
On Algorithms for Facial Expression
Recognition and their Hardware

Implementation

by

Rajesh A. Patil

ID 2008REC106

Submitted
in ful�llment of the requirements

of
the degree of

DOCTOR OF PHILOSOPHY

to the

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR, INDIA

October 2016

Certi�cate

This is to certify that the thesis entitled `On Algorithm for Facial

Expression Recognition and their Hardware Implementation,

being submitted byRajesh A. Patil to the Department of Electronics

and Communication Engineering, Malaviya National Institute of Tech-

nology, Jaipur, for the award of the degree of Doctor of Philosophy, is

a bona�de research work carried out by him under my supervision and

guidance. The results obtained in this thesis have not been submitted

to any other university or institute for the award of any other Degree

or Diploma.

Dr. Vineet Sahula Dr. A. S. Mandal
Professor Chief Scientist
Department of ECE IC Design Group

MNIT, Jaipur CEERI, Pilani

Jaipur - 302017, India Rajasthan, India

i

ii

Acknowledgement

I would like to dedicate this work to my mother Late Smt. Shakuntala who

left me during my Ph.D. journey. Her love provided me inspiration and was my

driving force.

Completing my PhD degree is probably the most challenging activity of my life.

The best and worst moments of my doctoral journey have been shared with many

people. It has been a great privilege to spend several years in the Department

of Electronics and Communication Engineering at MNIT Jaipur and its members

will always remain dear to me.

At the outset I would like to express my appreciation to my supervisor Dr.

Vineet Sahula, Professor and Head of the Department for his advice during my

doctoral research endeavor for the past six years. As my supervisor, he constantly

forced me to remain focused on achieving my goal. His observations and comments

helped me to establish the overall direction of research and to move forward with

the investigation in depth. My sincere thanks and gratitude, to him for his in-

valuable guidance, support, and encouragement.

I would like to thank my co supervisor Dr. A. S. Mandal, Principal Scientist

CEERI Pilani, who helped me to start my doctoral research with a smile. It has

been my privilege to work closely with him. I have enjoyed the opportunity to

watch and learn from his knowledge and experience. His frequent insights and

patience with me are always appreciated. I am very grateful for his motivation,

enthusiasm, and immense knowledge in machine intelligence.

Special thanks to my committee members, Dr. D. Bhoolchandani, Dr. Vijay

Janyani, Dr. Md. Salim, Dr. C. Periasamy, Dr. Lava Bhargava, and Dr. S. J.

Nanda for their support, guidance and helpful suggestions. Their guidance has

served me well and I owe them my heartfelt appreciation.

During my time as a Ph. D. student, I have met many nice and inspiring

colleagues. This made my, sometimes a bit isolated, working life at MNIT Jaipur

quite enjoyable. Thank you all! A special thanks go to Renu Kumawat, Lokesh

Garg, Sapna Khandelwal and Arjun. I am very thankful to Anshul, Sandeep,

Mayank, Monika, Gauri and Rahul for their kind support during my Ph.D. work.

I am thankful to Naatyashastra Institute of �ne arts, Navi Mumbai for their

help in preparing the database of navras, �Bharatnatyam� a classical dance style

of south India.

I deeply appreciate and acknowledge Dr. Hemant Taskar, Principal Govt.

polytechnic Mumbai for his support and valuable suggestions.

iii

I am thankful to my colleagues Mrs. Usha Khake, Ms. Pooja Chelani and Ms.

Sadaf Shaikh for their cooperation and encouragement.

My hard-working parents have sacri�ced their lives for me and provided un-

conditional love and care. I love them so much, and I would not have made it this

far without them.

Above and beyond all, my heartfelt gratitude to my Sister Sucheta and brother

in Law Sanjay for their much needed support, patience, understanding, and en-

couragement in every possible way.

I also want to thank to my Father-in-law and Mother in law for their uncon-

ditional support. Special thanks to Ratnakar, Vidya, Yogesh and Deepa. Their

endless love, priceless, perpetual, indispensable help, support and everything made

all this possible.

This last word of acknowledgment I have saved for my dear wife Vaishali,

who has been constantly with me during all these years and has made them the

best years of my life. Her love and encouragement made this journey of PhD

comfortable. She already has my heart, so I will just give her a heartfelt �thanks.�

To my beloved daughter Ritika and Son Rushikesh I would like to express my

thanks for being such a good kids always cheering me up.

Finally I thank my God, for letting me through all the di�culties. I have

experienced Your guidance day by day. You are the one who let me �nish my

degree. I will keep on trusting You for my future. Thank you, Lord.

Rajesh Patil

iv

Abstract

Machine vision has been de�ned as �the automatic acquisition and analysis of

images to obtain desired data for interpreting a scene or controlling an activity�

[1]. Machine vision is a complex task and it is in�nitely complex for computers

to perform. However, it seems relatively trivial to humans. The machine vision

systems need signi�cant advancements to be able to deal with real world applica-

tions. Some of these applications are navigation, target recognition, remote sens-

ing, photo interpretation, etc. Now a days, interest has been growing in improving

all aspects of the interaction between humans and computers. There is a need for

the computer to interact naturally with the user (HCI), similar to the way human-

human interaction takes place. In day to day life, facial expressions are commonly

used for human-to-human communication, such as one smiles to show greetings

or happiness, frowns to express sadness. Facial expressions are important, since

they carry much information about human's feelings, emotions and so on. To

create human like robots and machines, automatic facial expression recognition

system with high accuracy and performance is required. Besides, humanoid robots

and human computer interaction, expression recognition systems can be used in

other domains. Telecommunications, Behavioral Science, Video Games, Anima-

tions, Automobile Safety, Psychiatry, Televisions, Educational Software, etc. to

name a few. For a human being, detection and interpretation of faces and facial

expressions in a scene is a simple and natural task, but for a machine this task is

equally di�cult. Several related problems during facial expression recognition are

face detection, feature extraction, tracking and most signi�cantly classi�cation.

Though much progress has been made, recognition of facial expression with a high

accuracy still remains di�cult due to large variety in the types of faces and facial

expressions. We can see an extremely large variety in pose, resolution, orientation

and lighting conditions.

In this thesis, we have proposed two algorithms. One is detecting facial ex-

pressions from image sequence and other is detecting facial expressions from still

image. For facial expression recognition in image sequences, we have proposed al-

gorithm which uses Candide wire frame model. Face is detected using Viola Jones

algorithm. Facial features are detected using image normalization, and thresh-

olding techniques. Wire frame model is automatically �tted on the �rst frame of

the face image sequence. In the subsequent frames of the image sequence, facial

features are tracked using Active Appearance Model (AAM). Once the model �ts

on the �rst frame, animation parameters of the model are set to zero, in order to

obtain shape of the model for neutral facial expression of the same face. In the

v

subsequent frames, the model changes the shape as per facial expressions. The

last frame of the image sequence corresponds to the greatest facial expression in-

tensity. The geometrical displacement of wire frame nodes, between the neutral

expression frame and the last frame, is used as an input to the multiclass support

vector machine (SVM). SVM classi�es facial expression into one of the class such

as happy, surprise, sad, anger, disgust, fear and neutral. This method is applicable

for frontal as well as tilted faces with an angle 30, 45 and 60 degrees with respect

to Y axis. The proposed classi�er works on geometrical deformation of feature

vectors. That is, it does not use texture information.

Many tasks of a vision system are trivial low level algorithms, where the same

instructions are applied to each pixel in the frame. This increases the process-

ing time. Hence, in this thesis we have implemented these low level algorithms

more e�ciently on a parallel structure such as array of processing elements (PEs)

mapped on to the Field Programmable Gate Array (FPGA). Hardware implemen-

tation of facial expression recognition is done using systolic array architecture.

Systolic array architecture provides e�cient data transfer and memory manage-

ment mechanisms, and reduced complexity. Partial recon�guration scheme is used

to obtain power optimal mapping of the design.

Initially the algorithm is trained and tested on Cohn Kanade database for seven

facial expressions such as happy, anger, disgust, fear, sad, surprise and neutral.

Later on we have designed our own database for nine facial expressions based on

Indian classical dance style �Bharatnatyam�. These nine facial expressions are

Shringar, Virya, Roudra, Karuna, Bibhtsa, Shanta, Adbhuta, Bhayanak, Hasya.

Here SVM classi�er is giving the lower accuracy, so we have designed a sparse

representation classi�er with multiple kernel and showed that it outperforms the

other classi�ers.

For facial expression recognition in still images, we have proposed another

algorithm. Topographical maps begin to be recognized as one of the major com-

putational structures underlying neural computations in the brain. They provide

dimension reducing feature spaces that seem to be established and maintained un-

der the participation of self organizing adaptive processes. The structure of these

maps can be replicated by simple adaptive processes and can be realized by the

use of a mathematical model. We have proposed a mathematical model to repli-

cate the neural computation occurring in the brain for di�erent facial expressions.

Using this model, we obtained di�erent patterns for di�erent facial expressions of

many persons. These patterns are then classi�ed to one of the seven basic facial

expressions such as happy, anger, disgust, fear, sad, surprise and neutral. We have

used arti�cial neural network to classify these patterns.

vi

Contents

Certi�cate i

Acknowledgement iii

Abstract v

List of Figures xi

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Scope of the work . 3

1.3 Our Contribution . 4

1.4 Outline of the thesis . 6

2 Facial expression recognition system : State of the art 7

2.1 Introduction . 7

2.2 Applications . 8

2.3 Facial action coding system . 9

2.4 Facial animation parameters . 10

2.5 Generic facial expression analysis framework 10

2.5.1 Characterstics of Ideal Facial expression recognition system . 13

2.6 Related work . 14

2.6.1 Comparison of surveyed approaches 25

2.7 Review of Hardware Implementation of SVM 31

2.8 Conclusions . 34

3 Proposed approach for facial expression recognition 37

3.1 Face detection . 38

3.2 Facial Feature Point Detection . 38

vii

3.2.1 Feature point detection using Gabor �lter 39

3.2.1.1 Experimental results 40

3.2.2 Feature point detection by threshold 42

3.2.2.1 Detecting Regions of Interest 42

3.2.2.2 Eyes corner detection 43

3.2.2.3 Eyebrows corner detection 44

3.2.2.4 Nostrils Detection 44

3.2.2.5 Lip corner detection 44

3.2.2.6 Experimental results 45

3.3 Automatic wire frame �tting on frontal face 46

3.3.1 Candide wire frame model 46

3.3.2 Active Appearance model 48

3.3.3 Wire frame model �tting on the �rst frame 50

3.3.4 Geometrically Normalized model 50

3.3.5 Texture Mapping . 51

3.3.6 Synthesized Image . 54

3.4 Tracking . 56

3.4.1 Creating Update Matrix . 58

3.4.2 Experimental Results . 59

3.5 Wire frame �tting on tilted faces 59

3.6 Extraction of wire frame grid node coordinates 62

4 Facial expression classi�cation 65

4.1 Database . 65

4.1.1 Cohn Kanade database . 65

4.1.2 IMM database . 66

4.2 Bayesian Classi�er . 66

4.3 SVM classi�er . 69

4.3.1 One against One multi-class SVM classi�er 71

4.3.2 Binary SVM Tree . 73

4.3.3 One vs All SVM . 75

4.4 Comparison of Classi�ers . 77

5 Hardware Implementation of facial expression recognition algo-

rithm 79

5.1 Motivation for hardware implementation 79

5.2 FPGA . 80

5.3 Implementation of algorithm . 81

5.3.1 Implementation of wire frame model �tting and tracking . . 81

viii

5.3.1.1 Systolic array architecture 81

5.3.1.2 Implementation of model �tting 83

5.3.1.3 Tracking subsystem 88

5.3.2 Experimental results . 92

5.4 Implementation of Multiclass SVM 93

5.5 Partial recon�guration approach for low power implementation of

MC SVM . 96

5.5.1 Low Power Recon�guration Strategy 97

5.6 Implementation and synthesis results of SVM 98

5.7 Conclusions . 99

6 Facial expression recognition using sparse representation classi-

�er 101

6.1 Sparse representation based classi�er 101

6.2 Kernel SRC . 102

6.3 SRC using multiple kernels . 104

6.4 Experimental results . 105

7 Development of mathematical model for facial expression recog-

nition 111

7.1 Face detection . 112

7.1.1 Viola Jones algorithm . 112

7.2 Pre processing . 113

7.3 Feature extraction . 114

7.3.1 Gabor Filters . 114

7.4 Generation of inputs to mathematical model 116

7.5 Neural Algorithm . 117

7.6 SOFM Algorithm . 119

7.7 Experimental Results . 123

8 Conclusions and Future Work 127

Bibliography 129

ix

x

List of Figures

2.1 Generic facial expression analysis framework [1] 13

3.1 Flow diagram for facial expression recognition system 38

3.2 Face detection . 38

3.3 Face images . 39

3.4 Images obtained after amalgamations of di�erent features extracted 39

3.5 Images after applying suitable threshold 39

3.6 Face divided into four regions . 40

3.7 Left and right eyes, nostrils and lip corners separated 40

3.8 Detected facial feature points . 40

3.9 84 Facial feature points as per MPEG-4 standard [2] 41

3.10 Face detection . 42

3.11 Cropped face image . 42

3.12 Face divided into three regions . 43

3.13 Eyes Separated . 43

3.14 Eyebrows and eyes separated . 43

3.15 Eyeballs detected . 43

3.16 Eyes corner detection . 44

3.17 Eyebrows corner detection . 44

3.18 Nostrils detection . 44

3.19 Lip corner detection . 45

3.20 Results of 14 facial feature point detection 45

3.21 Candide wire frame model . 47

3.22 Seven basic facial expressions Neutral, Fear, Surprise, Sad, Anger, Disgust,

Happy . 48

3.23 Wire frame deformations for Neutral, Fear, Surprise, Sad, Anger, Disgust,

Happy . 48

3.24 Geometrically Normalized model 51

3.25 Barycentric Coordinate Computation 52

3.26 Normalized training set images . 55

3.27 Eigen face images . 56

xi

3.28 Candide wire frame model �tting on face image 57

3.29 Wire frame �tting on frontal faces results 60

3.30 Model �tting on tilted faces . 62

4.1 Graph of SVM One Vs One with all Kernels 72

4.2 Graph of Binary SVM tree with all kernels 74

4.3 Binary SVM tree for seven expressions 75

4.4 Graph of SVM One Versus All with all kernels 77

4.5 Graph showing accuracy of all classi�ers 78

5.1 FPGA . 80

5.2 Systolic array . 82

5.3 Systolic array architecture . 83

5.4 Flow diagram of model �tting subsystem 84

5.5 Control �ow diagram of model �tting subsystem 87

5.6 Flow diagram for tracking subsystem 88

5.7 Control �ow diagram of tracking subsystem 89

5.8 Flow diagram of the designed system 90

5.9 Control �ow diagram of implemented system 91

5.10 Compact hardware design . 92

5.11 Systolic array architecture using 24 PEs 95

5.12 Flow diagram of proposed architecture 96

6.1 Nine facial expressions . 106

6.2 Few more images from our database 106

6.3 Comparison of all classi�ers . 109

6.4 Comparison of SRC classi�er di�erent kernels 110

7.1 Face detection . 113

7.2 Pre Processed Image . 114

7.3 Di�erent features extracted when passed through Gabor �lters . . . 115

7.4 Amalgamation of Features extracted 115

7.5 Image showing gradient magnitude and orientation extracted 116

7.6 Neural architecture in biological systems 117

7.7 The Low dimensional network model [3] 118

7.8 Retinal Receptive Field . 118

7.9 Cortical receptive �eld with sub�eld 119

7.10 Neuron structure . 120

7.11 Update process . 121

7.12 Adjusting weights of nodes . 121

xii

7.13 (a) Initial orientation preferences of the neurons (b) orientation

preferences of the neurons in a matured brain 122

7.14 Outputs (a) Locations of the receptive �eld centers (b) Distribution

of orientation preference . 123

7.15 Outputs generated for same expression of di�erent people 124

7.16 Outputs generated for di�erent expressions of the same person . . . 124

7.17 Outputs generated for happy expression of di�erent persons 125

7.18 Outputs generated for surprise expression of di�erent persons 125

7.19 Outputs generated for sad expression of di�erent persons 125

xiii

xiv

List of Tables

2.1 Summary of facial expression recognition systems up to 2001 26

2.2 Summary of facial expression recognition systems 2001 to 2006 . . . 27

2.3 Summary of facial expression recognition 2007 onwards 28

2.4 Summary of facial expression recognition 2012 onwards 29

2.5 Summary of facial expression recognition 2012 onwards 30

2.6 Comparison of all surveyed methods 31

3.1 Facial feature point detection results for Cohn Kanade and IMM

database . 41

3.2 Facial feature point detection results for Cohn Kanade and IMM

Database . 46

3.3 Parameters of normalized face model and removed surfaces 50

4.1 Results of facial expression recognition using Bayesian classi�er . . 69

4.2 Results of facial expression recognition using One vs One SVM with

linear kernel . 72

4.3 Results of facial expression recognition using One vs One SVM with

polynomial kernel . 72

4.4 Results of facial expression recognition using One vs One SVM with

RBF kernel . 72

4.5 Results of facial expression recognition using Binary Tree SVM with

Linear Kernel . 73

4.6 Results of facial expression recognition using Binary Tree SVM with

Polynomial Kernel . 74

4.7 Results of facial expression recognition using Binary Tree SVM with

RBF Kernel . 74

4.8 Results of facial expression recognition using One Vs All SVM with

Linear Kernel . 76

4.9 Results of facial expression recognition using One Vs All SVM with

Polynomial Kernel . 76

4.10 Results of facial expression recognition using One Vs All SVM with

RBF Kernel . 76

xv

4.11 Comparison of the methods . 77

5.1 Accuracy of FER obtained through Modelsim simulation 93

5.2 Number of Support Vectors for Each Class 94

5.3 Primitive and black box usage . 98

5.4 Device Utilization Summary . 98

5.5 Accuracy of classi�er using implemented design on FPGA 99

6.1 Comparison of recognition results for di�erent classi�ers on our database . . . 107

6.2 Confusion Matrices and accuracy for nine facial expressions using ANN 107

6.3 Confusion Matrices and accuracy for nine facial expressions using Bayesian

classi�er . 107

6.4 Confusion Matrices and accuracy for nine facial expressions using one Vs all

SVM classi�er . 108

6.5 Confusion Matrices and accuracy for nine facial expressions using SRC classi�er

with linear kernel . 108

6.6 Confusion Matrices and accuracy for nine facial expressions using SRC classi�er

with polynomial kernel . 108

6.7 Confusion Matrices and accuracy for nine facial expressions using

SRC with RBF kernel . 109

6.8 Confusion Matrices and accuracy for nine facial expressions using

SRC with multiple kernel . 109

7.1 Confusion Matrix and accuracy of facial expression recognition . . . 126

xvi

List of Abbreviations

AAA Active Appearance Algorithm

AAM Active Appearance Model

AFA Automatic Face Analysis

ANN Arti�cial Neural Network

ASM Active Shape Model

AU Action Unit

CLBs Con�gurable Logic Blocks

CPU Central Processing Unit

DBN Dynamic Bayesian Network

FA Facial Animation

FACS Facial Action Coding System

FAP Facial Animation Parameter

FER Facial Expression Recognition

FFP Facial Feature Point

FFT Fast Fourier Transform

FP Feature Points

FPGA Field Programmable Gate Array

xvii

HMM Hidden Markov Model

ICAP Internal Con�guration Access Port

KCCA Kernel Canonical Correlation Analysis

LBP Local Binary Pattern

LG Labelled Graph

LOIO Leave One Image Out

LOSO Leave One Subject Out

LUT Look Up Table

MPEG Moving Pictures Experts Group

MU Motion Unit

NB Nave Bayesian

NN Neural Network

PBVD Piecewise Bezier Volume Deformation

PC Personal Computer

PCA Principal Component Analysis

PEs Processing Elements

PLBP Pyramidal Local Binary Pattern

PR Partial Recon�guration

RBF Radial Basis Function

SOFM Self Organizing Feature Map

SRC Sparse representation classi�er

SSE Summed Square Error

SVM Support Vector Machine

xviii

Chapter 1

Introduction

Machine vision is a system in which, machine performs functions similar to those

performed by human intelligence. These functions are one or more of learning,

reasoning, self correcting, and adapting. It is possible to develop systems that

mimic and surpass some human capabilities, such as sensing, correlating, speed

of calculations, and deducing using computer technology. However, intelligence

is not involved in such systems. The goal of machine vision research is to design

a machine with perception capabilities like human, so that they can sense the

environment, understand the sensed data. After sensing the data, machine is

supposed to take appropriate decisions and sometimes actions. Machine should

learn from this experience in order to enhance future performance. The �eld of

machine vision has arised from the application of classical pattern recognition

and image processing methods to advanced techniques in image understanding,

like model based and knowledge based vision. Signi�cant advancements have

been happening in machine vision to deal with real world applications, such as

navigation, target recognition, photo interpretation, remote sensing, etc. A variety

of practical applications of the machine learning research are emerging, due to

recent advances in hardware and software.

Now a days, interest has been growing in improving all aspects of the inter-

action between humans and computers. With the rapid advance of technology

in recent years computers are becoming cheaper and more powerful. The use

of microphones and personnel computer (PC) cameras are a�ordable and easily

available. The microphones and cameras enable the computer to hear and see,

and to use this information further to act. To achieve e�ective human computer

interaction, computer should be able to interact naturally with the user, similar

to human to human interaction. Human beings possess and express emotions

in everyday interactions with others. Emotions are often re�ected on the face,

in the form of facial expressions. Facial expressions are commonly used in day

to day life for human to human communication, as one smiles to show greeting,

1

frowns when confused. According to Mehrabian, when people are speaking, 55%

of communication happens via expression whereas, only 7% happens via spoken

words and vocal part contributes for 38 percent [4]. This implies that the facial

expressions play a major role in human to human communication. For a Hu-

man Computer Interface, expression is a great potential input. Todays computers

are emotionally challenged because they neither recognize the user's emotions nor

possess emotions of their own. Psychologists and engineers have tried to analyze

facial expressions in an attempt to understand and categorize these expressions.

This knowledge is used to teach computers to recognize facial expressions from

video images acquired from built in cameras. Computers in the future may be

able to o�er advice in response to the mood of the users. Various applications

using automatic facial expression analysis can be developed in the near future,

creating further interest in doing research in di�erent areas, including face image

compression and synthetic face animation, image understanding, video indexing,

psychological studies, robotics as well as virtual reality. Ekman and Friesen [5] has

de�ned six basic emotions. These are happiness, sadness, fear, disgust, surprise

and anger. These expressions in addition to neutral expression are considered to

be universal by all researchers.

1.1 Motivation

Since last decade there has been a tremendous development in ubiquitous com-

puting environment, where powerful and low cost computing systems are being

integrated into medical instruments, cars, mobile phones, and almost every as-

pect of our lives. This has developed interest, in automatic processing of digital

images and videos in a number of applications, including surveillance, biometric

authentication, and human computer interaction, etc. To build a friendlier Human

Computer Interface, facial expression recognition is essential. Facial expression is

an e�cient way of communication, as it is natural, non intrusive, and conveys

more information than spoken words and voice tone. Facial expression recogni-

tion has been a research interest for scientists from several di�erent tracks, i.e.,

computer science, engineering, psychology, and neuroscience. Their studies focus

not only on improving computer interfaces, but also on improving the actions

that the computer takes, based on feedback from the user. The best known facial

expression analyzer is a human visual system. In our day to day life, we detect

any facial pattern by simply inspecting the scene, irrespective of the distance,

orientation or lightning conditions. It is a di�cult task to incorporate all these

features of the human visual system into an automated system. In an ideal auto-

mated facial expression analyzer, all of the stages of the facial expression analysis

2

namely face detection, facial feature extraction and classi�cation should be per-

formed automatically. The main aim is to achieve a real time performance. The

system should be able to recognize facial expressions irrespective of changes in

lightning conditions and distractions like glasses, changes in hair style, and facial

hair like moustache, beard and grown together eyebrows. In a classroom teaching,

many times teacher is not able to get proper and real feedback. In such a cases,

a facial expression recognition system can play a great role. By analyzing facial

expressions of students, teacher can get real feedback. Not only that, level of

di�culty of posed questions could also be obtained from expressions. Facial ex-

pression estimated from real images can be used to animate synthetic characters.

This technique is useful in video telephony, where bandwidth is limited. Instead

of transmitting the complete video, we can just transmit the facial expression se-

quence, using which the original video can be reconstructed at the receiving end.

In patient monitoring system facial expression recognition can be used for pain

assessment. Facial expression of a customer can be collected by service providers

as implicit user feedback to improve their service. Compared to a conventional

questionnaire based method, this will be more reliable, quick and has virtually no

cost.

1.2 Scope of the work

Recognizing facial expression with a high accuracy is a very di�cult task due to

large variety of faces and facial expressions. Normally, a human can detect face

and interpret facial expressions without much e�ort and delay. But development

of an automated system that perform this task is di�cult. There are several

problems such as detection of a face in an image, extraction of facial expression

information and classi�cation of the expression. Getting 100% accurate detection

is still an ideal task for an algorithm or computer system. Most of the proposed

methods are not real time, they are applicable only for frontal faces, tilted faces

are not allowed. Most of the methods are not fully automatic, they need manual

�tting or labeling at the initial stage. Most of the developed systems have some

limitations on the settings of their use, which make them unsuitable for real life

applications. The limitations in automatic expression recognition are to a large

extent the result of high variability that can be found in images that contains a

face. We will see an extremely large variety in types of faces, resolution, pose,

lighting conditions, and orientation. In order to analyze all these variations in

images correctly, it is desirable to design a real time facial expression recognition

system.

Now a days more and more automation is being introduced everywhere. In

3

many of these automation systems computer vision play a great role. Normally

these computer vision systems are implemented using a typical PC. Designing the

system using a PC is easy. The technology used in PC is widely known and is used

from many years. But from the performance point of view, the PC is not a right

choice. In Central Processing Unit (CPU) of a PC, operations are performed in

a sequential manner. With the increase in the complexity of a vision system, the

frame rate at which the PC is capable of processing images in real time decreases.

This increase in processing time is because of the sequential operation mode of

the CPU. Many of the demanding tasks of a vision system are trivial low level

algorithms, where the same instructions are applied to each pixel in the frame.

This thing motivated us to implement our facial expression recognition (FER)

algorithm e�ciently on a parallel structure such as the Field Programmable Gate

Array (FPGA).

1.3 Our Contribution

Algorithm 1 : Facial expression recognition using Active shape model and Sparse

representation classi�er (for image sequence)

Limitations of existing systems:

� The methods proposed in literature are not real time, they are applicable

only for frontal faces, tilted faces are not allowed.

� The methods are not fully automatic, they need manual �tting or labeling

at the initial stage.

� While detecting facial expressions in image sequences, most of the methods

assumed that �rst frame corresponds to a neutral facial expression.

� The majority of the methods are person dependents and can not handle

spontaneous facial expressions.

� Most of the methods are using training and testing images from same refer-

ence database.

� Almost all the methods are working on only Six basic facial expressions

Anger, Sad, smile, fear, disgust and surprise.

� The methods use either of Bayesian, HMM, or SVM classi�ers.

Solutions through our algorithm:

� Our method can be applied to tilted faces as well.

4

� Our method employs fully automated �tting and does not require manual

�tting or labeling at the initial stage.

� In our proposed method, for image sequences, it is not mandatory that �rst

frame correspond to neutral facial expression.

� Our method is person independent and can handle spontaneous facial ex-

pressions.

� We have used one reference data set for training and another one for testing.

Then we perform a hardware implementation of this algorithm on FPGA.

� We have created our own database of nine facial expressions based on navras

�Bharatnatyam� a classical dance style of south India. We have tested our

algorithm on this database.

� We have explored di�erent classi�ers such as Bayesian, ANN, SVM. We have

designed Sparse representation classi�er with multiple kernels and proved

that it outperforms the other classi�er.

Algorithm 2: Facial expression recognition using mathematical modeling of the

brain functioning (for still image)

Problem formulation : The limitations in automatic expression recognition are

to a large extent the result of high variability that can be found in images that

contains a face. We will see an extremely large variety in types of faces, resolution,

pose, lighting conditions, and orientation. In order to address this problem, it

becomes necessary to follow how a human brain detects facial expression. What

changes occur inside a brain, when the human being watches a scene or a face?

Proposed Approach: We studied the functioning of the brain. We studied how

a brain understands an image. While going through literature, we also studied

the following paper

K. Obermayer and H. Ritter, �A model for the development of the spatial

structure of retinotopic maps and orientation columns,� IEICE Transactions Fun-

damentals, vol. 75, pp. 537�545, May 1992. Based on this, we propose a novel

way of recognizing facial emotion expressions by using mathematical modeling

of the brain functioning, i.e. �nding neuronal structures that takes place in the

brain, while it learns to recognize various facial expressions. To implement this

we have designed our own algorithm using Gabor �lter and Self organizing fea-

ture map technique. For various expressions, di�erent network folding patterns

are obtained. During the training phase unique folding patterns or structures are

generated for various expressions. During the testing phase, pattern having the

5

maximum similarity with the stored pattern will be the winner. And the recog-

nized expression will be the expression corresponding to the stored pattern. A

multilayer perceptron (ANN) has been used for the classi�cation. This algorithm

is successfully applied to still images.

1.4 Outline of the thesis

We have organized the thesis in eight Chapters. In Chapter 2, we present the

state of the art of facial expression recognition. It would really be di�cult to

consider and to cover all the approaches published in a thesis, still we we have

attempted and considered about more than 20 papers from 1996 to 2014, which

we realized as important and distinct from each other. We have presented their

methods in brief. The papers are presented in chronological order starting from

1996. Comparative study is also summarized in a tabular form for quick access &

comparison. In Chapter 3, we propose an approach of facial expression recognition

in image sequence based on geometrical deformation of feature vectors. Method

of feature point extraction is described. Wire frame model �tting and tracking us-

ing Active Appearance Model (AAM) is described. Results of facial feature point

detection and wire frame �tting are presented. Chapter 4 elaborates classi�cation

techniques. Bayesian classi�er and di�erent methods of Support Vector Machine

are implemented. Confusion matrices and accuracy of each methos is presented.

A comparison of these methods is presented. Chapter 5 describes hardware im-

plementation of our proposed algorithm onto Xilinx FPGA. Hardware implemen-

tation approach for wire frame �tting, tracking and multiclasss SVM is described

in detail. Chapter 6 describes facial expression recognition using sparse represen-

tation classi�er. We have designed multiple kernel sparse representation classi�er.

We apply this technique for recognition of nine facial expressions of classical dance

style of south India �Bharatnatyam�. Chapter 7 describes the mathematical model,

which we have developed for facial expression recognition in still images. Model is

based on neural computations underlying in brain. In Chapter 8, we summarize

the contributions of this thesis and highlight the focus of future research.

6

Chapter 2

Facial expression recognition system

: State of the art

2.1 Introduction

The modern day science of automatic facial expression recognition has a direct

relationship with the work done by Charles Darwin in 1872 on facial expression

analysis. Darwin wrote a report that established the general principles of ex-

pression and the means of expressions in both animals and humans. In 1970s

psychologist Paul Ekman [5] worked on emotions and facial expressions. His work

has a large in�uence on the development of modern day automatic facial expres-

sion recognizers. According to him, basic facial expressions are Happy, Sad, Anger,

Fear, Surprise, Disgust. In 1978, Suwa et al. [6] has started working on automatic

recognition of facial expressions which was the �rst reported step towards FER.

They designed a system for facial expression recognition from an image sequence,

by using 20 tracking points. Research on the analysis of automatic facial expres-

sion was not actively pursued till the early 1990s [6]. The reason for this may be,

the automatic recognition of facial expressions requires robust face detection and

face tracking systems. In 1990s, computing power became available at a lower

cost, that led to the development of robust face detection and face tracking algo-

rithms. In [6], Iyenger presented a survey of facial expression recognition systems

reported till year to 1992. In 1990s, Human-Computer Interaction and A�ec-

tive Computing were the emerging �elds. People working in these �elds realized

that the computers will unreceptive and remain cold to the users' emotional state

without automatic expression recognition systems. This created an interest in the

development of automatic FER systems and then this �eld become very active.

Detailed surveys of facial expression recognition are available in [4] and [1] that

focus on in depth study of the work published between years 1990 and 2001. In

7

this chapter, we present a review and discussion of various available approaches

for facial expression recognition. Although, it would be very di�cult to compre-

hensively cover all the published work in a thesis; however, we have considered

more than 20 papers between years 1996 and 2014, which we realized to be im-

portant and were relatively distinct from each other. The various works reported

are discussed in chronological order, starting from 1996. We have summarized

these methods in tabular form also. We also present a review on hardware imple-

mentation of support vector machine, which is used as a classi�er in many facial

expression recognition systems to classify facial expressions.

2.2 Applications

For a human beings, facial expression is one of the most powerful, immediate and

natural means for non-verbal communication i.e. to communicate their emotions

and intentions. Facial expression contains a great deal of information, hence, the

need to automatically extract this information has been felt for long. Automatic fa-

cial expression recognition systems �nd important applications in many areas such

as human computer interaction, and data driven animation. Various applications

using automatic facial expression analysis can be designed in the near future, de-

veloping further interest in doing research in di�erent areas, including facial image

compression and synthetic face animation, image understanding, video indexing,

robotics, psychological studies, as well as virtual reality. Many applications, such

as video conferencing, neurology, pain assessment, customer satisfaction studies

for broadcast and web services, lie detection, intelligent environments, clinical psy-

chology, surveillance and multimodal human computer interface require e�cient

facial expression recognition in order to achieve the desired results. Therefore, the

scope of facial expression recognition is constantly growing in the above mentioned

application areas. It can be widely applied as a part of an e�ort to develop basic

techniques for space teleconferencing in which the machine can recognize human

facial expressions and then reproduce the human facial images with realistic ex-

pressions in a remote location. Computers in the future will be able to o�er advice

in response to the mood of the users. The reaction of the people in the test panels

could be automatically monitored and forensic investigation could bene�t from a

method to automatically detect signs of extreme emotions, fear or aggression as

an early warning system.

In humanoid robots, as robot interact more and more with humans, they should

understand the human moods and emotions. To create such intelligent interface

between the man and the machine, expression recognition system is required.

Other than robotics and human computer interaction, expression recognition sys-

8

tems �nd uses in other domains like Animations, Psychiatry, Behavioral Science,

Video Games, Automobile Safety, Telecommunications, and Educational Software,

etc.

Facial expressions of customers can be collected by service providers as a user

feedback to improve their service. Compared to a conventional questionnaire based

method, it will be more reliable and has very low e�ective cost. Facial expression

estimated from real images can be used to animate synthetic characters. This

technique is useful in video telephony, where bandwidth is limited. Instead of

transmitting the video, we can just send the facial expression sequence, using

which the original video can be reconstructed. It can be used in clinical psychology,

psychiatry and neurology. It can also be used in pain assessment, image and video

database management and searching, lie detection and so on

To develop an animated character, which mirrors the users expressions, M.

Bartlett et al [7] have used their face expression recognition system. Another ap-

plication called the `EmotiChat' has been developed by Anderson and McOwen

[8]. It was a chat room application, used for chatting by user. The facial expres-

sion recognition system automatically inserts emoticons based on the user's facial

expressions.

2.3 Facial action coding system

Facial Action Coding is a technique used for facial expression recognition. It is

a muscle based approach. It identi�es various facial muscles that cause changes

in facial behaviors. These changes in the face and the underlying muscles are

called Action Units (AUs). The facial action coding system (FACS) [5] is made

up of combinations of such several action units, such as the action of raising the

Inner Brow is indicated by AU 1, while the action of raising the Outer Brow is

indicated by AU 2, and AU 26 represents the action of dropping the Jaw, and so

on. Following are some AUs which are not caused by facial muscles,

1. AU 19 `Tongue Out'

2. AU 33 `Cheek Blow'

3. AU 66 `Cross-Eye', and so on

AUs are of two types, additive and non additive. It is said to be additive, if

their appearance is independent. If their appearance depends on other AUs or

if they modify other's appearance, then they are said to be non additive. Using

AUs, representation of facial expressions becomes an easy job. The combination

of one or more additive or non additive AUs, represents facial expressions, e.g.

9

combination of AUs 1, 2 and 26 represents fear, combination of AUs 1, 2, 5 and

27 represents surprise etc.

2.4 Facial animation parameters

In 1990s and prior to that, every animation system was having their own set of pa-

rameters. There was no common standard. Instead of putting the e�orts to choose

the best set of parameters, more focus was given on facial movements caused by

the parameters, which made the systems unusable across domains. To address

these issues, the Moving Pictures Experts Group (MPEG) [2] has introduced the

Facial Animation (FA) speci�cations in the MPEG-4 standard. In the last few

years, researchers have started using these standard to model the facial expres-

sions. The MPEG-4 standard provides Facial Animation Parameters (FAPs), and

focuses mainly on facial expression synthesis and animation [9]. This standard

also de�nes 84 key feature points (FPs) on a neutral face. To understand and

recognize facial movements and to animate the faces, the movement of the FPs

can be used

2.5 Generic facial expression analysis framework

A large variety of faces due to di�erent age, ethnicity, gender, facial hair make

the facial expression analysis more di�cult. Further, pose and lighting conditions

make it more crucial. Generic facial expression analysis framework is shown in

Figure 2.1.

1. Face Acquisition: It is the �rst and important step in facial expression recog-

nition system. In face acquisition stage, an automatic face detector is used

to locate faces in a complex scene. Some method needs the exact location

of the face while some needs coarse location of the face. Some methods,

processes whole face while some need only facial features [1]. Face detector

must be able to detect faces from any angle, frontal as well as pro�le view.

2. Face Normalization: The appearance of facial expression depends on the

distance and angle at which a given face is being observed. So face analysis

becomes complicated due to face appearance changes caused by pose, scale

and illumination. Therefore, it is good idea to normalize it [1]. It is similar

to signal conditioning. It is necessary for noise removal, and normalization

against the variation of pixel position or brightness, together with segmenta-

tion, location, or tracking of the face or its parts. Expression representation

can be sensitive to translation, scaling, and rotation of the head in an image.

10

To combine the e�ect of these unwanted transformations, the facial image is

geometrically standardized prior to classi�cation.

3. Face Segmentation: It is used to separate faces of interest from the back-

ground. It also allows to isolate transient and intransient features within a

face. Intransient features are eyes, eyebrows and mouth. Transient features

are di�erent kind of bulges and wrinkles [1].

4. Deformation extraction: These methods have to rely on neutral face images

or face model to extract useful facial features that are not caused by wrinkles

due to old age. It can be applied to single image as well as to the image se-

quence. Without relying on extensive knowledge about the object of interest,

image based methods extract features from images. These methods are fast

and simple. When there are many di�erent views of the same object, then

these methods become unreliable. The facial structure can also be described

with 2D or 3D face models. They allows to model facial features and faces

based on their appearance, without attempting to recover the geometry of

the scene. There are two types of 3D models, namely muscle and motion

models. But heavy computations are required for mapping 3D models. In

addition, accurate head and face models have to be constructed manually,

which is a tedious undertaking [1]. The techniques used for image based

deformation extraction are Neural network, Gabor wavelets, Principal com-

ponent analysis with neural network, and intensity pro�les. The techniques

used for Model based deformation extraction are Active appearance model,

Point distribution model, Labeled graphs, and Geometric face model

5. Motion extraction: These approaches directly focus on facial changes oc-

curring due to facial expressions. These methods do not need neutral face

images. Di�erence images are mostly created by subtracting a given facial

image from a previously registered reference image, that contains a neutral

face of the same subject. In comparison to optical �ow approaches, only dif-

ferences of image intensities are extracted, no �ow direction are extracted.

In addition, accurate face normalization procedures are necessary in order

to align reference faces onto the test faces. In feature point tracking, motion

estimates are obtained only for a selected set of prominent features such

as intransient facial features. The automatic initialization of feature points

is di�cult and is often done manually. Region-based or whole face based

dense optical �ow is used in order to estimate the activity of facial muscles.

For each muscle, a window in the face image is de�ned as well as an axis

along which each muscle expands and contracts. Dense optical �ow mo-

11

tion is quanti�ed into eight directions and allowed for a coarse estimation

of muscle activity. In pattern tracking, it is possible to determine facial ac-

tions by measuring deformation in areas, where underlying muscles interact.

However, these are mostly skin regions with relatively poor texture. Here,

highlighting becomes necessary and can be done by either a�xing colored

plastic dots to prede�ned locations on the subject's face or by applying color

to the salient facial features and skin. In motion models, 3D face models

are used to specify shape, texture and motion [1]. The techniques used for

motion extraction are dense optical �ow, 3D motion models, 3D deformable

model, parametric motion model, feature point tracking, dot markers, high-

lighted facial features and region based di�erence images.

6. Facial feature representation: After extracting the features they are in the

form of either muscle based, model parameters or component projection.

These features are then given to the classi�er for classi�cation.

7. Recognition: Traditional approaches for modeling characteristics of facial

motion and deformation have relied on hand-crafted rules and symbolic mid-

level representations for emotional states, which have been introduced by

computer scientists in the course of their investigations on facial expressions.

To map these symbolic representations into emotions, human expertise is

necessary. But facial signals consist of numerous distinct expressions, each

with speci�c facial action intensity evolutions. Individual realizations of

facial expressions di�er only in subtle ways. So the task of manually creating

facial expression classes becomes di�cult [1]. Designing a suitable classi�er

to classify extracted facial features is a di�cult task. Mostly used classi�ers

are Neural network, Hidden Markov model, support vector machines etc.

8. Interpretation: Many automatic facial expression analysis systems attempt

to directly interpret observed facial expressions and mostly in terms of ba-

sic emotions. Only a few systems use rules or facial expression dictionaries

in order to translate coded facial actions into emotion categories. The lat-

ter approaches have not only the advantage of accurately describing facial

expressions without resorting to interpretation, but allow also to animate

synthetic faces, e.g. within the FACS coding framework. This is of inter-

est, as animated synthetic faces make a direct inspection of automatically

recognized facial expressions possible [1].

12

Figure 2.1: Generic facial expression analysis framework [1]

2.5.1 Characterstics of Ideal Facial expression recognition

system

A good facial expression recognition system must be

� fully automatic and able to work with videos and images

� real time and recognize spontaneous expressions

� robust to lighting variations and must work with occlusions

� unobtrusive and person independent

� able to work on faces with di�erent cultures as well as di�erent skin colors.

� able to recognize expressions of a person of any age.

� able to recognize expressions with facial hair, glasses, and makeup etc.

� able to recognize expressions from frontal, pro�le as well as other interme-

diate angles.

13

2.6 Related work

The approaches of facial expression recognition can be broadly classi�ed in two

classes

1. template based approaches

2. model based approaches

In template based systems, a template is used, which is a pixel image or a feature

vector that is obtained after processing the face image. In feature based system,

major face components or feature points are detected from the face image. The

distances between feature points and the relative sizes of the major face compo-

nents are computed, which will form a feature vector. Thereafter, low dimensional

representation of feature vectors is obtained using principal component analysis

or multilayer neural networks. The feature points can also form a geometric graph

representation of the faces. Feature based techniques are computationally more

expensive as compared to template based techniques. However, they are more

robust to variations in size, scale, location, and head orientation of the face in an

image.

Facial expression recognition problem in image sequences can be divided into
three sub problems.

� Face detection- before a facial expression can be analyzed, the face must be

detected in a scene. Di�erent methods used for face detection are eigenface,

Canny edge detector, brightness distribution, skin color detection etc [4].

� Feature extraction and tracking- to develop a mechanism for the extraction

of the facial expression information from the observed facial image sequence

and then track these features in subsequent frames. Prominent facial fea-

tures of the face constitute eyebrows, eyes, nose and mouth. For feature

extraction, researchers have explored many techniques like labeled graph,

point distribution model, brightness distribution, optical �ow computation,

potential net �tting, Gabor wavelets. While for tracking they have used

Kalman �lters, active appearance algorithm and optical �ow computation

methods [4].

� Classi�cation- to develop a mechanism to classify facial expressions into one

of the basic facial expressions. Di�erent methods used by researchers for

classifying facial expressions are hidden Markov model, neural networks,

principal component analysis, linear discriminant analysis, and support vec-

tor machines [4].

14

We have attempted to cover as large and varied group of reported works as we

can, and have considered some papers between years 1996 and 2014. The papers

are presented in chronological order, starting from 1996, however, we do not claim

the coverage as comprehensive.

Y. Yacoob and L. S. Davis [10] proposed an approach, which is based on a

statistical characterization of the motion patterns in speci�ed regions of the face.

They have developed a region tracker for rectangles enclosing the face features.

Each rectangle encloses one feature of interest, so the �ow computation within

the region was not contaminated by the motions of other facial features. To

simplify the modeling of the eyebrows, they de�ne the rectangles to include the

eyes, and then subtract the rectangle of the eye from the combined rectangle. The

tracking algorithm integrates spatial and temporal information at each frame.

In order to enhance the tracking, the statistics of the motion directions within

a rectangle are used to verify a translation of rectangles upward and downward

and scaling of the rectangles. With the help of universal expression descriptions

proposed by Ekman and Friesen [5], and motion patterns of expression proposed

by Bassili [4], they prepare a dictionary of facial feature actions (motion based

feature description of facial actions). The dictionary is divided into components,

basic actions of these components, and motion cues. The components are de�ned

qualitatively and relative to the rectangles surrounding the facial regions. Using

component's visible deformations, and using optical �ow within these regions, the

basic actions are determined. They designed a rule based system that combines

certain expression descriptions. They have proposed rules for identifying the onsets

of the beginning and the ending of each facial expression, e.g. for Anger, beginning

is inward lowering brows and mouth compaction and the ending is outward raising

brows and mouth expansion. These rules apply to the mid level representation to

create a complete temporal map describing the evolving facial expression.

Black and Yacoob [11] have used local parametrized models of image motion for

facial expression analysis. The location of the face, eyes, eyebrows, and mouth are

assumed to be known. They estimate the rigid motion of the face region between

two frames using a planar motion model. This estimation was performed using a

robust statistical approach to cope with violations of the rigid plane assumption.

The motion of the face was used to register the images via warping and subse-

quently the relative motion of the feature regions was estimated in the coordinate

frame of the face using exactly the same robust estimation procedure. The motion

estimates of the face and features were used to predict their locations in the next

frame and the process was repeated. The estimated motion parameters provide

a simple abstraction of the underlying facial motions and can be used to classify

the type of rigid head motion and the facial expression. The motion parameters,

15

e.g. translation and divergence were used to derive the mid level predicates that

describe the motion of the facial features. For each of the six basic emotional

expressions, they developed a model represented by a set of rules for detecting the

beginning and ending of an expression. The rules were applied to the predicates

of the mid level representation [4].

Kimura and Yachida [12] made use of integral projection method proposed in

[13] to detect facial features. They normalize the input image using the center

of the eyes and the center of the mouth. A potential net is then �tted on the

normalized image to model the face and its movement. To do that, they �rst

compute edge image by applying di�erential �lter. Then, in order to extract

the external force, they apply the Gaussian �lter. The �ltered image is called

potential �eld and an elastic net model is placed over it. They �t a potential net

to each frame of the facial image sequence under consideration. The pattern of

the deformed net is compared to the pattern extracted from an expressionless face

(usually the �rst frame of the sequence), and the variation in the position of the net

nodes is used for further processing. They built an emotion space by applying PCA

on six image sequences carrying three expressions anger, happiness, and surprise

shown by a single person gradually, from expressionless to a maximum intensity

of expression. The eigenspace spanned by the �rst three principal components

has been used as the emotion space, onto which an input image is projected for

classi�cation [4].

Essa and Pentland [14] made use of eigenspace method proposed by Pentland

et al. [15] to detect faces in an image sequence. They have applied principal com-

ponent analysis (PCA) on a sample of 128 facial images and created face space in

order to detect facial features. They calculate the distance of the observed image

from the face space to detect the presence of face. To detect the location of the

facial feature in a given image, the distance of each feature image from the relevant

feature space was computed using an FFT. They normalize the input image using

the extracted position of facial feature. A two-dimensional (2D) spatio-temporal

motion energy representation of facial motion between two subsequent normalized

frames was used as a dynamic face model. They employ an optical �ow compu-

tation method proposed by Simoncelli [16], which uses a multiscale coarse to �ne

Kalman �lter to compute motion estimates. The spatio-temporal templates were

generated for six di�erent expressions, and two facial actions (smile and raised

eyebrows) and four emotional expressions (surprise, sadness, anger, and disgust)

by learning ideal 2D motion views for each expression category. The Euclidean

norm of the di�erence between the motion energy template and the observed im-

age motion energy was used as a metric for measuring similarity (dissimilarity)

[4]. However, the method is useful only for frontal view face image sequences.

16

Cohn et al. [17] proposed a method in which key feature points were manually

marked with a computer mouse around facial landmarks on the �rst frame of the

image sequence. Each point was the center of a 13× 13 �ow window that includes

horizontal and vertical �ows. A hierarchical optical �ow method proposed by

Lucas and Kanade [18] was used to automatically track feature points in the image

sequence. The displacement of each feature point was calculated by subtracting its

normalized position in the �rst frame from its current normalized position. The

resulting �ow vectors- 6 horizontal and vertical dimensions in the brow region,

8 horizontal and vertical dimensions in the eye region, 6 horizontal and vertical

dimensions in the nose region, and 10 horizontal and vertical dimensions in the

mouth region are concatenated to produce a 12 dimensional displacement vector

in the brow region, a 16-dimensional displacement vector in the eye region, a 12

dimensional displacement vector in the nose region, and a 20 dimensional vector

in the mouth region [17]. Separate group variance-covariance matrices were used

for classi�cation. They used two discriminant functions for three facial actions

of the eyebrow region, two discriminant functions for three facial actions of the

eye region, and �ve discriminant functions for nine facial actions of the nose and

mouth region. [4].

Wang et al. [19] utilized 19 facial feature points (FFPs) - seven FFPs to

preserve the local topology and 12 FFPs for facial expression recognition. The

FFPs are treated as nodes of a labeled graph that are interconnected with links

representing the Euclidean distance between the nodes. The initial location of the

FFPs in the �rst frame of an input image sequence is assumed to be known. The

FFPs are tracked in the rest of the frames. The correspondence between the FFPs

tracked in two consecutive frames is treated as a labeled graph matching problem

proposed by Buhmann et al.[20]. For three emotion categories viz. anger, happy

and surprise, they use 12 B-spline curves corresponding to facial feature points, one

each for one FFP, in order to construct the expression model. Each curve gives the

relationship between expression change and the displacement of the corresponding

FFP. The expression is determined by the minimal distance between the actual

FFPs and FFPs of model. The degree of expression change is determined based

on the displacement of the FFPs in the consecutive frames [4].

Tian et al. [21] developed an Automatic Face Analysis (AFA) system to analyze

facial expressions based on both permanent facial features (brows, eyes, mouth)

and transient facial features (deepening of facial furrows) in a nearly frontal-view

face image sequence. This system recognizes �ne-grained changes in facial expres-

sion into action units (AUs) of the Facial Action Coding System (FACS). They

propose Multistate face and facial component models for tracking and modeling

the various facial features, including eyes, lips, brows, furrows and cheeks. During

17

tracking, they have extracted detailed parametric descriptions of the facial fea-

tures. With these parameters as the inputs, a group of action units (six upper

face AUs and 10 lower face AUs) has been recognized whether they occur alone

or in combinations. Instead of one HMM for each AU or AU combination, the

current system employs two Arti�cial Neural Networks (one for the upper face

and one for the lower face) for AU recognition. It recognizes 16 of the 30 AUs that

have a speci�c anatomic basis and occur frequently in emotion and paralinguistic

communication. They use Cohn Kanade and Ekman Hager database. They have

achieved average recognition rates of 96.4 percent (95.4 percent if neutral expres-

sions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral

expressions excluded) for lower face AUs.

Cohen et al. [22] used Piecewise Bezier Volume Deformation (PBVD) tracker

proposed by Tao and Huang [23]. This face tracker uses a model based approach,

where an explicit 3D wire frame model of the face was constructed. They have

selected interactively landmark facial features such as the eye corners and mouth

corners on the �rst frame of the image sequence. Then they warp the generic face

model to �t the selected facial features. The face model consists of 16 surface

patches embedded in Bezier volumes. The surface patches de�ned this way are

continuous and smooth. By changing the locations of the control points in the

Bezier volume, the shape of the mesh can be changed. Head motion and local

deformations of the facial features such as the eyebrows, eyelids, and mouth are

tracked, once the model �ts.. First they measure 2D image motions using tem-

plate matching between frames at di�erent resolutions. For more robust tracking,

they have used Image templates from the previous frame and from the very �rst

frame. Then they model measured 2D image motions as projections of the true

3D motions onto the image plane. They represent recovered motions in terms

of magnitudes of some prede�ned motion of various facial features. Each feature

motion corresponds to a simple deformation on the face. These motion vectors

are referred as Motion Units (MU's). They are similar but not equivalent to Ek-

man's AU's. They are numeric in nature, and representing not only the activation

of a facial region, but also the direction and intensity of the motion. The MU's

are used as the basic features for the classi�cation. Bayesian classi�er is used for

classi�cation.

M. Bartlett et al. [7] have designed a system, in which face is detected using

Viola Jones algorithm. They have rescaled automatically located faces to 48 ×
48 pixels. They made a comparison at double resolution (96 × 96) also. The

typical distance, they have considered between the centers of the eyes is roughly

24 pixels. They convert the images into a Gabor magnitude representation, using

a bank of Gabor �lters at 8 orientations and 5 spatial frequencies. For expression

18

classi�cation they use SVM and Adaboost. There were 48 × 48 × 40 = 92160

possible features. A subset of these �lters was chosen using Adaboost. They used

Cohn Kanade database.

Michel P. et al. [24] use a real time facial feature tracker to deal with the

problems of face localization and feature extraction in spontaneous expressions.

The tracker extracts the position of 22 facial features from the video stream. The

tracker uses a face template to initially locate the position of the 22 facial features

of face model in the video stream and uses a �lter to track their position over

subsequent frames. Then they calculate displacements for each feature between a

neutral and a representative frame of an expression. These are used together with

the label of the expression as input to the training stage of an SVM classi�er. The

trained SVM model is subsequently used to classify unseen feature displacements

in real time. They used Cohn Kanade database. For person dependent classi-

�cation they got 83.7% accuracy, for testing they used only 10 to 12 samples.

For Person-dependent training and test data supplied by six users during ad-hoc

interaction they got 60.7% accuracy.

M. Valstar et al. [25] have proposed a system that performs action units (AU)

recognition using temporal templates as input data. Temporal templates have also

been used by Bobick and Davis [26]. These templates are 2D images constructed

from image sequences, e�ectively reducing a 3D spatio temporal space to a 2D

representation. To achieve this they �rst select 9 facial points from the �rst frame

of the image sequence manually. These points are then tracked in all subsequent

frames using a condensation based template tracking technique proposed by Isard

and Blake [27]. They have used Neural Network as a classi�er. They have used just

a simple k-level neural network (kNN) based learning machine to classify an input

image sequence into one of m facial expression classes, each of which corresponds

either to an individual AU or to an AU-combination. The employed algorithm

is straightforward for a test sample. It uses a distance metric to compute which

k-labeled training samples are nearest to the sample in question and then casts a

majority vote on the labels of the nearest neighbors to decide the class of the test

sample [25].

Pantic and Patras [28] designed a system for recognition of 27 AUs and their

temporal segments in input frontal-view face videos. They start by initializing

20 �ducial points on the �rst frame of the input face image sequence. They

use particle �ltering to track these 20 points automatically for the rest of the

sequence. Depending on the changes in the position of the �ducial points, they

measure changes in facial expression. These changes are then transformed �rst

into a set of mid-level parameters for AU recognition. Then a rule-based method

encodes temporal segments (onset, apex, o�set) of 27 AUs occurring alone or

19

in a combination in the input face videos. They used Cohn-Kanade and MMI

facial expression database. They achieved an average recognition rate of 90% for

encoding of 27 AU codes and their combinations in 135 test samples.

Zheng et al. [29] address the facial expression recognition problem using ker-

nel canonical correlation analysis (KCCA). They locate 34 points manually from

each facial image as the landmark locations. Then they convert these geometric

locations into a labeled graph vector using Gabor wavelet transformation method

to represent the facial image. A semantic expression vector consisting of the se-

mantic ratings of each facial image have been used as the semantic expression

representation. For learning the correlation between the LG vector and the se-

mantic expression vector, they used KCCA. According to this correlation, they

estimate the associated semantic expression vector of a given test image and then

perform the expression classi�cation according to this semantic expression vec-

tor. Using Semantic Information On JAFFE database with Leave one image out

(LOIO) cross validation they got 85.79% accuracy while with Leave one subject

out (LOSO) cross validation they got 74.32% accuracy. On Ekman's database, it

is 81.25%. Using Class Label Information On JAFFE database with LOIO it is

98.36%, and with LOSO it is 77.05%, On Ekman's database, it is 78.13%.

Irene Kotsia and Pitas [30] have proposed a method which is based on mapping

and tracking the facial model Candide onto the video frames. They have used

Candide wire frame model. Their proposed system is semi automatic. The user

has to manually place some of the Candide grid nodes on face landmarks depicted

at the �rst frame of the image sequence. They have used a popular Kanade

Lucas Tomasi tracker [31] for tracking facial features in subsequent frames. While

the tracking system tracks feature points in subsequent frames, it also allows

the grid to follow the evolution of the facial expression till it reaches its highest

intensity. This produces the deformed Candide grid at each video frame. They

have selected a subset of the Candide grid nodes, that predominantly contribute

to the facial deformations described by the facial action coding system (FACS).

The geometrical displacement of these nodes, i.e., the di�erence of coordinates of

each node at the �rst and the last frame of the facial image sequence, have been

used as an input to a support vector machine classi�er. Support vector machine

classi�es the test sample into one of the six basic facial expressions.

Kotsia et al. [32] have performed an analysis of the e�ect of partial occlusion

on facial expression recognition. They have classi�ed partially occluded face im-

ages in to one of the six basic facial expressions using a method based on Gabor

wavelets texture information extraction, and a supervised image decomposition

method based on Discriminant Non-negative Matrix Factorization, and a shape-

based method that exploits the geometrical displacement of certain facial features.

20

They demonstrate how partial occlusion a�ects the above mentioned methods in

the classi�cation of the six basic facial expressions. They have shown how par-

tial occlusion a�ects human observers when recognizing facial expressions. Their

results show that left/right facial region occlusion does not a�ect the recognition

accuracy rate, indicating that both facial regions possess similar discriminate in-

formation. The results indicate that mouth occlusion, in general, causes a greater

decrease in facial expression recognition than the equivalent eyes one. Mouth oc-

clusion a�ects more anger, fear, happiness and sadness, while eyes occlusion the

remaining disgust and surprise.

In [33] Lajevardi and Margaret have proposed a method which is fully auto-

matic. They have used Viola Jones method and Adaboost algorithm [34] for face

detection. For feature extraction they have made use of log Gabor �lters. Five

scales and eight orientations were used to extract features from face images. This

leads to 40 �lter transfer functions representing di�erent scales and orientations.

For each training image a set of 4 log-Gabor �lters with the smallest value of the

spectral di�erence was selected. This reduces feature dimensions from 40 to only

4 arrays of size 60 × 60 for each image. Further reduction of the feature data

was achieved by down-sampling the feature vectors by the factor of 4 to vectors

of length 3600 samples per image. As a classi�er they have made use of Naive

Bayesian (NB) Classi�er.

Ligang and Dian [35] have developed a system for improving the performance

of facial expression recognition by automatically capturing facial movement fea-

tures in static images, based on distance features. They have obtained distances

by extracting `salient' patch-based Gabor features and then they perform patch

matching operations. To start with they take the nose as the center and crop

facial regions manually from database images. Then they scaled it to a resolution

of 48 × 48 pixels. Then they got multi-resolution Gabor images by convolving

eight-scale, four-orientation Gabor �lters with the scaled facial regions. During

the training stage, a whole set of patches was extracted by moving a series of

patches with di�erent sizes across the training Gabor images. Then they perform

patch matching operation to convert the extracted patches to distance features.

To capture facial movement features, they de�ne the matching area and match-

ing scale to increase the matching space, whereas the minimum rule was used to

�nd the best matching feature in this space. Using Adaboost, a set of `salient'

patches was selected based on the converted distance features. At the test stage,

they have performed the same patch matching operation on a new image using

the `salient' patches. The resulting distance features were fed into a multi-class

support vector machine (SVM) to recognize six basic emotions. They have used

JAFFE and Cohn Kanade database. They got accuracy 92.92% and 93.14% for

21

these two databases.

M. Valstar [36] uses Viola Jones algorithm for face detection. They perform

face registration based on the location of the eyes. To detect the eyes, they have

used the Open CV implementation of a Haar-cascade object detector, trained

for either a left or a right eye. After the left-eye location and right-eye location

are determined, they have rotated the image, so that the angle between the line

connecting the eyes and the horizontal axis of the image, is 00. Then they scale

the image to make the distance between two eyes 100 pixels and the face box is

then cropped to be 200 by 200 pixels. They have extracted the local appearance

descriptors subsequently from such registered images. As dense local appearance

descriptors, they chose to use uniform LBPs. As a classi�er, they use standard

SVMs with a radial basis function kernel. They reduced the dimensionality of

using PCA.

In contrast to the mainstream approaches Qiang et al [37] build a probabilistic

model based on the Dynamic Bayesian Network (DBN) to capture the facial inter-

actions at di�erent levels. The �ow of information is two way, not only bottom up,

but also top down. In particular, not only the facial feature tracking can contribute

to the expression/AUs recognition, but also the expression/AU recognition helps

to further improve the facial feature tracking performance. With the proposed

model, they have recovered all the three levels of facial activities simultaneously,

through a probabilistic inference by systematically combining the measurements

from multiple sources at di�erent levels of abstraction. The proposed facial ac-

tivity recognition system consists of two main stages: o�ine facial activity model

construction and on line facial motion measurement and inference. Speci�cally,

using training data and subjective domain knowledge, they have constructed the

facial activity model, o�ine. During the online recognition, various computer vi-

sion techniques have been used to track the facial feature points, and to get the

measurements of facial motions, i.e., AUs. They have used these measurements as

evidence to infer the true states of the three level facial activities simultaneously.

They use Cohn Kanade and MMI database. They got average recognition rate

87.43%.

Khan et al. [38] �rst detects faces using Viola Jones algorithm. Then they

extract Pyramidal LBP features from the mouth region. They have used feature

vector of 295 dimensions. The classi�cation is carried out on the basis of extracted

features in order to make two groups of facial expressions. First group comprises

those expressions that have one perceptual salient region, i.e. happiness, sadness

and surprise while the second group is composed of those expressions that have

two or more perceptual salient regions i.e. anger, fear and disgust. To reduce

feature extraction computational time, they made two groups of expressions. If

22

the stimuli are classi�ed in the �rst group, then it is classi�ed either as happiness,

sadness or surprise by the Classi�er using already extracted PLBP features from

the mouth region. If the stimuli are classi�ed in the second group, then the

framework extracts PLBP features from the eyes region and concatenates them

with the already extracted PLBP features from the mouth region, feature. Their

feature vectors are of 590 dimensions. Then, they fed the concatenated feature

vector to the classi�er for the �nal classi�cation. They used Cohn Kanade and

IMM database. They achieved average recognition rate of 91%.

Fang et al. [39] detects face using Viola Jones algorithm. After locating the

face, they extract the facial features. One common approach in this respect they

used is to landmark key facial points (e.g.,eyes, lips, etc.) and use these to obtain

the features. These landmarks can then be used to align the faces in static or

dynamic data and thus eliminate the e�ects of scaling and rotation. By tracking

these points throughout a video sequence, they capture the deformations i.e. mo-

tion features and use them for the task of expression analysis. They have used

MMI database, and achieved the recognition rate of 71.56%.

Lijun Yin [40] proposed a method for detecting and tracking landmark facial

features on purely geometric 3D and 4D range models. The method involves �tting

a new multi-frame constrained 3D temporal deformable shape model (TDSM) to

range data sequences. They consider this a temporal based deformable model as

they concatenate consecutive deformable shape models into a single model driven

by the appearance of facial expressions. This allows them to simultaneously �t

multiple models over a sequence of time with one TDSM. They evaluate the accu-

racy of the tracking results by comparing the detected landmarks to the ground

truth. The e�cacy of the 3D feature detection and tracking over range model

sequences has also been validated through an application in 3D geometric based

face and expression analysis and expression sequence segmentation. They tested

the method on the publicly available databases, BU-3DFE, BU-4DFE, and FRGC

2.0. They got average recognition rate of 87%.

Bartlett et al. [41] explore Gabor motion energy �lters (GME) as a biologically

inspired representation for dynamic facial expressions. Spatial Gabor energy �l-

ters (GE) are one of the most successful approaches to represent facial expressions

in computer vision applications, including face recognition and expression analy-

sis. It is well known that these �lters approximate the response of complex cells

in primary visual cortex. However these neurons are modulated by the temporal,

not just spatial, properties of the visual signal. This suggests that spatio-temporal

Gabor �lters may provide useful representations for applications that involve video

sequences. They have detected the faces by Viola and Jones detector and then

these faces were normalized to 96 x 96 patches based on the location of the eyes.

23

They pre-processed the training and testing data into following 2 conditions, on-

set� the �rst 6 frames � low intensity expressions apex �the last 6 frames � extreme

intensity expressions. Each video clip was �rst convolved with all the �lters in a �l-

ter bank. Then the responses from all �lters were concatenated into a long feature

vector. Only the magnitude (energy) of the responses was used. They have aggre-

gated the result from di�erent time frames via statistical operators such as min,

max, and mean. They have used linear SVM as a classi�er. They have showed

that GE outperforms GME. They have used Cohn Kanade database for training

as well as testing. For onset classi�cation they got average accuracy 78.56% and

for apex classi�cation they got 97.8% accuracy.

Bartlett et al. [42] have used the idea of facial expression for automated feed-

back in teaching. They have showed how automatic real time facial expression

recognition can be e�ectively used to estimate the di�culty level, as perceived

by an individual student, of a delivered lecture. On a video lecture viewing task,

training on less thantwo minutes of recorded facial expression data and testing on

a separate validation set, their system predicted the subjects' self-reported di�-

culty scores with mean accuracy of 0:42 (Pearson R) and their preferred viewing

speeds with mean accuracy of 0:29.

Sebe et al.[43] proposed a system that uses geometric features to detect emo-

tions. They have used Piecewise Bézier volume deformation tracking after manu-

ally locating a number of facial points. They experimented with a large number

of machine learning techniques. They got the best result with a simple k-nearest

neighbor technique that attained a 93% classi�cation rate on the Cohn�Kanade

database [44].

Sung and Kim [45] have used AAMs to track facial points in 3-D videos. They

introduce Stereo Active Appearance Models (STAAM), which improves the �tting

and tracking of standard AAMs by using multiple cameras to model the 3-D shape

and rigid motion parameters. A layered generalized discriminant analysis classi�er,

which is based on linear discriminant analysis, is then used to combine the 3-

D shape and registered 2-D appearance. Unfortunately, although the approach

appears to be promising, it was evaluated for only three expressions, and no results

on a benchmark database (such as the Cohn�Kanade or MMI Facial Expression

database) were presented.

Littlewort et al. [46] have select the best set of Gabor �lters using GentleBoost

and train support vector machines (SVMs) to classify AU activation. Some mea-

sure of AU intensity is provided by evaluating for a test instance the distance to

the separating hyperplane provided by the trained SVM. Haar like features were

used in an AdaBoost classi�er [44].

24

Koelstra et al. [47] have used an appearance-based approach that explicitly

models a facial expression's temporal dynamics . In their work, they propose a

method that detects AUs and their temporal phase onset, apex, and o�set using

free-form deformations and motion history images as appearance descriptors and

hidden Markov models as machine learning technique [44].

Valstar and Pantic [48] automatically detect 20 facial points and use a facial

point tracker based on particle �ltering with factorized likelihoods to track this

sparse set of facial points. From the tracked points, they compute both static and

dynamic features., such as the distances between pairs of points or the velocity

of a facial point. With this approach, they are able to detect both AU activation

and the temporal phase onset, apex, and o�set [44].

Simon et al. [49] use both geometric and appearance-based features and include

modeling of some of the temporal dynamics of AUs in a proposed method using

segment-based SVMs. Facial features are �rst tracked using a person-speci�c

AAM so that the face can be registered before extracting SIFT features. They

have applied Principal component analysis (PCA) to reduce the dimensionality of

this descriptor. The proposed segment-based SVM method combines the output

of static SVMs for multiple frames and uses structured-output learning to learn

the beginning and end time of each AU. The system was evaluated for eight AUs

on the M3 database (previously called RU-FACS), attaining an average of 83.75%

area under the ROC curve [44].

Summary of aforesaid discussed methods is presented in tabular form in Table

2.1 through 2.5.

2.6.1 Comparison of surveyed approaches

Comparison of surveyed approaches based on the following characteristics of ideal

facial expression recognition system is given in Table 2.6.

1. Automatic face detection

2. Automatic feature extraction

3. Deals with variation in lighting

4. Deals with partial occluded faces

5. Initial labelling or manual �tting required

6. Deals with tilted faces

7. Real time process

25

8. Recognize all six basic expressions

Table 2.1: Summary of facial expression recognition systems up to 2001
Ref Feature

extraction

Classi�er Database Performance Remarks /

Limitations

Yacoob

1996

[10]

statistical

characterization

of motion

pattern in

speci�ed regions

of face

rule based,

prepared

dictionary of

rules

46 sequences

of 32 subjects

own database

�- Only front view

faces without hair

and glasses allowed

Black

1997

[11]

Local

parametrized

model of image

motion, optical

algorithm

temporal

consistency of

the mid level

predicates which

describes the

motion of the

facial features

70 sequences

of 40 subjects

own database

88% head motion and

light variation

allowed

Kimura

1997

[12]

Potential net

�tting to

normalized face

image by

Gaussian �lter

3D emotion

space (PCA)

�- Only front view

faces without hair

and glasses allowed

Essa

1997

[14]

Optical �ow

method

Spatio temporal

motion energy

templates

52 sequences

of own

database

98% Front views, Face

with hair and

glasses, light

variation allowed

Cohn

1998

[17]

Optical �ow

algorithm of

Lucas Kanade

Discriminant

functions

504

sequences of

100 subjects

88% eye region

83% nose and
mouth region

92% brow

region

Front views, Face

without hair and

glasses, manual

labeling on �rst

frame

Wang

1998

[19]

labeled graph

�tting

Averaged

Bsplines of

feature

trajectories

29 image

sequences of

own database

100% Happy

100% Surprise

85.7% Anger

Front views, Face
without hair and
glasses, manual
labeling on �rst
frame

only 3 expressions

happy, surprise,

anger

Tian

2001

[21]

Optical �ow,

Gabor wavelets,

Canny edge

detection

ANN Cohn

Kanade and

EKMAN

Hager

Recognition of

AUs (upper

face) 96.4%

Recognition of

AUs(lower

face): 96.7%

Automatic Face

detection.

Invariant to

scaling, reduction

in processing time

using facial feature

tracker

26

Table 2.2: Summary of facial expression recognition systems 2001 to 2006
Ref Feature

extraction

Classi�er Database Performance Remarks /

Limitations

Cohen

2003

[22]

Piecewise B�ezier

Volume

Deformation

(PBVD) tracker

Bayesian
Classi�er

HMM

Cohn kanade

database

74% Use of semi

supervised learning

to work with some

labeled and

unlabeled data

Bartl

ett

2003

[7]

Gabor �lter with

8 orientations

and 5 spatial

frequencies

SVM

Adaboost

Cohn

Kanade

93.3% The system has

been deployed in a

variety of

platforms

Mich

el

2003

[24]

neutral and peak

frame feature

displacements

(Eu-clidean

distance

measure)

SVM Cohn

Kanade

Person

independent:

71.8% Person

dependent:

87.5%

Real-time system.

Does not require

any preprocessing.

M.
Val-
star

2004

[25]

AU recognition

using temporal

templates

Neural networks Cohn kanade

database

76.2% Front views, Face

without hair and

glasses

Panti
c
2005

[28]

20 facial �ducial

points tracking

Temporal Rules MMI and

Cohn-

Kanade

90% 27 AUs

Recognition,

handles occlusions

like facial hair and

glasses, gives a

better performance

than the AFA

system

Zhen

g

2006

[29]

Labeled Graph

(LG) Gabor

wavelet KCCA

The correlation is

used to estimate

semantic

expression vector

which is given for

classi�cation

JAFFE

Ekman

JAFFE DB:

LOIO 85.79%,

LOSO 74.32%,

On Ekman's

DB: 81.25%

Recognition of
facial expression
using KCCA

Gram matrix

singularity problem

is solved using

KCCA algorithm

27

Table 2.3: Summary of facial expression recognition 2007 onwards
Ref Feature

extraction

Classi�er Database Performance Remarks /

Limitations

Kotsi
a

[2007]

[30]

Geometric

displacemet of

wire frame

model,

Pyramidal

Kanade Lucas

Tomasi tracker

Multi class SVM sequences

from Cohn

Kanade

database

99.7% Frontal views, face

without glass

allowed Manual

�tting of model on

�rst frame is

necessary

Seyed

[2008]

[33]

Log Gabor �lters

with gaussian

transfer functions

Naive Bayesian

Classi�er

172

sequences of

100 subjects

from Cohn

Kanade

database

68.9% Only front view

faces without hair

and glasses allowed

Kotsi

a

2008

[32]

Gabor features,

and extraction of

Geometric

displacement

vectors tracker

SVM Cohn
Kanade

JAFFE

Using JAFFE:

with Gabor:

88.1%, Using

Cohn-Kanade:

with Gabor:

91.6%

recognition of

expressions with

occlusions.

Liga

ng

2011

[35]

Distance features

obtained by

salient patch

based gabor

features

SVM JAFFE

Cohn

Kanade

92.92%

93.14%

patch-based Gabor

features show a

better performance

over point-based

Gabor features

M.

Val-

star

2012

[36]

local appearance

descriptors are

subsequently

extracted from

registered

images. As dense

local appearance

descriptors, they

chose to use

uniform LBPs.,

PCA

SVM MMI 80% AU and facial

expression

detection,

describes the �rst

facial expression

recognition

challenge,

organized under

the name of FERA

2011

28

Table 2.4: Summary of facial expression recognition 2012 onwards
Ref Feature

extraction

Classi�er Database Performance Remarks /

Limitations

Qia

ng

2013

[37]

probabilistic

model based on

the Dynamic

Bayesian

Network (DBN)

to capture the

facial

interactions at

di�erent levels

Facial activity

model

Cohn
Kanade

MMI

87.43% The �ow of

information is two

way, not only

bottom-up, but

also top-down. Not

only the facial

feature tracking

can contribute to

the expression AUs

recognition, but

also the

expression/AU

recognition helps

to further improve

the facial feature

tracking

performance.

Khan

2013

[38]

Extraction of

pyramidal LBP

features

SVM Cohn
Kanade

IMM

91% robust for low

resolut ion images,

spontaneous

expressions and

generalizes well on

unseen data

Fang

2014

[39]

Dynamic

parameter space,

simple

descriptors,

PCA, auto

regressive model

FRNN

VQNN

SMO-SVM

MMI 71.56% the primary

concern is whether

features extracted

from dynamic

sequences can

improve the facial

expression

recognition.

29

Table 2.5: Summary of facial expression recognition 2012 onwards
Ref Feature

extraction

Classi�er Database Performance Remarks /

Limitations

Lijun

Yin

2013

[40]

3D and 4D range

models,

Temporal

deformabel

Given the �t

points of the

mesh model, we

compare them

with the

instances of our

TDSM. The

smallest D value

from these

comparisons is

used as a

measure for the

classi�cation

BU-3DFE

BU-4DFE

87% and 98% They have

presented a new

3D temporal

deformable shape

model for both

detecting and

tracking key

landmarks on 3D

range mesh

models. They have

evaluated the

accuracy of the

feature detection

and validated its

utility for subject

veri�cation and

expression

classi�cation in

multiple public

databases.

Bart

lett

[41]

Gabor motion

energy �lters

SVM Cohn

Kanade

78.56% for

onset and

97.8% for apex

only the magnitude

of the responses

are used

Sebe

[43]

Piecewise Bezier

volume

deformation

K nearest

neighbor

Cohn

Kanade

93% use of geometric

features to detect

emotions

Sung
and
Kim

[45]

Active

appearance

model

Linear

discriminant

analysis

Cohn

Kanade MMI

only 3 expressions

are detected and

no result on

benchmark

databases

Little
wort

[46]

Gabor �lters SVM and

Adaboost

Cohn

Kanade

AU recognition

Koles
tra

[47]

AAM HMM Cohn

Kanade

AU detection

Simo
n

[49]

AAM and PCA SVM RU FACS 83.75% Combines the

output of static

SVMs for multiple

frames and uses

structured-output

learning to learn

the beginning and

end time of each

AU

30

Table 2.6: Comparison of all surveyed methods
References Characteristics of ideal facial expression recognition system

(as listed above in section 2.6.1)

1 2 3 4 5 6 7 8

Yaser [10]
√ √

× ×
√

× ×
√

Black [11] ×
√

× ×
√

× ×
√

Kimura [12]
√ √

× × × ×
√

×
Essa [14]

√ √
× ×

√
× ×

√

Cohn [50] �
√

× ×
√

× ×
√

Wang [19]
√ √

× ×
√

× ×
√

Tian [21]
√ √

× × × ×
√

×
Cohen [22]

√ √
× × × × ×

√

Michel [24]
√ √

× × × ×
√ √

Valstar [25] ×
√

× × × ×
√ √

Pantic [28]
√ √

×
√

×
√ √ √

Zheng [29] × × × ×
√

× ×
√

Kotsia [30] × × × ×
√

× ×
√

Sayed [33] ×
√

× ×
√

× ×
√

Kotsia [32] �
√

×
√

× ×
√ √

Ligang [35] �
√

× × × ×
√ √

Valstar [36] �
√

× × × ×
√

×
Wang [51]

√ √
× × × × ×

√

Khan [38] �
√

× × × ×
√ √

Fang [39]
√ √

× × × ×
√ √

Legend
√
= Yes; ×= No; � = Missing entry

2.7 Review of Hardware Implementation of SVM

Davide A. et al [52] have proposed a digital architecture for SVM learning and its

implementation on FPGA. Their algorithm consists of two parts, in the �rst part

they compute the parameters of SVM, while in the second part they use a bisection

process for computing the threshold. They have shown that Fibs algorithm [52]

can be applied to solve SVM based classi�cation problem with any kind of kernel

functions. They have divided the functionality of SVMblock into three phases.

1. Loading phase: In this phase, they load the target vector and the kernel

matrix.

2. Learning phase:As soon as loading completes, learning phase starts, accord-

ing to �b algorithm.

3. Output phase: The results of learning phase, i.e., the values of bias and

Lagranges multiplier are produced as output

31

They use four blocks, namely counters, DSVM, bias, and S-blocks and three con-

trollers for loading, learning, and output phase. Counter block mainly consists of

the column counter to index a column of the kernel matrix. It is also used to select

a particular RAM, during loading and to select a particular value of alpha during

output phase. Counter block also consists of a row counter to index a row of the

kernel matrix. DSVM block consists of one dimensional systolic array composed

of processing elements, each of which updates the elements of the vector. Kernel

matrix is precomputed and stored in RAM. Bias block is composed of adder, left

shift registers, multiplexers, and a binary comparator, which detects termination

of learning phase. Bisection process is performed in this block. The S - block

is used for the computation of sign of product of class label and alpha. They

have implemented and tested their algorithm on Virtex II. They have used Sonar

dataset for testing their algorithm.

Biasi I. et al [53] designed a system on chip, where SVM module is integrated

with MicroBlaze soft processor core of an FPGA from Xilinx. They developed

the system on a Memex VB 1000 board containing a Xilinx Virtex-II-1000 FPGA,

a P160 communication module, and 32 Mbytes of DDR memory. A MicroBlaze

RISC 32 bit soft processor core consists of 32 general purpose registers and has

several ports for connecting peripheral buses. External memory is used to store

the parameters of classi�cation function. 32 Mbyte DDR is used to store Support

vectors, Lagranges multipliers and the input sample to be classi�ed. Computation

of dot products is performed by multipliers available on FPGA. The architecture

is built around the FSL bus provided by Xilinx for the development of SOC. The

main modules are Scalar module, which computes parallel dot product or squared

norm, the Kernel module and the output MAC (multiplication and accumulation)

module. These three modules are connected to one another by bu�ering buses

so that they can sustain a pipelined stream of data. Once the input vector to

be classi�ed is stored, each SV is pushed in scalar module to execute the given

computation. It needs 5 clock cycles for each SV. The parameter of the exponential

function is stored in Kernel module, which is bypassed for linear kernel. The result

obtained after multiplication is used as the input of a LUT, which maps the kernel.

This module needs 6 clock cycles. The last MAC module consists of multiplier,

adder and accumulator which needs 6 clock cycles to complete the computation.

They have tested their algorithm on HEP database with classi�cation error rate

of 24.2%.

Boni A. et al [54] have proposed implementation of SVM on a low power and

low cost 8 bit microcontroller. The proposed solution is used to implement smart

sensors and sensor networks for intelligent data analysis and pervasive comput-

ing. Their architecture consists of four blocks, namely �ash memory, Ktron Drive,

32

Kernel unit and MAC unit. All support vectors, alphas, LUT table and CORDIC

variables are stored in the FLASH memory. Input vector and all temporary vari-

ables are stored in RAM. Ktron drive receives the data and starts computation.

The Kernel unit computes an inner product or a squared norm according to the

chosen kernel. In case of Gaussian kernel, the exponential function is computed

by LUT or the CORDIC algorithm. The MAC unit multiplies the output of the

kernel function by the coe�cient alpha and accumulate the result in the output

register.

Kyrkou C. et al [55] proposed systolic array architecture for SVM. They have

presented a distributed pipelined architecture, which can be expanded in a systolic

manner to provide e�cient management of memory and data resources. The

systolic chain of processing elements consists of identical PEs. They also address

the wiring and fan out complexity of routing the input vector. Their architecture

consists of three main parts, input (front end PEs), computation (middle PEs), and

output (back end PEs). The input part consists of input vector memory, address

generator unit and front end PEs. In middle part bulk computation occurs, where

each PE receives data from previous PE, processes it and propagates it to next PE

in a pipelined manner. Output part consists of back end PEs to transfer all the

data outside the chain. It also consists of kernel unit, MAC unit and the memory

for alpha coe�cients. Finite state machine control unit controls all three parts.

MAC is the main processing unit, which performs the kernel's vector operation

between SV and the input vector. The kernel can be implemented either by custom

logic or LUT. Time required for the �rst input vector element to reach the back end

PE is n cycles, where n is the number of PEs. The PEs then requires k cycles to

compute the scalar value, where k is the number of elements in vector. Additional

n+2 cycles are required for the front-end PE's scalar value to reach the kernel unit

and accumulate. The chain is processing, n SVs in parallel. Therefore, for m SVs

they need m/n repetitions for all SVs. The total cycles required for classi�cation

of the input vector is (n + k + (n + 2)) ∗ [m/n]. They have implemented their

algorithm on a Virtex 5 FPGA board and evaluated using training data from a

face detection application. They have mapped MAC units both on the FPGA's

embedded DSP units and on the slice logic. The internal SV memory in each

PE was implemented using the dedicated FPGA block RAM. They train SVM in

MATLAB, using 6800 samples out of which 4400 are non faces, and 2400 are faces.

From the training they got 818 SVs that were distributed among 100 PEs. Some

PEs had 9 SVs and some had 8 SVs. Each vector consists of pixels from 20 x 20

image, i.e., 400 elements of 8 bits. They have used polynomial kernel of order 2.

They achieved 88% detection accuracy.

33

Mahmoodi D. et al [56] have proposed a simple hardware architecture for im-

plementation of pairwise Support Vector Machine on FPGA. Training part of the

SVM is performed o�ine, and the extracted parameters are used to implement

testing phase on the hardware. They perform vector multiplication operation and

classi�cation of pairwise classi�ers in parallel and simultaneously. For experimen-

tation they use a dataset of Persian handwritten digits in three di�erent classes.

They use graphical simulator and System Generator to simulate the desired hard-

ware design. They have Implemented linear and nonlinear SVM classi�er using

simple blocks and functions. According to simulation results, total time required

for computation of linear classi�cation is 1.4 ms, while for non linear classi�cation

it is 0.27 ms. Classi�cation error rate for linear classi�cation is 12%, while for non

linear classi�cation it is 1.33%.

2.8 Conclusions

Is it possible to distinguish the basic facial expressions mutually? Is any expres-

sion creates confusion with the other? During research of facial expressions, in

1978 Ekman and Friesen [5] showed that there is confusion between anger-disgust

and fear-surprise. The reason for that may be the shairing of common facial

movements and actions by these expressions. This psychological observation also

applies to modern day automatic facial expression recognition systems. We see

similar confusion between fear-surprise and anger-disgust in the results of most

of the surveyed papers, which is very interesting. However, we see in many of

the systems fear is confused with happiness and in few systems fear is confused

with anger. In some systems sadness is confused with anger. From the results

of the surveyed works, we see that, out of the six basic expressions, surprise and

happy are easy to recognize. It is always not possible that facial expression falls

into any one of the six basic expressions. There can be other expressions that

should be recognized. But, it is more challenging to capture and recognize non

basic expressions. In surveyed paper, we see that all expressions are recognized

with di�erent accuracies. For di�erent expressions the recognition percentages are

di�erent. There is need to work towards eliminating such confusions. It is also

necessary to recognize all the expressions with equal accuracy. Facial features

and facial expressions di�er with di�erent cultures such as Asians and Europeans.

Features are di�erent for di�erent age groups such as adults and children. Facial

expression recognition systems must be robust against these di�erences. From lit-

erature review, it seems that very little work is done on automatic AUs detection

and recognition of expressions with di�erent head angles and rotations. Pantic

and Rothkrantz [4] have recognized facial expressions from pro�le faces. But, as

34

such no detailed literature is available related to this work. Manual processing is

required in many systems. In many systems, to track facial feature points, manual

labeling on the �rst frame is required. To design a fully automatic system is a

big challenge. In recent years, researchers are trying to develop fully automatic

facial expression recognition systems. To label the available data is another major

challenge. Bulk of unlabeled data is easily available, but it is very di�cult to get

labeled data. Data labelling or modifying is a very time consuming process. To

perform this task expert observer or the AU coder is required. Non availability of

the spontaneous expression database is the major challenge that the researchers

are facing.

From comparison of di�erent approaches, we conclude that till today non of

the approach has absolute accuracy. Most of the proposed methods are not real

time, they are applicable only for frontal faces, tilted faces are not allowed. Many

of the methods are semi automatic, they need initial �tting or labeling manually.

The limitations in automatic expression recognition are to a large extent the result

of high variability that can be found in images that contains a face. We will see

an extremely large variety in lighting conditions, resolution, pose and orientation.

In order to be able to analyze all these images correctly, an approach seems to be

desirable that can detect and separate these source of variation from the actual

information. We have used active appearance model (AAM), which enables us to

automatically create a model of a face in an image. The created models are realistic

looking faces. This ensures that variety in light variations, resolutions, pose and

orientation will have no e�ect on expression recognition. In next Chapters, we

discuss our proposed approaches to address many of these limitations.

35

36

Chapter 3

Proposed approach for facial

expression recognition

We have proposed a framework, which is composed of four subsystems. The �rst

subsystem is used for face detection. The second is used for facial feature extrac-

tion and the Candide wire frame �tting on the �rst frame of the image sequence.

The third subsystem is used for feature tracking and geometrical displacement

extraction of the wire frame grid nodes, and the fourth subsystem is used for grid

node displacement classi�cation. We have used Viola Jones algorithm [57] for face

detection. We have developed algorithm for facial feature point detection using

Gabor �lters. Facial feature points are also detected by image segmentation and

by applying suitable threshold. We have used Active appearance algorithm [58]

for wire frame �tting on the �rst frame and feature point tracking in subsequent

frames. For classi�cation of grid node information we have used a multi class

SVM system. The facial expression extraction component used in our method

is the Active Appearance Model (AAM). AAM is used in expression recognition

because of its ability to extract expressions from faces accurately. By combining

a shape model and an appearance model, AAM creates a global model of the

face. Changes of facial landmarks are captured by the shape model while the

appearance model captures the textural changes of surrounding landmarks from

the facial region. The procedure of creating AAM model of the face from the im-

age sequences consists of three steps: (1) manually labelling a grid of landmarks

for training images of faces, (2) creating statistical models of the appearance and

shape of the training faces and (3) automatically �tting the grid of landmarks to

the new face images (rest of the frames from the image sequence) using the created

model. The �ow diagram of the proposed framework is shown in Figure 3.1.

37

Figure 3.1: Flow diagram for facial expression recognition system

3.1 Face detection

In present work, as we wish the system to be fully automatic, we have to start

by detecting the user's face inside the scene. Although, we seemed it an easy

problem at �rst, we immediately realized that the high variability in the types

of faces encountered would make the automatic detection of the face a tricky

problem. Many di�erent techniques have been reported in the literature for face

detection. In our approach face area of an image is detected using the Viola Jones

algorithm [57]. The result of face detection algorithm is shown in Figure 3.2. For

details see the section 7.1

Figure 3.2: Face detection

3.2 Facial Feature Point Detection

We have developed two methods for automatic facial feature point detection in

image sequences. One uses Gabor �lter to detect 14 facial feature points such as

38

eyebrows corners, eyes corners, nostrils, lip corners, center of upper lip and center

of lower lip. Other method uses image normalization, and suitable threshold to

detect 14 facial feature points such as eyebrows corners, eyes corners, nostrils, lip

corners and eyeballs.

3.2.1 Feature point detection using Gabor �lter

We have used a set of Gabor �lters with di�erent frequencies and orientations for

extracting useful features from an image. For details see section 7.2 and section 7.3.

Figure 7.3 shows di�erent features extracted when passed through Gabor �lters

and Figure 7.4 shows amalgamations of di�erent features extracted. Di�erent face

images are shown in Figure 3.3. These images are passed through Gabor �lters to

extract di�erent features. After amalgamations of di�erent features extracted, we

got images as shown in Figure 3.4. To these images, we have applied a suitable

threshold, in order to get clear features as shown in Figure 3.5.

Figure 3.3: Face images

Figure 3.4: Images obtained after amalgamations of di�erent features extracted

Figure 3.5: Images after applying suitable threshold

We have divided this image horizontally in to four equal parts, so that forehead,

eyes, nostrils and mouth regions are separated from each other as shown in Figure

3.6.

39

Figure 3.6: Face divided into four regions

We neglect forehead region, as no facial feature point lies in this region. Rest of

the three regions are vertically divided into two regions, so that left and right eyes,

left and right nostrils, left and right lip corners are separated as shown in Figure

3.7.

Figure 3.7: Left and right eyes, nostrils and lip corners separated

Left and right eye regions are further divided to separate eyebrows and eyes from

each other. Left regions are cropped from left sides and right regions are cropped

from right side to remove unwanted face counters. Now all left regions (eyebrows,

eyes, nostril and lip) are scanned horizontally from right to left to detect left

eyebrow corner, left eye corner, left nostril and left lip corner. All right regions

are scanned horizontally from left to right to detect right eyebrow corner, right eye

corner, right nostril and right lip corner. Left mouth region is scanned vertically

on extreme right side to get upper lip and lower lip middle points or we can scan

right mouth region vertically on extreme left side to get same points. Detected

points are shown in Figure 3.8.

Figure 3.8: Detected facial feature points

3.2.1.1 Experimental results

The MPEG-4 standard de�nes 84 key feature points (FPs) on the neutral face [2].

To recognize facial movements and to animate the faces, movement of FPs can be

used.. Figure 3.9 shows a neutral face with the location of the 84 FPs de�ned by

the MPEG-4 standard. Out of these 84 points, our algorithm detects 14 points.

Detection rate of these points is given in Table 3.1 for Cohn kanade [59] as well as

IMM [60] database. Average recognition rate obtained for Cohn Kanade database

is 89% and IMM database is 86%. We required rough estimate of these points for

further processing. Exact location is not required. Active appearance algorithm

is used further for wire frame �tting on face image with reference to these points.

AAA will take care of exact �tting.

40

Figure 3.9: 84 Facial feature points as per MPEG-4 standard [2]

Table 3.1: Facial feature point detection results for Cohn Kanade and IMM
database
FP Description Detection rate

for samples from
Cohn Kanade
Database

Detection rate
for samples from
IMM Database

3.7 Outer corner of left eye 89% 86%
3.11 Inner corner of left eye 88% 82%
3.12 Outer corner of right eye 89% 85%
3.6 Inner corner of right eye 87% 89%
4.6 Outer corner of left eyebrow 85% 84%
4.1 Inner corner of left eyebrow 78% 82%
4.8 Outer corner of right eyebrow 84% 79%
4.2 Inner corner of right eyebrow 89% 82%
9.1 Left nostril 95% 90%
9.2 Right nostril 94% 92%
8.3 Left corner of lip 95% 93%
8.4 Right corner of lip 92% 89%
8.1 Upper middle point of upper lip 89% 92%
8.2 Lower middle point of lower lip 88% 91%

Average recognition rate 89% 86%

41

3.2.2 Feature point detection by threshold

Once the face is detected using Viola Jones algorithm [57], we divide the detected

face region into 5 relevant regions of interest, each of which is examined separately,

further to detect the location of the facial feature points. In each region, we have

normalized the image with respect to brightness. We have selected a suitable

threshold for each region, using which image is converted into binary image. Then

in each region extreme ends of binary image will locate the facial feature points. In

the eye region horizontal and vertical histograms are analyzed to detect eyeballs.

3.2.2.1 Detecting Regions of Interest

The face detection algorithm detects the face as shown in Figure 3.10. Face is

enclosed by a rectangle. This algorithm gives the coordinates of upper left corner

of rectangle.

Figure 3.10: Face detection

It also gives the width (w) and height (h) of the rectangle as shown in Figure

3.11. We crop the image according to the rectangle.

Figure 3.11: Cropped face image

Now we divide this image into three equal parts horizontally as shown in Figure

3.6, so that upper part contains eyes, middle part contains nostrils, and lower part

contains mouth

42

Figure 3.12: Face divided into three regions

Again we divide upper part into two parts vertically, so that each part contains

one eye, as shown in Figure 3.13.

Figure 3.13: Eyes Separated

Again each eye region is divided horizontally into two parts so that eyebrows

and eyes are separated as shown in Figure 3.14.

Figure 3.14: Eyebrows and eyes separated

The position of the eyeball from the segmented eye region can be detected by

sequentially applying analysis of the vertical histogram which shows the intensity

di�erences between the successive rows pixel wise. The peak of this histogram

gives the y coordinate of the eyeball. Similarly peak of horizontal histogram which

shows the intensity di�erences between the successive columns pixel wise gives x

coordinate of the eyeball. With this approach we have detected eyeballs as shown

in Figure 3.15.

Figure 3.15: Eyeballs detected

3.2.2.2 Eyes corner detection

We have considered the segmented eyes region separately. For the left eye, image

is cropped from left side, while for right eye image is cropped from right side.

Then for eye region we have applied image normalization technique, which is a

linear process. If the intensity range of the image is 40 to 170 and the desired

range is 0 to 255 the process entails subtracting 40 from each of pixel intensity,

making the range 0 to 130. Then each pixel intensity is multiplied by 255/130,

making the range 0 to 255. If N1 ×N2 is the size of the image, then we compute

average as follows

43

avg =
1

N1N2

N1∑
x=1

N2∑
y=1

R(x, y) (3.1)

where R(x, y) is pixel value at coordinate (x, y). Then, we have selected a suitable

threshold value. Using trial and error method we have selected threshold value

as avg
3
. Using this threshold gray scale image is converted into binary image as

follows.

if R(x, y) >
avg

3
, R(x, y) = 1, else R(x, y) = 0 (3.2)

After threshold we got binary image. This binary image we have scanned vertically

to get �rst and last black point, which gives us corners of eyes, as shown in Figure

3.16.

Figure 3.16: Eyes corner detection

3.2.2.3 Eyebrows corner detection

Let's consider another ROI that is eyebrows region. Left side of the left eye, and

right side of right eye is cropped. Here, also we have applied image normalization,

threshold and vertical scanning technique to get eyebrows corners. Eyebrows are

detected as shown in Figure 3.17.

Figure 3.17: Eyebrows corner detection

3.2.2.4 Nostrils Detection

Now we consider next ROI that is nostril region. Again the same techniques are

applied in this region to detect nostrils, as shown in Figure 3.18.

Figure 3.18: Nostrils detection

3.2.2.5 Lip corner detection

Now we consider the mouth region. In this region also we have cropped image

from left as well as from right side. Then we have applied image normalization,

44

threshold, and vertical scanning techniques to detect lip corners as shown in Figure

3.19.

Figure 3.19: Lip corner detection

3.2.2.6 Experimental results

We have tested this algorithm on Cohn-Kanade [59] database as well as on IMM

[60] database. We have detected 14 facial feature points with average recognition

rate of 86% for Cohn kanade database and 83% for IMM face database. Some

results are shown in Figure 3.20.

Figure 3.20: Results of 14 facial feature point detection

Exact points could not be located, however, we have approximately located

14 facial feature points. In comparison with the previously used techniques such

as Gabor �lters [61], we have used rather a simple technique. So computational

complexity is very less. In [61] authors used Gabor �lters and adaboost algorithm

to detect 20 facial feature points. They divided face image into 20 ROI. Each ROI

is convolved with set of 48 Gabor �lters, and then Gabor coe�cients are collected

as features in a huge matrix form, which increases computational complexity as

well as computational time. As they are using adaboost classi�er, they need

training, which is a time consuming process. Their method is applicable only

for expressionless and frontal facial images. Even after huge computations the

techniques are applicable only for one particular database. They got 93% average

accuracy. In our case accuracy is 86%, but computational complexity is less. No

training data is required. It can be applied for tilted faces with expressions. Our

approach using Gabor �lter is also computationally expensive.

45

Table 3.2: Facial feature point detection results for Cohn Kanade and IMM
Database

FP Description Detection rate
for samples from
Cohn Kanade
Database

Detection rate
for samples from
IMM Database

3.7 Outer corner of left eye 85% 82%
3.11 Inner corner of left eye 87% 83%
3.12 Outer corner of right eye 83% 81%
3.6 Inner corner of right eye 82% 80%
4.6 Outer corner of left eyebrow 81% 81%
4.1 Inner corner of left eyebrow 80% 82%
4.8 Outer corner of right eyebrow 85% 84%
4.2 Inner corner of right eyebrow 84% 81%
9.1 Left nostril 90% 82%
9.2 Right nostril 91% 87%
8.3 Left corner of lip 92% 88%
8.4 Right corner of lip 90% 84%
3.5 Left eyeball 87% 80%
3.6 Right eyeball 90% 85%

Average recognition rate 86% 83%

Table 3.2 shows the detailed analysis of results. By keeping the exact feature point

at the center within 4 × 4 window, if point is detected, we consider that point is

detected otherwise we consider it to be false detection.

3.3 Automatic wire frame �tting on frontal face

3.3.1 Candide wire frame model

We have used the Candide wire frame model for facial expression recognition. The

Candide model was created by Mikael Rydfalk at the Linkoping Image Coding

Group in 1987. Later, Bill Welsh at British Telecom created another version with

160 vertices and 238 triangles covering the entire front head (including hair and

teeth) and the shoulders. This version, known as Candide-2 is delivered with only

six Action Units. A third version of Candide has been derived from the original

one by Jorgen Ahelberg [62]. The Candide wire frame is a parametrized face mask

speci�cally developed for model-based coding of human faces. A frontal view of

the model can be seen in Figure 3.21. It has 113 vertices and 184 triangles. The

small number of its triangles, allows fast face animation with moderate computing

power.

46

Figure 3.21: Candide wire frame model

The geometry of the model as discussed in [62] can be expressed as in (3.3).

V (σ, α) = V +
14∑
i=1

Siσi +
65∑
i=1

Aiαi (3.3)

Here the resulting vector V contains (x, y, z) coordinates of vertices of the model.

V is a vector containing vertex coordinates of the standard model. Si represents

a shape unit, whereas σi represents shape parameter. There are 14 shape units,

such as head height, eyebrows vertical position, mouth width, eyes width etc.

Ai represents animation unit, whereas αi is animation parameter. There are 65

animation units such as lip stretched, inner brow raiser, outer brow raiser, nose

wrinkle, etc. The di�erence between shape and animation units is that the shape

units de�ne deformations that di�erentiate individuals from each other, while

the animation unit de�ne deformations that occur due to facial expression. We

have added six more parameters, three for rotation, one for scaling, and two for

translation to the formula in (3.3), to perform global motion of the model [63].

V (R, s, σ, α, t) = Rs(V + Sσ + Aα) + t (3.4)

Here, R = (θx, θy, θz) is a rotation matrix, s is scale, and t = (tx, ty,, tz) is a

translation vector where tz = 0.

θx =

 1 0 0

0 cosx −sinx
0 sinx cosx

 , θy =

 cosy 0 siny

0 1 0

−siny 0 cosy

 , θz =

 cosz −sinz 0

sinz cosz 0

0 0 1


The geometry of the model is thus parametrized by (3.5). Shape unit parame-

ters are static for the same person while the animation parameters are varying

47

throughout the tracking procedure.

p = [θx, θy.θz, s, tx, ty, σ, α]T (3.5)

Once the model is adapted properly on the �rst frame, for the subsequent frames

only α will change. Our goal is to �nd the optimal adaptation of the wire frame

model to the input image i.e. to �nd p that minimizes the distance between the

wire frame model and the image [62]. Seven basic facial expressions are shown

in Figure 3.22 and wire frame model deformations for these seven expressions are

shown in Figure 3.23.

Figure 3.22: Seven basic facial expressions Neutral, Fear, Surprise, Sad, Anger, Disgust,
Happy

Figure 3.23: Wire frame deformations for Neutral, Fear, Surprise, Sad, Anger, Disgust,
Happy

3.3.2 Active Appearance model

The aim of Facial Expression Recognition system is to determine the expression

from appropriate facial features extracted from video images automatically. Facial

features can be divided into two classes: geometric-based and appearance-based

features. Geometric-based features consist of the shapes or locations of charac-

teristic parts of the face (e.g., the shape of the mouth or the center of the eyes).

Systems using such features often rely on Active shape model (ASM), particle

�ltering, or a statistical model that combines global and local information about

the feature points to track speci�c points in the face. These methods allow for the

precise tracking of facial shapes and points, they do not consider textural changes.

Appearance based features contain information about facial texture, such as

the appearance of wrinkles or bulges. Systems based on appearance based features

make the use of methods such as Gabor wavelets, optical �ow. Appearance based

48

features do not handle variations in illuminations and partial occlusions, but they

capture textural changes.

A method combining both geometric and appearance based features is called

Active Appearance Models (AAM) and was proposed by Cootes, Edwards, and

Taylor [58]. AAMs are used as a tool by scientists, because of their ability of

automatic �tting of a wire frame model to the video recorded face. But their

drawback is they require the manual selection of landmarks, i.e., the facial feature

points on face image of a video sequence for a representative frame. The wire

frame model automatically �t on the subsequent frames. Texture models and

statistical shapes are combined to form a appearance model. These texture and

shape models are trained so that, they know the modes of variation in texture and

shape. The training set normally consists of face images, with landmark points

manually annotated to outline the face. Principal component analysis (PCA)

is applied to the vector of landmarks to reduce its dimensionality. The model

learns the relationship between the displacement of the model parameters and the

residual error. To �t the model automatically, the current residuals are measured.

The model is used to �nd a �t which reduces the residual error. The minimization

of the residual error is obtained using a gradient approach. The process stops,

when the residual error is below a certain threshold. The most important thing

is to initialize the model close to the observed face, otherwise there is possibility

that, it will converge to a (incorrect) local minimum. Cootes and Taylor [58]

used this model for tracking a face using 88 labeled training images and they got

good results. Out of all images, 19% of images are failed to converge, but the

images for which it converged were accurate. Bu it was not a real-time system.

The reason for that is the large number of iterations are required to converge the

search algorithm . Another problem was that it was not robust against occlusions,

because all the landmarks must be visible in each frame to track the face. In our

algorithm, instead of minimizing the distance between the image and its best

approximation,we have minimized the distance between the synthesized image

associated with the previous frame and the actual image.

A big disadvantage of AAM is that it is unable to handle partial occlusion. The

main and important advantage of AAM is that they give a good pose estimation

because they can �nd a precise location of the head. But its accuracy depends

a lot on the training set that is used. The training set must consists of lot of

di�erent faces and di�erent poses with di�erent expressions.

49

3.3.3 Wire frame model �tting on the �rst frame

To �t wire frame model on the �rst frame of the image sequence, we consider

scaling, rotation and translation parameters. For initial �tting, rough estimate of

scaling and translation parameter is very essential. The face detection algorithm

provides a rectangle enclosing the face as shown in Figure 3.10. The top left point

of this rectangle has coordinates (x, y). Width of the rectangle isWd and height is

Ht. From this data we calculate a rough estimate of translation parameters (tx, ty)

as in (3.6) and (3.7). Our aim is to match the center of the model with the center

of the face image. Then we scale the model so that it will �t on the face.

tx = x+Wd/2 (3.6)

ty = y +Ht/2 (3.7)

The wire frame model is �tted manually on 100 images. From manual �tting we

have selected rough estimate of scaling parameter as s = 0.78 ∗Wd. With a rough

estimation of scaling and translation parameters, wire frame model roughly �ts

on face image. Initially rotation is assumed to be zero. Once the model roughly

�ts on face image, exact �tting is obtained using active appearance algorithm.

3.3.4 Geometrically Normalized model

By creating geometrically normalized or shape free face images, we can transform

the face space into a convex one. Geometrical normalization of the face is used to

remove texture variations caused by its global and local motion. It also removes

geometrical di�erences between individuals [64]. We have decided to work with

33× 40 pixels images, which are small and e�ective for image warping. Geometri-

cally normalized model is shown in Figure 3.24. Translation, rotation and scaling

is performed on wire frame model to produce normalized face model. We have

removed twelve surfaces on forehead to avoid e�ects caused by hair. Parameters

of normalized face model are given in Table 3.3.

Table 3.3: Parameters of normalized face model and removed surfaces

Translation [17.11 16.926 0]
Rotation [0 0 180]
Scaling [25 25 25]

Shape Unit Parameters [0 0]
Animation Unit Parameters [0 0]

Removed Surfaces [0 34 1] [44 0 34] [0 11 1] [45 44 34] [1 11 12]
[45 46 34] [1 12 13] [47 45 46] [12 13 14] [1 13 2]

[1 2 34][2 46 34]

50

Figure 3.24: Geometrically Normalized model

We have set scaling and rotation parameters in advance. It is necessary to per-

form 180 degrees rotation around Z axis due to opposite direction of Y axis. Then

we have calculated minimum coordinates for X, Y axis of the model vertices with

unremoved surfaces. This is necessary because, the origin of image in MATLAB

is at the top left corner. It starts from (1, 1) instead of central point. As the

center of Wire frame model is at (0,0,0), translation is necessary.

3.3.5 Texture Mapping

Once the model is geometrically normalized, we map the texture of input image

on this geometrically normalized image. For texture mapping we use the concept

of barycentric coordinate computation of triangles. Wire frame model is having

184 triangles. We compute barycentric coordinates of all triangles and store.

When the model �ts on face, the texture of face image is mapped on geometrically

normalized image.

We have two wire frames one is on the face image and the other is geometri-

cally normalized wire frame. Consider any triangle of the geometrically normalized

frame (destination) and same triangle of wire frame on the face image (source). I

want to copy texture of source to destination. This can be done using barycen-

tric coordinates computation. We precomputed the barycentric coordinates of the

triangles of the geometrically normalized wire frame. We know the vertex coor-

dinates, so we compute barycentric coordinates of all triangles using (3.18) (3.19)

and (3.20). Our image size is 33 Ö 40, means we have 1320 pixels. Out of which

966 pixels are valid barycentric coordinates. From the destination wire frame,

we consider �rst triangle and its barycentric coordinates. We consider the same

triangle from source image, here we have barycentric coordinates, from which we

compute the Cartesian (source) coordinates (x, y) using (3.11) and (3.12). Now,

51

we got source coordinates for corresponding destination coordinates, so we can

copy the texture of the source image to the destination image.

Barycentric coordinate computation

Figure 3.25: Barycentric Coordinate Computation

Let us consider a triangle T which is formed by three vertices r1, r2, r3. A

weighted sum of these three vertices, may be written as in (3.8), which locates

any point r on this triangle. Here, λ1, λ2, and λ3 are the area coordinates. These

are subjected to the constraint given in (3.9), and λ3 is given by (3.10) [65].

r = λ1r1 + λ2r2 + λ3r3, (3.8)

λ1 + λ2 + λ3 = 1 (3.9)

λ3 = 1− λ1 − λ2 (3.10)

λ1, λ2, λ3values should be positive. If a point r lies inside a triangle, and it is

desirable to obtain the barycentric coordinates λ1, λ2 and λ3 at this point, then,

we write the barycentric expansion of point ri having Cartesian coordinates (xi, yi)

in terms of the components of the vertices of triangle(r1, r2, r3) as in (3.11) and

(3.12)

x = λ1x1 + λ2x2 + λ3x3 (3.11)

y = λ1y1 + λ2y2 + λ3y3. (3.12)

On substituting (3.10) into (3.11) and (3.12) we get (3.13) and (3.14).

x = λ1x1 + λ2x2 + (1− λ1 − λ2)x3 (3.13)

y = λ1y1 + λ2y2 + (1− λ1 − λ2)y3 (3.14)

52

On rearranging (3.13) and (3.14) we obtain (3.15) and (3.16).

λ1(x1 − x3) + λ2(x2 − x3) + x3 − x = 0 (3.15)

λ1(y1 − y3) + λ2(y2 − y3) + y3 − y = 0 (3.16)

We write this linear transformation as in (3.17)

R · λ = r − r3 (3.17)

where, R =

[
x1 − x3 x2 − x3
y1 − y3 y2 − y3

]
λ =

[
λ1

λ2

]
r =

[
x

y

]
and r3 =

[
x3

y3

]
The matrix R is invertible, since r1 − r3 and r2 − r3 are linearly independent.

The matrix R is not invertible if, r1, r2 and r3 are collinear and would not form a

triangle. Solving (3.17) for λ results into (3.18), (3.19), (3.20).

λ1 =
(y2 − y3)(x− x3)− (x2 − x3)(y − y3)

| R |
(3.18)

λ2 =
(x1 − x3)(y − y3)− (y1 − y3)(x− x3)

| R |
(3.19)

λ3 = 1− λ1 − λ2 (3.20)

Barycentric coordinates are a linear transformation of Cartesian coordinates. So

they vary linearly along the edges and over the area of the triangle. All of the

Barycentric coordinates of a point lie in the open interval (0,1), if that point lies

in the interior of the triangle. At least one of the area coordinates λ1, λ2, λ3 is

zero, if a point lies on an edge of the triangle. The rest of the area coordinates lie

in the closed interval [0,1]. So we can say that point r lies inside the triangle if

and only if 0 < λi < 1 ∀i in 1,2,3. Else, r lies on the edge or corner of the triangle

if 0 ≤ λi≤ 1 ∀i in 1,2,3. Otherwise, r dose not belong to that triangle and it lies

outside the triangle [65].

B) Texture mapping

We have a mesh of triangles in two di�erent shapes. One is for source image

and another is for destination image (geometrically normalized model). We have

to warp an image from one shape to another. Our destination image or mesh

i.e. geometrically normalized model DI consists of 172 triangles T1,......T172. Each

triangle is made up of three vertices, and each vertice has x, y coordinates. That

is, T n = [r 1, r 2, r 3] and r i = [xi yi]
T . Our source image or mesh SI has 184

triangles. Here, our aim is to map texture of source image to destination image.

Now, we perform texture mapping process as per following steps [64].

1. We compute barycentric coordinates λ1, λ2, λ3 for each pixel coordinate (x, y)

53

in destination mesh (DI) with respect to the �rst triangle T 1 in the desti-

nation mesh. If λ1 + λ2 + λ3 = 1, then only the barycentric coordinates are

valid and the point lies inside the triangle, otherwise the point dose not lie

inside the triangle and we go for the next triangle until the correct triangle

T n is found.

2. Our destination mesh is geometrically normalized model, so its coordinates

are �xed. Barycentric coordinates for each pixel in destination mesh will

also be �xed. So we compute them once and store λ1, λ2, λ3 for each pixel.

As we are working on 33 × 40 pixels, out of 1320 pixels, valid barycentric

coordinates are found only for 966 pixels.

3. Our source coordinates are not �xed. For the source mesh, we know (x, y)

coordinates of all vertices of triangle. We have a set of barycentric coordi-

nates calculated in step 2. So, we compute the source coordinates as per

(3.13) and (3.14).

4. Now, we have destination coordinates and source coordinates. We copy the

texture of source coordinate to destination coordinate. Out of 1320 pixels

we get texture copied on 966 pixels, for rest of the pixels, values are obtained

using bilinear interpolation.

3.3.6 Synthesized Image

We have adapted the wire frame model to a set of images using di�erent parameters

such as rotation, translation, scale, and action units. We have collected those

parameters in a vector p, which thus parametrizes the geometry of the model. For

each image in the training set, we have mapped the texture of the image under

the wire frame model on to the model. Then, we have normalized the model to a

standard shape, size, and position, in order to collect a geometrically normalized

set of textures. On this set of textures, we have applied a PCA and computed the

eigentextures (geometrically normalized eigenfaces), as in (3.21).

x = x+Xξ, (3.21)

Here, x is mean texture, X is eigen texture and ξ is texture parameter. Now, we

can describe the complete appearance of the model by the geometry parameters

p and a N dimensional texture parameter vector. Where, N is the number of

eigentextures to be used for synthesizing the model texture. When an input image

and parameter p are given, the texture parameters are computed by projecting

the normalized input image on the eigentextures. Thus in our case p is the only

54

necessary paramete. Thus the geometrical normalization of the face is used to

remove the texture variations caused by its global and local motion and geometrical

di�erences between individuals. We have decided to work with 33 × 40 pixel

images which are conveniently small and e�ective for image warping. Barycentric

coordinate computation and texture mapping explained in 3.3.5 is used to get

geometrically normalized image. We have considered 100 training face images.

So N=100. On these images, we �t the wire frame model manually, then we get

geometrically normalized images. From these images, we compute the mean image

which is called mean texture denoted with x. We have performed PCA on the

training set (stored as 33 × 40 texture vector), so that we obtain the principal

modes of variation, i.e., the eigenfaces. We have collected 100 eigenfaces in a

matrix X which could represent 90% of the variance. A face vector x can be

parametrized as in (3.22), where x is the mean face, and we could synthesize a

face image as in (3.23) [64].

ξ = XT (x− x) (3.22)

x̂ = x+XXT (x− x) (3.23)

Normalized training set images are shown in Figure 3.26 and eigen face images

are shown in Figure 3.27.

Figure 3.26: Normalized training set images

55

Figure 3.27: Eigen face images

3.4 Tracking

To track facial feature points, means to �nd an optimal adaptation of the model

to facial frames in the image sequence. We have obtained this by �nding the pa-

rameter vector p that minimizes the distance between synthesized and normalized

faces. The initial value of p which we have used is the optimal adaptation to the

previous frame. We have assumed that the motion from one frame to another is

small enough. Then we reshape the model to V (p) and map the image i (the new

frame) onto the model. Then we have geometrically normalized the shape and got

the resulting image as a vector. After that we have mapped the input image (i)

on the model, and reshaped the model to the standard shape. Then we got the

resulting normalized image as a vector as in (3.24) and then we have computed

texture parameters from normalized image as in (3.25). Then we have computed

synthesized texture as given in (3.26).

j(i, p) = j(i, V (p)) (3.24)

ξ(i, p) = XT (j(i, p)− x) (3.25)

x(i, p) = x+XXT (j(i, p)− x) (3.26)

56

We have computed residual image as in (3.27) and we have selected Summed

square error (SSE) as a error measure as given in (3.28).

r(i, p) = j(i, p)− x(i, p) (3.27)

e = ‖r(i, p)‖2 (3.28)

For good model adaptation residual image and error e is much smaller. Then we

have computed the update vector 4p by multiplying the residual image with an

update matrix U. The new error measure for updated parameter is as in (3.30).

4p = Ur(p) (3.29)

e0 = ‖r(i, p+4p)‖2 (3.30)

If e0 < e we update e0 → e and (p +4p) → p. If e0 > e, we try smaller steps.

Now e is recomputed as in (3.31).

ek =

∥∥∥∥r(i, p+
1

2k
4p)

∥∥∥∥2 (3.31)

Figure 3.28: Candide wire frame model �tting on face image

For k = 1, 2, 3, if ek < e we update ek → e and p+ 1
2k
4p→ p.We iterate the

algorithm and declare the convergence when ek > e. The model matching and tex-

ture approximation process is shown in Figure 3.28. A correct model adaptation is

shown in top row, and wrong adaptation is shown in bottom row. The �rst image

in both the rows shows a model adapted on face image. Second image in both

the rows is a texture of face image mapped on geometrically normalized Candide

wire frame model. The normalized texture is approximated by the eigentextures

57

producing the synthesized image. Residual image is computed by subtracting the

normalized image and synthesized image. From the �gure it is clear that normal-

ized image and synthesized image are more similar for better model adaptation.

Analysis of residual image tells us how to improve model adaptation [66].

3.4.1 Creating Update Matrix

We have assumed that r(i, p) is linear in p. So, we write (3.32), where G is a

gradient matrix
∂

∂p
r(i, p) = G (3.32)

By applying Taylor series expansion to r(i, p)around (p + 4p), we got (3.33),

where, O represents the higher order derivatives of r(i, p).

r(i, p+4p) = r(i, p) +G4p+O(4p2) (3.33)

e(i, p+4p) = ‖r(i, p) +G4p‖2 (3.34)

We want to �nd 4p that minimizes (3.34). Minimizing (3.34) is a least square

problem whose solution is as in (3.35). From which we compute update matrix U

as the negative pseudo inverse of the gradient matrix G as in (3.36).

4p = −(GTG)−1GT r(i, p) (3.35)

U = −(GTG)−1GT (3.36)

We have computed Gradient matrixG from training images in advance. jth column

in G is given as in (3.37) and the approximation is as in (3.38).

Gj =
∂

∂pj
r(i, p) (3.37)

Gj ≈
r(i, p+ hqj)− r(i, p− hqj)

2h
(3.38)

Here, h is the step size for perturbation. qj is a vector with zero in elements except

one in jth column. We have adapted the wire frame model to every training image

in the training set and computed the shape and texture modes. Thus, we have

obtained, a set of corresponding parameter vectors pn for a suitable step size to

estimate Gj by averaging as in (3.39)

Gj ≈
1

NK

N∑
n=1

K∑
k=1

r(in, pn + khqj)− r(in, pn − khqj)
2h

(3.39)

58

Here, N represents the number of training images while K represents the number

of steps to perturb the parameter [66].

3.4.2 Experimental Results

We have constructed a separate update matrix only for scaling, translation and

rotation parameters. Update matrix is constructed using (3.36). Where N = 100,

and K = 20. For scaling, we have used h = 100 × 0.01 in the range[−hk, hk] =

[−20, 20]. For translation, we have selected h relative to the size of the model

h = 0.01 × (s + 1) in the range [−hk, hk] = [−0.2 × (s + 1), 0.2 × (s + 1)].

For rotation, we have converted h into radians h = 0.01 × 180/π in the range

[−hk, hk] = [−11.459, 11.459].Wire frame model is manually �tted on 100 di�erent

face images. All parameters are varied according to the above steps, and residual

images are collected. Gradient matrix is computed using (3.39). From gradient

matrix update matrix is computed using (3.36). For unknown image, when model

�ts roughly, residual image is computed. Residual image gets multiplied by an

update matrix to get updated parameter vector p = [s, tx, ty, θx, θy, θz]. With this

new parameter, the model gets deformed, again residual image is computed, and

the process repeats till model �ts exactly, where error e is reduced to a minimum.

Once the model �ts properly on the �rst frame, in the subsequent frames only

animation parameters need to be processed. Results of wire frame �tting are

shown in Figure 3.29

3.5 Wire frame �tting on tilted faces

In the previous section we have explained how the wire frame model automati-

cally �ts on the frontal faces. In this section we explain how the model is �tting

automatically on tilted faces as well as on non neutral faces. Once the model is

adapted properly on the �rst frame, for the subsequent frames only α is changing.

We want to �nd the optimal adaptation of the wire frame model to the input im-

age. So, our aim is to �nd p that minimizes the distance between the wire frame

model and the image. We have obtained a set of feature points F from our feature

point detection algorithm, see section 3.2. We have extracted 14 facial feature

points, and each point has x and y coordinates, so F is vector of length 28 × 1.

We know the vertices of wire frame model V . Our goal is model adaptation, i.e.,

to �nd the deformed model V that ful�lls

min ‖ V (p)− F ‖2 (3.40)

59

Figure 3.29: Wire frame �tting on frontal faces results

In (3.40) out of 113 vertices, we have considered only (x, y) coordinates of 14

vertices corresponding to our 14 extracted feature points. Dimension of V is

reduced to 28× 1.

The action units and shape units can be applied to scaled model, which simpli�es

(3.4) as in (3.41). For small rotations we can write (3.42) and (3.43). Then we

can write (3.41) as in (3.44)

V = R(sV + Sσ + Aα) + t (3.41)

RV = (θxθyθz)V = (I + rxθx)(I + ryθy)(I + rzθz)V (3.42)

RV = (rxθx + ryθy + rzθz + I)V (3.43)

V =(
3∑

i=1

βisi)V +
14∑
i=1

Siσi +
65∑
i=1

Aiαi + (

y,z∑
i=x

riθi)V)

+
3∑

i=1

τiti (3.44)

The terms in (3.44) are de�ned in section 3.3.1. We write (3.44) as matrix vector

multiplication as V = Cp where C de�nes the allowed deformations as in (3.45)

60

and p is the parameter vector as in (3.46). C is of size 28× 88. (3+14+65+3+3)

(scaling+shape+animation+rotation+translation). p is a parameter vector of size

88× 1 which gives scaling, shape, animation, rotation and translation parameter

values.

C =[s1V , s2V , s3V , S1,S14, A1, ...

......A65, θxV , θyV , θzV , t1, t2, t3] (3.45)

p =[β1, β2, β3, σ1,σ14, α1,α65,

rx, ry, rz, τ1, τ2, τ3] (3.46)

β1, β2 and β3 represents scaling parameters while τ1, τ2 and τ3 represents trans-
lation parameters. So (3.44) can be solved as in (3.47) which is a least square
optimization problem whose solution is as in (3.48)

min ‖ V − F ‖2= min ‖ Cp− F ‖2 (3.47)

p = (CTC)−1CTF (3.48)

Instead of computing 88 parameter values at a time, �rst we �nd the solution only

for global parameters using (3.49) and (3.50)

C1 = [s1V , s2V , s3V , θxV , θyV , θzV , t1, t2, t3] (3.49)

p1 = [β1, β2, β3, rx, ry, rz, τ1, τ2, τ3] (3.50)

C1is of size 28× 9 i.e. scaling, rotation and translation. p1 is a parameter vector

of size 9×1 which gives scaling, rotation and translation parameters. We consider

rotation of faces only in y direction. Initially we set θy = 0, then we �nd p1. Then

model is geometrically normalized to standard shape, texture is mapped on this

model, synthesized image is computed. Then we compute residual image, from

which summed squared error (SSE) is computed. All these methods are explained

in above sections. We repeat the procedure for θy = ±300,±450,±600. The value

of θy for which SSE is minimum, will give us rotating angle of face with respect to y

axis. Then the shape unit parameters and animation unit parameters calculation

is done using (3.51) and (3.52)

C2 = [S1,S14, A1,A65] (3.51)

p2 = [σ1,σ14, α1,α65] (3.52)

C2 is of size 28 × 79 i.e. animation and shape. p2 is a parameter vector of

size 79 × 1 which gives shape and animation parameters. Once the model is

adapted properly on the �rst frame, for the subsequent frames only animation

parameters α will change. For neutral frame α1,α65 = 0. If the frame is of

61

any expression other than the neutral then α1,α65 6= 0. From the analysis

of di�erent animation parameters we can recognize the facial expressions. By

observing di�erent animation parameters and their combinations, we can identify

facial expressions. There are 65 animation units such as Lip stretcher, Jaw drop,

eyebrow raiser, lip corner depressor etc. If the animation parameter value of Jaw

drop and eyebrow raiser is approximately 1 then we can say the expression is a

surprise. Similarly, if the lip stretcher animation parameter is 1 it could be a smile

or happy expression. Previously, some researchers have identi�ed facial expressions

from a combination of animation units (or action units). For non neutral facial

expression frame, once the model �ts properly, then we set α1,α65 = 0 so as

to get shape of wire frame for neutral facial expression of the same face. So it is

not necessary that �rst frame should be always of neutral facial expression. Model

�tted on di�erent faces, with di�erent rotation is shown in Figure 3.30.

Figure 3.30: Model �tting on tilted faces

3.6 Extraction of wire frame grid node coordinates

The geometric information which, we have used is the displacement of one point. It

is de�ned as the di�erence between the �rst and the last frame's node coordinates.

We have constructed a feature vector, for every image sequence to be examined.

Feature vector contains the geometrical displacement of every point taken into

consideration. The feature vector is used as an input to a multi class Support

Vector Machine, with seven classes. SVM classi�es each set of wire frame grid

node's geometrical displacements to one of the seven basic facial expressions happy,

surprise, sadness, anger, fear, disgust and neutral. We have used Cohn Kanade and

IMM database. This database consists of face images. It is clustered into seven

di�erent classes each one representing one of the seven basic facial expressions.

We have used the geometrical information for facial expression recognition. The

62

displacement of one node dij, is the di�erence of the i
thgrid node coordinates at

the �rst and last frame of facial image sequence.

dij = [4xij ∆yij]
T (3.53)

Here, i = 1,, E (total number of nodes =113) and j = 1,, N (Number

of facial image sequence = 25 per expression). 4xij,4yij are the (x, y) coordinate

displacement of the ith node in the jthimage respectively. Thus we have created a

feature vector gj, for every facial image sequence in the training set as in (3.54).

The vector gj is called grid deformation feature vector. It contains the geometrical

displacement of every grid node.

gj = [d1,jd2,j..................dE,j]
T (3.54)

Here, j = 1,, N . The dimension of the vector gj is D = 113 × 2 = 226

dimensions. Out of 113 nodes, only 60 nodes contribute for facial expression

recognition. So to reduce computations we have considered only 60 nodes. Now

gj is reduced to 60× 2 = 120 dimension. Each grid deformation feature vector gj

belongs to one of the seven facial expression classes. This data is used to train

multiclass SVM classi�er, which is explained in the next chapter.

63

64

Chapter 4

Facial expression classi�cation

Once the facial feature data is available in the form of geometrical deformation

feature vectors, next task is to design a classi�er that will classify this set of vectors

into one of the basic facial expressions. We have employed Bayesian classi�er and

support vector machine. Support vector machine classi�es data into two classes.

We modi�ed it for seven classes. We did analysis of results of all the classi�ers.

In this Chapter, we discuss about all these classi�ers one by one alongwith results

which we obtained. In results we have mentioned overall accuracy of FER system

in tabular form using a particular classi�er. It is not the accuracy of individual

classi�er, rather it is the accuracy of complete system including face detection,

model �tting, tracking and classi�cation.

4.1 Database

For training and testing samples of image sequences we have used Cohn Kanade

database [59] and IMM database [60]. We divide the database into four sets

containing 25% of the data for each class, chosen randomly. One set containing

25% of the samples for each class is used as test set, while the remaining three sets

form the training set. After performing the classi�cation procedure, the samples

forming the testing set are merged into the current training set, and a new set of

samples (25% of the samples from each class) is extracted to form the new test

set. The remaining samples forms the new training set. This procedure is repeated

four times. The average classi�cation accuracy is computed as the mean value of

the percentages of the correctly classi�ed facial expressions.

4.1.1 Cohn Kanade database

Subjects in the released portion of the Cohn-Kanade AU-Coded Facial Expression

Database are 100 university students. They ranged in age from 18 to 30 years.

65

Sixty-�ve percent were female, 15 percent were African- American, and three per-

cent were Asian or Latino. Subjects were instructed by an experimenter to perform

a series of 23 facial displays that included single action units and combinations of

action units. Image sequences from neutral to target display were digitized into

640 × 480 or 490 pixel arrays with 8-bit precision for grayscale values. Included

with the image �les are "sequence" �les; these are short text �les that describe

the order in which images should be read.

4.1.2 IMM database

The IMM Face Database consists of 240 images of 40 di�erent human faces, all

without glasses. The gender distribution is 7 females and 33 males. Images were

acquired in January 2001 using a 640 x 480 JPEG format with a Sony DV video

camera, DCR-TRV900E PAL. The facial structures that were manually annotated

using 58 landmarks are eyebrows, eyes, nose, mouth and jaw.

4.2 Bayesian Classi�er

Bayesian classi�er is a simple probabilistic classi�er based on applying Bayes the-

orem with strong independent assumptions. It assumes that the presence (or

absence) of a particular feature of a class is unrelated to the presence (or absence)

of any other feature. Bayes classi�er is trained in a supervised learning setting.

Bayesian learning methods are relevant to machine learning for two di�erent rea-

sons. First, they provide a useful perspective for understanding many learning

algorithms that do not explicitly manipulate probabilities and second is Bayesian

learning algorithms normally calculate the explicit probabilities for hypotheses,

which is the most practical approach to certain types of learning problems. Re-

searchers proved that the naive Bayes classi�er is competitive with other learning

algorithms in many cases. In some cases it outperforms other methods. One prac-

tical di�culty is that this classi�er typically require initial knowledge of many

probabilities. If these probabilities are not known in advance they are often es-

timated based on background knowledge and previously available data. Michie

et al.[67] provide a detailed study comparing the naive Bayes classi�er to other

learning algorithms, including decision tree and neural network algorithms. One

practical di�culty in applying Bayesian methods is that they typically require

initial knowledge of many probabilities. When these probabilities are not known

in advance they are often estimated based on background knowledge, previously

available data, and assumptions about the form of the underlying distributions.

Features of Bayesian learning method includes

66

1. Each observed training example can incrementally decrease or increase the

estimated probability that a hypothesis is correct.

2. Prior knowledge can be combined with observed data to determine the �nal

probability of a hypothesis.

3. Bayesian methods can accommodate hypotheses that make probabilistic pre-

dictions.

4. New instances can be classi�ed by combining the predictions of multiple

hypotheses, weighted by their probabilities [67] .

The probability model for a classi�er is a conditional model p(C | F1,, Fn)

over a dependent class variable C with a small number of outcomes or classes,

conditional on several feature variables F1 through Fn. Bayes theorem is

p(h | d) =
p(h)p(d | h)

p(d)
(4.1)

Here, p(h) is prior belief (probability) of hypothesis h before seeing any data.

p(d | h) is likelihood (probability) of the data if the hypothesis h is true. p(h | d) is

posterior probability of hypothesis h after having seen the data d). p(d) =
∑
p(d |

h)p(h) data evidence (marginal probability of the data). Using this theorem we

can write

p(C | F1,Fn) =
p(C)p(F1,Fn | C)

p(F1,Fn | C)
(4.2)

Here, the denominator does not depend on C. We are only interested in the nu-

merator of that fraction. As, the values of the features Fi are given, the denomina-

tor is e�ectively constant. The numerator represents the joint probability model

p(C | F1,, Fn). We rewrite it as in (4.3), using repeated applications of the

de�nition of conditional probability

p(C | F1,Fn) = p(C)p(F1,Fn | C) (4.3)

= p(C)p(F1 | C)p(F2,Fn | C,F1) (4.4)

= p(C)p(F1 | C)p(F2 | C,F1)p(F3,Fn | C,F1, F2) (4.5)

Here, we have assumed that, each feature Fi is conditionally independent of every

other feature Fj for j 6= i. This means that

p(Fi | C,Fj) = p(Fi | C) (4.6)

So, we write the joint model as in (4.7)

p(C | F1, .., Fn) = p(C)p(F1 | C)p(F2 | C)p(F3 | C).... (4.7)

67

p(C | F1, .., Fn) = p(C)
n∏

i=1

p(Fi | C) (4.8)

The classi�cation decision is made using (4.9), where Ci = 1,, 7 is class label
and fi is feature related to each sample. Using this formula, a test grid deformation
feature vector is classi�ed to one of the seven facial expressions.

C = argmax{P (Ci)
∏

P (fi | Ci)} (4.9)

From training samples we compute mean and covariance for each coordinate of

geometrical deformation feature vector. Following equations are used to compute

mean and variance.

y =
1

n
=

n∑
i=1

yi (4.10)

σ2 =
1

n

n∑
i=1

(yi − y)2 (4.11)

Where n is our number of wire frame node coordinates, it is 120. For computing

probabilities with respect to each coordinate, we make use of Gaussian distribution

as in (4.12)

P (x = v | C) =
1√

2πσ2
e−

(v−y)2

2σ2 (4.12)

For unknown sample we compute probabilities with respect to each attribute for

all classes. The class which gives maximum value of probability is declared as a

class of unknown sample as per (4.9). One practical di�culty is that this classi�er

typically require initial knowledge of many probabilities. If these probabilities are

not known in advance they are often estimated based on background knowledge

and previously available data. In our case we got less accuracy using this classi�er.

Results are given in Table 4.1. Overall accuracy of FER system is 74.5%. The table

gives accuracy of complete system including face detection, model �tting, tracking

and classi�cation. It is not the accuracy of individual classi�er. Table shows

confusion matrices as well as accuracy, e.g. for happy expression, consider happy

column, 64% of total samples are classi�ed correctly as happy expression, 12% are

missclassi�ed as surprise, 8% are missclassi�ed as sad, 12 % are missclassi�ed as

fear, and 4% are missclassi�ed as neutral.

68

Table 4.1: Results of facial expression recognition using Bayesian classi�er
Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 64% 10% 0 0 0 10% 2%
Surprise 12% 80% 0 0 0 0 0
Sad 8% 0 78% 8% 12% 6% 0
Anger 0 0 0 72% 20% 10% 5%
Disgust 0 0 11% 9% 68% 0 0
Fear 12% 4% 11% 8% 0 74% 3%
Neutral 4% 6% 0 3% 0 0 90%

4.3 SVM classi�er

Basically SVM is a binary classi�er that classi�es data into two classes. During the

training phase it constructs separating hyperplanes between training samples of

two classes, labeled as +1 and -1. The separating hyperplane that best separates

the two classes is called the maximum-margin hyperplane and forms the decision

boundary for classi�cation. The data samples that lie at the boundary of each

class are called support vectors (SVs). During the testing phase only support

vectors are involved in the computation. When two data classes are not linearly

separable, a kernel function is used to project data to a higher dimensional space,

where linear classi�cation is possible. This is known as the kernel trick and allows

an SVM to solve nonlinear problems.

An n-dimensional pattern x has n coordinates, x = (x1, x2,, xn), where

each xi ∈ R for i = 1, 2,, n. Each pattern xj belongs to a class yi ∈ {−1,+1}.
Consider a training set T of m patterns together with their classes, where

T = {(x1, y1), (x2, y2),, (xm, ym)}.
Consider a dot product space S in which the patterns x are embedded,

x1, x2,xm ∈ S. Any hyperplane in the space S can be written as

{x ∈ S | w·x + b = 0}, w∈S, b∈R (4.13)

The dot product w·x is de�ned by

w·x =
n∑

i=1

wixi (4.14)

A hyperplane w·x + b = 0 can be denoted as a pair (w, b). A training set of

patterns is linearly separable if at least one linear classi�er exists de�ned by the

pair (w, b), which correctly classi�es all training patterns. All patterns from class

+1 are located in the space region de�ned by w·x + b > 0, and all patterns from

class -1 are located in the space region de�ned by w·x + b < 0. Using the linear

classi�er de�ned by the pair (w, b), the class of a pattern xk is determined with

69

class(xk) =

{
+1 if w·x + b > 0

−1 if w·x + b < 0

}
(4.15)

The distance from a point x to the hyperplane de�ned by (w, b) is

d(x ; w, b) =
| w·x + b |
‖ w ‖

(4.16)

where ‖ w ‖is the norm of vector w. Of all the points on the hyperplane, one has

the minimum distance dmin to the origin

dmin =
| b |
‖ w ‖

(4.17)

We consider the patterns from the class -1 that satisfy the equality w · x+ b = −1

and that determine the hyperplane H1, the distance between the origin and the

hyperplane H1 is equal to | −1− b | / ‖ w ‖ . Similarly, the patterns from the class

+1 satisfy the equality w · x+ b = −1 and that determine the hyperplane H2. the

distance between the origin and the hyperplane H2 is | +1 − b | / ‖ w ‖ . Hyper-
planes H, H1, and H2 are parallel and no training patterns are located between

hyperplanes H1 and H2. So the margin of linear classi�er H is 2/‖w‖. The optimum

separation hyperplane conditions can be formulated into the following expression

that represents a linear SVM, minimize f(x) = ‖w‖2
2

with the constraints gi(x) =

yi(w · xi + b) − 1 ≥ 0, i = 1,,m. The optimization problem represents the

minimization of a quadratic function under linear constraints (quadratic program-

ming). A convenient way to solve constrained minimization problems is by using

a Lagrangian function. When the Lagrange function is introduced, a Lagrange

multiplier λi is assigned to each training pattern via the constraints gi(x). The

training patterns from the SVM solution that have λi > 0 represent the support

vectors. The training patterns with λi = 0 can be removed from training without

any e�ect, because they are not important in obtaining the SVM model. After

training, the classi�er is ready to �nd the class membership for new patterns, those

are di�erent from training patterns. The class of a pattern xk is determined with

class (xk) =

{
+1 if w · xk + b > 0

−1 if w · xk + b < 0

}
(4.18)

Only on the sign of the expression w·x + b is required for the classi�cation of

new patterns. To classify new patterns, we will use the support vectors from the

training set and the corresponding values of the Lagrange multipliers λiwithout

computing the vector w explicitly.

class (xk) = sign

(
m∑
i=1

λiyixi · xk + b

)
(4.19)

Training samples those they are not support vectors do not a�ect the classi�cation

70

of new patterns. For the classi�cation of a new pattern xk, we compute the dot

product between xk and every support vector.

Some common kernels include:

1. Linear : K(~x, ~z) = (~x.~z)

2. Polynomial : K(~x, ~z) = (1 + (~x.~z))d

3. Sigmoid : K(~x, ~z) = tanh((~x, ~z) + θ)

4. Radial Basis Function :K(~x, ~z) = exp(||(~x− ~z)||2/(2σ2))

Basically SVM is a binary classi�er, which classi�es data in to two classes. To use

it for multiclasses, mainly two schemes are used.

4.3.1 One against One multi-class SVM classi�er

In this approach C(C−1)/2 classi�ers are constructed. Where C is the number of

classes. Classi�er i, j is trained using all patterns from class i as positive instances,

and all patterns from class j as negative instances and disregarding the rest. To

combine obtained classi�ers a simple voting scheme is used. When classifying a

new instance each one of the base classi�er casts a vote for one of the two classes

used in its training. The class that gets maximum vote will be declared as class

of new instance. In our case we need 21 classi�ers for 7 expressions. The decision

function is given by following equation

D(x) = (
m∑
i=1

αiyiK(x • si) + b) (4.20)

Where αiis weight of support vectors, yiis class label, siis support vector, x is

input vector and b is bias value. We have used Linear kernel, Polynomial kernel

and RBF kernel. Results using Linear Kernel are given in Table 4.2. Overall

accuracy of the FER system is 76.57%. Results using Polynomial kernel are given

in Table 4.3. Overall accuracy of FER system is 68.85%. Results using RBF kernel

are given in Table 4.4. Overall accuracy is 66.85%.

71

Table 4.2: Results of facial expression recognition using One vs One SVM with
linear kernel
Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 68% 0 0 0 0 10% 0
Surprise 8% 80% 0 0 0 0 0
Sad 0 8% 74% 0 0 10% 0
Anger 4% 0 0 84% 13% 0 0
Disgust 0 6% 11% 16% 65% 0 5%
Fear 12% 6% 11% 10% 22% 75% 5%
Neutral 8% 0 4% 0 0 5% 90%

Table 4.3: Results of facial expression recognition using One vs One SVM with
polynomial kernel
Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 62% 15% 0 0 0 0 10%
Surprise 12% 75% 0 0 0 0 10%
Sad 0 0 70% 0 0 0 0
Anger 10% 0 0 64% 16% 0 0
Disgust 0 0 10% 36% 60% 20% 0
Fear 0 10% 10% 0 24% 71% 0
Neutral 16% 0 10% 0 0 9% 80%

Table 4.4: Results of facial expression recognition using One vs One SVM with
RBF kernel
Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 60% 16% 0 0 0 0 18%
Surprise 18% 78% 0 0 0 12% 0
Sad 0 0 62% 10% 0 0 0
Anger 0 0 0 66% 34% 0 0
Disgust 0 0 0 24% 55% 23% 0
Fear 12% 0 25% 0 11% 65% 0
Neutral 10% 6% 13% 0 0 0 82%

Figure 4.1: Graph of SVM One Vs One with all Kernels

72

4.3.2 Binary SVM Tree

To solve multiclass problem binary SVM is used in a hierarchical structure, called

binary SVM tree. In binary SVM tree data set is divided into two subsets from root

to the leaf until every subset consists of only one class. Only C -1 binary classi�ers

are constructed. Where C is number of classes. The steps in constructing binary

tree are as follows [68].

1. Compute class centers using mi = 1
n

∑
xt where mi is mean of class i. xt is

training samples of ith class.

2. Compute distance between classes using Dij = mi −mj.

3. Compute radius of hyper-sphere in feature space using

Ri =
max

t = 1.......Ij
‖ xt −mi ‖ (4.21)

4. Compute class similarity using

similarity(i, j) =
R2

i +R2
j

‖ mi −mj ‖2
(4.22)

5. Select the two classes with biggest similarity to train SVM and unit these
two classes.

6. Compute new united class center and repeat step 2, 3 and 4.

7. Construct the most upper SVM of binary tree when the number of the class
equals to 2.

Table 4.5: Results of facial expression recognition using Binary Tree SVM with
Linear Kernel

Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 69% 0 0 0 0 15% 3%
Surprise 8% 60% 25% 0 0 0 0
Sad 0 25% 55% 0 0 5% 0
Anger 0 0 0 82% 37% 0 0
Disgust 0 0 10% 13% 52% 0 0
Fear 22% 7% 10% 5% 11% 80% 3%
Neutral 1% 8% 0 0 0 0 94%

73

Table 4.6: Results of facial expression recognition using Binary Tree SVM with
Polynomial Kernel

Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 61% 12% 0 0 0 15% 6%
Surprise 15% 70% 0 0 0 0 0
Sad 0 0 63% 0 0 15% 0
Anger 0 0 0 62% 35% 0 0
Disgust 0 0 13% 34% 60% 0 0
Fear 18% 10% 24% 0 5% 70% 10%
Neutral 6% 8% 0 4% 0 0 84%

Table 4.7: Results of facial expression recognition using Binary Tree SVM with
RBF Kernel

Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 60% 13% 0 0 0 25% 10%
Surprise 8% 67% 0 0 0 0 0
Sad 0 0 58% 0 0 10% 0
Anger 0 0 0 57% 32% 0 0
Disgust 0 0 12% 33% 61% 0 0
Fear 16% 12% 28% 6% 5% 65% 10%
Neutral 16% 8% 2% 4% 2% 0 80%

Figure 4.2: Graph of Binary SVM tree with all kernels

Results of facial expression recognition using Binary SVM tree with linear kernel

are shown in Table 4.5. Overall accuracy is 70.28%. Results of facial expression

recognition using Binary SVM tree with polynomial kernel are shown in Table

4.6. Overall accuracy is 61.14%. Results of facial expression recognition using

74

Binary SVM tree with RBF kernel are shown in Table 4.7. Overall accuracy is

64%. Graph comparing accuracy of classi�er with Linear, Polynomial and RBF

kernel is shown in Figure 4.2. SVM tree which we obtained with above algorithm

is shown in Figure 4.3.

Figure 4.3: Binary SVM tree for seven expressions

4.3.3 One vs All SVM

In this scheme there is one binary SVM for each class to separate members of

that class from members of other classes. We have number of classi�ers equal

to number of classes. Classi�er i, j is trained using all patterns from class i as

positive instances, and all patterns from rest of the classes is assumed to be in

class j as negative instances. The class for which decision function gives maximum

value will be declared as class of new instance. The decision function is given as

in (4.23). We compute decision function for all seven classes, the class which gives

maximum value is considered as a class of unknown sample.

D(x) = (
m∑
i=1

αiyiK(x • si) + b) (4.23)

Using this procedure, a test grid deformation feature vector is classi�ed to one of

the seven facial expressions. The results are given in Table 4.8. Overall accuracy is

78.14%. Results with Polynomial kernel are given in Table 4.9. Overall accuracy is

73%. Results with RBF kernel are given in Table 4.10. Overall accuracy is 66.28%.

75

Graph comparing accuracy of classi�er with Linear, Polynomial and RBF kernel

is shown in Figure 4.4.

Table 4.8: Results of facial expression recognition using One Vs All SVM with
Linear Kernel

Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 76% 0 10% 0 0 0 0
Surprise 8% 90% 0 0 0 0 4%
Sad 0 0 73% 8% 28% 15% 0
Anger 0 0 17% 84% 0 0 0
Disgust 8% 6% 0 8% 62% 15% 4%
Fear 8% 0 0 0 0 70% 0
Neutral 0 4% 0 0 10% 0 92%

Table 4.9: Results of facial expression recognition using One Vs All SVM with
Polynomial Kernel

Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 62% 8% 14% 0 0 0 3%
Surprise 8% 82% 0 0 0 0 2%
Sad 0 0 68% 10% 21% 19% 0
Anger 0 0 15% 78% 3% 0 0
Disgust 10% 6% 0 12% 67% 16% 6%
Fear 10% 0 0 0 0 65% 0
Neutral 10% 4% 3% 0 9% 0 89%

Table 4.10: Results of facial expression recognition using One Vs All SVM with
RBF Kernel

Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 64% 10% 0 0 0 0 10%
Surprise 10% 68% 0 0 0 0 4%
Sad 0 0 66% 18% 25% 25% 0
Anger 0 0 14% 71% 10% 10% 0
Disgust 10% 16% 20% 11% 60% 10% 6%
Fear 10% 0 0 0 0 55% 0
Neutral 6% 6% 0 0 5% 0 80%

76

Figure 4.4: Graph of SVM One Versus All with all kernels

4.4 Comparison of Classi�ers

Comparison of all above classi�ers is given in tabular form in the Table 4.11. From

this comparison, we observe that One vs All SVM gives maximum accuracy for

complete system. If only classi�ers accuracy is considered, still one vs all gives

maximum accuracy. Figure 4.5 shows comparison of accuracy of all classi�ers

with linear kernel. If the computation time required for classi�er is considered

Bayesian classi�er consumes less time, but its accuracy is low and computational

complexity is high. In case of One vs All precomputations required are less, its

execution time is next to Bayesian and accuracy is high. Hence, we chose One vs

All SVM for hardware implementation.

Table 4.11: Comparison of the methods

Scheme Accuracy
of FER
system

Computation
time required
for classi�er

No. of
classi�ers/
E�orts in
computa-
tion

Bayesian
classi�er

74.57% 0.84 s Computation
of
probabilities
w.r.t. eac
attribute

One
against
one SVM

76.5% 1.24 s C(C − 1)/2
i.e. 21
classi�ers
required

Binary
SVM tree

70.28% 1.4 s 6 classi�ers
required

One
against all
SVM

78.14% 1.12 s 7 classi�ers
required

77

Figure 4.5: Graph showing accuracy of all classi�ers

78

Chapter 5

Hardware Implementation of facial

expression recognition algorithm

5.1 Motivation for hardware implementation

With the onset of automation in all the �elds, computer vision has got a larger

to play. Normally, these computer vision systems are implemented using a typical

personal computers. Using a personal computer is easy, as it has been used for

many years, and the technology is widely known. But if the performance is con-

sidered, the personal computer is not necessarily the right choice, because when

the complexity of a vision system increases, the frame rate at which the personal

computer is capable of processing images in real-time, decreases. This is due to

the sequential operation mode of the central processing unit of personal computer.

Many of the demanding tasks of a machine vision systems are trivial low level al-

gorithms, where the same instructions are applied to each pixel in the frame. We

show that these low level algorithms could be implemented more e�ciently on

a parallel structure such as two dimensional array of processing elements (PEs)

mapped on the Field Programmable Gate Array (FPGA). In the framework for

feature recognition, wire frame model �tting, tracking and classi�cation are the

important steps, where large matrix computations are involved. The parallel com-

putation in the form of pipelined structures, ensures that the computation as close

as possible to real time. For classi�cation, we have selected One Vs All SVM with

linear kernel for FPGA implementation, as we got maximum accuracy using this

approach.

79

5.2 FPGA

Image processing is di�cult to achieve on a serial processor like CPU in PC. This

is due to the fact that large data set is required to represent the image and the

complex operations to be performed on the image. Consider video rates of 15

frames per second, a single operation performed on every pixel of a 640 × 560

color image requires 16 million operations per second. In many image processing

algorithms, there are several operations need to be performed on each pixel in the

image. This results in large number of operations per second. These operations

take large time if performed sequentially. Thus the only alternative is to make

use of an FPGA, so that we can perform these operations in parallel. An FPGA

consists of a matrix of logic blocks that are connected by an interconnect network.

Both the logic blocks and the interconnect network are reprogrammable, thus

allowing application speci�c hardware to be constructed, while at the same time

maintaining the ability to change the functionality of the system with ease. As

such, an FPGA o�ers a compromise between the �exibility of general purpose

processors and the hardware based speed of ASICs.

The structure of FPGA is shown in Figure 5.1. Con�gurable logic blocks

(CLBs) are the heart of the FPGA. CLBs are arranged in rows and columns, like

matrix, and implement the logic functions speci�ed by the programmer. Most

CLBs perform this with a lookup tables (LUTs), which are digital memory arrays

that contain truth tables for any logic function that can be implemented by the

given number of logic inputs for a CLB. The output of the CLB is the logical result

of the function recorded in the look up table. In order to program the CLBs, truth

tables be loaded into the LUTs of each CLB .

Figure 5.1: FPGA

80

5.3 Implementation of algorithm

We implement the complete algorithm for feature recognition by dividing it into

two parts. First part includes wire frame model �tting and tracking while other

part includes classi�cation using One vs All support vector machine classi�er.

5.3.1 Implementation of wire frame model �tting and track-

ing

We have developed a hardware solution for the �tting and tracking subsystem

in order to enhance the speed of the system since real time performance is of

paramount importance here. Implementation of wire frame model �tting and

tracking is again subdivided into model �tting and tracking. The implemented

design consists of two main units named �tting and tracking. Model unit distorts

the wire frame model on the basis of the parameters fed to it. The Grid Displace-

ment unit calculates the di�erence between the two wire frame models and save

the result in disp.txt as shown in Figure5.8. Initially the �tting unit performs the

placement of the wire frame model on the �rst image of the image sequence and

updates the placement iteratively till the model is correctly �tted to the face. Then

the tracking unit performs the tracking of facial expressions in successive frames

that follow in the image sequence. Finally, with the help of Grid Displacement

unit, the computed di�erence between the neutral image of face and the image

containing the greatest intensity of expressions is given as input to the classi�er

which classi�es the present expression into the basic classes of expressions.

5.3.1.1 Systolic array architecture

Systolic Arrays are regular arrays of simple Processing Elements (PEs), where

each processing element in the array is identical. The systolic algorithm relies

on data from di�erent directions arriving at PEs in the array at regular intervals

and being combined. This combination means any computation like successive

multiplication or addition etc. SIMD (Single instruction multiple data) array is

a synchronous array of PEs under the supervision of one control unit and all

PEs receive the same instruction broadcast from the control unit but operate on

di�erent data sets from distinct data streams. SIMD array usually loads data into

its local memories before starting the computation. SIMD array usually loads data

into its local memories before starting the computation. Systolic arrays usually

pipe data from an outside host and also pipe the results back to the host. Systolic

arrays show both pipelining and parallel computation. Systolic Arrays are the

architectures preferably used in the matrix multiplication operations. This chain of

81

PEs operates in a pipelined manner and can be expanded vertically or horizontally

with minor modi�cations to operate in a systolic manner. In our algorithm large

matrix computations are involved, so we make use of systolic arrays, that will

reduce the number of resources and time also. Structures of systolic arrays are

shown in Figure 5.2. Each PE consists of three registers Ra, Rband Rc. These

registers perform multiplication and addition in one unit of computational time,

as shown in (5.1). The unit of computational time is time required to perform one

addition and one multiplication i.e., ta + tm.

Rc = Rc +Ra ∗Rb (5.1)

Figure 5.2: Systolic array

Suppose, we have two matrices A and B. We want to perform the computation

C = A ∗B

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

C =

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 (5.2)

We perform the matrix multiplication as (5.3) in iterations

C(k) = C(k−1) + Ak ∗Bk (5.3)

Here, k = 1, 2,n where n = 3 for above example. These iterations are performed

according to the concept of a wavefront. Successive pipelining of the wavefronts

is accomplished to compute all iterations. When the �rst wave propagates, we

execute the second iteration in parallel by pipelining a second wavefront immedi-

ately after the �rst. Computational activity propagates to the neighboring PE.

Total time required to transfer the result out of the array is T = 4n − 2. Time

required when result stay in the array is T = 3n− 2. Number of PEs required are

82

n2. Structure of such array is shown in Figure 5.3.

Figure 5.3: Systolic array architecture

5.3.1.2 Implementation of model �tting

We have used the output of the face detection algorithm to get the inputs to

the hardware design we have proposed. These inputs are the location of the

face in the image, x, y co-ordinates of the center of the face and the height and

width of the face. For the output of the face detection algorithm, refer Figure

7.1. Using the height and width given by the face detection algorithm, we scale

the wire frame model. This scaling is done on the basis of estimated equation

developed during manual test runs. Then this scaled model is placed on the image

at the x, y coordinates returned by the face detection algorithm. This process is a

part of model re-structuring. After this, Geometrical normalization of the face is

done to obtain its normalized texture, thereby removing texture variations caused

by its local and global motions and geometrical di�erences between individual.

We are working with 33 × 40 pixel images, which are conveniently small and

e�ective for texture mapping. Texture mapping here basically means texture

from the original image is mapped to the normalized image. For texture mapping

barycentric coordinate concept of triangle is used, as our wire frame model consists

of triangles. Barycentric coordinates of triangles are precomputed and fed to

83

our system. Source coordinates are computed for input image and then texture

mapping is performed. Flow diagram for model �tting is shown in Figure 5.4.

Figure 5.4: Flow diagram of model �tting subsystem

Next step is to compute synthesized image as in (3.26). Mean image x is precom-

puted. Matrix XXT is also precomputed. Next step is to compute residual image

r(i, p), using the geometrically normalized image j(i, p) and the synthesized image

84

x(i, p). Summed square error (SSE) is selected as error measure. For good model

adaptation residual image and error e is much smaller. The error is computed as

in (3.28). Then we �nd the update vector ∇p by multiplying the residual image

with an update matrix U, and the new error measure for updated parameter is

calculated as per Eq 3.30. If e0 < e we update e = e0 and p = p +∇p if not, try
smaller steps. e is recomputed as in (3.28). Iterate the scheme and declare the

convergence when ek > e. Control �ow diagram for the model �tting is shown in

Figure 5.5.

Fitting consist of 11 components. These are named post_�t, model, bary_

centric, texture_new, synthesis, error, error comparator, update, update by 2,

comparator2 and no match.

1. Post_�t � It estimates the initial values of the scaling unit and translation

vector with the help of the outputs (x coordinate, y coordinate, height,

width) of the face detection algorithm. Using x and y coordinates of the

face in the image, we calculate the translation vector, and using the height

and width of the face, we compute the scaling unit.

2. Model � It reshapes the wire frame model on the basis of the parameters fed

as input to it.

3. Bary_centric - From precomputed barycentric coordinates, it computes source

coordinates.

4. Texture-new � From source coordinate texture mapping is done on geomet-

rically normalized image.

5. Synthesis � It computes synthesized image from mean image, geometrically

normalized image and eigen textures. Then the residual image is computed.

Wire frame model is �tted manually on training images. Each image is

geometrically normalised to standard shape. Each image is converted to a

vector. So number of images will construct a matrix. PCA is applied on this

matrix and mean texture as well as eigen textures are computed and stored

in memory.

6. Error � It calculates the Sum Squared Error using the residual image.

7. Error Comparator � It compares error values of two runs and takes decision

of whether to update in parameter values is acceptable or not.

8. Update � Finds the update vector ∇p by multiplying the residual image

with an update matrix. Update matrix is constructed from training images.

85

Wire frame model is �tted manually on training images. Model is geomet-

rically normalized to standard shape. Then one by one all parameters are

varied in 20 steps and residual images are collected. From these residual

images average variation for each parameter is calculated. That will give

us gradient matrix, from which we will construct update matrix. Update

matrix is computed in MATLAB and it is stored in memory. Accordingly,

the scaling factor and translation vectors are updated to a new value which

would be used to compute a new set of grid nodes of the wire frame model

and thus, a new value of error. Step back If this computation has resulted

in a larger error than the previously calculated error, then the scaling factor

and translation vectors are restored to their previous values corresponding

to the smaller error with the help of this process.

9. Update by 2 � It reduces the step size of the update vector by 2.

10. Comparator2 � It compares error given after reducing step size and error

with original step size. If new error is smaller then, the update in step size

is accepted else ignored.

11. No Match � This component passes the parameters which result in minimal

error as output.

The control �ow of the �tting subsystem shown in Figure 5.5 is completed in 15

states. After initially resetting the system, start signal is given to post_�t unit

to calculate s, txx, tyy, and tzz. The control is passed on to the next state which

initially reads the �les XT , image (over which the wire frame has to be �tted)

and mean_image. Then model, bary_centric, texture _ new, synthesis and error

computing units kicks into action in the same state and gives an initial �tted

version of the wire frame model as well as primary error. With the commencement

of the next state, control is forwarded to update unit, which computes s, txx, tyy,

and tzz depending on 4p. These changed values are passed on to the next system

to calculate new error. If this new error is less than the previous error, then the

above stated process is repeated iteratively until new error is less than previous

error at which the control is passed to step back unit which goes back a step to

regain previous s, txx, tyy, and tzz. It then enters a loop to calculate the new

values based on half of ∇p which iterates upon two conditions, either a new error

becomes less than previous one or count becomes 4. Lastly, the control enters

no match unit where the parameters corresponding to minimal error are used to

compute almost perfect �tted model.

86

Figure 5.5: Control �ow diagram of model �tting subsystem

87

5.3.1.3 Tracking subsystem

Figure 5.6: Flow diagram for tracking subsystem

Once the wire frame model �ts on �rst frame, in subsequent frames only anima-

tion parameters will change. So during tracking s, txx, and tyy remain constant,

only animation parameters are going to change. Analysis of residual image tells us

how to improve model adaptation. During tracking again all process i e., compu-

88

tation of geometrically normalized image, synthesized image, residual image and

error computations are performed. Figure 5.6 shows a �ow diagram for tracking

subsystem. Control �ow diagram of tracking subsystem is shown in Figure 5.7.

Figure 5.7: Control �ow diagram of tracking subsystem

Complete �ow diagram of designed system is shown in Figure 5.8

89

Figure 5.8: Flow diagram of the designed system

The control �ow diagram of implemented system is shown in Figure 5.9. It is

composed of 5 states which are entered or left upon depending on the occurrence of

various conditions. Initially the system is reset and all start signals are set to zero

to initialize the system and get rid of any unwanted values that may be associated

with di�erent variables or signals. In the next state, �tting unit gives the start

signal and it starts computing its operations. As soon as the �tting unit gives the

�nish signal, control is passed on to the tracking unit in the next state. Whenever,

90

the �nish signal from tracking unit is obtained, a decision is taken based on the

count variable. If count < 11, the tracking system is reset in one state and then

gives start signal in the next state to track the facial expressions pertaining to the

next frame. After the completion of tracking process, grid displacement is taken

into account and saved for the next stage to commence.

Figure 5.9: Control �ow diagram of implemented system

Our algorithm mainly involves large matrix computations. So we make use of

systolic array architecture. After making the use of systolic array architecture our

compact hardware design �ow diagram is given in Figure 5.10.

91

Figure 5.10: Compact hardware design

5.3.2 Experimental results

To implement wire frame model �tting and tracking algorithm, we have written

coding in VHDL. VHDL code is simulated in Modelsim. Results of simulation

are given in Table 5.1. These results are quite similar to the results obtained

with MATLAB. We have tried to synthesize it on Xilinx ISE, but code with

92

real numbers can not be synthesized on Xilinx, either it should be converted

to integers or �oating point arithmetic should be used. Our model coordinates,

scaling parameters, translation parameters, animation parameters etc. all are real

numbers. In our algorithm huge matrix multiplications are involved e.g. matrix

of size1320 × 1320 is multiplied with 1320 × 10 and so on, there are many. We

have converted all real numbers into integers, and simulated it on Modelsim. In

this case, we are not getting proper accuracy, because when our AAM model runs,

node coordinates of the model are changing by few fractions, which when converted

to integers our model fails to �t. Then we have recoded our VHDL program for

real numbers using �oating point arithmetic, but resources on available FPGA

are not su�cient to implement it. So, we have implemented only multiclass SVM

part on FPGA. Here, the SVs and their weights, input vector and bias values are

rounded o� to the nearest digit and then fed to FPGA. Implementation of SVM

is explained in next section.

Table 5.1: Accuracy of FER obtained through Modelsim simulation
Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 76% 0 10% 0 0 0 0
Surprise 8% 90% 0 0 0 0 4%
Sad 0 0 73% 8% 28% 15% 0
Anger 0 0 17% 84% 0 0 0
Disgust 8% 6% 0 8% 62% 15% 4%
Fear 8% 0 0 0 0 70% 0
Neutral 0 4% 0 0 10% 0 92%

5.4 Implementation of Multiclass SVM

The output of the wire frame model �tting and tracking, is the di�erence between

wire frame node coordinates of �rst and last frame of image sequence. It is in

the form of a vector. We have considered 60 nodes and each node has (x, y)

coordinates. So our input vector or test vector x is as in (5.4)

x = [d1,d2,..................d60]
T (5.4)

Here, d is nodes of the wire frame model, in our case it is 60 and di = (xi, yi).

So, x is a vector of 120 dimension. It is classi�ed using One Vs All SVM with

linear kernel into one of the seven facial expressions. We have selected one Vs

all SVM, because we got maximum accuracy with minimum number of classi�ers.

See Chapter 5. In this scheme there is one binary SVM for each class to separate

members of that class from members of other classes. We have number of classi�ers

93

equal to number of classes. Classi�er i, j is trained using all patterns from class i

as positive instances, and all patterns from rest of the classes is assumed to be in

class j as negative instances. The class for which decision function gives maximum

value will be declared as class of new instance. The decision function is given as

in (5.5). We compute decision function for all seven classes, the class which gives

maximum value is considered as a class of unknown sample.

Decision Function D(~x) = sign

(
m∑
i=1

αiyiK(x • si) + b

)
(5.5)

Here K(x•si) represents the kernel function. As we got maximum accuracy using

linear kernel, for hardware implementation, we use linear kernel. We take dot

product of support vector and test vector. Here si represents the support vector

(which is independently a column vector) of dimension 120×no of support vectors
of one class and x is the test vector which is a row vector of dimension 1 × 120.

αi is the weight of support vector obtained after training. We have performed

training part of the SVM in MATLAB. After training, we got support vectors,

their weights, and bias values. Table 5.2. shows the data extracted from the

training phase.

Table 5.2: Number of Support Vectors for Each Class
S. No. Facial

Expres-

sion

No of

Training

Samples

No of

Support

Vectors

Bias

Values

1 Happy 25 24 -2.6214
2 Surprise 25 27 -9.3837
3 Sad 21 25 -0.7933
4 Anger 20 26 -3.1861
5 Disgust 23 36 -1.8676
6 Fear 21 28 -0.9999
7 Neutral 25 22 -2.8796

Here, major computation involved is the kernel computation i.e., the dot product

of support vector and the test vector. Total number of SVs are 188. Multiplication

of a 1×120 vector with 120×188 matrix is very crucial for parallel implementation,

because of limited number of resources. So, we divide the problem into seven parts,

as our classes are seven. Each part performs multiplication of 1× 120 vector with

120×SV of that particular class. Let us consider the Happy class for which number

of SVs are 24. So we perform multiplication of 1×120 vector with 120×24 matrix.

Size of the matrix is reduced, but number of vector elements is same i.e., 120. To

increase the speed of computation, we divide this computation in four parts, and

then we run these four parts in parallel. Each part now performs multiplication

94

of vector1× 30 with 30× 24 matrix using systolic array architecture as shown in

Figure 5.11. To do this we need 24 PEs, where each PE performs multiplication

and accumulation. Our output is 24 scalar values. Rest of the three parts have

the same architecture. These three parts also produce 24 scalar values. Now we

have matrix K1 of size 4 × 24 as shown in (5.6). Now, we add all the elements

vertically as (pi + qi + ri + ti) to get �nal 24 scalar values. As we are using systolic

array architecture, we need zero padding in input vector as well as in SV matrix.

SV matrix is precomputed and is stored in RAM. Input vector is obtained from

our previous section i.e., model �tting and tracking. As we know, dimensions of

all vectors and matrices, we can do zero padding easily while storing input vector.

Once we get 24 values from kernel computation, we multiply it with product of

αiyi. Here, αi is weight of support vector and yi is the class label. There product

wi is precomputed and stored in RAM, where wi = αi × yi. Now, we have two

vectors K1of size 1× 24 and wi of size 24× 1. Their product gives one scalar value

with which we add bias value, which is precomputed and stored in RAM. Thus

we got value of Decision function D(x)for class 1 i.e., happy.

K1 =


p1 p2 −− −− p24

q1 q2 −− −− q24

r1 r2 −− −− r24

t1 t2 −− −− t24

 (5.6)

Same sequence of operation is repeated for seven classes. Finally the class which

has maximum value is declared as the class of input vector.

Figure 5.11: Systolic array architecture using 24 PEs

The data �ow of this computation is summarized as follows.

� αi weight of support vectors of each class are multiplied with their class

labels yi and the product wi is stored in RAM .

95

� Kernel Function Calculation: In this calculation two matrices (one is a input

vector and another is support vector) are multiplied and a row vector is the

output

� wi is then multiplied with the kernel function output, producing a scalar

value.

� Now this scalar value is added with precomputed bias value to produce value

decision function.

� The class for which decision function D(~x) is maximum, will be the class of

input vector.

Figure 5.12: Flow diagram of proposed architecture

5.5 Partial recon�guration approach for low power

implementation of MC SVM

Then we perform partial recon�guration. Partial Recon�guration is the ability to

dynamically modify blocks of logic by downloading partial bit �les, while the re-

maining logic continues to operate without interruption. Partial Recon�guration

enables system �exibility, perform more functions while maintaining communi-

cation links. Other advantages are size and cost reduction, time-multiplex the

hardware to require a smaller FPGA. It also reduces the power by shutting down

power-hungry tasks, when not needed. High performance, special purpose com-

puter systems are typically used to meet speci�c application requirements or to

o�-load computations that are especially taxing to general-purpose computers. As

96

hardware cost and size continue to drop and processing requirements become well-

understood in areas such as signal processing and image processing, more special

purpose systems are being constructed. Because the knowledge gained from indi-

vidual experiences is neither accumulated nor properly organized, the same errors

are repeated. I/O and computation imbalance is a notable example-often, the

fact that I/O interfaces cannot keep up with device speed is discovered only after

constructed a high speed, special-purpose device.

5.5.1 Low Power Recon�guration Strategy

Partial recon�guration (PR) is the ability for a portion of an FPGA to be repro-

grammed while the remainder of the system remains unchanged. A partial bit

stream loads only a portion of the design onto the FPGA rather than rewriting

the entire design. Partial recon�guration is especially useful for reprogramming a

portion an FPGA during operation without a�ecting the rest of the system. This

practice is called dynamic partial recon�guration. Static partial recon�guration

refers to reprogramming a portion of the FPGA while the rest of the board is in

a reset state [69]. Di�erence-based partial recon�guration is used to only make

small changes in the FPGA design. The generated bit stream only includes di�er-

ences between designs. Di�erence-based partial recon�guration allows for faster

reprogramming of the device since only the changes must be rewritten, but it has

limited applications as compared to the module-based solution. Systolic array

implementation of SVM classi�er is recon�gured as di�erence based approach. In

a system implementing module-based partial recon�guration, modules that are to

be kept in continuous operation without the capability of being partially repro-

grammed are referred to as static modules. One or more modules can be designated

as the partially recon�gurable module(s), which require additional considerations

in the design, synthesis, and implementation stages. Speci�cally, a modular design

�ow must be used which will synthesize and create separate bit streams for each

of the recon�gurable modules as well as a total system bit stream including all

of the static logic and one implementation of each of the recon�gurable modules.

Partial recon�guration can be implemented through a JTAG connection to a PC

or internally through custom logic or an on-board processor, such as the embed-

ded Power PC in the Virtex II Pro FPGA. Partially reprogramming the FPGA

through internal circuitry, referred to as self-recon�guration, is a much more useful

method of partial recon�guration since it eliminates the need for an external PC.

The partial bit streams are stored in memory and are written to the Internal Con-

�guration Access Port (ICAP) of the FPGA in order to recon�gure the speci�ed

region of the board with the new logic.

97

5.6 Implementation and synthesis results of SVM

For FPGA implementation, seven class SVM is coded using VHDL. Simulation is

performed on Modelsim. Then the code is synthesized on Xilinx ISE. Synthesis

results are given in Table 5.3. Device utilization summary is given in Table 5.4.

Table 5.3: Primitive and black box usage
Items Used Items Used
GND 1 MUXCY 22265
INV 936 VCC 1
LUT1 760 XORCY 21935
LUT2 15685 LD_1 7680
LUT3 3750 LDE_1 7680
LUT4 4355 BUFG 31
LUT5 2810 OBUF 193
LUT6 1475 DSP48E1 135

Table 5.4: Device Utilization Summary
6vlx75tl�484-11 Utilized Available Percentage utilization

Number of slice
registers

15360 93120 16%

Number of slice
LUTs

29771 46560 63%

Number of LUT Flip
Flop pairs with
unused Flip Flop

22571 37931 59%

Number of LUT Flip
Flop pairs with
unused LUT

9160 37931 21%

Number of fully used
LUT FF pairs

7200 37931 18%

Number of bonded
IOBs

193 240 80%

Number of
BUFG/BUFCTRLs

31 32 96%

Number of
DSP481Es

135 288 46%

For testing our design, we run the program of model �tting and tracking. We ex-

tract the geometrical deformation feature vector for a test sample in integer form.

This vector is then applied as a input vector to SVM. Accuracy of the classi�er

using implemented design in given in Table 5.5. Average accuracy obtained is

74.42%. It is less than the accuracy obtained using MATLAB, which is 78%. The

reason for this is real numbers are converted into integers.

98

Table 5.5: Accuracy of classi�er using implemented design on FPGA
Expression Happy Surprise Sad Anger Disgust Fear Neutral

Happy 70% 0 15% 0 0 0 0
Surprise 10% 82% 0 0 0 0 2%
Sad 0 0 65% 11% 15% 15% 0
Anger 0 0 13% 79% 0 0 0
Disgust 6% 8% 7% 10% 67% 15% 3%
Fear 4% 6% 0 0 0 68% 5%
Neutral 10% 4% 0 0 18% 2% 90%

5.7 Conclusions

FPGA implementation of the design involving, large number of big matrix multi-

plications of real number is a challenging problem. Either real numbers should be

converted into integers or �oating point arithmetic must be used. But, for �oating

point arithmetic, more number of resources are required on FPGA. For small pro-

grams, it will work �ne, but for complex one it is di�cult. In some applications,

conversion of real numbers into integers can given desirable results, but in our

case it fails as far as model �tting and tracking part is considered. But, we got

considerable accuracy in case of implementation of SVM. For model �tting and

tracking part, we have tried using �oating point arithmetic, but we got error as it

requires large number of resources which are not available on FPGA. To reduce the

complexity and matrix size, we have modi�ed our model �tting and tracking code

in MATLAB. Our image size is 33 × 40 so all vectors are of size 1320 × 1. Eigen

matrix is of size 1320×1320. So all computations are running around this matrix.

So we reduced our image size to 15×20. But, our image processing algorithm fails

on this size of image.

The only possible solution over this could be hardware software codesign ap-

proach, where some part should be performed on software and some on FPGA. In

our future work, we are trying to design such system.

99

100

Chapter 6

Facial expression recognition using

sparse representation classi�er

The shortcoming of the SVM is that it is often not as compact as the other clas-

si�ers such as neural networks. The performance is not ideal when the classes are

highly correlated to each other. Sparse representation classi�er (SRC), �rst codes

a testing sample as a sparse linear combination of all the training samples, and

then classi�es the testing sample by evaluating which class leads to the minimum

representation error. SRC is much more e�ective than state-of-art methods in

dealing with facial expressions. If an appropriate kernel function is utilized for

a test sample, more neighbors probably have the same class label in the high di-

mensional feature space. Sparse representation in the high dimensional space can

improve the performance of recognition and discriminative ability. Using kernel

approach we can change the distribution of samples by mapping them into a high

dimensional feature space by a nonlinear mapping. The sample can be represented

more accurately by sparse representation dictionary, in the high dimensional fea-

ture space.

Representing signals as linear combinations of basis vectors sparsely selected

from an overcomplete dictionary has proven to be advantageous for many appli-

cations in pattern recognition, machine learning, signal processing, and computer

vision. In the sparse representation classi�er algorithm, it is assumed that the

whole set of training samples form a dictionary, and then the recognition problem

is cast as one of discriminatively �nding a sparse representation of the test image

as a linear combination of training images [70].

6.1 Sparse representation based classi�er

For the training samples of a single class, this assumption can be expressed as

101

dk,test = αk,1dk,1 + αk,2dk,2 + · · · ·+αk,nkdk,nk + εk (6.1)

dk,test =

nk∑
i=1

αk,idk,i + εk (6.2)

dk,test is the test sample (deformed feature vector of test image) of the kth class.

dk,i is the i
th training sample (deformed feature vector of training image) of kth

class.

αk,i is the corresponding weight and εkis the approximation error. For the training

samples from all c classes the above equation can be expressed as

dk.test = α1,1d1,1 + · ·+αk,1dk,1 + · ·+αk,nkdk,nk + · · αc,ncdc,nc + ε

dk,test = Aα + ε (6.3)

A = [d1,1 · · · d1,n1 · · · dk,1 · · · ·dk,nk · · · dc,1 · · · dc,nc]

α = [α1,1 · · · α1,n1 · · · αk,1 · · · ·αk,nk · · · αc,1 · · · αc,nc]

The linearity assumption in the SRC algorithm coupled with 6.3 implies that the

weight vector α should be zero except those associated with the correct class of

the test sample. To obtain the weight vector α we have used l1norm minimization

problem [71].

min ‖α‖1subject to ‖dk,test − Aα‖2 ≤ ε

This is a convex optimization problem and can be solved by quadratic program-

ming. Once a sparse solution of α is obtained, for each class i the reconstructed

sample is calculated as

drecons(i) =

ni∑
j=1

αi,jdij (6.4)

For each class i compute the residual between test sample and reconstructed sam-

ple as

r(dtest, i) = ‖dk,tets − drecons(i)‖2 (6.5)

The class of the given test sample is determined as

class of test sample = argmin i r(dtest,i) (6.6)

6.2 Kernel SRC

We know that kernel approach can change the distribution of samples by mapping

the samples into a high dimensional feature space by a nonlinear mapping. In the

high dimensional feature space, the sample can be represented more accurately by

sparse representation dictionary.

We have c classes and the set of training samples is A = [A1, A2,Ac] =

[d1,1, d1,2,dc,nc] where n is total number of training samples. A is a matrix of

102

training samples in original space. Let us say y is a test sample, the samples are

mapped from original feature space into a high dimensional feature space y →
φ(y); A = [d1,1, d1,2,dc,nc] → U = [φ(d1,1), φ(d1,2).....φ(dc,nc)] by a nonlinear

mapping. Here U is a matrix of training samples in high dimensional space and

φ is mapping function from original dimensional space to high dimensional space

[71]. It can be formulated as

φ(y) = Uv (6.7)

Where φ(y) is test sample in high dimensional feature space and v is vector of

sparse coe�cients in high dimensional space. We use l1norm minimization prob-

lem. min ‖v‖1subject to ‖Uv − φ(y)‖2 ≤ ε

We can write

∥∥UTUv − UTφ(y)
∥∥
2
≤ δ (6.8)

where δ = UT ε and UTU = [φ(d1,1), φ(d1,2),φ(dc,nc)]
T [φ(d1,1), φ(d1,2),φ(dc,nc)]

UTU =


k(d1,1d1,1) k(d1,1d1,2) · · · k(d1,1dc,nc)

k(d1,2d1,1) k(d1,2d1,2) · · · . k(d1,2dc,nc)
...

...
...

...

k(dc,ncd1,1) k(dc,ncd1,2) · · · k(dc,ncdc,nc)

 (6.9)

UTφ(y) = [φ(d1,1), φ(d1,2).....φ(dc,nc)]
Tφ(y)

UTφ(y) =


k(d1,1y)

k(d1,2y)
...

k(dc,ncy)

 (6.10)

Then, we have computed ṽ as follows

ṽ = argmin ‖v‖1
∥∥UTUv − UTφ(y)

∥∥
2
≤ δ (6.11)

Then, we compute residual

ri(y) =
∥∥UTφ(y)− UTUṽ

∥∥
2

(6.12)

Class of y is now computed as

(y) = argmin(ri(y)) (6.13)

103

6.3 SRC using multiple kernels

It is observed that with di�erent kernels, we get di�erent accuracies. One kernel

may not be su�cient to classify the samples. So, we combine several kernels

and design a sparse representation classi�er with multiple kernels. It is a way of

optimizing kernel weights while training dictionary [72]. The mode of multiple

kernel is

k(di, dj) =
m∑
k=1

αkkk(di, dj) (6.14)

where m is the number of kernel function. αk is kernel weights. k is a kernel

function. We restrain the weights of kernel by

m∑
i=1

α2
k = 1 (6.15)

Here αk ≥ 0. Now our objective function becomes

min ‖φ(y)− Uv‖22 (6.16)

Where ‖v‖1 < σ . For sample d and y, we write

φ(di)
Tφ(yj) = k(diyj) (6.17)

Because φ(y) and U are unknown, (6.16) can not be solved directly, but it can be

transformed to

ṽ = argmin
{∥∥UTφ(y)− UTUv

∥∥2
2

+ λ ‖v‖1
}

(6.18)

where λ is Lagrange's multiplier and

UTφ(y) =


∑m

k=1 αkkk(d1,1, y)∑m
k=1 αkkk(d1,2, y)

...∑m
k=1 αkkk(dc,nc , y)

 (6.19)

UTU =


∑m

k=1 αkkk(d1,1, d1,1)
∑m

k=1 αkkk(d1,1, d1,2) · · ·
∑m

k=1 αkkk(d1,1, dc,nc)∑m
k=1 αkkk(d1,2, d1,1)

∑m
k=1 αkkk(d1,2, d1,2) · · ·

∑m
k=1 αkkk(d1,2, dc,nc)

...
...

...
...∑m

k=1 αkkk(dc,nc , d1,1)
∑m

k=1 αkkk(dc,nc , d1,2) · · ·
∑m

k=1 αkkk(dc,nc , dc,nc)


(6.20)

The implementation of SRC with multiple kernels is an iterative process, as the

104

initial weights are not exact weights, they are estimator. Estimator is not optimal.

When the di�erence of weights αi is small enough, the iteration process is stopped.

Recognition rate remains stable after several iterations. After the convergence, we

compute residual as

rj(y) =
∥∥UTφ(y)− UTUṽ

∥∥2
2

(6.21)

Class of sample y will be computed as

(y) = argmin rj(y) (6.22)

6.4 Experimental results

We have used Cohn Kanade database and IMM database for training as well as for

testing of seven facial expressions. For nine facial expressions of Bharatnatyam,

a classical dance style of south India, we have created our own database with the

help of Naatyashastra Institute of �ne arts, Navi Mumbai. Out of nine expres-

sions, seven expressions are similar to seven basic facial expressions. These nine

expressions are Shanta (Neutral), Adbhuta (Surprise), Hasya (Smile), Bhayanak

(Fear), Roudra (Anger), Karuna (Sad), Bibhatsa (Disgust), Shringar (Erotic or

love), and Virya (Heroic). It is shown in Figure 6.1 Recognition accuracy of all

classi�ers for our database is given in Table 6.1. Accuracy using Sparse represen-

tation classi�er is maximum as compared to ANN, Bayesian and SVM classi�er.

Four sets containing 25% of the data for each class, chosen randomly, were cre-

ated. One set containing 25% of the samples for each class is used for the test set,

while the remaining sets form the training set. After the classi�cation procedure

is performed, the samples forming the testing set are incorporated into the current

training set, and a new set of samples (25% of the samples for each class) is ex-

tracted to form the new test set. The remaining samples create the new training

set. This procedure is repeated four times. The average classi�cation accuracy

is the mean value of the percentages of the correctly classi�ed facial expressions.

Detailed results of only nine facial expressions are given here. Confusion matri-

ces of nine facial expressions and accuracy with ANN classi�er is shown in Table

6.2. We got 74% accuracy with ANN. Confusion matrices of nine facial expres-

sions and accuracy with Bayesian classi�er is shown in Table 6.3. We got 75.77%

accuracy with Bayesian classi�er. Confusion matrices of nine facial expressions

and accuracy with one Vs all SVM classi�er is shown in Table 6.4. We got 80%

accuracy with SVM. Confusion matrices of nine facial expressions and accuracy

with SRC classi�er using linear kernel is shown in Table 6.5. We got 84% accuracy

105

with SRC using linear kernel. Confusion matrices of nine facial expressions and

accuracy with SRC classi�er using polynomial kernel is shown in Table 6.6. We

got 87% accuracy with SRC using polynomial kernel. Confusion matrices of nine

facial expressions and accuracy with SRC classi�er using RBF kernel is shown in

Table 6.7. We got 88% accuracy with SRC using RBF kernel. Confusion matrices

of nine facial expressions and accuracy with SRC classi�er using multiple kernel

is shown in Table 6.8. We got 95.7% accuracy with SRC using multiple kernels.

As a multiple kernel we have used linear, polynomial and RBF kernels. From

results, we can see that SRC with multiple kernels outperforms others classi�ers.

Comparison of all classi�ers with SRC is shown in Figure 6.3. Comparison of SRC

with di�erent kernel and multiple kernel is shown in Figure 6.4.

Figure 6.1: Nine facial expressions

Figure 6.2: Few more images from our database

106

Table 6.1: Comparison of recognition results for di�erent classi�ers on our database

Classi�er Accuracy with our own database for 9
facial expressions

ANN 74%
Bayesian 75.77%
SVM 80.11%

SRC with linear kernel 84.77%
SRC with polynomial kernel 87.44%

SRC with RBF kernel 88.22%
SRC with multiple kernel 95.77%

Table 6.2: Confusion Matrices and accuracy for nine facial expressions using ANN

Express

ions

Shanta

(%)

Adbhuta

(%)

Hasya

(%)

Bhayanak

(%)

Roudra

(%)

Karuna

(%)

Bibhatsa

(%)

Shringar

(%)

Virya

(%)

Shanta 84 0 0 0 0 10 0 10 5

Adbhuta 0 80 9 8 10 0 10 0 8

Hasya 0 10 76 8 0 0 10 9 4

Bhayanak 0 10 5 78 10 0 10 0 8

Roudra 2 0 0 0 70 5 0 0 4

Karuna 8 0 0 0 0 69 0 10 0

Bibhatsa 0 0 5 4 5 0 70 0 0

Shringar 4 0 5 2 0 6 0 68 0

Virya 2 0 0 0 5 10 0 3 71

Table 6.3: Confusion Matrices and accuracy for nine facial expressions using Bayesian classi�er

Expressions Shanta

(%)

Adbhuta

(%)

Hasya

(%)

Bhayanak

(%)

Roudra

(%)

Karuna

(%)

Bibhatsa

(%)

Shringar

(%)

Virya

(%)

Shanta 88 0 0 0 2 8 2 10 3

Adbhuta 0 80 8 10 3 0 10 0 0

Hasya 0 6 78 6 0 0 0 10 0

Bhayanak 0 6 8 77 0 5 0 0 4

Roudra 2 0 0 0 75 0 10 2 10

Karuna 4 2 0 0 5 72 2 2 10

Bibhatsa 0 4 6 6 5 2 71 0 0

Shringar 2 0 0 0 0 5 0 72 4

Virya 4 2 0 1 10 8 5 4 69

107

Table 6.4: Confusion Matrices and accuracy for nine facial expressions using one Vs all SVM

classi�er
Expressions Shanta

(%)

Adbhuta

(%)

Hasya

(%)

Bhayanak

(%)

Roudra

(%)

Karuna

(%)

Bibhatsa

(%)

Shringar

(%)

Virya

(%)

Shanta 87 0 0 2 2 13 0 5 5

Adbhuta 0 84 5 5 0 0 5 0 0

Hasya 0 6 85 5 0 0 5 15 0

Bhayanak 0 5 5 81 10 0 5 0 5

Roudra 0 0 0 0 78 0 5 0 10

Karuna 3 0 0 0 0 77 0 0 0

Bibhatsa 0 5 2 5 0 0 80 0 0

Shringar 5 0 0 0 0 5 0 75 6

Virya 5 0 3 2 10 5 0 5 74

Table 6.5: Confusion Matrices and accuracy for nine facial expressions using SRC classi�er

with linear kernel
Expressions Shanta

(%)

Adbhuta

(%)

Hasya

(%)

Bhayanak

(%)

Roudra

(%)

Karuna

(%)

Bibhatsa

(%)

Shringar

(%)

Virya

(%)

Shanta 92 0 0 0 5 4 2 4 0

Adbhuta 0 91 6 5 0 4 5 0 4

Hasya 0 5 89 5 0 0 8 8 4

Bhayanak 0 4 0 85 0 0 0 2 8

Roudra 0 0 0 0 80 3 3 2 2

Karuna 4 0 0 1 4 81 0 2 0

Bibhatsa 0 0 0 0 4 0 82 0 0

Shringar 4 0 5 3 0 4 0 81 0

Virya 0 0 0 1 7 4 0 1 82

Table 6.6: Confusion Matrices and accuracy for nine facial expressions using SRC classi�er

with polynomial kernel

Expressions Shanta

(%)

Adbhuta

(%)

Hasya

(%)

Bhayanak

(%)

Roudra

(%)

Karuna

(%)

Bibhatsa

(%)

Shringar

(%)

Virya

(%)

Shanta 93 0 0 0 5 5 2 4 0

Adbhuta 0 89 6 5 0 0 5 0 4

Hasya 0 7 92 5 0 0 6 5 4

Bhayanak 0 4 0 90 0 0 0 0 8

Roudra 0 0 0 0 85 3 3 5 2

Karuna 3 0 0 0 4 87 0 0 0

Bibhatsa 0 0 0 0 0 0 84 0 0

Shringar 4 0 2 0 0 0 0 85 0

Virya 0 0 0 0 6 5 0 1 82

108

Table 6.7: Confusion Matrices and accuracy for nine facial expressions using SRC
with RBF kernel
Expressions Shanta

(%)

Adbhuta

(%)

Hasya

(%)

Bhayanak

(%)

Roudra

(%)

Karuna

(%)

Bibhatsa

(%)

Shringar

(%)

Virya

(%)

Shanta 93 0 0 0 0 3 0 3 2

Adbhuta 0 91 7 9 2 0 0 0 0

Hasya 0 0 87 0 5 3 4 10 0

Bhayanak 0 6 3 89 3 0 6 0 3

Roudra 0 0 0 2 88 0 0 0 9

Karuna 0 0 0 0 0 87 0 0 4

Bibhatsa 0 0 0 0 0 0 90 0 0

Shringar 4 0 3 0 0 0 0 87 0

Virya 3 3 0 0 2 7 0 0 82

Table 6.8: Confusion Matrices and accuracy for nine facial expressions using SRC
with multiple kernel
Expressions Shanta

(%)

Adbhuta

(%)

Hasya

(%)

Bhayanak

(%)

Roudra

(%)

Karuna

(%)

Bibhatsa

(%)

Shringar

(%)

Virya

(%)

Shanta 98 0 0 0 0 3 0 0 0

Adbhuta 0 97 0 6 2 0 0 0 0

Hasya 0 0 97 0 0 3 2 4 0

Bhayanak 0 3 0 94 3 0 2 0 3

Roudra 0 0 0 0 95 0 0 0 0

Karuna 0 0 0 0 0 94 0 0 2

Bibhatsa 0 0 0 0 0 0 96 0 0

Shringar 2 0 3 0 0 0 0 96 0

Virya 0 0 0 0 0 0 0 0 95

Figure 6.3: Comparison of all classi�ers

109

Figure 6.4: Comparison of SRC classi�er di�erent kernels

110

Chapter 7

Development of mathematical model

for facial expression recognition

Topographical maps are being recognized as one of the major computational struc-

tures underlying neural computations in the brain. They provide dimension reduc-

ing feature spaces that seem to be established and maintained under the partici-

pation of self organizing adaptive processes. The structure of these maps can be

replicated by simple adaptive processes and can be realized by the use of mathe-

matical models. We propose a novel way of recognizing facial emotion expressions

by using mathematical modeling [73] of the brain functioning i.e. �nding neuronal

structures that takes place in the brain while it learns to recognize various facial

expressions.

Faces are considered dynamic objects that can undergo a vast number of non

rigid transformations. Facial images contain features that can be used to under-

stand, di�erent expressions and facial states. For instance, the shape of the mouth

can be used to detect the emotive state of a subject, such as happiness and anger.

In order to identify and analyze facial expressions, a well de�ned description of

the deformations is required. It is relatively straightforward to identify a descrip-

tion of rigid transformations such as rotation and translation. However, a simple,

natural description of non rigid deformations need be de�ned. One method for

creating a framework to study facial deformations is to construct a model of the

facial muscles and skin tissue based on anatomical descriptions. This approach is

limited by the quality of existing biological models and its complexity. Another

approach models the parts of the face, that are relevant for understanding motion.

Only the eyes and mouth are studied, since these are considered to be the most

important features possessing expressive power. On static images, expressions

have been represented as the deviation of spatial points, i.e. about 100 special

points and deviation from their neutral position. In this Chapter, we propose a

111

framework that allows the description of facial expressions and movement based

on image features.

7.1 Face detection

Face detection is the �rst step of facial expression recognition system. It is a

method that determines the locations and sizes of human faces in arbitrary im-

ages, and detects facial features and ignores anything else, such as buildings, trees

and bodies. It can be regarded as a speci�c case of object class detection. In

object class detection, the task is to �nd the locations and sizes of all objects

in an image that belong to a given class. To design fully automatic system, the

primary requirement is to automatically detect the face in the scene. The high

variability of faces encountered in nature, the pose and illumination variations,

the gender, ethnicity and age problems combine to make this task tougher and

more complicated than it seems. The Viola Jones object detection framework [57]

was probably the �rst object detection framework to provide competitive object

detection rates in real time. Although, it can be trained to detect a variety of

object classes, it was motivated primarily by the problem of face detection. The

object detection procedure classi�es images based on the value of simple features.

The most common reason for using features rather than pixels is that features can

act to encode ad-hock domain knowledge that is di�cult to learn using a �nite

quantity of training data. The second critical reason for using features is that the

feature based system operates much faster than a pixel based system.

7.1.1 Viola Jones algorithm

Paul Viola and Michael Jones [57] proposed an e�cient image representation called

the integral image that allows fast image computations and manipulations. They

have combined this representation with an extension of the AdaBoost machine

learning algorithm to design a face detector. The face detector scans patches of

the input image for the potential presence of a face. The detector extracts features

relevant for the detection of faces. Each feature detects a certain visual pattern,

such as a vertical contour, and translates the pattern into a number indicating

the degree of presence of the pattern. The translation is based on summations of

the individual pixel values. Within a small patch, typically a 24× 24 pixel region,

features are detected at all positions and sizes, which can lead to a very large

number of features and associated numbers. They have used AdaBoost method

to discard the vast majority of features and to retain only those that contribute

to face detection. They create a strong classi�er from a series of weak classi�ers.

112

Each of the features can be regarded as a weak classi�er, i.e., each weak classier is

a straightforward threshold function that returns a 1 if the feature value lies above

the threshold, and a 0 otherwise. The threshold value is the only parameter of the

weak classi�er. The classi�cation performance of one weak-learner is presumably

low. However, given a training set i.e. image regions labeled with a `1' if containing

a face and with a `0' otherwise, AdaBoost incrementally selects the best weak

learner and the appropriate threshold value and then constructs a summed (strong)

classi�er until a certain level of performance is reached. They further improved

the e�ciency of the face detector by creating a cascade of boosted classi�ers.

Patches are processed in a stage wise fashion through the cascade. If at any

stage of the cascade a patch is rejected, it is classi�ed as containing a non face.

Only those patches that reach the �nal stage are classi�ed as containing a face.

The combination of the integral image representation and the cascaded AdaBoost

algorithm has been shown to be a highly e�ective face detector that is used in

virtually all real time face detection software. Face detection result using Viola

Jones algorithm is shown in Figure7.1.

Figure 7.1: Face detection

7.2 Pre processing

Image Pre processing is similar to signal conditioning. We preprocessed the im-

age for noise removal, and normalization against the variation of pixel position

or brightness, together with segmentation, location, or tracking of the face or

its parts. Expression representation can be sensitive to translation, scaling, and

rotation of the head in an image. To combine the e�ect of these unwanted trans-

formations, the facial image is geometrically standardized prior to classi�cation.

Pre processed image is shown in Figure 7.2

113

Figure 7.2: Pre Processed Image

7.3 Feature extraction

Feature extraction generally reduces the dimensionality of the input space. The

reduction procedure retains essential information possessing high discrimination

power and high stability. Here, we have used Gabor �lters for the facial feature

extraction.

7.3.1 Gabor Filters

A Gabor �lter, named after Dennis Gabor, is a linear �lter used for edge detec-

tion [74]. Frequency and orientation representations of Gabor �lters are similar

to those of the human visual system. They have been found to be particularly

appropriate for texture representation and discrimination. In the spatial domain,

a 2D Gabor �lter is a Gaussian kernel function modulated by a sinusoidal plane

wave. The Gabor �lters are self similar. All �lters can be generated from one

mother wavelet by dilation and rotation. Its impulse response is de�ned by a har-

monic function multiplied by a Gaussian function. Because of the multiplication

convolution property, the Fourier transform of a Gabor �lter's impulse response is

the convolution of the Fourier transform of the harmonic function and the Fourier

transform of the Gaussian function. The �lter has a real and an imaginary com-

ponent representing orthogonal directions. Gabor �lters are directly related to

Gabor wavelets, since they can be designed for a number of dilation's and rota-

tions. However, in general, expansion is not applied for Gabor wavelets, since this

requires computation of bi orthogonal wavelets, which may be very time consum-

ing. Therefore, usually, a �lter bank consisting of Gabor �lters with various scales

and rotations is created. The �lters are convolved with the signal, resulting in a

so called Gabor space [74]. The Gabor space is very useful in image processing

applications such as optical character recognition, iris recognition and �ngerprint

recognition. Relations between activations for a speci�c spatial location are very

distinctive between objects in an image. Furthermore, important activations can

114

be extracted from the Gabor space in order to create a sparse object represen-

tation. This process is closely related to processes in the primary visual cortex.

Jones and Palmer showed that the real part of the complex Gabor function is

a good �t to the receptive �eld weight functions found in simple cells in a cat's

striate cortex.

We have used a set of Gabor �lters with di�erent frequencies and orientations

for extracting useful features from an image. The features extracted are given as

an input to the Mathematical model and the outputs are generated. Figure 7.3

shows di�erent features extracted when passed through Gabor �lters and Figure

7.4 shows amalgamations of di�erent features extracted.

Figure 7.3: Di�erent features extracted when passed through Gabor �lters

Figure 7.4: Amalgamation of Features extracted

115

7.4 Generation of inputs to mathematical model

As we proceed to the next section explaining the mathematical model, it will be

understood that there is a need of generation of four dimensional data sets for

the images based on the position and orientation or the direction of the gradients.

To generate such a data set, following procedure is adopted. Gradient images are

created from the original image. Gradient of an image is the measure of change

in the intensity of image in the direction of X and Y . We use this property

to determine the magnitude and orientation of the vector using the following

property.

‖∇F‖ =

√(
∂F

∂x

)2

+

(
∂F

∂y

)2

(7.1)

θ = tan−1
[
∂F
∂y/∂F∂x

]
(7.2)

Magnitude of image gradient is given as in (7.1), while (7.2) gives orientation

angle. Each pixel of a gradient image measures the change in intensity of that

same point in the original image, in a given direction. To get the full range of

direction, gradient images in the x and y directions are computed. Figure 7.5

shows gradient magnitude and orientation extracted.

Figure 7.5: Image showing gradient magnitude and orientation extracted

116

7.5 Neural Algorithm

Figure 7.6: Neural architecture in biological systems

A typical schematic of biological neuron is shown in Figure 7.6. When an axon of

cell A is near enough to excite a cell B and repeatedly or persistently takes part

in �ring it, some growth process or metabolic change takes place in one or both

cells such that A's e�cacy, as one of the cells �ring cell B is increased. Brain is

a self organizing system that can learn by itself by changing(adding, removing,

strengthening) the interconnections between neurons. Any system that takes a

form that is not imposed from outside (by walls, machines or forces) can be said

to self organized. The result of brain's self organization is the formation of feature

maps in the brain that have a linear or planar topology (that is, they extend in

one or two dimensions). Examples are (i) nitpick map in which sound frequencies

are spatially mapped into regions of the cortex in an orderly progression from low

to high frequencies. (ii) Retinitis map in which visual �eld is mapped in the visual

cortex (occipital lobe) with higher resolution for the center of the visual �eld.

The mathematical model used to classify the facial expression is modelled based

on the striate cortex of higher intelligence animals. The striate cortex of higher

animals contains a topographical representation of visual space. Neighborhood

preserving maps of several variables describing the features such as position in the

visual space, line orientation, movement direction, and ocularity are embedded

in the representation. The representation of the multidimensional feature space

onto the two dimensional cortical sheet is achieved in a hierarchical fashion. The

topographic projection of the retina establishes a primary order, and for each small

region of the visual �eld there are patches or stripes of cells with similar feature

preference. Here, we have used a mathematical model based on the principle of

continuous mapping to replicate the visual space. We have used it to determine

the facial expressions. In the visual cortex, retinoptic location de�nes the primary

feature that is mapped smoothly across the visual cortex. The spatial variation

117

of additional secondary feature, such as orientation and occularity is smooth only

in local domains, which are separated by boundaries where rapid changes occur.

We have used a self organizing feature map (SOFM) algorithm for the forma-

tion of a topographical representation of a set of patterns given as vectors in some

input or feature space [73]. We have extracted features from a face image using

a Gabor �lter. From these extracted features, we compute image gradient, and

from image gradient, we construct a feature vector. This feature vector is mapped

on a neuron structure using SOFM.

Figure 7.7: The Low dimensional network model [3]

Schematic drawing of the model is shown in Figure 7.7. The cells rεA are

arranged onto a two dimensional network layer to match the topology of cortical

layer containing the feature map. The cell is not identi�ed with the single neuron,

but rather with a group of neurons or with some small patches of tissue where

neurons, with common response properties are located. In the visual system,

receptive �elds are de�ned by the connection patterns that a higher level cell

receives from the level immediately below. The retinal RFs are circular as shown

below in 7.8. Cortical receptive �elds are usually elongated in nature with sub�elds

as shown in Figure 7.9. A cortical cell receives excitatory connections from green

cells and inhibitory connections from the red cells. More deeper the color, higher

is the excitation or inhibition.

Figure 7.8: Retinal Receptive Field

118

Figure 7.9: Cortical receptive �eld with sub�eld

To describe the receptive �eld properties position (xr, yr) of the receptive �eld

centers in the visual space, preferred orientation φr and orientation speci�city qr

for a cell r we use a four dimensional feature vector [3]

−→
Wr = (xr, yr, qrcos(2φr), qrsin(2φr)) (7.3)

Orientation speci�city is the tuning value of the receptive �eld. If the response

of a cell to external stimuli is Gaussian in nature, then orientation speci�city can

be de�ned as half of the standard deviation.The dependence of these feature vec-

tors on the cell locations r describes the spatial distribution of the selectivity of

cells over the cortical layer. The position of the receptive �eld is given by the co-

ordinates (xr, yr) of its centroid. Preferred orientation is given by the orientation

φr of the receptive �eld major axis. Orientation speci�city is given by its elonga-

tion. The net neural receptivity is determined by the preferred orientation and

the speci�city coordinates. Higher the speci�city of r towards the direction φr,

higher it is receptive to the input vector which is in the direction of φr. The input

to the network layer consists of localized oriented stimuli. They are described by

a feature vector, which is the same type as of Wr and is given in (7.4)

−→v = (x, y, qcos(2φ), qsin(2φ)) (7.4)

7.6 SOFM Algorithm

Self organizing feature maps (SOFM) are based on unsupervised learning. Su-

pervised learning discover patterns in the data that relate data attributes with a

target (class) attribute. These patterns are then utilized to predict the values of

the target attribute in future data instances. While during unsupervised learning,

the data have no target attribute. We want to explore the data to �nd some

intrinsic structures in them. Di�erent steps in the algorithm are given below.

119

� Structure of neurons is arranged in a two dimensional grid as shown in Figure

7.10. It is a structure of 10 × 10 neurons. In our case it is a structure of

50× 50 neurons. Input vector is [v1, v2,vn].

Figure 7.10: Neuron structure

� Weight is assigned to each neuron, so each neuron contains a weight vector

[f1, f2.....................fn].

� Initialize the weights to the neuron randomly or pregenerated.

� Iterate through inputs. Our neuron structure is 50 × 50 neurons. While

our image size obtained after passing through the Gabor �lter is 100× 100.

Thus, we have 10,000 feature vectors. These vectors are mapped on 50× 50

neuron structure, so, our input is 10000. Number of iterations is 10000.

� Present training data to the map and let the cells on the map compete to

win in some way. Usually the cell with closest distance to the presented

training vector is called the �winner�. Euclidean distance is usually used.

� Adjust weights of �winning� neuron and its neighbors by using Gaussian or

Mexican hat. Update process is shown in Figure 7.11. While mapping input

feature vector on neuron structure, we �rst �nd the neuron which best match

with the input vector and it is declared as winning neuron. See equation (

7.5). Weights of neighboring neurons are adjusted using (7.6) and (7.7).

120

Figure 7.11: Update process

� Find the closest node to the presented feature vector. and their neighbor-

hood nodes. Stimulate them by making them a little more like the presented

feature vector as shown in Figure 7.12. After mapping input vector on neu-

ron structure, weight of a neuron is updated. It is shown by dotted line

in the Figure 7.12. Weight of neighboring neurons are also updated as per

equation (7.6) and (7.7).

Figure 7.12: Adjusting weights of nodes

In our case, a set of stimuli described by the stimulus vector v, drives the

model to adapt its feature vectors Wr by an iterative sequence of steps. At the

beginning of each step a feature vector v is chosen at random according to the

probability distribution P (v). Using a distance measure d which in our simulations

d(−→v ,
−→
W) =

∣∣∣−→v −−→W ∣∣∣2, the cell ~s whose feature vector ~Ws is closest to vector ~v is

determined by

121

−→s = min d(−→v,
−→
Wr) (7.5)

And the attached feature vectors are updated according to the SOFM rule.

−→
Wr(t+ 1) =

−→
Wr(t) + ε(t)h(−→r ,−→s , t)(−→v −

−→
Wr(t)) (7.6)

An essential element of the equation is the presence of the 'kernel' h(r, s, t)

that correlates the changes of the cells at neighboring positions r, s and is given

by

h(−→r ,−→s , t) = exp

(
−(r1 − s1)2

σ2
h1(t)

− (r2 − s2)2

σ2
h2(t)

)
(7.7)

The equations have been shown to lead under a broad variety of feature vectors

that can be characterized to the spatial �elds of the feature vector Wr which can

be characterized by following two conditions (i). the variation of Wr with the cell

position r is as continuous as possible, and (ii). the resulting vectors Wr span the

range over which the feature combinations vary in the set of input patterns. These

two complementary requirements which are, favours uniformity and demands di-

versity for the feature vectors. The quantities σh1 and σh2 parametrize the shape

of the kernel h and therefore, determine the range over which response properties

of the cells are kept correlated. σh1 and σh2 are the major and axes of the neigh-

borhood function or they are the principal and orthogonal standard deviations of

the neighborhood function. During the training phase, various orientations are

used to generate the matured orientation map of the brain [73]. Initial orientation

preferences of the neurons are as shown in �g.7.13(a). Once the brain learns to

recognize orientation patterns from the visual space, the orientation preferences

of brain cells looks like shown in �g.7.13(b).

Figure 7.13: (a) Initial orientation preferences of the neurons (b) orientation pref-
erences of the neurons in a matured brain

122

Figure 7.14: Outputs (a) Locations of the receptive �eld centers (b) Distribution
of orientation preference

7.7 Experimental Results

Various pinwheels observed in the orientation map correspond to folding in space

as observed in the network shown in Figure 7.14. Figure 7.15(a) shows the to-

pographical representation of visual space based on the SOFM algorithm. The

diagram presents the locations (xr, yr) of the receptive �eld centers in the visual

space of all the cells in the network layer. Receptive �eld centers of the neigh-

boring �eld's cells were connected by lines. An ideal topographical representation

of the visual space to the network layer would give rise to a square lattice with

equal mesh size in the �gure. These distortions are due to constraint map of more

than two dimensional feature space on a two dimensional cortical surface. Figure

7.15(b) shows the �nal distribution of orientation preference φr (color) and speci-

�city qr (saturation) along the network layer for a map generated in the regime

above the threshold with appropriate neighborhood function. Outputs generated

for same expression (Disgust) of di�erent peoples is shown in Figure 7.15. Outputs

generated for di�erent expressions of same person is shown in Figure 7.16. Out-

puts generated for happy, surprise, and sad expressions of 10 peoples are shown

in Figure 7.17, 7.18, and 7.19 respectively. For various expressions, the network

folding pattern will be di�erent. During the training phase unique folding pat-

terns or structures will be generated for various expressions. During the testing

phase, pattern having the maximum similarity with the stored pattern will be the

winner, and the recognized expression will be the expression corresponding to the

stored pattern. So we have used multilayer perceptron arti�cial neural network to

classify these patterns. The neural network architecture used in the present study

123

consists of three layers (i) an input (ii) a hidden and (iii) an output layers. The

number of neurons in input layer is 2500. By varying the number of neurons in

the hidden layer, the optimum result is obtained. The variations are 800, 1200,

2000 and 3000 neurons plus one bias. The last layer is output layer and it has 7

neurons each corresponding to one facial expressions. The activation function is

sigmoid bipolar for hidden layer and sigmoid for output layer. This is because the

expected output value is binary i. e., 0 or 1. Learning rate is also varied (0.25 and

0.5). The target of error and maximum epoch are 0.0001 and 1000 respectively.

Confusion matrix and accuracy of facial expression recognition is shown in Table

7.1. Four sets containing 25% of the data for each class, chosen randomly, were

created. One set containing 25% of the samples for each class is used for the test

set, while the remaining sets form the training set. After the classi�cation proce-

dure is performed, the samples forming the testing set are incorporated into the

current training set, and a new set of samples (25% of the samples for each class) is

extracted to form the new test set. The remaining samples create the new training

set. This procedure is repeated four times. The average classi�cation accuracy is

the mean value of the percentages of the correctly classi�ed facial expressions. It

is 91.42%.

Figure 7.15: Outputs generated for same expression of di�erent people

Figure 7.16: Outputs generated for di�erent expressions of the same person

124

Figure 7.17: Outputs generated for happy expression of di�erent persons

Figure 7.18: Outputs generated for surprise expression of di�erent persons

Figure 7.19: Outputs generated for sad expression of di�erent persons

125

Table 7.1: Confusion Matrix and accuracy of facial expression recognition

Expression Happy % Surprise % Sad % Anger % Disgust % Fear % Neutral %

Happy 89 2 0 0 0 2 3
Surprise 0 92 0 0 0 4 0
Sad 0 0 90 0 0 3 2
Anger 4 2 4 91 4 0 0
Disgust 0 0 0 6 94 0 0
Fear 7 4 4 3 0 91 2
Neutral 0 0 2 0 0 0 93

126

Chapter 8

Conclusions and Future Work

The aim of this thesis has been to explore and propose e�cient algorithm for facial

expression recognition and illustrate low latency verion implementation (FPGAs).

Beginning with the motivation for facial behavior analysis, we reviewed this �eld

of science, which has been extensively studied in terms of application and automa-

tion. Earlier, facial expression analysis was done manually by psychologists. Now,

it will be done by suitable computer software. Extensive research is going on in

this �eld and variety of image processing techniques is developed for the facial

expression recognition. However, there are still many challenges and problems to

solve in such systems, especially in the area of their performance and applicability

improvement.

Ours has been one more step further in this direction. Large variety of faces,

pose, and illumination are the parameters which makes these system more compli-

cated. Apart from literature review, this work provides the design and implemen-

tation of Facial Expression Recognition System. Proposed system is developed

to process the video or image sequence and recognize facial expressions. Major

strengths of the system are full automation and recognize expressions from frontal

as well as tilted faces with respect to y axis. Even though the system cannot han-

dle occlusions, the head shifts are allowed. Additionally, the recognition results

are quite promising with regard to the fact that only geometrical information is

given to the classi�er.

To summarize, we have used a wire frame model, Active appearance algorithm

and Support vector machine for facial expression recognition. Our system rec-

ognize facial expressions from image sequence of frontal as well as tilted faces.

We have designed algorithm for facial feature point extraction. We have devel-

oped algorithm for �tting wire frame model automatically on �rst frame of image

sequence. In subsequent frames facial feature points are tracked using Active Ap-

pearance Approach. Here we removed the necessity of the �rst frame to be of

neutral facial expression. As a classi�er we use multiclass SVM. For classi�er,

127

only geometrical information is given, no texture information is required. With

hardware implementation we made the system real time. Execution time is con-

siderably reduced with hardware implementation. Power saving is increased as

partial recon�guration is used.

We have used our approach to recognize nine facial expressions of Indian clas-

sical dance style �Bharatnatyam�. These expressions are shringar (Erotic), hasya

(Happy), karuna (Sad), raudra (Anger), veera (Heroic), bhayanak (Fearful), bib-

hatsa (Disgust), adbuta (Surprise), shanta (Neutral). We have created our own

database. We have designed multiple kernel sparse representation classi�er and

showed that it outperforms the other classi�ers.

Also, work is undergoing to improve the time e�ciency of our system in order

to make it appropriate to use in di�erent real time (real life) applications such as

patient monitoring, computerized tutor system, and human computer interaction.

In AAM, for computing synthesized images, we have performed principal compo-

nent analysis (PCA) on training images. For accurate model �tting on variety of

images, training set should consists of as many variety of images as possible. To

achieve this, in future we propose to use incremental PCA. So in real time, when

model �ts on new image, that image will be added in training set automatically

and a new matrix of eigen face images will be generated. This will save training

time and reduce the o� line computations with increase in variety of images.

We have developed a mathematical model using self organizing feature map,

analogous to mapping of image in the visual cortex of the brain, for facial expres-

sion recognition. We got di�erent patterns for di�erent expressions of di�erent

persons. We have classi�ed these patterns using ANN and got 91% recognition

accuracy. This technique is used for recognition of facial expressions from still

images.

128

Bibliography

[1] B. Fasel and J. Luettin, �Automatic facial expression analysis: A survey,�

Pattern Recognition, vol. 36, no. 1, pp. 259�275, 2003.

[2] I. Pandzic and R. Forchheimer, �MPEG--4 Facial animation: The standard,

implementation and applications,� John Wiley and sons, 2002.

[3] K. Obermeyer and H. Ritter, �A model for the development of the spatial

structure of retinotopic maps and orientation columns,� IEICE Transactions

Fundamentals, vol. 75, pp. 537�545, May 1992.

[4] M. Pantic and L. J. M. Rothkrantz, �Automatic analysis of facial expressions:

The state of the art,� IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, pp. 1424�1445, Dec. 2000.

[5] P. Ekman and W. V. Friesen, �Facial action coding system manual,� Palo

Alto consulting Psychologists Press, 1978.

[6] A. Samal and P. Iyenger, �Automatic recognition of human faces and facial

expressions: A survey,� Pattern Recognition, vol. 25, no. 1, pp. 65�77, 1992.

[7] M. Bartlett, G. Littlewort, I. Fasel, and J. R. Movellan, �Real time face

detection and facial expression recognition: Development and applications

to human computer interaction,� Proc. Conf. Computer Vision and Pattern

Recognition Workshop, Madison, WI, vol. 5, pp. 53�58, Jun 2003.

[8] K. Anderson and W. Peter, �A real time automated system for the recog-

nition of human facial expressions,� IEEE Trans. on systems, Man, and

Cybernetics Part B Cybernetics, vol. 36, pp. 96�105, Feb 2006.

[9] G. Abrantes and F. Pereira, �MPEG-4 facial animation technology: survey,

implementation, and results,� Circuits and Systems for Video Technology,

IEEE Transactions on, vol. 9, pp. 290�305, Mar 1999.

[10] Y. Yacoob and L. Davis, �Recognizing human facial expressions from long

image sequences using optical �ow,� IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 18, pp. 636�642, June 1996.

129

[11] M. J. Black and Y. Yacoob, �Recognizing facial expressions in image se-

quences using local parameterized models of image motion,� lnt'l J. Com-

puter Vision, vol. 25, no. 1, pp. 23�48, 1997.

[12] S. Kimura and M. Yachida, �Facial expression recognition and its degree

estimation,� Proc. Computer Vision and Pattern Recognition, pp. 295�300,

1997.

[13] H. Wu, T. Yokoyama, D. Pramadihanto, and M. Yachinda, �Face and facial

feature extraction from color image,� Proc. Int'l Conf. Automatic Face and

Gesture Recognition, pp. 343�350, 1996.

[14] I. A. Essa and A. P. Pentland, �Coding, analysis, interpretation, and recog-

nition of facial expressionsl,� IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 19, pp. 757�763, July 1997.

[15] A. Pentland, B. Moghaddam, and T. starner, �View based and modular

eigenspaces for face recognition,� Proc. Computer vision and Pattern Recog-

nition, pp. 84�91, 1994.

[16] E. Simoncelli, �Distributed representation and analysis of visual motion,�

PhD thesis, Massachusetts Inst. of Technology, 1993.

[17] J. F. Cohn, A. J. Ziochower, J. J. lien, and T. kanade, �Feature point tracking

by optical �ow discriminates subtle di�erences in facial expression,� Proc.

Int'l Conf. Automatic Face and Gesture Recognition, pp. 396�401, 1998.

[18] B. Lucas and T. Kanade, �An iterative image registration technique with

an application to stereo vision,� Proc. Joint Conf. Arti�cial Intelligence,

pp. 674�680, 1981.

[19] M. Wang, Y. Iwai, and M. Yachindai, �Expression recognition from time-

sequential facial images by use of expression change model,� Proc. Int'l Conf.

Automatic Face and Gesture Recognition, pp. 324�329, 1998.

[20] J. Buhmann, J. Lange, and C. von der Malsburg, �Distortion invariant object

recognition matching hierarchically labelled graphs,� Proc. Int'l Joint Conf.

Neural Networks, pp. 155�159, 1989.

[21] Y. Tian, T. Kanade, and J. Cohn, �Recognizing action units for facial expres-

sion analysis,� IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 97�115,

Feb 2001.

130

[22] I. Cohen, N. Sebe, S. Garg, L. S. Chen, and T. S. Huanga, �Facial expression

recognition from video sequences: temporal and static modelling,� Comput.

Vis. Image Understand, vol. 91, no. 5, pp. 160�187, 2003.

[23] T. Hai and T. Huang, �Connected vibrations: a modal analysis approach for

non-rigid motion tracking,� IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pp. 735 �740, June 1998.

[24] P. Michel and R. Kaliouby, �Real time facial expression recognition in video

using support vector machines,� Proc. 5th Int. Conf. Multimodal interfaces,

Vancouver, BC, Canada, pp. 258�264, 2003.

[25] M. Valstar, I. Patras, and M. Pantic, �Facial action unit recognition us-

ing temporal templates,� 13th IEEE International Workshop on Robot and

Human Interactive Communication, pp. 253�258, 2004.

[26] A. Bobick and J. Davis, �The recognition of human movement using tempo-

ral templates,� IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 23, 2001.

[27] M. Isard and A. Blake, �Condensation - conditional density propagation for

visual tracking,� International Journal of Computer Vision, 1998.

[28] M. Pantic and I. Patras, �Detecting facial actions and their temporal seg-

ments in nearly frontal-view face image sequences,� in Systems, Man and

Cybernetics, 2005 IEEE International Conference on, vol. 4, pp. 3358�3363,

Oct 2005.

[29] W. Zheng, X. Zhou, C. Zou, and L. Zhao, �Facial expression recognition

using kernel canonical correlation analysis (kcca),� Neural Networks, IEEE

Transactions on, vol. 17, pp. 233�238, Jan 2006.

[30] I. Kotsia and I. Pitas, �Facial expression recognition in image sequences

using geometric deformation features and support vector machines,� IEEE

Transactions on Image Processing, vol. 16, pp. 172�187, Jan. 2007.

[31] J. Y. Bouguet, �Pyramidal implementation of the Lucas-Kanade feature

tracker,� tech. rep., Intel Corporation, Microprocessor Research Labs, 1999.

[32] I. Kotsia, I. Buciu, and I. Pitas, �An analysis of facial expression recognition

under partial facial image occlusion,� Image and Vision Computing, vol. 26,

no. 7, pp. 1052 � 1067, 2008.

131

[33] S. Lajevardi and M. Lech, �Facial expression recognition from image se-

quences using optimized feature selection,� 23rd International Conference

on Image and Vision Computing New Zealand, pp. 1�6, 2008.

[34] P. Viola and M. Jones, �Robust real-time object detection,� tech. rep., Cam-

bridge Research Laboratory Technical report series, February 2001.

[35] Z. Ligang and D. Tjondronegoro, �Facial expression recognition using facial

movement features,� A�ective Computing, IEEE Transactions on, vol. 2,

pp. 219�229, Oct 2011.

[36] M. Valstar, M. Mehu, B. Jiang, M. Pantic, and K. Scherer, �Meta-analysis

of the �rst facial expression recognition challenge,� Systems, Man, and Cy-

bernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, pp. 966�979,

Aug 2012.

[37] Y. Li, S. Wang, Y. Zhao, and J. Qiang, �Simultaneous facial feature tracking

and facial expression recognition,� Image Processing, IEEE Transactions on,

vol. 22, pp. 2559�2573, July 2013.

[38] R. A. Khan, A. Meyer, H. Konik, and S. Bouakaz, �Framework for reliable,

real-time facial expression recognition for low resolution images,� Pattern

Recognition Letters, vol. 34, no. 10, pp. 1159 � 1168, 2013.

[39] H. Fang, N. M. Parthalain, A. J. Aubrey, G. K. Tam, R. Borgo, P. L. Rosin,

P. W. Grant, D. Marshall, and M. Chen, �Facial expression recognition in

dynamic sequences: An integrated approach,� Pattern Recognition, vol. 47,

no. 3, pp. 1271 � 1281, 2014.

[40] S. Canavan, X. Zhang, and L. Yin, �Fitting and tracking 3d/4d facial data

using a temporal deformable shape model,� inMultimedia and Expo (ICME),

2013 IEEE International Conference on, pp. 1�6, July 2013.

[41] T. Wu, M. Bartlett, and J. R. Movellan, �Facial expression recognition using

gabor motion energy �lters,� in Computer Vision and Pattern Recognition

Workshops (CVPRW), 2010 IEEE Computer Society Conference on, pp. 42�

47, June 2010.

[42] J. Whitehill, M. Bartlett, and J. Movellan, �Automatic facial expression

recognition for intelligent tutoring systems,� in Computer Vision and Pat-

tern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society

Conference on, pp. 1�6, June 2008.

132

[43] N. Sebe, M. Lew, I. Cohen, Y. Sun, T. Gevers, and T. Huang, �Authen-

tic facial expression analysis,� in Automatic Face and Gesture Recognition,

2004. Proceedings. Sixth IEEE International Conference on, pp. 517�522,

May 2004.

[44] M. Valstar, M. Mehu, B. Jiang, M. Pantic, and K. Scherer, �Meta-analysis

of the �rst facial expression recognition challenge,� Systems, Man, and Cy-

bernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, pp. 966�979,

Aug 2012.

[45] J. Sung, S. Lee, and D. Kim, �A real-time facial expression recognition using

the staam,� in Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, vol. 1, pp. 275�278, 2006.

[46] G. Littlewort, J. Whitehill, T. Wu, I. Fasel, M. Frank, J. Movellan, and

M. Bartlett, �The computer expression recognition toolbox (cert),� in Au-

tomatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE

International Conference on, pp. 298�305, March 2011.

[47] S. Koelstra, M. Pantic, and I. Patras, �A dynamic texture-based approach to

recognition of facial actions and their temporal models,� Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 32, pp. 1940�1954,

Nov 2010.

[48] M. Valstar and M. Pantic, �Fully automatic recognition of the temporal

phases of facial actions,� Systems, Man, and Cybernetics, Part B: Cybernet-

ics, IEEE Transactions on, vol. 42, pp. 28�43, Feb 2012.

[49] M. H. Nguyen, T. Simon, F. De la Torre, and J. Cohn, �Action unit de-

tection with segment-based SVMs,� in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2010.

[50] J. Cohn, A. Zlochower, J. Lien, and T. Kanade, �Feature-point tracking by

optical �ow discriminates subtle di�erences in facial expression,� Proc. Int'l

Conf. Automatic Face and Gesture Recognition, pp. 396�401, 1998.

[51] Y. Li, S. Wang, Y. Zhao, and Q. Ji, �Simultaneous facial feature tracking

and facial expression recognition,� Image Processing, IEEE Transactions on,

vol. 22, pp. 2559�2573, July 2013.

[52] D. Anguita, A. Boni, and S. Ridella, �A digital architecture for support

vector machines: theory, algorithm, and FPGA implementation,� Neural

Networks, IEEE Transactions on, vol. 14, pp. 993�1009, Sept 2003.

133

[53] I. Biasi, A. Boni, and A. Zorat, �A recon�gurable parallel architecture for

SVM classi�cation,� in Neural Networks, 2005. IJCNN '05. Proceedings.

2005 IEEE International Joint Conference on, vol. 5, pp. 2867�2872, July

2005.

[54] A. Boni, F. Pianegiani, and D. Petri, �Low-power and low-cost implementa-

tion of SVMs for smart sensors,� Instrumentation and Measurement, IEEE

Transactions on, vol. 56, pp. 39�44, Feb 2007.

[55] C. Kyrkou and T. Theocharides, �Scope: Towards a systolic array for SVM

object detection,� Embedded Systems Letters, IEEE, vol. 1, pp. 46 �49, aug.

2009.

[56] D. Mahmoodi, A. Soleimani, H. Khosravi, and M. Taghizadeh, �FPGA sim-

ulation of linear and nonlinear support vector machine,� Journal of Software

Engineering and Applications, vol. 4, pp. 320�328, Feb 2011.

[57] P. Viola and M. Jones, �Rapid object detection using a boosted cascade

of simple features,� Computer Vision and Pattern Recognition, Proceedings

of the 2001 IEEE Computer Society Conference on, pp. 511�518, February

2001.

[58] T. F. Cootes, G. Edwards, and C. J. Taylor, �Active appearance models,�

Proc. 5th European Conference on Computer vision, pp. 484�498, 1998.

[59] T. Kanade, J. Cohn, and Y. Tian, �Comprehensive database for facial expres-

sion analysis,� Proc.IEEE Int. Conf. Face and Gesture Recognition, pp. 46�

53, March 2000.

[60] M. M. Nordstrøm, M. Larsen, J. Sierakowski, and M. B. Stegmann, �The

IMM face database - an annotated dataset of 240 face images,� may 2004.

[61] D. Vukadinovic and M. Pantic, �Fully automatic facial feature point de-

tection using gabor feature based boosted classi�ers,� in Systems, Man and

Cybernetics, 2005 IEEE International Conference on, vol. 2, pp. 1692 � 1698

Vol. 2, oct. 2005.

[62] J. Ahlberg, �Candide-3 an updated parameterized face.,� Tech. Rep. Report

No. LiTH-ISY-R-2326, Dept. of EE, Linkoping University, 2001.

[63] J. Ahlberg, �Wincandide 1.3 user's manual,� Tech. Rep. Report No. LiTH-

ISY-R-2344, Dept. of EE, Linkoping University, 2001.

134

[64] J. Ahlberg, �Fast image warping for active models,� Tech. Rep. Report No.

LiTH-ISY-R-2355, Dept. of EE, Linkoping University, 2001.

[65] E. W. Weisstein, �Barycentric coordinates,� MathWorld�A Wolfram Web

Resource. http://mathworld.wolfram.com/BarycentricCoordinates.html.

[66] J. Ahlberg, �An active model for facial feature tracking,� EURASIP Journal

on Applied Signal processing, vol. 2002, pp. 566�571, 2001.

[67] D. Michie, D. Spiegelhalter, and C. C. Taylor, Machine Learning, neural and

statistical classi�cation. New York Ellis Horwoodl, 1994.

[68] L. Cheng, J. Zhang, J. Yang, and J. Ma, �An improved hieraarchical mul-

ticlass support vector machine with binary tree architecture,� International

conference on internet computing in science and engineering, pp. 106�109,

Jan 2008.

[69] A. Zeineddini and K. Gaj, �Secure partial recon�guration of FPGAs,� in

IEEE International Conference on Field-Programmable Technology, pp. 155

�162, Dec. 2005.

[70] L. Zhang, W. D. Zhou, P. C. Chang, J. Liu, Z. Yan, T. Wang, and F. Z. Li,

�Kernel sparse representation-based classi�er,� IEEE Transactions on Signal

Processing, vol. 60, pp. 1684�1695, April 2012.

[71] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, �Robust face

recognition via sparse representation,� IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 31, pp. 210�227, Feb 2009.

[72] A. Shrivastava, V. M. Patel, and R. Chellappa, �Multiple kernel learning

for sparse representation-based classi�cation,� IEEE Transactions on Image

Processing, vol. 23, pp. 3013�3024, July 2014.

[73] K. Obrmayer, H. Ritter, and K. Schulten, �A principle for the formation

of spatial structure of cortical feature maps,� Proc. Natural ACD Science,

vol. 87, pp. 8345�8349, Nov. 1990.

[74] G. Guo and C. R. Dyer, �Learning from examples in the small sample case:

Face expression recognition,� IEEE Trans. Syst., Man, Cybern. B. Cybern.,

vol. 35, pp. 477�488, Jun 2005.

[75] K. Anderson and P. W. McOwan, �A real-time automated system for the

recognition of human facial expressions,� Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, vol. 36, pp. 96�105, Feb 2006.

135

[76] I. Cohen, N. Sebe, A. Garg, L. S. Chen, and T. S. Huang, �Facial expression

recognition from video sequences: Temporal and static modeling,� Computer

Vision and Image Understanding, vol. 91, pp. 160�187, 2003.

[77] B. Welsh, �Model based coding of images,� Ph.D. dessertation, British Tele-

com Research Lab, Jan 1991.

[78] R. Patil, V. Sahula, and A. Mandal, �Facial expression recognition in image

sequences using active shape model and svm,� Fifth UKSim European Sym-

posium on Computer Modeling and Simulation (EMS), pp. 168�173, Sept.

2011.

[79] R. Patil, V. Sahula, and A. Mandal, �Automatic detection of facial feature

points in image sequences,� International conference on Image information

processing ICIIP, Nov. 2011.

[80] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy, �SVM and

kernel methods matlab toolbox,� Perception Systems Information, INSA de

Rouen, France, 2005.

[81] H. Liu, Y. wei Huang, and D. Liu, �Multi-class surface EMG classi�cation us-

ing support vector machines and wavelet transform,� in 8th World Congress

on Intelligent Control and Automation, pp. 2963 �2967, July 2010.

[82] A. Mathur and G. Foody, �Multiclass and binary SVM classi�cation: Impli-

cations for training and classi�cation users,� Geoscience and Remote Sensing

Letters, IEEE, vol. 5, pp. 241 �245, april 2008.

[83] C. W. Hsu and C. J. Lin, �A comparison of methods for multiclass support

vector machines,� IEEE Trans. Neural Netw, vol. 13, pp. 415�425, March

2002.

[84] J. Weston and C. Watkins, �Multi-class support vector machines,� Tech.

Rep. CSD-TR-98-04, 2004.

[85] J. Strom, F. Davoine, and J. Ahlberg, �Very low bit rate facial texture

coding,� Proc. Int. Workshop on Synthetic/Natural Hybrid Coding and 3D

Imaging, pp. 237�240, September 1997.

[86] R. C. Gonzalez and R. E. Woods, �Digital image processing,�

[87] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, �A practical guide to support vector

classi�cation,� National Taiwan University, Taipei 106, Taiwan.

136

[88] C. J. Burges, �A tutorial on support vector machines for pattern recognition,�

Data Mining Knowl. Disc, vol. 2, no. 2, 1998.

[89] G. Edwards, T. Cootes, and C. Taylor, �Face recognition using active appear-

ance models,� Proc. European Conf. Computer Vision, vol. 2, pp. 581�695,

1998.

[90] C. L. Huang and Y. M. Huang, �Facial expression recognition using model

based feature extraction and action parameters classi�cation,� J. Visual

Comm. and Image Representation, vol. 8, no. 3, pp. 278�290, 1997.

[91] H. Kobayashi and F. Hara, �Facial interaction between animated 3d face

robot and human beings,� J. Visual Comm. and Image Representation,

pp. 3723�3737, 1997.

[92] M. Iain and S. Baker, �Active appearance model revisited,� lnt'l J. Computer

Vision, vol. 60, no. 2, pp. 135�164, 2004.

[93] T. Otsuka and J. Ohya, �Spotting segments displaying facial expression from

image sequences using hidden markov model,� Proc. Int'l Conf. Automatic

Face and Gesture Recognition, pp. 442�447, 1998.

[94] M. Yoneyama, Y. Iwano, A. Ohtake, and K. Shiraia, �Facial expressions

recognition using discrete hop�eld neural networks,� Proc. Int'l Conf. Infor-

mation Processing, vol. 3, pp. 117�120, 1997.

[95] T. Cootes, C. Taylor, D. Cooper, and J. Graham, �Active shape models-

training and application,� Computer Vision Image Understanding, vol. 61,

no. 1, pp. 38�59, 1995.

[96] M. Pantic and L. M. Rothkrantz, �Expert system for automatic analysis of

facial expression,� Image and vision computing, vol. 18, no. 11, pp. 881�905,

2000.

[97] H. Hong, H.Neven, and C. von der Malsburg, �Online facial expression recog-

nition based on personalized gallaries,� Proc. Int'l Conf. Automatic Face and

Gesture Recognition, pp. 354�359, 1998.

[98] I. Ste�ens, E. Elagin, and H. Neven, �Personspotter-fast and robust system

for human detection, tracking and recognition,� Proc. Int'l Conf. Automatic

Face and Gesture Recognition, pp. 516�521, 1998.

[99] L. Wiskott, �Labelled graphs and dynamic link matching for face recognition

and scene analysis,� Relihe Physik, vol. 53, 1995.

137

[100] C. Padgett and G. W. Cottrell, �Representing face images for emotion clas-

si�cation,� Pro. Conf. Advances in Neural Information Processing Systems,

pp. 894�900, 1996.

[101] B. Horn and B. Schunck, �Determing optical �ow,� Arti�cial Intelligence,

vol. 17, pp. 185�203, 1981.

[102] Z. Zhang, M. Lyons, M. Schuster, and S. Akamatsu, �Comparision between

geometry based and gabor wavelets based facial expression recognition us-

ing multilayer perceptron,� Proc. Int'l Conf. Automatic face and Gesture

Recognition, pp. 454�459, 1998.

[103] M. J. Lyons, J. Budynek, and S. Akamatsu, �Automatic classi�cation of sin-

gle facial images,� IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 21, no. 12, pp. 1357�1362, 1999.

[104] M. J. Black and Y. Yacoob, �Tracking and recognizing rigid and non-rigid

facial motions using local parametric models of image motions,� lnt'l J. Com-

puter Vision, pp. 374�381, 1995.

[105] T. Otsuka and J. Ohya, �Recognition of facial expressions using hmm with

continuous output probabilities,� Proc. Int'l Workshop Robot and Human

Comm, pp. 323�328, 1996.

[106] M. Riedmiller and H.Braun, �A direct adaptive method for faster backprop-

agation learning: The rprop algorithm,� Proc.Int'l Conf. Neural Networks,

pp. 586�591, 1993.

[107] I. Lien, T. Kanade, J. F. Cohn, and C. C. Li, �Automated facial expression

recognition based on facs action units,� Proc. Int'l Conf. Automatic Face

and Gesture Recognition, pp. 390�395, 1998.

[108] Y. Zhang and Q. Ji, �Active and dynamic information fusion for facial ex-

pression understanding from image sequences,� IEEE Trans. Pattern Anal.

Mach. Intell., vol. 27, pp. 699�714, May 2005.

[109] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, �Coding facial expres-

sions with gabor wavelets,� Proc. 3rd IEEE Int. Conf. Automatic Face and

Gesture Recognition, pp. 200�205, 1998.

[110] L. Wiskott, J. Fellous, N. Kruger, and C. V. D. Malsburg, �Face recognition

by elastic bunch graph matching,� IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 19, pp. 775�779, July 1997.

138

[111] Y. Gao, M. Leung, S. Hui, and M. Tananda, �Facial expression recogni-

tion from line-based caricatures,� IEEE Trans. Syst., Man, Cybern. A: Syst.

Humans, vol. 33, pp. 407�412, May 2003.

[112] B. Abboud, F. Davoine, and M. Dang, �Facial expression recognition and

synthesis based on an appearance model,� Signal Process.: Image Commun.,

vol. 19, no. 8, pp. 723�740, 2004.

[113] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, �An intro-

duction to kernel-based learning algorithms,� IEEE Trans. Neural Netw.,

vol. 12, pp. 181�201, March 2001.

[114] S. B. Gokturk, C. Tomasi, B. Girod, and J.-Y. Bouguet, �Model-based face

tracking for view-independent facial expression recognition,� Proc. 5th IEEE

Int. Conf. Automatic Face and Gesture Recognition., pp. 287�293, May 2002.

[115] M. Pontil and A. Verri, �Support vector machines for 3d object recognition,�

IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 637�646, Jun 1998.

[116] H. Drucker, W. Donghui, and V. Vapniki, �Support vector machines for

spam categorization,� IEEE Trans. Neural Netw., vol. 10, pp. 1048�1054,

Sept 1999.

[117] A. Tefas, C. Kotropoulos, and I. Pitas, �Using support vector machines to

enhance the performance of elastic graph matching for frontal face authenti-

cation,� IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 735�746, July

2001.

[118] I. Mpiperis, S. Malassiotis, and M. Strintzis, �Bilinear models for 3d face

and facial expression recognition,� IEEE Trans. Information forensics and

security, vol. 3, pp. 498�511, Sept 2008.

[119] Y. Ming-Hsuan, D. J. Kriegman, and N. Ahuja, �Detecting faces in images:

a survey,� IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 1, pp. 34�58,

2002.

[120] L. Guanming, L. Xiaonan, and L. Haibo, �Facial expression recognition for

neonatal pain assessment,� IEEE Int. Conf Neural Networks and Signal Pro-

cessing, pp. 456�460, Jun 2008.

[121] C. Shan, G. Shaogang, and W. Peter, �Robust facial expression recogni-

tion using local binary patterns,� IEEE Int. Conf. Image Processing, vol. 2,

pp. 11�14, Sept 2005.

139

[122] A. Lanitis, C. Taylor, and T. Cootes, �Automatic interpretation and coding

of face images using �exible models,� IEEE Trans. Pattern Anal. Mach.

Intell., vol. 19, no. 7, pp. 743�756, 1997.

[123] G. Fanelli and M. Fratarcangeli, �A non-invasive approach for driving virtual

talking heads from real facial movements,� 3DTV Conference, pp. 1�4, 2007.

[124] J. Mihalik and M. Kasar, �Human face and facial feature tracking by using

geometric and texture models,� Journal of Electrical Engineering, vol. 59,

no. 5, pp. 266�271, 2008.

[125] J. Mihalik and M. Kasar, �Basis of eigenfaces for tracking of human head,�

Journal of Electrical Engineering, vol. 58, no. 3, pp. 134�139, 2007.

[126] W. J., B. M., and J. Movellan, �Automatic facial expression recognition for

intelligent tutoring systems,� IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition Workshops, 2008. CVPRW '08, pp. 1�

6, June 2008.

[127] A. Geetha, V. Ramalingam, S. Palanivel, and B. Palaniappan, �Facial ex-

pression recognition a real time approach,� International journal on Expert

systems with applications, vol. 36, pp. 303�308, Jan 2009.

[128] C. Shan, S. Gong, and P. W. McOwan, �Facial expression recognition based

on local binary patterns: A comprehensive study,� Image and vision com-

puting, vol. 27, pp. 803�816, May 2009.

[129] C. Kyrkou and T. Theocharides, �Scope towards a systolic array for svm

object detection,� IEEE Embedded Systems Letters, vol. 1, pp. 46�49, Aug

2009.

[130] H. A. Rowley, S. Baluja, and T. Kanade, �Neural network based face detec-

tion,� IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 23�38,

1998.

[131] C. J. Lien, T. Kanade, J. F. Cohn, and C. Li, �Detection, tracking, and

classi�cation of action units in facial expressions,� J. Robot Auton. Sys.,

July 1999.

[132] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, �Subject independent

facial expression recognition with robust face detection using a convolutional

neural network,� Neural Network., vol. 16, pp. 555�559, July 2003.

140

[133] L. Ma and K. Khorasani, �Facial expression recognition using constructive

feedforward neural networks,� IEEE Trans. Syst. Man Cybern. B. Cybern.,

vol. 34, pp. 1588�1595, Jun 2004.

[134] Intel, �Open cv: Open Source Computer Vision Library,�

http://www.intel.com /research/mrl/research/opencv/.

[135] H. Li, J. Buenaposada, and L. Baumela, �Real time facial expression recogni-

tion with illumination corrected image sequences,� Automatic Face Gesture

Recognition, 2008. FG '08. 8th IEEE International Conference on, pp. 1�6,

Sept. 2008.

141

142

Appendix

Candide wire frame model

VERTEX LIST: 113

(x y z) starting with vertex number 0 to 112

0.000000 1.061000 -0.371000

0.174000 0.800000 -0.024000

0.000000 0.539000 0.085000

0.000000 0.278000 0.107000

0.000000 0.213000 0.085000

0.000000 -0.222000 0.210000

0.000000 -0.265000 0.124000

0.000000 -0.417000 0.142000

0.000000 -0.526000 0.150000

0.000000 -0.591000 0.107000

0.000000 -0.852000 0.063000

0.217000 1.039000 -0.371000

0.457000 0.909000 -0.328000

0.435000 0.626000 -0.111000

0.610000 0.539000 -0.328000

0.522000 0.278000 -0.111000

0.391000 0.374000 0.0300000

0.130000 0.278000 0.107000

0.391000 0.322000 0.0300000

0.304000 0.225000 -0.002000

0.470000 0.148000 -0.111000

0.304000 0.204000 -0.000000

0.304000 0.122000 -0.000000

0.130000 0.148000 -0.000000

0.304000 0.104000 -0.000000

0.109000 -0.157000 0.037000

143

0.174000 -0.244000 0.037000

0.387000 -0.100000 -0.045000

0.550000 -0.250000 -0.328000

0.609000 0.148000 -0.328000

0.470000 -0.600000 -0.328000

0.246000 -0.461000 -0.000000

0.174000 -0.809000 0.000000

0.043000 -0.396000 0.150000

-0.174000 0.800000 -0.024000

0.000000 0.539000 0.085000

0.000000 0.278000 0.107000

0.000000 0.213000 0.085000

0.000000 -0.222000 0.210000

0.000000 -0.265000 0.124000

0.000000 -0.461000 0.124000

0.000000 -0.526000 0.150000

0.000000 -0.591000 0.107000

0.000000 -0.852000 0.063000

-0.217000 1.039000 -0.371000

-0.457000 0.909000 -0.328000

-0.435000 0.626000 -0.111000

-0.610000 0.539000 -0.328000

-0.522000 0.278000 -0.111000

-0.391000 0.374000 0.030000

-0.130000 0.278000 0.107000

-0.391000 0.322000 0.030000

-0.304000 0.225000 -0.002000

-0.470000 0.148000 -0.111000

-0.304000 0.204000 -0.000000

-0.304000 0.122000 -0.000000

-0.130000 0.148000 -0.000000

-0.304000 0.104000 -0.000000

-0.109000 -0.157000 0.037000

-0.174000 -0.244000 0.037000

-0.387000 -0.100000 -0.045000

-0.550000 -0.250000 -0.328000

-0.609000 0.148000 -0.328000

-0.470000 -0.600000 -0.328000

-0.246000 -0.461000 -0.000000

144

-0.174000 -0.809000 0.000000

-0.043000 -0.396000 0.150000

0.348000 0.200000 -0.0300000

0.348000 0.115000 -0.0300000

-0.348000 0.200000 -0.0300000

-0.348000 0.115000 -0.0300000

0.265000 0.200000 -0.0300000

0.265000 0.115000 -0.0300000

-0.265000 0.200000 -0.0300000

-0.265000 0.115000 -0.0300000

0.080000 -0.220000 0.150000

-0.080000 -0.220000 0.150000

0.022000 0.213000 0.063000

-0.022000 0.213000 0.063000

0.123000 -0.410000 0.063000

-0.123000 -0.410000 0.063000

0.100000 -0.461000 0.050000

-0.100000 -0.461000 0.050000

0.100000 -0.461000 0.050000

-0.100000 -0.461000 0.050000

0.123000 -0.508000 0.063000

-0.123000 -0.508000 0.063000

0.000000 -0.461000 0.124000

0.200000 -0.461000 -0.024000

-0.200000 -0.461000 -0.024000

0.357000 -0.461000 -0.050000

-0.357000 -0.461000 -0.050000

0.065000 0.028000 0.050000

-0.065000 0.028000 0.050000

0.000000 0.068000 0.100000

0.387000 0.201000 -0.056000

-0.387000 0.201000 -0.056000

0.387000 0.186000 -0.056000

-0.387000 0.186000 -0.056000

0.387000 0.126000 -0.056000

-0.387000 0.126000 -0.056000

0.387000 0.117000 -0.067000

-0.387000 0.117000 -0.067000

0.217000 0.201000 -0.013000

145

-0.217000 0.201000 -0.013000

0.217000 0.186000 -0.013000

-0.217000 0.186000 -0.013000

0.217000 0.126000 -0.013000

-0.217000 0.126000 -0.013000

0.217000 0.117000 -0.024000

-0.217000 0.117000 -0.024000

0.120000 -0.265000 0.100000

-0.120000 -0.265000 0.100000

FACE LIST: 184

(vertex1, vertex2, vertex3) Triangular face is formed between vertex1, vertex2,

vertex3.

0 11 1

0 1 34

0 34 44

11 12 1

44 34 45

1 12 13

1 13 2

1 2 34

2 46 34

34 46 45

12 14 13

13 14 15

13 15 16

2 13 16

2 16 17

2 17 3

2 3 50

2 50 49

2 49 46

46 49 48

46 48 47

45 46 47

14 29 15

15 29 20

18 15 19

146

18 16 15

16 18 17

17 18 19

17 23 77

3 17 77

3 78 50

78 56 50

50 52 51

49 50 51

48 49 51

48 51 52

48 53 62

47 48 62

29 28 27

20 29 27

24 26 25

57 58 59

53 60 62

62 60 61

111 26 33

75 26 111

75 25 26

76 59 58

76 112 59

112 66 59

6 33 7

6 7 66

9 32 10

9 10 65

6 76 5

6 5 75

3 77 78

7 33 79

7 79 81

7 81 87

7 80 66

7 82 80

7 87 82

80 82 89

147

80 89 64

79 88 81

79 31 88

26 79 33

26 31 79

59 66 80

59 80 64

88 83 85

88 85 31

83 8 85

83 40 8

8 40 84

8 84 86

86 89 84

86 64 89

9 85 8

9 8 86

32 85 31

32 9 85

65 86 64

65 9 86

27 26 24

90 30 32

90 32 31

90 30 28

90 26 31

90 27 26

90 28 27

60 59 57

91 65 63

91 64 65

91 61 63

91 64 59

91 59 60

91 60 61

92 77 23

92 23 25

92 25 75

93 56 78

148

93 76 58

93 58 56

94 77 92

94 92 75

94 75 5

94 5 76

94 76 93

94 93 78

94 78 77

20 95 15

20 97 95

20 101 99

20 27 101

95 19 15

95 21 19

95 97 21

101 27 24

101 24 22

101 22 99

23 103 17

23 105 103

23 109 107

23 25 109

103 17 19

103 19 21

103 21 105

109 107 22

109 22 24

109 24 25

56 104 50

56 106 104

56 110 108

56 58 110

104 52 50

104 54 52

104 106 54

110 55 108

110 57 55

110 58 57

149

53 48 96

53 98 96

53 100 102

53 102 60

96 48 52

96 52 54

96 54 98

102 100 55

102 55 57

102 57 60

111 6 75

111 33 6

112 76 6

112 6 66

73 74 70

73 70 69

67 68 72

67 72 71

53 69 70

56 74 73

23 71 72

20 68 67

98 69 53

54 69 98

54 73 69

54 106 73

106 56 73

56 108 74

55 74 108

55 70 74

55 100 70

100 53 70

20 67 97

97 67 21

21 67 71

21 71 105

105 71 23

20 99 68

68 99 22

150

22 72 68

22 107 72

107 23 72

ANIMATION UNITS LIST: 65

vertex number (x, y, z)

AUV0 Upper lip raiser (AU10)

10

7 0.000000 0.086957 0.021739

33 0.000000 0.065217 0.021739

66 0.000000 0.065217 0.021739

79 0.000000 0.050000 0.021739

80 0.000000 0.050000 0.021739

81 0.000000 0.050000 0.021739

82 0.000000 0.050000 0.021739

87 0.000000 0.065217 0.021739

88 0.000000 0.020000 0.000000

89 0.000000 0.020000 0.000000

AUV11 Jaw drop (AU26/27)

12

40 0.000000 -0.260000 -0.050000

8 0.000000 -0.260000 -0.050000

9 0.000000 -0.260000 -0.100000

10 0.000000 -0.130000 -0.150000

32 0.000000 -0.150000 -0.130000

65 0.000000 -0.150000 -0.130000

83 0.000000 -0.200000 -0.050000

84 0.000000 -0.200000 -0.050000

85 0.000000 -0.200000 -0.050000

86 0.000000 -0.200000 -0.050000

88 0.000000 -0.020000 0.000000

89 0.000000 -0.020000 0.000000

AUV2 Lip stretcher (AU20)

18

31 0.090000 0.000000 -0.090000

8 0.000000 0.032500 -0.017391

33 0.000000 -0.022000 -0.025500

7 0.000000 -0.022000 -0.010000

151

64 -0.090000 0.000000 -0.090000

66 0.000000 -0.022000 -0.025500

79 0.045000 -0.020000 -0.020000

80 -0.045000 -0.020000 -0.020000

81 0.040000 0.000000 -0.020000

82 -0.040000 0.000000 -0.020000

83 0.040000 0.000000 -0.020000

84 -0.040000 0.000000 -0.020000

85 0.045000 0.023000 -0.020000

86 -0.045000 0.023000 -0.020000

88 0.080000 0.000000 -0.080000

89 -0.080000 0.000000 -0.080000

90 0.040000 0.000000 -0.040000

91 -0.040000 0.000000 -0.040000

AUV3 Brow lowerer (AU4)

14

17 -0.130435 -0.130435 0.000000

16 -0.086957 -0.130435 0.017391

18 -0.086957 -0.130435 0.017391

15 0.000000 -0.065217 0.000000

50 0.130435 -0.130435 0.000000

49 0.086957 -0.130435 0.017391

51 0.086957 -0.130435 0.017391

48 0.000000 -0.065217 0.000000

21 0.000000 -0.034783 0.000000

54 0.000000 -0.034783 0.000000

67 0.000000 -0.026087 0.000000

69 0.000000 -0.026087 0.000000

71 0.000000 -0.026087 0.000000

73 0.000000 -0.026087 0.000000

AUV14 Lip corner depressor (AU13/15)

14

31 0.000000 -0.140000 -0.010000

64 0.000000 -0.140000 -0.010000

88 0.000000 -0.100000 -0.008000

89 0.000000 -0.100000 -0.008000

79 0.000000 -0.030000 -0.020000

80 0.000000 -0.030000 -0.020000

81 0.000000 -0.030000 -0.020000

152

82 0.000000 -0.030000 -0.020000

83 0.000000 -0.030000 -0.020000

84 0.000000 -0.030000 -0.020000

85 0.000000 -0.040000 -0.020000

86 0.000000 -0.040000 -0.020000

90 0.000000 -0.040000 -0.000000

91 0.000000 -0.040000 -0.000000

AUV5 Outer brow raiser (AU2)

8

15 0.021739 0.173913 -0.021739

16 0.000000 0.152174 -0.021739

17 0.000000 0.021739 0.000000

18 0.000000 0.152174 -0.021739

48 -0.021739 0.173913 -0.021739

49 0.000000 0.152174 -0.021739

50 0.000000 0.021739 0.000000

51 0.000000 0.152174 -0.021739

AUV6 Eyes closed (AU42/43/44/45)

12

21 0.000000 -0.062000 0.010000

22 0.000000 0.020000 0.010000

54 0.000000 -0.062000 0.010000

55 0.000000 0.020000 0.010000

97 0.000000 -0.045000 0.007000

98 0.000000 -0.045000 0.007000

99 0.000000 0.015000 0.007000

100 0.000000 0.015000 0.007000

105 0.000000 -0.045000 0.007000

106 0.000000 -0.045000 0.007000

107 0.000000 0.015000 0.007000

108 0.000000 0.015000 0.007000

AUV7 Lid tightener (AU7)

12

21 0.000000 -0.056000 0.010000

22 0.000000 0.026000 0.010000

54 0.000000 -0.056000 0.010000

55 0.000000 0.026000 0.010000

97 0.000000 -0.038000 0.007000

98 0.000000 -0.038000 0.007000

153

99 0.000000 0.022000 0.007000

100 0.000000 0.022000 0.007000

105 0.000000 -0.038000 0.007000

106 0.000000 -0.038000 0.007000

107 0.000000 0.022000 0.007000

108 0.000000 0.022000 0.007000

AUV8 Nose wrinkler (AU9)

23

2 0.000000 -0.086957 0.013043

3 0.000000 -0.043478 0.000000

5 0.000000 0.086957 0.000000

26 0.000000 0.043478 -0.017391

25 0.000000 0.043478 -0.008696

24 0.000000 0.017391 0.000000

22 0.000000 0.017391 0.000000

59 0.000000 0.043478 -0.017391

58 0.000000 0.043478 -0.008696

57 0.000000 0.017391 0.000000

55 0.000000 0.017391 0.000000

68 0.000000 0.008696 0.000000

70 0.000000 0.008696 0.000000

72 0.000000 0.008696 0.000000

74 0.000000 0.008696 0.000000

99 0.000000 0.017391 0.000000

100 0.000000 0.017391 0.000000

101 0.000000 0.017391 0.000000

102 0.000000 0.017391 0.000000

107 0.000000 0.017391 0.000000

108 0.000000 0.017391 0.000000

109 0.000000 0.017391 0.000000

110 0.000000 0.017391 0.000000

AUV9 Lip presser (AU23/24)

8

8 0.000000 0.032500 0.000000

33 0.000000 -0.020000 0.000000

66 0.000000 -0.020000 0.000000

7 0.000000 -0.021000 0.000000

79 0.000000 -0.020000 0.000000

80 0.000000 -0.020000 0.000000

154

85 0.000000 0.023000 0.000000

86 0.000000 0.023000 0.000000

AUV10 Upper lid raiser (AU5)

6

21 0.000000 0.030000 -0.010000

54 0.000000 0.030000 -0.010000

97 0.000000 0.015000 -0.007000

98 0.000000 0.015000 -0.007000

105 0.000000 0.015000 -0.007000

106 0.000000 0.015000 -0.007000

SHAPE UNITS LIST: 14

vertex number (x, y, z)

Head height

16

0 0.000000 0.200000 0.000000

1 0.000000 0.200000 0.000000

11 0.000000 0.200000 0.000000

12 0.000000 0.200000 0.000000

13 0.000000 0.200000 0.000000

14 0.000000 0.200000 0.000000

34 0.000000 0.200000 0.000000

44 0.000000 0.200000 0.000000

45 0.000000 0.200000 0.000000

46 0.000000 0.200000 0.000000

47 0.000000 0.200000 0.000000

10 0.000000 -0.200000 0.000000

30 0.000000 -0.100000 0.000000

63 0.000000 -0.100000 0.000000

32 0.000000 -0.200000 0.000000

65 0.000000 -0.200000 0.000000

Eyebrows vertical position

8

15 0.000000 0.100000 0.000000

16 0.000000 0.100000 0.000000

17 0.000000 0.100000 0.000000

18 0.000000 0.100000 0.000000

48 0.000000 0.100000 0.000000

155

49 0.000000 0.100000 0.000000

50 0.000000 0.100000 0.000000

51 0.000000 0.100000 0.000000

Eyes vertical position

36

19 0.000000 0.100000 0.000000

20 0.000000 0.100000 0.000000

21 0.000000 0.100000 0.000000

22 0.000000 0.100000 0.000000

23 0.000000 0.100000 0.000000

24 0.000000 0.100000 0.000000

52 0.000000 0.100000 0.000000

53 0.000000 0.100000 0.000000

54 0.000000 0.100000 0.000000

55 0.000000 0.100000 0.000000

56 0.000000 0.100000 0.000000

57 0.000000 0.100000 0.000000

67 0.000000 0.100000 0.000000

68 0.000000 0.100000 0.000000

69 0.000000 0.100000 0.000000

70 0.000000 0.100000 0.000000

71 0.000000 0.100000 0.000000

72 0.000000 0.100000 0.000000

73 0.000000 0.100000 0.000000

74 0.000000 0.100000 0.000000

95 0.000000 0.100000 0.000000

96 0.000000 0.100000 0.000000

97 0.000000 0.100000 0.000000

98 0.000000 0.100000 0.000000

99 0.000000 0.100000 0.000000

100 0.000000 0.100000 0.000000

101 0.000000 0.100000 0.000000

102 0.000000 0.100000 0.000000

103 0.000000 0.100000 0.000000

104 0.000000 0.100000 0.000000

105 0.000000 0.100000 0.000000

106 0.000000 0.100000 0.000000

107 0.000000 0.100000 0.000000

108 0.000000 0.100000 0.000000

156

109 0.000000 0.100000 0.000000

110 0.000000 0.100000 0.000000

Eyes, width

20

20 0.100000 0.000000 0.000000

95 0.050000 0.000000 0.000000

97 0.050000 0.000000 0.000000

99 0.050000 0.000000 0.000000

101 0.050000 0.000000 0.000000

103 -0.050000 0.000000 0.000000

105 -0.050000 0.000000 0.000000

107 -0.050000 0.000000 0.000000

109 -0.050000 0.000000 0.000000

23 -0.100000 0.000000 0.000000

53 -0.100000 0.000000 0.000000

96 -0.050000 0.000000 0.000000

98 -0.050000 0.000000 0.000000

100 -0.050000 0.000000 0.000000

102 -0.050000 0.000000 0.000000

104 0.050000 0.000000 0.000000

106 0.050000 0.000000 0.000000

108 0.050000 0.000000 0.000000

110 0.050000 0.000000 0.000000

56 0.100000 0.000000 0.000000

Eyes, height

24

19 0.000000 0.100000 0.000000

21 0.000000 0.050000 0.000000

22 0.000000 -0.050000 0.000000

24 0.000000 -0.100000 0.000000

52 0.000000 0.100000 0.000000

54 0.000000 0.050000 0.000000

55 0.000000 -0.050000 0.000000

57 0.000000 -0.100000 0.000000

95 0.000000 0.070000 0.000000

96 0.000000 0.070000 0.000000

103 0.000000 0.070000 0.000000

104 0.000000 0.070000 0.000000

101 0.000000 -0.070000 0.000000

157

102 0.000000 -0.070000 0.000000

109 0.000000 -0.070000 0.000000

110 0.000000 -0.070000 0.000000

97 0.000000 0.035000 0.000000

98 0.000000 0.035000 0.000000

105 0.000000 0.035000 0.000000

106 0.000000 0.035000 0.000000

99 0.000000 -0.035000 0.000000

100 0.000000 -0.035000 0.000000

107 0.000000 -0.035000 0.000000

108 0.000000 -0.035000 0.000000

Eye separation distance

36

19 0.100000 0.000000 0.000000

20 0.100000 0.000000 0.000000

21 0.100000 0.000000 0.000000

22 0.100000 0.000000 0.000000

23 0.100000 0.000000 0.000000

24 0.100000 0.000000 0.000000

52 -0.100000 0.000000 0.000000

53 -0.100000 0.000000 0.000000

54 -0.100000 0.000000 0.000000

55 -0.100000 0.000000 0.000000

56 -0.100000 0.000000 0.000000

57 -0.100000 0.000000 0.000000

67 0.100000 0.000000 0.000000

68 0.100000 0.000000 0.000000

69 -0.100000 0.000000 0.000000

70 -0.100000 0.000000 0.000000

71 0.100000 0.000000 0.000000

72 0.100000 0.000000 0.000000

73 -0.100000 0.000000 0.000000

74 -0.100000 0.000000 0.000000

95 0.100000 0.000000 0.000000

96 -0.100000 0.000000 0.000000

97 0.100000 0.000000 0.000000

98 -0.100000 0.000000 0.000000

99 0.100000 0.000000 0.000000

100 -0.100000 0.000000 0.000000

158

101 0.100000 0.000000 0.000000

102 -0.100000 0.000000 0.000000

103 0.100000 0.000000 0.000000

104 -0.100000 0.000000 0.000000

105 0.100000 0.000000 0.000000

106 -0.100000 0.000000 0.000000

107 0.100000 0.000000 0.000000

108 -0.100000 0.000000 0.000000

109 0.100000 0.000000 0.000000

110 -0.100000 0.000000 0.000000

Cheeks z

2

27 0.000000 0.000000 0.100000

60 0.000000 0.000000 0.100000

Nose z-extension

6

5 0.000000 0.000000 0.100000

75 0.000000 0.000000 0.070000

76 0.000000 0.000000 0.070000

92 0.000000 0.000000 0.050000

93 0.000000 0.000000 0.050000

94 0.000000 0.000000 0.050000

Nose vertical position

17

3 0.000000 0.100000 0.000000

4 0.000000 0.100000 0.000000

5 0.000000 0.100000 0.000000

6 0.000000 0.100000 0.000000

25 0.000000 0.100000 0.000000

26 0.000000 0.100000 0.000000

58 0.000000 0.100000 0.000000

59 0.000000 0.100000 0.000000

75 0.000000 0.100000 0.000000

76 0.000000 0.100000 0.000000

77 0.000000 0.100000 0.000000

78 0.000000 0.100000 0.000000

92 0.000000 0.100000 0.000000

93 0.000000 0.100000 0.000000

94 0.000000 0.100000 0.000000

159

111 0.000000 0.100000 0.000000

112 0.000000 0.100000 0.000000

Nose, pointing up

3

5 0.000000 0.050000 0.000000

75 0.000000 0.050000 0.000000

76 0.000000 0.050000 0.000000

Mouth vertical position

21

7 0.000000 0.100000 0.000000

8 0.000000 0.100000 0.000000

9 0.000000 0.100000 0.000000

31 0.000000 0.100000 0.000000

33 0.000000 0.100000 0.000000

40 0.000000 0.100000 0.000000

64 0.000000 0.100000 0.000000

66 0.000000 0.100000 0.000000

79 0.000000 0.100000 0.000000

80 0.000000 0.100000 0.000000

81 0.000000 0.100000 0.000000

82 0.000000 0.100000 0.000000

83 0.000000 0.100000 0.000000

84 0.000000 0.100000 0.000000

85 0.000000 0.100000 0.000000

86 0.000000 0.100000 0.000000

87 0.000000 0.100000 0.000000

88 0.000000 0.100000 0.000000

89 0.000000 0.100000 0.000000

90 0.000000 0.100000 0.000000

91 0.000000 0.100000 0.000000

Mouth width

14

31 0.100000 0.000000 0.000000

64 -0.100000 0.000000 0.000000

88 0.100000 0.000000 0.000000

89 -0.100000 0.000000 0.000000

79 0.050000 0.000000 0.000000

80 -0.050000 0.000000 0.000000

81 0.050000 0.000000 0.000000

160

82 -0.050000 0.000000 0.000000

83 0.050000 0.000000 0.000000

84 -0.050000 0.000000 0.000000

85 0.050000 0.000000 0.000000

86 -0.050000 0.000000 0.000000

90 0.050000 0.000000 0.000000

91 -0.050000 0.000000 0.000000

Eyes vertical di�erence

36

19 0.000000 -0.100000 0.000000

20 0.000000 -0.100000 0.000000

21 0.000000 -0.100000 0.000000

22 0.000000 -0.100000 0.000000

23 0.000000 -0.100000 0.000000

24 0.000000 -0.100000 0.000000

52 0.000000 0.100000 0.000000

53 0.000000 0.100000 0.000000

54 0.000000 0.100000 0.000000

55 0.000000 0.100000 0.000000

56 0.000000 0.100000 0.000000

57 0.000000 0.100000 0.000000

67 0.000000 -0.100000 0.000000

68 0.000000 -0.100000 0.000000

69 0.000000 0.100000 0.000000

70 0.000000 0.100000 0.000000

71 0.000000 -0.100000 0.000000

72 0.000000 -0.100000 0.000000

73 0.000000 0.100000 0.000000

74 0.000000 0.100000 0.000000

95 0.000000 -0.100000 0.000000

96 0.000000 0.100000 0.000000

97 0.000000 -0.100000 0.000000

98 0.000000 0.100000 0.000000

99 0.000000 -0.100000 0.000000

100 0.000000 0.100000 0.000000

101 0.000000 -0.100000 0.000000

102 0.000000 0.100000 0.000000

103 0.000000 -0.100000 0.000000

104 0.000000 0.100000 0.000000

161

105 0.000000 -0.100000 0.000000

106 0.000000 0.100000 0.000000

107 0.000000 -0.100000 0.000000

108 0.000000 0.100000 0.000000

109 0.000000 -0.100000 0.000000

110 0.000000 0.100000 0.000000

Chin width

2

30 0.100000 0.000000 0.000000

63 -0.100000 0.000000 0.000000

162

