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Abstract

In nanoscale technologies, leakage consumption is a major constraint for large sys-

tems while continuous performance increment and area reduction of digital CMOS

integrated circuits. Leakage in digital circuits depends on the different parameters

such as process variations - length, threshold voltage, oxide thickness in a transistor,

input vector applied to the logic gate, supply voltage and temperature variations,

and also width of transistors in a logic gate. Digital circuits are synthesized using

standard cell library. Standard cells are generally pre-characterized in terms of power,

delay, area. This necessitates accurate and efficient models for characterization. Since

process variations, supply and temperature variations were not significant in earlier

technologies. Thus, previous models have used BSIM device equations to only char-

acterize leakage of single NMOS/PMOS transistors. Leakage of a gate is calculated

by scaling the leakage of characterized single NMOS/PMOS transistor on the basis of

either ‘OFF’ transistors on a transistor stack or finding out the node voltage at inter-

nal nodes of a gate. Characterization of only two models consumes very less time but

models are neither accurate nor scalable to be used for technologies considering vari-

ations. BSIM device equations are also not sufficient to estimate mean and standard

deviation of leakage. Empirical models such as Exponential Quadratic (EQ), Poly-

nomial Equation (Poly) have been proposed earlier to estimate mean and standard

deviation of leakage for a CMOS gate. Mean and standard deviation from different

CMOS gates can then be statistically added to find out the full chip leakage. These

available methods in literature are fast but result in large error because EQ and Poly

models are second order Taylor expansion of the exact equation that can be fitted

with the SPICE simulated data. These models also results in large characterization

time due to use of separate model for each input vector per gate. Artificial Neural

Network (ANN) based stack models have been proposed to capture non-linearity due

to variations with reduced number of the models. However, the effects of ‘ON’ transis-
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tors in ‘OFF’ networks have not been considered accurately, resulting in large error in

leakage estimation. We have proposed Kernel based Support Vector Machine (SVM)

surrogate model to provide estimate of leakage based on transistor stacks. Addition-

ally, improved effective width estimation method is proposed to estimate leakage of

complex gates consisting of parallel transistors or stack of parallel transistors. We

only required 56 models to capture subthreshold and gate tunneling leakage across

20 CMOS gates with 176 input vector combination, achieving error within 1%. Best

kernel with optimum tuning parameters is employed after deliberate exploration to

model each transistor stack. Error driven active learning methodology is proposed to

adaptively select samples only in the large error areas. Our proposed methodology

results in SVM models build up by using quite small number of training samples,

thus reducing model simulation time without suffering the accuracy.

Power gating is one of the leakage optimization techniques, in which extra transistors

are added between supply rail and actual circuit. When circuit is in sleep mode

extra transistors go to cut-off mode, thus reducing total voltage across circuit and

consequently the leakage current. In ground gating case, virtual ground voltage (Vgnd)

has been used as a key parameter to exploit trade-off among leakage power saving,

ground bounce noise, delay degradation, etc. Thus, accurate and efficient estimation

of Vgnd is of prime importance in power gating circuits. Previous work results in large

error due to: 1) conservative exponential linear (EL) and 3rd order polynomial (Poly3)

leakage model 2) inaccurate assumption for applied voltages at the input of CMOS

gates. We have proposed Kernel based SVM models with accurate consideration of

input voltage conditions to overcome these limitations. Our proposed method results

in less than 1% error in Vgnd as compared to 10% error as reported in literature.
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Chapter 1

Introduction

The world has witnessed phenomenal growth in semiconductor industry in past few

decades and the increased role of CMOS in digital integrated circuits. In pursuit to

follow Moore’s law [8] scaling has been done by a factor of 0.7 at each technology node

to satisfy the triad of power, performance and area. However by relentless scaling of

transistor dimensions, two major concerns have started to invade the VLSI industry.

First is the static power dissipation due to increased leakage current which is produced

when transistor is ‘OFF’. Earlier only dynamic and short circuit power were accounted

in power dissipation of digital circuits. But now by scaling transistor dimension,

supply voltage (V dd) need to be scaled to satisfy dynamic and short circuit power

demands. Further threshold voltage (V th) has to be reduced to maintain sufficient

gate drive for performance. This V th reduction primarily attributes 7.5× total leakage

increment per generation [9], which results in degraded static power.

Second is the process variation, the deviation from nominal value of a transistor

or circuit parameter. After fabrication, transistor parameters like threshold voltage

(Vth), channel length (L), oxide thickness (T ox) vary across the chips and within the

chip. This in turn varies the ‘ON’ and ‘OFF’ currents of transistor which finally affects

the power and performance. There are several process and environmental factors on
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which leakage depends exponentially. This includes variation in L, Vth, T ox, V dd and

temperature (T ). By including process variation, leakage current can vary about

6.5× from its nominal value [10] . Hence, even small variations in these parameters

leads to large change in leakage current.

1.1 Sources of Leakage Power

Leakage current refers to the current flow through transistor in steady state condition

of a circuit. In bulk-CMOS technologies, several leakage sources those exist in a

transistor as shown in Figure 1.1 but dominant leakage mechanism are:

i). Subthreshold leakage (Isub) ii). Gate Tunneling leakage (Igate) iii). Band

to Band Tunneling leakage (IBTBT )

1.1.1 Subthreshold Leakage

In CMOS logic any of the NMOS or PMOS network will remain ‘OFF’, thus low

resistance path from V dd to ground never exists. To reduce dynamic power dissipation

supply voltage is reduced. Along with it, threshold voltage is also scaled to maintain

Figure 1.1: Different Leakage Component in NMOS Transistor
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sufficient drive strength [11]. This scaling results in non zero current which flows

between drain and source, even when transistor is off. When transistor operates in

weak inversion region (when gate voltage is below V th) then charge carriers move by

diffusion process due to longitudinal electric field between drain and source. This

diffusion current is named as sub-threshold leakage (Isub ). This Isub [12] can be

modeled as:

Isub = Ae
1

mvT
(VGS−Vt)(1− e

−VDS
vT ) (1.1)

Here

A = µ0Cox
W

L
(vT )2e1.8e

−4Vth
ηvT (1.2)

and

Vt = Vth0 − γ′Vsb + ηVds (1.3)

Here vT = kT
q

is the thermal voltage, m is the sub-threshold swing coefficient, µ0 is

the zero bias mobility, W and L are the width and effective length of the transistor

Cox is the gate oxide capacitance, Vth0 is the zero bias threshold voltage, γ′ is the

linearized body coefficient, η represent the effect of Vds on V th.

There are many parameters those affect sub-threshold leakage:

1. Drain voltage modulates the width of depletion region that results in low energy

barrier and increased movement of charge carriers, hence Isub increases. This is called

Drain Induced Barrier Lowering (DIBL) effect which also degrades V th and attributes

to high leakage.

2. Isub is also affected by applied input vector on logic gate, which is called as stacking

effect. This effect modify the Isub by modulating V th through changing body bias

voltage of the transistor and modifying the effective drive strength at gate terminal.

3. Degradation in V th due to channel length reduction known as V th roll off [12],

which increases Isub.
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4. Isub is proportional to temperature and V th is inversely proportional to tempera-

ture. So combined effect of these two phenomenon results in high Isub.

5. Transistor size (Width) also affects leakage (increase/decrease). Narrow width

transistor modulates V th which in turn changes Isub [12].

6. Reduction in oxide thickness attributes to enhanced Isub.

1.1.2 Gate Tunneling Leakage

In nanometer regime, depth of the transistor needs to be scaled in order to maintain

the gate control over drain current to improve the performance of transistor gate oxide

and junction. This scaling raises the electric field which results in direct tunneling

of charge carriers in drain/source overlap region and substrate to the gate through

gate oxide. This is called gate tunneling leakage (Igate) [13]which can be expressed

as follows.

Igate = A× E2
ox × e

B
Eox (1.4)

Here, A and B are the parameters related to mass of electrons and barrier height

of conduction band, Eox is the electric field across the gate oxide which depends on

oxide material and gate oxide thickness.

The other phenomenon which contributes to Igate are:

1. Fowler - Nordheim (FM) tunneling which occurs when voltage applied across the

oxide is more than φox.

2. Hot carrier effect in which charge carriers gain sufficient kinetic energy to overcome

the oxide band gap.

UnlikeIsub, Igate occurs in both conditions, either transistor is ‘ON’ or ‘OFF’. In ‘ON’

state direct tunneling occurs. In ‘OFF’ state, drain potential causes high electric

field across the gate, resulting in tunneling which remains localized at gate-drain
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overlap. This is called Edge Directed Tunneling (EDT) gate leakage [14] and has less

magnitude.

1.1.3 Band to Band Tunneling Leakage

In short channel devices, depletion width majorly contributes to decrease in channel

length. As drain potential rises, depletion width increases which reduces part of the

channel length to be inverted, resulting in lower V th. As V th decreases, Isub increases.

Drain/Source regions are heavily doped to make smaller depletion region, in order to

reduce DIBL effect. These heavily doped regions create reverse biased PN junction

with the body. A large electric field is produced between the body and drain/source

regions because of different doping concentrations, resulting in a current flow due to

tunneling of charge carriers. This tunneling occurs between the conduction band of

‘n’ region and valence band of ‘p’ region, referred as band to band tunneling (IBTBT )

leakage. It’s magnitude is very less compared to Isub and Igate. The current density

of IBTBT [12] can be given by:

Jb−b = A
EVapp√
Eg

e−B
E

3
2
g
E (1.5)

Here A =
√
2m∗q3

4π3h2
and B = 4

√
2m∗

3qh
, m∗ is the effective mass of the electron, E =√

2qNaNd(Vapp+Vbi)

εsi(Na+Nd)
[15] is the electric field across the junction, where Na and Nd are

the doping levels of the p and n side, V bi is the built in potential, εsi is the permittivity

of silicon,V app is the applied reverse bias, Eg is the energy band gap.

1.2 Process Variation

Aggressive scaling leads to variations in key MOSFET parameters, and are increas-

ing at an unacceptable level. There are two major sources of variations [16]. First is
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environmental which includes temperature and supply voltage variations, during cir-

cuit functioning. Second is the physical which includes lack of process control during

fabrication and results in permanent variations. Process variations occur due to vari-

ability in process parameters such as dopant concentration, L, W , T ox and dielectric

thickness at the time of manufacturing. Process variation can be broadly divided into

two categories [17, 18]:

i) Inter Die Variation ii) Intra Die Variation

Figure 1.2 shows both type of variations.

Figure 1.2: Types of Variations (a) Inter Die Variation (b) Intra Die Variation [1]

1.2.1 Inter Die Variation

It includes variation from Die-to-Die (D2D), Wafer-to-Wafer (W2W) and Lot-to-Lot

(L2L). For older technology nodes, this was the major source of variation. Effects

of these variations are same for all devices inside the die, but varies from one die

to another [19]. Due to the impact of these variation, all devices inside a single die

get affected in a similar manner. So their effect can be added by defining a single

6



parameter to measure the effect of these variations. This variation shifts the mean

value of the parameter for e.g. causing the length of all transistors in a single die to

be smaller or larger than the nominal value [1]. This is called as globally correlated

variation. Let the nominal value of any parameter P is PNOM and inter die variation

can be modeled as a single parameter, 4PGlobal. The value of the resulting parameter

after adding inter die variation can be denoted as:

P = PNOM +4PGlobal (1.6)

1.2.2 Intra Die Variation

It includes With-In-Die (WID) variations and arises due to the offset created in

fabrication process. In the present and future technology nodes, this is the major

source of variation. Two identically designed devices at two different location in a

single chip (die) can have different parametric variations. Thus, these variations affect

the matched properties of transistors within a chip. These variations are called local

since each transistor gets affected differently, causing some transistors to have larger

length while others to have smaller than the nominal value. They affect the mean

of variation distribution. These variation can be classified into two other types of

variations [20]:

i) Systematic Variation ii) Random Variation

1.2.2.1 Systematic Variation

These variations are layout dependent, therefore deterministic in nature. For example,

variations in transistor length due to lithographic limitation during manufacturing.

This component is defined using distance between the devices in order to find out

correlation between them. This spatial correlation is locally circuit and layout de-
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pendent and globally location dependent. Thus spatially close transistors have similar

offset effects. These variations can be modeled by dividing the chip into grids [21].

Transistors within the grid are fully correlated, but as distance between grid increases

correlation decreases. Here, effect of variation is modeled by one parameter per grid.

Thus in the ith grid, process parameter P is given as:

Pi = PNOM +4PGlobal +4P i
Spatial (1.7)

1.2.2.2 Random Variation

These variations are inherent statistical fluctuations in process parameters such as

oxide thickness, line edge roughness and random dopant fluctuations (Na) [22]. They

introduce variation between different devices in the same chip or between different

chips. Some of these fluctuations (L) are either spatially correlated while some other

(T ox, Na) have zero correlation [1]. These variations are unpredictable in nature. It

basically includes variations which are either truly random in nature or which can’t

be modeled as systematic variations. Their behavior can be represented in terms of

probability distribution, which may either be implicit (Log-normal or Gaussian distri-

bution) or explicit (using large number of samples from fabrication line measurement).

Here the effect of variation is modeled by one random variable per transistor per pro-

cess parameter. Thus for the kth transistor in the jth logic gate situated in ith grid,

process parameter P is given as:

Pi = PNOM +4PGlobal +4P i
Spatial +4P kj

Random (1.8)

Systematic variations can’t be determined until the layout is complete, so they are

treated as random variations in early stages of design. Due to the aggressive scaling,

Intra Die variation is more significant than Inter Die variation.
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1.3 Effect of Environmental Factors, Process Varia-

tion and Input Vectors on Leakage

At transistor level, leakage current manifests itself in various ways and impacts the

entire system. Impact of leakage at every level is affected by environmental factors

such as temperature (T ) and supply voltage (V DD), variation in process parameters

and the applied input vectors [11]. In nanometer technology, leakage component

exponentially depends on V DD, T , L and T ox. So it is necessary to model the

leakage in the presence of environmental & process variations, for different input

vector combinations.

1.3.1 Environmental Factors Effect

Isub of a logic gate depends on environmental factors like T ,V DD.

1. V DD changes Isub significantly due to DIBL effect. As drain potential increases,

depletion width at the drain end also increases which results in low energy barrier for

the charge carriers to travel. This in turn increases Isub . This effect can be modeled

as in [23]:

V th = Vth0 − ηVDS (1.9)

Here η is the DIBL coefficient. Reduction in V th, either due to channel length re-

duction or by increasing depletion region width, results in increased Isub . There is

an exponential relationship which exists between Isub and V DD. A 20% variation in

V DD changes leakage by 2× [24].

2. T is coupled with leakage in a significant manner. T increases leakage power

in a non linear manner, which produces heat and further boosts the temperature.

This consequently increases the leakage in a loop, until generated power balances the
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removed power. Increased T also reduces V th which also contributes to increased

leakage. A 30C change in T increases Isub by 30% [24].

1.3.2 Process Variations Effect

In cutting edge technology effect of process variation on process parameter is in-

creasing. Values of these process parameters are modeled as random variables [21]

which follows probability density function (PDF). These variations turn into upset-

ting the values of performance parameters. Leakage power dissipation of a circuit

no longer remains constant because leakage is exponentially related to process pa-

rameters. Hence, leakage can be modeled as a random variable with log normal

distribution, which varies significantly in the presence of process variations. Leak-

age is mostly sensitive to L, Tox and Vth . By applying process variations on some

benchmark circuit [25] shows that Isub reflects 30% increment than the mean value

considering channel length variation. In 0.18µm technology, experimental measure-

ments from manufactured chips shows that 30mV threshold voltage variation results

into 20× variation in leakage [26].

1.3.3 Input Vectors Effect

Biasing conditions or terminal voltages in the form of input vectors affect the leakage

current. The leakage in transistor stack is a function of input pattern and number of

transistors. As source potential increases, decrement in V GS and V BS reduces leakage.

In a series transistor stack, when two or more transistors are ‘OFF’, source voltage

of lower transistor will be less than the upper transistor. This leads to low V DS,

negative V GS and negative V BS of upper transistor which finally increases V th and

reduces leakage. This is termed as stack effect. In spite of single ‘OFF’ transistor,

stacking of two ‘OFF’ transistors provide less leakage [11]. Stack effect in natural
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stack (exists in logic gates) reduces leakage in static mode by loading a suitable input

vector which maximizes the number of PMOS & NMOS ‘OFF’ transistors [11]. For

all technology nodes, input vector dependent leakage remain same, but different input

combinations yield different leakage. Different input patterns turn ‘OFF’ and ‘ON’

different number of transistors in a stack, which shows variation in resistance between

power lines and produces various leakage values. Any input combination that makes

maximum transistors ‘OFF’ between power lines, produces maximum resistance and

minimum leakage. Thus particular input combination can be used to reduce leakage

in standby mode without any area overhead.

1.4 Motivation

Leakage current in digital circuits should be minimized to keep scaling the transis-

tors in latest technology nodes. But, due to process and environmental variations,

leakage current is not a constant quantity and thus, fabricated IC’s will have differ-

ent value of leakage power consumption. Some IC’s may consume greater leakage

than the allowed limit, reducing the yield of fabricated chips. Leakage is highly non-

linear with respect to variation in process and environmental parameters. Accurate

and efficient models are required to estimate the leakage considering variations for

each input vector applied to the CMOS circuit. Previously proposed models result in

significant error due to the inaccurate assumption of node voltage conditions in the

circuit, without/inaccurate consideration of ‘ON’ transistors in CMOS gates, conser-

vative model assumption relating leakage with variational parameters. The number

of models required to characterize leakage for each input considering input vector

dependence can be very large. Thus, it is earnestly required to reduce the number

of models. These reduced set of models should be able to estimate leakage of all

CMOS gates presented in standard cell library without incurring large error. Pre-
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vious work on number of models reduction results in large error due to inaccurate

extracted models. Function form of leakage in terms of variations can be accurately

represented by machine learning based methods such as Artificial Neural Networks

(ANN), Support Vector Machine (SVM), etc. These are the black box kind of models

and can be used in place of SPICE simulation in sampling based full-chip leakage

estimation techniques. These black box models should be developed with minimum

number of training samples and optimal set of parameters. Thus, effective strategies

are required to build these models.

Power gating is employed for the leakage optimization, but results in delay and energy

increase, ground bounce noise introduction etc. Application of power gating changes

the internal node voltages in CMOS gates. Leakage models for more CMOS gates

in power gated circuits will be different than simple CMOS circuits due to change

in input voltage conditions. Actual node voltage conditions are need to be predicted

at the inputs of CMOS gates for valid analysis of power gating methods. More-

over, the conservative leakage models should not be used for accurate performance

estimation of parameter. Models based on machine learning approaches offer better

choices. Variations in footer transistor (extra transistor added in ground gating case)

parameters results in trade-off with different performance parameters. Any model for

power gated circuits should be inclusive of a function of footer transistor parameters.

Thus, an accurate and efficient methodology may be evolved to analyze power gated

circuits.

1.5 Scope of the Work

In this thesis, we have concentrated on characterizing Isub and Igate for 20 CMOS gate

standard cell library using small number of models yet constraining the leakage error

under tolerable limits (< 1%). We have used kernel based Support Vector Machine
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(SVM) to characterize each leakage model. Each of the leakage model is developed

considering 10% variation assuming Gaussian distribution in L, Vth and Tox , 10%

uniform variation in Vdd and T , whereas W is also uniformly varied between 28nm

to 500nm. These are the black box kind of models and do not provide the equation

relating the input and output parameters. These models can be used in sampling

based full chip leakage estimation methods.

Kernels with their different parameter values largely affect the accuracy and efficiency

of a SVM model. Many kernels have been proposed in the literature [27]. We focus on

commonly used kernels such as Radial Basis Function (RBF), Multi-Layer Perceptron

(MLP), Log, Linear and Poly [27]. For SVM based leakage model, best kernel with

optimal tuning parameter set must be used. We exploit the properties of both grid

search based methods and global optimization methods and use both of them in a

single optimization loop. Active learning method based on dominant sample selection

is used to find out minimal set of samples to train SVM model. It helps in reducing

the model evaluation time by cutting down the number of computations required to

simulate unknown testing samples. Non-dominant samples are further removed to

make model sparse, resulting in extra saving in training samples.

In ground gating case of power gated circuits, virtual ground voltage (Vgnd) is used

as a parameter to explore trade-off among different performance parameters. We

focus on using SVM based black box models considering the effect of input vectors,

accurate voltage consideration at input of CMOS gates and accurate leakage models

of power gated circuits. These Vgnd models are generated with respect to the footer

transistor and depend on footer parameters of transistor such as threshold voltage,

sleep signal voltage, width of transistor etc. Separate models for static and dynamic

Vgnd are developed, which can further be used for evaluating the merits of power

gating methods.
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1.6 Our Contribution

• Improved stack based leakage estimation with effective width based methodol-

ogy is developed, resulting in more accurate calculation with fewer models.

• Training samples are actively selected to prepare SVM models with minimum

number of samples, resulting in less complex model and lower runtime.

• Methodology of static virtual ground modeling, while removing the limitations

related to previous models; resulting in more accurate and faster model evalu-

ation.

• We use SVM as a modeling method for leakage characterization and capaci-

tance modeling of CMOS gates in power gated circuits. SVM classifier model

is efficiently used for data generation.

• We also propose a methodology to estimate dynamic characteristics of Vgnd

at virtual ground node, resulting in accurate energy estimation during mode

transition in power gated circuits.

1.7 Thesis Outline

In Chapter 2, we present review of the work in the area of static leakage modeling of

CMOS gates. Advantages and disadvantages of different models are compared with

respect to model characterization time and model runtime. Importance of kernels

and active learning methodology for efficient and accurate development of machine

learning based models is elaborated. We also discuss previous work on modeling

approaches for power gated circuits.

Chapter 3 discusses our proposed transistor stack based methodology for leakage

modeling of CMOS gates. Common stacks are identified for subthreshold and gate
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tunneling leakage of different CMOS gates of a 20 gate standard cell library. Effective

width estimation methodology is presented for the gates comprising parallel transis-

tors or series of parallel transistors.Through various experiments, we show that our

stack based models results in much less error for leakage estimation of gates with

different input vector combinations.

In Chapter 4, kernel based SVM models are proposed for modeling of extracted tran-

sistor stacks in Chapter 3. We use efficient version of SVM i.e. Least Squares SVM,

which takes less runtime than its previous version. Simulation results show that the

SVM models are more accurate than EQ models and scaling based models. Different

kernels are explored and best kernel with optimum tuning parameters are used in each

SVM model using combined grid search based method and global optimization meth-

ods. Training samples are actively selected to prepare SVM models with minimum

number of samples, resulting in less complex model and lower runtime.

In Chapter 5, we elaborate our methodology of static virtual ground modeling while

removing the problems related to previous models. We use SVM as a modeling

method for leakage characterization and capacitance modeling of CMOS gates in

power gated circuit. SVM classifier model is efficiently used for data generation for

reduction of time to generate training samples.

In Chapter 6, we explain our methodology to estimate dynamic characteristics of

Vgnd at virtual ground node in power gated circuits. We also develop SVM based

capacitance models for virtual ground node. These capacitance models are used in

addition to leakage models and static Vgnd model to provide accurate dynamic Vgnd

characteristics.

We conclude in Chapter 7 and various future research directions are discussed in this

area.
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Chapter 2

Leakage Current, Virtual Ground

Voltage Estimation and VLSI

surrogate modeling: A Review

For large System-on-Chip (SoC) designs, leakage contribution is more than 50% of the

total power [28]. Power per unit area has been a threat for possibly leading to ther-

mal runaway. Different floorplans significantly affect the temperature and leakage of

large designs [28]. Supply, temperature and process variations may lead CMOS gates

to operate at different and continuous ranges of voltage, temperature and process

parameters than they have been designed for. Thus, it is necessary to build models

which can provide quick estimation of leakage in any of these unpredictable conditions

with high accuracy. Since the size of standard cell library is becoming very large for

fine grained power and performance optimization in current technology nodes, it is

highly desirable to reduce the number of models to achieve smaller characterization

time. Thus, we analyze the previous leakage modeling approaches in the context of

reduced model characterization time and higher accuracy.
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2.1 Process Variation Aware Leakage Models

Gu et . al . [29] have used BSIM device model equations to estimate subthreshold

leakage (Isub) of a transistor stack consisting of one, two and three transistors as

shown in Equation (2.1).

Is1 : Is2 : Is3 = 1.8(ηVDD/nVT ) : 1.8 : 1 (2.1)

The current Isub of transistor stacks with more than three transistors has been as-

sumed to be zero. This model could not provide a method to handle other complex

CMOS gates containing parallel transistors or stacks of parallel transistors such as

AOI22, OAI32. Effects of ‘ON’ transistors in ‘OFF’ Pull down network (PDN) or

Pull up network (PUN) have also not been considered. ‘ON’ transistors have simply

been removed from the ‘OFF’ network and remaining ‘OFF’ transistor’s leakage is

calculated.

Consider a 4 input NAND gate with input ‘1110’, where, bottom 3 NMOS transistors

are ‘ON’ and a single NMOS transistor has ‘0’ input. For ‘1110’ input, NMOS network

will be used to calculate Isub . In this model, Isub for ‘1110’ input has been assumed

to be same as single NMOS transistor with ‘0’ input. For some of the conditions

in Process-Voltage-Temperature-Width ( PVTW ) space, Isub of 4 input NAND gate

with input ‘1110’ will be the same as Isub of single NMOS transistor with ‘0’ input

and will be different for other conditions. This assumption of zero Isub for more

than three transistors in a stack and neglecting ‘ON’ transistors provide large error

in Isub estimation as represented in Figure 2.1. Here, 10% Gaussian distribution in

process parameters and 10% Uniform distribution is assumed for supply voltage and

temperature. Width of all transistors is taken as 28nm. Predictive Technology Model

(PTM) in 28nm technology is used to calculate leakage distribution with 20000 Monte

Carlo simulations. Error in percentage is calculated using Equation (2.2), which
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varies from 0 to 220%. Negative sign indicates that the single NMOS transistor

over-estimates the Isub of NAND4 gate.

Error (%) =
Ileak,n4−1110 − Ileak,n1−0

Ileak,n4−1110
× 100% (2.2)
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Figure 2.1: Error in percentage for Isub of NAND4 gate with ‘1110’ input is modeled
by single NMOS transistor with ‘0’ input.

Chen et . al . [30] have presented the analytical models for Isub estimation based on

BSIM device equation. This method first calculates the drain to source (VDS ) of

second transistor from top node of the stack using Equation (2.3). This VDS is used

to find out VDS of subsequent transistor (i > 2) using Equation (2.4). Isub of complete

stack is found out by using VDSn of bottom transistor.

VDS2 =
nkT

q(1 + 2η + γ′)
ln(

A1

A2

e
qηVDD
nkT + 1) (2.3)

VDSi =
nkT

q(1 + γ′)
ln(1 +

Ai−1
Ai

e−
q
kT
VDSi−1 + 1) (2.4)

This model also does not account for the effect of ‘ON’ transistors in ‘OFF’ networks

and is not capable of providing leakage calculation of complex CMOS gates. Run-
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time of the model is also very high due to iterative calculation of VDS . Method in

[31] first identifies all possible bias conditions of NMOS/PMOS transistors in CMOS

gates. Leakage, Isub of NMOS/PMOS transistor with these bias conditions are pre-

characterized and stored in a table. For a given input vector, state of each transistor

is identified in the circuit. Isub of complete CMOS gate for given input vector is

calculated by adding the width scalable Isub of each transistor as shown in Equation

(2.5).

ICMOS−Gate =
n∑
i=1

W (i)Ig(S(i)) (2.5)

Here, Ig(S (i)), W (i) are unit width leakage and width of i th transistor respectively.

Main disadvantage of this model is the inaccurate assumption of node voltages. This

model assumes the drain and source voltages of transistors at either supply or ground

voltages only, not accounting the stack effect. This assumption results in large error

in leakage estimation of CMOS gates. However, this model accounts for the effect

of ‘ON’ transistors but not accurately. Model proposed in [32] estimates the leakage

of a CMOS gate considering Isub , gate tunneling (Igate) and band-to-band tunneling

(IBTBT ) leakage components. These leakage components have been characterized

by accurate BSIM device equations. NMOS/PMOS transistor is first modeled as

sum of current sources (SCS), then ‘OFF’ stack of a CMOS gate is represented as

an equivalent SCS model and Kirchhoff Current Law (KCL) is applied at internal

nodes to obtain internal node voltages and corresponding leakage components. These

leakage components of each transistor have been used to estimate leakage of complete

CMOS gate. Large runtime is the main disadvantage of this approach due to the

internal node voltage calculation during leakage estimation of CMOS gate.

Lee et . al . [6] first characterized the Isub of single unit size transistor (Isub,1 ), then

scaled it according to the actual transistor size (St) and number of ‘OFF’ transistors
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(k) in the stack. Isub of a ‘OFF’ stack is given as in Equation (2.6).

Isub,k = Isub,1 ∗ Sk ∗ St (2.6)

Both, Isub,1 and Sk are precharacterized using SPICE simulation for stacks with tran-

sistors having different sizes. Igate is also modeled through a simple analytical model.

Interaction of Isub and Igate components is also considered to accurately estimate the

leakage of CMOS gates. Effect of ‘ON’ transistors is still not accurately considered,

resulting in large error. Leakage of CMOS gates with parallel transistors is also con-

sidered. Two parallel transistors with same input are replaced by a single transistor

with effective width as simple summation of both transistor widths. However this is

not true due to lithographic variations in width [33]. When one transistor is ‘OFF’

and another is ‘ON’, ‘OFF’ transistor is simply removed without assuming any leak-

age contribution. Thus, parallel transistor’s leakage is not estimated accurately by

this model. Yang et . al . [7] simplified the model in [6] by replacing stack size and

transistor size with a constant factor (A) for each input vector of a gate as in Equation

(2.7).

ICMOS−Gate = Isub,1 ∗ A (2.7)

In this model, calculation of scaling factor with respect to input applied is not ac-

curate. For example, Isub of NAND3 gate with input ‘011’ (‘0’ is applied to bottom

transistor) and ‘101’ (‘0’ is applied to middle transistor) is calculated using single

NMOS ‘OFF’ transistor, assuming zero drop across ‘ON’ transistors. In fact, ‘ON’

transistor connected to output node will have one threshold voltage drop across it,

reducing the voltage applied to remaining stack. Thus, ‘ON’ transistors should be

taken care of while being removed from the ‘OFF’ networks.

Models presented in [6, 7, 29, 30, 31, 32] first characterize the leakage of single
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NMOS/PMOS ‘OFF’ transistor. Then, these characterized models are used to find

out leakage of complete CMOS gate by either scaling or finding the internal node

voltages. Characterization time of the models is less because of consideration of only

two models. However, these works do not consider process variations. In presence

of process variation, scaling factors will itself be a non-linear parameter, which in-

creases the characterization time to develop leakage models. Calculation of internal

node voltages for the set of process parameters makes the models very slow. The as-

sumptions about ‘ON’ transistors in presence of process variations is also inaccurate,

causing large error in leakage estimation. Mean (µ) and standard deviation (σ) need

to be calculated to capture the effect of process variations on leakage of a CMOS

gate. For example, effect of length variation (4L) on Isub can be captured by solving

the expectation integral as in Equation (2.8).

E[Isub] =

ˆ +∞

−∞
Isub(4L)

1

2πσL
e
4L2

2σ2
L d(4L) (2.8)

Here, 4L is the Gaussian random Variable (RV) with zero mean and σ2
L variance.

Analytical solution of Equation (2.8) depends on the functional form of the leakage

representation in terms of random variables. Other parameters such as Vth , Tox also

affect the leakage of a gate, thus physics based models (BSIM equations) result in a

complex equation to relate leakage as a function of these RV’s. This in turn results

in a highly complex solution in Equation (2.8), making these models unsuitable for

CAD applications. To overcome this problem, empirical models have been proposed.

Empirical models captures the leakage dependency on process parameters by fitting

SPICE simulated data in predefined form such as exponential linear (EL) or exponen-

tial quadratic (EQ) by minimizing the least square error between results of SPICE

and model simulation data. A commonly used EL or EQ model is shown in Equation

(2.9).
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Isub = I0e
−(c14L+c24L2) (2.9)

Here, I0 , c1 and c2 are constants, obtained by fitting SPICE simulated data. The

variation in length (4L) can be expanded to account the effect of inter-die and intra-

die process variations. Other process parameters like Vth , Tox can also be included

in the above model by adding more number of terms corresponds to these parame-

ters. EQ model has been used for full chip leakage estimation using sum of random

variables [21], sum of orthogonal polynomials [34], Random gate based method [35]

and Karhunen–Loeve expansion (KLE) based method [36]. If there are M gates and

i th gate has k i inputs, then a total of
∑M

i=12
ki leakage models are required. The

important issue here is to reduce the number of leakage models required to reduce

characterization efforts without sacrificing accuracy. Another advantage of reducing

the number of models is to reduce the runtime complexity due to the use of reduced

number of leakage components to be added for full chip leakage estimation. For ex-

ample, method in [21] uses the dominant Isub and Igate concept among various input

vector combinations of CMOS gates, which only adds the leakage of only dominant

components. Due to large variation space, this assumption may provide large error

in leakage estimation. Equivalence concept between different input vectors of CMOS

gates is also used. For example, Isub of NAND4 gate with ‘1110’ input, NAND3 with

‘110’, NAND2 with ‘10’ is assumed to be same as INV with ‘0’ input. This assump-

tion also provides inaccurate results in leakage estimation as already illustrated in

Figure 2.1. Thus, reduction in the number of characterized models is very important

for characterization time as well as model evaluation time.

EQ models can provide accuracy for limited number of process parameters with only

Gaussian assumption. As in advanced technology nodes, due to short channel effects

and lithographic limitations, the number of process parameters to be considered are
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increasing and also, these process parameters may assume any distribution other than

Gaussian distribution. Authors in [37] evaluate the accuracy of previously developed

leakage models in [21] [38] [39] using BSIM4 transistor model [33]. State-of-the art

methods denotes the leakage in the EQ and 3rd order polynomial (poly3) form as

function of different varying parameters. These forms of the models have been chosen

to simplify the analysis to find out analytical solutions for full chip leakage power.

However, these analytical models were characterized using BSIM3 model [40]. More

advanced BSIM4 model accounts several short channel effects (SCE) and other sec-

ondary effects, which were not considered in BSIM3 models. These physical effects

impose high non-linearity into the model, which result in non-exponential linear be-

havior of leakage current. The average error in mean and standard deviation can go

up to ∼20% and ∼40% respectively. Recently, BSIM6 model has also been developed

for more advanced technologies [41], which will further increase the non-linearity into

leakage model due to various secondary effects. Hence, traditional EQ and poly3

models can not be used in leakage modeling of CMOS gates.

Quadratic models have also been proposed to analyze the effect of voltage and tem-

perature on leakage [42] but without considering process variations. Equation (2.10)

represents the generalized way of considering voltage and temperature effect as used

in [42]. Authors in [43] simultaneously consider process variations and temperature

effect but do not consider the variations in supply voltage. coefficients related to

temperature variations are assumed as zero.

Ileak(4V,4T ) = Ileak(0, 0)∗(1+b14T+b24T 2+a14V +a24V 2+c14T4V ) (2.10)

These quadratic models are second order Taylor approximations around mean values

of voltage and temperature variations. Previous work in [42, 43] does not simul-

taneously consider variation in the process parameters, voltage and temperature.
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Quadratic models are only valid in sub-space of PVT space. These works also do not

discuss about the reduction in number of models and hence, characterization time

can be be very large to generate models for different input vectors in PVT space.

Recently in [44], a voltage based leakage current estimation method is proposed which

identifies the intermediate node voltages of transistor stacks and scales linearly with

respect to supply voltage. A linear model has been developed for intermediate node

voltage per input vector. Two main disadvantages of this work are as follows - (i) In-

termediate node voltage itself can be highly non-linear function of process parameters

and temperature. Due to short channel effects, scaling models will not be linear also.

Thus, this method does not scales well in presence of process variations. (ii) Total

number of models including intermediate node voltage models and scaling models can

be very large. For example, in this thesis we consider 20 gate standard cell library

for which 176 input vector combinations are possible. Let us assume that if stack in

each gate has average 2 intermediate node voltages then 2 scaling models will also

be required, one for each intermediate node voltage. Total of 176*2 = 352 models

will be required to estimate leakage of complete standard cell library, which would

increase the model characterization time significantly.

On the other side, sampling based methods for full chip leakage estimation techniques

do not rely on precharacterized leakage models, instead use the SPICE simulation to

find out leakage of a gate for a sample generated by any sample generation methodol-

ogy such as Monte Carlo Technique [45]. One of the disadvantages is the requirement

of large number of samples to find out converged µ and σ of full chip leakage, re-

sulting into large runtime for leakage analysis. Various variance reduction techniques

have been proposed to reduce sample size [46]. Veetil et . al . [47] proposed an efficient

sampling method to reduce the number of samples for full chip leakage estimation

which further reduces the runtime without sacrificing accuracy. The disadvantage

of their approach is that they do not provide any means of reducing the number of
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models to be characterized. Also, it is very difficult to scale the model in PVTW

space. Generally, sampling based methods use SPICE simulation to evaluate samples

which may increase the runtime for full chip leakage estimation.

However, CMOS gate characterization is a one time effort, stack modeling methodol-

ogy helps in increasing the accuracy at the cost of increased characterization time. For

statistical leakage characterization of gates, it is more efficient to characterize different

kinds of stacks instead of characterizing every gate for each input vector. Due to large

process variations in nano-scale technologies and presence of high non-linearity due

to temperature and supply voltage variations, surrogate modeling techniques such as

Neural Network, Support Vector Machine assume greater significance while modeling

non-linear performance parameters. This type of technique requires extensive sam-

ples in order to train the models. However, once the models are trained, these models

provide more accurate results than models based on BSIM and empirical equations.

One of the disadvantages is that these models are slower than empirical equation

based approaches. For fast full chip leakage estimation, same stack model can be

used multiple times, which helps to reduce leakage estimation time [21].

Table 2.1: Comparison of leakage estimation techniques

Reference Scalable
Tmodel

∗ Accuracy$ Runtime#(PVTW space)
[29], [30], [48], [31] No Very Low Very Low Very High

[32] No Very Low Very High Very High
[6], [7] No Very Low Very Low Very High

[21], [34],[49] Yes Very High High Very Low
[47] No Very High Very High Very Low
[2] Yes Low Low Low
[44] No Very High Very High Low

Tmodel→ Model Characterization time,
∗ Computation Based on total number of models Characterized.

$ Accuracy under PVTW space
# Runtime for benchmark circuits under PVTW space
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In this context, Viraraghavan et . al . [2] have used the neural network to model leak-

age through a stack. The main drawback of this method is in the computation of

scaling factors - only one scaling factor per input vector per gate is used for all PVT

space. This assumption is not valid due to non-linear dependence of leakage power

on PVT parameters. Maximum error in µ and σ reported is 20% for a gate in 130nm

technology [2]. The error would increase for circuits implemented in latest technology

nodes. Another limitation of model presented in [2] is that it does not use width of

transistors on a stack as a parameter for modeling stacks, allowing leakage calculation

for transistors with fixed set of widths. Neural network suffers from the condition of

being trapped in local minima due to the use of gradient descent algorithm to cal-

culate weights in the trained model. These models also suffer from over learning i.e.

high error for unseen data [27]. Table 2.1 shows comparison of previous methods in

literature with our method w.r.t. scalability of the model, model characterization

time, accuracy and runtime.

2.2 VLSI Surrogate Modeling

The standard transistor-level simulation based techniques consume large time to op-

timize the circuit. From the perspective of highly competitive market, the time to

market for a VLSI product design must be very short. Thus it is not infeasible to

optimize the circuit using these kinds of simulators. Various macromodeling tech-

niques have been developed to replace highly complex models (e.g. SPICE) with less

complex models. But the design process is still dependent on the circuit simulator

(e.g., SPICE) and hence MC simulation is still very time consuming [50]. Metamod-

eling, also known as Surrogate modeling, is an alternative to macromodeling that is

more flexible, easier to simulate and optimize than a macromodel. The types of meta-

model include polynomials, Splines, artificial neural networks (ANN), support vector
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machines (SVM), genetic programming, Kriging methods, and Gaussian processes

[51].

To reduce the optimization time, authors in [51] developed a polynomial surrogate

modeling approach for accurate and fast optimization of oscillator circuits. While

in [52], technology independent polynomial surrogate modeling flow is presented to

optimize different components of a PLL for power. In [53], design parameter space

of OP-AMP circuit is first partitioned into different sub-regions and then low-order

polynomials used to fit each region.

It has been shown that regression based non-linear modeling methods such as Arti-

ficial Neural Networks (ANN) [2] and Support Vector Machine (SVM) [54] are more

accurate than linear regression based techniques e.g. Linear regression with regu-

larization, Logistic regression etc. These linear regression based techniques can not

model non-linear performance parameters such as leakage in PVTW space.

ANN surrogate models used in [55] avoid such creation of separate model for each

sub-region as used in [53]. In [56], Support Vector Machine (SVM) based surrogate

modeling approach is presented to replace expensive circuit simulations. In [57], mi-

crowave components are modeled by a surrogate multivariate mathematical model.

Authors in [58] developed a surrogate modeling approach for statistical wire-length

estimation. In [59], expensive electromagnetic (EM) simulations are replaced a sur-

rogate model developed using ANN and Gaussian processes. Gaussian process is also

used with memetic optimization technique for performance analysis and optimization

of differential amplifiers [60].

Failure probability analysis of robust circuits needs statistical rate event or high-sigma

analysis, which poses many challenges to the statistical analysis based on Monte Carlo

(MC) simulation. Because it may require very large number of transistor-level sim-

ulations to be performed. Statistical blockade method [61], first develops liner SVM

classifier from some SPICE simulated samples. Later this classifier selects most likely-

28



to-fail samples out of the samples generated using joint PDF of process parameters.

The samples which have high probability of failure, are only simulated though SPICE.

However, this linear classifier results in high error in case of discontinuous and non-

linear failure regions [62]. Also the efficiency of this approach highly depends on the

classifier accuracy. In case of high-dimensional variation space, a large number of

SPICE simulations are required to develop an accurate classifier, which makes this

method less efficient [63]. In this context, our proposed method in Algorithm 4.1

can be used to optimally select kernel parameters for classifier development. While

Algorithm 4.2 can be used for active selection of samples from high error regions. In

contrast to the work in [61], our aim is to develop accurate model in complete process

variation space, not in tail region only.

In [64, 55], authors have suggested use of artificial neural network (ANN) to model

performance parameters of several different op amp topologies. A standard two layer

feed forward neural network is used to model each of several op amp performance

parameters. In order to obtain good generalization and accuracy on training and

validation data sets, number of hidden layer neurons was manually adjusted. A hy-

perbolic tangent Sigmoid function [64] and Bayesian regular training [55] have been

used as the transfer function for all hidden layer neurons and a linear transfer function

was used for all output layer neurons. The training pattern set has been used to train

the networks using back propagation algorithm. The generated models are able to

capture non-linear behavior of performance characteristics of op amp with good ac-

curacy. They are quite efficient and provide a substantial saving of time in situations.

However, the methodology has a drawback that a large number of sample points are

required to accurately map the behavior of a circuit. As the dimension of circuit

increases, due to grid sampling, number of sampling point increase exponentially. In

our work, we have developed an algorithm to efficiently select training samples from

process variation space, which highly reduces the model development time.
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Also, traditional perceptron based ANN models suffer from limited model general-

ization ability, generating models that can easily lead to over fitting of data [65]. In

contrast, Support Vector Machine (SVM) is based on structural risk minimization

(SRM), which is superior than Empirical Risk Minimization (ERM) employed by

ANN because SRM minimizes the maximum error in predicting the output, whereas

ERM minimizes the maximum error on training data. Thus, SVM has better ability

to generalize with larger data size [66]. SVM maps input data into high dimensional

feature space to create a optimal separating hyperplane using kernel functions. SVM

uses quadratic programming to solve this problem, instead of gradient based opti-

mization used by traditional Neural Network approaches [67]. Neural Network suffers

with the problem of being trapped in multiple local minima. SVM can be used for

two types of problems i.e. Support Vector Classification (SVC) and Support Vector

Regression (SVR). SVM is the class of kernel-based learning methods which maps the

input data into high dimensional feature space, where each point denotes one feature

of data points. Kernel functions are then operated in feature space by simply evaluat-

ing the inner products between all data pairs instead of computing the coordinates of

data points which makes it computationally cheaper than the computing coordinates

of data points. Kernel trick makes SVM to model highly non-linear relation between

input and output in high dimensional space.

Use of kernels with optimum tuning parameters is very important in building accurate

and efficient SVM models. The methods for finding the optimal SVM kernel tuning

parameters can be classified as heuristic method, grid search method, numerical gra-

dient based optimization and evolutionary search method. Heuristic methods have

been applied for finding optimal tuning parameters in [68]. The solution obtained

using this method can be suboptimal [69]. Another disadvantage of this method is

that efforts required to formulate the equations related to SVM are high and some

approximations are also made to frame equations in the particular format which can
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reduce the accuracy of the solution obtained. Gradient based optimization techniques

such as gradient descent and quasi-newton methods which require the gradient of the

function being optimized and hence, can be trapped in local minimum without con-

verging to the optimal solution. This leads to the use of search based techniques for

kernel parameter optimization. In this direction, Grid search based technique [70] is

simple because it only require a grid in tuning parameter space. At each value of the

grid, model is trained and tested and the values with least error are selected as optimal

tuning parameters. Time and accuracy trade-off depends on the grid density. The

solution obtained using this method can also be suboptimal because derived values of

optimal tuning parameters may not reside in the grid points. The main disadvantage

of this method is to define the grid density so that optimal tuning parameters can be

found. There can be multiple local minima in the tuning parameter range [66]. Evo-

lutionary search methods such as Genetic Algorithm (GA) and Differential Evolution

(DE) assume the optimization problem as a black-box function and optimize it by

iteratively improving the solution without making any assumption about the problem

under consideration. These methods do not require the gradient of fitness function

i.e. problem need not to be differentiable and are best suited for noisy, multi-modal

and multi-dimensional problems. Pandit et . al . [71] have used the GA for finding

the optimal tuning parameters. Differential Evolution has advantages over GA with

respect to solution convergence as it uses advanced mutation and cross-over strategies

[72]. One of the important feature of DE is self-organizing scheme, in which any exist-

ing population vector is changed by calculating the difference of two randomly chosen

population vectors from current population while in traditional methods presumed

probability distribution function decides the change in population vectors. However,

other search based global optimization techniques can be used. GA and DE methods

attempt to search the entire space randomly which may take more time to reach the

optimal solution.
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Active learning is a supervised learning method for selection of new samples in the

input space which are combined with the previous training data-set to further im-

prove accuracy of the model. In Active learning [73], learner has a control over

supplied training data set, which reduces the sample size and increases accuracy.

Learning starts with fewer training samples, further samples are added according to

the requested query to achieve a goal of low error rate with minimum training sam-

ples. Authors in [74] have used active learning with SVM, based on version space

reduction for text classification. While in [75], active learning is applied to optimize

expected future error. In our methodology, we use active learning process to gener-

ate new training samples around maximum error sample to achieve desired accuracy.

Maricau et . al . [76] uses uncertainty predictor D(.) based on the distance between

input to input, output to output and model to model. Vaylon et . al . [77] uses the

dominant ′alpha ′ (α, SVM hyperparameter) of previous model to generate the new

samples. Maricau et . al . [76] uses uncertainty predictor D(.) based on the distance

between input to input, output to output and model to model. Vaylon et . al . [77]

uses the dominant ′alpha ′ (α, SVM hyperparameter) of previous model to generate

new samples.

These SVM models should be developed using a sufficient number of training samples,

generated from transistor to system level models. These kind of models have already

been adopted in various fields of VLSI research such as Power and delay estimation of

using Wavelet Neural Network [78] (2500 training samples are used to prepare mod-

els), Optimal memory technology estimation at each non-volatile memory hierarchy

level through design space exploration [79] (require 3000 system simulation samples

for accurate and efficient models), Board-level functional diagnosis and repair [80, 81]

(require 1000 board level simulations for efficient and accurate models), Area, power

and performance modeling of Network on chip (NOC) router [82](Adaptive sampling

method is adopted instead of brute-force Latin Hypercube Sampling to reduce model’s
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training sample size and 1024 samples are used to develop accurate and efficient clock

tree synthesis model using SoC Encounter). In recent years, post-CMOS devices in

hybrid technologies such as Carbon Nanotube FET (CNFET) [83] and Nano-Electro-

Mechanical-System (NEMS) [84] have been used to design the power gated switch to

remove drawbacks of CMOS based power gating methodology. SVM based methodol-

ogy can be a generalized methodology for all hybrid technologies where non-linearity

of the model in terms of the power gating switch parameters can be very high. Thus,

we can say that developing SVM regression based black box models is an important

and emerging area in the VLSI field. In comparison to analytical regression based

models and other non-linear models, SVM model’s accuracy and efficiency also de-

pends on efficient sampling techniques. Authors in [85] argued that ANN and SVM

based models can outperform regression based exponential quadratic leakage models

in terms of the number of training samples with less characterization time and higher

accuracy. However, above mentioned previous work does not focus on reduction of

number of training samples to prepare the model. The number of training samples

directly affect the runtime of models. Thus, we need to develop models with minimum

number of training samples for a given accuracy level. In this direction, authors in

[86] show that the higher number of samples are required to accurately fit a highly

non-linear model. Various sampling methods such brute force sampling, random sam-

pling, Latin-Hypercube sampling etc. have been used to generate a fixed number of

training samples. These training samples are then used to develop regression model.

LHS sampling method is shown to be better than other sampling methods in terms

of accuracy.
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2.3 Models for Virtual Ground Voltage Estimation

With the rapid scaling of MOSFET technologies, the contribution of leakage power to

the total power is increasing. Power gating technique has been applied for reducing

leakage power. Power gating is coarse-grained generalization of MTCMOS technique

in which high threshold transistor is inserted in pull-down and/or pull-up network as

a footer in ground gating case or header in supply gating case or combined gating

case. In ground gating, when the sleep transistor is ‘OFF’ during the standby mode,

the leakage current flowing through logic cluster (ILC) charges the virtual ground

node and reduces the effective V dd to ground voltage across logic cluster. Various

issues such as - performance degradation, ground bounce noise, wake-up energy con-

sumption, data retention, virtual ground (V gnd) or virtual supply voltage etc. are

needed to be considered before applying it to the logic circuits.

Sleep
Signal

Vgnd(t)

Vsteady,state(Sleep) Vsteady,state(Active)

Sleep Mode Active Mode Sleep Mode

Figure 2.2: Typical sleep and active mode cycles in ground-gated circuits

Recently, for many variants of power gating technique, V gnd has been the basic pa-

rameter to be analyzed. Singh et . al . [87] have represented the leakage current of logic

cluster and footer transistor as a function of V gnd, then both currents are made equal

to find the exponential linear model of V gnd as a function of design parameters of logic

cluster and footer transistor. Kim et . al . [88] have proposed the intermediate strength

power gating which provides the option of selecting a particular value of V gnd from

the list of many values depending on the power and performance constraints. Sinkar

et . al . [89] have proposed to clamp the V gnd at a specific value under temperature
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variations and reliability constraints for a fixed percentage of leakage reduction with

enhancing the reliability of the circuit. The V gnd calculated in [87, 88, 89] is a static

voltage but it is a dynamic characteristic whose value is increased from lower to higher

steady state value after the circuit is gated. Xu et . al . [4] have estimated the dynamic

V gnd during the mode transition which is further used to estimate energy consumed

due to the transition of V gnd value, allowing the fine grained optimization of power

gated circuits. Tovinakere et . al . [5, 90, 91] have derived the semiempirical model for

dynamic V gnd estimation. Xu et. al. [4] have used dynamic Vgnd characteristics to

obtain a trade-off between energy consumed in wake-up to sleep mode transition and

leakage saving in power gating mode. The consumed energy is highly dependent on

time dependent Vgnd characteristics during mode transition. Dynamic characteristics

of Vgnd will also vary according to the input vector applied to logic cluster and design

parameters of the footer transistor. Thus, we need a fast and accurate methodology

that can estimate Vgnd with respect to the variation in these parameters.

In our work, initially we concentrate on static virtual ground voltage estimation,

then model is extended for dynamic V gnd estimation. The static V gnd estimation is

an important parameter in the case of standby mode of operation of CMOS circuits

in following cases.

1) static V gnd model can be used for minimum leakage vector (MLV) estimation to

reduce the leakage power during standby mode [92, 93, 94]. The same problem should

also be solved for power gated circuits because MLV can be different for non-power

gated circuits. Since, leakage will vary according to the design parameters of footer

transistor, so we need a quick exploration of design parameter space for each input

vector.

2) Variation of V gnd w.r.t. time in sleep and active mode is shown in Figure 2.2.

Accurate calculation of energy during mode transition require steady state values in

sleep and active mode as starting points. Previous work in [4, 5] generally assumes
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the starting point as V dd or 0V in active and sleep mode respectively. Our results

show that the steady state values are a strong function of input vector, number of

gates in the circuit as well as footer transistor parameters. Hence, V gnd value can be

largely different than assumed values.

3) In leakage - delay trade-off optimization of power gated circuits [95], V gnd value

should be high to achieve high saving in leakage during sleep mode, which requires

minimum width and high threshold footer transistors. But these set of parameters

result in high delay degradation due to increased resistance i.e. drop across footer

transistors. Static V gnd models can be used as input to these optimization methods.

4) To mitigate the effect of Negative Bias Temperature Instability (NBTI), ground

gating has been used in sleep mode [95]. When footer transistor goes to ‘OFF’

condition, V gnd and internal node voltages of CMOS gates increased up to higher

value ( Vsteady,state(sleep)) as shown in Figure 2.2, thus changes the input voltages of

PMOS transistors to V gnd value. It reduces the gate to source voltage (Vgs) and thus

drives the PMOS transistors in recovery mode. Any error in V gnd estimation may

result in wrong prediction of trade-off calculation between leakage saving and amount

of NBTI recovery in sleep mode.

Thus, there is clearly a need of developing static V gnd model efficiently and model

should also be highly accurate and fast. One another use of static V gnd model is that

it can be used in the derivation of dynamic V gnd model for enhancing the accuracy

and efficiency of the model. Previous models provides large error in V gnd estimation

because of inaccurate leakage models for power gated circuits and assuming inaccurate

voltage conditions at the input of CMOS gates in power gated circuits.
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2.3.1 Previous V gnd models incorporating inaccurate leakage

models

To calculate static V gnd, authors in [4, 87] have represented the leakage current of

logic cluster (ILC) as an Exponential Linear (EL) function of V gnd which assumes the

same voltage at the input of equivalent transistor and the virtual ground as shown in

Figure 2.3. Since, the EL behavior of ILC with respect to V gnd is not valid rather it

depends upon the type of circuits and their corresponding input vectors which may

result in higher error for leakage modeling of logic cluster and consequently in static

V gnd estimation.

Vdd

 

Vgnd
Vg

W footer

WcircuitVgnd

Figure 2.3: Equivalent circuit for virtual ground (Vgnd) model

From Figure 2.3, static V gnd can be estimated by equalizing the leakage current of

logic cluster and footer transistor using Equation (2.11).

ILC(logic− cluster) = Ifooter(footer − transistor) (2.11)

Replacing ILC(logic− cluster) and Ifooter(footer− transistor) in the above equation

as a function of V gnd gives a equation of V gnd as a function of design parameters of

logic cluster and footer transistor. From [96], sub-threshold leakage current of a single
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‘OFF’ transistor can be represented as in Equation (2.12).

I = A.e1/mVT (Vg−Vs−Vth0−γ
′
Vs+ηVds).(1− e−Vds/VT ) (2.12)

with A = µ0C
′
ox

W
Leff

(VT )2c1.8c−4Vth/ηVT

Here, Vth0 is the threshold voltage at zero body bias, VT is the thermal voltage,

γ
′ is body bias coefficient and η is the DIBL coefficient. In [87, 4], for Vds � VT ,

the term (1−e−Vds/VT ) in Equation (2.12) is neglected. Authors in [87], represented

above equation as a EL function of V gnd, logic cluster and footer transistor design

parameters while in [4], it is denoted only in terms of virtual ground voltage (V gnd)

as shown in Equation (2.13) and Equation (2.14) respectively.

Ileak = I0
W

L
10(−Vth−(ηVgnd)/SS) (2.13)

Ileak = ÎN .e
−KNVgnd (2.14)

Neglecting the term (1−e−Vds/VT ) in Equation (2.12) for higher values of Vds i.e. low

source voltage for fixed drain voltage (Vdd in case of logic cluster) causes error in

estimating sub-threshold leakage current of a transistor for comparable values of Vds

and VT .

The authors in [90] [5] represent leakage current as a polynomial function of degree

N in terms of V gnd as shown in Equation (2.15).

Ileak =
N∑
j=0

pjV
j
gnd (2.15)

These type of models can result in very large error in estimating the leakage current

of logic cluster. However, for higher values of N , accuracy is improved but the

complexity will be increased for obtaining the virtual ground voltage equation. Hence,
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traditional EL and poly3 models can not be used in leakage modeling of CMOS gates.

2.3.2 Previous V gnd models based on inaccurate assumption of

input voltages

ILeak

IMin

Mode Transition Steady State

Tsteady

Error in Leakage Modeling
by Previous Work

Lo
gi

c 
C

irc
ui

t 
Le

ak
ag

e

Time after power Gating is applied

During Mode Transition

Figure 2.4: Error of previously developed leakage models during mode transition

Figure 2.4 shows the characteristics of logic circuit leakage after power gating is

applied. Previous model in [97] has only considered steady state leakage to calculate

energy saved in power gating. This assumption is only true if idle time is very high

compared to mode transition. Authors in [98] have reduced this error by multiplying

the energy saving in standby mode with a constant factor. But this assumption is not

true due to change in the characteristics of leakage during mode transition depending

on the conditions of circuit. Other models [99, 100] are high level models and do

not consider the effect of circuit topologies and input states. In high performance

circuits, idle time may not be very high compared to number of mode transitions.

More accurate models are required to calculate the overall energy saved by the circuit

in idle time considering the energy consumed by mode transitions. Authors in [4, 5]

model the logic circuit leakage during mode transition considering the effect of input

states and circuit topologies. But these models do not consider the accurate input
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voltage conditions which depends upon the virtual ground voltage. They consider the

input voltage of the circuit as a V gnd for the whole voltage range varying from 0V to

V dd, however, it is only true for the lower values of V gnd in ground gating case. for

higher values of V gnd, both pull down network (PDN) and pull up network (PUN) are

‘OFF’, resulting in the output voltage of that gate settled in between V dd and V gnd.

This makes the input voltage of other gates different than the V gnd, thus resulting in

large error V gnd estimation.
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Chapter 3

Process Variation Aware Leakage

Models: A Transistor Stack Based

Approach

CMOS gate characterization is a one time effort, wherein transistor stack modeling

methodology helps in increasing the accuracy but at the cost of increased character-

ization time. While characterizing statistical leakage of gates, it is more efficient to

characterize different kinds of stacks instead of characterizing every gate for each in-

put vector. Due to significant process variations in UDSM technologies and presence

of high non-linearity due to temperature and supply voltage variations, surrogate

modeling techniques such as Neural Network and Support Vector Machine assume

greater significance, especially for modeling non-linear performance parameters. A

large number of samples are required in order to train such models. However, these

trained models provide more accurate results than models based on BSIM device

equations and empirical equations. One of the disadvantages is that these models

are slower than look up table based approaches. For full chip leakage estimation, a

characterized stack model can be used multiple times, which helps to significantly
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reduce leakage estimation time. In this context. We have extended the leakage model

to include transistor width as an additional parameter. Thus, leakage power of a gate

i with an input vector ϑ applied, can be given as follows.

Y ϑ
i = fϑi (Wi, GP, LPi, T, Vdd) (3.1)

Here, W , GP , LP , T , Vdd are defined as width of transistors on stack, global process

parameters, local process parameters, temperature and supply voltage respectively.

The advantage of adding width is that it helps to reduce the number of character-

ized models other than basic stack models. These models need to be developed for

the gates having parallel transistors or series of parallel transistors. We propose an

approach for efficient and accurate estimation of leakage using transistor stacks as it

avoids calculation of scaling factors as reported in [2]. The proposed approach uses a

little bit more number of basic stacks, removing dependency on scaling factors while

computing leakage current. Thus, design efforts get reduced because of not using

scaling factors, and subsequently model characterization time for the stacks is also

reduced. Our approach estimates leakage at any given Vdd , T and width of transistors

on a stack. The proposed methodology is a generalized one, which may be applied to

leakage characterization of post-CMOS devices i.e. FINFET, CNTFET and others.

The novel contributions of the proposed methodology are as follows.

• More accurate reduced set of stack based Subthreshold (Isub) and gate tun-

neling leakage (Igate) models are developed. Our methodology requires smaller

number of models for leakage characterization of 20 CMOS gate standard cell

library across 176 input vector combinations in a complete Process - Voltage -

Temperature - Width (PVTW) space.

• We combine the parallel transistors under the influence of same input and re-

place it with a single transistor of effective width. Thereafter, the precharac-
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terized basic models can be used, thus, requiring smaller number of models for

the overall leakage calculation of the standard cells as compared to [2].

• A novel methodology for Effective width calculation is developed for the parallel

transistors in CMOS gates with and without considering process variations,

resulting into higher accuracy than the previous model [3].

3.1 Stack based Models for Basic CMOS Logic Gates

3.1.1 Subthreshold Leakage Modeling

In this work, we assume maximum stack size of four, as higher order stack increases

the delay of a gate due to increased logical effort. We modify conventions used in [2]

for labeling stack parameters, which is shown as follows.

{stack type}{stack size}{leakage type}/{input to the stack}

Here, stack type indicates whether it is an NMOS stack (n) or a PMOS stack (p).

Stack size represents the number of transistors on a stack. Leakage type denotes the

subthreshold (s) or gate tunneling (g) leakage. Least Significant Bit (LSB) of input

vector is applied to the transistor, which is closest to the output. The conventions

used to model leakage are based on series transistors and input vectors, not parallel

transistors. If any set of parallel transistors is found in a gate, it is first converted into

a stack by combining parallel transistors and then precharacterized stack is used for

this equivalent stack. Isub leakage of a ‘OFF’ stack can be calculated by estimating

the current flowing into the ground terminal through NMOS transistors whose source

is connected to the ground [32]. Isub of a gate for a given input vector is calculated

from ‘OFF’ network only because ‘ON’ network has ∼0V drop across it.

Common stack models for Isub estimation are extracted based on the current flowing

from drain to source of transistors in ‘OFF’ PDN or PUN network. Let us consider
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Figure 3.1: 4-input NAND Gate

a four input NAND gate as shown in Figure 3.1. We now illustrate leakage current

estimation using basic stacks under the influence of each possible input vector.

Input vector (0000): In this state, all four NMOS transistors are turned ‘OFF’

while all four PMOS transistors are turned ‘ON’ and treated as short circuits. Thus

to estimate the probability density function (PDF) of the leakage of a NAND4 gate

for the input vector ‘0000’, we need to model a four transistor NMOS stack, which is

referred as n4s/0 according to conventions used for stack representations.

Input vectors (1000 / 0100 / 0010): In this case, the top most transistor, MN4

has its gate connected to ground voltage and one of the other 3 NMOS transistors

has gate connected to Vdd . Three PMOS transistors are fully turned ‘ON’, thus the

Isub is to be calculated from NMOS ‘OFF’ network. Similarly, one NMOS transistor

that has its gate connected to Vdd behaves as a short circuit and can be removed from

the NMOS stack. Thus, to predict the leakage for this set of input combinations, 3

transistor NMOS stack is modeled with all inputs grounded i.e. we need to model

an n3s/0 stack. Note that the same n3s/0 model will be used to predict the leakage

of a NAND3 gate with input ‘000’. However the width of the transistors on the 3

transistor stack is thrice the unit width while the width of the transistors on four

input gate is four times the unit width. Thus, we need to scale the currents by
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an appropriate factor to account for this width difference. But our experiments in

Section 3.2.1 show that we do not need to calculate the scaling factors because the

mean (µ) and standard deviation (σ) calculated from the n3s/0 stack is almost same

as µ and σ of n4s/2, n4s/4, n4s/8 stack in complete PVTW space.

In ‘ON’ PUN network for all three input vectors, one PMOS transistor is ‘OFF’ and

appears in parallel with three ‘ON’ PMOS transistors. These ‘ON’ transistors make

drain and source voltage equal, resulting in drain to source voltage (Vds) to zero.

However, PUN consists of ‘OFF’ transistor but zero Vds results in zero Isub across

‘OFF’ transistors also. Same analysis is applicable for other input vectors also except

‘1111’.

Input vector (0001): Here, again Isub is to be calculated from NMOS ‘OFF’ net-

work. As the gate of the top most transistor MN4 is connected to Vdd , the drop

across this transistor is high. MN4 transistor will have one threshold voltage (Vth)

drop across it, making VX = Vdd − Vth. This transistor can not be treated as a short

circuit and voltage drop across it must be accounted in Isub estimation for this input

vector. Hence, we need to model a four transistor NMOS stack with the gate of top

most transistor connected to Vdd which is modeled as n4s/1 stack.

Input vectors (1100 / 1010 / 0110): Here also, the Isub is calculated from NMOS

‘OFF’ network. In the ‘OFF’ network two transistors with the gates connected to

Vdd can be treated as short circuit which reduces the NMOS stack to 2 transistors

and can be modeled as n2s/0 stack to predict the NAND4 leakage for these input

vector combinations. Our simulation results show that the error is under tolerable

limits, which does not effect much average error in µ and σ if we do not scale the

Isub of n2s/0 stack for accounting for the width difference of the 2 transistor NMOS

stack and the NAND4 gate. Here again note that the same n2s/0 model will be used

to predict the leakage for the NAND3 gate with input ‘100’ and NAND2 gate with

input ‘00’.
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Input vectors (1001 / 0101 / 0011): As in the ‘0001’ case, the top most transistor

can not be removed from the stack to find equivalent stack, while other ‘ON’ transistor

can be treated as a short circuit and can be removed from the stack.We need to develop

n3s/1 model. This model is also used for Isub modeling of NAND3 gate with ‘001’

input.

Input vectors (0111 / 1011 / 1101): For Isub calculation of these input vector

combinations n2s/1 model can be used but the DIBL effect due to change in drain to

source voltage of the transistor whose gate is grounded, is different in all three cases

and hence there is a significant deviation in the PDF predicted by the n2s/1 model.

In [2], n2s/1 model is used and scaling factors are also calculated for accounting the

width difference in lower and higher order stack. The error in predicting the µ and

σ using this model is very high. Thus, We need a separate model for each of these

three input vectors.

Input vectors (1110): In this case, the bottom three transistors MN1, MN2 and

MN3 can not be considered as short circuits due to the voltage drop across these

transistors and hence, the Isub will be predicted by a separate model i.e. n4s/14 with

less error in our case compared to Isub calculation using model n1s/0 with scaling

factor in [2].

Input vectors (1111): In this case, MN1-MN4 are ‘ON’. Isub is determined by

‘OFF’ network i.e. parallel PMOS transistors for which we only need one model i.e.

p1s/1 model, which can be reused for all 4 PMOS transistors.

To analyze the inaccuracy of models in [2], we calculate Isub of NAND4, NAND3

and NAND2 gate for the inputs ‘1110’, ‘110’, and ‘10’ by simulating 20000 Monte

Carlo samples taken considering 10% variation in process parameters with Vdd =

1V , T = 27◦C and W = 28nm. In our framework, we represent these models as

n4s/14, n3s/6 and n2s/2. Isub of these models is compared with leakage of single

NMOS transistor with ‘0’ input i.e. n1s/0 model. Figure 3.2 shows the correlation
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curve between the SPICE leakage i.e. n4s/14, n3s/6 and n2s/2 and modeled leakage

i.e. n1s/0. The error of modeling n4s/14, n3s/6, n2s/2 by n1s/0 can vary from

minimum 0.01% to maximum 59.97%, 51.22% and 34.78% respectively. This error is

due to the drop across the ‘ON’ transistors, which affects Isub in two ways: 1) n1s/0

model over-estimate the drain-to-source voltage of the ‘OFF’ transistor, 2) Drain

Induced Barrier Lowering (DIBL) effect also changes the Vth of the ‘OFF’ transistor.

One of the important observations can be made here is that the error is higher for

higher leakage samples. In our methodology, we remove the ‘ON’ transistors from

the ‘OFF’ network if and only if Isub of the stack falls into low leakage region. Our

Proposed methodology gives less than < 0.5% error in µ and σ of the Isub of basic gates

i.e. NAND4, NAND3, NAND2, NOR4, NOR3, NOR2 obtained using our extracted

models among basic gates of the considered 20 CMOS gates standard cell library.
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Figure 3.2: Correlation between SPICE and model subthreshold leakage using
methodology in [2]

3.1.1.1 Gate Tunneling Leakage Modeling

Authors in [32, 33, 101] model the direct Igate flowing from bulk and source/drain

overlap region to gate of MOSFET. The direct Igate can be represented as follows.
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Igate = W.L.Ag

(
Vox
Tox

)2

exp

−Bg

(
1−

(
1− Vox

φox

)3/2)
Vox
Tox

 (3.2)

Here, Ag = q3

16π2~φox , Bg = 4
√

2m∗φ
3/2
ox

3~q
, JDT is the direct tunneling current density, Vox

is the potential drop across the gate oxide, φox is the barrier height of the tunneling

electron, m∗ is the effective mass of an electron in the conduction band of silicon and

Tox is the oxide thickness. Three important components of Igate in a scaled MOSFET

device are: 1) gate to source/drain overlap region current (Igd/gs) due to potential

difference (Vgd/gs) across overlapped region; 2) Gate to channel current (Igc ), part of

which goes to source (Igcs ) and rest goes to drain (Igcd ); and 3) Gate to substrate

leakage current ( Igb). Out of the three components, contribution of Igd/gs is highest

to the total Igate while Igb has the lowest contribution. Igb is found to be several orders

lower than other components, thus neglected in Igate estimation of CMOS gates.

To calculate gate tunneling leakage, we generate the gate tunneling leakage values

from SPICE tool using the parameters IGCMOD and IGBMOD in the device model.

Since, the contribution of Igb to the total Igate is very less thus Igb is neglected by simply

turning ‘OFF’ IGBMOD model parameter in the device model. Gate-to-source and

gate-to-drain tunneling current is modeled for each basic model shown in Figure 3.3.

These currents are modeled as voltage dependent current sources depending on the

potential difference across the the terminals.

Figure 3.3 shows the basic Igate conditions which can exist in CMOS gates. However,

depending on the location of the transistor on the stack and process parameters, their

source and drain voltages can be changed. To accurately capture Igate of a CMOS

gate, a highly non-linear model is required to scale Igate of a transistor shown in

Figure 3.3. Our method is based on the identification of dominant Igate transistors

and breaking a higher order stack into smaller stacks across all gates with their input
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vectors and using a common set of Igate models. Igate of each transistor is calculated

based on the current flowing across gate terminal from source and drain terminals in

PDN and PUN network. Both ‘ON’ and ‘OFF’ networks contribute to the Igate .

Authors in [102] proposed dual dielectric - dual thickness (DKDT) approach to reduce

the Igate in combinational circuits. This work relies on Igate characterization of CMOS

gates for different dielectric materials having different Tox, which requires very large

characterization time. Linear change in Igate is also observed for different values of

thickness and dielectric constant (K). This linear change can be easily incorporated

in our framework of reduced set of models trough surrogate modeling by simply

including K and Tox during model characterization, without requiring much extra

training samples.

Now, we explain our Igate models extraction methodology using NAND4 gate shown

in Figure 3.1. LSB of a input vector is always applied to the transistor nearest with

output node. Same conventions are used here to represent models as for Isub models.

0

1

0

1

0

0

1

1

0

0

1

1
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n1g1/0 n1g2/1 p1g1/1 p1g2/0

Figure 3.3: Basic Igate models for single transistor

Both PDN and PUN network contribute to Igate of a gate. Thus, voltage conditions

at different terminals of all transistors need to be analyzed. In all input vectors

except ‘1111’ of NAND4 gate, only ‘ON’ PMOS transistors will contribute to the

Igate because ‘OFF’ transistors i.e. input = logic ‘1’ will have the same voltage i.e.

logic ‘1’ at all terminals. The ‘ON’ transistors have same terminal conditions as in

Figure 3.3.(d) and thus, do not require any new model.

Input vector (0000): In PDN, Only MN4 transistor has the significant leakage
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Table 3.1: Models for estimation of Isub and Igate of AND type basic CMOS gates
with respect to each input vector

NAND4 NAND3
Input

I ∗sub
Igate Input

I ∗sub
Igate

(DCBA) PDN PUN (DCBA) PDN PUN
0000 n4s/0 n1g1/0 p1g2/0 000 n3s/0 n1g1/0 p1g2/0
0001 n4s/1 n4g/1 p1g2/0 001 n3s/1 n3g/1 p1g2/0
0010 n3s/0 n4g/2 p1g2/0 010 n2s/0 n3g/2 p1g2/0
0011 n3s/1 n4g/3 p1g2/0 011 n3s/3 n3g/3 p1g2/0
0100 n3s/0 n4g/4 p1g2/0 100 n2s/0 n1g1/0, n1g2/1 p1g2/0
0101 n3s/1 n4g/5 p1g2/0 101 n3s/5 n2g/1, n1g2/1 p1g2/0
0110 n2s/0 n4g/6 p1g2/0 110 n3s/4 n1g1/0, n1g2/1 p1g2/0
0111 n4s/7 n4g/7 p1g2/0 111 p1s/1 n1g2/1 p1g1/1
1000 n3s/0 n1g1/0, n1g2/1 p1g2/0 NAND2
1001 n3s/1 n3g/1, n1g2/1 p1g2/0 00 n2s/0 n1g1/0 p1g2/0
1010 n2s/0 n3g/2, n1g2/1 p1g2/0 01 n2s/1 n2g/1 p1g2/0
1011 n4s/11 n3g/3, n1g2/1 p1g2/0 10 n2s/2 n1g1/0, n1g2/1 p1g2/0
1100 ns2/0 n1g1/0, n1g2/1 p1g2/0 11 p1s/1 n1g2/1 p1g1/1
1101 ns4/13 n2g/1, n1g2/1 p1g2/0 INV
1110 n4/14 n1g1/0, n1g2/1 p1g2/0 0 n1/0 n1g1/0 p1g2/0
1111 p1/1 n1g2/1 p1g1/1 1 p1/1 n1g2/1 p1g1/1

*We do not use separate columns for PDN and PUN under Isub column because either PUN or
PDN is used for Isub estimation

flowing from Vdd (output node) to input which is same as Igate of the transistor

shown in Figure 3.3.(a). Drain voltage of other transistors is very less, gives almost

negligible current across drain and gate terminal. Thus, we do not need any Igate

model other than basic models for this input vector and n1g1/0 model is enough to

calculate Igate for NMOS stack applied with this input vector. Here, we conclude

that the in any NMOS stack with all ‘OFF’ transistors, Igate will be due to the only

transistor, which is connected to the output node. Same is true for PMOS stack with

all ‘OFF’ transistors.

Input vectors (0001/0011/0111): In ‘OFF’ PDN for ‘0001’ input, MN3 transistor

has the significant leakage whose drain and source voltages are significantly different

than in Figure 3.3.(a). We denote this new leakage model as n4g/1. Similarly, new
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models n4g/3 and n4g/7 are required for ‘0011’ and ‘0111’ inputs respectively. This

is due to the different threshold voltage drop across ‘ON’ transistors in presence of

process variations. Previous work in [6] and [7] neglects the Igate of ‘ON’ transistors

in these input vectors. We observe that this assumption results in high error for Igate

estimation.

Input vectors (0010/0100): In this case, same leakage is observed across MN4

transistor as in the case of ‘0000’ input. New leakage models are required to calculate

gate leakage of MN3 and MN2 transistor for ‘0010’ and ‘0100’ inputs and models are

represented as n4g/2 and n4g/4 respectively. Here also the methodology in [6] and

[7] neglect the Igate of ‘ON’ transistor resulting in high error.

Input vector (1000/1100/1110): For ‘1000’ input, transistor MN1 is ‘ON’ which

makes it’s drain and source terminal connected to ground. It’s Igate will be same

as transistor in Figure 3.3.(b). Igate of top three transistors in PDN is same as

NAND3 gate with ‘000’ input. In NAND3 gate with ‘000’ only top transistor will

have significant Igate as in the case of NAND4 gate with ‘0000’ input. Same conditions

are also applicable to ‘1100’ and ‘1110’ inputs. We can remove ‘ON’ transistors

starting from the bottom until an ‘OFF’ transistor comes. Drop across removed ‘ON’

transistors in ‘OFF’ PDN do not affect gate leakage very much. Thus, No extra model

is required in all three cases.

Input vectors (1001/1010/1011): As in previous case, the bottom transistor

has significant Igate for all three input vectors. But the top three transistors will have

different Igate and require different models named as n3g/1, n3g/2, n3g/3 respectively.

n3g/1, n3g/2, n3g/3 models are also used for Igate estimation of NMOS stack of

NAND3 gate with ‘001’, ‘010’ and ‘011’ inputs respectively.

Input vector (1101): Bottom two transistors have same conditions as in the case of

‘1100’ input but requires one extra model due to top two transistors as n2g/1. n2g/1

model is also used for Igate estimation of NMOS stack of NAND2 gate with ‘01’ input.
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Input vector (0101/0110): In each case, two transistors contribute to the Igate

and impose significant change in drain and source voltage in comparison to basic gate

leakage model conditions. We jointly model Igate of two transistors into single model

for each input vector. Thus, two new models are required and named as n4g/5, n4g/6

for input ‘0101’ and ‘0110’ respectively.

Input vectors (1111): In this case, all 4 PMOS transistors are ‘OFF’ and contribute

to Igate using model of transistor as in Figure 3.3.(c). The ‘ON’ PDN’s Igate can be

estimated using model n1g2/1 because inputs are applied with logic ‘1’ and source,

drain terminals are at logic ‘0’.

Similarly, Igate for other CMOS gates can be modeled. Table 3.1 shows the list of

models used in Isub and Igate modeling of AND type basic CMOS gates.

3.1.2 Complex Logic Gates consisting parallel or Stack of Par-

allel transistors

For these type of complex logic gates, we replace the parallel transistors of different

widths with a single transistor of equivalent width. Since our models are function of

width also, there is no need to characterize any new model. Next, we develop the

analytical equations to calculate effective width of the transistor with and without

process variation.

3.1.2.1 Effective width calculation of parallel transistors of same input

without considering process variations

The possible node voltages and process parameter conditions in the absence of process

variations is shown in Figure 3.4.(a). The Isub of a transistor can be represented as

follows.
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Figure 3.4: Effective width estimation of parallel transistors with same inputs

Isub = µNCox
W

L
V 2
t exp

[
Vgs − Vth
nVt

] [
1− exp

[
−Vds
Vt

]]
(3.3)

From (3.3), it can be observed that Isub is directly proportional to the width of

transistor. But in actual, this width is effective width which is calculated according

to BSIM4 device equations. The effective width can be represented in terms of drawn

width W drawn as follows.

Weff =
Wdrawn

NF
+XW − 2dW (3.4)

dW = dW ′ +DWG.Vgsteff +DWB
(√

φs − Vbseff −
√
φs

)
(3.5)

dW ′ = WINT +
WL

LWLN
+

WW

WWWN
+

WWL

LWLNWWWN
(3.6)

Here„ NF =Number of device fingers, XW =Parameter to account channel width

offset due to mask/etch effect, DWG, DWB =To account for the contribution of

both gate and substrate effect. WINT, WL, WW, WWL, WLN, WWN =

Model parameters to describe the dependence of dW on device geometry. WINT is

calculated in the traditional manner from which ‘delta W ’ is extracted. (from the

intercept of straight lines on a 1/Rds∼W drawn plot)
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In general,

WL = WW = WWL = 0, WLN = WWN = 1 (3.7)

putting values from Equation (3.7) in Equation (3.6), we get

dW ′ = WINT (3.8)

dW = WINT +DWG.Vgsteff +DWB
(√

φs − Vbseff −
√
φs

)
(3.9)

Since, in our model we are not considering the gate and substrate effects, the param-

eters related to gate and substrate effects can be assumed to be zero, i.e.

DWG = DWB = 0 (3.10)

putting values from Equation (3.10) to Equation (3.9),

dW = WINT (3.11)

putting Equation (3.11) into Equation (3.4), we get,

Weff =
Wdrawn

NF
+XW − 2WINT (3.12)

In our case, the number of fingers, NF =1 and XW =0, final value of Weff can be

represented as:

Weff = Wdrawn − 2WINT (3.13)

Now consider the two transistors MN1 and MN2 as shown in Figure 3.4 having width

W1and W2 with same potential at all terminals and being same other parameters

i.e. L, Vth, Tox are also equal. These transistors can be replaced by a single transistor
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with equivalent width as wequi .,drawn ,which can be calculated as follows.

Wequi.,eff = W1,eff +W2,eff (3.14)

Wequi.,drawn − 2.WINT = W1,drawn − 2.WINT

+W2,drawn − 2.WINT

(3.15)

Wequi.,drawn = W1,drawn +W2,drawn − 2.WINT (3.16)

which can be generalized for N parallel transistors as follows:

Wequi.,drawn = W1,drawn +W2,drawn + .......− 2.N.WINT

+2.WINT N = 2, 3, .......n
(3.17)

= W1,drawn +W2,drawn + ....− 2.(N − 1).WINT

N = 2, 3, .......n
(3.18)

Equation (3.18) represents the final equivalent drawn width that is to be used in sim-

ulations for the case of N parallel transistors. The factor 2.(N − 1 ).WINT must be

subtracted from the sum of drawn widths. In our simulations WINT = 5nm. For ex-

ample, if there are two transistors having widths W1 = W2 = 50nm, then these tran-

sistors can be replaced by a single transistor of width 90nm (50nm + 50nm − 2 ∗ 5nm).

Igate is also directly proportional to the effective width of transistor. Same effective

width formula is also applicable for Igate calculation of parallel transistors applied

with same inputs.

3.1.2.2 Effective width calculation of parallel transistors of same input in

presence of process variations

In presence of process variations, we can not use effective width formula directly

because both parallel transistors can have different process parameters as shown in
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Figure 3.4.(b). Instead, we first compute the change in width required to change

the current of transistor by same amount as process parameter changes. Then,

effective width is calculated using the modified widths of the parallel transistors.

This change in width is calculated for both Isub and Igate . Let us assume the tuples

(Lmean, V th,mean, T ox,mean), (Lmean+4L, V th,mean+4V th, T ox,mean+4T ox) represent

the nominal values and a sample of process parameters of transistor respectively. W act

and (W act+4W ) denote the actual width and modified width (Wmod). The change in

the width (4W ) can be calculated by equating the current flowing due to the param-

eters (W act, Lmean+4L, V th,mean+4V th, T ox,mean+4T ox) and (W act+4W , Lmean,

V th,mean, T ox,mean). We represent these currents as Isub/gate,act and Isub/gate,mod. For

Isub , 4W can be calculated as:

Isub,act = Isub,mod (3.19)

A. Wact

(Lmean+4L) .exp
[
Vgs−(Vth,mean+4Vth)

ηVt

] [
1− exp

[
−Vds

Vt

]]
=

A. (Wact+4W )
Lmean

.exp
[
Vgs−Vth,mean

ηVt

] [
1− exp

[
−Vds

Vt

]] (3.20)

Here A = µNCoxV
2
t

A. Wact

(Lmean+4L) .exp
[
Vgs−Vth,mean

ηVt

]
.exp

[
−4Vth
ηVt

] [
1− exp

[
−Vds

Vt

]]
=

A. (Wact+4W )
Lmean

V 2
t .exp

[
Vgs−Vth,mean

ηVt

] [
1− exp

[
−Vds

Vt

]] (3.21)

(Wact +4W )

Lmean
=

Wact

(Lmean +4L)
.exp

[
−4Vth
ηVt

]
(3.22)

1 +
4W
Wact

=
Lmean

(Lmean +4L)
.exp

[
−4Vth
ηnVt

]
(3.23)

4W = Wact

[
Lmean

(Lmean +4L)
.exp

[
−4Vth
ηVt

]
− 1

]
(3.24)
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Here, η is subthreshold swing factor and η=1 is used in Equation (3.24), Vt is the

thermal voltage and is given by kT/q whose value at room temperature is 26mV .

Equation (3.24) denotes the change in width required due to change in Vth and length

of the transistor. 4Vth is the change in the width due to multiple effects such as

Channel Dopants (N ch), L and Tox . Across three effects, Vthchange (4Vth,L/Tox) due

to L and Tox also depends upon the drain-to-source voltage (Vds) of the transistor as

shown in Figure 3.5.
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Figure 3.5: Effect of variation in length and oxide thickness on threshold voltage
(different drain-to-source voltage)

The variation in process parameters changes Vds of the corresponding transistor and

can not be predicted. Thus, 4Vth,L/Tox can not be accurately calculated and gives

error in 4W estimation. This problem can be somewhat solved by assuming the

mean value of Vds for all samples of process parameters. However, this problem will

occur for a very less number of input vectors and does not affect the average error

across all input vectors of a CMOS gate. Function Vth,L/Tox is captured by fitting

the data samples by Latin Hypercube Sampling method and curve fitting toolbox in

MATLAB. The fitting function is given as follows.

Vth,Tox = f(Tox, VDS) = A1 +B1.VDS + C1.Tox (3.25)
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Vth,L = f(L, VDS) = A2 +B2.VDS + C2.L+D2.V
2
DS + E2.VDS.L (3.26)

Both fitted models in Equation (3.25) and Equation (3.26) give sufficient accuracy

and greater than 0.999 correlation coefficient is obtained with respect to actual curve.

Figure 3.6 shows the regression models to represent the effects of L, Vth and VDS on

Vth of the transistor. The change in threshold voltage, 4Vth,L/Tox , can be calculated

by subtracting Vth at nominal process parameters from the modified Vth .

Figure 3.6: Regression models obtained through curve fitting showing the effect of
Tox , L and Vds on Vth .

The Igate model in (3.2) is very complex and does not suit for our framework for

effective width estimation. First, we develop an accurate and simple regression based

analytical model of Igate for all major components in terms of transistor terminal

voltages and process parameters as shown in Equation (3.27).

Igate = α.W.L.Vgs/ds.exp
[
β.Vgd/gs + γ.Tox

]
(3.27)

Here, α, β and γ are fitting coefficients and are obtained through curve fitting, Vgd/gs

is the voltage across oxide depending upon gate to source or gate to drain voltage.

Vth is not included in the model because it does not affect the Igate . T and Vds also do
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not affect the Igate and hence, not included in the model. Equation (3.2) also indicate

that Igate is the function of W , L, Vox and Tox . Our model is more accurate than the

model developed in [6] for complete process variation space and Vgs ranging from 0V

to Vdd for fixed Vds . Figure 3.7 shows the regression model obtained through curve

fitting in MATLAB for fixed width, length and correlation of model simulated data

with the SPICE data.

0 1 2 3 4 5 6

x 10
−10

0

1

2

3

4

5

6
x 10

−10

SPICE Gate Leakage (A)

M
od

el
 G

at
e 

Le
ak

ag
e 

(A
)

Figure 3.7: (Top) Regression model showing the proposed Igate model, (Bottom)
Correlation curve between Igate obtained from SPICE and fitting model

Authors in [6] model the Igate as shown in Equation (3.28), which is only accurate for

higher values of Vgs/ds .
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Igate = α.W.L.exp
[
β.Vgd/gs + γ.Tox

]
(3.28)

The error in previous model for low Vgs/ds can be easily observed. For example, if

Vgd/gs is zero, then leakage should be zero due to zero potential difference across

oxide but Equation (3.28) will give some leakage. Igate for lower Vgd/gs values is

very important for the case of transistors with higher width values and may give

comparable leakage as the case of minimum width transistors with higher Vgd/gs

values.

Authors in [103] proposed a methodology to optimize Igate in datapath circuits. A

bottom-up approach is developed for the Characterization of functional units such as

adder, multiplier, shifter, register etc. First Igate of the NAND gate is characterized

using analog simulation and then this characterized data is used to develop analytical

model for each functional unit as shown in Equation (3.29).

Igate = A.exp(−Tox/α) +B (3.29)

This analytical model includes only Tox as a variable parameter and did not consider

the dependency of Igate on L and W of transistors. This models also suffers from

the large error in Igate estimation at lower Vgd/gs values. This work only considered

the NAND as a component in each functional unit, thus did not consider realistic

characterization scenario. The proposed methodology relies on characterization of a

gate for each input vector, thus requires very large time to characterize a complete

library.

Now, expression to calculate the change in the width (4W ) for Igate can be derived

as similar to process adopted for Isub .

Igate,act = Igate,mod (3.30)
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α.Wact.(Lmean +4L).exp
[
β.Vgd/gs + γ.(Tox,mean +4Tox)

]
=

α.(Wact +4W ).Lmean.exp
[
β.Vgd/gs + γ.Tox,mean

] (3.31)

α.Wact.(Lmean +4L).exp
[
β.Vgd/gs + γ.Tox,mean

]
.exp [γ.4Tox] =

α.(Wact +4W ).Lmean.exp
[
β.Vgd/gs + γ.Tox,mean

] (3.32)

.(Lmean +4L)

Lmean
.exp [γ.4Tox] = 1 +

4W
Wact

(3.33)

4W = Wact

[
.(Lmean +4L)

Lmean
.exp [γ.4Tox]− 1

]
(3.34)

Table 3.2: Isub and Igate Models for 2-input XOR gate with respect to all input vectors

Input I ∗sub

(BA) G1 G2 G3

00 n1s/0 p2s/2 n1s/0
01 p1s/1 n2s/2, n2s/1 n1s/0
10 n1s/0 n2s/2, n2s/1 p1s/1
11 p1s/1 p2s/1 p1s/1

Input Igate

(BA)
G1 G2 G3

PDN PUN PDN PUN PDN PUN

00 n1g1/0 p1g2/0 n1g1/0, n1g2/1 p2g/2 n1g1/0 p1g2/0
01 n1g2/1 p1g1/1 n2g/1, n1g1/0, n1g2/1 p1g2/0 n1g1/0 p1g2/0
10 n1g1/0 p1g2/0 n2g/1, n1g1/0, n1g2/1 p1g2/0 n1g2/1 p1g1/1
11 n1g2/1 p1g1/1 n1g1/0, n1g2/1 p1g2/0, p1g1/1 n1g2/1 p1g1/1

*We do not use separate columns for PDN and PUN under Isub column because
either PUN or PDN is used for Isub estimation

61



A

B

Ab

Bb

A Ab B Bb

MN1

MP1

MN2

MN3

MP2

MN4

MN5

MP3

MP4 MP5

MN6

MP6

Vdd

Vdd Vdd
I1

I2

I3
A B

Ab Bb

G1
G2

G3

P Q

X

Y

Part 1

Part 2

Part 3

Figure 3.8: 2-input XOR gate

3.1.2.3 Subthreshold Leakage Modeling of Complex logic gates consisting

parallel or stack of parallel transistors.

Consider a 2-input XOR gate as shown in Figure 3.8. Let us examine the input

vectors to check whether the new stack models are required or not and how effective

width can be used in model reduction for stacks consisting of parallel transistors. It

should be noted that we do not use any conventions to label parallel transistor stack

because each parallel transistor stack is converted to its equivalent stack for each

input vector.

Input Vectors (00/11) : When the input vectors ‘00’/‘11’ are applied, NMOS

network of part 2 is ‘ON’ due to either {MN2, MN3} or {MN4, MN5} are ‘ON’.

For input ‘00’, {MP4, MP5} are ‘OFF’ and {MP2, MP3} are ‘ON’. Based on the

explanation given in Section 3.1.2.1 and 3.1.2.2, parallel transistors with same inputs

are merged into single transistor and equivalent stack is formed. Now, I2 can be

estimated using basic stack model i.e. p2s/2. Since in presence of process variations,

we do not know the values of intermediate node voltage ‘X’ for different values of

process parameters. Thus, accurate Vth change can not be evaluated. However, the

effect of unknown values at ‘X’ can be suppressed by assuming the mean node voltage

calculated at mean values of process parameters. I1 and I3 both can be estimated

62



using n1s/0 model due to turning ‘ON’ of PDN in both inverters. In case of input

‘11’, {MP4, MP5} are ‘ON’ and {MP2, MP3} are ‘OFF’. I2 is estimated using stack

model p2s/1. Node voltage at ‘X’ can be assumed to be Vdd because ‘ON’ MP4

and MP5 transistors connect the ‘X’ at approximately equal to Vdd . I1, I3 can be

estimated using p1s/1 model. So, no extra Isub model needed to be characterized for

these input vectors in comparison of the methodology in [2].

Input Vectors (01/10) : When ‘BA = 01’, PUN will be ‘ON’ because MP2 and

MP5 transistors are in ‘ON’ condition. Output node ‘Y’ is connected to the Vdd . Isub

of PDN (I1) can be calculated by summing leakage of two separate stacks: 1) n2s/2

model formed by MN2 and MN3 transistors, 2) n2s/1 model formed by MN4 and

MN5 transistors. I1 and I3 can be estimated using p1s/1 (MP1 transistor is ‘OFF’)

and n1s/0 (MN6 transistor is ‘OFF’) models respectively. Isub for input ‘BA = 10’

will be same as ‘01’ input case due to the symmetry in terms of stacks used for Isub

estimation.

3.1.2.4 Gate tunneling Leakage Modeling of Complex logic gates contain-

ing parallel or stack of parallel transistors.

Consider an example of 2-input XOR gate as shown in Figure 3.8.(b) to analyze Igate

estimation of CMOS gates having parallel transistors for each input vector. Igate flows

across both PDN and PUN.

Input Vector (00) : For this input, PDN of gate G2 consist of two stacks where each

stack is similar as the PDN of 2-input NAND with inputs ‘00’ and ‘11’. Corresponding

Igate models are provided in Table 3.1. Inputs ‘BA = 00’ and ‘BbAb = 11’ form the

condition of parallel transistor with same inputs in PUN of gate G2. To calculate Igate

of PUN of G2, first Effective width needs to be calculated using Equation (3.34) then

basic model p2g/2 can be used for equivalent stack formed after combining parallel

transistors. This p2g/2 model is characterized for 2-input NOR gate as similar to
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n2g/1 model for 2-input NAND gate. Igate of PDN for gate G1/G2 is calculated

using n1g1/0 model due to MN1/MN6 transistor while p1g2/0 model is used for

PUN due to MP1/MP6 transistor.

Input Vector (11) : Igate for PDN of gate G2 will be same as for input ‘00’ because

of the same stacks. Inputs ‘BbAb = 00’ turn on the PMOS transistors MP4 and

MP5 in PUN of G2, which connects the node ‘X’ to Vdd . Terminal voltages of all

four transistors in PUN (MP2, MP3, MP4, MP5) are perfectly defined and will be

same for all process parameters i.e. VX = 1 , VY = 0. Parallel transistors share same

model due to same terminal voltage conditions. Igate of MP4(MP5) and MP2(MP3)

transistors can be estimated using p1g2/0 and p1g1/1 model respectively. Models

n1g2/1 and p1g1/1 are used for both gates G1 and G2.

Input Vector (01) : For ‘BA = 01’ input, Igate of the stack in PDN of gate G2

formed by MN2 and MN3 transistors is similar to PDN of 2-input NAND gate with

‘01’ input and can be estimated through n2g/1 model. Two models i.e. n1g1/0 and

n1g2/1 for the stack formed by the transistors MN4 and MN5. In PUN, MP3 and

MP4 transistors are ‘ON’ due to ‘Ab = B = 0’ input, which connects the intermediate

node ‘X’ and output node ‘Y’ to Vdd . Since, transistors MP2 and MP5 have logic high

potential at all terminals, thus do not have any Igate across these transistor. MP2

and MP5 transistor can be removed from the circuit, independent of their process

parameters. Remaining MP3 and MP4 transistors have same terminal voltages i.e.

‘0’ input at gate, source and drain is connected to ‘1’. Igate for both transistor can

be evaluated from p1g2/0 model. Gate G1 and G2 conditions are same as inverter

with ‘1’ and ‘0’ input respectively. Igate of G1 and G2 is estimated using the models

as used for inverter.

Input Vector (10) : Input ‘10’ is symmetric with ‘01’ in terms of the stack models

used for Igate calculation. Same models are used as for the case of ‘01’ input.

Table 3.2 shows the Isub and Igate models for 2-input XOR gate with respect to all
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input vectors. Models are separated for PDN and PUN of each gate G1, G2, G3 for

each input vector.

Following rules can be derived for the stack models extraction among different gates

of a standard cell library for Isub estimation.

1. If the parallel transistors are supplied with same inputs, replace it with single

transistor having equivalent effective width; and rules 3 and 4 are applied.

2. If different inputs are supplied to the parallel transistors, then the ‘OFF’ transis-

tor is removed because the ‘ON’ transistor makes the drain and source voltages

equal, thus, nullifies the effect of ‘OFF’ transistor; and then rules 3 and 4 are

applied.

3. If the number of ‘ON’ transistors are greater than the number of ‘OFF’ transis-

tors, then (i) separate stack model is required per stack type per input vector;

else (ii) the transistors applied with 1/0 input except transistor closest to the

output for NMOS/PMOS stack are removed and then a separate stack with

that input vector is built and modeled for this case.

4. Isub due to parallel stacks simply adds up.

Vdd

Vdd Vdd

Vdd Vdd Vdd Vdd

0

1/0

0

0

1

1/0

0

0
0

1

1 1

1

1

1

0

0
n1s/0 n2s/(0/1) n2s/2 n3s/(0/1) n3s/3 n3s/5 n3s/6

Vdd Vdd Vdd Vdd Vdd

n4s/(0/1)

1/0

0

0

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

n4s/7 n4s/11 n4s/13

0

n4s/14

Figure 3.9: Basic NMOS stack models for Isub estimation

We have added n2s/2 and p2s/1 stack models to the list of basic stacks, as the error

was observed to be high while estimating the leakage of these stacks using lower
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order stacks according to the rules. Commonly used stacks are presented in Figure

3.9, stacks in red representing the extra stack models to be characterized than in [2].

In a similar way, the PMOS stacks can also be derived for the OR-type family of

gates. However, the number of stack models to be characterized are solely dependent

on the type of gates available in the standard cell library. New models are required

to characterize for complex gates consisting series-parallel stacks are listed in Figure

3.10. Using our effective width methodology, basic stack models of Figure 3.9 can

be used. It should be noted that these stack models can only be used for leakage

estimation for the gates having series connection of two parallel transistor pairs. If

we do not combine parallel transistors, then 16 new models are required for leakage

power estimation of XOR2, Majority, AOI22, OAI22 gates. Total 30 models are

required in our methodology compared to 34 models in [2].
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Vdd

Vdd

Vdd VddVdd

Vdd

0

0 0

1

0 0

0

1 1
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(e) (f) (g) (h)

Figure 3.10: Stacks for complex gates consisting parallel transistors - Without com-
bining parallel transistors with same input

Following rules can be derived for the NMOS stack models extraction among different

gates in a standard cell library for Igate estimation:-

1. a) If parallel transistors are applied with same inputs, first calculate effective

width and replace parallel transistors by a single transistor of effective width.
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Rules 2, 3, 4 can be used for equivalent NMOS stack model depending on the

input conditions. b) If parallel transistors are applied with different inputs,

remove transistors with same voltages at all terminals and then use rules 2, 3,

4 for Igate estimation.

2. If all transistors are in ‘OFF’ condition, then remove ‘OFF’ transistors which are

not connected to output node. Igate of the NMOS and PMOS stack is estimated

using n1g1/0 and p1g1/1 model respectively.

3. If all transistors are not ‘OFF’ and transistor directly connected to the ground or

Vdd is not in ‘ON’ condition. A new stack model is required for Igate estimation

of the corresponding NMOS and PMOS stack.

4. If at least one transistor is ‘OFF’ and only one transistor or series of transistors

connected to the ground is ‘ON’, then remove these ‘ON’ transistors from the

NMOS and PMOS stack. Igate of each removed transistor from NMOS and

PMOS stack is calculated by n1g2/1 and p1g2/0 model respectively. Remaining

NMOS and PMOS stack can be modeled by rules 2,3.

5. If all transistors are ‘ON’ in NMOS and PMOS stack. Each transistor in NMOS

and PMOS stack is modeled by n1g2/1 and p1g2/0 model respectively.

6. Igate due to parallel stacks simply adds up.

Figure 3.3 shows our Igate models for all possible conditions in single NMOS and

PMOS transistor. Our Igate models for NMOS stacks consisting more than one tran-

sistor in series are shown in Figure 3.11. Similarly, PMOS stack models can also be

derived. Total 26 Igate models are required for Igate estimation of 20 gates with 176

input vectors. Only complex stacks shown in Figure 3.10.(h) need to use effective

width equation. Thus, for the considered standard cell library we save in character-

ization time of two models i.e. one is shown in Figure 3.10.(h) and another is its
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Figure 3.11: Igate estimation-Basic NMOS stack Models consisting series combination
of NMOS transistors

PMOS version. But as higher order stacks with parallel transistors are considered,

our methodology will result in significant saving of characterization time of parallel

transistor stacks. Igate can have greater contribution than Isub to the total power in

more advanced technologies and with different input vector applied. We model Igate

accurately and efficiently which was not considered in [2].

3.2 Accuracy analysis of proposed stack extraction

We have used 28nm Predictive technology model (PTM) model file for all simulations.

Inter-die and Intra-die variations have been considered on three process parameters

L, Vth and Tox with Gaussian distribution (3σ =10%) . supply voltage (0.6V -1.2V ),

temperature (0◦C -100◦C) and width (28nm-200nm) have been sampled considering

uniform distribution with same percentage of variation.

3.2.1 Validation of assumptions made in extracting leakage

models

We have developed common stack finding methodology across various gates presented

in standard cell library for all possible input patterns. In this methodology, basic

stacks are used for higher order stacks by neglecting some ‘ON’ transistors with the

68



loss of some accuracy for Isub estimation while Igate for higher order stacks is calculated

by breaking into basic Igate models for single transistor and series connected transistors

. In this section, our aim to justify that the error is under tolerable limits in complete

PVTW space considering assumptions.
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Figure 3.12: Charge Sharing between internal nodes of a 4-input NMOS stack
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respect to (a) Supply voltage (V ) (b) Temperature (C)

Whenever there is switching between the inputs, even though same stack is ‘OFF’

but charge sharing occurs between internal nodes in the stack. Since we are using

same stack model for ‘1100’, ‘1010’, ‘0110’ inputs of 4-input NAND gate, this charge
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sharing affects very less in estimating standby Isub for these set of inputs. Consider

a 4-input NAND gate as shown in Figure 3.1. First we vary the inputs from ‘1100’

to ‘1010’ and then ‘1010’ to ‘0110’. Any transistor in ‘ON’ state can be modeled as a

capacitance and resistance. During input switching time interval, due to internal node

capacitances, there is a peak in the leakage current as shown in Figure 3.12 but as time

passes, the voltage across capacitances saturate and capacitances at internal nodes

can be treated as open circuit. In standby mode, only resistance of a transistor will

affect the accuracy of model due to voltage drop across them. Our first assumption

is that the Isub of the 4-input NAND gate with inputs ‘1100’, ‘1010’, ‘0110’ is modeled

with n2s/0 model. The ‘ON’ resistance of a NMOS transistor can be given as follows.

RON(NMOS) =
1

µnCox(W/L)(Vgs − Vth)
(3.35)

The accuracy of the model is directly governed by the voltage drop across ‘ON’

transistors. In worse case conditions, maximum resistance will have maximum drop

and hence, maximum error in estimating leakage current for higher order stacks using

basic stacks. From (3.35), maximum RON will be for the minimum value of W and

maximum value of L, Vth and Tox . Now the point is, how this maximum resistance

affects the percentage error (4ID%) in Isub under complete PVTW space. For this

purpose, 4ID% is calculated for all three inputs ‘1100’, ‘1010’ and ‘0110’ for varying

Vdd and T . We choose these inputs to show the accuracy of Isub stack models due to

the fact that the maximum number of ‘ON’ transistors are removed from these input

vectors.

Figure 3.13.(a) shows the error in leakage current for increasing Vdd from 0.6V to

1.2V with the step size of 0.1V and T is kept at 25◦C. Error is less than 1% across

the modeled range of Vdd for all three inputs. Maximum error is obtained at 1.2V

due to higher drop across ‘ON’ transistors. To evaluate the effect of T , we first kept
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Figure 3.14: PDF curve of actual and model Isub for 4-input gate with ‘1100’, ‘1010’,
‘0110’ input for W = 28nm, T = 27◦C and Vdd =1V and 10000 Monte Carlo Samples

the Vdd value at 1.2V and varied the T from 0◦C to 100◦C with the step size of

25◦C. It is important to note that the error characteristics is almost flat in this case

i.e. T affects very less to the drop across ‘ON’ transistors. Increasing the T reduces

the drop across the ‘ON’ transistors and hence improves the accuracy of our models.

Out of three inputs, maximum error is for the input which has more number of ‘ON’

transistors near to the output node. Same analysis can also be performed for stacks

consisting of parallel transistors where the error is little bit higher but less than 2%

under complete PVTW space.

Figure 3.14 shows the accurate matching of PDF curve of the actual and model Isub .

71



These PDF curves are generated using 10000 Monte Carlo samples assuming Gaussian

Distribution on process parameters using SPICE tool at W = 28nm, T = 27◦C and

Vdd =1V . Error in µ and σ is negligible between actual and model output. The order

of Isub for these input vectors is ∼10−9, which lies in low error region marked in Figure

3.2. Experiments show high accuracy of our approach in finding the common stack

models for Isub across these input patterns of the gates presented in a standard cell

library.
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Second assumption that we made is that Igate for PDN of 4-input NAND gate ‘0000’
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input is modeled by n1g1/0 model. All transistors except the one which is connected

to the output node, are removed from the stacks. Igate from output node to input

of the transistor which is nearest to the output is most significant among all Igate

components, thus all other components can be neglected. To verify this assumption,

consider PDN of 4-input NAND gate in Figure 3.1 with input ‘0000’ whose PDF curve

for every transistor corresponding to each input and total PDN’s Igate is plotted in

Figure 3.15. In Figure 3.15, width of all transistors is 28nm, T = 27◦C and Vdd =1V

and PDF curves are generated using 10000 Monte Carlo samples assuming Gaussian

Distribution on process parameters using SPICE tool. It shows that the order of Igate

for removed transistors is very less and this order increases for the transistors which

are nearer to ground voltage. Since, Igate of any transistor is directly proportional to

width of that transistor, we now increase the width of removed transistors to 100nm

and 200nm as shown in Figure 3.16 and 3.17 respectively. Still the Igate of the removed

transistors is very less, which incurs negligible error in Igate estimation for PDN of

4-input NAND gate with n1g1/0 model.

Second assumption can be generalized for any NMOS and PMOS stack with all tran-

sistors in ‘OFF’ condition as: if all inputs of any NMOS / PMOS stack are applied

with ‘0/1’, then all transistors other than the transistor connected to the output node

are removed and Igate of this single transistor is estimated using n1g1/0 and p1g1/0 for

NMOS and PMOS stack respectively. To verify this assumption, consider a NAND4,

NAND3, NAND2 gate with all inputs ‘0’. With this assumption, Igate of NMOS stacks

in three gates must be similar to NMOS transistor of inverter (INV) with ‘0’ input.

Figure 3.18 shows the PDF curve of Igate for PDN of NAND4, NAND3, NAND2 and

INV. Width of all transistors is 28nm, T = 27◦C and Vdd =1V and PDF curves are

generated using 10000 Monte Carlo samples assuming Gaussian Distribution on pro-

cess parameters using SPICE tool. The PDF curve obtained through n1g1/0 model

accurately matches with actual PDF curves. The error in µ and σ is also negligible,

73



0 5 10 15

x 10
−10

0

1

2

3

4

5

6
x 10

9

Leakage Current (A)

P
D

F

 

 
MN4 (Gate Leakage From
Output node to input of MN4)
 NAND4 (Total gate leakage
          of Pull Down Network)

0 5 10

x 10
−12

0

0.5

1

1.5

2

2.5

x 10
12

Leakage Current (A)

 

 

MN3

MN4
µ = 164.69pA
σ = 133.83pA

NAND4
µ = 165.05pA
σ = 133.97pA

µ = 331.48fA
σ =453.11fA

0 5 10

x 10
−13

0

1

2

3

x 10
13

Leakage Current (A)

 

 

P
D

F

MN2

0 2 4 6 8

x 10
−14

0

1

2

3

x 10
14

Leakage Current (A)

 

 

MN1

µ = 3.12fA
σ = 4.16fA

µ = 25.29fA
σ = 34.69fA

Figure 3.16: PDF curve of Actual and model Igate for PDN of 4-input NAND gate
with ‘0000’ input for transistor width MN1 = 28nm, MN2-MN4 = 100nm and T =
27◦C and Vdd =1V and 10000 Monte Carlo Samples.

which justifies the validity of this generalized assumption.

Our third assumption is that if any NMOS or PMOS stack is consisting a series of

‘ON’ transistors, starting from ground or Vdd , remove these transistors from stack and

each transistor’s Igate is estimated using n1g2/1 or p1g2/0 model. Remaining stack

is modeled by other Igate estimation rules. Total Igate can be calculated by summing

Igate from all models. To verify this assumption, consider a 4-input NMOS stack

of NAND4 gate shown in Figure 3.1 with input ‘1110’. Total Igate can be obtained

by using n1g2/1 model for each ‘ON’ and n1g1/0 for ‘OFF’ transistor. Figure 3.19
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27◦C and Vdd =1V and 10000 Monte Carlo Samples.

shows accurate matching of PDF curve of actual Igate for each transistor with its

corresponding model. PDF curve of total Igate calculated by summing Igate from all

models also matches with the actual Igate with less than 0.01% error in µ and σ.

It should be noted that we are developing the framework for leakage estimation in idle-

time mode excluding leakage during circuit operation. Runtime leakage is also vector

dependent and changes whenever input vector changes [104]. Authors in [104] show

that the runtime leakage is highly dependent on the switching frequency of inputs.

If switching frequency is less, then the total leakage including runtime and idle-time
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converges to idle-time leakage. To include the runtime leakage current component

in this framework, switching between inputs need to be considered but analysis is

moreover same as dynamic power estimation of the circuits. Leakage model selection

framework need to be redeveloped which will require a larger number of models to

include all gates with their inputs switching. A separate analysis is required to account

for runtime leakage component. Our analysis in this thesis is consistent with the

previous work which only characterizes the idle-time leakage using EQ and ANN

based models.

3.2.2 Accuracy of effective width estimation methodology

We proposed a formula in Equation (3.18) to find out the effective width of two

parallel transistors with same input. This formula is only valid for the transistors

with process parameter and terminal voltage conditions as shown in Figure 3.4.(a).
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In Figure 3.20, we compare the error in estimating the Isub and Igate for an increasing

number of ‘OFF’ parallel NMOS transistors. Even when the number of parallel

transistors is large, our proposed model incurs ∼ 0.15% and < 0.01% error compared
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Figure 3.20: Comparison of Error in leakage current between [3] and our approach
for varying number of ‘OFF’ NMOS transistors

to larger than 25% error using model of [3] for 10 parallel ‘OFF’ transistors in Isub

and Igate respectively. In [3], equivalent width is calculated by simply adding the

drawn widths of transistors. Similarly, for PMOS transistors, our model incurs very

less error compared to previous model.

However, this formula is only valid when process variation is not considered. To

calculate effective width even in the presence of process variations, we first calculate

the change in width of transistor for the given change in process parameters such that

same current flows in both cases. Then Equation (3.18) can be applied to calculate

effective width of parallel transistors. In Figure 3.21, we vary the L and Tox of single

NMOS ‘OFF’ transistor within ±10% range from mean value and calculated the Isub

with changed process parameters with mean width and mean process parameters

with modified width. Isub in both cases accurately matches. Correlation between

both cases is >0.999 and mean square error is also very low. Maximum and average

error of 0.82% and 0.40% is incurred by our effective width estimation methodology

for Isub calculation of parallel transistors. Similarly, Figure 3.22 validates the high

accuracy of effective width estimation methodology for Igate calculation.
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Figure 3.21: Isub estimation- accuracy analysis of effective width estimation method-
ology; T = 27◦C and Vdd =1V and 1000 Monte Carlo Samples

3.3 Summary

In this Chapter, we have described the methodology to extract common stack mod-

els used to predict the leakage of gates more accurately and efficiently under full

PVTW space. Our methodology initiates by first characterizing the leakage of basic

stacks and then provides estimate of the leakage in basic gates e.g. NAND4, NAND3,

NAND2, NOR4, NOR3, NOR2, INV, based on these stacks. Stack models are de-

veloped separately for Isub and Igate estimation. For Isub , stacks are extracted by

carefully removing ‘ON’ transistors from ‘OFF’ PDN or PUN depending on the input

vector combinations. Removal of these ‘ON’ transistors do not affect the actual Isub

of a CMOS gate. While for Igate , PUN and PDN are broken down into a set of basic
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Figure 3.22: Igate estimation- accuracy analysis of effective width estimation method-
ology; T = 27◦C and Vdd =1V and 1000 Monte Carlo Samples

stack models. For gates, containing parallel transistor stacks, we replace the parallel

transistors having identical inputs with a single transistor of effective width, which

in turn allows us to use precharacterized basic stacks for leakage calculation instead

of generating new models. Analytical equations for effective width calculation are

developed for the parallel transistors in CMOS gates with and without considering

process variations. Only 30 basic stacks are modeled for Isub estimation of 7 basic

gates - NAND4, NAND3, NAND2, NOR4, NOR3, NOR2, INV. Further, these mod-

els can also be used to predict the leakage of standard cell library components such

as AND4, AND3, AND2, OR4, OR3, OR2, MUX2×1, D-Flip Flop without the need

of characterizing any new model. The gates consisting parallel or series of parallel

transistors such as XOR2, MAJ_GATE, AOI22, OAI22 do not require 16 new stack
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models with the use of effective width computation methodology, which highly re-

duces our model characterization time. Thus, overall 30 stack models are required for

accurately predicting the Isub of 20 gates across 176 input combinations. Similarly, 26

models are developed for Igate estimation. All the approximations made in extracting

models incur very small error, thus validating the high accuracy of the proposed stack

extraction methodology.
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Chapter 4

Support Vector Machine Based

Surrogate Models for Leakage

Current Modeling

An enhanced version of SVM i.e. Least Squares-Support Vector Machine (LS-SVM)

has been proposed in [70]. The main advantage of LS-SVM is that it is computa-

tionally efficient while possesses the important properties of SVM. LS-SVM uses the

equality type constraints in the problem formulation, thus the solution is obtained

through solving a set of linear solutions. Therefore, LS-SVM is free of local minima

and also has low computational cost [67]. Thus, LS-SVM is computationally efficient

technique than classical SVM for modeling non-linear relationship between input and

output parameters.

Consider a set of training data samples {(x1, y1), (x2, y2), ...........(xk, yk)} ⊂ RN ×

R. where RN denotes the input space. xk is the input value and yk is the the

corresponding target value for kth sample. By using the non-linear mapping φ, xk is
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mapped to yk using the following relation as follows.

ŷ(x) = wTφ(x) + b with w εRN , b εR (4.1)

Here, φ(·): Rn→Rnh is the mapping of input space to some high dimensional feature

space (potentially infinite). The approximation error of kth sample can be given as

follows.

ek = yk − ŷk(xk) (4.2)

In LS-SVM, the minimization error is formulated as primal problem.

P : minJp(w, e) =
1

2
wTw + γ

1

2

N∑
k=0

e2k (4.3)

with equality constraint as follows.

yk = wTφ(xk) + b+ ek k = 1, 2, 3.......N (4.4)

Here, γ is the regularization parameter. The first term of Equation (4.3) is L2 norm on

regression weights. Second term represents the regression error of all samples. This

problem is nothing but ridge regression cost function formulated in feature space.

When w becomes infinite, it can not be solved. Therefore, dual problem is developed

by constructing Lagrangian as follows.

D : maxαL(w , b, e, α) (4.5)

L =Jp(w, e)−
N∑
k=1

αk
{
wTφ(xk) + b+ ek − yk

}
(4.6)

Here, αk ’s are the Lagranges multipliers. The conditions for optimality can be given
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as follows. 

∂L
∂w

=0→ w =
∑N

k=1 αkφ(xk)

∂L
∂b

= 0→
∑N

k=1 αk = 0

∂L
∂ek

= 0→ αk = γek, k = 1, 2.....N

∂L
∂αk

= 0→ wTφ(xk) + b+ ek − yk = 0, k = 1, 2.....N

(4.7)

By eliminatingek and w through substitution, following solution can be obtained as

follows. Ω + IN/γ 1N

1TN 0


α
b

 =

y
0

 (4.8)

Here, Ω = ZTZ and the kernel trick can be applied within α matrix as follows.

Ωkl = φ(xk)
Tφ(xl) (4.9)

Ωkl = K(xk, xl)......k , l = 1, 2....N (4.10)

The resulting function is weighted linear combination of inner product between the

training points and testing points.

yk =
N∑
k=1

αkK(xk, x) + b (4.11)

Here, K (xk , x ) is the kernel function and αk and b are solutions of the linear systems.

For a function to be kernel function, it should be positive definite and must satisfy

Mercer condition for the problem to be convex to provide unique and optimum solu-

tion. However, a Mercer kernel can be derived from a set of mercer kernels. A list of

Mercer kernels is given in Table 4.1

We are evaluating the accuracy of our SVM models using commonly used kernels.
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Table 4.1: Mercer kernels, expressions, tuning parameters and their ranges

Kernels Expressions Tuning Parameters
Linear xTk x 0 < γ ≤ 1000

RBF e(
||x−xk||

2

σ2
) 0 < γ, σ ≤ 1000

Poly (xTk x+ t2)d 0 < γ, t ≤ 1000, 0 < d ≤ 5
MLP tanh(s ∗ xTk x+ t2) 0 < γ, s, t ≤ 1000
Power −||x− xk||β 0 < γ ≤ 1000, 0 < β ≤ 2
Log −log(1 + ||x− xk||β) 0 < γ ≤ 1000, 0 < β ≤ 2

However, there may exist other kernels which may provide higher accurate and less

complex models than we have considered in this thesis. Adding more number of

kernels increase the characterization time to develop the final models. Thus, choosing

the number of kernels is a trade-off between characterization time, accuracy and

runtime of the models. Furthermore, tuning parameters of a kernel should be selected

carefully for better regression task.

Before elaborating our methodology in Algorithms 4.2 and 4.1, we have described

symbols used in this algorithm with their meaning as shown in Table 4.2. Contribu-

tions of the proposed methodology are as follows.

• SVM regression based approach is adopted for modeling leakage of each stack

as derived in Chapter 3 for such a large PVTW space, which requires less

characterization time and is more accurate than look-up table and analytical

equation based techniques.

• Efficient methodology is developed for finding the best kernel among various

kernels and finding its corresponding optimum tuning parameters locally and

globally in the tuning parameter range. Two way error driven active learning

methodology is also employed that selects the new samples from the input space

for adaptive training of SVM based surrogate models.

• Sparse SVM models are also developed using Support Vector spectrum pruning
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Table 4.2: Symbols used in algorithm 4.1

Symbol Meaning
Xtrain,initial Initial input and output data to train model
Ytrain,initial
Xtest, Ytest Input and output data to evaluate trained model
Errorreq Required error of trained model to stop algorithm
Ytest,est Estimated output from trained model for Xtest data
Errorest Error between Ytest and Ytest,est

Best_Tune_Param Best tuning parameters with minimum error
Train_SVM, Training and testing algorithm from SVM toolboxTest_SVM

Out_Best_Kernel, Best kernel and best tuning parameters
Out_Best_Tune_Param

Errorsample Error for one sample of Xtest

Nsample No. of current samples to train model
Maxsample Maximum samples to train model
Xerror List of trained samples with maximum error

Xdominant List of training samples with maximum α value
Xactive Total samples combining Xerror and Xdominant

Xactive−spice Samples around Xactive for active learning
Yactive−spice SPICE output for samples Xactive−spice
Xtrain−final Total samples after generating active samples
Ytrain−final SPICE output for samples Xtrain−final

method, which reduces the number of training samples to prepare regression

model. The resulting model reduces the runtime while negligible increase in the

error.

• A methodology is proposed for efficient selection of Monte Carlo samples for

fast estimation of leakage current of larger CMOS circuits.

• Our stack based methodology can be used for leakage characterization of post

CMOS devices i.e. FinFET, CNTFET based logic gates.

• Proposed models can be used for leakage estimation of CMOS gates for non-

Gaussian process parameter variations and does not require to re-characterize

the models. The proposed methodology removes the inaccurate log-normal
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assumption of leakage with respect to process parameters.

4.1 SVM Kernel Parameter Optimization and Ac-

tive Sample Selection Method

In our methodology, we combine both grid search based technique with genetic al-

gorithm (GA) and differential evolution (DE) to explore the tuning parameter space

in guided manner. It is a two way iterative search method in which search space is

explored locally and globally both. If any good solution is found than the previous

step, then our local grid search technique quickly explores the space near that good

solution. Our global search technique randomly searches in the parameter space to

find better solutions if any solution exists, which is better than the previous step.

1
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67
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Input (X)

F(X)

Figure 4.1: Random function F(X) as function of variable X.

To understand the importance of our approach, consider a random function F(X)

as a function of variable X as shown in Figure 4.1. Our aim is to obtain green

sample which gives minimum value of F(X) in minimum possible time. Samples 1,

2 and 3 are the initially generated samples in which sample 3 denotes the minimum
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error sample out of samples 1, 2 and 3. Grid based algorithm may give sample 3 as

minimum error sample for function F(X). In genetic algorithm, next set of samples

are generated randomly with minimum error sample propagated from previous step.

Suppose samples 4, 5 and 6 are generated in next step which are generated randomly

in parameter space of variable X. Still the minimum error sample is sample 3. But

if a local grid is defined at sample 3 then some samples are generated around sample

3. Suppose samples 7, 8, 9 and 10 are generated around sample 3 in conjunction

with randomly generated global samples. Thus in second step, sample 10 is minimum

error sample which is more nearer to global minimum error sample (green circle) than

sample 3. Thus, our algorithm finds best tuning parameters in lesser time than only

grid based algorithm and only genetic algorithm/differential evolution.

In the development process of SVM models, we want to use minimum possible num-

ber of training samples to reduce the runtime of models. Equation (4.11) is used to

evaluate the value of unknown samples. The number of αk values is directly propor-

tional to the number of training samples. These αk values affect the computations

required to evaluate the newly generated samples (i.e. other than training data).

Active learning method is used to generate new samples in next step based on the

error between the developed model with small training data-set and SPICE output.

In our methodology, we use active learning process to generate new training samples

around maximum error sample to achieve desired accuracy. We start training with

fewer samples and only generate two samples around maximum error sample to add

them with previous training data.

Furthermore, authors in [105] suggest to model Isub as a exponential linear or quadratic

model form. If we take log of the leakage current, then the exponential linear or

quadratic model can be converted to simple polynomial model with linear or quadratic

terms which is easier to model with less complexity. More terms can also be added

to improve the accuracy of model. Thus, modeling log of leakage allows us to charac-
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terize less number of models with larger number of parameters for larger range in a

single model which consequently reduces the time to develop the models and runtime

for larger CMOS circuits. Errors in modeling using exponential quadratic form is

evaluated in Section 4.3 and compared with our proposed models. We choose log of

leakage current as performance parameter to be modeled using SVM.

Our methodology for selecting the best kernel with its corresponding optimized tuning

parameters is presented in Algorithm 4.1. This algorithm takes input as initial random

training samples, testing samples, kernels list, and kernel tuning parameter ranges in

which kernel parameters need to be optimized. Line 1 to 23 denotes our best kernel

selection method and its corresponding tuning parameters. In line 1, m denotes the

number of kernels available. Lines 2-4 select a kernel from the kernel list and generate

the initial predefined random set of samples t in the tuning parameters range. In line

6-8, SVM model is trained using initial random samples Xtrain,initial, output Ytest,est is

calculated using trained SVMmodel and model mean square error (MSE) is calculated

as in Equation (4.12).

Errorest = MSE(Ytest, Ytest,est) =
1

n

n∑
i=1

(Ytest − Ytest,est)2 (4.12)

Line 11 selects the best set of tuning parameters having least error from initial set

of training parameters. Lines 12 and 13 define the search range around previously

found best set of tuning parameters and generate predefined set of samples s1 in this

search range. Line 14 generates the s2 samples in the whole tuning parameter range,

which is the size of the population (Number of chromosomes) used in GA and DE

based global optimization algorithms and hence, s denotes the effective population

size of each generation of optimization problem. In line 16-19, SVM model is trained,

tested and error is calculated for every set of tuning parameters in s1and s2 using

the Equation (4.12). Lines 11-19 are repeated k times for each kernel in kernel_list ,
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Algorithm 4.1 Algorithm to find out best kernel and optimal kernel parameters

Input: Xtrain,initial, Ytrain,initial, Xtest, Ytest, Tune_Param_Range, Errorreq, Ker-
nels_list (RBF, log, linear, poly, MLP, power).
Output: Best_Kernel, Best_Tune_Param.
1. for i = 1 to m
2. Select Kerneli from Kernels_list
3. Tune_LSSVM(Kerneli, Tune_Param_Range)
4. Generate t random sets of Tuning Parameters
5. for n = 1 to t
6. Train_LSSVM(Xtrain,initial, Ytrain,initial)
7. Ytest,est←Test_LSSVM(Xtest)
8. Errorest ← MSE(Ytest, Ytest.est)
9. end
10. for n = 1 to k
11. Select Best_Tune_Param with minimum Error
12. Define search range around Best_Tune_Param
13. Draw s1 random samples in this search range (Grid search Method).
14. Draw s2 random samples in the Tune_Param_Range (Global Search
method).
15. s ← [s1; s2]
16. for n = 1 to s
17. Train_LSSVM(Xtrain,initial, Ytrain,initial)
18. Ytest,est←Test_LSSVM(Xtest)
19. Errorest ← MSE(Ytest, Ytest.est)
20. end
21. end
22. Out_Best_Tune_Param ← Best_Tune_Param
23. end
24. Out_Best_Kernel ← {Best_Kernel, Best_Tune_Param}
25. end

where k denotes the number of generations in GA or DE. Predefined set of numbers k,

s1 and s2 must be chosen in such a way that algorithm can find the optimum values of

tuning parameters. Line 22 saves best set of tuning parameters for every kernel and

line 23 saves best kernel with with its optimum tuning parameters. Figure 4.2 shows
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the MSE and time taken in predicting the output for different kernels. This figure is

produced by training and testing the models with 100 and 5000 samples respectively

for 100 set of tuning parameters. For some set of tuning parameters, MSE is lower

but time taken by model is little bit high and vice-versa. Hence, we take into the

effect of both performance parameters by defining the new fitness function in the

global optimization problem as follows.

Fitness− func = w1 ∗MSE + w2 ∗ time (4.13)

Here, w1 and w2 are the weights assigned to both parameters and denotes how much

importance should be given to both parameters.
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Figure 4.2: Comparing error and time - different kernels

Algorithm 4.2 adaptively generate the samples in the input space. This algorithm

takes the best kernel and initial training data samples and provides the final set of

training samples. if error of initially trained SVM model is lesser than the required

value Errorreq, then our algorithm stops otherwise it initiates our active learning
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algorithm which efficiently generates the training samples in the input space. These

samples are added to initial random training sample set to further reduce the Errorest

between model estimated output Ytest,est and SPICE output Ytest for test samplesXtest.

In line 9, samples from the input space are separated in which error between predicted

and actual output is maximum. The error related to every sample is calculated using

as in Equation (4.14)

Errorsample = |Ytest − Ytest,est|2 (4.14)

Equation (4.14) automatically takes care of generation of samples in empty area of the

input space and distance between predicted and actual output rather than taking two

different functions for both purpose as in [76]. Line 10 selects the samples from the set

of previous training samples having maximum values of αk weights ( the Lagranges

multipliers). According to Equation (5.22), we can see that these αk weights are

directly proportional to errors ek in the training samples. To further reduce the

error ek , samples are generated around the samples having maximum αk weights. To

further speedup the process, we select s3 and s4 number of samples.

Figure 4.3.(a) shows the decreasing values of α and Figure 4.3.(b) shows the MSE

in subsequent iterations which shows that the significant decrement in the error due

to dominant α based active learning method. Figure 4.3.(b) also indicates that the

number of samples taken from the previous step for which dominant α values are

considered, do not effect the MSE. We select 10 samples from the previous step. These

samples are now taken to the SPICE, where s5 samples are generated around each

sample in s3 and s4 and corresponding SPICE output is calculated. These samples

are now added to previous training data-set and SVM model is trained, tested and

error is calculated. This process is repeated until estimated error, Errorest is lesser

than the Errorreq or number of training samples are exceeded than the maximum
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Algorithm 4.2 Adaptive SVM model learning algorithm

Input: Xtrain,initial, Ytrain,initial, Best_Kernel, Best_Tune_Param.
Output: Xtrain,final, Ytrain,final
1.Train_LSSVM(Xtrain,initial, Ytrain,initial, Best_Kernel)
2.Ytest,est←Test_LSSVM(Xtest)
3.Errorest← MSE(Ytest, Ytest.est)
4. if (Errorest < Errorreq)
5. then stop
6. else
7. Errorsample ← |Ytest - Ytest.est|2

8. while (Errorest > Errorreq || Nsample < Maxsamples)
9. Xerror ← Separate samples s3 with maximum error
10. Xdominant ← Separate samples s4 with maximum α values
11. Xactive ←[Xerror; Xdominant]
12. Xactive−spice ← Generate samples s5 around Xactive

13. Yactive−spice ← Simulate_SPICE(Xactive−spice)
14. Xtrain,final ← [Xtrain,initial; Xactive−spice]
15. Ytrain,final ← [Ytrain,initial; Yactive−spice]
16. Train_LSSVM(Xtrain,final, Ytrain,final)
17. Ytest,est←Test_LSSVM(Xtest)
18. Errorest ← MSE(Ytest, Ytest.est)
19. Errorest ←|Ytest - Ytest.est|2

20. Xtrain,initial ← Xtrain,final

21. Ytrain,initial ← Ytrain,final

22. end

number of training samples.

4.2 Sparse SVM using Support Vector (SV) Spec-

trum Pruning Method

Sparseness is an important property of any regression based model, which removes

the non-dominated (outliers) samples from the training data-set used in model prepa-
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Figure 4.3: Dominant α based active learning method (a) Alpha value for different
iterations (b) Mean Square Error (MSE) for different set of samples

ration to reduce the model complexity. With the advantage of high dimensional

complexity reduction of LS-SVM over SVM, it has one major drawback of loss of

sparseness in SVM. In LS-SVM, all training samples take part in computing the un-

known samples as opposed to traditional SVM case. It is due to the simplification of

equations into linear form. To define a generalized sparse regression problem, consider

an output sample yεRm and a dictionary DεRm×n(the columns of D are referred to

as the atoms), sparse vector x can be given as follows.

P : min ‖ x ‖0 s.t. y = Dx (4.15)

Here, ‖ x ‖0 (referred as `0−norm) is the cardinality or number of nonzero ele-

ments in training sample vector x . Many algorithms such as Greedy algorithm [106],

Pruning based algorithm [77], Orthogonal Matching Pursuit (OMP) algorithm [107],

Coordinate descent algorithm with non-convex penalties [108] have been proposed

in literature. In this thesis, our main focus is on pruning based algorithm, which

is very simple to apply yet effective in reducing complexity of the regression model.

However, other algorithms can also be used in place of pruning based algorithms.
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Karush-Kuhn-Tucker conditions in Equation (4.8) can be cast into generalized sparse

regression problem as in Equation (4.15).

P : min ‖

 α

b

 ‖0 s.t.

 y

0

 =

Ω + IN/γ 1N

1TN 0


 α

b

 (4.16)

Removing an element from vector α is equivalent to removing a sample from the

training samples because number of α values will be as much as the number of training

samples. Thus sparseness in LS-SVM can be imposed by removing the outliers, which

is identified by observing the SV-spectrum (|αk| values). These |αk| values are the

solution of linear equations in LS-SVM formulations and denotes the important of the

training samples in evaluation of unknown samples. Sparse LS-SVM has an advantage

over Artificial Neural Network (ANN), Radial Basis Function (RBF) because deleting

any training sample from the trained network requires Hessian or it’s inverse to be

calculated, which is a more computational complex than solving linear equations.

Equation (5.22)C shows that the αk’s are directly proportional to the error ek of the

model. In Equation (4.11), output for a test sample xk will be more affected by high

values of αk. Thus, by simply removing the samples with smaller |αk| values, runtime

of the model can be greatly reduced while incurring a small error in the model. The

algorithm can be described in formal steps below. These steps are performed for best

kernel only.

Step (1) - Load the trained model obtained from algorithm in Figure 4.2.

Step (2) - Prune 2% set of training samples having lower |αk| values in SV-spectrum.

Step (3) - Re-train the model with reduced sample set.

Step (4) - If Errorest < Errorreq, then go to step 1. Else, stop.
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4.3 Results

We have used 28nm Predictive technology model (PTM) model file for all simulations

presented in this Chapter. For model characterization, LS-SVM toolbox is used in

MATLAB (version 2007b). Inter-die and Intra-die variations are considered on three

process parameters L, Vth and Tox with Gaussian distribution (3σ =10%) . Vdd , T

and W are sampled with uniform distribution.

4.3.1 Accuracy and timing analysis of SVM models

In Table 4.3 and 4.4, we compare our methods and genetic algorithm for finding the

best kernel and its optimal tuning parameters. The values of tuning parameters with

our first method (grid search + GA) and second method (grid search + DE) is exactly

similar but our method is 2× and 3× faster than genetic algorithm respectively,

which means our algorithm searches the tuning parameter space faster than genetic

algorithm. For all stack models, RBF kernel is the best kernel but the value of optimal

tuning parameters is different for different set of models. The best kernel with optimal

tuning parameters highly depends upon the stack type and the input applied.

Table 4.5 and 4.6 Shows the information of some of the SVM and Sparse SVM model

for NMOS and PMOS stacks for Isub and Igate calculation. We use maximum 1540

samples for training of SVMmodel which gives sufficient accuracy of our stack models.

ρ for testing data of all basic stacks is greater than 0.999 and MSE is also very less.

Our SVM model will require ≈4.13 sec. to predict the PDF at any Vdd and T value

for 10000 Monte Carlo samples. For SVM model, time required to predict the leakage

is almost same for all stacks which suggests that the model is very less dependent on

inputs applied to the same type of stack model i.e. runtime for n4/0000 and n4/0001

is approximately same. Now, We apply SV-spectrum pruning algorithm from Section

4.2 to check whether the reduction in the number of training samples in possible.
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Table 4.3: Best kernel and optimal tuning parameters - proposed Grid Search + GA
method

Model
Best GA method Grid Search + GA Speed

Kernel Tuning Param. Training Tuning Param. Training up
GA/M1 γ σ2 Time (S) γ σ2 Time (S) (×)

n4s/0 RBF 1000 313.08 455.01 1000 313.17 220.29 2.07
n3s/0 RBF 1000 273.20 454.25 1000 273.50 218.33 2.08
n2s/0 RBF 1000 211.04 419.06 1000 210.37 205.11 2.04
n1s/0 RBF 1000 173.94 411.83 1000 173.69 201.69 2.04
p4s/15 RBF 236.4 1000 427.80 236.5 1000 208.90 2.05
p3s/7 RBF 189.8 409.48 421.72 190.4 409.97 205.33 2.05
p2s/3 RBF 1000 408.40 412.78 1000 407.64 203.81 2.03
p1s/1 RBF 232.1 147.51 374.77 231.9 147.50 189.58 1.98
n4g/7 RBF 1000 213.08 426.37 1000 213.08 209.79 2.03
n3g/3 RBF 1000 119.07 420.89 1000 119.07 201.45 2.09
n2g/1 RBF 1000 541.45 395.55 1000 541.45 190.56 2.07
n1g1/0 RBF 1000 310.68 389.69 1000 310.68 188.50 2.07
p1g1/1 RBF 100.7 383.33 369.57 100.7 383.33 185.45 1.99

Table 4.4: Best kernel and optimal tuning parameters - proposed Grid Search + DE
method

Model Best Grid Search + DE Speed
Tuning Parameters Training up

kernel γ σ2 Time (S) (×)
n4s/0 RBF 1000 313.09 154.54 2.95
n3s/0 RBF 1000 273.51 149.10 3.04
n2s/0 RBF 1000 210.37 148.30 2.83
n1s/0 RBF 1000 173.67 145.66 2.83
p4s/15 RBF 236.5 1000 149.99 2.85
p3s/7 RBF 1000 409.97 148.73 2.84
p2s/3 RBF 1000 407.64 144.59 2.85
p1s/1 RBF 231.9 147.50 140.21 2.67
n4g/7 RBF 1000 212.05 136.66 3.12
n3g/3 RBF 1000 121.01 132.43 3.18
n2g/1 RBF 1000 177.35 131.47 3.01
n1g1/0 RBF 1000 310.53 125.33 3.11
p1g1/1 RBF 100.7 383.33 125.01 2.97

In each step, we remove 2% of the samples from the trained model in SVM case.

Results in Table 4.6 show the reduction in the runtime of the models without loosing
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the accuracy. Here, it can be concluded that with the increased time on finding

the optimal tuning parameters, active learning of the model and developing sparse

regression model, complexity and simulation time of the model can be reduced while

keeping low MSE with respect to SPICE. However, modeling is one time process,

more time on training part can be invested with the advantage of low MSE and low

runtime of the model. Until the number of samples are same, runtime of the model

will be same.

Table 4.5: Evaluating proposed SVM method - NMOS & PMOS stacks in PVTW
space; test samples = 10000. ( Ttrain→Model training time, Tsim→Model simulation
time)

Model Input
Our Method (SVM)

Training Ttrain MSE
ρ

Tsim
Samples (S) (×10−6) (S)

n4s/0 0000 1540 1564.20 8.44 0.9991 4.1938
n3s/0 000 1540 1514.30 7.90 0.9992 4.1877
n2s/0 00 1540 1504.80 3.80 0.9995 4.1870
n1s/0 0 1540 1154.40 1.71 0.9997 4.1864
p4s/15 1111 1540 970.049 8.93 0.9990 4.2858
p3s/7 111 1540 735.457 7.94 0.9991 4.2595
p2s/3 11 1540 672.165 4.09 0.9993 4.2504
p1s/1 1 1540 485.027 1.97 0.9996 4.2476
n4g/7 0111 1540 1563.32 5.01 0.9993 4.0812
n3g/3 011 1540 1510.93 3.42 0.9995 4.0545
n2g/1 01 1540 1501.46 1.23 0.9996 4.0476
n1g1/0 0 1540 944.79 0.12 0.9998 4.0321
p1g1/1 1 1540 265.83 0.13 0.9998 4.0485

Figure 4.4 shows the PDF predicted by our models and SPICE for different Vdd and

T (27◦C), which illustrates that both SVM and Sparse SVM model predict the PDF

quite accurately and as well as for different T values at fixed Vdd (1V ).
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Table 4.6: Evaluating proposed Sparse SVM method - NMOS & PMOS stacks in
PVTW space; testing samples = 10000. ( Ttrain → Model training time, Tsim →
Model simulation time)

Model Input
Our Method (Sparse SVM)

Training Ttrain MSE
ρ

Tsim
Samples (S) (×10−6) (S)

n4s/0 0000 1310 2267.65 8.47 0.9990 2.9666
n3s/0 000 1250 2109.43 7.91 0.9991 2.8217
n2s/0 00 1250 2089.90 3.82 0.9994 2.8159
n1s/0 0 1220 1445.40 1.73 0.9995 2.6579
p4s/15 1111 1310 1379.75 8.94 0.9990 3.1169
p3s/7 111 1280 1034.31 7.97 0.9989 2.9151
p2s/3 11 1280 911.10 4.14 0.9991 2.9040
p1s/1 1 1220 747.79 1.97 0.9995 2.4909
n4g/7 0111 1250 2356.67 5.02 0.9993 2.7862
n3g/3 011 1220 2125.56 3.43 0.9995 2.6451
n2g/1 01 1220 2095.90 1.25 0.9995 2.6338
n1g1/0 0 1190 1449.56 0.12 0.9998 2.4854
p1g1/1 1 1190 745.89 0.14 0.9998 2.4903

4.3.2 Effect of Technology Scaling, Number of Dimensions and

Training samples on Model Runtime

Since we have developed our SVM models using 28nm bulk-CMOS technology. BSIM

models are used to relate process and environmental parameters to leakage current.

Our proposed methodology in this step is technology dependent because the fitting

parameters are extracted using regression data generated in that technology using

SPICE simulations. However the model development process in Figure 4.1 and 4.2 is

technology independent and can be used in any technology node with any underlying

device model i.e. BSIM, PSP etc. In lower technology nodes than 28nm, non-linearity

related to leakage current in PVTW space may be higher which may require more

number of samples than the model in 28nm technology node for the same accuracy. If

the number of samples are increased then the runtime of the model is also increased,

as explained previously. One important advantage of our model is that it does not
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Figure 4.4: Comparison of PDF generated using SPICE and SVM model at different
values of Vdd (top) and T (bottom) for n4s/0 stack

presume any kind of underlying model like exponential linear or quadratic model

which is highly required to increase the accuracy of model. Our model is a kind
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of dynamic model whose runtime and accuracy depends upon the training data and

has the ability to model highly non-linear performance parameters in the complete

PVTW space.
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Figure 4.5: Effect of training samples on model runtime

Figure 4.5 shows the variation in the runtime of models for 5000 testing samples by

n1s/0 and n4s/0 stack for increasing value of training samples in different technologies.

Linear curve fitting is used in MATLAB toolbox for both models. Runtime linearly

increases with the increasing number of training samples used to develop the model.

In 28nm technology, runtime difference between the n1s/0 and n4s/0 stack models is

little bit higher at the higher value of samples. Runtime complexity for both models

is O(n), however, the runtime of n4s/0 model is little bit higher than n1s/0 model due

to the higher number of fitting parameters. Furthermore, in advanced technologies,

complexity is also O(n) but there may be variation in the fitting parameters. This

experiment clearly shows the SVM model’s runtime is mainly dependent on number

of training samples, not on the number of variables and process technology nodes.

Next, we examine the effect of adding width as another dimension to our SVM models

over model in [2] on characterization time, runtime and MSE. Similar effect can be

elaborated on sparse SVM model. The dependence of Isub and Igate is linear with

respect to width of transistors of a gate. Since we are modeling log of leakage which
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further reduces the non-linearity introduced by width into SVM models.

Table 4.7: Effect of excluding width in LS-SVM model (with respect to same MSE)

Stack Training Characterization Runtime (S) MSE
model Samples Time (S) (10000 samples) (×10−6)
n4s/0 1480 1533.29 3.9106 8.43
n3s/0 1420 1468.21 3.7734 7.90
n2s/0 1420 1450.38 3.7721 3.81
n1s/0 1360 1020.72 3.3962 1.70
p4s/15 1480 935.042 4.0642 8.93
p3s/7 1480 701.216 4.0548 7.93
p2s/3 1420 580.121 3.8410 4.10
p1s/1 1420 415.088 3.8271 1.97

Table 4.8: Effect of excluding width in LS-SVM model (with respect to same number
of samples)

Stack Training Characterization Runtime (S) MSE
model Samples Time (S) (10000 samples) (×10−6)
n4s/0 1540 1560.12 4.1913 8.18e-6
n3s/0 1540 1509.28 4.1876 7.29e-6
n2s/0 1540 1495.80 4.1822 3.20e-6
n1s/0 1540 1148.71 4.1790 1.52e-6
p4s/15 1540 963.041 4.2799 8.59e-6
p3s/7 1540 729.110 4.2589 7.43e-6
p2s/3 1540 665.180 4.2489 3.80e-6
p1s/1 1540 477.076 4.2441 1.71e-6

To evaluate this effect, we conducted two set of experiments. In first case, we

derive the number of samples required to train model for same MSE with width

consideration. Table 4.7 shows that less samples are required which also reduces the

runtime of the model as explained previously. If we do not consider the width in the

model, average 30 seconds are saved for each model. Total time saving for basic stack

models is 18×30 seconds. If we do not combine parallel transistors, 16 models other

than 18 basic stack models are required for parallel transistor stacks to characterize

whole standard cell library as shown in Figure 3.10, in which each model consist 3
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or 4 transistors. On an average, 1500 seconds for one model and total 16×1500 are

required for parallel transistor stacks. Thus, less characterization time is needed if

width is added to the model. In a similar way, characterization time is also saved for

Igate models. In Second case, we keep the number of training samples same when

width is considered in the model i.e. 1540 samples. For this case, Table 4.8 shows that

the excluding width in the model affects very less in terms of both characterization

time and runtime of the model but reduces error up to some extent. Finally it can

be concluded that if any parameter that is to be included in the model increases the

number of training samples, then both characterization time and runtime of the model

get affected to a large extent. In our case, we include width as a design parameter

in the models to reduce the number of models to be characterized which ultimately

reduces the characterization time. If the number of training samples are same as

before and after adding width, then runtime is almost same for both cases. We use

sparse LS-SVM to reduce the number of training samples for reducing the simulation

time of models.

4.3.3 Comparison with exponential polynomial models

In this section, we compare the accuracy, number of SPICE simulations required and

memory requirement to save model parameters for our SVM models with the existing

analytical exponential quadratic (EQ) models in [109].

4.3.3.1 Accuracy

In case of EQ models, input - output relation is represented by a presumed form of

the equation and expectation of that equation is calculated to find out µ and σ of

Isub of a gate in presence of process variations. While our SVM models are black-box

kind of models, which do not assume any pre-defined set of equation to establish

the relationship between input and output. For SVM models, we do not consider the
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equations. Hence, µ and σ for a gate are evaluated using efficient sampling techniques.

SVM models are slower than EQ models but provide better accuracy and we will show

that our SVM model outperforms EQ model in presence of process variations. In EQ

model of [109], Isub of a gate in terms of process parameters L and Vth is represented

as follows.

Ileak = C.eA14L+B14L2+A24Vth+B24V 2
th (4.17)

For a fair comparison with our model, we add Tox as another dimension in Equation

(4.17). We use same 1540 optimal set of samples to develop EQ model as used in

Table 4.5 to characterize our SVM models. MATLAB Isqcurvfit tool is used to fit

the data in the form of Equation (4.17) and constant terms are determined. To test

both models, 10000 disjoint set of samples are generated in the process variation

space. Isub of n1s/0 and n4s/0 stacks are modeled using EQ model for varying value

of standard deviation of process parameters from 5% to 20% with the step size of

2.5% while Vdd , T and W of all transistors on a stack are kept at 1V , 25◦C and

28nm. Three variables are required to include global process parameters in the ‘P ’

transistor stack model, each corresponding to L, Vth and Tox. Three variables are

required to include spatial component and 3*P variables are required to account for

the random component of local process variations. Thus, n1s/0 and n4s/0 model is 9

and 18 dimension model respectively. MSE on testing data is calculated using both

models as shown in Table 4.9.

Results show that the rate of increase of MSE for EQ model for n1s/0 stack model is

very large than SVMmodel as the percentage variation in process parameters increase.

In the next experiment, we keep σ at 20% and T is varied from 25◦C to 100◦C. MSE

for n1s/0 model is increased to 5.4921 and 3.81*10−6 at 100◦C for EQ and SVM

model respectively. We have also compared our method for higher dimensional n4s/0
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Table 4.9: Mean square error using SVM and EQ model in process variation space

Standard MSE (n1s/0 stack) MSE (n4s/0 stack)
Deviation (σ) EQ Model SVM Model EQ Model SVM Model

5% 0.0166 1.35e-6 1.1032 7.68e-6
7.5% 0.0726 1.49e-6 1.3566 8.01e-6
10% 0.4501 1.71e-6 1.5231 8.44e-6
12.5% 1.1026 2.03e-6 1.9406 9.13e-6
15% 2.8803 2.78e-6 3.1487 9.79e-6
17.5% 3.0100 3.30e-6 4.5691 1.31e-5
20% 4.0014 3.45e-6 6.3478 2.71e-5

stack model with EQ model. Accuracy of EQ model is further reduced if stacks with

more transistors are used. Similarly, Igate was also modeled in the form of EQ model

and found to be highly inaccurate as similar to Isub EQ model.

To improve the accuracy of the EQ model for larger variations and higher order

stacks, higher order terms i.e., L3 , V 3
th , T 3

ox can be used. However beyond quadratic

terms, the model has a limitation in calculating the expectation of cubic or higher

order terms. This expectation may not converge because cubic or higher terms will

grow faster than decaying of quadratic terms for a particular value of process param-

eters. However, in the case of SVM model, non-linearity of the model is tackled by

increasing the number of training samples, kernel function and its tuning parameters.

Thus, SVM models are more suitable for modeling leakage for larger range of process

variations and larger number of parameters.

4.3.3.2 SPICE simulation and Memory requirement

Consider a four transistor NMOS stack with 3 inter-die parameters (L, Vth , Tox ),

3*4 = 12 process parameters to account intra-die random variations and 3 process

parameters to consider intra-die spatial variations. Leakage of this stack is to be

modeled in EQ form as shown in Equation (4.17). EQ model will have a total 18 first

order terms and 171 second order terms. To develop this model with 189 coefficients
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at least 189 SPICE simulations are required. We actually may require some extra

samples i.e. 225 SPICE simulations may be needed to model the leakage accurately

along with 500 disjoint SPICE simulations to check accuracy of the developed model.

Generally, the state-of-art leakage models do not include large range of Vdd and T

in a single model. Thus Vdd and T range is divided into multiple regions and model

is developed for each region. Now assume Vdd is divided in steps of 100mV and T

in steps of 25◦C, then we need 24 different EQ models in a supply voltage range

of 0.6 - 1.2V and temperature range of 0 - 100◦C. This requires 24*225 = 5400

SPICE simulations to model leakage of a four transistor NMOS stack in complete

PVTW space. Our SVM model required a maximum of 1540 SPICE simulations to

cover complete PVTW space in a single model, which is ∼ 3.5× less than EQ model.

Sparse model further reduces the number of training samples, results in saving of time

consumed in SPICE simulation. Our model is able to predict leakage at any Vdd and

T , making it voltage and temperature scalable. The important application of voltage

and temperature scalable models can be the use of these models for leakage estimation

during adaptive voltage scaling (AVS) and full-chip thermal analysis. From memory

point of view, each out of 24 EQ models has 189 coefficient. Some memory is needed

to save these coefficients. let us assume each coefficient requires one unit memory,

thus total 189*24 = 4536 unit memory is required for the coefficients of all models.

In our SVM models, training procedure generates the model coefficients as ‘α’ and

‘b’ value. Number of ’α’ values will be same as the number of training samples and

one ’b’ value is generated for each model. Thus, total 1540+1 = 1541 unit memory

is required which is ∼ 2.94× less than EQ model. Finally it can be concluded that

our SVM model outperforms analytical equation based EQ models not only in terms

of accuracy but also SPICE simulation requirement to develop model and memory

space requirement to save model coefficients. This process is to be repeated for 176

input vector combinations of 20 CMOS gate standard cell library for the case of EQ
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models, while our methodology requires this model generation procedure only for 30

times (Isub models). Thus, our methodology results in ∼ 21× less characterization

time and ∼ 17× less memory requirement. It can be concluded that proposed SVM

models require less memory and less characterization time to develop leakage models

in the considered PVTW space.

4.3.4 Comparison with the methods based on scaling the sin-

gle transistor leakage

Isub and Igate models presented in [6] and [7] are based on scaling the leakage of single

transistor. Scaling factors are calculated depending on the stack type (NMOS or

PMOS), input applied to the stack and number of transistors in that stack. However,

process, Vdd and T variations are not considered while developing these models. In

our experiments, we show that the models in [6] and [7] are not valid for all CMOS

gates with their input vectors considering variations. These models are based on two

assumptions: 1) Only one scaling factors to scale the leakage of single transistor, 2)

Same scaling factor for different input vectors of a stack. To evaluate the inaccuracy

and efforts made to develop the models presented in [6] and [7], we performed an

experiment in which Isub of four transistor NMOS stack is calculated by scaling the

Isub current of single NMOS ‘OFF’ transistor at nominal values of varying parameters.

Scaling factor can be calculated as in Equation (4.18).

Scaling−factor(s.f.) =
Ileak,n4−1110
Ileak,n1−0

(4.18)

This scaling factor evaluates to approx 0.998. In our first experiment, we assume 10%

variation in global and local process parameters in L, Vth and Vth . Figure 4.6 shows

that scaling factor can vary from 0.1 to 25. In our second experiment, we kept the

process parameters at their nominal values, T and Vdd is varied in between 0◦C to
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100◦C and 0.9V to 1.2V . Figure 4.6 indicates that scaling factor is varied from 0.1

to 2. These experiments establish that calculation of scaling factors neither provides

accurate result in the presence of process variations nor present good scalable models

at desired T and Vdd .
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Figure 4.6: Scaling factors required for accurate Isub estimation of NAND4 gate with
input ‘1110’ using single NMOS ‘OFF’ transistor with Process, Vdd and T Variations

Now, consider a NMOS stack of 3-input NAND gate with three input vectors ‘011’,

‘101’ and ‘110’. Isub for these input vectors is assumed to be same as single transistor

Isub leakage. Table 4.10.(a) shows the error in Isub for these input vectors. Column 2

and 3 in Table 4.10(a) denotes the representation of Isub models for considered input

vectors. Isub for the considered input vectors can not be calculated from n1s/0 model

due to the very large difference between actual and model output. Isubfor all three

input vectors is also not same. Thus, all three input vectors require different models

to estimate Isub . In our approach, we use separate models for all three input vectors.

Higher error for these input vectors can also be confirmed from our analysis in Figure

3.2. For some of the samples in process variation space, Isub for these input vectors

lies in the high error region of Figure 3.2.
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Table 4.10: Error for modeling (a) Isub and (b) Igate of NMOS stack of NAND3 gate
using methodology in [6] and [7] in 28nm technology (Vdd = 1V , T = 27◦C)

Isub

Gate Input Stack Model SPICE(nA) [6] [7](nA)
Type µ/σ µ/σ

NAND3 011 n3s/3 n1s/0 2.61/12.73 20.06/176.1
NAND3 101 n3s/5 n1s/0 3.45/18.40 20.06/176.1
NAND3 110 n3s/6 n1s/0 16.99/103.7 20.06/176.1

(a)

Igate(for NMOS stack only)

Gate Input Stack Model SPICE(pA) [6] [7](pA)
Type µ/σ µ/σ

NAND3 001 n3g/1 n1g1/0 58.48/48.32 163.34/132.71
NAND3 010 n3g/2 n1g1/0 309.43/187.61 164.57/133.70
NAND3 011 n3g/3 n1g1/0 34.31/30.18 163.34/132.71

(b)

Next, consider Igate of NMOS stack for 3-input NAND gate with input vectors ‘001’,

‘010’ and ‘011’. Igate for these input vectors is calculated from n1g1/0 model shown

in Table 4.10(b). Igate for ‘001’ and ‘011’ is derived by scaling n1g1/1 model’s leakage

through same scaling factor, but results in Table 4.10.(b) show that the µ and σ

estimated through SPICE is completely different for both input vectors, thus same

scaling factor can not be used for both inputs. These input vectors require different

Igate models for each input vector. While Igate for ‘010’ input is considered as same as

Igate of n1g1/0 model neglecting the Igate of ‘ON’ transistor but our results in Table

4.10.(b) indicate that the differences in µ and σ estimated through SPICE and the

model are very large. Under consideration of process variation, scaling factor itself

is a non-linear function which require more efforts to characterize the leakage of all

CMOS gates. Another disadvantage is that the CMOS gates with parallel transistors

or stacks of parallel transistors i.e. AOI22, AOI32, OAI22, OAI32 are not considered.

As the size of the standard cells increases, this method will give more error than the
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error for basic CMOS gates. Based on our experiments, it can be concluded that

the Isub and Igate of single transistor leakage with single scaling factors considered for

different gates in standard cell library give high errors in leakage modeling. Similar to

the EQ models, our SVM model outperforms these kind of models in terms of SPICE

simulation and memory requirement.

4.3.5 Comparison with Artificial Neural Network models

Methodology proposed by authors in [2] reduces the error in Isub estimation by de-

veloping extra models. This method does not remove the ‘ON’ transistors which are

directly connected to the output node. For example, consider NAND3 gate with ‘011’,

‘101’ and ‘110’ input vectors as shown in Table 4.10.(a). Middle, leftmost and all ‘ON’

transistors are removed from ‘011’, ‘101’ and ‘110’ inputs respectively. But still this

is a simplified assumption and may give large errors in leakage modeling. Since, Igate

was not modeled in [2], analysis in Tables 4.11 and 4.12 for ANN model is based on

Isub only. While, our approach is evaluated based on both Isub and Igate leakage. For

the purpose, we have implemented the ANN based surrogate models based on the

stacks presented in [2] with 20 neurons in hidden layer for each stack model. Average

30 sec. are required for training of the ANN model for each stack, which is very less

than our method. However, it is for fixed ANN model parameters. Active learning

will also increase the training time in the case of ANN model. Error in µ and σ for

various stacks is given in Table 4.11. For NAND3 gate with inputs ‘011’ and ‘101’,

error in Isub estimation is reduced with the use of methodology in [2] compared to

[6] and [7], but assumption made for these input vectors still results in high error

and thus, require a new model for each input vector. Maximum average error in µ

and σ is 58.6% and around 203.7% respectively, if the leakage current of p4s/1 stack

is evaluated using p1s/1 stack which clearly indicates that this stack requires a new

stack model i.e. the drop across ‘ON’ transistors can not be ignored.
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Table 4.11: Error for modeling stacks [2] in 28nm technology (Vdd = 1V , T = 27◦C)

Gate Input
Stack

Model
Scaling factors SPICE(nA) [2](nA) % Error

Type ISpice/ IModel µ/σ µ/σ µ/σ

NAND4 1110 n4s/12 n1s/0 3.5873/3.5893 15.20/89.48 20.05/176.0 31.90/96.7
NAND3 110 n3s/6 n1s/0 3.5846/3.5893 16.99/103.7 20.06/176.1 18.06/69.8
NAND3 011 n3s/3 n2s/1 1.1637/1.3294 2.61/12.73 2.99/16.81 14.56/32.05
NAND3 101 n3s/5 n2s/1 1.3291/1.3294 3.45/18.40 3.55/20.09 2.90/9.18
NAND2 10 n2s/2 n1s/0 3.5820/3.5893 18.12/127.5 20.07/176.2 10.76/38.2
NOR4 0001 p4s/1 p1s/1 2.3873/2.4011 15.04/71.70 23.86/217.8 58.6/203.7
NOR3 001 p3s/1 p1s/1 2.3919/2.4011 16.37/84.14 23.90/218.2 45.9/159.3
NOR2 01 p2s/1 p1s/1 2.3965/2.4011 20.43/136.3 23.33/218.5 14.2/60.3

4.3.6 Leakage calculation of a gate using stack models

Leakage of gates for a given input vector can be estimated by breaking down the gates

into characterized stack models. Thus, leakage estimation of a gate can be mapped

to leakage of stack models and can be represented as a linear weighted sum of leakage

of the stacks which are to be used for the given gate with particular input vector.

Suppose, if ‘M ’ and ‘N ’ number of Isub and Igate stacks are characterized. Isub−stack ,j

and Igate−stack ,j denotes the Isub and Igate through j th and k th stack. Total leakage of

a gate ‘i’ for given input vector ‘v’ can be given as follows.

Ivleak,i =
M∑
j=1

Isub−stack,j +
N∑
k=1

Igate−stack,j (4.19)

We have calculated the total leakage of each gate in considered standard cell library by

applying all input vector combinations. Table 4.12 and 4.13 compares our method’s

accuracy and runtime with HSPICE simulation and ANNmodel [2]. The average error

in µ and σ for total leakage is 0.447% and 0.812% using our SVM model respectively

across 176 input vector combinations for 20 CMOS gates compared to the ANN

model’s 2.6975% and 9.855% for Isub only. Our SVM model’s average runtime for

calculating µ and σ is 22.1660 sec. compared to 221.55 sec. using SPICE. SVM and
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Sparse SVMmodel is on an average∼ 10× and∼ 17× faster than SPICE respectively.

However, the maximum runtime improvement is observed for D-flip flop because it

only requires the single transistor models to predict the leakage power across all

input vector combinations. Sparse SVM further reduces the runtime of the proposed

method with negligible increase in error. Last three rows in Table 4.12 indicates that

total 34 Isub stack models need to be characterized by ANN model to calculate the

leakage current of 20 gate standard cell library across 176 input vector combinations

i.e. 4 stack models more than our approach. We also accurately model Igate with only

26 models for all possible input vectors of the considered standard cell library.

Finally, it can be concluded that the error in estimating leakage current is very high

using the methodology based on stacks given in [2], which in completely outperformed

by our proposed method in terms of accuracy. However, the Isub models developed

using ANN are found to be faster than our approach but runtime for ANN model

is evaluated only for 20 hidden neuron network model. To improve the accuracy of

the ANN model, number of hidden neurons may be increased at the cost of increased

runtime of ANN model. One biggest advantage of our model using approach is that we

can estimate µ and σ for other gates containing parallel transistor stacks without any

pre-characterization, whereas ANN model [2] requires new models to be characterized.

4.3.7 Efficient selection of Monte Carlo samples for Statistical

leakage current estimation of benchmark circuits.

Yield of any analog or digital circuit has to be maximized considering variations in

process parameters. This step requires sufficient samples to be simulated in process

variation space for accurate Probability Distribution Function (PDF) estimation of

performance parameters. Authors in [110] proposed a 2-level Design of Experiments

(DoE) method to select samples for frequency optimization of Voltage Controlled
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Table 4.12: Comparing method in [2] and proposed methodology for error - 28nm
technology (Vdd = 1V , T = 27◦C, 10000 Monte Carlo samples) (M1→ SVM, M2→
Sparse SVM)

Gate
ANN Model [2] ∗ Proposed

4µ % 4σ% M1 M2
4µ% 4σ% 4µ% 4σ%

NAND4 2.092 11.721 0.287 1.768 0.289 1.769
NAND3 2.249 11.330 0.323 1.821 0.324 1.823
NAND2 2.352 6.911 0.177 0.299 0.179 0.301
NOR4 5.377 24.991 0.638 1.794 0.640 1.796
NOR3 7.098 24.001 0.499 1.954 0.499 1.957
NOR2 4.499 23.886 0.046 0.301 0.047 0.303
INV 0.017 0.016 0.015 0.016 0.017 0.017

BUFFER 0.032 0.036 0.031 0.035 0.032 0.037
AND4 0.292 0.296 0.041 0.071 0.043 0.072
AND3 0.682 1.061 0.051 0.075 0.053 0.078
AND2 2.919 17.290 0.053 0.089 0.055 0.091
OR4 2.459 6.449 0.080 0.164 0.082 0.166
OR3 3.676 4.201 0.048 0.089 0.049 0.091
OR2 7.762 24.066 0.036 0.079 0.037 0.080

MUX2×1 0.199 0.349 0.197 0.350 0.199 0.353
XOR2 2.338 8.699 0.485 1.158 0.489 1.161

MAJ_GATE 4.257 10.923 0.430 0.150 0.434 0.153
AOI22 2.682 9.901 2.635 2.692 2.638 2.695
OAI22 2.824 10.772 2.726 3.130 2.729 3.133
DFF 0.144 0.202 0.140 0.201 0.143 0.203
Avg = 2.6975 9.855 0.447 0.812 0.449 0.814

Proposed Basic Isub Models = 30, New Isub Models = 0,
Igate Models = 26

[2] Basic Isub Models = 18, New Isub Models = 16

*Error for ANN model is evaluated based on Isub only.

Oscillator (VCO) circuit. It generates 2n samples, where n is number of variable

parameters. The work in [110] optimizes the analog circuit considering only global

variations in 5 parameters, which only require 25 = 32 samples to be simulated. But

simulations of lower number of samples result in large error in µ and σ estimation of

performance parameters. In addition, local variations increases the dimensionality of

process variation space, thus simulation time increases exponentially. In digital cir-
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Table 4.13: Comparing method in [2] and proposed methodology for runtime - 28nm
technology (Vdd = 1V , T = 27◦C, 10000 Monte Carlo samples) (M1→ SVM, M2→
Sparse SVM)

Gate
Avg. Runtime (S) Speed up (×)

[SPICE] [2] ∗ Proposed [2] Proposed
M1 M2 M1 M2

NAND4 221.30 3.5478 13.7979 8.7775 62 16 25
NAND3 195.02 3.5403 13.5604 8.7650 55 14 22
NAND2 171.20 3.5370 13.2947 8.3706 48 13 20
NOR4 217.10 3.5487 13.9073 8.8992 61 16 24
NOR3 191.92 3.5130 13.6485 8.8676 54 14 21
NOR2 172.04 3.5088 13.3357 8.4776 49 13 20
INV 164.50 3.4281 12.3076 7.6401 47 13 21

BUFFER 173.69 7.0077 24.5952 15.2802 24 7 11
AND4 226.20 7.0260 26.1186 16.2525 32 8 14
AND3 203.20 7.0201 25.6075 15.8771 28 8 13
AND2 176.45 7.0179 25.1001 15.7255 25 7 11
OR4 223.96 7.0275 26.1640 16.4803 31 8 13
OR3 198.69 7.0203 25.6180 15.9758 28 8 12
OR2 175.28 7.0176 25.1791 15.7375 24 7 11

MUX2×1 232.24 6.9453 28.6352 17.6180 33 8 13
XOR2 242.91 10.648 35.7112 18.5063 22 7 13

MAJ_GATE 237.80 8.7588 37.2854 19.3517 27 6 12
AOI22 233.21 7.2420 21.4694 13.7053 32 11 17
OAI22 234.42 7.3899 21.5263 13.7551 31 11 17
DFF 539.83 10.211 26.4578 16.7287 52 20 32
Avg = 221.55 6.2478 22.1660 13.5396 35 10 17

*Runtime for ANN model is evaluated based on Isub only.

cuits, due to higher number of transistors on a single IC, larger set of local parameters

are need to be considered. DOE is completely infeasible to analyze the performance

of digital circuits. Thus, efficient MC samples are need to be developed for efficient

analysis of digital circuits. Now we explain our proposed efficient sample selection

methodology, which can fully utilize our reduced set of stack models.

A process parameter Pijk having the value Pnom for the j th transistor in the i th gate

of k th grid can be given as follows.
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Pij = Pnom +4P inter +4P intra,rand
ij +4P intra,spa

k (4.20)

Here, Pnom is the nominal value of process parameter, 4P inter is the zero mean ran-

dom variable (RV) representing the global component of process variation. 4P intra,local
ij

denotes random local variation of the j th transistor in the i th gate and4P intra,spa
k rep-

resents the variable related to spatial correlation between same process parameters

of different grids. In our work, we are considering the inter- and indra-die process

variations in the parameters length (L), threshold voltage (V th) and oxide thickness

(T ox). The process parameter of jth transistor in ith gate of grid k can be represented

as follows.

LijK = Lnom +4Linter +4Lintra,randij +4Lintra,spak

VthijK = Vthnom +4V inter
th +4V intra,rand

thij
+4V intra,spa

thk

ToxijK = Toxnom +4T interox +4T intra,randoxij
+4T intra,spaoxk

(4.21)

For full-chip leakage estimation, we can use equations used in SVM models but it will

be very difficult to obtain the mean and standard deviation in analytical form as shown

in [2]. Thus, we select sampling based methodology for full-chip leakage estimation.

Earlier work based on sampling methods for full-chip leakage estimation use SPICE

simulation. One important advantage of proposed SVM models is that these models

can replace SPICE simulation loop in sampling based full-chip leakage estimation

methods. To further reduce runtime, efficient sample selection based methodologies

are required, which can reuse the previously simulated samples and modifying them

according to the process parameters [47] [111]. In the proposed framework, our main

aim is to use SVM model simulation to the minimum extent possible.

The important advantage of reducing the number of models in our proposed work is

to lower down the runtime complexity due to the use of reduced number of leakage
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components to be added for full chip leakage estimation. For example, method in [21]

uses the dominant Isub and Igate concept among various input vector combinations

of CMOS gates, which only adds the leakage of only dominant components. Due to

large variation space, this assumption may provide large error in leakage estimation.

Equivalence concept between different input vectors of CMOS gates is also used. For

example, Isub of NAND4 gate with ’1110’ input, NAND3 with ’110’, NAND2 with

’1110’ is assumed to be same as INV with ’0’ input. This assumption also provide in-

accurate results in leakage estimation. Thus, reduction in number of characterization

models is very important for characterization time and runtime complexity reduction.

We exploit the equivalence concept between our stack models. For example, n3s/0

stack model will be used for Isub estimation of NAND4 gate with ‘1000’ input and

NAND3 gate with ‘000’ input.

Further advantage of our methodology lies in the selection procedure of Monte Carlo

samples of the individual gate. If we select the same values of process parameters for

different gates, then we only need to run the model once per gate per input vector.

For example, Monte Carlo simulation for two CMOS gates with the same input can be

performed with respect to parameter say, Length (L), then the Monte Carlo samples

for one gate can be used for another gate i.e. the same leakage power values can

be used for both gates. The only thing is to combine different values for joint PDF

calculation. The total leakage under process variation can be determined by randomly

combining the samples i.e. combining the leakage of two gates randomly. Figure 4.7

shows two inverters in two different grids, whose leakage is a function of transistor

length (L). Four different values are selected in the variation range of length. Joint

PDF can be generated by randomly combining these four values from two different

gates, which gives total 16 samples in the process variation space. Joint leakage can

be find out by randomly combining the leakage of both inverters instead of simulating

two inverters for 16 samples, which requires only 4 simulations to generate 16 samples.
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The efficiency of our method comes from saving the simulation time of CMOS gates

in the circuit.

(0,0) (0,1)
(0,2)

(1,0)
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(2,1)

(1,2)

(2,2)
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[{L1,L1}, {L1,L2}, {L4,L2}....{Lx,Ly}]

P
leak

= f(L)

MC Samples = 

(16 Samples)

Figure 4.7: Illustrating efficient sample selection methodology

To include spatial component of intra-die variation, correlation matrix is generated

by partitioning the overall chip into k grids as shown in Figure 4.7. k variables are

required to define the correlation matrix between k grids. Correlation matrix can be

given as in [112]. We describe our approach for sample selection in following formal

steps.

Step (1) - Apply input vector to the circuit. Get the type of gates and corresponding

input vectors in a grid. A gate_type (GTl) represent many gates of CMOS circuit

depending on the type of gates in the standard cell library and input vector applied.

For each GTl , only one SVM model simulation is required. So, the total number of

gate_type can be the number of precharacterized models. This process is applied for

all grids.

Step (2) - Generate samples to consider spatial component of intra-die variation

P Intra,spa
K from k - dimensional joint PDF of k normally distributed random variables.

Each sample is a k - dimensional vector and generate separately for each variable.

For example: k - dimensional vector for variable length (L) can be described as -

4Lintra,spa
k =(4Lintra,spa1 ,4Lintra,spa2 , .... 4 Lintra,spam ). Similarly samples for Vth and
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Tox can be generated.

Step (3) - Generate Monte Carlo samples from the normal distribution of intra-die

process parameters of every gate type (GTl) to account for random component of

intra-die variation. The corresponding sample for jth transistor in ith can be repre-

sented as P intra,rand
ij = (4Lintra,randij , 4V intra,rand

thij
, 4T intra,randoxij

)

Step (4) - Add inter-die process parameters to all samples generated in step (3). This

variable independently generates the sample P inter for each sample P intra,rand
ij . The

referred sample can be represented now as- P inter+P intra,rand
ij = (4Linter+4Lintra,randij ,

4V inter
th +4V intra,rand

thij
, 4T interox +4T intra,randoxij

).

Step (5) - Add samples to account for spatial component P Intra,spa
k , generated in

step (2). Now the sample becomes as- P inter+P intra,rand
ij +P Intra,spa

k = (4Linter +

4Lintra,randij +4Lintra,spak ,4V inter
th +4V intra,rand

thij
+4V intra,spa

thk
,4T interox +4T intra,randoxij

+

4T intra,spaoxk
).

Step (6) - Add the nominal values of process parameters. The overall Monte Carlo

sample for a gate can be represented as- Pnom+P inter+P intra,rand
ij +P Intra,spa

k = (Lnom+

4Linter + 4Lintra,randij + 4Lintra,spaij , Vthnom + 4V inter
th + 4V intra,rand

thij
+ 4V intra,spa

thij
,

Toxnom +4T interox +4T intra,randoxij
+4T intra,spaoxij

).

Step (7) - Repeat steps (2) to (6) for each grid.

Step (8) - Get the values of leakage current of a gate corresponding to its input vector

in each grid k . It should be noted that a gate with same input vector from different

grids have different leakage values due to spatial component of intra-die variation

parameters which does not allow the use of same set of parameters between different

grids.

Step (9) - Replicate each gate_type GTl , km times depending on the type of the

gate and input vector applied. This gives the leakage samples of all gates in a grid

i.e. N = k1 + k2 + k3 + ................+ km, Here N = Total gates in a grid. This process

is repeated for each grid.
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Step (10) - Randomly combine the values of leakage power of individual gate from

all the grids to get the final value of leakage power of whole circuit.

We have applied our methodology on ISCAS’85 benchmark circuits. The leakage

current of a circuit is input pattern dependent. However, it is impractical to calculate

leakage for all input patters of a circuit due to the large number of patterns. In

[21], leakage of a circuit is calculated using the average leakage current of a gate and

probability of input vectors of each gate in the circuit. Generally, in some applications,

input vector applied to the circuit is known a priori. For example, in minimum leakage

input vector method for leakage optimization, a specific input vector is applied to

reduce leakage through the circuit in sleep mode. However, in other scenarios, input

vectors are not known at a given time. Also under process variations, it is very difficult

to consider the leakage at particular time instance. Instead, some time-average leakage

based on the signal probability is much useful. This is true at the system level leakage

and power estimation. Thus, average leakage based on input signal probabilities is

calculated to define the leakage of a gate. Effect of input signal probabilities can be

easily accommodated in Equation (4.19). Let probability of appearing input vector

‘v ’ for a gate ‘i’ is pv
i . Equation (4.19) can be modified to calculate average leakage

of a gate as follows.

Ivleak,i =
M∑
j=1

pvi ∗ Isub−stack,j +
M∑
j=1

pvi ∗ Igate−stack,j (4.22)

We have generated 50000 input vector combinations for each benchmark circuit and

calculated the probability of input vectors for the gates applied with primary inputs.

Input signal probabilities are propagated through each gate to find out input vector

probabilities for other gates [113]. Equation (4.22) is used to estimate the average

leakage of a gate for each input vector with calculated input vector probabilities. We

have used 10000 samples to evaluate the effect of process variations for each input vec-
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tor. Number of grids for a circuit are selected based on the size of the circuit, as used

in [21]. Table 4.14 shows the error in mean and standard deviation and runtime of our

approach. Our SVM model’s maximum error in µ is 1.75% compared to 55.96% and

maximum error in σ is 3.80% compared to 70.40% using stack models described in [2].

Maximum runtime improvement is approximately 221× for C6288 circuit using SVM

model, because this circuit only contains the maximum 2-input gates which requires

less number of stack models to calculate the leakage power. Sparse SVM increases the

maximum runtime efficiency to 323× with negligible increase in the error. Figures

4.8 shows the cumulative density function curve for C6288 benchmark circuit, which

indicates that estimation using our approach is very close to the results of SPICE.

Our approach predicts the accurate µ and σ values for larger circuit containing the

smaller gates. It should also be noted that runtime improvement is dependent on the

size of the circuit, type of the gates used in the circuit and the input vector applied

at the primary inputs of the circuit.

Table 4.14: Comparing error of proposed method with method in [2] on ISCAS’85
benchmark circuit (Vdd = 1V , T = 27◦C) (M1→SVM, M2→Sparse SVM)

Circuit
µ σ [2] Proposed

#Grids/ SPICE SPICE ∆µ ∆σ M1 M2
Gates ( µA ) ( µA ) (%) (%) ∆µ% ∆σ% ∆µ% ∆σ%

C17 1/6 0.233 0.1442 6.56 31.77 0.16 0.46 0.18 0.47
C432 4/261 4.301 1.9471 5.81 37.51 0.99 1.91 1.02 1.95
C499 4/771 17.095 6.4491 7.94 47.07 1.08 2.05 1.08 2.10
C880 4/383 3.892 2.0297 15.49 50.41 0.79 1.65 0.80 1.67
C1355 4/562 7.521 3.0112 15.03 48.13 0.87 1.68 0.88 1.69
C1908 16/972 16.573 8.9716 22.89 57.35 1.24 1.99 1.24 2.02
C2670 16/1211 25.992 10.4977 34.77 60.71 1.34 2.15 1.35 2.21
C3540 16/1705 46.820 17.0110 31.28 62.73 1.35 2.18 1.35 2.20
C5315 16/2351 51.0171 20.8079 38.62 65.86 1.59 2.76 1.62 2.79
C6288 64/2416 67.991 26.7333 55.96 67.51 1.14 2.39 1.15 2.41
C7552 64/3624 83.803 31.2141 45.66 70.40 1.75 3.80 1.77 3.84

Average 25.46 54.50 1.12 2.09 1.13 2.12
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Table 4.15: Comparing runtime of proposed method with method in [2] on ISCAS’85
benchmark circuit (Vdd = 1V , T = 27◦C) (M1→SVM, M2→Sparse SVM)

Circuit
Runtime (Sec.) Speedup (×)

#Grids/ SPICE [2] Proposed ANN Proposed
Gates M1 M2 Model [2] M1 M2

C17 1/6 1920 28.70 60.82 44.02 67 31 43
C432 4/261 17520 98.22 197.28 156.58 178 89 112
C499 4/771 34100 197.96 309.12 208.42 172 110 164
C880 4/383 30058 113.28 225.96 181.44 265 133 166
C1355 4/562 33712 141.04 253.78 195.86 239 132 172
C1908 16/972 41120 347.08 501.56 299.60 118 82 137
C2670 16/1211 58558 425.16 738.42 551.86 137 79 106
C3540 16/1705 82202 498.78 953.10 662.82 165 86 124
C5315 16/2351 106396 540.96 1009.3 706.18 197 105 151
C6288 64/2416 130118 358.32 588.64 403.04 363 221 323
C7552 64/3624 190100 747.64 1499.3 1165.7 254 127 163

Average 65982 317.92 576.11 415.96 207 114 159

4.4 Using Characterized Stack Models for Standard

Cells in other Logic Styles

In this Section, We show that our characterized stack models are enough to estimate

leakage for all input combinations even if the standard cells are implemented with

different logic styles. Stack modeling methodology for leakage estimation saves large

characterization overhead imposed by developing models for every input vector of

each gate.

Figure 4.9 shows the implementation of NAND3 gate in dynamic logic. Next, we only

explain that how our characterized models can be used for Isub estimation for different

input vector combinations. When CLK is low (precharge phase), output node F will

be charged to supply voltage and thus, Isub can be calculated using ‘OFF’ PDN for

different input vector combinations of A, B, C. For these conditions, PDN of dynamic

NAND3 gate can be termed as NAND4 gate in Figure 3.1 and we do not need to

characterize any new model.
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Figure 4.8: Cumulative Density Function (CDF) curve for C6288 Benchmark circuit

When CLK is high (evaluate phase), value at output node depends on value of inputs

A, B, C. If all inputs are at logic ‘0’, then out put node F will be at logic ‘1’, making

both PDN and PUN ‘OFF’. All these conditions do not change the output node

voltage in precharge phase. PUN is ‘OFF’, but can not be used to calculate Isub

due to the same drain and source voltage. Isub is to be calculated using PDN, which

require same models as in low CLK case. But when CLK is high and ABC = ‘111’,

then PDN will be ‘ON’ and output node will be discharged to ground voltage. Stack

model p1s/1 can be used to calculate Isub of PUN i.e. single PMOS ‘OFF’ transistor

for this condition.

Figure 4.10 shows the complementary pass transistor logic (CPL) implementation of

2-input XOR gate as opposed to CMOS implementation in Figure 3.8.(b). Inverters

(INV1 – INV4) are implemented in CMOS style, thus our characterized leakage mod-

els are sufficient for leakage estimation of these inverters. Next, we only explain the

sub threshold leakage (Isub) estimation of this gate using remaining transistors.
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Figure 4.9: NAND3 gate using Dynamic Logic style

When input AB = ‘00’, NMOS transistors MN2 and MN4 are in ON condition,

while PMOS transistors MN1 and MN3 are in OFF condition. Node ‘X’ discharges

to ground voltage, making PMOS transistor MP2 ‘ON’ and Node ‘Y’ charges to

supply voltage, making PMOS transistor MP1 ‘OFF’. Isub of remaining transistors

will be calculated using only ‘OFF’ transistors as follows: i) Bbar to X current in

MN1 transistor, can be calculated using characterized n1s/0 model ii) current flowing

from Y to B in MN3 transistor, can be calculated using characterized n1s/0 model

iii) current flowing from supply to ‘X’ in MP1 transistor, can be calculated using

characterized p1s/1 model.

For input AB = ‘11’, MN2, MN4 and MP2 ‘OFF’transistors will be used to evaluate

Isub . MN2, MN4 transistors only require n1s/0 model and p1s/1 model is used for

MP2 transistors.

For input AB = ‘01’, MN1, MN3 transistors will be in ‘OFF’ condition. n1s/0 model

is sufficient to estimate Isub for these transistors. While p1s/1 model is only needed

for Isub estimation of MP2 transistor. Similarly for input ‘10’, single transistor models

are enough to estimate Isub .

Gate tunneling leakage can occur in both ‘ON’ and ‘OFF’ transistors. Node ‘X’ and

124



‘Y’ are perfect at either supply or ground voltage. Thus, single transistor models as

shown in Figure are enough to estimate Igate for all input vector combinations.
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Figure 4.10: 2-input XOR gate in Complementary Pass Transistor Logic (CPL) style

4.5 Stack Models for FinFET Based Standard Cells

In this section, we show that the leakage estimation methodology developed for bulk

CMOS technology is also valid for FinFET based technology. New technology such

as FinFET has been proposed to reduce the problems related with bulk-MOSFET

based technology. Still the leakage is a main concern for these new technologies. It

has been shown that Igate contribution in total leakage for FinFET based logic circuits

is very less. Isub is a dominant component in FinFET based logic cells [44].

In our methodology, we extract the stack models among basic gates and effective width

estimation methodology is developed in case of parallel transistor gates. Consider a

NAND2 gate in FinFET based logic style in different configurations as shown in

Figure 4.11.

Isub in terms of varying parameters can be describes as [114]:
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Figure 4.11: NAND2 gate configurations (a) Surrounded Gate (SG) mode (b) Low-
Power (LP) mode (c) Mixed-Terminal (MT) mode (d) Independent Gate (IG) mode
(e) Variant of IG (IG2) mode

Isub = Weff .e
a0+a1Lg+a2Tsi+a3Tox+a4φN/P+a5φ

2
N/P

+a7Vdd (4.23)

HereWeff is the effective width, Lg , Tsi , Tox , φN/P , Vdd are gate length, Fin thickness,

oxide thickness, work function of n/p-FinFET and supply voltage respectively. For

Double Gate FinFET transistor, Weff for multiple Fin can be written as follows.

Weff = (2.HFIN −DELTAW ).NFIN (4.24)

Here, HFIN , NFIN are height and number of Fins respectively and DELTAW is the

variation in the height of Fin due to lithographic variations. Generally, variation in

Fin height is assumed to be zero [115] i.e. DELTAW = 0. Now, effective width can

be represented as follows.

Weff = 2.HFIN.NFIN (4.25)
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Consider two parallel transistors with same terminal voltages and same other param-

eters except HFIN and NFIN , effective width for parallel transistors can be given as

in and both transistors can be replaced by a single transistor of calculated equivalent

effective width.

Weff,equi = 2.(HFIN1.NFIN1 +HFIN2.NFIN2) (4.26)
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Vg2

MN2 MN1 MP1 MP1

Figure 4.12: Stack models for leakage characterization of FinFET based NAND2
gates in Figure 4.11

Aforesaid formula is for effective width estimation without considering process vari-

ations. However in presence of process variation, any variation in process parameter

can be accounted for similar change in HFIN and now Equation (4.26) can be used for

effective width estimation. As can be observed from (4.23), dependence of leakage on

process parameters in FinFET based technology is same as in bulk-MOSFET based

technology. All the advantage described for bulk-MOSFET technology are also appli-

cable here. To develop a single model for same input vector in all three configurations,

leakage must be the function of process parameters, Weff , Vdd , T , back-gate voltage

(Vg). Based on the input vectors and leakage, stack models can be extracted and
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modeled using SVM with same procedure used for bulk-CMOS gate models. Figure

4.12 shows the common stack based models for leakage estimation of possible NAND2

configurations shown in Figure 4.11.
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Figure 4.13: Isub distribution of NAND4 gate with ‘0000’ input for (a) Gaussian and
(b) Uniform parameter variations at Vdd = 1V , T = 27◦C and Monte Carlo samples
= 10000
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4.6 Generalized Stack Models to account for Arbi-

trary parameter distributions

In this section, we show that our stack based SVM models are valid for any kind of

parameter variations. Equation based analytical techniques shown in Equation (4.17)

suffers from the large error incurred in leakage prediction of CMOS gates. Apart from

this inaccuracy, two more problems are also associated with these techniques:

• For any change in parameter variation type, model fitting parameters need to

be calculated again. This results in increase in the total model characterization

time. Figure 4.13 shows the large difference between leakage distribution for

Gaussian and uniform parameter variations, which suggests to develop separate

fitting models for each case.

• µ and σ of leakage is predicted by underlying assumption of log-normal distri-

bution of leakage in presence of process variations. However, this assumption is

only true for parameter variations based on the Gaussian distribution. In ad-

vanced technologies with enhanced short channel effects, parameters can vary

in arbitrary manner and different parameters can vary in a different vary. Thus,

log-normal assumption is not valid for arbitrary parameter variations and may

result into large error in leakage estimation of CMOS gates. Figure 4.13.(a)

shows the log-normal assumption of Isub is completely valid in case of Gaussian

parameter variations but same log-normal assumption for uniform parameter

variations is not valid and results in large error forIsub leakage prediction as

shown in Figure 4.13(b). However, this ∼5% - 10% error is for single gate and

this error can result in large error for full-chip leakage estimation.

Our leakage models are more generalized and can analyze the effect of arbitrary

variations in process parameters, supply and temperature on leakage because in our
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methodology, leakage of a gate is calculated by simulating samples in PVTW space

using accurate leakage models without any assumption on leakage distribution.

4.7 Summary

We have proposed Support Vector Machine (SVM) regression based surrogate mod-

els to characterize the transistor stacks of CMOS gates simultaneously, accounting

the effects of variations in transistor length (L), threshold voltage (V th), oxide thick-

ness (T ox), supply voltage (0.6V -1.2V ), temperature (0◦C -100◦C) and width (28nm-

200nm), all scalable at the same time. Efficient methodology is developed by com-

bining grid based techniques and global optimization techniques such as Genetic Al-

gorithm (GA) and Differential Evolution (DE) in order to find out the best kernel

among available kernels along with corresponding optimum kernel tuning parameters

locally as well as globally in the tuning parameter range. Two way error driven active

learning methodology is also employed, which selects the new samples from the input

space for adaptive training of SVM based surrogate models. Sparse SVM models are

also developed using Support Vector spectrum pruning method, which reduces the

number of training samples used to prepare regression model. The resulting model

has reduced the runtime with negligible increase in the error. SVM regression mod-

els generated in our approach have the ability to predict the leakage with maximum

average error of 2.7% in mean (µ) and maximum average error of 3.1% in standard

deviation (σ), both for OAI22 gate. Our results establish that there is on an average

10× improvement in runtime for estimating the µ and σ of leakage of a gate within

10000 Monte Carlo simulation loop. We have further developed Sparse SVM models

using Support Vector spectrum pruning method, which reduces the runtime of the

regression models with negligible increase in the error. Runtime efficiency of 17× is

achieved on standard cell library using Sparse SVM models. For ISCAS’85 bench-
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mark circuits, maximum 221× runtime improvement is achieved for C6288 circuit

using our efficient sample selection methodology. Sparse SVM models are further

developed, which improve the runtime efficiency of the model by reducing the num-

ber of training samples required to prepare the model with negligible increase in

the mean and standard deviation error. Our models outperform previously available

models based on either analytical equations or Artificial Neural Network in terms of

accuracy. Our stack based methodology can be used for leakage characterization of

post CMOS devices i.e. FINFET, CNTFET based logic gates. Proposed models can

be used for leakage estimation of CMOS gates for non-Gaussian process parameter

variations and methodology does not require to re-characterize the models. Proposed

methodology removes the inaccurate log-normal assumption on leakage with respect

to process parameters. Proposed models can be conveniently used in sampling based

full-chip leakage estimation methodologies.
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Chapter 5

Surrogate models for Static Virtual

Ground Voltage Estimation

Figure 1.(a) shows the ground gating case, in which footer transistor is inserted be-

tween logic cluster and ground, Similarly, header in supply gating case as shown in

Figure 5.1.(b) and combined gating case in Figure 5.1.(c).
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(Vgnd)

F
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r

 
Sleep Signal
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(Vg) (Vvdd)

(Vgnd)

Vdd Vdd

(a) (b) (c)

(Vg)

Figure 5.1: Power gating a) Ground gating case b) Supply gating case c) Combined
ground and supply gating case

Large error incurred by inaccurate leakage models for power gated circuits can be re-

moved by using machine learning methods such as Support Vector Machine (SVM),

which is a kind of dynamic model without presuming any kind of exponential or poly-

nomial form and can establish an accurate relation of ILC in terms of V gnd depending
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Primary gate
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Figure 5.2: Input voltages conditions for non-primary inputs in ground gating case

on the complexity of the model. Another problem of inaccurate voltage assumption

at input of CMOS gates is mitigated by using accurate input voltages at the input

of CMOS gates. To explain it, first we classify all CMOS gates in the circuit in two

categories i.e. primary gates and non-primary gates. Primary gates are CMOS gates

in the circuit whose all inputs are supplied by users and inputs of non-primary gates

are outputs of preceding gates. In Figure 5.2, Inv1 is the primary gate which is the

receiving input from primary inputs whereas Inv2 is a non-primary gate whose in-

put is a output of preceding gate ’Inv1’. Now suppose Vin1 = ‘1’, MP1 is in ‘OFF’

condition but ‘ON’/‘OFF’ condition for MN1 and the input value at ’Inv2’ gate will

depend upon the the value of Vgnd . We define Vp as the maximum value of Vgnd

for which pull down network (PDN) is ‘ON’ for primary gate (In Figure

5.2, transistor MN1) and pull up network (PUN) is ‘ON’ for non-primary

gate (In Figure 5.2, transistor MP2). This Vp defines the input voltage at non-

primary gate Inv2. For the lower values of Vgnd than Vp , NMOS transistor MN1

is ‘ON’, which makes the Vin2 similar as Vgnd . For Vgnd > Vp , MN1 is ‘OFF’, i.e.

Vin2 resides at a little bit higher value than Vgnd . Thus Vin2 can be defined using

Equation (5.1).
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V in2 =


Vgnd

Vgnd +4V

Vgnd < Vp

Vgnd ≥ Vp

(5.1)

Here, 4V is defined as the voltage drop across the PDN. Table 5.1 shows the out-

put/input gate voltage of primary/non-primary gate Inv1/Inv2 and output of Inv2

gate of the circuit given in Figure 5.2. The difference between Vgnd voltage and

Vout1/Vin2 is very less for lower values of Vgnd because the PDN is ‘ON’. The drop

across the PDN is very less and hence, can be removed from the circuit. Similarly,

output of the non-primary gate Inv2 is close to the Vdd for lower Vgnd values and for

higher values, this difference is high due to ‘OFF’ PUN network. For the calculation

of Vp , MN1 and MP2 transistors should be ‘ON’ simultaneously for input Vin1 = ‘1’.

Transistor MN1 will be ‘ON’ if gate to source voltage (Vgs) is greater than threshold

voltage of the NMOS transistor (Vthn). i.e.

Vgs(MN1) > Vthn (5.2)

Vdd − Vgnd > Vthn (5.3)

Vgnd < Vdd − Vthn (5.4)

Similarly, the condition for Vgnd to turn ‘ON’ MP2 PMOS transistor can be described

as follows.

Vgnd < Vdd + Vthp (5.5)

From Equation (5.4) and Equation (5.5), value of Vp can be given as

Vp = min(Vdd − Vthn,Vdd + Vthp) (5.6)

For Multiple input NAND type gates, if any input is connected to connected to logic
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‘0’, then output of that gate will be logic ‘1’ irrespective of the Vgnd voltage. When all

inputs are at logic ‘1’, Vgnd voltage will play an important role to turn ‘ON’ the PDN

network. On individual basis, maximum Vgnd for a gate depends upon the leakage

i.e. input vectors of the gate. Leakage of a gate and Vgnd can be related as follows.

ILC = Ifooter (5.7)

Ifooterin terms of Vgnd can be given as[4].

Ifooter =


Îf .e

KN (Vgnd−Vdd )

0

Vgnd > 4VT

Vgnd < 4VT

(5.8)

From Equation (5.7) and Equation (5.8).

ILC = Îf .e
KN (Vgnd−Vdd ) (5.9)

Vgnd = Vdd +K
′

N .log(
ILC

Îf
) (5.10)

From Equation (5.10), Vgnd will be higher for high logic circuit leakage. Generally

leakage of a single gate is not enough to force the Vgnd to cross Vp . But, in a circuit,

maximum Vgnd for a gate will be decided by the leakage contribution of other CMOS

gates and can also cross the Vp voltage. In a NAND type logic, PDN will be ‘ON’ if

all transistors in a stack are ‘ON’. Every transistor will have different Vth depending

on its location and terminal voltages in the stack. For different gates, Vp will also be

different. Vp for NAND type gates can be decided by the intersection of the Vp value

of all NAND type gates as in Equation (5.11)

Vp,NAND = min(Vp,INV , Vp,NAND2, VP,NAND3, Vp,NAND4....) (5.11)
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Similarly, Vp for NOR type gates can be described as in Equation (5.12)

Vp,NOR = min(Vp,INV , Vp,NOR2, VP,NOR3, Vp,NOR4....) (5.12)

From the definition, PDN in NAND and PUN in NOR type gates must be ‘ON’

simultaneously to calculate Vp . Vp of the complete circuit can be given by Equation

(5.11) and Equation (5.12) as follows.

Vp,circuit = min(VP,NAND, VP,NOR) (5.13)

The variation in Vth of different transistors in different CMOS gates makes the calcu-

lation of Vgnd little bit difficult. For accurate calculation of Vp , we slowly increase the

Vgnd voltage and note the output node voltages of each gate presented in the circuit.

However, Vp is one time calculation and will be same for all circuits. Thus, SPICE

simulation can be used to calculate Vp . By observing the node voltages in Table 5.1,

Vp can be given as 0.7V .

Table 5.1: Vout1/Vin2and Vout2 node voltages for circuit in Figure 5.2 for varying Vgnd

Vgnd (mV ) 200 500 700 800 900
Vout1/Vin2(mV ) 200.01 500.01 700.63 808.61 980.87
Vout2(mV ) 999.98 999.99 999.99 999.95 992.64

To check whether Vp voltage will be the same for larger circuits, we simulate C880

ISCAS’85 benchmark circuit for different values of Vgnd . In Figure 3, we plot the

output node voltages of each gate presented in the circuit for different Vgnd values.

For lower Vgnd , all the output node voltages have their values either at Vgnd or Vdd .

At Vgnd = 0.7V , there are very less values which are different than Vgnd but the

difference is very less and can be treated as similar to Vgnd But, at Vgnd = 0.8V ,

the nodes with different voltages are in larger number, which significantly affect the

leakage calculation of whole circuit. This can also be verified by observing the tip of
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the bar at Vgnd value which is highly reduced from 0.7V to 0.8V . Vp value in this

case is also 0.7V which is same as the circuit in Figure 5.2. Now, we can say that if

different circuits consist of CMOS gates from same logic library, then the Vp value

will be same. One important observation can be made here is that the input gate

voltages of the CMOS gates in any circuit can be predicted only for Vgnd < Vp only.

For Vgnd > Vp , we can not use leakage models for CMOS gates due to unknown input

gate voltages.
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Figure 5.3: Fraction of number of CMOS gates presented in C880 ISCAS’85 bench-
mark circuit with output node voltages ranging between 0V to Vdd for varying Vgnd

For different values of sleep transistor parameters, Vgnd can be greater than 0.7V .
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We can not use leakage models due to unknown input values at non-primary gates

(Figure 5.3, Vgnd = 0.8v and 0.9v). Thus, KCL and KVL at Vgnd node can not be

applied. To accurately predict the leakage of larger CMOS circuits for 0 < Vgnd <

Vdd , accurate leakage values of CMOS gates must be used. However, in [4], Equation

(5.14) is used to calculate the leakage of a CMOS gate.

IN =


ÎN .e

−KNVgnd

0

Vgnd < Vdd − 4VT

Vgnd > Vdd − 4VT

(5.14)

Authors in [4] handle above situation by assuming zero leakage for higher Vgnd values.

This assumption may not be true for larger CMOS circuits because non-primary gates

will be in larger quantity, giving significant leakage of CMOS circuit. Error in leakage

modeling is propagated at higher level as leakage model for large circuits is prepared

from simple CMOS gates. Figure 5.4 shows the leakage of primary and non-primary

gates for two different input patterns with respect to the Vgnd voltage. The plot

suggests that the leakage of a circuit is still significant at Vgnd > Vp(0.7V ). Leakage

of the non-primary gates can not be neglected in comparison to primary gates because

their leakage contribution in total circuit leakage can be higher than primary gates as

shown in Figure 5.4.(a). Hence, zero leakage assumption for Vgnd > Vp is a limitation

of the model in [4]. In our methodology, we handle this situation by using leakage

models only for Vgnd < Vp and accurate SPICE simulation for Vgnd > Vp .

Our Contribution

• The leakage is characterized by SVM based regression models, which removes

the inaccurate assumption of exponential linear dependency of leakage current

of CMOS gates as a function of input voltages and Vgnd . This kind of model

is highly desirable because for different values of Vgnd , the input gate voltages

may take any value from 0V to Vdd.
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Figure 5.4: Leakage variation of primary and non-primary gates of C880 ISCAS’85
benchmark circuit as a function of Vgnd

• To develop SVM models, our methodology uses the accurate value of leakage for

all CMOS gates whether it is primary or non-primary for complete input range

varying from 0V < Vgnd < Vdd while previous reported models have neglected

the non-primary gates leakage for Vp < Vgnd < Vdd .

• SVM based regression methodology is used to develop static Vgnd models for

higher accuracy and efficient computation.
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• However, computations to generate training data using SPICE simulation for

regression based models may take longer time for larger CMOS circuits. We

develop a Vgnd partition based data generation methodology which uses SPICE

simulation for higher values of Vgnd and our leakage current models with bi-

section search algorithm for lower values of Vgnd . This methodology results in

significant saving of the model generation time. Unlike previous work, accurate

input voltages of CMOS gates are considered for complete range of Vgnd .

• SVM classifier is developed to partition the Vgnd voltage depending as function

of footer transistor parameters, providing the value of footer transistor param-

eters for which SPICE simulation is used (Vgnd > Vp) or our leakage current

models with bisection search algorithm (Algorithm 5.1) are used (Vgnd < Vp).

• SVM based regression models are developed for capacitance estimation at Vgnd

node i) due to CMOS gates as a function of input voltage and Vgnd voltage

ii) due to footer transistor as a function of input voltage (Vg), width (Wfooter),

threshold voltage (Vth,footer) and Vgnd voltage.

• Piecewise simulation based methodology is developed for dynamic Vgnd estima-

tion that efficiently uses the pre-developed leakage and static Vgnd models along

with extra capacitance models.

Figure 5.5 shows the flowchart describing our proposed methodology. Steps of the

proposed methodology in ‘Yellow’ boxes are independent of each other and can be

performed parallelly. In Section 5.2, transistor stacks are characterized using regres-

sion based SVM models for leakage estimation of CMOS gates. Section 5.3 elaborates

our equivalent stack identification method based on the input gate voltages and vir-

tual ground voltage. In Section 5.4, Support Vector Classification (SVC) model is

developed which tells us that for which values of input variables i.e. Vg, Wfooter,
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Figure 5.5: Proposed methodology for static Vgnd estimation

Vth,footer, our stack based leakage models can be used. Outputs from Sections 5.2, 5.3

and 5.4 are used in Section 5.5 with bisection search algorithm to develop final static

Vgnd model. A piecewise simulation based dynamic Vgnd estimation methodology

is developed which needs the capacitance models to calculate capacitance at virtual

ground node along with leakage models and static Vgnd model developed in previous

sections.

5.1 SVM for Classification Problem

SVM can be used for two types of problems i.e. Support Vector Classification (SVC)

and Support Vector Regression (SVR). In our work, we are using SVC for virtual

ground voltage estimation of power gated circuits in terms of footer transistor pa-

rameters. In previous Chapter, we have described SVR formulations to model perfor-

mance parameters. Formulations used for SVC are same as SVR except the values of

performance parameters. In SVR, actual values of performance parameters are used

while in SVC, it will be +1/-1. To the best of our knowledge, it is the first time that

we are applying LS-SVM for virtual ground or supply voltage estimation of power

gated circuits. SVC classifies the data into two sets in the multi-dimensional param-
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eter space depending on the constraints (Cf ). The feasible design space S ⊆ RN can

be defined as in Equation (5.15). Note that x is the vector for all design parameters.

S = {x : x ∈ RN , Cf} (5.15)

Feasible function, y(x ), can only take two values {+1,-1} depending on whether x ε S,

defined as:

ˆy(x) =


+1

−1

if x ∈ S

if x /∈ S
(5.16)

Now, consider that a set of training data samples {(x1, y1), (x2, y2), ...........(xk, yk)} ⊂

RN × R. Here, RN denotes the input space. xk is the input value (Vg , Wfooter ,

Vth,footer) and yk is the the corresponding target value in the form of +1 and -1 for

kth sample. The objective of SVC is to find a hyper-plane wTxk + b with maximum

separation of 2/ ‖ w ‖2 between the data points of +1 and -1 type classes as shown

in Figure 5.6. In high dimensional space, two classes may not be linearly separa-

ble. In LS-SVM classification, this problem is solved using kernel functions. Kernel

functions transfer the original data into another feature space. Linear classification

is applied to transferred input data into feature space. Kernel functions reduces the

complexity in separating two classes and gives better accuracy than Neural network

based approaches.

This problem is solved by formulating an optimization problem as follows.

P : minw, b =
1

2
wTw s.t. yk[w

Txk + b] ≥ 1 (5.17)

Here, the 1
2
wTw term denotes a cost function which is to be minimized for maximizing

the separation. However for the Least-Squares SVC, modification is done on the

target value such that an error variable ek is allowed so that misclassifications can be
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tolerated in case of overlapping distributions and following optimization problem is

formulated in the primal weight space for given a training set.

P : minJp(w, e) =
1

2
wTw + γ

1

2

N∑
k=0

e2k (5.18)

This formulation involves a trade-off between the cost function term and sum of

squared errors governed by the trade-off parameter γ.

yk[w
Tφ(xk) + b] = 1− ek, k = 1, 2......N (5.19)

To solve primal minimization problem, we construct the dual maximization of Equa-

tion (5.18) using the Lagrangian form.

D : maxαL(w , b, e, α) (5.20)

L =Jp(w, e)−
N∑
k=1

αk
{
yk[w

Tφ(xk) + b]− 1 + ek
}

(5.21)

Dual problem is developed by constructing Lagrangians - where αk ’s are the Lagranges
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multipliers. The conditions for optimality can be given as:



∂L
∂w

=0→ w =
∑N

k=1 αkykφ(xk)

∂L
∂b

= 0→
∑N

k=1 αkyk = 0

∂L
∂ek

= 0→ αk = γek, k = 1, 2.....N

∂L
∂αk

= 0→ yk[w
Tφ(xk) + b]− 1 + ek, k = 1, 2.....N

(5.22)

By eliminating ek and w through substitution, following solution can be obtained as

follows. 0 yT

y Ω + I/γ


b
α

 =

 0

1v

 (5.23)

Here, Ω = ZTZ and the kernel trick can be applied within α matrix as:

Ωkl = ykylφ(xk)
Tφ(xl) (5.24)

Ωkl = ykylK(xk, xl)......k , l = 1, 2....N (5.25)

The resulting SVC model will become as follows.

yk = sign

[
N∑
k=1

αkK(xk, x) + b

]
(5.26)

Here, K (xk , x ) is the kernel function and αk , b are solution of the linear systems. For

a function to be kernel function, it should be positive definite and must satisfy the

mercer condition for the problem to be convex and hence, giving unique and optimum

solution.
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5.2 SVM based regression models for leakage current

modeling of CMOS gates in power gated circuits

Stack based models have been proposed for leakage modeling in Chapter 3 of this

thesis but those were based on varying the process parameters for a given input vector

[54]. Since, in power gating case, the inputs of a CMOS gate can take any value out

of 3 values i.e. 0V , 1V and Vgnd . Thus, the number of models required will be very

large for leakage estimation of CMOS logic circuit. To remove this disadvantage from

previous work, we develop stack based models as a continuous function of input gate

voltages, Vgnd . To understand our leakage modeling methodology through stacks,

consider 3-input NMOS stacks as shown in Figure 5.7 with some of their possible

terminal voltage conditions for both primary and non-primary CMOS gates. Stack1,

Stack2, Stack 3 represent primary gate while Stack4, Stack5, Stack6, Stack7 represent

non-primary gate terminal voltage conditions. For non-primary gates, any input can

take Vgnd as input also. If all possible combinations are considered in discrete sense,

then a large number of models will be required. To remove this disadvantage, we

model subthreshold leakage (Isub) as a continuous function of input voltages of stack

by increasing the modeling space such that all possible combinations fall into this

space. For example, let us the assume that Vgnd = 0.1V for Stack4, then three inputs

1V , 0.1V and 0.1V will be applied to the stack. If Isub is modeled as a continuous

function of input voltages where inputs can be varied from 0V to 1V for given Vgnd =

0.1V then considered case will fall into modeled space. In our proposed methodology

leakage models can be applied for Vgnd < Vp , therefore Vgnd and input voltages can

take any value between 0V to Vp . We develop a transregional model, which combines

both ‘ON’ and ‘OFF’ conditions of transistors of a stack into single model. To develop

this model, input voltages of a stack and Vgnd is varied from 0V to Vdd . Another

advantage of the proposed model is that we do not need to remove ‘ON’ transistors
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from the ‘OFF’ stack. ‘ON’ transistors can have high voltage drop across them in

some cases such as Stack3, Stack4, thus affect the Isub significantly.

While developing transregional models, leakage current’s order can go from 10−12 to

10−6 for completely ‘OFF’ and ‘ON’ stack respectively. SVM may not be able to

model this large range and provides error in modeling leakage. Authors in previous

work suggest to model Isub current as a exponential linear or quadratic model form.

If we take log of the Isub current then the exponential linear or quadratic model can

be converted to simple polynomial model with linear or quadratic terms which is

easier to model with less complexity [2]. More terms can also be added to improve

the accuracy of the model. The larger difference between lowest and highest leakage

is suppressed to 6 to 12 only. This range is easier to model. Thus, modeling log

of leakage allows us to characterize lesser number of models with larger number of

parameters for larger range in a single model which consequently reduces the time to

develop the models and runtime for larger CMOS circuits.
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Figure 5.7: Possible terminal voltage conditions - NMOS stacks of primary and non-
primary gates

In this work, we assume that the maximum stack-size is 4, as higher order stack will

increase the delay of a gate due to increased logical effort. We have used conventions

for labeling transistor stacks as follows.

{stack type}{stack size}

147



Here, stack type indicates whether it is an NMOS stack or a PMOS stack. Stack size

represents the number of transistors on a stack.
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Figure 5.8: Characterized NMOS stack models in ground gating case

Figure 5.8 shows characterized transistor stacks for AND family of CMOS gates.

Similarly, transistor stacks for OR family of gates can also be described. We model

a transistor stack of each size of NMOS and PMOS type. Models n1 to n4 are for

CMOS gates in logic cluster whereas n1,f is for footer transistor, which is different

than model n1 with respect to the parameters used in the modeling. Now, we explain

the conservative model (Equation (5.30)) used in previous work and thus, leads to

errors in leakage modeling of CMOS gates. Consider a 2-transistor NMOS stack as

shown in Figure 5.8(c). Leakage current for each transistor in terms of input voltages,

Vgnd , and width of transistors on stack (Wstack) can be modeled as:


I1 = Î1.Wstack.e

k1Vdd+k2V in1+k3V 1 = Ileak

I2 = Î2.Wstack.e
k4V 1+k5V in2+k6Vgnd = Ileak

(5.27)

Dividing Equation (5.27).(a) with Equation (5.27).(b), we get:

m.ek1Vdd+k2V in1+k3V 1−k4V 1−k5V in2−k6Vgnd = 1 (5.28)
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Here, m = Î1/Î2. Intermediate node voltage V 1 can be calculated by solving Equation

(5.28), as represented in Equation (5.29).

V 1 = P.Vdd +Q.V in1 +R.V in2 + S.Vgnd (5.29)

Putting the value of V 1 in Equation (5.27), we get Ileak of stack as a function of input

gate voltages and Vgnd as in Equation (5.30).

Ileak = ˆIleak.Wstack.e
−A.V in1−B.V in2−C.Vgnd (5.30)

It should be noted that Equation (5.30) is obtained by neglecting the term (1−e−Vds/VT )

in Equation (2.12) and does not consider the effect of ‘ON’ transistors on ‘OFF’ stack,

which results in ∼20% error in leakage estimation of transistor stacks. To reduce this

error, we use SVM based regression models which are better modeling methods for

non-linear mapping of input to output parameters. Simulation data for regression

model is generated from SPICE tool. Figure 5.9 shows the fitted transregional curve

for n1 stack given in Figure 5.8(b). This transregional model shows smooth charac-

teristics in the considered input space, which is incorporated into SVM models with

high accuracy. The advantages of using SVM regression models are: 1) accurate and

reduced number of models, 2) consideration of effect of states of CMOS gates and

3) effect of ‘ON’ transistors in ‘OFF’ network. Our SVM based models can also be

used for leakage current estimation of CMOS consisting parallel combination of ‘OFF’

transistors or series of ‘OFF’ stacks. Width of the transistors is also added to the

model for leakage estimation of CMOS gates with parallel transistors i.e. AOI22,

AOI32, OAI22, OAI23. Methodology based on effective widths can be used to com-

bine parallel transistors based on input voltages [116]. In this work, we only consider

simple CMOS gates in logic clusters because most of the gates have simple parallel

structures such as- NAND gates, Buffers, NOR gates, OAI and AOI gates. To the
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best of our knowledge, it is the first attempt to calculate leakage of CMOS gates

in power gated circuits with a very less number of models considering actual node

voltage conditions during circuit simulation.

Figure 5.9: Fitted transregional leakage model for n1 stack in Figure 5.8 as function
on input voltages and Vgnd voltage

5.3 Finding the equivalent stack models of CMOS

gates

In this Section, we formulate some rules for finding the equivalent stack model of a

CMOS gate on the basis of the type of gate whether it is a primary or non-primary

gate and input to the gate because the input vectors have a significant impact on the

leakage current of a CMOS gate. We have also made following valid assumptions in

extracting stacks of CMOS gates.

• For Vgnd < Vp , one of the network either PDN or PUN is removed. Drop across

the PDN or PUN is very less and causes < 0.1% error in connecting Vdd or
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Vgnd to output node of the gate. Thus. the effect of removing PDN or PUN

on leakage is negligible [4]. This follows from the fact that drain to source Isub

is the cause of drop across that network. But, this current is negligible across

‘ON’ network and turns into negligible drop. The validity of our assumption is

confirmed in Figure 5.3, illustrating that all gates in CMOS circuit have their

output either at Vgnd or Vdd for Vgnd < 0.7V . This drop is very high for Vgnd

> 0.7V due to ‘OFF’ both PUN and PDN. We accurately consider this drop

by SPICE simulation in development of models.

• We have ignored the gate tunneling current (Igate) in the CMOS gates. Con-

sideration of gate tunneling current will increase the number of models and

characterization time. This assumption does not affect the stack extraction

methodology and Vp voltage. However, including it also increase the SPICE

simulation time in a similar manner and still our model has advantages over

SPICE simulation based methodology for data generation. In addition, Igate is

reduced by more than 25× in NMOS and more than 1000× in PMOS by intro-

duction of High-K dielectrics [117]. Isub is still a dominant leakage component

due to its dependence on temperature and short channel effects. Hence, adding

Igate is just adding the extra models to our methodology.

• In our methodology, while estimating dynamic Vgnd , input vector to the circuit

is assumed to be known and remains constant during mode transition. Power

gating technique is applied in the standby mode only because it causes the loss

in information saved at the output node of CMOS gates. In standby mode,

there is no point of changing the input vectors. Constant input vectors during

the circuit’s mode transition is a valid condition in power gated circuits. Same

condition has been assumed by many previous researchers also [4, 118, 119,

120]. To apply power gating during runtime, some circuitry is required for
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data retention of flip-flops [121]. Runtime power gating approach is completely

different than standby power gating approach where sleep periods are generally

very long. Dynamic Vgnd model is important which can estimate the time for

which sleep period should be applied such that the energy saved due to power

gating is higher than the energy consumed by the circuit going from wake-up

to sleep mode [4].

Identify Primary and non-primary Gates
In CMOS Logic

Primary Gate ??

Any input is Logic ’0’

Remove PUN and Connect Output Node
to Vdd

Vgnd < Vp

Remove PDN and Connect Output Node 
to Vgnd

Do Not Remove PDN and PUN.
Use SPICE Simulation for 

Leakage Calculation

Vgnd < Vp

Remove PUN and Connect Output Node
to Vdd

Yes

Yes

No No

Yes

Yes

No

No

Figure 5.10: Stack extraction - NAND family of gates; depending on the input as well
as Vgnd voltage
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Figure 5.11: Equivalent stack models - different input vectors of 2-input NAND,
ground gated
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A flowchart to extract stack for NAND family of gates is shown in Figure 5.10.

Consider a 2-input NAND gate as shown in Figure 5.11. In our methodology, we

remove either PDN or PUN based on the input voltages and Vgnd value. These rules

can be described as follows (The following rules are only for NAND family of gates.

Similarly , rules can be described for NOR family of gates):

1. For any primary gate, if any input to the CMOS gate is at logic ‘0’, then remove

PUN from that CMOS gate and connect output node to the Vdd because logic

‘0’ input will make the PUN ‘ON’. This rule is independent from the value of

Vgnd because it does not affect the gate to source voltage of PMOS transistors

in PUN.

2. For any primary gate, if all inputs are at logic ‘1’ and if Vgnd is less than Vp ,

remove PDN and connect output node to Vgnd otherwise don’t remove PUN

and PDN.

3. For any non-primary gate whose all inputs are outputs of preceding gates, re-

move PUN if and only if Vgnd < Vp because PMOS transistor in PUN makes

it ‘ON’ and output node can be connected to Vdd otherwise don’t remove PUN

and PDN.

Above rules can also be applied to parallel ‘OFF’ transistor stacks whether there

is only one ‘OFF’ transistor in each stack or multiple ‘OFF’ transistors with ‘ON’

transistors in a stack as shown in Figure 5.12. Equivalent model can be derived by

summing the currents from all the stacks as represented in Equation (5.31).

Istack,eq = Istack1 + Istack2 + Istack3 + ........+ Istackn (5.31)
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Figure 5.12: Parallel ‘OFF’ transistor stacks in CMOS gates

To apply above stack extraction rules in other technologies, we consider a transmission

gate (TG) based 2-input XNOR gate as shown in Figure 5.13. Power gating scheme

only reduces the subthreshold leakage current flowing from supply to ground. TG

based gates can not be connected directly to power gated footer/header transistor.

Generally, DTCMOS (Dual-threshold CMOS), MTCMOS (Multi-threshold CMOS)

techniques are used to reduce the leakage TG based circuits. However, CMOS gates

in TG based circuits (i.e. inverter in Figure 5.13.(a)) can be connected to power gated

transistor. Now we show that our stack extraction rules can be applied to TG based

circuits. One important observation on the input voltage of CMOS gates which can

be made here is that CMOS gates either have input voltages perfectly 0V /Vdd (In

case of primary gates) or Vgnd voltage at all inputs. TG based circuits also comes

under this category. To explain this, we first consider 2-input TG based XNOR gate

with two input cases as A=0, B=0 and A=0, B=1. For first case, TG1 is ‘ON’ and

TG2 is in ‘OFF’ condition. Value at intermediate node Vx is decided by ‘ON’ TG.

This makes the Vx voltage equal to the value at input ‘B’ i.e. Vx = 0V . Terminal

voltages for both TG’s TG1 and TG2 is shown in Figure 5.13.(b). Isub of TG1 will be

zero due to TG1’s ‘ON’ condition. TG2’s NMOS and PMOS transistors have terminal

voltages perfectly at 0V /Vdd. Leakage of both transistors in TG2 can be calculated

by our pre-characterized stack based models. For second input case, again TG1 and

TG2 is in ‘ON’ and ‘OFF’ condition respectively. Terminal voltage conditions for
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both TG’s are shown in Figure 5.13.(c). Pre-characterized stack models can also be

used in this case. The input voltage conditions for the inverters Inv1, Inv2 and Inv3

are same as the primary gates in power gated CMOS gates. Similarly, stack models

can be extracted for other input vectors also.

Vdd Vdd

A
A

B
B

Inv2Inv1

Vdd

A

A

A

B

B

Vx o/p
Inv3

TG1

TG2

Vx = 0

B=0

A=1 A=0

(b) TG terminal voltages

TG1

B=1

A=0 A=1

Vx=0

TG2

A=1 A=0
A=0 A=1

Vx=1 Vx=1

B=1

TG1 TG2

B=0
(c)  TG terminal voltages(A=0, B=1)

 (A=0, B=0)

(a) TG based XNOR gate

Figure 5.13: Transmission Gate (TG) based XNOR with terminal voltages of TG
under different input combinations
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Figure 5.14: Node Voltages under different Input conditions of 2-input TG based
XNOR gate

Now we consider case when the inputs of the TG’s are outputs of preceding gates.

Generally, inputs of any TG in the circuit will be from output of the inverter, whose

value will be either at Vgnd or Vdd for Vgnd < Vp . Let’s assume the value at input A
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and B is 0V and Vgnd < Vp respectively. One of the important properties of TG is

that it will pass any voltage ranging from 0V to V dd. This condition puts one of the

transistor either NMOS or PMOS of TG1 in ‘ON’ condition and Vx = Vgnd . These

transistor’s terminal conditions are same as the NMOS/PMOS transistors of power

gated CMOS inverter with input ‘1’/‘0’. Due to low resistance path provided by TG1,

source and drain voltages of TG1 are same and subthreshold leakage across this TG

will be zero. Input B̄ is the output of the CMOS inverter with input B. According to

the rule 3, output of inverter i.e. B̄ will be connected to Vdd . Terminal conditions of

transistor TG2 are perfectly defined and will be defined as shown in Figure 5.13.(b)

but with Vx = Vgnd . Leakage can be calculated using pre-characterized stack models

in this case also. Figure 5.14 shows the node voltages under different input conditions

of 2-input TG based XNOR gate. Node voltages in the circuit are perfectly defined

for Vgnd < Vp which takes one value from set of three values i.e. 0V , Vdd and Vgnd .

Same Vp rule and value is also applicable in TG based circuits. The only discrepancy

is in estimation of the node voltages for Vgnd > Vp .

Other technologies like Domino logic, Dynamic logic are variants of CMOS logic.

Already developed stack based leakage models can be used to apply power gating

methodology in theses technologies also. Our stack based methodology can be used

for a wide variety of technologies.

5.4 SVM classification for input space partitioning

based on Vp value

Before developing SVM classifier (SVC), we first need to check whether SVC is re-

quired or not in the given parameter space because Vgnd highly depends upon the

leakage i.e. input vector applied to the circuit. This can result in saving of character-

ization time. Singh et . al . [87] developed the first order Vgnd model as in Equation
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(5.32). This is required because for an applied input vector to the logic circuit and

footer transistor parameters maximum Vgnd is less than Vp . This step saves in char-

acterization time for Vgnd model generation.

Vgnd =
−Vg + SSlog10(

Wcircuit

Wfooter
) + (Vth,footer − Vthc) + ηVdd

2η
(5.32)

Here, Vg is footer gate voltage, Vth,footer , Wcircuit and Vthc, Wfooter are threshold

voltage and width of logic circuit and footer transistor respectively, η is the DIBL

coefficient and SS is the subthreshold slope. In this work, we are only considering

Vg , Wfooter , Vthf as design variables. Thus, maximum value of Vgnd will be for the

lowest value of both Vg and Wfooter and highest value of Vthf . If this maximum value

is greater than Vp , then only classifier is required. Next, we need to calculate Vp

value for which classifier is to be developed. According to our discussion in previous

sections, we can only use our models if and only if Vgnd < Vp and Vp is calculated

by varying Vgnd and observing the CMOS gate’s output voltages in the logic circuit.

Vgnd is varied until output voltages are at either Vdd or Vgnd . However, this is only

a one time process, which will be same for all CMOS circuits.

Since, our aim is to develop a model for Vgnd estimation as a function of input voltage,

width and threshold voltage of footer transistor. It will be very costly in terms of

modeling time to generate regression data directly from the SPICE simulation. As

we know, we can use our proposed leakage models for Vgnd < Vp . But, we do not

know the functional relation between footer transistor parameters and Vgnd . In this

work, we develop a classifier which can separate Vgnd values either less than Vp or

greater than Vp in the three dimensional space (input voltage, width and threshold

voltage of footer transistor). The original SVM classification problem can be used

here as follows: First of all, we define the feasible space i.e. Vgnd < Vp , for which

we can use our pre-characterized stack based models for data generation to formulate
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regression based models for Vgnd estimation in terms of footer transistor parameters.

The feasible design space S ⊆ RN based on feasible constrained Cf can be defined as

in Equation (5.33).

S = {xfooter : xfooter ∈ RN , Cf}; Cf = {Vgnd < Vp} (5.33)

Feasible function, y(xfooter), can only take two values {+1,-1} denoted as Class C1

(Vgnd < Vp) and Class C2 (Vgnd > Vp) depending on whether xfooter ε S, defined as in

Equation (5.34).

ˆy(x) =


+1

−1

if xfooter ∈ S

if xfooter /∈ S
(5.34)

5.5 SVM Regression models for Static Vgnd Estima-

tion

In the following section, we discuss about the development of SVM regression (SVR)

based surrogate Vgnd models using pre-characterized leakage models, SVC and bisec-

tion search algorithm. Our SVR model generation methodology starts with the initial

training data-set which is directly taken from the data used for SVC model with the

actual values of Vgnd instead of +1 and -1 as used in SVC model generation. We

can do this without incurring any error in models because SVC and SVR models are

completely independent. This process saves our time for data generation which can

be very high for larger CMOS logic circuits. At this point, the model is trained and

tested on testing data set. Accuracy of the model is calculated based on mean square

error (MSE) between model output Ytest,est and actual output Ytest using Equation

(5.35).

ERRORest = MSE(Ytest, Ytest,est) =
1

n

n∑
i=1

(Ytest − Ytest,est)2 (5.35)
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If the accuracy of the model is less than the desired accuracy, then new samples are

generated around maximum error sample. SVC selects whether our stack models or

SPICE simulation is used for the Vgnd estimation for these newly generated samples.

Now consider a CMOS logic circuit applied with some input vector. For the case

of Vgnd < Vp , we separate each gate according to the type and input pattern to a

particular CMOS gate. Suppose m1 gates of same gate type (GT ) have same input

pattern then leakage current for all those gates can be summed to single lumped

current source and can be represented as m1*GT1,leak. The total leakage current for

the logic cluster can be represented as in Equation (5.36).

ILC(logic− cluster) =
n∑
i=1

mi.GTi,leak (5.36)

m1 +m2 + ............+mn = N

Here, n and N are the total number of CMOS gate types and CMOS gates present in

the logic cluster respectively. The Vgnd estimation problem in static condition can be

defined as to find out the value of Vgnd for which leakage current of logic cluster and

footer transistor is same. The above problem can be solved using algorithm shown in

Figure 5.1.

Our algorithm 5.1 for Vgnd estimation in Figure starts with inputs as pre-characterized

stack based leakage current models and maximum virtual ground voltage Vp that

can be predicted using our models. Two parameters Vgnd ,high and Vgnd ,low define

the maximum and minimum value as Vp and 0V respectively. Another parameter

Vgnd ,start in line 3 defines the middle value in the search range. In line 4, our SVM

based regression surrogate models of leakage current are used for leakage estimation

of logic cluster and footer transistor which depends on current Vgnd,start value and

difference between logic circuit leakage and footer transistor leakage is calculated in

line 5. 4ID ,Max defines the maximum tolerable limit which can be possible between
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Algorithm 5.1 Bisection search algorithm to find virtual ground voltage value for
Vgnd < Vp

Input: Pre-characterized leakage current models, Vp (Maximum value than can be pre-
dicted using using our leakage current models)
Output: Virtual ground voltage (Vgnd)
1. Vgnd,high= Vp

2. Vgnd,low= 0V
3.Vgnd,start= ( Vgnd,high+ Vgnd,low )/2
4. Estimate ILC , Ifooter= f (Vgnd,start)
5.∆ID= ILC − Ifooter
6. ∆ID,Max= ∈
7.While ( |∆ID| ≥ ∆ID,Max ) do
8. If (∆ID > ∈) then
9. Vgnd,low= Vgnd,start

10. Else
11. Vgnd,high= Vgnd,start

12. end If
13. Vgnd,start= ( Vgnd,high+ Vgnd,low )/2
14. Estimate ILC , Ifooter= f (Vgnd,start)
15. ∆ID= ILC − Ifooter
16. end While
17. Vgnd = Vgnd,start

difference of logic circuit leakage and footer transistor leakage for a given Vgnd value.

If 4ID is positive and larger than the 4ID ,Max , then lower value ofVgnd , Vgnd ,low is

set to Vgnd ,start otherwise higher value of Vgnd is set to Vgnd ,start . Now, new Vgnd ,start

value is calculated by averaging the new Vgnd ,high and Vgnd ,low value. Performing the

steps in lines 9 - 13, reduce the search space half for the next iteration. This process

is repeated until difference in logic circuit and footer leakage is under tolerable limits.
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5.6 Extension of the proposed Static Vgnd model for

supply gating case

As first step, we need to calculate Vp voltage, which can be defined as the value of

virtual supply voltage (Vvdd) for which PUN is ‘ON’ for primary gate(In Figure 5.15,

transistor MP1) and PDN is ‘ON’ for non-primary gate(In Figure 5.15, transistor

MN2).

MN1 MN2

MP1

Vin1 Vout1

Vin2 Vout2Inv1 Inv2

MP2

Vdd

Vg

Primary gate Non-Primary gate

Vvdd

Figure 5.15: Input voltages estimation - CMOS gates with non-primary inputs in
supply gating

For Vin1 = 0V and Vvdd > Vp , PMOS transistor MP1 is ‘ON’ which makes the Vin2

similar as Vvdd. For Vgnd < Vp , MP1 is ‘OFF’, i.e. Vin2 resides at the little bit lower

value than Vvdd. Thus, Vin2 can be defined using Equation (5.37).

V in2 =


Vvdd

Vvdd −4V

Vvdd > Vp

Vvdd ≤ Vp

(5.37)

Here, 4V is defined as the voltage drop across PUN. To calculate Vp , we simulate

the circuit shown in Figure 5.15 for different values of Vvdd and observed the input

and output voltages of each gate in the circuit as shown in Table 5.2. At Vvdd= 0.3V ,

input of non-primary gate Inv2 is very close to Vdd and Vout2 is very close to ground

voltage. Hence, Vp voltage can be given as 0.3V . Same value of Vp is obtained by
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simulating larger circuits as done previously.

Table 5.2: Vout1/Vin2 and Vout2 node voltages - circuit shown in Figure 5.15 for varying
Vvdd and Vin1 = 0V

Vvdd (mV ) 200 300 400 700 900
Vout1/Vin2(mV ) 197.69 299.60 399.89 699.96 899.94
Vout2(mV ) 0.1425 0.0242 0.0064 0.0038 0.0083

In the second step, SVM regression based leakage models for transistor stacks shown

in Figure 5.8, are also need to be changed in supply gating case. In NMOS stacks of

Figure 5.8, drain voltage of top transistor was at Vdd and source voltage of bottom

transistor was varied according to Vgnd voltage. In supply gating case, drain voltage

of top transistor will be varied according to the Vvdd and source voltage of bottom

transistor will be at ground voltage as shown in Figure 5.16. Note that footer tran-

sistor model will be removed because the footer transistor will be converted to header

transistor i.e. PMOS transistor in this case. Similarly PMOS stack models can also

be described.

n1 n2 n3 n4

Vin1
Vin1

Vin2

Vin1

Vin2

Vin3

Vin1

Vin2

Vin3

Vin4

V1

(a) (b) (c) (d)

Vvdd
Vvdd

Vvdd Vvdd

Figure 5.16: Characterized NMOS stack models in supply gating

In the third step, rules for extracting equivalent stack models for CMOS gates should

be developed based on Vvdd and input voltages of CMOS gates.

Consider a 2-input NOR gate as shown in Figure 5.17. These rules can be described

162



VddVdd Vdd Vdd

0

0

0

00

0 0 0

1

1

1

1

1

1

1

1

(a) (b) (c) (d)

Vvdd Vvdd Vvdd Vvdd

Vg Vg Vg Vg

Figure 5.17: Equivalent stack models - different input vectors of 2-input NOR gate
in supply gating

as follows (The following rules are only for OR family of gates, similarly, rules can be

described for AND family of gates):

1. For any primary gate, if any input to the CMOS gate is at logic ‘1’, then

remove PDN from that CMOS gate and connect output node to the ground

node because logic ‘1’ input will make the PDN ‘ON’.

2. For any primary gate, if all inputs are at logic ‘0’, and if Vvdd is greater than Vp ,

remove PUN and connect output node to Vvdd, otherwise don’t remove PUN

and PDN.

3. For any non-primary gate, remove PDN if and only if Vvdd > Vp because NMOS

transistor in PDN makes it ‘ON’ and output node can be connected to ground

node, otherwise don’t remove PUN and PDN.

In fourth step, SVM regression based methodology can be used to highly accurate

stack models. In supply gating case, we can only use our stack models for Vvdd > Vp ,

thus SVC model needs to be developed in the next step. Vp value used in this case

will be 0.3V . In final step, final SVM regression based static Vvdd model is developed

using different models developed in previous steps with bisection search algorithm.
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Vvdd is to be searched in the range from Vp to Vvdd using bisection search algorithm.

It can be concluded that the accuracy and efficiency of the final static Vvdd model

will be of same order as static Vgnd model because both cases use same type of stack

models, SVC model and training samples are also same to develop all models.

5.7 Extension and use of ground gating and supply

gating static models in combined gating case

In combined gating case, header and footer transistors are applied simultaneously as

shown in Figure 5.1.(c). To develop the models for Vvdd and Vgnd , Vp values will be

same as the ground gating and supply gating case because we are using the same

type of CMOS gates in this case also. SVM regression based stack models and rules

to find equivalent stack models can be directly taken from both supply and ground

gating cases.

However, SVC model needs to be changed in this case. This is because both the

transistors can take any value from their design parameter space. If PMOS header

transistor is ‘OFF’, then there will be some drop across this transistor and Vdd voltage

will be different for the ground gated transistor which will also affect the Vgnd voltage.

Ground voltage will also be different for supply gated transistor. Thus, we need to

develop a classifier model for both Vgnd < Vp and Vvdd > Vp and can take header

and footer transistor parameters at the same time and separate the input parameter

space to use our leakage models. Final Vgnd and Vvdd model should also be developed

in terms of both header and footer transistor parameters. Since the number of input

parameters have been increased, more number of training samples are required which

will increase the model characterization time and runtime. However, the model char-

acterization time will be less compared to SPICE characterization time. In terms of

accuracy, SVM models are better than the analytical models and can handle high

164



dimensional model compared to the analytical models [4] [5].

5.8 Experimental Results

We have used LS-SVM toolbox which is an advanced version of SVM for improving

efficiency of the model. We have used RBF kernel K(x, xk) = exp(||x−xk||2/σ2) with

kernel function variable σ and regularization parameter γ as 1 and 10 respectively.

However, there may exist other kernels which may provide more accurate and less

complex models than we have considered in this Chapter. Adding more number

of kernels increases the characterization time to develop the final models. Thus,

choosing the number of kernels is a trade-off between characterization time, accuracy

and runtime of the models. We compared our results on different CMOS circuits in

28nm technology. Only Isub is considered in leakage current estimation of logic circuit

and footer transistor. Vgnd model is developed only in terms of Wfooter), Vg and Vth

of the footer transistor in the range of 28nm - 500nm, 0V - 0.25V and 0.35V - 0.5V

respectively. It should be noted that the maximum value of Vg for Vgnd model should

be selected for which footer transistor is in ‘OFF’ condition.

5.8.1 Accuracy and Efficiency Evaluation of Leakage models

This section evaluates accuracy and efficiency of proposed leakage current models. In

Figure 5.18, we compare MSE of 4-input NMOS stack model obtained through the

training data generated from different sampling techniques. It shows that the MSE of

adaptively trained model is lower and constant MSE is also achieved well before than

the fixed sampling based models. Our adaptive training methodology is able to reduce

the number of samples to achieve the same MSE as compared to the methodology

in [122]. Table 5.3 shows the accuracy of our characterized stack models in terms

of correlation coefficient and MSE with respect to SPICE output. We compare our
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Figure 5.18: Comparison of different sampling techniques - to train 4-input NMOS
stack model

Table 5.3: Comparing different sampling techniques - trained NMOS stack models
(All data given here is for minimum samples required to reach constant MSE point)

Model

Random Sampling Latin-Hypercube Sampling

NS
Tmodel

MSE ρ
T run

NS
Tmodel

MSE ρ
T run

(S) (mS) (S) (mS)

n4 1500 7.12 5.1357e-12 0.9925 0.3795 1200 4.71 4.1770e-12 0.9930 0.3045

n3 1500 6.32 1.0593e-12 0.9967 0.3690 1250 3.54 9.0554e-13 0.9975 0.3190

n2 1450 3.87 1.5680e-12 0.9970 0.3591 1100 2.86 9.3728e-13 0.9972 0.2790

n1 1300 2.71 7.3433e-13 0.9989 0.3193 1050 1.72 5.3456e-13 0.9991 0.2663

n1,f 1300 2.83 2.1215e-13 0.9987 0.3206 1100 1.94 2.0331e-13 0.9991 0.2786

Model

Adaptive Sampling (Li 2010) Adaptive Sampling (Proposed)

NS
Tmodel

MSE ρ
T run

NS
Tmodel

MSE ρ
T run

(S) (mS) (S) (mS)

n4 1200 106.26 1.1397e-12 0.9995 0.3045 1000 147.89 1.1414e-12 0.9995 0.2545

n3 1100 89.32 2.0549e-13 0.9995 0.2804 850 120.45 2.0798e-13 0.9995 0.2164

n2 1050 82.34 1.5671e-13 0.9996 0.2665 700 112.33 1.5690e-13 0.9996 0.1790

n1 900 70.76 9.3911e-14 0.9998 0.2291 550 82.78 9.4210e-14 0.9998 0.1418

n1,f 1000 73.45 1.0112e-13 0.9996 0.2447 600 88.40 1.0139e-13 0.9996 0.1543

NS→ Number of training samples, Tmodel→ Model Characterization time, ρ → Cor-
relation coefficient, MSE → Mean Square Error, T run→ Model Runtime
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adaptive training method with random sampling, Latin-Hypercube (LHS) sampling in

[86] and adaptive sampling in [122]. First column under all sampling methods denotes

the number of samples required to reach at constant MSE point. We use 5000 unseen

samples to test each model and this process is repeated for 100 times. Average MSE

and correlation coefficient in 100 trials is represented in Table 5.3. Our adaptive

training method gives same MSE as compared to [122] with less number of training

samples. Our methodology reduces the runtime of the stack models, consequently

reduces the runtime of the overall methodology. In our modeling method, training

time is higher due to training and testing of the models repetitively but the error of

models generated using adaptive sampling is very less compared to other sampling

methods. Model’s training time is higher for higher order stacks and simulation time

of stack model is heavily dependent on number of training samples. If different order

stack models are trained with same number of training samples then simulation time

of models is almost same, which indicates that the simulation time for stack models

is almost independent of the order of stack models. MSE between the output from

the model and log of leakage current is found to be of the order 10−6, while it is of the

order 10−12 with normal leakage current data. It should also be noted that in Table

5.3, we do not include the information related to PMOS stack models. In case of

PMOS stacks, training time and simulation time is approximately of the same order

because time factor does not depend upon the type of models, instead it depends

only on the number of training samples. In case of PMOS stacks, MSE and ρ are

also of the same order as in NMOS stacks. As discussed earlier, after neglecting

(1−e−Vds/VT ) term in the leakage current equation of a transistor, exponential linear

(EL) form as in Equation (5.30) and polynomial equation of 3rd order (poly3) can be

used to calculate leakage of a stack.

Figure 5.19 shows the fitted curve of the EL model in the form of a*exp(b*x) used

in [4] and poly3 model in the form of a+(b*x)+(c*x2)+(d*x3) used in [5] for Figure
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Figure 5.19: EL model [4], Poly3 model [5] and proposed model’s comparison for
different values of input voltage (Vin1) and virtual ground voltage (Vgnd) for single
transistor stack in Figure 5.8.(b). (a) Vin1 = 0V and Vgnd = 0V→1V (b) Vin1 =
0.4V and Vgnd = 0V→1V (c) Vin1 = 0.7V and Vgnd = 0V→1V (d) Vin1 = 1V
and Vgnd = 0V→1V

5.8.(b). These curves are obtained by curve fitting toolbox in MATLAB. At Vin1

= 0V and Vgnd varying from 0V to 1V , ρ with the SPICE data is 0.7217 for EL

model which increases to 0.9486 at Vin1 = 0.4V , thereby increasing the accuracy of

the model at middle range of input voltage. But on increasing input voltage further,

accuracy gets reduced. Correlation coefficient at Vin1 = 1V is found to be 0.6353.

Correlation coefficient for poly3 model continuously increases from 0.5779 at Vin1

= 0V to 0.9345 at Vin1 = 1V . As previously described that the input voltage and
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Vgnd can take any value from 0V to Vdd . Our experiments establish that neither

EL model nor poly3 model is able to fit the SPICE data accurately for complete

range of Vin1 and Vgnd . Thus, we need models that can calculate leakage for whole

ranges of input voltage and Vgnd . The error incurred using EL model and poly3

model can be larger for higher order stacks shown in Figure 5.8 due to higher number

of varying parameters. To develop highly accurate leakage models, SVM can be

used to accurately model high dimensional non-linear relationship between input and

output parameters. Our experiments justify the use of SVM models over EL and

poly3 models. We require very small number of leakage models in comparison to

previous work in [4, 5]. If there are M gates and i th gate has k i inputs, then a total

of
∑M

i=13
ki (3 values for each input i.e. 0V , Vdd , Vgnd) leakage models are required.

The important point here is how to reduce the number of leakage models without

sacrificing the accuracy. Our stack models for CMOS gates are a continuous function

of input voltages, width of transistor and Vgnd . We only require total 9 stack models to

calculate the leakage of both CMOS circuits comprising of NAND4, NAND3, NAND2,

NOR3, NOR2, INV, AOI22, AOI23, OAI22, OAI32 gates and footer transistor.

Here, we do not vary the V th of the transistors in the logic circuit. Typically, this is

the case with all leakage modeling methodologies, i.e. more granularity in model pa-

rameter is obtained at increased characterization time. SVM based regression models

are more suitable for high dimensional modeling rather than analytical techniques

[82]. Adding more parameters of logic circuit like width, threshold voltage only in-

creases the number of samples required to develop final model. It does not change

any step of the proposed methodology. However, the adding of parameters to any

model depends on which kind of parameters are taken into consideration. Suppose

for example, temperature analysis of power gated circuits may require temperature

related parameters to be added into the model. However, SVM based models can

easily handle this non-linearity with the addition of more dimensions to the model.
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Table 5.4: Coefficient values in fitted models of [4] and [5]

[4] [5]
a b a b c d

1.231e-8 -5.586 1.258e-8 -6.474e-8 1.134e-7 -6.449e-8

Figure 5.20 shows circuit diagram of C17 ISCAS’85 benchmark circuit and its corre-

sponding stack models for input vector ‘00000’. Equivalent stack models are developed

based on the rules described in Section 5.3. Equivalent stack models are only valid

for Vgnd < Vp , hence we compare our results with SPICE results in this range only.

Figure 5.21 shows the comparison of leakage current of the logic cluster for different

Vgnd values using models in [4], [5] and our model. Fitted curve of model in [4] and

[5] is obtained in EL and poly3 form using curve fitting toolbox of MATLAB. It can

be concluded that our model accurately matches with the SPICE output compared

to the large error of model [4] and [5]. Table 5.4 shows the fitting coefficients in the

obtained equations for the models in [4] and [5] and Figure 5.21 shows the fitting

curve. The error in leakage modeling is higher for lower values of Vgnd which is due to

neglecting (1−e−Vds/VT ) term in the leakage current equation for model in [4], This

error is larger for the model in [5] in complete range of Vgnd due to truncated repre-

sentation of the exponential terms with polynomial terms in a predetermined order

of the equation.
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Figure 5.20: C17 circuit diagram and its equivalent stack model representation for
input ‘00000’
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Figure 5.21: Comparing EL model [4], Poly3 model [5] and our method for C17 circuit
with input vector ‘00000’

5.8.2 Gate level Static Vgnd Model

In this section, we verify the accuracy and efficiency of our model at gate level. We

performed our experiments on AND8 gate [4]. We compare our results with SPICE

for input vector ‘01001000’. Primary gates G1, G2 and G3 are derived from NAND

family of gates. According to the rules, PUN is removed because at least one input

at logic ‘0’ makes PUN conducting. This connects outputs A, B and C to Vdd . Since

G4 is a non-primary gate and is from OR family of gates, for Vgnd < Vp , PDN is

‘ON’, which is completely opposite to the case of NAND family of gates. Equivalent

stack model is presented in Figure 5.22.

Before developing the SVM regression based Vgnd model, first we need to check

whether SVM classifier is required or not. Maximum Vgnd value that can be achieved

for this case is evaluated for minimum value of both gate voltage and width of footer

transistor. For ‘01001000’ input vector, maximum Vgnd is 115mV , hence no classifier

is developed for this case. In general, for small gates, maximum Vgnd value in the
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Figure 5.22: (a) AND8 gate (b) Equivalent stack model representation; for input
‘01001000’

design parameter space is less than Vp . Based on the equivalent stack models, leakage

current can be written as in Equation (5.38).

Ileak,AND8 = Ileak,G1(n2) + Ileak,G2(n3) + Ileak,G3(n3) + Ileak,G4(p3) (5.38)

Equivalent stack model gives MSE of 3.34*10−6 and ρ of 0.9998 using proposed SVM

model while EL model’s MSE and ρ are 0.0651 and 0.416 respectively and model

evaluates Vgnd value in 0.053 msec. Although, runtime of EL model is less but SVM

model completely outperforms the EL model in terms of accuracy. Next, regression

data is to be generated for development of final Vgnd model. Initially, 100 random

samples are generated in the design parameter space to train the SVM model. Then

new samples are generated around maximum error sample. Maximum 350 samples

have been used to train final Vgnd model. For every set of design parameters, algo-

rithm in Figure 5.1 is used to find Vgnd value. This algorithm estimates Vgnd faster

than SPICE simulation which saves our data generation time. Our method takes

4.34 sec. and SPICE simulation will take 11.32 sec. to generate the final Vgnd model.

Thus, proposed model takes 3× less characterization time. The model is also compu-

tationally efficient. Simulation time of our Vgnd model is 0.093 msec. while SPICE

simulation takes 28.57 msec. Our model is 307× faster than SPICE and accurately

matches the results with SPICE as shown in Figure 5.23. We do not compare our
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results in terms of mean square error of final Vgnd model with poly3 model at gate

and circuit level because of the following two reasons.

• Since poly3 models are highly inaccurate and out of 3 roots, one root can be

real and other two roots are imaginary. But for some cases, real root is not in

the range from 0V to Vdd .

• for some cases, all three roots are real and it is very hard to identify the actual

Vgnd value, discarding the others.

Thus, we are unable to find the actual mean square error using Poly3 model. For

runtime comparison, Poly3 model equation is solved in MATLAB. Poly3 model takes

0.063 msec. to calculate one Vgnd value, which is higher than EL model and less than

SVM model.
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Figure 5.23: Correlation curve between our AND8 gate Vgnd model and SPICE; 5000
test samples
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5.8.3 Circuit level Static Vgnd model

To apply power gating at circuit level, several configurations have been proposed

which provides trade-off between parameters such as - area, performance, maximum

switching current. A centralized scheme is proposed in [123] to insert footer tran-

sistors, which suffers from large interconnect resistance between blocks with large

distances. Cluster based approach is proposed to simultaneously reduce dynamic and

leakage power [124]. Distributed footer transistor based approach (DSTN) is devel-

oped, which is compatible with timing-driven placement as well as reduces area for

both footer transistors and wires [125]. To verify circuit level Vgnd model, DSTN

method is selected. We evaluate our model on ISCAS’85 benchmark circuits and

compare simulation results with the SPICE results. Figure 5.24 shows the circuit

level DSTN methodology, consisting n number of clusters with n footer transistors.

Each footer can be modeled with one current source Ifooter,n. All footer transistors

can be modeled as a single current source Ifooter.
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Figure 5.24: Circuit level DSTN method for Static Vgnd estimation

We verify the proposed static V gnd model on ISCAS’85 benchmark circuits. Maximum

100 training samples for SVC and 350 samples for SVR Vgnd model are used. Table
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5.5 and 5.6 show the results of proposed final static V gnd model and EL model [4].

In Figure 5.21, leakage from our model for C17 circuit is very small w.r.t. HSPICE

and average error for Vgnd model of C17 circuit is 0.14%. For all circuits, error in

Vgnd voltage is due to cumulative error of leakage, SVC and SVR models. For larger

circuits, maximum error is always less than 0.8%, 13× lower than the previous work in

[4]. This comparison is based on 5000 test samples across 100 input vectors. Column

2 of Table 5.5 shows time required to develop circuit level V gnd model, combining the

time of data generation to develop both SVC and SVR models. Total modeling time of

the proposed approach will be the summation of SVC and SVRmodel generation time.

Proposed stack models with SVC help in reducing time to generate the samples for

SVR model of Vgnd, which significantly reduces total modeling time without degrading

the accuracy.

Table 5.5: Circuit level static Vgnd model results (Model generation time, Error in
Vgnd estimation, Model evaluation time) for ISCAS’85 benchmark circuits

Circuit

Model generation time Error (%) for Vgnd estimation
# HSPICE Proposed [4] Proposed

Gates (without (with SVC)
max avg

(without SVC) (with SVC)
SVC) SVC SVR max avg max avg

C17 6 7.44 3.13 2.57 7.01 5.93 0.17 0.10 0.25 0.14
C432 261 114.21 32.63 14.82 6.29 4.21 0.15 0.10 0.22 0.11
C880 383 140.81 40.23 16.63 10.92 9.42 0.29 0.14 0.43 0.26
C1908 972 231.52 66.15 14.44 6.72 4.57 0.40 0.22 0.55 0.38
C2670 1211 359.11 102.60 23.91 11.89 10.33 0.44 0.27 0.57 0.39
C6288 2351 527.63 125.75 25.7 10.78 9.01 0.72 0.58 0.80 0.73
C7552 3624 766.23 218.92 38.98 13.47 12.27 0.63 0.41 0.75 0.69

SVC and SVR models are trained with different number of samples, therefore runtime

of both the models is different. Testing sample in input space are only simulated

from final SVR Vgnd model. Thus, runtime of the proposed approach is only decided

by final SVR Vgnd model. From Table 5.6, Our model’s runtime is approximately

same for all circuits because model’s runtime mainly depends on number of training
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Table 5.6: Circuit level static Vgnd model results (Model evaluation time, Speedup
and Error in energy estimation) for ISCAS’85 benchmark circuits

Circuit

Model Evaluation time (mS) Speedup (×) Error (%) for
#

HSPICE [4] Proposed [4] Proposed
energy estimation

Gates
[4] Proposed

C17 6 24.80 0.053 0.093 468 266 10.29 2.79
C432 261 325.69 0.054 0.093 6031 3502 8.66 2.56
C880 383 401.20 0.055 0.093 7295 4314 13.78 2.95
C1908 972 660.10 0.056 0.091 11787 6948 8.79 3.28
C2670 1211 1025.71 0.052 0.091 19725 11271 15.33 3.36
C6288 2351 1505.67 0.053 0.090 28409 16729 13.13 4.08
C7552 3624 2188.56 0.050 0.095 43771 23037 17.45 3.69
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Figure 5.25: Correlation curve of C7552 benchmark circuit Vgnd model; 5000 test
samples from 100 different input vectors

samples and variables in the training data. Both parameters are same in all circuits.

Model has maximum runtime improvement of 23037× on largest benchmark circuit

i.e. C7552 circuit, which is likely to be improved on larger circuits. Figure 5.25 shows

that Vgnd values calculated from our model highly matches with the SPICE results.

for EL model, error in Vgnd estimation is larger for higher Vgnd due to incorrect
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assumption of applying Vgnd to the inputs of CMOS gates in the circuit. Accuracy

of the EL model is higher for large circuits but less for small circuits like C17 ISCAS

benchmark circuit. Thus, it can be said that EL model’s accuracy is highly circuit

dependent.In our case, it is circuit size independent. EL model has advantage of

better runtime (∼2× improvement) compared to our model, however the accuracy of

our model is higher than EL model.

Authors in [87] provided a first order formula to calculate wake-up energy consump-

tion. If total capacitance at Vgnd node due to both logic circuit and footer transistors

is denoted by Circuit , then wake-up energy can be estimated as in Equation (5.39):

Ewake−up =
1

2
CcircuitV

2
gnd (5.39)

Accuracy of Vgnd model directly affects the accuracy of trade-off analysis between

leakage saving in sleep mode and wake-up energy consumption. In our work, we have

applied our Vgnd model and earlier model to calculate Ewake−up . Last column in Table

5.5 shows the error in energy estimation. Our model results in average 3.5% error,

compared to 13% in previous work. In this work, we are only developing accurate

Vgnd model, thus error in energy estimation in our case is due to first order energy

model and inaccurate capacitance (capacitance will also change with Vgnd , can not

be defined by a single value).

Since, BSIM4 models in 28nm technology are used to relate footer transistor param-

eters to Vgnd voltage. Our proposed model is technology dependent because fitting

parameters are extracted using the regression data generated in that technology us-

ing SPICE simulations. However, the model development methodology is technology

independent and can be used in any technology node with any device model i.e.

BSIM4, PSP etc. In more advanced technology nodes than 28nm, non-linearity re-

lated to Vgnd model in parameter variation space may be higher, which may require
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more number of samples than the model in 28nm technology node for the same accu-

racy. If the number of samples are higher, then the runtime of the model will also be

higher due to increased number of computations required to evaluate the model. One

important advantage of our model is that it does not presume any kind of underlying

model like exponential linear or poly3 model which is highly required to increase the

accuracy of the model. Our model is a kind of dynamic model whose runtime and ac-

curacy depends upon the training data and has the ability to model highly non-linear

performance parameters in the input parameter space.
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Figure 5.26: Runtime of Static Vgnd model in 22nm and 28nm technologies for varying
number of training samples

In the development process of SVM models, we want to use minimum possible number

of training samples to reduce the runtime of the models for Vgnd estimation. Equation

(5.26) and Equation (4.11) are used to evaluate the value of unknown samples in SVC

and SVR models respectively. The number of αk values is directly proportional to

the number of training samples. These αk values affect the computations required to

evaluate the newly generated samples (i.e. other than training data).

Figure 5.26 shows the variation in the runtime of static Vgnd models in 22nm and

28nm technologies for increasing value of training samples. Linear curve fitting is
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used in MATLAB toolbox for both models. Runtime linearly increases with the

increasing number of training samples to develop the model. Runtime difference

between the models is almost same between both technologies. Runtime complexity

for both models is O(n), however, the runtime of 22nm model is a little bit higher

than 28nm model due to the higher value of fitting parameters. Furthermore, in

advanced technologies, complexity will also be O(n) but there may be variations in

the fitting parameters. The above experiment clearly shows the our SVM model’s

runtime is mainly dependent on the number of training samples, not on the number

of variables and process technology nodes. In the proposed methodology, maximum

sampling points is the key for accuracy and efficiency. We have used adaptive sampling

based methodology both in classification and regression to iteratively generate the

samples for training of the model. Since the dependence of Vgnd on footer transistor

parameters is same for all circuit, using the same number of samples for all circuits

provides us the sufficient accuracy and efficiency of the model. If the complexity of

the model is increased by increasing the number of model parameters, then it will

require more samples to prepare the model. The proposed methodology is consistent

with the generally used regression based analytical equation models [21], which will

also require higher number of samples to increased complexity. Thus, there is no

specific rule in selecting the maximum samples to train model. However, the adaptive

sample generation methodology is more accurate and efficient than fixed samples

based methodology.

5.8.4 Effects of SVC model on Accuracy, Runtime and Mod-

eling time of Vgnd model

We conducted three set of experiments to analyze the effects of accuracy of Support

Vector Classification (SVC) model on accuracy and modeling time of the proposed
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Vgnd model. For this purpose, we assume 0% to 100% misclassification in the step

size of 5%. Misclassification of 0% corresponds to our proposed methodology.

Case (I) is defined as the training samples from Vgnd < Vp space are misclassified

as Vgnd > Vp . In this case, more number of training samples need to be simulated

through SPICE instead of proposed leakage models to obtain Vgnd voltage. It in-

creases the accuracy of Vgnd model but at the cost of increased modeling due to the

increased use of SPICE simulations. Error reduction and modeling time increment

for case (I) can be verified from Figures 5.27.(a) and 5.27.(b).

Case (II) is when the training samples from Vgnd > Vp space are misclassified as

Vgnd < Vp . As suggested by SVC model that we should use our leakage models with

algorithm in Figure 5.1. But, our leakage models are only valid for Vgnd < Vp range

and can generate only samples with Vgnd < Vp values. To avoid this problem, we

initially compare leakage of logic circuit with leakage of footer transistors at Vgnd =

Vp . Evaluation of this condition results in negligible increase in modeling time. If

the leakage of logic circuit is higher than footer transistor then we assume that the

sample is misclassified and we keep it in Vgnd > Vp range and simulate it through

SPICE to obtain Vgnd voltage. This condition is checked for each training sample.

There is a negligible increase in both modeling time and error for case (II), as can be

verified from Figures 5.27.(a) and 5.27.(b).

In Case (III), training samples from Vgnd < Vp space are misclassified as Vgnd >

Vp and vice-versa. Error and modeling time in this case is approximately equal to

case (I) because these parameters in case (II) are same for all misclassification rates,

as shown in Figures 5.27.(a) and 5.27.(b).

To clarify the effectiveness of SVC on proposed approach, we use separate sub-columns

as without SVC and with SVC under both modeling time and Error column in Table

5.5. Model generation time for proposed approach is also divided into SVC and

SVR model generation time. Total modeling time of the proposed approach will be
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Figure 5.27: Effect of SVC misclassification on (a) Accuracy (b) Modeling time of
Vgnd model

the summation of SVC and SVR model generation time. Addition of SVC model

significantly reduces modeling time without degrading the accuracy.

SVC model is generally given as in Equation (5.40):

yk = sign

[
N∑
k=1

αkK(xk, x) + b

]
(5.40)

Here, K (xk , x ) is the kernel function and αk and b are solution of the linear systems.

Total modeling time of the proposed approach is also affected by runtime of SVC

model. If SVC model is trained with higher number of samples than our approach

(100 samples), then SVC model generation time and time required to classify the

training sample is also high because more number of αk in Equation (5.40) are used

to classify a sample. Figure 5.28 shows the effect of number of training samples used

to build the SVC model. Modeling time linearly increases w.r.t. number of training

samples. Thus, our overall experiments related to SVC model imply that the runtime

and accuracy of the proposed SVC model impacts modeling time without degrading

the accuracy of Vgnd model.

181



100 150 200 250 300
200

300

400

500

600

700

800

# Training samples

M
o

d
el

in
g

 t
im

e 
(S

ec
.)

Figure 5.28: Effect of SVC training samples on modeling time of Vgnd model

Total modeling time of the proposed approach is also affected by runtime of SVC

model. If SVC model is trained with higher number of samples (100 in this work), then

SVC model generation time and time required to classify training sample is also high

because more number of αk in Equation (5.40) are used to classify a sample. Figure

5.27.(c) shows the effect of number of SVC model training samples. Modeling time

linearly increases w.r.t. number of training samples. Thus, our overall experiments

related to SVC model imply that the runtime and accuracy of the proposed SVC

model impacts modeling time without degrading the accuracy of Vgnd model.

The value of Vp used to build SVC model also affects the accuracy and modeling

time of the proposed approach. If Vp > 0.7V , then less number of SPICE simulation

will be required due to the reduction of Vgnd > Vp space and maximum samples can

be evaluated using proposed leakage models. It will have the advantage of reduced

modeling time but there will be negligible reduction in the accuracy due to the use

of accurate leakage models in larger Vgnd < Vp space. If Vp < 0.7V , then SPICE

simulations will be used for larger number of input samples. It will increase the

modeling time but also improve the accuracy of the model.
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5.9 Summary

In this Chapter, SVM based regression models are discussed for leakage characteriza-

tion of transistor stacks in power gated circuits. These surrogate models remove the

inaccurate assumption of exponential linear and polynomial functional dependency

of leakage current of CMOS gates as a function of gate input voltages and V gnd. This

kind of model is more appropriate because the input gate voltages, which are the

outputs of preceding gates may take any value from 0V to V dd for different values of

V gnd. To develop SVM models, our methodology uses the accurate value of leakage

for all CMOS gates, whether it is primary or non-primary for complete input range

varying from 0V < V gnd < V dd. However, previous models had neglected the leakage

of the non-primary gates for higher V gnd voltages. Adaptive training sample selection

scheme used to prepare SVM models is shown to be more accurate than random sam-

pling and Latin Hypercube Sampling (LHS) based technique. SVM based regression

methodology is used to develop static V gnd models for higher accuracy and efficient

computation. However, for regression based models, computations required to gen-

erate training data using SPICE simulation may take longer time for larger CMOS

circuits. We proposed a methodology, which results in substantial saving in model

generation time and develop a partition based V gnd data generation algorithm, which

uses SPICE simulation for higher values of V gnd and our leakage current models with

bisection search algorithm for lower values of V gnd. SVM classifier model is proposed

to partition the V gnd values depending on footer transistor parameters. It divides the

input parameter space into two partitions. For one partition, SPICE simulation is

used whereas for other partition, our leakage current models with bisection search al-

gorithm are used. SVM regression based models are proposed to estimate static V gnd

value with high accuracy providing average mean square error of the order 10−6 and

average correlation coefficient higher than 0.9996. SVM regression based models are

proven to be more accurate than analytical models due to use of actual device equa-
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tions without neglecting any term. SVM surrogate models for leakage current and

SVC save 3× simulation time for sample data generation with high accuracy for final

static V gnd model. Our static V gnd model is 23000× faster than SPICE for largest

C7552 ISCAS’85 benchmark circuit. The proposed methodology is also applicable to

other logic styles like Pass-transistor logic (PTL), Dynamic logic, Domino logic.
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Chapter 6

Surrogate Models for Dynamic

Virtual Ground Voltage Estimation

The characteristics of ground gated circuit during mode transition is shown in Figure

6.1. Voltage at virtual ground node increases from lower value to higher steady

state value. The shape and steady state voltages of dynamic Vgnd depends on the

parameters of footer transistors. In previous Chapter, our aim was to calculate Vgnd

in steady state mode.

Logic Cluster

(Vgnd)

F
oo

te
r

 
(Vg)

Vdd Vg

Vgnd

Mode Transition Steady state

Steady state
Vgnd

Ceq

Region k

k-

k+

Figure 6.1: Dynamic Vgnd in ground gated circuits

In this Chapter, we describe that how effectively our leakage models and static Vgnd

model in Chapter 5 can be used for dynamic Vgnd estimation. Our contributions are

185



as follows.

• SVM based regression models are developed for capacitance estimation at Vgnd

node i) due to CMOS gates as a function of input voltage and Vgnd voltage

ii) due to footer transistor as function of input voltage (Vg), width (Wfooter),

threshold voltage (Vth,footer) and Vgnd voltage.

• Piecewise simulation based methodology is developed for dynamic Vgnd estima-

tion that efficiently uses the pre-developed leakage and static Vgnd models along

with extra capacitance models.

Bisection Search
Algorithm

Equivalent Stack 
identification for

for CMOS Gates in 
Logic Circuit 

Piecewise Dynamic Vgnd Model
SVM Regression based 

Capacitance model

Dynamic Vgnd model

SVM Regression Model for
 leakage characterization

CMOS Gates

SVM Classification
 Model to classify Vp Value 

in input space

SVM Regression model for final 
static Vgnd Model

Figure 6.2: Proposed methodology for dynamicVgnd estimation

Figure 6.2 shows the flowchart describing our proposed methodology for dynamic Vgnd

estimation. A piecewise simulation based dynamic Vgnd estimation methodology is

developed which needs the capacitance models to calculate capacitance at virtual

ground node along with leakage models and static Vgnd model developed in Chapter

5.
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6.1 Capacitance Models and Piecewise Simulation

Method for Dynamic Vgnd Estimation

Virtual ground node capacitance affects the timing characteristics of Vgnd , thereby

changes the energy consumed in mode transition of power gated circuits. Capacitance

at virtual ground node is a strong function of input vector applied to logic circuit and

footer transistor parameters. Thus, accurate equivalent capacitance (Ceq) as shown

in Figure 6.1, due to both footer transistors and CMOS gates in logic circuit needs to

be considered at virtual ground node to obtain accurate dynamic Vgnd characteristics.

Capacitance Ceq can be calculated by summing capacitance due to logic cluster (CLC)

and footer transistor (Cfooter). The charging current across Ceq can be given as in

Equation (6.1).

ICeq = Ceq
dVgnd

dt
= ILC − Ifooter (6.1)

Here, ILC and Ifootter are the leakage current components across logic cluster and

footer transistor. To calculate Vgnd from 6.1, Ceq, ILC and Ifootter must be modeled

in terms of Vgnd . ILC and Ifootter models can be directly imported from Section

5.2 but capacitance models are need to be developed. Since, capacitance at output

nodes of CMOS gates affect the virtual ground node capacitance, hence we can not

remove the PDN or PUN and Ceq is modeled using two types of model i.e. one for

CMOS gates and other for footer transistor as shown in Figure 6.3. CMOS gate

capacitance Cgate at virtual ground node is function of input voltages, Width and

Vgnd whileCfooter is modeled as function of footer transistor parameters (Vg, Vth,footer,

Wfooter) and Vgnd . Total N+1 models are required. Where, N represents the number

of CMOS gates in a standard cell library composed of basic gates such as NAND2

NAND3, NOR2, NOR3 etc. (Ref. Table 6.1) and CMOS gates consisting parallel
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or stack of parallel transistors such as AOI22, AOI32, OAI22, OAI23. One model

is required for footer transistor. Capacitance models are a continuous function of

input voltages like leakage models and hence, cover all input pattern cases which

can appear at the input of CMOS gates and footer transistor. Capacitance at Vgnd

node is a weak non-linear function of input terminal voltages and Vgnd voltage and

it does not depend on ‘ON’ or ‘OFF’ condition of transistors, instead it depends

only on the potential difference across two terminals. Thus, we can vary input and

Vgnd voltages from 0V to Vdd in single model. SVM based regression models are

used for capacitance models. Previously, capacitance at any node was assumed as

linear function of gate to source voltage Vgs [126] but it is not true. In actual, Cgate

model will be a non-linear function of input voltages, Width and Vgnd . Cfooter will

be non-linear function in terms of footer transistor parameters. SVM models are able

to capture this non-linearity with high accuracy. Since, SVM models are black-box

models and we do not know the equations relating Ceq, ILC and Ifootter in terms of

Vgnd . So, we develop piecewise simulation based model for dynamic Vgnd estimation.

As explained in Section 5.3, during mode transition input vector is constant because

of standby mode of operation. We derive our methodology in the following steps.

 

Vdd

+
−

CMOS gate

Vgnd

C

+ −

Vgnd

Vg
Footer

C
footer

= f(Vg, Vth, W, Vgnd)
gate= (Vin, W, Vgnd)

Figure 6.3: Models for capacitance modeling at virtual ground node

Step (1) - Divide Vgnd from 0V to Vp into k regions as shown in Figure 6.1. k

determines the trade-off between the runtime and accuracy of the model.

Step (2) - Find Capacitance C k
eq at virtual ground node for a given input vector
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(i) with N CMOS gates in logic cluster and M footer transistors (Consider DSTN

method) at lower (k−) and higher (k+) value of region k as shown in Figure 6.1.

Ck
eq = Ck

LC + Ck
footer (6.2)

Here,

Ck
LC = Ck

gate,1 + Ck
gate,2 + .........+ Ck

gate,N (6.3)

Ck
footer = Ck

footer,1 + Ck
footer,2 + .........+ Ck

footer,M (6.4)

Calculate average C k ,avg
eq as in Equation (6.5).

C k ,avg
eq = (C k−

eq + C k+

eq )�2 (6.5)

Step (3) - Calculate average charging current, I k ,avg
Ceq

using Equation (6.6).

Ik,avgCeq
= Ik,avgLC − Ik,avgfooter (6.6)

Here,

IkLC = Ikgate,1 + Ikgate,2 + .........+ Ikgate,N (6.7)

I k ,avg
LC = (I k−

LC + I k+

LC )�2 (6.8)

Ikfooter = Ikfooter,1 + Ikfooter,2 + .........+ Ikfooter,M (6.9)

I k ,avg
footer = (I k−

footer + I k+

footer)�2 (6.10)

Step (4) - In each region k , we consider a constant leakage across logic cluster and

footer transistor. From Equation (6.1), average charging current in region k can be

given as follows.

Ik,avgCeq
= Ck,avg

eq

dVgnd

dt
= Ik,avgLC − Ik,avgfooter (6.11)

189



Vgnd − Vgnd

T k+ − T k−
=
Ik,avgLC − Ik,avgfooter

Ck,avg
eq

(6.12)

T k
+ − T k− = (Vgnd − Vgnd).

Ck,avg
eq

Ik,avgLC − Ik,avgfooter

= α (6.13)

T k
+

= T k
−

+ α (6.14)

Equation (6.14) estimates the time duration that circuit takes in charging virtual

ground node from Vgnd to Vgnd . T k− for first region will be 0 sec. T k+ of each region

will be T k− for the region k + 1 .

Step (5) - In step (1), we only partition the Vgnd range from 0V to Vp because we

do not know about the inputs of CMOS gates in the circuit and hence, we are unable

to find capacitances and currents during Vgnd > Vp . Here, our static Vgnd model

plays an important role. At Vgnd = Vp , we know the capacitance and currents at

virtual ground node and at steady state Vgnd , the current across Ceq will be zero. The

current across logic cluster will be same as footer transistor. Thus, leakage across logic

cluster can be calculated without simulating it. From Figure 6.4, it can be said that

the current and the capacitance of logic cluster is linear for Vp < Vgnd < Vsteady,state.

Using these two points, linear equation is obtained in MATLAB curve fitting toolbox.

Correlation coefficient (ρ) of greater than 0.995 is obtained with linear fitting. This

linear equation can now be used in Vgnd estimation for remaining range of Vgnd and

steps (1) to (4) are repeated until Vsteady,state is reached.

Our approach for dynamic Vgnd estimation is more accurate than that proposed in

[4] due to accurate use of leakage and capacitance models for Vgnd < Vp without any

assumption and neglecting any term in the device model equations. Linear form of

logic cluster current and capacitance is assumed Only for Vp < Vgnd < Vsteady,state is

also highly accurate assumption. In [4], a piecewise exponential linear model is devel-

oped, in which complete range is divided into regions and linear equations for logic

cluster current and footer transistor are obtained through fitting in these regions.
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Figure 6.4: Leakage current and capacitance at virtual ground node during Vp <
Vgnd < Vsteady,state; different input vector combinations of C880 (ISCAS’85)

These fitted equations are used in Equation (6.1) to find out the resulting expressions

for Vgnd for the considered region. Capacitance variation in the partitioned region

is considered as constant, incurs high error in models [4]. While, in our model, we

divide it sufficiently in large number of regions such that capacitance can be treated

as a constant in each region. Multiple fitting points in each region are considered sep-

arately which gives us more accurate capacitance in complete range of Vgnd . Another

important limitation and source of error of model in [4] is the unknown input voltages

of CMOS gates for Vp < Vgnd < Vsteady,state and hence, linear current equations and

capacitances can not be evaluated.

6.2 Experimental Results

According to our piecewise simulation based dynamic Vgnd estimation methodology,

capacitance models are required with leakage and static Vgnd model. The virtual

ground capacitance is modeled for each CMOS gate and footer transistor. The number

of capacitance models to be characterized, depends upon the gates in the cell library

used for synthesizing the logic circuit. Figure 6.5 plots the variation in the capacitance
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of inverter for change in input voltage and Vgnd voltage simultaneously. Same adaptive

sampling is used for capacitance models as used for leakage models. Maximum of

1000 training samples are used to develop model and another disjoint 5000 samples

are used to evaluate the model. Simulated data points lie on the actual curve and

hence, verifying the higher accuracy of our model. For higher Vgnd and increasing

values of input voltage, change in the capacitance is very less and almost linear curve

is obtained. But, lower Vgnd introduces non-linearity for the same input voltage

range. Our SVM models can easily handle this non-linearity with high accuracy.

Same results can also be verified from the capacitance variation of NAND2 gate as

shown in Figure 6.6.
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Figure 6.5: Capacitance variation at Vgnd node due to Inverter

Table 6.1 shows the error in capacitance modeling for basic CMOS gates of a standard

cell library. We consider a CMOS gate with maximum 4 inputs, as higher input gate

will have a larger delay due to increased logical effort. Error for OR family of gates is

a little bit higher than AND family of gates because of directly connecting the higher

number of transistors to the Vgnd node. However, capacitance model for each gate

has <1% average error and maximum error is also between 1% to 2%. Low MSE and

high ρ proves the high accuracy of our capacitance models. Since the runtime for
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Figure 6.6: Capacitance variation at Vgnd node for NAND2 gate for different values
of Vgnd

all models is of same order describing the less dependence of SVM based models on

number of varying inputs. Total 11 models are required to calculate capacitance at

Vgnd node due to all CMOS gates and footer transistor.

Table 6.1: Evaluating capacitance models; Maximum training samples = 1000, Test-
ing samples = 5000

Gate Samples Mean Square Correlation % Error Model Simulation
Error Coefficient Max Avg Time (mS)

NAND2 850 3.11e-37 0.9968 1.05 0.109 0.2162
NAND3 850 3.45e-37 0.9968 1.16 0.314 0.2168
NAND4 900 4.22e-37 0.9961 1.20 0.368 0.2267
NOR2 900 3.23e-37 0.9969 1.05 0.239 0.2269
NOR3 1000 5.14e-37 0.9960 1.26 0.365 0.2560
NOR4 1000 5.20e-37 0.9961 1.29 0.430 0.2564
INV 800 3.04e-37 0.9970 1.02 0.106 0.2089

Dynamic Vgnd model is verified on ISCAS’85 benchmark circuits. For each circuit,

we consider 100 input vectors and for every input vector, we divide Vgnd voltage from

0V to Vp into 90 regions and 10 regions are chosen for Vp < Vgnd < Vsteady,state. for

any circuit, if Vsteady,state < Vp then all 100 points are selected within 0V < Vgnd <

Vp . We compare our model with the piecewise linear model in [4], where Vgnd voltage
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from 0V to Vdd was divided in 18 regions. Runtime of our SVM model is given as in

Equation (6.15).

Tours = [TI,LC + Tcap,LC ]SVM,90︸ ︷︷ ︸
1stTerm

+ Tfit−cap,LC,1︸ ︷︷ ︸
2ndTerm

+ Tfit−I,LC,1︸ ︷︷ ︸
3ndTerm

+ [TI,LC + Tcap,LC ]fit,10︸ ︷︷ ︸
4rdTerm

+ .......

.......+ [TI,footer + Tcap,footer]SVM,100︸ ︷︷ ︸
5thTerm

+ Tdyn−vgnd,100︸ ︷︷ ︸
6thTerm

(6.15)

Here, 1st term denotes the total runtime of logic cluster for leakage current estimation

(TI ,LC ) and capacitance calculation (Tcap,LC ). Runtime is estimated by simulating

SVMmodels 90 times, as 1st term denotes the timing analysis during 0V < Vgnd < Vp .

Tfit−cap,LC and Tfit−I ,LC determine the runtime to fit the linear model for capacitance

and leakage current estimation of logic cluster during Vp < Vgnd < Vsteady,state. Only

one time fitting is required for each one of two models. 4th term shows the runtime

of the fitted models in 2nd and 3rd term and these models are simulated for 10 times.

Next, the 5th term evaluates the runtime of leakage and capacitance models for footer

transistor and for all 100 regions, SVM models are used. Last term calculates the

runtime of the Equation (6.14) for each region. Runtime of the model in [4] can be

given as follows.

T[4] = [Tfit−I,LC + TI,LC + Tfit−I,footer + Tcap,LC + TI,footer + Tcap,footer + Tdyn−vgnd]18

(6.16)

Each term in Equation (6.16) is evaluated 18 times i.e. one time for each region. It

should be noted that linear fitting models are used only for leakage current of logic

cluster and footer transistor. In each region, capacitance is considered to be a constant

value. The maximum and average error with average runtime across all input patters

is shown in Table 6.2. Our model has less than 1% error while model in [4] gives approx

5% average error with respect to the SPICE results. Figure 6.7 shows the dynamic

Vgnd characteristics of C880 ISCAS’85 benchmark circuit after the ground is gated.
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This shows the high accuracy of our model when compared to the SPICE output. We

have implemented the consumed energy estimation methodology in [4] during mode

transition for a dynamic Vgnd characteristics of benchmark circuits. Percentage error

in energy estimation is given in Table 6.3. Less error in energy estimation shows the

higher accuracy of our proposed of dynamic Vgnd estimation.

Table 6.2: Circuit level Dynamic Vgnd model (ISCAS’85 benchmark circuits)

Circuit
Error (%) Runtime (sec.) Speedup(×)

Maximum Average SPICE [4] Ours [4] Ours[4] Ours [4] Ours
C17 7.62 0.67 3.66 0.12 12.66 1.08 1.46 12 8
C432 6.64 0.68 5.10 0.11 60.45 1.62 2.56 37 23
C499 7.40 0.79 4.12 0.15 117.89 3.49 5.22 33 22
C880 5.30 1.02 3.66 0.56 72.70 2.73 4.02 26 18
C1355 8.33 1.10 4.83 0.49 110.23 2.90 5.11 38 21
C1908 6.42 0.98 4.95 0.72 136.56 3.89 5.29 35 25
C2670 7.93 0.75 4.36 0.67 143.78 3.45 5.48 41 26
C3540 5.31 1.17 3.22 0.88 162.33 4.32 4.92 37 33
C5315 6.88 1.16 4.37 0.80 201.34 4.11 6.24 49 32
C6288 5.66 0.92 2.92 0.13 228.30 2.01 2.23 113 102
C7552 9.41 1.20 4.99 0.83 300.69 4.65 6.93 64 43
Overall 6.99 0.95 4.20 0.45 140.63 3.11 4.50 45 31
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Figure 6.7: Dynamic Vgnd voltage during model transition for C880 circuit

Our model is 31× times faster than SPICE but little bit slower than model in [4].
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Table 6.3: Evaluating methods for energy estimation during mode transition (IS-
CAS’85 benchmark circuits)

Circuit
Error (%)

Maximum Average
[4] Proposed [4] Proposed

C17 11.60 1.69 7.65 1.31
C432 9.78 1.68 6.11 1.12
C499 10.46 1.78 6.10 1.15
C880 10.45 2.19 7.54 1.55
C1355 11.01 2.16 6.80 1.50
C1908 8.40 1.79 5.95 0.89
C2670 10.89 1.79 7.34 1.71
C3540 9.10 1.11 6.20 0.98
C5315 10.81 1.16 5.45 1.10
C6288 7.12 0.99 4.21 0.79
C7552 12.48 2.45 7.90 1.96
Overall 10.19 1.71 6.48 1.28
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Figure 6.8: Effect of number of simulation points on accuracy and runtime of the
model

This is because of the more number of points taken in range from 0V to Vsteady,state.

Maximum runtime improvement is for C6288 benchmark circuit because this circuit

consists of maximum NAND2 and NOR2 gates. We require only a few models to

be simulated for leakage current estimation of logic cluster and it saves the runtime

of complete model. This shows the importance of reducing the number of leakage

models in Section 5.2. However, runtime of our models can be further reduced by
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taking less number of simulation points between 0V and Vsteady,state. Figure 6.8 plots

the accuracy - runtime trade-off with respect to the number of simulation points for

C7552 ISCAS’85 benchmark circuit. From Table 6.2, number of simulation points for

our models should be less than 43 to make runtime less than in [4]. At this number,

the error incurred by our method is ∼1.59% which is less than 4.99% of the model

proposed in [4].

6.3 Summary

For dynamic V gnd estimation during mode transition, SVM regression models are

developed for - (i) capacitance estimation of CMOS gates at virtual ground node

as a function of input voltages and Vgnd voltage (ii) capacitance estimation of footer

transistor at virtual ground node as a function of input sleep voltage, width, threshold

voltage and V gnd voltage. Piecewise simulation based model is thus proposed for

dynamic V gnd estimation, which efficiently uses the pre-characterized leakage and

static V gnd models along with aforesaid extra capacitance models. Our proposed

models are highly correlated to the SPICE evaluation with average mean square

error of 0.45% on ISCAS’85 benchmark circuits and 31× times faster than SPICE.
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Chapter 7

Conclusions and Future Work

Aggressive increase of leakage and process variations in deep sub-micron technologies

are a big obstacles in further scaling of the transistors. This leakage is further affected

by supply and temperature variations. The effect of these variations on leakage must

be accurately analyzed through models such that leakage optimization techniques can

be applied in effective manner. Unlike process and environmental variations, input

vectors in simple CMOS gate circuits can take only discrete values such as logic high

or low. The number of models will be very large if a model is developed for each

input vector, thus increasing the model characterization time. Previous models based

on scaling the leakage of a single transistor, exponential quadratic models results in

increased model characterization time and/or large error in leakage estimation.

In the present work, we have proposed the improved transistor stack models with

effective width computation to extract common stack models across 20 gate standard

cell library with 176 possible input vector combinations. We have shown that the

subthreshold leakage models can be extracted by neglecting ‘ON’ transistors from

the ‘OFF’ transistor network, only if the subthreshold leakage of that stack lies in

the low leakage region. Gate tunneling models are extracted by breaking down the

CMOS gate into stacks and single transistors. Thus, only a small subset of models
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are required for leakage estimation of considered standard cell library.

We have used kernel based SVM for leakage modeling of each stack. SVM models

are found to be more accurate than analytical as well as ANN models while cap-

turing highly non-linear functional form of leakage in PVTW space. Various kernels

have been explored during SVM model generation for each stack. Optimal tuning

parameters of each of the kernels for an SVM model have been obtained through si-

multaneous use of grid based method and global optimization techniques, resulting in

significant less time to find out the best kernel with optimal tuning parameters com-

pared to previous approaches. Active sample selection scheme has been employed to

adaptively select training samples to generate SVM models with minimum number

of samples, thus resulting in quite smaller simulation time for the model. To further

speed-up the model, SVM models have been made Sparse by identifying and exclud-

ing the non-significant training samples. Proposed SVM models have been able to

predict the leakage with very small error in mean and standard deviation as compared

to earlier models proposed in literature. SVM models are shown to be faster than

SPICE simulation, however slightly slower than the previous approaches. Proposed

SVM models are black box models, thus can be used in full-chip leakage estimation

using sampling based methods in place of SPICE simulation. We have also shown

that the stack based methodology can be applied to standard cells in post CMOS

devices such as FINFET, CNTFET. These SVM models for leakage estimation are

illustrated to be applicable even if process parameters take non-Gaussian form of

distribution. These models remove the inaccurate log-normal assumption on leakage

when process parameters are large in number and vary with generalized distributions.

This situation is more likely to appear in future scaled down technologies.

We have also proposed the stack based SVM models for leakage estimation of CMOS

gates in power gated circuits. It has been observed that the earlier models in literature

are only accurate in a small range of input voltage space. Our proposed leakage
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models have been developed by considering accurate input voltage conditions for all

CMOS gates. These leakage models are then used to develop SVM model for static

virtual ground voltage. Support Vector Classification model is used to efficiently

generate training data sample with respect to footer transistor parameters, resulting

in saving of significant time during static virtual ground model development. To

further enhance the accuracy, we have also developed SVM models for capacitance

estimation at virtual ground node due to CMOS gates under consideration and footer

transistor.

Static virtual ground model, leakage models and capacitance models have been jointly

used in proposed piecewise simulation based models for dynamic virtual ground volt-

age estimation. Proposed methodology has resulted in significantly less error than

reported by earlier approaches, Though it is faster than SPICE, but slower than

analytical approaches in previous work.

We hope and believe that SVM models can successfully be used in CAD tools for

future technologies to accurately model the non-linear effect on different performance

parameters of large digital circuits, especially full-chips and SOCs.

Future Work

Since, proposed SVMmodels can only handle complex CMOS gates consisting parallel

or series of parallel transistors. It will be interesting to extend/modify the proposed

models for CMOS gates without any restriction on the structure. SVM models accu-

rately capture the non-linear effects but are always slower than the analytical models.

Thus, it is highly desirable to increase the simulation speed. In future, methodologies

will be required to reduce the runtime of SVM models. Finding out new kernels for

accurate and faster SVM models is also a good area of future research. New efficient

sampling based full-chip leakage estimation methodologies could be developed, which

can use proposed reduced set of models for a given technology and standard cell li-
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brary. Proposed virtual ground models can be used in exploring trade-off analysis

among performance parameters of power gated circuits such as leakage saving, delay

overhead, mode transition energy dissipation, reliability effects.
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