be tested could

be asserting that a particular API is never called or verifying that the private

members are set within the setter functions only. Compile-time declarations in

AspectJ like declare warning or declare error can be used to ascertain such static

conditions.

Most of the times, the invariant condition is required to be tested across the whole

program itself and such testing is thus crosscutting in nature. For example, if we

want to test that the value of a program variable should always be within certain

constraints (like y=ax+b or a≤x≤b or x∈y) then it would be required to write

testing code at all the places within the program code where the program variable

is being (directly or indirectly) assigned a value. Using aspects in AspectJ, we can

capture all accesses to the variable using the set pointcut and further write an after

advice to check that the value assigned is within desired constraints. Although,

assert in JUnit can be used to check for internal invariants within the test class,

but there exists no provision for testing the crosscutting invariant conditions.

Daikon tool for the dynamic detection of invariants uses instrumenters which in-

strument the source code and produces a new version of the source code to check

for the invariants [85]. With our technique, source code is instrumented with as-

pects externally. Further, Daikon can test for invariants in C, C++, Java and Perl

programs but this framework can be used only for primitive and string types and is

not suitable for complex types. Dynamic Invariant Detection ∪ Checking Engine

(DIDUCE) is another invariant detection tool which is meant for Java programs.

Alike AOP, it instruments a program's bytecode. DIDUCE dynamically formu-

lates hypotheses of invariants obeyed by the program and considers an anomaly

only when there is a large deviation from the past value for a variable at a program

point [86]. Thus, it can be used to provide dynamic invariant violations when a

software error occurs but not for testing invariant conditions like �the values of a

variable should lie within desired constraints�.

6.2.6 Testing for Memory Leaks

Memory leakage testing is important because even a small memory leak in an

application can cause the complete available memory to get exhausted over time

when the application runs continuously. Garbage Collection (GC) is a mechanism

which automatically reclaims memory occupied by objects which are no longer

referenced. With languages like C++ which were designed for manual memory

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 132

management and lacks a GC, the probability of a left behind memory leak due to

the developer's mistake is high. Further even with languages like Java which do

have a GC mechanism of their own, memory leaks which are not garbage collected

can still prevail as we exempli�ed in Section 3.1.1 of Chapter 3.

We used aspects to �nd out if there exists memory leaks due to unreferenced

objects when the programmer forgets to call the self written methods for object

destruction like �nalize/dispose or when an inner class object is still alive even after

its use within the outer class method is over or when caused by bu�er over�ow.

We could �nd a memory leak in the ChartPanel class of JFreeChart, which is a

widely used open source application for preparing bars, charts, histograms etc.,

with the help of aspects.

Null pointer exceptions can also be detected using our AOP approach. Null pointer

exceptions occur when we use a reference that points to no location in the memory.

Aspects when used for null pointer detection and handling reduce the number of

lines of code, has got better tolerance for changes in the speci�cations and also

avoids undesirable code tangling [45, 87].

There is no reliable way of �nding out memory leaks using JUnit. Tools like

VisualVM [88] and HPROF [89] are available for Java to detect memory leaks in

applications by monitoring the Java Heap. However during our work, we noticed

that although these memory analysis tools can detect the presence of an increasing

memory usage in the system, but these do not provide a mechanism for determining

the exact location in the source code where the bug causing memory leak exists.

Moreover, a constantly increasing memory usage is not necessarily the evidence of a

memory leak. Applications use memory to store frequently requested information

in the form of cache and if there exists certain design error, such information

storage may consume more memory over time but it is not a memory leak. Also,

di�erent tools for detecting memory leaks create di�erent memory pro�les and if

two pro�lers disagree, they both cannot be correct [90]. Using aspects we could

not only check for the existence of memory leaks but also we were able to �nd out

which objects have not been dereferenced.

6.2.7 Performing Servlet Testing

To properly test a servlet we would either have to run it inside a real servlet

container or create a mock servlet container. JUnit alone does not su�ce to

test a servlet application. During testing of a servlet, the actual request and

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 133

response are not available, since the servlet container is not running. Therefore

we need to mock both the HttpServletRequest and HttpServletResponse objects to

simulate as real and get the desired behavior. For this, we need to use APIs like

Mockito or org.springframework.mock.web to mock out servlet request or response

objects. However, before using these APIs we need to add their jar �les to the

project which increases performance overheads. Considerable learning curve for

the testers is also associated with these APIs. An example of JUnit testing code

using the org.springframework.mock.web API that can be used for the purpose of

servlet testing is shown in Listing 6.7.

Listing 6.7: Servlet Testing using JUnit

import static org.junit.Assert.*;
import java.io.IOException;
import javax.servlet.ServletException;
import org.junit.Before;
import org.junit.Test;
import org.springframework.mock.web.MockHttpServletRequest;
import org.springframework.mock.web.MockHttpServletResponse;

public class JUnitTest
{

private MyServlet servlet;
private MockHttpServletRequest request;
private MockHttpServletResponse response;

@Before
public void setUp() {

servlet = new MyServlet();
request = new MockHttpServletRequest();
response = new MockHttpServletResponse();

}

@Test
public void correctUsernameInRequest() throws ServletException,

↪→ IOException {
request.addParameter("username", "scott");
request.addParameter("password", "tiger");
servlet .doPost(request, response);
assertEquals("text/html", response.getContentType());

}
}

On the other hand, when we test servlets using our AOP approach, no separate

API is required. We simply make use of the javax.servlet package which is a

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 134

part of the Java Enterprise Edition. We used aspects that implements the Filter

class to override methods like getparameter so that the requests from client can

be simulated to pass the test data to the servlet under test. Moreover, servlet

testing aspects can be automatically created by using our TAGL as we illustrated

in Section 5.4.6 of Chapter 5. As apparent from the provided TAGL examples,

servlet testing using TAGL is straightforward, does not involve the use of any

external API and no additional learning is involved.

6.2.8 Performing Load Testing

JUnit cannot be used for load testing as there is no provision for emulating the

workload for system under test. JMeter [91] is the most popular open source load

testing desktop application which can be used to create multiple users in the form

of threads that shall send HTTP (or other) requests to the system under test

and evaluate the server's performance by calculating its response time. Although

JMeter is most suitable for creating load tests for web applications, databases

and FTP servers, it cannot be used for load testing of Java desktop/standalone

applications. Likewise Load Runner [92] too can emulate concurrent users but for

web and database servers only and further a prohibitive cost is associated with it.

However, it is equally important to test the performance of the standalone desktop

applications and modules under load when they are critical. For example, when

a module is being executed several times or when a module is processing a lot of

records, then carrying out load testing becomes condemnatory. Using AspectJ, we

could carry out such unit performance tests too as explained in Section 3.3.1 of

Chapter 3. Further as illustrated in Section 4.1 of Chapter 4, we load tested NetC

by creating multiple sockets and determined the application's limits for handling

concurrent users using AspectJ; the same is not possible with JMeter or Load

Runner.

Using suitable context collecting constructs, information regarding the perfor-

mance of the system under load test like memory consumption and execution

time can also be gathered which can be further utilised for performance tuning.

We can identify the slow parts in the application and also compare two di�erent

implementations. One of the important challenges for load testing viz. setting

up the test environment, can also be addressed by writing appropriate around

advice(s) within aspects.

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 135

Moreover, for load testing Java based (J2EE) web applications, the �rst and fore-

most thing would be to load test the modules individually and this is possible with

our approach. Modules which are taking high execution times and thus need to be

optimised can be identi�ed by load testing with aspects. When web applications

are based on servlets, these can be load tested and the time taken for processing

HTTP requests can be measured using aspects, in a way similar to that explained

in Section 3.3.2 of Chapter 3.

6.2.9 Testing of Concurrent Applications

With the emergence of multi-core and multi-processor architecture, the develop-

ment of multi-threaded applications has increased. In these multi-threaded appli-

cations, there are multiple threads which execute independently and concurrently

so that the available hardware can be used e�ectively. Di�erent threads are sched-

uled on di�erent processor cores as shown in Figure 6.4 which saves the execution

time. However, the behavior of threads can be confusing and counter-intuitive [93]

which leads to non-deterministic nature and unexpected interleavings in the paral-

lel multi-threaded applications. Regardless of the presence of these unpredictable

interleavings, a concurrent Java application must work �awlessly and this can only

be ensured by thorough testing of the thread synchronization mechanisms used by

the developer. JUnit has got no provision for testing concurrent Java applications.

Java does not prevent concurrent bugs like deadlocks or race conditions and the

developer has to ensure their avoidance through available synchronization mech-

anisms. Conventionally, testing for the presence (or absence) of such concurrent

bugs involves inserting noise [13] or calls to a suitable scheduling function [46] at

concurrent events in the Java program. Such noise insertion or calls to a scheduling

function requires the source code to be instrumented at various places and leads

to scattered testing code when automation is not deployed for testing. The most

widely used automated concurrency testing tool is ConTest which was developed

by the IBM Haifa Research Laboratory [94]. It instruments at the bytecode level

and injects calls to the �ConTest runtime functions� at selected places which try

to cause a thread switch or a delay.

The main functions of ConTest are:

� Cause synchronization problems to surface-up more likely while testing

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 136

Figure 6.4: Reduced execution times with multi-threaded programming on multi-
ple core CPUs

� Increasing likelihood that a program scenario which gave rise to a speci�c

synchronization problem will recur

� Produces a lot of useful debugging information

� Provides users with thread coverage information

Aspects can be used to externally instrument the source code for increasing the

likelihood of catching concurrent bugs [48] without making any changes to the

source code. Aspects work by instrumenting the multi-threaded program with

conditional sleep and then observe di�erent scheduling scenarios. For example,

we used aspects to insert noise after a thread execution, or modify an existing

sleep time �xed by the programmer or to insert noise before all accesses to a

shared variable as detailed in Chapter 4. The org.aspectj.weaver.showWeaveInfo is

a system property available in AspectJ that emits a message each time a joinpoint

is woven. It can be used to �nd out which all threads and in what order were

covered by the testing aspect.

AOP proves to be useful for noise insertion and addresses the question about �how

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 137

to introduce noise� for concurrency testing without transforming the source pro-

gram under test but it does not throw any light onto �where in the source program

should such noise be inserted�. We recommend insertion of noise at all program

points which are responsible for thread synchronization (like call to wait, notify,

start etc.) and where concurrent events occur. Moreover, we inserted random

noise at concurrent events using aspects. Even the ConTest default con�guration,

when its �test random parameter functionality� is enabled, selects noise parame-

ters at random before each execution. But in order to discover concurrent errors

e�ectively, heuristics for insertion of noise should be used. Notwithstanding, our

proposed approach is compatible and can be deployed with approaches that im-

plement e�ective heuristics.

In a nutshell, instrumentation of the application's code for concurrency testing

with AspectJ is non-invasive and quite straightforward which is furthermore sim-

pli�ed when TAGL is used for writing the testing code. On the other hand,

deploying ConTest requires a lot of expertise.

6.2.10 Context Collection for the Purpose of Debugging

The ultimate goal of software testing is the discovery of bugs. Now-a-days large

scale and complex software lead to increasing number of bugs. Once a bug has been

identi�ed, the di�erent phases of bug resolution start. One of the most important

phases in bug resolution is bug understanding. For a given bug, the assigned

developer needs to �nd the source code �les where the bug is and then update the

code as a part of the bug-�xing process [19]. Thus if context corresponding to the

found bug can be collected at the time of software testing, it can make the process

of bug resolution less tedious.

One big advantage of using AspectJ for testing over JUnit and the other con-

ventional testing techniques is that we can provide context information re-

garding the location in the program where the bug occurs. AspectJ pro-

vides us with context collecting constructs like thisJoinPoint.getThis(), thisJoin-

Point.getTarget(), thisJoinPoint.getArgs(), joinPointStaticPart.getKind(), join-

PointStaticPart.getSourceLocation(), joinPointStaticPart.getSignature() etc. In-

formation gathered by these constructs is helpful for debugging the application.

The relevant context collected by the various available constructs in AspectJ is

enlisted in Table 6.1.

We used these constructs within the testing aspects such that whenever a bug

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 138

Table 6.1: Collecting context useful for debugging

Construct Signi�cance

thisJoinPoint.getThis() Provides the context information of the
currently executing object

thisJoinPoint.getTarget() Provides the context information regard-
ing the target object

thisJoinPoint.getArgs() When we use it within an aspect that
tests a method or constructor, it returns
an array of the arguments where each el-
ement refers to each argument and exists
in the order in which it appears in the
method or constructor

joinPointStaticPart.getKind() Returns the context information regard-
ing the kind of joinpoint such as method-
call or �eld-set etc.

joinPointStaticPart.getSourceLocation() Provides useful context information re-
garding the line number in the source
code which corresponds to the discovered
bug

joinPointStaticPart.getSignature() Provides context information regarding
the signature of the method or construc-
tor where the bug is discovered by the
testing aspect

occurs we are able to get the relevant information regarding the execution point

where the bug occurred like the line number in source code, the signature of the

surrounding method or class etc. For example, in the Listing 3.6 of Chapter

3, we used thisJoinPoint.getSignature() and thisJoinPoint.getSourceLocation() to

report the signature of the method and the source code line number at which null

value was returned.

In Listing 6.8, we have used the available constructs in AspectJ for the collection

of context. We have taken example of an aspect that instruments the push method

of a stack data structure and generates an error along with the necessary context

information whenever the stack top reaches full. The output of the listing is shown

beneath it.

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 139

Listing 6.8: Collecting context useful for debugging

pointcut isFull(Stack st) : call(public void Stack.push(long)) &&

↪→ target(st);

before (Stack st): isFull (st)

{

if (st .top == st.maxSize−1)
{

System.out.println("Stack is full !");

String targ = thisJoinPoint.getTarget().getClass().

↪→ toString();

String kind = thisJoinPointStaticPart.getKind().toString() ;

String sig = thisJoinPointStaticPart.getSignature().

↪→ toString() ;

String loc = thisJoinPointStaticPart.

↪→ getSourceLocation().toString() ;

Object arg[] = thisJoinPoint.getArgs();

System.out.println(targ) ;

System.out.println(kind);

System.out.println(sig) ;

System.out.println(loc) ;

System.out.println(arg [0]. getClass()) ;

return;

}

}

Output of Listing 6.8:

Stack is full!

class Stack

method-call

void Stack.push(long)

stackUserClass.java:9

class java.lang.Long

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 140

The constructs used and the context collected in Listing 6.8 are discussed hereun-

der:

� Using thisJoinPoint.getTarget().getClass(), we were able to �nd the class of

the target object. In our example, the target object is of class Stack which

called the push method that caused the bug.

� Using thisJoinPointStaticPart.getKind(), we were able to �nd out what kind

of program point was it when the bug occurred. In our case, it was a method-

call.

� The thisJoinPointStaticPart.getSignature() gives the signature of the

method which was called when bug occurred. In this example, it was the

push method of the Stack class, namely void Stack.push(long). The fully

quali�ed method name is provided.

� The thisJoinPointStaticPart.getSourceLocation() construct gives the loca-

tion in the source code from where the bug was introduced. At line number

9 in the stackUserClass, the push method of Stack class was called which

made the stack top cross the maximum allowed value limit. stackUserClass

is the class which using the Stack class.

� The thisJoinPoint.getArgs() construct was used to capture the arguments

that were used to call the push method of the Stack class. The arguments

class was obtained using getClass() which printed the fully quali�ed class

name of the argument as java.lang.Long.

6.3 Summary

This chapter presented the qualitative bene�ts of using our approach over the

conventional testing techniques. Reduced learning curve, testing without source

code modi�cation, testing private members e�ciently, collection of context at the

error location and being able to perform various types of testing are the main

advantages of using our approach. A summary of the key advantages of using our

approach over the most popular Java testing tool JUnit is given in Table 6.2.

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 141

Table 6.2: JUnit vs Our approach: Qualitative Comparison

Testing

feature

JUnit Our proposed approach

Testing with

multiple in-

put values

Not straight forward,

use of Parameterized

class required which is

di�cult to learn

Simple aspects using array and for

loop to provide multiple values are suf-

�cient. Further, using TAGL requires

only the values to be speci�ed in sim-

ple TAGL statements.

Testing

private

members

No direct mechanism

except using the

Re�ection mechanism

which makes code ver-

bose and performance

slow

Privileged aspect have access to all

members of the captured object (per-

formance gain up to 22%). Further

TAGL requires only the scope to be

stated as private and then generates

privileged aspect automatically.

Integration

testing

Limited support [55] Aspects can be used to create stubs

and drivers.

Testing com-

pile time in-

variants

No provision Compile-time declarations like declare

warning or declare error can be used to

test for static conditions.

Testing run

time invari-

ants

Separate testing code

for testing di�erent

classes whether the

invariant condition

holds true in each of

these

Wild card pointcuts using which mul-

tiple execution points can be captured

simultaneously along with suitable ad-

vice minimise the testing e�ort.

Test reports Informative and well-

formatted reports but

petite complex to un-

derstand

Simple test reports with context infor-

mation which are easy to understand.

Memory

leakage

No reliable way Di�erent possibilities of memory leaks

can be detected using aspects [45]. Us-

ing TAGL, separate but simple deno-

tations to be written for detecting dif-

ferent types of memory leaks.

Chapter 6 Comparison with Conventional Technologies:Qualitative Analysis 142

Table 6.2 : JUnit vs Our approach: Qualitative Comparison, continued

Testing

feature

JUnit Our proposed approach

Servlet test-

ing

No direct mechanism

available, external

APIs like Mockito or

org.springframework.-

mock.web required

No separate APIs are required,

javax.servlet package which is a part

of the Java Enterprise Edition is

used. Using TAGL, only servlet name,

parameter name and values to be used

for testing need to be speci�ed.

Testing non-

functional

properties

Not possible Possible because of its inherent prop-

erty of capturing cross cutting con-

cerns into aspects. TAGL makes it

further easy for testers to write test-

ing code for testing non-functional re-

quirements.

Error mes-

sages for

incorrect

testing code

Better and meaning-

ful error messages

AOP provides understandable error

messages but TAGL error messages are

not very informative. Nevertheless,

TAGL's simplicity reduces the chances

of errors.

Chapter 7

Comparison with Conventional

Technologies:Quantitative Analysis

In this chapter, we shall analyse our proposed approach quantitatively by compar-

ing it with the existing testing methodologies. For this purpose, we shall perform

a detailed comparison on the basis of lines of testing code, code coverage and test

execution times which are important criterion for the assessment of an automated

testing methodology. Suitable illustrations of testing scripts have been provided

from our approach as well as the conventional testing techniques to perform vari-

ous types of software testing and establish the bene�ts of using AOP for testing.

Substantially, JUnit and AspectJ have been used in the discussion.

7.1 Lines of Testing Code

The number of lines of testing code a�ects the time taken by the testers for writing

the code. Higher the number of lines required to be written for test scripts, more

would be the time spent by the tester. On the contrary, the situation that software

projects usually face is that there is more of untested code and less time for writing

the test code. At the same time, more lines of test code would mean more e�orts

for its maintenance. Maintainability is an important aspect of the testing code. A

di�cult-to-maintain test code is likely to be abandoned. Test code can be made

maintainable by keeping test methods short, striving for fewer lines of test code

and limiting the test actions to one or two lines of test code [95]. Thus, by adopting

a testing technique that reduces the number of lines of testing code would in turn

release the test engineers for more demanding and rewarding work.

143

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis144

Using conventional testing techniques (like JUnit, Visual Studio, NUnit test frame-

work etc.), the ratio of number of lines of test code to the number of lines of source

code may go as high as 1:1 [96, 97]. Few open source Java applications for which

the JUnit test suites have been provided with the source code are listed in Table

7.1 with their test code to source code ratio.

Table 7.1: Lines of test code : lines of source code

Application
Name

Lines of Code
(Tested)

Lines of Test Code Ratio

ANT 17608 8121 46.12%

POI 58754 41610 70.82%

LUCENE 22098 21997 99.54%

JODA 17678 46702 264.17%

During our research, we observed that using aspects in AOP for writing the test

cases, the number of lines in the testing code is reduced considerably. For example,

when we tested a simple average function in a Student class in Java, which takes

three variables and calculates their average, with multiple input values for the three

variables, the testing program could be written with only 18 lines with AspectJ (see

Listing 7.1) whereas the same required 31 lines of code when written using JUnit

(see Listing 7.2). In fact, JUnit does not provide any direct mechanism for testing

a method with multiple input values, rather we have to use the Parameterized

Class. Parameterized is a runner inside JUnit that will run the same test case with

di�erent set of inputs. The JUnit code written for testing a method with multiple

inputs using Parameterized class is not straight forward and is di�cult to learn

and understand whereas the corresponding aspect code is quite straightforward

as evident from Listing 7.1 and 7.2. Moreover, our TAGL makes it further easier

for the tester to write the testing code. Just 8 English-like TAGL statements are

required to test the average method with multiple values for the three variables

and compare the actual outcome with the expected outcome as shown in Listing

7.3.

Additionally, if there are multiple methods of a class which are to be tested and are

written in the same JUnit test class, and if we test using parameterized dataset,

then all test methods in the JUnit class shall be tested with the same dataset. In

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis145

Listing 7.1: Testing a method in Student class with multiple inputs using AspectJ

//Testing with multiple test cases using an around advice with a setup
↪→ function

public aspect revisedTestingAspect {
Student s = new Student();
static int i ;
int expectedResult[] = {2,5,8};
int [] mark1 = {1,4,7};
int [] mark2 = {2,5,8};
int [] mark3 = {3,6,9};

void setup(int i)
{

s .setMarks1(mark1[i]);
s .setMarks2(mark2[i]);
s .setMarks3(mark3[i]);

}

double around(Student st) : execution(public double
↪→ Student.getAverage()) && this(st)

{
for(i=0;i<3;i++)
{

setup(i) ;
double result = proceed(s);
if (result !=expectedResult[i])

System.out.println("Error at " + i + "th
↪→ input" + " Expected Result: " +
↪→ expectedResult[i] + " Actual Result: "
↪→ + result);

}
return proceed(st); //do original processing

}
}

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis146

Listing 7.2: Testing a method in Student class with multiple inputs using JUnit

import java.util.Arrays;
import java.util.Collection ;

import org.junit.*;
import org.junit.runners.Parameterized;
import org.junit.runner.RunWith;

import static org.junit.Assert.*;

@RunWith(Parameterized.class)
public class TestCaseMultipleInputs {

private int marks1;
private int marks2;
private int marks3;
private double expectedResult;
private Student st;

@Before
public void initialize () {

st = new Student();
}

//Each parameter should be placed as an argument here, every time runner triggers,
↪→ it will pass the arguments for parameters we de�ned

public TestCaseMultipleInputs(int marks1, int marks2, int marks3, double
↪→ expectedResult) {

this.marks1 = marks1;
this.marks2 = marks2;
this.marks3 = marks3;
this.expectedResult = expectedResult;

}

@Parameterized.Parameters
public static Collection<Object[]> getInputs() {

return Arrays.asList(new Object[][] {{ 1,2,3,2 },{ 4,5,6,5 },{ 7,8,9,8 }});
}

//This test will run 3 times since we have 3 parameters de�ned
@Test
public void testGetAverage() {

st .setMarks1(marks1);
st .setMarks2(marks2);
st .setMarks3(marks3);
double result = st.getAverage();
assertEquals(expectedResult, result , 0);

}
}

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis147

Listing 7.3: Testing a method in Student class with multiple inputs using TAGL

////type: blackbox
////aspectname: TestCaseMultipleInputs
////classname: Student
////methodsignature: public double getAverage()
////setup: public void setMarks1(int m), public void setMarks2(int m), public

↪→ void setMarks3(int m)
////argumentname: (marks1, marks2, marks3)
////values: (1,4,7) ,(2,5,8) ,(3,6,9)
////expected: 2,5,8

JUnit, we cannot have di�erent parameterized datasets for di�erent methods in the

same test class. On the contrary, with AspectJ's aspects we can straightforwardly

use di�erent testing datasets for di�erent methods even if they are all written in

the same aspect as we have separate advice codes for each.

Testing of servlets using JUnit requires use of APIs like Mockito or

org.springframework.mock.web to mock out servlet request or response objects.

This leads to increased line of testing code. For e.g., when we tested a two param-

eter servlet with JUnit using the org.springframework.mock.web API, it needed

22 lines of code. Although, when we tested the same servlet using an aspect in

AspectJ only 16 lines of code were su�cient. And the biggest advantage in terms

of lines of testing code comes with TAGL, wherein simply 3 TAGL statements are

su�cient to generate the 16 line servlet testing aspect in AspectJ. Similar obser-

vations were found during the fault injection testing of JScreenRecorder and the

same has been depicted in Figure 7.1.

The number of lines of testing code are also reduced by the use of wildcard pointcuts

which are available in AspectJ. For example, the simple pointcut execution(* *(..))

shall capture the execution of any method regardless of the return or parameter

types. Thus if we want to test for the condition whether any of the methods in the

whole program returns null, which can lead to a null pointer exception, this single

pointcut would be su�cient. Another example could be to test how the various

methods of an application handle null arguments. We can capture all methods

using a single pointcut and instrument so as to pass a null argument and examine

the behavior of the methods from the advice. Similarly, other wild card pointcuts

can be used to capture joinpoints that share common characteristics and then can

be tested all at once. However, there is no such mechanism in JUnit and hence for

testing di�erent methods even with common attributes, separate testing code has

to be written for every method which apparently increases the number of lines of

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis148

Figure 7.1: Number of lines of testing code is reduced using AspectJ, which further
decreases with our TAGL

code.

The software testing phase comprises of about 25-40% time of the total software

development life cycle. Research is ongoing in the direction of how the testing

e�orts can be reduced so that quality software is available in the market in lesser

time as considerable amount of time is spent in testing [98]. The number of lines

of testing code to be written by the tester is reduced when using AOP for testing

which in turn decreases the required testing e�orts. The same is further improved

by the use of TAGL to a good extent. Thus, TAGL is not only easy to learn

but it also relieves the tester from writing lengthy testing codes for testing the

production code.

7.2 Test adequacy criteria and code coverage

A test adequacy criteria is an assertion regarding which program elements need

to be tested so that it can be ascertained that the program has been tested thor-

oughly. If a software passes an adequate number of tests, then the developer can

be reasonably assured about its correctness or in other words the developer can

treat it to be dependable. If a collection of test cases satis�es all the predicates

of a test adequacy criteria, it does not mean that such collection performs the

complete exhaustive testing of the software or that the software is bug free but it

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis149

simply means that such testing activity is adequate.

A test adequacy criteria can be thought of as minimum standards that should

be followed by a software project which either arise from the speci�cations of

the software or else deemed �t to be tested during the course of development.

For example, if a system speci�cation demands that it should be able to handle

hardware failure that interrupts data transmission over network, then the test

cases for such system should be able to simulate a hardware failure. Likewise

if a criteria stated by the developers imposes the obligation that each loop (be it

while, for etc.) should be executed once or more to determine initialization related

errors, then the test suite should be prepared accordingly. A test adequacy criteria

thus provides guidance to the testers in devising a comprehensive test suite. A

test adequacy criteria controls the cost of software testing by revealing the missing

test cases swiftly and by determining when su�cient testing has been done and

can be stopped. In short, the assessment of a test to examine its weaknesses is

carried out based on the test adequacy criteria (see Figure 7.2).

A test adequacy criteria which is well quali�ed for a software system may not be

equally suitable for another system. In other words, a criteria might be satisfactory

for writing e�ective test cases for a software system for testing its correctness

but a di�erent criteria could be more satisfactory for thorough testing of another

system. For e.g. test adequacy criteria have to be framed di�erently for sequential,

concurrent and distributed systems even if they address the same problem space.

Only a well framed test adequacy criteria shall lead to test suite that reveals errors

in the system or else if the test adequacy criteria is inappropriate, then a test suite

that satis�es such criteria might not be able to expose errors in the system. A test

adequacy criteria is said to be e�ective when if a test set that satis�es the criteria

passes the program successfully, then the program shall also be passed successfully

by another test set that too satis�es this adequacy criteria. However, practically

it is not possible to achieve such consistency. �E�ective and error-detecting test

adequacy criteria� and �how likely a test suite, that satis�es a criteria, detects an

error�: have been topics of research [99, 100].

We propose that adequacy criteria is actually a crosscutting concern and thus AOP

best suits for satisfying it. Aspects in AOP make the selection of the code easy

that has to be included in a test adequacy criterion [15]. There are predicates in

test adequacy criteria that relates to lexically scattered code across the program

under test, thus it is di�cult to capture such scattered artifacts by test cases

written using conventional testing techniques. Using AOP can relieve the tester

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis150

Figure 7.2: Test assessment process

from manually selecting the scattered code speci�ed in the test adequacy criteria.

A test adequacy criteria that asserts predicates related to synchronization, secu-

rity or robustness shall encompass source code that shall be scattered in various

modules. This simply correlates to the fact that these attributes are crosscutting

in nature. Using our AOP testing approach, testing aspects can be written using

appropriate wild card pointcuts that are adequate to cover the crosscutting source

code that spans across various execution points in the code base.

For example, if there is a test adequacy criteria with a predicate that asserts for

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis151

coverage of all the calls that have been made externally to any of the methods

of a particular class and all its subclasses shall involve a lot of tester e�orts to

be satis�ed using the conventional techniques. It is so because there could be

enormous calls to such methods which shall be written at several execution points

within the code base of program under test. However using AspectJ, this adequacy

criteria can be satis�ed by single wild card pointcut:

call(* ClassName+.*(..)) && !within(ClassName+)

Here the �rst part of pointcut call (* ClassName+.*(..)) shall capture calls to

all the methods inside the class with ClassName or its subclasses. This will also

match any new method that has been introduced in the subclasses of ClassName.

Further the second part restricts the matching to only those calls which are not

within the lexical scope of the ClassName class and its subclasses. Further, the

testing code to test the covered criteria can be written within the advice.

Another test adequacy criteria that asserts to cover every instance where a partic-

ular �eld balance of a class Account is being set with a new value and requires to

test that the value should be non-zero, can be captured with a pointcut like this:

set(private �oat Account.balance) && args(newValue)

Further, an advice can be written which acts before the captured execution points

and tests that the newValue should be non-zero. With the conventional testing

techniques, writing test cases that cover such a test adequacy criteria is not so

straightforward.

A test predicate in an adequacy criteria governing synchronization could be to

cover all the calls to the synchronization functions within the source code. The

test predicate further requires to test the system's behaviour and adherence to

concurrency when an unavoidable delay emerges. The following pointcut can be

used to capture calls to the synchronization methods like wait, notify, and notifyAll

present in a concurrent program:

void around() : call(* *.wait()) || call(* *.notify(..)) || call(* *.notifyAll(..))

An appropriate advice with a heuristic noise can then be used to simulate a de-

lay and evaluate whether the system is able to maintain the desired concurrency

requirement or not.

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis152

Code coverage refers to amount of application code that has been exercised by a

set of test cases. It is a way to ensure that the test cases are actually testing the

application code. If a test adequacy criteria has to be covered completely, then

100% coverage is required. However in practical testing scenario, it is very di�cult

to achieve 100% coverage of a test adequacy criteria because of the following

reasons:

� There could be some parts of code which are not reachable

� The system under test is not critical enough such that 100% coverage is

necessary

� The planned time-frame for testing is limited

� The available automated testing tools are not capable to achieve 100% cov-

erage

� The testers are not skilled enough

� Attempting so can delay time-to-market and slip an early release

Most organisations consider about 85% coverage as su�cient so as to produce a

quality software [101].

7.2.1 Types of test adequacy criteria

There are various ways in which the test adequacy criterion is classi�ed. However,

irrespective of the type of the criteria, the basic testing principle remains the same

and the actual output is compared with the expected output as per the software

requirement to identify the bugs.

When classi�ed in accordance with the source of information, there are primarily

two categories of test adequacy criteria: Speci�cation based and Program based. In

a speci�cation based test adequacy criteria, the requirements of the software are

fully exercised. In case of program based criteria, the predicates are determined

based on the features of the program under test.

Further test adequacy criteria can also be classi�ed in accordance with the testing

approach that shall be undertaken. Possible approaches for testing could be fault

based testing approach, error based testing approach or structural based testing

approach. This classi�cation is depicted in Figure 7.3 and discussed hereunder.

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis153

Figure 7.3: Di�erent types of test adequacy criteria

� Fault-based testing: Here the test adequacy criteria sets a measure for the

fault detection capability of the test suite

� Error-based testing: In this case, the test adequacy criteria advocates the

testing of error-prone points based on the knowledge about the occurrence

of common errors in the system

� Structural testing: In case of structural testing, the test adequacy criteria

predicates the coverage of particular set of elements in the structure of the

program

In case of structural based testing approach, the test adequacy criteria can be

further classi�ed into following important types:

� Control-�ow based adequacy criteria

1. Statement coverage: Statement coverage corresponds to the physical

coverage of the code. It re�ects the percentage of statements that have

been executed by the underlying test suite. The statement coverage ad-

equacy criteria is simple and fundamental but it is actually a weak mea-

sure. For example, if the defect is a missing statement, it may remain

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis154

undetected by tests satisfying complete statement coverage. Another

example could be that of an if statement without an else where the false

condition will not be exercised even with 100% statement coverage.

2. Path coverage: Path coverage criteria is to ensure that every possible

path in a code is executed at least once. However, achieving full path

coverage is impractical because for n decisions within a module, there

could be 2n paths.

3. Branch coverage: This criteria enforces the condition that each branch

of every control structure should be executed. For e.g. in case of an if

statement, both the true and false branches should be covered.

Branch Coverage = (Number of Branches Covered)/(Total Number of

Branches)* 100

4. Instruction coverage: It correlates with the amount of Java instruction

bytecode that is covered by the test suite. There could be many logical

expressions on one Java statement and thus a single statement may be

compiled to multiple bytecode instructions.

5. Method coverage: It is a metric to measure how many methods out of

the total methods were entered during the execution of the test suite.

6. Cyclomatic number criterion: This criteria depends on the cyclomatic

complexity of the control �ow graph of the program under test. It says

that the number of test cases that are su�cient for the coverage of a

program are equal to its cyclomatic complexity which is calculated as

hereunder:

cc = e - n = 2p

where cc=cyclomatic complexity of the control �ow graph, e=number

of edges, n=number of vertices, p=number of connected components

� Data-�ow based adequacy criteria: In this case, the predicates assert the

execution of certain De�nition-Use (Def-Use) associations (pairs consisting

of a de�nition and a use) that exist in the program under test. Data-�ow

based adequacy criterion is further of the following three types:

1. All de�nitions criterion: Each de�nition to some reachable use

2. All uses criterion: De�nition to each reachable use

3. All def-use criterion: Each de�nition to each reachable use

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis155

In the next section, we shall compare the code coverage achieved by conventional

testing techniques with that achieved by our AOP approach. We shall particularly

focus upon Instruction, Branch and Method coverage which are considered to be

important coverage criteria [102].

7.2.2 Comparing code coverage for various test adequacy

criteria

Aspects provide us with various wild cards pointcuts with which we can cover

complex crosscutting code using minimum testing code. Conventional testing tech-

niques (like JUnit) do not provide a clear-cut mechanism for selection of scattered

code.

Wildcard pointcut allows us to capture multiple execution points within the source

code under test with very few lines of code and thus achieve enhanced code

coverage with lesser testing code. For example, the pointcut withincode(* Li-

brary.issueBooks(..)) can be used to capture all the joinpoints inside the lexical

scope of issueBooks method of the Libray class and then test that the limit of

number of books that can be issued to a single person is not crossed anywhere.

Moreover with the help of wildcard in pointcuts, we can capture the joinpoints

even if we do not have full details of the program under test. For e.g., all the public

methods of a Banking class that change the state of a variable can be captured

using the pointcut public void Banking.set*(..), if the actual names of methods are

not known.

Automated tools are widely used by researchers, practitioners and end-users to

determine the code coverage metrics for evaluating the quality of tests. We used

EclEmma (version 2.3.3), a popular Java code coverage tool, to compare the quan-

titative measure of the application code that is covered by the test codes written

using JUnit and our proposed AspectJ technique. It adds a coverage mode which

appears like Coverage As similar to the Run As option in Eclipse. EclEmma

calculates the code coverage by instrumenting the bytecode of the class �les with

additional code. It highlights the source code with di�erent colors to facilitate

the understanding of the tester regarding the coverage. Green highlighting means

complete code covered, yellow indicates partial coverage and red signi�es the un-

covered code. EclEmma generates a variety of coverage reports and charts in

Hypertext Markup Language (HTML), eXtensible Markup Language (XML), and

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis156

Comma Separated Values (CSV) formats. The coverage view lists the coverage

summary for the Java project under test.

As a case study, we used JGAP [103] which is a Genetic Algorithms Package in

Java. The number of lines of source code in JGAP is 23,579 and number of lines

of test code is 19,340. There are a total of 267 classes and 184 test classes. JGAP

is highly test-driven and currently, over 1400 test cases written using JUnit are

featured by JGAP. The central idea behind the JGAP package is genetic algorithms

which have chromosomes at its heart. Chromosomes constitute a potential solution

to the problem under consideration. The chromosome is divided into multiple

genes where each gene corresponds to a unique feature of the solution. At every

step the system evolves and every chromosome is treated with genetic operators

and then tested against a �tness function for selection into the next generation.

JGAP actually imitates the natural human evolution process at every step in order

to �nd out the best possible solution.

JGAP does the evolutionary work to �nd the best possible solution but has got

no knowledge regarding the problem under consideration. Thus the developer has

to decide and provide the chromosomes along with the genes. The meaning of

each gene has also to be rendered to the genetic algorithm. Similarly, the �tness

function, which determines the goodness of a potential solution as compared to

another potential solutions, has to be provided by the developer. The �tness

function should return an integer value against a potential solution that indicates

the �tness of the solution, i.e., a higher value means a better solution.

As a part of our case study, we have rewritten tests for more than 100 of the JGAP

classes using AspectJ and measured the achieved code coverage with EclEmma.

We compared the code coverage using our AspectJ approach to the coverage ob-

tained using the JUnit test classes provided along with the JGAP package. We

particularly focused upon three types of coverage, namely Instruction coverage,

Branch coverage and Method coverage; these three coverage criteria being impor-

tant ones [102]. We observed that the coverage achieved with AspectJ testing

aspects is better than that obtained with the provided JUnit test classes.

Lets take example of the FileKit class of JGAP package which has got 532 lines

of source code. It contains helper functions related to the �le system. As the

class indicates, FileKit class has got functions to perform operations on �les and

directories like copy the contents of a �le to another, extract �le name from a �le

path, removes unwanted separators from the Uniform Resource Locator (URL)

inputs, delete a �le from disk, delete a directory from disk, get version of the

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis157

module represented by an input jar �le, convert an ordinary �le name into jar �le

name, create a directory with given name, reads text from a �le with input �le

name, get �les from a directory which match an input pattern etc.

The tests folder which contains all the unit tests for JGAP classes contains a

JUnit test class FileKitTest.java under org.jgap.util package. This JUnit test

class contains test cases for testing the methods of the FileKit class. The total

number of line of testing code of this test class are 129. The coverage achieved for

di�erent criteria for the FileKit class when testing it with this JUnit test class as

calculated from EclEmma tool is reproduced in Figure 7.4.

Figure 7.4: Di�erent metrics of source code coverage of FileKit class using JUnit
test cases

When we tested the FileKit class using our proposed AspectJ approach, it took

only 45 lines of testing code and the achieved code coverage calculated using

the EclEmma tool was found to be improved. All coverages namely, instruc-

tion, branches, line, method and complexity were improved as evident from the

EclEmma snapshot shown in Figure 7.5. A comparison of the code coverage for the

important criteria of instruction coverage, branch coverage and method coverage

using the JUnit and AspectJ techniques is shown in Figure 7.6.

Likewise improved code coverage was obtained when the other featured test classes

were implemented using test aspects. A comparison of instruction coverage ob-

tained using JGAP's featured JUnit tests and tests written in AspectJ, taken

with the EclEmma tool for the various classes of JGAP is shown in Figure 7.7.

The branch and method coverage were also improved as shown in Figure 7.8 and

7.9. The increased code coverage obtained with Aspect tests is a result of the

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis158

Figure 7.5: Di�erent metrics of source code coverage of FileKit class using AspectJ
testing aspects

Figure 7.6: Instruction, branch and method coverage as observed using EclEmma
for the testing of FileKit class. LOC which were 129 in JGAP's featured JUnit
test FileKitTest were reduced to 45 in our AspectJ testing aspect.

additional testing features available when using AspectJ for testing like memory

leakage testing, invariant testing, testing of private members, testing after fault

injection, testing the return values of methods with after returning, wild card

pointcuts etc.

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis159

Figure 7.7: Improved instruction coverage for various classes of JGAP with As-
pectJ testing aspects as compared with the JGAP featured JUnit tests, calculated
with EclEmma tool

Figure 7.8: Improved branch coverage for various classes of JGAP with AspectJ
testing aspects as compared with the JGAP featured JUnit tests, calculated with
EclEmma tool

7.3 Test Execution Time

The number of test cases for testing bigger projects is too high [104] and practically

it is quite time consuming to test the software with all the test cases using the

conventional testing techniques. We observed that the execution time for running

test cases is shorter with our proposed AOP testing technique. For example, we

tested a simple two argument function using JUnit and AspectJ with multiple

test cases for the two inputs. The function returned an integer value which was

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis160

Figure 7.9: Improved method coverage for various classes of JGAP with AspectJ
testing aspects as compared with the JGAP featured JUnit tests, calculated with
EclEmma tool

compared with the expected output. The observations depicting the test execution

times have been shown in Figure 7.10.

Figure 7.10: Test execution times for testing a 2-argument function using JUnit
and AspectJ, performed on a system with Windows XP SP3 having Intel T6670
Processor and 4GB RAM

As shown in Figure 7.10, for a single test case, JUnit took 5866 nanoseconds

Chapter 7 Comparison with Conventional Technologies:Quantitative Analysis161

whereas Aspect took 9777 nanoseconds for executing the test case. Thus, the time

taken using JUnit was shorter as compared to that using AspectJ when only one

test case was executed. But for higher number of test cases, which is mostly the

case in practical software testing scenario, the execution time taken by AspectJ

testing aspect was quite less as compared to the time taken by the JUnit test class

as evident from the bar graph in Figure 7.10.

Moreover, the execution time for testing private members using JUnit, which does

not have a direct mechanism and thus Java re�ection API is used, is higher when

compared with that of the privileged aspect in AspectJ used for accessing the

private member to be tested. We depicted the same in Figure 6.3 of Chapter 6.

7.4 Summary

In this chapter, we compared the important metrics of lines of testing code, code

coverage and execution times using our proposed methodology with that of the

conventional testing methodologies. A summary of the results delineated in this

chapter is provided in Table 7.2.

Table 7.2: JUnit vs Our approach: Quantitative Comparison

Testing fea-
ture

JUnit AOP approach TAGL ap-
proach

Lines of testing
code

More lines Reduced upto 40% with
AOP

Further reduced
upto 85% when
we use TAGL

Code coverage Less code coverage Improved due to possible
coverage of private mem-
bers, memory issues, re-
turn values etc.

Alike AOP

Test execution
time

Higher execution times
for multiple test cases

Reduced upto 60% Alike AOP

Chapter 8

Conclusion and Future Work

In this Chapter, we summarise the particulars of the AOP and TAGL method-

ologies presented by us for performing various types of software testing and the

key research results thereof. The e�cacy and advantages of the contributions of

our novel research work are concisely outlined. We also identify and describe the

limitations of our proposed approach in this chapter. In the end, we conclude this

thesis by specifying the possible future work in the direction of our research.

8.1 Summary and impact of the research

This thesis has proposed the use of Aspect Oriented Programming (AOP) method-

ology for the purpose of automated software testing and further devised a domain

speci�c language called Testing Aspect Generator Language (TAGL) which pro-

vides a high degree of abstraction and automatically generates the testing aspects.

A list of common test automation challenges as presented by Fewster and Graham

[105] and Antonia Bertolino [106] and how we addressed those with our approach

for the automation of test execution and reporting are summarised in Table 8.1.

The �rst contribution of our research work in the �eld of software testing is the

deployment of AOP as an automated testing technique which not only reduces

the testing e�orts but also provide for provisions like creating surrounding envi-

ronment for integration testing, regression testing, analysis of results etc. There

are numerous tools arising to support the testing process which can be used in

di�erent areas of testing but it is di�cult to distinguish which all testing tools

should be preferred that can lead to the development of a reliable software project

162

Chapter 8 Conclusion and Future Work 163

Table 8.1: Test automation problems

Issue How our approach helps?

Time to market With AOP the tests can be reused. Test execution time
and test code scripting time using TAGL are shortened.
This in turn shortens the time to market.

Perform tests which
are di�cult/impos-
sible to do manually

We can use AOP to perform memory leakage, perfor-
mance, interference, load testing etc. which are otherwise
perverse to perform.

Better use of re-
sources

The repetitive tasks can be automated using AOP which
in turn releases test engineers for more demanding and
rewarding work.

Running regression
tests on a new ver-
sion of the program

Testing code is localised within the aspect and new test
cases in addition to the older test cases can be added to
the testing aspect.

Test oracles To deal with the issue of deciding whether a test outcome
is acceptable or not, AOP can be used to write test oracles
that validate the test outcome with the expected result.

Education of soft-
ware testers

AOP languages like AspectJ are easy to learn and more-
over, use of the TAGL developed by us does not require
deep technical expertise and thus further simpli�es the
learning curve for testers.

Coherent testing
of functional and
non-functional
properties

AOP can be used for functional as well as non-functional
testing (like security, robustness, concurrency etc.) be-
cause of its inherent property of capturing cross cutting
concerns into aspects.

in accordance with the organisation's intents. However, using solely the AOP ap-

proach, most of the important types of software testing can be performed [48, 107].

The use of AOP approach in the �eld of software testing led to several bene�ts as

discussed in Chapter 6 and Chapter 7. Key advantages of our proposed approach

are enlisted hereunder:

� Obliterated test code scattering which surfaces as an issue in testing pro-

cesses like security testing, invariant testing, memory leakage testing etc.

� Performed concurrency testing by injecting noise in a non-invasive manner

that produces interleavings which might cause errors in concurrent applica-

tions

� Improved code coverage

Chapter 8 Conclusion and Future Work 164

� Reduced lines of testing code

� Collected context useful in the debugging process

� Tested private members as well

Secondly, the proposed approach has been implemented and evaluated on a set of

widely used open source software programs. We were able to �nd out remarkable

bugs in open source Java projects like JDownloader [59], JFreeChart [61], JScreen-

Recorder [60], NetC [58], JGAP [103] etc. using our approach and received the

acknowledgements for the same.

Last but most important, to overcome the learning issue associated with the au-

tomated testing tools, we devised a domain speci�c language (DSL). Our DSL

named Testing Aspect Generator Language (TAGL) is useful for the testers of

Java applications. It provides a new level of abstraction and decreases the tester's

e�orts by reducing the learning curve as well as number of lines to be written for

the testing code. Using TAGL, software testers who have strong knowledge of the

application's business domain but not that of the testing tool, can perform the

testing tasks e�ciently and thus the bug discovery process is accelerated. Even

the testers who are not skilled in AspectJ can still avail the bene�ts of testing Java

applications using AspectJ with the help of our TAGL.

We assert that in general, our proposed approach for AOP based testing is not

limited to Java applications. Rather AOP testing approach can be applied to

applications written in other languages as well because there exists well developed

AOP implementations for many programming languages.

8.2 Limitations and future work

In order to be able to exploit all the bene�ts of testing using AOP, the software

systems have to be designed in such a way that facilitates the separation of cross-

cutting concerns. It is so because all the possible execution points in a program

written in a language cannot be exposed with the available pointcuts in the cor-

responding AOP implementation. For example, for loops and array �eld set in

Java are not exposed and thus cannot be captured using pointcuts in AspectJ [18].

Therefore deploying AOP for e�ective testing of applications makes it necessary to

bring about certain modi�cations in the development procedure too. Subtle work

Chapter 8 Conclusion and Future Work 165

has been done in this regard by di�erent researchers to implement the missing

pointcuts in AspectJ like Chen et. al [108] have extended AspectJ to expose array

joinpoints or like Harbulot et. [109] al presented a model of loop joinpoints in their

paper. The outcome of these studies can be consolidated and utilised to develop

an extension of AspectJ that addresses all the possible joinpoints. We leave this

issue as a scope for future work.

Secondly, although the AOP implementations exists for almost all programming

languages but all implementations are not alike or fully developed. AspectJ was

the �rst AOP implementation which has got a very active following in the Java

developer's community. It happens to be the fully featured de-facto standard for

AOP. AspectC++ has quite similar syntax and semantics as AspectJ (the only

di�erence being that in AspectC++, the program code is changed by a weaver on

a pre-processing step before compilation) and furnishes all the features of AspectJ.

However AspectR (AOP implementation for Ruby), AspectL (AOP implementa-

tion for LISP), AspectMatlab, AOP-PHP, Aspect Python etc. do not fully imple-

ment all the AOP functionalities like AspectJ. The di�erence arises because of the

limited constructs which are available and the usability of these constructs. For

example, AspectR does not support the around advice and AspectMatlab does not

have mechanism for capturing the exception handler execution points. Thus us-

ing the AOP implementations of these languages for the purpose of testing might

put forward certain limitations. For maximum bene�ts, it becomes necessary that

certain AOP implementations which are so far naive should be evolved with full

features.

TAGL is currently limited to generating testing aspects in AspectJ for the test-

ing of Java applications only. It can be extended to produce testing aspects for

applications written in other languages as well. Further a GUI (Graphical User

Interface) based tool can be evolved for helping the testers. Drag and drop fea-

ture can be provided to specify the TAGL statements which are then translated

into testing aspects. Such a GUI based tool can simplify the selection of program

elements that are to be tested and suggestions for candidate test cases can also be

provided. Preliminary results obtained in this direction are encouraging, although

complete GUI development remains as a piece of future work.

Bibliography

[1] I. Hooda and R. Singh Chhillar, �Software test process, testing types and

techniques,� International Journal of Computer Applications, vol. 111, pp.

10�14, 02 2015.

[2] G. Saini and K. Rai, �An analysis on objectives, importance and types of

software testing,� International Journal of Computer Science and Mobile

Computing, vol. 2, no. 9, pp. 18�23, 2013.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.

Loingtier, and J. Irwin, �Aspect-oriented programming,� in European Con-

ference on Object-Oriented Programming (ECOOP), Finland, June 1997.

[4] R. Miles, AspectJ Cookbook. O'Reilly Media, Inc., December 2004.

[5] J. B. Goodenough and S. L. Gerhart, �Toward a theory of test data selection,�

IEEE Transactions on Software Engineering, vol. 1, no. 2, pp. 156�173, 1975.

[6] K. Bareja and A. Singhal, �A review of estimation techniques to reduce test-

ing e�orts in software development,� in 2015 Fifth International Conference

on Advanced Computing & Communication Technologies, February 2015, pp.

541�546.

[7] M. Hanna, N. El-Haggar, and M. Sami, �Reducing testing e�ort using au-

tomation,� International Journal of Computer Applications, vol. 81, no. 8,

pp. 16�21, 2013.

[8] A. Bamotra and A. K. Randhawa, �Software testing techniques,� Interna-

tional Journal of Innovative Computer Science and Engineering, vol. 4, no. 3,

pp. 122�126, 2017.

[9] K. M. Mustafa, R. E. Al-Qutaish, and M. I. Muhairat, �Classi�cation of

software testing tools based on the software testing methods,� in 2009 Second

166

BIBLIOGRAPHY 167

International Conference on Computer and Electrical Engineering, vol. 1,

December 2009, pp. 229�233.

[10] S. Uspenskiy, �A survey and classi�cation of software testing tools,� Master's

thesis, Lappeenranta University of Technology, Lappeenranta, January 2010.

[11] V. Ribeiro, �Testing non-functional requirements: Lacking of technologies or

researching opportunities?� in Brazilian Symposium on Software Quality, 10

2016, pp. 226�240.

[12] E. Duclos, S. L. Digabel, Y. G. Gueheneuc, and B. Adams, �Acre: An auto-

mated aspect creator for testing C++ applications,� in IEEE 7th European

Conference on Software Maintenance and Reengineering, 2013, pp. 121�130.

[13] Z. Letko, �Analysis and testing of concurrent programs,� Information Sci-

ences and Technologies, vol. 5, no. 3, pp. 1�7, September 2013.

[14] S. D. Stoller, �Testing concurrent java programs using randomized schedul-

ing,� Electronic Notes in Theoretical Computer Science, vol. 70, no. 4, pp.

142 � 157, 2002, rV'02, Runtime Veri�cation 2002 (FLoC Satellite Event).

[15] H. Rajan and K. Sullivan, �Generalizing AOP for aspect-oriented testing,�

in 4th International Conference on Aspect Oriented Software Development,

2005, pp. 14�18.

[16] P. S. Kochhar, F. Thung, and D. Lo, �Code coverage and test suite e�ective-

ness: Empirical study with real bugs in large systems,� in 2015 IEEE 22nd

International Conference on Software Analysis, Evolution, and Reengineer-

ing (SANER), March 2015, pp. 560�564.

[17] M. Voelter, DSL Engineering: Designing, Implementing and Using Domain-

Speci�c Languages. CreateSpace Independent Publishing Platform, January

2013.

[18] R. Laddad, AspectJ in Action. Dreamtech Press, 2005.

[19] T. Zhang, H. Jiang, X. Luo, and A. T. Chan, �A literature review of research

in bug resolution: Tasks, challenges and future directions,� The Computer

Journal, vol. 59, no. 5, pp. 741�773, 2016.

[20] G. Kiczales, �Aspect-oriented programming,� ACM Computing Surveys,

vol. 28, no. 4es, Article No. 154, December 1996, doi:10.1145/242224.242420.

BIBLIOGRAPHY 168

[21] O. Spinczyk, AspectC++ Downloads, accessed July 1, 2017, https://www.

aspectc.org/Download.php.

[22] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren, �AspectMatlab: An

aspect-oriented scienti�c programming language,� in Proceedings of the 9th

International Conference on Aspect-Oriented Software Development, ser.

AOSD '10. New York, NY, USA: ACM, 2010, pp. 181�192.

[23] I. C. Maries, aspectlib 1.4.2 : Python Package Index, accessed July 1, 2017,

https://pypi.python.org/pypi/aspectlib/1.4.2.

[24] G. Cro and J. Salleyron, PECL :: Package :: AOP :: 0.2.2b1, accessed July

1, 2017, https://pecl.php.net/package/AOP/0.2.2b1.

[25] J. L. Goldman, G. Abraham, and I.-Y. Song, �Generating software require-

ments speci�cation (ieee-std. 830-1998) document with use cases,� in IRMA

International Conference, May 2007, pp. 552�556.

[26] D. Harekal and V. Suma, �Article: Implication of post production defects

in software industries,� IJCA Proceedings on International Conference on

Communication, Computing and Information Technology, vol. ICCCMIT

2014, no. 1, pp. 10�13, March 2015.

[27] B. Beizer, Software Testing Techniques, 2nd ed. Itp - Media, 1990.

[28] D. Ra�, K. Moses, K. Petersen, and M. Mantyla, �Bene�ts and limitations

of automated software testing: Systematic literature review and practitioner

survey,� in 7th International Workshop on Automation of Software Test

(AST), 2012, pp. 36�42.

[29] J. Srivastaval and T. Dwivedi, �Software testing strategy approach on source

code applying conditional coverage method,� International Journal of Soft-

ware Engineering & Applications (IJSEA), vol. 3, no. 3, pp. 25�31, 2015.

[30] S. Shivaprasad and N. Prasad, �Unit testing concurrent Java programs,�

International Journal of Computer Applications, vol. 67, no. 10, pp. 41�46,

April 2013.

[31] J. M. Bruel, J. Araujo, A. Moreira, and A. Royer, �Using aspects to de-

velop built-in tests for components,� in The 4th AOSD Modeling with UML

Workshop, San Francisco, USA, September 2003, pp. 1�8.

https://www.aspectc.org/Download.php
https://www.aspectc.org/Download.php
https://pypi.python.org/pypi/aspectlib/1.4.2
https://pecl.php.net/package/AOP/0.2.2b1

BIBLIOGRAPHY 169

[32] J. Stamey and B. Saunders, �Unit testing and debugging with aspects,� J.

Comput. Sci. Coll., vol. 20, no. 5, pp. 47�55, May 2005. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1059888.1059894

[33] L. Yang, �Using AOP techniques as an alternative test strategy,� in 32nd

Paci�c Northwest Software Quality Conference 2014, Portland, Oregon,

September 2014, pp. 107�116.

[34] J. Pesonen, �Extending software integration testing using aspects in Symbian

OS,� in IEEE Testing: Academic and Industrial Conference - Practice And

Research Techniques, 2006, pp. 147�151.

[35] J. Metsa, M. Katara, and T. Mikkonen, �Testing non-functional requirements

with aspects: An industrial case study,� in Seventh International Conference

on Quality Software (QSIC 2007), October 2007, pp. 5�14.

[36] X. Li and X. Xie, �Research of software testing based on AOP,� in 2009 Third

International Symposium on Intelligent Information Technology Application,

vol. 1, November 2009, pp. 187�189.

[37] J. Metsa, M. Katara, and T. Mikkonen, �Comparing aspects with conven-

tional techniques for increasing testability,� in IEEE International Confer-

ence on Software Testing, Veri�cation, and Validation, New York, 2008, pp.

387�395.

[38] A. Sioud, �Gestion de cycle de vie des objets par aspects pour C++,� Mas-

ter's thesis, UQaC, 2006.

[39] M. Wehrmeister, �An aspect-oriented model-driven engineering approach for

distributed embedded real-time systems,� Master's thesis, Federal University

of Rio Grande do Sul, Brazil, 2009.

[40] J. Pesonen, M. Katara, and T. Mikkonen, �Production-testing of embedded

systems with aspects,� Lecture Notes in Computer Science, vol. 3875, pp.

90�102, 2006.

[41] A. A. A. Ghani and R. M. Parizi, �Aspect-oriented program testing: An

annotated bibliography,� Journal of Software, vol. 8, pp. 1281�1300, 2013.

[42] D. Sokenou and S. Herrmann, �Aspects for testing aspects?� in 1st Workshop

on Testing Aspect-Oriented Programs at AOSD, Chicago, USA, March 14-18

2005, pp. 1�6.

http://dl.acm.org/citation.cfm?id=1059888.1059894

BIBLIOGRAPHY 170

[43] Giladgar, �File:whiteboxtesting1.png,� accessed July 1, 2017, https://

commons.wikimedia.org/wiki/File:WhiteBoxTesting1.png CC BY-SA 3.0

(https://creativecommons.org/licenses/by-sa/3.0), via Wikimedia Com-

mons.

[44] R. M. Jr., K. S. Trivedi, and P. R. M. Maciel, �Using accelerated life tests

to estimate time to software aging failure,� in 2010 IEEE 21st International

Symposium on Software Reliability Engineering, November 2010, pp. 211�

219.

[45] M. Jain and D. Gopalani, �Memory leakage testing using aspects,� in 2015

International Conference on Applied and Theoretical Computing and Com-

munication Technology (iCATccT), 2015, pp. 436�440.

[46] S. D. Stoller, �Testing concurrent java programs using randomized schedul-

ing,� Electronic Notes in Theoretical Computer Science, vol. 70, pp. 142�157,

2002.

[47] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, �Dynamically

discovering likely program invariants to support program evolution,� in IEEE

transactions on software engineering, vol. 27, 2001, pp. 99�123.

[48] M. Jain and D. Gopalani, �Use of aspects for testing software applications,�

in Proc. Int. Conf. Advance Computing Conference (IACC), vol. 1, Banga-

lore, India, 2015, pp. 282�285.

[49] T. Aslam, �Aspectmatlab: An aspect-oriented scienti�c programming lan-

guage,� Master's thesis, School of Computer Science, McGill University,

Montreal, 2010.

[50] C. Sharma and D. Karambir, �Optimization of basis path testing using ge-

netic tabu search algorithm,� International Journal for Innovative Research

in Science & Technology, vol. 1, no. 11, pp. 489�492, 2015.

[51] D. H. Lee, S. Y. Kim, D. S. Choi, and H. G. Oh, �File fuzzing system using

�eld information and fault-injection rule,� Journal of Security Engineering

Research, vol. 5, no. 6, pp. 497�508, 2008.

[52] S. B. Rajakumari and K. Umadevi, �A review on software fault injection

methods and tools,� International Journal of Innovative Research in Com-

puter and Communication Engineering, vol. 03, pp. 1582�1587, 04 2015.

https://commons.wikimedia.org/wiki/File:WhiteBoxTesting1.png
https://commons.wikimedia.org/wiki/File:WhiteBoxTesting1.png

BIBLIOGRAPHY 171

[53] N. Belblidia, M. Debbabi, A. Hanna, and Z. Yang, �AOP extension for

security testing of programs,� in Canadian Conference on Electrical and

Computer Engineering CCECE '06, 2006, pp. 647�650.

[54] P. Baker, Z. R. Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and

C. Williams, Model-Driven Testing: Using the UML Testing Pro�le. Se-

caucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[55] C. Artho and A. Biere, �Advanced unit testing: How to scale up a unit test

framework,� in Proceedings of the 2006 International Workshop on Automa-

tion of Software Test, ser. AST'06, New York, USA, June 2006, pp. 92�98.

[56] N. Kuda, P. Gujjar Panduranga Rao, N. Kavita, and P. Chakka, �A study of

the agile software development methods, applicability and implications in in-

dustry,� International Journal of Software Engineering and its Applications,

vol. 5, pp. 35�46, January 2011.

[57] H. Yu, D. Liu, G. Fan, and L. Chen, �A regression test technique for analyz-

ing the functionalities of service composition,� in Software Engineering and

Knowledge Engineering, 2011, pp. 578�582.

[58] D. Gurpegui, Net-C download, accessed June 1, 2016], https://sourceforge.

net/projects/netc/.

[59] Appwork GmbH, jDownloader download, accessed June 1, 2016, https://

sourceforge.net/projects/jdownloader/.

[60] Deepak PK, JScreenRecorder download, accessed June 1, 2016, https://

sourceforge.net/projects/jscreenrecorder/?source=directory.

[61] D. Gilbert, JFreeChart download, accessed June 1, 2016, https://sourceforge.

net/projects/jfreechart/.

[62] ��, JFreeChart Homepage, accessed July 1, 2017, http://www.jfree.org/

index.html.

[63] M. Mernik, Formal and Practical Aspects of Domain-Speci�c Languages:

Recent Developments. IGI Global, 2012.

[64] P. Hudak, Handbook of Programming Languages. MacMillan, Indianapolis,

1998, vol. 3.

[65] M. Fowler, Domain Speci�c Languages, 1st ed. Addison-Wesley Profes-

sional, 2010.

https://sourceforge.net/projects/netc/
https://sourceforge.net/projects/netc/
https://sourceforge.net/projects/jdownloader/
https://sourceforge.net/projects/jdownloader/
https://sourceforge.net/projects/jscreenrecorder/?source=directory
https://sourceforge.net/projects/jscreenrecorder/?source=directory
https://sourceforge.net/projects/jfreechart/
https://sourceforge.net/projects/jfreechart/
http://www.jfree.org/index.html
http://www.jfree.org/index.html

BIBLIOGRAPHY 172

[66] A. Fletcher, �File:learning curve diagram - steep and shallow, same

functionality.jpg,� accessed July 1, 2017, https://en.wikipedia.org/

wiki/File:Learning_Curve_Diagram_--_Steep_and_Shallow,_Same_

Functionality.jpg.

[67] A. Bertolino, �Software testing research: Achievements, challenges, dreams,�

in Future of Software Engineering, 2007. FOSE '07, May 2007, pp. 85�103.

[68] A. Ahonen, �Unit and integration testing of Java: JVM behavior-driven de-

velopment testing frameworks vs. JUnit,� Master's thesis, Aalto University,

May 2017.

[69] S. Desai and A. Srivastava, Software Testing: A Practical Approach, 2nd ed.

PHI Learning, January 2016.

[70] A. Jain, S. Sharma, S. Sharma, and D. Juneja, �Boundary value analysis for

non-numerical variables: Strings,� Oriental Journal of Computer Science &

Technology, vol. 3, no. 2, pp. 323�330, 2010.

[71] A. Hussain, A. Razak, and E. Mkpojiogu, �The perceived usability of auto-

mated testing tools for mobile applications,� Journal of Engineering Science

and Technology, vol. 12, pp. 89�97, April 2017.

[72] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo, �Under-

standing the test automation culture of app developers,� in 2015 IEEE 8th

International Conference on Software Testing, Veri�cation and Validation

(ICST), April 2015, pp. 1�10.

[73] F. V. C. Ficarra, �Advances in new technologies, interactive interfaces and

communicability,� in Proceedings of the First International Conference on

Advances in New Technologies, Interactive Interfaces, and Communicability,

ser. ADNTIIC'10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 1�7.

[74] S. L. Tsang, S. Clarke, and E. Baniassad, �An evaluation of aspect-oriented

programming for Java-based real-time systems development,� in Seventh

IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing, 2004. Proceedings., May 2004, pp. 291�300.

[75] S. Gruner and J. van Zyl, �Software testing in small IT companies: A (not

only) South African problem,� South African Computer Journal, vol. 47, pp.

7�32, 2011.

https://en.wikipedia.org/wiki/File:Learning_Curve_Diagram_--_Steep_and_Shallow,_Same_Functionality.jpg
https://en.wikipedia.org/wiki/File:Learning_Curve_Diagram_--_Steep_and_Shallow,_Same_Functionality.jpg
https://en.wikipedia.org/wiki/File:Learning_Curve_Diagram_--_Steep_and_Shallow,_Same_Functionality.jpg

BIBLIOGRAPHY 173

[76] M. A. Fecko and C. M. Lott, �Lessons learned from automating tests for

an operations support system,� Softw. Pract. Exper., vol. 32, no. 15, pp.

1485�1506, December 2002.

[77] D. Ho�man, �Cost bene�ts analysis of test automation,� in STARWEST

1999 - Software Testing Conference, 1999, pp. 1�14.

[78] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-

wold, �An overview of AspectJ,� in Proceedings of the 15th European Con-

ference on Object-Oriented Programming, ser. ECOOP '01. London, UK,

UK: Springer-Verlag, 2001, pp. 327�353.

[79] V. Dwarampudi, S. S. Dhillon, J. Shah, N. J. Sebastian, and N. Kanigicharla,

�Comparative study of the pros and cons of programming languages Java,

Scala, C++, Haskell, VB.NET, AspectJ, Perl, Ruby, PHP and Scheme - a

team 11 COMP6411-S10 term report,� CoRR, vol. abs/1008.3431, August

2010.

[80] Z. A. Barmi and A. H. Ebrahimi, �Automated testing of non-functional

requirements based on behavioural scripts,� Master's thesis, University of

Gothenburg, Department of Computer Science and Engineering, December

2011.

[81] M. Fähndrich, M. Carbin, and J. R. Larus, �Re�ective program generation

with patterns,� in Proceedings of the 5th International Conference on Gen-

erative Programming and Component Engineering, ser. GPCE '06. New

York, NY, USA: ACM, 2006, pp. 275�284.

[82] S. Tyagi and P. Tarau, �A most speci�c method �nding algorithm for re�ec-

tion based dynamic Prolog-to-Java interfaces,� in Proceedings of the Third

International Symposium on Practical Aspects of Declarative Languages, ser.

PADL'01, London, UK, 2001, pp. 322�336.

[83] Z. Shams and S. H. Edwards, �Re�ection support: Java re�ection made easy,�

The Open Software Engineering Journal, vol. 7, no. 1, pp. 38�52, 2013.

[84] T. Gendler, Using AspectJ for Accessing Private Members without Re-

�ection, accessed June 1, 2016, http://blogs.vmware.com/vfabric/2012/04/

using-aspectj-for-accessing-private-members-without-re�ection.html.

[85] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao, �The Daikon system for dynamic detection of likely

http://blogs.vmware.com/vfabric/2012/04/using-aspectj-for-accessing-private-members-without-reflection.html
http://blogs.vmware.com/vfabric/2012/04/using-aspectj-for-accessing-private-members-without-reflection.html

BIBLIOGRAPHY 174

invariants,� Sci. Comput. Program., vol. 69, no. 1-3, pp. 35�45, December

2007.

[86] S. Hangal and M. S. Lam, �Tracking down software bugs using automatic

anomaly detection,� in Proceedings of the 24th International Conference on

Software Engineering. ICSE 2002, May 2002, pp. 291�301.

[87] M. Lippert and C. V. Lopes, �A study on exception detection and han-

dling using aspect-oriented programming,� in Software Engineering, 2000.

Proceedings of the 2000 International Conference on, 2000, pp. 418�427.

[88] J. Sedlacek and T. Hurka, VisualVM: Home, accessed July 1, 2017, https:

//visualvm.github.io/.

[89] Oracle, HPROF: A Heap/CPU Pro�ling Tool, accessed July 1, 2017, https:

//docs.oracle.com/javase/8/docs/technotes/samples/hprof.html.

[90] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, �Evaluating the

accuracy of Java pro�lers,� SIGPLAN Not., vol. 45, no. 6, pp. 187�197, Jun.

2010.

[91] Apache Software Foundation, Apache JMeter, accessed July 1, 2017, http:

//jmeter.apache.org/.

[92] Micro Focus, LoadRunner, accessed July 1, 2017, https://software.

microfocus.com/ko-kr/products/loadrunner-load-testing/pricing.

[93] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, �The Java language

speci�cation Java SE 7 edition,� Addison-Wesley, 1997, oracle and/or its

a�liates.

[94] B. K°ena, Z. Letko, Y. Nir-Buchbinder, R. Tzoref-Brill, S. Ur, and T. Vo-

jnar, �Runtime veri�cation,� S. Bensalem and D. A. Peled, Eds. Berlin,

Heidelberg: Springer-Verlag, 2009, ch. A Concurrency Testing Tool and Its

Plug-Ins for Dynamic Analysis and Runtime Healing, pp. 101�114.

[95] S. Ritchie, Pro .NET Best Practices. Berkely, CA, USA: Apress, 2011.

[96] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok, �Refactor-

ing test code,� Amsterdam, The Netherlands, Tech. Rep., 2001,

http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&

id=oai%3Ancstrlh%3Aercim_cwi%3Aercim.cwi%2F%2FSEN-R0119.

https://visualvm.github.io/
https://visualvm.github.io/
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
http://jmeter.apache.org/
http://jmeter.apache.org/
https://software.microfocus.com/ko-kr/products/loadrunner-load-testing/pricing
https://software.microfocus.com/ko-kr/products/loadrunner-load-testing/pricing
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Aercim_cwi%3Aercim.cwi%2F%2FSEN-R0119
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Aercim_cwi%3Aercim.cwi%2F%2FSEN-R0119

BIBLIOGRAPHY 175

[97] L. Williams, G. Kudrjavets, and N. Nagappan, �On the e�ectiveness of unit

test automation at Microsoft,� in 2009 20th International Symposium on

Software Reliability Engineering, November 2009, pp. 81�89.

[98] K. Bareja and A. Singhal, �A review of estimation techniques to reduce test-

ing e�orts in software development,� in 2015 Fifth International Conference

on Advanced Computing Communication Technologies, February 2015, pp.

541�546.

[99] P. G. Frankl and S. N. Weiss, �An experimental comparison of the e�ective-

ness of branch testing and data �ow testing,� IEEE Transactions on Software

Engineering, vol. 19, no. 8, pp. 774�787, August 1993.

[100] M. J. Rutherford, A. Carzaniga, and A. L. Wolf, �Evaluating test suites

and adequacy criteria using simulation-based models of distributed systems,�

IEEE Transactions on Software Engineering, vol. 34, no. 4, pp. 452�470, July

2008.

[101] T. W. Williams, M. R. Mercer, J. P. Mucha, and R. Kapur, �Code coverage,

what does it mean in terms of quality?� in Annual Reliability and Maintain-

ability Symposium. 2001 Proceedings. International Symposium on Product

Quality and Integrity (Cat. No.01CH37179), 2001, pp. 420�424.

[102] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley &

Sons, 2004.

[103] K. Me�ert, N. Rotstan, C. Knowles, and U. B. Sangiorgi, JGAP: Java Ge-

netic Algorithms Package download, accessed March 1, 2017, http://jgap.

sourceforge.net/.

[104] D. R. Kuhn and V. Okun, �Pseudo exhaustive testing for software,� in 30th

Annual IEEE Software Engineering Workshop, 2006, pp. 153�158.

[105] M. Fewster and D. Graham, Software Test Automation. Addison-Wesley,

1999.

[106] A. Bertolino, �Software testing research: Achievements, challenges, dreams,�

in Future of Software Engineering, 2007. FOSE '07, May 2007, pp. 85�103.

[107] M. Jain and D. Gopalani, �Aspect oriented programming and types of soft-

ware testing,� in 2016 Second International Conference on Computational

Intelligence Communication Technology (CICT), February 2016, pp. 64�69.

http://jgap.sourceforge.net/
http://jgap.sourceforge.net/

BIBLIOGRAPHY 176

[108] K. Chen and C. Chien, �Extending the �eld access pointcuts of AspectJ to

arrays,� Journal of Software Engineering Studies, vol. 2, pp. 93�102, January

2007.

[109] B. Harbulot and J. R. Gurd, �A join point for loops in AspectJ,� in Pro-

ceedings of the 5th International Conference on Aspect-oriented Software

Development, ser. AOSD '06. New York, NY, USA: ACM, 2006, pp. 63�74.

Appendix A

Source code for the ChartPanel

class of JFreeChart

Listing A.1: JFreeChart: paintComponent method leaks memory

public void paintComponent(Graphics g) {
super.paintComponent(g);
if (this.chart == null) {

return;
}

Graphics2D g2 = (Graphics2D) g.create();
// �rst determine the size of the chart rendering area ...
Dimension size = getSize();
Insets insets = getInsets() ;
Rectangle2D available = new Rectangle2D.Double(insets.left,

↪→ insets.top,
size .getWidth() − insets. left − insets. right ,
size .getHeight() − insets.top − insets.bottom);

boolean scale = false;
double drawWidth = available.getWidth();
double drawHeight = available.getHeight();
this.scaleX = 1.0;
this.scaleY = 1.0;
if (drawWidth < this.minimumDrawWidth) {

this.scaleX = drawWidth / this.minimumDrawWidth;
drawWidth = this.minimumDrawWidth;
scale = true;

}

177

Appendix A Source code for the ChartPanel class of JFreeChart 178

JFreeChart: paintComponent method leaks memory (contd.)

else if (drawWidth > this.maximumDrawWidth) {
this.scaleX = drawWidth / this.maximumDrawWidth;
drawWidth = this.maximumDrawWidth;
scale = true;

}
if (drawHeight < this.minimumDrawHeight) {

this.scaleY = drawHeight / this.minimumDrawHeight;
drawHeight = this.minimumDrawHeight;
scale = true;

}
else if (drawHeight > this.maximumDrawHeight) {

this.scaleY = drawHeight / this.maximumDrawHeight;
drawHeight = this.maximumDrawHeight;
scale = true;

}
Rectangle2D chartArea = new Rectangle2D.Double(0.0, 0.0,

↪→ drawWidth, drawHeight);
if (this.useBu�er) {

if ((this.chartBu�er == null) || (this.chartBu�erWidth !=
↪→ available.getWidth()) || (this.chartBu�erHeight !=
↪→ available .getHeight())) {

this.chartBu�erWidth = (int) available.getWidth();
this.chartBu�erHeight = (int) available .getHeight();
GraphicsCon�guration gc =

↪→ g2.getDeviceCon�guration();
this.chartBu�er = gc.createCompatibleImage(this.

↪→ chartBu�erWidth, this.chartBu�erHeight,
↪→ Transparency.TRANSLUCENT);

this. refreshBu�er = true;
}
if (this. refreshBu�er) {

this. refreshBu�er = false; // clear the �ag
Rectangle2D bu�erArea = new Rectangle2D.Double(0,

↪→ 0, this.chartBu�erWidth,
↪→ this.chartBu�erHeight);

Graphics2D bu�erG2 = (Graphics2D)
this.chartBu�er.getGraphics();
Composite savedComposite = bu�erG2.getComposite();
bu�erG2.setComposite(AlphaComposite.getInstance(

↪→ AlphaComposite.CLEAR, 0.0f));
Rectangle r = new Rectangle(0, 0,

↪→ this.chartBu�erWidth, this.chartBu�erHeight);

Appendix A Source code for the ChartPanel class of JFreeChart 179

JFreeChart: paintComponent method leaks memory (contd.)

bu�erG2. �ll (r) ;
bu�erG2.setComposite(savedComposite);
if (scale) {

A�neTransform saved =
↪→ bu�erG2.getTransform();

A�neTransform st =
↪→ A�neTransform.getScaleInstance(
↪→ this.scaleX, this.scaleY);

bu�erG2.transform(st);
this.chart.draw(bu�erG2, chartArea,

↪→ this.anchor, this. info) ;
bu�erG2.setTransform(saved);

}
else {

this.chart.draw(bu�erG2, bu�erArea,
↪→ this.anchor, this. info) ;

}
}
g2.drawImage(this.chartBu�er, insets. left , insets .top, this);

}
else {

A�neTransform saved = g2.getTransform();
g2. translate (insets . left , insets .top);
if (scale) {

A�neTransform st =
↪→ A�neTransform.getScaleInstance(this.scaleX,
↪→ this.scaleY);

g2.transform(st);
}
this.chart.draw(g2, chartArea, this.anchor, this. info) ;
g2.setTransform(saved);

}
Iterator iterator = this.overlays. iterator () ;
while (iterator .hasNext()) {

Overlay overlay = (Overlay) iterator .next();
overlay .paintOverlay(g2, this);

}
drawZoomRectangle(g2, !this.useBu�er);
g2.dispose() ;
this.anchor = null;
this.verticalTraceLine = null;
this.horizontalTraceLine = null;

}

Appendix B

Important tokens generated by the

lexical analyser

Table B.1: Important tokens returned by lexer to the yacc parser

Token Relevance

COMMBLOCK A block of 4 continuous �/�, i.e., �////� found

COLON When a colon separating the itemname from

itemdescription is found

TYPE This token indicates the type of testing that

has to be performed by the generated aspect

CLASSNAMETAG When the itemname classname is found

CLASSNAME For the class name provided by the tester to

be used for conducting the test

NAME When the tester has provided the name for

the generated testing aspect through item-

name aspectname

ASPECTNAME For the name that has been provided for the

generated testing aspect

FILEPATHTOK When the itemname �lepath is found

FILEPATHNAME When the �le name provided by tester for the

purpose of conducting the test is found

METHODSIGNATURETAG When the itemname methodsignature is

found

ACCESSSPECIFIER When one of the access speci�ers public, pro-

tected, private are found

180

Appendix B Important tokens generated by the lexical analyser 181

Table B.1 : Important tokens returned by lexer to the yacc parser, continued

Token Relevance

RETURNTYPE For the return type of the method given by

the tester

METHODNAME For the name of the method given by the

tester

METHODARGTYPE For the type of all the arguments of the

method given by the tester

METHODARGNAME For all the arguments' names of the method

given by the tester

TESTARGTOKEN When the itemname argumentname is found

TESTARGNAME For every method argument to be used for

conducting the test

VALUE For values provided by the tester to be used

for testing; for example, for di�erent values

of various method's arguments to be used for

conducting the test

BBTSETUPTOKEN When the itemname setup is found

EXPTOKEN When the itemname expected is found

EXPVALUE For expected values provided by the tester to

be used for matching the test results

ARG For the arguments whose values have to be

kept �xed while testing

VAL For the �xed value to be used for the speci�ed

argument

FUZZTYPETOK When the itemname fuzztype is found

FUZZTYPE For the type of fuzz testing: replace, over-

write, insertafter, insertbefore

FUZZLOCATIONTOK When the itemname fuzzlocation which is

used to indicate the location to be used for

fuzzing is found

FUZZLOCATIONVALUE When the location to be used for fuzzing is

found

FUZZVALUETOK When the itemname fuzzvalue is found

FUZZVALUES For every value provided by the tester to be

used for fuzzing

Appendix B Important tokens generated by the lexical analyser 182

Table B.1 : Important tokens returned by lexer to the yacc parser, continued

Token Relevance

THREADNAME For the name of the thread that has to be

tested for concurrent errors

INSERTNOISETOK When the itemname insertnoise is found

INSNOISEVALUE For before/after condition given by the tester

for noise injection in concurrency testing

PROBTOK When the itemname probabilitypercentage is

found

PROBVALUE For the value of probability (in %age) given

by the tester in concurrency testing

SLEEPTOK When the itemname sleep is found

SLEEPVALUE For the value of sleep (random or �xed inte-

ger) provided by the tester

SHAREDVARNAME For the name of the shared variable to be used

for concurrency testing

INCLASSNAME For the inner class name used in memory

leakage testing

OUTCLASSNAME For the outer class name used in memory

leakage testing

LTSETUPTOKEN When the itemname loadtestinginitialsetup is

found

CLASSLOADNAME For the name of the class provided by the

tester whose dummy objects are to be created

for load testing

NOOFOBJCOUNT For the number of dummy objects that are to

be created for load testing

PARAMETERNAME For every form parameter that has to be

tested in servlet testing

Appendix C

TAGL Grammar

Listing C.1: TAGL Grammar

S : MLTANDNPETDENOTATION

|

MLTCASEIIDENOTATION

|

BBTDENOTATION

|

LTDENOTATION

|

CTDENOTATION

|

FTDENOTATION

|

STDENOTATION

;

MLTANDNPETDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

;

MLTCASEIIDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT

INNERCLASSSTMT METHODSIGSTMT

OUTERCLASSSTMT

;

BBTDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

METHODSIGSTMT TESTARGNAMESTMT VALUESSTMT

|

ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

METHODSIGSTMT TESTARGNAMESTMT VALUESSTMT

EXPVALUESSTMT

|

ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

METHODSIGSTMT BBTSETUPSTMT TESTARGNAMESTMT

VALUESSTMT EXPVALUESSTMT

|

183

Appendix C TAGL Grammar 184

ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

METHODSIGSTMT TESTARGNAMESTMT NOMINALSTMT

VALUESSTMT EXPVALUESSTMT

;

LTDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

METHODSIGSTMT CLASSLOADSTMT NOOFOBJSTMT

|

ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

METHODSIGSTMT CLASSLOADSTMT NOOFOBJSTMT

LTSETUPSTMT

;

CTDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT THREADNAMESTMT

SHAREDVARINSNOISEPROBSTMTS SLEEPSTMT

;

FTDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT CLASSNAMESTMT

METHODSIGSTMT FILENAMESTMT FUZZTYPEANDLOCSTMTS

FUZZVALUESTMT

;

STDENOTATION : ASPECTTYPESTMT ASPECTNAMESTMT

PARAMETERNAMESSTMT VALUESSTMT

;

SHAREDVARINSNOISEPROBSTMTS : SHAREDVARSTMT INSNOISESTMT

| INSNOISESTMT PROBSTMT

;

ASPECTTYPESTMT : COMMBLOCK TYPE COLON ASPECTTYPE

;

ASPECTNAMESTMT : COMMBLOCK NAME COLON ASPECTNAME

;

CLASSNAMESTMT : COMMBLOCK CLASSNAMETAG COLON CLASSNAME

;

INNERCLASSSTMT : COMMBLOCK INCLASSNAMETAG COLON INCLASSNAME

;

OUTERCLASSSTMT : COMMBLOCK OUTCLASSNAMETAG COLON OUTCLASSNAME

;

METHODSIGSTMT : COMMBLOCK METHODSIGNATURETAG COLON

METHODSIGNATURE

;

METHODSIGNATURE : ACCESSSPECIFIER RETURNTYPE METHODNAME METHODARGLISTS

;

METHODARGLISTS :

| METHODARGLISTS METHODARGLIST

;

Appendix C TAGL Grammar 185

METHODARGLIST : METHODARGTYPE METHODARGNAME

;

BBTSETUPSTMT : COMMBLOCK BBTSETUPTOKEN COLON SETUPMETHODS

;

SETUPMETHODS : METHODSIGNATURE

| SETUPMETHODS METHODSIGNATURE

;

TESTARGNAMESTMT : COMMBLOCK TESTARGTOKEN COLON ARGLIST

| COMMBLOCK TESTARGTOKEN COLON FIXVALUEARGLIST

ARGLIST

| COMMBLOCK TESTARGTOKEN COLON ARGLIST

FIXVALUEARGLIST

;

FIXVALUEARGLIST : FIXVALUEARGTEXT

| FIXVALUEARGLIST FIXVALUEARGTEXT

;

FIXVALUEARGTEXT : ARG '=' VAL

;

NOMINALSTMT : COMMBLOCK NOMINALTOKEN COLON NOMINALARGLIST

;

NOMINALARGLIST : NOMINALVALUEARGTEXT

| NOMINALARGLIST NOMINALVALUEARGTEXT

;

NOMINALVALUEARGTEXT : ARG '=' VAL

;

ARGLIST : TESTARGNAME

| ARGLIST TESTARGNAME

;

CLASSLOADSTMT : COMMBLOCK CLASSLOADTOK COLON CLASSLOADNAME

;

NOOFOBJSTMT : COMMBLOCK NOOFOBJTOK COLON NOOFOBJCOUNT

;

LTSETUPSTMT : COMMBLOCK LTSETUPTOKEN COLON JAVASTMTS

;

THREADNAMESTMT : COMMBLOCK THREADNAMETOK COLON THREADNAME

;

SHAREDVARSTMT : COMMBLOCK SHAREDVARTOK COLON SHAREDVARNAME

;

INSNOISESTMT : COMMBLOCK INSERTNOISETOK COLON INSNOISEVALUE

;

Appendix C TAGL Grammar 186

PROBSTMT : COMMBLOCK PROBTOK COLON PROBVALUE

;

SLEEPSTMT : COMMBLOCK SLEEPTOK COLON SLEEPVALUE

;

PARAMETERNAMESSTMT : COMMBLOCK PARAMETERSNAMETOKEN COLON

PARAMETERLIST

;

PARAMETERLIST :

| PARAMETERLIST PARAMETERNAME

;

VALUESSTMT : COMMBLOCK VALUESTOKEN COLON VALUELIST

;

VALUELIST :

| VALUELIST VALUE

;

EXPVALUESSTMT : COMMBLOCK EXPTOKEN COLON EXPVALUELIST

;

EXPVALUELIST :

| EXPVALUELIST EXPVALUE

;

FILENAMESTMT : COMMBLOCK FILEPATHTOK COLON FILEPATHNAME

;

FUZZTYPEANDLOCSTMTS : FUZZLOCATIONSTMT

| FUZZTYPESTMT FUZZLOCATIONSTMT

;

FUZZTYPESTMT : COMMBLOCK FUZZTYPETOK COLON FUZZTYPE

;

FUZZLOCATIONSTMT : COMMBLOCK FUZZLOCATIONTOK COLON

FUZZLOCATIONVALUES

;

FUZZLOCATIONVALUES :

| FUZZLOCATIONVALUES FUZZLOCATIONVALUE

;

FUZZVALUESTMT : COMMBLOCK FUZZVALUETOK COLON FUZZVALUES

;

Brief bio-data

I, Manish Jain, born on 25th-July-1981 received the B.E. degree in Computer Sci-

ence and Engineering from Government Engineering College, Bikaner with hon-

ours. I completed my M.Tech. from Malaviya National Institute of Technology

from the Computer Science and Engineering Department in the year 2012 with 8

CGPA.

After doing a brief service in the IT industry, I joined Baldev RamMirdha Institute

of Technology in the year 2005 as an Assistant Professor and am continuing with

the same organization till date. Working closely with the management at my

current organization, I have taken up all sorts of challenges and responsibilities

including teaching and administrative tasks of varied nature.

I am pro�cient at grasping new technical concepts quickly and utilise the same in

a productive manner. I have got a good knowledge of programming languages like

.Net, C, C++, Java, AspectJ, Ei�el, Lex and Yacc, Latex etc. I have developed

software projects like ERP and Time Management System which are running live

at my current organization. I am skilled to accomplish projects with minimum

resources and meeting stringent deadlines with incredible standards.

This thesis has been written in the ful�lment of the requirements for the degree of

Doctor of Philosophy from the department of Computer Science and Engineering,

MNIT-Jaipur (2013-2018). The list of publications as a part of this research work

are enlisted here under:

� M. Jain and D. Gopalani, �Use of aspects for testing software applications,�

IEEE International Advance Computing Conference (IACC), Bangalore, In-

dia, 2015, pp. 282-285. doi: 10.1109/IADCC.2015.7154714

� M. Jain and D. Gopalani, �Memory leakage testing using aspects,� Inter-

national Conference on Applied and Theoretical Computing and Commu-

nication Technology (iCATccT), Davangere, India, 2015, pp. 436-440. doi:

10.1109/ICATCCT.2015.7456923

� M. Jain and D. Gopalani, �Aspect Oriented Programming and Types of

Software Testing,� Second International Conference on Computational In-

telligence and Communication Technology (CICT), Ghaziabad, India, 2016,

pp. 64-69. doi: 10.1109/CICT.2016.22

187

Appendix C TAGL Grammar 188

� M. Jain and D. Gopalani, �Testing Application Security with Aspects,�

International Conference on Electrical, Electronics, and Optimiza-

tion Techniques (ICEEOT), Chennai, India, 2016, pp. 3161-3165. doi:

10.1109/ICEEOT.2016.7755285

� Accepted: M. Jain and D. Gopalani, �Domain Speci�c Language for

Automatically Generating Testing Aspects,� IEEE International Confer-

ence on Emerging Trends in Computing and Communication Technologies

(ICETCCT), Dehradun, India, 2017.

� M. Jain and D. Gopalani, �Automated Java Testing: JUnit versus AspectJ,�

International Journal of Computer and Systems Engineering: International

Science Index, Volume 11:11, 2017, pp. 1153-1158. dai:10.1999/1307-

6892/100082245

	List of Figures
	List of Tables
	List of Source Codes
	List of Abbreviations
	Introduction
	Software Testing
	Aspect-oriented software development
	Motivation
	Aims and Objectives
	Contributions
	Thesis Structure

	Background and Related Work
	Fundamentals of Aspect Oriented Programming
	Aspect Oriented Languages
	AspectJ
	AspectC++
	AspectMatlab
	Aspect Python
	AOP-PHP

	Importance of Software Testing
	Literature Review
	Conventional Automated Testing
	Testing using AOP Techniques
	Additional Related Work

	Summary

	Proposed Aspect Oriented Approach for Software Testing
	White Box Testing
	Aging Testing
	Concurrency Testing
	Invariant Testing
	Application Programming Interface (API) Testing
	Loop Testing
	Basis Path Testing

	Black Box Testing
	Boundary Value Testing
	All Pairs Testing
	Orthogonal Testing
	Fuzz Testing
	Fault Injection Testing
	Equivalence Partitioning Testing

	Non Functional Testing
	Load Testing
	Security Testing

	Testing at different levels of the software development process
	Unit Testing
	Integration Testing
	Acceptance Testing

	Agile Testing
	Smoke Testing
	Regression Testing
	Summary

	Applying AOP Approach for Testing Open Source Applications
	Testing NetC
	Testing JDownloader
	Testing JScreenRecorder
	Testing JFreeChart
	Summary

	Testing Aspect Generator Language
	Why Domain Specific Language?
	Types of Domain Specific Languages
	Learning curve of testing tools and TAGL
	TAGL Syntax
	TAGL for Creating Black Box Testing Aspects
	TAGL for Creating Memory Leakage Testing Aspect
	TAGL for Concurrency Testing
	TAGL for Creating Null Pointer Exception Checking Aspect
	TAGL for Creating Load Testing Aspect
	TAGL for Creating Servlet Testing Aspect

	Lexical Analyser and Parser
	Summary

	Comparison with Conventional Technologies:Qualitative Analysis
	Resemblance with JUnit: most popular testing tool for Java applications
	Advantages of the proposed AOP and TAGL approach
	Learning Curve
	Modification of source code for testing
	Testing Private Members
	Performing Integration Testing
	Performing Invariant Testing
	Testing for Memory Leaks
	Performing Servlet Testing
	Performing Load Testing
	Testing of Concurrent Applications
	Context Collection for the Purpose of Debugging

	Summary

	Comparison with Conventional Technologies:Quantitative Analysis
	Lines of Testing Code
	Test adequacy criteria and code coverage
	Types of test adequacy criteria
	Comparing code coverage for various test adequacy criteria

	Test Execution Time
	Summary

	Conclusion and Future Work
	Summary and impact of the research
	Limitations and future work

	Appendix
	Source code for the ChartPanel class of JFreeChart
	Important tokens generated by the lexical analyser
	TAGL Grammar
	Brief bio-data

