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ABSTRACT 

Existing distribution systems are moving toward smart distribution systems to achieve 

larger socio economic and other non-tangible benefits such as lesser carbon foot prints, 

better asset utilization, improved energy efficiency, reliability, security and power quality, 

etc. The construction of next generation active distribution networks requires the 

exploitation of existing infrastructure, use of new technologies of generation and changes in 

operational practices. The integration of distributed generations (DGs) and shunt capacitors 

(SCs), and network reconfiguration (NR) are the key technologies for realizing smart 

distribution systems. These key technologies may be coordinated together to get better 

solutions so that distribution systems can achieve optimum performance. The passive 

distribution systems will be gradually transformed into active distribution systems having 

wide spread deployment of distributed resources (DRs). Though, this transition requires a 

paradigm shift in both planning and operations of distribution systems. However, ground 

realities of distribution systems should be considered with a good degree of accuracy 

otherwise counterproductive results so obtained may jeopardize the planning and operation 

of distribution systems.  

This thesis addresses the simultaneous optimal allocation of DRs such as DGs and SCs in 

the view of NR to reduce annual energy losses and to enhance node voltage profiles of 

distribution systems. More practical formulations for these optimization problems are 

suggested while considering realistic operational issues and realities of modern distribution 

systems. These concerns include characteristic load patterns of distribution buses, 

intermittency of renewable DGs, stochastic nature of load demand, environmental concerns, 

etc. With these concerns, the DR allocation problem of distribution systems assumes 

different dimension and thus requires different treatment. The DR allocation and NR 

problems are formulated while duly addressing these concerns in a stepwise manner. The 

effectiveness of DR tuning and NR is thoroughly investigated for distribution systems 

having adequate DRs to extract better operational strategy for distribution network 

operators. The uncertainty and variability pertaining to load demand and power generation 

among distribution buses are efficiently handled by introducing new deterministic approach 

to provide more realistic solutions for long-term DR planning and operation. Moreover, the 

impact of interaction among diverse time-variant energy resources and stochastic load 

demand is investigated and presented. The complexity of the DR allocation problem raised 

by many folds in the context of modern distribution systems. Therefore, improved variants 
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of five existing metaheuristics have been developed to successfully solve such complex 

large-scale optimization problem accurately and efficiently. In addition, a heuristic 

intelligent search algorithm (ISA) is suggested to enhance the overall performance of these 

techniques. Proposed methods are applied to standard as well as real distribution systems. 

The application results obtained reveal the importance of proposed methods to enhance the 

performance of distribution systems under more realistic scenarios. The developed 

algorithms are also thoroughly investigated on standard and real distribution systems. The 

results of study are investigated and presented. 
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CHAPTER 1 

INTRODUCTION 

 electric power industries have witnessed many reforms in recent years. The existing 

distribution systems are moving toward smart distribution systems to achieve larger 

socio economic and other non-tangible benefits [1]. The potential promise of the smart grid 

includes environmental benefits, reduction in transmission congestion, peak load shaving, 

better asset utilization along with increased energy efficiency, reliability, security and 

power quality, etc. The rise of smart grid is a boon not only to society as a whole but to all 

who are involved in the electric power industry, its customers, and its stakeholders [1]. The 

integration of distributed resources (DRs) like distributed generations (DGs) and shunt 

capacitors (SCs) is one of the key technology areas for realization of smart distribution 

systems to improve the performance of distribution systems. In future massive deployment 

of renewable based DGs is expected to occur in electric distribution systems. To facilitate 

the integration of DGs and for other reasons, there will be large scale deployment of SCs to 

provide necessary reactive support. Gradually there will be transformation of the passive 

(legacy) distribution systems into active distribution systems having wide spread 

deployment of DRs. This transition from legacy distribution systems to smart distribution 

system requires a paradigm shift in both planning and operations. The distribution network 

reconfiguration (NR) is an effective operational method to improve the multiple 

performance objectives of contemporary distribution systems such as loss minimization, 

voltage profile improvement, congestion management, etc. The NR is a well-known 

operational strategy of modern distribution systems that alters the topological structure of 

the network by changing the open/close status of sectionalizing and tie-switches of 

distribution lines. The sectionalizing-switches and tie-switches are integral part of 

distribution system infrastructure. Besides distribution system performance improvement, 

the NR has an effective role to achieve the self-healing objective of future distribution 

systems.  

The construction of next generation active distribution systems requires exploitation of 

existing infrastructure, use of new technologies of generation and changes in operational 

practices [2]. This originates new dimensions to the planning and operation of distribution 

systems. The smart grid initiatives require integrated solutions to well-formulated 

problems that reflect facts on the ground where all such devices/ infrastructure are to 

coexist to achieve smart grid goals of efficiency through loss minimization and high-
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quality power delivered to the ultimate user [1]. The integration of DGs and SCs along 

with NR can be effectively coordinated together to achieve some major objectives of smart 

grids. Therefore, this thesis addresses the problem of DR allocation in distribution system 

which takes into account the ground operational realities of distribution network 

infrastructure and devices.  

The optimal DR allocation problem involves the determination of their optimal number, 

size and sites in distribution network whereas NR problem involves the determination of 

most optimal radial topology of distribution network while satisfying several network and 

operational constraints. However, improper sizing or improper placement of DRs may 

cause over voltages, excessive power losses and stability issues [3]. Therefore, such 

coordinated approach should be suitably tailored by duly addressing the realities of 

distribution systems otherwise the optimal solution so obtained may jeopardize the 

planning and operation of distribution systems. The problem of optimal allocation of DRs 

and optimal NR, each characterized as a highly complex combinatorial optimization 

problem. The complexity of the problem is further increased when more realistic 

operational issues of modern distribution systems have been taken into consideration in 

order to obtain more realistic solution. The existing optimization techniques therefore need 

further improvement to solve such complex optimization problems efficiently. In fact, the 

recent evolution toward modern active distribution systems imposes challenges against the 

modelling and solution techniques suitable for DR planning and operation of distribution 

systems.  

In the present work, the problem of simultaneous allocation of DRs has been addressed 

in the view of NR to improve the performance of distribution systems. More practical 

formulation for these optimization problems is developed keeping in view of realistic 

operational issues and realities of modern distribution systems. Improved variants of some 

of the existing metaheuristics have been developed to successfully solve such complex 

combinatorial optimization problems. The applicability of developed methods has been 

thoroughly investigated on standard as well as real distribution systems. The results of the 

study are investigated and presented.   

There is a wealth of literature dealing with optimal sizing and siting of SCs/ DGs and 

optimal NR, being treated separately, by considering a variety of techno-economic 

objectives. The problem is solved using various analytical, mathematical or heuristic 

techniques. Only few attempts have been made to coordinate any two of these approaches 

together. However, these attempts have not considered realities of distribution systems 
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regarding the type of customers, their strategic locations within the network and their 

characteristic load patterns which may have seasonal variations. With these issues, certain 

load diversity exists among distribution buses, the consideration of which is very crucial in 

deciding the annual load profile as well as node voltage profiles of the system. These 

issues must be addressed while attempting any distribution system optimization problem 

otherwise it may prove to be counterproductive. Furthermore, SCs and DGs can 

independently act and control the power flow in distribution network [4], but the optimal 

allocation of these components is not independent; the presence of one may affect the 

optimal allocation of the other and vice-versa. Similarly, NR and the allocation of these 

DRs are not independent. Therefore, simultaneous allocation strategy of DRs is to be 

investigated with the consideration of NR. Furthermore, the time varying nature of load 

demand requires DR power control and frequent NR to achieve optimum objectives, but 

this introduces additional complexities in distribution system operation. Therefore, the 

relative effectiveness of these two operational strategies needs thorough investigations. 

The roadmap of future distribution envisions widespread deployment of renewable 

energy sources (RESs) such as solar photovoltaics (SPVs), wind turbines (WTs) in 

distribution systems. These energy resources are seemed to be the only option to a 

sustainable energy supply infrastructure since they are neither exhaustible nor polluting 

[5]. However, these renewable energy-based DGs are mostly harvesting natural resources 

so produce clean emission-free electricity, but having intermittent power output so are non-

dispatchable. Therefore, mix DG model has gained more popularity in recent DG planning 

of distribution systems. The mix DG model includes alternative energy sources (AESs) 

such as micro turbines (MTs) which are high speed and mechanically simple devices fired 

by natural gas or biogas, so are fully controllable. Moreover, the solar irradiations and 

wind speeds are complementary to each other in terms of power generation. Therefore 

hybridization of SPVs, WTs and MTs units seems to be a good idea for mix DG model [6]. 

However, there are certain economic, technical and environmental issues that need to be 

considered when selecting this DG model as they can limit their installation and restrict the 

associated economic and environmental benefits [7]. Furthermore, the mix DG model 

poses additional challenges on account of the interactions of diverse time-variant energy 

sources and stochastic load demand. Therefore, benefits associated with DGs depend not 

only on their sites and sizing, but also on the complex relationship between generation and 

load demand. Consequently, the optimal integration of such DGs must determine not only 

the optimal number, size and location, but also evaluate the stochastic impacts of DGs [7]. 
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This approach has revolutionized the frame work of optimal DG allocation problems and 

thus intended to use some efficient optimization methods in probabilistic modelling of 

stochastic load and generation. With these concerns, the DR allocation problem of 

distribution systems assume different dimension and thus requires different treatment.  

The optimal DR allocation problem has been solved using analytical, numerical, 

exhaustive search, meta-heuristic techniques, etc. Analytical methods are easy to 

implement and fast to execute, but their solutions are sub-optimal. Numerical methods are 

efficient, but some of them needs linearized modelling whereas exhaustive search methods 

suffer from the curse of dimensionality, so are not suitable for large-scale systems. On the 

other hand meta-heuristic techniques are robust and guarantee global or near global 

solutions even for large-scale optimization problem, but are computationally demanding. 

However, this limitation is not necessarily critical in DR allocation applications [8]. The 

actual challenge behind the application of these techniques is their parameter tuning, 

otherwise the performance may suffer adversely. Indeed, care should be taken to avoid 

premature or slow convergence, particularly when are applied to solve large-scale 

optimization problems. This leads to probably the most discussed disadvantage of 

metaheuristics. For example, genetic algorithm (GA) suffers from high processing time 

and premature convergence [9], particle swarm optimization (PSO) usually trapped into 

local optima [10], bat algorithm (BA) converges to suboptimal solution owing to weak 

exploration potential [11], cat swarm optimization (CSO) is computationally demanding 

[12] and teaching-learning based optimization (TLBO) has extremely slow convergence 

rate when deals with higher dimension problems [13], etc. These metaheuristics therefore 

require further reinforcement in order to extract their optimum potential. This probably 

could be achieved by overcoming inherent limitations associated with the standard models 

of these techniques. 

Chapter 3 of the thesis deals with the development and investigation of improved 

variants of well-established metaheuristics, i.e. GA and PSO, and recently developed 

metaheuristics, namely BA, CSO and TLBO. Several algorithm specific modifications are 

proposed in each of their standard forms to enhance the convergence, accuracy and 

efficiency of these algorithms. In addition, a heuristic intelligent search algorithm (ISA) is 

suggested which can efficiently reduce the enormous problem search space offered to 

meta-heuristics, so further enhances their overall performance. The chapter also proposes a 

method for the simultaneous placement of DGs and SCs in distribution systems. The 

proposed method optimally allocates these DRs under piecewise multi-level annual load 
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profile of the system with the objectives of annual energy loss reduction and node voltage 

profile enhancement. The DR allocation problem is solved for standard test distribution 

system by proposing improved GA (IGA), improved PSO (IPSO), improved BA (IBA), 

improved CSO (ICSO) and improved TLBO (ITLBO) algorithms. The application results 

show that a significant improvement can be achieved in system performance using 

proposed method. A thorough investigation has been carried to observe the performance of 

developed metaheuristics.  

In chapter 4, the DR allocation problem is dealt with the consideration of NR while 

giving due concern to the load diversity that exists among dedicated distribution feeders on 

account of various types of customers and seasonal variations in their load demand. The 

objectives considered are the annual energy loss reduction and node voltage profile 

enhancement. A soft node voltage constraint is introduced using a penalty factor approach 

that considers NR while allocating DRs and also facilitates the application of 

metaheuristics to solve complex DR allocation problems of real distribution systems. The 

proposed method is applied on standard as well as real distribution systems using IGA, 

IPSO, IBA, ICSO and ITLBO techniques developed in chapter 3. The application results 

reveal that a significant improvement in objectives can be achieved using proposed 

coordinated solution for DR allocation and NR. In addition, the relative impact of DR 

tuning and NR is thoroughly investigated which may be beneficial for distribution network 

operators (DNOs).  

In chapter 5, a new methodology is proposed for the optimal planning and operation of 

mix DR model consists of SPV, WT, MT units and SCs while considering intermittency in 

power generation from RESs and stochastic nature of load demand of various classes of 

customers. The DR planning model composed of several parameters pertaining to the 

capital and O&M costs of DRs, load growth, market prices, fuel price, revenue collection, 

effluent emission costs etc. whereas the operation model provides optimal tuning of MT 

units and SCs, and optimal radial topology of distribution network for each system states. 

The optimum sizing and siting problem of DRs is first solved to maximize the net present 

value (NPV) based profit over the long-term planning horizon. Thereafter, the DR 

operation problem is solved to optimize day-ahead scheduling of MT units, SCs and 

corresponding optimal network topologies of distribution network. The stochastic model 

for load demand and power generation from system buses is developed by proposing new 

deterministic polyhedral uncertainty set which is designed to have self-adaptive feature to 

deal with the diversity in load/generation among distribution buses. The problem is 
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optimized using proposed ITLBO. The proposed method is investigated on the benchmark 

IEEE 33-bus test distribution system and the results of study are investigated and 

presented. 

Chapter 6 summarizes the conclusions, major contributions and future research scope 

out of this thesis work. A comprehensive literature survey in the area of optimal allocation 

of DRs in distribution systems and NR is presented in the chapter 2.  On  the  basis  of  

critical  reviews,  the  objectives  of  the  thesis  are  framed.   



CHAPTER 2  

LITERATURE SURVEY 

The origin of many power system issues are typically based on the electrical 

distribution systems as they are the tail ends of electric power systems. In the present 

competitive deregulated environment, the power distribution utilities are facing stressed 

operating conditions. The utilities have to optimize their annual profits by enhancing 

energy efficiencies of distribution systems and also have to supply reliable and quality 

power to customers. The optimal placement of shunt capacitors (SCs), distributed 

generations (DGs) and network reconfiguration (NR) are the three key strategies to 

enhance the performance of distribution systems. Whatever embedded in distribution 

systems, its impact percolates in the whole power system. A lot of research has been 

conducted during the past decades to address the NR and optimal allocation of these DRs 

by considering a variety of objectives while considering different types of DRs and their 

mode of power generations or the type of system load profile by employing several joint or 

simultaneous strategies using various analytical, numerical, heuristic and meta-heuristic 

techniques. In this chapter a brief literature review about these research areas is presented 

to identify the issues and concerns of current research directions for modern distribution 

systems. The research gaps pertaining to the current research directions are identified and 

presented in the critical reviews. The research objectives of this thesis work are then 

framed on the basis of critical reviews. 

2.1 OPTIMAL ALLOCATION OF DISTRIBUTED ENERGY RESOURCES 

The passive distribution networks are now being transforming into active distribution 

networks by integrating more and more DGs to achieve the objectives of smart distribution 

systems. DRs such as DGs and SCs can independently regulate active and reactive power 

flow among distribution feeders. Therefore, feeder power losses and node voltage profiles 

of distribution systems can be effectively regulated when they placed at strategic locations 

in distribution networks. From long back, researchers attracted towards the optimal 

allocation of SCs for power factor correction, however in the present scenarios they are 

still important as the performance of modern distribution systems can be enhanced by 

adopting suitable strategy of placing several types of DRs. A brief literature review about 

the optimal allocation of DRs is presented in the following sections.   
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2.1.1 OPTIMAL PLACEMENT OF SHUNT CAPACITORS 

Reactive power compensation in distribution systems using SCs is typically an old 

classical problem of power systems. The capacitors must be allocating optimally otherwise 

line losses may increase and develop over voltages during light load hours. The optimal 

capacitor placement problem involves the determination of their optimal number, sizing 

and siting. Some pioneer works reported may include classical techniques [14-17], 

mathematical programming techniques [18-21], analytical methods [22-28] and numerical 

programming methods [29-33]. Many researchers attracted toward heuristic methods [34-

38] which are simple, fast and easy to understand but usually converge to suboptimal 

solution. The evolutionary and swarm based intelligence techniques become the centre of 

attraction for researcher with the beginning of this century as their performance does not 

depend upon the type and shape of objective function, or the number of objectives or 

problem constraints employed, and are potentially very strong to get global or near global 

solution. Some salient works for optimal capacitor placement using a variety of objectives, 

constraints, as listed in Table 2.1, by employing various artificial intelligence (AI) 

techniques are listed in Table A.1.  

TABLE 2.1 

OBJECTIVES AND CONSTRAINTS FOR OPTIMAL CAPACITOR PLACEMENT 

Objectives  Constraints 

1. Peak active power loss reduction/ Line 

loss reduction/ cost of power loss 

2. Reduce capacitor cost 

3. Minimize energy loss cost 

4. Capacity release in the expansion of 

network or avoid cost due to 

investment deferral in the expansion of 

the network/ release system capacity/ 

maximize the margin loading of 

feeders 

5. Minimization of deviation of nodes 

voltage/ improve the voltage profile/ 

enhance voltage stability 

6. Minimize the cost of reliability 

7. Minimize number of switching 

operations 

8. Minimize the total harmonic distortion 

 

 1. Active and reactive power flow balance 

equations /Power balance constraints 

2. Voltage limit constraints 

3. Reactive compensation limit 

4. Maximum total compensation 

5. Overall system power factor 

6. Number and size of shunt capacitors 

7. Total harmonic distortion of voltage  

8. Total active power loss on all branches 

9. Branch active power limit/ power source limit/ 

apparent power flow limit 

10. Determination of type of capacitors 

11. Selection of a unique bank per node/ 

impossibility to locate capacitors at certain 

nodes 

12. Maximum limit of branch current/ line 

current/ line capacity limit 

13. Maximum unbalance factor/ distortion indices 

14. Capacitor switching transients 

Distributed or dispersed generations (DGs) are becoming very common in distribution 

systems to achieve several techno-economic as well as social objectives. A wealth of 

literature is available to discuss optimal placement of DGs in distribution systems which is 

briefly described in the following section.    
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2.1.2 OPTIMAL PLACEMENT OF DGS 

The potential promises of the smart grid include improved reliability and power quality, 

reduction in peak demand, reduction in transmission congestion costs, increased energy 

efficiency, better asset utilization, ability to accommodate more renewable energy, etc. [1]. 

Further, in a distribution system with specified structure, the value of active component of 

losses cannot be reduced by the use of the SCs alone, because the active power of loads 

connected to the system should be provided by the swing bus [102]. Therefore, to supply 

active loads of the distribution system, local generation should be privileged by DGs. DGs 

refer to small generating units typically connected to the utility grid in parallel near load 

centres and can satisfy these objectives. The penetration level of DGs in power system has 

been increased during the last few years due to the significant advances in several 

generation technologies, deregulation of power systems, environmental impacts and 

construction issues related to new transmission lines, etc. [103].  

The DG allocation problem also involves the determination of optimal number, sizing 

and siting of DG units to achieve certain objectives under specified constraints. It is widely 

acknowledged that strategically placed and operated DG units can yield several benefits, 

while on the other hand, improper placement and operations of DG units in some 

circumstances may reduce benefits and even jeopardize the existing systems [104]. A lot of 

research work is available to solve optimal DG allocation problem by considering various 

technical, economical or techno-economic objectives while considering different 

constraints as presented in Table 2.2. The problem is solved using a variety of solution 

techniques which can be briefly mentioned here. Among classical methods, the most 

efficient are the nonlinear programming [5, 105-109], the sequential quadratic 

programming [110] and the ordinal optimization methods [111]. On the other hand the 

exhaustive search methods like brute force technique and dynamic programming [112] 

guarantee to find the global optimum, but they have the curse of dimensionality so are unfit 

for modern distribution systems. Several mathematical optimization techniques such as 

gradient search [113], Hereford ranch algorithm [114], decision theory approach [115], 

sequential quadratic programing [110], linear programming [116], primal-dual interior-

point method [117], mixed-integer nonlinear programming [109], etc. have been addressed 

to solve this problem. However, major difficulty with these methods is that they provide 

only one solution which may not be feasible for DG placement owing to strategic location, 

political reasons, etc. Analytical methods [118-124] are easy to implement and fast to 

execute but they may provide impractical solution as they are based on certain unrealistic 
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assumptions. Though population based metaheuristics suffer from high computational 

effort, but this limitation is not necessarily critical in DG placement applications [8]. 

Therefore, the swarm and evolutionary based meta-heuristic techniques have gained more 

attention of researchers to solve DG allocation problem efficiently. A brief comparison of 

solving DG allocation problem by considering various objectives and constraints using 

different solution techniques is presented in Table A.2.  

TABLE 2.2 

 OBJECTIVES AND CONSTRAINTS FOR DG PENETRATION 

Objectives  Constraints 

1. Minimization of the total/ real power loss of the 

system 

2. Minimization of energy loss or energy loss cost/ 

Maximize the apparent power exported from the 

substation (energy export) 

3. Minimization of system average interruption 

duration index (SAIDI) and frequency index 

(SAIFI)/ Minimize cost of interruption in 

distribution system/ Minimize the cost of 

reliability 

4. Minimization of cost of DG (investment, 

operation and maintenance cost)/ Reinforcement 

cost of the distribution network 

5. Improve voltage stability margin 

6. Maximize the network investment deferrel 

incentives 

7. Maximization of profit/ Maximize Benefit/Cost 

ratio 

8. Maximize capacity adequacy cost in the 

planning period/ Identify the spare capacity in 

the network for accommodating DG 

9. Maximization of voltage limit loadability/ 

Enhance line loadability 

10. Minimize system upgrade cost/ Line capacity 

release 

11. Maximize the DG penetration level/ Maximize 

the rating of DG/ DG capacity maximization 

12. Improve voltage profile 

13. Minimize total harmonic distortion in voltage  

14. Minimize the cost of purchased energy from the 

grid/ electricity market 

15. Maximize the security margin of the distribution 

system/ Minimize the short-circuit current 

16. Minimize the number of  DG units 

17. Minimization of load distributed/ Minimize the 

total load curtailed  

18. Minimize Environmental cost  

 1. Power flow equality constraints/ P and 

Q mismatch equations 

2. Bus voltage or voltage drop limits 

3. Line or Transformer overloading or 

capacity limit 

4. Total harmonic voltage distortion limit / 

Individual harmonic distortion limits  

5. Reliability constraints eg. Max. SAIDI 

6. Distribution substation capacity limit 

7. Power generation limits of DG  

8. Protection coordination limits 

9. DG with constant power factor/ power 

factor limit of DG/ power factor 

regulation for a DG site 

10. DG annual operation time limit 

11. Only one DG can be installed in one 

installation position 

12. Discrete size of DG units 

13. DG loss constraints/ active power 

losses of branches 

14. Number and size of DG units/ Total 

installed DG capacity at each node/ 

Reactive power flow flowing back to 

source 

15. Feeder capacity limit/ Line current 

constraints/ Branch current limit/ 

Thermal capacity limits of the network 

feeder lines 

16. Short circuit level/ Fault current limit/ 

Short circuit limitations 

17. The right of the way buses are excluded 

18. Constraints related to existing generator 

buses 

19. Branch flow limits (P and Q)/ Power 

source limit constraints 

20. Penetration level of DGs 

2.1.3  SIMULTANEOUS ALLOCATION OF SCS AND DGS 

 In existing distribution systems, there is certain limit for DG penetration as most of the 

existing DGs operate at unity power factor control mode. This limit could be increased if 

sufficient and coordinated reactive support is available by deploying SCs. The optimal 

generation of active and reactive power from these devices reduces power import from the 
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substation and thus regulates feeder power flows. Optimal capacitor placement achieves 

this goal by regulating reactive power flow, whereas optimal DG placement does the same 

by regulating active power flow in the system. In fact SCs and DGs can independently act 

and control the power flow, but the allocation of these components is not independent; the 

presence of one component may affect the optimal allocation of the other and vice-versa. 

Moreover, they also facilitate more effective utilization and life extension of existing 

distribution system infrastructure [1] and also contribute in creating self-sustained micro-

grids. In this view, the simultaneous allocation of these DRs needs an investigation in order 

to extract optimum benefits and also to avoid counterproductive consequences. Recently, 

some researchers [102, 151, 192-202] addressed the simultaneous allocation of SCs and 

DGs in distribution systems using different approaches and shown fruitful mutual impact 

of these components on the network performance. The problem was solved to optimize one 

or more objectives related to power or energy loss minimization or voltage profile 

enhancement, etc. and is solved using analytical, mathematical or heuristic optimization 

techniques. But, the variation in annual load profile is not duly addressed in most of the 

above references [151, 192-197, 199-200, 202]. In fact, power losses can be studied in 

passive networks considering peak load scenarios—as is traditionally done—distribution 

networks with DG plants require the assessment of energy losses [203]. Though a multi-

level annual load profile is considered in [102, 198] to minimize annual energy loss, but 

the benefits that could be achieved by employing the optimal dispatches of DRs under 

different load conditions are not taken into account. However, it is imperative to vary the 

power injections from DRs with system load demand otherwise the feeder losses may 

increase under light and moderate load conditions. Ref. [201] considered uncertainty in 

load demand using fuzzy data theory. But, they have not considered the specific load 

pattern associated with different buses of the system. This is crucial as some load diversity 

may exist among different system buses which decide not only the shape of load profile 

but also peak demand on the station. Unrealistic load profile may lead to unrealistic 

solutions and thereby erroneous benefits. 

2.2 OPTIMAL DR ALLOCATION AND NETWORK RECONFIGURATION 

Smart grid initiatives require integrated solutions for optimal allocation of DRs and NR 

that reflect coexistence of these strategies to achieve higher energy efficiency and good 

quality power supply [1]. Such co-ordinated efforts can provide maximum benefits for the 

network owner and/or the network users. Moreover, it can evaluate the feasibility of DG 

investment versus other traditional planning options, assuming that investment in DG is 



12 
 

allowed by local regulation [8]. NR is another well-known operational strategy that is used 

to achieve high performance of distribution systems, so it may also employed in 

conjunction with optimal allocation of DRs. 

NR is a process that modifies the states of the sectionalizing switches (normally close 

switches) and tie switches (normally open switches) to isolate a fault in the network or to 

meet given optimal requirements such as minimizing power loss of the network, 

maintaining the power balance and reducing the load of the transformers [204]. Merlin and 

Back [205] were the first who proposed the idea of NR in 1975. Since then, extensive 

research work has been carried over the past several decades to address reconfiguration 

problem using several objectives like loss minimization, voltage profile enhancement, 

reliability enhancement, etc. using diverse optimization techniques, viz. exhaustive 

algorithms, heuristic algorithms, mathematical programming, analytical methods, AI 

techniques, hybrid approaches, etc.  

In Ref. [104, 173, 182, 206-218] NR is employed in conjunction with the optimal 

allocation of DRs, and it has been acknowledged that this strategy is very useful to 

improve the performance of distribution systems. Whereas, some researchers [173, 182, 

206, 208, 209, 211, 214, 215, 218] employed joint optimization for DR allocation and NR. 

However, this approach is not seemed to be realistic as the solution obtained can demand 

an alteration in both network topology and sites of DRs with the variation in load demand. 

In practice, the network topology can be altered with the variation in load demand, but not 

the locations of DRs. Hung et al. [104] employed several combinatorial strategies for DR 

allocation and NR. According to their proposed strategy, NR should be carried out before 

DR addition. But, distribution system planning problem should be dealt before optimizing 

any operational strategies, so distribution network should be reconfigured after optimally 

placing DGs. 

2.3 DR ALLOCATION UNDER REALISTIC LOAD AND GENERATION SCENARIO  

The load demand of the power system is a major source of uncertainty in power system 

planning [109], and its modelling is crucial for distribution system planners. Several 

researchers have attempted the modelling of load profile using aggregate multi-level 

hourly variations for the daily load profile [219], time varying loads along the feeder with 

specific line loading patterns [119], probabilistic-based hourly variations around a definite 

percentage of the peak loading [109] or estimating the uncertainty of the load using fuzzy 

data theory [201]. However, they have not considered the specific load pattern associated 

with different buses of the system. In practical situations, loads are mixtures of different 
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load types, depending on the nature of the area being supplied, therefore, a load class mix 

of residential, industrial, and commercial loads is to be investigated too, in which every 

bus of the system has a different type of load connected to it [150]. Distribution system 

planners usually provide dedicated feeders to different class of customers. So, definite load 

diversity exists among distribution feeders which plays key role in deciding the annual 

load profile of the system. Ref. [112, 150] consider practical voltage-dependent load class 

mix model for different class of customers, but dedicated distribution feeders are not 

considered. Moreover, the load diversity attributed with hourly and seasonal variations in 

the load demand are also not taken into account. It has been concluded in [150] that the 

load models for different class of customers can significantly affect the optimal location 

and sizing of DG resources in distribution systems. Therefore, the modelling of annual 

load profile should consider these realities of distribution systems while dealing with any 

distribution system optimization problem.  

On account of technology improvements and governmental incentives for the use of 

green energies, renewable energy sources (RESs) appears to be a promising approach for 

electricity generation, as RESs become a larger and larger portion of the generation mix, 

many aspects of the distribution systems operation and planning has changed [220]. 

Nowadays, several renewable and non-renewable DG technologies such as SPVs, WTs, 

MTs, fuel cells, combined heat and power, and combustion gas turbines are economically 

available in the market. Among these, the integration of SPVs and WTs are becoming 

more popular in distribution systems with the philosophy of smart grid initiatives and strict 

environmental laws. However, these DGs are characterized by intermittent power 

generations. In Ref. [108], the authors concluded that the optimal accommodation and 

sizing of DG units where the time-varying characteristics of demand are neglected is very 

likely to lead to sub-optimal results. Therefore, the stochastic nature of load demand has 

also to be considered while dealing with renewable DGs. The uncertainties in load and 

power generations not only increase complexities of DG allocation problem but also 

demands special treatment to handle uncertain data efficiently. Moreover, the consideration 

of intermittency in power generation and load model increases system states considerably, 

thus CPU time incurred by solution techniques also increases by many folds. But, this is 

necessary as the correlation between load and renewable resources has been nullified by 

dividing the study period into several segments and treating each segment independently 

[171]. With these issues, it is challenging to incorporate these complexities into an 
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optimization framework for DG allocation problem as it considers the actual metrics used 

by distribution network operators (DNOs).  

Several interesting approaches [5, 10, 108, 115,119, 136, 150, 152, 160, 179, 181, 190, 

201, 220-225] have been addressed for DG allocation in such uncertain environment using 

various methods such as  decision theory [115], probabilistic planning method [5, 109, 

160, 171], point estimation method (PEM) [10, 220, 221], chance-constrained 

programming (CCP) [152], Monte Carlo simulation (MCS) [152, 225], fuzzy data theory 

[201] by considering one or more objectives such as to minimize power loss [119, 136], 

minimize energy loss [5, 108, 109, 179], maximize energy export to grid [136], profit 

maximization [223], voltage stability margin [181], maximizes the energy delivered from 

DG [226], etc. However, rare attempt [220] has been addressed to deal with the 

simultaneous capacitor and DG allocation where the authors have suggested day ahead 

scheduling of disapatchable DRs. In Ref. [179], a mix DG model is suggested and the 

authors’ concluded that dispatchable DG unit has a more positive impact on energy loss 

minimization and voltage profile enhancement than non-dispatchable DG unit. A 

deterministic approach is employed in [223] to deal with the probabilistic nature of DG 

unit outputs and load consumption by suggesting column and constraint generation (CCG) 

frame-work. The merit of this approach is that it fully considers the system uncertainties 

yet only requires a deterministic uncertainty set, rather than a probability distribution of 

uncertain data which is difficult to obtain.   

While comparing uncertainty handling methods, MCS generates different random 

values for uncertain input variables, but it requires a great number of simulations to attain 

convergence that makes it computationally demanding [190]. Analytical methods are more 

effective than MCS but are based on some unrealistic mathematical assumptions. On the 

other hand, probabilistic methods eliminate the need of time-series data, but dynamic 

changing performance of the system cannot be represented using these methods. Unlike the 

MCS method, the PEM is generally simpler and more flexible to deal with complex models 

[10]. However, it is computationally demanding when several load levels are considered 

[86]. Therefore, the use of PEM is impractical for realistic power systems having large 

number of input random variables. Although each of above mentioned methods is a useful 

tool to handle the uncertainty effects, but the process of modelling uncertainty in these 

methods is based either on the known statistical data or on the known probability 

distribution function of input variables, however, in some situations, none of the above two 

cases may be available [227]. Therefore, a suitable approach is required that involves less 
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number of statistical information and a probability density function with a finite number of 

moments. 

Several optimization techniques such as mathematical programming [5, 222, 226], 

analytical methods [119, 179] or heuristic method [115] used to optimize the problem. 

Many researchers have trusted upon metaheuristics though they are well-known to be 

computationally demanding. Among metaheuristics, the non-dominated sorting genetic 

algorithm (NSGA) [136, 224], GA and immune-genetic algorithm (IGA) [221, 152], PSO 

and its modified variant [10, 150, 160, 201, 228], evolutionary programming (EP) [171], 

modified shuffled frog leaping algorithm (MSFLA) [220] are preferred than other 

algorithms owing to their ability to obtain global or near global solution. However, the 

complexity of DR allocation problem urged to improve existing metaheuristics so that a 

better solution can be determined. A brief literature review about the strengths and 

limitations of some of the existing potential meta-heuristic techniques is presented in the 

following section. 

2.4 META-HEURISTIC TECHNIQUES 

With the advent of fast computational facilities, a large number of evolutionary or 

swarm-based AI techniques have attained the centre of attraction for researchers to solve 

complex combinatorial power system optimization problems. However, these techniques 

have their own merits and demerits. GA is simple, robust and flexible method, but it 

suffers from high processing time and premature convergence [9]. Particle swarm 

optimization (PSO) can generate a high-quality solution and stable convergence 

characteristic within a shorter calculation time [150], but it may experience inappropriate 

convergence and fall in local minima [10]. Bat algorithm (BA) [229] is simple, robust, 

easy to implement and significantly faster than other optimization techniques. The 

algorithm obtained good results when dealing with lower-dimensional optimization 

problems, but may become problematic for higher-dimensional problems because it tends 

to converge very fast initially [11]. The unique property of cat swarm optimization (CSO) 

is that it provides local as well as global search capability simultaneously [230], but is 

computationally more demanding [12]. Teaching learning based optimization (TLBO) 

[231] is another recently established optimizing technique which is free from algorithm 

specific parameters that makes it class apart than other techniques. Despite of its 

simplicity, easy implementation and lower computational complexity, the weak 

communication in the learner phase may lead to local trapping [232]. Another 

disadvantage of TLBO is that the convergence rate gets even worse when deals with higher 
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dimension problems and hence some mechanism has to be incorporated to achieve the 

highest performance [13].  

Most of metaheuristics are sensitive to variation in their control parameters that can 

affect their accuracy, unless tuned properly which needs several experimentations so are 

excessive computationally demanding. This imposes real challenge while solving large-

scale optimization problems [203] like optimal allocation of DRs. Another typical feature 

of metaheuristics is that they offer enormous problem search space. Therefore, the search 

for the best combination amongst the various possible combinations is computationally 

arduous even when subjected for a small distribution system [171]. This adversely affects 

the accuracy, efficiency and CPU time of these techniques when applied to solve large-

scale optimization problems. However, the overall performance of techniques can be 

improved by restricting the problem search space. But, the search space reduction should 

be accurate otherwise the global or near global optima may remain left outside the 

restricted search space. As a result, the algorithm converges to local optima, as in [74, 87, 

89, 90, 92, 97, 171, 182, 192, 195, 233], where the problem search space being restricted 

using some unreliable sensitivity based approaches.    

2.5 CRITICAL REVIEW   

In the present deregulated environment, annual energy losses and node voltage profiles 

of distribution systems are very important issues for DNOs so may be called as two vital 

indices to check the performance of distribution systems. With this view, the performance 

of distribution systems can be enhanced by regulating and managing distribution line 

flows. This could be achieved by local generation of active and reactive power using DGs 

and SCs provided that these components should be optimally allocated with regard to their 

number, size and sites, otherwise system performance may deteriorate. An enormous 

literature is available to efficiently solve the optimal allocation problem of SCs alone or 

DGs alone. Although SCs and DGs can independently act and control the power flow 

among distribution feeders, yet the optimal allocation of these DRs are not independent. 

The presence of one component affects the optimal allocation of other component and 

vice-versa. Thus, the simultaneous optimal allocation strategy of these components is 

seemed to be more fruitful. Further, the NR is another well-known and effective 

operational strategy used to reduce feeder power losses and node voltage deviations in 

modern automated radial distribution systems. However, NR and DR allocation are also 

not independent. Therefore, NR is another resource that should be investigated in 
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conjunction with simultaneous allocation of DRs to further enhance the performance of 

distribution systems. 

Distribution planners usually provide dedicated feeders to serve particular class of 

customers e.g. residential, commercial, industrial, etc., each has its characteristic load 

pattern. This causes definite load diversity among distribution buses. Moreover, the 

seasonal variations in load demand must be considered while determining annual load 

profile of the system. Therefore, while dealing with distribution system optimization 

problems, these issues of power distribution must be duly addressed, in the lack of which, 

either an unrealistic solution would be obtained or the expected optimum benefits could 

not be achieved.  

Recently, the mix DG model has gained more popularity on account of environmental 

and other techno-economic concerns. This DG model consists of controllable DGs with 

little emissions and renewable DGs with zero emissions. However, these renewable DGs 

like SPVs and WTs are characterized by intermittent power generations. While considering 

randomness of power generation from DGs, the stochastic nature of load demand has also 

to be taken into account. These concerns impose most challenging and complex task for 

distribution system optimization problem framework. Therefore, in the present scenario, 

the DR allocation problem of distribution systems needs reframing by considering the 

stochastic nature of load and local generations from RESs. This however requires 

specialized treatment to handle uncertain data. In addition to it, the realities of distribution 

networks like load diversity among distribution buses should be duly addressed in the 

problem formulation. With these considerations, the DR allocation problem becomes 

highly complex combinatorial exercise. Therefore, old classical methods are not suitable to 

solve such problems due to non-differentiability of the objective function. Whereas, the 

solution obtained using mathematical approaches may suffer from linearizing the problem. 

On the other hand, metaheuristics such as GA, PSO, DE, SA, etc. are independent from the 

type, shape and number of objective functions, and can also cater mixed integer problems, 

like DR allocation and NR, efficiently. These powerful techniques have shown their 

potential to obtain global or near global optima for complex engineering optimization 

problems and also provide a close set of solutions which is extremely useful for 

distribution planning engineers. However, the actual challenge with these techniques is 

related with their parameter tuning which is highly computationally demanding. Indeed, 

care has to be taken to avoid premature or slow convergence, particularly when are applied 

to large-scale applications. It probably happens due to certain inherent limitations in their 
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internal mechanisms. Thus, there is stringent need to overcome such limitations of these 

metaheuristics and thus make them suitable to solve complex large-scale optimization 

problems.  

2.6 RESEARCH OBJECTIVES OF THE THESIS 

On the basis of above critical review, following objectives have been formulated for 

the research work. 

1. To develop improved variants of existing meta-heuristic techniques to solve complex 

DR allocation problems of distribution systems accurately and efficiently.   

2. To investigate the effectiveness of developed meta-heuristic techniques and to present 

an exhaustive comparative analysis for the same.  

3. To develop a suitable mathematical modelling for the simultaneous allocation of DRs 

such as DGs and SCs in distribution systems to minimize annual energy losses and to 

enhance node voltage profiles under piecewise multi-level load profile. Solve the 

problem using developed improved meta-heuristic techniques and also to investigate 

the effectiveness of these techniques. 

4.  To propose mathematical modelling for the simultaneous allocation of DRs in 

distribution systems by considering realities of load diversity among distribution buses 

and seasonal variations in load demand and solve the problem using developed 

techniques. Also investigate the impact of load diversity, DR tuning and NR on the 

performance of distribution systems. 

5. To develop a new method for mix DG allocation in distribution systems by 

considering stochastic nature of load demand and intermittent power generation from 

renewable DGs. Also develop suitable method to handle uncertain data efficiently.  

6. To investigate the impact of the interaction between diverse time-variant energy 

resources and stochastic load demand on the operation of distribution system.  

The organization of the thesis is as follows. Chapter 1 presented a brief introduction of 

thesis and a detailed literature survey is presented in Chapter 2. Chapter 3 deals with 

simultaneous allocation of DRs using improved variants of five different existing 

evolutionary or swarm based algorithms, and an integrated approach for the simultaneous 

allocation of DRs and NR considering realities of load diversity among dedicated 

distribution feeders allocated to different classes of customers is presented in Chapter 4. 

Chapter 5 introduces a new methodology for the optimal allocation of DRs considering 

uncertainty in hourly load demand of various categories of customers and hourly 
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generation from renewable sources. Finally, the conclusions and future research scope 

from this thesis are presented in Chapter 6. 
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CHAPTER 3 

DISTRIBUTED RESOURCE ALLOCATION USING META-HEURISTIC 

TECHNIQUES 
 

With the advancement of technical and economic feasibility, the integration of DGs has 

taken wider acceptance for present and future active distribution systems. The roadmap of 

future distribution envisions widespread deployment of DRs such as SCs and DGs in the 

near future. DGs are installed primarily to tap available renewable energy and to supply 

local demand so that the power demand from the grid is reduced. On the other hand, SCs 

are primarily installed to meet the reactive power demand of the distribution systems. 

Besides their primary objectives, the integration of these components (DGs and SCs) into 

the distribution system reduces power and energy losses, defers major system upgrade and 

improves the reliability and quality of power supply. Moreover, they also facilitate more 

effective utilization and life extension of existing distribution system infrastructure [1]. 

Therefore, optimal placement and sizing of these devices are the important issues to extract 

optimum benefits. However, the amount of benefits achieved chiefly depends upon how 

optimally they have been placed in distribution network; a wrong placement may be 

counterproductive. It is important to note that DGs and SCs can independently set and 

control the real and reactive power flow in distribution networks [4]. But, the presence of 

DGs in distribution systems can cause a voltage drop or an over voltage that depends on 

power supplied by generators and their locations [234]. SCs can improve these power 

quality parameters by injecting the reactive power into distribution systems and also 

contributes to reduce feeder power losses. Extensive research has been carried for the 

placement of DGs and SCs independently in distribution systems with multiple objectives. 

However, future distribution systems require integrated and coordinated solutions for the 

optimal placement of these DRs that reflect coexistence of these devices to obtain more 

realistic and more efficient placement strategy. Therefore, by simultaneously determining 

the optimal number, sizing and siting of DGs and SCs, optimum benefits can be achieved 

at reduced rating of these components. Several references [102, 151, 192-202] have 

attempted this simultaneous allocation problem of DRs considering power losses as one of 

the major objective. However, distribution networks with DG plants require the assessment 

of annual energy losses [203]. In order to assess annual energy losses, the annual load 

profile of the distribution system needs to be considered. The load demand of distribution 

system varies with time, therefore many references [74, 87, 90, 95, 198, etc.] have 
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considered multi-level piece-wise linearized modeling to represent annual load profile of 

the system. This leads to the consideration of all load levels simultaneously while 

optimizing DR allocation problem. With the optimal sizing of DRs so obtained, their 

power dispatches should be determined optimally for each load level to achieve optimum 

benefits. 

The simultaneous DR allocation problem of distribution systems is a non-linear, mixed 

integer, complex combinatorial optimization problem and cannot be solved using classical 

optimization techniques. Its solution requires the application of modern heuristic 

techniques, i.e. meta-heuristic techniques. Meta-heuristic techniques initiated with a 

definite population size, called tentative solutions, being randomly spread over the problem 

search space. Each individual is characterized by its fitness value, decided by the objective 

function evaluation, which is being upgraded in due course of time by virtue of its strategic 

movement governed by the control equations of the algorithm. The best individual 

obtained after predefined iterations, i.e. maximum iterations, is treated as the optimal 

solution. The unique feature of these techniques is their independency on the type and 

nature of the objective function to be optimized. Further, they exhibit full potential to 

obtain global or near global optima while applied to solve diverse engineering optimization 

problems. However, the actual challenge while using these techniques is the tuning of 

control parameters that guide the optimization process. Indeed, care should be taken to 

avoid premature or slow convergence, particularly in large-scale applications [203] as they 

offer enormous problem search space to these techniques. In fact, the full potential of these 

techniques can be extracted by suitably regulating their internal mechanisms to achieve 

self-sustainable healing against their intrinsic flaws. Moreover, the overall performance of 

meta-heuristic techniques can be further enhanced by suitably employing search space 

reduction using engineering knowledge base of the concerned problem. 

The critical review of the literature also shows that to solve simultaneous allocation 

problem of DRs, meta-heuristic techniques such as GA, PSO, ICA, HBO, TS etc. have 

been used. Out of these, GA and PSO have been widely used. However, these techniques 

are not deterministic and there is always a scope of improvement. Therefore, efforts should 

be made to further enhance the performance of these techniques when applied to solve 

such complex DR allocation problems. From the critical review it is also observed that no 

efforts or limited efforts have been made to apply relatively new meta-heuristic techniques 

such as BA, CSO and TLBO to solve such problems. Therefore, efforts should be made to 

make them suitable to solve complex DR allocation problems efficiently.  
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In this chapter, the simultaneous allocation problem of DGs and SCs in distribution 

systems is formulated to reduce annual energy losses and to maintain better node voltage 

profiles while considering a piece-wise multi-level annual load profile. The proposed 

methodology assumes controllable DRs so desired power output can be dispatched under 

varying load conditions to further optimize the objectives. Improved version of GA, PSO, 

BA, CSO and TLBO techniques have been developed to solve simultaneous allocation 

problem of DGs and SCs in distribution systems. Several algorithm specific modifications 

are suggested to improve the computational efficiency and convergence characteristic of 

the algorithms to make them suitable for simultaneous allocation problem of DRs.  

Moreover, a heuristic intelligent search algorithm (ISA) is also suggested for search space 

reduction of all meta-heuristic techniques. In order to investigate the effectiveness of the 

developed methods, they are applied on the benchmark IEEE 33-bus test distribution 

system to solve the optimal DR allocation problem and the application results obtained are 

presented. An exhaustive comparative analysis for the developed meta-heuristic techniques 

is also investigated and presented. 

In the presence of DRs, the power flow equations of distribution systems are modified, 

therefore existing load flow methods cannot be as such used. In the following section a 

brief discussion on network power flow equations with integrated DRs is presented. 

 3.1 DISTRIBUTION NETWORK POWER FLOW EQUATIONS WITH INTEGRATED DRS 

The sum of the power supplied from the utility grid and the total power generated by 

DRs integrated in the distribution system must be balanced by the local load demand and 

the power losses in the lines. A sample two bus radial system with installed DG and SC is 

shown in Fig. 3.1. The figure shows a branch connected between sending node n and the 

receiving node n+1. The real and reactive power flow through the branch is represented by 

Pn+1 and Qn+1, and the terminating node n+1 voltage (neglecting shunt conductance and 

susceptance) are given by Eqs. (1)–(3), respectively. Here Pn (Qn) are the sending end 

active (reactive) power flows and Rn (Xn) is the series resistance (reactance) of the nth 

DG

( 1)np distribution line. 
 

SC

( 1)nq is the active power injections by DG, 
 
is the reactive power 

( 1) ( 1)( )L L

n np q injection by SC, and  are the total active (reactive) load demand at the 

receiving node.  
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Fig. 3.1 Single-line diagram of a two-bus system 
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The set of these power flow equations are non-linear so can be solved using any suitable 

iterative load flow method such as backward-forward sweep power flow method. This 

method is especially designed for radial topologies and is also less computationally 

demanding than the Newton-Raphson load flow method. Moreover, the later one may fail 

to converge on account of high R/X ratio of distribution feeders.  

In the following section, the problem of simultaneous allocation of DRs is formulated to 

achieve desired objectives.  

 3.2 PROBLEM FORMULATION  

The integration of DGs and SCs alters power flow in distribution feeders. This causes 

reduction in annual energy losses and node voltage deviations. Therefore, the simultaneous 

DR allocation problem is formulated to maximize the annual energy loss reduction while 

maintaining better node voltage profiles. In order to limit the voltage deviation at different 

nodes, a hard voltage constraint is used as desired by the regulation authorities. Similarly to 

check the current carrying capacities of distribution feeders, a feeder ampacity constraint is 

essential. A multi-level piece-wise linearized annual load duration profile of the system is 

considered to evaluate annual energy losses of distribution feeders. The DR allocation 

problem is structured as single-objective constrained optimization problem where optimal 
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number, size and location of DGs and SCs are determined simultaneously. The problem is 

formulated as:  

   
1 1

Max. ( ) ;
L LN N

bj j aj j

j j

f x PLoss H PLoss H j L
 

 
    
 
   (6) 

Subject to the system operational constraints defined as below.  

 3.2.1 Power flow constraint 

  0;  jg h j L    (7) 

Where gj(h) represents the set of power flow equations during jth load level as given by 

(1)-(5). 

 3.2.2 Node voltage constraint 

All node voltages Vn,j of the system must be maintained within the minimum and 

maximum permissible limits i.e. Vmin and Vmax, respectively, during the optimization 

process as defined by the regulation authority. 

min , max ; ,n jV V V n N j L     
  

(8) 

 3.2.3 Feeder ampacity constraint 

The current flow in each branch must satisfy the rated ampacity of each branch. 

max

, ;  n j nI I j L  
  

(9) 

 3.2.4 Bus compensation limit of DGs 

The active power injected by DG at each bus must be within their permissible range. 

DG DG DG

min max ;  np p p n N   
  (10) 

DG

minp DG

maxpWhere, and  are the minimum and maximum active power generation limit 

at a bus, respectively. 

 3.2.5 Bus compensation limit of SCs 

The reactive power injected by SC at each bus must be within their permissible range. 

SC SC SC

min max ;  nq q q n N     (11) 

SC

minq SC

maxqWhere, and are the minimum and maximum reactive power generation 

limit at a bus, respectively. 

 3.2.6 Penetration limit of DGs 

The sum of active power injected by DGs at all candidate nodes should be less than 

nominal active power demand pD of the distribution system. 

DG

1

;  

loc

n D

n

p p n N


    (12) 
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 3.2.7 Penetration limit of SCs 

The sum of reactive power injected by SCs at all candidate nodes should be less than 

nominal reactive power demand qD of the distribution system. 

1

;  

loc

SC

n D

n

q q n N


    (13) 

Equations (14) and (15) prohibit the repetition of candidate sites for DRs.  

a b ;  , DG DGloc loc a b N   (14) 

SC SC

a b ;  , loc loc a b N   (15) 

Where loc
DG 

and loc
SC

 refer candidate sites for DGs and SCs, respectively. Since DRs 

are commercially available in discrete sizes and thus are modeled by (16) and (17).   

DG

   ;  0,  1,  2, ,  n d d dp K P K ndg    (16) 

SC

  ;  0,  1,  2, ,  n b b bq K Q K nsc    (17) 

Where Pd and Qb represent the respective unit size of DGs and SCs. Kd and Kb represent 

discrete dispatches of DG and number of capacitor banks, respectively.    

First optimizing (6), the solution obtained provides the optimal sizes and sites of DGs 

and SCs, while considering the annual load profile. Next, (6) is optimized, but for each 

load level separately, to determine the optimal tuning of installed DRs. The additional 

constraints required to determine the optimal tuning of DGs and SCs are modelled as given 

by (18)-(19).  

;  0,1,2, , /  DG DG

md mdp K p K p p    
  (18) 

 ;  0,  1,  2, , /SC SC

t tq K q K q q    
 

 (19) 

Where ∆p and ∆q represents the available commercial discrete sizes of DGs and SCs, 

respectively. 

In the following subsequent sections attempts have been made to develop improved 

variants of GA, PSO, BA, CSO and TLBO by suggesting several algorithm specific 

modifications in their respective standard formats. Moreover, the problem search space of 

these metaheuristics is reduced by suggesting an intelligent search algorithm (ISA). The 

development of the proposed improved GA, i.e. IGA is presented in the following section. 

 3.3 PROPOSED IGA 

Genetic algorithms (GAs) are the search and optimization procedures that are motivated 

by the principles of genetics and natural selection which is based upon Darwinian 

evolution, i.e., survival of the fittest [235]. The development of GAs is largely credited to 
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the work of Holland [235] and Goldberg [236]. Since then GAs have evolved and become 

a promising tool to solve complex engineering optimization problems. The inner working 

of GAs involves the string duplication and substring exchange, coupled with the occasional 

alteration of bits. GA balances the exploration and the exploitation through genetic 

operators, i.e. crossover and mutation. In GA, a pool of individuals, i.e., potential solutions 

known as the population which is randomly created and then used to build a new, 

hopefully improved, pool by mimicking those of natural selection. Individuals with high 

fitness values are more likely to be chosen to generate the next generation. In this way, the 

selection pressure is applied for the continuous improvement of individuals‟ quality. The 

crossover operator in GA facilitates the creation of new individuals by combining genetic 

information from multiple “parents” in the population. This provides a mechanism for 

exploring the search space and inheriting successful genetic information. This process 

mimics the natural process of crossover in DNAs. The Roulette-wheel selection (RWS) 

may be used for selecting better fit individuals and conducting the “breeding” process of 

crossover. An individual‟s chance of being chosen for breeding is random in essence but 

directly proportional to its fitness status. Mutation is employed on few individuals to find 

new solution points in the problem search space and thus avoids stagnation of GA. 

Through elitism, the best individual encountered so far is ensured to survive to the next 

generation to avoid loss of any gain that has been achieved during the evolution process. 

GA usually suffers from premature convergence to a local optimum and high processing 

time [9]. Premature convergence happened whenever the best solution is not improved 

after certain generations and that usually results in local trapping. In such situations, there 

are chances that this local solution tends to get multiplied. Further, if better individuals are 

available during genetic evolutions then there will be better chances of obtaining the global 

optima. Therefore, in proposed IGA, the pace of genetic evolution is enhanced by 

proposing brute force crossover (BFC) and acquiescent mutation (AM). BFC avails better 

individuals to improve convergence rate and AM avoids stagnation of GA. Further, high 

processing time of GA is reduced by proposing conditional fitness evaluation (CFE) that 

reduces the number of fitness evaluations. These proposed modifications in GA can be 

briefly described as below. 

 3.3.1 BRUTE FORCE CROSSOVER  

In the conventional GA, a child becomes a parent only in the subsequent generation. In 

case, a child with better fitness is allowed to participate in the mating pool during the same 

generation in which it has been born. Then better be the child, more will be its chances to 
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participate in the mating pool during the same generation. This approach breaks the 

paradigm of genetics, but is very useful for computational purposes. With this approach, 

there is an immediate exchange of more useful genetic information. Moreover, better is the 

quality of genetic information, more will be the rate of information exchange and vice-

versa. Thus, the pace of genetic evolutions enhanced. In the proposed BFC, one parent is 

selected from the population through RWS and the other is selected randomly to preserve 

diversity. The current population is updated by the addition of two offspring so produced 

which replaces the two least fit individuals. Therefore, only better individuals survive and 

will participate in forthcoming genetic operations. However, if two parents are found to be 

identical, one of them is mutated using AM as described in the next section. 

 3.3.2 ACQUIESCENT MUTATION  

GA has an inherent tendency of premature convergence when subjected to large-scale 

optimization problems. It happens as the mutation operator remains ineffective against 

enormous problem search space so eventually GA stagnates, i.e., the best solution not 

improved after certain generations. In such situations, there are chances that this local 

solution may get multiplied. Therefore, AM is suggested. In AM, whenever two identical 

parents appear in the mating pool then either of them is mutated before recombination. 

However, the mutation site is restricted up to the candidate DR size alone, and the 

candidate nodes are kept aside from this mutation. This strategy is adopted to avoid 

probable over divergence of the solution, as the suggested ISA, which will be described in 

section 3.8, serves better quality nodes in the population. Unlike BFC, all mutated 

individuals replace their respective counterparts irrespective of their fitness values. This 

provides sufficient diversity in the population and thus strengthens GA against local 

trappings. The proposed AM is in addition to the regular mutation of GA. 

 3.3.3 CONDITIONAL FITNESS EVALUATION 

In genetic evolutions, initially the individuals explore new regions to search the global 

optima and as the genetic evolutions advance they tend to follow the best fit individual. 

Due to recombination, the percentage of best fit individuals gradually starts increasing and 

as the evolution advances the population may flood with numerous best fit individuals. 

This results in an unnecessary increased computational burden. Therefore, CFE is 

proposed. In CFE, each individual obtained after genetic evolutions is compared with the 

current best fit individual and its fitness is evaluated whenever it is found not identical to 

the current best fit individual. The flow chart of the proposed IGA method is presented in 

Fig. 3.2 
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Fig. 3.2 Flowchart of the proposed IGA 
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PSO is another well-established meta-heuristic technique, but is inherently designed to 

optimize problems having continuous decision variables. Attempts have been made to 

make it suitable to efficiently solve DR allocation problem by suggesting improved PSO, 

i.e. IPSO which is described in the following section.  

 3.4 PROPOSED IPSO  

PSO is a robust stochastic swarm computation technique which is based on the 

movement and intelligence of swarms [237]. The conventional PSO is initialized with a 

population of random solutions and searches for optima by updating particles‟ positions. 

The velocity of particles is influenced by three components namely, initial, cognitive and 

social components. Each particle updates its previous velocity and position vectors 

according to the following model of [238]. 

1
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1 1k k k

p p ps s v t     (21) 

k

pvWhere  is the velocity of pth particle at kth iteration, r1() and r2() are random numbers 

k

psin the range [0, 1],  is the position of pth particle at kth iteration, c1, c2 are the 

acceleration coefficients, pbestp is the best position of pth particle achieved based on its 

own experience, gbest is the best particle position based on overall swarm experience, Δt is 

the time step, usually set to 1 s and w is the inertia weight which is allowed to decrease 

linearly with iterations as follows: 

max min max max( ) /w w w w itr itr   
  (22) 

The velocity and position updates of particles tend to surf the search space on the behalf 

of cognitive and social paradigm of the swarm.  

PSO has shown proven potential to solve complex engineering optimization problems, 

but it typically shows premature convergence due to local trapping phenomenon [88]. 

Moreover, the intrinsic nature of PSO could only generate continuous decision variables. 

Thus the accuracy and efficiency of PSO suffers when it is applied to solve problems 

having discrete decision variables. PSO has the philosophy of “to follow the leader” [239]. 

So whenever the best particle stagnates, it eventually converges to local optima. If the best 

particle is improved by employing some mechanism, probable local trappings can be 

avoided. Interestingly, the incapability of PSO to produce discrete decision variables has 

been employed in the proposed IPSO as its affirmative strength to avoid local trappings. 

For this purpose, a local escape algorithm (LEA) is proposed which can be explained as:  
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 3.4.1 LOCAL ESCAPE ALGORITHM  

The LEA is proposed to provide a local random walk (LRW) to the current best particle. 

Suppose the current best particle contains D continuous decision variables and it is kept in 

the memory. Whenever this particle stagnates, say after a predefined number of iterations 

ts, it is recalled and then two particles are generated from it; one by ceiling and the other by 

flooring of all decision variables. Now with all possible combinations of these decision 

variables, 2
D 

particles are produced, each of them with only discrete decision variables. If 

any particle is found infeasible, it is corrected under the guidance of constraint handling 

algorithm (CHA), as will be explained later on. The fitness of these particles is evaluated 

and is compared with that of the current best particle. If it is found better, it replaces the 

same. Occasionally, the current best particle suggested by PSO may be with all discrete 

variables. In such situations, all 2
D 

particles so produced will be the replica of the current 

best particle itself, and that makes the proposed LEA useless. To overcome this difficulty, 

one replica of the current best particle is created. The current best particle and its replica 

are mutated at randomly selected DR site and DR size before generating all possible 

distinct particles. However, the decision variables for the candidate locations should be 

selected using ISA, as it is necessary to provide a fair chance of selection for better nodes 

to mutated particles. An illustration of LEA is shown in Fig. 3.3. The flow chart of the 

proposed IPSO method is presented in Fig. 3.4. 

 
Fig. 3.3 Flowchart of proposed LEA 
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Fig. 3.4 Flowchart of the proposed IPSO 

BA is one of the recently developed swarm optimization technique. BA has shown 

potential to solve diverse engineering optimization problems but its performance degrades 

while dealing with large-scale optimization problems. Therefore, improved BA, i.e. IBA is 
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suggested to solve complex DR allocation problem which is presented in the following 

section. 

 3.5 PROPOSED IBA 

BA is a recently developed bio-inspired optimization technique proposed by Xin-She 

Yang [229] in 2010. It is inspired by the social behaviour of bats and the phenomenon of 

echolocation to sense distance. BA is simple, easy to implement, significantly faster than 

other algorithms, and robust [240]. In BA, all bats fly randomly with definite velocity and 

frequency at certain position where their velocity and position are updated by assigning 

time varying loudness and pulse emission rate (PER). Bats can spontaneously 

accommodate the frequency and loudness of their emitted pulses and adjust the PER, 

depending on the proximity of the prey. Based on these approximations and idealization, 

the basic steps involves in BA are the random fly and LRW which can be briefly described 

as below [229]. 

Random Fly: Each bat is defined by its position xb, velocity vb, frequency fb, loudness 

Ab and PER rb in a D-dimensional problem search space. The velocity and position updates 

for the bth bat at the tth iteration are governed by the following set of equations. 

 min max min–  bf f f f   
  

(23) 

      –1 –  *  b b b bv t v t x t x f  
  

(24) 

      –1b b bx t x t v t 
  

(25) 

Local Random Walk: For local search, once a solution is selected among the current 

best solutions, a new solution for each bat is generated locally using random walk (RW) as 

defined below. 

   , ,    ;new b old b b bx x A t rand r t    
  

(26) 

Where rand is a random number in the range [0, 1] and rb(t) is the PER of the bth bat at 

the tth iteration. The loudness and the PER of each bat are updated with iteration using 

following recursive relations where α and γ are constant, each of them is usually taken as 

0.9 [229].  

   1  b bA t A t 
  

(27) 

     1  0 1– –b br t r exp t      
(28) 

Despite of aforementioned positive features, the standard BA often experiences 

inappropriate convergence due to the local optima, lack of diversity in population or slow 

proceeding of the algorithm [240]. Moreover, BA is usually quick at the exploitation of the 
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solution though its exploration ability is relatively poor [241]. Thus BA obtains good 

results only while dealing with lower-dimensional problems. Therefore, in the proposed 

IBA attempts have been made to adjust the loudness and PER in a better way and to 

enhance LRW of bats to refine its exploration and exploitation potentials, respectively. 

Furthermore, additional diversity in population is suggested in IBA to cope against its 

intense exploitation capability. The modifications suggested in proposed IBA are described 

below. 

 3.5.1 SELF-ADAPTED PULSE EMISSION RATE  

The loudness and PER essentially provide a mechanism for automatic control and auto 

zooming into the region with promising solutions [242]. In BA, these two parameters are 

modeled to vary quite irrespective of each other. Moreover, both these parameters are 

allowed to vary too quickly in BA which leads to stagnation after some initial stage [242]. 

It happens because of the dominance of exploitation over exploration of the search space 

during initial iterations which is governed by the relative values assigned to these 

parameters. Therefore, self-adapted PER (SPER) is suggested where PER of each bat is 

allowed to vary in accordance to the loudness assigned to it and so not allowed to vary too 

quickly. However, the loudness assigned to each bat is governed in the same manner as in 

the standard BA. In this way, these two parameters become self-adapted for each bat. The 

suggested SPER in IBA is therefore modeled as: 

     1–b br t A t 
 

(29) 

 3.5.2 IMPROVED LOCAL RANDOM WALK 

The typical feature of BA is that it quickly finds the promising region but stagnates after 

few iterations. This seriously hampers the performance of BA. It possibly happen on 

account of inadequate LRW provided to the best bat. In BA, with ɛ∈[–1,1] and initial 

loudness Ab∈[0,1], the term Ab(t) becomes insignificant during later iterations. Therefore, 

the term ɛ<Ab(t)> remains ineffective for most of the bats during the anaphase of the 

algorithm which leads to occasional LRW. Therefore, an improved LRW (ILRW) is 

suggested in IBA which can be described as below.  

In the proposed ILRW, first Mc number of replicas of the current best bat are generated 

and then each of them is mutated over the randomly selected mutation site in the range [–1, 

1]. However, ILRW activates only when the random number selected is less than its PER, 

otherwise the current best bat performs LRW, as in the standard BA. Thus ILRW confirms 

LRW of the current best bat during the evolutionary process. This helps to maintain a 



35 
 

proper balance between exploration and exploitation of the search space. The best bat is 

replaced, if a better bat is available by ILRW. 

 3.5.3 DIVERSITY 

BA has shown intense capability to exploit the problem search space. But, this potential 

when added with its inherently poor exploration potential, then its performance degrades, 

especially when applied to solve large-scale optimization problems. It happens because 

bats may even unable to identify the promising region so remains busy in exploiting the 

unwanted region of the search space. This eventually drains the algorithm into local 

optima. It is a well-known fact that the mutation operator of GA has the potential to 

explore new solution points in the problem search space. The extreme exploitation of BA 

causes lack of diversity. Therefore, very high mutation rate is desired to cope against this 

serious limitation of the algorithm. In proposed IBA, therefore the population is 

reinitialized using mutation. Fitness of all mutated bats is evaluated and the current best bat 

is updated, if better mutated bat is obtained. The Pseudo code of the proposed IBA is as 

given below: 

Objective function f(x) 

Initialize the bat population using ISA xb, vb and fb,d; b=1, 2, … , Nb, d=1, 2, … , D 

Initialize pulse rate rb and loudness Ab 

While (t < itrmax) 

Generate new solutions by adjusting frequency, and updating velocities and locations/solutions  

Correct infeasible solution using ISA and CHA 

if (rand >rb)  

Select the current best solution 

Generate a local solution (F1) around the current best solution  

else if  

Make Mc copies of the current best solution 

Apply ILRW  

Correct infeasible solution using ISA and CHA 

Select best solution (F2) among Mc solutions  

Select best solution F out of F1 and F2 

end if 

Generate a new solution by flying randomly 

if (rand <Ab and f (xb) <F)) then 

Accept the new solutions 

Increase rb and reduce Ab 

end if 

Rank the bats and find the current best x
*
 

t = t +1; 

Apply diversity and preserve elite solution 

end while 

Post-processing the results and visualization. 

CSO is relatively less known meta-heuristic technique but having unique feature of 

simultaneous exploration and exploitation of the search space. Though this feature is very 
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important for large-scale optimization, but existing CSO suffers from certain inherent 

limitations. Attempts have been made to overcome these limitations by proposing 

improved CSO, i.e. ICSO which is explained in the following section.  

 3.6 PROPOSED ICSO 

Chu and Tsai [243] proposed CSO which mimics the natural behaviour of cats. Cats 

have some distinct features. Cats initiate their move very slowly and finally they chase the 

prey very quickly. These two distinct behaviours of cats are represented by seeking and 

tracing modes of the algorithm. These modes are mathematically modelled and are 

combined together by defining a mixture ratio (MxR). Every cat has its own position 

composed of D dimensions, velocity for each dimension, a fitness value and a flag to 

identify whether the cat is in seeking or tracing mode [243]. These two modes of operation 

can be briefly described as given below. 

Seeking Mode 

In this mode, a definite number of cats are selected according to predefined value of 

MxR and each of them is subjected to multi-point mutation to explore the search space 

meticulously. Some terms related to this mode can be defined as: 

Seeking Memory Pool (SMP): Number of copies of a cat formed in seeking mode 

Seeking Range of selected Dimension (SRD): Maximum difference between the new and 

existing values in the dimension selected for mutation 

Counts of Dimension to Change (CDC): Number of dimensions to be mutated 

The following steps are involved in the seeking mode of CSO.  

 1. Make SMP copies of the existent position of cat. 

 2. Randomly plus or minus SRD percent of the present values in each copy according 

to CDC value and replace the existing ones.  

 3. Calculate the fitness values of all copies.  

 4. Select the best cat from SMP copies and replace the qth cat by it. 

 5. The remaining cats proceed to the tracing mode of the algorithm. 

Tracing Mode  

In this mode, the cat moves according to its own velocity among all its dimensions so 

that it can trace the prey, the current best fit cat. The velocity and position updates of the 

catq are governed by the following relations. 

 1, , , ,()q d q d best d q dv v c r x x     
  

(30) 
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1, , 1,q d q d q dx x v  
 

 (31) 

Where d(1 ≤ d ≤ D) represents the dimension, xbest,d is the position of the best fit cat, xq,d 

is the position of catq, c is a constant and r() is a random value in the range [0,1]. 

The unique feature of CSO is that it provides global and local search simultaneously via 

tracing and seeking modes, respectively. This causes better communication with the 

upgraded cat from the seeking mode as it is readily available to interact with the cats 

undergoing tracing mode of the algorithm. However, for large-scale optimization the 

performance of the algorithm deteriorates possibly on account weak exploitation and 

uncontrolled velocities of cats. The performance of the algorithm may be enhanced if the 

current best cat is mandatorily participated in the seeking mode to enhance the exploitation 

of the search space. Further, in practice the cats always review their previous experience 

during the tracing mode in order to maintain appropriate velocities. But, such reviewing 

mechanism is not present in the standard CSO. Therefore, the tracing mode needs another 

necessary corrective measure. In CSO, inertia weight is taken as unity. However, in order 

to regulate the velocity of cats, time varying inertia weight may also be included in the 

control equation of the tracing mode. Therefore, both seeking and tracing modes of the 

standard CSO are revised in the proposed ICSO as described below. 

 3.6.1 REVISED SEEKING MODE 

Like some other swarm intelligence techniques, CSO is also based upon the philosophy 

of “To follow the leader” [239]. If the fitness of the current best cat or the leader is 

improved by some means, the convergence of CSO can be improved. Therefore, it is 

suggested that the current best cat must participate in the seeking mode of the algorithm. 

However, this cat performs LRW in a different way than the other cats.  For this purpose, 

2
D 

cats are generated as in LEA of IPSO, as explained in section 3.4.1. The fitness of all 

these cats is evaluated. The current best cat is then replaced, if better cat is available. The 

remaining cats perform LRW same as in the standard CSO. The proposed suggestion 

imposes fine local search around the current best cat as SRD is kept as low as ±1. Later on 

this positively influences the movement of the cats going through the tracing mode. So the 

revised seeking mode provides additional mechanism to accelerate the convergence of the 

algorithm.  

 3.6.2 REVISED TRACING MODE 

There is an intuitive belief that cats use their memory while chasing the prey. Cats are 

continuously analysing and correcting their strategy for the next move, while chasing the 
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prey, on the basis of own best and just preceding experiences. This is essential in order to 

make forthcoming moves successful. This important behaviour of cats is missing in the  

 

Fig. 3.5 Flowchart of the proposed ICSO  
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tracing mode of the standard CSO. Therefore, revised tracing mode is suggested which is 

composed of two phases. In the first phase, the cat is updated by tracking its own best and 

preceding moves. Whereas in the second phase, the cat is updated by tracking group‟s best 

move, as in the standard CSO. However, the velocities of cats should be properly regulated 

in the tracing mode otherwise the prey may be missed. Therefore, a time varying inertia 

weight is suggested in the revised tracing mode, as in PSO. The modelling of these two 

phases can be expressed as: 

   , 1 1 , , 2 2 , ,1,
() ()q d best d q d q d pred dq d

v w v c r p x c r x p


             (32) 

1, , ,1,
() ( )q d best d q dq d

v v c r x x 
       (33) 

Thus, cats gather appropriate velocities before entering into the second phase. The 

fitness of each cat is evaluated in each phase and the cat updates if better cat is available. 

The revised tracing mode provides adequate diversity in population as the proposed best 

and preceeding experiences of cats fine tune the global search. The flow chart of the 

proposed ICSO is shown in Fig. 3.5. 

TLBO is another recently established meta-heuristic technique which has gained 

popularity owing to its simplicity, yet performing well to solve complex engineering 

optimization problems. However, its greediness towards best solution makes it unsuitable 

for large-scale optimization. In the next section, improved TLBO, i.e. ITLBO is proposed 

to overcome some limitations of existing TLBO.  

 3.7 PROPOSED ITLBO 

TLBO is recently established swarm intelligence based optimization technique 

developed by Rao et. al [231] in 2011. It is inspired  by  passing  on knowledge  within  a  

classroom  environment,  where  learners  first acquire  knowledge  from  the teacher  and  

then  from  the classmates [244]. The algorithm initiates with a group of tentative 

solutions, called learners, being dispersed randomly in the problem search space. It uses 

mean value of the population to update the solution and implements greediness to accept a 

good solution, as in artificial bee colony (ABC) algorithm [231]. In due course of time 

these learners update their knowledge, i.e., fitness, through two stage learning process: 

„Teacher phase‟ and the „Learner phase‟. The ever best learner obtained through the 

iterative process is considered as the final solution. TLBO is simple to understand and easy 

to implement. The prominent feature of this powerful technique is that it is free from 

algorithm specific parameters and requires only common control parameters like 

population size and maximum iterations [231]. This makes it a class apart from other 
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population-based search techniques [245]. The learning phases of TLBO can be 

summarized as below [246]. 

Teacher phase 

In this phase, learners learn through the teacher who tries to improve the existing mean 

result Meand,k of the class at iteration k for each dimension d towards him or her so let the 

new mean is Teacherd,k. The difference of the mean results is evaluated as per following 

modelling.  

, , , ,rand ( – )d k d k d k d kMean Teacher TF Mean  
  

(34) 

, , ,/d k d k d kTF Mean Teacher
  

(35) 

, , ,d k d k d kXnew Xold Mean 
  

(36) 

Where TFd,k is the teaching factor (TF). The dimensions are updated using (36). 

Accept Xnewd,k, if it gives better function value. 

Learner Phase 

In this phase, each learner improves his or her knowledge by interacting randomly with 

other learners to enhance his or her knowledge. For this purpose, two learners are 

randomly chosen and if they have better knowledge than the learner, the difference of the 

knowledge is added in the learner‟s knowledge according to the following modelling. 

     , , rand – ;  d k d k y z z yXnew Xold X X f X f X  
 

 (37) 

   , , rand – ;  ( ) d k d k z y y zXnew Xold X X f X f X  
 

 (38) 

Where, y ≠ z. 

Accept Xnewd,k, if it gives better function value. 

The standard TLBO suffers from poor convergence rate, local trapping, etc. on account 

of lack of diversity which is attributed to weak information exchange among individuals 

and its greediness to accept only good solutions [245]. This seriously hampers its 

performance while subjected to large-scale applications. The full potential of this technique 

however can be extracted by altering its internal mechanism in such a way that provides 

self-sustainable healing against these intrinsic flaws. Therefore, ITLBO is proposed to 

solve complex DR allocation problem by modifying both learning phases of TLBO as 

described in the following sections. 
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 3.7.1 SELF-ADAPTIVE LEARNING  

Several references [175, 232, 247, 248, 249, 250, 251] have attempted different 

mutation strategies in teaching-learning phases of the algorithm to overcome inadequate 

diversity and thereby enhancing the exploration potential of TLBO. However, these 

mutation strategies are not only slow down the convergence speed of the algorithm but also 

prohibit the use of information of already improved dimensions [247]. Therefore, learning 

phases of TLBO are modified by proposing self-adaptive learning (SAL). In SAL, each 

learner compares its dimensions with that of the respective dimensions of the teacher, as 

shown in Fig. 3.6. In case any dimension of the learner is found to be matched with the 

teacher, then that dimension is abandoned to participate in the computational process, as it 

had already achieved the maximum knowledge. Thus SAL provides dedicated search 

during teacher and learner phases of the algorithm as only selective dimensions are 

participating in the computational process.  

 
Fig. 3.6 Self-adaptive learning 

 3.7.2 SELF-LEARNING PHASE  

Apart from the class room teaching and the interaction with other students, a student 

also enhances his/her knowledge by self-study. A good student always tracks its previous 

history and accordingly works hard to improve it or at least to maintain it. With this 

learning philosophy, a self-learning phase (SLP) is proposed in [248] which consider 

previous experience of the learner while undergoing mutation. This mutation strategy 

guides the learners according to their own gradient information. However, the authors have 

accepted that the exploitation potential reduces, especially in the anaphase of the 

algorithm, where it is most desired. In order to overcome this, they suggested another 

mutation strategy which is self-adjusted by the mean and variance of the population. But, 

there might be a risk of widespread mutation that degrades convergence of the algorithm. 

Therefore, a different SLP is proposed in ITLBO so that the learner has better opportunity 

to enhance its performance by interacting with himself/ herself alone, as explained below. 
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In proposed SLP, each learner compares his/her knowledge with that of the previous 

iteration, as shown in Fig. 3.7. For simplicity, the learner‟s structure shown in figure is 

only for DG placement. This comparison identifies that dimension of the learner which 

changes the least, and is mutated. This increases the effectiveness of the mutation operator. 

The mutant learner replaces the learner, if its fitness is better. If there is least change in 

more than one dimension, any one of them is mutated by random selection. Thus proposed 

SLP acts only on stagnated dimensions, especially during the anaphase of the algorithm. 

However, the mutation of DG sites is carried using ISA, whereas DG sizes are mutated 

randomly.  

 
Fig. 3.7 Self-learning phase 

 3.7.3 DIVERSIFIED LEARNING  

The performance of algorithms, like TLBO, can be enhanced by maintaining a proper 

balance in exploration and exploitation of the search space. For this purpose several 

crossover strategies are suggested for all learners in [252] to enhance both global and local 

search using multi-point crossover. However, these crossover strategies may diverge the 

convergence on account of over diversity. In fact, the greediness of TLBO to accept only 

good solutions leads to possible local trapping due to inadequate diversity in population. 

Therefore, DL is introduced in few learners. For this purpose, two learners (parents P1 and 

P2) are randomly selected for crossover and the offspring (children Ch1 and Ch2) so 

produced are shown in Fig. 3.8. 

 
Fig. 3.8 Diversified learning 
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These offspring replace their parent learners in the population irrespective of their 

fitness values. This selection of learners enhances diversity in population by shifting the 

paradigm of TLBO to accept only good solutions.   

 3.7.4 TEACHER’S LEARNING  

The teacher is always a role model for the students. The students usually follow their 

teacher. A good teacher must try to upgrade his or her knowledge as this could improve the 

mean result of the class. This can be accomplished by providing local random walk to the 

teacher using mutation, as in [249, 250]. In [249], the chaotic sequence is used to enrich 

the mutation behavior, but probabilistic LRW is provided to the teacher. A chaos 

perturbation mechanism is used in [250] to avoid local optima and also to improve the 

precision of the basic TLBO algorithm.  However, chaos perturbations are allowed only in 

the later half portion of the computational process. These mutation strategies can generate 

good quality solution, but not for large dimensional problems. A more exhaustive mutation 

strategy is therefore desired to deal with such problems. Therefore, after teaching-learning 

phases, the teacher is subjected to LRW by repeated random mutations till its fitness is 

improved or the predefined mutation count mc is exhausted. This may upgrade the 

knowledge of teacher that can help to avoid local trappings. As in SLP, the mutation of DG 

sites is carried using ISA, whereas DG sizes are mutated randomly. Flowchart for teacher‟s 

learning (TL) is shown in Fig. 3.9. 

 
Fig. 3.9 Flowchart for teacher‟s learning 
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Fig. 3.10 Flowchart of the proposed ITLBO  
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 3.7.5 ELITISM AND TERMINATION CRITERION 

In standard TLBO elitism is not required as it has greediness to accept good solution at 

each step, but in proposed ITLBO the best learner may lose during DL. Therefore the elite 

learner should be preserved. The termination criterion may be selected by defining 

maximum iteration count or accuracy of solutions, etc. However, in the proposed method, 

when either the maximum iteration count is exhausted or all candidate solutions acquire 

the same fitness i.e. all learners have identical knowledge, the iterative learning process 

stops. 

The flow chart of the proposed ITLBO method is presented in Fig. 3.10. 

 3.8 SEARCH SPACE REDUCTION USING ISA 

While initializing, or otherwise, it is always preferred if all the tentative solutions spread 

in the problem search space in such a way that most of them lie near the promising region. 

But, this is a difficult task. Nevertheless, an adequate diversity is essential to explore new 

solution points in the search space. The engineering knowledge base, pertaining to the 

given optimization problem, can be utilized to restrict the problem search space. Several 

researchers, as mentioned in chapter 2, have restricted the search space by employing 

different node sensitivity based approaches. In these approaches, a node priority list (NPL) 

is prepared by perturbations of small capacities of SC and DG while considering power 

losses as the objective function. From this list, only top few nodes are selected to redefine 

the problem search space. Though such approaches reduce the problem search space 

drastically, but the solution quality deteriorates. In fact, the sensitivities are normally 

calculated for the base case conditions, where no such devices have been installed [53].  

Furthermore, when selecting only top few nodes as the sensitive components, it did not 

give the true picture of the entire distribution network [253]. Therefore, none of the 

sensitivity based approach is fool proof and provides only a coarse guidance. So these 

approaches are unreliable and may cause erroneous results, as missing locations in the set 

of candidate locations may be optimal for DR allocation.    

In the proposed approach, the node priority list (NPL) is prepared using perturbations of 

very small SC/DG capacities, but in a different manner. The flowchart for obtaining NPL 

for DG placement is shown in Fig. 3.11(a). The fitness of the objective function is 

evaluated by setting a test DG subsequently at all nodes of the distribution network. The 

node which causes the maximum change in the function value and the corresponding DG 

capacity are stored in an array. This test DG capacity is then placed at this node. The next 

optimal node is explored in the same manner and the test DG capacity is also placed at this 
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node. The node and DG capacity are stored in the array. This process is repeated till there 

is an improvement in the objective function. All nodes of the array so obtained are 

arranged in the descending order of accumulated DG capacities. This provides NPL for DG 

allocation, the node corresponding to maximum DG capacity occupy top position in NPL. 

In this way a NPL for DGs is obtained. Similarly, NPL for SCs can be obtained by the 

perturbation of very small SC capacity. However, this list can only provide an approximate 

navigation for the selection of candidate nodes. Therefore, a probability based method is 

proposed for the selection of candidature of nodes from the NPL. For this purpose, the 

candidature of a node is decided from these lists using RWS, where the candidate  nodes  

are  selected  according  to  their  probability  of  priority  during  the computation process. 

Thus, all nodes remain in the search space leading to diversity in search but due to higher 

probability of priority to only a few nodes, the algorithm quickly picks up the best 

combination of nodes without much wandering. Thus, the problem search space is virtually 

squeezed without loss of diversity. The flow chart for the selection of candidate nodes for 

DRs using proposed ISA is shown in Fig. 3.11 (b). 

 

Fig. 3.11 An illustration of ISA for DG placement 
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 3.9 CONSTRAINT HANDLING ALGORITHM 

During the iterative process of any population based algorithm, the generation of 

infeasible individuals is a common problem in complex optimization problems due to the 

number of constraints involved. Therefore, CHA is always desired to repair infeasible 

individuals. The proposed constraint handling algorithm is described as below. 

 1. If a candidate node repeats for SC-DG allocation, it is replaced by selecting another 

node from the respective NPL using RWS. 

 2. If a candidate node is out of bounds with negative (positive) sign, it is kept within 

bounds by successive addition (subtraction) of N from its numerical value. 

 3. If the capacity of SC-DG at a candidate node is out of bounds, it is corrected similar as 

in step 2 using q
SC

/ p
DG

 instead of N. 

 4. If the total number of SCs become out of bounds, then one bank is subtracted from a 

randomly selected candidate node in successive manner till the constraint satisfied.   

 5. If the total capacity of DGs is out of bounds, then its difference with the system 

nominal active load demand is evaluated. This difference is then divided by loc and 

the quotient so obtained is subtracted from the candidate capacity of DG at each node. 

This process is repeated till the difference reduces to a predefined limit, say 0.001 kW.  

 6. Whenever decision variables become continuous, they are rounded off to their nearest 

integer values.

 

 

 3.10 INDIVIDUAL’S STRUCTURE  

For proposed improved meta-heuristics, the structure of the individuals for simultaneous 

DG and SC placement is shown in Fig. 3.12 which is composed of candidate nodes and 

sizing for the respective candidate DGs and SCs. The candidate nodes are allocated using 

ISA whereas the sizing of the candidate DGs and SCs are selected randomly within their 

respective predefined bounds as described by (10)-(13). However, the number of locations 

for DGs and SCs is set more than what ought to be required and the lower bound of the 

sizing for DGs and SCs is set equal to zero. This strategy is thus simultaneously optimizes 

the number, sizing and siting of these DRs. While determining the optimal tuning of these 

components, the algorithm again runs with the same structure of individuals. But, the 

optimal locations are frozen to those values as obtained by the optimal solution. Also the 

limit of DG and SC sizing is restricted to the installed capacity which is provided by the 

optimal solution.     
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Fig. 3.12 Individual‟s structure 

 3.11 SIMULATION RESULTS 

In order to establish proposed IGA, IPSO, IBA, ICSO and ITLBO techniques, these are 

first applied on the benchmark IEEE 33-bus test distribution system [254] to solve the 

optimal allocation problem of DGs and SCs under identical system design parameters and 

considering same objective function as taken in [104, 177, 195, 196]. This is a 12.66 kV 

balanced distribution system with nominal active and reactive power demand of 3715 kW 

and 2300 kVAr, respectively. The initial radial topology of the distribution network is 

obtained by opening tie-lines as given in Table B.1. The ampacity of distribution feeders 

are also given in the table and the detailed system data may be referred from Table E.1. 

The population size and maximum iterations are uniformly set at 10 and 200, respectively 

for all techniques. The best result obtained after 100 independent trials of these techniques 

is presented and compared with other existing methods in Table 3.1. The standard GA, 

PSO, BA, CSO and TLBO are also applied to solve this problem and the best results 

obtained after 100 independent trials are also presented in table for comparison. The table 

shows percentage power loss reduction and installed capacity of DGs/SCs in MVAr/MW. 

It can be observed from the table that all proposed metaheuristics are capable to generate 

better results than their respective standard models and other established heuristic, 

analytical and PSO techniques. It is noteworthy that proposed meta-heuristic techniques 

are capable to generate better results even for this small-scale optimization problem.  

Table 3.1 Comparison results to establish proposed improved techniques 

Method Power loss reduction (%) DG capacity (Node)/ SC capacity (Node) 

Heuristic [195] 54.66 1.00(18)/1.00(33) 

PSO [196] 71.71 2.51(6)/1.46(30) 

PSO [177] 72.30 2.53(6)/1.23(30) 

Analytical [104] 72.28 2.60(6)/1.25(30) 

GA 71.27 2.10(8)/1.30(29) 

Proposed IGA 74.38 2.52(6)/1.30(30) 

PSO 71.66 2.37(7)/1.30(28) 

Proposed IPSO 74.38 2.52(6)/1.30(30) 

BA 70.83 2.41(26)/1.10(31) 

Proposed IBA 74.05 2.29(6)/1.20(30) 

CSO 71.67 2.40(7)/1.30(28) 

Proposed ICSO 74.38 2.52(6)/1.30(30) 

TLBO 72.45 2.60(7)/1.10(29) 

Proposed ITLBO 74.38 2.52(6)/1.30(30) 

The effectiveness of proposed IGA, IPSO, IBA, ICSO and ITLBO techniques is now 

investigated on this system for the simultaneous allocation of DGs and SCs with suggested 
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modelling to minimize annual energy losses of distribution systems. The annual load 

profile is assumed to be piece-wise segmented into three different load levels [74], i.e., 

light, nominal and peak which is 50%, 100% and 160% of the nominal system load, 

respectively and the corresponding load durations are taken 2000 h, 5260 h and 1500 h, 

respectively. For base configuration the feeder power losses are 47.07, 202.50 and 575.39 

kW and the minimum node voltages are 0.9583, 0.9131 and 0.8528 p. u. for the light, 

nominal and peak load conditions, respectively. The design parameters considered for 

allocating DGs and SCs is given in Table 3.2 which shows the bounds for node voltage 

limits as 0.94 p.u. and 1.06 p.u. The table also shows the minimum and maximum 

min  max ( / )DG DGp ppenetration limit of DGs  min max ( / )SC SCq qand SCs considered for each candidate 

node. The penetration limit of DGs and SCs is considered equal to nominal active and 

reactive loading of the system. The table also shows that entire search space is kept open 

for meta-heuristic techniques as all system nodes are considered in vectors N
SC

 and N
DG

. 

The NPLs obtained for respective DRs using proposed ISA approach is presented in the 

table. The control parameters of optimization techniques obtained after usual trade-off are 

presented in Table 3.3. The table shows that GA and PSO need more population size than 

other techniques but require lesser maximum iteration count for proper convergence 

whereas BA, CSO and TLBO are doing well for less number of population size and large 

iteration count. The proposed algorithms are developed using MATLAB
®

 and simulations 

have been carried on a personal computer of Intel i5, 3.2 GHz, and 4 GB RAM. 

Table 3.2 Design parameters 

Particular Value 

Vmin/Vmax(p.u.) 0.94/1.06 

Qb/ Pd (kVAr/kW) 300/1 

∆q/∆p(kVAr/kW) 100/1 

min max/SC SCq q (MVAr)  
0/1.2 

min max/DG DGp p (MW) 
0/2 

N
SC

/ N
DG

 1-33 

NPL(SCs) 30, 24, 25, 7, 29, 32, 15, 8, 4, 23… 

NPL(DGs) 25, 24, 7, 32, 30, 29, 31, 14, 8, 23… 

The best solution obtained after 100 independent trials of standard and proposed 

improved variants of GA, PSO, BA, CSO and TLBO are presented in Table 3.4. The table 

shows that all standard algorithms provided different solutions for DR allocations, but the 

optimal solutions explored using all proposed algorithms are identical. This shows 
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effectiveness of developed algorithms. For these solutions, the optimal DR tuning 

determined for corresponding load levels may be referred from Table B.2. 

Table 3.3 Control parameters selected for proposed algorithms 

Parameter IGA IPSO IBA ICSO ITLBO 

P 50 50 10 10 10 

itrmax 100 100 200 200 200 

ts - 10 - - - 

CR 0.9 - - - 0.2 

Crossover type Two-point Crossover - - - One-point Crossover 

MxR 0.05 - - - - 

c    1.5  

c1, c2 - 2,2 - 1.6, 0.4 - 

wmin,wmax - 0.1,0.9 - 0.05, 0.45 - 

fmin/fmax - - 0/2 - - 

α/γ - - 0.9/0.9 - - 

Mc - - 5 - - 

SMP,CDC,SRD,MXR - - - 5, 0.6, 2, 0.04 - 

mc - - - - 5 

Table 3.4 Optimal solution of DRs using standard and proposed meta-heuristics 

Method 
Optimal solution 

Nodes (DG in kW) Nodes (SC in kVAr) 

GA 14(898),  25 (944), 32(934) 

TC:2776 

14(600), 24(300), 30(900) 

TC:1800 

PSO 15(780), 25(839), 30 (1255) 

TC:2874 

17(300), 24(600), 30(900) 

TC:1800 

BA 3(1381), 14(857 ), 29(1188) 

TC:3426 

10(300), 16(300), 32(900) 

TC:1500 

CSO 15(747), 24(1150), 31(1016) 

TC:2913 

11(300), 16(300), 30(1200) 

TC:1800 

TLBO 15(815), 24(860), 30(1157) 

TC:2832 

12(600), 24(600), 30(900) 

TC:2100 

IGA/IPSO/IBA/ICSO/ITLBO 14(831), 24(1005), 30(1128) 

TC:2964 

14(300), 24(600), 30(1200) 

TC:2100 

TC: Total capacity 

Table 3.5 Comparison of power and energy loss for optimal solutions 

Method 
Power  loss (kW) Annual energy 

loss (kWh) 

% Annual energy 

loss reduction Light Nominal Peak 

Base Case 47.07 202.50 575.39 2022398.44 - 

GA 3.53 15.12 93.40 226700.42 88.79 

PSO 3.51 14.31 93.77 222971.06 88.97 

BA 5.99 24.51 106.32 300371.65 85.15 

CSO 3.94 15.71 85.70 219070.49 89.17 

TLBO 2.95 12.65 88.14 204656.04 89.88 

IGA/IPSO/IBA/ICSO/ITLBO 2.95 11.88 79.76 188012.10 90.70 

The improvement in network performance is evaluated from base case conditions after 

optimally placing DRs in the distribution network and the comparison results are presented 
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in Table 3.5. The table shows the power loss obtained at each load level. The table also 

shows that an annual energy loss reduction of about 91% is achieved using proposed meta-

heuristics. However, the results obtained using proposed techniques is better as that 

obtained using their respective counterparts for this complex combinatorial optimization 

problem. This shows that proposed variants are significantly improved.  

Proposed IGA, IPSO, IBA, ICSO and ITLBO techniques have shown better results than 

their respective standard models. This shows that the suggested modifications in these 

techniques are contributing effectively. Nevertheless, it is important to investigate how and 

upto what extent these modifications have played their roles for enhancing the performance 

of techniques. A detailed investigation for the proposed techniques is presented in the 

following section. 

 3.12 INVESTIGATION OF PROPOSED META-HEURISTIC TECHNIQUES 

In order to investigate the effectiveness of suggested modifications in IGA, IPSO, IBA, 

ICSO and ITLBO, the various proposed variants of these algorithms are abbreviated for the 

ease of comparison and are listed in Table 3.6. The table shows possible variants of these 

techniques obtained after subsequent suggested modification in each of them.  

Table 3.6 Abbreviations for proposed algorithms 

Algorithm variant Description 

G1 GA with BFC and ISA 

IGA G1 with AM and ISA 

P1 PSO with LEA 

IPSO P1 with ISA 

B1 BA with improved loudness and PER 

B2 B1with ILRW 

B3 B2 with diversity 

IBA B3 with ISA 

C1 CSO with revised seeking mode 

C2 C1 with revised tracing mode and IWU 

ICSO C2 with ISA 

T1 TLBO with SAL 

T2 T1 with SLP 

T3 T2 with DL 

T4 T3 with TL 

ITLBO T4 with ISA 

The detailed investigations of the proposed variants are first carried on the basis of best 

and mean convergence characteristics. However, the computational performance of 

population based metaheuristics should be judged by performing statistical error analysis 

on the sampled solutions obtained after definite independent trials of algorithm. For this 

purpose, the proposed DR allocation method is rigorously applied to 33-bus test 
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distribution system using each variant while keeping identical algorithm specific and 

common control parameters. The results obtained from this investigation are presented and 

discussed in the following sections. 

 3.12.1 COMPARISON OF CONVERGENCE CHARACTERISTICS 

The progression of population based techniques is represented by their best and mean 

convergence characteristics. The convergence for best fitness shows how the best 

individual is upgrading its fitness during the evolutionary process whereas the convergence 

for mean fitness shows the same information for the whole population.  

The convergence characteristics for the best and mean fitness obtained using GA and its 

developed variants are compared in Fig. 3.13. It can be observed from the figure that each 

suggested modification in IGA plays its distinct role. BFC improves convergence rate due 

to the timely utilization of better fit individuals, whereas AM avoids the stagnation of the 

algorithm. Though ISA tends to provide directed search but also maintains adequate 

diversity. Therefore, individuals explore the search space in the close proximity of the 

promising region where the global optima may exist. This enables IGA to find global or 

near global optima. These facts can be observed by comparing both best and mean 

convergences. 

In IPSO, the distinct role of LEA and ISA can be observed from Fig. 3.14. The figure 

shows that LEA not only avoids several possible local trappings but also improves the 

mean convergence of the algorithm. It happens on account of LRW proposed for the 

current best particle, which if improved, guided the swarm toward the promising region. 

The distinguished role of ISA can be observed in terms of its fast convergence. This is on 

account of better initial mean fitness and by well guided swarm throughout the 

evolutionary process. 

  
 (a) (b) 

Fig. 3.13 Convergence characteristics of each variant of GA for (a) Best and (b) Mean fitness 
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 (a) (b) 

Fig. 3.14 Convergence characteristics of each variant of PSO for (a) Best and (b) Mean fitness 

A set of convergence characteristics for BA variants is shown in Fig. 3.15. The figure 

shows that there is an improvement in the best convergence by each subsequent 

modification in BA. In the variant B1, the proposed self-adaptive loudness and PER 

enhance the exploration potential of BA to certain extent. Consequently, IBA finds the 

promising region by having more patience than the standard BA. The application of 

improved LRW in the variant B2 enables the algorithm to avoid many local trappings 

which in turn improve the mean fitness of the population. The proposed diversity searches 

new solution points in the search space by re-initializing the algorithm in the variant B3. 

So it plays crucial role to cope against the extreme exploitation potential of the BA. IBA 

initiates with overall better fitness than BA due to suggested ISA which provides well-

directed search. In this way, the promising region is found by IBA, whereas BA fails to do 

so. It happens because bats fly comprehensively in the search space for better exploration 

of the search space. It can be observed from the Fig. 3.15 (b) that the introduction of 

proposed diversity causes poor fluctuating mean fitness during the evolutionary process 

though it enhances the convergence for the best fitness.  

The set convergence characteristics for CSO variants are shown in Fig. 3.16. It can be 

observed from the figure that CSO has sluggish convergence owing to weak 

communication as cats are communicating only with the current best cat during the tracing 

mode. This causes poor exploration of the search space. Since CSO provides simultaneous 

local and global search, the exploitation potential suffers. In the light of this fact, LRW of 

the current best cat is employed in the variant C1. This intensifies the local search which in 

turn results in better global search during the tracing mode so enhances pace of the 

algorithm. This is in addition to the proposed revised tracing mode where communication 

with own best and preceding experiences of cats are also taken into consideration. This can 

be validated by significant improvement in the convergence of the variant C2. ISA further 

enhances convergences of ICSO as in other proposed techniques. 
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 (a)  (b) 

Fig. 3.15 Convergence characteristics of each variant of BA for (a) Best and (b) Mean fitness 

 

  
 (a)  (b) 

Fig. 3.16 Convergence characteristics of each variant of CSO for (a) Best and (b) Mean fitness 

Finally, the effectiveness of each of modification of ITLBO is investigated. A set of 

convergence characteristics of TLBO variants proposed is shown in Fig. 3.17. It can be 

observed from the figure that there is an improvement in the convergence by each 

suggested modification. Like CSO, the individuals are seemed to be approaching toward 

the promising region in a sluggish manner in TLBO thus it eventually trapped in local 

optima. A better exploration of the search space is observed when SAL is employed in T1. 

In fact, SAL guides learners towards the teacher. However, the exploitation potential is still 

remains poor, and is improved when all learners are subjected to SLP that provides 

directed mutation so identifying better new solution points in the search space. This avoids 

several local trappings, as depicted from the variant T2. In variant T3, the proposed DL 

acts well against the inadequate diversity in population due to inherent greediness of 

TLBO so the algorithm picks up quickly and thus results in better convergence. The 

convergence of the algorithm is further improved in variant T4 which is on account of 

LRW executed by the teacher in TL. Again ISA plays its role for better convergence of the 

algorithm. It can also be observed from the figure that the mean fitness fluctuates with 

iterations whenever DL is employed. However, it is noteworthy that DL shifts the 

paradigm of TLBO and has fruitful impacts on the performance of the algorithm.  
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 (a)  (b) 

Fig. 3.17 Convergence characteristics of each variant of TLBO for (a) Best and (b) Mean fitness 

 3.12.2 STATISTICAL ERROR ANALYSIS 

The statistical error analysis carried is based upon the quality indices such as best, 

worst, mean, standard deviation (SD), coefficient of variation (COV) of the sample and 

mean CPU time. SD is a measure of mean distance of the sample from the sample mean 

whereas COV is SD measures as the percentage of sample mean. However, while 

determining the computational performance of stochastic based optimization techniques, 

the variance from the best sample is more important than the variance from the mean 

sample. Therefore, another statistical quality index, i.e. error from the best (EFB) is 

suggested to observe the solution quality of these techniques. Proposed EFB is given by 

the following expression: 
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  (39) 

Thus EFB is analogous to COV, where the mean value of the sample is being replaced 

by the best value. The quality of solution (QS) of the sampled solutions obtained after 100 

independent trials of proposed variants is presented in Table 3.7. Since the problem of 

optimal allocation of DRs is modelled to maximize the objective function, higher values of 

best, worst and mean fitness and smaller values of SD, COV, EFB and CPU time are 

desired for better performing algorithm. The table reveals that IGA, IPSO, IBA, ICSO and 

ITLBO all have positive footprints by their each respective suggested modification. 

Further, each proposed algorithm is remarkably improved than its respective standard 

model. Among all proposed algorithms, it is BA which has shown greatest improvement, 

but still IBA is at the bottom among all proposed techniques.  ITLBO seems to be performs 

as the best one among all proposed techniques. 
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While considering computational requirements of these algorithms, the table reveals 

that it increases in variants P1, B2, C1 and T4 on account of LRW, which is quite obvious. 

The CPU time increases remarkably in variants B3 and T2 owing to re-initialization and 

the introduction of additional learning phase, respectively, so it is justified. Interestingly, 

the CPU time requirement significantly decreases in the variant G1 which shows fast 

convergence of GA. This is expected as proposed BFC immediately provides better 

solutions at the matting pool. However, the application of ISA reduces CPU time of all 

algorithms to some extent. In overall, the CPU time requirement of IGA, IPSO and ICSO 

are least whereas IBA is the most computationally demanding. 

Table 3.7 Comparison of solution quality for variants of proposed techniques 

Method Variants Best Worst Mean SD COV EFB CPU time (s) 

GA 

GA 1685014.26 1474857.53 1624513.45 42713.70 2.63 4.39 16.95 

G1 1704111.45 1534940.45 1651126.58 38012.13 2.30 3.83 5.79 

IGA 1721075.68 1622454.41 1688656.37 21223.44 1.25 2.25 15.44 

PSO 

PSO 1700703.12 1566645.89 1644846.37 33336.02 2.03 3.82 16.84 

P1 1721534.23 1572469.24 1677974.61 31069.72 1.85 3.11 18.30 

IPSO 1722453.81 1600419.36 1688371.42 25641.03 1.51 2.47 14.26 

BA 

BA 1605801.32 1263505.93 1430295.85 56224.01 3.93 11.48 7.91 

B1 1613418.25 1387625.59 1497893.89 36577.53 2.44 7.51 7.95 

B2 1648985.14 1474875.04 1543403.80 40320.23 2.61 6.85 26.06 

B3 1654194.01 1504767.69 1566538.96 30210.57 1.93 5.60 34.42 

IBA 1721534.23 1585988.93 1654008.53 26593.57 1.61 4.21 32.14 

CSO 

CSO 1679695.49 1543137.47 1624791.14 28659.78 1.76 3.69 10.36 

C1 1688675.98 1591236.42 1639497.14 27602.42 1.68 3.34 16.10 

C2 1712890.48 1631900.47 1676029.57 24922.71 1.48 2.59 16.24 

ICSO 1723787.19 1651019.35 1706996.11 14840.28 0.87 1.30 15.05 

TLBO 

TLBO 1715585.25 1570844.44 1657504.59 30019.44 1.81 3.81 14.42 

T1 1715683.29 1596660.00 1673837.82 24416.36 1.46 2.82 14.07 

T2 1720339.19 1623025.27 1678803.23 23306.75 1.39 2.77 21.77 

T3 1723743.11 1641439.39 1699503.29 18908.18 1.11 1.78 23.13 

T4 1723787.68 1652352.44 1705587.29 18316.49 1.07 1.49 26.85 

ITLBO 1723787.68 1668327.89 1712819.64 9759.32 0.57 0.85 25.53 

  
 (a)  (b) 
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 (c)  (d) 

  
 (e) (f) 

Fig. 3.18 Comparison of the spread of sampled solutions for the variants of (a) GA (b) PSO (c) BA (d) CSO 

(e) TLBO and (f) improved metaheuristics 

In the last, to visualize the effect of suggested modifications in the proposed algorithms, 

the spread of 100 sampled solutions (in the decreasing fitness order) are presented in Fig. 

3.18. Each figure is itself convey the success story about how each of the proposed 

algorithm being developed, as can be depicted by the fact that all sampled solutions 

obtained by the addition of each suggested modification are found to be improved 

subsequently to a good level. Moreover, the solutions generated by all proposed algorithms 

are found to be much better than those generated by their respective standard models. Fig. 

3.18(f) compares the spread of sampled solutions of the all proposed techniques. It can be 

observed from the figure that both ICSO and ITLBO outperform than other proposed 

algorithms, though ITLBO is slightly better while both IGA and IPSO are performing 

equally well and IBA is the one which is rated at the least. It happens because standard BA 

performs inferior than the standard models of GA, PSO, CSO and TLBO. 

Table 3.8 Comparison of solution quality of proposed techniques 

Method Best Worst Mean SD COV EFB 

IGA 1721075.68 1622454.41 1688656.37 21223.44 1.25 2.25 

IPSO 1722453.81 1600419.36 1688371.42 25641.03 1.51 2.47 

IBA 1721534.23 1585988.93 1654008.53 26593.57 1.61 4.21 

ICSO 1723787.19 1651019.35 1706996.11 14840.28 0.87 1.30 

ITLBO 1723787.68 1668327.89 1712819.64 9759.32 0.57 0.85 
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The comparison of the solution quality obtained using proposed techniques is presented 

at a glance in Table 3.8. The quality indices COV and EFB reveal the supremacy of 

ITLBO over other proposed algorithms. It is interesting to observe the COV and EFB of 

IBA relative to other algorithms while keeping one eye on the Fig. 3.18(f). With this 

observation it is not difficult to infer that EFB is a better indicator than COV to judge the 

performance of algorithms. 

 3.13 SUMMARY  

This chapter proposes simultaneous allocation of DRs such as DGs and SCs in 

distribution systems to enhance their performance in terms of annual energy loss reduction 

and node voltage profile enhancement. A piecewise multilevel annual load profile of the 

system is considered and DRs are assumed to be controllable. The DR allocation is one of 

the highly complex combinatorial nonlinear optimization problems of power systems. This 

complex optimization problem can be solved using any stochastic meta-heuristic 

technique. However, the accuracy, efficiency and convergence of these techniques 

adversely affected when applied to solve large dimensional problems which offer 

enormous problem search space. Therefore, improved variants of GA, PSO, BA, CSO and 

TLBO algorithms are developed by suggesting several algorithm specific modifications to 

cope against their intrinsic limitations. Moreover, a probability-based heuristic intelligent 

search algorithm (ISA) is suggested to enhance the accuracy and convergence of the 

optimization techniques. It virtually squeezes the problem search space without loss of 

diversity. The proposed method is applied on the benchmark IEEE 33-bus distribution 

system and the application results show significant improvement in desired objectives. The 

developed algorithms, i.e. IGA, IPSO, IBA, ICSO and ITLBO have been exhaustively 

investigated on this system to solve the problem. The statistical error analysis reveals that 

these algorithms are significantly improved than their respective standard models and other 

existing metaheuristics. The study of results also shows that every suggested modification 

distinctly contributes toward improving the accuracy and convergence of these algorithms. 

The suggested ISA has shown its potential to enhance the overall performance of these 

algorithms. 



CHAPTER 4 

DISTRIBUTED RESOURCE ALLOCATION AND NETWORK 

RECONFIGURATION  

The existing distribution systems are moving towards smart distribution systems to 

achieve larger socio-economic and other non-tangible benefits. The rise of smart grid is a 

boon not only to society as a whole but to all who are involved in the electric power 

industry, its customers, and its stakeholders [1]. Building of such distribution systems 

requires local generation of reactive and active power using DRs such as SCs and DGs. In 

the previous chapter different meta-heuristic techniques have been developed and 

investigated for DR allocation problems under certain assumptions. The aim of the study 

was to explore different solution techniques and to carry out a comparative analysis. For 

the sake of simplicity, the DRs were assumed to be dispatchable and the effects of NR 

were not taken into account. Moreover, the diversity among different class of customers 

has not been taken into consideration. It is important to note that NR is one of the 

established operational strategies to achieve multiple performance objectives such as 

power loss minimization, voltage profile enhancement, congestion management etc. NR 

reallocating loads from heavily loaded feeders to lightly loaded feeders by changing the 

network topology so balances loads among the feeders and thus decreases the real power 

losses and enhance node voltage profiles [211]. Therefore, practical optimal allocation of 

DRs, such as SCs and DGs should take into account NR also. Some researchers [104, 173, 

182, 206-218] employed simultaneous DG allocation and NR to optimize the performance 

of distribution systems. They concluded that engaging DGs and NR simultaneously in 

distribution network provide a significant reduction in feeder power loss and improvement 

in node voltage profile. But, this simultaneous placement strategy is not realistic as the 

solution obtained can demand an alteration in the sites of DRs under certain loading 

condition, as can be seen from [182, 214]. Hung et al. [104] employed different 

combinatorial strategies for DR allocation and NR and have shown that NR should be 

carried before DR placement. This strategy demands lesser capacity of DRs for the given 

distribution system. However, under different loading conditions, optimal network 

topologies may be different resulting in different solutions for DR allocation problem.  

Infact, DR allocation is a problem of planning horizon whereas NR is an operational 

strategy. The practical solution demands that operational strategy should follow planning 

strategy. Therefore, after optimally placing DRs in the distribution network the network 
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may be optimally reconfigured for different loading conditions to further optimize the 

desired objectives. However, while formulating the problem of optimal DR allocation, the 

possible benefits of NR should be kept in the formulation in terms of values of constraints 

so that the optimal solution does not demand overestimated DR capacities. Such 

coordinated initiatives can provide optimum benefits for the network owner and/or the 

network users, and can evaluate the feasibility of investment on DRs versus other 

traditional planning options [8]. With the advancement in control technology, it is possible 

to control the output of DRs if it is required under certain load conditions. The tuning 

(control) of DRs could be another operational strategy which maximizes the benefits of 

investment on DRs though controllable DRs involve extra expenditure. It will be 

interesting to see the effect of controllable DRs on the performance of distribution systems. 

In the existing literature the effect of tuning of DRs on the performance of distribution 

network under different operating conditions has not been thoroughly investigated. 

Another important issue of DR allocation problem is proper modelling of the system loads. 

The amount of actual benefit of DR allocation depends upon the modelling of load profile 

of the distribution system. Several researchers [109, 119, 201, 219] modelled the load 

profile using different mathematical approaches. However, the specific load profile 

associated with different type of feeders/buses of the system has not been duly addressed. 

In practice, distribution system loads are mixtures of different categories such as 

residential, industrial, commercial etc. The distribution system planners provide dedicated 

feeders to different class of customers, so each distribution bus has its own characteristic 

load pattern which varies hourly and seasonally. There exists definite load diversity among 

different class of customers which is reflected not only in the shape of the annual load 

profile and node voltage profiles of the system but also in the peak demand and its 

duration. This may affect the sizing, siting of optimal DRs and thereby the benefits of DR 

allocation.   

In the light of above discussion, this chapter presents a new methodology to address 

simultaneous allocation problem of DRs in radial distribution systems by considering more 

realistic load profile of the system. The proposed strategy is applied on the benchmark 

IEEE 33-bus test distribution system and 83-bus real distribution system. The problem is 

solved using IGA, IPSO, IBA, ICSO and ITLBO developed in chapter 3. The effect of DR 

tuning and NR have been thoroughly investigated and results of the study are presented. 

The consequences of ignoring load diversity among distribution buses on DR sizing and 

expected benefits are also investigated.  
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4.1 ANNUAL LOAD PROFILE CONSIDERING LOAD DIVERSITY AMONG CUSTOMERS 

The proper modelling of annual load profile of the distribution system is one of the most 

important aspects in DR allocation problem. Earlier efforts [74, 87, 90, 95, 198] addressed 

DR allocation problem by modelling the annual load profile of the system using piecewise 

multiple load levels. This provides probably the simplest modelling, but is not realistic. 

This modelling is crucial while dealing with any distribution system optimization problem 

and therefore it should be realistic to a good degree of satisfaction. In practice, a load class 

mix of various types of customers, i.e. residential, industrial, and commercial, should be 

investigated, in which every bus of the system has a different type of load connected to it 

[150]. Therefore, the specific load pattern associated with different distribution buses 

should be considered while modelling annual load profile of the system. However, this 

leads to a definite load diversity that exists among distribution buses. This provides a more 

practical scenario for the optimization problems and thus results in more practical solution 

for distribution system planning and operation. This load diversity plays vital role in 

deciding the shape of the annual load profile including peak load demand on the system 

and its duration, and also node voltage profiles of the system. The load demand of a 

customer varies with time during the day and is also affected by the ambient conditions 

such as temperature, humidity, air pressure, etc. Thus, feeder load profiles also face 

seasonal variations. The daily load profile of distribution feeders can be aggregated for a 

given season by considering hourly variation in load demand in order to reduce the 

simulation time. As shown in Fig. 4.1, a sample load profile of the distribution system can 

be approximated by piecewise linearization modelling for the spring/fall season. It can be 

observed from the figure that the aggregated daily load profile of the system consists of 

several load levels owing to diversities attributed to different class of customers. Similarly, 

the aggregated load profile of the system for other seasons may be determined by 

considering a suitable multiplying factor. The annual load profile of the system thus can be 

obtained by integrating these aggregated load profiles of various seasons of the year. In the 

present work, constant power load model is considered for all classes of customers. 

The problem formulation for the optimal DR allocation and NR problems is presented 

in the following section. 

4.2 PROBLEM FORMULATION 

The problem of simultaneous optimal allocation of DRs is formulated to maximize 

annual energy loss reduction and to enhance node voltage profiles. The distribution 

network is then optimally reconfigured to further optimize these objectives. The proposed 
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approach first determines the optimal number, sites and sizing of DGs and SCs. These DRs 

are assumed to be controllable (tuneable) so that their optimal dispatches are determined 

for each operating state of the system to achieve optimum objectives. As discussed earlier, 

while formulating DR allocation problem, the possible benefits of NR should be kept in the 

formulation in the form of values of constraints so that solutions of DR allocation do not 

demand overestimated capacities of DRs. 

  
 (a) (b)    

  
 (c) (d) 

Fig. 4.1 Aggregate daily load profiles of (a) residential customers (b) commercial customers (c) industrial 

customers and (d) distribution system for spring/ fall season  

The NR is very effective to improve node voltage profiles of distribution systems. 

Therefore, a soft node voltage constraint is proposed to solve DR allocation problem, 

instead of the conventional hard node voltage constraint. For this purpose, a user defined 

minimum node voltage, VminS is suggested for DR allocation formulation and a node 

voltage penalty function λ is proposed to take care of node voltage profile of the system. 

The value of VminS is kept lower than Vmin under the assumption that the NR can improve 

VminS to Vmin. The proposed penalty function imposes certain penalty on the annual energy 

loss reduction whenever the minimum node voltage lie within the range [VminS, Vmin]. The 

philosophy behind suggesting the soft node voltage constraint is that DRs and NR can 

share the responsibility for improving node voltage profiles up to the desired level and as a 

consequence may result in lesser optimal DR sizing. In addition, the proposed soft node 

voltage constraint plays vital role while optimizing the problem using any stochastic meta-
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heuristic technique. First, it allows many tentative solutions for participation in the 

evolutionary process, otherwise these solutions declared infeasible owing to the 

implication of the conventional hard node voltage constraint. This may seriously hamper 

the computation process of optimizing algorithms. Second, in certain situations where the 

distribution feeder voltage profiles sag heavily during initial condition, the stochastic meta-

heuristic techniques may fail even to build up initial population, if the conventional hard 

node voltage constraint is employed. However, these algorithms can be swiftly initialized 

using proposed soft node voltage constraint. In due course of time, the control mechanism 

of these techniques may generate better individuals having better node voltage profiles. 

Thus, proposed soft node voltage constraint facilitates the application of meta-heuristic 

techniques for DR allocation.  

While performing NR, the conventional hard node voltage constraint is used to ensure 

minimum node voltage above certain specified voltage (Vmin). The problem formulation for 

optimal DR allocation and optimal NR are presented in the following section. 

4.2.1 OPTIMAL ALLOCATION OF DRS 

The objective function for the optimal allocation of DRs is formulated as: 

    . . . base DR

Loss LossMax O F E E   (1) 

Where 
base

LossE and
DR

LossE are the annual energy losses without and with DR placement 

and can be determined using following equation assuming piecewise linearized multi-level 

annual load profile of the system.  
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Where, λ is the proposed node voltage penalty function which is given by  
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(3) 

The equation (3) shows that λ is determined by evaluating maximum node voltage 

deviation among all system nodes while considering all load levels, where ∆Vr,j,s, ∆Vi,j,s , 

∆Vc,j,s denotes the voltage deviation of the rth residential node, ith industrial node and cth 

commercial node at jth load level of the sth season. N and L denote the set of system nodes 

and load levels. Node voltage deviation ∆Vr,j,s at rth residential feeder for jth load level of 

the sth season are calculated by proposing (4). Similarly, ∆Vi,j,s and ∆Vc,j,s can also be 

defined.  
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The different constraints used to solve O.F. are defined as below.  

1. Power flow equations 

The sum of the power purchased from utility grid and the total power generated by the 

different sources in the distribution system must be balanced by the local load demand and 

the power loss in the lines. For a radial network, a set of recursive equations are used to 

model the power flow in the network as given by (5)-(9). 
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2. Feeder current constraint  

The current flow in each distribution line must be below or equal to the rated ampacity. 

This imposes feeder current constraints which can be expressed as  

 max ;  n nI I n N    (10) 

3. Bus compensation limit 

The total active and reactive power injected by D Rs at each bus must be within their 

permissible range as defined by  

 ,min ,max ;  DG DG DG

n n np p p n N     (11) 

 SC SC SC

,min ,max ;  n n nq q q n N      (12) 

4. System compensation limit 

The sum of total active and reactive power injected by DGs and SCs in the distribution 

system should be less than nominal active and reactive power demand of the system, 

respectively. For loc number of candidate locations of DGs/SCs, the system compensation 

limit is defined by  
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Equation (15) and (16) prohibits the repetition of candidate sites for DGs and SCs, 

respectively. Since DGs and SCs are commercially available in discrete sizes so are 

modeled by (17) and (18).   

 DG DG;  ,a bloc loc a b N   (15) 

 SC SC;  ,a bloc loc a b N   (16) 

 ;  0,1,2,...,  and DG

n d d dp K P K ndg n N     (17) 

 SC ;  0,1,2,...,  and n b b bq K Q K nsc n N     (18) 

First optimizing the objective function given by (1), the optimal solution obtained 

provides the optimal number, sizing and siting of DRs, while considering the annual load 

profile. Next, (1) is optimized to determine the optimal tuning of these installed DRs, but 

now for each system state separately. For this optimization the sites for DRs are kept freeze 

and their sizing is restricted to that provided by the optimal solution. The additional 

constraints defined to determine optimal tuning of DRs are modelled as below.   
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4.2.2 NETWORK RECONFIGURATION 

The NR problem of distribution systems is solved to minimize feeder power loss and is 

formulated as  

Minimize,    
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Subject to the following constraints. 

1. Radial topology constraint 

The reconfigured network topology must be radial, i.e. with no closed path. Therefore, 

the radiality constraint for the zth radial topology is defined as 

 
( ) 0jФ z 

 
(22) 
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2. Node voltage constraint 

All node voltages Vr,j,s of the residential nodes must be maintained within the minimum 

and maximum permissible limits i.e. Vmin and Vmax, respectively using conventional hard 

node voltage constraint as shown by (23). Similarly, node voltage constraint for industrial 

and commercial nodes can also be defined.  

 min , , max ;  ,r j s rV V V r N j L       (23) 

The other problem constraints used are same as defined by (5)-(10). While solving the 

NR problem, the radial topology constraint is handled using the method of [255]. However, 

while attempting NR problem, loop-wise Branch Priority Lists (BPLs), instead of NPL, is 

required. For this purpose, the given distribution network is configured in mesh topology 

by closing all tie-lines so have as many loops as the number of tie-lines. The branch 

currents are then measured by performing load flow. Each BPL is specific to its loop and 

consists of the set of loop branches and corresponding currents. However, these branches 

are arranged in the descending order of their currents. In this way one independent BPL 

can be obtained for each loop of the distribution network. Now the candidate branches can 

be selected by applying RWS to each BPL by providing maximum priority to the branch 

being placed at the top position in BPLs. While optimizing the problem using proposed 

meta-heuristics, ISA provides more priority to better candidate branches which should be 

open to get radial topologies having less power losses. This causes population of the 

algorithm to flourish with better radial topologies, though maintains adequate diversity. 

This eventually enhances the performance of the algorithm. The proposed method is 

applied on small and large distribution systems and the results of simulations are presented 

and investigated in the following section. 

4.3 SIMULATION RESULTS 

The proposed method for the simultaneous allocation of DRs is applied on the 

benchmark IEEE 33-bus test distribution system [254] and 83-bus Taiwan Power 

Company (TPC) real distribution system [256]. The initial data of these systems are given 

in Table C.1. The detailed data with single line diagrams of the systems may be referred 

from the Appendix E. The load factors and corresponding load durations considered for 

different customers are presented in Table C.2. The load levels 1-9, 10-18 and 19-27 are 

considered for spring/fall, winter and summer seasons, respectively. The system design 

parameters selected for simulations are presented in Table C.3, and the NPLs and BPLs 

used in ISA are given in Table C.4. The algorithm specific control parameters considered 
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for case study 1 are taken same as in chapter 3, and for the case study 2 are given in Table 

C.5. The problem is optimized using the algorithms developed in chapter 3, namely IGA, 

IPSO, IBA, ICSO and ITLBO. As the proposed method is new, its validation with the 

existing literature is not possible. The simulation results obtained are investigated and 

presented. 

4.3.1 CASE STUDY 1: IEEE 33-BUS TEST DISTRIBUTION SYSTEM 

The system is identical as used in chapter 3. The common control parameters selected 

for IGA, IPSO, IBA, ICSO and ITLBO algorithms are shown in Table C.6. The best 

solution obtained after 100 independent trials of these algorithms are presented in Table 

4.1. It may be observed from the table that all proposed algorithms provide same solutions 

of DG and SC placement in terms of number of units, their capacities and locations. This 

shows that all proposed techniques have identical potential to explore optimal solution for 

this system. The total optimal DG capacity obtained is 2173 kW and the total optimal SC 

capacity obtained is 1200 kVAr. Whereas, the active and reactive nominal load demands of 

the system are 3715 kW and 2300 kVAr, respectively. Thus the proposed simultaneous 

placement strategy allows nearly 58% DG penetration and 52% capacitor penetration. The 

network performance is evaluated by implementing this solution and the results obtained 

may be referred from Table C.7. The table shows power losses, minimum node voltage at 

each system state after applying this solution. From the table it has been observed that the 

placement of fixed DRs causes nearly 81 % annual energy loss reduction and improves the 

minimum voltage by nearly 7% as shown in Table 4.1. Thus proposed method provides 

substantial enhancement in objectives with fixed DR operation because the optimal 

solution is with higher DR penetration.  

Table 4.1 Optimal solution for case study 1  

Methods 
Optimal location (Optimal installed capacity) 

A B 
Node (DG  in kW) Node (SC in kVAr) 

IGA, IPSO, IBA, ICSO, ITLBO 
14(494), 24(960), 30(719) 

TC: 2173 

12(300), 25(300), 30(600) 

TC: 1200 
80.79 6.81 

A: Annual energy loss reduction (%), B: Improvement in minimum node voltage (%) 

Table 4.2 System operation with different scenarios 

System operation A B 

Fixed DRs 80.79 6.81 

Tuned DRs 85.71 6.81 

Fixed DRs and NR 85.58 9.60 

Tuned DRs and NR 88.72 9.60 

A: Annual energy loss reduction (%), B: Improvement in minimum Node voltage (%) 
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It is important to investigate the effectiveness of tuneable DRs and NR on the 

performance of distribution systems. For this purpose, the ITLBO is applied at each load 

level separately to optimize the objective function (1). However, the sites for DRs are kept 

the same and their sizing is restricted to their installed capacities. This provides the optimal 

power dispatches of DRs. For each load level, the power losses and node voltage profile 

are determined. The results so obtained for all 27 states of the system are presented in 

Table C.7. Similar exercise is carried for NR with fixed and tuneable DRs separately and 

the results of the study are presented in Table C.8. The consolidated results for different 

system operation pertaining to DR placement and NR are presented in Table 4.2. It can be 

observed from the table that tuning of DRs provides annual energy loss reduction of 85.71 

% which is almost 5 % more than that obtained with fixed DR operation. However, there is 

no improvement in the minimum node voltage. The table also shows that with fixed DRs, 

the NR causes further annual energy loss reduction of almost 5% and also an improvement 

in minimum node voltage from 6.81% to 9.60%. But, when the distribution network is 

optimally reconfigured after optimal DR tuning, an annual energy loss reduction of about 

8% is achieved with the same improvement in minimum node voltage while comparing 

with fixed DR operation.  

From the analysis it appears that with given DR allocation, the NR strategy is more 

effective as compared to the tuning of DRs for improving the annual performance of 

distribution network. Each of the strategy causes equal amount of loss reduction, but NR 

causes improvement in node voltage profiles whereas DR tuning apparently has no effect 

on the same. Thus, the NR seems to be better strategy than DR tuning. It may be noted that 

both tuning of DR and NR are operational strategies. However, relative cost involves in 

tuneable DRs is higher than the cost involves in NR. Looking to the cost and complexity 

involved in DR tuning and NR, they may be avoided by marginally sacrificing the 

performance of distribution systems.  

  
 (a) (b) 

Fig. 4.2 Effect of DR tuning on (a) node voltage profile enhancement (b) feeder power loss reduction 
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 (a)  (b) 

Fig. 4.3 Effect of NR on (a) node voltage profile enhancement (b) feeder power loss reduction 
 

In order to carry out in-depth studies of the effects of tuneable DRs and NR, the 

network performance is analysed for different load conditions (states) of the distribution 

system while considering various scenarios of DR placement and NR. The effect of DR 

tuning on minimum node voltages and feeder power losses that occurred at 27 states 

considered are presented in Fig. 4.2. From Fig. 4.2(a) it can be seen that minimum node 

voltages are hardly affected by DR tuning. This reveals that system node voltage profiles 

may not be much affected by DR tuning. However, power losses are found to be reduced 

substantially during the lightly loaded season of the year (LL-10 to LL-18), as shown in 

Fig. 4.2(b). The impact of NR on the performance of distribution system can be observed 

from Fig. 4.3. The figure shows that NR is very effective for both node voltage 

enhancement and power loss reduction during the season 3 (LL-19 to LL-27), the heavily 

loaded season of the year. But, it is almost ineffective during lightly loaded season of the 

year. Thus DR tuning effectively reduces power losses, but only during light load 

conditions, whereas NR is important to enhance system performance during stringent load 

conditions.  

Further, the impact of DR tuning and NR on node voltage profiles is investigated. For 

simplicity, only 3 critical states (out of total 27 states) of the distribution system are 

considered for this study, i.e.  light load (LL-10), nominal load (LL-8) and the peak load 

(LL-26) of the year. The comparison of node voltage profiles are presented in Fig. 4.4. It 

can be observed from the figure that DR tuning is crucial to suppress node voltages during 

light load conditions. But, it is found to be ineffective at nominal and peak load conditions, 

as can be seen from Figs 4(b) & 4(c) having identical voltage profiles for the system 

operation with fixed and tuneable DRs. However, NR is found to be very effective under 

nominal and peak load conditions, but it is not so for light load conditions. It may be 

concluded from these snap shots that DR tuning and NR behave in different manner 
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against system node voltages; DR tuning is very effective to drop down node voltages 

during light load conditions whereas NR plays crucial role to enhance node voltage 

profiles of the system during nominal and peak load conditions.  

  
 (a) (b) 

 
 (c) 

Fig. 4.4 Node voltage profiles for (a) light, (b) nominal and (c) peak load level 

 
Fig. 4.5 Effect of DR tuning and NR on energy loss reduction for case study 1 

Next, the effectiveness of DR tuning and NR on energy loss reduction is presented in 

Fig. 4.5. Again the three states of the distribution system are considered. The figure shows 

that DR tuning effectively reduces power loss during light load conditions which would 

otherwise increase significantly. It can be concluded from the figure that both DR tuning 

and NR are not very effective for loss reduction during nominal and peak load conditions.  
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Table 4.3 Comparison of solution quality of proposed techniques 

Methods Best Worst Mean SD COV EFB 

GA 794802.18 726130.42 774240.76 15357.97 1.98 3.23 

IGA 795547.82 764317.96 792630.02 4258.69 0.54 0.65 

PSO 794999.76 684172.29 769457.97 15683.66 2.04 3.77 

IPSO 795547.82 750760.91 788048.65 9559.26 1.21 1.53 

BA 724940.41 550640.49 638515.12 34002.09 5.33 12.81 

IBA 795547.82 701397.45 758665.50 20593.82 2.71 5.31 

CSO 787241.53 721601.29 767344.63 13584.11 1.77 3.06 

ICSO 795547.82 770395.83 792159.07 4698.66 0.59 0.72 

TLBO 789755.39 734202.13 777743.89 10695.59 1.38 2.04 

ITLBO 795547.82 786621.66 794637.81 1666.07 0.21 0.24 

 

 
Fig. 4.6 The spread of sampled solutions obtained by GA, PSO, BA, CSO, TLBO, IGA, IPSO, IBA, ICSO 

and ITLBO  

Finally, the comparison of the solution quality obtained when standard and proposed 

algorithms are applied to solve DR allocation problem is presented in Table 4.3. The table 

reveals that all proposed algorithms have been improved significantly than their respective 

standard counterparts. However, the performance of all proposed algorithms is found to be 

satisfactory. The comparison of COVs and EFBs shows that ITLBO is doing well than 

other algorithms for this complex optimization problem. These facts can also be verified 

from Fig. 4.6 showing the comparison of the spread of 100 sampled solutions obtained 

using these algorithms. It can be observed from the figure that despite of several 

improvements suggested in IBA, its performance remains inferior to other improved 

algorithms.  

4.3.2 CASE STUDY 2: 83-BUS REAL DISTRIBUTION SYSTEM 

It is 11.4 kV three-phase balanced Taiwan Power Company (TPC) distribution system. 

The nominal active and reactive load demands of the system are 28.35 MW and 20.70 

MVAr, respectively. The proposed method is applied to this system using IGA, IPSO, 

IBA, ICSO and ITLBO algorithms. For this case study, the population size and maximum 

iterations taken for proposed algorithms are presented in Table C.9 and the optimal 

solutions obtained after 100 trials of these algorithms is presented in Table 4.4. It can be 
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observed from the table that the optimal solutions obtained using these algorithms are 

different for this system. However, the fitness values of these solutions lie within a narrow 

range of 1.25%. This shows that all optimal solutions explored by these algorithms are in 

close proximity. The table also shows percentage annual energy loss reduction and 

improvement in minimum node voltage using these solutions. It can be seen that about 

52% loss reduction and 5.5% improvement in minimum node voltage can be achieved with 

fixed DR operation. Thus different solutions obtained using proposed algorithms enhance 

the performance of the distribution network by almost same margin. This shows that all 

proposed algorithms are doing equally good for this large-scale optimization problem. 

However, the solution obtained using ITLBO is slightly better and is used for further 

investigations. For this solution, the optimal tuning of DRs is determined for each system 

state. The network performance obtained after installing fixed and tuneable DRs in the 

system is presented in Table C.10. Similarly, the network performance is also evaluated by 

optimally reconfiguring the distribution network with fixed and tuneable DRs separately 

and the results obtained are presented in Table C.11.  

Table 4.4 Optimal solutions for case study 2 

Method 
Optimal location (Optimal installed capacity) 

F A C 
Node (DG  in kW) Node (SC in kVAr) 

IGA 

6(1900), 12(2400), 28(1900), 

71(1500), 79(2200) 

TC:9900 

6(1500), 12(1800), 31(1800), 

71(1200), 79(1500) 

TC:7800 

1310097 51.84 5.45 

IPSO 

6(1900), 12(2700), 28(1700), 

33(1900), 79(2200), 

TC:10400 

6(1500), 12(1800), 31(1800), 

71(1200), 79(1500) 

TC:7800 

1307854 51.75 5.45 

IBA 

6(1900), 12(2400), 28(2000), 

53(1600), 79(2200) 

TC:10100 

7(1200), 12(1800), 31(1800), 

71(1200), 79(1500) 

TC:7500 

1294212 51.21 4.95 

ICSO 

6(1800), 12(2500), 28(2000), 

33(1900), 79(2200) 

TC:10400 

6(1500), 12(1800), 31(1800), 

71(1200), 79(1500) 

TC:7800 

1310580 51.86 5.34 

ITLBO 

6(1900), 12(2500), 28(2000), 

71(1500), 79(2200) 

TC:10100 

6(1500), 12(1800), 31(1800), 

71(1200), 79(1500) 

TC:7800 

1310704 51.86 5.45 

F: Fitness of optimal solution (kWh), A: Annual energy loss reduction (%), B: Improvement in minimum node voltage (%) 

The consolidated performance results for various scenarios of DR placement and NR 

are presented in Table 4.5. The table shows that DR tuning provides an annual energy loss 

reduction of about 4% whereas it is about 9% by NR (with fixed DR operation). Both DR 

tuning and NR are seemed to almost ineffective to enhance minimum node voltage. Thus 

these strategies are not much effective to enhance network performance for this system. In 

fact this system is already well configured in base case conditions so NR has small margin 
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available to further enhance the performance of distribution system. Thus DR tuning and 

NR may be avoided for this system by marginally sacrificing the performance. 

Table 4.5 System operation with different scenarios 

System operation A B 

Fixed DRs 51.86 5.46 

Tuned DRs 55.86 5.46 

Fixed DRs and NR 60.82 5.67 

Tuned DRs and NR 61.55 5.67 

A: Annual energy loss reduction (%), B: Improvement in minimum node voltage (%) 

It is important to investigate the impact of DR tuning and NR on the performance of 

distribution system at different load conditions as presented in Fig. 4.7 and 4.8. Fig. 4.7 

shows that DR tuning is not effective to enhance minimum node voltages but it reduces 

power loss during light load conditions. However, NR marginally contributes to enhance 

the minimum node voltages and to reduce feeder power losses, as can be seen from Fig. 

4.8. The impact of DR tuning and NR on node voltage profiles is compared in Fig. 4.9 

showing voltage profiles for light, nominal and peak load conditions. Once again it has 

been observed that DR tuning plays crucial role to suppress node voltages during light load 

conditions whereas NR is enhancing node voltage profiles during remaining load 

conditions. The effectiveness of DR tuning and NR on energy loss reduction is presented 

in Fig. 4.10. The figure shows that DR tuning effectively reduces power loss during light 

load condition alone where NR is not much effective. However, DR tuning is ineffective to 

reduce power loss for nominal and peak load conditions, but NR marginally reduces the 

same, as in case study 1.   

  
 (a) (b) 

Fig. 4.7 Effect of DR tuning on (a) node voltage profile enhancement (b) feeder power loss 

reduction 
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 (a) (b) 

Fig. 4.8 Effect of NR on (a) node voltage profile enhancement (b) feeder power loss reduction  

 

  
 (a) (b) 

  
(c) 

Fig. 4.9 Node voltage profiles for (a) light, (b) nominal and (c) peak load level  

 

 
Fig. 4.10 Effect of DR tuning and NR on energy loss reduction for case study 2 

From the above discussion it may be inferred that even with adequate placement of DGs 

and SCs in the distribution systems, the node voltages may shoot to unacceptable level 

during light load conditions. In such conditions, DR tuning may play an effective role to 
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supress these voltages within acceptable limits. During heavy load conditions the voltage 

of some of the nodes may drop to unacceptable values. These voltages can be improved by 

NR. However, both DR tuning and NR have marginal effect on the power loss reduction.  

Table 4.6 Comparison of solution quality of proposed techniques 

Methods Best Worst Mean SD COV EFB 

GA 1087682.31 927991.53 999388.81 32795.13 3.28 8.66 

IGA 1243712.21 1167878.14 1219097.88 15243.07 1.25 2.33 

PSO 1121970.85 933717.56 1011867.75 44512.76 4.39 10.58 

IPSO 1249611.12 1191359.23 1226234.22 12540.24 1.02 2.12 

BA 853214.36 485588.26 685988.86 81165.01 11.83 21.79 

IBA 1221678.72 1128330.54 1166667.77 23331.04 1.99 4.89 

CSO 1018584.57 743502.23 897903.37 52258.32 5.82 12.91 

ICSO 1249948.88 1206143.67 1237617.83 8049.92 0.65 1.18 

TLBO 1213078.70 1132665.62 1171893.54 22881.40 1.95 3.88 

ITLBO 1250354.72 1235351.28 1244658.23 3817.92 0.31 0.55 

 
Fig. 4.11 The spread of sampled solutions obtained by GA, PSO, BA, CSO, TLBO, IGA, IPSO, IBA, ICSO 

and ITLBO  

In order to investigate the performance of proposed algorithms for large-scale 

optimization problem, their solution quality obtained after 100 independent trials is 

compared with that obtained by applying their respective standard algorithms and the 

results obtained are presented in Table 4.6. The table reveals that the performance of 

standard algorithms suffers badly while subjected to large-scale problems, but all proposed 

algorithms still perform well. However, it is ITLBO which performs well for this large-

scale system also. Fig. 4.11 shows the comparison of the spread of 100 sampled solutions 

generated by these algorithms. It can be clearly seen from the figure that except IBA, all 

other improved algorithms are capable to generate practically comparable solutions. It can 

also be observed that IBA has gained maximum improvement by proposed suggestions yet 

its performance remains inferior to other improved algorithms. The figure shows the 

reason behind the fact that the performance of BA is inferior than GA, PSO, CSO and 

TLBO algorithms. 
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4.4 DISCUSSION 

In this chapter, the problem of optimal allocation of DRs is attempted by giving due 

consideration to load diversity that exists among distribution buses. The strategic location 

of diverse customers in distribution network does not affect annual load demand of the 

system, however, it affects the shape of annual load profile, the peak load demand its 

duration, and also node voltage profiles of distribution feeders. Without these realistic 

concerns of practical distribution systems, serious errors may involve while dealing with 

distribution system optimization problems. Several works [74, 173, 182, 198, 211, 214, 

219], and many others have reported in literature where the aggregate annual load profile 

of the system is modelled by three level piecewise linearization without considering this 

load diversity. In order to understand and appreciate the proposed method, simulations are 

also carried while considering three stepped piecewise linearized annual load profile with 

load durations taken same as in the above cited references. The load factors of 0.6, 1.0 and 

1.4 are considered to represent light, nominal and the peak load demand of the system. The 

DR allocation problem is solved for the case study 1 using ITLBO and the best solution 

obtained may be referred from Table C.12. The comparison of the network performance 

for optimal solutions obtained with and without considering load diversity is presented in 

Table 4.7.  

Table 4.7 Comparison of results and consequences of not considering load diversity 

Network performance index 
Not considering load 

diversity 

Considering load 

diversity 

Annual energy loss reduction (%), 92.67 88.71 

Optimal DG capacity (kW) 2837 2170 
Optimal SC capacity (kVAr) 1800 1200 
False indication for annual energy loss saving (%) 114.77 115.68 

It can be observed from the table that the percentage annual energy loss reduction is 

more (92.67%) while load diversity is not considered, but it involves about 150% more DR 

capacity. However, interesting results are obtained if the solution, without considering load 

diversity, is being implemented in the distribution network where actually the load 

diversity exists. The results so obtained show that the annual energy loss reduction is 

reduced from 92.67% to 71.60%. Thus it provides wrong signal for the actual savings in 

annual energy losses. The table also shows that with this implementation, the false 

indication for the annual energy loss saving to be as high as 115% of the actual savings. 

The detailed calculation for this false indication may be referred from Table C.13. It is 

noteworthy that this false indication is with about 150% overcapacity of DRs. Thus the 
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ignorance of load diversity among distribution buses may originates serious errors in the 

planning and operation of distribution systems.  

The importance of proposed node voltage penalty function can be discussed while 

solving DR allocation problem for case study 2 where the lower limit for hard node voltage 

constraint is kept at 0.9400 p. u. It is noteworthy that the minimum node voltage is being 

raised from 0.8962 p. u. to 0.9470 p. u. by employing both DR tuning and NR. Therefore, 

it can be easily understand that without proposed liquidity (soft node voltage constraint) in 

the voltage penalty function, the meta-heuristic techniques just fail to initialize thus cannot 

be applied. In fact, this liquidity opens the throttle for many individuals of the meta-

heuristics which would otherwise being prohibited from the computational process in lieu 

of conventional hard node voltage constraint. Once the algorithms are initialized, the 

potential of these techniques finds new solution points in the problem search space having 

better fitness values. Thus, the algorithms proceed with so called infeasible individuals by 

imposing little penalty on their fitness values in the view that they would become feasible 

during the evolutionary process. This hypothesis has been successfully implemented to 

obtain fruitful results. Another advantage of voltage penalty function is that it divides the 

whole burden of voltage profile enhancement on DRs and NR. For instance the optimal 

solution for DR allocation for the case study 2 enhances minimum node voltage from 

0.8962 p. u. to 0.9335 p. u. So this solution is selected with a small penalty using proposed 

method. However, this voltage is further raised to 0.9470 p. u. by NR. Instead, higher DR 

capacity is required to raise the voltage up to this mark. But, it will be highly capital 

intensive as DR capacity requirement varies tangentially for every unit rise in system 

minimum node voltage. This shows the importance of proposed method which considers 

NR while formulating DR allocation problem.  

4.5 SUMMARY 

The chapter presents a new method to address the simultaneous allocation problem of 

DRs in radial distribution systems to maximize annual energy loss reduction and to 

enhance node voltage profiles. In real distribution systems, definite load diversity exists 

among distribution buses owing to various types of customers and their seasonal variations 

in load demand. With these concerns, a more realistic annual load profile of the system is 

modelled to solve the DR allocation problem so provide more practical solution. The 

proposed method is applied on the benchmark IEEE 33-bus test distribution system and 

83-bus real distribution system and the problem is solved using IGA, IPSO, IBA, ICSO 

and ITLBO developed in chapter 3. The application results shows that the actual amount of 
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benefits in desired objectives is somewhat reduced while considering more realistic annual 

load profile. Furthermore, the impact of system operation strategies, viz. DR tuning and 

NR have been thoroughly investigated. The simulation results reveal that with adequate 

penetration of DRs, both DR tuning and NR strategies does not seem to be much effective. 

Alternatively, the system operation with fixed DRs and fixed network topology may be a 

better choice to avoid complexities in system operation. Finally the impact of load 

diversity on DR sizing and expected benefits in objectives are also investigated. The results 

of study through some light on the vitality of considering load diversity among distribution 

buses while dealing with DR planning and operation of distribution systems.  



CHAPTER 5 

LONG TERM ALLOCATION OF DISTRIBUTED RESOURCES IN 

DISTRIBUTION SYSTEMS 

The roadmap of future distribution envisions widespread deployment of RESs. The 

integration of RESs such as SPVs and WTs in distribution systems is gaining momentum. 

These energy resources seem to be the only option to a sustainable energy supply 

infrastructure since they are neither exhaustible nor polluting [5]. The renewable energy-

based DGs are mostly with intermittent power output and are non-dispatchable. Most of 

the research work in existing literature assume that DGs are dispatchable and controllable, 

which is not accurate since renewable energy-based DGs are mostly non-dispatchable 

power sources with intermittent power output. However, for short term evaluation of 

performance of DG allocation, DGs may be considered as dispatchable and controllable 

under the assumption that all RESs are supported by energy storage devices. These storage 

devices effectively make RES dispatchable. In the previous two chapters also, DGs were 

assumed to be disptchable as the focus was to evaluate annual performance of distribution 

systems. However, while formulating a long term DG allocation problem, it is not practical 

to assume all DG units as dispatchable power sources. For long term DG allocation 

problem, the intermittent nature of RES needs to be considered. It is not technically 

feasible to integrate non-dispatchable DGs without the support of dispatchable alternative 

energy sources (AESs) such as fuel cells, micro turbines (MTs), biomass unit, etc. Thus, 

feasible DG allocation problem needs to consider a generation mix of different type of 

DGs (dispatchable and non dispatchable). The placement of DG units also needs the 

support of reactive power sources. The lack of attention to reactive power injection at the 

planning stage may lead to potential increase in investment cost and improper allocation of 

DG units [160]. The DGs, with dispatchable and nondispatchable generations may exhibit 

several techno-economic benefits to various stakeholders. However, the actual amount of 

benefits achieved depends whether or not the stochastic nature of load demand is 

considered. In fact, the load demand of the power system is a major source of uncertainty 

in power system planning [109]. Therefore, while dealing with intermittency in power 

generation from RESs, it is imperative to consider the stochastic nature of load demand 

along distribution buses. With these considerations, the complexity of DR allocation 

problem increases. This chapter attempts to address the long term DR allocation problem 

under intermittent nature of RESs and stochastic nature of load demands. 

 



80 
 

 DisCo planners venture to implement new DR planning strategies for their network in 

order to meet the load growth economically, serve their customers with a reliable 

electricity supply, and survive in the competitive electricity market [257]. Generally, the 

main goals of DisCos are the cost minimization and improvement in the performance of 

distribution system while the DG operator’s main aim is to maximize the revenue by 

selling electricity to customers and the grid [258]. The optimal DG sizing obtained by 

considering only technical objectives may lead to higher DG investments and may become 

financial burden to utilities. On the other hand, if the optimal DG sizing has been obtained 

by considering only economic aspects, it may not fulfill the technical performance 

requirements for the current and future load demand [219]. Therefore, a suitable 

methodology is highly desired to handle efficiently techno-economic benefits while 

dealing with planning and/or operation problems of distribution systems. In the planning 

model of DG allocation, several parameters such as capital costs, load growth, market 

prices, fuel price, revenue collection, etc. have to be taken into account. With these 

concerns, the optimal allocation of DRs in distribution systems becomes a mixed-integer, 

hard combinatorial optimization problem and requires appropriate deterministic or 

probabilistic modeling for sizing and power dispatch from these DRs. 

 In this chapter a new methodology is proposed for the optimal allocation of DRs such 

as SPV, WT, MT units and shunt capacitors (SCs) while considering uncertainties and 

variability in load and renewable generations. The uncertainties in load and generation are 

effectively handled by proposing a deterministic uncertainty set rather than a probability 

distribution of uncertain data which is very difficult to obtain. The optimum sizing and 

siting problem of DRs is first solved to maximize net present value (NPV) of the project 

while considering various cost terms pertaining to capital investment on DRs, their 

operation and maintenance cost, emission charges and the revenues generated from 

customers and grid transaction. The optimal tuning of DRs is then evaluated for their day-

ahead optimal scheduling by considering several techno-economic objectives. The overall 

methodology is investigated on the bench mark IEEE 33-bus test distribution system [254] 

and results of investigations are presented. The impact of network reconfiguration as 

proposed in chapter 4 has also been investigated.    

 5.1 MODELLING OF INTERMITTENT POWER GENERATION AND STOCHASTIC LOAD 

DEMAND 

The accuracy of DR planning solution in uncertain environment depends mainly upon 

the handling of uncertain data of load and generation, the number of system states 
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considered and the modelling of load profile of the system. In order to deal with the 

uncertainty of load and generation, different methods have been proposed in literature such 

as Monte Carlo Simulation (MCS) [152, 225], analytical methods [119, 179], probabilistic 

methods [5, 109, 171, 220], approximate methods [10, 221, 222, 259] and fuzzy set theory 

[260], etc. However, these methods may exhibit some limitations depending upon the 

nature of the problem. MCS may be computationally demanding, analytical methods are 

inaccurate on account of unrealistic mathematical assumptions, probabilistic methods are 

arduous with dynamically changing system states. Though approximate methods are free 

from these limitations, but when several  load  levels  are  considered, it requires  

significant  computational  time which  generally  makes  their  use  impractical [86], 

especially with the involvement of large number of input random variables, the number of 

simulations could be even greater than in the MCS [261]. Moreover, in above mentioned 

methods the process of modelling uncertainty is based either on the known statistical data 

or on the known probability distribution function of input variables which is usually very 

difficult to obtain.  

Furthermore, the stochastic nature of wind speed and solar irradiance data requires 

careful modelling to minimize the prospective errors that would otherwise affect the 

solution of DR planning. The degree of accuracy also depends upon how many system 

states being considered for simulation. The planning horizon considered for DR allocation 

is usually spanning around 20-25 years. Therefore, the selection of total system states 

should be suitably trade-off between accuracy and computation time incurred by the 

solution technique. In Ref. [179, 223, 262] total 24 system states have been considered to 

represent an average day of the year. This simplified modelling however ignores seasonal 

variations in load and power generation and also load diversity among different 

distribution buses. So a practical planning solution may not be expected. Therefore, a more 

accurate modelling is desired by considering adequate number of system states that also 

taken in to account the diversity in load and generation among system buses. 

In this chapter a different approach is adapted to address load and generation 

uncertainties by generating a more realistic deterministic uncertainty set. This deterministic 

uncertainty set does not require a probabilistic distribution of uncertain data. Moreover, the 

load data set also taken into account the load diversity among different type of customers 

as considered in chapter 4.  
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 5.2 PROPOSED UNCERTAINTY MODEL  

Recently, Wang et al. [223] introduced polyhedral uncertainty sets to deal with the 

uncertainty of intermittent generations from RESs and the stochastic load demand. They 

claimed that these polyhedral uncertainty sets require limited information such as the 

mean, lower and upper bounds of the uncertain data which are easier to obtain from the 

historical data or estimated with certain confidence intervals in practice. The authors 

admitted that the degree of uncertainty has to be adjusted taking into account the trade-off 

between the robustness and conservativeness of the solution. However, the selection of 

data spread (DS) and the budget of uncertainty (BOU) is a difficult task. These parameters 

have been considered constant in [223] while generating synthetic data for load demand or 

power generation at system buses so it may lead to conservative solution. Moreover, the 

results may be affected seriously if both DS and BOU considered are either overestimated 

or underestimated. In fact, this spread must be made self-adaptive with the prevailing 

conditions of generation/load demand on system buses. Therefore, new polyhedral 

uncertainty sets are proposed which requires historical data of a year only. The annual 

information so available on hourly basis is segmented into twelve segments, one for each 

month. The hourly mean and SD of the monthly data is used to generate proposed 

polyhedral uncertainty sets. In the proposed modelling, DS and BOU depend upon the 

mean and SD of the data set. The proposed method is based upon the facts such as the 

annual data for load, solar insolation and wind speed are available, wind speed and solar 

insolation remains constant for the particular hour at distribution buses. And, the annual 

load growth rate, annual inflation rate, wind speed and solar insolation do not increase 

during the planning horizon.  

, ,

ldr

y m tWThe polyhedral uncertainty set for the load demand of residential node n at time t 

month m of the planning horizon Y is proposed as. 

 , , , , , ,, , , , , , , , , , , , , , , , , , , , , , , , , ,

, , , , , , , , ,

: ;  ,  ,  

ˆ ˆ ˆˆ ˆ. . 

ldr ldrldr ldrldr ldr ldr ldr ldr ldr ldr ldr
n y m t n y m ty m t n y m t n y m t n y m t r n y m t n y m t n y m t n y m t n y m t

ldr ldr ldr ldr

n y m n y m n y m n y m n

W R n N k k

s t k k

         

    

         

    ,

ldr

y m

 (1) 

Where, ω-terms denote available data and χ-terms denote the synthetic data to be 

generated. 

The DS for the load demand of node n at time t for month m of the year y is described 

, , ,, , , ,  
ldrldr
n y m tn y m t  

  
by the interval , say for the residential node. 
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The uncertain load demand at the node n at time t for month m in year y is constrained 

, , , , , ,( )ldr ldr

n y m t n y m tk  , , ,

ldr

n y m tby the DS . Where, is the SD of the hourly load demand over the 

month m for the residential node n at time t in the planning year y. Higher the load 

, , ,

ldr

n y m tdiversity, larger will be the value of and vice-versa. Thus DSs at various system buses 

become self-adaptive. The synthetic load data so generated is further constrained by 

proposing BOUs. This has been also made self-adaptive by employing mean values of 

, , ,

ldr

n y m t , , ,

ldr

n y m t , ,
ˆ ldr

n y m , ,
ˆ ldr

n y m
, , , ,

ˆ ˆ[ ]ldr ldr

n y m n y mk and , i.e. and , respectively. So BOU is suggested as . In 

proposed modelling, DS and BOU are generalized by employing the user defined 

coefficient k. In this work it has been taken as 1.0. Similarly, DSs and BOUs are defined 

for the industrial and commercial buses and therefore the polyhedral uncertainty sets for 

the industrial and commercial customers may be defined as 

 , , , , , ,, , , , , , , , , , , , , , , , , , , , , , , , , ,

, , , , , , , , ,

: ;  ,  ,  

ˆ ˆ ˆˆ ˆ. . 

ldi ldildi ldildi ldi ldi ldi ldi ldi ldi ldi
n y m t n y m ty m t n y m t n y m t n y m t i n y m t n y m t n y m t n y m t n y m t

ldi ldi ldi ldi

n y m n y m n y m n y m n

W R n N k k

s t k k

         

    

         

    ,

ldi

y m

 (2) 

 , , , , , ,, , , , , , , , , , , , , , , , , , , , , , , , , ,

, , , , , , , , ,

: ;  ,  ,  

ˆ ˆ ˆˆ ˆ. . 

ldc ldcldc ldcldc ldc ldc ldc ldc ldc ldc ldc
n y m t n y m ty m t n y m t n y m t n y m t c n y m t n y m t n y m t n y m t n y m t

ldc ldc ldc ldc

n y m n y m n y m n y m n

W R n N k k

s t k k

         

    

         

    ,

ldc

y m

 (3) 

In the similar way, the uncertainty sets for power generation from SPV and WT units 

may also be defined as presented below. 

 , , , , , ,, , , , , , , , , , , , , , , , , , , , , , , , , ,

, , , , , , , , ,

: ;  ,  ,  

ˆ ˆ ˆˆ ˆ. . 

SPV SPVSPV SPVSPV SPV SPV SPV SPV SPV SPV SPV
n y m t n y m ty m t n y m t n y m t n y m t n y m t n y m t n y m t n y m t n y m t

SPV SPV SPV SPV

n y m n y m n y m n y m n y

W R n N k k
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         

    

         

    ,

SPV

m

  (4) 

 , , , , , ,, , , , , , , , , , , , , , , , , , , , , , , , , ,

, , , , , , , , , ,

: ;  ,  ,  

ˆ ˆ ˆˆ ˆ. . 

WT WTWT WTWT WT WT WT WT WT WT WT
n y m t n y m ty m t n y m t n y m t n y m t n y m t n y m t n y m t n y m t n y m t

WT WT WT WT WT

n y m n y m n y m n y m n y m

W R n N k k

s t k k

         

    

         

   

  (5) 

The unique feature of the proposed polyhedral uncertainty set is that it automatically 

considers the diversity in load or generation at different system buses. For the instance, the 

load diversity factor is smaller for commercial customers whereas it is pretty high for the 

residential customers. Therefore, DSs and BOUs obtained will be smaller for commercial 

and relatively larger for the residential customers. Similarly DSs and BOUs will be more 

for WTs than SPVs. Thus, the proposed method provides less conservative solutions for 

DR planning and operation. The flow chart for generating synthetic data is shown in Fig. 

5.1.  
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Fig. 5.1 Flow chart for the generation of synthetic data  

  
Fig. 5.2 Representation of synthetic data generated for SPV power generation  

A sample for the synthetic data generated for the power generation from SPV unit is 

shown in Fig. 5.2. It can be observed from the figure that DSs are varying hourly on 

account of their self-adaptive feature; it remains zero whenever there is no generation, 

remains smaller during morning and evening hours, but becomes wider during the 

afternoon hours due to more solar insolation. This self-adaptive feature is of great 

significance while dealing uncertainty in load demand at various system buses as each bus 

has its own characteristic load pattern due to diversity of load demand among distribution 

buses. This is usually not the case while dealing with uncertainty of the power generation 

from RESs, or otherwise, the proposed uncertainty model easily takes care as in case of 

uncertainty of load demand at system buses.    
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 5.3 PROBLEM FORMULATION 

The aim of the long-term DR allocation planning problem is to determine the optimal 

number, locations, sizes and mix of DGs and SCs to optimize several techno-economic 

objectives while considering several network operational constraints. The problem is 

solved over the planning horizon which is decided by the useful life of RESs such as SPVs 

and WTs, AES like MTs and SCs. Since the distribution system consists of dedicated 

feeders to cater residential, industrial and commercial loads, the power generation from 

RESs and stochastic load demand of each system bus is modelled using proposed 

uncertainty sets. The problem is formulated to maximize the net profit by subtracting the 

capital investment on DRs and other variable costs relevant to DR operations from the 

amount of revenue generated by the sale of electricity to customers and the grid over the 

given planning period. Net present Value (NPV) based approach is used to determine the 

net profit. Thereafter, DR operation problem is solved to determine the day-ahead optimal 

scheduling of MTs and SCs with the available power generations from RESs and given 

load demand. The objective considered is to maximize the hourly net profit, i.e. the 

difference between the net revenue generated from the sale of electricity to the customers 

and the grid and the variable charges incurred to operate DRs, while maintaining better 

node voltage profiles. The DR planning problem is formulated in the following section. 

 5.3.1 DR PLANNING PROBLEM 

For a planning horizon of Y years, the NPV of capital investment cost, variable cost of 

DRs and the net revenue generated by the sale of energy to the customers and/or grid is 

evaluated. The objective function is therefore formulated to maximize net profit of DR 

allocation project in terms of NPVs as defined below: 

 &. . . rev inv o m fl emiMax O F C C C C C      (6) 

Where 

, ,

, , , , , , , , , , , , , , ,

1 1 1 1 1 1

1
;   

1

yY M T N N N
sg suplus bg deficient sc ldr ldi ldc

rev y y m y y,m t n y m t y y m t n y m t y y m t n y m t y

y m t n n n

C D C p H C p H C p H
dr

 
     

    
          
       (7) 

, ,

suplus

y,m t npThe surplus power generated from DGs is sold to the grid, whereas the deficiency 

, , ,

deficient

y m t npin generated power  is purchased from the grid. The net revenue cost is obtained by 

ythe summation of this transaction of energy and the energy sold to the customers. is the 

present worth factor depends upon the discount rate dr.   

 
1

N
SPV SPV WT WT MT MT SC SC

inv inv n inv n inv n inv n

n

C C IC C IC C IC C IC


     (8) 



86 
 

This is the capital investment cost of DRs which includes different initial costs against 

purchase, construction, installation, testing, etc.  

& , , , , , , , , , , , , , , , , , , , , ,

1 1 1 1 1 1 1

Y M T N N N N
SPV SPV SPV WT WT WT MT MT MT SC SC SC

o m y y m y y m t n y m t y y m t n y m t y y m t n y m t y y m t n y m t

y m t n n n n

C D MC p H MC p H MC p H MC q H
      

  
     

  
         (9) 

This is the cost incurred in the operation and maintenance of DRs, and the fuel and 

emission cost incurred in total energy generated by MTs is given by: 

 , , , ,

1 1 1

Y M N
fl MT MT

fl y y m y y m n y m

y m n

C D C p H
  

  
   

  
                (10)

 

 

, , , ,

1 1 1

Y M N
emi MT MT

emi y y m y y m n y m

y m n

C D C p H 
  

  
   

  
       (11)

 

And λ is the node voltage penalty function as defined in chapter 4. 

Different technical and operational constraints are: 

 1. Power flow constraints 

Non-linear power flow equations (12)-(17) are used for load flow. 

, ,

, , 1 , , , , , , 1 , , 1 , , 1 , , 1;  , , , ,loss ldr ldi ldc SPV WT MT

y m n y m n y m n y m n y m n y m n y m n r i cP P P p p p p y Y m M n N N N                (12) 

, ,

, , 1 , , , , , , 1 , , 1;  , ,, , ,loss ldr ldi ldc SC

y m n y m n y m n y m n y m n r i cQ Q Q q q y Y m M n N N N             (13)
 

2 2
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 2. Nodal DR capacity constraint 

Nodal active/ reactive compensation limits of DRs are kept within pre-specified limits. 

, , , , , ,

,min , , ,max ;   , ,SPV WT MT SPV WT MT SPV WT MT

n y m n np p p y Y m M n N         (18)

SC SC SC

,min , , ,max ;   , ,n y m n nq q q y Y m M n N         (19)
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 3. DR penetration limit constraint 

The sum of total active and reactive power injected by DGs and SCs at all candidate 

nodes should be less than nominal active and reactive power demand of the distribution 

system, respectively. 

, ,

, , ;   , ,SPV WT MT

y m n Dp p y Y m M n N       
 

(20) 

, , ;   , ,SC

y m n Dq q y Y m M n N        (21) 

 4. Feeder current constraint 

Feeder currents should be maintained within specified thermal limits. 

max

, , ;   , ,y m n nI I y Y m M n N        (22) 

The individual structure used in DR planning problem is defined as shown in Fig. 5.3. 

1 1 1 1 1 1 1

SPV sites SPV sizing WT sites WT sizing MT sites MT sizing

... ... ... ... ... ... ...
DG DG DG DG DG DG SC

SPV SPV SPV SPV WT WT WT WT MT MT MT MT SC SC

N N N N N N Nloc loc p p loc loc p p loc loc p p loc loc 1

SC sites SC sizing

...
SC

SC SC

Nq q
 

Fig. 5.3 Individual structure for DR planning problem 

 5.3.2 DR OPERATION  

The solution obtained from DR planning stage provides optimal number, sizing and 

sites for DR allocation. With this optimal DR installation, the optimal dispatches from 

MTs and SCs have to be determined while considering each system state, say one hour. 

Each system state is characterized by certain intermittent power generation from installed 

RESs and load demand among distribution buses which have been handled using proposed 

uncertainty sets. Therefore, the objective function is formulated to maximize the net profit 

of the system state by considering net revenue generated and the variable charges incurred 

for DR operations. The objective function for DR operation problem is formulated as 

follows: 

&. . . rev o m fl emiMax O F C C C C     (23)
 

Where, Crev, Co&m, Cfl and Cemi are the revenue collection from grid and/or customer, 

operation and maintenance cost, fuel cost and emission cost and are defined as given 

below.  

 
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24

1

emi MT

emi y st

st

C C p


   (27) 

Subject to the power flow constraints as defined in DR planning problem. The system 

node voltages and line currents must be maintained within prescribed limits for each 

system state st which are constrained, as in chapter 4. The maximum nodal compensation 

limit of MTs and SCs at each state is defined by their installed capacities as obtained from 

DR planning. 

0 MT MT

st insp p   (28) 

0 SC SC

st insp p   (29) 

MT

insp SC

insp
Here and are the obtained installed capacities of MTs and SCs. The individual 

structure used for optimization is defined as shown in Fig. 5.4. 

1 1

MT control setting SC control setting

...  ...
DG SC

MT MT SC SC

N Np p q q
 

Fig. 5.4 Individual structure for DR operation problem 

 5.4 SIMULATION RESULTS AND DISCUSSION 

The proposed method is investigated on the benchmark IEEE 33-bus test distribution 

system [254]. The initial system data for this system may be referred from Table C.1. The 

division of residential, industrial and commercial nodes can be referred from Table C.3. 

Various parameters used to calculate the investment and maintenance cost of different 

DRs, fuel and emission charges of MTs, and the purchase and selling charges of electric 

energy are shown in Table 5.1. These cost parameters and energy prices shown in the table 

are for the first year of the planning period. The intermittency in power generation from 

MT and SCs is ignored for simplicity. The design parameters considered for the 

distribution system is presented in Table 5.2. In the view of long planning horizon for DR 

allocation project, the minimum and maximum bounds of node voltages are considered as 

0.80 and 1.06 p.u., respectively. The annual rate of increase for these monetary parameters 

is taken as 6% and remains constant during the planning horizon of 20 years. The annual 

discount rate is taken as 5%, and the annual growth of the load demand for all categories of 

customers is assumed to be constant at 3%. The other design parameters related to 

maximum and minimum DR penetration at single node are also given in the table. The 

discrete increment size for SPV, WT and MT units is set as 30 kW. It is assumed that SC 

banks are available in the size of 300 kVAr having tap setting available after discrete 

interval of 100 kVAr.  
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The hourly generation data considered for SPVs and WTs may be referred from [263] 

and [264], respectively. This data is unitized to obtain hourly generation factors which are 

then used to generate the synthetic data using proposed polyhedral uncertainty sets. 

Similarly, the polyhedral uncertainty sets are determined for load demand among 

distribution buses. The synthetic data for load and renewable generations are obtained 

using Eqns. (1)-(5). While considering load data for the consecutive years, the annual load 

growth factor is taken into account before generating the synthetic data. The ITLBO 

developed in chapter 3 is employed to solve both planning and operation problems of DR 

allocation. The population size and maximum iterations for ITLBO are set to 10 and 200, 

respectively. The other algorithmic specific parameters of the technique may be referred 

from Table 3.3 of chapter-3. The proposed algorithm is developed using MATLAB
®
 7.10 

and simulations have been carried on a personal computer of Intel i5, 3.2 GHz, and 4 GB 

RAM. 

Table 5.1 Parameters for calculating corresponding costs 

Parameter Value Parameter Value 

($ / kW)WT

invC  1882 ($ / k VArh)SC

yMC
 

0.0002 

 

$ / kW)(SPV

invC  2125 ($ / kWh)fl

yC  0.0335 

($ / kW)MT

invC  2293 ($ / kg)emi

yC  0.02 

$ / kVAr( )SC

invC  40 / ($ / kWh)sg sc

y yC C  0.059 

($ / kWh)WT

yMC  0.01 ($ / kWh)bg

yC  0.055 

($ / kWh)SPV

yMC  0.01 (kg/ kWh)  0.003 

($ / kWh)MT

yMC  0.012 - - 

Table 5.2 Design Parameters for test distribution system   

Parameter Value Parameter Value 

dr (%) 5 NDG /NSC 5/5 

Y 20 
SC

,minnq SC

,maxnq/  (MVAr) 0/1.2 

IR_C (%) 6 ,min ,max/ (MW)SPV SPV

n np p  0/7.5 

IR_L (%) 3 ,min ,max/ (MW)WT WT

n np p  0/6 

Vmin (p.u.) 0.80 ,min ,max/ (MW)MT MT

n np p  0/0.6 

Vmax (p.u.) 1.06 Qb/ Pd (kVAr/kW) 300/30 

The DR planning problem is solved to determine the optimal installed capacities and 

siting of DRs. The results so obtained are employed to solve DR operation problem which 

provides day-ahead scheduling of installed MTs and SCs. Finally, the distribution network 

is optimally reconfigured for each system state to further enhance the performance of 
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distribution system. The results obtained are presented and analysed in the following 

sections. 

 5.4.1 DR PLANNING 

The DR planning problem is solved for 20 years to determine the optimal installed 

capacities and siting of DRs. The best solution obtained after 50 independent trials of 

ITLBO is presented in Table 5.3. The table shows the optimal sites and sizing of mix-DR 

model. It can be observed from the table that the optimal installed capacity obtained for 

SPV, WT, MT and SC units are 7470 kWp, 6000 kWp, 570 kW and 1500 kVAr, 

respectively. The table also shows that the optimal sites for DGs and SCs are not the same. 

For this solution, various costs associated with the planning horizon are presented on the 

basis of NPVs for comparison in Table 5.4. From the table it may be observed that NPV of 

the project is 8.47 million US$. It is noteworthy that the NPV of the profit without DRs for 

the same planning horizon is only 0.55 million US$. This shows that proposed DR 

planning is highly profitable. The NPV of total revenue collection is 49.43 million US$ out 

of which about 77% revenue is collected from the customers and the remaining 23% is 

collected from the grid. The table also shows that the capital investment and total variable 

charges of DRs are about 57% and 25%, respectively of the NPV of total revenue 

collected.  

Table 5.3 Optimal solution of the DR planning problem 

SPV WT MT SC 

Node 
Capacity 

(kWp) 
Node 

Capacity 

(kWp) 
Node 

Capacity 

(kW) 
Node 

Capacity 

(kVAr) 

2 5670 2 4050 16 330 4 300 

29 1800 7 1950 32 240 14 300 

- - - - - - 30 900 

Table 5.4 Various cost items during the planning period (in million US$)  

Total revenue from 

customers 

Total revenue from 

grid 

Total 

revenue 

Total variable 

cost 
Capital cost Net profit 

37.86 11.57 49.43 12.43 28.53 8.47 

The annual power generation from RESs and MTs are shown in Fig. 5.5. The figure 

shows that the annual generation from SPVs remains almost constant during the planning 

horizon, but this is not true for WTs. The mean generation from SPVs, WT and MTs are 

found to be 15.42, 18.25 and 5.00 million units, respectively. The mean capacity factor for 

SPVs and WTs are thus obtained as 0.2357 and 0.3472, respectively. 
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Fig. 5.5 Annual power generations from non-diapatchable and dispachable DGs  

The annual energy delivered to customers during the planning period is shown in Fig. 

5.6 which increases from 21.54 to 37.96 million units during the planning horizon. This 

growth in energy demand is about 176% on account of constant load growth model 

adapted. The annual revenue collected from the customers and the grid is shown in Fig. 

5.7. The figure shows that the annual revenue increased from 2.28 to 6.72 million US$, 

which shows a growth of about 295%. This happens due to the consideration of annual 

increase in energy charges. The annual variable charges incurred for various DRs are 

compared in Fig. 5.8. It can be observed from the figure that variable charges are 

significant for MTs as it involves fuel charges which are much more as compared to the 

O&M charges of SPVs and WTs. Therefore, total variable charges increases from 0.57 to 

1.71 million US$ till the end of planning period. 

  
       Fig. 5.6 Annual energy supplied to customers                   Fig. 5.7 Annual revenue collection from grid and customers 

  
Fig. 5.8 Annual variable charges for DRs                    Fig. 5.9 Annual profits of the project                                                              
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Annual profits in million US$ which could be earned from this DR planning project are 

presented in Fig. 5.9. The figure shows that the annual profit remains negative for the first 

6 years and the project starts earning profit from the seventh year of the planning period. 

This shows financial viability of the project. The annual energy loss reduction due to DR 

placement is shown in Fig. 5.10. It can be observed from the figure that significant loss 

reduction occurs every year. The figure shows that both active and reactive energy loss 

reduction increases during initial years and touches about 76% at 12
th

 year. Thereafter 

become more or less constant and finally marginally decrease to about 72%. This shows 

that the effectiveness of DRs is at its maximum during middle period of planning. The 

reason behind the fact is that load grows every year, but DR capacity is fixed, so the 

effectiveness of DRs will be at maximum during middle period of the planning horizon.  

 
Fig. 5.10 Percentage annual active and reactive energy loss reduction after DR allocation  

The comparison of grid transactions for active and reactive energy, before and after DR 

allocation is presented in Fig. 5.11. The net annual active energy transaction with grid is 

negative throughout the planning period as shown in Fig. 5.11(a). It implies that net active 

energy transaction to the grid is positive every year. However, this transaction has a 

decreasing trend with annual increase in load demand. In the last year, this transaction 

becomes negative with a small value. However, the same is not true for annual reactive 

energy transactions as shown in Fig. 5.11(b). The figure shows that every year, the 

transaction of reactive energy increases in proportional to increase in load demand. In fact, 

the optimal capacity of SCs is limited by the lightest load conditions prevail during the 

planning horizon to avoid over voltages. However, a wide difference exists between the 

minimum and maximum loading of the distribution network while considering long-term 

DRs planning. Therefore, the optimal capacity obtained for SCs is much less than that of 

DGs so the solution is demanding more reactive energy from the grid for every progressive 

year.  
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 (a) (b) 

Fig. 5.11 Comparison of annual (a) active and (b) reactive energy transaction with grid before and after DR 

allocation  

It is known that one of the objectives of the optimal DR allocation is peak load shaving. 

The percentage peak power loss reduction after DR allocation is shown in Fig. 5.12. The 

figure shows that there is more than 50 % reduction in peak power loss highlighting the 

importance of peak shaving by DR allocation.  

 
Fig. 5.12 percentage peak power loss reduction  

Finally, the impact of DRs on node voltage profiles is shown in Fig. 5.13. The figure 

reveals that DRs substantially improve minimum node voltage profiles during peak hours 

and their effectiveness increases as the load demand increases. The minimum node voltage 

during the whole planning period is found as 0.8834 p.u. However, this voltage is 

improved by optimal tuning of DRs and NR.  

 
Fig. 5.13 Comparison of annual minimum node voltage before and after DR allocation 
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 5.4.2 DR OPERATION   

After obtaining the optimal solution for long-term planning of DR allocation, the 

optimal tuning of MTs and SCs are determined for each concerned state of the distribution 

network. For this purpose the algorithm runs again to determine the day-ahead optimal 

scheduling of MTs and SCs while considering intermittency and variability in the 

generation from RESs and load demand. The best solution obtained after 50 independent 

trials of the algorithm is considered. A sample result obtained for July 1
st
 of the first year 

and Jan 1
st 

of final year of the planning period are presented in Table D.1 and Table D.2. 

The tables show the load factors to simulate stochastic load demand of all categories of 

customers and the energy generation from RESs on hourly basis. These months have been 

considered as the mean solar insolation is at maximum in the month of July and mean wind 

speed is at maximum in the month of January. With these load and generations, the 

economic performance of the system is evaluated for each system state as shown in Table 

D.3 and Table D.4.  These tables show the revenue collected from the grid and customers, 

net revenue and variable charges incurred to operate DRs for each hour. These variable 

charges include O&M charges of DRs and fuel charges of MTs. The hourly profit so 

obtained is also presented in tables. The consolidated economic performance obtained for 

day-ahead scheduling of DRs for the first and final year is presented in Table 5.5. The table 

shows that in the first year, the revenue paid to the grid is smaller but negative (energy 

being exported to the grid) which is due to over generation from DGs. However, fixed 

charges are very high owing to the very first year of the planning, so net daily profit is 

negative. But, in the final year of planning the profit is very high despite importing energy 

from the grid.  

Table 5.5 Economic performance of the system for day-ahead scheduling of DRs 

Month,Year 

Revenue from 

customers 

(US$) 

Revenue paid 

to grid 

(US$) 

Net revenue 

(US$) 

Variable 

charges 

(US$) 

Fixed 

charges 

(US$) 

Net profit 

(US$) 

July, First 4677.98 -540.62 5218.59 1374.66 6283.56 –2439.62 

Jan, Final 26207.25 2756.81 23450.57 5618.54 6283.56 11548.47 

The graphics about the hourly active energy generation from various DGs, total 

generation from DGs and active energy demand on the system is shown in Fig. 5.14. It can 

be seen from the figure that power generation from SPVs and WTs is somewhat 

complementary to each other. This is beneficial as it tends to reduce grid transactions. It is 

noteworthy that due to intermittent nature of RESs, the power demand may or may not be 

supplied by DGs alone even when they are capable to meet the peak load demand. This 

leads to the necessity of energy storage components in distribution systems while 



95 
 

integrating with RESs. Fig. 5.15 shows hourly reactive energy generation from SCs and 

hourly reactive energy demand on the system for the first and last year. It can be seen from 

the figure that capacitor tuning is required during initial years, but not much required 

during final years for the reasons discussed in the section 5.5.1. 

  
 (a) (b) 

Fig 5.14 Hourly SPV, WT, MT, total generation and active load on the system in (a) first year (b) 20
th

 year  

  
 (a)  (b) 

Fig 5.15 Hourly reactive energy generation from SCs and reactive load on the system in (a) first year (b) 20
th

 

year  

The hourly transactions of active and reactive energy from the grid are shown in Fig. 

5.16 and 5.17, respectively. It can be observed that grid transactions are reduced 

significantly by DR allocation. Moreover, the active power is exported to the grid during 

afternoon hours. It happens due to surplus power generated from SPVs. However, this 

transaction decreases for the last year on account of increased load demand. It is found that 

the grid transaction of active energy is -9.87% of the demand during the day of the first 

year, i.e. net energy flow is toward the grid. However, during the day of the final year, the 

grid import is reduced by 89.16% of the active energy demand.  On the other hand, the 

reactive energy import from the grid of these days is reduced by 62.7% and 44.88%, 

respectively. It is observed that the grid transaction for reactive energy never becomes 

negative so over voltages cannot develop during the day for this optimal placement of SCs.  
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 (a) (b) 

Fig. 5.16 Comparison of active energy grid transaction before and after DR allocation in (a) first year (b) 20
th

 

year 

  
 (a)  (b) 

Fig. 5.17 Comparison of reactive energy grid transaction before and after DR allocation in (a) first year (b) 

20
th

 year 

The Table 5.6 shows energy equations for the day-ahead scheduling of DRs. It can be 

seen that there is a surplus active energy generation of about 11% from DGs in the first 

year but the deficiency is only about 9% in the final year. This indicates that an average 

daily grid transaction remains around 10% of the load demand during the planning horizon. 

So the solution for DR allocation seems to be good for micro-grid applications. The table 

also shows higher figures for the deficiency in reactive energy, which is quite obvious. 

When this deficiency is supplied through the grid, the voltage profiles of the system 

deteriorate, so need remedial measures.  

Table 5.6 Energy equations for day-ahead scheduling of DRs 

The improvement in node voltage profiles by DR allocation is presented in Fig. 5.18. 

The figure shows the improvement in minimum node voltage for each state of the day. It 

can be observed from the figure that significant improvement is achieved by DR allocation 

which is equally true for the first and final year. All node voltage profiles are satisfactory 

Month,Year Active energy 

generation from 

DGs 

(kWh) 

Active 

energy 

demand 

(kWh) 

Active 

energy 

deficit 

(%) 

Reactive energy 

generation from 

SGs  

(kVArh) 

Reactive 

energy 

demand 

(kVArh) 

Reactive 

energy 

deficit 

(%) 

July, First 88321 79288 -11.39 29904 48421 38.24 

Jan, Final 125985 138516 9.05 35500 84694 58.08 
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for the first year as the minimum voltage for peak load is 0.9617 p.u., but it touches 0.90 

p.u. in the final year. It happens due to long-term planning for DR allocation as the load 

has been raised by the factor of 2.67 during the planning horizon. Therefore, remedial 

measures for shunt compensation or other voltage enhancement strategies may be 

implemented at regular intervals during the planning period. Furthermore, a significant 

energy loss reduction can be seen at each state after DR allocation as shown in Fig. 5.19. 

This can be observed for both first and the final year. This loss reduction is about 80% in 

the first year which is found to be about 71% in the final year. This shows that the 

effectiveness of DRs for energy loss reduction is reduced with increased load demand. It 

probably happen as the optimal DG capacities obtained in the DR planning solution is 

limited by cost functions. However, the network performance can be further enhanced by 

optimal NR. Therefore, the impact of NR is investigated after optimally placing DRs as 

discussed in the following section. 

  
 (a)  (b) 

Fig. 5.18 Comparison of minimum node voltage in (a) first year (b) 20
th

 year  

  
 (a)  (b) 

Fig. 5.19 Comparison of power loss for the (a) first year (b) 20
th

 year  

 5.4.3 NETWORK RECONFIGURATION 

The distribution network is optimally reconfigured for each state of the distribution 

system to further enhance its performance. The hourly scheduling of optimal 

configurations of the distribution network obtained may be referred from Table D.5 which 

shows optimal network topologies for each system state. The impact of NR on feeder loss 
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occurred during various states of the distribution network for the day of first and final year 

is presented in Fig. 5.20. Figures show power loss reduction for each system state by DR 

allocation so the daily energy losses are found to be reduced from 79.81% to 84.48% in 

day of the first year, while it is reduced from 71.39% to 77.77% in the day of the final 

year. Thus NR causes further energy loss reduction of 4.67% and 6.38% for first year and 

final year respectively. It is noteworthy that the loss reduction contributed by NR is more 

when network loading is more and vice-versa. It happened because NR reallocates load 

among distribution feeders so reduces feeder power losses. As a result more loss reduction 

is observed in the corresponding hours of the last year. This implies that stringent load 

conditions can be effectively handled using NR. Another important aspect of the NR can 

be seen from Fig. 5.21 showing comparison of minimum node voltage measured for each 

system state. It can be seen from the figure that the NR is capable to enhance node voltage 

profiles which have been already significantly improved by optimal DR placement. The 

NR is able to perform so on account of its inherent tendency of load balancing. This can be 

verified from the Fig. 5.21 (b) where the node voltage profiles are enhanced to a maximum 

during peak load hours where the minimum node voltage being enhanced from 0.8988 p. u. 

to 0.9225 p. u. Thus NR enhances the performance of distribution system during stringent 

load conditions.  

  
 (a)  (b) 

Fig. 5.20 Comparison of power loss for the (a) first year (b) 20
th

 year  

  
 (a) (b) 

Fig. 5.21 Comparison of minimum node voltage in (a) first year (b) 20
th

 year 
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Finally, the solution quality obtained after 50 independent trials of ITLBO while solving 

DR planning problem is presented in Table 5.7. The table shows that proposed ITLBO is 

also performing well for this hard combinatorial problem as indicated by the small values 

of COV and EFB. The table shows mean simulation time of about 5 h. This large CPU 

time is on account of total 24x12x20 system states being considered to optimize the 

problem. For DR operation problem, the CPU time is reduced by the factor of 240. The 

spread of all sampled solutions (in the descending order of fitness), is shown in Fig. 5.22. 

The figure shows that all sampled solutions are close to each other. This pictorially shows 

the effectiveness and robustness of ITLBO to solve complex optimization problems.   

Table 5.7 Solution quality of ITLBO 

Best (million 

US$) 

Worst (million 

US$) 

Mean (million 

US$) 

SD (million 

US$) 

COV EFB CPU time (h) 

8.39 8.27 8.33 0.037 0.44 0.89 5.09 

 
Fig. 5.22 Spread of sampled solutions for ITLBO 

 5.5 SUMMARY 

This chapter proposes a new methodology for the long-term simultaneous allocation of 

DRs in distribution systems by employing mix-DG model that consists of RESs such as 

SPVs and WTs along with AES like MTs along with SCs. Since RESs exhibits 

intermittency in power generation, the stochastic nature of load demand has also been 

taken into account while formulating DR allocation problem to provide a more realistic 

planning solution. The uncertainty and variability in load and generation data at various 

distribution buses is efficiently handled by proposing new polyhedral uncertainty sets 

which requires only historical data for one year rather than a probability distribution of 

uncertain data. The self-adaptability of the suggested uncertainty sets is the unique feature 

of proposed modeling to generate more reliable synthetic data. The modeling is free from 

assumptions so provides less conservative solution for DR allocation. The ITLBO 

suggested in chapter 3 is used as an optimizing tool to solve the problem. The long-term 

DR planning problem is solved to optimize NPV of the project and then the DR operation 
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problem is solved for the day-ahead scheduling of MTs and SCs to optimize daily profit 

incurred by the utility. The distribution network is then optimally reconfigured for each 

system state to further enhance the desired technical objectives. The performance of the 

proposed method is investigated on the benchmark IEEE 33-bus test distribution system. A 

detailed investigation is carried to inference techno-economic performance of the system. 

The application results reveal that proposed method effectively reduces the burden on the 

substation, improves the performance of distribution systems and provides almost self-

sustainability in energy generation with optimum investment on DRs.  



CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH SCOPE 

 The present trends towards deregulation and competitive business environment are 

forcing electric utilities to improve the efficiency and reliability of electrical power supply 

and its usage. The distribution system is the most important link between electric utility 

and end users to achieve efficiency and reliability in electrical power delivery and its 

usage. Therefore, lots of changes are taking place around the globe in electrical power 

distribution system. The legacy distribution systems are being converted into smart 

distribution systems with an emphasis to improve the performance of electrical power 

distribution systems. The placement of distributed resources (DRs) such as distributed 

generations (DGs) and shunt capacitors (SCs) is one of the key technology areas to realize 

the goals of smart distribution systems and to improve the performance of distribution 

systems. DGs can provide more reliable, secured and self-sustainable operation of 

distribution systems with lesser carbon footprints, and can deliver quality power to the 

customers. However, most of the DGs are operated at unity power factor therefore their 

increased penetration levels demand adequate support of reactive power which can be 

easily provided by installing SCs in distribution networks. The active and reactive power 

flow can be independently and effectively regulated by optimally placing and controlling 

these DRs in distribution systems. However, their placement strategies in distribution 

network are not independent. In this view, their simultaneous placement strategy may be 

more beneficial. Similarly, the network reconfiguration (NR) is one of the established 

operational strategies of modern distribution systems to achieve multiple performance 

objectives such as power/energy loss minimization, voltage profile enhancement, line 

congestion management etc. Therefore, the optimal allocation of DRs should also take into 

account NR. Similarly there are certain other issues with the penetration of renewable 

energy based DGs such as SPVs and WTs. These DGs are not dispatchable. It is not 

technically feasible to integrate non-dispatchable DGs without the support of dispatchable 

alternative energy sources (AESs) such micro turbines (MTs). There are some other 

important consideration with regards to proper modelling of load and uncertainties related 

to intermittency in power generation from these DGs. Therefore, there is a need to 

formulate more realistic DR placement strategies which reflect the ground realities of 

modern distribution systems otherwise the solutions obtained may be counterproductive.   
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In the present work, the problems of simultaneous allocation of DRs have been 

addressed. More practical formulation for DR allocation is developed keeping in view 

more realistic operational issues of modern distribution systems. The simultaneous 

allocation problem of DRs is a complex optimization problem. The complexity of the 

problem is further increased when more realistic operational issues of modern distribution 

systems are considered. The present thesis work primarily addresses the simultaneous 

placement of DRs to achieve optimum benefits in terms of annual energy loss reduction 

and node voltage profile enhancement. The framework of the DR allocation problem is 

made more realistic in a gradual manner by considering multi-level piecewise linearization 

of annual load profile, load diversity among distribution buses due to diverse customers 

and seasonal variations in their load demand, and variability and uncertainty in load 

demand and local generation from renewable DGs, etc. The problem is developed in a 

stepwise manner to provide realistic solutions for DR allocation planning and operation. In 

addition, the impact of load diversity, DR power control and NR, interaction of diverse 

intermittent DGs and stochastic load demand on the performance of distribution systems 

have also been thoroughly investigated and presented. The simultaneous DR allocation 

problem is characterized as a non-linear, mixed-integer, complex combinatorial 

optimization problem of power systems. Therefore, improved variants of well-established 

techniques like GA and PSO, and some of recently-established techniques like BA, CSO 

and TLBO are proposed, which are yet not explored to solve DR allocation problems. The 

effectiveness of the proposed improved variants of these metaheuristics is investigated on 

standard test bench as well as real distribution system. The results of study are investigated 

and presented.  

In chapter 3, the simultaneous DR allocation problem is formulated to maximize annual 

energy loss reduction and to enhance node voltage profiles while considering multi-level 

piece-wise load profile and assuming DGs to be dispatchable and controllable. The 

problem is solved by proposing improved variants of existing GA, PSO, BA, CSO and 

TLBO techniques by suggesting several algorithm specific modifications to cope against 

their respective intrinsic limitations. In addition to this, an intelligent search algorithm 

(ISA) is suggested to restrict the problem search space of metaheuristics, so improve their 

overall performance. The proposed method is applied on the benchmark IEEE 33-bus test 

distribution system and the application results obtained are presented. The effectiveness of 

developed algorithms is thoroughly investigated and presented.  
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Following conclusions are drawn from this chapter. 

 1. There is a scope of improvement in existing metaheuristic techniques for complex 

optimization problem of DR allocation. The developed IGA, IPSO, IBA, ICSO and 

ITLBO perform better than their respective standard models and existing metaheuristics 

for the optimal DR allocation problem of distribution systems. 

 2. The modifications suggested for improved algorithms are effectively contributing 

towards enhancing the convergence, accuracy and efficiency of these algorithms. 

 3. Proposed ISA disperses tentative solutions near the promising region so virtually 

reduces the problem search space of metaheuristics. This feature makes the algorithms 

more efficient. 

 4. The statistical error analysis reveals that all proposed algorithms are improved to a good 

degree of accuracy. Although ITLBO performs better than other proposed algorithms, 

but is more computationally demanding on account of inherent two-phase learning 

process of TLBO.  

 5. Despite several improvements, IBA is found to be least among all proposed algorithms 

in terms of performance. It happens as the standard BA performs quite inferior than 

other standard algorithms considered.   

 6. The simultaneous placement strategy of DRs is very effective to improve energy 

efficiency and voltage profiles of distribution systems. 

In Chapter 4, the simultaneous DR allocation problem of distribution systems is 

extended to more practical operating conditions by considering load diversity that exists 

among distribution buses owing to various types of customers and their seasonal variation 

in load demand. The problem is formulated by proposing soft node voltage constraint using 

penalty function approach to overcome the restrictive use of metaheuristics for real 

distribution systems facing heavy sag in voltage profiles. In order to obtain a more 

practical solution, the effectiveness of DR tuning and NR has also been investigated. In 

addition, the consequences of ignoring load diversity among distribution buses while 

allocating optimal DRs in distribution network is also examined. The IGA, IPSO, IBA, 

ICSO and ITLBO developed in chapter 3 are employed as optimization tools to check their 

effectiveness on large-scale optimization problems. The proposed method is applied on the 

benchmark IEEE 33-bus test distribution system and 83-bus real distribution system and 

the application results obtained are investigated and presented.  
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The following conclusions are drawn from this chapter. 

 1. The simultaneous placement of DRs and optimal NR provides significant annual 

energy loss reduction and enhancement in node voltage profiles in distribution 

systems.  

 2. For distribution systems having adequate deployment of DGs and SCs, the DR 

tuning and NR has shown somewhat complementary impact on distribution system 

performance improvement. The DR tuning provides substantial feeder power loss 

reduction and suppression of node voltage profile during light load conditions, 

where the NR is not so effective. On the other hand, NR enhances node voltage 

profiles with marginal power loss reduction during remaining load conditions, 

where the DR tuning remains almost ineffective. 

 3. The load diversity exists among distribution buses on account of the type and 

location of customers and seasonal variations in their load demand plays crucial 

role in deciding the optimal solution for DR allocation, the ignorance of the same 

may involve serious errors to distribution system planning and operation.  

 4. While optimizing DR allocation problem, the proposed node voltage penalty 

function plays vital role by employing soft node voltage constraint; on the one hand 

it provides smooth functioning of stochastic-based meta-heuristic techniques to 

solve the problem and on the other hand it considers NR while determining optimal 

allocation of DRs, thus causes reduced optimal sizing of DRs.  

 5. Developed IGA, IPSO, IBA, ICSO and ITLBO perform better than their respective 

standard models to solve large-scale DR allocation problems.  

In Chapter 5, the simultaneous DR allocation problem of distribution systems is further 

extended in a more realistic way by considering a mix DG model that consists of SPVs, 

WTs and MTs. The long-term DR planning and operation problem is formulated by giving 

due consideration to the variability and intermittency in load demand and power generation 

among distribution buses. The uncertainty in load demand from diverse customers and 

power generation from RESs is efficiently handled by proposing new deterministic 

polyhedral uncertainty sets. The unique feature of these sets is their self-adaptability to 

cater uncertain data so is free from assumptions. The DR planning problem is first solved 

to maximize NPV based profit of the project. Thereafter, the DR operation problem is 

solved to determine the day-ahead optimal scheduling of MTs and SCs for each state of the 

system separately. With this solution, the distribution network is optimally reconfigured to 

further enhance the technical objectives. DR planning and operation problems are 
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optimized using ITLBO. The proposed method is applied on the benchmark 33-bus test 

distribution system and results of study are investigated and presented.   

Following conclusions are drawn from this chapter.   

 1. The proposed long-term DR planning demonstrates the advantages in terms of 

techno-economic benefits gained by the distribution system. The optimal solution 

obtained using proposed method reveals that the DR project is highly profitable, yet 

effectively reduces the burden on the substation, improves energy efficiency and 

delivers power to customers by maintaining better node voltage profiles.  

 2. The self-adaptive feature of proposed polyhedral uncertainty sets efficiently deals 

with the uncertainty and variability in load demand and power generation at 

distribution buses so provides less conservative solutions for DR planning and 

operations under uncertain environment of distribution system states.  

 3. The optimal solution obtained for DR planning provides almost self-sustainability 

in energy generation so it can be useful for micro-grid applications having adequate 

energy storage.  

 4. The power generations from SPVs and WTs supplements each other to some extent 

which is beneficial to curtail grid transactions. 

 5. The optimal reconfiguration of distribution network plays distinct role to further 

enhance the performance of distribution systems, more specifically, during 

stringent load conditions.  

 6. Remedial measures for shunt compensation or other voltage enhancement strategies 

may be implemented at regular intervals during the planning period otherwise 

voltage profiles may sag heavily at the end of planning period. 

 7. The solution quality reveals that the ITLBO is also doing well for this highly 

complex combinatorial optimization problem. 

SALIENT CONTRIBUTIONS  

Major contributions of the thesis may be summarized as below. 

 1. Developed the improved version of the following five algorithms to solve large-

scale complex optimization problems of DR allocation in distribution systems 

under diverse operating conditions. 

 (a) IGA 

 (b) IPSO 

 (c) IBA 

 (d) ICSO, and 
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 (e) ITLBO  

 2. Development of ISA which can be embedded with any population based meta-

heuristic technique to enhance its performance while solving optimal DR 

allocation or NR problems of distribution systems. 

 3. Suggested node voltage penalty function that effectively maintains better node 

voltage profiles and also facilitates meta-heuristic techniques to solve DR 

allocation problems in the view of NR. 

 4. Proposed a new formulation for the long-term DR planning which takes into 

account mix DG model along with SCs, load diversity and uncertainty of load and 

generation.  

 5. Proposed self-adaptive polyhedral uncertainty sets which are capable of handling 

the uncertainties in load and generations.  

 6. Investigated the relative effectiveness of the DR tuning and NR on the performance 

of distribution systems having adequate DRs penetration.  

FUTURE RESEARCH SCOPE 

 The present research work is focused around the net profit maximization for DR 

planning. However, the problem may be extended with the inclusion of grid transaction 

minimization as another objective. This may lead to a new solution for DR allocation 

which will be more suitable for micro-grid applications. In the present work, only type-1 

DGs have been assumed which are the sources of active power only. This work can be 

extended by considering other types of DGs and energy storage devices. In the present 

methodology, the variability and uncertainty in load demand and power generation at 

distribution buses are considered whereas it is ignored in fuel and energy pricing, future 

load growth, discount rate, etc. A better modelling may be worked out by considering 

uncertainty in these design parameters of the DR allocation project. In future research work 

the DR operation problem may be formulated to reflect market conditions such as 

distribution network pricing, demand response, congestion management, peak shaving etc. 

The tap setting of distribution transformer is an effective way to counter the voltage 

variation in the presence of DGs. In future research work the effect of optimal tapping of 

distribution transformer may also be considered for DR allocation problems. 
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APPENDIX A 

TABLE A.1  

LITERATURE SURVEY ON OPTIMAL CAPACITOR PLACEMENT 

Ref. Objectives Constraints Methodologies 

[32]  1,2,3 1,2 Decomposition techniques and the feasible direction method 

[35]  1,2 2,6,7 Local Variations Method 

[39]  2,3 1,2 Simulated Annealing 

[40]  1,2,3 1,2 Genetic  Algorithm 

[41]  1,2 2,6 Fuzzy Reasoning Method 

[42]  2,3 1,2,6 Tabu Search based Algorithm 

[43]  2,3 2,12 Quadratic Integer Programming  

[44]  1 1 Numerical Method 

[45]  2,3,5 2 Genetic Algorithm 

[46]  1,2 2,7 Genetic Algorithm 

[47]  2,3 2 Greedy search technique 

[48]  2,3,4 1 Fuzzy Expert System  

[49]  2,3 1,2,6,12 Immune Algorithm  

[50]  2 2,3,6 Branch and Bound, and Genetic Algorithm 

[51]  1,2,3 1 Graph Search Algorithm  

[52]  1 1,2 Artificial Neural Network  

[53]  2,3 1,2,6 Hybrid TS, GA and SA Approach 

[54]  2,3 1,2 GA 

[55]  2,3 1,2,6 Elite-based Simplex-GA hybrid approach combined with multipop-GA  

[56]  1,2,3 2,6,7 GA 

[57]  1,2,3 2,6,7 Local Variations and Maximum Sensitivities Selection 

[58]  1,2,3 2,6,7 Fuzzy Set Theory  

[59]  2,3 1,2,7 Heuristic Search Technique and Simulated Annealing  

[60]  2,3,4 1,2,6,7 Particle Swarm Optimization  

[61]  2,3,4,5 1 Hybrid Fuzzy-GA method 

[9]  2,3 1,2 Microgenetic Algorithms and Fuzzy Logic 

[62]  1,2,5 1,2,5 Nondominated Sorting Genetic Algorithm  

[63]  1,2,8 1,2,6,7,13 Exhaustive Method 

[64]  1,2,5 1,2,3 Improved Evolutionary Programming  

[65]  1,2 1,2,4,6 Ant Colony Search Algorithm (ACSA) 

[66]  2,3 1,6 Memetic-Algorithm  

[67]  2,3,5 - Fuzzy Evolutionary Programming  Algorithm 

[68]  2,3,4 1,2,3 Genetic Algorithm 

[69]  1,2,5 1,2,4,6 Robust Searching Hybrid Differential Evolution Method 

[70]  1,2,3 1,2,6,7 Hybrid Genetic Algorithm and Fuzzy Logic  

[71]  1,2 1,8,9 Heuristic Constructive Algorithm  

[72]  1,4 1,3,10,11 Mixed-Integer Linear Programming 

[73]  1,2,3 1,2,3,6 Conic Programming and Mixed Integer Linear Programming 

[74]  2,3,5 1 Fuzzy-GA Method 

[75]  1,2,3,6 1,6 Particle Swarm Optimization 

[76]  2,3,4 1,2,4,6,9 Combination of Fuzzy, Forward Update, and Genetic Algorithm 

approaches 

[77]  1,2,3 2,9,12 Candidate Node Identification Algorithm and  Variational Technique 

Algorithm 

[78]  1,2 1,2,6,7 Hybrid Particle Swarm Optimization  

[79]  1,2,5 1,2,6,7,12,13 Micro-Genetic Algorithms and Reduction of the Feasible Region 

Techniques  

[80]  1,2 1,2,3,11 Simulated Annealing  

[81]  1,2 1,2,4,6 Plant Growth Simulation Algorithm  

[82]  2,3 1,2,6,7 Hybrid Fuzzy Logic and Immune-Based Algorithm 

[83]  1,2,3 2,4,9 Bacterial Foraging Optimization 

[84]  2,3,5,8 1,2,7 Bacterial Foraging Oriented by Particle Swarm Optimization 

Algorithm  
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TABLE A.1 (Continued…) 

LITERATURE SURVEY ON OPTIMAL CAPACITOR PLACEMENT 

Ref. Objectives Constraints Methodologies 

[85]  1,2 1,2,11 Elitist Non-Dominated Sorting Genetic Algorithm (NSGA II) 

Enhanced with Local Search 

[86]  1,2,5 1,2,12,13 Micro-Genetic Algorithm 

[38]  2,3 1 Direct Search Algorithm 

[87]  2,3 1,2 Particle Swarm Optimization  

[88]  1,2,5 1,2,6 Self-Adaptive Modified Honey Bee Mating Optimization   

[89]  1,2 1,3,12 Heuristic Search Method 

[90]  1,2,3 2 PSO-ACS Algorithm 

[91]  1,2 2,12 Hybrid Discrete Particle Swarm Optimization and Genetic Algorithm 

Approach 

[92]  1,5 1,2,3,4,5,12 Cuckoo Search-based Algorithm 

[93]  2,3 1,2,3,4,5,12 Differential Evolution and Pattern Search Approach 

[94]  1,2,5 1,2,3,4,5,12 Artificial Bee Colony Algorithm 

[95]  2,3 2,6,12 Teaching Learning Based Optimization 

[96]  1,2 1,2,3,6 CODEQ (Hybrid Chaotic Search, Opposition-based Learning, 

Differential Evolution (DE) and Quantum Mechanics) 

[97]  1,2 1,2 Gravitational Search Algorithm 

[98]  2,3 1,2,3,6,9 Bat Algorithm (BA) and Cuckoo Search (CS) 

[99]  1 1,2,3 Bacterial Foraging Optimization Algorithm (BFOA) 

[100]  2,3 1,2,6 Modified Monkey Search Optimization Technique 

[101]  1,2 1,2,4,6 Particle Swarm Optimization 
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TABLE A.2 

LITERATURE SURVEY ON OPTIMAL DG PENETRATION 

Ref. Objectives Constraints Methodologies 

[114]  1 - Hereford Ranch Algorithm  

[118]  1,12 - 2/3 Rule 

[125]  1 7,12,15 Tabu Search (TS) 

[126] 1,2,4,11 2,7,16,17 Genetic Algorithm  

[119]  1 - Analytical Method 

[127]  1 2,12,15,16 Genetic Algorithm and Tabu Search  

[128]  11 1,2,10,14,16,

17 

Genetic Algorithm 

[129]  2,12,13 2,4,16,17 Double Trade-Off Method 

[130]  2,3,10,14 1,2,16 Genetic Algorithm and an ε-constrained method 

[131]  1 - Analytical Method 

[132]  1,4 2,5,10 Genetic Algorithm 

[120]  1 - Analytical Method 

[112]  1 1,2,3 Genetic Algorithm 

[133]  1,8 2,16 Hybrid GA and Optimal Power Flow 

[134]  1,3 2,7,17 Particle Swarm Optimization  

[4]  1,10,12 - Continuation Power Flow  

[135]  3 15 Ant Colony System  Algorithm 

[136]  1,2,15 2,16 Non-dominated Sorting Genetic Algorithm   

[137]  2,4 2,16 Non-dominated Sorting Genetic Algorithm and  Max-Min Method 

[138]  1 - Analytical Method 

[111]  1,11 1,2,7,16 Ordinal Optimisation Method 

[139]  1,10,12 1,2,16 Genetic Algorithm 

[140]  1  - Kalman Filter Algorithm 

[106]  8 1,2,16 AC Optimal Power Flow  

[123]  1 - Analytical Expressions 

[141]  1,3,4 2,15,16 Discrete Particle Swarm Optimization and Genetic Algorithm 

[5]  2 1,2,10,13,16 Mixed Integer Nonlinear Programming  

[142]  1,12 2,16 Artificial Bee Colony  Algorithm 

[143]  1 2,7,14,16 Voltage Index Analysis and Variational Algorithm 

[144]  17 1,2,3,16 Genetic Algorithm 

[145]  1,12 1,2 Particle Swarm Optimization 

[146]  1 2,12,15,16 Imperialist  Competitive  algorithm 

[147]  1,10 1,7,14 Bee Colony Optimization Algorithm 

[148]  1,8 2,16 Non-dominated Sorting Genetic Algorithm and  Max-Min Method 

[149]  1,4,12,15 2,7,16 Dynamic Programming 

[150]  1,10,12,15 2,3,16 Particle Swarm Optimization  

[151]  1 1,2,9,15,16 Artificial Bee Colony 

[152] 1,4,8 1,2,7,10,16 Monte Carlo Simulation-Embedded Genetic-Algorithm-based approach 

[153]  1,12 2,3 Fuzzy and Clonal Selection Algorithm 

[154]  1,3,12,14,1

5 

1,2,3  Genetic Algorithm 

[155]  2,4,7,9 1,2 Genetic Algorithm 

[156]  1,4,12 1,2,7 Group Search Optimizer  

[157]  1,4,17 2,7,16 Genetic Algorithm 

[158]  1,4 2,7,10,16 Discrete  Particle Swarm Optimization and Optimal  Power  Flow 

[159]  1,4,10 1,2,6,10,11,1

5,16 

Optimal Power Flow and Genetic Algorithm 

[160]  4,14 2,7,9,10,15,1

6 

TRIBE Particle Swarm Optimization and Ordinal Optimization  
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TABLE A.2 (Continued…) 

LITERATURE SURVEY ON OPTIMAL DG PENETRATION 

Ref. Objectives Constraints Methodologies 

[161]  1,6 1,2,7,9,15,16 Imperialist Competition Algorithm  

[162]  1,5,12 1,2,7,16 Combined Fuzzy-genetic Algorithm/ Particle Swarm Optimization 

[163]  1 1,2,16 Loss Sensitivity Factors  

and Simulated Annealing  

[164]  1,5,12 2,7,15 Particle Swarm Optimization 

[165]  1 2,15,16 Differential Evolution 

[166]  1 2,15,16 Artificial  Bee Colony Algorithm   

[167]  1 1,3,7 Multi-Membered Non-Recombinative Evolution Strategy, Bare Bones 

Particle Swarm Optimization and Differential Evolution  

[168]  1,15 1,2,15,16 Evolutionary Particle Swarm   Optimization method 

[169]  1,5 15 Particle Swarm Optimization  

 

[170]  

 

12,13 2,4,5,16 Evolutionary Programming 

[171]  2 1,2,7,15,16 Evolutionary Programming  

[103]  1,12 1,2,7 Cuckoo Search  

[172]  1,4,14,15 2,16 Hybrid Improved Particle Swarm Optimization Algorithm and  

Monte Carlo Simulation 

[173]  

 

2 1,2,3,7,14 Heuristic  Algorithm 

[174]  1,12 2,7 Improved Multi-Objective Harmony Search Algorithm 

[175]  

 

1 - Modified Teaching–Learning Based Optimization Algorithm 

[176]  11 1,2,4,8 Particle Swarm Optimization  

[177] 2 1 1,2,16,18 Particle Swarm Optimization 

[178]  1,5 - Modal Analysis and Continuous Power Flow  

[179]  1 2,10,15 Analytical method 

[180]  1,5 1,2 Particle Swarm Optimization 

[181]  5 2,3,4,10,16 Mixed-Integer Nonlinear Programming 

[182]  1 2,3 Harmony Search Algorithm  

[183]  2,3,10 1,2,10,13,15 Monte Carlo methods 

[184]  3 1, 2, 14, 15, 

20 

Tabu Search Algorithm 

[185]  1, 4, 12 1, 2, 15,20 Bacterial Foraging Optimization Algorithm 

[186]  2, 4, 5, 9, 

,12 

1, 2, 7, 14 Cloud Theory Adapted GA 

[187]  1, 4, 18 1, 2, 20 Particle Swarm Optimization 

[188]  1 1 Analytical Approach 

[189]  1, 5, 12 1,2,7,15 Chaotic Artificial Bee Colony 

[190]  1, 4, 5, 18 1, 2, 20 Hybrid Ant Colony Optimization and Artificial Bee Colony Algorithm 

[191]  1, 12 1, 2, 14, 15, 

16, 20 

Backtracking Search Optimization Algorithm 
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APPENDIX B 
TABLE B.1  

BRIEF DATA OF IEEE 33-BUS TEST DISTRIBUTION SYSTEM 

Particular Value 

Line voltage (kV) 12.66 

pD (kW) 3715 

qD (kVAr) 2300 

max

nI (Nb) 
400(1,2), 250(3-5, 18-20, 22-29), 150(6-17, 21,  30-37) 

Sectionalizing switches 1-32 

Tie-switches 33-37 

Base configuration with open switches 33 to 37 

Power Loss (kW) 47.07/202.50/575.39 

Minimum node voltage (p.u.) 0.9583/0.9131/0.8528 

 

TABLE B.2  

OPTIMAL SOLUTION AND OPTIMAL TUNING OF DRS  

Method Optimal tuning 

Light Nominal Peak 

Nodes (DG 

in kW) 

Nodes (SC 

in kVAr) 

Nodes (DG 

in kW) 

Nodes (SC 

in kVAr) 

Nodes (DG 

in kW) 

Nodes (SC in 

kVAr) 

GA 14(404), 

25(445), 

32(459) 

TD: 1308 

14(200), 

24(300), 

30(500) 

TD: 1000 

14(801), 

25 (880), 

32(912) 

TD: 2593 

14(400), 

24(300), 

30(900) 

TD: 1600 

14(898), 

25(944), 

32(934) 

TD: 2776 

14(600), 

24(300), 

30(900) 

TD: 1800 

PSO 15(355), 

25(428), 

30(546) 

TD: 1329 

17(100), 

24(300), 

30(500) 

TD: 900 

15(721), 

25(839), 

30 (1091) 

TD: 2651 

17(300), 

24(600), 

30(900) 

TD: 1800 

15(780), 

25(839), 30 

(1255) 

TD: 2874 

17(300), 

24(600), 

30(900) 

TD: 1800 

BA 3(803), 

14(353), 

29(523) 

TD: 1679 

10(200), 

16(100), 

32(400) 

TD: 700 

3(1381), 

14(717), 

29(1076) 

TD: 3174 

10(300), 

16(200), 

32(900) 

TD: 1400 

3(1381), 

14(857), 

29(1188) 

TD: 3426 

10(300), 

16(300), 

32(900) 

TD: 1500 

CSO 15(366), 

24(560), 

31(466) 

TD: 1392 

11(100), 

16(100), 

30(500) 

TD: 700 

15(728), 

24(1112), 

31(963) 

TD: 2803 

11(300), 

16(200), 

30(1000) 

TD: 1500 

15(747), 

24(1150), 

31(1016) 

TD: 2913 

11(300), 

16(300), 

30(1200) 

TD: 1800 

TLBO 15(360), 

24(544), 

30(521) 

TD: 1425 

12(200), 

24(300), 

30(500) 

TD: 1000 

15(724), 

24(860), 

30(1085) 

TD: 2669 

12(500), 

24(500), 

30(900) 

TD: 1900 

15(815), 

24(860), 

30(1157) 

TD: 2832 

12(600), 

24(600), 

30(900) 

TD: 2100 

IGA/IPSO/IBA

/ICSO/ITLBO 

14(368), 

24(520), 

30(524) 

TD: 1412 

14(200), 

24(300), 

30(500) 

TD: 1000 

14(748), 

24(1003), 

30(1057) 

TD: 2808 

14(300), 

24(500), 

30(1000) 

TD: 1800 

14(831), 

24(1005), 

30(1128) 

TD: 2964 

14(300), 

24(600), 

30(1200) 

TD: 2100 

TD: Total Dispatch 
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APPENDIX C 
TABLE C.1  

INITIAL DATA OF TEST SYSTEMS 

Particular Case study 1 Case study 2 

Line Voltage (kV) 12.66 11.40 

pD (kW) 3715 28350 

qD (kVAr) 2300 20700 

Sectionalizing switches 1-32 1-83 

Tie-switches 33-37 84-96 

Base Configuration 33 to 37 84 to 96 

Power loss at peak load (kW) 423.59 1083.19 

Minimum node voltage at peak load (p.u.) 0.8740 0.8962 

 

TABLE C.2  

LOAD FACTORS AND LOAD DURATION FOR DIFFERENT SEASONS 

S L R I C Hj S L R I C Hj 

S
p

ri
n

g
/f

al
l 

1 0.40 0.80 0.40 7 

W
in

te
r 

 

15 0.48 0.48 0.48 1 

2 0.40 1.00 0.40 1 16 0.48 0.60 0.60 1 

3 0.60 1.00 0.40 3 17 0.60 0.60 0.60 2 

4 0.60 1.00 0.60 3 18 0.60 0.48 0.24 1 

5 0.80 1.00 0.80 5 

S
u

m
m

er
 

19 0.56 1.12 0.56 7 

6 0.80 0.80 0.80 1 20 0.56 1.40 0.56 1 

7 0.80 1.00 1.00 1 21 0.84 1.40 0.56 3 

8 1.00 1.00 1.00 2 22 0.84 1.40 0.84 3 

9 1.00 0.80 0.40 1 23 1.12 1.40 1.12 5 

W
in

te
r 

10 0.24 0.48 0.24 7 24 1.12 1.12 1.12 1 

11 0.24 0.60 0.24 1 25 1.12 1.40 1.40 1 

12 0.36 0.60 0.24 3 26 1.40 1.40 1.40 2 

13 0.36 0.60 0.36 3 27 1.40 1.12 0.56 1 

14 0.48 0.60 0.48 5 - - - - - 
L: Load level, Hj: Load duration (hrs), R, I, C : Load factor for Residential, Industrial and Commercial customer in p.u. 

TABLE C.3  

SYSTEM DESIGN PARAMETERS  

Parameters Case study 1 Case study 2 

Qb/ Pd (kVAr/kW) 300/1 300/100 

∆q/∆p (kVAr/kW)   100/1 100/1 
SC

,minnq /
SC

,maxnq  (MVAr)  
0/1.2 0/6.6 

,min

DG

np / ,max

DG

np  (MW) 

0/2 0/9 

VminS/ Vmin/ Vmax (p.u.) 0.90/0.94/1.06 0.90/0.94/1.06 
SC DG/loc loc  1-33 1-83 

Ns 3 3 

NL 27 27 

NDG /NSC 5/5 8/8 

Ds 

(spring/winter/summer) 

121/122/122 121/122/122 

max

nI (n) 
400(1,2), 250(3-5, 18-20, 

22-29), 150(6-17, 21,  30-

37) 

500(1-6, 11, 12, 15-19, 25-28, 30, 31, 43-45, 

47-52, 56-58, 65-71, 73-75, 77-79), 250(7-10, 13-

14, 20-24, 29,32-42, 46, 53-55, 59-64, 72, 76, 80-

96) 

Residential Feeders 2-15 15-24, 30-42, 47-55, 56-64 

Industrial Feeders 23-29 11-14, 25-29, 43-46, 73-76 

Commercial Feeders 16-22, 30-33 1-10, 65-72, 77-83 
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TABLE C.4  

NPL AND BPLS OBTAINED USING PROPOSED ISA 

Priority Lists Case study 1 Case study 2 

NPL SCs 30, 24, 25, 7, 29, 32, 15, 8, 4, 23… 31, 71, 79, 28, 19, 75, 12, 6, 45, 51… 

DGs 25, 24, 7, 32, 30, 29, 31, 14, 8, 23… 71, 79, 28, 31, 19, 12, 75, 6, 34, 51… 

BPLs 7, 33, 6, 20, 19, …/10, 11, 9, 8, 35, 

…/10, 11, 9, 14, 13, …/28, 37, 27, 26, 25, 

…/32, 36, 17, 7, 16, … 

84, 55, 54, 5,…,/86/7, 72, 87, 85,…/84, 63, 

55, 64,…/63, 64, 62, 61,…/88, 13, 76, 

72,…/89, 14, 16, 12,…/92, 32, 28, 27,…/90, 

26, 16/ 42, 95, 39, 40,…/33, 34, 32, 94,…/33, 

39, 38, 37,…/89, 82, 83, 88,… 

TABLE C.5  

ALGORITHM SPECIFIC CONTROL PARAMETERS SELECTED FOR PROPOSED TECHNIQUES 

Parameters IGA IPSO IBA ICSO ITLBO 

ts - 10 - - - 

Crossover rate 0.9 -  - 0.2 

Crossover type Two-point 

Crossover 

- - - One-point 

Crossover 

Mutation rate 0.05 -  - - 

C - -  1.5 - 

c1, c2 - 2, 2  1.6, 0.4 - 

wmin, wmax - 0.1,0.9  0.05, 0.45 - 

fmin/ fmax - - 0/ 2 - - 

Α - - 0.98 - - 

Mc - - 5 - - 

F - - 0.6 - - 

M - - –2/2 - - 

SMP,CDC,SRD,MR - - - 5, 0.6, 2, 0.04 - 

mc - - - - 5 

TABLE C.6  

COMMON CONTROL PARAMETERS SELECTED FOR PROPOSED TECHNIQUES FOR CASE STUDY 1 

Parameters IGA IPSO IBA ICSO ITLBO 

Population size 50 50 10 10 10 

itrmax 100 100 200 200 200 

TABLE C.7  

NETWORK PERFORMANCE WITH FIXED AND TUNEABLE DRS FOR CASE STUDY 1 

Load 

level 

Base case Fixed DRs Tuneable DRs 

Ploss Vmin Ploss Vmin Node (DG in kW) Node (SC in kVAr) Ploss Vmin 

1 46.45 0.9626 9.57 0.998 14(307), 24(794), 

30(500) 

12(200), 25(300), 

30(400) 

2.97 0.9966 

2 57.19 0.9598 8.31 0.9978 14(314), 24(960), 

30(546) 

12(200), 25(300), 

30(500) 

3.79 0.9968 

3 71.44 0.9527 6.72 0.9973 14(424), 24(960), 

30(585) 

12(200), 25(300), 

30(500) 

5.14 0.9946 

4 93.11 0.9454 5.97 0.9958 14(462), 24(960), 

30(711) 

12(300), 25(300), 

30(600) 

5.92 0.9951 

5 141.20 0.9295 12.78 0.9833 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

12.78 0.9833 

6 125.76 0.9316 10.41 0.9852 14(494), 24(931), 

30(719) 

12(300), 25(300), 

30(600) 

10.40 0.9851 

7 175.25 0.9209 21.20 0.9747 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

21.20 0.9747 

8 202.53 0.9131 29.41 0.9685 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

29.41 0.9685 

9 94.12 0.9383 8.61 0.9911 14(494), 24(905), 

30(680) 

12(300), 25(300), 

30(500) 

8.37 0.9895 
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TABLE C.7 (Continued…) 

NETWORK PERFORMANCE WITH FIXED AND TUNEABLE DRS FOR CASE STUDY 1 

Load 

level 

Base case Fixed DRs Tuneable DRs 

Ploss Vmin Ploss Vmin Node (DG in kW) Node (SC in kVAr) Ploss Vmin 

10 16.33 0.9779 25.92 0.9994 14(187), 24(481), 

30(298) 

12(100), 25(200), 

30(300) 

1.09 0.9983 

11 20.08 0.9762 22.91 0.9993 14(195), 24(585), 

30(318) 

12(100), 25(200), 

30(300) 

1.33 0.9979 

12 24.99 0.9721 19.09 0.9992 14(250), 24(601), 

30(352) 

12(100), 25(200), 

30(300) 

1.85 0.9965 

13 32.36 0.9679 14.38 0.9984 14(275), 24(607), 

30(418) 

12(200), 25(200), 

30(400) 

2.14 0.9977 

14 48.52 0.9588 8.83 0.9975 14(360), 24(606), 

30(526) 

12(200), 25(200), 

30(500) 

3.05 0.9962 

15 43.26 0.96 10.65 0.9976 14(359), 24(512), 

30(496) 

12(200), 25(200), 

30(500) 

2.73 0.9966 

16 59.74 0.954 7.04 0.9968 14(387), 24(625), 

30(596) 

12(200), 25(200), 

30(600) 

3.55 0.9954 

17 68.73 0.9495 6.36 0.9967 14(452), 24(643), 

30(623) 

12(300), 25(200), 

30(600) 

4.35 0.9962 

18 32.67 0.9637 15.71 0.9991 14(364), 24(527), 

30(390) 

12(200), 25(200), 

30(300) 

2.74 0.9956 

19 93.30 0.947 6.50 0.9945 14(438), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

6.36 0.9943 

20 115.05 0.9429 10.31 0.9892 14(486), 24(960), 

30(716) 

12(300), 25(300), 

30(600) 

10.32 0.9891 

21 144.29 0.9326 15.30 0.986 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

15.30 0.986 

22 189.44 0.9219 25.23 0.9761 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

25.23 0.9761 

23 291.03 0.8985 60.17 0.9554 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

60.17 0.9554 

24 258.88 0.9017 48.50 0.9583 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

48.50 0.9583 

25 364.61 0.8856 90.59 0.943 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

90.60 0.943 

26 423.59 0.8740 117.40 0.9335 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

117.41 0.9335 

27 191.73 0.9116 29.66 0.9669 14(494), 24(960), 

30(719) 

12(300), 25(300), 

30(600) 

29.66 0.9669 

TABLE C.8  

NETWORK PERFORMANCE FOR FIXED AND TUNEABLE DRS WITH NR FOR CASE STUDY 1 

S
ea

so
n

  

Load  

Level 

Fixed DRs with NR Tuneable DRs with NR 

Optimal 

configuration 

A B C Optimal 

configuration 

A B C 

S
ea

so
n

-1
 

1 3, 6, 9, 17,  33   6.09 0.9981 86.88 7, 8, 9, 25, 36 2.91 0.9960 93.73 

2 6, 9, 17, 25, 33 4.93 0.998 91.38 7, 8, 9, 26, 36 3.61 0.9961 93.68 

3 7, 9, 17, 25, 33 5.10 0.9961 92.86 7, 9, 21, 25, 36 4.69 0.9945 93.43 

4 7, 21, 25, 34,    36 5.81 0.9943 93.76 7, 8, 9, 25, 36 5.84 0.9942 93.72 

5 7, 8, 9,  26, 35 11.31 0.9888 91.99 7, 8, 9, 26, 35   11.31 0.9888 91.99 

6 7, 8, 9, 25, 35   9.26 0.9894 92.63 7, 8, 9, 25, 35    9.26 0.9894 92.64 

7 7, 9, 27, 34, 35   17.06 0.9834 90.27 7, 9, 27, 34, 35 17.06 0.9834 90.27 

8 7, 8, 9, 17, 28   22.45 0.9793 88.91 7, 8, 9, 17, 28   22.45 0.9793 88.91 

9 7, 8, 9, 15, 37   7.61 0.9912 91.91 7, 8, 9, 15, 37   7.28 0.9911 92.27 

S
ea

so
n

-

2
 

10 3, 7, 11, 16, 33   18.43 1 -

12.83 

7, 9, 17, 21, 37   1.05 0.9983 93.54 

11 3, 6, 11, 15, 33   15.08 1 24.88 7, 9, 21, 26, 36 1.29 0.9977 93.57 

12 3,  7, 10, 16, 33   12.54 1 49.81 7, 9, 21, 25, 37   1.65 0.9973 93.38 
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TABLE C.8 (Continued…) 

NETWORK PERFORMANCE FOR FIXED AND TUNEABLE DRS WITH NR FOR CASE STUDY 1 
 

Load  

Level 
Optimal 

configuration 

A B C Optimal 

configuration 

A B C 

S
ea

so
n

-2
 

13 3, 7, 10, 17, 33   9.60 1 70.32 7, 8, 9, 25, 36 2.09 0.9968 93.53 

14 4, 7, 9, 17, 33   6.68 1 86.24 7, 8, 9, 25, 36 3.02 0.9948 93.77 

15 3, 9, 16, 33, 37   8.22 1 81.00 7, 9, 17, 21, 37 2.73 0.9963 93.69 

16 5, 7, 9, 17, 33   5.81 0.9988 90.28 33, 34, 35, 36, 37   3.55 0.9954 94.06 

17 7, 9, 16, 33, 37   5.95 0.9964 91.35 33, 34, 35, 36, 37   4.35 0.9962 93.67 

18 3, 7, 9, 15, 33   11.76 1 64.00 7, 9, 16, 21, 37 2.48 0.9968 92.41 

S
ea

so
n

-3
 

19 7, 21, 26, 32, 34   5.93 0.9945 93.64 7, 8, 9, 26, 36 6.01 0.9944 93.56 

20 6, 27, 32, 34, 35 9.06 0.9921 92.13 6, 27, 32, 34, 35 9.11 0.9919 92.08 

21 7, 8, 9, 27, 36 13.32 0.9892 90.77 7, 8, 9, 27, 36 13.32 0.9892 90.77 

22 7, 8, 28, 32, 34   21.73 0.9796 88.53 7, 8, 28, 32, 34   21.73 0.9796 88.53 

23 7, 9, 28, 34, 36 45.38 0.9704 84.41 7, 9, 28, 34, 36 45.38 0.9704 84.41 

24 7, 9, 28, 34, 36 35.22 0.9717 86.40 7, 9, 28, 34, 36 35.22 0.9717 86.40 

25 7, 10, 28, 32, 34   66.68 0.9561 81.71 7, 10, 28, 32, 34 66.68 0.9561 81.71 

26 7, 10, 28, 34, 36 81.45 0.9579 80.77 7, 10, 28, 34, 36 81.45 0.9579 80.77 

27 7, 8, 9, 15, 26   20.88 0.9815 89.11 7, 8, 9, 15, 26   20.88 0.9815 89.11 
A: Power loss (kW), B: Minimum node voltage (p. u.), C: Energy loss reduction (%)   

TABLE C.9  

COMMON CONTROL PARAMETERS SELECTED FOR PROPOSED TECHNIQUES FOR CASE STUDY 2 

Parameters IGA IPSO IBA ICSO ITLBO 

Population size 100 100 20 20 20 

itrmax 200 200 300 300 300 

TABLE C.10  

NETWORK PERFORMANCE WITH FIXED AND TUNEABLE DRS FOR CASE STUDY 2 

Load  

level 

Base case Fixed DRs Tuneable DRs 

Ploss Vmin Ploss Vmin Node (DG in kW) Node (SC in kVAr) Ploss Vmin 

1 117.76 0.9728 54.77 0.9859 6(1258), 12(2148), 

28(1698), 

71(1001), 79(1420) 

6(900), 12(1600), 

31(1100), 71(800), 

79(1000) 

41.89 0.9859 

2 146.03 0.9728 62.72 0.9823 6(1234), 12(2500), 

28(1955), 

71(1005), 79(1457) 

6(800), 12(1700), 

31(1200), 71(800), 

79(1000) 

50.97 0.9823 

3 182.85 0.9728 94.11 0.9793 6(1230), 12(2498), 

28(2000), 

71(1004), 79(1449) 

6(900), 12(1700), 

31(1700), 71(800), 

79(1100) 

83.35 0.9793 

4 234.72 0.9586 84.99 0.9793 6(1871), 12(2452), 

28(2000), 

71(1479), 79(2136) 

6(1400), 12(1800), 

31(1700), 71(1200), 

79(1500) 

84.88 0.9793 

5 362.51 0.9438 141.76 0.9722 6(1900), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1500), 12(1800), 

31(1800), 71(1200), 

79(1500) 

141.76 0.9722 

6 334.24 0.9438 133.81 0.9722 6(1866), 12(2146), 

28(1727), 

71(1500), 79(2200) 

6(1500), 12(1400), 

31(1800), 71(1200), 

79(1500) 

133.26 0.9722 

7 463.01 0.9286 171.99 0.9722 6(1900), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1500), 12(1800), 

31(1800),71 (1200), 

79(1500) 

171.99 0.9722 

8 531.81 0.9286 234.88 0.9651 6(1900), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1500), 12(1800), 

31(1800), 71(1200), 

79(1500) 

234.88 0.9651 

9 275.89 0.9601 195.9 0.9651 6(1252), 12(2154), 

28(1769), 

71(1003), 79(1407) 

6(900), 12(1500),  

31(1800), 71(800), 

79(1100) 

184.14 0.9651 
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TABLE C.10 (Continued…) 

NETWORK PERFORMANCE WITH FIXED AND TUNEABLE DRS FOR CASE STUDY 2 

Load  

level 

Base case Fixed DRs Tuneable DRs 

Ploss 

(kW) 

Vmin 

(p.u.) 

Ploss 

(kW) 

Vmin 

(p.u.) 

Node (DG in kW) Node (SC in kVAr) Ploss Vmin 

10 41.81 0.9839 60.48 0.9916 6(741),   12(1307), 

28(1025), 71(572),   

79(869) 

6(500), 12(900),  

31(700), 71(500),  

79(600) 

14.97 0.9916 

11 51.76 0.9839 58.77 0.9895 6(751),   12(1588), 

28(1293), 71(602),   

79(843) 

6(600), 12(1100),  

31 (700), 71(500), 

79(600) 

18.05 0.9895 

12 64.78 0.9839 68.65 0.9877 6(763),   12(1609), 

28(1281), 71(594),   

79(876) 

6(600), 12(1200), 

31(1000), 71(500), 

79(600) 

29.57 0.9877 

13 82.81 0.9756 52.41 0.9877 6(1093), 12(1604), 

28(1215), 71(889),   

79(1322) 

6(800), 12(1100) , 

31(1000), 71(700), 

79(900) 

30.11 0.9877 

14 126.98 0.9672 57.76 0.9835 6(1487), 12(1630), 

28(1299), 

71(1211), 79(1699) 

6(1100), 12(1100), 

31(1400), 71(900), 

79(1200) 

47.15 0.9835 

15 117.04 0.9672 59.47 0.9835 6(1545), 12(1270), 

28(999),   

71(1203), 79(1747) 

6(1200), 12(900), 

31(1400), 71(900), 

79(1200) 

44.21 0.9835 

16 160.81 0.9586 54.5 0.9835 6(1875), 12(1656), 

28(1312), 

71(1459), 79(2135) 

6(1300), 12(1100), 

31 (1400), 71(1200), 

79(1500) 

48.2 0.9835 

17 184.75 0.9586 75.15 0.9793 6(1871), 12(1599), 

28(1260), 

71(1500), 79(2110) 

6(1400), 12(900), 

31(1700), 71(1200), 

79(1500) 

69.47 0.9793 

18 97.19 0.9764 106.23 0.9793 6(747),   12(1315), 

28(1063), 71(622),   

79(813) 

6(500), 12(1000), 

31(1700), 71(500), 

79(600) 

63.89 0.9793 

19 234.11 0.9614 85.56 0.9801 6(1730), 12(2500), 

28(2000), 

71(1417), 79(1970) 

6(1200), 12(1800), 

31(1600), 71(1100), 

79(1400) 

84.59 0.9801 

20 290.83 0.9614 112.47 0.9749 6(1738), 12(2500), 

28(1989), 

71(1443), 79(1983) 

6(1300), 12(1800), 

31(1700), 

71(1000),79(1400) 

111.63 0.9749 

21 364.37 0.9614 178.09 0.9708 6(1751), 12(2500), 

28(2000), 

71(1423), 79(2022) 

6(1300), 12(1800), 

31(1800), 71(1000), 

79(1400) 

177.24 0.9708 

22 469.86 0.9408 192.05 0.9708 6(1900), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1500), 12(1800), 

31(1800), 71(1200), 

79(1500) 

192.05 0.9708 

23 731.35 0.9191 343.68 0.9607 6(1898), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1400), 12(1700), 

31(1800), 71(1200), 

79(1500) 

343.68 0.9607 

24 674.63 0.9191 316.77 0.9607 6(1900), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1500), 12(1800), 

31(1800), 71(1200), 

79(1500) 

316.77 0.9607 

25 943.46 0.8962 442.45 0.945 6(1900), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1500), 12(1800), 

31(1800), 71(1200), 

79(1500) 

442.45 0.945 

26 1083.19 0.8962 573.24 0.945 6(1900), 12(2500), 

28(2000), 

71(1500), 79(2200) 

6(1500), 12(1800), 

31(1800), 71(1200), 

79(1500) 

573.24 0.945 

27 553.11 0.9433 379.28 0.9504 6(1737), 12(2483), 

28(2000), 

71(1404), 79(2003) 

6(1400), 12(1800), 

31(1800), 71(1100), 

79(1400) 

378.58 0.9504 
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TABLE C.11  

NETWORK PERFORMANCE FOR FIXED AND TUNEABLE DRS WITH NR FOR CASE STUDY 2 
S

ea
so

n
 

Load  

Level 

Fixed DRs with NR Tuneable DRs with NR 

Optimal 

configuration 

A B C Optimal 

configuration 

A B C 

S
ea

so
n

-1
 

1 12, 20, 28, 34, 

35, 42, 53, 59, 

66, 76, 86, 90, 

96 

28.45 0.9886 75.84 28, 34, 38, 42, 

54, 64, 76, 79, 

85, 86, 87, 89,    

90 

34.49 0.9879 70.71 

2 12, 20, 28, 34, 

37, 42, 53, 59, 

67, 76, 86, 90,  

96 

37.10 0.9856 74.59 28, 34, 39, 42, 

54, 64, 70, 76, 

79, 85, 86, 89,  

90 

43.35 0.9856 70.32 

3 12 20 28 34 38 

42 53 60 69 76 

86 90 96 

58.85 0.9844 67.82 6, 20, 28, 34, 38,  

42, 54, 70, 76, 

86, 89, 90, 96 

67.69 0.9811 62.98 

4 28, 34, 38, 42, 

54, 64, 70, 76, 

79, 85, 86, 89,  

90 

69.02 0.9825 70.60 28, 34, 38, 42, 

54, 64, 71, 76, 

79, 85, 86, 89,  

90 

70.26 0.9822 70.07 

5 6, 34, 36, 42, 

54, 64, 72, 76, 

86, 89, 90, 91, 

92 

128.26 0.9722 64.62 6, 34, 36, 42, 54,  

64, 72, 76, 86, 

89, 90, 91, 92 

128.26 0.9722 64.62 

6 6, 12, 28, 34, 

38, 42, 54, 64, 

86, 87, 88, 90, 

91 

110.91 0.9753 66.82 6, 34, 36, 42, 54, 

64, 72, 76, 86, 

89, 90, 91, 92 

118.34 0.9722 64.59 

7 6,  34, 36, 42, 

54 63, 72, 76, 

86, 89 90, 91, 

92 

159.08 0.9722 65.64 6, 34, 36, 42, 54, 

63, 72, 76, 86, 

89, 90, 91, 92 

159.08 0.9722 65.64 

8 34, 36, 42, 55, 

72 76, 85, 86, 

89, 90, 91, 92, 

96 

212.62 0.9651 60.02 6, 34, 36, 42, 54, 

63, 72, 76, 86, 

89, 90, 91, 92 

211.90 0.9651 60.16 

9 12, 34, 35, 42, 

54, 59, 68, 76, 

78, 86, 90, 92, 

96 

110.86 0.9761 59.82 6, 20, 34, 35, 42, 

54, 76, 86, 87, 

89, 90, 92,  96 

134.50 0.9697 51.25 

S
ea

so
n

-2
 

10 18, 19, 26, 35, 

42, 46, 50, 57, 

74, 86, 87, 90, 

96 

25.37 0.9947 39.33 28, 34, 38, 42, 

54, 64, 76, 79, 

85, 86, 87, 89, 90 

12.29 0.993 70.61 

11 12, 16, 19, 28, 

35, 42, 46, 50, 

57, 75, 86, 90, 

96 

24.06 0.9965 53.52 28, 34, 38, 42, 

54, 64, 70, 76, 

79, 85, 86, 89, 90 

14.89 0.9914 71.24 

12 2, 12, 18, 20, 

28, 36, 42, 58, 

75, 86, 90, 94, 

96 

27.48 0.9893 57.58 6, 20, 28, 34, 38,  

42, 54, 76, 86, 

87, 89, 90, 96 

23.40 0.9881 63.88 

13 4, 12, 20, 28, 

36, 42, 60, 66, 

74, 86, 90, 94, 

96 

22.75 0.9941 72.52 28, 34, 38,  42, 

54, 64, 76, 79, 

85, 86, 87, 89, 90 

24.90 0.9896 69.93 

 

14 5  86  87  64  

60  76  12  28  

90  42  34  35  

78 

30.12 0.9895 76.28 54  86  69  85  64  

88  12  28  90  42  

34  38  79 

37.53 0.9867 70.45 
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 TABLE C.11 (Continued…) 

NETWORK PERFORMANCE FOR FIXED AND TUNEABLE DRS WITH NR FOR CASE STUDY 2 
 

 Fixed DRs with NR Tuneable DRs with NR 

Load  

Level 

Optimal 

configuration 

A B C Optimal 

configuration 

A B C 

S
ea

so
n

-2
 

15 5, 12, 28, 34, 

35, 42, 60, 64, 

76, 78, 86, 87, 

90 

27.61 0.9875 76.41 12, 28, 34, 39,  

41, 54, 59, 64  

69, 79, 86, 88  

90 

34.38 0.9867 70.63 

16 5, 12, 28, 34, 

35, 42, 64, 66, 

76, 78, 85, 86, 

90 

32.08 0.9885 80.05 12, 28, 34, 38,  

42, 54, 59, 64,  

69, 79, 86, 88,  

90 

39.48 0.9849 75.45 

17 12, 28, 34, 35, 

42, 54, 64, 68, 

76, 79, 85, 86, 

90 

45.43 0.9833 75.41 28, 34, 38, 42, 

54, 64, 76, 79, 

85, 86, 87, 89,  

90 

55.38 0.9821 70.02 

18 5, 12, 20, 28, 

34, 35, 42, 59, 

74, 86, 87, 90, 

96 

40.46 0.9905 58.37 6, 12, 20, 28, 

34, 38, 42, 54,  

70, 86, 88, 90,  

96 

46.97 0.9813 51.67 

S
ea

so
n

-3
 

19 5, 28, 34, 39, 

42, 64, 70, 76, 

79, 85, 86, 89, 

90 

68.76 0.9837 70.63 28, 34, 39, 42,   

54, 64, 70, 76, 

79, 85, 86, 89,    

90 

73.25 0.9833 68.71 

20 5, 39, 42, 64, 

70, 76, 79, 85, 

86, 89, 90, 92, 

94 

97.45 0.977 66.49 5, 28, 33, 42,  

54, 64, 71, 76,  

79,  86, 89, 90,   

93 

103.13 0.9797 64.54 

21 6, 20, 34, 38, 

42, 54, 70, 76, 

86, 89, 90, 92, 

96 

148.12 0.9732 59.35 6, 20, 34, 38,  

42, 54, 70, 76, 

86, 89, 90, 92,  

96 

153.28 0.9716 57.93 

22 6, 34, 38, 42, 

54, 64, 76, 86, 

87, 89, 90, 91, 

92 

184.31 0.9708 60.77 6, 34, 38, 42,  

54, 64, 76, 89,   

86, 87, 90, 91, 

92 

184.31 0.9708 60.77 

23 6, 34, 37, 42, 

54, 63, 72, 86, 

88, 89, 90, 91, 

92 

323.60 0.9607 55.75 6, 34, 37, 42,   

54, 63, 72, 86, 

88, 89, 90, 91, 

92 

326.37 0.9607 55.38 

24 6, 34, 36, 42, 

54, 63, 72, 76, 

86, 89, 90, 91, 

92 

288.45 0.9607 57.24 6, 34, 36, 42, 

54, 63, 72, 76, 

86, 89, 90, 91, 

92 

288.45 0.9607 57.24 

25 6, 34, 37, 42, 

54, 61, 72, 86, 

88, 89, 90, 91, 

92 

413.29 0.952 56.19 6, 34, 37, 42, 

54, 61, 72, 86, 

88, 89, 90, 91, 

92 

413.29 0.952 56.19 

26 6, 34, 37, 42, 

54, 62, 72, 86, 

88, 89, 90, 91, 

92 

529.27 0.947 51.14 6, 34, 37, 42, 

54, 62, 72, 86, 

88,  89, 90, 91, 

92 

529.27 0.947 51.14 

27 6, 20, 34, 36, 

42, 54, 69, 76, 

86, 89, 90, 92, 

96 

266.03 0.9573 51.90 6, 20, 34, 36,  

42, 54, 69, 76,  

86, 89, 90, 92, 

96 

273.44 0.9554 50.56 

A: Power loss (kW), B: Minimum node voltage (p. u.), C: Energy loss reduction (%)   
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TABLE C.12  

OPTIMAL SOLUTION FOR DR ALLOCATION AND OPTIMAL NR WITHOUT CONSIDERING LOAD DIVERSITY 

FOR CASE STUDY 1 

Load level 
Optimal location (Optimal sizing) Optimal configuration  

 Node (SCs in kVAr) Node (DGs  in kW) 

Light  14(200), 24(300), 30(600)  

TC: 1100 

14(449), 24(638), 30(624) 

TC: 1711 

7, 9, 17, 35, 37 

Nominal 

 

14(300), 24(600), 30(900) 

TC: 1800 

14(740), 24(1059), 30(1038) 

TC: 2837 

7, 9, 17, 25, 35    

Peak 

 

14(300), 24(600), 30(900) 

TC: 1800  

14(740), 24(1059), 30(1038) 

TC: 2837 

7,  9, 28, 34, 36 

 
 TC: Total capacity 

TABLE C.13  

CALCULATION FOR FALSE ANNUAL ENERGY LOSS SAVING 

 Particular (MWh) Value 

Base case annual energy loss*(a) 1837.77 

Annual energy loss*(b) 134.58 

Annual energy loss savings*(c) = (a)-(b) 1703.2 

Base case annual energy loss (d) 984.63 

Annual energy loss
#
(e) 283.91 

Annual energy loss savings
#
(f) = (d)-(e) 700.72 

False annual energy loss savings
# 
(g) = (c)-(f) 1002.48 

Annual energy loss (h)  111.12 

Actual annual energy loss savings (i) = (d)-(h) 873.51 

Percentage false annual energy loss saving (j) = 100*(g)/(i) 114.77 
*without considering load diversity, # implementing solution (without considering load diversity) in distribution system having load 

diversity  
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APPENDIX D 
 

TABLE D.1  

OPTIMAL SCHEDULING OF MTS AND SCS FOR JULY 1
ST

 OF THE FIRST YEAR 

Hour Load Factors SPV generation 

(kWh) 

WT generation 

(kWh) 

Optimal 

scheduling 

MTs 

(kWh) 

Optimal scheduling 

SCs 

(kVArh) 

R I C Node 2 Node 

29 

Node 2 Node 

7 

Node 

16 

Node 

32 

Node 

4 

Node 

14 

Node 

30 

1 0.61 0.59 0.43 0.00 0.00 564.15 271.63 330 240 100 200 400 

2 0.57 0.66 0.38 0.00 0.00 942.27 453.68 329 240 100 200 400 

3 0.63 0.62 0.39 0.00 0.00 1289.97 621.10 330 240 100 200 400 

4 0.60 0.61 0.36 0.00 0.00 741.43 356.99 329 240 100 200 400 

5 0.62 0.66 0.40 0.00 0.00 1195.25 575.49 330 240 100 200 400 

6 0.72 0.76 0.55 0.00 0.00 977.57 470.68 329 240 100 200 600 

7 0.81 1.08 0.79 191.63 60.84 353.57 170.24 330 238 300 300 800 

8 0.86 1.26 1.00 1022.43 324.58 367.80 177.09 330 238 300 300 900 

9 0.82 1.29 1.32 2692.71 854.83 794.81 382.69 325 240 300 300 900 

10 0.81 1.29 1.38 3839.32 1218.83 298.94 143.93 330 239 300 300 900 

11 0.76 1.34 1.32 4063.54 1290.01 678.96 326.91 330 240 300 300 900 

12 0.81 1.35 1.31 5098.01 1618.42 816.25 393.01 330 238 300 300 900 

13 0.79 1.26 1.20 5220.63 1657.34 488.26 235.09 330 239 300 300 900 

14 0.93 1.22 1.19 4739.41 1504.57 486.62 234.30 329 236 300 300 900 

15 0.92 1.23 1.12 3788.14 1202.58 789.86 380.30 330 239 300 300 900 

16 1.01 1.20 1.00 3266.66 1037.03 365.42 175.94 329 240 300 300 900 

17 1.02 1.10 0.81 1636.32 519.47 843.15 405.96 329 240 300 300 800 

18 1.11 1.00 0.83 757.24 240.39 1161.83 559.40 330 239 300 300 900 

19 1.25 0.79 0.79 14.06 4.46 1036.24 498.93 329 240 300 300 800 

20 1.29 0.66 0.83 0.00 0.00 856.98 412.62 330 240 300 300 900 

21 1.35 0.59 0.83 0.00 0.00 760.45 366.14 329 240 300 300 900 

22 1.33 0.61 0.64 0.00 0.00 726.25 349.67 330 239 300 300 700 

23 1.20 0.62 0.56 0.00 0.00 864.80 416.38 330 240 300 300 600 

24 0.79 0.63 0.49 0.00 0.00 693.01 333.67 330 240 200 200 500 

TABLE D.2  

OPTIMAL SCHEDULING OF MTS AND SCS FOR JANUARY 1
ST

 OF THE 20
TH

 YEAR 

Hour 

Load Factors SPV generation 

(kWh) 

WT generation 

(kWh) 

Optimal 

generation 

MTs 

(kWh) 

Optimal generation 

SCs 

(kVArh) 

R I C Node 2 Node 29 Node 2 Node 7 Node 

16 

Node 

32 

Node 

4 

Node 

14 

Node 

30 

1 1.07 1.14 0.80 0.00 0.00 2232.63 1074.97 326 239 300 300 900 

2 1.01 1.15 0.76 0.00 0.00 1888.87 909.46 325 239 300 300 800 

3 1.08 1.06 0.68 0.00 0.00 2896.38 1394.55 328 240 300 300 700 

4 1.02 1.14 0.71 0.00 0.00 1517.55 730.67 330 236 300 300 800 

5 1.14 1.04 0.73 0.00 0.00 1133.74 545.87 330 235 300 300 800 

6 1.31 1.31 0.93 0.00 0.00 1305.89 628.76 329 238 300 300 900 

7 1.40 1.87 1.38 0.00 0.00 1067.64 514.05 329 240 300 300 900 

8 1.43 2.21 1.80 621.30 197.24 2475.92 1192.11 330 239 300 300 900 

9 1.41 2.16 2.38 2253.98 715.55 2272.31 1094.08 330 234 300 300 900 

10 1.32 2.27 2.29 2948.35 935.98 1144.18 550.90 330 239 300 300 900 

11 1.35 2.33 2.25 4340.06 1377.80 1148.91 553.18 329 240 300 300 900 

12 1.37 2.36 2.32 5137.94 1631.09 2348.34 1130.68 329 238 300 300 900 

13 1.47 2.30 2.14 5371.23 1705.15 1730.67 833.28 329 240 300 300 900 

14 1.63 2.15 2.06 3975.78 1262.15 1689.37 813.40 329 236 300 300 900 

15 1.65 2.12 1.91 3571.49 1133.81 2425.03 1167.61 328 239 300 300 900 

16 1.74 2.05 1.76 2923.43 928.07 2427.36 1168.73 329 240 300 300 900 

17 1.77 1.84 1.49 1400.93 444.74 1666.25 802.27 329 238 300 300 900 

18 1.94 1.70 1.45 338.90 107.59 1687.90 812.69 330 238 300 300 900 
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TABLE D.2 (Continued…) 

OPTIMAL SCHEDULING OF MTS AND SCS FOR JANUARY 1
ST

 OF THE 20
TH

 YEAR 

Hour Load Factors SPV generation 

(kWh) 

WT generation 

(kWh) 

Optimal 

generation 

MTs 

(kWh) 

Optimal generation 

SCs 

(kVArh) 

R I C Node 2 Node 29 Node 2 Node 7 Node 

16 

Node 

32 

Node 

4 

Node 

14 

Node 

30 

19 2.28 1.43 1.38 0.00 0.00 1488.65 716.76 330 238 300 300 900 

20 2.29 1.19 1.45 0.00 0.00 1738.81 837.21 330 237 300 300 900 

21 2.37 1.11 1.34 0.00 0.00 2172.98 1046.25 327 239 300 300 900 

22 2.31 1.06 1.13 0.00 0.00 3069.23 1477.78 329 238 300 300 900 

23 2.01 1.01 0.96 0.00 0.00 1937.81 933.02 328 239 300 300 900 

24 1.31 1.07 0.92 0.00 0.00 3142.39 1513.00 330 240 300 300 900 

TABLE D.3 

 ECONOMIC PERFORMANCE OF THE SYSTEM ON JULY 1
ST

 OF THE FIRST YEAR  

Time 

(hr) 

Revenue from customers 

($) 

Revenue from Grid 

($) 

Net 

revenue($) 

Variable 

charges($) 

Profit 

($) 

1 119.08 34.21 84.87 34.47 50.40 

2 118.25 2.62 115.63 40.02 75.61 

3 121.06 -24.88 145.94 45.22 100.72 

4 115.35 16.28 99.07 37.03 62.04 

5 123.33 -14.29 137.61 43.82 93.80 

6 148.73 28.53 120.20 40.59 79.62 

7 196.39 111.63 84.76 33.92 50.84 

8 227.34 79.54 147.80 45.10 102.70 

9 248.22 -61.22 309.44 73.29 236.15 

10 252.05 -103.19 355.24 81.23 274.01 

11 248.34 -157.77 406.11 89.86 316.24 

12 252.07 -245.69 497.77 105.43 392.33 

13 236.56 -242.39 478.95 102.24 376.71 

14 242.25 -199.21 441.46 95.69 345.77 

15 238.47 -156.27 394.74 87.83 306.91 

16 234.76 -82.39 317.16 74.67 242.48 

17 214.15 -18.52 232.67 60.25 172.41 

18 215.74 22.15 193.59 53.41 140.18 

19 208.65 80.14 128.50 41.74 86.76 

20 204.70 92.15 112.55 38.97 73.59 

21 204.19 99.75 104.44 37.49 66.95 

22 191.46 90.21 101.26 36.94 64.32 

23 175.88 63.63 112.24 39.02 73.22 

24 140.96 44.37 96.59 36.42 60.17 

Sum 4677.98 -540.62 5218.59 1374.66 3843.94 

TABLE D.4  

ECONOMIC PERFORMANCE OF THE SYSTEM ON JANUARY 1
ST

 OF THE 20
TH

 YEAR  

Time 

(hr) 

Revenue from customers 

($) 

Revenue from Grid 

($) 

Net 

revenue($) 

Variable 

charges($) 

Profit ($) 

1 706.64 -19.72 726.37 189.68 536.69 

2 684.47 51.04 633.43 173.12 460.31 

3 664.94 -249.67 914.60 221.55 693.05 

4 675.24 139.61 535.63 155.75 379.87 

5 683.37 248.97 434.41 137.36 297.05 

6 834.28 350.47 483.80 145.90 337.90 

7 1088.09 670.27 417.84 134.86 282.97 

8 1272.14 335.97 936.16 228.11 708.05 

9 1383.32 124.75 1258.60 286.74 971.86 

10 1366.61 241.49 1125.10 263.19 861.91 

11 1378.19 -84.79 1463.00 322.27 1140.73 

12 1405.70 -596.00 2001.70 412.76 1588.94 
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TABLE D.4 (Continued…) 

ECONOMIC PERFORMANCE OF THE SYSTEM ON JANUARY 1
ST

 OF THE 20
TH

 YEAR  

Time 

(hr) 

Revenue from customers 

($) 

Revenue from Grid 

($) 

Net 

revenue($) 

Variable 

charges($) 

Profit ($) 

13 1377.49 -512.51 1890.00 393.54 1496.46 

14 1364.47 -163.29 1527.80 331.98 1195.82 

15 1328.90 -311.59 1640.50 350.16 1290.34 

16 1299.63 -182.13 1481.80 323.16 1158.64 

17 1198.05 288.96 909.08 222.28 686.80 

18 1200.19 539.06 661.14 178.54 482.60 

19 1201.72 677.34 524.38 154.74 369.64 

20 1166.42 575.29 591.14 166.49 424.65 

21 1138.70 429.52 709.18 186.99 522.19 

22 1067.54 115.84 951.70 229.76 721.94 

23 943.52 291.98 651.54 175.95 475.59 

24 777.61 -204.07 981.68 233.67 748.01 

Sum 26207.25 2756.81 23450.57 5618.54 17832.03 

TABLE D.5  

OPTIMAL CONFIGURATION IN 1
ST

 YEAR AND 20
TH

 YEAR OF PLANNING HORIZON 

First year of planning horizon 20
th

 year of planning horizon 

Hour 

Optimal 

 configuration Hour 

Optimal 

configuration Hour 

Optimal 

configuration Hour 

Optimal 

configuration 

1 7, 10, 12, 32, 37 13 10, 13, 26, 33, 34 1 10, 32, 33, 34, 37 13 6, 9, 13, 28, 32 

2 9, 12, 24, 33, 34 14 10, 13, 26, 33, 34 2 10, 32, 33, 34, 37 14 6, 9, 13, 36, 37 

3 9, 12, 24, 33, 34 15 9, 13, 28, 33, 34 3 3, 9, 12, 32, 33 15 6, 9, 13, 32, 37 

4 5, 8, 10, 32, 37 16 7, 9,12, 28, 34 4 9, 32, 33, 34, 37 16 6, 9, 13, 32, 37 

5 8, 12, 24, 33, 34 17 6, 10, 13, 28, 32 5 7, 9, 34, 36, 37 17 6, 9, 13, 32, 37 

6 8, 9, 32, 33, 37 18 9, 33, 34, 36, 37 6 6,  9, 13, 15, 37 18 6, 9, 13, 32, 37 

7 7, 9, 32, 34, 37 19 9, 32, 33, 34, 37 7 6, 9, 13, 32, 37 19 6, 9, 13, 36, 37 

8 7, 10, 32, 34, 37 20 10, 28, 32, 33, 34 8 6, 9, 13, 31, 37 20 6, 9, 13, 36, 37 

9 9, 13, 28, 32, 33 21 9, 28, 33, 34, 36 9 6, 9, 13, 32, 37 21 6, 9, 13, 15, 37 

10 9, 13, 28, 33, 34 22 9, 28, 33, 34, 36 10 6, 9, 13, 32, 37 22 9, 13, 33, 36, 37 

11 9, 13, 28, 33, 34 23 9, 32, 33, 34, 37 11 6, 9, 13, 32, 37 23 6, 9, 13, 15, 37 

12 10, 13, 27, 33, 34 24 7, 8, 9, 36, 37 12 6, 9, 13, 32, 37 24 10, 13, 32, 33, 37 
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APPENDIX E 

The single-line diagrams, line and bus data of and other relevant data of various test 

distribution systems considered for simulation of different techniques throughout this 

thesis are given in this appendix. 

1. IEEE 33-BUS TEST DISTRIBUTION SYSTEM  

This test distribution system and its data are referred from [254]. It is a 12.66 kV 

distribution system with 32 sectionalizing switches and 5 tie-switches. The nominal active 

and reactive loadings are 3,715 kW and 2,300 kVAr respectively.  

 

Fig. E.1 Single line diagram of 33-bus system 
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TABLE E.1 

BUS DATA OF 33-BUS SYSTEM 

Bus 

number 

Load Bus 

number 

Load 

Active load 

(kW) 

Reactive load 

(kVAr) 

Active load 

(kW) 

Reactive load 

(kVAr) 

1 0.00 0.00 18 90.00 40.00 

2 100.00 60.00 19 90.00 40.00 

3 90.00 40.00 20 90.00 40.00 

4 120.00 80.00 21 90.00 40.00 

5 60.00 30.00 22 90.00 40.00 

6 60.00 20.00 23 90.00 50.00 

7 200.00 100.00 24 420.00 200.00 

8 200.00 100.00 25 420.00 200.00 

9 60.00 20.00 26 60.00 25.00 

10 60.00 20.00 27 60.00 25.00 

11 45.00 30.00 28 60.00 20.00 

12 60.00 35.00 29 120.00 70.00 

13 60.00 35.00 30 200.00 600.00 

14 120.00 80.00 31 150.00 70.00 

15 60.00 10.00 32 210.00 100.00 

16 60.00 20.00 33 60.00 40.00 

17 60.00 20.00    

TABLE E.2 

LINE DATA OF 33-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

1 1 2 0.0922 0.0470 400 

2 2 3 0.4930 0.2512 400 

3 3 4 0.3661 0.1864 250 

4 4 5 0.3811 0.1941 250 

5 5 6 0.8190 0.7070 250 

6 6 7 0.1872 0.6188 150 

7 7 8 0.7115 0.2351 150 

8 8 9 1.0299 0.7400 150 

9 9 10 1.0440 0.7400 150 

10 10 11 0.1967 0.0651 150 

11 11 12 0.3744 0.1298 150 

12 12 13 1.4680 1.1549 150 

13 13 14 0.5416 0.7129 150 

14 14 15 0.5909 0.5260 150 

15 15 16 0.7462 0.5449 150 

16 16 17 1.2889 1.7210 150 

17 17 18 0.7320 0.5739 150 

18 2 19 0.1640 0.1565 250 

19 19 20 1.5042 1.3555 250 
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TABLE E.2 (Continued…) 

LINE DATA OF 33-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

20 20 21 0.4095 0.4784 250 

21 21 22 0.7089 0.9373 150 

22 3 23 0.4512 0.3084 250 

23 23 24 0.8980 0.7091 250 

24 24 25 0.8959 0.7071 250 

25 6 26 0.2031 0.1034 250 

26 26 27 0.2842 0.1447 250 

27 27 28 1.0589 0.9338 250 

28 28 29 0.8043 0.7006 250 

29 29 30 0.5074 0.2585 250 

30 30 31 0.9745 0.9629 150 

31 31 32 0.3105 0.3619 150 

32 32 33 0.3411 0.5302 150 

33 8 21 2.0000 2.0000 150 

35 9 15 2.0000 2.0000 150 

35 12 22 2.0000 2.0000 150 

36 18 33 0.5000 0.5000 150 

37 25 29 0.5000 0.5000 150 
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2. 83-BUS TEST DISTRIBUTION SYSTEM 

It is an 11.4 kV practical distribution network of Taiwan Power Company [256]. The 

system consists of 11 feeders, 83 normally closed sectionalizing switches, and 13 normally 

open tie switches. The nominal active and reactive loadings are 28,350 kW and 20,700 

kVAr respectively. 

 

Fig. E.2 Single line diagram of 83-bus system 
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TABLE E.3 

BUS DATA OF 83-BUS SYSTEM 

Bus number Load Bus number Load 

Active load  

(kW) 

Reactive load  

(kVAr) 

Active load  

(kW) 

Reactive load  

(kVAr) 

1 0.00 0.00 44 30.00 20.00 

2 100.00 50.00 45 800.00 700.00 

3 300.00 200.00 46 200.00 150.00 

4 350.00 250.00 47 0.00 0.00 

5 220.00 100.00 48 0.00 0.00 

6 1100.00 800.00 49 0.00 0.00 

7 400.00 320.00 50 200.00 160.00 

8 300.00 200.00 51 800.00 600.00 

9 300.00 230.00 52 500.00 300.00 

10 300.00 260.00 53 500.00 350.00 

11 0.00 0.00 54 500.00 300.00 

12 1200.00 800.00 55 200.00 80.00 

13 800.00 600.00 56 0.00 0.00 

14 700.00 500.00 57 30.00 20.00 

15 0.00 0.00 58 600.00 420.00 

16 300.00 150.00 59 0.00 0.00 

17 500.00 350.00 60 20.00 10.00 

18 700.00 400.00 61 20.00 10.00 

19 1200.00 1000.00 62 200.00 130.00 

20 300.00 300.00 63 300.00 240.00 

21 400.00 350.00 64 300.00 200.00 

22 50.00 20.00 65 0.00 0.00 

23 50.00 20.00 66 50.00 30.00 

24 50.00 10.00 67 0.00 0.00 

25 50.00 30.00 68 400.00 360.00 

26 100.00 60.00 69 0.00 0.00 

27 100.00 70.00 70 0.00 0.00 

28 1800.00 1300.00 71 2000.00 1500.00 

29 200.00 120.00 72 200.00 150.00 

30 0.00 0.00 73 0.00 0.00 

31 1800.00 1600.00 74 0.00 0.00 

32 200.00 150.00 75 1200.00 950.00 

33 200.00 100.00 76 300.00 180.00 

34 800.00 600.00 77 0.00 0.00 

35 100.00 60.00 78 400.00 360.00 

36 100.00 60.00 79 2000.00 1300.00 

37 20.00 10.00 80 200.00 140.00 

38 20.00 10.00 81 500.00 360.00 

39 20.00 10.00 82 100.00 30.00 

40 20.00 10.00 83 400.00 360.00 

41 200.00 160.00 84 0.00 0.00 

42 50.00 30.00 85 0.00 0.00 

43 0.00 0.00    
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TABLE E.4 

LINE DATA OF 83-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

1 84 1 0.1944 0.6624 500 

2 1 2 0.2096 0.4304 500 

3 2 3 0.2358 0.4842 500 

4 3 4 0.0917 0.1883 500 

5 4 5 0.2096 0.4304 500 

6 5 6 0.0393 0.0807 500 

7 6 7 0.0405 0.1380 250 

8 7 8 0.1048 0.2152 250 

9 7 9 0.2358 0.4842 250 

10 7 10 0.1048 0.2152 250 

11 84 11 0.0786 0.1614 500 

12 11 12 0.3406 0.6944 500 

13 12 13 0.0262 0.0538 250 

14 12 14 0.0786 0.1614 250 

15 84 15 0.1134 0.3864 500 

16 15 16 0.0524 0.1076 500 

17 16 17 0.0524 0.1076 500 

18 17 18 0.1572 0.3228 500 

19 18 19 0.0393 0.0807 500 

20 19 20 0.1703 0.3497 250 

21 20 21 0.2358 0.4842 250 

22 21 22 0.1572 0.3228 250 

23 21 23 0.1965 0.4035 250 

24 23 24 0.1310 0.2690 250 

25 84 25 0.0567 0.1932 500 

26 25 26 0.1048 0.2152 500 

27 26 27 0.2489 0.5111 500 

28 27 28 0.0486 0.1656 500 

29 28 29 0.1310 0.2690 250 

30 84 30 0.1965 0.3960 500 

31 30 31 0.1310 0.2690 500 

32 31 32 0.1310 0.2690 250 

33 32 33 0.0262 0.0538 250 

34 33 34 0.1703 0.3497 250 

35 34 35 0.0524 0.1076 250 

36 35 36 0.4978 1.0222 250 

37 36 37 0.0393 0.0807 250 

38 37 38 0.0393 0.0807 250 

39 38 39 0.0786 0.1614 250 

40 39 40 0.2096 0.4304 250 

41 38 41 0.1965 0.4035 250 

42 41 42 0.2096 0.4304 250 
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TABLE E.4 (Continued…) 

LINE DATA OF 83-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

43 84 43 0.0486 0.1656 500 

44 43 44 0.0393 0.0807 500 

45 44 45 0.1310 0.2690 500 

46 45 46 0.2358 0.4842 250 

47 85 47 0.2430 0.8280 500 

48 47 48 0.0655 0.1345 500 

49 48 49 0.0655 0.1345 500 

50 49 50 0.0393 0.0807 500 

51 50 51 0.0786 0.1614 500 

52 51 52 0.0393 0.0807 500 

53 52 53 0.0786 0.1614 250 

54 53 54 0.0524 0.1076 250 

55 54 55 0.1310 0.2690 250 

56 85 56 0.2268 0.7728 500 

57 56 57 0.5371 1.1029 500 

58 57 58 0.0524 0.1076 500 

59 58 59 0.0405 0.1380 250 

60 59 60 0.0393 0.0807 250 

61 60 61 0.0262 0.0538 250 

62 61 62 0.1048 0.2152 250 

63 62 63 0.2358 0.4842 250 

64 63 64 0.0243 0.0828 250 

65 85 65 0.0486 0.1656 500 

66 65 66 0.1703 0.3497 500 

67 66 67 0.1215 0.4140 500 

68 67 68 0.2187 0.7452 500 

69 68 69 0.0486 0.1656 500 

70 69 70 0.0729 0.2484 500 

71 70 71 0.0567 0.1932 500 

72 71 72 0.0262 0.0528 250 

73 85 73 0.3240 1.1040 500 

74 73 74 0.0324 0.1104 500 

75 74 75 0.0567 0.1932 500 

76 75 76 0.0486 0.1656 250 

77 85 77 0.2511 0.8556 500 

78 77 78 0.1296 0.4416 500 

79 78 79 0.0486 0.1656 500 

80 79 80 0.1310 0.2640 250 

81 80 81 0.1310 0.2640 250 

82 81 82 0.0917 0.1883 250 

83 82 83 0.3144 0.6456 250 

84 5 55 0.1310 0.2690 250 
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TABLE E.4 (Continued…) 

LINE DATA OF 83-BUS SYSTEM 

Line number Bus from Bus to Line resistance (Ω) Line reactance (Ω) Ampacity (A) 

85 7 60 0.1310 0.2690 250 

86 11 43 0.1310 0.2690 250 

87 12 72 0.3406 0.6994 250 

88 13 76 0.4585 0.9415 250 

89 14 18 0.5371 1.0824 250 

90 16 26 0.0917 0.1883 250 

91 20 83 0.0786 0.1614 250 

92 28 32 0.0524 0.1076 250 

93 29 39 0.0786 0.1614 250 

94 34 46 0.0262 0.0538 250 

95 40 42 0.1965 0.4035 250 

96 53 64 0.0393 0.0807 250 
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