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ABSTRACT

Renergy sources, such as solar and wind, are considered as future energy sources

due to their sustainability and environmental friendliness. High penetration of solar

and wind RDG in the grid is targeted by several countries. However, it is difficult to

maintain grid stability and reliability with high penetration of these sources, due to

their high variability and weak predictability. Energy storage (ES) helps to address

these challenges and support the evolution of a stable and green power grid. ES consists

a broad range of technologies that include batteries, flywheels, pumped storage, heat

storage and compressed air, including electric vehicles. Battery ES systems are easily

scalable and can be deployed almost anywhere in the system, and thus find wider

acceptability. ES offers several technical and economic benefits. The main technical

benefits offered by ES include voltage support, frequency support, load leveling/peak

shaving, spinning reserve, power quality improvement and power reliability. Economic

benefits of ES include reduction in demand charges, reliability-related financial losses,

and power quality-related financial losses. Strategic placement of ES offers multiple

ways to enhance and optimize power system operation and planning.

RDG connection at non-optimal places with improper sizing increases power losses.

Hence, a suitable allocation strategy of RDG and ES with the distribution system is

required. Optimally sized and placed solar and wind RDGs employed in distribution

networks reduce energy losses. Optimal allocation of RDGs in a distribution system

for loss minimization is a challenging issue due to their intermittency. Hence, it is

necessary to identify optimal sizing and placement of RDG in a distribution network.

Further, hybrid RDG, i.e., combined placement of solar and wind RDG, enhances

utilization of available energy resources and provides consistent energy generation.

Research work in this thesis is initiated by developing an optimal solution method-

ology, for sizing and placement of RDG, to minimize energy losses. A probabilistic

generation model is developed. Load is modeled as per IEEE-RTS load model, where

the hourly load is expressed as a percentage of daily peak load. Thus, a generation-load

model is obtained. The number of states involved in generation-load state model are

reduced with the proposed methodology to reduce involved complexity. The developed

hourly generation-load model is used for optimal power flow. Then a generation-load

model is developed for hybrid RDG allocation using expected generation of solar and

wind RDG.
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The proposed nonlinear, constrained optimization problem of optimal RDG alloca-

tion is solved with a robust and competitive Grey Wolf Optimizer (GWO) algorithm.

The results are compared with another set of algorithms, i.e., GA, PSO, SOS, and

FFA. This proposed methodology provide optimal solutions for allocation of single

RDG as well as hybrid RDG. In the present study, optimal sizing and placement of

wind RDG improve loss minimization, as compared to solar RDG and hybrid RDG.

GWO offers a better solution than other algorithms, i.e., GA, PSO, SOS, and FFA.

This optimal allocation technique can be applied to RDG planning.

Optimally allocated ES helps to reduce power losses in the distribution system.

An effective way to reduce distribution losses with ES is peak shaving. Peak shaving is

a process of shaving peak load and filling load valley. It shifts a part of the load from

peak period to off-peak period, thus minimizing losses. The line flows are affected while

integrating ES in the presence of RDG. Hence, it is essential to propose optimal sizing

and placement of ES in the presence of RDG. In the proposed work, optimal sizing and

placement of ES is obtained in the presence of RDGs, for energy loss minimization. It

is observed that the proposed methodology minimizes energy losses.

Optimal allocation of ES, as well as the RDG, affect the line flows and hence the

line losses. Therefore, a combined optimal allocation of ES and RDG is necessary

to achieve significant energy loss minimization. The proposed methodology considers

joint optimal allocation of solar RDG-ES, wind RDG-ES, and hybrid RDG-ES com-

binations. Joint optimal placement and sizing of ES and RDG provide significant loss

minimization.

The thesis finally, proposes a joint optimal allocation methodology for ES and

RDG to economize benefits. The joint optimal allocation of RDG and ES minimizes

Distribution Company’s (DISCOM’s) cost, reduces DISCOM’s network losses and in-

creases revenue of RDG owner. DISCOMs purchase the renewable energy based on the

long-term contract price. The contract price of renewable energy is a critical parameter

that decides the economic benefits of RDG owner and DISCOM. The contract price

of renewable energy needs to be considered in the joint allocation of ES and RDG,

to achieve economic benefits. Hence, a methodology is proposed for joint optimal al-

location of RDG and ES considering contract price of renewable energy. This joint

optimal allocation of ES and RDG offers significant cost minimization for DISCOM.

The proposed joint allocation methodology provides size and location of RDG and ES,

considering the contract price of renewable energy. The RDG owner is encouraged to

invest in RDG, by providing an assured economic benefit.

ii



Thus, considering the environmental challenges and sustainable energy needs, the

thesis addresses optimal sizing and placement of RDG and ES. The major objectives

addressed in the thesis include i) Optimal sizing and placement of RDG for energy loss

minimization. ii) Optimal sizing and placement of ES in-coordination with RDG for

energy loss minimization. iii) Joint optimal sizing and placement of ES and RDG for

energy loss minimization and iv) Joint optimal sizing and placement of RDG and ES

for economic benefit. v) Application of GA, PSO, SOS, FFA and GWO algorithms for

the proposed methodologies.

Significant finding of the thesis includes i) Energy loss minimization is obtained

with optimal sizing and placement of solar RDG, wind RDG and hybrid RDG in

the distribution network. ii) Optimal sizing and placement of ES at multiple sites

in coordination with RDG provides energy loss minimization and also helps in peak

shaving. iii) Joint optimal allocation of RDG and ES further improves energy loss

minimization as compared to earlier two cases. iv) It is found that joint optimal sizing

and placement of ES and RDG provides significant cost benefits to the DISCOM

and RDG owner. vii) Comparing with all cases, i.e., solar RDG, wind RDG and

hybrid RDG; wind RDG provides significant energy loss minimization. The Grey

Wolf Optimizer (GWO) provides optimal solutions, as compared to other optimization

methods, i.e., GA, PSO, SOS and FFA.
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CHAPTER 1

INTRODUCTION

1.1 General

Renewable energy sources (RES) are the future of supply systems due to increasing

concerns about air pollution, global warming, and reduction in fossil fuels. Market con-

cerns of liberalization and governments incentives have further accelerated the growth

of renewable energy sector. Over the last few decades, there has been a keen interest

in many countries in renewable energy. As the energy demand is increasing rapidly,

a transition from the traditional fossil-fueled generation to the generation based on

renewable resources (e.g., solar and the wind ) becomes crucial for future grid [1]. The

potential of RES is to supply a large-scale electric power demand. It has been a growing

area of research over the last decade because of energy independence, sustainability,

and low-carbon technologies [2].

Integration of Renewable sources at distribution network is termed as renewable

distributed generation (RDG). The utility has more concern about the high penetration

of RDG in distribution systems. They are more concerned about network stability,

voltage regulation, and power quality. Therefore, the RDGs have to fulfill technical

and regulatory issues to ensure safe and efficient operation of the network [3]. RDGs

such as solar and the wind are considered as promising energy resources due to the

sustainability and environmental friendliness [4]. Also, the technical and economic
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benefits have led to the increased interest in RDG. RDG can be strategically placed in

power systems for reducing power losses, improving voltage profiles, deferring system

upgrades and improving system efficiency [5].

The renewable sources are variable energy resources which affect the reliable op-

eration of power system. The effect of the variability can be mitigated by using i)

demand-side management, ii) generators with high ramp rates, and iii) energy storage

devices. If demand is managed efficiently so that the net injection remains close to

the energy of forecast, the power system operation is not affected by the variability

of renewable energy resources. For a system with a high penetration of renewable

energy resources, demand-side management alone is enough to mitigate the resource

variability. Hydroelectric power plants have a high ramp rate, but they are built

in limited locations and their operation is limited due to environmental constraints.

The other types of generators using gas fuel have high ramp rates. If the number of

these generators are increased according to the penetration of renewable generators,

then the resulting system becomes highly inefficient. Energy Storage (ES) devices

provide enough flexibility to mitigate the impact of variable output of the variable

generations. ES devices are attractive candidates to control the resource variability

[6]. There are two significant challenges in integrating the wind and solar power into

the power system. First, their output fluctuates widely, rapidly and randomly that

creates operational problems. Secondly, the geographical locations of the wind and

solar farms are certainly far from the load centers. These two problems demand the

large-scale storage that can absorb short-term fluctuations and enhance transmission

capacity. It also provides spatial diversity in the generation to mitigate intermittency

of renewable sources [7].

1.2 Motivation for the Present Work

The benefits of RDG mainly depend on its size and location into the distribution

network. Despite its RDG benefits, installing the RDG into the distribution network

is not to simply place and operate issue. The placement of RDG requires a careful
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consideration of interaction with the power network. They have to consider stability,

reliability, power quality issues, energy losses, etc. First of all, it is important to deter-

mine the optimal location and size of a given RDG before it is connected to a power

system. With the increased penetration of RDG into the network, the power losses

minimization also become the main issue. However, the systematic and paramount

rule for optimal sizing and placement of RDG is still an open question.

The inherent intermittency of RDG requires the support of Energy Storage [8].

Optimal sizing and placement of Energy Storage provides economic benefits and energy

support to the system [9, 10, 11, 12, 13, 14]. In addition to the energy support, the

integration of Energy Storage in distribution system also provides voltage support,

distribution loss reduction, capacity support and deferral of distribution investment

[15, 16]. Storage related problems such as, increasing the capacity of the storage

device, efficiently allocating energy storage to minimize curtailment of renewables has

also been studied. However, it is necessary to address the potential and limitations of

large-scale energy storage [17].

The optimal sizing and placement of the energy storage in the distribution system

is an important aspect to maximize the benefits of the system. The inappropriate

energy storage sizing and placement cause under or over voltages in the distribution

network. Energy storage also affects the system energy losses due to its proximity

to the load centers. Therefore, it is necessary to get an appropriate location in the

distribution system to install energy storage to obtain the optimal effects. The energy

storage should be located on a bus, where they provide a higher reduction in the losses

without violating the system constraints such as the bus voltages [18].

The benefits of energy storage for energy loss minimization is also little addressed.

Significant energy loss minimization and hence corresponding economic benefits can

be obtained by optimal sizing and placement of Energy Storage in the distribution

network. The previous works mainly address the optimal sizing and placement of

renewable distributed generation. Also, a few has dealt with the optimal sizing or

placement of energy storage for energy loss minimization. The combined integration

of RDG and ES into the systems affects the system power flows hence their combined
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effect must be considered while considering the energy losses. Hence joint optimal

allocation of RDG and ES for energy loss minimization is an important planning

issue. Similarly, the joint optimal allocation of RDG and ES should be addressed

while considering the economic analysis. The economic analysis should consider the

benefits of RDG Owner and Distribution Company (DISCOM). While considering the

cost benefits of the DISCOM, RDGO must get some assured benefits to encourage the

RDG owner for the investment in Renewable Distributed Generation.

Considering the above facts, there is a need for optimal sizing and placement

methodology for Renewable Distributed Generation and Energy Storage. The joint

optimal allocation of Renewable Distributed Generation and Energy Storage must be

addressed to obtain significant energy loss minimization. Also, a methodology for joint

optimal allocation of Renewable Distributed Generation and Energy Storage must be

proposed to achieve economic benefits of both, RDG owner and DISCOM.

1.3 Contribution of the Present Work

The ultimate goal of the work adopted in this thesis is to tackle the problem of distri-

bution system planning with Renewable Distributed Generation and Energy Storage

for energy loss minimization and economic cost benefits.

Following is a summary of the contribution of the present work

1. From the critical survey of literature about optimal allocation of distributed

generation, an overview of optimal sizing and placement of ES and RDG is

presented. The detailed study helps to understand the issues associated with

optimal sizing and placement of ES and RDG for energy loss minimization and

economic benefits.

2. Initial part of this thesis work develops a methodology for optimal sizing and

placement of RDG for energy loss minimization. The proposed methodology

uses a probabilistic approach to obtain the expected RDG generation considering

the seasonal variation of the generation. The expected generation for hybrid
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RDG (i.e., solar RDG and wind RDG operated in combination) is also proposed

using the generations of solar RDG and wind RDG. The robust and competitive

algorithm is applied for the proposed methodology to obtain optimal solutions

for the sizing and placement of RDG.

3. The ES technology has been enough matured and it is available in grid scale

rating. Hence, energy storage can be viewed as an opportunity for energy loss

minimization. The optimal sizing and placement of energy storage are proposed

for energy loss minimization. Significant energy loss minimization is obtained

with the proposed methodology.

4. The placement of RDG and ES affects the power flows in the network. Therefore,

optimal sizing and placement of the RDG and ES should consider the joint

allocation of these two energy sources. Considering this fact, a methodology for

joint optimal allocation (i.e., sizing and placement ) of RDG and ES for energy

loss minimization is presented.

5. The optimal sizing and placement of grid-scale energy storage are addressed by

many researchers to achieve economic benefits. Similarly, the cost-benefit anal-

ysis for RDG is also presented by various methodologies. Considering the effect

of combined placement of RDG and ES in the network, economic analysis must

take into account their combined placement. The thesis develops a methodol-

ogy to achieve economic benefits by joint optimal sizing and placement of RDG

and ES. The proposed methodology considers the cost minimization of DISCOM

while assuring the benefits to the RDG owner.

1.4 Organization of the Thesis

The Ph.D. thesis consists of seven chapters, including introduction and conclusions.

The research approach is to formulate first, optimal sizing and placement of RDG for

energy loss minimization. Thus the size and location of RDG are kept as decision

variables in the optimization. Next, optimal sizing and placement of ES for energy
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loss minimization is analyzed in the presence of the optimally allocated RDG. The size

and location of ES are the decision variable. Afterward, the joint optimal allocation

of RDG and ES is presented where size and location of RDG and ES are decision

variables. Thus, in the joint optimal allocation of RDG and ES, four decision variables

are included in the optimization problem. Finally, the economic benefit of RDG owner

and distribution company (DISCOM)is analyzed by a joint optimal allocation of RDG

and ES.

This chapter presents mainly the motivation of current work and contribution of

the thesis. The rest of the chapters of this thesis are organized as follows:

Chapter 2 presents a literature survey on optimal sizing and placement of en-

ergy sources for energy loss minimization. It mainly provides the literature review

on optimal sizing and placement of RDG for energy loss minimization, optimal sizing

and placement of ES for energy loss minimization, optimal sizing and placement of

combined RDG and ES for energy loss minimization. Finally the literature review

on optimal sizing and placement of RDG and ES to obtain cost-benefit analysis is

presented.

Chapter 3 proposes an optimal sizing and placement methodology for RDG for

energy loss minimization. It includes the modeling of solar RDG, wind RDG and

load modeling. A robust and competitive grey algorithm called grey-wolf optimizer is

applied to the proposed methodology. The results of optimal allocation are discussed

in details.

Chapter 4 presents optimal sizing and placement of Energy Storage for energy loss

minimization. In this Chapter, the modeling of battery energy storage is performed.

The detail results are presented on optimal sizing and placement of energy storage for

energy loss minimization.

Chapter 5 proposes a joint optimal allocation methodology of RDG and ES. The

size and location of both RDG and ES are optimized to achieve energy loss minimiza-

tion. The proposed methodology is applied to three cases, i.e., solar RDG-ES, wind
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RDG-ES, and hybrid RDG-ES combinations. The results highlight the significance of

joint optimal allocation technique.

Chapter 6 proposes cost-benefit based joint allocation of RDG and ES. The RDG

and ES are jointly placed and sized to obtain economic benefits to RDG owner and

DISCOM. The economic model mainly includes the RDG owners costs and benefits,

DISCOM’s costs and benefits. The sizing and location of RDG and ES are obtained

such as the cost of DISCOM gets minimized.

Chapter 7 summarizes the main findings of the work presented in this thesis and

suggests directions for a future scope in this area.

Finally, AppendixA provides the publications obtained from the thesis.



CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

The traditional approach of power generation by centralized power plants with exten-

sive transmission and distribution network is changing to dispersed generation. These

generators are integrated into power systems at the distribution level. Modern electric

power distribution utilities are under the pressure of expansion of networks to fulfill

the load growth of their consumers. To meet these objectives, there is a need for dis-

tributed energy sources. Distributed generation includes renewable and non-renewable

energy sources. The recent technological progress resulted into many advantages of

distributed generation that includes low capital cost, environment friendliness, easy

to place, modular size, short lead. Distributed generation mainly serves one large

customer or several customers close to each other. Therefore, it reduces distribution

losses, improves system voltage profile, relieves heavily loaded feeders and extends

equipment life [19, 20]. Table 1. shows the various benefits of distributed generation.

Incentive-based regulation for the network with higher performance is the another

driver for power loss minimization in distribution networks. Traditionally, loss min-

imization is achieved by network reconfiguration or reactive power support through

capacitor placement. However, the transition from passive distribution networks to
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Table 2.1: Benefits of distributed generation.

Reliability Voltage profile/ Line loss/ Security
improvement quality energy enhancement

improvement reduction

1. Improved 1. Voltage quality 1. Reduced 1. Enhanced
power system improvement line losses security of the
reliability 2. Voltage profile 2. Better critical loads
2. Reduced improvement control of 2. Reduced secu-
capacity release 3. Reduced reactive rity risks to grid
3. Improved voltage flicker power 3. Improved
generation 4. Voltage support utilities security
diversity and better 4. Reduced
4. Peak power regulation cyber attacks,
reduction terrorist-attacks

active provides an opportunity for energy loss minimization. Optimal sizing, place-

ment and operation of distributed generation to minimize energy losses has attracted

the interest of research community in the last 15 years [21].

This chapter provides a comprehensive literature review on optimal sizing and

placement of RDG and ES. First, the literature review on optimal sizing and place-

ment of RDG for energy loss minimization is presented. Then the literature on grid

scale ES and distributed ES optimal sizing and placement is presented. Next, the

literature review on the joint optimal allocation of RDG and ES is presented. Finally,

the joint optimal allocation of RDG and ES for economic benefit is presented. The

major limitations and gaps found from the literature review are also highlighted at

appropriate places of the literature review.

2.2 Renewable Generation Technologies

RDGs are power generation resources connected to the distribution systems. The RDG

technologies mainly includes solar power, wind power, geothermal power, biomass,

small-hydro, mini-hydro and micro-hydro power. RDG power can be supplied to the

grid or to serve a local load. World Energy Council have predicted that the global

power output from RES will increase from 23% in 2010 to about 34% in 2030 [22].
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Two prominent RDG technologies i.e., solar PV and wind are discussed in the next

section. The thesis considers the optimal sizing and placement of these two sources

and their hybrid combination.

i) Wind Power Generation system:

Wind energy system converts wind power to electrical power. Ti mainly consists

generator, rotor, blades and an control circuit interface [23]. The output power

of wind sturbine depends on the wind speed and the height of the wind turbine

above the ground [24, 25].The wind speed is proportional to the kinetic energy of

the wind [26]. Site having good wind resources produces electricity at the optimal

cost. The power system planners must go for proper wind resource assessment

and environmental impact assessment [27]. The wind systems have no green hose

gas (GHG) emission, low cost of installation, no fuel cost and maintenance costs

and supply of reactive power [28]. Renewable generation owner should consider

the availability of land, availability of distribution lines and understand the wind

energy economics. Power outage mitigation and GHG effect lead to rapid accep-

tance of wind energy systems. Global generation of wind power is supposed to

reach about 2000 GW by 2030 with emissions reduction of 3 billion tons per year

by 2030 [29].

ii) Solar PV generation systems:

The PV generation consists an arrays of photovoltaic cells that converts solar

energy into electrical energy [30]. The output of PV cell depends mainly on the

solar insolation. It is is a potential source of energy due to the environmental

friendly nature of solar PV generation. Solar PV systems can independently

supply a specific load or it can operate in parallel with the utility grid to shave

the peak load [31]. The main advantages of solar PV generation for a power

system includes easy installation, energy independence, environment friendliness,

longer life and minimum O & M costs [32]. It is widely accepted that solar energy

can reduce the dependence on the fossil fuel based power generation. The solar

PV system also improves the security of power supply as it is not affected by the

variation in fuel prices. International Energy Agency (IEA) has predicted that the
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global power output from solar PV will increase from 140 GW in 2014 to about

872 GW in 2030 [33].

2.3 Optimal Sizing and Placement of Renewable

Distributed Generation

The increased power demand has set the trends towards the utilisation of renewable

energy. Utilities are using decentralised energy sources so that RDG can be directly

connected into distribution network. RDG provide environmental, technical and eco-

nomic benefits to the distribution system and consumers. Also, RDG integration is

increased due to the deregulation of the electricity market [34]. The benefits achieved

by RDG integration depend on the optimal sizing and placement of RDG [21]. To

achieve the maximum benefits from RDGs penetration, strategic approaches must be

carried out for optimal sizing and location of RDG [35]. The loss minimization with

optimal sizing and placements obtained with two broad approaches: minimization of

power losses and minimization of energy losses.

1. Minimization of Power Losses

This approach is extensively used when considering passive networks , i.e., with-

out RDG. With this approach it is not possible to determine the actual impact of

variable forms of RDG (i.e., wind RDG and solar RDG). The reduction of losses

brought by the optimal sizing and location of RDG during maximum demand

might not occur at other loading levels, resulting in non-optimal energy losses.

This effect is mainly observed due to the inherent variability of loads. This

power loss minimization approach has been addressed using analytical methods

[36, 37, 38, 39], classical methods [40, 41, 42], metaheuristics [43, 44], impact

indices [20, 45], and other techniques [46, 47, 48].

2. Minimization of Energy Losses

Loss minimization with optimal allocation should consider energy losses due to

the variability of both; demand and generation for a given horizon [49]. Modeling
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RDG is adopted for energy loss analyses using tabu search [50], genetic algorithm

based multi-objective approaches [51, 52] and impact indices [53]. GA-based mul-

tiobjective technique is applied for active network management and energy loss

minimization. Energy loss minimization was also studied through the optimal

mix of renewable sources [13]. RDG on energy losses depend on the network

topology, and the location of generation sources. (i.e. firm or variable). These

involved complexities into an optimization makes the optimal allocation of RDG

as a challenging task [21].

Analytical methods, results in increased computational efforts with sub-optimal

solutions [54, 55, 56]. Weighing factors method offer optimal solutions; however quality

of solutions are affected by choice of weighing factors [57]. Probabilistic methods with

large ‘generation-load’ states involves clustering methods. Clustering obtained by an

iterative process may converge to local minima, to produce sub-optimal solutions [58].

Intermittent generation of hybrid RDG is obtained probabilistically using convolution

process. [13]. A large number of states involved in convolution and ‘generation-load

state’ models affects the quality of optimal solutions. This underscores the necessity of

optimal sizing and placement methodology of RDG to provide optimal solutions. The

optimal allocation problem having very large search space requires a methodology to

explore the search space for obtaining optimal solutions [59]. This motivates to propose

an optimal sizing and placement methodology of RDG for energy loss minimization.

The heuristic search methods are extensively used in power system problems that

involve optimal sizing and placement methodologies. These methods mimic the be-

haviors of the natural phenomenon to find a solution for problems which are difficult

to solve by classical methods [60]. The optimal allocation of RDG mainly mixed in-

teger and the nonlinear problem that can be solved using heuristic search methods.

The optimization algorithms used for optimal placement and sizing of DG mainly in-

cludes genetic algorithm (GA) [61, 62, 63, 64, 65] particle swarm optimization (PSO)

[66, 67], Simulated Annealing (SA) [68], Artificial Bee Colony (ABC) [69] and Firefly

Algorithm [70]. The hybrid combination of algorithms such as GA and Tabu search

[71], Ant Colony Optimization (ACO) and Artificial Bee Colony (ABC) [72], (PSO)
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and Gravitational Search Algorithm (GSA) [73] are also used for optimal allocation

of RDGs. In this thesis, a robust and competitive algorithm called Gray Wolf Opti-

mizer(GWO), is applied to the proposed optimal sizing and placement methodology.

2.4 Grid Scale Energy Storage(ES)

ES forms an integral part of modern power systems. It can be placed at various loca-

tions in the distribution network and at the customers side. The traditional electricity

value chain system is changed with the integration of ES systems as shown in Figure

2.1 [74].

ENERGY STORAGE

ENERGY SOURCES GENERATION
CUSTOMER 

ENERGY SERVICES
DISTRIBUTIONTRANSMISSION

DISTRIBUTED GENERATION AND ENERGY STORAGE  

Figure 2.1: Classification of ES technologies based on form of stored energy.

The increased penetration of RDG in deregulated power system necessitates the use

of ES. It makes a balance between generation and demand improving the performance

of whole power system. Also, in collaboration with RDGs, the ES can be integrated

into distribution networks to bring ancillary services for the power system and hence

enables an increased penetration of RDG[75]. Afterward, the stored energy is converted

back into electrical energy [76]. The following section gives the classification of various

ES technologies.
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Mechanical Electrochemical Electrical

Thermochemical Chemical Thermal

Figure 2.2: Classification of ES technologies based on form of stored energy.

ES technologies are mainly classified in terms of their functions and storage du-

rations [76, 77]. The most widely used classification is based on the form of energy

stored in the ES system as shown in Figure 2.2 [78, 79].

Based on the form of energy stored, ES can be classified into mechanical (pumped-

hydro ES, compressed air ES and flywheel ES), electrical (super conducting, capacitors

and magnetic energy storage), electrochemical ( rechargeable battery ES and flow bat-

tery ES), thermo-chemical, chemical and thermal energy storage. A brief description

of each type of ES technology is given in the next section.

A. Pumped Hydroelectric Storage (PHES):

PHES is a technology with high technical maturity and large energy capacity.

With an installed capacity of 127.129 GW in 2012, PHES contributes to about 3%

of global generation [26,28,29]. A typical PHES plant uses two water reservoirs.
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During off-peak hours, the water is pumped into the upper level reservoir and

during peak hours, the water is released back into the lower level reservoir. The

energy stored depends on the difference between the heights of reservoirs [80]. The

PHES plants have power ratings from 1 MW to 3003 MW, and efficiency about

85% [76, 81].

B. Flywheel Energy Storage (FES): FES system consists a flywheel, bearings,

a reversible electrical motor/generator set, power electronic unit and a vacuum

chamber [82]. Electricity is used to accelerate or decelerate the flywheel through

an integrated motor/generator set. For reducing wind shear and energy loss from

air friction, the FES system is placed in a high vacuum environment. The amount of

energy stored dependents on the speed and inertia of the flywheel. FES is classified

into low-speed FES (below 6000 rpm) and high-speed FES (up to 100000 rpm)

[83]. Low-speed FES is used for short-term and medium/high power applications

whereas high-speed FES are used in high power quality applications [84]. FES is

used to supply power for a short time and can not be used as standalone backup

power. The FES devices suffer from idling losses [85].

C. Compressed Air Energy Storage (CAES):

CAES is a commercialized ES technology producing power output of over 100

MW. A reversible motor/generator is driven to run a compressors to inject air into

a storage vessel. Thus energy is stored in the storage vessel in the form of high-

pressure air. During high power demand, the stored compressed air is released

and heated. CAES applications involve load shifting, peak shaving, and voltage

and frequency control. Also, CAES mainly works with RDG to smooth the output

power [86, 87, 88, 89]. The major limitations to implement large-scale CAES is to

get suitable geographical locations and low round-trip efficiency.

D. Capacitor and Super-capacitor Energy Storage:

In a capacitor, energy is stored in an electrostatic field [76, 90]. They are suitable

for storing the small amount of energy. Capacitor storage have high power density

and low charging time compared to battery energy storage [91]. They have low
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energy density and high self-discharge losses [76, 90]. Capacitors are used mainly

for power quality applications.

Supercapacitors are named as ultracapacitors or electric double-layer capacitors.

They have two electrodes, an electrolyte and a porous membrane [92]. Supercapac-

itors have both the characteristics of capacitors and battery ES. Their power and

energy densities are between batteries and capacitors [93, 94]. Supercapacitors are

suitable for short-term storage applications e.g. UPS devices.

E. Superconducting Magnetic Energy Storage (SMES): SMES consists a su-

perconducting coil, a power conditioning system, and a refrigeration and vacuum

system [92, 95]. The SMES stores electrical energy in the magnetic field created

by the DC current in the superconducting coil cooled to a temperature below

its superconducting temperature. A commonly used superconducting material is

Niobium-Titanium having a superconducting critical temperature of 9.2 K [76].

SMES releases the stored energy back to the AC system, using power converter

whose magnitude depends on the self-inductance of coil [96]. SMES has relatively

high power density, fast response time, quick discharge time, high cycle efficiency

and longer lifetime [97, 98]. The drawbacks include high capital cost and high daily

self-discharge. SMES is suitable for short-term power and energy applications. It

is a more suitable ES with intermittent RDGs [95].

F. Thermal Energy Storage (TES):

A TES consists of a storage medium in a reservoir, refrigeration system, pump, and

controls. TES are classified into low-temperature TES and high- temperature TES

[99, 100, 101]. Low-temperature TES normally uses water cooling and reheating

processes. This is more suitable for peak shaving applications [76]. TES have

different features depending on the applications e.g. latent heat storage provides

relatively high storage density and used in buildings [102]. TES has been used in

load shifting and electricity generation for heat engine cycles.

G. Hydrogen Storage and Fuel Cell: Hydrogen ES uses two separate processes

for storing energy and producing electricity. Generally, water electrolysis is used to

produce hydrogen which is stored in high pressure containers. The stored hydrogen
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is used for electricity generation with the help of the fuel cell. Fuel cells convert

chemical energy into hydrogen and oxygen to electrical energy [92, 103] . The

electricity generation using fuel cells is a less polluting and more efficient approach

[104]. It has a compact design and easy scaling ( i.e., from 1 kW to hundreds of

MW) [105]. Fuel cells combined with hydrogen storage can provide stationary or

distributed power and transportation power [106].

H. Battery Energy Storage (BES):

BES is most widely used energy storage technology. Batteries are used for various

applications such as used in different applications like power quality and energy

management systems [97]. The location for installation of ES are flexible i.e., it can

be located close to the load but they have low cycling times and high maintenance

costs. The various types of BES includes Leadacid batteries, Lithium-ion (Li-ion)

batteries, Sodiumsulfur (NaS) batteries, and Nickelcadmium (NiCd) batteries.

A redox flow battery is a secondary rechargeable battery in which energy is stored

chemically in liquid electrolytes (i.e., sulfuric acid) containing different redox cou-

ples. There is also a separate storage tank which pumps the electrolyte into flow

cells across a proton exchange membrane. The power of the flow battery is deter-

mined by the electrodes size and the number of cells ; whereas the storage capacity

is determined by the amount and concentration of electrolyte [107]. The various

types of flow batteries, i.e., vanadium redox, zinc bromine and polysulfide bromine

are potentially used for utility ES applications. The other applications of flow bat-

teries include enhancing power quality, improving load leveling, power security and

supporting intermittent generation of RES.

Currently, research on leadacid batteries focuses on performance improvement and

battery technology applications for wind and photovoltaic power integration. Amongst

all battery types, the lead-acid battery is the oldest and mature technology. It has

been widely used for a majority power system applications [76]. Lead acid battery

storage is considered in the proposed problem formulation of this thesis.
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2.5 Application & Selection of ES in Power System

This sections explains the application and selection criteria of ES in power system.

2.5.1 Application of ES in Power System

ES in the power system has diverse and multiple applications. ES is very important in

growing renewable energy penetration level, frequency control, voltage uctuations mit-

igation and power quality improvement. The important application of energy storage

to the power system is briefly explained here.

1. Increasing penetration of RDG: RESs are environment friendly but the

intermittent nature of some RESs such as solar and wind results in the voltage

and frequency oscillations. Thus, the integration of RESs creates new challenges

in the operation of the power system [108, 109]. The intermittent RDG can be

supported by ES integration to smooth the intermittencies [105, 110, 111]. A

large and reliable ES can provide an opportunity to tackle intermittent RDG in

collaboration with power grids to meet the requirements for a more sustainable

future [112].

2. Emergency power: ES can supply power to important users in case of power

failures [113]. Emergency power requires instant response and longer power dis-

charge [113, 114, 115]. The telecommunications back-up applications instant

response time is required [116].

3. Ramping and load following: ES provides support in following load changes

to electrical demand [117, 118]. ES trial project with battery storage are build

that offers load following and voltage support [119].

4. Peak shaving and load levelling: In peak shaving ES supplies energy during

peak hours and it get chargeded during off peak period and provide economic

benefits by avoiding use of energy during peak hours [120].
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Load leveling balances the fluctuations associated with energy demand. The

benefits of ES in peak shaving and load following requires reduction in overall

cost and increased cycling times competitiveness [121, 122, 123, 124].

5. Black-start: ES can provide system start up from a shutdown without taking

power from the grid. A typical example is to provide black-start power to a

nuclear power plant [125, 126].

6. Voltage regulation and control: The changes in active and reactive power

affect the voltage profile in networks [127]. ES technologies are used for voltage

control solutions [128]. Flywheel ES is used to regulate DC voltage on a network

[129].

7. Spinning reserve: When a fast increase in generation results in a contingency,

ES functions as spinning reserve. The ES responds immediately and maintain

the outputs for few hours [92, 130, 131] .

8. Transportation applications: ES provides power to transportation applica-

tions, i.e., hybrid electric vehicles (HEVs) and electric vehicles (EVs). The ES

should have high energy density, modular and light weight and fast response

[132, 133, 134, 135]. In an another application, ES using a fuel cell, battery, and

supercapacitors is used for power train [132].

9. Uninterruptible Power Supply (UPS): ES provides uninterruptible power

to maintain electrical power during the power interruption. A typical UPS of-

fers instantaneous power by supplying energy stored in batteries flywheels or

supercapacitors [85, 136, 137, 138].

10. Standing reserve: Standing reserve balances the supply and demand of elec-

tricity for a stipulated time. ES provides extra generation to the grid for a short

duration. Also, it can be used when the actual demand exceeds the forecast

demand [139, 140].

ES integration provides potential benefits to power system. Integration of ES

has some significant challenges that include, selection of suitable ES technology to
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match the power system applications, evaluation of technical and economic benefits

of ES and cutting down the cost of ES technology to an acceptable level [79]. To

achieve these benefits, optimal sizing and placement of ES is an important task. The

various methods of optimal sizing and placement of ES to achieve these applications

are discussed in the next section.

2.5.2 Selection Criteria of ES in Power System

The criteria for energy storage device selection is as given below [141]:

• Unit Size: Scale of technology decides the storage system, e.g. large storage

technology can support grid-connected renewable energy sources.

• Storage Capacity: Storage capacity is the total available energy after charging

ES.

• Available Capacity: Average value of output power based on SOC.

• Self-discharge Time: It is the time to reach a certain depth of discharge for

a fully charged and idle, (i.e., nonconnected) storage device. This decides the

operational condition of system.

• Efficiency: This affects the energy input issue of conversion technology and

energy storage.

• Life-cycle: Number of charge-discharge cycles a storage can undergo, while

maintaining other specifications within its limits.

• Autonomy: It is the maximum number of time for which the system can con-

tinuously release energy. Autonomy is the ratio of energy capacity to maximum

discharge power.

• Mass and Volume Density: It is energy stored per unit mass or volume of

the energy storage.

• Cost: It is the O&M Cost and installation cost of energy storage technology.
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• Reliability: It is guarantee of service provided by energy storage.

Additional information required for the selection of ES include monitoring and con-

trol equipment, operational constraints, environmental impacts, simplicity of design,

operation flexibility and response time.

2.6 Optimal Sizing and Location of Energy Storage

There is no unique solution or application for sizing and placement of ES due variety

of ES technologies with different technical and economic constraints. ESS are mostly

selected and optimized based on their power rating (MW), energy rating (MWh) and

location in the distribution network. The sizing and placement of ES determined by

many methods. It can be classified into four main groups as based on literature review

found i.e., analytical methods, mathematical programming methods, exhaustive search

methods and heuristic methods.

2.6.1 Analytical Methods

Analytical methods use predefined network and operational constraints. Analytical

methods are used for the optimal sizing of ES to balance the generation of RES [142,

143, 144]. These methods are generally used to capture benefits of energy arbitrage

using historical load demand curves [145, 146, 147, 148, 149]. or statistical data

analysis [150, 151, 152, 153]. These methods do not include network constraints.

2.6.2 Mathematical Programming

Mathematical programming uses different numerical methods to find optimal solutions.

In ES sizing and placement, mathematical programming is used to solve operational

issues such as unit commitment and optimal power flow problems. Linear program-

ming, is a special case of mathematical programming. It is an efficient method that
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provides single global optimum solution keeping the objective function and constraints

linear.

Optimal sizing and location problems require combinatorial effort which makes

sizing and siting problems NP hard (Non-deterministic Polynomial time hard). Math-

ematical programming becomes impractical for large power systems. Using LP meth-

ods improvements in islanded systems is obtained with pumped storage and system

constraints [154]. Mixed Integer Linear Programming (MILP) is used to solve Unit

Commitment(UC) problem. Diesel generator with ES backup can provide additional

savings in the system [155].

2.6.3 Exhaustive Search Methods

Exhaustive search method provides optimal solution in a limited discrete search with

large computational time. Simultaneous sizing and placement problem are unsolvable

by exhaustive search method due to the its NP hard nature. Exhaustive search method

is used to determine ES power and energy capacity [156]. Exhaustive search method

is used to find solar PV and ES size for cost minimization[157]. Exhaustive search is

used to determine battery power and energy capacity in frequency support application

[158]. ES charging discharging power is obtained to minimise battery charge discharge

cycles [159]. UC problem is solved with exhaustic search to obtain power and energy

rating of ES [9]. Costbenefit based optimal size of ES is obtained with exhaustive

search method [160]. ES size is obtained to provide primary frequency control [161].

Optimal ES size is determined with stochastic UC and MILP optimisation [156].

2.6.4 Heuristic Search Methods

Heuristic search methods have become very popular for computational methods. They

are robust and widely accepted methods. The work using heuristic search methods

are highlighted here. GGA combined with optimal power flow maximise wind power

utilisation and enables large penetration of RDG [162]. PSO is used for network

expansion problem to minimize operational costs. [163]. Better energy procurement
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and loss minimisation is obtained with ES using Fuzzy PSO method [164]. Optimal

sizing and placement of vehicle charging stations are obtained with artificial bee colony

(ABC) method [165]. Bat algorithm (BA) is used to minimise ES investment cost and,

microgrid generation and operation costs [166].

2.6.5 Optimal Sizing and Placement of ES for Energy Loss

Minimization

ES when optimally allocated helps to reduce power losses in distribution networks [167].

The placement of ES at non-optimal places increases system losses. Hence, optimal

sizing and placement of Energy Storage is an essential planning aspect for energy loss

minimization [18, 168]. Planning the best allocation of ES has a significant impact on

the power system including minimizing energy losses [169]. One of the effective ways

to reduce distribution losses is peak shaving. Peak shaving is a process of shaving

the peak load and filling the load valley. It shifts some of the current from the peak

period to off-peak period and decreases the net ohmic losses [170, 171, 172]. A limited

literature is available on optimal sizing and placement of Energy Storage for energy

loss minimization. The paper [173] addresses the problem of power loss minimization

to obtain the installed capacity of ES. The papers [18, 174, 175, 176, 177] present

methodologies for optimal location of ES for minimizing system energy losses. An

analytical approach is proposed to obtain optimal size and location of ES units to

reduce energy losses at peak load level [178].

The above sizing or placement of ES methodologies mainly consider the placement

of ES in the power system without considering the optimal allocation of RDG. The

line flows are affected while integrating the ES in presence of RDG. Hence it is es-

sential to propose the optimal sizing and placement of ES in presence of RDG. This

thesis proposes an optimal sizing and placement methodology of ES for energy loss

minimization in the presence of optimally allocated RDG. Optimal sizing and location

of ES is a non-deterministic polynomial-time (NP) hard problem and needs to solve

efficiently.
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2.7 Joint Optimal Allocation of RDG and ES

Significant literature is available on optimal sizing and placement of ES and RDG but

they address it separately [13, 21, 170, 171, 179, 180, 181, 182, 183]. ES is optimally

allocated to reduce the energy losses of distribution systems with RDG of fixed size

and location in [164]. A significant annual energy loss minimization is obtained with

ES [184]. This energy loss minimization is obtained with optimal allocation of ES with

pre-sized RDG at selected locations. Considerable loss minimization is achieved with

optimal allocation of ES, in coordination with pre-sized RDG at a selected locations

[185].

Hybrid RDG (i.e., solar RDG and wind RDG) with ES forms a complementary

system. The solar RDG provides energy during periods of sunshine and the wind RDG

provides energy during little or no sunshine periods. ES allows the shifting of the en-

ergy by storing it during the favorable time and then using it whenever necessary. This

complementary feature of hybrid RDG system is beneficial to system reliability [186].

Also, the hybrid combination of the renewable RDG provides a significant reduction

in the annual energy losses by providing continuous power supply [13]. Existing stud-

ies related to solar RDG, wind RDG and ES are mainly focused on modeling [187],

capacity allocation [164], optimal design [188], economic evaluation [189], reliability

evaluation [190], and optimal operation aspects [191].

From the literature it can be found that optimal ES allocation methodologies for

energy loss minimization, optimize size and location of either ES or RDG but not the

both. However, joint optimal allocation of ES and RDG affects the line currents and

hence it affects on the line losses. Therefore a combined optimal sizing and location

of RDG and ES is necessary to provide significant loss minimization. This significant

aspect of loss minimization by joint optimal sizing and placement is addressed in the

proposed methodology.
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2.8 Joint Optimal Allocation of ES and RDG for

Economic Benefits

RDG offers several benefits to utilities, customers, and society. Therefore, it is nec-

essary to develop suitable methods for sizing and placement RDG that can provide

economic, environmental and technical benefits [192, 193]. Optimal sizing and place-

ment decisions for RDG are obtained through cost-benefit analysis [194]. Along with

the economic benefits of RDG owner, proper placement of RDG allows distribution

network operators to capture the benefits of network deferral [195, 196]. Optimum

RDG allocation minimizes investment cost, operating cost and costs of system losses

[41]. It also minimizes the Distribution Company’s (DISCOM’s) cost, reduces the

power flow in the DISCOM’s primary distribution feeders, minimizes the DISCOM’s

system network loss and maintains positive profit for the RDG owner [197].

The distribution planner has to maximize the profit of the investments and improve

the performance of the system [198]. The optimal allocation of RDGs affects the

economic performance of the system [199]. Thus optimally allocated RDG units in the

distribution system maximize the savings in system upgrades, the cost of energy losses,

the cost of interruption and achieve overall economic benefits [13]. Hence optimally

assessed RDG benefits both the RDGOs and DISCOMs [200, 201].

Integration of ES into the distribution network helps to mitigate the intermittency,

provides system security, reliability and energy arbitrage, thus it provides economic

benefits [202]. Optimal sizing of ES and its economic analysis is presented in paper

[9]. Paper [13], presents sizing of ES in a distribution system with large penetration

of RDG to maximizes the benefits of both the RDGO and the utility. In [11], an

approach is proposed to minimize the power system cost by sitting and sizing of ES

in RDG penetrated power system. In [164], the optimal sitting and sizing of ES are

obtained through a cost-benefit analysis, which maximizes the DISCOM’s profit from

energy transactions and operation cost savings. In a few works, ES is allocated in a

co-optimized market to maximize the profits [203, 204]. Also, ES and RDG controls

are implemented to achieve economic benefits [205, 206].



Chapter 2 Literature Survey 27

From the above literature, it is evident that sufficient work has been done in the

area of sizing and location of RDG as well as sizing and location of ES to obtain

economic benefits. Also, ES is allocated in a co-optimized market to maximize the

profits. Recently, a few has also addressed the simultaneous sizing of RDG and ES.

However, the problem of simultaneous sizing and placement of both, RDG and ES for

the cost benefits analysis remains un-addressed. The placement of RDG and ES has

a significant impact on the network power losses and affects the energy costs. Hence,

the simultaneous allocation problem should consider the sizing as well as placement of

RDG and ES.

In a power system, the distributed generation owner can sell the generated elec-

tricity to DISCOM with a fixed contract price. This contract price is a key parameter

that decides the benefit or distributed generation owner. Similarly, in RDG scenario

the contract price plays an important role to decide the benefit of RDG owner and

cost of DISCOM. Hence, the contract price of renewable energy needs to be addressed

along with the allocation of RDG and ES to achieve economic benefits. The thesis

address this novel issue.

2.9 Relevance to Indian Power Sector

During the year 2016-17, India has installed generation capacity of 315.4 GW and Peak

Demand is about 138 GW primarily consisting Thermal (68.2%), Hydro (14.1%), Re-

newable (15.9%) and Nuclear (1.8%) [251]. Indian power sector is modernizing to

provide sustainable, secure and affordable energy to the growing population. A sus-

tainable renewable energy mix is required to reduce the carbon footprint and increase

energy availability. India plans to increase renewable generation capacity to 170 GW

by 2022, adding of 100 GW solar, 70 GW of wind power. Such a large addition of

renewable energy needs to address RDG integration challenges [252, 253, 254]. Consid-

ering these facts, planning issues for renewable energy sources and energy storage are

relevant in Indian context. The proposed methodology would help to address following

challenges in Indian power sector.
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• Renewable Energy Sources and Distributed Generation Integration:

India has strong solar resources with an average of 300 sunny days per year and

an average yearly irradiation of 200 W/m2. The total onshore wind energy po-

tential in the country is 302 GW as per National Institute of Wind Energy. The

National Institute of Solar Energy in India has determined the country’s solar

power potential at 750 GW. Thus, there is a strong potential of renewable en-

ergy sources and distributed generation. Considering this potential of renewable

sources, the proposed work aims to model the optimal sizing and placement of

the major renewable energy sources, i.e., solar RDG and wind RDG. This plan-

ning can help DISCOM and RDG owner to identify placement sizing of RDGs

in the distribution network.

• Integration of Energy Storage: The mismatch in demand supply can be

matched by storing excess energy, and supplying it when required. Large in-

tegration of renewable energy sources can be achieved by developing grid-scale

energy storage. Research is required for developing large-scale energy storage.

The thesis addresses the integration of ES in the distribution network, that could

help the planning of energy storage.

• Technical & Commercial (AT&C) Loss Minimization : Large AT&C

losses have adversely affected DISCOM’s working conditions. Increased cost

of power generation due to low fuel availability, poor financial conditions and

high power losses have contributed to reduced demand fulfillment by DISCOMs.

Indias AT&C losses are as high as 25 %. Also, there are considerable losses

in distribution lines due to geographical spread of network. During peak load

period, the losses exceed due to overloading. Thus loss minimization is the key

challenge for Indian power utilities. This thesis addresses this critical issue with

optimal allocation of RDG and ES for energy loss minimization. The proposed

methodology can be applied to similar networks of Indian utilities.

• Peak Demand Mitigation: India has large peak demand and measures to

manage peak demand are essential. Daily peak demand can be managed by
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peak shifting. Energy storage can charge during the off-peak period and dis-

charge during the peak period. The thesis addresses the placement of multiple

ES at optimal locations for peak shifting, along with energy loss minimization.

The proposed methodology can be extended for the purpose of peak shaving

exclusively, without considering energy loss minimization.

• Large Integration of Customer Owned RDG: Customers have their own

renewable generation, into the grid. Currently, subsidies are provided to encour-

age renewable generation. If suitable contract prices are formulated considering

the benefits of both, i.e., RDG owner and DISCOM, subsidies can be done away.

This work includes the Contact price as a variables in the economic-benefit anal-

ysis of DISCOM and RDG owner.

• Optimal Generation Mix Development: Indian power sector needs to

develop conventional and renewable forms of energy. The mix should consider

the energy demand pattern and available energy. The optimal resources mix

for the next 20-25 years should focus on solar and wind power. The solar and

wind mix can be complementary to each other and enhance energy reliability.

This thesis addresses this issue by formulating the planning of hybrid RDG. This

hybrid resources allocation methodology of solar RDG and wind RDG can be

extended to other optimal resource mix planning.

Large integration of RDG is an urgent need for Indian power sector. The regulators

need to focus on framing policies to encourage integration of RDG into the grid. The

framed policies must benefit economically to RDG owner and DISCOM. Integration

of ES with proper framework should considered to support the large integration of

RDG. Also, optimal planning of ES and RDG should support ancillary services like

loss minimization for energy saving and economic benefits.
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2.10 Summary

In this chapter, a detailed literature review on optimal sizing and placement of RDG

and ES is presented. The optimal sizing and placement of two main renewable sources,

i.e., solar RDG and wind RDG is reviewed. The literature on ES is presented to

highlight the need for optimal sizing and placement of ES in coordination with RDG

for energy loss minimization. Also, from the literature review, it is found that the

optimal allocation of RDG and ES has been separately addressed, that shows the need

of joint optimal allocation methodology for energy loss minimization. Finally, the

literature on cost-benefit based optimal allocation of RDG and ES is presented. The

need for cost-benefit based joint optimal allocation of RDG and ES is shown from the

existing literature.



CHAPTER 3

Optimal Sizing and Placement of

Renewable Distributed Generation

3.1 Introduction

One of the major reasons of integrating RDG units in a distribution network is to

reduce the electrical power losses in the system. Line loss depends on the line length

and current through it. The line loss has a significant impact on the economic dispatch

[207, 208]. In some cases the consumers are charged for the losses and they have to pay

large energy costs [20]. The distribution line loss can be minimized by reducing the line

current in the distribution system. In another way, if RDG are strategically integrated

into the distribution network that improves the node voltage. This contributes to

power loss minimization and also helps to defer the network upgrading [209]. Size and

location of RDG, system load and network configuration impacts the energy losses.

[21, 49, 210]. Integration of RDG units into the distribution network produces many

technical challenges that have not yet been fully addressed. Energy loss minimization

with integration of RDG has attracted the attention of researches for a long time.

[13, 54].

This chapter presents a methodology for optimal sizing and placement of RDG to

minimize energy losses. A probabilistic generation model for RDG (i.e., solar RDG and
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wind RDG) is developed and load is modeled using IEEE-RTS load modeling method.

IEEE-RTS load modeling express the hourly load as percentage of daily peak load.

The generation-load model is integrated with optimal power flow to provide optimal

solutions. Similarly, generation-load model is also obtained for hybrid RDG using the

expected generation of solar RDG and wind RDG. The optimal allocation of RDG is

a nonlinear, constrained optimization due the power flow with non-linear equations.

This non-linear, constrained optimization problem is solved with a newly developed

nature inspired optimization algorithm called as Gray Wolf Optimizer (GWO). Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), Firefly Algorithm (FFA) and

Symbiotic Organisms Search (SOS) are also used to obtain the results. GA and PSO

are popular and well proven algorithms while FFA and SOS are representative of

recently developed heuristic optimization algorithms. Comparative results from the

standard heuristic optimization algorithms, i.e., GA, PSO, SOS and FFA highlight

the efficiency of GWO algorithm to offer better solutions for energy loss minimization

for the proposed allocation methodology.

3.2 Historical Data Processing

Solar and wind energy are mainly non-dispatchable and site dependant sources. To

accurately assess these sources at specified site for production of electrical energy, his-

torical records of the wind speed or solar radiation data are being used. The historical

approach is time consuming, expensive and it’s difficult to get accurate data. Re-

cently, the statistical methods have gained more popularity. They are economic, less

time consuming and predicts system behaviour accurately [211]. Various probability

distribution functions (pdf) are used to model solar radiation and wind speed. Two

such pdfs that are widely used beta and Weibull distributions. The soar PV data is

modeled with beta pdf and wind speed data is modeled with Weibull pdf.

Historical data is used to predict solar power generation and wind power generation

using cumulative distribution function (cdfs). The hourly solar irradiance and wind

speed are taken for the selected site to obtain hourly power generation. Hourly data
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for five years is taken to develop the pdfs. Each year is divided into three seasons i.e.,

summer, monsoon and winter considering average temperatures of these seasons for

the selected site. Each season is represented by any day within that season. Historical

data is used to generate a typical days frequency distribution of the solar irradiance

and wind speed. The day that represents the season is further divided into 24 hour

segments, thus each hour refers to a particular hour of entire season. Considering a

month to be 30 days, each time segment has 120 irradiance and wind speed data points

for a season (i.e., 30 days * 4 season). Thus for 5 years each hour of a season has 600

data points (i.e., 120 * 5 years). To obtain cdfs with reasonable accuracy each hour

is further segmented into small states ‘y’ (i.e. steps) depending on maximum solar

irradiance and wind speed. As an example, a hour with maximum solar irradiance of

700 W/m2 will be segmented into 7 steps, considering each step of 100 W/m2. Using

these data points of each season, parameters of beta cdf for solar RDG and Rayleigh

cdf for wind RDG are obtained. cdf shows the probability which is greater than or less

than a certain value associated with climate changes. These cdfs are used to obtain

expected generation of solar RDG and wind RDG.

3.3 Solar Power Modeling

A stochastic model of Solar PV is developed based on beta distribution function. It

is considered as the most suitable model for statistical representation of probability

density function(pdf). Solar PV generation is intermittent and random function of

solar irradiance. Randomness of solar irradiance is expressed by beta pdf Fβ [13, 212].

The Fβ indicates the probability or fraction of time for which solar irradiance is at a

given irradiance s.

The general form of the beta probability density function is as given below.

Fβ(s) =


Γ(α+β)

Γ(α)Γ(β)(b−a)α+β−1
(s− a)(α−1)(b− s)(β−1) a ≤ s ≤ b, α, β ≥ 0

0 otherwise

(3.1)
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where, Γ is gamma function; s is solar irradiance in kW/m2; α and β are the shape

parameters of beta distribution function; a, b are lower and upper bounds of s. The

case where a = 0 and b = 1 is called the standard beta distribution. Equation for the

standard beta distribution is,

Fβ(s) =


Γ(α+β)

Γ(α)Γ(β)
s(α−1)(1− s)(β−1) 0 ≤ s ≤ 1, α, β ≥ 0

0 otherwise

(3.2)

For the beta pdf solar irradiance is considered in kW/m2, i.e if the solar irradiance is

100 W/m2 then it is taken as 0.1 kW/m2, if 200 W/m2 then 0.2 kW/m2 and so on.

The shape parameters α and β are as given below.

β = (1− µ)

(
µ(1− µ)

σ2
− 1

)
(3.3)

α =
µβ

1− µ
(3.4)

where, µ, σ are mean and standard deviation of s respectively. The cumulative distri-

bution function (cdf) is used for estimating the time for which solar irradiances ‘s’ is

within a certain irradiance interval (i.e., s1 and s2).

fβ(s) =
Γ(α + β)

Γ(α)Γ(β)

∫ t

0

s(α−1)(1− s)(β−1)dt (3.5)

Probability of solar irradiance being between s1 and s2 is obtained by the difference of

corresponding cdfs.

fβ(s1 < s < s2) = fβ(s2)− fβ(s1) (3.6)

The power output Po(s) of PV cell at any state y is as given below.

Tcy = Ta + say

(
NOT − 20

0.8

)
(3.7)

Iy = say [Isc +Ki (Tc − 25)] (3.8)

Vy = Voc −Kv ∗ Tcy (3.9)
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ff =
VMPP ∗ IMPP

Voc ∗ Isc
(3.10)

Po(s) = N ∗ ff ∗ Vy ∗ Iy (3.11)

where, Iy & Vy are cell current and cell voltage respectively at state y ; Tcy is cell

temperature ◦C at state y ; Ta is ambient temperature ◦C ; Kv is voltage temperature

coefficient V /◦C ; Ki is current temperature coefficient A /◦C ; NOT is nominal

operating temperature ◦C ; ff is fill factor; Isc is short circuit current A; Voc is open

circuit voltage V ; say is average solar irradiance of state y ; IMPP is current at maximum

power point A; VMPP is voltage at maximum power point V ;

Expected solar PV output power P (s) of any state at irradiance ‘s’ is given as below.

P (s) = Po(s) ∗ fβ(s) (3.12)

Total expected output power PSG at any hour is given as below.

PSG =

∫ ∞
0

Po(s) ∗ fβ(s).ds (3.13)

This hourly expected output of solar PV is used to obtain the optimal size and

location of the solar RDG for energy loss minimization.

3.4 Wind Power Modeling

Wind speed variation is modeled with Weibull pdf due to it’s simplicity and best fit

to experimental data [213]. Weibull pdf is accepted as one of the best models and

widely used in wind energy analysis. The pdf indicates the probability of time for

which wind is at a given speed v. Total energy available from a turbine over a period

is estimated by integrating energy within the limits of the cut-in and cut-out velocities

and multiplying it with time factor. The Weibull pdf Fw(v) for wind turbine is as
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given below [214].

Fw(v) =
k

c

(v
c

)k−1

exp

[
−
(v
c

)k]
for 0 < v <∞ (3.14)

Here, k, c and v are the shape index, scale index and wind speed respectively.

Average wind speed of a regime, is given as,

vm =

∫ ∞
0

vfw(v)dv or vm = c Γ

(
1 +

1

k

)
(3.15)

Substituting for fw(v) in above equation and simplifying we get,

Vm = c Γ

(
1 +

1

k

)
(3.16)

Rayleigh distribution is a simplified case of Weibull distribution where shape factor

‘k is assumed as 2 [215]. The sites with annual average wind speeds greater than 4.5

m/s tend to have a near-Rayleigh cumulative wind distribution [216]. Under Rayleigh

based approach, pdf is as given below.

Fw(v) =

(
2v

c2

)
exp

[
−
(v
c

)2
]

(3.17)

The average wind speed is obtained by substituting k=2, in equation (3.16 ).

vm = c Γ

(
3

2

)
(3.18)

Above expression can be rearranged and evaluated to get c.

c =
2√
π
vm (3.19)

From above equation, value of c is found as 1.128 vm. The cdf is used for estimating

the time for which wind is within a certain velocity interval (e.g. v1 & v2) . The cdf

for wind speed interval v1 & v2) are given as below.

fw(v) = 1− e−[π4 ( v
vm

)] (3.20)
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Probability of wind speed being between v1 and v2 is obtained as,

fw(v)(v1 < v < v2) = fw(v2)− fw(v1) (3.21)

The available power pw(v) of the wind having speed v with air density ρ that crosses

the rotor of a wind turbine having area A is given as,

pw(v) =
1

2
A ρ v3 (3.22)

Where v is wind speed in in m/s, A is the rotor area in m2 and ρ is the air density. This

power generated by the wind turbine gets modified as p(v) due to a power coefficient

Cp(v), which is given as,

p(v) = Cp(v) pw(v) (3.23)

Cp depends on the blade design, tip angle and relationship between wind speed and

rotor speed. The power coefficient value includes mechanical and electrical losses and

aerodynamic behavior of blades. Power coefficient is obtained from the manufacturer

data. Power delivered by a wind turbine Po(w) is usually represented through its

power curve, where a relation between wind speed and power is established. The wind

output power for various states is calculated as,

Po(w) =



0 0 ≤ vav ≤ vci

Pr ∗
(
vav−vci
vr−vci

)
vci ≤ vav ≤ vr

Pr vr ≤ vav ≤ vco

0 vco ≤ vav

(3.24)

Where, vci, vco, vr, vav and Pr represent the cut-in speed, cut-off speed, rated speed,

average speed and rated power of wind turbine respectively.

Expected wind turbine output power P (w) at speed ‘v′ for any state is as given

below.

P (w) = Po(w) ∗ fw(v) (3.25)
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Total expected wind power PWG at any time interval is obtained as given below.

PWG =

∫ ∞
0

Po(w) ∗ fw(v).dv (3.26)

This hourly expected output of wind power is used to obtain optimal size and location

of wind RDG for energy loss minimization.

3.5 Load Modeling

The load profile follows IEEE-RTS system load modeling [217]. In this load modeling

the hourly peak load is obtained by expressing it as percentage of daily peak load.

Hourly loads for three different seasons i.e., summer, monsoon and winter are consid-

ered to get the seasonal variation into the load. A 34-bus network is considered in the

proposed methodology [218]. This 34-bus system is as shown in Figure 3.1.
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Figure 3.1: 34 bus system
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Figure 3.2: Hourly load variation for different seasons

Table 3.1: Bus Load

Bus No
Peak Load Load % of

kW kVAR total load

1 0 0 0

2 150 86.16 3

3 150 86.16 3

4 150 86.16 3

5 161 100.52 3.5

6 161 100.52 3.5

7 150 86.16 3

8 150 86.16 3

9 150 86.16 3

10 153 100.52 3.5

11 153 71.8 2.5

12 150 86.16 3

13 150 86.16 3

14 150 86.16 3

15 150 86.16 3

16 151 100.52 3.5

17 150 71.8 2.5

18 150 86.16 3

19 153 100.52 3.5

20 153 71.8 2.5

21 153 71.8 2.5

22 150 86.16 3

23 150 86.16 3

24 150 86.16 3

25 150 100.52 3.5

26 150 86.16 3

27 155 100.52 3.5

28 155 86.16 3

29 150 71.8 2.5

30 150 86.16 3

31 150 86.16 3

32 150 86.16 3

33 151 100.52 3.5

34 151 71.8 2.5

Total 5000 2872 100

Table 3.2: Hourly Peak Load as

% Daily Peak

Hour Summer Monsoon Winter

12–1 am 64 63 67

1–2 60 62 63

2–3 58 60 60

3–4 56 58 59

4–5 56 59 59

5–6 58 65 60

6–7 62 68 64

7–8 66 70 68

8–9 71 71 70

9–10 95 99 96

10–11 99 100 96

11–12 pm 100 99 95

12–1 99 93 95

1–2 100 92 95

2–3 100 90 93

3–4 97 88 94

4–5 96 90 99

5–6 96 92 100

6–7 93 96 100

7–8 69 73 76

8–9 60 74 71

9–10 65 68 63

10–11 63 60 59

11–12 am 63 62 62
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Table 3.1, gives the total peak load on the system on the 34-buses of the network. It

mainly represents the bus numbers, peak active and reactive load on the various buses

and load percentage with total peak load on the system. Table 3.2 shows the hourly

peak load expressed as percentage of daily peak load. The percentage of load each

hour is given for three seasons i.e., summer, monsoon and winter. Thus, load modeling

provides hourly variation of load on each bus for 24 hours. The load modeling also

includes the seasonal variation of load.

3.6 Distribution System Power Flow

The expected hourly generation and load are used for load flow calculation. Power

losses Ploss are calculated with backward/forward method [219, 220]. Backward/for-

ward method is one of the effective methods for load-flow analysis for radial distribution

systems [221]. Hourly RDG generation and hourly load is used to get hourly power

losses and annual energy losses are calculated. The system is assumed balanced and

represented on per phase basis. In a radial system, the number of buses n are related

with number of branches nb as,

n = nb + 1 (3.27)

The node numbering generally starts with ‘0’ for source node and increases thereafter.

Advantage of numbering is that the number of nodes and upstream branches are always

same and this is utilized in the load flow process. Based on this numbering process,

voltage of ith node is given as,

Vi = V(i−1) − IiZi (3.28)

where Vi and V(i−1) are voltages of node i and (i − 1) respectively, Ii is current flow

in line i and Zi is the impedance of the line. Since the voltage of slack bus is known,

equation (3.28) is used to determine the voltages of other nodes in forward sweeps.

Load current ILi of node i, is expressed as,

ILi =
Pi −Qi

V ∗i
(3.29)
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where, Pi andQi are active and reactive power of load at node i, respectively. Current

through branch i, i.e. Ii is the load current of node i plus branch currents connected

to this line.

Ii = ILi +
∑
j∈Ui

Ij (3.30)

where, Ui are the all branches connected to node i. Thus for calculating branch

currents, all branches connected to the node must be determined. Also, equation

(3.30) is utilized in backward sweeps from all end nodes towards the source node.

Initially, a constant voltage of (1p.u.∠0) for all nodes is assumed. Then all load

currents are computed by using equation (3.29) and branch currents are computed by

using equation (3.30) in backward sweep. Thereafter, voltage of each node is calculated

by equation (3.28 ) in forward sweeps. When new values of voltages at all nodes

are calculated, the convergence criterion for voltage is checked. Load currents are

computed using most recent values of voltages and the whole process is repeated till

the convergence is achieved.

Total real power loss in the system is given as,

PLoss =
n−1∑
i=0

I2
i ri (3.31)

Integration of RDG supplies the active power and modifies the load power Pi in

equation (3.29). Considering RDG power (PRDGE,i) at node i, active power Pi gets

modified to (Pi − PRDGE,i). This results in minimization of power losses.

3.7 Objective Function for Loss Minimization

The problem is formulated as optimization problem. The objective function is to

minimize annual energy losses by optimal sizing and placement of solar RDG and

wind RDG. Generation and load is obtained for three seasons i.e., summer, monsoon

and winter considering the seasonal variation of generation and load. This provides

a reasonable accuracy and fast numerical evaluation. Each season is represented by
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a day in that season. loss minimization is obtained for 24 hrs of a day. Considering

each season has 120 days (i.e., 30 days×4 months), the objective function is as shown

below. Annual energy losses are obtained by summation of losses for three seasons.

F = min

[
120

(
24∑
t=1

Ploss,summer,t +
24∑
t=1

Ploss,monsoon,t +
24∑
t=1

Ploss,winter,t

)]
(3.32)

The constraints includes active power balance, feeder current limits, bus voltage

limits and maximum penetration of RDG. The constraints are as given below.

i) Active power balance: Assuming RDG sources are operating at unity power

factor and supplying only active power, the active powers balance is given as:

PG1,t +
n∑
i=1

PRDGEi,t −
n∑
i=1

Pi,t −
n∑
b=1

Ploss,b,t = 0 (3.33)

Where, PG1 is active power at the grid. PRDGEi,t is RDG’s forecasted power at

time t, Pi,t is total load during time t at ith bus, PLoss,b,t is active power loss during

time t at branch b, nb is the total number of branches and n is total number of

buses.

ii) Bus voltage limit: Bus 1 is assumed as slack bus. Voltage at each bus should

be within upper and lower limits.

V1 = 1.0 δ1 = 0.0 (3.34)

Vmin ≤ Vi ≤ Vmax ∀i /∈ substation bus (3.35)

iii) Feeder current limit: With the placement of RDG, feeder current Iij should

be within the feeder current capacity Iijmax .

0 ≤ Iij ≤ Iijmax (3.36)

iv) Maximum penetration of RDG: RDG penetration affects design and opera-

tion of distribution system. Also, they increase cost of distribution system and
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consumer payments [222]. Therefore RDG penetration is always a few percent

(e.g. k% ) of system’s total peak load (PLmax). As per IEA study, 25 to 40 %

penetration of renewable energy sources put a little additional cost on the system

in the long run, and hence it is an acceptable penetration limit [223]. The sum-

mation of power injected by all RDGs should be equal to the allowed maximum

penetration of RDGs. Maximum penetration limits for solar RDG, wind RDG

and hybrid RDG are given by equations (3.37), (3.38) and (3.39) respectively.

n∑
i=1

cs,i × PSG = k × PLmax ∀i ∈ D (3.37)

where cs,i, PSG, and D give integer variables representing number of solar panels

at ith bus, expected solar PV generation and candidate bus respectively.

n∑
i=1

cw,i × PWG = k × PLmax ∀i ∈ D (3.38)

where, cw,i and PWG give integer variables representing number of wind turbines

at ith bus and expected wind power respectively.

n∑
i=1

cs,i × PSG +
n∑
i=1

cw,i × PWG = k × PLmax ∀i ∈ D (3.39)

3.8 Optimal Sizing and Location of RDG

The network power loss minimization depends on size of RDG and their location. The

size of RDG at any location can be obtained in terms of the number of RDGs. Once

the number of RDGs to provide expected power PSDGE (i.e., forecasted output power)

at optimal location are obtained then rated optimal size of RDG is obtained. The

mathematical equations for obtaining the expected optimal size and rated optimal size

of RDG are as given below.
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i) Solar RDG: The expected optimal size (PSDGE) and rated optimal size (PSDG) of

SDG at optimal location can be given by Equations (3.40) and (3.41) respectively.

PSDGE,i = cs,i × PSG ∀i ∈ D (3.40)

PSDG,i = cs,i × PSDGR ∀i ∈ D (3.41)

where cs,i, PSG, PSDGR and D give the integer variables representing number of

solar panels at ith bus, expected solar PV generation, rating of solar PV module

and candidate bus respectively.

ii) Wind RDG: The expected optimal size (PWDGE) and rated optimal size (PWDG)

of wind RDG at optimal location can be given by equation (3.42) and (3.43)

respectively.

PWDGE,i = cw,i × PWG ∀i ∈ D (3.42)

PWDG,i = cw,i × PWDGR ∀i ∈ D (3.43)

where, cw,i, PWG, and PWDGR give the integer variables representing number of

wind turbines at ith bus, expected wind power and rating of wind turbine respec-

tively.

iii) Hybrid RDG: The expected optimal size (PHDGE) and rated optimal size (PSDGH , PWDGH)

of hybrid RDG at optimal location are given by equation (3.44) and (3.45-3.46)

respectively.

PHDGE,i = csh,i PSG + cwh,i PWG ∀i ∈ D (3.44)

PSDGH,i = csh,i PSDGR ∀i ∈ D (3.45)

PWDGH,i = cwh,i PWDGR ∀i ∈ D (3.46)

where, csh,i and cwh,i, give the integer variables representing the number of solar

panels and wind generators at ith bus for hybrid combination.
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3.9 Optimization Algorithms

The power system problems of load flows and loss minimization are nonlinear problems.

Conventional linear programming (LP), quadratic programming (QP), and mixed in-

teger linear programming (MILP) can solve the power flow problems with assumptions

of convexity and continuity, which affect the actual solution. MILP can solve these

problems but causes inaccuracy in optimal solutions[224]. MILP can be applied to

simplified models. MILP takes more time as compared to heuristic algorithms when

the system becomes complex. These drawbacks can be mitigated by heuristic opti-

mization algorithms, such as genetic algorithm (GA) and particle swarm optimization

(PSO). Results obtained from heuristic methods are found promising for power system

applications [225].

The proposed RDG allocation is a complex, mixed integer, non-linear, constrained

optimization problem. Heuristics approaches are efficient in finding global optima

with higher success rates for better solutions [226]. The proposed optimal sizing and

placement is a constrained, nonlinear optimization problem having large number of

variables. Considering large search space and complexity of this problem, it is sug-

gested to use heuristic methods to solace it. In this thesis, five heuristic algorithms of

different category are used. These algorithms are briefly explained as below.

3.9.1 Genetic Algorithm (GA)

Genetic algorithm is a search technique based on the principles of genetics. GAs

operate on a population of candidate solutions and apply principle of survival of the

fittest to evolve the candidate solutions. Invention of genetic algorithms is credited to

John Holland. He developed the basic ideas of GA in the late 1960s and early 1970s.

GA is used widely used in programming and artificial intelligence[227, 228].

The candidate solutions are referred to as individuals. Properties of these individ-

uals are encoded to chromosomes. The chromosome consist of a string of genes. A

gene can be represented by a binary number, an alphabet, an integer, real-value, etc.
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A Group of individuals is referred as population. The fitness of an individual gives

idea about how good a individual is as the solution to given problem. Using a fitness

function, Individuals are assigned fitness values using a fitness function. Individuals

with better fitness are more like to survive and reproduce.

An initial population is randomly generated with the fitness function for the given

optimization problem and fitness values are also generated. Then a pair of chromo-

somes (i.e., parent) is selected from the population. The probability of selection gets

increased with increased fitness. Crossover and mutation operations are applied to

parent chromosomes to generate children. The children create a new population, for

which fitness values are assigned. The process of selection, crossover, mutation and

assigning fitness is repeated until a stopping criterion is attained. The iteration of this

procedure is called as generation. Thus GA is different from the classical optimization

methods as follows:

• GA operate encodings of parameter values and not the actual parameter values

• GA operate on a population of solutions rather than single solution

• GA only uses the fitness values and do not require derivative information.

• GA uses probabilistic computations and not the deterministic ones.

• GA efficiently handles problems with a discrete search space

The flowchart of GA is as shown follows:

GA begins with an initialization, followed by fitness evaluation, selection, crossover

and mutation.

i) Initialization: In this step, initial solutions are randomly generated as binary

strings of the true variables or encodings that are selected to mimic the natural

data structure of the problem. The generation number k is set to 0 and the initial

population is denoted P0.
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Figure 3.3: Flowchart of GA

ii) Fitness Evaluation: In this step, each individual is assigned with its fitness value.

Fitness is a figure of merit for an individual. Higher fitness value means a more optimal

individual.

iii) Selection:

Individuals that are more suitable to the environment are likely to survive and re-

produce. Selection operator ensures that the individuals with larger fitness values are

likely to survive to reproduce. Among the several selection methods, the roulette wheel

selection is one of the most popular selection methods used to form a mating pool.
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Figure 3.4: Roulette wheel selection

In this selection method all individuals are evaluated and assigned with their fitness.

One can imagine a roulette wheel with different sections whose number is same as

the number of individuals. The areas of these sections are proportional to the fitness

values of the individuals. Then the wheel is turned and a chromosomes are selected

and placed to the mating pool Mk. The selection process is repeated till mating pool

is full.

iv) Crossover: Crossover exchanges information of solutions in a way similar to the

natural organism undergoing reproduction. In crossover new individuals are generated

that share the characteristics of their parents. Crossover is performed on the mating

pool Mk to form population Pk+1 as a first step in forming next generation. The single-

point crossover and the multiple-point crossover operators are list below. In single

Figure 3.5: Crossover in Genetic Algorithm

crossover, a crossover point is randomly selected and genes of parents are exchanged

after the crossover point whereas several crossover points are chosen and genes of

parents are exchanged in between the crossover points as shown below.

v) Mutation: In nature, mutation occurs as a result of an error in trnsforming the

gene information. In a similar way, mutation is a process of changing some genes

in chromosomes randomly. Mutation maintains genetic diversity of the population by
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preserving diversity in the initial generation. GA using binary representation, mutation

operator flips the selected bit value as shown Figure.

Figure 3.6: Mutation in Genetic Algorithm

Algorithm 1 Genetic Algorithm (GA)

1: Start with a randomly generated population of nlbit chromosomes
2: Calculate the fitness (x) of each chromosome x in the population.
3: Repeat the following steps until n offspring have been created:

i. A pair of parent chromosomes are selected from current population, probability
of selection is a function of fitness.
ii. Do Selection ‘with replacement’, meaning that the same chromosome can be
selected more than once to become a parent.
iii. cross over the pair at a randomly chosen point to form two offspring.
iv. If no crossover takes place then form two offspring which are exact copies of
their respective parents.
iv. Mutate the two offspring at each locus with probability pm ( mutation
probability ) and place the resulting chromosomes in new population.
v. When n is odd, one new population member is discarded at random.

4: Replace the current population with new population.
5: Go to step 2

A new population is formed after applying selection, crossover and mutation to

the initial population, and generational counter is increased by one. This process of

selection, crossover and mutation is continued for a fixed number of generations or

some form of convergence criterion has been met. GA is as shown in above Algorithm

1. GA forms the basis of a general and highly effective search algorithm.
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3.9.2 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population based stochastic optimization devel-

oped by Dr. Russell Eberhart, an electrical engineering professor at Purdue University

and Dr. James Kennedy, a social psychologist with the US Department of Labor in

1995 [229, 230, 231]. The algorithm is inspired by social behavior of bird flocking or

fish schooling. Afterwards it was subsequently developed in various scientific papers

and applied to many diverse problems. Similar to GA, it is a population-based method,

that represents the state of the algorithm by a population.

Start

Initialize parameters of PSO

Evaluate particle fitness

Update pbst and gbest

Adjust inertia

Update particles velocities and 

positions   

Stop

Is termination criteria satisfied

YES

NO

Figure 3.7: Flowchart of PSO
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The behavior of swarms of birds can be modeled with simple rules but of each

individual of the swarm is complex. Reynolds utilized the following three simple rules

in the researches on boid i.e., simulating the flocking behaviour of birds.

• Step away from nearest agent

• Go toward the destination

• Go to the center of swarm

These behavior of each agent of swarm can be modeled with simple vectors. Reynolds

research forms one of the basic backgrounds of PSO. Kennedy and Eberhart developed

PSO in a two-dimensional space through the simulation of bird flocking. Each agent’s

position is represented by its x, y axis position. Its velocity of x axis is expressed by

vx and its velocity of y axis is represented by vy. The modification of agent position

is obtained by the position and velocity information. The swarm optimizes a certain

objective function. Each agent knows its best value (pbest) and its x, y position. Also,

each agent knows the best value so far in the group (gbest) among pbests. Each agent

modifies its position using following information:

i) Current positions (x, y),

ii) Current velocities (vx, vy),

iii) Distance between current position and pbest

iv) Distance between current position and gbest

The modification is represented by the concept of velocity. Velocity of each agent is

modified by using following equation.

vk+1
i = wvk+1

i + c1 rand1 × (pbesti − ski ) + c2 rand2 × (gbest− ski ) (3.47)

where vki is velocity of agent i at iteration k, c1, c2 are weighting coefficients, w is

weighting function, rand is random number between 0 and 1,ski is current position of
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agent i, pbesti is pbest of agent i, and gbest is gbest of group. The weighting function

used in above equation is as given below.

w = wmax −
wmax − wmin
itermax

× iter (3.48)

where wmin and wmax are initial and final weights respectively, itermax is maximum

iteration count, and iter is current iteration number. The inertia weights w is very

important in convergence behaviour of the PSO

The right-hand side of Equation (3.52) consists of three vectors (terms) The first

term indicates previous velocity of the agent. The second and third terms are used

to change the velocity of agent. Without second and third terms, agent keeps on

‘flying’ in same direction until it reaches the boundary. The first term corresponds

with diversification in the search procedure. Without first term, velocity of the agent

is only determined by using its current position and best positions in history.

The searching point in the solution space (i.e. current position) can be modified by

using following equation:

sk+1
i = ski + vk+1

i (3.49)

In PSO each potential solution is assigned a randomized velocity and potential so-

lutions called particles are then flown through the problem space. Each particle keeps

track of its coordinates in the problem space which are associated with the best so-

lution. This value is called pbest. Another best value called gbest is the overall best

value obtained by any particle in the population. The process of implementing the

global version of PSO is as follows: Particles velocities on each dimension are fixed to a

maximum velocity vmax. It determines the fitness or resolutins with which the regions

between the present position and the target are searched . The acceleration constant c1

and c2 in equating (1) represent the acceleration terms that pull each particle towards

pbest and gbest positions. In local versions of PSO particles have information only

of their own and their neighbours bests, instead of entire group. The neighbours are
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Algorithm 2 Particle Swarm Optimization (PSO)

1: Initialize a population or particles with random positions and velocities on d di-
mensions in the problem space

2: For each particle , evaluate the desired optimization fitness function in d variables
3: Compare particles fitness with evaluation with particles pbest. If current value is

better than pbest then set pbest value equal to current value.
4: Compare fitness evaluation with the populations overall previous best. If current

value is better than gbest, then reset gbest to the current particles array index and
value.

5: Change the velocity and and position of the particle according to following equa-
tions. equations

vk+1
i = wvk+1

i + c1 rand1 × (pbesti − ski ) + c2 rand2 × (gbest− ski ) (3.50)

sk+1
i = ski ) + vk+1

i (3.51)

6: Loop to step 2 until criterion is meet, usually a sufficiently good fitness or a max-
imum number of iterations

topological and neighborhoods do not change during a run. PSO is simple, easy to

implement and computationally efficient algorithm.

3.9.3 Firefly Algorithm (FFA)

Fireflies are one of the wonderful creations whose life style of living is quite different

from other creature. Based on their behaviour, Yang and Xingshi developed Firefly

Algorithm (FFA) in 2008 [23]. Fireflies are characterized by their flashing lights.

Flashing lights has two purposes, one is to attract breeding partners and subsequent

is to prevent beast of prey . The flashing light obeys rule of physics that intensity

(I) of light decreases with increase of distance (r), which is governed by the equation

I = 1/r2. Generally, the first signallers are flying males, who attempt to fascinate

female fireflies. Females fireflies respond to these signals in terms of emitting blinking

lights. Distance between fireflies affects the attraction between the breeding partners as

light intensity decreases with distance. Both partners produce discrete signal patterns

to code information like identity of species and sex [232, 233].

The FFA algorithm has three rules:
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1. All fireflies are unisexual, so one firefly will be attracted by all other fireflies.

2. Attractiveness is proportional to their brightness, the less bright one will be

attracted by the brighter one and the brightness decreases as the distance between

the fireflies increases. 3. If there are no fireflies brighter than a given firefly, it

will move randomly.

Start

Initialize  parameters, firefly 

population  

Evaluate fitness of fireflies from 

objective function

           Evaluate light intensities based on

fitness function

Update position and evaluate fitness of 

all fireflies 

Stop

Maximum 

iteration reached ?

NO

Rank fireflies

Store the best for solution

YES

Figure 3.8: Flowchart of Firefly Algorithm (FFA)

Thus, brightness of flash is associated with fitness function. The light intensity that

obeys inverse square law is as given below.
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I(r) =
I0

r2
(3.52)

where I(r) is light intensity at distance r and I0 is source intensity. For a given medium

with fixed absorption coefficient γ, light intensity I varies with distance r as given in

below.

I(r) = I0 e
γ r2 (3.53)

Where, I0 is original light intensity, γ is absorption coefficient and r is distance

between fireflies. The attractiveness β of fireflies is proportional to their light intensities

I. Therefore, an equation similar to Equation 3.53 is defined for the attractiveness.

β = β0 e
γ r2 (3.54)

where, β0 is the attractiveness at distance r = 0. The space between the fireflies i

and j with position Si and Sj is expressed as the Euclidean distance as given below.

rij =

√√√√ n∑
k=1

(Sik − Sjk)2 (3.55)

where, n represents dimension of model. Less attractive fireflies (ith) will move

towards most attractive firefly (j). Thus, FA parameters will be updated as below.

Si(t+ 1) = Si(t) + β0e
−γ r2ij(Sj(t)− Si(t)) + α εi (3.56)

where,εi is a random number and α is randomization constraint.

FFA is applied in spatial fields with different dimensions with promising efficiency.

FFA is a metaheuristic algorithm, which assumes that a solution of an optimization

problem is associated with the location of firefly and objective function is encoded as

the light intensity. In FFA there are two important factors; first, variations in light
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Algorithm 3 Firefly Algorithm (FFA) [233]

1: Objective function f(x), x = (x1, ..., xd)
T

2: Initialize a population of fireflies xi(i = 1, 2, ..., n)
3: Define light absorption coefficient γ
4: while ( t < MaxGeneration)
5: for i = 1 : n all n fireflies
6: for j = 1 : i all n fireflies
7: Light intensity Ii at xi is determined by f(xi)
8: if (Ij > Ii)
9: Move firefly i towards j in all d dimensions

10: end if
11: Attractiveness varies with distance r via exp [ γ r2 ]
12: Evaluate new solutions and update light intensity
13: end for j
14: end for i
15: Rank the fireflies and find the current best
16: end while
17: Postprocess results and visualization

intensity, and second formulation of attractiveness that is based on brightness function,

which in turn is associated with objective function. Attractiveness of a firefly is directly

proportional to the objective function.

3.9.4 Symbiotic Organisms Search (SOS)

The SOS algorithm is proposed by Cheng and Prayogo [234]. The SOS algorithm

works on the cooperative behavior observed between organisms in nature. Some or-

ganisms do not live alone. They are interdependent on each other for survival and

food. The interdependency between two species is known as symbiotic. The most

common symbiotic relations found in the nature are mutualism, commensalism, and

parasitism. When the relation between two different species results in mutual benet,

it is called mutualism. A relationship between two organisms that offers benets to

only one of them is called commensalism. Finally, relationship between two different

organisms that offers benets to one and harms to the other is called parasitism.
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In SOS, new solution generation is governed by imitating biological interaction be-

tween two organisms of the ecosystem i.e., mutualism, commensalism, and parasitism.

Organism interacts with each other randomly through all phases. The process is re-

peated until termination criteria is achieved. The outline of the algorithm is as follows:

• Initialization

• REPEAT

i) Mutualism phase

ii) Commensalism phase

iii) Parasitism phase

• UNTIL (termination criterion criteria achieved)

SOS algorithm algorithm is explained in following Section.

i) Mutualism Phase: The mutualism phase of SOS mimics a mutualistic relation-

ships between two organisms e.g. bees and flowers. If Xi is an organism matched

to ith member of the ecosystem, then organism Xj is randomly selected from

ecosystem to interact with Xi. New candidate solutions for Xi and Xj are cal-

culated based on mutualistic symbiosis between them. The benefit factors (BF1,

BF2) represent level of benefit to each organism. A vector called ‘Mutual Vector’

represents relationship between organism Xi and Xj. Mutualistic effort to achieve

their goal in increasing their survival is given by (Xbest−Mutual V ector ∗BF1).

The Xbest represents highest degree of adaptation.

ii) Commensalism Phase: This is observed in remora fish and shark. The remora

attaches itself to shark and eats food leftovers, thus receiving a benefit, while

shark is unaffected by remora fish. Here an organism Xj, is randomly selected to

interact with Xi. Organism Xi attempts to benefit from the interaction. However,

organism Xj itself neither benefits nor suffers. New candidate solution of Xi is

calculated according to commensal symbiosis between organism Xi and Xj.
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Figure 3.9: Flowchart of Symbiotic Organisms Search (SOS)

iii) Parasitism Phase: This is observed in mosquito and human body. Here a

parasite vector is created by duplicating organism Xi. The randomly selected

organism Xj serves as a host to parasite vector. Parasite vector tries to replace

Xj in the ecosystem. Parasite Vector having better fitness value kills organism

Xj and fixes its position in the ecosystem. If fitness value of Xj is better, it will

have immunity from the parasite and Parasite Vector will be discarded from the

ecosystem.
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Algorithm 4 Symbiotic Organisms Search (SOS) [234]

1: Ecosystem Initialization
i Number of organisms (eco size), initial ecosystem, termination criteria, num iter
= 0 num fit eval= 0, max iter, max fit eval.

2: Go to the next iteration
3: Identify the best solution Xbest

4: Mutualism Phase
i. Select one organism randomly, Xj, where Xj 6= Xi
ii. Determine mutual relationship vector (Mutual V ector) and benefit factor
(BF )
iii. Mutual Vector = (Xi+Xj) /2
BF1 = random number either 1 or 2; BF2 = random number either 1 or 2

iv. Modify organism Xi and Xj based on their mutual relationship
v. Xi new = Xi + rand (0, 1) ∗ (Xbest−Mutual V ector ∗BF1) Xj new =
Xj + rand (0, 1) ∗ (Xbest−Mutual V ector ∗BF2)
vi. Select Fitter organisms as solutions for the next iteration.

5: Commensalism Phase
i. Select one organism randomly, Xj, where Xj 6= Xi
ii. Modify organism Xi with the assist of organism Xj
iii.Xi new = Xi+ rand (−1, 1) ∗ (Xbest−Xj)
iv. Select Fitter organisms as solutions for the next iteration

6: Parasitism Phase
i. Select one organism randomly, Xj, where Xj 6= Xi
ii. Create a Parasite (Parasite V ector) from Organism Xi
iii. Select Fitter organisms as solutions

7: Go to step 2 (Mutualism) if the current Xi is not the last member of the ecosystem
otherwise proceed to next step

8: Stop if one of the termination criteria is reached
otherwise return to step 2 and start the next iteration

3.9.5 Grey Wolf Optimizer (GWO)

This algorithm is inspired by grey wolves and it is based on the leadership hierarchy

and hunting mechanism [235]. Four types of grey wolves viz., alpha, beta, delta, and

omega are used in the algorithm. Also, three main phases of grey wolf hunting strategy

viz., searching for prey, encircling prey, and attacking prey are used in the algorithm.

Grey wolves are considered at top of the food chain. Grey wolves mostly prefer to live

in a pack with a group size of 5-12 on average and have a very strict social dominant

hierarchy as shown in Figure 3.1.

First level in the hierarchy of grey wolves are alphas. They are leaders and consists

of male and female wolves. The alphas are responsible for making decisions about
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Figure 3.10: Hierarchy of grey wolves

hunting, searching sleeping place, time to wake etc. Alpha’s decisions are mandatory to

the whole group. Beta wolf are into the second level of hierarchy. They are subordinate

wolves who help alphas in decision-making. The beta wolves can be either male or

female. They are are selected as alpha when any alfa passes away. The omega take

the blame for others wolves. They always always obey to all other wolves. Omega are

less individual in the pack. They help to relive violence and frustration in the pack.

If a wolf is not an alpha, beta, or omega, he/she is called as delta. Delta wolves have

to obey to alphas and betas. Scouts, sentinels, elders, hunters, and caretakers belong

to this category. Scouts warn the pack in case of any danger. Sentinels protect and

guarantee safety to all. Elders are experienced wolves who can be promoted to alpha

or beta. Hunters help the alphas and betas when hunting a prey. The caretakers are

responsible for caring for the weak, ill, and wounded wolves.

Social behavior of group hunting is another characteristics that includes:

• Tracking, chasing, and approaching the prey.

• Pursuing, encircling, and harassing the prey until it stops moving.

• Attack towards the prey.

This hunting technique and the social hierarchy of grey wolves can be mathematically

modeled in order to design GWO algorithm.

i) Social hierarchy: In the mathematically modeling of GWO the fittest solution

is considered as the alpha (α). The other solutions are named as beta (β) and
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Figure 3.11: Flowchart of GWO

delta (δ) respectively. The remaining candidate solutions are omega (ω). In GWO

algorithm the optimization is guided by α, β, ω and δ.

ii) Encircling prey: Grey wolves encircle prey during the hunt. Mathematically

encircling behavior is modeled as shown below.

~D = | ~C.~Xp(t)− ~X(t)| (3.57)

~X(t+ 1) = ~Xp(t)− ~A. ~D (3.58)
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Algorithm 5 Grey Wolf Optimizer (GWO) [235]

1: Initialize the grey wolf population Xi (i= 1, 2,...,n)
2: Initialize a, A and C
3: Calculate the fitness of each search agent
Xα= the first best search agent
Xβ=the second best search agent
Xδ=the third best search agent

4: while ( t < Max. number of iterations)
5: for each search agent
6: Update the position of the current search agent using equation (3.63)
7: end for
8: Update a, A and C
9: Calculate the fitness of all search agents

10: Update Xα, Xβ and Xδ
11: t = t+ 1
12: end while
13: return Xα

where t indicates the current iteration, ~Xp is the position vector of the prey, and

~X indicates the position vector of a grey wolf. The coefficient vectors ~A and ~C

are calculated as follows:

~A = 2.~a.~r1 − ~a (3.59)

~C = 2.~r2 (3.60)

where components of ~a are linearly decreased from 2 to 0 over the course of

iterations and r1, r2 are random vectors in [0, 1]. The equation (3.57) and equation

(3.58) is represented by a two-dimensional position vector. A grey wolf in the

position of (X, Y) updates its position according to position of the prey (X∗, Y ∗).

Different places around the best agent can be reached with respect to current

position by adjusting the value of ~A and ~C vectors. Random vectors r1, r2 allow

wolves to reach any position between around the prey.

iii) Hunting: Mathematically, hunting behavior of grey wolves is simulated assum-

ing that alpha (i.e., best candidate solution), beta and delta have better knowledge

about the potential location of prey. Thus, the first three best solutions obtained

so far are saved and other search agents are ignored and asked to update their

positions according to the position of best search agents. This is represented as
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below.

~Dα = |~C1.~Xα − ~X|, ~Dβ = |~C2.~Xβ − ~X|, ~Dδ = |~C3.~Xδ − ~X| (3.61)

~X1 = ~Xα − ~A1.(~Dα), ~X2 = ~Xβ − ~A2.(~Dβ), ~A3 = ~Xδ − ~X3.(~Dδ) (3.62)

~X(t+ 1) =
~X1 + ~X2 + ~X3

3
(3.63)

Thus alpha, beta, and delta wolves estimate position of the prey, and other updates

their positions randomly around the prey.

iv) Attacking and search for prey : Grey wolves finish hunt by attacking the

prey when it stops moving. Approaching the prey is mathematically modelled by

decreasing the value of ~a. The ~A has a random value in the interval [-2a, 2a] where

a is decreased from 2 to 0. The |A| < 1 condition forces the wolves to attack the

prey.

Search for prey or divergence is mathematically modelled by utilizing ~A with

random values greater than 1 or less than -1. The |A| > 1 condition forces the

grey wolves to diverge from the prey to find a another best prey.

3.10 Solution Methodology

The flowchart of optimal sizing and placement methodology is as shown in Fig. 3.12.

Optimal sizing and placement of RDG is obtained by GA, PSO, SOS, FFA and GWO

algorithm. The energy losses are calculated by backward forward sweep method. The

population size for GA, fixed as 20. The values of C1, C2 and population size for PSO

is initializes as 1, 2 and 20 respectively. The eco size for SOS, firefly population for

FFA and grey wolf population is fixed as 20 for each. The termination criteria are

fixed to 100 iterations or a tolerance value of 10−6, whichever is met first.

The initialization mainly includes system data, bus data, expected solar RDG gen-

eration and wind RDG generation, and the total number of RDGs. The initialization
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Figure 3.12: Solution methodology for RDG allocation

of algorithm includes the number of search agents, initial states and termination crite-

ria. Fitness of search agents is calculated considering the objective function i.e., loss

minimization by optimal sizing and placement of RDG. The positions of the search

agents are updated. If termination criterion is reached, then optimal values are stored

otherwise the process is repeated.
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3.11 Economic analysis

Economic analysis is carried out highlight the economic benefit of energy loss mini-

mization. The costs include investment, operation and maintenance cost. Quantum

benefits can be achieved in terms of energy generation and loss minimization from

optimal allocation of RDG and ES. The total investment cost CINV ST and operation

& maintenance (O&M) cost COM can be given as,

CINV ST = PISG CIS + PIWG CIW (3.64)

COM =

NY∑
j=1

(PISG COMS + PIWG COMW )

(
1 +Rinf

1 +Rint

)j
(3.65)

Where, CIS investment cost of solar RDG in Rs./MW ; CIW investment cost of wind

RDG in Rs./MW ; PISG total installed capacity of solar RDG MW ; PIWG total in-

stalled capacity of wind RDG MW ; COMS O&M cost of solar RDG Rs./MW ; COMW

O&M cost of wind RDG Rs./MW ; NY total number of years; Rinf inflation rate; Rint

interest rate or discount rate; Revenue is obtained from generation of renewable en-

ergy. The total benefit by the production of renewable generation can be obtained as

below,

BEG =

NY∑
j=1

(PSG CSE + PWG CWE)

(
1 +Rinf

1 +Rint

)j
(3.66)

Where, CSE cost of solar energy Rs./kWh; CWE cost of wind energy Rs./kWh; With

the optimal allocation of RDG, significant loss minimization is attained. The cost of

this saved energy due to loss minimization is given as,

BEL =

NY∑
j=1

(PLS CSEL + PLW CWEL)

(
1 +Rinf

1 +Rint

)j
(3.67)

Where, PLS annual energy loss minimization by solar RDG MWh; PLW annual energy

loss minimization by wind RDG MWh; CSEL cost of energy losses for solar RDG

Rs./kWh; CWEL cost of energy losses for wind RDG Rs./kWh;

Various indices used for economic analysis of RDGs include net present value (NPV),

aggregate benefit cost ratio (ABCR) and discounted payback period (DPBP).
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NPV is the net value of all benefits (i.e. cash inflows) and costs (i.e. cash outflows)

of the project. The project with NPV greater than 0 is economically acceptable as it

brings profit to investors. While comparing investment options, project with higher

NPV is selected.

NPV = cash inflows − cash outflows (3.68)

While comparing two projects with different initial investments, judging them merely

on NPV basis may be misleading. The project with large investment shows an impres-

sive NPV than projects with lower capital. Under such conditions, Benefit Cost Ratio

(BCR) is a better tool to judge the economic viability.

ABCR is the ratio of the accumulated present value of all the benefits, to the accu-

mulated present value of all costs, including the initial investment.

ABCR =
Present value of benefits

Present value of costs
(3.69)

The project with higher ABCR is most preferable.

DPBP indicates the minimum period over which the investment for the project is

recovered considering the time value of money. At payback period,

Present value of costs = present value of benefits (3.70)

The project with lower pay back period is most preferable.

3.12 Results and Discussions

3.12.1 System under Study

The proposed optimal sizing and placement methodology is applied to a 34 bus test

system as shown in Figure 3.1 [218]. The system load is modeled as specified in IEEE-

RTS system. Hourly solar and wind data of 5 years is taken for Satara (Longitude:74.05

E, Latitude:17.75 N) Maharashtra state, India. The selected site of Satara district in
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Maharashtra has a strong potential for solar and wind generation. Abundant land is

available for installation of solar and wind power plants. Also, the site equally suitable

for the placement of hybrid RDG, due to the availability of both types of renewable

generation. Thus, Satara is considered as representative region for the renewable

generation, considering the progressive renewable generation of Govt. of India. To

obtain the expected generation for the case studies, five-year data for wind speed and

solar irradiance from National Renewable Energy Laboratory (NREL) is considered

[236].

Table 3.3: KD325GX-LFB so-

lar panel
STC NOCT Temp.Coeff.

VMPP (V) 40.3 36.2 -0.47

IMPP (A) 8.07 6.47 0.025

Voc(V) 49.7 45.5 -0.36

Isc(A) 8.69 7.04 0.060

Table 3.4: WES100 wind tur-

bine
Rated Power 100 kW

Cut-in wind speed 3 m/s

Rated wind speed 13 m/s

Cut-off wind speed 25 m/s

Survival wind speed 60 m/s

Table 3.5: Parameters of solar and wind pdfs

Solar PV generation Wind generation

Parameter Values Parameter Values

µ 0.378 k 2
ρ 0.077 Vm 8.6380
α 33.217 c 9.7437
β 54.584

The solar PV module used is 325 W [237] and wind turbine is 100 kW [238]. These

specifications of SPV module and wind turbine are shown in Table 3.3 and Table 3.4.

The cdfs are generated selecting different states per hour for β cdf and Reilaygh cdf

respectively. The states are selected based on maximum solar irradiance and maximum

wind speed. A state of 100 W/m2 is selected for solar irradiance. Thus, there will be

10 sates for solar irradiance of 1000 W/m2. A state of 1m/s is selected for wind speed.

Thus, there will be 10 sates for wind speed of 10 m/s. The values of various parameters

of solar RDG and wind RDG are shown in Table 3.5.
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Figure 3.13: Expected solar power generation
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Figure 3.14: Expected wind power generation

Table 3.6: Probability & out-

put power of states for solar RDG

s1 s2 s fβ(s) Po(s) P (s)

0 0.1 0.05 0.00000 12.863 0.00

0.1 0.2 0.15 0.00000 38.133 0.00

0.2 0.3 0.25 0.06111 62.712 3.83

0.3 0.4 0.35 0.60617 86.507 52.44

0.4 0.5 0.45 0.32201 109.421 35.23

0.5 0.6 0.55 0.01063 131.360 1.40

0.6 0.7 0.65 0.00001 152.227 0.00

0.7 0.8 0.75 0.00000 171.929 0.00

0.8 0.9 0.85 0.00000 190.369 0.00

0.9 1 0.95 0.00000 207.453 0.00

Table 3.7: Probability & out-

put power of states for wind RDG
v1 v2 v fw(v) Po(w) P (w)

0 1 0.5 0.0159 0 0.00

1 2 1.5 0.0463 0 0.00

2 3 2.5 0.0724 0 0.00

3 4 3.5 0.0920 5 0.46

4 5 4.5 0.1041 15 1.56

5 6 5.5 0.1084 25 2.71

6 7 6.5 0.1057 35 3.70

7 8 7.5 0.0975 45 4.39

8 9 8.5 0.0855 55 4.70

9 10 9.5 0.0716 65 4.65

10 11 10.5 0.0575 75 4.31

11 12 11.5 0.0442 85 3.76

12 13 12.5 0.0327 95 3.11

13 14 13.5 0.0233 100 2.33

14 15 14.5 0.0160 100 1.60

15 16 15.5 0.0106 100 1.06

16 17 16.5 0.0067 100 0.67

17 18 17.5 0.0041 100 0.41

18 19 18.5 0.0025 100 0.25

19 20 19.5 0.0014 100 0.14
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Probability and output for different states of a typical hour (i.e. 8 am) for solar RDG

and wind RDG are shown in Table 3.6 and Table 3.7. For solar PV, probabilistic gen-

eration for 10 states is obtained considering the maximum irradiance of that hour state

as 1 kW/m2 The summation of output of each state gives the expected generation of

a particular hour. Similarly for wind, probabilistic generation for 20 states is obtained

considering the maximum wind speed that hour state as 20 m/s. The summation of

output of each state gives the expected generation wind RDG for a particular hour.

Total system peak load is 5.0 MVA. RDG penetration is considered as 2 MW i.e.,

40% of system’s total peak load (PLmax) at unity power factor. The base case annual

energy losses in the distribution network are 815.630 MWh.

The candidate buses selected for RDG placement are randomly selected ten buses as

D {5, 15, 18, 22, 25, 27, 28, 29, 30, 32}. However in practice, any number of candidate

buses can be selected depending on renewable potential and space availability. Alloca-

tion of RDG can be obtained on any of these buses by the optimization. The discrete

size of RDG is considered as 100 kW. Solar RDG’s minimum size is considered as 100

kW and maximum size is considered as 500 kW. Maximum size of RDG at any bus

is limited by the feeder current. Here, the maximum current limit is 50 A. Optimal

sizing and placement of RDG is discussed in the following sub-sections.

3.12.2 Optimal Allocation of Solar RDG

A solar model considered is of 325 W hence a solar RDG of 100 kW requires 308

rated solar PV modules. Thus, 20 solar RDGs has to be optimally placed on the

candidate buses with their optimal size (i.e., number) for 2 MW penetration (i.e., 40

% penetration).

Table 3.8 shows annual energy loss minimization by optimal sizing and placement

of solar RDG using various optimization algorithm i.e., GWO, PSO, SOS, GA and

FFA. Heuristic algorithms is a random search method. They do not produce unique

solution for the optimization function, hence it is optimized for multiple runs. Ten runs

of each optimization algorithm are taken to get optimal solution and best solution is
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Table 3.8: Energy losses for solar RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 726.278 727.476 730.858 733.320 733.13
2 726.238 727.521 728.719 735.755 732.98
3 726.268 727.422 727.737 731.886 733.63
4 726.514 727.567 734.340 736.849 731.57
5 726.268 728.673 729.513 732.647 732.74
6 726.238 727.047 732.459 730.008 733.94
7 726.279 727.439 730.754 732.830 733.65
8 726.946 728.678 731.369 736.308 735.36
9 726.571 727.954 730.359 734.599 734.71
10 726.556 727.973 729.910 735.627 733.63

Mean 726.416 727.775 730.6018 733.983 733.534

SD 0.23068 0.543544 1.873077 2.20085 1.047316

Best 726.268 727.0472 727.737 730.008 731.570

Worst 726.946 728.678 734.340 736.849 735.360

Table 3.9: Optimal sizing and location of solar RDG

Location Size (kW)

(Bus no) GWO PSO SOS GA FFA

5 - - - - 100
15 - - - 100 100
18 - - 100 200 100
22 400 200 300 300 300
25 400 300 400 300 200
27 400 400 400 300 400
28 200 300 200 200 100
29 - - 200 100 100
30 200 400 100 300 200
32 400 400 300 200 400

Losses
726.27 727.05 727.74 730.01 731.57

(MWh)

Loss
89.36 88.5828 87.893 85.622 84.06

reduction (MWh)

picked from it. Mean value, Standard Deviation (SD), Best value and worst value for

each algorithm are calculated as shown in Table 3.8. The mean value provide good
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indication about the convergence of the algorithm. The standard deviation indicate

the stability of algorithm.
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Figure 3.15: Optimal location of solar RDG in 34 bus system

GWO provides best optimal results as compared PSO, SOS, GA and FFA. Also,

GWO has least SD. Optimal sizing and locations of solar RDG corresponding to the

best optimal values are shown in Table 3.9. The GWO obtains optimal locations as

{22, 25, 27, 28, 30, 32} with corresponding sizes in kW as {400, 400, 400, 200,200, 400}.

Energy losses obtained by GWO are 726.27 MWh. Loss minimization is obtained by

subtracting the losses obtained after placement of RDG from the base case losses of

the system (i.e. 815.630 MWh). Loss minimization obtained by GWO is 89.36 MWh.

PSO obtains the optimal locations at {22, 25, 27, 28, 30, 32} with corresponding

sizes in kW as {200, 300, 400, 300, 400, 400}. Energy losses and loss minimization

obtained by PSO are 727.05 MWh and 88.5828 MWh respectively. Similarly SOS

obtains optimal locations as {18, 22, 25, 27, 28, 29, 30, 32} with corresponding sizes in

kW as {100, 300, 400, 400, 200, 200, 100, 300 }. Energy losses and loss minimization

obtained by SOS are 727.74 MWh and 87.893 MWh respectively. Optimal sizing and



Chapter 3 72

location, energy losses, and loss minimization provides by other algorithms i.e., GA

and FFA are shown in Table 3.9. The optimal placement of solar RDG is shown in

Figure 3.15. The solar RDGs are placed on optimal locations that reduces ohmic losses

in the network and provides energy loss minimization.
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Figure 3.16: Convergence plot for solar RDG

Convergence plots for GWO, PSO, SOS, GA and FFA for solar RDG are shown in

Figure 3.16. The convergence results specify a time limit within which the algorithm

is guaranteed to converge. For all algorithms, population size and maximum iteration

count is fixed to 20 and 100 respectively. The convergence values for GWO, PSO, SOS,

GA and FFA are 48, 14, 6, 11 and 6 respectively. GWO offers best fitness value with

slow convergence. Convergence of SOS and FFA are better with less optimal solutions

as compared other algorithms.

3.12.3 Optimal Allocation of Wind RDG

Table 3.10 shows the annual energy loss minimization by optimal sizing and placement

of wind RDG using various optimization algorithms i.e., GWO, PSO, SOS, GA and

FFA. Ten runs of each optimization algorithm are taken to get optimal solution. Mean

value, standard deviation, best value and worst value for each algorithm is shown in
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Table 3.10. After 10 runs, the mean value, SD, best and worst value of the objec-

tive function i.e., loss minimization is 563.39,0.481,563.213 and 564.766 respectively.

GWO provides best optimal results with best SD indicating the best stability of this

algorithm. The optimal sizing and locations corresponding to the best optimal values

for wind RDG are shown in Table 3.11.

Table 3.10: Energy losses for wind RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 563.225 565.514 566.925 575.286 582.200
2 563.261 566.873 579.019 577.854 575.563
3 564.766 567.587 580.048 575.771 580.855
4 563.261 570.151 579.237 574.148 575.879
5 563.273 571.406 572.423 580.399 577.052
6 563.273 568.239 579.846 572.011 577.052
7 563.213 569.432 569.891 577.487 575.987
8 563.227 567.293 580.494 573.321 578.888
9 563.273 567.470 578.325 578.749 580.134
10 563.213 566.854 573.019 576.694 580.908

Mean 563.399 568.082 575.923 576.172 578.452

SD 0.481 1.763 4.918 2.578 2.446

Best 563.213 565.514 566.925 572.011 575.563

Worst 564.766 571.406 580.494 580.399 582.200

GWO algorithm provides optimal locations at {22, 25, 27, 28, 29, 30, 32} with

corresponding sizes in kW as {400, 400, 300, 200, 100, 200, 400}. Energy losses and

loss minimization obtained by GWO are 563.213 MWh and 252.417 MWh respectively.

PSO obtains the optimal locations as {18, 22, 25, 27, 28, 30, 32} with corresponding

sizes in kW as {100, 400, 100, 400, 200, 400, 400}. Energy losses and loss minimization

obtained by PSO are 565.514 MWh and 250.116 MWh respectively. The optimal sizing

and location, energy losses, and loss minimization obtained with other algorithms is

shown in Table 3.11. Figure 3.17 shows the optimal placement of wind RDGs on the

34-bus network.
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Table 3.11: Optimal sizing and location of wind RDG

Location Size (kW)

(Bus no) GWO PSO SOS GA FFA

5 - - - 100 -
15 - - - - 100
18 - 100 - 100 200
22 400 400 300 200 200
25 400 100 300 300 200
27 300 400 200 300 300
28 200 200 200 300 300
29 100 - 300 200 300
30 200 400 300 200 100
32 400 400 400 300 300

Losses
563.213 565.514 566.925 572.011 575.563

(MWh)

Loss
252.417 250.116 248.705 243.619 240.067

Reduction (MWh)
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Figure 3.17: Optimal location of wind RDG in 34 bus system
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Figure 3.18: Convergence plot for wind RDG

The convergence plots for solar RDG with various algorithms is shown in Figure

3.18. The convergence values for GWO, PSO, SOS, GA and FFA are 55, 6, 10, 13,

and 6 respectively. GWO offers best fitness value.

3.12.4 Optimal Allocation of Hybrid RDG

In hybrid RDG allocation solar RDG and wind RDG are optimally allocated. The

combined maximum penetration for hybrid RDG (i.e., solar RDG and wind RDG)

is considered as 2 MW. Thus, solar RDG and wind RDG each contributes a 50 %

penetration. Maximum 10 solar RDGs and 10 wind RDGs are optimally sized and

placed on the candidate buses.

Table 3.12 shows the annual energy loss minimization by optimal sizing and place-

ment of hybrid RDG. Mean value, standard deviation, best value and worst value for

each algorithm are shown in the Table 3.12. The optimal sizing and placement of

hybrid RDG corresponding to the best optimal values are shown in Table 3.13. The

optimal placement or hybrid RDG is shown in Figure 3.19.

GWO obtains optimal placement of solar RDG on buses { 18, 22, 27, 30, 32} with

corresponding sizes in kW as {100, 200, 200, 100, 400} and placement of wind RDG
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Table 3.12: Energy losses for hybrid RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 622.114 632.427 648.409 656.795 650.320
2 627.316 631.549 654.674 655.719 654.439
3 621.705 638.759 646.523 648.549 647.084
4 623.334 630.941 662.970 653.644 645.740
5 621.133 639.259 662.857 645.890 647.971
6 624.342 637.840 645.535 652.692 652.422
7 625.576 641.985 640.008 645.528 655.108
8 620.769 643.932 665.200 655.658 652.064
9 625.794 634.613 644.448 648.851 649.032
10 620.869 637.543 640.713 652.651 648.313

Mean 623.295 636.885 651.134 651.598 650.249

SD 2.347 4.410 9.574 4.126 3.162

Best 620.769 630.941 640.008 645.528 645.740

Worst 627.316 643.932 665.200 656.795 655.108

Table 3.13: Optimal sizing and location of hybrid RDG

Location
Size (kW)

GWO PSO SOS GA FFA

(Bus no) S W S W S W S W S W
5 - - 100 - 100 100 - - - -
15 - - - - 100 - - - - 100
18 100 - 200 - - - - - 100 200
22 200 100 - 400 100 100 - - 100 100
25 - 400 - - 100 200 100 400 100 200
27 200 100 300 100 400 200 100 200 100 100
28 - - - - - - - - 200 100
29 - - - - - 300 100 - 200 -
30 100 - 100 200 - - 300 - 100 100
32 400 400 300 300 200 100 400 400 100 100

Losses
620.769 630.941 640.008 645.528 645.740

(MWh)

Loss
194.861 184.689 175.622 170.102 169.890

Reduction

S - Solar
W - Wind
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Figure 3.19: Optimal location of hybrid RDG in 34 bus system
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Figure 3.20: Convergence plot for hybrid RDG

on buses { 22, 25, 27, 32} with corresponding sizes in kW as {100, 400, 100, 400}.

Energy losses and loss minimization obtained by GWO are 620.769 MWh and 194.861

MWh respectively. PSO obtains optimal placement of solar RDG on buses {5, 18, 27,
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30, 32} with corresponding sizes in kW as {100, 200, 300, 100, 300} and placement of

wind RDG on buses { 22, 27, 30, 32} with corresponding sizes in kW as {400, 100,

200, 300}. Energy losses and loss minimization obtained by PSO are 630.941 MWh

and 184.689 MWh respectively. The optimal sizing and location, energy losses, and

loss minimization provided by other algorithms are shown in Table 3.13. Figure 3.20

shows the optimal allocation of hybrid RDG in 34-bus system. The convergence plots

for hybrid RDG with various algorithms is shown in Figure 3.20. The convergence

values for GWO, PSO, SOS, GA and FFA are 59, 19, 45, 9 and 6 respectively.

Above results shows that proposed methodology gives significant results for loss

minimization by optimal sizing and placement of renewable Distributed Generation.

Among the three Renewable Distributed Generations, Wind RDG offers higher loss

minimization. A moderate loss minimization is obtained with solar RDG. Hybrid RDG

provides improved loss minimization as compared to solar RDG due to the support

of wind RDG with continuous generation. GWO provides best optimal solutions for

loss minimization for all the cases i.e., solar RDG, wind RDG and hybrid RDG allo-

cation as compared to other optimization methods i.e., GA, PSO, SOS and FFA. Also

optimization results of GWO are found to be more consistent. Hence GWO is more

suitable for these type of optimization problems.

3.12.5 Economic Study Results

Economic benefits of solar RDG, wind RDG and hybrid RDG is analyzed using NPV,

ABCR and DPBP. Investment cost for solar RDG and wind RDG in Rs./MWh is

58733000 and 61916000 respectively and O&M cost in Rs./MWh is 1300000 and

1063000 respectively. The inflation rate and discount rate are considered as Rs. 6.10

and Rs. 10.81. The cost of energy for solar RDG and wind RDG in Rs./kWh is 6.86

and 6.58 respectively [239]. The cost of energy for hybrid RDG is considered as an

average of costs of generation form solar RDG and wind RDG.

The cost of energy losses are 6.86 Rs./kWh for solar RDG, 6.58 Rs./kWh for wind

RDG and 6.72 Rs./kWh for hybrid RDG. Table 1 shows the NPV, ACBR and DPBP
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Table 3.14: Economic Analysis

RDG
Loss reduction

NPV ABCR DPBP
benefit

Solar RS. 10373830.95 Rs. 133051107.8 1.896 9.6
Wind RS. 26613985.35 Rs. 622508841.6 4.312 4.5

Hybrid RS. 20613173.20 Rs. 427152618.2 3.481 5.7

for solar RDG, wind RDG and hybrid RDG. The useful life of renewable project is

considered as 20 years. Higher NPV Rs. 622508841.6, higher ABCR 4.312 and lowest

DPBP 4.5 years is obtained for wind RDG. Thus, wind RDG is more economical than

solar RDG and hybrid RDG. After observing NPV, ACBR and DPBP for RDG, It

can be concluded that energy saving by loss minimization over the life period of RDG

is worth to cover capital and running costs.

3.13 Summary

RDGs are viewed as sustainable energy solution for future energy generation. In

addition to energy generation, optimally sizing and placement of solar RDG and wind

RDGs in distribution networks provides energy loss minimization. The purposed work

considers the optimal sizing and placement of solar RDG, wind RDG and hybrid RDG

for energy loss minimization. The historical data is used to obtain cdfs for the RDGs.

The solar RDG, wind RDG and load is modeled to obtain generation-load models.

The proposed methodology provides optimal solutions for sizing and placement of

single RDG as well as hybrid RDG. In this case, allocation of wind RDG provides

better loss minimization as compared to solar and hybrid RDG. GWO provides best

optimal solution compared to other algorithms i.e., GA PSO, SOS and FFA. Thus,

GWO is suitable for this non-linear constrained RDG allocation problem. This optimal

allocation technique can be applied for planning of RDGs.





CHAPTER 4

Optimal Sizing and Placement of

Energy Storage

4.1 Introduction

Energy storage (ES) provide various applications to power system. A few important

applications are in growing renewable energy penetration, voltage fluctuations mitiga-

tion and power quality improvement. Energy loss minimization with the help of ES is

viewed as one of the important application of ES to power system. Optimal sizing and

placement of ES in distribution network provides energy loss minimization in addition

to energy supply to the system.

An optimal sizing and placement methodology of ES to obtain energy loss minimiza-

tion in the presence of RDG is presented here. ES is optimally allocated in presence

of the optimally allocated RDGs. The size and locations of optimal set of RDGs are

selected from Chapter 3. Thus, the delusion variables are the size and location of

ES. Battery ES sizing is modeled by considering the generation and load profile. This

storage is suitably divided into multiple storage units and optimally placed at multiple

sites. GA, PSO, SOS, FFA and GWO algorithms are applied to proposed methodol-

ogy. The proposed methodology is illustrated by various case studies on a 34-bus test

system.
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The optimal sizing and placement solar RDG and wind RDG is obtained as explained

in Chapter 3. Also, load modeling is obtained as given in previous chapter. ES

modeling is explained in the next section.

4.2 Battery Energy Storage Modeling

Battery modeling is the basis for battery design, control and management. The com-

mon battery models are classified as electrochemical models and equivalent circuit

models. The electrochemical models address the fundamental and physical aspects

of batteries. They mainly analyze the complexity of electrochemical processes of the

battery. The electric circuit models are lumped-parameter models developed for long-

time studies. Electrical engineers prefer electric circuit models of battery for design

and simulation studies [240].

In this thesis, a generic model proposed by the Western Electricity Coordinating

Council (WECC) has been considered. It represents a single plant connected to dis-

tribution systems and an explicit ES model as shown in Fig 4.1 [241, 242].

BESS

Transformer

Point of

 interconnection

Figure 4.1: Single Generator Equivalent Representation for a BESS.

Battery ES plant is considered in a modular form. Therefore, its single generator

equivalent model is sufficient for power flow analysis. ES charging or dis-charging

condition are represented by setting an equivalent machine’s output to positive or

negative generation.
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The lead acid battery converts chemical energy into electrical energy and vice versa.

The current flows in external circuit conventionally from positive to negative electrode.

Charging-discharging modes can be written as follows [243, 244]:

During discharging the reactions are,

Positive electrode:

PbO2 + 4H+ + SO2−
4 + 2e− −−−→ PbSO4 + 2H2O (4.1)

Negative electrode:

Pb+ SO2−
4 −−−→ PbSO4 + 2e− (4.2)

During charging the reactions are:

Positive electrode:

PbSO4 + 2(OH)− −−−→ PbO2 +H2SO4 + 2e− (4.3)

Negative electrode:

PbSO4 + 2H+ + 2e− −−−→ Pb+H2SO4 (4.4)

In the proposed methodology, battery operates in charging mode during off-peak

period and dis-charging mode during the peak period.

The important battery characteristics are [245, 246]:

• Ampere-hour Capacity: It is the total charge that can be discharged from a

battery in fully charged state under specified conditions.

• C-rate: It represents a charge or discharge rate of a battery in one hour. For a 1

Ah battery, C equals to charge or discharge the battery at 1 A. Correspondingly,
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0.1C is equivalent to 0.1 A, and 2C for charging or discharging the battery at 2

A.

• State of Charge (SOC): It is defined as the remaining capacity of a battery.

It is mainly affected by operating conditions like temperature and load current.

SOC = Remaining Capacity / Rated Capacity (4.5)

SOC is a critical condition parameter for battery management. Accurate mea-

surement of SOC is challenging but important for healthy and safe of battery

operation.

• Depth of Discharge (DOD):. It indicates the percentage of total battery

capacity that has been discharged. Deep-cycle batteries can be discharged to

80% or higher.

DOD = 1− SOC (4.6)

• State of Health (SOH): It is ratio of the maximum charge capacities of an aged

battery to a new battery. SOH helps to indicate the performance degradation

and battery remaining lifetime.

SOH = Aged Energy Capacity / Rated Energy Capacity (4.7)

• Cycle Life: It is the number of dis-charge charge cycles the battery can handle

before it fails to meet specific performance at a specific DOD. The operating life of

the battery is affected by DOD, charging and discharging rates, and temperature.

Higher DOD reduces cycle life of a battery.”

In a power system renewable energy sources are supposed to supply electric power

to load for all the time. When power supplied by RDG exceeds the load, it is stored

in the ES and when renewable energy is not sufficient, energy is supplied by the ES.

The charging and discharging power of battery ES at each hour is expressed as given

[247].

Pmin
ch = P t,min

grid − P
t
load P t,min

grid > P t
load ∀ t (4.8)
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Pmin
dis = P t

load − P
t,max
grid P t

load > P t,max
grid ∀ t (4.9)

where, P t
load is system load at time t, P t,min

grid and P t,max
grid represents minimum and

maximum power supplied by all the generators in the power system. The minimum

power rating of battery will be same as the maximum value of charging or discharging

power as given below.

PBES = max
(
Pmin
ch , Pmin

dis

)
(4.10)

Also minimum energy charged into battery is,

Emin
ch =

∫ T

0

(P t,min
grid − P

t
load) dt, P t,min

grid > P t
load (4.11)

and minimum energy supplied during discharging of battery is,

Emin
dis =

∫ T

0

(P t
load − P

t,max
grid ) dt, P t

load > P t,max
grid (4.12)

where T is total time period, which is one day, dt is time interval which is one hour.

The minimum energy rating of battery will be the maximum value of charging or

discharging energy as given below [160].

Emin
batt = max

(
Emin
dis

ηd
, ηc E

min
ch

)
(4.13)

where ηc and ηd are the charge and discharge efficiencies of the battery respectively.

Considering the seasonal renewable generation for summer (sum), monsoon (mon),

winter (win) and seasonal load variation of the system, the minimum energy rating of

battery ES is obtained as given below.

Emin
batt = max

[(
Emin
dis

ηd
, ηc E

min
ch

)
sum

,

(
Emin
dis

ηd
, ηc E

min
ch

)
mon

,

(
Emin
dis

ηd
, ηc E

min
ch

)
win

]
(4.14)

The battery ES ratings obtained with equation (4.10) and (4.14) is taken as the

maximum battery rating EBEG in grid connected mode. This single large sized storage

is split into Nd multiple storage units. Improved loss minimization is obtained if these

multiple storage units are optimally allocated [172]. The maximum number of multiple



Chapter 4 86

storage units depends on the required loss minimization and economic constraints. The

energy rating of multiple storage units is as given below.

EBEGD =
EBEG
Nd

(4.15)

By observing the total peak time period Tdis and off-peak time period Tch from load

pattern, maximum charge / discharge power is obtained as,

Pmax
B,dis =

EBEGD
Tdis

(4.16)

Pmax
B,ch =

EBEGD
Tch

(4.17)

With these maximum charge discharge power as upper limits, optimal charging power

PB,ch and discharging power PB,dis for loss minimization is obtained by optimization

techniques as given below.

PB,ch,i = ηc cB,ch,i Pmax
B,ch ∀ i (4.18)

or

PB,dis,i = cB,dis,i
Pmax
B,dis

ηd
∀ i (4.19)

The integer variable cB,ch or cB,dis represents an integer value obtained by optimization

method. This is a percentage value that vary between 0-100%. This optimal charge

/ discharge power is utilized to calculate optimal energy rating of battery storage as

given below.

EB = PB,ch, i× Tch (4.20)

or

EB = PB,dis,i × Tdis (4.21)

Now, there must remain some minimum energy in the battery i.e., minimum state of

charge (SOCmin). Considering (SOCmin), each battery rating will be,

EB = EB + SOCmin EB (4.22)
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Power loss PLoss at each hour is calculated with backward / forward sweep method.

Now considering RDG power and charging discharging power of battery at node i,

active power Pi will get modified as shown below.

During charging,

Pi = PLi − PRDGE,i + PB,ch,i (4.23)

During discharging,

Pi = PLi − PRDGE,i − PB,disch,i (4.24)

The energy supplied by RDG at the ith node a fixed parameter but the value of PB,ch,i

and PB,disch,i depends on the optimal size and location of battery ES.

Battery management system (BMS) is considered responsible for SOC and other

related controls. BMS can use a various methods available for calculation of battery

SOC [248]. These methods include i) Measuring electrolyte physical properties like acid

density, viscosity, conductivity and refractive index ii) Measurement of open circuit

voltage iii) Electrical charge / discharge characteristics measurement to calculate SOC

iv) Impedance spectroscopy method to study the electrochemical processes in battery

for SOC as well as SOH calculation. v) Internal resistance method to calculate battery

SOC vi) Kalman Filter algorithm to find battery SOC vii) Ampere hour method to

determine battery SOC

The SOC in ampere hour method is given by equation,

SOC = SOC0 −
1

CN

∫ t

t0

δIIBattdt (4.25)

where, SOC0 nominal SOC of battery; CN rated capacity of battery; δI current loss

coefficient (Generally taken as 0.98); IBatt Battery Current;
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4.3 Objective Function of Loss Minimization by Al-

location of ES

The objective function is to minimize annual energy losses by optimal sizing and place-

ment of battery ES. Considering each season of four months and each month has 30

days, objective function is as given below.

F = min

[
120

(
24∑
t=1

Ploss,summer,t +
24∑
t=1

Ploss,monsoon,t +
24∑
t=1

Ploss,winter,t

)]
(4.26)

• Constraints All constraints related to RDG i.e., active and reactive power bal-

ance, feeder current and maximum penetration of RDG are explained in Chapter

3. The battery ES constraints are as given below.

Battery ES charging discharging power should be within the upper and lower

battery charge limits. Battery ES constraints are as given below.

0 ≤ PB,dis,t ≤ Pmax
B,dis,t

0 ≤ PB,ch,t ≤ Pmax
B,ch,t

PB,t,min(t) ≤ PB,t ≤ PB,t,max

(4.27)

The last constraint in this equation indicate the storage power limits.

4.4 Solution Methodology

The optimal sizing and placement of ES in presence of RDG is obtained by GA,

PSO,SOS, FFA and GWO algorithm. The energy losses are calculated by backward

forward sweep method. The search agents are initialized as 20, and termination criteria

is fixed to 100 iterations or a tolerance of 10−6. The flowchart of proposed methodology

is as shown in Fig 4.2.
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START

Input system data, bus data, load data, fixed size and 

location of RDG, max.,min battery power, peak hours

Initialize numbers and positions of search 

agents, termination criteria i.e. max iterations
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Evaluate optimal load flow solution and size 

and location of battery

Calculate fitness of each search agent and 

update states of search agent

i = search agents ?
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 i = i + 1
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Update agents

is
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obtained ?

No

Yes

Optimal solution

Figure 4.2: Solution methodology for ES allocation

The initialization mainly includes system data, bus data, expected solar and wind

generation, charge discharge time i.e., peak and off-peak time, the fixed sizing and

locations RDGs. Initialization for GWO includes the number of search agents, initial

positions and termination criteria. Fitness of search agents is calculated considering

the objective function i.e., loss minimization by optimal sizing and placement of ES
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in presence of RDG. The positions of the search agents are updated. If termination

criterion is reached, optimal values are stored otherwise the process is repeated.

4.5 Results and Discussion

The storage units are optimally placed on any of the 34 buses except the source bus

(i.e. bus number 1). The main approach is to optimally place the RDG in presence

of RDG. The RDGs best optimal set of size and locations is selected from Chapter

3. These sizes and locations of RDG are taken from Chapter 3. These optimal sets

are provided by GWO. Maximum penetration of RDG is considered as 2 MW (i.e.,

40% penetration). The charging discharging efficiency of ES is assumed as 90% and

minimum SOC is limited to 20%. The load peak is from 10 a.m. to 5 p.m. The battery

ES discharges during peak load and get charged during off-peak period. ES allocation

methodology is applied to three case studies i.e., ES sizing and placement in presence

of solar RDG, wind RDG and hybrid RDG.

4.5.1 Allocation of Energy Storage in presence of solar RDG

Considering the renewable generation and load profile, maximum power rating of the

ES is obtained as explained in Section 4.2. Power rating of ES is 4.89 MW. The ES is

equally split into four units Sizing and placement of these four storage units is obtained

in presence of RDGs. The optimal size and location of solar RDG is taken from chapter

3. The locations for solar RDG are {22, 25, 27, 28,30, 32} with corresponding sizes in

kW as {400, 400, 400, 200, 200, 400}. These solar RDGs are fixed into the distribution

network.

Table 4.1 shows the annual energy loss minimization by optimal sizing and placement

of ES in presence of RDG. The mean value, standard deviation, best value and worst

value are shown in the Table 4.1. The best optimal solutions provided by GWO, PSO,

SOS, GA and FFA are 672.756 MWh,674.664 MWh,682.023 MWh,683.016 MWh and
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Table 4.1: Energy losses by optimal allocation of ES with Solar RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 672.755 674.650 682.098 682.810 683.609
2 672.755 674.768 682.040 683.367 684.073
3 672.810 674.486 682.258 683.170 683.520
4 672.755 674.450 681.847 682.926 684.950
5 672.690 674.503 681.815 682.803 683.533
6 672.699 674.516 682.100 683.450 683.520
7 672.832 674.724 682.179 683.054 683.645
8 672.755 675.165 681.980 682.687 683.518
9 672.755 674.804 681.928 683.029 684.068
10 672.755 674.574 681.987 682.863 683.522

Mean 672.756 674.664 682.023 683.016 683.796

SD 0.043 0.216 0.141 0.250 0.461

Best 672.690 674.450 681.815 682.687 683.518

worst 672.832 675.165 682.258 683.450 684.950

683.796 MWh respectively. The optimal sizing and locations of ES corresponding to

these optimal solutions are shown in Table 4.2.

Table 4.2: Optimal sizing and placement of Energy Storage with solar RDG

Algorithm
Battery location

Battery size
Losses

Loss

Power Energy reduction
(bus no.) kW kWh (MWh) (MWh)

GWO 3 10 13 17 242 2325 672.690 142.940
PSO 8 10 16 19 178 1705 674.450 141.180
SOS 7 10 13 17 197 1891 681.815 133.815
GA 8 11 13 18 193 1851 682.687 132.943
FFA 7 10 14 18 211 2024 683.518 132.112

GWO obtains optimal locations of Energy Storage on buses {3, 10,13, 17 } and

the size of Energy Storage is 242 kW and 2325 kWh. This gives optimal power and

energy rating of Energy Storage. With this optimal sizing and placement the annual

energy loss minimization obtained 142.940 MWh respectively. PSO obtains optimal

locations of Energy Storage on buses {8, 10, 16, 19} and the size of Energy Storage

is 178 kW and 1705 kWh. The annual energy loss and loss minimization obtained is

674.450 MWh and 141.180 MWh. The optimal sizing and location, energy losses, and
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Figure 4.3: Allocation of ES in 34-bus system with solar RDG

loss minimization provided by other algorithms i.e., SOS, GA and FFA are shown in

Table 4.2. The optimal placement of ES is in 34-bus network is shown in Figure 4.3.

It can be observed that the battery ES is usually placed at node junction from where

multiple nodes originates. Thus the line flows from the grid are minimized providing

energy loss minimization.

The convergence plots for GWO, PSO, SOS, GA and FFA is shown in Figure 4.4.

For all algorithms, the population size and maximum iteration count is fixed to 30

and 100 respectively. The convergence values for GWO, PSO, SOS, GA and FFA are

13, 37, 38, 8, and 17 respectively. The convergence of PSO and SOS are close to each

other i.e., 37 and 38 iterations. GWO provides best optimal solutions. Also, it has

best SD value that shows the stability of the algorithm.

The base case losses for the 34-bus test system are 815.63 MWh. Optimal placement
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Figure 4.4: Convergence plot for allocation of ES with solar RDG

of solar RDG into the system energy provides energy losses for the optimal case (i.e.,

GWO) as 726.46 MWh and the loss minimization is 89.36 MWh as shown in Chapter

3 (Table 3.2). Further, optimal sizing and placement of ES in presence of solar RDG,

provide energy losses as 672.690 MWh and loss minimization as 142.940 MWh. Thus,

improved loss minimization is obtained by optimal sizing and placement of ES in

presence of optimally allocated RDG.

4.5.2 Allocation of Energy Storage in presence of wind RDG

Energy Storage is optimally sized and placed in presence of wind RDG. In this case,

the maximum power rating of ES is 4 MW. This storage unit is split into four storage

units. Sizing and placement of these ES units are obtained in presence of RDG. These

fixed locations for wind RDG are {22,25,27,28,29,30,32} with corresponding sizes in

kW as {400,400,300,200,100,200,400}.

Table 4.3 shows the optimal sizing and placement of ES in presence of RDG with

GWO, PSO, SOS, GA and FFA. The results from this table shows that GWO provides

best optimal results. The optimal sizing and locations of Energy Storage corresponding

to these best optimal values are shown in Table 4.4.
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Table 4.3: Energy losses by optimal allocation of ES with wind RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 534.588 541.603 546.296 549.697 550.336
2 534.393 541.604 547.232 549.233 549.734
3 534.269 541.244 547.224 549.789 549.437
4 534.393 541.568 546.466 548.513 550.619
5 534.269 541.770 546.715 548.170 549.444
6 534.418 541.359 546.663 548.500 549.369
7 534.738 541.395 546.223 548.117 549.978
8 534.269 541.548 546.843 548.393 549.621
9 534.393 541.487 546.042 547.193 549.874
10 534.550 541.151 546.991 548.792 550.205

Mean 534.428 541.473 546.670 548.640 549.862

SD 0.155 0.186 0.413 0.781 0.422

Best 534.269 541.151 546.042 547.193 549.369

worst 534.738 541.770 547.232 549.789 550.619

Table 4.4: Optimal sizing and placement of Energy Storage with wind RDG

Algorithm
Battery location

Battery size
Losses

Loss

Power Energy reduction
(bus no.) (kW) (kWh) (MWh) (MWh)

GWO 7 13 24 31 342 2959 534.269 281.361
PSO 3 6 24 31 325 2804 541.151 274.479
SOS 6 10 14 23 358 3095 546.042 269.588
GA 7 13 24 31 356 3073 547.193 268.437
FFA 10 14 24 28 317 2741 549.369 266.261

GWO obtains optimal locations of Energy Storage on the buses {7, 13, 24, 31 }

and the size of Energy Storage is 342 kW and 2959 kWh. This size gives the power

and energy rating of the Energy Storage. With this optimal sizing and placement

the annual energy losses and loss minimization obtained is 534.269 MWh and 281.361

MWh respectively. PSO obtains optimal locations of Energy Storage on buses {3, 6,

24, 31} and the size of Energy Storage is 325 kW and 2804 kWh. The annual energy

loss and loss minimization obtained is 541.151 MWh and 274.479 MWh. The optimal

sizing and location, energy losses, and loss minimization provided by other algorithms

i.e., SOS, GA and FFA are shown in Table 4.4. Figure 4.5 shows allocation of ES in

34-bus system with wind RDG.
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Figure 4.5: Allocation of ES in 34-bus system with wind RDG
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Figure 4.6: Convergence plot for allocation of ES with wind RDG

The convergence plots for GWO, PSO, SOS, GA and FFA is shown in Figure 4.6. For

all algorithms, the population size and maximum iteration count was fixed to 30 and
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100 respectively. The convergence values for GWO, PSO, SOS, GA and FFA are 32, 16,

17, 16 and 28 respectively. GWO offers best fitness value with slow convergence. The

convergence of PSO, SOS and GA are close to each other i.e., 16 and 17. Converges

of FFA is relatively slow as compared to PSO, SOS and GA.

It can be observed that the optimal placement of wind RDG provides energy losses

for the optimal case as 653.399 MWh with 252.417 MWh energy loss minimization

as shown in Chapter 3 (Table 3.4). Energy loss minimization is further improved

with optimal sizing and placement of ES in presence of wind RDG. ES placement

provide energy losses as 534.428 MWh and loss minimization as 281.361 MWh as

shown in Table 4.4. Thus, improved loss minimization is obtained by optimal sizing

and placement of ES in presence of optimally allocated wind RDG.

4.5.3 Allocation of Energy Storage in presence of hybrid RDG

In this case Energy Storage is optimally sized and placed in presence of hybrid RDG.

The obtained maximum power rating of the storage is 4 MW. This storage unit is split

Table 4.5: Energy losses by optimal allocation of ES with hybrid RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 596.720 612.183 615.217 614.918 621.979
2 596.768 611.775 615.088 615.423 621.852
3 596.720 611.717 615.060 615.505 622.081
4 596.768 611.776 614.932 615.110 621.913
5 596.720 611.733 615.708 615.100 621.839
6 596.720 612.611 614.752 615.749 622.125
7 596.720 612.189 614.789 616.039 622.337
8 596.720 611.926 614.682 615.575 621.939
9 596.720 611.975 614.684 615.533 622.176
10 596.768 612.112 614.478 615.533 622.016

Mean 596.734 612.000 614.939 615.448 622.026

SD 0.023 0.281 0.351 0.332 0.156

Best 596.720 611.717 614.478 614.918 621.839

Worst 596.768 612.611 615.708 616.039 622.337

into multiple storage units. Sizing and placement of these storage units are is obtained
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in presence of Renewable Distributed Generation. The fixed locations and size of solar

RDG are taken from chapter 3. These fixed locations for solar RDGs are on buses {

18, 22, 27, 30, 32} with corresponding sizes in kW as {100, 200, 200, 100, 400} and

placement of wind RDGs are on buses { 22, 25, 27, 32} with corresponding sizes in

kW as {100, 400, 100, 400}.

Table 4.6: Optimal sizing and placement of Energy Storage with hybrid RDG

Algorithm
Battery location

Battery size
Losses

Loss

Power Energy reduction
(bus no.) (kW) (kWh) (MWh) (MWh)

GWO 7 10 13 23 259 2486 596.720 218.91
PSO 13 23 29 31 237 2280 611.717 203.91
SOS 7 10 14 20 287 2756 614.478 201.15
GA 12 15 23 28 265 2545 614.918 200.71
FFA 10 14 23 29 248 2379 621.839 193.79
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Figure 4.7: Allocation of ES in 34-bus system with hybrid RDG
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Table 4.5 shows the annual energy loss minimization by optimal sizing and placement

of ES in presence of hybrid RDG with Mean value, standard deviation (SD), best value

and worst value. After GWO, optimal results are provided by PSO, SOS, GA and FFA.

The optimal sizing and locations of ES corresponding to the best optimal values are

shown in Table 4.6.

GWO obtains optimal locations of Energy Storage on the buses {7, 10, 13, 23 }

and the size of Energy Storage is 259 kW and 2486 kWh. This size gives the power

and energy rating of the Energy Storage. With this optimal sizing and placement the

annual energy losses and loss minimization obtained is 596.720 MWh and 218.91 MWh

respectively. PSO obtains optimal locations of Energy Storage on buses {13, 23, 29,

31 } and the size of Energy Storage is 237 kW and 2280 kWh. The annual energy

loss and loss minimization obtained is 611.717 MWh and 203.91 MWh. The optimal

sizing and location, energy losses, and loss minimization provided by other algorithms

i.e., SOS, GA and FFA are shown in Table 4.6. Figure 4.7 shows allocation of ES in

34-bus system with wind RDG.
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Figure 4.8: Convergence plot for allocation of ES with hybrid RDG

Convergence plots for GWO, PSO, SOS, GA and FFA are shown in Figure 4.8.

The convergence values for GWO, PSO, SOS, GA and FFA are 21, 23, 34, 6, and 18

respectively. GWO offers best fitness value with relatively slow convergence.
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The result shows that optimal allocation of ES in presence of hybrid RDG enhance

the energy loss minimization. The loss minimization with hybrid RDG is 194.861 MWh

as shown in Chapter 3 while the placement of ES provides loss minimization as 218.91

MWh as shown in Table 4.6. From above discussions it can be observed that, optimal

sizing and placement of ES in coordination with RDG provides improved energy loss

minimization.

4.6 Summary

The proposed allocation methodology shows that optimal allocation of ES provides

energy loss minimization in the distribution network. The presence of RDG in the

network is considered while planing allocation of ES. The Battery ES size is modelled

considering the generation and load profile. This ES is divided into multiple storage

units and optimally sizing and placement is obtained for energy loss minimization. ES

is optimally allocated in presence of solar RDG, wind RDG and hybrid RDG. Signifi-

cant loss minimization is obtained by optimal placement of ES at multiple locations.

The ES is generally placed at the junction node from where multiple node starts in the

network. In the present study, location of ES in presence of wind RDG provides better

loss minimization as compared to solar RDG and wind RDG. Also, GWO provides

best optimal solutions for energy loss minimization.





CHAPTER 5

Joint Optimal Allocation of RDG

and ES

5.1 Introduction

Energy loss minimization is obtained by optimal sizing and placement of RDG and

ES. In the literature, allocation of RDG and ES is addressed separately but RDG

and ES allocation should be allocated a combined way as their placement affects the

power flows and energy losses. In this Chapter, a method for joint optimal sizing and

placement of RDG and ES for energy loss minimization is presented. A probabilistic

generation model for solar RDG, wind RDG and hybrid RDG is used. The joint ES

and RDG model, storage model and load model are integrated into an optimal power

flow to obtain energy loss minimization. GA, PSO, SOS FFA and GWO algorithms are

used to solve this nonlinear constrained optimization problem. Comparitive results of

these algorithms for loss minimization is also presented. A study on 34-bus test system

is presented for joint optimal sizing and placement of solar RDG-ES, wind RDG-ES,

and hybrid RDG-ES.
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5.2 Problem Formulation for Joint Optimal Allo-

cation of RDG and ES

The problem formulation for joint optimal allocation of RDG and ES mainly includes:

1. Historical data processing

2. Solar PV modeling to obtain expected generation

3. Wind power modeling to obtain expected generation

4. Load modeling to get hourly load profile

5. Energy storage modeling

The above modeling is explained in Chapter 3 and Chapter 4 in subsequent Sections.

The objective is to find joint optimal size and location of energy storage, and

RDG such that annual energy losses of distribution network are minimized. The

power loss PLoss at each hour is calculated with backward / forward sweep method.

Now considering RDG power and ES charging discharging power at ith node, active

power Pi is as given below.

During charging,

Pi = PLi − PRDGE,i + PB,ch,i (5.1)

During discharging,

Pi = PLi − PRDGE,i − PB,disch,i (5.2)

The energy supplied by RDG at ith node and value of PB,ch,i and PB,disch,i depends on

optimal size and location of RDG and battery ES.
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Considering 120 days for each season, loss minimization is obtained for the whole

year. The objective function to minimize annual energy losses by joint optimal alloca-

tion of RDG and ES is as given below.

F = min

[
120

(
24∑
t=1

Ploss,summer,t +
24∑
t=1

Ploss,monsoon,t +
24∑
t=1

Ploss,winter,t

)]
(5.3)

The constraints for RDG and ES are given in Chapter 3 and Chapter 4 respectively.

Decision variables in the optimization are :

i) Size of RDG

ii) Location of RDG

iii) Size of battery ES

iv) Location of battery ES

5.3 Solution Methodology

The solution methodology for joint optimal sizing and placement of RDG and battery

ES is presented here. Energy losses are calculated by the same backward forward

sweep method. The four parameters that are to be optimized are size and location

of both, battery ES and RDG. Search agents for each algorithm are fixed as 20, and

termination criteria is fixed to 100 iterations and tolerance value of 10−6. A general

Flowchart for the proposed methodology using GA, POS, SOS, FFA and GWO is as

shown in Fig. 5.1.

Initialization includes, system data, bus data, expected solar and wind generation,

charge discharge time i.e., peak and off-peak time, total number of RDGs and storage

units that are to be placed. Initialization for algorithms includes the number of search

agents, initial states and termination criteria. Fitness of search agents is calculated

considering the objective function i.e., optimal size and location of ES and RDG for
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Figure 5.1: Solution methodology for joint RDG-ES allocation



Chapter 5 105

loss minimization. Afterwards, positions and fitness of the search agents are updated.

When termination criteria is reached, optimal values are stored.

5.4 Results and Discussions

This section presents case studies for the proposed methodology. Expected genera-

tion is calculated from historical data of the selected site. Proposed placement and

sizing methodology is applied to the same 34 bus radial system with solar PV module

KD325GX-LFB and wind turbine WES 100. Expected generation of RDG is obtained

as explained in Chapter 3.

Total peak load on the system is 5 MW and hourly peak load is expressed as a

percentage of the daily peak as explained in Chapter 3. The candidate buses selected

for RDG placement are {5,15,18,22,25,27,28,29,30,32}. Maximum penetration of the

solar RDG and wind RDG is considered as 2 MW assuming 40% penetration. The

minimum RDG size on any bus is taken as 100 kW, hence total 20 RDGs need to be

optimally allocated. The size of storage units is 4.89 MW. ES is split into four storage

units and placed into the network to provide energy loss minimization. Three cases

are presented to discuss the proposed methodology.

5.4.1 Joint Optimal Allocation solar RDG and ES

Table 5.1 shows annual energy loss minimization by joint optimal sizing and placement

of ES and RDG using GWO, PSO, SOS, GA and FFA. Mean value, standard deviation,

best value and worst value for GA, PSO, SOS, FFA and GWO algorithm are shown

in the Table 5.1. Comparative results from this table shows that GWO provides best

optimal results for joint allocation of RDG and ES. The optimal sizing and placement

corresponding to best optimal values are shown in Table 5.2.

GWO obtains optimal locations as {22, 25, 27, 29, 30, 32 } with corresponding

sizes in kW as {400, 400, 400, 100, 300, 400}. PSO obtains the optimal locations as

{22, 25, 27, 29, 30, 32 } with corresponding sizes in kW as {400, 400, 300, 400, 100,
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Table 5.1: Energy losses by joint optimal allocation of ES and Solar RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 669.661 672.919 686.942 691.962 685.012
2 669.395 671.449 680.383 688.579 687.510
3 669.366 673.065 682.158 696.075 687.440
4 670.027 672.237 684.284 683.444 684.890
5 672.402 672.050 680.833 680.578 683.710
6 675.067 673.556 684.860 693.090 684.340
7 669.633 673.455 684.151 681.030 685.394
8 669.972 672.413 682.149 682.548 686.950
9 669.971 673.588 681.364 697.300 686.440
10 669.477 672.581 680.499 682.778 685.174

Mean 670.497 672.731 682.762 687.738 685.686

SD 1.834 0.712 2.194 6.450 1.322

Best 669.366 671.449 680.383 680.578 683.710

Worst 675.067 673.588 686.942 697.300 687.510

Table 5.2: Optimal sizing and placement of solar RDG

Location Size (kW)

(Bus no) GWO PSO SOS GA FFA

5 - - 100 100 200
15 - - 100 100 100
18 - - 300 200 200
22 400 400 300 100 200
25 400 400 400 400 200
27 400 300 200 200 200
28 - - 100 200 200
29 100 400 200 200 100
30 300 100 100 200 300
32 400 400 200 300 300

400}. The sizing and placement of provided by other algorithms i.e., SOS, GA and

FFA are shown in Table 5.2.

GWO obtains optimal locations of Energy Storage on buses {3, 4, 6, 10 } and the

size of Energy Storage is 241 kW and 2315 kWh. This size gives the power and energy

rating of the Energy Storage. Annual energy losses and loss minimization obtained

are 669.367 MWh and 146.263 MWh respectively. PSO obtains optimal locations of

Energy Storage on buses {16, 19, 33, 34} and the size of Energy Storage is 127 kW
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Table 5.3: Optimal sizing and placement of Energy Storage

Algorithm
Battrey location

Battry size
Losses

Loss

Power Energy reduction
(bus no.) (kW) (kWh) (MWh) (MWh)

GWO 3 4 6 10 241 2315 669.367 146.263
PSO 16 19 33 34 127 1215 671.449 144.181
SOS 3 10 13 34 172 1651 680.383 135.247
GA 3 19 21 33 155 1486 680.578 135.052
FFA 11 16 17 24 202 1941 681.780 133.850
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Figure 5.2: Joint allocation of solar RDG and ES on 34 bus system

and 1215 kWh, annual energy losses and loss minimization obtained are 671.449 MWh

and 144.181 MWh respectively. The optimal sizing and location, energy losses, and

loss minimization provided by other algorithms i.e., SOS, GA and FFA are shown in

Table 5.3. The optimal sizing and placement of solar RDG and ES in 34-bus network

by joint allocation is shown in Figure 5.2.
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Figure 5.3: Convergence plot for solar RDG

The convergence plots for GWO, PSO, SOS, GA and FFA is shown in Figure 5.3

For all algorithms, the population size and maximum iteration count was fixed to 30

and 100 respectively. The convergence values for GWO, PSO, SOS, GA and FFA are

44, 60, 25, 14, and 9 respectively. GWO offers best fitness value with relatively slow

convergence of 44 iterations. The convergence of FFA is fast (9 iterations) with less

optimal solutions.

The base case losses for the system are 815.63 MWh. The loss minimization is

improved as compared to previous two cases i.e., allocation of RDG only and allocation

ES in presence of RDG due to the increased decision variables. It can be observed

that optimal placement of solar RDG provides energy losses as 726.46 MWh and loss

minimization as 89.36 MWh as shown in Chapter 3 (Table 3.2). Optimal allocation of

ES in presence of solar RDG, provide energy losses and loss minimization as 672.690

MWh and 142.940 MWh respectively as shown in Chapter 4. Further, joint allocation

of solar RDG and ES provides loss minimization as 146.263 MWh. Thus, improved

loss minimization is obtained by joint optimal allocation of solar RDG and ES.
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5.4.2 Joint allocation of wind RDG and ES

Table 5.4 shows the annual energy loss minimization by joint optimal sizing and place-

ment of Energy Storage and Renewable Distributed Generation using various optimiza-

tion algorithms i.e., GWO, PSO, SOS, GA and FFA. Ten runs of each optimization

algorithm are taken to get best optimal solution. Mean value, Standard Deviation

(SD), Best value and Worst value for each algorithm from these ten runs is calculated

as shown in the Table 5.4.

Table 5.4: Energy losses by joint optimal allocation of ES and wind RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1 529.519 541.046 552.621 546.552 558.119
2 529.927 541.080 547.958 551.354 550.124
3 531.016 540.231 554.529 558.803 551.619
4 529.527 541.056 544.398 546.604 548.193
5 530.173 541.273 545.557 553.450 554.240
6 529.218 542.794 545.504 551.366 548.455
7 529.519 540.135 555.936 553.833 550.366
8 529.927 538.086 546.516 552.962 548.455
9 531.016 540.509 556.086 557.099 548.386
10 529.527 541.046 545.305 559.538 549.007

Mean 529.937 540.726 549.441 553.156 550.696

SD 0.631 1.184 4.787 4.494 3.222

Best 529.218 538.086 544.398 546.552 548.193

Worst 531.016 542.794 556.086 559.538 558.119

The comparative results from this table shows that GWO provides best optimal

results with least SD. After GWO, optimal results are provided by PSO, SOS, GA and

FFA. The optimal sizing and locations corresponding to the best optimal values are

shown in Table 5.5.

The GWO obtains optimal locations as {22, 25, 27, 28, 29, 30, 32 } with corre-

sponding sizes in kW as {400, 400, 300, 100, 300, 100, 400}. PSO obtains the optimal

locations on buses {5, 18, 22, 27, 29, 30, 32 } with corresponding sizes in kW as {100,

100, 400, 400, 300, 300, 400}. Similarly SOS offers the placement of wind RDG on

buses {5, 18, 22, 25, 27, 28, 29, 32 } with corresponding sizes in kW as {200 300 300
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Table 5.5: Optimal sizing and placement of wind RDG

Location Size (kW)

(Bus no) GWO PSO SOS GA FFA

5 - 100 200 100 100
15 - - - 100 -
18 - 100 300 100 300
22 400 400 300 200 200
25 400 - 100 300 100
27 300 400 400 400 300
28 100 - 200 200 200
29 300 300 200 100 300
30 100 300 - 300 200
32 400 400 300 200 300

100 400 200 200 300}. The sizing and placement of provided by other algorithms i.e.,

GA and FFA are shown in Table 5.5.

Table 5.6: Optimal sizing and placement of Energy Storage

Algorithm
Battery location

Battery size
Losses

Loss

Power Energy reduction
(bus no.) (kW) (kWh) (MWh) (MWh)

GWO 3 7 10 24 348 3007 529.218 286.41
PSO 7 15 25 34 377 3257 538.086 277.54
SOS 2 8 25 33 334 2887 544.398 271.23
GA 8 21 22 34 252 2178 546.552 269.08
FFA 12 12 13 20 272 2351 548.193 267.44

GWO obtains optimal locations of Energy Storage on buses {3, 7, 10, 24 } and the

size of Battery Energy Storage is 348 kW and 3007 kWh, annual energy losses and loss

minimization obtained are 529.218 MWh and 286.41 MWh respectively. PSO obtains

optimal locations of battery ES on buses {7, 15, 25, 34} and the size of Energy Storage

is 377 kW and 3257 kWh. The annual energy losses and loss minimization obtained is

538.086 MWh and 277.54 MWh respectively. The optimal sizing and location, energy

losses, and loss minimization provided by other algorithms i.e., SOS, GA and FFA are

shown in Table 5.6. The optimal sizing and placement of solar RDG and ES in 34-bus

network by joint allocation is shown in Figure 5.4.

The convergence plots for GWO, PSO, SOS, GA and FFA is shown in Figure

5.5 For all algorithms, the population size and maximum iteration count was fixed
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Figure 5.4: Joint allocation of wind RDG and ES on 34 bus system

to 30 and 100 respectively. The convergence values for GWO, PSO, SOS, GA and

FFA are 89, 14, 50, 16 and 4 respectively. GWO offers best fitness value with slower

convergence. Convergence of FFA is faster with less optimal solutions as compared

other algorithms. The convergence of GA and PSO are closer to each other with 14

and 16 iterations.

Optimal placement of only wind RDG provides energy losses and energy loss min-

imization as 653.399 MWh and 252.417 MWh respectively as discussed in Chapter 3

(Table 3.4). Optimal sizing and placement ES placement in presence of wind RDG pro-

vide energy losses as 534.428 MWh and loss minimization as 281.361 MWh as shown

in Chapter 4 (Table 4.4. Thus enhancement in loss minimization is obtained. It can

be observed that joint allocation of wind RDG and ES provide energy losses and loss

minimization as 529.2418 and 286.41 respectively. Thus, improved loss minimization
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Figure 5.5: Convergence plot for wind RDG

is obtained by joint optimal allocation of RDG and ES as compared to only RDG

placement or only ES placement in presence of RDG.

5.4.3 Joint allocation of hybrid RDG and ES

The joint optimal allocation of hybrid RDG and ES is presented here. Table 5.7 shows

the annual energy loss minimization by joint optimal sizing and placement of ES and

hybrid RDG using various optimization algorithms i.e., GWO, PSO, SOS, GA and

FFA.

Mean value, standard Deviation, best value and worst value for each algorithm is

calculated as shown in the Table 5.7. The comparative results from this table shows

that GWO provides best optimal results with least SD. After GWO, optimal results are

provided by PSO, SOS, GA and FFA. The optimal sizing and locations corresponding

to the best optimal values are shown in Table 5.8.

GWO obtains optimal placement of solar RDG on buses { 18, 22, 25, 32} with

corresponding sizes in kW as { 100, 200, 300, 400} and placement of wind RDG on

buses { 25, 27, 32} with corresponding sizes in kW as {200, 400, 400}. PSO obtains

obtimal placement of solar RDG on buses {15, 18, 30, 32} with corresponding sizes in
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Table 5.7: Energy losses by joint optimal allocation of ES and hybrid RDG

Runs
Losses (MWh)

GWO PSO SOS GA FFA

1.000 581.121 612.513 637.786 612.207 621.591
2.000 579.199 610.374 629.961 618.614 622.221
3.000 589.443 627.106 633.445 624.003 641.341
4.000 599.014 610.473 641.281 616.462 627.179
5.000 590.697 622.168 610.757 626.229 627.949
6.000 595.906 611.972 619.148 616.015 620.804
7.000 600.662 625.228 617.768 624.595 622.442
8.000 588.585 614.645 620.361 623.688 629.317
9.000 583.136 627.145 618.194 617.302 619.187
10.000 587.102 619.836 631.327 614.035 622.864

Mean 589.487 618.146 626.003 619.315 625.490

SD 7.310 6.927 10.065 4.930 6.486

Best 579.199 610.374 610.757 612.207 619.187

Worst 600.662 627.145 641.281 626.229 641.341

Table 5.8: Optimal sizing and placement of hybrid RDG

Location
Size (kW)

GWO PSO SOS GA FFA

(Bus no) S W S W S W S W S W

5 - - - - - - - - - 200
15 - - 400 - 100 - 100 - - 100
18 100 - 300 - 100 100 - - 200 100
22 200 - - 100 0 200 - 300 100 100
25 300 200 - 100 200 200 300 - 200 100
27 - 400 - 200 100 - 300 200 100 100
28 - - - 200 300 100 - - 100 -
29 - - - 100 100 200 - 100 100 100
30 - - 200 100 100 100 300 - 100 100
32 400 400 100 200 - 100 - 400 100 100

S - Solar
W - Wind

kW as {400, 300, 200, 100 } and placement of wind RDG on buses { 22, 25, 27, 28,

29, 30, 32} with corresponding sizes in kW as {100, 100, 200, 200, 100, 100, 200}. The

optimal sizing and placement provided by other algorithms i.e., SOS, GA and FFA are

shown in Table 5.8.
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Table 5.9: Optimal sizing and placement of Energy Storage with hybrid RDG

Algorithm
Battery location

Battery size
Losses

Loss

Power Energy reduction
(bus no.) (kW) (kWh) (MWh) (MWh)

GWO 3 7 10 21 266 2302 579.199 236.43
PSO 2 23 31 32 320 2765 610.374 205.26
SOS 3 3 12 29 171 1474 610.757 204.87
GA 3 4 10 20 326 2821 612.207 203.42
FFA 11 14 19 21 232 2002 619.187 196.44
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Figure 5.6: Joint allocation of hybrid RDG and ES on 34 bus system

GWO obtains optimal locations of ES on the buses {3, 7, 10, 21 } and the size

of ES is 266 kW and 2302 kWh, annual energy losses and loss minimization obtained

is 579.199 MWh and 236.43 MWh respectively. PSO obtains optimal locations of ES

on buses {2, 23, 31, 32 } and the size of Energy Storage is 320 kW and 2765 kWh

respectively. PSO obtains annual energy loss and loss minimization as 610.374 MWh

and 206.26 MWh respectively. The optimal sizing and location, energy losses, and loss

minimization provided by other algorithms i.e., SOS, GA and FFA are shown in Table
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5.9. The optimal sizing and placement of solar RDG and ES in 34-bus network by

joint allocation is shown in Figure 5.6.
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Figure 5.7: Convergence plot for hybrid RDG

The convergence plots for GWO, PSO, SOS, GA and FFA is shown in Figure 5.7

For all algorithms, the population size and maximum iteration count was fixed to 30

and 100 respectively. The convergence values for GWO, PSO, SOS, GA and FFA

are 98, 21, 18, 23, and 5 respectively. GWO offers best fitness value. FFA has fast

convergence with 5 iterations and less optimal solutions. The convergence values of

PSO, SOS and GA are closer to each other.

The loss minimization with only hybrid RDG is 194.861 MWh as shown in Chapter

3, loss minimization with ES in presence of hybrid RDG is 218.91 MWh as shown in

Chapter 4. The loss minimization with joint optimal allocation of hybrid RDG and ES

are 236.43 MWh. The results shows joint optimal allocation of hybrid RDG and ES

provides improved energy loss minimization as compared the cases:only hybrid RDG

and ES in presence of hybrid RDG. Significant loss minimization can be obtained by

joint optimal sizing and placement of RDG and multiple ES units. Wind RDG and

ES provides better loss minimization as compared to other optimization algorithms.

In this case, the GWO algorithm provides optimal results for loss minimization as

compared to other optimization algorithms i.e., GA, PSO, SOS, and FFA.
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5.5 Summary

This chapter proposes a joint optimal allocation methodology for ES and RDG i.e.,

solar RDG, wind RDG and hybrid RDG. The joint optimal sizing and placement of

ES and RDG provides significant loss minimization. The wind RDG-ES combination

provides optimal solutions for energy loss minimization. This nonlinear, constrained

optimization problem is solved with GA, PSO, SOS, FFA and GWO algorithms. GWO

optimization algorithm provides improved loss minimization as compared to other

competitive algorithms.



CHAPTER 6

Joint Allocation for RDG and ES

for Economic Benefits

6.1 Introduction

RDG and ES offers economic benefits to utilities and customers. Joint optimal alloca-

tion of RDG and ES can further enhance the economic benefits. This chapter presents

a joint optimal allocation methodology of RDG and ES to achieve economic benefits.

The proposed method minimizes costs of distribution company (DISCOM). Also, ben-

efit of RDG owner is ensured by adding suitable constraint in objective function. Cost

of DISCOM mainly includes the cost of renewable energy, cost of energy purchased

from grid and energy storage cost. The RDG owner obtains benefit by selling the

renewable energy to DISCOM at a mutual contract price. Thus, the contract price is

a key parameter in the cost benefit analysis of the DISCOM and RDG owner. This

work formulates the contract price of renewable energy along with allocation of RDG

and ES to achieve cost-benefits of RDG owner and DISCOM. Also, the generation

model, storage model and load model are combined into an optimal power flow to

obtain energy loss minimization. This constrained nonlinear problem is solved using

Grey Wolf Optimizer (GWO).
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6.2 System Modeling

The system modeling includes, renewable sources modeling to obtain expected gener-

ation, load modeling, battery storage modeling and economic model. The renewable

resources modeling (i.e., solar power and wind power modeling), load modeling is ex-

plained in Chapter 3. Here, the battery battery size is obtained considering the peak

shaving application. The obtained ES size is taken for joint allocation with RDG.In

this Section, the battery ES model and economic model is explained.

6.2.1 Battery Storage Model

Battery ES size is obtained considering the amount of peak shaving. Thus, ES con-

tributes for peak shaving. Power peaks on load curves are area above the reference

value PR as shown in Figure 6.1.

Figure 6.1: Power peak and peak shaving

If Pmsh,t is required maximum power to shave and Tdis,t is discharge time then area

above PR gives battery capacity (EBE) as given below [123].

EBE =
T∑
t=1

Pmsh,t Tdis,t (6.1)

This battery size is modified according to minimum state of charge (i.e., SOC) and

efficiency of battery ES. Loss minimization is improved by splitting the large sized

storage into multiple storage units (Nd) obtaining load shifting at multiple sites rather
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than at single site [172]. The energy rating of these multiple ES units is as given below.

EBES =
EBE
Nd

(6.2)

Considering a minimum state of charge (i.e, SOCmin), energy rating of battery is given

as,

EB = EB + SOCmin EB (6.3)

Observing the total peak time period Tdis and off-peak time period Tch from load

pattern, maximum charge discharge power is obtained as,

Pmax
B,dis =

EBES
Tdis

or Pmax
B,ch =

EBES
Tch

(6.4)

The battery power rating PB is obtained form the charge discharge power as shown

below.

PB = max
[
Pmax
B,dis, P

max
B,ch

]
(6.5)

DC bus voltage regulation system in battery energy storage provides a constant

DC bus voltage to grid side converter. This results in efficient power conversion and

protection of DC bus against voltage stress [249]. The variation in DC bus voltage

is mitigated by controlling duty cycle with suitable controllers [250]. In the proposed

work it is assumed that the DC bus voltage is maintained and controlled by the system

controller at desired level.

6.2.2 Economic Model

Economic model includes the costs and benefits of RDG owner and DISCOM. DISCOM

is responsible for the placement of RDG and ES and achieves corresponding benefits.

The cost minimization of DISCOM is achieved while considering the benefits of RDG

owner. Thus, economic model includes the costs and benefits of RDG owner and

DISCOM. Equations shown in economic model are for hybrid RDG and Energy Storage

combination.
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6.2.3 RDG Owner’s Costs and Benefits

RDG owner’s costs mainly includes the investment cost and operation & maintenance

cost and they get profit by selling the renewable energy.

i) Investment Cost: The investment cost for solar RDG mainly includes cost of

land, solar panel cost, inverter cost and installation cost. Investment cost for wind

RDG mainly includes cost of land, wind turbine cost, foundation cost, and grid

connection cost. Total investment cost CINV ST for hybrid RDG is as given below.

CINV ST = PISG CIS + PIWG CIW (6.6)

Where, CIS investment cost of solar RDG in Rs./MW ; CIW investment cost of

wind RDG in Rs./MW ; PISG total installed capacity of solar RDG MW ; PIWG

total installed capacity of wind RDG MW ;

ii) Operation and Maintenance (O&M) Cost: This cost includes regular main-

tenance cost, repair cost, cost of spare parts and administration cost. The dis-

counted total O& M cost is given as,

COM =

NY∑
j=1

(PISG COMS + PIWG COMW )

(
1 +Rinf

1 +Rint

)j
(6.7)

where, COMS O&M cost of solar RDG Rs./MW ; COMW O&M cost of wind RDG

Rs./MW ; NY total number of years; Rinf inflation rate; Rint interest rate or

discount rate;

iii) RDG Owner Benefit: RDG owner earns profit by selling renewable energy to

DISCOM. The energy is sold on the contract price decided between them.

INRDGO =

NY∑
j=1

(PSDG + PWDG) CPRDG

(
1 +Rinf

1 +Rint

)j
(6.8)

Where, INRDGO RDGO’s profit from selling the generated electricity, CPRDG

contract price in Rs. per unit of electricity, PSDG and PWDG Solar and wind
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generated power. The net benefit of RDGO is as given below.

BENRDGO = INRDGO − CINV ST − COM (6.9)

6.2.4 Distribution Company’s Costs

DISCOM purchases renewable energy from RDG owner. Also, DISCOM takes into

account the allocation of RDGs and ES. Thus, DISCOM’s profit is affected by optimal

allocation of RDGs and ES.

i) Renewable Energy Cost: DISCOM purchases power from RDG owner at the

contract price. Contract price creates a coupling between DISCOM’s cost and

RDGO’s benefit. The cost of renewable energy purchased from RDG owner is as

given below.

RDGCOST =

NY∑
j=1

(PSDG + PWDG) CPRDG

(
1 +Rinf

1 +Rint

)j
(6.10)

ii) Grid Energy Cost: The power requirement beyond RDG’s capacities is pur-

chased from substation by DISCOM. The power to be purchased and its cost is

obtained as given below.

PSUB,i =
N∑
i=1

PL,i + PLoss,i − PRDGE,i − PB,disch,i (6.11)

where PL,i is active power load, PLoss,i real power loss, PRDGE,i epected power of

RDG and PB,disch,i is battery discharge power. The cost of energy purchased from

grid is given by the following equation.

SUBECOST =

NY∑
j=1

24∑
t=1

PSUB CE

(
1 +Rinf

1 +Rint

)j
(6.12)

Where, CE gives cost of energy in Rs. per unit.
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iii) Battery Storage Cost: The total investment cost CIBE and operation & main-

tenance cost COMBE of battery ES is given by Equation (6.13) and Equation (6.14)

respectively.

CIBE = EB CIB (6.13)

COMBE =

NY∑
j=1

(EB COMB)

(
1 +Rinf

1 +Rint

)j
(6.14)

Where, CIBE investment cost of Battery in Rs./MWh; EB total installed capacity

of battery MWh; COMB O&M cost of battery Rs./MW ; The total cost of battery

ES is given as,

BESCOST = CIBE + COMBE (6.15)

iv) Loss Minimization Benefits: The cost benefit achieved by loss minimization

is as given as below.

BEL =

NY∑
j=1

(PLS CSEL + PLW CWEL)

(
1 +Rinf

1 +Rint

)j
(6.16)

Where, PLS annual energy loss minimization by solar RDG MWh; PLW annual

energy loss minimization by wind RDG MWh; CSEL cost of energy losses for

solar RDG Rs./kWh; CWEL cost of energy losses for wind RDG Rs./kWh;

6.3 Problem Formulation

A) Objective Function: The objective is to minimize the costs of DISCOM. The

benefit of RDG owner is formulated as one of the constraints. The objective

function ‘f ′ for cost minimization of DISCOM is as given below.

f = min

[
NY∑
j=1

24∑
t=1

(RDGCOST + SUBECOST +BESCOST )

]
(6.17)

B) Decision Variables: Following are the decision variables in the optimization

problem.
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i.) Size of RDG (i.e., number of RDGs) and location of RDG (i.e., optimal bus

number.)

ii.) Location of battery storage (i.e., optimal bus number.)

iii.) Contract price that minimizes the costs of DISCOM and the RDGO gets an

assured benefit.

C) Constraints: The constraints includes; technical constraints and economic con-

straints. All the technical constraints related to RDG i.e., active and reactive

power balance, feeder current and maximum penetration of RDG are explained in

Chapter 3. The economic constraints are as given below.

i) Owner Benefit: The RDG owner should be assured with a minimum benefit

(BENmin
RDGO). He may get get more than this assured benefit.

BENRDGO ≥ BENmin
RDGO (6.18)

ii) Contract price: The contract price is decided depending on market electricity

price and economic considerations. This constraint is as given as below.

CPmin
RDG ≤ CPRDG ≤ CPmax

RDG (6.19)

CPmin
RDG and CPmax

RDG are the minimum and maximum amount of contract price.

6.4 Solution Methodology

Joint allocation of RDG and ES for cost minimization of DISCOM is optimized by

GWO algorithm. The energy losses are calculated by backward forward sweep method.

The search agents for GWO are initialized as 20, and termination criteria are fixed to

150 iterations or a tolerance value of 10−6. The flowchart of the proposed methodol-

ogy is as shown in Fig 6.2. The initialization mainly includes system data, bus data,

expected solar and wind generation, charge-discharge power and time i.e., peak and
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Figure 6.2: Solution methodology for cost-benefit based allocation of RDG-ES

off-peak time, total number of RDGs, storage units and range of contract price. The

initialization for algorithms includes number of search agents, initial states and ter-

mination criteria. The fitness of search agents is calculated considering the objective
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function i.e., cost minimization of DISCOM by joint optimal allocation of RDG and

ES. If termination criterion is reached, the optimal values are stored otherwise the

process is repeated.

6.5 Results and Discussions

The proposed joint allocation methodology for economic benefits is applied to a 34-

bus radial distribution system.The solar PV module and wind turbine considered in

this study are KD325GX-LFB and WES 100 respectively. Hourly solar irradiance and

wind speed data of 5 years is taken from the same site named, Satara Maharashtra

state, India. Probability of each state is calculated using β cdf and Reilaygh cdf . The

product of probability and power output of each state provides the expected generation

of that state. The summation of entire states provides the expected generation of the

particular hour. The values of various parameters of cdf of solar RDG and wind RDG

with the expected generation is given in Chapter 3. The total peak load on the system

is 5 MW and maximum penetration of the solar RDG and wind RDG is considered as

2 MW assuming 40% penetration. The candidate buses selected for RDG placement

are randomly selected ten buses as D {5,15,18,22,25,27,28,29,30,32}.

The RDG is optimally placed with a size of multiple of 100 kW and a maximum

size of 500 kW. The maximum size of RDG at any location is limited by the feeder

current capacity which is 50 A. Thus, ES contributes loss minimization through peak

shaving [172]. Four number of storage units considered for optimal placement for

economic benefits. The charging-discharging efficiency of the storage is assumed as

95% and minimum SOC is limited to 20%.

Table 6.1: Commercial information of RDG

Cost parameters SDG WDG

Investment cost (Rs/MW.) 58,733,000 61,916,000
O & M cost (Rs./MW) 1,300,000 27,801,127

The proposed methodology is applied to three case studies, i.e., solar RDG, wind

RDG and hybrid RDG. The investment cost for solar RDG and wind RDG in Rs./MWh
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Table 6.2: Commercial information of battery ES

Cost parameters Value

Capital energy cost (Rs./kWh) 37,000
Annual O&M cost (Rs./kW) 1,000
Capital replacement cost (Rs./kWh) 11100

is taken as 58733000 and 61916000 respectively and the O&M cost in Rs./MWh is

1300000 and 1063000 respectively as shown in Table 6.1 . The battery ES capital cost,

O& M cost and capital replacement cost in Rs. is taken as 37000, 1000 and 11100

respectively as shown in Table 6.2. The inflation rate and discount rate is considered

as Rs. 6.10 and Rs. 10.81 respectively. The life of solar, wind and battery storage

project is considered as 20 years.

The results for optimal allocation of solar RDG-ES, wind RDG-ES and hybrid

RDG-ES are presented here. Table 6.3 shows the optimal allocation of these RDGs.

Figure 6.3, Figure 6.4, and Figure 6.5 shows the optimal allocation of of solar RDG-ES,

wind RDG-ES and hybrid RDG-ES in a 34-bus system.

Table 6.3: Sizing and location of RDGs

Location SDG (kW) WDG (kW)
HDG (kW)

SDG WDG

5 200 100 - -
15 100 100 100 100
18 300 300 - 100
22 - 100 200 100
25 400 100 - 200
27 200 100 100 200
28 - 300 200 -
29 300 200 200 -
30 300 300 100 200
32 200 400 100 100

The optimal locations for solar RDG are buses {5 15 18 25 27 29 30 32} and

optimal size in kW are found as {200 100 300 400 200 300 300 200 }. The wind RDG

is located on all the candidate buses with optimal sizes as { 100 100 300 100 100 100

300 200 300 400 }. For hybrid RDG, the solar RDG and wind RDG of 100kW each
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are placed on bus no. 15, on bus number 18, a wind DG of 100kW is placed. Similarly,

optimal allocation of hybrid RDG is as shown in Table 6.3.
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Figure 6.3: Allocation of solar RDG-ES on 34 bus system for economic benefits

The battery is rated to shave peak load that is above 75 % of daily load. The

battery rating obtained is 280 kW and 3.55 MWh. Considering peak and off peak

hours, charging and discharging power is obtained as 280 kW and 200 kW respectively.

The allocation of battery ES with various types of RDGs is shown in Table 6.4. The

optimal location of battery storage with solar RDG is on buses { 9, 14, 27, 28 }. The

optimal location of battery storage with wind RDG is at locations { 3, 7, 10, 24 } and

optimal location of battery storage with hybrid RDG is at locations { 4, 7, 10, 24 }.

The energy contract price between RDGO and DISCOM is also given in Table 6.4.

Contract price for solar RDG-ES, wind RDG-ES and hybrid RDG-ES cases are 20000

Rs./MW, 7000 Rs./MW and 10000 Rs./MW respectively. A minimum contract price
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Figure 6.4: Allocation of wind RDG-ES on 34 bus system for economic benefits

Table 6.4: Location of Energy storage and contract price

RDG Type Battery storage location
Contract energy price

(Rs./MW)

SDG 9 14 27 28 20000
WDG 3 7 10 24 7000
HDG 4 7 10 24 10000

is offered by the wind RDG and maximum contract price is offered by solar RDG. The

contract price is mainly affected by potential of RDG at the selected site.

Table 6.5 shows the costs and benefits of RDGO and DISCOM. The solar RDG

owner gets a benefit of Rs. 617407472. Cost of energy purchased from solar RDG is

Rs. 768872969 and cost of energy purchased from the grid is 987610387. DISCOM

gets a benefit of 7186204 by loss minimization. Similarly, RDGO benefit, costs and

benefits of DISCOM are shown in Table 6.5 for other cases, i.e., wind RDG and hybrid
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Figure 6.5: Allocation of hybrid RDG-ES on 34 bus system for economic benefits

Table 6.5: Benefits and costs of RDGO and DISCOM

RDG type
RDG owner RDG energy Grid energy Loss reduction
benefit (Rs.) cost (Rs.) cost (Rs.) benefit (Rs.)

SDG 617407472 768872969 987610387 7186204
WDG 646993707 798626834 804804886 15255361
HDG 606757631 762665981 899628832 7799586

RDG.

From the above discussions, it is observed that proposed joint allocation method-

ology of RDG and ES provides benefits to DISCOM by cost minimization and also

RDGO achieves economic benefits. Significant loss minimization is obtained by the

optimal allocation of multiple RDG units and multiple ES units. The methodology

provides an optimal contract price of renewable energy for both; RDGO and DISCOM.
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6.6 Summary

Allocation of RDG and ES offers significant cost minimization benefits to DISCOM.

This chapter shows a joint allocation methodology for ES and RDG i.e., solar RDG,

wind RDG and hybrid RDG. The proposed methodology provides size and location

of both, RDG and ES along with a contract price of the renewable energy. The RDG

owner is encouraged for the investment in RDG by providing an assured economic

benefit. Significant loss minimization benefits are also obtained by the joint RDG and

ES allocation methodology. This nonlinear, constrained optimization problem is solved

with a robust and competitive optimization algorithm called Grey Wolf Optimizer

(GWO). The effectiveness of the methodology is tested with a comprehensive case

study on a 34-bus test system. In this case, wind RDG-ES joint allocation provides

significant economic benefits compared to other RDG-ES combinations. The proposed

methodology can be useful to check the economic viability of various grid integrated

energy technologies.



CHAPTER 7

CONCLUSIONS AND FUTURE

SCOPE

Integration of RDG is considered as one of the significant contributions to the world en-

ergy considering future perspectives of them. The power utilities are more concerned

with the high penetration RDGs due to increased energy demand and diminishing

fossil-fuel based resources. Solar and the wind are promising RDG technologies due to

the stainability and environment friendliness. Also, they can be strategically placed

in power systems for reducing power losses, improving voltage profiles and improving

system efficiency. Incentive-based regulation for the network and improved system

performance are major concerns of energy loss minimization. Loss minimization by

optimal allocation of RDGs is addressed by meany researchers in last few years. Op-

timal sizing and placement become complex due to variable nature of RDG as well

as load. Loss minimization with optimal sizing and placement is obtained with ei-

ther minimization of power losses or minimization of energy losses. Loss minimization

methodology should consider energy losses due to the variability of both; demand and

generation. This research work considers optimal sizing and placement of RDG for

energy loss minimization

ES has become an integral part of modern power systems due to the increased

penetration of RDGs into distribution networks. It has multiple applications into the
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power system. ES helps in growing renewable energy penetration level, frequency

control, voltage uctuations mitigation and power quality improvement. Optimal sizing

and placement of ES have a significant impact on energy loss minimization in power

system. The research formulates an optimal placement and sizing methodology of ES

in the presence of RDG.

The optimal sizing and placement of RDGs affect the economic performance of

power system. Optimally allocated RDG units in the distribution system maximize

savings in system upgrades, the cost of energy losses, the cost of interruption and

achieve overall economic benefits. The cost-benefit problem by the joint allocation of

RDG and ES should minimize DISCOM’s cost and provide significant profit to RDG

owner. RDG owner sells the energy to the DISCOM at a contract price. Thus, Cost

of DISCOM and profit of RDG owner are lined with each other by contract price

of renewable energy. Hence, the research work considers the contract price in the

cost-benefit formulation.

7.1 Summary of Significant Findings

The research in this thesis has addressed the problem of distributed generation plan-

ning with RDG and ES. A planning methodology is proposed for optimal sizing and

placement of Renewable Distributed Generation that mainly includes the solar RDG,

wind RDG and hybrid RDG (i.e., combined solar RDG and wind RDG). A proba-

bilistic generation model is used for solar PV generation and wind power generation.

The developed generation load model is integrated into optimal power flow to obtain

energy loss minimization with optimal sizing and placement of RDGs, i.e., solar RDG,

wind RDG and Hybrid RDG. GA, PSO, SOS, FFA and GWO algorithms are applied

to the proposed methodology. Significant loss minimization is obtained with proposed

methodology. GWO provides best optimal solutions with significant loss minimization.

The wind RDG provides improved energy loss minimization as compared to other RDG

techniques as compared to the other RDGs.
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Secondly, optimal sizing and placement of Energy Storage in the presence of Re-

newable Distributed Generation is proposed to minimize energy losses. The size of

Battery Energy Storage is obtained from the generation -load profile of the system.

This energy storage is split into multiple Energy Storage units and it is optimally

sized and placed in the distribution system. Significant loss minimization obtained

by optimal placement of multiple Energy Storage units at multiple sites. The loss

minimization with ES in the presence of RDG is improved as compared to the only

optimal RDG placement approach.

Considering the effect of allocation of RDG and ES on line flows of the system

a joint optimal sizing and placement of RDG and ES is presented. Three cases i.e.,

solar RDG-ES, wind RDG-ES and hybrid RDG-ES are presented for joint allocation

methodology. Four storage units are jointly allocated with RDGs to obtain energy

loss minimization. The non-linear constrained optimization problem is solved with

GA, PSO, SOS, FFA and GWO algorithms. Significant loss minimization is obtained

with the proposed joint optimal allocation methodology. GWO provides best optimal

solutions as compared to other optimization algorithms. The wind RDG-ES combina-

tion provides a significant energy loss minimization. It can be observed that improved

loss minimization is obtained with joint allocation methodology as compared to RDG

allocation and ES in the presence of RDG allocation approach.

Finally, this work presents a joint optimal sizing and placement methodology of ES

and RDG for economic benefits. The joint optimal allocation methodology minimizes

the cost of DISCOM. It also provides ensured benefits to RDG owner. In the proposed

formulation various costs and benefits of both DISCOM and RDGO are considered.

The contract price of renewable energy is included in the problem formulation to benefit

both; DISCOM and RDG owner.

The work proposed in this thesis provides optimal sizing and placement method

for solar RDG, wind RDG hybrid RDG for energy loss minimization. An optimal

sizing and placement methodology for ES in the presence of RDG is addressed to

minimize energy losses. Considering the combined effect of RDG and ES on power

flows, a joint optimal allocation methodology for RDG and ES is presented for energy
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loss minimization. The cost-benefit based joint optimal allocation of RDG and ES is

presented which also includes contract price of renewable energy. The subject matter

addressed in this thesis is relevant for optimal planning of RDG and ES including

economic benefits.

7.2 Practical Application of the Proposed Research

The proposed methodology can be practically implemented for the optimal allocation

RDG and ES.

The first task is to select a potential site for RDG. The site should have land

availability to place the RDGs. Depending on these information decide the candidate

buses for RDG. Collect the historical data for solar irradiance and wind speed for the

selected region.

Forecast the renewable generation on hourly and seasonal basis by applying prob-

abilistic approaches. Precise forecasting is essential to obtain accuracy in the planning

of RDG. Next, obtain hourly load profile of the selected network using suitable load

forecasting.

Decide total penetration limit of RDG considering the feeder capacities and sta-

bility of the system. Overall stability with increased renewable generation needs to

be checked. Select appropriate energy storage technology. ES should provide re-

quired energy and power requirement.Then, decide the design variables, constraints of

the proposed scheme. Obtain the optimal sizing and placement using the proposed

methodology.

Next, to obtain economic benefits, provide various costs of DISCOM and RDG

owners. Provide minimum economic benefit value that RDG owner should achieve.

Obtain optimal size and locations of RDG and ES along with contract price using

proposed methodology.
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Important factors that impact the successful implementation of proposed method-

ology to Indian power sector include accurate forecasting of load and renewable energy

sources. Energy forecasting in Indian electricity market has multiple challenges, as

compared to advanced markets like Pennsylvania-New Jersey-Maryland (PJM). PJM

plays an important role in U.S. electric system and it is the largest electrical system

in North America [255]. It has following features:

i) It provides a secure, efficient and economic operation by using locational marginal

prices (LMP). ii) PJM incorporates user input to a create functional, practical and com-

plete market. iii) PJM has advanced solar and wind forecasting mechanisms [256, 257].

As compared to electricity markets like PJM, forecasting for Indian utilities has

following challenges:

i) Manual load forecasting based on previous years data is found at several places.

ii) External load forecasting tools are not applied. iii) Accuracy of available load

forecasting is below expectation. iv) Inaccurate load forecasting is primarily respon-

sible for improper scheduling rather than inaccurate renewable energy forecasting. v)

Renewable generation forecasting in India is at its developing stage. vi) Renewable

energy forecasting should be accompanied by load forecasting of equivalent accuracy.

Considering the extreme seasonal variations in renewable generation and load in

Indian utility, optimal planning of RDG requires high quality renewable and load

forecasting. Currently, renewable energy forecasting is mainly provided by India Me-

teorological Department (IMD) with traditional weather forecasting [258]. However,

reliable and robust forecasting systems are required for optimal planning of large scale

integration of RDGs.

The 34 bus test network is a three phase radial distribution feeder and is used as

a representative network of Indian utilities, to validate the proposed algorithms [218].

The similarities include,

i) It is a radial distribution network with a main substation and multiple feeders.

ii) It is long length feeders.
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iii) System voltage is 11 kV.

iv) The feeder has spot loads.

The main difference in the feeder characteristic is that the 34 bus test feeder is

considered as balanced and represented on per phase basis, while the real feeder has

three phase unbalanced loads. Also, in the real feeder, it is necessary to consider

transformers, voltage regulators and capacitors. With these considerations, the 34-bus

test feeder can be considered as representative of Indian distribution utilities.

7.3 Future Scope for Research

Research is a continuous process and always there is a scope. Optimal sizing and place-

ment of RDG and ES for energy loss minimization and economic benefits is presented

in this research work. As a path forward, some of the identified areas and research

directions are given as follows.

1. Joint optimal allocation of ES and RDG can be used in a co-optimized market. In

a co-optimized market, a portion of energy from being dispatched in the energy

market is reserved for providing regulation services in the ancillary market and

carry over the remaining energy to the next period to sell it in the energy market.

ES can make revenues from a co-optimized electricity market than just energy

only market.

2. RDG, distributed ES and demand-side management are recognized as main facil-

itators for the smart grid. The optimal allocation methodology can be extended

with the demand side management. The combination of RDG, ES and demand-

side management results in a system of diverse generation sources with possibil-

ities for improved energy efficiency, local generation and controllable loads.

3. ES technology has various technical benefits, however, the high cost of ES tech-

nology is a problem. It is necessary to understand cost and benefits of various ES



Chapter 7 137

technologies. Operation and application of large-scale ES should be associated

with efficient use of it.

4. Wind RDG and solar RDG can cause voltage fluctuations and affects voltage

stability of the grid. ES can provide reactive power support and it can assist

other reactive power compensation equipment. Thus, ES and RDG allocation

can be extended with reactive power panning.

5. Micro-grids are making better use of renewable energy. The study of the alloca-

tion of RDG and ES can be extended to an interconnected network of multiple

micro-grids, with local energy generation and inter-grid energy transmission.

6. Ancillary services brings additional benefits and improves ES feasibility. Various

ancillary services can be addressed in ES and RDG planning and operation.

Thus, optimal allocation problem RDG and ES can be associated with promising

research areas some of these includes co-optimized electricity market, demand side

management, reactive power support and ancillary services.
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