
Shiny Perspectives of the Pollutant 

Black Carbon Soot

DEPARTMENT OF CHEMISTRY

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR 

February, 2019

 

By

ANUPRIYA SINGH

ID. No. 2013RCY9571

Under the Supervision of

Dr. Sumit Kumar Sonkar

Submitted in

fulfillment of the requirements for the degree of

Doctor of Philosophy



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

©Malaviya National Institute of Technology, Jaipur-2019 
All rights reserved



 

i 

 
MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY 

JAIPUR 
(Institute of National Importance under NITs Act, Established      

by Govt. of India) 
 

DECLARATION 

I Anupriya Singh, declare that this thesis titled, “Shiny Perspectives of the 

Pollutant Black Carbon Soot” and the work presented in it, are my own. I confirm 

that: 

• This work was done wholly or mainly while in candidature for a research 

degree at this university. 

• Where any part of this thesis has previously been submitted for a degree 

or any other qualification at this university or any other institution, this 

has been clearly stated. 

• Where I have consulted the published work of others, this is always 

clearly attributed. 

• Where I have quoted from the work of others, the source is always given. 

With the exception of such quotations, this thesis is entirely my own 

work. 

• I have acknowledged all main sources of help. 

• Where the thesis is based on work done by myself, jointly with others, I 

have made clear exactly what was done by others and what I have 

contributed myself. 

 
 
Date:                                                                                          Anupriya Singh 
                                                                                             ID No. 2013RCY9571 
                                                                                          
  



 

ii 

 
MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY 

JAIPUR 
(Institute of National Importance under NITs Act, Established      

by Govt. of India) 
 

 CERTIFICATE 

This is to certify that the thesis entitled “Shiny Perspectives of the Pollutant Black 

Carbon Soot” being submitted by Ms. Anupriya Singh (2013RCY9571) is a 

bonafide research work carried out under my supervision and guidance in fulfillment 

of the requirement for the award of the degree of Doctor of Philosophy in the 

department of Chemistry, Malaviya National Institute of Technology Jaipur, India. 

The matter embodied in this thesis is original and has not been submitted to any 

other University or Institute for the award of any other degree. 

 
 
Place: Jaipur                                                                 Dr. Sumit Kumar Sonkar 
Date:                                                                                    Assistant Professor 
                                                        Department of Chemistry 

                                                                                   MNIT Jaipur 



 

iii 

ACKNOWLEDGEMENT 

 The research work presented in this thesis would not have been possible 
without the contributions of my close associations who always supported me when I 
needed them the most. I extend my appreciation and heartfelt gratitude to many 
persons who have helped me throughout the research work and assisted me in 
accomplishment of this doctoral thesis.  
 
 First and foremost, I would like to express my special appreciation and 
thanks to my thesis supervisor, Dr. Sumit Kumar Sonkar, Assistant Professor, 
MNIT Jaipur for providing me the opportunity to join as his first Ph.D. student. I am 
extremely grateful for all his contributions in form of time, ideas, knowledge and 
funding to make my Ph.D. experience dynamic and productive.  I am so sincerely 
thankful for his valuable guidance, unflinching encouragement, help and support 
throughout my Ph.D. I am very glad and thankful to him for showing constant 
enthusiasm and positive outlook for research which was contagious and 
motivational for me, even during the tough times and which will definitely guide me 
in future. I like to thank him for encouraging and giving me freedom of thought 
during my research and allowing me to grow as an individual. 
 
 It gives me immense pleasure in acknowledging Prof. Udaykumar R. Yaragatti, 

Director, MNIT Jaipur, for providing necessary laboratory facilities. I am highly 

thankful to Dr. Ragini Gupta, Head of the department, DREC members Dr. Jyoti 

Joshi, Dr. Rajkumar Joshi and Dr. Sumanta Kumar Meher. I express my warm 

thanks to Dr. Biman Bandyopadhyay, Dr. Pradeep Kumar, Dr. Mukesh Jain,  

Dr. Sandeep Chaudhary, Dr. Abbas Raja Naziruddin, and Dr. Sudhir Kashyap. 

 I whole-heartedly acknowledge Dr. Sabyasachi Sarkar and Dr. Kumud Malika 

Tripathi for their suggestions and discussions related to work. I sincerely 

acknowledge Late. Prof. Krishna Dutt Gupta for supporting during the initial years 

of Ph.D. I would like to acknowledge all the lab staff members of the department 

Mr. V. D. Soni, Mr. Vikas Soni, Dr. Deepak Singh, Mr. Dayanand Sharma and 

Mr. Anshuman kholia for laboratory assistance and their cooperation. I like to give 

warm thanks to all the non-technical staff members Mr. Ganesh Narayan Meena, 



 

iv 

Mr. Kamlesh Meena, Mr. Shishupal Meena, Mr. Tejaram Sansi and Mr. Mukesh 

Kumar for their help and cooperation. 

 
 I extend my sincere word of thanks to Dr. Amit Kumar Sonker, and Dr. 
Sankalp Verma for helping in characterization and biological activities at IIT, 
Kanpur. 
 
 I express warm thanks to my research group members who has been a 
source of friendship as well as good advice. Dr. Prateek Khare, Dr. Neetu 
Chauhan, Anshu Bhati, Gunture, Satyesh Raj Anand, Deepika Saini, and Anjali 
Kumari Garg who supported me during my experimental work, for the stimulating 
discussions, working together before deadlines, and for all the fun we have had in 
the last four years. I like to give thanks to my batchmates Mithlesh Kumari, 
Yachana Jain, Ritu Sharma, Munsaf Ali, Mahesh Kumar Paliwal, Avinash 
Srivastava, and Naveen Satrawala. 
 
 I am thankful to MNIT, Jaipur for providing necessary funding as Institute 

Doctoral Fellowship to pursue research work. I would also like to thank Materials 

Research Centre, MNIT Jaipur for providing necessary equipments and research 

facilities and special thanks to technical staff members Mr. Mohtashim Reza,  

Mr. Chetanya Prakash, Mr. Shubham Gautam, Mr. Sourabh Sharma,  

Dr. Bhagwan Sahai Yadav, Dr. Shriniwas Yadav, Mr. Jaiprakash Dixit, Mr. 

Ramesh Chandra Prajapati, and office staff member Mr. Surendra Kumar 

Kumawat. 

 
 My acknowledgment will never be complete without the special mention of 

my parents, Mr. Pratap Singh Rathore and Mrs. Santosh Rathore, my father-in-

law Dr. Puran Singh Rao and mother-in-law Mrs. Madhubala Singh Rao for 

showing love, support, faith in me and giving liberty to choose what I desired in life. 

Their showers of blessings and prayers always motivated me to strive my goal and 

sustained me thus far.  

 
 I would like to express my thanks to my beloved husband Dr. Pranveer 

Singh Rao who has been a source of moral support and care for me during the 



 

v 

research work which always kept me going ahead. I thank him for all the love he has 

showered upon me and being with me in thicks and thins of life. 

 
 I would like to extend my appreciation to my siblings Tejasvani Chauhan, 

and Anshul Singh Rathore, sister-in-law Dr. Priyanga Singh Hada and brothers-in 

law Mr. Rishi Raj Singh Chauhan and Mr. Yudhishthir Singh Hada for their 

affection and encouragement. Special thanks to my loving nieces Yashika and 

Divyanshi for always cheering me up in life with their beautiful smile. 

 
 I acknowledge my grandparents Mr. Ranjit Singh Arun and Late. Mrs. 
Anand Devi, Mr. Shivnath Singh Panwar and Late. Mrs. Shakuntla Panwar and 
uncle Mr. Jitender Singh Panwar and Mr. and Mrs. Praveen Singh Panwar and 
all elders of my family with special thanks to Tarun, Nikhil, Nupur and Chaitanya 
for their affection. 
 
 I thank the Almighty for giving me patience, perseverance and determination 

to work through all these years and indeed, throughout my life. 

 

 

 
Anupriya Singh 





 

 vi   
 

ABSTRACT 
 

This thesis describes a simple, low-cost synthetic methodology of the isolations of 

the non-toxic versions of water soluble graphene nanosheets and carbon nanorods 

from the pollutant dirty-dangerous black carbon and waste soot of castor oil 

respectively. The findings presented in this thesis offer a new methodology 

concerning the environmental application of waste pollutant soot somewhat like 

utilizing a pollutant material for degrading the other pollutant material. Using the 

pollutant black carbon and waste soot of castor oil as a freely available carbon 

source for the isolations of nanocarbons, their ‘wet’ side potentials are described, 

towards the photocatalytic dye degradation and sensing applications. Mainly 

associated with the sunlight-induced photodegradation of the pollutant organic dye 

even without harming the normal growth of bacterial colonies. In continuation, 

water soluble graphene nanosheets are being used for the photodegradation of the 

mixture of dyes followed by the use of the treated wastewater towards the plant 

growth. Additionally, the sensing applications of water soluble graphene nanosheets 

and water soluble carbon nanorods have also been investigated, and the new 

outcomes are presented in the following chapters. 
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1.1 Introduction 

Currently, the scarcity of safe water is the top concern with the rise in global 

population and exploitation of water resources. So, protecting the quality of water is 

crucial for both the human and the ecosystem [1]. Rapid industrialization and 

unplanned urbanization with exploitation of water resources have decreased the 

availability of drinking water and broadly contributed to severe water pollution [2]. 

A number of contaminations including organic dyestuffs, hydrocarbon, organic 

solvent, metal salts, heavy metal ions, anions, oils, and nanoparticles are entering 

into water supplies and likely to further worsen substantially [1, 3]. Importantly, the 

ever-increasing water scarcity is directly associated with a strained global food 

supply [3]. Although our planet is covered with voluminous fresh water bodies, the 

misuse and contaminations of water bodies due to human activities have led to 

unprecedented water scarcity [3]. Constantly increasing concerns related to public 

and environmental health are focused on novel, secure, and sustainable technologies 

to serve people worldwide without any additional environmental stress. Recent 

flurries of activities in technological development of sustainable materials and 

techniques offer hope in mitigating water contamination with enhanced remediation 

efficiency. The overarching goal for water remediation is to detect the presence of 

natural or intentional contaminations to maintain water quality. To achieve these, the 

accurate and real-time monitoring of contaminations are integral for their selective 

and safe removal [4]. Monitoring the quality of water is both crucial, and 

challenging due to highly complex and assorted nature of pollutants at extremely 

low concentration levels [4]. Currently, the real-time and accurate indications of 

water quality impairment are potentially significant for both long-term and short-

term perspective. In this quest, sensing technologies for monitoring the quality of 

water are significantly increased [5]. Sensors exhibit sensitivity, detection accuracy, 

selectivity, and cost effectiveness for practical applications. Conventional sensors 

are designed to detect total chlorine content, free chlorine, pH, temperature, total 

organic carbon (TOC), dissolved oxygen (DO), and particle counts [6]. However, 

challenges associated with accuracy and selectivity often lead to false-negative and 

false-positive analysis [4, 7]. Hence, development of sustainable and long-term 

technologies for monitoring water quality is a current need of time.  
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In this regard, the exploration and adaptation of nanomaterials with 

advantageous properties has been the focus of the research efforts toward detection 

and discrimination of diverse pollutant in water. For this, the nanotechnology offers 

the significant promises in the area of pollutant sensing and its removals by 

exploiting novel synthetic techniques and properties of nanomaterials [8]. Presently, 

the most significant requirements for such technological developments are the cost 

of proposed technology that needs to be very limited. In this respect, low-cost 

organic materials, industrial, and agriculture waste have been considered for the 

synthesis of nanomaterials [9]. Particularly, the nanocarbons from renewable and 

green resources rely on novel nanotechnologies at minimum environmental  

cost and considerable potential for maximum efficiency [10], and being  

explored everywhere [11-18]. Nanocarbons [11-18] with unique mechanical, optical, 

physiochemical, and electronic properties show great prospects in myriad 

applications such as adsorbents, sensors, energy storage, nanofertilizers, electronic 

devices, and bio-imaging [11-18]. Nanocarbons have the considerable potentials to 

be active materials in sensing devices for real-time monitoring at comparatively 

lower cost and high efficiency [7, 19]. Recently, carbon nanomaterials have been 

intensely explored in diverse applications for monitoring the quality of air, water 

and soil [4, 8, 20].  A wide variety of nanocarbons have been used to fabricate high 

performance sensors for the detection of the contaminants in drinking water at very 

low concentration levels [21] based on their unique and tunable optical properties 

for the developments of nanoprobes [7].  Fluorescent nanocarbons such as carbon 

dots (CD) [11], carbon quantum dots (CQD) [13], graphene quantum dots (GQD) 

[22], carbon nano-onions (CNO) [23], carbon nanorods (CNR) [24] and water 

soluble graphene nanosheets (wsGNS) [25] exhibited photoluminescence (PL) 

emissions that usually red-shifted to a longer excitation wavelength. Until now, most 

of the nanocarbons sensors are based on fluorescence sensing mechanism [21]. The 

PL quenching, that is, “turn off” or enhancement assay, that is, “turn on” based 

nanoprobes have been developed to improve detection accuracy and selectivity. PL 

changes due to the interaction with target analytes have been directly measured. The 

PL emissions of nanocarbons can be easily quenched by the addition of an electron 

acceptor or a donor moiety and quickly restored after the removal of said moiety 
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[26]. These unique characteristic PL properties of nanocarbons are highly explored 

for the fabrication of chemosensor to detect pollutant or biological relevant 

molecules [27, 28]. 

 
1.2  Recent Advancements in Sustainable Nanocarbons 

Currently, a variety of top-down and bottom-up approaches have been 

developed for the synthesis of nanocarbons (Figure 1.1) [7, 29]. However, the race is 

to develop the cost effective facile synthetic techniques that should be 

environmental friendly, require less energy and chemical inputs, high yield with no 

harmful by-products [10]. So the researchers have focused on the development of 

green methodologies for the synthesis of nanocarbons stretching from natural 

biomass based synthesis route to the waste material and pollutant soot [27, 30]. The 

cost-quality trade-off is crucial while utilizing raw and waste precursor to avoid 

frequently existing mismatch between industrial applications with their lab-scale 

counterparts. Synthesis of nanocarbons is carried out through various synthetic 

routes, which fall under the criteria of green chemistry principles.  
 

 
Figure 1.1. A schematic illustration for the synthetic routes of nanocarbons [29]. 

 
  From the synthetic view point, thermal carbonization is one of the 

sustainable approaches that is clean and does not require any sophisticated 
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instruments. Thermal carbonization can be done by traditional techniques using 

basic laboratory supports or in a furnace under controlled conditions [28, 31]. The 

drawbacks are the generation of CO2 and further requirement of acid treatment to 

convert hydrophobic nanocarbons into hydrophilic. Microwave-assisted technique 

has created revolutionary developments in recycling wastes, biomass, and 

nanocarbons owing to green and scalable nature. It provides faster synthesis within 

minutes but reaction condition cannot be controlled, which is the major limitation of 

this technique. Hydrothermal synthesis has been preferred as efficient technique for 

such sustainable nanocarbons synthesis owing to simplicity, faster synthesis, and 

versatile chemistry of the method [32].  Low specific energy input and control over 

the morphology and chemical functionalities are the main advantages of this 

technique [33].  Hydrothermal treatment for carbonization generally increases or 

changes solubility and accelerates the physical and chemical interaction between 

reacting components, consequently yielding nanocarbons [33]. 

 
1.3  Nanocarbons Derived from Waste 

With an increase in the environmental awareness, the utilization of waste 

materials gained  a lot of attention [34]. Recent concerns include treatment of waste 

produced and development of sustainable routes to recycle wastes to value-added 

products [35]. Wastes offer valuable raw material for the production of nanocarbons. 

Development of valuable nanocarbons from renewable waste materials is like hitting 

two birds with a single stone, that is, waste management and valuable products. 

Nanocarbons derived from waste materials deserve particular attention from 

scientific community because they are available in large quantity at almost no costs 

[9].  The composition, chemical functionality, and physical attributes of precursor 

materials significantly affected the morphological and chemical behavior of 

resultant nanocarbons. Waste engine oil (WEO) as most abundant waste material 

was used as carbon source for carbon nanotubes (CNT) synthesis in an 

environmentally conscious approach due to highest carbon content among the oils 

[36]. Thermal chemical vapour deposition (CVD)  of WEO at 500 °C and 750 °C in 

the presence of ferrocene catalyst resulted in quasi-aligned CNT with 18.0 nm to 

29.8 nm in diameter. Printed circuit board waste pyrolysis oil was used for second 
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life applications to synthesize CNT [37],  Waste polypropylene (PP) [38], waste 

plastic [39], and polyethylene-based used plastic [40] were also used as precursor to 

synthesize CNT. Researchers have been reported the recycling of waste rubber tires 

into carbonaceous materials as adsorbents or nanocarbons for multifunctional 

applications [41]. Disposal of waste rubber tires is a serious environmental concern 

due to continuously increasing number of automobiles worldwide. However, waste-

tires derived nanocarbons have been reported as efficient material for the detection 

and removal of pollutants from wastewater [41]. Waste polystyrene foam was used 

to synthesize wsCNO with green emissions for cell imaging [34].  

 
Alternatively, in the quest to follow the dictates of sustainable development 

of biocompatible and environmentally benign nanocarbons, bio-resources have 

gradually emerged as safe “green” biomaterials. Nature utilizes carbons along with 

oxygen and hydrogen to provide the basics of life and energy [30]. Direct use of 

crude natural products provide sustainable alternative for carbon source. In this 

context, various bio-mass and other waste such as glucose [42], sucrose [43], hemp 

leaves [44], rice husk [45], wheat straw [46], peanut-shells [47], coconut shells [48], 

soybean shells [49], waste paper pulp [50], soya-nuggets [51], sugarcane waste [52], 

kidney bean [53], egg white [11], and so on are frequently used as green precursor 

for synthesis of nanocarbons [54]. Tripathi et al. reported the synthesis of wsCNO 

via flame pyrolysis of vegetable ghee [28]. Wang et al. have reported a sugar-

blowing approach for the fabrication of 3D-graphene from glucose where graphitic 

membranes are tightly connected and supported by robust graphitic microstruts. This 

3D-graphene display very high power densities to be used as a supercapacitor [42]. 

Ruiz-Hitzky et al. have prepared graphene like nanomaterial from the natural 

sources like sucrose (table sugar) and gelatin protein as carbon precursors in absence 

of oxygen at temperature <800°C. They observed that these graphene like materials 

display good electrical conductivity [43].  In another report, Wang et al. used novel 

precursor as hemp-bast fibres for the synthesis of interconnected partially graphitic 

carbon nanosheets via simple hydrothermal carbonization combined with activation 

and used them as supercapacitors material [44]. Efficient use of rice-husk as 

precursor for graphene synthesis was reported by Muramatsu et al.[45] Similarly, 



Chapter-1 
 

6 

Chen et al. adopted a less expensive method for the synthesis of graphene 

nanosheets (GNS) from wheat straw using combined hydrothermal and 

graphitization approach and used them as anode material for Lithium-ion (Li-ion) 

batteries [46]. Purkait et al. used agricultural waste biomass in form of peanut shell 

using mechanical exfoliation technique fabricated few layer graphene with meso and 

micropores. These few layer graphene derived from peanut shell possess high 

specific surface are (2070 m2 g-1) and high specific capacity (186 F g-1). Further 

used them for the production of solid-state supercapacitor [47]. Sun et al. have used 

renewable biomass coconut shells for the fabrication of highly porous graphene like 

nanosheets and used them as electrode material for high power supercapacitors [48]. 

Similarly, Zhou et al. used soybean shells as carbon and nitrogen precursor for the 

synthesis of nitrogen-doped graphene which show remarkable oxygen reduction 

performance [49]. Silk cocoon membrane was used for the synthesis of nitrogen-

doped graphene that was applied as electrode material for supercapacitor [55, 56]. 

 
 The direct adaption of agricultural or food-waste for nanocarbons synthesis 

is another alternative for precursor material. Exploration of bio-waste for 

nanocarbons synthesis is attractive because these are economic, clean, and easily 

accessible [8, 54]. In a report, disposable paper cups have been used for the 

synthesis of graphene using Fe+2 as catalyst. It has several promising applications 

like anode material for Li-ion batteries and for the preparation of graphene 

supported platinum (Pt) catalyst which displays high catalytic activity for the 

oxygen reduction reaction in fuel cells [57]. Waste from food industry has been long 

considered as most fascinating precursor for the synthesis of a wide variety of 

nanocarbons. Huge amount of bio-mass are discarded as waste from human 

activities and food industries all over the world. In this milieu, upgrading of this 

“end-of-pipe” residual bio-waste to value-added products is important from both 

ecological and economical point of view. Ruan et al. synthesized monolayer high 

quality graphene from six different sources included (cookies, chocolate, roaches, 

grass, plastics, and dog faeces) [58].  
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Figure 1.2. (a) Diagram of the experimental equipment for the growth of graphene 
from insects, food, or waste in a tube furnace. On the left, at the hot zone of a tube 
furnace, quartz boat contained copper (Cu) foil with the carbon source is placed. The 
growth is carried at 1050 °C under low pressure with a H2/Ar gas flow. On the right 
is a cross view that represents the formation of pristine graphene on the backside of 
the Cu substrate; (b) Growth of graphene from a roach leg. (1) One roach leg on top 
of the Cu foil. (2) Roach leg under vacuum. (3) Residue from the roach leg after 
annealing at 1050 °C for 15 min. The pristine graphene grew on the bottom side of 
the Cu film. Transmission electron microscopy (TEM) images of the cookie-derived 
graphene; (c) Suspended graphene film on a 1 μm diameter hole; and (d) the edge of 
monolayer graphene. Raman spectra of monolayer graphene from six different 
carbon sources. The Raman spectra graphene were derived from (e) girl scout 
cookie; (f) grass; (g) plastic (polystyrene petri dish); (h) chocolate; (i) dog feces; and 
(j) roach leg. There was only a trace D peak in some of the spectra, and the 2D to G 
peak intensity ratio were ~4, indicating monolayer graphene [58]. 
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The graphene was directly grown on copper foil at 1050°C in the mixture of 

H2/Ar flow. The experimental setup is shown in Figure 1.2(a) and different growth 

conditions in Figure 1.2(b). Graphene was synthesized only on backside of Cu foil 

and residual particles were deposited on frontside of foil. H2/Ar flow facilitated the 

removal of amorphous and other carbon segments during synthesis. Diffusion of a 

portion of carbon source from slightly bent Cu foil resulted in the deposition of a 

monolayer graphene film on backside of Cu foil. The TEM image of graphene was 

shown in Figure 1.2(c) with monolayer edge in Figure 1.2(d). Raman spectra of 

graphene obtained from all the sources showed intense 2D bands, small or no D 

peaks and high 2D/G ratio, which confirmed the monolayer nature of graphene. 

Raman spectra of graphene derived from six sources are shown in Figure 1.2(e-j).  

 
Park et al. synthesized CD (4 nm in size) from food-waste at large scale 

using ultrasound irradiation at room-temperature [59]. Purkayastha et al. utilized oil 

industry waste as spent rapeseed meal for the synthesis of carbon nanoparticles 

(CNP) having antimicrobial activity [60]. CNR, CNP, and carbon nanodots (CND) 

were synthesized using similar precursor almond husk, discarded as waste. 

Morphology was controlled just by tuning pyrolytic temperature from 750 °C, 850 

°C to 950 °C for CNR, CNP, and CND synthesis, respectively [31]. Pyrolysis of bio-

waste oil palm leaves in inert atmosphere at 500-600 °C led to the synthesis of 

porous CNP using SiO2 template without any catalyst [61].  Similarly, wood-wool 

thrown as waste after its use has been exploited for the synthesis of wsCNO for the 

application as growth promoter in gram plants [35]. Further, these first generation 

seeds were used to check the effect of wsCNO on plant metallic micronutrient 

content and total protein content [18]. The second life use of fullerene waste soot as 

double walled CNT by arc-discharge technique was reported by Qiu et al. [62] Coal 

combustion fly ash was used as carbon source for the synthesis of industrial grade 

multiwalled carbon nanotubes (MWCNT) using fluidized bed CVD technique [63].  

Dubey et al. isolated multipodal junctions (Y, T, and H types) CNT with network 

structure from waste fullerene soot possessing the integrated interesting magnetic 

properties [64].  
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1.4 Nanocarbons for the Sensing of Toxic Metal Ions 

Heavy metal ion contamination is one of the most serious concerns to public 

health because of their highly toxic, carcinogenic nature, and ability to retained by 

the ecological system [65]. These metal ions are released into environment from 

their numerous uses in various industrial activities, technologies and combustion of 

massive quantities of fossil fuels, and coal [66]. Once released into atmosphere, 

heavy metal ions can enter into aquatic environment by various routes. Heavy metal 

ions have a great tendency to form a complex with ligands of biological matter and 

lead to changes in the molecular structure of protein or enzyme inhabitation [66]. 

However, some of the heavy metal ions such as Cu, zinc (Zn), iron (Fe), aluminium 

(Al), and chromium (Cr) (III) are nutritionally essential for healthy life and required 

by some organisms but their higher concentration can lead to toxicity [66]. Heavy 

metal ions like Cr (VI), lead (Pb), nickel (Ni), arsenic (As), cadmium (Cd), silver 

(Ag) and mercury (Hg) are the most common non-biodegradable and toxic 

pollutants in industrial effluents even at trace amounts [65]. 

  
To minimize the water pollution, environmentally sound and practically 

feasible sensors for the detection of heavy metal ions are of great importance to 

prevent the damaging effects at the very beginning stage. Fluorescent nanocarbons 

are promising to replace metal-based nanoparticles and organic dyes. Fluorescent 

nanocarbons such as CD, CNO, and GQD emerged as efficient PL “turn on/turn off” 

sensors for the recognition of heavy metal ions due to their versatile nature, tunable 

chemical/ optical properties, low cytotoxicity, chemical inertness, and photo-

stability [67]. Previous reports showed that the quenching of PL is mainly attributed 

to the charge, electron, or energy transfer between nanocarbons and metal ions via 

selective interactions owing to functional groups and surface traps [67]. The inner 

filter effect is another reason to contribute in PL quenching and enhance selectivity 

by absorbers overlap [67]. The selectivity is strongly affected by the surface 

functionalities, edge structure, size, and morphology of nanocarbons. Therefore, 

precise control of binding sites and energetics of PL emissions are crucial to develop 

nanocarbons-based versatile sensors for the detection of heavy metal contaminants 

in aqueous system. Tan et al. synthesized CD using sago industrial waste via 

thermal pyrolysis at different carbonization temperature for the sensing of heavy 
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metal ions. Most of the tested metal ions exhibited quenching effect toward PL 

intensity [68]. 

 
Hg is one of the most toxic and ubiquitous pollutant and its contamination in 

water is reported to cause deoxyribose nucleic acid (DNA) damage, permanent 

damage of central nervous system, mitosis impairment, and mental retardation due 

to higher reactivity toward sulfhydryl and oxygenous functional groups [69]. 

Subsequent biotransformation of Hg vapor to more toxic water-soluble Hg(II) are 

resulting into their environmental accumulation through the food chain [67]. Lu et 

al. described a highly sensitive (0.23 nM detection limit) CNP based sensors for the 

selective detection of Hg(II) [70]. CNP were synthesized from pomelo peel waste 

via hydrothermal treatment to detect Hg(II) in lake water for showing practical 

applicability [70]. Likewise, Tripathi et al. reported the specific detection of Al(III) 

using water soluble carbon nano-onions (wsCNO) with 0.77 μM detection limit. 

CNO were synthesized by a simple technique using wick pyrolysis of flaxseed oil. 

PL emission of wsCNO was reported to gradually decrease with increasing Al(III) 

concentration due to the formation of wsCNO-Al(III) complex [71]. Al(III) 

specifically interact with surface carboxylic groups of wsCNO due to hard acid-hard 

base interactions resulted in PL quenching as shown in Figure 1.3. 

 
Figure 1.3.  Schematic representation of the sensing of Al (III) with wsCNO-based 

fluorescent probe [71]. 

 
Cr is considered as a severe contaminant for natural water brought about by 

human activities, and various industrial revolutions such as leather-tanning, metal 

manufacturing, electroplating, textile dyeing, mining, and wood preserving [72]. Cr 
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in their higher oxidation state as Cr(VI) is highly toxic and exhibits mutagenic and 

carcinogenic properties even at low abundance. Higher toxicity of Cr(VI) is due to 

its smaller size, higher oxidation potential, greater tissue penetration ability, and 

formation of reactive oxygen species (ROS) [73]. Therefore, the concentration of 

Cr(VI) is strictly monitored and regulated in drinking water [72].  

 
1.5 Nanocarbons for the Sensing of Organic Pollutants 

The contamination of water by organic pollutants such as crude oil, petro-

leum products, hydrocarbons, dyes, aromatic compounds, chlorinated, and other 

toxic solvents has become a serious concern due to their toxic nature and resistant to 

biodegradation [74]. Various human activities further induce these hydrocarbons to 

enter into water systems and consequently water pollution [74]. Phenol being an 

important chemical is highly used in industries and agriculture [75]. On the other 

side, phenolic compounds are considerably toxic contaminants in both ground and 

surface water having adverse impacts on aquatic life and plants [76]. In human 

consumption of trace amount of phenol can cause coma, nausea, vomiting, paralysis, 

greenish or smoky colored urine, and death if consume in large amount [76]. 

Increasing environmental awareness and regulations attract the attention of 

researcher to monitor and control its contamination in water. High solubility and 

colorless nature of phenol in water made it monitoring bit difficult. Mohanty et al. 

proposed a simple technique for the removal of phenol from water using nuts of 

Terminalia arjuna, an agricultural waste, derived activated carbons [76]. Sun et al. 

used GQD in presence of horseradish peroxidase (HRP) and hydrogen peroxide 

(H2O2) for the trace analysis of phenol in water by resonance light scattering 

technique [75]. In a comprehensive study, Li et al. reported the detection of highly 

chlorinated organic compound pentachlorophenol (PCP) with CQD [77]. ECL of 

CQD attributed to interaction between CQD and S2O8
2− that was quenched by the 

PCP addition above pH = 7. The schematic illustration of PCP is shown in Figure 

1.4. Quenching of PL was attributed to the consumption of excited electron of CQD 

by PCP [77].  
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Figure 1.4. Schematic diagram showing the electrogenerated chemiluminiscence 

(ECL) detection of PCP with CQD in S2O8
2− solution [77]. 

 
1.6  Nanocarbons for the Photocatalytic Degradation of Organic Dyes 

Recently, graphene and graphene-based nanocomposites are presently being 

in used to eliminate the contaminants in water and showed its significant potentials 

as a photocatalyst nanomaterial [78-81]. The aqueous phase photocatalysis is very 

attractive and presently in high demand, since it provides a clean, mild and cost-

effective method for water purification. The major emphasis for partial or complete 

aqueous-phase photodegradation of organic dyes were resulted into nontoxic 

hydrocarbons of low molecular weight [82-84]. So far, several researchers have 

reported the utilizations of graphene/graphene-based nanocomposites as a successful 

adsorbent material or photocatalyst material by modifying the graphene. Such as, 

Under visible light irradiation, WO3-graphene nanocomposite were used for the 

photocatalytic degradation of methylene blue (MB) [85]. Zhao et al. reported ~96% 

photocatalytic degradation of MB by 3D Hemin functionalized graphene hydrogel 

[86]. Similarly, for the decolourization of MB and RhB, GO/chitosan(CS)/Ag 

nanoparticles were used as shown in Figure 1.5. (a-b) [84]  Wei et al. reported the 

effective removal of organic solvents, MB and oil by Ni-doped graphene/carbon 

cryogels [87]. Similarly, Shen et al. fabricated SnO2-reduced graphene oxide (RGO) 

core shell structures for the photodegradation of methyl orange under UV light 

irradiation [88]. For the degradation of pollutant dye like MB, Shanmugam et al. 

synthesized graphene-V2O5 nanocomposites under different light conditions [89].  
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Most of the researchers were focused on the photodegradation of single dye, 

whereas waste water containing mixture of dyes has been paid a very little 

consideration [90-93]. The above said materials generally need expensive chemicals 

and multistep synthesis process [93-95]. Therefore, to synthesize an effective 

photocatalyst which must be cost-effective, and facile, is still a demanding need.  

 

 
Figure 1.5. Photocatalytic degradation activity of RGO-Chitosan-Ag nanoparticles 

on the removal of (a) MB; (b) RhB [84]. 

 
Apart from all these conventional and non-conventional synthetic route of 

nanocarbons, is it possible that we do not have to synthesize nanocarbons, we just 

need to isolate them ? 

 
SECTION A 

 
1.7  Nanocarbons Derived from Black Carbon (BC) Soot 

It can be a sustainable approach if we could utilize the nanocarbons derived 

from the pollutant BC soot. This present work seeks to offer an overview of the 

technical facets of “sustainable nanocarbons,” and assess their benefits as potential 

material for monitoring and degradation of various contaminants and pollutants in 

water. Various novel aspects including modifications, and applications of nano-

carbons as sensor with special emphasis on sustainability are described. The 

sustainability credits of nanocarbons as an alternative probe for facile and efficient 

detection of analytes and the photocatalytic degradation of pollutants are discussed 

here with some significant examples. 
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 Globally, generated carbon emission-based soot known as BC [96-98] is 

assumed as potential environmental pollutant produced by incomplete combustion 

of fossil fuels and biomass and considerable contributors of the greenhouse effect 

[27]. It has warming impact on climate 460-1500 times stronger than carbon 

dioxide. The quantity of BC should be decreased to provide a clean environment. 

Carbon emission soot is composed of hydrophobic carbons, which raise the potential 

health and environmental concerns [99]. BC emission increases continuously and its 

disposal in an environment friendly manner is a matter of serious global distress. 

Alternatively, this BC could be used as freely available carbon precursor for 

isolation/synthesis of nanocarbons. Their potential use as carbon source is useful in 

various aspects, since it could reduce the environment pollution especially from 

urban areas and revalorize as a material for technological applications. Effective use 

of pollutant soot as renewable precursor follows the dictates of economically 

feasible and sustainable process. For this, Tripathi et al. used the soot from diesel 

engine exhaust and utilized this for the isolations of CD and its water soluble version 

as water soluble carbon dots wsCD by oxidation with nitric acid. These wsCD was 

used as fluorescent probe for cholesterol sensing and imaging of Escherichia coli (E. 

coli) cells [27]. Sonkar et al. investigated the ferromagnetic behavior of MWCNT 

generated by anthropogenic indoor activities and trapped in spider web. Recently, 

few groups have described the presence of graphitic nanoparticles in the pollutant 

waste soot of diesel [27, 100-102] and petrol engines [103], along with the forecasts 

of their application [27, 100]. Such as, Uchida et al. fabricated typical single walled 

carbon nanotubes (SWCNT) from diesel soot using a laser vaporization technique 

[101]. Wang et al. reported the isolation of fluorescent wsCNP [100] for the 

selective sensing of Mn(II). With respect to these findings, there is just a need to use 

these “freely available carbon precursors” [27, 100-103] for the isolation of 

nanocarbons from pollutant soot.  

 
 The thesis describes the environmental assessment of the BC pollutant soot 

derived wsGNS as a selective sensor for Cr (VI) ions, imaging of human cervical 

cancer line (HeLa) cells. And as a nontoxic photocatalytic material for 

degradation/selective degradation of the organic dyes and the mixture of dyes under 

the influence of natural sunlight, further the treated wastewater has been used for 

environmental assessment. 
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SECTION B 

1.8 Carbon Nanorods (CNR) 

Apart from the globally generated BC, some other types of nanocarbons can 

also being isolated from the waste soot such as CNR. CNR belong to a unique class 

of one-dimensional carbon nanostructures with straight, aligned and graphitic 

morphology that was discovered very late in 2000 after the discovery of CNT [104] 

by S. Iijima in the year 1991. These novel CNR were first observed by Liu et al. in 

2000 formed as a by-product during the purification of CNT fabricated by arc-

discharge process using TEM [105]. They found that cavity of nanotubes can be 

filled with carbon atoms and showed well distributed CNR of diameter 45 nm and 

length 15-50 nm where graphitic layers are preferentially arranged parallel to the 

long axis of nanorods. Chen et al. in 2001, have used electron-beam induced route 

for the formation of CNR in situ under high-resolution scanning electron 

microscopy (HRSEM) [106]. They have observed that when CVD deposited CNT-

sample was irradiated with an electron beam under HRSEM, etching and further 

expansion of nanotubes (particularly near the tips) occur which resulted in the 

formation of additional nanorods. Structural analysis by TEM observation reveals 

that typical nanorod was amorphous with diameter of 20 nm [106]. A unique carbon 

material in form of CNR were first synthesized in 2003 by Chang et al. by reacting 

hexachlorobenzene with Li at 523 K in a pyrex tube sealed under vacuum [107]. 

They observed rod like morphology with SEM and TEM images with dimensions 

0.1-0.5 µm width and 3-15 µm length (Figure 1.6 a-b). 

 

 
Figure 1.6. (a) SEM and (b) TEM images of CNR synthesized by C6Cl6 and Li [8]. 
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1.8.1 Synthesis of CNR  

Typical conventional synthetic procedures for the production of CNR are 

CVD [108-111], arc discharge methods [112], solvothermal synthesis [113, 114], 

catalytic copyrolysis [115], electrodeposition [116], and soft and hard template 

assisted synthesis [117-120]. Li et al. adopted a facile soft-template method for 

synthesis of CNR [117]. They used phenolic resol as carbon precursor and tri-block 

copolymer Pluronic F127 as template and used these as a promising electrode 

material for supercapacitors [117]. Although CNT due to their unique carbon 

framework structure have high electrical conductivity but possess less surface area 

which limit their use in energy storage devices [118]. Porous tubular carbon 

nanomaterial in form of CNR with high surface area and excellent electrochemical 

properties were synthesized in large scale via template mediated process by Yu et al. 

and used it as active electrode material in supercapacitors. Typical synthesis 

comprises of the preparation of rod-like nickel-hydrazine complexes in a reverse 

micelle, further sequential coating of nanorods with a layer of phenolic resin and 

then silica, further carbonization was done at a high temperature in an inert 

atmosphere which yield tubular CNR after sequential etching in NaOH and HCl 

solutions [118]. Orikasa et al. synthesized nanorods using anodic aluminium oxide 

film as template and further used them in electrochemical applications [120]. CNR 

were produced in high yield ~90% by pyrolysis using C6H6 (10 mL) and C5H6 (5 

mL) together with co-catalyst Fe and Mg and heated in autoclave at 600°C for 12h 

by Zou et al. Dimensions of CNR were found to be  200-350 nm in diameter and 

length in range 0.8-6 µm [115].   

  
Wang et al. synthesized CNR via plasma enhanced hot filament CVD system 

with gold as catalyst [109]. They found that CNR were formed when CH4 + N2 + H2 

plasma is present. The formation of CNR is primarily a precipitation process. The 

use of plasma results in the production of different hydrocarbon (CH3
+, CH2

+), 

nitrogenous (NH3
+ and NH2

+) and hydrogen ions. These hydrocarbon ions react with 

hydrogen ions on the surface of gold nanoparticles resulted in rapid delivery of 

carbon on the surface. When the gold nanoparticles become saturated, carbon 

precipitates from the nanoparticle at the interface of particle and silicon substrate 
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leading to formation of rod like morphology [109]. In another report Thien-Nga et 

al. have grown nanorods on BYSCO (Bi2Sr2YCu2O8) substrate via CVD process 

using 80 mL min-1 of N2 and 10 mL min-1 of acetylene [111]. They observed that 

upto 5 min substrate appeared to be disorganized, after 5 min nanorods started to 

appear and after 30 min of acetylene decomposition substrate was densely covered 

with nanorods of range 10-40 nm [111]. In another report, Li et al. synthesized 

nanosized CNR by arc discharge of composite electrode made from fullerene soot 

and iron particles with size range of 30-50 nm [112].  

 
Zhu et al. reported facile synthesis of ferricoxyhroxide (FeOOH) rod like 

nanoparticles via one-pot glucose-mediated hydrothermal method. They found that 

glucose aid in formation of FeOOH nanorods along with deposition of glucose 

derived carbon rich polysaccharide overlayer on FeOOH nanorods. Further these 

GCP coated FeOOH nanorods on carbonization results in formation of carbon 

coated magnetite nanocomposite (Fe3O4@C) which possess good cycling 

performance for lithium storage used as anode material in lithium ion batteries 

[114]. Wang et al. used solvothermal method a novel route for the synthesis of CNR 

by using C2Cl4 and potassium as reducing agent at low temperature of 200°C [113]. 

Further the freshly reduced free C2 in form of one dimension carbon chain clusters 

can assemble into nanorods in presence of Ag as catalyst. The diameter and length 

of nanorod was found to be 70 nm and 1000 nm respectively [113]. Highly 

nitrogenated CNR were fabricated by Wan et al. from an acetonitrile solution of 

dicyandimide by electrochemical method [116]. However, all these above 

mentioned synthesis methods require complex methodologies, high temperature 

synthetic conditions, metallic particles, expensive chemicals and are not cost-

efficient which restrict their economic viability. Therefore, it could be a promising 

approach if there is development of some economically viable and metal catalyst 

free or template free synthesis of CNR.  

 
1.8.2  Applications of CNR 

Among all the nano forms of carbon, like MWCNT/SWCNT [104, 121], 

fullerenes [122, 123], CNR [105, 106], CNO [23, 28, 34, 124, 125], carbon 

nanofibres (CNF) [126],  graphene [127, 128],  GQD [22, 129], CD [13, 14, 51, 130] 
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CND [131, 132], CNR are the least explored nanocarbon due to lack of simple and 

reproducible method of synthesis. As their synthesis require sophisticated 

instruments, multistep production techniques, and expensive chemicals. 

Morphologically CNR are more straight, aligned graphitic inter-planar structures 

than CNT, exhibits remarkable electrical, thermal and mechanical properties thus 

used in various potential applications such as energy storage devices [117, 118], 

field emission devices [133], Li-ion batteries [114], composite materials [134], 

electrochemical applications [118, 120, 135, 136], catalyst [137, 138], water-

oxidation/splitting [139,140], supercapacitors [141,142]. For example, Yuan et al. 

observed the electrochemical performance of nitrogen doped CNR (N-CNR) as 

ultrasensitive electrochemical sensor for dopamine (DA) as shown in Figure 1.7 

[143]. Figure 1.7 (a) shows the cyclic voltammetry (CV) performance of phosphate 

buffer saline (PBS), ascorbic acid (AA) and DA on bare glassy carbon electrode 

(GCE) where there is broad oxidation peak for AA with absence of reduction peak. 

DA displays couple of asymmetrical redox peaks while there is no faradic current in 

case of PBS. Figure 1.7 (b) shows Nafion/GCE, CV performance results which were 

same as bare GCE. Figure 1.7 (c) exhibits the role of N-CNR showing well-defined 

redox peaks of DA with enhanced anodic peak current compared to bare GCE.  This 

reveals that N-CNR-Nafion/GCE increased the selectivity of DA and AA with 

enhanced sensitivity for DA [143]. 

 
Figure 1.7. CV performance of (a) bare GCE; (b) Nafion/GCE; and (c) N-CNR- 

Nafion/GCE in 0.1 M PBS, 0.5 mM AA + 0.1 M PBS and 0.5 mM DA + 0.1 M PBS 

solutions, respectively [143]. 

 
Herein this thesis, CNR were being synthesized in the quantitative yield just 

by simple pyrolysing the castor oil without using of any metal catalyst or template. 

The water-soluble version of graphitic hollow CNR showed excitation-dependent 
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multicoloured PL emission from the green to red region of the visible spectrum and 

extending to the near infra-red (NIR) region. The application of wsCNR describes 

into two sections first relates to the light-induced photochemical degradation of MB. 

The second relates to the PL behaviour, used to produce a fluorescent turn-off/turn-

on sensor for the specific, sensitive and rapid detection of DNA. 

 
1.9 Scope of the Work 

Since the discovery of graphene and CNR, various synthetic approaches 

relevant to produce graphene and CNR have been reported. The present thesis 

describes a straightforward, cost-effective approach towards the isolations of the 

water-soluble version of graphene and CNR from the BC and the waste soot of 

castor oil respectively as a freely available carbon precursor. The potential ‘wet’ side 

applications of the wsGNS and wsCNR, towards the photocatalytic dye degradation 

applications, have been examined and the results are discussed. Especially the 

sunlight-induced selective photodegradation of the dye without harming the 

ecological balance and the photodegradation of the different dyes and its mixture 

followed by the significant usage of the wastewater towards the plant growth. The 

method is being described for the environmental appeal of pollutant soot somewhat 

like utilizing a pollutant material for degrading the other pollutant material. 

Additionally, the sensing applications of wsGNS and wsCNR have also been 

explored, and the new outcomes are presented in the following chapters. 
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2.1 Introduction 

Globally generated black particulate matter, known as BC, is recognized as a 

major air pollutant. Alternatively, this BC holds significant potential to be used as a 

free carbon precursor for the synthesis of valuable nanocarbons [1-3]. Considerable 

efforts and evidence of the role of air pollution caused by BC and its adverse 

impacts on the radiation budget of Earth have been documented [4]. To prevent its 

negative impacts, the quantity of BC should be decreased alternatively by its 

utilization in value-added products. To provide a clean environment along with 

some economic benefits, waste management of BC and identifying its second-life 

uses can be a possible approach to the synthesis of well-developed nanocarbons [5-

7]. Recently, a few groups reported the presence of graphitic nanoparticles in the 

pollutant waste soot of diesel [5, 6, 8, 9] and petrol engines [7], along with the 

prospects of its application [5, 6, 9]. For example, Uchida et al. synthesized SWCNT 

from diesel soot using a laser vaporization technique [9]. Tripathi et al. used diesel 

soot for the practical isolation of multiemissive wsCD [5]  for multicolored imaging 

of E.coli and sensing cholesterol. Wang et al. reported the synthesis of fluorescent 

wsCNP [6] for the selective sensing of Mn(II). Remarkably, Tripathi et al. [5] and 

Wang et al. [6] did not synthesize any nanocarbons. In contrast, they synthesized 

only the soluble version of nanocarbons that was routinely manufactured during the 

burning process inside the engine chambers and discharged globally into the 

atmosphere as BC [6, 9, 10]. On the basis of these findings, we need to use these 

“freely available carbon precursors” [5-9] for the isolation of nanocarbons from 

pollutant soot. A few reports about the structural or nanostructural characterization 

of pollutant soot are also available [7, 11, 12]. The burning process in a diesel 

engine is very much similar to the burning of conventional hydrocarbon flames, 

whereas petrol engines typically need a “spark” for the ignition of fuel, which is 

premixed with atmospheric air [7]. Therefore, differences in morphologies of 

synthesized nanocarbons are expected [5, 6, 8]. Like diesel soot particulates, petrol 

soot particulates also cause environmental pollution [10, 13], but in comparison to 

diesel particulates, petrol soot particulates are a bit less harmful when they interact 

with the proteins of the cell membranes [10] but still cause several cardiopulmonary 

diseases [14]. 



Chapter-2 
 

37 

The findings presented in this paper are associated with the isolation of GNS 

from the petrol soot to provide some commercial and environmental benefits. GNS 

are imperative and constitute a new two-dimensional (2D) macromolecule [15] that 

has unique and novel intrinsic properties [16]. The intrinsic atomic characteristics of 

GNS such as edges, stacking order, lateral size, defects [17-19], and quantum 

confinement effects [20] make them suitable candidates for various potential 

optoelectronic and biological applications such as batteries, solar cell supercapacitors 

[21], chemical sensors [22, 23], biological sensors [24], nanocomposites [25, 26], 

hydrogen storage systems [16], electromechanical resonators [27],  and quantum 

electrical devices [28]. With regard to their synthesis, both top-down and bottom-up 

techniques such as CVD [29], reduction of  GO [30], epitaxial growth on silicon 

carbide [31], exfoliation of graphite crystals [32], and, recently, microwave-assisted 

synthesis [33] have been exclusively developed. All existing approaches typically 

required multistep fabrication protocols, expensive instruments, high temperatures, 

toxic chemical processing steps, and sophisticated processing techniques. Other 

important issue restricting their long-term use are their aggregation [34] that can be 

overcome via surface modification and/or functionalization [35].  In contrast to GO, 

graphene did not show any PL properties unless their optical band gap can be 

different from zero. Either by cutting its forms into ribbons [36] or dots [37] or by 

destroying the integral π system via some chemical or physical modification [38], 

we used a simple oxidative treatment for implanting the high degree of surface 

functionalization that imparts aqueous stability along with tunable PL properties. 

Fluorescence-based sensing is in great demand at present, because of its operational 

simplicity, fast response, high sensitivity, effectiveness, and real-time monitoring 

potential [39, 40]. Tunable PL properties with red to NIR emissions and high 

quantum yields are highly desirable for the exploitation in further applications in 

bioimaging. Emissions in the NIR region make an advantageous “biological 

window” over the blue-green region of the visible spectrum because of the absence 

of autofluorescence, deep-tissue penetration ability, and negligible damage to 

healthy tissues [41]. 

 



Pollutant Soot derived Water Soluble Graphene Nanosheets for Sensing …….. 
 

38 

The specific objective of this  chapter is simple and economical one-step 

large-scale isolation and synthesis of water soluble graphene nanosheets (wsGNS) 

by a simple oxidative treatment of dirty dangerous pollutant petrol soot. Our specific 

approach is simply to isolate the nanosized crystalline graphene nanosheets (GNS) 

and synthesize its water-soluble version. Tunable photoluminescence properties of 

wsGNS was used as a fluorescence-based sensor for the selective sensing of 

carcinogenic Cr(VI) and imaging of HeLa cells. 

 
Sensing of Cr(VI) is very important for both the environment and human 

health [42]. Deviation of Cr(VI) concentrations from normal levels increases the risk 

of maturity-onset diabetes, cardiovascular diseases, autoimmune diseases, and 

genotoxicity [43-45]. Ingestion of Cr(VI) increases the risk for stomach and 

respiratory cancer and tumors in the alimentary tract [45].  In addition, Cr(VI) is also 

responsible for mutations and chromosomal breaks that result in DNA damage, in 

particular Cr-DNA adducts [45]. Traditionally used detection techniques such as 

inductively coupled plasma mass spectrometry [46], electrochemical detection [47], 

and atomic absorption/emission spectroscopy [48] required expensive instruments, 

complicated and tedious sample preparation procedures, and large amounts of time. 

Identifying a simple, selective, and highly sensitive sensor for Cr(VI) detection in 

aqueous media at low concentrations remains a challenge. A few reports of the 

detection of Cr(III) by using nanocarbons as a fluorescent probe are available [49], 

and there is a need to explore processes for more toxic Cr(VI) ions. Among all 

nanocarbons, graphene/GNS could show promise as a fluorescence-based sensor 

because of their excellent fluorescence resonance energy transfer (FRET) capability 

[50]. To the best of our knowledge, there has been no report on the use of wsGNS as 

a fluorescence probe in an aqueous medium for the sensitive and selective detection 

of carcinogenic Cr(VI). 

 
2.2  Experimental Section 

2.2.1  Materials and Reagents 

Petrol engine soot was collected from the exhaust gas pipes of the engines of 

local automobile of Jaipur, India. Acetonitrile was procured from Merck, India, 

nitric acid (HNO3), pet ether and acetone from Rankem, India. Phosphate buffer 



Chapter-2 
 

39 

saline (PBS), paraformaldehyde, fetal bovine serum, glutamine, Dulbecco’s 

Modified Eagle’s Medium (DMEM), potassium dichromate (K2Cr2O7), ferrous 

nitrate, cadmium nitrate, cobalt nitrate, lead nitrate, copper nitrate, manganese 

nitrate, nickel nirate, zinc nitrate, barium chloride, sodium arsenate from S. D. fine 

Chemicals, India. All chemicals and solvents were of analytical grade and used as 

obtained. All experiments and measurements were conducted in water purified 

through a Millipore system. All anion samples were metal nitrate salts except 

barium chloride, sodium arsenate, and potassium dichromate and prepared in 

aqueous solutions. The Cr(VI) solution was prepared from K2Cr2O7, and other metal 

ions were prepared from their respective salts. HeLa cells were procured from 

Biological Sciences and Bioengineering Lab, IIT Kanpur, India. 

 
2.2.2  Instrumentation 

The morphology of the synthesized GNS was analyzed with a Tecnai G2 20 

(FEI) HRTEM operating at 200 kV. Samples were prepared by drying the droplet of 

an aqueous solution of wsGNS on a 400 mesh carbon-coated copper grid under a 

100 W table lamp. FESEM in high-vacuum mode on a SUPRA 40VP FESEM (Carl 

Zeiss NTS GmbH, Oberkochen, Germany) microscope operated at an accelerating 

voltage of 10kV. The topology and thickness of wsGNS were analyzed by using a 

Pico SPM (Molecular Imaging) atomic force microscope. Room-temperature Raman 

spectra were recorded by using a WITEC model Raman spectrometer with an Ar+ 

laser at an excitation wavelength of 532 nm. Thermogravimetric analysis (TGA) 

measurements were recorded on a Mettler thermal analyzer under an inert 

atmosphere at a heating rate of 10°C min-1. Infrared spectra were recorded on a 

Bruker fourier transform infra-red (FT-IR) spectrometer (Vector, model 22) with 

pressed KBr pellets. Ultraviolet-visible (UV-Vis) and PL spectrometry analyses in 

aqueous solutions were conducted at room temperature with PerkinElmer Lamda 35 

and PerkinElmer LS55 instruments, respectively. XPS was conducted in an omicron 

multiprobe system. The optical images of wsGNS and HeLa cells were acquired 

with a Leica inverted microscope (Leica DM 2500, Leica microscopy system Ltd.) 

under 488 nm and 532 nm band-pass filter. Powdered X-ray diffraction (p-XRD) 

spectra of Soxhlet-purified soot and wsGNS were recorded at room temperature (Cu 
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Kα radiation, scan rate of 3° min-1) and recorded on a Bruker D8 Advance Series 2 

powder X-ray diffractometer. Zeta potential (ζ) measurements were carried out on a 

Beckman Coulter Delsa Nano in aqueous medium. 

 
2.2.3  Synthesis of wsGNS 

Soxhlet-purified petrol soot was used as a free carbon precursor material to 

produce wsGNS. Soxhlet purification was conducted as reported previously [5] by 

stepwise purification from boiling solvents (acetonitrile, pet ether, and acetone 

sequentially) to remove unburnt organic impurities. To transform insoluble Soxhlet-

purified pollutant soot into wsGNS, we adopted the primary oxidative approach 

using concentrated nitric acid. In a typical synthetic procedure [5], Soxhlet-purified 

petrol soot (∼2 g) was refluxed in concentrated nitric acid (100 mL) for 10 h, 

followed by a high-speed centrifugation of the resultant solution to remove the acid 

residues. The centrifugate was transferred for repeated evaporation on the water bath 

after the addition of a small amount of water (approximately seven or eight times) 

for the removal of traces of the nitric acid residue. The final residue was dried to 

obtain wsGNS in almost quantitative yield (∼81%) based on the carbon used for the 

oxidative treatment. 

 
2.2.4  Detection of Hexavalent Chromium Ions 

Cr(VI) detection was performed in an aqueous solution at room temperature 

under ambient conditions. In a typical run for the detection of metal ion, 10 μL (1 × 

10-2 M) solutions of different metal ions were added to a 2 mL aqueous solution of 

wsGNS (4 × 10-5 g mL-1). The fluorescence intensity was measured at an excitation 

wavelength (λex) of 460 nm. The fluorescence intensity was recorded immediately 

after the addition of metal ions. The exciting slit and emission slit both were kept at 

15 nm during all measurements. The sensitivity and selectivity for Cr(VI) were 

analyzed in triplicate. 

 
2.2.5  Cell Imaging 

HeLa cells were grown according to previously reported protocols [51, 52]. 

In brief, HeLa cells were seeded in a culture flask (25 cm2) in a humidified incubator 

containing 5% CO2 at 37 °C. HeLa cells were supplemented with 10% (v/v) fetal 
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bovine serum and 4 × 10-3 M L-1 glutamine in DMEM. Fresh medium containing 

wsGNS at a concentration of 0.25 mg mL-1 was added to the flask and the mixture 

incubated for 2 h [51]. Then, the cells were washed with PBS solution and fixed 

with 4 wt% paraformaldehyde followed by repeated PBS washing. Cell imaging was 

performed with a Leica inverted microscope under 488 nm and 532 nm band-pass 

filters. 

 
2.3.  Results and Discussion 

Being carbon, petrol soot (a part of BC) possesses almost the same 

composition as other forms of nanocarbons. The basic principle is the same, high-

temperature pyrolytic carbonization, where petrol is acting as a source of carbon. 

Premixing of atmospheric air before burning the fuel (at a high temperature within a 

short period of time) leads to the fabrication of GNS. Oxidative treatment of 

Soxhlet-purified soot was performed under refluxing conditions for ∼10 h [5] to 

achieve aqueous solubility via the introduction of negative surface functionalities in 

the form of hydrophilic carboxylic and hydroxyl type groups [53, 54]. Moreover, the 

polar negative group immobilized on the surface and edge of wsGNS through stable 

covalent interactions causes the reduction of the level of π-π stacking between 

individual wsGNS due to electrostatic repulsion and leads to the aqueous stability of 

GNS without showing agglomeration. No sign of precipitation or coagulation 

appeared even after one year. Zeta potential measurements for the analysis of the 

surface charge that show a negative value of approximately -30 mV are known to be 

sufficient for the mutual repulsion between wsGNS to ensure their aqueous   

stability [34]. 

 
2.3.1  Absorbance, FT-IR, Raman, XPS, TGA and XRD Analysis 

The aqueous solution of wsGNS displays absorption at 254 nm with a 

continuous decrease up to 1000 nm, which is attributed to π conjugation within the 

graphene sheet as described in the legend of Figure 2.1(a) [34]. The aqueous 

solution of wsGNS appears grayish yellow in color (inset of Figure 2.1(b), left) in 

daylight and displays a fluorescent green color under UV light illumination (Figure 

2.1(b), right). In contrast to those produced by the previously reported methods [33], 

our wsGNS have aqueous stability for a longer period of time without using any 
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surfactants or stabilizers. In addition, the derivatization of wsGNS in terms of the 

degree of structural disorder (negative surface functionalities) in graphitic carbon 

domains, clustering of the sp2 phases, and the number of graphene layers and edge 

structure was further elaborated via Raman, FT-IR, XPS, and HRTEM  

analysis [30, 55]. 

 

 
Figure 2.1. (a) Absorption spectrum of an aqueous solution of wsGNS; (b) Digital 
photograph showing the emission of wsGNS irradiated under daylight (left) and UV 
light excitation (right), after solubilization for three weeks; (c) Raman; and (d) FT-
IR spectra of Soxhlet-purified petrol soot (solid line) and wsGNS (dash line). 
 

Raman spectra of Soxhlet-purified soot (solid line) and its water-soluble 

version (dash line) are illustrated in Figure 2.1(c). The solid line in Figure 2.1(c) 

reveals the presence of two prominent characteristic peaks for graphene-based 

materials. G bands arise due to zone center E2g mode of sp2-hybridized carbon 

(∼1587 cm-1), and the D band is usually termed the disorder band and results from 

the breathing mode of κ point photons of A1g symmetry for sp3-hybridized carbon 

(∼1336 cm-1). After oxidative treatment [56], D and G bands were exaggerated and 

were a bit narrower in comparison to those of Soxhlet-purified soot (Figure 2.1(c), 

dashed line). Also, the peak intensities of the D band to those of the G band revert, 
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indicating the increase in the density of defects during the oxidation process. 

wsGNS exhibit an R value (the ratio of the integrated intensity of the D band to the 

integrated intensity of the G band) of 1.44, higher in comparison to that of Soxhlet-

purified soot (1.31), revealing the increase in the number of sp3 carbons in terms of 

surface defects as a result of oxidation-induced defects. wsGNS show the emergence 

of a sharp and intense 2D band at ∼2678 cm-1 with an intensity that significantly 

increases after oxidative treatment, confirming the efficient removal of amorphous 

type carbons and cleaning of the 2D wsGNS with high crsytallinity. Moreover, the 

presence of a sharp and intense 2D band at ∼2678 cm-1 strongly supports the growth 

of high-crsytallinity 2D graphene domains. The 2D bands represent an excitation 

energy-dependent, double-resonance-activated second-order two-photon process and 

are characteristic of graphitic sp2 materials [57, 58]. The shape, peak position, and 

relative intensity of the 2D band are sensitive probes for the development of 

structural and electronic characteristics of graphene-based nanomaterials such as the 

number of layers, interlayer stacking, and the number of defects. The intensity of the 

2D band strongly depends upon the perturbation of the electronic and photonic 

structure of graphene. Four successive transitions (excitation of the electron-hole 

pair, scattering and backscattering of the excited electron by two phonons, and 

electron-hole pair recombination) as a combination lead to the generation of the 2D 

band. With the addition of an additional layer to graphene, the number of double-

resonance scattering processes increases, due to π electron interaction under 

interlayer stacking, and eventually the line shape becomes wider [57, 58]. The I2D/IG 

ratio and full width at half-maximum were ∼1.4 and ∼87, respectively. This 

indicated that wsGNS consisted of few layers (more than two but lesser than ten) 

[58-60]. These results are further confirmed by high-magnification HRTEM and 

AFM analysis studies described in section 2.3.2. 

 
FT-IR results are in accordance with Raman data that support the high-

density surface functionalization evidenced in comparisons to Soxhlet purified 

petrol soot (insoluble GNS). Figure 2.1(d) (solid line) is the FT-IR spectrum of the 

Soxhlet purified petrol soot that have the characteristic peaks of insoluble graphitic 

carbon, −C-H (doublet), −C=C, and −C-C at 2921 cm-1 and 2853 cm-1, 1632 cm-1, 

and 1051 cm-1, respectively. Comparing to that of Soxhlet purified petrol soot, the 
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FT-IR spectrum of wsGNS (dashed line in Figure 2.1(d)) shows a broad absorption 

band at 3435 cm-1 attributed to the presence of −O-H stretching vibrations. A sharp 

absorption peak at 1712 cm-1 for -C=O stretching and a sharp peak at 1604 cm-1 

indicated the presence of –C=C stretching; peaks at 1206 cm-1 and 1166 cm-1 are 

responsible for the −C-O and −C-C stretching vibrations, respectively. XPS analysis 

was used for the further investigation of these negative surface functionalities. 

 
Figure 2.2 describes the XPS survey scan of the Soxhlet-purified petrol soot 

and wsGNS that support the FT-IR and Raman data. Panels (a-c) of Figure 2.2 

represent the full survey scan of soxhlet purified petrol soot and its corresponding 

short scan for the presence of the C1s peak at ∼284.3 eV and the O1s peak at ∼531.7 

eV. After deconvulation, a short scan survey of carbon shows the presence of C=C 

(284.2 eV) and a small amount of C-O (285.2 eV), and the O1s short scan illustrates 

the C-O peak (532.2 eV). Similarly, panels (d-f) of Figure 2.2 interpret the survey 

scan of wsGNS, and the corresponding short scan of wsGNS confirms the presence 

of the C1s peak at ∼284.4 eV and the O1s peak at ∼532.7 eV, in the form of negative 

surface functionalities of wsGNS. As determined by deconvulation of the C1s short 

scan, XPS data can easily differentiate among the different modes of carbon binding 

with oxygen in three distinct ways as C=C- (284 eV), −C-O- (284.8 eV), and -C=O 

(288.4 eV). Likewise, for O1s peak, the deconvulated short scan shows the binding 

of oxygen with carbon as −C-O- (531.6 eV), −C=O (532.8 eV), and COO- (533.7 

eV) [61]. The changes in the thermal stability and composition of Soxhlet-purified 

soot and its water-soluble version were investigated via TGA [62].  
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Figure 2.2. (a) XPS full scan of Soxhlet-purified petrol soot and its corresponding; 
(b) C1s short scan; and (c) O1s short scan; (d) XPS full scan of wsGNS and its 
corresponding; (e) C1s short scan; and (f) O1s short scan. 

 
The thermal decomposition curves for both Soxhlet-purified soot (solid line) 

and wsGNS (dash line) are displayed in Figure 2.3(a). The mass loss of Soxhlet-
purified soot (∼32.5 wt %) was smaller than that of wsGNS (∼45.6 wt %) under a 
nitrogen atmosphere at 1400°C. The incorporation of a thermally labile oxygen 
functional group into wsGNS reduces their thermal stability as would be expected 
from acid oxidation [61]. The TGA curve clearly demonstrates the thermal stability 
of wsGNS; even at 1400 °C, it lost only ∼45.6% of its total weight. As per our 
understanding, the graphene materials are conducting in nature [62]. A thin film 
(∼10 μm) of wsGNS was prepared on a petri dish (plastic) by the evaporation of an 
aqueous solution of wsGNS and dried overnight at 80°C. 

 

 
Figure 2.3. (a) TGA of Soxhlet-purified petrol soot (solid) and wsGNS (dash line); 
(b) Powder XRD of Soxhlet-purified petrol soot (blue) and wsGNS (black). 
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 The electrical conductivity of the wsGNS film with a meaning height of 10 

μm (1 cm2) was analyzed by measuring the electrical resistivity at room temperature 

with a Keithley model 6517A multimeter by a two-probe method [59]. The electrical 

conductivity (σ) was calculated by the following equation 

σ = 1/ρ 

where ρ is the volume resistivity. 

 
The conductivity of the wsGNS film was as high as 200 S/m without any 

further surface modification or doping and implies the presence of a highly 

conjugated network of sp2 carbons even after the incorporation of negative surface 

groups. 

 
The XRD pattern (Figure 2.3(b)) of wsGNS exhibits a slightly broad, high-

intensity diffraction peak at 2θ = 25° corresponding to the (002) diffraction plane of 

the hexagonal lattice of sp2 domains of few-layer graphene sheets with an interlayer 

spacing of 0.36 nm, which is larger than that of pristine graphite because of the 

intercalation of oxide functional groups and depicts the high degree of oxidation that 

took place and these additional small peaks at 2θ = 44°, 51°, and 74.5° that are 

ascribed to (100), (004), and (110) diffractions, respectively, of the hexagonal phase 

[63]. The diffraction peaks at 2θ = 25° and 51° were identified as characteristics of 

the parallel graphene layers demonstrating the crystalline nature of the compound 

and/or graphene sheets due to efficient removal of amorphous type carbon and 

formation of wsGNS with high crsytallinity, and peaks at 2θ = 44° and 74.5° 

correspond to the 2D in-plane symmetry along the graphene sheets [63]. 

 
2.3.2  Microscopic Studies 

Morphological characterization and structural characterization of wsGNS 

were conducted by TEM and HRTEM. Low-resolution TEM images as shown in 

panels (a and b) of Figure 2.4 confirmed the presence of wsGNS with many folds 

and corrugations. These corrugations have an advantage with regard to the 

increasing surface area to volume ratio [62]. The HRTEM image shown in Figure 

2.4(c) revealed the interlayer crystalline nature of wsGNS and edge showing 

approximately four-layer graphene sheets with the single atom electron diffraction 
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(SAED) pattern (inset). The HRTEM image depicted in Figure 2.4(c) also shows 

surface defects of wsGNS (marked with black arrows) and its interlayer d spacing, 

which is found to be 0.36 nm as indicated by white lines [64,65]. 

 
Panels (d-f) of Figure 2.4 show the high-magnification atomic force 

microscopy (AFM) images of wsGNS on a silicon substrate with its corresponding 

line profile image (green line in a black box) illustrating that the Z-axis depth 

(marked by a black bracket in Figure 2.4(e)) is ∼1.5 nm, which corresponds to the 

presence of approximately four layers of graphene in wsGNS. FESEM image of 

wsGNS Figure 2.5(a) and the lateral size distribution statistics of wsGNS were 

evaluated via FESEM as shown in Figure 2.5(b) 

  

 
Figure 2.4. (a and b) Low-magnification TEM images of wsGNS showing the clear 
edges; (c) HRTEM image showing the number of graphitic sheets in wsGNS by 
focusing on its edge. Surface defects are denoted with black arrows, and white 
marks denote the interlayer distance of 0.36 nm (white arrows) along with the SAED 
pattern that displays its crystalline nature; (d and e) High-magnification AFM 
images; (f) Line profile AFM image of wsGNS (inset in a black box) illustrating the 
presence of approximately four layers in wsGNS. 
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Figure 2.5. (a) FESEM image of wsGNS; (b) Lateral size distribution histogram of 

wsGNS. 

 
2.3.3  Photoluminescence Emission-Excitation Study 

Oxidative treatment imparts the fabricated “self-passivated” wsGNS with 

tunable PL properties without using any external passivation agent, such as 

polymers or quantum dots. In addition, the introduced solubility and long-term 

stability in an aqueous medium prevent irreversible agglomeration, as well [66]. 

Tunable PL properties were studied in detail with different excitation (λex) 

wavelengths ranging from 400 nm to 660 nm within an increment of 20 nm toward 

the right. The series of PL emissions with a change in excitation lines are illustrated 

in Figure 2.6(a). In contrast to previously published reports, wsGNS exhibit tunable 

PL emissions (λem) emitted over a broad range of the visible region (green/red) to 

the NIR (Figure 2.6(b)), which is a characteristic generic feature of nanoparticles 

possessing a carbogenic core [15]. wsGNS show two PL excitation bands, 391 nm 

(3.17 eV) and 476 nm (2.64 eV), as shown in Figure 2.6(c), confirming the presence 

of multiple types of emitting centers located over the wsGNS. Significantly, the 

aqueous solution of wsGNS exhibits a high photostability as illustrated in Figure 

2.6(d) the photobleaching experiment was performed for 5 h under continuous 460 

nm irradiation (λex). The PL properties and appearance of wsGNS remain unaffected 

without any distinct decrease in fluorescence intensity even after one year upon 

being stored at room temperature in a closed vessel. 

 
Harsh oxidation generated the surface energy traps of different energy levels 

because the degree of oxidation is expected to be different on the basis of the 
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graphite arrangements of lattices and differential hybridized configurations of 

carbon. With respect to the excitation, these energy traps became emissive when 

they are excited with different wavelengths. Fluorescence microphotographs of an 

aqueous solution of wsGNS on the glass slide (after evaporation) under λex of 488 

nm and 532 nm excitations are shown in panels (e and f) of Figure 2.6, respectively. 

The most plausible mechanism for the tuning of the PL emissions with changing 

excitations (λex) can be ascribed on the basis of a general photophysical mechanism 

based upon recombination of the electron hole [67] in association with emissive 

surface energy traps with properties very much similar to the PL properties of 

soluble carbon dots [68]. The electronic coupling between six-membered ring arrays 

having an oxygenous functional group and the nearby atoms of the wsGNS was 

responsible for the fluorescence. The tunable emissions can be ascribed on the basis 

of the variation of the conjugated length of the six-membered ring array, which 

resulted in different types of energy gaps from a ground state to an excited state. 

However, the exact mechanism of fluorescence emission of graphene is still a matter 

of discussion and needs thorough prospective investigations. 
 

 
 

Figure 2.6. PL properties of wsGNS. (a) PL spectra recorded for λex values from 400 
to 660 nm in 20 nm continuous increments; (b) An enlarged PL spectrum in the NIR 
region from 600 to 660 nm; (c) PL excitation spectra at 630 nm emission; (d) PL 
spectrum of wsGNS at a λex of 460 nm for 5 h; Fluorescence images of wsGNS at (e) 
a λex of 488 nm; and (f) a λex of 532 nm after evaporation of an aqueous solution on 
a glass slide. 
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 Pramanik et al. suggested the local reorganization of the photoexcited state, 

intramolecular transfer of protons from hydroxyl to carboxylate anions, can be 

possible from two different hydroxyl moieties over the surface [69]. Few groups 

suggested the contribution of surface-functionalized groups and surface defects 

(oxidized sp3) to the fluorescence of GNS. As a consequence, the PL properties were 

mainly attributed to the sp3 domain in sp2 matrices that are formed because of the 

large number of carbon atoms bonded with oxygen-containing functional groups 

exacting the large number of disorder-induced localized states. In carbon materials 

containing a mixture of sp2 and sp3 bonding, the transition between π and π* states 

of the sp2 sites, which lie within the σ-σ* gap, is mainly responsible for PL as π 

bonding is weaker and has a lower formation energy [67,69-71]. 

 
2.3.4  Sensing of Cr(VI) Ions 

 The PL properties of wsGNS were further explored to determine if they 

could be a fluorescent probe of the selective and efficient sensing of Cr(VI). The 

fluorescence intensity of wsGNS at 460 nm excitation decreases gradually by the 

stepwise addition of Cr(VI) and was almost quenched to its maximum, the “turn off” 

(Figure 2.7(a)), upon addition of 100 μL of a K2Cr2O7 [Cr(VI)] solution without 

altering the emission wavelength. Figure 2.7(b) describes the effect of fluorescence 

quenching of a wsGNS solution with different concentrations of Cr(VI), and Figure 

2.7(c) shows the curve of fluorescence quenching. It also demonstrates the PL data 

versus the concentration of Cr(VI) ions in a linear correlation (R2 = 0.99) over the 

concentration range of 0-20 mM. The detection limit based on a 3δ/slope was found 

to be as low as 0.51 μM in comparison with the previously reported values as shown 

in Table 2.1 [40, 72-77]. 

 
The selectivity of Cr(VI) ions for fluorescence quenching in comparison with 

those of other metal ions was evaluated. The assay response of the different metal 

ions (Na+, Ba2+, Mn2+, Cd2+, Fe2+, Fe3+, As3+, Ni2+, Pb2+, Co2+, Cu2+, and Zn2+) at the 

same concentration (1 × 10-2 M) under the same experimental conditions that were 

used for wsGNS was tested individually. Remarkably, no apparent changes in 

fluorescence intensity were observed with most of the metal ions; only a minor 

decrease in fluorescence intensity was observed with Ba2+ and Pb2+. Figure 2.7(d) 

clearly demonstrates the selectivity of Cr(VI) ions. It quenches the fluorescence 



Chapter-2 
 

51 

emissions more sensitively that other metal ions do. With regard to the selectivity 

and PL quenching by transition metal ions, diverse investigations have been 

performed. Cr(VI) can promote the recombination of the electron-hole pair on the 

surface of wsGNS in a nonradiative way. Because Cr(VI) ions have low-lying d-d 

transition states and low redox potentials due to their paramagnetic nature, Cr(VI) 

ions hence efficiently quench PL emission [78-80]. Selectivity can be explained on 

the basis of the higher thermodynamic affinity of Cr(VI), and surface functional 

groups also make some contribution. 

 

 
Figure 2.7. (a) Fluorescence spectra of wsGNS before (black) and after (blue) 
addition of Cr(VI) ions (100 μL, 1 × 10-2 M); The right inset shows the fluorescence 
image of wsGNS before addition of Cr(VI) ions, and the left inset shows the 
fluorescence image of wsGNS after the addition of Cr(VI) ions; (b) Fluorescence 
emission responses of wsGNS with increasing concentrations of Cr(VI); (c) Curve 
of the fluorescence quenching values (Io/I) versus Cr(VI) concentration; (d) 
Histogram showing the changes in fluorescence emission of wsGNS at 460 nm upon 
addition of different heavy metal ions. 
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Table 2.1.  Performance comparison between various fluorescence sensors towards 

Cr (VI). 

Methods Response 
Time 

Detection Limit Ref. 

Rhodamine derivatives NA 0.14 ppb [40] 
P(NIPAM-co-RhBUA)-nanogel NA 2.2 x 10-7 M [72] 
Rhodamine derivatives 5 min 1.6 x 10-8 mol L-1 [73] 
DTNBA-Au nanoparticles 30 min 93.6 ppb [74] 
GSH-CdTe quantum dots 30 min 8 x 10-3 μg mL-1 [75] 
tris(1,10-phenanthroline)Ru(II) 10 min 66 x 10-3 μM [76] 
Rhodamine B hydrazide 10 min 5.5 x 10-9 mol L-1 [77] 
wsGNS Immediate 0.51 μM Present 

study 
 
2.3.5  Fluorescence Imaging of HeLa Cells 

 After the successful evaluation of sensing properties of wsGNS for Cr(VI), 
luminescence properties were further explored for fluorescence cell labeling. 
wsGNS were mixed with cell culture medium, and after being incubated for 2 h, 
cells were washed with PBS and imaged under a fluorescence microscope. Figure 
2.8 illustrates the fluorescence microscopic images of HeLa cells after incubation 
with wsGNS. Strong green fluorescence and red fluorescence were observed from 
wsGNS-labeled HeLa cells at excitation wavelengths of 488 nm and 532 nm, 
respectively ((panels a and b) of Figure 2.8, respectively). The wsGNS with NIR 
emitting properties may be used in the future as efficient imaging probes. 
 

 
Figure 2.8. Fluorescence microscopic images of HeLa cells with (a) 488 and (b) 532 

nm band-pass filters.  
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2.4  Conclusion 

 The environmental feasibility and utility of pollutant petrol soot for the 
fabrication of tunable photoluminescent wsGNS were investigated to decrease the 
level of environmental pollution. The simple oxidation of Soxhlet-purified petrol 
soot (carbon) provides a convenient method for the large-scale synthesis of few-
layer wsGNS with tunable PL emissions covering the green and red regions with a 
slight extension in the NIR region of the spectrum. A high degree of passivation via 
negative surface functionalities imparts the aqueous solubility with excellent 
stability for long-term imaging purposes. The PL properties of the waste-derived 
wsGNS were further explored to determine the fitness of wsGNS as fluorescence 
nanoprobes for the selective and sensitive detection of Cr(VI) in an aqueous solution 
with a detection limit of 0.51 μM and for the imaging of HeLa cells. A fluorescence-
based sensor can be effectively used to detect the quality of the microenvironment in 
water bodies. 
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3.1  Introduction 

The globally generated black particulate matter BC soot has, at present, 

shown dramatic negative impacts on human and environmental health. These 

include cancer [1], dysfunctions of heart and lungs [2], and mental retardation that 

are consequently responsible for the loss of millions of lives every year as well as 

significantly contributing toward global warming [3]. Similarly, like BC for air 

pollution, the contamination of water bodies arising from the discharge of water-

soluble organic dyes [4] from various textiles and printing industries has also 

become a crucial environmental issue due to the fast growth in industrialization [5]. 

The considerable sources of nonaesthetic pollutants in water are potentially 

damaging the aquatic biota and life [6]. In reaction to the overall concern related to 

water pollution [7], different techniques (adsorption, advanced oxidation process, 

flocculation, ultrafiltration, coagulation by chemical agents, etc.) have been 

employed in the past [8], for the remediation of soluble toxic dyes [9].  From all the 

techniques, photocatalysis is very attractive and currently in high demand, since it 

provides a clean and cost-effective method for water purification. Additionally, 

visible light driven photocatalysis employs renewable and abundant energy to 

promote dye degradation under mild conditions. It can be a sustainable approach if 

we could utilize the nanocarbons derived from the pollutant BC [10-15] for the 

photocatalytic removal of organic dyes from wastewater via a single step that 

resolves two contaminant issues at the same time. The idea is very simple and purely 

based on the age-old practice of using carbon for water filtration because of its high 

adsorption efficiency [16]. The scientific insights about the conversion of pollutant 

soots into nanocarbons could open a new sustainable and potential window to 

mitigate climate change to some extent. Few groups have already been reported [11-

15] the isolation (via the simplest processes from the bulk) of nanocarbons of 

different shapes from BC as CD, SWCNT, and GNS for their multiple applications 

in the field of bioimaging [11, 15], sensing of heavy metal ions [13], and sensing 

biomolecules [11]. Composition-wise (graphitic/ amorphous structures) nanocarbons 

isolated from BC [11-15]  and from other black charred carbonaceous materials [17-

22] are similar to the nanocarbons fabricated from sophisticated instruments [23-27].  
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 From all the allotropic forms of nanocarbons, graphene is the most 

innovative two-dimensional carbon nanomaterials, owing to its higher surface 

activities [28] and remarkable biocompatibility [29, 30]. Recently, fresh scientific 

insights about graphene and graphene-based nanocomposites to eliminate the 

contaminants in water showed its significant potentials as a photocatalyst 

nanomaterial [31-47]. So far, several groups have reported the utilizations of 

graphene/graphene-based nanocomposites as a successful adsorbent material or 

photocatalyst by modifying the graphene via the step of chemical surface 

functionalization [38]. As such, hydrothermally synthesized 3D Hemin functionalized 

graphene hydrogel (Hem/GH) was explored for the almost complete (∼96%) 

photocatalytic degradation of MB under sunlight [31]. Gan et al. synthesized WO3-

graphene nanocomposite (WO3/G) for the highest degradation efficiency of MB 

under the visible light [32]. Ai et al. reported the GNS based GNS-magnetite 

(Fe3O4) composites for the removal of MB from aqueous solution [33]. Self-

assembled composites based on GO/chitosan (CS)/silver nanoparticles were used for 

the removal of MB and rhodamine (RhB) dye [34]. Hou et al. reported the synthesis 

of P25 (TiO2)-graphene hydrogels for the decomposition of MB [35]. Wei et al. 

used Ni-doped graphene/carbon cryogels for efficient removal of oil, organic 

solvents, and MB [36]. Shanmugam et al. fabricated graphene-V2O5 nanocomposites 

for the degradation of MB under UV, visible light, and direct sunlight [37]. 

However, most of the above-stated reports utilize GNS and metal-based GNS 

nanocomposites for dye degradations. Metal-based nanocomposites [48, 49] are a bit 

better option for photocatalysis applications owing to their efficiencies. But great 

concern has been expressed regarding their negative impacts in biological systems. 

Additionally, these materials generally require a sophisticated synthesis process and 

use of expensive chemicals. Hence, it is still a challenging task to develop a low-

cost, facile, and effective photocatalyst for the degradation of organic dyes. 

 
 For this, what could be the possibilities if graphene need not be synthesized 

at all, and would be free from the all processing issues related to metallic 

contaminations? GNS were isolated from the waste (petrol soot) and were used with 

surface modifications (as surface defects in the form of high degree 
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functionalizations) for dye degradation applications with the expectation that 

wsGNS can perform the same or bit better result than the reported studies on 

graphene and other graphitic materials [17,25,27,50-53]. To the best of our 

knowledge MB degradation in ∼90 min (with soluble wsGNS only) is 

comparatively better than many other earlier reports, using metal-based GNS 

nanocomposites [31-37,41,43,44,46]. 

 
3.2 Experimental Section 

3.2.1  Materials and Reagents 

Petrol engine soot was collected from Jaipur motors, Jaipur, India, a local 

automobile workshop from the exhaust pipe of opened engine. MB and Deuterium 

oxide (D2O) was purchased from Sigma-Aldrich, US. The chemicals, like HNO3, 

HCl, acetone, methanol and iso-propyl alcohol (i-PA) from Rankem, India, used in 

the experiments were of analytical grade and used as such without any modification. 

All the experiments were performed using deionized (DI) water. 

 
3.2.2  Instrumentation 

Structural analysis was done through TEM and HRTEM images were 

acquired with a Tecnai G2 20 high-resolution TEM operating at a voltage of 200 kV. 

Samples for TEM were prepared by casting droplets of an aqueous solution of 

wsGNS onto a 400 mesh carbon-coated copper grid, followed by drying under 100 

W tungsten bulb for 12 h. XPS measurements was recorded in ESCA+ Omicron 

Nanotechnology Oxford instrument. Raman spectra were obtained with a WITEC 

Raman spectrometer at 532 nm with Ar+ laser excitation. Solid state FT-IR spectra 

were taken with pressed KBr pellets on a BRUKER Vector22 IR spectrometer. The 

UV-Vis absorption spectra of wsGNS were analyzed at room temperature with 

PerkinElmer Lambda 35 spectrometer. The PL analysis of wsGNS in aqueous phase 

was performed at room temperature by PerkinElmer LS55 instruments. 1H NMR 

measurements were recorded on a JEOL ECS-400 (operating at 400 MHz, in D2O 

solvent). High performance liquid chromatography (HPLC) analyses were 

performed using HPLC instrument (Agilent technologies 1260 infinity) equipped 

with Zorbax Eclipse plus C 18 (250 × 4.6 mm) column with 5 μm particle size. 

Mobile phase consisted of methanol/water (10:90), and the flow rate was set 1.0 mL 
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min-1. Approximately 25 μL volume of samples was injected in the column and the 

effluent was monitored at 663 nm. 

 
3.2.3  Synthesis of wsGNS 

wsGNS was prepared by a slightly modified method as reported earlier [15]. 

Pristine carbon-based waste material, petrol soot was collected by scrubbing off 

petrol engine exhaust pipe through brush, was isolated and characterized as GNS. 

Pristine material was modified by successive treatment of Soxhlet purification 

solvents such as  acetone followed by oxidative treatment in order to convert GNS 

into water-soluble GNS. The unburned organic impurities present in GNS (∼1 g) 

were removed by Soxhlet purification using only acetone as a solvent. Next, for 

oxidative treatment step, insoluble Soxhlet purified GNS (∼1 g) was refluxed in 500 

mL round bottom-flask with water and nitric acid (100 mL) in ratio 40:60 at 

temperature of 50°C for 10 h [15]. After oxidative treatment, the refluxed solution 

was centrifuged at 7000 rpm repetitively for 30 min. Further, the centrifuged 

supernatant  solution was evaporated on the water bath for the several times after the 

addition of deionized water (approximately seven or eight times) to remove the 

residual nitrate. Further, nitrate test was done by using sulfanilic acid and zinc dust, 

no appearance of pink color justifies there are no more nitrate to be reduced. The 

final nitrate free residue obtained after centrifugation was vacuum-dried and called 

as wsGNS with almost quantitative yield (∼80-85%) which varied from batch to 

batch. 

 
3.2.4  Photocatalytic Activity Measurement 

The photocatalytic activities of GNS and wsGNS samples were determined 

by the degradation of MB, a heteropolyaromatic dye, in aqueous solution under 

direct visible light illumination. A stock solution of MB of concentration 16 mg L-1 

was prepared in DI water for photocatalytic degradation experiment. In a typical 

process, 10 mg of GNS and wsGNS were added separately in 50 mL of prepared 

MB solution and both the solutions were stirred for 30 min in the dark to reach the 

adsorption and desorption equilibration. The solutions were then sealed in a glass 

vial and exposed to visible light illumination placed at 25 cm away under 60 W 

tungsten bulb. During the photocatalytic tests, fixed amount of photoreacted solution 
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were taken at a time interval of 10 min. The collected solution was centrifuged, and 

the supernatant was collected in a quartz cuvette for determining MB concentration 

in the supernatant by using UV-Vis absorbance spectroscopy at wavelength 663 nm. 

For further characterization of the photodegraded products of MB by wsGNS, the 

samples MB-wsGNS were collected after 2 and 4 h time period. Further, these 

samples were centrifuged and supernatant was collected and dried to carry out the 

analysis by nuclear magnetic resonance (NMR), HPLC, Raman, and FT-IR 

spectroscopy to distinguish the degraded products formed. 

 
3.2.5.  Regeneration Analysis 

The recovered wsGNS was regenerated with 0.01 M HCl solution repeatedly 

over ∼10-12 times followed by washing of distilled water until the pH of the 

effluent become neutral. The regenerated sample after washing dried in the oven at 

80 °C for the further use. 

 
3.3  Results and Discussion 

wsGNS were fabricated by the simple method of the oxidation [15] of soot 

with nitric acid with a slight modification to minimize the use of excessive solvents 

as an environmental concern. Nitric acid oxidized GNS are highly soluble in water 

because of the presence of high-density surface carboxylation [15, 20, 21]. The 

incorporation of carboxylic acid groups has the advantages of creating water-soluble 

wsGNS with more active sites. 

 
3.3.1  Structural Characterization 

Structural analyses were executed by TEM and HRTEM microscopy, 

showing the presence of high-density surface defects [15, 21, 22]. Figure 3.1(a-b) 

shows the presence of low-resolution TEM images of wsGNS with its corresponding 

diffraction pattern confirming the graphitic character (inset of Figure 3.1(b)). The 

HRTEM image as displayed in Figure 3.1(c) shows the presence of 3-5 layered 

graphene sheets marked with white arrows showing the graphitic interlayer (0.34 

nm) along with high density surface defects (yellow box) as the surface 

functionalizations. Figure 3.1(d) displayed the zoomed image of Figure 3.1(c) 

(yellow box), showing the presence of different sized graphitic patches (encircled by 
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the yellow color), organized differently on the surface of wsGNS (marked with 

white arrows). HRTEM images shown in Figure 3.1(c-d) are simply advocating the 

presence of the various emissive centers/sites [15] in the form of surface defects. 

These high-density emissive centers/sites impart multicolored emissive properties to 

these wsGNS which can be utilized for imaging and sensing purposes [15, 54]. 

  

 
Figure 3.1. (a, b) Low resolution TEM images of wsGNS; (c) HRTEM image of 
wsGNS revealing well-defined layers of multilayered graphene sheets; (d) Presence 
of graphitic centers with different shapes (marked by yellow circles). 
 
3.3.2  XPS Analysis 

The detailed analysis of the surface functionalization with negative 

hydrophilic moieties on wsGNS as the surface defects [15] was performed by XPS 

analysis. Figure 3.2 displayed a comparative XPS analysis of GNS versus wsGNS. 

Figure 3.2(a) displayed an XPS survey scan of GNS shows the presence of two 

prominent peaks for C1s and O1s at 283.0 eV and 531.5 eV respectively. Over the 

elemental quantification, this indicates the surface of GNS was composed of carbon 

(∼91%) and oxygen (∼9%). High-resolution peak fitting of C1s (Figure 3.2(b)) of 

GNS shows three different binding states of surface carbon ascribed to C=C, C-C, 
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and C-O at 283.7 eV, 284.0 eV, and 285.6 eV, respectively. Contrary to the different 

carbon (C1s) bindings of GNS, the high-resolution peak fitting of O1s (Figure 3.2(c)) 

shows only a single binding state of oxygen with carbon as C-O at 531.4 eV. As 

expected, after the surface functionalizations [15], there is a significant increase in 

the degree of oxygen functionalities in wsGNS as seen in the survey scan of Figure 

3.2(d). High-resolution peak fitting of C1s of wsGNS shows the appearance of two 

newer binding sites for surface carbon (Figure 3.2(e)) compared to the insoluble 

GNS. As C=O at 286.4 eV, COO- at 288.3 eV along with the C=C at 283.5 eV, C-C 

at 284.2 eV, and C-O at 285.3 eV. Likewise, the O1s high-resolution scan (Figure 

3.2(f)) of wsGNS also showed the increased in the binding sites of oxygen with 

carbon corresponding to C-O, C=O, and COO- at 531.2 eV, 532.7 eV, and 535.9 eV, 

respectively. The emergence of newer moieties in wsGNS compared to GNS clearly 

defined the high-density surface modification by negative functional groups. That 

consequently increases the percentage of oxygen from ∼9% to ∼23% in wsGNS 

(Figure 3.2(a and d)). These high-density surface defects in form of high-density 

surface functionalizations are further used for the degradations of MB under the 

influence of visible light. 

 

 
Figure 3.2. (a) Full scan XPS analysis of GNS along with its corresponding; (b) C1s; 
and (c) O1s short scans; (d) Full scan XPS analysis of wsGNS with its corresponding 
(e) C1s; and (f) O1s short scans. 
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3.3.3  Absorbance and Photoluminescence Study 

The UV-visible absorption spectrum of wsGNS as shown in Figure 3.3(a) 

displayed an absorption band at 265 nm, which can be attributed to the n−π* 

transition of the C-O/C=O bonds. The optical digital images of the aqueous solution 

of wsGNS under the ordinary (Figure 3.3(b)) light illumination. Over the exposure 

of UV light irradiation of the sample showed a fluorescent green color (Figure 

3.3(c)). As described earlier [15], a high degree of oxidative treatments of the 

graphitic materials can readily impart the tunable PL properties along with the high 

solubility in the aqueous phase. In the case of wsGNS, a wide range of PL emissions 

were observed (Figure 3.3(d) spread over a vast range of visible spectra including a 

smaller portion of NIR spectrum (Figure 3.3(e)). Figure 3.3(d) shows the PL 

emissions obtained with continuous change in excitation (λex from 420 nm to 600 

nm) wavelengths with an increment of 20 nm toward the higher wavelength. 

Concerning the possible mechanism for tunable PL emission, from the graphene like 

materials are most probably because of the intramolecular proton transfer over the 

surface of wsGNS between the carboxylate anions/hydroxyl group and in between 

the hydroxyl/hydroxyl moieties. As well the contributions of high surface 

functionalizations (Figure 3.2 (d-f)) impart the tunable multiemissive properties to 

wsGNS, and depending on the degree of functionalizations, the PL properties can 

easily be tuned. During the process of surface functionalization, the formations of 

many sp3 domains within the sp2 matrices cause formations of newer graphitic 

structures having disorder-mediated localized emissive states [15]. The surface 

defects of wsGNS as high-density surface functionalities can trap the photoexcited 

electrons during the visible light irradiation, which will be used for the 

photodegradation of MB in the next section. 
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Figure 3.3. (a) UV-Visible absorption spectrum of wsGNS in aqueous solution; (b) 
Digital camera photograph of the wsGNS under visible light; and (c) UV light 
irradiation; (d and e) Tunable PL emission spectra of wsGNS recorded with different 
excitations (λex from 420 nm to 600 nm) with an increment of 20 nm toward the 
higher wavelength; (e) Zoomed spectra of part d (blue box) showing the NIR 
emissions. 
 
3.3.4  Photocatalytic Dye Degradation under Visible-Light Irradiation 

In detailed the photocatalytic degradation behavior of insoluble GNS versus 

wsGNS on the extensively used organic dye as MB under the visible light irradiation 

using a 60 W tungsten bulb was studied. The background test for wsGNS in the dark 

for the initial 30 min (green line) showed the adsorption of ~ 9 %. Afterward, ~ 99 

% of the photodegradation of MB was achieved within 90 min. Based on the 

continuous decrease in characteristic absorbance peak of MB at 663 nm as shown in 

Figure 3.4. 
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Figure 3.4. UV-Vis absorbance spectra of MB in the presence of wsGNS.  

 
Figure 3.5(a-(i)) represents the relative change in the concentration of the 

MB solution as a function of time under visible light irradiation. UV-Vis absorbance 

spectroscopy continuously monitored the change in the concentration of MB, based 

on the gradual decrease in the absorption intensity of MB with time (at 663 nm). As 

a control test, MB showed a very high stability in light without the presence of 

GNS/wsGNS. Under the presence of visible light irradiation, GNS showed the 

incomplete degradation of MB (∼19.6%) from its initial measured concentration. On 

the other side, the substantial influence of water solubilizations in wsGNS showed 

the highest performance among all the tested materials. In the presence of wsGNS 

initially within the 70 min of visible light irradiation, ∼77% of MB gets degraded 

which was further degraded completely (∼96%) in 90 min as presented in Figure 

3.5(a-(i)). In the presence of visible light the apparent rate constant of wsGNS was 

0.0313 min-1, which was ∼11 times higher than that of GNS (0.0028 min-1). 

Moreover, the rate constants of wsGNS and GNS in the absence of visible light 

follow similar trends as shown in Figure 3.5(a-ii). Figure 3.5(b-(i)) shows the 

schematic diagram of MB photodegradation under visible light irradiation by 

wsGNS. The degradation efficiency with respect to time for our pollutant waste 

derived wsGNS is compared with other graphitic and metals-based graphitic 

nanocomposites [31, 32, 37, 39, 41, 43, 46, 47] and given in Table 3.1. As shown in 

Table 3.1., most of the documented reports describe metal doping of graphitic (CD 

[55], GQD) [45] /graphene (r-GO, GO) [31-37, 39, 41, 43-47] material for the 
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improvement of its photodegradation efficiency. Significantly, compared to metal 

doped graphitic materials, wsGNS derived from pollutant soot shows complete 

degradation of MB within 90 min. 

 

 

Figure 3.5. Extent of (a-i) plot of (C/Co); and (a-ii) plot of ln(Co/C) for MB 
photodegradation by different sample; (b-i) Schematic diagram showing MB 
photodegradation; and (b-ii) its possible mechanism for photocatalytic degradation 
of MB by wsGNS under visible light irradiation. 
 

Concerning the possible explanation for the enhanced photocatalytic activity 

of wsGNS can be attributed to the utilizations of high-density surface defects 

(different sized graphitic patches shown in Figure 3.1(d). Planar nanostructures and 

high aspect ratio of graphene can facilitate the generation of more active surface 

sites for the catalysis [56]. A plausible scheme and degradation mechanism has been 

demonstrated in Figure 3.5(b-(i)) and 3.5(b-(ii)) respectively. The surface 

adsorption/interactions of MB on wsGNS can be toward the higher side (compared 

to GNS). That significantly owes the accelerated bonding interactions [11] of MB 

with surface carboxylic acid groups (as illustrated in Figure 3.5(b-(i)), via the 

process of initial adsorption [57] which is the primary condition for the initiation of 

the photodegradation process. Moreover, the high-density functionalization of 

wsGNS with negative charges leads to enhanced spatial separation between highest 
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occupied molecular orbital (HOMO)- lowest unoccupied molecular orbital (LUMO) 

along with generation of oxygen radicals and consequently improving the efficiency 

of photocatalytic degradation of organic dyes [40]. 

 
Table 3.1. Comparative Study Related to the Photodegradation Performance of 

Different Graphitic Materials 

S. 
No. 

Sample Degradation 
(%) 

Degradation 
time (minutes) 

Ref. 

1. Hemin-functionalized graphene 
hydrogel  

96 180 [31] 

2. WO3/graphene nanocomposite  99 480 [32] 
3. r-GO/ chitosan/ silver 

nanoparticles hydrogel  
99 70 [34] 

4. P25 (TiO2)-graphene hydrogels 96 55 [35] 
5. Graphene-V2O5 nanocomposite 99 90 [37] 
6. TiO2- graphene based composites 99 300 [39] 
7. Multilayered GQDs 93.3 60 [40] 
8. Reduced-GO/CdS 94 180 [41] 
9. Graphitic carbon nitride  99 120 [42] 
10. WO3 nanorods on graphene 

nanosheets 
80 300 [43] 

11. reduced graphene/Manganese 
oxide hybrid  

66 5 [44] 

12. Zinc porphyrin functionalized 
GQD 

95 60 [45] 

13. Mn3O4 decorated graphene oxide 99 200 [46] 
14. TiO2-Graphene 90 150 [47] 
15. wsGNS 96a 

99.9b 
90a 

120b 
Present 
study 

 

aBased on the UV-Visible absorption spectroscopy as described in Figure 3.5. 
bBased on NMR, HPLC, and Raman results as described in Figures 3.7. and 3.8. 

 
Surface defects in wsGNS trapped the photoexcited electrons, which further 

frees up the oxidative valence hole (equation I) for the decomposition of MB as 

shown in the schematic diagram (Figure 3.5(b-(ii)). Under visible light illumination, 

photoexcitation of electrons in wsGNS and retarded electron-hole pair 

recombination generate the reactive oxygen radicals as reaction intermediates on the 

https://pubs.acs.org/doi/full/10.1021/acssuschemeng.7b01645#fig4
https://pubs.acs.org/doi/full/10.1021/acssuschemeng.7b01645#fig4
https://pubs.acs.org/doi/full/10.1021/acssuschemeng.7b01645#fig5
https://pubs.acs.org/doi/full/10.1021/acssuschemeng.7b01645#fig6
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surface of wsGNS (equation II) [34, 37]. MB molecules also react with holes and 

form excited MB species (equation III) Surface adsorbed MB molecules (blue vial in 

Figure 3.5(b-(i)) react with active oxygen species ( ̇hydroxyl radicals •OH ) as shown 

in equations IV−VI (transparent vial in Figure 3.5(b-(i)) which leads to the 

degradation of MB molecules into smaller hydrocarbons and could finally into CO2 

and H2O molecules [34, 40, 41, 44, 46]. To further confirm the presence of reactive 

species as •OH, we performed a separate trap experiment based on the scavenging 

property of isopropyl alcohol (IPA) for hydroxyl radicals [58]. In the trapping 

experiment, the different concentrations of IPA on the photodegradation rate of MB 

was checked and showed them in Figure 3.6, which shows evidence for the role of 

hydroxyl radicals in the photodegradation of MB. 

  
 The trap experiment includes the different concentrations of IPA(Figure 3.6), 

which showed that the increase in concentrations of IPA significantly reduces the 

photodegradation efficiency of MB by wsGNS [58-62]. Although ∼96% 

degradation of MB confirmed by absorption spectra (determined from UV-Visible 

analysis) as shown in Figure 3.5(a) took place within 90 min, the photocatalytic 

experiment was extended to 2 h and 4 h and collected the supernatant at respective 

time intervals. With the expectations that the prolonged exposure of MB with 

wsGNS in the presence of visible light would result in the breakage of the overall 

aromatic system of MB and reported the same in Figures 3.7 and 3.8. 

 

 

Figure 3.6. A trap experiment showing the presence of •OH radicals based on the 
scavenging property of IPA for •OH radicals. 
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3.3.5  NMR Investigation of Degraded Products 

Contrary to the former reports limited to the decolorization of MB only 35-

37, 39, 42, 43, 47], except a few [31, 32, 45], herein, we present a detailed analysis 

based on several spectroscopic methods and a discussion for the possible 

degradation of MB into its smaller constituents by wsGNS under the influence of 

visible light. Figure 3.7(a) shows the chemical structure of MB with different 

protons labeled on it. We have performed a comparative 1H NMR analysis of the 

aqueous phase photodegraded products of MB (Figure 3.7(b)).  

 

 
Figure 3.7. (a) Chemical structure of MB. (b) 1H NMR spectra of the 
photodegradation of MB with time by wsGNS; (i) MB; (ii) wsGNS; (iii) MB-
wsGNS after 2 h (wine line); and (iv) MB-wsGNS after 4 h (olive line) under visible 
light irradiation. (c) Zoomed image of the aromatic region (between 9.5 and 6.5 
ppm) of part (b) showing changes in the spectrum of MB while interacting with 
wsGNS. (d) Zoomed image of the aliphatic region (between 4 and 0 ppm) of part b 
showing the changes in the specific region of MB while interacting with wsGNS. (e) 
Photograph of vials of (i) MB solution, (ii) wsGNS, MB-wsGNS (iii) after 2 h, and 
(iv) after 4 h of the photocatalytic experiment. 
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The 1H NMR spectra of MB (i (blue line)), wsGNS (ii (black line)), MB-

wsGNS (degraded products of MB in the supernatant) were collected from the pool 

of the MB-wsGNS system. After the respective time intervals, visible light 

irradiation, 2 h (iii (wine line)) and 4 h (iv (olive line)) is demonstrated in Figure 

3.7(b-d), respectively. The proton signals from the MB were seen in two regions of 

the spectra: aliphatic (for 12 protons (Ha)) and aromatic (for six protons (Hb, Hc, 

and Hd) as shown in Figure 3.7(b-(i)). The aromatic region shows three prominent 

signals for six aromatic protons (Hb, Hc, and Hd), in three different environments. 

 
Two protons marked as Hb gives a doublet (d) at 6.92-6.94 ppm, two protons 

marked as Hc gives double doublet (dd) at 7.13-7.16 ppm, and the other two 

aromatic protons (Hd) disclosed their signal at 7.48 to 7.50 ppm. In the aliphatic 

region, MB displayed only a single singlet (s) peak for all the 12 methyl protons 

(Ha) at 3.2 ppm. Compared to MB, the proton spectrum shown in Figure 3.7(b-(ii)) 

of wsGNS shows signals ranging from 1.1 to 2.9 ppm (at 1.1 (dd), 1.38 (dd), 2.2 (s) 

2.9 (s), and 3.3 (s) ppm) which corresponds to the aliphatic protons and a sharp 

signal at 3.6 ppm which relates to the presence of ether type organic moieties. Along 

with this, the proton signal that originated at 8.9 ppm corresponds to the presence of 

an aldehydic proton. Over the interactions of MB-wsGNS in the presence of visible 

light, significant changes in both of the important regions of the 1H NMR spectrum; 

aromatic (Figure 3.7(c)) and aliphatic (Figure 3.7(d)) was observed. For the initial 2 

h of interaction of MB-wsGNS, the proton signals of the aromatic region of MB 

(Figure 3.7(c-(iii))) displayed broadening and shifting in deshielded region. 

Importantly, the disappearance of one of the aromatic signals (Figure 3.7(c-(iii))) at 

6.98 ppm (d), and the shifting and broadening of the signal [63] at 7.37 (s) and 7.69 

(s) ppm peaks, respectively, toward the deshielded region confirms the significant 

interaction between MB-wsGNS. As well the aliphatic proton signals shown in 

(Figure 3.7(d-(iii))) showed the origin of a few additional and new broad signals in 

the upfield region at 0.79 (s) and 1.18 (s) ppm indicating the formation of small 

aliphatic hydrocarbon compounds [64] as the degraded products of MB. Moreover, 

on increasing the exposure time of visible light to MB-wsGNS conjugates for 4 h, 

we have observed the complete disappearance of proton signals in the aromatic 



Chapter-3 
 

78 

region (Figure 3.7(b-(iv)) and Figure 3.7(c-(iv))) indicating a loss in aromaticity of 

MB (photodegradation of the MB skeleton). On the other side, the origins of newer 

proton peaks in the aliphatic region (Figure 3.7(b-(iv)) and Figure 3.7(d-(iv))) are 

due to degradation in the organic skeleton of MB into its smaller aliphatic 

hydrocarbon. The signal at 1.24 (s), 2.21 (s), 3.17 (s), and 3.68 (s) ppm, confirms the 

formations of smaller aliphatic hydrocarbons as the photodegraded products of the 

MB. (Figure 3.7(e) displays photographs of vials of (i) MB solution, (ii) wsGNS, 

(iii) MB-wsGNS after 2 h, and (iv) MB-wsGNS after 4 h of photocatalytic 

experiment. 

 
3.3.6  HPLC, Raman, and FT-IR Investigation of Degraded Products 

1H NMR results (Figure 3.7) confirming the photodegradation of MB were 

further supported by the comparative analysis based on the HPLC, Raman, and FT-

IR analysis as displayed in Figure 3.8(a-c). A comparative HPLC [65] 

chromatograms of (i) MB, (ii) wsGNS, MB-wsGNS (iii)  2 h and (iv) 4 h samples 

(Figure 3.8(a)). Chromatogram of MB shows a sharp peak at the retention time of 

20.51 min. In the same panel, we did not find any characteristic peak in the 

chromatogram of wsGNS. After the 2 h of the irradiation of visible light on MB-

wsGNS. It shows the decrement of the main peak intensity of MB molecules up to 

∼98%. Addition to the reduction in the peak intensity of MB, two newer peaks were 

seen at the retention time of 9.18 min and 32.64 min attributing to the initial 

degradation of the MB. After the 4 h of analysis, we did not notice any peak related 

to the MB, suggesting the complete degradation of the organic aromatic skeleton of 

MB. 

 
Raman spectra of MB as shown in Figure 3.8(b-(i)) shows the most intense 

band at 1623 cm-1 which is assigned to sp2 hybridized aromatic υ(C-C) ring 

stretching [66]. Furthermore, two neighboring bands at 1394 cm-1and 1439 cm-1 

corresponds to υsym(C-N) stretching and υasym(C-N) stretching, respectively [67]. 

Likewise in the same panel wsGNS (Figure 3.8(b-(ii)) shows the characteristic 

disordered (D-band) and graphitic (G-band) at 1337 cm-1 and 1566 cm-1, 

respectively. Along with a characteristic sharp 2D band at 2679 cm-1, confirming the 

presence of graphene like material [15]. After the interactions of MB-wsGNS for 2 h 
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(Figure 3.8(b-(iii)) we have observed the weakening of the sharp band at 1623 cm-1 

and the other signature bands from ∼400 cm-1 to 650 cm-1 of the MB. However, 

these bands were further completely disappeared in 4 h of interactions in MB-

wsGNS (Figure 3.8(b-(iv)) in visible light, which strongly verify that no traces of 

the aromatic structure are left behind in the aqueous phase. 

 

 
Figure 3.8. Comparative (a) HPLC chromatogram; (b) Raman; and (c) FT-IR 
analysis of (i) MB; (ii) wsGNS; and photodegraded products of MB-wsGNS (iii) 
after 2 h and (iv) after 4 h, respectively. 

 
Similarly, a comparative FT-IR spectra are shown in Figure 3.8(c) contains 

the signature peaks of MB [68, 69] (as highlighted) (Figure 3.8(c-(i)) at 1597 cm-1 

which is associated with the stretching vibration of C=C group. The peaks at 1353 

cm-1 and 1339 cm-1 relates to the C-N(CH3)2 and C=S+ stretching modes. Peaks at 

1142 cm-1 and 1064 cm-1 attribute to the C-N bending and C-S-C stretching peaks in 

MB molecule. While in case of wsGNS, (Figure 3.8(c-(ii)) broad absorption O-H 

stretching was observed around 3300 cm-1. A sharp peak at 1724 cm-1 and 1628 cm-1 

indicate the presence of -C=O stretching and C=C stretching. Furthermore, 

additional peak at 1232 cm-1 relates to C-O stretching. Over the interactions of MB-

wsGNS after 2 h, in (Figure 3.8(c-(iii)). All the sharp and characteristic peaks of MB 

disappear/weakens as highlighted by arrows affirming the significant degradation of 

MB. Along with this there is emergence of new peaks at 1161 cm-1 and 1122 cm-1 

which can relates to the asymmetric and symmetric stretching of S, O bonds.[69] On 

continuing the experiment for 4 h, no more signature peaks of MB in supernatant 

water were observed in Figure 3.8(c-(iv)). Thus, absorbance (Figure 3.4(a) and 
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3.5(a)), 1H NMR (Figure 3.7), HPLC (Figure 3.8(a)) and the weakening of signature 

Raman bands (Figure 3.8(b)) and FT-IR peaks (Figure 3.8(c)) are in support of the 

breaking down of the aromatic skeleton of MB by wsGNS into the smaller 

hydrocarbons under the influence of visible light [69, 70]. 

 
3.3.7  Regeneration Recycling Study 

Apart from the photodegradation study [71-73], the recycling ability of a 

photocatalyst [74-77] is an important characteristic feature that would decide the 

overall sustainability of newer finding. Figure 3.9 shows the photodegradation 

efficiency of MB with a five number of cycles. After three cycles there is a 

negligible loss of degradation efficiency (below ∼10%) while after five cycles the 

degradation efficiency reached 75%. 

 

 
Figure 3.9. Photodegradation activity of wsGNS after five cycles of recycling 

testing. 

 
3.4 Conclusion 

The significant potential of hazardous pollutant soot as an efficient material 

for water remediation is explored here. The simplistic isolation of wsGNS from the 

free of cost available pollutant petrol soot showed enormous potential for the 

photocatalysis. wsGNS are successfully used for the visible-light-induced 

photodegradation of organic pollutant dye, owing to the presence of high-density 

surface defects as surface functionalization. More significantly wsGNS exhibited a 

higher rate of photocatalytic activity toward MB degradation, in contrast to GNS 
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firmly advocated the strong influence of water solubilizations which is the only 

prime difference between GNS and wsGNS. The higher solubility related to the high 

degree of surface functionalizations, which can directly relates to the broad 

availability of active sites, which promptly facilitates for the utilization of BC as 

wsGNS toward MB degradation. On the other hand, the successful utilization of 

wsGNS for multiple applications can be expected to reduce environmental stress. 

Additionally, higher in stability, recoverability, and reusability made this pollutant 

soot derived wsGNS as a future alternative material that could be further employed 

in real world applications. 
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4.1  Introduction 

 Advances in the field of light-induced photocatalysis [1, 2], particularly in 

aqueous-phase photocatalytic degradation [3, 4] of various toxic and hazardous 

water-soluble organic pollutant dyes have shown tremendous development [5, 6].  

The prime focus for the aqueous-phase photodegradation of organic dyes is 

associated with their partial or complete degradation to relatively nontoxic 

constituents such as low molecular weight hydrocarbons that can ultimately end up 

to carbon dioxide and water [7-10]. Moreover, the use of sunlight as a freely 

available renewable light source under the natural conditions can offer an additional 

advantage for searching the newer sustainable alternatives of water remediation [11, 

12]. In the recent past years, the extent of the use of pollutant dyes like MB in 

different industrial applications [13, 14] followed by their subsequent discharge as a 

waste in water stream is continuously increasing. Once released into the water 

bodies as contaminants, these were causing serious issues for both humans and the 

environment such as heart disease, lung and urinary bladder cancer, chromosomal 

fractures, mutagenesis, and respiratory toxicity in humans [15-18]. From the 

environmental perspective, organic dyes are well-known for their ability to 

significantly damage the aquatic biota of the water system [19]. So tremendous 

effort for the photodegradation of these pollutant dyes [20], especially using metal-

based nanomaterials, are gained a lot attention [21-23] because of their higher 

photodegradation efficiencies. However, being metallic in nature, metal-based 

nanomaterials have always been a great concern regarding their toxicity [24]. The 

toxicity issues can be resolved or minimized via the utilization of long known 

carbon materials. At present, nanocarbons and functionalized nanocarbons are being 

explored widely for the wastewater treatment [9, 25-27]. Among all the 

nanocarbons, graphene [28-31]  and graphene-based nanocomposites [7, 8, 32-49] 

are presently in high demand for photocatalytic/aqueous-phase photocatalytic 

applications because of its higher surface activities [43, 45].  

 
Herein the present outcomes are concerned with the sustainability of the 

overall process. In this context, the environmental assessment of the pollutant soot 

[26, 27, 50] derived wsGNS as a nontoxic photocatalytic material for 
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degradation/selective degradation of the organic dye is described. Compared to an 

earlier report [51],  sunlight-induced photodegradation of MB by wsGNS shows a 

higher rate of photodegradation and therefore takes relatively less time (∼75 min) 

for the almost complete degradation (∼98%), concerning the decolorization of MB 

(based on the UV-Vis studies at the wavelength of 663 nm). Furthermore, 1H NMR 

studies showed the almost complete degradation (∼99.9%). 

 
Further, nontoxic wsGNS are being used here precisely for the selective 

degradation of MB without affecting the growth of two tested bacterial strains, 

Gram-negative E. coli and Gram-positive Staphylococcus aureus (S. aureus). 

Additionally, the reaction mechanism and identifications of reactive species 

involved in photocatalytic degradation of MB are being explored for the sustainable 

applications of pollutant soot. The nontoxic photodegradation of MB in bacterial 

cultures can be explained on the basis of the high degree of surface functionalization 

[51] and simplest trap experiments [51]. Up to now, to the best of our understanding, 

there is no report available related to the assessments of the waste derived nontoxic 

wsGNS concerning the evaluation of its environmental applicability for the selective 

degradation of pollutant dye. 

 
4.2 Experimental Section 

4.2.1  Materials and Reagents 

Petrol soot was collected from a motor car repair workshop, localized in 

Jaipur, Rajasthan, India. The different analytical grade reagents like MB, and D2O, 

were procured from Sigma-Aldrich, US. HNO3, acetone, tertiary- butyl alcohol (t-

BA), disodium ethylene diaminetetracetate (Na2-EDTA) were procured from 

Rankem, India and para-benzoquinone (p-BZQ) from Acros Organics, US. The 

stock solution of MB was prepared in DI water. All the chemicals were of analytical 

grade and used as such. Microorganism strains of gram negative bacteria E. coli K-

12 and gram positive bacteria S. aureus RN4220 strains used in the bacteriological 

test were obtained from Department of Materials Science and Engineering Lab, IIT 

Kanpur, India. 
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4.2.2  Photocatalytic Activity Measurement 

The photocatalytic experiment was performed using MB (16 mg L-1) as 

model dye and wsGNS (0.2 g L-1) as photocatalyst under sunlight irradiation. For 

comparison, photocatalytic experiments using wsGNS were performed using 

sunlight versus artificial light (60 W tungsten bulb). Prior to the start of 

photodegradation experiment, different photocatalyst materials (GNS and wsGNS) 

were mixed with MB solution and stirred in dark for 30 min to reach 

adsorption/desorption equilibration. The respective solutions were put in glass vials 

and irradiated under sunlight and at fixed interval of time, samples were collected 

and centrifuged for determining MB concentration in supernatant solution using 

UV-Vis spectroscopy analyzed at room temperature with PerkinElmer Lambda 35 

spectrometer (at wavelength of 663 nm). For detailed analysis of degraded products, 

photodegradation process was extended up to 8 h, and the collected supernatant 

sample was analyzed by 1H NMR spectroscopy. Regeneration analysis was 

performed to confirm the reusable property of wsGNS which was examined by 

collection of residual wsGNS, followed by the repeated washing with 0.01 M HCl 

solution ∼10-12 times and then washed with distilled water until the pH of the 

effluent became neutral. The regenerated sample was repeatedly washed and dried in 

the oven at 80°C to reuse for multiple cycles. 

 
4.2.3  Instrumentation 

Microscopic analysis was done through FESEM (Zeiss SUPRA 4A), TEM 

and HRTEM analysis were performed with a Tecnai G2 20 high-resolution TEM 

operating at a voltage of 200 kV. Samples for SEM and TEM were prepared by 

dropping aqueous solution of wsGNS on a brass stub and on a 400 mesh carbon-

coated copper grid, respectively, followed by drying under 100 W table lamp. BET 

surface area for wsGNS was determined using Quantachrome Autosorb iQ. Solid 

state FT-IR spectra were recorded on a BRUKER Vector22 IR spectrometer. XPS 

measurements were measured on ESCA+ omicron nanotechnology oxford 

instruments. 1H NMR measurements was performed on a JEOL ECS-400 (operating 

at 400 MHz, in D2O solvent). UV-Vis DRS recorded on a PerkinElmer UV-Vis 
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(NIR) spectrometer to measure the optical properties of the samples with BaSO4 as 

internal reflectance standard. 

 
4.2.4  Antibacterial Activity in the Presence and Absence of Sunlight 

To measure the antibacterial activity, samples were sterilized in an autoclave 

and then added to 1 mL of LB media (Himedia) in a 20 mL conical flask. The 

amount of sample was fixed at 20 μL per mL of media, while the final concentration 

was varied from 0.1 to 0.3 mg mL-1. The sample and media were then inoculated 

with 200 μL of overnight culture of E. coli and S. aureus and incubated at 37°C (75 

rpm) for 8 h in a dark incubator shaker. For antibacterial activity in the presence of 

sunlight, the inoculated samples were kept under the same condition as mentioned 

above, and the temperature of conical flask was maintained at ∼40°C by 

continuously flowing water. After 8 h, the optical density of the both the media was 

measured at 600 nm against the respective control sample. 

 
4.2.5  Procedure for Selective Dye Degradation Tests  

For ecological study, E. coli and S. aureus were grown overnight in LB 

media in an incubator shaker at 37°C and at 75 rpm. Then, 2 mL of E. coli and S. 

aureus enriched LB media was added to 50 mL of PBS containing 0.2 mg mL-1 

particle and 16 mg L-1 MB dye. The sample was mixed well and incubated under 

sunlight for 90 min. Readings were taken at time interval of 30 min. Furthermore, to 

prevent a surge in the sample temperature, the whole assembly was placed in a 

waterbath, and water was changed periodically to check that the temperature does 

not rise beyond 40°C. For bacterial viability test, samples were diluted and plated on 

luria-bertani (LB) agar plates and allowed to grow at 37°C overnight. Colony 

forming unit (CFU) count was measured to calculate bacterial viability. Sample 

aliquots were then centrifuged at 13,500 rpm for 10 min, and supernatant absorbance 

was measured at 663 nm against appropriate controls. 

 
4.3  Results and Discussion 

The straightforward methodology presented here has a significant advantage 

toward the concomitant reductions in the quantity of two different pollutant 

materials by countering one with another. Scheme 4.1 illustrated the utilization of 
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wsGNS as nontoxic photocatalytic nanomaterial for the sunlight-induced 

photodegradation of MB. As well showing the potential assessment of wsGNS 

regarding the selective degradation of MB without harming the bacterial growth 

with two different bacterial strains (E. coli and S. aureus). 
 

 
Scheme 4.1. Schematic representation illustrated the synthesis and application of 
nontoxic wsGNS for the sunlight induced selective photodegradation of MB. 
 
4.3.1    Microscopic Analysis of wsGNS  

Low-resolution SEM image of the wsGNS (Figure 4.1(a)) shows the sheet 

like morphology rolled one top on another. The high-resolution SEM image in 

Figure 4.1 (b) shows the crumpled nature of graphitic wsGNS. Furthermore, TEM 

and HRTEM provided the detailed internal structural analysis. Low-resolution TEM 

image in Figure 4.1(c) confirms the presence of corrugated structures of 

multilayered graphene sheets. The HRTEM images show that wsGNS consisted of 

4-5 layers of graphene sheets (Figure 4.1(d)).  Figure 4.1(e-f) indicate the presence 

of surface defects in the shape of different sized graphitic patches as encircled with 

the red color. The presence of such small graphitic patches (∼2-3 nm in diameter) in 

the form of the surface defects/active centers on the wsGNS provides active catalytic 

sites [51] for the aqueous-phase photodegradation of pollutant dyes [51]. 
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Figure 4.1. (a) Low-resolution; and (b) High-resolution SEM image of wsGNS; (c) 
Low-resolution TEM image; (d) HRTEM image of wsGNS; (e) Presence of 
different shaped graphitic patches (marked by red circles); and (f) Few-layer 
graphene sheets with interlayer spacing of 0.34 nm. 
 
4.3.2  Spectroscopic Analysis of wsGNS: FT-IR and XPS Analysis 

The presence of negative surface functionalities on wsGNS was confirmed 

by FT-IR and XPS analysis. FT-IR spectrum in Figure 4.2 (a) shows broad 

absorption band at ∼3438 cm-1 for the stretching vibrations of −OH, which indicates 

the presence of hydroxyl groups. The two small, weak bands at 2924 cm-1 and 2853 

cm-1 (doublet) correspond to the C-H stretching. The sharp, intense split peaks 

observed at 1713 cm-1 and 1615 cm-1 correspond to a C=O carbonyl functional 

group and a C=C stretching of aromatic hydrocarbons, respectively. Two intense 

peaks of C-O and C-C stretching vibrations were observed at 1241 cm-1 and 1093 

cm-1, respectively. 
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XPS further supported the negative surface functionalities, showing the 

different binding sites of carbon with oxygen. A complete survey scan of wsGNS 

(Figure 4.2(b)) shows two characteristic peaks for C1s and O1s at 284.5 eV and 532.0 

eV respectively. The elemental composition of carbon and oxygen was ∼80% and 

∼20%. The deconvulated short scan spectra of C1s and O1s are presented in Figure      

4.2 (c,d) respectively. The deconvulated C1s short scan spectra (Figure 4.2 (c)) 

shows five different types of carbon binding in wsGNS, presented in the form of 

groups such as C=C (283.6 eV), C-C (284.9 eV), C-O (285.6 eV), C=O (286.9 eV), 

and COO- (288.7 eV). Similarly, Figure 4.2 (d) shows the deconvulated spectra of 

the O1s short scan, composed of three different types of binding moieties related to 

oxygen and carbon as C-O, C=O, and COO- at 530.8 eV, 532.2 eV, and 533.8 eV, 

respectively [52, 53].  The presence of surface defects in the form of high density 

hydrophilic groups because of the oxidative treatment are responsible for imparting 

the water solubilizations [51] and the excellent optical properties in the form of 

tunable PL properties as described earlier [51, 54].  

 

 

Figure 4.2. (a) FT-IR spectrum of wsGNS; (b) XPS full scan spectra of wsGNS and 
its corresponding (c) C1s short scan and (d) O1s short scan. 
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4.3.3  Photocatalytic Dye Degradation under Sunlight Illumination 

Figure 4.3 (a) also includes the adsorption-desorption equilibrium achieved 

initially in 30 min before the start of photodegradation process. Approximately 9% 

adsorption of MB is obtained with wsGNS, which can be attributed to the surface 

adsorption, and could be related to the lower values of Brunauer-Emmett-Teller 

(BET) surface area [55, 56] (23 m2 g-1), and total pore volume is ∼0.168 cc g-1. In 

absence of photocatalyst wsGNS, a negligible change in MB concentration was 

observed as shown in Figure 4.3 (a). Furthermore, a detailed aqueous-phase 

photodegradation study of MB [51] under sunlight irradiation with wsGNS and GNS 

are shown in Figure 4.3 (a), carried out in different conditions for the comparison 

purpose. The continuous change in the concentration (concerning the decolorization) 

of MB by GNS and wsGNS (Figure 4.3 (a)) in sunlight was observed at different 

time intervals using the UV-Vis absorbance spectroscopy. The rate constant data 

were evaluated from the corresponding experimental data Figure 4.3 (a) by 

assuming pseudo first-order kinetics and the linear fitting of pseudo first-order 

kinetics is shown in Figure 4.3 (b). 

 

 
Figure 4.3. Extent of (a) Plot of C/Co for MB photodegradation by wsGNS under 
sunlight irradiation with adsorption as background tests; (b) Plot of ln(Co/C) for MB 
photodegradation by different samples. 
 

A comparative photodegradation study was performed experimentally in the 

aqueous-phase using natural sunlight versus 60 W tungsten bulb (as a source of 

initiative step for the photocatalytic reaction). Figure 4.4 (a) shows a comparative 

photodegradation study of MB using wsGNS as photocatalyst, in the presence of 



Non-toxic Water Soluble Graphene Nanosheets for Selective Photodegradation…… 
 

99 

sunlight and 60 W tungsten bulb [51], with the variation of C/Cο of the aqueous 

samples of MB-wsGNS with different time interval using UV-Vis spectroscopy at 

663 nm [51, 57]. The data demonstrate the higher degradation efficiency in the case 

of sunlight (achieved ∼97%) for the initial 60 min of exposure compared to that of 

60 W bulb (∼77%). 

  
UV-Vis analysis (decolorization of MB) data confirms that using wsGNS in 

the presence of sunlight shows the highest degradation efficiency (∼98%) observed 

within the 75 min. For the faster rate of photodegradation under sunlight by wsGNS, 

the high level of surface functionalization is the only principal difference between 

GNS and wsGNS and can be responsible for the increased in the photodegradation 

efficiencies of MB. Almost ∼97% MB was photodegraded (decolorized) within the 

initial 60 min and starts degrading completely (∼99.9%), based on the 1H NMR 

analysis described in next section. 

 

 
Figure 4.4. (a) Influence of sunlight over 60 W bulb light for photodegradation of 
MB using wsGNS; (b) Comparative data of pseudo-first-order rate constant and 
half-life (t1/2) in minutes obtained from experimental data in panel (a). 
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Figure 4.3 (b) shows the higher rate constant (0.04853 min-1) for wsGNS in 

the presence of sunlight which is ∼1.5 times greater compared to that with 60 W 

bulb (0.0313 min-1), indicating the significant influence of natural sunlight. The 

results suggest that the presence of natural sunlight quickly activates the different 

emitting centers of wsGNS for the degradation study as corroborated with t1/2 data 

shown in Figure 4.4 (b), degrading 50% of initial MB concentration even in a 

shorter period of time. These rate constant data were evaluated from the 

corresponding experimental data Figure 4.3 (a) by assuming pseudo-first-order 

kinetics, and the linear fitting of pseudo-first-order kinetics is shown in Figure 4.3 

(b). In the presence of sunlight, the photodegradation rate constant for wsGNS was 

0.04853 min-1 compared to 0.00297 min-1 for GNS indicating the increased 

photocatalytic efficiency was up to ∼16 times higher in wsGNS than the GNS.  

 
Also, the photodegradation efficiency and the rate constant of wsGNS are 

compared with those of the other photocatalyst materials under the presence of 

sunlight, shown in Table 4.1. The data obtained for the photodegradation efficiency 

of wsGNS in the present study are found to be higher compared to those of the other 

studies [7, 10, 32-34, 38, 42, 58].  

 
Furthermore, UV-Vis diffuse reflectance spectroscopy (DRS) [43, 44, 59]  

was performed to better understand the influence of different light sources on 

wsGNS. wsGNS shows a strong absorption in UV region (Figure 4.5 (a))  that 

shows a near edge absorption at ∼243 nm which corresponds to the bandgap of 

wsGNS. Similarly, to understand the influence of different light sources, a 

comparative analysis was performed with wsGNS irradiated with different light 

sources such as 60 W bulb and sunlight. The Tauc plots in Figure 4.5 (b) ((αhυ)2 vs 

hυ (where hυ is photon energy)) show the measured bandgap for wsGNS which was 

4.0 eV. While this value was found to decrease when irradiated with 60 W bulb light 

(3.8 eV) and sunlight (3.3 eV) [60]. The experimental observation based on diffuse 

reflectance are consistent with the photodegradation rate constant and t1/2 values as 

shown in Figure 4.3 (b)  and Figure 4.4 (b), respectively. 
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Table 4.1. Comparative table showing degradation of MB under direct sunlight by 

different graphene/r-GO composites and present study 

S. 
No 

Sample Degradatio
n (%) 

Degradation 
time 

(minutes) 

Rate  
 

Ref. 

1. Graphene-ZnTiO3 
nanocomposite  

>95% 60 min - [7] 

2. ZnO-RGO/RuO2 
nanocomposites 10 mg L-1  

99% 60 min - [10] 

3. Graphene-SnO2-PMMA 
nanocomposite 0.01 mM 

99% 60 min 0.0488 min-1 [32] 

4. ZnFe2O4/ZnO 
nanocomposites on 
graphene 10 mg L-1  

99% 120 min 0.0330 min -1 [33] 

5. Graphene-V2O5 
nanocomposite 

99% 90 min 0.0366 min-1 [34] 

6. Hemin-functionalized 
graphene hydrogel  
50 mg L-1 

96 %  180 min 0.017   min-1 [38] 

7. ZnO flower/reduced GO 
composite 15 mg  L-1 

97% 150 min 0.0395 min−1 [42] 

8. Graphene-SnO2 composites  
2.7*10-5 M  

99% 5 min - [58] 

9. wsGNS 98% 75 min 0.04853 min-1 Present 
study 

 

 
Figure 4.5. (a) UV-Vis DRS spectra; and (b) Tauc plot of (αhυ)2 versus hυ of 

wsGNS under different light sources. 
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The most plausible mechanism responsible for the increase in the efficiency 

of photodegradation by wsGNS in sunlight is shown in Figure 4.6 (a-b). This was 

attributed to the presence of high-density surface defects that can provide enhanced 

active surface sites for the photocatalytic process. The presence of negative moieties 

(hydroxyl and carboxyl groups) as the high-density functionalization of wsGNS 

enhanced the spatial separation between HOMO-LUMO as shown in Figure 4.6 (a-

b) equation (i) [9] A high degree of the generated holes reacted with water 

molecules, oxygenated functional groups, and generated the reactive oxygen groups 

Figure 4.6 (b), equation (ii). Moreover, surface functionalization retarded the 

recombination of electron-hole pairs via the trapping of electrons as active species 

on surface defects [51, 61]. 

 
As well, the planar morphology of wsGNS could enhances the electron 

transfer between wsGNS and photoexcited dye molecules Figure 4.6 (b), equation 

(iii), very similar to graphene which is acting as an excellent photocatalytic material. 

Figure 4.6 (b), equation (iv-vi), show the reaction of active radical species with 

surface-adsorbed MB molecules leading to degradation of MB into possible 

nontoxic products, like smaller hydrocarbons and can ultimately convert to the 

carbon dioxide and water [7, 10, 33]. 

 
The generation of active-reactive species in photocatalytic reaction 

responsible for the degradations of MB and the insight of photodegradation 

mechanism were further explored by performing trap experiments separately as 

shown in Figure 4.6 (c-f). On the basis of the use of the different types of scavengers 

like t-BA for the trapping of •OH, Na2-EDTA for the trapping of surface generated 

holes (h+), and the p-BZQ for the trapping of superoxide (O2
−•) scavengers Figure 

4.6 (c-e). Such scavengers are widely used and reported in trapping the different 

radicals in literatures [51, 62-69]. The molar concentration of different scavengers 

varies from 0.5 mM to 10 mM in aqueous system of MB-wsGNS. Figure 4.6 (c) 

shows that the photodegradation activity was significantly reduced from 97% to 

82% in the presence of 0.5 mM of t-BA. In the same Figure 4.6 (c), the 

photocatalytic efficiency of wsGNS toward MB was completely reduced up to 4% 

when t-BA molar concentration was increased by ∼20 times of 0.5 mM 
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concentration, implying the strong influence of hydroxyl radicals in the process of 

photodegradation in the presence of sunlight. A similar trend was observed when 

Na2-EDTA was added into aqueous system of MB-wsGNS Figure 4.6 (d). 

 

 
 

Figure 4.6. (a, b) Plausible mechanism of photodegradation of MB by wsGNS in 
sunlight; Effect of different scavengers on photodegradation efficiency of MB using 
wsGNS: (c) t-BA for hydroxyl radicals; (d) Na2-EDTA for holes; (e) p-BZQ for 
superoxide radicals. (f) Comparative influence of different scavengers in 
photocatalytic activity of different reactive species for MB degradation. 
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The photocatalytic degradation efficiency was reduced up to ∼10% at higher 
concentration of Na2-EDTA (10 mM) which is acting as scavengers for holes, 
although the influence of holes scavenger on the MB degradation was relatively 
lower than that of •OH radical scavenger. Contrary to the hydroxyl and holes 
scavengers, marginal changes in photodegradation efficiency were observed for O2

−• 
radicals as shown in Figure 4.6 (e). Figure 4.6 (f) shows a comparative influence of 
all three plausible reactive species that are responsible for the photocatalytic 
degradation efficiency of MB in MB-wsGNS system. The trap experiments clearly 
suggest that out of three reactive species, only hydroxyl and holes have the strong 
influence toward the photodegradation of MB. The recycling ability and potential 
utility of the material as wsGNS used for the photodegradation is the crucial 
character that can decide the overall feasibility of the process. Figure 4.7 indicates 

the loss of ∼17% in degradation efficiency of wsGNS as a photocatalyst material 
after 4 cycles of use in photodegradation of MB. 
 

 
Figure 4.7. Photocatalytic performance of wsGNS with 4 cycles of recycling 
testing. 
 

4.3.4  Insights of the Photodegradation Analysis by 1H NMR Spectroscopy 

Comparative 1H NMR was performed (Figure 4.8) to analyze the degraded 
products of MB in aqueous-phase before and after the degradation process. Figure 
4.8 (a) shows the chemical structure of MB (with numbers labeled on chemically 
different protons). Figure 4.8 (b) shows the photocatalytic effect of wsGNS on the 
MB (blue solution in left cuvette) in the presence of sunlight which makes it 
colorless (transparent solution in right cuvette). 1H NMR spectra of (i) MB, (ii) MB-
wsGNS (degraded dye after 4 h), and (iii) after 8 h are shown in Figure 4.8 (c-(i-
iii)), respectively, in the presence of sunlight. Photodegraded samples were collected 
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from the pool of MB-wsGNS system after 4 and 8 h time periods, and the as-
collected samples were further centrifuged and supernatant collected and dried on a 
waterbath for the 1H NMR analysis. Figure 4.8 (c-(i)) shows the 1H NMR spectrum 
of MB which shows a sharp singlet at δ1H 2.96 ppm assigned to aliphatic protons 
and three doublet signals from δ1H 6.56 to 7.0 ppm associated with the presence of 
aromatic protons.  

 

 
 

Figure 4.8. (a) Chemical structure of MB; (b) Effect of wsGNS in sunlight on MB 
(blue solution in left cuvette) to colorless (transparent solution in right cuvette);         
(c) 1H NMR spectra of the photodegradation of MB while interaction with wsGNS 
over different time intervals: (i) 1H NMR of MB; (ii) 1H NMR of MB with wsGNS 
after 4 h; and (iii) 1H NMR of MB with wsGNS after 8 h of sunlight irradiation. (d) 
Zoomed image of panel c Aromatic region (between 10 ppm to 6 ppm); (e) Aliphatic 
region (between 4 ppm to 0 ppm). 
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The aromatic region shows six chemically different aromatic protons which 

give their doublets (signals at δ1H 6.56, 6.80, and 7.0 ppm representing H2-H4, 

respectively) are shown in Figure 4.8 (d-(i)). Compared to control (MB), after 

photocatalytic treatment of dye with wsGNS, the proton spectrum of the degraded 

dye after 4 h and 8 h shows the disappearance of signals in the aromatic region 

(Figure 4.8 (d-(ii)) and Figure 4.8 (d-(iii)) respectively) indicating loss of the 

aromaticity. The aliphatic region Figure 4.8 (e) shows a sharp singlet (δ1H 2.96 

ppm) assigned to H1 indicates the presence of methyl groups of MB as in Figure 4.8 

(e-(i)). After 4 h of photocatalytic degradation, the sharp peak related to 12 methyl 

protons disappears, and an emergence of newer aliphatic peaks in the more shielded 

region is observed (at 1.44, 2.2, and 3.33 ppm) corresponding to the formation of 

small aliphatic hydrocarbons as shown in Figure 4.8 (e-(ii)) which further 

disappeared after 8 h of photodegradation Figure 4.8 (e-(iii)). Overall, 1H NMR 

study as indicated by the Figure 4.8 (d-(iii)) and (e-(iii)) displaying the complete 

disappearance of all the protons in aromatic and aliphatic regions confirms the 

complete degradation of the MB molecules. 

 
4.3.5  Nontoxic Effects of wsGNS Exposure to the Bacterial Cells: E. coli and 

S. aureus 

The ease of water solubilization of wsGNS, which is the most important 

parameter for the biological applications, is further used here for analyzing its 

nontoxic behavior toward the two different types of bacterial strains that is Gram 

negative bacteria E. coli and Gram positive S. aureus. Bacteriological tests 

evaluating the nontoxicity of wsGNS on E. coli and S. aureus cells were performed 

in aqueous LB media in a 20 mL conical flask. The growth of bacterial culture was 

determined by measuring the optical density (OD) at fixed wavelength of 600 nm 

(OD600) in LB media complemented with four different concentrations of wsGNS, 

including (i) the control, 0 mg mL-1, (ii) 0.1 mg mL-1, (iii) 0.2 mg mL-1, and (iv) 0.3 

mg mL-1 in 20 mL of LB media, respectively, under both dark (Figure 4.9 (a,c)) and 

sunlight (Figure 4.9 (b,d)) conditions. All four concentrations of wsGNS were 

checked for OD600 to assess the nontoxic behavior of wsGNS. The dye 

photodegradation test of MB was performed for the concentration of 0.2 mg mL-1 of 

wsGNS. To confirm a wider level of tolerance, a higher level of wsGNS 0.3 mg mL-
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1 was also studied. After the 8 h incubation period, wsGNS did not show any toxic 

characteristics toward the growth of the E. coli and S. aureus (Figure 4.9).  The 

nontoxic bacteriological test was performed in triplicate, and results are shown in 

Figure 4.9 (a-d) with ±SE. Compared to earlier reports [70-71],  herein the 

biocompatibility can be described concerning the nontoxic behavior (Figure 4.9) 

based on our earlier findings, describing the nontoxic behavior because of the 

heavily derivatization of nanocarbons on various model, such as E. coli [72], 

Caenorhabditis elegans [73], Drosophila melanogaster [74], and on plants (gram 

plants [75] and wheat [76]). Similarly, highly functionalized wsGNS carrying the 

same nontoxic behavior along with the additional ability to efficiently photodegrade 

the pollutant dye in sunlight. 

 
 

Figure 4.9. Growth bars based on OD600 in dark; (a) E. coli; and (c) S. aureus 
compared to the OD600 in the presence of sunlight for (b) E. coli; and (d) S. aureus 
inoculated in LB media having the different concentration of wsGNS with ±SE. 
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4.3.6  Selective Dye Degradation Test 

Concerning the ecological sustainability of the overall process, we have 

extended the dye degradation experiments in bacterial cell culture with a positive 

hope for the selective degradation of MB without harming the routine biological 

growth of E. coli and S. aureus by wsGNS. Introducing nontoxic wsGNS in the 

bacterial cells grown within the MB solution with wsGNS in dark and in the 

presence of sunlight conditions showed the remarkable results in the form of a 

capability to selectively degrade the MB. Figure 4.10 (a,d) includes a cartoon 

illustration showing the experimental setup used for sunlight-induced selective 

degradation of MB within the bacterial culture of E. coli and S. aureus cell. Figure 

4.10 (b,e) show the nontoxic behavior of wsGNS. 

 
The nontoxic behavior is further confirmed by CFU counts, as shown in 

Figure 4.10 (c,f) before and after photodegradation of MB. Figure 4.10 (g,h) show 

the degradation curves of MB (selectively degraded the MB only) from the pool of 

E. coli and S. aureus respectively in the presence of sunlight along with its 

corresponding degradation rate constants in Figure 4.10 (i,j) respectively. In the 

presence of E. coli and S. aureus a marginal interference in degradation efficiency of 

MB by wsGNS was observed, as shown by the same Figure 4.10 (i,j). 
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Figure 4.10. Cartoon illustration describing the simplest approach used in the 
sunlight-induced selective dye degradation via wsGNS. Pool of MB-wsGNS-
bacterial strain in the presence of sunlight: (a) E. coli; and (d) S. aureus; where 
wsGNS selectively degraded MB without harming bacterial colonies, (b) E. coli; 
and (e) S. aureus; Along with bacterial viability test in the form of CFU before and 
after MB degradation for (c) E. coli; and (f) S. aureus; The extent of the plot of C/Cο 
for the selective photodegradation of MB by wsGNS under the influence of sunlight 
in the bacterial LB media of (g) E. coli; and (h) S. aureus; Plot of ln(Cο/C) with 
apparent rate constant for the selective photodegradation by wsGNS in sunlight 
within the bacterial culture of (i) E. coli; and (j) S. aureus. 
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4.4  Conclusion 

The present finding has introduced a facile and sustainable approach for the 

usage of pollutant soot (wsGNS) for the complete photodegradation of MB in a very 

cost efficient and simpler way at ambient conditions. wsGNS are nontoxic on the 

tested E. coli and S. aureus cells. The successful utilization of the most sustainable 

energy source as sunlight is being explored here, and the most important wsGNS are 

being used here for the selective photodegradation of pollutant dye without harming 

the bacterial balance which would sustain the environmental prospect and the 

sustainability of the overall described procedure. wsGNS degrade the complex 

organic framework of MB molecules into smaller nontoxic constituents with a 

higher rate in the presence of sunlight compared to that of 60 W tungsten bulb. The 

reported method can be easily scaled up, which can directly relate to the reduction in 

the extent of pollutant soot and pollutant dye (photodegradation of soluble organic 

dye). Nontoxicity along with photocatalytic properties makes wsGNS a potential 

material, which could be utilized thoroughly as a photocatalytic material for the 

photodegradation purposes, and the high degree of water solubility could be used in 

the area of biomedical and biological applications. 
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5.1  Introduction 

The ever-growing desire to improve the quality of human lifestyle 

significantly promoted the rapid industrialization and urbanization [1-3]. Primarily, 

associated with the accelerating advancement of the automotive industrialization, 

which can directly link to the release of pollutant soot as BC [4-7] particulate matter 

in the environment. BC is closely related with global warming and at present is 

continuously deteriorating the environmental and human health [7, 8]. Along with 

air pollutions, industrialization have also brought the another important concern 

related to the water pollutions [9]. So, the most demanding aggravated concerns of 

the present world is to significantly reuse the waste products (it could also be the 

dangerous-dirty-BC)[10] and the treatment of wastewater [11], From the standpoint 

of the overall environmental health, the discharge of the BC [7] in air and the 

effluents of industrial wastewater [12-14] (containing hazardous, carcinogenic and 

non-biodegradable organic dyes) in the water-bodies are unceasingly deteriorating 

the ecological balance [15, 16], and causes many serious diseases [17-19].  

 
At present, few groups have explored the recent-promising approaches 

related to the adaptation of pollutant soot as freely available carbon precursor for the 

synthesis/isolations of the value-added nanocarbons [20-26]. Such as CD [22], GNS 

[23, 24, 26], SWCNT [25], CNP [21] for the diverse applications [21, 22, 26] 

including the photodegradation of the pollutant dyes [23, 24].  In the same context, 

the visible-light photocatalysis using the nanocarbons, metal-based carbon 

nanomaterials [27-31]  and its composites [28, 32-40]  has attracted the widespread 

attention, because of its interesting applicative prospects in the field of the water 

remediation [37, 38, 41].  Sunlight-induced dye degradation exhibits high efficiency 

along with the ability to use the most renewable and sustainable source of energy as 

sunlight [42],  hence can offers  a feasible approach to overcome the degree of water 

pollutions. 

 
 Presently, the graphene [43, 44] and graphene-based nanostructures [34, 39] 

have drawn more and more attention due to their advantageous many features like 

high optical absorption, fast charge carrier mobility, high conductivity, non-toxicity, 

corrosion resistance, the unique surface properties and environmental acceptability 
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[45]. Although a few milestones have already been documented for enhancing 

photocatalytic efficiency of the graphene based nanostructures for the degradation of 

organic pollutant [46-48], but their fabrications methods inevitably include the 

tedious, and complex process [41, 49-51]. Along with this to tune the band-gap of 

graphene based nanostructures, these were further require the additional strategies 

such as metal/heteroatom doping, composite fabrication and surface functionalization 

[28, 37, 46, 52]. Additionally, the above mentioned most of the reports were mostly 

deals with the photodegradation of the single components of organic dyes [29, 38, 

41, 46, 53-56]. As per the general consideration, the effluents of industrial 

wastewater are being composed of the complex system, containing the combination 

of dyes. But only a little attention has been paid to remediate wastewater containing 

a mixture of dyes [57-62].   

 
For this, the exploration of a facile, cost-effective and sustainable approach 

for the synthesis of graphene-based nanostructures having the desirable light 

response is very much crucial for the application of photocatalysis. As they require a 

superior charge separation efficiency and a broad photoresponsive range [63]. Under 

the presence of sunlight, the same can be provided by the wsGNS, isolated from the 

BC possessing the advantageous efficiency to work as a photocatalytic material [23, 

24]. Based on the few reports posing the controversies regarding the observance of 

acute toxicity due to generation of toxic byproducts even after complete degradation 

of dyes [64-67]. The present times demands a strong requirement of environmental 

assessment of the whole process to rule out the possible risk and maintain the 

ecological balance and being smoothly used for the real life applications. 

 
 Herein, the present chapter describes a simple and feasible approach related 

to the utilization of the almost free of cost available photocatalytic materials 

(wsGNS) for the complete photodegradation of three individual dyes like crystal 

violet (CV), rhodamine B (RhB), and methylene blue (MB) and their mixture 

(CV+RhB+MB) under the sunlight irradiation. A plausible photocatalytic 

mechanism is proposed based upon the trapping of active-reactive species and 

analysis of the photodegraded products with the 1H NMR spectroscopy. The 

potentials of the wsGNS were further investigated under the presence of common 
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interfering ions/substances. In continuation of earlier studies, the work described 

here is based on the simple idea, related to the photodegradation of the pollutant 

material (for the degradation of mixture of the dyes) from the pollutant material 

(BC). Importantly, addition to the aqueous phase photocatalysis only. The treated 

wastewater is being utilized for the germination of wheat plants related to the 

environmental risk assessment for the treated wastewater. Initial results are in favor 

that treated wastewater can be used for growing the plants that can maintain the 

ecological balance of the required water. In this context, growths of wheat (Triticum 

aestivum) plants were assessed with the dye-polluted water before and after 

photocatalytic degradation, including the control to evaluate the environmental 

applicability of the treated wastewater.  

 
5.2  Experimental Section 

5.2.1  Materials and Reagents 

Petrol engine soot was collected locally from the Jaipur city, Rajasthan, 

India. MB was purchased from Sigma Aldrich, USA. CV and RhB was purchased 

from LobaChem, Mumbai, India. HNO3, acetone, t-BA, Na2-EDTA were procured 

from Rankem, India and p-BZQ from Acros Organics, USA. Other chemicals used 

in the study such as CaCl2, FeCl3, Na2SO4, Na2HPO4, NaNO3, and KCl from 

Rankem India. All the reagents were of analytical grade and used as such. All the 

experiments were performed using DI water. Wheat seeds were purchased from 

local market, Jaipur, Rajasthan. 

 
5.2.2  Instrumentation 

Structural characterization was performed through TEM and HRTEM 

analysis with a Tecnai G2 20 high-resolution TEM operating at a voltage of 200 kV. 

Samples for TEM/HRTEM analysis were prepared by casting droplets of an aqueous 

solution of wsGNS onto a 400 mesh carbon-coated copper grid, followed by drying 

under 100 W table lamp for 12 h. The UV-Vis absorption analysis were done at 

room temperature with Perkin Elmer Lambda 35 spectrometer. XPS measurements 

was recorded in ESCA+ omicron nanotechnology oxford instrument. 1H NMR 

measurements were recorded on a JEOL ECS-400 (operating at 400 MHz, in D2O 

solvent). Remi magnetic stirrer was used during the experiment.  
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5.2.3  Photocatalytic Experimental Procedure  

Three different types of dyes and their corresponding mixture were taken to 

examine the photocatalytic activity of wsGNS under direct sunlight illumination. All 

the photocatalytic experiments were carried out in Jaipur, India in the month of May 

2018. In a typical process stock solution of CV, RhB and MB of concentration, 20 

ppm was prepared in DI water along with this the concentrations of all the three 

dyes in mixture maintained to 20 ppm in a 100 mL conical flask for the 

photocatalytic degradation [58, 60-62]. 0.3 mg mL-1 of wsGNS added separately to 

all the dyes solution (individual dyes as CV,RhB and MB and their corresponding 

mixture) and the solutions stirred for 30 min in the dark to reach the adsorption and 

desorption equilibration. During the photocatalytic experiments, fixed amount of 

photoreacted solution was taken at regular time intervals. The collected solution was 

centrifuged and the supernatant was collected in a quartz cuvette for determining the 

dye concentration by using UV-Vis absorbance spectroscopy at wavelength 589 nm, 

554 nm, and 663 nm for CV, RhB, and MB dyes respectively. For further 

characterization of the photodegraded products of different dyes by wsGNS, the 

complete photodegraded samples were collected and centrifuged, further the as 

collected supernatant was dried and dissolved in D2O to perform the 1H NMR analysis. 

 
5.2.4  Germination 

Wheat seeds (Triticum aestivum) were washed with DI water and further 

soaked in tap water for the one day for germination.  

 
5.2.5  Seeds 

Soaked moist seeds were placed in wet cotton cloth for one day. One-day-old 

sprouted wheat seeds were used for monitoring the growth under the controlled 

conditions (DI water and in wsGNS); in polluted dyes and their mixture versus the 

treated wastewater (water contained after the photocatalysis by wsGNS in the 

presence of sunlight). For the growth of the plants; one day germinated seeds were 

placed in petri dish containing the almost similar cotton sheets soaked with the equal 

amount (~10 ml for the first day) of (i) DI water; (ii) wsGNS solution; (iii) dyes and 

their mixture; and (iv) with their the respective treated wastewater. All the 
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experiments were performed thrice for the 15 days, including the daily additions of 

~ 3 ml of the each solution to check the growth of wheat plants. 

 
5.2.6  Regeneration Analysis 

The recovered wsGNS after photodegradation was regenerated with 0.01 M 

HCl solution repeatedly over ~ 10-12 times followed by washing of DI water until 

the pH of the effluent become neutral. The regenerated sample after washing dried 

in the oven at 80° C for the further use. 

 
5.3  Results and Discussion 

At present, most of the photocatalytic materials are showing their selectivity 

toward the photodegradation of the specific dyes only. Therefore, for the practical 

applicative prospects just target the single pollutant dye has not been a sufficient 

feasible approach.  For the same, the photocatalytic performance of the wsGNS [23, 

24] was extended concerning the photocatalytic degradation of the three different 

individual model dyes as CV, RhB, MB and their mixture (CV+RhB+MB) under the 

influence of the natural sunlight. A simpler methodology described in scheme 1, 

illustrates the significant usage of BC derived wsGNS as a photocatalytic material 

under the influence of natural sunlight for the photodegradation of three different 

dyes as CV, RhB, MB and their mixture (CV+RhB+MB). As well, includes the 

sustainability of the overall process, concerning the reuse of the treated wastewater 

for growing the wheat plants.   
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Scheme 5.1: Schematic representation illustrating the application of the wsGNS for 
the photodegradation of the three different dyes and their mixture under the presence 
of sunlight. Further, the treated wastewater was being employed for growing the 
wheat plants. 
 
5.3.1  Microscopic and Spectroscopic Characterization 

TEM was used to analyze the morphology of wsGNS (Figure 5.1 (a)), which 
displays the randomly oriented layers of wsGNS with a lot wrinkled and crumpled 
surface morphology. HRTEM image (Figure 5.1 (b)) showed the existence of mutil-
layered wsGNS. Randomly oriented surface dents and graphitic patches are also 
evident in HRTEM images (Figure 5.1 (c), which are attributed to high-density 
surface functionalization [26]  of wsGNS. The morphological insights of the wsGNS 
is shown in Figure 5.1 (c) confirm the lattice fringes, existence of multi-layers 
graphene (black arrows showing ~ 5 layers) in wsGNS and the presence of 
differentially oriented graphitic patches (marked by red circles). The interplanar 
spacing of ~ 0.36 nm as shown in Figure 5.1 (c) could be assigned to the (002) plane 

of the few-layer wsGNS.  
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XPS measurements were describing the surface elemental composition and 
the nature of surface functional groups on the surface [23].  XPS spectrum (Figure 
5.1 (d)) of wsGNS shows the two characteristics prominent peaks at ~ 284.4 eV and 
~ 532.1 eV for the C1s and O1s respectively. The high resolution C1s XPS spectrum 
(Figure 5.1 (e))  was deconvoluted into five states of C1s as C=C, C-C, C-O, C=O, 
and COO- corresponding to the binding energy of 284.2 eV, 284.8 eV, 285.6 eV, 
286.7 eV and 288.8 eV respectively. Figure 5.1(f), shows the high resolution O1s 
XPS spectrum, which exhibits the presence of three peaks at 531.3 eV, 532.5 eV and 
533.7 eV corresponding to C-O, C=O, and COO- respectively. The elemental 
composition analysis of wsGNS by XPS shows the presence of ~ 80 % carbon and 
~20% oxygen.  

 

Higher oxygen content confirms  the incorporation of high-degree of the 
negative organic functional moieties as hydroxyl and carboxyl groups over the 
surface of wsGNS as the surface defects. The high-density surface-defects have the 
strong ability to facilitate the photocatalytic efficiencies of the wsGNS, for the 
photodegradation of the dyes and their mixture in the influence of sunlight. 

 

 
Figure 5.1. (a, b)  Low-resolution TEM images of wsGNS; (c) HRTEM image of 
wsGNS show existence of few-layered graphene sheets with surface defects; (d) A 
full survey scan XPS analysis of wsGNS along with its corresponding short scan;  
(e) C1s; and (f) O1s. 
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5.3.2  Photocatalytic Dye Degradation under Sunlight Irradiation 

A detailed UV-Vis absorption study as shown in Figure 5.2 (a-e) shows the 

relative change in concentration of respective dye and its mixture (decrease in the 

color intensity) as a function of time under the presence of sunlight. Figure 5.2 (a-c) 

shows that there is a gradual decrement in absorption maxima with time at 589 nm 

for CV, 554 nm for RhB and at 663 nm for MB. Figure 5.2 (d) shows the absorption 

spectra of the mixture of dyes (CV+RhB+MB) which can be easily differentiated 

based on the three separate individual peaks in the mixture because of absorbance 

associated with CV, RhB, and MB with inset showing violet curve for CV, pink 

curve for RhB and blue curve for MB. Figure 5.2 (e) shows the gradual decrease in 

absorption maxima for different dyes in the mixture by wsGNS under sunlight 

irradiation and within 225 min mixture of dyes has been decolorized as observed by 

UV-Vis absorbance study.  
 

 
Figure 5.2. UV-Visible absorption spectra of (a) CV; (b) RhB; and (c) MB with 
time; (d) mixture of dyes (CV+RhB+MB) with inset showing violet curve for CV, 
pink curve for RhB and blue curve for MB; (e) UV-Visible absorption spectra of 
mixture of dyes with time by wsGNS under sunlight irradiation. 
 

The photocatalytic degradation efficiency of wsGNS displayed in Figure 5.3 

for the freshly prepared three different dyes and their mixture (all the individual 

dyes are having the concentration of 20 ppm and for the mixture it contains the 20 

ppm of the each dye) [58, 60-62]. An adsorption-de-adsorption balance was attained 
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between the wsGNS and dyes (CV, RhB, MB) and their mixture (CV+RhB+MB) 

for the initial time of 30 min via the stirring. In the dark at the same experimental 

conditions, prior to the process of the photocatalytic degradation. It was observed 

that ~ 11 % CV, ~10 % RhB, ~ 11 % MB and ~ 12 % of their mixture 

(CV+RhB+MB) were adsorbed on the wsGNS in 30 min.  

 
The photocatalytic degradation of dyes was accessed by monitoring the 

relative change in concentration with time, concerning the rate of decolorization. 

The change in intensity of characteristic peaks using UV-Vis absorption 

spectroscopy was recorded for CV, RhB, and MB at 589 nm, 554 nm, and 663 nm 

respectively. As expected, the different rate constant for the photodegradation of 

different dyes could be attributed to their difference in the chemical structures. In the 

presence of wsGNS, MB shows the fastest photodegradation  ~ 99 % within 100 

min, CV shows ~ 99% within the 120 min, while the RhB takes a bit longer time ~ 

225 min (might be because of the complex organic framework of CV and RhB in 

comparison with MB) to shows ~ 99% of its photodegradation as shown in Figure 

5.3 (a). In the same panel, Figure 5.3 (b) shows the apparent rate constant related to 

the photodegradation of MB, CV and RhB as 0.0512 min-1, 0.0263 min-1 and 0.0109 

min-1 respectively. Concerning the photocatalytic degradation of the mixture of dyes 

(CV+RhB+MB), the absorption spectrum shows the appearance of three different 

peaks (589 nm, 554 nm, and 663 nm) related to their respective three different dyes 

as CV, RhB, and MB respectively. The clarity in differing the three peaks is very 

much advantageous for the present study.  

 
The photodegradation efficiency (illustrated in Figure 5.3 (c)) of respective 

dyes from the mixture (CV+RhB+MB) was being analyzed based on their respective 

absorbance value (λmax values of 589 nm, 554 nm, and 663 nm). Similar to the 

individual dyes, the mixture of dyes displays the progressive decrease in its 

concentration by wsGNS under the presence of sunlight Figure 5.3 (c). The 

degradation rates of dyes in mixture were found to be 180 min for the MB, and for 

the case of CV, and RhB it is ~ 225 min. The rate constant for CV, RhB, and MB 

was observed 0.0145 min-1, 0.0124 min-1 and 0.0226 min-1 respectively based on 

their photodegradation efficiency observed at their respective λmax values. The 
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decrease in rate constant in the mixture of dyes, compared to the individual dyes can 

be because of the competitive occupancy of optically active centers in-between the 

photodegradation process over the surface of the wsGNS. Concerning the control test 

for the photocatalytic degradation of the respective dyes and its mixture in the absence 

of wsGNS could almost be overlooked (as shown in the inset of the Figure 5.3 (a and 

c), which confirms the high photostability of dyes under the presence of sunlight.  
 

 

Figure 5.3. (a) Extent of plot of (C/Cο) (with inset showing photocatalytic 
degradation of the respective dyes in the absence of wsGNS) ; with their (b) 
respective plot of ln(Cο/C) for the individual dyes (CV, RhB and MB); (c) Extent of 
plot of (C/Cο) (with inset showing photocatalytic degradation of the mixture of dyes 
in the absence of wsGNS) of a mixture of dyes; with their (d) respective plot of 
ln(Cο/C) for the mixture of dyes; under dark and sunlight condition. 
 
5.3.3  Trap Study  

To explore the active moieties involved in photocatalytic degradation of dyes 

[31, 68-79] under direct sunlight irradiation radical scavengers were introduced to 

trap specific reactive species. A simpler trap experiment has been performed based 

on the scavenging properties of Na2-EDTA for trapping of the surface generated h+, 

a) 

c) d) 

b) 



Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation …… 

130 

t-BA for trapping •OH radicals, and p-BZQ for the trapping of O2
−• radicals. In all 

the cases, concentrations of scavengers were fixed at 1 mM, and their effects were 

observed in the change in concentration of dyes (in terms of C/Co) as displayed in 

Figure 5.4 (a-c) for CV, RhB, and MB respectively. As perceived in Figure 5.4 (a-c) 

the photodegradation process in comparison to control where no scavengers were 

used considerably inhibited in the presence of t-BA and Na2-EDTA implying that •OH 

radicals and h+ are significantly participating in the process of the photodegradation. 

The degradation efficiencies of dyes, on the addition of t-BA decrease from 99% to 

13%, 99% to 12% % and 99% to 11 % for CV, RhB, and MB respectively. Similarly, 

the addition of Na2-EDTA reduces the degradation efficiency from 99% to 21%, 99% 

to 20 % and 99% to 21 % for CV, RhB, and MB respectively. Contrary to additions of 

t-BA and Na2-EDTA, a very slight decrease in the photodegradation efficiency of dyes 

observed with the addition of p-BZQ, supporting that O2
−• are not actively participating 

in photodegradation process. Almost similar trends were observed for the mixture 

(CV+RhB+MB) of dyes Figure 5.4 (d). 

 

 

Figure 5.4. Effect of scavengers t-BA, Na2-EDTA, and p-BZQ for •OH, h+, and   
O2

−• radicals respectively on the degradation performance of (a) CV; (b) RhB; and 
(c) MB; (d) on the mixture of dyes. 
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 Based on the results from the trapping experiments, a schematic of the 
possible mechanism for the photocatalytic degradation of the dyes and their mixture 
by wsGNS under the direct sunlight irradiation is proposed in Scheme 5.2. The high-
degree of the surface functional groups as surface defects on wsGNS made a 
considerable contribution for the energy absorption and the photocatalytic activity. 
wsGNS get photosensitized during the irradiation of sunlight, and the electron-hole 
pairs are generated (equation 1 and equation 2 from scheme 5.2). The trapped 
photoexcited electrons were lead to higher charge transfer and electron-hole pair 
separation efficiency, while the photo-induced holes accumulated on the surface 
adsorbed water molecule would initiate the generation of hydroxyl radical which 
might directly react with dyes (equation 3,4 from scheme 5.2). Hydroxyl radical, as 
the predominant species attacked on dye molecules and contribute towards the 
effective photodegradation of respective dyes and its mixture (equation 5-7 from 
scheme 5.2). 
 

 
Scheme 5.2. (a) Schematic illustration showing degradation of different dyes using 

wsGNS under sunlight irradiation; (b) with their respective suggested pathways. 

 
5.3.4. 1H NMR Investigation of Degraded Products of CV, RhB and MB and 

its Mixture (CV+RhB+MB) 

Concerning about the formation of the smaller fragments of the respective 
dyes during the process of the photodegradation. A straightforward comparative 1H 
NMR analysis was carried out for the control sample (individual dye and its 
mixture) versus the photodegraded products of respective dyes and their mixture 
(CV+RhB+MB). Figure 5.5 (a-d) shows the comparative aqueous phase 1H NMR 
analysis of the control dyes and their mixture (CV+RhB+MB) with their respective 
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photodegraded products. The 1H NMR spectra of CV, RhB, and MB (Figure 5.5 (a-
c)) were taken before and after the photodegradation of dyes (sample collected from 
the supernatant  from the pool of dye-wsGNS system was being dried and dissolved 
in D2O for the 1H NMR analysis). After the time interval of the four hours of 
sunlight irradiations; the samples were collected for all CV, RhB, MB and their 
mixture (CV+RhB+MB), for NMR analysis. 

 
Figure 5.5 (a), shows the proton peaks associated with the aliphatic and 

aromatic region of the CV. 1H NMR (400 MHZ, D2O): δ (ppm) 3.03 (s, 18H), 6.50 
(d, J=7.6HZ, 6H), 6.87 (d, J=7.6HZ, 6H). Over a comparative analysis after 
photodegradation experiment for four hours of sunlight irradiation on the pool of 
CV-wsGNS mixture, it shows the breakage of the complete aromatic framework of 
the used dye (disappearance of the signals associated with the aromatic protons). As 
well, the 1H NMR spectrum of the photodegraded CV showed the appearance of 
new smaller aliphatic peaks at δ 2.15-3.28 ppm (m, fragmented hydrocarbons), 
which can be directly related to the disintegration/mineralization of the original 
aromatic organic framework of CV molecules into the smaller aliphatic fragments. 
Similarly, for the other two dyes (RhB and MB), the same has been observed. 

 
The proton signals from the RhB (Figure 5.5 (b)) were divided into the two 

regions; 1H NMR (400 MHZ, D2O): δ (ppm) 1.12 (t, J=7.2, 12H), 3.39-3.50 (m, 8H), 
6.55 (d, J=2HZ, 2H), 6.74 (dd, J=2HZ, J=9.6HZ, 2H), 6.69 (d, J=9.6HZ, 2H), 7.29 (d, 
J=7.2HZ, 2H), 7.71-7.79 (m, H,H), 8.12 (d, J=8, 1H). After the photodegradation, 
signature proton signals from RhB does not appear as before degradation, as well as 
almost the disappearance of the intense aromatic signals and the emergence of the 
few aliphatic protons δ 1.23-3.31 ppm (m, fragmented hydrocarbons) is in support of 
the disintegration of the complex organic framework of the RhB molecules into 
smaller aliphatic components.  

 
Likewise, in the case of MB, before photodegradation following peaks 

appear in 1H NMR spectra (Figure 5.5 (c)), 1H NMR (400 MHZ, D2O): δ  (ppm) 2.97 
(s, 12H), 6.57 (s, 2H), 6.82 (d, J=8.8H, 2H), 7.01(d, J=8.8HZ, 2H), and after the 
photodegradation, showed its dissociation into the smaller hydrocarbons (δ 2.19 
ppm to 3.31 ppm) in the aliphatic region and the aromatic signals were disappeared 
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entirely. Similar to the individual dyes, the photodegradation of the mixture of dyes 
(CV+RhB+MB) has also been analyzed by 1H NMR. 

 

 
Figure 5.5. The chemical structure of  (a) CV; (b)  RhB; (c)  MB; and (d) Mixture of 
dyes; including with their respective 1H NMR spectra, before and after their 
photodegradation by wsGNS. Inset of all figure (a-d), shows the digital images of 
respective dye (a-c); and their mixture (d) before and after the photodegradation. 
 

A similar result was observed for the mixture of dyes in Figure 5.5 (d), 
which shows a comparative 1H NMR spectrum of the mixture of dyes; before and 
after the photodegradation experiment. The proton signals associated with the 
mixture is of now becomes a complex system of the organic molecule, so the 
individual assigning of the proton signals is being excluded here. But after the 
photodegradation (Figure 5.5 (d)), a complete change in the proton signals; before 
and after the photodegradation is being observed. After the photodegradation, the 
disappearance of aromatic protons has strongly advocated the disintegrations of the 
complex organic frameworks of the mixture of dyes. 1H NMR analysis as described 
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above shows the strong influence of wsGNS under the presence of sunlight for the 
photodegradation applications of the pollutant dyes and their mixture (CV+RhB+MB). 
 
5.3.5.  Regeneration Recycling Study  

In addition to the photodegradation efficiency, the recycling ability of a 
photocatalyst is an important parameter to define the sustainability of the new 
proposed process. The reusability performance of the wsGNS employed up to the 
four cycles under sunlight irradiation towards a mixed dye solution as shown in 
Figure 5.6 After the four cycles, there is the only loss of ~ 22 % in the degradation 
efficiency. The decrease in efficiency could be attributed to loss of material during 
recycling. Due to higher stability, recoverability, and reusability, the pollutant soot 
derived wsGNS could be used as an efficient material for the photodegradation of 
the mixture of the pollutant organic dyes in the real samples also. 

 

 
Figure 5.6. Photodegradation activity of wsGNS after the four cycles of recycling 
testing in the case of the mixture of dyes. 
 
5.3.6.  Effects of Interfering Substances 

To check its possible potentials for the practical-applications, the 
photodegradation efficiency of wsGNS was further been examined in the presence 
of various interfering ions [59]. Different interfering ions were mixed separately into 
separate dye solution and their photodegradation were carried out at same 
experimental conditions as discussed above.  Figure 5.7 (a-c) displayed the 
photodegradation efficiency of wsGNS towards CV, RhB, and MB in the presence 
of diverse interfering ions (100 ppm of Ca2+, Fe3+, SO4

2-, HPO4
2- , NO3

- , Cl-), 
suggesting that the photodegradation efficiency of wsGNS was not significantly 
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affected even in the presence of many interfering ions. Only few ions were observed 
to affect the photocatalytic efficiency.  

 

 
 

Figure 5.7. Effect of different interfering ions Ca2+, Fe3+, SO4
2-, HPO4

2- , NO3
-, and 

Cl- ions (100 ppm) on the decolorization efficiency of (a) CV (b) RhB, and (c) MB 
separately by wsGNS with respect to control;  (d-i) Effect of different interfering 
ions Ca2+, Fe3+, SO4

2-, HPO4
2- , NO3

-, and Cl- ions (100 ppm) on the decolorization 
of mixture of dyes with respect to control. 
 

Such as in the  case of CV, only HPO4
2- intervened a bit, while in case of 

RhB dye it is only Cl- ions and in the case of MB, the SO4
2-, HPO4

2- , and NO3
- ions 

are being interfered for its photodegradation. Similarly, for the mixture of the dyes 
(CV+RhB+MB) the effects of these interfering ions on the percentage degradation 
are shown separately in Figure 5.7 (d-i). The dye degradations were monitored 
separately at their respective λmax values of 589 nm, 554 nm, and 663 nm for CV, 
RhB, and MB respectively. In the described range the degradation of CV and MB in 
the mixture of dyes was not affected by most of the ions except for HPO4

2- while in 
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case of RhB, Cl- ions affected the degradation of RhB in the mixture of dyes. The 
delay in photodegradation of dyes in the presence of SO4

2-, HPO4
2- , NO3

- and Cl-

might be because of reaction of positive holes with these negative ions. Like there 
may be competition of negative ions with negative surface groups of wsGNS for the 
photodegradation of cationic dye molecules [59].  
 
5.3.7.  Treated Wastewater for the Growth of Wheat Plants 

A simple eco-toxicological bioassay like the growth of plants from the 
germinated seeds was performed to check suitability and sustainability of overall 
photocatalytic process, related to the possible reuse of the treated waste water [80]. 
Influence of dyes and their mixtures before and after the photodegradation with 
control and with wsGNS (only DI water and in wsGNS) were investigated on the 
growth of wheat plants as one of the most sensitive and fast growing plants. One day 
germinated wheat seeds were grown with pollutant water containing dyes, their 
mixtures and photodegraded treated wastewater and growth were observed after the 
15 days of germination as shown in Figure 5.8. The solutions of dyes and their 
mixtures before degradation showed a very-strong inhibition in the growth of wheat 
plants (Figure 5.8 (a)). However, the wheat plants were grown with photodegraded 
water showed the almost similar manner of growth compared to the control plants 
(treated with DI water and in wsGNS) (Figure 5.8 (b,c)). 

  

 
Figure 5.8. The effect of  dyes, their mixture versus treated wastewater on the wheat 
plant was tested for the 15 days of germination; Seeds treated with (a) dyes water 
and their mixture (CV+RhB+MB); (b) Control (as in DI water and in wsGNS 
solution); versus the (c) Treated wastewater of dyes and their mixture. 
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The growth observed in the case of wsGNS strongly advocated the non-toxic 

[23] behavior towards the plant growth. The obtained results are in the favor 

concerning the safe uses of the treated wastewater. But for the edible plants, more 

précised and the thorough studies need to be taken care. Indeed, this practice can 

further lessen the overexploitation of natural water and could promote the reuse of 

treated wastewater to at least irrigate the playgrounds, parks, and gardens. 

 
5.4  Conclusion 

Environmentally benign isolations, cost-economic factors, and the utilization 

of the dangerous BC derived wsGNS as an advanced photocatalytic material is being 

explored here. For the almost complete photodegradation of the three chosen 

different organic dyes and their mixtures under the presence of natural sunlight. The 

complete photodegradation of the mixture of dyes was achieved within ~ 225 min of 

the sunlight exposure. The reactive oxygen species were responsible for the 

photodegradation processes identified as holes and hydroxyl radicals via the 

simplest radical trapping experiments. 1H NMR investigations of the photodegraded 

products after the degradation of dyes are confirming the breaking of the organic 

complex aromatic framework of the dyes into their smaller non-toxic versions. 

Further to sustain the overall sustainability of the whole process the photodegraded 

wastewater from the pollutant dyes is being used for growth of wheat plants, which 

shows the remarkable results compared to the dye treated plants. Further, the use of 

wastewater for growing the wheat plants could relate to with the practical 

sustainability of the treated water for its use in real-life applications. 
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6.1  Introduction 

 Carbon nanorods (CNR) [1] are representing a unique class of one-

dimensional carbon nanostructures, which may offer some advantageous properties 

in comparison with CNT [2, 3] since CNR offer straight, aligned, and hollow 

graphitic morphology. CNR are more or less similar to CNT, except their 

straightness. Spaghetti type arrangements of CNT restrict their many potential 

applications [4] that can be explored via the use of these CNR. Till now, CNR are 

the least explored in comparison with other members of nanocarbon family [2, 3, 5-

16]. All these allotropic nanocarbons such as MWCNT [2], SWCNT [3], fullerenes 

[5], CNO [6-8], CND [9], graphene [10], carbon nanofibres (CNF) [15], carbon 

nanocubes [16], CD [13, 14, 17-19] and GQD [11] have attracted a great concern in 

the diverse fields of science and technology because of their potential applications 

[4, 8, 11, 12, 20-34]. Based on the few published reports, CNR exhibited impressive 

electrical, thermal, and mechanical properties and are promising for field emission 

devices [35], composite materials [36], lithium ion batteries [37], energy storage 

devices [38], electrochemical applications [39, 40]. The primary barrier for the 

successful commercialization of CNR is its typical synthetic procedures, such as 

CVD, arc discharge methods, solvothermal synthesis, electrodeposition, catalytic 

copyrolysis, and soft and hard template methods [41-51]. All these synthetic 

methods involve expensive instruments, metallic particles for growing the CNR, 

high-temperature, multistep fabrication protocols, and sophisticated techniques that 

notably restrict their economic viability. A metal-catalyst-free synthesis of CNR can 

be a significant approach. 

 
Particularly for the biological application of CNR, aqueous solubility is the 

most important parameter, which requires the surface modifications like chemical 

functionalization with electrophilic groups (oxygen-rich species) [52] and bioactive 

groups [53]. The possible reasons for multicolored emissions from the single 

nanoparticle were attributed to the radiative recombination of photo-induced 

electrons and holes that present over the surface in the form of “surface defects” [8, 

13, 33]. These surface defects can be confirmed via various microscopic and 

spectroscopic techniques. Recently, it has been demonstrated that the shape-
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dependent photoluminescent CD relate “assemblies of fluorophores” [54] possibly 

located on the outer surface of nanocarbons. Phenomenologically these are similar 

as found in the case of semiconductors nanocarbons. 

 
 The simple synthesis of CNR at low cost without the use of a template or 

catalyst is reported in the present chapter by the pyrolysis of castor seeds oil 

(Ricinus communis) used as a green carbon precursor. The method could be used on 

a large scale. Castor oil is composed ⁓87% fatty acid (ricinoleic acid) and is 

extensively used in medicine as an antiviral, antibacterial, antifungal and analgesic 

agent; it is also used in cosmetics [55, 56]. The soot generated by burning castor oil 

in lamps was cleaned to remove any unburnt and volatile impurities. A simple HNO3 

treatment of the purified soot incorporated carboxylic acid and hydroxyl groups as 

surface defects [57, 58], introducing hydrophilicity that led to the formation of water 

soluble carbon nanorods (wsCNR). The high-density impregnation of these 

hydrophilic functional groups on the surface defects created by pyrolysis resulted in 

passivation of the surface [33, 59]. Such passivation in the presence of assorted sizes 

of wsCNR resulted in multicoloured PL over a broad range from green to red, with 

an extension into the NIR region. Such a simple catalyst-free method for the 

synthesis of fluorescent CNR at high yield from castor oil has not been reported 

previously.  

 
6.2  Experimental Section 

6.2.1  Materials and Reagents 

Castor seed (Ricinus communis) oil used here for the synthesis of wsCNR 

was purchased from a local market in Jaipur, India. MB and nitro blue tetrazolium 

(NBT) chloride were procured from S.D. Fine-Chemicals, India. Solvents like 

acetone, methanol, ethanol, petroleum ether, HNO3 and sodium nitrate are of 

analytical grade and procured from S.D. Fine-Chemicals, India. Sulfanilamide, N-

(1-naphthyl) ethylenediamine, diformazan dye, carbon tetrachloride (CCl4) and 

DNA were purchased from Sigma-Aldrich. All chemicals were of analytical grade 

and used without any further purification. 

 
 



Photocatalytic Dye Degradation and Detection of DNA by Multicoloured …… 
 

148 

6.2.2  Instrumentation 

FESEM analyses were carried using SUPRA 40VP, instrument operating 

under the high-vacuum mode at 10 kV (over the brass substrate (copper: 59.62 ± 

0.15, zinc: 39.62 ± 0.50 %)). The sample for FESEM analysis was made by 

dropping a dilute droplet of sample onto brass substrate, followed by its drying at 

ambient temperature. AFM images were taken in tapping mode under ambient 

condition using Pico SPM (Molecular Imaging). AFM sample was prepared by 

placing a dilute solution of wsCNR on freshly cleaved, highly oriented pyrolytic 

graphite (HOPG) surface. TEM and HRTEM were carried over the Tecnai 20 G2 

200 kV, operating at 200 kV for studying the internal morphology. UV-Vis and PL 

spectroscopy were recorded with a Perkin Elmer, Lambda 35 and Perkin Elmer 

LS55 respectively. Raman spectra were recorded with WITEC model Raman 

spectrometer using Ar+ laser (λex = 532 nm) as an excitation source. The samples 

were taken in powdered form and analyzed over the glass holder. Zeta potential 

measurement was carried out in aqueous medium with the Beckman Coulter Delsa 

TM Nano. TGA were performed with Mettler Toledo Star System under the 

continuous flow of argon atmosphere, with the heating rate of 10˚C /min, with the 

temperature ranges from 25-1100 ˚C. FT-IR was recorded with a Bruker Fourier 

transform infrared spectrometer (Vector 22 model). p-XRD spectra of Soxhlet-

purified soot and wsGNS were recorded at room temperature (Cu Kα radiation, scan 

rate of 3° min-1) and recorded on a Bruker D8 Advance Series 2 powder X-ray 

diffractometer. XPS was recorded in omicron multiprobe system. Electron 

paramagnetic resonance (EPR) spectra of CNR and wsCNR were recorded on a 

Bruker-EMX EPR spectrometer. Quantum yield values calculations were made by 

following documented procedure [60]. Fluorescence studies were imaged with a 

Leica (Leica DM 2500, Leica microscopy system Ltd., CH- 9435, Heerbrugg) 

inverted microscope using 488 nm, 532 nm and 631 nm band pass filters.  

 
6.2.3  Synthesis and Water Solubilization of CNR 

Soot was collected from the top of the flame in a glowing castor oil lamp. 

The height of the cotton wick was adjusted to obtain a large yellow sooty flame so 

that a large amount of soot was formed. Soot was collected by covering the flame 
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from the top with an upturned earthenware pottery bowl to avoid metal 

contamination [67].  About 5.0 g of collected raw soot was placed in a paper thimble 

(Whatman-1) and washed in a Soxhlet extractor using PET-ether, toluene, 

acetonitrile and acetone solvents in sequence. This removed any unburnt oil and 

organic derivatives such as polyaromatic hydrocarbons deposited with the 

accumulated soot. The Soxhlet-purified soot was air-dried and then added in 3.0 g 

portions (to control the exothermic reaction) to 200 mL of concentrated HNO3. The 

mixture was then refluxed for ~12 h to cause peripheral oxidation of the CNR and a 

large portion of the soot went into solution. The small amount of insoluble residue was 

separated by centrifugation and evaporated to dryness to give a solid black mass. This 

was repeatedly re-dissolved in minimum amounts of water and evaporated on a boiling 

water-bath until all traces of HNO3 had been removed [57, 61]. The yield of the water-

soluble product (as wsCNR) was ~80% based on the CNR. 

 
6.2.4  Photochemical Experiment 

A stock solution was prepared by dissolving 100 mg of wsCNR and CNR in 

200 mL of 20 mg L-1 MB solution. CNR were dissolved in solution by sonication for 

30 min and wsCNR just by shaking with hands. The aliquots were collected at the 

different time and then exposed to direct sunlight for 10 min. Aliquots of MB for 

photochemical degradation was analysed using UV-Vis spectrophotometer. The 

kinetic rate constant for the degradation of MB with wsCNR under visible light was 

analysed using the Langmuir-Hinshelwood model: 

 ln (Cο/C) = Kapp× t,                   (1)  

 
where Kapp represents the apparent kinetic rate constant and Cο and C are the initial 

concentration and concentration at time, respectively, and is the irradiance time. 

 
6.2.5  Deoxyribose Nucleic Acid (DNA) Sensing  

PL studies for DNA sensing were carried out at room temperature at an 

excitation wavelength of 460 nm. MB solution (6.25 ×10-4 M) was added stepwise at 

increments of 0.1 mL until a total of 1 mL had been added into 2 mL of an aqueous 

solution of wsCNR (2 ×10-5 g mL-1). The solutions were finally made up to a 

constant volume of 3mL. The fluorescence intensity of wsCNR was slowly 
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quenched by the addition of MB solution within 10 min. A 0.01 mL volume of DNA 

solution (8 ×10-3 mg mL-1) was then added to the quenched solution (wsCNR + MB) 

and restored the fluorescence within 2 min. 

 
6.3  Results and Discussion 

A simple, convenient and economic route has been developed for the 

synthesis of multicoloured fluorescent wsCNR without the use of a template or 

metallic catalyst; an almost quantitative (~80%) yield of CNR was obtained. The 

CNR were directly synthesized via the pyrolytic graphitization of castor oil. The 

high yield synthesis of CNR was repeated several times with castor oil from 

different geographical locations in India and each time a homogenous distribution of 

rod-like morphologies was obtained. The wsCNR were characterized by various 

spectroscopic and microscopic techniques and used for photochemical degradation 

of MB along with this their fluorescent properties were used in a sensor based on a 

fluorescent turn-off/turn-on mechanism for the selective and specific determination 

of DNA. 

 
6.3.1  Spectroscopic Characterization  

The as-obtained wsCNR had excellent solubility in water without the need 

for sonication as a result of high-density surface functionalization [16, 34, 62-65]. 

Figure 6.1(a) shows the solubility of the wsCNR at various concentrations from 0.1 

to 1 mg mL-1. The wsCNR remained in aqueous solution without any precipitation 

for several months. The UV-visible absorption spectrum (Figure 6.1(b)) shows an 

absorption band at 208 nm and a shoulder at 260 nm attributed to the π- π* transition 

of aromatic C=C bonds and the n-π* transition of the C=O bonds, respectively [57, 

61]. Figure 6.1(c) and (d) show optical photographic images of the wsCNR 

illuminated under ordinary (Figure 6.1(c)) and UV irradiation (Figure 6.1(d)). 

Excitation with UV light gave an intense green fluorescence that can be seen with 

the naked eye. 
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Figure 6.1. (a) Solubility of wsCNR immediately on adding the solid sample to 
water at concentrations of (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.4 and (5) 1 mg mL-1; (b) 
UV-visible absorption spectra of wsCNR; Optical images of wsCNR excited under 
(c) ordinary; and (d) UV light. 
 

The FT-IR and Raman spectra [8, 23-25, 66] clearly show the presence of 

C=C and C-C bonds and the related stretching vibrations of sp2 and sp3 hybridized 

carbons. The FT-IR spectrum of the CNR shows a sharp peak around 2942 cm-1 due 

to the presence of sp3 C-H stretching vibrations (Figure 6.2(a), solid line). A strong 

peak around 1620 cm-1 appears due to the presence of C=C stretching vibrations. A 

sharp peak around 1370 cm-1 represents sp3 C-H bending vibrations and the peak 

around 607 cm-1 indicates sp2 C-H bending vibrations, confirming the presence of 

the basic C=C structure with the sp3 carbon atoms. The FT-IR spectrum of the 

wsCNR (Figure 6.2(a), dotted line) show a very broad band around 3430 cm-1 due to 

the presence of O-H stretching vibrations originating from the hydroxyl group of the 

carboxylate groups and the hydroxyl group attached to the carbon atom. A strong 

peak at 1715 cm-1 is due to the presence of the C=O stretching vibration of the 

carboxylate group and a peak around 1638 cm-1 confirms the presence of C=C 

stretching. The peak around 1230 cm-1 represents the C-O stretching of graphitic 

carbon and a low intensity peak at 2942 cm-1 is due to the sp3 -C-H stretching 
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vibrations. Almost all these functional groups are missing in the CNR, suggesting a 

dominantly carbon-based material, but careful study showed the presence of weak 

vibrations due to -CH and C=O vibrations. 

 
Raman spectroscopy showed the extent of derivatization (Figure 6.2(b)). The 

IG/ID ratio before (solid line) and after (dashed line) derivatization clearly show the 

enhancement in derivatization. The G-band originated from the sp2 hybridized 

carbon atoms of the graphitic pool and the D-band arose from the disordered 

induced sp3 hybridized carbon atoms (mostly formed through oxidative treatment) 

[66]. The reduction in the IG/ID ratio of the CNR after derivatization indicated the 

decrease in the amount of sp2 graphitic carbon at the expense of sp3 hybridized 

graphitic carbon. The IG/ID ratio of the peak area of the wsCNR was reduced to 0.26 

from 0.36, confirming the increase in the surface defects of the CNR after 

derivatization. To confirm the presence of negatively charged surface functional 

groups, we determined the zeta potential of the wsCNR. The negative zeta potential 

of -35.88 mV confirmed the presence of carboxylate ions [8, 33, 67] on the surface 

of the wsCNR. To further quantify the sum of the carboxyl groups introduced onto 

the surface of the wsCNR, we used a simple acid-base titration to determine the 

weight percentage of carboxylic acid groups to be in the range 18-21% (this varied 

from batch to batch) [68]. The thermal stability of the surface carboxylic groups was 

investigated by TGA [8, 33] under an inert atmosphere. This was possible because 

the temperature required for the decomposition of the surface functional groups is 

much lower than that required to change the graphitic structure of the wsCNR. The 

selective removal of surficial -COOH (and C-OH) groups has been reported 

previously [69]. The TGA measurements were carried out in an inert atmosphere up 

to 1100◦C at a heating rate of 10◦C min-1. Figure 6.2(c) shows the weight loss versus 

temperature plots for the CNR (solid line) and wsCNR (dotted line). The CNR were 

comparatively more stable than the wsCNR and lost only ~12.38% of their weight 

up to a temperature of 1100◦C; the wsCNR lost weight progressively from 35◦C and 

by 1100◦C had lost ~54.57% of their total weight.  
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Figure 6.2 (a) FT-IR; and (b) Raman spectra of CNR before (solid line) and after 
(dashed line for wsCNR) derivatization; (c) TGA analysis of CNR (solid line) and 
wsCNR (dotted line) up to 1100°C; (d) XPS of wsCNR; (e) XRD patterns for the 
CNR (black line) and wsCNR (blue line). 
 

The weight loss of the CNR is related to the removal of trace amounts of C-

H and C=O functional groups at increased temperatures. The weight loss was more 

prominent in the wsCNR as a result of the presence of -COOH and -OH groups, 

which made up almost half of the total mass in the TGA study. At lower 

temperatures the gradual weight loss may be attributed to the release of adsorbed 

moisture, which is difficult to remove even under vacuum conditions. 
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The composition was further corroborated by a qualitative XPS analysis. 

Figure 6.2(d) shows a prominent peak for graphitic C1s at 282 eV and another for 

O1s at 530 eV [70, 71]. The relative intensity of these two peaks supports the 

presence of oxygen in atomic percent compared with carbon. This reflects the high-

density surface functionalization in the carbogenic wsCNR by the presence of a 

large number of carboxylic acid and hydroxyl groups. Figure 6.2(e) shows the 

powder XRD patterns of the CNR and wsCNR. The crystal plane diffraction peak of 

the CNR at a 2θ value of ~24◦ (0 0 2) was small compared with that of the wsCNR. 

Another diffraction peak started to appear at 2θ value of 42◦ (1 0 0) in the wsCNR, 

indicating that the wsCNR were more crystalline graphitic carbon [16, 61] than the 

CNR. This could be attributed to the removal of amorphous carbon-like impurities 

during the oxidative process. 

 
6.3.2  Microscopic studies 

The surface morphology, topography and internal structure of the wsCNR 

were studied by FESEM, AFM and TEM/HRTEM. Figure 6.3(a and b) show the 

FESEM images of the wsCNR under low and high resolution, indicating the 

presence of homogeneous wsCNR with negligible contamination by amorphous 

carbon.  

 
The length of the wsCNR ranged from several nanometers to micrometres 

and their diameter was in the nanometer range. The distribution in diameter was 

evaluated statistically and the histogram in Figure 6.3(c) shows that the diameter 

mainly ranged from 30 nm to 80 nm. The AFM image (Figure 6.3(d)) and its height 

profile analysis (Figure 6.3(e)) clearly show the non-uniform topographic surface of 

the wsCNR. 
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Figure 6.3. (a) Low- and (b) high-magnification FESEM images of wsCNR; (c) 
Histogram showing the distribution of diameters of the wsCNR; (d) High 
magnification AFM image; and (e) line profile (white dashed line) showing the 
irregular surface of the wsCNR. 

 
Figure 6.4(a and b) are low-resolution TEM images of the wsCNR showing 

the hollow graphitic nature of the nanorods with defective tips and surface walls and 

a large number of surface defects and irregularities (marked by white arrows) that 

are suitable for decoration with other molecules. Figure 6.4(c-f) are HRTEM images 

showing the crystalline multilayered graphitic structures and outer surface walls 

with interlayer graphitic planes of wsCNR at a spacing of 0.33 nm [8, 23-25, 34, 62, 

63]. 
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Figure 6.4. (a and b) Low magnification TEM images showing the defects on the 
surface of the wsCNR (white arrows); (c-f) HRTEM images showing the interlayer 
graphitic planes; (d) Magnified image of (c) (white box) showing the missing 
(broken) graphitic planes of wsCNR (white arrow); (e) HRTEM image of fused 
wsCNR with d002 = 0.33 nm; (f) HRTEM image focused on the outer wall of a 
wsCNR showing many surface defects (black arrows). 
 

Figure 6.4 (c) shows a HRTEM image with missing graphitic planes over the 

continuous wall of a nanorod (magnified image in Figure 6.4 (d)) Figure 6.4 (e) 

shows the hollow space in the centre of the nanorod and figure 6.4 (f) reveals the 

high-density surface defects over the multi-layered structure (marked with black 

arrows). 
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The surface defects could be used to tune the physical and optical properties 

of the nanocarbons [72]. A comparative HRTEM analysis of the as-produced 

Soxhlet purified CNR versus wsCNR was carried out. Figure 6.5(a) is a HRTEM 

image of the outer surface of the CNR (marked by the black bracket) showing the 

presence of an even wall with few surface defects and wavy graphitic planes. In 

comparison, the wsCNR (Figure 6.5(b)) showed a high degree of surface defects 

(marked by black arrows) that originated during the oxidative process. 

 

 
Figure 6.5. High-magnification TEM images of wsCNR (a) before and (b) after 
derivatization showing the incorporation of a high degree of surface defects (black 
arrows). Soxhlet-purified soot marked by black bracket. 
 
6.3.3  Photoluminescence (PL) Emission-Excitation Study and Fluorescence 

Microscopy  

The wsCNR exhibited PL properties even in the absence of any external 

surface passivating agents such as oligomeric [73] and monomeric amines [74]. The 

fluorescence appeared in the green to red region of the visible spectrum and 

extended to the NIR. Figure 6.6(a) shows the tunable excitation dependent PL 

spectra of wsCNR at different excitation wavelengths (400-660 nm) with a specified 

increment of 20 nm towards the longer wavelength region. Figure 6.6(b-c) show the 

magnified image of NIR emissions and the normalized intensities of PL. 

 
The fluorescence of the wsCNR was highly photo-stable and did not bleach 

when continuously irradiated at 460 nm for 5 h (Figure 6.6(d)). More significantly, 

the photo-stability of the wsCNR remained unaffected even in the presence of high 
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ionic strength NaNO3 (1 ×10-5 to 0.1 M; Figure 6.7 which is shown below). The 

wsCNR showed three PLE bands at 322 nm (3.85 eV), 340 nm (3.64 eV) and 390 

nm (3.17 eV) (Figure 6.6(e)), confirming the presence of multiple types of emitting 

centres [8, 23-25]. Figure 6.6(f) shows the relationship between different excitation 

and emission wavelength profiles. Figure 6.6(g-i) show the optical microscopic 

images of wsCNR placed on freshly cleaned glass slides under different bandpass 

filters at 488 nm, 532 nm and 562 nm. The precise mechanism for the excitation-

dependent PL of the carbon nanomaterials is still not clearly understood.  

 

 

Figure 6.6. (a) Fluorescence spectra of wsCNR at different excitation wavelengths 
from 400 nm to 660 nm at increments of 20 nm; (b) Magnified image of (a) showing 
emission profiles from the red to NIR regions; (c) Normalized emission profiles of 
(a); (d) Photo-stability of wsCNR at an excitation wavelength of 460 nm with 
continuous excitation for 5 h; (e) PL excitation spectra of wsCNR at an emission 
wavelength of 626 nm; (f) Relationship between excitation and emission 
wavelengths; (g) Fluorescence images of the wsCNR over a glass slide imaged 
under different bandpass filters of 488 nm, 532 nm and 562 nm. 
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Figure 6.7. Change in the fluorescence intensity of wsCNR upon addition of 100 µL 
of NaNO3 solutions of different concentration. 
 
 The excitation dependent emissive behaviour may be due to the diversity of 
surface energy traps between the π and π* orbitals of the C-C bonds. The radiative 
recombination of both photo-induced electrons and holes present on the surface of 
the wsCNR in the shape of defects may be similar to the effect reported for CD [75]. 
It has also been shown that the shape-dependent photoluminescent CD resemble 
“assemblies of fluorophores” [54]. Strong oxidative treatment results in the surface 
carbon framework becoming impregnated with high-density oxygen-rich species in 
the form of carboxylate and hydroxyl-type functional groups [75]. High-density 
irregular surface defects impose a high degree of asymmetrical self-passivation 
effects, resulting in quantum confinement capable of inducing tunable fluorescence 
emissions. The fluorescence quantum yield of the aqueous solution of wsCNR was 
measured as ~1.1% (with quinine sulfate as a standard) [60] on excitation at 400 nm, 
with the emission peak centred at 548 nm. The carboxylation step has been shown to 
further functionalize the wsCNR with amine-terminated polymers via carbodiimide 
chemistry [76-78] to achieve a better solubility in water; however, in this instance 
only carboxylation resulted in the wsCNR becoming freely soluble in water. This is 
helpful and could be used in biomedical applications. 

 
Application of wsCNR has been divided into two sections, Section A is 

photochemical degradation of MB by wsCNR and Section B is application of 

wsCNR for sensing and detection of DNA molecules. 
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SECTION A 
 

6.3.4  Photochemical degradation of MB 

Being concerned about the safety of ecosystem, especially the aquatic 
ecosystem, degradation of water-soluble contaminants in shapes of organic dyes via 
a simpler and viable approach is necessary and needs to be addressed with full 
attentions. In the present finding, wsCNR were explored for the visible light-induced 
photochemical degradation of MB in direct sunlight. For the production of many 
valuable products fabricated in textile, paper, and plastics industries/laboratories, we 
need to consume a lot of water-soluble organic dyes. These soluble dyes are further 
discharged with wastewater, where they are forming toxic complexes coupling with 
metal ions already present in aqueous system. Not only limited to the contamination 
of water, these are significantly hammering the photosynthetic activity of aquatic 
plants. Presently, various biological, chemical, and physical methods are available 
for the degradation of dye from sewage, like absorption, adsorption, flocculation, 
coagulation, ultrafiltration, and reverse osmosis, but unable to degrade properly as 
the transformation from one organic phase into another. To avoid this shortcoming 
of dye degradations, chemical oxidation, surface modifications [19], and Advanced 
Oxidation Process (AOP) are commonly used [79]. Still the existing methods could 
not be used potentially because of their high cost and incomplete degradation. 

 
To overcome this, photocatalysis emerged as one of the most significant and 

economically viable methods that only require the irradiation of light without the 
usage of any additional chemicals  [80, 81] [82]. Till now, many nanoparticles such 
as anatase TiO2 [80], Fe2(WO4)3 [81], ZnS, and CdS [82], are in use for dye 
degradation. But being composed of metallic in nature, their consequent toxicity is 
always the serious concern. Along with metallic nanoparticles, nanocarbons [19] 
were also explored for the dye degradation purposes. For example, doped CNT, CD, 
GO, graphdiyne, and graphene were used to degrade MB photochemically. Doping 
of nanocarbons with TiO2 [83], Fe and Cu [84], N [85], zinc ferrite (ZnFe2O4) [86], 
zinc oxide (ZnO) [87, 88], MnO2 [89], Gd [90] is a common practice but still 
fabrication is a tedious process. Herein, we reported a simple and viable method for 
the synthesis of undoped nanocarbons as wsCNR for the degradation of MB with 
more reliable and convenient route. To the best of our knowledge, the 
photochemical applications of wsCNR are not investigated till now. 
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6.3.4.1 Evaluation of Visible Light-Induced Photochemical Activity. 

  Solid-state EPR spectra of CNR (red line) and wsCNR (black line) at room 
temperature are shown in Figure 6.8(a). The EPR of CNR and wsCNR virtually 
showed the presence of very similar carbon radical signals. The average value of 
1.99 in both is due to the presence of stable carbon radicals in the singly occupied 
orbital of carbon in their ground state. Singly occupied orbital reveals the electron 
donor nature of both [65]. Electron transfer properties of these CNR and wsCNR 
would be an advantage for a broad range of photochemical reactions. 

 
Figure 6.8. (a) EPR spectra of CNR and wsCNR showing the presence of high 
intensity carbon radical peak only; (b) photochemical degradation of MB in 
presence of only MB, CNR, and wsCNR under sunlight (inset photographs of (1) 
aqueous solution of MB); (2) complete photochemical degradation of MB after the 
addition of wsCNR (120 min) to colorless solution; (c) UV-visible spectrum of the 
generation of ROS by wsCNR showing the formation of diformazan dye (inset 
change in color of wsCNR solution (1) before (2) and after (3) the addition of NBT 
upon photoirradiation); (d) corresponding plot of ln(Cο/C) versus time for 
photochemical degradation of MB dye using only MB, CNR, and wsCNR. 
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The degradation of MB by CNR and wsCNR was carried out at room 

temperature with irradiation of visible photons under direct sunlight. For the 

homogenous photochemical degradation of MB, the higher aqueous solubility of 

wsCNRs is an advantageous property. An aqueous solution of MB was taken in a 

quartz cuvette, and degradation of MB was monitored with the UV-visible 

spectrometer at time intervals of 10 min. An aqueous solution of MB was light blue 

in color as shown in the inset of Figure 6.8(b)(1). After the addition of wsCNR (100 

mg 200 mL-1), absorption intensity of MB (20 mg L-1) solution decreases gradually 

with time and finally the color of solution become colorless (inset of Figure 

6.8(b)(2)) and corresponding degradation efficiency (C/Cο) versus irradiance time is 

illustrated in Figure 6.8(b). Spectra were measured at a time span of 10 min with the 

irradiation of direct sunlight. After 120 min, blue colored solution turned colorless 

that confirms the maximum achieved removal of MB. wsCNR generate ROS on 

exposure to aerial oxygen in aqueous solution on irradiation of visible photons in 

day light. The generation of ROS was confirmed by the NBT test (Figure6.8(c)) [65, 

91, 92]. NBT was added in an aqueous solution of wsCNRs (inset of Figure 

6.8(c)(1)) with few drops of CCl4 and photoirradiated with visible photons. The 

change in color of CCl4 layer from being colorless (inset of Figure 6.8(c)(2)) to 

being of pink color (inset of Figure 6.8(c)(3)) in solution indicated the reduction of 

NBT and hence the formation of diformazan dye. 

 
The rate constant of MB degradation was calculated using ln(Cο/C) versus 

time plot as demonstrated in Figure 6.8(d) and was found to be 0.01387 min−1. MB 

(control) exposed to direct sunlight without the addition of wsCNR did not show any 

significant photochemical degradation under identical conditions (Figure 6.8(b)). 

We did analyse the photochemical degradation of MB exposed to irradiation of 

visible photons under direct sunlight in the presence of CNR and found less 

degradation in comparison to wsCNR as illustrated in Figure 6.8(b). Oxidation of 

CNR introduces surface defects which enhance the photochemical activity of 

wsCNR. The rate constant of wsCNR is approximately two times higher in 

comparison to the CNR as illustrated in Figure 6.8(d). 
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Zeta potential confirms the negative surface charge of wsCNR (-33.4 mV) 

and hence facilitates the adsorption of positively charged MB over wsCNR surface 

via ion-pair interaction [19, 33]. Paramagnetic nature of wsCNR (presence of high-

density unpaired electrons) facilitates the electron transfer between wsCNR and MB 

that would be the advantage of visible light-induced photochemical degradation of 

MB. Generation of singlet oxygen (1O2) occurred by energy transfer from wsCNR 

excited by visible photons to triplet oxygen (3O2) at the initial stage of 

photoreaction. Then reactive hydroxyl radical was formed and finally leads to 

superoxide anion radical (O2
∙−). ROS abstracted proton from water and react with 

NBT [93]. The possible overall reactions[93] are illustrated in Scheme 6.1. wsCNR-

MB complex was isolated to analyse its interactive surface modification during the 

photochemical degradation process.  

 

 
Scheme 6.1. A schematic illustration for the generation of reactive oxygen species 

and hence reduction of NBT induced by visible photon. 

 
FT-IR analysis of wsCNR-MB composite was done. FT-IR spectrum of the 

wsCNR-MB composite is shown in Figure 6.9(a). The presence of characteristic 

absorption bands at 2880 cm−1, 2984 cm−1, and 2829 cm−1 confirmed the presence of  

-CH3 and terminal N(CH3)2 groups. The degradation process can easily be 

monitored via FESEM analysis. Figure 6.9(b) shows the image of MB-interacting 

wsCNRs that reveals the adsorption of MB on wsCNR surface. 
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Figure 6.9. (a) FT-IR spectrum of wsCNR and MB composites isolated from the 
system. (b) FESEM image of wsCNR after adsorption of MB confirming its 
interactions. 
 
6.3.4.2 Conclusion 

In summary, wsCNR are produced by the conventional method of pyrolysis 

using castor oil as carbon precursor, followed by washing and oxidative treatment of 

as-collected soot. Because of the presence of high-density defective surfaces, carbon 

radicals are trapped here. Carbon radicals present over the nanocarbon surfaces are 

capable enough of generating ROS under irradiation of visible photons in direct 

sunlight via singlet oxygen-superoxide anion pathway. The wsCNR interacting with 

MB lead to the decolorization of MB in the presence of light through photochemical 

degradation reactions. This work is expected to open a new method for the 

preparation of wsCNR based nanohybrids/nano-composites for their practical 

application related to solving/minimizing the various environmental issues such a 

wastewater treatment to remove the organic pollutants and sensing of toxic metals. 

Moreover, in comparison with CNT due to their straightness, these may also be used 

for drug delivery purposes in future. 
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SECTION B 
 

6.3.5  Sensing of DNA Molecules 

The fluorescence of the synthesized wsCNR was used to determine DNA 

from calf thymus via a simple fluorescent switch-off/switch-on mechanism 

involving MB. Sensors for DNA are very important in diagnostic testing because the 

detection of disordered DNA is a powerful tool in the early diagnosis of disease, in 

the detection of genetic disorders and in the analysis of forensic samples [94-97]. 

Traditional DNA detection techniques use expensive instruments [96, 98]. 

Electrochemical methods [99, 100] for sensing of DNA require an additional 

reference electrode and there are difficulties associated with integration. 

Electrochemical DNA sensors are label-free, but have low sensitivity. Photochemical 

biosensors [101] have the disadvantages of photo-bleaching, a narrow excitation 

range and non-tunable emission spectra. Zhao et al. have reported the detection of 

zeptomolar amounts of DNA based on a polymerase chain reaction using metallic 

nanoparticles (an Au nanoparticle heterodimer covered with Ag or Au shells) [102].  

DNA has been determined using optical techniques based on the use of a labeling 

molecule attached to the target DNA, although this method is costly, time-

consuming and too bulky for use in portable devices [103].  

 
A few nanocarbon materials [104,105] such as CD [106-111], GO [112,113], 

and SWCNT [114-117] have been used for the detection of DNA, these have lower 

detection limits than with the system reported here. The fabrication and use of 

wsCNR is a new approach for such sensing applications. Our method uses wsCNR 

to determine DNA with an efficient detection limit and response time. We describe 

here the solubility of wsCNR in aqueous media, their stability towards photo-

bleaching during the experiment and their tunable PL emission properties. We have 

developed a rapid and cost-efficient nanocarbon-based sensor for the determination 

of DNA at low concentrations. This method could be used for the routine, low-cost 

determination of DNA in pathology laboratories. 
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6.3.5.1 Sensing DNA 

The PL properties of the wsCNR were exploited to determine DNA 
molecules via a fluorescence-based turn-off/ turn-on mechanism. The fluorescence 
properties of the wsCNR were efficiently quenched by the addition of MB [106, 
118]. A schematic representation of the plausible mechanism of the fluorescence 
turn-off/turn-on mechanism is shown in Figure 6.10(a). Figure 6.10(b) shows the 
effect of the gradual addition of MB to a solution of wsCNR. The PL properties of 
the wsCNR were quenched to a maximum, resulting in the fluorescence turn-off 
[119] of the wsCNR. The addition of DNA to the completely quenched sample 
solution restored the fluorescent properties, resulting in a turn-on mechanism. The 
fluorescence emission peak centred at ~626 nm showed a gradual decrease in 
intensity with the stepwise addition of 0.1 mL of MB solution (6.25×10-4 M) to a 2 
mL volume of wsCNR (2×10-5 g mL-1) up to a total of 1 mL (in each case the 
solutions were finally made up to a constant volume of 3 mL). 

 

 
Figure 6.10. (a) Schematic representation for the fluorescence turn-off/turn-on 
mechanism of the DNA detection method; (b) Fluorescence spectra showing 
maximum quenching with the stepwise addition of 0.1 mL of aqueous solutions of 
MB to the wsCNR; (c) Relationship between Io/I of wsCNR with various 
concentrations of MB; (d) Fluorescence turn-on (black trace) from maximally 
quenched sample (blue trace) after the release of surfacial MB molecules from the 
wsCNR after the addition of DNA and the fluorescence spectra of DNA as a control 
sample (cyan trace). 
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A 1 mL volume of MB quenched the fluorescence intensity to a maximum 

(Figure 6.10(b)). Figure 6.10(c) shows Stern-Volmer plots for the quenching of the 

wsCNR solution via the addition of MB, where Iο is the fluorescence intensity of the 

wsCNR solution and I is the fluorescence intensity after the addition of MB. The 

plot of Iο/I versus the concentration of MB shows a linear relationship, suggesting a 

dynamic and highly sensitive quenching process for the turn-off mechanism of the 

fluorescent properties [120-123]. Limit of detection (LOD) was determined using 

following equation:  

LOD = 3SD/K 

 
Where SD is the standard deviation of the blank measurements and K is the 

slope of the curve. The estimated detection limit was 1.14 nM, which is better than 
previously reported values [76,101,106,124]. Table 6.1 compares the sensing 
performance of various fluorescence sensors towards DNA. The positively charged 
MB molecules are adsorbed on the negatively charged wsCNR surface to create ion 
pairs. This results in the quenching of the fluorescent properties, as shown by the 
turn-off (blue) trace in Figure 6.10(d) [33]. After the addition of DNA, the MB 
molecules selectively attached to the DNA molecules by ion pair formation, 
removing them from the surface of the wsCNR. This resulted in fluorescence turn-
on (black trace in Figure 6.10(d)). The restoration of fluorescence resulted from the 
association of DNA with MB via electrostatic interactions between the DNA and 
MB molecules [124]. As illustrated in Figure 6.10(d) (cyan trace), a control 
fluorescence spectrum of DNA was obtained to check for the presence of any 
intrinsic fluorescence. 
 

Table 6.1. Performance comparison between various fluorescence sensors toward 

DNA molecule. 

Methods Response Time Detection Limit Ref. 
CdTe NCs-MB 5 min 4.23 x 10-8 M [101] 
CD-MB 15 min 1 x 10-6 mol L-1 [106] 
GO-organic dye NA 1nM [112] 
GO 30 min 10 nM [113] 
SWCNT 13h 6 nM [114] 
SWCNT several h 4nM [115] 
CdTe-TGA QDs-Porphyrin NA 2.72 x 10-9 M [124] 
wsCNR 2 min 1.14 nM Present study 
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Figure 6.10(d) (cyan trace) shows the absence of any auto-fluorescence caused 
by the DNA itself. The effect of DNA concentration on the fluorescence intensity of 
the wsCNR was investigated. The gradual addition of DNA resulted in a gradual 
increase in the fluorescence intensity of the wsCNR in a linear relationship (Figure 
6.11) The emission wavelength remained unchanged even at a relatively higher 
concentration of DNA. An enhancement in relative fluorescence intensity was 
observed on adding 0.33-3.3 µM amounts of DNA; this could be used to monitor the 
concentration of DNA. The LOD of the wsCNR-DNA system was 151.5 µM. 

 
Figure 6.11. Relationship between changes in fluorescence intensity of wsCNR 
upon addition of 10 µL of ct-DNA solutions of different concentration. 
 

The selective detection of DNA inside cellular systems is still challenging 
because of the presence of complex intracellular interactions. Our approach towards 
the detection of DNA is not only important with respect to its sensitivity, but also 
because of its selectivity suggests that it could be used for the specific determination of 
DNA among other biologically related molecules (e.g. amino acids, RNA) present in 
living organisms. The selectivity of the wsCNR towards DNA present with other 
biomolecules such as amino acids (aspartic acid, valine, methionine, tryptophan, 
cysteine), glucose and dopamine was investigated. We performed a similar set of 
experiments to those as carried out for DNA with these molecules. Figure 6.12 shows 
that restoration of the fluorescence intensity of an MB-quenched wsCNR solution 
reached a maximum (~95%) with DNA. Glucose showed a tiny inter-phase, whereas 
the other biomolecules did not affect the fluorescence turn-on. The turn-on mechanism 
was more sensitive than the turn-off mechanism. Therefore, the wsCNR-MB solution 
could function as a sensitive and selective fluorescence turn-on sensor for DNA present 
in mixtures of biological molecules. A linear relationship was observed between the 
amount of DNA added and the intensity of the fluorescence turn-on. 
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Figure 6.12. Maximum quenching of PL intensity of wsCNR at λ ~626 nm (black) 
after the addition of 1 mL of MB solution (red). Restoration of PL intensity of 
maximally quenched sample in the presence of different biomolecules (2 x 10-3 mg 
mL-1). λex = 460 nm. 
 
6.3.5.2 Responses with Different DNA Systems 

The fluorescence quenching of a wsCNR-MB solution significantly 
responded only to a calf thymus DNA system. The restoration of fluorescence was 
less effective for DNA extracted from E. coli plasmid and genomic DNA (Figure 
6.13). This can be explained by strong ion pair interactions [106] between the calf 
thymus DNA and the wsCNR. The fluorescence turn-on was more prominent for 
calf thymus DNA under the same experimental conditions. 

 

 
Figure 6.13. Maximum quenching of PL intensity of wsCNR ~ 626 nm (black) after 
addition of 1 mL MB solution (red). Restoration of PL intensity of maximum 
quenched sample in the presence of different types of DNA (0.01 mL, 8x10-3 mg     
mL-1). λex = 460 nm.  
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6.3.5.3 Conclusion 

The physical and optical properties of CNT are not typically coupled because 

of their spaghetti-like structure with numerous turns and kinks. This lack of 

straightness limits their potential applications in the biomedical sciences. CNR are 

similar to CNT, but have a straight alignment; they are, however, the least explored 

of all the carbon nanomaterials, probably due to their poor availability. We 

developed a straightforward method for the synthesis of CNR and their water-

soluble derivatives from castor oil seeds in nearly quantitative yields. With their 

extensive self-surface passivation, the wsCNR produced multicoloured emissions in 

the visible region and extending into the NIR. The wsCNR selectively sensed trace 

amounts of DNA and displayed a fluorescence turn-off/turn-on mechanism. This 

method could be used for the fast and low-cost determination of DNA at the nano 

level and could be used in diagnostic forensic kits. The possibility of using wsCNR 

as a Trojan horse to carry drug molecules is currently being explored. 
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7.1  Conclusion 

 The thesis explains a simple and sustainable methodology for the 

exploitation of dirty dangerous pollutant black carbon and waste soot of castor oil 

and exploration of their potential perspectives. This pollutant black carbon has been 

used as a sustainable source for destroying and degrading other pollutant materials. 

The environmental practicalities of black carbon soot for the isolation of nanosized 

graphene sheets and fabricate the tunable photoluminescent wsGNS. After simple 

oxidation of black carbon soot and waste soot of castor oil provides a suitable 

technique for the large-scale synthesis of carbon nanoparticles such as few-layer 

wsGNS and wsCNR) respectively. wsGNS being tunable in photoluminescence 

emissions covering the green and red regions with a slight extension in the near 

infra-red region. This high degree of passivation with negative surface functional 

moieties imparts the aqueous solubility along with excellent stability for its long-

term imaging purposes. In addition, wsGNS was used as fluorescence nanoprobes 

for the selective and sensitive detection of toxic and carcinogenic Cr(VI) in an 

aqueous solution and for the imaging of HeLa cells.  

 
 The substantial prospective of hazardous pollutant soot as an effective 

material for water remediation is further explored. Freely available pollutant petrol 

soot used for simplistic isolation of wsGNS which exhibited huge potential for the 

photocatalytic degradation of pollutant organic dyes. In comparison to GNS, 

presence of large amount of surface defects in wsGNS are efficaciously used for the 

artificial-light-induced (60 W tungsten bulb) photodegradation of MB and exhibited 

a higher rate of photocatalytic degradation.  

 
 Further, sunlight was used as a most promising sustainable light source. 

Photocatalytic dye degradation under artificial light and natural light was compared 

and found that sunlight induced photocatalytic dye degradation rate of methylene 

blue is greater than artificial light. wsGNS are being used here for the selective 

photodegradation of pollutant dye without harming the bacterial balance. wsGNS 

are nontoxic on the tested E. coli and S. aureus cells. This would sustain the 

environmental outlook and the sustainability of the overall described procedure.  
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Conclusively, reusability, recyclability and stability made this pollutant soot derived 

water soluble graphene nanosheets as a future alternative material which could be 

further employed in real applications of biomedical and biological sciences. 

Nontoxicity along with photocatalytic properties marks wsGNS as a potential 

material, which could be utilized thoroughly as a photocatalytic material for the 

photodegradation purposes.  

 
 Moreover, free of cost available photocatalytic materials (wsGNS) for the 

complete photodegradation of three individual dyes like crystal violet, rhodamine B 

and methylene blue and their mixture under the sunlight irradiation. The most 

probable photocatalytic mechanism is proposed based upon the trapping of active-

reactive species responsible for photodegradation and analysis of the photodegraded 

products with various spectroscopic techniques and exhibits that photodegraded 

products after the degradation of dyes are confirming the breaking of the organic 

complex aromatic framework of the dyes into their smaller non-toxic forms. The 

ability of water soluble graphene nanosheets were further studied under the presence 

of common interfering ions/substances. The complete photodegradation of the 

mixture of dyes was achieved within ~ 225 min of the sunlight exposure. By radical 

trapping experiments, reactive oxygen species which were responsible for the 

photodegradation processes identified as holes and hydroxide radicals. Further to 

endure the overall sustainability of the whole process the photodegraded wastewater 

from the pollutant dyes is being used for growth of wheat plants, which shows the 

remarkable results compared to the dye treated plants. Further, the use of wastewater 

for growing the wheat plants could relate to with the practical sustainability of the 

treated water for its use in real-life applications.  

 
 Apart from pollutant petrol soot, waste soot of castor oil has been used for 

the synthesis of carbon nanorods and their water-soluble derivatives in nearly 

quantitative yields. wsCNR produced multicoloured emissions in the visible region 

and extends into the near infra-red region due to extensive self-surface passivation. 

A viable approach is taken for the visible light-induced photochemical degradation 

of MB in direct sunlight by wsCNR.  wsCNR selectively sensed trace amounts of 

DNA and displayed a fluorescence turn-off/turn-on mechanism involving MB. 
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Sensors for DNA are very important as in diagnostic testing since the recognition of 

disordered DNA is a powerful tool in the early diagnosis of disease and in the 

detection of genetic disorders. DNA detection by wsCNR is easily and economically 

viable as compared to traditionally used expensive instruments. This method could 

be used for the fast and low-cost determination of DNA at the nano level. Thus, such 

water-soluble versions in form of wsGNS and wsCNR are made to being used for 

the explorations of wet side applications of waste derived nanocarbons in the field of 

aqueous phase photocatalysis and in the biological sciences.  

 
7.2    Future Scope 

 This presented thesis followed a simple and realistic approach for the 

exploitation of dirty, dangerous pollutant BC soot as the freely available carbon 

precursor for the isolation/synthesis of nanocarbons for multiple applications. A 

simple oxidative treatment is followed to achieve the water-soluble versions of 

wsGNS and wsCNR.  Such water-soluble versions are made to being used for the 

explorations of wet side applications of waste derived nanocarbons in the field of 

aqueous phase photocatalysis and in the biological sciences: 

 The present research offers the possibility for use of nanocarbons derived 

from pollutant soot as future alternative material that could be further 

employed in real-world applications.  

 wsGNS has been chiefly used for photodegradation of some other dyes 

cationic and anionic dyes. Additionally, higher instability and reusability, 

make wsGNS a strong photocatalyst material in wastewater treatment. 

Especially for the photoreduction of the toxic metal ions to their respective 

non-toxic oxidation states. There lies a scope where wsGNS could be used as 

a sensor for detecting and eliminating toxic ions from the wastewater.  

 The treated wastewater after the photodegradations of organic dyes can 

further lessen the overexploitation of natural water and could promote the 

reuse of treated wastewater to at least irrigate the playgrounds, parks, and 

gardens. 

 GNS from the BC could also be used to fabricate graphene-metal composite 

which finds their application as an active material for the electrode. This area 
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of research opens way for various applications like energy storage devices, 

electrochemical sensing, and as composite materials.   

 wsCNR can be used for drug delivery purposes in future. Fast and low-cost 

determination of DNA at nano-level could be used in diagnostic, forensic 

kits. CNR-composites can be manufactured for various electrochemical 

applications.  
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Currently, the air and water pollutions are presenting the most serious global concerns. Despite the 

be utilized for the practical and sustainable applications. For this, the almost complete aqueous phase 

+ +

The plausible mechanism behind the photocatalytic degradation of dyes and their mixture has 
been critically analyzed via the trapping of active species and structural analysis of photodegraded 
products. The impact of diverse interfering ions like Ca +, Fe +, SO −, HPO −, NO −, and Cl− on 

assessment of the whole process has been evaluated towards the growth of wheat plants using the 

almost the same in the photodegraded wastewater as being noticed in the control sample, while in 
case of dyes contaminated water it showed the retarded growth. Using the natural sunlight, the overall 
sustainability of the presented work holds the potential for the utilization of pollutant soot in real-
practical applications related to the wastewater remediation and further the practical uses of treated 
water.

The ever-growing desire to improve the quality of human lifestyle significantly promoted the rapid industriali-
zation and urbanization1–3. Primarily, associated with the accelerating advancement of the automotive industri-
alization, which can directly link to the release of dirty-dangerous pollutant black soot as black carbon (BC)4–7 
particulate matter in the environment. BC is closely related with global warming and at present is continuously 
deteriorating the environmental and human health7,8. Along with air pollutions, industrialization have also 
brought the another important concern related to the water pollutions9. So, the most demanding aggravated con-
cerns of the present world is to significantly reuse the waste products (it could also be the dangerous-dirty-BC)10 
and the treatment of wastewater11,12. From the standpoint of the overall environmental health, the discharge 
of the BC7 in air and the effluents of industrial wastewater13–15 (containing hazardous, carcinogenic and 
non-biodegradable organic dyes) in the water-bodies are unceasingly deteriorating the ecological balance16,17, and 
causes many serious diseases18–20. At present, few groups have explored the recent-promising approaches related to 
the adaptation of pollutant soot as freely avilable carbon precursor for the synthesis/isolation of the valued-added 
nano-carbons21–29. Such as carbon dots (CD)23, graphene nanosheets (GNS)24,25,27, single-walled carbon nano-
tubes (SWCNT)26, carbon nanoparticles22 for the diverse applications22,23,27 including the photodegradation of the 
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