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Abstract

Advances in digital technology have made malware program an easy source of financial gains by

selling personal and private information stolen from infected host systems. A Malware is a soft-

ware program that is capable of hampering our system’s integrity, availability and confidentiality.

The malware authors keep on enhancing the anti-detection capabiliites of malware to maximize

their monetary benifits and to defeat anti-malware solutions. Malware samples embedded with

these anti-detection features are termed as next-generation malware, a new class of threats that

exploit the limitations of existing anti-malware techniques to evade detection. Unfortunately,

current anti-malware technologies are inadequate to face modern malware. Therefore, in this

thesis we propose novel malware detection techniques that complement exsiting security solu-

tions.

Static approaches for malware detection are vulnerable to obfuscation techniques such as pack-

ing, code obfuscation, polymorphism and metamorphism. To nullify the impact of obfuscation,

security researchers started to explore dynamic approaches. The dynamic malware detection

approaches enable us to understand the run-time behavior of program binaries. We also, aim to

identify malware on the basis of their behavior. For this, we utilize system-call sequences since

system-calls provide a non-bypassable interface between user applications and OS. We propose a

dynamic host-based approach for categorizing malware samples on the basis of their run-time be-

havior. Formed categories indicate that within malware families, the samples constitute different

behavior due to their infection and anti-detection behavior. We compute a distance matrix using

Dynamic Time Warping (DTW) algorithm to form these groups. In conjunction to that, the

proposed approach also discriminates malware and benign executables. Moreover, to improve

the performance of proposed approach, we develop a parallel-version of DTW algorithm as we

observe that to align large system-call sequences DTW is computationally expensive.

Majority of dynamic behavior detectors do not account for two important anti-detection features

of modern malware i.e., 1) system-call injection attack and 2) Environment-aware malware be-

havior. The former category of malware samples inject irrelevant and independent system-calls

during the program execution thus defeating the existing system-call based detection approaches.

To address this problem, we propose an evasion-proof solution which is not vulnerable to system-

call injection attacks. Our proposed approach precisely characterizes the program semantics us-

ing Asymptotic Equipartition Property (AEP) mainly applied in information theoretic domain.

The AEP allows us to extract the information-rich call sequences which are further quantified

to detect the malicious binaries. In latter category, malware binaries sense the presence of syn-

thetic (non-real/virtual) environment and do not deliver actual malicious payload. We propose

an approach that detects and categorizes malware on the basis of their environment-reactive

behavior. We design a decision model that labels a program binary either clean, malicious or

having environment-reactive behavior.

We use three performance measures i.e., detection accuracy, evaluation with other datasets,

and system overhead to evaluate our proposed approaches. Our evaluation indicates that the

proposed approaches are effective in identifying real instances of malware binaries.
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Chapter 1

Introduction

Malware is a software program that is a persistent threat to any computer system’s

integrity, confidentiality, and availability [1]. The malware programs have become

chronic problem for today’s web connected systems. This is the consequence of

malware’s evolution into a more covert and cultivated malicious behavior.

The malware programs came into existence in the year 1981 when floppy disks

were infected by a virus named Elk Cloner. Prior to that, malware programs

were developed to show the technical and security skills of the developer. In

1988, Morris worm became first malware that caught the attention of mainstream

computer users as it infected most of the Internet of that time [2]. In following

years, malware became a severe threat to Internet and computer community as

everytime the damage caused by the malware was more intense than the previous

one. In such way, malware programs are continuously spreading on the Internet

with staggering speed and causing billion dollars of financial damage.

Malware writers have strong monetary, political and anti-business motives behind

such evil creations. They create platform-specific malicious codes. According to

virustotal [3] statistics, malware attacks against Windows binaries have the largest

share as compared to other binaries. Now, two questions arise from this. First, do

we still need PCs (laptops and Desktops platforms) when the current scenario be-

longs to mobile platforms? Second, do we require Windows OS? Responses will be

1



Chapter 1. Introduction 2

“yes” in both the cases. Though mobiles are equipped with network connectivity

and can store a good amount of data, these do not support software development

to a great extent.

1. PCs are enterprise friendly compared to mobile platforms in terms of using

sophisticated applications. The processor chips (Exynos, Qualcomm, Nvidia’

Tegra and Apple’s A6X) in mobiles, are still in their nascent phase as com-

pared to Intel and AMD chips.

2. Windows is the most popular operating system for desktop and laptop sys-

tems. This OS is likely to remain in existence for as long as desktop and

laptop systems are in use.

The malicious Windows binaries infect connected nodes of the network. The com-

promised infected nodes thus become the source of infection and through IP scan-

ning and vulnerability snooping, new victims of malware attacks are finalized [4].

Risks from malware such as data loss, data tampering, data breach and spying are

increasing day by day. These malware attacks [5] are categorized as, 1) Hit-Run

attacks and 2) Supply-chain attacks.

Former attacks include pay per click, ad pop-ups and high-cost dialing. These

attacks are limited to the group of randomly selected victims. Latter attacks are

specific and target the chain of victims that belong to various organizations such

as security agencies, software and IT firms, defence organizations, gas and energy

industries, etc.

According to Kaspersky report [6] new malware is focusing on diplomatic and

governmental agencies of various countries across the world. These next-generation

malware programs are highly complex and capable of fighting against the available

security solutions. Flame [7] and Stuxnet [8] are the examples of such kind of

malcodes. These programs are created to carry out cyber espionage for gathering

sensitive data from different organizations. Due to these attacks, security and

privacy of our data and system become the key issues to be looked upon.

To deal with malware programs, researchers have explored all the domains of mal-

ware analysis. These domains include detection, prevention, real-time response,
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damage-repair, reduction of false-positives (negatives), and many others. Out of

all the domains, detection is the first line of defense against malware programs. Ac-

cording to the advanced malware survey conducted by McAFee at BlackHat 2014,

the malware detection is the first choice of the security researcher. Figure 1.1

presents a pie-chart of domains of research interests as assessed from BlackHat

conference.

Figure 1.1: Advanced malware survey at BlackHat 2014.

1.1 Motivation

In order to avoid any infection or damage to our computer systems, various

malware detection solutions have been developed. Unfortunately, the increasing

amount and diversity of malware render various malware detection techniques,

ineffective [9]. Existing anti-malware solutions are either static or dynamic. The

static malware detection approaches rely on the signature databases of known

malware samples. A malware signature is a sequence of bits, bytes or patterns

that uniquely identify any malware. The malware signatures are used as the fin-

gerprint of a particular malware. The size of signature databases grows as the

number of new malware samples increases exponentially. These databases need to

be updated and distributed frequently to detect malware samples.
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In past few years, signature-based methods proved to be ineffective as malware

authors are also continuously searching the limiting constraints of malware detec-

tors to avoid detection. Polymorphism [10], metamorphism [11], packing [12], and

many other code-obfuscation [13] techniques are the examples of such constraints.

Malware armed with these techniques make static signature based detection, an

NP-complete problem [14]. However, some non-signature based approaches [15, 16]

have shown the effectiveness of their approaches against polymorphic and meta-

morphic malware detection. But, these approaches are vulnerable to zero-day

attacks and unknown variants of known malware [17]. Therefore, the static mal-

ware detection approaches produce high false alarms.

To nullify the effects of obfuscation, packing, polymorphism, and metamorphism

on malware executables, researchers have given preference to dynamic malware de-

tection approaches. In particular, the dynamic behavior-based malware detection

approaches utilize the semantics of a malware program by examining its runtime

interaction with system objects, resources, and services [18] as these approaches

are well suited for capturing new and unseen malware variants that are semanti-

cally similar malware variants.

Factors motivating work proposed in this thesis are summarized as follows:

1. The exponential increase of malicious threats: In 2013, AV-test Institute

discovered a total of ∼100 million new malicious files and this number has

reached ∼140 million in 2014 [19]. This explosion of completely new mal-

ware threats and variants of existing malicious programs causes substantial

damage.

2. Static malware detection approaches look for syntactic markers to identify

malware. These markers are rendered ineffectual while dealing with current

malicious threats equipped with various obfuscation techniques.

3. Existing AV solutions depend mostly on signature databases that need to

be updated frequently. In order to detect malware programs, the malware

signatures need to be distributed to user systems. Signature database size is

directly proportional to the number of malware samples and are becoming
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very large. For instance, ClamAV distributes more than 120 TB of signa-

tures [20]. Keeping such a large database in main memory is not feasible.

Comparing a sample with large database slows down AV performance making

users stop scans prematurely and exposing their systems.

4. Dynamic approaches for malware detection rely on the actual behavior of

binaries. These approaches are not vulnerable to obfuscation techniques

as the program behavior is observed by executing it in a safe virtualized

environment. As a result, these approaches provide better detection solution

for capturing unseen variants of known malware programs.

5. Non-signature based approaches are effective in identifying detection-aware

malware threats [21].

Due to aforementioned reasons, we present behavior-based dynamic malware de-

tection solutions that rely on program semantics instead of syntactic markers.

Figure 1.2 shows our research plan.

Figure 1.2: Research plan

1.2 Objectives

As discussed earlier, dynamic malware detection approaches are preferred by re-

searchers. But these also have certain limitations. Malware programs equipped
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with run-time anti-detection features can evade dynamic approaches as well. Due

to these anti-detection features malware programs show multiple behaviors during

run-time. These behaviors depend on presence of an AV scanner and/or vir-

tualized/emulated environment that may monitor malware’s behavior. In this

thesis, we first validate our heuristic that samples of same malware family consti-

tute different behaviors under same virtualized environment. We, then, propose

approaches that address two anti-detection features of the modern malware. Fol-

lowing are the prime objectives of our research work.

1. To develop non-signature based dynamic malware detection approaches that

cater to differentiate malware and benign programs.

2. To develop a technique that can be used to cluster together different behavior

groups within a malware family by exploiting runtime behaviors of malware

binaries. Malware families we have considered are virus and worms. Even

though different samples of virus (worm) groups form different clusters, these

clusters are still distinct from cluster formed by benign programs. This tech-

nique can be used for eliminating samples that are not too close to benign

cluster prior to in-depth analysis for the samples not properly classified for

overall speedup of classification.

3. To develop a detection solution that aims to identify malware programs with

environment-reactive behavior. The malware programs with environment-

reactive behavior do not have normal execution in virtualized environment.

In this work, we have tested our method for a total of four behaviors.

4. To construct a detection technique that employs the program semantics of

binaries. In addition to this, the proposed approach is also resilient to system-

call injection attack (runtime anti-detection feature of malware programs).

To validate the effectiveness of proposed approaches, we need to evaluate their

overall performance. This requires a dataset encompassing a reasonable number

of samples from all classes and with possibly every expected behavior. The per-

formance of proposed detection solutions is evaluated through real malware and

benign samples. The malware samples considered belong to different datasets.
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The performance metrics considered for evaluation are – 1) detection accuracy,

2) evaluation with other datasets, and 3) system overhead. Also, a comparison

of proposed solutions with existing state-of-the-art dynamic malware detection

approaches is also provided.

1.3 Contributions

This section provides an overview of our contributions resulting from the work

presented in this thesis. We have proposed various dynamic malware detection

approaches, which aim to address anti-detection features of modern malware. It

basically first explores that during runtime malware samples exhibit multiple be-

haviors in spite of belonging to same malware family. The discrepancies in behav-

iors arise due to the malware samples embedded with various anti-detection fea-

tures. Further, we focus on two anti-detection features i.e., environment-reactive

and system-call injection. To impart generality to our solutions, we have used

more than one malware dataset and evaluated the performance of our approaches.

Figure 1.3 illustrates the work flow of the thesis. The dataset preparation, behavior

monitoring and behavior modelling are the steps common to all the proposed

approaches of the thesis. The major contributions from our research work can be

summarized as follows.

1. We have carried out an extensive survey on the existing behavior-based mal-

ware detection approaches. Based on our literature review, we have observed

that most of the proposed approaches detect the malware on the basis of

its run-time behavior. These approaches fail to detect new malware samples

embedded with anti-detection features. We provide solutions that address

these new and improved class of malware.

2. We have proposed a detection and categorization approach [C-1] that is based

on the heuristic, which says that the samples of a malware family exhibit

different behaviors. These behaviors are due to the anti-detection features
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Figure 1.3: Work-flow

present in the malware samples. The proposed approach exploits the non-

uniformity in execution traces of malware samples. For this, we utilize Dy-

namic Time Warping (DTW) algorithm that generate distance score between

two samples. To reduce the computational complexity of DTW, we propose

and implement the parallel algorithm of DTW (P-DTW). The working and

results of proposed approach are presented in Chapter 3.

3. We have proposed an approach [C-2] that identifies and categorizes the mal-

ware samples exhibiting environment-reactive behavior. The proposed ap-

proach utilizes malware’s tactics of evading detection for predicting its reac-

tive and malicious behavior. For this, a multi-class model is prepared that

makes use of the multi-layer perceptron learning algorithm with error back

propagation. The experimental results (discussed in Chapter 4) indicate that

the proposed model is capable of finding the known and unknown instances

of malware binaries, which are environment-reactive.

4. We have also proposed a malware detection approach [J-1] that is resilient

against system-call injection attacks. The proposed approach characterizes

the program behavior in terms of semantically-relevant paths employed to

build and train our detection model. For this, we apply the asymptotic
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equipartition property (AEP-a concept adopted from information theory).

The concept of AEP is used to extract semantically-relevant paths that de-

pict program behavior. Further, we employ Average Logarithmic Branching

Factor (ALBF) to construct our feature space. The detailed discussion of

the proposed approach is presented in Chapter 5.

1.4 Thesis Structure

The remaining of the thesis is structured as follows. In Chapter 2, we present a

brief introduction to modern malware and infection strategies adopted by them.

Chapter 2 also includes a detailed survey of existing dynamic malware detection

techniques. Chapter 3 discusses our first malware detection and categorization

approach through application of DTW on malware behavior captured through

trace of system-call during runtime. The malware detection technique on the basis

of its environment-reactive behavior has been presented in Chapter 4. Using an

information theoretic approach, Chapter 5 presents a malware detection technique

by employing program semantics. In addition to this, it also shows that the

proposed approach is resilient to system-call injection attacks. Finally, Chapter 6

offers the conclusions of this thesis drawn based on the presented work and provides

pointers for future research.



Chapter 2

Malware Detection Techniques: A

Review

Before exploring the proposed approaches of detecting malware, this chapter pro-

vides the background information on contemporary malware and its infection strat-

egy as well as the terms used in this thesis. After introducing the recurring con-

cepts of the thesis, we present a comprehensive review of the published research

work in the domain of dynamic malware detection.

2.1 Contemporary Malware

In past four decades, malware has been transformed into its present complex form

by learning and adapting to new tactics of spreading infection and evading detec-

tion. These modern malware programs are coupled with many capabilities that

are used to protect them from available security solutions. These vicious codes

with similar behavior, propagation mechanism, the payload carried, and used in-

fection mediums are grouped and labeled with the same name. In Table 2.1, a

brief summary [22–29] of malware families such as virus, worms, trojans, rootkits,

bots, and spyware/adware has been presented. This table summarizes typical at-

tacks, characteristics, sub-divisions, and examples of each family. These malicious

10
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Table 2.1: Malware summary

Malware Characteristics Sub-type Examples

Viruses 1) Self-replicating. File viruses Sunday, cascade
2) Rely on other host programs for
propagation and infection.

Boot-sector viruses Parity boot, Disk killer

3) Can infect local and system files. Email Viruses Melissa, ILoveYou
Macro viruses Concept

Worms 1) Self-replicating. Internet Worms Code Red I&II
2) Do not rely on other program for
infection.

p2p Worms Benjamin

3) Target vulnerable machines in the
network.

Email Worms MyDoom, Love Letter

4) Exhaust system resources and net-
work bandwidth.

IM Worms Choke, Serflog

Trojans 1) Do not replicate. Remote Access (RATs) Back Oriface
2) Parasitic in nature. Data-Sending Badtrans.B
3) Pretend to be benign in the system. Destructive Goner
4) Perform a malicious task in the
background.

Denial of Service RFpoison, W32/Trinoo

Security S/W Disablers Bugbear

Rootkits 1) Apply self-hiding mechanism. User Mode Qoolaid, lkr, trOn
2) Have root privileges. Kernel Mode Da Ios
3) Can modify system objects like
SSDT, IDT, GDT, etc.

Firmware

Hypervisor

Bots 1) Provide remote access to its cre-
ator (Bot Master).

Click Frauds Clickbot.A

2) Can communicate with other bots
using Botnets.

Denial of Service Hameq, Waledac

3) Replicate themselves using botnets. Spamming Spambot
Phishing Pushbot
Distributing Malware Rimecud
Data Stealing Rbot, Zbot

Spywares & 1) Do not replicate. Cookies BrilliantDigital
Adware 2) Spy on user’s sensitive information

using ads/pop-ups.
Browser hijacker BonzaiBuddy

3) Collect and transmit information to
the attacker.

Games Elf Bowling

Ad popups Weatherbug, CoolWebSearch
Keyloggers Zlob

binaries can appear in three forms: 1) Known malware, 2) Unseen variants of

known malware and 3) New malware instances. All three forms undergo phases

of malware life-cycle. Figure 2.1 describes the journey of a typical malware from

penetration to activation stage. Throughout its journey of infecting a machine, a

malicious program locates a medium to enter into the system. Second, it applies

covert launching methods to initiate the execution. Third, it delivers the malicious

payload. Finally, once a machine is compromised, malware is ready to infect a new

computer. Figure 2.1 shows that difference in infection mechanism of old and new

malware. In this figure, “white circle” is employed only by contemporary malware

while the “black circle” is employed with the both obsolete and new malware.



Chapter 2. Malware Detection Techniques: A Review 12

Figure 2.1: Malware life-cycle

2.1.1 Penetration Mediums

Malware makes use of various sources to launch its attacks. The sources used

by malware to gain access to a computer are known as infection mediums. The

malware utilizes following mediums for infection.

• Vulnerability Scanning: Vulnerability is a security bug within a software

allowing malware to gain entrance into the system. Malware scans applica-

tions and exploits their flaws. The buffer overflow [30], dangling pointers [31],

privilege escalation [32], cross-site scripting (XSS) [33], and clickjacking [34]

are few vulnerabilities exploited by malware.

• Removable Media: Removable storage devices such as flash-drives, CDs,

DVDs, USBs are considered as the old methods of spreading infections. But,

these infection methods are still effective and cannot be neglected. Stuxnet [8]

in 2010, infected millions of machines across the world and was delivered

through a USB flash drive. These infected devices, when plugged into the

systems, start autorun applications by which malware enters into our sys-

tems.
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• Network Entity: High-speed communication network is a powerful weapon

to spread malware attacks. Networking entities such as p2p, instant messag-

ing, emails, shared networks, downloaders, and many more are responsible

for malware infection. Internet plays a major role in spreading malicious

attacks world-wide as it provides a way of connecting and communicating

the clean and infected computers. Remote access and anonymity are added

advantages for the malware writer when Internet is used as a medium.

2.1.2 Covert Launching

Malware authors are continuously sharpening and evolving the tools and tech-

niques to attack our systems. In this quest, these malicious software programs

are bundled with the techniques that covertly launch malware. Once the malware

enters into victim machines, it tries to launch its malicious payload. But, in the

presence of firewalls and security software, it could be detected. To hide its pres-

ence, malware is equipped with code to detect anti-malware solution(s) on infected

device. When such malware are alerted of presence of AV, these do not execute

malicious code and appear benign. Michael Sikorski et al. [35] presented covert

techniques incorporated by malware authors for evading AV detectors. Malware

embedded with these techniques are broadly classified into three categories viz.

Launchers, Injectors, and Replacers.

1. Launchers: Launchers are executable programs developed to load the ma-

licious payload into the system. The actual payload of these programs is

completely benign in nature, and the malcode is stored inside .resource

section of an executable. The .resource section is a non-executable section

to store logos, strings, and images. This non-executable feature of .resource

section makes it a choice to store the malicious code to evade the detection.

On execution, these programs load the malicious payload in memory and,

then, execute their clean code.

2. Injectors: These types of malware samples are very common. These pro-

grams inject malicious code into an executable binary that, on execution,
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unknowingly executes the malicious payload. Injectors make use of code

injection techniques. These techniques are as follows.

a) DLL-injection: DLL-injection loads a malicious DLL using

LoadLibrary function into the context of the running process.

b) direct-injection: Direct injection is done by directly loading the mali-

cious payload into the memory area of a running process.

c) Hook-injection: Hook-injection based malware leverages the Windows

hook capability. Hooks are used for message inception. Malicious pay-

load is released as and when that particular message is intercepted.

d) APC-injection. APC (Asynchronous Procedure Call) injection is im-

plemented to direct a thread to modify its execution path. Threads

of the running process queue APCs. APC is a function that exe-

cutes asynchronously in the context of a particular thread. These

APCs are processed when the thread is in the alertable state and

invokes WaitForSingleObjectEx, WaitForMultipleObjectsEx, and

Sleep function.

3. Replacers: Replacers are the malicious programs that overwrite the mem-

ory space of a benign running process with malicious payload when the pro-

cess is in a suspended state. Replacers invoke CreateProcess to create a

new process, which replaces the current suspended one. Then, these pro-

grams replace the victim process’s memory with the malicious code. Hence,

execution path of the running process is modified according to the malicious

payload.

2.1.3 Payloads

Payload is the main component of a malware executable as it decides the func-

tionality of the malware. Modern malware contains multiple payloads. Once the

malware comes in a running state, it executes its malicious payload. The payload

typifies a malware’s behavior. In addition to that, this malware may also be loaded

with other payloads to check that the running binary is not being monitored. If



Chapter 2. Malware Detection Techniques: A Review 15

so, the actual malicious payload is not executed. In subsequent paragraphs, these

payloads are described in brief.

• Malicious: These payloads include the code responsible for data steal-

ing, data manipulation, data removal, data corruption, unauthorized upload-

ing/downloading, disarming firewalls/AV Scanners, logging passwords/bank

transaction ID’s, spying, phishing to name few.

• Trigger-based: Trigger-based payloads decide whether to deliver malicious

payload based on trigger-conditions. These triggers include timestamps, sys-

tem events and network inputs [36]. Many viruses and worms attack the

systems on specific dates (specific weekdays or date) or a particular time of

the day. Some of the malware programs with this payload wait for certain

system or network commands or specific keywords to launch the malicious

payload. These types of malware programs remain dormant till the advent

of the trigger.

• Evasive Payloads: Present corpus of malicious binaries is detection-aware

employing many evasive techniques to defeat the anti-malware solutions.

These techniques are carried out with the help of payload that checks environ-

ment settings of running malware. Malware with evasive payloads may em-

ploy obfuscation, modifying system objects, anti-debugging, anti-sandboxing,

anti-vm and anti-emulation techniques. In the presence of emulated or virtu-

alized system settings, malware either stops its execution or mimic a benign

behavior to avoid the detection.

– Obfuscation: Polymorphic, metamorphic and packed malware programs

come under this category. These types of malicious codes evade static

signature-based malware detection. Variants with different syntactic

structures are generated while their functional behavior remains invari-

ant.

– Modifying System Objects: There exists some malware that modify the

system objects to hide their presence in the system. For instance, mod-

ifying EPROCESS linked list, the malware makes itself invisible in the

process list of the task manager.



Chapter 2. Malware Detection Techniques: A Review 16

– Anti-Debugging: Malware authors apply anti-debugging to prevent re-

verse engineering of malware binaries. They use win32 APIs to check

the presence of a debugger in the infected system. For instance,

DbgUIConnectToDbg is used to connect with the debugger present and

IsDebuggerPresent is a boolean function that returns a nonzero value

if the calling process is being debugged by a debugger.

– Anti-Emulation: Emulators provide a safe environment required to cap-

ture the execution sequence of a malware binary. These emulators imi-

tate a real system. Malware binaries incorporated with anti-emulation

apply timing difference checks, CPU semantics checks, and hardware

characteristics checks to evade the detection [37].

– Anti-Sandboxing and Anti-VM: Majority of existing approaches make

use of sandboxes and virtual machine to acquire the execution sequence

of malware binary. To escape from such detection, anti-sandbox and

anti-VM payloads are inserted into malware binaries. The interrupt

descriptor table (IDT), local descriptor table (LDT), global descriptor

table (GDT) values in virtual machines differ from real machines. By

checking these values, an application can determine where it is being

executed.

2.2 Dynamic Malware Detection

Malware detection approaches can be broadly classified into (1) static and (2)

dynamic. The static approaches to malware detection are susceptible to code ob-

fuscation, polymorphism, and metamorphism. Moser et al. [38] have explored the

limitations of static approaches in view of code obfuscation. They claimed that

static analysis alone was not sufficient to identify malware binaries. The dynamic

analysis is needed to complement static approaches especially for obfuscated/en-

crypted malware, gadgets and code injection attacks. Therefore, in recent years

security researchers have focused more on dynamic detection techniques to deter-

mine if an unknown binary is benign or malware.
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Dynamic approaches to malware detection utilize behavior features (dynamically

extracted) to build detection model. Dynamic analysis emphasizes on gaining

information about running executables and their interactions with system. Moni-

toring the behavior of running binary enables to collect a profile, which is less vul-

nerable to code obfuscation, packing, polymorphism and metamorphism. Behavior

profile is a set of activities performed by a binary program during execution. These

activities denote the action or reaction of malware under certain internal/external

input or environment states. To capture these activities, a standard sequence of

operations as shown in Figure 2.2 are carried out. The entire process is completed

in three steps: 1) Capture program behavior 2) Model captured behavior and 3)

Design a detection and categorization model.

Figure 2.2: Dynamic malware detection steps.
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2.3 Behavioral Profiling: Analysis Frameworks

Dynamic malware detection approaches rely on the execution of malware bina-

ries. As malware execution on physical machines/host can corrupt them, a safe

analysis environment supporting malware execution is the first step in analyz-

ing malware behavior. It provides isolation between host and guest operating

systems. Any side effects generated by the malware execution cannot harm the

host machine, and the modified and/or infected guests can be reverted to their

original clean state. Analysis environment should be immune to anti-debugging,

anti-emulation and anti-virtualization techniques employed by malware binaries.

Behavior profiling can be incorporated by live and dead analysis of running exe-

cutable. Former approach captures behavior during the malware execution while

the later approach investigates the raw memory dumps to examine the malware

footprints in memory. Tools like Vtrace, Procmon [39] and Responder-Pro [40]

capture specific activities (temporal and frequency attributes) of a process within

a guest environment.

2.3.1 Live Behavior Profiling

Live profiling enables analysis of the malware behavior during run-time. It gives

an overview of running program by capturing the activities that transpired at

runtime of binaries. To capture these live profiles, following in-box and out-of-

the-box mechanisms are used.

1. Emulators: Emulators such as ANUBIS (Analyzing Unknown

BinarieS) [41] and Panorama [42] provide the full system emulation for

capturing malware behavior. The emulated environment in ANUBIS and

Panorama is controlled by Qemu [43] that runs Windows XP as the guest.

These emulators log process, file, registry activities, loaded DLLs, API calls,

and system calls. The Emulator-based monitoring remains unaffected by the

anti-debugging and obfuscation techniques employed by malware authors to

defeat the detection. But, these systems are vulnerable to anti-emulation
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techniques [44] because these systems cannot correctly emulate physical real

CISC computers [45] in toto.

2. Sandboxes: Sandboxing techniques are also called as in-box-monitoring.

CWSandbox (Now, GFISandbox), Cuckoo and NormanSandbox are few

techniques to monitor an executable. CwSandbox and NormanSandbox col-

lect process-specific activities by API hooking. Hooking mechanism monitors

each function prior to its execution and collects activities related to file sys-

tem, registry modification, system calls and network traffic [26]. In addition,

Cuckoo includes the memory dumps of the windows for verifying the malware

presence. These approaches share the same privilege level as the monitored

application, therefore, the malware acting on kernel-level can interfere and

manipulate the logs of sandboxes.

3. Virtual Machines: Virtual machines such as VMware and VirtualBox

provide a guest OS environment that is a look-alike to real OS. This environ-

ment is used for tracing the logs of running malware. There are tools such

as procmon, strace, tshark, PIN and Windbg used to gather dynamic traces

in virtual machine environments. These tools are installed in guest OS and

collect the behavior patterns.

4. Hardware Virtualizers: Ether [46] and V2E [45] provide a transparent

analysis platform by incorporating hardware virtualization. Ether makes

use of XEN hypervisor to provide the same. It logs instructions, system-

call traces and unpacked dumps of the executables by intercepting EFLAG

register. It only provides single-step instruction tracing because in-depth

tracing will slowdown its performance. V2E, on the other hand also include

the software emulation for extensive binary analysis. It relies on TEMU

for emulation, therefore, its replay mechanism lacks in efficiency. Figure 2.3

shows the tracing architecture of Ether and V2E.
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Figure 2.3: Live-tracing: hardware virtualization [45, 46]

2.3.2 Dead Behavior Profiling: Memory Forensics

The role of memory forensics in behavioral malware analysis has become vital

due to the presence of detection-aware malware being executed in memory. These

malware programs can be captured by acquiring and analyzing digital artifacts

from memory. These digital artifacts include network activities, file activities,

registry activities, currently running process, loaded kernel modules, and other

critical information. The memory forensics can be implemented in two steps (a)

Acquisition of memory and (b) analysis of acquired memory dumps for incidence

responses.

2.3.2.1 Memory Acquisition

Modern malware has reached to a high level of sophistication. It utilizes system

resources and stores its data like decryption/deobfuscation keys, botnet command

and control information and routing tables in memory [47]. Volatile data can be

captured by following techniques as reported in literature [48, 49].

• Hardware-based: Hardware-based acquisition techniques of volatile data are

proposed to acquire a reliable memory image of the infected system. Carrier

et al. [48] have described that rootkits and trojan horse attacks against appli-

cations and operating system kernels can modify the system data, therefore,

the applications running on such machine for creating memory dumps cannot

be trusted. WindowsSCOPE [50] and Tribble [48] make use of PCI card and

PCI express bus respectively to store volatile information. The overhead of

installing PCI cards with hardware-based approaches put a question mark

on such solutions.
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Table 2.2: Behavior profiling techniques

Profiling technique Category Characteristics and Limitations tools

Emulators Live Remain unaffected by the anti-debugging
and obfuscation techniques.

ANUBIS, TEMU

Vulnerable to anti-emulation techniques
by timing difference.

Panaroma, Qemu

Sandboxing & VMs Live Hide all system objects that could reveal
the presence of the analysis framework.

CWSandbox, Cuckoo,

Potential malware residing on higher priv-
ileged level, interferes with sandboxing
and virtual framework

NormanSandbox, Vir-
tualBox, VMWare

H/W Virtualizers Live Execution is monitored from bare metal
hardware.

Ether, V2E

In-guest changes are made hidden and in-
tercepted to provide transparency.
Performance degradation due to heavy
instruction-level tracing.

H/W-based Dead Makes use of PCI card and PCI express
bus.

Tribble, WindowsScope

PCI card and express bus must be in-
stalled prior to its use.

Software-based Dead Does not require any dedicated hardware
to acquire the memory image.

PMDUMP, PD, Not-
MyFault.exe

Requires process and kernel memory to
perform acquisition and will overwrite
possible evidences of running malware

Virtual-machine based Dead Provides a facility to snapshot the mem-
ory image.

VMWare, VirtualBox

Contains own set of virtual processor,
memory, graphics cards, input/output in-
terfaces.
Prone to anti-virtualization as for instance
VMWare uses vmware string in its internal
processing.

Memory Analysis Dead Extracts digital artifact from raw dump of
memory.

Volatility, Memparser,
Memoryze

Unable to log the modified system objects,
which are put back to their initial state
during execution.

• Software-based: The current approaches for software-based memory acquisi-

tion rely on Windows debugging services and third party applications to ac-

cess physical memory. Microsoft has incorporated various debugging options

that are used to get memory image into its versions of Windows in the form of

crash dumps. To generate these dumps of user memory and kernel memory,

CrashOnCtrlScroll and NotMyFault.exe developed by sysinternals [51] can

be used. The former approach is having limitation of usable only with PS/2

keyboards. The tools such as PMDUMP and Process Dumper (PD) are ca-

pable of dumping a particular process’s state, code, data and its environment
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stack. These tools make use of process status application programming in-

terface (PSAPI) to get the information about running processes which can

affect the acquired image. The software-based solutions require process and

kernel memory to perform acquisition and will overwrite possible evidences

of running malware [48].

• Virtual Machines-based: The virtual machine environments, such as

VMWare and VirtualBox offer a facility to snapshot their current state.

These virtual machines are equipped with respective set of virtual processor,

memory, graphics cards, input/output interfaces [49]. The memory dump

is saved in file with formats such as .vmem, .img, .vdi, .sav based on

virtual machine used. To capture the execution traces of malware, these

environments are used and memory dump is achieved for analysis. Virtual

machine aware malware [52] can alter its behavior by knowing the fact that it

is being monitored. In such specific cases, the virtual machine based memory

acquisition is not a good idea to investigate malware behavior.

2.3.2.2 Analysis of Memory Dumps

The acquired memory dumps are sent for in-depth memory analysis for malware

footprints. Analyzing malware requires tools such as volatility, memparser, and

memoryze. These tools help us in extracting digital artifacts from memory dump

of a particular sample that needs to be analyzed. A raw memory dump can contain

information like hooked processes, kernel modules, system calls, data structures,

network traffic, loaded DLLs, files, APIs and registry hives.

2.4 Data Modeling Techniques

Abstraction of behavior features also play a vital role as appropriate data modeling

determines what kind of approach can be applied [53]. Acquired traces must be

transformed into certain forms to detect the malicious behavior as malware authors

try to add irrelevant and independent features to avoid the detection. These data
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modeling techniques include Feature statistics-based, graph-based, and n-gram

based.

2.4.1 Feature Statistics-based

The approaches [54–58] that rely on some statistics of their extracted feature, are

put into this category. These statistics include the count, probability, data–value,

entropy, and information gain. These features with their statistics are further

refined to select the prominent feature.

2.4.2 Graph-based

Graph-based modeling is deployed to encode the relative information of a behav-

ior parameter. To detect malware, graph or subgraph with aggregated feature

attributes is formed. This modelling represents the dependency structure of the

sequences. This dependency model is constructed using program modules, control-

flow and program instructions. Shun et al. [59] have developed a dependency

structure matrix (DSM) abstracting the task/module dependencies to detect the

module–based co-working malware. Babic et al. [60] and Fredrikson et al. [61] have

modelled their system call traces into a data-flow dependency graph. Graph-based

modelling suffers from the limitations that these methods are computationally ex-

pensive and also graph matching is ambiguous due to graph isomorphism.

2.4.3 n-Gram based

n-gram based models have been widely used for static and dynamic malware detec-

tion [62–64]. Christian et al. [65] have presented the suitability criteria (perbuta-

tion, density, variability) for n-gram models in malware detection. n-grams is the

overlapping subsequence of length n. In n-gram technique feature space depends

on two parameters n and L [66]. Here, L is the total number of features (instruc-

tion, system calls, APIs, etc.) collected from execution traces. The larger the

value of n and L, higher is the computational complexity as larger sequences need

to be processed. Accuracy of the model may reduce as each n-gram may have
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redundant information shared with other features. Model may be too generalize

to be of any use. On the other hand, small values of n and L results into false

alarms. When n is small, each feature may carry information too small to be of

much use.

2.5 Approaches

After applying the data modeling on acquired traces, various implementation tech-

niques as shown in Figure 2.2 can be applied. We have segregated these techniques

into following categories and discuss these along with their pros and cons.

2.5.1 Invariant Inferences

A predefined set of invariants is recorded from the execution of normal programs.

Any modification in the invariance during the program execution raises a flag of

suspiciousness. This technique is employed to detect the normal and abnormal be-

havior of a binary under consideration. Invariant inferences in malware detections

are mainly used to verify the presence of a highly-privileged malicious sample.

The system objects are precisely selected for inferring the invariance. Here, we are

presenting those techniques that make use of kernel data structures, kernel mod-

ules, kernel code and data and kernel memory to detect the presence of malware

in the system.

Shosha et al. [67] have developed a Signature-Generation tool (SigGene) for

malware detection. The signature was formed by profiling kernel data struc-

ture (EPROCESS) objects extracted from malware execution traces. EPROCESS is

a kernel data structure used to represent the running processes in the operating

system. This data structure is manipulated by malware to evade detection (Fig-

ure 2.4). Flink and Blink in this figure denote the forward and backward links

of EPROCESS list. Malicious code is identified by invariant values of features in

execution traces.
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Figure 2.4: DKOM attack: manipulating EPROCESS kernel data structure

A quite similar approach for rootkit detection was introduced by Dolan–Gavitt et

al. [54], but the signature formation was different than [67]. The features, those

cannot be altered by malware, were used for signature construction. Any alteration

in those features will either cause a system crash or an inoperable system state.

In training phase signatures were constructed in two steps – profiling and fuzzing

– using EPROCESS structure. The authors have claimed that if OS is functioning

properly for 30 seconds then the application is a legitimate one otherwise it is

malicious.

Riley et al. in [57], have developed a system called NICKLE which is a rootkit

prevention tool. NICKLE guarantees lifetime kernel code integrity. They have im-

plemented Virtual Machine Monitoring (VMM) to preserve a memory area (named

as shadow memory) of a guest OS. NICKLE works on the assumption that the

application in guest OS cannot alter the highly privileged shadow memory. Hence,

any effort towards illegitimate code execution can be hampered.

Rhee et al. [68] proposed an approach that incorporate kernel data-object mapping.

The authors have used data allocation and deallocation mechanism to find out

the illegitimate code. They have constructed malware signature based on their

data access patterns. They have considered Linux platform for their approach.

But they have also claimed that their approach is also effective in detecting a

Windows-specific malware.

Xuan et al. [69] have introduced Rkprofiler that is sandbox-based malware

tracking system that monitors the malware behavior. They have employed a

memory tagging technique named as Aggressive Memory Tagging (AMT). This
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tagging technique tracks the kernel objects visited by a malware. The Rkprofiler

is capable of tracing instruction and function calls made by malware. They have

shown that their method is efficient in capturing rootkit behavior.

• Invariant inferences: pros and cons

1. Merits:

– Provides a way to find out the vulnerable or modifiable system level

objects.

– A promising mechanism to detect the presence of high-privileged

malware into our systems.

2. Limitations:

– These techniques require dedicated hardware and software systems

with in-depth knowledge of each OS objects.

– A single kernel object can only target a fraction of malware domains.

And, handling all the objects is a computationally expensive.

2.5.2 Visualization

Visualization technique is gaining prominence in identifying malicious attacks.

It provides a way to find out the regions of malicious functionality, therefore,

can be used as a base for feature selection in malware detection. It presents

a view of a suspicious activity in the form of information flow, network flow, or

similar instances. These approaches completely rely on the tools used for analyzing

anomalies. There are many tools for visual representation of malware behavior.

These include Treemaps, Graphviz, NFlowViz, Skyrails, Dotplots, Grid layouts

etc.

Trinius et al. [58] have proposed an approach based on treemaps and threaded

graphs to visualize the individual functional domain and temporal behavior of

malware executables and PDFs respectively. This approach mainly aims at de-

tecting malware and classifying it according to its behavior. Using treemaps,
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authors try to visualize activities such as network related, file system changes and

process interaction of a sample according to API call sequences. In addition to

that, they have also made use of threaded graphs. Threaded graphs represent the

temporal order of these activities. Malware behavior is summarized in a colored

map where each color represents a different activity.

Mansmann et al. [70] presented a system for network flow visualization (NFlowVis)

and compared it with treemaps and graph representation for intrusion detection

in network traffic. The NFlowVis provides the IDS alerts, home-centric view,

graphical view and network flow view. Network monitoring gives an overview of

the vulnerable and unwanted host in the network by visualizing the connectivity

and communication patterns between the local and external hosts. The authors

have visualized three case studies using NFlowVis i.e. service monitoring, SSH

attack distribution, and blacklisted hosts investigation.

Yongzheng et al. [71] have presented an approach to find out the similar malware

instances using DotPlots. They make use of Hash-based content sampling to re-

duce the n-gram based feature space. They have used the byte opcodes gathered

from memory images of the infected and clean system. Authors have pointed out

that their visualization approach is affected by Address Space Layout Random-

ization (ASLR) strategy of Windows to relocate the independent codes.

Saxe et al. [72] try to visualize the various behavioral characteristics of malware

samples. They have presented a clustering based method that relies on the func-

tional blocks of system call sequences to measure the similarity. Quist et al. [73]

have applied visualization to capture the overall flow of a binary to investigate the

source code areas of malware samples. The approach can only be applied to select

the feature domain of a malicious binary.

• Visualization: pros and cons

1. Merits:

– Identification of the source of malicious attacks in network traffic.

– Provides a better understanding of malicious code layout and similar

malware instances.
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2. Limitations:

– Requires better graphics cards, visualization tools and a system with

high computing capability.

– Requires expert human intervention to visualize behavior patterns.

2.5.3 Machine Learning Techniques

The machine learning techniques for malware detection and classification aim at

developing discriminatory model from patterns formed by features through super-

vised/unsupervised methods. In supervised learning, detection model is trained us-

ing known behavior instances while in unsupervised learning, the detection model

is prepared without the prior knowledge of binary. Here, we will discuss both the

forms of learning techniques used in malware detection.

Tian et al. [74] and Islam et al. [55] have presented an approach of malware detec-

tion and classification using API calls. In the former approach, the authors have

applied five classifiers (SVM, RF, adaboost, IB, DT) in WEKA to achieve their

aim. They achieved 97.3% and 97.4% of detection accuracy in malware detection

and categorization. In the latter approach, authors combined API calls with two

static features (function length and printable strings). With this integrated fea-

ture set, they used four classifiers – SVM, DT, RF and IB1 – to classify a sample.

They claimed 97.3% of detection accuracy.

Moskovitch et al. [21] have presented a technique to detect known and unknown

worms in the different environment. The authors have collected eight different

datasets containing system activity in the execution duration (20 minutes) of the

worm and normal application. These systems have diverse hardware and software

configurations. In addition to this, impact of background activity and user activi-

ties was also monitored. They have constructed a feature set of 323 from categories

such as protocols, process, threads, network interface and memory. This feature

vector size is reduced to 20 after employing three feature selection methods (Chi-

Square, Gain Ratio and Relief-F). The authors have applied DT, NB, BN and

ANN with reduced feature vector and shown that their method is effective enough

to detect known and unknown worms with low false positive rate.
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Ahmadi et al. [75] have discussed an approach using API calls to detect a mali-

cious sample. They have also applied two feature selection methods (Fisher score

and CFSSUBSETEVAL) to remove the redundant and irrelevance features. The

authors have applied SVM and RF to classify the labeled data.

Another SVM-based learning approach was employed by Rieck et al. [76] and An-

derson et al. [66, 77]. The authors in former approach [76], have used API calls

to built a weighted behavior learning model. The weights are assigned to behav-

ior patterns according to their contributions to malware families. Benign samples

are also used to build a strong discriminative model. In the latter approach [66],

authors combined static and dynamic features that are representative of the pro-

gram’s intent to classify malware families. They have incorporated multiple kernel

learning to construct a weighted combination of combined feature set (opcodes,

basic blocks and system calls). The authors have claimed that formed feature

vector resulted into detection accuracy of 98%.

• Supervised Learning Algorithms: pros and cons

1. Merits:

– These techniques provide a simple approach of classifying labeled

malware instances irrespective of any infrastructure and architec-

ture.

– A correctly learned discrimination model results into a high detec-

tion accuracy as compared to any other technique.

2. Limitations:

– Approach will fail if malware authors manipulate applied features.

– As, time passes the false positive rate tends to increase due to zero-

day malware evolution.

Ulrich et al. [78] have proposed a method to characterize a malware into its specific

class making use of emails transferred, HTTP downloads and IRC conversations.

Execution traces (system calls + APIs) are collected and transformed into behavior

profiles. The authors have applied hierarchical clustering using system calls and

APIs. They have applied a local hashing mapping (LSH) to reduce the clustering
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overhead. For similarity measure, Jaccard index has been employed. Finally,

precision and recall are used to evaluate the proposed method.

Perdisci et al. [79] have presented a malware classification approach by investigat-

ing similarities in HTTP URLs requested by malware. Coarse-grained (BIRCH),

fine-grained (Hierarchical) and cluster merging have been applied to form clusters.

The first two clustering are employed for the refinement of clusters being formed

while the cluster merging is used to generate network signatures. To form the

clusters, authors have used a total number of HTTP requests, a total number of

GET-POST requests and average URL length and response length. Levenshtein

and Jaccard indices are used in forming clusters.

Kheir [56] has proposed a malware detection approach by investigating abnormal-

ity in HTTP user agents. The execution traces are generated using tshark in sand-

boxed environment. The authors have employed three steps of clustering (High-

level, fine-grained, incremental k-means) to generate the signature. They have

also evaluated their cluster forming technique and signature quality. As these

approaches [56, 79] are signature-based, therefore, fail to detect unseen malware

samples.

Fredrikson et al. [61] and Park et al. [80] have presented a graph clustering

approach. In the former approach, authors have developed a tool named as

HOLMES. It works in two steps: 1) Extraction of significant malicious behav-

iors and 2) Creation of a discriminative specification of malware behavior. A

dependency graph is constructed in which the graph vertices (system calls) are

connected by the dependency in their arguments. The authors have also applied

simulated annealing to find the cluster subsets. A behavior is specified by ap-

plying information gain, Structural Leap Mining (SLM). Further, one common

synthesized malware behavior is extracted for a malware dataset. The authors

have shown the detection rate of 86% with 0% false positives. The latter approach

constructed a HOT path that represents an overall malware family behavior. The

authors have constructed a Kernel Object Behavior Graph (KOBG) from system

call traces. These KOBGs are the set of kernel objects (vertices) and their de-

pendencies (edges). They have generated a Weighted Common Behavioral Graph
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to compute the common behavior of a family. Finally, they have also shown that

their approach is vulnerable to system-call injection attack.

Jacob et al. [81] have proposed a graph-based technique that specifically identifies

bot-initiated Command & Control (C&C) communication. They have constructed

a behavior graph of system call traces. C&C templates are created with known and

unknown C&C communications. These templates share a similarity in behavior

graph. The authors have applied subgraph matching to find out the subgraph

that is not in the benign dataset. Then, they formed clusters of subgraphs having

homogeneous C&C activities.

• Unsupervised Learning: pros and cons

1. Merits:

– Clustering provides a way of labeling unlabeled data by grouping

them according to their similar/dissimilar behaviors.

– Every attribute of the dataset participate in the clustering process,

therefore, intra-cluster and inter-cluster homogeneity and hetero-

geneity remain consistent.

2. Limitations:

– Unsupervised nature of clustering does not allow any external valu-

able information that can help in forming clusters.

– The number of clusters and the size of clusters is undecidable.

2.5.4 Formal Methods

Formal methods provide a mechanism of modeling real activities in mathematical

proofs and models. These models must be validated and include a specification for

achieving a high degree of formalism. Formal methods of malware behavior detec-

tion offer a way to express the program semantics. These models provide a formal

semantics-based framework that can be proved beneficial in evaluating malicious-

ness of a target program. These techniques make use of model-checking (LTL,

CTL), finite-state-automata and push-down automata.
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Babic et al. [60] have proposed a malware detection and classification approach

based on tree-automata inferences. Tree-automata represents a state-machine in

which tree structures are used. The authors have extracted system call traces using

PIN (A dynamic binary instrumentation tool) and constructed data flow depen-

dency graphs. They have implemented their approach in two steps: 1) Inference

algorithm construction, 2) Detection and classification mechanism using inferred

algorithm. In step-1, k-Testable in Strict Sense (k-TSS) language is defined for

constructing inference algorithm. It consists of k-level tree patterns. These pat-

terns and k root hash divide the graph into a finite number of equivalence classes.

In step-2, learning phase offers the fine tuning of inferred automata with benign

and malware samples. Each sample is executed against the inferred automata and

tree height is measured to calculate a score S S ∈ [0, 1]. Higher score value indi-

cates a higher likelihood of the sample to be malicious. For classification purpose,

authors developed family specific tree automata.

Tree-automata provide the abstraction of the malicious patterns by inducing a

minimal state automata. The inferred tree automata is refined every time thus it

increases the inference complexity (O(kpn)). Here, k is the number of levels, p is

the number of the patterns and n is the size of input supplied.

Kinder et al. [82] developed a Computational Tree Predicate Logic (CTPL) to

identify malware behavior. They used instruction opcodes which were extracted

statically. They have shown that their behavior specification can be used to model

the real-world worms.

Song and Touili in their works [83–85] have proposed a a method of model-

ing malicious behavior using pushdown systems (PDS) that track the program

stacks. They have extended the CTPL to SCTPL for representing stack opera-

tions [83]. Further, authors expanded their work and produced SCTPL formulas

that take into account the values of registry and memory locations instead of their

names [84]. In [85], they developed Linear Temporal Logic (LTPL) with predi-

cates. These LTPLs were then applied with PDS for SLTPL (for stack semantics).

Similar work was proposed by Beaucamps et al. [86]. They have incorporated

First-Order Linear Temporal Logic (FOLTL) to transform static malware traces



Chapter 2. Malware Detection Techniques: A Review 33

into high-level behaviors. Their developed logic is used to identify the malicious

and benign samples.

Beaucamps et al. [87] have used Finite State Automata (FSA) to identify the

anomalous malware behavior. They have created a notion of traces and behaviors

using abstract machine modeling. In order to achieve their goal, they have used

library call extracted from PIN. These traces are mapped with their designed FSA

model. Their approach was independent of implementation details. The authors

have identified the programs with keylogging or similar behavior.

• Formal methods: pros and cons

1. Merits:

– Formal methods provide a full coverage of activities incorporated to

compute program behavior.

– These have the potential of designing a behavior detection model

that is resilient to malware side effects.

2. Limitations:

– These methods tend to have high learning rate due to vast diversity

of malicious files.

– To build, a precise model, ample amount of human efforts are

needed.

2.6 Summary

In this chapter, we have reviewed existing dynamic malware detection techniques.

We have discussed infection and attack vectors of contemporary and old malware.

Additionally, we have presented behavior monitoring and data modelling meth-

ods applied prior to malware detection. Based on our literature survey, we have

observed that present malicious threats are equipped with anti-detection features.

The existing solutions of malware detection are vulnerable to these anti-detection

features. Due to anti-detection behaviors, modern malware exhibit multiple be-

haviors at run-time. In next chapter, we present that malware samples belonging
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to same family depict different behaviors. Further, we address two anti-detection

measures – 1) environment-reactive and 2) system-call injection – employed by

modern malware in subsequent chapters. Considering these measures, we will

propose malware detection with comparative detection accuracy.



Chapter 3

Detecting Malicious Behavior

using Dynamic Time Warping

In past few years, the growth in malicious codes has been increased exponen-

tially. Also, these codes are bundled with anti-detection features that enhance

their severity of infecting our network and systems. Analyzing a malware sample

for identifying its nature of infection, is the first step. But, analysts are facing

millions of samples everyday and focusing on an individual sample is not practi-

cally possible. Therefore, there is a need to cluster malware samples that exhibit

similar run-time behavior.

In this chapter, we present an approach that clusters malware samples within a

malware family. Our notion of clustering is based on the fact that inspite of be-

longing to same malware family, the samples constitute different behaviors. These

behaviors indicate that samples are embedded with multiple payloads for evad-

ing detection mechanisms. These payloads are delivered according to the security

measures and execution environment present in the system. Therefore, samples

belonging to a malware family, show different behavior at run-time. We, in this

approach, present a malware behavior clustering and detection approach.

35
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Figure 3.1: AV-Test report [19]

3.1 Introduction

Malware programs have a disruptive impact on our applications, service providers,

storage, servers, and networks. In 2013, AV-test Institute discovered a total of

∼100 million new malicious files and this number has reached ∼140 million in

2014 [19]. This explosion of completely new malware threats and variants of

existing malicious threats cause substantial damage in terms of financial losses.

Figure 3.1 illustrates how number new malware samples received at AV-Test are

increasing. In this figure, we can see that in first half of year 2015 this figure has

reached to ∼95 million. By the end of 2015, this figure will be ∼200 millions.

The explosion of thousands of new malware samples everyday has increased the

workload of Anti-malware (AM) researchers. Each of these samples requires secu-

rity experts to analyze their threat and severity levels in-depth. Therefore, there

is a need to categorize each incoming sample into its respective behavior to accel-

erate this process. Clustering malware samples having similar behavior traits is

beneficial for following two reasons [78]:

1. Every time a new sample arrives, analysts can determine whether it is a

completely new instance or a variant of existing malware class.

2. It becomes easy to derive generalized removal procedures and to create new

mitigation strategies that work for the whole class.
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Clustering malware samples is not new. In past, many approaches [56, 61, 78,

81, 88–90] have been developed to cluster and classify malware samples. Existing

approaches of clustering malware can be divided into two broad categories- 1)

network-level, and 2) system-level.

The network-level [78, 89, 90] clustering approaches utilize network traffic. The

network-traces are acquired by scanning network during malware execution. These

approaches distinguish between the normal and abnormal traffic in terms of HTTP

downloads, application-level protocols (SMTP, FTP, IRC), web-based command

& control, HTTP-URL etc. However, modelling normal and abnormal network

traffic is hard because of the diversity in the nature of the traffic from email

systems, instant messenger and peer-to-peer applications resulting in high false

alarm rate [91].

The host-level approaches [88, 92] cluster malware samples on the basis of their

payloads responsible for carrying out malicious attacks. Capturing malware sam-

ples on the basis of their actual attacking behavior allowed exploring the un-

known and new malware samples irrespective of their propagation mechanisms [93].

Therefore, in this chapter we focus on host-based identification and categorization

of real malware samples.

For behavior-clustering, similarity measures play an important role. The majority

of existing approaches [78, 89, 90, 92] make use of Jaccard Index [94]. The Jaccard

measure is a set-intersection based method. This type of similarity measure suffers

from following limitations.

1. It cannot capture the ordered relationship within the execution traces.

2. It cannot capture the similarity when data is sparse [95].

3. It fails to capture the lack of similarity among activities that differ between

two samples [95]. For instance, if two execution traces show high registry

activities, but only one of the trace contains some file activities, Jaccard

measure gives high similarity score, thus not able to capture the lack of

similarity between file activities.
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To overcome above-mentioned limitations, we use Dynamic Time Warping (DTW)

as our similarity measure. DTW can capture the intra-relationship and dissim-

ilarity among execution traces. Also, it captures the similarity when sequences

are sparse. DTW is a dynamic programming algorithm that is widely used to

align two time-varying or variable length sequences. Our malware sequences are

of variable lengths and also vary with time during execution. Therefore, in this

work, we utilize DTW to cluster malware samples and differentiate malware from

benign programs.

The main objective of our approach is to identify multiple behaviors within a

malware family. Initially, we have selected worm malware family to justify our

heuristic of “multiple behaviors within a family”. The selection of worms is made

as these samples show the highest threat to our computer systems (discussed later).

The proposed approach exploits non-uniformity in execution traces of worms. We

perform a cluster validity assessment to quantify exact number of clusters. In

addition to that, we design and implement the parallel algorithm of DTW (P-

DTW) to reduce the computational complexity of DTW. Our proposed approach

is evaluated with known and unknown instances of virus family samples also.

3.2 Worm Behavior

The Worm is an illegitimate program that exploits the vulnerability of connected

systems and applications within a network for spreading itself injecting systems

encountered en-route. Besides infection through network, worms have the capa-

bility to carry out attacks such as DDoS, privacy-breaching, phishing and data-

loss [93, 96]. In past few years, worm attacks have caused substantial financial

losses. One single worm can infect thousands of machines connected in a network.

For instances, “Code Red”, “Stuxnet”and “Slammer” are a few known worms that

induced significant damages costing billions of US dollars [97].

According to KasperSky Labs [98], the threat level of worm samples is the highest

among all the other family samples. Figure 3.2 shows that threat level of each
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malware family in a descending order. Therefore, we also, have considered worm

samples to evaluate our DTW-based clustering method.

Figure 3.2: Malware family tree showing threat level (in descending order) [98]

3.3 Approach Overview

The prime purpose of our model is to construct groups that are functionally similar

within worm family so that further analysis of worms becomes a convenient task

for security analysts. In conjunction to that we also aim to discriminate worm and

benign executables. To carry out these objectives, we divide our worm and benign

datasets into Dataset1 (70%) and Dataset2 (30%) sets. Figure 3.3 outlines our

proposed detection and categorization model. This figure illustrates the proposed

approach. System calls are used as a feature for behavioral modelling. DTW

is used for assessing similarity measure. Blue line indicates processing steps for
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training and red path shows how samples are tested. Each sample of both the sets

are traversed through three main phases discussed in following paragraphs.

Figure 3.3: Proposed approach

3.3.1 Behavior Monitoring

Behavior monitoring is the first step in any dynamic malware detection prob-

lem. We utilized Ether [46] for behavior monitoring of executables. According

to [46, 66], Ether provides a safe and transparent environmental setup that does

not relay any side-effects to host systems and also not visible to running binaries re-

spectively. We select Ether over other tools (CWSandbox, ANUBIS, NormanSand-

box, etc.) because it is more resilient to anti-analysis techniques (anti-debugging,

anti-virtualization, anti-emulation) deployed in worms as compared to aforemen-

tioned tools. Although, worms equipped with timing and CPU semantics attacks

can detect the presence of Ether [99]. To hide their malicious payload, these worms

depict unpredictable behavior that includes crashing the guest machine, executing

beyond the time-out limit and not generating any log. Our proposed approach can

also capture this category of worms as these samples will have diversity in their

execution traces. Due to incurred diversity, existing techniques may not work

properly.
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We use system-call traces for detecting worms and grouping them according to

their behavior. System-calls are invoked by a running program to request kernel

for accessing system services. A worm (or any malicious program) tries to infect

the host machine by altering the system state [100, 101]. For this purpose, it

makes use of system-calls as these are the non-bypassable interface for modifying

OS state. Therefore, to capture a program behavior or functionality, system-calls

are the valid choice.

In our method, we consider Windows XP (SP2) as our guest operating system

to monitor the execution traces of binaries that are in PE (Portable Executable)

file format. According to [102], there are 284 unique system-calls that can be

invoked by any running application in Windows XP. To collect the system-call

traces, we limit execution time for each sample to 10 minutes. Anderson et al. [66]

have mentioned that 5 minutes of time-out is sufficient for malware binaries. We

doubled this execution-time to capture the worms encapsulated with time-out

attacks. During behavior monitoring, we observe that worm samples exhibit non-

uniformity in their running time that results into the variable length of traces.

After collecting the logs for each sample, we extract the list of system-calls invoked.

This list will be used as features for subsequent phases.

3.3.2 Distance Computation using DTW

In this approach, we exploit non-uniformity in execution time and trace lengths

of worms to identify their behavior. We compute distance score between the pairs

of samples using DTW as it can efficiently align the sequences that constitute

variability in their length and execution-time. The DTW [103] is a dynamic pro-

gramming algorithm that yields an optimal alignment path of two sequences which

is further used to determine distance score.

For example, consider source sequence S = {S1, S2, · · · , SN} of length N and

target sequence T = {T1, T2, · · · , TM} of length M for score computation. In

following discussion, each Sn and Tm denote the nth and mth system-calls invoked

by source (worm) and target (worm or benign) binaries during execution. We

map each call in both the sequences with an ASCII character as we observed that
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only 160 calls out of 284 were invoked during behavior monitoring. This mapping

minimizes the time and space complexity of alignment process in DTW. Score

computation in DTW is carried out using following two steps.

Step 1: Score Matrix Construction

To find the optimal alignment between S and T, we build an N×M matrix ζ . The

matrix ζ is Accumulated Cost Matrix constructed during the alignment process.

The value ζ [n,m] is determined using Equation 3.1 where n ranges from 1 to N

and m ranges from 1 to M .

ζ [n,m] = φ(Sn, Tm) +min



















ζ [n− 1, m− 1]

ζ [n− 1, m]

ζ [n,m− 1]



















(3.1)

In Equation 3.1, the first addend called as local cost measure φ(Sn, Tm) indicates

the match/mismatch value for Sn and Tm. This value will be either 0 or 1 depend-

ing upon match or mismatch of Sn and Tm. The second addend is the minimum

value of diagonal (〈n− 1, m− 1〉), top (〈n− 1, m〉), and left(〈n,m− 1〉) cells. The

value of cells (first row and first column) in matrix ζ is decided with following

initial conditions (Equation 3.2):

ζ [n, 1] =
n

∑

k=1

φ(Sk, T1) and ζ [1, m] =
m
∑

k=1

φ(S1, Tk) (3.2)

During the construction of ζ , we simultaneously create a traceback matrix R that

stores the directions ‘D’ (Diagonal), ‘L’ (Lower) and ‘U’ (Upper). We put ‘D’ in

R[n,m] when ζ [n− 1, m − 1] is minimum out of ζ [n − 1, m − 1], ζ [n− 1, m] and

ζ [n,m− 1]. Similarly ‘L’ and ‘U’ are also stored.

Step 2: Score Computation

The distance score between sequences S and T is determined by finding opti-

mal warping (alignment) path in matrix ζ . An optimal warping path between

sequences S and T is a sequence P = (P1, P2 · · ·PL) of length L where each Pl

represents the cell (nl, ml) in ζ . This optimal path is the path having minimum
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total cost

ΨP =

L
∑

l=1

ζ [Snl
, Tml

] (3.3)

subject to following three conditions as mentioned in [103, 104].

(i) Boundary Condition: This condition enforces that the end points of the

sequences must be aligned means P1 = (1, 1) and PL = (N,M).

(ii) Monotonicity Condition: This condition reflects the requirement of faithful

timing. If an element in S precedes a second one this should also hold for

the corresponding elements in T , and vice versa.

n1 ≤ n2 ≤ · · · ≤ nL and m1 ≤ m2 ≤ · · · ≤ mL

(iii) Unit-Step Size Condition: This condition ensures that the path P should not

skip any alignment information of system-calls in both the sequences and

there must be no replications in the alignment.

Pl − Pl−1 ∈ {(0, 1), (1, 0), (1, 1)} for l ∈ [1, L]

Figure 3.4 illustrates the three conditions. In Figure 3.4(a), the warping path

satisfies all the three conditions. Figures 3.4(b),(c),(d) illustrate violation of one

of the conditions. In Figure 3.4(b), the path neither starts from index (1, 1) nor

ends at index (9, 7), thus boundary condition is violated. In Figure 3.4(c), the path

from index (4, 5) goes next to index (5, 4) i.e., monotonicity condition is violated

and lastly Figure 3.4(d) shows the violation of step size condition because in the

path, there are two consecutive indices as (4, 5) and (6, 5) and difference between

these two is (2, 0).

Now, The optimal warping path between S and T is a warping path P∗ having

minimal total cost among all possible warping paths. The total cost of path P is

calculated using Equation 3.3. The path P∗ is determined by traversing matrix ζ

starting from index (N,M) and backtracking along the minimum ζ [n,m] until we

reach cell (1, 1).
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Figure 3.4: Illustration of conditions of warping path with sequences S of length 9
and sequence T of length 7

The whole process of DTW is illustrated in Figure 3.5. Here, we have considered

two sequences with S = ABDFIOHYZ of length 9 and T = ABDEXCG of

length 7. Formation of matrix ζ of size 9 × 7 is explained in Figure 3.5(a). The

first row and first column of the matrix are computed using Equation 3.2. The

rest of the matrix cells are filled using Equation 3.1. For instance, consider cell

at index (3, 3) in Figure 3.5(a). This cell value is calculated by adding local cost

measure φ(3, 3) = 1 into the minimum of (2, 2), (3, 2) and (2, 3) cell values which

is 0. So the final value of ζ [3, 3] is 1. In similar manner, entire matrix is filled.

After construction of ζ , we trace back in the matrix to get the optimal path. For

tracing the matrix, we start from index (8, 6) as shown in Figure 3.5(b). We check

three indices i.e., (7, 5), (8, 5) and (7, 6). Minimum of these three cells is at index

(7, 5) so we include the index in optimal warping path and ζ value at this cell is

added in ΨP. Similarly, we trace the matrix until we reach at index (1, 1).

Figure 3.5: DTW: an example
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Finally, we get optimal aligned path P of two sequences S and T and its cost ΨP.

The value of ΨP for our example is ΨP = 0 + 0 + 0 + 1 + 2 + 3 + 4 + 5 + 6 = 21

which is termed as DTW score.

3.3.3 Behavior Clustering

To construct similar groups, we utilize acquired DTW scores of all pair of samples.

These pair-wise scores are stored in a distance matrix D. We form two distance

matrices Dw and Db representing two cases 1) worm versus worm and 2) worm

versus benign respectively. The first case is to determine whether all worms exhibit

same behavior or not. And the second case is to assure that using the distance

scores worm and benign samples are differentiated or not. After forming score

matrix, we compute the mean score of a worm sample with all the other samples

of dataset (worm and benign). In such manner, the mean scores of all worm

samples is computed. These mean scores are then used to categorize and detect

the worms.

Visualizing DTW scores gives us different behavior clusters. For better catego-

rization, we need to apply a clustering algorithm that also automates the process.

Also with larger datasets, effective visualization becomes non-trivial. To make

our approach scalable for large datasets, we applied distance based hierarchical

clustering. This clustering method allowed us to identify the most concise and

well dispersed clusters.

We incorporated single linkage hierarchical clustering on acquired distance matrix

D. Each pair Dij in D denotes the distance score between ith and jth sample. This

clustering method takes D as input and generates a tree like structure named as

dendrogram. The leaves and edge length in dendrogram represent the Dij values

and distance between clusters respectively. To identify the number of clusters, we

need to cut the dendrogram at a certain height h. To decide appropriate value of h,

we applied a standard cluster validity criteria Davies-Bouldin index (DBI) [90, 105]
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that is computed using Equation 3.4.

DBI =
1

K

K
∑

i=1

max
0≤j≤K,j 6=i

{

∆i +∆j

∆ij

}

(3.4)

In Equation 3.4, ∆i represents the average distance of all points in cluster Ci to its

centroid. The value ∆ij represents the distance between the centroids of Ci and

Cj. It is clear that DBI is average similarity between each cluster Ci where i =

1, 2, · · · , K. For clustering, the similarity between clusters should be minimum

and it can be achieved by cutting the dendrogram at height h such that number

of clusters (K) obtained minimize the DBI index [105].

Figure 3.6 illustrates the cluster formation by generating dendrogram using mean

distance scores. The matrix in this figure shows the mean distance scores plotted

of worm samples. Each point in the matrix is considered an individual point for

dendrogram construction. In dendrogram, point 4 and 5 are clustered first, then

point 1 and 3 are grouped in one cluster. Point 2 is more close to cluster – 〈4, 5〉.

Therefore, it is clustered into 〈4, 5〉. At last all the clusters are merged into one

cluster. As discussed earlier, we have used DBI index to cut the dendrogram at

appropriate height so that we can determine exact number of clusters formed.

Figure 3.6: Cluster formation: an example
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3.4 Experiment Setup

We have used Windows32 PE (portable executable) binaries as input. According

to the statistics of virustotal.com, this file format is the first choice of hacker com-

munity for spreading infection. A GPU (Nvidia Tesla C2075) with 448 streaming

processors (575MHz core clock, 1150MHz shader clock) is employed. To improve

the performance of DTW algorithm, we have also implemented the parallel version

of DTW that has been discussed later. For this, we have used a CUDA system

that utilizes Nvidia Driver version 304.54 and CUDA toolkit 5.0.

3.4.1 Dataset Preparation

In our approach, we use system-call traces of worm and benign executables. These

executable are executed in Windows XP platform. Although, Microsoft has aban-

doned its support to Windows XP yet this will not affect our proposed approach as

1) our target worm binaries infect all Windows platforms and 2) the system-calls

used in Windows XP is the subset of those used in Windows 7 [102].

Table 3.1 shows the sample distribution of our datasets. The benign dataset con-

tains total 1415 executables that are gathered from Windows/system32 directory

of freshly installed Windows system. Our worm dataset consists of 1458 samples

collected from on-line sources and user agencies and labeled as worm using three

different AV scanners (Norton, Quick Heal, AVG). The worm dataset includes

samples from agent, ailis, aimven, alphx, anilogo, antinny, apart, autoit, and au-

torun subfamilies. Both the datasets are divided into two sets such that Dataset 1

is used for training and Dataset 2 is used for testing phase.

Table 3.1: Sample distribution

Dataset1 (70%) Dataset2 (30%) Total

Worm 1020 438 1458

Benign 990 425 1415



Chapter 3. Detecting Malicious Behavior using Dynamic Time Warping 48

3.4.2 Worm Categorization and Detection

As discussed earlier, we construct distance matrices Dw and Db that store pairwise

alignment scores of worm samples with worms and benign dataset respectively. We

plot mean distance scores of all worm samples as shown in Figure 3.7 for both the

experiments. Equation 3.5 illustrates our mean distance score Mi of ith worm

sample. Here, dik denotes the DTW score of ith worm sample to kth sample (worm

or benign). n is the size of dataset (worm or benign).

Mi =
1

n

n
∑

k=1

dik (3.5)

We obtain high mean score for all the samples. Therefore, we normalize each score

dividing it by 106 to better visualize the formed groups. From this visualization

shown in Figure 3.7, it can be seen that there are 4 major groups formed within

the worm family, and benign samples are also separated from worms. The worm

groups are labeled as ω1, ω2, ω3, and ω4. The benign group is labeled as β1. These

initial results with DTW score indicate that 1) our approach can segregate worms

into different groups and 2) using DTW, we can differentiate worm and benign

samples as well.
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Figure 3.7: Alignment scores of worms with worms (experiment 1) and benign (ex-
periment 2)

But in case of large datasets, effective visualization becomes non-trivial. To make

our approach scalable for the large datasets we apply distance-based hierarchical

clustering [106, 107]. In conjunction to that, this clustering also enables us to
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quantify exact number of clusters and number of samples in each cluster. Bayer et

al. [78] have applied hierarchical clustering approach to form malware clusters

considering similarity scores generated after applying Jaccard index. On the other

hand, we utilize DTW distance scores as points in hierarchical clustering as our

system-call traces are dynamically generated and to capture the similarity within

these traces a dynamic algorithm is required.

We have incorporated single linkage hierarchical clustering on acquired distance

matrix D. To obtain the exact number of clusters and their sizes, we have applied

Davies-Bouldin index (DBI). Figure 3.8 shows the plot of value of DBI versus the

number of clusters. The minimum value of DBI is achieved for K = 14. We

selected K = 14 because the DBI value is stabilized from this point onwards.
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Figure 3.8: Davies-Bouldin index (DBI) vs number of clusters

Table 3.2 presents 14 clusters with size of each. From table, we can clearly infer

that we find four major clusters namely C1, C2, C3, C4 with size 477, 173, 126,

192 respectively. All other clusters are of size less than or equal to 15 which

is very small with respect to total size of data. We are not denying the fact

that other clusters also represent a different behavior. Our results indicate there

are four major behavior clusters, samples of which constitute higher intra-cluster

similarity than inter-cluster similarity.

Our proposed model can distinguish worms and benign samples as shown in Fig-

ure 3.7. From dataset1 samples, we compute worm detection accuracy. From
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Table 3.2: Worm categorization

Cluster Size Cluster Size

C1 477 C2 173

C3 126 C4 192

C5 15 C6 13

C7 12 C8 4

C9 2 C10 1

C11 2 C12 1

C13 1 C14 1

DTW scores the number of correctly and incorrectly instances can be easily cal-

culated. We evaluate the detection capability using four evaluation parameters

viz. TPR (True Positive Rate), FPR (False Positive Rate), TNR (True Negative

Rate) and FNR (False Negative Rate). For any worm detection approach, it is

mandatory to have high TPR and low FPR value. We achieve TPR as 98.72%,

FNR as 1.27%, TNR as 99.09% and FPR as 0.91%. The obtained evaluation

parameters indicate the accuracy of our approach in differentiating worms and

benign samples.

3.5 Accelerating Malware Detection: P-DTW

The quadratic time complexity of DTW creates the need for methods to speedup

dynamic time warping. The methods used to make DTW faster fall into three

categories.

1. Constraints: Limit the number of cells that are evaluated in the cost matrix.

2. Data Abstraction: Perform DTW on a reduced representation of the data.

3. Indexing: Use lower bounding functions to reduce the number of times DTW

must be run during time series classification or clustering.

Constraints are widely used to speed up DTW. Two of the most commonly used

constraints are Sakoe-Chuba [108] and Itakura Parallelogram [109]. We, in this

approach, to reduce the computational cost apply parallel version of DTW as

applying any constraint or abstraction mechanism may lead towards information

loss.
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Talking about the time complexity of both steps in DTW, Step 1 employs dynamic

programming approach and creates N × M matrix and each cell is iterated one

time so the time complexity of Step 1 is O(NM) and Step 2 is backtracking

step in the matrix D from index (N,M) to index (1, 1). Since the maximum

length of path in the matrix will be N +M so the time complexity of this step is

O(N + M). Also, our system-call sequences are very long especially in malware

samples. Therefore, high computational cost due to size of malware sequences

makes the method a slow approach. Since Step 2 does not contain any data

independent computations, we expect to reduce complexity of Step 1 by using a

parallel high performance computing platform (GPU). It is clear that DTW is

computationally intensive algorithm for the large size of input sets (malware are

of very large size). So we reduce this complication by implementing the parallel

version of DTW named P-DTW using CUDA.

3.5.1 Parallelization Strategy

Figure 3.9 shows the data independence in construction of matrix D. From the

Equation 3.1, we can infer that the computation of cell D[i, j] is dependent on

three cells D[i − 1, j], D[i, j − 1] and D[i− 1, j − 1]. In Figure 3.9 we show that

D[3, 3] is dependent on D[2, 2], D[2, 3] and D[3, 2] and not dependent on any cells

of its anti-diagonal (shown by colored cells in Figure 3.9). This dependence implies

that cells of an anti-diagonal can be computed in parallel using CUDA threads.

Also, cells of an anti-diagonal are dependent of previous two anti-diagonals so

parallelism is limited to only one anti-diagonal. Matrix D of size N ×M contains

(N+M−1) anti-diagonals and each anti-diagonal can be computed in one iteration

so the time complexity of construction of matrix D reduces to O(N +M −1) from

O(NM). For N=M, quadratic complexity on sequential machines becomes linear

complexity on parallel machines with a gain factor of O(N).

3.5.2 Memory Assignment Scheme

In our method, matrix D is stored to be used in Step 2 i.e., for finding optimal

warping path cost. As total cost is found by tracing back the matrix so whole
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Figure 3.9: Data independence in D matrix computation. Cells of an anti-diagonal
are independent.

matrix is needed in the computation of total cost. Therefore, our memory require-

ment for parallel algorithm increases due to size of matrix D. Also, matrix D is

needed in each anti-diagonal iteration so we store it in global memory. Similarly,

input sequences X and Y are copied to global memory of GPU.

Algorithm 1 shows the pseudocode of our proposed kernel for P-DTW. Let τ

denotes the thread-id. This kernel is invoked for every thread τ where 1 ≤ τ ≤ l

and l is the length of an anti-diagonal. Each thread computes a matrix cell of an

anti-diagonal. Initially, first column and first row of the cost matrix D is filled at

CPU (Lines 8-15). After copying input sequences and matrix D to GPU memory,

kernel function (Lines 26-36) is invoked. In this function, each thread computes

D[i, j] entry according to the Equation 3.1 and φ() denotes the match/mismatch

cost computed using Equation 3.2. Once all the anti-diagonals are completed, for

loop of Line 10 terminates and we obtain cost matrix D.

3.5.3 P-DTW Constrains

Memory requirement for matrix D is quite large as input malware sequences are

quite long. This limitation makes our parallel approach P-DTW applicable for

fixed range of input sequences. But as the size limitation does apply in a similar

fashion to sequential algorithm of DTW so need to modify it. Sequences above

a specified length, are run through the modified sequential algorithm. For each

pairwise alignment, the maximum size ofDmatrix in parallel approach is restricted
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Algorithm 1 Parallel Construction of Matrix (Phase 1)

1: Data Structures
2: S : Source sequence of length N

3: T : Target sequence of length M

4: ζ : Accumulated cost matrix of length N ×M

5: C : Total Cost of path
6: c : Cost of match/mismatch (0,1) of S and T

7: τ : Thread–id of a thread in CUDA kernel
8: Initialization
9: ζ[1] = c(S[1],T[1])

10: for i = 2 : N do
11: //Fill First Column of Matrix ζ.
12: ζ[i+M ] = ζ[i− 1 +M ] + φ(S[i],T[1])
13: end for
14: for i = 2 : M do
15: //Fill First Row of Matrix ζ.
16: ζ[i] = ζ[i− 1] + c(S[1],T[i])
17: end for
18: Copy S and T array to GPU
19: Copy ζ array to GPU
20: i = 2
21: j = 2
22: for k = 1, N +M − 1 do
23: //for all anti–diagonals
24: Call kernel function CAL-COST(S,T,ζ,i,j,k)
25: i = i+ 1
26: j = j + 1

27: end for
28: return ζ //Cost Matrix

28: function cal-cost(S,T, ζ, i, j, k) //Kernel Function
29: if τ > 0 and τ < i+ j − k then
30: idx = i− τ

31: var = (τ ∗M) + (i+ 1) ∗ (k − i+ 1)
32: diag = ζ[var −M − 1]
33: upper = ζ[var −M ]
34: lower = ζ[var − 1]
35: Min= min(diag,lower,upper)
36: ζ[var] = Min+ z(S[k − idx],T[i])
37: end if

=0

to 1200MB. Beyond that limit, parallel approach will not work for our DTW

approach. Given w worm samples, we calculate a total of w ∗ (w − 1)/2 pairwise

alignments using DTW. Since we have w = 1226 so number of alignments we

calculate is 750925. After applying size restriction to parallel algorithm, we find

that the parallel algorithm works for 738535 alignments, which is 98.3% of total

alignments. This way we reduce the execution time of the algorithm at some

extent by applying mixed approach of parallel and serial DTW versions.
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3.5.4 Comparison with Traditional Clustering Algorithms

Table 3.3 shows the time complexity of traditional clustering algorithms. The

computational cost of these algorithms is not less than O(n2). Our proposed

algorithm P-DTW outperforms all the other algorithms as it has time-complexity

of O(n).

Table 3.3: Comparison of DTW and P-DTW with traditional clustering algorithms

S.No. Algorithms Complexity S.No. Algorithms Complexity

1. Agglomerative O(n3) 2. Divisive O(2n−1)

3. K-means O(nki) 4. CURE O(n2)

5. DTW O(nm) 6. P-DTW O(n)

3.6 Performance Evaluation

The effectiveness of our proposed approach is evaluated using dataset2 (test

dataset) and virus dataset.

3.6.1 Evaluation with Other Dataset

This metric refers to the ability of proposed model to perform similarly with

different set of malware samples. Also, the proposed approach must not be biased

to training samples only, it should work well with test samples as well. We used two

datasets- 1) worm test dataset, and 2) virus dataset. Our virus dataset contains

a total of 674 number of samples. We applied our approach on test samples and

found that with four major groups were formed as with training samples. This

indicates that our approach works well with training and testing samples.

Figure 3.10 shows the behavior groups formed within virus samples. It is clearly

visible that there are five different groups formed within the virus family. These

formed groups also confirm our heuristic that samples of a malware family con-

stitute different behavior during execution. Also, the benign samples are clearly

differentiated from virus samples. The overall detection accuracy achieved with

virus samples is ∼93%.
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Figure 3.10: Alignment scores of virus with virus (experiment 1) and benign (exper-
iment 2) samples

3.6.2 Detection Accuracy

We achieved overall testing accuracy as 98.27% that is nearly same to the overall

accuracy 98.90% of dataset1. This indicates that our proposed model can detect

worm with same detection accuracy with different samples as well. As discussed

earlier, the low FPR and high TPR are desirable in any worm detection approach.

With test dataset, we obtain TPR as 97.87% and FPR as 1.33%. As far as virus

dataset is concerned, the overall accuracy obtained is 92.95%.

3.6.3 System Overhead

We have discussed about memory constraints of P-DTW. Since P-DTW can be

utilized for 99.24% pairs of alignments of total worm samples. We have evaluated

the overhead of these pairs only with DTW and P-DTW. The performance can

be seen as speed up ratio of P-DTW over DTW for different pairs of samples with

varying sizes. Figure 3.11 shows the comparison between P-DTW and DTW for

variable size of pairs.

This figure shows that the parallel algorithm P-DTW works faster as we increase

size of samples. There is a mandatory communication overhead involved in data

transfer between CPU and GPU. This becomes smaller percentage of overall run-

ning time with bigger sequence. Therefore, in small sequences we have achieved
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Figure 3.11: Comparison of P-DTW with DTW

low amount of speedup in comparison with larger sequences. The maximum speed

up which is obtained is 30.55 times with matrix ζ size of 772380KB.

3.7 Summary

Present malicious threats are causing substantial financial damage to the users

connected through network infrastructure. Analysis of malware attack vector be-

comes the prime necessity of security researchers to mitigate the monetary losses.

Malware analysis is a time-consuming task as there are billions of unseen and

new malware programs. Therefore, a categorization within a malware family is

required to reduce analysis time of a security researcher.

In this chapter, we have presented an approach that categorizes and detects mal-

ware samples on the basis of their run-time behavior. Our experiments validate

the heuristic that samples belonging to same malware family constitute different

behaviors. We have applied DTW algorithm that captures the behavior similar-

ity/dissimilarity among worm and virus samples. In addition to that, we have

created P-DTW algorithm to improve the performance of sequential DTW.

The diversity in behavior indicates the presence of anti-detection payloads in mal-

ware samples. To address the anti-detection features of modern malware, in next

chapter, we proposed a malware detection and categorization approach. We aim at

identifying and classifying malware samples with environment-reactive behavior.



Chapter 4

Environment-Reactive Malware

Behavior: Detection and

Classification

Present malicious threats have been consolidated in past few years by incorpo-

rating diverse stealthy techniques. So, proactive malware detection is not always

possible [110]. Proactivity refers to a technique’s ability of detecting new and

unseen malicious codes. Existing anti-malware techniques have advanced in re-

cent past; still there are some sophisticated malware programs that evade security

mechanisms and contaminate our systems. In such situations, the dynamic mal-

ware detection approaches are preferred to detect current detection-aware malware

programs. But, these approaches suffer from various anti-detection measures em-

bedded within malware programs.

In the previous chapter, we have shown that within a malware family, different be-

haviors from different samples cluster into finite set of behaviors during run-time.

These behaviors give an indication that malware binaries carry multiple payloads

that are delivered after certain conditions are met. One such anti-detection mea-

sure is to apply various analysis-aware (environment-aware) checks to bypass dy-

namic malware detection methods. In this chapter, we detect and categorize the

57
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environment-aware malware. Malware bundled with environment-aware payload

result in degraded detection accuracy of existing detection approaches. These ma-

licious programs detect the presence of execution environment and not revealing

their malicious payload they mimic a benign behavior to avoid detection. In this

approach, we make use of system-calls to identify malware on the basis of their

malignant and environment-reactive behavior. The proposed approach offers an

automated screening mechanism to segregate malware samples on the basis of

aforementioned behaviors.

4.1 Introduction

The most of the dynamic malware detection approaches adopt a standard proce-

dure to monitor the run-time behavior of malware. During the monitoring pro-

cess, a safe and isolated environment set-up is established to protect the host from

any malware generated side-effects. A variety of sandboxing, virtualization and

emulator-based tools are available to create such set-ups. These controlled envi-

ronments imitate a real runtime environment. But a full imitation of real system

cannot be achieved as these environments differ in CPU semantics (CPU seman-

tic attacks) and in instruction execution time (timing attacks) as compared to

uninstrumented host [66].

Malware writers have embedded various checks to detect the presence of analysis

environment. Rutkowska developed a technique Red Pill [111], which shows that

incorporating CPU semantic attack using SIDT (Store Interrupt Descriptor Table)

is an effortless task. He demonstrated that the value of non-privileged SIDT (Store

Interrupt Descriptor Table) instruction in virtual machine was not similar to the

value in real machine. Also, by fingerprinting of system artifacts of the analysis

environment, one can easily detect the presence of instrumented environments.

These artifacts include processes running in the background, registry keys, system

functions, and IP addresses [95].

To resolve the problem of analysis-aware malware, researchers have developed de-

tection techniques [37, 95, 112–114]. These techniques capture malware by noting
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its behavior deviation in different environments. The main heuristic behind these

techniques is that an analysis-aware malware will have different behavior profiles

when executed in different analysis frameworks. This behavior diversion occurs

due to fingerprinting of system artifacts. Existing approaches [37, 95, 113, 114]

have utilized virtualized or emulated frameworks for marking behavior deviations.

Unfortunately, these approaches suffer from following limitations.

1. Overhead of running a sample in multiple analysis frameworks.

2. If malware program detects these instrumented frameworks then it is possible

that all the behavior profiles are same.

3. According to [112] and our observations, executing a sample multiple times

in same environment results into different behavior profiles.

Due to reasons listed above, using behavior deviation in multiple frameworks,

for capturing analysis-aware malware, is not a reliable indicator. Balzarotti et

al. [112] have applied a record and replay mechanism to identify malware analysis-

aware checks. The authors have recorded the malware execution in a reference host

system and then replayed the recorded system-call traces in an emulator to observe

any behavior deviation. Any deviation in recorded and replayed execution assumed

to be an indication of anti-analysis checks. The replay mechanism adopted by

authors in [112] lacks some implementation issues such as 1) incorrect reply of

applications that rely on random number to decide certain execution path, and

2) their replay mechanism does not work with applications composed of multiple

processes. Thus, for detecting analysis-aware malware we require an approach

that is not

• Resource-hungry, means it does not require multiple frameworks.

• low Monitoring-overhead, means it does not execute a sample multiple times.

In this chapter, we propose an approach that is not resource-hungry as well as free

from monitoring-overhead of multiple frameworks. The analysis-aware malware

can detect analysis environment and react by terminating, crashing or stalling the
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execution to avoid performing any malicious activity [95, 112, 114]. The proposed

approach exploits the reaction (crashing the guest OS and stalling the execu-

tion) of malware to evade any analysis mechanism. We term such malware as

“environment-reactive”.

In literature, different terms have been utilized to address this category of mal-

ware such as environment-sensitive, environment-resistant, environment-aware,

analysis-aware and split-personality. We have used the term ‘environment-reactive’

for the same. Malware with environment-reactive behavior incorporates two ac-

tivities 1) sensing the presence of virtual environment and 2) responding to this

environment sensing by showing an unusual behavior such as crashing the guest

OS and stalling the execution to evade time-outs. However, malware programs

that do not manifest such reactive behavior inspite of embedded with analysis-

aware checks cannot be termed as environment-reactive. We, in this approach

target only those malware binaries that react to environment-sensing.

In this chapter, we have devised a mechanism that transforms the manual behavior

screening into the automated one. Our proposed approach exploits malware’s

tactics of evading detection and predicts its reactive and malicious behavior under

a host-based virtualized environment (Ether [46]). Though the proposed approach

is specific to a given monitoring environment but can be generalized by applying

same methodology with other environments also. We construct an input vector

that is best suited for our learning model. The input vector consists of transition

probabilities of two consecutive system-calls. This input vector is fed into the

multi-class decision model. The decision model is based on multi-layer perceptron

learning algorithm with back propagation. Each network is trained and tested in

parallel to reduce the performance overhead. Our experimental results indicate

that the proposed model is capable of 1) finding the known and unknown instances

of malware binaries which are environment-reactive 2) improving the monitoring

mechanism of Ether by analyzing the detected binaries.
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4.2 Approach Overview

The main objective of our approach is to identify the malware’s environment-

reactive behaviors. In addition to that, our approach also discriminates the benign

and malware (Non environment-reactive) executables. To achieve these objectives,

we executed binaries in a virtualized environment using Ether and noted the in-

teraction of binary with Kernel in terms of system-calls. On the basis of noted be-

haviors, we have classified samples in four categories. Figure 4.1 outlines proposed

classification framework. As can be seen in the figure, three major components

of proposed method are 1) Analysis Framework, 2) Behavior Representation, and

3) Decision Model. In our proposal, we consider four behavior – 1) Clean, 2)

Malignant, 3) Guest-crashing, and 4) Infinite-running.

Figure 4.1: Proposed classification framework

4.2.1 Analysis Framework

The analysis framework plays an important role in analyzing the behavior of ma-

licious binaries. It must provide an isolated and transparent environment setup

that does not relay any side-effects to host. We have used Ether as our dynamic

analysis framework. Our approach relies on Ether for behavior monitoring and

labeling of benign and malware.

Behavior Monitoring: Behavior monitoring of binaries using Ether is performed

in similar fashion as discussed in Chapter 3 and Appendix A.
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Behavior Labeling: According to [46] Ether is capable of capturing execution

traces of all malware and remains invisible to the target application being mon-

itored. We have noticed that there are samples for which no logs are generated.

It indicates that Ether is not completely transparent. Also, Pek et. al. [99] have

shown in their approach (nEther) that Ether is prone to timing attack. In such

situations, when Ether is detected by an application the acquired logs cannot be

trusted. So, we applied a close manual monitoring of malware behavior of train-

ing samples and utilized these noted behaviors to detect the maliciousness of an

unknown sample. In the training phase, we adapted following definitions of clean

and malicious behavior of benign and malware binaries.

P =







Suspicious {β | β ǫ {M, G, I}}

Clean Otherwise
(4.1)

A program P is said to be suspicious or clean if it depicts a behavior β in one of

the four forms 1) Malignant (M), 2) Guest-crashing (G), 3) Infinite-running (I)

and 4) Clean (C). All four are discussed as follows.

1. Malignant (Non-Environment-Reactive): This class of malware depicts the

non-environment-reactive behavior of malware binary. These malicious pro-

grams generate system-call logs within our specified time-frame and do not

constitute any visible abnormal activity that alters the state of guest OS.

2. Guest-crashing (Environment-Reactive): Guest-crashing behavior is marked

for those samples that crash the guest OS to terminate the execution-

monitoring process. To incorporate such a mechanism in the malware source

code is not a difficult task. The system can be crashed by causing a page

fault, exception and access violation [115].

3. Infinite-running (Environment-Reactive): We labeled a malware sample as

having infinite running behavior if the target sample does not terminate in

10 minutes and respective logs show repetitions. Most of dynamic analysis

techniques run a sample for some time and check for malicious activity. To

circumvent such detection techniques, malware employ a loop with many

iterations. Once monitoring is over, malware binaries eagerly wait just for
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a single chance of execution and if granted it will try to infect the machine

as soon as possible. The infinite running behavior indicates that malware is

running in an infinite loop and try to add non-malicious sequence in generated

logs.

4. Clean (Non Environment-Reactive): We marked each benign application

with this behavior. The benign executables do not reflect any system crash

or infinite running behavior. Our benign dataset does not include any large

setup and installation files having execution time more than 10 minutes.

4.2.2 Behavior Representation

As discussed in previous chapter, we have utilized system-calls to model program

behavior during execution. In our approach, the acquired system-call sequences

are transformed as system-call graph that is based on Markov model.

The Markov model based graph representation enables the consolidated compar-

isons in two-dimensional space and maintains the sequential nature of data [66].

Representing system-call sequences in this way hampers malware author’s aim of

evading detection of any system-call based approach. As the malware authors

can very conveniently re-arrange or insert irrelevant system-calls in their malware

source code [116]. According to [102] and our traces, there are 284 unique system-

calls that can be invoked by any running application in Windows XP.

System-call Graph: Let ξ is an execution trace of a sample that represents the

set of system-calls invoked by the sample. ξ is further transformed into weighted

directed graph G = {V,E}, where V is a finite set of 284 unique system-calls and

E represents set of edges in G. Every edge eij indicates a transition from node

i to j with transition probability ρij . Applying Markov property (Equation 4.2),

we built our Transition Probability Matrix (TPM).

284
∑

j=1

ρij =





0 if all entries in ith row are zero

1 otherwise



 (4.2)
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For example, consider the execution trace ξ = {S1, S2, S3, S1, S4, S6, S2, S2, S3, S1}

of a program P. Figure 4.2 shows the corresponding graph and matrix for this

example. Here, program P invokes 5 unique system-calls (S1, S2, S3, S4, S6) and

call S5 is not utilized in its execution path. The graph contains 5 connected

nodes and one isolated node. Edges are directed (showing transition direction)

and labeled with transition probability ρij . The matrix representation of P shows

a 6× 6 square matrix called as TPM. Every row in TPM adds to either 1 or 0.

Figure 4.2: System-call graph and TPM: an example

In our experimentation, we have constructed 284 × 284 TPM for each benign

and malware executable. These individual TPMs are used to form a composite

matrix of a dataset as shown in Equation 4.3. Here, composite matrix (R.H.S.)

is constructed by adding two TPMs (L.H.S.) and then dividing each cell (i, j) of

resultant matrix by the number of samples (2 in this case). In the similar manner,

we have created the composite matrix of our datasets which is further used to

construct our input vector. Each cell in this matrix can have a real value ranging

from [0, 1] and is indicative of mean transition probability from one state to other

in a dataset.
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(4.3)

4.2.3 Decision Model

We used neural network [117, 118] model to categorize the aforementioned be-

haviors. This model has the ability of learning non-linear discriminant function

and recognizing patterns in high-dimensional feature space. It can be structured
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(a) Architecture (200:8:32:1) (b) Decision function

Figure 4.3: Decision model

using either single-layer or Multi-Layer Perceptron (MLP). Our initial experi-

ments with single-layer perceptron indicate that our data is not linearly separable.

For this reason, we adopted MLP [117] model with error back propagation algo-

rithm for our classification methodology. In our implementation, we have preferred

one-against-all (OAA) [118] pattern modeling to one-against-one (OAO) and P-

against-Q (PAQ) because other two modeling methods require more number of

network structures and shall result into a computational overhead. In our case,

we need four bi-class discrimination models and therefore we have developed four

different networks, one for each of the behaviors. These networks are

1. Clean vs All (NC)

2. Malignant vs All (NM)

3. Guest-crashing vs All (NG)

4. Infinite-running vs All (NI)

4.2.3.1 Multilayer Neural Network

Figure 4.3(a) shows our decision model (200 : 8 : 32 : 1). In this figure, the

architecture of our proposed network is described by one input vector, two hidden

layers, and one output layer. These three components decide the structure of the

neural network and are discussed as follows.
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1. Input Vector: Input vector plays a key role in designing a decision network

that yields into a better detection accuracy. We have chosen transition states

of the composite matrix to be used as input in our constructed input vector.

The composite matrix is a 284×284 matrix so our state space will have total

284 × 284 transitions. This state space is very large and applying it to our

model will degrade its performance. The selection of transition states and

size of input vector are discussed in Section 4.3.2.

2. Hidden Layer and Neuron Count: The proposed classification model is

designed with two hidden layers instead of one according to the findings of the

work in [119]. We have adopted hit and trial strategy to select the number

of neurons in the hidden layer as low and high neuron count may result

into under-fitting and over-fitting that further lead towards poor learning

of training sets. In this quest, we performed an extensive experimentation

by using neuron count from 4 to 40 at both the hidden layers. We observed

best results with 200:8:32:1 in terms of accuracy and training time and hence

decided for 8 neurons in the first hidden layer and 32 neurons in the second

hidden layer.

3. Output Layer: At the output layer, a single neuron is sufficient in our case

since for each network, we need a single value that gives a measure of how

closely an input sample relates with the corresponding behavior.

Besides these structural issues, there are factors which play a crucial role in de-

signing a decision neural network. These factors are described as follows.

1. Activation Function: Every neuron is associated with a bias value and

makes use of an activation function to transform the value of the activation

level into an output signal. If the learning algorithm is back propagation, it

is necessary for the activation function to be differentiable. For our model,

we have selected tanh(x)
No. of neurons in the layer

as the activation function as i) it

is highly differentiable and leads to good gradient descend on error, ii) it

requires less mathematical computations on each neuron, and iii) it gives

output in the range −1 to +1. We have trained our neural network in a way
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that a positive value is expected for a positive class and negative value for

negative class. For instance, in case of network NG, the guest-crashing sam-

ples belong to positive class and all the other samples are put into negative

class.

2. Learning Rate and Momentum Rate: Learning rate is a numerical fac-

tor by which weights are updated in each iteration. Lower the learning rate,

finer tuned are the weights, but it requires more iterations, thereby leading

to a high training time. Higher learning rate results in less overall training

time with the lesser accuracy of detection. Also, during the learning process

a momentum factor is introduced to reduce the sensitivity of the network to

a local minima with respect to weights and increases the convergence speed.

For our model, we have observed good classification results and apprecia-

ble training time with 0.01 as the value of the learning rate and 0.5 as the

momentum factor value.

3. Decision Function: When a sample is to be classified, its output from each

network is generated and passed through a decision function for a final clas-

sification. A high positive output from a network indicates a close match of

the input sample to the corresponding behavior. Figure 4.3(b) illustrates the

process of determining class of an input test sample. The sample is supplied

into all four networks and four output values OC , OM , OG, OI from networks

NC , NM , NG, and NI respectively are generated in parallel with respect to

each network. It is labeled with behavior β where β is the maximum value

out of four generated values.

class(S) = argmax















OC(S) = Output of NC on Sample S

OM(S) = Output of NM on Sample S

OG(S) = Output of NG on Sample S

OI(S) = Output of NI on Sample S















(4.4)

As described earlier, we have used error back propagation technique to detect the

behavior class of a sample. If d is the desired output and OY is the obtained
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output for a training sample for a network Y , the total error in the network is

defined by Equation 4.5:

E =
1

2
(d−OY )

2 (4.5)

Our aim is to minimize error E by adjusting weights that is done by back propa-

gating the gradient descend on error. At Each iteration, the weights are adjusted.

This process is repeated till the error E get minimized.

4.2.3.2 Feature Vector

As discussed earlier, we have trained four behavior networks with respect to each

behavior class. According to the selected input vector (containing transition

states), each row of feature vector is filled. For example, if input vector con-

tains three transition states 〈S1, S2〉, 〈S4, S6〉, and 〈S3, S5〉 and for any program

the respective transition probabilities are ρ12, ρ46, and ρ35.

4.3 Experimental Setup and Results

The experiments were performed on Intel Core i7 2.30 GHz with 8 GB, 1600 MHz

DDR3 RAM Macbook Pro. The implementation code is written in JAVA (Eclipse

IDE) and executed in JRE environment with 2.5GB and 3.0GB of heap space. We

have evaluated the run-time performance of our approach using two different heap

sizes.

4.3.1 Dataset Preparation

We have used malware and benign executables as input. A total of 1150 benign

executables are gathered from Windows/system32 directory of freshly installed

Windows XP with service pack 2. Our proposed model relies on the system-call

sequence gathered from a target binary while it is being executed in Windows XP

platform. Although Microsoft abandons its support for Windows XP yet this will
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not affect our proposed model because i) the target malicious binaries (win32 PE)

affect the all Windows platform, ii) system-call sequence used in Windows XP is

a subset of those used in Windows 7 [102].

Our malware dataset consists of 1120 samples collected from online sources and

user agencies. All malicious samples are then analyzed by three different AV scan-

ners (Norton, Quick Heal, AVG) to segregate them into their respective malware

families (Worm, Trojan, Virus). The training and test sets are derived from be-

nign and malware samples. In our case, training set is 70% and test set is 30%.

These sets are non-overlapping. The test set consists of samples whose behavior is

known, but these are not used for training. We have labeled each known malware

and benign samples with their respective behavior. We labeled 1150 benign sam-

ples as Clean, 505 malware samples as Malignant, 329 malware samples as Guest-

crashing (∼29%) and 286 (∼25%) malware samples as Infinite-running. Even in

our small dataset, more than 50% of malware samples depict environment-reactive

behavior reinforcing our motive of detecting environment-reactive malware. Each

malware behavior class is divided into training and test set.

We have used one unknown test set, samples of which is not labeled with any

behavior to check whether our model makes an accurate behavior prediction for

unknown instances. The total number of these samples is 423. These samples do

not belong to our previously mentioned benign and malware dataset. We have

used these samples to evaluate the performance of decision model with unknown

samples. The predicted behavior is verified for each unknown instance in Ether

framework, results of which are discussed later.

4.3.2 Input Vector Construction

As discussed earlier, we have used composite matrix for input vector construction.

The composite matrix contain a of total 284× 284 transitions. This state space is

very large and applying it to our model will degrade its performance. Therefore,

to decide the appropriate transition states and size of the input vector we adopted

following two strategies.
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1. Construct four input vectors w.r.t. each behavior network using four com-

posite matrices corresponding to each of the behavior datasets. (Strategy 1)

2. Construct one input vector for all four behavior networks using one composite

matrix created from training samples of all behavior datasets. (Strategy 2)

We considered 50, 100, 150, 200, 250, · · · , 1000 transition states for both the strate-

gies. These transition states are having higher transition values than the remaining

states. We have considered only top 1000 states out of 284 × 284 states as consid-

ering all states for selection of input vector is not practically feasible. After this,

we applied TPMs of our samples and trained all four networks for fixed 10000

iterations with these strategies. The main aim of this experiment is to select the

suitable strategy and size for our input vector. Figure 4.4 shows the results of

this experiment in terms of overall error rate with respect to each of the 12 (two

strategies and six sizes) experiments.
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Figure 4.4: Input vector construction

As can be seen in the Figure 4.4, we found that Strategy 2 outperforms the Strat-

egy 1 as the individual choice of input vector trains the model for relevant behavior

class and ignores the global knowledge. Though, there is a marginal difference in

the error rate but for any malware detection system this difference cannot be

avoided. Therefore, we have considered Strategy 2 for our experimentation. The

minimum error rate is obtained at input size 200 for Strategy 2. We have observed
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that the error rate increases as we increase the input size. Because adding more

states to our input vector, will also increase the noise in the data and as a result

it will lead to poor detection accuracy. Also, we have observed that the training

time is directly proportional to input size. But, we decided to sacrifice training

time over detection accuracy and fixed the input vector size as 200.

4.3.3 Training Results

In training phase, we randomized samples after each epoch to avoid any biases

while adjusting weights. Figure 4.5 shows the graph of error rate v/s number of

iterations. This figure indicates that our model converges in atmost 5000 iterations

as the overall error rate get stabilized from this point onwards. Though the training

time increases with increase in number of iterations and selecting low number of

iteration will improve the time performance yet a model not converged reflects

an incompletely trained model. Such a model cannot assure an accurate decision

model as the error stability is must in such type of networks. As training time

is one time cost, a higher training time to achieve higher detection accuracy for

unknown test samples is acceptable.
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We evaluated our proposed model’s performance using TPR, FPR, TNR, FNR,

Accuracy, and Error [120]. Table 4.1 illustrates the performance of constructed

trained neural networks. A high value of TPR and low value of FPR indicate that

the developed model is performing well. Our model discriminates the clean and

malignant behavior with higher accuracy of 99.9% and 99.24%. The false-alarm

rate in these cases is negligible which indicates that our selected input vector is

significantly diverse in identifying samples with clean and malignant behavior. Re-

maining two behavior classes indicate the categorization within a malware class,

so here we expected the overlapping. The infinite-running and guest-crashing are

two environment-reactive behaviors that may not always disclose their malicious-

ness such malware try to mimic the clean behavior. Therefore, we are observing

a false-alarm rate in these two cases.

Table 4.1: Performance evaluation with training and known test datasets

Dataset Network TPR FPR TNR FNR Accuracy

Training

C vs All 99.8 0 100 0.2 99.9
M vs All 98.56 0.09 99.91 1.44 99.24
I vs All 95.12 0.92 99.08 4.88 97.1
G vs All 97.01 0.24 99.76 2.99 98.39

Test

C vs All 97.22 3.4 96.6 2.78 96.91
M vs All 97.12 1.59 98.41 2.88 97.76
I vs All 95.56 3.04 96.96 4.44 96.26
G vs All 92.8 5.53 94.47 7.2 93.64

4.3.4 Testing Phase

We have conducted testing for our known and unknown test datasets. As illus-

trated earlier, the known test samples are labeled with their respective behavior

but are not utilized during the training phase. Table 4.1 shows the results of our

known test dataset. We have observed that the testing results are quite similar

to the training ones. There is a tolerable difference in detection accuracy of our

training and test datasets because of our model is trained with less number of

guest-crashing and infinite-running samples as compared to benign samples. We

have observed an overall testing accuracy of 96.12%.
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Table 4.2 shows our testing results with the unknown test set. We have supplied

this set to verify the correctness of proposed model with unknown unlabeled in-

stances of binaries. From statistics, we can deduce that our model is capable

in categorizing the unknown instances. We have confirmed the assigned behav-

ior labels of unknown test samples by executing and monitoring these samples in

Ether. With an error rate of 4.6%, we have found that designed model automates

our manual behavior labeling process. This proves that the proposed model can

determine the environment-reactive behavior of unknown instances also.

Table 4.2: Detection accuracy with unknown test dataset

Behavior # Samples # Correct # Incorrect
Class Instances Instances

Clean 265 258 7
Malignant 103 102 1
Guest-crashing 36 34 2
Infinite-running 19 17 2

4.3.5 Comparison with Existing Approaches

Table 4.3 shows the comparison of our proposed approach with existing malware

detection model. It is clearly observed that our model detected malware with

higher accuracy as compared to existing methods. The approaches shown in the

table use various machine learning techniques to detect malware. Our approach

utilizes the multilayer perceptron algorithm that has the ability of learning non-

linear discriminant function and recognizing patterns in high-dimensional feature

space. Also, proposed approach addresses the environment-reactive behavior of

malware.

Table 4.3: Comparison with existing approaches

Approach Samples Technique Detection
(B & W) Applied Accuracy(%)

Sharma et. al. [91] 50 & 50 SVM 50

Xun et. al. [93] 722 & 1589 Naive-Bayes 95

Stopel et. al. [121] 1512 ANN 90

Nissim et. al. [122] – SVM 94

Our approach 1150 & 1120 NN 96
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4.4 Performance Evaluation

To evaluate the performance of the proposed supervised learning model we con-

sidered following metrics.

4.4.1 Detection Accuracy

The detection rate determines the accuracy of a proposed model. The proposed

model addresses the malware detection problem that categorizes the malware in-

stances according to their suspicious (Non-environment-reactive and environment-

reactive) behavior. The high true positive rate and low false positive rate is desir-

able in case of any malware detection problem. We obtained high TPR and low

FPR in Table 4.1.

4.4.2 Evaluation with Other Dataset

This metric determines how well the trained model performs on any data other

than training data. For instance, the FNR value with both training and test sam-

ples tables are more as compared to FPR. The reasons are that i) our constructed

input vector includes such patterns that can identify the diversity in all four be-

havior classes and ii) our dataset is not imbalanced. To check whether the dataset

is balanced or not, we have applied an imbalance measure derived in [118]. Let

Ω be an imbalance measure for OAA. Equation 4.6 decides the value of Ω. Here

K=4, denotes the number of classes and ni is the total number of samples in ith

class. If Ω tends to zero means the dataset is imbalanced and the maximum value

for Ω will be 1/(K − 1) that denotes that the dataset is balanced. In our case, Ω

is 0.15. It indicates that our training set is not completely imbalanced and thus

we have achieved uniformity in training and testing results.

Ω = min
i=1,2··· ,K

[

ni∑k
j=1, i6=j nj

]

(4.6)
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4.4.3 System Overhead

We created neural networks equal to the number of behaviors to be detected, which

in our case is 4. In order to achieve a high efficiency with respect to training time,

we trained all these four networks in parallel by making use of JAVA threads.

Hence, training of each network occurs in parallel and the overall training time

becomes equal to the maximum value of the time taken by all four networks. We

obtained training time in the range of 17 to 1096 seconds for 100 to 10000 itera-

tions respectively with heap space 3GB. We also trained the designed model with

heap space 2.5GB (training time ranges from 22 to 1536 seconds) and observed a

significant speed up (1.45 for 5000 iterations) with the former. This speedup is

achieved due to the lower execution frequency of the JAVA garbage collector in

higher heap space. The obtained training time is not a big issue to be considered.

But when our proposed method applied with larger datasets this time will increase

drastically. To reduce the training time with the larger dataset we can increase the

heap space memory of the system and can acquire a significant speed up without

making any modifications into our developed model.

4.5 Summary

In conclusion, we can argue that our proposed approach using system-call traces

can be used to identify malware having environment-reactive behavior. We evalu-

ated the proposed approach known and unknown samples. The unknown samples

were not labeled during behavior monitoring phase. Our decision model predicted

the class of these unknown samples that are again executed in Ether for verifying

the class predicted. With an error rate of 4.6%, we have found that designed

model automates our manual behavior labeling process. We have observed this

error rate because the classification is done within a malware class therefore, we

have expected this false-alarm.

The proposed model also differentiates malware from benign programs. We have

achieved an overall of ∼96% of detection accuracy. The false-alarm rate in these

cases is negligible which indicates that our selected input vector is significantly
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diverse in identifying samples with clean and malignant behavior. The formed

input vector is indicative of capturing ordered relationship among system-calls

invoked. Furthermore, we have built a multi-layer neural network that assures

learning and recognizing patterns in high-dimensional feature space.

The proposed approach is based on system-call traces. To hamper our approach,

malware writers can apply system-call injection attack during execution by insert-

ing irrelevant system-calls. This attack will change the ordered sequence of calls

as well as the states in input vector. Therefore, in next chapter we present an

approach that is resilient to system-call injection attack.



Chapter 5

Program Semantics for Malware

Detection

As discussed earlier, the current malicious threats are embedded with numerous

anti-detection features to evade dynamic malware detection techniques. In the pre-

vious chapter, we addressed the malware carrying environment-reactive behavior.

We observed that these malware programs sense the presence of virtual environ-

ment and exhibit a reactive, often benign, behavior in response. We exploited

their reactive behavior and identified them. For this, we utilized the sequence

of system-calls invoked during execution of malware and benign programs. The

majority of dynamic behavior detectors rely on system-calls to model the infection

and propagation dynamics of malware. However, these approaches do not account

an important anti-detection feature of the modern malware, i.e., system-call in-

jection attack.

In this chapter, we present an approach that is resistant to the system-call in-

jection attack. This attack allows the malicious binaries to inject irrelevant and

independent system–calls during the program execution thus modifying the execu-

tion sequences and defeating the existing system–call based detection. To develop

an approach that is not vulnerable to the system-call injection attack, we charac-

terize program semantics in terms of semantically-relevant paths. These paths are

77
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extracted from a dependency graph that is modelled using system-call traces. Our

proposed approach specifies the program semantics using Asymptotic Equiparti-

tion Property (AEP) mainly applied in information theoretic domain. The AEP

allows us to extract the information-rich call sequences which are further quantified

to detect the malicious binaries.

We experimentally demonstrate that the proposed approach is resilient to call-

injection attacks. We show that even with thousands of call-injection, our ap-

proach sustains and performs in a similar way. Moreover, we observe that our

approach is comparable to other existing behavior-based malware detection ap-

proaches.

5.1 Introduction

The majority of dynamic behavior-based malware detectors [61, 80, 81, 101] make

use of system-calls as these are only available gateways for an application’s in-

teraction with Operating System (OS). A system call is an interface between a

user-level application and kernel-level services. These services include hardware,

input-output related activities, creation/deletion of processes and many more. To

infect the host system, malware needs to invoke a sequence of system-calls as

these are nonbypassable. Therefore, capturing malware by employing system-calls

will allow devising a reliable detection solution. The present malware programs

are, however, equipped with advanced anti-detection techniques which can evade

even system-call based malware detectors [123]. To counter system-call based

approaches, malware authors make use of shadow attacks [124] and system-call

injection attacks [125], discussed in following paragraphs.

5.1.1 Shadow Attack

Shadow attack was first demonstrated by Ma et al. [124]. The authors in their

approach have shown that the critical system-call sequences of malware can be

divided and exported into separate shadow processes. The functionality of mal-

ware remains unchanged when its system-call sequences are exported to shadow
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processes. Examining an individual process shall not be able to detect the mali-

ciousness. Reliable detection required that all shadow processes be identified and

their execution sequence be known to extract the run-time trace of system-calls.

Figure 5.1 illustrates the shadow attack.

Figure 5.1: An illustration of shadow attacks [124].

In this figure, process P0 is exported into two shadow processes, P ′
0 and P ′

1. Every

qij denotes the state of process Pi and Si denotes system-call. To achieve the

functionality of P0, the same input parameters are sent from P ′
0 to P ′

1; and return

values are passed from P ′
1 to P ′

0. The shadow processes individually act in benign

manner and collectively these depict malicious behavior. These shadow processes

communicate with rewritten malicious code to deliver their malicious payload.

5.1.2 System-call Injection Attack

The system-call injection attacks are deployed by inserting irrelevant and inde-

pendent calls in the actual execution flow of malware binaries. By doing so, detec-

tion approaches based on graph matching or path similarity analysis are defeated.

These attacks are the variant of code-injection attacks [125, 126]. These attacks

modify the control-flow of running application such that sequence of system-calls

looks benign to malware detection system.
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To implement these attacks, the injection code needs to be stored in application’s

address space. Moreover, this code must invoke a reasonable amount of system-

calls to alter the execution-path of running application. A common place for

injection code is a program’s runtime stack [127]. In [128], Kruegel et al. proposed

a method, in which memory locations (and registers) are corrupted to transfer

control back to running application from stack. Parampalli et al. [129] discussed

following locations where injection code may reside and work properly.

• Stack space: If running program has very limited stack space requirement,

then remaining stack space can be utilized for injection code. While using

injection code from stack space, special handling is required, which ensures

that each page fault handled properly. Using page faults, the control is

returned to program’s code and, therefore, running program can continue its

execution.

• Global Buffers: Buffers are used to store data of programs. The buffer

size is relatively larger than the data stored. Therefore, buffers can also

be used for call-injection attack. There are certain global arrays containing

rarely-used data (code masqueraded as data) than can be replaced without

modifying program behavior.

• Heap: If running program has larger memory requirements, then heap-

allocated buffers can be used in place of global buffers. These buffers also

hold rarely-used data (code masqueraded as data) that can be overwritten.

5.1.3 Feasibility of Attacks

In literature, researchers have shown the feasibility of system-call injection at-

tacks [125–127, 129]. Shadow attacks have been theoretically proved by [124, 130].

The shadow attacks suffer from the following limitations that restrict its applica-

bility in practice.

1. The shadow attacks lead to multi-process malware, which is slower than the

original single process malware. Such a malware, cannot be used in various

real time attack situations (such as chain attacks) [131].
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2. The implementation of these attacks requires division of malware; the com-

munication between multiple processes; the bootstrap, and the execution

sequence of multiple processes. Failure of any shadow process will result into

the failure of entire process [130].

The aforementioned challenges limit the employability of the shadow attacks by

malware writers. On the other hand, the system-call injection attacks are free of

these limitations, and, therefore, to earn more revenue, malware authors would

prefer these attacks. Taking this fact into consideration, we present an effective

system-call based malware detection approach that is resistant against system-call

injection attacks.

5.2 Proposed Approach

To evade detection, malware is continuously being evolved and equipped with

anti-detection techniques such as code obfuscation, polymorphism, metamorphism,

anti-debugging, anti-VM, code-injection, to name a few. By incorporating these

techniques into malicious code, malware authors try to extend the lifetime of ma-

licious code and hide its malicious intent. The anti-detection techniques have

instigated a never-ending arms-race between malware detectors and malware au-

thors.

In this chapter, we propose a novel detection technique for identifying detection-

aware malicious threats. Our proposed approach employs the program semantics

to identify the information-rich components of malware and benign files. The

complexity of sophisticated malware codes makes difficult to detect and analyze

them. These programs can be found in multiple statically diverse forms having the

same functionality. Such metamorphic forms can be detected only by behavior-

based detection methods to analyze the behavior of a malware program we need

to understand its semantics instead of the syntax.

The semantics (behavior) of any program can be explored by exploiting its

execution-flow. During execution, the malicious programs try to infect host ma-

chine with actual malicious payload (if it is not environment-aware [112, 113, 132]
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or having trigger-based behavior [133]). Our prime objective is to define a metric

that can quantify the program semantics. For this, we consider AEP that is based

on Shannon’s entropy [134] that is a measure of information present in a program

object [135] and remains unchanged when one-to-one function is applied [136].

Using entropy, we extract semantically-relevant call sequences and quantify them

to construct feature space of proposed model.

Our notion of characterizing program semantics is not vulnerable to call-injection

attacks or behavior obfuscation as the discriminating components are composed

of 1) multiple call sequences, and 2) non-string based statistical features. Malware

programs with different call sequences may exhibit similar behavior. For example,

self-replication behavior of malware in which it copies its content to either a new

file or into an already existing file, can be represented in one of the following

system-call based path sequences:

1. NtCreateFile→NtOpenFile→NtReadFile→NtWriteFile,

2. NtOpenFile→NtCreateFile→NtReadFile→NtWriteFile, and

3. NtCreateSection→ NtMapViewOfSection→NtCreateFile→NtSetInform-

ationFile→NtWriteFile.

A behavior is manifested as a path in execution of system-calls and may be com-

posed of many edges; each edge encapsulating requisite transition from one call

to another. Same behavior can be captured through multiple such paths in an

execution trace. To determine the most likely path, we use its entropy as an

information measure. In our method, to capture these paths exhibiting similar

behavior, we represent the program behavior through multiple paths carrying al-

most the same information quotient. These paths are statistically mapped to a

non-string based feature space to avoid string-based evasions [1]. The problem

statement is composed of sub-problems listed as follows:

1. Encapsulating program behavior into semantically-relevant paths through

AEP concept and extract them via ALBF.
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2. Verify and validate the specified behavior by constructing a learning-based

detection model.

The proposed approach enables us to transform the input binary programs into

two forms; one that characterizes the most relevant information; and the other

that exploits this relevant information to construct a detection model and thus

verifies the effectiveness of extracted behavior.

5.2.1 Encapsulating Program Behavior

In this phase, execution traces of binaries are transformed into Ordered System-

Call Graph (OSCG) derived from the sequence of invoked system-calls. A vertex

of OSCG corresponds to a system-call in program trace. An edge from vertex

u to vertex v of OSCG corresponds to the occurrence of the pair 〈Su, Sv〉 in the

sequence. Here, Su and Sv are system-calls corresponding to vertices u and v

respectively. The graph preserves order in which these calls are invoked. So, a

pair 〈S1, S2〉 shall add an edge from vertex 1 to 2, whereas 〈S2, S1〉 shall add an

edge from vertex 2 to 1. An OSCG is constructed for each input binary. Consider

the following trace of system calls S1S3S2. This trace has only two pairs 〈S1, S3〉

and 〈S3, S2〉.

In order to specify program behavior, the OSCGs are used to determine all reach-

able paths from initial node (the first call invoked) to the final node (last call

invoked) of the sample. We apply AEP on each path to check if it is semantically-

relevant or not. The detailed description is given in subsequent paragraphs.

5.2.1.1 Transforming Program Binaries as OSCG

To transform binaries into ordered system-call graph (OSCG), each binary is ex-

ecuted in a virtualized environment. In particular, we have employed Ether for

executing binaries [46]. Execution of binaries is monitored, and invoked system-

calls are logged. Execution of binaries using Ether is performed in similar fashion

as discussed in Chapter 3 and Appendix A.
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The acquired traces are used in extracting the sequence of invoked system-calls.

Consider an execution trace ξ = {S1, S2, S3, S1, S2, S2, S3, S3, S2}. This trace has

three distinct system-calls S1, S2 and S3. So, we construct OSCG with three nodes.

As the sequence has pairs 〈S1, S2〉, 〈S2, S3〉, 〈S3, S1〉 and 〈S3, S2〉, edges are added

from node 1 to 2, node 2 to 3, node 3 to 1, and node 3 to 2.

Graph-based representation such as OSCG, also, captures the sequential nature of

the data [66]. Representing execution traces in the form of directed labeled graph

is not new. In the past, many approaches have used graph-based representations

to detect malicious files [60, 61, 80, 81]. In OSCG, we ignore all the system-call

parameters to avoid the sensitivity towards handles, arguments and other system

artifacts.

We shall be using ξ to represent execution trace of a sample and S to represent

the set of all possible (distinct) system-calls. In our case |S| = 284, i.e., S =

{S1, S2, · · · , S284} as only 284 possible system-calls can be invoked on Windows

XP (SP2) [102]. Each call in S performs a service at the kernel level that is

requested by running binary. For instance, routine NtMapViewOfSection is only

invoked to map the view of a section into the virtual address space of running

process, NtWriteFile is called to write into a file and NtClose is the routine

invoked to close the handles created by other routines.

Successive calls to these routines collectively depict program behavior. To char-

acterize the program behavior through OSCG, we preserve the order in which

system-calls are invoked.

Definition 5.1. An Ordered System-Call Graph (OSCG) G = (S,E) is a directed

graph, where S is the set of vertices and each vertex represents a system-call. E

= {Eij |Si

ρij
→ Sj ; Si, Sj ∈ S}, where ρij denotes the transition probability from

system-call Si to system-call Sj.

It is assumed that paths in the graph G are Markov chains, i.e., the future state de-

pends on the present state only and not on past states. The transition probability
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ρij is computed as follows.

ρij =
count(Si → Sj)

∑284
k=1 count(Si → Sk)

(5.1)

where, Si → Sj represents a transition from Si to Sj . As discussed earlier, the

paths of the graph G are Markov chains. Therefore, the computed transition

probability must satisfy Markov property [137] as given in Equation 5.2.

∀i

284
∑

j=1

ρij =







0 Si is isolated node

1 otherwise
(5.2)

For example, consider the execution trace ξ = {S1, S2, S3, S1, S4, S6, S2, S2, S3, S6}

of a program P. For S = {S1, S2, · · · , S5, S6}, Figure 5.2 shows the corresponding

graph G and matrix for this example. In P, the set of distinct system-calls invoked

is {S1, S2, S3, S4, S6}. The system-call S5 is an isolated node as it is not invoked

during execution of P. Edges are directed and labeled with transition probability

ρij . For instance, in the execution trace ξ, two transitions S3 → S1 and S3 → S6

occurred from node S3, therefore, both the edges are labeled with equal probability,

i.e., 0.5.

Figure 5.2 also shows a 6 × 6 square matrix called transition probability ma-

trix (TPM) for P. Every row in TPM adds either to 1 or to 0. TPM in our

case is 284 × 284 as |S| for Windows XP (SP2) is 284. As discussed, there are

two transitions from node S3, i.e., S3 → S1 and S3 → S6. Therefore, both the

entries ([3,1] and [3,6]) in TPM are filled with equal probability i.e., 0.5.

5.2.1.2 Specifying Program Behavior

The proposed approach is based on semantically-relevant paths. This concept is

inherited from information theoretic model that was introduced by Cui et al. [135]

in the domain of software testing. According to AEP, “for a random process there

exists few paths that carry much more information than the other paths of the

graph” [136]. The authors have proved this concept and named these paths as
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Figure 5.2: An example of Ordered System-Call Graph (OSCG) and Transition Prob-
ability Matrix (TPM).

‘typical paths’. In literature, AEP has been applied successfully to the identically

independent distributed processes and Markov chains [136].

In this chapter, we also follow the same concept and hypothesize that there exist

paths that are more probable than the other paths of OSCG. A path P of a graph

G is defined as follows.

Definition 5.2. A path P = {S1, S2, · · ·Sn} is an alternate sequence of nodes and

edges of G which starts from S1 and ends at Sn.

Here, S1 denotes Sstart and Sn represents Send. Sstart is the first system-call invoked

and Send is the last system-call invoked during execution of a program P. Each

link in a path is expressed by its transition from one system-call to the other.

For any path between two nodes of OSCG, path probability is computed from

transition probability of its constituent links.

The path probability Pr(P) of a path P is given by Pr(P) = Pr(S1).P r(Sn =

Sn|Sn−1 = Sn−1, · · · , S1 = S1) = Pr(S1) · · ·Pr(Sn = Sn|Sn−1 = Sn−1). The

Pr(S1) is the initial probability of node S1. The initial probability of a node

Si is the probability of occurrence of Si among all the system-calls invoked in

the execution trace ξ. Equation 5.3 gives the initial probability of node Si, i.e.,

Pr(Si). |Si| is the total occurrence of node Si in the system-call trace and |S| is

the number of distinct calls invoked during execution. Paths containing links with

high transition probability are likely to contribute more to the semantic quotient.

Pr(Si) =
|Si|

|S|
(5.3)
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We aimed at computing all the paths originating from Sstart to Send nodes of formed

OSCG for extracting semantically-relevant paths of a program P. Computing all-

paths between two nodes is an NP-complete problem [138]. To resolve this, we

approximate this phase by extracting candidate paths instead of all paths. In order

to determine if a path is semantically-relevant, we apply AEP on each candidate

path P of the sample. For this, we first determine the maximal entropy rate λ∗ of

the binary program under consideration as follows [135].

λ∗ = max

{

lim
n→∞

log(Tn)

n

}

, (5.4)

Here, Tn is the total number of paths of length n in G. Using λ∗, we extract the

semantically-relevant paths that are richer in information than other paths. Now,

in order to define ǫ-semantically-relevant paths with ǫ > 0, we apply following two

properties (Equation 5.5 and Equation 5.6) on each path P:

∣

∣

∣

1
n
log 1

Pr(S1,S2,··· ,Sn)
− λ∗

∣

∣

∣
< ǫ, Property 1 (5.5)

logB(S1, S2, · · · , Sn)

n− 1
>

1

2
(λ∗ − ǫ), P roperty 2 (5.6)

Where B(S1, S2, · · · , Sn) =
∏

1≤i≤n b(Si) and b(Si) is the branching factor of the

node Si. The left hand side (LHS) of Equation 5.6 is average logarithmic branching

factor used for constructing our feature space. We select ALBF metric of each

path to construct our feature space as the branching factor is a good indicator of

semantic relatedness [139]. Now, we can define ǫ-semantically-relevant paths as

follows: (Definition 5.3).

Definition 5.3. A path P = {S1, S2, · · · , Sn} is ǫ-semantically-relevant if it sat-

isfies Property 1 and Property 2 (Equations 5.5 and 5.6).

We use T(ǫ) to denote ǫ-relevant set, a set of all ǫ-semantically-relevant paths of

the program P. The paths in T(ǫ) vary according to the value of ǫ. If ǫ1 < ǫ2 · · · <

ǫk, T(ǫ1) ⊆ T(ǫ2) · · · ⊆ T(ǫk).
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A very small value of ǫmay not capture all paths needed to encapsulate information

content whereas a high value of ǫ may include irrelevant/redundant path lowering

the information content of T. We have kept the value of ǫ ranging from 0.5 to 7.5.

The upper limit of ǫ is the maximum value (7.59) of Property 1 (LHS) in all paths

of malware datasets. The initial non-zero value of ǫ taken as 0.5 in our relevant

set selection approach. With respect to each value of ǫ, we train our model with

features relevant for specifying the malicious behavior.

Cui et al. in [135], have proved two theorems, which ensure that typi-

cal (semantically-relevant) paths carry relevant information of the graph. The

theorems are stated as follows:

Theorem 5.4. Let ǫ > 0. The ǫ-typical paths take probability 1, asymptotically;

i.e.,

lim sup
n→∞

Pr(
∣

∣

∣

1
n
log 1

Pr(S1,S2,··· ,Sn)
− λ∗

∣

∣

∣
< ǫ) = 1.

Theorem 5.5. Let ǫ > 0. For any path P of G achieves λ∗,

lim sup
n→∞

Pr(
logB(S1, S2, · · · , Sn)

n− 1
>

1

2
(λ∗ − ǫ)) = 1.

Theorems 5.4 and 5.5 have been proved by employing limsup definition of entropy

rate instead of limit definition. Proving AEP with the limit definition, as in

Shannon-Mcmillan-Breiman theorem [136], is difficult as it requires a strong side

condition (ergodicity). In the present context, malware does not constitute same

behavior averaged over time and does not exhibit ergodicity. Therefore, we can

also consider the limsup definition. Assuming the theorems and proofs are valid,

we apply their concept of typical paths towards semantically-relevant paths in our

approach.

The set of semantically-relevant paths is not unique as a given program may have

multiple execution traces due to the presence of conditional constructs (triggering

of different constructs can invoke different executions). Any execution trace that

results in invocation of malicious activity should suffice to extract the semantically-

relevant paths capturing malicious behavior. We have constructed OSCG from a
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single execution trace as exploring more execution traces shall add to monitoring

overhead.

5.2.1.3 Semantically-relevant Path Extraction

Consider TPM and graph G as shown in Figure 5.3. In the example, Sstart is the

node 1 and Send is the node 5. There are nine cycle-free paths from node 1 to 5.

We determine the value of λ∗ considering all possible path lengths of 2, 3, and 4

as computed by the application of Equation 5.5 (refer Table 5.1). These values

range from 1.85 to 2.765 so we can select the values for ǫ in the specified range.

With ǫ=2.6, we get P2, P3, P6, P7, and P8 as candidates for semantically-relevant

paths.

Selecting the different values of ǫ and applying Equation 5.6 will give us different

sets of semantically-relevant paths. For instance, if we apply Equation 5.6 with

ǫ = 2.1 then both the paths P7 and P8 are included in semantically-relevant set.

With these different sets of paths, we train our model and observe the detection

accuracy.

Figure 5.3: Ordered System-Call Graph (OSCG) and Transition Probability Ma-
trix (TPM).

5.2.2 Verifying and Learning Malware Detection

This section presents our learning-based model that discriminates benign and mal-

ware programs. For our proposed learning-based detection model, we construct

feature space F by utilizing extracted semantically-relevant paths. We have used
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Table 5.1: Paths from node 1 to 5 showing values w.r.t. Equation (5.5).

Paths Probability of Values of
the paths Property 1

P1: 1–2–5 Pr(P1) : 0.0108 2.765

P2: 1–2–3–5 Pr(P2) : 0.0032 2.100

P3: 1–2–4–5 Pr(P3) : 0.0013 2.530

P4: 1–2–4–3–5 Pr(P4) : 0.0002 2.675

P5: 1–4–2–3–5 Pr(P5) : 0.0016 2.925

P6: 1–4–3–5 Pr(P6) : 0.0021 2.330

P7: 1–4–2–5 Pr(P7) : 0.0054 1.850

P8: 1–4–3–2–5 Pr(P8) : 0.0010 2.095

P9: 1–4–5 Pr(P9) : 0.0108 2.765

‘histogram binning’ technique [140] (mainly applied in the fields of information

retrieval, image processing and text processing) as it incorporates approximate

matching and reduces sensitivity to slight changes in system-call sequences. This

avoids the possibility of evasion encountered due to detection-aware malware.

ALBF metric has been employed to determine the bin to which a semantically

relevant path belongs to. In our case, each bin corresponds to a range of ALBF

values. These bins are spaced at uniform intervals and hold the frequency count

of respective semantically-relevant paths. These bins are considered as features.

For example, if feature space consists of three bins b1, b2, b3 and for program P1,

respective bin frequency counts are f1, f2, f3, its feature vector shall be 〈f1, f2, f3〉.

Selecting appropriate number of bins for building our feature space involves a

tradeoff between less detailed features (small number of bins imply coarser gran-

ularity and loss of information) and overly detailed features (too many bins result

in loss of generalization and flexibility).

We determine maximum ALBF value corresponding to malicious binaries. Divid-

ing this by bin size yields number of bins. We constructed and evaluated feature

space with bin sizes of 1, 5, 10 and 15 and observed the detection accuracy. The

initial results indicate that the bins formed with an interval range of 5 (bin size is

five) identifies benign and malware samples more accurately. The feature vector

containing bins with higher intervals merges the relevant paths of different ALBF

values and may result in information loss. This merging also reduces the number
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of elements in a feature vector. Therefore, we set the interval of 5 and consider

310 non-overlapping bins as features into our feature vector.

The constructed Feature Vector Table (FVT) is trained using the learning al-

gorithms. We use an ensemble-based learning algorithm, i.e., Random For-

est, [141, 142], for differentiating malware and benign samples. It is a collection of

many decision trees that contribute towards the classification of instances. Also, it

provides a better generalization of information even in the presence of noise. It is

primarily used when the data set is very large. The decision tree is constructed by

randomly selecting subsets of the training data and attributes that can partition

the available dataset.

5.3 Experimental Setup and Results

The experiments are performed on Intel Core i3 2.40 GHz with 2.8 GiB RAM,

running on Ubuntu 12.04 operating system. For capturing the system-call traces

we use Xen hypervisor [143] and create a virtual environment using Ether. The

underlying guest OS in Ether is Windows XP (SP2). Therefore, we have built

our prototype model by executing binaries in Windows XP. Although, Microsoft

abandoned its support for XP but still it is a popular OS widely used in various

government agencies, banks and in ATMs. As a result, existing recent similar

approaches [75, 80, 125, 144] also utilize XP. However, the proposed approach is

not specific to particular OS and analysis framework as

1. the target malicious binaries (PE format) affect all Windows platforms, and

2. system-call sequence used in Windows XP is a subset of those utilized in

Windows 7 [102].

The proposed approach will perform in a similar fashion if system-call traces are

collected with different Windows OS and some other analysis framework (Anubis,

Cuckoo, GFISandbox, to name a few). In this section, we present the implementa-

tion details and evaluation of our proposed approach. The experiments are carried

out using benign and malware executable samples. The proposed approach detects
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the malicious Windows PE binaries (PE is the most popular file format among

malware authors as reported by the virustotal.com [3]).

5.3.1 Experimental Dataset

We utilize real instances of malware and benign samples. The majority of mal-

ware detection approaches [75, 76] make use of one malware dataset to evaluate

the performance of their approach. These approaches perform well on selected

dataset, however, do not generalize well to other datasets and result in perfor-

mance degradation. Therefore, to evaluate generalization of our approach, we

used two different malware datasets and label them as Dold (old dataset) and

Dnew (new dataset).

The former dataset consists of 1209 samples. This set also includes samples utilized

in [145] for their work of detecting metamorphic malware. The types of samples in

this set include packed, polymorphic and metamorphic malware. We selected this

dataset for two reasons: 1) to represent the class of malware samples discovered

prior to 2012, and 2) to estimate the performance of our method with morphed

and packed samples.

The latter set (Dnew) of samples is downloaded from the malware repository sys-

tem, i.e., VirusShare.com. The mentioned repository system labels each uploaded

sample after scanning it with 55 AV scanners. We can rely on the labeling process

of VirusShare.com as it is akin to comparing with large number of AV scanners.

This dataset consists of 1226 malware samples each of which was discovered from

January 2013 to March 2014 and it is labeled as ‘new’. Both datasets are divided

into training (70%) and test (30%) set.

We used one benign dataset that contained total number of 1316 samples. Be-

nign samples are scanned by uploading them to the web portal VirusTotal.com to

verify their non-maliciousness. Our benign dataset consists of different kinds of

software applications such as browsers, games, FileZilla, googletalk setup, iTunes,

youtubedownloader, Media players, wireshark, to name a few. We used these

benign software programs to evaluate the accuracy of proposed model.
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As discussed earlier, we monitored the execution of each benign and malware

sample in the controlled environment created using Ether. We observed that

during execution there were some malware samples that did not generate any log

and few benign and malware samples that cause executional errors. The malware

samples embedded with anti-detection features (VM-aware and trigger-based) do

not generate any log. The execution errors occurred due to OS compatibility issues.

Our final datasets (benign and malware) include the samples that are executed in

guest OS without abnormal termination and without execution errors.

To generate system-call logs, each sample is permitted to execute for 10 minutes.

According to [146], five minutes is sufficient duration for the execution monitoring.

We doubled this execution time to capture the malware equipped with capability

of carrying out time-out attacks. We observed that in all samples, benign as well

as malicious, the execution sequences are mostly made of 160 different calls out of

284 calls. We refer these calls as ‘frequent’ calls. Remaining 124 calls are regarded

to as ‘rare’ in following discussions. The experiments are performed with training

sets of benign and malware datasets, and the performance evaluation is carried

out using test samples.

5.3.2 Approximate All Path Computation

We constructed OSCG for each sample as discussed earlier to determine the paths

between Sstart and Send. Identifying all paths between two nodes of a graph is

an NP-complete problem [138]. The time complexity of computing all paths is

exponential in case of a complete graph. To reduce the time complexity, we ap-

proximate the ‘all path computation phase’ of our approach. We, first investigate

if an OSCG is sparse. We observe the average link-count in OSCGs of benign and

malware samples of our datasets. The average link-count of benign samples is 174

and that of malware samples is 282 indicative of the sparse nature of our OSCGs

as the number of edges is in O(|S|), where S is the number of vertices (284).

To approximate the all-paths phase, we conducted an experiment with 500 mal-

ware and 500 benign samples. The samples are selected in a manner that they
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cover the entire range of link-counts. With these samples, we exhaustively com-

puted all paths from Sstart to Send and computed average number of paths for a

given path-length.

Figure 5.4 shows this distribution for both benign and malware samples. As can be

seen in Figure 5.4, average number of paths is normally distributed for benign as

well as malicious files. However, in path-length ranging from 10 to 31, the average

number of paths in malware samples is more than the benign samples. Paths in

this range can be used for discriminating a malware from benign. We have used

the paths in this particular range as candidate paths for extracting semantically-

relevant paths. Instead of computing all paths for all the samples we computed the

candidate paths (approximation of all paths). This reduces the path computation

time for all the samples.
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Figure 5.4: Path distribution w.r.t. lengths in benign and malware datasets.

Table 5.2 shows the average time consumed in determining all paths and can-

didate paths. We observed that time taken in computing all paths was higher

than the candidate paths. Also, using candidate paths we can reduce the overall

computation time. The maximum time consumed was ∼11 hours and ∼9.7 hours

for all-path computation and candidate-path computation respectively. We also

noticed that some samples took higher processing time than the samples having

higher link-count. This indicates that processing time is not directly proportional



Chapter 5. Program Semantics for Malware Detection 95

to link-count. In the majority of samples (∼88.3%), candidate paths have a link-

count of atmost 450 that result into a total time of ∼1.83 hours.

Table 5.2: Processing time of all-paths and candidate-paths.

Link-count Avg. Time of Avg. Time of % of Samples
up to All-paths candidate-paths Covered

(in sec.) (in sec.)

50 0.01 0.005 0.98

51-150 1.78 0.47 6.07

151-250 450.64 162.89 37.89

251-350 9271.65 1145.72 27.32

351-450 19080.20 5292.86 16.08

451-550 24848.32 15565.60 9.84

551-650 33482.56 28384.77 1.33

651-750 39524.45 35109.9 0.49

We determined the candidate-paths for all the samples and, then, extracted the

semantically-relevant paths as explained earlier. We constructed T(ǫ), ǫ-relevant

set of benign and malware samples and feature vectors for all binaries using the

frequency distribution of ALBF values of their T(ǫ). The constructed feature

vector is trained using Random Forest as described earlier. The above process has

been repeated for different ǫ values.

5.3.3 Detection Accuracy

We have evaluated the performance of our proposal in terms of popular evaluation

metrics [147] – i.e, True Positive Rate (TPR), False Positive Rate (FPR), True

Negative Rate (TNR) and False Negative Rate (FNR). In the present context, we

designate malware class as positive and benign class as negative. TPR (FPR) is

the fraction of malware instances correctly (incorrectly) classified. Similarly, TNR

(FNR) denotes the fraction of benign instances correctly (incorrectly) classified.

For any malware detection model, it is desired that TPR should be high, and FPR

and FNR should be low. For two datasets Dold, Dnew considered in our evaluation,

Table 5.3 summarizes TPR and TNR for different values of ǫ.

As can be seen from Table 5.3, ǫ ∈ {2.3, 2.6, 2.9, 3.2} yields higher detection

accuracy. It can be easily deduced from the table statistics that our constructed
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Table 5.3: Detection accuracy of Dold and Dnew.

Dold Dnew Overall
ǫ TPR TNR TPR TNR Acc

0.5 0.3 100.0 1.7 100.0 50.50

1.0 4.5 32.7 18.1 99.2 38.62

1.5 64.0 71.3 44.6 62.7 60.65

2.0 81.8 88.4 77.9 78.1 81.55

2.3 92.3 91.5 88.4 93.3 91.37

2.6 96.2 95.3 94.6 93.8 94.97

2.9 95.9 96.1 94.3 95.4 95.42

3.2 90.3 94.3 94.7 96.1 93.85

3.5 91.4 95.1 92.3 93.9 93.17

4.0 88.6 92.6 89.1 91.5 90.45

4.5 87.9 88.9 90.3 89.0 89.02

5.5 87.1 89.2 89.3 89.6 88.80

6.5 84.1 88.6 87.1 90.3 87.52

7.5 84.6 87.1 85.0 87.2 85.97

feature space has the ability to discriminate between malware and benign samples.

Our model achieves the highest accuracy of 95.42% at ǫ = 2.9. Therefore, we

have selected it as a threshold. We conducted this experiment extensively with

various values of ǫ to validate our hypothesis that lower values of ǫ exclude some of

information-rich paths. This is reflected in poor performance exhibited by initial

rows of Table 5.3. Too many paths, as happens at higher values of ǫ, can lead to

generalization and, therefore, result into the decrease in detection accuracy. The

misclassified instances are shown in Table 5.4.

As can be seen in Table 5.4, our model performs best at selected threshold of

ǫ=2.9. For malware classification, FPR and FNR should be low as a high value of

FPR shall result in malware being considered benign. A high FNR may prohibit

execution of legitimate applications. With Dold samples, we achieved 3.9% and

4.6% of FPR and FNR respectively. Similarly, FPR of 4.1% and FNR of 5.7% is

obtained with Dnew.

Some of the malware samples yield only partial logs, and this has contributed

towards FPR. During runtime, these samples terminated very quickly and did not

reveal their actual payload. In our case, this behavior was observed with samples

belonging to worm.autorun malware family. The samples of this family try to

infect the system by creating .inf file on root directory of system. When these
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Table 5.4: False rate with Dold and Dnew.

Dold Dnew

ǫ FNR FPR FNR FPR

0.5 99.7 0 98.3 0

1 95.5 67.3 81.9 0.8

1.5 36 28.7 55.4 37.3

2.0 18.2 11.6 22.1 21.9

2.3 7.7 8.5 11.6 6.7

2.6 3.8 4.7 5.4 6.2

2.9 4.1 3.9 5.7 4.6

3.2 9.7 5.7 5.3 3.9

3.5 8.6 4.9 7.7 6.1

4 11.4 7.4 10.9 8.5

4.5 12.1 11.1 9.7 11

5.5 12.9 10.8 10.7 10.4

6.5 15.9 11.4 12.9 9.7

7.5 15.4 12.9 15 12.8

files detect the presence of virtual environment, they do not reveal their malicious

payload and terminate the execution. Hence, these instances were misclassified.

A false negative is observed when a legitimate monitored application shows high

similarity with the malicious samples. We found that the system-calls related to

memory access, process and thread handling activities were common to malware

samples. Any benign application using these calls may show high correlation with

malware samples and may be misclassified. This aids to FNR.

To reduce the false alarm rate in our approach, we need to identify and remove the

call-transitions that are common to OSCGs of most of the malware and benign

samples. For this, we may first extract the common subgraph (using graph iso-

morphism [148]) from all malware and benign samples and then the edges of this

subgraph can be removed from all the OSCGs. However, the false alarm rate in

our approach is considerably low when compared to approaches [75, 144], and [55]

in which the false alarm rate of 10.9%, 9.8% and 9.7% is observed respectively.

The detection capability of our approach with unknown samples (test samples

that are not used in training phase) is evaluated using two test datasets with both

the training models prepared with ǫ value as 2.9. We performed testing of our

both the test sets. For the first test set, we observed overall detection accuracy
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of 94.2% (Dold: 94.8%, Dnew: 94.7%). In case of second test set, we achieved an

overall accuracy of 93.4% (Dold: 93.7%, Dnew: 93.1%).

The detection accuracy of test samples is approximately similar to that of our

trained model. There is a minor difference in detection accuracy of both the sets

and this was expected because the learning-based models always perform better

with training samples due to the implicit knowledge about the samples. Similar

trends of false detection rate are observed with test samples. Our experimental

results indicate that the proposed method is effective in discriminating the benign

and malware instances.

5.3.4 Resilient against Dynamic Obfuscation

As discussed earlier, modern malware inserts irrelevant and independent system-

calls to evade the system-call based detection approaches that rely on either signa-

ture or exact pattern matching. These solutions are evaded by malware authors as

these methods directly work on raw system-features such as opcodes, instructions,

hexbytes, and etc. that can be obfuscated or replaced by equivalent alternate fea-

tures. The discriminating components are clearly visible and hence tampered by

malware writers. On the other hand, our method provides a solution by employ-

ing a feature space that is not linearly related to raw system features and hence

opaque to malware writers.

To measure the robustness of proposed approach in the presence of system-call

injection attack, we performed experiments on two sets of system-calls, i.e., rarely

invoked system-calls (RISC ) and frequently invoked system-calls (FISC ). The for-

mer set consists of calls that are rarely invoked by malware or benign applications

in our datasets. As stated earlier, the malware and benign applications mostly uti-

lize 160 calls out of 284. The latter set includes frequent calls invoked by benign

and malware applications.

Malware writers attempt to disguise their malware programs as benign. So, the

call-trace of malware should be similar to that of a benign program. For this, we

have selected a set containing 100 benign programs each having large trace size.



Chapter 5. Program Semantics for Malware Detection 99

For injection, we considered trace of a randomly selected benign sample from this

set. As, for different malware, injection may come from traces of different benign

samples.

We inserted system-calls into random locations of the execution trace of randomly

selected malware programs. The malware samples considered for this are the test

samples of Dnew dataset as these samples belong to the class of latest malware at-

tacks. The number of calls in these malware traces ranges from 674 to 124652. We

inserted total calls that are 10%, 20%, · · · , 100%, 150%, 200% of malware traces.

For inserting system-calls, we adopt the strategy followed by authors in [80]. These

calls are injected one at a time and at random positions in the malware traces.

For both the experiments, we observed the performance of our model with ǫ value

of 2.9 and results are shown in Figures 5.5 and 5.6.
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Figure 5.5: Detection capability in presence of behavior obfuscation with RISC and
FISC.

Figure 5.5 illustrates the performance of our model in terms of detection accuracy

that does not vary up to 30% of call-injection rate. For some malware samples,

this translates to injection of ∼30000 calls. We exhaustively injected calls into

malware traces and in this way injection also occur in extracted semantically-

relevant paths and therefore beyond 30% call injection rate we observed the fall

in detection accuracy.
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Figure 5.6: True positives and false positives with RISC and FISC.

Figure 5.6 shows TPR and FPR values with respect to both the experiments. It

means that the discriminating patterns of proposed approach are not affected by

the injected calls. However, when we increase the injection rate, the detection

accuracy starts decreasing. This fall in the detection accuracy is expected as after

insertion of calls beyond a certain limit, TPM no longer matches the modified sam-

ples as more paths are added into semantically-relevant set affecting its frequency

distribution. This is expected as insertion of rarely invoked system-calls does not

affect TPM as it is akin to adding some transition to almost isolated nodes and

such paths are unlikely to be included in semantically-relevant set unless a large

number of injection takes place.

With RISC, our model performs better when compared to FISC. By inserting

benign call sequences, we observe an increase in false detection rate of our model.

The maximum decrease of 6.9% and 13.6% in the detection accuracy is observed

for RISC and FISC experiments respectively. The feasibility of inserting calls of

RISC set is more than the FISC as the latter set of calls can affect the prime

objective of malware. Therefore, our method shall work without much loss in

detection accuracy.

The other important concern of call-injection in our approach is to modify the

Sstart and Send. For this, we closely inspect the variation in ALBF value of paths
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after adding two irrelevant calls, i.e., S ′
start and S ′

end at initial and last position

of malware trace. By doing so, we observed that the semantically-relevant set

contains same paths with two additional links, i.e., S ′
start → Sstart and Send → S ′

end

showing single outgoing transition. The ALBF metric (Equation 4) is sensitive to

path-length as well as the branching factor. If two additional links are added

that were not there in the previous OSCG, then only path-length is affected and

increased by 2. The branching factor remains same as the link-count is 1 for both

the links. A negligible fall in ALBF is observed due to increase in the path-length.

This fall in the majority of cases does not change the bins of those modified paths

hence it will not affect our approach. Now, if a long sequence of unrelated calls

is added (pre/post) to just increase the path-length then in very few cases it will

affect the ALBF as we have restricted the path-lengths (from 10 to 31). To evade

the approach, malware authors have to append and prepend a long sequence of

unrelated calls with higher outgoing transitions, which modify the bins of all the

paths in such a way that increases the false alarm rate.

5.3.5 Comparison with Existing Approaches

Here, we present a comparative evaluation with current state-of-art dynamic mal-

ware detection techniques. Moreover, we analyze the impact of call-injection attack

on our approach to one proposed by Park et al. [80].

Figure 5.7 shows the TPR and FPR of every approach. As can be seen from this

figure, our proposed approach is shown to outperform other methods, with the

highest true positives and the lowest false positives. The better performance of

our approach is due to semantically-relevant paths, which represent the program

semantics that cover the most relevant behavior of malware and benign programs.

Park et al. [80] proposed a graph clustering method [149] for deriving the common

behavior of malware samples. The authors performed an abstraction from system-

call traces and used kernel objects [150] to represent malware behavior. Further,

they applied graph matching and determined a threshold to assess the detection

rate of their approach. Moreover, the authors have built a kernel object behavior

graph (KOBG) to exploit the dependency between the kernel objects. The kernel
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Figure 5.7: Comparison with existing malware detection approaches.

objects and their dependencies information are extracted from the system-call

traces acquired using Ether framework.

To evaluate Park’s approach on our samples, we adapted their approach as men-

tioned in [80]. We constructed KOBG in similar fashion and built a weighted

common behavior graph (WCBG) using McGregor algorithm. To implement the

algorithm, we made use of graph C++ Library provided by the Boost Software [151].

Figure 5.8 contrasts the performance decay of our proposed with the one in [80]

for call-injection rate ranging from 0% to 100%. It is quite clear that our approach

outperforms the approach in [80]. In our approach, the maximum fall observed is

∼13% while in [80] the observed maximum fall is ∼23%. The detection accuracy

of Park’s approach with 0% injection rate is observed as 92.45%. The false alarm

rates of their approach are 8.2 (FNR) and 6.9 (FPR). The approach by Park et

al. [80] is based on exact-pattern matching as a result of which the call-injection

attack and false alarm rates result into higher performance deterioration. However,

our approach is not based on exact pattern matching, but abstracts semantically-

relevant paths as bins of branching factor. Therefore, it is less vulnerable to

call-injection attack.
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Figure 5.8: Comparison of proposed approach and approach in [80].

5.4 Performance Evaluation

In this chapter, we introduced the concept of specifying program semantics in order

to discriminate the malicious from non-malicious binaries. To address this, we ab-

stracted the system-calls to a higher level and created sets containing semantically-

relevant paths. These semantically-relevant paths cumulatively represent the pro-

gram semantics since each path sequence exhibits a specific functionality of the

program. In this section, we discuss the merits and demerits of proposed approach.

For any malware detection approach, it has to address the issues such as evaluation

with other datasets, resiliency, stealthiness and associated overhead.

5.4.1 Evaluation with Other Datasets

This performance metric determines the ability of detection model to scale uni-

formity with 1) comprehensive set of malware samples, and 2) known (training)

and unknown (test) malware instances. We used two different datasets that in-

clude a wide spectrum of malware samples. The overall detection accuracy with

both the datasets Dold and Dnew are observed as 96% and 94.85% respectively. In

both cases, there is a marginal difference of 1.15% due to the presence of malware

samples in Dnew, which do not manifest their malicious behavior during runtime.
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These samples are termed as detection-aware malware as it senses the presence of

instrumented virtual environment.

In the proposed approach, to create the virtual environment, we used Ether. Ether

can be detected as the BIOS data strings for Ether make use of emulated vari-

ant from Bochs virtual machine. Moreover, the Ethernet card that is emulated

by underlying Xen system can be analyzed easily. The detection-aware malware

exploits these variations and ensures that it cannot be analyzed. As a result, it

generates partial log or no log during runtime. Our datasets do not include the

samples with no logs. Therefore, the only concern is the generated partial logs

that result into misclassification. Although, in our case the false alarm rates were

significantly low as compared to other existing approaches [55, 66, 75, 144]. This

particular limitation is common to the majority of dynamic malware detection

approaches.

In future, we can substitute Ether with more resilient framework or we may aug-

ment more than one framework (emulated, virtualized, and instrumented) to re-

trieve complete logs of detection-aware malware.

The other factor that assures the performance of our detection model with

known and unknown malware samples. We observed the uniformity in our train-

ing (95.42%) and testing (93.8%) results. In our case, the difference in training

and testing results is only 1.6% which is negligible. Hence, our model is capable

of detecting a wide range of malware instances.

5.4.2 Resiliency

Resiliency refers to the robustness of the proposed approach in the presence of

possible evasion embedded into malware files. As our proposed model relies on

system-call traces, one possible evasion technique to thwart our model is system-

call injection attack. Using this attack, malware authors modify the system-call

sequences of malware binaries at run time. For incorporating this, the malware

authors either make modifications into the malware program or create new binaries

through injection of system-calls.
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We ran two different experiments to evaluate the robustness of our approach

against behavior obfuscation. The experimental results indicate that the detec-

tion accuracy remain invariant up to 30% of call injection rate. Beyond this, we

observed a fall in detection accuracy that stabilizes above an injection rate of 70%.

The system-call sequences of our malware dataset contain on an average more than

105 calls. Inserting even 10K, 20K, and 30K independent calls into malware traces

does not affect the proposed mechanism. Furthermore, our dataset consists of

packed, polymorphic and metamorphic samples, which indicate that the proposed

approach can complement existing static malware detection methods.

5.4.3 Stealthiness

Stealthiness refers to the detection capability by which our approach operates with

high detection accuracy without disclosing discriminating patterns to malware at-

tackers. The discriminating component of our approach is neither a sequence of

system-calls nor a feature space linearly derived from these sequences. The dis-

criminating component of our method is composed of the ranges of ALBF values.

As these values are accumulated in bin, our feature space is non-linearly related

to sequence of calls.

Multiple semantically-relevant paths imply different subsequence of calls being

used in construction of feature space. Modification in one path shall not impact

performance of the proposed model. Only large modifications in transitions of all

semantically-relevant paths will affect our model. The modification is complex as

the attacker needs to identify all semantically-relevant paths and modifying the

path sequences in a way that it substantially modifies ALBF bins. Hence, our

proposed approach provides stealthiness and is resilient against present and future

malicious threats.

5.4.4 System Overhead

In conjunction to its detection accuracy and resiliency against call-injection at-

tacks, we also discuss the associated overheads of the proposed approach. Table 5.5
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shows the best, average, and worst time per sample during the main steps of our

approach. The total time shown in the Table 5.5 does not include monitoring

time as it is common to all behavior-based approaches. Each step is discussed as

follows.

Table 5.5: Best, average, and worst processing time per sample

Main Steps Best Average Worst
Time (in sec.) Time (in sec.) Time (in sec.)

System-Call Moni-
toring

– – 600

OSCG Construction 0.001 0.02 1.2

Candidate-Paths
Computation

0.005 3355.86 35109.9

Semantically-
relevant Paths
Extraction

0.07 0.18 0.67

Training Time 1.54 1.54 1.54

Total Time∗ 1.616 3357.6 35113.31
*Exclusive of monitoring time.

5.4.4.1 System-call Monitoring

Execution tracing of benign and malware binaries in our approach depends on

Ether. Therefore, the overheads associated with Ether are inherited into our ap-

proach. We fixed the time-out of 10 minutes (600 seconds), therefore we observe

this overhead of collecting system-call traces. Monitoring executables from Ether

is a time consuming task. Ether uses exceptions whenever a running application

makes a system-call to access system services. These exceptions result into signif-

icant performance overhead. To reduce this overhead, we can use a faster analysis

framework. The proposed approach is not specific to a given monitoring envi-

ronment and can be generalized by applying the same methodology with other

operating systems as well as virtual/sandboxing environments.

To investigate this, we conducted a small experiment using 20 malware samples

of Dnew dataset. We collected execution traces of these samples from Cuckoo

sandbox with 10 minutes of timeout. To extract the run-time traces of executables,

we submit the sample via submit.py. The inline “Cuckoo Agent” (agent.py)
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receives the executable and analyzes it. After analysis is over, a behavior report is

generated which includes logs containing various parameters such as API, system-

calls, static attributes, DLL invoked, PE header, and processes created during

runtime.

We used the generated behavior report and extracted the system-calls that are

invoked. We then created the feature space for these samples in a similar fashion

as mentioned earlier and closely observed the variation in frequency distribution

of Ether generated traces with Cuckoo generated traces. We found out that there

is a negligible variance in the frequency distribution in both the cases.

5.4.4.2 OSCG Construction

In this phase, we extract the system-call sequences from the acquired traces and

then build the TPM using the transitions of system-calls. The processing time

for TPM construction is negligible (average: 0.02 sec. and worst: 1.2 sec.) as

it depends on the trace length. For samples with larger trace-length, OSCG is

constructed in few seconds and for average trace length, it is constructed in few

milliseconds. We can say that this phase does not lead to higher processing time.

5.4.4.3 Candidate-path Computation

In our approach, we determined the paths between Sstart to Send. In this quest,

we observed that the time complexity for determining all paths is very high. We

have shown that our OSCGs are sparse in nature as the average link-count of our

samples is less than the total number of nodes. Therefore, our approach does

not result into exponential time complexity. However, the processing time for

computing all-paths is significantly high that it affects the applicability of our

approach in real-time situations.

To reduce this processing, we approximated all-path computation and determined

the candidate paths by restricting the path-length. The average processing time

for computing candidate-paths is ∼3355 seconds and the worst processing time

is ∼35109 seconds. Though, this approximation improves the processing time of



Chapter 5. Program Semantics for Malware Detection 108

our approach yet when compared to other existing approaches it is slightly high.

In order to minimize the time complexity of this phase, we can use more efficient

path-computation algorithm.

Quinn et al. [138], proposed a survey of various parallel graph algorithms using sys-

tolic arrays, associative processors, array processors, and multiple CPU computers.

General-Purpose Computing on Graphics Processing Units (GPGPU) provides

a powerful platform to implement the data-intensive algorithm. Kaczmarski et

al. [152] proposed an approach for accelerating the Breadth First Search (BFS)

algorithm with CUDA implementation on GPU. The authors have shown the sig-

nificant improvement over CPU based implementation of BFS. The results we

present, show great promise in using semantically-relevant paths to classify mal-

ware, the computational complexity would be prohibitive in a real-time setting. In

future, we will also create the parallel version of our path-computation algorithm

and reduce the incurred overhead.

5.4.4.4 Training Time

Training time includes the time of feature vector construction and learning time.

This time is one time cost of the order ∼1.54 seconds. Although, to keep our

system up-to-date, we need to train our model with newer samples within fixed

time interval (monthly or quarterly).

5.5 Summary

Malware detection is the first line of defence against malicious threats. Modern

malware is detection-aware therefore detecting all types of malware is a daunting

task.

In this chapter, we proposed a new mechanism for identifying current malicious

binaries that are resilient to static and dynamic obfuscation techniques. To carry

out this objective, we captured the execution flow of malicious binaries in terms

of system-calls and transformed them into Ordered System-Call Graph (OSCG).
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Then, we applied the concept of Asymptotic Equipartition Property (AEP) in-

herited from information theory. Using AEP, we produced a set of semantically-

relevant paths from each OSCG. These paths cumulatively describe the average

behavior of a binary. Our experimental results demonstrate that semantically-

relevant paths can be used to infer the malicious behavior and to detect numerous

new and unseen malware samples.

The proposed approach shows its robustness against system-call injection attacks.

In addition, we compared our method with existing solutions. We observed that

our approach was more efficient in terms of malware detection rate. Our future

work will focus on the development of path computation algorithms to reduce the

overhead.
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Conclusions and Future Work

Over the last decade, malware has emerged as a crucial security threat. The

proliferation of advanced computing and networking technology has empowered

malware programs with advanced anti-detection and anti-analysis features. The

advanced malware programs instigate a variety of attacks such as Distributed De-

nial of Service (DDoS) attacks, social engineering attacks and clickfraud attacks,

to name a few. These software programs have a disruptive impact on our appli-

cations, service providers, storage, servers, and networks.

Static malware detection approaches are effective in identifying known malware

binaries. These approaches are not sufficient to detect new and unseen malware

samples and result in high false alarm rate. It has been reported that code-

obfuscation and simple encryption/compression techniques are capable to evade

signature-based approaches. To overcome the limitations of static approaches, we

have developed behavior-based dynamic malware detection approaches that are

not vulnerable to code-obfuscation, polymorphism, packing to name a few.

In this thesis, we have shown that the present malicious threats are bundled with

multiple behavior payloads needed for evading detection through employment

of various anti-detection features. We have developed techniques that address

two anti-detection features of modern malware i.e., environment-reactiveness and

system-call injection attack.
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In this chapter, we summarize conclusions drawn from our research work along

with the possible directions for future. The major aim of our research is the de-

velopment of novel malware detection solutions that also address detection-aware

malware. To achieve this goal, we have designed non-signature based approaches,

which support generality and provide better detection accuracy with the new and

old generation of malware samples.

6.1 Conclusions

In this research work, we have presented behavior-based malware detection ap-

proaches. We have analyzed system-call sequences acquired after executing mal-

ware and benign samples in Ether framework. Discriminant system-call sequences

are extracted using 1) DTW algorithm, 2) multilayer neural network, and 3)

program semantics. We transformed these sequences into Ordered System-call

Graphs (OSCGs) and observed that OSCGs can preserve the ordered relationship

between system-calls. Therefore, we were able to detect malicious samples more

effectively as compared to other existing approaches. The proposed approaches are

evaluated using performance measures detection accuracy, evaluation with other

dataset, and system overhead.

1. Our DTW-based approach enables us to explore multiple behaviors within

a malware family and also can differentiate malware from benign programs.

DTW algorithm can capture variability in behavior of malware samples. To

validate the DTW formed clusters, we have applied the single-linkage hierar-

chical algorithm in conjunction with Davies-Bouldin index. This validation

also confirms our heuristic and the effectiveness of DTW.

(a) We have evaluated our detection model with worm and virus datasets

and achieved 98.58% (worm) and 92.95% (virus) of detection accuracy

respectively. Therefore, the overall accuracy is ∼95%. The false alarm

rates (worm) – FPR (1.27%) and FNR (0.91%) – are evaluated with

benign samples.
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(b) The proposed approach is evaluated with two malware datasets con-

taining worm and virus samples. Our worm samples show four different

behavior that are all distinct from benign samples. Similarly, the virus

samples also show different behaviors from each other. The false alarm

rate with virus samples is more when compared to worm samples. Be-

cause some of the virus samples mimic benign behavior therefore show

similarity with benign samples.

(c) We have observed that DTW is a computationally expensive and require

long time when the source and the target sequences are large. Through

parallelization (P-DTW), quadratic complexity of sequential DTW can

be reduced to linear complexity. We have obtained a speedup of 30.55

by parallelized DTW over the sequential DTW.

2. Our neural network based approach identifies the environment-aware mal-

ware through monitoring and classifying its reactions during execution in

the virtual environment. The constructed multi-layer perceptron model is

capable in recognizing patterns in high-dimensional feature space.

(a) We tested our approach with known and unknown samples. With known

samples, we achieved overall ∼96%. The detection accuracy achieved

with unknown samples is ∼95.4%.

(b) Through extensive experimentation, we determined the appropriate in-

put vector that includes 200 transition states with higher probabilities.

The selected input vector produces a minimum error of ∼1.3% that con-

tributes into false-alarm rate of proposed approach. Though, the overall

false alarm rate of our approach is ∼2.6% that is negligible as compared

to other approaches. With effective rate of detection accuracies, our ap-

proach can segregate samples with clean, malicious, guest-crashing, and

infinite-running behavior.

(c) In order to achieve a high efficiency with respect to training time, we

trained all four networks in parallel by making use of JAVA threads.

We achieved 1.45 speedup with heap space of 3 GB. This speedup was

achieved due to the lower execution frequency of the JAVA garbage

collector in higher heap space.
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3. Finally, we presented a novel malware detection approach that is resilient

to the system-call injection attack. We showed that the performance of our

approach was not degraded even after inserting thousands of system-calls.

The proposed approach is based on the concept of Asymptotic Equipartition

Property (AEP) that is adopted from information theory domain. Using this

concept, we have extracted the semantically-relevant paths that represent

the program behavior. Our experiment results indicate that semantically

relevant paths can be used to infer malicious program behavior for detecting

new and unseen malware samples.

(a) We observed an overall accuracy of∼95% with TPR = 95.4% and FPR=

4.6%. We also compared the false alarm rate of our approach with other

existing approaches. Our approach outperformed existing approaches as

the specified program behavior of malware samples was discriminative

from benign samples.

(b) The proposed approach also shows its robustness against system-call in-

jection attacks. We injected thousands of rare and frequent system-calls

into malware traces and then tested those traces with our model. We

have observed that our approach remain unaffected up to call-injection

of 30%(more than 30 thousand calls).

(c) We also compared our approach with existing state-of-the-art ap-

proaches and found that our approach was more efficient in terms of

detection rate and resiliency towards system-call injection attacks.

6.2 Limitations and Future Work

In this thesis, we present approaches that detect malware and also address the

anti-detection features of the modern malware. However, our approaches are not

free from limitations. Here, we sketch limitations and their solutions as future

work.
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1. The proposed research work relies on one analysis framework to capture

system-call traces of program binaries. During behavior monitoring, we ob-

served that there are few malware samples for which logs are not generated.

Therefore, to acquire the logs of complete malware dataset, we should use

multiple analysis frameworks. However, in Chapter 5, we also used Cuckoo

sandbox and showed that our approach was not specific to Ether. Our meth-

ods can be used with other analysis frameworks as well.

2. The present malicious threats are equipped with many other anti-detection

features. We, in our work, have addressed two anti-detection features. In fu-

ture, we must consider other anti-detection features such as trigger-based

malware behavior. For this, user input during execution is required as

trigger-based malware samples show their behavior under certain trigger con-

ditions (date, time-stamps, URLs, file created/deleted, and to name a few).

It will also allow us to explore multiple execution paths.

3. We have shown that our approaches can be used to detect Windows malware.

To make our approach platform independent, in future, we can map our

models to other platforms such as Android, Linux, and Mac. Presently, the

Android malware is gaining popularity among security researchers. There-

fore, to detect Android malware we can apply our approaches with malicious

android applications.
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Ether: Dynamic Behavior

Monitoring Tool

A.1 Introduction

Malware analysis using sandbox environment or controlled environment is gaining

prominence. The primary advantage of analyzing in a controlled environment is

the host operating system remains unaffected. We have used Ether patched XEN

capable of executing multiple virtual machines, each having its own operating

system, on a physical system. In case of system virtualization the hypervisor

or Virtual Machine Monitor (VMM) manages multiple operating system and the

resources. The performance of using XEN is close to using the native system.

XEN based hypervisor acts as an interface between the guest operating system,

which in our case is Windows XP2 and a host operating system (Debian Lenny).

A.1.1 Ether Components

To boot the guest OS, hypervisor needs disk, kernel image and configuration file

consisting of IP address, amount of memory to use. The hypervisor includes
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elements such as hypervisor layer, interrupt handler, page mapper, and scheduler.

In subsequent paragraphs, each element is discussed in brief.

1. Hypervisor Layer: It keeps the guest and the host operating systems con-

nected. Using the hypercall1 layer, the guest operating system interacts with

the host operating system.

2. Interrupt Handler: This component of a typical hypervisor route the inter-

rupt to/from a guest operating system and virtual devices. Likewise, the

hypervisor is designed to identify and understand faults or exception occur-

ring at specific guest operating system. The faults occurring at a guest are

not transferred to the hypervisor to prevent interruption in the working of

the hypervisor.

3. Page Mapper: It maps the hardware to pages of specific guest operating

system. The guest domain’s memory mapping is created and updated only

by hypervisor.

4. Scheduler: Transfers the control between multiple guest operating systems

and itself back and forth.

Dynamic analysis is performed on the DomU Xen machine(XP SP2), and its foot-

prints are recorded on the DomO system(Debian Lenny).

A.1.2 System-call Monitoring Using Ether

For system-call monitoring, we employed Ether [46]. We prefer Ether to other

analysis frameworks as it provides host-based tracing by employing hardware vir-

tualization. It is resilient to anti-debugging, anti-emulation and code-obfuscation,

and in-guest changes are also made hidden [99].

Ether produces a page fault or exception to intercept the system-calls made by

the target application. Whenever this application requires a system service, it exe-

cutes SYSENTER that transfers the control to kernel space where it copies the value

1A hypercall (hypervisor call) is a paravirtualization interface allowing guest OS to access hypervisor
services.



Appendix 117

(address) stored in a special register SYSENTER EIP MSR into instruction pointer

(IP). Ether sets SYSENTER EIP MSR to a default value. Accessing this value causes

a page fault and in this way Ether knows that a system-call has been made. The

SYSENTER EIP MSR is changed back to its original value, and the target application

continues its execution. Ether mediates all access to the SYSENTER EIP MSR reg-

ister and can, therefore, hide any modifications of the register from the analysis

target.

To generate system–call logs, each sample is permitted to execute for 10 minutes.

According to Quist et al. [146], five minute is enough duration for the execution

monitoring. We doubled this execution time to capture the malware equipped

with capability of carrying out time–out attacks.

Figures A.1,A.2,A.3,A.4,A.5 shows the process of system-call tracing in Ether

framework.

Figure A.1: Booting guest-OS
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Figure A.2: Windows-XP has started

Figure A.3: Starting Ether agent at host for executing sample m7.exe
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Figure A.4: Executing m7.exe in guest-OS

Figure A.5: System-call logs of sample m7.exe



Appendix B

Malware Executables

In this appendix, we present a categorization of malware programs.

B.1 Malware

“Malware” is a software program that fulfills the malicious intent of an attacker.

These malicious programs can be put into two categories as shown in Figure B.1,

i.e., blackware and grayware, based on how dark their malicious intent is. A

malware program is categorized into virus, worms, trojan horse rootkits, bots,

and spywares. These malware families employ various mechanisms to exploit the

target systems. Following paragraphs describe the characteristics [24] of these

malware families.

B.1.1 Virus

A virus is a program code that attaches itself to other executable programs. It

relies on other host program to accomplish its hostile intentions. Execution of

a virus on a host can infect other programs/applications. This self-replication

into existing executable code is the key characteristic of a virus [24]. It requires

user intervention to spread, and that is why it is parasitic in nature. Viruses
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Figure B.1: Malware classification

can contain multiple malicious payloads for data stealing, damaging and other ill

consequences. Viruses can be categorized according to the programs they infect.

Virus infects local files and/or system files, emails, scripts, and boot-sectors to

improve chances of its survival as well as hide its hide its presence. Infecting

multiple entities increases complexity of virus removal and disinfecting the host.

Virus types on the basis of objects it infects are:

• File viruses can infect the program files with extension .exe, .dll, .bin, .sys,

.bat. Sunday, Cascade, Professor, and Jerusalem are the examples of such

type of viruses.

• Boot sector viruses infect the boot records on the hard disks. Boot record is a

program that is responsible for system start-up. Examples are Parity boot,

Disk Killer, Stoned, Brian, Michelangelo, Empire, Form, and Azusa.

• Email viruses are the piece of code that spread as an email attachment.

Melissa and I Love You viruses come under this category.

• Macro viruses spread through Microsoft office applications like word, excel,

and power point. These kind of viruses are platform independent and can

infect operating systems like Linux, Mac and Windows.
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B.1.2 Worms

A worm shares some similar characteristics with virus like self-replication and

population growth. Worms are independent programs that do not rely on other

executable programs for replication and execution. Worms spread infection by

targeting other vulnerable machines in the network. A worm uses Internet or

network connections to propagate itself and copies its code to other computer

programs. Worms locate the vulnerable system in the network to exploit it. Yong

Tang et al. [29] have classified worms into following four categories according to

the regions where worm searches the exploitable target.

• Internet worm performs scanning of IP addresses to identify a weak target

in the network. Code Red I, Code Red II, Nimda, Blaster, Slammer, and

Benjamin are some of the examples of Internet worm.

• P2P worm infects file sharing networks (Gnutella, Kazaa, eDonkey2000, Poi-

soned, Freenet and BitTorrent) using peer to peer connectivity. These worms

copy themselves into the shared directory on a local machine. Benjamin

worm is an example of P2P worm.

• Email worm exploits E-messages and spreads through Internet. It searches

the address book of the victim to propagate infected email to other com-

puter systems. Worm.ExploreZip, Melissa, W32/Waledac.A, love letter,

MSIL/Agent.MXK, MyDoom, Blackmail, and W32/Brontok.N belong to this

category of worm.

• Instant Messaging (IM) worm, typically spreads via instant messaging (net-

work targeting IM users and protocols). It infects the IM contact list of the

users. OSX.Leap.a [153] is the IM worm that infects the system running with

Mac OS. This worm uses Apple’s “iChat” application for infection. Other

examples are Choke, JS Menger, and Serflog.
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B.1.3 Trojan Horse

Trojan is a program that pretends to be benign but performs malicious task(s) in

the background. It disguises itself into useful programs like screen-savers, plug-

ins or games, utilities and various freewares [26]. It also contains malicious code

that once installed, can accomplish ill purposes like stealing sensitive data and

passwords. A Trojan remains invisible to various scanning tools. It does not

replicate itself but it is parasitic by nature. Trojan payload is designed for data

destruction and remote access to other malware programs. Dancho in [25, 28]

categorized trojans into following categories according to the payload contained:

• Remote Access Trojans (RATs) provide unauthorized access of victim’s sys-

tem to some hacker who can remotely administrate the system. Examples

are Nuclear-RAT, Netbus, Poisonivy-RAT, and Back Oriface.

• Data-Sending Trojans transfer useful information such as passwords, credit

card numbers and logs of chats, keystrokes and browsing history to the trojan

writers through an installed spyware software. This software logs all the

mentioned activities on our system. Badtrans.B is an example of the data-

sending trojan.

• Destructive Trojans contain payload that can wipe out either hard drive

contents or corrupt/remove selected data and system files from the target

system.

• Denial of Service (DoS) Attack Trojans have the ability to launch DoS attack

to multiple victims. These programs spread by attacking email addresses or

infecting ADSL users for blocking Internet sites.

• Proxy Trojans are kind of trojans that convert victim’s computer into a proxy

server and allow attackers to access that machine. This infected machine can

be used for illegal activities such as Cyber-bullying, Cyber-terrorism across

the globe.

• FTP Trojans gain access to a target machine through a FTP server. Once

access is obtained, these trojans may upload / download applications and

data to/from server.
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• Security Software Disablers disable security software installed or configured

in our system. These trojans target application software such as AV scanners

and firewalls.

B.1.4 Rootkits

Rootkits have the ability to hide themselves from the owner of the system. Rootk-

its execute with root privileges to access full set of system resources. Attackers

need to have administrative access to install the rootkit in our systems. The rootk-

its can replace existing programs and system libraries with their modified malicious

versions. The rootkits can operate at both user and kernel levels. These programs

can be installed as a kernel module and get the root privilege to modify system

resources. Rootkits are used in conjunction with trojans to exploit the vulnerabil-

ities in the system. Many malware binaries employ rootkits’ hiding mechanism to

hide their presence. Rootkit writers are aware of the fact that discovery of their

malicious intention on victim system may result in sealing of the vulnerability and

loss of access. To gain access, a new rootkit shall be needed. Rootkits erase the

login and logout data so that a security researcher is unable to notice its presence.

The rootkits can modify kernel data structures, system call table, and system ser-

vice descriptor Table (SSDT). Rootkits are classified according to the system area

where they reside:

• User mode rootkits stay in hidden system folders, registry. User mode rootk-

its can hide themselves by hooking process viewer such as Windows task

manager [22]. Qoolaid, lkr, trOn, and ark are the some examples of user

mode rootkits.

• Kernel mode rootkits load their code into kernel address space. Usually kernel

programs are accessed by device drivers and system libraries. These programs

are used as an interface to the hardware. Kernel mode rootkits and operating

system operate on the same security level and thus they can intercept kernel

mode objects. Da Ios is the known example of kernel rootkit.
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• Firmware rootkits are actually embedded within the firmware of devices such

as network card, system BIOS, hard drive [22]. Rootkits stay undetected in

firmware as it is not checked for code integrity. John Heasman demonstrated

the viability of firmware rootkits in both ACPI firmware routines and in a

PCI expansion card ROM [46].

• Hypervisor rootkits exploit the hardware virtulization features of Intel VT

and AMD-V. Such kind of rootkits can intercept hardware calls to operating

systems as they have the Ring-1 privileges.

B.1.5 Bot

Bot permits its creator (Bot master) to remotely access the infected machine. A

computer that has been compromised by a bot is referred to as zombie or drone [27].

Bots can create a network termed as botnet by which every instance of bot can

communicate with each other. Botnets are created if bots replicate itself to other

systems. The bots are classified by their attacking mechanism:

• ClickFrauds: These type of bots abuse Pay Per Click (PPC) advertising. The

website owner publishes certain ads on their webpages and get paid by the

advertiser as per number of clicks. The rival advertisers of same product and

website publishers use these bots to kill the competition and to gain financial

benefit respectively.

• DDoS: Distributed denial of service attack is one of the primary attacks by

bots. Through such attacks, bots render computer resources unavailable to

the authorized user. Hameq, pushbot, and waledac are the common types of

such bots.

• Spamming: Botnets are the main source of spam circulation. The botnet

authors get email addresses either by crawling web or purchasing the list

from other spammers. These kind of bots are also called as spambots.

• Phising: Phishing is incorporated to steal personal information such as lo-

gin credentials and bank details by diverting URL’s of popular websites to

lookalike websites. Pushbot is one of the example of such bots.
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• Distributing and Installing malware: Botnets are used to distribute and

install other malware programs. It adopts social engineering, drive-by-

downloads and spams to fulfill their objective. Rimecud is the bot used

for these attacks.

• Data stealing: As the name suggest, these attacks are incorporated to steal

victim’s personal information such as licence key of software product, brows-

ing history, and saved passwords. Rbot, Zbot are popular data stealing

bots.

B.1.6 Grayware

Spyware collects sensitive information from target system and transmits this infor-

mation to other systems. Recipient of this information is the attacker who forces

spyware to retrieve the information. Such an attacker is often interested in user-

names, passwords, email addresses, software license keys, bank account and credit

card numbers. Stealing these credentials allow attacker authenticated access to

victim’s financial resources.

Grayware is a software that installs components on a computer for the purpose of

recording Web surfing habits (primarily for marketing purposes). Spyware sends

this information to its author or to other interested parties when the computer is

online. Spyware often gets downloaded with items identified as ‘free downloads’

and does not notify the user of its existence or ask for permission to install the

components. The spyware components gather information such as user keystrokes.

This exposes private information such as login names, passwords, and credit card

numbers to theft.
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CUDA & GPGPU

C.1 CUDA

GPU (Graphics Processing Unit) are being used to manipulate computer graphics

to improve performance of image creation. GPUs are continuously outperforming

the CPUs with respect to execution speed due to a large number of fast computing

cores on high-end graphics cards. The GPU architecture is somewhat similar to a

CPU. The difference is that GPU is designed to handle streaming data. As shown

in Figure C.1, a GPU devotes more transistors to data processing while a CPU

utilizes the transistors for data caching and flow control [154]. Since streaming data

is already sequential, or cache–coherent, the GPU does not need a large amount of

cache. This gives the GPU an advantage in highly parallel computations, where

the number of arithmetic operations is far greater than memory operations.

For many years, GPU functionality was limited to accelerating some parts of

graphics pipeline. Later it was observed that the multiple cores available on GPU

can be utilized to do the processing in parallel. If we use the GPU for processing

non graphical data, then it is known as the General Purpose GPU or GPGPU.
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Figure C.1: Central Processing Unit (CPU) vs Graphics Processing Unit (GPU)

GPGPU is used for performing computationally intensive operations in parallel

for achieving low time complexity.

CUDA (Compute Unified Device Architecture) is NVIDIA’s GPU architecture

featured in the GPU cards, positioning itself as a new means for general purpose

computing with GPUs. CUDA C/C++ is an extension of the C/C++ program-

ming languages for general purpose computation. CUDA gives the advantage of

massive computational power to the programmer.

C.1.1 CUDA Programming Model

CUDA programming model is the seat of serial and parallel execution as shown

in Figure C.2. The serial code is run on CPU also called as Host, and parallel

execution is done on GPU also called as Device. The host code is simply a C Code

and compiled with standard C compiler. The device code uses CUDA variables

and functions, calls kernels. The GPU (device) contains a set of multiprocessors.

Each of the multiprocessors includes a group of stream processors which are op-

erable on SIMD (Single Instruction Multiple Data) programs [155]. Figure C.2

shows the programming model of CUDA. CUDA architecture provides three basic

components to utilize fully the capability of graphics card in the system. These

three parts are grids, blocks, and threads.

• Grid

A grid is formed by arranging multiple one, two or three-dimensional thread

blocks. Multiple grids can be run at a time but to start a grid CPU performs
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Figure C.2: CUDA programming paradigm

synchronous operations. Grids cannot be shared between multiple GPUs in

multi-GPU systems.

• Block

A thread block is comprised of several one or two dimensional threads which

can communicate only within their own block. Each block has its own shared

memory that can be shared only by its comprising threads. Also, blocks

cannot be shared between multiprocessors. In a grid, there are multiple

blocks and all blocks use the same program. To identify the block, a variable

is used called blockIdx.

• Thread

Thread blocks are composed of threads. Unlike grids and blocks, threads

can be shared between cores. To identify the particular thread, a variable

named as threadIdx is used which can be one, two or three dimensional based

on block dimension. Generally, there are 512 threads in each block. These
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threads are managed by multiprocessor in group of 32 called warps. Also,

these threads are responsible for executing CUDA kernel.

Execution of a typical CUDA program starts with the CPU (host) execution that

is serially coded. To transfer the control from host to device, a kernel function

is invoked. This kernel code is a C code that is run by each thread. The work

starting from thread creation till thread termination is automatically handled by

GPU only. The user can give only the number of thread blocks in a grid and

threads in a block for running the kernel function in call to kernel within three

angular brackets i.e <<< grid, block >>>. Here grid variable contains a number

of thread blocks in a grid and block variable is used for a number of threads in a

block. These values of grid and block variables must be less than the maximum

number of thread blocks and threads. The kernel function always has a return type

void and a qualifier global which means that the execution of this function is

done on GPU. When the kernel is called, the execution is moved to the device

where the code is executed in parallel mode. Once all threads synchronously

complete their execution in parallel, the corresponding grid terminates and the

execution continues on the host.

C.1.2 CUDA Memory Model

Programmers can utilize the hierarchy of memory architecture available on

GPU [156]. CUDA threads may access data from multiple memory spaces during

their execution as illustrated by Figure C.3. According to CUDA programming

guide [157], CUDA memory model includes:

• Registers : It is the fastest read-write memory per thread.

• Local Memory : This type of memory is local to a particular thread and

readable and writable by only that thread. This memory is not cached, so it

is as slow as the global memory. Its use is avoided in maximum conditions.

Local memory is used only when the size of the data is large enough not to

fit in registers.
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• Constant Memory : It is cached read–only memory per grid. Constant mem-

ory is situated off the GPU chip so it can be accessed by all active threads

on GPU as well as CPU. But write access is not allowed for GPU to this

memory. It can only be written by the host, and it remains same/constant

for all kernel launches. For all threads of a particular warp, reading from the

constant cache is equivalent to reading from a register as long as all threads

read the same address.

Figure C.3: CUDA hardware model memory layout

• Shared Memory : This is read-write memory for accessing data shared by

threads in the same block. As long as a block is persisted in multiprocessor,

this memory is also persisted for threads in the block. This memory is divided

into equal sized banks with each bank accessed in parallel. If bank conflicts

are not there, then this memory is as fast as registers. However, the capacity

of shared memory is limited to 16 KB/multiprocessor.

• Texture Memory : Like constant memory, texture memory is cached on chip

and each cache is of size 8KB. This memory is readable by device and host
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but writable only by host. The host binds the data to the texture variable,

and this data is accessed by the kernel using the function. It is designed in

such a way that threads reading addresses with close proximity will achieve

better transfer rate. Maximum efficiency is achieved when all threads read

the close texture addresses.

• Global Memory : It is non-cached memory which has read and write access

by the device as well as host. The persistence of global memory retains

from its allocation to deallocation. Since it is not cached, it decreases the

performance. Global memory bandwidth is the most efficiently used when

memory accesses by a thread half-warp are combined into a single memory

transaction maximizing PCIe bandwidth [157].

C.1.3 NVCC Compiler

NVCC is a compiler driver provided with the CUDA Toolkit. NVCC executes

all of the necessary tools and compilers included with the CUDA toolkit required

to compile device code. Kernels can be written using either CUDA instruction

set architecture called PTX or a high-level language like C. In both the cases,

these kernels must be compiled by NVCC into binary (cubin) code before being

executed on the device [157]. It provides simple and familiar command line options

and invokes the tools that implement the different compilation stages and execute

the code.

Source code of the program contains two type of codes in mixed form. First, host

code that is run on the host and second Device code that is intended to run on

device. NVCC compiler is responsible for separating host code from device code.

Device code is compiled in assembly form i.e. PTX code. Host code is modified

by replacing the kernel syntax code i.e. <<< · · · >>> into function calls and

then each function call is invoked by PTX code. The modified host code is output

either as C code that is left to be compiled using another tool or as object code

directly by letting NVCC invoke the host compiler during the last compilation

stage [157].
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C.1.4 NVIDIA Tesla C2075

We have used NVIDIA Tesla C2075 [158] for our experimnets. Table C.1 shows

the harware specifications od the Tesla C2075.

Table C.1: Tesla C2075 hardware specifications

Hardware item Value

Chipset Tesla C2075

Core Clock 575 MHz

Number of Streaming Processors 448

Memory Interface 384 bit

Memory Type GDDR5

Memory Size 6 GB

Memory Speed 1.5 GHz

Shader Clock 1150 MHz

On our target GPU, the NVIDIA Tesla C2075 [158], there are a total of 448

streaming processors (CUDA cores) [158]. It delivers up to 515 Gigaflops of dou-

ble precision peak performance in each GPU, enabling a single workstation to

deliver a Teraflop or more of performance. As shown in Table C.1, the GPU has

upto 6GB of GDDR5 memory per GPU, which reduces data transfers by keeping

larger data sets in local memory that is attached directly to the GPU. This archi-

tecture maximizes the throughput by faster context switching that is 10X faster

than previous architecture and provides concurrent kernel execution and improved

thread block scheduling [158].
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