FRACTIONAL APPROACH TO FLUID
DYNAMICS

Ph.D. THESIS

KAVITA KHANDELWAL

(ID - 2011RMA7116)

DEPARTMENT OF MATHEMATICS
MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY
JAIPUR - 302017

May, 2016



FRACTIONAL APPROACH TO FLUID
DYNAMICS

Submitted by:
KAVITA KHANDELWAL

(ID - 2011RMA7116)

Under the Supervision of
Dr. VATSALA MATHUR

(Associate Professor & Head)

Submitted in the partial fulfilment of the requinents for the degree of

Doctor of Philosophy

DEPARTMENT OF MATHEMATICS
MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY
JAIPUR — 302017

May, 2016



Malaviya National Institute of Technology, Jaipur

Department of Mathematics

CERTIFICATE

This is to certify that the thesis entitldEERACTIONAL APPROACH TO FLUID
DYNAMICS’ is written byMs. Kavita Khandelwal, who has carried out this work
under my supervision, is her original piece of aesk work.

To the best of my knowledge and belief, such Thkas not been submitted so
far by any person to this or any other Institute.

Dratsala Mathur

Head,
Department of Mathematics
Malaviya National Institute of Technologyijpla

May, 2016



Malaviya National Institute of Technology

Jaipur -302017 (INDIA)

CANDIDATE'S DECLARATION

| hereby declare that the Ph.D. thesis entitlRACTIONAL APPROACH TO
FLUID DYNAMICS' is my own work conducted under the supervision of D
Vatsala Mathur, Head, Department of Mathematics|aMga National Institute of

Technology, Jaipur (Rajasthan), India.

| firmly declare that the presented work does rmottain any part of any work
that has been submitted for the award of any degjtier in this University or in any

other University/ Deemed University without propéation.

Kavita Khandelwal



ACKNOWLEDGEMENT

| expressed my profound sense of gratitude, indetetes and deep respect to Dr.
Vatsala Mathur, Head, Department of Mathematics|aMga National Institute of

Technology, Jaipur, who inspired me to take up phesent study. Her valuable
guidance, expert advice, constructive criticismefuk suggestions and constant

encouragement at every step, enabled me to contpletgudy.

| express my sincere thanks to Prof. I.K. Bhat/aviga National institute of

Technology, Jaipur, for providing necessary asscgdrom time to time.

| also gratefully acknowledge my deep sense oémawe to Prof. K.C. Jain
and all faculty members of the Department of Matages, Malaviya National
institute of Technology, Jaipur and Dr. Sanjeev giyd ecturer, Department of
Mathematics, Govt. College, Jaipur, for their afifetate and proper encouragement

in developing my research attitude.

| also owe a debt of gratitude to Mr. Akshay Kurarpta, Sr. Staff Engineer

Qualcomm, Bangalore, who provided me all assistamckeguidance at every stage.

| very sincerely acknowledge my thanks to all mierids, Parents, who
directly encouraged and assisted me in more thanaay, in completing my work. |
would like to make a special mention of Mr. ManiKbbmar Gupta, Sr. Analyst,

Capital One, Bangalore, who provided valuable sstjges.

Kavita Khandelwal



ABSTRACT

The main intent of this thesis is to establish same results for non-Newtonian

fluids. Such results refer to different motions fibfids such adractional Maxwell

fluid, fractional Oldroyd-B fluid. The study is mented, having divided into seven

chapters.

First chapter ‘Introduction’ presents brief summary about fluidsnstitutive
equations, equation of continuity, equation of matifractional calculus and
some integral transforms.

In chapter 2, we study the flow ofractional Maxwellfluid in an annular pipe.
More exactly, by means of treequential fractional derivativdsaplace and
finite Hankel transforms we establish the solutimmresponding to the
motion of fractional Maxwell fluid between two oscillating infiniteoaxial
circular cylinders.

Chapter 3 provides exact solutions for the velocity fielddashear stress
corresponding to the unsteady flow of an incompbésdractional Maxwell
fluid in annular region between two infinitely lormpaxial circular cylinders.
At time t=0', the inner cylinder applies a time dependent ooii shear to the
fluid and outer cylinder is moving at a constaribedy.

In chapter 4, it is studied thdlow of fractional Maxwell fluid in pipe-like
domains bythe inner cylinder is pulled with a time-dependsimtar stress and
the outer cylinder is moving at a constant velocitize solution is obtained
using Laplace and Hankel transform methods anddbelts are presented in
terms of generalized G and R functions.

Chapter 5 provides exact solution for the velocity field ¢dw for Oldroyd-B
fluid in annular region between two infinitely longpaxial cylinders. This
solution is obtained using finite Hankel and Lapldacansform methods and
the result is presented in terms of the general@efdinctions. Finally, the
influence of different values of parameters, camstaand fractional
coefficients on the velocity field is also analyzesing graphical illustration.
This chapter is divided into three parts. In payttide motion is produced by
constant pressure gradient, inner cylinder is puildth constant shear and
outer cylinder is moving with time dependent vetpcin part B, the motion is

created by a constant pressure gradient & the icylerder start moving along



its axis of symmetry with the constant velocity plart C, the motion is created
by inner cylinder is pulled with constant shear ander cylinder is moving
with time dependent velocity.

Chapter 6 deals with the study dfelical flow of fractional Oldroyd-B fluid in
a circular cylinderBoth components of the velocity and shear strebage
been found in terms of generalized G function. emt the solutions for
ordinary Oldroyd-B fluid, fractional Maxwell fluidordinary Maxwell fluid
and Newtonian fluid are easily obtained by imposapgropriate limits to the
exact solution.

Chapter 7 contains exact solution for the velocity field asidear stress of
rotational flow for fractional Oldroyd-B fluid fidd between two coaxial
circular cylinders by the inner cylinder beginsrtate about its axis with a
time dependent shear stress while outer cylindemaving at a constant

velocity.
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Chapter 1. Introduction



Chapter 1 1

1.1 Fluids

Materials have always been an integral part of huiifie. They are so important that
they have been used to designate part of humalizaton period e.g. Stone Age,
Bronze Age, Iron Age etc.

All materials show deformation under the actionesternal forces. If the
deformation in a material, under the action of singaforces, increases continuously
without limit, the material is called fluid. Fridly [1] says “A fluid is a material that
continuously deforms when it is subjected to amggot states of stress”. Thus, a fluid
may be defined as a material that deforms contisiyounder the action of shearing
forces.

Generally, fluids are classified as liquids oragdA liquid has intermolecular
forces which hold it together. It possesses volledoes not have a definite shape.
When it is poured into a container, it fills thentainer upto the volume of the liquid,
regardless of the shape of the container. Liqurdssightly compressible, however,
for most of the practical purposes it is sufficiemtconsider liquids as incompressible
fluids. On the other hand, a gas consists of médscwhich collide with each other
tending to disperse it while in motion. Hence, & ¢i@s no volume or shape. The
intermolecular forces are extremely small in gagegas fills any container into

which it is placed and is therefore known as ahllyigcompressible fluid.

Based on the flow properties, fluids can be cléassifinto Ideal, Real,
Newtonian and non-Newtonian Fluids. An Ideal Flbas no viscosity (or no friction)
and it is incompressible in nature. Practicallgrénare no ideal fluid that exists. Real
fluids have some viscosity and they are compresdiblnature. Examples of such

fluids are Kerosene, Petrol, Castor oil, etc. Tln@$, which obey Newton’s law of

viscosity(r=,u%/ ), are described as Newtonian fluids. In Newtonikmd$, the
y

relationship between shear stress and the strangdinear. Examples of such fluids
are water, air etc. For Newtonian fluids, viscoséwntirely dependents on the
temperature and pressure of the fluid. The flundsich do not obey Newton’s law of
viscosity, are described as non-Newtonian fluider Ron-Newtonian fluids, the
relationship between shear stress and the strensraon-linear and can even be time
dependent. Thus, a constant coefficient of visgasihnot be determined. Example of

such fluids are blood, saliva, semen, synoviatiflbutter, cheese, jam, ketchup, soup,
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mayonnaise, magma, lava, gums, slurries, emulsietts, While Newtonian fluid
simplifies the mathematical modeling, in industrie®st fluid properties differ from
this model. Hence, it is important to study thedetr of Non-Newtonian fluids.

Fluids play a very important role in many aspedtswr life. We drink them,
breath them and it runs through our bodies. Flomstrol the weather and also have
many applications in the industries. The study ajtion of fluids is a complex
phenomenon. The Navier-Stokes equations are the faw®us form of equations
which are widely studied and applied in fluid metica. These are non-linear partial
differential equations that are applicable in altmesgery real situation. Therefore,
there are a limited number of exact solutions urgetain conditions such that many
terms in the equations of motion either disappedoraatically or may be neglected.
The resulting equations thus reduce to a formdhatbe easily solved.

Thus, classical Navier-Stokes equations are useatksoribe the behavior of
Newtonian fluids. However, due to the non-lineascwaelastic behavior, the ordinary
Navier-Stokes equations are inadequate to desdrdmogical complex fluids such as
plastic and polymer solutions. This has led to tgwaent of models for non-
Newtonian fluids. These models include rate tyged#ferential type [3] and integral
type. Among them, rate type model is the most popuifferential type model does
not describe the influence of relaxation and retaot times and also cannot describe
the flow of some polymers.

Thenon-Newtonian fluidgplay an important role in technological applicagon
A large number of industrial materials fall undérist category. Fluids such as
solutions and liquid polymers, soap and cellulageatens, biological fluids, various
colloids and paints, certain oils and asphaltsrmgddo this category. These fluids are
very frequently encountered in many different feeklich as food industries, chemical
engineering, petroleum industry, biomedicine et also are relevant to many other
industrial processes. Hence, study of flow of nawhbnian fluids has become a
subject of great importance. In comparison to Neweto fluids, the analysis of the
motion of such fluids is much more difficult becausf non-linear relationship
between stress and the rate of strain.

It has been a challenge for mathematicians andigbtsto analyze the flow
characteristics and the properties of non-Newtoflisids due to complicated partial
differential equations arising in the mathematifamulation of the flows. Typical

non-Newtonian characteristics include shear thigniiscoelasticity, viscoplasticity
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and shear thickening behavior. Classical Naviek&aquations, which are sufficient
to describe the flows of fluids with less atomicssafail to explain the behavior of
such rheological complex fluids. Therefore, somehmmatical models have been
proposed to describe the characteristics of theseplex fluids. Due to their wide

applications in the industry, mathematicians ang veuch interested in the study of
non-Newtonian fluids. These applications includee tlplastic manufacture,

performance of lubricants, clay suspensions, dglinuds, paints, processing of food
and moment of biological fluids which contain higmolecular weight components.
When a constant shear stress is applied, Viscésitylhixotropic fluids decreases

with time, while it increases for Rheopectic fluiddany paints are classified as
thixotropic fluids. Similarly, few fluids return ttheir original shape after the applied
stress is released, such fluids are called visstielfuids.

The oscillating flow of the viscoelastic fluid inylmdrical pipes has been
applied in many industrial areas such as oil exglimin, chemical industry, food
industry and bioengineering. This type of analyssof particular interest in
bioengineering since blood in veins is forced byperiodic pressure gradient.
Similarly, there are many applications in the pletion and chemical industries which
involve the dynamic response of the fluid to thegfrency of the periodic pressure
gradient.

So far numerous number of papers have been deditatstudy motions of
Newtonian and Non-Newtonian fluids. The study oé tmotion of a fluid in the

vicinity of a rotating or sliding cylinder is of gat interest for engineering & industry.

For Newtonian fluids, the velocity distribution fa fluid contained in a
circular cylinder was studied b®.K. Batchelor[4]. For non-Newtonian fluids, the
first exact solution corresponding to motions of@®l grade fluids in a cylindrical
domain seem to be those of Ting [5]. Similarly v8stava [6] and Waters & King [7]
proposed first exact solution for Maxwell and OlglteB fluids respectively. The first
exact solution for motion of non-Newtonian fluidst applies a constant shear stress
to the fluid are those of Bandelli and Rajagop#ld8d Bandelli et al. [9] for second-
grade fluids. Recently, a lot of papers have bpeblished regarding such fluid
motions. Exact solutions for the velocity field atiee shear stress corresponding to
the unsteady flow of a generalized Oldroyd-B fldige to an infinite circular cylinder

subject to a longitudinal time-dependent shearsstreve been obtained by Qammar
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et al. [10]. Tong et al. [11] published their wark unsteady unidirectional transient
flows of Oldroyd-B fluid in an annular pipe. Thegad fractional calculus approach to
build a generalized Jeffreys model. Muhammad Atbaal. [12] published exact
solutions for a fractional Maxwell fluid for unstha axial Couette flow due to an
accelerated shear. Amir Mahmood et al. [13] prexeitteir work on exact solutions
for unsteady flow of generalized second grade $luidcylindrical domainsFang et
al. [14] publishedheir work on the Rayleigh—Stokes problem for a heatstegnlized
second grade fluid using fractional derivative mo#ieé Kamran et al. [15] obtained
expressions for the velocity field and shear stssesponding to the motion of a
fractional second grade fluid as limiting casegehneral solutions corresponding to
the fractional Oldroyd-B fluid. Recently, other dian solutions have been obtained in
[16-26].

During 1886, Stokes [27] published an exact sofutfor the rotational
oscillations of an infinite rod immersed in a lingaviscous fluid.Casarella and Laura
[28] established an exact solution for oscillatiogl with longitudinal and torsional
motion. Exact solutions for the flow of a secondadg fluid induced by the
longitudinal and torsional oscillations of a rodva@een obtained by Rajagopal [29].
Rajagopal and Bhatnagar [30] studied two simpledbegant solutions for the flows
of an Oldroyd-B fluid induced by the longitudinahda torsional oscillations of an
infinite long rod. Hayat et al. [31] studied théliences of Hall current on the flow of
a Burgers’ fluid in a pipeMany important studies of non-Newtonian fluids for
oscillating flows inside a cylindrical region hateen done by various authors [32-
40]. Fetecau and Corina Fetecau [41] proposed thast ngeneral solutions
corresponding to the helical flow of a second grigid. Some exact solutions for the
helical flow of a generalized Oldroyd-B fluid inc&cular cylinder have been obtained
by Fetecau et al. [42]. Wood [43]btained exact solutions for helical flows of
Oldroyd-B fluids in cylindrical domains. Qi and J#¥] studied some helical flows of
Oldroyd-B fluids in two infinite coaxial circularytinders. Fetecau et al. [45-47],
Jamil et al. [48-51] and Shah [52] studied somechElflows of Oldroyd-B and
Maxwell fluids within an infinite circular cylindeor between two infinite coaxial
circular cylinders.

In order to describe rheological properties of @asi classes of materials in

detail, the rheological constitutive equations withctional derivatives have been
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introduced for a long time. These have been disclssthe papers published time to
time by various authors, to name a few, Bagley ,[33]Jedrich [54], Makris and
Constantinou [55], Glockle and Nonnenmacher [56&indrdi [57], Rossikhin and
Shitikova [58, 59], Mainardi and Gorenflo [60].

Fractional calculus has been widely used to desoribcoelastic behavior of
fluids [61-63]. The starting point of the fractidnderivative model ofviscoelastic
fluid is usually a classical differential equatiorhis is being modified by replacing
the time derivative of an integer order by the atled Caputo fractional calculus
operators [64]Hence, many exact solutions for non-Newtonian Buidth fractional
derivatives have been established [65-69] duedantiportance of viscoelasticity.

Exact solutions play a key role not only becaussy tare solutions of some
fundamental flows but also because they are usednasaccuracy checks for
experimental, numerical or empirical and asymptota&thods. Even though computer
techniques make it feasible to integrate complgteaton of motion, the accuracy of

the results can only be established by comparistnam exact solution.

1.2 Constitutive Equations

Rheological properties of materials can be spetibig their constitutive equations.

A constitutive equation can be defined as a reldbeveen two physical quantities

that is specific to a material and approximatesréisponse of that material to external
forces. Fridtjov [1] described constitutive equatias “A relation between stress and
different measures of deformations, as straingsratf deformation and rates of
rotation”. In other words, we can say a relatioriwleen entities that describe a
physical process is called constitutive equation.

Generally, constitutive equations define the ideaterials that have mathematical
models to describe the behavior of some classesabimaterials. In other words, we
can say the constitutive equations represent maemchanical models for the real
materials. The constitutive equations correspontindifferent materials must satisfy
some general principles. Examples of such prinsiple symmetry principle and the
objectivity principle [70]. The constitutive equatis for the non-Newtonian fluids

lead to a problem in which the order of the diffagr@ equations exceeds the number
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of available conditions. In three dimension, thepest constitutive equation form is
a Newtonian one. The constitutive equations of stinigs are given below as [71]
1. Newtonian fluid

T=-pl +S, where S= A (1.2.2)

where A is the first Rivlin-Ericksen tensor.
2. Maxwell fluid

T=—pl+s, S+A§:IL1A, (1.2.2)
3. Oldroyd-B fluid
B A
T=-pl+S,S+A=—=py A+ — |, 1.2.3
p i arr G (12.3)

where T is the Cauchy stress tensor, S is the -skteas tensor an% is the upper

convective derivative defined as

%5:3- LSS, (1.2.4)

where the dot denotes the material time differéiota

p is the pressure| is the identity tensord and A are relaxation and
retardation timesA=L+L"is the first Rivlin-Ericksen tensor with L the velty
gradient, u is the dynamic viscosity anthe superscript T indicates the transpose

operation.

1.3 Equation of Continuity

The continuity equation is based on the law of eoveion of mass. The law of

conservation of mass states that the mass is naithated nor destroyed inside a
control volume region. Thus the rate of increas¢hefmass in the closed volume is
equal to the mass of the fluid entering per unitetithrough the surface enclosing the

volume. The equation of continuity in vector natatis given by

%—'f+div(p\7)20, (1.3.1)
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where pis the densityt is the time and/ is the velocity vector.

For steady compressible fluid flow, the equatiocaftinuity reduces to

div(pV) = 0. (1.3.2)

For incompressible fluid flow, the equation of danity reduces to

div(V) = 0. (1.3.3)

1.4 Equation of Motion

The equations of motion are derived from Newtorésosid law of motion which
states that the rate of change of linear momentuagual to the total force acting on
the flowing fluid in the arbitrary volume. In vectaotation, the equations of motion
are given by

p%:plz—ﬂp+,w]2\7 (1.4.1)

Where% :%+(\7.D) is the material derivativepis the density of quid,IE is the
body force per unit volumey is the coefficient of viscosity,is time,V is the gradient

operator and/ is the velocity vector. Equations of motion arsoaknown as Navier-

Stokes equations.

1.5 Fractional Calculus

The branch of Mathematics in which we study difféi@ion and integration to an
arbitrary order is popularly known as fractional lccdus. Many famous
mathematicians such as Leibnitz, Euler, Laplaceirieg Abel, Liouville, Riemann,
Weyl, Kober have contributed a lot to the developtrad fractional calculus. The first
use of fractional operations was done by Abel agblution of tautochrone problem

Since thenthe subject of fractional calculus has gained irtgpare during the last
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three decades. Its applications in various fielflsaence and engineering, such as
fluid flow, rheology, hydraulics of dams, diffusigproblems, electrical networks,
probability, electrochemistry, transport theory.atsering theory, electromagnetic
theory, statistics, visco-elasticity have been axily powerful in solving complex
mathematical problems. Fractional derivatives aseduto provide an excellent
mechanism to describe the hereditary propertiesraadhory of different materials
and processes. Fractional calculus is applicabldenving the solution of certain
integral equations involving special functions oathematical physics. Fractional
calculus is very convenient for describing propgertof real materials, i.e. polymers.
Few problems related to elasticity were formuladed solved by M. Caputo with his
own definition of fractional differentiation. Com&rable research has been going on
in this field and published through books, resegrabers, workshops, symposiums

and international conferences in the last 35 years.

The mathematical aspects of the fractional cakuhave been widely
discussed by Caputo [72], Oldham and Spanier [KB}Bride and Roach [74],
Gorenflo and Vessela [75], Samko et al. [76], Milkand Ross [77], Kiryakova [78],
Nishimoto [79], Podlubny [64] etc.

Fractional calculus can be defined as the theoeoivatives and integrals of
an arbitrary order (called fractional derivativesldractional integrals), which unifies
and generalizes the notion of integer-order difféegion and n-fold integration. The

infinite sequence of n-fold integrals and n-foldidatives is given by

df (t) d?f(t)
d = d?t

jdrz]zf(rl)drl, jf(rl)drl, f(t),

The derivative of arbitrary real order can be considered as an interpolation of this
sequence of operators. We will use it for the notasuggested and used by Davis
[80]

D ()

Fractional derivative is the short name for denxed of arbitrary order of fractional

order. The subscriptsandt denote the two limits related to the operatiofrattional
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differentiation. Following Ross [81], we will cathem the terminals of fractional
differentiation. The fractional integrals mean gra@s of arbitrary order and

correspond to negative values @f. We will denote the fractional integral of order
B>0by

DT ()
The Theory of fractional calculus is mainly basgan the study of the well-
known fractional integral operators and fractiotgtivative operators. In which some
integral operators such as Riemann Liouville and/Nsled fractional derivatives such

as Riemann Liouville and Caputo given below as

1. Riemann Liouville fractional integral operator [77]
an_U[f(X)]:i].(X—t)u'l f(t)dt, Ref)>0,x>a (1.5.1
r©)s
2. Weyl fractional integral operator [77]
xWoo_U[f(X)]:ij(t—x)”‘lf(t)dt, Re@) >0, x>0 (1.5.2)
F)s

3. Riemann Liouville fractional derivative operatof7]7

D[ £(x)]=D"[D ™ £(x)], n-1<u<n, v>0 (1.5.3

4. Caputo fractional derivative operator [64]

cpirmo 1 ') _
°Dy f(t)—r(n_ﬁ).l.(t_r)ﬂﬂ_ndr, n-1<B<n (1.5.4

Several generalizations of Riemann Lioville franabintegrals have been introduced
and widely studied by a number of eminent matherizats notably Eardely, Kober
and several other. Due to important role played Ragmann-Lioville and Weyl

integral operators in different branches of scieneegineering and mathematical
physics, a number of generalizations of fractiom@kgral operators have been

introduced from time to time by many research woskeotably Kober [82], Erdélyi
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[83,84], Manocha [85,86], Saxena [87], Kalla anae$e [88], Kalla [89], Saigo [90],
Raina and Kiryakova [91], Srivastava and Goyal [98heddon [93], Kalla and
Kiryakova [94, 95], Srivastava et al. [96], Guptadalain [97], Goyal and Tariq [98],
Gupta and Soni [99] etc.

A systemic analysis of various fractional integopkrators studied from time

to time has been given by Srivastava and Saxertj.[10

Fractional derivatives have been used by many tameathematicians such as
Caputo [101], Smit and Vries [102], Mainardi [108}ichko and Srivastava [104],
Hadid and Luchko [105], Giona et al. [106], Frietiri[54, 107], Fenander [108],
Enelund and Josefson [109], El-Sayed [110, 111}eBand Kempfle [112], Bagley
and Torvik [113].

1.6 Some Integral Transforms

The integral transform of a functid(x) defined on a given interval (a, b) is denoted

by T{ f(X); p} =F(p), defined by the integral equation, as follows

T{f(; p} = [K(x, P F()dx (1.6.1)

whereK(x, p)is called the kernel of the transformis a parameter (real or complex)
independent ofx and the operatof is called integral transform operator. The
properties of integral transforms vary widely blitirstegral transforms have common

linearity properties as follows
T(f+9)=T(f)+T(g), (1.6.2)
T(cf)=cT(f) forconstants. (1.6.3)

Some important and well-known integral transformme haplace, Mellin, Fourier,
Hankel, Hilbert and Legendre transforms. Thesesfams are defined by choosing
different kernelsK(x, p) and different values foa and b involved in Eq. (1.6.1).

Therefore, it is observed from the above that degiral transformation is a unique
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mathematical operation through which a real or dempalued functionf is
transformed into another functiéh= Tf.

The integral transform is important because it gfaims a complicated
mathematical problem into a simpler one, which dan easily solved. Integral
transforms are very useful to solve different typle problems in mathematics,
especially in dealing witHifferential equationsubject to particular boundary
conditions. In the study of initial or boundary walproblems involving differential
equations, the differential operators are repldmethuch simpler algebraic operations
involving F which can easily be solved. Then the requiredtgmlican be obtained by
the inverse transformation.

Integral transforms is very efficient and powertobl to solve different types
of problems in mathematics involving differentiajuations. Many different integral
transforms are used for this purpose. In the fdlhgwsection, we introduce few

integral transforms and their inverses that hawnhesed in present work.

1.6.1 Laplace Transform

The Laplace transform of a functiofft) defined on0O<t<w is denoted by

L{f (t);s = F(s), defined by
L{f(t);s=F(s) = T e f (t)dt, Re(s)> 0, (1.6.4)

wheree™ is the kernel of the Laplace transform, the patansis a real or complex
number and the operatbris Laplace transform operator.
The inverse Laplace transform is defined as
f@) =L*{F(s)t} (1.6.5)
where L™ is known as the inverse Laplace transformationatpe.
All functions of f(t) are not Laplace transformable. The Laplace transition for a
functionf(t) is possible if it should satisfy the Dirichlet abtions (a set of sufficient
but not necessary conditions). These conditiongiaen below
1. The functionf(t) must be sectionally or piecewise continuous; thait must
be single valued but can have a finite numberrifdiisolated discontinuities
fort> 0.
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2. The functionf(t) must be of exponential order; that i) must remain less
than Me™' ast approacheso, whereM is a positive constant araj is a real
positive number.

The Laplace transformation is not possible forfthections such atn (t), cot (t) and
. The convolution theorem is an important result aplace transform, as defined
by

It L{f ()} =F(s) and L{g(t)} =G(s), then

LH{F(s)G(s)} :f f(u)g(t - udu= f Og. (1.6.6)

0
Laplace transforms are used to solve differentgygfeproblems in mathematics such
as partial differential equations, initial and bdary value problems, integral

equations, difference equations and many otheddiel

1.6.2 Finite Hankel Transform

The finite Hankel transform of order of a functionf(r) defined in0 <r <R, is
defined by

H{f}=1,(r)= j 3, (rr,) f (r)dr, (1.6.7)

wherer, are the positive roots of the transcendental éguaf, (Rr;) =0 andJy(.) is
the Bessel function of first kind of order
The inverse finite Hankel transform is defined by

J, ()
[Jpa (RO

The finite Hankel transforms defined in Eq. (1.6u8gd for the solution of problems

HA{F )= f(r)——z (r)—2n{) (16.8

in which only one cylinder is used.

Hankel transform is used in the study of functievisch depend only on the
distance from the origihis transform involves the Bessel functions as kémel
appearing in axisymmetric problems formulated itinglrical polar coordinates.

The partial differential equations with adequaiéahand boundary conditions
can be solved by several methods. However, theyratdransforms technique is a

systematic, efficient and powerful tool. The finittankel transform is very useful
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when we are dealing with problems that show circelanmetry. The finite Hankel
transforms and Laplace transform are used to spbmtial differential equations

involving fractional calculus.



Chapter 2. Flow of fractional

Maxwell fluid in oscillating pipe-
like domains

The paper submittedon the work described in this chapter:

Mathur V. and Khandelwal K., Flow of fractional Magll fluid in pipe-like domains,

International Journal of Applied and Computationsllathematics, 1-18. DOI:
10.1007/s40819-016-013¢Springer)
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2.1 Introduction

The oscillating flow of the viscoelastic fluid ityllndrical domain has applications in
many industrial areas. This chapter presents atysisafor oscillating flows of
fractional Maxwell fluidin the annular region between two infindencentriccircular
cylinders. The fluid motion is created lagth cylinders begin to oscillate around their
common axis.The exact solutions are established using the s¢igldractional
derivatives Laplace transform and finite Hankehsf@arm in terms of generalized G
and R functions. Also, we obtain the solutions tmdinary Maxwell fluid and
Newtonian fluid as special cases of the generalsmddtions. Moreover, the effects of
various parameters on the velocity field and stetggss are analyzed by graphical
illustration. Finally, a comparison is drawn betwemotions of fractional Maxwell

fluid, ordinary Maxwell fluid and Newtonian fluid.

2.2 Governing equations

The constitutive equations of an incompressible Wlkfluid are given by [71, 114]
T=-pi+s, S+A(S-LS-SI)=yA (2.2.1

where T is the Cauchy stress tensepl denotes the indeterminate spherical stress,

S is the extra-stress tensot,is relaxation time,A=L+L" with L the velocity
gradient, the superscripitindicates the transpose operation and the dattderthe
material time differentiation.

For the problem under consideration, we use a itgléield of the form and

extra stress S as in the form of

V =V (r,t)=w(r,t)e,, S=5(r,t), (2.2.2)
whereg, is the unit vector in thé direction of the cylindrical coordinates.

At time t=0, the fluid is at rest in an annular region betwéwn infinite coaxial

circular cylinders. At tima=0", both cylinders begin to oscillate. For these #othe
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constraint of incompressibility is automaticallytished. Initially the fluid is at rest,

hence
V({I0)=0 S(r0)=0. (2.2.3)

The governing equations corresponding to incompresdMaxwell fluid in the

absence of body forces and a pressure gradieneié direction are given by [115]

ow(r,t) > 10 1
1+ ADf | /L =0 — +=— —— |w(r,1), 2.2.4
: {) ot [aur2 ror er( ) (224)
(L+ ADE )r(r ) = u(% - %jw(r,t), (2.2.5)
wherer(r,t) =S, (r,t) is the non-trivial shear stressl,=% is the kinematic

viscosity, p is the constant density of the fluid and the Capaotional derivative of

order g as defined by [64]

1 d f(@) .
re-p)dtyt-r)°

d -
af(t), B=1,

Dff(t) = (2.2.6)

where () is the Gamma function. This model can be reducedrdinary Maxwell

model whernp — 1 and to Newtonian model whgn— 1 andi — 0.

To solve this problem we use Laplace and finite Hdtlansforms.

2.3 Mathematical formulation and solution of the
problem

Let us consider an incompressible fractional Makfeid at rest in an annular region

between two coaxial circular cylinders of rali andR,(> R). At time t=0", both

cylinders begin to oscillate around their commoris gk = 0) with the velocities
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V;singt) andV,sing,t) . Due to the shear, the fluid between the cylinders

gradually moved and its velocity is of the form E2.2.2). The governing equations
are given by Egs. (2.2.4) and (2.2.5), while therapriate initial and boundary

conditions are

w({,0=0, 7(r,0)=0, (2.3.1)

and
W(R,,t) =V, sin(at), W(R,,t) =V, sin(awt), =0, (2.3.2)

wherea, and «, are the frequencies of the velocity of the cylinded Vi, V, are

constant amplitudes.

2.3.1 Calculation of the velocity field

Applying Laplace transform to Eq. (2.2.4) and ustihg initial conditions as given in
Eqg. (2.3.1), we obtain

(a+1a°* Jucr, =u[67 +10 —iz}v_v(r,q). (23.3)

Applying Laplace transform to Eq. (2.3.2), we obtai

WR.G = WR.0) = (23.4)
The Hankel transform method with respect te used and defined as follows
R,
Wi (r,,0) = [rw(r,q)B(r,r,)dr, (2.3.5)
Ry
where
B(r,r,)=3,(rr)Y,(R,r,,) = 3, (R,r,)Y,(rr,), (2.3.6)

r. being the positive roots of the transcendental g#ou8(R,r) =0. The inverse

Hankel transform as defined by [116], is given belo
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VV(r,q) :ii r.n ‘]1 (ern)B(r , rn) _

2 Z32Re) - 2Ry 23D

Multiplying both sides of Eq. (2.3.3) B(r, r,), then integrating with respect to
from R; to R, and taking into account the conditions Eqg. (2.3a#)ng with the

following relation

3y (Y, (9 =3, (RY,a () =§ (238

and the equality

Ry 2 _
r[" +13—ri2jw(r,q)a(r,rn)dr

3 or? ror
:_rZW - + 2 2 1! 1 2'n , 239
n WH ( n q) n_|:q2 +C()22 qz +a).|.2 Jl(ern):| ( )
we obtain
_ 2 Vo, _ Vidh (Rery)
)= _ ] 2.3.10
w(r,,0) n(q+/1qﬁ+l+Urn2){q2 +w§ q? +wf J,(Rr,) ( )

Rewriting Eg. (2.3.10) into a suitable equivalesrfi, we obtain below

O @) el aa )

NV Ji(R,r) 1 Q(/‘qﬁ "‘1) (2.3.11)
2 3R | (g | -

S ]|

: 2+wlz) (q2+a&2)(q+/]qﬂ+1+urn2)

Applying inverse Hankel transform to Eq. (2.3.1Ij)dataking into account the

following result

. Tr{AR(Rzz _r2)+ BRZ(I’Z _ Rlz)}B (.1 )dr = 2B 2A Ji(R,ry) (2.3.12)

(RZ-R?)r a2 m? Ry,

R

we obtain
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VR (R 1) sy R R

- =R}
5 HRLBEL)  Wa*re) [ Vi LRr) Vi }

SR -IZR,,) (@A +urd)| (@ +a?) AR, (@2 +af)|
(2.3.13)

Applying Inverse-Laplace transform to Eq. (2.3.48) then using the expansion

k
1 1 0 _ q—k—l
1 , 2.3.14
q+Ag” +or? Azi A J (@ +A) @319

and taking into account the following result [117]
b
G, .(dt=L"—9
a,b,c( ) {( a_d)c}
Z dr(c+j) e
s FEr i+ ri(c+ ja- b]

Re@c-b)>0, Re(q)>0, ‘q—ci <] (2.3.15)

we obtain

w(r,t) VR _rZ)Sin(c(qR?i\F/?}?(rz ~RJsiny)

*i J2(RrB(,T,) iZ(

7 J7 P (Rr) - 37 T (Rr,) =k

x{vzwz(—aé)j Vi (-af) Jl(RZr”)}- (2.3.16

j { /7 L-k- 2]'-2,k+1(_/1_l’t) + Gﬂ,—k— 2]'-2,k+1(_/1_l’t)}

2.3.2 Calculation of the shear stress

Applying Laplace transform to Eq. (2.2.5), we obtai

— _ 1 i_l —
r(r,q) _'u(1+/]qﬂ)[6r rjw(r,q). (2.3.17)

Substitute Eq. (2.3.13) into Eqg. (2.3.17), we abtai
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Trg)= . 2RR { VeR VR }
R =R o +adfueae’) (o +afJuraef)
)| 2800 B

' WZ; IR = (RS @+ +ur))

q { Vi  3(Rr) Vi
(®+af) IR (07 +af)

}, (2.3.18
where

B(r.r,) =Jo(m,)Y,(Ror,) = Iy (Ryr, Yo (11, (2.3.19)

Applying inverse Laplace transform to Eq. (2.3.2B8gn using Eq. (2.3.15) and taking
into account the following result [117]

R (d t):L_l qb :i dnt(n+1)a—b—l .
b q*-d| &ri(n+la-b]

Re@-b)> 0, Re(q)>0, ‘% <] (2.3.20)
q
we obtain
2IR R & _ - -
T(rt)=—— v 2. Ry 5, (=4 1,t){\/2a)2R1(—a)22)J —Vla)le(—wf)J}
ARy —RF* i

le (ern)(fB (r ! rn) - rng(r ’ rn)j

k
]w = 0 o _Urn2 N
) Gpa) —At
A ; le(ern) _ J12 (Rzrn) ékzo( A j ﬂ,—zl—k—z,k+l( )
j i J(R,r.)
xV,w, (- w?) -V,a (- a?) = Zn}. (2.3.21)
{ 2 2( 2) ' ( ) ‘Jl(ern)

2.4 Limiting Cases
2.4.1 Ordinary Maxwell Fluid

Applying B - linto Egs. (2.3.16) and (2.3.21), we obtain the eigdield
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20
w (. = R(RET )sin(c(«étz)t\é};z (r2 - R2)sintw,t)
e BRLBEL) & k n
72 E R - R, ZZ( j{ sk A0+ Gz (470}
N o) viaar) P 24

and its associated shear stress correspondinglitaoy Maxwell fluid performing the
same motion

Ty (r t) T(;L)_ZRlzl 2(/11'[){\/6‘)2 VCUR( a)l)]}

. JZRyr )[ B(r,r )—rng(r,rn)j e or
+7; JZRr) = I (R,r,) Z ( J Gypjok-2ken(7AT1)

j=0k=0

e - o2) vi-ar) S 242

2.4.2 Newtonian Fluid

Applying A - 0into Egs. (2.4.1) and (2.4.2) and taking into actadbhe following
results [22]

ML (<aty=t" b<o 2.4.3)
Ao Je TRk T () ’ o
X b
im R1 (1= p<o, (2.4.4)
' (-b)

we obtain the corresponding solutions for the Newato fluid, as follows

w, () = VR(RE=T )Si”(&? f\é:j)?rz(r - R?Jsinw)
- J(R“B(r’r“))iio( )

S I2Rr,) - 2R, r(k+2j+2)

X{Vzcaz(-aé)j- a(-ar) JliRl ;} (2.4.5)
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and
2IRR, & ti* 5\
ry(r,t)= (RZIURlRl) Zr(tzj_'_z)&z le( ) 1w1R( a’i)}
J (R1rn)( B(r )-I‘ng(l’,l‘n)j ® o k thr2is
+”’u; PRI -I2(RT) ;é(‘”ﬂ) F(k+2j+2)
Nanl-ar) ~viaf-ar) 280 245)

2.5 Conclusions and Numerical results

In this chapter, we obtained the expressions few#iocity field and shear stress. We
obtained these expressions for an incompressilaetidnal Maxwell fluid in the
annular region. The fluid motion is created as hmyimders begin to oscillate around
their common axis with different angular frequescigand «, of their velocities. The
results have been determined using sequentialdredtderivatives Laplace and finite
Hankel transform methods. These results are alssepted in a series form in terms
of the generalized G and R functions. Similar sohg are obtained for ordinary
Maxwell and Newtonian fluids as limiting cases loé solution for fractional Maxwell
fluid.

Importantly, we can obtain the velocity field ame tshear stress, when one of

the cylinder is at rest, by making = 0,V, =V and @, =& (when inner cylinder is at

rest) orVi =V, Vo = 0, anda, =« (when outer cylinder is at rest). For instance, the

velocity field for the flow of fractional Maxwellldid, when inner cylinder is at rest

and outer cylinder is oscillating, is given by belequation

_VR(r*-R?)sined) _ & FRLBEL) &8 u2)
W(r,t)_ (RZZ_RlZ)r _1J (er) J2 (Rzr )]Z(;kz(; a( )[ J

x{1Gs 5 5 2in A +Gy o e (A1), (2.5.1)

Similarly, the velocity field for the flow of framinal Maxwell fluid, when outer

cylinder is at rest and inner cylinder is oscittgtiis given by below equation
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VR_(RZ2 - rz)sin(ax)
(R2-R2)r
LRM)HRLBE.T,) & k
+)|Z_; HGCIAERHGES) ;kzo Vak- “’2)( ]
X {/‘Gﬁﬁ—k—a—z,kﬂ(_)'_l’t) + Gﬁ,—k—2j—2,k+1(_A_lyt)}- (2.5.2)

Similarly, we can obtain shear stress solutiongyr@priate substitutions.

w(r,t) =

In order to demonstrate impact of physical paramsetle obtained results are
presented in the form of diagrams for the veloeity,t) and the shear stress,t).
They are given by Egs. (2.3.16) and (2.3.21) ande haeen drawn against for
different values of the timeand other relevant parameters as shown in diagrams
can be observed from the figures that the velamityponentv is decreasing function
of r. The influence of the timeon fluid motion is shown in Figure 2.1. The inflwe
of the frequency of oscillationg and &, on fluid motion is shown in figures 2.2 and
2.3. Both parameters have opposite effect onlthe fotion. Figures 2.4 and 2.5 are
showing the effect of different values \éfandV, on the fluid motion. Figures 2.6(a)
and 2.6(b) are showing the effect of different esalwf kinematic viscosity on the
fluid motion. It indicates that the velocity is deasing and the shear stress is
increasing function af . The dependency of the relaxation time on thealftabtion is
shown in the figure 2.7. It indicates that the eélpand the shear stress are increasing
function ofA. Figure 2.8 is showing the effect of different uved of fractional

parameterS on the fluid motion. It can be observed that tledowgity is increasing
while the shear stress is decreasing functiofi. dfigure 2.9 exhibits a comparative
diagram of the velocityw(r,t) and the shear stresqr,t) corresponding to the

motions of fractional Maxwell fluid, ordinary Maxweluid and Newtonian fluid in a
circular cylinder, for same values of the commortanal constants and time t. The
velocity in the neighborhood of inner cylindersigiftest for Newtonian fluid while it
is slowest for the Fractional Maxwell fluid. Simmilg, shear stress on the whole flow

domains highest for Maxwell fluid while it is slostefor the Newtonian fluid. In all of

the figures 2.1-2.9, the units of the material ¢cants are in Sl units and the rapt

has been approximated I%yi
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3.1 Introduction

The constitutive equations of an incompressible Wik fluid, as it is given by Eg.
(2.2.1), are

T=-pl+S, S+A(S-LS-SI')=/A (3.1.1

where T, pl, S, A, A L, u, the superscript and S have the same significance as

before. The motion of a fluid in the annular regairsliding or rotating cylinders is of
great interest for industry and academic workehss Thapter deals with the unsteady
flow of an incompressible fractional Maxwell fluiilled in the annular region
between two infinite coaxial circular cylinders. élmotion of the fluid is due to the
inner cylinder that applies a time dependent toaicshear to the fluid and outer
cylinder which is moving at a constant velocity.eWelocity field and shear stress are
determined by the Laplace and finite Hankel tramaf The obtained solutions are
presented in terms of the generalized G and R ifumet Solutions for ordinary
Maxwell fluid and Newtonian fluid are also obtainleg imposing appropriate limits.
Finally, the influence of different values of parters, constants and fractional
coefficient, as well as a comparison between tHecitg field and shear stress are

also analyzed using graphical illustration.

3.2 Governing equations

Let us consider an incompressible fractional Maxwiteld with velocity Vand extra

stress S as in the form of

V =V (r,t) = wr, te,, S=5(,t), (3.2.1)

whereg, is the unit vector in thé@ direction of the cylindrical coordinates.

At time t=0, the fluid is at rest in an annular region betwéeso infinite coaxial
circular cylinders. At tim¢=0", the inner cylinder applies a time dependent oo
shear to the fluid and outer cylinder is movin@atonstant velocity. For these flows,
the constraint of incompressibility is automatigadlatisfied. Initially the fluid is at

rest, hence



Chapter 3 29

V(r,0) =0, S(r,0) =0. (3.2.2)

For such flows the constraint of incompressibilgyautomatically satisfied, while the

governing equations [17] are

(1+/]Dta)a\lv(r,t):u(£ 19 _1

+ = — == w(r,t), t>0, 3.2.3
ot or? ror rZJ( ) ( )

(L+ 1D ) (r ) =,u(%—%jw(r,t), t>0, (3.2.4)

wherer(r,t) =S, (r,t) is the non-trivial shear stres$,is relaxation timey is the
dynamic viscosity,p is the constant density of the fluid,:ﬁ is the kinematic
viscosity andD,” is the Caputo fractional derivative of ordeas defined by [64]

1 dt f@
ra-a)dts (t-7)°

dr, O<a<il
D/ f(t)= 4
— (1), a=1, 3.25
. (t) ( )

wherel™ () is the Gamma function.

For a - 1when D{ f (t) - df(t)/dt, Egs. (3.2.3) and (3.2.4) are reduced to the

governing equations for an ordinary Maxwell fluid.

3.3 Flow through the annular region

Let us consider an incompressible fractional Maxvileid at rest in the annular

region between two infinite coaxial circular cylard. Also, consider that radius of
inner and outer cylinders aRe and R,(> R)) respectively. At timeg=0", the outer
cylinder moving at a constant velocity and the mryinder begins to rotate about its

axis with a time dependent torque per unit lengtRR7(R,,t) [17], where
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T(Rl,t)=%Ra’_l(——,tj; O<a <1, (3.3.1)

where f, is a constant and generalized R functions areeéfby [117]

e q*-d| &ri(n+da-b]’

Re@-b)> 0, Re(qg)>0, ia <l (3.3.2)
q

The governing equations are given by Egs. (3.2r8) €.2.4), while appropriate

initial and boundary conditions are

w({r,0=0 7(r,0)=0, (3.3.3)
and
a _f0_1 _
(1+/1Dt )T(r,t) r=R, _}‘(E_?)N(nt) =R, fl’
WR,,t)=f,, t>0, (3.3.4)

wheref, is the constant velocity of outer cylinder. Eq.3(3) is the solution of Eq.

(3.3.4). To solve this problem we use Laplace aadKel transform methods.

3.3.1 Calculation of the velocity field

Applying Laplace transform of Eq. (3.2.3) and usthg initial conditions as given in
Eqg. (3.3.3), we obtain

— 0?2 10 1\
+ A0 W(r,q) =u| — + =— — = |w(r,q), 3.3.5
(a+ A9 Jw(r, q) [arz s rzj (r.q) (3.3.5)

wherew(r, q) = Ie‘th(r,t)dt is the Laplace transform of functiam(r,t) and qis the
0

transform parameter.

Applying Laplace transform of Eq. (3.3.4), we ohtai
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0 1\
(E_?)W(r’m -

W(R,,0) :%. (3.3.6)

The Hankel transform method with respect te used and defined as follows
— RZ —
ww (r,,Q) = jrw(r,q)B (r,r,)dr, (3.3.7)
Ry

where

B(r,r,) =J.(rr )Y, (Rir,) = I, (R, )Yy (1), (3.3.8)

r. being the positive roots of the transcendental g#oguB(R,,r) =0. The inverse

Hankel transform as defined [17], is given below

T r2IZ(Rr)B(r,r )

Vv(r,q):?z

23Ry~ Ry (3:3.9)

Multiplying both sides of Eq. (3.3.5) byB(r, rn), then integrating with respect to
from R; to R; and taking into account the conditions Eq. (3.a1%] the equality

9° 16
j (ar i ]w(r aB(r,r,)dr

=W (; rjw(r O e, + R WR,, DIV, (R, T, (Ror) =, (R Y, (Ryr,)]
= 2w, q)+if— R b 1y, R IR, =, R Ry, )] (3.3.10)
we obtain
Wi (r,, Q)
_ 2fv 1
mx, o(q+Aqt +or?)
1
+UR2rn fz[Yz (ern)Jz(Rzrn) - Jz(ern)Yz (Rzrn)] q(q +/]qa+1 +U|’n2) . (3311)

Rewriting Eq. (3.3.11) into a suitable equivalesinfi, we obtain below
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Wi (1, 0)
_2f, 1 2f,(+Aq%)
el q el (qrAqTt +or?)
f

+

jRZ Y, R 3, (Ryr) = 3, (R )Y, (Rr, )]

n

F_ (1+Aq”)

. 3.3.12
a (gq+Aq™™ +Urn2)} ( )

Applying inverse Hankel transform to Eq. (3.3.13)dataking into account the

following result

T(fz -RZB(r 1, )dr =%[%} , (3.3.13)
Ry

we obtain

w(r, )
:L(ﬁ]z(r_R_ijg_ﬂ o VRLBOLL) A+
2u\ R, q M Er IR -IZR) (A+AgT +our?)

r
s © 1 J2R,r)B(,r,)
T ) 1 /1y (Rr)IL(Rr) = I (RrY, (R,r
2 i 2”:1[J22(R1rn)_‘]12(R2rn)]l 2( ln) 2( 2 n) 2( ln) 2( 2 n)]

x[l_ LrAq’) } (3.3.14)
aq (q+Aq"" +or))

Applying Inverse-Laplace transform of Eqg. (3.3.1&8nd taking into account the
following result [117]

4
G, (dt) =L
a,n, ( ) {(qa_d)c}

o0 djr(c+ J) t(C+j)a—b—l .
SO+ ri(c+ ha-b)’

Re@c-b) > 0, Re(q)>0, ‘q% <] (3.3.15)

we obtain
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w(r,t)

_H(RY[,_R)_Ae RRLBEL)  of-ul)
) [ e, x)
x [Gﬂy—k—lk*‘l (_A_l ' t) + AGa,a—k—],kﬂ (_/]_l!t)]

> (R )B(.r,) | B
2132w = 2@ ) I (Rere) = I (R Yo Rero)

7
+7R2f2

k

1&(-of y -

Xll_;Z(T] {Ga,—k—l,kﬂ(_/] 1’0 +/]Ga,a—k—1,k+1(_/] 1't)}]' (3.3.16
k=0

3.3.2 Calculation of the shear stress

Applying Laplace transform to Eq. (3.2.4), we obtai

— _ l i_} —
r(r,q) _'U(1+)Iq"’)(ar rjw(r,q). (3.3.17)

Substitute Eq. (3.3.14) in Eq. (3.3.17), we obtain

r) al+4Aq”) =3 Rr) IR ) (@+ 49T +ory)
e RIERLB(L,) | )
2 /RZ onZ:l:[ng(ern)_Jf(Rzrn)]LYZ(ern)JZ(Rzrn) ‘JZ(ern)YZ(RZrn)]

oL 1 , (3.3.18
qi+Ag?) (q+Aq™ +or?)

where
B(r.r,) = J,(m,)Y,(Rr,) = J,(Ryr,)Y,(rr,). (3.3.19)

Applying inverse Laplace transform to Eq. (3.3.48y using Eq. (3.3.15), we obtain
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r(r 1) = f{%) 1R LA

A

1 i ‘J (Rzrn )B (r ' rn) i( J .- k—1,k+1(_/1_11t)

1137 (Rr,) =7 (Rr,)]

_isz 23 R, )B,)
2 A —1[\] (er) ‘] (RZ n)]

x[RM(—Al,o —i("f” j Gaklm(—ﬁ,t)} (3.3.20)

[Y,(Rir,)J,(Rr,) = 3, (Rr,)Y,(R,r,)]

3.4 Limiting Cases
3.4.1 Ordinary Maxwell Fluid

Applying a - linto Egs. (3.3.16) and (3.3.20), we obtain the e#ydfield
w,, (r,t)
_L[ Rlﬂr _R_fj_i SR HGAN AN i(—w:Jk
24 r A S [I2(Rr,) - JZ(Rr ) =l A

x[Gy k(A + Gy a (A7 1)]

”_2 N rﬂ‘] (RZrn)B(r ) r _
T2 R R - a7 R R (R 7RI (R
% [1 - %i ( - er J {Gl,_k_l,k+l(—/1‘1 )+ AG, e (A7 ,t)}], (3.4.1)

and its associated shear stress correspondinglittaoy Maxwell fluid performing the
same motion

r, (r,t)= fl(%) (1_e-m)
77f N Jz(Rzrn)E(r,rn) © —Urn2 k .
IERNELTT )—Jf(Rzrn)];)[ ) jG( A%

UR,f, & r2I2(R,r)B(r,r,)
A nzl[‘]zz(R )_J (Rz n)]

X[( )= Z(_ j 1k1,k+1(—A1,t)]. (3.4.2)

_% AAGASNAGASENNGASIAGAN]
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3.4.2 Newtonian Fluid

Applying A - 0into Egs. (3.4.1) and (3.4.2) and taking into actadie following
result [22]

t—b—l

r(-b)

IimiGlb’m(—/]'l,t) =

A-0 M

1 b<01

we obtain the corresponding solutions for the Neweto fluid, as follows

wN(r,t>=L(5J [rEJ—ii Y RBOL)
2u\ R, r H w1 rn[‘]z (ern)_Jl (Rzrn)]
/8 & LI(RBELT,) |

+7 Rz fzz

S1IZRr,)-IZR)]

Yo (R, (Ror) = 3, (Rir)Y, (R, )](1_ e )’

(3.4.3)

and

2 o 2 p—y
TN(r,t)=fl(&j +7f, ;]l (Rzrn_)Bgr,rn) gt
r nzl[Jz(ern) Jl(Rzrn)]
5 RIP R B(.T,) |
SIIZRr,) - IZ(R )]

Y2 (R1rn )‘]2 (RZ rn) - ‘]2 (ern )YZ (RZ rn )]6‘_ e_Mr‘Zt )

(3.4.4)

pa
_7:UR2f2

3.5 Conclusions and Numerical results

The purpose of this chapter is to establish exakittisns for the velocity field and
shear stress corresponding to the unsteady flovarofincompressible fractional
Maxwell fluid flow in the annular region. Where gtimotion is produced by the inner
cylinder that applies a time dependent torsionabstio the fluid and outer cylinder
which is moving at a constant velocity. The saltis obtained by finite Hankel and
Laplace transform methods and the result is predeander series form in terms of
the generalized G and R functions. The similautsmhs for ordinary Maxwell and
Newtonian fluids are also obtained as limiting casé the solution for fractional

Maxwell fluid. The velocity field and shear strem® also analyzed using graphical
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illustration for various parameters, constants drattional coefficients and a
comparison between models of the velocity field ahdar stress are also analyzed
using graphical illustration.

As shown in below diagrams, the velocityr,t) and the shear stres¢r,t) given
by Eg. (3.3.16) and Eq. (3.3.20) have been dravainaty for different values of the
timet, f,, f,and other relevant parameters. It can be cleady §®m the figures that

the velocity component is decreasing function afand the shear stress component
r is increasing function of. The motion of the fluid is relatively higher andesin

stress lower in the neighborhood of the inner ddnfor given boundary conditions
andf <0, f,<0. Figures 3.1(a) and 3.1(b) are showing the effédifferent values of

time on the fluid motion. It can be seen that te#eity and the shear stress are the
decreasing function of timé The influence of relaxation timg and fractional
parameterr on the fluid motion is shown in figures 3.2 an®.3.Both parameters
have opposite effect on the fluid motion. The vi#jo@and the shear stress are
increasing function ofland decreasing function @f Figures 3.4(a) and 3.4(b) are
showing the effect of different values of dynamiscesity on the fluid motion. The

results indicate that the velocity and the sheagsst are increasing function of
dynamic viscosity. Figures 3.5 and 3.6 are shovtivegbehavior off, and f,on the

fluid motion for their different values. Figure 3sshowing a comparison diagram of
the velocityw ( t ) and the shear stressr t( anong three models (Fractional

Maxwell fluid, ordinary Maxwell fluid and Newtoniaftuid) for same values of the
common material constants and time t. The veloitghe neighborhood of inner
cylinders is swiftest for fractional Maxwell fluidhile it is slowest for the ordinary
Maxwell fluid. Similarly, shear stress on the whdlew domains highest for
fractional Maxwell fluid while it is slowest for éhNewtonian fluid.
In all of the figures 3.1-3.7, the units of the prél constants are in Sl units
(2n-Dn

and the root, has been approximated R -R)
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Figure 3.1
03 —_— 0
—+ =25
4 —6— t=5s
0.25F N\ — A =85 0.2
-
T s
- 4
0.21 0.4+ o + s A
— o a
0.5 08- - T -
= - g _— /,/
or
01} -0.8F M
/ -
0.051 EIE
\§ !
oF Ny 12k — 25
I 1 —6— t=5s
L t=8s
.0.012 L L L L L L L L L -1.4 L L L L L L L 1
03 032 034 036 038 04 042 044 046 048 05 03 032 034 036 038 04 042 044 046 048 05
r r
3.1(a) 3.1(b)
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Figure 3.3
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Figure 3.5
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Figure 3.7
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4.1 Introduction

This chapter presents an analysis of unsteady fdwncompressible fractional
Maxwell fluid filled in the annular region betwedwo infinite coaxial circular
cylinders. The fluid motion is created by the inoglinder that applies a longitudinal
time-dependent shear stress and the outer cylitftr is moving at a constant
velocity. The velocity field and shear stress aetetmined using the Laplace and
finite Hankel transforms. Obtained solutions arespnted in terms of the generalized
G and R functions. The solutions for ordinary Makvaed Newtonian fluids are also
obtained as limiting cases @f- 1 anda - 1,1 - 0 respectively. The influence of
different parameters on the velocity field and sh&taess are also presented using
graphical illustration. Finally, a comparison isadin between motions of fractional

Maxwell fluid, ordinary Maxwell fluid and Newtonidftuid.

4.2 Governing equations

Consider an incompressible fractional Maxwell fluitht has a velocityand extra
shear stresS of the form [69]

V =V(r,t) =V e, S=85(r,t), (4.2.1)

whereg, is the unit vector in thedirection of the cylindrical coordinates. For such

flows, the constraint of incompressibility is autatisally satisfied, while the

governing equations are [69]

WY _ 00 10
(1+/‘Dt) p —U(arﬁrarJV(r,t), (4.2.2)
(1+/1Dt")r(r,t):,u¥, (4.2.3)

wherer(r,t) =S, (r,t) is the non-trivial shear stress, is relaxation timey, is the

dynamic viscositypy =K is the kinematic viscosity,is the constant density of the
P

fluid and D/ is the Caputo fractional derivative of ordeas defined by [64]
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1 g.‘[ f(r)
Dtﬁ f(t) = rd-p)dt 0 (t- T)ﬁ , (4.2.4)

d _
af(t)! ﬁ_l’

wherel" () is the Gamma function. Fg8 - 1, Egs. (4.2.2) and (4.2.3) are reduced to

the governing equations for an ordinary Maxwelidlu

4.3 Flow through the annular region between
coaxial circular cylinders

Let us consider an incompressible fractional Maxylald at rest in infinite coaxial

circular cylinders of radiR andR, (> R)) . At time t=0", the inner cylinder is pulled

with a time-dependent shear stress and the outardey is moving at a constant
velocity. At timet=0", a time dependent longitudinal shear stress cadefined by
[12]

f,r(a+1)

; R, ..(-A"t) o0<a<1, ax0 4.3.1)

T(R,t) =
where f; is a real constant and generalizRg (d,t) function is defined by [117]

R, (0= L]0 o5 dnTR
a,b ' qa _d n=0 r[(n +1)a_b]|

Re@-b)>0, Re(q)>0, ‘% <l (4.3.2)
q

The governing equations given by Egs. (4.2.2) @n#.8) with appropriate initial and

boundary conditions are
v(r0) =0, 17(r0)=0, (4.3.3)

and

_ o ov(r,t)
=R = H

V(R,t)=f, t>0, (4.3.4)

(L+D7 )r(r )

= = ft%, t>0, a=0
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where f, is the constant velocity of outer cylinder. Eq.3(4) is the solution of first

equation of Eq. (4.3.4). To solve this problem, wse Laplace and finite Hankel
transforms.

4.3.1 Calculation of the velocity field

Applying Laplace transform to Eq. (4.2.2) and usihg initial conditions as given in
Eqg. (4.3.3), we obtain

(q+)|qa+1)g(r,q) =U(F+%§j\_/(r,q), (4.3.5)

applying Laplace transform to Eq. (4.3.4), we abtai

a‘_’gr’ V.= % V(R,,0) :%. (4.3.6)
The Hankel transform method with respect te used and defined by [116]
R,
Vi (r,,0) = [ rv(r, B, r,)dr, (4.3.7)
R
where
B(r,r,) =3J,(rr)Y.(Rr,) = I, (Rr,)Y,(rr,), (4.3.8)

and r, being the positive roots of the transcendental goud(R,,r)=0. The

inverse Hankel transform is given by [116]

\_/(r’q) :ii rn ‘JO (R2rn)B(r'rn) N

Vi (1, Q). (4.3.9)
2 = le(Rirn) - J:(Rzl’n)

Multiplying both sides of Eq. (4.3.5) b(r, r,) and integrating with respect tdrom
R; to Ry, taking into account the Eq. (4.3.6) and the egual
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Tr(i + liJ\_/(r,q)B (r,r.)dr

2
R or ror

- 2 0v(R,q) . 2 J,(Rr,) -
==r2vnu (r,,q) + — += " V(R,,
o Vh (1, Q) A e IR (R;,0)

L flr(i;’l) _2 3R o (4.3.10)

ﬂn :Uq ]T‘]O(Rzrn) q .
we obtain
\_/H (rn,CI)
_ 22U, M (a+1) _ 1 _ : _2uf, Jy(Rr,) 1+1 _ (4.3.11)
e, g7+ AQTT o) o Jo(Ryr) a(@+AQTT +or)

Rewriting Eg. (4.3.11) into a suitable equivalesrnfi, we obtain

\_/H (rnvq)

_2ff(a+) 1 2fl(a+) @+Aq”)

ey 9 oy ai(@+ AT o)
—_ 2f2 JO(ern)i_'_ 2f2 ‘]O(ern) (1+/]qa) (4312)

”nz ‘]O(Rzrn) q ﬂnz JO(RZrn) (q+/‘qﬂ+1 +Urn2)l

Applying inverse Hankel transform to Eq. (4.3.12) andingkinto account the
following result

R,
Irln(L}B(r,rn)dr S (4.3.13)
R RZ 7R1rn

we obtain

v(r, )
_ fiRM(a+) ,,{rj 1 e RRRLBE) [_2fM@+)  @+Ag7)

u R g™ 2 FERL)-BRL ) ot@rigr +ul)
_2f, BRn) 1,2, JRr)  (+4q) }

> > o 5 (4.3.14
ms Jo(Rr)a my Jo(R,r) (g+AqQ™™ +ury))

Applying Inverse-Laplace transform to Eq. (4.3.14) daking into account the
following results
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K
1 o1& o q™?
q+/]qa+l+ur.n2 _;é( 1 J (qa +/]—l)k+1’ (4315)

4
b (d) =L
& ( ) {(qa_ )c}

Z djr(C+ J) t(c+J)a—b -1
s F@r(j+) ri(c+ ja- b]

Re@c-b)>0, Re(g)>0, ‘q—ci <] (4.3.16)

we obtain

_5|( Jfa e BRIBOL) | flr(a+1)g°°[—_ur,$jk
7 G T TS R Y A

) . Jo(Rira)
%{G, -t (A + A6, 4wz (A} 1, m

f Jo(Rir,) . .
A J (Rzrn)z[ ] { a,- k—Lk+1( A ’t)+AGa,a—k—],k+1( A ,t)}]_ (4.3.17

4.3.2 Calculation of the shear stress

Applying Laplace transform to Eq. (4.2.3), we obtain

1 av(r,q)
@+Aq°) or

(r,q) = u (4.3.18)

Substitute Eq. (4.3.14) in Eqg. (4.3.18), we obtain

tR_Tar) & nh®LB) [ LD 1
rog+AqY)  SLERN)-XERL o ga+AgTt +ud)
IWRL) 1 BRE) 1

IR g+ A7) T IRy, (qFAGT +ur?) |

7(r,q) =

(4.3.1¢



Chapter 4 46

where

B(r.r,) = J,(m)Y,(Rr,) = I, (Rr,)Y,(rr,). (4.3.20)

Applying inverse Laplace transform to Eqg. (4.3.19) amsihg Egs. (4.3.15) and
(4.3.16), we obtain

r(r,t)=

flRll;l(a+1) A i rLJo(Ryr B, 1) [ .M (a+l)
r _1[J (Ryr,)— JZ o (Rr, )]L Ar,

Xi _Urnz 2,u 'JO(ern)
k=0 A /1 'JO(RZrn)

fZILI ‘J(‘)(R:Lrn) > —Ul’nz “ 4
+ A Jo(szn)é( F JGg,—k—l.kﬂ( A ,t)]. (4.3.21)

Ra,—l (_/1_1 ) t)

k
j Ga,—a—k—Lk+1 (_A_llt) -

4.4 Limiting Cases
4.4.1 Ordinary Maxwell Fluid

Applying a - linto Egs. (4.3.17) and (4.3.21), we obtain the veldstyl

LR g o JERIBET) | flr(a+1)1°°(—ur:jk
L (D =2in L |t 2 2 . 1
R ur{%j Ry - R| o, A

S TP C R B I C R B & j((g;
o f2 Jo(Rr,) “ . .
/] Jo(RT, )Z( j {Gl—k—lk+1( A0+ AG (A ,t)}], (4.4.2)

and the associated shear stress
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L= flng(raﬂ) R (ALY 7S, Jo (Rr)B(.r) [ fiF(a+1)

SIZRr)-ER| A,

k .

© (-ur? ) fu J (Rr.) )
X "G A2 1l R (=A7ht

;( /] J L—a—k—l,k+1( ) A JO(RZI'”) 1, 1( )

. k

fou I (Rr,) < —or? o

+ L "G -A7,1) . 4.4.2
/] JO(RZrn) é A l,—k—],k+l( ) ( )

4.4.2 Newtonian Fluid

Applying A - 0into Egs. (4.4.1) and (4.4.2) and taking into accountftfiewing
results [22]

t—b—l

Iim—G -A1t) = , b<0, 4.4.3
/]aOAm ].,b,m( ) r(—b) ( )
and
l . t—b—l
lim= A1) = , b<0, 4.4.4
im0 =1 (4.4.4

we obtain the corresponding solutions for the Newtonian,fagdollows

vr=2 (Rsz o3 RLBOL) | TSy

SR -VZR M, & M(a+k+1)
) J(RJ) ¢ JoR) & oyt
SR R o) r<k+1>} (@49

TN(r,t)zgta_ni rdg (R )B(r.1) [ @D $ (ot

SIZRr) - 2RI & Ma+k+1)
J. (Rr) J o(RI,) t*
M3 s B s (49

4.5 Conclusions and Numerical results

The intent of this chapter is to establish the exact solutonhe velocity field and

shear stress corresponding to the unsteady flow ofnaamipressible fractional
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Maxwell fluid filled between two infinite coaxial circulaylinders. We obtain this
solution using Laplace and finite Hankel transform methddwe fluid motion is
produced by the inner cylinder that is pulled with a tirpehdent shear stress and
the outer cylinder that is moving at a constant velocity. résalts are presented in the
form of series of the generalized G and R functionmil& solutions are obtained for
ordinary Maxwell and Newtonian fluids as limiting cases ofuson derived for
fractional Maxwell fluid. The velocity field and shear sBeare also analyzed using
graphical illustration for various parameters. The motiorfsaational Maxwell fluid,
ordinary Maxwell and Newtonian fluids are also analyzegbhically.

As shown in below diagrams, the velocitfr,t) and the shear stregr,t)
given by Eq. (4.3.17) and Eqg. (4.3.21) have beemvdragainst for different values
of the time t and other relevant parameters. It catldsly seen from the figures that
the velocity component is decreasing and the shear stress companenincreasing
function ofr. The fluid velocity is relatively higher and shear stress vweehoin the
neighborhood of the inner cylinder for given boundeoypditions. Figures 4.1(a) and
4.1(b) are showing the fluid motion at different times.alh e seen that the velocity
is increasing and the shear stress is the decreasictipfuf timet. The influence of
kinematic viscosityand relaxation timel on the fluid motion is shown in figures
4.2 and 4.3. Both parameters have opposite effethefluid motion. Figure 4.4 is
showing a comparison diagram of the veloaorfy,t) and the shear stresgr,t)
among three models (Fractional Maxwell fluid, ordinary Makwfluid and
Newtonian fluid) for the same values of common materiastants and time t. The
velocity in the neighborhood of inner cylinders is svattr Newtonian fluid while it
is slowest for the fractional Maxwell fluid. Similarly, edr stress is highest for

fractional Maxwell fluid while it is slowest for the Newvtian fluid.In all of the

figures 4.1-4.4, the units of the material constangsimrS| units andthe roa} has

@n-Dr

been approximated (R - Rl)-
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Figure 4.3
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5.1 Introduction

This chapter deals with flows of Oldroyd-B fluid betwetsvo infinitely long coaxial
cylinders. Initially, the fluid is at rest. We use Hahéed Laplace transforms to reach
the exact solution. The obtained solution is presented rinsteof generalized G

functions.

This chapter is divided into three parts. In part-A, ni@tion is produced by a
constant pressure gradient. The inner cylinder is puligll constant shear and outer
cylinder is moving with time dependent velocity. In partthe motion is produced by
a constant pressure gradient & the inner cylinder starting along its axis of
symmetry with the constant velocity. In part-C, the motioprisduced by the inner
cylinder pulled with a constant shear and outer cylimdeving with time dependent

velocity.

Fetecau [21] obtained analytical solutions for non-Nevetorfiuid flowing in
cylindrical structures and used constitutive relation gagn
@+A0,)r=u@+A.0,)0,v(,t), (5.1.1)
wherev is the velocityd and A, are relaxation and retardation timesjs tangential
tension and, is the dynamic viscosity.

Using fractional calculus approach, the constitutivetiaieof the generalized
Oldroyd-B fluid in Eq. (5.1.1) can be written as

@A+ AD)r = @+ A, D)o v(r,t), (5.1.2)

whereD? and D/ are fractional operators and are defined as [64]

1 db f(@)

— dr, O<ac<l
Frl-a)dtg(t-7)°

DI f (1) = (5.1.3)

d
— f (1), a=1,
™ ®)

wherel () is the Gamma function. When= £ =1, Eq. (5.1.2) simplified as Eq.
(5.1.1).
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5.2 Governing equations

Let us consider the unsteady flow of an incompressitittofd-B fluid in coaxial
cylinders. The following assumptions are considered dutiis mathematical study.
The flows are assumed to be axi-symmmetric. The flulidcity at the direction of the
pipe radius is assumed to be zero. The axial velocégssmed to be only relevant to

the cylinder radius.

The equation of axial flow motion is written as [11]

—=—+-T-—, (5.2.1)
ot or r 0z
where, is the constant density of the fluid.
Substitute Eq. (5.1.2) into Eqg. (5.2.1), we get
L+ 107 = A A s ufiea, Df’{af +1p }/(r,t), (5.2.2)
ot fri-a) r
Whereuzﬁ is the kinematical viscosity andA,o:? is the constant pressure
P 2

gradient that acts on the liquid in the z-direction.

PartA

5.3 Flow through the annular region

Let us consider a constant pressure gradient apafitihe t=0to an Oldroyd-B fluid
contained in the annular region between two infinitely longx@d cylinders of radii
R andR,(>R) .At time t=0, the inner cylinder is pulled with constant shear and

outer cylinder is moving with time dependent velocity. Wavéhto solve the next

initial and boundary problem.
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t—d
rd-a)

(1+)lD{’)%V:A+/1A +u(1+/1er)(a,2+F16r)v(r,t), t>0 (5.3.1

The initial and boundary conditions are expressed by

v(r,0)=0, dnv(r,0)=0 R,<rs<R,, (5.3.2)

HA+ADEIN(E ) e=fr, V(R =f,t°, t>0, p=20, (53.3)

wheref,, f, are constants.

Making the change of unknown function

v(r,t) =V (r) +u(r,t), (5.3.4)

where

2
v(r):%(Rf—rz){RL‘cu AzR:Jlen(r/Rz). (5.3.5)

Substitute Eq. (5.3.4) in Eq. (5.3.1), we get

:u(1+A,Df)(af+10r)4(r,t)+/1A U At (536
r

(L+AD) :
r-a) " ra-p

u(r,t)
ot

Substitute Eq. (5.3.4) in Eqgs. (5.3.2) & (5.3.3),ged
u(r,0)=-v(r), o,u(,0) =0, (5.3.7)

1+ A D)3 u(R,,t) =~ f A, ——
lu(+ r t) ru(Rl t) I_(l—,B)

U(R,,t) = f,t?, t>0, p= 0. (5.3.8)

The Hankel Transform method with respect te used and is defined as follows [11]
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u=

0 — D

ru(r,s)g(s,,r)dr. (5.3.9

The inverse Hankel Transform is

s iSﬁJS(RzSn)_L(%,s)ﬂsn,r)’ (5.3.10)

u(r,s) = > >
2 = J1(R%)_J0(stn)

where ¢(s,,r) = J,(Rs,)Yy(s.r) —Yi(Rs,)Jo(S,r ), s, is the positive root of
¢(s»R) =0

Applying the Hankel transform in Eq. (5.3.6), we obtain

ou(s, t) _

— -8 p
@200 XY 42 4 P, + 200 L 2 (RS

Bu TA=P) 7T Jo(Rs,)
_2U|:2/]r Jl(Rsn) r(p+1) tp—ﬂ +/]A t_a RZ

- g(sn)
T Jo(Rs,) M(p-B+1) rl-a)s,
At Ry (5.3.11)

“TrTa-ps,

whereg(s,) =[J,(Rs,)Y,(R,s,) - Y,(Rs,)J.(Rs,)].

Applying the Hankel transform in Eq. (5.3.7), we obtain

u(s, 0) = 2| AL(RS,) B, d.u(s. 0) = 0. (5.3.12)

" wsiluJd,(R,s,) u | e

Applying Laplace transform to Eq. (5.3.11) and using &d.12), we obtain
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E(Sn,s){;; {é lRis) f;H L+ 45" + U5, A ™)

v J,(R,S,) s2(s+ As™™ +us? +Usf/1rsﬂ)
L AARg(s,) 1
s, " (s+ As™™ +us? +us?A, s”)
L2uhA A AR g(s,) 1
s, S, s"P(s+ As”t +us? +us’ A sF)
_2v,I(p+1) J,(Rs,) 1
T Jo(R,S,) sP(s+ As™™ +us? +us?A, sP)
_20A, 1, (p+1) J,(Rs,) 1
T Jo(R,S,) sP P (s+ As™™ +us? +us’A sP)
(5.3.13)
Applying Inverse-Laplace transform of Eq. (5.3.13) &aidng into account the

following result [117]

WCHE -1L}
ST

_Z‘“: d'r(c+ j) t(crab-1
sFE)rr(j+y ric+ ja- b]

Re(ac—b) > 0, ‘—a <] (5.3.14)
q

we obtain

L = i '_A Jl( FiSn) fl% ml _/1_1
L(S"’t) |:7ﬁf{u ‘]0(331) H }:H Z( 1) ( J kz;( }if aﬁk-m—Z,rml( ,t)}
A k }
Fjg%) Z( 1 ( J kz(;( }LGM(_WG pma (=AY
/] A ml ]
{7111: B%g(%) } Z( Y ( ] kzc;( }Af ﬂﬁ’k—rmﬁ‘zrml( -t t)

_2f,1(p+1) J(Rs,) < Z( }IKG e
Tﬁf 0(331) Z( ) ( J = ra, fk-m-p- 2m+1( )

21,7 (p+D) J(Rs) < Z( }I“G .
Hﬁf J(Rs) = Z( ) ( J — r aﬁk-rrl-p+ﬁ—2m+1( £).

(5.3.15
The expression of the velocity field can be written as
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v(r,t) = V(r)+l2i 3o (RS, 1) { 2 (A J(Rs,) , flsn}
232 (Rs,) -32(Rsy) | |72 |0 3a(Rs) 4

X{l— i (_1)m(ujn J i[Lnyl:ea,ﬂk—m—z,mﬂ(_A_l’t)}
AR, O(8,) < _pmf 053] (M) i
+Tmzzo( 1) [ /1 J Z(ijrGa,Bk—mﬂv—z,mﬂ( A !t)

n k=0

Us

n

_2f,M(p+1) J, (Rls)z( o ( z} zmj(E}fGaﬁk_m-p-z,mu(‘/‘_l't)

T Jo(Rs,) e
J i(:’(n}i:ea’ﬁk_m_mﬁ—lmﬂ(_/1_1 1 )] .

_2A.f,I(p+)) J,(Rs,)
(5.3.16)

2uf, A, s2 )" (m) .
{ b7, -4 ARZ g(S )}Z( l) [ J Z[ijrGa,Bk—mﬁ?—z,mﬂ(_A !t)

k=0

™ J(RZS)Z()(

5.4 Results

As shown in below diagrams, the velocityr,t) given by Eq. (5.3.16) has been

drawn againstr for different values of the timé, constants and other relevant
parameters. The velocity componen decreasing function of The motion of the

fluid is higher in the neighborhood of the inner cylindardiven boundary conditions
andf>0, f,>0. Figure 5.1 is showing the time dependency on tlié fhotion. It can

be clearly seen that the velocity is decreasing functianTdfe influence of kinematic
viscosity on the fluid motion is shown in figure 5.2. Thelocity is increasing
function of kinematic viscosity. Figures 5.3 and 5.bwhthe influence of the
relaxation and retardation times on the fluid motion. Bothttho parameters have

opposite effects on the fluid motion. The velocity is desirea function ofAand
increasing function ol, The influence of fractional parameterand Bon the fluid
motion is shown in figures 5.5 and 5.6. The velocityasrdasing function ofrand
increasing function gf. Figure 5.7 show the influence of dynamic viscosity om th
fluid motion. The velocity is increasing function g@f Figure 5.8 is showing the
dependency gb on the fluid motion. It can be seen that the velocityaases, whep

increases. Figures 5.9 and 5.10 show the influencgsanfl f,on the fluid motion.
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Figure 5.11 is showing the dependencyfobn the fluid motion. It can also be seen

that the velocity decreases, whérnncreases.

Figure 5.1
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Fig. 5.1 Profiles of thevelocityv(r,t) givenby Eq.(5.3.16)for R = 03 R, = 05,
f,=4,1f,=30=00354=12,A, =22 a=0.9,4=06 p=2,A=3, u= 30and
differentvalues of t.

Figure 5.2
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Fig. 5.2 Profilesof thevelocityv(r,t) given by Eq.(5.3.16)for R, = 0.3 R, = 05,
f,=4 f,=31t=6s5,4=9,4,=4,0a0=03,=03 p=2,A=3, yu=30and
different values of v.
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Figure 5.3

vi(r)
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Fig. 5.3Profiles of thevelocityv(r,t) given byEq.(5.3.16)for R = 0.3 R, = 05,
f,=4, f,=3t=5s,0=0.01,A, =7, =03, =03p=2,A=3, y=30and

different values of A.

Figure 5.4
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r

Fig. 5.4 Profiles of thevelocityv(r,t) givenby Eq.(5.3.16)for R = 0.3 R, = 05,
f,=4, f,=3 t=5s5,0=0.01,1=8,a0=0.3,=09 p=2,A=3, u=30and

different values of A,.
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Figure 5.5

—*—a=0.2

Fig. 5.5 Profiles of thevelocityv(r,t)givenby Eq.(5.3.16)for R, = 0.3 R, = 05,
f,=4,1,=3 t=6s0=0.04,1=25, A, =5, f=05p=2, A=3, u=30and

different values of a.

Figure 5.6
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Fig. 5.6 Profiles of the velocityv(r,t)givenby Eq.(5.3.16)for R, = 0.3 R, = 05,
f,=4 1,=3 t=5s5,0=0.01,A=8,A =15 a=1,p=2, A=3, y=30and

different values of .
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Figure 5.7
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Fig. 5.7 Profilesof thevelocityv(r,t) givenbyEq.(5.3.16)for R = 0.3 R, = 05,
f,=4, f,=3t=6s,0=0.04,A=11, 4, =250=0.9,4= 06 p=2,A=3 and
different valuesof y.

Figure 5.8
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Fig. 5.8 Profiles of the velocityv(r,t) givenby Eq.(5.3.16)forR, = 03 R, = 05,
f,=4 f,=3 t=5s5,0=0.0154=10,4, =2 a=0.3,5=09, A=3, = 30and
different values of p.
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Figure 5.9

Fig. 5.9 Profilesof the velocityv(r,t) given by Eq(5.3.16forR = 03 R, = 05
f,=3t=55,0=0.0451=14,1 =28 0=0.8,8=05p=2,A=3, u=30and
differentvaluesof f,.

Figure 5.10

70

— f2:2

60f T— —o— =3

~ o f,m4

501

N

va(r)
ooo
v2(r)
v3(n)
A-A-A

30r

201

101

Fig. 5.10 Profiles of thevelocity v(r,t) given byEQq.(5.3.16)forR = 03 R, = 05,
f,=4t=6s,0=0.035,1=10,A =2 0=0.7,6=04,p=2,A=3, yu=30and
different values of f,.
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Figure 5.11

vi(r)
0Boo
v2(r)
v3(r)
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Fig.5.11 Profiles of the velocity v(r, t) givenbyEQq(5.3.16)forR = 03 R, = 05
f,=4 1f,=3t=5,0=0.04141=13,4 = 27,d=0.8,3= 05 p=2, 4=30 and
different valuesof A.

PartB

5.5 Flow through the annular region

Let us consider an incompressible Oldroyd-B fluid in infindeaxial circular
cylinders. At time = O/fluid is assumed to be stationary. At titre0" a constant

pressure gradient applied and the inner cylinder mowsoanstant velocity and the

outer cylinder held fixed. Consider that the radius akmand outer cylinders ar

and R, (> R,) respectively.
The initial and boundary conditions are

vr0=0 dv(r0=0 R,sr<R,, (5.5.1)

v(R,t)=1f, Vv(R,,t)=0, t>0, (5.5.2)
where f is constant.

Making the change of unknown function
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v(r,t) =V (r) +u(r,t), (5.5.3)
where
_ﬁ 2 _ 2 A (R22 _Rﬂ.z)
V(r)= 4U(R2 r )+4U—In(R2/R1)|n(r/R2)' (5.5.4)
Substitute Eq. (5.5.3) in EqQ. (5.2.2), we obtain
au(r t) o221 e t”
@+ AD)——==u(@+AD; )(6r + r a,Ju(r,t)+/1Ar(1_a) ArAr(l—[a’)' (5.5.5)
Substitute Eq. (5.5.3) in Egs. (5.5.1) & (5.5.2),atxain
ur,0)=-V(), du(r,0=0, (5.5.6)
u(R,t)=~f, u(R,,t)=0. (5.5.7)

The Hankel Transform method with respect te used and is defined as follows [11]

R
ﬂ:jru(r,s)qq(sﬂ,r)dr. (5.5.8)
R

The inverse Hankel Transform is

- ud isﬂo fRZ%)dsq;s)cq(%,r)’ (5.5.9)
2 = Jo(ash)_']o(Rz%)

where ¢(s,,r) =Y,(RsS,)Jo(S,r) —J,(RS,)Y,(S,r ), S, is the positive root of

¢(s,,R,)=0.

Applying the Hankel transform in Eq. (5.5.5), weah

oUs,.1) _ v WAL 1,
at

8, @+ A DA, )= f 5

LJAGS )T 24 Ags)t”
wri-a) mre-p

(L+AD7)

(5.5.10)

where
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g(sn)=[RZT”S“{YO(ngn)J1(stn)—Jo(asn)vl(stn)}—l}

Applying the Hankel transform of Eq. (5.5.6), weah

N - 2A Jo(RtSn)_ T —
us,.,0) = mﬁu{Jo(stn) 1}, 0, us, 0 =0. (5.5.11)

Applying Laplace transform of Eq. (5.5.10) and gsky. (5.5.11), we obtain

SNV —
7820 | J,(R,S,) S2(s+As™ +us? +us? A, sP)
2uf 1 R 1
T gs+As™ +us? +usiA sP)  m sTP(s+ A" +us? +us?A sP)
L 2AAg(s,) 1

7B, STU(s+As™ +us? +usiA sP)
_2A.Ad(s,) 1

/B2 SP(s+ ATt +us? +usPA sF)

n

(5.5.12)

Applying Inverse-Laplace transform of Eqg. (5.5.1&)d taking into account the
following result, as it is given by Eq. (5.3.14, i

4 9
G, dt=L——
a,n, ( ) {(qa _d)c}

© djr(c+ J) t(c+j)a—b—l .
STEr(j+) ric+ ja-h’

Re@c-b) >0, ‘% <] (5.5.13)
q

we obtain
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1 = —ﬁ ‘]O(RtSq) ™ m m « o
L(Sﬂ"t)_|: U{‘JO(B%) }:H z( 1) ( ] ;(k}/,fGaﬁk_m—zn&l( A ’t)}
i(:‘}vf@a 'ﬂk—nrz,rml(_/]_la t)

2, 1 )T

A2 (D {AJ Z(k}vreﬂ,ﬁkﬂ_m( )
+Mii(_])m(ﬁj i(:]}‘kc;aﬁkma 2m+1( /]_1,t)

_2AAds) 1 i(_nm[éj i(?}’f@ sempama(AE) . (5.5.14)

The expression of the velocity field can be writéen

© J¢Z o (R:S,)@(s,, 1) [{_ A [JO(RlSn) —1}}

V() =V () + ), [32(Rs,) - 32 (Rs,)]| Jo(R;S,)

x{l—i(—l)'“(“j“} Z( j" Gy prcm-zmes (= Alt)}
£y ()" [

] &l
—)IfZ(l)[ o)’

L A0 gy [

USs

m(m a
Z k /1 Ga ,Bk-m-— 2m+1( - )
k=

0

m k
k ArGaﬁk m+ 8- 2m+1( A )
O

_A Ag(s)z( B [ J

us?

mfm
Z k /1 Ga,Bk m+a- 2m+1( /1 )
k=

0

m m .
Z k r aﬁk—m+,8—2,m+1(_A 1t) '

k=0

(5.5.15)

5.6 Results

As shown in below diagrams, the velocityr,t) given by Eq. (5.5.15) has been
drawn againstr for different values of the time, f and some other relevant
parameters. The motion of the fluid is relativebwer in the neighborhood of the

inner cylinder for given boundary conditions. Figub.12 is showing the time
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dependency on the fluid motion. It can be seen thatvelocity is the increasing
function of timet. Figure 5.13 is showing the dependency of therkaé viscosity

on the fluid motion. It can be clearly seen tha Welocity is the decreasing function
of kinematic viscosity . Figures 5.14 and 5.15 are showing the effechefrélaxation
time Aand retardation timel, on the fluid motion. Both parameters have opposite
effect on the fluid motion. The velocity is decreasfunction of Aand increasing
function of A, .The influence of fractional parameterandg on the fluid motion is
shown in figures 5.16and 5.17.Both parameters hayeosite effect on the fluid
motion. The velocity is increasing function @fand decreasing function ¢f . Figure
5.18 is showing the dependency fobn the fluid motion. It can be seen that the
velocity is decreasing function &f Figure 5.19 is showing the dependencyAobn

the fluid motion. It can be seen that the velo@tincreasing function of.

Figure 5.12
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Figure 5.12 Profiles of the velociwfr,t) given by Eq. (5.5.15) for& 0.3, R= 0.5,

f=-3,v=0.0351= 12,A=2.2,0=0.9,=0.6, A=4 and different values tf
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Figure 5.13
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Figure 5.13 Profiles of the velocitfr,t) given by Eq. (5.5.15) fdR;=0.3, R=0.5,

f= -3, t=6s,1=9, 4,=4, a=0.3, f=0.3, A=4 and different values of.

Figure 5.14
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Figure 5.14 Profiles of the velocitfr,t) given by Eq. (5.5.15) fdR;=0.3, R=0.5,

f=-3, t=5s,v=0.04, 4,=7, ¢=0.3, =0.3, A=4 and different values af



Chapter 5

Figure 5.15
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Figure 5.15 Profiles of the velocitfr,t) given by Eq. (5.5.15) fdR;=0.3, R=0.5,

f=-3, t=5s,v=0.04,1=8, ¢=0.3, p=0.9, A=4 and different values df.

Figure 5.16
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Figure 5.16 Profiles of the velociwfr,t) given by Eq. (5.5.15) fdR;=0.3, R=0.5,

f= -3, t=6s,v=0.045,1=25, 1,=8, p=0.5, A=4 and different values af.
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Figure 5.17 Profiles of the velocitfr,t) given by Eq. (5.5.15) fdR;=0.3, R=0.5,

f= -3, t=6s,v=0.04,1=8, 4,=5.5, a=1, A=4 and different values df.

Figure 5.17
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Figure 5.18
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Figure 5.18 Profiles of the velocityr,t) given by Eqg. (5.5.15) foR;=0.3, R=0.5,

t=5s,v=0.045, 1=14, ,=2.8, 0=0.8, p=0.5,A=4 and different values df
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Figure 5.19
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Figure 5.19 Profiles of the velocitfr,t) given by Eq. (5.5.15) fdR;=0.3, R=0.5,

f= -3, t=5s,v=0.04,4=11, /,=2.5, ¢=0.9, =0.6 and different values &t

Part C

5.7 Flow through the annular region
Consider an Oldroyd-B fluid at rest between twanitély long coaxial cylinders.
Also, consider that radius of inner and outer aidirs areR and R,(>R)

respectively. The inner cylinder pulled with comdtashear and outer cylinder is
moving with time dependent velocity. We have tovedhe next initial and boundary

problem, in the absence of a pressure gradiehiizdirection.
ay OV _ sy a2 . 1
L+ 1D, )E_U(l-'-ArDt )| 0; +=0, v(r,t), t>0. (5.7.2)
r

The initial and boundary conditions are expressed b

v(r0)=0, dy(r0)=0, R,<r<R,, (5.7.2)

HA+ADEONE )] =F VR,H=F,tP, >0, p=0, (5.7.3)
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wheref,, f, are constant.

Making the change to unknown function
v(r,t) =V (r) +u(r,t), (5.7.4)

where
V(r) =Rl—flln(r/R2). (5.7.5)
U

Substitute Eq. (5.7.4) into Eq. (5.7.1), we get

o QU1 _
@+ D)=

—U(1+)I,Df)(6,2 +%6rju(r,t). (5.7.6)

Substitute Eq. (5.7.4) into Egs. (5.7.2) and (5, A& get
ur,0=-VvV(), du(r,0)=0, (5.7.7)

t—ﬁ'

1+ A D?)o A)==fA ——,
p@+2,D8)9,u(R 1) T

u(R,,t)=f,t*, t>0, p=0. (5.7.8)

The Hankel Transform method with respect te used and is defined as follows [11]

2

u= [ru(r,9)g(s,,rr. (5.7.9)

N —y U

The inverse Hankel Transform as defined by

U(r,S) :gi ﬁf‘J()z(RZSn)L(Sn’S)ﬂ_(Sn’r)’ (5710)

n=1 Jf(RSn)_‘]g(stn)

where ¢, (s,,r) =J,(Rs,)Y,(s,r) - Y,(Rs,)J,(s,r),s, is the positive root of
¢(s,,R,)=0.

Applying the Hankel transform to Eq. (5.7.6), wdaib
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au(sn,t)z_usz(l_'_/‘ Df)Us t)+2ufl/1r t7  20f,t” J(Rs,)
ot " UMY s u TA-B) o J(Rs,)
_ 2,4, Ji(Rs,) T(p+)) {Ph

T J,(Rs,) F(p-B+)

(1+AD{")

(5.7.11)

Applying the Hankel transform to Eq. (5.7.7), weab

us, 0) = ;23 , 0,us,0)=0. (5.7.12)

Applying Laplace transform to Eq. (5.7.11), we ata

— a 2 -1
I(Snls):I(Sn ’O) (1+;1+? +UZSn/]rSZﬂ )ﬂ
(S+As"™ +us| +us A, S7)
L2 1
s, STP(s+As™ +us? +usiA sP)
_2/,T(p+1) Ji(Rs,) 1
T Jo(Rs,) s (s+As™ +usi +usiA, S”)
_20A £,M(p+]) Ji(Rs,) 1
7T Jo(Res,) 77 (s+As™ +us] +usiA 8")

(5.7.13

Substitute Eq. (5.7.12) into Eq. (5.7.13), we abtai

= 2f 1+ As” +usiA, s"
(s, 9= 2 AN )

s, Sn(s-'-AS +Us; +Usn/1rs )
LA, 1

s, s (s+As™ +us) + Ui )
_2U,I(p+1) Ji(Rs,) 1
T Jo(R,S,) sPH(s+As™™ +us? +usi A sP)

_2wA 1M (p+]) Ji(Rs,) 1

T Jo(R,S,) s P (s+ A" +us? +usPA, sP)

(5.7.14

Applying Inverse-Laplace transform to Eq. (5.7.1a0)d taking into account the
following result [117]



Chapter 5 73

-1 q°
(d) =L ——
a ( ) {( a_d)c}

Z dr(c+j)
s FOr(j+) ri(c+ ja- b]

t(c+J)a—b 1

Ref@c-hb) >0, ‘% <1, (5.7.15)
q

we obtain

L(Svt)zz.f{ Z( :D ( J Z‘( J}t aﬁk—m—2m+1( /]—1 t)}
f 12(])( J Z(J’taﬁkrmﬁZmﬂ(Ilt)

_260(p+) 4(Rs) 13 ””lz( }t At
T 0(351) sz( :D ( j = a, k- m—p—2m+1( )

_2A(p+) J(Rs) 1 ]
T O(Fg%)sfz( :D ( J g }t a, fk-m-p+f4- 2m+1( A t) (5 7. 16)

The expression of the velocity field can be writéen

o et S5 Yseemer)

fsf:z(b( j XU/MMNMM )

~ £ (p+]) :ﬁ?;"))zw[ j Z( }4 Gapermp am(A-D)

“AE(p+) 1§gsﬂ))z( J)( J 2( )%Gaﬁk.w e

(5.7.17)

5.8 Results

As shown in below diagrams, the velocityr,t) given by Eq. (5.7.17) has been

drawn againstr for different values of the timé, constants and other relevant

parameters. The velocity componerns decreasing function af Figure 5.20 shows
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the influence of the time on the fluid motion. Agpected, the velocity is increasing

function with respect to. The kinematic viscosity  as result from Fig. 5.21, has a

strong influence on the velocity. The result intksathat the velocity is increasing
function ofv. The influences of the relaxation and retardatiomes on the fluid

motion are shown in the figures 5.22 and 5.23.Hidates that the velocity is
decreasing function ofl and/, . Figure 5.24 show the influence of the fractional

parameterr on the fluid motion. It is clearly seen from thgure that the velocity is
increasing function af. In figure 5.25, it is shown the influence of tfractional

parametefs on the fluid motion. It is clearly seen from thgure that the velocity is
decreasing functiofi. Figure 5.26 show the influencesmbn the fluid motion. It is
clearly seen from the figure that the velocitynsreasing function op. figures 5.27
and 5.28 show the influences fpfind f,on the fluid motion. Figure 5.29 show the
influence of i on the fluid motion. It is clearly seen from thguire that the velocity

is increasing function gf.

Figure 5.20
120
I —+— t=5s
&\ —6— t=6s
1005 \\ —A—t=7s |

0.3 0.35 0.4 0.45 0.5

Fig.5.20Profilesof thevelocityv(r,t) givenbyEq.(5.7.17)for R, = 0.3 R, = 05,
f,=3f,=40=0.0354=12,A, = 22,0 =0.9,5= 06,p = 2, # = 3CGanddifferent
value:of t.
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Figure 5.21
70 : :
A —+—v=0.003
—5— v=0.005
sor N —A—y=0.007 ||
. v=0.
sk
401
sz o
eleaecy
BRGNP

30r

201
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0.3 0.35 0.4 0.45 0.5

r

Fig.5.21Profilesof thevelocity(r,t) givenby Eq.(5.7.17)forR = 03 R, =05,
f,=3 f,=4t=6s,A=9,4 =4, a=0.3, 5= 03 p=2, x=30anddifferent
value: of v.

Figure 5.22

vi(r)
oo
v2(r)
v3(r)
A-A-A

Fig.5.22 Profilesof thevelocityv(r,t) givenbyEq.(5.7.17Jor R, = 0.3 R, = 05,
f,=3f,=4 t=5s,0=0.01,4, =7, a=0.3, = 03 p= 2,4 = 3Ganddifferent
valuewof A.
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Figure 5.23

vi(r)
0ooo
v2(r)
v3(n)
A-A-A

0‘4 0.;15 0.5
Fig.5.23Profilesof thevelocityv(r,t) givenby Eq.(5.7.17)or R, = 0.3, R, = 05,

f,=3f,=4t=550=0.04,1=8,a=0.3, 5= 09, p=2, =30 anddifferent

valuesof A,.

Figure 5.24

50 : ‘ :
—+— q=0.2

4] ':,'f:”“'ﬁ\ — O a=03|
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L \ AN
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va(r)
0ooo
v2(r)
v3(n)
A-A-A

Fig. 5.24Profilesof thevelocityv(r,t) givenbyEq.(5.7.17for R = 03, R, = 05,
f,=3f,=4t=6sp=0.01,1=25,1, =5 = 05p=2, 4=30anddifferent

valueof a.



Chapter 5 77

Figure 5.25

50

45r

401

35F

30h—

vi(r)
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Fig.5.25Profilesof thevelocityv(r,t) givenby Eq.(5.7.17for R, = 0.3 R, = 05,
f,=3f,=4,t=6s,0=0.04,4=8, A, =15 a=1,p=2,u= 3G@nddifferent
valuesof £.

Figure 5.26

—F—p=1
—S— p=2|]

0.3 0.35 0.4 0.45 0.5

Fig. 5.26 Profilesof thevelocityv(r,t) givenbyEq.(5.7.17for R, = 0.3 R, = 05,
f,=3f,=4t=5s50=0.04,1=10, A, =2, a=0.3, f= 09, 4= 3Ganddifferent
valuesof p.
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Figure 5.27

60,
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0.3 0.35 0.4 0.45 0.5

r

Fig.5.27 Profilesof thevelocityv(r,t) givenbyEq.(5.7.17for R, = 03 R, = 05,
f,=4t=550=0.0454=14,A, = 28, a=0.8,5= 05p =2, =30 anddifferent
valuesof f,.

Figure 5.28
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Fig.5.28 Profilesof thevelocityv(r,t) givenbyEq.(5.7.17for R, = 03, R, = 05,
f,=3t=6s, v=0.0354=10,1, =2 a=0.7, f= 04, p=2, 4= 30 anddifferent
valuesof f,.
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Figure 5.29
40 ‘ : ‘
S~ __ —— p=1
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Fig. 5.29 Profilesof the velocityv(r,t) givenbyEq.(5.7.17for R = 03 R, = 05,
f,=3f,=4t=5,0=0.04,A=11, A, = 25 a=0.9, = 06, p= 2 anddifferent
valuesof 4.

5.9 Conclusions

The purpose of this chapter is to establish exalctiens for the velocity field
corresponding to the flow of Oldroyd-B fluid in thennular region between two
infinitely long coaxial cylinders. In part-A, the ation is produced by a constant
pressure gradient and the inner cylinder pulledh winstant shear and outer cylinder
is moving with time dependent velocity. In part-Bie motion is produced by a
constant pressure gradient and inner cylinder igimgowith constant velocity while
the outer cylinder is fixed. In part-C, the motiohthe fluid is produced by the inner
cylinder pulled with a constant shear and outerindgr is moving with time
dependent velocity. This solution is obtained bingdHankel transform and Laplace
transform methods and the result is presentedrinsteof generalized G functions.
This solution satisfies the governing equation alidmposed initial and boundary
conditions. The velocity field is also analyzedngsgraphical illustration for various

parameters, constants and fractional coefficients.

In all of above figures, the roots, has been approximated (2;—1);).
=



Chapter 6. Exact solutions for the
helical flow of fractional Oldroyd-B
fluid in a circular cylinder

The paper submittedon the work described in this chapter:

1. Khandelwal K. and Mathur VExact solutions for the helical flow of fractional
Oldroyd-B fluid in a circularcylinder, Advances in Applied Mathematics and

Mechanics (communicated).
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6.1 Introduction

This chapter presents and analyzes the velocilysfiend the adequate shear stresses
corresponding to the helical flow of fractional @gd-B fluid. The fluid is assumed

to be present in a circular cylinder. We use setjalefractional derivatives Laplace
transform and finite Hankel transforms to reachdasired results. The results are
presented in terms of generalized G function arey thre free from convolution
products. Subsequently, we impose appropriateditoitderive solutions for ordinary
Oldroyd-B fluid, Newtonian fluid, ordinary Maxwefluid and fractional Maxwell
fluid. Further, this chapter demonstrates the grilee of various physical parameters
on velocity and shear stress and presents theseagaphically. Finally, a comparison

is drawn and discussed among different models.

6.2 Governing equations

The constitutive equations of an incompressibler®id-B fluid are given by [21,
71,118]

T=-pl+S, S+A(S-LS-SU)={A+A (A-LA-AL)], (6.2.1)

where T is the Cauchy stress tensopl denotes the indeterminate spherical stress,

S is the extra-stress tensdr,and A, are relaxation and retardation timesz L+ L' is
the first Rivlin-Ericksen tensor with L the velogitgradient, i is the dynamic

viscosity, the superscript T indicates the transpomgeration and the dot denotes the
material time differentiation.

In cylindrical coordinategr,6,z) the helical flow velocity fieldv and extra
stressS are defined as

V =V(r,t)=wr, t)e, + v(r, t)e,, S=5(r,t), (6.2.2)
whereg, ande, are the unit vectors in th@and z directions. The fluid is assumed to

be at rest at=0, then

V(r,0)=0, S(r,0)=0. (6.2.3)
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Egs. (6.2.1) and (6.2.2) implg, =S,, =S,, =S,, =0 and relevant equations

(L+ D )r, (r 1) = L+ A, DF {:—r - %jw(r 1), (6.2.4)
L+ D7 ), (1 1) = ,u(1+/1er)¥, (6.2.5)

wherer, =S, ,and 7, =S, are the shear stresses. The equation of motiomhen

absence of a pressure gradient in the axial dme&ind neglecting body forces, leads

to the relevant equations

ow(r,t) _ 2

P m (E+?jrl(r t), (6.2.6)
ov(r,t) _ 1

P ™ (ar rjrz (r,t). (6.2.7)

Eliminating 7, and 7, between Egs. (6.2.6) and (6.2.7), we obtain

(1+ADt”)aNg Y = e Dp{§—2+%§ —)w( 0, 628
(1+/ID{’)¥ =uf1+1,D? {a_ +FE}“ ), (6.2.9

H
Yo,

is the Caputo fractional derivative of ord@ras defined by [64]

wherev == is the kinematic viscosityy is the constant density of the fluid amxf

1 db ()
— 0<fB<1
pffay=4" LA dtl(t‘f)ﬂ g (6.2.10)

d -
af(t), B=1,

wherel () is the Gamma function. This model can be reduceatdinary Oldroyd-B

model whern—1 andf —1.
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6.3 Helical flow through an infinite circular
cylinder
Let us consider an incompressible fractional Oldr8yfluid at rest in an infinite

circular cylinder of radiu®k. At timet=0", the cylinder begins to oscillate around its

axis with the velocityRsinat and to slide along the same axis with the velddify,
wherec is the angular frequency of velocity, andaare constants. The appropriate

initial and boundary conditions are

w(r,0)=v(r,0 =0, (6.3.1)

and
W(R,t) = Rsinad, v(R 1) =Ut?, t= 0, a=0. (6.3.2

In order to solve this problem, we use fractionaihtive Laplace and finite Hankel

transforms.

6.3.1 Calculation of the velocity field

Applying Laplace transform to Eqgs. (6.2.8) and ®)2in terms of sequential
fractional derivative Laplace transform [64] andhgsthe initial conditions as given in
Eqg. (6.3.1), we obtain

— 0° 190 1\
+ g™ r.q) =ull+ A By 42 _ — r,q), 6.3.3
(a+ A7 Jw(r,q) =0ft+ 1. g {arz s r2]w< a) (6.3.3)
— 2 —
(a+ 107 (1,0 =u(1+/|rq”)(§—2 +%§rjv(r.q). (6.3.4)
r

Applying Laplace transform to Eq. (6.3.2), we obtai

(6.3.5)

— _ Ra - _Ur(a+l
W(R1Q)—m, MR Q) = Ea
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Multiplying both sides of Egs. (6.3.3) and (6.3.8y rJ,(rr,,) and rJ,(rr,,),

respectively, integrating them with respect foom O to R and taking into account the
following results

(0w low_w
{ar ror r}] (1r))dr = R, J,(RE, JWR Oy (,,0),  (6.3.6)

0

Ir(%+%?JJ (rrOn)dr RrOn‘Jl(RrOn )V(R1t)-r02an(rOn’t)’ (637)
0
we obtain
_ 1+,
w. (r._,0) = uR?*ar, J. (R, ( r , 6.3.8
() IR (G Y A + or + d ) €39
and
) (i+2.0”)
,q) =uRr, J, (Rr, Ul (a+1 s , 6.3.9
VH (r()n q) v r0n 1( rOn) (a ) a+1(q+/]qa+1+ur02n+U/1rr02nq/?) ( )

where

VVH (rln’q) :T er(r, q)‘]l(rrln)dr’ \_/H (rOn!q) :JB r;/(r’ q)‘]o(rrOn)dr’ (6310)

0

are the Hankel transform afi(r,q) andv(r,q), while r, andr,, are the positive

roots of the transcendental equatidpdRr) =0 and J,(Rr) =0 respectively. The

inverse Hankel transform, as defined by [116], bamiven as

Y _i - J (rrln "
W(r,q)—RznZ;J R0 Wi (1, ), (6.3.11)
and
v(r 0)=7 Z Jolon) y 1 ) (6.3.12)
’ < )2 (ROn) on -

Applying inverse Hankel transform to Egs. (6.3.8)146.3.9), we obtain
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3,(rry,) [L+1,07)

w(r, 20W) r , 6.3.13
( q) Z in J (R )(q2+w2)(q+/1qa+1+ur1ﬁ +U/]rl‘1iqﬁ) ( )
and
v(r, q)-—uur(a+1)2ron Jo(Te) braa’) (6.3.14)

Ji(Rr,) g* (g + A9 +urg +uA r5q”)’

Applying Inverse-Laplace transform to Egs. (6.3.48) (6.3.14), taking into account
the following results [117]

1 1y (-u2)" . gfm
- A , (6.3.15
q+/lq”+l+Urn2+U/lrr B /] n;);) k'(m k)'k P J r (qa +/1—1)m+1 ( )
and
b
d,y=L-9
a,bc( ) {( a_d)c}
i djr(c_l_ J) t(c+J)a—b -1
s F@r(j+1ri(c+ ja- b]
Ref@c-b)>0, Re(q)>0, ‘% <1, (6.3.16)
q
we obtain
2000 J,(rry,) m
w(r,t) =——
(r.t) = A~ fn g (Rln)z( mzo( j ;k.(m k)|
{Ga Bk-m-2j- 3m+1( /1_1 t) +/1 G B (k+1)-m-2j- 3m+1( /]_1 t)} (6317)
and
20UM(a+1) & Jy(rry,) & —urOn "
v(ir,t) = ———— n A
r.n R A Z " J.(Rr,,) & ;)kl(m k)!

X Gn,ﬁk—m—a—Z,mﬂ(_A 7t) + ArGa,ﬂ(k+1)—m—a—2,m+1(_/r 7t )} . (6318)
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6.3.2 Calculation of the shear stress

Applying Laplace transform to Egs. (6.2.4) and (B 2we obtain

_ _@+A9°) (o 1)
Tl(r'Q)—,Um(a er(ﬁQ), (6.3.19)
and
£ (r.g) = &L AG) 0V(r.0) (6.3.20)

@+Ag®) or

Substitute Egs. (6.3.13) and (6.3.14) into Eq8.1®) and (6.3.20), we obtain

A(ry,) L a.07)

r,(r,q) =—2uvw ,

= e s TN de o oA T
(6.3.21)

and

_ J,(rry,) (1+/1 q )2

T, (r, —pddr(@+)> rg -2

= A @36 e T A a1 )
(6.3.22)

Applying inverse Laplace transform to Eqgs. (6.3.2hd (6.3.22), then using Egs.
(6.3.15) and (6.3.16), we obtain

2 3,0, oom
r,(r,t)=- /Mdz i ((er))Z( Z( ] zkl(m—k)!/]r

k=0 K-
X{G"ﬁk‘m— 2j-am2 AT D+ G, iy g -ame (A1)
+2A, G, psny-m-2j-3me2 (-1, 0}, (6.3.23)
and
_ 2,UIU|_(a+D 2 J (rro) Ur0 m,
rt)y=— n n y

X{Ga,ﬁk—wa—Z,w2(_/1 0+ rGaﬁ(k+2)—m-a—2,nH-2(_/] 1t)+ZArGaﬁ(k+1)—m—a—2,n‘r+2(_/]_l’t)}'
(6.3.24)
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6.4 Limiting Cases
6.4.1 Ordinary Oldroyd-B fluid

Applying a - 1 andg - 1 into Egs. (6.3.17), (6.3.18), (6.3.23) and (6.3.24%

obtain the velocity field

2 J 1n jco B 1?1 4
WoB(r t) jwz an ((lr::l))Z( ) mzzo( ljlr j Okl(m k)l r

X{Gl, k-m-2j-3,m+1 (_/]_l’t) + ArGl, k—m—2]—2,m+l(_/]_l )}’ (6-4-1)
20Ur@+) & Jy(mg,) & —ud ) &
V., (I,t _—
s (1) = R A Z°”J(RrOn Z Zokl(m k)l A
X {Gl k—m—a—2,m+l(_/‘_1!t) + /]rGL k—m—a—l,m+1(_/‘_l )} (642)

and the tangential stress corresponding to ordi@édyoyd-B fluid performing the

same motion.

T 1) =—

J (rrln) n K
az J,(Ry, ) ) Z[ j Zk!(m—k)'/]r

k=0

X{Gl k-m-2j-3m+2 (_A ’t) +/]fGJ. k-m-2j-1m+2 (_A_ 't) +2/]r le—m— 2j-2mt2 (_A_l !t)}’
(6.4.3)

2 ,uuUI'(a+1) 3,(rry,) "
realr=- 2D S s Wl S Ztta |

k=0
x {Gl k-m-a-2,m+2 (_/]_1 , t) + /]rz 1, ke mram2 (_/]_1 , t) + 2/1r Gl k-m-a—1,m+2 (_/1_1 it )}
(6.4.4)

6.4.2 Fractional Maxwell fluid

Applying A, - 0 into Egs. (6.3.17), (6.3.18), (6.3.23) and (6.3.2de obtain the

velocity field

Wenm (rlt)zzj_wirln j ((;‘ln) Z( i{_urmJ a- m—2j-3,m+1(_/r1at)’

n=1

(6.4.5)
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2 0UM(@a+1) & J,(my,) " o
FM( t)_E 1 z on J (RFOH)Z( 1 J a,- m—a—2,m+1( A ’t)y

(6.4.6)

and the shear stress corresponding to the frattidaavell fluid performing the

same motion.

TlFM (r’t) Zﬂua)z ln j ((gln))Z( i( J a,— m—2]—3,m+2(_/1_1!t)1

(6.4.7)

2 pour(a+1 3,(ry) & —or2\" 3
Torm (rnt)z_ﬁlu ( )z 2{Ton) Z( /]0 j G, -mra-2me2 (74 '),

" 3,(R,,) &
(6.4.8)

6.4.3 Ordinary Maxwell fluid

Applying 4, - 0anda - 1 into Egs. (6.3.17), (6.3.18), (6.3.23) and (6.3.24e

obtain the velocity field

WM (r t) ijz 1n j ((gl: ) Z( Z( Urlnj 1,- m—2j—3,m+1(_/1_1 ,t), (649)

2

2uUlM(a+1 J, (rr 2 (—=ur
el ( )Z 0n ( On) Z Oon
R A = J(Rr,) mo\ A

vy (r,t) = J Gy macamn (A7 1), (6.4.10)

and its associated tangential stress correspondingordinary Maxwell fluid
performing the same motion.

2UUW & J,(rr,) < © " _
Iy, (r,t)=- FE 131 3 (Rl Z Z( ] 1- m—2j—3,m+2(_/] L),
n=1 1n : m=0

(6.4.11)
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Tow (r,t)=-

,uuUF(a+1) Z 3:(mon) Z('”Onj (=AY,

2 polr(a+1)
R J,(Rry,) A

(6.4.12)

6.4.4 Newtonian Fluid

ApplyingA - 0 into Egs. (6.4.9), (6.4.10), (6.4.11) and (6.4.52d taking into

account the following result [22]

t—b—l

r(-b)’

1
L”;T(])A_mGl,b,m( A ’t)_

we obtain the corresponding solutions for the Neweto fluid as follows

00 J (rrln) . tm+2j+2
wy, (r,t) = 2ua)Zr1n 3 (Rln)Z( mzo ur?) Tmi2i+3)’ (6.4.13)
[ J m+a+l
vy (r,t) = UUI'(a+1)ZrOn ((gon))Z( 2) m (6.4.14)
- J (rrln) tm+2j+2
T (1) 2ﬂuw2f1n 3 (Rln)Z( )’ Z( n) —r(m+2j +3 (6.4.15)
Ty (1, t)-——,uuUF(a+1)Zr0n Ja ((go") Z( 2) m (6.4.16)

6.5 Conclusions and Numerical results

In this chapter, we obtained and presented a saluidr the helical flow of an
incompressible fractional Oldroyd-B fluid. The nwitiis created as cylinder begins to
oscillate around its axis and slides along the sari® with prescribed velocity. The

expressions for the velocity fields and the shéasses have been determined using
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Laplace transform of sequential fractional derivedi and finite Hankel transforms in
terms of generalized G function and they satisfly tae initial and boundary
conditions. Furthermore, our solutions can be gimegl for Newtonian fluids and
some non-Newtonian fluids such as ordinary OldrByfluid, fractional Maxwell
fluid, ordinary Maxwell fluid. Thus, the technigaed the fractional Oldroyd-B model
will be useful in the theory of non-Newtonian flsid

In order to demonstrate impact of physical pararsetbe obtained results are
presented in the form of diagrams for both compther the velocity and shear
stresses. They are given by Egs. (6.3.17), (6.3(68.23) and (6.3.24) and have been
drawn against r for different values of the timand other relevant parameters as
shown in diagrams. It can be observed from figutest the velocity component

v(r,t) decreases with the radiusFigure 6.1 shows the fluid motion at differembeis.

It is observed that the velocities are increasihgerhe shear stresses area decreasing
function of timet. Figure 6.2 shows the effect of different valueskaiematic
viscosity on the fluid motion. It indicates thaethelocity profiles increase while the
shear stresses decrease, when kinematic viscosityaises. The dependencies of the
relaxation and retardation times on the fluid motare shown in the figures 6.3 &
6.4. The figures indicate that both componentseddaity are decreasing and the shear

stresses are increasing functiom.ohs well as the velocities are increasing and the
shear stresses are decreasing function of retandame/, . Fig. 6.5 demonstrates the

velocities and the shear stresses changes witlfirabBonal parameter. It can be
observed that the two components of the velocityeases while the shear stresses
decreases with increasing valuezofThe influence of the fractional paramef2ion

the fluid motion is shown in figure 6.6. It indieat that the velocity profiles are
decreasing and the shear stresses are increasirtipfuof/.

Figure 6.7 exhibits a comparative diagram of hmaiimponents of velocity and
the shear stresses corresponding to the motiona frhctional Oldroyd-B fluid,
ordinary Oldroyd-B fluid, fractional Maxwell fluidordinary Maxwell fluid and
Newtonian fluid in a circular cylinder, for samelwas of the common material
constants and time In all cases, the velocities of the Newtoniandflare the swiftest
while they are slowest for the fractional Maxwélidl on the whole flow domain.
Similarly, shear stresses on the whole flow domaneshighest for fractional Maxwell

fluid while it is slowest for the Newtonian fluith all of the figures 6.1-6.7, the units
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of the material constants are in Sl units and thetsrr,, and r,, have been

(@n-Dn and @n+)n

approximated by respectively.
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Fig.6.1 Profilesof the velocitesw(r, t), v(r,t) and sheastresseg, (r,t),7, (r,t) given
by Eqs(6.3.17),(6.3.18),(6.3.23)and (6.3.24)for R=1, w=1,U = lLa=1,0 =0.0016,
#=1.01,4=10,4, =5,0=0.9, 8= 0.6anddifferentvaluesof t.
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Figure 6.2
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Fig.6.2 Profilesof the velocites w(r,t), v(r,t) andsheastresses, (r,t),7,(r,t) given
by Eqs(6.3.17),(6.3.18),(6.3.23)and (6.3.24for R=, w=1,U=21a=1,t =8 x=1.01,
A=10,4, =5, =0.9, f= 0.@&anddifferentvaluesof v.
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Figure 6.3

20 . , — . — . . 07 —
—+ A6
06k —&—\=9 ||
5l —A— =12
05— _
%
10t o~
040 +
B . \
= / > R N
/
7/ 03— ~a
T/ A .
/// AN .
V4 \\\ ©
V4 0.2} \\j\ .
0.1- RN i
AN
N
,5 L L L L L L L L L 0 L L L L L L L L L )
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
r r
6.3(a) 6.3(b)
—+ %6 —+ \=6
001} —e—)=9 | o1f —o—)=9 ||
A \=12 \ \\\ A )\=12
0.02- 0.2kF \ \ \;\\\ ]
\ T~ A
0.03} S 1 03} * \@k\ —
\ el \ ~
- ™ A )
= -0.041 \\ T B o -04f N o— ]
' ‘ \
0.05} \1\ — 05}
NI \
\ ~o
0.06} \ 2 -0.6F N .
.
h AN
0,07+ ~ B 0.7+ .
5 *— —
008 . . L . L . . 08 . . . . L . .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

r r

6.3(c) 6.3(d)

Fig.6.3 Profilesof the velocites w(r,t), v(r,t) andshearstresses, (r,t), 7,(r,t) given
byEQs(6.3.17),(6.3.18),(6.3.23)and (6.3.24)for R=1, w=1,U=1a=1,t =8,0 =0.0016,
#=1.014 =5a=0.9, 5= 0.6anddifferent valueof A.
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Fig. 6.4 Profilesof the velocites w(r,t), v(r,t) andshearstresses, (r,t),7,(r,t) given
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Figure 6.5
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Fig.6.5 Profilesof the velocites w(r,t), v(r, tjand shearstressesr, (r,t), 7, (r,t) given
by Eqs(6.3.17)(6.3.18)(6.3.23and(6.3.24)for R=L,w=1,U=1a=1,t=8,0 =0.0016,
#=1.01,14=10,4, =5, = 0.6anddifferent valuesof a.
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Fig.6.6 Profilesof the velocites w(r,t), v(r, t)andsheastresses, (r,t), 7,(r,t) given
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Figure 6.7
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Fig.6.7 Profilesof the velocitesw(r, t), v(r, tjandshearstresses, (r,t),7,(r,t)

corresponhg to thefractionalOldroyd - B, ordinaryOldroyd-B, fractionalMaxwell,
ordinaryMaxwellandNewtonianfluids,for R=1, w=1,U = 1La=1,t =8,u0 = 0.0025,
#=102,1=12,A, =5, =0.9 andf = 06.
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7.1 Introduction

The constitutive equations of an incompressibler®ld-B fluid, as it is given by Eq.
(6.2.1), are

T=-pl+S, S+A(S-LS-SU)=4{A+A (A-LA-AL)], (7.1.1)

where T,- pl, S, 4, A, A L, u, the superscript and S have the same significance
as before.

The intent of this chapter is to propose the exatition for the velocity field
and shear stress of rotational flow for fractio@ddiroyd-B fluid filled between two
coaxial circular cylinders. At time tZpthe inner cylinder begins to rotate about its
axis with a time dependent shear stress while atiémder is moving at a constant
velocity. We use Hankel and Laplace transformseach the exact solution. The
obtained solutions are presented in terms of gépedaG functions and satisfy all the
initial and boundary conditions. The solution oflimary Oldroyd-B fluid, fractional

Maxwell fluid, ordinary Maxwell fluid and Newtoniafiuid are obtained by limiting
cases of, - 1;A -0;A - 0 y-1andA - 0 respectively. The expression

for the velocity field and shear stress are inrtfesst simplified form and are free from

convolution product.

7.2 Governing equations

Consider an incompressible fractional Oldroyd-Bdlthat has a velocity and extra

stress S as given by
v=v(r,t)=w(r, t)e,, S=5(r,t), (7.2.1)
whereg, is the unit vector in thé@direction of the cylindrical coordinates.

At time t=0, the fluid is at rest in an annular imeg between two infinite
coaxial circular cylinders. At time tZ0the inner cylinder begins to rotate about its
axis with a time dependent shear stress and ther aylinder moving at a constant
velocity. For these flows, the constraint of incoagsibility is automatically satisfied.

Initially the fluid is at rest, hence
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V(r,0)=0, S(r,0)=0. (7.2.2)

The governing equations corresponding to an incesgile fractional
Oldroyd-B fluid are [22]

ow(r,t) 02 10 1
1407 )20 — jh v a DA L 2L 2 e ) 7.2.3
, B N0 1
(L+ 4D )r(r,t) = i+ 2, D; o . (7.2.4)

wherer(r,t) =S, (r,t) is the non-trivial shear stresd, andA, are relaxation and

retardation times respectivelyl,:£ is the kinematic viscosityp is the constant
Yo,

density of the fluid and/ is the Caputo fractional derivative of ordéras defined

by [64]

1 gt f(7)
DFf(t) = F@-p)dig (t-1)° ’ (7.2.5)

d _
af(t), B=1,

wherel () is the Gamma function.

7.3 Flow through the annular region between
moving outer and rotating inner cylinders

Let us consider an incompressible fractional OldrByfluid at rest in infinite coaxial
circular cylinders. At timg=0", the inner cylinder begins to rotate about itssaxith
a time dependent shear stress and outer cylindeingmat a constant velocity. Also,
consider that radius of inner and outer cylindeeRaand R,(> R)) respectively. At
timet=0", a time dependent shear stress [22]

r(Rl,t)z%Ry,_l(—%,tJ; 0<sy<l], (7.3.1)
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is applied at the boundary of the inner cylindeneve f, is a constant and generalized

functionR is define by [117]

o q*-d| 4&ri(n+da-b]’

Re@-b)> 0, Re(q)>0, % <l (7.3.2)

The governing equations are given by Egs. (7.28) &.2.4), while appropriate

initial and boundary conditions are

w(r,00=0 7(r,0)=0, (7.3.3
and
0o 1
(L+ 4D )r(r,t) _, = 41+ 1,Df {E —?)w(r,t) = =T
WR,,t)=f,; t>0, (7.3.4)

wheref, is the constant velocity of outer cylinder. Eq.3(Z) is the solution of first

equation of (7.3.4). To solve this problem we uaplace and Hankel transforms.

7.3.1 Calculation of the velocity field

By applying Laplace transform to Eq. (7.2.3) anohgghe initial conditions as given
in Eq. (7.3.3), we obtain

a) 0> 10 1)
9+ 20" Jw(r,q) = u(1+/|rqﬂ{? i —r—sz(r,q). (7.35)

Applying Laplace transform to Eq. (7.3.4), we obtai

0 1)\
(E—FJW(V,Q)

w -
W(szq) - q .

o
R+ A.9%)

(7.3.6)

The Hankel transform method with respect tse used and defined as follows [17]
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Wi (r,,q) = frv_v(r,q)B (r,r,)dr, (7.3.7)
where
B(r,r,) =J3,(rr,)Y,(Rir,) =, (Rir,)Y,(rr,), (7.3.8)

r. being the positive roots of the transcendental g#ouB(R,,r) =0. The inverse
Hankel transform, as defined by [17], is given by
77 I RIBE)

D= 2 R -9 R

Wi (1, 0)- (7.3.9

Multiplying both sides of Eq. (7.3.5) bf(r, r,) and integrating with respect tdrom
R; to Ry, Taking into account the Eq. (7.3.6) and the atual

0° 16
j[ar o }N(rq)B(r,rn)dr

=-r2wh (1, Q)+( jW(r a)
T,

n

r + R WR, DY (R I, (Rr) = (R, (Rer,)]

— 2 f Rr f
=-r’wh (r., Q) +— L 2021y (Rr)J,(Rr)=J,(RrY,(Rr.)],
n H(n q) ﬂn /.Q(l‘l‘/‘rqﬁ) q [ Z(Rl n) 2(R2 n) Z(Rl n) 2(R2 n)]
(7.3.10)

we obtain
Wi (1, Q)
_2fw 1

g, oq+Agq” +or? +ud )

@+A.9%)
+ R, LY, (R I, (Ror) = I, (Rir)YL (R,r)] Q@I o T A )
(7.3.11)

Rewriting Eqg. (7.3.11) into a suitable equivalent forme, abtain below
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W (r,, Q)
_2f, 1 2f,+Aq" +uA r 9T
Sl q i+ Ag”t+or? +uA r2g”)

(1+2.9%)
q(q+Aq”t +or? +uA,r2g”)’
(7.3.12)

+UR2rn fz[Yz(ern)Jz(Rzrn) _Jz(ern)Yz(Rzrn)]

Applying inverse Hankel transform to Eq. (7.3.12)dataking into account the
following result

RZ( )3 4 (R ?
Ifz-Rf (r,rn)dr=—[—2J , (7.3.13)
R i\ R
we obtain
w(r, q)
ARV, R A e FRLBOL)  Aq ok g
2p\ R q M ErlIRr)-IFR) (Q+AQ" +ur? +0A r2q”)
P 3
I W3 Rer B0 1y )3, Ryr) = 3Rt s (R, )]

2 "L R - 2R,
(1+A.9”)

. 7.3.14
T AQ A o + 0, 12) ( :
Taking into account the following result
w m m Bk-m-1
: o DIpIRLLI (oL P
q+AQ"™™t +ur? +ud 1’ A e k'(m k)'k A (@ +AH™
(7.3.15)

we find Eq. (7.3.14) as
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w(r,q)

f,(RY 2\1 7, JRR, BT o2\ oM,

:Z{%J@_%Jqlﬁzrw(%»)jmﬁm§§(A ]HW—WA

(qﬂk—m—l+/1qy+ﬂk ml+U/‘ I qﬂ(k+1)m2)
(@ +AH)™

772 R, f, & RIN(R, BT |

2N ARG -ER

o m(_,; 2 \" Bk-m-2 B (k+1)-m-2
XZZ( jﬂj kl(nrwﬂ—k)l/‘r . (y”r? T ) (7.3.16)
! ! g’ +A%)

X

Z(ern)‘JZ (Rzrn) - ‘]Z(ern)YZ (Rzrn)]

Applying Inverse-Laplace transform of Eq. (7.3.464 taking into account the
following result [117]

—11 qb
G ) =L ——=
a,,( ) {( a_d)c}

z dr(c+j)
s FOr(j+y ri(c+ ja- b]

t(c+J)a b-1

Re@c-b) >0, ‘% <1, (7.3.17)
q

we obtain
w(r,t)

:Lthﬁfw’fWB« Sy m
2u\ R, r) AEr 2R -IZRr) i K(m-k)! "
X [GV et (AT DG, pcmama (AT D) HUATTG, gy mamen (AT t)]

SR, & BRI BE,)
e e e R R TR R

m - _ _
XZZ( j K (m k)l/]l: [Gyﬂk—m—Zmﬂ(_A 1,'[) +/]’GV~ﬁ(k+1)—m—2,m+1(_A 1 ,t)]

m=0k=0

(7.3.18)
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7.3.2 Calculation of the shear stress

Applying Laplace transform to Eq. (7.2.4), we obtai

T(r, Q)=

a+4q%(g_ 1
or r

4+ q) ——jw(r,q). (7.3.19)

Now, we rewrite Eqg. (7.3.11) in a more suitable ieglent form for the shear stress
r(r.t)

w (r,, Q)
B 21, 1 2f,1+Aq")
i+ A9%)q mal@+A.af)q+Ag”t +or? + oA i)
@+A.9%)
+UR, 1, FL[Y, (R, )3, (Ryr,) = 3, (R ) Y2 (R,r,)] T R

(7.3.20)
Applying inverse Hankel transform to Eq. (7.3.20% obtain

w(r,q)
:LL&TEr_R_ZZJ 1 1% IARIB(LT,)

2\ R, rju@+A.a%)q TE[IZR,) - IZ(R,r,)]
N @+19”)

HA+A.9°) g+ Aq"" +our? + vl 1r2q”)

2 3 2
I S S TR ACRRENCRARERCYAVACES)
@+A4,.9°)

a(q+Aq”t +ur? +ud r2q”)’

X

(7.3.21)

where
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0 1\—
[a—r ?jw(r,Q)
2 o 2 =
= fl(&j 1 5 l+nflz 2‘]1 (RZrn)B(Zr'rn)
r) u@+1,97)q 1 [J5 (Rry) = 37 (Ryry)l
(1+Aq")
,U(1+/1 a’)(q+Aq”" +or? +vA riq”)
mt © r*J2(R,r,)B(r,r,)
- —UR, f, 2N Y, (R,r) 3, (Ryr,) = 3, (Rr, )Y, (Ryr,)]
2 PELIZRI) - IZRr T ’ B
N L+4.9”) (7.3.22)
a(g+Aq”™t +our? +uA r2q?)

Substitute Eq. (7.3.22) into Eq. (7.3.19), we abtai

2 2 5
- 1 > Ji (R, )B(r, T, 1
T(r’Q)zfl(Ri) ~ 7t 21( Zn_) g ) Y 2 2B
a@+1q”) = [J5 (Rir,) = 35 (Rr)l (@ + 49" +ory + A, 179”)

= 123Z(R,r,)B(,rT,) B
IURZ ZZ[J (Rr ) J (Rz n)]rY (er )‘]Z(Rzrn) ‘]Z(ern)YZ(RZrn)]

1 1
x(@1+Aqg” - , 7.3.23
e Ad )[q(lﬂqy) (Q+Aq"* +ur? +uA r2g”) ( )
where
B(r.r,) = 3,(rm,)Y,(Rr,) = I, (Rr,)Y (I1,). (7.3.24)

Substitute Eq. (7.3.15) into Eq. (7.3.23), we abtai

RJZ 3 Ry, )é(r,rn) © —U(nzjm m ¥ gFem
- ( q(1+/1qy) A n.l[J Rr) I (R, )]%g; K(m-K)! " (g +AH)™

7 ey BERLBOL) ey, JRIY.
ARZZ;[J "R - R] L(RDILRT,) =, RYL(R)]

_ Lr-m-1
Xt A e 353 [l JELLY S
q+Aq") - (1+/1qy) /]m=0k0 A K(m-K)! " (g +A7)™

_2\M Bk+1)-m-1
—Zz ‘;j m__j_d ] (7.3.25)

== K(m-K)! " (@ +A")™
Applying inverse Laplace transform to Eq. (7.3.26) using Eq. (7.3.17), we obtain
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_(RY'1,
r(r,t)= fl( : j RaCANY

& le(Rzrn)é(rJn) - m . .
+7nﬂ[J§(R1r)-J2(Rzrn)];o§[ J kl(m—k)!AfGVﬁk-m-l"ﬂ( ALY

_i = 1232R,r,)B(.T,) |
e ZZ[J 2(Rr,) — IZ(R,r)]

1 -1 /]r -1 m k -1
X[; Ry,—l (_A 1t) +7 Ry,ﬁ—l (_A ZZ( j kl (m_ k)l Ar Gy,ﬂk—m—lmﬂ (_A !t)

[Y2(Rir )32 (Ror) =32 (R, )Y (Ror)]

m—Ok 0

A S&&( - " ) .
722( J k!(rn_k)!/1rG‘y,,b’(kﬂ)—m—],rml(_/1 !t)] (7326)

7.4 Limiting cases
7.4.1 Ordinary Oldroyd-B fluid
Applying y -1 andB - 1 into Egs. (7.3.18) and (7.3.26), we obtain the e#yo

field

WOB(rlt)

_hH(RY(, _R)_Ae JRLBC, m Mo,
_Z/J[sz (r r] ﬂ/‘z—;r[J ;(Rir,) =37 (Rzrn)]mz—okz(:)[ A j k'(m-k)!/]r
. [/]Gl k-mm+1 (_/]_l’ ) + (1+ U/]r n )Gl, k-m-1,m-+1 (_/]_l’t)]

LR & RIRLBELT,) | _
2 A S[ERr)-JER) Yo (Rr)JIL(Rr) = L (R )Y(R,r,)]

Tom e o .
xmz_();)( A j k!(m—k)lAr [Gl,k—m—Z,m+1( A 1t)+ArG:Lk—m—l,m+1( A 1tﬂ1 (741

and the tangential stress corresponding to ordi@édyoyd-B fluid performing the

same motion.
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o3

e RRLBEL) ew(-of) m .
+7Z[J§(ern)—Jf(Rzrn)]zz( j ] am-iqi”" e A

n=1 m=0 k=0

TRt 3 i CIBO) g R -0 R YR, )

SIO2Rr) - IZR,)]

t A t 1, —ur2 m e
X|l-exp-——|+—exp——|—-—= n G, . At

Aeo(-u2)" m .
_Trzz( l/ljrj k!(m—k)!AfGWmmﬂ(_" ’t)]' (7.4.2)

m=0 k=0

7.4.2 Fractional Maxwell fluid

Applying A, - 0 into Egs. (7.3.18) and (7.3.26), we obtain theeity field

Wey, (1)

— fl (ﬁ}z(r —&2] - rfl . le(RZrn)B(r’rn) i[_wnz jm
A

“2ulR) 1) MG IR - RIS
X [Gy,—m—lmu (A0 + AG, i (A7, t)]

TR, & RI(RIBE) | )
T2 AR AR 2R T L RG]

x i[ - ;}rnz ] [Gy,—m—z,nml (_/1_1 ,t)], (743

and the shear stress corresponding to the frattigiaawell fluid performing the

same
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oy (11) = fl(Ffj TR (AL ’jz L RLBC, Z[ J (AL

SRR -SR]
T ¢ BERILBC ) _
3 R e IRILR) LR R,)

1 b le(-u2)”
X[/]Rl(—/\ 0 /]Z( y; J G, -mima(A” t)] (7.4.4)

m=0

7.4.3 Ordinary Maxwell fluid

Applying A, - Oand y - 1 into Egs. (7.3.18) and (7.3.26), we obtain theooity
field

w,, (r,t)

=L[ﬁﬂrﬁ_§}i = B2R,,)B(.T,) Z(UrJ
2:“ Rz r H w= rn[Jzz(ern)_le(Rzrn)] m=0 A
X116, s (A ) + Gy (<A™ 1)
LR, &y SJZ(R,r,)B(r,r,)
2 A IR -IZR,)]

i(_ur j [Gl,—m—z,m+1(_/]_l,t)]1 (7.4.5)

m=0

[Y2(Rir) 32 (Ror) = 3o (R, )Y, (R )]

and its associated tangential stress correspondingordinary Maxwell fluid

performing the same motion.

oo 3)

& JZRBE,r) & -ur?) _
+712 GAACIE) Z( jGL_m_l’mﬂ(_Al,t)

032 (Rir,) = 3P (Ryr )l A

e rRRRLBLT)
”“Z[J 2Ryr) - JZ(R,1)]

[1 exp( j i{_‘”J 1m_1,m+1(—/rl,t)]. (7.4.6)

rY (ern)‘] (Rzrn) J (ern)Y (Rzrn)]
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7.4.4 Newtonian Fluid

ApplyingA - 0 into Egs. (7.4.5) and (7.4.6) and taking into artdhe following
result [17]

t—b—l

r(-b)’

S
M~ Gy (-A™0) = (7.4.7)

we obtain the corresponding solutions for the Neneo fluid as follows

_ G (RY(, R _A e RRrBET,
WN(r’t)_ZIU[sz [F r j S [IZRr,) = IS (Ryr n)]Z(

© r2JZ(R,r)B(r,T,)

+_ R f Z[J (Rl n) J (Rz n)]rYz(ern)Jz(Rzrn)_Jz(ern)Yz(Rzrn)]
xZ(— m n:]_)l (7.4.8)

and

R e HRBCL) "t
rN(rv”‘fl( j”’fnzlu R - 2R ) m

& RRERB(LT,)
” f L 3R = AR ]

x {1— Z (-or?2) %} (7.4.9)

rYz (ern)‘J 2 (Rzrn) - Jz (ern )Yz (Rzrn )]

These solutions can also be written in a simplenfas

2 2 2
@ J (R B
Wy, (r,t) = 2f_1£&j (r _&j —i 21 ( 2rn) (rzl rn) exp(_urnzt)
H\ R, r n=1 I’n[J2 (ern) —J; (Rzrn)]
T? = 1237 (R,r,)B(r,r,)
+—UR, f 2 [Y2(Rir) 3, (Rory) = 3, (R Y, (R,ry)]

2 P UPEBIR) -IIR,T)

1 ~
o {exp(-ur2ty -1} (7.4.10)

n
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exp(-ur ’t)

TN(r,t)=fl(ﬁj 3 - L Rer)B T,
r 1 [J5 (Riry) = 35 (Ryr,)]

_ S GAS TGS )
2 ﬂszzé[Jzz(ern) _le(Rzrn)]LYz(ern)‘]z(Rzrn) Jz(ern)Yz(RZrn)]
x[1- expor)] (7.4.11)

7.5 Conclusions and Numerical results

The main objective of this chapter is to provide é»aatution for the velocity field
and shear stress of rotational flow for fractional Oydr® fluid between two coaxial
circular cylinders where inner cylinder is rotatingtwa time dependent shear stress
and outer circle is moving at a constant velocitigisTsolution is obtained by using
Hankel transform and Laplace transform methods andethdt is presented in terms
of generalized G function. The similar solutions for inady Oldroyd-B fluid,
Fractional Maxwell fluid, ordinary Maxwell fluid, Newhian fluid are also obtained

as limiting cases of the solution for fractional OlglteB fluid.

As shown in below diagrams, the velocityr t( ahd the shear stresgsr {( , )
given by Egs. (7.3.18) and (7.3.26) have been drawmsigy for different values of
the timet, f,, f,and other relevant parameters. The velocity componeand the
shear stress componenare decreasing function of The fluid motion and the shear
stress are relatively higher at the neighborhood of ittmer cylinder for given
boundary conditions an§{<0, f,>0. The influence of time¢ on the fluid motion is
shown in figure 7.1. It can be seen that the velaaitgt the shear stress are decreasing
function of timet. Figures 7.2(a) and 7.2(b) are showing the effect of rdiffievalues
of kinematic viscosity on the fluid motion. The r#sindicates that the velocity
decreases while the shear stress increases whendtineriscosity decreases. The
dependencies of the relaxation and retardation timabkeofluid motion are shown in
the figures 7.3 and 7.4. It indicates that the \iglds decreasing and the shear stress
is increasing function of . Also, the velocity and the shear stress are dsorg
function of retardation timé, . Figures 7.5(a) and 7.5(b) indicate that the veloaitst

the shear stress are decreasing functiop &igures 7.6(a) and 7.6(b) are showing the
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effect of different values of fractional paramef2on the fluid motion. It can be seen

that the velocity is decreasing while the shearsstrs increasing function @f.

Figures 7.7 and 7.8 are showing the behaviof, aind f,on the fluid motion for their
different values. Figure 7.9 is showing a comparis@agrdam of the velocityv(r,t)
and the shear streggr,t) among corresponding five models (fractional Oldroyd-B

fluid, ordinary Oldroyd-B fluid, Fractional Maxwell fid, ordinary Maxwell fluid and

Newtonian fluid) for same values of the common matedastants and time t. In all

cases the velocity of the fluid is a decreasing famctiv.r.t. r and the ordinary

Maxwell fluid is the swiftest while the fraction&ldroyd-B fluid has the smallest

velocity on the whole flow domain. In all of the diges 1-9, the units of the material
(2n-Yn

constants are in Sl units and the rgohas been approximated R -R)
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Fig.7.1 Profilesof thevelocity w(r, t) andshearstressr (r,t) givenby Eqs(7.3.18)
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Figure 7.3
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Fig.7.3 Profilesof thevelocityw(r, tJandsheasstress (r,t) givenby Eqs(7.3.18)
and (7.3.26)forR, = 03 R, =05, f, =-2 f, =2 t=5s, v=0.04, u =40,
A, =7, y=0.3, g = 03 anddifferentvaluesof A.
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Fig.7.4 Profilesof thevelocityw(r, t}and sheastressr (r,t) givenby Eqs(7.3.18)
and(7.3.26forR, = 03 R,=05 f,=-2, f,=2, t=5s,0=0.04, #=50,1=8§,
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