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Abstract 

Workability of concrete measured quantitatively as slump value is one of the most 

significant quality assurance parameters in the Ready Mix Concrete (RMC) industry. 

It ensures that RMC transported with long delivery times is still in the state that it 

could be easily placed, compacted and finished at the construction site. Modeling 

slump based on proportions of the design mix constituents is challenging and demands 

a non-algorithmic approach due to composite nature of concrete. Multilayer 

Feedforward Neural Networks (MFNN) trained using backpropagation (BP) 

algorithms have been a preferred choice for the researchers for modeling the material 

behavior of concrete. However, the BP algorithm‟s likelihood of entrapment at local 

minima and slow convergence rate are major drawbacks during its implementation. 

The study aims at exploring the usefulness of hybridizing two distinct Soft Computing 

techniques namely, Genetic Algorithms (GA) and Artificial Neural Networks (ANN), 

for modeling the relationship between the proportions of the RMC design mix 

constituents namely, cement, pulverized fuel ash (PFA) or fly ash, sand, coarse 

aggregate (20mm), coarse aggregate (10mm), superplasticizer and water and their 

corresponding initial slump measured at the batching plant. The study further attempts 

to (a) compare the prediction accuracy and reliability of the neural network and 

regression models; (b) analyze and explore the material behaviour of concrete slump; 

(c) assess the effectiveness and applicability of the slump model for a different RMC 

batching plant; and (d) develop a decision support tool to estimate the slump value for 

the concrete design mix. 

The data for the research were collected from two different RMC batching plants 

located in the same city. The data collected from the first RMC batching plant were 

utilized to build the model for the concrete slump. The hybrid Genetic Algorithms–                      

Levenberg-Marquardt Backpropagation Neural Network (GA-LMBNN) model 

utilized the global exploration ability of GA for evolving the optimal set of initial 

weights and biases for the MFNN, which was subsequently fine-tuned using the fast 

converging Levenberg-Marquardt (LM) backpropagation algorithm. Apart from the 

hybrid GA-LMBNN model, the conventional LMBNN and regression models were 

developed for the concrete slump. The developed models for concrete slump were 

compared using six different statistical performance metrics. Response trace plots and 
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connection weights method were utilized to provide insight into the material behavior 

of concrete slump and to ascertain the relative importance of individual design mix 

constituents of concrete on the slump value respectively. The effectiveness and 

universal applicability of the slump model were assessed by, utilizing it to predict the 

slump for concrete design mix data collected from the other RMC batching plant. The 

knowledge extracted from RMC data in the form of a neural network model, is used to 

develop a decision support tool for estimating initial slump for the concrete design 

mix.  

As a result of hybridization, the GA, and LM backpropagation algorithm is shown to 

complement each other, robustly covering up the individual drawbacks, rendering fast 

speed of convergence coupled with a consistent and improved learning and 

generalization to the neural network model. The hybrid GA-LMBNN model for the 

slump is shown to outperform the learning and generalization accuracy of the 

conventional LMBNN, first order regression and second order regression models. In 

comparison to the traditional regression models, the neural network models are shown 

to exhibit better prediction accuracy, demonstrating their potential for modeling 

highly complex and unstructured functional relationship presented by the concrete's 

design mix constituents and slump value.  

The sensitivity analysis using connection weights method reveals that superplasticizer 

and PFA exhibit greater relative importance on the slump value of RMC. The 

response trace plots indicate that there exists a certain critical level of each constituent 

beyond which a significant change in the behavior of concrete slump is noticeable. 

The performance of the slump model for the other RMC batching plant proved that, 

that the concrete slump is sensitive to both physical and chemical properties of the 

design mix constituents, and therefore, any minor change in the properties of the 

individual constituents can significantly affect the prediction accuracy of the slump 

model. The decision support tool is shown to provide a fair assessment of slump value 

for given concrete design mix and further provides liberty to the technical personnel to 

explore various mix proportions for formulating concrete design mix of the desired 

workability, without performing multiple slump tests at the RMC batching plant. 
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Chapter 1: Introduction 
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1.1 Background 

1.1.1 Ready Mix Concrete (RMC) 

Cement concrete or commonly known as concrete, is a man-made material 

manufactured using key ingredients namely, cement, fine aggregate, coarse aggregate, 

and water. It is one of the most widely used construction material throughout the 

world owing not only to its wide applications but also due to its versatility, strength, 

affordability, and durability. Rapid growth in infrastructure has given impetus to the 

emergence of customized materials engineered to the requirements of the construction 

industry. Ready Mix Concrete (RMC) is one such customized product that is fast 

becoming a preferred choice among the contractors and builders. RMC refers to the 

concrete that is explicitly manufactured at the factory or batching plant, according to a 

predefined design mix for delivery to the construction site in a fresh and unhardened 

state by truck mounted transit mixers. RMC assures better conditions of quality 

control at the batching plant and provides flexibility of transporting fresh concrete to 

congested sites for fast and hassle free construction, coupled with material reliability 

and durability.  

 

1.1.2 Workability of concrete  

1.1.2.1 Definition and importance 

The concrete in a mixed state possessing plasticity is defined as Fresh 

Concrete. The short-term properties of fresh concrete have an enormous binding on 

the final properties of the concrete in the hardened state, as these govern the placing 

and compaction of concrete on site ultimately playing an important role in establishing 

its strength and durability characteristics. Workability is an important property of 

fresh concrete and is defined by Mindess et al. (2003) as “the amount of mechanical 

work, or energy, required to produce full compaction of the concrete without 

segregation” and therefore, governs the early age operations of placing, compacting 

and finishing the fresh concrete at the site. Workability depends primarily on the 

rheology of the cement paste and the internal friction between the aggregate particles, 

on the one hand, and the external friction between the concrete and the surface of 

formwork, on the other hand (Li, 2011). In a nutshell, concrete is said to be workable, 

if it can be formed, transported, placed, compacted and finished to its final shape and 
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texture with minimal mechanical effort without loss of homogeneity or with sufficient 

resistance to segregation. Nevertheless, in actual practice, the workability depends on 

the type of construction and methods used for mixing, transportation and placing.               

IS: 456-2000 has recommended the slump values for different placing conditions that 

are tabulated under: 

Table 1.1: Recommended slump values as per IS: 456-2000 

Placing conditions 

 

Degree of workability 

 

Slump (mm) 

Blinding concrete; shallow 

sections; pavements using 

pavers 

Very low Too small to measure 

Mass concrete; lightly 

reinforced sections in slabs, 

beams, walls, columns; 

floors; hand placed 

pavements; canal lining; 

strip footings 

Low 25-75 

Heavily reinforced sections 

in slabs; beams, walls, 

columns; slip formwork; 

pumped concrete 

Medium 

50-100 

75-100 

Trench fill; in-situ piling High 100-150 

Tremie concrete Very high Too large to measure 

Apart from being an important property of fresh concrete necessary to 

achieve full compaction leading to attainment of specified strength and durability, the 

workability of concrete plays an equally important role in the success of the RMC 

industry. It not only ensures consistency of quality and uniformity of concrete from 

batch to batch but also, helps in ascertaining the maximum transit time that a fresh 

ready mix concrete can undertake from manufacturing at the batching plant, 

subsequent transportation and placing on the construction site without allowing 
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stiffening of concrete paste. Moreover, since workability of concrete is governed by 

the type of construction namely, heavily reinforced sections, lightly reinforced 

sections, road pavements, shallow sections or construction requiring intensive 

vibration, demanding high, medium, low, very low or extremely low workability 

concrete respectively, it helps in formulating the design mix for concrete catering to 

the construction requirements.The workable concrete also eases the pumping of the 

concrete at the construction sites and, therefore, requires a cohesive concrete mix 

having sufficient resistance to segregation during transportation and placing.  

 

1.1.2.2 Workability assessment: Slump test 

Workability of concrete is a combination of two basic properties of fresh 

concrete, namely, consistency and cohesiveness. Consistency defined as the ease with 

which fresh concrete can flow whereas cohesiveness refers to the water and coarse 

aggregate holding capacity of fresh concrete. Since workability is defined as the 

mechanical work required for placing and compaction of fresh concrete and is 

dependent on the type and method of construction, there no single well-accepted test 

for measuring workability. However, in quantitative terms, the consistency of concrete 

is measured using a widely used test called the Slump Test. The test consists of mould 

resembling frustum of a cone (Figure 1.1). 

 

Figure 1.1: Mould for slump test of concrete (Source: IS: 7320-1974) 
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The mould is filled with three layers of fresh concrete. The concrete is 

compacted, and the mould is lifted, allowing the unsupported cone of fresh concrete to 

collapse under its weight. The decrease in the height of the cone correct to 5 mm is 

measured and designated as the slump value of fresh concrete. Although slump 

reflects the yielding of concrete under its weight yet, it is a useful site test that can be 

used to monitor batch-to-batch concrete mix and the resulting variation in workability. 

A true slump exhibited by slumping of concrete all around indicating a cohesive mix, 

whereas if the concrete slumps along an inclined plane, a shear slump is noticed 

indicating a harsh mix. In a mix having stiff consistency, a zero slump is noticed. 

 

1.1.2.3 Factors affecting workability 

The workability of concrete is affected by every component of the concrete 

and essentially every condition under which it was produced. It is seen that water 

content, cement content, aggregate characteristics, and admixture dosage influence the 

consistency and cohesiveness of concrete, thereby affecting the workability of 

concrete. The manner in which these factors affect the workability of concrete is 

discussed in the following sub-sections.  

(i) Water Content: The water content is the most important factor influencing 

the workability of concrete as it fills the voids between the particles and acts 

as a lubricating agent decreasing the intermolecular friction. The water 

content thus results in the fluidity of the fresh concrete making it easy to be 

compacted. However, at higher water content, the concrete mix tends to lose 

its cohesiveness leading to adverse effects of segregation and bleeding. 

Higher water content also reduces the strength of concrete. 

(ii) Cement content: The cement content has a dual effect on the workability of 

concrete. For a given water-cement ratio, it tends to increase the water 

content in the concrete at larger cement content thereby, aiding the 

consistency of concrete. The fine particles of cement coat the aggregate 

particles and fill the void spaces, assisting the lubrication of aggregate 

particles. Low cement content produces harsh mixes producing concrete of 

poor consistency. However, an increase of cement content at same w/c ratio 
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tends to increase the workability, but a very high proportion of cement may 

lead to mixes that tend to be sticky. 

(iii) Aggregate characteristics: Fine sand in the concrete increases the water 

demand for a given consistency leading to harsh mixes that are unworkable.  

The size of coarse aggregates influences the workability of concrete. For the 

same volume, the larger sized coarse aggregates have a smaller surface area 

than smaller aggregates, requiring lesser paste for coating. Hence, in the case 

of larger coarse aggregates, more amount of paste is available for lubricating 

the particles, thus enhancing the workability.  

(iv) Admixture Dosage: Both chemical and pozzolanic admixtures influence the 

workability of concrete. Pozzolanic admixtures tend to improve the 

cohesiveness of concrete due to the spherical shape of the particles and glassy 

surface. Superplasticizers are chemical admixtures added to the concrete to 

increase its workability at a given water-cement ratio and to keep the fresh 

concrete in a green state for a longer duration of time. 

 

1.1.3 Soft Computing Techniques 

Coined by Lotfi A. Zadeh in the year 1994, Soft Computing techniques differ 

from the hard computing counterparts, as they tackle and provide low-cost solutions to 

practical problems based on basic intelligence, reasoning, common sense and ability 

to create analogies and approaches, synonymous with the decision-making ability 

inherent in humans. The ideology behind Soft Computing approaches is to create a 

synergy between distinct artificial intelligence techniques and to bring them under one 

umbrella.  

The synergistic approach facilitates these techniques to deal with real life 

problems that inherently possess partial, vague, noisy and incomplete information. 

The Soft Computing employs a variety of statistical, probabilistic and optimization 

tools, to provide low cost and tractable solutions to the problems encountered in real 

life where direct expertise is absent. Among the various components of Soft 

Computing, Artificial Neural Networks, Genetic Algorithms, and Fuzzy Logic have 

found greater importance and applicability. In the present study, two Soft Computing 
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techniques namely Artificial Neural Networks and Genetic Algorithm are harnessed 

for developing a mathematical model for the concrete slump. 

 

1.1.3.1 Artificial Neural Networks: A modeling tool 

The different nature, type, and properties of the constituents used in the 

concrete design mix impart a composite nature to concrete, making mathematical 

modeling of its properties a highly complex and non-linear function of the design mix 

constituents. Many widely accepted empirical relationships derived from experimental 

data are available in the form of regression equations and are commonly in use for 

extracting knowledge about properties of concrete. These do not provide the expected 

accuracy and predictability when there are a number of independent and dependent 

variables whose interactions are either unknown, non-linear or difficult to represent. 

Artificial Neural Networks (ANN) touted as the next generation of computing has 

provided a suitable substitute to the conventional mathematical modeling of the real 

life phenomenon influenced by vague, imprecise and uncertain information.  

Inspired by the working of a human brain, ANN learns through parallel 

processing of information from the historical data without requiring prior specific 

knowledge about the interactions among and between the independent and dependent 

variables. Some notable recent applications of ANN for material modeling of concrete 

include, compressive strength prediction models for High Performance Concrete 

containing nano silica and copper slag (Chithra et al., 2016), plasticity model for 

concrete in compression (Briki and Djeghaba, 2015), prediction of compressive 

strength of concrete due to sulphate attack (Diab et al., 2014), strength prediction of 

High Strength concrete (Tayfur et al., 2014), modeling chloride diffusivity in high 

performance concrete (Hodhod and Ahmed, 2013), prediction of compressive 

strength of recycled aggregate concrete (Duan et al., 2013), predicting drying 

shrinkage of concrete (Bal and Buyle-Bodin, 2013), predicting properties of high 

performance concrete containing cementitious materials (Khan, 2012),                    

prediction of core compressive strength of self-compacting concrete                                                  

(Uysal and Tanyildizi, 2011), predicting compressive strength of self compacting 

concrete containing bottom ash (Siddique et al., 2011), and predicting strength of 

rubberized concrete (Abdollahzadeh et al., 2011). 
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1.1.3.2 Genetic Algorithms: An optimization tool 

The problems faced in real life are multi-faceted, having numerous feasible 

solutions. The difficulty in choosing the best solution has diverted the attention of the 

researchers to learn from nature. The “survival of the fittest” paradigm propounded by 

Charles Darwin, finds its usefulness in devising algorithms for finding the fittest 

individual that can survive the environmental extremes and produce offspring. Based 

on the ideas of the biological evolution and genetics, a population-based stochastic 

search algorithm known as Genetic Algorithm (GA) developed by John Holland, is 

now one of the most widely used global search and optimization algorithms. The 

ability of GA to simultaneously search through a number of solutions and gradually 

improve the quality of the solution to reach an optimum solution has opened up new 

avenues for development of time-saving techniques that can replace the conventional 

design and optimization procedures. Some of the recent applications of GA related to 

concrete include, optimization of concrete shells (Bertagnoli et al., 2014),                      

cost optimization of pre-stressed concrete bridges (Aydin and Ayvaz, 2013),                  

mix proportioning of recycled aggregate concrete (Park, 2013), optimized design of 

reinforced cantilever wall (Pei and Xia, 2012), and cost optimization based design of 

precast concrete floors (Albuquerque et al., 2012). 

 

1.2 Need for the present study 

Ready Mix Concrete (RMC) is an engineered product manufactured at the 

batching plant that, aims to customize compressive strength and workability of 

concrete mix for the construction requirements. Regardless of the technological 

advancements in RMC industry, the concrete mix that cannot be easily placed or 

compacted at the site is not likely to yield the expected strength and durability 

characteristics. The evaluation of concrete workability in terms of initial slump value 

at the batching plant helps in ascertaining the maximum transit time that an RMC can 

undertake up to the construction site, without considerable loss in workability and for 

ensuring that the RMC delivered at a site has a customized workability satisfying a 

particular type of construction. Therefore, in spite of providing premium grade 

concrete catering to the structural requirements, the importance of the workability in 

RMC industry cannot be undermined.  
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The procedure for trial mix design is a tedious process, as it involves multiple 

trials with different proportions of concrete constituents. Although, experimental 

procedures in any industry cannot be ruled out as they form the backbone of further 

research and development, yet a decision support tool can surely help to quickly 

estimate concrete slump for a particular design mix and further provide a fair idea to 

the technical personnel regarding design mix proportions for the desired workability. 

A decision support tool for concrete design mix, harnessing the knowledge extracted 

from the past results of the concrete mix designs is, therefore, essential for easing the 

burden of performing regular multiple trials with different design mix proportions. 

Apart from developing a decision support tool for the concrete slump, a mathematical 

model is also necessary to provide insight into the complex material behavior of 

concrete.         

The different nature, type, and properties of the constituents used in the 

concrete design mix impart composite nature to concrete, making Multilayer 

Feedforward neural networks (MFNN) trained using backpropagation (BP) algorithm 

also known as backpropagation neural networks (BPNN) a preferred choice for 

modeling its material behavior as shown in (Alshihri et al., 2009; Atici, 2011; 

Deshpande et al., 2014; Diab et al., 2014; Ghafoori et al., 2013;                        

Kostic and Vasovic, 2015; Mermerdas and Arbili, 2015; Sbartai et al., 2009; 

Sobhani et al., 2010; Zavrtanik et al., 2016). Moreover, in all previous literature 

(Chine et al., 2010; Dias and Pooliyadda, 2001; Jain et al., 2008;                      

Oztas et al., 2006; Yeh, 2006; Yeh, 2007; Yeh, 2008), the researchers have 

harnessed the BPNN for modeling the slump of concrete. The reason for this wide use 

of BPNN is its ability to imbibe the non-linear or unknown input-output relationships 

easily through systematic updating of neural network weights and biases.  

In spite of its simple implementation, the BP algorithm is faced with some 

inherent drawbacks. BP algorithm is a local search algorithm that harnesses the 

principle of steepest gradient descent for minimizing the error function, evaluated 

preferably as the squared error between the actual and the predicted outputs. Since, the 

BP algorithm updates the weights and biases by evaluating the gradient of the error 

function, it is not suitable for approximating functions that are discontinuous and non-

differentiable (Asadi et al., 2013; Rocha et al., 2014). The BP algorithm initialized 

with a random draw of weights and biases, forces the neural network to behave 
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differently during each re-run of the neural network training, providing inconsistent 

performances (Sexton et al., 1999). The local search BP algorithm follows the 

trajectory of steepest descent to find the optimal solution (Sutton, 1986;                

Whitley et al., 1990) and is, therefore, likely to get trapped in local minima and 

exhibit slow rate of convergence (Sahoo and Maity, 2007).  

Amongst the numerous improved backpropagation algorithms introduced in 

the past namely, Resilient Backpropagation, BFGS Quasi-Newton, Scaled Conjugate 

Gradient, etc., the Levenberg-Marquardt (LM) backpropagation algorithm is the most 

efficient and fastest converging algorithm (Hagan and Menhaj, 1994) and has been 

preferred over other backpropagation optimization algorithms for updating the neural 

network weights and biases (Daliakopoulos et al., 2005; Dee et al., 2011; Kisi, 2008; 

Paliwal and Kumar, 2011). Although, LM algorithm inherits faster convergence of 

the Gauss-Newton algorithm yet, it still carries the weakness of the gradient descent 

algorithm, heavily depending on the initial draw of weights and biases to avoid 

entrapment at local minima and subsequently converge to global optimum                  

(Kermani et al., 2005; Nawi et al., 2013). The probability of initial weights and 

biases located on a local minimum of the error function increases the likelihood to 

converge to local minima (Sexton and Dorsey, 2000). The values of weights and 

biases used for initializing the backpropagation algorithm are therefore required to be 

optimized to guarantee its convergence to the global optimum.   

In comparison to local search BP algorithm that requires gradient information 

for updating of weights and biases, the GA employs gradient free global search. 

Although this search is global in nature yet, it is susceptible to slow convergence 

owing to weak local search ability (Ghaffari et al., 2006; Kitano, 1990).                   

GA being a global search heuristic promotes both exploitation and exploration of the 

search space as against localized exploitation of the search space rendered by BP 

algorithm. Genetic Algorithm’s non-trajectory search and exploratory power give an 

edge to the GA algorithm over the BP algorithm to perform longer jumps in search 

space thereby, reducing the probability of entrapment at local minima 

(Mavrovouniotis and Yang, 2015). 

It is seen that the individual soft computing techniques namely GA and BP 

algorithm have certain inherent advantages and drawbacks concerning training an 

MFNN. Hence, there is a need for developing a hybrid methodology for training 
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MFNN, with each technique complementing each other, helping to cover up the 

individual drawbacks thereby, leading to the development of a robust computational 

tool. In the light of the advantages rendered by hybridization and the limitations of the 

original procedures, a computational model for the concrete slump based on 

proportions of RMC design mix constituents has been attempted by hybridizing the 

global exploration ability of GA, utilized for evolving the optimal set of initial weights 

and biases with, the fast convergence rendered by the LM backpropagation algorithm, 

for assisting the MFNN trained using LM backpropagation algorithm (LMBNN) to 

minimize entrapment at local minima and accomplish faster convergence. 

 

1.3 Objectives of the present study 

For the present study “Modeling and Analysis of Ready Mix Concrete Slump 

using Hybrid Genetic Algorithms-Artificial Neural Networks”, following research 

objectives are identified: 

(i) Model the functional relationship between proportions of Ready Mix 

Concrete design mix constituents and slump value. 

(ii) Compare the effectiveness of Genetic Algorithms, Levenberg-Marquardt 

Backpropagation Algorithm and the hybrid Genetic Algorithm-Levenberg 

Marquardt Backpropagation Algorithm for training MFNN, in terms of 

prediction consistency and accuracy and speed of convergence.  

(iii) Compare the potential of neural network methodology and conventional 

regression techniques for modeling the material behavior of concrete slump. 

(iv) Assess the relative importance of design mix constituents of Ready Mix 

Concrete on the slump value. 

(v) Utilize the developed slump model to provide insight into the material 

behavior exhibited by the concrete slump.  

(vi) Explore the effectiveness and applicability of the developed model for 

predicting slump value for the design mix proportions of a different RMC 

batching plant. 
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(vii) Harness the slump model to develop a decision support tool that aids 

prediction of slump for the given concrete design mix proportions. 

 

1.4 Thesis organization 

The thesis has been divided into six chapters. A brief overview of the 

contents of each chapter is summarized as under: 

Chapter 1: The chapter introduces the theoretical background of all the 

components involved in the research work. The need for the present 

study and the research objectives has been dealt in this chapter. 

Chapter 2: This chapter introduces the soft computing methodologies used in the 

study namely, Artificial Neural Networks, and Genetic Algorithms 

and further provides a detailed description regarding the components 

and the working of each methodology. 

Chapter 3: An extensive literature survey of the past research has been covered in 

this chapter. The literature survey discusses the applications of 

artificial neural networks for modeling the various properties of 

concrete including the slump value. The chapter also highlights the 

various multidisciplinary applications and discusses the civil 

engineering applications of the hybrid genetic algorithm-artificial 

neural networks methodology. Based on the inference drawn from the 

literature survey, the research gap is identified. 

Chapter 4: The chapter elaborately discusses the methodology used for modeling 

the slump of Ready Mix Concrete. The chapter incorporates 

collection, division, and normalization of data, determination of 

neural network architecture, optimization of neural networks using 

genetic algorithms, evaluation of the performance of models, 

comparison of the neural network model with conventional regression 

models, sensitivity analysis, applicability of the slump model for a 

different RMC batching plant and development of decision support 

tool for prediction of slump value. 
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Chapter 5: The chapter highlights the results of the study and further discusses 

them at length. The results related to finding optimal the neural 

network architecture, computing the optimal GA parameters, training, 

validation and performance evaluation of hybrid GA-LMBNN and its 

comparison with conventional LMBNN model, comparison of neural 

networks with regression techniques, sensitivity analysis, performance 

of the developed slump model for predicting concrete slump for the 

design mix data collected from a different RMC batching plant and 

decision support tool for concrete slump have been highlighted and 

discussed. 

Chapter 6: The chapter summarizes the study and presents the conclusions drawn 

from the study and recommendations for future work.  

Appendix I: Ready Mix Concrete data showing the proportions of different design 

mix constituents and corresponding slump values collected from the 

first RMC batching plant. 

Appendix II: Ready Mix Concrete data showing the proportions of design mix 

constituents and corresponding slump values collected from the 

second RMC batching plant.  

 

1.5 Summary 

Ready Mix Concrete (RMC) has emerged as a preferred construction material 

owing to its premium quality, customized to the type of construction. The workability 

of concrete measured using slump test at RMC batching plant is an important quality 

assurance parameter and helps in ascertaining that the RMC delivered at the site is of 

the desired workability.  

The procedure of designing a concrete mix catering to customized 

workability is tedious as it requires repeated trials with different proportions of 

constituents. Quick estimation of concrete slump without undergoing cumbersome 

experimental procedures necessitates the development of a decision support tool. 

Apart from this, a mathematical model that can provide insight into the complex 

material behavior of concrete slump is also necessary. 
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Concrete is a composite material and, therefore, its material modeling 

demand a non-algorithmic approach. Artificial Neural Networks (ANN), a subset of 

Soft Computing, has been in vogue for the last few decades for tasks associated with 

modeling material behavior. ANNs mimics the working of the human brain and learns 

through parallel processing of information from the historical data without requiring 

prior specific knowledge about the interactions among and between the independent 

and dependent variables. Amongst the numerous available architectures for ANN, the 

Multilayer Feedforward Neural Network (MFNN) trained using Backpropagation 

(BP) algorithm is widely preferred by the researchers for tasks associated with 

material modeling of concrete. 

Although BP algorithm harnessing the principle of steepest descent is simple 

to implement yet, it carries the drawback of slow convergence and likelihood of 

entrapment at local minima. Amongst the numerous improved local search 

backpropagation algorithm, the Levenberg-Marquardt (LM) algorithm is the fastest 

and the most efficient learning algorithms for training the MFNN. The LM algorithm 

derives its convergence speed from the Gauss-Newton method but carries the 

drawback of steepest descent algorithm, relying on the initial draw of neural network 

weights and biases to escape the local minima. Genetic Algorithms (GA) on the other 

hand employ global search and exploratory power to perform longer jumps in search 

space to evade entrapment at local minima. Although this search is global in nature 

yet, it is prone to slow convergence owing to large search space. 

A computational model for the concrete slump based on proportions of RMC 

design mix constituents has been proposed by hybridizing the global search of GA for 

evolving the optimal set of initial weights and biases with the fast convergence 

rendered by the LM backpropagation algorithm, for assisting the MFNN trained using 

LM backpropagation algorithm (LMBNN) to escape entrapment at local minima and 

accomplish faster convergence. In the light of the adopted methodology and necessity 

of the present study, the objectives of the research have been finalized.  
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2.1 Introduction 

With the advent of computers and rapid advancements in hardware and 

software, there has been a persistent endeavor to integrate the human consciousness, 

wisdom, intuition and the ability into the computing environment for dealing with 

problems arising from real life’s uncertainties. This nature inspired intelligence is 

conceived algorithmically in a computing environment by employing statistical, 

probabilistic and optimization tools placed under the umbrella of a multi-disciplinary 

field called the Soft Computing. It is an emerging field that has synergistically 

amalgamated the characteristics of biological systems to provide the impetus for the 

development of intelligent and wiser machines, catering solutions to a wide range of 

real-world problems influenced by uncertainty and imprecision. The systems born out 

of Soft Computing render human-like expertise in a particular problem domain, 

capable of learning and adapting themselves to the change in the problem scenario. 

 In contrast to hard computing relying on predefined rules, the Soft 

Computing is tolerant of imprecision, uncertainty, partial truth, and approximation 

(Zadeh, 1994) and render cost-effective and robust solutions to problems that are 

difficult to be solved using conventional computing techniques. The field of the Soft 

Computing brings forth the elements of Fuzzy Logic, Neural Computing, 

Evolutionary Computation, Machine Learning and Probabilistic Reasoning under one 

common umbrella which, either working on their own or complementing each other 

are able to provide practical solutions, tolerant to uncertainty and imprecision through, 

emulation of learning skills and cognitive ability of the human mind. Artificial Neural 

Networks (ANN), Genetic Algorithms (GA) and Fuzzy Logic (FL) represent the 

major subsets of Soft Computing. The chapter comprehensively discusses the two Soft 

Computing methodologies used in the study, namely Artificial Neural Networks and 

Genetic Algorithms. 

 

2.2 Artificial Neural Networks 

Artificial Neural Networks derive their inspiration from interdisciplinary 

subjects, namely neuroscience, mathematics and computer science. The ideas from 

these fields were extracted and amalgamate to develop computational systems that 
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were able to learn from examples to perform the tasks intelligently. A neural network 

thus exploits the ability of the human brain to acquire and store information and adapt 

to the changing scenario just as human beings habituate themselves to the 

environmental extremes. The functioning of neural networks is a simplified abstract of 

the human brain, as they comprise of massively parallel highly interconnected 

artificial neurons that perform non-linear computations and connected by adaptive or 

tunable parameters that continuously change based on the information presented 

during the learning phase. These advantages have created immense interest of the 

researchers in the field of neural networks for dealing with problems that are ill-

conditioned, containing noisy or incomplete data and related to real life dynamic 

environments.  

 

2.2.1 Historical background 

The complexity of human brain attributed to a network of roughly hundred 

billion neurons with each neuron having about 10,000 synaptic linkages and its 

vaguely understood working has fascinated the human civilization since ages. As far 

as the history goes, the Greek philosophers Plato (427-347 B.C.) and Aristotle               

(384-322 B.C.) were the first to correlate the structure of the human brain with its 

functioning. As the time passed by, several developments were made in the field of 

neuroscience. Continuous research performed by Benjamin Franklin, Charles Bell, 

Gustav Theodore Fritsch and Karl Wernicke, created an insight into the complex 

structure and the nature of the human brain that strengthened the foundations of 

neuroscience. A breakthrough in the field of neuroscience was achieved in the early 

part of the twentieth century through research conducted by Camillo Golgi and 

Santiago Ramon y Cajal, which culminated in their sharing the sixth Nobel Prize for 

medicine in 1906.  

The idea of incorporating the learning abilities of the human brain in the 

computing environment started in 1943 when, neurophysiologist Warren McCulloch 

and Walter Pitts conceptualized a Boolean brain, which can be considered as the first 

neural network. In 1949, Donald O. Hebb published a book The Organization of 

Behavior which introduced the word connectionism related to the model of the human 

brain. It provided the first insight into the biological neuron’s learning mechanism 

through a change in the strength of the synaptic connections. The research progressed 
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further with Ross Ashby book named The Design for a Brain published in 1954. In 

1958, Frank Rosenblatt introduced the idea of Perceptron, which was a refined and a 

more sophisticated version of an artificial neuron developed by Warren McCulloch 

and Walter Pitts. A significant research was put in place with Perceptron learning for 

tasks associated with pattern recognition.  

The following decade 1959-1969 showed a decreased interest in the field of 

Neural Networks. The interest in the field of Artificial Intelligence was revived by 

Minsky and Papert through their book Perceptrons: An Essay in Computational 

Geometry but still the research related to neural networks went into the background. 

Teuvo Kohonen with the development of Self-Organizing Maps (SOM) in 1982 and 

subsequently in the same year John Hopfield and Tank developed the Hopfield 

network, to bring the neural network research back on track. However, major credit 

for the revival of interest in neural networks goes to Rumelhart, Hinton and Williams 

for discovering the backpropagation algorithm in 1986. The backpropagation 

algorithm is still the most commonly used learning algorithm in neural networks. 

With subsequent developments in the field of computer hardware and 

software, different types of neural network models came into limelight. Adaptive 

Resonance Theory (ART) was put forward by Carpenter and Grossberg in 1987. The 

Radial Basis Function (RBF) neural network for tackling problems related to 

multivariate interpolation was created by Broomhead and Lowe in 1988. The work on 

character recognition was presented by Fukushima in 1988 with the advent of Neo 

cognition neural networks. 

 

2.2.2 Basic functional unit: An artificial neuron  

ANN emulates the functioning of the human brain and contains basic 

functional groups called the neurons, nodes or artificial neurons. The artificial neuron-

inspired by the structure and operation of a biological neuron represents a simplified 

abstract of its biological counterpart and therefore before going into the mathematics 

and computational part of an artificial neuron; it is pertinent to grasp a brief overview 

of the biological neuron. A biological neuron forms the core processing unit in a brain 

and is made up of roughly spherical shaped cell body called the soma. The soma 

contains many irregularly shaped branched filaments called dendrites. The inputs or 

signals from other neighboring connected neurons enter the soma through synaptic 
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connections located on the dendrites. The soma performs the function of combining 

these signals or inputs.  If the resultant signal is found to be greater than a predefined 

threshold value, it fires an electrical impulse which is further communicated to other 

neurons through a long extension of the cell body called the axon. The axon transmits 

this output to the other neurons through multiple branches, each terminating in a 

synapse. The synapse provides a weighted electrical connection between the two 

neurons, which based on the strength of the impulse, received either, passes excitatory 

or inhibitory impulses to the next connected neuron. The structure of a biological 

neuron is shown in Figure 2.1. 

 

Figure 2.1: Biological neuron (Source: Basheer and Hajmeer, 2000) 

An artificial neuron is a mathematical model which attempts to capture the 

essential features of the biological neurons namely, controlling the strength of 

incoming signals through dendrites xxx .....,,........., 21  by applying a multiplication 

factor called the synaptic weights nwww .........,,........., 21  and applying the summation 

function to combine the weighted signals. Additional weight, called the bias b  is also 

added to the weighted output of a neuron to render its rapid convergence through the 

shifting of origin of a transfer function. Moreover, the incorporation of a bias allows a 

neuron to provide an output even if its input is zero. The resultant weighted sum of 
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. Figure 2.2 shows the schematic structure and processing of an 

artificial neuron.   

 

 

 

 

 

 

 

 

Figure 2.2: Schematic structure of an artificial neuron and its processing mechanism 

 

2.2.3 Characteristics 

A neural network is characterized by three fundamental entities namely, the 

arrangement of neurons and their connections, called its architecture or topology, 

learning algorithm for updating or adjusting the weights associated with connections 

and the transfer functions related to the neuron layers. 

(i) Architecture 

The processing units of ANN namely, the artificial neurons are arranged in 

layers and form a massively interconnected structure. The ability to process 

information is therefore largely dependent on the arrangement of the neurons and their 

geometry of interconnections. Based on these important considerations, the neural 

network architecture can be broadly classified into three fundamental classes:  

a) Single layer Feedforward neural networks. 

b) Multilayer Feedforward neural networks. 

c) Recurrent neural networks 
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As the name suggests, a Feedforward Neural Network contains neurons 

arranged in layers that are connected in the forward direction only, i.e. no intra-layer 

connections or feedback loops are permitted. This arrangement compels the 

information to flow in the forward direction and, therefore, their output is dependent 

entirely on the input provided. These networks can comprise of the input neuron layer 

directly connected to the layer of output neurons through a number of weighted 

connections leading to the formation of Single layer Feedforward Neural Networks 

(Figure 2.3) or the network can have one or more intermediate hidden layer of 

neurons sandwiched between input and output layer of neurons to form Multilayer 

Feedforward Neural Networks (Figure 2.4). 

In the case of Feedback or recurrent neural networks (Figure 2.5), the signal 

or the information can travel in both forward as well as backward directions through 

neuron layers. The outputs are generated by presenting the inputs in the usual manner 

and further these outputs are fed back as inputs which make the neural network 

behave in a dynamical way, continuously change their state till attaining a state of 

equilibrium. In contrast to Feedforward neural networks, the recurrent neural networks 

exhibit short-term memory as their output state at any given time depends on the 

previous states. A recurrent neural network does not have any particular structure 

(Yeganaryana, 2001). 

 

 

 

 

 

 

 

 

 

Figure 2.3: Single layer Feedforward Neural Network 
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Figure 2.4: Multilayer Feedforward Neural Network with single hidden layer 

 

 

 

 

 

 

 

Figure 2.5: Multilayer recurrent neural network with single hidden layer 

Various neural network models or architecture have been developed by 

different researchers to cater to the requirements of the problem in hand.                         

Figure 2.6 gives a hierarchical overview of various neural network models and their 

field of application. 
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Figure 2.6: Neural network models and their field of application 

(ii) Learning paradigms 

The successful learning or imbibing of a particular problem by ANN 

attributes to the information stored in the inter-neuron synaptic connections. The 

learning of neural networks is accomplished by a systematic updating of weights and 

biases to enable neural networks to predict output near the actual values. The learning 

paradigms in ANN can be classified as supervised, unsupervised and reinforcement. 

In the case of supervised learning, the information is presented to the neural network 

in the form of input-output data pairs with each input associated with the output. The 

learning rule is then applied for adjustment of weights and biases to render network 

error between actual or target values and neural network predicted outputs. Multilayer 

perceptrons, support vector machines, and radial basis function classifiers use 

supervised learning. In contrast to the supervised learning which utilizes a teacher or 

supervisor to classify the data into classes and further utilizes the class information to 

update the weights and biases, an unsupervised learning performs these activities 

heuristically without seeking supervisory assistance. Unsupervised learning is 
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commonly used for problems associated with clustering of data into a number of 

similar groups. Self-organizing maps harness the unsupervised learning paradigm. 

Reinforcement learning uses trial and error process through adapting and exploring 

the features associated with the structured input pattern without requiring correct 

target values for each input.   

The learning in ANN is based on a rule that determines the iterative 

procedure of updating or adjusting of free parameters namely, weights and bias over a 

number of training or learning cycles. Haykin (2009) has suggested four different 

types of learning rules namely, correlation learning or Hebbian learning, error-

correction learning (ECL), Boltzmann learning and competitive learning. For the 

present study, we will restrict our discussions to error correction learning (ECL). The 

ECL rule used for the supervised learning of ANN modifies the weights and biases 

during each training cycle to reduce the arithmetic difference between the actual or 

target values and network predicted values to a threshold minimum. One of the most 

popular ECL rule-based algorithms is the error backpropagation algorithm or simply a 

backpropagation algorithm. The Multilayer Feedforward Neural Networks (MFNN) or 

Multilayer perceptron (MLP) trained using backpropagation (BP) algorithm is the 

most widely used neural networks and are considered the workhorse of ANNs 

(Rumelhart et al., 1986).  The MFNN trained using the BP algorithm commonly 

known as Backpropagation Neural Networks (BPNN) comprise of three basic layers 

of neurons namely, an input layer, an output layer and a number of intermediate 

hidden layers. For a particular problem, the input layer of neurons represents the input 

or independent variables and the output layer neurons are synonymous to the output 

variables or dependent variables being modeled on the basis of the dependent 

variables. The inclusion of the number of hidden layers and hidden layer neurons 

increases the complexity of the neural network, making it capable of dealing with 

complex and non-linear nature of problems. 

(iii) Transfer functions 

The transfer function or the activation function typically used in neural 

networks are non-linear functions (log-sigmoid and hyperbolic tangent sigmoid), 

sinusoid, step functions (hard limit) and linear functions (Table 2.1) and are 

introduced to imitate the nonlinear characteristics of the biological neurons.  
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Table 2.1: Transfer functions used in artificial neurons 

Transfer function Plot Equation Range 
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2.2.4 Backpropagation neural networks 

As discussed in the preceding section, a backpropagation neural network 

(BPNN) consists of three basic layers called the input layer, output layer and a number 

of sandwiched hidden layers (Figure 2.7). The connected layered neurons allow the 

information received from input neurons to flow in the forward direction only. The 

strength of the information is manipulated by the weighted synaptic connections 

between the inter-layer neurons. The weighted signal entering the hidden layer 

neurons is processed by summing up the signal and subsequently applying an 

appropriate transfer function. The transfer functions commonly used in hidden layers 

are generally of continuous and differentiable nature namely, log-sigmoid and tangent 

hyperbolic functions. The information processed sequentially through a number of 
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hidden layers and is presented at the output layer of neurons. A comparison of the 

signal received at the output layer of neurons with the actual or target value allows 

one to estimate precisely whether the neural network has learned from the training 

examples or not.  A neural network is said to be trained if there is proximity between 

target values and predicted outputs or the network error has reached a minimum 

threshold value. It is brought about by a gradient descent algorithm commonly known 

as a Backpropagation (BP) algorithm. The algorithm adjusts the weights and biases of 

the neural network by calculating the network error commonly in terms of squared 

error namely, mean square error (MSE) or the sum of squared error (SSE) and back-

propagating this error to the move the weights and biases along the negative of the 

gradient of computed error. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Backpropagation neural network 
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The entire process of this algorithm can be narrated in the following steps: 

Step 1: Initialization of BP algorithm with random values of weights and biases. 

Step 2: The neural network having i  input neurons, j  hidden layer neurons, and k

output neurons is presented with information in the form of input-output pairs 

representing the training pattern  . The independent variables present in the training 

pattern represent the input neurons ix  and the dependent variables are represented by 

the output neurons ko . 

Step 3:  Forward propagation of the information through the hidden layer neurons and 

computing of output of hidden layer neuron for each training pattern  .  The output of 

hidden layer neurons 
jo is computed as     








  0j

i

ijijj bwxfnetfo 
, where f   

is the transfer function for the hidden layer neurons, ijw
 
is the strength or magnitude 

of the connection between input and hidden layer neurons and 0jb is the value of bias 

attached to the hidden layer neurons. 

Step 4: Forward propagation of information computed in Step 3 to the output layer 

and evaluating the output at the output layer of neurons. The computed value of output 

for the output layer of neurons for the entire training pattern is
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 , where f  is the transfer function for the output 

layer neurons, jkw
 
is the strength or magnitude of the connection between hidden and 

the output layer neurons and 0kb
 
is the value of bias attached to the output layer 

neurons. The output ko  can also be represented as 
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Step 5: Compute the error between the target value and the predicted output 

     

























































k j

kjk

i

jijik

k

kk bwbwxfftotE
  







2

00

2

2

1
 

2

1
 



Chapter 2: Artificial Neural Networks and Genetic Algorithms: An Overview 

 

26 
 

Step 6: Apply the steepest descent algorithm to adjust the weights by backpropagation 

of the error computed in Step 5. For output neurons
jk

jk
w

E
w




  . 

     






  jkjkkkjk oonetfotw '
, where     kkkk netfot ' . 

For hidden layer neurons applying the above procedure, we get  


 ijij xw , 

where     k

k

jkjj wnetf  '
. Hence, for a synaptic weight connection from 

neuron qp we have a generalized rule for updating the weights pq

old

pq

new

pq www 

,where pqpq ow  


  and   is the learning rate. A large value of the learning 

rate leads to faster convergence, but may result in overshooting of optimal values of 

the weights. The problem is counteracted by introducing a momentum factor  into 

the weight updating algorithm. The momentum factor  by utilizing the effect of 

previous weight change on the current weight change provides a smoothing effect to 

weight oscillations rendered by using a higher learning rate. A simplified weight 

updating relation given by Erb (1993) shows the effect of both learning rate   and 

the momentum factor  as: 

Current change in weight = learning rate × (error) + momentum factor ×            

(previous change in weight) 

The steepest gradient descent principle utilized by a standard 

backpropagation procedure is a local optimization algorithm that exhibits good 

convergence when the weights are located in the proximity of a minimum point, but 

slower convergence when the weights are located far away from the desired 

minimum. To address this problem Hagan and Menhaj (1994) presented the 

Levenberg-Marquardt algorithm for training the BPNN. The Levenberg-Marquardt 

backpropagation algorithm can be regarded as a trade-off between the conventional 

gradient descent and Gauss-Newton method as it utilizes the advantage of fast 

convergence through non-linear least square optimization rendered by Newton method 

and the stability provided by gradient descent through maximum neighborhood 

principle. Although the weight updating using the LM algorithm increases the 

convergence rate of the backpropagation algorithm, it still carries the drawback of 
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getting trapped at the local minima. The LM algorithm updates the weights according 

to the Equation 2.1.  

n

T

nnnn eJHww 1

1



          (2.1) 

where, H is the Hessian matrix given by, e  is the error vector and w  is the weight 

matrix.  

The Newton method requires calculation of the Hessian matrix H  given by 
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n
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E
H , where E  is the error function and w  is the weight matrix. Due to the 

complexity of the evaluation of Hessian matrix, an approximate method called the 

quasi-Newton method is employed by the LM algorithm to compute the Hessian 

matrix IJJH T

nn   , where J  is the Jacobian matrix,  is the Marquardt 

parameter and I is the identity matrix. The Jacobian matrix J is evaluated by 

computing the first order derivative of the network error given by 
1




n

n
w

e
J . For 

large values of the parameter,   the above expression approximates a gradient 

descent while a small   makes the algorithm behave as a Gauss-Newton algorithm.  

Therefore, the parameter   controls the transformation of the LM algorithm from 

Gauss-Newton algorithm to gradient descent algorithm and vice-versa. Since the 

gradient descent algorithm possesses inherent drawback of slow convergence, the LM 

algorithm attempts to shift to Gauss-Newton method as quickly as possible near the 

vicinity of an error minimum to enable accurate and faster convergence                  

(Samani et al., 2007). 

 

2.3 Genetic Algorithms 

Evolutionary Computation (EC) is an optimization paradigm inspired by 

evolutionary ideas of natural selection and genetics. The algorithms falling under the 

domain of EC simulate evolutionary processes in a computing environment and 

possess notable characteristics, namely an iterative procedure with gradual 

improvement in the quality of solution, work on a population of solutions, randomized 

but guided search through exploitation of the historical information, parallel 
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processing of all possible solutions at a time and the most importantly, it is 

biologically inspired.  The evolutionary algorithms, classified into four major streams 

namely, Genetic Algorithms, Evolution Strategies, Evolutionary Programming and 

Genetic Programming, attempt to evolve best possible solutions to a problem through 

survival of the fittest heuristic. The genetic algorithms (GA) belong to a class of 

adaptive heuristic search and optimization algorithms with its foundation resting on 

Darwin’s Theory of natural evolution. In contrast to steepest descent algorithms that 

perform a deterministic search by exploiting the gradient information of differentiable 

and continuous objective functions, the GA’s gradient free stochastic search employs 

computational techniques that follow the traits of survival of the fittest heuristic to 

enhance the quality of solution through exploration and exploitation of the search 

space gradually. The key features that distinguish GA from the conventional 

optimization algorithms can be summarized as: 

a) GA works on a coded version of the possible solution to a problem and not 

on the solution itself as exhibited by conventional optimization algorithms.  

b) In contrast to traditional methods of optimization operating on a single 

solution at a time, the GA starts with multiple solutions in different directions 

of the search space, reducing the risk of falling into a local minimum, 

consequently improving the probability of reaching a global optimum.  

c) The conventional methods rely on gradient information regarding the 

problem to be optimized, applicable only to the continuous nature of the 

function. The incorporation of fitness function attributes a gradient-free 

approach to GA to aptly deal with continuous as well as the discrete nature of 

optimization problems.  

d) In GA, a gradual improvement in the quality of the solution is brought about 

by stochastic operators while the conventional methods employ deterministic 

operators.  

 

2.3.1 Historical background 

The idea of harnessing the principles of natural evolution and genetics for 

developing evolutionary systems for engineering optimization problems started in the 

latter part of 1950’s. In 1960, the idea of Evolutionary Computing was put forth by 
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Ingo Rechenberg in his work Evolutionary Strategies.  In 1966, Fogel, Owens, and 

Walsh developed Evolutionary Programming. Both the developments used mutation 

and selection interrelated to Darwin’s theory of evolution. The field of Evolutionary 

Computing was in the nascent phase until in the year 1975; John Holland published 

his book Adaptation in Natural and Artificial Systems. Holland propounded the 

population based algorithm based crossover, inversion, and mutation. The book was 

instrumental in creating a flourishing field that is now commonly known as Genetic 

Algorithms. The sustainable development in the area of GA till date is attributed to 

David Goldberg’s book Genetic Algorithms in Search, Optimization and Machine 

Learning. In the year 1992, John Koza introduced Genetic Programming that utilizes 

a set of computer programs to replicate an individual to discover or generate new 

programs that can solve a particular problem either accurately or approximately. With 

each passing decade, there has been a tremendous growth in the application of 

Evolutionary Computing for solving multi-dimensional problems faced with multi-

disciplinary fields. The gap between the various methodologies of Evolutionary 

Computations is narrowing down with more and more algorithms finding their place 

under this common umbrella of optimization algorithms. 

 

2.3.2 Structure and working: A biological perspective 

The human/animal body is composed of core units called the cell resembling 

small factories working together. Each cell contains a set of chromosomes                 

(23 pairs in human beings) made of DNA representing the genetic information 

encoded in genes. Each gene carries a particular trait of an individual and maintains a 

unique location in the chromosome search space known as its locus. A combination of 

genes addressing a specific property in an individual are called alleles. A gene 

carrying different alleles constitutes a gene pool that represents all possible variations 

that an individual can carry for its future generations. The genome represents a set of 

genes representing a particular species, whereas the combination of genes for an 

individual is called as genotype. The information carried by the genotype is essential 

for constructing an organism known as the phenotype.  

In an evolutionary process, new chromosomes are formed through crossover 

or recombination in which genetic information from two parents is combined to render 

a new chromosome. In biological terms, reproduction is carried out by Mitosis and 
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Meiosis. The mutation inadvertently occurs during transfer of genes from parent to the 

children due to an error in the copying of genes or some unknown environmental 

reasons. The ability of an individual to reproduce is affected by their capacity to adapt 

to adverse environmental conditions. Nature's extremes inculcate a continuous 

struggle for existence in an individual, thereby making the fit individuals prevail and 

carry their genetic traits to their next generation.  

Inspired by the biological evolution narrated above, the GA comprises of four 

distinct components namely, encoding of possible solutions as chromosomes, fitness 

or objective function, selection, recombination, and evolution. The main strength of 

GA is attributed to these standard components, as these can be easily implemented for 

different forms and applications of GA with minor modifications (McCall, 2005). A 

typical genetic algorithm cycle exhibited in Figure 2.8 shows that the GA starts with 

an initial population of chromosomes that contain a number of possible solutions to a 

problem coded as genes. The set of these possible solutions coded as genes forms a 

genotype. The genotype carries the necessary information to create a phenotype, 

which is decoded to represent a possible solution to a problem. The fitness in GA is 

evaluated by computing the value of the objective function for its phenotype. The 

objective function evaluates the efficacy of the solution, i.e. the closeness of the 

solution to the optimal one. The evolution operator namely, selection operator utilizes 

chromosome’s fitness value as a measure to select the chromosome for possible 

representation in the next generation.   

    The genetic operators namely, crossover and mutation acts on the selected 

group of chromosomes and alters its characteristics to generate the offsprings. The 

crossover operator utilizes the genetic material from the two parent chromosomes in 

the hope of creating better offsprings. By doing so, the crossover operator helps the 

GA in narrowing down the search area by exploiting the fitness of the parent 

chromosomes present in the current population. The use of the only crossover would 

attract faster convergence and narrowing of search space but in doing so, the GA may 

overshoot the global optimum. To overcome this problem, mutation is introduced. The 

mutation operator alters or mutates the current population of chromosomes by adding 

some extra characteristics in the hope of deriving fitter individuals which might have 

been inadvertently lost during the process of selection and crossover, thus providing a 

second chance of enriching the current population with fitter chromosomes. By 
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performing mutations in the populations, the search space of GA is expanded allowing 

the GA to search the surroundings for global minima thus mitigating the chance of 

falling into local minima. This phenomenon renders search to proceed in small steps 

so that the global minimum is sought in the vicinity of the local minima located in the 

past. The process of crossover and mutation is repeated until the complete successor 

population of chromosomes is produced. The fitness of the offsprings are evaluated 

using the same objective function and based on their fitness, the current population of 

chromosomes is replaced with the offsprings. This cycle is continued till the desired 

termination criteria are satisfied. 

 

Figure 2.8: Genetic algorithm cycle (Source: Saemi et al., 2007) 

 

2.3.3 Operators 

(i) Selection 

GA is a stochastic population-based search and optimization algorithm which 

attempts to emulate the biological evolution in a computing environment. The GA, 

therefore, works on an initial set of solutions using the evolution operator namely, 
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selection and genetic operators namely, crossover and mutation. The selection 

operator helps in choosing the parent chromosomes from the population for mating. 

The selection is performed in a manner, to allow the fitter chromosomes to mate, 

hoping that they would produce fitter offsprings. To evaluate the quality of 

chromosomes as a possible solution to the problem, an objective function or fitness 

function is defined. Based on the fitness, a selective pressure is applied to the 

chromosome population. The selection operator by doing so directs the algorithm to 

regions of search space where there is increased probability of finding an optimal 

solution. Commonly used selection methods are: 

a) Roulette wheel selection 

b) Rank selection 

c) Tournament selection 

d) Elitist selection 

e) Stochastic universal sampling 

The Roulette wheel selection is a traditional selection method employed in 

GA. In this selection method, the chromosomes are selected based on their relative 

fitness. A roulette wheel is imagined having a number of pockets or slots filled with 

chromosomes, whose size depends on the individual chromosome’s fitness. For a 

population having N chromosomes, the wheel is spun N times. The individual on the 

wheel at which marker stops is selected to form the mating pool of parents. The 

Roulette wheel selection is shown in Figure 2.9.  

 

Figure 2.9: Roulette wheel selection 
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The roulette wheel selection may cause some problem if there is a large 

difference between the fitness of chromosomes, with the best chromosome occupying 

almost the entire area of the roulette wheel. In such cases, the weaker chromosomes 

will have a negligible chance to be selected. The rank selection shown in Figure 2.10, 

sorts the chromosomes in the order of their fitness values. The worst chromosome has 

fitness 1 and best has fitness N . This selection strategy allows maintaining of diversity 

within the population but results in slower convergence.  

 

Figure 2.10: Rank selection 
 

In a tournament selection shown in Figure 2.11, UN individuals are selected 

at a time with uniform probability and are allowed to compete in a tournament. The 

winner of the competition is the individual with higher fitness and is inserted into the 

mating pool. This process is repeated till the mating pool is filled with individuals.  

 

 

 

 

 

 

Figure 2.11: Tournament selection 
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The elitist selection scheme ensures that the best individual is not lost and 

continues to prevail in the next generation, thereby maintaining its influence on the 

rest of the population. This strategy is a safeguard against the inadvertent loss of best 

individual during the crossover and mutation operations. Using this approach the 

quality of the solution monotonically increases over generations. In a stochastic 

universal sampling, the relative fitness of all individuals is evaluated and plotted on a 

line such that the length of the segment is proportionate to an individual’s fitness 

(Figure 2.11). Equally placed pointers are put on this line. The distance between each 

pointer is 
N

1
 
where N is the number of individuals to be selected. If six individuals 

are to be selected, then the pointer distance should be 1/6 or 0.167. The random 

numbers are generated between 0 and 1. The random number will fall on the line close 

to the position of the pointer. For selecting a single individual, a random number is 

drawn in the range [0, 0.167] as shown in Figure 2.12. The process is repeated till all 

the individuals are selected.  

 

Figure 2.12: Stochastic sampling (Source: Pencheva et al., 2009) 

(ii) Crossover 

Crossover or recombination operator works on two parent chromosomes to 

produce an offspring. The crossover operator thus creates new variants of the 

chromosome population by swapping parts of chromosomes, i.e. genes between two 

parent chromosomes across randomly selected crossing points                                    

(Senouci and Al-Ansari, 2009).  Some of the commonly used crossover strategies 

are: 

a) Single-point crossover 

b) Multi-point crossover 

c) Uniform crossover 

d) Scattered crossover 
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A single point crossover uses a single cross-site for a pair of parental 

chromosomes (Figure 2.13), whereas a multi-point crossover introduces numerous cut 

points in the parent chromosomes for swapping of genetic material and ultimately 

creating two offsprings (Figure 2.14). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Single-point crossover 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Multi-point crossover 

The uniform crossover operator does not use cross sites; rather it employs a 
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Figure 2.15: Uniform crossover 

The biggest problem with one point and two point crossover is its 

dependency on the position of the cross site.  Use of these crossover strategies may 

result in offsprings having almost identical chromosomal configurations in the 

subsequent generations. Sometimes it may take many generations to evolve a fitter 

offspring carrying potentially useful characteristics of the parent chromosomes. The 

scattered crossover strategy removes the dependency on crossover point by randomly 

selecting some genes from one parent and some genes from the other parent 

chromosome (Figure 2.16). 

 

 

 

 

 

 

Figure 2.16: Scattered crossover 
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adding new characteristics. Applying mutation in GA increases its search space. 

Mutation can be brought about by: 

a) Flipping 

b) Interchanging 

c) Reversing 

In the case of flipping a parent and mutation chromosome is generated 

randomly. If the bit value 1 occurs in mutation chromosome, the value in parent 

chromosomes is flipped from 0 to 1 and from 1 to 0 to produce a mutated child 

(Figure 2.17).  

 

1 0 1 1 0 1 0 1 

1 0 0 0 1 0 0 1 

0 0 1 1 1 1 0 0 

 

Figure 2.17: Mutation using flipping 

In the case of interchanging, two random positions along the chromosome 

length are chosen and after that, their values are interchanged (Figure 2.18).  

 

1 0 1 1 0 1 0 1 

1 1 1 1 0 0 0 1 

 

Figure 2.18: Mutation using interchanging 

Reversing chooses a random position along the string length and values of 

genes next to the chosen position are reversed (Figure 2.19). 
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Figure 2.19: Mutation using reversing 
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parameter settings is given by some researchers (Grenfensette, 1986;                      

Dejong and Spears, 1990). However, these cannot be universalized and are problem 

specific. Brief introduction to the various parameters used in GA are narrated as 

under: 

(i) Population size 

A larger population size promotes the probability of finding an optimal 

solution by discriminating between the good and bad building blocks but, may 

increase the time for GA to converge. However, if the population size is small, then 

the quality of the solution is left to the vagaries of chance. The typical range of 

population size is 20 to 200. 

(ii) Crossover rate 

The crossover rate determines how often the bits of strings are to be swapped 

across a pair of chromosomes. The crossover rate ranges from 0 to 1. A higher value 

of crossover rate promotes in generating more offsprings by combining the parent 

chromosomes, helping in the exploitation of the current population of chromosomes. 

(iii) Mutation rate 

The mutation rate determines the probability of genes in chromosomes 

undergoing alterations. The mutation rate ranges from 0 to 1 and controls the speed of 

GA in exploring the new areas in the search space. A lower value finds GA stuck in a 

local minimum whereas a higher value increases the search space to a level, wherein 

the possibility of GA converging to an optimal solution becomes rare.   

 

2.4 Summary 

Artificial Neural Networks (ANN) and Genetic Algorithms (GA) are 

amongst the most popular and widely used Soft Computing techniques that emulate 

the biological processes of learning and genetic evolution respectively. Although, the 

history of neural networks is quite old yet, the credit for making the neural network 

methodology popular goes to Rumelhart, Hinton and Williams for discovering the 

backpropagation algorithm in 1986. 
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The artificial neuron forms the basic computational unit in a neural network. 

A neural network is characterized by three basic entities namely, the arrangement of 

neurons and their connections, called its architecture or topology, learning algorithm 

for updating or adjusting the weights associated with connections and the transfer 

functions associated with the neuron layers. Amongst the numerous neural network 

topologies and learning algorithms, the Multilayer Feedforward Neural Network 

(MFNN) trained using error backpropagation or simply backpropagation (BP) known 

as Backpropagation Neural Network (BPNN) is the most popular and widely used for 

applications related to function approximation and pattern recognition. The 

architecture of BPNN comprises of three basic layers of neurons namely, an input 

layer, an output layer and a number of intermediate hidden layers. BP algorithm 

employs the principle of steepest descent to update the weights and biases based on 

the information presented to the MFNN. The Levenberg-Marquardt (LM) 

backpropagation algorithm is an improved BP algorithm that utilizes the conventional 

gradient descent and Gauss-Newton method to provide both efficiency and fast 

convergence.  

The genetic algorithms (GA) are population-based evolutionary algorithms 

with their foundation resting on Darwin’s Theory of natural evolution. The Genetic 

Algorithms came into vogue in the year 1975 when John Holland published his book 

Adaptation in Natural and Artificial Systems. The GA comprises of four distinct 

components namely, encoding of possible solutions as chromosomes, fitness or 

objective function, selection, recombination, and evolution. The solutions to the 

problems are encoded as genes present in the chromosomes. The GA starts with a 

population of chromosomes and at each generation the fitness of chromosomes is 

evaluated using a fitness function. The fitter chromosomes are filtered using a 

selection operator and are allowed to form the new generation of chromosomes. The 

crossover and mutation operators help the GA to create next generation of the 

population. The crossover operator exploits the current population whereas the 

mutation operator helps in maintaining the genetic diversity within the population. 

The parameters of GA, namely size of population, crossover rate and mutation rate 

bear an enormous impact on its search mechanism are therefore must be chosen 

judiciously to strike a balance between the quality of solution and the computational 

effort involved. 
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3.1 Introduction  

Neural networks inheriting the simplified biological structure and working of 

the human brain have been in vogue for the last two decades for modeling 

unstructured problems associated with multidisciplinary fields of engineering. The 

closeness to human perception has allowed neural network’s amalgamation in areas 

associated with the prediction of the complex material behavior. Among the numerous 

neural network architectures, the Multilayer Feedforward Neural Networks (MFNN) 

have been widely used by the researchers for developing mathematical models for 

highly complex and non-linear interactions between independent (input) and 

dependent (output) variables. The architecture of MFNN is represented by a number 

of artificial neurons arranged in layers that are connected in the forward direction 

only. The neural network weights form a link between the inter-layer neurons and 

therefore allow transmission of information from input layer neurons to the output 

layer neurons. The learning of the MFNN is brought about by error backpropagation 

algorithm or commonly called the backpropagation (BP) algorithm.  

The information presented to the neural network flows from the input layer to 

the output layer through a series of hidden layers. Based on the nature of information, 

the BP algorithm systematically updates the neural network weights and biases to 

reduce the error between the actual output and the output predicted by the neural 

network predicted to an acceptable minimum. The value of weights and biases used 

for initializing the BP algorithm, therefore play an important role in the efficient 

learning of the neural network. The neural network weights and biases located on 

local grade forces the BP algorithm’s entrapment at the local minima, significantly 

affecting the learning ability of the neural networks and render slow convergence to 

the global optimum. To cover up the inherent drawback of BP algorithm’s local 

search, the global search ability of Genetic Algorithms (GA) is hybridized with the 

neural networks during its training phase. The comprehensive literature review 

presented in the subsequent sections deal with the potential and the versatility of 

artificial neural networks (ANN) highlighting its applications and its hybridization 

with GA for modeling problems associated with modeling material properties of 

concrete. Based on the findings of the literature survey, the research gap has been 

identified and discussed. 
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3.2 Artificial Neural Networks applications 

3.2.1 Applications in modeling various properties of concrete 

The constituents of concrete namely, cement, fine aggregate, coarse 

aggregate, admixture, and water, render composite nature to the concrete and makes 

its material modeling a challenging task. Although, empirical relations in the form of 

regression equations derived from experimental data are traditionally in use for 

extracting knowledge about the properties of concrete, yet these do not give the liberty 

or flexibility for incorporating a number of different factors affecting the properties of 

concrete. Moreover, the empirical relations do not yield acceptable prediction 

accuracy wherein there are number variables associated with a complex physical 

phenomenon. The ability to map such complex interactions among the properties of 

concrete and its constituents is attributed to ANN’s potential to extract knowledge 

through learning and adaptability to change in the presented information. The 

literature review elaborates the applications of ANN wherein it has been widely 

applied for modeling different properties of concrete. 

Hodhod and Ahmed (2014) employed four layer backpropagation neural 

network architecture comprising of four input neurons namely, concrete cover depth, 

coefficient of chloride diffusion, threshold value of chloride and chloride 

concentration at the surface of concrete containing slag. The output neuron of the 

model comprised of time required for initiation of corrosion. The effects of the input 

parameters were studied by comparing the neural network predicted value and those 

derived from Fick’s second law of diffusion. The study showed an increase in time of 

corrosion initiation with an increase in cover of concrete and the threshold value of 

chloride. A decrease in chloride initiation time was noticed with a decrease in the 

chloride concentration at the surface and coefficient of diffusion for chloride ions. A 

close correlation between the value obtained from the empirical relationship and 

neural network predicted corrosion initiation time proved that, the neural network can 

be effectively utilized for learning the complex material behavior of concrete.   

Duan and Poon (2014) constructed two neural networks based on the data 

collected from past literature related to recycled aggregate concrete (RAC) for 

studying the importance of the factors affecting the compressive strength and elastic 

modulus of RAC. Sixteen variables influencing the properties of RAC were identified 
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and separated into two parts, one describing the factors that have a direct/predictable 

impact and the other having an indirect/unpredictable impact. The variables were used 

as input neurons for the neural network model. The compressive strength and elastic 

modulus of RAC represented the output neurons for the model. The results showed 

that the compressive strength and elastic modulus of RAC can be accurately predicted 

using the neural network methodology. Moreover, by incorporating the factors having 

an indirect or unpredictable impact into the neural network model, an enhancement in 

the accuracy of prediction was noticed.  

A non-parametric approach incorporating the use of neural networks was 

harnessed by Bal and Buyle-Bodin (2014) for modeling creep of concrete. The data 

for the study were collectively collected from the past literature and by performing 

experiments. The model of the neural network comprised of twelve input neurons 

parameters influencing the creep of concrete and one output neuron representing the 

creep of concrete. The hidden layers and their neurons were varied for evolving the 

best neural network architecture catering to the problem in hand. The prediction 

accuracy of the neural network model was compared with other traditionally used 

parametric models. The trained neural network model was further utilized to bring 

forth the effect of each parameter on the creep of concrete.  The study showed the 

effectiveness of neural network approach for modeling creep of concrete and its 

ability for correct assessment of various parameters influencing the creep of concrete.  

In one of the studies undertaken by Najigivi et al. (2013), the neural network 

was used to draw the functional relationships between the ingredients of concrete 

blended with nano-silica and ash of rice husk, media required for curing of concrete, 

time required for curing of concrete and permeability properties of the blended 

concrete. Levenberg-Marquardt (LM) backpropagation algorithm was employed for 

training the neural network. The neurons in the hidden layer were varied, and it was 

seen that the prediction accuracy of the neural network in terms of correlation 

coefficient reached a threshold value for the neural network model with twenty hidden 

layer neurons. A close correlation between the experimental outputs and neural 

network predicted values was noticeable with regard to the permeability of blended 

concrete. The study demonstrated the usefulness of the artificial neural networks in 

modeling the complex material behavior of concrete and proved to be an effective 

alternative to the traditionally used empirical relationships.  
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The temperature of concrete during curing was modeled using artificial 

neural networks by Najafi and Ahangari (2013) and compared the predictability of 

the neural networks with the linear and non-linear regression models. The 

experimental data for the study were collected by measuring the concrete temperature 

using strain gauges. A neural network model was prepared to model the temperature 

of concrete based on the time, temperature of the environment, water-cement ratio, 

quantity of aggregates, height, and diameter of the cylindrical concrete specimen. The 

neural network models were trained and subsequently tested and validated. The results 

showed that artificial neural networks could accurately predict the curing temperature 

with correlation coefficient 0.999 in comparison to linear and non-linear regression 

models with coefficient of correlation values 0.814 and 0.873 respectively. The study 

proved that, as compared to linear and non-linear regression models, the artificial 

neural networks are efficient function approximation tools for non-linear and complex 

mathematical relationships.  

Lee et al. (2012) studied the effect of concrete constituents and the state of 

concrete on the thermal conductivity of concrete using artificial neural networks. The 

neural network model was trained using the data collected from the past studies. The 

weights of the neural network were updated using LM backpropagation training 

algorithm. The numbers of hidden layer neurons were evaluated using trial and error 

procedure. An optimal neural network model with eleven input neurons and one 

output neuron was developed. The values of the thermal conductivity predicted by 

neural network model were found to be in close agreement with the measured values. 

The study proved that the backpropagation neural networks have the potential of 

accurately predicting the thermal conductivity of concrete.  

Suryadi et al. (2011) harnessed artificial neural networks for predicting the 

setting time for self-compacting concrete. The study was performed on the data 

collected from a ready mix plant and a concrete laboratory. The neural network was 

modeled with six input neurons comprising of the design proportions of concrete and 

one output neuron representing the setting time of concrete. The backpropagation 

neural network architecture and its training parameters were selected by trial and 

error. The trained neural network was subsequently tested and validated to avoid over-

fitting and to test its generalization ability respectively. The neural network predicted 

the setting time of the concrete was correlated with the setting time obtained from 
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experimental studies. The study proved that neural networks can effectively model the 

complex material behavior of concrete.  

Naderpour et al. (2010) modeled the compressive strength of fiber 

reinforced polymer concrete using neural networks to develop the design equations 

and charts. The neural network model comprised of six input neurons and one output 

neuron. The six input neurons characterized the properties of fiber reinforced polymer 

and the dimensions of the test specimen. The databases for the compressive strength 

of fiber reinforced polymer were collected by performing experiments and by 

incorporating the data available in the available literature. The compressive strength 

evaluated using the existing empirical relationships were compared with the neural 

network predicted compressive strength. The results showed that the neural network 

was able to accurately predict the compressive strength of the fiber reinforced polymer 

concrete. Moreover, the percentage error between the compressive strength predicted 

by empirical models and neural network models was found to be within ±20% range. 

Based on the compressive strength predictions provided by the trained neural network 

an equation was developed, which provided close agreement with the experimental 

results. 

The durability of concrete based on the permeability of chloride ions was 

analyzed by Parichatprecha and Nimityongskul (2009). The data for the analysis 

containing the quantity of cement, fly ash, silica fume, water, superplasticizer, coarse 

aggregate, fine aggregate and water-binder ratio were collected experimentally as well 

as from previous studies. The concrete specimens manufactured from the design mix 

proportions were subjected to rapid permeability test to evaluate the resistance of the 

concrete to chloride ion penetration. After 28 days, each face concrete specimens were 

placed in contact with NaCl and NaOH solution respectively to enable the movement 

of chloride ions. An electric current was applied and the amount of charge passed for 

the duration of 6 hours was recorded. The design mix proportion comprising of eight 

ingredients were used as input neurons and the total charge passed represented the 

output neuron for the feedforward neural network model. The number of hidden layer 

neurons and learning rate were evaluated using trial and error procedure. A multiple 

linear regression model was also developed considering the data used for training the 

neural networks. The study showed that in comparison to regression models, the 
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neural network models are efficient in modeling chloride ion permeability based on 

the design mix proportions of high-performance concrete.  

In one of the studies, the mechanical properties of concrete namely, tensile 

and compressive strength were modeled using neural network by Subasi (2009). The 

study was conducted by collecting the experimental data for tensile and compressive 

tests carried out on the concrete in which percentage of cement was partially replaced 

with fly ash. The experimental test results were recorded after 2, 7 and 28 days. A 

backpropagation neural network was used for drawing a functional relationship 

between the three input neurons namely, percentage content of fly ash, age of 

specimen in days and unit weight and two output neurons representing the mechanical 

properties of concrete. The results of the neural network model were compared with 

the first order regression model. The neural network model was shown to provide 

higher prediction accuracy than the conventional regression models. The study proved 

that backpropagation neural networks can be employed for the quick and accurate 

determination of tensile and compressive strength of fly ash concretes.  

Karthikeyan et al. (2008) developed neural network model for predicting 

creep and shrinkage in high-performance concrete. Experimental studies were 

conducted on the test specimens for 500 days and the relative humidity, volume to 

surface area ratio, compressive strength, time of loading and time of measuring creep 

and shrinkage were recorded. These parameters were used as input neurons for 

preparing a backpropagation neural network with creep coefficients and shrinkage 

strains as outputs. The hidden layer and hidden layer neurons were selected using trial 

and error process. Bayesian regularization training algorithm was employed for 

updating of neural network weights. The neural network was trained using 

experimental data, and its prediction accuracy was compared with commonly used 

empirical models. The study showed that the creep and shrinkage values predicted by 

neural network model were in close agreement with those derived from experiments, 

proving neural network’s applicability in modeling time-dependent behavior of high-

performance mixes.  

Topcu and Saridemir (2007) investigated the use of autoclaved and aerated 

waste aggregates in the concrete on the various properties of concrete namely, unit 

weight, strength, ultrasonic pulse velocity and modulus of elasticity. A neural network 

model was created based on the experimental results obtained by performing tests on 
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45 specimens. The neural network model comprised of seven inputs neurons 

representing the mix proportions of the concrete. The model was used to predict unit 

weight, ultrasonic pulse velocity, compressive strength, and modulus of elasticity for 

the concrete. The properties of concrete predicted by the trained neural network were 

found to be in agreement with the experimental values. The study showed that, 

artificial neural networks can be used for quick and accurate determination of concrete 

properties and therefore, have the potential of replacing the cumbersome experimental 

procedures.  

Kewalramani and Gupta (2006) performed experimental studies on M20 

and M30 grades of concrete specimens of different size and shape and then estimated 

the compressive strength concrete based on its weight and Ultrasonic Pulse Velocity 

(UPV) test results using neural networks. A backpropagation neural network model 

was developed with two input neurons namely, weight and UPV and one output 

neuron namely, the compressive strength of concrete. The hidden layer neurons for the 

model were evaluated using trial and error approach. The neural networks were 

trained with test data of 336 points each for cube-shaped concrete specimens A and B 

and 96 points each for cylindrically shaped concrete specimens A and B. The 

prediction accuracy of the trained neural networks was compared with multiple linear 

regression models. The study proved that, the neural networks have the capability of 

accurately drawing the functional relationships between the input-output data and can, 

therefore, be used as an alternative to non-destructive testing for accurate prediction of 

the compressive strength of concrete.  

In one of the studies, Hola and Schabowicz (2005) performed non-

destructive tests on seven different concretes and used the experimental data for neural 

network modeling of compressive strength. Among the different neural network 

training algorithms, the Levenberg-Marquardt training algorithm was selected for the 

training of the neural network. Seven inputs obtained through non-destructive testing 

were mapped to the non-destructive compressive strengths. A close correlation 

between the experimental and non-destructive compressive strengths with low relative 

errors was noticed. The trained neural network was then harnessed for predicting 

compressive strength in two buildings based on the composition of the concrete. The 

relative errors were computed as 3.70% and 4.84% respectively for the two buildings. 

The study showed that, the neural networks trained on the non-destructive test data 
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can be utilized to quickly estimate the compressive strength of building structure with 

reasonable accuracy. 

A methodology for predicting compressive strength of concrete using the 

design mix proportions was presented by Kim et al. (2004). A total 98 data for the 

study were collected from two different ready mix concrete plants and were modeled 

using backpropagation neural networks. The artificial neural network predicted 

compressive strength was compared with the experimental test data provided by the 

ready-mix companies. The average error in the compressive strengths was computed 

as 3.9%, depicting close association between the predicted and the actual compressive 

strength values. The study showed that the trained neural network models have the 

potential of quickly estimating the compressive strength of concrete before its 

placement at the site.  

Ince (2004) proposed a neural network based methodology for assessing the 

fracture parameters of concrete, by modeling the relationship between three material 

parameters namely, compressive strength, maximum aggregate size and water-cement 

ratio and stress intensity factor and crack tip displacement. The neural network model 

was developed using the test data collected from the past literature. The neural 

network model was compared with the Two-Parameter Model (TPM). The results of 

the study proved the capability of neural network models to predict the fracture 

parameters of concrete accurately. The methodology demonstrated the potential for 

solving complex problems which are otherwise time-consuming. Moreover, it was 

shown that, in contrast to empirical relationships having fixed input and output 

variables, the neural networks has a flexible modeling approach in which a number of 

other factors can be easily incorporated, and their effect on the output can be easily 

deduced. 

The experimental data of concrete compressive strength were utilized by            

Lee (2003), for developing a neural network model for assessing the strength of 

concrete at the site for estimating the appropriate time for formwork removal. Five 

different neural network models were prepared for conducting this study. The first 

model was utilized for predicting the early strength of concrete achieved within                

24 hours. The second and third models were harnessed for assessment of the 

compressive strength of concrete on the second and third day of concreting 

respectively. The fourth and fifth models were utilized for assessment of 7 days and 
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28 days of concreting respectively. These measurements were recorded with respect to 

the curing temperature and humidity values. The compressive strength predicted by 

the trained neural network models were compared with an empirical relationship. The 

results showed that, the compressive strength predicted by the neural network model 

were in close association with the experimental data. The study highlighted the 

flexible nature of neural network modeling, through which sufficient number factors 

influencing the compressive strength of concrete can be incorporated for developing a 

sufficiently accurate mathematical model.     

Ni and Wang (2000) utilized the neural networks to model relationship 

between the eleven parameters that influence the concrete compressive strength and 

the 28 days compressive strength of concrete. For conducting the study an MFNN was 

developed and was trained using experimental test data and data collected from a 

concrete mixing plant. The trained ANN model was seen to predict the compressive 

strength of concrete with reasonable accuracy. The trained ANN model was further 

used to simulate the compressive strength with a change in the cement dosage, 

sand/aggregate ratio and fineness modulus of sand. The study showed that, neural 

networks can be very handy for quickly predicting the 28 day compressive strength of 

concrete. The simulation studies also reveal that neural network models are in close 

agreement with the rules adopted in the mix proportioning of concrete and can, 

therefore, be useful for practical applications associated with concrete strength 

prediction.   

Yeh (1998) utilized the mathematical modeling abilities of artificial neural 

networks for developing a strength prediction model for high-performance concrete 

(HPC). The study was conducted to incorporate the effect of the design mix 

proportions on the compressive strength of concrete. A backpropagation neural 

network model having eight input parameters was constructed to predict the strength 

of HPC. About 1000 samples of trial mixes from 17 different sources were collected 

for performing the study. Based on the prediction accuracy, the ANN model was 

compared with a regression formula. The trained neural network model was tested 

with laboratory experimental data. The trained ANN model was shown to have a 

higher coefficient of determination than the regression model. The study proved that 

the neural network modeling provides an accurate prediction for complex materials 
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such as HPC. Moreover, the study demonstrated the potential of neural networks for 

studying the effect of age and water-binder ratio on the strength of HPC.  

A neural network methodology for predicting the strength of concrete was 

presented by Lai and Serra (1997). The data for the study were collected from a 

thermal power station construction site. A backpropagation neural network was 

formulated with eight input neurons representing the mix proportions of concrete and 

one output neuron representing the mechanical strength of concrete. The numbers of 

neurons in the hidden layer were determined using trial and error procedure. The study 

showed that, the mathematical models based on neural network methodology are 

promising alternative to analytical formulations wherein a large number of variables 

are involved. 

 

3.2.2 Applications in modeling slump of concrete 

Concrete is the most preferred and widely used construction material 

throughout the world. Every construction activity demands that the concrete mix 

produced or transported at the site should be of high-density, to assure the stability, 

compatibility, and mobility of the fresh concrete. A fresh concrete mix satisfying the 

above qualities is said to be workable. There is no direct test for assessing the 

workability of concrete, however; it is measured quantitatively by measuring the 

slump of fresh concrete.  

Like other properties of concrete, the workability is affected by the 

proportions of the constituent materials and their individual characteristics. Several 

literatures have reported on the effect of the constituent materials of concrete on the 

workability. Water-cement ratio content is shown to be the most important factor 

governing the workability of concrete. Increasing the water content increases the 

amount of lubrication and hence improves fluidity of concrete.                     

Chindaprasirt et al. (2005) observed an almost linear correlation between water-

cement ratio and workability. The aggregate characteristics in terms of maximum 

aggregate size, aggregate/cement ratio, fine aggregate/coarse aggregate ratio, and 

aggregate shape and texture affect the amount of paste required to produce a workable 

mix and therefore influence the workability of concrete (Li, 2011). Bostanci et al. 

(2016) concluded that recycled aggregate concrete mixes required higher 

superplasticizer demand in order to achieve the desired slump compared to natural 
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aggregate concrete mixes that could be attributed to the higher water absorption of 

recycled aggregate. 

Marar and Eren (2011) reported that increasing the amount of cement in the 

mixes and decreasing aggregate content leads to an excess of water in the medium and 

hence, leads to an increase in the workability. However, too much cement content 

makes concrete sticky and difficult to finish (Daniel, 2006).                                           

Pofale and Quadri (2013) studied the utilization of crusher dust in concrete and 

found that the manufactured sand particles due to their angular shape and rough 

surface texture improve the internal friction in the mix thereby, reducing the 

workability. The natural river sand particles on the other hand owing to their cubical 

or rounded shape with a smooth surface texture, ensures a good workability of 

concrete (Mailar et al., 2016).  

Muhit (2013) showed that addition of superplasticizer increase the 

workability of concrete but their dosage must be limited in the range 0.6%-1%. 

Dumne (2014) showed that that, the concrete containing fly ash and superplasticizer 

yields good workable mix in addition to a marginal increase in compressive strength.               

Jianyong and Yan (2001) stated that concrete with 30% ground granulated blast-

furnace slag replacement level and the same superplasticizer content increased slump 

value slightly than Portland cement concrete. Sabet et al. (2013) reported that                

“ball-bearing effect” of fly ash concrete with fly ash contents of 10% and 20% 

increased concrete slump and therefore reduced the amount of superplasticizer 

required to reach target slump.  

The mathematical modeling of concrete slump is thus difficult owing to the 

different nature, type, and properties of the constituents used in the concrete design 

mix. In such cases the conventional regression equations do not provide the expected 

predictability and reliability. The lack of standard empirical relationships to judge the 

slump of concrete based on its constituents has created the interest of the researchers 

towards soft computing tools. Artificial Neural Networks (ANN) inspired by the 

learning mechanism of the human brain, present a simplified approach for modeling 

unstructured material behavior problems based on the experimental or historical data. 

The following paragraphs reviews the studies that utilize the complex function 

approximating ability of ANN for modeling the slump of concrete. 
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Bilgil (2012) studied the rheological properties of fresh concrete by 

estimating the slump value and Bingham parameters (Yield stress and Viscosity) for 

High Performance Concrete (HPC) using ANN. The ANN model comprised of six 

input neurons namely, gravel, sand, fine sand, cement, water and superplasticizer. The 

slump value, yield and viscosity were considered as the three output neurons.  The 

data of experimental studied were used for training the neural network. The neural 

network model was able to predict the slump and Bingham parameters close to the 

experimental values, proving that ANN is viable methodology for determining the 

rheological characteristics of fresh concrete.      

Boukhatem et al. (2012) utilized principal component analysis (PCA) along 

with neural networks for developing a mathematical model for predicting the slump 

and compressive strength of concrete. The study was performed by collecting data 

from the past literature and by performing the laboratory tests. The number of factors 

influencing the slump and the compressive strength of concrete was minimized using 

PCA. Backpropagation neural network trained using Bayesian Regularization was 

developed by incorporating the most important factors affecting the slump and 

compressive strength of concrete. In all six neural network models were developed for 

studying the inter-relationships among the input parameters and the properties of 

concrete containing mineral admixtures. The study showed that amalgamation of PCA 

with neural networks helps in improving the prediction accuracy of the neural network 

and reduction in the training time taken by the neural network.   

Chine et al. (2010) used the ANN to model slump of high-performance 

concrete (HPC). Eleven input parameters influencing the slump of HPC were 

identified. A multilayer backpropagation neural network was developed using 

proportions of seven ingredients used to produce HPC in kg/m
3
 namely cement, fly 

ash, blast furnace slag, water, superplasticizer, coarse aggregate and fine aggregates. 

In addition to this, four ratios namely, water to cement ratio, water to binder ratio, 

water to solid ratio and total aggregate to binder ratio were utilized to develop the 

model. Experimental data from past studies conducted were collected for developing 

the ANN and multiple regression model. The performance metrics namely, root mean 

square error (RMSE) and coefficient of determination (R
2
) was used for assessing the 

prediction accuracy of the mathematical models. The results showed that trained ANN 

yielded a lower RMSE and higher R
2
 values in comparison to the regression model. 
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The study proved that ANN methodology can be reliably used to develop 

mathematical model for nonlinear problems associated with material behavior of 

concrete.  

In one of the studies, Jain et al. (2008) used 47 laboratory observations 

comprising of concrete mix constituents and corresponding slump values for 

developing ANN based mathematical model for estimation of concrete slump. For 

conducting the study, three neural networks and three multiple linear and non-linear 

regression models were developed. The first model had mortar and coarse aggregate 

as input, while the second model had paste sand and coarse aggregates as the input 

variables. The third model had water, cement, coarse aggregate and sand as input. For 

all the models, the slump was chosen as the output variable. A multilayer feedforward 

neural network (MFNN) trained using backpropagation algorithm was employed for 

conducting the study. A trial and error procedure was employed for determining the 

optimal number of neurons for the hidden layer. The accuracy of the neural network 

prediction was compared with regression models using different performance metrics. 

The results showed that ANN is efficient in modeling the non-linear and complex 

interactions between the concrete design mix proportions and the concrete slump. The 

sensitivity analysis conducted in the study showed the effect of mortar, coarse 

aggregate, paste and sand on the slump of concrete and thus provided an insight into 

the complex nature of concrete. The slump of concrete was shown to decrease and 

then rise as the amount of mortar or coarse aggregates was increased. However, the 

concrete slump increases with paste content and decreases with sand content. The 

sensitivity analysis thus showed that, there exist a critical level of concrete mix 

constituent beyond which the behavior of concrete slump changes.  

Yeh (2008) attempted to model the effects of superplasticizer (SP) and fly 

ash (FA) on the slump of high performance concrete (HPC). The experimental data for 

103 design mix were collected for the study. An ANN model was developed using 

content of cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate 

and fine aggregate as seven inputs for predicting slump of concrete. A trial and error 

approach was used to determine the optimal number of hidden neurons. The ANN 

model was trained using backpropagation algorithm. The performance of ANN model 

compared with polynomial regression model using RMSE and R
2
 statistical metrics 

demonstrated its potential for accurately predicting slump of concrete. The trained 
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model was utilized to explore the slump behavior with water at different water-binder 

ratio, SP-binder ratio and fa-binder ratio. It was shown that partial replacement of 

cement with fly ash raised the upper limit of the slump. The SP content was shown to 

augment the slump values without increasing the water content.  

An artificial neural network-based mathematical modeling for high-

performance concrete slump (HPC) was presented by Yeh (2007). The data 

comprising of 78 concrete mix proportions and corresponding slump were collected 

for building the mathematical model. The neural network model comprised of seven 

neurons representing the proportions of concrete and one output neuron representing 

the slump value. The prediction accuracy of ANN model was compared with second 

order regression models. The ANN model showed a close association with the 

experimental data. The neural network models and regression models were further 

utilized for developing trace plots indicating the variation of fly ash, water content and 

superplasticizer on the slump value of concrete. The response trace plots showed a 

sharp increase and decrease in slump values with fly ash content. The plots of water 

and superplasticizer were shown to be identical, attaining a saturation level beyond a 

certain water content and superplasticizer dosage.  The study proved the applicability 

of neural network modeling for concrete slump and its accurate response to the 

variation of fly ash, water content, and superplasticizer content.   

Modeling slump of highly complex material Fly Ash and Slag Concrete 

(FSC) using an artificial neural network was presented by Yeh (2006). A neural 

network model with seven input neurons representing the mix proportions of concrete 

and one output neuron signifying the slump value of concrete with seven hidden layer 

neurons was created for conducting the study. A total of 78 mix proportions and their 

corresponding slump values were collected and were used to develop the workability 

model. The ANN modeling approach was compared with the conventional second 

order regression model. The results showed that the ANN model was more accurate in 

predicting the concrete slump. The response plot showed the positive influence of 

cement, fly ash and slag content on the slump value of concrete. Identical plots for 

water content and superplasticizer dosage were obtained, exhibiting their threshold 

limits for maximum slump value. The study showed that the neural network modeling 

approach can be conveniently used for prediction of concrete slump for any concrete 

design mix proportion as along as admixtures are of the same properties.  
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Oztas et al. (2006) showed the potential of Artificial Neural Networks 

(ANN) to predict High Strength Concrete (HSC) slump. 187 design mix samples of 

HSC were collected from past literature having a compressive strength in the range  

40 MPa to 120 MPa. The neural network was modeled with seven input neurons 

namely, water/binder ratio, fine aggregate ratio, and content of water content, air 

entraining agent, super-plasticizer, fly ash and silica fume in kg/m
3
. The output neuron 

of the model comprised of one neuron representing the slump value of concrete. The 

collected data was randomized, and 169 sample data were used for neural network 

training. The remaining 18 samples were employed for testing the reliability of the 

trained model. The performance of the neural network was tested using four statistical 

parameters namely, root mean squared error (RMSE), the coefficient of determination 

(R
2
), mean absolute percentage error (MAPE) and the sum of squared errors (SSE). A 

trial and error procedure was adopted for determining the optimal hidden layers and 

hidden layer neurons. The results of the study showed that the values of artificial 

neural network predicted slump were in close association with the actual data. The 

study proved the effectiveness of the neural network to model the complex material 

behavior of HSC and can, therefore, be used as an alternative to trial and error 

procedure of concrete mix design.  

A mathematical model for predicting workability of concrete containing 

metakaolin (MK) and fly ash (FA) using artificial neural network was presented by             

Bai et al. (2003). The data of three standard workability tests namely, slump, 

compaction factor and Vee Bee time were collected for different concrete proportions 

and the water-binder ratio (0.4 and 0.5). A partial replacement of cement by 

pozzolanic materials namely, metakaolin and fly ash was done up to 15% and 40% 

respectively. Three independent mathematical models were constructed using neural 

networks methodology for modeling the workability of concrete based on slump test, 

Vee Bee test, and compaction factor. The results showed that neural network 

prediction was in close agreement with the observed values of workability. The ANN 

model was further used to analyze the effect of percentage replacement of cement by 

metakaolin and fly ash. The slump was shown to decrease with increase in MK 

replacement indicating its higher surface area that demands more water for desired 

workability.  The fly ash on the other hand is shown to increase workability. However, 

for mixtures having both MK and fly ash content, the slump value is shown to 
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decrease. The studies led to the conclusions that ANN based mathematical models 

trained using experimental data provide an accurate prediction of the concrete slump 

and can, therefore, be utilized for predicting of slump with a high degree of accuracy 

for concretes blended with metakaolin and fly ash. 

Dias and Pooliyadda (2001) used the data of ready mix concretes obtained 

from three batching plants for modeling the slump and 28-day strength using artificial 

neural networks. The training dataset comprised of 93 records and the remaining 44 

records were utilized for testing of the trained neural network. The mix proportion 

data was transformed into non-dimensional ratios. Similarly, data from past literature 

for high strength concrete (HSC) were collected and converted into the non-

dimensional ratio. The performance of the neural network for raw data was compared 

with that trained using dimensionless ratios. The neural networks trained using raw 

data gave greater prediction accuracy and can be used as a substitute to multiple 

regression models. The study showed that in comparison to slump modeling, the 

strength modeling required more input parameters. Moreover, a sensitivity analysis 

using trained neural network, showed its effectiveness in picking up the primary and 

secondary parameters affecting the strength of concrete.  

 

3.3 Hybrid Genetic Algorithms-Artificial Neural Networks applications 

Nature inspired computational techniques namely, GA and ANN have been 

hybridized in a number of applications. The complementing nature of these two 

distinct soft computing approaches has given an impetus to the mathematical 

modeling paradigm, through the amalgamation of global and local search algorithms. 

The stochastic global gradient free search of GA has been harnessed for evolving 

either the architecture of neural networks that included determination of optimal 

hidden layers and hidden layer neurons, transfer functions and training parameters or 

optimizing the neural network architecture through the evolution of an optimal set of 

initial weights and biases. The literature review discussed in the subsequent sections 

gives a comprehensive overview of the hybrid GA-ANN applications in modeling 

material behavior of concrete, Civil Engineering and multidisciplinary fields 

respectively. 
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3.3.1 Applications in modeling material behavior of concrete 

Yu et al. (2016) presented a knowledge management (KM) methodology for 

ready-mixed concrete using artificial neural networks coupled with genetic algorithms 

to facilitate effective production processing. The methodology was applied in the KM 

system to predict the 28-day concrete compressive strength. The neural network was 

modeled using water, cement, metakaolin, fine aggregate and coarse aggregate content 

as input neurons and compressive strength at 28 days as output neuron. The genetic 

algorithm (GA) is applied to compute the weight and threshold values. The results 

showed that, in comparison to randomly initialized backpropagation neural network, 

the neural network initialized with GA optimized weights and biases have improved 

the convergence rate and prediction accuracy.   

The compressive strength of concrete was predicted by Nikoo et al. (2015) 

by using artificial neural networks and genetic algorithms. Cylindrical concrete 

samples were tested for 28 days compressive strength and the experimental results 

were utilized for modeling the compressive strength.  The water-cement ratio, 

maximum sand size, amount of gravel, cement, 3/4 sand, 3/8 sand and coefficient of 

soft sand were used as inputs for ANN model. The number of hidden layers, number 

of neurons and synaptic weights for the ANN model were optimized using GA. 

Various learning algorithms were evaluated and compared with EANN for complexity 

and accuracy. The prediction results were compared with conventional multiple linear 

regression model (MLR). The evolutionary artificial neural network (EANN) model 

was shown to outperform the MLR model. The sensitivity results showed that water-

cement ratio and 3/8 sand were the most and the least effective parameters 

respectively for the compressive strength of concrete.  

Yuan et al. (2014) applied two hybrid models namely, backpropagation 

neural networks optimized by GA and adaptive-network-based fuzzy inference system 

(ANIFS) respectively, for investigating the effect of various structured and 

unstructured factors affecting the concrete compressive strength. For the analysis 

purpose, 180 sample data comprising of 28-day compressive strength were collected. 

The neural network model consisted of seven input neurons namely, amount of 

cement, blast furnace slag, fly ash, water, super-plasticizer, coarse aggregate and fine 

aggregate. The output neuron comprised of the 28-day compressive strength of 

concrete. The optimal numbers of hidden layer neuron were evolved using trial and 
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error procedure. The validation data set comprising of 30 test sample data was used to 

monitor the trained neural network’s generalization ability. GA was used to optimize 

neural network by evolving the optimal values of initial thresholds and weights. The 

ANIFS was also applied to the data, for prediction of the compressive strength. The 

study showed that both hybrid models can be effectively applied to problems, for 

which linear and non-linear regression models do not provide sufficient accuracy and 

predictability. A comparison of hybrid GA-ANN and ANFIS showed that ANFIS has 

ease of use and offers a reliable model for prediction of concrete compressive 

strength.  

Gopala Krishna Sastry et al. (2014) studied the strength properties of 

concrete reinforced with steel fibre and harnessed the neural network’s data 

processing ability for the development of a macro-mechanical model. Mechanical 

properties of concrete namely, compressive strength, split tensile strength, flexural 

strength, and compaction factor were evaluated experimentally using different water-

cement ratio, aggregate-cement ratio, fibre percentage and aspect ratio of steel fibres. 

An ANN model was developed to predict the mechanical properties based on different 

water-cement ratio, aggregate-cement ratio, fibre percentage and aspect ratio of steel 

fibres. The number of hidden layer neurons was determined using trial and error 

method. A genetic algorithm was hybridized with neural network for evolving the 

initial weights for backpropagation training algorithm to avoid the drawback of 

backpropagation algorithm getting trapped at local minima. The study showed that the 

neural network hybridized with genetic algorithms was able to predict the mechanical 

properties close to experimental values with percentage accurate close to 95%. The 

hybridization of a neural network with genetic algorithm thus ensured that the 

backpropagation algorithm does not fall into local minima, thereby improving 

prediction accuracy. 

Gorphade et al. (2013) created a prediction model using neural network for 

three different strength characteristics of High Performance Concrete (HPC) namely, 

compressive, tensile, flexural and its modulus of elasticity based on four input 

variables namely, ratio of water-binder and aggregate-binder, type of admixture and 

replacement of cement by the admixture in percentage. The genetic algorithm was 

incorporated in the training phase of the neural network to cover up the drawback of 

backpropagation training algorithm slow convergence to the global minimum.   The 
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optimal initial weights for backpropagation algorithm were evolved using the 

evolutionary search of genetic algorithms, to aid faster convergence. The neural 

network model with 24 hidden layer neurons was used for the present study. A total of 

300 exemplar patterns were used for modeling the strength of high-performance 

concrete. The hybrid neural network model took just 2000 training cycles to attain the 

desired performance goal. The hybrid genetic algorithm based neural network was 

shown to give prediction accuracy close to 95% accuracy when presented with unseen 

data. The study proved that the hybrid methodology can be successfully employed for 

evolving a mathematical model for predicting strength characteristics of HPC. 

 

3.3.2 Civil Engineering applications 

Bagheri et al. (2015) hybridized artificial neural networks with genetic 

algorithms for modeling and optimization of activated sludge bulking for a real 

wastewater treatment plant. The sludge volume index (SVI) was predicted by 

hybridizing multi-layer perceptron (MLPANN) and radial basis function artificial 

neural networks (RBFANN) with genetic algorithm (GA). The weights and biases for 

the neural network were optimized using GA. The MLPANN was trained using 

various learning algorithms. The Levenberg-Marquardt (LM) training algorithm 

provided the ideal model with the lowest RMSE. The results showed that the 

MLPANN-GA was more efficient than the RBFANN-GA in modeling the SVI. 

Moreover, an increase in prediction accuracy of all models was noticed when these 

models were hybridized with GA.  

Momeni et al. (2014) hybridized GA with ANN for modeling the bearing 

capacity of piles. Dynamic load tests conducted on precast concrete piles were 

collected and used for modeling the pile bearing capacity. The entire dataset was 

randomized and divided into two parts namely, training dataset and testing dataset 

respectively. The neural network architecture comprised of five input neurons namely, 

cross-sectional area (A), length (L), pile set (S), hammer weight (W) and drop weight 

(H). The pile bearing capacity in kilo-Newtons was considered as the output neuron. 

A trial and error procedure was utilized for determining the numbers of hidden layer 

neurons. The neural network model having eight neurons in the hidden layer gave the 

minimum testing error and was chosen for the modeling purpose. GA was harnessed 

for evolving the initial weights and biases of the neural network. The ANN model was 
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trained using LM training algorithm, because of its efficiency compared to the other 

backpropagation techniques. The prediction accuracy of hybrid GA-ANN trained 

using LM algorithm was compared with the conventional ANN using the coefficient 

of determination (R
2
) statistical metric. The ANN-GA model gave a higher R

2
 value 

than the conventional ANN model. Enhancement of the prediction accuracy of the 

ANN model was noticed when the ANN model hybridized with GA. Sensitivity 

analysis for determining the input parameter influencing the most on the output 

parameter was also conducted. The sensitivity analysis showed that weight of the 

hammer and geometrical properties of the pile are the most important parameters 

influencing the pile bearing capacity.  

Chandre Gowda and Mayya (2014) developed two models for prediction of 

streamflow in natural rivers. Both the mathematical models were prepared using 

neural networks, but with two distinct training algorithms, namely backpropagation 

algorithm and genetic algorithm. For developing the neural network model, the 

rainfall data of twelve rain gauge stations and the stream flow data were collected. 

The rainfall for the current time and lagged by one day and two days along with 

stream flow for lagged by one day and two days, formed the five input neurons for the 

neural network. The neural network model had only one output neuron comprising of 

discharge for the current time. The hidden layers neurons were selected by adopting 

trial and error procedure. The operators of genetic algorithms namely, selection, 

crossover were applied for optimizing the weights of the neural network and were 

used for initializing the training of the neural network using the backpropagation 

algorithm. The performances of neural network models trained using two distinct 

methodologies namely; backpropagation and genetic algorithm were compared using 

five different statistical parameters. The results showed that the neural network model 

trained using optimized weights derived from genetic algorithms was able to give 

higher prediction accuracy than the conventional backpropagation neural network. 

The observed values of the stream flows were found to be in close agreement with 

those predicted using the genetic algorithm neural network. The study showed that the 

presented methodology compared to the conventional backpropagation training was 

effective in dealing with the complexities of hydrological forecasting.  

A model for prediction of river water quality was prepared by                     

Ding et al. (2014), by incorporating a hybrid methodology harnessing the strengths of 
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principal component analysis (PCA), GA and ANN.  The water quality data 

comprising of 23 influencing factors were collected from a lake located in China. The 

PCA was used to select the most relevant parameters influencing the water quality. 

Out of 23 water quality parameters, 15 have been chosen using PCA. A total of 2680 

sample data were collected and were divided into two categories, namely non-polluted 

and polluted water. GA was then used to evolve the weights and thresholds for the 

neural network. The BPNN was trained using LM algorithm to improve the 

convergence speed. The hybrid model was tested using five-fold cross-validation 

technique to ascertain its prediction accuracy. The study showed that, in comparison 

to backpropagation neural network, the ANN model trained using GA was able to 

reach a smaller mean square error. The study thus proved the efficacy of global search 

genetic algorithm in minimizing the probability of backpropagation algorithm 

convergence to a local optimum, thereby improving the prediction accuracy of the 

ANN. 

A model for predicting reference evapotranspiration (ETo) for Mosul station 

located in Iraq was presented by Abdullah et al. (2014). The data comprising of five 

parameters, namely maximum and minimum air temperature, hours of radiation, 

relative humidity and wind speed were collected for 26 years. A feedforward 

backpropagation neural network with the above input parameters and reference 

evapotranspiration as output parameter was constructed with ten hidden layer neurons. 

A hybrid genetic algorithm–neural network model was also formulated using the same 

data, comprising of three hidden layers instead of one used in the feedforward 

backpropagation neural network. The prediction accuracy of the feedforward 

backpropagation neural network was first compared with empirical relationships 

proposed by Penman-Monteith. The study showed that ANN model and hybrid ANN 

model were able to provide good prediction efficiency and were able to cover up the 

need for comprehensive data required for prediction of ETo using the Penman-

Monteith equation. In contrast to the neural network model, the hybrid neural network 

model showed higher prediction accuracy, thereby providing a suitable substitute for 

conventional Penman-Monteith equation for prediction of reference 

evapotranspiration (ETo).  

In one of the studies by Asadi et al. (2013), a hybrid neural network was 

employed to study the complex rainfall-runoff interactions. The methodology 
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comprised of four stages, namely pre-processing of data, application of genetic 

algorithm (GA) for optimal evolving of the neural network weights, tuning of the 

optimal weights using Levenberg Marquardt backpropagation (LMBP) algorithm and 

finally a comparison of the results with the actual runoff data. The pre-processing of 

data was performed by selecting the variables using stepwise regression and applying 

the K-means clustering to reduce the complexity of the entire data. The time series 

data for the last 12 years were collected and using the data pre-processing technique, 

the rainfall and runoff time series were found to be more related to the runoff. The 

pre-processed evolutionary Levenberg-Marquardt neural networks (PELMNN) 

methodology presented in the paper showed faster training, good ability to imbibe 

complex rainfall-runoff processes and higher accuracy in comparison to the studies 

performed earlier.  

Miao et al. (2013) collected the concrete dam deflection data for 24 months 

and analyzed them for prediction of dam deformation. A neural network was modeled 

with seven neurons in the input layer and one neuron in the output layer. The neurons 

in the hidden layer were determined using trial and error approach. 20 data samples 

were used for training, and the rest was used for testing of the trained neural network. 

Three different neural network models were trained and tested for this purpose, 

namely a backpropagation neural network using gradient descent to update weights, a 

Levenberg-Marquardt utilizing strengths of Gauss-Newton algorithm and gradient 

descent algorithm and a hybrid genetic algorithm trained Levenberg-Marquardt neural 

network. In the study, the weights and bias of the neural network were evolved using 

the stochastic search rendered by genetic algorithm. The performances of trained 

models were compared using the mean square error criterion. The results showed that 

the neural network model hybridized with genetic algorithm amalgamated the 

strengths of genetic algorithms and Levenberg-Marquardt algorithm, to give close 

prediction agreement with the actual data even in the case of scarce training data. The 

study thus proved the utility of neural network modeling in predicting dam 

deformation and the ability of genetic algorithm in the improvement of prediction 

accuracy and faster convergence of the neural network.  

A displacement analysis of concrete framed building subjected to earthquake 

forces was performed by Nikoo et al. (2012) using genetic algorithm and neural 

networks.  A typical reinforced concrete building having four stories and four bays 
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were analyzed using a commercial software using acceleration values 0.1 g to 1.5 g. A 

neural network is created to model the damage caused due to earthquake forces by 

considering seven inputs namely frequency, acceleration, acceleration 0.1, 

acceleration 0.2, Peak ground acceleration (PGA), normalized distribution of 

displacement of frames and time duration of the earthquake. The damage to the 

building was measured in terms of a damage indicator, and it formed the output 

neuron for the neural network model. A total of 416 exemplar patterns were generated 

and trained using three different neural networks, namely Multilayer Perceptron 

(MLP), Feedforward neural network (FF) and Radial Basis Function neural network 

(RBF). The architecture of these neural networks was optimized by harnessing genetic 

algorithm for evolving the number of hidden layers, hidden neurons, activation 

function and the training algorithm. The prediction accuracy of the neural network 

models was evaluated by comparing the root mean squared error (RMSE) and 

correlation coefficient (R). Based on the results, the MLP model in comparison to FF 

and RBF models was shown to be efficient in predicting structural damage. The study 

thus proved the effectiveness of evolutionary neural networks in determining damage 

vulnerability of concrete buildings during earthquakes and can, therefore, assist in 

decision making for planning alternative retrofitting measures.  

Johari et al. (2011) modeled the mechanical behavior of unsaturated soils by 

hybridizing neural networks with genetic algorithms. The neural network architecture 

comprised of eight input neurons namely, initial gravimetric water content, degree of 

saturation, initial dry density, net mean stress with respect to pore-air pressure, axial 

strain, deviatoric stress, volumetric strain and soil suction. The three output neurons 

represented the deviatoric stress, volumetric strain, and suction at the end of each 

increment of axial strain. The neurons in the hidden layer were deduced using trial and 

error procedure. The database for neural network training and testing consisted of 

experimental data obtained from testing 23 unsaturated specimens. Out of these 23 

specimens, 18 were prepared by static compression and the rest were prepared by 

dynamic compression. The 15 test results out of 18 test results obtained from testing 

of 18 specimens were utilized for training of the network, and the remaining 3 test 

results were utilized for testing of the trained neural network. Genetic algorithm was 

used for determination of optimum weights of the backpropagation neural network. 

The results showed that the hybrid genetic algorithm backpropagation neural network 
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(GABNN) provided good accuracy in training and testing phases. Sensitivity analysis 

was also performed to assess the effect of various parameters namely, dry density, the 

degree of saturation and initial net mean stress and it was found that the trained model 

was able to correctly capture the material behavior of unsaturated soils.  

In one of the studies, Huang and Wang (2011) harnessed hybrid neural 

networks for the time series forecasting. The genetic algorithm stochastic search was 

applied for finding time-lag for time series, hidden layer neurons, and weights of the 

neural network. For forecasting purposes, backpropagation algorithm was used. The 

observed data comprised of rainfall and corresponding monthly stream flow for 

Liujiang River in China. The conventional and most popular technique of generating a 

time series namely, auto regressive integrated moving average (ARIMA) was 

compared with the single neural network, radial basis function neural network and 

hybrid artificial neural network-genetic algorithm. The models were compared on the 

basis of three statistical metrics namely, the normalized mean squared error (NMSE), 

Pearson relative coefficient (PRC) and mean absolute percentage error (MAPE). The 

values of the performance metrics showed that the neural network model 

amalgamated with genetic algorithm, was able to provide better rainfall forecasting. 

The study proved the effectiveness of hybrid neural network for modeling complex 

rainfall-runoff phenomenon.  

Jalalkamali and Jalalkamali (2011) used artificial neural networks along 

with genetic algorithms for creating a mathematical model for estimation of 

groundwater levels in Kerman province of Iran based on the data of rainfall depth, 

temperature and depth of water in wells recorded in the last 22 years. In the study, two 

different hybrid mathematical models, namely Feedforward Neural Network-Genetic 

Algorithm (FNN-GA) and Recurrent Neural Network-Genetic Algorithm (RNN-GA) 

were used. Both these models were optimized using genetic algorithms. The genetic 

algorithms stochastic search was applied for evolving the hidden layer neurons for 

FNN and RNN models. A number of trials were conducted by altering the input layer 

neurons. The results showed that an increase in the number of input variables or 

neurons does not increase the efficiency of prediction; rather it leads to increase in the 

complexity of the network. Based on the results, the study recommended the ratio of 

input neurons to hidden layer neurons as 3. The study showed that the hybrid neural 

network models, FNN-GA, and RNN-GA were able to closely forecast the monthly 
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water level in the wells although FNN-GA model showed slightly higher prediction 

accuracy.       

A methodology for predicting uplift pressures for Diversion Dam was 

presented by Baghalian and Nazari (2011) by utilizing neural network’s function 

approximation ability and genetic algorithm stochastic search for determining the set 

of optimal initial weights.  A multilayer feedforward neural network (MFNN) was 

used for modeling uplift pressure based on the piezometric head measured with 

respect to X and Y coordinates of the dam, computed by solving the Laplace’s 

Equation. The neural network training was performed by utilizing two different 

techniques namely, genetic algorithms and backpropagation. The genetic algorithms 

trained neural network provided a lesser error between actual and predicted outputs 

than the conventional backpropagation technique. The study thus proved that the 

methodology is effective in predicting uplift pressure under the diversion dams.  

Yinghua and Chang (2010) studied the monitoring data of an arch dam to 

model the displacement of the dam using artificial neural networks. The data of 

various observation points located on and within the dam structure were collected. 

Principal component analysis was performed to find out the most relevant parameters 

out of the twelve recorded parameters. Two critical parameters were selected and by 

varying the hidden layer neurons, a final architecture of 2-9-1 was adopted for 

modeling purposes. The weights of the neural network were optimized by, applying 

genetic algorithms during the training phase of the neural network. The 

backpropagation algorithm was initialized with these optimized weights and trained 

further to match the actual output. The hybrid neural network model was able to 

converge in only 671 epochs as against 2210 epochs taken by the traditional 

backpropagation algorithm. The accuracy of prediction of the hybrid genetic 

algorithm-neural network model was compared with stepwise regression. The results 

showed the neural network model optimized using genetic algorithm, had good 

potential of modeling dam monitoring data but presented limited possibilities of 

modeling dam displacements based on parameters related to water, temperature and 

age of the dam. 

In one of the studies Ni, Zhang, and Liu (2010) used the water quality test 

data for the last five years of Taihu Lake, China, for building a neural network based 

water quality prediction model. The neural network model is constructed to draw a 
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functional relationship between five different water quality parameters of a month and 

the same parameters for the subsequent month. The neural network model thus 

consisted of five input neurons and five output neurons comprising five quality 

parameter of every month and the same quality parameters relating to the next month. 

The hidden layer neurons and optimum values of weights and thresholds for the neural 

network were evolved using a genetic algorithm. The study showed that the genetic 

algorithm aided neural network provided higher degree prediction accuracy close to 

the actual data during training and testing of the neural network. Moreover, in 

comparison to conventional backpropagation learning, the hybrid genetic algorithm-

neural network was able to learn the training patterns quickly. The study proved the 

applicability of genetic algorithm in evolving optimized neural network structure and 

ensuring convergence to global optimum quickly. 

Majdi and Beiki (2010) presented the utility of stochastic search ability of 

Genetic Algorithms in finding the optimal number of neurons in hidden layer, learning 

rate and momentum coefficient of the neural network. The methodology was applied 

for evaluating the deformation modulus for rock masses based on the database 

collected from the dam sites and powerhouses located in Iran. The three important 

parameters for determination of deformation modulus of rock masses namely, rock 

mass quality designation, uniaxial compressive strength and geological strength index, 

were determined by performing principal component analysis on the original database. 

These three parameters represented the neurons for the input layer of the neural 

network. The output neuron of the network comprised of deformation modulus. The 

design of neural network architecture using genetic algorithms was started by creating 

a random population of chromosomes representing the neurons in hidden layer, 

learning rates and momentum coefficients of hidden and output neural network layers. 

The genetic algorithm stochastic search was able to find the optimum parameters for 

the neural network in just 53 generations. The prediction accuracy of the proposed 

hybrid neural network was compared with the neural network evolved using trial and 

error procedure. The results of the study demonstrated that the genetic algorithm 

evolved optimal neural network parameters resulted in greater prediction accuracy of 

the neural network model.  

Sedki et al. (2009) applied real coded genetic algorithms for evolving neural 

network weights to cover up the limitation of the backpropagation algorithm’s 
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entrapment at local minima. The methodology was applied to the semi-arid catchment 

region of Morocco. The daily rainfall-runoff data of last four years (2000-2003) was 

collected for this purpose. The entire data was split into two parts, namely training 

data, comprising of daily rainfall-runoff data of the year 2000-2002 and testing data, 

comprising of daily rainfall-runoff data of the year 2003. The neural network 

architecture consisted of for input neurons comprising of rainfall and runoff for past 

four days. The expected run-off for the day represented the neuron in the output layer 

of the neural network. The hidden layer neurons were varied, and the optimal numbers 

of neurons were selected by adopting trial and error. The genetic algorithm was 

hybridized with the neural network for determining the initial weights, and 

subsequently, these weights were adjusted using backpropagation algorithm to create 

a trained neural network. The prediction accuracy of the hybridized neural network 

model was compared with backpropagation neural network using the root mean 

square error (RMSE) and coefficient of determination (R
2
) value. The results 

demonstrated that the proposed methodology gave consistent and improved 

predictions than the traditional backpropagation neural network. The study proved the 

effectiveness of neural network model trained using genetic algorithms for modeling 

the complex rainfall-runoff phenomenon. 

Zhang and Wang (2008) amalgamated the global search ability rendered by 

genetic algorithm (GA) and the local search ability rendered by the backpropagation 

(BP) neural network for determining the probability of earthquake occurrence based 

on the factors affecting the likely hood of earthquakes in a particular region. A three 

layered neural network was constructed with seven input neurons, 15 hidden layer 

neurons, and one output neuron. The training of neural network was accomplished 

using the backpropagation algorithm and the maximum, and minimum thresholds of 

the interconnecting weights were evaluated. The GA stochastic search is then 

employed for optimizing the weights in the search region specified by the maximum 

and minimum threshold values. The ANN trained using the BP algorithm was then 

compared with ANN optimized using GA. The trained models were applied to               

5 sample data to evaluate their prediction accuracies. By employing this methodology, 

the learning speed of the backpropagation neural network is increased, and the best 

neural network architecture is evolved. The study also showed that the hybrid model 
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provided the higher prediction accuracy and greater consistency in the prediction of 

earthquakes.  

In one of the studies, Nasseri et al. (2008) coupled multi-layer perceptron 

neural networks trained using backpropagation algorithm with genetic algorithms for 

forecasting rainfall. The study incorporated the utilization of genetic algorithms for 

deriving the optimal rain-gauge stations in the neighborhood and their lag times for 

prediction of rainfall. The amalgamation of genetic algorithm with neural networks 

led to the selection of input parameters affecting the rainfall and extracting 

information regarding the spatial distribution of the rainfall. Simulation studies were 

performed to validate the prediction accuracy of the trained neural network. For this 

purpose, seven models with different lag times were examined. Sensitivity analysis 

was conducted on the seven models using discrete and cumulative rainfall data for 

finding out the effect of the lag times. The methodology presented for the short term 

rainfall provided accurate predictions and was effective in reducing the neural 

network complexity. A comparison of this method with conventional neural network 

showed improvement in rainfall prediction accuracy. Reduction in input parameters 

and identification of the major lag time was also achieved through sensitivity analysis. 

The methodology, therefore, proved effective in modeling highly complex 

phenomenon of rainfall.  

Sudarsana Rao and Ramesh Babu (2007) hybridized neural networks with 

genetic algorithms for developing a tool for designing of beams subjected to bending 

and shear. The training patterns for the neural networks were collected from the 

design experts. The design examples consisted of applied moments, shear and breadth 

of the beam in the range 30 kN-m to 125 kN-m, 30 kN to 120 kN and 250 mm to 350 

mm respectively. Two different grades of concrete namely M20 and M25 were 

considered for the design purpose. The design output comprised of beam depth, the 

area of steel reinforcement and spacing of shear stirrups. The neural network was 

prepared by assuming five input neurons namely, moment, shear, the characteristic 

compressive strength of concrete, grade of steel reinforcement and breadth of beam. 

The output neurons of the network consisted of an area of reinforcement, the spacing 

of shear stirrups and depth of the beam. A trial and error technique was adopted for 

finalizing the optimal number of hidden layer neurons. The genetic algorithm in the 

study was used for optimizing the neural network weights for improving the quality of 
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the solution. The weights of the neural network were coded as chromosomes and were 

subjected to genetic operators namely, selection, crossover, and mutation for evolving 

their optimal values. It was found that the hybrid neural network has been able to learn 

the design problem in just 1000 epochs. The results showed that the hybrid neural 

network methodology was efficient in predicting the area of steel reinforcement, the 

spacing of shear stirrups and depth, close to the values given by the design experts. 

The study thus proved the effectiveness of the trained hybrid neural network in 

providing the safe design of beams subjected to bending moments and shear without 

performing multiple design iterations or referring to design codes or charts.  

An auto-design of neural networks through genetic algorithms was proposed 

by Sahoo and Maity (2007) for assessing the structural damage. The exemplar 

patterns for the neural network training were simulated through finite element 

analysis. The exemplar patterns included frequencies and strains as inputs and the 

location and amount of damage to the structure as outputs. The hidden layer neurons, 

learning rate, and momentum factor were coded as chromosomes of genetic 

algorithms. The stochastic search of genetic algorithms was applied to evolve the 

hidden layer neurons, learning rate and momentum coefficient. The hybrid genetic 

algorithm-neural network methodology was implemented for two structures namely, 

clamped-free beam and plane frame. The study showed that the method provided good 

prediction accuracy with percentage error in the range of 2.5 % to 2.8%. 

Srinivasulu and Jain (2006) used three different training methods for neural 

network modeling of rainfall-runoff. They investigated and compared the 

effectiveness of backpropagation, real coded genetic algorithm, and self-organizing 

map neural network training methodologies. Three different models based on these 

methodologies were created by using stream flow data and the daily rainfall derived 

from Kentucky River basin. In the first model, the architecture of backpropagation 

neural network was determined using trial and error by altering the number of hidden 

layer neurons. The second model was created by using the real coded genetic 

algorithm to train this neural network architecture. Finally, for the third model self-

organizing map was used for drawing the rainfall-runoff relationships. The 

performance of these models was compared using seven different statistical 

performance metrics. The comparative study showed that neural networks trained 

using real coded genetic algorithm were able to outperform the prediction accuracy of 
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backpropagation neural networks and self-organizing maps. Also, the neural networks 

trained using real coded genetic algorithm was able to provide consistent predictions 

during training and testing phases.  

In one of the studies undertaken by Sudrasana Rao et al. (2006), the stress-

strain response of ceramic-matrix-composites comprising of aluminum oxide and 

silicon carbide were simulated using a neural network. The results of the finite 

element model for the ceramic-matrix-composite as suggested in earlier studies were 

used for development of neural network training patterns. A neural network model 

comprising of four input neurons namely, interface strength, failure mode, strain level 

and square of interface strength along with output neuron corresponding to stress level 

was prepared. The hidden layers and corresponding hidden layer neurons of the neural 

network were arrived by trial and error process. A two hidden layer neural network 

was selected with sigmoidal transfer functions. Genetic algorithm was utilized for 

evolving the initial weights for backpropagation algorithm training of the neural 

network. This hybridization was done to minimize the training cycles required by the 

neural network. The results showed that the hybrid neural network has been able to 

learn quickly in just 2000 cycles as compared to 32000 cycles required by the 

conventional backpropagation algorithm. The trained neural network effectively 

learned the nonlinear stress-strain relationships and was subsequently tested for the 

patterns not included earlier during the training phase. The hybrid neural network was 

able to predict the stress-strain behavior close to the finite element analysis and can, 

therefore, the methodology can considerably reduce the computational effort in 

arriving at the stress-strain behavior. The study showed that the genetic algorithm 

based backpropagation model has the ability to minimize the requirement of handling 

large volume of finite element analysis data and therefore can be effectively 

implemented on a personal computer without requiring a larger memory.  

Wu and Chau (2006) hybridized genetic algorithm with the artificial neural 

network model for forecasting flood in Yangtze River of China. The model was used 

for forecasting of water levels at the downstream of a station on the basis of water 

levels recorded at the upstream of the recording station. A total of 1456 input-output 

datasets was collected and divided into three datasets, namely training, validation and 

testing datasets. The genetic algorithm was applied for computing the neural network 

optimal weights and threshold values. The hybrid neural network model was 



Chapter 3: Literature Survey 

 

70 
 

compared with the neural network, genetic algorithm and linear regression models. 

The study demonstrated that the hybrid neural network model was able to deal with 

the over-fitting problem of neural networks, and better prediction accuracy was 

achieved at a faster convergence. However, this was achieved at the expense of higher 

computational time taken by the hybrid neural network. However, the study proved 

the effectiveness of hybrid neural network in accurate prediction of the flood of the 

channel reach between the two stations. 

Sudarsana Rao and Ramesh Babu (2006) hybridized neural networks with 

genetic algorithms for modeling percentage reinforcement of short columns subjected 

to biaxial bending. The backpropagation neural network was used to model the 

percentage reinforcement of the short column based on eight design inputs namely, 

axial load, biaxial moments (moments in two directions), breadth and depth of 

column, concrete grade, grade of steel reinforcement and effective cover in both 

directions. The design experts were presented with different problems about biaxial 

column design. Adopting this methodology, 220 exemplar patterns for neural network 

training were generated. The neural network architecture with five hidden layer 

neurons was selected by trial and error process. Genetic algorithms were harnessed for 

evolving the neural network synaptic weights to mitigate the possibility of 

backpropagation neural network entrapment at a local minimum. The study 

demonstrated that by the hybridizing neural network with a genetic algorithm, the 

speed of learning can be enhanced. Moreover, the percentage reinforcement predicted 

by the trained hybrid model was found to be in close agreement with that obtained by 

the interior penalty function optimizer and, therefore, proved that neural networks can 

be used for safe and economical of columns subjected to biaxial bending.  

In one of the studies by Kim et al. (2004), the historical data about 

construction costs of 530 residential building projects were used for creating an 

artificial neural network based cost estimation model. A backpropagation neural 

network utilized for this purpose comprised of twelve input neurons and one output 

neuron. The neurons in the input layer consisting of the parameters affecting the total 

cost of the projects and output neuron represented the actual cost of the project. The 

genetic algorithm was used for determining the number of hidden layer neurons, 

momentum coefficient, and learning rate. A two hidden layer artificial neural network 

was able to provide better prediction than one or three hidden layers neural network. 
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The neural network comprising an optimal number of hidden layer neurons and 

training parameters evolved through genetic algorithms, was able to provide greater 

predictive accuracy than neural network evolved through trial and error. The study 

proved the effectiveness of the hybridized genetic algorithm-neural network in the 

development of a cost estimation model at the early stage of the project execution.  

The strength of lateritic soils was modeled by Attoh-Okine (2004) using a 

hybrid genetic algorithm-neural network methodology. For the development of the 

strength model, tests were conducted on the lateritic soils located in Ghana. The test 

values corresponding to field dry density, relative compactness, field moisture 

content, lab maximum dry density, lab optimum moisture content, plasticity index, 

liquid limit and field California bearing ratio (CBR) were collected from 45 pavement 

test location sites. The genetic algorithm was amalgamated into the training phase of a 

neural network for evolving optimized neural network weights. Five different neural 

network architectures were developed with a various set of input neurons. The CBR 

value formed the output neuron for the neural network. It was found that field density 

was the single most important parameter influencing the CBR value of the lateritic 

soil. The study showed that for lateritic soils, the CBR value bears a simple correlation 

to the field density and hence this information can be harnessed for easy determination 

of CBR value of pavements resting on lateritic soils. The study also showed that the 

neuro-genetic model was more efficient in identifying the critical inputs for 

determination of CBR value.     

A methodology for prediction of crack width in precast jointed reinforced 

concrete beams was developed by Avila et al. (2004). Two distinct modeling 

approaches were used, one using backpropagation and the other incorporating the 

stochastic search of genetic algorithms for the training of neural networks. A series of 

two beams with different geometrical properties, reinforcement, and anchor bar 

configuration were loaded vertically. The load was increased in increments till failure 

of the beam was noticed. The crack width was evaluated at two upper limits of tensile 

stresses namely, 200 MPa and 300 MPa respectively. A total of 24 beams were tested, 

and the experimental results were considered for generating the data for the neural 

network modeling. The values of two input neurons were evaluated using empirical 

relationships based on anchor bar configuration and spacing of reinforcement bars. 

The maximum crack width formed the output neuron for the neural network model. 
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The neural network training was performed using two different training algorithms 

namely, backpropagation and genetic algorithms respectively. The results showed 

that, by optimizing connection weights through genetic algorithms, a significant 

reduction in prediction error can be achieved. Regardless of the fact that the genetic 

algorithm training required more time in comparison to backpropagation algorithm 

training, the accuracy derived from the genetic algorithm training of neural network 

outperformed the performance of the backpropagation algorithm.  

 

3.3.3 Multidisciplinary applications 

Many applications have hybridized GA with conventional backpropagation 

neural networks (BPNN). Some of the notable recent applications harnessing the 

methodology include, detection of status of rotary components in agro-industrial 

machines (Martinez-Martinez et al., 2015), evaluating bridge health using results 

from fiber Bragg grating sensor (Ai and Guo, 2014), predicting water stage during 

typhoon events (Liu and Chung, 2014), classification of tea specimens               

(Plawiak and Maziarz, 2014), prediction of fracture in low-permeability reservoirs                 

(Xue et al., 2014), classification model for cotton yarn quality (Amin, 2013), 

correlation of density in nanofluids (Karimi and Yousefi, 2012),  forecasting ozone 

concentration (Feng et al., 2011), and prediction of saturates of sour vacuum gas oil                     

(Wang et al., 2010). 

During last few decades, a number of improved training algorithms namely, 

Levenberg-Marquardt (LM) backpropagation algorithm, Resilient backpropagation, 

Scaled Conjugate Gradient, One Step Secant, etc. Amongst these, the LM 

backpropagation algorithm owing to its faster convergence has been widely used with 

GA for training the Multilayer Feedforward Neural Network (MFNN). Some of the 

notable recent multidisciplinary implementations of hybridizing GA with the 

Levenberg-Marquardt backpropagation neural networks (LMBNN) include, 

approximation of phenol concentration (Plawiak and Tadeusiewicz, 2014), 

hypoglycemia detection using EEG signals (Nguyen et al., 2013), automotive price 

forecasting (Peyghami and Khanduzi, 2012), stock exchange index prediction                          

(Asadi et al., 2012), and determination of dimensions of asymmetric coplanar 

waveguide (Wang et al., 2012). 
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3.4 Conclusions of the literature survey    

The broad conclusions derived from the literature survey are summarized 

under: 

a) The backpropagation (BP) algorithm trained Multilayer Feedforward Neural 

Networks (MFNN) are good function approximators. They have been 

extensively harnessed for tasks associated with modeling of physical 

phenomenon and material behavior, wherein conventional regression models 

do not yield the desired accuracy and predictability. 

b) All previous studies related to modeling slump of concrete have harnessed 

BP algorithm trained MFNN.  

c) In most of the past studies, the optimal number of hidden layers and their 

neurons for neural network model have been determined by adopting trial 

and error technique.  

d) The neural network training is accomplished by iterative updating of neural 

network weights and biases through backpropagation of error to reduce the 

error between the actual and predicted outputs to an acceptable minimum. 

The error surface of any function required to be approximated contains many 

local minima and one global minimum. The steepest gradient descent 

methodology of backpropagation algorithm requires initial weights and 

biases to be located near global minimum, to allow its faster convergence. 

Conversely, initial weights and biases located near a local minimum increase 

the probability of the algorithm getting trapped in a local minimum and 

eventually would either never reach the global minimum or would require a 

significant number of iteration cycles to reach the desired performance goal. 

The accuracy and the convergence rate of the neural networks trained using 

backpropagation algorithm thus depend to a large extent on the initial 

weights and biases. 

e) Hybridization of GA with the MFNN trained using backpropagation 

algorithm improved the prediction accuracy of MFNN and enabled faster 

convergence to the global optimum. This improvement is largely attributed to 

the initial neural network weights and biases optimized using the global 

search rendered by GA. The backpropagation algorithm initialized using 
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optimal weights and biases were able to improve the accuracy the MFNN and 

quickly converged to the global minima. Thus, hybridization of GA with 

BPNN was able to cover up the inherent drawback of the backpropagation 

algorithm. 

f) A survey of literature has revealed that very few applications related to 

modeling properties of concrete have utilized the hybrid Genetic Algorithms-

Artificial Neural Networks (GA-ANN) methodology. 

g) Among the various improved backpropagation training algorithms like 

Resilient Backpropagation, BFGS Quasi-Newton, One Step Secant and 

Scaled Conjugate Gradient, the Levenberg-Marquardt (LM) backpropagation 

algorithm provides both prediction efficiency and fast learning to the MFNN. 

In most of the applications, the LM algorithm has been hybridized with GA 

to improve the convergence speed and prediction accuracy of the trained 

neural network.  

 

3.5 Research gap 

The literature survey has revealed that MFNN trained using backpropagation 

algorithm has been the preferred choice for the researchers for modeling unknown, 

complex or nonlinear functional relationships related to either physical phenomenon 

or material behavior. However, it has certain drawbacks, which can be covered up by 

adopting a hybrid methodology to train the MFNN. A survey of the literature has 

shown that extensive civil engineering and multidisciplinary applications have 

harnessed the hybrid GA-ANN methodology. Despite numerous applications of 

hybrid GA-ANN, very few studies in the past have employed GA-ANN methodology 

for modeling material behavior of concrete. Moreover, this methodology has not been 

so far employed for modeling slump of concrete. Apart from the modeling 

methodology, the relative importance of concrete’s design mix constituents on the 

concrete slump value using the weights of the trained neural network model has not 

been quantified so far. 
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4.1 Introduction 

Workability is an important physical property of fresh concrete that governs 

the ease with which concrete can be placed and compacted at the site with sufficient 

resistance to bleeding and segregation. This property is primarily governed by three 

factors namely, the rheological properties of the cement paste which act as a lubricant, 

the intermolecular friction of the aggregate particles and the friction between the fresh 

concrete and the formwork surface during its placement at the site (Yeh, 2007). 

Workability represents the internal work required to overcome these frictional forces 

to achieve full compaction of concrete. There is no direct test for measuring the 

workability in terms of the mechanical work. However, an indirect test known as 

slump test is commonly used in the laboratory and site for assessing the consistency 

and homogeneity of concrete. In actual practice, the slump test is repeated with 

different trial mixes proportions for designing a concrete catering to specific 

workability requirement. This experimental procedure is time-consuming. Moreover, 

traditionally used empirical equations do not provide an accurate assessment of the 

interactions between the different constituents and their overall effect on the slump of 

concrete. Thus, the complexity of material behavior exhibited by concrete due to a 

large number of constituents exhibiting different property necessitates a non-

algorithmic approach to material modeling.  

Artificial Neural Networks (ANN) is a biologically inspired computing tool 

that has been widely used by researchers for modeling unstructured problems. Based 

on the information processing paradigm, ANN derives immense learning ability by 

simulating the connectionist architecture of the human brain. The basic strategy for 

developing ANN based material models is to train the network with an adequate 

number of experimental results. The adaptive nature of these models re-organizes its 

architecture to imbibe the complex relationship underlying the interactions between 

the various material constituents and the property defining the material behavior. It is 

brought about by a training algorithm that updates the weights and biases through the 

forward propagation of information and backpropagation of errors. 

Among the various architectures of ANN, the Multilayer Feedforward Neural 

Network (MFNN) trained using backpropagation (BP) algorithm has proved to be the 

most versatile tool for tasks associated with function approximation and modeling of 

material behavior. However, the accuracy and convergence speed of MFNN model is 
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heavily dependent on the initial value of weights and biases for BP algorithm. To 

cover up the inherent drawback of BP algorithm, the stochastic search of genetic 

algorithm (GA) through simulation of the biological evolutionary processes is utilized 

for determining the optimal initial value of weights and biases for the BP algorithm to, 

assist effective modeling of concrete’s material behavior.   

The study deals with the modeling slump of Ready Mix Concrete (RMC) 

based on the proportions of its design mix constituents using hybrid GA-ANN 

methodology. The sub-sections of the chapter comprehensively deal with the 

collection of exemplar data for modeling concrete slump, preparing training, 

validation and test datasets, normalization of data, developing the neural network 

architecture, hybrid methodology for modeling the slump of ready mix concrete, 

developing regression-based models for concrete slump, comparing the performance 

of the slump models, quantifying the importance of various constituents of RMC on 

the slump value, assessing the universal applicability and accuracy of the trained 

hybrid neural network model for predicting slump for the design mix proportions 

collected from a different RMC plant and developing a decision support tool to aid 

quick estimation of concrete slump. 

 

4.2 Material 

4.2.1 Collection of data and its description 

The exemplar data for developing a neural network model for concrete slump 

were collected from a particular RMC batching plant to minimize the error caused due 

to variations in the physical and chemical composition of the raw materials used in 

manufacturing the ready mix concrete. The data constituted the design mix 

proportions of concrete and their slump value. In all a total of 493 design mix 

proportions of concrete grade M10 to M35 comprising of concrete constituents 

namely, cement, pulverized fuel ash, sand, coarse aggregate (20mm), coarse aggregate 

(10mm), superplasticizer and water in kg/m
3
, along with the slump value in mm were 

collected from the first batching plant. The data was used for the developing the 

model for the concrete slump. The details and statistics of the data utilized for model 

development are exhibited in Table 4.1. 
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Table 4.1: Details and statistics of the exemplar RMC data used for modeling slump  

RMC data 
 Statistics   Specific 

Gravity  Min. Max. Mean SD  

Cement (kg/m
3
)  100 450 273.0406 73.5491  3.15 

Pulverized fuel ash (kg/m
3
)  0 200 62.1440 52.1081  2.10 

Sand (kg/m
3
)  472 900 763.7363 53.4742  2.66 

Coarse aggregate 20mm 

(kg/m
3
) 

 412 764 576.9736 52.1550  2.65 

Coarse aggregate 10mm 

(kg/m
3
) 

 343 682 532.7728 46.5083  2.65 

Superplasticizer (kg/m
3
)  0.00 5.80 3.7072 0.6767  1.15 

Water (kg/m
3
)  105 190 166.6227 8.7324  1.00 

Slump (mm)  90 190 157.7992 8.2315  - 

 

4.3 Methodology for modeling slump of RMC using hybrid Genetic 

Algorithms-Artificial Neural Networks 

4.3.1 Splitting data into training, validation, and test datasets 

The neural networks imbibe the information processing characteristics of the 

human brain through a network of closely connected computational units called the 

artificial neurons. In supervised learning, the neural networks are trained to learn from 

examples and are subsequently validated to assess their generalization ability. Once 

trained, the neural networks are tested for evaluating the network error. Therefore, 

splitting of the available data into three parts is a major step in the development of 

neural network model (Maier et al., 2010). However, there are no specific rules 

regarding the percentage of data contained in these subsets. In the present study, 70% 

of the available or overall data are allocated for training and the remaining 30% are 

equally divided for performing validation and testing of the neural networks.                   

The training data set is presented in the form of matched input-output 

configuration, to allow the systematic updating of weights and biases of the neural 

network model. Once the network error, measured in terms of squared error between 

the actual and predicted outputs reaches a threshold limit, the neural network is 

considered as trained. This trained neural network may or may not yield the same 
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prediction performance or generalization when presented with an unseen data set. This 

phenomenon is attributed to over learning or overfitting of the training data set by the 

neural network. To strike a balance between the learning and the generalization of the 

neural network, validation error is monitored at each iteration cycle by indirectly 

incorporating the validation data set during its training. The early stopping of the 

neural network training is undertaken, if the validation error begins to rise. The 

information in the form of data available in the training, validation, and test dataset, 

therefore, influence the learning ability of the neural network during the training 

phase, its generalization when presented with unseen data and the overall performance 

of the trained neural network model respectively. The importance of data division is, 

therefore, necessitated for the effective mathematical modeling of a phenomenon 

using ANN. The data collection and division of data for the present study is 

schematically shown in Figure 4.1. 

 

 

 

 

 

 

 

 

Figure 4.1: Data collection and preparing data for neural network modeling 

The amount and the nature of data or information comprising the training 

data set are critical for the successful performance of the neural network, due to its 

inability to extrapolate the predictability beyond the data range used during training                     

(Flood and Kartam, 1994; Tokar and Johnson, 1999). Masters (1993) also 

concluded that if the training data set is not completely representative of the 

population, it may lead to neural network overfitting. Hence, the training data set 

should be large enough (Flood and Kartam, 1994; Ray and Klindworth, 2000) and 

must extend to the edges of the modeling domain to incorporate all possible variations 
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in the available data (Bowden et al., 2002; Kamp and Savenije, 2006). Therefore, it 

is ensured that the minimum and maximum values for each exemplar pattern are 

included in the training dataset, and the entire data is divided into three statistically 

similar and representative subsets such that, their statistics namely, mean and standard 

deviation (SD) are marginally different from that of the population (Table 4.2). 

 

4.3.2 Data normalization 

The activation function or transfer function introduces non-linearity in the 

multi-layer perceptrons (Arbib, 1995) and augments the ability of the network to 

robustly deal with input-output relations that are either undefined or complex in nature             

(Shamseldin et al., 2002). The non-linear activation functions commonly used for the 

backpropagation neural network are logistic sigmoid or tangent hyperbolic. The 

output range of these activation functions is bounded and, therefore, demands pre-

processing of the training data so that they fall within the minimum-maximum range 

of the activation function. An individual scaling of input and output patterns is usually 

done to maximize the variance in the available data (Kalogirou, 2003) for obtaining 

good results and significantly reduces the computation time (Nawi et al., 2013;                

Sola and Sevilla, 1997). The data normalization also helps the neural networks to 

efficiently learn features comprising of different identities by minimizing the bias 

within the network towards a particular feature (Priddy and Keller, 2005), to ensure 

that all features get same significance during the training phase                                       

(Maier and Dandy, 2000). 

In the present study min-max normalization given by Equation 4.1 having 

the advantage of preserving the distribution of the corresponding features has been 

used to linearly transform the data to fall within a defined range [-1, 1].  
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where, normp  is the normalized value of the variable p whose maximum value is maxp  

and the minimum value is 
minp . After neural network is trained, validated and tested, 
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            Table 4.2: Statistical parameters of training, validation, and test datasets 

RMC data constituents 

Training (346 datasets) 

 

Validation (74 datasets) 

 

Test (73 datasets) 

Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD 

Cement (kg/m
3
) 100 450 272.2138 73.2201  120 450 276.1351 76.6385  100 450 273.8219 72.9490 

Fly Ash (PFA) (kg/m
3
) 0 200 62.9046 52.3338  0 160 60.3243 52.0189  0 120 60.3835 51.7476 

Sand (kg/m
3
) 472 900 764.7062 53.6481  546 870 760.8919 54.8234  546 860 762.0274 51.8242 

Coarse Aggregate 20mm (kg/m
3
) 412 764 576.9595 52.8755  438 764 578.5000 49.9636  486 730 575.4931 51.5305 

Coarse Aggregate 10mm (kg/m
3
) 343 682 532.7312 47.6015  428 680 533.3243 45.8269  408 593 532.4109 42.3496 

Superplasticizer (kg/m
3
) 0.00 5.80 3.6934 0.6659  1.30 5.50 3.7731 0.6365  1.50 5.50 3.7059 0.7668 

Water (kg/m
3
) 105 190 166.3815 8.8421  150 186 168.6216 8.2340  150 185 165.7397 8.5163 

Slump (mm) 90 190 157.6734 8.2272  115 190 158.6486 8.1214  115 170 157.5342 8.4213 
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4.3.3 Neural network architecture and training parameters 

Artificial neural networks are a simplified abstract of a human brain, as they 

learn from examples and can store the acquired knowledge through inter-neuron 

synaptic connection value denoted as weight. The artificial neuron carries an 

additional input called bias b which is interpreted as an additional weight. The bias 

has a constant value and plays a major role in the efficient learning of the neural 

network. The artificial neurons form the computational processing units for neural 

network model. The architecture of an artificial neural network (ANN) is defined by 

the interconnection of the neurons arranged in layers, a learning algorithm for 

systematic updating and adjusting of weights and biases and an activation function. 

MFNN is the most commonly used neural network architectures. The artificial 

neurons arranged in layers designated as “input layer,” “output layer” and a number of 

intermediate “hidden layers”, form the topology for a MFNN. This type of topology 

permits only inter-layer connections among the artificial neurons in the forward 

direction only. The processing units called the neurons receive the input signals from 

their neighboring neurons. The signal is processed through a transfer function, and the 

output is propagated to the next layer. 

The input layer neurons help in feeding the information into the neural 

network. The information is propagated from the input layer neurons to the output 

layer neurons through a series of hidden layer neurons through the inter-layer neuron 

links called the synaptic weights. A positively valued weight propagates the signal in 

the forward direction, whereas a negative value inhibits the signal. The output 

produced by the neural network received at the output layer neurons is compared with 

the actual or target value. The weights and biases are repetitively adjusted to render 

the computed network error to an acceptable minimum. The updating and adjusting of 

the weights and biases of the neural network are brought about by a learning 

algorithm. The error backpropagation or simply backpropagation (BP) algorithm is the 

most widely used training algorithms due to its simple implementation. The BP 

algorithm comprises of forward propagation of information for computing network 

error for a given set of weights and biases and a back propagation of this error for 

modifying weights and biases. The BP algorithm employs the principle of steepest 

gradient descent to adjust the neural network weights and biases iteratively to reduce 

the network error to an acceptable minimum.  
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The MFNN trained using the BP algorithm, are a popular choice for the 

researchers in dealing with tasks associated with the mapping of nonlinear functional 

relationships. In the study, the MFNN has been created using the Neural Network 

Toolbox included in the commercially available software MATLAB 7.1 (R14 SP3) 

(Version 7.1.0.246). The design mix proportions of the RMC namely, cement, 

pulverized fuel ash (PFA) or fly ash, sand, coarse aggregate (CA) 20mm, coarse 

aggregate (CA) 10mm, superplasticizer (SP) and water, form the seven input neurons 

of the input layer. The slump value of concrete is designated as the output layer 

neuron. The hidden layers and hidden layer neurons are needed in the neural network 

for improving the learning and generalization ability of the neural network and are 

thus governed by the complexity of the function to be approximated, the number of 

training cases and the inherent noise in the data (Sovil et al., 1997). Too many hidden 

layers and/or hidden layer neurons over-trains the neural network, enhancing its 

memorizing power and significantly affecting its recognizing ability, leading to poor 

generalization.  

Studies conducted in the past for determining the optimal number of hidden 

layers have indicated that, any complex non-linear function can be approximated to an 

acceptable degree of accuracy by a single hidden layer of ANN (Cybenko, 1989; 

Funahashi, 1989; Hornik et al., 1989; Jalili-Gazi Zade and Noori, 2008;               

Noori et al., 2009; Noori et al., 2010) and an increase in the number of neural 

network hidden layers may not result in significant performance improvements                    

(Patuwo et al., 1993). Numerous studies for determining the optimal number of 

hidden layer neurons for neural network architectures have been performed                   

(Hunter et al., 2012; Jinchuan and Xinzhe, 2008; Molga, 2003; Pendharkar and 

Rodger, 2003; Shibata and Ikeda, 2009; Tamura and Tateishi, 1997;                     

Zhang et al., 1998 ). Despite numerous “rules of thumb”, the number of hidden layer 

neurons are decided by a trial and error procedure, starting with a minimum number 

and gradually increasing till no further improvement in the generalization of the 

network is noticed (Nawari et al., 1999; Poulton, 2002). 

For a trained neural network model, ideally the network error i.e., difference 

between target or actual value and the model predicted value,
 

 iii PTe   
 
for all 

observations should be preferably close to zero.  In such a case, the average network 

error measured in absolute term shall be close to zero. Moreover, the standard 
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deviation of the network error shall be small and errors shall be confined in close 

vicinity of the mean error.  

In view of the above, eleven different topologies of the neural network 

having one hidden layer and neurons in the range 4 to 15 were examined ten times for 

evaluating the optimal number of hidden layer neurons and their learning and 

generalization ability have been assessed using two performance metrics namely, 

standard deviation (SD) of errors and mean absolute error (MAE). The standard 

deviation (SD) of error for each trial is computed using Equation 4.3. The average 

standard deviation of errors (AVSD) is evaluated for ten successive trials using 

Equation 4.4. The mean of absolute error for each trial is computed using             

Equation 4.5, which is subsequently averaged for ten successive trials using 

Equation 4.6 for evaluating the average mean absolute error (AVMAE). This 

methodology was implemented on both training and validation datasets. The topology 

of the neural network, which gave the least value of the performance metric during the 

validation phase, was selected for the modeling purpose. 
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where, iT  is the target or actual value and iP  is the predicted value of the slump for 

the i th data, e  is the network error e  is the mean of the network error, N  is the 

number of data patterns and TrialsN  is the number of trials. In the present case TrialsN
 
is 

taken as 10. 

The initial range of neural network weights and biases has a significant effect 

on the convergence speed. Sietsma and Dow (1991), Gallagher and Downs (1997), 

and Staufer and Fisher (1997) suggested that the initial weights and biases should be 
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initialized to small random values. In the present study, before training the neural 

networks, the weights and biases were randomized and initialized in the range               

[-0.5, 0.5]. This is primarily done to break the symmetry (Li et al., 1993) and to keep 

the network out of unstable equilibrium caused due to initialization of neural network 

with the same values of weights and biases. Gomes et al. (2011) concluded that the 

performance and the computing time of the neural network are also influenced by the 

type of training algorithm employed for iterative updating of weights and biases and 

the kind of transfer function.  

A number of modified versions of the standard backpropagation algorithms 

are available for training the MFNN. In contrast to the other modifications of 

backpropagation algorithms, the Levenberg-Marquardt (LM) algorithm harnesses a 

second order nonlinear optimization technique (Adamowski et al., 2012) that 

combines the speed of Gauss-Newton algorithm and the stability rendered by the 

steepest descent algorithm (Wilamowski et al., 1999). The advantages of faster 

convergence and efficiency to seek good quality local minima rendered by the LM 

algorithm, has made this algorithm a first choice among the researchers for supervised 

training of neural networks. The present study uses the Levenberg-Marquardt (LM) 

backpropagation algorithm for the systematic updating of the neural network weights 

and biases for MFNN. This neural network is hereafter called the                         

Levenberg-Marquardt backpropagation neural network (LMBNN). 

In most of the tasks associated with ANN modeling, a certain degree of non-

linearity is essential, which is rendered by introducing a differentiable transfer 

function (Zhang, 1998). Among the numerous non-linear transfer functions, the 

logistic and tangent hyperbolic transfer functions are generally used for applications 

associated with function approximation (Zheng, 1999). The logistic and tangent 

hyperbolic transfer functions squashes the inputs in the range [0, 1] and [-1, 1] 

respectively. The tangent hyperbolic function because of a broader range in 

comparison to logistic function is shown to provide a greater response to a small 

deviation in the input. Moreover, the tangent hyperbolic transfer function is shown to 

render faster convergence of learning algorithms (Bishop, 1995;                           

Karlik and Olgac, 2011; Ozkan and Erbek, 2003). Owing to the advantages 

exhibited by the tangent hyperbolic function, this transfer function has been used in 

the hidden layer, and a linear transfer function has been used for the output layer to 
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facilitate comparison of actual and predicted slump values. The flowchart depicting 

the typical neural network architecture for the study with five hidden layer neurons 

trained using backpropagation algorithm is shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Training of MFNN using backpropagation algorithm 

Cement 

PFA 

Sand 

CA (20 mm) 

CA (10 mm) 

SP 

Water 

b 

F1 

Neuron 

Processing 

∑ 

b 

F1 

Neuron 

Processing 

∑ 

b 

F1 

Neuron 

Processing 

∑ 

b 

F1 

Neuron 

Processing 

∑ 

b 

F1 

Neuron 

Processing 

∑ 

b 

F2 

Neuron 

Processing 

∑ 
Slump value 

(Predicted) 

INPUT LAYER HIDDEN LAYER OUTPUT LAYER 

PROPAGATION OF INFORMATION 

Slump value 

(Actual) 

 COMPARE 

BACKPROPAGATION OF ERRORS 

Updating weights and biases to minimize error 

Transfer function 

(Output layer) 

Transfer function 

(Hidden layer) 



Chapter 4: Modeling and Analyzing Concrete Slump 

86 
 

4.3.4   Neural network optimization using genetic algorithms 

  Genetic algorithms (GA) are evolutionary search and optimization 

algorithms that replicate the nature’s biological evolution process in a computing 

environment through the use of evolution and genetic operators. Inspired by “survival 

of the fittest” heuristic, the algorithms harnesses probabilistic operators, that work 

simultaneously on a number of solutions and can be applied to either mixed, discrete 

or continuous nature of optimization problems and therefore have a distinctly different 

approach in comparison to conventional optimization algorithms that employ 

deterministic operators, work on a single solution point at a time and cannot be 

conveniently modified to deal with the different nature of optimization problems 

(Lagaros et al., 2002). Moreover, GA’s global search amalgamates exploration and 

exploitation of the solution space to find a solution to complex, non-linear problems 

and offers gradient-free optimization, to render practical alternatives to unstructured 

problems wherein the gradient information is either unreliable or difficult to compute. 

Although, the LM backpropagation algorithm offers fast convergence speed 

due to Gauss-Newton algorithm, yet its steepest gradient descent part relies on the 

gradient information of the error surface which is not always deterministic and 

therefore, its probability of reaching a global optimum and finding satisfactory 

solutions is not guaranteed as it is likely to get trapped in local minima in the 

proximity of the algorithm’s starting point in the solution search space. GA on the 

other hand, by offering a gradient-free approach carries lesser probability of getting 

trapped in local minima. However, since the GA performs randomized global search, 

its convergence to the global optimum is quite slow. It demands a complementing 

hybrid methodology that can extract the benefits of the individual technique while 

covering up their limitations.   

 The hybrid methodology for modeling slump of RMC presented in the study 

thus comprises of two stages. The first stage utilizes the global optimization and 

search of GA for evolving the optimized initial weights and biases for MFNN. The 

Genetic Algorithm Toolbox included in the commercially available software 

MATLAB 7.1 (R14 SP3) (Version 7.1.0.246) has been used for this purpose. In the 

second stage, the LM algorithm starts with the GA evolved optimized set of weights 

and biases and iteratively updates and fine tunes these weights and biases to reach a 
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global optimum. The hybrid GA-LMBNN methodology flow chart is exhibited in 

Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3:  Evolving initial weights and biases for MFNN using GA and subsequent 

training and validation of LMBNN 
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Broadly, the hybrid GA-LMBNN modeling methodology depicted in               

Figure 4.3 comprised of the following steps:  

1. Evolving weights and biases for ANN using GA 

a. Initialization of GA with population of chromosomes 

The GA’s stochastic search and optimization process work on a set of 

chromosomes that describe the possible solutions to a problem. The size of 

the initial population of chromosomes plays a critical role in successful 

convergence of GA to a global optimum as, a small sized population due to 

lack of enough genetic material may fail to cover the entire solution search 

space, and a larger population may converge to a global optimum but at the 

expense of greater computational time (Khan et al., 2008). In the light of the 

issues narrated above, an initial population of chromosomes is chosen to 

balance the performance and computational time of GA.  

b. Evaluating chromosome fitness 

The fitness of a chromosome is a measure that indicates the quality of the 

solution and its closeness to the optimum value                                               

(Ben-Romdhane et al., 2013) and thus helps in differentiating the optimal 

solution from numerous sub-optimal solutions. In the present study, the 

possible solutions to the problem namely, the weights and biases coded as the 

chromosomes are assigned to the neural network. The training data set 

comprising of N number of input-output pairs are presented to the neural 

network and the objective is to minimize the mean of squared errors (RMSE) 

computed for the actual or target slump value iT
 
and the ANN predicted 

slump value iP  given by Equation 4.7. The root of the mean of squared 

errors has been considered as the fitness function )( fitnessF is given by the 

equation:  

RMSEF fitness         (4.7) 

where,  
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c. Creating the next generation of population 

The GA models the biological adaptation process that selects the fitter 

chromosomes having a greater chance to the reproduce, adapt and survive to 

the change in the environments and conditions. It is achieved using three 

basic stochastic operators namely, selection, crossover and mutation, 

synonymous to the biological operators of natural selection and genetic 

inheritance.  

i. Selecting the fitter chromosomes 

This operation is algorithmically achieved by using a selection operator that 

picks the chromosomes based on their fitness function value. The higher the 

fitness function value, the greater is the probability of a chromosome to be 

represented in the next generation of the population, thereby enriching the 

next generation with fitter chromosomes. Using this approach, the selection 

operator reduces the search area of GA within the population by, filtering out 

the poor solutions.  

In the present study, this is achieved by using a tournament selection strategy 

which provides a chance to all individual chromosomes to be selected thus, 

maintaining the diversity in the population. A mating pool is created, and all 

chromosomes are inserted into this pool to compete with each other to select 

the winner. An increase in the size of the tournament diminishes the chance 

of weaker individuals to be selected. Therefore, tournament selection strategy 

is suitable for small sized problems (Razali and Geraghty, 2011). 

ii. Applying variation operators  

The variation operators used in GA can be categorized as recombination or 

crossover operators and mutation operators that help in creating the new 

population of chromosomes from old ones. These genetic or variation 

operators, namely crossover and mutation form the backbone of the GA and 

yield power to its search operations (Lin et al., 2003). Using these operators, 

the GA can concentrate on the search regions where there are greater 

possibilities of finding a global optimum.  
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The crossover operator exchanges the information of the parent 

chromosomes and based on the historical information that, a currently good 

solution was found in the region, it exploits the current population to focus on 

a localized region of the search space. In the present study, a scattered 

crossover has been adopted. If all the pairs of the parent chromosomes are 

used for creating offsprings, the crossover fraction  cP  is 1, or the 

probability of crossover is 100%. Past studies have suggested that the 

probability of crossover should be kept high (Lin et al., 2003;                           

Mellit et al., 2010; Senouci and Al-Ansari, 2009; Tan et al., 2014), so that 

the parent chromosomes are replicated to a lesser extent in the next 

generation. 

In contrast to the crossover operator that performs the exploitation of the 

current solution, the mutation operator augments the exploratory power of 

GA. The mutation operator flips the genetic material within the chromosome 

thereby, maintaining genetic diversity in the population, mitigating premature 

convergence and prohibiting the search process to fall into local minimum. 

The present study uses the uniform mutation that, replaces the value of a 

chosen gene with a random number uniformly distributed between upper and 

lower bound values allocated for that gene. The probability of mutation 

expressed as a percentage or mutation rate  mP expressed as a ratio 

determines how often genes on the chromosomes will be flipped. A very high 

mutation rate widens the search space to an extent that, the probability of 

convergence to global optima becomes rare. Whereas a low mutation rate 

drastically shrinks the search space, eventually leading the GA to get stuck in 

a local optimum. Lima et al. (2005) suggested that the mutation rate should 

not be higher than 30%. 

A balance between the exploitation and exploratory abilities of GA is 

maintained by altering the values of crossover fraction and mutation rate or 

probability and measuring their cumulative effect on the performance of GA 

in terms of the fitness function value. A combination of crossover fraction 

and mutation rate that provides the least value of the fitness function value 

after a predefined number of generations is adopted for GA aided 

optimization of ANN.  
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d. Stopping criteria for GA 

The GA is initialized using a set of chromosomes population. After that the 

fitness of each chromosome is evaluated, selection of fitter chromosomes is 

made, a pair of offspring is generated using crossover operator, and finally, 

the mutation operator is employed to alter chromosomes to achieve larger 

exploratory search space. The GA optimization uses the stochastic operators, 

to proceed from one generation to the next generation, with an overall 

improvement in the fitness of the chromosome population. These processes 

are stopped once the GA has reached either the maximum generations 

allowed for the optimization process or fitness function has achieved a 

minimum threshold value or no further improvement in fitness value is 

noticed for a number of consecutive generations.  

2. Applying the LM algorithm for fine tuning of GA evolved weights and 

biases 

The neural network weights and biases evolved using GA in steps (a) to (d) 

are assigned to the Levenberg-Marquardt (LM) backpropagation algorithm 

to, carry forward the optimization of neural network through fine tuning of 

the initial weights and biases. The LM algorithm uses the forward 

propagation of information and backpropagation of errors to update the 

weights and biases systematically so that the errors between actual and 

predicted outputs are reduced to a minimum threshold value. The validation 

error is monitored at each iteration cycle to check the overfitting or over 

training of the neural network. The training is stopped once validation error 

begins to rise. 

 

 

4.4 Modeling slump of RMC using first order and second order regressions  

Regression analysis is a commonly used statistical technique for constructing 

a quantitative relationship between the dependent variable and one or more 

independent variables. A regression model is characterized by a mathematical 

relationship between a single dependent variable or the response y , that is dependent 
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on k independent or regressor variables namely, kxxxx ..,,.........,, 321                  

(Montgomery, 2009). In the present study, there are seven independent variables 

represented by the design mix constituents of RMC and one dependent variable 

signifying the slump value. These models can be of first order, second order or higher 

order depending on the degree of polynomial associated with the regression equation.  

First order regression models contain a number of explanatory or independent 

variables that are employed to predict the outcome of the response or dependent 

variable. A first order regression model is also termed as Multiple Linear Regression 

(MLR) model since it fits a linear relationship between a dependent or response 

variable and a number of independent or regressor variables and its generalized form 

is given by: 

  


k

i

ii xy
1

0        (4.8) 

where, 0  is the intercept, i  ( ki ,........,2,1 ) are the partial regression coefficients 

and  is the random error. If the model contains k independent variables namely,

kxxx .....,,........., 21 (proportions of design mix constituents of RMC) each having 

unknown coefficients k ....,,........., 21  
respectively, then the response of the model 

(slump value) can be written in the form: 

  kk xxxy ............................22110     (4.9) 

or, if there are m sets of observations kiii xxx .........,,........., 21 , then the model for the i
th

 

observation is:  

ikikiii xxxy   ...............22110 , i 1, 2,………………, m  (4.10) 

Alternatively, matrix forms the above equation can be written as:                       
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The second order regression model is used to fit a curvilinear relationship 

between the dependent or response variable and a number of independent or regressor 

variables. This model represents a polynomial equation of second degree and contains 

the quadratic and the interaction effect of the two independent variables, and its 

generalized form is:  
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where, y  is dependent variable or response variable (slump of concrete) and 

jiiii  ,,
 
represents the linear, quadratic and interaction effects and 0 is the 

intercept term. The terms kji xxx ,,  represent the independent variables or influencing 

variables (proportions of the design mix constituents of RMC).  

The coefficients of the regression model defined above can be evaluated 

using the method of least squares by minimizing the sum of squares of deviations of 

the observations from true regression line or minimize 
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2 . Using this method the 

unknown coefficients of the regression line can be computed as:  

   YXXX TT 1
         (4.14) 

In the case of multiple linear regression of first order the matrix X contains 

the values of independent variables ix , the matrix  contains the unknown linear 

coefficients and matrix Y contain the values of the response variable. Apart from 

variables mentioned above, in the case of second-order multiple regression models, 

the matrix X contains the quadratic terms
2

ix  and the interaction terms ij xx
 
and matrix 


 
contain the unknown quadratic and interaction coefficients ii  and ji respectively. 

 

4.5 Evaluating performance of the models 

The performance of the concrete slump models discussed in the preceding 

section, namely GA, LMBNN, GA-LMBNN and first order and second order 

regression models are required to be assessed to compare their performances and 
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predictive accuracy. The study uses six different statistical performance metrics 

namely, root mean square error (RMSE), mean absolute percentage error (MAPE), 

correlation coefficient (R), coefficient of efficiency (E), root mean square error to the 

observation’s standard deviation ratio (RSR) and percent bias error (PBIAS) given by:  
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where,
 iT  and iP  are the target or actual value and ANN predicted value, T and P

denote the mean of actual and ANN predicted values, respectively. N are the number 

of data pairs used for the study. 

The root mean square error (RMSE) is one of the most important and widely 

used performance metrics for judging the prediction accuracy of the ANN model. It 

compares the observed or the target value with the values predicted by the model and 

computes the square root of the average of the squared residual error. RMSE measures 

the prediction accuracy of the model in terms of variance and degree of bias and 

therefore because of its quadratic nature, this error index is biased towards large errors 
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or outliers (Willmott and Matsuura, 2005). The lower the RMSE, the better is the 

prediction accuracy of the model. The mean absolute percentage error (MAPE) is a 

dimensionless error statistic, which compares the model’s errors to the actual data and 

presents them in the form of a percentage. MAPE provides an intuitive way of 

estimating the importance of the errors, but may provide meaningless comparisons 

among series if the actual or observed value in the denominator is significantly 

smaller than the error value in the numerator. This problem arises when there are 

numerous outliers in a series. MAPE statistic ranges from 0% to 100%, a lower value 

indicating good model prediction and vice versa.  

The Pearson’s correlation coefficient (R) is a statistical measure that 

quantifies the relationship between the two variables. Since the correlation coefficient 

(R) indicates the strength of two linearly associated variables, it does not yield the 

desired inferences when the relationship is not linear. The value of the correlation 

coefficient is over sensitive to extreme value outliers in comparison to the values near 

the mean (Legates and Davis, 1997), as they significantly influence the slope of the 

regression line, but is insensitive to additive and proportional errors                           

(Legates and McCabe, 1999). The value of correlation coefficient (R) varies in the 

range -1 to +1.  The value of R close to +1 indicates that the model has achieved better 

prediction accuracy with a high positive linear association between the actual or target 

value and the model’s predicted value. 

The coefficient of efficiency E or Nash-Sutcliff efficiency                                     

(Nash and Sutcliffe, 1970) is a normalized statistic that provides a ratio of two 

variances namely, residual error variance and variance in actual or target data. The 

value of this statistic ranges from -∞ to +1. The value of E close to +1 indicates a 

close agreement between the actual and predicted data and their alignment with 

respect to the 1:1 line. The value of E<0 indicates the unacceptable performance of the 

model. The E statistic is an improvement over correlation coefficient (R), as the value 

takes into account the differences in the means and variances of the actual and model-

predicted values, but still E is sensitive to the outlier values.  

The root mean square error to the observations standard deviation ratio 

(RSR) developed by Moriasi et al. (2007), standardizes root mean square error 

(RMSE) by incorporating both an error index and the standard deviation of the actual 

data. If the value of RMSE is 0 then, RSR statistic achieves an optimal value of 0 
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indicating a perfect model prediction. Hence, a lower value of RSR indicates a better 

agreement between actual and predicted values. Percent bias (PBIAS) statistic 

measures the average tendency of predicted values to be larger or smaller than their 

corresponding actual or target values (Gupta et al., 1999). This statistic is also a 

measure of the model’s ability to predict a value situated apart from the mean value. 

The optimal value of PBIAS is 0.0, which indicates a perfect model prediction. A 

positive PBIAS expressed as a percentage indicates over-prediction of the model, 

whereas a negative value indicates model’s under-prediction                                  

(Srinivasulu and Jain, 2006). 

As discussed above, a single performance metric cannot provide an unbiased 

estimate of model’s prediction ability. Hence, a combined of the above statistical 

performance metrics has been used in the study to derive holistic inferences regarding 

the prediction accuracy of the slump models. The performance of each slump model is 

evaluated using the statistical performance metrics. The model showing the best 

performance is selected for further analysis. 

 

4.6 Sensitivity analysis 

Sensitivity analysis is an important means of drawing logical inferences 

regarding a highly complex and non-linear mathematical model, without having to 

solve the complex problem. The sensitivity analysis provides the response of the 

model subjected to parametric variations, allowing to understand the internal 

mechanism of the problem and to determine the key variables influencing a system 

model. The sensitivity analysis in the present study deals with the evaluation of the 

importance of each concrete design mix constituent on the slump value and deduce the 

response on the slump value brought about by varying the proportions of each design 

mix constituent.  

 

4.6.1      Variable importance using Connection Weights method 

In the case of regression models dealing with a few variables, it is easy to 

interpret the impact of the independent variables on the dependent variables. 

Normally, the problems encountered in real life are not simple enough to be solved 
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using conventional mathematical techniques namely, linear or non-linear regression 

models. The use of ANN methodology for solving real life problems provides the user 

with the liberty of incorporating a number of inputs or independent variables 

influencing a particular phenomenon. Moreover, in contrast to the conventional 

mathematical modeling techniques requiring prior knowledge about the interactions 

between independent and dependent variables, the ANN’s adaptive nature do not 

require such prior knowledge, as they can build the underlying interactions based on 

the input-output patterns presented during their learning phase. These characteristics 

of ANN categorize them as “black boxes”. This is attributed to the internal structure 

of the trained neural network comprising a set of numbers that makes it difficult to 

relate back to the problem in a meaningful fashion (Paliwal and Kumar, 2011). 

ANNs are in vogue due to their ability to approximate almost any functional 

relationship between the input-output data pairs. However, without interpretation of 

the relative importance of the parameters in the system, the utility of the ANN is 

limited (Kemp et al., 2007). Hence, a trained neural network model that provides 

answers to interactions between the input and output parameters is therefore of prime 

importance. This requirement is emphasized in the case of modeling concrete slump 

that, exhibits a highly complex functional interaction between the concrete’s design 

mix constituents and the slump value. The composite nature of concrete does not 

allow the direct determination of the importance of its design mix constituents on the 

slump value. However, the neural network weights that form the links between the 

inputs and outputs of the ANN model also act as links between problem and solution 

(Olden and Jackson, 2002) and carry meaningful information about the problem 

within the trained neural network (Kalogirou, 2000).The neural network weights bear 

similarity to parameter coefficients of a standard regression model, and their strength 

and nature dictate the way information is processed by the neural network. A positive 

and larger value of weight increases the relative influence and association of input 

variable with the output variable. On the other hand, a negative or smaller value of 

weight suppresses this influence. The neural network weights thus provide a 

meaningful interpretation of the effect of input variables and help in understanding the 

so-called “black box” nature of ANN (Acciani et al., 2006). 

In the present study, the connection weight method proposed by                          

Olden et al. (2004) has been used to quantify the importance of design mix 
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constituents of concrete on the slump value. In this method, the product of the 

connection weights between the input node and hidden nodes with the connection 

weights from hidden node to output nodes is summed up for all input nodes and is 

defined as the relative importance of the input variable given by Equation 4.21.  

 



h

y

yzxyx wwRI
1

        (4.21) 

where, xRI
 
is the relative importance of input neuron or input variable x , y is the 

total number of hidden layer neurons, z  is the total number of output neurons,
 xyw is 

the weight of the connection from input neuron x  to hidden layer neuron y  and yzw
 
is 

the weight of the connection from hidden layer neuron y to output layer neuron z . 

The larger the sum of the product of weights xyw
 
and yzw  for a particular input 

neuron, more is the relative importance  xRI  asserted by that input neuron x  on the 

output neuron z .  

 

4.6.2 Response trace plots 

The response trace is a plot of the response of the variable as one move away 

from a standard design mix. The design mix proportions of concrete are denoted as 

weight in kilogram per cubic meter of concrete. Hence, the sum of the volume of each 

constituent is 1 m
3
, which can be denoted as: 

1
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  (4.22) 

where, W  is the weight of each design mix constituent in kg and  is the material 

density of each constituent in kg/m
3
. If any one of the constituents is varied, the 

change will be reflected on other constituents. If ir is the current volumetric proportion 

of a constituent and i is the volumetric change brought about in the constituent then, 

the new the volumetric proportion of this constituent is (Myers et al., 2009): 

iii rx           (4.23) 
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To keep the total volume equal to 1 cubic meter, the proportions of other 

constituents are changed as: 

ji
r

r
rx i

i

j

jj 


 ;
1

       (4.24)  

The revised proportions of the concrete mix are computed using the above 

method and the selected model is used to predict the response or slump based on the 

revised proportions. The slump value is then plotted along the y-axis, and the variable 

concrete design mix constituent is plotted along the x-axis to provide the response plot 

for that constituent.  

 

4.7 Assessing applicability of the developed slump model for a different 

RMC batching plant 

A total of 100 mix proportions of the concrete constituents namely, cement, 

PFA, sand, CA (20mm), CA (10mm), superplasticizer and water and corresponding 

slump value were collected from a second RMC batching plant located in the vicinity 

of the first RMC batching plant. The details and statistics of the data are exhibited in                     

Table 4.3.  

Table 4.3:  Details and statistics of RMC data used for validating the applicability of 

the developed model for concrete slump 

RMC data 
 Statistics   Specific 

Gravity  Min. Max. Mean SD  

Cement (kg/m
3
)  120 450 271.5900 73.1666  3.15 

Pulverized fuel ash 

(kg/m
3
) 

 0 200 59.4400 52.1753  2.10 

Sand (kg/m
3
)  592 900 766.9600 52.9335  2.67 

Coarse aggregate 20mm 

(kg/m
3
) 

 438 760 574.0000 51.3496  2.65 

Coarse aggregate 10mm 

(kg/m
3
) 

 348 600 534.0800 44.9728  2.65 

Superplasticizer (kg/m
3
)  1.70 5.50 3.5510 0.6950  1.15 

Water (kg/m
3
)  140 189 166.4900 8.6146  1.00 

Slump (mm)  100 170 156.7000 8.0785  - 
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The selected model for concrete slump is harnessed to predict the slump for 

the design mix proportions derived from the second RMC plant. This has been 

explicitly done to ascertain the whether the slump model developed for a particular 

RMC plant can be reliably and robustly applied for assessment of the concrete slump 

for design mix proportions of a different RMC plant.  

 

4.8 Developing decision support tool for estimating concrete slump  

The trial mix procedure for designing a concrete mix of customized 

workability involves tedious experimental procedures demanding time and resources. 

To facilitate quick determination of slump value for the concrete design mix, the study 

attempts to harness the best performing model for concrete slump for developing a 

decision support tool, which will provide a fair assessment of slump value for 

proportions of concrete design mix constituents, without performing actual slump tests 

at the batching plant. The tool is developed using the functionalities of MSExcel and 

MATLAB software. MSExcel is used as front end and MATLAB is used as backhand 

software. The neural network based model for the slump is loaded in MATLAB and 

connected to MSExcel using Excel link provided in the MATLAB. 

 

4.9 Summary 

The data for the research were collected from two different RMC batching 

plants. The data constituted the design mix proportions of concrete constituents 

namely, cement, pulverized fuel ash, sand, coarse aggregate (20mm), coarse aggregate 

(10mm), superplasticizer and water in kg/m
3
, along with their corresponding slump 

value in mm. The Neural Network Toolbox and Global Optimization Toolbox 

included in the commercially available software MATLAB 7.1 (R14 SP3)                  

(Version 7.1.0.246) were used to implement the BPNN and GA respectively. 

The data collected from first RMC batching plant were used for modeling the 

concrete slump. The entire data are divided into three statistically similar and 

representative subsets namely, training, validation and test datasets such that, their 

statistics namely, mean and standard deviation are marginally different from that of 
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the population. Before training the data are normalized to minimize the bias within the 

network towards a particular feature. The topology for a MFNN is represented by the 

number of layers, number of neurons in each layer and the type of transfer or 

activation function. In the study three layer MFNN has been used with seven input 

layer neurons representing the design mix proportions of the RMC constituents 

namely, cement, pulverized fly ash (PFA) or fly ash, sand, coarse aggregate (CA) 

20mm, coarse aggregate (CA) 10mm, superplasticizer (SP) and water and one output 

layer neuron representing the slump value of concrete. The systematic updating of the 

neural network weights and biases for MFNN is accomplished by the                      

Levenberg-Marquardt (LM) backpropagation training algorithm. This neural network 

is hereafter called the Levenberg-Marquardt backpropagation neural network 

(LMBNN). A tangent hyperbolic transfer function known for speeding up the training 

process has been used in the hidden layer, and a linear transfer function has been used 

for output layer to facilitate comparison of actual and predicted slump values. 

The average standard deviations of errors (AVSD) and average mean 

absolute error (AVMAE) for both training and validation datasets for varying number 

of hidden neurons in the range 4 to 15 were examined. The neural network topology 

that provided the least validation AVSD and AVMAE is chosen for further analysis. 

The hybrid methodology (GA-LMBNN) for modeling slump of RMC presented in the 

study comprise of two stages. The first stage utilizes the global optimization and 

search of GA for evolving the optimized initial weights and biases for ANN. For this 

purpose, the weights and biases for the selected neural network architecture are coded 

as genes of the chromosomes. In the second stage, the LM algorithm starts with the 

GA evolved optimized set of weights and biases and iteratively updates and fine tunes 

these weights and biases to reach a global optimum. The conventional LMBNN 

model, on the other hand, was initialized with random values of weights and biases in 

the range [-0.5, 0.5]. Apart from neural network models, the slump of concrete was 

modeled using the first order and second order regression models. 

The study uses six different statistical performance metrics namely, root 

mean square error (RMSE), mean absolute percentage error (MAPE), correlation 

coefficient (R), coefficient of efficiency (E), root mean square error to the 

observation’s standard deviation ratio (RSR) and percent bias error (PBIAS) to 

compare the effectiveness and prediction accuracy of the developed models. The 
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sensitivity analysis in the present study deals with the evaluation of the importance of 

each concrete design mix constituent on the slump value using connection weights 

method and deduce the response on the slump value brought about by varying the 

proportions of each design mix constituent using the response trace plots. The 

robustness and universal applicability of the slump model are assessed by, utilizing it 

to predict the slump for design mix data procured from the second RMC batching 

plant. For easing the burden of performing regular multiple trials with different design 

mix proportions, a decision support tool using the selected model is developed for 

estimating the slump at the RMC batching plant. 
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5.1  Introduction 

The previous chapter has comprehensively dealt with the methodology 

adopted in the study. This chapter presents the results of the study and further 

discusses their outcome. The chapter has been divided into sections that deal with 

determination of number of hidden layer neurons and parameters of GA, evolving 

neural network weights and biases using GA, training, validation and testing of 

artificial neural network using GA evolved initial weights and biases, comparison of 

slump models namely, GA-LMBNN, LMBNN, first order and second order regression 

models, evaluating the relative importance of concrete design mix constituents on 

slump value, plotting response trace plot of slump value for each concrete design mix 

constituent, assessing the applicability of the trained hybrid GA-LMBNN model for 

predicting concrete slump based on the concrete design mix data collected from a 

different RMC batching plant and developing decision support tool for predicting 

slump of RMC based on design mix constituents. 

 

5.2  Determining the optimal number of neurons in the hidden layer  

The concrete’s design mix proportion data collected from first RMC batching 

plant is used for developing the neural network model. The architecture of Multilayer 

Feedforward Neural Networks (MFNN) primarily comprises of three layers namely, 

an input layer, a hidden layer, and an output layer. For the present study, the input 

layer comprised of seven neurons namely, cement, pulverized fuel ash (PFA), sand, 

coarse aggregate (CA) 20mm, coarse aggregate (CA) 10mm, superplasticizer (SP) and 

water. The output layer comprised of a single neuron representing the slump of 

concrete. A certain degree of non-linearity in the neural network architecture is 

introduced by using hyperbolic tangent sigmoid transfer function (Tansig) for the 

hidden layer neurons. The comparison of actual and neural network predicted slump 

value is facilitated by incorporating the linear transfer function (Purelin) for the output 

neuron.  

The number of hidden layer govern the complexity of the MFNN and are 

needed in sufficient number to map the complex functional relationship between 

input-output data patterns and enable efficient learning and generalization of the 

neural network model. A trial and error approach is employed for determining the 



Chapter 5: Results and Discussion 

 

104 
 

optimal number of hidden layer neurons. The neurons in the hidden layer were varied 

in the range [4, 15] and the neural network model was trained for 1000 training cycles 

or epochs using the training data set comprising of 346 datasets. The training of the 

MFNN model using Levenberg-Marquardt backpropagation algorithm (LMBNN) was 

repeated ten times using a different set of randomly initialized weights and biases. 

A major problem with neural networks training is the loss in generalization 

ability with increase in the network complexity. This is primarily due to over-fitting or 

over learning of training data. The issue of over-fitting is addressed by presenting the 

neural network model with the validation dataset comprising of 74 datasets and 

monitoring the validation error at each training epoch. The standard deviation and 

mean absolute of training and validation errors was recorded at each increment of 

hidden layer neuron. The over-fitting of the neural network model was minimized by 

early stopping of the neural network training, if the standard deviation and mean 

absolute of validation errors begins to rise with an increase in number of hidden layer 

neurons. The numbers of hidden layer neurons were varied and the standard deviation 

and mean absolute of training and validation error was recorded and averaged for ten 

independent runs of each model. The average standard deviation of errors (AVSD) 

and average mean absolute error (AVMAE) for different neural network 

configurations is exhibited in Table 5.1. The AVSD and AVMAE plotted against 

hidden layer neurons are shown in Figure 5.1 and Figure 5.2 respectively.  

It is seen that, with an increase in the number of hidden layer neurons, the 

AVSD and AVMAE value gradually goes on decreasing from 2.8737 mm and               

1.7000 mm respectively at four hidden layer neurons to 0.6913 mm and 0.3498 mm 

respectively at fifteen hidden layer neurons. However, the validation error first 

decreases and then increases, attaining a minimum average value of standard deviation 

and mean absolute error 2.0174 mm and 1.1088 mm respectively at eleven hidden 

layer neurons, indicating over-fitting of the neural network with an increase in the 

hidden layer neurons. It shows that, the neural network architecture comprising of 

eleven hidden layer neurons yielded the best generalization. The neural network 

architecture for the present study thus constitute three layers of neurons, namely an 

input layer having seven neurons, a hidden layer having eleven neurons and an output 

layer having one neuron and is represented by 7-11-1. The schematic of the optimal 

neural network architecture is shown in Figure 5.3. 



 

 
 

1
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      Table 5.1: Training and validation AVSD and AVMAE for different neural network configurations 

Neural network architecture 

 

AVSD (mm)  AVMAE (mm) 

Neurons 

 

Transfer function 

Training Validation Training Validation Input 

layer 

Hidden 

layer 

Output 

layer 
Hidden layer Output layer 

7 4 1 Tansig Purelin 2.8737 3.2980 1.7000 2.0334 

7 5 1 Tansig Purelin 2.2472 2.9264 1.4850 1.8475 

7 6 1 Tansig Purelin 1.8885 2.5639 1.2307 1.5297 

7 7 1 Tansig Purelin 1.5648 2.5737 1.1442 1.3424 

7 8 1 Tansig Purelin 1.3919 2.5171 0.9908 1.3261 

7 9 1 Tansig Purelin 1.3136 2.4807 0.6233 1.3037 

7 10 1 Tansig Purelin 1.1415 2.2659 0.6058 1.2427 

7 11 1 Tansig Purelin 0.9834 2.0174 0.5703 1.1088 

7 12 1 Tansig Purelin 0.8463 2.4183 0.5074 1.2746 

7 13 1 Tansig Purelin 0.7123 2.5719 0.4940 1.5972 

7 14 1 Tansig Purelin 0.7120 2.6291 0.4272 1.5818 

7 15 1 Tansig Purelin 0.6913 2.6929 0.3498 1.6259 
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Figure 5.1: Variation of average standard deviation (AVSD) of training and 

validation  error with hidden layer neurons. 

 

 
 
 

Figure 5.2:  Variation of average mean absolute (AVMAE) of training and validation 

error with hidden layer neurons. 
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Figure 5.3:  Schematic of the optimal neural network architecture used in the study         

 

5.3    Genetic algorithms (GA) assisted training of artificial neural networks  

5.3.1  Estimating optimal GA parameters 

In the present study, the selected MFNN configuration (7-11-1) has 100 

weights and biases. At the start of the GA optimization, the weights and biases are 

initialized as genes of the chromosomes. The global search of GA updates the weights 

and biases of MFNN to reduce the value of the fitness function (RMSE) gradually 

over a number of generations till stopping criteria is achieved. The basic parameters of 

GA namely, population size, crossover fraction and mutation rate that influence the 

performance of the GA are required to be assessed and fixed for achieving a global 

optimum through a balanced exploration and exploitation of search space. Since GA is 

a stochastic search tool, hence, the procedure of determining the optimal values of 

population size, crossover fraction cP , and mutation rate mP  was repeated fifty times 

and the average value of the best fitness function is determined. The other parameter 

of GA namely, the maximum number of generations and stall generation limit were 

fixed at 200 and five respectively. Keeping population size equal to 30, the crossover 

fraction and mutation rate were varied in the range [0.6, 0.9] and [0.005, 0.025] 
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respectively. The average values of the best fitness function (RMSE) plotted for 

different combinations of cP  and mP  are shown in Figure 5.4. It is seen that minimum 

value of the fitness function is achieved by adopting crossover fraction cP  as 0.80 and 

mutation rate mP  as 0.015. 

 
 

 

Figure 5.4:  Fitness function with varying crossover fraction  cP  and mutation rate

 mP   

Once the optimal values of crossover fraction and mutation rate have been 

determined, the population size is varied in the range [20, 80]. The values of the 

fitness function (RMSE) and CPU time averaged over fifty runs of GA exhibited in 

Table 5.2 show that, as the population size is increased, the improvement in fitness 

function reduces and at higher population size, it becomes almost negligible. An 

increase in the population size leads to more function evaluations, increasing the CPU 

time taken by GA. However, it is seen that the increase in CPU time is significant in 

comparison to the improvement in the fitness function achieved. Hence, to strike a 

balance between the performance and computational time taken by GA, an initial 

population size of 40 chromosomes is adopted in the study. Table 5.3 shows the 

optimal GA parameters used for the study. 
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Table 5.2: CPU time and value of fitness function for different GA population sizes 

Population 

Size 

Fitness 

function value 

(mm) 

CPU time 

(sec) 

Improvement in 

fitness (mm) 

Increase in 

CPU time (sec) 

20 5.9525 6.7956 - - 

30 5.7417 9.7939 0.2108 2.9983 

40 5.5918 13.5106 0.1499 3.7167 

50 5.5312 23.4561 0.0606 9.9455 

60 5.5024 38.6110 0.0288 15.1549 

70 5.4926 62.2350 0.0098 23.6240 

80 5.4888 94.4752 0.0038 32.2402 

Table 5.3: Optimum GA parameters used for the study 

 

5.3.2   Evolving initial neural network weights and biases using GA 

The optimization of neural network weights and biases is achieved by GA 

assisted training of the selected MFNN model having architecture 7-11-1. The MFNN 

trained using GA is hereafter referred to as GA model. The optimization procedure 

GA parameter Values 

Initial Population Size 40 

Fitness function RMSE 

Genetic operators Scattered crossover (0.80), Uniform mutation (0.015) 

Selection method Tournament 

Generations 200 

Max. Stall generations 5 
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adopted by GA attempts to update neural network weights and biases to minimize the 

value fitness function (RMSE) over a number of population generations. A typical 

plot of fitness function (RMSE) versus generations is exhibited in Figure 5.5. The 

value of the fitness function is shown to reduce over a number of generations till 

stalling of the fitness function is noticed over a number of generations. At this point, 

the algorithm is stopped, and the weights and biases corresponding to the best value of 

the fitness function are saved.  

 
 

Figure 5.5:  Typical plot of fitness function versus population generations for GA 

Since GA is a stochastic global search technique, it has a tendency to provide 

different solutions to the problem during each re-run of the optimization process. 

Hence, the robustness of the hybrid approach is evaluated by independently running 

the GA optimization procedure twenty times. The weights and biases for each 

independent run of GA were recorded. A brief summary of each independent run of 

GA model, showing the maximum number of generations, the value of best fitness 

function value achieved and CPU time is exhibited in Table 5.4. The average CPU 

time and population generations taken by GA model during the independent model 

runs for evolving the optimal set of neural network weights and biases is evaluated as 

13.7189 seconds and 39 respectively.  
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Table 5.4:  Generations, best fitness function value and CPU time for independent 

runs of GA  

Model 

run 
Gen. 

Best 

fitness 

function 

(mm) 

CPU time 

(sec) 

 

Model 

run 
Gen. 

Best 

fitness 

function 

(mm) 

CPU time 

(sec) 

1 41 5.8549 14.6416 11 33 5.5374 11.9085 

2 34 5.5384 12.1533 12 16 6.0434 5.4600 

3 50 5.2959 17.6761 13 24 5.7634 8.6959 

4 23 6.0492 8.3514 14 59 5.4133 20.7428 

5 55 5.3948 19.3816 15 37 5.4484 13.1848 

6 39 5.5700 13.8740 16 26 5.6702 9.3840 

7 28 5.9670 10.1047 17 57 5.4467 20.0544 

8 29 5.6998 10.4177 18 21 5.9853 7.6637 

9 33 5.5043 11.8087 19 59 5.3637 21.1428 

10 44 5.3303 15.5964 20 63 5.5994 22.1350 

 

5.3.3   Training of LMBNN model using GA evolved weights and biases 

The twenty independent runs of GA yielded twenty different sets of optimal 

initial neural network weights and biases. These GA evolved weights and biases were 

used for initializing the neural network model trained using Levenberg-Marquardt 

backpropagation algorithm (LMBNN). The hybrid GA-LMBNN model was trained 

using the training data set and the initial weights and biases were updated using 

Levenberg-Marquardt (LM) backpropagation algorithm. A typical plot showing the 

variation of fitness function with CPU time is exhibited at Figure 5.6. At the initial 

stage, the GA is shown to efficiently train the MFNN. However, as training progresses 

and the search space is narrowed down, the convergence is adversely affected due to 

GA’s weak local search ability. However, at this stage, the global search rendered by 

GA has evolved the optimal set of initial weights and biases for LM algorithm.  

The second stage of training of the hybrid GA-LMBNN is accomplished by 

fine tuning of the GA evolved optimal initial weights and biases through LM 

algorithm. The LM algorithm starts from the weights and biases located near the 

optimal solution and using an efficient local search, update the weights and biases to 
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converge quickly to an optimum value. A very sharp decrease in RMSE value in a 

minuscule CPU time is noticeable which is attributed to the LM optimization 

algorithm.  

 
 

Figure 5.6:  Typical plot of fitness function versus CPU time during training of                        

GA-LMBNN model 

 

5.4   Concrete slump models 

5.4.1  Neural network models 

5.4.1.1    Convergence of hybrid GA-LMBNN and conventional LMBNN models 

The effectiveness of hybridizing GA with LMBNN model is assessed by 

comparing its convergence speed during training with the conventional LMBNN 

model. The LMBNN model was initialized with random values of weights, and biases 

in the range [-0.5, 0.5] whereas, the hybrid GA-LMBNN model was initialized using 

GA optimized weights and biases. The performance goal (normalized MSE) during 

training for both neural network models was fixed at 0.00015. The training was 

continued till performance goal was met. A typical training plot of the GA-LMBNN 

and LMBNN models exhibited in Figure 5.7 and Figure 5.8 respectively, reveals that 
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in comparison to conventional LMBNN model, the hybrid GA-LMBNN approaches 

the designated performance goal in less number of training epochs or training cycles. 

 
Figure 5.7: Typical training plot for GA-LMBNN model 

 

 
Figure 5.8: Typical training plot for LMBNN model 
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The number of training epochs and CPU time for each independent run of the 

model were recorded and plotted (Figure 5.9 and Figure 5.10) and their statistics are 

shown in Table 5.5.  

 
Figure 5.9: Training epochs for each independent run of the model 

 

      Figure 5.10: Training CPU time for each independent run of the model 

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
ra

in
in

g
 e

p
o
ch

s

Model run

GA-LMBNN LMBNN

746.95

150.85

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
P

U
 T

im
e 

(T
ra

in
in

g
) 

(s
ec

o
n

d
s)

Model run

GA-LMBNN LMBNN

2.9913

0.6085



Chapter 5: Results and Discussion 

115 
 

Table 5.5: Statistics of training epochs and CPU time for independent runs of 

LMBNN and hybrid GA-LMBNN models  

Statistics Model 

LMBNN 

 

GA-LMBNN 

Epochs CPU time Epochs CPU time 

Min. 349 1.3416 
 

96 0.3900 

Max. 1465 5.6004 239 0.9687 

Mean 746.9500 2.9913 
 

150.8500 0.6085 

SD 307.9909 1.2232 41.3283 0.1593 

 

The average number of training epochs and CPU time taken by the hybrid 

GA-LMBNN model during their independent runs was 150.8500 and 0.6085 seconds 

respectively. Compared to the hybrid model, the conventional LMBNN model took an 

average 746.9500 epochs and 2.9913 seconds to the reach the same performance goal 

indicating that, the hybridization methodology leads to an approximate 80% reduction 

in training epochs and CPU time. The hybrid model is shown to provide lower 

minimum and maximum values of training epochs and CPU time along with lower 

standard deviation value of 41.3283 epochs for training epochs and 0.1593 seconds for 

CPU time as compared to 307.9909 epochs and 1.2232 seconds respectively achieved 

by the LMBNN model. The results indicate consistency, stability and faster 

convergence of the hybrid GA-LMBNN model during the training phase, compared to 

the conventional LMBNN model.  

 

5.4.1.2  Training, validation, and testing performance  

An unbiased performance of the slump models developed for the study, 

namely GA, hybrid GA-LMBNN and conventional LMBNN model, is assessed using 

six different statistical performance metrics namely, RMSE, MAPE, R, E, RSR and 

PBIAS. The statistics namely, minimum, maximum, mean and standard deviation of 

training and validation performance metrics namely, RMSE, MAPE, R, E, RSR and 

PBIAS were evaluated for twenty independent runs of GA, hybrid GA-LMBNN and 

conventional LMBNN model. The statistics of training and validation performance 

metrics are exhibited in Table 5.6.  
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                 Table 5.6: Statistics of the performance metrics 

Model  Statistics  Performance metrics 

  RMSE 

(mm) 

 MAPE 

(%) 

 R  E  RSR  PBIAS 

(%) 

T
ra

in
in

g
 

GA 

 Min.  5.2959  1.9146  0.4340  0.1865  0.7896  -0.3690 
 Max.  6.0492  2.3893  0.6141  0.3765  0.9020  0.2726 

 Mean  5.6238  2.0973  0.5492  0.2956  0.8385  0.0018 

 SD  0.2448  0.1338  0.0527  0.0619  0.0365  0.1803 

GA-LMBNN 

 Min.  0.5880 

 

0.2496 

 

0.9939 

 

0.9877 

 

0.0784 

 

-0.0061 
 Max.  0.7429 0.3311 0.9975 0.9949 0.1108 0.0354 

 Mean  0.6461 0.2783 0.9955 0.9910 0.0952 0.0029 

 SD  0.0413 0.0233 0.0008 0.0015 0.0078 0.0088 

LMBNN  

Min. 

 

0.7726 

 

0.3366 

 

0.9791 

 

0.9586 

 

0.1152 

 

-0.0933 

Max. 1.3650 0.6314 0.9940 0.9880 0.2035 0.0935 

Mean 0.9910 0.4383 0.9891 0.9781 0.1463 0.0026 

SD 0.1610 0.0770 0.0039 0.0071 0.0241 0.0401 

V
al

id
at

io
n

 

GA 

 Min.  5.0889  1.8497  0.3561  -0.0383  0.8201  -1.1637 
 Max.  6.3224  2.7004  0.5787  0.3274  1.0189  0.5929 

 Mean  5.5826  2.1805  0.4844  0.1883  0.8997  -0.5247 

 SD  0.2976  0.2103  0.0653  0.0882  0.0480  0.3299 

GA-LMBNN  

Min. 

 

0.8332 

 

0.3656 

 

0.9774 

 

0.9523 

 

0.1023 

 

-0.1522 
Max. 1.3177 0.5702 0.9948 0.9895 0.2124 0.1976 

Mean 1.2085 0.5062 0.9816 0.9617 0.1930 0.0158 

SD 0.1229 0.0508 0.0040 0.0086 0.0255 0.0838 

LMBNN  

Min. 

 

1.3538 

 

0.5712 

 

0.8135 

 

0.6471 

 

0.1678 

 

-0.4735 
Max. 3.6859 1.1445 0.9865 0.9718 0.5940 0.0997 

Mean 1.9844 0.7617 0.9453 0.8905 0.3173 -0.1168 

SD 0.5771 0.1416 0.0389 0.0736 0.0965 0.1401 
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A study of statistics of performance metrics reveals that, the GA model 

provided higher values of RMSE and MAPE, lower values of R and unacceptable 

values of RSR and E during training and validation indicating that, the GA model 

exhibited a relatively poor learning and generalization accuracy in comparison to the 

GA-LMBNN and LMBNN models. The GA cannot be therefore, regarded as an 

efficient alternative to the backpropagation algorithms for training the MFNN. In 

contrast, the GA-LMBNN was shown to provide both learning and generalization 

accuracy. The conventional LMBNN model on the other hand provided intermediate 

learning and generalization performance.  

The GA model was shown to exhibit the maximum standard deviation for the 

performance metrics. An intermediate value of standard deviation was obtained for the 

LMBNN model. It is however, seen that the standard deviation of training and 

validation performance metrics RMSE, MAPE, R, E and RSR for the GA-LMBNN 

model are significantly lower than the LMBNN and GA model. Owing to high 

standard deviation in the performance metrics for GA and LMBNN, a number of 

fluctuations are seen in the RMSE, MAPE, R, E and RSR performance metric plots 

(Figure 5.11 to Figure 5.20), indicating a lack of consistency in the learning and 

generalization performance of these models. Although, the LMBNN and GA-LMBNN 

models provide comparable prediction accuracy during training yet, a lack of 

consistency in the prediction accuracy of the LMBNN model is seen, which is shown 

to be more pronounced during its generalization stage when presented with the 

validation dataset. The hybridization of GA with LMBNN during training phase is 

shown to stabilize the performance of the neural network model, augmenting and 

providing consistency to its learning and generalization accuracy.  

The performance metric PBIAS plot for GA-LMBNN model (Figure 5.22) 

show that, for a particular model run, the PBIAS values follow the same trend i.e., 

either over-predicting (denoted by positive values) or under-predicting (denoted by 

negative values) the slump values during training and validation of the model. On the 

other hand, it is sometimes noticed that PBIAS values for a particular model run of the 

GA (Figure 5.21) and LMBNN model (Figure 2.23) are negative during training and 

positive during validation and vice-versa, indicating their lack of prediction 

consistency. In nutshell based on the results, the hybrid GA-LMBNN is shown to 

outperform the GA and conventional LMBNN model. 
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Figure 5.11: Plot of training performance metric RMSE for each model run 

 

 

 

 
 Figure 5.12: Plot of validation performance metric RMSE for each model run 
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Figure 5.13: Plot of training performance metric MAPE for each model run 

 

 

 Figure 5.14: Plot of validation performance metric MAPE for each model run 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
A

P
E

(%
)

Model run

GA GA-LMBNN LMBNN

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
A

P
E

(%
)

Model run

GA GA-LMBNN LMBNN



Chapter 5: Results and Discussion 

 

120 
 

R
esu

lts a
n
d
 D

iscu
ssio

n
 

 

 
Figure 5.15: Plot of training performance metric R for each model run 

 

 
 

 
Figure 5.16: Plot of validation performance metric R for each model run 
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Figure 5.17: Plot of training performance metric E for each model run 

 

 

 

Figure 5.18: Plot of validation performance metric E for each model run 
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Figure 5.19: Plot of training performance metric RSR for each model run 

 

 
 

 
 

Figure 5.20: Plot of validation performance metric RSR for each model run 
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Figure 5.21: Plot of performance metric PBIAS for each run of GA model 

 

 
 

 
 

Figure 5.22: Plot of performance metric PBIAS for each run of GA-LMBNN model 
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Figure 5.23: Plot of performance metric PBIAS for each run of LMBNN model 

Out of the twenty model runs, the best GA-LMBNN and LMBNN model 

having the lowest validation RMSE, MAPE, R, E and RSR is selected and further 

tested using the test dataset. The training, validation and testing performance metrics 

for the best GA-LMBNN and LMBNN model are shown in Table 5.7. 

 Table 5.7: Performance metrics for the best GA-LMBNN and LMBNN models 

Model  RMSE 

(mm) 

MAPE 

(%) 

R E RSR PBIAS 

(%) 

Training       

GA-LMBNN 0.6437 0.2604 0.9969 0.9939 0.0784 0.0108 

LMBNN 1.0791 0.4841 0.9918 0.9827 0.1314 -0.0627 

       
Validation       

GA-LMBNN 0.8332 0.3656 0.9948 0.9895 0.1023 0.0279 

LMBNN 1.3538 0.5712 0.9865 0.9718 0.1678 0.0977 

       
Testing       

GA-LMBNN 1.2926 0.5560 0.9884 0.9761 0.1546 0.1172 

LMBNN 3.4652 1.3693 0.9135 0.8283 0.4143 -0.2205 
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The training, validation and testing performance metrics for the best                       

GA-LMBNN and LMBNN model reveal that, in comparison to the LMBNN model, 

the hybrid GA-LMBNN model is shown to provide lower RMSE, MAPE and RSR 

values and higher R and E values, indicating close agreement between the actual and 

predicted slump values. The PBIAS statistic for LMBNN model gave negative values 

during training and testing and positive value during validation showing under 

prediction and over prediction of LMBNN model respectively, indicating model’s 

prediction inconsistency. On the other hand, the GA-LMBNN model is shown to 

provide lower and consistent PBIAS values during training, validation, and testing of 

the model.  

 

5.4.2      Regression models 

The first order and second regression models for slump were developed using 

the training dataset and subsequently validated and tested using the validation and test 

datasets respectively.  

 

5.4.2.1   Training, validation, and testing performance 

The training, validation and testing performance of the first order and second 

order regression model are shown in Table 5.8.  

Table 5.8: Performance metrics for the first order and second order regression models 

Model  RMSE 

(mm) 

MAPE 

(%) 

R E RSR PBIAS 

(%) 

Training       

First order 6.4209 2.4709 0.6238 0.3891 0.7816 0.0000 

Second order 4.1067 1.6889 0.8661 0.7501 0.4999 0.0000 

       
Validation       

First order 5.4934 2.4630 0.7427 0.5449 0.6746 -0.2868 

Second order 4.2243 1.8387 0.8607 0.7309 0.5188 -0.2080 

       
Testing       

First order 5.2948 2.2725 0.7790 0.5992 0.6331 0.0603 

Second order 4.4871 2.0026 0.8495 0.7122 0.5365 -0.1353 
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Compared to the first order regression model, a significant improvement in 

the performance of the second order regression model is noticeable. This indicates 

that, as the order of the regression model or its complexity is increased, there is an 

improvement in the prediction accuracy during training, validation and testing of the 

model. The PBIAS values show that, the first order regression model under predicts 

the slump values with the validation data set and over predicts the slump values with 

the test data set, indicating inconsistent in prediction. An improvement in prediction 

consistency is noticeable in the case of the second order regression model with lower 

and negative PBIAS performance metric during the validation and testing of the 

model.  

 

5.5   Neural networks models versus regression models 

5.5.1    Model prediction error  

The overall RMC slump data comprising of 493 data pairs were used for 

computing the prediction error evaluated as the difference between the target slump 

value and the model’s predicted slump value for the slump models namely, first order 

regression, second order regression, hybrid GA-LMBNN and the conventional 

LMBNN model. The statistics of the prediction error for the slump models is shown in 

Table 5.9. 

Table 5.9:  Statistics of the prediction error exhibited by the regression and neural  

network  models 

Model 
 Statistics 

Min.(mm) Max.(mm) Range 

(mm) 

Mean 

(mm) 

SD 

(mm) 
Skew 

First order 

regression 
-49.7597 27.1486 76.9083 0.0538 6.1391 -1.8167 

Second order 

regression 
-14.3165 23.4289 37.7454 0.0810 4.1863 1.3302 

GA-LMBNN -4.4988 4.7997 9.2985 0.0326 0.8016 0.1552 

LMBNN -7.0262 9.7566 16.7828 0.2474 1.4552 0.7582 
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The first order and second regression models are shown to exhibit a large 

range of prediction error. The range of errors is shown to significantly decrease in 

case of neural network models. The mean value of errors in case of hybrid GA-

LMBNN model is found to be very close to zero, indicating a perfect distribution of 

errors throughout the error range. The standard deviation of model errors show that, in 

comparison to the regression models, the errors of neural network models are confined 

in a smaller range, indicating a smaller spread with respect to the mean value and 

lesser number of outliers.    

The error histogram shown in Figure 5.24(a) indicate that frequency of 

errors is maximum in the range [-5.5370 mm, 9.8440 mm] in the case of the first order 

regression model. The error histogram for second order regression model shown in 

Figure 5.24(b) reveals that most of the errors fall in the range                                                 

[-3.9370 mm, 3.6130 mm]. An appreciable decrease in error range is noticeable in 

case of neural network models, with most of the errors falling in the range [-1.0120 

mm, 1.3130 mm] in case of GA-LMBNN model (Figure 5.25(a)) and                                     

[-1.5720 mm, 1.7850 mm] in case of LMBNN model (Figure 5.25(b). The error 

histograms also show that the maximum frequency of errors close to zero is exhibited 

by the GA-LMBNN model. The error histograms demonstrate that the neural network 

models are better modeling tools than the regression models.  

 

 
(a)                                                   (b) 

Figure 5.24: Error histogram for (a) First order regression model; (b) Second order   

regression model. 
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                                   (a)                                                               (b) 

Figure 5.25: Error histogram for (a) GA-LMBNN model; (b) LMBNN model 

With skew value of -1.8167 and 1.3302, the first order and second order 

regression models exhibit left skewed and right skewed histograms respectively                  

(Figure 5.24(a) and Figure 5.24(b)). The error histogram for GA-LMBNN model 

(Figure 5.25(a)) is shown to exhibit symmetry of errors with low skew value 0.1552. 

The error histogram for LMBNN model is shown to be skewed towards right with 

skew value 0.7582 (Figure 5.25(b)). The results reveal that the prediction errors in 

case of hybrid GA-LMBNN model follow nearly a symmetric distribution. 

 

5.5.2   Model performance 

The performance of the regression and neural network models for concrete 

slump was evaluated using the overall RMC data comprising of 493 data pairs. The 

performance metrics for the developed slump models are exhibited in Table 5.10. 

Among the concrete slump models, the GA-LMBNN model is shown to exhibit 

superior accuracy with lower RMSE, MAPE and RSR values along with, higher R and 

E values. The GA-LMBNN model is also shown to exhibit a very low PBIAS value of 

0.0208% indicating near to optimal prediction accuracy. LMBNN with negative 

PBIAS value (-0.0954%) is shown to exhibit under-prediction of concrete slump 

values. Although, regression models are shown to exhibit a lower PBIAS metrics yet, 

a comparison of all performance metrics taken together demonstrate that the neural 

network models are far superior to the regression models. The results thus 

demonstrate the effectiveness and applicability of the artificial neural networks for 

modeling highly complex and unstructured material behavior of concrete slump.  
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Table 5.10: Model performance for the overall dataset 

Model  RMSE  

(mm) 

MAPE 

 (%) 

R E RSR PBIAS  

(%) 

Overall       

First order 

regression 
6.2199 2.4456 0.6546 0.4279 0.7564 -0.0881 

Second order 

regression 
4.2401 1.7725 0.8572 0.7341 0.5156 -0.0725 

GA-LMBNN 0.8015 0.3797 0.9952 0.9905 0.0975 0.0208 

LMBNN 1.6942 0.6283 0.9793 0.9576 0.2060 -0.0954 

The performance of the developed models for the overall data is also judged 

by computing the percent correct data falling within a particular threshold error range. 

In the present study percent, correct data have been evaluated for ±1 %, ±2 %, ±3 %, 

±4 % and ±5% threshold error range. The results of percent correct data are shown in 

Figure 5.26.  

The regression models namely, first order and second order are shown to be 

inefficient at lower threshold error range. The increase in their prediction ability is 

quite gradual and can correctly predict approximately 90% of the available data within 

±5% threshold error range. The neural network models, on the other hand, are shown 

to exhibit superior prediction ability at the lower threshold error ranges. LMBNN 

model is shown to predict correctly nearly 98% of the data within ±5% error range. 

However, its percent correct performance is shown to be lower than the hybrid GA-

LMBNN model. The GA-LMBNN model is shown to predict correctly 100% of the 

data within ±4 % error range and is also found to be comparably efficient at smaller 

error ranges. The percent correct data analysis shows that the neural network models 

are far efficient than the regression models. Among the developed concrete slump 

models, the hybrid GA-LMBNN model is shown to possess the best prediction 

accuracy. 
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Figure 5.26: Percent correct data for concrete slump models 

 

5.5.3  Regression plots  

The regression equation between independent variable x  (actual slump value) 

and dependent variable y (predicted slump value) is expressed as:  

xy 10             (5.1) 

where,
1 represent the slope and 0 represent the y-intercept of the regression line.  

To determine the existence of a significant linear relationship between the 

actual slump and model predicted slump value, following hypothesis for slope 1 of 

best fit line are tested: 

(a) Slope 1 is equal to zero  
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For the hypothesis shown in Equation 5.2 and Equation 5.3, the regression 

parameter estimates for slope
1 , t-values and p-value at 0.05 level of significance    

for first order regression, second order regression, GA-LMBNN and LMBNN models 

are shown in Table 5.11.  

Table 5.11: Regression parameter estimates, t-value and p-value for slope 

Model Slope
1   Standard error t-value p-value 

First order regression 0.4171 0.0217 19.1855 1.24e-61 

Second order regression 0.7544 0.0204 36.8875 1.2e-143 

GA-LMBNN 0.9929 0.0043 226.5160 0 

LMBNN 0.9543 0.0089 107.1447 0 

The results exhibited above, show that the t-value for all models is greater 

than the critical value of t (= 1.9648) at degree of freedom (= 491). Moreover, the             

p-value is less than assumed level of significance (= 0.05). Hence, null hypothesis is 

rejected and it is inferred that, for all models there exists a linear relationship between 

the actual slump and the model predicted slump value. 

(b) The slope
1 is equal to unity 

1: 10 H          (5.4) 

1: 1 aH          (5.5) 

For the above hypothesis, the regression parameter estimates for slope
1 ,              

t-values and p-value at 0.05 level of significance   for first order regression, second 

order regression, GA-LMBNN and LMBNN models are shown in Table 5.12.  

Table 5.12: Regression parameter estimates, t-value and p-value for slope 

Model Slope 1  Standard error t-value p-value 

First order regression 0.4171 0.0217 26.8096 3.3627e-98 

Second order regression 0.7544 0.0204 12.0118 2.5518e-29 

GA-LMBNN 0.9929 0.0043 1.6129 0.1074 

LMBNN 0.9543 0.0089 5.1349 4.0758e-07 
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The results exhibited in Table 5.12, show that for first order regression, 

second order regression and LMBNN models, the t-value is greater than the critical 

value of t (= 1.9648) at degree of freedom (= 491) and the p-value is significantly less 

than the level of significance  (= 0.05). However, for GA-LMBNN the t-value is 

shown to be less than the critical value of t and the p-value value for is shown to be 

greater than the level of significance (= 0.05). Hence, the null hypothesis is rejected 

in case of first order regression, second order regression and LMBNN models, 

indicating that the linear relation between actual slump values and the slump values 

predicted by these models is not significant. The null hypothesis on the other hand, is 

accepted for the GA-LMBNN model. It is inferred that, the slope of the regression line 

for GA-LMBNN model does not significantly differ from unity and therefore, a 

significant linear relation exists between the actual slump and the GA-LMBNN model 

predicted slump value.  

Following hypothesis for intercept 0 is also tested to assess closeness of 

best-fit regression line and Actual=Predicted line: 

(a) Intercept 0  is equal to zero  

0: 00 H          (5.6) 

0: 0 aH          (5.7) 

For the above hypothesis, the regression parameter estimates for intercept 0 ,                  

t-values and p-value at 0.05 level of significance    for first order regression, second 

order regression, GA-LMBNN and LMBNN models are shown in Table 5.13.  

Table 5.13: Regression parameter estimates, t-value and p-value for intercept 

Model Intercept 0   Standard error t-value p-value 

First order regression 91.8387 3.4354 26.7328 7.77e-98 

Second order regression 38.6480 3.2314 11.9602 4.13e-29 

GA-LMBNN 1.0828 0.6926 1.5633 0.1186 

LMBNN 6.9081 1.4073 4.9087 1.25e-06 

The results exhibited above, show that for first order regression, second order 

regression and LMBNN models, the t-value is greater than the critical value of                     
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t (= 1.9648) at degree of freedom (= 491) and the p-value is significantly less than the 

level of significance (=0.05). However, in case of GA-LMBNN model, the t-value is 

shown to be less than the critical value of t and the p-value is shown to be greater than 

the level of significance (=0.05). Hence, the null hypothesis is rejected in case of 

first order regression, second order regression and LMBNN models indicating that, 

the intercept is significant. The null hypothesis on the other hand, is accepted for the 

GA-LMBNN model, indicating that the intercept of the best-fit regression line for 

GA-LMBNN model does not significantly differ from zero and therefore, the 

regression line passes through the vicinity of origin and overlaps the line of equality 

(Actual=Predicted line).  

The results of the hypothesis test were graphically examined by plotting 

regression plot between the actual and predicted slump values for first order, second 

order, GA-LMBNN and LMBNN models and are respectively shown in Figure 5.27 

to Figure 5.30. The regression plot for first order regression (Figure 5.27) shows that 

the best fit line is significantly away from the line of equality, indicating a poor 

agreement between the actual and the predicted slump values. The data are shown to 

be widely scattered with respect to the best-fit regression line. With coefficient of 

determination R
2
 value 0.4285, the regression line represented by the equation 

8388.914171.0  xy  is shown to fit only 42.85% data, indicating lack of prediction 

accuracy of the first order regression model.  

A significant improvement in the regression plot (Figure 5.28) is noticeable 

in the case of the second order regression model. The gap between the best-fit 

regression line and the line of equality is shown to decrease indicating an 

improvement in the degree of association between actual and predicted slump values. 

However, data widely scattered around the best fit line are clearly visible.                   

With R
2
 value 0.7348, the regression line represented by the equation 

6480.387544.0  xy  is shown to fit 73.48% data. A nearly perfect fit between the 

actual and predicted slump values is noticeable in the regression plot for hybrid                

GA-LMBNN model (Figure 5.29). The best-fit regression line is shown to overlap the 

line of equality. The data are shown to be closely spaced with respect to the best-fit 

regression line. The R
2
 value 0.9905 shows a strong agreement between the actual and 

predicted slump values. With R
2
 value 0.9905, regression line represented by the 

equation 0829.19929.0  xy is shown to fit 99.05% data. 
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Figure 5.27: Regression plot between actual and first order regression model 

predicted concrete slump 

 

 

Figure 5.28:  Regression plot between actual and second order regression model 

predicted concrete slump 
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Figure 5.29: Regression plot between actual and GA-LMBNN model predicted   

concrete   slump 

 

 

Figure 5.30:   Regression plot between actual and LMBNN model predicted concrete 

slump 
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In the LMBNN model, a slight difference between the best-fit regression line 

and the Actual=Predicted line is noticeable (Figure 5.30). The scatter of data is 

significantly lesser than the regression models. With R
2
 value 0.9590, the regression 

equation 9081.69543.0  xy
 is shown to fit 95.90% data.  

The hypothesis test for the regression plots reveal that, although all models 

developed for the concrete slump provided a linear relationship between the actual 

slump and slump values predicted by them but, the hybrid GA-LMBNN model was 

shown to provide the highest prediction accuracy. The neural network models namely, 

LMBNN and GA-LMBNN have shown to provide better R
2
 values in comparison to 

regression models, demonstrating their potential to accurately model the complex 

interactions between the proportions of concrete design mix constituents and the 

slump value.  

 

5.6 Relative importance of RMC design mix constituents on the slump value 

The weights of the hybrid GA-LMBNN are harnessed to assess the relative 

importance of RMC design mix constituents on the slump value. The weights between 

the input layer and hidden layer and between the hidden layer and output layer were 

recorded and shown in Table 5.14 and Table 5.15 respectively. Using the connection 

weight approach, the importance and ranking of the concrete design mix constituents, 

are evaluated and presented in Table 5.16.  

Based on the values of the relative importance of concrete design mix 

constituents shown in Figure 5.31, following inferences can be drawn: 

a) It can be shown that superplasticizer with an importance of 30.2518%, is the 

most significant design mix constituent for slump of RMC. The ability of 

superplasticizer to deflocculate and disperse the cement paste particles, 

releases the water entrapped by cement particles increasing the water 

availability to lubricate the mix and as a consequence, the workability of 

concrete is improved.  

The effectiveness of superplasticizers to provide increased initial workability 

is utilized in the RMC industry to cope with the slump loss during transit of 

the RMC mix from the manufacturing plant to the construction site, without 
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having to alter or increase the water-binder ratio prescribed for a customized 

grade of concrete. Thus, the use of superplasticizers facilitates the 

transportation of the customized grade of RMC mix for long distances (up to 

40-45 km), retaining the workability desired for the construction activity and 

delaying the setting time of the concrete. Since superplasticizers aid 

flowability of concrete, they also reduce the effort during pumping of RMC 

at the construction site.   

b) With relative importance of 21.8040%, pulverized fuel ash (PFA) or fly ash 

is the second most important design mix parameter influencing the concrete 

slump. It is shown to exhibit positive influence on the slump value of 

concrete. This is attributed to the spherical shape of glassy particles present 

in PFA that act as “ball bearings” to lubricate the concrete mix, improving its 

rheology whereby, making it more workable.  

It can also be shown that, due to higher finer fraction of PFA particles, it 

exhibits a greater role in workability enhancement as compared to cement. 

The spherical shape of particles also tends to reduce the friction between 

concrete mix and pump line, enhancing the pumpability of RMC mix. Apart 

from this, PFA plays a major role in the RMC industry, as it not only 

economizes the cost of RMC but also, prolongs the setting time of concrete, 

thereby reducing the slump loss during the transit from the batching plant to 

the construction site.  

c) Water and cement content are shown to exhibit almost the same relative 

importance of 11.6314% and 13.0592% respectively. This is attributed to the 

fact that, the water-cement ratio is almost fixed for a customized grade of 

concrete, hence higher the cement content larger will be the water content in 

the concrete. It is also seen that both water and cement contribute to an 

increase in the slump of concrete. Water lubricates the concrete mix by 

forming a thin film around the particles, thereby enhancing its fluidity 

leading to an increase in workability. Cement paste on the other hand coats 

the aggregates fills the inter-particle spaces and acts as a lubricating medium 

to increase workability.  



 

 

1
3
8 

Table 5.14: Neural network weights between input layer and hidden layer 

 

   

 

 

 

 

 

 

Table 5.15: Neural network weights between the hidden layer and output layer 

Output 
Hidden layer neurons 

1 2 3 4 5 6 7 8 9 10 11 

Slump 1.5761 1.5499 1.0166 4.5679 1.1440 -0.3565 -4.0624 -0.3415 -0.4023 1.2363 0.7348 

Input 
Hidden layer neurons 

1 2 3 4 5 6 7 8 9 10 11 

Cement -1.6480 1.4052 1.3806 1.0471 -2.1710 -0.5719 1.2100 2.0498 -0.4928 2.4189 1.9326 

PFA 0.2520 2.1310 -1.7135 -1.5053 -0.1295 -1.7744 -1.8249 4.7089 0.0934 0.4471 3.0687 

Sand -0.1407 -0.4501 1.2743 0.3785 0.4597 -1.5551 0.8436 -1.8158 -0.5467 -0.8022 -0.2841 

CA(20mm) -0.3761 0.9992 2.9107 0.3402 1.1067 -0.2518 1.2496 -3.1981 -0.6848 -1.1139 -0.6771 

CA(10mm) 0.8692 0.2074 1.2252 -0.3416 0.8202 3.5798 0.3149 -0.1433 3.3713 -1.2856 0.7669 

Superplasticizer 0.0257 4.1526 0.5368 -0.2901 0.6781 0.5362 -0.0495 0.9163 0.8631 -0.2956 0.3934 

Water -0.1197 1.2880 -0.1716 -0.0094 -0.2881 0.1445 -0.1579 0.9020 -0.2662 0.4341 0.0315 
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Table 5.16:  Relative importance of concrete design mix constituents on concrete  

slump  

Concrete design mix 

constituents (Inputs) 

Relative importance 

(RI) 

RI (%) Ranking as 

per RI 

Cement 2.4805 13.0592 4 

PFA 4.1415 21.8040 2 

Sand -0.6023 3.1709 7 

CA(20mm) 1.2411 6.5341 6 

CA(10mm) -2.5734 13.5483 3 

Superplasticizer 5.7461 30.2518 1 

Water 2.2093 11.6314 5 

 

 

 

      Figure 5.31:    Relative importance of concrete design mix constituents on the 

slump value 
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d) Despite quality checks, in actual practice during crushing operation and 

handling of aggregates, undersized particles in the range of 4mm to 6mm and 

aggregate dust, gets inadvertently mixed with the 10mm coarse aggregates. In 

rainy season, the presence of undersized particles increases, as fine silt and 

murrum particles get stick with smaller particles present in 10mm sized 

aggregates which, in spite of washing is not completely removed. Moreover, 

the elongation and flakiness indices of the aggregates increases as the 

maximum size of aggregate reduces from 20mm to 10mm                                      

(Pandurangan and Kothandaram, 2012).  The observation is supported by 

the gradation analysis of two samples collected from a RMC plant shown 

below, that reveal the presence of undersized particles and aggregate dust in 

10mm sized aggregates.  

Sample-I 

IS Seive 

(mm) 

Weight 

retained 

(gms) 

Retained 

(%) 

Cumulative 

retained (%)  

Cumulative 

passing (%)  

As per 

IS:383 

limits 

Remarks 

12.50 0 0 0 100 100 Presence 

of 

undersized 

particles 

and 

aggregate 

dust 

10.00 100 3.28 3.28 96.72 85-100 

4.75 1840 60.37 63.65 36.35 0-20 

2.36 758 24.87 88.52 11.48 0-5 

pan 350 11.48 100.00 0  

 
 

Sample-II 

IS Seive 

(mm) 

Weight 

retained 

(gms) 

Retained 

(%) 

Cumulative 

retained (%)  

Cumulative 

passing (%)  

As per 

IS:383 

limits 

Remarks 

12.50 0 0 0 100 100 
Presence 

of 

undersized 

particles 

and 

aggregate 

dust 

10.00 50 1.67 1.67 98.33 85-100 

4.75 2148 71.72 73.39 26.61 0-20 

2.36 597 19.93 93.32 6.68 0-5 

pan 200 6.68 100.00 0  
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It is known that, the coarse aggregates having large size possess smaller 

surface area, demanding lesser paste for surface coating and vice-versa. 

Presences of flaky and elongated particles also increase the surface area of 

aggregates. Moreover, on account of the undersized particles, aggregate dust 

and silt fines present in 10mm sized aggregates, the voids left by 20mm sized 

aggregates are not completely filled and are therefore required to be filled 

using the cement paste to produce a cohesive mix. Therefore, in comparison 

to 10mm sized aggregate more cement paste is available for lubrication in 

case of 20mm sized aggregates. 

In view of the above, CA(20mm) constituent in concrete is shown to increase 

the concrete slump attributing 6.5341% influence on slump value. Whereas, 

CA(10mm) owing to the presence of elongated, flaky, undersized particles 

and particles covered with silt and murrum, is shown to decrease the slump 

and provide a significant importance of 13.5483% on the slump value. 

e) Sand content is shown to exhibit a slight negative importance of 3.1709%. 

Due to declining sources of Natural River sand, it is difficult to procure the 

desired quantity of sand from a single source. Sand sourced from different 

quarries affects the particle grading. The findings are supported by the 

gradation analysis of fine aggregate samples obtained from the RMC industry 

shown below, that reveal the change in particle grading due to presence of 

either higher percentage of fine particles or coarse particles. 

Sample-I  

IS Seive 

(mm) 

Weight 

retained 

(gms) 

Retained 

(%) 

Cumulative 

retained 

(%)  

Cumulative 

passing 

(%)  

As per 

IS:383 

limits 

Remarks 

10.000 0.00 0.00 0.00 100.00 100 The 

percentage 

of fine 

particles is 

greater than 

the 

prescribed 

limit.  

4.750 30.00 3.01 3.01 96.99 90-100 

2.360 48.00 4.81 7.82 92.18 75-100 

1.180 134.00 13.44 21.26 78.74 55-90 

0.600 95.00 9.53 30.79 69.21 35-59 

0.300 400.00 40.12 70.91 29.09 08-30 

0.150 200.00 20.06 90.97 9.03 0-10 

pan 90.00 9.03 100.00 0.00  
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Sample-II 

IS Seive 

(mm) 

Weight 

retained 

(gms) 

Retained 

(%) 

Cumulative 

retained 

(%)  

Cumulative 

passing 

(%)  

As per 

IS:383 

limits 

Remarks 

10.000 12.00 1.23 1.23 98.77 100 The 

percentage 

of coarse 

particles is 

greater than 

the 

prescribed 

limit.  

4.750 123.00 12.58 13.80 86.20 90-100 

2.360 108.00 11.04 24.85 75.15 75-100 

1.180 342.00 34.97 59.82 40.18 55-90 

0.600 102.00 10.43 70.25 29.75 35-59 

0.300 201.00 20.55 90.80 9.20 08-30 

0.150 76.00 7.77 98.57 1.43 0-10 

pan 14.00 1.43 100.00 0.00  

 

Very fine sand, because of their larger surface area demand more cement 

paste for lubrication thereby, requiring more water to produce a concrete of 

given workability. High silt content, very rarely found in sands also increases 

the water demand for a given workability. Very coarse sand particles on the 

other hand, however, decrease the surface area but, increase particle 

interference with coarse aggregates leading to decrease in the workability of 

the concrete mix. Since fine aggregates offer a greater contribution to the 

surface area, it is shown that the workability of concrete is sensitive to the 

grading of the fine aggregates.  

 

5.7          Response trace plots 

The response trace plots for the design mix constituents of RMC namely, 

cement, PFA, sand, CA (20 mm), CA (10 mm), superplasticizer and water, were 

plotted by varying the proportion of each constituent and predicting the slump value 

using the trained hybrid GA-LMBNN model. The response trace exhibit the effect of a 

change in the content of each concrete design mix constituent on the slump such that 

the total volume of the mix (1 m
3
) remains unchanged. Therefore, a decrease or 

increase in the content of any concrete design mix constituent with respect to the 

reference design mix proportion would proportionately either increase or decrease the 

volume of other constituents.  
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The response trace plots exhibited in Figure 5.32 to Figure 5.38 reveal that: 

a) The slump value is shown to increase gradually with cement content and 

beyond cement content 300 kg/m
3
 it starts to decrease sharply (Figure 5.32). 

At low cement content, the volume of cement paste is not adequate to 

completely fill, lubricate and coat the aggregate particles, resulting in lower 

workability. An increase in the cement content provides more lubrication to 

the concrete mix, enhancing its slump value. As cement content is increased, 

the water to binder ratio decreases. However, the water demand to aid 

hydration of cement increases.  

A certain limit of cement content (300 kg/m
3
 in the present study) is reached 

wherein the water required for cement hydration exceeds the water available 

to aid the consistency of the concrete mix. Hence, as the cement content is 

increased beyond 300 kg/m
3
, the resulting mix exhibits cohesiveness but 

lacks the ability to flow, leading to a decrease in the slump value.  

 

Figure 5.32: Response trace of slump value plotted against cement content 

b) A sharp increase in the slump value with an increase in PFA content is 

noticeable (Figure 5.33). The rising limb of the response trace plot for PFA 

exhibits a sharper increase in slump values in comparison to cement. This is 
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attributed to higher finer fraction of PFA particles having spherical shape and 

glassy surface that lead to greater workability enhancement. The smaller 

particles of PFA also help in reducing segregation, improving the 

cohesiveness of the mix. However, if the PFA content is increased beyond  

90 kg/m
3
, a sharp decrease in the slump value is noticed.  

As PFA content is increased, the water to binder ratio decreases. A stage is 

reached wherein water content becomes inadequate to maintain the 

consistency of the concrete mix. Hence, any addition in PFA content beyond 

90 kg/m
3
 in the present study increase the cohesiveness of the concrete mix at 

the expense of reduction in consistency making the concrete mix sticky and 

difficult to finish. 

 

Figure 5.33: Response trace of slump value plotted against PFA content 
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the water demand or particle inference leading to decrease in workability. 

However, at lower sand content, the smooth and rounded particles present in 

Natural River sand tend to increase the workability of concrete. An increase 

in fine aggregate content beyond 732 kg/m
3
 increases the fine to coarse 

aggregate ratio thereby, appreciably increasing the demand for cement paste 

for a given consistency. Therefore, an increase in the sand content beyond 

732 kg/m
3
 increases cohesiveness but decreases the consistency of the 

concrete mix.  

 

Figure 5.34: Response trace of slump value plotted against sand content 

d) An increase in slump is noticed up to CA(20mm) content 572 kg/m
3
               

(Figure 5.35), which is attributed to smaller surface area of large aggregate 

size that require less cement paste for coating their surface whereby, more 

cement paste is left for consistency improvement. However, beyond CA        

(20 mm) content 572 kg/m
3
, the concrete slump begins to decrease. This is 

attributed to an increase in aggregate content without increasing the cement 

paste whereby, the available cement paste becomes insufficient to coat 

completely and lubricate all aggregate particles, resulting in a decrease in 

slump value.  
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Figure 5.35: Response trace of slump value plotted against CA (20mm) content 

e) The gradation analysis shown and discussed in Section 5.6, reveal that the 

undersized particles, silt fines, and aggregate dust get inadvertently mixed 

with CA(10mm). With an increase in CA(10mm) content, the proportion of 

finer particles in the concrete mix increases, requiring more paste for a given 

consistency. Moreover, the presence of flaky and sharp angular particles with 

rough surfaces in CA(10mm) aggregate, cause an interlocking effect that 

result in restraining the flowability of concrete. As a consequence, the slump 

value is shown to decrease with increase in CA(10mm), which becomes more 

pronounced as the CA(10mm) content is increased beyond 490 kg/m
3 

(Figure 5.36).   

f) With an increase in superplasticizer dosage, the slump value rises sharply 

which is attributed to the deflocculating and dispersing effect of 

superplasticizer that makes concrete flowable. However, beyond a certain 

dosage (3.50 kg/m
3
 in the present study), the superplasticizer ceases to 

further improve the slump value (Figure 5.37). It is also shown that beyond 

an optimal dosage, a very slight decrease in the slump value is noticeable 

which is attributed to bleeding and segregation caused by excessive dosage of 
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the superplasticizer that affects the cohesiveness as well as the uniformity of 

the concrete mix.  

 

Figure 5.36: Response trace of slump value plotted against CA (10mm) content 

 

 

Figure 5.37: Response trace of slump value plotted against superplasticizer content 
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g) Increase in water content adds to the fluidity of the concrete mix by 

lubricating the particles and therefore, as the water content is increased, a 

sharp rise in the slump value is noticeable (Figure 5.38). However, beyond a 

certain water content (155 kg/m
3
 in the present study), a slight decrease in 

slump value is noticeable which is attributed to an increase in fluidity but 

decrease in the density of concrete, allowing the heavier particles to settle 

down and lighter particles to move to the surface of concrete mix, leading to 

non-distribution of particles throughout the concrete cross-section, decreasing 

the cohesiveness, thereby reducing the slump value. 

 

Figure 5.38: Response trace of slump value plotted against water content 
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The results of the performance metrics for second RMC plant are shown in                     

Table 5.17.  

Table 5.17: Model performance metrics for the data set collected from second RMC  

plant 

Model  RMSE 

(mm) 

MAPE           

(%) 

R E RSR PBIAS         

(%) 

GA-LMBNN 2.7646 1.2410 0.9396 0.8817 0.3436 0.0663 

A comparison of the prediction performances shown above and in Table 5.10 

reveal that, the GA-LMBNN model does not yield the same accuracy of prediction for 

concrete slump for the design mix data collected from the second RMC batching 

plant.  

A regression plot is drawn between the actual slump value and slump value 

predicted by the GA-LMBNN model for the second RMC plant. The regression plot is 

shown in Figure 5.39.  

 

 

Figure 5.39:   Regression plot between actual and model predicted slump for second 

RMC batching plant 
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To determine the existence of a significant linear relationship between the 

actual slump and model predicted slump value, following hypothesis for slope
1  of 

best fit line is tested: 

(a) The slope
1 is equal to unity 

1: 10 H          (5.8) 

1: 1 aH          (5.9) 

For the above hypothesis, the regression parameter estimates for slope 1 ,             

t-values and p-value at 0.05 level of significance    for GA-LMBNN model are 

shown in Table 5.18.  

Table 5.18: Regression parameter estimates, t-value and p-value for slope 

Model Slope
1   Standard error t-value p-value 

GA-LMBNN 0.9124 0.0336 2.6102 0.0105 

The results exhibited above, show that for GA-LMBNN model, the t-value is 

greater than the critical value of t (= 1.9845) at degree of freedom (= 98) and the               

p-value is shown to be less than the level of significance  (= 0.05). Hence, the null 

hypothesis is rejected, indicating that the linear relation between actual slump values 

and the slump values predicted by the GA-LMBNN model for the second RMC 

batching plant is not significant.  

Following hypothesis for intercept 0 is also tested to assess closeness of            

best-fit regression line and line of equality (Actual=Predicted line): 

(a) Intercept 0  is equal to zero  

0: 00 H          (5.10) 

0: 0 aH          (5.11) 

For the above hypothesis, the regression parameter estimates for intercept 0 ,                  

t-values and p-value at 0.05 level of significance   for GA-LMBNN model are 

shown in Table 5.19.  
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Table 5.19: Regression parameter estimates, t-value and p-value for intercept 

Model Intercept 0  Standard error t-value p-value 

GA-LMBNN 13.8354 5.2675 2.6265 0.0100 

The results exhibited above, show that for GA-LMBNN model, the                              

t-value is greater than the critical value of t (= 1.9845) at degree of freedom (= 98) and 

the p-value is shown to be less than the level of significance  (= 0.05). Hence, the 

null hypothesis is rejected indicating that, the intercept is significant. The best-fit 

regression line is shown to be placed slightly away from the line of equality. The 

results indicate that, since almost all RMC batching plants derive their raw material 

from different sources, any minor change in the properties of concrete constituents has 

a significant effect on the resulting slump value. 

 

Figure 5.40:  Percentage error for the data collected from second RMC batching plant 
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or some of the raw material from the same source, the slump model developed for a 

particular RMC plant can be utilized for providing a approximate estimate of concrete 

slump values for design mix proportions of different RMC batching plants 

 

5.9  Decision support tool to estimate slump for the RMC design mix 

proportions 

In the preceding sections, it has been shown that the hybrid GA-LMBNN 

model for slump prediction yielded the best prediction accuracy and reliability. The 

GA-LMBNN model was saved and utilized to develop a decision support tool to aid 

quick and fair estimation of concrete slump for the user specified proportions of 

design mix constituents. The tool for estimating the slump value of RMC is shown in 

Figure 5.41.  

 

Figure 5.41: Decision support tool to estimate slump value for RMC 

The user can specify the specific gravity of the design mix constituents and 

can alter the design mix proportions. The design mix ratios and volume of the design 

mix can also be monitored using this tool. After entering all input data namely, 

specific gravity and design mix proportions, the user is required to click the 

“COMPUTE SLUMP” button to evaluate the slump value based on the developed 

slump model. The tool will enable quick determination of slump value without 

performing the cumbersome and time-consuming slump test at the RMC batching 

plant. The tool gives the technical personnel in charge of design mix the liberty to 

experiment with numerous design mix proportions for designing a concrete mix 

satisfying the desired workability.  

 Design Mix Constituents Specific Gravity Design Mix proportions Design Mix ratios Estimated Slump

CEMENT 330 kg/m
3

Superplasticizer to binder 0.009 159.691 mm

PFA 100 kg/m
3

Water to binder 0.3953

SAND 670 kg/m
3

Fine to coarse aggregate 0.6091

CA(20 mm) 560 kg/m
3

PFA to binder 0.2326

CA(10 mm) 540 kg/m
3

Binder to aggregate 0.2429

SUPERPLASTICIZER 4.0 kg/m
3

WATER 170 kg/m
3

Total 2374 kg/m
3

Volume 0.9905 m
3

ESTIMATION OF SLUMP VALUE FOR READY MIX CONCRETE 

3.15

2.2

2.66

2.65

2.65

1.2

1

COMPUTE SLUMP



Chapter 5: Results and Discussion 

153 
 

C
h
a
p
ter 5

: R
esu

lts a
n
d
 D

iscu
ssio

n 

5.10  Summary  

 A three layered Feedforward Neural Network model was constructed for 

modeling slump of RMC. The model comprised of seven input neurons signifying the 

proportions of design mix constituents and one output neuron representing the 

concrete slump. A series of neural network architectures were trained using 

Levenberg-Marquardt (LM) backpropagation algorithm and examined to determine 

the optimal number of hidden layer neurons. The neural network model with eleven 

hidden layer neurons is shown to provide a balance of both learning and 

generalization and adopted for the further study.  

To propose the hybrid GA-LMBNN model for the concrete slump, several 

parametric investigations were carried out to find the optimum GA parameters 

namely, population size, crossover fraction, and mutation rate. It is shown that a 

population of 40 chromosomes, crossover fraction 0.80 and mutation rate 0.015 

yielded the best combination of parameters for GA.  

The optimal weights and biases were evolved using GA assisted training of 

MFNN. The GA model was run twenty times, and it was found that the GA model 

took an average 13.7189 seconds and 39 population generations to train the MFNN. 

At the initial stage, the GA is shown to efficiently train the MFNN. As the training 

progresses and the search space are narrowed down, the convergence is adversely 

affected due to GA’s weak local search ability. However, LM algorithm initialized 

with GA evolved weights and biases is shown to render quick convergence to the 

MFNN. 

The hybrid GA-LMBNN model was initialized using GA evolved weights 

and biases that were further fine-tuned using LM algorithm. On the other hand, 

conventional LMBNN was initialized using randomly generated weights and biases in 

the range [-0.5, 0.5].  A comparison between GA-LMBNN and conventional LMBNN 

model showed that, the hybridization of GA and LMBNN leads to an approximate 

80% reduction in training epochs and CPU time and reduces the stabilizes the training 

process.  

The GA model yielded higher RMSE and MAPE values, lower R value and 

unacceptable E and RSR values, indicating its effectiveness to train MFNN. A lack of 

consistency in the prediction accuracy of the LMBNN model is noticeable, which is 
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shown to be more pronounced during its generalization stage when presented with the 

validation dataset. However, hybridization of GA with LMBNN during its training 

phase stabilizes the performance of the neural network model, augmenting and 

providing consistency to its learning and generalization accuracy. In nutshell based on 

the results, the hybrid GA-LMBNN is shown to outperform the GA and the 

conventional LMBNN model. 

The first order and second regression models for slump were also developed. 

Compared to the first order regression model, a significant improvement in the 

prediction performance is noticeable in the case of the second order regression model. 

A comparison of model prediction error shows that neural network models yield lesser 

skewness and a smaller range of errors than the regression models. The hybrid GA-

LMBNN model is shown to provide minimum skewness of prediction errors and 

maximum frequency of errors close to zero.  

The results of the performance metrics established the prediction superiority 

of the neural network models in comparison to the conventional regression models. 

Amongst the concrete slump models, the GA-LMBNN model is shown to exhibit 

superior accuracy with lower RMSE, MAPE and RSR values along with, higher R and 

E values. The GA-LMBNN model is also shown to exhibit a very low PBIAS value 

indicating near to optimal prediction accuracy.  

The percent correct plots reveal that, although regression models predict 

approximately 90% data within ±5% threshold ranges, they are found to be inefficient 

at lower threshold error ranges. Compared to the LMBNN model, that is shown to 

predict 98% of the data correctly in the ±5% error range, the GA-LMBNN model is 

shown to predict 100% of the data reliably at ±4% error range and is found to be 

efficient at the smaller error ranges. The results exhibit the prediction accuracy and 

reliability of the neural networks and demonstrate their potential for modeling 

unstructured problems governed by unknown or complex functional relationships.  

The hypothesis test for the regression plots reveal that, although all models 

developed for the concrete slump provided a linear relationship between the actual 

slump and slump values predicted by them but, the hybrid GA-LMBNN model was 

shown to provide the highest prediction accuracy. The neural network models namely, 

LMBNN and GA-LMBNN are shown to provide better R
2
 values in comparison to 

regression models, demonstrating their potential to accurately model the complex 
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interactions between the proportions of concrete design mix constituents and the 

slump value.  

 The relative importance of various constituents on slump value showed that 

superplasticizer and PFA are the most significant design mix constituents for RMC 

slump value. The response trace plots provided insight into the complex material 

behavior exhibited by the concrete slump. The plots indicate that there exists a certain 

level of each constituent beyond which a significant change in the behavior of 

concrete slump is noticeable.  

The developed GA-LMBNN model for concrete slump does not yield the 

same prediction accuracy when presented with proportions of design mix constituents 

collected from a different RMC batching plant. However, it is shown that the hybrid 

GA-LMBNN model can reliably predict the slump values within ±5% error range for 

design mix proportions of different RMC batching plant. The hybrid GA-LMBNN 

model is harnessed to develop a decision support tool for quickly predicting slump 

values without performing the cumbersome and time-consuming slump test at the 

RMC batching plant. The tool gives the technical personnel in charge of design mix 

liberty, to experiment with numerous design mix proportions for designing a concrete 

mix having customized slump value. 
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6.1  Research summary 

Workability is an important property of fresh concrete. It is defined as the 

mechanical work required to manipulate the concrete mix with minimum loss of 

homogeneity. Since workability indicates the internal work needed for placing and 

compaction of fresh concrete and depends on the type and method of construction 

hence, there no single well-accepted test for measuring workability. However, in 

quantitative terms, the workability of concrete is measured using a widely used test 

called the Slump Test. Assessment of workability in terms of slump value plays a 

significant role in the Ready Mix Concrete (RMC) industry, as it not only controls 

quality and uniformity of concrete from batch to batch but also acts a measure to 

ensure that RMC transported with long delivery times is still in the state that it could 

be easily placed, compacted and finished at the construction site. 

The constituents of RMC namely, cement, pulverized fuel ash, fine 

aggregate, coarse aggregate, superplasticizer and water, each exhibiting different 

physical and chemical properties, impart complexity to its material behavior, 

necessitating a non-algorithmic approach to its material modeling. To study, model 

and analyze such problems, approximate computer based Soft Computing techniques 

inspired by the reasoning, intuition, consciousness and wisdom possessed by human 

beings are employed. Amongst the various Soft Computing methodologies, the 

Genetic Algorithms (GA) and Artificial Neural Networks (ANN) have found wide 

applicability as optimization tool and modeling tool respectively. A review of the 

literature shows that the backpropagation (BP) algorithm trained Multilayer 

Feedforward Neural Networks (MFNN) also known as backpropagation neural 

networks (BPNN) are good function approximators. They have been extensively 

harnessed for tasks associated with modeling of physical phenomenon and material 

behavior, wherein conventional regression models do not yield the desired accuracy 

and predictability. Moreover, in all previous applications, the researchers have 

harnessed the BPNN for modeling the slump of concrete.  

The reason for the wide applicability of BPNN is due to its ability to imbibe 

the non-linear or unknown input-output relationships easily through systematic 

updating of neural network weights and biases. Despite its wide popularity and simple 

implementation, the BP algorithm is faced with some inherent drawbacks. BP 

algorithm is a local search algorithm that harnesses the principle of steepest descent 
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and therefore it is highly dependent on the initial weights and biases to escape local 

minima and accomplish rapid convergence. During past few decades, several 

improved versions of local search BP algorithms have been introduced. Amongst 

them, the Levenberg-Marquardt (LM) backpropagation algorithm is shown to provide 

both learning efficiency and fast convergence. Although the LM backpropagation 

algorithm inherits fast convergence of the Gauss-Newton algorithm yet, it still carries 

the weakness of the steepest descent algorithm. Genetic Algorithms (GA) on the other 

hand are global search algorithms that employ non-trajectory search to perform longer 

jumps in search space. Although, gradient-free search employed by GA minimizes the 

probability of entrapment at local minima yet, owing to its weak local search ability, it 

is susceptible to slow convergence. 

To circumvent the inherent drawbacks of GA and BP algorithms, a hybrid 

methodology is proposed for modeling the relationship between slump of concrete and 

the proportions of RMC design mix constituents. The methodology amalgamates the 

global search ability of GA with the fast converging LM backpropagation algorithm, 

for assisting the MFNN to escape local minima and accomplish faster convergence. 

The study further attempts to (a) assess and compare the effectiveness of Genetic 

Algorithms, Levenberg-Marquardt backpropagation algorithm and hybrid Genetic 

Algorithm-Levenberg Marquardt backpropagation algorithm for training the MFNN; 

(b) compare the prediction accuracy and reliability of the neural network and 

regression models; (c) analyze and explore the material behaviour of concrete slump; 

(d) assess the effectiveness and applicability of the slump model for a different RMC 

batching plant; and (e) develop a decision support tool to estimate the slump value for 

the concrete design mix. 

The data for the study were collected from two different RMC batching 

plants. In all a total of 493 and 100 design mixes of concrete grade M10 to M35 were 

collected from the first and the second RMC batching plant respectively. The data 

constituted the design mix proportions of cement, pulverized fuel ash or fly ash 

(PFA), sand, coarse aggregate (20mm), coarse aggregate (10mm), superplasticizer and 

water in kg/m
3
, along with their corresponding slump value in mm. The entire data is 

randomized and split into three statistically similar subsets namely, training dataset, 

validation dataset, and test dataset. The data was normalized in the range [-1, 1] to 

minimize the possibility of bias towards a particular feature. The Neural Network 
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Toolbox and Global Optimization Toolbox included in the commercially available 

software MATLAB 7.1 (R14 SP3) (Version 7.1.0.246) were used to implement BPNN 

and GA respectively. 

The three layer architecture of MFNN adopted for the study comprised of 

“input layer”, an “output layer” and a sandwiched “hidden layer” containing artificial 

neurons, permitting only inter-layer connections among the artificial neurons in the 

forward direction only. The model used the seven neurons representing design mix 

proportions of RMC as inputs to predict the slump value of concrete. The MFNN 

model is trained using Levenberg-Marquardt backpropagation algorithm and is 

denoted as LMBNN. 

The hybrid GA-LMBNN methodology comprised of two stages. In the first 

stage, the GA was employed to train the MFNN, for evolving the optimal weights and 

biases for the MFNN. During the second stage, the GA evolved weights and biases 

were used for initializing LM backpropagation algorithm. The LM algorithm starts 

from the optimized set of weights and biases and fine tune them to train the MFNN 

model. The conventional LMBNN model, on the other hand, was initialized with the 

random value of weights and biases in the range [-0.5, 0.5]. 

Regression is a highly useful statistical technique for developing a 

quantitative relationship between the dependent variable and one or more independent 

variable. In the present study, there are seven independent variables representing the 

design mix constituents of RMC and one dependent variable signifying the slump 

value. The regression models namely, first order and second order models were 

developed for establishing a relationship between the proportions of the design mix 

constituents of RMC and the slump value.  

Six different statistical performance metrics namely, root mean square error 

(RMSE), mean absolute percentage error (MAPE), correlation coefficient (R), 

coefficient of efficiency (E), root mean square error to the observation’s standard 

deviation ratio (RSR) and percent bias error (PBIAS) have been combined to derive 

holistic inferences regarding the prediction performance of the slump models. 

In the present study the sensitivity analysis was performed using connection 

weights method and response trace plots. The importance of each design mix 

constituent of RMC on the slump value was assessed using connection weights 
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method. The response on the slump value brought about by varying the proportions of 

each design mix constituent was deduced using the response trace plots. The 

effectiveness and universal applicability of the slump model were assessed by, 

utilizing it to predict the slump for concrete design mix data collected from the other 

RMC batching plant. The knowledge extracted from RMC data in the form of a neural 

network model was used to develop a decision support tool for estimating initial 

slump for the concrete design mix.  

A trial and error technique was employed for determining the optimal 

number of hidden layer neurons, for which a series of neural network architectures 

were examined. The LM backpropagation algorithm is employed to train the MFNN 

model using the training data set. The validation dataset is used to monitor the average 

standard deviation of errors (AVSD) and average of mean absolute error (AVMAE) at 

each training epoch to avoid the overfitting of the model. The optimal architecture for 

the MFNN was shown to comprise eleven hidden layer neurons and denoted as               

7-11-1.  

GA is a population-based heuristic that employs computational models of 

evolutionary processes like selection, crossover, and mutation wherein, the solutions 

to the problems are encoded as genes of the chromosome population. In the study, the 

weights and biases for the MFNN architecture (7-11-1) numbering 100, are encoded 

as genes of the chromosomes. The fitness of each chromosome is measured using root 

mean square error (RMSE) between the actual and the predicted slump value. 

Tournament selection strategy is adopted for allowing the chromosomes of higher 

fitness to pass on their genes to the next generation while prohibiting the entrance of 

low fitness chromosomes. Several parametric investigations were carried out to find 

the optimum value for the most influential GA parameters namely, population size, 

crossover fraction, and mutation rate. An optimum value of initial population size of 

40 chromosomes, scattered crossover fraction 0.80 and uniform mutation rate 0.015 is 

adopted for the present study. 

The optimal initial weights and biases for the MFNN architecture (7-11-1) 

are determined using GA. The GA took an average CPU time of 13.7189 seconds and 

39 population generations to evolve the optimal weights and biases. The training plot 

of GA assisted training of MFNN reveals that the convergence of GA is adversely 

affected as the search space is narrowed down, indicating its weak local search ability. 
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A comparison of hybrid GA-LMBNN initialized with GA evolved optimal weights 

and biases with conventional LMBNN model initialized with randomly generated 

weights and biases in the range [-0.5, 0.5] reveal that the hybrid GA-LMBNN is more 

stable and exhibits faster convergence. The hybrid GA-LMBNN model is shown 

provide an approximate 80% reduction in training epochs and CPU time. 

The statistical performance metrics show that the GA model gave a relatively 

poor learning and generalization accuracy in comparison to the neural network models 

namely, GA-LMBNN and LMBNN, indicating its ineffectiveness to train the MFNN. 

A lack of consistency in the prediction accuracy of the LMBNN model is noticeable, 

which is shown to be more pronounced during its generalization stage when presented 

with the validation dataset. However, hybridization of GA with LMBNN during its 

training phase stabilizes the performance of the neural network model, augmenting 

and providing consistency to its learning and generalization accuracy. In nutshell 

based on the results, the hybrid GA-LMBNN is shown to outperform the GA and the 

conventional LMBNN model. 

In comparison to first order and second order regression models for the 

concrete slump, the neural network models namely, LMBNN and hybrid GA-LMBNN 

model exhibited a smaller range of model errors and better prediction reliability and 

accuracy. The hypothesis test for the regression plots reveal that the hybrid GA-

LMBNN model can predict the values of slump very close to the actual values, 

proving its effectiveness to model the complex interaction between the proportions of 

concrete design mix constituents and the slump value. 

The superplasticizer and PFA in concrete were shown to exhibit maximum 

positive influence on the slump value of concrete. Whereas, the coarse aggregate 10 

mm is shown to exhibit a maximum negative influence on the concrete slump. The 

study showed that superplasticizer and PFA are the most important design mix 

constituents for RMC slump value. The response trace plots graphically exhibited the 

effect of an increase in each constituent of concrete on the slump value. The plots 

indicate that there exists a certain critical level of each constituent beyond which a 

significant change in the behavior of concrete slump is noticeable.  

The hybrid GA-LMBNN model for slump does not yield the same prediction 

accuracy when presented with proportions of design mix constituents collected from a 

different RMC batching plant proving that, the slump not only depends on the 
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proportions but also on properties of the design mix constituents of concrete. 

However, the hybrid GA-LMBNN is shown to predict the slump values reliably 

within ±5% error range. The decision support tool is shown to quickly and reliably 

predict slump based on the design mix proportions and can be utilized to experiment 

with numerous design mix proportions for formulating concrete design mixes catering 

to the workability requirements without performing actual slump tests at the RMC 

batching plant. 

 

6.2  Conclusions  

The broad conclusions derived from the study are as under: 

1. The effectiveness of Multilayer Feedforward Neural Network (MFNN) 

training algorithms namely, Genetic Algorithms (GA), Levenberg-Marquardt 

(LM) backpropagation algorithm and hybrid GA-LM algorithm, discussed 

and examined  in the study reveal that: 

(i) The convergence speed of GA is severely affected in the vicinity of 

global optimum owing to its weak local search capability, as it 

requires much computational effort to reduce the network error to a 

minimum acceptable value. As a consequence, the MFNN trained 

using GA is shown to exhibit poor learning and generalization 

performance. The global search algorithms like Genetic Algorithms 

cannot be, therefore, regarded as an efficient alternative to the local 

search backpropagation algorithms for training the MFNN. 

(ii) The hybridization of GA with Levenberg-Marquardt (LM) 

backpropagation algorithm helped to derive the best from the global 

search ability of GA and the fast local search rendered by LM 

algorithm, thereby offering dual benefits: 

(a) Firstly, the non-trajectory multidimensional search rendered by 

GA facilitates the LM algorithm to reach a global solution to a 

problem by narrowing down and restricting its search in the 

regions where there are paramount possibilities of finding the 

optimal neural network weights and biases. Although, on account 



Chapter 6: Summary and Conclusions 

162 

 

of the computational effort taken by GA to evolve optimal initial 

weight and biases for the LM algorithm, the hybrid GA-LM 

algorithm is found to be approximately 10 to 15 times 

computationally expensive than the conventional LM algorithm 

yet, it is shown to circumvent the inherent drawback of the 

conventional LM algorithm getting trapped in local minima. This 

advantage is reflected by the consistent and improved learning 

and generalization performance of the hybrid GA-LMBNN 

model compared to the conventional LMBNN model that uses 

randomly initialized weights and biases.  

(b) Secondly, once the probability of getting trapped in local minima 

is minimized and the search region is narrowed, the Gauss-

Newton algorithm present in the LM algorithm augments the 

convergence speed, causing 80% reduction in the average CPU 

time and epochs taken by the conventional LM algorithm to train 

the MFNN.  

2. A comparison of the prediction performance and reliability of the artificial 

neural networks and regression models for the concrete slump show that: 

(i) The error histograms for the first order and second order regression 

models exhibit skewness and a large range of prediction errors. On the 

other hand, the prediction errors of neural network models are 

confined to a smaller range and exhibit higher frequency of errors 

close to zero with smaller skewness value. The hybrid methodology 

harnessing GA and LMBNN is shown to render symmetry to the 

distribution of errors and increase the frequency of errors close to 

zero. 

(ii) The neural network models namely GA-LMBNN and LMBNN 

yielded a lower RMSE, MAPE and RSR values and higher R and E 

values, indicating a significantly improved performance accuracy in 

comparison to the first order and second order regression models. 

Among the concrete slump models, the GA-LMBNN model is shown 

to exhibit superior accuracy with lower RMSE, MAPE and RSR 
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values of 0.8015 mm, 0.3197% and 0.0975 respectively along with, 

higher R and E values of 0.9952 and 0.9905 respectively. The              

GA-LMBNN model is also shown to exhibit a very low PBIAS value 

of 0.0208% indicating near to optimal prediction accuracy.  

(iii) The regression models were able to predict correctly nearly 90% of 

the slump values within ±5% error range. On the other hand, the 

neural network models are shown to predict correctly 98% of the 

slump values within ±5% error range and exhibit significant 

efficiency at smaller threshold error ranges. The hybrid GA-LMBNN 

model is shown to predict correctly 100% slump values within ±4% 

error range and, therefore, outperform the prediction accuracy of the 

conventional LMBNN model. The results exhibit the prediction 

accuracy and reliability of the neural networks and demonstrate their 

potential for modeling unstructured problems governed by unknown 

or complex functional relationships. 

(iv) The hypothesis test for the regression equation between actual and 

model predicted slump values reveal that, the first order regression, 

the second order regression and the conventional LMBNN models 

developed for concrete slump are able to provide a fair estimate of the 

concrete slump based on the proportions of the design mix 

constituents. However, the hybrid GA-LMBNN model is shown to 

provide significant prediction accuracy thereby, outperforming the 

regression models and conventional LMBNN model. The regression 

equation is shown to fit 42.85%, 73.48%, 95.90% and 99.05% data 

for the first order regression, second order regression, LMBNN, and 

GA-LMBNN models respectively indicating that, unlike in the case of 

the neural network models, the degree of correlation between the 

actual and the predicted slump of concrete in case of the regression 

models is not very strong. It can, therefore, be inferred that, like other 

properties of concrete, the slump also bears a highly non-linear 

functional relationship with the design mix constituents. 

3. The trained hybrid GA-LMBNN model is shown to extract significant 

information regarding the complex and unknown interaction between the 
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concrete’s design mix constituents and its physical property, i.e., workability 

measured using the slump value. The connection weights method and 

response trace plots were harnessed to provide insight into the complex 

material behavior exhibited by the concrete slump. The conclusions drawn 

from sensitivity analysis are as under: 

(i) The constituents of the RMC namely, superplasticizer (SP) and 

pulverized fuel ash (PFA) are shown to exhibit positive influence on 

the concrete slump and together contribute a significant 52% 

importance, indicating their significance in the RMC industry. Since 

water and cement are used as a ratio in the design mix and is almost 

fixed for a customized grade of concrete, these two constituents have 

exhibited almost the equal importance on the concrete slump. A 

predominant amount of undersized particles aggregate dust, silt and 

murrum that inadvertently get mixed with CA (10mm) is shown to 

cause a detrimental effect on the initial slump of RMC. On the other 

hand, due to the presence of larger-sized aggregates in CA (20mm), it 

is shown to exhibit a positive influence on the slump value. Sand 

quarried from different natural sources causes deviation in the 

gradation of particles, increasing particle interference and surface area 

leading to decrease in slump value. The findings of the study 

supported by grading analysis of CA (10mm) and sand obtained from 

RMC industry reveals that, the workability of concrete is sensitive to 

the grading of the aggregates.  

(ii) The response trace plots helped to explore the complex non-linear 

material behavior exhibited by the concrete slump. Response trace 

plots for cement, PFA and water have shown a sharp rise in the 

concrete slump. However, beyond a certain level of these constituents, 

the slump falls sharply. The response plot for superplasticizer is seen 

to rise sharply, however, beyond particular superplasticizer content, it 

ceases to improve the slump value further. On the other hand, the sand 

and CA (20mm) exhibited a flatter response, and CA (10mm) is 

shown to follow a declining trend. The response trace plots have 

shown that, there exists a certain critical level of design mix 
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proportion beyond which a significant change in the behavior of 

concrete slump is noticeable.  

4. The hybrid GA-LMBNN model for the slump is shown to predict the slump 

values accurately within ±5% error range for design mix proportions 

collected from a different RMC batching plant. However, in contrast to the 

first RMC batching plant, the GA-LMBNN model does not yield the same 

degree of prediction accuracy for the second RMC batching plant. It indicates 

that, the concrete slump is sensitive to the physical and chemical properties 

of the individual design mix constituents, and therefore, any minor change in 

the properties of the constituent can significantly affect the prediction 

accuracy of the slump model. The concrete slump is thus, shown to depend 

not only on the proportions but also on the properties of the individual design 

mix constituents. The slump model developed using data collected from a 

particular RMC batching plant can, therefore, be reliably and universally 

applied for estimation of concrete slump for different RMC batching plants 

as long as these plants derive their raw material from the same source.  

5. The decision support tool harnessing the hybrid GA-LMBNN model for 

concrete slump will assist the technical person in charge of the concrete 

design mix, to quickly estimate the initial slump of concrete at the batching 

plant to a desired degree of accuracy based on the design mix proportions, 

without undertaking the cumbersome experimental procedures. The decision 

support tool provides the liberty to the technical personnel to experiment with 

numerous concrete mix proportions for designing a customized RMC mix 

that can render slump value at the construction site within the specified 

range, even after suffering slump loss during its transit from the batching 

plant to the construction site. 

 

6.3   Recommendations 

Based on the study following recommendations are made: 

a) The hybridization of artificial neural networks with heuristic global search 

algorithms can significantly improve the prediction accuracy of the neural 
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network model. The neural network model based on the hybrid methodology 

can, therefore, render accurate modeling for problems that are unstructured 

and highly complex in nature. 

b) The weights of the neural network model have been utilized to extract the 

relative importance of various design mix constituents on the slump value. 

Based on the results, the raw material suppliers for RMC plants can be 

guided accordingly to improve the quality of the material to minimize the 

negative effect rendered by some design mix constituents on the slump value. 

For example, by adopting latest technology like the three stage vertical shaft 

impact crusher (VSI), an improvement in the quality of the coarse aggregates 

can be achieved. 

c) An effective knowledge sharing and exchange of experience between the 

academicians and the industry personnel to improve the properties of the 

RMC can be achieved using this study.  

d) The neural network model has provided insight into the complex material 

behavior of concrete. The methodology can be used to analyze and compare 

the behavior of concrete manufactured using different source materials.  

 

6.4   Future scope of study 

In the present study, GA has been hybridized with the fastest converging 

Levenberg-Marquardt backpropagation algorithm for training the Feedforward Neural 

Network. Recently, an updated version of Feedforward Neural Network with a single 

layer of hidden neurons called the Extreme Learning Machines (ELM) has been 

developed to render fast convergence coupled with good generalization. However, in 

ELM, the hidden layer neurons and values of weights and biases are randomly chosen, 

which can significantly affect the performance of the trained model. GA hybridized 

with ELM for evolving the initial weights and biases and hidden layer neurons, can be 

used in the future study for quick and accurate material modeling of concrete.    

The scope of the present study was limited to model concrete slump based on 

the design mix proportions collected from an RMC batching plant. Along with the 

slump data, the compressive strength data for the design mix proportions can be 
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collected from the RMC batching plant for developing a neural network model that 

can simultaneously predict slump value along with the compressive strength for the 

design mix proportions. The technical personnel in charge of mix design can use the 

comprehensive model as a tool for quick determination of compressive strength and 

slump value and can be further harnessed to provide insight into the complex material 

behavior of concrete. The proportions of the design mix for developing the slump 

model in the study were limited to M35 grade concrete. The methodology presented in 

the study can be extended and applied to modeling the compressive strength and 

slump of higher grade concretes. 
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Design mix proportions and slump data collected from first RMC batching plant 

(493 datasets) 

S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

1 150 0 860 638 522 2.50 150 90 

2 155 0 858 640 521 2.45 145 90 

3 380 0 725 720 370 0.00 190 120 

4 200 0 820 620 540 2.20 170 125 

5 250 0 614 764 516 1.30 150 140 

6 150 70 806 654 558 2.50 164 140 

7 100 120 840 620 534 2.00 160 140 

8 150 70 806 650 562 2.50 164 140 

9 300 0 843 697 343 2.50 178 140 

10 300 0 824 702 346 2.40 188 140 

11 330 0 800 500 582 3.50 172 150 

12 330 0 806 490 580 3.30 165 150 

13 120 120 840 428 682 3.00 160 150 

14 380 0 810 500 500 3.50 180 150 

15 330 0 806 486 580 3.50 166 150 

16 380 0 790 550 490 3.80 160 150 

17 330 0 806 490 580 3.50 160 150 

18 380 0 788 550 490 4.00 170 150 

19 330 0 800 500 582 3.50 160 150 

20 120 120 840 438 682 3.00 160 150 

21 300 0 722 604 588 3.40 166 150 

22 330 0 806 490 580 3.30 156 150 

23 330 0 800 500 582 3.90 170 150 

24 380 0 810 500 490 3.80 174 150 

25 330 0 810 582 500 3.70 165 150 

26 330 0 810 582 500 3.70 175 150 

27 330 0 810 500 582 3.80 170 150 

28 330 0 806 490 580 3.60 160 150 

29 330 0 800 582 500 3.70 158 150 

30 330 0 800 500 582 3.50 170 150 

31 380 0 790 550 500 4.00 170 150 

32 330 0 806 490 580 3.50 158 150 

33 330 0 806 490 580 3.40 160 150 

34 380 0 810 500 490 4.00 170 150 

35 140 120 780 516 526 1.50 186 150 

36 300 0 722 604 588 3.20 160 150 

37 380 0 790 550 490 3.50 180 150 

38 330 0 806 490 580 3.50 162 150 

39 330 0 810 500 582 3.70 165 150 

40 300 0 722 604 588 3.20 155 150 

41 380 0 810 500 500 4.00 176 150 

42 380 0 810 600 500 4.00 175 150 

43 380 0 790 550 490 3.80 168 150 

44 120 120 850 438 680 2.50 170 150 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

45 380 0 790 550 490 4.00 180 150 

46 300 0 700 762 468 3.50 150 150 

47 350 0 800 500 582 3.70 166 150 

48 300 0 722 604 588 3.50 162 150 

49 380 0 790 550 490 4.00 170 150 

50 300 0 722 604 588 3.20 166 150 

51 380 0 810 500 490 4.00 176 150 

52 330 0 806 580 510 3.30 160 150 

53 330 0 800 500 582 3.00 170 150 

54 120 120 850 438 680 3.00 150 150 

55 120 120 800 536 536 2.50 166 150 

56 300 0 800 600 600 3.80 160 150 

57 120 120 860 438 600 2.00 170 150 

58 380 0 790 550 490 4.00 160 150 

59 380 0 750 550 490 4.00 170 150 

60 330 0 800 500 582 3.60 168 150 

61 120 120 850 438 680 2.50 175 150 

62 330 0 800 500 582 3.50 166 150 

63 120 120 860 438 680 2.00 180 150 

64 340 0 800 500 582 3.80 170 150 

65 380 0 790 550 490 4.00 178 150 

66 330 0 806 490 580 3.50 156 150 

67 120 120 860 536 536 2.60 180 150 

68 120 120 850 438 680 2.50 150 150 

69 330 0 750 528 582 4.20 170 150 

70 330 0 806 490 580 3.30 160 150 

71 330 0 800 500 582 3.30 170 150 

72 120 120 840 438 680 2.00 176 150 

73 380 0 810 500 500 4.10 180 150 

74 330 0 800 500 582 3.80 170 150 

75 380 0 810 500 500 4.00 180 155 

76 200 60 770 604 560 2.30 170 155 

77 250 100 776 530 558 2.90 163 155 

78 240 0 850 590 500 2.40 160 155 

79 330 0 800 580 500 4.00 176 155 

80 330 0 800 592 510 3.80 170 155 

81 250 100 776 530 558 3.00 162 155 

82 120 180 850 412 618 2.60 174 160 

83 100 200 835 515 530 2.50 175 160 

84 220 110 774 586 530 4.00 170 160 

85 220 110 756 590 545 4.00 164 160 

86 240 100 790 570 508 3.80 160 160 

87 330 0 736 602 552 3.90 170 160 

88 250 100 712 602 558 3.80 166 160 

89 330 0 716 598 552 3.70 170 160 

90 250 110 756 562 562 3.70 168 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

91 224 100 779 568 568 3.90 168 160 

92 224 100 740 594 552 4.00 170 160 

93 220 110 800 580 510 3.80 165 160 

94 400 0 718 730 429 4.00 152 160 

95 220 110 742 576 552 3.90 170 160 

96 330 0 716 600 554 4.20 174 160 

97 300 0 786 580 540 3.50 168 160 

98 244 106 786 590 500 3.90 158 160 

99 330 0 755 600 540 3.80 163 160 

100 244 100 796 600 508 3.50 170 160 

101 180 120 810 600 476 3.00 179 160 

102 400 0 662 598 556 4.50 176 160 

103 300 0 800 600 476 3.90 168 160 

104 250 100 776 530 558 3.00 162 160 

105 220 110 790 600 476 3.80 160 160 

106 220 110 790 580 510 3.50 156 160 

107 210 113 746 580 530 4.50 164 160 

108 248 100 726 584 544 4.20 170 160 

109 300 0 800 570 536 3.70 170 160 

110 224 100 760 570 570 3.70 165 160 

111 350 0 716 598 552 4.20 174 160 

112 224 100 752 590 550 3.60 166 160 

113 220 110 790 600 476 4.20 162 160 

114 220 110 800 580 504 3.60 156 160 

115 250 100 726 592 558 4.00 170 160 

116 240 100 796 580 500 3.80 156 160 

117 224 100 742 600 560 3.30 166 160 

118 220 110 800 600 480 3.60 170 160 

119 340 30 676 598 552 4.20 170 160 

120 250 100 716 602 558 4.00 160 160 

121 350 0 810 500 490 4.30 180 160 

122 224 100 774 568 568 3.56 172 160 

123 240 100 790 570 506 3.80 160 160 

124 220 110 780 600 486 4.20 174 160 

125 424 0 546 730 486 5.20 170 160 

126 220 110 780 600 486 3.20 166 160 

127 330 0 736 602 550 4.00 170 160 

128 220 110 780 600 486 4.00 174 160 

129 330 0 756 600 540 3.80 170 160 

130 220 110 780 600 486 3.80 174 160 

131 330 0 736 602 550 3.50 170 160 

132 320 0 750 600 558 4.00 174 160 

133 224 100 742 600 560 3.80 160 160 

134 220 110 782 526 586 3.40 170 160 

135 220 110 782 550 576 2.90 158 160 

136 180 120 752 604 560 2.50 164 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

137 240 100 790 570 510 4.20 165 160 

138 270 90 746 580 530 4.50 164 160 

139 320 40 700 604 558 2.50 136 160 

140 224 100 742 594 560 3.50 162 160 

141 296 30 796 572 520 3.80 158 160 

142 248 100 726 584 544 4.20 176 160 

143 224 100 750 600 540 3.60 176 160 

144 224 100 741 600 560 3.20 150 160 

145 220 110 755 550 560 4.20 170 160 

146 250 100 730 572 572 4.00 170 160 

147 330 0 746 592 552 3.60 160 160 

148 240 110 786 584 498 3.90 158 160 

149 220 110 774 586 530 3.80 170 160 

150 220 110 786 580 540 3.50 178 160 

151 224 100 740 594 552 4.20 170 160 

152 270 100 790 586 490 4.40 170 160 

153 246 100 744 620 520 4.20 176 160 

154 224 100 774 568 568 3.70 164 160 

155 244 100 790 570 508 3.80 160 160 

156 180 120 762 600 460 2.80 170 160 

157 240 110 796 580 490 3.80 158 160 

158 220 110 786 580 540 3.50 168 160 

159 220 110 790 580 510 3.40 156 160 

160 224 100 742 594 560 3.80 162 160 

161 350 0 742 580 550 3.90 170 160 

162 240 100 796 580 500 3.80 160 160 

163 224 100 742 596 550 3.90 166 160 

164 224 100 746 598 552 4.00 174 160 

165 350 0 716 600 554 4.20 176 160 

166 330 0 746 592 552 3.60 170 160 

167 270 110 750 540 520 4.20 170 160 

168 320 0 736 584 544 4.10 170 160 

169 240 110 760 570 520 3.50 166 160 

170 250 106 750 556 556 3.80 170 160 

171 224 100 742 600 560 3.50 162 160 

172 270 80 716 598 552 2.00 172 160 

173 250 100 730 580 558 4.40 170 160 

174 244 100 790 570 508 4.00 168 160 

175 250 100 730 606 540 3.90 168 160 

176 426 0 790 590 552 5.20 168 160 

177 240 100 796 580 500 3.80 158 160 

178 350 0 716 596 552 3.30 170 160 

179 250 100 716 602 558 4.00 166 160 

180 244 106 780 570 510 3.70 160 160 

181 250 100 780 580 510 3.80 160 160 

182 246 104 744 580 536 4.00 165 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

183 330 0 790 600 540 3.60 156 160 

184 180 120 762 600 460 3.00 182 160 

185 330 0 728 600 442 3.80 162 160 

186 150 120 840 620 500 2.00 160 160 

187 220 110 780 600 488 3.80 169 160 

188 250 100 780 586 510 4.20 160 160 

189 300 0 810 610 494 3.30 126 160 

190 244 106 780 510 510 3.80 160 160 

191 300 0 800 600 480 3.60 160 160 

192 224 100 742 606 562 4.00 164 160 

193 120 100 780 638 590 3.00 152 160 

194 220 110 762 564 560 3.00 164 160 

195 426 0 642 590 548 5.00 168 160 

196 240 100 800 580 504 3.60 156 160 

197 330 20 776 530 558 3.10 170 160 

198 220 110 800 580 510 3.50 156 160 

199 244 100 790 570 508 4.00 165 160 

200 224 100 742 600 560 3.80 166 160 

201 250 100 716 600 558 3.80 166 160 

202 350 30 676 598 558 4.20 170 160 

203 240 100 796 580 500 3.70 160 160 

204 250 105 750 555 545 4.00 160 160 

205 240 100 790 580 510 4.20 170 160 

206 320 30 710 594 552 3.70 166 160 

207 330 0 740 600 556 3.80 174 160 

208 250 100 786 580 500 3.80 160 160 

209 224 100 752 610 550 4.00 176 160 

210 224 100 742 596 550 3.80 166 160 

211 224 100 740 594 552 4.00 172 160 

212 224 100 752 610 544 4.40 176 160 

213 180 120 762 578 576 3.00 160 160 

214 296 30 770 580 530 4.30 175 160 

215 450 0 642 576 540 5.80 180 160 

216 300 0 810 610 494 3.60 142 160 

217 320 50 710 594 554 4.20 174 160 

218 300 0 800 600 510 3.40 156 160 

219 224 106 750 570 570 3.80 166 160 

220 240 100 796 580 500 3.70 156 160 

221 220 110 742 606 562 3.80 170 160 

222 280 100 692 594 550 4.00 176 160 

223 410 0 700 594 506 4.00 180 160 

224 224 100 742 596 560 3.80 166 160 

225 220 110 800 570 544 4.00 164 160 

226 424 0 546 730 486 4.50 166 160 

227 120 160 860 526 526 2.60 190 160 

228 426 0 642 590 552 5.00 170 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

229 240 100 786 590 500 3.80 158 160 

230 250 100 760 550 558 4.00 164 160 

231 270 50 752 590 550 3.90 164 160 

232 320 0 800 550 540 4.40 164 160 

233 330 0 716 598 552 4.20 172 160 

234 224 100 752 580 560 3.90 162 160 

235 370 0 746 580 530 4.80 170 160 

236 244 100 790 570 520 3.80 178 160 

237 250 100 730 606 540 4.40 178 160 

238 220 110 776 570 544 4.00 174 160 

239 250 100 762 576 520 4.20 174 160 

240 250 100 760 550 550 4.00 172 160 

241 250 100 764 580 536 4.20 174 160 

242 270 110 750 582 498 4.00 166 160 

243 250 105 760 545 545 3.80 160 160 

244 220 100 800 580 504 3.70 165 160 

245 240 100 790 580 500 3.40 160 160 

246 220 110 782 526 586 3.70 170 160 

247 300 0 800 600 500 3.80 160 160 

248 220 110 780 600 486 3.80 178 160 

249 270 100 750 582 498 4.00 166 160 

250 220 110 790 590 476 3.80 164 160 

251 180 130 755 552 548 3.90 170 160 

252 248 100 726 584 544 4.10 170 160 

253 250 100 750 560 558 4.10 170 160 

254 250 100 746 572 572 3.92 170 160 

255 220 110 800 580 510 3.50 160 160 

256 220 110 774 586 530 4.00 160 160 

257 220 110 794 592 504 3.80 170 160 

258 230 100 740 594 552 4.00 168 160 

259 330 0 604 604 544 3.90 164 160 

260 240 110 786 580 500 4.00 160 160 

261 220 110 800 600 480 3.40 152 160 

262 220 100 810 600 486 3.60 150 160 

263 250 100 730 606 540 3.80 166 160 

264 300 0 840 580 500 3.80 160 160 

265 130 200 900 500 520 2.50 175 160 

266 244 100 768 596 508 3.80 156 160 

267 220 110 780 600 510 3.40 156 160 

268 220 110 742 586 542 4.00 175 160 

269 250 100 730 572 572 4.00 160 160 

270 250 100 776 550 538 3.00 163 160 

271 224 100 760 570 570 3.80 164 160 

272 270 100 706 586 540 4.40 176 160 

273 350 0 748 576 572 3.40 165 160 

274 250 100 736 582 558 4.10 164 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

275 380 0 662 598 556 4.20 180 160 

276 244 100 790 570 520 3.50 160 160 

277 270 100 750 560 530 4.00 165 160 

278 220 110 800 580 504 3.40 160 160 

279 300 0 780 550 560 3.80 175 160 

280 246 100 744 620 520 4.00 170 160 

281 224 100 752 576 576 3.90 156 160 

282 224 100 760 570 570 3.80 165 160 

283 340 40 676 608 552 3.00 164 160 

284 244 100 780 590 500 3.80 160 160 

285 220 110 800 570 544 3.40 156 160 

286 224 100 742 600 560 3.50 160 160 

287 350 0 716 598 552 4.00 170 160 

288 330 0 810 700 400 3.96 160 160 

289 450 0 642 576 540 5.80 186 160 

290 380 90 590 594 550 5.50 176 160 

291 300 0 780 654 516 3.50 156 160 

292 220 115 755 550 555 4.00 164 160 

293 320 30 700 604 558 2.40 150 160 

294 244 100 764 580 536 4.00 178 160 

295 220 110 790 600 476 3.70 170 160 

296 300 0 815 590 510 3.50 156 160 

297 220 110 774 586 530 3.20 160 160 

298 250 100 726 592 558 4.00 174 160 

299 244 106 780 570 510 3.80 160 160 

300 224 100 742 594 560 3.60 156 160 

301 220 110 772 530 570 3.80 172 160 

302 250 100 758 560 540 3.80 174 160 

303 220 100 752 590 550 3.60 166 160 

304 220 110 780 600 486 4.00 175 160 

305 220 110 782 526 586 4.00 170 160 

306 418 0 546 730 486 4.50 166 160 

307 220 110 800 590 514 3.50 156 160 

308 250 100 762 576 520 4.20 170 160 

309 300 0 800 600 490 3.83 179 160 

310 330 0 786 548 548 4.20 170 160 

311 220 110 742 576 552 4.10 170 160 

312 300 0 774 568 568 3.70 170 160 

313 280 100 780 580 494 3.70 160 160 

314 250 100 760 550 550 4.00 166 160 

315 224 100 742 606 562 3.80 160 160 

316 380 0 790 550 590 4.00 179 160 

317 220 110 800 586 500 3.50 160 160 

318 240 100 790 580 500 3.80 160 160 

319 220 110 790 590 476 3.80 160 160 

320 270 80 716 600 558 4.30 172 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

321 300 0 790 572 572 3.50 150 160 

322 330 0 716 600 558 3.80 166 160 

323 250 100 726 592 558 4.00 176 160 

324 350 0 700 580 552 3.50 170 160 

325 270 100 694 594 550 4.10 170 160 

326 250 100 800 600 476 3.80 162 160 

327 330 0 770 560 560 3.80 167 160 

328 250 100 730 572 572 4.10 170 160 

329 320 0 780 580 530 3.80 164 160 

330 426 0 642 590 552 5.00 168 160 

331 220 110 800 580 504 3.50 160 160 

332 307 0 740 740 450 2.46 177 165 

333 272 68 800 550 510 3.50 165 170 

334 272 68 800 550 510 3.50 164 170 

335 330 80 626 752 436 4.50 170 170 

336 450 0 672 632 420 5.20 180 170 

337 450 0 672 632 428 5.30 170 170 

338 450 0 652 612 408 5.50 180 170 

339 250 0 550 754 520 1.50 180 170 

340 272 68 800 550 510 3.80 175 170 

341 450 0 672 632 428 5.00 170 170 

342 450 0 472 632 428 5.50 170 170 

343 418 0 800 434 556 4.60 174 180 

344 240 80 806 714 393 3.20 159 180 

345 430 0 830 510 430 4.50 160 190 

346 210 113 750 710 385 3.55 105 190 

347 250 0 614 764 515 1.30 150 140 

348 380 0 810 500 500 4.00 180 150 

349 180 0 870 624 530 2.20 166 115 

350 330 0 800 500 582 3.70 170 150 

351 120 120 840 438 680 3.00 180 150 

352 300 0 722 604 588 3.40 156 150 

353 380 0 810 500 500 4.00 178 150 

354 330 0 810 582 500 3.70 170 150 

355 380 0 790 550 490 3.80 170 150 

356 330 0 806 490 580 3.50 170 150 

357 330 0 806 490 580 3.30 170 150 

358 380 0 810 500 490 4.00 180 150 

359 120 120 840 438 680 3.00 160 150 

360 320 0 790 600 610 3.40 160 155 

361 250 100 726 592 558 4.10 174 160 

362 220 110 790 596 476 3.80 160 160 

363 418 0 546 730 588 4.18 166 160 

364 224 100 742 600 560 3.30 150 160 

365 210 90 746 580 530 4.50 164 160 

366 200 100 810 590 514 3.60 150 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

367 220 100 742 606 562 3.80 170 160 

368 300 0 800 570 536 3.80 150 160 

369 220 110 810 570 508 3.50 160 160 

370 224 100 750 600 540 3.80 176 160 

371 220 110 756 590 544 4.00 170 160 

372 180 120 752 604 560 3.00 180 160 

373 250 100 730 606 540 3.80 174 160 

374 244 106 780 580 500 3.80 160 160 

375 280 0 814 568 568 3.56 170 160 

376 250 100 726 592 558 3.90 166 160 

377 230 100 800 500 582 3.70 170 160 

378 224 100 752 590 550 3.90 156 160 

379 330 0 756 600 540 3.80 174 160 

380 250 100 726 592 558 4.10 170 160 

381 400 0 662 598 556 4.80 176 160 

382 220 100 810 600 486 3.50 152 160 

383 240 110 780 556 520 3.10 166 160 

384 250 0 762 576 520 4.20 170 160 

385 224 100 740 594 552 4.20 174 160 

386 220 110 770 610 486 3.80 175 160 

387 290 30 742 600 560 3.80 170 160 

388 250 100 790 576 500 3.80 164 160 

389 220 100 790 600 476 3.80 164 160 

390 220 110 780 600 488 3.20 169 160 

391 250 100 716 598 552 4.20 168 160 

392 220 110 786 586 540 3.50 168 160 

393 120 160 860 526 526 2.60 175 160 

394 200 100 790 530 564 2.50 180 160 

395 250 110 750 545 545 4.00 165 160 

396 224 100 774 568 568 3.56 170 160 

397 250 100 716 598 552 4.20 172 160 

398 220 110 780 600 510 3.50 156 160 

399 300 0 760 590 540 3.50 170 160 

400 270 100 706 586 540 4.00 173 160 

401 360 0 736 602 552 3.00 166 160 

402 250 100 746 572 572 4.40 170 160 

403 380 0 662 598 556 4.30 186 160 

404 410 0 700 594 508 4.00 180 160 

405 320 0 726 584 544 4.10 170 160 

406 330 0 736 602 552 3.50 172 160 

407 246 104 764 580 536 4.20 174 160 

408 220 110 742 596 532 4.10 174 160 

409 250 100 762 576 520 4.20 178 160 

410 272 68 800 570 544 3.40 156 160 

411 270 110 730 570 510 4.30 175 160 

412 240 100 796 590 500 4.00 158 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

413 350 0 716 596 552 3.50 170 160 

414 300 0 800 600 476 3.91 168 160 

415 272 68 800 550 510 3.80 176 170 

416 450 0 672 632 428 5.20 180 170 

417 450 0 672 632 428 5.50 170 170 

418 272 68 800 550 510 3.80 174 170 

419 450 0 672 632 428 5.50 174 170 

420 430 0 838 510 430 4.50 160 190 

421 180 0 860 640 522 1.90 165 115 

422 200 0 850 640 535 1.80 170 120 

423 100 120 840 620 534 2.20 160 140 

424 330 0 806 486 580 3.50 170 150 

425 330 0 800 500 582 3.20 166 150 

426 300 0 722 604 588 3.50 170 150 

427 330 0 810 490 578 3.50 156 150 

428 330 0 749 530 581 4.20 170 150 

429 380 0 810 500 490 4.30 180 150 

430 300 0 722 604 588 3.20 156 150 

431 330 0 800 500 582 3.60 164 150 

432 330 0 806 489 581 3.50 160 150 

433 140 120 780 526 516 1.50 150 150 

434 220 110 782 526 586 4.00 170 155 

435 330 0 806 500 570 3.50 160 155 

436 120 110 775 640 593 3.00 152 155 

437 330 0 806 490 580 3.30 165 155 

438 200 60 770 610 552 2.30 170 155 

439 270 90 745 580 530 4.00 170 160 

440 285 95 738 495 530 4.56 185 160 

441 270 60 790 600 476 4.10 160 160 

442 350 0 710 610 554 2.00 154 160 

443 320 0 725 583 544 4.10 170 160 

444 220 110 801 601 478 3.60 170 160 

445 220 110 802 579 508 3.70 165 160 

446 330 0 785 550 550 4.20 170 160 

447 224 100 742 600 560 3.20 150 160 

448 220 120 737 525 543 4.08 180 160 

449 180 120 830 588 500 3.20 150 160 

450 330 20 775 530 559 3.10 170 160 

451 300 50 786 590 490 3.70 158 160 

452 300 0 802 600 480 3.60 160 160 

453 220 110 795 593 544 3.80 170 160 

454 350 0 820 524 524 4.00 166 160 

455 420 0 710 584 480 5.00 176 160 

456 240 110 796 580 490 3.60 158 160 

457 220 110 800 580 504 3.60 160 160 

458 220 110 780 598 515 3.50 156 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP(kg/

m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

459 220 110 780 520 591 3.80 170 160 

460 250 100 774 572 572 4.50 172 160 

461 230 110 770 610 486 3.80 175 160 

462 224 100 752 576 576 3.80 160 160 

463 250 100 744 580 536 4.00 164 160 

464 224 100 752 580 560 3.90 166 160 

465 350 0 740 562 562 4.50 162 160 

466 250 100 718 600 556 4.20 170 160 

467 220 120 737 525 543 4.42 180 160 

468 340 30 710 594 552 3.70 166 160 

469 220 110 732 586 542 3.80 170 160 

470 250 100 758 560 540 3.50 151 160 

471 330 100 670 560 540 5.00 179 160 

472 250 100 746 582 548 3.00 170 160 

473 424 0 546 730 486 5.20 180 160 

474 220 110 772 530 570 3.80 176 160 

475 300 0 810 550 550 3.80 166 160 

476 250 100 715 603 558 4.00 166 160 

477 220 110 742 576 552 4.00 180 160 

478 220 115 755 550 560 3.90 170 160 

479 240 110 760 570 520 3.00 166 160 

480 220 100 810 600 486 3.60 152 160 

481 220 110 800 580 504 3.60 164 160 

482 220 110 811 571 505 3.50 156 160 

483 320 0 670 660 540 3.80 160 160 

484 320 30 710 594 558 3.70 166 160 

485 250 100 745 580 535 4.00 164 160 

486 220 110 810 570 508 3.50 156 160 

487 300 0 700 730 468 3.30 150 165 

488 272 68 800 509 551 3.80 174 165 

489 300 0 790 550 520 3.57 160 165 

490 246 120 740 690 430 3.50 164 165 

491 450 0 672 632 428 5.50 182 170 

492 450 0 672 632 428 5.40 170 170 

493 450 0 652 612 408 5.50 170 170 
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Design mix proportions and slump data collected from second RMC batching 

plant (100 datasets) 

S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP 

(kg/m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

1 120 120 800 624 530 2.60 170 150 

2 120 120 810 438 600 3.00 162 150 

3 120 120 800 650 530 2.50 170 160 

4 120 100 806 654 552 2.50 160 130 

5 120 120 800 680 438 2.70 176 155 

6 130 200 820 580 520 2.50 175 160 

7 150 0 860 638 522 2.50 165 100 

8 150 120 842 620 498 2.00 160 155 

9 160 120 811 501 538 3.64 181 160 

10 170 100 762 616 570 3.00 175 160 

11 180 120 819 600 471 2.90 165 160 

12 180 120 765 580 570 3.00 160 160 

13 180 120 828 600 500 3.20 150 160 

14 180 130 790 545 560 2.90 180 160 

15 186 64 900 674 348 1.70 189 160 

16 210 120 780 495 578 3.70 166 155 

17 215 120 737 525 543 3.85 180 160 

18 215 120 737 525 543 3.35 180 160 

19 220 110 779 600 487 3.20 166 160 

20 220 110 779 600 487 3.80 166 160 

21 220 100 774 568 568 3.56 170 160 

22 220 100 750 605 535 3.80 166 160 

23 220 100 730 596 576 3.70 166 160 

24 220 110 800 589 545 3.50 160 160 

25 224 100 742 600 560 3.20 162 160 

26 224 100 742 600 560 4.00 170 160 

27 224 100 794 558 558 3.70 162 160 

28 226 50 782 618 496 2.50 170 150 

29 230 60 820 475 600 3.00 166 150 

30 230 60 830 600 480 3.00 164 150 

31 240 100 795 581 500 3.70 156 160 

32 240 100 790 500 580 3.40 160 155 

33 240 0 850 590 500 2.30 140 150 

34 240 100 796 580 500 3.80 156 165 

35 240 0 850 590 500 2.30 140 155 

36 240 0 849 590 501 2.60 165 155 

37 250 100 765 580 536 4.20 174 160 

38 250 100 760 578 520 4.20 170 160 

39 250 100 726 590 560 4.10 174 160 

40 250 100 715 599 558 3.80 166 160 

41 250 100 715 599 552 4.20 168 160 

42 250 100 712 604 555 3.80 166 160 

43 250 110 799 600 477 4.00 170 160 

44 250 100 762 556 556 3.00 150 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP 

(kg/m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

45 250 100 736 520 560 4.00 166 160 

46 250 120 750 545 545 3.60 160 155 

47 255 120 724 515 533 4.13 180 150 

48 270 90 760 536 547 3.00 166 160 

49 270 100 789 587 490 4.10 170 160 

50 270 100 790 586 490 4.10 170 160 

51 270 80 715 600 559 4.30 172 160 

52 272 68 800 509 551 3.80 174 170 

53 272 68 798 553 511 3.80 176 170 

54 272 68 800 550 570 3.50 165 160 

55 272 68 800 550 570 3.50 165 170 

56 272 68 800 508 552 4.00 174 160 

57 280 100 592 594 550 4.00 176 160 

58 300 0 721 605 588 3.20 160 150 

59 300 0 801 599 475 3.90 168 160 

60 300 0 811 610 495 3.70 160 160 

61 300 0 722 602 588 3.20 166 150 

62 300 0 702 760 467 3.30 150 155 

63 300 0 810 600 480 4.08 166 160 

64 300 0 810 610 494 3.70 160 160 

65 320 30 711 603 557 3.70 168 160 

66 320 30 710 604 558 3.70 170 160 

67 330 0 729 600 440 3.80 162 160 

68 330 0 806 489 581 3.30 160 150 

69 330 0 734 604 550 4.00 170 160 

70 330 0 716 597 553 3.70 170 160 

71 330 100 800 500 582 3.70 170 150 

72 330 0 810 490 580 3.50 170 150 

73 330 100 798 500 584 3.70 170 150 

74 330 0 805 492 580 3.30 156 150 

75 330 0 806 489 581 3.40 160 150 

76 330 0 800 510 593 3.80 170 155 

77 330 0 800 500 582 3.50 160 155 

78 330 100 650 599 531 5.50 180 155 

79 330 0 798 500 584 3.50 164 150 

80 330 100 652 564 564 4.50 170 160 

81 330 0 810 500 582 3.70 165 155 

82 340 30 675 599 552 4.20 170 155 

83 350 0 716 594 552 3.50 170 160 

84 350 0 716 597 552 3.50 170 160 

85 350 0 753 575 545 3.40 170 155 

86 350 0 746 576 542 3.40 157 160 

87 350 0 740 562 562 4.50 162 155 

88 350 30 675 600 550 4.20 170 155 

89 350 30 676 598 552 4.20 170 150 

90 350 0 710 608 556 2.00 154 160 
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S.No 
Cement 

(kg/m
3
) 

PFA  

(kg/m
3
) 

Sand 

(kg/m
3
) 

CA(20mm) 

(kg/m
3
) 

CA(10mm) 

(kg/m
3
) 

SP 

(kg/m
3
) 

Water  

(kg/m
3
) 

Slump 

(mm) 

91 350 0 810 500 490 4.30 180 150 

92 350 0 722 604 588 3.50 162 160 

93 350 0 710 610 554 2.00 154 155 

94 360 0 736 602 552 4.00 142 160 

95 380 0 810 500 490 4.20 170 150 

96 380 0 754 580 496 3.80 166 150 

97 380 0 754 580 496 4.00 166 160 

98 380 0 810 500 490 4.30 182 150 

99 450 0 672 632 426 5.50 174 170 

100 450 0 652 612 408 5.50 174 170 
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