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Abstract

The thesis has been divided into six chapters. Besides the introductory first

chapter, second chapter concerns with study the integral transforms and fractional

integral and derivative formulas of extended hypergeometric functions and incom-

plete hypergeomatric function. As an application, a probability density function

involving the extended generalized hypergeometric functions is introduced. In third

chapter, we establish certain new image formulas of generalized Lommel-Wright

function by applying the operators of fractional integration involving Appell’s func-

tion F3(·) due to Marichev-Saigo-Maeda. Furthermore, by employing some integral

transforms on the resulting formulas, we present some more image formulas. All the

results derived here are of general character and can yield a number of results in

the theory of special functions. In fourth chapter, we investigate the analytic solu-

tion of the solutions of time-space fractional advection-dispersion equation involv-

ing fractional Laplace operator and analytic solution of the generalized space-time

fractional reaction-diffusion equation involving fractional Laplace operator, follow-

ing with some illustrations and concrete applications. In second last chapter, we

find the Pα-transform of Caputo fractional derivatives and derive Pα-transform for

Volterra and Abel integral equations. We find the solution of fractional Volterra

integral equation. We discuss its application for solving singular integral equation

vii
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1
Introduction

1.1 Special Functions

1.1.1 Growth of Special Functions

A special function is a real or complex valued function of one or more real or

complex variables which is specified so completely that its numerical values could in

principle be tabulated. Besides elementary functions such as xn, ex, log x and sinx,

higher functions, both transcendental (such as Bessel functions) and algebraic (such

as various polynomials) come under the category of special functions. The study of

special functions grew up with the calculus and is consequently one of the oldest

branches of analysis. It flourished in the nineteenth century as part of the theory

1



2 Introduction

of complex variables. In the second half of the twentieth century it has received a

new impetus from a connection with Lie groups and a connection with averages of

elementary functions. The history of special functions is closely tied to the prob-

lems of terrestrial and celestial mechanics that were solved in the eighteenth and

nineteenth centuries, the boundary-value problems of electromagnetism and heat in

the nineteenth, and the eigenvalue problems of quantum mechanics in the twentieth

centuries respectively. During Seventeenth-century, England was the birthplace of

special functions. John Wallis at Oxford took first steps towards the theory of the

gamma function long before Euler reached it. Wallis had also the first encounter

with elliptic integrals while using Cavalieri’s primitive for runner of the calculus. [It

is curious that two kinds of special functions encountered in the seventeenth cen-

tury, Wallis elliptic integrals and Newton’s elementary symmetric functions, belong

to the class of hypergeometric functions of several variables, which was not studied

systematically nor even defined formally until the end of the nineteenth century].

A more sophisticated calculus, which made possible the real flowering of special

functions, was developed by Newton and by Leibnitz in Germany during the period

1665-1685. Taylor’s theorem was found by Scottish mathematician Gregory in 1670,

although it was not published until 1715 after rediscovery by Taylor.

In 1703 James Bernoulli solved a differential equation by an infinite series which

would now be called the series representation of a Bessel function. Although Bessel

functions were met by Euler and others in various mechanics problems, no systematic

study of the functions was made until 1824, and the principal achievements in the

eighteenth century were the gamma function and the theory of elliptic integrals. Eu-

ler found most of the major properties of the gamma function around 1730. In 1772

Euler evaluated the beta-function integral in terms of the gamma function. Only

the duplication and multiplication theorems remained to be discovered by Legendre

and Gauss, respectively, early in the next century. Other significant developments

were the discovery of Vandermonde’s theorem in 1772 and the definition of Legendre
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polynomials and the discovery of their addition theorem by Laplace and Legendre

during 1782-1785. In a slightly different form the polynomials had already been

met by Liouville in 1722. The golden age of special functions, which was centered

in nineteenth-century Germany and France, was the result of developments in both

mathematics and physics: the theory of analytic functions of a complex variable on

one hand, and on the other hand, the field theories of physics (e.g. heat and elec-

tromagnetism) which required solutions of partial differential equations containing

the Laplacian operator. The discovery of elliptic functions (the inverse of elliptic

integrals) and their property of double periodicity was published by Abel in 1827.

Elliptic functions grew up in symbiosis with the general theory of analytic functions

and flourished throughout the nineteenth century, specially in the hands of Jacobi

and Weierstrass.

Another major development was the theory of hypergeometric series which began

in a systematic way (although some important results had been found by Euler

and Pfaff ) with Gauss’s memoir on the 2F1 series in 1812, a memoir which was

a landmark also on the path towards rigor in mathematics. The 3F2 series was

studied by Clausen (1828) and the 1F1 series by Kummer (1836). The function

which Bessel considered in his memoir of 1824 are 0F1 series; Bessel started from a

problem in orbital mechanics, but the functions have found a place in every branch

of mathematical physics. Near the end of the century Appell (1880) introduced

hypergeometric functions of two variables, and Lauricella generalized them to several

variables in 1893.

The subject was considered to be part of pure mathematics in 1900, applied

mathematics in 1950. In physical science special functions gained added importance

as solutions of the Schrödinger equation of quantum mechanics, but there were

important developments of a purely mathematical nature also. In 1907, Barnes

used gamma function to develop a new theory of Gauss’s hypergeometric functions

2F1. Various generalizations of 2F1 were introduced by Horn, Kampe dé Fériet,
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MacRobert and Meijer. From another new viewpoint, that of a differential difference

equation discussed much earlier for polynomials by Appell (1880), Truesdell (1948)

made a partly successful effort at unification by fitting a number of special functions

into a single framework.

1.1.2 The Gauss Hypergeometric Function and its General-

ization

John Wallis, in his work Arithmatica Infinitorum in 1655, first used the term

hypergeometric (from the Greek word νπερ above or beyond) to denote any series

which was beyond the ordinary geometric series 1 + z + z2 + z3 + . . .. In particular,

he studied the series 1 + a+ a(a+ 1) + a(a+ 1)(a+ 2) + . . ..

Because of the many relations connecting the special functions to each other

and to the elementary functions, it is natural to enquire whether more general

functions can be developed so that the special functions and elementary functions

are merely specializations of these general functions. General functions of this nature

have, in fact, been developed and are collectively referred to as functions of the

hypergeometric type. There are several varieties of these functions, but the most

common are the hypergeometric functions.

Some important results concerning the hypergeometric function had been devel-

oped earlier by Euler and others, but it was famous German mathematician Gauss,

who in 1812, studied the following infinite series which is generalization of the el-

ementary geometric series and popularly known as Gauss series or more precisely

Gauss hypergeometric series

∞∑
n=0

(a)n(b)n
(c)nn!

zn = 1 +
a · b
c · 1

z +
a(a+ 1) · b(b+ 1)

c(c+ 1)2 · 1
z2 + . . . (1.1)

Here, and in what follows, (λ)n denotes the Pochhammer symbol (or the shifted



1.1 Special Functions 5

factorial) defined by

(λ)n :=
Γ(λ+ n)

Γ(λ)
=


1 (n = 0)

λ(λ+ 1) · · · (λ+ n− 1) (n ∈ N)

(1.2)

The familiar (Euler’s) gamma function Γ(z) which is defined, for z ∈ C \ Z−0 , is

given by

Γ(z) =


∫∞

0
e−ttz−1dt (<(z) > 0)

Γ(z+n)∏n−1
i=0 (z+i)

(z ∈ C \ Z−0 ; n ∈ N),

(1.3)

(Z−0 := Z− ∪ {0}; Z− := {−1,−2,−3, . . . }; N := {1, 2, 3, . . . }),

Gauss represented the series (1.1) by the symbol 2F1 (a, b; c; z) and called it the hy-

pergeometric function. Here z is a real or complex variable, a, b and c are parameters

having real or complex values and c 6= 0,−1,−2, ...

2F1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn. (1.4)

If c is zero or a negative integer, the function 2F1 (a, b; c; z) is not defined unless one

of the parameters a or b is also a negative integer such that −c < −a. If either of

the parameters a or b is a negative integer, say −r, then in this case (1.4) reduces

to the hypergeometric polynomial defined by

2F1 (−r, b; c; z) =
r∑

n=0

(−r)n(b)n
(c)nn!

zn, −∞ < z <∞

The series given by (1.4) is convergent when |z| < 1 and when |z| = 1, provided

that <(c− a− b) > 0 and also when z = −1, provided that <(c− a− b) > −1.

In (1.4), if we replace z by z
b

and let b → ∞, then on taking into account the
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formula

lim
b→∞

(b)n
bn

zn = zn,

we arrive at the following well-known Kummer’s series

∞∑
n=0

(a)n
(c)nn!

zn = 1 +
a

c · 1
z +

a(a+ 1)

c(c+ 1)1 · 2
z2 + . . . (1.5)

The above series is represented by the symbol 1F1 (a; c; z) and known as confluent

hypergeometric function. The series given by (1.5) is absolutely convergent for all

values of a, c and z, real or complex, excluding c = 0,−1,−2, . . ..

Gauss’s hypergeometric function 2F1 and its confluent form 1F1 form the core

of special functions and include as its special cases most of the commonly used

functions. Thus 2F1 includes as its special cases Legendre function, the incomplete

beta function, the complete elliptic functions of the first and second kinds and

most of the classical orthogonal polynomials. On the other hand, the confluent

hypergeometric function 1F1 includes as its special cases Bessel functions, parabolic

cylinder functions, Coulomb wave functions, etc. Whittaker functions are also a

slightly modified form of confluent hypergeometric functions. On account of their

usefulness, the functions 2F1 and 1F1 have already been explored to a considerable

extent by a number of eminent mathematicians like C. F. Gauss, E. E. Kummer,

L. J. Slater, R. Mellin and E.W. Barnes.

Hypergeometric function 2F1 has been generalized by various mathematicians,

mainly in three ways:

(1) increasing the number of parameters,

(ii) increasing the number of variables and

(iii) increasing the number of parameters as well as variables.

The most known generalization of first kind is the generalized hypergeometric



1.1 Special Functions 7

function, defined by the series (Rainville [146, chapter 5, eq.2]):

pFq

a1, a2, ..., ap

b1, b2, ..., aq
; z

 =
∞∑
n=0

(a1)n(a2)n...(ap)n
(b1)n(b2)n...(bq)n

zn

n!
, (1.6)

where p and q are positive integers or zero (interpreting an empty product as 1)

and we assume that the variable z, the numerator parameters a1, a2, ..., ap and the

denominator parameters b1, b2, ..., bq take on complex values, provided that bj 6=

0,−1,−2, . . . for j = 1, 2, . . . , q.

An application of the elementary ratio test to the power series on the right hand

side of (1.6) shows that

(i) If p ≤ q; the series converges for all finite z,

(ii) If p = q + 1, then the series converges for |z| < 1 and diverges for |z| > 1.

(iii) Furthermore, with p = q + 1, the series (1.6) is

(a) Absolutely convergent on the circle |z| = 1, if <(w) > 0, where

w =

q∑
k=1

bk −
p∑

k=1

ak

(b) conditionally convergent for |z| = 1, x 6= 1 if −1 < <(w) 6= 0, and

(c) divergent for |z| = 1 if <(w) ≤ −1.

(iv) If p > q+ 1, the series never converges except when z = 0, and the function is

only defined when the series terminates.

A comprehensive account of 2F1, 1F1 and pFq functions can be found in the standard

works by Exton [39], Rainville [146] and Slater [163]. In attempt to give meaning

pFq in the case when p > q + 1, MacRobert [102] and Meijer [113, 114] introduced

and studied in detail, the two special functions which are well-known in the litera-

ture as the E-function and the G-function, respectively. A detailed account of the
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G-function is given in the works by Luke [99] and Mathai and Saxena [107]. The

E-and G-functions include wide variety of special functions as their particular cases.

Though E-and G-functions are quite general in character, but still many functions

like Wright’s generalized hypergeometric function (Wright [186]), Wright’s gener-

alized Bessel function (Wright [187]), Mittag-Leffler function (Mittag-Leffler [118])

and several other functions do not form their special cases.

Wright [185] has further extended the generalization of the hypergeometric series in

the following form:

pΨq (z) = pΨq

z (ap, Ap)

(bq, Bq)

 =
∞∑
k=0

Πp
i=1Γ(ai + nAi)

Πq
j=1Γ(bj + nBj)

zn

n!
, (1.7)

where ai, bj ∈ C and Ai, Bj ∈ R = (−∞,∞); Ai, Bj 6= 0, i = 1, 2, ..., p, j = 1, 2, ..., q,
q∑
j=1

Bj −
p∑
j=1

Aj > −1.

When Ai and Bj are equal to 1, (1.7) differs from the generalized hypergeometric

function pFq by a constant multiplier only.

The currently popular literature on Special Functions contains several generaliza-

tions of the gamma function Γ(z), the beta function B(α, β) , the hypergeometric

functions 1F1 and 2F1, and the generalized hypergeometric functions rFs with

r numerator and s denominator parameters (see, for details, [16, 17, 92, 166, 172]

and the references cited in each of these papers). In particular, for an appropriately

bounded sequence {κ`}`∈N0 of essentially arbitrary (real or complex) numbers, Sri-

vastava et al. [172, p. 243, Eq.(2.1)] recently considered the function Θ ({κ`}`∈N0 ; z)

given by

Θ ({κ`}`∈N0 ; z)

:=


∞∑̀
=0

κ`
z`

`!
(|z| < R; 0 < R <∞; κ0 := 1)

M0 z
ω exp(z)

[
1 +O

(
1

z

)] (
<(z)→∞; M0 > 0; ω ∈ C

) (1.8)
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for some suitable constants M0 and ω depending essentially upon the sequence

{κ`}`∈N0 . In terms of the function Θ ({κ`}`∈N0 ; z) defined by (1.8), Srivastava et al.

[172] introduced and investigated the following remarkably deep generalizations of

the extended gamma function, the extended beta function and the extended Gauss

type hypergeometric function:

Γ
({κ`}`∈N0)
p (z) :=

∫ ∞
0

tz−1 Θ
(
{κ`}`∈N0 ;−t−

p

t

)
dt (1.9)

(
<(z) > 0; <(p) = 0

)
,

B({κ`}`∈N0)(α, β; p) :=

∫ 1

0

tα−1(1− t)β−1 Θ

(
{κ`}`∈N0 ;−

p

t(1− t)

)
dt (1.10)(

min{<(α),<(β)} > 0; <(p) = 0
)

and

F
({κ`}`∈N0)
p (a, b; c; z) :=

1

B(b, c− b)

∞∑
n=0

(a)n B({κ`}`∈N0)(b+ n, c− b; p)
zn

n!
(1.11)

(
|z| < 1; <(c) > <(b) > 0; <(p) = 0

)
,

respectively, provided that the defining integrals in the equations (1.9) and (1.10)

exist.

Recently, Lin et al. [92] introduced and investigated a substantially more general

family of the generalized beta function and the Gauss type hypergeometric functions,

which they defined by

B
({κ`}`∈N0)
p;µ,ν (α, β) = B({κ`}`∈N0)(α, β; p;µ, ν)

:=

∫ 1

0

tα−1(1− t)β−1 Θ

(
{κ`}`∈N0 ;−

p

tµ(1− t)ν

)
dt (1.12)

(
min{<(α),<(β),<(µ),<(ν)} > 0; <(p) = 0

)
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and

r+qF
({κ`}`∈N0 ;p;µ,ν)
s+q


a1, · · · , ar, α1, · · · , αq;

c1, · · · , cs, γ1, · · · , γq;

z



:=
∞∑
n=0

r∏
j=1

(aj)n

s∏
j=1

(cj)n

q∏
j=1

(
B({κ`}`∈N0)(αj + n, γj − αj; p;µ, ν)

B({κ`}`∈N0)(αj, γj − αj; p;µ, ν)

)
zn

n!
(1.13)

(
q, r, s ∈ N0; |z| < 1; <(γj) > <(αj) > 0 (j = 1, · · · , q);

min{<(µ),<(ν)} > 0; <(p) = 0
)
,

where, as usual, an empty product is interpreted as 1 and the involved parameters

and the argument z are tacitly assumed to be so constrained that the series on the

right-hand side is absolutely convergent. The special case of the definition (1.13)

when

µ = ν = 1 and q = r = s = 1 (a1 = 1; α1 = b; γ1 = c)

coincides precisely with the definition (1.11). Also, for

µ = ν = m and q = r = s = 1 (a1 = 1; α1 = b; γ1 = c)

and with the sequence {κ`}`∈N0 given by

κ` =
(ρ)`
(σ)`

(1.14)

the definition (1.13) would obviously correspond to the Gauss type hypergeometric

function introduced by Parmar [131, p. 44]:

F
(ρ,σ;m)
p (a, b; c; z) :=

∞∑
n=0

(a)n
B(ρ,σ;m)(b+ n, c− b)

B(b, c− b)
zn

n!
(1.15)
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(
|z| < 1; <(p) = 0; min{<(ρ),<(σ),<(m)} > 0; <(c) > <(b) > 0

)
,

which, in case

µ = ν = m = 1 and q = r = s = 1 (a1 = 1; α1 = b; γ1 = c)

and with the sequence {κ`}`∈N0 given by

κ` = 1 (` ∈ N0) , (1.16)

reduces immediately to the following p-Gauss hypergeometric function Fp(a, b; c; z)

studied by Chaudhry et al. [17]:

Fp(a, b; c; z) :=
∞∑
n=0

(a)n
B(b+ n, c− b; p)

B(b, c− b)
zn

n!
(1.17)

(
p = 0; |z| < 1; <(c) > <(b) > 0

)
.

By using a very specialized case of the generalized beta function B({κ`}`∈N0)(α, β; p;µ, ν)

defined by (1.12), with the sequence {κ`}`∈N0 given in a form as in (1.14), the fol-

lowing particular case of the extended generalized hypergeometric function

r+qF
({κ`}`∈N0 ;p;µ,ν)
s+q

in (1.13) was studied by Luo et al. [100].

1.1.3 Extended Hypergeometric Functions

The extended generalized hypergeometric function is introduced by Luo et al.

[101] and is defined as

pF
(α,β;κ,µ)
q

 a1, · · · , ap;

b1, · · · , bq;
z; p

 :=
∞∑
n=0

Θ(p,q)
n

zn

n!
(1.18)
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(
<(p) > 0; min{<(κ),<(µ)} = 0; min{<(α),<(β)} > 0

)
,

where the coefficients Θ
(p,q)
n are given by

Θ(p,q)
n :=



(a1)n
q∏
j=1

(
B(α,β;κ,µ)p (aj+1+n,bj−aj+1)

B(aj+1,bj−aj+1)

)
(
p = q + 1; <(bj) > <(aj+1) > 0 (j = 1, · · · , q); |z| < 1

)
q∏
j=1

(
B(α,β;κ,µ)p (aj+n,bj−aj)

B(aj ,bj−aj)

)
(
p = q; <(bj) > <(aj) > 0 (j = 1, · · · , q); z ∈ C

)
1

(b1)n · · · (br)n

p∏
j=1

(
B(α,β;κ,µ)p (aj+n,br+j−aj)

B(aj ,br+j−aj)

)
(
r = q − p > 0; <(br+j) > <(aj) > 0 (j = 1, · · · , p); z ∈ C

)
,

(1.19)

and the generalized beta function B(α,β;κ,µ)
p (x, y) is given by the following very spe-

cialized case of the definition (1.12):

B(α,β;κ,µ)
p (x, y) :=

∫ 1

0

tx−1(1− t)y−1
1F1

(
α; β;− p

tκ(1− t)µ

)
dt (1.20)

(
min{<(p),<(κ),<(µ)} = 0; min{<(x),<(y),<(α),<(β)} > 0

)
.

In its particular case when p−1 = q = 1, the definition in (1.18) immediately yields

the extended Gauss type hypergeometric function given by Srivastava et al. (see,

e.g. [166])

2F
(α,β;κ,µ)
1

 a, b;

c;
z; p

 :=
∞∑
n=0

(a)n
B(α,β;κ,µ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
(1.21)

(
min{<(p),<(κ),<(µ)} = 0; min{<(α),<(β)} > 0; <(c) > <(b) > 0; |z| < 1

)
,
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which happens to be a very specialized case of the extended Gauss type hypergeo-

metric function

F
({κ`}`∈N0)
p (a, b; c; z)

defined by (1.11).

1.1.4 Incomplete Hypergeometric Functions

The theory of the incomplete gamma functions, as a part of the theory of conflu-

ent hypergeometric functions, has received its first systematic exposition by Tricomi

[178] in the early 1950s. Musallam and Kalla ([1], [2]) considered a more general

incomplete gamma function involving the Gauss hypergeometric function and es-

tablished a number of analytic properties including recurrence relations, asymptotic

expansions and computation for special values of the parameters.

The incomplete gamma type functions like γ(s, x) and Γ(s, x) (see, equations (1.22)

and (1.23) here), both of which are certain generalizations of the classical gamma

function Γ(z), have been investigated by many authors.

The familiar incomplete gamma functions γ(s, x) and Γ(s, x), defined as (see, e.g.

Srivastava et al. [167])

γ(s, x) :=

∫ x

0

ts−1e−tdt (<(s) > 0; x ≥ 0) (1.22)

and

Γ(s, x) :=

∫ ∞
x

ts−1e−tdt (x ≥ 0; <(s) > 0 when x = 0) (1.23)

respectively, satisfy the following decomposition formula

γ(s, x) + Γ(s, x) = Γ(s) (<(s) > 0, x ≥ 0). (1.24)

The function Γ(z), and its incomplete versions γ(s, x) and Γ(s, x), play important

roles in the study of the analytic solutions of a variety of problems in diverse areas
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of science and engineering.

Very recently, Srivastava et al. [167] introduced and studied some fundamental

properties and characteristics of a family of two potentially useful and generalized

incomplete hypergeometric functions defined as follows:

pγq[z] := pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
z

 :=
∞∑
n=0

(a1;x)n (a2)n...(ap)n
(b1)n...(bq)n

.
zn

n!
, (1.25)

and

pΓq[z] :=p Γq

 (a1, x), a2, ..., ap;

b1, ..., bq;
z

 :=
∞∑
n=0

[a1;x]n (a2)n...(ap)n
(b1)n...(bq)n

.
zn

n!
(1.26)

where (a1;x)n and [a1;x]n are interesting generalization of the Pochhammer symbol

(λ)n, in terms of the incomplete gamma type functions γ(λ, x) and Γ(λ, x).

The generalized Pochhammer symbols in terms of incomplete gamma type function

are defined as follows

(λ;x)ν :=
γ(λ+ ν, x)

Γ(λ)
(1.27)

and

[λ;x]ν :=
Γ(λ+ ν, x)

Γ(λ)
(1.28)

(x ≥ 0, λ ∈ C).

These incomplete Pochhammer symbols (λ;x)ν and [λ;x]ν satisfy the following de-

composition relation:

(λ;x)ν + [λ;x]ν = (λ)ν (x ≥ 0, λ ∈ C).

In the definition (1.22), (1.23), (1.25), (1.26), (1.27) and (1.28), the argument x ≥ 0

is independent of the argument z ∈ C which occurs in the definitions (1.18), (1.25)

and (1.26).
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As already pointed out by Srivastava et al. [167, p.675, Remark 7], since

|(λ;x)ν | 5 |(λ)ν | and |[λ;x]ν | 5 |(λ)ν | (x ≥ 0, λ ∈ C), (1.29)

the precise (sufficient) conditions under which the infinite series in the definitions

(1.25) and (1.26) would converge absolutely can be derived from those that are well-

documented in the case of the generalized hypergeometric function pFq (p, q ∈ N0)

(see, for details, Rainville [146, p.72-73] and Srivastava and Karlsson [169, p.20].

Indeed, in their special case when x = 0, pΓq (p, q ∈ N0) would reduce immediately

to the extensively investigated generalized hypergeometric function pFq (p, q ∈ N0).

1.1.5 Some more Special Functions

(i) Mittag-Leffler Function

In 1971, Prabhakar [139] introduced the generalization of two parameter Mittag-

Leffler function as

Eγ
α,β(z) =

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
, γ, α, β ∈ C. (1.30)

Taking γ = 1, (1.30) reduces to the two parameter Mittag-Leffler function

studied by Wiman [184] and defined as

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, α, β ∈ C, <(β) > 0. (1.31)

As γ → 0, then by virtue of the limit formula Saxena et al. [157, Eq.24]

Eγ
α,β(z) =

1

Γ(β)
(1.32)
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Taking β = 0, (1.31) reduces to the one parameter Mittag-Leffler function

Mainardi and Gorenflo [103, Eq.2.1]:

Eα(z) =
∞∑
n=0

zn

Γ(αn)
α ∈ C. (1.33)

On taking α = 1 and β = 1, (1.31) reduces to the well known exponential

function:

E1,1(z) =
∞∑
n=0

zn

Γ(n+ 1)
= exp(z) (1.34)

Some special cases of Mittag-Leffler function Eα(z) (see, e.g. Haubold and

Sexena [61]) is

E0(z) =
1

1− z
, |z| < 1, (1.35)

E1(z) = ez, z ∈ C, (1.36)

E2(z) = cosh(
√
z), z ∈ C, (1.37)

E2(−z2) = cos(z), z ∈ C, (1.38)

E1/2(±z1/2) = ez[1 + erf(±z1/2)] = ez erfc(∓z1/2), z ∈ C (1.39)

where erfc denotes the complimentary error function and the error function is

defined as:

erf(z) =
2√
π

∫ z

0

e−t
2

dt, erfc(z) = 1− erf(z), z ∈ C (1.40)

The following inverse Fourier transform formula for Generalized Mittag-Leffler

function is given by Haubold et al. [160, Eq.25]

F−1{Eβ,γ(−atβ|k|α);x} =
1

α|x|
H2,1

3,3

 |x|
a

1
α t

β
α

(1, 1
α

), (γ, β
α

), (1, 1
2
)

(1, 1
α

), (1, 1), (1, 1
2
)

 (1.41)
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where min{R(α), R(β), R(γ)} > 0 and α > 0.

(ii) Wright Function

The Wright function W (α, β; z) [29, p.300, Eq.6.7.13] defined by series repre-

sentation

W (α, β; z) =
∞∑
k=0

zk

Γ(αk + β) k!
, α > −1, z ∈ C. (1.42)

The relationship between the Wright function and the exponential function is

given by Gorenflo and Luchko [50, Eq.27]

W

(
−1

2
,
1

2
; z

)
=

1√
π
ez

2/4

(1.43)

(iii) Generalized Lommel-Wright Function

The Jµ,mν,λ (z), the generalized Lommel-Wright function, introduced and studied

by de Oteiza, Kalla and Conde [32] as a further (4-indices) generalization of

the Bessel and Bessel-Maitland (Wright) functions, is defined as

Jµ,mν,λ (z) = (z/2)ν+2λ

∞∑
k=0

(−1)k(z/2)2k

(Γ(λ+ k + 1))mΓ(ν + kµ+ λ+ 1)

= (z/2)ν+2λ
1Ψm+1[(1, 1); (λ+ 1, 1)︸ ︷︷ ︸

m−times

, (ν + λ+ 1, µ);−z2/4]
(1.44)

(z ∈ C\(−∞, 0], µ > 0, m ∈ N, ν, λ ∈ C)

where pΨq is the Fox-Wright generalized hypergeometric function as defined in

(1.7).

These functions and their special cases Jµν (z), Jµν,λ(z), as depending on the ar-

bitrary fractional parameter µ > 0, present a fractional order extension of

the Bessel function Jν(z) and as such, are closely related to fractional order

analogues of the Bessel operators and fractional order equations and systems

modeling numerous real world phenomena arising in applied science.
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Prieto et al. [140] obtained some results related to fractional calculus operators

of generalized Lommel-Wright function. Konovska [130] studied the conver-

gence of series involving generalized Lommel-Wright function.

It may be noted that the special cases of generalized Lommel-Wright func-

tion (1.44), when m = 1 immediately reduce to a generalization of the Bessel

function, introduced by Pathak also called generalized Bessel Maitland func-

tion [132]:

Jµν,λ(z) = Jµ,1ν,λ (z) =
(z

2

)ν+2λ
∞∑
k=0

(−1)k
(
z
2

)2k

Γ(λ+ k + 1)Γ(ν + kµ+ λ+ 1)
(1.45)

z ∈ C\(−∞, 0], µ > 0, ν, λ ∈ C.

The Jµν (z) Bessel Maitland function defined by [165, p.19, Eq. 2.6.10]

Jµν (z) =
∞∑
k=0

(−z)k

k! Γ(ν + µk + 1)
= 0Ψ1[ ; (ν + 1, µ);−z] (1.46)

z, ν ∈ C, z 6= 0, <(ν) > −1, µ > 0.

which, in view of the definition (1.44), yields the following relationship with

the generalized Lommel-Wright function Jµ,mν,λ (z)

Jµν (z) = z
−ν
2 Jµ,1ν,0 (z) (2

√
z) (1.47)

If we take m = 1, µ = 1 and λ = 1
2

in (1.44), then we obtain the Struve function

Hν(·) (see, e.g. Mathai et al. [110, p.28, Eq.(1.170)])

Hν(z) = J1,1
ν,1/2 =

(z
2

)ν+1
∞∑
k=0

(−1)k
(
z
2

)2k

Γ(k + 3
2
)Γ(k + ν + 3

2
)

z, ν ∈ C. (1.48)
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If we take m = 1, µ = 1 and λ = 0 in (1.44), then it give the following

relationship with the classical Bessel function (see, e.g. Mathai et al. [110,

p.27, Eq.(1.161)]):

Jν(z) = J1,1
ν,0 (z) =

∞∑
k=0

(−1)k(z/2)ν+2k

Γ(ν + k + 1)k!
z, ν ∈ C, z 6= 0, <(ν) > −1. (1.49)

The Bessel function of the second kind or the Neumann function Yν(z) defined

as (see, e.g. [38, Chapter 7]):

Yν(z) =
Jν(x) cos νπ − J−ν(x)

sin νπ
(1.50)

(
z ∈ C \ {0}; ν /∈ {−1,−2,−3, · · · }

)
.

The Kν(z) is the modified Bessel function of the third kind (or the Macdonald

function) defined by (see, for example, [38, Chapter 7])

Kν(z) :=
π

2 sin(νπ)
[I−ν(z)− Iν(z)] , (1.51)

where

Iν(z) :=
∞∑
n=0

(z
2

)ν+2n

n! Γ(ν + n+ 1)
(1.52)

(
z ∈ C \ {0}; ν /∈ {−1,−2,−3, · · · }

)
.

(iv) Whittaker Function

The Whittaker function (see, e.g. Mathai et al. [110, p. 22]) is introduced by

Whittaker(1904):

Wσ,η(z) =
Γ(−2η)

Γ(1
2
− σ − η)

Mσ,η(z) +
Γ(2η)

Γ(1
2
− σ + η)

Mσ,−η(z) = Wσ,−η(z) (1.53)
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σ ∈ C, <(1/2 + η ± σ) > 0

where

Mσ,η(z) = zη+ 1
2 e−

z
2 1F1

(
1

2
− σ + η; 2η + 1; z

)
, <(1/2+η±σ) > 0, | arg z| < π

(1.54)

The following integral formula involving the Whittaker function (see Mathai

et al. [110, p. 56]) is used in finding the image formulae:

∞∫
0

tξ−1e−
t
2Wσ,η(t) dt =

Γ(ξ + η + 1
2
)Γ(ξ − η + 1

2
)

Γ(ξ − σ + 1
2
)

(1.55)

(σ ∈ C, <(ξ ± η) > −1/2)

.

(v) Krätzel Function The Krätzel Function introduced by Krätzel [84] is defined

for x > 0 by the integral

Zν
ρ (z) =

∫ ∞
0

tν−1e−t
ρ−x/tdt (1.56)

where ρ ∈ R and ν ∈ C, such that <(ν) < 0 for ρ ≤ 0.

(vi) H-Function

The H-function (see, e.g. Mathai et al. [110]) introduced by Charles Fox (1961)

by means of a Mellin-Barnes type integral in the following manner

Hm,n
p,q (z) = Hm,n

p,q

z (ap, Ap)

(bq, Bq)

 =Hm,n
p,q

z (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)


=

1

2πi

∫
Ω

Θ(ξ)z−ξ dξ

(1.57)
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where i =
√

(−1) and

Θ(s) =

m∏
j=1

Γ(bj + sBj)
n∏
j=1

Γ(1− aj − sAj)

q∏
j=m+1

Γ(1− bj − sBj)
p∏

j=n+1

Γ(aj + sAj)

(1.58)

and an empty product is interpreted as unity; m,n, p, q ∈ N0 with 0 ≤ n ≤ p,

1 ≤ m ≤ q, Ai, Bj ∈ R+, aj, bj ∈ C, i = 1, 2, ..., p; j = 1, 2, ..., q such that

Ai(bj + k) 6= Bj(ai − λ− 1), k, λ ∈ N0; i = 1, 2, ..., n; j = 1, 2, ...,m, (1.59)

The contour Ω is the infinite contour which separates all the poles of Γ(bj +

sBj), j = 1, 2, ...,m from all the poles of Γ(1− ai + sAi), i = 1, 2, ..., n.

We note that most of the elementary and special functions are the special cases

of The H−function. Few of them are mentioned here

(a) Lorenzo-Hartley G-function [54, p. 64, Eq. (2.3)]

H1,1
1,2

−azq
∣∣∣∣∣∣ (1− r, 1)

(0, 1), (1 + ν − rq, q)

 =
Γ(r)

zrq−ν−1
Gq,ν,r[a, z]. (1.60)

Here Gq,ν,r is the Lorenzo-Hartley G-function [98, Eq. 7].

(b) Generalized Mittag-Leffler function [109, p. 25, Eq. (1.137)].

H1,1
1,2

−z
∣∣∣∣∣∣ (1− γ, 1)

(0, 1), (1− β, α)

 = Γ(γ)Eγ
α,β(z), (1.61)

(α, β, γ ∈ C; R(α, β, γ) > 0)

where Eγ
α,β is the generalized Mittag-Leffler function as defined in (1.30)

also follows as special cases of H− function.

(c) Generalized Hypergeometric function as defined in (1.6) also follows
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as special cases of H− function [165, p. 18, Eq. (2.6.3)]

H1,p
p,q+1

z
∣∣∣∣∣∣ (1− aj, 1)1,p

(0, 1), (1− bj, 1)1,q

 =

p∏
j=1

Γ(aj)

q∏
j=1

Γ(bj)
pFq[(ap); (bq);−z] (1.62)

(d) Generalized Bessel Maitland Function [110, p. 25, Eq. (1.139)]

H1,1
1,3

z2

4

∣∣∣∣∣∣ (λ+ ν
2
, 1)

(λ+ ν
2
, 1), (ν

2
, 1), (µ(λ+ ν

2
)− λ− ν, µ)

 = Jµν,λ(z) (1.63)

where Jµν,λ is the generalized Bessel Maitland function (1.45).

(e) Wright’s Generalized Bessel Function[165, p. 19, Eq. (2.6.10)]

H1,0
0,2

z
∣∣∣∣∣∣ −−

(0, 1), (−λ, ν)

 = Jνλ(z) (1.64)

where Jνλ(z) is the Bessel maitland Function (1.46).

(f) Krätzel Function [110, p. 25, Eq. (1.141)]

H2,0
0,2

z
∣∣∣∣∣∣ −−

(0, 1), (ν
ρ
, 1
ρ
)

 = Zν
ρ (z) z, ν ∈ C, ρ > 0 (1.65)

where Zν
ρ is the Krätzel function given in the eq. (1.56).

(g) Modified Bessel function of the third kind [49, p. 155, Eq. (2.6)]

H2,0
1,2

z
∣∣∣∣∣∣∣∣
(

1− σ + 1

β
,

1

β

)
(0, 1),

(
−γ − σ

β
,

1

β

)
 = Kν(z) (1.66)

where Kν(z) is the modified Bessel function of the third kind given in the eq.
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(1.51).

(vii) Appell function

The 3rd Appell function (also known as Horn function) (see, e.g. [169, p.23]).

F3(α, α
′
, β, β

′
; η;x; y) =

∞∑
m,n=0

(α)m(α
′
)n(β)m(β

′
)n

(η)m+n

xm

m!

yn

n!
(max{|x|, |y|} < 1).

(1.67)

The properties of this function are discussed in detail by Srivastava and Karls-

son [169]. The Appell function F3 satisfies a system of two linear partial differ-

ential equations of the second order and reduces to the Gauss hypergeomatric

function 2F1 as follows (see, e.g. [169, p. 301, Eq. 9.4])

F3(α, η − α, β, η − β; η;x; y) = 2F1(α, β; η;x+ y − xy). (1.68)

Further, it is easy to see that

F3(α, 0, β, β
′
, η;x, y) = 2F1(α, β; η;x) (1.69)

and

F3(0, α
′
, β, β

′
, η;x, y) = 2F1(α

′
, β
′
; η; y). (1.70)

It is known that the 3rd Appell function cannot be expressed as a product

of two 2F1 functions that satisfy the system of two linear partial differential

equations of the second order.

1.2 Integral Transform

If f(x) denotes of a prescribed class of functions defined on a given interval [a, b]

and K(x, s) denotes a definite function of x in that interval for each value of s, a

parameter whose domain is prescribed, then the linear integral transform T [f(x); s]
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of the function f(x) is defined in the following manner:

T [f(x); s] =

b∫
a

K(x, s)f(x)dx (1.71)

wherein the class of functions and the domain of parameter s are so prescribed that

the above integral exists. In (1.71), K(x, s) is known as the kernel of the transform,

T [f(x); s] is the image of f(x) in the said transform; and f(x) is the original of

T [f(x); s].

If an integral equation can be determined that

f(x) =

β∫
α

φ(s, x)T [f(x); s]ds (1.72)

then (1.72) is termed as the inversion formula of (1.71)

1.2.1 Pδ - Transform

Pathway model is based on the principle of switching among three different fami-

lies of functions, say generalized extended type-1 beta family, type-2 beta family and

gamma family. This type of switching property can be used in practical situations

where one needs to fit a parametric family of distributions to experimental data or

to switch among three different functional forms. When the pathway parameter is

allowed to vary, we get three different forms. In real scaler case, the pathway model

is defined as

f(x) =c1|x|γ[1− a(1− α)|x|δ]
η

1−α , 1− a(1− α)|x|δ > 0, α < 1

=c2|x|γ[1 + a(α− 1)|x|δ]−
η

α−1 , −∞ < x <∞, α > 1

=c3|x|γe−aη|x|
δ

, −∞ < x <∞, α→ 1

(1.73)
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where a > 0, δ > 0, γ > 0, η > 0. c1, c2 and c3 are the normalizing constants if

we consider each of them as statistical density. Three different functional forms are,

generalized form extended type-1 beta, type-2 beta form respectively. The Tsallis

statistics [179, 180], and superstatistics are covered by the pathway model. In recent

years, the pathway model and Tsallis statistics have been applied in many areas like

thermonuclear reaction rate theory in astrophysics [59, 60, 88] and in applied analysis

[77, 86, 89] by Kumar and co-workers. In 2011, the Kumar introduced a fractional

type integral transform called P - transform or pathway transform defined by

(P ρ,β,α
ν f)(x) =

∫ ∞
0

Dν,α
ρ,β (xt)f(t)dt, x > 0, (1.74)

where Dν,α
ρ,β (x) denotes the function

Dν,α
ρ,β (x) =

∫ [ 1
a(1−α) ]

1
ρ

0

yν−1[1− a(1− α)yρ]
1

1−α e−xy
−β
dy, x > 0 (1.75)

with ν ∈ C, β > 0, ρ > 0, a > 0, α < 1 or

Dν,α
ρ,β (x) =

∫ ∞
0

yν−1[1 + a(α− 1)yρ]−
1

1−α e−xy
−β
dy, x > 0 (1.76)

for ν ∈ C, β > 0, a > 0, ρ ∈ R,α > 1. When Dν,α
ρ,β (x) takes the from (1.75) or

(1.76), the transform will be called as type-1 or type-2 P- transform, respectively,

which are defined in the space Lν,r(0,∞) consisting of the Lebesgue measurable

complex valued functions f for which

||f ||ν,r =

{∫ ∞
0

|tνf(t)|r dt
t

} 1
r

<∞ (1.77)

for 1 ≤ r < ∞, ν ∈ R. The P -transform and the Pα-transform both are based on

pathway idea but the Pα-transform deals the problem with much easy compared to

P -transform.
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Corollary 1.2.1. If conditions of Theorem 1.2.6 are satisfied and α→ 1, then the

Laplace transform obtained as lim
α→1

Pα[f(t); s] = L[f(t); s] defined in (1.81) converges

absolutely if <(s) > c. Moreover instead of condition (iii) if f(t) = O(tγ), <(γ+1) >

0 as t→∞, then the Laplace transform obtained as lim
α→1

[Pα; s] = L[f(t); s] converges

absolutely for <(s) > 0.

Theorem 1.2.2. [87, Theorem 3] (Convolution Theorem for Pα-transform) If F (s)

and G(s) are the Pα- transform of the functions f(t) and g(t), respectively, then the

product F (s)G(s) is the Pα- transform of the function
∫ t

0
f(t− τ)g(τ)dτ . That is,

F (s)G(s) = Pα

[∫ t

0

f(t− τ)g(τ)dτ ; s

]
= Pα[f(t); s]Pα[g(t); s]. (1.78)

Lemma 1.2.3. [87] For ν ∈ C, R(ν) > 0 and for α > 1, we have

Pα
[

0Dt
−νf(t); s

]
=

{
α− 1

ln[1 + (α− 1)s]

}ν
Pα[f(t); s] (1.79)

where 0Dt
−ν is Riemann-Liouville fractional integral defined in equation (1.87).

Theorem 1.2.4. [87] If f(t) and its derivatives up to order n are of exponential

order and are Pα-transformable and if f(t) and its derivatives up to (n− 1)th order

are continuous with the exception of the origin and if nth derivative f (n)(t) is at least

piecewise continuous and if Pα[f(t); s] = F (s) then

Pα[f (n)(t); s] =

{
ln[1 + (α− 1)s]

α− 1

}n
F (s)−

n∑
m=1

{
ln[1 + (α− 1)s]

α− 1

}n−m
f (m−1)(0+),

(1.80)

where f(0+) = lim
ε→0

f(0 + ε).

The Pδ - transform of a complex valued function f(z) of a real variable z de-

noted by Pδ[f(z); s] is a function F (s) of a complex variable s, valid under certain
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conditions on f(z), (given below in Lemma 1.2.5) is defined as (Kumar [85])

Pδ[f(z); s] = F (s) =

∫ ∞
0

[1 + (δ − 1)s]−
z
δ−1f(z)dz, δ > 1 (1.81)

Here lim
δ→1+

[1+(δ−1)s]−
t

δ−1 = e−st defines a class of transforms. All these transforms

are the paths going from the binomial form [1 + (δ − 1)s]−
t

δ−1 to the exponential

from e−st. In Pδ− transform the variable t is shifted from the binomial factor

[1 + (δ−1)s]−
t

δ−1 to the exponent and hence this form is more suitable for obtaining

translation, convolution etc.

The Pδ - transform of power function tρ−1 is given by Kumar [87, Eq. 32]

Pδ[t
ρ−1; s] =

{
δ − 1

ln[1 + (δ − 1)s]

}ρ
Γ(ρ) (<(ρ) > 0; δ > 1). (1.82)

The convergence conditions for the Pδ− transform of a function f(t) to exist are

given by the following results.

Lemma 1.2.5. [85] If f(z) is integrable over any finite interval (a, b), 0 < a < z < b,

there exists a real number c such that,

(i) for any arbitrary b > 0,
∫ %
b
e−czf(z)dz tends to a finite limit as %→∞

(ii) for any arbitrary a > 0,
∫ a
ν
|f(z)dz| tends to a finite limit as ν → 0+,

then the Pδ-transform Pδ[f(z); s] exists for <
(

ln[1+(δ−1)s]
δ−1

)
> c for s ∈ C.

Theorem 1.2.6. [87, Theorem 1] If

(i) f(t) is integrable over a finite limit (a, b), 0 < a < t < b,

(ii) for arbitary positive a, the integral
∫ a
ν
|f(t)|dt tends to a finite limit as ν → 0+

(iii) f(t) = O(ect), c > 0 as t→∞ where O(· ) is the standard big O notation which

means f(t) is of order not exceeding ect,

then the Pα-transform defined in (1.81) converges absolutely if <
(

ln[1+(α−1)s]
α−1

)
> c,

α > 1.

If instead of condition (iii), we have the condition f(t) = O(tγ), <(γ+1) > 0 as t→
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∞, then the pathway-Laplace transform converges absolutely for <
(

ln[1+(α−1)s]
α−1

)
>

0.

Furthermore, upon letting δ → 1 in the definition (1.81), the Pδ-transform is

reduced to the classical Laplace transform:

L[f(t); s] :=

∫ ∞
0

e−st f(t)dt, <(s) > 0, (1.83)

provided that the integral exists.

By closely comparing the definitions in (1.81) and (1.83), it is easily observed that

the Pδ-transform is essentially the same as the classical Laplace transform with the

following parameter change:

s 7→ ln[1 + (δ − 1)s]

δ − 1
(δ > 1). (1.84)

In view of the Eq. (1.84), the following relationship holds true between the Pδ-

transform defined by (1.81) and the classical Laplace transform:

Pδ[f(t) : s] = L
[
f(t) :

ln[1 + (δ − 1)s]

δ − 1

]
(δ > 1) (1.85)

or, equivalently,

L[f(t) : s] = Pδ
[
f(t) :

e(δ−1)s − 1

δ − 1

]
(δ > 1) (1.86)

which can indeed be applied reasonably simply to convert the table of Laplace

transforms into the corresponding table of Pδ-transforms and vice versa.
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1.3 Fractional Calculus

1.3.1 Historical Development

The fractional calculus, like many other mathematical disciplines and ideas,

has its origin in the striving for extension of meaning. Well known examples are the

extensions of the integers to the rational numbers, of the real numbers to the complex

numbers, of the factorials of integers to the notation of the gamma function and

many such others. The original question that led to the name of fractional calculus

was: Can the meaning of derivative of integer order dny
dxn

be extended to have a

meaning when n is friction? Later the question became : Can n be any number,

fractional, irrational or complex? Because this question was answered affirmatively,

the name fractional calculus has become a misnomer and might better be called

integration and differentiation to an arbitrary order.

In a letter dated 30th September 1695, L’Hospital wrote to Leibnitz asking him

a particular notation that he had used in his publication for the nth derivative of

a function dnf(x)
dxn

i.e. what would the result be if n = 1
2
? Leibnitz’s response an

apparent paradox from which one day useful consequences will be drawn. In these

words, fractional calculus was born.

The earliest systematic studies seem to have been made in the beginning and

middle of the 19th century by Liouville [93], Riemann [147] and Holmgren [65].

The list of mathematicians who provided important contributions up to the middle

of 20th century, includes Fourier [42], Weyl [183], Davis [25–27], Zygmund [190],

Erdélyi [35–37], Kober [82], Hardy and Littlewood [55], Grünwald [53], Letnikov

[90, 91], Riesz [148] and several others.

In 1974 the first international conference on fractional calculus was held at the

University of New Haven, Connecticut, U.S.A. The proceedings of the conference

were published by Springer-Verlag [149]. Again in 1984 and 1989, the second and
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third international conferences were held at University of Starthclyde, Glasgow, Scot-

land [111] and at Nihon University, Tokyo, Japan [121] respectively. Many distin-

guished mathematicians attended these conferences. These luminaries included R.

Askey, M. Mikolas, M.Al-Bassam, P.Heywood, W. Lamb, R. Bagley, Y.A. Brychkov,

R. Gorenflo, S.L. Kalla, E.R. Love, K.Nishimoto, S. Owa, A.P. Prudnikov, B.

Ross, S. Samko, H.M. Srivastava, J.M.C. Joshi and many others. The papers on

the fractional calculus and generalized functions, inequalities obtained by use of the

fractional calculus and applications of the fractional calculus to probability theory

presented in the conference were quite electric.

A systematic (and historical) account of investigations carried out by various

authors in the field of fractional calculus and its applications can be found in the

paper by Srivastava and Saxena [174] wherein extensive bibliography on the subject

has been given. One can also refer to the research papers by Pandey and Srivas-

tava [129], Duren et al. [34], Galue et al. [44], Nishimoto and Srivastava [122],

Srivastava et al. [173], Saigoet al. [154], Srivastava and Owa [171], Manocha [105],

Srivastava and Goyel [168], Saigo and Raina [153] and several others. The excel-

lent research monographs by Oldham and Spanier [123], Nishimoto [120], Miller and

Ross [117] and Samko et al. [155] contain extensive and useful literature concerning

the fractional calculus.

1.3.2 Applications of Fractional Calculus

The basic mathematical ideas of fractional calculus (integral and differential op-

erations of noninteger order)were developed long ago by the mathematicians Leibniz

(1695), Liouville (1834), Riemann (1892), and others and brought to the attention of

the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the

first book on the topic was published by Oldham and Spanier. Recent monographs

and symposia proceedings have highlighted the application of fractional calculus in

physics, continuum mechanics, signal processing, and electromagnetic.
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Fractional derivatives provide an excellent instrument for the description of mem-

ory and hereditary properties of various materials and processes. The advantages of

fractional derivatives become apparent in modeling mechanical and electrical prop-

erties of real materials as well as in the description of rheological properties of rocks

and in many other fields. The subject of fractional calculus deals with the inves-

tigations of integrals and derivatives of any arbitrary real or complex order, which

unify and extend the notions of integer-order derivative and n-fold integral. It has

gained importance and popularity during the last four decades or so, mainly due to

its vast potential of demonstrated applications in various seemingly diversified fields

of science and engineering, such as fluid flow, rheology, diffusion, relaxation, oscilla-

tion, anomalous, reaction-diffusion, turbulence, diffusive transport akin to diffusion,

electric network, polymer physics, chemical physics, electrochemistry of corrosion,

relaxation processes in complex systems, propagation of seismic waves, dynamical

processes in self-similar and porous structures and others. The mathematical mod-

eling and simulation of systems and processes based on the description of their

properties in terms of fractional derivatives naturally leads to differential equations

of fractional order and to the necessity to solve such equations.

As to the mathematical theory of the differential equations of fractional order,

the current situation for the ordinary differential equations is different from the one

for the partial differential equations. Whereas it is more or less complete for the

ordinary differential equations of fractional order (Kilbas et al. [80], Metzler and

Klafter [116]).

Many applications of fractional calculus can be found in other diverse fields in

Carpinteri and Mainardi [15], Jeses and Machado [70], Podulbuny [137], Hilfer [64].

Bagley and Torvik [5] found the application of fractional calculus in visco elasticity

and electrochemistry of corrosion. Oldham and Spanier ([124, 125]) explained its

applications in electrochemistry and general transport problem. Virtually no area

of classical analysis is left untouched by fractional calculus.
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The NASA STI (National Aeronautics and Space Administration Scientific and

Technical Information) USA, report series TP (Technical Publication) and TM

(Technical Memorandum) contain a huge amount of useful research material on

practical applications of fractional calculus (Hartely and Lorenzo [56–58], Lorenzo

and Hartley [97]). Mathematical models, using ordinary differential equations with

integer order, have been proven valuable in understanding the dynamics of physical

systems. (Atanackovic [4], Baleanu et al. [6–8], Herrmann [62], Ortigueira [126],

Uchaikin [181]). The modeling of these systems by fractional order differential equa-

tions has more advantages than classical integer-order mathematical modeling.

1.3.3 Operators of Fractional Calculus

The right-sided Riemann-Liouville fractional integral of order α, (<(α) > 0)

(Samko et al. [155]) is defined as:

Iα0 (u(t)) = 0Dt
−α(u(t)) =

1

Γ(α)

t∫
0

(t− τ)α−1u(τ) dτ, t > a (1.87)

The right-sided Riemann-Liouville fractional derivative of order α, (<(α) > 0) can

be defined as:

0Dα
t (u(t)) =

(
d

dt

)n
(In−α0 u(t)), n = [<(α)] + 1, (1.88)

where [x] represents the integral part of the number x.

The power function formula involving the Riemann-Liouville operator (see, e.g.

Mathai et al. [110]) is given by:

0Dα
t t
ρ−1(x) =

Γ(ρ)

Γ(ρ+ α)
xρ+α−1 (<(α) > 0,<(ρ) > 0). (1.89)
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The Laplace transform of the Riemann-Liouville fractional derivative in equation

(2.43) is given by (see, e.g, Oldham and Spanier [125, p.134]) as

L[0Dα
t u(t) : s] = sαf(s)−

n−1∑
k=0

sα−k−1u(k)(0), (1.90)

where (n− 1) < α ≤ n.

The Weyl fractional integral operator are defined as follows (see, e.g,Oldham and

Spanier [125, p.53]):

(
W−α∞−u

)
(x) =

1

Γ(α)

∫ x

∞
(t− x)α−1u(t)dt (<(α) > 0), (1.91)

provided both the integrals converge.

The power function formulas involving the Weyl type fractional integral operators

(see, e.g. Mathai et al. [110, p.107, Eq. 3.123]) are as follows:

(
W−α∞−tρ−1

)
(x) =

Γ(1− ρ+ α)

Γ(1− ρ)
xα+ρ−1 (<(ρ) > −1, <(α) > −1). (1.92)

The Erdélyi-Kober type fractional integral operators are defined as follows (see,

e.g. Kober [82]):

(Eα,ηx+u) (x) =
x−α−η

Γ(α)

∫ x

0

(x− t)α−1tηu(t)dt (<(α) > 0) (1.93)

and

(Kα,η
∞−u) (x) =

xη

Γ(α)

∫ ∞
x

(t− x)α−1t−α−ηu(t)dt (<(α) > 0), (1.94)

The function u(t) is so constrained so that both the defining integrals (1.93) and

(1.94) converge.

The power function formulas involving the Erdélyi-Kober type fractional integral
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operators (see, e.g. Mathai et al. [110, p.107]) are given by:

(
Eα,ηx+ t

ρ−1
)

(x) =
Γ(ρ+ η)

Γ(ρ+ α + η)
xρ−1 (<(ρ+ η) > 0), (1.95)

and

(
Kα,η
∞−t

ρ−1
)

(x) =
Γ(1 + η − ρ)

Γ(1 + α + η − ρ)
xρ−1 (<(η) > <(ρ) > −1), (1.96)

α, ρ, η ∈ C.

The following fractional derivative of order α,<(α) > 0 is introduced by Caputo [14]

as

C
0 Dα

t (u(t)) =


1

Γ(m− α)

t∫
0

u(m)(τ)

(t− τ)α+1−m dτ, m− 1 < α ≤ m

∂m

∂tm
u(x, t), if α = m

(1.97)

where u(m)(t) = ∂m

∂tm
u(t),m ∈ N is the m-th derivative of the function u(x, t) with

respect to t.

The power function formula involving the Caputo fractional derivative is as follows

(see, e.g. Ishteva et al. [67, Theorem 4, p.5]):

C
0 Dα

t (tρ) =


Γ(ρ+1)

Γρ−α+1
tρ−α, n− 1 < α < n, ρ > n− 1, ρ ∈ R,

0, n− 1 < α < n, ρ ≤ n− 1, ρ ∈ N.
(1.98)

A generalization of the Riemann-Liouville fractional derivative operator (1.88)

and Caputo fractional derivative operator (1.97) is given by Hilfer [64], by intro-

ducing a fractional derivative operator of two parameters.

Definition 1.3.1. (Hilfer derivative). Let 0 < µ < 1 and type 0 ≤ ν ≤ 1, u ∈

L1[a, b], −∞ ≤ a < t < b ≤ ∞, u ∗K(1−ν)(1−µ) ∈ AC1[0, b]. Then Hilfer derivative

is defined as

0Dµ,ν
a+ (u(t)) = Iν(1−µ)

t

∂

∂t

(
I(1−ν)(1−µ)
a+ u(t)

)
(1.99)
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It is interesting to observe that for ν = 0, Eq. (1.99) reduces to the classical

Riemann-Liouville fractional derivative operator (1.88). On the other hand, for

ν = 1, it gives the Caputo fractional derivative operator defined by (1.97).

The Laplace transform (see, e.g. Sneddon [164, Chapter 1]) for this operator is given

by Hilfer [63]. Hereafter and without loss of generality, we set a = 0 in (1.99).

L{Dµ,ν
0+u(t); s} = sµL{u(t)} − sν(µ−1)I(1−ν)(1−µ)

0+ u(0+), 0 < µ < 1 (1.100)

where the initial value term I(1−ν)(1−µ)
0+ u(0+) involves the Riemann-Liouville frac-

tional integral operator of order (1− ν)(1− µ) evaluated in the limit as t→ 0+.

Definition 1.3.2. [46, Eq. 12] (Prabhakar integral). Let u ∈ L1[0, b], 0 < t < b ≤

∞. The Prabhakar integral can be written as

Pγρ,µ,ω,0+u(t) =

∫ t

0

(t− y)µ−1Eγ
ρ,µ[ω(t− y)ρ]u(y)dy =

(
u ∗ eγρ,µ,ω

)
(t), (1.101)

where ρ, µ, ω, γ ∈ C, t ∈ R with <(ρ),<(µ) > 0 and the kernel is given by

eγρ,µ,ω(t) = tµ−1Eγ
ρ,µ(ωtρ),

where Eγ
ρ,µ(·) is the generlized Mittag-Leffler function given in (1.30).

The fractional Prabhakar derivative was introduced and studied by Ovidio and

Polito [127] as follows.

Definition 1.3.3. [46, Eq. 13] (Prabhakar derivative). Let u ∈ L1[0, b], 0 < t <

b ≤ ∞ and u ∗ e−γρ,m−µ,ω(·) ∈ Wm,1[0, b],m = dµe. The Prabhakar derivative of the

function u is given by

Dγ
ρ,µ,ω,0+u(t) =

dm

dxm
P−γρ,m−µ,ω,0+u(t) (1.102)

where t ∈ R, ρ, µ, ω, γ ∈ C, <(ρ), <(µ) > 0.
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A generalization of the Hilfer derivative operator (1.99), was given by Garra et

al. [46, Def.4.3, Eq. 19] as

Definition 1.3.4. (Hilfer-Prabhakar derivative). Let µ ∈ (0, 1), ν ∈ [0, 1],

u ∈ L1[0, b], 0 < t < b ≤ ∞, u ∗ e−γ(1−ν)
ρ,(1−ν)(1−µ),ω(·) ∈ AC1[0, b].

Then Hilfer-Prabhakar derivative is defined by

Dγ,µ,ν
ρ,ω,0+u(t) =

(
P−γνρ,ν(1−µ),ω,0+

d

dt

{
P−γ(1−ν)

ρ,(1−ν)(1−µ),ω,0+u
})

(t) (1.103)

where γ, ω ∈ C, ρ > 0

It is interesting to observe that for γ = 0, Eq. (1.103) reduces to the Hilfer

derivative (1.99) and for γ = 0, ν = 0, Eq.(1.103) reduces to the classical Riemann-

Liouville fractional derivative operator (1.88). On the other hand, for γ = 0, v = 1,

it gives the Caputo fractional derivative operator (1.97), respectively (see, e.g. [46]).

The Laplace Transform of Hilfer-Prabhakar derivative (1.103) is given by [46, Eq.

20]

L
{
Dγ,µ,ν
ρ,ω,0+u(t); s

}
= L

{
P−γνρ,ν(1−µ),ω,0+

d

dt

(
P−γ(1−ν)

ρ,(1−ν)(1−µ),ω,0+u(t)
)}

(s)

= sµ[1− ωs−ρ]γL[u](s)− s−ν(1−µ)[1− ωs−ρ]γν
[
P−γ(1−ν)

ρ,(1−ν)(1−µ),ω,0+u(t)
]
t=0+

(1.104)

The Saigo operators Iα,β,η0,x and Iα,β,η∞− are defined as follows (see, e.g. Mathai et al.

[110, p.104]):

(
Iα,β,η0+ u

)
(x) =

x−α−β

Γ(α)

∫ x

0

(x− t)α−1
2F1

(
α + β,−η;α; 1− t

x

)
u(t)dt (1.105)

(<(α) > 0)(
Iα,β,η∞− u

)
(x) =

∫ ∞
x

(t− x)α−1t−α−β2F1

(
α + β,−η;α; 1− x

t

)
u(t)dt (1.106)

(<(α) > 0).
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where the function f(t) is so constrained that the defining integrals in (1.105) and

(1.106) exist.

The power function formulas involving the Saigo operators are as follows:

Let α, β, η, ρ ∈ C with <(α) > 0. Then the following formulas hold true:

(
Iα,β,η0+ tρ−1

)
(x) =

Γ(ρ)Γ(ρ+ η − β)

Γ(ρ− β)Γ(ρ+ η + α)
xρ−β−1 (1.107)

<(ρ) > max {0,<(β − η)}

and (
Iα,β,η∞− tρ−1

)
(x) =

Γ(1− ρ+ β)Γ(1− ρ+ η)

Γ(1− ρ)Γ(1− ρ+ α + β + η)
xρ−β−1 (1.108)

(<(ρ) < 1 + min {<(β),<(η)}).

In terms of the Gauss hypergeometric function 2F1, the left-sided hypergeometric

fractional integral operator Iα,β,η0+ given in the Eq. (1.105), the corresponding left-

sided hypergeometric fractional derivative operator (see, for details, [151]) Dα,β,η
0+ are

defined, for x > 0 and α, β, η ∈ C, by and

(
Dα,β,η

0+ f
)

(x) =
(
I−α,−β,α+η
0+ u

)
(x)

=

(
d

dx

)n {(
I−α+η,−β−η,α+η−n
0+ u

)
(x)
}

(1.109)

(
<(α) = 0; n = [<(α)] + 1

)
.

The left-sided hypergeometric fractional derivative operator Dα,β,η
0+ unifies both

the Riemann-Liouville fractional derivative operator 0Dα
t and the left-sided Erdélyi-

Kober fractional derivative operator EKDα,η
0+ . In fact, we have the following relation-

ships:

0Dα
t = Dα,−α,η

0+ and EKDα,η

0+ = Dα,0,η
0+ , (1.110)
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where (see, for details, [38, Chapter 13])

(0Dα
t u) (x) :=

(
d

dx

)n{
1

Γ(n− α)

∫ x

0

u(t)

(x− t)α−n+1
dt

}
(1.111)

(
x > 0; n = [<(α)] + 1; <(α) = 0

)
and

(
EKDα,η

0+ u
)

(x) := xη
(

d

dx

)n{
1

Γ(n− α)

∫ x

0

tα+η f(t)

(x− t)α−n+1
dt

}
(1.112)

(
x > 0; n = [<(α)] + 1; <(α) = 0

)
.

In terms of the Gauss hypergeometric function 2F1, the right-sided hypergeo-

metric fractional integral operator Iα,β,η∞− given in the Eq. (1.106), the corresponding

right-sided hypergeometric fractional derivative operator (see, for details, [151] and

[79]) Dα,β,η
∞− are defined, for x > 0 and α, β, η ∈ C, by

(
Dα,β,η
∞− u

)
(x) =

(
I−α,−β,α+η
∞ f

)
(x)

=

(
− d

dx

)n {(
I−α+η,−β−η,α+η−n
∞− u

)
(x)
}

(1.113)

(
<(α) = 0; n = [<(α)] + 1

)
.

The right-sided hypergeometric fractional derivative operator Dα,β,η
∞− unifies both

the Weyl fractional derivative operator Wα
∞− and the right-sided Erdélyi-Kober

fractional derivative operator EKDα,η
∞−. In fact, we have the following relationships:

Wα
∞− = Dα,−α,η

∞− and EKDα,η

∞− = Dα,0,η
∞− , (1.114)

where (see, for details, [38, Chapter 13])

(
Wα
∞−u

)
(x) :=

(
− d

dx

)n{
1

Γ(n− α)

∫ x

0

u(t)

(t− x)α−n+1
dt

}
(1.115)
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(
x > 0; <(α) = 0; n = [<(α)] + 1

)
.

and

(
EKDα

∞−u
)

(x) := xα+η

(
d

dx

)n{
1

Γ(n− α)

∫ ∞
x

t−η u(t)

(t− x)α−n+1
dt

}
(1.116)

(
x > 0; <(α) = 0; n = [<(α)] + 1

)
.

Lemma 1.3.5. (see, for example, [79, pp. 327–328]) Each of the hypergeometric

fractional derivative formulas holds true:

(
Dα,β,η

0+ tρ−1
)

(x) =
Γ(ρ)Γ(ρ+ α + β + η)

Γ(ρ+ β)Γ(ρ+ η)
xρ+β−1 (1.117)(

x > 0; <(α) = 0; <(ρ) > −min{0,<(α + β + η)}
)

and

(
Dα,β,η
∞− tρ−1

)
(x) =

Γ(1− ρ− β)(1− ρ+ α + η)

Γ(1− ρ)Γ(1− ρ+ η − β)
xρ+β−1 (1.118)(

x > 0; <(α) = 0; <(ρ) < 1 + min{<(−β − η),<(α + η)}
)
.

A useful generalization of the hypergeometric fractional integral, including the

Saigo operators [150, 151] has been introduced by Marichev [106] (see details in

Samko et al. [155, p.194, Eq.(10.47)] and whole Section 10.3) and later extended

and studied by Saigo and Maeda [152, p.393, Eq.(4.12) and Eq.(4.13)] in term of

any complex order with Appell function F3(·) in the kernel and Saigo-Maeda [152]

introduced the fractional integral operators.

Let α, α
′
, β, β′, γ ∈ C and x > 0, then the generalized fractional integral operators

(Marichev-Saigo-Maeda fractional integral operators) involving the Appell’s function

are defined as follows:
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(
Iα,α

′
,β,β′,γ

0+ f
)

(x)

=
x−α

Γγ

∫ x

0

(x− t)γ−1t−α
′

F3

(
α, α

′
, β, β′; γ; 1− t

x
, 1− x

t

)
f(t)dt, (<(γ) > 0),

(1.119)

and(
Iα,α

′
,β,β′,γ

0− f
)

(x)

=
x−α

Γγ

∫ ∞
x

(t− x)γ−1t−αF3

(
α, α

′
, β, β′; γ; 1− x

t
, 1− t

x

)
f(t)dt, (<(γ) > 0).

(1.120)

respectively. These operators (integral transforms) were introduced by Marichev

[106] as Mellin type convolution operators with a special function F3(·) in the kernel.

These operators were rediscovered and studied by Saigo in [151] as generalization

of the so-called Saigo fractional integral operators (see [81, p.160]).

In (1.119) and (1.120) the symbol F3(·) denotes so-called 3rd Appell function given

in (1.68).

Following Saigo et al. [158], the left-hand sided and right-hand sided generalized

integration of the type (1.119) and (1.120) for a power function are given by:

Let α, α
′
, β, β′, γ ∈ C, x > 0 and if <(γ) > 0,<(ρ) > max{0,<(α + α

′
+ β −

γ),<(α
′ − β ′)}, then

(
Iα,α

′
,β,β′,γ

0+ tρ−1
)

(x)

=
Γ(ρ)Γ(ρ+ γ − α− α′ − β)Γ(ρ+ β

′ − α′)
Γ(ρ+ β ′)Γ(ρ+ γ − α− α′)Γ(ρ+ γ − α′ − β)

xρ+γ−α−α′−1
(1.121)

Let α, α
′
, β, β′, γ ∈ C be such that <(γ) > 0 and <(ρ) < 1 + min{<(−β),<(α+
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α
′ − γ),<(α + β

′ − γ)} then there exist the relation

(
Iα,α

′
,β,β′,γ

0− tρ−1
)

(x)

=
Γ(1− ρ− γ + α + α

′
)Γ(1− ρ+ α + β

′ − γ)Γ(1− ρ− β)

Γ(1− ρ)Γ(1− ρ+ α + α′ + β + β ′ − γ)Γ(1− ρ+ α− β)
xρ−α−α

′
+γ−1

(1.122)

If we set α
′
= 0 then in view of the reduction formula (1.69), Saxena and Saigo [158,

p. 93, Eqs. (2.15)] found the following relationship between the Marichev-Saigo-

Maeda and the Saigo fractional integral operators:

(
Iα,0,β,β

′
,η

x+ u
)

(x) =
(
Iη,α−η,−βx+ u

)
(x) (<(η) > 0) (1.123)

and (
Iα,0,β,β

′
,η

∞− u
)

(x) =
(
Iη,α−η,−βx,∞ u

)
(x) (<(η) > 0) (1.124)

where the general operators Iα,0,β,β
′
,η

x+ and Iα,0,β,β
′
,η

x+ reduce respectively to the afore-

mentioned Saigo operators Iα,β,η0,x and Iα,β,η∞− (see for details, [151] and the references

cited therein).

A symmetric fractional Laplace operator of order λ is defined by Brockmann and

Sokolov [12, Eq. A.7-A.9] as

∆
λ
2 ≡ 1

2 cos
(
πλ
2

){−∞Dλ
x + xD

λ
∞}, 0 < λ ≤ 2 (1.125)

where

−∞D
λ
x(u(x)) =

1

k − λ

x∫
−∞

u(k)(t)

(x− t)λ+1−k dt, k = [λ] + 1

and

xD
λ
∞(u(x)) =

1

k − λ

∞∫
x

u(k)(t)

(x− t)λ+1−k dt, k = [λ] + 1

The Fourier transform of fractional Laplace operator (1.125) [12, Eq. A.19] is given
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by

F{∆
λ
2 (u(x, t)); η} = −|η|λF{u(x, t); η}, 0 < λ ≤ 2 (1.126)

1.4 Brief Chapter wise Summary of the Thesis

We present a brief summary to the work carried out in chapter 2 to 6.

In Chapter-2, we establish several formulas involving integral transforms, fractional

derivatives of a certain family of extended generalized hypergeometric functions and

a family of the incomplete hypergeometric functions also we find probability distri-

butions as a application of generalized hypergeometric function.

We divide this chapter into two parts. In part ’A’ first we prove three theorems,

which exhibit the connection between the Jacobi, Gegenbauer and Legendre trans-

forms of the extended generalized hypergeometric type function. Next we develop

Pδ-Transforms, Laplace transform, Kν-Transforms and the Hankel Hν-Transforms

involving the extended generalized hypergeometric functions. Further, we establish

several fractional derivative formulas for the extended generalized hypergeometric

type. As on application, a probability density function involving the extended gen-

eralized hypergeometric functions is introduced.

In part ’B’ we prove three theorems, which exhibit the connection between the Ja-

cobi, Gegenbauer and Legendre transforms of the incomplete hypergeometric func-

tions. Next we develop Pδ-Transforms, Laplace transform involving the incomplete

hypergeometric functions. Further, we establish several fractional derivative formu-

las for the incomplete hypergeometric functions.

In Chapter-3, we establish image formulas for the generalized Lommel-Wright func-

tion of first kind involving Saigo-Meada fractional integral operators, in term of

the generalized Wright function. Further, we obtain certain theorems involving

the results obtained in previous section associated with the integral transforms like

beta transforms, pathway transforms, Laplace transforms and Whittaker transforms.

Many interesting results are shown to follow from our main results.
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In Chapter-4, we divide this chapter into two parts. In part ’A’ we investigate the

analytic solution of the time-space fractional advection-dispersion equation involv-

ing fractional Laplace operator, following with some illustrations and application. In

part ’B’ we investigate the analytic solution of the solutions of generalized space-time

fractional reaction-diffusion equation involving fractional Laplace operator, follow-

ing with some illustrations and concrete applications.

In Chapter-5, we find the Pα-transform of Caputo fractional derivatives and derive

Pα-transform for Volterra and Abel integral equation. Further, in Section 3 we find

the solution of fractional Volterra integral equation. We discuss its application for

solving singular integral equation having Bessel function in its kernel. The solution

of non homogeneous time fractional heat equation in a spherical domain has been

discussed.

In Chapter-6, we obtain a theorem using some operators defined on a Lie algebra

of endomorphisms of a vector space which generalizes some results of researchers

on the families of special functions and orthogonal polynomials. In particular, we

present examples, how the Lie algebraic approach can be used to derive the differen-

tial recurrence relations, differential equation for extended Jacobi polynomials and

Gegenbauer polynomials.

The method developed in this chapter can also be used to study some other spe-

cial functions of mathematical physics. Certain properties of some special matrix

functions via Lie Algebra are studied in the section. We have established a general

theorem concerning eigenvector for the product of two operators defined on a Lie

algebra of endomorphisms of a vector space.

A comprehensive list of references has been provided at the end of the thesis.





2
Integral Transform and Fractional

Derivative Formulas with Applications

The main findings of this chapter have been published as detailed below:

1. H. M. Srivastava, R. Agarwal, S. Jain. Integral Transform and Fractional Derivative

Formulas Involving the Extended Generalized Hypergeometric Functions and Probability

Distributions, Mathematical Methods in the Applied Sciences, 40, 255-273.

2. R. Srivastava, R. Agarwal and S. Jain (2015). A Family of the Incomplete Hyperge-

ometric Functions and Associated Integral Transform and Fractional Derivative Formulas,

Filomat, 31(1), 125-140.
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Applications

In several areas of mathematical, physical and engineering sciences, integral

transforms and fractional calculus operators play an important rôle from the ap-

plication viewpoint (see, for details, [80]). A remarkably large number of integral

transforms as well as fractional integral and derivative formulas involving various

special functions have been investigated by many authors. For example, Choi and

Agarwal [19] derived some integral transforms and fractional integral formulas in-

volving the generalized hypergeometric function F
(ρ,σ;m)
p (a, b; c; z) defined by (1.15).

In the present sequel to some of the aforementioned works, we propose to estab-

lish several (presumably new) integral transform and fractional derivative formulas

involving the extended generalized hypergeometric type functions:

pF
(α,β;κ,µ)
q

 a1, · · · , ap;

b1, · · · , bq;
z; p


the generalized hypergeometric is given by (1.6). The particular case of this function

is given in the Eq. (1.21). We also investigate some families of probability distribu-

tions and probability density functions associated with these extended generalized

hypergeometric type functions.

2.1 Introduction

The theory of various families of Special Functions has been one of the most

rapidly growing research subjects in Mathematical Analysis due mainly to their ap-

plications in many different areas of mathematical, physical, statistical and engineer-

ing sciences. Recently, a function is drawing attention of many researchers chiefly

because of its diverse applications. Popularly known as the extended generalized

hypergeometric function, it is more general than the classical and generalized Gauss

hypergeometric functions or the confluent hypergeometric functions. Therefore, the

corresponding extensions of several other familiar special functions are expected to
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be useful and need to be investigated (see, e.g. [16], [17], [131]). For example, Sri-

vastava et al. [167] introduced and studied the generalized incomplete Pochhammer

symbols and their applications to hypergeometric and related functions.

Definition 2.1.1 below makes use of the classical orthogonal Jacobi polynomials

P
(α,β)
n (z) defined by (see, for details, [38, Chapter 10])

P (α,β)
n (z) = (−1)n P (β,α)

n (−z) =

(
α + n

n

)
2F1

 −n, α + β + n+ 1;

α + 1;

1− z
2

 (2.1)

in terms of the familiar Gauss hypergeometric function 2F1.

Definition 2.1.1. (see, e.g. [29, p. 501]) The Jacobi transform of a function f(z)

is defined as follows:

J(α,β)[f(z);n] :=

∫ 1

−1

(1− z)α(1 + z)βP (α,β)
n (z) f(z)dz (2.2)

(
min{<(α),<(β)} > −1; n ∈ N0

)
,

provided that the function f(z) is so constrained that the integral in (2.2) exists.

Now, if we apply the definition (2.1), it is easily seen that

∫ 1

−1

(1− z)ξ−1(1 + z)η−1P (α,β)
n (z) dz

= 2ξ+η−1

(
α + n

n

)
B(ξ, η) 3F2

 −n, α + β + n+ 1, ξ;

α + 1, ξ + η;
1

 (2.3)

(
min{<(ξ),<(η)} > 0

)
.

Since

zρ−1 = [1− (1− z)]ρ−1 =
∞∑
k=0

(1− ρ)k
k!

(1− z)k (|1− z| < 1; ρ ∈ C),
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it follows easily from the integral formula (2.3) that

∫ 1

−1

(1− z)ξ−1(1 + z)η−1P (α,β)
n (z) zρ−1 dz

= 2ξ+η−1

(
α + n

n

)
B(ξ, η)

· F 1:2;1
1:1:0

 ξ : −n, α + β + n+ 1; 1− ρ;

ξ + η : α + 1; ;
1, 2

 (2.4)

(
min{<(ξ),<(η)} > 0; ρ ∈ C; n ∈ N0

)
in terms of the familiar Kampé de Fériet function (see, for details, [169, p. 27 et

seq.]). In particular, upon setting ξ = α+ 1 and η = β+ 1, this last integral formula

(2.4) would reduce immediately to the following form:

J(α,β)[zρ−1;n]

:=

∫ 1

−1

(1− z)α(1 + z)βP (α,β)
n (z) zρ−1 dz

= 2α+β+1

(
α + n

n

)
B(α + 1, β + 1)

· F 1:2;1
1:1:0

 α + 1 : −n, α + β + n+ 1; 1− ρ;

α + β + 2 : α + 1; ;
1, 2

 (2.5)

(
min{<(α),<(β)} > −1; ρ ∈ C; n ∈ N0

)
.

In its further special case when ρ = m + 1 (m ∈ N0), (2.5) yields the following

well-known result for the Jacobi transform of zm (m ∈ N0), which is given by (see,
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e.g. [146, p. 261, Eqs. (14) and (15)])

J(α,β)[zm;n]

:=

∫ 1

−1

(1− z)α(1 + z)βP (α,β)
n (z) zm dz

=



0 (m = 0, 1, 2, · · · , n− 1)

2α+β+n+1 B(α + n+ 1, β + n+ 1) (m = n)

2α+β+n+1

(
m

n

)
B(α + n+ 1, β + n+ 1)

· 2F1

 n−m,α + n+ 1;

α + β + 2n+ 2;
2

 (m = n+ 1, n+ 2, n+ 3, · · · )

(2.6)

(
min{<(α),<(β)} > −1; m,n ∈ N0

)
.

Remark 2.1.2. The Jacobi polynomials P
(α,β)
n (z) contain, as their special cases,

such other classical orthogonal polynomials as (for example) the Gegenbauer (or

ultraspherical) polynomials Cν
n(z), the Legendre (or spherical) polynomials Pn(z),

and the Tchebycheff polynomials Tn(z) and Un(z) of the first and second kind. (see,

for details, [170]). In fact, we have the following relationships with the Gegenbauer

polynomials Cν
n(z) and the Legendre polynomials Pn(z):

Cν
n(z) =

(
ν + n− 1

2

n

)−1 (
2ν + n− 1

n

)
P

(ν− 1
2
,ν− 1

2)
n (z) (2.7)

and

Pn(z) = C
1
2
n (z) = P (0,0)

n (z), (2.8)

respectively. Thus, by applying the relationships in (2.7) and (2.8) and ignoring

altogether the constant binomial coefficients occurring in (2.7), the parameters α
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and β in Definition 2.1.1 above can be suitably specialized to define the correspond-

ing Gegenbauer transform G(ν)[f(z);n] and the corresponding Legendre transform

L[f(z);n] as follows:

G(ν)[f(z);n]

=

(
ν + n− 1

2

n

)−1(
2ν + n− 1

n

)
J(ν− 1

2
,ν− 1

2)[f(z);n]

:=

∫ 1

−1

(
1− z2

)ν− 1
2 Cν

n(z) f(z)dz

(
<(ν) > −1

2
; n ∈ N0

)
(2.9)

and

L[f(z);n] = G( 1
2

)[f(z);n] :=

∫ 1

−1

Pn(z) f(z)dz (n ∈ N0) . (2.10)

Other familiar integral transforms, which will be needed in our present investi-

gation, include the Kν-transform and the Hankel Hν-transform given by Definitions

2.1.3 and 2.1.4 below.

Definition 2.1.3. (see, e.g. [38, Chapter 10] and [110, p. 53, Eq. (2.33)]) The

K-transform of f(z) is defined by

Kν [f(t); s] :=

∫ ∞
0

(st)
1
2 Kν(st)f(t)dt (s ∈ C), (2.11)

where Kν(z) is the modified Bessel function of the third kind (or the Macdonald

function) given in Eq. (1.51).

The Kν-transform of the power function tρ−1 is given by (see, e.g. [38, p. 127,

Eq. (1)] and [110, p. 54, Eq. (2.37)])

Kν
[
tρ−1; s

]
= s

1
2

∫ ∞
0

t(ρ+ 1
2)−1 Kν(st)dt

=
2ρ−

3
2

sρ
Γ

(
ρ+ ν + 1

2

2

)
Γ

(
ρ− ν + 1

2

2

)
(2.12)
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(
<(s) > 0; <(ρ) > |<(ν)| − 1

2

)
.

Definition 2.1.4. (see, e.g. [38, Chapter 8] and [110, p. 56, Eq. (2.43)]) The

Hankel Hν-transform of f(t) is defined by

Hν [f(t); s] =

∫ ∞
0

(st)
1
2 Jν(st)f(t)dt

(
<(s) > 0

)
, (2.13)

where Jν(z) is the Bessel function of the first kind defined in the Eq. (1.49).

The Hankel Hν-transform of the power function tρ−1 is given by (see, e.g. [38, p.

22, Eq. (7)] and [110, p. 57, Eq. (2.46)])

Hν

[
tρ−1; s

]
= s

1
2

∫ ∞
0

t(ρ+ 1
2)−1 Jν(st)dt =

2ρ−
1
2

sρ

Γ

(
ν + ρ+ 1

2

2

)
Γ
(
ν−ρ+ 3

2

2

) (2.14)

(
<(s) > 0; −<(ν)− 1

2
< <(ρ) < 1

)
.

The constraint <(ρ) < 1 in (3.34) invalidates the term-by-term integration of hyper-

geometric power series as such, so instead we recall here the following known Hankel

Hν-transform for tρ−1 e−σt (see, e.g. [38, p. 29, Eq. (7)]):

Hν

[
tρ−1 e−σt; s

]
= s

1
2

∫ ∞
0

t(ρ+ 1
2)−1 e−σt Jν(st)dt

=
sν+ 1

2

2ν σρ+ν+ 1
2

Γ
(
ρ+ ν + 1

2

)
Γ(ν + 1)

· 2F1


1

2

(
ρ+ ν + 1

2

)
,
1

2

(
ρ+ ν + 3

2

)
;

ν + 1;

− s2

σ2

 (2.15)

(
<(s) > 0; <(ρ+ ν) > −1

2
; <(σ) > |=(s)|

)
.
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Remark 2.1.5. The concept of the Hadamard product (or the Hadamard compo-

sition) is also useful in our investigation. It can help us in decomposing a newly-

emerged function into two known functions.

Definition 2.1.6. (see, e.g. [138, Chapter 3]) Let

f(z) :=
∞∑
n=0

anz
n (|z| < Rf ) and g(z) :=

∞∑
n=0

bnz
n (|z| < Rg)

be two given power series whose radii of convergence are denoted by Rf and Rg,

respectively. Then their Hadamard product (f ∗g)(z) is given by the following power

series:

(f ∗ g)(z) =
∞∑
n=0

anbnz
n = (g ∗ f)(z) (|z| < R),

where

R := lim
n→∞

∣∣∣∣ anbn
an+1bn+1

∣∣∣∣ =

(
lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣) · ( lim
n→∞

∣∣∣∣ bn
bn+1

∣∣∣∣) =: Rf ·Rg,

so that, in general, we have (see, e.g. [138, p. 35])

R = Rf ·Rg.

If, in particular, one of the power series in Definition 2.1.6 defines an entire function,

then the Hadamard product defines an entire function, too.

The following decomposition formula provides an illustrative example of the

usage of Definition 2.1.6:

pF
(α,β;κ,µ)
r+p

 a1, · · · , ap;

b1, · · · , br+p;
z; p


= 1Fr

 1;

b1, · · · , br;
z

 ∗ pFp(α,β;κ,µ)

 a1, · · · , ap;

br+1, · · · , br+p;
z; p

 (|z| <∞). (2.16)
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Part A

2.2 Jacobi and Related Transforms of the Extended

Generalized Hypergeometric Type Functions

In this section, we prove three theorems, which exhibit the connection between

the Jacobi, Gegenbauer and Legendre transforms with the following extended gen-

eralized hypergeometric type function:

pF
(α,β;κ,µ)
q

 a1, · · · , ap;

b1, · · · , bq;
z; p

 ,
which is given by (1.18).

Theorem 2.2.1. Under the conditions stated already with (1.18), the following Ja-

cobi transform formula holds true:

J(α′,β′)

zρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
xz; p

]
;n


= 2α

′+β′+1

(
α′ + n

n

)
B(α′ + 1, β′ + 1)

∞∑
k=0

Θ
(p,q)
k

· F 1:2;1
1:1:0

 α′ + 1 : −n, α′ + β′ + n+ 1; 1− ρ− k;

α′ + β′ + 2 : α′ + 1; ;
1, 2

 xk
k!

(2.17)

(
|x| < 1; n ∈ N0; min{<(α′),<(β′)} > −1; ρ ∈ C

)
,

where the coefficients Θ
(p,q)
k are given by (1.19) and it is assumed that the Jacobi

transform in (2.17) exists.
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proof: By applying the definition (2.2) in conjunction with (1.18), we have

J(α′,β′)

zρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
xz; p

]
;n


=

∫ 1

−1

zρ−1(1− z)α
′
(1 + z)β

′
P (α′,β′)
n (z) pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
xz; p

]
dz

=

∫ 1

−1

zρ−1(1− z)α
′
(1 + z)β

′
P (α′,β′)
n (z)

(
∞∑
k=0

Θ
(p,q)
k

(xz)k

k!

)
dz, (2.18)

where the coefficients Θ
(p,q)
k are given by (1.19). Upon changing the order of in-

tegration and summation, if we apply the Jacobi transform formula (2.5) with the

parameter ρ replaced by ρ+ k (ρ ∈ C; k ∈ N0), we find from (2.18) that

J(α′,β′)

zρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
xz; p

]
;n


= 2α

′+β′+1

(
α′ + n

n

)
B(α′ + 1, β′ + 1)

∞∑
k=0

Θ
(p,q)
k

· F 1:2;1
1:1:0

 α′ + 1 : −n, α′ + β′ + n+ 1; 1− ρ− k;

α′ + β′ + 2 : α′ + 1; ;
1, 2

 xk
k!

(2.19)

under the hypotheses of Theorem 2.2.1. Equation (2.19) is precisely the result

(2.17) asserted by Theorem 2.2.1. In view of the definition (2.9), Theorem 2.2.1

yields Corollary 2.2.2 below by setting α′ = β′ = ν − 1
2
.

Corollary 2.2.2. Under the conditions stated already with (1.18), the following
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Gegenbauer transform formula holds true:

G(ν)

zρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
xz; p

]
;n


= 22ν

(
2ν + n− 1

n

)
B

(
ν +

1

2
, ν +

1

2

) ∞∑
k=0

Θ
(p,q)
k

· F 1:2;1
1:1:0

 ν + 1
2

: −n, 2ν + n; 1− ρ− k;

2ν + 1 : ν + 1
2
; ;

1, 2

 xk
k!

(2.20)

(
|x| < 1; n ∈ N0; <(ν) > −1

2
; ρ ∈ C

)
,

where the coefficients Θ
(p,q)
k are given by (1.19) and it is assumed that the Gegenbauer

transform in (2.20) exists.

For the Legendre transform defined by (2.10), a special case of Theorem 2.2.1

when α′ = β′ = 0 (or, alternatively, Corollary 2.2.2 with ν = 1
2
) yields the following

result.

Corollary 2.2.3. Under the conditions stated already with (1.18), the following

Legendre transform formula holds true:

L

zρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
xz; p

]
;n


= 2

∞∑
k=0

Θ
(p,q)
k F 1:2;1

1:1:0

 1 : −n, n+ 1; 1− ρ− k;

2 : 1; ;
1, 2

 xk
k!

(2.21)

(|x| < 1; n ∈ N0; ρ ∈ C) ,

where the coefficients Θ
(p,q)
k are given by (1.19) and it is assumed that the Legendre

transform in (2.21) exists.
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2.3 Pδ-Transforms of the Extended Generalized

Hypergeometric Functions

Theorem 2.3.1. Under the conditions stated already with (1.18), the following Pδ-

transform formula holds true:

Pδ

tρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

]
; s



=
Γ(ρ)

[Λ(δ; s)]ρ
pF

(α,β;κ,µ)
q

[ a1, · · · , ap;

b1, · · · , bq;

z

Λ(δ; s)
; p

]
∗ 1F0

 ρ;

;

z

Λ(δ; s)

 (2.22)

(
|z| < 1; min{<(s),<(ρ)} > 0; δ > 1

)
,

where

Λ(δ; s) :=
ln[1 + (δ − 1)s]

δ − 1

(
min{<(s),<(ρ)} > 0; δ > 1

)
(2.23)

and it is assumed that the Pδ-transform in (2.22) exists.

Proof: Applying the definitions (1.81) and (1.18), we have

Pδ

tρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

]
; s


=

∫ ∞
0

tρ−1[1 + (δ − 1)s]−
t

δ−1 pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

]
dt

=

∫ ∞
0

tρ−1[1 + (δ − 1)s]−
t

δ−1

∞∑
n=0

Θ(p,q)
n

(zt)n

n!
dt, (2.24)

where the coefficients Θ
(p,q)
n are given by (1.19).

By changing the order of integration and summation in Eq. (2.24) and using Eq.
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(1.82), we obtain

Pδ

tρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

]
; s


=
∞∑
n=0

Θ(p,q)
n

zn

n!

∫ ∞
0

tρ+n−1[1 + (δ − 1)s]−
t

δ−1 dt

=
∞∑
n=0

Θ(p,q)
n

zn

n!

Γ(ρ+ n)

[Λ(δ; s)]ρ+n
, (2.25)

where Λ(δ; s) is given by (2.23). Finally, by means of the Hadamard product, the

assertion (2.22) of Theorem 2.3.1 follows from (2.25) if we make use of the equations

(1.18) and (2.16) once again.

A limit case of Theorem 2.3.1 when δ → 1+ yields the following corollary.

Corollary 2.3.2. Under the conditions stated already with (1.18), the following

Laplace transform formula holds true:

L

tρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

]
; s


=

Γ(ρ)

sρ
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
z

s
; p

]
∗ 1F0

 ρ;

;

z

s

 (2.26)

(
|z| < 1; min{<(s),<(ρ)} > 0

)
,

where it is assumed that the Laplace transform in (2.26) exists.

Remark 2.3.3. By appealing to the relationship (1.85), it is fairly straightforward

to deduce the assertion (2.22) of Theorem 2.3.1 from the Laplace transform formula

(2.26) if we set s 7→ Λ(δ; s) for Λ(δ; s) given by (2.23).



58
Integral Transform and Fractional Derivative Formulas with

Applications

2.4 Kν-Transforms and the Hankel Hν-Transforms

Involving the Extended Generalized Hyper-

geometric Functions

Theorem 2.4.1. Under the conditions stated already with (1.18), the following Kν-

transform formula holds true:

Kν

tρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt2; p

]
; s

 =
2ρ−

3
2

sρ
Γ

(
ρ+ ν + 1

2

2

)
Γ

(
ρ− ν + 1

2

2

)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
4z

s2
; p

]
∗ 2F0

 1
2

(
ρ+ ν + 1

2

)
, 1

2

(
ρ− ν + 1

2

)
;

;

4z

s2

 (2.27)

(
|z| < 1; <(s) > 0; <(ρ) > |<(ν)| − 1

2

)
,

where it is assumed that the Kν-transform in (2.27) exists.

Proof: By using the definitions in (1.82) and (1.18), we get

Kν

tρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt2; p

]
; s


= s

1
2

∫ ∞
0

tρ−
1
2 Kν(st) pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt2; p

]
dt

= s
1
2

∫ ∞
0

tρ−
1
2

∞∑
n=0

Θ(p,q)
n

(zt2)
n

n!
Kν(st)dt, (2.28)

where the coefficients Θ
(p,q)
n are given by (1.19). If, upon changing the order of

integration and summation in Eq. (5.43), we first apply the integral formula (2.12)

and then interpret the resulting expression as a Hadamard product, we are led easily

to the assertion (2.27) of Theorem 2.4.1.
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Our demonstration of Theorem 2.4.2 below is much akin to that of Theorem 2.4.1. It

makes use of the definitions in (2.13) and (1.18) as well as the Hankel Hν-transform

formula (2.15). The details involved are being omitted.

Theorem 2.4.2. Under the conditions stated already with (1.18), the following Han-

kel Hν-transform formula holds true:

Hν

tρ−1 e−σt pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt2; p

]
; s

 =
sν+ 1

2

2ν σρ+ν+ 1
2

Γ
(
ρ+ ν + 1

2

)
Γ(ν + 1)

·
∞∑
k=0

(
ρ+ ν + 1

2

2

)
k

(
ρ+ ν + 3

2

2

)
k

k! (ν + 1)k

(
− s

2

σ2

)k

· pF (α,β;κ,µ)
q

[ a1, · · · , ap;

b1, · · · , bq;

4z

σ2
; p

]
∗ 2F0

 1
2

(
ρ+ ν + 1

2

)
+ k, 1

2

(
ρ+ ν + 3

2

)
+ k;

;

4z

σ2


(2.29)

(
<(s) > 0; <(ρ+ ν) > −1

2
; <(σ) > |=(s)|

)
,

where it is assumed that the Hankel Hν-transform in (2.29) exists.

Remark 2.4.3. Since (see, e.g. [38, p. 79, Eqs. (14) and (15)])

J− 1
2
(z) =

√
2

πz
cos z and J 1

2
(z) =

√
2

πz
sin z,

it is fairly straighforward to deduce from the Hankel Hν-transform formula (2.29)

the corresponding Cosine and Sine transform formulas by trivially setting ν = −1
2

and ν = 1
2
, respectively.
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2.5 Fractional Derivative Formulas for the Ex-

tended Generalized Hypergeometric Functions

Here, in this section, we establish several fractional derivative formulas for the

following extended generalized hypergeometric type function:

pF
(α,β;κ,µ)
q

 a1, · · · , ap;

b1, · · · , bq;
z; p

 ,
which is given by (1.18). For this purpose, we need the pairs of hypergeometric

fractional derivative operators Dω,ν,η
0+ and Dω,ν,η

∞− , which are defined in the section

2.5.1 and 2.5.2 in terms of the corresponding pairs of hypergeometric fractional

integral operators Iω,ν,η0+ and Iω,−ν,η∞− , respectively.

By appealing appropriately to the assertions (1.117) and (1.118), we are led fairly

easily to the following results.

Theorem 2.5.1. Under the conditions stated already with (1.18), the following left-

sided hypergeometric fractional derivative formula holds true:Dω,ν,η
0+ tρ−1

pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

] (x) = xρ+ν−1 Γ(ρ)Γ(ρ+ ω + ν + η)

Γ(ρ+ ν)Γ(ρ+ η)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zx; p

]
∗ 2F2

 ρ, ρ+ ω + ν + η;

ρ+ ν, ρ+ η;
zx

 (2.30)

(
x > 0; <(ω) = 0; <(ρ) > −min{0,<(ω + ν + η)}

)
,

where it is assumed that the left-sided hypergeometric fractional derivative in (2.30)

exists.

Proof: Our demonstration of the hypergeometric fractional derivative formula (2.30)

is based upon the known result (1.117). The details involved are being left as and



2.5 Fractional Derivative Formulas for the Extended Generalized
Hypergeometric Functions 61

exercise for the interested reader.

Just as in the proof of Theorem 2.5.1 above, Theorem 2.5.2 below would follow when

we apply the hypergeometric fractional derivative formula (1.118).

Theorem 2.5.2. Under the conditions stated already with (1.18), the following right-

sided hypergeometric fractional derivative formula holds true:Dω,ν,η
∞− tρ−1

pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
z

t
; p

] (x)

= xρ+ν−1 Γ(1− ρ− ν)Γ(1− ρ+ ω + η)

Γ(1− ρ)Γ(1− ρ− ν + η)

· pF (α,β;κ,µ)
q

[ a1, · · · , ap;

b1, · · · , bq;

z

x
; p

]
∗ 2F2

 1− ρ− ν, 1− ρ+ ω + η;

1− ρ, 1− ρ− ν + η;

z

x

 (2.31)

(
x > 0; <(ω) = 0; <(ρ) < 1 + min{<(−ν − η),<(ω + η)}

)
,

where it is assumed that the right-sided hypergeometric fractional derivative in (2.31)

exists.

Upon setting ν = −ω and ν = 0 in Theorem 2.5.1, if we use the relationships in

(1.110), we can deduce the following corollaries.

Corollary 2.5.3. Under the conditions stated already with (1.18), the following

Riemann-Liouville fractional derivative formula holds true:RL
0 Dω

t t
ρ−1

pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

] (x) = xρ−ω−1 Γ(ρ)

Γ(ρ− ω)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zx; p

]
∗ 1F1

 ρ;

ρ− ω;
zx

 (2.32)

(
x > 0; <(ω) = 0; <(ρ) > 0

)
,
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where it is assumed that the Riemann-Liouville fractional derivative in (2.32) exists.

Corollary 2.5.4. Under the conditions stated already with (1.18), the following left-

sided Erdélyi-Kober fractional derivative formula holds true:EKDω,η

0+ tρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zt; p

] (x) = xρ−1 Γ(ρ+ ω + η)

Γ(ρ+ η)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
zx; p

]
∗ 1F1

 ρ+ ω + η;

ρ+ η;
zx

 (2.33)

(
x > 0; <(ω) = 0; <(ρ) > −min{0,<(η)}

)
,

where it is assumed that the left-sided Erdélyi-Kober fractional derivative in (2.33)

exists.

Corollary 2.5.5 and Corollary 2.5.6 below would follow from Theorem 2.5.2 when

we set ν = −ω and ν = 0 in Theorem 2.5.2 and make use of the relationships in

(1.114).

Corollary 2.5.5. Under the conditions stated already with (1.18), the following

Weyl fractional derivative formula holds true:Wω
∞− t

ρ−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
z

t
; p

] (x)

= xρ−ω−1 Γ(1− ρ+ ω)

Γ(1− ρ)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
z

x
; p

]
∗ 1F1

 1− ρ+ ω;

1− ρ;

z

x

 (2.34)

(
x > 0; <(ω) = 0; <(ρ) < 1 + <(ω)

)
,

where it is assumed that the Weyl fractional derivative in (2.34) exists.
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Corollary 2.5.6. Under the conditions stated already with (1.18), the following

right-sided Erdélyi-Kober fractional derivative formula holds true:EKDω,η

∞− t
ρ−1

pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
z

t
; p

] (x)

= xρ−1 Γ(1− ρ+ ω + η)

Γ(1− ρ+ η)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
z

x
; p

]
∗ 1F1

 1− ρ+ ω + η;

1− ρ+ η;

z

x

 (2.35)

(
x > 0; <(ω) = 0; <(ρ) < 1 + min{<(−η),<(ω + η)}

)
,

where it is assumed that the right-sided Erdélyi-Kober fractional derivative in (2.35)

exists.

2.6 An Extended Generalized Hypergeometric Dis-

tribution

In this section, we introduce a general family of statistical probability distribu-

tions from which certain classical probability distributions can be obtained as special

cases (see also the earlier works [108] on this subject).

We begin by recalling the celebrated Ramanujan’s Master Theorem which was

widely used by Srinivasa Ramanujan Iyengar (1887-1920) in order to evaluate def-

inite integrals and infinite series. The proof of Ramanujan’s Master Theorem was

provided by Godfrey Harold Hardy (1877-1947) by making use of Cauchy’s Residue

Theorem as well as the well-known Mellin Inversion Theorem.

Theorem 2.6.1. (Ramanujan’s Master Theorem) Assume that the function f(x)

has a power-series expansion in the following form:

f(x) =
∞∑
n=0

ϕ(n)

n!
(−x)n. (2.36)
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Then the Mellin transform of the f(x) is given by

M [f(t); s] :=

∫ ∞
0

ts−1 f(t)dt = Γ(s)ϕ(−s), (2.37)

provided that the integral in (2.37) exists.

By applying Theorem 2.6.1 to the extended generalized hypergeometric function

defined by (1.18), we can deduce the following corollary.

Corollary 2.6.2. Under the conditions stated already with (1.18), the following

Mellin transform formula holds true:

M


pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
− t; p

]
; s

 = Γ(s)Θ
(p,q)
−s , (2.38)

where

Θ
(p,q)
−s := Θ(p,q)

n

∣∣
n=−s (2.39)

in terms of the coefficients Θ
(p,q)
n given by (1.19) and it is assumed that both members

of the assertion (2.38) exist.

A special case of the Mellin transform formula (2.38) when p = q + 1 would

correspond to a result derived recently by Luo et al. [100]. The general result (2.38)

leads us to Definition 2.6.3 below.

Definition 2.6.3. For a statistical probability distribution of a random variable X,

let the probability density function be given by

P
X

(x) :=



(
1

Γ(s)Θ
(p,q)
−s

)

· xs−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
− x; p

]
(x > 0)

0 (otherwise),

(2.40)
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where Θ
(p,q)
−s is given by (2.39) and it is tacitly assumed that the various arguments

parameters involved in the definitions (1.18) and (1.19) are so restricted that

P
X

(x) > 0 (x > 0). (2.41)

Clearly, it follows from Corollary 2.6.2 that

∫ ∞
0

P
X

(x)dx = 1, (2.42)

provided that the integral in (2.42) exists.

2.6.1 Properties of the Random Variable X

In this subsection, we present several interesting properties of the random vari-

able X which is distributed as per the probability density function P
X

(x) given by

(2.40).

(a) The kth Moment: The kth moment E[Xk] of the random variable X is given

by

E[Xk] :=

∫ ∞
0

tk P
X

(t)dt

=

(
1

Γ(s)Θ
(p,q)
−s

)∫ ∞
0

ts+k−1
pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
− t; p

]
dt

=
Γ(s+ k)Θ

(p,q)
−s−k

Γ(s)Θ
(p,q)
−s

, (2.43)

where we have made use of Definition 2.6.3 and the Mellin transform formula

(2.38) and it is assumed that the integral involved exists.

(b) The Mean and the Expected Value: Since the mean µ
X

is the first mo-

ment, the expected value of the random variable X is a special case of the kth

moment in (2.43) when k = 1. We thus find that
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µ
X

:= E[X] =
sΘ

(p,q)
−s−1

Θ
(p,q)
−s

. (2.44)

By setting k = 2, the formula (2.43) yields the second moment as follows:

E[X2] =
s(s+ 1)Θ

(p,q)
−s−2

Θ
(p,q)
−s

. (2.45)

(c) The Variance: Making use of (2.44) and (2.45), the variance σ
X

of the

random variable X can easily be calculated as follows:

σ2
X

:= E[X2]− (E[X])2

=
s(s+ 1)Θ

(p,q)
−s−2

Θ
(p,q)
−s

−

(
sΘ

(p,q)
−s−1

Θ
(p,q)
−s

)2

. (2.46)

2.6.2 The Characteristic Function

The characteristic function φ
X

(t) of P
X

(x) associated with the random variable

X is given by

φ
X

(t) := E
[
eitX

]
=

∫ ∞
0

eitx P
X

(x) dx, (2.47)

where E denotes the Mathematical Expectation and i =
√
−1.

We first prove Lemma 2.6.4 below, which provides a mild generalization of the

Laplace transform formula (2.26) asserted by Corollary 2.3.2.

Lemma 2.6.4. Under the conditions stated already with (1.18), the following integral

formula holds true:

∫ ∞
0

tρ−1 e−st pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
ztσ; p

]
dt

= s−ρ pF
(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
z

sσ
; p

]
∗ 1Ψ0

 (ρ, σ);

;

z

sσ

 (2.48)
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(
|z| < 1; min{<(s),<(ρ),<(σ)} > 0

)
,

where pΨq denotes the Fox-Wright generalized hypergeometric function defined by

(1.7) and it is assumed that each member of (2.48) exists.

Proof: The demonstration of Lemma 2.6.4 is based upon the following well-known

result Srivastava and Manocha [170, p. 219, Eq. 4.1(3)]:

∫ ∞
0

tρ−1 e−st dt =
Γ(ρ)

sρ
(

min{<(s),<(ρ)} > 0
)

(2.49)

in conjunction with the definitions (1.18) and (1.7). The details involved are being

omitted here.

Obviously, the Laplace transform formula (2.26) asserted by Corollary 2.3.2 follows

readily from (2.48) upon setting σ = 1. More importantly, if we make use of the

assertion (2.48) of Lemma 2.6.4 in the equation (2.47), we obtain the characteristic

function φ
X

(t) of P
X

(x) associated with the random variable X as follows:

φ
X

(t) =

(
(−it)−s

Γ(s)Θ
(p,q)
−s

)
. pF

(α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
1

it
; p

]
∗ 1Ψ0

 (s, 1);

;

1

it


(
<(s) > 0

)
.

2.6.3 Moment Generating Function

The moment generating functionM
X

(t) of the random variable X is defined by

M
X

(t) := E
[
etX
]

=

∫ ∞
0

etx P
X

(x)dx = φ
X

(−it), (2.50)

where φ
X

(t) is the characteristic function of P
X

(x) associated with the random

variable X, which is given by (2.47). Formally, therefore, we find from (2.50) that
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M
X

(t) =

(
(−t)−s

Γ(s)Θ
(p,q)
−s

)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
1

t
; p

]
∗ 1Ψ0

 (s, 1);

;

1

t

 (2.51)

(
<(s) > 0

)
.

Alternatively, we have

M
X

(t) := E
[
etX
]

= E

[
∞∑
k=0

tk Xk

k!

]

= 1 +
∞∑
k=1

tk

k!
E
[
Xk
]

= 1 +
∞∑
k=1

tk

k!

(
Γ(s+ k)Θ

(p,q)
−s−k

Γ(s)Θ
(p,q)
−s

)
, (2.52)

where we have applied the kth moment formula (2.43).

2.6.4 The Cummulative Distribution Function

For x > 0, the cummulative distribution function F
X

(x) is given by

F
X

(x) :=

∫ x

0

P
X

(t)dt =

(
xs

Γ(s)Θ
(p,q)
−s

)

· pF (α,β;κ,µ)
q

[
a1, · · · , ap;

b1, · · · , bq;
− x; p

]
∗ 1Ψ1

 (s, 1);

(s+ 1, 1);
− x

 (2.53)

(
<(s) > 0

)
,
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which follows readily from the definition (2.40).

It should be observed that each of the Fox-Wright Ψ-functions occurring on the

right-hand sides of (2.50), (2.51) and (2.53) can be rewritten in the relatively more

familiar F -notation.
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Part B

2.7 Jacobi and Related Transforms of the Incom-

plete Hypergeometric Functions

In this section, we prove three theorems, which exhibit the connection between

the Jacobi, Gegenbauer and Legendre transforms with the following incomplete hy-

pergeometric functions:

pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
z

 and pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;
z


given by equations (1.25) and (1.26), respectively.

Theorem 2.7.1. Under the conditions stated already with (1.25) and (1.26), the

following Jacobi transform formula holds true:

J(α,β)
[
zρ−1

pγq[yz];n
]

= 2α+β+1

(
α + n

n

)
B(α + 1, β + 1)

∞∑
k=0

(a1;x)k (a2)k...(ap)k
(b1)k...(bq)k

× F 1:2;1
1:1;0

 α + 1 : −n, α + β + n+ 1; 1− ρ− k;

α + β + 2 : α + 1; ;
1, 2

 .yk
k!

(2.54)

(x ≥ 0; n ∈ N0; min{<(α),<(β)} > −1; ρ ∈ C; p, q ∈ N0),

and

J(α,β)
[
zρ−1

pΓq[yz];n
]

= 2α+β+1

(
α + n

n

)
B(α + 1, β + 1)

∞∑
k=0

[a1;x]k (a2)k...(ap)k
(b1)k...(bq)k

× F 1:2;1
1:1;0

 α + 1 : −n, α + β + n+ 1; 1− ρ− k;

α + β + 2 : α + 1; ;
1, 2

 .yk
k!

(2.55)
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(x ≥ 0; n ∈ N0; min{<(α),<(β)} > −1; ρ ∈ C; p, q ∈ N0),

where the coefficients pγq and pΓq are given by (1.25) and (1.26) and it is assumed

that the Jacobi transform in (2.54) and (2.55) exists.

Proof: By applying the definition (2.2) in conjunction with (1.25), we have

J(α,β)
[
zρ−1

pγq[yz];n
]

1∫
−1

(1− z)α(1 + z)βP (α,β)
n (z)zρ−1

pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
yz

 dz
=

1∫
−1

(1− z)α(1 + z)βP (α,β)
n (z)zρ−1

∞∑
k=0

(a1;x)k(a2)k...(ap)k
(b1)k...(bq)k

.
(yz)k

k!
dz

(2.56)

Upon changing the order of integration and summation, if we apply the Jacobi

transform formula (2.5) with the parameter ρ replaced by ρ + k (ρ ∈ C; k ∈ N0),

we find from (2.56) that

J(α,β)
[
zρ−1

pγq[yz];n
]

= 2α+β+1

(
α + n

n

)
B(α + 1, β + 1)

∞∑
k=0

(a1;x)k(a2)k...(ap)k
(b1)k...(bq)k

× F 1:2;1
1:1:0

 α + 1 : −n, α + β + n+ 1; 1− ρ− k;

α + β + 2 : α + 1; ;
1, 2

 .yk
k!

which is precisely the result (2.54) asserted by Theorem 2.7.1.

It is easy to see that a similar argument for equation (1.26) will establish the result

(2.55). This completes the proof of the Theorem 2.7.1.

By setting α = β = ν − 1
2

in view of the definition (2.9), Theorem 2.7.1 yields

the following corollary:

Corollary 2.7.2. Under the conditions stated already with (1.25) and (1.26), the



72
Integral Transform and Fractional Derivative Formulas with

Applications

following Gegenbauer transform formula holds true:

G(ν)
[
zρ−1

pγq[yz];n
]

= 22ν

(
2ν + n− 1

n

)
B

(
ν +

1

2
, ν +

1

2

) ∞∑
k=0

(a1;x)k(a2)k...(ap)k
(b1)k...(bq)k

× F 1:2;1
1:1;0

 ν + 1
2

: −n, 2ν + n; 1− ρ− k;

2ν + 1 : ν + 1
2
; ;

1, 2

 .yk
k!

(2.57)

(x ≥ 0; n ∈ N0; ρ ∈ C; p, q ∈ N0),

and

G
[
zρ−1

pΓq[yz];n
]

= 22ν

(
2ν + n− 1

n

)
B

(
ν +

1

2
, ν +

1

2

) ∞∑
k=0

[a1;x]k(a2)k...(ap)k
(b1)k...(bq)k

× F 1:2;1
1:1;0

 ν + 1
2

: −n, 2ν + n; 1− ρ− k;

2ν + 1 : ν + 1
2
; ;

1, 2

 .yk
k!

(2.58)

(x ≥ 0; n ∈ N0; min{<(ν)} > −1/2; ρ ∈ C; p, q ∈ N0),

and it is assumed that the Gegenbauer transforms in (2.57) and (2.58) exist.

For the Legendre transform defined by (2.10), a special case of Theorem 2.7.1 when

α = β = 0 (or, alternatively, Corollary 4.32 with ν = 1
2
) yields the following result.

Corollary 2.7.3. Under the conditions stated already with (1.25) and (1.26), the

following Legendre transform formulas holds true:

L
[
zρ−1

pγq[yz];n
]

= 2
∞∑
k=0

(a1;x)k(a2)k...(ap)k
(b1)k...(bq)k

F 1:2;1
1:1;0

 1 : −n, n+ 1; 1− ρ− k;

2 : 1; ;
1, 2

 .yk
k!

(2.59)
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(x ≥ 0; n ∈ N0; ρ ∈ C; p, q ∈ N0),

and

L
[
zρ−1

pΓq[yz];n
]

= 2
∞∑
k=0

[a1;x]k(a2)k...(ap)k
(b1)k...(bq)k

F 1:2;1
1:1;0

 1 : −n, n+ 1; 1− ρ− k;

2 : 1; ;
1, 2

 .yk
k!

(2.60)

(x ≥ 0; n ∈ N0; ρ ∈ C; p, q ∈ N0),

it is assumed that the Legendre transforms in (2.59) and (2.60) exist.

2.8 Pδ - Transform of the Incomplete Hypergeo-

metric Functions

Theorem 2.8.1. Under the conditions stated already with (1.25) and (1.26), the

following Pδ - transform formula holds true:

Pδ
[
zρ−1

pγq[yz]; s
]

=
Γ(ρ)

[∧(δ; s)]ρ
p+1γq

 ρ, (a1, x), a2, ..., ap;

b1, ..., bq;
z

 (2.61)

(|z| < 1; min {<(s),<(ρ)} > 0; δ > 1, p, q ∈ N0)

,

and

Pδ
[
zρ−1

pΓq[yz]; s
]

=
Γ(ρ)

[∧(δ; s)]ρ
p+1Γq

 ρ, (a1, x), a2, ..., ap;

b1, ..., bq;
z

 (2.62)

(|z| < 1; min {<(s),<(ρ)} > 0; δ > 1, p, q ∈ N0)
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where

∧(δ; s) :=

(
ln[1 + (δ − 1)s]

δ − 1

)
(2.63)

and it is assumed that the Pδ-transform in (2.61) and (2.62) exists.

Proof: Applying the definitions (1.81) and (1.25), we have

Pδ

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 ; s


=

∫ ∞
0

tρ−1[1 + (α− 1)s]−
t

α−1 pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 dt
=

∫ ∞
0

tρ−1[1 + (α− 1)s]−
t

α−1

∞∑
k=0

(a1;x)k(a2)k...(ap)k
(b1)k...(bq)k

.
(zt)k

k!
dt

(2.64)

By changing the order of integration and summation in Eq. (2.64) and using Eq.

(2.24) therein, we obtain

Pδ

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 ; s


=
∞∑
k=0

(a1;x)k(a2)k...(ap)k
(b1)k...(bq)k

(z)k

k!

∫ ∞
0

tρ+k−1[1 + (α− 1)s]−
t

α−1dt

=
∞∑
k=0

(a1;x)k(a2)k...(ap)k
(b1)k...(bq)k

(z)k

k!

Γ(ρ+ k)

[∧(δ; s)]ρ+k
,

(2.65)

where [∧(δ; s)] is given by (2.63).

It is easy to see that a similar argument as in the proof of (2.61) will establish

the result (2.62). This completes the proof of Theorem 2.8.1.

A limit case of Theorem 2.8.1, when δ → 1+, yields the following corollary.
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Corollary 2.8.2. Under the conditions stated already with (1.25) and (1.26), the

following Laplace transform formula holds true:

L
{
tα−1

pγq[zt]; s
}

=
Γ(ρ)

sρ
p+1γq

 ρ, (a1, x), a2, ..., ap;

b1, ..., bq;

z

s

 (2.66)

and

L
{
tα−1

pΓq[zt]; s
}

=
Γ(ρ)

sρ
p+1Γq

 ρ, (a1, x), a2, ..., ap;

b1, ..., bq;

z

s

 (2.67)

(|z| < 1; min{<(s),<(ρ)} > 0, p, q ∈ N0),

where it is assumed that the Laplace transform in (2.66) and (2.67) exists.

2.9 Fractional Derivative Formulas for Incomplete

Hypergeometric Functions

Here, in this section, we establish several fractional derivative formulas for the

following Incomplete Hypergeometric Functions:

pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
z

 and pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;
z


which are given by (1.25) and (1.26).

Theorem 2.9.1. Under the conditions stated with (1.25) and (1.26), the following
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left-sided hypergeometric fractional derivative formulas hold true:

Dω,ν,η
0+

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 (x) = xρ+ν−1 Γ(ρ)Γ(ρ+ ω + ν + η)

Γ(ρ+ ν)Γ(ρ+ η)

· p+2γq+2

 ρ, ρ+ ω + ν + η, (a1, x), a2, ..., ap;

ρ+ ν, ρ+ η, b1, ..., bq;
zx


(2.68)

(x > 0; R(ω) = 0; R(ρ) > −min{0, ω + ν + η}),

and

Dω,ν,η
0+

tρ−1
pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 (x) = xρ+ν−1 Γ(ρ)Γ(ρ+ ω + ν + η)

Γ(ρ+ ν)Γ(ρ+ η)

· p+2Γq+2

 ρ, ρ+ ω + ν + η, (a1, x), a2, ..., ap;

ρ+ ν, ρ+ η, b1, ..., bq;
zx


(2.69)

(x > 0; R(ω) = 0; R(ρ) > −min{0, ω + ν + η}),

where it is assumed that the left-sided hypergeometric fractional derivatives in (2.68)

and (2.69) exist.

Proof: Our demonstration of the hypergeometric fractional derivative formula (2.68)

and (2.69) is based upon the known result (1.117). The details are omitted as the

result are obvious.

Parallel to the proof of Theorem 2.9.1 above, Theorem 2.9.2 below would follow

when we apply the hypergeometric fractional derivative formula (1.118).

Theorem 2.9.2. Under the conditions stated already with (1.25) and (1.26), the
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following right-sided hypergeometric fractional derivative formula holds true:

Dω,ν,η
∞−

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;

z

t

 (x) = xρ+ν−1 Γ(1− ρ− ν)1− ρ+ ω + η

Γ(1− ρ)Γ(1− ρ+ η − ν)

p+2γq+2

 1− ρ− ν, 1− ρ+ ω + η, (a1, x), a2, ..., ap;

1− ρ, 1− ρ+ η − ν, b1, ..., bq;

z

x


(2.70)

(x > 0; R(ω) = 0; R(ρ) < 1 + min{R(−ν − η),R(ω + η)}),

and

Dω,ν,η
∞−

tρ−1
pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;

z

t

 (x) = xρ+ν−1 Γ(1− ρ− ν)(1− ρ+ ω + η)

Γ(1− ρ)Γ(1− ρ+ η − ν)

p+2Γq+2

 1− ρ− ν, 1− ρ+ ω + η, (a1, x), a2, ..., ap;

1− ρ, 1− ρ+ η − ν, b1, ..., bq;

z

x


(2.71)

(x > 0; R(ω) = 0; R(ρ) < 1 + min{R(−ν − η),R(ω + η)}),

where it is assumed that the right-sided hypergeometric fractional derivatives in

(2.70) and (2.71) exist.

Upon setting ν = −ω and ν = 0 respectively, in Theorem 2.9.1, if we use the

relationships in (1.110), we can deduce the following corollaries.

Corollary 2.9.3. Under the conditions stated with (1.25) and (1.26), the following
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Riemann-Liouville fractional derivative formulas hold true:

RL
0 Dω

t

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 (x)

= xρ+ω−1 Γ(ρ)

Γ(ρ− ω)
· p+1γq+1

 ρ, (a1, x), a2, ..., ap;

ρ− ω, b1, ..., bq;
zx

 (2.72)

(x > 0; R(ω) = 0; R(ρ) > 0),

and

RL
0 Dω

t

tρ−1
pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 (x)

= xρ+ω−1 Γ(ρ)

Γ(ρ− ω)
· p+1Γq+1

 ρ, [a1, x], a2, ..., ap;

ρ− ω, b1, ..., bq;
zx

 (2.73)

(x > 0; R(ω) = 0; R(ρ) > 0),

where it is assumed that the Riemann-Liouville fractional derivatives in (2.72) and

(2.73) exist.

Corollary 2.9.4. Under the conditions stated already with (1.25) and (1.26), the

following left-sided Erdélyi-Kober fractional derivative formulas hold true:

EKDω,η

0+

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 (x)

= xρ−1 Γ(ρ+ ω + η)

Γ(ρ+ η)
· p+1γq+1

 ρ+ ω + η, (a1, x), a2, ..., ap;

ρ+ η, b1, ..., bq;
zx

 (2.74)

(x > 0; R(ω) = 0; R(ρ) > −min{0,R(η)}).
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and

EKDω,η

0+

tρ−1
pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;
zt

 (x)

= xρ−1 Γ(ρ+ ω + η)

Γ(ρ+ η)
· p+1Γq+1

 ρ+ ω + η, [a1, x], a2, ..., ap;

ρ+ η, b1, ..., bq;
zx

 (2.75)

(x > 0; R(ω) = 0; R(ρ) > −min{0,R(η)}).

where it is assumed that the left-sided Erdélyi-Kober fractional derivatives in (2.74)

and (2.75) exist.

Corollaries 2.9.5 and Corollary 2.9.6 below would follow from the Theorem 2.9.2,

respectively by setting ν = −ω and ν = 0 and making use of the relationships in

(1.114).

Corollary 2.9.5. Under the conditions stated already with (1.25) and (1.26), the

following Weyl fractional derivative formula holds true:

Wω
∞−

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;

z

t

 (x)

= xρ−ω−1 Γ(1− ρ+ ω)

Γ(1− ρ)
p+1γq+1

 1− ρ+ ω, (a1, x), a2, ..., ap;

1− ρ, b1, ..., bq;

z

x

 (2.76)

(x > 0; R(ω) = 0; R(ρ) < 1 + R(ω)),

and

Wω
∞−

tρ−1
pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;

z

t

 (x)

= xρ−ω−1 Γ(1− ρ+ ω)

Γ(1− ρ)
p+1Γq+1

 1− ρ+ ω, (a1, x), a2, ..., ap;

1− ρ, b1, ..., bq;

z

x

 (2.77)
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(x > 0; R(ω) = 0; R(ρ) < 1 + R(ω)),

where it is assumed that the Weyl fractional derivative in (2.76) and (2.77) exists.

Corollary 2.9.6. Under the conditions stated with (1.25) and (1.26), the following

right-sided Erdélyi-Kober fractional derivative formulas hold true:

EKDω,η

∞−

tρ−1
pγq

 (a1, x), a2, ..., ap;

b1, ..., bq;

z

t

 (x)

= xρ−1 Γ(1− ρ+ ω + η)

Γ(1− ρ+ η)
p+1γq+1

 1− ρ+ ω + η, (a1, x), a2, ..., ap;

1− ρ+ η, b1, ..., bq;

z

x

 (2.78)

and

EKDω,η

∞−

tρ−1
pΓq

 (a1, x), a2, ..., ap;

b1, ..., bq;

z

t

 (x)

= xρ−1 Γ(1− ρ+ ω + η)

Γ(1− ρ+ η)
p+1Γq+1

 1− ρ+ ω + η, (a1, x), a2, ..., ap;

1− ρ+ η, b1, ..., bq;

z

x

 (2.79)

(x > 0; R(ω) = 0; R(ρ) < 1 + min{R(−η),R(ω + η)}).

where it is assumed that the right-sided Erdélyi-Kober fractional derivatives in

(2.78) and (2.79) exist.
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2.10 Conclusion

The family of the extended generalized hypergeometric type functions and the

incomplete hypergeometric functions and incomplete hypergeometric functions, de-

fined by (1.18), (1.25) and (1.26), respectively has the distinct advantage that most

of the known and widely-investigated special functions are expressible in terms of

the extended generalized hypergeometric functions.

In conclusion, therefore, it may be remarked that the results deduced above are sig-

nificant and can yield numerous other integral transforms and fractional derivative

formulas involving various special functions by some suitable specializations of the

essentially arbitrary parameters which are involved in these results. More signifi-

cantly, they are expected to lead to some potential applications in several diverse

fields of mathematics. Further, applications of these functions in communication

theory, probability theory and groundwater pumping modeling are shown by Sri-

vastava et al. [167], More significantly, they are expected to lead to some potential

applications in several diverse fields of mathematics. Also, these results are expected

to find some applications in finding the solutions of the integral equations.





3
Certain Image Formulas of Generlized

Lommel-Wright Function

The main findings of this chapter have been published as detailed below:

1. R. Agarwal and S. Jain, Generalized Lommel-Wright function associated

with Saigo-Maeda fractional derivative operator, Communicated.
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In this chapter, we establish certain new image formulas of generalized Lommel-

Wright function by applying the operators of fractional integration involving Appells

function F3(·) due to Marichev-Saigo-Maeda. Furthermore, by employing some in-

tegral transforms on the resulting formulas, we present some more image formulas.

All the results derived here are of general character and can yield a number of results

in the theory of special functions

3.1 Introduction

The fractional integral operators involving various special functions, have found

significant importance and applications in various sub-fields of applicable mathe-

matical analysis. During last four decades, a number of workers have studied, in

depth, the properties, applications and different extensions of various hypergeomet-

ric operators of fractional integration. A detailed account of such operators along

with their properties and applications can be found in the research work by a num-

ber of authors, (see, for example [106, 151]). Many earlier works on the subject of

fractional calculus contain interesting accounts of the theories of fractional calculus

operators and their applications in diverse research areas [155, 158]. In particular,

Srivastava and Saxena [174] presented a survey-cum-expository paper which gives

a remarkably, insightful, and systematic exposition of the investigations carried out

by many authors in the field of fractional calculus and its applications and contains

a fairly comprehensive bibliography of as many as 190 further references on the sub-

ject.
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3.2 Image Formulas Associated with Fractional

Integral Operator

In this section, we establish image formulas for the generalized Lommel-Wright

function of first kind involving Saigo-Meada fractional integral operators (1.119) and

(1.120), in term of the generalized Wright function Ψ as defined in eq. (1.7). These

formulas are given by the following theorems:

Theorem 3.2.1. Let α, α
′
, β, β′, γ, λ ∈ C,m ∈ N, µ > 0 and x > 0 be such that

<(γ) > 0, <(ν) > −1, <(ρ+ ν) > max{0,<(α + α
′
+ β − γ),<(α

′ − β ′)} (3.1)

then there holds the formula

[
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
]

(x) = xA−α−α
′
+γ−1

(z
2

)ν+2λ

4Ψ4+m

 (A, 2), (S − β, 2), (A+ β
′ − α′ , 2), (1, 1)

(A+ β
′
, 2), (S, 2), (A+ γ − α′ − β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)︸ ︷︷ ︸

m−times

− (zx)2

4


(3.2)

where A = ρ+ ν + 2λ, S = A+ γ − α− α′.

Proof: Taking the fractional integral of (1.44) using the equation (1.119) therein

and changing the order of integration and summation, which is justified under the

conditions stated with Theorem 3.2.1, we get

[
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
]

(x)

=
∞∑
k=0

(−1)k( z
2
)ν+2λ+2kΓ(k + 1)

(Γ(λ+ k + 1))mΓ(ν + kµ+ λ+ 1)k!

(
Iα,α

′
,β,β′,γ

0+ tν+2λ+2k+ρ−1
)

(x)
(3.3)
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Applying the known result (1.121) with ρ replaced by ρ+ ν + 2λ+ 2k, we obtain

[
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
]

(x) = xA−α−α
′
+γ−1

(z
2

)ν+2λ
∞∑
k=0

(−1)kΓ(A+ 2k)Γ(k + 1)

Γ(A+ β ′ + 2k)(Γ(λ+ 1 + k))m

× Γ(A+ γ − α− α′ − β + 2k)Γ(A+ β
′ − α′ + 2k)

Γ(A+ γ − α′ − β + 2k)Γ(ν + λ+ 1 + µk)Γ(A+ γ − α− α′ + 2k)

(zx)2k

4kk!

(3.4)

Here A = ρ+ ν + 2λ.

Interpreting the right-hand side of the above equation, in view of the definition (1.7),

we arrive at the result (3.2).

Theorem 3.2.2. Let α, α
′
, β, β′, γ, λ ∈ C,m ∈ N, µ > 0 and x > 0 be such that

<(γ) > 0, <(ν) > −1, <(ρ− ν) > 1 + min{<(−β),<(α + α
′ − γ),<(α + β

′ − γ)}

(3.5)

then there holds the formula

[
Iα,α

′
,β,β′,γ

0− tρ−1Jµ,mν,λ (z/t)
]

(x) = xγ−α−α
′−A
(z

2

)ν+2λ

× 4Ψ4+m

 (S, 2), (A+ α + β
′ − γ, 2), (A− β, 2), (1, 1)

(A, 2), (S + β′, 2), (A+ α− β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)︸ ︷︷ ︸
m−times

− z2

4x2


(3.6)

where A = 1− ρ+ ν + 2λ, S = A− γ + α + α
′
.

Proof: On making use of the definitions (1.120) and (1.44) and changing the order

of integration and summation, which is justified under the conditions stated with

Theorem 3.2.2, we have

[
Iα,α

′
,β,β′,γ

0− tρ−1Jµ,mν,λ (z/t)
]

(x)

=
∞∑
k=0

(−1)k( z
2
)ν+2λ+2kΓ(k + 1)

(Γ(λ+ k + 1))mΓ(ν + kµ+ λ+ 1)k!

(
Iα,α

′
,β,β′,γ

0− tρ−ν−2λ−2k−1
)

(x)
(3.7)
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Here, on applying the formula (1.122) with ρ replaced by ρ− ν− 2λ− 2k, we obtain

[
Iα,α

′
,β,β′,γ

0− tρ−1Jµ,mν,λ (z/t)
]

(x) = xγ−α−α
′−A
(z

2

)ν+2λ
∞∑
k=0

(−1)kΓ(A− β + 2k)

Γ(A+ 2k)(Γ(λ+ k + 1))m

× Γ(k + 1)Γ(S + 2k)Γ(A+ α + β
′ − γ + 2k)

Γ(A+ α− β + 2k)Γ(ν + kµ+ λ+ 1)Γ(S + β′ + 2k)

(z)2k

(4x2)kk!

(3.8)

where A = 1− ρ+ ν + 2λ, S = A+ α + α
′ − γ.

In view of the definition of the generalized Lommel-Wright function given by (1.44),

the equation (3.8) leads to the result (3.6).

For m = 1 and in the light of eq. (1.45), Theorem 3.2.1 leads to the following

corollaries respectively.

Corollary 3.2.3. Under the conditions stated already with (3.1), the following image

formula

[
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,1ν,λ (zt)
]

(x) = xA−α−α
′
+γ−1

(z
2

〉ν+2λ

× 4Ψ5

 (A, 2), (S − β, 2), (A+ β
′ − α′ , 2), (1, 1)

(A+ β
′
, 2), (S, 2), (A+ γ − α′ − β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)

− (zx)2

4


(3.9)

A = ρ + ν + 2λ, S = A + γ − α − α′ for generalized Bessel function Jµ,1ν,λ (zt) given

by eq. (1.45) holds true.

Corollary 3.2.4. Under the conditions stated already with (3.5), the image formula

[
Iα,α

′
,β,β′,γ

0− tρ−1Jµ,1ν,λ (z/t)
]

(x) = xγ−α−α
′−A
(z

2

)ν+2λ

× 4Ψ5

 (S, 2), (A+ α + β
′ − γ, 2), (A− β, 2), (1, 1)

(A, 2), (S + β′, 2), (A+ α− β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)
− z2

4x2


(3.10)
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A = 1 − ρ + ν + 2λ, S = A − γ + α + α
′

for generalized Bessel function Jµ,1ν,λ (z/t)

holds true.

If we take m = 1, µ = 1 and λ = 1
2

in (3.2), then we obtain the corresponding

result for the Struve function Hν(·) given by eq. (1.48) mentioned in Chapter 1.

Corollary 3.2.5. Under the conditions stated already with (3.1), the following image

formula

[
Iα,α

′
,β,β′,γ

0+ tρ−1Hν(zt)
]

(x) = xA−α−α
′
+γ−1

(z
2

)ν+1

× 4Ψ5

 (A, 2), (S − β, 2), (A+ β
′ − α′ , 2), (1, 1)

(A+ β
′
, 2), (S, 2), (A+ γ − α′ − β, 2), (ν + 3

2
, 1), (3

2
, 1)

− (zx)2

4

 (3.11)

A = ρ+ ν + 1, S = A+ γ − α− α′ for Struve function Hν(zt) holds true.

Corollary 3.2.6. Under the conditions stated already with (3.5), the following image

formula

[
Iα,α

′
,β,β′,γ

0− tρ−1Hν(z/t)
]

(x) = xρ−ν−α−α
′
+γ−2

(z
2

)ν+1

× 4Ψ5

 (S, 2), (A+ α + β
′ − γ, 2), (A− β, 2), (1, 1)

(A, 2), (S + β′, 2), (A+ α− β, 2), (ν + 3
2
, 1), (3

2
, 1)

− z2

4x2

 (3.12)

where A = 2− ρ+ ν, A− γ + α + α
′

for Struve function Hν(z/t) holds true.

3.2.1 Special Cases

(1) On taking µ = 1, m = 1, λ = 0 and z = 1 in Theorem 3.2.1, we obtain the

image formula for the Bessel function considered by Purohit et al. [142, Theorem

1].

Corollary 3.2.7. Under the conditions stated already with (3.1), the following image
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formula

[
Iα,α

′
,β,β′,γ

0+ tρ−1Jν(t)
]

(x) =
xρ+ν−α−α′+γ−1

2ν
×

3Ψ4

 (ρ+ ν, 2), (ρ+ ν + γ − α− α′ − β, 2), (ρ+ ν + β
′ − α′ , 2)

(ρ+ ν + β
′
, 2), (ρ+ ν + γ − α− α′ , 2), (ρ+ ν + γ − α′ − β, 2), (ν + 1, 1)

− x2

4


(3.13)

for Bessel function Jν(t) holds true.

(2) Further, on taking µ = 1,m = 1 and λ = 0 in Theorem 3.2.2, we arrive the

Right sided image formula for the Bessel function considered by Purohit et al. [142,

Theorem 2].

Corollary 3.2.8. Under the conditions stated already with (3.5), the image formula

[
Iα,α

′
,β,β′,γ

0− tρ−1Jν(1/t)
]

(x) =
xγ−α−α

′−1+ρ−ν

2ν

× 3Ψ4

 (A− γ + α + α
′
, 2), (A+ α + β

′ − γ, 2), (A− β, 2)

(A, 2)(A+ α + α
′
+ β′ − γ, 2), (A+ α− β, 2), (ν + 1, 1)

− 1

4x2

 (3.14)

where A = 1− ρ+ ν, for Bessel function Jν(1/t) holds true.

3.3 Image Formulas Associated with Integral Trans-

forms

In this section, we obtain certain theorems involving the results obtained in pre-

vious section associated with the integral transforms like Beta transforms, pathway

transforms, Laplace transforms and Whittaker transforms.
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3.3.1 Beta Transform

The beta transform (see, e.g.[164]) of complex valued function f(z) of real vari-

able z is defined as:

B{f(z) : a, b} =

1∫
0

za−1(1− z)b−1f(z) dz, <(z) > 0, <(a),<(b) > 0 (3.15)

Beta transform of power function zρ−1 is given by:

B
(
zρ−1; a, b

)
=

∫ 1

0

za+ρ−2(1−z)b−1dz =
Γ(a+ ρ− 1)Γ(b)

Γ(a+ ρ+ b− 1)
<(z) > 0, <(a),<(b) > 0

(3.16)

Theorem 3.3.1. Let α, α
′
, β, β′, γ, λ ∈ C,m ∈ N, µ > 0 and x > 0 be such that

<(l) > 0, <(n) > 0 <(γ) > 0, <(ν) > −1, <(ρ+ ν) > max{0,<(α + α
′
+ β − γ),

<(α
′ − β ′)}

(3.17)

then the following beta transform formula holds:

B
((

Iα,α
′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
)

(x) : l, n
)

=
xA−α−α

′
+γ−1Γ(n)

2ν+2λ

× 5Ψ5+m

 (A, 2), (S − β, 2), (A+ β
′ − α′ , 2), (C − n, 2)(1, 1)

(A+ β
′
, 2), (S, 2), (A+ γ − α′ − β, 2), (ν + λ+ 1, µ), (C, 2), (λ+ 1, 1)︸ ︷︷ ︸

m−times

− x2

4


(3.18)

Here A = ρ+ ν + 2λ, S = A+ γ − α− α′ and C = l + ν + 2λ+ n.

Proof: For convenience, let the left-hand side of the formula (3.18) be denoted by ς.
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Applying (3.15) to eq. (3.18) we get,

ς =

∫ 1

0

zl−1(1− z)n−1
((
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
)

(x)
)
dz.

Here, applying eq. (3.2) to the integral, we obtain the following expression

ς =

∫ 1

0

zl−1(1− z)n−1zν+2λx
A−α−α′+γ−1

2ν+2λ

∞∑
k=0

(−1)kΓ(A+ 2k)Γ(k + 1)

Γ(A+ β ′ + 2k)Γ(A+ γ − α− α′ + 2k)

× Γ(A+ β
′ − α′ + 2k)Γ(A+ γ − α− α′ − β + 2k)

Γ(A+ γ − α′ − β + 2k)Γ(ν + λ+ 1 + µk)(Γ(λ+ 1 + k))m
(zx2)k

4kk!
dz

here A = ρ+ ν + 2λ.

Interchanging the order of integration and summation, we have

ς =
xA−α−α

′
+γ−1

2ν+2λ

∞∑
k=0

Γ(A+ 2k)Γ(A+ γ − α− α′ − β + 2k)

Γ(A+ γ − α− α′ + 2k)Γ(A+ γ − α′ − β + 2k)

× Γ(A+ β
′ − α′ + 2k)Γ(k + 1)(−1)k

Γ(A+ β ′ + 2k)Γ(ν + λ+ 1 + µk)(Γ(λ+ 1 + k))m
(x2)k

4kk!

×
∫ 1

0

zl+ν+2λ+2k−1(1− z)n−1dz

=
xA−α−α

′
+γ−1

2ν+2λ

∞∑
k=0

Γ(l + ν + 2λ+ 2k)Γ(n)Γ(A+ 2k)Γ(A+ γ − α− α′ − β + 2k)

Γ(l + ν + 2λ+ 2k + n)Γ(A+ β ′ + 2k)Γ(A+ γ − α− α′ + 2k)

× Γ(A+ β
′ − α′ + 2k)Γ(k + 1)

Γ(A+ γ − α′ − β + 2k)Γ(ν + λ+ 1 + µk)(Γ(λ+ 1 + k))m
(−x2)k

4kk!

(3.19)

Interpreting the right-hand side of the above equation, in the view of the definition

(1.7) we arrive at the required result (3.18).
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Theorem 3.3.2. Let α, α
′
, β, β′, γ, λ, ν ∈ C,m ∈ N, µ > 0 and x > 0 be such that

<(γ) > 0, <(ν) > −1, <(l) > 0, <(n) > 0, <(ρ− ν) > 1 + min{<(−β),<(α + α
′ − γ),

<(α + β
′ − γ)}

(3.20)

then the following beta transform formula holds:

B
((

Iα,α
′
,β,β′,γ

0− tρ−1Jµ,mν,λ (z/t)
)

(x) : l, n
)

=
xγ−α−α

′−AΓ(n)

2ν+2λ

× 5Ψ5+m

 (S, 2), (A+ α + β
′ − γ, 2), (A− β, 2), (C − n, 2), (1, 1)

(A, 2), (S + β′, 2), (A+ α− β, 2), (ν + λ+ 1, µ), (C, 2), (λ+ 1, 1)︸ ︷︷ ︸
m−times

− 1

4x2


(3.21)

where A = 1− ρ+ ν + 2λ, S = A− γ + α + α
′

and C = l + ν + 2λ+ n.

Proof: The proof of the fractional integral formula (3.21) would run parallel to the

formula (3.18) given in Theorem 3.3.1. There for we choose to skip the details

involved.

Remark 3.3.3. (1) For m = 1 Theorem 3.3.1 and Theorem 3.3.2 leads to the cor-

responding results for fractional integral of generalized Bessel function defined by

(1.45).

(2) If we take m = 1, µ = 1 and λ = 1
2

in (3.18) and (3.21), we get the corre-

sponding results for fractional integral of Struve function defined in (1.48).

(3) On taking m = 1, µ = 1 and λ = 0 in (3.18) and (3.21), we get the results

for fractional integral of Bessel function defined in (1.49).
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3.3.2 Pδ-Transform

Theorem 3.3.4. Let α, α
′
, β, β′, γ, ρ, λ ∈ C,m ∈ N, µ > 0, <(ρ) > 0, <(s) >

0, δ > 1 and x > 0 be such that

<(γ) > 0, <(ν) > −1, <(s) > 0, <(ρ+ν) > max{0,<(α+α
′
+β−γ),<(α

′−β ′)}

(3.22)

then the following Pδ-transform formula holds:

Pδ

(
zl−1

(
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
)

(x) : s
)

= (Λ(δ; s))l+ν+2λ xA−α−α
′
+γ−1

2ν+2λ
×

5Ψ4+m

 (A, 2), (S − β, 2), (A+ β
′ − α′ , 2), (l + ν + 2λ, 2), (1, 1)

(A+ β
′
, 2), (S, 2)(A+ γ − α′ − β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)︸ ︷︷ ︸

m−times

− (Λ(δ; s)x)2

4


(3.23)

where A = ρ+ ν + 2λ, S = A+ γ − α− α′ and Λ(δ; s) =
(

δ−1
ln[1+(δ−1)s]

}
.

Proof: For convenience, let the left-hand side of the formula (3.23) be denoted by

ϕ. Applying (1.81) to eq. (3.18) we get,

ϕ =

∫ ∞
0

[1 + (δ − 1)s]−
z
δ−1 zl−1

((
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
)

(x)
)
dz

Here, applying eq. (3.4) to the integral, we obtain the following expression

ϕ =
xA−α−α

′
+γ−1

2ν+2λ

∞∑
k=0

(−1)kΓ(A+ 2k)Γ(A+ γ − α− α′ − β + 2k)

Γ(A+ β ′ + 2k)Γ(A+ γ − α− α′ + 2k)Γ(A+ γ − α′ − β + 2k)

Γ(A+ β
′ − α′ + 2k)Γ(k + 1)

Γ(ν + λ+ 1 + µk)(Γ(λ+ 1 + k))m
(x)2k

4kk!
×
∫ ∞

0

[1 + (δ − 1)s]−
z
δ−1 zν+2λ+2k+l−1dz

Here making use of the result (1.82) and interchanging the order of integration and
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summation, we obtain,

ϕ = {Λ(δ; s)}l+ν+2λ x
A−α−α′+γ−1

2ν+2λ

∞∑
k=0

Γ(A+ 2k)Γ(A+ γ − α− α′ − β + 2k)

Γ(A+ β ′ + 2k)Γ(A+ γ − α− α′ + 2k)

× Γ(ν + 2λ+ 2k + l)Γ(A+ β
′ − α′ + 2k)Γ(k + 1)(−1)k

Γ(A+ γ − α′ − β + 2k)Γ(ν + λ+ 1 + µk)(Γ(λ+ 1 + k))m
{Λ(δ; s)x}2k

4kk!

(3.24)

where A = ρ+ ν + 2λ and Λ(δ; s) =
(

δ−1
ln[1+(δ−1)s]

}
,

in the view of the definition (1.7) we arrive at the required result (3.23).

Theorem 3.3.5. Let α, α
′
, β, β′, γ, λ ∈ C,m ∈ N, µ > 0 <(ρ) > 0, <(s) > 0, δ > 1

and x > 0 be such that

<(γ) > 0, <(ν) > −1, <(s) > 0, <(ρ− ν) > 1 + min{<(−β),<(α + α
′ − γ),

<(α + β
′ − γ)}

(3.25)

then the following Pδ- transform formula holds:

Pδ

(
zl−1

[
Iα,α

′
,β,β′,γ

0− tρ−1Jµ,mν,λ (z/t)
]

(x) : s
)

= {Λ(δ; s)}l+ν+2λ x
ρ−ν−2λ−α−α′+γ−1

2ν+2λ

× 5Ψ4+m

 (S, 2), (A+ α + β
′ − γ, 2), (A− β, 2), (l + ν + 2λ, 2), (1, 1)

(A, 2), (S + β′, 2), (A+ α− β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)︸ ︷︷ ︸
m−times

− {Λ(δ; s)}2

4x2


(3.26)

where A = 1− ρ+ ν + 2λ, S = A− γ + α + α
′

and Λ(δ; s) =
(

δ−1
ln[1+(δ−1)s]

}
.

Proof: Our demonstration of the Pδ- transform of generalized Lommel Wright func-

tion (3.26) is based upon the known result (3.6). The details involved are being left

as and exercise for the interested reader.

It is interesting to observe that, for taking δ → 1 in (1.81), the Pδ-transform defined
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by (1.81)) reduces to the well-known Laplace transform (1.84).

A limit case of theorem 3.3.4 and 3.3.5 when δ → 1 yields the following corollaries.

Corollary 3.3.6. Under the conditions stated already with (3.22), the following

Laplace transform formula holds true:

Pδ

(
zl−1

(
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (tz)
)

(x) : s
)

=
xA−α−α

′
+γ−1

sl 2ν+2λ

× 5Ψ4+m

 (A, 2), (S − β, 2), (A+ β
′ − α′ , 2), (l + ν + 2λ, 2), (1, 1)

(A+ β
′
, 2), (S, 2), (A+ γ − α′ − β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)︸ ︷︷ ︸

m−times

− (x)2

s2l4


(3.27)

where A = ρ+ ν + 2λ, S = A+ γ − α− α′.

Corollary 3.3.7. Under the conditions stated already with (3.25), the following

Laplace transform formula holds true:

Pδ

(
zl−1

[
Iα,α

′
,β,β′,γ

0− tρ−1Jµ,mν,λ (z/t)
]

(x) : s
)

=
xρ−ν−2λ−α−α′+γ−1

sl 2ν+2λ

× 5Ψ4+m

(S, 2), (A+ α + β
′ − γ, 2), (A− β, 2), (l + ν + 2λ, 2), (1, 1)

(A, 2), (S + β′, 2), (A+ α− β, 2), (ν + λ+ 1, µ), (λ+ 1, 1)︸ ︷︷ ︸
m−times

− 1

s2l 4x2


(3.28)

where A = 1− ρ+ ν + 2λ, S = A− γ + α + α
′
.

Remark 3.3.8. (1) On taking m = 1 Theorem 3.3.4 and 3.3.5 leads to the Pδ-

transform formulas for fractional integral of generalized Bessel function.

(2) A limit case of Theorem 3.3.4 and 3.3.5 when δ → 1 and m = 1 yield the

Laplace transform formulas for fractional integral of generalized Bessel function.
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(3) On taking m = 1, µ = 1 and λ = 1
2
, Theorems 3.3.4 and 3.3.5, yield to

Pδ-transform formulas for fractional integral of Struve function.

(4) A limit case of Theorem 3.3.4 and 3.3.5, when δ → 1 and m = 1, µ = 1 and

λ = 1
2

yield the Laplace transform formulas for fractional integral of Struve function.

(5) On taking m = 1, µ = 1 and λ = 0 in Theorem 3.3.4 and 3.3.5, yield the

corresponding results for fractional integral of Bessel function.

(6) A limit case of Theorem 3.3.4 when δ → 1 and m = 1, µ = 1 and λ = 0

yield the corresponding Laplace transform formulas for fractional integral of Bessel

function.

3.3.3 Whittaker Transform

Theorem 3.3.9. Let α, α
′
, β, β′, γ, λ, η, σ ∈ C, m ∈ N, µ > 0 and x > 0 be such

that

<(γ) > 0,<(ν) > −1, <(ξ±η) > −1/2, <(ρ+ν) > max{0,<(α+α
′
+β−γ),<(α

′−β ′)}

(3.29)

then the following Whittaker transform formula holds:

∫ ∞
0

zσ−1e−z/2Wσ,η(zt)
((
Iα,α

′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (zt)
))

dz =
xA−α−α

′
+γ−1

2ν+2λ

× 6Ψ5+m

 (A, 2), (S − β, 2), (A+ β
′ − α′ , 2), (E + η, 2), (E − η, 2), (1, 1)

(A+ β
′
, 2), (S, 2), (A+ γ − α′ − β, 2), (ν + λ+ 1, µ), (E − σ, 2), (λ+ 1, 1)︸ ︷︷ ︸

m−times

− x2

4


(3.30)

where A = ρ+ ν + 2λ, S = A+ γ − α− α′ and E = ξ + ν + 2λ+ 1/2.
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Proof: For simplicity and convenience, let ω be the left-hand side of the formula

(3.30). Applying (1.55) to eq. (3.30) we have,

ω =

∫ ∞
0

zσ−1e−z/2Wσ,η(zt)
((

Iα,α
′
,β,β′,γ

0+ tρ−1Jµ,mν,λ (zt)
))

dz. (3.31)

Here, applying eq. (3.2) to the integral, we obtain the following expression

ω =

∫ ∞
0

zσ+ν+2λ−1e−z/2Wσ,η(zt)
xA−α−α

′
+γ−1

2ν+2λ
×
∞∑
k=0

Γ(A+ 2k)Γ(A+ γ − α− α′ − β + 2k)

Γ(A+ β ′ + 2k)Γ(A+ γ − α− α′ + 2k)

× Γ(A+ β
′ − α′ + 2k)Γ(k + 1)(−1)k

Γ(A+ γ − α′ − β + 2k)Γ(ν + λ+ 1 + µk)(Γ(λ+ 1 + k))m
(zx)2k

4kk!

where A = ρ + ν + 2λ. Interchanging the order of integration and summation we

have

ω =
xA−α−α

′
+γ−1

2ν+2λ

∞∑
k=0

Γ(E + η + 2k)Γ(E − η + 2k)Γ(A+ γ − α− α′ − β + 2k)

Γ(E − σ + 2k)Γ(A+ γ − α′ − β + 2k)

× (−1)kΓ(A+ 2k)Γ(A+ β
′ − α′ + 2k)Γ(k + 1)

Γ(A+ β ′ + 2k)Γ(A+ γ − α− α′ + 2k)Γ(ν + λ+ 1 + µk)(Γ(λ+ 1 + k))m
((x)2k)

4kk!

(3.32)

where A = ρ+ ν + 2λ and E = ξ + ν + 2λ+ 1/2.

Interpreting the right-hand side of the above equation, in the view of the definition

(1.7) we arrive at the required result (3.30).

Theorem 3.3.10. Let α, α
′
, β, β′, γ, λ, η, σ ∈ C,m ∈ N, µ > 0 and x > 0 be such

that

<(γ) > 0, <(ν) > −1, <(ξ ± n) > −1/2, <(ρ− ν) > 1 + min{<(−β),<(α + α
′ − γ),

<(α + β
′ − γ)}

(3.33)
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then there holds the formula

∫ ∞
0

zσ−1e−z/2Wσ,η(zt)
((

Iα,α
′
,β,β′,γ

0− tρ−1Jµ,mν,λ (zt)
))

dz =
xρ−ν−2λ−α−α′+γ−1

2ν+2λ

× 6Ψ5+m

 (S, 2), (A+ α + β
′ − γ, 2), (A− β, 2), (E + η, 2), (E − η, 2), (1, 1)

(A, 2), (S + β′, 2), (A+ α− β, 2), (ν + λ+ 1, µ), (E − σ, 2), (λ+ 1)︸ ︷︷ ︸
m−times

− 1

4x2


(3.34)

where A = 1− ρ+ ν + 2λ, S = A− γ + α + α
′

and E = ξ + ν + 2λ+ 1/2.

Proof: it is easy to see that a similar lines as in the proof of Theorem 3.3.9 will

establish the Theorem 3.3.10.

Remark 3.3.11. (1) For m = 1, Theorem 3.3.9 and 3.3.10 leads to the correspond-

ing results for fractional integral of generalized Bessel function defined in (1.45).

(2) If we take m = 1, µ = 1 and λ = 1
2

in Theorem 3.3.9 and 3.3.10, yield the

corresponding results for fractional integral of Struve function defined in (1.48).

(3) On taking m = 1, µ = 1 and λ = 0 in Theorem 3.3.9 and 3.3.10, yield the

corresponding results for fractional integral of Bessel function defined in (1.49).

3.4 Conclusion

In this section, we try to briefly consider some special cases of the our main

results involving in Theorems 3.2.1-3.3.10 which can easily be derived by setting

(for example) α
′

= 0. Such interesting consequences of our results would involve

the Saigo fractional integral operator Iα,β,η0,x and Iα,β,ηx,∞ can be deduced from Theo-

rems 3.2.1-3.3.10 by appropriately applying the relationships given in the definitions

(1.105) and (1.106). If we set β = −α, in the Theorems 3.2.1-3.3.10, then from the

eq. (1.87) and (1.91) we obtain the corresponding results for Riemann-Liouville and
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Weyl fractional integral operators respectively. Again, if we put β = 0 in the The-

orems 3.2.1-3.3.10 then from the eq. (1.93) and (1.94) we obtain the corresponding

results for Erdélyi-Kober type fractional integral operators.

We conclude our present investigation by remarking further that the results ob-

tained here are useful in deriving various image formulas involving such relatively

more familiar fractional integral operators given by above relations. We may also

emphasize that results derived in this paper are of general character and can spe-

cialize to give further interesting and potentially useful formulas involving fractional

integral operators.
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Differential Equations

we divide this chapter into two parts. In part ’A’ we investigate the analytic so-

lution of the solutions of time-space fractional advection-dispersion equation involv-

ing fractional Laplace operator, following with some illustrations and application.

In part ’B’ we investigate the analytic solution of the generalized space-time frac-

tional reaction-diffusion equation involving fractional Laplace operator, following

with some illustrations and concrete applications.

Part A

4.1 Advection Dispersion Equation

The description of transport is closely related to the terms convection, diffusion,

dispersion, and retardation as well as decomposition. First, it is assumed that there

are no interactions between the species dissolved in water and the surrounding solid

phase. The primary mechanism for the transport of improperly discarded hazardous

waste through the environment is by the movement of water through the subsurface

and surface waterways. Studying this movement requires that one must be able

to measure the quantity of waste present at a particular point in space time. The

universal measure for chemical pollution is the concentration. Analytical methods

that handle solute transport in porous media are relatively easy to use Javandel

et.al [69]. However, because of complexity of the equations involved, the analytical

solutions are generally available restricted to either radial flow problems or to cases

where velocity is uniform over the area of interest. Numerous analytical solutions

are available for time-dependent solute transport within media having steady state

and uniform flow.

An equation commonly used to describe solute transport in aquifers is the advection-

dispersion equation (ADE) (Liu et al. [94–96])

∂u

∂t
= −η∂u

∂x
+ ζ

∂2u

∂x2
(4.1)
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where u is solute concentration, the positive constants η, ζ represent the average

fluid velocity and the dispersion coefficient, x is the spatial domain, t is time. The

ADE is a deterministic homogeneous equation describing a probability function for

the location of particles in a continuum. The fundamental solutions of the ADE

over time will be Gaussian densities with means and variances based on the values

of the macroscopic transport coefficients ν and ζ. The classical ADE with a local

(or asymptotically constant) dispersion tensor is a very handy predictive equation,

since solutions are easily gained. The fractional order forms of the ADE are simi-

larly useful. Some partial differential equations of space-time fractional order were

successfully used for modeling relevant physical processes (Basu and Acharya [9],

El-Sayed and Aly [161] and Benson et al.[11]. Numerous authors have shown the

equivalence between the transport equations that used fractional-order derivatives

and some heavy-tailed motions which extended the predictive capability of mod-

els built on the stochastic process of Brownian motion, which is the basis for the

classical ADE. The motions can be heavy-tailed, implying extremely long-term cor-

relation and fractional derivatives in time and/or space. For example, Benson and

his collaborator have derived the application of a fractional ADE (see Benson et al.

[11], Meerschaert et al. [112]). There are some other authors who considerd the

fractional ADE. A space fractional ADE with Eulerian derivation was derived by

Schumer et al.[162] which is used to describe solute plume evolution with a large

probability of particles moving significantly ahead of and behind the mean solute

velocity.

The physical interpretation of space-time fractional advection-dispersion equa-

tion (FADE) is given by Schumer et.al [162]. (FADE) is a generalization of the

classical ADE in which the first-order space derivative is replaced with Hilfer com-

posite fractional derivatives (see Hilfer [63]) of order 0 < µ < 1 and 0 ≤ ν ≤ 1 and

the second-order space derivative is replaced with the space fractional Laplacian

operator of order 0 < α ≤ 2.
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4.2 Analytic Solution of Unified Space Time Frac-

tional Advection Dispersion Equation

In this section, we investigate the analytic solution of the Space time fractional

advection dispersion equation involving fractional Laplace operator contained in the

following theorem:

Theorem 4.2.1. Consider the generalized Cauchy type problem for fractional ad-

vection dispersion equation

0Dµ,ν
t+ (u(x, t)) = −ηDxu(x, t) + ζ∆

λ
2 u(x, t), 0 < λ ≤ 2, x ∈ R, t ∈ R+, (4.2)

subject to the initial condition

I(1−ν)(1−µ)
0+ u(x, 0+) = g(x), x ∈ R, 0 < µ < 1, 0 ≤ ν ≤ 1 (4.3)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.4)

where 0Dµ,ν
t is the generalized Riemann-Liouville fractional derivative operator de-

fined by Hilfer as (1.99). I(1−ν)(1−µ)
0+ u(x, 0+) involves the Riemann Liouville frac-

tional integral operator of order (1− ν)(1− µ) evaluted in the limit as t→ 0+. ∆
λ
2

is the fractional generalized Laplace operator of order λ, where 0 < λ ≤ 2.

u(x, t) and g(x) are both the (real) field variable, and sufficiently well behaved func-

tions.

Then the solution of equation (4.2), subject to the above constraints, is given by

u(x, t) =

∫ ∞
−∞

G(x− k, t)g(k)dk, (4.5)
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where

G(x, t) =
tµ+ν(1−µ)−1

2π

∫ ∞
−∞

Eµ,µ+ν(1−µ)[(iηk − ζ|k|λ)tµ]exp(−ikx)dk (4.6)

is the Green’s function, Eµ,ν is the two parameter Mittag-Leffler function given in

the eq. (1.31).

Proof: In order to prove the theorem, we take the Fourier transform of equation

(4.2) with respect to the space variable x and use equation (1.126) to obtain

0Dµ,ν
t+ (u∗(k, t)) = ηiku∗(k, t)− ζ|k|λu∗(k, t) (4.7)

where u∗(k, t) is the Fourier transform of function u(x, t).

Now we apply Laplace transform on (4.7) with respect to variable t, and use equation

(1.100), we get

sµ ū∗(k, s)− sν(µ−1)I(1−ν)(1−µ)
0+ u(k, 0+) = iηkū∗(k, s)− ζ|k|λū∗(k, s) (4.8)

where L[u(k, t); s] = ū(k, s).

Now using the initial condition (4.3) and boundary condition (4.4) and solving the

equation (4.8) we get

(sµ − iηk + ζ|k|λ)ū∗(k, s) = sν(µ−1)g(k) (4.9)

=⇒ ū∗(k, s) =
sν(µ−1)

sµ + (ζ|k|λ − iηk)
g(k) (4.10)

On taking inverse Laplace transform of equation (4.10), by means of the following

result by Haubold et. al [110, Eq.18]

L−1

{
sβ−1

sα + a

}
= tα−βEα,α−β+1(−atα) (4.11)
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where <(s) > 0,<(α) > 0,<(α− β) > −1, we obtain

u∗(k, t) = tµ+ν(1−µ)−1Eµ,µ+ν(1−µ)((iηk − ζ|k|λ)tµ)g(k) (4.12)

Further, taking the inverse Fourier transform, we get

u(x, t) =
tµ+ν(1−µ)−1

2π

∫ ∞
−∞

g(k)Eµ,µ+ν(1−µ)((iηk − ζ|k|λ)tµ) exp(−ikx)dk (4.13)

If we apply the convolution theorem of the Fourier transform to equation (4.13), it

gives the solution in the form

u(x, t) =

∫ ∞
−∞

G(x− k, t)g(k)dk, (4.14)

where the Green’s function is given by

G(x, t) =
tµ+ν(1−µ)−1

2π

∫ ∞
−∞

Eµ,µ+ν(1−µ)((iηk − ζ|k|λ)tµ)exp(−ikx)dk (4.15)

It is interesting to observe that as an particular case of Theorem 4.2.1, we can

obtain solution of homogeneous Schrödinger equation occurring in the quantum

mechanics.

(1) On taking η = 0, ζ ≡ ih
2m

in Theorem 4.2.1 and using (1.57), we arrive at the

main result of the paper by Saxena et al. [156] given as below:

Corollary 4.2.2. Consider the following one dimensional space-time fractional

Schrödinger equation of a free particle of mass m, defined by

0Dµ,ν
t+ (u(x, t)) =

ih

2m
∆

λ
2 u(x, t), x ∈ R, t ∈ R+, (4.16)

subject to the initial condition

I(1−ν)(1−µ)
0+ u(x, 0+) = g(x), x ∈ R (4.17)
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and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.18)

where 0Dµ,ν
t+ is the fractional derivative operator defined by Hilfer as (1.99) with

0 < µ < 1, 0 ≤ ν ≤ 1, ∆
λ
2 is the fractional Laplace operator of order λ, 0 < λ ≤ 2

and h = 6.625× 10−27 erg sec = 4.21× 10−21 Mev sec is the Planck constant.

Then the solution of equation (4.16) is given by

u(x, t) =

∫ ∞
−∞

G(x− k, t)g(k)dk (4.19)

where

G(x, t) =
tµ+ν(1−µ)−1

λ|x|
H2,1

3,3

 |x|(
ih
2m

) 1
λ t

µ
λ

(1, 1
λ
), (µ+ ν(1− µ), µ

λ
), (1, 1

2
)

(1, 1
λ
), (1, 1), (1, 1

2
)

 (4.20)

(2) Further, on taking ν = 0, η = 0, ζ = ih
2m

in Theorem 4.2.1 and using (1.57), we

obtain Corollary 1.1 of Saxena et al. [156]

(3) On taking ν = 1, η = ν, λ = 2 and g(x) = Co(x) in Theorem 4.2.1, we obtain

following result which was considered by Liu et al. [96]

C
0 D

µ
t (u(x, t)) = −νDxu(x, t) + ζ

∂2

∂x2
(u(x, t)), (4.21)

subject to the initial condition

u(x, 0+) = Co(x), (4.22)

and boundary condition

lim
|x|→∞

u(x, t) = 0. (4.23)
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4.3 Illustrative Examples

Example 4.3.1. Consider the generalized fractional advection dispersion equation

to describe solute transport in aquifers

0Dµ,ν
t+ (u(x, t)) = −Dx(u(x, t)) + µ′∆

λ
2 (u(x, t)), (4.24)

subject to the initial condition

I(1−ν)(1−µ)
0+ (u(x, 0)) = e−x, 0 < x < 1, t > 0, (4.25)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.26)

where µ′ = d
νL

and the number Pe = 1
µ′

is called the Peclet number. The Peclet

number describes the relative influence of the effects characterized by advection-

dispersion problems which involve a non-dissipative component and a dissipative

component, d is the dispersion coefficient [L2T−1] and ν is the Darcy velocity [LT−1].

In view of Theorem 4.2.1, we conclude that the analytical expression of solute

concentration u(x, t) is given by

u(x, t) =
tµ+ν(1−µ)−1

2π

∫ ∞
−∞

g(k)e−ikxEµ,µ−ν(µ−1)((ik − µ′|k|λ)tµ) dk (4.27)

where g(k) = 1√
2π

[
e−(1+ik)−1

1+ik

]

It is interesting to observe that for ν = 0, µ = 1 and λ = 2, equations (4.24)-

(4.26) reduces to problem considered by Pandey et. al [128].

Next, we take an example where in the initial condition we put g(x) = δ(x), the

Dirac-delta function.
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Example 4.3.2. Consider the generalized fractional advection dispersion equation

0Dµ,ν
t+ (u(x, t)) = −Dx(u(x, t)) + µ′∆

λ
2 (u(x, t)), (4.28)

subject to the initial condition

I(1−ν)(1−µ)
0+ (u(x, 0)) = δ(x), (4.29)

where δ(x) is Dirac-delta function and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.30)

In view of Theorem 4.2.1, the solution of 4.28 is given by

u(x, t) =
tµ+ν(1−µ)−1

2π

∫ ∞
−∞

e−ikxEµ,µ−ν(µ−1)((ik − µ′|k|λ)tµ) dk (4.31)

4.4 Concrete Applications

If we set ν = 0, then the Hilfer fractional derivative (1.99) reduces to a Riemann-

Liouvile fractional derivative (1.87) and the Theorem 4.2.1 yields the following:

Corollary 4.4.1. Consider the generalized Cauchy type problem for fractional ad-

vection dispersion equation

RL
0 Dµ

t (u(x, t)) = −η Dxu(x, t) + ζ∆
λ
2 u(x, t), x ∈ R, t ∈ R+, (4.32)

subject to the initial conditions

0D
µ−1
t (u(x, 0+)) = g(x), 0D

µ−2
t (u(x, 0+)) = 0 1 < µ ≤ 2, x ∈ R (4.33)
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and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.34)

Here u is solute concentration, the positive constants, η and δ represent the average

fluid velocity and the dispersion coefficient respectively, x is the spatial domain,

u(x, t) and g(x) are both the (real) field variable. Then the solution of 4.32, subject

to the above constraints, is given by

u(x, t) =

∫ ∞
−∞

G(x− k, t)g(k)dk (4.35)

where

G(x, t) =
tµ−1

2π

∫ ∞
−∞

e−ikxEµ,µ((iηk − ζ|k|λ)tµ) dk (4.36)

When ν = 1, then the Hilfer fractional space derivative (1.99) get reduced to

Caputo fractional derivative operator (1.97) and it yields the following result:

Corollary 4.4.2. Consider the generalized Cauchy type problem for fractional ad-

vection dispersion equation

C
0 D

µ
t (u(x, t)) = −ηDxu(x, t) + ζ∆

λ
2 u(x, t), 0 < α ≤ 2, x ∈ R, t ∈ R+, (4.37)

subject to the initial condition

u(x, 0+) = g(x), x ∈ R (4.38)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0, (4.39)

where C
0 D

µ
t is the Caputo fractional derivative operator defined as (1.97) with 0 < µ <

1, ∆
λ
2 is the fractional Laplace operator, defined by (1.125) of order λ, 0 < λ ≤ 2.
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Then the solution of equation 4.4.2, subject to the above constraints, is given by

u(x, t) =

∫ ∞
−∞

G(x− k, t)g(k)dk, (4.40)

where

G(x, t) =
1

2π

∫ ∞
−∞

e−ikxEµ,1((iηk − ζ|k|λ)tµ) dk. (4.41)

On taking ν = 0, η = 0, λ = 2, ζ = 1 in Theorem 4.2.1 and using (1.57), we

obtain the following result [110, Eq.25]:

Corollary 4.4.3. Consider the generalized Cauchy type problem for fractional heat

equation

RL
0 Dµ

t (u(x, t)) =
∂2

∂x2
(u(x, t)), x ∈ R, t ∈ R+, (4.42)

subject to the initial condition

I(1−µ)
0+ u(x, 0+) = g(x), x ∈ R (4.43)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0, (4.44)

where RL
0 Dµ

t is the Riemann-Liouville fractional derivative operator defined by (1.87)

with 0 < µ ≤ 1, Then the solution of 4.42 is given by

u(x, t) =

∫ ∞
−∞

G(x− k, t)g(k)dk, (4.45)

where

G(x, t) =
tµ−1

2|x|
H2,1

3,3

 |x|
t
µ
2

(1, 1
2
), (µ, µ

2
), (1, 1

2
)

(1, 1
2
), (1, 1), (1, 1

2
)

 . (4.46)

On taking ν = 1, η = 0, ζ = 1 and λ = 2 in Theorem 4.2.1 and using (1.57), we

obtain the following result:
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Corollary 4.4.4. Consider the generalized Cauchy type problem for fractional heat

equation

C
0 D

µ
t (u(x, t)) = D2(u(x, t)), x ∈ R, t ∈ R+, (4.47)

subject to the initial condition

u(x, 0+) = g(x), x ∈ R (4.48)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.49)

where C
aDt

µ is the Caputo fractional derivative operator defined by (1.97) with 0 <

µ ≤ 1, Then the solution of (4.47) is given by

u(x, t) =

∫ ∞
−∞

G(x− k, t)g(k)dk (4.50)

where

G(x, t) =
1

2|x|
H2,1

3,3

 |x|
t
µ
2

(1, 1
2
), (1, µ

2
), (1, 1

2
)

(1, 1
2
), (1, 1), (1, 1

2
)

 (4.51)
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Part B

4.5 Reaction Diffusion Equation

Reaction-diffusion equations have found many applications in applied science and

engineering. In recent work, many authors have explained some significant physical

issues of reaction-diffusion equations such as oscillations, stationary, spatio-temporal

dissipative pattern formation, waves etc. A reaction-diffusion equation comprises a

reaction term and a diffusion term, i.e. the typical form of this equation is as follows:

u(x, t) = k∆u+ f(u)

u(x, t) is a state variable and describe density or concentration of a substance or a

population at position x ∈ Ω ⊂ R at time t (Ω being an open set). ∆ denotes the

Laplace operator. The first term on the right hand side describes the diffusion, k

being diffusion coefficient. The second term, f(u) is a smooth function f : R → R

and describes processes which really change the present u, i.e. something happens

to it (birth, death, chemical reaction , etc.), not just diffuse in the space. Analytical

solution of generalized reaction-diffusion equation studied by Saxena et al. and [159],

[160]. Linear fractional reaction-diffusion equation on a finite domain is solved by

Yildirim and Sezer [188] using homotopy perturbation method and Yu et al. [189]

using Adomian decomposition method. Recently, Garg and Manohar [45] obtained

analytical solution of linear space-time fractional reaction-diffusion equation using

generalized differential transform method.

Linear space-time fractional reaction diffusion equation on finite domain 0 < x < L,

t > 0 with 0 < µ ≤ 1 and 0 < ν ≤ 2 as discussed by Yildirim and Sezer [188] and

Yu et al. [189]

∂µu(x, t)

∂tµ
= b(x)

∂νu(x, t)

∂xν
− c(x)u(x, t) + f(x, t) (4.52)
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where ∂µu(x,t)
∂tµ

is the Caputo time fractional derivative of order 0 < µ ≤ 1, ∂νu(x,t)
∂xν

is

the Caputo Space fractional derivative of order 1 < ν ≤ 2 and 0 < b(x) ≤ bmax and

0 < c(x) ≤ cmax are continuous for 0 < x < L and the function u(x, t) represent

source or sink and f(x, t) is a sufficiently well behaved function.

4.6 Analytic Solution of Unified Space Time Frac-

tional Reaction Diffusion Equation

In this section, we investigate the analytic solution of the generalized space-time

fractional reaction-diffusion equation involving fractional Laplace operator contained

in the following theorem:

Theorem 4.6.1. Consider the generalized Cauchy type problem for unified gener-

alized linear space-time reaction-diffusion equation

Dγ,µ,ν
ρ,ω,0+u(x, t) = k ∆

λ
2 (u(x, t)) + c u(x, t) + b ϕ(x, t), t > 0, x ∈ R, (4.53)

with initial condition

[
P−γ(1−ν)

ρ,(1−ν)(1−µ),ω,0+u(x, 0+)
]

= g(x) (4.54)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.55)

with µ ∈ (0, 1), ν ∈ [0, 1], ω ∈ R, ρ > 0, γ ≥ 0 and k > 0 is diffusion coefficient.

Here, Dγ,µ,ν
ρ,ω,0+ is the Hilfer-Prabhakar fractional derivative operator as defined in

(1.103). ∆
λ
2 is the fractional generalized Laplace operator of order λ, where 0 <

λ ≤ 2, u(x, t) represent source or sink. ϕ(x, t) and g(x) are both sufficiently well

behaved functions and b, c are arbitrary constants. Then the solution of Eq. (4.53),
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subject to the above constraints, is given by

u(x, t) =
1

2π

∞∑
n=0

tµ(n+1)−ν(µ−1)−1E
γ(n+1−ν)
ρ,µ(n+1)−ν(µ−1)(ωt

ρ)

∫ ∞
−∞

(c− k|η|λ)ne−iηxg∗(η)dη

+
b

2π

∫ ∞
−∞

∫ t

0

(c− k|η|λ)nτµ(n+1)−1E
γ(n+1)
ρ,µ(n+1)(ωτ

ρ) ϕ∗(η, t− τ)e−iηxdη dτ,

(4.56)

where g∗(η) and ϕ∗(η, t) are Fourier transforms of the functions g(x) and ϕ(x, t)

respectively and Eγ
ρ,µ(·) is the three parameter Mittag- Leffler function as in eq.

(1.30).

Proof: In order to prove the theorem, we take the Fourier transform of Eq. (4.53)

with respect to the space variable x and using boundary condition (4.55) and Eq.

(1.126) therein, to obtain

Dγ,µ,ν
ρ,ω,0+(u∗(η, t)) = −k|η|λ (u∗(η, t)) + c u∗(η, t) + b ϕ∗(η, t), t > 0 (4.57)

where u∗(η, t) is the Fourier transform of the function u(x, t).

Now, taking Laplace transform of (4.57) with respect to variable t and making use

of the Eq. (1.125), we get

sµ[1− ωs−ρ]γū∗(η, s)− sν(µ−1)[1− ωs−ρ]γν
[
P−γ(1−ν)

ρ,(1−ν)(1−µ),ω,0+u
∗(η, 0+)

]
= −k|η|λū∗(η, s) + c ū∗(η, s) + b ϕ̄∗(η, s)

(4.58)

where L[u(η, t); s] = ū(η, s).

Next, taking the Fourier transform of the initial condition 4.54) and putting in

(4.58), we get

sµ[1−ωs−ρ]γū∗(η, s)−sν(µ−1)[1−ωs−ρ]γνg∗(η) = −k|η|λū∗(η, s)+c ū∗(η, s)+b ϕ̄∗(η, s).
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Simplifying,

[
sµ(1− ωs−ρ)γ + k|η|λ − c

]
ū∗(η, s) = sν(µ−1)[1− ωs−ρ]γνg∗(η) + b ϕ̄∗(η, s),

which gives

ū∗(η, s) =
sν(µ−1)[1− ωs−ρ]γνg∗(η)

sµ(1− ωs−ρ)γ + k|η|λ − c
+

b ϕ̄∗(η, s)

sµ(1− ωs−ρ)γ + k|η|λ − c
. (4.59)

Hence,

ū∗(η, s) =s−µ+ν(µ−1)(1− ωs−ρ)−γ(1−ν)g∗(η)

[
1 +

k|η|λ − c
sµ(1− ωs−ρ)γ

]−1

+bs−µ(1− ωs−ρ)−γϕ̄∗(η, s)
[
1 +

k|η|λ − c
sµ(1− ωs−ρ)γ

]−1

.

(4.60)

Finally,

ū∗(η, s) =
∞∑
n=0

(c− k|η|λ)ns−µ(n+1)+ν(µ−1)(1− ωs−ρ)−γ[(n+1)−ν]g∗(η)

+b
∞∑
n=0

(c− k|η|λ)ns−µn(1− ωs−ρ)−γnϕ̄∗(η, s),
(∣∣∣∣ k|η|λ − c
sµ(1− ωs−ρ)γ

∣∣∣∣ < 1

)
.

(4.61)

On taking inverse Laplace transform of Eq.(4.61) and using convolution theorem,

we get

u∗(η, t) =
∞∑
n=0

(c− k|η|λ)ntµ(n+1)−ν(µ−1)−1E
γ(n+1−ν)
ρ,µ(n+1)−ν(µ−1)(ωt

ρ)g∗(η)

+b

∫ t

0

(c− k|η|λ)nτµ(n+1)−1E
γ(n+1)
ρ,µ(n+1)(ωτ

ρ)ϕ∗(η, t− τ)dτ.

(4.62)
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Further, taking the inverse Fourier transform of (4.62), we get

u(x, t) =
1

2π

∞∑
n=0

tµ(n+1)−ν(µ−1)−1E
γ(n+1−ν)
ρ,µ(n+1)−ν(µ−1)(ωt

ρ)

∫ ∞
−∞

(c− k|η|λ)ne−iηxg∗(η)dη

+
b

2π

∫ ∞
−∞

∫ t

0

(c− k|η|λ)nτµ(n+1)−1E
γ(n+1)
ρ,µ(n+1)(ωτ

ρ) ϕ∗(η, t− τ)e−iηxdη dτ

where g∗(η) and ϕ∗(η, t) are Fourier transforms of the functions g(x) and ϕ(x, t),

respectively.

It is interesting to observe that as an particular case of Theorem 4.6.1, we can obtain

solution of homogeneous Schrödinger equation occurring in the quantum mechanics,

solution of non homogeneous fractional generalized diffussion wave equation and

the solution of fractional partial differential equation that arises in the study of heat

transfer through diathermanous materials.

(1) If we set γ = 0 then the Hilfer-Prabhakar fractional derivative (1.103) reduces

to a Hilfer fractional derivative (1.99) and we get the following result:

Theorem 4.6.2. Consider the generalized Cauchy type problem for fractional linear

space-time reaction-diffusion equation

Dµ,ν
t u(x, t) = k ∆

λ
2 (u(x, t)) + c u(x, t) + b ϕ(x, t), t > 0, x ∈ R, (4.63)

with initial condition

I(1−ν)(1−µ)
0+ u(x, 0+) =

[
P0
ρ,(1−ν)(1−µ),ω,0+u(x, 0+)

]
= g(x), x ∈ R (4.64)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.65)

with µ ∈ (0, 1), ν ∈ [0, 1], ω ∈ R, ρ > 0, 0 < λ ≤ 2. Then, the solution of (4.63)



118
Analytic Solution of some Non-Linear Fractional Partial

Differential Equations

is given by

u(x, t) =
t(µ−1)(1−ν)

2π

∫ ∞
−∞

g∗(η)Eµ,µ+ν(1−ν)(c− k|η|λ)tµe−iηxdη

+
b

2π

∫ ∞
−∞

∫ t

0

ξµ−1Eµ,µ(c− k|η|λ)tµϕ∗(η, t− ξ)dξdη
(4.66)

where g∗(η) and ϕ∗(η, t) are Fourier transforms of the functions g(x) and ϕ(x, t),

respectively and Eρ,µ(·) is the two parameter Mittag-Leffler function.

Proof: In order to prove the theorem, we take the Fourier transform of Eq. (4.53)

with respect to the space variable x and using boundary condition (4.65) and Eq.

(1.126) therein, to obtain

Dµ,ν
t (u∗(η, t)) = −k|η|λ (u∗(η, t)) + c u∗(η, t) + b ϕ∗(η, t), t > 0 (4.67)

where u∗(η, t) is the Fourier transform of the function u(x, t).

Now, taking Laplace transform of (4.57) with respect to variable t and making use

of the Eq. (1.100), we get

sµ ū∗(η, s)− sν(µ−1)I
(1−ν)(1−µ)
0+ u(η, 0+) = −k|η|λū∗(η, s) + c ū∗(η, s) + b ϕ̄∗(η, s)

(4.68)

where L[u(η, t); s] = ū(η, s).

Next, taking the Fourier transform of the initial condition (4.64) and putting in

(4.68), we get

sµ ū∗(η, s)− sν(µ−1)u(η, 0+)g∗(η) = −k|η|λū∗(η, s) + c ū∗(η, s) + b ϕ̄∗(η, s)

Simplifying,

[
sµ + k|η|λ − c

]
ū∗(η, s) = sν(µ−1)g∗(η) + b ϕ̄∗(η, s),
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which gives

ū∗(η, s) =
sν(µ−1)g∗(η)

sµ + k|η|λ − c
+

b ϕ̄∗(η, s)

sµ + k|η|λ − c
. (4.69)

On taking inverse Laplace transform of equation (4.69), by means of the following

result by Haubold et al. ([110, Eq.18]) and using convolution theorem,

L−1

{
sβ−1

sα + a

}
= tα−βEα,α−β+1(−atα) (4.70)

where <(s) > 0,<(α) > 0,<(α− β) > −1, we obtain

u∗(η, s) =t(µ−1)(1−ν)Eµ,µ+ν(1−ν)(c− k|η|λ)tµg∗(η)

+

∫ t

0

ξµ−1Eµ,µ(c− k|η|λ)tµϕ∗(η, t− ξ)dξ
(4.71)

Further, taking the inverse Fourier transform of (4.62), we get

u(x, t) =
t(µ−1)(1−ν)

2π

∫ ∞
−∞

g∗(η)Eµ,µ+ν(1−ν)(c− k|η|λ)tµe−iηxdη

+
b

2π

∫ ∞
−∞

∫ t

0

ξµ−1Eµ,µ(c− k|η|λ)tµϕ∗(η, t− ξ)dξdη.

(2) Further, on taking, c = 0 and k = ih
2m

, the above result yields the solution

of the non-homogeneous fractional generalized Schrödinger equation considered in

Corollary 3.1 by Purohit [141].

Corollary 4.6.3. Consider the following one dimensional non-homogeneous gener-

alized fractional Schrödinger equation of a particle of mass m, defined by

Dµ,ν
t u(x, t) =

(
ih

2m

)
∆

λ
2 u(x, t) + b ϕ(x, t), t > 0, 0 < λ ≤ 2 x ∈ R, (4.72)

with initial condition

I(1−ν)(1−µ)

0+ u(x, 0+) = g(x), −∞ < x <∞, 0 < µ < 1, 0 ≤ ν ≤ 1 (4.73)
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and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0, (4.74)

where b is arbitrary, h = 2π~ is the Plank constant and g(x) and ϕ(x, t) are given

functions.

Then, the solution of (4.72), under the given conditions, is given by

u(x, t) =

∞∫
−∞

G1(x− ξ, t)g(ξ) dξ + b

t∫
0

(t− τ)

 ∞∫
−∞

G2(x− ξ, t− τ)ϕ(ξ, τ)dξ

 dτ,
(4.75)

where the Green’s function G1(x, t) is given by

G1(x, t) =
tµ+ν(1−µ)−1

λ|x|
H2,1

3,3

 |x|
a

1
λ t

µ
λ

(1, 1
λ
), (µ+ ν(1− µ), µ

λ
), (1, 1

2
)

(1, 1
λ
), (1, 1), (1, 1

2
)

 (4.76)

and the function G2(x, t) is given by

G2(x, t) =
1

λ|x|
H2,1

3,3

 |x|
a

1
λ t

µ
λ

(1, 1
λ
), (µ, µ

λ
), (1, 1

2
)

(1, 1
λ
), (1, 1), (1, 1

2
)

 (4.77)

where a = ih
2m

and Hm,n
p,q is well known H-function defined by (see, e.g. Mathai et al.

[110, Eq. Chapter 1]).

(3) On taking c = 0 and k = ψ2, in Eq. (4.63) we get the solution of non-

homogeneous fractional generalized diffusion wave equation considered in Corollary

3.2 by Purohit [141].
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Corollary 4.6.4. Consider the following one dimensional non-homogeneous gener-

alized fractional diffusion wave equation, defined by

Dµ,ν
t u(x, t) = ψ2∆

λ
2 u(x, t) + b ϕ(x, t), t > 0, 0 < λ ≤ 2, x ∈ R, (4.78)

with initial condition

I(1−ν)(1−µ)
0+ u(x, 0+) = g(x), −∞ < x <∞, 0 < µ < 1, 0 ≤ ν ≤ 1 (4.79)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.80)

where b is arbitrary constant and g(x) and ϕ(x, t) are given functions.

Then, the solution of (4.78) under the given conditions, is given by

u(x, t) =

∞∫
−∞

G1(x− ξ, t)g(ξ) dξ + b

t∫
0

(t− τ)

 ∞∫
−∞

G2(x− ξ, t− τ)ϕ(ξ, τ)dξ

 dτ,
(4.81)

where the Green’s function G1(x, t) and G2(x, t) are, respectively, given by (4.76)

and (4.77) with a = ψ2.

(4) On taking b = 0, c = 0 and λ = 2 in Theorem 4.6.1, we arrive at the following

result by Garra et al. [46, Theorem 5.1]:

Corollary 4.6.5. Consider the Cauchy problem

Dγ,µ,ν
ρ,ω,0+u(x, t) = k

∂2

∂x2
u(x, t), t > 0, x ∈ R (4.82)

with initial condition

[
P−γ(1−ν)

ρ,(1−ν),(1−µ),ω,0+u(x, 0+)
]

= g(x) (4.83)
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and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.84)

with µ ∈ (0, 1), ν ∈ [0, 1], ω ∈ R, ρ > 0, γ ≥ 0.

Then, the solution of equation (4.82) is given by

u(x, t) =
1

2π

∞∑
n=0

(−k)ntµ(n+1)−ν(µ−1)−1E
γ(n+1−ν)
ρ,µ(n+1)−ν(µ−1)(ωt

ρ)

∫ ∞
−∞

η2n cos ηx g∗(η)dη,

(4.85)

where g∗(η) is the Fourier transform of the function g(x).

(5) Further, if we take γ = 0, c = 0, k = α, b = β and ϕ(x, t) = e−τx, Theorem 4.6.2

yields the solution of fractional partial differential equation arising in the study of

heat transfer through diathermanous materials considered by Kachhia and Prajapati

[74].

Corollary 4.6.6. Consider the fractional partial differential equation that arise in

the study of heat transfer through diathermanous materials as

Dµ,ν
t u(x, t) = α∆

λ
2 u(x, t) + βe−τx, 0 < λ ≤ 2 (4.86)

with initial condition

I(1−ν)(1−µ)
0+ u(x, 0+) = 0, (4.87)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0. (4.88)

with µ ∈ (0, 1), ν ∈ [0, 1], α > 0.

Then, the solution of (4.86) under the given conditions, is given by

u(x, t) =
βtµe−τx

λ

∫ ∞
−∞

eτµ

|ξ|
H2,1

3,3

 |ξ|
α

1
τ t

µ
λ

(1, 1
λ
), (µ+ 1, µ

λ
), (1, 1

2
)

(1, 1
λ
), (1, 1), (1, 1

2
)

 dξ (4.89)
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4.7 Illustrative Examples

Example 4.7.1. Consider the generalized Cauchy type problem for unified general-

ized linear space-time reaction-diffusion equation

Dγ,µ,ν
ρ,ω,0+u(x, t) = k ∆

λ
2 (u(x, t)) + c u(x, t) + b ϕ(x, t), t > 0, x ∈ R, (4.90)

with initial condition

[
P−γ(1−ν)

ρ,(1−ν)(1−µ),ω,0+u(x, 0+)
]

= e−x (4.91)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.92)

with µ ∈ (0, 1), ν ∈ [0, 1], ω, k ∈ R, k, ρ > 0, γ ≥ 0, 0 < λ ≤ 2.

In view of Theorem 4.6.1, the solution of equation (4.90) is given by

u(x, t) =
1

2π

∞∑
n=0

tµ(n+1)−ν(µ−1)−1E
γ(n+1−ν)
ρ,µ(n+1)−ν(µ−1)(ωt

ρ)

∫ ∞
−∞

(c− k|η|λ)ne−iηxG(η)dη

+
b

2π

∫ ∞
−∞

∫ t

0

(c− k|η|λ)nτµ(n+1)−1E
γ(n+1)
ρ,µ(n+1)(ωτ

ρ) ϕ∗(η, t− τ)e−iηxdη dτ

(4.93)

where ϕ∗(η, t) is Fourier transform of the functions ϕ(x, t) and

G(η) = F {e−x; η} = 1√
2π

[
e−(1+iη)−1

1+iη

]
.

Next, we take an example where, in the initial condition, we put g(x) = δ(x),

the Dirac delta function.
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Example 4.7.2. Consider the generalized Cauchy type problem for unified general-

ized linear space-time reaction-diffusion equation

Dγ,µ,ν
ρ,ω,0+u(x, t) = k ∆

λ
2 (u(x, t)) + c u(x, t) + b ϕ(x, t), t > 0, x ∈ R, (4.94)

with initial condition

[
P−γ(1−ν)

ρ,(1−ν)(1−µ),ω,0+u(x, 0+)
]

= δ(x), (4.95)

where δ(x) is the Dirac delta function and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.96)

with µ ∈ (0, 1), ν ∈ [0, 1], ω ∈ R, k, ρ > 0, γ ≥ 0, 0 < λ ≤ 2.

In view of Theorem 4.6.1, the solution of equation (4.94), is given by

u(x, t) =
1

2π

∞∑
n=0

tµ(n+1)−ν(µ−1)−1E
γ(n+1−ν)
ρ,µ(n+1)−ν(µ−1)(ωt

ρ)

∫ ∞
−∞

(c− k|η|λ)ne−iηxdη

+
b

2π

∫ ∞
−∞

∫ t

0

(c− k|η|λ)nτµ(n+1)−1E
γ(n+1)
ρ,µ(n+1)(ωτ

ρ) ϕ∗(η, t− τ)e−iηxdη dτ

(4.97)

where ϕ∗(η, t) is Fourier transform of the function ϕ(x, t) and F {δ(x); η} = 1.

4.8 Concrete Applications

When γ = 0, ν = 1, the Hilfer-Prabhakar fractional space derivative (1.103)

get reduced to Caputo fractional derivative C
0 D

µ
t defined in (1.97) and it yields the

following result:

Corollary 4.8.1. Consider the generalized Cauchy type problem for fractional linear
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space-time reaction-diffusion equation

C
0 D

µ
t u(x, t) = k ∆

λ
2 (u(x, t)) + c u(x, t) + b ϕ(x, t), t > 0, x ∈ R, (4.98)

with initial condition

I(1−µ)
t u(x, 0+) = g(x), (4.99)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.100)

with µ ∈ (0, 1), 0 < λ ≤ 2. Then the solution of equation (4.98), is given by

u(x, t) =
1

2π

∫ ∞
−∞

g∗(η)Eµ,0(c− k|η|λ)tµe−iηxdη

+
b

2π

∫ ∞
−∞

∫ t

0

ξµ−1Eµ,µ(c− k|η|λ)tµϕ∗(η, t− ξ)dξdη.

where g∗(η) and ϕ∗(η, t) are Fourier transform of the functions g(x) and ϕ(x, t)

respectively and Eρ,µ(·) is the two parameter Mittag- Leffler function.

On taking γ = 0, ν = 0, the Hilfer-Prabhakar fractional derivative (1.103)

reduces to a Riemann-Liouville fractional derivative RL
0 Dµ

t as defined by (1.87) and

the Theorem 4.6.2 yields the following corollary:

Corollary 4.8.2. Consider the generalized Cauchy type problem for fractional linear

space-time reaction-diffusion equation

RL
0 Dµ

t u(x, t) = k ∆
λ
2 (u(x, t)) + c u(x, t) + b ϕ(x, t), t > 0, x ∈ R, (4.101)

with initial condition

I(1−µ)
t u(x, 0+) = g(x), (4.102)

and boundary condition

lim
|x|→∞

u(x, t) = 0, t > 0 (4.103)
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with µ ∈ (0, 1), 0 < λ ≤ 2.

Then, the solution of equation (4.101) is given by

u(x, t) =
t(µ−1)

2π

∫ ∞
−∞

g∗(η)Eµ,µ(c− k|η|λ)tµe−iηxdη

+
b

2π

∫ ∞
−∞

∫ t

0

ξµ−1Eµ,µ(c− k|η|λ)tµϕ∗(η, t− ξ)dξdη.
(4.104)

where g∗(η) and ϕ∗(η, t) are Fourier transforms of the functions g(x) and ϕ(x, t),

respectively and Eρ,µ(·) is the two parameter Mittag- Leffler function.
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4.9 Conclusion

The solution of a unified generalized linear space-time fractional reaction-diffusion

equation involving Hilfer-Prabhakar time fractional derivative and the space frac-

tional generalized Laplace operators is obtained in terms of Mittag-Leffler function

by using Laplace transform and Fourier transform and the solution of time-space

fractional advection-dispersion equation is obtained in terms of Mittag-Leffler func-

tion and H-function by using Laplace transform and Fourier transform. Usually, this

method is very useful to study various problems arising in fluid dynamics, control

theory, aerodynamics and applied sciences The analytic solutions are the exact solu-

tions. Efficient numerical techniques can be developed to find solution of fractional

PDE by considering these analytic solutions as base.
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integral transform of pathway type, Prog. Fract. Differ. Appl., 1(5), (2015),

145-155.
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Motivated by the work of Kumar [87], in the present chapter we find the Pα-

transform of Caputo fractional derivatives and derive Pα-transform for Volterra and

Abel integral equation. Further, in Section 3 we find the solution of fractional

Volterra integral equation. We discuss its application for solving singular integral

equation having Bessel function in its kernel. The solution of non homogeneous time

fractional heat equation in a spherical domain has been discussed.

5.1 Introduction

The subject of fractional calculus deals with the investigation of integrals and deriva-

tives of any arbitrary real or complex order, which unify and extend the notations of

fractional order derivative and n-fold integral. Fractional calculus is now considered

as a partial technique in many branches of science including physics (Oldham and

Spanier [124]). Recently Srivastava et al. [175] gave the model of under-actuated

mechanical system with fractional order derivative and Sharma et al. [40] studied

advanced generalized fractional kinetic equation in Astrophysics.

In an integral equation, an unknown function to be determined, appears under one

and more integral signs. The integral equation has been a subject of interest of

mathematicians as well as physicists and engineers also. The development of inte-

gral equation has led to the formation of many real world engineering and physical

problems and also in mathematical physics models, such as scattering in quantum

mechanism, diffraction problem, conformal mapping and water waves. A large num-

ber of initial and boundary value problems can be converted into Volterra integral

equation. The Volterra’s population growth model, biological species living together,

the heat transformation and heat radiation are many areas which are described by in-

tegral equations. Many scientific problems give rise to integral equations often arises

in low frequency electromagnetic problems, electrostatic, electromagnetic scattering

problems and elastic waves and many more (see, e.g. [151, 182]). The fractional
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order integral equations has numerous applications in porous media, rheology, con-

trol, electro chemistry, viscoelasticity, electromagnetism fluid structure, coupling

and particle mechanics (see, e.g. [51], [115], [124], [177]).

The general form of integral equation (Wazwaz [182]) is given by

u(x) = f(x) + λ

∫ h(x)

g(x)

K(x, t)u(t)dt, (5.1)

where g(x) and h(x) are the limits of integration, λ is a constant parameter, and

K(x, t) is called the kernel or the nucleus of the integral equation. The function

u(x) to be determined appears under the integral sign. The kernel K(x, t) and the

function f(x) in equation (5.1) are given and the limits of integration g(x)and h(x)

may be both variables, constant or mixed.

The general form of Volterra integral equations (Rahman [145]) is

u(x) = f(x) + λ

∫ x

a

K(x, t)u(t)dt, (5.2)

where the limits of integration are functions of x and the unknown function u(x)

appears linearly under the integral sign.

Abel’s integral equation (see, e.g. Gorenflo and Vessela [52], Kilbas and Saigo

[78]) is given by

f(t) =
λ

Γ(µ)

∫ t

0

u(τ)

(t− τ)µ
dτ, 0 < µ < 1 (5.3)

5.2 Main Results

Theorem 5.2.1. If Caputo fractional derivatives of function f(t) of order ν exist

and are Pα- transformable and if Pα[f(t); s] = F (s), then for α > 1, we have

Pα
[
C
0 Dν

t f(t); s
]

=

{
ln[1 + (α− 1)s]

α− 1

}ν
F (s)−

n−1∑
k=o

{
ln[1 + (α− 1)s]

α− 1

}ν−k−1

f (k)(0)

(5.4)
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where n− 1 < ν ≤ n.

Proof: Using the fact that C
0 Dν

t f(t) = 0Dν−n
t (f (n)(t)) = 0D−(n−ν)

t (f (n)(t)), n ≥ ν >

n− 1, Lemma (1.2.3) gives,

Pα
[
C
0 Dν

t f(t); s
]

=

{
α− 1

ln[1 + (α− 1)s]

}n−ν
Pα(f (n)(t)). (5.5)

So

Pα
[
C
0 Dν

t f(t); s
]

=

{
ln[1 + (α− 1)s]

α− 1

}ν−n
Pα(f (n)(t)) (5.6)

Applying Theorem 1.2.4, we get

Pα
[
C
0 Dν

t f(t); s
]

=

{
ln[1 + (α− 1)s]

α− 1

}ν−n [{
ln[1 + (α− 1)s]

α− 1

}n
F (s)

−
n−1∑
k=0

{
ln[1 + (α− 1)s]

α− 1

}n−k−1

f (k)(0)

]

Finally ,

Pα
[
C
0 Dν

t f(t); s
]

=

{
ln[1 + (α− 1)s]

α− 1

}ν
F (s)−

n−1∑
k=o

{
ln[1 + (α− 1)s]

α− 1

}ν−k−1

f (k)(0).

(5.7)

Theorem 5.2.2. The solution of Volterra integral equation (5.2) using Pα-transform

is given by P−1
α

{
1

1−λPαK(x)

}
= ψ(x), where PαK(x) 6= 1

λ
, α > 1

Proof: Apply Pα- transform on both side of (5.2) and using Theorem 1.2.2, we obtain

Pα {u(x)} = Pα {f(x)}+ λPα {K(x)}Pα {u(x)} (5.8)

Let the Pα- transform of u(x) and K(x− t) be U(s) and K(s), respectively, then by

Theorem (1.2.2),

U(s) = F (s) + λK(s)U(s) (5.9)
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Hence

U(s) =
F (s)

1− λ(K(s))
;K(s) 6= 1

λ
(5.10)

and inverse transform gives

u(x) =

∫ x

0

ψ(x− t)f(t)dt (5.11)

where it is assumed that P−1
α

{
1

1−λPαK(x)

}
= ψ(x).

The expression (5.11) is the solution of second kind Volterra integral equation of

convolution type.

Theorem 5.2.3. For α > 1 and 0 < µ < 1, then the solution of the Abel integral

equation (5.3) is given by

u(t) =
sinπµ

π

∫ t

0

(t− τ)µ−1G(τ) dτ, (5.12)

where G(t) = P−1
α

{
F (s)

(
α−1

ln[1+(α−1)s]

)}
.

Proof: The Abel integral equation is given by

f(t) =

∫ t

0

u(τ)

(t− τ)µ
dτ, t > 0 (5.13)

Applying the Pα-transform on both side of equation (5.13) and using Theorem 5.2.1,

we get

Pα{f(t)} = Pα{u(t)}Pα{t−µ} (5.14)

If we take Pα{f(t)} = F (s), Pα{u(t)} = U(s) and using formula of Pα-transform

for power function given in (1.82), we get

F (s) = U(s)Γ(1− µ)

{
ln[1 + (α− 1)s]

α− 1

}µ−1

(5.15)
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which leads to

U(s) =
F (s)

Γ(1− µ)
{

ln[1+(α−1)s]
α−1

}µ−1 =

{
ln[1+(α−1)s]

α−1

}
F (s)

Γ(1− µ)
{

ln[1+(α−1)s]
α−1

}µ (5.16)

Using duplication formula for Gamma function (Rainville [146, p.24, Eq.2]), we get

P−1
α

 1

Γ(1− µ)
{

ln[1+(α−1)s]
α−1

}µ ; t

 =
t(µ−1)

Γ(1− µ)Γ(µ)
=
sinπµ

π
tµ−1 (5.17)

Finally, application of Theorem 1.2.2 gives

u(t) =
sinπµ

π

∫ t

0

(t− τ)µ−1G(τ) dτ, (5.18)

where G(t) = P−1
α

{
F (s)

(
α−1

ln[1+(α−1)s]

)}
.

5.3 Solution of Fractional Volterra Integral Equa-

tion by Using Pα - Transform

Theorem 5.3.1. Consider fractional Volterra singular integral equation of the form

C
0 Dν

t f(x) = g(x) + λ

∫ +∞

x

K(x− t)f(t)dt, f(0) = 0, (5.19)

in which K(x, t) = K(x − t) is the kernel, g(x) satisfies all conditions of Lemma

(1.2.5) and 0 < ν ≤ 1, then (5.19) has solution of the form

f(x) =
1

2πi

∫ γ+i∞

γ−i∞

 G(s)

λK(−s)−
{

ln[1+(α−1)s]
α−1

}ν [1 + (α− 1)s]
t

α−1

 ds. (5.20)

Proof: Apply Pα -transform on both sides of Eq. (5.19) denote Pα[f(x)] = F (s),

Pα[g(x)] = G(s). Let K(−s) be the Pα-transform of K(x). Then by using Theorem
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1.2.2, we obtain

{
ln[1 + (α− 1)s]

α− 1

}ν
F (s) = G(s) + λK(−s)F (s) (5.21)

which gives,

F (s) =
−G(s)

λK(−s)−
{

ln[1+(α−1)s]
α−1

}ν , (5.22)

and consequently by taking the inverse Bromwich’s integral we get the following

relation

f(x) =
1

2πı

∫ γ+i∞

γ−i∞

 G(s)

λK(−s)−
{

ln[1+(α−1)s]
α−1

}ν [1 + (α− 1)s]
t

α−1

 ds (5.23)

which can be solved further by the use of Residue theorem (see Brown and Churchill

[13]).

Here, we illustrate the application of the above theorem in finding solutions of some

singular integral equations:

(i) Consider singular integral equation having Bessel function J0(2
√

(x− t) as

its kernel

C
0 Dν

t f (x) = e−ax + λ

∫ +∞

x

J0(2
√

(x− t))f(t)dt, f(0) = 0, 0 < ν ≤ 1 (5.24)

In view of (5.23), one can obtain solution of (5.24) as

f(x) =
1

2πi

∫ γ+i∞

γ−i∞

{
ln[1+(α−1)s]

α−1

}
e{

ln[1+(α−1)s]
α−1 }x{{

ln[1+(α−1)s]
α−1

}
+ a)(λe

1

{ ln[1+(α−1)s]
α−1 } +

{
ln[1+(α−1)s]

α−1

}ν+1
}ds
(5.25)

(a) By setting α→ 1 in Eq. (5.25), we obtain the corresponding results for the
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classical Laplace transform as follows:

f(x) =
1

2πi

∫ γ+i∞

γ−i∞

sesx

(s+ a)(λe
1
s + sν+1)

ds (5.26)

(ii) Taking ν = 0.5 in Eq. (5.25), we obtain an interesting result:

Solution of integral equation

C
0 D0.5

t f(x) = e−ax + λ

∫ +∞

x

J0(2
√

(x− t)f(t)dt, f(0) = 0, 0 < ν ≤ 1 (5.27)

is given by

f(x) =
1

2πi

∫ γ+i∞

γ−∞

eAx
√
A(A+ a)(λe

1
AA−

3
2 + 1)

ds (5.28)

where A =
{

ln[1+(α−1)s]
α−1

}
Proof: We apply the Pα-transform of convolution of function and using the fact

that

P−1
α

{
1√

A(A+ a)

}
=

∫ x

0

ea(η−x)

√
πx

dx, (5.29)

and also the following relationship

P−1
α

{
1

1 + λe
1
AA−

3
2

}
= P−1

α

{
1−

(
λe

1
AA−

3
2

)
+
(
λe

1
AA−

3
2

)2

− ...
}

= P−1
α

{
1 +

∞∑
k=1

(−1)kλke
k
AA−

3k

2

}

= δ(x) +
∞∑
k=1

(−1)kλk
(x
k

) 3k−2
4
I 3k−2

2
(2
√
kx)

(5.30)

where A =
{

ln[1+(α−1)s]
α−1

}
. From equations (5.29) and (5.30), one gets the formal
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solution of equation (5.27) as follows:

f(x) =

{∫ x

0

ea(η−x)

√
πx

dη

}
∗

{
δ(x) +

∞∑
k=1

(−1)kλk
(x
k

) 3k−2
4
I 3k−2

2
(2
√
kx)

}
.

(iii) The solution of the following system of fractional singular integral equations of

the form,

C
0 Dν

t φ(x) = g(x)− λ
∫ +∞

x

k(x− t)ψ(t)dt

C
0 Dν

t (x)ψ(x) = h(x) + λ

∫ +∞

x

k(x− t)φ(t)dt,

(5.31)

with conditions φ(0) = 0, ψ(0) = 0 and 0 ≤ ν ≤ 1, is given by

Φ(x) =
1

2πi

∫ γ+i∞

γ−i∞

AνG(s) + λK(−s)H(s)

λ2(K(−s))2 + A2ν
eAxds,

ψ(x) =
1

2πi

∫ γ+i∞

γ−i∞

AνH(s) + λK(−s)G(s)

λ2(K(−s))2 + A2ν
eAxds.

(5.32)

where A =
{

ln[1+(α−1)s]
α−1

}
Proof: Multiplying second equation of (5.31) by i and adding to the first equation

leads to

C
0 Dν

t (φ+ iψ) = (g + ih)(x) + iλ

∫ ∞
x

k(x− t)(φ+ iψ)(t)dt. (5.33)

Now let (φ + iψ)(x) = ζ(x), (g + ih)(x) = f(x), iλ = ξ, then we can rewrite the

above equation in the form

C
0 Dν

t ζ(x) = f(x) + ξ

∫ ∞
x

k(x− t)ζ(t)dt. (5.34)

In view of (5.23), one can obtain solution of (5.34) as below:
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Taking pα transform of equation (5.34) leads to

{
ln[1 + (α− 1)s]

α− 1

}ν
Φ(s) = F (s) + ξK(−s)Φ(s) (5.35)

where Φ(s), F (s), K(s) are Pα-transform of the functions ζ(x), f(x), k(x), respec-

tively.

Hence we get the following relationship

Φ(s) =
AνG(s) + λK(−s)H(s)

λ2(K(−s))2 + A2ν
+ i

AνH(s) + λK(−s)G(s)

λ2(K(−s))2 + A2ν
(5.36)

G(s), H(s) being Pα - transform, of g(x), h(x), respectively. So we get

φ̃(s) =
AνG(s) + λK(−s)H(s)

λ2(K(−s))2 + A2ν
, ψ̃(s) =

AνH(s) + λK(−s)G(s)

λ2(K(−s))2 + A2ν

Finally, applying the complex inversion formula, the solution of (5.31) is obtained

as

Φ(x) =
1

2πi

∫ γ+i∞

γ−i∞

AνG(s) + λK(−s)H(s)

λ2(K(−s))2 + A2ν
eAxds,

ψ(x) =
1

2πi

∫ γ+i∞

γ−i∞

AνH(s) + λK(−s)G(s)

λ2(K(−s))2 + A2ν
eAxds

(5.37)

where A =
{

ln[1+(α−1)s]
α−1

}
.

(iv) Solution of the fractional Volterra singular integral equation of the form,

C
0 Dν

t ln(x− t)φ(t)dt, φ(0) = 0, 0 ≤ ν ≤ 1, (5.38)

is given by

φ(x) =
1

2πi

∫ γ+i∞

γ−i∞

AF (s)eAx

Aν+1 + λ(ξ + lnA)
ds (5.39)

where A =
{

ln[1+(α−1)s]
α−1

}
.
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Proof: After taking Pα - transform of above integral equation (5.38) and simplifying,

one gets

Pα[Φ(x); s] =
sF (s)

sA+1 + λ(ξ + lnA)
(5.40)

in which ξ ≈ 0.577 is Euler constant. Applying complex inversion formula to the

above relation leads to

φ(x) =
1

2πi

∫ γ+i∞

γ−i∞

AF (s)eAx

Aν+1 + λ(ξ + lnA)
ds (5.41)

where A =
{

ln[1+(α−1)s]
α−1

}
.

5.4 Non-Homogeneous Time Fractional Heat Equa-

tion in a Spherical Domain

Theorem 5.4.1. Let f(t) be Pα- transformable function. For 0 ≤ r < 1, t > 0, 0 <

ν ≤ 1, the solution of the non-homogeneous time fractional heat equation

C
0 Dν

t u(r, t) =
∂2u(r, t)

∂r2
+

2

r

∂u(r, t)

∂r
− λu(r, t)− f(t), t > 0 (5.42)

satisfying the boundary conditions lim
r→0
|u(r, t)| <∞, ur(1, t) = 1 and the initial con-

ditions u(r, 0) = 0, f(0)=0,

is given by

u(r, t) =
1

r

1

2πi

∫ γ+i∞

γ−i∞

( (
sinh r

√
λ+ Aν

)
A
(
λ+ A cosh

(√
λ+ Aν

)
− sinh

(√
λ+ Aν

)) − F (s)

λ+ Aν

)
estds.

(5.43)

Proof. Let us define ν(r, t) = ru(r, t). Then equation (5.42) becomes

C
0 Dν

t v(r, t) =
∂2ν(r, t)

∂r2
− λν(r, t)− rf(t) (5.44)
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By taking the Pα- transform of equation (5.44) with respect to variable t and

applying boundary conditions, we get

{
ln[1 + (α− 1)s]

α− 1

}ν
V (r, s) =

d2V (r, s)

dr2
− λV (r, s)− rF (s), f(0) = 0 (5.45)

where V (r, s) = Pα[ν(r, t)].

or
d2V (r, s)

dr2
−
(
λ+

{
ln[1 + (α− 1)s]

α− 1

}ν)
V = rF (s) (5.46)

with the boundary conditions

lim
r→0
|V (r, s)| = 0, and Vr(1, s)− V (1, s) =

1

s
.

Equation (5.46) is second order ordinary differential equation. Its solution is given

by

V (r, s) =

(
sinh r

√
λ+ Aν

)
A
(
λ+ Aν cosh

(√
λ+ Aν

)
− sinh

(√
λ+ Aν

)) − F (s)

λ+ Aν
(5.47)

where A =
{

ln[1+(α−1)s]
α−1

}
. By using Bromwich’s integral and taking inverse Pα-

transform we get

v(r, t) =
1

2πi

∫ γ+i∞

γ−i∞

( (
sinh r

√
λ+ Aν

)
s
(
λ+ A cosh

(√
λ+ Aν

)
− sinh

(√
λ+ Aν

)) − F (s)

λ+ Aν

)
estds,

(5.48)

and hence we obtain

u(r, t) =
1

r

1

2πi

∫ γ+i∞

γ−i∞

( (
sinh r

√
λ+ Aν

)
s
(
λ+ A cosh

(√
λ+ Aν

)
− sinh

(√
λ+ Aν

)) − F (s)

λ+ Aν

)
estds.

(5.49)

The Pα- transforms are useful when the boundary conditions are time dependent.

Now consider the case when one of the boundary is moving. This type of problem
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arises in combustion problems where the boundary moves due to the burning of the

fuel (see, e.g. Duffy[33]).

Example 5.4.1. Consider the following time dependent heat equation

∂u

∂t
= a2∂

2u

∂x2
(5.50)

where βt < x < ∞, t > 0, β ∈ R and subject to the initial condition u(x, 0) =

0, 0 < x <∞ and boundary conditions u(x, t)|x=βt = f(t), lim
x→∞
|u(x, t)| <∞, t > 0.

Then the solution of (5.50) is given by

u(x, t) = e
−β(x−βt)

2a2

∫ t

0

f(t− τ)Φ(x− βτ, τ)dτ (5.51)

where

Φ(x− βt, t) =
1

2

[
e
−β(x−βt)

2a2 erfc

(
η

2a
√
t
− β
√
t

2a

)
+ e

β(x−βt)
2a2 erfc

(
η

2a
√
t

+
β
√
t

2a

)]
(5.52)

Proof: By introducing the new coordinate η = x − βt, the problem can be

reformulated as
∂u

∂t
− β∂u

∂η
= a2∂

2u

∂η2
(5.53)

where 0 < η <∞, t > 0 and subject to the boundary conditions

u(0, t) = f(t), lim
η→∞
|u(η, t)| <∞, t > 0

and the initial condition u(η, 0) = 0, 0 < η <∞.

Taking the Pα- transform of the equation (5.53) with respect to t and denoting

Pα[u(η, t)] = U(η, s) we obtain

d2U(η, s)

dη2
+
β

a2

dU(η, s)

dη
−
{

ln[1 + (α− 1)s]

α− 1

}
1

a2
U(η, s) = 0 (5.54)
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with

U(0, s) = F (s), lim
η→∞
|U(η, s)| <∞

The solution to the differential equation (5.54) is

U(η, s) = F (s)exp

(
−βη
2a2
− η

a

√
A+

β2

4a2

)
(5.55)

where A =
{

ln[1+(α−1)s]
α−1

}
.

Referring the result by Duffy [33, p.89, Eq. (2.274)], correspondingly for Pα-

transform, we have

Pα[Φ(η, t)] = exp

(
−η
a

√
A+

β2

4a2

)
(5.56)

where

Φ(η, t) =
1

2

[
e
−βη
2a2 erfc

(
η

2a
√
t
− β
√
t

2a

)
+ e

βη

2a2 erfc

(
η

2a
√
t

+
β
√
t

2a

)]
(5.57)

By taking inverse Pα- transform of (5.55) and applying the convolution theorem, we

get

u(η, t) = e
−βη
2a2

∫ t

0

f(t− τ)Φ(η, τ)dτ (5.58)

and hence

u(x, t) = e
−β(x−βt)

2a2

∫ t

0

f(t− τ)Φ(x− βτ, τ)dτ. (5.59)

5.5 Conclusion

This chapter provides some new results in the areas of singular integral equa-

tions and fractional calculus. Furthermore, the implementation of the new integral

transform (Pα-transform) for solving certain integral equation have been discussed.

The importance of using Pα-transform method is that we get a wider class of integrals
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varying from binomial to exponential function and it is very efficient technique for

finding exact solution for certain singular integral equations. The method could lead

to a promising approach for many applications in applied sciences.
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Our objective in this chapter is to obtain a theorem using some operators defined

on a Lie algebra of endomorphisms of a vector space which generalizes some results

of researchers on the families of special functions and orthogonal polynomials. In

particular, we present examples, how the Lie algebraic approach can be used to

derive the differential recurrence relations, differential equation for extended Jacobi

polynomials and Gegenbauer polynomials.

The method developed in this chapter can also be used to study some other spe-

cial functions of mathematical physics. Certain properties of some special matrix

functions via Lie algebra are studied in the section. We have established a general

theorem concerning eigenvector for the product of two operators defined on a Lie

algebra of endomorphisms of a vector space derived in section 6.2.

In the section 6.5 and 6.6, we apply this theorem to obtain differential recurrence re-

lations and differential equations for 2-variable Hermite generalized Hermite matrix

polynomials and 2-variables Laguerre matrix polynomials.

6.1 Introduction

6.1.1 Orthogonal Polynomials

Consider a simple set of real polynomials ψn [146, Chapter 9, p. 148]. If there

exists an interval a < x < b and a function f(x) > 0 on that interval, and if

∫ b

a

f(x)ψm(x)ψn(x) = 0, m 6= n, (6.1)

we say that the polynomials ψn are orthogonal with respect to the weight function

f(x) over the interval a < x < b.

The orthogonality of Jacobi polynomials, Laguerre polynomials and Bessal functions

was first observed by Krall [83]. In fact, these polynomials or functions satisfy their

own family of differential equations. In 1929, Bochner classified all orthogonal poly-

nomials on real line satisfying second-order differential equations. In the late thirties
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Krall proved that all families of orthogonal polynomials that satisfy a fourth order

differential equation [83]. Some years earlier, Littlejohn had discovered all families of

orthogonal polynomials satisfying sixth-order differential equations. J. Koekoek and

R. Koekoek showed in 1991 that orthogonal polynomials with respect to the weights

satisfy infinite-order differential equations, except for the nonnegative integers.

The systems of orthogonal polynomials associated with the names of Hermite, La-

guerre, and Jacobi (including the special cases named after Chebyshev, Legendre

and Gegenbauer) are unquestionably the most extensively studied and widely ap-

plied systems. These three systems are called collectively the classical orthogonal

polynomials. The derivatives of any classical orthogonal polynomials are also or-

thogonal. Conversely, Hahn showed that the only orthogonal polynomials, whose

derivatives are also orthogonal, are the classical orthogonal polynomials. In fact,

Hahn considered only orthogonal polynomials relative to positive definite moment

functionals and Krall extended the result to the general orthogonal polynomials.

Later, Hahn extended his result by showing that the only orthogonal polynomials,

whose derivatives of any fixed order are also orthogonal, must be classical orthogonal

polynomials [18, 28, 41, 47, 48].

The Jacobi polynomials, also known as hypergeometric polynomials, occur in

the study of rotation groups and in the solution to the equations of motion of the

symmetric top. They are solutions to the Jacobi differential equation, and give some

other special named polynomials as special cases. The Jacobi polynomials appears

naturally as extension of Legendre polynomials and Gegenbauer polynomials in the

context of potential theory and harmonic analysis [20]. The Jacobi polynomial has

been used extensively in mathematical analysis and many practical applications.
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6.1.2 Extended Jacobi Polynomial

Fujiwara [43] studied the polynomial F
(α,β)
n (x; a, b, c) which is called the extended

Jacobi polynomial defined by Rodrigue formula

F (α,β)
n (x; a, b) =

(−1)n

n!

(
λ

b− a

)n
(x− a)−α(b− x)−β Dn[(x− a)n+α(b− x)n+β],

(6.2)

where D = d
dx
, α, β > −1.

Thakare [135] showed that,

Fn(α, β;x) =λn
(
x− a
b− a

)n(
n+ β

n

)
2F1

 −n,−n− a
1 + β

;
x− b
x− a


=λn

(
x− a
b− a

)n(
n+ β

n

) ∞∑
n=0

(−n)k(−n− a)k
k!(1 + β)

(
x− b
x− a

)k
.

(6.3)

He also expressed the extended Jacobi polynomials as

Fn(α, β;x) =λn
(
n+ β

n

)
2F1

 −n, 1 + α + β + n

1 + β
;
b− x
b− a


=λn

(
x− a
b− a

)n(
n+ β

n

) ∞∑
n=0

(−n)k(1 + α + β + n)k
k!(1 + β)

(
x− b
x− a

)k
.

(6.4)

This polynomial satisfy the following differential equation:

[(x−a)(b−x)D2+{(α + 1)(b− x)− (β + 1)(x− a)}D+n(1+α+β+n)]y = 0 (6.5)

The various types of generating functions for extended Jacobi functions are stud-

ied by Pittaluga et. al [136].

For a = −1, b = 1 and λ = 1, the extended Jacobi polynomial (6.3) reduces to
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Jacobi polynomial (Rainville [146, p. 255])

P (α,β)
n (x) =

n∑
k=0

(1 + α)n(1 + α + β)n+k

k!(n− k)!(1 + α)k(1 + α + β)n

(
x− 1

2

)k
. (6.6)

The generating function for Jacobi polynomial is given by:

∞∑
n=0

p(α,β) (x) tn = 2α+βR−1(1− t+R)−α(1 + t+R)−β (6.7)

where R = (1− 2zt+ t2)
1
2 .

The Jacobi polynomial p(α,β) (x) satisfies the differential equation

(1−x2)
d2P

(α,β)
n (x)

dx2
+[β−α− (2+α+β)x]

dP
(α,β)
n (x)

dx
+n(1+α+β+n)P (α,β)

n (x) = 0

(6.8)

If we take a = −1, b = 1, λ = 1 and α = β = 2ν − 1 for ν ∈ R then the extended

Jacobi polynomial (6.2) reduces to Gegenbauer polynomial (Rainville [146, p. 255])

Cν
n(x) =

[n/2]∑
k=0

(−1)k(ν)n−k(2x)n−2k

k!(n− 2k)!
(6.9)

The generating function for Cν
n(x) is given by

(1− 2xt+ t2)−ν =
∞∑
k=0

Cν
n(x)tn (6.10)

The Gegenbauer polynomials Cν
n(x) satisfies the differential equation

(1− x2)
d2

dx2
(Cν

n(x))− (2ν + 1)x
d

dx
(Cν

n(x)) + n(2ν + n)Cν
n(x) = 0. (6.11)
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For a = −1, b = 1, λ = 1 and α = β = 0, the extended Jacobi polynomial (6.2)

reduces to the Legendre polynomial Pn(x) (see, e.g. Rainville [146])

Pn(x) =

[n/2]∑
k=0

(−1)k(1
2
)n−k(2x)n−2k

k!(n− 2k)!
. (6.12)

For the basic properties and addition theorem of Gegenbauer and Legendre polyno-

mials one may refer book by Rainville [146].

Generating function for Legendre polynomial is given by

(1− 2xt+ t2)−
1
2 =

∞∑
n=0

Pn(x)tn. (6.13)

The Legendre polynomials Pn(x) satisfies the differential equation

(1− x2)
d2Pn
dx2

− 2x
dPn
dx

+ n(1 + n)Pn = 0. (6.14)

6.1.3 Lie Algebra and Special Function

The classical orthogonal functions of mathematical physics are closely related to

Lie groups. Specifically, they are matrix elements of, or basis vectors for, unitary

irreducible representations of low dimensional Lie groups.

The theory of generalized special functions has witnessed a rather significant evo-

lution during the last years. The most widely used orthogonal polynomials are the

classical orthogonal polynomials, consisting of the Hermite polynomials, the La-

guerre polynomials, the Jacobi polynomials together with their special cases. One

important method for studying special functions via their recurrence relations, dif-

ferential equations lies in closely with the standard Lie algebraic techniques. Many

important classical differential equations has connection with Lie theory. The in-

terplay between differential equations, special functions and Lie theory plays an
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important role in mathematical physics. When the Lie algebraic aspects of the spe-

cial functions are considered in the literature, they are limited to the Lie algebra

generated by the raising, lowering and maintaining operators.

Radulescu [143, 144] discussed some important properties of Hermite and Laguerre

polynomials using some operators defined on a Lie algebra. Mandal [104] stud-

ied some properties of simple Bessel polynomials considered by Krall and Frink

[83].Pathan and Khan [133, 134] extended the Lie algebraic approach discussed by

Radulescu [144] and Mandal [104] to derive some properties of generalized Hermite

polynomials of two variables (see, e.g. Dattoli et al. [22]), generalized Bessel func-

tions of two variables (Dattoli, et al. [23, 24]). Recently, Humi [66] has shown that in

addition to these operators, the dilation and the translation operators can be added

to these Lie algebras for some families of factorisable equations using factorization

method used in theoretical physics.

6.1.4 Matrix Polynomial

A matrix polynomial is a polynomial with matrices as variables. Given an ordi-

nary, scalar-valued polynomial

p(x) =
n∑
i=0

aix
i = a0 + a1x+ a2x

2 + . . .+ anx
n, (6.15)

this polynomial evaluated at a square matrix A of order N is

p(A) =
n∑
i=0

aiA
i = a0I + a1A+ a2x

2 + . . .+ anA
n, (6.16)

where I is the identity matrix.

A matrix polynomial equation is an equality between two matrix polynomials, which

holds for the specific matrices in question. A matrix polynomial identity is a matrix

polynomial equation which holds for all matrices A in a specified matrix ring Mn(R).
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The Hermite matrix polynomials (Jodar and Company [71]) Hn(x;A) are defined

as:

Hλ
n(x;A) = n!

[n2 ]∑
k=0

(−1)k

(n− 2k)!k!
(x
√

2A)n−2k (n ≥ 0). (6.17)

Following Rodrigues formula holds for the Hermite matrix polynomials

Hn(x,A) = exp

(
Ax2

2

)
(−1)n

(
A

2

)[
dn

dxn
exp

(
Ax2

2

)]
, n ≥ 0 (6.18)

and it satisfies the three terms recurrence relationship

Hn(x,A) = xI
√

2AHn−1 − 2(n− 1)zHn−2(x,A), n ≥ 1

H−1(x,A) = 0, H0(x,A) = 1
(6.19)

where, I is the identity matrix in CN×N is the space of all matrices whose entries

are complex numbers with real part and imaginary part are natural numbers and

its all eigenvalue has positive real part.

The generating function for the Hermite matrix polynomial is (Jodar and Company

[71])

exp
(
xt
√

2A− t2I
)

=
∞∑
n=0

Hn(x,A)
tn

n!
. (6.20)

The 2-variable generalized Hermite matrix polynomial Hλ
n(x, y;A) (Batahan [10])

defined as:

Hλ
n(x, y;A) = n!λn

[n2 ]∑
k=0

x
√

(A
2
)n−2kyk

λk(n− 2k)!k!
(n ≥ 0) (6.21)

and is specified by the generating function

exp

(
λ(xt)

√
A

2
+ yt2I

)
=
∞∑
n=0

Hλ
n(x, y;A)

tn

n!
(6.22)
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and satisfy the recurrence relations.

Hn(x, y, A) = y
n
2Hn(x/

√
y, A),

H0(x.y, A) = I,H1(x, y, A) = x
√

2A,

and Hn(x, 1, a) = Hn(x,A),

(6.23)

where Hn(x, a) is defined in (6.17).

The Laguerre matrix polynomial L
(A,λ)
n (x) (Jodar et al. [72]) is defined by

L(A,λ)
n (x) =

n∑
k=0

(−1)kλk

k!(n− k)!
(A+ I)n[(A+ I)k]

−1xk, n ≥ 0 (6.24)

where (A)n is the matrix Pochhammer symbol defined by

(A)n = A(A+ I) · · · (A+ (n− 1)I), n ≥ 1; (A)0 = I (6.25)

and is specified by the generating function

(1− t)−(A+I) exp

(
−λxt
1− t

)
=
∞∑
n=0

L(A,λ)
n (x)tn, x, t ∈ C, |t| < 1. (6.26)

The 2- variable Laguerre matrix polynomial L
(A,λ)
n (x) (Khan and Hasan [76]) is

defined by

L(A,λ)
n (x, y) =

n∑
k=0

(−1)kλkxkyk

k!(n− k)!
(A+ I)n[(A+ I)k]

−1, n ≥ 0 (6.27)

where (A)n is the matrix Pochhammer symbol defined by

(A)n = A(A+ I) · · · (A+ (n− 1)I), n ≥ 1; (A)0 = I (6.28)
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Laguerre matrix polynomial can also be expressed in terms of the confluent hyper-

geometric function (Andrews [3]) as

L(A,λ)
n (x, y) =

Γ(A+ (n+ 1)I)(Γ(A+ I))−1yn

Γ(n+ 1)
1F1

[
−n;A+ I;

λx

y

]
(6.29)

and is specified by the generating function

(1− yt)−A exp(−λxt) =
∞∑
n=0

L(A,λ)
n (x, y)tn, x, y, t ∈ C, |yt| < 1. (6.30)

6.1.5 Certain Properties of Some Special Matrix Functions

via Lie Algebra

Special matrix functions seen on statistics, Lie group theory and number theory

are well known (see, e.g. Constantine and Muirhead [21], Terras [176] and James

[68]). These types of functions are also useful in many subject viz. physics, chem-

istry and mechanics (see, e.g. Keller and Wolfe [75] and Morse and Fesbach [119]).

Recently, the classical orthogonal polynomials have been extended to the orthogonal

matrix polynomials by Defez and Jodar [30, 31] and Jodar et. al [72, 73]. Moti-

vated by their work, in this paper, we establish results for their polynomials using

Lie algebra approach.

Throughout in Theorems 6.5.1 and 6.6.1, we assume that A is a positive stable

matrix in CN×N , that is, A satisfies the following condition:

<(µ) > 0, for all µ ∈ σ(A), (6.31)

where σ(A) denotes the set of all the eigenvalues of A. If D0 is the complex plane cut

along the negative real axis and log(z) denotes the principle logarithm of z, then z
1
2

represents exp(1
2

log z). If the matrix A ∈ CN×N with σ(A) ⊂ D0, then A
1
2 =
√
A

denote the image of the matrix functional calculus acting on the matrix A.
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6.2 Main results

In this section, we shall prove results concerning eigenvector for the product of

two operators defined on a Lie algebra of endomorphisms of a vector space.

Let End V be the Lie algebra of endomorphisms of a vector space V , endowed with

the Lie bracket [·, ·] defined by [A,B] = AB − BA, for every A,B ∈ End V . The

main results of this chapter are contained in the following theorems:

Theorem 6.2.1. Let A,B ∈ End V be such that [A,B]yn = (a(2n + 1) + b + c)yn

and the sequence (yn)n ⊂ V is defined as follows: Ay1 = (c + 1)y0 and Byn =(
a(n2+2n)+bn+c(n+1)+1

an+bn+c+1

)
yn+1, n ∈ N . Then Ayn = (a(n − 1) + b(n − 1) + c + 1)yn−1

and yn is an eigenvector of the eigenvalue a(n2 − 1) + b(n − 1) + cn + 1, ∀ n ∈ N

for BA.

Proof: First, we shall show that

Ayn+1 = (an+ bn+ c+ 1)yn ∀ n ∈ N.

For n = 1, we have

[A,B]y1 = (3a+ b+ c)y1

A(By1)−B(Ay1) = (3a+ b+ c)y1

Also, Ay1 = y0 and By0 = y1, By1 = 3a+b+2c+1
a+b+c+1

y2. Thus, we find that

Ay2 = (a+ b+ c+ 1)y1.

Now, suppose that Ayn+1 = (an+ bn+ c+ 1)yn. Since we can write

[A,B]yn+1 = (a(2n+ 3) + b+ c)yn+1
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=⇒ A(Byn+1)−B(Ayn+1) = (a(2n+ 3) + b+ c)yn+1

=⇒ a ((n+ 1)2 + 2(n+ 1)) + b(n+ 1) + c(n+ 1) + 1

a(n+ 1) + b(n+ 1) + c+ 1
Ayn+2 − (an+ bn+ c+ 1)Byn

=(a(2n+ 3) + b+ c)yn+1

=⇒ a ((n+ 1)2 + 2(n+ 1)) + b(n+ 1) + c(n+ 2) + 1

a(n+ 1) + b(n+ 1) + c+ 1
Ayn+2

−(a(n2 + 2n) + bn+ c(n+ 1) + 1)yn+1 = (a(2n+ 3) + b+ c)yn+1

=⇒ a ((n+ 1)2 + 2(n+ 1)) + b(n+ 1) + c(n+ 2) + 1

a(n+ 1) + b(n+ 1) + c+ 1
Ayn+2

=[a(n2 + 4n+ 3) + b(n+ 1) + c(n+ 2) + 1]yn+1

=⇒ Ayn+2 = [a(n+ 1) + b(n+ 1) + c+ 1]yn+1

Hence, by mathematical induction Ayn+1 = (an + bn + c + 1)yn, n ∈ N and it

follows that

BAyn = [a(n− 1) + b(n− 1) + c+ 1]Byn−1,

i.e. BAyn = [a(n2 − 1) + b(n− 1) + cn+ 1]yn.

Hence, yn is an eigenvector of the eigenvalue [a(n2− 1) + b(n− 1) + cn+ 1] for BA,

∀ n ∈ N.

Many of the known results follow as special cases of the Theorem 6.2.1.

Firstly, if we take a = 0, b = 1 and c = 0 in the Theorem 6.2.1, we arrive at the

main result by Radulescu [143, Theorem 1] contained in the following corollary:

Corollary 6.2.2. Let G,H ∈ End V be such that [G,H]yn = Iyn, where the se-

quence (Tn)n ⊂ V is defined as follows: GH0 = 0 and Tn = HTn−1, for every n ≥ 1.

Then GTn = (n)Tn−1 and Tn is an eigenvector of eigenvalue n2, ∀ n ∈ N for HG.

Next, if we take, a = 0, b = 0 and c = 0 in the Theorem 6.2.1, we obtain the

following result by Mandal [104]:

Corollary 6.2.3. Let I, J ∈ End V be such that [I, J ]yn = 0, where the sequence
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(Un)n ⊂ V is defined as follows: IU1 = U0 and Un+1 = JUn, for every n ≥ 1. Then

IUn+1 = Un and Un is an eigenvector of eigenvalue 1, ∀ n ∈ N for JI.

Further taking, c = 0 in the Theorem 6.2.1, we get the main result by Pathan

and Khan [133]:

Corollary 6.2.4. Let K,L ∈ End V be such that [K,L]Sn = (a(1+2n)+b)Sn, where

the sequence (Sn)n ⊂ V is defined as follows: KS1 = S0 and LSn = a(n2+2n)+bn+1
(an+bn+1)

Sn+1,

for every n ≥ 1. Then KSn+1 = (an+ bn+ 1)Sn and Sn is an eigenvector of eigen-

value a(n2 − 1) + b(n+ 1) + 1, ∀ n ∈ N for LK.

If we take a = 1, b = 0 and c = α in the Theorem 6.2.1, denoting by P and Q, the

operators A and B respectively and we obtain the following theorem for extended

Jacobi polynomials.

Theorem 6.2.5. Let P,Q ∈ End V be such that [P,Q]yn = (1 + 2n + α)yn, where

α ∈ R and the sequence (yn)n ⊂ V is defined as follows: Py0 = 0 and Qyn =

(n + 1)yn+1, for every n ≥ 1. Then Pyn = (n + α)yn−1 and yn is an eigenvector of

eigenvalue n(n+ α),∀ n ∈ N for QP .

Next, if we take a = 0, b = 0 and c = α = 2ν − 1, in Theorem 6.2.1, we denote by

E and F , the operators A and B respectively and we obtain the following theorem

for the Gegenbauer polynomials:

Theorem 6.2.6. Let E,F ∈ End V be such that [E,F ]Wn = (2n + 2ν)Wn, where

ν ∈ R and the sequence (Wn)n ⊂ V is defined as follows: EW0 = 0 and FWn =

(n + 1)Wn+1, ∀ n ∈ N . Then EWn = (2ν + n − 1)Wn−1 and Wn is an eigenvector

of eigenvalue n(2ν + n− 1), ∀ n ∈ N for FE.

If we take α = 0, in the Theorem 6.2.5, we obtain the main result by Pathan

and Khan [134] in the following corollary:
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Corollary 6.2.7. Let S, T ∈ End V be such that [S, T ]yn = (1 + 2n)yn, where the

sequence (Zn)n ⊂ V is defined as follows: SZ0 = 0 and nZn = TZn−1, for every

n ≥ 1. Then SZn = (n)Zn−1 and Zn is an eigenvector of eigenvalue n2, ∀ n ∈ N

for TS.

Let End V be the Lie algebra of endomorphisms of a vector space V , endowed with

the Lie bracket [·, ·] defined by [C,D] = CD −DC, for every C,D ∈ End V . The

following theorems are results of the matrix function of this chapter:

Theorem 6.2.8. Let C,D ∈ End V be such that [C,D]yn = −yn, the sequence

(yn)n ⊂ V is defined as follows: Cy0 = 0 and Dyn = −(n+ 1)yn+1, for every n ≥ 1.

Then Cyn = yn−1 and yn is an eigenvector of eigenvalue (−n) for DC, for every

n ≥ 1.

Proof: First, we show

Cyn = yn−1, for every n ≥ 1.

For n = 1, this equality is evident, because

[C,D]y0 = −y0,

C(Dy0)−D(Cy0) = −y0,

also Cy0 = 0 and Dy0 = −y1 and therefore,

Cy1 = y0

Now, suppose that Cyn = yn−1, then we have

[C,D]yn = −yn,

⇒ C(Dyn)−D(Cyn) = −yn,



6.3 Recurrence Relations and Differential Equation for the
Extended Jacobi Polynomials 159

⇒ C((n+ 1)yn+1)−D(n+ α)(yn−1) = −yn.

Using linearity property and Dyn−1 = nyn, we get

(n+ 1)C(yn+1)− (n+ α)nyn = −yn,

which on solving for C(yn+1), gives

C(yn+1) = yn.

Therefore, by mathematical induction, Cyn = yn−1, for every n ≥ 1. It follows

immediately that DCyn = −nyn.

Hence, yn is an eigenvector of eigenvalue (−n) for DC, for every n ≥ 1.

6.3 Recurrence Relations and Differential Equa-

tion for the Extended Jacobi Polynomials

In this Section, we apply Theorem 6.2.5 to obtain the differential recurrence

relations and the differential equation for the extended Jacobi polynomial. Let

V = C∞(R3) be the set of infinitely many times differentiable functions u : R→ C.

We define the operators A,B ∈ End V as

Au(x, y, z) =
(x− a)y−1z

λ
ux −

z

λ
uy (6.32)

Bu(x, y, z) =
λ

(b− a)

[
(x− a)(x− b)yz−1ux + (x− b)y2z−1uy

+ (x− a)yuz + (1 + α)(x− b)yz−1
] (6.33)

for (x, y, z) ∈ R3 and ux, uy and uz denote ∂u
∂x

, ∂u
∂y

and ∂u
∂z

respectively.

We claim that the operators (6.32) and (6.33) obey the commutation relation
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[A,B]yn = (1 + 2n+ α)yn. Indeed,

[A,B]u(x, y, z) =A(Bu(x, y, z))−B(Au(x, y, z))

=

(
(x− a)y−1z

λ

∂

∂x
− z

λ

∂

∂y

)
× λ

(b− a)

[
(x− a)(x− b)yz−1ux + (x− b)y2z−1uy

+(x− a)yuz + (1 + α)(x− b)yz−1]− λ

(b− a)

[
(x− a)(x− b)yz−1 ∂

∂x

+(x− b)y2z−1 ∂

∂y
+ (x− a)y

∂

∂z
+ (1 + α)(x− b)yz−1

]
×
(

(x− a)y−1z

λ
ux −

z

λ
uy

)
=2y

∂u

∂y
+ u+ αu

(6.34)

Hence, this equation simplifies to

[A,B]u(x, y, z) =

(
2y

∂

∂y
+ 1 + α

)
u(x, y, z). (6.35)

Now, if u(x, y, z) assumes the form u(x, y, z) = Fn(α, β;x)ynzβ = yn ∈ C∞(R3),

then we have

[A,B](Fn(α, β;x)ynzβ) =

(
2y

∂

∂y
+ 1 + α

)
Fn(α, β;x)ynzβ

=(1 + 2n+ α)Fn(α, β;x)ynzβ
(6.36)

and our claim is justified.

Now, the relation Byn = (n+ 1)yn+1 gives following differential recurrence relation
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on operator B for yn

λ

(b− a)

[
(x− a)(x− b)yz−1 ∂

∂x
+ (x− b)y2z−1 ∂

∂y

+(x− a)y
∂

∂z
+ (1 + α)(x− b)yz−1

]
Fn(α, β;x)ynzβ

=(n+ 1)Fn+1(α, β;x)yn+1zβ

This yields[
(x− a)(x− b) ∂

∂x
+ n(x− b) +β(x− a) + (1 + α)(x− b)]Fn(α, β;x)yn+1zβ

=
(b− a)(n+ 1)

λ
Fn+1(α, β;x)yn+1zβ+1

Writing Fn(α, β;x)ynzβ = Fn(α, β − 1;x)ynzβ−1, on right hand side of the equa-

tion (6.37), we get

(x− a)(x− b)F ′n(α, β;x)+[(n+ α + 1)(x− b) + β(x− a)]Fn(α, β;x)

=
(b− a)(n+ 1)

λ
Fn+1(α, β − 1;x)

(6.37)

Next, if we use the relation Ayn = (n+ α)yn−1, we obtain the following differential

recurrence relation on operator A

(
(x− a)y−1z

λ

∂

∂x
− z

λ

∂

∂y

)
Fn(α, β;x)ynzβ = (n+ α)Fn−1(α, β;x)yn−1zβ

⇒
[

(x− a)Fn(α, β;x)yn−1zβ+1

λ
− nFn(α, β;x)yn−1zβ+1

λ

]
= (n+ α)Fn−1(α, β;x)yn−1zβ
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or equivalently

(x− a)F
′

n(α, β;x)zβ − nFn(α, β;x)zβ = λ(n+ α)Fn−1(α, β;x)zβ−1.

Hence,

(x− a)F
′

n(α, β;x)− nFn(α, β;x) = λ(n+ α)Fn−1(α, β + 1;x). (6.38)

From (6.37) and (6.38), we obtain

1

(x− a)(x− b)

(
(b− a)(n+ 1)

λ
Fn+1(α, β − 1;x)− ((n+ α + 1)(x− b)

)
+β(x− a))Fn(α, β;x))

=
1

(x− a)
(λ(n+ α)Fn−1(α, β + 1;x) + nFn(α, β;x) .

So,

(b− a)(n+ 1)

λ
Fn+1(α, β − 1;x)− ((2n+ α + 1)(x− b) + β(x− a))Fn(α, β;x)

= λ(x− b)(n+ α)Fn−1(α, β + 1;x)

(6.39)

Finally, the relation BAyn = n(n+ α)yn gives

λ

(b− a)

{
(x− a)(x− b)yz−1 ∂

∂x
+ (x− b)y2z−1 ∂

∂y
+ (x− a)y

∂

∂z

+(1 + α)(x− b)yz−1
}
×
[(

(x− a)y−1z

λ

∂

∂x
− z

λ

∂

∂y

)]
Fn(α, β;x)ynzβ

= n(n+ α)Fn(α, β;x)ynzβ
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or equivalently,

(x− a)(b− xF ′′n (α, β;x) + {(α + 1)(b− x)− (β + 1)(x− a)}

× F ′n(α, β;x) + n(1 + α + β + n)Fn(α, β;x) = 0
(6.40)

Thus, we observe that extended Jacobi polynomial F
(α,β)
n (x; a, b) is the solution

of the differential equation (6.40). Further, we note that the relation (6.37) and

(6.38) are differential recurrence relations and (6.39) is the recurrence relation sat-

isfied by the extended Jacobi polynomial F
(α,β)
n (x; a, b).

Special cases of the extended Jacobi Polynomial can be obtained by giving par-

ticular values to the parameters in the operators A and B above.

(1) If we take a = −1, b = 1 and λ = 1 in (6.32) and (6.33), we obtain

Au(x, y, z) = (x− 1)y−1zux − zuy (6.41)

and

Bu(x, y, z) =
1

2

[
(x2 − 1)yz−1ux + (x− 1)y2z−1uy

+ (x+ 1)yuz + (1 + α)(x− 1)yz−1
] (6.42)

Then by using the relation BAyn = n(n+ α)yn and writing Fn(α, β;x) = P
(α,β)
n (x)

one can obtain differential equation

(1−x2)
d2P

(α,β)
n (x)

dx2
+[β−α− (2+α+β)x]

dP
(α,β)
n (x)

dx
+n(1+α+β+n)P (α,β)

n (x) = 0

(6.43)

which is a differential equation whose solution is classical Jacobi polynomials.

Also, by using the relations Ayn = (n + α)yn−1 and Byn = (n + 1)yn+1, we get
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following differential recurrence relations for classical Jacobi polynomial.

(x2 − 1)P
′(α,β)
n (x) + ((n+ α + 1)(x− 1) + β(x+ 1))P (α,β)

n (x) (6.44)

= 2(n+ 1)P
(α,β+1)
n+1 (x)

and

(x− 1)P
′(α,β)
n (x)− nP (α,β)

n (x) = (n+ α)P
(α,β+1)
n−1 (x) (6.45)

(2) Again if we take a = −1, b = 1, λ = 1 and α = β = 0, writing Fn(α, β;x) = Pn(x)

in (6.32) and (6.33), we obtain

Au(x, y, z) = (x− 1)y−1zux − zuy (6.46)

and

Bu(x, y, z) =
1

2

[
(x2 − 1)yz−1ux + (x− 1)y2z−1uy + (x+ 1)yuz + (x− 1)yz−1

]
(6.47)

Then, by using relation BAyn = n(n+ α)yn, one can obtain

(1− x2)
d2Pn(x)

dx2
− 2x

dPn(x)

dx
+ n(1 + n)Pn(x) = 0 (6.48)

which is the differential equation whose solution is Legendre polynomial Pn(x).

6.4 Recurrence Relations and Differential Equa-

tion for Gegenbauer Polynomials

In this section, we obtain certain properties viz. differential recurrence relations,

differential equations of Gegenbauer polynomials, by application of Theorem 6.2.6

Let V = C∞(R2), In view of Theorem 6.2.6, we define the operators E and F on
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End ∈ V as follows:

Eu(x, y) = (x2 − 1)y−1∂u

∂x
− x∂u

∂y
(6.49)

Fu(x, y) = (x2 − 1)y
∂u

∂x
+ xy2∂u

∂y
+ 2νxyu (6.50)

For every (x, y) ∈ R × R, where ux and uy denote ∂u
∂x

and ∂u
∂y

, respectively. It can

be easily seen that these operators satisfy the commutation relation [E,F ]yn =

(2n+ 2ν)yn.

Now, if u(x, y) assumes the form u(x, y) = fn(x)yn = wn ∈ C∞(R2), then we have

[E,F ](fn(x)yn) =

(
2y

∂

∂y
+ 2νy

)
(fn(x)yn) = (2n+ 2ν)(fn(x)yn). (6.51)

Above Eq. (6.51) and the relation

Eyn = (n+ 1)yn+1

by virtue of Theorem 6.2.6 gives

(x2 − 1)
∂fn(x)

∂x
= (n+ 1)fn+1(x)− x(2ν + n)fn(x). (6.52)

Again the relation Ewn = (2ν + n− 1)wn−1 yields

(x2 − 1)
∂fn(x)

∂x
= (2ν + n+ 1)fn−1(x) + xnfn(x) (6.53)

which on using (6.52) can be written as

(n+ 1)fn+1(x)− 2x(v + n)fn(x) + (2ν + n− 1)fn−1(x) = 0. (6.54)

Again, by virtue of Theorem 6.2.6 we can write BAyn = n(1− 2ν − n)yn

(x2 − 1)2f ′′n(x) + x(x2 − 1)(2ν + 1)f ′n(x)− n(2ν + n)(x2 − 1)fn(x) = 0,
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which yields

(1− x2)f ′′n(x)− x(2ν + 1)f ′n(x) + n(2ν + n)fn(x) = 0. (6.55)

Now, we observe that the Gegenbauer polynomial Cν
n(x) is a solution of the

differential equation (6.55). It is interesting to note that (6.52) and (6.53) are differ-

ential recurrence relations and relation (6.54) is the three-term recurrence relation

satisfied by Gegenbauer polynomial Cν
n(x).

6.5 2-variable Generalized Hermite Matrix Poly-

nomials

In this section, we apply Theorem 6.2.8 to obtain differential recurrence relations

and differential equations for 2-variable generalized Hermite matrix polynomials.

Theorem 6.5.1. The 2-variable generalized Hermite matrix polynomial Hλ
n(x, y;A)

in Eq. (6.21) satisfies the following differential equation

[
λA− 2yI

A2λ

]
∂2

∂x2
fn(x, y;A)− xI ∂

∂x
fn(x, y;A) + nIfn(x, y;A) = 0 (6.56)

and the recurrence relation

(
λI − 2y

A

)
∂

∂x
fn(x, y;A) = λxAfn(x, y;A)− (n+ 1)Ifn+1(x, y;A). (6.57)

or
∂

∂x
fn(x, y, A) = Aλfn−1(x, y, A) (6.58)

Proof: Let V = CN×N , we define the operator C,D ∈ End V as

C(x, y, t;A) =
1

λtA

∂u

∂x
(6.59)
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D(x, y, t;A) =

(
λI − 2y

A

)
t
∂u

∂x
− λxtA (6.60)

For x, y, t ∈ C and A is the matrix in CN×N . We claim that the operators (6.59)

and (6.60) obey the commutation relation [C,D]yn = −yn.

Indeed,

[C,D]u(x, y, t;A) =C(Du(x, y, t;A))−D(Cu(x, y, t;A))

=
1

λtA

∂

∂x

[(
λI − 2y

A

)
t
∂u

∂x
− λxtA

]
−
[(
λI − 2y

A

)
t
∂

∂x
− λxtA

]
I

λtA

∂u

∂x

=− u(x, y, t;A)

(6.60)

i.e.

[C,D]u(x, y, t;A) = −u(x, y, t;A).

Now, if u(x, y, t;A) assumes the form yn(x, y, t;A) = fn(x, y;A)tn ∈ CN×N , then we

have

[C,D](fn(x, y;A)tn) = −fn(x, y;A)tn

and our claim is justified.

Further, the relation Dyn = −(n + 1)yn+1 gives following differential recurrence

relation on operator D

(
λI − 2y

A

)
t
∂

∂x
− λxtAfn(x, y;A)tn = −(n+ 1)fn+1(x, y;A)tn+1

(
λI − 2y

A

)
∂

∂x
fn(x, y;A) = λxAfn(x, y;A)− (n+ 1)Ifn+1(x, y;A) (6.61)

The relation Cyn = yn−1 gives the following differential recurrence relation on matrix
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A [
1

λtA

∂

∂x

]
fn(x, y;A)tn = fn−1(x, y;A)tn−1

or
1

Aλ
f
′

n(x, y;A)tn−1 = fn−1(x, y;A)tn−1

or
∂

∂x
fn(x, y, A) = Aλfn−1(x, y, A) (6.62)

Finally, the relation DCyn = −nyn gives

[(
λI − 2y

A

)
t
∂

∂x
− λxtA

] [
1

λtA

∂

∂x

]
fn(x, y;A)tn = −nfn(x, y;A)tn

⇒
(
λI − 2y

A

)
1

λA

∂2

∂x2
fn(x, y;A)tn − xI ∂

∂x
fn(x, y;A)tn = −nIfn(x, y;A)tn

⇒
[
λA− 2yI

A2λ

]
∂2

∂x2
fn(x, y;A)− xI ∂

∂x
fn(x, y;A) + nIfn(x, y;A) = 0 (6.63)

Now, we observe that 2-variable generalized Hermite matrix polynomialHλ
n(x, y;A)

is the solution of the differential equation (6.63). Further we note that the relation

(6.61) and (6.62) are differential recurrence relation satisfied by 2-variable general-

ized Hermite matrix polynomial Hλ
n(x, y;A).

6.6 2- variables Laguerre Matrix Polynomials

In this section we apply Theorem 6.2.8 to obtain differential recurrence relations

and differential equations for 2-variables Laguerre matrix polynomials.

Theorem 6.6.1. The 2-variable Laguerre matrix polynomials L
(A,λ)
n (x) in Eq. (6.27)

satisfies the following differential equation

−xy
λ

∂2

∂x2
−
[
Ay

λ
+
{y
λ

(n+ 1)− x
}
I
∂

∂x
− A

]
fn(x, y;A) = −nfn(x, y;A) (6.64)
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and the recurrence relation

[
x

λy

∂

∂x
+
n+ AI

λy

]
fn(x, y;A) = −fn−1(x, y;A) (6.65)

or [
−y2I

∂

∂x
+ Iλy

]
fn(x, y;A) = −(n+ 1)fn+1(x, y;A) (6.66)

Proof: Let V = CN×N , we define the operator C,D ∈ End V as

C = −
[
x

λty
I
∂u

∂x
+

I

λy

∂u

∂t
+

1

λty
A

]
(6.67)

D = −Iy2t
∂u

∂x
+ Iλty (6.68)

For x, y, t ∈ C, A is the matrix in CN×N and I is the unit matrix in CN×N .

We claim that the operators (6.67) and (6.68) obey the commutation relation [C,D]yn =

−yn.

Indeed,

[C,D]u(x, y, t;A) =C(Du(x, y, t;A))−D(Cu(x, y, t;A))

=

[
Ix

λty

∂

∂x
− I

λy

∂

∂t
− 1

λty
A

] [
−y2tI

∂u

∂x
+ Iλty

]
−
[
−y2tI

∂

∂x
+ Iλty

]
−
[
Ix

λty

∂u

∂x
+

I

λy

∂u

∂t
+

I

λty
A

]
=− u(x, y, t;A)

(6.68)

i.e.

[C,D]u(x, y, t;A) = −u(x, y, t;A)

Now, if u(x, y, t;A) assumes the form u(x, y, t;A) = fn(x, y;A)tn ∈ CN×N , then we

have

[C,D](fn(x, y;A)tn) = −fn(x, y;A)tn
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and our claim is justified.

Now, the relation Dyn = −(n+1)yn+1 gives following differential recurrence relation

on operator C

[
−y2tI

∂

∂x
+ Iλty

]
fn(x, y;A)tn = −(n+ 1)fn+1(x, y;A)tn+1

or [
−y2I

∂

∂x
+ Iλy

]
fn(x, y;A) = −(n+ 1)fn+1(x, y;A) (6.69)

Also from the relation Cyn = yn−1 we obtain the following differential recurrence

relation on matrix A

[
−Ix
λty

∂

∂x
− I

λy

∂

∂t
− 1

λty
A

]
fn(x, y;A)tn = fn−1(x, y;A)tn−1

[
x

λy

∂

∂x
+
nI + A

λy

]
fn(x, y;A) = −fn−1(x, y;A) (6.70)

Finally, the relation DCyn = −nyn gives

[
−y2t

∂

∂x
+ λty

] [
−x
λty

∂

∂x
− 1

λy

∂

∂t
− 1

λty
A

]
fn(x, y;A)tn = −nIfn(x, y;A)tn

equivalently

−xy
λ

∂2

∂x2
−
[
Ay

λ
+
{y
λ

(n+ 1)− x
}
I
∂

∂x
− A

]
fn(x, y;A) = −nfn(x, y;A) (6.71)

Now, We observe that 2- variables matrix Laguerre polynomial L
(A,λ)
n (x, y) is

the solution of the differential equation (6.71). Further we note that the relation

(6.69) and (6.70) are differential recurrence relations satisfied by the Laguerre Matrix

polynomial L
(A,λ)
n (x, y).
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6.7 Conclusion

The approach used in this chapter can be applied to differential realization of di-

latation and translation operators

D = x
∂

∂x
, T =

∂

∂x

in one dimension. The action of one parameter groups generated by these operators

D and T on a smooth function f(x) is

eαDf(x) = f(eαx), eβDf(x) = f(x+ β)

These operators can be used to enlarge the Lie algebra for some classes of factoris-

able equations. Thus, Lie algebraic aspects of special functions which are limited to

Lie algebra generated by raising and lowering operators can be extended by adding

dilatation and translation operators to these Lie algebras for some families of fac-

torisable equations. A more complete picture of the relation between some operators

and some special functions is presented by Humi [66]. Many other interesting re-

sults can be obtained by appropriately applying the operators and action of one

parameter groups generated by these operators D and T to generate new relations

involving some special functions.

Further a new approach has been introduced in this chapter for studying some

important properties of certain matrix special functions viz. recurrence relation,

differential recurrence relation and differential equation. The method developed in

this chapter can also be used to study some other special matrix functions which

play vital role in mathematical physics, chemistry and mechanics.
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[36] Erdélyi, A. (1939b). Transformation of hypergeometric integrals by means of

fraction al integration by parts. Ibid., 10:176–189.
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[38] Erdélyi, A., Mangus, W., Oberhettinger, F., and Tricomi, F. G. (1993). Higher

Transcendental Functions, Vol. II. McGraw-Hill Book Company, New York,

Toronto and London.



Bibliography 177

[39] Exton, H. (1978). Handbook of Hypergeometric Integrals: Theory, Applications,

Tables, Computer Programmes. (Ellis Horwood Ltd., Chichester), John Wiley and

Sons, New York, Brisbane and Toronto.

[40] Farman, M. A., Sharma, M., and Jain, R. (2015). Advanced generalized frac-

tional kinetic equation in astrophysics. Progress in Fractional Differentiation and

Applications, 1(1):65–75.

[41] Fernandez, L., Perez, T. E., and Pinar, M. A. (2005). Classical orthogonal

polynomials in two variables: A matrix approach. Numer. Algor., 39:131–142.

[42] Fourier, J. (1955). The Analytical Theory of Heat. Dover Publ., New York.

[43] Fujiwara, I. (1966). Unified presentation of classical orthogonal polynomials.

Math Japan, 11:133–148.

[44] Galue, L., Kiryakova, V. S., and Kalla, S. L. (1993). Solution of dual integral

equations by fractional calculus. Math. Balkanica, 7:53–72.

[45] Garg, M. and Manohar, P. (2013). Analytical solution of the reaction-diffusion

equation with space time fractional derivative method. Kuwait Journal of science,

40(1):23–34.

[46] Garra, R., Gorenflo, R., Polito, F., and Tomovski, Z. (2014). Hilfer Prabhakar

derivative and some applications. Appl. Math. Comput., 242:576–589.

[47] Gautschi, W. (1985). Orthogonal polynomials - constructive theory and appli-

cations. J. Comput. Appl. Math., 12:61–76.

[48] Gautschi, W. (2005). Orthogonal polynomials (in matlab). J. Comput. Appl.

Math., 178:215–234.



178 Bibliography

[49] Glaeske, H. J., Kilbas, A. A., and Saigo, M. (2000). A modified Bessel-type in-

tegral transform and its compositions with fractional calculus operators on spaces.

J. Comput. Appl. Math., 118:151–168.

[50] Gorenflo, R., Luchko, Y., and Mainardi, F. (1999). Analytical properties and

applications of the Wright function. Fract. Calc. Appl. Anal., 2(4):383–414.

[51] Gorenflo, R. and Mainardi, F. (1997). Integral and differential equations of

fractional order, in A. Carpinteri and F. Mainardi (Eds) Springer-Verlag, New

York. Fractals and Fractional Calculus in Continuum Mechanics, pages 223–276.

[52] Gorenflo, R. and Vessela, S. (1991). Abel Integral Equations Analysis and Ap-

plications. Springer-Verlag, Berlin.

[53] Grünwald, A. K. (1867). Uber begrenzte derivationen und deren anwendung.

Z. Angew. Math. Und Phys., 12:441–480.

[54] Gupta, K. C. (2001). New relationship of the H-function with functions of

practical utility in fractional calculus. Ganita Sandesh, 15(2):63–66.

[55] Hardy, G. H. and Littlewood, J. E. (1925). Some properties of fractional inte-

grals. Proc. London Math. Soc. Ser. 2, 24:37–41.

[56] Hartely, T. T. and Lorenzo, C. F. (1998a). Insights into the fractional order

initial value problem via semi infinite systems. NASA TM 208407.

[57] Hartely, T. T. and Lorenzo, C. F. (1998b). A solution to the fundamental linear

fractional order differential equation. NASA TM 208963.

[58] Hartely, T. T. and Lorenzo, C. F. (1999). The vector linear fractional initial-

ization problem. NASA TM 208919.



Bibliography 179

[59] Haubold, H. J. and Kumar, D. (2008). Extension of thermonuclear functions

through the pathway model including Maxwell Boltzman and Tsallis distributions.

Astroparticle Physics, 29:70–76.

[60] Haubold, H. J. and Kumar, D. (2011). Fusion yield Guderley model and Tsallis

statistic. J. Plasma Physics, 77(1):1–14.

[61] Haubold, H. J., Mathai, A. M., and Saxena, R. K. (2000). Mittag-Leffler

functions and their applications. J. Appl. Math., ID 298628:2–11.

[62] Herrmann, R. (2014). Fractional Calculus: An Introduction for Physicists, 2nd

Edition. World scientific pubublishers.

[63] Hilfer, R. (2000a). Applications of Fractional Calculus in Physics. World Sci-

entific. Singapore.

[64] Hilfer, R. (2000b). Fractional Calculus and Regular Variation in Thermody-

namics. In: Applications of Fractional Calculus in Physics. World Scientific,

Singapore.

[65] Holmgren, H. J. (1865-1866). Om differenlialkalkylen med indices of hoad na-

ture som helst. kongl. Svenska Vetenskaps Akad. Handl. Stockholm, 5(1):1–83.

[66] Humi, M. (2005). Dialations and factorizable equations. J. Phys. A: Math.

Gen., 38:6351–6361.

[67] Ishteva, M., Scherer, R., and Boyadjev, L. (2005). On the Caputo operator

of fractional calculus and C- Lagurre functions. Mathematics Sciences Research

Journal, 9:161–170.

[68] James, A. T. (1975). Special functions of matrix and single argument in statis-

tics, in: R.A. Askey (Ed.) ,Theory and Applications of Special Functions. New

York, Academic Press.



180 Bibliography

[69] Javandel, L., Doughly, C., and Tsang, F. C. (1984). Groundwater Transport

Handbook of Mathematical Models. American Geophysical Union, New York.

[70] Jeses, I. S. and Machado, J. A. T. (2008). Fractional control of heat diffusion

systems. Nonlinear Dynamics, 54(3):263–282.

[71] Jodar, L. and Company, R. (1996). Hermite matrix polynomials and second

order differential equations. J. Approx. Theory Appl., 12:20–30.

[72] Jodar, L., Company, R., and Navarro, E. (1994). Laguerre matrix polynomials

and system of second-order differential equations. Appl. Numer. Math., 15:53–63.

[73] Jodar, L., R.Company, and Ponsoda, E. (1996). Orthogonal matrix polynomials

and systems of second order differential equations. Differ. Equ. Dyn. Syst., 3:269–

288.

[74] Kachhia, K. B. and Prajapati, J. C. (2015). Solution of fractional partial differ-

ential equation aries in study of heat transfer through diathermanous materials.

Journal of Interdisciplinary Mathematics, 18(1 and 2):125–132.

[75] Keller, H. B. and Wolfe, A. W. (1965). On the nonunique equilibrium states and

buckling mechanism of spherical shells. J. Soc. Indust. Appl. Math., 13:674–705.

[76] Khan, S. and Hassan, N. (2010). 2-variable Laguerre matrix polynomials and

Lie-algebraic techniques. J. Phys. Math. Theor., 43:235–204.

[77] Kilbas, A. A. and Kumar, D. (2009). On generalized Krätzel function. Integral

Transform and Special Functions, 20(11):835–846.

[78] Kilbas, A. A. and Saigo, M. (1999). On solution of nonlinear Abel Volterra

integral equation. Journal of Mathematical Analysis and Applications, 229:41–60.

[79] Kilbas, A. A. and Sebastian, N. (2008). Generalized fractional differentiation

of Bessel function of the first kind. Math. Balkanica.New Ser., 22:323–346.



Bibliography 181

[80] Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J. (2006). Theory and Applica-

tions of Fractional Differential Equations. North-Holland Mathematical Studies

Elsevier (North-Holland) Science Publishers, Amsterdam.

[81] Kiryakova, V. (2006). On two Saigo’s fractional integral operators in the class

of univalent functions. Fractional Calculus & Applied Analysis, 9(2):159–176.

[82] Kober, H. (1940). On fractional integrals and derivatives. Quart. J. Math.

(Oxford), 11(1):193–211.

[83] Krall, H. L. and Frink, O. (1949). A new class of orthogonal polynomials:the

Bessel polynomials. Trans. Amer. Math. Soc., 65:100–115.

[84] Kratzel, E. (1979). Integral transformations of Bessel type in generalized func-

tions & operational calculus. Proc. Conf. Verna, Bulg. Acad. Sci., Sofia.

[85] Kumar, D. (2010). Solution of fractional kinetic equation by a class of integral

transform of pathway type. J. Math. Phys., 54:043509; doi: 10.1063/1.4800768.

[86] Kumar, D. (2011). P-transform. Integral Transforms and Special Functions,

22(8):603–616.

[87] Kumar, D. (2013). Solution of fractional kinetic equation by a class of integral

transform of pathway type. J. Math. Phys., 54:043509.

[88] Kumar, D. and Haubold, H. J. (2010). On extended thermonuclear function

through pathway model. Adv. Space Res., 45:698–708.

[89] Kumar, D. and Kilbas, A. A. (2010). Fractional calculus of P-transform. Frac-

tional Calculus and Appl. Anal., 13(3):309–328.

[90] Letnikov, A. (1868). Theory of differentiation with an arbitrary index (Russian).

Mat. Sb., 3:1–66.



182 Bibliography

[91] Letnikov, A. (1872). On explanation of the main propositions of differentiation

theory with an arbitrary index (Russian). Ibid., Vyp.1, 6:413–445.

[92] Lin, S. D., Srivastava, H. M., and Yao, J. C. (2015). Some classes of generating

relations associated with a family of the generalized Gauss type hypergeometric

functions. Appl. Math. Inform. Sci., 9:1731–1738.

[93] Liouville, J. (2013). Memoire sur le calcul des differentielles a indices quelcon-

ques. Italian Journal of Pure and Applied Mathematics, 30:411–416.

[94] Liu, F., Anh, V., and Su, N. (2003a). A two-dimensional finite volume method

for transient simulation of time scale and density-dependent transport in hetero-

geneous aquifer systems. J. Appl. Math. Comput., 11:215–241.

[95] Liu, F., Anh, V., and Turner, I. W. (2004). Numerical solution of the space

fractional Fokker-Plank equation. J. Comp. Appl. Math., 166:209–319.

[96] Liu, F., Turner, I., and Anh, V. (2002). An unstructured mesh finite volume

method for modelling saltwater intrusion into coastal aquifer. J. Appl. Math. and

Comput.(old:KJCAM), 9:391–407.

[97] Lorenzo, C. F. and Hartley, T. T. (1998). Initialization, conceptualization and

applications in the generalized fractional calculus. NASA TP 208415.

[98] Lorenzo, C. F. and Hartley, T. T. (1999). Generalized functions for the frac-

tional calculus. NAZA/TP-209424, 1–17.

[99] Luke, Y. L. (1969). The Special Functions and Their Approximations, Vol. I

and II. Academic Press, New York.

[100] Luo, M. J., Milovanovic, G. V., and Agarwal, P. (2014). Some results on the

extended beta and extended hypergeometric functions. Appl. Math. Comput.,

248:631–651.



Bibliography 183

[101] Luo, M.-J. and Raina, R. K. (2013). Extended generalized hypergeometric

functions and their applications. Bull. Math. Anal. Appl., 5 (4):65–77.

[102] MacRobert, T. M. (1962). Functions of a Complex Variable. Macmillan Lon-

don and St. Martin’s Press, New York.

[103] Mainardi, F. and Gorenflo, R. (2000). On Mittag-Leffler-type functions in frac-

tional evolution processes. J. Computational and Applied Mathematics, 118:283–

299.

[104] Mandal, A. K. (1999). Some operators on a Lie algebra and simple Bessel

polynomials. Soochow J. Math., 25(3):273–276.

[105] Manocha, H. L. (1967). Some expansions by fractional derivatives. Mathe-

matica (cluj), 32:303–309.

[106] Marichev, O. I. (1974). Volterra equation of Mellin convolution type with a

Horn function in the kernel (in Russian). Izv. AN BSSR Ser. Fiz.-Mat. Nauk,

1:128–129.

[107] Mathai, A. M. and Saxena, R. (1973). Generalized Hypergeometric Func-

tions with Applications in Statistics and Physical Sciences, Lecture Notes No.

348. Springer-Verlag, Berlin, Heidelberg and New York.

[108] Mathai, A. M. and Saxena, R. K. (1967). On a generalized hypergeometric

distribution. Metrika, 11:127–132.

[109] Mathai, A. M., Saxena, R. K., and Haubold, H. J. (1999). Generalized func-

tions for the fractional calculus. NAZA/TP-209424, 1–17.

[110] Mathai, A. M., Saxena, R. K., and Haubold, H. J. (2010). The H-Function

Theory and Applications. Springer-Verlag, New York.



184 Bibliography

[111] McBride, A. C. and Roach, G. F. (1985). Fractional Calculus. Proceedings

of the International Workshop held at Ross Priority (University of Starthclyde)

at Glasgow in Aug. 1984, Research Notes in Mathematics, Vol. 138, Pitman Ad-

vanced Publishing Program, Boston.

[112] Meerschaert, M. M., Benson, D. A., and Baumer, B. (1999). Multidimensional

advection and fractional dispersion. Phys. Rev. E., 59(5):5026–5028.

[113] Meijer, C. S. (1946a). On the G-function, i-viii. Nederl. Akad. Wetensch.

Proc. Ser., A(49):227–237; 344–356;457–469; 632–641; 765–772; 934–943; 1063–

1072; 1165–1175.

[114] Meijer, C. S. (1946b). On the G-function, i-viii. Indag. Math, 8:124–134;

213–225; 312–324;391–400; 468–475; 595–602; 661–670; 713–723.

[115] Metzler, F., Schick, W., Kilian, H., and Nonnenmacher, T. (1995). Relaxation

in filled polymers: A fractional calculus approach. J. Chem. Phys., 103:7180–7186.

[116] Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous

diffusion: A fractional dynamics approach. Phys. Rep., 339 (1):1–77.

[117] Miller, K. S. and Ross, B. (1993). Introduction to the Fractional Calculus and

Fractional Differential Equations. John Wiley and Sons, New York.

[118] Mittag-Leffler, G. M. (1903). Sur la nouvelle fonction Eα(x). C. R. Acad. Sci.

Paris, 137:554–558.

[119] Morse, P. M. and Fesbach, H. (1953). Methods of Theoretical Physics. Mc-

Graw Hill, New York.

[120] Nishimoto, K. ((1984, 1987, 1989, 1991)). Fractional Calculus, Vol. I-IV.

Descartes Press, Koriyama, Japan.



Bibliography 185

[121] Nishimoto, K. (1989). Fractional Calculus and its Applications. Proceedings

of the International Conference held at the Nihon University Centre at Tokyo,

Nihon University Press, Koriyama, Japan.

[122] Nishimoto, K. and Srivastava, H. M. (1989). Certain classes of infinite series

summable by means of fractional calculus. J. Coll. Engg. Nihon Univ.B, 30:97–

106.

[123] Oldham, K. B. and Spanier, J. (1970). The replacement of Fick’s laws by

a formulation involving semi differentiation. J. Electroanal. Chem. Interfacial

Electrochem., 26:331.

[124] Oldham, K. B. and Spanier, J. (1972). A general solution of the diffusion

equation for semiinfinite geometries. J. Math. Anal. Appl., 39:655.

[125] Oldham, K. B. and Spanier, J. (1974). The Fractional Calculus: Theory and

Applications of Differentiation and Integration of Arbitrary Order. Academic

Press, New York, London.

[126] Ortigueira, M. (2011). Fractional Calculus for Scientists and Engineers.

Springer, Netherlands.

[127] Ovidio, M. and Polito, F. (2013). Fractional Diffusion-Telegraph Equations

and their Associated Stochastic Solutions. arXiv:1307.1696.

[128] Pandey, R. K., Singh, O., Baranwal, V., and Tripathi, M. (2012). An an-

alytic solution for the space-time fractional advection-dispersion equation using

the optimal homotopy asymptotic method. Computer Physics Communications,

183:2098–2106.

[129] Pandey, R. N. and Srivastava, H. (1993). Fractional calculus and its ap-

plications involving certain class of functional relations. SIAM J. Math. Anal.,

89:153–165.



186 Bibliography

[130] Paneva-Konovska, J. (2007). Theorems on the convergence of series in ge-

nearlized Lommel-Wright functions. Fractional Calculus and Applied Analysis,

10(1):60–74.

[131] Parmar, R. K. (2013). A new generalization of gamma, beta, hypergeometric

and confluent hypergeometric functions. Le Matematiche, 68:33–42.

[132] Pathak, R. S. (1966). Certain convergence theorems and asymptotic properties

of a generalization of Lommel and Maitland transformations. Proc. Nat. Acad.

Sci., A-36(1):81–86.

[133] Pathan, M. A. and Khan, S. (2003a). On certain properties of some generalized

special functions. Proyecciones Revista di Matematica, 22(1):81–89.

[134] Pathan, M. A. and Khan, S. (2003b). Some properties of two variable La-

guerre polynomials via Lie Algebra. Integral Transforms and Special Functions,

14(3):251–255.

[135] Patil, K. R. and Thakare, N. K. (1975). Some generating functions in unified

form for the classical orthogonal polynomials and Bessel polynomials. Indian

Journal of Pure and Applied Math, 8(1):94–102.

[136] Pittaluga, G., Sacripante, L., and Srivastava, H. M. (1999). Families of gen-

erating functions for the Jacobi and related orthogonal polynomials. Journal of

Mathematical Analysis and Applications, 238:385– 417.

[137] Podlubny, I. J. (1999). Fractional Differential Equations. Academic Press,

New-York.

[138] Pohlen, T. (2009). The Hadamard Product and Universal Power Series. Doc-

toral Dissertation, Universität Trier.

[139] Prabhakar, T. R. (1971). A singular integral equation with a generalized

Mittag-Leffler function in the kernel. Yokohama Math. J., 19:7–15.



Bibliography 187

[140] Prieto, A. I., de Romero, S. S., and Srivastava, H. M. (2007). Some fractional

calculus result involving the generalized Lommel-Wright and related functions.

Applied Mathematics Letters, 20:17–22.

[141] Purohit, S. D. (2011). Solution of fractional partial differential equations of

quantum mechanics. Adv. Appl. Math. Mech., 5(5):639–651.

[142] Purohit, S. D., Suthar, D. L., and Kalla, S. L. (2012). Marichev-Saigo-Maeda

fractional integration operators of the Bessel functions. Matematiche (Catania),

67(1):21–32.

[143] Radulescu, V. (2008). Rodrigue type formula for Hermite and Laguerre poly-

nomials. An. St. Univ. Ovidius Constanta, 16:109.

[144] Radulescu, V. D. (1991). A study of some special functions with Lie theory.

Stud. Cerc. Mat., 43:67–71.

[145] Rahman, M. (2007). Integral Equations and their Applications. WIT Press,

Southampton; Boston.

[146] Rainville, E. D. (1960). Special Functions. Macmillan Company, New York.

[147] Riemann, B. (1953). Versuch einer allgemeinen auffasung der integration and

differentiation, The Collected Works of Bernhard Riemann (H. Weber, Ed.), 2nd

ed. Dover, New York.

[148] Riesz, M. (1949). L’integrale de Riemann-Liouville et le probleme de Cauchy.

Acta Math., 81:1–223.

[149] Ross, R. E. (1975). Fractional Calculus and its Applications. Proceedings of

the International Conference he ld at the University of New Haven in June 1974,

Lecture Notes in Math. Vol.457, Springer - Verlag, Berlin, Heidelberg and New

York.



188 Bibliography

[150] Saigo, M. (1979). A certain boundary value problem for the euler-darboux

equation i. Math. Japonica, 24(4):377–385.

[151] Saigo, M. (1996). On generalized fractional calculus operators. Recent Ad-

vances in Applied Mathematics (Proc. Internat. Workshop held at Kuwait Univ.).

[152] Saigo, M. and Maeda, N. (1996). More generalization of fractional calculus,

In: Transform methods and special functions. Bulgarian Acad. Sci., Verna.

[153] Saigo, M. and Raina, R. K. (1988). Fractional calculus operators associated

with a general class of polynomials. Fukuoka Univ. Sci. Rep., 18:15–22.

[154] Saigo, M., Raina, R. K., and Kilbas, A. A. (1993). On generalized fractional

calculus operators and their compositions with axisymmetric differential operators

of the potential theory on spaces fp,µ and f ′p,µ. Fukuoka Univ. Sci. Rep., 23:133–

154.

[155] Samko, S. G., Kilbas, A. A., and Marichev, O. I. (1993). Fractional Integrals

and Derivatives : Theory and Applications. Gordan and Breach, New York.

[156] Saxena, R., Saxena, R., and Kalla, S. (2010). Solution of the space-time

fractional schrödinger equation equation occuring in quantum mechanics. Fract.

Calc. Appl. Anal., 13(2):177–190.

[157] Saxena, R. K., Chauhan, J. P., Jana, R. K. ., and Shukla, A. K. (2015).

Further results on the generalized Mittag-Leffler function operator. Journal of

Inequalities and Application, DOI:10.1186/s13660-015-0589-4.

[158] Saxena, R. K. and Kalla, S. L. (2008). On the solution of certain fractional

kinetic equations. Appl. Math. Comput., 199:504–511.

[159] Saxena, R. K., Mathai, A. M., and Haubold, H. J. (2006a). Fractional reaction-

diffusion equations. Astro phys Space sci., 305:289–296.



Bibliography 189

[160] Saxena, R. K., Mathai, A. M., and Haubold, H. J. (2006b). Solution of Frac-

tional reaction-diffusion equations in terms of Mittag-Leffler functions. Int. J.

Sci. Res., 15:1–17.

[161] Sayed-El, Ahmed, M. A., and Mohamed, A. E. (2002). Continuation theo-

rem of fractional order evolutionary integral equations. J. Comput. Appl. Math.,

9(2):525–533.

[162] Schumer, R., Benson, D. A., Meerschaert, M., and Wheatcraft, S. W. (2001).

Eulerian derivation of the factional adverction-dispersion equation. Journal of

Contaninant Hydrology, 48:69–88.

[163] Slater, L. J. (1966). Generalized Hypergeometric Functions. Cambridge Univ.

Press, Cambridge, London and New York.

[164] Sneddon, I. N. (1979). The Use of Integral Transform. Tata McGraw-Hill,

New Delhi, India.

[165] Srivastava, H., Gupta, K. C., and Goyal, S. P. (1989). The H-functions of

One and Two Variables with Applications. South Asian Publishers, New Delhi &

Madras.

[166] Srivastava, H. M., Agarwal, P., and Jain, S. (2014). Generating functions for

the generalized Gauss hypergeometric functions. Appl. Math. Comput., 247:348–

352.

[167] Srivastava, H. M., Chaudhry, M. A., and Agarwal, R. P. (2012a). The incom-

plete pochhammer symbols and their applications to hypergeometric and related

functions. Integral Transforms Special Function, 23:659–683.

[168] Srivastava, H. M. and Goyal, S. P. (1985). Fractional derivative of the H-

function of several variables. J. Math. Anal. Appl., 112:641–651.



190 Bibliography

[169] Srivastava, H. M. and Karlsson, P. W. (1985). Multiple Gaussian Hypergeo-

metric Series. Halsted press(Ellis Horwood Limited), John Wiely and sons, New

York.

[170] Srivastava, H. M. and Manocha, H. L. (1984). A Treatise on Generating

Functions. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and

Sons, New York, Chichester, Brisbane and Toronto.

[171] Srivastava, H. M. and Owa, S. (1984). An application of fractional derivative.

Math. Japonica, 29:383–389.

[172] Srivastava, H. M., Parmar, R. K., and Chopra, P. (2012b). A class of extended

fractional derivative operators and associated generating relations involving hy-

pergeometric functions. Axioms, 1:238–258.

[173] Srivastava, H. M., Saigo, M., and Owa, S. (1988). A class of distortion the-

orems involving certain operators of fractional calculus. J. Math. Anal. Appl.,

131:412–420.

[174] Srivastava, H. M. and Saxena, R. K. (2001). Operators of fractional integration

and their applications. Appl. Math. Comput., 118:1–52.

[175] Srivastava, T., Singh, A. P., and Agarwal, H. (2015). Modeling the under-

actuated mechanical system with fractional order derivative. Progress in Frac-

tional Differentiation and Applications, 1(1):57–64.

[176] Terras, A. (1985). Special functions for the symmetric space of positive ma-

trices. SIAM J. Math. Anal., 16:620–640.

[177] Thomas, R. and Fehmi, C. (2010). An immersed finite element method with

integral equation correction. Int. J. Numer. Meth. Engng., 86:93–114.

[178] Tricomi, F. G. (1950). Sulla funzione gamma incompleta. Ann. Mat. Pura

Appl., 31(4):263–279.



Bibliography 191

[179] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. J.

Stat. Phys., 52:479–487.

[180] Tsallis, C. (2009). Introduction to Non- Extensive Statical Mechanics Ap-

proaching a Complex World. Springer, New York.

[181] Uchaikin, V. (2013). Fractional Derivatives for Physicists and Engineers.

Springer-Verlag, Berlin Heidelberg.

[182] Wazwaz, A. M. (2011). Linear and Nonlinear Integral Equations Methods and

Applications. Springer, New York.

[183] Weyl, H. (1917). Bemerkungen zum begriff des differential quotienten gebroch-

ener. ordung. Vier. Natur. Ges. Zurich, 62:296–302.

[184] Wiman, A. (1905). Uber de fundamental satz in der theorie der funktionen

Eα(x). Acta Math. No., 29:191–201.

[185] Wright, E. M. (1933). On the coefficient of the power series having exponential

singularities. J. London Math. Soc., 8:71–79.

[186] Wright, E. M. (1935a). The asymptotic expansion of generalized hypergeo-

metric function. J. London Math. Soc., 10:286–293.

[187] Wright, E. M. (1935b). The asymptotic expansion of the generalized Bessel

function. Proc. London Math. Soc., (2)38:257–270.

[188] Yildirim, A. and Sezer, S. (2010). Analytical solution of linear and non-

linear space time fractional reaction-diffusion equations. International Journal of

Chemical Reactor Engineering, 8:1–21.

[189] Yu, Q., Liu, F., Anh, V., and Turner, I. (2008). Solving linear and non-linear

space time fractional reactiona-diffusion equations by the adomian decomposition

method. Int. J. Numer. Meth., 74:138–158.



192 Bibliography

[190] Zygmund, A. (1945). Theorem on fractional derivatives. Duke Math. J.,

12:455–464.



List of Symbols

Sets

∈ belongs to

N natural numbers, N := {1, 2, 3, . . .}

N0 counting numbers, N0 := {0, 1, 2, . . .}

Q rational numbers

R real numbers

C complex numbers, C0 := {x+ iy : x, y ∈ R, i =
√

(−1)}

C[a, b] set of continuous function

Cn[a, b] set of function with continuous nth derivative

Functions(
n
i

)
Binomial coefficient

[·] Celling function; [x] = min{z ∈ Z : z ≤ x}

Γ(z) Euler’s continuous gamma function

Eα(z) Mittag-Leffler function in one parameter, α
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194 List of Symbols

Eα,β(z) Mittag-Leffler function in two parameter, α, β

Eγ
α,β(z) Mittag-Leffler function in three parameter, α, β, γ

2F1(a, b; c; z) Gauss hypergeomatric function

Hm,n
p,q (z) Fox’s H-function

pΨq(z) Fox-Wright function

pF
(α,β;κ,µ)
q Extended generalized hypergeometric function

B
(α,β;κ,µ)
p Generalized beta function

pγq[z], pΓq[z] Incomplete hypergeometric functions

erf(z) Error function

erfc(z) Complimentary error function

Jµ,mν,λ (z) Generalized Lommel-Wright function

Jµν (z)(z) Bessel-Maitland functions

Hν(z) Struve function

Jν(z) Bessel function

Wσ,η(z) Whittaker function

Fractional Operators

0Dα
t Riemann-Liouville fractional derivative operator

C
0 Dα

t Caputo fractional derivative operator

Wα
∞+ Weyl fractional derivative operator

Eα,ηx+ Erdélyi-Kober type fractional integral operator

EKDα,η
∞+ Erdélyi-Kober fractional derivative operator

0Dµ,ν
a+ Hilfer derivative operator
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Dγ,µ,ν
ρ,ω,0+ Hilfer-Prabhakar derivative operator

Iα,β,η0+ Saigo’s integral operator

Dα,β,η
0+ Saigo’s derivative operator

Iα,α
′
,β,β′,γ

0+ Marichev-Saigo-Maeda fractional integral operator

∆
λ
2 Fractional Laplace operator

Integral Transforms

Pα(f) Pα-transform of function f

L(f) Laplace’s transform of function f

J(α′,β′)(f) Jacobi transform of function f

Hν(f) Hankel Transform of function f
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stitute of Technology, Jaipur, December 24-28, 2015.

(11) Workshop on ‘Latex for Research’, Malaviya National Institute of Technology,

Jaipur, July 23-24, 2016.

Summer School

(1) 11th SERB School on ‘Matrix Methods and Fractional Calculus held at Centre

for Mathematical and Statistical Sciences’ (CMSS) Peechi Campus, KFRI,

Peechi- 680 653, Trichur, Kerala, 28th April- 24th May, 2014.

(2) AARMS-PIMS Summer School in ‘Differential Equations and Numerical Anal-

ysis’, Dalhousie University, Halifax, Canada, 6th July- 31st July, 2015.
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Poster Presented

1. Poster presentation on ‘Analytic Solution of Generalized Fractional Space

Time Reaction Diffusion Equation’ in Bluenose Applied and Computational

Math Days Workshop at Saint Marys University, Halifax, Nova Scotia, Canada,

July 11-12, 2015.

Awards/Travel Grant Received

(1) International Travel Grant From National Board of Higher Mathematics (NBHM)

For AARMS-PIMS Summer School in Differential Equations and Numerical

Analysis, Dalhousie University, Halifax, Canada, 6th July- 31st July, 2015.
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