
A

Ph.D. Thesis

on

Design of Highly Adaptive and Fault-tolerant Routing for

Networks-on-Chip

submitted as a partial fulfillment of

Ph.D. program

in

Engineering

Place: Jaipur Date: January 2, 2017

Department of Computer Science and Engineering

Malaviya National Institute of Technology , Jaipur - 302017

Certificate

We hereby certify that the Thesis titled, “Design of Highly Adaptive and

Fault-tolerant Routing for Networks-on-Chip” submitted by Manoj Ku-

mar (2011RCP7126) is the research work done under our supervision, thus is

accepted and finalized for submission in partial fulfillment of Ph.D. Program.

Place: Jaipur

Date: January 2, 2017

Supervisor(s):

Manoj Singh Gaur, (Professor)

Vijay Laxmi, (Associate Professor)

DECLARATION

I, Manoj Kumar, declare that I own the research work introduced in this Thesis

titled, “Design of Highly Adaptive and Fault-tolerant Routing for Networks-on-

Chip” and the research contents used in this thesis. I with this assure that:

� The research work produced in this thesis is for the partial fulfillment of the

degree of “Doctor of Philosophy” at MNIT, Jaipur.

� I have stated all the major resources used for the help.

� Where I have used proper citation for the work proposed by other researchers

and quoted the source. This entire thesis belongs to me with the some

exception of such citations.

� Where I have taken references of previously published work of my co-authors

and other researchers and this is always clearly attributed.

� I have clearly stated any part of this Thesis that has been previously submit-

ted for a degree or any other qualification at MNIT or any other institution.

Signed:

Date:

ACKNOWLEDGEMENT

It was a matter great pleasure for me to enroll for Ph.D. program in the De-

partment of Computer Science and Engineering, Malaviya National Institute of

Technology, Jaipur, India. I would like to express sincere thanks and appreciation

to my Ph.D. supervisors Dr. Manoj Singh Gaur and Dr. Vijay Laxmi. I am also

thankful to Dr. Seok-bum Ko (Professor, University of Saskatchewan, Canada)

and Dr. Masoud Daneshtalab (Associate Professor, University of Mlardalen, Swe-

den) for their continuous technical/non-technical support. They have devoted

valuable time to guide me. Their suggestions and cooperation together with the

motivation have made it possible to complete my research work. They have pro-

vided me a good atmosphere for doing work peacefully as well as resourcefully.

I am also grateful to Dr. Parvez Faruki (Lecturer, Polytechnic College, Bhavnagar,

Gujrat) for his continuous motivation during Ph.D. duration.

I convey special thanks to my DREC committee members Dr. Dinesh Gopalani

(MNIT, Jaipur), Dr. Girdhari Singh (MNIT, Jaipur) and Dr. Lava Bhargava

(MNIT, Jaipur) for their inspiration and encouragement that directed me toward

the completion of this research.

My special thanks to my wonderful friends and fellow researchers, Smita, Rimpy,

Anil, Gaurav, Sonal, Ashish for revitalizing each day. From the depth of my heart,

I acknowledge all those persons who have motivated me to complete the thesis. I

also express my apology that I couldn’t mention them in person.

Finally, at the end, I would like to thank God, the Creator of the Earth, the

Almighty. The Supreme in power and knowledge and the most merciful, Whom I

acquired guidance and knowledge to do something beneficial for the humanity.

Dedications

This Thesis is Dedicated to my wife Mahima, who was always with me to

motivate for the work and my Kids Cheena and Cherry, who were always

ready to play with me to make me fresh.

ABSTRACT

Network-on-Chip (NoC) has emerged as a promising alternative to traditional

bus-based architectures for inter-core communication. It has also been accepted

commercially as the communication paradigm for Systems-on-Chip (SoC), instead

of dedicated wires or shared buses. The overall NoC performance depends on

many parameters such as topology, flow control, routing schemes, task mapping,

quality-of-service and switching methods. In all cases, the degree of adaptiveness

has a significant effect on the overall performance of any adaptive routing algo-

rithm. In addition, fault tolerance is the another aspect related to the reliability of

NoCs. The objective of this thesis is to design and develop turn models for rout-

ing algorithms that provide high degree of adaptiveness and/or fault tolerance to

improve the overall performance of the network.

Most of the routing algorithms proposed in the recent literature achieve deadlock-

freedom by forcibly restricting certain routing turns so that the channel depen-

dency graph remains acyclic. This requirement for the deadlock-freedom makes

these algorithms more restrictive, thus reduces the degree of adaptiveness. The

proposed algorithm enhances the functionality (routing turns) in virtual channels

of existing algorithms to achieve high degree of adaptiveness for 2D mesh with

wormhole switching. We have extended the aforementioned 2D turn model for

three dimensions (3D) to achieve high adaptivity. The 3D turn model uses one,

two and two virtual channels in X , Y and Z dimensions, respectively. We have

also developed a highly adaptive and fault-tolerant routing algorithm for 2D mesh

topology. The proposed algorithm can handle single link faults. It can also han-

dle multiple link faults if fault’s boundary do not overlap with each other. We

have designed another fault-tolerant routing algorithm for 2D mesh topology. The

proposed algorithm is able to handle single link faults, and it uses LBDR as its

implementation.

Contents

List of Figures i

List of Tables iv

1 Introduction 1

1.1 Routing Overview . 2

1.2 Motivations . 3

1.3 Objectives . 6

1.4 Contributions of the Thesis . 6

1.5 Thesis Outline . 7

2 Networks-on-Chip (NoCs) 8

2.1 Why NoC: Evolution of On-chip Communication Architectures . . . 9

2.2 NoC Topologies . 13

2.2.1 Direct Topologies . 14

2.2.2 Indirect Topologies . 15

2.3 NoC Router: Generic Architecture 18

2.4 Switching Methods . 20

2.4.1 Circuit Switching . 21

2.4.2 Store-and-Forward Switching 22

2.4.3 Virtual Cut-Through Switching 23

2.4.4 Wormhole Switching . 25

2.5 Routing Algorithms . 25

2.5.1 Deadlocks in Routing . 26

2.5.2 Livelocks in Routing . 27

2.5.3 Classification of Routing Algorithms 28

2.5.3.1 Source vs. Distributed Routing 29

2.5.3.2 Unicast vs. Broadcast vs. Multicast Routing 30

2.5.3.3 Deterministic vs. Adaptive routing 30

2.5.3.4 Minimal vs. Non-minimal Routing 31

2.5.3.5 Congestion-aware vs. Congestion-oblivious Routing 31

2.5.3.6 Topology Dependent vs. Topology Independent
Routing . 32

2.6 Turn Model based Routing Algorithms 32

2.6.1 Partially Adaptive Algorithms 33

i

CONTENTS ii

2.6.2 Fully Adaptive Algorithms 40

2.7 Recent Research Works and Issues 44

3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 47

3.1 Overview . 47

3.1.1 Motivation and Background 48

3.1.2 Mad-y Turn Model . 49

3.1.3 LEAR and HARAQ Turn Models 52

3.2 Proposed Work . 54

3.2.1 2D-CHARM: Turn Model 54

3.2.2 2D-CHARM: Routing Algorithm 57

3.2.3 Deadlock Freedom of 2D-CHARM 58

3.2.4 Livelock Freedom of 2D-CHARM 62

3.3 Results Analysis . 63

3.3.1 Uniform Traffic Pattern . 66

3.3.2 Non-uniform Traffic Patterns 68

3.3.3 Application Traffic . 72

3.3.4 Power Analysis . 74

3.3.5 Area Analysis . 76

3.4 Inferences . 76

4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 78

4.1 Overview . 78

4.2 Proposed Method . 79

4.2.1 3D-CHARM: Turn Model 79

4.2.2 Deadlock Freedom of 3D-CHARM 81

4.2.2.1 Deadlock Freedom: Individual Plane 81

4.2.2.2 Deadlock Freedom: Inter-plane Communication . . 89

4.2.3 Livelock Freedom of 3D-CHARM 91

4.3 Results Analysis . 91

4.3.1 Uniform Traffic . 92

4.3.2 Hotspot Traffic . 93

4.3.3 Application Traffic . 95

4.3.4 Power Analysis . 97

4.3.5 Area Analysis . 98

4.4 Inferences . 99

5 FTCAR: Fault-tolerant and Congestion-Aware Routing 100

5.1 Overview . 100

5.2 Proposed Method . 101

5.2.1 Deadlock and Livelock Freedom of FTCAR 103

5.2.2 FTCAR: Fault tolerance Analysis 104

5.3 Results Analysis . 107

5.3.1 Uniform Traffic . 107

CONTENTS iii

5.3.2 Hotspot Traffic . 108

5.3.3 Application Traffic . 108

5.3.4 Power Analysis . 109

5.3.5 Area Analysis . 110

5.4 Inferences . 111

6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 112

6.1 Overview . 112

6.1.1 LBDR Overview . 113

6.1.2 Next Hop Computation Logic 115

6.2 Proposed Method . 115

6.2.1 Link Failure Classification and Deadlock Freedom 116

6.2.2 Reconfiguration of Routing Paths 118

6.2.3 Fault Tolerant Routing Implementation 119

6.3 Results Analysis . 123

6.3.1 Uniform Traffic . 124

6.3.2 Hotspot Traffic . 125

6.3.3 Application Traffic . 126

6.3.4 Power Analysis . 126

6.3.5 Area Analysis . 127

6.4 Inferences . 128

7 Conclusions and Future Directions 129

Bibliography 134

List of Figures

1.1 Ring architecture for four routers 4

1.2 Channel dependency graph for the routing function R 5

2.1 Point-to-point communication architecture 9

2.2 Shared-bus communication architecture 10

2.3 Segmented-bus communication architecture 11

2.4 Fully-crossbar communication architecture 11

2.5 Network-on-Chip (NoC) communication architecture 13

2.6 2D-Mesh topology . 15

2.7 2D-Torus topology . 16

2.8 3D-Hypercube topology . 16

2.9 Butterfly topology . 17

2.10 Fat-tree topology . 17

2.11 Generic NoC router architecture . 18

2.12 Message Composition . 22

2.13 Timing diagram for store-and-forward switching 23

2.14 Timing diagram for virtual cut-through switching 24

2.15 Deadlock configuration . 26

2.16 An example of livelock . 28

2.17 Different types of turns for mesh network 33

2.18 Abstract cycles for 2D mesh . 33

2.19 XY turn model . 34

2.20 Six turns that form the cycle . 36

2.21 Six turns that form the cycle . 36

2.22 West-first turn model . 37

2.23 negative-first turn model . 37

2.24 North-last turn model . 40

2.25 Turn model for odd-even routing (a) odd columns (b) even columns 40

2.26 Example of virtual networks for 2D mesh 42

2.27 Virtual networks used by double-y routing for 2D mesh 43

2.28 Turn model for double-y routing . 43

3.1 Mad-y turn model . 50

3.2 Numbering for Mad-y router . 51

3.3 Numbering for Mad-y router . 51

3.4 Numbering for Mad-y router . 52

i

LIST OF FIGURES ii

3.5 LEAR turn model . 53

3.6 HARAQ turn model . 53

3.7 2D-CHARM turn model . 55

3.8 Example of 2D-CHARM method 58

3.9 Example of indirect dependency . 62

3.10 Average latency under uniform traffic for double-y network 67

3.11 Average throughput under uniform traffic for double-y network . . . 67

3.12 Average latency under uniform traffic for double-xy network 68

3.13 Average throughput under uniform traffic for double-xy network . . 68

3.14 Average latency under hotspot traffic for double-y network 70

3.15 Average throughput under hotspot traffic for double-y network . . . 70

3.16 Average latency under transpose traffic for double-y network 71

3.17 Average throughput under transpose traffic for double-y network . . 71

3.18 Average latency under hotspot traffic for double-xy network 72

3.19 Average throughput under hotspot traffic for double-xy network . . 72

3.20 Average latency under transpose traffic for double-xy network . . . 73

3.21 Average throughput under transpose traffic for double-xy network . 73

3.22 Performance for application traces for double-y network 74

3.23 Performance for application traces for double-xy network 74

3.24 Power consumption results under hotspot traffic for double-y network 75

3.25 Power consumption results under hotspot traffic for double-xy network 75

4.1 Turn model for Y Z-plane of 3D-CHARM 80

4.2 Turn model for XY -plane of 3D-CHARM 80

4.3 Turn model for XZ-plane of 3D-CHARM 80

4.4 Numbering for router of R1 routing algorithm 87

4.5 Numbering for router of R1 routing algorithm for the each input
channel . 88

4.6 Each router (Y, Z) in 4× 4 Y Z-plane for R1 routing function 88

4.7 Average latency under uniform traffic for 4× 4× 4 93

4.8 Average latency under uniform traffic for 4× 4× 3 94

4.9 Average latency under hotspot traffic for 4× 4× 4 94

4.10 Average latency under hotspot traffic for 4× 4× 3 95

4.11 Performance for application traces for 4× 4× 4 96

4.12 Performance for application traces for 4× 4× 3 96

4.13 Power consumption results under hotspot traffic for 4× 4× 4 . . . 97

4.14 Power consumption results under hotspot traffic for 4× 4× 3 . . . 98

5.1 FTCAR turn model . 102

5.2 Tolerating single link failures for different packet directions 106

5.3 Average latency under uniform traffic 107

5.4 Average latency under hotspot traffic 109

5.5 Performance for application traffic 110

5.6 Power consumption under hotspot traffic 110

LIST OF FIGURES iii

6.1 Routing restrictions for xy Routing for 3× 3 Mesh 113

6.2 LBDR Router . 114

6.3 Types of link failure in the 2D mesh 116

6.4 Channel dependency graphs for different mesh boundaries 117

6.5 Average latency under uniform traffic 124

6.6 Average latency under hotspot traffic 125

6.7 Performance for application traffic 126

6.8 Power consumption under hotspot traffic 127

List of Tables

3.1 Prohibited routing turns for different routing algorithms 56

3.2 Route computation function for 2D-CHARM 59

3.3 Route computation function for routing subfunction R1 61

3.4 Route computation function for the routing function R2 64

3.5 Route computation function for the new routing function R3 65

3.6 Area Requirement . 76

3.7 Area Requirement . 76

4.1 Route computation function for XY -plane of 3D-CHARM 83

4.2 Route computation function for XZ-plane of 3D-CHARM 84

4.3 Route computation function for Y Z-plane of 3D-CHARM 85

4.4 Route computation function for the R1 of Y Z-plane of 3D-CHARM 86

4.5 Area Requirement . 98

5.1 Area Requirement . 111

6.1 Routing and connectivity bits of xy routing for 3× 3 mesh 115

6.2 Reconfigured paths for IHF boundary 120

6.3 Reconfigured paths for IVF boundary 121

6.4 Area Requirement . 127

iv

Chapter 1

Introduction

The current Chip Multiprocessors (CMPs) and Multi-Processor Systems-on-Chip

(MPSoCs) architectures have replaced the single core systems due to their scala-

bility issues. Intel Lab has developed terascale processor [98], a single chip cloud

computer consists of 48 cores on same silicon CPU chip. This development is in-

tended of achieving the scalable communication, power consumption and on-chip

performance for the near future. Other industrial examples include Tilera’s TILE -

Gx72 and TILE64TM [4] processors. These examples show the increasing growth

of integrating multiple components on a single silicon chip, and this will continue

till near future. As the number of cores is increasing, communication among them

is becoming challenging for these multi-core architectures. This growth leads to

the paradigm shift from computation-centric designs to communication-centric

designs.

In the beginning, the integrated chips had deployed a small number of processing

elements and interconnected them using the conventional interconnects such as

ring [26], cross-bar, shared-buses and point-to-point (P2P). In P2P techniques,

a pair of processing elements is interconnected via dedicated link (wire). Thus,

because of this dedicated link, the P2P interconnects based systems are able to

offer 100% communication bandwidth. However, as the number of cores are in-

creasing, it results in increased wire density, thus, for multi-core architectures,

these are not suitable candidates. The shared-bus architectures are simple as far

as the number of processing elements is less. With an increase in the number of

such elements, the arbitration delay is also increasing and results into the band-

width bottleneck. Crossbar designs interconnect a set of cores to another set of

1

Chapter 1 Introduction 2

cores in a matrix fashion. However, the power and area constraints prevent their

use in multicore systems. The ring-based communication systems interconnect

the processing elements in a close loop (ring topology). In ring architecture, the

communication becomes slow because the messages must cross other components

of the network between source and the destination. Moreover, if one of the ele-

ments gets down, it affects the whole network. In short, the increasing complexity,

bandwidth bottleneck and communication delay are the main limiting factors of

traditional communication architecture based System-on-Chip (SoC). To address

these communication issues for multi-core architectures, Network-on-Chip (NoC)

has been introduced as a viable and scalable substitute to traditional bus-based

architectures for intercore communication.

The overall performance of NoC depends on several network parameters such as

topology, switching technique, flow control, and routing strategies. This thesis is

focused on routing algorithms. A routing algorithm affects several nonfunctional

requirements of an NoC-based system. Performance, reliability, energy consump-

tion, power dissipation, thermal aspects, and fault tolerance are among the major

parameters that are affected by the routing algorithm. Significant research has

been published on the improvement of routing algorithms for the parallel and dis-

tributed computing domains. The main issues addressed include the development

of high-performance, fault-tolerant and low cost (power and area) router micro-

architectures, the development of bandwidth-aware and contention-aware selection

policies, and the design of deadlock-free highly adaptive routing functions. In all

cases, routing function (one phase of routing algorithm) has a significant effect on

the overall performance of any routing algorithm [46].

1.1 Routing Overview

A routing algorithm computes the path from source node to the destination node.

The routing algorithm can be either deterministic or adaptive. The deterministic

routing scheme always provides the same path between source and the destination

nodes irrespective of network congestion status. However, an adaptive scheme

uses current network status in making the routing decision and may compute

different output channel for different packets. The deadlock is a major issue in

designing any adaptive routing algorithm. A deadlock occurs when a set of packets

cannot advance toward their destination because the buffers requested by them

Chapter 1 Introduction 3

are full [26]. The blocked packets form a deadlock configuration. Packets, involved

in deadlock configuration, are waiting for each other in a cyclic manner to release

the resources (buffer), thus blocked forever.

The deadlocks are severe to any routing algorithm as they can disrupt the commu-

nication by paralysing network operations. To avoid deadlocks, NoC designers use

either deadlock avoidance or deadlock recovery. In deadlock avoidance methods, it

is ensured that a deadlock never occur. On the contrary, deadlock recovery method

detect deadlock in the network, then recover from it. The deadlock avoidance

methods are generally preferred over deadlock recovery methods because recovery

methods impose an overhead of deadlock detection and then buffer releasing that

may degrade the network performance considerably.

To avoid deadlocks, researchers have used two main theories; Dally’s theory [17]

and Duato’s theory [24]. The first theory does not allow cyclic dependencies among

channels. Whereas, the other one allows cyclic dependencies provided that there

exists deadlock free routing subfunction. The details of routing algorithms and

deadlocks are discussed in Sections 2.5 and 2.6.

1.2 Motivations

With deterministic routing, packets can be routed over single output channel at

each node. Thus, it is mandatory to remove all cyclic dependencies between net-

work channels in order to achieve deadlock freedom. In adaptive routing, packets

often have several options for routing at each node. Thus, it is not mandatory

to eliminate all cyclic dependencies between channels, provided that each packet

can be forwarded on a route whose channels are not involved in the cyclic depen-

dencies. The channels involved in these acyclic routes are considered as escape

channels from deadlocks (cycles). Based on the extensive literature survey on

challenges in routing algorithm, following are the motivations of this thesis:

1. The first motivation for the proposed routing algorithms is derived from

the fact that a less restrictive routing algorithm offers a high degree of

adaptiveness [46]. Most of routing algorithms proposed in the recent lit-

erature [70, 36, 68, 71, 45, 34, 32, 33] achieve deadlock-freedom by forcibly

restricting certain routing turns so that the CDG remains acyclic. This

Chapter 1 Introduction 4

acyclic CDG requirement for the deadlock-freedom makes these algorithms

more restrictive, thus reduces the degree of adaptiveness. If we relax this

requirement for these algorithms, we can be blessed with a less restrictive

routing algorithm. The main focus of this proposed work is to relax this

requirement by allowing cycles in the CDG provided that ECDG is acyclic

(using Duato’s theorem [24]). We have explained our point by comparing

with two recent algorithms LEAR [34] and HARA [32]. It should be noted

that LEAR and HARA routing algorithms are based on Mad-y [45] turn

model.

We present an example which shows that a routing scheme would be deadlock-

free, even if there exist cyclic dependencies between channels. Figure 1.1

shows a ring consisting of four routers (1, 2, 3 and 4). Each router is con-

nected to the adjacent router using two channels ai and bi, i = {1, 2, 3}

(physical or virtual) except the routers 4 and 1. Router 4 is connected to

router 1 using a single channel a4.

3

1

4

2

a1

a2

a3

a4

b1

b2

b3

Figure 1.1: Ring architecture for four routers

The routing function R for the ring is defined as below

R =

{

ai , ∀j 6= i

bi , ∀j > i

Figure 1.2 shows the channel dependency graph for the routing function R.

The dependencies are because of followings:

(a) If a packet is at the router 1 and the destination is router 3, it can

occupy channel a1 and request channels a2 and b2.

(b) If a packet is at the router 2 and the destination is router 4, it can

occupy channel a2 and request channels a3 and b3.

Chapter 1 Introduction 5

a1

a2
a3

a4

b1

b2

b3

Figure 1.2: Channel dependency graph for the routing function R

(c) If a packet is at the router 3 and the destination is router 1, it can

occupy channel a3 and request channel a4.

(d) If a packet is at the router 4 and the destination is router 2, it can

occupy channel a4 and request channels a1 and b1.

We can observe that there exist cyclic dependencies among ai channels. How-

ever, it is clear from Figure 1.2 that the bi channels are not involved in any

cyclic dependencies. Thus, they are always free (empty). We prove the

deadlock-freedom of R by contradiction. We assume that there is a deadlock

in routing function R. There must exist a deadlock configuration, and any

deadlock configuration can involve only ai channels as the bi channels are

always empty. Although, Figure 1.2 depicts that the ai channels involved

in the cyclic dependencies, but this deadlock configuration will not be le-

gal. At router 1, channel a1 can be occupied by a packet that is destined

for either router 2 or 3 or 4. At router 2, this packet can use b2 and b3

(always empty channels) channels for these destinations thus breaking the

cyclic dependency. We have proved that the routing function R with cyclic

dependencies does not have any deadlock-configuration. Thus, it would be

deadlock-free.

2. In on-chip communications, reliability is a critical factor in multi-core sys-

tems. It is affected by transient and/or permanent faults. Faults affect the

functionality and can degrade the performance of on-chip networks. Thus,

it has become essential to design on-chip networks that can tolerate faults.

The second motivation for this thesis to achieve fault-tolerance to make com-

munication more reliable.

Chapter 1 Introduction 6

1.3 Objectives

The objectives of this thesis are as stated below:

1. To design a turn model to provide high degree of adaptiveness for the 2D

mesh network. The ultimate aim is to add more functionality (routing turns)

to virtual channels of existing algorithms minimally or non-minimally around

hotspot and congested areas of the network to achieve the high degree of

adaptiveness.

2. To extend the 2D turn model for three-dimensional mesh to improve the

network performance.

3. To implement reconfigurable and fault tolerant routing algorithms by ana-

lyzing deadlock-freedom to bypass faulty links of the network.

1.4 Contributions of the Thesis

The major contributions of this thesis are as follows:

1. We propose a novel turn model that provides high degree of adaptiveness

for a 2D mesh. The end result is that the proposed turn model reduces the

number of restrictions on routing turns and hence is able to provide path

diversity through additional minimal and non-minimal routes between the

source and destination. Based on turn model, we have presented a highly

adaptive and congestion-aware routing method (CHARM). The proposed

method is implemented using double-y network.

2. We have extended aforementioned 2D turn model for three dimensions (3D)

to high achieve adaptivity. It uses one, two and two virtual channels in X ,

Y and Z dimensions, respectively.

3. We have developed a highly adaptive and fault-tolerant routing algorithm

for 2D mesh topology. The proposed algorithm is able to handle single link

faults within a 2D mesh. It can also handle multiple link faults if fault’s

boundary do not overlap with each other.

Chapter 1 Introduction 7

4. In an MPSoC or CMP architecture, the reliability of NoC is affected by

transient and/or permanent faults. Faults affect the functionality and can

degrade the performance of on-chip networks. We have designed a fault-

tolerant and reconfigurable routing algorithm for the 2D mesh topology.

The presented approach can handle single link faults within the 2D mesh,

and it uses Logic Based Distributed Routing (LBDR) as its implementation.

In this thesis, we mainly focus on the development of highly adaptive and fault-

tolerant routing algorithms for mesh networks with wormhole flow control. Our

proposal tries to identify non-essential restrictions and remove these to improve

adaptivity of underlying architecture in terms of routing function. The effec-

tiveness of proposed algorithms is shown by evaluating them for both real and

synthetic traffic profiles. In addition, power and area overheads are also analyzed.

1.5 Thesis Outline

The remainder of the thesis is partitioned into three categories i.e. the introduc-

tory chapter, contributory chapters and the concluding chapter. The introductory

chapter (Chapter 2) demonstrates the background required for understanding the

concepts of on-chip networks. The contributory chapters include four chapters,

each presenting the proposed work. Chapter 3 presents the highly adaptive and

congestion-aware routing method for the 2D mesh. A three dimensional extension

to proposed 2D turn model is presented in Chapter 4. It also presents the analysis

how this two-dimensional method can be applied to three dimensions. Chapter 5

provides the fault tolerance analysis of the 2D turn model. It also introduces fault

tolerant routing technique for a 2D mesh. Chapter 6 provided another fault toler-

ant and reconfigurable routing method using LBDR. It can handle all single link

failures. Finally, Chapter 7 concludes the research work proposed in this thesis

and provides future directions.

Chapter 2

Networks-on-Chip (NoCs)

The device scaling has resulted in an exponential increase in the circuit perfor-

mance that sustained the recent microelectronic evolution. The 28nm silicon tech-

nology is already in use for the production. A single chip with 32nm technology

consists of billions of transistors with a descent chip density of 1.5 Mgate/mm2.

Decreasing returns and the increased design complexity (chip density, etc.) of a

single processor system have resulted in the emergence of many-core architectures

in the form of multi-core Systems-on-Chip (SoCs).

An SoC is a complex computing system which consists of processing elements, data

converters, hardware accelerators, peripheral interfaces, I/Os, on-chip memory,

and other components. For a specific application domain, it represents a complex

device that provides all the needed hardware and electronic circuits to form a

working system. An SoC is generally customized for a specific application which

is very similar to the traditional application-specific integrated circuit (ASIC).

However, the main emphasis is not on specialized hardware design for the SoCs,

like conventional ASICs. SoCs utilize reusable existing components as much as

possible so that these can reduce the production of newly designed elements of the

chip. These reusable components known as intellectual-property (IP) cores and

include both the soft and hard core components.

In the current Silicon-technology era, the main development perspective is shifted

towards increasing the number of cores in multi-core systems from increasing the

operating frequency of a single core processor. As the number of cores is increas-

ing, the communication among the cores is becoming more challenging for these

8

Chapter 2 Networks-on-Chip (NoCs) 9

multi-core architectures. These trends have resulted in a paradigm shift towards

communication-centric designs from computation-centric designs.

2.1 Why NoC: Evolution of On-chip Communi-

cation Architectures

A communication infrastructure is required to interconnect various application

specific integrated circuits (ASICs), memories, processors and other elements on

a single-chip. The basic requirements for a good communication infrastructure

include high performance, low power, and low latency. Thus, the efficient im-

plementation of SoCs requires scalable and bandwidth-aware communication in-

frastructure. The two major technological challenges in the design of an efficient

communication architecture for SoCs are (i) reducing the huge computing power

(ii) handling the large amount of traffic generated by number of concurrently run-

ning applications.

Traditionally, SoCs employ communication schemes [26], namely point-to-point,

rings, crossbars, and buses. By connecting a pair of elements with a dedicated

link, the point-to-point architectures (Figure 2.1) provide the advantage of 100%

bandwidth availability. However, these schemes are not well scalable in terms of

cost, design efforts, complexity, and flexibility. As the number of cores increases,

these also result in the increased wire density, thus not suitable for the many-core

SoCs.

DSP

RFIC
WiMAX

FPGA

RFIC
WiFi

ARM

MPEG
DECODERRFIC

WiFi

FPGA

DSP

Figure 2.1: Point-to-point communication architecture

Chapter 2 Networks-on-Chip (NoCs) 10

In order to eliminate dedicated link requirement of the point-to-point architec-

tures, the bus-based architectures (Figure 2.2) can be used. These architectures

interconnect a small number (few tens) of cores in a cost-effective manner and

result into reduced overall design complexity. The main advantage of bus-based

DSP RFIC
(DVB)

FPGAMPEG
DECODER

ARM

RFIC
WiFi

ASIC FPGA RISCRFIC
WiMAX

Figure 2.2: Shared-bus communication architecture

architectures is their simplified interconnection design. However, due to sharing

property, these architectures limit the maximum achievable bandwidth. In ad-

dition, electrical noise, variability, and crosstalk are growly serious issues with

recent technology. The use of long global wires makes the shared bus systems

more vulnerable to these problems. Moreover, the addition of new components

can deteriorate performance of buses drastically. Because, with miniaturization,

the propagation delay of long global wires is monotonously increasing and thus,

with new chip generations, the clock frequency of the bus system is reducing.

The segmented (hierarchical) bus structure provides a solution to the bandwidth

constraints of the shared bus interconnect. As shown in Figure 2.3, it intercon-

nects a bus structure with another bus structure using a bridge component. The

computation of optimum settings for the segmented bus is very time-consuming

and complex [14]. Because, the bus arbitration of segmented bus is distributed in

nature which combines the operations of all arbitration units.

Crossbar designs interconnect a set of cores to another set of cores in a matrix

fashion. However, the power and area constraints prevent their use in multicore

systems. The ring-based communication systems interconnect the processing el-

ements in a close loop (ring topology). In ring architecture, the communication

becomes slow because the messages must cross other components of the network

between the source and the destination. Moreover, if one of the elements gets

down, it affects the whole network. In short, the increasing complexity, bandwidth

bottleneck and communication delay are the main limiting factors of traditional

Chapter 2 Networks-on-Chip (NoCs) 11

DSP RISC FPGA

ARMRFIC
WiFi

MPEG
DECODER

MAC

FPGA RFIC
(DVB)

RFIC
WiMAX

BRIDGE

Figure 2.3: Segmented-bus communication architecture

communication architecture based System-on-Chip (SoC). To address these com-

munication issues for multi-core architectures, Network-on-Chip (NoC) paradigm

is introduced as a viable and scalable substitute to traditional bus-based architec-

tures for intercore communication.

DSP

RFIC
WiMAX

MAC

RFIC
WiFi

MP3
DECODER

FPGAARM

MIPS

Figure 2.4: Fully-crossbar communication architecture

Figure 2.5 shows 3× 3 mesh on-chip network. The main idea behind the develop-

ment of NoC as a communication paradigm is to route the packets instead of the

wires [19]. To route a message/packet generated by one core to another, the NoC

uses several routers or switches.

The main purpose of designing SoC is to develop applications which are generally

specific to embedded system domain. We can classify the SoCs architectures on the

basis of the use of NoC into two major categories; Chip Multiprocessors (CMPs)

Chapter 2 Networks-on-Chip (NoCs) 12

and MultiProcessors System-on-Chip (MPSoCs). If the multi-core SoC consists of

heterogeneous core elements, the SoC is known as MPSoC. If the cores of SoCs are

of homogeneous in nature, the SoC is known as CMP. The cores communicate with

each other by sending and receiving packet to/from other cores. This interaction

is generally of parallel nature in the embedded applications. The major designing

factors of these multi-processor architectures include low communication latency

and low power. In portable electronic appliances and electronic-handhelds, the

power is completely dependent on the battery life. Thus, the main issue to design

the NoC-based CMPs/MPSoCs architectures is the power constraint that depends

on the chip area.

In CMP architectures, a tile includes three components; IP-core, a router and a

network interface. The IP-core consists of an IO interface, a memory controller

(MCtrl), a global (shared) memory, a local memory block, some CPU blocks and

some other elements. Each router is connected to the IP-core using a network

interface. The purpose of the network interface is to decompose a data packet into

a number of flits when one core sends the data to another. The network interface

is also responsible for the assembling the flits to reconstruct the data packet at the

receiving tile. Similarly, an MPSoC architecture can have different types of IP-

cores such as FPGA-based configurable block, an ASIC component, a bus-based

microprocessor system (such as RISC, MIPS, ARM or processor system), a digital

signal processor (DSP), a shared memory, or any other type of IP-core.

The NoC architecture has already been used as the communication backbone for

current embedded SoC applications. The Xbox-360 [2] and Cell Broadband En-

gine Processor [64] gaming consoles are examples of potential commercial products

of multiprocessor applications which rely on NoC as communication architecture.

The Xbox-360 gaming console is an example of CMP architecture comprised of

graphics processing unit (GPU), memory, I/O units and CPU units. The units

are connected using node crossbar/queuing as the number of elements are small.

The node crossbar/queuing is similar to the single crossbar-switch of a NoC router.

Cell Broadband Engine Processor (also known as Cell Processor) is a result of joint

efforts of Toshiba, Sony, and IBM. It incorporates a 64-bit power processor element

(PPE), eight specialized processors called synergistic processor elements (SPEs), a

high-bandwidth bus interface, and a high-speed memory controller. All units are

interconnected through four slotted rings and integrated on chip. The Cell Proces-

sor is dedicatedly designed for Playstation 3 Game Console. The on-chip network

Chapter 2 Networks-on-Chip (NoCs) 13

FPGA

FPGA

RFIC

DSP

ASIC ARM

RISC

ARM

DSP

RFIC
WiFi

RFIC
WiMAX

RFIC
DVB

Figure 2.5: Network-on-Chip (NoC) communication architecture

paradigm is also accepted by the industry as the communication infrastructure

for complex Systems-on-Chip (SoC) to replace shared buses and dedicated wires.

Intel’s terascale processor [98] and Tilera’s TILE-Gx72, TILE64TM [4] processors

are the few commercial examples who have adopted mesh based NoC.

Implementation of an NoC includes several designing characteristics such as net-

work topology, flow-control methods, routing methods, quality-of-service and switch-

ing methods. This chapter describes the basics and general theory [26, 85, 20]

about these characteristics of interconnection networks.

2.2 NoC Topologies

The network topology defines how the different IP-cores of an MPSoC/CMP are

interconnected to each other through routers and network interfaces. As the selec-

tion of specific flow-control method and routing algorithm depends largely on the

network topology, the very first step in designing on-chip network is the selection

of the topology. The network topology not only defines the static arrangement

of network components (routers, channels, and NIs), it also specifies other details

such as the bit-rate and bandwidth of each channel, the number of stages, bisection

bandwidth, path diversity, and the radix of the router.

The network designers select a specific topology on the basis of its performance

and the implementation complexity-cost. The network performance is defined by

the communication bandwidth, power utilization and network throughput. The

Chapter 2 Networks-on-Chip (NoCs) 14

implementation complexity-cost has three main components; (a) length and den-

sity of wires (b) router degree (number of channels at each router) (c) number of

metal layers needed to realize the network.

A network node may act as either router node or terminal node or both. A router

node routes packets from input ports to output ports. A terminal node acts as

a source and sink for the packets. On the basis of the role of the node in the

network, a topology can be classified into two categories direct and indirect. In

a direct topology, every network node acts as both a router and a terminal. On

the other hand, in an indirect topology, a network node acts as either a router

or a terminal. In a direct network, packets are routed directly from one terminal

node to other. With an indirect network, packets are routed through a sequence of

intermediate router nodes between the source and the destination. Till now, the

majority of the NoC designs have utilized direct networks. The main advantage

of a direct network is that a router node is co-located with the terminal node so

that each router can use various resources of a terminal node. Moreover, it is more

suitable to place routers with the terminal nodes in area-constrained systems like

NoCs.

2.2.1 Direct Topologies

A variety of network topologies has been modeled and designed using their graph-

theoretical characteristics for on-chip networks. The majority of the implemented

topologies are orthogonal topologies. In an orthogonal topology, all of its ver-

tices (nodes) are organized in an n-dimensional orthogonal space, and every edge

(channel) is organized in such a way that it produces a displacement in a single

dimension. Thus, we can number the network nodes using their coordinates in

the n-dimensional space. The advantage of using orthogonal topologies is that the

hardware implementation of a routing algorithm becomes efficient.

Figures 2.6, 2.7 and 2.8 show the most commonly used orthogonal direct topologies;

2D-dimensional mesh (k-ary n-mesh), 2D-torus (k-ary n-cube) and 3D-hypercube.

Mesh topology (Figures 2.6) is among the most popular and important NoC topol-

ogy for large-scale MPSoCs and CMPs architectures. The main advantages of

mesh topologies are their good scalability, regularity, and simplicity. Most of the

industrial and academic MPSoCs and CMPs use mesh-based NoC topologies as

their communication backbone.

Chapter 2 Networks-on-Chip (NoCs) 15

CoreRouter Network Interface

Figure 2.6: 2D-Mesh topology

Formally, an n-dimensional mesh has k0 × k1 × ... × kn−2 × kn−1, ki nodes along

each dimension i, where ki ≥ 2 and 0 ≤ i ≤ n − 1. Every node X is represented

by n coordinates, (xn−1, xn−2, ... , x1, x0), where 0 ≤ xi ≤ ki−1 for 0 ≤ i ≤ n−1.

In torus topology, as shown in Figure 2.7, each node has the same degree. The

mesh topology has the disadvantage of increased long hop count between opposite

borders. The torus topology eliminates this disadvantage. In this topology, the

routers at the border are directly connected to the routers at the opposite border.

Thus, it reduces the hop count on a path. Because of edge symmetric property, the

torus is able to distribute traffic more evenly across the network. The hypercube

(Figure 2.8) is another commonly used topology for 3D NoCs. It is considered as

a special case of mesh topologies.

2.2.2 Indirect Topologies

Figure 2.9 shows an example of 2-ary 3-fly butterfly topology. The butterfly topol-

ogy is a clear example of the difference between router node and the terminal node.

The router nodes are in the middle (shown by rectangles) and terminal nodes are

Chapter 2 Networks-on-Chip (NoCs) 16

CoreRouter Network Interface

Figure 2.7: 2D-Torus topology

Figure 2.8: 3D-Hypercube topology

Chapter 2 Networks-on-Chip (NoCs) 17

on the borders. The router node accepts packets at its input port and computes

their destinations using underlying routing algorithm, then routes packets to the

output channel.

CoreRouter

Figure 2.9: Butterfly topology

Figure 2.10 shows an example of fat tree topology that logically represent a binary

tree. In a fat tree, packets are forwarded towards the root till they reach a common

ancestor and then forwarded down towards the destination. Each router in the fat

tree has a logical degree of four. Though, the links in higher-level nodes are much

wider than those in the lower levels.

Figure 2.10: Fat-tree topology

Chapter 2 Networks-on-Chip (NoCs) 18

2.3 NoC Router: Generic Architecture

A major challenge towards the multi-core architecture is the designing an efficient

router microarchitecture. The performance factors for a NoC router includes la-

tency with area and power constraints. A router is capable of receiving packets

at the input ports, computes the output port depending upon the destination

address using the routing algorithm, and then routes the packet along the appro-

priate output channel. For a specific on-chip network, the router microarchitecture

is generally unique. It depends on various network characteristic such as quality

of service, chosen routing method, switching mechanism implementation, flow-

control methods, and quality of service.

Figure 2.11 shows a generic router microarchitecture for a 2D mesh topology.

It is composed of five input-output (I/O) ports, one for each of the directions

(North, South, East, West, and Local). The Local I/O port is connected to the

corresponding IP-core through a network interface. Typically, an NoC router has

five major components as following:

.

.

.

Switch Arbitration

Virtual Channel
 Allocator

Route
Computation

Engine

Input Buffers

VC-0

VC-1

VC-2

VC-3

Input Buffers

VC-0

VC-1

VC-2

VC-3

Output -1

Output -5

Input Port-1

Input Port-5

Credit-inCredit-out

.

.

.

Cross-bar

Figure 2.11: Generic NoC router architecture

Chapter 2 Networks-on-Chip (NoCs) 19

1. Buffer: The First-In First-Out (FIFO) buffers are used to hold the transit-

ing packet. Each input and/or output physical channel is associated with

one buffer. The transit packet can be incoming and outgoing packet in a

router. Depending upon the requirement, different NoC routers implement

FIFO buffers either at input ports or at output ports or at both places.

This implementation reduces the data buffering cost. If a packet (say p1)

occupies a buffer for a channel, the other packet (say p2) cannot access

the physical channel, even if p1 is blocked. In an alternative appraoch, the

buffer can be multiplexed into the number of virtual channels in order to

provide quality of service and deadlock-freedom. These logical channels are

multiplexed across the physical channel as shown in the Figure 2.11. As the

buffer adds significant cost (power and area) to a router, some recent router

implementations [100, 42] have eliminated the need of virtual channels.

2. Route Computation Engine: The task of Route Computation Engine is to

compute the appropriate output channel for an incoming packet. This unit

implements the routing scheme. Typically, NoC routers make use of two

different implementations of the route computation engines: table based

routing and routing finite state machine. The details of routing algorithms

and their implementations are discussed later in Section 2.5.3

3. Arbiter: Multiple packets can request same output channel simultaneously.

The purpose of arbitration unit is to resolve these concurrent requests for

the same output channel. It provides the arbitration among them. When

a packet requests a particular output channel and if that channel is occu-

pied by the other packet, the first packet waits in the input virtual channel

(buffer). Once, the occupied channel is released by the other packet, the first

packet again participates in the arbitration and is routed along the requested

channel, if wins in arbitration.

Thus, the role of an arbiter is similar to a referee who resolves the contentions

among several packets requesting the same output channel in a router. The

NoC routers implement various arbitration policies such as flit-by-flit ro-

tating, contention-aware, priority-based, round-robin, first-come first-serve,

etc.

4. Crossbar: The Crossbar unit is responsible for interconnecting the input

ports to the output ports of the router. The arbitration unit controls the

Chapter 2 Networks-on-Chip (NoCs) 20

output data of the crossbar. All possible input data lines are linked with the

input ports of the crossbar.

5. Link Controllers: The Link Controllers are responsible for the movement

of packets through the physical channel which interconnects the input and

output ports of adjacent routers. This data transmission control is required

to prevent incorrect data replications and data overflow. The link controllers

coordinate the transmission units of flow control on either side of a physi-

cal link. Existing control techniques like stop-and-go and credit-based are

generally implemented for this unit. This unit is also responsible for imple-

menting data synchronization interfaces to synchronize correct data transfer

from one router to other. The NoC routers implement various flow con-

trol policies such as pipelined repeater-based, asynchronous queue-based,

mesochronous, source-synchronous, etc.

2.4 Switching Methods

A switching method is responsible for the effective management of network re-

sources. The buffers and channels are counted as the main resources of an inter-

connection network. The switching method determines when and how a packet

(or message) header is allocated the network resources during its travel along the

route. One can also view the switching method that determines the connection of

an input channel to an output channel. A good switching mechanism allocates the

network resources efficiently so that the packets are delivered to their destinations

with low latency and high throughput by efficient sharing of channels and buffer

among them.

Flow-control methods are tightly coupled with buffer allocation and switching

methods. The flow-control methods establish the connection between adjacent

routes. They control the flow of the information by stopping and allowing it.

When a packet is stopped, it needs some buffer area to get stored. If the flow-

control method finds that the available buffer space is not enough to store the

information, it stops the flow. As soon as, it detects the availability of the buffer

space, it again starts the information transmission. In the absence of flow control

mechanism, the packets may get dropped.

Chapter 2 Networks-on-Chip (NoCs) 21

On-chip router architecture depends on the selection of the switching method. The

switching method also defines the services provided by the network. In this section,

we brief about commonly used switching methods such as circuit switching, store-

and-forward, virtual cut-through and wormhole.

2.4.1 Circuit Switching

We begin our discussion with the circuit-switching method that works at coarsest

granularity level and generally uses bufferless flow control. In circuit switching,

prior to the transmission of data, the entire route (circuit) is first reserved. A

packet header containing the destination address together with some control data

is injected into the network. As the packet header advances towards the desti-

nation in the network, it reserves the required resources along the route. If the

header is unable to acquire the required resource immediately at an intermediate

router, it has to wait for the resource till being released. Once the header reaches

the destination, an acknowledgment is sent back to source router indicating that

the entire route followed by the header is setup. As soon as, acknowledgment

packet reaches the source router, the source can then start the transmission of

data packets over the reserved path. Once all data packets are sent, a control

packet is transmitted in the network to terminate the connection circuit.

The circuit switching technique is generally employed for providing guaranteed-

throughput and/or guaranteed-bandwidth in data transfer. In high-performance

computing domain, Intel iPSC/2 [80] has used circuit switching technique in paral-

lel machines. These machines use a Direct Connect Communications Technology.

Another example that uses circuit switching is Motorola-based BBN GP 1000 [7].

This machine deploys butterfly topology: a multistage connection network. In

on-chip networks, the circuit switching techniques is used to provide quality of

service. Æthereal [87], MANGO [6], PNoC [52], DSPIN [83] are a few on-chip

network proposals which use the circuit switching technique.

The main advantage of circuit switching is that it can transmit the data at full

hardware bandwidth. It is useful for long and infrequent messages. However, it

may block other messages, because, it reserves the entire route during the trans-

mission of a particular message. Thus, this switching mechanism is inefficient as it

wastes expensive channel-bandwidth in order to save relatively inexpensive buffer

space.

Chapter 2 Networks-on-Chip (NoCs) 22

2.4.2 Store-and-Forward Switching

In circuit switching, once the path is reserved, the entire message is sent along the

circuit till the transmission ends. Alternatively, before injecting the message into

the network, it is divided into small fixed-length units called packets as shown in

Figure 2.12. Each packet can be further divided into a number of flow control

unit(s) called flit(s). There are three types of flits: Head flits, Body flits, and

Tail flits. The first flit of each packet contains control and routing information,

some data (optional) and is called head flit. Body flits contain the data. Tail

flit contains some data (optional), and control information that shows that this

flit is last flit for a particular packet. Flits can be further segmented into phits

that represent the width of the channel. This switching method is called packet

switching. The routing algorithm computes the route for each packet and forwards

the packet individually from the source to the destination.

Head Flit Body Flit Tail Flit

Packet

Message

Flit Type VCID

Phit

Header Payload

Route Seq#

Figure 2.12: Message Composition

The store-and-forward switching is a kind of packet switching technique in which

each router is provided with a buffer space equal to the size of the packet so that

it can hold a packet completely. Before forwarding the packet to the neighboring

router, the packet is stored at each intermediate router. Since every packet is

first stored and then forwarded to the next hop, this switching is called store-

and-forward switching. Figure 2.13 depicts the time-space diagram for store-and-

forward switching. A packet consisting of five flits is routed with no contention

assumption. The path length is four hop. Before moving to the next channel, the

complete packet is routed along one channel at each step of routing.

The store-and-forward technique is the first switching that has been used in many

Chapter 2 Networks-on-Chip (NoCs) 23

H B B B T

H B B B T

B B B T

0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 193

0

2

3 H B B B T

Cycle

Channel

1

H

Figure 2.13: Timing diagram for store-and-forward switching

parallel machines. The Manchester Dynamic Dataflow computer [50], the MIT

Tagged Token Dataflow system [79] and the Denelcor HEPmachine are the few

examples of earlier parallel systems that have deployed store-and-forward switch-

ing technique. Similar to the off-chip network field, Arteris [74], CLICHE [67],

MicroNet [99], MESCAL [93], Nostrum [76] and Proteo [94, 89] form a short list

of early NoC proposals that have used store-and-forward switching technique.

The store-and-forward is preferred when packets are frequent and short. This

technique fully utilizes the communication channel when there is data to be sent,

unlike circuit switching, where a set of reserved channels may be idle for a sub-

stantial period. In this switching, several packets of the same message can travel

simultaneously in the network without waiting for the acknowledgment of first

packet. However, dividing a message into the number of packets results in delay.

Moreover, this switching needs additional time to assemble the packets into the

original message at the destination. As the route computation is done at every

intermediate router, it also causes overhead.

2.4.3 Virtual Cut-Through Switching

In store-and-forward switching technique, a packet must be entirely buffered before

it can move to the next hop. Thus, each router experiences serialization latency

that results in high average network latency. The virtual cut-through switching is

an improvement over the store-and-forward that tries to reduce the serialization

delay required to buffer the complete packet at each router. It allows the packet

to move to the next hop router soon after the routing decision is made for the

packet header, if the next router is having enough buffer space needed to store

the packet header at least. Thus, in this switching, it is not required to buffer

the complete packet at the current intermediate router and can be cut through to

Chapter 2 Networks-on-Chip (NoCs) 24

the next router. The packet can be effectively pipelined via consecutive routers.

However, when the packet header is blocked at an engaged router, it is buffered at

that router. Therefore, virtual cut-through switching works as store-and-forward

switching at high traffic loads.

Figure 2.14 depicts the time-space diagram for virtual cut-through switching.

A packet consisting of five flits is routed with no contention assumption (Fig-

ure 2.14(a)) and with contention assumption(Figure 2.14(b)). Once any of the

flits of the packet is arrived at the router, it is transmitted to next hop router if

channel and buffer space is available at neighboring router.

H B B B T

H B B B T

B B B T

0 1 2 4 5 6 7 8 9 103

0

1

2

3 H B B B T

H

Cycle

Channel

(a) For low traffic load

H B B B T

H B B B T

B B B T

0 1 2 4 5 6 7 8 9 103

0

1

2

3 H B B B T

H

Cycle

Channel
Contention

(b) For high traffic load

Figure 2.14: Timing diagram for virtual cut-through switching

The virtual cut-through and store-and-forward techniques are packet-based tech-

niques and thus has one main drawback. The buffer allocation must be in units

of packets that makes these switching techniques very inefficient in terms of the

buffer area. In the next Section, we have discussed an effective use of buffer space

where the allocation of buffer space is performed in units of flits.

The router of Alpha 21364 [77] system and Chaos Router [65] are the examples that

have used virtual cut-through switching technique. On-chip network proposals

Chapter 2 Networks-on-Chip (NoCs) 25

such as IMEC NoC [3] and SPIN [49] have also used the virtual cut-through

switching technique.

2.4.4 Wormhole Switching

The major shortcoming associated with packet switching is that the buffer size

must be at least of the packet size that makes the design of fast and compact

on-chip router difficult. The wormhole switching operates in a similar way like

virtual cut-through with one difference. It reduces the buffer requirement of the

router significantly as the buffer space is allocated in units of flits. The buffer

of wormhole router can be set as small as possible which reduces the hardware

cost. A packet like a worm may spread over several channels (holes in the ground)

during its flow. Thus, this switching is referred as wormhole switching. Other

packets will not be able to reserve the channels that are occupied by a particular

packet. The wormhole switching is preferred in the modern NoC-based systems

like Teraflops [98], TRIPS [48] and Tile64 [4].

The interconnection networks researchers have presented some hybrid switching

mechanisms such as buffered wormhole switching (BWS) [1] and pipelined cir-

cuit switching (PCS) [44]. BWS is a variation of the wormhole switching, and it

combines the wormhole switching and packet switching aspects. The BWS was

firstly presented and used in IBM Power Parallel SP2 [51]. PCS is a combination

of the features of circuit and wormhole switching methods. The other switching

techniques include Scouting switching [21, 25] and Mad Postman switching [59].

The scouting switching is introduced to enhance the capability of PCS technique

to handle faulty channels. It also improves the performance of PCS technique.

2.5 Routing Algorithms

After topology selection, next logical step is the selection of a particular routing

algorithm. A routing algorithm is responsible for computing the path that a packet

should follow from the source node to the destination node. In this section, we

introduce concepts and background of various routing strategies. As mentioned

earlier in the Section 2.2, the selection of a specific routing scheme generally de-

pends on the underlying network topology. We have presented routing concepts

Chapter 2 Networks-on-Chip (NoCs) 26

and background needed for the mesh-based network only as this thesis proposes

routing algorithms for mesh networks.

2.5.1 Deadlocks in Routing

The major issue related to every routing strategy is deadlock-freedom. A deadlock

is a situation in which some packets cannot proceed further toward their desti-

nation as the resources (channels) requested by them are occupied by some other

packets. In a deadlocked configuration, all packets are waiting for each other in a

cyclic manner to release the resources, thus blocked forever. However, it is possible

that a packet is permanently blocked in the network because the destination node

does not consume it. This category of deadlock is produced at the application

level, and we have not considered this type of deadlock in our thesis and thus, is

beyond the scope of this thesis.

packet p1

packet p2

packet p3

packet p4

node 1node 2

node 3 node 4

a1

b1

c1

d1

Figure 2.15: Deadlock configuration

The existing routing algorithms utilize either deadlock avoidance or deadlock re-

covery to achieve freedom from deadlocks. In deadlock avoidance strategies, some

constraints are imposed on the routing algorithm such that deadlock can never

Chapter 2 Networks-on-Chip (NoCs) 27

occur. On the other hand, deadlock recovery strategies do not force any con-

straint on routing functions, thus allow deadlock to occur. These strategies need

a method first to detect and then resolve deadlock configuration. If the deadlock

is detected, some channels are deallocated (packets holding those channels are

generally aborted) to resolve the deadlock. These schemes are useful only when

deadlocks rarely occur [26]. Otherwise, the overhead produced by deadlock detec-

tion and buffer releasing would degrade the network performance considerably.

Figure 2.15 illustrates an example of deadlock configuration. This deadlock con-

figuration is formed because four packets (p1, p2, p3 and p4) are involved in cyclic

wait forever. At node 1, a packet p1 is coming from East direction and occupies

the channel a1 for the destination node 3. This packet p1 is waiting for the chan-

nels b1 that is occupied by the packet p2. The packet p2 is coming from the North

direction and has node 4 as its destination. Similarly, channels c1 and d1 are oc-

cupied by the packets p3 and p4, respectively. Packets p3 and p4 are coming from

the West and South directions, respectively and have node 1 and node 2 as their

destinations, respectively. All the packets are involved in cyclic wait and cannot

advance further.

The deadlock configuration has formed because there exist cyclic dependencies

among channels a1, b1, c1 and d1. The packets are allowed to take any turn either

clockwise or anti-clockwise. This cyclic dependency can be eliminated if packets

are not allowed to take one turn (called prohibited turn) in each of clockwise or

anti-clockwise cycle. The prohibited turns remove one dependency from each of the

cycles, thus avoids the deadlock configuration. We have discussed routing schemes

derived from the prohibition turns (simply turn model) in section 2.6. In another

type of routing (deflection routing), deadlock-freedom is achieved using the idea

that no. of input channels must be equal to the no. of output channels. Therefore

a incoming packet will always has free output channel. In deflection routing, no

network deadlock is possible [81], as all incoming flits are always routed outside of

the router, without having to check in advance that the neighbor router has buffer

space.

2.5.2 Livelocks in Routing

Livelock is a situation where a packet never reaches its destination. However,

it is possible that packets are not in a deadlock configuration, and they may be

Chapter 2 Networks-on-Chip (NoCs) 28

15

11

14

10

13

9

12

8

7

3

6

2

5

1

4

0

Congested link

Figure 2.16: An example of livelock

in livelock. A packet may be moving around its destination and never reaching

it. The livelock occurs because every time, the channels requested by the packet

to reach the destination, are held by some other packets. For minimal routing,

livelock never occurs because, at every node, a packet moves one step towards its

destination and finally reaches it. However, in the case of non-minimal routing,

packets may follow non-minimal paths and livelock can occur, if measure are not

taken to guarantee the progress.

Figure 2.16 shows an example of livelock. The source node is 0 and destination

node is 12. A packet from 0 to 12 finds congestion at 8 and is misrouted to 9. At

node 9, it finds more congestion and is again misrouted to 5. This causes a cycle

in which the packet takes two steps forward from 5 to 8, and then two steps back,

from 8 to 5.

2.5.3 Classification of Routing Algorithms

Routing algorithms can be classified in several ways depending upon different

criteria. These criteria include the place of routing decision, the number of desti-

nations, adaptivity, minimality, network congestion status, topology, etc. In this

section, we present several classification of routing algorithms on the basis of these

criteria.

Chapter 2 Networks-on-Chip (NoCs) 29

2.5.3.1 Source vs. Distributed Routing

On the basis of the location where the routing function computes the route for a

packet, routing algorithms can be classified as source based routing and distributed

routing. In source routing, source node computes the complete path that the

packet should follow from the source node to the destination node. After the

computation of the path, it is stored in the packet header. The intermediate

nodes extract and utilize information stored in the header of the packet to route

it further towards the destination. As the packet advances in the network, the

intermediate routers are required to perform following tasks:

• decode the packet header to extract the route,

• check the next computed direction in header, and

• route the packet to the particular output channel

Source-based routing requires less complex routers as the routers only need to per-

form a small functionality for every incoming packet. For source-based routing,

the packet header should be long enough to store the router ids corresponding

to the longest distant path, i.e., equal to network diameter. Thus, for a network

having the diameter (d), the packet header is required to store the d number of

router ids at most. As the network diameter grows with the network size, header

overhead increases accordingly. This fact makes source routing sometimes imprac-

tical for NoC. On the other hand, in distributed routing, header only contains the

destination address. The routing decision is taken at every intermediate router

by extracting destination address. Thus, the header size remains constant as the

network size increases that make it appealing for current NoC based MPSoCs

and CMPs architectures. However, the router architecture of distributed rout-

ing is more complex than source based routing because the route computation is

performed at every intermediate router.

Hybrid schemes use a combination of both. These schemes are known as multi-

phase routing. In multiphase routing, the source node computes some destination

nodes. Routing between the computed nodes is performed in a distributed fashion.

Chapter 2 Networks-on-Chip (NoCs) 30

2.5.3.2 Unicast vs. Broadcast vs. Multicast Routing

On the basis of the number of destinations of a packet, routing algorithms are

categorized as either unicast or broadcast or multicast. In unicast routing, there

is one to one mapping between the source and the destination. It means that a

packet which has raised the routing request, is intended for a single destination

node. Whereas, in broadcast routing, the packet is forwarded to all the other

nodes of the network. This type of routing is used when the same information

is required to be distributed among all the nodes. For example, some type of

notifications in case of cache coherency. In multicast routing, a packet is routed

to a group of destination nodes.

2.5.3.3 Deterministic vs. Adaptive routing

Routing algorithms are classified as either deterministic or adaptive [26] on the

basis of inclusion of current network information in the routing decision. Deter-

ministic routing algorithms always choose the same route between a given pair

of source and destination nodes. These do not consider the current network sta-

tus, even if there exist multiple possible routes. The most popular dimension order

routing (DOR) algorithms such as XY and YX are examples of deterministic rout-

ing algorithms for 2D meshes. These algorithms first forward the packet along one

dimension and then forward to the other dimension. Whereas, adaptive routing

algorithms use the current state (traffic and/or link status) of the network in mak-

ing the routing decision. NoC designers are inspired to develop adaptive routing

algorithm because of two main motivations, i.e. to avoid the packet to get into

congested (hotspot) regions and to avoid the faulty links and/or nodes of the net-

work. Adaptivity of a routing algorithm can boost the NoC performance (better

throughput and latency) than deterministic routing, especially under non-uniform

(bursty and hotspot) traffic patterns [46, 5].

The adaptive routing algorithms can be further categorized as fully adaptive and

partially adaptive routing algorithms. The fully adaptive routing algorithms can

use any of the shortest routes between a pair of source and destination nodes. In

partially adaptive routing algorithms, some packets can use all available shortest

paths between source and destination nodes depending upon the destination di-

rection, whereas some packets cannot. It means for some destinations; routing

Chapter 2 Networks-on-Chip (NoCs) 31

algorithm behaves like fully adaptive and for some destinations it behaves like

deterministic.

2.5.3.4 Minimal vs. Non-minimal Routing

According to their minimality, adaptive routing algorithms can be classified as

minimal (profitable) or non-minimal (mis-routing). Minimal adaptive routing al-

gorithm only provides shortest routes from the source to the destination. At each

node, it generates a productive output channel vector that suggests which output

channels of the current node will make the current packet closer to its destination.

Non-minimal adaptive routing algorithms no longer restrict packets to move along

a minimal path towards the destination. Packets may be misrouted over output

channels, which move them temporary away from the destination.

However, minimal routing methods guarantee the shortest route from the source

to the destination, it is imprudent to neglect the promising performance improve-

ments provided by non-minimal routing schemes. For example, if all output chan-

nels corresponding to the minimal routing paths are faulty (or congested); routing

the packets along a non-minimal route may be the only (or good) alternative. The

non-minimal adaptive routing algorithms are susceptible to livelock [26, Page 83]

and [20, Section 10.3], thus must be designed carefully.

2.5.3.5 Congestion-aware vs. Congestion-oblivious Routing

The functionality of a routing algorithm is modeled using two functions: route

computation and selection [26]. The route computation function produces an

output-channel vector for a packet. This output-channel vector consists of eligible

output channels for the packet. The selection function is responsible for selecting

one output channel from this vector. The selection may be on the basis of the

current status of the output channels.

On the basis of the selection function used, the routing algorithms can be clas-

sified as either congestion-oblivious or congestion-aware. In congestion-oblivious

algorithms, routing decisions are independent of the current congestion status of

the network. This policy may disrupt the load balance since the network status is

not considered. On the contrary, congestion-aware routing algorithms consider the

current congestion status of the network in their routing decisions. The current

Chapter 2 Networks-on-Chip (NoCs) 32

congestion level is determined using local or global information. In approaches

considering local traffic conditions, the routing decision is made only based on the

congestion status of adjacent neighbors. These methods provide a limited thus

less precise view of the network condition. Routing algorithms based on global

information provide a better distribution of the traffic load. However, the collec-

tion of global information, and then the use of this information in the selection

of output channels make global congestion-aware routing methods more complex.

Congestion-aware algorithms can take advantages of different metrics such as the

number of free buffer slots, available virtual channels, crossbar demand, or com-

binations of these factors.

2.5.3.6 Topology Dependent vs. Topology Independent Routing

Routing algorithms that consider the underlying network topology in making rout-

ing decisions are known as topology dependent algorithms. These algorithms are

sensitive to topology change and may not work once the topology is modified.

Algorithms such as DOR and OE [13], which are based on various turn models

designed for 2D meshes, are few examples of topology dependent algorithms. The

topology independent routing algorithms [40] also known as topology agnostic

routing algorithms. These are agnostic to the particular topology and insensitive

to any topology modification. Segment based routing (SR) [75] and up/down [91]

are few examples of topology agnostic routing algorithms.

2.6 Turn Model based Routing Algorithms

Turn model representation is an effective way to describe routing algorithm and

its restrictions. A packet moving towards direction A makes a routing turn A-B,

if the packet turns towards direction B. For example, a turn East-North taken by

a packet means that the packet is moving from East to North channel. In mesh

networks, routing turns can be of three types as shown in Figure 2.17:

1. 0◦ (0-degree): If a packet switches from one channel to another channel in

the same direction

2. 90◦ (90-degree): If a packet switches from one channel to another channel

in the different dimension

Chapter 2 Networks-on-Chip (NoCs) 33

15

11

141312

8

7

3

6

2

5

1

4

0

180 degree

90 degree 0 degree

Figure 2.17: Different types of turns for mesh network

3. 180◦ (180-degree): It is also known as U-turn. If a packet switches from

one channel to a channel in opposite direction of same dimension

For minimal routing, 180-degree turns cannot be used.

2.6.1 Partially Adaptive Algorithms

In a mesh topology, each abstract cycle (clock-wise and anti-clockwise) contains

four different turns as shown in Figure 2.18.

Figure 2.18: Abstract cycles for 2D mesh

Figure 2.19 shows the turn model representation of dimension order routing (XY).

The solid lines are used for the permitted turns, and the dashed lines are used for

the prohibited turns. In order to prevent deadlocks, the XY turn model prohibits

four 90-degree turns of abstract cycles. The prohibited turns are South-West,

North-West, South-East and North-East turns. The remaining four turns cannot

cause cyclic dependencies. Because of these four prohibited turns, the XY routing

becomes static (deterministic). The XY routing is also called X-first routing as it

routes packets first in X-dimension. Once, it completes routing in X-dimension,

it routes packets in Y-dimension. It is a minimal routing algorithm as it always

Chapter 2 Networks-on-Chip (NoCs) 34

computes the shortest path for each pair of the source and destination. Algorithm 1

describes the routing function of XY routing algorithm.

Figure 2.19: XY turn model

Algorithm 1 Deterministic XY (X-first) Routing Algorithm

(Xc, Yc) : Current router coordinates
(Xd, Yd) : Destination router coordinates
△x = (Xd −Xc)
△y = (Yd − Yc)
if (△x == 0 && △y == 0) then
Output Dir = Local
/* destination is local core */

else if (△x < 0) then
Output Dir = West
/* destination is in West direction */

else if (△x > 0) then
Output Dir = East
/* destination is in East direction */

else if (△x == 0 && △y < 0) then
Output Dir = South
/* destination is in South direction */

else if (△x == 0 && △y > 0) then
Output Dir = North
/* destination is in North direction */

end if

The Y-first routing (YX) algorithm is a counterpart to the X-first (XY) routing and

another deterministic routing scheme. The YX routing algorithm routes packets

first in Y-dimension and then in X-dimension In order to avoid deadlocks, it forbids

four 90-degree turns, i.e. West-South, West-North, East-South, and East-North

turns.

The degree of adaptiveness (DoA) is defined by the number of shortest routes

which the packets can take from source node (Xc, Yc) to destination node (Xd, Yd).

Chapter 2 Networks-on-Chip (NoCs) 35

For the X-first routing algorithm, DoA is 1 because of no adaptivity. For fully

adaptive routing method, it is given by

DoAalgo =
(△x+△y)!

△x.△ y
(2.1)

where, △x = (Xd −Xc) and △y = (Yd − Yc).

The X-first routing algorithm is deterministic in nature because it forbids more

turns than required to achieve deadlock-freedom. Deadlocks can be prevented by

prohibiting fewer than four turns. Moreover, it is required to prohibit only two

turns. Thus, to increase adaptivity of XY turn model while maintaining deadlock-

freedom, Glass and Ni [46] proposed three elegant routing algorithms namely West-

first, North-last, and negative-first for the n-dimensional mesh network. They

presented turn model for designing wormhole switching based partially adaptive

routing algorithms for n-dimensional mesh and hypercube topology networks.

In order to avoid deadlocks, these adaptive routing algorithms forbid two turns,

one turn from each of abstract cycle (clockwise and counter-clockwise). It should

be noted that arbitrary selection of one turn for prohibition from each of the

abstract cycle may lead to the formation of a cycle, thus resulting in deadlock

configuration for wormhole switching. In wormhole switching, a packet can spread

along the sequence of channels. Thus, this switching is more prone to deadlocks.

Figures 2.20 and 2.21 illustrate an example of incorrect selection of forbidden

turns that leads to deadlock configuration. Figure 2.20(a) shows that the for-

bidden 90-degree turn (North-West) avoids the formation of cycle. However, the

other petmitted 0-degree North-North turn (Figure 2.20(b)), 90-degree North-

East, East-South and South-West turns (Figure 2.20(c)) and 0-degree West-West

turn (Figure 2.20(d)) still allow the formation of cycle in the form of a knot.

Thus, the three permitted 90-degree turns (Figure 2.21(a)) in anti-clockwise cycle

are equivalent to the forbidden 90-degree turn (Figure 2.21(b)) in clockwise cycle.

Similarly the three permitted 90-degree turns (Figure 2.21(b)) in clockwise cycle

are equivalent to the forbidden 90-degree turn (Figure 2.21(a)) in anti-clockwise

cycle. Thus, both knots still can result in deadlock configuration (Figure 2.21(c)).

Figure 2.22 shows the turn model for the adaptive West-first routing algorithm.

In order to avoid deadlocks, it forbids two turns, i.e., South-West and North-West.

The West-first routing prohibits all 90-degree turns towards West direction. If a

Chapter 2 Networks-on-Chip (NoCs) 36

(a) (b) (c) (d)

Figure 2.20: Six turns that form the abstract cycle resulting deadlock configuration

Figure 2.21: Six turns that form the abstract cycle (a) the three petmitted turns
in anti-clockwise cycle are equivalent to the prohibited turn in clockwise cycle (b)
the three petmitted turns in clockwise cycle are equivalent to the prohibited turn
in anti-clockwise cycle (c) cycle formed by combining (a) and (b).

Chapter 2 Networks-on-Chip (NoCs) 37

packet is required to travel West, it has to be first routed in the West only. Thus,

the West-first routing is defined as: Route the packet first in the West direction,

if required, and then it can be routed to other directions South, North and East

adaptively. Algorithm 2 describes the routing function of the West-first routing

algorithm.

Figure 2.22: West-first turn model

Figure 2.23 shows the turn model for the adaptive negative-first routing algorithm.

In order to avoid deadlocks, it forbids two turns, i.e., North-West and East-South.

The negative-first routing prohibits all turns from positive directions (East and

North) to negative directions (West and South). If a packet is required to travel

to negative directions, it is first routed in the negative directions only. Thus, the

negative-first routing is defined as: Route the packet first adaptively in negative

directions if required, and then it can be routed to positive directions adaptively.

Algorithm 3 describes the routing function of negative-first routing algorithm.

Figure 2.23: negative-first turn model

Figure 2.24 shows the turn model for the adaptive North-last routing algorithm.

In order to avoid deadlocks, it forbids two turns, i.e., North-East and North-West.

The North-last routing prohibits all turns from North direction. If a packet is

required to travel North, it is routed in the North at the end. Thus, the North-

last routing is defined as: Route the packet first adaptively in the South, East

Chapter 2 Networks-on-Chip (NoCs) 38

Algorithm 2 Adaptive West-first Routing Algorithm

(Xc, Yc) : Current router coordinates
(Xd, Yd) : Destination router coordinates
△x = (Xd −Xc)
△y = (Yd − Yc)
if (△x == 0 && △y == 0) then
Output Dir = Local
/* destination is local core */

else if (△x < 0) then
Output Dir = West
/* destination is in West direction */

else if (△x > 0 && △y == 0) then
Output Dir = East
/* destination is in East direction */

else if (△x > 0 && △y < 0) then
Output Dir = Select(South, East)
/* destination is in South-East quadrant */

else if (△x > 0 && △y > 0) then
Output Dir = Select(North, East)
/* destination is in North-East quadrant */

else if (△x == 0 && △y < 0) then
Output Dir = South
/* destination is in South direction */

else if (△x == 0 && △y > 0) then
Output Dir = North
/* destination is in North direction */

end if

Chapter 2 Networks-on-Chip (NoCs) 39

Algorithm 3 Adaptive negative-first Routing Algorithm

(Xc, Yc) : Current router coordinates
(Xd, Yd) : Destination router coordinates
△x = (Xd −Xc)
△y = (Yd − Yc)
if (△x == 0 && △y == 0) then
Output Dir = Local
/* destination is local core */

else if (△x > 0 && △y > 0) then
Output Dir = Select(North, East)
/* destination is in North-East quadrant */

else if (△x < 0 && △y < 0) then
Output Dir = Select(South, West)
/* destination is in South-West quadrant */

else if (△x >= 0 && △y < 0) then
Output Dir = South
/* destination is in South direction */

else if (△x < 0 && △y >= 0) then
Output Dir = West
/* destination is in West direction */

else if (△x == 0 && △y > 0) then
Output Dir = North
/* destination is in North direction */

else if (△x > 0 && △y == 0) then
Output Dir = East
/* destination is in East direction */

end if

Chapter 2 Networks-on-Chip (NoCs) 40

and West directions if required, and then it can be routed to North. Algorithm 4

describes the routing function of the North-last routing algorithm.

Figure 2.24: North-last turn model

Chiu [13] proposed one new Odd-Even (OE) turn model that has the higher degree

of adaptiveness than Glass’s turn model. Figure 2.25 shows the turn constraints

for odd and even columns of a 2D mesh. In this model, North-West & South-

West turns are not allowed at nodes located at odd columns, and East-South &

East-North turns are not allowed on the nodes located at even columns.

(a) Odd-column (b) Even-column

Figure 2.25: Turn model for odd-even routing (a) odd columns (b) even columns

2.6.2 Fully Adaptive Algorithms

In [16, 17], authors have introduced the concept of virtual channels in designing

deterministic routing schemes to achieve deadlock-freedom. Generally, a physical

channel is associated with one buffer. However, it can be multiplexed into a number

of virtual channels. Various research proposal [12, 9, 23, 45, 69, 92, 95, 97, 60] have

used virtual channels in developing fully and partially adaptive routing algorithms

for different network topologies that include mesh based networks.

However, attaching virtual channels to a physical channel is less expensive than

adding one full physical channel, but this solution is still expensive, particularly

Chapter 2 Networks-on-Chip (NoCs) 41

in the low area and power NoCs. The main area costs associated with virtual

channels are the extra control lines to implement virtual channels and additional

buffer space required for each virtual channel. In [13, 78], authors have shown

that it is necessary to add virtual channels to design deadlock-free fully adaptive

routing algorithms for mesh networks. Most of fully adaptive routing schemes

depend upon the elimination of cycles in channel dependency graph to achieve

deadlock-freedom.

Some routing strategies implement fully adaptive routing algorithms by dividing

the network into virtual networks. A virtual network consists of a subset of virtual

channels and is used to forward the packets for a particular set of destinations.

Routing algorithm uses a particular virtual network depending upon the destina-

tion for routing packets. This section presents one fully adaptive routing scheme

that uses the concept of virtual networks to inject packets.

Algorithm 4 Adaptive North-last Routing Algorithm

(Xc, Yc) : Current router coordinates
(Xd, Yd) : Destination router coordinates
△x = (Xd −Xc)
△y = (Yd − Yc)
if (△x == 0 && △y == 0) then
Output Dir = Local
/* destination is local core */

else if (△x > 0 && △y < 0) then
Output Dir = Select(South, East)
/* destination is in South-East quadrant */

else if (△x < 0 && △y < 0) then
Output Dir = Select(South, West)
/* destination is in South-West quadrant */

else if (△x == 0 && △y < 0) then
Output Dir = South
/* destination is in South direction */

else if (△x == 0 && △y > 0) then
Output Dir = North
/* destination is in North direction */

else if (△x < 0 && △y >= 0) then
Output Dir = West
/* destination is in West direction */

else if (△x > 0 && △y >= 0) then
Output Dir = East
/* destination is in East direction */

end if

In [58], Jesshope et al. presented a fully adaptive routing methodology in order to

Chapter 2 Networks-on-Chip (NoCs) 42

(a)

(c) (d)

(b)

Figure 2.26: Example of virtual networks for 2D mesh (a) X-Y+ virtual network
(b) X+Y+ virtual network (c) X-Y- virtual network (d) X+Y- virtual network

avoid deadlocks in 2D meshes. They split the network into a set of four disjoint

virtual networks such that in each virtual network, the injected packets can travel

only in one direction for each dimension. The four independent virtual networks

of 4×4 2D mesh are shown in Figure 2.26. According to the destination positions,

all packets are divided into four categories. These four categories represent four

quadrants of a 2D mesh.

If a packet is inserted into the X- Y+ virtual network, it can travel only towards

the negative direction (West) of X dimension and positive direction (North) of Y

dimension. Similarly, if a packet is once routed into the X- Y- virtual network, it

can travel along the negative direction (West) of X dimension and negative direc-

tion (South) of Y dimension, and so on. According to the destination of a packet,

it is introduced to a particular virtual network. Once a packet is being routed in

a given virtual network, it can travel along all the channels that corresponding

to minimal routes. However, the packet cannot move from one virtual network

to another. It can be observed that there does not exist any cyclic dependencies

between channels. Thus, no deadlock configuration can be formed. The above

methodology can be extended to the 3D mesh network as well.

Chapter 2 Networks-on-Chip (NoCs) 43

(a) (b)

Figure 2.27: Virtual networks used by double-y routing for 2D mesh (a) eastward
virtual network (b) westward virtual network

(a) (b)

Figure 2.28: Turn model for double-y routing (a) eastward virtual network (b)
westward virtual network

Linder and Harden [69] presented a fully adaptive and minimal routing scheme

namely double-y which is an improvement over the scheme proposed in [58]. They

proved that the number of virtual networks needed to avoid deadlocks could be

reduced to half for n-dimensional meshes. For a 2D mesh, each virtual network

requires two virtual channels along any (say X-dimension) of the two dimensions

as opposed to the scheme [58]. The first virtual network consists of one and two

virtual channels along X and Y dimensions, respectively. This virtual network is

deployed to route packets towards the East direction. Thus, it is known as the

eastward virtual network. Similarly, the second virtual network also consists of one

and two virtual channels along X and Y dimensions, respectively. It is purposed for

westward packets, thus known as the westward virtual network. When, a packet is

destined for the destination in either same row or the same column, it can use any

of the virtual networks. Figure 2.27 shows the two virtual networks used by double-

y routing. Figure 2.28 shows the turn model representation of double-y routing

algorithm that illustrates its turn constraints. All the packets follow minimal

routes. Thus, the decrease in the number of virtual networks can not result in

cyclic dependencies between channels. As discussed earlier in Section 2.5.1, a

deadlock configuration is formed using a number of turns in the cyclic manner.

Chapter 2 Networks-on-Chip (NoCs) 44

The 180-degree turns are also prohibited because of minimal routing restriction.

Thus, with minimal routing, it is required that at least two dimensions must have

channels in both the directions to form a cycle. Thus, each virtual network is cycle

free and does not have cyclic dependencies between channels.

2.7 Recent Research Works and Issues

Advanced research problems in the area of future NoC include design of new ar-

chitectures and frameworks to integrate a high performance communication tech-

nology (like NoC) with the multi-processor systems. The performance of on chip

networks depends on many factors and the routing method is one of them.

In the recent past, many researchers have worked on the routing algorithms in

NoCs domain. In [11], authors have proposed a congestion-aware routing method

to relieve congestion in resource constraints systems. This algorithm considers

switch and channel congestion. The method uses adaptive routing function along

with selection strategy to get more precise congestion information. It adopts the

path congestion information to make routing decisions which results in reduced

packet latency along the routing path.

Hsien-Kai Hsin et al. [54] have presented a framework named network information

region (NIR) for on-chip network systems. The NIR can indicate the network

information which is used by the routing algorithms. Authors have presented a

demonstration on how to apply the proposed framework on the analysis of the other

adaptive routing algorithms. In addition, the paper also proposes the ant colony

optimization based pheromone diffusion (ACO-PhD) adaptive routing framework

based on the NIR. This framework specifies how NIR can help to integrate the

temporal or spatial network information.

In [73], authors have proposed a routing algorithm to support workload consoli-

dation. The workload consolidation means that it is likely that many applications

will run parallel on a multi-core system with given the difficulty of extracting

parallelism. Local adaptive methods do not consider enough status information

to mitigate the congestion. At the same time, globally adaptive routing methods

use network status beyond neighboring nodes. But, they may suffer from interfer-

ence, coupling the behavior of otherwise independent applications. The proposed

method combines local and global network information to gain effective adaptivity.

Chapter 2 Networks-on-Chip (NoCs) 45

For on-chip components, the advanced technology in VLSI integration has in-

creased the risk of failures. The failures can degrade the performance of the

system and even can fail the entire system. Fault-tolerant routing is one of the

way to provide reliability in on-chip communication for multi-core processor archi-

tectures. In [42], focus of the authors is on a particular class of routing schemes

which do not use virtual channels to provide fault tolerance. In the design of any

fault tolerant routing scheme, the major challenge is to get deadlock-freedom in

the presence of faults. The proposed ZoneDefense routing not only includes faults

into convex faulty blocks but also spreads the faulty blocks’ position information

in corresponding columns. Nodes having information about the faulty nodes cre-

ate a defense zones. Thus, packets know in advance about the faulty node and

can route themselves in other direction. Authors in [61] presented a fault tolerant

routing method (FTR) based on XY routing algorithm. FTR algorithm is capa-

ble of handling single link failure. On the occurrence of fault, FTR reconfigures

the paths to divert packets on other available paths. Authors in [101] proposed an

adaptive fault-tolerant routing algorithm for mesh network. This method uses two

VCs to achieve fault tolerance. Authors also presented a new planar network (PN)

fault model which supports fault-tolerant routing in mesh for wormhole switching.

In [53], authors have proposed an ant colony optimization-based fault-aware rout-

ing (ACO-FAR) scheme that balances traffic load in the network. The proposed

scheme uses three steps on the arrival of packet at the fault: 1) encounter; 2)

search; and 3) select. Therefore, it implements three corresponding methods as:

1) notification of fault information; 2) route search method; and 3) route selection

method. The router can check the available paths and route the packets along

less-congested and fault-free path.

Letian Huang et al. in [56], have proposed a reconfigurable router architecture with

bypassing channels that provides the cores connectivity in the network when the

routers are under test. Authors have proposed adaptive routing algorithm TARRA

to make the routers reconfigurable. The algorithm is capable of handling multiple

routers which are under test. TARRA also uses one and two channels along the X

and Y dimension, respectively. To prove the TARRA routing algorithm deadlock-

free, authors have partitioned the network into two disjoint subnetworks. Each

subnetwork has disjoint sets of channels.

With the advent of 3D integration technology, a number of research area have been

opened [41]. The issues related 3D integration includes from Through-Silicon-Vias

Chapter 2 Networks-on-Chip (NoCs) 46

(TSV) technology to high-level system configuration and design. The network de-

signers are not only facing challenges related to emerging 3D technology, they

need to re-looked many issues which were already resolved for 2D planes. The

traditional 2D integration technology has limited floor-planning options, and con-

sequently, it constraints the performance enhancements arising out of NoC archi-

tectures [37]. 3D ICs are capable to result in better functionality, performance

and packaging density compared to conventional 2D ICs.

In [27], a distributed routing scheme is presented for vertically partially connected

regular 2D topologies of different shapes and sizes (e.g. 2D mesh, torus, ring).

These topologies are of practical interest in the 3D integration of heterogeneous

dies using TSVs. A 3D NoC struture requires a number of vertical links while 3D

Integration has a major limitation on the number of vertical interconnects (TSVs)

to be exploited. In this research, focus of authors is to consider nonregular 3D

topologies in which the usual planar topologies are partially connected together by

only some vertical links. This reduces the number of vertical links. Authors have

also implemented regular topology for the fair comparison with other methods.

In [90], authors have designed a routing method for partially connected 3D-NoCs.

The routing scheme is adaptive and is able to tolerate the failures on vertical

channels as compared to the pre-designed routing schemes. In this thesis, we are

motivated to improve the performance of previously proposed routing methods

by increasing the adaptivity and providing fault tolerance in 2D and 3D mesh

architectures.

Chapter 3

2D-CHARM: Congestion-aware

and Highly Adaptive Routing

Method for 2D-Mesh

3.1 Overview

The requirement of acyclic channel dependency graph (CDG) for deadlock avoid-

ance in Network-on-Chip (NoC) routing imposes unnecessary restrictions on rout-

ing turns, thus reduces the degree of adaptiveness. The degree of adaptiveness has

a major impact on the performance of an adaptive routing method. In addition, in-

appropriate selection of output channel at the router may result into network “hot

spots” which may lead to congestion. Network congestion may lead to increased

power consumption and communication delay, thus degrades the performance of

on-chip networks. However, the performance of NoC can be improved by routing

packets along the non-minimal path through less congested areas and distribut-

ing the traffic load across the network. Thus, in this chapter, we present a novel

highly adaptive and congestion-aware routing method (CHARM) to address issues

mentioned above. Since, the proposed algorithm applies to the 2D mesh network,

we have named it 2D-CHARM. The proposed method is equally applicable to 3D

mesh network as well. In the next chapter, we present 3D-CHARM, an extension

to 2D turn model proposed in this chapter.

Congestion control is a critical issue in on-chip networks as it affects overall net-

47

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 48

work performance. Congestion can be alleviated with balanced traffic load across

various links. Adaptiveness and non-minimality of a routing algorithm are used

to balance traffic load while maintaining deadlock freedom. Turn model produces

partially adaptive routing [46, 13, 55, 102, 43] schemes that restrict some routing

turns to achieve deadlock freedom thus resulting in low adaptiveness. Deadlock

free fully adaptive routing schemes require additional virtual channels (Section

2.3) to achieve the high degree of adaptiveness. Several minimal/non-minimal fully

adaptive routing algorithms have been proposed in [69, 12, 45, 68, 47, 86, 72, 33, 34]

using additional virtual channels.

Ming Li et al. [68] proposed congestion-aware and dynamic routing algorithm

DyXY that determines output channel using congestion status of input buffers

of next hop routers. CATRA [33], DAR [86], RCA [47] and DBAR [72] are

congestion-aware routing schemes that use local and non-local congestion infor-

mation to route the packets using extra hardware.

Minimal routing algorithms suffer from the low degree of adaptiveness, which is

not sufficient in distributing the network traffic, even if they accurately detect the

status of congestion. Ebrahimi et al. [34] proposed non-minimal routing scheme

for 2D mesh. It provides better adaptiveness than [45] with the same number of

virtual channels. However, it imposes some unnecessary restrictions on routing

turns, which can be removed to increase path diversity.

The proposed algorithm permits cyclic dependencies in channel dependency graph

providing a higher degree of adaptiveness. The algorithm uses congestion-aware

channel selection policy that results into the balanced distribution of traffic load

across the network. A packet, once injected in NoC, follows non-minimal paths

only when minimal paths are congested at the neighboring routers.

3.1.1 Motivation and Background

The motivation of the proposed routing algorithm is derived from the fact that a

less restrictive routing algorithm offers a high degree of adaptiveness [46]. Most of

routing algorithms proposed in the recent literature [70, 36, 68, 71, 45, 34, 32, 33]

achieve deadlock-freedom by forcibly restricting certain routing turns so that the

CDG remains acyclic. This acyclic CDG requirement for the deadlock-freedom

makes these algorithms more restrictive, thus reduces the degree of adaptiveness.

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 49

If we relax this requirement for these algorithms, we may acquire a less restrictive

routing algorithm. The main focus of this research is to relax this requirement

by allowing cycles in the CDG provided that extended channel dependency graph

(ECDG) is acyclic (using Duato’s theorem [24]). The ultimate aim of the proposed

work is to add more functionality (routing turns) to virtual channels of existing

algorithms to achieve high degree of adaptiveness. In our proposed method, we

have used double-y network. The double-y network uses one physical channel in

each dimension. However, in the Y dimension, the physical channel is logically

divided into two virtual channels, thus the network is called double-y network.

We have explained our point by comparing with two recent algorithms LEAR [34]

and HARA [32]. It should be noted that LEAR and HARA routing algorithms

are based on Mad-y [45] turn model.

In short, the main contribution of this work is a novel highly adaptive routing

algorithms with less routing restrictions. We have shown that the proposed routing

algorithm results in significant performance improvement compared to existing

routing schemes under certain traffic patterns designed for NoCs.

3.1.2 Mad-y Turn Model

Turn model representation is an effective way to describe routing algorithm and

its restrictions. Figure 3.1 shows a turn model representation of Mad-y routing

algorithm. It imposes following constraints on routing turns in order to avoid

deadlocks:

1. It prohibits four 90-degree turns (E-N1, E-S1, N2-W , and S2-W) as shown

in Figures 3.1(i) and 3.1(ii).

2. It prohibits two 0-degree turns (S2-S1 andN2-N1) as shown in Figure 3.1(iii).

3. It prohibits all 180-degree turns as it is a minimal routing algorithm.

We can deduce following restrictions from above constraints.

1. A packet is allowed to take 90-degree turns (N1-E and S1-E) only when it

has not already routed to the East. These routing turns are restricted only

because a packet cannot use N1 or S1 after using the East channel.

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 50

(i) 90-degree turns (ii) 90-degree turns

(iii) 0-degree turns

VC1 VC2

Figure 3.1: Mad-y turn model (permitted (prohibited) turns are represented by
solid (dash) lines)

2. A packet is allowed to take 90-degree turns (W -N2 and W -S2) only when

it does not need to take the West turn further. These routing turns are

restricted only because a packet cannot use West channel after using N2 or

S2.

3. A packet is allowed to take 0-degree turns (N1-N2 and S1-S2) only when

it does not need to take the West turn further. These routing turns are

restricted only because a packet cannot take the West turn after using N2

or S2.

4. A packet is allowed to take 0-degree turns (N1-N2 and S1-S2) only when it

has not already routed to the East. These routing turns are restricted only

because a packet cannot use N1 or S1 after using the East channel.

5. If a packet needs to route West, it cannot use N2 or S2 at the source node.

Mad-y routing algorithm is proved deadlock-free on the basis of work of Dally

and Seitz [18], who show that a routing algorithm is deadlock free if channels of

network can be assigned numbers such that the algorithm routes each packet along

channels with strictly increasing (or decreasing) numbers. A two-digit number

(a, b) in base-r is assigned to each output channel of a router in n ×m 2D mesh

network as shown in Figure 3.2, where r is greater of 2m and n. In the Mad-y

scheme, every packet is routed along channels with strictly increasing numbers. It

can be easily observed from Figure 3.3, for each input channel into an arbitrary

node, the scheme routes the packet only along a channel with a higher number.

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 51

x , y

m+x , 1+ym-1-x , 1+y

m+x , n-ym-1-x , n-y

m+1+x , 0m-x , 0

N2N1

S1 S2

EW

Figure 3.2: Numbering of the output channels leaving each router (x, y) of n×m
mesh for Mad-y algorithm

x , y

m+x , 1+ym-1-x , 1+y

m+x , n-ym-1-x , n-y

m-x-1 , 0m-x , 0
x , y

m+x , 1+y

m+x , n-y

m+x+1 , 0m+x , 0

x , y

m+x , 1+ym-1-x , 1+y

m-1-x , y

m+x+1 , 0m-x , 0

x , y

m+x , 1+y

m+x , y

m+x+1 , 0
x , y

m+x , n-y-1

m+x , n-y

m+x+1 , 0

x , y

m-1-x , n-1-y

m+x , n-ym-1-x , n-y

m+x+1 , 0m-x , 0

(a) Input from east (b) Input from west

(c) Input from north-1 (d) Input from south-1

(e) Input from north-2 (f) Input from south-2

Figure 3.3: For each input channel, the eligible output channels of the Mad-y
routing scheme have higher numbers

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 52

Figure 3.4 shows a node (2, 1) in a 4 × 4 mesh. If the packet is coming on East

input channel (numbered 1, 0), then it can be routed along any output channel

including East. Because all output channels have higher number than the input.

However, if the packet is coming on west input channel (numbered 6, 0), then it

can be routed only along higher numbered output channels that are North-2 (6, 2),

South-2 (6, 3) and East (7, 0) output channels.

2 , 1

6,21,2

1,3 6,3

6,0
7,0

(a) Input from east (a) Input from west

2 , 1

6,21,2

1,3 6,3

2,0

1,0

7,0

2,0

Figure 3.4: Numbering assignment of a node (2, 1) in a 4 × 4 mesh for Mad-y
routing scheme

3.1.3 LEAR and HARAQ Turn Models

The LEAR [34] turn model has the same turn constraints as Mad-y for 90-degree

and 0-degree turns (Figures 3.5(i), 3.5(ii) and 3.5(iii)). In addition, the LEAR

model allows some 180-degree turns as shown in Figure 3.5(iv), whereas the Mad-y

prohibits all 180-degree turns. In HARAQ [32, 30], authors have improved LEAR

turn model by allowing a few more 180-degree turns (which were prohibited in

LEAR) as shown in Figure 3.6(iv). The deadlock-freedom of these algorithms is

also proved using Dally’s work [18].

Turn model based routing algorithms can work for any system size. These algo-

rithms [45, 32] are proved deadlock free for m×n, where m and n are greater than

2, thus scalable. In principle, turn models define the routing restrictions for all

routing turns within a network irrespective of system size. Thus, any algorithm

which is based on the turn model remains scalable.

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 53

(i) 90-degree turns (ii) 90-degree turns

(iii) 0-degree turns (iv) 180-degree turns

VC1 VC2

Figure 3.5: LEAR turn model (permitted (prohibited) turns are represented by
solid (dash) lines)

(i) 90-degree turns (ii) 90-degree turns

(iii) 0-degree turns (iv) 180-degree turns

VC1 VC2

Figure 3.6: HARAQ turn model (permitted (prohibited) turns are represented by
solid (dash) lines)

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 54

3.2 Proposed Work

In this section, we present our novel turn model (2D-CHARM), which is a major

improvement in existing 2D turn models used by several routing algorithms [70, 36,

68, 71, 34, 32] including Mad-y [45]. Mad-y algorithm is the base of all mentioned

algorithms [70, 36, 68, 71, 34, 32]. We have also presented routing method on

the basis of proposed turn model. We have also extended our proposed 2D turn

model for the 3D mesh in the next chapter, which can be further extended for

n-dimensional mesh as well.

3.2.1 2D-CHARM: Turn Model

An acyclic channel dependency graph requirement to avoid deadlocks places un-

necessary, thus avoidable restrictions on the routing turns in a routing algorithm.

Other related work (Mad-y, LEAR and HARAQ routing methods) are proved

deadlock-free using acyclic channel dependency graph [18]. Thus, their routing

functions cannot use all qualified turns to forward packets through less congested

areas. The proposed method imposes substantially fewer restrictions on routing

turns (especially on 90-degree) using [24], thus it provides additional minimal

and non-minimal paths between source and destination than Mad-y, LEAR and

HARAQ.

Figure 3.7 shows the turn model representation of 2D-CHARM. For minimal rout-

ing, a packet is permitted to use the first VC (N1 and S1) at any time, as shown

in Figure 3.7(i). It can use the second VC (N2 or S2) only if it has already been

routed to negative direction of X dimension (West), as shown in Figure 3.7(ii).

In short, in order to avoid deadlocks, 2D-CHARM imposes the following con-

straints on routing turns:

1. It prohibits only two 90-degree turns (S2-W and N2-W).

2. It allows all 0-degree turns as shown in Figure 3.7(iii). However, It allows

0-degree turns (S1-S2, N1-N2, S2-S1 and N2-N1) only when a packet does

not need to be forwarded further West.

3. It permits a few 180-degree turns, as shown in Figure 3.7(iv).

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 55

(i) 90-degree turns (ii) 90-degree turns

(iii) 0-degree turns (iv) 180-degree turns

VC1 VC2

Figure 3.7: 2D-CHARM turn model (permitted (prohibited) turns are represented
by solid (dash) lines)

We can deduce following restrictions from above constraints:

1. A packet is allowed to take 90-degree turns (W -S2 and W -N2) only when

it does not need to take the West turn further. This restriction is because

of prohibited 90-degree turns (N2-W and S2-W).

2. A packet cannot use N2 or S2 at the source node if it needs to be forwarded

West.

Table 3.1 shows prohibited routing turns for 2D-CHARM and other related work.

In contrast to other related work [45, 34, 32], 2D-CHARM forbids only two 90-

degree turns. 2D-CHARM permits all 0-degree turns. However, It should be noted

that some 0-degree turns (N2-N1, S2-S1, N1-N2 and S1-S2) are permitted only

if the destination is not in the West. The packet is allowed to take one 180-degree

turn in each dimension X and Y (West to East and South to North), as shown

in Figure 3.7(iv), but only if it has completed routing in the West and South

directions, respectively.

By comparing the prohibited routing turns as shown in Table 3.1, we can conclude

that 2D-CHARM results in a larger set of output channels due to high degree of

adaptiveness than other related work.

C
h
ap

ter
3
2D

-C
H
A
R
M
:
C
on

gestion
-aw

are
an

d
H
igh

ly
A
d
ap

tive
R
ou

tin
g
M
eth

o
d

for
2D

-M
esh

56

Table 3.1: Prohibited routing turns for different routing algorithms

Routing Algorithms

Mad-y [45] LEAR [34] HARAQ [32]
Proposed

(2D-CHARM)

T
u
rn

s

90-degree
E-N1, E-S1, S2-W,

N2-W
E-N1, E-S1, S2-W,

N2-W
E-N1, E-S1, S2-W,

N2-W
S2-W, N2-W

0-degree N2-N1, S2-S1 N2-N1, S2-S1 N2-N1, S2-S1 -

180-degree ALL
ALL except N1-S2,

S1-N2

ALL except W-E,
N1-S2, S1-N2,
S1-N1, S2-N2

ALL except W-E,
S1-N1, S1-N2,
S2-N1, S2-N2

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 57

3.2.2 2D-CHARM: Routing Algorithm

The functionality of 2D-CHARM routing algorithm is divided into two phases:

route computation phase and output channel selection phase. On the basis input

channel (on which packet has arrived) and relative position of the destination

node with respect to the current node, routing function computes a set of output

channels using turn model explanation discussed above. The route computation

function (rfun) of 2D-CHARM is described in the Table 3.2. The highlighted

entries are part of 2D-CHARM and discussed later in Theorem 3. rfun produces

output-channel vector for a packet using the packet’s destination position (des pos)

and packet’s input channel (in ch).

Selection function selects one output channel from the set of output channels

provided by the route computation function. Our selection function first checks all

qualified output channels corresponding to shortest routes and forwards the packet

to the output channel in which the corresponding next hop node has its congestion

status flag set to zero (and possibly, corresponding to non-escape channels). If the

congestion status flags of all next hop nodes on shortest routes are set to one, the

congestion status flag of each eligible non-minimal route is inspected. If there exist

such non-minimal routes, which are not congested, our method selects one of the

output channels to forward the packet (and possibly, corresponding to non-escape

channels). Our method prefers adaptive output channels over escape channels1

because it results in increased probability of escape output channels being available

when they are required to avoid deadlocks.

Figure 3.8 shows an example of the 2D-CHARM routing algorithm for a 6×6 mesh

network. A source node 7 sends a packet to destination node 22. 2D-CHARM

routing function provides all six channels (E, N1, N2, W , S1 and S2) as output

at node 7. All neighboring nodes on minimal node in paths (E, N1, N2) are in

congestion region. If West channel is selected, packet has five choices (N1, N2,

S1, S2 and W) on next node 6. Since node 6 is on the West border, the West

cannot be selected as output direction. Now at node 6, packet has four choices

(N1, N2, S1 and S2). 2D-CHARM selection function will give preference to non-

congested minimal paths, it selects North direction at node 6. The same strategy

is followed till the packet is received at the destination. Specially at node 33 (or

28), 2D-CHARM routing function provides both S1 and S2 as output directions.

1output channels which are used to escape from deadlocks

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 58

Figure 3.8: Example of 2D-CHARM method

Whereas other methods provide only E-S2 (Figures 3.1, 3.5 and 3.6) as E-S1 is

prohibited. This example shows 2D-CHARM method is capable of routing packets

around the congested region and distributing the traffic across the network.

3.2.3 Deadlock Freedom of 2D-CHARM

With deterministic routing, packets can be routed over single output channel at

each node. Thus, it is mandatory to remove all cyclic dependencies between net-

work channels in order to achieve deadlock freedom. In adaptive routing, packets

often have several options for routing at each node. Thus, it is not mandatory to

eliminate all cyclic dependencies between channels, provided that every packet can

be forwarded on a route whose channels are not involved in cyclic dependencies.

The channels involved in these acyclic routes are considered as escape channels

from deadlocks (cycles).

The deadlock-freedom of 2D-CHARM is assured by using Duato’s theory [24]

stated as follows:

Theorem 1. (Duato’s Theorem) For an interconnection network I, a connected

and adaptive routing function R is deadlock-free if there exists a routing subfunc-

tion R1 ⊆ R, that is connected and has an acyclic ECDG (with no cycles because

C
h
ap

ter
3
2D

-C
H
A
R
M
:
C
on

gestion
-aw

are
an

d
H
igh

ly
A
d
ap

tive
R
ou

tin
g
M
eth

o
d

for
2D

-M
esh

59

Table 3.2: Route computation function (rfun) of 2D-CHARM

Destination position (des pos)

S N E W SE SW NE NW

In
p
u
t
ch

a
n
n
e
l
(i
n

c
h
) S1 - N1, N2 E, N1, N2 W E, N1, N2 - N1, N2, E N1, W

N1 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
W

S1, S2, E, N1,
N2

S1, W
N1, N2, E, S1,

S2
-

S2 - N1, N2 E, N1, N2 - E, N1, N2 - N1, N2, E -

N2 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

E
S1, S2,
W

N1, N2, W,
S1, S2

E, N1, N2, S1,
S2, W

W
S1, S2, E, N1,

N2, W
S1 ,W

N1, N2, E, S1,
S2, W

N1 ,W

W S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

L S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
W

S1, S2, E, N1,
N2

S1 ,W
N1, N2, E, S1,

S2
N1 ,W

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 60

of direct, indirect, direct-cross and indirect-cross dependencies).

Following Duato’s terminology, we represent the rfun of 2D-CHARM by R. C

represents the channel set used by R and contains all VCs (N1, S1, N2, S2, E

and W). To assure the deadlock-freedom of 2D-CHARM, we first identify the

subset of channels C1 ⊆ C (escape channels), that defines routing subfunction

R1 ⊆ R. For 2D-CHARM, this subset C1 contains channels N2, S2, E and W .

Table 3.3 describes the rfun for the routing subfunction R1 of 2D-CHARM.

Lemma 1. The routing subfunction R1 is connected and cycle-free (deadlock-free).

Proof. The rfun for routing subfunction R1 (Table 3.3) with channel set C1 is non-

minimal version of West-first routing [46]. Since non-minimal West-first routing

is connected and cycle-free, so R1 is connected and deadlock-free.

Lemma 2. The ECDG of channel set C1 does not have any cycle because of

direct-cross and indirect-cross dependencies.

Proof. We can observe from Tables 3.2 and 3.3, routing subfunction R1 is defined

using a channel subset C1, according to the following expression:

R1(in ch, des pos) = R(in ch, des pos) ∩ C1, ∀in ch, des pos (3.1)

A channel belonging to C1 is used as an escape channel for all the destinations for

which it can be supplied by R. It means whenever routing function R (Table 3.2)

provides a channel from set C1 (N2, S2, E andW) for a particular destination, that

channel is also provided by the routing function R1 (Table 3.3) for that destination.

The cross dependencies may exist if we add any routing option between channels

of C1 while developing routing function R from R1 by adding channels N1 and

S1. We have not added any routing option between channels of C1. Thus, there

does not exist any cross-dependency between channels in C1 meaning ECDG is

cycle-free because of cross dependencies.

Lemma 3. The ECDG of channel set C1 does not have any cycle because of direct

and indirect dependencies.

Proof. From Lemma 1, R1 is proved cycle-free, thus no direct dependency can

cause cycles in ECDG. Since, theR1 is West-first routing algorithm, a West channel

C
h
ap

ter
3
2D

-C
H
A
R
M
:
C
on

gestion
-aw

are
an

d
H
igh

ly
A
d
ap

tive
R
ou

tin
g
M
eth

o
d

for
2D

-M
esh

61

Table 3.3: Route computation function for routing subfunction R1

des pos

S N E W SE SW NE NW

in
c
h

S2 - N2 E, N2 - E, N2 - N2, E -

N2 S2 N2, S2 E, S2, N2 - S2, E, N2 - N2, E, S2 -

E S2, W N2, W, S2 E, N2, S2, W W S2, E, N2, W W N2, E, S2, W W

W S2 N2, S2 E, N2, S2 - S2, E, N2 - N2, E, S2 -

L S2 N2, S2 E, N2, S2 W S2, E, N2 W N2, E, S2 W

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 62

is always utilized before any other channel (South or North or East) in C1. Thus,

the dependencies towards West channel from any other channel (South or North or

East) are absent. However, the additional channels (N1 and S1) introduced by R

can cause indirect dependencies between West channels as a packet can use West

channel, then any addition channel (N1 or S1) and later can use West channel

of different row as shown in Figure 3.9. But, this indirect dependency does not

introduce any cycle in ECDG. Because to form a cycle, at least one of the 90-

degree turns (S2-W or N2-W) must be allowed, however, these 90-degree turns

are prohibited. Thus, these indirect dependencies introduce new dependencies

between only the West virtual channels and do not result in cycles. Since there are

no direct and indirect dependencies that produce cycles in ECDG of C1. Therefore,

ECDG of C1 is acyclic because of direct and indirect dependencies.

15

11

14

10

13

9

12

8

7

3

6

2

5

1

4

0

Figure 3.9: Example of indirect dependency in ECDG because of additional chan-
nels (N1 and/or S1)

Theorem 2. The proposed routing algorithm is deadlock-free.

Proof. We can conclude from Lemmas (1, 2 and 3) and using Theorem 1 that the

proposed routing algorithm is deadlock-free.

3.2.4 Livelock Freedom of 2D-CHARM

Since, the non-minimal routing algorithms are suspicious to livelock, we have

proved the livelock-freedom for the 2D-CHARM using following theorem.

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 63

Theorem 3. The proposed routing algorithm is livelock-free.

Proof. The key idea behind livelock-freedom of 2D-CHARM is that in each di-

mension, only one 180-degree turn is allowed. From Lemma 1, It is proved that

R1 routing is non-minimal version of West-first routing [46], thus it is livelock-free.

We design a new routing function (R2) by splitting the North VC (N2) into two

VCs (N1 and N2) and South VC (S2) into S1 and S2. We impose same routing

constraints on both newly added VCs N1 and N2 as of old N2. Similarly, newly

added VCs S1 and S2 are also having same routing constraints as of old S2.

Table 3.4 describes the routing restriction of the new routing function R2. We

can observe that R2 is also non-minimal West-first routing algorithm. The only

difference is that R2 uses the double-y network, whereas R1 uses single VC in each

dimension. Thus, we can conclude that the R2 is also livelock-free.

It is well known that minimal routing never causes livelock and if we add minimal

paths to the R2, it will remain livelock-free. We design a new routing function (R3)

as shown in Table 3.5 by adding some new minimal routing options to R2. We have

shown aforementioned newly added minimal routing options as highlighted entries

in the Table 3.5. These newly added entries are corresponding to minimal paths

and never cause livelock. Thus, we can conclude that the R3 is also livelock-free.

It can be observed that Table 3.5 is same as Table 3.2. Thus, we can conclude

that 2D-CHARM also is livelock-free.

3.3 Results Analysis

We have evaluated proposed routing method (CHARM) with real and synthetic

traffic profiles. To evaluate the effectiveness of CHARM, we have implemented two

versions of CHARM: 1) CHARM, and 2) CHARM-XY. CHARM is implemented

for double-y network. We have implemented a few other well-known routing meth-

ods to compare with CHARM. These methods include the dimension order routing

(XY), Mad-y [45], LEAR [34] and HARA [32]. CHARM-XY is implemented for

double-xy network and restricts all 180-degree turns which make the algorithm

suitable to compare with other similar approaches JJMM [62], PCAR [11] and

DBSS [73]. The double-xy network has 2 VCs in each of X and Y dimensions.

C
h
ap

ter
3
2D

-C
H
A
R
M
:
C
on

gestion
-aw

are
an

d
H
igh

ly
A
d
ap

tive
R
ou

tin
g
M
eth

o
d

for
2D

-M
esh

64

Table 3.4: rfun for the new routing function R2 derived from R1 by splitting each of N2 and S2 VC of R1 into two VCs (N1, N2, S1,
S2)

des pos

S N E W SE SW NE NW

in
c
h

S1 - N1, N2 E, N1, N2 - E, N1, N2 - N1, N2, E -

N1 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
S1, S2, E, N1,

N2
-

N1, N2, E, S1,
S2

-

S2 - N1, N2 E, N1, N2 - E, N1, N2 - N1, N2, E -

N2 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

E
S1, S2,
W

N1, N2, W,
S1, S2

E, N1, N2, S1,
S2, W

W
S1, S2, E, N1,

N2, W
W

N1, N2, E, S1,
S2, W

W

W S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

L S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
W

S1, S2, E, N1,
N2

W
N1, N2, E, S1,

S2
W

C
h
ap

ter
3
2D

-C
H
A
R
M
:
C
on

gestion
-aw

are
an

d
H
igh

ly
A
d
ap

tive
R
ou

tin
g
M
eth

o
d

for
2D

-M
esh

65

Table 3.5: rfun for the new routing function R3 after adding a few entries (highlighted) in R2 corresponding to minimal paths for the
destination toward West (W, SW and NW)

des pos

S N E W SE SW NE NW

in
c
h

S1 - N1, N2 E, N1, N2 W E, N1, N2 - N1, N2, E N1,W

N1 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
W

S1, S2, E, N1,
N2

S1,W
N1, N2, E, S1,

S2
-

S2 - N1, N2 E, N1, N2 - E, N1, N2 - N1, N2, E -

N2 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

E
S1, S2,
W

N1, N2, W,
S1, S2

E, N1, N2, S1,
S2, W

W
S1, S2, E, N1,

N2, W
S1,W

N1, N2, E, S1,
S2, W

N1,W

W S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

L S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
W

S1, S2, E, N1,
N2

S1,W
N1, N2, E, S1,

S2
N1,W

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 66

We evaluate CHARM and all other routing methods on both synthetic and realis-

tic traffic profiles. As synthetic traffic profiles, we consider both uniform (random)

and non-uniform (hotspot and transpose) traffic patterns. For realistic communi-

cation profiles, we consider traces of some application suites extracted from bench-

mark suite E3S [22]. In order to perform all required set of experiments involving

various routing methods and traffic profiles, we modified and extended [57], a

cycle-accurate and open source SystemC based NoC simulator.

For all experiments, we consider 7× 7 mesh. Packet size and input-channel buffer

size for each virtual channel is kept constant for all experiments and set to 8 and 6

flits, respectively. The simulator is warmed up for 10000 cycles and afterward; the

average performance is measured over another 100000 cycles. Congestion threshold

is set to 66% of total buffer size meaning that when four slots of input channel

buffers are occupied. Congestion threshold specifies whether the next hop router

is congested or not. For the synthetic traffic, traffic generator generates traffic at

constant bit rate. Traffic load of 10% implies that packet injection rate is 10%

of channel bandwidth. As communication performance parameter, we consider

latency (delay) and throughput. The latency is defined as the time difference (in

clock cycles) between header flit injection from source router and tail flit reception

at the destination router. Throughput is defined as the fraction of the maximum

load that the network can physically handle.

3.3.1 Uniform Traffic Pattern

Under uniform (random) traffic profile, a node sends several packets to every other

node in the network with same probability using uniform probability distribution.

Figures 3.10 and 3.11 show the comparison of CHARM with other approaches

for latency and throughput respectively under uniform traffic. All algorithms

exhibit similar average latency and throughput at lower traffic loads. But with

increased packet injection rate, it is observed that the dimension order routing

(XY) performs much better than all other adaptive routing methods as expected.

XY incorporates relatively long term and more global information about uniform

traffic load characteristic [46]. Since XY routes packets first along the X dimension

and then in the Y dimension, it distributes packets as evenly as possible throughout

the network in the long-term. We observe that CHARM performs better than

other adaptive routing methods at higher traffic loads.

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 67

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

Uniform Traffic

 CHARM
XY

LEAR
HARAQ

Mad-y

Figure 3.10: Average latency under uniform traffic for double-y network

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(i

n
 p

er
ce

n
ta

g
e)

Traffic load (in percentage)

Uniform Traffic

 CHARM
XY

LEAR
HARAQ

Mad-y

Figure 3.11: Average throughput under uniform traffic for double-y network

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 68

Figures 3.12 and 3.13 show the comparison of CHARM-XY with other similar

approaches. We can observe that at higher load the DBSS performs better than

the other algorithms. This is because DBSS uses XY-routing in VC-1 and adaptive

routing in VC-2 which makes it better than other routing schemes under uniform

traffic. CHARM-XY performs better than the other routing schemes because of

additional path diversity provided.

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

A
v
er

a
g

e
la

te
n

cy
 (

in
 c

lo
ck

 c
y

cl
es

)

Traffic load (in percentage)

Uniform Traffic

 CHARM-XY
PCAR
DBSS

JJMM

Figure 3.12: Average latency under uniform traffic for double-xy network

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

A
v
er

a
g
e

T
h

ro
u

g
h

p
u

t
(i

n
 p

er
ce

n
ta

g
e)

Traffic load (in percentage)

Uniform Traffic

 CHARM-XY
PCAR
DBSS

JJMM

Figure 3.13: Average throughput under uniform traffic for double-xy network

3.3.2 Non-uniform Traffic Patterns

We consider two non-uniform traffic profiles (hotspot and transpose) for the eval-

uation of proposed method. If a node is having significantly greater demand than

the other similar nodes, it is called a hot-spot. For example, in a shared memory

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 69

multicomputer, a specific destination becomes a hot-spot when several processors

are reading simultaneously the same memory location [20]. hotspot is considered

a more realistic traffic profile [96] because, in most applications, processor (one

node) communicate frequently with a small subset of other nodes (memory nodes,

I/O resources). In the mesh network, we can have intermediate nodes having the

Memory and I/O resource. These nodes can also receive traffic from any other

node and can be positioned at any place within the mesh. This traffic pattern

also reveals the load balancing capability of the routing schemes [54]. Under this

traffic pattern, some nodes are appointed as hot-spot nodes, which receive some

additional hotspot traffic besides their normal uniform traffic. For simulation, we

set nodes (1, 3), (1, 5) and (2, 0) as hot-spot nodes with 0.4 probability of getting

additional traffic. It means that these nodes will be receiving 40% extra pack-

ets than the other nodes. The probability assumption of other nodes is uniform

and decided by uniform probability distribution. However, hot-spot nodes will be

receiving more packets which is decided by the additional probability.

Transpose traffic pattern is another example of non-uniform traffic like hotspot

traffic. Under this traffic profile, a node at position (X , Y) only sends packets to

another node at position (n− 1−X , n− 1−Y), for a n×n 2D mesh. This traffic

profile simulates the concept of transposing a matrix. This traffic profile results

into a non-uniform distribution of traffic with heavy traffic flows for the central

nodes creating network “hot spots”.

Figures 3.14 and 3.15 show the comparison of CHARM with other similar ap-

proaches for hotspot traffic. Similarly, Figures 3.16 and 3.17 depict the perfor-

mance evaluation of CHARM for transpose traffic. We can observe that perfor-

mance of algorithms is almost similar in both non-uniform traffic patterns. It can

be observed from Figures 3.14, 3.15, 3.16 and 3.17 that XY, in contrast with the

random traffic profile, has a higher average latency and lower throughput than the

three adaptive algorithms. The adaptive methods can cope with congestion better

than XY. Because, when multiple traffic flows are oriented towards a small subset

of “hot spot” nodes, a non-adaptive XY router will be compelled to forward them

towards the same output direction, thus saturating the virtual channel queues. On

the other hand, adaptive algorithms can direct packets, destined for the same des-

tination, to different output channels. It can also be observed that due to higher

adaptiveness (both minimal and non-minimal), CHARM scheme achieves better

performance than other adaptive algorithms by avoiding “hot spots”. CHARM

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 70

method leads to better performance because it can more evenly distribute traffic in

a congested network using additional paths both minimal and non-minimal than

other routing algorithms.

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

Hotspot Traffic

 CHARM
XY

LEAR
HARAQ

Mad-y

Figure 3.14: Average latency under hotspot traffic for double-y network

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

A
v
er

a
g
e

T
h

ro
u

g
h

p
u

t
(i

n
 p

er
ce

n
ta

g
e)

Traffic load (in percentage)

Hotspot Traffic

 CHARM
XY

LEAR
HARAQ

Mad-y

Figure 3.15: Average throughput under hotspot traffic for double-y network

Figures 3.18 and 3.19 show the comparison of CHARM-XY with other similar

approaches for hotspot traffic. Similarly, Figures 3.20 and 3.21 depicts the per-

formance evaluation of CHARM-XY for transpose traffic. It can be observed that

DBSS outperforms other schemes as it provides two hop visibility for the conges-

tion together with path diversity. However, CHARM-XY performs better than the

other two algorithms because of higher adaptivity provided by it. CHARM-XY

provides single hop visibility for the congestion. It should be noted that PCAR

and JJMM provide better congestion detection mechanism than CHARM-XY but

the the degree of adaptiveness of CHARM-XY is higher than these algorithms.

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 71

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

Transpose Traffic

 CHARM
XY

LEAR
HARAQ

Mad-y

Figure 3.16: Average latency under transpose traffic for double-y network

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
(i

n
 p

er
ce

n
ta

g
e)

Traffic load (in percentage)

Transpose Traffic

 CHARM
XY

LEAR
HARAQ

Mad-y

Figure 3.17: Average throughput under transpose traffic for double-y network

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 72

Thus, the performance of CHARM-XY is better than PCAR and JJMM schemes.

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

Hotspot Traffic

 CHARM-XY
PCAR
DBSS

JJMM

Figure 3.18: Average latency under hotspot traffic for double-xy network

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

A
v
er

a
g
e

T
h

ro
u

g
h

p
u

t
(i

n
 p

er
ce

n
ta

g
e)

Traffic load (in percentage)

Hotspot Traffic

 CHARM-XY
PCAR
DBSS

JJMM

Figure 3.19: Average throughput under hotspot traffic for double-xy network

3.3.3 Application Traffic

To evaluate proposed work in a more realistic scenario, we consider E3S bench-

mark suite. We select four application suites automotive/industrial, networking,

consumer, and office-automation. This selection is intended to represent various

applications used in the real-time embedded systems. Each application suite is

represented by a .tgff file. We generated communication task graphs for each .tgff

file by parsing it. A communication task graph represents communication pattern

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 73

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

Transpose Traffic

 CHARM-XY
PCAR
DBSS

JJMM

Figure 3.20: Average latency under transpose traffic for double-xy network

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

A
v
er

a
g
e

T
h

ro
u

g
h

p
u

t
(i

n
 p

er
ce

n
ta

g
e)

Traffic load (in percentage)

Transpose Traffic

 CHARM-XY
PCAR
DBSS

JJMM

Figure 3.21: Average throughput under transpose traffic for double-xy network

and volume among tasks. We assign each task to the core (processor) using mini-

mum execution time scheduler that executes it in the fastest time. Task mapping

strongly depends on particular application traffic. A random mapping algorithm

is used to compute the locations of cores within NoC to enable honest and un-

biased comparisons among routing algorithms. We executed routing algorithms

several times using random mapping, and the average of simulation results is used.

Figures 3.22 and 3.23 show average packet latency normalized to XY and DBSS

routing algorithms, respectively. As shown in Figure 3.22, CHARM exhibits lower

latency than other methods across all four application suites in the double-y net-

work. CHARM outperforms all other related work for all benchmark applications.

The performance improvement of CHARM is 29% and 14% when compared with

XY and other adaptive methods, respectively for a 7 × 7 mesh. However, in the

case of double-xy network as shown in Figure 3.23, DBSS outperforms other algo-

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 74

rithms. However, CHARM-XY performs better than JJMM and PCAR methods.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

O
fficeA

uto

N
etw

oking

C
onsum

er

A
utoIndust

N
o

rm
a

li
ze

d
 A

v
er

a
g

e
L

a
te

n
cy

Real Traffic Benchmark (E3S)

 CHARM
XY

LEAR
 HARAQ

Mad-y

Figure 3.22: Performance for application traces for double-y network

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

O
fficeA

uto

N
etw

oking

C
onsum

er

A
utoIndust

N
o
rm

a
li

ze
d

 A
v
er

a
g
e

L
a
te

n
cy

Real Traffic Benchmark (E3S)

 CHARM-XY
PCAR

DBSS
JJMM

Figure 3.23: Performance for application traces for double-xy network

3.3.4 Power Analysis

We deploy an existing NoC power estimation tool ORION [63], which is integrated

with NoC simulator [57]. It estimates total power consumption of a router into

various sub-components: input buffers, router control logic (arbiter and crossbar)

traversal and channels. Figures 3.24 and 3.25 illustrate average power consumption

for hotspot traffic with different traffic loads. It can be observed from Figure 3.24

that XY consumes less power for all traffic load. Because, it always routes packets

through minimal paths. At lower traffic loads, CHARM performs better than

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 75

other adaptive routing methods. It uses minimal paths due to small “hot spots”

creation at lower traffic load. However, other adaptive methods consume less

power than CHARM at higher traffic loads. Proposed method uses non-minimal

paths to alleviate congestion, which causes increase in hop count.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10 20 30A
v

er
a

g
e

p
o

w
er

-c
o

n
su

m
p

ti
o

n
/r

o
u

te
r

(i
n

 w
a

tt
)

Traffic load (in percentage)

Power-consumption for Hotspot Traffic

 CHARM
XY

LEAR
 HARAQ

Mad-y

Figure 3.24: Power consumption results under hotspot traffic for double-y network

It can be observed from Figure 3.25 that PCAR consumes less power for all traffic

load. Because of comparatively simple route computation function, PCAR and

JJMM perform better than the CHARM-XY and DBSS schemes. DBSS con-

sumes more average power than the CHARM-XY because of complex congestion

detection mechanism.

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

10 20 30A
v

er
a

g
e

p
o

w
er

-c
o

n
su

m
p

ti
o
n

/r
o
u

te
r

(i
n

 w
a
tt

)

Traffic load (in percentage)

Power-consumption for Hotspot Traffic

 CHARM-XY
PCAR

DBSS
JJMM

Figure 3.25: Power consumption results under hotspot traffic for double-xy net-
work

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 76

3.3.5 Area Analysis

To calculate area overhead, we have implemented whole platform of each routing

method. The whole platform includes network interfaces, routers, and communi-

cation channels and is synthesized by Synopsys Design Compiler. For synthesis,

we consider the UMC 90nm technology with an operating frequency of 1 GHz and

supply voltage of 1 V. Tables 3.6 and 3.7 show the layout area for different routing

methods. From table 3.6, we observe that area requirement for XY is lesser than

the other routing methods because of simple routing function of XY. However,

other adaptive methods exhibits almost same area requirement. From table 3.7, it

is observed that area requirement for DBSS is higher than other routing methods

because of its complex routing logic. The area requirement of CHARM-XY is also

higher than PCAR and JJMM.

Table 3.6: Area Requirement

Algorithm Area(mm2)

CHARM 7.763

XY 6.692

LEAR 7.765

Mad-y 7.532

HARAQ 7.783

Table 3.7: Area Requirement

Algorithm Area(mm2)

CHARM-XY 7.963

PCAR 7.622

DBSS 8.176

JJMM 7.632

3.4 Inferences

The degree of adaptiveness has a major impact on the performance of an adap-

tive routing algorithm. In this Chapter, we have proposed a novel turn model that

provides high degree of adaptiveness for a 2D mesh. The end result is that the pro-

posed turn model reduces the number of restrictions on routing turns and hence is

Chapter 3 2D-CHARM: Congestion-aware and Highly Adaptive Routing Method
for 2D-Mesh 77

able to provide path diversity through additional minimal and non-minimal routes

between the source and destination. Deadlock freedom of CHARM is ensured us-

ing Duato’s theory [24].

We have observed that proposed turn model can be extended for three dimensional

mesh networks with less resources (virtual channels). Thus, next chapter presents

a 3D extension to 2D-CHARM.

Chapter 4

3D-CHARM: Adaptive Routing

Method for 3D-Mesh

4.1 Overview

Three-dimensional very large-scale integration (3D VLSI) is emerging as a promis-

ing solution to physical limitations of semi-conductors manufacturing processes [84].

In 3D-Integration, multiple 2D dies are vertically stacked on top of each other with

Through-Silicon-Vias (TSVs). The main advantage of 3D ICs is the considerable

reduction in the count and length of global interconnects, which leads to increase

in performance. TSVs are used for the irregular network topology. However, our

proposed turn model is applicable to the regular mesh network. Thus, we have

considered simple links for connecting 2D layers.

Routing method presented in [29] uses four, four, and two virtual channels along

the X , Y and Z dimensions, respectively for deadlock avoidance. Dahir et al. [15]

presented partially adaptive routing method which is 3D extension of 2D odd-

even turn model [13]. Ebrahimi [28] proposed a fully adaptive routing algorithm

for 3D NoCs that uses two, two and four virtual channels along the X , Y and

Z dimensions, respectively. Deadlock avoidance method adopted in well-known

planar adaptive routing method [12] uses one, three and two virtual channels

along the X , Y and Z dimensions, respectively. It is fully adaptive within a

2D plane only. Thus, in this chapter, we present congestion-aware, non-minimal

and fully adaptive (CHARM) routing algorithm. Since, the proposed method is

78

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 79

applicable to the 3D mesh, we have named it 3D-CHARM. It offers high degree of

adaptiveness by permitting cycles in channel dependency graph while remaining

deadlock free. 3D-CHARM uses only one, two and two virtual channels along

the X , Y and Z dimensions, respectively. We have shown that the proposed

routing algorithm results in significant performance improvement compared to

existing routing schemes under certain traffic patterns designed for NoCs. It uses

less number of virtual channels compared to other well known adaptive routing

methods [28, 29, 12].

4.2 Proposed Method

In this section, we extend 2D-CHARM for three dimensions. We present the turn

model for the 3D-CHARM with deadlock-freedom and the livelock-freedom proofs.

4.2.1 3D-CHARM: Turn Model

3D-CHARM deploys double-yz network that uses one virtual channel along X

dimension (+X : East, −X : West), two virtual channels along Y dimension (+Y :

North, −Y : south) and Z dimension (+Z: up, −Z: down) to achieve high degree

of adaptiveness. Figures 4.1, 4.2 and 4.3 show turn model representations for

different planes (Y Z, XY and XZ) of 3D mesh topology. A packet is permitted

to use the first virtual channel at any time as shown in Figures 4.1(i) and 4.1(ii).

It can use the second virtual channel only if it has already routed to negative

directions (West and south) of all lower dimensions. It is allowed to take 180-

degree turn from West to East, south to North and down to up only if it has

completed routing in the West, south and down directions, respectively.

For XY -plane, 3D-CHARM imposes same constraints as in 2D-CHARM (Sec-

tion 3.2.1).

For Y Z-plane, 3D-CHARM imposes following constraints on routing turns:

1. It prohibits four 90-degree turns (U2-S1, U2-S2, D2-S1 and D2-S2) as

shown in Figures 4.1(iii) and 4.1(iv).

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 80

VC2VC1

(i) 90-degree turns (ii) 90-degree turns (iii) 90-degree turns

(iv) 90-degree turns (v) 0-degree turns (vi) 180-degree turns

Figure 4.1: Turn model for Y Z-plane of 3D-CHARM

VC2VC1

(i) 90-degree turns (ii) 90-degree turns

(iii) 0-degree turns (iv) 180-degree turns

Figure 4.2: Turn model for XY -plane of 3D-CHARM

VC2VC1

(i) 90-degree turns (ii) 90-degree turns

(iii) 0-degree turns (iv) 180-degree turns

Figure 4.3: Turn model for XZ-plane of 3D-CHARM

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 81

2. It allows 0-degree turns (U1-U1, D1-D1, U2-U2 and D2-D2) as shown in

Figure 4.1(v). 3D-CHARM allows 0-degree turns (U1-U2, U2-U1, D1-D2

and D2-D1) as shown in Figure 4.1(v), with some restrictions. It allows

these restricted turns only when packet does not need to be forwarded further

West or south. Similarly, we can find allowed and restricted 0-degree turns

for North and south as well.

3. It permits some 180-degree turns as shown in Figure 4.1(vi).

We can deduce following restrictions from above constraints:

1. A packet is allowed to take 90-degree turns (S2-U2, S1-U2, S2-D2 and S1-

D2) only when it does not need to be forwarded to West or south further.

This restriction is due to prohibited 90-degree turns (U2-S1, U2-S2, D2-S1

and D2-S2).

2. A packet cannot use U2 or S2 at the source node if it needs to be forwarded

West or south.

Constraints on routing turns for XZ-plane can be deduced in a similar fashion as

in XY -plane.

4.2.2 Deadlock Freedom of 3D-CHARM

The deadlock-freedom proof of 3D-CHARM is divided into two main steps.

1. We first prove the deadlock-freedom of each plane individually, then

2. We prove that the deadlocks do not exist in inter-planes communications

(between planes).

4.2.2.1 Deadlock Freedom: Individual Plane

To assured the deadlock-freedom of each plane, we have used Duato’s theory [24]

as stated in the Section 3.2.3.

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 82

Lemma 1. Any of XY -plane does not contain any cyclic dependency if it follows

proposed 3D-CHARM turn model.

Proof. Table 4.1 shows the route computation function used for the XY -plane.

It can be observed that the routing function of XY -plane is exactly same as the

routing function of 2D-CHARM (Figure 3.2). We have proved in chapter 3 that

the 2D-CHARM routing function is deadlock-free. Thus, we can conclude that

the routing function of XY -plane does not have any cyclic dependency. Thus, it

is deadlock-free.

Lemma 2. Any of XZ-plane does not contain any cyclic dependency if it follows

proposed 3D-CHARM turn model.

Proof. Table 4.2 shows the route computation function used for the XZ-plane.

It can be observed that if we replace the N1 and S1 channels of XY -plane (Ta-

ble 4.1) with U1 and D1, respectively we obtain the routing function of XZ-plane

(Table 4.2). As theXY -plane is deadlock-free, thus theXZ-plane is also deadlock-

free.

To prove the deadlock-freedom of Y Z-plane of 3D-CHARM, we again use Duato’s

theorem. The route computation function of Y Z-plane of 3D-CHARM is denoted

by R as shown in Table 4.3. The set of channels used by R is denoted by C

(N1, S1, U1, D1, N2, S2, U2 and D2). To assure deadlock freedom of Y Z-

plane of 3D-CHARM, we first identify the subset of channels C1 ⊆ C, that defines

routing subfunction R1 ⊆ R that is connected and has an ECDG with no cycles

arising from direct, indirect, direct-cross and indirect-cross dependencies. We have

identified C1 that has all VCs except N1, S1, U1 and D1. The rfun for the R1 is

shown in Table 4.4.

Lemma 3. The routing subfunction R1 is connected and deadlock-free.

Proof. The rfun for routing subfunction R1 (Table 4.4) with channel set C1. To

prove the deadlock-freedom of R1, we have assigned the numbers to the channel

of R1 in such a way that the packets will always follow channels in deceasing

order [18].

C
h
ap

ter
4
3D

-C
H
A
R
M
:
A
d
ap

tive
R
ou

tin
g
M
eth

o
d
for

3D
-M

esh
83

Table 4.1: Route computation function for XY -plane of 3D-CHARM

Destination position (des pos)

S N E W SE SW NE NW

In
p
u
t
ch

a
n
n
e
l
(i
n

c
h
) S1 - N1, N2 E, N1, N2 W E, N1, N2 - N1, N2, E

N1,
W

N1 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
W

S1, S2, E, N1,
N2

S1, W
N1, N2, E, S1,

S2
-

S2 - N1, N2 E, N1, N2 - E, N1, N2 - N1, N2, E -

N2 S1, S2
N1, N2, S1,

S2
E, S1, S2, N1,

N2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

E
S1, S2,
W

N1, N2, W,
S1, S2

E, N1, N2, S1,
S2, W

W
S1, S2, E, N1,

N2, W
S1, W

N1, N2, E, S1,
S2, W

N1,W

W S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
-

S1, S2, E, N1,
N2

-
N1, N2, E, S1,

S2
-

L S1, S2
N1, N2, S1,

S2
E, N1, N2, S1,

S2
W

S1, S2, E, N1,
N2

S1 ,W
N1, N2, E, S1,

S2
N1
,W

C
h
ap

ter
4
3D

-C
H
A
R
M
:
A
d
ap

tive
R
ou

tin
g
M
eth

o
d
for

3D
-M

esh
84

Table 4.2: Route computation function for XZ-plane of 3D-CHARM

Destination position (des pos)

D U E W DE DW UE UW

In
p
u
t
ch

a
n
n
e
l
(i
n

c
h
) D1 - U1, U2 E, U1, U2 W E, U1, U2 - U1, U2, E

U1,
W

U1 D1, D2
U1, U2, D1,

D2
E, D1, D2, U1,

U2
W

D1, D2, E, U1,
U2

D1,
W

U1, U2, E, D1,
D2

-

D2 - U1, U2 E, U1, U2 - E, U1, U2 - U1, U2, E -

U2 D1, D2
U1, U2, D1,

D2
E, D1, D2, U1,

U2
-

D1, D2, E, U1,
U2

-
U1, U2, E, D1,

D2
-

E
D1, D2,

W
U1, U2, W,
D1, D2

E, U1, U2, D1,
D2, W

W
D1, D2, E, U1,

U2, W
D1,
W

U1, U2, E, D1,
D2, W

U1,W

W D1, D2
U1, U2, D1,

D2
E, U1, U2, D1,

D2
-

D1, D2, E, U1,
U2

-
U1, U2, E, D1,

D2
-

L D1, D2
U1, U2, D1,

D2
E, U1, U2, D1,

D2
W

D1, D2, E, U1,
U2

D1
,W

U1, U2, E, D1,
D2

U1
,W

C
h
ap

ter
4
3D

-C
H
A
R
M
:
A
d
ap

tive
R
ou

tin
g
M
eth

o
d
for

3D
-M

esh
85

Table 4.3: Route computation function for Y Z-plane of 3D-CHARM

Destination position (des pos)

D U N S DN DS UN US
In

p
u
t
ch

a
n
n
e
l
(i
n

c
h
) D1 - U1, U2 N1, N2, U1, U2
S1,
S2

N1, N2, U1, U2 - U1, U2, N1, N2
U1,
S1,
S2

U1 D1, D2
U1, U2, D1,

D2
N1, N2, D1,
D2, U1, U2

S1,
S2

D1, D2, N1,
N2, U1, U2

D1,
S1,
S2

U1, U2, N1,
N2, D1, D2

-

D2 - U1, U2 N1, N2, U1, U2 - N1, N2, U1, U2 - U1, U2, N1, N2 -

U2 D1, D2
U1, U2, D1,

D2
N1, N2, D1,
D2, U1, U2

-
D1, D2, N1,
N2, U1, U2

-
U1, U2, N1,
N2, D1, D2

-

N1
D1, D2,
S1, S2

U1, U2, S1,
S2, D1, D2

N1, N2, U1,
U2, D1, D2,

S1, S2

S1,
S2

D1, D2, N1,
N2, U1, U2,

S1, S2

D1,
S1,
S2

U1, U2, N1,
N2, D1, D2,

S1, S2

U1,S1,
S2

N2
D1, D2,
S1, S2

U1, U2, S1,
S2, D1, D2

N1, N2, U1,
U2, D1, D2,

S1, S2

S1,
S2

D1, D2, N1,
N2, U1, U2,

S1, S2

D1,
S1,
S2

U1, U2, N1,
N2, D1, D2,

S1, S2

U1,S1,
S2

S1 D1, D2
U1, U2, D1,

D2
N1, N2, U1,
U2, D1, D2

-
D1, D2, N1,
N2, U1, U2

-
U1, U2, N1,
N2, D1, D2

-

S2 D1, D2
U1, U2, D1,

D2
N1, N2, U1,
U2, D1, D2

-
D1, D2, N1,
N2, U1, U2

-
U1, U2, N1,
N2, D1, D2

-

L D1, D2
U1, U2, D1,

D2
N1, N2, U1,
U2, D1, D2

S1,
S2

D1, D2, N1,
N2, U1, U2

D1
,S1,
S2

U1, U2, N1,
N2, D1, D2

U1
,S1,
S2

C
h
ap

ter
4
3D

-C
H
A
R
M
:
A
d
ap

tive
R
ou

tin
g
M
eth

o
d
for

3D
-M

esh
86

Table 4.4: Route computation function for the R1 of Y Z-plane of 3D-CHARM

Destination position (des pos)

D U N S DN DS UN US

In
p
u
t
ch

a
n
n
e
l
(i
n

c
h
) D2 - U1, U2 N1, N2, U1, U2 - N1, N2, U1, U2 - U1, U2, N1, N2 -

U2 D1, D2
U1, U2, D1,

D2
N1, N2, D1,
D2, U1, U2

-
D1, D2, N1,
N2, U1, U2

-
U1, U2, N1,
N2, D1, D2

-

N2
D1, D2,
S1, S2

U1, U2, S1,
S2, D1, D2

N1, N2, U1,
U2, D1, D2,

S1, S2

S1,
S2

D1, D2, N1,
N2, U1, U2,

S1, S2

D1,
S1,
S2

U1, U2, N1,
N2, D1, D2,

S1, S2

U1,S1,
S2

S2 D1, D2
U1, U2, D1,

D2
N1, N2, U1,
U2, D1, D2

-
D1, D2, N1,
N2, U1, U2

-
U1, U2, N1,
N2, D1, D2

-

L D1, D2
U1, U2, D1,

D2
N1, N2, U1,
U2, D1, D2

S1,
S2

D1, D2, N1,
N2, U1, U2

D1
,S1,
S2

U1, U2, N1,
N2, D1, D2

U1
,S1,
S2

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 87

For a m × n Y Z-plane, we assign a two-digit number (a,b) to each channel. The

number is in radix r that satisfies following equalities:

r > 3m− 2

r > n− 1

Figures 4.4 and 4.5 show the numbering system and corresponding number assign-

ment, respectively for the router of R1. It can be easily observed from Figure 4.5,

for each input channel into an arbitrary node, the R1 routes the packet only along

a channel with a lower number.

Y, Z

2m-2-2Y , n-2-Z

2m-2-2Y , Z-1

2m-3-2Y , 02m-2+Y , 0

U2

D2

N2S2

Figure 4.4: Numbering of the output channels leaving each router (Y, Z) of Y Z-
plane for R1 routing algorithm

To further explain the numbering system, we have taken an example. The channel

numbering for a 4× 4 Y Z-plane is shown in Figure 4.6. For the node (2, 1), if the

packet is coming on North input channel (numbered 9, 0), then it can be routed

along any output channel including North. Because all output channels have lower

number than the input. However, if the packet is coming on Up input channel

(numbered 2, 1), then it can be routed only along lower numbered output channels

that are Down (2, 0) and North (1, 0) output channels. It can be easily verified

that the packets always follow decreasing order of channels if routed using routing

function R1 (Table 4.4). In addition, each router is connected to every other router

in the network. Thus, we can conclude that R1 is connected and deadlock-free.

Lemma 4. The ECDG of channel set C1 does not have any cycle because of

any dependency (direct-cross, indirect-cross , direct and indirect) with additional

channel (N1, S1, U1 and D1) introduced by R.

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 88

Y, Z

2m-2-2Y , n-2-Z

2m-2-2Y , Z-1

2m-3-2Y , 02m-1-2Y , 0
Y, Z

2m-2-2Y , Z

2m-2-2Y , Z-1

2m-3-2Y , 0

2m-3-2Y , 0

2m-2-2Y , n-2-Z

2m-1+Y , 0
Y, Z

2m-2-2Y , Z-1

2m-2+Y , 0
Y, Z

2m-2-2Y , n-2-Z

2m-2-2Y , n-1-Z

2m-3-2Y , 0

(a) Input from south (b) Input from up

(c) Input from north (d) Input from down

Figure 4.5: For each input channel, the eligible output channels for each router
(Y, Z) of Y Z-plane have lower number for R1

0,0

0,1 1,1 3,1

0,2 1,2

0,3 1,3

2,2 3,2

3,3

1,0 3,02,0

2,1

2,3

5,0

7,0

5,0

7,0

5,0

7,0

5,0

7,0

3,0

8,0

3,0

8,0

3,0

8,0

3,0

8,0

1,0

9,0

1,0

9,0

1,0

9,0

1,0

9,0

6,0

6,1

6,2

6,2

6,1

6,0

4,0

4,1

4,2

4,2

4,1

4,0

2,0

2,1

2,2 2,0

2,1

2,2 0,0

0,1

0,2

0,2

0,1

0,0

Figure 4.6: Each router (Y, Z) in 4× 4 Y Z-plane for R1 routing function

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 89

Proof. It can be observed from Tables 4.3 and 4.4 that the routing subfunction R1

that is defined on the channel subset C1, is according to the following expression:

R1(in ch, des pos) = R(in ch, des pos) ∩ C1, ∀in ch, des pos (4.1)

Thus, the channels computed by the routing function R (Table 4.3) is from the

set C1 (N2, S2, U2 and D2), and is also provided by the routing subfunction R1

for the same destination. As we have discussed in 3 that the cross dependencies

only exist if we add any routing option between channels of C1 while developing

routing function R from R1 by adding channels N1 and S1. We have not added

any such routing option between channels of C1. Thus, there does not exist any

cross-dependency between channels in C1 meaning ECDG is cycle-free because of

cross dependencies.

From Lemma 3, R1 is proved deadlock-free thus, cycle-free, thus no direct depen-

dency can cause cycles in ECDG. However, in the R1, a south channel is always

utilized before any other channel (North or up or down) in C1. Thus, the depen-

dencies towards south channel from any other channel (North or up or down) are

absent. However, the additional channels (N1, S1, U1 and D1) introduced by R

can cause indirect dependencies between south channels as a packet can use south

channel, then any addition channel (U1 or D1) and later can use south channel

of different row. But this indirect dependency does not introduce any cycle in

ECDG. Because to form a cycle, at least one of the 90-degree turns (D2-S2 or

U2-S2) must be allowed; however, these 90-degree turns are prohibited. Thus,

these indirect dependencies introduce new dependencies between only the south

virtual channels and do not result in cycles. Since there are no direct and indirect

dependencies which produce cycle in ECDG of C1. Therefore, ECDG of C1 is

acyclic because of direct and indirect dependencies.

Theorem 1. The routing function proposed for the Y Z-plane is deadlock-free.

Proof. It can be concluded from Lemma 3 & Lemma 4 and using Theorem 1 that

proposed routing algorithm is deadlock-free.

4.2.2.2 Deadlock Freedom: Inter-plane Communication

Now, we prove that there does not exist any deadlock configuration for the inter

plane communication. Using Duato’s terminology, the route computation function

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 90

of 3D-CHARM is denoted by R′ and the set of channels used by R′ is denoted

by C ′. To assure deadlock-freedom of 3D-CHARM, we first identify the subset

of channels C ′

1 ⊆ C ′, that defines routing subfunction R′

1 ⊆ R′ that is connected

and has an ECDG with no cycles arising from direct, indirect, direct-cross and

indirect-cross dependencies. For 3D-CHARM, C ′

1 has all VCs except N1, S1, U1

and D1.

Lemma 5. The routing subfunction R′

1 is connected.

Proof. R′

1 routing subfunction with channel set C ′

1 is all-but-one-negative-first [46]

routing algorithm. Since non-minimal all-but-one-negative-first routing is con-

nected, so R′

1 is connected.

Lemma 6. ECDG of channel set C ′

1 with additional channel (N1, S1, U1 and

D1) introduced by R′, does not result in any cyclic dependencies.

Proof. There is no direct-cross dependency in ECDG of C ′

1 as routing function R′

does not add any new routing option between channels of C ′

1 directly. However,

additional channels introduced by routing function R′ add new routing options

between channels of C ′

1 indirectly, but it does not produce any indirect-cross de-

pendency. Additional channels introduced by R′ can cause only indirect depen-

dencies between West (south) channels as a packet can use West (south) channel

and later can use West (south) channel of different row and column. But this

indirect dependency does not introduce any cycle in ECDG of C ′

1. The ECDG

for C ′

1 has no dependencies from a channel in North, East, south, up, or down

directions to a channel in the West direction, so the West channels are always

used before all other channels in C ′

1. Hence, these indirect dependencies introduce

new dependencies between only the West VCs and create no cycles using only the

West VCs. Similarly ECDG for C ′

1 has no dependencies from a channel in North,

up, or down directions to a channel in the south direction, so the south channels

are always used before other channels (North, up and down) in C ′

1. These indirect

dependencies introduce dependencies from West to the south or between south

VCs. Hence, these indirect dependencies create no cycles using only the south

VCs. Since there are no indirect and direct dependencies, which produce cycle in

ECDG. Therefore ECDG of C ′

1 is acyclic.

Theorem 2. The proposed routing algorithm is deadlock-free.

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 91

Proof. It can be concluded from Lemma 5 & Lemma 6 and using Theorem 1 that

proposed routing algorithm is deadlock-free.

4.2.3 Livelock Freedom of 3D-CHARM

Non-minimal routing algorithms are susceptible to livelock. The proposed routing

algorithm is proved to be livelock free using following theorem.

Theorem 3. The proposed routing algorithm is livelock-free.

Proof. From the discussion in Section 3.2, we can notice that whenever a packet is

routed in the East direction, it is not allowed to route it back in the West direction.

So, in the worst scenario, the packet may reach the West most column then it starts

to move towards destination column. Similarly, whenever a packet is routed in the

North direction, it is not allowed to route back in the south. Similarly, whenever

a packet is routed in the up direction, it is not allowed to route back in down. So,

in the worst case, the packet may reach the down most XY -plane then it starts

to move towards the destination node. In each dimension, only one 180-degree

turn is allowed. Therefore, after a limited number of hops, the packet reaches its

destination node. Thus, proposed routing algorithm is livelock free.

4.3 Results Analysis

We evaluate 3D-CHARM and all other routing methods on both synthetic and

realistic traffic profiles. As synthetic traffic profiles, we consider both uniform

(random) and non-uniform (hotspot) traffic patterns. For realistic communication

profiles, we consider traces of some application suites extracted from benchmark

suite E3S [22]. In order to perform all required set of experiments involving various

routing methods and traffic profiles, we modified and extended [57], a cycle-

accurate and open source SystemC based NoC simulator.

Packet size and input-channel buffer size for each virtual channel are kept con-

stant for all experiments and set to 8 and 6 flits, respectively. The simulator is

warmed up for 5, 000 cycles and afterward; the average performance is measured

over another 30, 000 cycles, out of which traffic is generated over 20, 000 cycles.

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 92

Congestion threshold is set to 66% of total buffer size. As communication perfor-

mance parameter, we consider latency (delay). It is defined as the time difference

(in clock cycles) between header flit injection from source router and tail flit re-

ception at the destination router.

To evaluate the effectiveness of the proposed routing method (3D-CHARM), we

have implemented its two versions: 1) 3D-CHARM, and 2) 3D-CHARM-XY. 3D-

CHARM uses one and two VCs in X and Y dimensions respectively. For the com-

parison purpose, we have also implemented three other routing methods. These

methods include the dimension order routing (XYZ), 3D Odd-Even (3D-OE) [15],

and all-but-one-negative-first (ALL-but-1-NF) [46]. For all experiments of 3D-

CHARM, we consider 4× 4× 4 mesh.

Whereas, the 3D-CHARM-XY uses two VCs in each of X and Y dimensions

and restricts all 180-degree turns. The second version of proposed method (3D-

CHARM-XY) is implemented to provide fair comparison with the recent state-

of-art. To compare 3D-CHARM-XY, we have also implemented two version of

Elevator-First (EF) routing [27] namely EF-0 and EF-10. EF-n means that n

percentage of vertical channels are removed. We have also implemented two ver-

sions of East-Then-First (ETW) [90] routing namely ETW-0 and ETW-10. For

experiments of 3D-CHARM-XY, we implemented 4× 4× 3 mesh.

4.3.1 Uniform Traffic

Under uniform (random) traffic profile, a node sends several packets to every other

node in the network with same probability using uniform probability distribution.

The load latency graph for 3D-CHARM for uniform traffic model is presented in

Figure 4.7. As shown, all algorithms exhibit similar average latency at lower traffic

loads. But with increased packet injection rate, it is observed that the dimension

order routing (XYZ) performs much better than all other adaptive routing methods

as expected. XYZ incorporates relatively long term and more global information

about uniform traffic load characteristic [46]. Since XYZ routes packets first along

the X dimension and then in the other dimensions, it distributes packets as evenly

as possible throughout the network in the long-term. On the other hand, adap-

tive schemes select output channels using local short-term information about the

network. This selection decision for packets is advantageous only in immediate

future and may tend to create “hot spots” region for other packets. In fact, these

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 93

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

3D-CHARM
XYZ

ALL-but-1-NF
3D-OE

Figure 4.7: Average latency under uniform traffic for 4× 4× 4

channel selections hinder the global long-term evenness of random traffic profile by

creating zigzag routes. This results into increase contention and reduction in per-

formance at higher packet injection rates. We observe that 3D-CHARM performs

better than other adaptive routing methods at higher traffic loads.

Figure 4.8 presents the load latency graph for 3D-CHARM-XY for uniform traffic

model. As shown, all algorithms exhibit similar average latency at lower traffic

loads. However, at higher load, we can observe that EF-0 perform better than

other algorithms. This is because of dimension order routing (DOR) which is

used by EF-0 in the 2D plane. It should be noticed that EF-10 performs lower

than the EF-0. However, EF-10 also uses DOR as the baseline routing, but it

does not have some of the vertical links which increases the average path length.

The performance of 3D-CHARM-XY is better than ETW algorithms. Both 3D-

CHARM-XY and ETW use adaptive routing function as the baseline routing in

2D plane. However, the baseline routing function of ETW algorithms is nothing

but the Mad-y routing which is less adaptive than the baseline routing function

of 3D-CHARM-XY (2D-CHARM).

4.3.2 Hotspot Traffic

Under this traffic pattern, we set nodes (2, 2, 0), (3, 1, 1) and (2, 1, 2) as hot-spot

nodes with 0.4 probability of getting additional traffic.

The performance evaluation of 3D-CHARM is shown in the Figures 4.9 for 4×4×4

mesh. It can be observed that XYZ, in contrast with the uniform traffic profile,

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 94

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

 3D-CHARM-XY
EF-0

EF-10
ETW-0

ETW-10

Figure 4.8: Average latency under uniform traffic for 4× 4× 3

has a higher average latency than the three adaptive algorithms that can cope

with congestion better. Because, when multiple traffic flows are oriented towards

a small subset of “hot spot” nodes, a non-adaptive XYZ router will be compelled to

forward them towards the same output direction, thus saturating the virtual chan-

nel queues. On the other hand, adaptive algorithms can direct packets, destined

for the same destination, to different output channels. It can also be observed

that due to higher adaptiveness (both minimal and non-minimal), 3D-CHARM

scheme achieves better average latency than other adaptive algorithms by avoid-

ing “hot spots”. 3D-CHARM method leads to smaller average latencies because

it can more evenly distribute traffic in a congested network using additional paths

both minimal and non-minimal than other routing algorithms.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

3D-CHARM
XYZ

ALL-but-1-NF
3D-OE

Figure 4.9: Average latency under hotspot traffic for 4× 4× 4

Figure 4.10 presents the load latency graph for 3D-CHARM-XY for hotspot traffic

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 95

model for 4×4×3 mesh. All schemes show similar average latency at lower traffic

loads. However, at higher load, the performance of 3D-CHARM-XY is better than

all other routing as it is both more adaptive and fully connected. The baseline

routing function DOR of EF algorithms becomes the bottleneck for them. EF

algorithms use deterministic routing DOR. The performance of 3D-CHARM-XY is

better than ETW algorithms because the baseline routing function of 3D-CHARM-

XY provides more number of paths than the baseline routing of ETW algorithms.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40

A
v
er

a
g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

 3D-CHARM-XY
EF-0

EF-10
ETW-0

ETW-10

Figure 4.10: Average latency under hotspot traffic for 4× 4× 3

4.3.3 Application Traffic

To evaluate proposed work in a more realistic scenario, we consider E3S bench-

mark suite. We select four application suites automotive/industrial, networking,

consumer, and office-automation. This selection is intended to represent various

applications used in the real-time embedded systems. We executed routing algo-

rithms several times using random mapping, and the average of simulation results

is used.

Figure 4.11 shows average packet latency normalized to XYZ routing. 3D-CHARM

provides lower latency than other methods across all four application suites. 3D-

CHARM shows the greatest performance gain on consumer application traces.

The average performance gain of 3D-CHARM is up to 31% across all selected

benchmarks vs. XYZ and 16% vs. other adaptive algorithms for the 4 × 4 × 4

mesh.

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 96

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

OfficeAuto
Netwoking

Consumer
AutoIndustry

N
o

rm
a

li
ze

d
 A

v
er

a
g

e
L

a
te

n
cy

Real Traffic Benchmark (E3S)

3D-CHARM
ALL-but-1-NF

3D-OE
XYZ

Figure 4.11: Performance for application traces for 4× 4× 4

Figure 4.12 presents average packet latency normalized to EF-10 routing. 3D-

CHARM-XY provides lower latency than other methods across all four application

suites. The average performance improvement of 3D-CHARM is up to 30% vs.

EF algorithms and 23% vs. ETW algorithms for the 4 × 4 × 3 mesh. Both 3D-

CHARM-XY and ETW algorithms are adaptive. However, it should be noticed

that 3D-CHARM-XY always uses minimal path whereas ETW algorithms use

both minimal and non-minimal paths. Moreover the path diversity provided by

baseline routing of 3D-CHARM-XY is more than the baseline routing of ETW.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

OfficeAuto
Netwoking

Consumer
AutoIndustry

N
o

rm
a
li

ze
d

 A
v
er

a
g
e

L
a
te

n
cy

Real Traffic Benchmark (E3S)

 3D-CHARM-XY
EF-0

EF-10
ETW-0

ETW-10

Figure 4.12: Performance for application traces for 4× 4× 3

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 97

4.3.4 Power Analysis

Figure 4.13 illustrates average power consumption for hotspot traffic for the 4×4×4

mesh with different traffic loads. It can be observed that XYZ consumes less power

for all traffic load. Because, it always routes packets through minimal paths and

less complex routing function. At lower traffic loads, 3D-CHARM perform better

than other adaptive routing methods. It uses minimal paths due to small “hot

spots” creation at lower traffic load. However, other adaptive methods perform

better than 3D-CHARM at higher traffic loads. Because of use of non-minimal

paths to alleviate congestion, the power consumption of the proposed method

increases. The increased hop count results in more power consumption.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10 20 30

A
v
er

a
g
e

p
o
w

er
-c

o
n

su
m

p
ti

o
n

/r
o
u

te
r

(i
n

 w
a

tt
)

Traffic load (in percentage)

3D-CHARM
ALL-but-1-NF

3D-OE
XYZ

Figure 4.13: Power consumption results under hotspot traffic for 4× 4× 4

Figure 4.14 depicts average power consumption for hotspot traffic for the 4 ×

4 × 3 mesh. It can be observed that EF-0 consumes less power for all traffic

load. Because, it always routes packets through minimal paths. However, 3D-

CHARM-XY also uses minimal paths but it has comparatively more complex

routing function than EF-0, thus consume more power than EF-0. The ETW-

10 algorithm consumes higher power than other routing schemes as it’s routing

function is more complex than other routing algorithms and it uses non-minimal

paths as well.

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 98

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10 20 30

A
v

er
a

g
e

p
o

w
er

-c
o

n
su

m
p

ti
o

n
/r

o
u

te
r

(i
n

 w
a

tt
)

Traffic load (in percentage)

 3D-CHARM-XY
EF-0

EF-10
ETW-0

ETW-10

Figure 4.14: Power consumption results under hotspot traffic for 4× 4× 3

4.3.5 Area Analysis

To calculate area overhead, we have implemented router of each routing method.

We deploy an existing NoC area estimation tool ORION [63], that is integrated

with NoC simulator [57]. Table 4.5 shows the router area for different routing

methods. We observe that area requirement for XYZ is lesser than the other rout-

ing methods because of simple routing function of XYZ. However, 3D-CHARM re-

sults in higher area overhead than all other routing algorithms because of complex

routing logic. The routing unit is a light-weight unit and the area consumption of

EF and ETW are nearly the same. In a router, buffers are the most area-hungry

components [90]. As EF uses one more VC than ETW, occupying a relatively

larger area. As 3D-CHARM-XY uses 2 VCs and its routing logic is complex, it

occupies relatively larger area than EF and ETW methods.

Table 4.5: Area Requirement

Algorithm Area(mm2)

3D-CHARM .189876

ALL-but-1-NF .172541

3D-OE .178721

XYZ .166378

Chapter 4 3D-CHARM: Adaptive Routing Method for 3D-Mesh 99

4.4 Inferences

The requirement of acyclic channel dependency graph for deadlock avoidance in

on-chip network routing places unnecessary thus avoidable restrictions on routing

turns. Hence, it reduces degree of adaptiveness. In this chapter, we propose a

novel highly adaptive and congestion-aware routing algorithm to address afore-

said issues for 3D meshes. The proposed algorithm permits cyclic dependencies

in channel dependency graph providing higher degree of adaptiveness. The algo-

rithm uses congestion-aware channel selection policy that results into the balanced

distribution of traffic load across the network. A packet, once injected in NoC, fol-

lows non-minimal paths only when minimal paths are congested at the neighboring

routers.

Fault tolerance is another aspect of a routing algorithm. The 2D-CHARM (Chap-

ter 3) and 3D-CHARM (Chapter 4) methods provide a high degree of adaptive.

These algorithms are not fault-tolerant. However, if we allow some more turns in

2D CHARM turn model, we can get new routing algorithm that would be fault-

tolerant. Thus, in the next chapter, we present a fault tolerant and highly adaptive

routing for the 2D mesh.

Chapter 5

FTCAR: Fault-tolerant and

Congestion-Aware Routing

5.1 Overview

On-chip interconnects implemented with a deep submicron semiconductor tech-

nology, running at GHz clock frequencies are prone to failures. Due to extreme

device scaling, the likelihood of failures increases. These failures may have archi-

tectural level ramifications as it may cause an entire on-chip network to fail. Since

on-chip communication reliability is a crucial factor in many-core systems, the

NoC paradigm should address these reliability issues. Fault-tolerant routing algo-

rithms play an important role in this domain by bypassing faults in the network

and allowing the system to continue functioning.

In NoCs, any of the components (cores, links or routers) may fail which results

in faults. When a core is faulty at a node, the core can be deactivated while the

connected router and links at the node can continue functioning. The connected

router and links can be used to receive packets from the other nodes and route

them further. Therefore, a faulty core does not affect the routing functionality of

the node. However, once a link or router is failed, the faulty component cannot be

simply discarded as it results in the blocking of other packets inside the network.

To tolerate faults, we can use fault tolerant routing algorithms. These algorithms

can be classified into two groups: addressing faulty links, and addressing faulty

routers. Usually, the algorithms within each group can be modified to tolerate

faults from the other group.

100

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 101

Generally, non-minimal routing is used to tolerate faults and alleviate congestion.

In [10], authors proposed non-minimal fault tolerant routing algorithm to handle

multiple nodes and links failures without using routing tables. Authors in [66],

proposed distributed and reconfigurable fault tolerant (DRFT) routing scheme to

tolerate single link faults. In the absence of faults, proposed scheme works as

dimension order routing. Fick et al. [38] introduced a table-based implementation

of routing scheme to tolerate faulty components. In [31], authors proposed a

fault tolerant routing scheme. It can handle one faulty link or node. But, it

provides lower degree of adaptiveness. In [34, 32], Ebrahimi et al. proposed non-

minimal routing schemes for 2D mesh. These provide better adaptiveness than

Mad-y [45] with the same number of virtual channels. However, these impose some

unnecessary restrictions on routing turns, which can be removed to achieve fault

tolerance and increased path diversity. The proposed method can handle faults

occurred at manufacturing time. However, the position of fault can be anywhere

within the mesh.

5.2 Proposed Method

In a routing algorithm, an acyclic CDG requirement to avoid deadlocks imposes

unnecessary restrictions on the routing turns. The deadlock-freedom of both Mad-

y and LEAR routing algorithms is proved using acyclic CDG [18]. Thus, they

cannot use all qualified turns to route packets through less congested/faulty areas.

The proposed model FTCAR imposes substantially fewer restrictions on routing

turns (specially on 90-degree) using [24], thus it provides additional minimal and

non-minimal paths between source and destination nodes than Mad-y and LEAR.

Figure 5.1 shows turn model representation of FTCAR. A packet is permitted to

use first virtual channel (N1 or S1) at any time as shown in Fig. 5.1(i). It can use

second virtual channel (N2 or S2) only if it has already routed to the negative

direction of X dimension (West). Because, the packet cannot take West turn after

using (N2 or S2) as shown in Fig. 5.1(ii.b.). However to achieve fault tolerance,

we have to allow packets to take West turn after using (N2 or S2) but only at

West border as shown in Fig. 5.1(ii.a.). The detailed explanation is provided in

the Section 5.2.2.

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 102

(i) 90-degree turns (ii.a.)90-degree turns at west border(ii.b.)90-degree turns except west border

(iii) 0-degree turns (iv) 180-degree turns

VC1 VC2

Figure 5.1: FTCAR turn model (permitted (prohibited) turns are represented by
solid (dash) lines)

It is allowed to take only two 180-degree turns from West to East (W -E) and

South to North (S2-N2) as shown in Fig. 5.1(iv) only if it has completed routing

in West and South directions, respectively. In short, in order to avoid deadlocks,

FTCAR imposes following constraints on routing turns:

1. It prohibits two 90-degree turns (S2-W and N2-W) except west border.

2. It allows 0-degree turns (S1-S1, N1-N1, S2-S2 and N2-N2) as shown in

Fig. 5.1(iii). It allows 0-degree turns (S1-S2, N1-N2, S2-S1 and N2-N1),

as shown in Fig. 5.1(iii), with some restrictions. It allows these restricted

turns only when packet does not need to be forwarded further West.

3. It permits some 180-degree turns (W -E and S2-N2).

The proposed method FTCAR provides more minimal and non-minimal paths

between source and destination by allowing some routing turns which were pro-

hibited in Mad-y and LEAR. For example, E-N1 (i.e. a packet moving from East

to North-1 virtual channel) and E-S1 (i.e. a packet moving from East to South-1

virtual channel) are permitted by FTCAR turn model. However, these permitted

routing turns create cycles in CDG, but we have shown that proposed routing

method is deadlock free using Duato’s well known theorem [24]. Duato has proved

that cycles can be allowed in CDG provided that ECDG is acyclic.

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 103

5.2.1 Deadlock and Livelock Freedom of FTCAR

With non-adaptive routing, packets are routed along single output channel at each

node. Thus, in order to achieve deadlock freedom, it is essential to eliminate all

cyclic dependencies between network channels. In adaptive routing, packets often

have many choices for routing at each node. Thus, it is not mandatory to remove

all cyclic dependencies between channels, provided that every packet can be routed

on a path whose channels are free from cyclic dependencies. The channels involved

in these acyclic routes are considered as escape channels from deadlocks (cycles).

The FTCAR can be proved deadlock-free by using Duato’s well known theory [24]

stated as follows:

Theorem 1. (Duato’s Theorem) For a given network I, a connected and adaptive

routing function R is deadlock-free if there exists a routing sub-function R1 ⊆ R,

which is connected and has extended channel dependency graph acyclic.

Following Duato’s terminology, the routing function of FTCAR is denoted by R

and the channel set used by routing function R is denoted by C. To prove the

FTCAR deadlock-free, we first identify the subset of channels C1 ⊆ C, that defines

routing subfunction R1 ⊆ R that is connected and has an acyclic ECDG. The

ECDG must not contain any cycle arising from direct, direct-cross, indirect and

indirect-cross dependencies. For FTCAR, the channel set C1 contains all channels

of the network except North-1 (N1) and South-1 (S1).

Lemma 1. The routing subfunction R1 is connected.

Proof. The routing subfunction R1 with the channel set C1 is same as West-

first [46] routing (non-minimal) function. Since non-minimal West-first routing

is connected, so we conclude that R1 is connected.

Lemma 2. The extended channel dependency graph of channel set C1 with addi-

tional dependencies introduced by channel (N1 and S1) of R is acyclic.

Proof. There is no direct-cross dependency between channels of C1 as a channel

belonging to C1 is always used as escape channel for all the destination for which

it can be supplied by R. The additional channels (N1 and S1) of R can introduce

only indirect dependencies between West channels. Because a packet using West

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 104

channel can further use the West channel of different row and column. But because

of this indirect dependency, there is no cycle in ECDG of C1. The ECDG for C1

has no dependencies to a West channel from a channel in North, East, or South, so

the West channels are always used before all other channels in C1, if destination is

in West. Hence, these indirect dependencies introduce new dependencies between

only the West virtual channels and create no cycles using only the West virtual

channels. Since there are no indirect and direct dependencies, which produce cycle

in ECDG. Therefore, ECDG of C1 is acyclic.

Theorem 2. The proposed routing algorithm is deadlock-free.

Proof. Using Lemma 1, Lemma 2 and Theorem 1 , we conclude that FTCAR

routing algorithm is deadlock-free.

Non-minimal routing algorithms are susceptible to livelock. The FTCAR can be

proved to be livelock free using following theorem.

Theorem 3. The proposed routing algorithm is livelock-free.

Proof. We can observe from FTCAR turn model (Fig. 5.1) that whenever a packet

is forwarded along East output channels, it is not allowed to route the packet back

along West output channel. So, in the worst case, the packet may reach the West

border, and then it starts to move towards destination column. Similarly, whenever

a packet is forwarded along North output channel, it is not allowed to route back in

the South. It can be observed from turn model (Fig. 5.1) that only one 180-degree

turn is allowed in each dimension. Therefore, after a certain number of hops, the

packet finally arrives at the destination node. Thus, proposed routing algorithm

(FTCAR) is livelock free.

5.2.2 FTCAR: Fault tolerance Analysis

Since FTCAR is a fully adaptive routing method, it can use all minimal paths

for each source-destination pair, if the fault is absent. A destination node (D)

may be located in any of eight directions/quadrants (North, South, East, West,

northeast, northwest, southeast, and southwest) with respect to current/source

(C) node. When the destination node is located in any of quadrant/direction,

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 105

available minimal paths (Smin) between current node (0,0) and destination node

(X1, Y1) is given by:

Smin =
(|X1|+ |Y1|)!

|X1|!|Y1|!

It can be notice that Smin is always greater or equal to 2 (≥ 2) for any quadrant

(northeast, northwest, southeast, and southwest). Thereby, when the destination

is in any of quadrants, and there is a single faulty link, packets can always find a

minimal path to bypass the fault.

If the destination node is located in any of direction (East, West, North, and

South), Smin is always 1. Thus, packets must follow non-minimal paths if any link

on the minimal path is faulty. Figure 5.2 illustrates how FTCAR tolerates single

link failures in any of direction. When destination node is located in the East

(eastward packet), at first the East link is checked. If it is available, the packet is

routed through this link. However, if the link is faulty as shown in Fig 5.2a, the

packet can be forwarded through N2 or S2 link. By inspecting the required turns,

it can be seen that eastward packets use either the N2-E and E-S2 turns or the

S2-E and E-N2 turns to bypass the faulty link. It can be easily verified that all

these turns are permitted turns in FTCAR turn model (Fig. 5.1). Similarly, we

can observe that westward packets can use either the N1-W and W -S1 turns or

the S1-W and W -N1 turns to bypass the faulty West link as shown in Fig 5.2b.

Similarly, northward and southward packets use the turnW -N2, N2-E, W -S2 and

S2-E to bypass the North and South faulty links as shown in Fig. 5.2c and 5.2d,

respectively. The turns used by westward, northward and southward packets are

allowed turns in FTCAR turn model (Fig. 5.1).

Figures 5.2e and 5.2f illustrate two special cases of northward and southward

packets on the West border of the mesh. When both current and destination nodes

are located on the West border, the required turns include N2-W and S2-W to

bypass North and South faulty links, respectively. These turns are prohibited in

the FTCAR turn model (Fig. 5.1). However, if we allow these prohibited turn on

the West border, they cannot result into complete cycle. Thus, these prohibited

turns can be allowed on the West border.

In FTCAR, each node keeps information about the link status for each direction

(East, West, North, and South). FTCAR uses the statuses of four links to make its

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 106

routing decision, in the case of faults. The functionality of FTCAR routing algo-

rithm is divided into two phases: route computation and output channel selection.

On the basis input channel (on which packet has arrived) and relative position of

destination node with respect to current node, routing function computes a set of

output channels using turn model explanation discussed in Section 5.2.

The selection function selects one output channel from the set of output chan-

nels provided by the route computation function. Our selection function prefers

adaptive output channels over escape channels because it results in increased prob-

ability of escape output channels being available when they are required to avoid

deadlocks. The selection function first checks all qualified output channels cor-

responding to shortest routes and forwards the packet to the output channel in

which the corresponding next hop node has its congestion status flag set to zero.

If the congestion status flags of all next hop nodes on shortest routes are set to

one, the congestion status flag of each eligible non-minimal route is inspected. If

there exist such non-minimal routes, which are not congested, our method selects

one of the output channels to forward the packet (and possibly, corresponding to

non-escape channels).

Figure 5.2: Tolerating single link failures for packet directions (a) eastward (b)
westward (c) northward (d) southward (e) northward on West border (f) southward
on West border (red dash lines indicate prohibited turns)

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 107

5.3 Results Analysis

In order to perform simulation involving various routing schemes, traffic scenarios,

and power analysis, we modified and extended [57], a cycle-accurate SystemC

based open source NoC simulator. We have evaluated proposed routing method

(FTCAR) with real and synthetic traffic profiles. To evaluate the effectiveness of

FTCAR, we have also implemented other routing methods FTR [61], FLEAR [31],

TARRA [56] and iPAR [101]. As synthetic traffic, we use uniform and hotspot

traffic patterns. For realistic applications traffic, we consider traces of selected

application suites extracted from benchmark suite E3S [22]. For all experiments

of simulation, we consider 7× 7 mesh topology. The traffic sources are configured

to generate packets of size 8 flits. The input-channel buffer size for each virtual

channel is set to 6 flits. The warm-up period for the simulator is set to 15, 000 clock

cycles and afterward; the average performance is measured over another 85, 000

cycles. The traffic is generated over first 75, 000 cycles. Congestion threshold is set

to 66% of total buffer size of the neighboring node. As communication performance

parameter, we consider latency which is defined as the time difference (in clock

cycles) between header flit injection from source router and tail flit reception at

the destination router.

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

A
v
er

a
g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

 TARRA
 FTCAR
 FLEAR

 iPAR
FTR

Figure 5.3: Average latency under uniform traffic

5.3.1 Uniform Traffic

Under this traffic pattern, each node sends several packets to every other node

in the network with the same probability. The load-latency graph for uniform

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 108

traffic model is presented in Fig. 5.3. At low traffic load, “hotspot” are not formed

in the network, thus all algorithms show similar pattern in average latency. The

performance degrades as the traffic load is increased. It is observed that FTR

performs better than all other routing methods. Since FTR routes packets first

along the X dimension and then in Y dimension, it distributes packets as evenly

as possible throughout the network in the long-term for uniform traffic. How-

ever, at the fault boundary, it takes non-minimal paths unlike XY routing. In

adaptive routing schemes, TARRA and iPAR perform better than FTCAR. The

performance of FTCAR is slightly lower than the TARRA and iPAR. However,

the FTCAR is more adaptive than TARRA and iPAR, but in the case of faults,

FTCAR routes the packet using non-minimal paths that degrades its performance.

Whereas, TARRA bypasses router using bypassing channels instead of taking non-

minimal routes, thus performs better. In the case of faulty link, iPAR also uses

non-minimal paths like FTCAR, however it performs better than FTCAR be-

cause it uses 2 VCs in X dimension. FLEAR is also adaptive routing method, but

path diversity of this algorithm is less than the other adaptive schemes, thus its

performance degrades.

5.3.2 Hotspot Traffic

Under this traffic pattern, we have appointed nodes (2,2), (3,4) and (4,3) as hot-

spot nodes with 0.3 probability of getting additional traffic. Figure 5.4 shows

average latency under this model for 7 × 7 mesh. It can be observed that due to

the fully adaptive nature and use of bypassing channels, TARRA scheme achieves

better average latency than other algorithms. iPAR also performs better than

FTCAR becuase of multiple resources (VCs) in X dimension unlike FTCAR. The

performance of FTCAR is better than FLEAR and FTR as it can more evenly

distributed traffic using additional paths.

5.3.3 Application Traffic

To evaluate the proposed method in a more realistic scenario, we select four appli-

cation suites office-automation, networking, automotive/industrial and consumer

from E3S benchmark suite [22]. This selection is intended to represent various ap-

plications used in the real-time embedded systems. Each task is allocated a core

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 109

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

 TARRA
 FTCAR
 FLEAR

 iPAR
FTR

Figure 5.4: Average latency under hotspot traffic

(processor) using minimum execution time scheduler that executes it in the fastest

time. Task mapping strongly depends on particular application traffic. We use

random mapping algorithm to compute the locations of cores within NoC to enable

unbiased (fair) comparisons among routing algorithms. We have executed rout-

ing algorithms repeatedly several times using random mapping and the average of

simulation results are used. Figure 5.5 shows average packet latency normalized

to FTR routing. TARRA provides lower latency than other methods across all

four application suites. We can observe that TARRA and iPAR schemes outper-

forms all others. TARRA and iPAR provide path diversity along with bypassing

channels and extra resources, respectively which make them better methods than

others. The performance of FTCAR is better than FLEAR and FTR schemes as it

provides higher path diversity than these schemes which is helpful in distributing

traffic evenly.

5.3.4 Power Analysis

We integrated an existing NoC power estimation tool ORION [63] with NoC sim-

ulator [57]. It estimates total power consumption of a router into various sub-

components: input buffers, router control logic (arbiter and crossbar) traversal

and channels. Figure 5.6 shows average power consumption under hotspot traffic.

It can be observed that FTR method consumes less power for all traffic load. Be-

cause, it generally routes packets through minimal paths. At lower traffic loads,

FTCAR performs better than FLEAR as it uses minimal paths due to small “hot

spots” creation at lower traffic load. However, performance of FTCAR is sim-

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 110

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

OfficeAuto Netwoking Consumer AutoIndustry

N
o

rm
a

li
ze

d
 A

v
er

a
g

e
L

a
te

n
cy

Real Traffic Benchmark (E3S)

 TARRA
 FTCAR
 FLEAR

iPAR
FTR

Figure 5.5: Performance for application traffic

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

10 20 30

A
v
er

a
g
e

p
o
w

er
-c

o
n

su
m

p
ti

o
n

/r
o
u

te
r

(i
n

 w
a

tt
)

Traffic load (in percentage)

 TARRA
 FTCAR
 FLEAR

iPAR
FTR

Figure 5.6: Power consumption under hotspot traffic

ilar to LEAR at higher traffic loads. TARRA and iPAR consume more power

than FTCAR because of complex routing function and reconfiguration hardware

(bypassing channels).

5.3.5 Area Analysis

We have implemented whole platform of each routing method to estimate the area

overhead. Synthesis is performed using Synopsys Design Compiler. We use UMC

90nm technology with an operating frequency of 1 GHz and supply voltage of

1 V. Table 5.1 shows the layout area for different routing methods. We observe

that TARRA and iPAR have larger area overheads than FTCAR due to bypassing

logic of TARRA and extra virtual channel used by iPAR. Because of comparatively

Chapter 5 FTCAR: Fault-tolerant and Congestion-Aware Routing 111

easier implementation, area overhead of FTR is lesser than any other method.

Table 5.1: Area Requirement

Algorithm Area(mm2)

TARRA 8.163

FTCAR 7.757

FLEAR 7.913

iPAR 8.132

FTR 6.963

5.4 Inferences

In this chapter, we have proposed a fault-tolerant and congestion-aware routing

algorithm (FTCAR) to mitigate congestion. It can tolerate all single-link failures.

It can also handle multiple-links failures depending upon the distance of faults.

FTCAR provides higher degree of adaptiveness by allowing cycles in channel de-

pendency graph. It can use minimal or non-minimal routes between source and

destination nodes depending on congestion and fault status. Deadlock freedom

of FTCAR is ensured using Duato’s theory. In the next chapter, we present a

reconfigurable and fault tolerant routing using LBDR.

Chapter 6

Reconfigurable Distributed

Fault-Tolerant Routing Algorithm

6.1 Overview

Faults can be tolerated by using many methods and majority of them are based

on fault tolerant routing algorithms. Routing algorithms can be implemented as

either table-based or algorithmic routing [20, 26]. In algorithmic routing mecha-

nism, an algorithm is executed using software or special hardware circuits (gen-

erally combinational logic) employing FSM to compute appropriate router port.

It is generally suitable for one topology and one routing method for that topol-

ogy. The algorithmic mechanism is often efficient in the terms of speed and area

than table-based routing [20]. Table-based mechanism is used to deal with regular

as well as irregular topologies. In this mechanism, each router keeps a table to

store one output port channel (deterministic routing) for each destination from

the current node in the network. The benefit of this mechanism is that it supports

any topology and any routing method, even fault-tolerant and congestion aware

routing algorithms. The table based methods cannot scale well since the table size

increases with the size of the network and may become impractical for large NoCs.

In the application-specific platforms where communication transactions (concurrent/non-

concurrent) among IP cores are known in advance, it is quite possible to use

compression techniques [82] to reduce size of tables instead of straight forward

table-based implementation. However, it is not a generic scenario in multi-core

systems.

112

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 113

In [102], a fault-tolerant routing technique is introduced that can tolerate only

single-node failures in mesh-based NoCs. It cannot handle link failures. Boppana

and Chalasani [8] proposed a deterministic fault-tolerant routing algorithm that

can tolerate faulty nodes and links. It uses additional VCs to avoid deadlocks, thus,

results in area overhead. Masoumeh Ebrahimi et al. [35] presented a minimal and

defect-resilient routing method to route packets in the presence of one faulty link

using two VCs. David Fick et al. [38] proposed a table based implementation of

the routing algorithm to handle faulty components. In this chapter, we present

a reconfigurable, deadlock free and cost-efficient fault-tolerant routing algorithm

without using VCs.

6.1.1 LBDR Overview

The new routing methodology LBDR [39] has the potential of handling practi-

cal irregular topologies derived from the initial 2D mesh without using routing

tables. It can realize almost all deadlock free routing techniques efficiently. Dead-

lock freedom of any routing technique can be ensured by enforcing some routing

restrictions in LBDR implementation. A routing restriction at a router prohibits

packet to take the turn at next hop router during its travel from source to des-

tination. For example, Fig.6.1 shows the routing restrictions corresponding to xy

routing algorithm for 3× 3 mesh.

Figure 6.1: Routing restrictions for xy Routing for 3× 3 Mesh

In LBDR, each router is designed to keep two different sets of bits.

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 114

1. Routing Bits: Routing bits stand for the routing restrictions which are forced

by underlying routing technique. These are used to afford one hop visibility

from the current router and restrict a packet to take few turns. For example,

a routing bit (Rxy) states that a packet departing from the x direction of

the current router can take a turn towards y direction on next router or not.

If Rxy bit is set, it means that a packet can take the specified turn on next

router.

2. Connectivity Bits: Connectivity bits stand for the connectivity of the current

router within the current network topology. Connectivity bits are designated

with Cx, to define the connectivity at the x output port of the router. If Cx

is set, it means that the current router has connectivity with the neighbor

in the x direction.

For 2D mesh topology, it uses total two routing bits and one connectivity bit for

each router output port as shown in Fig. 6.2.

Rnw Rne

Rwn

Rws

Cw

Ren

Res

Ce

Cn

Rsw RseCs

Figure 6.2: LBDR Router

These bits are first computed off-line for a particular combination of topology and

routing technique. Table 6.1 shows the routing and connectivity bits corresponding

to xy routing restrictions as shown in Fig. 6.1.

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 115

Table 6.1: Routing and connectivity bits for LBDR implementation of xy routing
for 3× 3 mesh

Router
ID

Rne Rnw Ren Res Rse Rsw Rwn Rws Cn Ce Cw Cs

0 1 1 1 1 0 1 1 1 0 1 0 1

1 1 1 1 1 0 0 1 1 0 1 1 1

2 1 1 1 1 1 0 1 1 0 0 1 1

3 0 1 1 1 0 1 1 1 1 1 0 1

4 0 0 1 1 0 0 1 1 1 1 1 1

5 1 0 1 1 1 0 1 1 1 0 1 1

6 0 1 1 1 1 1 1 1 1 1 0 0

7 0 0 1 1 1 1 1 1 1 1 1 0

8 1 0 1 1 1 1 1 1 1 0 1 0

6.1.2 Next Hop Computation Logic

This implementation selects North as next hop (nextHop), if current router has

connectivity in North (Cn=1) and if

1. destination is in the North direction, or

2. destination is North East quadrant and Rne=1, or

3. destination is North West quadrant and Rnw=1

6.2 Proposed Method

With the advances in the deep sub-micron technology of VLSI, the probability

of failing of nodes or links has also increased. Therefore topologies which are

derived from 2D mesh having some manufacturing defects or faults come into

existence. When a link fails in 2D mesh, the resulting irregular topology may not

have minimal paths between some pair of nodes. In this section, we present a

deadlock free, reconfigurable, fault-tolerant and deterministic routing algorithm

which is designed to handle one or multiple single link faults within 2D NoC mesh

topology. We modify and extend LBDR to implement our proposed method.

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 116

6.2.1 Link Failure Classification and Deadlock Freedom

We adopt xy routing (dimension order routing (DOR)) as the basis of our work.

It is deterministic and shortest-path routing, according to [18]. In this routing

technique, a packet is first forwarded into the x dimension. When it arrives at the

proper coordinate in the x dimension, it is forwarded to the y dimension. One of

the important attribute of xy routing is that it always picks a unique path between

any pair of source and destination.

NoC topologies which adopt DOR get freedom from deadlock by ordering chan-

nels in such a way that packets always travel along paths of strictly increasing (or

decreasing) ordered channel numbers [18]. In this method, all of the channels in

second (y) dimension are labeled with greater numbers than all of the channels in

the first (x) dimension. This strict ordering eliminates all cycles in the channel

dependency graph (CDG) and thus avoids deadlock. This ordering, however, con-

sequences in a singular path from source to destination and thus does not allow

any adaptiveness.

Figure 6.3: Types of link failure in the 2D mesh

We can classify link failures into six different categories depending upon their

locations in the mesh as shown in Fig. 6.3. According to Dally [18], Channel

Dependency Graph (CDG) can be used to ensure deadlock freedom in the case of

boundary faults (BF1, BF2, BF3 and BF4). CDG is a graph in which nodes and

edges are network channels and dependencies between network channels, respec-

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 117

tively. By constructing CDG for the boundary of BF1 as shown in Fig. 6.4a, we

can see that it does not have any cycle. Similarly, we can prove that boundaries

of faults BF2, BF3 and BF4 will not have any cycle in their CDGs. Thus, these

all boundaries are deadlock free.

However, when we construct CDG for boundary involved in IHF, it contains cycles

as shown in Fig. 6.4b. Hence, the boundary of IHF is not deadlock free. To break

cycles in IHF’s CDG, we have used new routing restrictions as shown in Fig.

6.4c. These restrictions prohibit a packet from taking EN and SW turns in IHF

boundary. Similarly, we can prove that the boundary of IVF with new routing

restrictions is also cycle free as shown in Fig. 6.4d, thus, deadlock free. We have

used xy and new routing restrictions in non-faulty and faulty regions, respectively,

to prevent deadlock in our proposed method.

Figure 6.4: Channel dependency graphs for (a) boundary of BF1 (b) boundary of
IHF (c) deadlock avoidance in IHF (d) deadlock avoidance in IVF (dashed line
shows restricted turn)

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 118

6.2.2 Reconfiguration of Routing Paths

In the absence of link failures, proposed method works as deterministic xy routing.

However, if a fault occurs, xy can not find paths between certain pairs of nodes.

In the case of single link failure, when boundary faults (BF1, BF2, BF3 and BF4)

occur, they do not affect the total available shortest paths within the current

irregular topology. However, in the case of inner faults (IHF and IVF), they may

affect a few available shortest paths as discussed below.

• If a packet arrives at a node having an IHF in the East direction (say node

4) and intends for a faulty channel, it always follows the available minimal

path.

• If a packet arrives at a node having an IHF in West direction (say node 5)

and intends for faulty channel, and

– If the destination is in the same row, it follows available minimal path.

– If the destination is in NW quadrant, it follows the available minimal

path.

– If the destination is in SW quadrant, it follows the non-minimal path.

• If a packet arrives at a node (say node 7) vertically below the node having

an IHFs in the East direction (say node 4) and

– If the destination is in same row or column, it follows the minimal path.

– If the destination is two hop away on the fault boundary and is in NW

quadrant (say node 5), it follows the non-minimal path.

– If the destination is three hop away on the fault boundary and is in

NW quadrant (say node 2), it follows available minimal path.

In all case other cases of IHF boundary, packet always follows minimal and same

path as in xy routing.

Table 6.2 and Table 6.3 show reconfigured paths in IHF and IVF boundaries,

respectively, according to new routing restrictions. Similarly, we can reconfigure

paths for remaining boundaries of faults (BF1, BF2, BF3 and BF4). We define

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 119

a reconfiguration method for all routers that are part of any boundary of fault.

This reconfiguration method is activated as soon as a built-in self-test (BIST)

unit detects a fault. We assume that faults are detected by BIST unit. After

fault detection, we change the routing and connectivity bits for concerned routers

according to above discussion.

6.2.3 Fault Tolerant Routing Implementation

We propose a deterministic fault-tolerant routing algorithm based on xy routing

for the 2D mesh. LBDR [39] implementation does not support irregular topologies

that contain non-minimal paths (previously minimal in regular 2D mesh). Rodrigo

et al [88] proposed a method LBDRdr that uses Deroute option in LBDR to

support such cases. Since Deroute option results in extra bits (8) per router, we

eliminate it and provide a new Misroute option without using additional bits.

Our routing implementation is divided into the following three steps.

1. Compute Relative Position of Destination Router: Using current router (Xc,

Yc) and destination router (Xd, Yd) coordinates, we compute relative position

of destination by invoking Algorithm 5. We use two variables (d1 and d2)

to encode it. If d1 is set to NULL and d2 is set to WEST , it means that

destination is in West direction. If d1 and d2 both are NULL, it means

destination is Local IP Core.

2. Invoke Reconfiguration Method on Occurrence of Fault: If BIST detects any

fault, we invoke reconfiguration method (described in Section 6.2.2) to reset

routing and connectivity bits.

3. Next Hop Computation: We compute next hop (nextHop) using LBDR.

If it is unable to compute next hop (nextHop is set to NULL), we use

Misroute option. Algorithm 6 describes Misroute option for IHF boundary.

It computes next hop direction only for routers (4, 5 and 7) depending on

their locations on IHF boundary and input direction (ip dir) of the incoming

packet. We explain nextHop computation with following two examples.

(a) If router 4 receives a packet coming from West direction (ip dir is

WEST) and targets for router 5, LBDR does not produce any next

C
h
ap

ter
6
R
econ

fi
gu

rab
le

D
istrib

u
ted

F
au

lt-T
oleran

t
R
ou

tin
g
A
lgorith

m
120

Table 6.2: Reconfigured paths for IHF boundary

Path
No

Old Path
According to xy

Routing in 2D
Regular Mesh

New Path
According to

Proposed Method
in Irregular 2D

Mesh

New Path in
Irregular 2D

Mesh

New Path in
Irregular 2D Mesh

compared to
Regular 2D Mesh

1 4 → 5 4 → 1 → 2 → 5 Minimal Non-minimal

2 5 → 4 5 → 2 → 1 → 4 Minimal Non-minimal

3 4 → 5 → 2 4 → 1 → 2 Minimal Minimal

4 5 → 4 → 1 5 → 2 → 1 Minimal Minimal

5 4 → 5 → 8 4 → 7 → 8 Minimal Minimal

6 5 → 4 → 7 5 → 2 → 1 → 4 → 7 Non-minimal Non-minimal

7 7 → 8 → 5 7 → 4 → 1 → 2 → 5 Non-minimal Non-minimal

8 7 → 8 → 5 → 2 7 → 4 → 1 → 2 Minimal Minimal

C
h
ap

ter
6
R
econ

fi
gu

rab
le

D
istrib

u
ted

F
au

lt-T
oleran

t
R
ou

tin
g
A
lgorith

m
121

Table 6.3: Reconfigured paths for IVF boundary

Path
No

Old Path
According to xy

Routing in 2D
Regular Mesh

New Path
According to

Proposed Method
in Irregular 2D

Mesh

New Path in
Irregular 2D

Mesh

New Path in
Irregular 2D Mesh

compared to
Regular 2D Mesh

1 4 → 1 4 → 3 → 0 → 1 Minimal Non-minimal

2 1 → 4 1 → 0 → 3 → 4 Minimal Non-minimal

3 2 → 1 → 4 2 → 1 → 0 → 3 → 4 Non-minimal Non-minimal

4 5 → 4 → 1 5 → 2 → 1 Minimal Minimal

5 0 → 1 → 4 0 → 3 → 4 Minimal Minimal

6 3 → 4 → 1 3 → 0 → 1 Minimal Minimal

7 3 → 4 → 5 → 2 3 → 0 → 1 → 2 Minimal Minimal

8 4 → 5 → 2 4 → 3 → 0 → 1 → 2 Non-minimal Non-minimal

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 122

Algorithm 5 Relative Position of Destination Router

(Xc, Yc) : Current router coordinates
(Xd, Yd) : Destination router coordinates
d1 and d2 : Output directions denoting relative position
△x = (Xd −Xc)
△y = (Yd − Yc)
if (△x > 0) then
if (△y > 0) then
d1 = SOUTH d2 = EAST
/* destination is in SE quadrant */

else if (△y < 0) then
d1 = NORTH d2 = EAST

else
d1 = NULL d2 = EAST
/* destination is in EAST direction */

end if
else if (△x < 0) then
if (△y > 0) then
d1 = SOUTH d2 = WEST

else if (△y < 0) then
d1 = NORTH d2 = WEST

else
d1 = NULL d2 = WEST

end if
else if (△x == 0) then
if (△y > 0) then
d1 = SOUTH d2 = NULL

else if (△y < 0) then
d1 = NORTH d2 = NULL

else
d1 = NULL d2 = NULL
/* destination is Local IP core */

end if
end if

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 123

hop (nextHop is set to NULL). Because there is no connectivity be-

tween router 4 and router 5 (Ce is 0). Thus, we compute North as next

hop using Misroute option

(b) If router 7 receives a packet coming from West direction (ip dir is

WEST) and targets for router 5, LBDR does not produce any next

hop (nextHop is set to NULL). Although router 7 is having connec-

tivity toward Ce and Cn, but routing restrictions Ren (North turn on

next router in East direction) and Rne (East turn on next router in

North direction) are set to zero by reconfiguration method. Thus, we

compute North as next hop using Misroute option because destination

router is NE quadrant.

Since Misroute option for IHF always redirects a packet in North direction

only, it does not require additional bits. Similarly, we can compute West as

next hop direction for routers (1, 2 and 4) of IVF boundary using Misroute

option.

6.3 Results Analysis

In order to perform simulation work, we extended [57], a cycle-accurate SystemC

based NoC simulator. We have evaluated proposed routing method (DRFT) for

both real (benchmark suite E3S [22]) and synthetic (uniform and hotspot) traffic

profiles. We have also implemented other routing methods FTR [61], ZoneDefense

(ZDF) [42] and FTCAR [66] to evaluate DRFT. For all experiments of simulation,

we consider 7 × 7 mesh topology. The traffic sources are configured to generate

packets of size 8 flits. The input-channel buffer size for each virtual channel is

set to 6 flits. The warm-up period for the simulator is set to 15, 000 clock cycles

and afterward; the average performance is measured over another 85, 000 cycles.

The traffic is generated over first 75, 000 cycles. Congestion threshold is set to

66% of total buffer size of the neighboring node. As communication performance

parameter, we consider latency which is defined as the time difference (in clock

cycles) between header flit injection from source router and tail flit reception at

the destination router.

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 124

Algorithm 6 : Next Hop Computation on IHF Boundary using Misroute
Option

Input: ip dir, d1, d2
Output: nextHop
Procedure:
if (nextHop == NULL) then
/* Compute next hop for Node 4 of IHF Boundary */
if (ip dir == WEST ‖ ip dir == SOUTH) then
if (d1 == NULL && d2 == WEST) then
nextHop = NORTH

end if
end if
/* Compute next hop for Node 5 of IHF Boundary */
if (ip dir == EAST) then
if (d2 == WEST) then
if (d1 == NULL ‖ d1 == SOUTH) then
nextHop = NORTH

end if
end if

end if
/* Compute next hop for Node 7 of IHF Boundary */
if (ip dir == WEST) then
if (d1 == NORTH && d2 == EAST) then
nextHop = NORTH

end if
end if

end if

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

ZDF
 FTCAR

DRFT
FTR

Figure 6.5: Average latency under uniform traffic

6.3.1 Uniform Traffic

Under this traffic pattern, each node sends several packets to every other node

in the network with the same probability. The load-latency graph for uniform

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 125

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

A
v

er
a

g
e

la
te

n
cy

 (
in

 c
lo

ck
 c

y
cl

es
)

Traffic load (in percentage)

ZDF
 FTCAR

DRFT
FTR

Figure 6.6: Average latency under hotspot traffic

traffic model is presented in Fig. 6.5. At low traffic load, all algorithms exhibit

similar pattern in average latency. The performance degrades as the traffic load

is increased. DRFT outperforms all other routing methods. For uniform traffic,

DRFT evenly distributes packets throughout the network in the long-term be-

cause it routes packets in dimension order (first in X dimension and then in Y

dimension). However, at the fault boundary, it uses non-minimal routes unlike xy

routing. When there is no fault in the network, DRFT is equivalent to xy rout-

ing. The performance of FTR is also similar to the DRFT as both schemes are

proposed on xy routing and uses reconfiguration of paths in the case of faults.

6.3.2 Hotspot Traffic

Under this traffic pattern, we have appointed nodes (2,2), (3,4) and (4,3) as hot-

spot nodes with 0.3 probability of getting additional traffic. Figure 6.6 shows

average latency under this model for 7 × 7 mesh. Adaptive algorithms (FTCAR

and ZDF) can direct packets to different output channels which are destined for the

same destination. It can also be observed that due to the fully adaptive nature,

FTCAR scheme outperforms other algorithms. The performance of FTCAR is

better than FTR and ZDF schemes as it can more evenly distributed traffic using

additional paths than these algorithms. We observe that DRFT and FTR has

a higher average latency than other algorithms. Because, when multiple traffic

flows are oriented towards a small subset of “hot spot” nodes, these non-adaptive

routers will be compelled to forward them towards the same output direction, thus

saturating the virtual channel queues.

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 126

6.3.3 Application Traffic

To evaluate the proposed method in a more realistic scenario, we select four appli-

cation suites office-automation, networking, automotive/industrial and consumer

from E3S benchmark suite [22]. This selection is intended to represent various ap-

plications used in the real-time embedded systems. Each task is allocated a core

(processor) using minimum execution time scheduler that executes it in the fastest

time. Task mapping strongly depends on particular application traffic. Figure 6.7

shows average packet latency normalized to FTR routing. FTCAR provides lower

latency than other methods across all four application suites. The performance

of FTCAR is better than FTR, ZDF and DRFT schemes as it provides higher

path diversity than these schemes which is helpful in distributing traffic evenly.

However, performance of DRFT and FTR is almost same as both are based on xy

routing and use path reconfiguration logic when faults occur.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

OfficeAuto Netwoking Consumer AutoIndustry

N
o
rm

a
li

ze
d

 A
v
er

a
g
e

L
a
te

n
cy

Real Traffic Benchmark (E3S)

ZDF
 FTCAR

DFTR
FTR

Figure 6.7: Performance for application traffic

6.3.4 Power Analysis

We integrated an existing NoC power estimation tool ORION [63] with NoC sim-

ulator [57]. It estimates total power consumption of a router into various sub-

components: input buffers, router control logic (arbiter and crossbar) traversal

and channels. Figure 6.8 shows average power consumption under hotspot traf-

fic. It can be observed that DRFT and FTR methods consume less power for all

traffic load. Because, it generally routes packets through minimal paths and their

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 127

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10 20 30

A
v

er
a

g
e

p
o

w
er

-c
o

n
su

m
p

ti
o

n
/r

o
u

te
r

(i
n

 w
a

tt
)

Traffic load (in percentage)

ZDF
 FTCAR

DRFT
FTR

Figure 6.8: Power consumption under hotspot traffic

routing function is also deterministic. FTCAR consumes highest power because

of fully adaptive nature and using non-minimal paths.

6.3.5 Area Analysis

We have implemented whole platform of each routing method to estimate the area

overhead. All methods are synthesized using Synopsys Design Compiler (UMC

90nm technology) with an operating frequency of 1 GHz and supply voltage of

1 V. Table 6.4 shows the layout area for different routing methods. Because of

comparatively easier implementation, area overhead of DFTR is lesser than any

other method. We observe that FTCAR and ZDF have larger area overheads than

DRFT due to complex routing logic.

Table 6.4: Area Requirement

Algorithm Area(mm2)

ZDF 7.234

FTCAR 7.757

DRFT 6.893

FTR 6.963

Chapter 6 Reconfigurable Distributed Fault-Tolerant Routing Algorithm 128

6.4 Inferences

Table based implementation of distributed routing can be costlier in terms of

silicon area and power consumption as compared to combinational logic-based

implementation for large irregular NoCs. In this chapter, we have proposed an

implementation of cost-efficient, reconfigurable and fault tolerant xy routing al-

gorithm for large irregular 2D mesh without routing tables. With the help of

routing and connectivity bits, we can omit table-based implementation. Our al-

gorithm is designed to tolerate one or multiple single link faults within the 2D

mesh. Algorithm uses a few non-minimal paths (reconfigured paths) which im-

prove reliability and fault tolerance of NoC communication. We have used xy and

new routing restrictions in non-faulty and faulty regions, respectively, to achieve

deadlock freedom without overhead. In future, we would like to extend the cur-

rent LBDR implementation of DRFT so that it can handle multiple faults as well.

However, current implementation of DRFT can handle single link fault.

Chapter 7

Conclusions and Future

Directions

The motivation behind the use of adaptive routing methods in NoCs has two main

purposes: (i) to divert the packets from the congested (“hot-spot”) regions, and

(ii) to bypass the faulty links and/or nodes of the network. The degree of adap-

tiveness has a major impact on the performance of an adaptive routing method.

At the same time, minimality of a routing algorithm also affects the overall NoC

performance. Minimal routing scheme provides the shortest paths between the

source and destination. However, it would be unwise to neglect the promising

performance achievable by non-minimal routing. The non-minimal route can be

a good (or the only) choice if the minimal routes are congested (or faulty). The

degree of adaptiveness provided by the minimal routing algorithms is also low,

even if they accurately detect the state of congestion.

This research work presents a novel turn model based routing methods that pro-

vide high degree of adaptiveness for 2D mesh for both minimal and non-minimal

routing. We have also shown that with careful design and relaxation of some

routing turns make the proposed algorithm fault tolerant as well. The result is

that the proposed method reduces restrictions on the routing turns significantly

and hence can provide path diversity using additional routes (both minimal and

non-minimal). This increase path diversity can be used avoid hotspot regions of

the network.

The main conclusions of our research work are summarized as follows:

129

Chapter 7 Conclusions and Future Directions 130

• We have presented a novel turn model for highly adaptive routing for 2D

mesh topology. The proposed method is implemented using the double-y

network. It uses one and two virtual channels along X and Y dimensions,

respectively. The deadlock freedom is achieved using Duato’s well-known

theorem.

• We have extended the proposed 2D turn model for 3D as well. For 3D,

it utilizes one, two and two virtual channels in X , Y , and Z dimensions,

respectively.

• Fault tolerance is another aspect of any routing algorithm. We have pre-

sented a fault tolerant and highly adaptive routing method for the 2D mesh.

The proposed turn model reduces the number of restrictions on routing turns,

hence able to provide path diversity through additional minimal and non-

minimal routes between source and destination. The proposed algorithm can

handle all single link faults within the 2D mesh. It can also handle multiple

link faults if fault’s boundary do not overlap with each other.

• We have proposed a cost-effective fault-tolerant routing algorithm for irreg-

ular 2D mesh without the use of routing tables. We use one hop visibility of

Logic Based Distributed Routing (LBDR) to eliminate routing tables. This

algorithm handles one or multiple single link faults within the 2D mesh and

uses reconfigured paths (minimal and/or non-minimal) if links fail. We use

turn model based approach to avoid deadlocks. Since our method does not

require virtual channels to achieve deadlock freedom, it remains area and

power efficient.

In continuation of the above contributions, some of our future research plans are

as follows:

• The performance of any adaptive routing scheme depends on two functions:

routes computation function and selection function. Working of routes com-

putation function is tightly coupled with selection function of the algorithm.

Thus, both affect the overall performance of the network. This thesis has

proposed efficient route computation function. However, the proposed algo-

rithms also utilize congestion-aware channel selection policy using local con-

gestion scenario. But, for a large mesh network, local congestion-awareness

sometimes cannot detect congestion status of the network precisely. The

Chapter 7 Conclusions and Future Directions 131

global congestion-aware selection policy can improve the performance of the

routing scheme significantly, specially for large mesh networks. Thus, the

future work includes a development of global congestion-aware selection poli-

cies for improving overall performance.

• Our proposed fault tolerant routing is capable of handling all single link faults

within the 2D mesh. Handling of double link faults is another objective for

our future work. The proposed fault-tolerant routing algorithm can handle

link faults, thus we plan to extend it for node failures as well. Another aspect

that can be explored is the 3D extension of fault-tolerant routing.

List of Contributions

A. Journal Publications

[J-1] Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Masoud Daneshtalab,

Mark Zwolinski and Seok-Bum Ko, “Improved Adaptive Routing for Networks-

on-Chip”, in Electronics Letters, vol. 51, no. 25, pp. 2092-2094, 12-10-2015.

B. Conference Publications

[C-1] Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Masoud Daneshtalab

and Mark Zwolinski, “Fault tolerant and Highly Adaptive Routing for 2D

NoCs”, in Proceedings of 27th IEEE International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Amsterdam,

Netherlands, Oct-2014.

[C-2] Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Masoud Daneshtalab,

Mosoumeh Ebrahimi and Mark Zwolinski, “A Non-minimal Turn Model for

Highly Adaptive Routing in 2D NoCs”, in Proceedings of 22nd IFIP/IEEE

International Conference on Very Large Scale Integration (VLSI-SoC), Playa

Del Carmen, Mexico, Oct-2014.

[C-3] Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Masoud Daneshtalab,

Seok-Bum Ko and Mark Zwolinski, “A Novel Non-minimal/minimal Turn

Model for Highly Adaptive Routing in 2D NoCs”, in Proceedings of 8th

IEEE/ACM International Symposium on NoCs (NOCS), Ferrara, Italy, Sep-

2014.

[C-4] Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Masoud Daneshtalab,

Seok-Bum Ko and Mark Zwolinski, “Highly Adaptive and Congestion-aware

Routing for 3D NoCs”,in Proceedings of 24th ACM International Grate Lakes

Symposium on VLSI (GLSVLSI), Houston, USA, May-2014.

132

Chapter 7 Conclusions and Future Directions 133

[C-5] Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Seok-Bum Ko and Mark

Zwolinski, “CARM:Congestion Adaptive Routing Method for On Chip Net-

works”,in Proceedings of 27th IEEE International Conference on VLSI Design

(VLSI-D), Mumbai, India, Jan-2014.

[C-6] Manoj Kumar, Pankaj, Vijay Laxmi, Manoj Singh Gaur and Seok-Bum

Ko, “Reconfigurable Distributed Fault Tolerant Routing Algorithm for On-

Chip Networks”, in Proceedings of 26th IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),

New York, USA, Sep-2013.

[C-7] Niyati Gupta, Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur and Mark

Zwolinski, “σLBDR: Congestion-aware Logic Based Distributed Routing for

2D NoCs ”, in Proceedings of 19th IEEE International Symposium on VLSI

Design and Test (VDAT), Ahmadabad, India, June 2015.

[C-8] Niyati Gupta, Manoj Kumar, Vijay Laxmi, Manoj Singh Gaur, Ma-

soud Daneshtalab and Masoumeh Ebrahimi, “Improved Route Selection Ap-

proaches using Q-learning framework for 2D NoCs”, in Proceedings of 3rd

ACM International Workshop on Many Core Embedded Systems (MES),

June 2015.

Bibliography

[1] J. D. Allen, P. T. Gaughan, D. E. Schimmel, and S. Yalamanchili. Ari-

adne—an adaptive router for fault-tolerant multicomputers. ACM

SIGARCH Computer Architecture News, 22(2):278–288, Apr. 1994.

[2] J. Andrews and N. Baker. Xbox 360 system architecture. IEEE Micro,

26(2):25–37, March 2006.

[3] T. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde,

and R. Lauwereins. Topology adaptive network-on-chip design and imple-

mentation. IEE Proceedings-Computers and Digital Techniques, 152(4):467–

472, 2005.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,

M. Reif, L. Bao, J. Brown, et al. Tile64-processor: A 64-core soc with mesh

interconnect. In 2008 IEEE International Solid-State Circuits Conference-

Digest of Technical Papers, pages 88–598. IEEE, 2008.

[5] L. Benini and G. De Micheli. Networks on chip: a new paradigm for systems

on chip design. In Design, Automation and Test in Europe Conference and

Exhibition, Proceedings, pages 418–419. IEEE, 2002.

[6] T. Bjerregaard and J. Sparso. Implementation of guaranteed services in the

mango clockless network-on-chip. IEE Proceedings-Computers and Digital

Techniques, 153(4):217–229, 2006.

[7] F. Bodin, D. Windheiser, W. Jalby, D. Atapattu, M. Lee, and D. Gannon.

Performance evaluation and prediction for parallel algorithms on the bbn

gp1000. In Proceedings of the 4th International Conference on Supercomput-

ing, ICS ’90, pages 401–413. ACM, 1990.

134

BIBLIOGRAPHY 135

[8] R. V. Boppana and S. Chalasani. Fault-tolerant wormhole routing algo-

rithms for mesh networks. IEEE Transactions on Computers, 44(7):848–864,

1995.

[9] Y. M. Boura and C. R. Das. Efficient fully adaptive wormhole routing in

n-dimensional meshes. In Distributed computing systems, 1994., proceedings

of the 14th international conference on, pages 589–596. IEEE, 1994.

[10] F. Chaix, D. Avresky, N.-E. Zergainoh, and M. Nicolaidis. A fault-tolerant

deadlock-free adaptive routing for on chip interconnects. In Proceedings of

14th Design, Automation Test in Europe Conference Exhibition, pages 1–4,

2011.

[11] E. J. Chang, H. K. Hsin, S. Y. Lin, and A. Y. Wu. Path-congestion-aware

adaptive routing with a contention prediction scheme for network-on-chip

systems. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 33(1):113–126, Jan 2014.

[12] A. A. Chien and J. H. Kim. Planar-adaptive routing: low-cost adaptive

networks for multiprocessors. Journal of the ACM, 42(1):91–123, 1995.

[13] G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE Transac-

tions on Parallel and Distributed Systems, 11(7):729–738, 2000.

[14] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, and L. Pier-

alisi. Design of Cost-Efficient Interconnect Processing Units: Spidergon

STNoC. CRC Press, Inc., 1st edition, 2008.

[15] N. Dahir, T. Mak, A. Yakovlev, et al. Highly adaptive and deadlock-free

routing for three-dimensional networks-on-chip. IET Computers & Digital

Techniques, 7(6):255–263, 2013.

[16] W. J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel

and Distributed Systems, 3(2):194–205, 1992.

[17] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Transactions on Computers, 100(5):547–

553, 1987.

[18] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Transactions on Computers, 100(5):547–

553, 1987.

BIBLIOGRAPHY 136

[19] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection

networks. In Design Automation Conference, 2001. Proceedings, pages 684–

689. IEEE, 2001.

[20] W. J. Dally and B. P. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2004.

[21] B. V. Dao, J. Duato, and S. Yalamanchili. Configurable flow control

mechanisms for fault-tolerant routing. SIGARCH Comput. Archit. News,

23(2):220–229, 1995.

[22] R. Dick. E3S: Embedded system synthesis benchmarks suite.

http://ziyang.eecs.umich.edu/∼dickrp/e3s/.

[23] J. Duato. A new theory of deadlock-free adaptive routing in wormhole net-

works. IEEE Transactions on Parallel and Distributed Systems, 4(12):1320–

1331, 1993.

[24] J. Duato. A necessary and sufficient condition for deadlock-free adaptive

routing in wormhole networks. IEEE Transactions on Parallel and Dis-

tributed Systems, 6(10):1055–1067, 1995.

[25] J. Duato, B. Dao, P. T. Gaughan, and S. Yalamanchili. Scouting: Fully

adaptive, deadlock-free routing in faulty pipelined networks. In Parallel

and Distributed Systems, 1994. International Conference on, pages 608–613.

IEEE, 1994.

[26] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks - An Engi-

neering Approach. Morgan Kaufmann, 2003.

[27] F. Dubois, A. Sheibanyrad, F. Ptrot, and M. Bahmani. Elevator-first: A

deadlock-free distributed routing algorithm for vertically partially connected

3d-nocs. IEEE Transactions on Computers, 62(3):609–615, March 2013.

[28] M. Ebrahimi. Fully adaptive routing algorithms and region-based approaches

for two-dimensional and three-dimensional networks-on-chip. IET Comput-

ers & Digital Techniques, 7(6):264–273, 2013.

[29] M. Ebrahimi, X. Chang, M. Daneshtalab, J. Plosila, P. Liljeberg, and H. Ten-

hunen. Dyxyz: Fully adaptive routing algorithm for 3d nocs. In 2013 21st

Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing, pages 499–503. IEEE, 2013.

BIBLIOGRAPHY 137

[30] M. Ebrahimi and M. Daneshtalab. Learning-based routing algorithms for on-

chip networks. In Routing Algorithms in Networks-on-Chip, pages 105–125.

Springer, 2014.

[31] M. Ebrahimi and M. Daneshtalab. A light-weight fault-tolerant routing

algorithm tolerating faulty links and routers. Computing, 97(6):631–648,

2015.

[32] M. Ebrahimi, M. Daneshtalab, F. Farahnakian, J. Plosila, P. Liljeberg,

M. Palesi, and H. Tenhunen. Haraq: congestion-aware learning model for

highly adaptive routing algorithm in on-chip networks. In Networks on Chip

(NoCS), 2012 Sixth IEEE/ACM International Symposium on, pages 19–26.

IEEE, 2012.

[33] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen.

Catra-congestion aware trapezoid-based routing algorithm for on-chip net-

works. In 2012 Design, Automation & Test in Europe Conference & Exhibi-

tion (DATE), pages 320–325. IEEE, 2012.

[34] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen.

Lear–a low-weight and highly adaptive routing method for distributing con-

gestions in on-chip networks. In 2012 20th Euromicro International Confer-

ence on Parallel, Distributed and Network-based Processing, pages 520–524.

IEEE, 2012.

[35] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour. MD: Minimal

path-based fault-tolerant routing in on-chip networks. In Design Automation

Conference (ASP-DAC), 2013 18th Asia and South Pacific, pages 35–40.

IEEE, 2013.

[36] M. Ebrahimi, M. Daneshtalab, J. Plosila, and H. Tenhunen. Mafa: adap-

tive fault-tolerant routing algorithm for networks-on-chip. In Digital System

Design (DSD), 2012 15th Euromicro Conference on, pages 201–207. IEEE,

2012.

[37] B. S. Feero and P. P. Pande. Networks-on-chip in a three-dimensional en-

vironment: A performance evaluation. IEEE Transactions on Computers,

58(1):32–45, Jan 2009.

[38] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw.

A highly resilient routing algorithm for fault-tolerant nocs. In Proceedings

BIBLIOGRAPHY 138

of the Conference on Design, Automation and Test in Europe, pages 21–26,

2009.

[39] J. Flich and J. Duato. Logic-based distributed routing for nocs. IEEE

Computer Architecture Letters, 7(1):13–16, 2008.

[40] J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato,

M. Koibuchi, T. Rokicki, and J. C. Sancho. A survey and evaluation of

topology-agnostic deterministic routing algorithms. IEEE Transactions on

Parallel and Distributed Systems, 23(3):405–425, 2012.

[41] S. Foroutan, A. Sheibanyrad, and F. Ptrot. Assignment of vertical-links

to routers in vertically-partially-connected 3-d-nocs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 33(8):1208–

1218, Aug 2014.

[42] B. Fu, Y. Han, H. Li, and X. Li. Zonedefense: A fault-tolerant routing for 2-

d meshes without virtual channels. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 22(1):113–126, 2014.

[43] B. Fu, Y. Han, J. Ma, H. Li, and X. Li. An abacus turn model for time/space-

efficient reconfigurable routing. In Computer Architecture (ISCA), 2011 38th

Annual International Symposium on, pages 259–270. IEEE, 2011.

[44] P. T. Gaughan and S. Yalamanchili. A family of fault-tolerant routing pro-

tocols for direct multiprocessor networks. IEEE Transactions on Parallel

and Distributed Systems, 6(5):482–497, 1995.

[45] C. J. Glass and L. M. Ni. Maximally fully adaptive routing in 2d meshes. In

International Conference on Parallel Processing, volume I, pages 101–104,

1992.

[46] C. J. Glass and L. M. Ni. The turn model for adaptive routing. ACM

SIGARCH Computer Architecture News, 20(2):278–287, 1992.

[47] P. Gratz, B. Grot, and S. W. Keckler. Regional congestion awareness for load

balance in networks-on-chip. In 2008 IEEE 14th International Symposium

on High Performance Computer Architecture, pages 203–214. IEEE, 2008.

[48] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W.

Keckler, and D. Burger. On-chip interconnection networks of the trips chip.

IEEE Micro, 27(5):41–50, 2007.

BIBLIOGRAPHY 139

[49] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-

switched interconnections. In Proceedings of the conference on Design, au-

tomation and test in Europe, DATE ’00, pages 250–256. ACM, 2000.

[50] J. R. Gurd, C. C. Kirkham, and I. Watson. The manchester prototype

dataflow computer. Communications of the ACM, 28(1):34–52, 1985.

[51] J. R. Herring, C. B. Stunkel, and R. Sivaram. Multicasting using a wormhole

routing switching element, Apr. 1 2003. US Patent 6,542,502.

[52] C. Hilton and B. Nelson. Pnoc: a flexible circuit-switched noc for fpga-based

systems. IEE Proceedings-Computers and Digital Techniques, 153(3):181–

188, 2006.

[53] H. K. Hsin, E. J. Chang, C. A. Lin, and A. Y. . Wu. Ant colony optimization-

based fault-aware routing in mesh-based network-on-chip systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

33(11):1693–1705, Nov 2014.

[54] H. K. Hsin, E. J. Chang, K. Y. Su, and A. Y. . Wu. Ant colony optimization-

based adaptive network-on-chip routing framework using network informa-

tion region. IEEE Transactions on Computers, 64(8):2119–2131, Aug 2015.

[55] J. Hu and R. Marculescu. Dyad: smart routing for networks-on-chip. In

Proceedings of the 41st annual Design Automation Conference, pages 260–

263. ACM, 2004.

[56] L. Huang, J. Wang, M. Ebrahimi, M. Daneshtalab, X. Zhang, G. Li, and

A. Jantsch. Non-blocking testing for network-on-chip. IEEE Transactions

on Computers, 65(3):679–692, March 2016.

[57] L. Jain, B. Al-Hashimi, M. S. Gaur, V. Laxmi, and A. Narayanan.

Nirgam: A systemc based cycle accurate noc simulator, 2010.

http://www.nirgam.ecs.soton.ac.uk/.

[58] C. Jesshope and P. Miller. High performance communications in processor

networks. In Computer Architecture, 1989. The 16th Annual International

Symposium on, pages 150–157, May 1989.

[59] C. R. Jesshope, P. Miller, and J. T. Yantchev. High performance commu-

nications in processor networks. ACM SIGARCH Computer Architecture

News, 17(3):150–157, 1989.

BIBLIOGRAPHY 140

[60] C. R. Jesshope, P. Miller, and J. T. Yantchev. High performance commu-

nications in processor networks. ACM SIGARCH Computer Architecture

News, 17(3):150–157, Apr. 1989.

[61] S. Y. Jiang, G. Luo, Y. Liu, S. S. Jiang, and X. T. Li. Fault-tolerant routing

algorithm simulation and hardware verification of noc. IEEE Transactions

on Applied Superconductivity, 24(5):1–5, Oct 2014.

[62] J. Jose and M. Mutyam. Implementation and analysis of history-based out-

put channel selection strategies for adaptive routers in mesh nocs. ACM

Transactions on Design Automation of Electronic Systems (TODAES),

19(4):35, 2014.

[63] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: a fast and

accurate noc power and area model for early-stage design space exploration.

In Proceedings of the conference on Design, Automation and Test in Europe,

pages 423–428. European Design and Automation Association, 2009.

[64] M. KISTLER, M. PERRONE, and F. PETRINI. Cell multiprocessor com-

munication network: Built for speed. IEEE Micro, 26(3), 2006.

[65] S. Konstantinidou and L. Snyder. Chaos router: Architecture and per-

formance. In Proceedings of the 18th Annual International Symposium on

Computer Architecture, ISCA ’91, pages 212–221. ACM, 1991.

[66] M. Kumar, Pankaj, V. Laxmi, M. Gaur, and S.-B. Ko. Reconfigurable dis-

tributed fault tolerant routing algorithm for on-chip networks. In Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2013 IEEE

International Symposium on, pages 290–295, Oct 2013.

[67] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg,

K. Tiensyrja, and A. Hemani. A network on chip architecture and design

methodology. In VLSI, 2002. Proceedings. IEEE Computer Society Annual

Symposium on, pages 105–112, 2002.

[68] M. Li, Q.-A. Zeng, and W.-B. Jone. Dyxy: a proximity congestion-aware

deadlock-free dynamic routing method for network on chip. In Proceedings

of the 43rd annual Design Automation Conference, pages 849–852. ACM,

2006.

BIBLIOGRAPHY 141

[69] D. H. Linder and J. C. Harden. An adaptive and fault tolerant worm-

hole routing strategy for k-ary n-cubes. IEEE Transactions on Computers,

40(1):2–12, 1991.

[70] P. Lotfi-Kamran, M. Daneshtalab, C. Lucas, and Z. Navabi. Barp-a dynamic

routing protocol for balanced distribution of traffic in nocs. In Proceedings of

the conference on Design, automation and test in Europe, pages 1408–1413.

ACM, 2008.

[71] P. Lotfi-Kamran, A.-M. Rahmani, M. Daneshtalab, A. Afzali-Kusha, and

Z. Navabi. Edxy–a low cost congestion-aware routing algorithm for network-

on-chips. Journal of Systems Architecture, 56(7):256–264, 2010.

[72] S. Ma, N. Jerger, and Z. Wang. Dbar: An efficient routing algorithm to

support multiple concurrent applications in network-on-chip. In Proceedings

of 38th International Symposium on Computer Architecture, pages 413–424,

2011.

[73] S. Ma, N. E. Jerger, Z. Wang, M. Lai, and L. Huang. Holistic routing algo-

rithm design to support workload consolidation in nocs. IEEE Transactions

on Computers, 63(3):529–542, March 2014.

[74] P. Martin. Design of a virtual component neutral network-on-chip trans-

action layer. In Proceedings of the Conference on Design, Automation and

Test in Europe - Volume 1, DATE ’05, pages 336–337. IEEE, 2005.

[75] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie. Segment-based

routing: an efficient fault-tolerant routing algorithm for meshes and tori.

In Proceedings 20th IEEE International Parallel & Distributed Processing

Symposium, pages 10–pp. IEEE, 2006.

[76] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth

using looped containers in temporally disjoint networks within the nostrum

network on chip. In Design, Automation and Test in Europe Conference and

Exhibition, 2004. Proceedings, volume 2, pages 890–895. IEEE, 2004.

[77] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The alpha

21364 network architecture. IEEE Micro, 22(1):26–35, Jan 2002.

[78] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in

direct networks. Computer, 26(2):62–76, 1993.

BIBLIOGRAPHY 142

[79] R. Nikhil et al. Executing a program on the mit tagged-token dataflow

architecture. IEEE Transactions on Computers, 39(3):300–318, 1990.

[80] S. F. Nugent. The ipsc/2 direct-connect communications technology. In

Proceedings of the Third Conference on Hypercube Concurrent Computers

and Applications: Architecture, Software, Computer Systems, and General

Issues - Volume 1, C3P, pages 51–60. ACM, 1988.

[81] G. Oxman and S. Weiss. An noc simulator that supports deflection routing,

gpu/cpu integration, and co-simulation. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 35(10):1667–1680, Oct

2016.

[82] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. Application specific

routing algorithms for networks on chip. IEEE Transactions on Parallel and

Distributed Systems, 20(3):316–330, 2009.

[83] I. M. Panades, A. Greiner, A. Sheibanyrad, and G. STMicroelcctronics. A

low cost network-on-chip with guaranteed service well suited to the gals

approach. In Nano-Net, pages 1–5, 2006.

[84] V. Pavlidis and E. Friedman. 3-d topologies for networks-on-chip. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 15(10):1081–

1090, Oct 2007.

[85] L.-S. Peh and N. E. Jerger. On-Chip Networks. Morgan and Claypool

Publishers, 1st edition, 2009.

[86] R. Ramanujam and B. Lin. Destination-based adaptive routing on 2d mesh

networks. In Proceedings of 6th ACM/IEEE Symposium on Architectures

for Networking and Communications Systems, pages 1–12, 2010.

[87] E. Rijpkema, K. Goossens, A. Rădulescu, J. Dielissen, J. van Meerber-

gen, P. Wielage, and E. Waterlander. Trade-offs in the design of a router

with both guaranteed and best-effort services for networks on chip. IEE

Proceedings-Computers and Digital Techniques, 150(5):294–302, 2003.

[88] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho,

F. Silla, and J. Duato. Cost-efficient on-chip routing implementations for

cmp and mpsoc systems. IEEE transactions on computer-aided design of

integrated circuits and systems, 30(4):534–547, 2011.

BIBLIOGRAPHY 143

[89] I. Saastamoinen, D. Sigüenza-Tortosa, and J. Nurmi. Interconnect ip node

for future system-on-chip designs. In Electronic Design, Test and Applica-

tions, 2002. Proceedings. The First IEEE International Workshop on, pages

116–120. IEEE, 2002.

[90] R. Salamat, M. Khayambashi, M. Ebrahimi, and N. Bagherzadeh. A resilient

routing algorithm with formal reliability analysis for partially connected 3d-

nocs. IEEE Transactions on Computers, PP(99):1–1, 2016.

[91] J. C. Sancho, A. Robles, and J. Duato. An effective methodology to improve

the performance of the up*/down* routing algorithm. IEEE Transactions

on Parallel and Distributed Systems, 15(8):740–754, 2004.

[92] L. Schwiebert and D. Jayasimha. Optimal fully adaptive minimal wormhole

routing for meshes. Journal of Parallel and Distributed Computing, 27(1):56–

70, 1995.

[93] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and

A. Sangiovanni-Vencentelli. Addressing the system-on-a-chip interconnect

woes through communication-based design. In Proceedings of the 38th An-

nual Design Automation Conference, DAC ’01, pages 667–672. ACM, 2001.

[94] D. Sigüenza-Tortosa, T. Ahonen, and J. Nurmi. Issues in the development of

a practical noc: the proteo concept. Integration, the VLSI Journal, 38(1):95–

105, 2004.

[95] C. Su and K. Shin. Adaptive deadlock-free routing in multicomputers using

one extra channel. In Parallel Processing, 1993. ICPP 1993. International

Conference on, volume 1, pages 175–182, 1993.

[96] M. Tang, X. Lin, and M. Palesi. Routing pressure: A channel-related and

traffic-aware metric of routing algorithm. IEEE Transactions on Parallel

and Distributed Systems, 26(3):891–901, March 2015.

[97] J. Upadhyay, V. Varavithya, and P. Mohapatra. A traffic-balanced adaptive

wormhole routing scheme for two-dimensional meshes. IEEE Transactions

on Computers, 46(2):190–197, 1997.

[98] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,

A. Singh, T. Jacob, S. Jain, et al. An 80-tile sub-100-w teraflops processor

in 65-nm cmos. IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

BIBLIOGRAPHY 144

[99] D. Wingard. Micronetwork-based integration for socs: 673. In Proceedings

of the 38th Annual Design Automation Conference, DAC ’01, pages 677–.

ACM, 2001.

[100] D. Xiang, Z. Yu, and J. Wu. Deadlock-free fully adaptive routing in irregular

networks without virtual channels. In 2013 12th IEEE International Con-

ference on Trust, Security and Privacy in Computing and Communications,

pages 983–990. IEEE, 2013.

[101] D. Xiang, Y. Zhang, and Y. Pan. Practical deadlock-free fault-tolerant rout-

ing in meshes based on the planar network fault model. IEEE Transactions

on Computers, 58(5):620–633, 2009.

[102] Z. Zhang, A. Greiner, and S. Taktak. A reconfigurable routing algorithm for

a fault-tolerant 2d-mesh network-on-chip. In Proceedings of the 45th annual

Design Automation Conference, pages 441–446. ACM, 2008.

