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ABSTRACT 

Growing concerns for environmental regulation, scarcity of fossil fuel and steep 

rise in fuel price and on the contrary substantial generation from the renewable 

sources has emerged the hybrid (mix) generations in the modern power system. This 

is benefitting by reducing the demand of the conventional sources and creating eco-

friendly environment. The solar and wind both are the most popular and inexhaustible 

source of renewable energy, but also subjected to uncertainty and variability. Thus, 

their integration in the power system affects the economic operation due to their 

unpredictable nature. Therefore, a Stochastic Dynamic Economic Load Dispatch 

(DLED) with the incorporation of wind and solar based power generation is addressed 

in this work. Further, the cost functions of the renewable sources are used to consider 

the economic factor and their variability is considered by the overestimation and 

underestimation.  

DELD problem is highly non-linear, non-convex, multi-constraint optimization 

problem with continuous decision variables. Such problem can be efficiently solved 

using metaheuristic techniques. Thus, the present work utilizes Improved Fireworks 

Algorithm (IFWA) methodology for obtaining optimal schedule of generators in a 

stochastic dynamic economic load dispatch problem. The FWA is swarm based 

computational intelligent techniques. It is inspired by the explosion of the fireworks 

and extensively found to be powerful techniques in among all other metaheuristic 

techniques. However, the conventional FWA faces incompetence for the functions 

having optima far away from the origin as exists in DELD problem. Therefore, 

several modifications have been suggested in FWA and a new method is proposed 

named as Improved Fireworks Algorithm using Chaotic Sequence Operator (IFWA-

CSO). The validation and effectiveness of the FWA and developed variants is first 

tested on the some well-known benchmark functions and then applied on the power 

system optimization problem of economic operation in static and dynamic states with 

variety of constraints. The obtained numerical results verify the efficacy of the 

proposed method and its variants and seem to be a promising optimizer than 

conventional FWA.  
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CHAPTER 1 

INTRODUCTION 

In the nineteenth century, the beginning of the industrialization and later, the 

invention of electricity has changed the future of the whole world. This begins the 

exhaustive exploitation of energy resources and creates the multiple resources for 

electric power generation. However, the fossil fuels get hold the most of the common 

resource of the electricity power generation. Further, with the demographic 

expansion, energy requirement escalates exponentially, which leads to formation of 

large interconnected power system and need for better utilization of the energy rises. 

This developed one of the most versatile problems of power system known as 

economic load dispatch (ELD). This aims to obtain the minimal fuel cost of thermal 

generators by optimally allocating the several generators while satisfying generator 

and network constraints. Hence, it plays an essential role in economic operation of 

power system, because small percent of saving in the operation of power system has 

significant reduction in the fuel cost.  

However, the fossils fuels are becoming the serious threat of extinction in the near 

future due to their excessive consumption. This is creating energy crisis with ever-

increasing demand. In addition, emission of pollutants gas from these sources has also 

caused severity of global warming. Thus, this alarming bell has forced the human race 

to take necessary step to curb down the green emission gas as well as look for 

alternative resources with low or negligible pollutant potential. For this use of non-

conventional sources and to control the emission level certain environmental 

regulation has been enforced. Similarly, to tackle energy demand crisis alternative 

approach such as energy efficient management system, renewable sources integration 

with conventional power system, electricity market pricing etc. extensively emerged 

in the modern power system. The renewable technologies has been emerging potential 

of power generation source and becoming the researcher’s interest. As it is perceived 

that the extraction of energy from renewable resources significantly increases in the 

recent years. Therefore it can be inducted into the conventional power system which 

transformed the modern power system into hybrid (mix) generating systems. 
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The hybrid system consists of conventional and non-conventional resources. The 

non-conventional resources include wind, solar, hydro, bio-mass etc. However, in this 

context the wind and solar has drawn significant attention in the recent years. It is due 

to its wide availability, plentiful, clean resource of energy and free from fuel cost. 

There substantial generation can reduce the fuel cost of thermal generators as well as 

pollutant emission from burnt fuels. However, being of environment friendly and of 

substantial potential, the renewable sources suffer the drawback of being uncertain 

and unpredictable nature. Thus, this limits the accountability of the renewable 

sources. This uncertainty and vagueness of these resources also reflects in the power 

generation with disturbance. This raises the issue of reliability, security and stability 

in the power system, where these concerns are paramount of power system operation. 

Therefore, power extracted from renewable energy conversions device are highly 

non-linear and dis-continuous in nature. The wind and solar both are intermittent 

source of nature but, the wind is considered to be more unpredictable than solar, 

which is partial predictable due to zero solar insolation availability at night and sun 

movement. Therefore, renewable resources are sustainable source of energy but, they 

also are unreliable source of electricity generation in power system operation.  

Wind and solar based power generations are highly variable and non-deterministic 

in nature. Both sources depend upon the weather and geographical condition which 

are partially predictable. Though, there are various forecasting methods available 

which forecast the future scenario on the basis of the past information. But, as far as 

electrical demand is concern the demand variation can be predicated on the basis of 

load duration curve and it’s forecasting reasonably fit according to past information 

due to electrical demand does not vary suddenly with time while weather prediction is 

not very accurate and causes sudden variation with time. Therefore, renewable 

sources based power generation cannot be employed independently in the large power 

system. Thus, mix generating system is employed. However, to avoid the large 

changes in the system rescheduling of conventional generator require in minutes to 

hour.  

In power system ELD is defined in two ways, first called static economic load 

dispatch (SELD) as being independent of time and second is termed as dynamic 

economic load dispatch (DELD) being dependent on the time. In SELD generators are 

schedule for one operating period with optimized fuel cost. However, in the real time 
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of operation, generators are scheduled continuously. Thus, the SELD is not all form of 

practical ED operation. Furthermore, in SELD, a ramp rate constraint is usually not 

considered, which incurred due to physical limitation of the generator that results in 

the restricted operating range of the generator instead of the entire operating range in 

the successive schedule. Therefore, to consider it ED operation must be extended into 

DELD operation.  

DELD is process of the economic operation in the power system for a day-ahead 

scheduling with forecasted load demand. It is the process of obtaining the optimum 

schedule of the generator units with minimizing the total fuel cost over continuous 

time periods while satisfying the generator and network constraints.  It is noted that 

DELD is extended version of conventional ELD problem with incorporation temporal 

constraints (e.g. ramp rate limits) of generation units. This is used to avoid the 

physical limitation of the generator, which results in change in generation limits of the 

generator in each time period. In DELD, the generator are schedule in discretized 

manner over continuous periods and this time periods can be range from minute to 

hours. It is noted that DELD is similar to unit-commitment in terms of scheduling of 

the generators for day-ahead demand. However, it is different in terms of operation, 

where unit-commitment is problem of possible combinations of units to meet the 

particular load demand, and then select the optimal combination, while DELD is 

directly applied for optimal scheduling of generators on the available units. 

The renewable sources embankment in modern power system has transformed the 

power system into the (hybrid) system and this shifting the focus toward the 

development in the renewable technologies. This is becoming the investigating 

context in the modern power system. However, the integration of renewable source 

will reflects on the economic as well as security concerns of the power system.  

Therefore, in this work, a stochastic DELD with renewable sources is proposed to 

incorporate the wind and solar based power generation. The cost model of wind and 

solar is employed to consider the economic factor. The stochastic nature of wind and 

solar is modeled by suitable probabilistic distribution functions. Further, to solve the 

problem a recently developed technique Firework Algorithm is used. However, due to 

its severe limitation on shifted function, an improved version of FWA, Improved 

Fireworks Algorithm using Chaotic Sequence operator is proposed. The proposed 
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algorithm is tested and analyzed on the standard system and applied in the stochastic 

DELD. 

The thesis has been organized in the seven chapters.  

Chapter 1: In this chapter a brief introduction about the ED and DELD and its 

importance are described. The needs of hybrid generating systems and its challenge in 

operation in modern power system are discussed. 

Chapter 2: The literature review about the different methodology and solution 

techniques of ED and DELD problems techniques are discussed. Further, the various 

approaches for the inclusion of wind and solar sources are discussed.  

Chapter 3: The modeling of renewable sources (wind and solar) are carried-out with 

suitable probabilistic distributions using probabilistic model and their probabilistic 

cost functions are formulated to consider the effect of underestimation and 

overestimation due to unpredictability of these sources.  

Chapter 4: The objective function of stochastic DELD problem with renewable 

sources is formulated using the various generator and network constraints in this 

chapter.   

Chapter 5: The problem solution technique FWA is discussed in this chapter and its 

fabrication in computational intelligence is explained. Further, the inadequacy of 

FWA is asserted with the reason and to overcome this certain modifications have been 

proposed in IFWA-CSO algorithm. The pseudo code of proposed IFWA-CSO 

techniques is developed. 

Chapter 6: The simulation results are presented in this chapter. The standard FWA and 

proposed IFWA-CSO algorithm is programmed in MATLAB. The effectiveness and 

validation of proposed techniques is established using standard ED and DELD 

system. Finally, the proposed techniques implemented on the formulated function 

objectives. 

Chapter 7: Conclusions and future scope are discussed  

In the next chapter, a brief history of ELD development with different 

methodologies and their solution techniques are discussed.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter discusses the brief history of development of ED problem with 

different methodological approaches and then extended to the DELD system. Further, 

the various approaches for the inclusion of the renewable source have been discussed. 

The various techniques used for the optimization are explained progressively.  

Finally, the methods and solution technique aspects are critically reviewed and drawn 

conclusions are framed in the objective and scope of the dissertation. 

Economic load dispatch is primarily deals with minimization of operating fuel 

cost of the generators to serve the power demand while satisfying the generator and 

network constraints. Generally, the fuel cost function of thermal generators is 

approximated by the quadratic function. However, for multi-fuel fired thermal 

generators exhibit non-convexity in the fuel cost function in the account of valve-

point loading effect. Further, to incur practical operating conditions of generators, 

gives rise to constraints of ramp rate limits and prohibited operating zones. Similarly, 

transmission loss can also be included to consider the power loss. In general, the 

economic load dispatch problem is highly non-linear complex combinatorial 

optimization problem. It is one of the old classical problems of power system. 

However, the structure of the ELD problem is evolved with time. A brief literature 

review about the development of different methodologies, solution techniques, etc. is 

presented in this chapter.  

In Ref [1], the author discussed the various aspects of ED problem and also 

insight about the different methodology in accordance with the progressive 

development in twentieth century. Liang et al. [2] proposed a dynamic programming 

method using a zoom feature to solve the ED problem with consideration of 

transmission loss. In [3] the author discussed the concept of ramping costs in ED 

problem. As the unit ramping process to cost of fatigue effect in the generator 

scheduling of thermal systems. Fan et al. [4] attempted more realistic approach to 

solve the ED problem with generating units’ sub-region to account the prohibited 

operating zones (POZs) and developed a novel strategy to find feasible search space 

by utilizing the lambda-iteration method to avoid the multiple decision search space 
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due to POZs. Yoshikawa et al. [5] addressed the fuel cost dynamics on online ED 

with auto-regressive moving average (ARMA) model. This proposed supplemented 

ARMA quadratic model to counter the dynamic variation in the fuel cost with 

generation. Irisarri et al. [6] proposed the ED problem with the network flow and 

generator’s ramping constraints by employing Interior Point Methods to measure the 

economic and security issues simultaneously.  

However, DELD problem is more realistic in operation than ED which 

continuously schedules the generator units. Moreover, it is also suffice to consider 

pre-long scheduling of generators optimally to maintain economy, stability and 

security. Thus, ED problem must be extended into long term i.e., DELD. Some of the 

adapted methodologies of DELD are discussed as follows: Wood et al. [7] attempted 

ED problem with the spinning reserve in static and dynamic state to avoid high load 

pick-up with reasonable spinning reserves using an efficient use of computer 

resources. Han et al. [8] put forwarded the factors that affect the feasibility and 

optimal solution of DELD problem and solved it by two methods. Attaviriyanupap et 

al. [9] proposed a hybrid evolutionary programming and sequential quadratic 

programming (EP-SQP) for DELD with non-convex fuel cost function to account the 

multi fired-fuel system. 

Victoire et al. [10] solved the DELD problem with valve-point loading effects 

taking the reserve constraint into account using deterministically guided Particle 

Swarm optimization (PSO) and test the feasibility on three different load patterns. In 

[11] author presented the Enhance adaptive PSO for DELD with valve-points effects 

and ramp rates. T. Niknam et al. [12] proposed a new modified TLBO for reserve 

constrained DELD with more practical formation of DELD problem. Arul et al. [13] 

addressed the DELD problem using Harmony search algorithm with a chaotic self-

adaptive differential operator (DHSA).  

As mentioned in the previous chapter the mix generating system becoming the 

part of the modern power systems. Thus, some of the approaches for the inclusion of 

renewable sources in ED and DELD operation are discussed here. In Ref [14] the 

author addressed DELD problem with integration of renewable sources by setting the 

penetration level as fraction of load demand. But, it does not consider cost function 

and any uncertainty related to the renewables. Villanueva et al. [15] addressed the 

issues of wind uncertainty by using correlated wind speed data for economic dispatch 
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formulation. This limits wind uncertainty to some extent. However, correlated data is 

generated using the past information. Thus, it cannot handle sudden variation. Wang 

et al. [16] solved the ED problem with the integration of wind power by accessing the 

risk and cost both using the fuzzy logic approach. Since the wind variability limits the 

penetration level of wind generators. Thus, fuzzy membership based function to 

balance the risk and cost of wind power. Karaki et al. [17] presented a solar and wind 

probabilistic model to measure their performance in autonomous solar-wind energy 

conversion systems. Bilil et al. [18] used the probabilistic approach for 

economic/emission optimization in multi-source system. In Ref [19], the author 

presented generation adjustment methodology using base point and participation 

factor approach to account the fluctuations in load and renewable sources. The 

problem is solved in real-time economic dispatch to take measure against the 

fluctuations. Cheng-Chien Kuo [20] suggested combine economic and emission 

dispatch by considering the large penetration of wind power. In this wind energy 

consider as dispatch able unit. Khan et al. [21] suggested solar power generation in 

combine economic/ emission power dispatch.  

Hetzer et al. [22] attempted an approach for ED modeling with the integration of 

wind power. This takes economic factor of wind power by considering a cost model 

related by proportional to scheduled power and variability by overestimation and 

underestimation terms. In [23] the author addressed the issues of economic/ emission 

by considering the factor of overestimation and underestimation of wind power. As, 

wind power penetration will certainly affects the conventional unit generation. 

Similarly, it will also affect the pollution from the conventional sources. Thus 

emission function is modeled to similar wind cost model as in [22]. In similar way 

overestimation and underestimation factor can be considered for other renewable 

sources with uncertain nature. Therefore, same approach is put forwarded the 

inclusion of solar cost model as wind source in [24]. Peng et al. [25] proposed DELD 

problem in the conventional thermal system including the wind power using a novel 

differential evolution with bi-population chaotic sequence. In this, the author has 

modeled the wind speed in the time sequence using probability distribution model. 

Reddy et al. [26] attempted to solve the ED problem in the real time by considering 

the variability of wind, solar and load demand in the small time frame (minute)  for a 
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given time. It employed participation factor approach to handle the uncertainty related 

to renewable sources.   

The solution technique of ED can be classified into two categories as classical and 

heuristics. In classical method mathematical based techniques are gradient, lambda 

iteration [27-28] and computational optimization based method are Dynamic 

Programming (DP) [2], Linear Programming (LP) [29], Nonlinear Programming 

(NLP) [30], quadratic programming (QP) [31], and Lagrangian relaxation (LR) [32] 

Similarly, heuristics based algorithms can be defined into various types based on their 

mechanism such as swarm, evolutionary etc. Some of evolutionary techniques 

applications on the ED problems are: In Ref [33] the author solved ED problem with 

non-smooth fuel cost function using Genetic Algorithm (GA). Amjady et al. [34] 

suggested the non-convex economic dispatch with ac constraints using GA. In Ref. 

[35] author presented the economic-emission using binary successive approximation-

based Evolutionary Programming (EP). Coelho et al. [36] tested ED problem using 

Differential Evolution (DE). On the contrary, swarm intelligence based algorithms 

also proven be substantial solver for ED problem. It includes Particle Swarm 

Optimization (PSO) [37-38]. Ant Colony Optimization (ACO) [39] is a swarm 

intelligent based meta-heuristic technique inspired by ant behavior, which search 

good path through graphs. In [40] Bacterial Foraging (BF) is employed for economic 

and emission load dispatch problem. In [41] a non-convex ED problem is solved by 

Cuckoo Search problem. This technique is stimulated from the particular cuckoo 

species behavior, which laid their eggs in the others nests of other species for the 

survival. Dalyand et.al [42] addressed a non-convex ED problem using Continuous 

Quick Group Search Optimizer (CQGSO). It is an enhanced version of quick group 

search optimizer (QGSO) algorithm. It employed the tactics of current and global best 

updating process of PSO for updating the scrounger locations up to current iterations 

etc. Similarly, various metaheuristics techniques employed for DELD problem. It 

include hybrid EP and SQP [10], Enhance adaptive PSO [11], chaotic self-adaptive 

differential Harmony search algorithm (DHSA) [13], Artificial Bee colony (ABC) 

[43], Artificial Immune system (AIS) [44] and TLBO [12] etc. 

 

 



9 

 

2.1 Critical Review  

As, mentioned that ELD is most integral part of power system for the economic 

operation and their significance in power system is perpetual. However, with mix 

generations their importance is perplexed as security and reliability issues arise. 

Therefore, there is need to revise the approach to consider the effect of renewable 

sources. Thus, it is critically reviewed in the methodology aspects. Similarly, the 

techniques analysis is investigated in solution techniques aspects.  

2.1.1 Methodology Aspects 

The ED is optimally schedule the thermal generators for the forecasted load 

demand. However, with the integration of renewable sources, economic operation 

changes in various ways. In DELD problem [14] generation from the renewable 

sources is subtracted from load demand and rest demand share by conventional 

sources. Some authors [15, 22-26] have investigated renewable (wind or solar or both) 

sources as utility to consider the economic factor. This employs a cost model consists 

of proportional scheduled power. Moreover, variability is related by overestimation 

and underestimation factor. Their cost coefficients is defined as penalty and reserve 

cost, where penalty on the underestimation and reserve (purchase) on overestimation 

of available power. Thus, this cost model justified economics and security of system. 

In [22] analysis reveals that the cost parameters and availability of power has 

significant affect in the scheduling of wind powered generator. Thus, the cost model 

changes dynamically. Therefore, a reasonable cost coefficient value should be 

selected based on the source availability. Here, wind and solar power is being 

incorporated in conventional power system. Since, the wind and solar both are 

variable source of nature and their availability varies over time of period. Thus, 

problem is formulated in DELD form.  Therefore, wind and solar has been modeled 

over time interval to measure their potential with conventional power system. 

2.1.2 Solution Technique Aspects 

Since, practical ED problem is bound to various constraints such as valve-point 

loading effect and POZs etc. Therefore, ED is a non-convex, non-linear, 

discontinuous complex combinatorial optimization problem and cannot be solved by 

classical mathematical method [27-28]. However, classical computational 
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optimization methods [2, 29-32] are suitable to solve such problem but, suffer from 

curse of dimensionality when dealing with the large-scale problems [12]. This led the 

population based heuristics techniques, which are not restricted to shape of the 

objective function and known to be most affirmative methods. However, these 

techniques cannot guarantee optimum solution due to their stochastic nature. 

Therefore, there is constant evolution on these algorithms as discussed. GA [33-34] is 

based on the genetic operation. However, GA suffers from the slow convergence and 

its encoding and decoding which, is essential part of GA causes more computation 

time; the methods based on the evolution are Evolutionary Programming (EP) [35] 

and Differential Evolution (DE). EP is similar to genetic programming, with fixed the 

programming structure. It shows slow convergence; Differential Evolution (DE) [36] 

forms the solution by utilizing one or more existing solutions. It shows better 

exploration, but premature convergence causes the solution to trap in local optima 

[45]. However, PSO a swarm based meta-heuristics technique exhibits faster 

convergence, [37-38, 46], but suffers from premature convergence on large scale 

problem dealing with complex constraints, resulting a local optimum likely [38]. 

Moreover, these algorithms suffer heavily in DELD optimization problem due to 

more complex constraints than ED, and huge and irregular search space due to ramp 

rate limits.   

The last decade has witnessed the potential of several newly established meta-

heuristic techniques. Fireworks Algorithm (FWA) [47] is one of the recently 

developed powerful meta-heuristic techniques based on the explosion of fireworks. In 

FWA, every individual mimics the explosion process of fireworks and thus enables 

the algorithm to perform local and global search simultaneously. Hence, this unique 

features of FWA, adaptively performs the exploration and exploitation. The algorithm 

effectiveness is found to be remarkably well on the benchmarks functions having 

optima at the origin of the search space. However, its performance deteriorates 

severely when being applied to functions with optimum resides away from the origin 

[48]. Moreover, FWA is computationally demanding than other meta-heuristic 

techniques. Zheng, et al. [48] proposed Enhance Fireworks Algorithm (EFWA) to 

overcome these limitations of FWA. Thereafter several other improved variants [49-5

1] of the algorithm have been proposed by performing different experiments on the 

selection method and operators of the algorithm.   
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2.2 The objectives and scope of the dissertation  

The objectives are  

1. To model the uncertainty related to renewable sources using the probabilistic 

method. 

2. The formulation of stochastic DELD system’s objective considering the 

conventional thermal generator system as well as to consider economic factor of 

renewable sources with operational and network constraints.  

3. Implementation of FWA. 

4. Development of proposed IFWA-CSO to overcome the drawbacks of standard 

FWA 

5. The validation and efficacy of proposed techniques on standard benchmark 

function and to implement on the power system optimization of economic 

operation with standard ED and DELD system in detailed analysis.  

6. Detail analysis of renewable sources with conventional system to carried-out the 

impact of hybrid system on conventional system.    

In the next chapter, mathematical modeling of wind speed and solar irradiance are 

framed. For this suitable probabilistic distribution function is used and their 

corresponding power potential is obtained using transformation through their output 

characteristics. The cost model is formed based on proportional power and their 

unsettledness is considered by overestimation and underestimation terms. 
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CHAPTER 3 

 PROBABILISTIC MODELING OF RENEWABLE 

SOURCES 

In this chapter, a probabilistic distribution model has been employed to model the 

variability of wind speed and solar irradiance. The wind speed has been modeled by 

using Weibull distribution and solar irradiance through Beta distribution based on 

analysis. Further, their corresponding power probabilistic distribution functions are 

derived using their power performance characteristics at each time interval. These 

functions are further employed for the probabilistic cost calculation under the 

condition of overestimation and underestimation.   

The probabilistic model depends upon the fitting of the data. Therefore, it requires 

thorough research on the various probability distribution models. Several probabilistic 

models [52-53] have been employed for the modeling of the renewable sources. The 

prior research has established that Weibull probability distribution is most frequently 

used for the modeling of wind speed. Similarly, solar irradiance is modeled by Beta 

distribution. Thus, here these two distributions are considered for modeling of wind 

speed and solar irradiance, and their respective transform power variables are 

investigated through their output performance characteristics of each source. 

3.1 Probabilistic Characterization of Wind Speed and Power  

The two parameters Weibull distribution [54] function is employed to model the 

wind speed over the time sequence. The probability density function fv,t(vt) is defined 

below. 

                           

 

1

,
( ) exp

k k

v t

t t

t t t

t

t t t

k v v
f v

c c c



 
    
    

     
                  (3.1) 

Where kt and ct are the shape and scale parameters of Weibull distribution at time 

interval t. The kt and ct are defined as dimensionless unit and unit of speed 

respectively. The parameters kt and ct can be approximately estimated by using 

different methods [55-56]. The parameters values of kt and ct can be evaluated 

approximately, using the average wind speed vm,t and the standard deviation σt at time 

interval t as calculated. 
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The shape and scale parameters of Weibull distribution at time interval t measure 

the potential of wind speed over time horizon. The Weibull cumulative probability 

distribution can be expressed as:  
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  (3.4) 

The power from wind speed is extracted through electromechanical action. It 

converts the mechanical energy (wind speed) into electrical energy through electrical 

generator. The output power of wind generation is associated with the wind speed at 

the unit hub height. As being the function of wind speed, wind power exist highly 

non-linear relationship. The calculated output power at height hub is defined as [57]. 

 
31

2
wP K Av    (3.5) 

where Pw is the output power of wind generation; K is the constant power 

coefficient, defined as nonlinear function of tip speed ratio and pitch angle. ρ is air 

density; A is rotor swept area and v is wind speed respectively. Further, in order to 

sort a simplified approach, non-linearity of wind power characteristics is dropped and 

a simplified piecewise linear function is employed. The wind power for given wind 

speed vt at time interval t can be stated as [Deshmukh M, Deshmukh S, 2008, 50]:   
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  (3.6) 

where PWr is the rated electrical output power of wind generation unit, vin is the 

cut-in wind speed [m/s], below which wind generation unit remains shut off, vf is the 

cut-off wind speed [m/s], above this speed unit is shut down to avoid the damage to 

the rotor by using breaking system and vr is the rated wind speed [m/s] at this speed 

wind generator operate at the rated power PWr. It is shown from the equation (3.6) that 

the below the cut-in and above the cut-off wind speed, the wind power generation 
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becomes zero. The power between the cut-in and rated speed varies linearly and 

remain constant from rated to cut-off speed. Therefore, the output of wind generation 

unit is mixed random variable, which remains continuous from cut-in to rated and 

discrete below cut-in and above the cut-off speed.  

As Weibull distribution takes into account to models the wind speed with its 

scaling and shape parameters. Therefore, a distribution model is also required to 

model wind power. Hence transformation of random variable [58] is employed to 

transform the wind speed to wind power variable. Since, the wind power function is 

expressed in discrete according to (3.6). Therefore wind power pdf will also exhibit 

discrete probability. The probability of wind power being zero is i.e.; Pw,t=0. 
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And the probability of event PWt=PWr. 
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As the wind power function is continuous and linear in the interval (vin< v <vf). 

Therefore the probability of wind power being in the interval (0< PW, t<PWr) is defined 

as: 
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  (3.9) 

Where h=(vr-vin)/vin and fPw,t(PW,t) is continuous probability function of transform 

wind power variable. Since, the renewable sources have been investigated in DELD 

problem. Thus, it has the domain of time to represent time sequence t. This same 

approach is also employed for modeling of solar irradiance and solar power. 

3.2 Probabilistic Characterization of Solar Irradiance and PV Output 

Power 

The solar irradiance to energy conversion is mostly dependent upon the solar 

insolation, temperature of solar cell and technical properties of different PV module. 

However, the geographical location (latitude and altitude) and climate condition 

(cloud cover) also greatly affect the solar insolation reaching on ground. However, a 
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simplest approach for PV module output power being dependent upon solar insolation 

and temperature is considered. It is calculated as follows [59]: 

 ,
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Where Tc,t and St are                      and solar irradiance at time interval t 

respectively; TA is ambient temperature; Kv                                            

Ki is                                         NOT is                                  

          C. The other parameters FF, ISC and VOC are defined as fill factor, short circuit 

current (A) and open-circuit voltage (V) respectively. The IMPP and VMPP are the 

current and voltage at the maximum power point respectively. PS,t(St) is generated 

solar output power of the PV module during time interval t. 

The solar irradiance exist the partial predictability and discontinuity as zero 

availability at night. Therefore, a Beta distribution function is utilized to model the 

solar radiation defined as [17].  

 

 

   

1 1

S, max, max, max,

1 0 1, 0, 0
( )

0

t ta b

t t tt t

t t
t t t t tt t

S S Sa b
a b

f S S S Sa b

else

         
                 




  (3.15) 

     

Where fS,t(St) is Beta probability distribution function and St  is solar irradiance in 

kW/m
2
. at and bt are two shape parameters of the Beta distribution function at time 

interval t. The parameters of Beta distribution can be evaluated by using the mean (µt) 

and standard deviation (σt) as follows: 

 2

2

1 1t

t t

t

a





 
  

 
  (3.16) 

 
1

1
t t

t

b a


 
  

 
  (3.17) 

It is noted that Beta distribution variable lie in the range of (0, 1). Therefore, a 

nominal value of solar irradiance is (St/Smax) considered. Similarly, solar power 
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variable is also normalized. The transforms solar power variable also follows Beta 

distribution. It is modeled into solar power variable as [18]: 
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Where P
max

PV,t  is the maximum generated solar power at time interval t. fPV,t (PPV) 

is transform solar power probability distribution function. Γ (●)                  . 

3.3 Probabilistic Cost Model for Wind and Solar Power 

Wind and solar based power generation are stochastic in nature. Thus, the 

scheduling of these sources may differ from their actual available generation. This 

mismatch of power can result in overestimation or underestimation conditions. 

Generally, the overestimation and underestimation terms related to the condition of 

under generation and over generation of power generation. The overestimation 

condition occurs when available power generation is less than forecasted power. 

Therefore, the operator looks for alternative source to purchases the power from it. 

Similarly, the underestimation situation incur in the operation when available power is 

more than the forecasted power, thus surplus power get loss and paid in the form 

penalty cost to the farm operator. Therefore, to consider the cost model of renewable 

sources a probabilistic cost model is suggested as investigated in [22], which calculate 

the expected cost using probabilistic distribution function under the condition of over 

generation and under generation. The procedural approaches for both sources are 

equivalent as described below. 

3.3.1 Wind Power Cost Model  

The availability of wind power from wind turbine is un-deterministic and random 

in nature. As the wind speed predictability is uncertain at any instant of time. 

Therefore, the operator continuously faces the situation of underestimation and 

overestimation of wind power availability, which impacts the scheduling of wind 

power. Therefore, in wind power generation, the overestimation defined as when 

generated wind power is below than the scheduled power. On conversely, when 

available power is more than the scheduled power it is termed as underestimation. The 

overestimation and underestimation cost terms are expressed in similar manner as in 
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[22]: kr,Wj(PWj,t – PWj,av,t) and kp,Wj(PWj,av,t – PWj,), where kp,Wj is penalty 

(underestimation) coefficient for additional wasted wind power from wind farm and 

kr,Wj is reserve (overestimation) coefficient cost for purchasing power from another 

source on unavailability of power from wind farm. In order to simplicity of integral 

            ,  h    b       “j, t” is dropped in PWj,t and PWj,av,t. The overestimation 

analysis of wind power is as follows. Assuming forecasted and actual available wind 

power of wind farm are PW 1(0≤PW1<PWr) and PW,av respectively. The average value 

of integral can be expressed as in [60]: 
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Where f(PW) is probability distribution function of wind power. The parameters c 

and k are scale and shape parameter of Weibull pdf  and h=(vr/vin-1).
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To evaluate the H1 and H2, using variable substitution [(1 / ) / ]k

W Wr inz hP P v c  . 
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The term H1 converted into (3.25) with modified integration limit cll and cul. Here 

cll and cul are assigned as lower and upper integration limit for reader convenience. 

These are cll=exp{-[vin/c]
k
} and cul=exp{-[(1+hPW1/PWr)vin/c]

k
}.  
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Now, it can be easily integrated as:  
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The term H2 is processed through integrating by parts 
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Finally, we have  
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H    Γ(y)   d Γ(α, x) are gamma and incomplete gamma function. The definition 

of gamma and incomplete gamma function are stated as follows [61]:  
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It is noted that many computational software packages like Matlab supports the 

mathematical functions. Thus it can be easily evaluated. Putting H1 and H2 term 

together in (3.22) becomes (3.33). 
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Now, putting the s1 and s2 terms in (3.19) gives. It is average scale of 

overestimation term. Finally, the average cost of overestimation can be obtained by 

multiplying the reserves cost coefficient with expected value of overestimation. It is 

expressed as follows: kr,WE(PW,o).  
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  (3.34) 

The analysis of underestimation term can be carried out in the similar manner as 

for overestimation term. The expected value of underestimation term is stated as 

follows:
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Where  
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Solving the terms G1 and G2, using variable substitution y=[(1+hPW/PWr)vin/c]
k
.  
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The term G1 is assessed as similar to H2. The modified lower and upper 

integration limits are dll=exp{-[(1+hPW1/PWr)vin/c]
k
} and dul=exp{-[(1+h)vin/c]

k
} 

respectively.
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The term G2 is evaluated as similar to H1. Now putting the G1 and G2 together in 

(3.38) gives s4.  
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 (3.46) 

Finally, the average value of underestimation is stated in (3.47). The average cost 

of overestimation can be calculated by multiplying the penalty cost coefficient with 

average value of underestimation. It is defined as follows: kp,WE(PW,u). 
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3.3.2 Solar Cost Model with Incomplete Beta function 

The solar module output depends upon the solar irradiance intensity and 

temperature. Hence, the power output may be varying at any instant of time. Thus, the 

operator required to evaluate the underestimate and overestimate of solar power 

availability similar to wind power availability as in [22]. This access the impact of 

solar partial predictability on scheduling cost of solar power. The overestimation and 

underestimation cost terms for solar can be expressed as follows: kr,PVk(PPVk,t - PPV,av,t) 

and  kp,PVk(PPV,av,t -PPVk,) , where kp,PVk  is penalty (underestimation) for excess wasted 

solar power from solar farm and kr,PVk  is reserve (overestimation) cost for purchasing 

power from another source on deficit power from solar farm.  

The overestimation analysis of solar power as follows. The  x     d       E (●) 

of overestimation can be terms expressed as in (3.48). 
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Where fPV,t(PPV) is two parametric at and bt beta distribution function. B(a, b) is 

beta function. Substituting (3.50) in (3.49) this becomes. 
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The above mentioned (3.51) is expanded expression of (3.49). In order to simplify 

the integral substituting x=PPV/P
max

PV and pv1= PPVk,t/P
max

PV. This converted into 

following form.  
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According to the definition of Regularized Beta Function (RBF) [62]. 
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Where Iy(a, b) is regularized beta function. By(a, b) and B(a, b) are incomplete and 

complete Beta functions.  

In order to convert (3.52) in standard regularized beta function we finally have: 
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 As many computational platforms supports RBF like Matlab. It can be expressed as 

(3.54). H    “  w  ”            h                          0    pv1. It represents the 

average scale of overestimation term. Thus the average cost of overestimation can be 

obtained by multiplication of reserve cost coefficient kr,PV i.e., kr,PV E(PPV,o). 
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In the similar way analysis of underestimation can be done. The average value of 

underestimation term is expressed as in (3.56). 
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The simpler expression of integral can be derived by substituting max

PV PVx P P  and 

max

2 ,PVl t PVpv P P in (3.58). It becomes.  
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This is modified to turn into the standard RBF. So we have  
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H    “     ”             h                            pv2 to 1 and (3.61) is 

average value of underestimation term. So average cost of underestimation term is 

stated as kp,PV E(PPV,u). 

These following cost models of wind and solar power are incorporated in the 

objective formulation of stochastic DELD system with renewable sources. The detail 

mathematical modeling is presented in the next chapter. 
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CHAPTER 4 

PROPOSED PROBLEM FORMULATION 

      This chapter presents a mathematical modeling of stochastic DELD problem with 

renewable sources using the various practical constraints such as valve-point loading 

effect, ramp rate limits and POZs etc. The objective cost function is consists of 

thermal generators, wind and solar powered generator. The cost functions of wind and 

solar involves proportional cost, in addition underestimation and overestimation 

effects are considered by suggesting a probabilistic cost model.   

In practical mathematical modeling of ED operation, the generator exhibit various 

constraints such as valve-point loading effect due to multi-fuel valves operation, ramp 

rate limits and POZs arises due to physical and stability limitations. A detail 

description about these constraints is discussed below. 

In ELD operation, the fuel cost function of thermal generator is usually expressed 

in quadratic form. However, generator operating with the large steam turbine has had 

the multi-fuel opening valves. It is used to operate sequentially to match the increased 

generation. This opening of valves results in the sudden heat rate rise and causes 

throttling losses rapidly [38]. 

 

Figure 4.1 Fuel cost function with and without valve-point loading effect. 

Thus, the valve point-loading effect introduces ripples that lead to non-convexity 

and dis-continuity. Thus, a sinusoidal function is used to model to exhibit of the steam 

injection to steam turbine through multi-valve of steam turbines. Therefore, a fuel cost 
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function in quadratic form is modified with an additional term of sinusoidal function 

to account the valve-point loading effect as depicted in Fig. 4.1.  

 

Figure 4.2 Different generation states due to up and down ramp rate limits 

It is general assumption in static ELD that, the generators schedule is adjusted 

instantly. However, under real time operation, the generators’ ramp rate limit contains 

the operating range of the generator between the two consecutive operating periods 

during the transitions states [63-64] shown in Fig. 4.2. It is due to generator physical 

and stability constraints thus, the generation limits of thermal generators keep on 

changing with respect to their ramp rate limits on successive schedule. This modifies 

the generation limits at each state operation. Though, in SELD, it is usually not taken 

into context, where generators are schedule for one operating period without 

knowledge of prior state. Therefore, ramp rate limits is preferably incorporated in 

DELD operation, where generators are schedule for various continuous periods.  

 The POZs are those spans of the entire operating range of generator where 

operation is obstructed on the circumstance of the physical limitation due to steam 

valve or vibration in shaft bearing of the generators. It may be due to faults in the 

machines or associated auxiliaries, which leads to instability region in the generator 

operating ranges [65]. Thus, overall this results in intermittent operation of generator 

over its entire operating range. Therefore, these zones must be avoided for economic 

production [66].  
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Figure 4.3 Fuel cost function with prohibited operating zones. 

Thus, it can be seen from the Fig. 4.3, POZs lead to discontinuity in the fuel cost 

function of the generator. Hence, in order to account these all practical constraints, it 

is adequate to consider the ELD problem into DELD form instead of SELD. As 

mentioned in the previous chapter that hybrid generation taking active part into 

modern power system. Therefore, wind and solar powered source also are 

incorporated in DELD system. Further, the impacts of these sources are analyzed by 

considering their operating cost as well.  

4.1 Mathematical Modeling of Stochastic DELD with Renewable 

Sources 

DELD is major optimization operation in power system. It aims to obtain the 

optimal schedule of generators with minimal total operating cost for pre-scheduled 

load demand in account of satisfying the multi-constraints of the generator and 

network over the time horizon. Since, here renewable sources are also incorporated in 

the system. Thus, the total operating cost comprises of the operating fuel cost of 

thermal generator, the operating cost of wind generator and the operating cost of solar 

powered generating system. The formulated operating cost for the Stochastic DELD 

system is modeled as [24]. 

 Minimize , , ,
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Where, F(PGi,t) is operating fuel cost of the thermal units, F(PWj,t)  is operating 

cost of wind farm and F(PPVk,t) is operating cost of the solar farm. NG, MW and LPV 

stand for numbers of conventional thermal generator, wind powered generator and 

solar powered generators respectively. H denotes total number of time interval. 

The first term of the objective function formulates thermal generator fuel cost 

charge. It is modeled by non-convex function consist of quadratic and sinusoidal 

function to consider the valve-point loading effect [38].  

 2 min

, , , ,
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i

F P a b P c P e f P P

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Where ai, bi, ci are the fuel cost coefficients of the i
th
 generator, and ei and fi are of 

the valve-point loading coefficients, PGi,t is the active power of the i
th

 generator at 

time interval t. 

The second term accounts the operating cost of wind powered generator. This 

term is consists of three parts [24]. 
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In this, the first part is proportional term defined as direct cost. This cost derived 

from wind-powered generator. However, the existence of this part depends upon who 

possess the wind farm. If the system operator owns the wind farm, then this part will 

not exist because wind power does not require any fuel. However, if the system 

operator wants to revenue for initial layout of wind energy conversion system 

(WECS), then there will be cost involved. Furthermore, for non-utility WECS the cost 

will be based on the special contractual agreements. Therefore, wind generation 

participation for supplying the power requires to sets the upper and lower limits for 

the optimal operation [67]. As, in the recent years, the wind power generation has 

emerged as substantial energy source, therefore, in general sense it is factual to 

consider the wind cost proportional to scheduled wind power, regardless who owns 

the generation facilities. If the operator is paying to wind farm owner for power, then 

direct cost will be involved 

 , , ,( ) .Wj t Wj Wj tF P F P   (4.4) 
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Where F(PWj,t)  is the direct cost function for j
th 

wind-powered generator at time 

interval t. FWj is direct cost coefficient for j
th
 wind-powered generator and PWj,t is 

scheduled wind power variable. This is cost for purchasing the scheduled power from 

wind farm owner. Thorough research reveals that the wind generation operational cost 

is around 57% of the total thermal cost [68]. 

The second part is associated with the penalty cost for not utilizing all the 

available wind power. However, the existence of this term also depend upon the, who 

possess the generation facilities. If, the wind-powered generator owns by system 

operator, then the penalty cost function may not be exist. Otherwise, it will be related 

by a linear difference between available (actual) and scheduled wind power 

respectively. It is modeled as 
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Where FP,Wj,t is penalty cost function at time interval t. kP,Wj is the penalty cost 

coefficient of under estimation, PWj,av,t is the available (actual) wind power from the j
th 

wind generator and fPw,t(PW) is probability distribution function of wind generated 

power at time interval t. The third part includes reserve requirement cost. It models 

the overestimation term, when the available wind power is in deficient amount than 

the scheduled wind power. 
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Where Fr,Wj,t is the reserve cost function at time sequence t. kr,Wj is the reserve cost 

coefficient of overestimation and PWj,av,t is the available wind power from the j
th

 wind 

generator at time interval t. The second and third parts are employed to consider the 

changeability of wind power. It measures wind power variability in terms of 

underestimation and overestimation. The underestimation is defined as when available 

power is more than scheduled wind power. Similarly, the overestimation, when 

available wind power is less than scheduled wind power.  

The third term of the objective function is operating cost of solar powered PV 

modules. This term includes three parts [24]. The solar cost function is modeled 
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similar to wind cost function. The total cost of solar power can be expressed as 

follows: 
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The first part is direct cost from solar-generated power. It accounts the cost 

proportional to scheduled solar-generated power.  

 , ,( ) .PVk t PVk PVk tF P F P   (4.8) 

Where F(PPVk,t) is direct cost function for k
th

 solar-generated power at time interval 

t. It is payment made for using the power from the PV system operator. FPVk and PPVk,t 

are solar power cost coefficient and schedule solar power variable respectively. The 

analysis is carried out in same way as for wind cost function. 

 The second part is penalty cost function associated with for not using all the 

available power from PV systems. It is a linear difference between available solar 

power and scheduled solar power respectively. It is expressed as: 
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Where FP,PVk,t is penalty cost function at time interval t. kP,PVk is the penalty cost 

coefficient of under estimation (over generation), PPVk,av,t is the available solar power 

from the kth PV-powered generator and fPV,t(PPV) is probability distribution function 

of solar power at time interval t. The third part stimulates the reserve cost when the 

available solar power is less than the scheduled solar power. 
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Where Kr,PVk is the reserve cost coefficient of overestimation. Fr,PVk,t is reserve 

requirement cost function. It accounts the overestimation (under generation) factor 

that available power is less than scheduled solar power. Thus, the operator has to 

manage power from the other source.  

The various constraints subjected to stochastic DELD problem are: 
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4.1 Power Balance Constraint 

The total power generation from all the power sources must satisfy the total power 

demand and network power loss under balance condition. Further, the network power 

loss can be evaluated by employing the B-coefficient loss formula [69]. The power 

balance equation can be defined as 

 , , , , , , , , 0, 00,
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Where Pload,t is power demand at time interval t. Bjl,t is the transmission loss 

coefficient matrix i= 1, 2, . . ., NG, l= 1, 2, ..., NG, and t=1,2,….,H. Bi0,t  is the ith 

element of the loss coefficient vector. B00,t is the constant coefficient. It is noted that 

the problem is formulated for DELD system. Thus, the power balance equation must 

be satisfied for each interval load deamnd. 

4.2 Ramp Rate Limits 

In DELD problems, the generator output of thermal unit restricts its smooth and 

instantaneous operation due to its ramp rate limits [63]. This changes generation 

limits at each state operation. Hence, the output of the ith thermal unit at time t affects 

the next state t+1. Therefore, to account the ramp rate limits the generator value 

transition can be expressed as follows:  

If generation increases,
, , 1   1,...., ; 1,....,Gi t Gi t i GP P UR i N t H      (4.12) 

If generation decreases,
, 1 ,  1,...., ; 1,....,Gi t Gi t i GP P DR i N t H       (4.13) 

Where PGi,t and PGi,t-1 are active output power at t and t-1 states. URi and DRi stand 

for the up and down ramp limit of the ith generator (MW/time-period).  

4.3 Power Inequality Constraint 

The power limits of each generator should be within its boundary limits for 

feasible and stable operation. Therefore, the thermal units limits between its upper and 

lower limits can be expressed as: 

 
min max

,  1,...., ; 1,...., .Gi Gi t Gi GP P P i N t H      (4.14) 

However, the thermal generator subjected to ramp rate limits due to physical and 

stability concern. Thus, for each time state thermal generator minimum and maximum 
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power limits should be revised. Therefore adjusted inequality constraints for each 

thermal generator in each interval can be expressed as: 

 
min max

, 1 , , 1max( , ) min( , ) 1,...., ; 1,...., .Gi Gi t i Gi t Gi Gi t i GP P DR P P P UR i N t H         (4.15) 

The generation limits of the renewable sources must be constrained to defined 

upper and lower limits. Since, it is based on the system operator agreement for 

optimal operation of power system [70]. The generation limits of renewable sources 

are kept independent of ramp rate limits. Therefore the generation limits of these 

sources are between the minimum and maximum limits.  

 min max ; 1,...., ;  1,....,Wj Wj Wj W t HP P P j N      (4.16) 

 min max ; 1,...., ;  1,...., PVPVk PVk PVk t HP P P k N      (4.17) 

4.4 Prohibited Operating Zones 

In the thermal generator operation, the generator operates in the intermittent 

manner over its entire operating range due to POZs. This make the generator fuel cost 

function discontinous with the disjoint convex sub-regions [63-64] between the 

generator minimum and maximum limits. Thus, the generation limits for the ith 

generator with j number of POZs zones can be defined as: 

 

min

, , ,1

, 1 , , ,

max

, , ,

;  {1,...., }, {2,3,... }
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

 


   


  

  (4.18) 

Where, the superscripts L and U define the minimum and maximum limit of POZs 

of ith unit. NGPZ is total number of generators with POZs zones; NPZj is the total 

number of POZs for the ith generator. 

Since, DELD is highly non-linear, non-convex complex optimization problem 

with discontinuous decision variables. Therefore, to solve it an optimization technique 

is proposed in next chapter. 
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CHAPTER 5 

PROPOSED OPTIMIZATION TECHNIQUE 

This chapter presents a recently developed metaheuristic technique called 

Fireworks algorithm (FWA). It is swarm intelligent based optimization technique 

inspired by the splendid sparks of the firework. The comprehensive study on FWA 

reveals that it performs exceptionally well on the non-shifted functions having optima 

at the origin of the search space. However, its performance degrades heavily on 

shifted function owing to intrinsic limitations of FWA. Moreover, the several 

engineering optimization problems deals in shifted optima. Therefore, an improved 

version of FWA, Improved FWA with Chaotic Sequence Operator (IFWA-CSO) is 

proposed in this chapter.  

5.1 Fireworks Algorithm 

FWA is a non-biological swarm intelligent algorithm. It mimics the explosion 

process of the fireworks. In analogy with the real firework and lighten the night sky, 

when the firework (individual) is set off to the potential search space, the shower of 

the sparks fill the local space around it [47]. In FWA, the explosion process employs 

two type of mechanism, first, more sparks with minimum explosion amplitude and 

second is less sparks with the large explosion amplitude. These features are designed 

in such a way that it stimulates the simultaneous exploration and exploitation to 

perform the global and local search adaptively. However, to further enhance the 

diversity of tentative solutions another type of spark, Gaussian sparks is also created. 

It is applied on the selected sparks. Furthermore, the distance based selection operator 

also conserves the diversified individual to the next generation.  

FWA initializes with a predefined number of randomly generated fireworks in the 

problem search space. The explosion amplitude and number of sparks for each 

firework is evaluated by their functional value [48]. Then, fireworks exploded and 

crafts different types of sparks within their potential space. Finally, the predefined 

number of fireworks selected among all original fireworks and their generated sparks 

keeping in the mind to survive the best firework individual to the next generation. The 

basic framework of FWA is depicted in Fig. 5.1. 
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Figure 5.1 The flowchart of Fireworks Algorithm 

5.2 Fireworks Explosion  

The fireworks explosion exhibit two specific behaviors through firework 

explosion display such as good and bad explosion. For the good explosion, firework 

generates numerous sparks in close proximity of the explosion center. This gives 

spectacular display of fireworks explosion. On the other hand the bad explosion 

generates few scattered sparks around the explosion center in large area. These two 

manners are depicted in Fig. 5.2. 

 
Figure 5.2 Two types of firework explosion 

Thus, these two ways can be utilize from algorithm point of view. A good 

firework symbolizes the fireworks in the promising region with concentrating sparks. 
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It also indicates that fireworks might be in the close vicinity of the optimal solution. 

Thus, it is employed to perform the local search of the firework. On the contrary, a 

bad firework creates few scattered sparks in the large radius of the exploded firework, 

suggesting that the firework is far away from the optimal location. Hence, this 

strategy can be opted for global search.  

5.3 Brief Overview about FWA 

The FWA algorithm characterization involves many operators such as explosion 

operator, explosion sparks, mapping operator and selection. The brief explanation of 

each operator is described as follows: 

5.3.1 Explosion Operator 

The firework explosion is characterized by good and bad explosion. Good 

explosion (firework) generates more sparks in close vicinity of the firework. On the 

other hand, the bad explosion (firework) generates less sparks with larger search 

radius. In this way, FWA provides simultaneous exploitation and exploration of the 

search space by good and bad fireworks, respectively. Therefore, in order to mimics 

these features of firework, the number of sparks si and their explosion amplitudes Ai 

are governed by the following model:  

 max
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( ).  ;   {1, 2,....., }
( ( ))

i
i n

ii

y f xs m i n
y f x






 
 

 
  (5.1) 

 min

min1

( )ˆ.  ;  {1,2,....., }
( ( ) )

i
i n

ii

f x yA A i n
f x y






 
 

 
  (5.2) 

Where ymax and ymin are max (f (xi)) and min (f (xi)) values of the objective 

function respectively. m and Â are the limiting values of total sparks and the explosion 

amplitude, respectively. ξ is a very small real number to counter zero-division error. 

To avoid overwhelming effects of maximum sparks for good firework, the boundary 

conditions for si are defined as below:  
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  (5.3) 
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Where α and β are algorithm specific values and round command is used to set the 

value to the nearest integer. 

5.3.2 Generation of Explosion Sparks 

When a firework exploded in space, the sparks so generated are with different 

amplitudes in all possible random directions. These sparks are then starts diverging 

from the location of the firework. This explosion process of the ith firework to 

generate sparks in its near vicinity by adding the offset displacement ∆xi,j on randomly 

selected dimensions. The offset displacement is defined as given below. 

  , ,, , ; 1,1  i j i j i j i j ix nx x A dx ra       (5.4) 

In case, the sparks fall-out of the potential space, it is mapped to potential space 

using the mapping operator. For more details, the Algorithm.1 of [47] may be 

referred. 

5.3.3 Generation of Specific (Gaussian) Sparks 

In order to enhance the diversity in population, the specific sparks are generated 

using the Gaussian mutation operator, named as Gaussian sparks. The Gaussian 

sparks are generated for certain randomly selected fireworks. For this purpose, the 

Gaussian having mean and standard deviation each unity is selected while following 

the Gaussian (Normal) distribution. The Gaussian sparks generate tentative solutions 

in the surroundings of the selected fireworks. The expression for the Gaussian spark is 

defined as follows:  

 , , Gaussian(1,1)i j i jx x    (5.5) 

Where xi,j represents the ith individual at the jth dimension. Gaussian (1, 1) is a 

number drawn from normal distribution with mean value 1 and standard deviation 1. 

For further detail, the Algorithm.2 of [47] may be referred. 

5.3.4 Mapping Operator 

Whenever the individuals fall out of the potential space, they become infeasible. 

Such infeasible individuals are kept within the potential space using the mapping 

operator. The mapping operator is defines as follows: 

 min max min
, , %( )i j j i j j jx x x x x     (5.6) 

Where operator % stand for modulo operation (reminder of division) and xj
max

 and 

xj
min

 are upper and lower bounds of the problem. However, the mapping operator has 
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its own disadvantages as it can easily drag an infeasible spark location close to origin, 

benefiting the functions having optima near the origin of the search space [47].     

5.3.5 Selection 

At the end of each iteration n fireworks locations are selected to set off the 

fireworks in the next iteration. Thus, it required adequate diversity strategy operator 

for fireworks selection. For this the distance based selection operator [71] is 

considered. Thus, for the firework xi, the selection probability is defined as: 

 
( )( )

( )
i

i
k

k p

R xP x
R x






  (5.7) 

 ( ) ( , )i i k i k
k p k p

R x d x x x x
 

      (5.8) 

Where, p is set of all current fireworks and both types of generated sparks 

excluding the best firework. The (5.7) indicate that the firework or sparks in low 

crowded regions will have a higher probability to be selected for the next iteration 

than fireworks or sparks in crowded regions [48]. Since the best firework must be 

passed to next iteration. Therefore the elitism is used to preserves the best firework. 

FWA is most promising optimization for non-shifted function. However, its 

performance on the shifted functions suffers severely as many engineering problem 

deal with shifted optima. Therefore, to enables its applicability for all type of 

optimization problem, several modifications are suggested in the proposed method.       

5.4 Proposed Improved Fireworks Algorithm using Chaotic Sequence 

Operator (IFWA-CSO) 

In FWA, the sparks of the given firework are generated by selecting number of 

dimensions randomly, quite irrespective of the fitness of fireworks. This may cause 

over diversity in population and thus results in slow convergence. Furthermore, its 

distance based selection operator increases CPU time on account of large number of 

distance calculation among the individuals [48]. Another limitation of FWA is that it 

causes insignificant explosion amplitude prevents the explosion for best firework. 

This deteriorates its local search potential especially at the anaphase of the algorithm. 

Finally, the mapping and Gaussian mutation operators of FWA have inherent 

tendency to map/create tentative solutions towards the origin of the search space [48]. 
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The conventional FWA therefore suffers badly when dealing with problem where the 

global optima exist far away from the origin. Thus, in order to improve the 

inadequacy of conventional FWA following some features has been introduced in 

proposed IFWA method. IFWA is proposed by suggesting Limiting Mapping 

Operator (LMO), Adaptive Dimension Selection Operator (ADSO), Non-uniform 

Mutation Operator (NMO) and Chaotic Sequence Operator (CSO) as described 

below. 

5.4.1 Limiting Mapping Operator  

The function of the mapping operator is to keep the fireworks within the problem 

search space whenever they tend to fall out of it during the evolutionary process. This 

could be achieved in a random fashion as in EFWA of [48]. But, it hampers all 

previous efforts of the algorithm in selecting this value for the dimension. Therefore, 

LMO is proposed where the dimensions violating the boundary limits are intended to 

set at the boundary limits as defined below.  

 
min min

,
, max max

,

;
;

j i j j
i j

j i j j

x x x
x

x x x
      

  (5.9) 

Where xi,j is ith individual at jth dimension of problem. xj
max and xj

min are upper 

and lower limits of the problem. The proposed LMO not only utilizes all earlier 

processing effort of the algorithm but also causes fast convergence.  

5.4.2 Adaptive Dimension Selection Operator  

In FWA, both explosion and specific sparks are created through randomly 

selecting dimensions. This causes better fit fireworks may undergo wild variations 

whereas less fit fireworks may faces less variations among their dimensions. It may 

lead to over diversity in population or retards the pace of algorithm, whatsoever, the 

convergence of the algorithm suffers badly. Therefore, fitness based operator ADSO 

is proposed which select the number of dimensions of the given firework by its fitness 

value i.e., higher the fitness, more will be the selected dimensions and vice-versa. The 

mathematical modeling proposed for ADSO is derived from the amplitude explosion 

of FWA as given below.   
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Where ymin is the min (f (xi)) value of the objective function. D̂ is algorithm 

parameter to control the dimension number. Care has been taken while generating 

sparks of fireworks so it could generate sparks by selecting at least one dimension. 

5.4.3  Non-uniform Mutation Operator  

Ref. [48] has shown that the Gaussian spark operator of FWA creates many sparks 

near to the origin or out of the search space regardless of function optimality. Any 

spark found outside the search space is being mapped near to the origin by the 

mapping operator. Moreover, if firework is located near to the origin of the search 

space then it cannot get away from this location [48]. This adversely affects the 

performance of algorithm when applied to optimization problems having global 

optimum far away from the origin. Therefore, NMO is proposed in IFWA to replace 

Gaussian sparks which has been taken from [72]. NMO provides sparks having 

dynamically decreasing offset with iterations as given by (5.11). The equation reveals 

that NMO facilitates global searching during initial phase and then gradually shifts 

into the local searching at the anaphase of the algorithm. 
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, min

, ,
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i j j i j
i j

i j i j j

x iter x x round rand
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            

  (5.11) 

Where, (xj
max, xj

min) is upper and lower limits of the variable xi,j and ∆(iter, y) is 

non-uniform function which can be determined using (5.12). It gives the function 

value in the range [0, y] such that ∆(iter, y) approaches towards zero as iteration 

progresses.  

 ( , ) (1 .exp(1 ) )
max

biteriter y y r
iter

       (5.12) 

Where, r is a uniform random number [0, 1], itermax is predefined maximum 

iteration count and b is a dependent parameter on the iteration number. The value of b 

is chosen as 5 experimentally [72]. 

5.4.4 Chaotic Sequence Operator  

Chaos system has wide application in the area of science due to the disorder 

behaviour. It is non-linear dynamic system appeared to be the deterministic initially, 

but later seem to be random and sensitive to the initial condition. It has various 

applications in the engineering field [73-74]. In [73] author used chaotic sequence 
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with mutation factor in the differential evolution for ED problem. Caponetto et al. 

[74] employed the various chaotic sequences instead of the random numbers in the 

evolutionary algorithm. Shengsong et al. [75] presented a chaotic sequence 

application to solve the optimal power flow using a chaotic hybrid algorithm. For the 

iterator logistic map of degree 2, a non-linear polynomial is described as follows [74]: 

 1 1. .(1 )l l l        (5.13) 

The behaviour of the system is controlled by control parameter µ ranges between 

[0, 4] and γl is chaotic parameter at l-state used to determine the pattern of the logistic 

map, whether it follows a constant value, sustained oscillation between limited 

sequence of size or behave chaotically in unpredictable manner. The deterministic 

behaviour of (5.13) has been found with µ=4 and γ0∉ [0, 0.25, 0.50, 0.75, 1] 

experimentally [74]. 

While generating sparks of fireworks in FWA, the amplitudes of sparks are 

randomized. However, the amplitude of the given firework depends upon its function 

value whereas the relative magnitudes of dimensions may vary through wide limits. It 

implies that the impact of the offset displacement does not remain same among all 

dimensions of the firework. Higher the magnitude of the dimension lesser will be the 

impact of the offset displacement and vice-versa. Therefore, the dimensions of the 

fireworks in IFWA are allowed to modulate by suggesting the following model. 

  , ,, , ,( );  1,1 i j l i j i j i j i jA randx x x x        (5.14) 

The model described by (5.14) is different than that of FWA in two senses. First, 

the offset displacement attribute to selected dimensions of the given firework are 

different. Second, the chaotic parameter governs whole dimension rather the offset 

displacement alone. This model therefore provides versatility to sparks of fireworks 

which enhances diversity in population. So both exploration and exploitation potential 

of the search space is improved. 

In addition to aforementioned modifications suggested in IFWA, the explosion 

amplitude of the best firework is kept a minimum value as per following model [48]. 

This is essential to keep the best firework active especially during the anaphase of the 

algorithm. 
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 min ( ) (2 max )
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iter
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       (5.16) 

Where Aj
init

 and Aj
final are the initial and final amplitude of the explosion which can 

be fixed as fraction of the search space. iter and itermax shows current iteration and 

maximum iteration count. 

5.4.5 Selection Operator 

The selection operator of conventional FWA is majorly responsible for most of 

the runtime on account of distance based selections [48]. It happens on account of 

large number of distance calculations which is huge figure for a large dimensional 

problem. This makes it computationally demanding. Therefore, probability based 

Roulette Wheel Selection is suggested in IFWA. In this selection procedure a 

probability distribution proportional to the fitness is created. The fireworks are then 

selected by sampling the distribution function given by [76]. 

 max

max1

( )( )  
( ( ))

i
i p

ii

y f xx
y f x








  (5.17) 

Where p is the total number of individuals, including original fireworks, both 

explosion and specific sparks and φ(xi) is the probability that xi will be selected. 

In order to measures the effectiveness of each suggested modification, different 

variants have been formed and predecessor modifications are included in successive 

variants. Finally, all previous modifications are included in IFWA-CSO termed as 

proposed method. The following four variants are as follows: 

(a) IFWA-I: FWA with LMO 

(b)  IFWA-II: IFWA-I with ADSO 

(c) IFWA-III: IFWA-II with NMO 

(d) IFWA-CSO: IFWA-III with CSO 

5.5 Constraint Handling Algorithm 

In IFWA, during the initialization or sparks generation process, it is likely that the 

firework individual may not satisfy the various constraints in the stochastic DELD 

problem and require constraint handling strategy. In this context, the penalty function 
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method is most popular method. It transforms the constraint problem into unconstraint 

problem and conveniently used to handle individual during evolution process by 

punishing infeasible solution to ensure the feasible ones are favored. However, this 

method suffers from large computation demanding time due to multiple run for the 

fine tuning of the penalty factor, which degrades the efficiency of the algorithm [77]. 

Therefore, to overcome this drawback an efficient heuristic approach is proposed for 

solving the various constraints of the stochastic DLED problem. In the proposed 

method, the objective(s) are optimized by equally maintaining the violation limits. 

This makes the entire individual feasible and actively part into optimization. The 

procedure of proposed algorithm is as follows: 

Step 1: Set the dispatch interval index t=1. 

Step 2: Set the count=1 

Step 3: Adjust the generation limits of each conventional generating units at each 

interval as per following (5.18) & (5.19) 
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Where PGi,t
max and PGi,t

min are the generation limits of the conventional generator at 

each interval t. Then, the infeasible solution of each thermal generator unit at each 

interval will be modified as below 
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  (5.20) 

The power limits of wind and solar powered presumed to be independent of ramp rate 

limit. Therefore, for renewable generator violating the boundary limits will be 

adjusted by (4.16) & (4.17).  

Step 4: Calculate the residual (mismatch of the power) using the power balance 

equation. 
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If Derr,t=0, then go to step 6, otherwise go to step 5. 

Step 5: Select the generating unit (conventional unit or wind or solar power unit) 

randomly, and then the value of selected generator is modified as follows: 
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  (5.22) 

If Pi,t does not violate the boundary limits, go to Step 6. Otherwise modified it by 

(5.20) or (4.16) or (4.17), and then go to Step 6 

Step6: count=count+1, if count > countmax, return to previous hour and rearrange the 

schedule. If residual Derr reach in predefined tolerance level, then go to Step 7 

Step 7: Set t=t+1, modify the generation limits of conventional generator for the next 

dispatch interval according to (5.18) & (5.19). 

5.6 Firework Individuals Initialization 

The fireworks are initialized by first randomly generating in the multi-dimensional 

search space.  X=[x1, x2, x3,…, xn]T, where n is size of the population and x1, x2, x3,…, 

xn represents the firework (individual). Each firework individual is consists of 

decision vector. Since, the total number of generating units (NG+MW+LPV) and number 

of dispatch interval are T. Therefore, the decision vector size will be (NG+MW+LPV)*T. 

The appearance of decision vector will be expressed as xi=[Ui,1, Ui,2, Ui,3,…., Ui,T]. 

where T represents the time interval and U=[PGi,1, PGi,2,…, PGi,NG, PWi,1,…, PWi,MW, 

PPVi,1,…, PPVi,LPV]. Here, NG, MW and LPV are the units of the thermal generator, wind 

powered generator and solar powered generator respectively. These all decision 

variables are uniformly generated between their upper and lower limits as expressed 

below. 

 min max min
, , , , ,( )Gi j Gi j i j Gi j Gi jP P rand P P      (5.23) 

 min max min
, , , , ,( )Wi j Wi j i j Wi j Wi jP P rand P P      (5.24) 

 min max min
, , , , ,( )PVi j PVi j i j PVi j PVi jP P rand P P      (5.25) 

Thus, initial population of generating schedule, over time horizon is expressed as in 

(5.26).  
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After initialization, the firework individuals satisfy problem constraints defined by 

equations and infeasible individuals are adjusted by using a constraint handling 

algorithm as aforementioned.  

5.7 Pseudo Code of Proposed IFWA-CSO   
Randomly select n location for fireworks 
while (iter<ietrmax) 
    Set off fireworks at n locations; 
    for each firework xi  
        Calculate the explosion amplitude Ai, number of sparks ŝi and adaptive 

dimension Di according to (5.1), (5.2) and (5.10); 
        Obtain the location of sparks for each firework xi; 
        for each firework xi 
            for j=1:round(rand× Di) 
                set zk=round(rand), k=1,2,……..,dimension; 
                if (zk==1) 
                    xi,j=γl(xi,j +Ai,j×rand(-1,1));               

 end if 
            end for 
        end for 
    end for 
    for k=1:m̂ 
        randomly select the firework xi 

          for selected firework xi 
            for j=1:round(rand× Di) 
                set zk=round(rand), k=1,2,……..,dimension; 
           if (zk==1) 
                 xk

i=xk
i+∆(iter, y);  

          end if 
            end for 
        end for 
        Select the best location and keep it for next explosion generation; 
        Select (n – 1) locations from the two types of sparks and the current 

fireworks using selection operator; 
    end 

 
The validation of proposed IFWA-CSO and its predecessor variants are conducted 

in the simulation results section in the next chapter. The detailed analysis of 

performance of each suggested modification is carried-out on the different standard 

systems in the ranges of small to large range dimensional problem.  
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CHAPTER 6 

SIMULATION RESULTS 

In this chapter the validation of the proposed IFWA-CSO is performed. For this 

first testing is done on some well-known benchmark function, and then applied on the 

power system optimization problem of economic operation in static and dynamic 

states with variety of constraints. The various different cases are implemented and 

presented with the numerical results and compared with the recently established 

algorithms reported in literature. For experimental MATLAB platform is used. 

6.1  Selection of Parameters  

FWA performs quite well with less number of fireworks [47]. Thus, in FWA 

number of fireworks remains intact between ranges 3 to 5. However, the number of 

the sparks m is subject of the dimensionality and complexity of the problem. The rest 

parameters include number of specific sparks   , α, β, explosion amplitude
 
 , Aj

init
, 

Aj
final

. A new parameter, number of dimension    is introduced in the proposed 

method. It depends upon the dimensionality of the firework individual. For the testing 

of the benchmark functions, the parameters chosen are n=5,  =50,    =5, α=0.04, 

β=0.8,  =40, Aj
init
=(x

max
j - x

max
j)×0.02 and Aj

final
=(x

max
j - x

max
j)×0.001 same as reported 

in [47]. It is to validate the IFWA-CSO with the standard FWA and EFWA method. 

The additional parameter, number of dimension    is set to 10 in IFWA-CSO method 

experimentally. The maximum iteration itermax is set to 5000 for all. The various 

parameters used for the power systems of economic operation test systems are listed 

in Table 6.1. 

Table 6.1 Control parameters of FWA and proposed FWA variants 

Parameter Value 

N 5 

   5 

Α 0.04 

Β 0.8 

  40 

Aj
init (xmax

j-x
min

j) × 0.5 

Ajf
inal (xmax

j-x
min

j) × 0.001 

System ELD system DELD system RDELD system 
Parameter 40-units  140-units  5-units  15-units 7-units  17-units  

itermax 2500 5000 5000 2500 2500 1500 

m 90 90 50 90 90 90 

   10 20 20 50 20 50 
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6.2  Validation of Proposed IFWA-CSO on Benchmark Functions 

The benchmark functions are essential to validate and measure the performance of 

the algorithm. These functions are categorized into various classes on the basis of 

their shape such as: Schwefel 1.2 is uni-modal function with single minima; 

Generalized Rosenbrock is multi-modal; Generalized Schwefel 2.26, Generalized 

Rastrigin, Generalized Griewank and Penalized Function P16 are classes into a 

complex multi-modal high-dimensional problems with many local minimum optima 

and a single global optimum; Six-hump Camel-back is two dimensional multi-modal 

problem with fewer local minima and two global minima, symmetric about the origin. 

Similarly, Goldstein-Price is low-dimensional multi-modal problems with fewer local 

minimum optima and one global optimum [78]. Here, for the validation, eight 

benchmark functions have been considered for the study. The definition of these 

function are defined in Table 6.2 [47, 78] and their optimum and boundary limits are 

known to be a priori. 

Table 6.2 Benchmark functions 

Function Expression D Search 

space 
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1 1 1

D i
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* Shifted function 

A set of 30 independent trails run is presented in Table 6.3. It presents the 

statistical results in terms of mean and standard variation (STD). It can be seen from 

the table that the performance of standard FWA on the non-shifted functions f1, f4 and 
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f5 is superior to EFWA and proposed IFWA-CSO method is giving equivalent result 

to FWA. However, this exceptional performance of FWA is due to its operator rather 

than algorithm intelligence [48]. On the contrary, shifted function f3 performance get 

worse on standard FWA, this slightly improved in EFWA, while IFWA-CSO getting 

significantly better value with negligible STD. It is noted that in low dimensional 

shifted functions f7 and f8 show equivalent result in all methods. On the contrary, for 

the higher dimensional problem FWA and EFWA performance on the shifted 

functions deteriorates severely. Although, for a shifted function f2, it is found that 

FWA perform better than EFWA and IFWA-CSO. It may be due to that the optimum 

point close or near to origin (1.0
D
) [48]. Therefore, the proposed IFWA-CSO 

performed extremely well on the shifted function in addition, adequate performance 

on non-shifted function. This shows the robustness of the proposed method on all type 

of functions irrespective of their optima. Therefore, proposed IFWA-CSO method is 

suitable optimizer for the shifted function as power system optimization problem.  

Table 6.3 Comparison of the results of different algorithm mean and standard 

deviation for benchmark functions 

 FWA EFWA Proposed IFWA-CSO 

F Mean STD Mean STD Mean STD 

f1 0.000000 0.000000 0.235746 0.083984 0.000530 0.000436 

f2 22.081905 8.474207 101.005459 129.277549 30.197884 15.580127 

f3 -11844.093386 545.381796 -11198.171052 555.879034 -12569.484439 0.000707 

f4 0.000000 0.000000 0.401931 0.765849 0.000000 0.000000 

f5 0.000000 0.000000 0.096446 0.049704 0.000000 0.000000 

f6 0.008011 0.010997 0.000066 0.000037 0.000002 0.00000 

f7 -1.031628 0.000000 -1.031628 0.000000 -1.031628 0.000000 

f8 3.000003 0.000008 3.000000 0.000000 3.000000 0.000000 

6.3 Application of Proposed IFWA-CSO Method  

In this section the application of the developed variants of FWA and proposed 

IFWA-CSO method is applied for economic operation in the power system. For this, 

three different types of test systems are considered. The first system is static ELD 

(SELD), generally called as ELD system to optimize the fuel cost of thermal 

generator while satisfying the various system and generator constraints. The next is 

DELD system to obtain the optimal scheduling of the thermal generator over the time 

horizon with optimized fuel cost of thermal generator and the third system is proposed 

stochastic DELD system. It involves a scenario based one unit of wind and solar 

powered generation in dynamic states. The wind and solar unit are modeled by 

suitable probability distribution function and their operating charge is modeled by 
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considering a direct cost function. Further, their variability cost is modeled by 

probabilistic cost function. It optimizes the total cost of operation; consist of the fuel 

cost of thermal generator as well as renewable sources operating cost. For the 

convenience, these systems are abbreviated as static ELD (S), dynamic ELD (D) and 

renewable dynamic ELD (R) respectively. Each system is further bi-furcated. The 

details of each case study of each system are defined below: 

Case S1: 40-unit generating system with valve-point loading effect in ELD problem. 

Case S2: 140-unit generating system with valve-point loading effect, ramp rate limits 

and prohibited operating zones in ELD problem. 

Case D1: 5-unit generating system with valve-point loading effect, ramp rate limits 

and transmission loss in DELD problem. 

Case D2: 15-unit generating system with ramp rate limits, prohibited operating zones 

and transmission loss in DELD problem. 

Case R1: 5-unit generating system with valve-point loading effect, ramp rate limits, 

prohibited operating zones and transmission loss and one unit of each wind and solar 

powered generator in RDELD problem. 

Case R2: 15-unit generating system with valve-point loading effect, ramp rate limits 

and transmission loss and one unit of each wind and solar powered generator in 

RDELD problem. 

Case study S1: This case study consists of 40-units of thermal generators with non-

convex fuel cost function to account the valve-point loading effect [38, 80]. The detail 

data is taken from [80]. The total power demand is set to be 10500. The application 

results of the FWA [47], EFWA [48] and proposed FWA variants are presented and 

compared with other established meta-heuristic techniques in Table 6.4. The results 

are presented in terms of best, average and worst. Furthermore, a statistical error 

analysis is performed to establish the proposed method and the results are presented 

after the sample of 100 trails in Table 6.4. The standard deviation (STD) measures the 

diversity of the sample from the average value. Similarly, coefficient of variation 

(COV) measures the dispersion of the samples. It expresses the accuracy of the 

method of producing the repetitive value.  It represents central tendency of samples. It 

can be observed from the table that COV of each proposed variants is successively 
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reduced in order of the suggested modification. However, in the proposed method the 

COV deviate a bit. It is observed that the performance of proposed method is not up 

to that level. The reason for this could be over diversity due to CSO operator, which 

dis-allowing the individuals to converge. Thus, it indicates that the proposed method 

lag in the small range dimensional problem.  

Table 6.4 Comparisons results for case study S1 

A qualitative analysis is carried-out by drawing a set of sample convergence 

characteristics for the case study S1. It can be seen from the Fig.6.1 that the FWA is 

very slow in convergence and become constant after few iteration. Thus, it shows 

inability of the FWA on the shifted function. This improves slightly in EFWA but, not 

much sufficient. However with the proposed modifications, it can be observed that all 

proposed variants follow nearly same path with narrow width, which indicate that all 

variants flight particle with good speed. For, a large resolution of FWA variants and 

proposed IFWA-CSO method, the enlarge view of Fig. 6.1, is presented in Fig. 6.2. 

Method Best fuel cost 

($/hr) 

Average fuel 

cost ($/hr) 

Worst fuel Cost 

($/hr) 

STD COV 

PSO-LRS [81] 122035.795 123382 125740.63 - - 

NPSO [81] 121704.739 122221.37 122995.098 - - 

NPSO-LRS [81] 121664.431 122981.591 122209.319 - - 

APSO [82] 121663.522 122153.673 122912.396 - - 

SOH-PSO [64] 121501.14 121853.57 122446.3 - - 

QPSO [83] 121448.21 124793.4 - - - 

ABC [84] 121441.03 121995.82 - - - 

ICA-PSO [85] 121422.1 - - - - 

θ-PSO [46] 121420.903 121509.842 121852.425 - - 

DE/BBO [86] 121420.895 - - - - 

HHS [87] 121415.592 121615.854 - - - 

CCPSO [80] 121412.536 121445.327 121525.493 - - 

IPSO [85] 121412.866 121509.522 121546.842 - - 

IABC-LS [86] 121412.73 - 121471.61 - - 

NAPSO [87] 121412.57 - - - - 

CSA [41] 121412.536 121520.411 121810.254 - - 

aBBOmDE[66] 121414.8734 121487.8532 121568.3254 - - 

DCPSO [38] 121412.535 121423.131 121516.886 - - 

ORCSA [92] 121412.5355 121472.45 121596.18 - - 

θ-MBA [91] 121491.0662  121491.066 121491.066 - - 

FWA 127077.2331 129081.5599 130633.4888 701.6016 0.5435 

EFWA 121500.2888 121750.3721 122150.5890 158.1281 0.1299 

IFWA-I 121486.1761 121780.6196 122434.5042 179.0485 0.1470 

IFWA-II 121414.7643 121568.1210 121969.9267 114.1673 0.0939 

IFWA-III 121414.7887 121563.4020 121969.8765 92.5862 0.0762 

IFWA-CSO 121424.8314 121572.1485 121927.5762 113.9440 0.0937 
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However, in later stage it continuously avoids the local trapping that allows the 

particle to reach in the optimal region in less iteration. 

 

Figure 6.1 Convergence characteristics for case study S1 

 

Figure 6.2 Enlarged view of Figure 6.1 

Case study S2: In this case study, the effectiveness of the proposed algorithm is 

investigated on the large-scale generating system consists of 140 thermal units with 

ramp rate limits, valve-point loading effect and POZs. The detailed data for this 

system is taken from [80]. The expected power demand is set to 49342 MW. The 

results of standard FWA [47], EFWA [48] and its proposed modifications are 

presented with other existing population based optimizations in Table 6.5 and the 

efficacy of proposed method is presented after 100 trails. The statistical results of 

FWA and EFWA and proposed variants are presented for the analysis purpose. It can 

be observed from the table that the FWA performance is severely affected. This 

indicates non-suitability of FWA on the large dimensional shifted functions. Further, 

this marginally improved by EFWA, which overcome the paradigm of the FWA on 

the shifted function. But, the result of EFWA shows the insufficiency on the large-

scale problem. However, with the proposed variants the results subsequently 
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upgraded. In FWA-I, FWA-II and IFWA-III best optimal solution is on reach, but the 

average fuel cost differs. However, with all conjunction in the proposed technique, the 

results obtained are similar to recently publish technique with negligible COV. It 

shows the potential of proposed method getting better quality solution. Thus, each 

subsequent modification made over FWA play important role in elevating the 

proposed technique. This proves the efficacy of the proposed technique to generate a 

solution in a narrow range for a large-scale complex combinatorial problem. 

Table 6.5 Comparisons results for case study S2 

 

Figure 6.3 Convergence characteristics for case study S2 

A set of convergence characteristics for the best fuel cost is obtained during a 

sample trial for the case study S2 is shown in Fig. 6.3. It can be observed from the 

figure that FWA is slow on convergence owing to intrinsic limitation of FWA. 

Though, it marginally better in EFWA. However, with the proposed modifications, it 

is shown that the convergence characteristics become more rapid than conventional 

FWA and EFWA. Further, to visualize the convergence of FWA’s variants and 

proposed IFWA-CSO method in large resolution an enlarge view of Fig. 6.3, is 

presented in Fig. 6.4 and 6.5. It can be shown from enlarge view that the proposed 

Methods Best fuel cost 

($/hr) 

Average fuel cost 

($/hr) 

Worst fuel cost 

($/hr) 

STD COV 

GSO [42] 1728151.17 1745515.00 1753229.56 - - 

CCPSO [80] 1657962.73 1657962.73 1657962.73 - - 

CTPSO [80] 1657962.73 1657964.06 1658002.79 - - 

CQGSO [42] 1657962.73 1657962.74 1657962.78 - - 

DCPSO [38] 1657962.720 1657962.720 1657962.720 - - 

FWA 1672303.503 1677475.819 1682637.393 2100.215 0.125 

EFWA 1661464.532 1663398.530 1666528.633 1024.622 0.062 

IFWA-I 1658512.996 1659269.966 1660227.466 456.084 0.027 

IFWA-II 1657962.734 1658210.812 1659027.823 279.000 0.017 

IFWA-III 1657962.746 1658103.449 1658342.686 100.696 0.006 

IFWA-CSO 1657962.79 1657984.60 1658094.73 34.742 0.002 



50 
 

variants take less iteration to reach the optimal region. A detailed analysis of each 

suggested modifications over FWA are discussed in technique aspects in the later 

section.  

 

Figure 6.4  Enlarged view of Figure 6.3 

 

Figure 6.5 Enlarged view of Figure 6.3 

Case study D1: In this case study, 5-units of thermal generators with valve point 

loading, ramp rate limits and B-coefficients for DELD system are considered. The 

detail data is taken from [93]. The load demand is pre-scheduled for 24-hours. The 

results of conventional FWA [47], EFWA [48] and its proposed variants with other 

metaheuristics are listed in Table 6.6. The optimal total fuel cost obtained by the 

proposed IFWA-CSO for 24 hours’ time duration is $43078.322. The total network 

power loss is 194.313MW and to measure the competence of algorithms, the solution 

quality is presented after 50 sample trial. The result shows that FWA is performing 

very poorly on the low-scale problem. It may be due that the DELD problem is 

heavily constrained and of huge search space problem. However, the EFWA is 

unexpectedly performing better than IFWA-I, IFWA-II, IFWA-III  in term of the 

average and worst fuel cost, but deviate in terms of the best obtained optimal fuel 

cost. Although, IFWA-I, IFWA-II, IFWA-III performance subsequently improved, 
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but, not at par level than EFWA. Similarly, it is found that the proposed IFWA-CSO 

performance is not satisfactory, though it obtained the best optimal cost. 

Table 6.6 Comparisons results for case study D1 

Method Best fuel cost 

($) 

Average fuel 

cost ($) 

Worst fuel Cost 

($) 

STD COV 

TVAC-IPSO [94] 43136.561 43185.664 43302.233 - - 

EAPSO [11] 43820 44082 44982 - - 

DE [95] 43213 43813 44247 - - 

ABC [14] 44046.83 44064.73 44218.64 - - 

AIS [44]  44385.4 44 44758.8  45553.8 - - 

ICA [96] 43117.055 43144.472 43209.533 - - 

CMAES [97] 43526 43915 44191 - - 

FAIPSO [98] 43048 43091 43149 - - 

MTLA [12] 43048.4 43077.9 43128.5 - - 

FWA 44312.205 45092.397 46565.37 415.4978 0.9214 

EFWA 43250.398 43813.424 44304.273 245.4416 0.5602 

IFWA-I 43471.436 44105.076 45172.179 433.3374 0.9825 

IFWA-II 43203.663 43843.698 44481.706 353.762 0.8069 

IFWA-III 43210.834 43715.768 44419.377 305.9599 0.6999 

IFWA-CSO 43078.324 43799.587 44644.796 377.3985 0.8616 

 

Figure 6.6 Convergence characteristics for case study D1 

A set of sample convergence characteristics for case study D1 is shown in Fig. 6.6. 

It can be observed from the figure that FWA and EFWA suffer from slow 

convergence. However, with the proposed modification convergence characteristics 

become more rapid than conventional FWA and EFWA. To visualize the early 

projectile of the best particle is shown in Fig. 6.7. It can be shown from the enlarge 

view that the proposed variants take less iteration to reach in the optimal region.  
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Figure 6.7 Enlarged view of Figure 6.6 

The total power loss obtained for optimum generating schedule during 24-hours is 

shown in Table 6.7. It can be seen that EFWA is giving minimum loss. In the 

proposed variants the proposed IFWA-CSO is giving optimum loss.    

Table 6.7 Total power loss using proposed IFWA-CSO and its variants for case study 

D1 during 24 hours 

Method Power Loss (MW) Method Power Loss (MW) 

FWA 194.7314 IFWA-II 195.6062 

EFWA 193.4160 IFWA-III 195.3342 

IFWA-I 196.2064 IFWA-CSO 194.3131 

 Case study D2: In this case, 15-units of thermal generators with ramp limits, B-

coefficients and POZs are considered. The relevant data is taken from [99] and load 

demand is predefined for 24 hours. The obtained results of FWA [47], EFWA [48] 

and proposed variants with other reported metaheuristics are tabulated in Table 6.8 

and the quality solutions are presented after 50 trials. The total optimum fuel cost 

obtained for 24 hours’ time duration is $759132.266 by employing the proposed 

IFWA-CSO algorithm. The total power loss obtained for best fuel cost is 640.731 

MW. It can be observed from the table that the IFWA-II, IFWA-III and proposed 

IFWA-CSO are giving comparable and much better results than other published 

methods i.e. PSO [100], SFEP [99], CASDHS [13]. The existing FWA algorithms 

may also be qualitatively compared with proposed variants of FWA on the basis of 

standard deviation (SD) and coefficient of variation (COV) of their respective 

sampled solutions. 

 

 

 

 



53 
 

Table 6.8 Comparisons results for case study D2 

 

Figure 6.8 Convergence characteristics for case study D2 

 

Figure 6.9 Enlarge view of Figure 6.8 

To analyze the qualitative behavior, a set of convergence characteristics is shown 

in Fig. 6.8. It can be seen from the figure FWA and EFWA continuously avoiding the 

local trapping, but slow in convergence. It is marginally better in the IFWA-I.  

However, IFWA-II, IFWA-III and proposed IFWA-CSO are giving fast convergence. 

An enlarge view of Fig. 6.8 is shown in Fig. 6.9. It shows that the IFWA-CSO flight 

Method Best fuel cost 
($) 

Average fuel cost 
($) 

Worst fuel Cost 
($) 

STD COV 

PSO [100] 774131.000 - - - - 

SFEP [99] 783411.000 - - - - 

CASDHS [13] 759689.220 759766.233 759845.736 - - 

FWA 764537.966 765162.012 765771.271 277.550 0.036 

EFWA 761281.540 761722.613 762050.141 189.093 0.025 

IFWA-I 759753.985 759925.218 760181.521 85.155 0.011 

IFWA-II 759132.816 759135.767 759155.185 3.915 0.000 

IFWA-III 759132.266 759134.708 759154.331 3.480 0.000 

IFWA-CSO 759132.263 759134.315 759154.179 3.163 0.000 
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the particle in global region with better exploration capability in early state and 

improved the exploitation competence in later state. 

It has been observed that the proposed variants of FWA significantly reduce the 

fuel cost of thermal generator. Thus, the optimal schedule is also improves. This also 

reflects note-worthy decrease in the power loss of the generator. The total power loss 

for 24- hours for best schedule in each method is tabulated in Table 6.9. Further, the 

power loss schedule of best operating schedule of FWA, EFWA and its proposed 

variants is shown in Fig. 6.10 for each time state.  

Table 6.9 Total power loss using proposed IFWA-CSO and its variants for case study 

D2 during 24 hours  

Method Power Loss (MW) Method Power Loss (MW) 

FWA 731.769 IFWA-II 641.383 

EFWA 676.505 IFWA-III 640.884 

IFWA-I 652.902 IFWA-CSO 640.731 

 

Figure 6.10 Power loss schedule for best generating schedule for 24-hours in case study D2 

6.4  Stochastic DELD System with Renewable Sources  

In this system, the renewable sources (one wind and one solar powered source) are 

incorporated with the conventional power system. The wind and solar are modeled by 

considering the hourly wind speed and solar irradiance data, then fit into their 

respective pdf and related generated parameters is tabulated in Table 6.10. It measures 

the potential of the wind and solar potential that show the variability over period of 

time. The relevant data of hourly wind speed and solar irradiance is taken from NREL 

[101]. The associated parameters of wind energy conversion device, cut-in vin, rated vr 

and cut out vf wind speed are 5 m/s, 25 m/s and 45 m/s respectively. Similarly, solar 

energy conversion device, PV module specifications are listed in Table 6.11. The 
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analysis is carried out on two conventional dynamic systems with the incorporation of 

wind and solar unit in the case study R1 and R2.  

Table 6.10 Hourly Weibull and Beta distribution parameter 

Time interval 

Weibull  parameter Beta parameter 
ct kt at bt 

1 9.78 4.60 0 0 

2 9.64 4.48 0 0 

3 9.74 4.35 0 0 

4 9.71 4.11 0 0 

5 9.41 4.15 0 0 

6 9.34 4.23 0 0 

7 9.20 4.11 0 0 

8 8.78 4.06 0 0 

9 8.65 3.87 1.04 4.29 

10 8.94 3.74 2.16 4.81 

11 10.23 3.71 2.98 5.11 

12 11.28 4.00 3.40 4.55 

13 12.00 4.21 3.24 4.06 

14 12.37 4.73 3.22 3.64 

15 12.59 4.49 2.75 3.81 

16 12.40 4.74 2.61 4.01 

17 12.03 4.59 2.05 5.23 

18 11.35 4.31 1.03 6.40 

19 10.77 4.28 0 0 

20 10.09 4.35 0 0 

21 9.67 4.99 0 0 

22 9.53 5.36 0 0 

23 9.71 5.41 0 0 

24 9.78 5.13 0 0 

Table 6.11 Specifications for PV module 

Module characteristics  Unit  

Watt peak (PVmax) 340 W 

Open circuit voltage (Voc) 46 V 

Short circuit current (Isc) 9.78 A 

Voltage at maximum power (VMPP) 37.8 V 

Current at maximum power (IMPP) 8.99 A 

Fill factor (FF) 0.755 

Nominal cell operating temperature (NOT) 4     

Current temperature coefficient (Ki) 0.04  m      

Voltage temperature coefficient (Kv) 0.  5 m      
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 Case study R1: This case study consists of a scenario based one wind power and 

one solar power source of each capacity of 80 MW and 30 MW with dynamic 

conventional power system of 5-unit thermal systems. The total penetration of 

renewable sources is kept to 18% of average load demand. The load demand is 

assumed to be same as conventional system forecasted for 24-hours. The relevant data 

of conventional 5-units thermal system is taken from [93]. The related cost coefficient 

of wind power, direct cost coefficient (FWj), penalty cost coefficient (kP,Wj) and reserve 

cost coefficient (kr,Wj) are assumed to be 2($/MWhr), 1($/MWhr) and 4($/MWhr) 

respectively. Similarly, the following cost coefficient of the solar power, direct cost 

coefficient (FPVk), penalty cost coefficient (kP,PVK) and reserve cost coefficient (kr,PVK) 

are 2.1($/MWhr), 1($/MWhr) and 4($/MWhr) respectively. It is noted that the cost 

coefficients of wind and solar power are based on the system average thermal fuel 

cost that to make comparable cost of wind power as well as solar power. The optimal 

fuel cost is found to be $42687.07387 for 24 hours using the proposed IFWA-CSO 

algorithm. The result using proposed IFWA-CSO is tabulated in Table 6.12. The total 

cost of considered system is break-up into three parts, thermal fuel cost, wind cost and 

solar cost, tabulated in Table 6.13. The contribution of thermal, wind and solar power 

generator are found to be 92.81%, 6.25% and 0.09 % respectively. It observed that the 

thermal fuel cost reduced by 8.03% with integration of wind and solar unit and 0.8% 

reduction in the total operating cost of the system. This results in the saving of 

$361.2499. However, the reduction in the total cost of operation is negligible. But, on 

the contrary thermal fuel cost reduction is significant, which show promising growth 

of non-conventional resources. It is noted that the relative analysis is carried out with 

the conventional dynamic system.   

Case study R2: This case study involves the 15-units thermal dynamic system with 

the incorporation of wind and solar unit capacity of 400 MW and 100 MW each.  The 

relevant data of dynamic conventional 15-unit thermal system is taken from [99]. The 

total penetration of renewable sources is assumed to be around 20% of the average 

load demand. The total demand is predicted for 24-hours. The cost coefficients of 

wind and solar unit are defined in similar way as in case R1. The cost coefficients of 

wind power, direct cost coefficient (FWj), penalty cost coefficient (kP,Wj) and reserve 

cost coefficient (kr,Wj) are 8($/MWhr), 1.5($/MWhr) and 10($/MWhr) respectively. 

The solar cost coefficients, direct cost coefficient (FPVk), penalty cost coefficient 
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(kP,PVK) and reserve cost coefficient (kr,PVK) are as follows 9($/MWhr), 1.5($/MWhr) 

and 11($/MWhr) respectively. The optimal operating cost by employing proposed 

IFWA-CSO for 24 h time duration is $758723.68840. The total power loss is 

587.7652MW. The result of the proposed method is tabulated in Table 6.12 and the 

break-up cost listed in Table 6.13. The break-up of each type of resources (thermal, 

wind and solar) are 95.06%, 4.61% and 0.32% respectively. It observed that thermal 

fuel cost reduced by 5.22% with integration of wind and solar unit and 0.29% 

reduction in the total operating cost of the system. This results in the saving of 

$2213.8184.  

Table 6.12 Quality solutions using proposed IFWA-CSO method for case study R1 & 

R2 

Case 
Best fuel cost 

($) 

Average fuel cost 

($) 

Worst fuel Cost 

($) 
STD COV 

R1 42687.07387 43649.08423 44995.79792 669.35548 1.53349 

R2 756918.44460 756971.10834 757018.91608 30.73427 0.00406 

Table 6.13 The break-up of total cost in term of fuel cost, wind cost and solar cost for 

case study R1 & R2 

Case  Fuel cost ($) Wind cost ($) Solar cost ($) Total cost ($) 

R1 39619.03160 2666.14151 401.90044 42687.07355 

R2 719521.46450 34921.78398 2475.19855 756918.44703 

6.5 Analysis  

In this section, the impact on the scheduling of renewable sources output power 

due to associated parameter with the wind and solar power is analyzed. As, the wind 

and solar power cost coefficients are based on assumption, thus selecting their 

suitable values are a cumbersome task. Therefore, an analysis has been carried-out on 

the various parameters such as Weibull c parameter, reserve cost coefficients and 

penalty cost coefficient. 

A. Optimal wind power output as function of the Weibull c parameter 

The wind power direct cost function is derived from proportional term. It is based 

on the scheduling amount of power. So, as direct cost coefficient increases, wind 

schedule start decreases. Therefore, a suitable value should be chosen for optimal 

operation. Similarly, the reserve and penalty cost coefficient will also affect the 

schedule. Here, for the analysis the optimal value of the parameters for case study R1 

are defined as, FWj=2, kP,Wj=1, kr,Wj=4. As, wind power is function of wind speed, 

therefore, it is sensible to measure the effect of wind speed profile on the wind power 
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schedule. Therefore, the generated Weibull parameter c for each time interval is 

employed. Since, Weibull parameter c is unit of wind speed. It indicates that the 

higher the values of c higher proportion of wind speed means high wind power 

generation. A wind power optimum schedule for scenario based stochastic DELD 

consist of 5-unit thermal generators and each unit of wind and solar is plotted in Fig. 

6.11. It can be seen from figure the as parameter c value is increased, the amount of 

wind schedule is also increased. However, in some portion the power gets reduced, it 

may be due to the cost parameter, by drawing economic benefits from the other 

sources.  

 

Figure 6.11 Optimal wind power output as function of the Weibull c parameter for the case study R1 

   Similarly, same generated c parameter values are employed for stochastic DELD 

system of 15-units and one unit of wind and solar with the wind cost parameter FWj=8, 

kP,Wj=1.5, kr,Wj=10.  

 

Figure 6.12 Optimal wind power output as function of the Weibull c parameter for case study R2 

It can be seen from the Fig. 6.12 optimum wind schedule power is closely follows 

the wind speed profile at each interval. If parameter c is decreases, the schedule 

amount of wind power is also decreases or vice-versa. However, if wind direct cost 
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increases, the amount of wind power will be decrease even if power is available in 

greater proportion. Thus, for more economic operation there should be proper 

correlation between direct cost and wind speed profile.    

B. Optimal wind and solar power output as function of the reserve cost coefficient  

The reserve cost is required for purchasing the power from the conventional 

sources, to bear the mismatch power, when the available power is less than scheduled 

power. It is related by the constant called reserve cost coefficient. To analyze the 

reserve cost coefficient effect independently the penalty cost coefficient is assumed to 

be zero. The analysis is carried out on the stochastic DELD system of 15-units and 

one unit of wind and solar with the wind cost parameter FWj=8 and reserve cost 

coefficient is varied from 2 to 14. It is noted that the optimum schedule is obtained for 

whole system. However, for the convenience conventional units’ schedules are 

omitted from the figure. The optimal schedule of wind power obtained for the 

different values of kr,W are plotted in the Fig. 6.13. It can be seen from the figure as 

the value of reserve cost coefficient is increased the schedule wind power is also get 

reduced. Therefore, to reduce the mismatch of power between available and 

forecasted power, operator will approach conservatively in the scheduling of wind 

power, as high amount of cost will be paid for overestimating the wind power. 

Furthermore, this analysis also indicate that in the high value of speed region the wind 

output power is scheduled in greater amount than other lower speed region.  

 

Figure 6.13 Optimal wind power output as function of the reserve cost coefficient for case study R2 

Similarly, solar optimal schedule is plotted in the Fig. 6.14 with the direct cost 

coefficient (FPVk)=9 and the penalty cost coefficient is assumed to be zero. Since, the 

solar availability is limited. Thus, the scheduling output power from it causes 
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discontinuity. Thus, the solar capacity is assumed to be small to avoid large 

disturbance in the conventional thermal generator during their ramp up and down 

operation. It can be observed from the figure solar power schedule decreased with 

increase in the reserve cost coefficient. Thus, it concludes that for the higher value of 

the reserve cost coefficient the scheduled power should be low, because it deviate the 

economic operation at high cost value. 

 

Figure 6.14 Optimal solar power output as function of the reserve cost coefficient for case study R2 

C. Optimal wind and solar power output as function of the penalty cost coefficient  

After analyzing the effect on the scheduling of the wind and solar power due to 

change in the Weibull parameter c and reserves cost coefficient, now the effect of 

penalty cost coefficient on the scheduling of the output power is investigated. The 

employed system is same as in previous section.  For the independent analysis the 

reserve cost coefficient is assumed to be zero. The direct cost of wind and solar power 

is assumed to FWj=8 and FPVk=9 respectively. The obtained optimum schedule for 

wind power is shown in the Fig. 6.15. It can be observed that the scheduled power is 

nearly operating at its maximum limits. Further, increasing the value of penalty cost 

coefficient the schedule values attain the maximum value. Thus, at increased value of 

penalty cost coefficient, the wind power tends to approach high value to diminish the 

effect of underestimation. Similarly, the solar optimum schedule shown in Fig. 6.16   

is also showing the same characteristics. It indicates that for the large value of the 

penalty cost coefficient, the scheduled power should be high to avoid the penalty. It is 

also noted that the obtained schedule of wind and solar power will also be affected by 

their respective direct cost coefficient. Therefore, for the optimal operation the value 
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of penalty cost coefficients should be kept low because, it is not sensible to schedule 

the output power at their maximum limits due to their low capacity factor.    

 

Figure 6.15 Optimal wind power output as function of the penalty cost coefficient for case study R2 

 

Figure 6.16 Optimal solar power output as function of the penalty cost coefficient for case study R2 

6.6  Discussion  

The proposed method is validated on the benchmark functions and found to be 

adequate for all type of optimization problem. Further, it is applied on the three 

different power system optimization problems. The significance of the each suggested 

modifications made over FWA are subsequently investigated in the solution technique 

analysis. Similarly, the renewable sources impact is analyzed with the conventional 

power system.  

6.1.1 Methodology Aspects 

In this a Stochastic DELD problem is formulated with the incorporation of wind 

and solar based power source. The uncertainty related to the renewable sources is 

considered by using the suitable probability distributions. It is modeled by generating 

the hourly distribution to consider the time domain as in DELD problem. For the 

modeling of the wind speed and solar insolation Weibull and Beta probability 
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distribution function are employed respectively and then these transformed into power 

variable using transformation variable theory. This measures the potential of 

renewable sources hourly in DELD problem. It is noted that the cost coefficient plays 

a major role in the scheduling of the wind and solar power. For this an analysis is 

carried out on the various parameters independently, it observed that the Weibull 

parameter c scalability reflects the amount of the scheduled power. Further, the 

scheduling of wind and solar power is strongly dependent upon the reserve and 

penalty cost coefficient. If reserve cost coefficient is increased the schedule power is 

decreased, while on the other hand schedule power is decreased with the increase in 

the penalty cost coefficient.  

6.1.2 Solution Technique Aspects 

In this section, the suggested modifications made in FWA are analyzed in large-

scale optimization problem. For this case study S2 is considered for the study. A set of 

convergence characteristics for the best total cost obtained during a sample trial for S2 

is shown in Fig. 6.3. It can be observed from the figure that FWA is slow on 

convergence due to its severe limitations on the shifted function [48]. This limitation 

overcome in EFWA, but its convergence is found to be improved marginally for this 

large-scale optimization problem, as it can be seen from figure. IFWA-I converges 

better with incorporation of LMO to restrict over diversity associated with EFWA. 

This further improved using fitness-based ADSO in IFWA-II. ADSO provides 

directed search by controlled dimension selection as it creates fitness governed sparks. 

Although IFWA-II enables better flight of individuals in global region, but the 

exploitation potential weakens during anaphase of the algorithm. The NMO 

incorporated in IFWA-III maintains better balance between exploration and 

exploitation of the search space so enhances convergence especially during anaphase 

of the algorithm. The chaotic sequence operator employed in IFWA-CSO enables the 

algorithm to search new solution points. So it does not trapped in the clusters of sub-

optimal solutions present in the problem search space of large-scale optimization 

problems. 

The enlarge view of Fig. 6.3, is presented in Fig. 6.4 and 6.5. It can be observed 

from the figures that the FWA and its variants are continuously avoiding the local 

trapping, but far away from global region. The proposed IFWA-CSO method better 
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flights the individual into the global region and then continuously searching the 

optimal solution till maximum iteration exhausted. This is on account of enhanced 

exploration and exploitation potentials developed in are enhanced in IFWA-CSO and 

thus, it finds better quality solutions. 

The obtained best operating generating schedules correspond to the best operating 

cost using the proposed IFWA-CSO method for all case studies are included in the 

Appendix-A. 

The conclusions and future scope are discussed in the next chapter. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE SCOPE  

The trending development of the renewable technologies and their break-even point 

occurrence in power generation has emerged the hybrid generation and getting much 

importance in the modern power system. Therefore, a stochastic analysis is carried out 

with the incorporation of wind and solar power. For this, a probabilistic model is 

presented to account the uncertainty related to the wind speed and solar irradiation 

and transform them into power variable using proper probability distribution 

functions. In addition, the renewables sources operating cost is also incorporated to 

analyze the economic factor. The renewable sources generation is related by direct 

cost function and their variability and unpredictability is measured by considering the 

underestimation and overestimation terms. A newly developed swarm intelligence 

based algorithm FWA is introduced inspired by the explosion of fireworks. However, 

FWA performance on the shifted functions severely affected. Therefore, to improve 

its feasibility in all type of optimization problem a new algorithm, IFWA-CSO is 

proposed. The major conclusions drawn from the dissertation are: 

 A stochastic DELD problem is formulated with the incorporation of wind and 

solar based powered generation. The cost function of wind and solar based power 

generation are also included in the objective(s) to consider the economic factor.  

 The potential of the wind and solar power generator is modeled by Weibull and 

Beta pdf. The generated pdf parameters measure expected power generation and a 

probabilistic cost model is formulated using these distribution functions. 

 An IFWA-CSO algorithm is proposed based on explosion of fireworks. It is 

improved version of standard FWA, with its efficacy in all type of optimization 

problems. IFWA-CSO is proposed by suggesting Limiting Mapping Operator 

(LMO), Adaptive Dimension Selection Operator (ADSO), Non-uniform Mutation 

Operator (NMO) and Chaotic Sequence Operator (CSO). 

 The proposed IFWA-CSO is verified on the well-known benchmark functions. 

The result shows that proposed method performs remarkably well on the shifted 

functions as well as adequate performance on the non-shifted function. This 

proving it a suitable optimizer for the power system optimization problem. 
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 The effectiveness of proposed variants of FWA and proposed IFWA-CSO are 

measured on various ED and DELD problem with the variety of generator and 

network constraints. Moreover, the scalability of dimension of the problem is also 

considered. The result shows the efficacy of the proposed method handling the ED 

and heavily constraint DELD problem. The comprehensive study reveals that the 

proposed IFWA-CSO perform remarkably better on the large-scale optimization 

problem, which shows its superiority over FWA, EFWA and other metaheuristics. 

 Two scenarios based stochastic DELD system with the integration of renewable 

sources (one wind and one solar) are optimized using proposed IFWA-CSO. 

Further, their analyses are carried out based on the different wind and solar 

parameters. It reveals that the variations in the various wind and solar parameter 

have greater impact on the scheduling of output power. It is observed that the 

higher value of Weibull parameter c have greater amount of the scheduled power. 

Similarly, the reserve cost coefficient increment reduced the scheduled power on 

the contrary scheduled power increase with the increase in the penalty cost 

coefficient.  

Future Scope 

This work can be further extended by applying the proposed algorithm on 

different optimization problems. The proposed problem can be extended into the 

dynamic pricing system in the competitive real energy market. The stochastic 

approach can be used for real time economic dispatch by applying it into smaller time 

frame (minute). Furthermore, this problem can be incorporated with the stochastic 

load model, environmental issues and spinning reserve etc.  
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APPENDIX-A 

Table A.1 Optimal Generating Schedule for Case Study S1 using proposed IFWA-

CSO. 

Unit Power (MW) Unit Power (MW) Unit Power (MW) Unit Power (MW) 

1 110.905 11 168.798 21 523.313 31 190.000 

2 110.831 12 94.000 22 523.328 32 190.000 

3 97.393 13 214.758 23 523.309 33 190.000 

4 179.765 14 394.276 24 523.315 34 164.926 

5 87.903 15 394.284 25 523.360 35 200.000 

6 140.000 16 304.525 26 523.312 36 200.000 

7 259.606 17 489.361 27 10.000 37 110.000 

8 284.600 18 489.309 28 10.000 38 110.000 

9 284.599 19 511.265 29 10.000 39 110.000 

10 130.000 20 511.319 30 96.327 40 511.315 

Table A.2 Optimal Generating Schedule for Case Study S2 using proposed IFWA-

CSO. 

Unit Power (MW) Unit Power (MW) Unit Power (MW) Unit Power (MW) 

1 119.000 41 3.0000 81 542.000 121 175.000 

2 164.000 42 3.0000 82 56.0000 122 2.000 

3 190.000 43 250.000 83 115.000 123 4.000 

4 190.000 44 250.000 84 115.000 124 15.00 

5 190.000 45 250.000 85 115.000 125 9.000 

6 190.000 46 250.000 86 207.000 126 12.000 

7 490.000 47 250.000 87 207.000 127 10.000 

8 490.000 48 250.000 88 175.000 128 112.000 

9 496.000 49 250.000 89 175.000 129 4.000 

10 496.000 50 250.000 90 180.424 130 5.000 

11 496.000 51 165.000 91 175.000 131 5.000 

12 496.000 52 165.000 92 575.400 132 50.000 

13 506.000 53 165.000 93 547.500 133 5.000 

14 509.000 54 165.000 94 836.800 134 42.000 

15 506.000 55 180.000 95 837.500 135 42.000 

16 505.000 56 180.000 96 682.000 136 41.000 

17 506.000 57 103.000 97 720.000 137 17.000 

18 506.000 58 198.000 98 718.000 138 7.0000 

19 505.000 59 312.000 99 720.000 139 7.0000 

20 505.000 60 308.589 100 964.000 140 26.000 

21 505.000 61 163.000 101 958.000 - - 

22 505.000 62 95.0000 102 947.900 - - 

23 505.000 63 511.000 103 934.000 - - 

24 505.000 64 511.000 104 935.000 - - 

25 537.000 65 490.000 105 876.500 - - 

26 537.000 66 256.826 106 880.900 - - 

27 549.000 67 490.000 107 873.700 - - 

28 549.000 68 490.000 108 877.400 - - 

29 501.000 69 130.000 109 871.700 - - 

30 499.000 70 294.562 110 864.800 - - 

31 506.000 71 141.585 111 882.000   

32 506.000 72 365.908 112 94.000   
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33 506.000 73 195.000 113 94.000   

34 506.000 74 217.549 114 94.000   

35 500.000 75 217.549 115 244.000   

36 500.000 76 258.663 116 244.000   

37 241.000 77 403.245 117 244.000   

38 241.000 78 330.000 118 95.000   

39 774.000 79 531.000 119 95.000   

40 769.000 80 531.000 120 116.000   

Table A.3 Optimal generating scheduling for case study D1 15- for 24 hour using 

Proposed IFWA-CSO. 

Time (hr) 

P1  

(MW) 

P2  

(MW) 

P3  

(MW) 

P4 

 (MW) 

P5 

 (MW) 

PL  

(MW) Fuel cost ($/hr) 

1 20.486 98.615 30.006 124.912 139.798 3.816 1249.858 

2 10.000 96.636 67.931 124.847 139.703 4.117 1432.093 

3 10.000 97.310 107.873 124.895 139.698 4.776 1392.410 

4 10.095 98.558 112.675 174.889 139.797 6.014 1659.547 

5 10.000 92.574 112.655 209.793 139.734 6.756 1587.896 

6 40.000 105.455 112.686 209.819 147.952 7.912 1865.774 

7 15.342 98.633 112.703 209.818 197.952 8.447 1916.596 

8 12.395 98.548 112.955 209.838 229.522 9.258 1797.888 

9 42.395 105.538 112.893 209.854 229.520 10.200 2013.897 

10 64.089 98.489 112.650 209.813 229.520 10.559 1996.886 

11 75.000 103.868 112.819 209.832 229.525 11.044 2038.030 

12 75.000 124.669 112.707 209.810 229.535 11.720 2180.246 

13 64.024 98.500 112.745 209.772 229.519 10.559 1997.518 

14 49.622 98.537 112.671 209.818 229.520 10.168 1977.704 

15 35.876 98.538 112.678 186.518 229.514 9.125 2010.612 

16 10.000 98.536 112.656 136.518 229.523 7.233 1683.061 

17 10.000 87.619 112.645 124.900 229.518 6.683 1615.341 

18 10.000 98.530 112.671 165.231 229.519 7.951 1853.552 

19 11.852 98.639 113.407 209.829 229.531 9.258 1798.977 

20 23.192 98.542 153.407 209.816 229.520 10.478 2120.992 

21 38.608 98.548 113.407 209.816 229.521 9.900 1947.838 

22 10.000 98.542 112.667 209.806 181.899 7.914 1864.022 

23 10.000 98.539 112.672 171.969 139.760 5.940 1655.926 

24 10.000 80.249 112.635 124.846 139.758 4.488 1421.659 

Table A.4 Optimal generating scheduling for case study D2 for 24 hour using 

proposed IFWA-CSO. 

Time 

(Hr) 

P1 

 (MW) 

P2  

(MW) 

P3  

(MW) 

P4  

(MW) 

P5  

(MW) 

P6 

 (MW) 

P7 

 (MW) 

P8 

 (MW) 

1 304.740 335.080 130.000 130.000 335.004 287.999 366.000 162.000 

2 384.740 295.625 130.000 130.000 215.004 364.856 445.999 62.000 

3 380.794 296.116 130.000 130.000 150.000 429.596 465.000 60.000 
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4 376.008 285.078 130.000 130.000 150.005 455.473 465.000 60.000 

5 380.318 335.144 130.000 130.000 150.000 459.984 465.000 60.000 

6 394.452 337.327 130.000 130.000 150.000 460.000 465.000 60.000 

7 407.695 338.273 130.000 130.000 150.000 460.000 465.000 60.000 

8 448.668 395.775 130.000 130.000 157.297 459.967 465.000 60.000 

9 455.000 455.000 130.000 130.000 237.285 460.000 465.000 60.000 

10 455.000 455.000 130.000 130.000 304.372 460.000 465.000 60.000 

11 455.000 455.000 130.000 130.000 345.483 460.000 465.000 60.000 

12 455.000 455.000 130.000 130.000 347.996 460.000 465.000 60.000 

13 455.000 455.000 130.000 130.000 344.040 460.000 465.000 60.000 

14 454.993 454.995 130.000 130.000 381.960 460.000 465.000 60.000 

15 455.000 455.000 130.000 130.000 461.953 460.000 465.000 60.000 

16 455.000 455.000 130.000 130.000 469.997 459.999 465.000 60.000 

17 455.000 455.000 130.000 130.000 438.378 460.000 465.000 60.000 

18 455.000 454.998 130.000 130.000 361.484 460.000 465.000 60.000 

19 455.000 455.000 130.000 130.000 246.969 460.000 465.000 60.000 

20 455.000 455.000 130.000 130.000 200.020 460.000 465.000 60.000 

21 449.443 392.274 130.000 130.000 150.000 460.000 465.000 60.000 

22 393.236 335.339 130.000 130.000 150.000 460.000 465.000 60.000 

23 385.120 299.456 130.000 130.000 150.000 455.172 465.000 60.000 

24 381.441 296.673 130.000 130.000 150.000 455.532 465.000 60.000 

 

Time 

(hr) 

P9 

(MW) 

P10 

 (MW) 

P11  

(MW) 

P12 

 (MW) 

P13  

(MW) 

P14  

(MW) 

P15  

(MW) 

PL 

(MW) 

1 25.000 34.000 46.275 52.283 25.000 15.000 15.000 27.382 

2 25.000 25.000 49.745 51.303 25.000 15.000 15.000 19.274 

3 25.000 25.000 48.004 49.908 25.000 15.000 15.000 18.418 

4 25.000 25.000 47.398 50.503 25.000 15.000 15.000 18.465 

5 25.000 25.000 50.970 51.077 25.000 15.000 15.000 19.494 

6 25.000 25.000 50.924 53.084 25.000 15.000 15.000 19.788 

7 25.000 25.000 52.121 52.946 25.000 15.000 15.000 20.034 

8 25.000 25.001 58.601 54.873 25.000 15.000 15.000 22.184 

9 25.000 45.288 79.972 80.000 25.000 15.000 15.000 26.545 

10 25.000 58.306 80.000 80.000 25.000 15.000 15.000 29.679 

11 25.000 74.743 80.000 79.993 25.000 15.000 15.000 32.221 

12 25.000 74.365 80.000 79.990 25.000 15.000 15.000 32.351 

13 25.000 73.055 80.000 80.000 25.000 15.000 15.000 32.096 

14 25.000 87.795 80.000 80.000 25.000 15.000 15.000 34.743 

15 25.010 138.283 80.000 79.995 25.000 15.000 15.000 42.242 

16 25.000 127.346 80.000 80.000 25.000 15.000 15.000 42.343 

17 25.000 107.820 79.999 80.000 25.000 15.000 15.000 39.197 

18 25.000 79.791 80.000 80.000 25.000 15.000 15.000 33.273 
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19 25.000 35.797 80.000 80.000 25.000 15.000 15.000 26.767 

20 25.000 25.001 76.035 72.880 25.000 15.000 15.000 24.937 

21 25.000 25.000 57.324 54.917 25.000 15.000 15.000 21.958 

22 25.000 25.000 51.216 51.930 25.000 15.000 15.000 19.722 

23 25.000 25.000 48.670 51.443 25.000 15.000 15.000 18.861 

24 25.000 25.000 48.119 50.991 25.000 15.000 15.000 18.756 

Table A.5 Optimal generating scheduling for case study R1 for 24 hour using 

proposed IFWA-CSO. 

Time 

(Hr) 

P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

W 

(MW) 

PV 

(MW) 

PL 

(MW) 

1 10.000 98.367 112.696 40.000 139.760 12.621 0.000 3.444 

2 10.000 98.643 112.697 40.000 139.761 37.349 0.000 3.450 

3 10.000 98.540 112.664 90.000 139.758 28.265 0.000 4.227 

4 10.000 98.521 112.709 125.179 139.765 48.723 0.000 4.897 

5 10.000 98.555 112.646 175.179 139.772 27.866 0.000 6.018 

6 10.000 98.421 112.697 209.769 139.766 44.255 0.000 6.908 

7 10.000 98.530 112.658 209.804 179.495 23.366 0.000 7.852 

8 10.000 98.537 112.688 209.826 229.495 2.650 0.000 9.196 

9 10.000 98.544 112.703 209.842 229.519 32.134 6.455 9.198 

10 10.000 98.669 112.626 209.835 229.515 40.904 11.650 9.199 

11 10.000 98.540 112.719 209.819 229.495 53.821 14.803 9.197 

12 10.000 98.543 112.659 209.821 229.532 70.122 18.518 9.196 

13 10.000 98.543 112.683 209.809 229.598 41.166 11.398 9.199 

14 10.000 98.587 112.676 209.817 229.613 29.895 8.612 9.200 

15 10.000 98.552 80.404 209.831 229.506 26.827 7.409 8.529 

16 10.000 98.190 40.404 209.689 229.518 0.000 0.000 7.801 

17 10.000 86.108 30.000 209.802 229.410 0.000 0.000 7.319 

18 10.000 98.549 30.000 209.832 229.500 35.618 2.150 7.648 

19 11.585 98.542 32.248 209.823 229.517 80.000 0.000 7.716 

20 22.431 98.613 72.248 209.816 229.541 80.000 0.000 8.649 

21 10.000 98.529 112.248 209.724 229.481 29.200 0.000 9.183 

22 10.000 98.524 112.566 209.810 179.481 2.469 0.000 7.850 

23 10.000 98.519 72.566 209.769 139.759 2.565 0.000 6.179 

24 10.000 75.954 32.566 209.796 139.749 0.000 0.000 5.065 

Table A.6 Optimal generating scheduling for case study R2 for 24 hour using 

proposed IFWA-CSO. 

Time (Hr) 
P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

P7 

(MW) 

P8 

(MW) 

1 341.700 239.446 129.721 129.992 150.021 410.771 462.870 60.000 

2 302.613 271.392 129.999 129.993 150.000 408.444 460.758 60.000 

3 341.192 276.937 129.962 129.988 150.002 362.408 464.503 60.000 

4 362.303 227.202 129.996 130.000 150.000 429.521 458.742 60.000 
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5 365.590 277.997 130.000 129.999 150.000 427.817 462.695 60.002 

6 370.993 301.818 130.000 130.000 150.000 422.634 463.505 60.000 

7 367.906 350.264 129.988 130.000 150.000 396.604 460.799 60.000 

8 430.023 373.198 130.000 129.872 150.000 426.183 463.755 60.000 

9 431.268 419.981 130.000 130.000 226.452 459.956 464.475 60.000 

10 454.964 454.999 130.000 130.000 228.347 457.894 465.000 60.000 

11 453.388 454.853 130.000 129.992 230.010 459.696 465.000 60.000 

12 453.831 419.216 130.000 130.000 228.464 459.803 464.963 60.000 

13 455.000 418.381 129.999 130.000 223.752 458.839 464.986 60.000 

14 448.990 454.999 129.979 130.000 203.761 460.000 465.000 60.000 

15 455.000 455.000 129.947 130.000 275.804 459.351 463.740 60.000 

16 454.978 455.000 129.802 129.944 286.390 459.644 464.974 60.000 

17 455.000 454.689 130.000 129.993 292.130 459.982 465.000 60.000 

18 455.000 454.987 129.946 129.934 256.833 428.436 464.817 60.000 

19 451.604 405.936 130.000 130.000 172.411 459.997 464.992 60.000 

20 443.026 419.207 129.947 130.000 150.000 426.751 465.000 60.000 

21 431.494 299.207 129.970 129.877 150.000 426.678 462.498 60.000 

22 395.518 266.274 129.999 129.842 150.002 413.537 463.873 60.000 

23 307.836 338.105 129.961 129.700 150.000 403.370 459.541 60.000 

24 380.754 229.165 129.990 129.962 150.000 401.098 465.000 60.003 

 

Time  

(Hr) 

P9 

(MW) 

P10 

(MW) 

P11 

(MW) 

P12 

(MW) 

P13 

(MW) 

P14 

(MW) 

P15 

(MW) 

W 

(MW) 

PV 

(MW) 

PL 

(MW) 

1 25.006 25.000 45.979 51.201 25.000 15.000 15.000 125.935 0.000 16.640 

2 25.000 25.000 45.183 45.736 25.000 15.000 15.001 122.410 0.000 16.529 

3 25.000 25.000 50.020 53.299 25.000 15.000 15.000 119.437 0.000 16.747 

4 25.000 25.000 40.508 45.537 25.000 15.000 15.000 114.087 0.000 16.896 

5 25.000 25.000 49.325 49.576 25.000 15.050 15.000 107.740 0.000 17.791 

6 25.000 25.004 46.301 52.197 25.000 15.000 15.000 101.824 0.000 18.275 

7 25.000 25.000 45.677 49.204 25.000 15.000 15.000 104.352 0.000 18.793 

8 25.046 25.000 56.347 50.589 25.000 15.000 15.000 88.705 0.000 20.717 

9 25.000 25.018 79.550 74.668 25.000 15.000 15.000 86.668 7.510 24.547 

10 25.000 25.527 80.000 76.958 25.010 15.000 15.000 93.116 17.081 25.896 

11 25.000 31.221 79.965 78.487 25.000 15.000 15.000 131.093 25.313 26.018 

12 25.000 25.000 73.028 74.898 25.000 15.000 15.000 179.749 31.095 25.046 

13 25.000 25.000 56.845 77.758 25.000 15.000 15.000 192.196 32.138 24.893 

14 25.000 25.000 80.000 68.869 25.000 15.000 15.000 213.620 34.694 24.912 

15 25.000 66.974 79.904 78.785 25.000 15.000 15.000 217.611 29.408 28.523 

16 25.000 50.633 80.000 79.505 25.000 15.000 15.000 218.098 29.697 28.664 

17 25.000 25.000 75.261 77.468 25.000 15.000 15.000 208.517 17.523 28.564 

18 25.015 25.000 79.055 78.298 25.000 15.002 15.000 183.339 3.886 26.549 

19 25.000 25.000 69.212 67.169 25.000 15.000 15.000 157.576 0.000 22.898 

20 25.000 25.000 70.066 66.974 25.000 15.000 15.000 140.109 0.000 22.079 

21 25.000 25.000 77.351 54.357 25.000 15.000 15.000 124.789 0.000 19.221 

22 25.041 25.000 46.649 44.865 25.000 15.000 15.000 124.307 0.000 17.906 
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23 25.097 25.000 39.335 29.692 25.002 15.000 15.000 125.997 0.000 17.634 

24 25.000 25.000 42.764 46.063 25.000 15.000 15.000 131.166 0.000 16.966 

APPENDIX-B 

Table B.1 Input data of 40-Units thermal generators. 

ai 

($/hr) 
bi   

($/MWhr) 
ci  

($/(MW)2hr) 
ei  

($/hr) 
fi 

 (1/MW) 
Pmin 

 (MW) 
Pmax  

(MW) 

94.705 6.73 0.0069 100 0.084 36 114 

94.705 6.73 0.0069 100 0.084 36 114 

309.54 7.07 0.02028 100 0.084 60 120 

369.03 8.18 0.00942 150 0.063 80 190 

148.89 5.35 0.0114 120 0.077 47 97 

222.33 8.05 0.01142 100 0.084 68 140 

287.71 8.03 0.00357 200 0.042 110 300 

391.98 6.99 0.00492 200 0.042 135 300 

455.76 6.6 0.00573 200 0.042 135 300 

722.82 12.9 0.00605 200 0.042 130 300 

635.2 12.9 0.00515 200 0.042 94 375 

654.69 12.8 0.00569 200 0.042 94 375 

913.4 12.5 0.00421 300 0.035 125 500 

1760.4 8.84 0.00752 300 0.035 125 500 

1728.3 9.15 0.00708 300 0.035 125 500 

1728.3 9.15 0.00708 300 0.035 125 500 

647.85 7.97 0.00313 300 0.035 220 500 

649.69 7.95 0.00313 300 0.035 220 500 

647.83 7.97 0.00313 300 0.035 242 550 

647.81 7.97 0.00313 300 0.035 242 550 

785.96 6.63 0.00298 300 0.035 254 550 

785.96 6.63 0.00298 300 0.035 254 550 

794.53 6.66 0.00284 300 0.035 254 550 

794.53 6.66 0.00284 300 0.035 254 550 

801.32 7.1 0.00277 300 0.035 254 550 

801.32 7.1 0.00277 300 0.035 254 550 

1055.1 3.33 0.52124 120 0.077 10 150 

1055.1 3.33 0.52124 120 0.077 10 150 

1055.1 3.33 0.52124 120 0.077 10 150 

148.89 5.35 0.0114 120 0.077 47 97 

222.92 6.43 0.0016 150 0.063 60 190 

222.92 6.43 0.0016 150 0.063 60 190 

222.92 6.43 0.0016 150 0.063 60 190 

107.87 8.95 0.0001 200 0.042 90 200 

116.58 8.62 0.0001 200 0.042 90 200 
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116.58 8.62 0.0001 200 0.042 90 200 

307.45 5.88 0.0161 80 0.098 25 110 

307.45 5.88 0.0161 80 0.098 25 110 

307.45 5.88 0.0161 80 0.098 25 110 

647.83 7.97 0.00313 300 0.035 242 550 

Table B.2 Input data of 140-Units thermal generators. 

ai 

($/hr) 

bi   

($/MWhr) 

ci  

($/(MW)2hr) 

ei  

($/hr) 

fi  
(1/MW) 

Pmin 

(MW) 

Pmax  

(MW) 

URi  

(MW) 

DRi 

(MW) 

1220.65 61.242 0.032888 0 0 71 119 30 120 

1315.12 41.095 0.008280 0 0 120 189 30 120 

874.288 46.31 0.003849 0 0 125 190 60 60 

874.288 46.31 0.003849 0 0 125 190 60 60 

1976.47 54.242 0.042468 700 0.08 90 190 150 150 

1338.09 61.215 0.014992 0 0 90 190 150 150 

1818.3 11.791 0.007039 0 0 280 490 180 300 

1133.98 15.055 0.003079 0 0 280 490 180 300 

1320.64 13.226 0.005063 0 0 260 496 300 510 

1320.64 13.226 0.005063 600 0.055 260 496 300 510 

1320.64 13.226 0.005063 0 0 260 496 300 510 

1106.54 14.498 0.003552 0 0 260 496 300 510 

1176.5 14.651 0.003901 0 0 260 506 600 600 

1176.5 14.651 0.003901 0 0 260 509 600 600 

1176.5 14.651 0.003901 800 0.06 260 506 600 600 

1176.5 14.651 0.003901 0 0 260 505 600 600 

1017.41 15.669 0.002393 0 0 260 506 600 600 

1017.41 15.669 0.002393 0 0 260 506 600 600 

1229.13 14.656 0.003684 0 0 260 505 600 600 

1229.13 14.656 0.003684 0 0 260 505 600 600 

1229.13 14.656 0.003684 0 0 260 505 600 600 

1229.13 14.656 0.003684 600 0.05 260 505 600 600 

1267.89 14.378 0.004004 0 0 260 505 600 600 

1229.13 14.656 0.003684 0 0 260 505 600 600 

975.926 16.261 0.001619 0 0 280 537 300 300 

1532.09 13.362 0.005093 0 0 280 537 300 300 

641.989 17.203 0.000993 0 0 280 549 360 360 

641.989 17.203 0.000993 0 0 280 549 360 360 

911.533 15.274 0.002473 0 0 260 501 180 180 

910.533 15.212 0.002547 0 0 260 501 180 180 

1074.81 15.033 0.003542 0 0 260 506 600 600 

1074.81 15.033 0.003542 0 0 260 506 600 600 

1074.81 15.033 0.003542 600 0.043 260 506 600 600 

1074.81 15.033 0.003542 0 0 260 506 600 600 
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1278.46 13.992 0.003132 0 0 260 500 660 660 

861.742 15.679 0.001323 0 0 260 500 900 900 

408.834 16.542 0.002950 0 0 120 241 180 180 

408.834 16.542 0.002950 0 0 120 241 180 180 

1288.82 16.518 0.000991 0 0 423 774 600 600 

1436.25 15.815 0.001581 600 0.043 423 769 600 600 

669.988 75.464 0.902360 0 0 3 19 210 210 

134.544 129.544 0.110295 0 0 3 28 366 366 

3427.91 56.613 0.024493 0 0 160 250 702 702 

3751.77 54.451 0.029156 0 0 160 250 702 702 

3918.78 54.736 0.024667 0 0 160 250 702 702 

3379.58 58.034 0.016517 0 0 160 250 702 702 

3345.3 55.981 0.026584 0 0 160 250 702 702 

3138.75 61.52 0.007540 0 0 160 250 702 702 

3453.05 58.635 0.016430 0 0 160 250 702 702 

5119.3 44.647 0.045934 0 0 160 250 702 702 

1898.42 71.584 0.000044 0 0 165 504 1350 1350 

1898.42 71.584 0.000044 1100 0.043 165 504 1350 1350 

1898.42 71.584 0.000044 0 0 165 504 1350 1350 

1898.42 71.584 0.000044 0 0 165 504 1350 1350 

2473.39 85.12 0.002528 0 0 180 471 1350 1350 

2781.71 87.682 0.000131 0 0 180 561 720 720 

5515.51 69.532 0.010372 0 0 103 341 720 720 

3478.3 78.339 0.007627 0 0 198 617 2700 2700 

6240.91 58.172 0.012464 0 0 100 312 1500 1500 

9960.11 46.636 0.039441 0 0 153 471 1656 1656 

3672 76.947 0.007278 0 0 163 500 2160 2160 

1837.38 80.761 0.000044 0 0 95 302 900 900 

3108.4 70.136 0.000044 0 0 160 511 1200 1200 

3108.4 70.136 0.000044 0 0 160 511 1200 1200 

7095.48 49.84 0.018827 0 0 196 490 1014 1014 

3392.73 65.404 0.010852 0 0 196 490 1014 1014 

7095.48 49.84 0.018827 0 0 196 490 1014 1014 

7095.48 49.84 0.018827 0 0 196 490 1014 1014 

4288.32 66.465 0.034560 0 0 130 432 1350 1350 

13813 22.941 0.081540 1200 0.03 130 432 1350 1350 

4435.49 64.314 0.023534 0 0 137 455 1350 1350 

9750.75 45.017 0.035475 1000 0.05 137 455 1350 1350 

1042.37 70.644 0.000915 0 0 195 541 780 780 

1159.9 70.959 0.000044 0 0 175 536 1650 1650 

1159.9 70.959 0.000044 0 0 175 540 1650 1650 

1303.99 70.302 0.001307 0 0 175 538 1650 1650 
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1156.19 70.662 0.000392 0 0 175 540 1650 1650 

2118.97 71.101 0.000087 0 0 330 574 1620 1620 

779.519 37.854 0.000521 0 0 160 531 1482 1482 

829.888 37.768 0.000498 0 0 160 531 1482 1482 

2333.69 67.983 0.001046 0 0 200 542 1668 1668 

2028.95 77.838 0.132050 0 0 56 132 120 120 

4412.02 63.671 0.096968 0 0 115 245 180 180 

2982.22 79.458 0.054868 1000 0.05 115 245 120 180 

2982.22 79.458 0.054868 0 0 115 245 120 180 

3174.94 93.966 0.014382 0 0 207 307 120 180 

3218.36 94.723 0.013161 0 0 207 307 120 180 

3723.82 66.919 0.016033 0 0 175 345 318 318 

3551.41 68.185 0.013653 0 0 175 345 318 318 

4322.62 60.821 0.028148 0 0 175 345 318 318 

3493.74 68.551 0.013470 0 0 175 345 318 318 

226.799 2.842 0.000064 0 0 360 580 18 18 

382.932 2.946 0.000252 0 0 415 645 18 18 

156.987 3.096 0.000022 0 0 795 984 36 36 

154.484 3.04 0.000022 0 0 795 978 36 36 

332.834 1.709 0.000203 0 0 578 682 138 204 

326.599 1.668 0.000198 0 0 615 720 144 216 

345.306 1.789 0.000215 0 0 612 718 144 216 

350.372 1.815 0.000218 0 0 612 720 144 216 

370.377 2.726 0.000193 0 0 758 964 48 48 

367.067 2.732 0.000197 0 0 755 958 48 48 

124.875 2.651 0.000324 0 0 750 1007 36 54 

130.785 2.798 0.000344 0 0 750 1006 36 54 

878.746 1.595 0.000690 0 0 713 1013 30 30 

827.959 1.503 0.000650 0 0 718 1020 30 30 

432.007 2.425 0.000233 0 0 791 954 30 30 

445.606 2.499 0.000239 0 0 786 952 30 30 

467.223 2.674 0.000261 0 0 795 1006 36 36 

475.94 2.692 0.000259 0 0 795 1013 36 36 

899.462 1.633 0.000707 0 0 795 1021 36 36 

1000.37 1.816 0.000786 0 0 795 1015 36 36 

1269.13 89.83 0.014355 0 0 94 203 120 120 

1269.13 89.83 0.014355 0 0 94 203 120 120 

1269.13 89.83 0.014355 0 0 94 203 120 120 

4965.12 64.125 0.030266 0 0 244 379 480 480 

4965.12 64.125 0.030266 0 0 244 379 480 480 

4965.12 64.125 0.030266 0 0 244 379 480 480 

2243.19 76.129 0.024027 0 0 95 190 240 240 
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2290.38 81.805 0.001580 600 0.07 95 189 240 240 

1681.53 81.14 0.022095 0 0 116 194 120 120 

6743.3 46.665 0.076810 1200 0.043 175 321 180 180 

394.398 78.412 0.953443 0 0 2 19 90 90 

1243.17 112.088 0.000044 0 0 4 59 90 90 

1454.74 90.871 0.072468 0 0 15 83 300 300 

1011.05 97.116 0.000448 0 0 9 53 162 162 

909.269 83.244 0.599112 0 0 12 37 114 114 

689.378 95.665 0.244706 0 0 10 34 120 120 

1443.79 91.202 0.000042 0 0 112 373 1080 1080 

535.553 104.501 0.085145 0 0 4 20 60 60 

617.734 83.015 0.524718 0 0 5 38 66 66 

90.966 127.795 0.176515 0 0 5 19 12 6 

974.447 77.929 0.063414 0 0 50 98 300 300 

263.81 92.779 2.740485 0 0 5 10 6 6 

1335.59 80.95 0.112438 0 0 42 74 60 60 

1033.87 89.073 0.041529 0 0 42 74 60 60 

1391.33 161.288 0.000911 0 0 41 105 528 528 

4477.11 161.829 0.005245 0 0 17 51 300 300 

57.794 84.972 0.234787 0 0 7 19 18 30 

57.794 84.972 0.234787 0 0 7 19 18 30 

1258.44 16.087 1.111878 0 0 26 40 72 120 

Table B.3 Prohibited operating zones of 140-units thermal generators 

Unit 

Prohibited operating zones (MW) 

Zone 1 Zone 2 Zone 3 

8 [250, 280] [305, 335] [420, 450] 

32 [220, 250] [320, 350] [390, 420] 

74 [230, 255] [365, 395] [430, 455] 

136 [50,75] [80, 95] 

 
Table B.4 Input data of 5-Units of thermal generators 

ai 

($/hr) 

bi  

($/MWhr) 

ci 

($/(MW)2hr) 

ei  

($/hr) 

fi 
(1/MW) 

Pmin  

(MW) 

Pmax  

(MW) 

URi 

(MW) 

DRi 

(MW) 

25 2 0.008 100 0.042 10 75 30 30 

60 1.8 0.003 140 0.04 20 125 30 30 

100 2.1 0.0012 160 0.038 30 175 40 40 

120 2 0.001 180 0.037 40 250 50 50 

40 1.8 0.0015 200 0.035 50 300 50 50 

Table B.5 Load demand of 5-unit thermal generators 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Load (MW)  410 435 475 530 558 608 626 654 690 704 720 740 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 
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Load (MW)  704 690 654 580 558 608 654 704 680 605 527 463 

Table B.6 B-Coefficients matrix of 5-units thermal generators 

0.000 049 0.000 014 0.000 015 0.000 015 0.000 020

0.000 014 0.000 045 0.000 016 0.000 020 0.000 018

0.000 015 0.000 016 0.000 039 0.000 010 0.000 012

0.000 015 0.000 020 0.000 010 0.000 040 0.000 014

0.000 020 0.000 018

B 

0.000 012 0.000 014 0.000 035

 
 
 
 
 
 
  

 

Table B.7 Input data of 15-Units thermal generators 

Table B.8 Load demand of 15-units thermal generators 

Table B.9 Prohibited operating zones of 15-units thermal generators 

Unit Prohibited operating zones (MW) 

2 [185 225] [305 335] [420 450] 

5 [180 200] [305 335] [390 420] 

6 [230 255] [365 395] [430 455] 

12 [30 40] [55 65] 
 

ai 

($/hr) 

bi 

  ($/MWhr) 

ci 

($/(MW)2hr) 

Pmin  

(MW) 

Pmax 

(MW) 

URi  

(MW) 

DRi 

 (MW) 

P0 

(MW) 

671 10.1 0.000299 150 455 80 120 394.44 

574 10.2 0.000183 150 455 80 120 450.27 

374 8.8 0.001126 20 130 130 130 50.111 

374 8.8 0.001126 20 130 130 130 113.36 

461 10.4 0.000205 150 470 80 120 426.35 

630 10.1 0.000301 135 460 80 120 207.1 

548 9.8 0.000364 135 465 80 120 286.51 

227 11.2 0.000338 60 300 65 100 262.88 

173 11.2 0.000807 25 162 60 100 94.579 

175 10.7 0.001203 25 160 60 100 133.78 

186 10.2 0.003586 20 80 80 80 66.78 

230 9.9 0.005513 20 80 80 80 29.9 

225 13.1 0.000371 25 85 80 80 46.25 

309 12.1 0.001929 15 55 55 55 15.01 

323 12.4 0.004447 15 55 55 55 51.49 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Load 

(MW) 2236 2215 2226 2236 2298 2316 2331 2443 2651 2728 2783 2785 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Load 

(MW) 2780 2830 2953 2950 2902 2803 2651 2584 2432 2312 2261 2254 
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Table B.10 B-Coefficients matrix of 15-units thermal generators 

0.00140 0.00120 0.00070 -0.00010 -0.00030 -0.00010 -0.00010 -0.00010 

0.00120 0.00150 0.00130 0.00000 -0.00050 -0.00020 0.00000 0.00010 

0.00070 0.00130 0.00760 -0.00010 -0.00130 -0.00090 -0.00010 0.00000 

-0.00010 0.00000 -0.00010 0.00340 -0.00070 -0.00040 0.00110 0.00500 

-0.00030 -0.00050 -0.00130 -0.00070 0.00900 0.00140 -0.00030 -0.00120 

-0.00010 -0.00020 -0.00090 -0.00040 0.00140 0.00160 0.00000 -0.00060 

-0.00010 0.00000 -0.00010 0.00110 -0.00030 0.00000 0.00150 0.00170 

-0.00010 0.00010 0.00000 0.00500 -0.00120 -0.00060 0.00170 0.01680 

-0.00030 -0.00020 -0.00080 0.00290 -0.00100 -0.00050 0.00150 0.00820 

-0.00050 -0.00040 -0.00120 0.00320 -0.00130 -0.00080 0.00090 0.00790 

-0.00030 -0.00040 -0.00170 -0.00110 0.00070 0.00110 -0.00050 -0.00230 

-0.00020 0.00000 0.00000 0.00000 -0.00020 -0.00010 0.00070 -0.00360 

0.00040 0.00040 -0.00260 0.00010 -0.00020 -0.00020 0.00000 0.00010 

0.00030 0.00100 0.01110 0.00010 -0.00240 -0.00170 -0.00020 0.00050 

-0.00010 -0.00020 -0.00280 -0.00260 -0.00030 0.00030 -0.00080 -0.00780 

 

-0.00030 0.00050 -0.00030 -0.00020 0.00040 0.00030 -0.00010 

-0.00020 -0.00040 -0.00040 0.00000 0.00040 0.00100 -0.00020 

-0.00080 -0.00120 -0.00170 0.00000 -0.00260 0.01110 -0.00280 

0.00290 0.00320 -0.00110 0.00000 0.00010 0.00010 -0.00260 

-0.00100 -0.00130 0.00070 -0.00020 -0.00020 -0.00240 -0.00030 

-0.00050 -0.00080 0.00110 -0.00010 -0.00020 -0.00170 0.00030 

0.00150 0.00090 -0.00050 0.00070 0.00000 -0.00020 -0.00080 

0.00820 0.00790 -0.00230 -0.00360 0.00010 0.00050 -0.00780 

0.01290 0.01160 -0.00210 -0.00250 0.00070 -0.00120 -0.00720 

0.01160 0.02000 -0.00270 -0.00340 0.00090 -0.00110 -0.00880 

-0.00210 -0.00270 0.01400 0.00010 0.00040 -0.00380 0.01680 

-0.00250 -0.00340 0.00010 0.00540 -0.00010 -0.00040 0.00280 

0.00070 0.00090 0.00040 -0.00010 0.01030 -0.01010 0.00280 

-0.00120 -0.00110 -0.00380 -0.00040 -0.01010 0.05780 -0.00940 

-0.00720 -0.00880 0.01680 0.00280 0.00280 -0.00940 0.12830 

Bij=[ -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 -0.0000 -

0.0032 0.0067 -0.0064 ]; 

B00=[0.0055]; 

 


