Investigations of Nanofluid Based Direct Absorption type Flat Plate Solar collector

Ph.D. Thesis

by

HEMANT KUMAR GUPTA (ID No. 2010RME103)

DEPARTMENT OF MECHANICAL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR November 2015

Dedicated to my parents inspired by wife Neha and daughter Tanzil

Investigations of Nanofluid Based Direct Absorption type Flat Plate Solar Collector

Submitted by

HEMANT KUMAR GUPTA (MECHANICAL ENGINEERING DEPARTMENT)

Under the supervision of

Dr. G. D. Agrawal Associate Professor, Department of Mechanical Engg. M.N.I.T. Jaipur, India **Prof. (Dr.) Ing-Jyotirmay Mathur** Professor, Department of Mechanical Engg. M.N.I.T. Jaipur, India.

Submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

to the

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR November 2015

© MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR-2015

ALL RIGHTS RESERVED.

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR DEPARTMENT OF MECHANICAL ENGINEERING

CERTIFICATE

This is to certify that the thesis entitled "Investigations of Nanofluid Based Direct Absorption type Flat Plate Solar Collector" is being submitted by *Mr. Hemant Kumar Gupta* (ID No.2010RME103) to the Malaviya National Institute of Technology, Jaipur for the award of the degree of Doctor of Philosophy in Mechanical Engineering is a bonafide record of original research work carried out by him. He has worked under our guidance and supervision and has fulfilled the requirement for the submission of this thesis, which has reached the requisite standard.

The results contained in this thesis have not been submitted in part or full, to any other University or Institute for the award of any degree or diploma.

Date: 30.11.2015

Dr. G. D. Agrawal Associate Professor

Dept. of Mechanical Engg. Malaviya National Institute of Technology Jaipur, Rajasthan, INDIA

Prof. (Dr.) Ing-Jyotirmay Mathur

Professor & Head Centre for energy & environment Malaviya National Institute of Technology Jaipur, Rajasthan, INDIA Mere words never suffice in expressing my feeling of gratitude to my supervisors Dr. G. D. Agrawal, Associate Professor, Mechanical Engineering Department and Prof. (Dr.) Ing.-Jyotirmay Mathur, Head of Department, Professor, Centre for Energy & Environment for their valued guidance, their commitment in providing me with the guidance, advice, and support at each and every step in the completion of this work. Their scientific and analytic approaches to new problems, experience in academia and industry, wide knowledge and discerning remarks really have helped me at every stage of my work. Their encouragement and broad influences have given me so much confidence to pursue professional knowledge and develop my career. It was due to their immense keenness and continuous attention that this present work could take a final picture.

The financial help given by Department of Science and Technology (DST), India under the scheme of Solar Energy Research Initiatives (SERI) [sanction no. DST/TM/SERI/2k12/01/ (G)] is gratefully acknowledged.

I express my gratitude to Head of Department, Prof. Rakesh Jain and DRC Chairman of Mechanical Engineering Department, Prof. G.S. Dangayach for providing valuable suggestions and words of encouragement.

I am also thankful to all members of my doctoral guidance committee, **Prof. S. L. Soni**, **Prof. Dilip Sharma** and **Dr. Nirupam Rohatgi** who have provided valuable suggestions and keen support during the completion of my research work.

I am heartily thankful to all staff member of Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur for their help in making the experimental facility and conducting the research work.

My deepest gratitude and appreciation goes to my parents who have been impatiently waiting to see my academic achievements. I am grateful to my in-laws, brother, sisters and their family for their support, good wishes and blessings for my successful completion of research work.

I specially thank to my wife **Neha** for their hearty moral support, patience and the pains taken in looking after the entire family during accomplishing this work, which would not have been possible otherwise.

I am glad to express my sincere thanks to my little daughter TANZIL who has helped me to ease the pressure of the last crucial phase of work with his cheerful company all the times.

I am very much thankful to many of my friends, **Anuj Mathur**, **K. B. Rana, B.L.Gupta, Rahul Khatri, Rakesh, Mukesh,** and**. Vikas** for helping me throughout my Ph.D. work.

Last but not the least; I am grateful to Almighty God, without whose blessings I could not have achieved so much.

Place: Jaipur Date: 30.11.2015

(Hemant Kumar Gupta)

ABSTRACT

The tube- in- plate type flat plate solar collectors utilize a black surface as the absorber, which then transfers heat to a fluid running in tubes embedded within or fused onto the surface. But these types of solar collectors exhibit several shortcomings such as low overall energy conversion efficiencies and higher heat losses (conduction and convection) at high temperature due to surface based solar energy absorption and indirect transfer of heat from hot absorber surface to working fluid flowing through tubes. In order to overcome the drawbacks of conventional surface based collector, the idea has been proposed to enhance the efficiency of the collector by directly absorbing the incident solar energy within the fluid volume flowing over the absorber plate (i.e. base plate) named as Direct Absorption Solar Collector (DASC), or alternatively also termed as Volumetric Absorption Collector (VAC).

Direct absorption system leads to the absorption of higher amount of solar radiation which results in higher collector efficiency and outlet temperature as compared to traditional flat plate collectors. Since, in DASC all of the solar energy is to be absorbed by the working fluid so the light absorption properties of the working fluid should be high enough to absorb incident solar radiation. In order to meet these requirements nanofluid is used as a fluid medium instead of conventional fluids in the new designed direct absorption solar collector to increase the absorption of solar energy, where nanoparticles in a liquid medium can absorb and scatter solar radiation leading to further enhance performance of solar collector .

In the thesis, three set ups of full scale direct absorption solar collector (one with glass and two with aluminum base plates) having gross area 1.4 m² working on volumetric absorption principle were designed, fabricated and developed to perform experimental study for evaluation of collector efficiency using two different types of nanofluids (Al₂O₃-water and TiO₂-water) of four different nanoparticle concentrations (0.001%, 0.003%, 0.005%, and 0.007 vol%) at three flow rates 1.5 lpm, 2 lpm and 2.5 lpm. ASHRAE standard 93-86 was followed for calculation of optical efficiency (zero loss efficiency) of direct absorption solar collector. Also the variation of outlet fluid temperature, single pass fluid temperature rise, base plate and glass plate temperatures with different volume fraction and flow rate at different inlet temperatures were studied. Stable nanofluids were prepared by two step methods using procured powder of nano materials and mixing with distilled water for certain period in ultrasonic vibrator and the experiments were performed according to ASHRAE standard 93-86 under actual outdoor conditions.

Experimental results with glass base plate collector using Al_2O_3 -water nanofluid of 0.001 vol% at 2 lpm flow rate, showed maximum efficiency improvement by 22.1 % as compared to water. Collector efficiency increased by 14.35% when nanoparticle concentration increased from 0.001 vol% to 0.005 vol% due to enhancement in energy absorbed parameter and then decreased for higher nanoparticle concentration.

Enhancement in optical efficiency with aluminum base plate collector using Al_2O_3 -water nanofluid of 0.001% Al_2O_3 concentration was by 12%, 25% and 15% for flow rate of 1.5, 2 and 2.5 lpm respectively compared to pure water. The increase in nanoparticle concentration from 0.001% to 0.005% improved the collector efficiency by 26% (at 1.5 lpm), 10% (at 2.0 lpm) and 8% (at 2.5 lpm) and further increase in nanoparticle concentration from 0.005 % to 0.007% reduced the collector efficiency at all three flow rates.

Present study showed that TiO₂ and Al₂O₃ based nanofluid exhibited better and promising solar absorption characteristics than water and can be used as a good solar absorption fluid in solar collectors.

TABLE OF CONTENTS

Ac	knowle	dgemen	t	i-ii
Ab	stract	U		iii-iv
Ta	ble of C	Contents		v-viii
Lis	st of Fig	gures		ix-xii
Lis	st of Ta	bles		xiii-xiv
No	mencla	ture		xv-xvi
Lis	st of abl	oreviatio	ons	xvii
1.	INTRODUCTION			1-18
	1.1	Solar	energy	1
		1.1.1	Solar thermal conversion	3
	1.2	Solar (thermal collectors	3
		1.2.1	Concentrating collector	3
		1.2.2	Non-concentrating collector	4
		1.2.3	Flat plate solar collector	5
	1.3	Direct	absorption solar collector	8
	1.4	Surfac	e absorption v/s volumetric absorption	11
		1.4.1	Advantage of DASC system	12
	1.5	Nanof	luids	13
		1.5.1	Potential benefits of nanofluids	15
	1.6	Motiv	ation for the present research	16
	1.7	Resear	rch objectives	17
	1.8	Outlin	e of the thesis	18
2.	LITE	RATUR	E REVIEW	19-63
	2.1	Heat t	ransfer fluids for solar thermal collector	19
		2.1.1	Water	20
		2.1.2	Glycols	31
		2.1.3	Phase change liquids/Refrigerants	32
	2.2	Partic	le – laden fluids	43

		2.2.1	Millimeter and micron sized particles based fluids	44
		2.2.2	Disadvantages of using millimeter and micron sized particles	46
	2.3	Nano s	sized particles based fluids (nanofluids)	47
	2.4	Potent	ial Challenges of Nanofluids as working fluid	61
	2.5	Resear	rch gap / Learning's from literature review	62
3.	PRE	PARATIO	ON OF NANOFLUIDS	64-89
	3.1	Synthe	esis of nanoparticles	65
	3.2	Metho	ds for nanofluid preparation	66
		3.2.1	Single step method	67
		3.2.2	Two step method	69
	3.3	Selecti	ion of base fluid and nanoparticles for the study	73
	3.4	Requir	rements of nanoparticles	74
	3.5	Nanof	luid preparation	76
	3.6	Proper	ties of nanofluid	81
	3.7	Stabili	ty study of nanofluid	86
	3.8	Summ	ary	88
4.	DEV	ELOPMI	ENT OF EXPERIMENTAL SET UP	89-120
	4.1	Specific	ation of Direct Absorption Solar Collector	89
	4.2	Develop	ment of Direct Absorption Solar Collector	92
		4.2.1	Fabrication of collector box	92
		4.2.2	Insulation	93
		4.2.3	Base plate	93
		4.2.4	Fluid distribution system	94
		4.2.5	Collection and overhead storage tank	98
		4.2.6	Pump	99
		4.2.7	Transparent cover	99
		4.2.8	Flow control valve	100
	4.3	Assembl	ly of DASC system / Complete experimental set up	100
	4.4	Instrun	nentations	104
		4.4.1	Weather station	104
		4.4.2	Thermocouples	106
		4.4.3	Thermo-hygrometer	107

		4.4.4	Pyranometer	108
		4.4.5	Anemometer	111
		4.4.6	Electromagnetic flow meter	112
		4.4.7	Data logger	114
	4.5	Standard	ds for solar collector testing	116
		4.5.1	BIS 12933 (Part 5): 1992 Test procedure	116
		4.5.2	ASHRAE standard 93-1986	118
	4.6	Experin	nental Procedure	119
5.	PER	FORMA	NCE ANALYSIS	121-171
	5.1	Collect	tor Efficiency Calculations	122
	5.2	Experi	mental Observations with Glass base plate using distilled water	123
	5.3	Glass b	base plate using Al ₂ O ₃ -water nanofluid	128
		5.3.1	Effect of volume fraction	128
		5.3.2	Effect of fluid flow rate	136
	5.4	Alumi	num base plate using water	139
	5.5	Alumin	um base plate using Alumina–Water nanofluid	141
		5.5.1	Effect of flow rate	141
		5.5.2	Effect of volume fraction	147
		5.5.3	Effect of volume fraction on single pass temperature rise	150
		5.5.4	Effect of volume fraction on base plate temperature	152
		5.5.5	Effect of volume fraction on glass cover temperature	155
		5.5.6	Effect of volume fraction on outlet temperature	156
	5.6	Alumi	num base plate using Titania–Water nanofluid	158
		5.6.1	Effect of fluid flow rate	158
		5.6.2	Effect of volume fraction	161
		5.6.3	Effect of volume fraction on single pass temperature rise	163
		5.6.4	Effect of volume fraction on base plate temperature	165
		5.6.5	Effect of volume fraction on glass cover temperature	166
		5.6.6	Effect of volume fraction on outlet temperature	168
	5.7	Experi	mental uncertainty analysis	170
6.	CO	NCLUSI	ONS	172-176
	6.1	Summa	ary of work	172

6.2	Findings for DASC using nanofluid	173
6.3	Scope of future work	176
Reference	28	177
Publicatio	on from research	192
Appendix	A: Materials and their thermal conductivity	194
Appendix	B: Typical optical properties of some common glazing materials	195
Appendix	C: BIS 12933 (Part I): Flat plate solar collector dimensions	195
Appendix	D: Thermal radiation properties for different materials	196
Appendi	x E: Experimental data for different concentration Al ₂ O ₃ -water nanofluid at	197
	three flow rates	
Appendix	F: Experimental data for different concentration TiO ₂ -water nanofluid at	206
	three flow rates	
Brief bio-	data of the author	214

LIST OF FIGURES

Figure	Title	
No.		
1.1	Three forms of solar energy conversion Error! Bookman	2
1.2 (a)	Pictorial view of a conventional flat plate solar collector Error! Bookman	6
1.2 (b)	Exploded view of a conventional flat plate solar collectorError! Bookma	6
1.3	Design difference between conventional collector and DASC	8
1.4	Working principle difference conventional collector and DASC	9
1.5	The schematic of direct absorption solar collector	10
3.1	Direct evaporation single step nanofluid production system	68
3.2	Procedure of preparation of nanofluid Error! Bookman	70
3.3	SEM photograph of Al ₂ O ₃ nanoparticles	79
3.4	SEM photograph of TiO2 nanoparticles	79
3.5	TEM photograph of Al ₂ O ₃ nanoparticles	80
3.6	TEM photograph of TiO2 nanoparticles	80
3.7	Ultrasonic cleaner apparatus for sonication	82
3.8	Al ₂ O ₃ water sample nanofluid	83
3.9	Stability study of Al ₂ O ₃ -Water nanofluid of 0.005% concentration	89
3.10	Stability study of TiO ₂ -Water nanofluid of 0.005% concentration	90
4.1	Wooden collector box Error! Bookman	95
4.2	Insulation below the base plate Error! Bookman	96
4.3	Aluminum base plate Error! Bookman	97
4.4	Slotted pipe for film formation	98
4.5	Perforated pipe for film formation	99
4.6	Effect of temperature on PVC pipe	100
4.7	Aluminum perforated pipe	100
4.8	Film formation with perforated Aluminum pipe	101
4.9	Storage and overhead tanks Error! Bookman	101
4.10	Centrifugal pump	102
4.11	Ball type control valve	103
4.12	DASC experimental set up –I with glass base plate	104

4.13	DASC experimental set up –II with Al base plate	105
4.14	DASC experimental set up –III with Al base plate	106
4.15	Photograph of weather station	108
4.16	J type thermo couple Error! Bookman	109
4.17	Thermo-hygrometer	110
4.18	Sunshine pyranometer and computer generated shadow mask	111
4.19	Vane probe type anemometer	115
4.20	Electromagnetic flow meter	117
4.21	Data logger	118
5.1	Performance characteristics curve for solar collectors	126
5.2	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for distilled water	127
5.3	Single pass temperature rise for three flow rates with time	131
5.4	Ambient and solar radiation data during the test period	132
5.5	Efficiency plots for water and nanofluid	133
5.6	Nanofluid temperature rise at four different concentrations for 2 lpm	140
5.7	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for 0.005 vol% nanofluid	141
5.8	Efficiency versus (Ti -Ta)/IT curve at three flow rates for 0.01 vol% nanofluid	141
5.9	Efficiency variation with time at three flow rates for 0.01 vol% nanofluid	142
5.10	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for water	144
5.11	Temperature rise of water for three flow rates with different inlet	144
	temperature Error! Bookman	
5.12	Absorber plate temperature with inlet temperature for three flow rates	145
5.13	Glass cover temperature with water inlet temperature for three flow rates	145
5.14	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for 0.001% nanofluid	146
5.15	Single pass temp rise with time at three flow rates	147
5.16	Single pass temperature rise with inlet temperature for various flow rates	147
5.17	Base plate temperature for various flow rates	148
5.18	Base plate temperature with inlet temperature for various flow rates	148
5.19	Glass plate temperature with inlet temperature for various flow rates	149

5.20 (a)	Efficiency curve at three flow rates for 0.003% Al ₂ O ₃ -water nanofluid	150
5.20 (b)	Efficiency curve at three flow rates for 0.005% Al ₂ O ₃ -water nanofluid	150
5.20 (c)	Efficiency curve at three flow rates for 0.007% Al ₂ O ₃ -water nanofluid	151
5.21 (a)	Efficiency plots for different Al ₂ O ₃ nanoparticle concentrations at 1.5 lpm flow rate	152
5.21 (b)	Efficiency plots for different Al ₂ O ₃ nanoparticle concentrations at 2 lpm flow rate	153
5.21 (c)	Efficiency plots for different Al ₂ O ₃ nanoparticle concentrations at 2.5	153
	lpm flow rate	
5.22 (a)	Temperature rise for different nanoparticle concentrations at 1.5 lpm flow rate	156
5.22 (b)	Temperature rise for different nanoparticle concentrations at 2 lpm flow rate	156
5.22 (c)	Temperature rise for different nanoparticle concentrations at 2.5 lpm	157
	flow rate	
5.23 (a)	Effect of nanoparticle volume fraction on base plate temperature at 1.5	158
	lpm	
5.23 (b)	Effect of nanoparticle volume fraction on base plate temperature at 2 lpm	158
5.23 (c)	Effect of nanoparticle volume fraction on base plate temperature at 2.5	159
	lpm	
5.24 (a)	Effect of volume fraction on glass plate temperature at 1.5 lpm flow rate	160
5.24 (b)	Effect of volume fraction on glass plate temperature at 2 lpm flow rate	160
5.24 (c)	Effect of volume fraction on glass plate temperature at 2.5 lpm flow rate	161
5.25	Effect of volume concentration on outlet temperature at three flow rate	162
5.26	Effect of volume concentration on outlet temperature at different inlet temperature	162
5.27 (a)	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for 0.001%	163
	nanofluid	
5.27 (b)	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for 0.003%	164
	nanofluid	
5.27 (c)	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for 0.005%	164
	nanofluid	
5.27 (d)	Efficiency versus $(T_i - T_a)/I_T$ curve at three flow rates for 0.007% nanofluid	165
5.28 (a)	Efficiency plots for nanofluid at different nanoparticle concentrations at	166

	1.5 lpm	
5.28 (b)	Efficiency plots for nanofluid at different nanoparticle concentrations at	167
	2 lpm	
5.28 (c)	Efficiency plots for nanofluid at different nanoparticle concentrations at	167
	2.5 lpm	
5.29 (a)	Temperature rise for different nanoparticle concentrations at 1.5 lpm flow rate	169
5.29 (b)	Temperature rise for different nanoparticle concentrations at 2 lpm flow rate	169
5.29 (c)	Temperature rise for different nanoparticle concentrations at 2.5 lpm	170
	flow rate	
5.30 (a)	Effect of nanoparticle volume fraction on base plate temperature at 1.5	170
	lpm	
5.30 (b)	Effect of nanoparticle volume fraction on base plate temperature at 2 lpm	171
5.30 (c)	Effect of nanoparticle volume fraction on base plate temperature at 2.5	171
	lpm	
5.31 (a)	Effect of volume fraction on glass plate temperature at 1.5 lpm flow rate	172
5.31 (b)	Effect of volume fraction on glass plate temperature at 2 lpm flow rate	173
5.31 (c)	Effect of volume fraction on glass plate temperature at 2.5 lpm flow rate	173
5.32	Effect of volume concentration on outlet temperature at three flow rate	174
5.33	Effect of volume concentration on outlet temperature at different inlet	175
	temparature	
5.34	Effect of volume concentration on outlet fluid temperature at different	175
	solar radiation	

LIST OF TABLES

Table	Title	Page
1.1	Surface absorption v/s volumetric absorption	11
2.1	A summary of studies on solar water heating system with water as working fluid	26
2.2	Thermodynamic properties of the working fluids used	33
2.3	Summary of studies on indirect SWH systems using phase change liquids as working fluid	41
2.4	Summary of research works on solar collectors using nanofluids.	57
3.1	Estimated weight of Al_2O_3 and TiO_2 nanoparticle for different concentrations	77
3.2	Physical characteristics of Al ₂ O ₃ and TiO ₂ nanoparticles	81
3.3	Properties of different nanoparticles	86
3.4	Properties of different base fluids	87
3.5	Properties of Al2O3- water nanofluid at different volume fraction	87
3.6	Properties of TiO2-Water nanofluid at different volume fraction	88
4.1	Specification of Direct Absorption Solar Collector	93
4.2	Optimizing number of holes in header pipe	99
4.3	Specification of sensors mounted on weather station	108
4.4	Specification of Thermo hygrometer	110
4.5	Specification of pyranometer	113
4.6	Specification of vane probe anemometer	114
4.7	Specification of electromagnetic flow meter	116
4.8	Specification of Data logger	118
4.9	Required BIS test conditions	120
4.10	Permitted deviation of measured parameters during a steady state period	120
4.11	Required ASHRAE 93 test conditions	121
4.12	Maximum variations of key variables	122
5.1	Experimental and calculated data for distilled water at 1.5 lpm	127
5.2	Experimental and calculated data for distilled water at 2 lpm	128
5.3	Experimental and calculated data for distilled water at 2.5 lpm	129

5.4	Collector efficiency parameters at three flow rates	130
5.5	Experimental and calculated data for 0.001 vol% nanofluid at 2 lpm	134
5.6	Experimental and calculated data for 0.005 vol% nanofluid at 2 lpm	135
5.7	Experimental and calculated data for 0.01 vol% nanofluid at 2 lpm	136
5.8	Experimental and calculated data for 0.05 vol% nanofluid at 2 lpm	137
5.9	Collector efficiency parameters for nanofluid and water	138
5.10	Collector efficiency parameters for Al ₂ O ₃ -water nanofluid (Glass plate)	142
5.11	Collector efficiency parameters for Al ₂ O ₃ -water nanofluid (Al plate)	151
5.12	Collector efficiency parameters for TiO ₂ -water nanofluid	165
5.13	Results of uncertainty analysis	177

NOMENCLATURE

English Symbols

Notation	Description	Unit
A _A	Absorber area of the collector	m ²
A _a	Aperture area of the collector	m²
С	Specific heat	Jkg ⁻¹ K ⁻¹
Ι _τ	Global total solar irradiance	Wm ⁻²
k	Thermal conductivity	Wm ⁻¹ K ⁻¹
m	Mass flow rate of fluid	kgs⁻¹
Q _u	Useful heat gain	W
R ²	Uncertainty coefficient	unit less
t	Time	S
T _a	Surrounding air temperature	°C
T _{in}	Collector inlet fluid temperature	°C
To	Collector outlet fluid temperature	°C
ΔΤ	Temperature rise	°C
T _{bp1}	Base plate temperature at point 1	°C
T _{bp2}	Base plate temperature at point 2	°C
T _{gc}	Glass cover temperature	°C
u	Surrounding air speed	ms ⁻¹
U _{Tout}	Uncertainty for outlet temperature	%
U _{Tin}	Uncertainty for inlet temperature	%
U _{IT}	Uncertainty for solar radiation	%
U _η	Uncertainty for efficiency	%
W	Weight	Kg-f

Greek Symbols

α	Absorptivity	Unit less
3	Emittance	Unit less
τ	Transmisivity	Unit less
ρ	Density	kgm⁻³
φ	Volume fraction	%

η	Collector efficiency	unit less
η_0	Zero loss efficiency	unit less
ν	Kinematic viscosity	m ² s ⁻¹
μ	Dynamic viscosity	kg m⁻¹s⁻¹
Θ	Incidence angle of beam irradiance	0

LIST OF ABBREVIATIONS

DASC	Direct Absorption Solar Collector
FPC	Flat Plate Collector
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
SWH	Solar Water Heater
UC	Ultrasonic Cleaner
HTF	Heat Transfer Fluid
CPVC	Chlorinated Poly-Vinyl Chloride
BIS	Bureau of Indian Standards
nm	Nanometer
lpm	Liter per Minute
ppm	Parts per Million
MNRE	Ministry for New and Renewable Energy Source

<u>Subscripts</u>

eff	Effective
L	Loss
р	Particle
f	Fluid
R	Removal
U	Useful
i	Inlet
0	Outlet
a	Ambient
nf	Nanofluid
np	Nanoparticle