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Abstract 

A novel two stage optimization methodology is proposed for dynamic balancing and 

link’s shape design of planar mechanisms in this thesis. The shaking force and 

shaking moment developed due to the inertia-induced forces need to be reduced for 

smooth operation of the mechanisms as well as to improve their dynamic 

performance. In the first stage of the formulation, the balancing of shaking force and 

shaking moment is presented. The shaking force and shaking moment solely depend 

on link’s masses and their distribution for the prescribed motion of the mechanism. 

The mass distribution of each moving link is modeled as an equimomental set of 

point-masses. The point-mass parameters are chosen as the design variables and the 

constraints are defined to ensure the feasibility of the mechanism links. The 

optimization problem is formulated to minimize the shaking force and shaking 

moment for the complete cycle of the mechanism operation. The optimization 

problem is solved using popular evolutionary optimization technique, Genetic 

algorithm (GA), and Teaching-learning-based-optimization (TLBO) algorithm. It is 

found that TLBO is computationally more efficient than GA as it finds the optimum 

results with less number of function evaluations than GA. 

The optimum inertial parameters obtained from the first stage optimization are 

the desired inertial properties. Links shapes are synthesized systematically using 

closed parametric curve such as cubic B-spline in the second stage of the optimization 

method for the desired inertial properties. The control points of cubic B-spline curve 

are taken as the design variables for link shape formation. The constraints on design 

variables are proposed for both symmetrical and non-symmetrical shapes in the 

optimization problem formulation. The proposed method of balancing and shape 

synthesis can be applied to any planar single and multiloop mechanism with revolute 

as well as prismatic joints. Its effectiveness is demonstrated by applying it to four-bar, 

five-bar, six-bar and slider-crank mechanisms. 
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Chapter 1 

Introduction 

The prime objective of this research work is to develop a unified methodology for 

dynamic balancing and link design of the planar mechanisms. The planar mechanisms 

have wide applications in industrial machinery, automotive and robotics (Fig. 1.1). 

These mechanisms are designed considering dynamics and kinematics to fulfill the 

specific requirement of the different applications. To design a mechanism on the basis 

of the dynamic constraints, the important properties considered are shaking force, 

shaking moment and driving torque.      

The balancing of inertia forces and moments in mechanisms is referred to 

dynamic balancing. The unbalanced inertia force and moment shake the mechanism 

known as the shaking force and the shaking moment. They are responsible for 

increased vibration and noise level, increased energy consumption and loss of 

functional accuracy as well as mechanical life. Thus these quantities are to be 

minimized to improve the dynamic performance, to reduce the vibrations, noise and 

wear and to smooth the input torque.  

The dynamic balancing requires trade-off between these competing shaking 

force and shaking moment. Thus, the mechanism balancing problem can be 

formulated as an optimization problem to minimize simultaneously shaking force and 

shaking moment with proper constraints imposed to assure the feasibility of the 

mechanism. The mass and its distribution of each moving link of the mechanism 

contribute to the shaking force and shaking moment and hence play a significant role 

in the balancing. Thus determination of inertial properties and shape of the link 

consists of two distinct problems.    
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(a) Planar four-bar mechanism for generating (1) straight line displacement and (2) 

symmetric coupler curve (Husing et al., 2015) 

 

 

 

(b) Planar ten-bar mechanism for designing a manipulator arm (Soriano et al., 2015) 
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(c) Planar four-bar mechanism for designing a motorcycle rear suspension systems 

(Castillo et al., 2013) 

 

 

 

Link 
Link AD rotates at constant speed and the paper is fed by link FG 

(d) Planar six-bar mechanism used for feeding paper in duplicating machine (Walker and 

Oldham, 1978) 
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(e) Carpet scraping machine with planar multiloop mechanism (Chaudhary and Saha, 2008) 

Fig. 1.1 Applications of planar mechanism 

The optimization problem for dynamic balancing of the mechanism and its links 

shape synthesis is formulated in two successive stages in this research work. There are 

several algorithms available to solve any optimization problem. Among the various 

optimization algorithms, Genetic Algorithm (GA) and Teaching-Learning-Based-

Optimization algorithm (TLBO) are explored for the balancing problem. These 

optimization algorithms find solution near to the global optimum solution without 

providing initial guess solution to start the algorithm.  

The algorithms are compared in terms of convergence to reach to the global 

optimum solution. To demonstrate the effectiveness of the proposed methodology, 

several mechanisms are considered to balance and to find shapes of links. The 

mechanisms consist of single-loop and/or multiloop with binary and ternary links, 

namely, four-, five- and six-bar and slider-crank mechanisms are optimally balanced 

and their links’ shapes are obtained.         
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1.1 Balancing of Mechanisms 

The interaction between a mechanism and its surrounding is an important aspect to be 

considered by the machine designers. Most of the modern machinery uses the high 

speed mechanisms. The resultant inertial forces and moments of the moving links of 

these mechanisms are termed as shaking force and shaking moment. These inertial 

forces and moments have no opposite reaction forces to cancel out internally in the 

mechanism. Finally they transmit to the frame on which the mechanism is mounted. 

As a consequence, resulting vibrations, wear, noise and fatigue adversely affect the 

dynamic performance of the mechanism. All the applied and constraint forces have 

equal and opposite reaction forces and they vanish within system including frame. 

There will be no reaction force for the inertia forces and moments and hence they 

need to be balanced. The mechanism balancing also helps in reducing the fluctuations 

in the input torque required to maintain a constant drive speed.  

The shaking force and shaking moment depend upon the masses and their 

distribution, and accelerations of the moving links of the mechanism under study. The 

shaking force can be balanced either by redistributing the link masses or by adding the 

counterweights which results in overall increase in mass of the balanced mechanism. 

However, the complete balancing of shaking moment is not possible using mass 

redistribution alone. Therefore, the balancing of the shaking moment along with the 

shaking force can be achieved by using the additional links having opposite motion 

that makes the balanced mechanism very complex as shown in Fig. 1.2.  



6 

 

 

                           denotes joint              denotes mass center 

Fig. 1.2 Complete force and moment balancing of four-bar mechanism with physical pendulum 

of coupler and inertia counterweights on rotating links (Norton, 2011) 

Thus the complete balance of shaking force and shaking moment is not 

recommended in most of the studies. To overcome this difficulty, some methods 

suggest reducing the shaking force and shaking moment simultaneously using the 

optimization methods. The researchers all over the world are continuously trying to 

explore the new ideas and techniques to balance the shaking force and shaking 

moment in the planar mechanisms though a good amount of research in this area has 

been carried out in the past.  

In most of the methods available in the literature, the analytical method is 

derived for complete force balance for simple mechanisms and cannot be extended for 

the complex mechanisms. Few optimization methods use the dynamically equivalent 

systems to balance the mechanisms by finding the optimum inertial parameters of the 

mechanism, i.e., the mass, the mass moment of inertia and the mass center location. 

The convex optimization method is also used to optimally design the counterweights 

to balance the mechanisms. Some other methods are based on the mixed mass 

            

Physical pendulum 

mass (2 places) 

Inertia 

counterweight 
(flywheel) 

Inertia 
counterweight 

(flywheel) 

Force balance mass Force balance mass 

   

Gears 
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redistribution approach in which the principles of mass distribution and counterweight 

addition are combined to achieve dynamic balancing in the planar mechanisms.  

1.2 Link Shape Synthesis 

One of the crucial problems in mechanism is to determine link’s shape for the desired 

inertial properties corresponding to minimum shaking force and shaking moment. The 

links must carry the applied and constraint dynamic loads during the operation of the 

balanced mechanism. To synthesize the links’ shapes for the specified inertial 

properties, machine designer normally find shapes iteratively from the initial guess 

designs. Methods such as small element superposing method, voxel-based 

discretization, evolutionary structural optimization method, gradient-based method 

and topology optimization method are proposed in the literature. These methods 

require a pre-defined design domain, i.e., initial guess shape, to start with and do not 

include the dynamic balance requirements.   

Thus, the optimization methods available in the literature are used separately 

(1) for the dynamic balancing of the planar mechanisms and (2) for synthesizing their 

link shapes. This motivates to develop a methodology to find the links’ shapes which 

balance the planar mechanisms dynamically through simultaneous reductions in 

shaking force and shaking moment.  

In this thesis, the computer-aided design principles are used to form the links’ 

shapes. The closed parametric curves, i.e., cubic B-spline curves are used to define 

shapes’ boundaries. The inertial properties of the resulting links’ shapes should be 

same as those of the balanced mechanism.   
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1.3 Contributions of the Research 

The contributions of this research work are summarized as follows: 

1. The problem of dynamic balancing and formation of links’ shapes for the 

planar multiloop mechanisms is proposed as an optimization problem. 

2. Planar mechanisms are balanced by finding the optimum mass distribution for 

their links instead of using the counterweights and/or additional members. 

3. A novel design methodology for links of the optimally balanced mechanisms 

using computer aided design principles is proposed.  

4. Evolutionary optimization techniques are explored to find the optimum 

solution for the proposed optimization problem.    

5. Teaching-learning-based optimization algorithm (TLBO) is applied for the 

mechanism balancing. It is established that TLBO is computationally more 

efficient than the popular optimization algorithm, genetic algorithm (GA).  

1.4 Thesis Organisation 

This thesis contains six chapters arranged as follows: 

Chapter 1: Introduction 

The objective and motivation of the research work to develop a method for the 

dynamic balancing and link shape synthesis is presented in this chapter. It introduces 

the mechanism balancing and link shape synthesis approaches. It also highlights the 

major contributions of the research work and outlines the organization of the thesis. 

Chapter 2: Literature Survey 

The various methods developed for complete force balance, complete force and 

moment balance, partial force and moment balance including the optimization 

methods as well as the methods used for link shape synthesis are discussed in this 
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chapter. The drawbacks and limitations of these methods are mentioned to identify the 

research gap.     

Chapter 3: Optimization Techniques 

This chapter discusses about the traditional and evolutionary optimization algorithms. 

It differentiates the various parameters required to search the solution in the entire 

design space for these optimization algorithms. The popular evolutionary optimization 

algorithms, Genetic algorithm (GA), and teaching-learning-based optimization 

algorithm (TLBO), are explained and their applications are discussed in this chapter. 

Chapter 4: Optimal Dynamic Balancing 

The dynamics for the planar mechanisms along with the equimomental system of 

point-masses used to simplify it are explained in this chapter. The optimization 

problem is formulated to dynamically balance the planar mechanism and numerical 

examples of planar four-, five- and six-bar and slider-crank mechanism are solved to 

minimize the shaking force and shaking moment. The method to reduce the loads on 

main bearings of an inline multi-cylinder engine is also presented. 

Chapter 5: Link Shape Synthesis 

This chapter presents the formulation of the optimization problem for the link shape 

synthesis. The numerical problems of planar four-, five- and six-bar and slider-crank 

mechanism which are solved for the dynamic balancing in the chapter 4 are solved to 

find the optimum link shapes in this chapter.     

Chapter 6: Conclusions 

The results obtained in this research work are summarized in this chapter. It also 

addresses the contributions and future scope of the research work.   
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1.5 Summary 

The dynamic balancing and link shape synthesis for the planar mechanisms are 

introduced in this chapter. It describes the motivation and objective of the research 

work and also outlines the thesis contributions. It also contains brief information 

about the six chapters of the thesis. 
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Chapter 2 

Literature Survey 

This chapter reviews the various methods developed for balancing of the planar 

mechanisms and synthesizing the link shapes. The methods used for complete force 

balance, complete force and moment balance, partial force and moment balance 

including the optimization methods as well as the methods used for the link shape 

synthesis are reviewed. Several review papers such as Kamenskii (1968a), Lowen and 

Berkof (1968), Lowen et al. (1983), Kochev (2000), Arakelian and Smith (2005), 

Wijk et al. (2009), and Arakelian and Briot (2015) throw light on the quantum of 

work carried out on the dynamic balancing of the mechanisms.  

2.1 Complete Shaking Force Balancing 

The complete shaking force balancing known as static balancing requires the total 

center of mass of a mechanism to be fixed. The two common approaches used to 

achieve this are the redistribution of the link masses and use of the counterweights for 

the mechanism links. 

The analytical methods have been developed to trace and keep the total mass 

center of the mechanism fixed. Shchepetilnikov (1968) presented the method of 

„Principal Vectors‟ in which the position of the mass center is described using the 

vectors directed along the links of the mechanism. Similarly, Berkof and Lowen 

(1969) introduced the „Method of Linearly Independent Vectors‟ for the complete 

force balancing of four and six-bar planar mechanisms with arbitrary link mass 

distribution (Fig. 2.1). The balancing conditions are presented for the internal mass 

redistribution and for the counterweight addition. In this method, the links masses are 

redistributed in such a way that it eliminates the time-dependent terms coefficients in 

an equation representing the trajectory of the total center of mass of the mechanism.  
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Fig. 2.1 Complete force balancing of planar four-bar mechanism using counterweights (Berkof 

and Lowen, 1969)  

This results in a fixed center of mass of the mechanism and thus the complete shaking 

force balancing is achieved.  

Tepper and lowen (1972) extended this method and proved that the 

counterweights required for the complete force balance of an n-link planar mechanism 

are half of the total number of the links. They developed the „Contour Theorem‟ to 

differentiate between the mechanisms which can be fully force balanced and those 

which cannot. Contour theorem examines the nature of the paths from the individual 

links to the ground. It was found that the pinned planar mechanisms can always be 

force balanced as they do not have time-dependent coefficient in the center of mass 

equation. Based on the same approach, Walker and Oldham (1978, 1979) presented 

the complete force balancing conditions for various types of planar mechanisms with 

multi-degrees of freedom. The counterweights are used to balance the mechanism 

containing both the revolute and the prismatic joints. They presented the criteria for 

deciding the number of the counterweights required for complete force balancing and 

for the selection of the links to which the counterweight are to be attached. As an 

extension of the method proposed by Berkof and Lowen (1969), Kochev (1988) used 
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the ordinary vector algebra for deriving the conditions for full force balancing in the 

planar mechanisms. Thus, the linear balancing conditions are presented in the 

Cartesian form in this method. A computer program is also developed to completely 

balance the shaking force in the mechanisms based on the Method of Linearly 

Independent Vectors which also controls the increment in the shaking moment 

through properly designing the counterweights (Smith, 1975). In another approach, 

the balancing conditions are presented to reduce the root-mean-square (RMS) and 

maximum value of the shaking force in the mechanisms which is known as the best 

uniform balancing (Han, 1967). 

Chiou and Davies (1997) minimized the shaking force in a press machine by 

designing a cam mechanism. Force balancing along with the trajectory tracking is 

achieved in a five-bar real-time controllable (RTC) mechanism using the adjusting 

kinematics parameter (AKP) approach (Ouyang et al., 2003, Ouyang and Zhang, 

2005). Similar to the robot manipulators, the RTC mechanism is driven by the 

servomotors and can be scheduled and planned in real-time. The AKP approach was 

found better than the counterweight method as far as the reduction in the servomotors 

torques and joint forces are concerned. 

The effect of the complete force balance on the other dynamic properties was 

studied by Kamenskii (1968a) and Lowen et al. (1974). It was found that the complete 

force balance increases the shaking moment and driving torque for the mechanism. 

Therefore, only force balancing is not useful and the moment balance is also needed 

to balance the mechanism completely.  

2.2 Complete Shaking Force and Shaking Moment Balancing 

To achieve the dynamic balance in the mechanisms, the shaking moment is 

completely balanced by eliminating the angular momentum of the moving links along 
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with the full force balance. The complete elimination of the total angular momentum 

using the link mass distribution and/or adding the counterweights is not possible 

(Kochev, 2000). Therefore, normally the shaking moment is reduced by adding disk 

counterweights (Tepper and Lowen, 1972; Feng, 1990, 1991; Chiou et al., 1998), 

cam-actuated oscillating counterweight (Kamenskii, 1968b), physical pendulum 

(Berkof, 1973), counter-rotating disks (Lowen et al., 1983), inertia counterweight 

(Tricamo and Lowen, 1983a, b), geared counterweights (Esat and Bahai, 1999; Ye 

and Smith, 1994), duplicate mechanism (Arakelian and Smith, 1999) and moment 

balancing idler loops (Bagci, 1982). Moore et al. (2009) presented the different sets of 

the design parameters that dynamically balance a four-bar mechanism without using 

the counter-rotations.  

Berkof (1973) developed a method in which the coupler mass is dynamically 

substituted by the concentrated masses located at the rotating links to completely 

balance the force and moment in the mechanisms. In this method, the coupler is 

treated as a massless link having two concentrated masses and thus only the rotating 

links need to be balanced for complete balancing of the mechanism. Considering the 

dynamic replacement of point masses for the moving links described as the mass flow 

concept, the complete balancing of the planar mechanisms can be obtained (Ye and 

Smith, 1994).  

As an extension to the method of linearly independent vectors for full force 

balance, Elliot and Tesar (1977, 1982) presented a theory to balance shaking force 

and shaking moment in the complex planar mechanisms. Esat and Bahai (1999) 

extended the method developed by Tepper and Lowen (1972) and found that for a 

fully force balanced mechanism; the moment can be completely eliminated using the 

geared counter-inertias (Fig. 2.2). Kochev (1992) suggested the balancing of the 
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shaking moment in a force balanced mechanism by prescribing the input speed 

fluctuations using non-circular gears.    

Kamenskii (1968a, b) used the cam mechanism to completely balance the 

shaking force and shaking moment in the planar mechanisms (Fig. 2.3). The reduction 

of the inertia forces is achieved by using a cam-counterweight arrangement where the 

cam driven masses keep the mechanism‟s center of mass fixed. 

 

Fig. 2.2 Complete balancing of planar four-bar mechanism using geared counter-inertias (Esat 

and Bahai, 1999) 

 

Fig. 2.3 Dynamic balancing of planar six-bar mechanism using cam operated counterweight 

(Kamenskii, 1968a, b) 
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Fig. 2.4 Complete shaking force and shaking moment balancing through mass redistribution 

and addition of inertia counterweights (Feng, 1990)  

Feng (1990, 1991) developed a method for complete force and moment balance of the 

planar mechanisms combining mass redistribution and addition of the geared inertia 

counterweights (Fig. 2.4). The analytical conditions for complete force and moment 

balance for 17 types of eight-bar mechanism and 26 types of four-, five- and six-bar 

mechanism with prismatic pairs are presented in this method.    

Arakelian and Smith (1999, 2005) proposed a method to completely balance 

the planar mechanisms using the counterweights connected through toothed-belt 

transmission system and gears. This arrangement generates an equal and opposite 

movement to mechanism‟s center of mass movement and hence completely balance 

the mechanism (Fig. 2.5). Similarly, Arakelian (2006) presented a method to improve 

the balancing of a double slider-crank mechanical system (Fig. 2.6). The shaking 

force is balanced in this method by using the two slider-crank mechanisms having 

equal and opposite movements. The shaking moment is balanced in this mechanism 

by the design modification of the second connecting rod of the double slider-crank 

mechanical system.  
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Fig. 2.5 Complete shaking force and shaking moment balancing of slider-crank mechanism 

based on the copying properties of the pantograph (Arakelian and Smith, 1999) 

Arakelian and Briot (2010) used counterweight with cam mechanism to balance a 

slider-crank mechanism. The torque reduction in this mechanism is achieved through 

the spring that is used to maintain contact with the balancing cam mechanism. 

 

Fig. 2.6 Self-balanced slider-crank mechanism (Arakelian, 2006) 

Bagci (1979, 1982) solved the balancing problem of planar mechanisms containing 

multiple prismatic pairs that cannot be fully force balanced using the balancing 

criteria presented by Tepper and lowen (1972). He termed it as “force transmission 

irregularities” and used the “idler loop” concept with counter-rotating disks to 

completely balance the force and moment in the mechanism. Dresig and Dien (2011) 

proposed a method to completely balance the shaking force and shaking moment 

using a single rigid body known as the balancing body. In this method, the inertia 
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forces and moments both for the mechanism and the balancing body are eliminated by 

controlling the motion of the balanced body.    

Gosselin et al. (2009) proposed an analytical method for static and dynamic 

balancing in the mechanisms. In this method, the balancing conditions are presented 

by the algebraic equations using joint angular velocities and complex variables. Thus, 

by using the computer algebra, the necessary and sufficient conditions are derived to 

completely balance the shaking force and shaking moment in the mechanism.  

The effects of the dynamic balancing on the elastodynamic properties of the 

mechanisms are investigated in (Raghu and Balasubramonian, 1990; Xi and Sinatra, 

1997; Yu and Jiang, 2007; Martini et al., 2013, 2014). It is found that these methods 

increase the overall mass, space, cost and complexity in the mechanisms, and most of 

them are applicable to the simple mechanisms only. Hence, complete force and 

moment balancing is achieved by producing shaking moment that counteract the 

moment in the original mechanism.  

2.3 Partial Shaking Force and Shaking Moment Balancing 

Instead of complete balancing of shaking force and shaking moment independently, 

minimization of them simultaneously is more useful from the design point of view. 

The optimization methods used to simultaneously minimize the shaking force and 

shaking moment in planar mechanism can be categorised as: 

2.3.1 Method of harmonic balancing  

A method based on the harmonic analysis is used to balance the harmonics of the 

shaking forces and shaking moments in which the forces and moments are formulated 

using Gaussian least-square formulation and Fourier series (Norton, 2011). Han 

(1967) presented a least-square approach to balance the complex mechanisms in 

which a counterweight connected to the input shaft results in first harmonic balancing 
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of the inertia induced forces and moments. Stevensen (1973) presented a method for 

the complete balancing of a harmonic unbalance of the machine, including inertia 

forces, moments of the inertia forces, and inertia torques, utilizing six weights on 

three shafts in the machine parallel to the coordinate axes and rotating at the speed of 

the harmonic. Similarly, Tsai (1984) used two Oldham couplings to balance second 

harmonics of the shaking force and shaking moment. This type of balancer runs at the 

primary speed of the machine whereas the Lanchester balancer runs at double of the 

primary speed to get the same balancing effect (Hsieh and Tsai, 2009). A method was 

developed based on the harmonic balancing to find the region boundaries to locate the 

additional shafts by Davies and Niu (1994). Arakelian and Dahan (2001) presented a 

method to achieve the first harmonic balancing of the shaking moment by using the 

counterweight connected to the input shaft in such a way that the counterweight 

rotation axis remains at an offset to the input shaft axis (Fig. 2.7). 

2.3.2 Extension of method of linearly independent vectors 

Based on the fact that the in a force balanced mechanism, the shaking moment 

reduces to a pure torque, Berkof and Lowen (1971a, b) developed the theory of 

shaking moment optimization. In this method, RMS value of the shaking moment is 

minimized for a force balanced in-line planar four-bar mechanism. The link mass 

distribution ratios as the functions of the link length ratios are defined as the design 

variables. This method was the extension of previously developed force balancing 

method by Berkof and Lowen (1969). 



20 

 

 

Fig. 2.7 First harmonic balancing of the shaking moment in planar four-bar mechanism 

(Arakelian and Dahan, 2001) 

The angular momentum principle is used to define the shaking moment of a force 

balanced four-bar mechanism. It was shown that the shaking moment cannot be 

completely balanced without using additional links, but a partial moment balance may 

be obtained by the desired internal mass rearrangement. Carson and Stephens (1978) 

extended this method by considering feasible limits for the link parameters. The 

optimum mass distribution is found for the mechanism links to balance it, and the 

kinematic design criterion is satisfied by fixing the link length ratios. Similarly, 

Haines (1981) optimized the RMS values of the shaking moment and the driving 

torque for a force balanced mechanism by constraining the link parameters within the 

physical limits.  

Tepper and Lowen (1975) presented a method for partial force balancing of 

four-bar mechanisms, which allows control over the increase in ground bearing 

forces. They presented a trade-off method, wherein the RMS shaking force of 

constant input speed, a general four-bar mechanism is optimized while the increase of 

the RMS ground bearing forces is limited using Lagrange multiplier formulation. 

They presented an optimization method that represent feasible trade-off techniques for 
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optimizing the RMS shaking force of a four-bar mechanism while keeping the RMS 

ground bearing forces lower than those of the fully force balanced mechanism. 

2.3.3 Optimum design of counterweights   

A partial force balancing method for a planar four-bar mechanism was developed by 

Tricamo and Lowen (1983a, b) which allows the prescribed maximum shaking force. 

The simultaneous minimization of shaking moment, input torque and bearing forces is 

achieved by using the three-counterweight technique (Fig. 2.8). This method 

determines the parameters of the three counterweights that must be attached to the 

input, coupler, and output links, respectively.  

 

Fig. 2.8 Balancing of planar four-bar mechanism using three counterweights (Tricamo and 

Lowen, 1983a, b) 

Demeulenaere et al. (2004, 2006, and 2010) developed a convex optimization 

technique to determine the counterweight parameters to balance the planar 

mechanisms. This technique is used to design point-mass counterweights and 

minimum-inertia counterweights for the planar mechanisms. The counterweight 

parameters are chosen as the design variables while the upper and lower limits on 

mass and center of mass coordinates are presented as the convex constraint functions. 

The ratio of RMS values of the optimized dynamic force to the original dynamic force 
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known as balancing effect index is defined as the objective function. Verschuure 

(2009) extended this method and introduced a set of auxiliary parameters, µ-

parameters that are a function of the classical mass parameters to describe a 

counterweight. Due to the introduction of these parameters, an analytical derivation of 

the mechanism kinematics and dynamics is not necessary for this method (Fig. 2.9).  

 

Fig. 2.9 Partial balancing of planar ten-bar mechanism using sector-type counterweights 

(Verschuure, 2009) 

Farmani et al. (2011) formulated the mechanism balancing problem as a multi-

objective optimization problem based on the concepts of inertia counterweights and 

physical pendulum developed by Berkof (1973) which completely balance all linear 

and rotary mass effects. The thickness of counterweights and disks for both input and 

output links of a planar four-bar mechanism are considered as the objective functions 

and minimized using Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA). The multiple optimum solutions were found for the optimization problem and 

then a fuzzy decision maker was used to select the best solution.  

2.3.4 Optimum mass distribution using equimomental system of point-masses 

Gill and Freudenstein (1983a, b) developed a design procedure for the optimum mass 

distribution of the links of high-speed spherical four-bar mechanisms. This analysis 



23 

 

includes a quadratic-programming technique that allows an optimum trade-off 

between shaking forces, shaking moments, bearing reactions, and input-torque 

fluctuation. They replaced the mass distribution of a rigid link with a fixed point by 

four equivalent point masses to simplify inertia-force calculations. Rahman (1996) 

extended this method to the general spatial mechanisms. The previous method was 

limited to one particular type i.e. spherical mechanism. Lee and Cheng (1984) used a 

two point-mass model for combined balancing of shaking force, shaking moment, and 

torque by developing the optimality criterion using Lagrangian and Newtonian 

formulations. They formulated an optimization problem for the mechanism balancing 

and solved the same by Heuristic Optimization Technique of Lee and Freudenstein 

(1976a, b). This method presents the trade-offs among shaking force, shaking 

moment, input-torque fluctuations and bearing reactions by redistributing the link 

masses and adding counterweights. Thus, the optimum balancing of the mechanism 

can be achieved in the design stage. The two-point mass model developed by 

Wiederich and Roth (1976) for momentum conservation was adopted for the 

modeling of the inertial properties of the mechanism.  

Chaudhary and Saha (2007, 2008 and 2009) solved the mechanism balancing 

problem as an optimization problem by finding the optimum mass distribution of the 

mechanism links along with constraining the mechanism parameters within the 

feasible limits. Thus, the shaking force and shaking moment are minimized 

simultaneously by optimizing links inertial properties, i.e., mass, location of center of 

mass and moment of inertia. In this method, the inertia properties of the mechanism 

are represented by the equimomental point-mass systems that are dynamically 

equivalent to the rigid moving links of the mechanisms. The equimomental point-

mass systems are used to identify the design variables and to formulate the constraints 
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for the optimization problem formulation. They proposed three equimomental point-

masses for each link of the planar mechanisms (Chaudhary and Saha, 2006). To 

determine the shaking force and the shaking moment, the equimomental point-masses 

parameters are used to formulate the dynamic equations of motion for the 

mechanisms. An optimization problem is formulated for finding the optimum mass 

distribution of the mechanism links that minimizes the shaking force and shaking 

moment. The point-mass parameters are defined as the design variables and limits on 

links masses, and inertias are presented as the constraints for the optimization 

problem. The objective function is defined as the weighted sum of the dimensionless 

RMS values of the shaking force and shaking moment calculated using Newton-Euler 

equations of motions.      

2.3.5 Optimum mass distribution to reduce effect of joint clearances 

 

Fig. 2.10 Planar four-bar mechanism with joint clearance (Erkaya and Uzmay 2009) 

For the mechanisms with a clearance at joints as shown in Fig. 2.10, the changes in 

the direction and magnitude of the joint forces produce the vibrations and thus 

considered as the critical design parameters (Zhe and Shixian, 1992). An optimization 

method is developed to minimize the adverse dynamic effects produced due to the 
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joint clearances (Park and Kwak, 1987). In this method, the magnitude and location of 

the counterweight added to the mechanism are selected as the design variables. 

Similarly, Feng et al. (2002) reduced the joint forces by finding the optimum mass 

distribution for the link masses. The change in direction and amplitude of the joint 

forces is calculated using the Lagrange‟s equations of motion and presented as the 

objective function whereas the inertial parameters of the moving links, i.e., the mass, 

the location of mass center and the moment of inertia are taken as the design 

variables. Erkaya and Uzmay (2008, 2009) presented an optimization method to 

reduce the effect of joint clearance on the shaking force and shaking moment in the 

planar mechanism. The weighted sum of differences of force and moment values with 

and without the clearance is defined as the objective function to be minimized. The 

link lengths and their center of mass locations are defined as the design variables with 

proper lower and upper limits to solve this optimization problem.  

2.3.6 Non-linear constraint optimization using natural orthogonal complement 

method 

An optimization method was developed to balance a five-bar mechanism using 

natural orthogonal complement dynamic modeling (Ilia and Sinatra, 2007, 2009). The 

shaking force is minimized through conventional optimization method, i.e., non-linear 

constraint optimization. The center of mass parameters of moving links were chosen 

as the design variables while the natural orthogonal complement method was used for 

dynamic analysis of the mechanism.  

2.3.7 Mixed mass redistribution method 

The mixed mass redistribution method combining the principles of the mass 

redistribution and addition of counterweights is applied for reducing the shaking force 

and shaking moment in the mechanisms (Guo et al., 2000; Feng et al., 2000). The 
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mass, moment of inertia and location of mass center of the moving links along with 

the mass and mass center location of the counterweights were taken as the design 

variables.  

2.3.8 Balancing through integrating kinematic and dynamic characteristics 

Yan and Soong (2001 and 2004) presented an optimization method integrating 

kinematic synthesis, dynamic balancing design, and the design of the input link‟s 

motion trajectory. The trajectory of the crank displacement is represented by a Bezier 

curve while the kinematic and dynamic properties of the mechanism are included in 

the objective function using appropriate weighting factors. Thus, the kinematic design 

requirements are satisfied along with the reduction in the shaking force and shaking 

moment for the mechanism. This method was further extended using the bi-material 

moving links (Soong and Hsu, 2007). The moving links of the mechanism are 

designed by joining two different materials with optimum link length proportions as 

shown in Fig. 2.11. 

2.3.9 Sensitivity analysis 

Sensitivity analysis is the study of the uncertainty in the output of a mathematical 

model to different sources of uncertainty in its inputs. Li (1998) presented a method to 

analyse the sensitivity of the shaking force and shaking moment to the design 

variables for a planar mechanism. The objective function includes shaking force, 

shaking moment and the sensitivity terms such as the ratio of shaking moment to mass 

center distance of links; is minimized by optimizing the inertial parameters of the 

links treated as the design variables. Alici and Shirinzadeh (2006) formulated an 

optimization problem to dynamically balance the planar parallel manipulators. In this 

method, the objective function is defined as the sum-squared values of shaking 

moment, driving torques, bearing forces and the angular momentum deviation. The 

https://en.wikipedia.org/wiki/Uncertainty
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Uncertainty
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constraints are imposed on the geometric as well as the inertial properties along with 

the full force balancing condition for the mechanism. 

 

M1 and M2 represent two different materials 

Fig. 2.11 Balancing of four-bar mechanism by designing bi-material moving links (Soong and 

Hsu, 2007) 

In another method, Erkaya (2013) formulated the objective function by adding the 

sub-components of shaking force and moment and analysed the sensitivity of the 

optimum result to weighting factors used in the objective function. The kinematic and 
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dynamic parameters such as link length, structural angle, mass, inertia and center of 

mass location are defined as the design variables. 

In addition to the methods discussed above the forces and moments 

transmitting to the engine mounts due to reciprocating parts and gas pressure in a 

four-stroke seven-cylinder marine engine are reduced by optimizing the crank angles 

(Park et al., 2007). The steepest decent method with golden section search was used 

for the optimization.       

2.4 Methods for Link Shape Synthesis  

After obtaining optimum inertial properties for the balanced mechanism, links shapes 

are to be decided to carry various loads acting on them. Several methods are 

suggested in the literature to find the mechanism link shapes for specified inertial 

properties that require an initial design domain to start with. The methods for link 

shape synthesis available in the literature may be categorised as: 

2.4.1 Small element superposing method 

Feng et al. (2002) developed a Small Element Superposing Method (SESM) to find 

link shapes which discretize the initial assumed shape into small mass elements and 

locate them systematically along the link length (Fig. 2.12). The design equations 

corresponding to the optimized mass, center of mass location and inertia are satisfied 

to form the link by superposing these small mass elements.   

2.4.2 Voxel-based discretization 

In the convex optimization method developed by Demeulenaere (2004a, b, 2006, 

2010) designing point-mass counterweights and minimum-inertia counterweights was 

reformulated as a convex nonlinear optimization problem. This method was used to 

optimally design the counterweights used for the balancing purpose. 
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Fig. 2.12 Small element superposing method for finding link shape (Feng et al., 2002) 

For planar mechanisms, a particular counterweight shape is enforced through the 

additional constraints. The counterweight shapes considered were point-mass, 

minimum-inertia counterweights and sector-type counterweights. Based on this 

approach Verschuure (2008a, b, 2009) used a voxel-based discretization to describe 

the final counterweight shape, inspired by the typical discretizations used in the area 

of topology optimization. 

2.4.3 Evolutionary structural optimization method 

The Evolutionary Structural Optimization (ESO) method is used to optimize the 

rotating machinery shaft‟s shape by gradually removing ineffective material from the 

design domain (Xie and Steven, 1993, 1996; Kim et. al., 2002). This method executes 

the Finite Element Analysis (FEA) with finite size elements in each iteration to find 

the optimum shape. 
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2.4.4 Gradient-based method 

In this method, the link shapes are synthesized by maximizing external work done by 

a given external force considering total volume of all links as the constraint function 

(Azegami et al., 2013). The external work done for the mechanism defined as the 

objective function satisfies the requirement of the kinetic energy of the mechanism for 

an assigned time interval. The initial design domain for the link is considered as the 

design variable and is optimized to get optimum link shape (Fig. 2.13). 

 

(a) Initial shapes 

 

(b) Optimum shapes 

Fig. 2.13 Optimum shape for piston-crank mechanism using gradient-based method (Azegami 

et al., 2013) 

2.4.5 Topology optimization method 

The link shapes are also found through the topology optimization based on parametric 

curves (Xu and Ananthasuresh, 2003) and non-intersecting closed polygons 
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(Yoganand and Sen, 2011). In this approach, the vertices of the control polygon that 

define parametric curves for links are used to identify the design space. Based on 

FEA, this formulation considers the constraints to avoid self-intersections and 

intersections with other segments. It also ensures the optimum utilization of the 

available space and material. The required inertial properties of the design domain are 

achieved through optimizing the vertices of the control polygon as shown in Fig. 2.14.    

               

Fig. 2.14 Geometry synthesis through topology optimization (Yoganand and Sen, 2011) 

2.4.6 Shapes for specific path and motion 

The link shapes for the interference-free motion are found by identifying feasible 

material domain associated with the link geometries (Sen et al., 2004). Similarly, the 

mechanism‟s dimensional synthesis to generate specified path or motion based on 

graphical and analytical techniques can also be used for shape optimization (Sandor 

and Erdman, 1984; Freudenstein, 2010).  

2.5 Optimization Techniques  

The limitation of these methods for finding link shapes is that they require a pre-

defined design domain to start with and do not consider the dynamic balance for the 

mechanisms during formulation. Thus, the optimization methods available in the 

literature are used separately (1) for the dynamic balancing of the planar mechanisms 

and (2) for synthesizing their link shapes. It is found that the formulation of dynamic 

balancing problem as an optimization problem is the crucial step in mechanism 
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design. It is also found that an equimomental system of point-masses can be 

effectively used for the problem formulation. Its use can be further explored for 

multiloop mechanisms having both fundamental joints, i.e., revolute joint and 

prismatic joint. In this dissertation, the use of the equimomental system of point-

masses is explored in terms of problem-solving strategies. Modern optimization 

algorithms are applied to solve the problems. These algorithms are explored from the 

view of computation aspect and convergence basis.   

2.6 Summary  

Techniques of shaking force balancing and its effect on other dynamic quantities are 

reviewed in Section 2.1. It was found that only shaking force balancing is not useful 

as it increases shaking moment and driving torque in the mechanism. Review on the 

literature regarding the complete balancing of the shaking force and the shaking 

moment in Section 2.2 states that there will be no clear-cut method for static and 

dynamic balancing. Several works of literature are very specific and applicable to the 

specific mechanism. A generalised methodology is not available which can be applied 

to all types of mechanisms, particularly multiloop mechanisms. Therefore, optimal 

balancing methods are explored. The literature based on the methods developed for 

optimal balancing of force and moment is reviewed in Section 2.3 including the 

various optimization methods for simultaneous minimization of the shaking force and 

the shaking moment. However, the methods used for balancing the flexible 

mechanisms are excluded in these sections.  

In Section 2.4, the methods used for the link shape synthesis are reviewed and 

it is concluded that these methods require an initial design domain to start the 

procedure and don‟t relate the final link shapes with the dynamic balance of the 
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mechanisms. The limitations of all these methods are also discussed which justifies 

the research gap.     
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Chapter 3 

Optimization Techniques 

This chapter discusses the popular evolutionary optimization technique, Genetic 

Algorithm (GA) and Teaching-learning-based Optimization (TLBO) algorithm. It also 

covers the definitions of various parameters used by these algorithms. 

Most of the engineering design problems are competing multi-objective 

problems for which the optimal values of the design variables are searched that 

optimize several objectives for a given set of constraints. The different methods 

available to formulate a multi-objective problem as a single objective problem are 

weighted global criterion method, weighted sum method, lexicographic method, 

weighted min-max method, exponential weighted criterion, weighted product method, 

goal programming methods, bounded objective function method, and physical 

programming (Marler and Arora, 2004). The weighted sum approach is more widely 

used in which a normalized objective function is formulated by assigning proper 

weighting factors to all the objectives. By selecting different values of the weighting 

factors to objectives, the results are obtained as a set of optimum solutions and each 

solution in this set is a trade-off between the different objectives (Marler and Arora, 

2010).  

A constrained optimization problem is considered more complex than that of 

an unconstrained problem. It finds a feasible solution that optimizes one or more 

mathematical functions in a constrained search space. The constrained optimization 

problem is transformed into an unconstrained optimization problem by modifying the 

objective function on the basis of the constraint violations. The constraint violations 

are used to penalize infeasible solutions to favor the feasible solutions. The 

constraints are normally treated as penalty functions such as static, dynamic or 
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adaptive penalty to the objective function. The various constraint handling techniques 

are suggested such as superiority of feasible solutions (SF) (Deb, 2000), stochastic 

ranking technique (SR) (Runarsson and Yao, 2005), ε-constraint technique (EC) 

(Takahama and Sakai, 2006), self-adaptive penalty approach (SP) (Tessema and Yen, 

2006) and ensemble of constraint handling techniques (Montes and Coello, 2005; 

Mallipeddi and Suganthan, 2010). 

After formulating the optimization problem, it can be solved by using either 

traditional or evolutionary optimization algorithms. The traditional or classical 

optimization algorithms are based on deterministic approach, i.e., they use gradient 

information of objective function with respect to the design variables and move from 

one solution to other following the specific rules. Depending on the starting solution 

these algorithms may end up with a local optimum solution. Therefore, one has to 

explore all local solutions; one of them is the global optimum solution. To improve 

the chances of getting the global optimum solution, a large set of randomly generated 

initial solutions is required for these algorithms. The global optimum solution is then 

found as the best of all local optimum solution provided by different instances of the 

algorithm. The popular methods in this category are quadratic programming, steepest 

descent method, linear programming, nonlinear programming, dynamic programming 

and geometric programming, etc. For the complex optimization problem having a 

large number of design variables and multiple local minimum solutions, these 

methods converge on the optimum solution near to the initial solution provided and 

thus produce local optimum solution (Marler and Arora, 2004; Mariappan and 

Krishnamurty, 1996). These techniques are generally not suitable for the optimization 

problems with (1) large number of constraints (2) large number of design variables (3) 

multi-objective function (4) multi-modality and (5) differentiability. A function is 
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multimodal if it has two or more local optimum solutions in the design space. A 

function is regular if it is differentiable at each point of its domain. The traditional 

optimization methods require the gradient information and thus not useful in case of 

the non-differentiable functions. 

Evolutionary or advanced optimization techniques are stochastic in nature, and 

the optimum solution is searched following the probabilistic transition rules. These 

algorithms mimic the natural evolutionary principles and start with a set of solutions 

known as the population to search the optimum solution through parallel computing. 

Thus, it is advantageous to use these techniques to find the global optimum solution 

with less computational efforts for large and difficult optimization problems. The 

popular techniques in this category are: Genetic algorithm (GA), Simulated Annealing 

(SA), Particle Swarm Optimization (PSO), Biogeography-based optimization (BBO), 

Ant Colony Optimization (ACO), Differential Evolution (DE), Grey Wolf Optimizer 

(GWO), Fireworks Algorithm (FA), Directed Bee Colony Optimization (DBC), 

Harmony Elements Algorithm (HEA), Artificial Bee Colony (ABC), Artificial 

Immune Algorithm (AIA), Shuffled Frog Leaping Algorithm (SFLA), Grenade 

Explosion Algorithm (GEA) etc. These techniques provide a near-global optimum 

solution for an optimization problem complex in nature having a large number of 

variables and constraints. The performance of these algorithms is dependent on the 

values of algorithm controlling parameters and chosen strategy for the initialization of 

population. Hence, these algorithms are sensitive to parameter tuning. The choice of 

the common parameters like population size and number of iterations is based upon 

the experience as there is no specific rule to select their values. The total function 

evaluations for an optimization algorithm is defined as the product of population size 
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and number of iterations, and different combination of these parameters are tried to 

improve the performance of the algorithm.  

3.1 Definitions of Different Terms Used In Optimization Techniques 

The following terms define the working of an optimization technique. 

Problem dimension: Defined by number of design variables for the optimization 

problem. 

Search space: An area searched to find the optimum solution. It is defined by range or 

bounding limits of the design variables. 

Exploration: Exploring the entire search space to find the best solution.   

Exploitation: Intensive search in a specific region to get solution near to the global 

optimum solution. 

Feasible solution: The solutions in entire search space that satisfy all the constraints 

and for which all the design variables are within the defined bounding limits. 

Efficiency: Percentage of times an algorithm finds result close to best result for 

different runs.  

Convergence: Process of moving from initial solution to the optimum solution 

through successive iterations until the termination criterion is satisfied. 

Accuracy: Defines the quality of the best solution. For different runs, solutions should 

be close to each other. 

Diversity: It reduces the chances of the local trapping. With increased diversity, an 

algorithm provides a variety of solutions. 

Local trapping: When the solution obtained is local optimum for a specific region, 

and global optimum is not known.  
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Search space reduction: Prominent values of the design variables are chosen for 

which optimum value can be obtained. It improves the accuracy and reduces CPU 

time. 

Computation burden: Time taken to solve an optimization problem. It depends on 

population size along with number of iterations, design variables, and constraints.  

Solution quality: It depends upon best, worst and mean values of the objective 

function. Quality is also checked by standard deviation and coefficient of variation.  

Coefficient of variance: Ratio of standard deviation and mean value of objective 

function.    

Termination criterion: An algorithm can be stopped after a specific time or number of 

iterations known as the termination criterion. 

The balancing of exploration and exploitation is important for an optimization 

technique. Through efficient reduction of the search space without missing global 

optimum solution, the accuracy is improved, and algorithm requires less 

computational time to solve the optimization problem. For the benchmark problems, 

two common criteria considered for comparison of different optimization algorithms 

are success rate and mean function evaluations required. The success rate shows the 

consistency of the algorithm for finding an optimum solution in different runs while 

number of function evaluations indicates the computational efficiency. The results are 

found for different runs for which the mean solution shows the average ability of the 

algorithm to find the global optimum solution and standard deviation describes the 

variations in the solution from the mean solution. The best and worst solutions are 

also used to compare the performance of the different optimization algorithms. 
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3.2 Genetic Algorithm  

Genetic algorithm (GA) works on the principle of the Darwinian theory of the 

survival of the fittest and evolution of the living beings (Holland, 1992). It’s a nature 

inspired population-based optimization algorithm and guides the search through the 

solution space by using the natural selection and genetic operators such as crossover, 

mutation and the selection (Deb, 2010; Gao et al., 2000). The population means a 

group or a set of solutions. The design variables are encoded into the solution strings 

of a finite length, and the search starts with a population of the encoded solutions 

created at random instead of the single point in the solution space. Based on the 

solutions in the current population, it uses the genetic operators to replace the old 

population with the new population of solutions till the termination criteria are 

satisfied. Thus, this algorithm evaluates only the objective function, and genetic 

operators - selection, crossover, and mutation are used for exploring the search space. 

One can specify the bounds and constraints for the variables in this algorithm. The 

optimization process takes place in the following manner:   

Initialization of population of solutions 

In basic GA, the randomly generated design variables are coded in binary strings 

having 1’s and 0’s representing their values whereas some variants of GA directly use 

them. The string length is decided on the basis of the desired solution accuracy.       

Fitness function 

GA is suitable for the maximization problem as it works on the principle of the 

survival of the fittest. The fitness function is same as that of the objective function in 

the case of the maximization problem. Moreover, a minimization problem is solved 

by transforming it into the maximization problem where the fitness function as:  

fitness function = 1/(1 + objective function) 
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Selection or reproduction 

The survival of the fittest principle is implemented in this step. It selects the good 

solutions or strings out of the current population for generating the next population 

according to the assigned fitness. The good solutions are chosen from the current 

population, and their multiple copies are included in the new population in a 

probabilistic manner. The different selection schemes available are roulette-wheel 

selection, tournament selection and stochastic selection, etc. The commonly used 

selection scheme is the roulette-wheel selection that selects a solution with a 

probability corresponding to its fitness value. The solution having better fitness value 

will have more number of copies in the new population. Thus, this stage increases the 

number of more fit solutions satisfying the condition of survival of the fittest. This 

operator doesn’t generate new strings as done by the other two operators, crossover 

and mutation. After selection, crossover and mutation operators recombine and alter 

parts of solutions to generate the new population of solutions.  

Crossover or recombination  

Crossover is also known as the recombination operator that exchanges parts of the 

solutions from two or more randomly selected solutions called parents and combines 

these parts to generate new solutions, called children, with a defined crossover 

probability. More solutions may get a chance to go for the crossover procedure with a 

high crossover probability. There are different ways to implement a recombination 

operator. The simplest crossover operator is single point crossover in which the 

crossover site is selected randomly from where the exchange of bits takes place.  

 

1 0 0 1 0   1 0 0 0 1 

            

            

1 1 0 0 1   1 1 0 1 0 

Parents

s 
Children

Parentss 

Crossover site 
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This results in better or worse solutions which will be copied more or less, 

respectively, in next reproduction. From the entire population, this operator works on 

a percentage of strings same as that of the crossover probability.      

Mutation 

After crossover, the solutions are altered to generate the new solutions in this step. 

Crossover works with two solutions while Mutation operates on an individual solution 

in the population. The popular mutation operator is the bitwise mutation in which a 

random site is selected from the string of the solutions and changed from 1 to 0 or 

vice versa to generate a new solution according to the mutation probability.  

 

 

 

The mutation probability is kept low so that the algorithm doesn’t get unstable. This 

operator is required to create a solution in the neighborhood of the current solution to 

achieve a local search around it. It is also important to maintain the diversity in the 

search procedure and to improve the variety in the new population.    

One cycle of these operations completes an iteration in GA. In the next 

iteration, the good strings are copied whereas the bad strings are eliminated, and the 

best obtained solutions are saved using elitism. The crossover and mutation operators 

do not modify the elite solutions but can replace them if better solutions are obtained 

in any iteration. The flow chart for the genetic algorithm is shown in Fig. 3.1. 
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Fig. 3.1 Flow chart of the genetic algorithm 

The working of GA is now demonstrated by the following example: 

2 2 2 2
Maximize - + 2 - + Z x y xy x y xy  

for 0 5,0 5   x y  

1. The initial population of solutions, i.e., sets of design variables within the bounding 

limits is generated at random. In Table 3.1, column 2 contains the randomly generated 

solutions and binary coded strings representing them are given in column 3.  
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Table 3.1 Initial population for genetic algorithm example 

Solution (x, y) String 

1 (2,4) 0 1 0 1 0 0 

2 (5,1) 1 0 1 0 0 1 

3 (2,0) 0 1 0 0 0 0 

4 (3,1) 0 1 1 0 0 1 

5 (4,2) 1 0 0 0 1 0 

6 (2,3) 0 1 0 0 1 1 

  

2. Next, the objective function values, Z, corresponding to these solutions are 

calculated, given in Table 3.2.  

3. The probability of selection of good solutions is now calculated as: 

6

1



i

i

i

Z

Z

 

The probability and cumulative probability for each solution are given in columns 5 

and 6 of in Table 3.2, respectively. 

Table 3.2 Selection of solutions to generate new generation 

Solution (x,y) 
String 

generated  
f(x,y) Probability 

Cumulative 

probability 

Random 

number 

String 

copied 

1 (2,4) 0 1 0 1 0 0 20 0.2817 0.2817 0.7734 1 0 0 0 1 0 

2 (5,1) 1 0 1 0 0 1 14 0.1972 0.4789 0.1536 0 1 0 1 0 0 

3 (2,0) 0 1 0 0 0 0 4 0.0563 0.5352 0.4123 1 0 1 0 0 1 

4 (3,1) 0 1 1 0 0 1 8 0.1127 0.6479 0.9734 0 1 0 0 1 1 

5 (4,2) 1 0 0 0 1 0 12 0.1690 0.8169 0.7657 1 0 0 0 1 0 

6 (2,3) 0 1 0 0 1 1 13 0.1831 1.0000 0.9342 0 1 0 0 1 1 

 

Using roulette-wheel selection scheme that assigns a probability proportional to the 

fitness or objective function value, the good solutions are selected. The random 

numbers corresponding to the probability are shown in seventh column of Table 3.2. 
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The solutions are copied according to the cumulative probability range in which these 

random numbers fall. This represents a new population with multiple copies of the 

good solutions as given in column 7 of the Table 3.2.  

4. Now, single point crossover operator is used to generate new solutions. Crossover 

site from where the exchange of bits takes place is selected randomly as shown below. 

For a random number generated, the corresponding bit is selected for crossover. In 

this example, the random number generated was 0.6529. As it falls in the range of 

0.52-0.68, the fourth bit is selected for crossover between parents to generate children.      

 

 

 

 

 

Fig. 3.2 Crossover site selection  

 

       

   

       

 

   

       

 

Fig. 3.3 Parent’s crossover to produce children 

The selected crossover site may be same or different for different pairs of parents.  

5. Next, the bitwise mutation takes place for this new set of solutions to further 

explore the search space. A particular bit of the strings is selected for which value is 
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changed from 1 to 0 or vice versa. For the problem considered, it is decided that 

mutation takes place for the third bit of the string. A criterion is also set that mutation 

operator will be used for a particular string only if the random number generated is 

greater than 0.8. Using this criterion for the problem considered, a random number is 

generated for each string representing solutions. The random number generated for 

fourth and six strings was above 0.8, and hence mutation operator was used for them.  

 

       

   

       

 

   

       

 

Fig. 3.4 Bitwise mutation 

The final set of solutions after mutation is in Table 3.3: 

Table 3.3 Final population at the end of one iteration of genetic algorithm 

String 

generated  
(x,y) f(x,y) 

1 0 0 0 0 0 (4,0) 16 

0 1 0 1 0 0 (2,4) 20 

1 0 1 0 1 1 (5,3) 16 

0 1 1 0 0 1 (3,1) 8 

1 0 0 0 1 1 (4,3) 19 

0 1 1 0 1 0 (3,2) 11 

 

Though the maximum value of the objective function for these solutions, i.e., 20 is 

same as those of the initially generated population of solutions but the average value 

is increased to 15 from 11.84. This completes an iteration of GA that improves the 
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maximum and average value of the objective function by using genetic operators. 

This final set of solutions is used as the initial population for the next iteration. Thus, 

the parameters required to start GA are: population size indicating number of 

solutions, number of iterations necessary for the termination criterion, crossover 

probability, mutation probability, number of design variables, range of design 

variables and string length for binary version. The limitations of GA are that (1) it 

requires a large amount of computational work and (2) there is no absolute guarantee 

that a global solution is obtained. These drawbacks may be overcome by using 

parallel computers and by executing the algorithm several times or allowing it to run 

longer (Arora, 1989). These drawbacks motivate us to explore other optimization 

techniques which are suitable for the mechanism design.  

3.3 Teaching-learning-based Optimization Algorithm  

The teaching-learning-based optimization (TLBO) algorithm is also a population-

based optimization method that converges to the optimum solution by using a 

population of the solutions. TLBO is known as a parameter-less optimization 

algorithm as no algorithm-specific parameters are required to be handled to 

implement it (Rao and Savsani, 2012). Whereas, in GA, the parameters like crossover 

rate and mutation rate are to be optimally controlled to solve the optimization 

problem. Thus, the main limitation of the available evolutionary optimization 

algorithms including GA is the optimum setting or tuning of the algorithm-specific 

parameters for the proper working of the algorithms. The improper selection of these 

control parameters may results in local optimum solution along with the requirement 

of more computational efforts. The difficulty further increases with the modification 

and hybridization of the algorithms. The hybridization of the algorithms means 

combining the properties of the different optimization algorithms to improve the 
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effectiveness of the algorithm. The modification in a particular optimization method 

suits well to a specific problem and may not work for the other applications. 

Furthermore, for any modification in an optimization algorithm, it is required to check 

that algorithm for a wide variety of the problems before drawing any general 

conclusions for the modifications incorporated. The control parameters required by 

the popular evolutionary and swarm intelligence based optimization algorithms other 

than population size and numbers of iterations are listed in Table 3.4 (Rao and 

Savsani, 2012).  

Table 3.4 Controlling parameters for different evolutionary optimization algorithms 

Algorithm Control parameters 

Genetic Algorithm (GA) Mutation and crossover rates 

Particle Swarm Optimization (PSO) Inertia weight, social and cognitive parameters 

Artificial Bee Colony (ABC) Number of bees and limit 

Harmony Search (HS) Number of improvisation, pitch adjusting rate and 

harmony memory consideration rate  

Ant Colony Optimization (ACO) Exponent parameters, pheromone evaporation rate, 

reward factor 

   

In TLBO, a group of learners is considered as the population and different subjects 

offered to the learners is considered as design variables. The learners’ result is 

analogous to the objective function value of the optimization problem. TLBO works 

in two successive phases in each iteration explained as follows. 

Teacher phase – learning from the teacher 

In this phase, the learners learn from the teacher. The teacher should be the most 

experienced and knowledgeable person for a subject. Thus, the learner with the best 

result is identified as the teacher. The teacher increases the mean result of the 

population and outcome depends on the quality of teacher as well as learners. In this 

phase, subject marks of all learners are updated on the basis of subject marks of the 

learner with the best solution, i.e., teacher.  
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Each learner’s results corresponding to initial and updated marks are 

compared, and the subject marks corresponding to the better result are kept for the 

learner who becomes part of the new population. The Teacher phase ends with the 

creation of new population. This population of the Teacher phase is treated as the 

initial population in the second phase, i.e., Learner phase of the algorithm. 

Learner phase – learning through interaction 

In this phase, the learners gain knowledge through discussion and interaction 

among themselves. The Learner phase starts with the final population obtained in the 

Teacher phase. To improve the marks, each learner interacts randomly with at least 

one other learner in the population. The learner improves his/her subject marks if 

another learner has more marks in corresponding subjects.   

Similar to Teacher phase, each learner’s result corresponding to initial and 

updated marks in this phase is compared, and the subject marks corresponding to the 

better result are retained for the final population. It ends the Learner phase of the 

algorithm.  

The flow chart for the TLBO algorithm is shown in Fig. 3.5. The various parameters 

of TLBO algorithm are defined as:  

p = Population size, i.e., number of learners 

s = Design variables, i.e., subjects offered to learners 

LLk,ULk= Lower and upper limits for kth subject marks 

n = Number of iterations 

i = ith Iteration, i.e., a teaching-learning cycle 

Zj = Objective function value of jth learner 

 Mk = Mean of marks kth subject for the population 

 Bk = Marks of kth subject of best learner whose objective 
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function value, Zj, is minimum 

R= random number 

Algorithm begin 

% Initialization of marks for each subject for the whole population 

for j=1,…,p 

for k=1,…,s 

% Marks of kth subject of jth learner,
0

jkm  

   RLLULLLm kkkjk 
0

      

(3.1) 

end 

end 

% Mean marks of kth subject for the population 

  
p

m

M

p

j

jk

k





1

0

       

(3.2) 

% Updating the subject marks of all learners 

for i=1,…,n 

   RMBmm kkjkijk, 
01

      

(3.3) 

% Compute and compare the updated value of
1

jZ with previous one,
0

jZ  

If  
0

jZ ˂
1

jZ  

% Updating marks 

02

jkijk, mm   

else 

12

jkijk, mm   

% End of Teacher phase 
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% Start of Learner phase 

% Result comparison of two learners j and l in population,
2

ijk,m  

for j=1,…,l,…,p  and  if  l ≠ j 

If  
2

jZ ˂
2

lZ  

for  k=1,…,s   

  Rmmmm lkjkjkijk, 
2223

      

(3.4) 

else 

  Rmmmm jklkjkijk, 
2223

      

(3.5) 

end 

end 

% Comparison of updated value of
3

jZ with the previous one, 
2

jZ  

If  
2

jZ ˂
3

jZ  

% Updating marks 

24

jkijk, mm   

else 

34

jkijk, mm   

% Conditions to check limits of subject marks       

 kijk,ijk, LLmm ,max
44



       

(3.6) 

 kijk,ijk, ULmm ,min
44



       

(3.7) 

end 

% End of ith iteration 

Algorithm end 
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The parameter R represents a random number within a range of 0 and 1 which may 

have a different value for different equations. The population obtained at the end of 

Learner phase is treated as the final population of the current iteration, and this is used 

as the initial population for Teacher phase in the next iteration. From the final 

population of the last iteration, the best solution is obtained as the optimum solution. 

To handle the constraints, the heuristic constrained handling method (Deb, 2000) is 

used in which the tournament selection operator selects and compares two solutions 

by following specific heuristic rules. These rules are implemented at the end of the 

Teacher phase and the Learner phase. 

The example solved in the previous section is used now to demonstrate the 

working of TLBO algorithm. 

2 2 2 2
Minimize - + 2 - + Z x y xy x y xy  

for 0 5,0 5   x y  

Let the population size is the same as used in genetic algorithm.  

1. At first in Teacher phase, the marks for each subject for initial population of six 

learners, i.e., sets of design variables within the bounding limits are generated at 

random using Eq. (3.1). In Table 3.5, columns 2 and 3 contain the randomly generated 

marks of two subjects, x and y. Column 4 presents the value of objective function, 

i.e., the result of learners.  

2. The mean of marks in each subject for all learners is calculated using Eq. (3.2) and 

shown in the last row of the Table 3.5. 
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Fig. 3.5 Flow chart of the TLBO algorithm 
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Table 3.5 Initial population generation for TLBO example 

Learner 

Subjects 
Result 

Z x y 

1 2 4 20 

2 5 1 14 

3 2 0 4 

4 3 1 8 

5 4 2 12 

6 2 3 13 

Mean 
3 1.83  

 

3. The learner with the best result, i.e., minimum value of Z is treated as the teacher. 

Hence, learner 3 becomes teacher and the subject marks of all learners are now 

updated on the basis of teacher’s marks using Eq. (3.3). The updated values of subject 

marks and result of all learners are shown in the Table 3.6. 

Table 3.6 Modified population in Teacher phase 

Learner 

Subjects  

x y 
Result 

Z 

1 1.1853 2.9992 5.9680 

2 4.8730 0.7116 15.7448 

3 1.0866 -0.2597 0.9288 

4 2.3676 0.6867 5.6528 

5 3.9025 0.7079 11.4282 

6 1.7215 2.9417 10.6175 

 

4. Now, the updated result of each learner is compared with his/her previous result, 

and the better value is kept along with the respective subject marks as the new set of 
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solutions, given in Table 3.7. This completes the Teacher phase of the TLBO 

algorithm.  

5. In Learner phase, each learner’s result is compared with at least one another learner 

randomly chosen in the population and subject marks are updated accordingly using 

Eq. (3.4) or Eq. (3.5).        

6. Next, the updated result of each learner is compared with his/her previous result, 

and the better value is kept along with the respective subject marks as the new set of 

solutions. This completes the Learner phase of the TLBO algorithm (Table 3.8).   

Table 3.7 Modified population at the end of Teacher phase 

Learner 

Subjects  

x y 
Result 

Z 

1 1.1853 2.9992 5.9680 

2 5 1 14 

3 1.0866 -0.2597 0.9288 

4 2.3676 0.6867 5.6528 

5 3.9025 0.7079 11.4282 

6 1.7215 2.9417 10.6175 

 

7. Finally, the subject marks obtained are checked to confirm within the bounding 

limits (Table 3.9). 

The minimum value of the objective function for these solutions is 0.3140 which is 

clearly better than the minimum value of the objective function for initially generated 

solutions, i.e., 4. Also, the average value is reduced from 11.84 to 5.30. 
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Table 3.8 Modified population in Learner phase  

Learner 

Subjects 

Pair 
Result 

Z x1 x2 

1 1.1580 2.6827 1, 3 5.0938 

2 2.3003 2.4864 2, 6 11.6125 

3 0.5604 -0.5268 3, 5 -0.2329 

4 0.5784 0.4815 4, 2 0.6327 

5 3.4607 0.9806 5, 1 9.3856 

6 2.0435 0.7775 6, 4 4.7376 

Table 3.9 Modified population at the end of Learner phase 

Learner 

Subjects 

Pair 
Result 

Z x1 x2 

1 1.1580 2.6827 1, 3 5.0938 

2 2.3003 2.4864 2, 6 11.6125 

3 0.5604 0 3, 5 0.3140 

4 0.5784 0.4815 4, 2 0.6327 

5 3.4607 0.9806 5, 1 9.3856 

6 2.0435 0.7775 6, 4 4.7376 

 

3.4 Applications  

Guo et al. (2000) used GA to solve an optimization problem formulated to balance 

planar mechanism based on three different approaches – (1) mass redistribution, (2) 

counterweight addition and (3) mixed mass redistribution. The results obtained using 

genetic algorithm was found better as compared to the traditional nonlinear 

optimization technique. A hybrid genetic algorithm (HGA) was used by Yang et al. 

(2005) for the vibration optimum design for the low-pressure steam-turbine rotor of a 

1007-MW nuclear power plant. This hybridized algorithm (HGA) combines a genetic 

algorithm and a local concentration search algorithm using a modified simplex 
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method. The shaft diameter, bearing length and clearance were chosen as the design 

variables to minimize the resonance response of the second occurring mode in the 

excessive vibration. It was proved that the HGA reduces the excessive response at the 

critical speed and also improves the stability. Erkaya and Uzmay (2009, 2013) used 

GA to investigate the effect of joint clearances on the dynamic properties of the planar 

mechanism. Using the concepts of physical pendulum and inertia counterweights, the 

optimization problem formulated for balancing of a planar four-bar mechanism is 

solved using multiobjective particle swarm optimization, and non-dominated sorting 

genetic algorithm II (Farmani et al., 2011).   

The teaching-learning-based optimization (TLBO) algorithm was used for the 

optimization of mechanical design problems such as springs, bearings, pulleys and 

gear train by Rao et al. (2011). This algorithm was also used to optimally design the 

heat exchanger and the two-stage thermoelectric cooler through multi-objective 

optimization problem formulation by Rao and Patel (2013a, b). For different multi-

objective unconstrained and constrained benchmark functions, TLBO was found more 

efficient than GA and other popular optimization techniques (Rao and Waghmare, 

2014).  

3.5 Summary 

This chapter discusses various classical and evolutionary optimization techniques 

followed by the terms defining their working. The popular evolutionary optimization 

techniques, genetic algorithm (GA), and teaching-learning-based optimization 

(TLBO) algorithm are presented in details and explained by solving a numerical 

example. The application of these optimization techniques in different areas including 

the mechanical design are also highlighted.     
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Chapter 4 

Optimal Dynamic Balancing 

This chapter presents the optimization problem formulation for dynamic balancing of 

the simple and multiloop planar mechanisms having revolute and/or prismatic joints. 

The equations of motion are presented to determine the shaking force and shaking 

moment in the planar mechanisms. This formulation is simplified by representing the 

inertial properties of the mechanism links in terms of the equimomental point-mass 

parameters. The point-mass parameters are used as the design variables for the 

proposed optimization problem formulation. The numerical problems to achieve 

optimal dynamic balancing for widely used planar mechanisms are solved using 

Genetic algorithm (GA) and Teaching-learning-based optimization algorithm 

(TLBO). 

4.1 Equations of Motion of Rigid Link Moving In a Plane 

Consider an ith rigid link having motion in XY plane for which a local frame, Xi Yi, is 

fixed at Oi and Xi axis is aligned along Oi to Oi+1 as shown in Fig. 4.1. Generally, 

points Oi and Oi+1 are chosen as joints used to connect (i-1)st and (i+1)st rigid links. 

The XOY is the global inertial frame. The Newton-Euler (NE) equations of motion 

for the link are written as (Chaudhary and Saha, 2009):  

f v
c c

i i im    (4.1) 

+ ×n I ω ω I ω
c c c

i i i i i i    (4.2) 

where f
c

i is the resultant force acting on the link at center of mass Ci, n
c

i is the 

resultant of the pure moment and the moment of forces about Ci, and I
c

i is the 

centroidal inertia tensor with respect to Ci. 
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Oi+1 

 

Fig. 4.1 The ith rigid link moving in XY plane 

The notations,
im , ωi

and ωi
represent mass, angular velocity and angular acceleration 

of the ith link whereas 
c

iv  denotes the linear acceleration of Ci, of the ith link. All 

particles of the rigid link move in planes which are parallel to a fixed plane XOY. 

Therefore, the rigid link has a parallel-plane motion, i.e.., 0
c

zv , 0x yω =ω =  and 

0zω . Hence, for parallel-plane motion, Eqs. (4.1) – (4.2) can be presented in scalar 

form as: 

c

ix i ixf = m v    (4.3) 

c

iy i iyf = m v    (4.4) 

0izf =    (4.5) 

2c c c

ix ixz iz iyz izn = -I ω +I ω    (4.6) 

2c c c

iy iyz iz ixz izn = -I ω - I ω    (4.7) 

c c

iz izz izn = I ω    (4.8) 

di 

Yi Xi 

Oi 

Ci 

X 

Y 

O 

m
i
 

i 

n
c

i

i 

v
c

i

f
c

i
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In the right-hand side of Eq. (4.2), the first term is inertia torque about center of mass 

of the ith rigid link. This term takes very simple form in the case of planar motion if 

inertia tensor is determined about local principal frame at center of mass. In this 

condition, the products of inertias terms vanish. Hence, Eq. (4.2) is represented by Eq. 

(4.8) only.  

If velocity and acceleration of the ith link are represented at point Oi instead of 

Ci then: 

= + v v ω d
c

i i i i    (4.9) 

 = +    v v ω d ω ω d
c

i i i i i i i    (4.10) 

and in scalar form for planar motion: 

=
c

ix ix iz iyv v -ω d    (4.11) 

=
c

iy iy iz ixv v +ω d    (4.12) 

2
=  

c

ix ix iz iy iz ixv v ω d ω d    (4.13) 

2
=  

c

iy iy iz ix iz iyv v ω d ω d    (4.14) 

where 
ixv and iyv are components of linear origin Oi. Note that  cosix i i id d θ +α and 

 siniy i i id d θ +α and izω is angular velocity perpendicular to the plane of motion. 

Here, 
id  and 

iθ  are polar coordinates of the mass center Ci in the local frame, Xi OiYi. 

the angular position of the link, i
, is given by angle between Xi-axis and X-axis. For 

planar motion, we drop the subscript z and use iz iω ω  and izz iI I  throughout the 
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thesis. Substituting Eqs. (4.13) – (4.14) in Eqs. (4.3) – (4.5) and Eq. (4.8), the 

resultant forces and moment are given by:            

   
2

sin cosix i ix i i i i i i i i i if m v -ωmd θ +α - md θ +α   (4.15) 

   
2

cos siniy i iy i i i i i i i i i if m v +ωmd θ +α - md θ +α   (4.16) 

   sin cosi i i ix i i i i iy i i i in ω I - v m d θ +α +v m d θ +α   (4.17) 

where in  is resultant moment about Oi, and ixf
 
and iyf

 
are the components of the 

resultant force at Oi, respectively. Ii is the mass moment of inertia of the ith rigid link 

about z-axis passing through Oi. 

4.2 Equimomental System of Point-masses 

A system of rigidly connected point-masses moving in a plane is explored in this 

section. The rigid links of a mechanism can be modeled as a dynamically equivalent 

system of point-masses known as equimomental systems (Routh, 1905; Sherwood and 

Hockey, 1968; Haung, 1983; Chaudhary and Saha, 2008). This simplifies the 

mechanism dynamics through the simpler mass distribution represented by 

dynamically equivalent point-mass system for the rigid links. Routh (1905) presented 

the general requirements for the dynamic equivalence between a rigid body and the 

point-masses. For a general three-dimensional motion, minimum four particles are 

needed to represent the rigid body. Wenglarz et al. (1969) and Haung (1983) 

suggested the sets of two and four point-masses for planar and spatial motion, 

respectively. Sherwood and Hockey (1968) presented the method of optimization of 

mass distribution in mechanisms using the concept of equimomental system of point-

masses. In this approach, each rigid link of the mechanism is treated as a dynamically 

equivalent system of point-masses and the link masses are optimally distributed for 
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the dynamic balancing. This concept is also applied for the kinematic and dynamic 

analyses of mechanisms (Attia H. A., 2003; Molian, S., 1973). 

The rigid link and the system of point-masses will be dynamically equivalent 

(equimomental) if they have same mass, same center of mass and same inertia with 

respect to the same coordinate frame (Chaudhary and Saha, 2009). Hence, for the ith 

rigid link shown in Fig. 4.1, a set of rigidly connected k point-masses, mij, located at 

(lij, ij), where j=1,…,k must satisfy the following conditions:  

1


k

ij i

j

m m          (4.18) 

=1

cos = cos
k

ij ij ij i i i

j

m l θ m d θ        (4.19) 

=1

sin = sin
k

ij ij ij i i i

j

m l θ m d θ        (4.20) 

2 2

=1


k

c

ij ij i i i

j

m l = I +m d         (4.21) 

Where lij and θij are polar coordinates of point-mass mij  in the local frame. Note that 

Eqs. (4.18) – (4.21) are written in local body fixed frame OiXiYi. The first subscript i 

denotes link number and the second subscript j represents the point-mass belong to the 

link (Fig. 4.2).  
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Fig. 4.2 Equimomental system of point-masses for ith rigid link 

As each point-mass needs three parameters, (mij, lij, ij), to identify it, a total of 3k 

parameters are required to define an equimomental system of k point-masses. 

Furthermore, this system should also satisfy the four constraints presented by Eqs. (4.18) 

– (4.21). The equimomental system of point-masses for 2k presents an infinite 

number of solutions because it makes the resultant system of equations underdeterminate 

for which the number of unknowns is more than number of constraints, Eqs. (4.18) – 

(4.21). Note that a single point-mass cannot represent rigid link as the three parameters 

of it must satisfy the four constraint equations. This makes the resulting system of 

equations overdeterminate in which the number of unknowns is less than the number of 

equations need to be satisfied. Thus, an equimomental system for a rigid link moving in 

a plane cannot be represented using single point-mass. At least two point-masses with 

six unknown parameters are required to represents rigid bodies in which two parameters 

need to be assigned arbitrarily. Similarly, for three point-mass representation, five 

parameters need to be assigned arbitrarily to satisfy the equimomental conditions. In 

general, for an equimomental system of k point-masses, (3k-4) parameters need to be 

assigned arbitrarily so that the remaining four are determinate.  

mi1 

mij 

i2 

lij 

Yi Xi 

Oi 

mi2 

li1 

li2 

i1 

ij 

ai 

Oi+1 
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O 
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Yi Xi 
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m
i
 

i 
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For an equimomental system of three point-masses, the conditions for the dynamic 

equivalence are given as: 

3

1

 ij i

j

m m          (4.22) 

3

=1

cos = cos ij ij ij i i i

j

m l θ m d θ        (4.23) 

3

=1

sin = sin ij ij ij i i i

j

m l θ m d θ        (4.24) 

3
2 2

=1

 ij ij i i

j

m l = m k         (4.25) 

where 
2 2
 

c

i i i i im k I m d and ki is the radius of gyration of ith link about the point, Oi. 

Hence, this system has nine unknowns, ijm , ijl , and ijθ , for j=1, 2, 3, and four 

constraint equations, Eqs. (4.22) – (4.25). The dynamic equivalence conditions, Eqs. 

(4.22) – (4.25), can be presented in the linear form in point-masses by assigning some 

suitable values to ijl and ijθ . Assuming, 
2 3 1= =i i il l l , and substituting them in Eq. 

(4.25) gives: 

3
2 2

1

1

=


 ij i i i

j

m l m k         (4.26) 

which gives 
1  i il k . Taking the positive value for 

1il , the three point-masses are then 

solved from Eqs. (4.22) – (4.24) by substituting 
1 i il k . Equations (4.22) – (4.24) are 

written in matrix form as: 
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1

1 2 3 2

1 2 3 3

1 1 1

cos cos cos cos

sin sin sin sin

   

   

     
     
     
          

=

i i

i i i i i i i i i i

i i i i i i i i i i

m m

k k k m m d

k k k m m d

   (4.27) 

The masses mi1, mi2 and mi3 can be found by solving Eq. (4.27). It further establishes 

that any two point-masses should not lie on the same radial line starting from the 

origin, Oi. The solution for masses is obtained as: 

1 3 2 2 3 3 2

2 3 1 3 1 1 3

3 1 2 1 2 2 1

sin( ) (sin sin ) (cos cos )

sin( ) (sin sin ) (cos cos ) cos
S

sin( ) (sin sin ) (cos cos ) sin

     

      

      

       
     

    
     
             

i i i i i i i i i

i
i i i i i i i i i i i

i i i i i i i i i i i

m k m
k

m k m d

m k m d

 

(4.28) 

in which, 
2

3 2 2 1 1 3S [sin( ) sin( ) sin( )]          i i i i i i ik . For example, if 

1 0 i
,

2 2π / 3 i
, and

3 4π / 3 i
, the point masses are calculated as 

1

2 cos
1

3

 
  

 

i i i
i

i

m d
m

k
       (4.29) 

2

cos 3 sin
1

3

  
    

 

i i i i i
i

i i

m d d
m

k k
     (4.30) 

3

cos 3 sin
1

3

  
    

 

i i i i i
i

i i

m d d
m

k k
     (4.31) 

Eqs. (4.29) – (4.31) take simpler form if the origin, Oi, coincides with the mass center 

of the link, Ci, i.e., 0id . Substitution of 0id  in Eqs. (4.29) – (4.31) gives 

1 2 3 / 3  i i i im m m m . Thus, the point-masses of the link are distributed equally, and 

located on the circumference of a circle having radius ki. Using equimomental 
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conditions, Eqs. (4.18) – (4.21), the Newton-Euler equations of motion for ith rigid 

link, Eqs. (4.15) – (4.17), are rewritten in terms of point-mass parameters as: 

2

1

sin( ) cos( ) 


     
 

k

ix ij ix i ij ij ij i i ij ij ij i

j

f m v m l θ α m l θ α
   

(4.32) 

2

1

cos( ) sin( ) 


     
 

k

iy ij iy i ij ij ij i i ij ij ij i

j

f m v m l θ α m l θ α
   

(4.33) 

2

1

sin( ) + cos( )


    
 

k

i i ij ij ix ij ij ij i iy ij ij ij i

j

n m l v m l θ α v m l θ α
   

(4.34) 

Equations (4.32) – (4.34) define the force and moment for the ith rigid link of a 

mechanism represented by an equimomental system of k point-masses. 

4.3 Shaking Force and Shaking Moment 

In this section, the shaking force and shaking moment in planar mechanism is defined 

and presented using the concept of equimomental point-mass system described in the 

previous section. The shaking force and shaking moment in a mechanism depend on 

the mass and inertia of each link, and their mass centre location. Figure 4.3 shows a 

six-link multiloop mechanism where the fixed link is detached from the moving links 

to show reactions.  

The shaking force defined as the reaction of the vector sum of all the inertia forces in 

the mechanism is given as:  

5

sh

1

 f vi i

i

m          (4.35) 



66 

 

 

Fig. 4.3 Definitions of various parameters for a multiloop mechanism 

The two components of the shaking force in point-mass parameters using Eqs. (4.32) 

– (4.33) are obtained as: 

5
2

1 1

sin( ) cos( ) 
 

      
 

k

shx ij ix i ij ij ij i i ij ij ij i

i j

f m v m l θ α m l θ α   (4.36) 

5
2

1 1

cos( ) sin( ) 
 

      
 

k

shy ij iy i ij ij ij i i ij ij ij i

i j

f m v m l θ α m l θ α   (4.37) 

Similarly, the shaking moment is the reaction of the resultant of the inertia moment 

and the moment of the inertia forces about stationary point O and is given by: 

 
5

sh

1

+ ×


     n I ω ω I ω R vi i i i i i i i

i

m   (4.38) 
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where Ri represents the vector from O to mass centre of the ith link, Ci. Eq. (4.38) is 

further simplified using point-mass parameters as: 

 
5

2

sh

1 1

sin( ) cos( )
 

     


k

i ij ij ix ij ij ij i iy ij ij ij i

i j

n m l v m l θ α v m l θ α

   

 

                        2
sin( ) cos( )     iy ij ix i ij ij ij i i ij ij ij iR m v m l θ α m l θ α         

         2
cos( ) sin( )      

ix ij iy i ij ij ij i i ij ij ij iR m v m l θ α m l θ α   (4.39) 

here, mij is jth point mass of ith link, and lij and θij are polar coordinates in the link 

fixed frame (Fig. 4.2). 

4.4 Optimization Problem Formulation 

To formulate the optimization problem to achieve the optimal dynamic balancing in 

the planar mechanism, each link is converted into a system of k equimomental point-

masses and the point-mass parameters are taken as the design variables. As each point 

mass needs three parameters (mij, lij, ij) to identify it, a 3k-vector, xi, of design 

variables for ith link is defined as:  

T

222111 ]...[ ikikikiiiiiii θlmθlmθlmx      (4.40) 

Hence, the 3kn-design-vector, x, for the mechanism having n moving links is given 

by: 

TTT

2

T

1 ]...[ nxxxx         (4.41) 

As the shaking force and shaking moment have different units, they are normalized 

with respect to a reference link of the mechanism as (Conte et al., 1975): 

2

f
f =

maω
         (4.42) 
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2 2

n
n =

ma ω
         (4.43) 

where a and m are the length and mass of the reference link whereas   is its angular 

velocity. Considering the RMS values of the magnitude of shaking force, fsh,rms and 

shaking moment, nsh,rms defined in Eqs. (4.36) – (4.39), the optimization problem is 

posed as weighted sum of the shaking force and shaking moment as: 

1 sh,rms 2 sh,rmsMinimize  Z w f w n       (4.44) 

  

2

,min ,max ,minSubject to ;    i ij i i ij ij

j j

m m m I m l

     

 

 

   for symmsi etry about Xn a s=  i+ x0 ij ij ij i i

j

m l θ α

    

 

for i = 1, 2,…,n  and  j = 1, 2,…,k      (4.45) 

where w1 and w2 are the weighting factors used to assign weightage to shaking force 

and shaking moment, respectively, in the objective function (Eq. 4.44). The different 

approaches can be adopted to select weighting factors (Marler and Arora, 2004, 

2010). The weights represent the relative importance given to various conflicting 

functions in the objective. These weights transform the number of objective functions 

into a single function. In this study, there are two objectives, i.e. shaking force and 

shaking moment. They are normalised with respect to parameters of driving link of 

the mechanism to avoid domination of one objective over other. For the normalised 

objective functions, it becomes easy to set the weights between 0 and 1 depending 

upon the application. When equal importance is given to both the normalised 

objective functions, the weights would be w1=0.5 and w2=0.5. Similarly, weights for 

different objectives may be chosen by the mechanism designer as per the requirement 
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in real problems. For example, for complete shaking force balance and complete 

shaking moment balance, these values are taken as (w1=1, w2=0) and (w1=0, w2=1), 

respectively. The constraints on design variables depend on the allowable minimum 

and maximum values of mass and inertia of the links. The minimum mass, min,im , of 

the ith link and its mass distribution can be decided by load bearing capability of its 

material. Furthermore, the maximum mass, max,im , can be taken into account 

according to what extent the shaking force and shaking moment are eliminated. 

Similarly, the limits on parameters, ijl , can be determined based on the limiting values 

of the moment of inertia. The solution of this optimization problem finds the optimum 

values of design variables, i.e., the point-mass parameters, for minimizing the 

objective function (Eq. 4.44).  

4.5 Planar Mechanisms  

The effectiveness of the proposed optimization method is shown by applying it to four 

most popular and basic mechanisms used in machines. The balancing problems can be 

framed as single objective or multi-objective optimization problems to simultaneously 

minimize shaking force and shaking moment. As shaking force and shaking moment 

are of different units, these quantities need to be made dimensionless for adding them 

in a single objective function. For this, the mechanism parameters are made 

dimensionless with respect to the parameters of the driving link of the mechanism. In 

this study, three-point mass model is used to achieve better mass distribution. The 

equimomental point-mass systems with more number of point-masses may be used 

but will increase the overall computational time to evaluate the objective function and 

constraints. Further the dimension of the problem can be reduced by assigning five 

parameters for each link as: 

θi1=0; θi2=2π/3; θi3=4π/3 and li2=li3=li1
      

(4.46) 
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Out of nine variables, mij, lij, θij, for j=1, 2, 3, for ith link, the other four point-mass 

parameters, mi1, mi2, mi3 and li1 are brought into the optimization scheme as the design 

variables. To solve these problems, Genetic algorithm (GA) and Teaching-learning-

based optimization (TLBO) algorithm are used in MATLAB 2008 and run on a laptop 

machine having Intel Core i3 processor with 2.27 GHz and 4 GB RAM. Considering 

o

min, 0.25m ii m , 
o

max, 5m ii m and 
o

min, 0.25I ii I  for ith link, the optimization 

problem as explained in Eqs. (4.44) – (4.45) is solved using both optimization 

techniques. The superscript „o‟ represents parameters for original mechanism. The 

simultaneous minimization of shaking force and shaking moment is considered taking 

the weighting factors, w1 and w2, as 0.5. With the default values of genetic operators, 

i.e., crossover rate 0.8 and mutation rate 0.2, GA was run for 100 iterations with 

population size of 20. With the same population size, the performance of GA and 

TLBO is compared in terms of number of function evaluations needed to reach the 

optimum solution. For both optimization techniques, the best values of objective 

function and corresponding design variables are found for 30 independent runs. The 

convergence plots are presented to compare the computational efficiency of both the 

techniques for different examples. An algorithm is more efficient if it requires less 

function evaluations or number of iterations to find the optimum solution. In 

convergence plots, the objective function values are shown against the function 

evaluations for both the algorithms. The kinematic and dynamic calculations are 

verified using Altair HyperWorks software. 

4.5.1 Four-bar mechanism 

A numerical problem of planar four-bar mechanism (Berkof, 1973; Farmani et al., 

2011) as shown in Fig. 4.4 is solved using the method proposed in this chapter. The 

link length, mass and other geometric parameters of the original mechanism are given 
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in Table 4.1. Three equimomental point-masses for each link are considered and their 

parameters are given in Table 4.2. For this example, the driving link, i.e., link #1, 

rotates with a constant speed of 100 rad/sec. 

 

Fig. 4.4 Four-bar mechanism detached from its frame 

Table 4.1 Original parameters of four-bar mechanism 

Link 

i 

Length 

ai  (m) 

Mass 

mi  (kg) 

Moment of 

inertia 
c

iI  (kg-m
2
) 

di 

(m) 

θi 

(deg) 

1 0.1 0.3925 0.0004
 

0.05 0 

2 0.4 1.5700 0.0213 0.20 0 

3 0.3 1.1775 0.0091 0.15 0 

0 0.3
 139.3

o

im  -   

Link #1 is the driving link 

 

Table 4.2 Equimomental point-mass parameters for normalised four-bar mechanism links 

Link mi1 mi2 mi3 li1 

1 0.8952 0.0524 0.0524 0.5932 

2 3.6377 0.1812 0.1812 2.3145 

3 2.7255 0.1373 0.1373 1.7386 
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Six different cases are investigated to balance this mechanism: 

In case (1), full force balancing is considered in which the weighting factors, w1 and 

w2, are 1 and 0, respectively, in Eq. (4.44). Also, rotating links #1 and #3 are 

considered for mass redistribution keeping link #2 intact. In case (2), the 

simultaneous minimization of force and moment is considered where the weighting 

factors, w1 and w2, as 0.5. In this case, the point-masses of all three links are chosen to 

find their optimum mass distribution.   

Particularly, four-bar mechanism is also balanced by converting coupler into 

physical pendulum (Berkof, 1973; Farmani et al., 2011). To investigate the effect of 

this conversion, the cases (1) and (2) are repeated after making link #2 as the physical 

pendulum and reported as cases (3) and (4), respectively. In case (5), the mechanism 

is balanced without changing the original link masses while balancing using links 

with non-symmetry about Xi axis, i.e.,  sin + 0 ij ij ij i

j

m l θ α , is presented as case 

(6). 

To solve this optimization problem using GA, “ga” function in Genetic 

Algorithm and Direct Search Toolbox of MATLAB was used. The comparison of 

original RMS and peak values of shaking force, shaking moment and driving torque 

with those of optimum values are provided in Table 4.3. Figures 4.5, 4.6 and 4.7 show 

the variations in the shaking force, shaking moment and driving torque, respectively, 

over the complete crank cycle. The case (2) most effectively minimizes the shaking 

force, shaking moment and driving torque.  The link parameters for the optimally 

balanced mechanism, i.e., case (2), are then found by using the equimomental 

conditions and given in Table 4.4. 
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Table 4.3 Values of dynamic quantities in the original and optimally balanced four-bar 

mechanism 

 

 

Case 

Type of 

balancing 

Normalised 

shaking force 

Normalised 

shaking moment
 

Normalised 

driving torque 

RMS Peak RMS Peak RMS Peak 

Original 

mechanism 

5.9604 11.8837 10.7250 12.3939 3.0588 5.0480 

Case 1: w1=1, w2=0; 

keeping link #2 intact  

Force balance  0.0087 

(-99.85%) 

0.3395 

(-97.14%) 

16.1133 

(+50.24%) 

16.3722 

(+32.10%) 

5.4359 

(+77.71%) 

9.4000 

(+86.21%) 

Case 2: w1=0.5,w2=0.5; 

all links are considered 

Force and 

moment balance  

2.3451 

(-60.65%) 

4.4830 

(-62.27%) 

3.6977 

 (-65.52%) 

5.1770 

(-58.23%) 

0.8769 

(-71.33%) 

1.6990 

(-66.34%) 

Case 3: w1=1, w2=0; 

link #2 is made as 

physical pendulum and 

then kept intact 

Force balance 0.0688 

(-99.85%) 

0.1861 

(-98.43%) 

27.1472 

(+153.12%) 

30.6055 

(+146.94%) 

8.7761 

(+186.91%) 

 

15.7899 

(+212.79%) 

Case 4: w1=0.5, w2=0.5; 

link #2 is made as 

physical pendulum and 

then all links are 

considered 

Force and 

moment balance  

4.0330 

(-37.34%) 

6.3998 

(-46.15%) 

5.9502 

(-44.52%) 

8.5520 

(-30.99%) 

1.5747 

(-48.52%) 

3.0076 

(-40.42%) 

Case 5: w1=0.5, w2=0.5; 

Keeping link masses 

unchanged 

Force and 

moment balance  

4.3761 

(-27.66%) 

7.2856 

(-38.69%) 

5.5974 

(-48.12%) 

6.7374 

(-45.64%) 

1.5819 

(-48.49%) 

2.7111 

(-46.29%) 

Case 6: w1=0.5, w2=0.5; 

Non-symmetrical 

shapes 

Force and 

moment balance 

4.0172 

(-32.95%) 

7.4941 

(-36.94%) 

6.3747 

(-40.59%) 

7.4163 

(-40.16%) 

1.7958 

(-41.30%) 

2.9809 

(-40.95%) 

     

Table 4.4 Link parameters of the optimally balanced four-bar mechanism 

Case 

Link 

 I 

Mass 

mi (kg) 

Total 

mass (kg) 

Moment of 

inertia 
c

iI  (kg-m
2
) 

di 

(m) 

θi 

(deg) 

Case 1 

1 1.8572 

7.5060 

0.0131 0.0453 180 

2 1.5705 0.0841 0.2000 0 

3 4.0783 0.1112 0.0540 180 

Case 2 

1 0.2458 

1.9651 

0.0005 0.0222 0 

2 1.0442 0.0299 0.0594 0 

3 0.6751 0.0115 0.0702 0 

Case 3 

1 2.4368 

10.7788 

0.0208 0.0463 180 

2 2.3107 0.1577 0.2000 0 

3 6.0313 0.1781 0.0566 180 

Case 4 

1 0.3555 

2.8784 

0.0008 0.0180 0 

2 1.4582    0.0545 0.0824 0 

3 1.0647 0.0196 0.0541 0 

Case 5 

1 0.3909 

3.1400 

0.0007 0.0134 0 

2 1.5703    0.0468 0.0962 0 

3 1.1788 0.0192 0.0601 0 

Case 6 

1 0.2895 

2.4405 

0.0008 0.0314 006.72 

2 1.2536 0.0488 0.1417 358.15 

3 0.8974 0.0225 0.1087 001.42 
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Fig. 4.5 Variation in shaking force with time for one complete crank cycle. Case (1), (2), (5) and 

(6) without converting link #2 into physical pendulum; Case (3) and (4) with link #2 as physical 

pendulum in four-bar mechanism 
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Fig. 4.6 Variation in shaking moment with time for one complete crank cycle. Case (1), (2), (5) 

and (6) without converting link #2 into physical pendulum; Case (3) and (4) with link #2 as 

physical pendulum in four-bar mechanism 
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Fig. 4.7 Variation in driving torque with time for one complete crank cycle. Case (1), (2), (5) and 

(6) without converting link #2 into physical pendulum; Case (3) and (4) with link #2 as physical 

pendulum in four-bar mechanism 
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The complete shaking force balancing is achieved numerically by redistribution of 

link masses in case (1). The result obtained using the proposed optimization 

methodology is compared with the analytical full force balancing conditions (Berkof and 

Lowen, 1969) which are as follow: 

2

1
2211

a

a
rmdm  , and

'
θθ 21  ; 

2

3
2233

a

a
dmdm  , and π23  θθ

  
(4.47) 

where all the parameters are defined in Fig. 4.4. 

These conditions of full force balancing are satisfied for the complete force balanced 

mechanism achieved for cases (1) and (3). Note that this is achieved by redistributing 

masses of link #1 and #3. Conventionally this is done by adding counterweights to 

link #1 and #3 which is not useful from the mechanical design point of view. 

However, the total mass is increased to 7.505 kg and 10.777 kg from the total mass of 

3.139 kg of the original mechanism, respectively in both approaches. As shown in 

Table 4.3, the RMS values of the shaking moment and the driving torque are 

increased by 50.24% and 77.71%, respectively for the complete force balancing (case 

1). This confirms that both the shaking moment and driving torque are increased in a 

force balanced mechanism (Lowen et al., 1974). In case (3), the force balancing is 

achieved after converting link #2 into the physical pendulum. It requires more mass to 

be added for balancing in comparison of case (1) as given in Table 4.4. Moreover, the 

shaking moment and the driving torque increments over original are 153.12% and 

186.91%, respectively. Hence, the conversion of coupler into physical pendulum has 

adverse effect on the shaking moment and the driving torque.     

The best solution is found as case (2) which reduces the RMS values of shaking force, 

shaking moment and driving torque by 60.65%, 65.52% and 71.33%, respectively. 

Now, the computational efficiency of GA is compared with TLBO for case (2). The 
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comparison of the RMS values of shaking force, shaking moment and driving torque 

of original mechanism with those of optimally balanced mechanism found using GA 

and TLBO are provided in Table 4.5. Figure 4.8 shows the variations in the shaking 

force, shaking moment and driving torque over the complete crank cycle for the 

original as well as for the optimally balanced mechanisms while Pareto front is shown 

in Fig. 4.9. The performance of GA and TLBO is compared and is shown in Fig. 4.10 

as the convergence plot. Table 4.6 presents the optimum values of the design 

variables, i.e., the point-mass parameters for the balanced mechanism.    

Table 4.5 Normalized RMS values of dynamic quantities in the original and optimally balanced 

four-bar mechanism using GA and TLBO (case 2) 

 

 

Normalised 

shaking force 

 

 

Normalised 

shaking moment 

 

Normalised 

driving torque  

No. of  

function 

evaluations 

Original mechanism 5.9604 10.7253 3.0588  

Optimally balanced 

using GA 

2.3451 

 (-60.65%) 

3.6977 

 (-65.52%) 

0.8769 

(-71.33%) 

42000 

Optimally balanced 

using TLBO 

2.0682 

 (-65.30%) 

2.8576  

(-73.36%) 

0.7564 

(-75.27%) 

24000 

 

Table 4.6 Normalised optimum equimomental point-mass parameters for balanced four-bar 

mechanism (case 2) 

 Link mi1 mi2 mi3 li1 

Optimally 

balanced 

using GA 

1 0.3389 0.0557 0.0557 0.5363 

2 1.5078 0.1771 0.1771 2.0391 

3 1.0681 0.1443 0.1443 1.5058 

Optimally 

balanced 

using TLBO 

1 0.3084 0.0507 0.0507 0.4880 

2 1.3721 0.1612 0.1612 1.8556 

3 0.9720 0.1313 0.1313 1.3703 

 

The traditional approach (Berkof, 1973; Farmani et al., 2011) suggests the use of 

physical pendulum concept, the force and inertia counterweights to balance a planar  
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Fig. 4.8 Variations in the dynamic quantities of original and optimally balanced four-bar 

mechanism using GA and TLBO for complete cycle of operation 
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Fig. 4.9 Pareto front for four-bar mechanism  
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Fig. 4.10 Convergence plot comparing GA and TLBO values for four-bar mechanism  

four-bar mechanism. Alternatively, here reductions in the shaking force, shaking 

moment and driving torque are achieved by optimally redistributing the link masses. 

The reductions of about 65%, 73% and 75% in RMS values of shaking force, shaking 

moment and driving torque, respectively, are achieved using TLBO with 43% less 

function evaluations than that of GA as shown in Table 4.5. The parameters of 

optimally balanced mechanism are obtained from the optimal design variables using 

equimomental conditions and given in Table 4.7.  
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Table 4.7 Parameters of original and optimally balanced four-bar mechanism 

 

Link 

i 

Length 

ai 

(m) 

 

Original mechanism Optimally balanced mechanism 

Mass 

mi 

(kg) 

Moment 

of 

inertia 
c

iI   

(kg-m
2
) 

di 

(m) 

 

θi 

(deg) 

 

Mass 

mi 

(kg) 

Moment 

of 

inertia 
c

iI   

(kg-m
2
) 

di 

(m) 

 

θi 

(deg) 

 

1 0.1 0.3925 0.0014
 

0.05 0 0.1608 3.83e-4 0.0307 0 

2 0.4 1.5700 0.0841 0.20 0 0.6651 0.0229 0.1326 0 

3 0.3 1.1775 0.0356 0.15 0 0.4846 0.0091 0.0933 0 

0 0.3 3.1400m      1.3105m     

 

4.5.2 Five-bar Mechanism 

The method proposed in this chapter is used to solve the balancing problem of a 

planar five-bar mechanism, Fig. 4.11, reported by Ilia and Sinatra (2009). The 

parameters of original mechanism as reported in (Ilia and Sinatra, 2009) are given in 

Table 4.8 where the input motions of links #1 and #4 are considered as the cycloidal 

motion and the harmonic motion, respectively.  

 

Fig. 4.11 Planar five-bar mechanism detached from its frame 
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Ilia and Sinatra (2009) presented a method for only shaking force balancing of the 

mechanism using natural orthogonal complement dynamic modeling and is solved by 

conventional optimization method. It uses non-linear constraint optimization in which 

the center of mass parameters of moving links are chosen as the design variables. 

However, the resulting effect on shaking moment and driving torque was not 

considered. For the same numerical problem, both shaking force and shaking moment 

are simultaneously minimized here using proposed methodology taking weighting 

factors, w1 and w2, as 0.5.   

Table 4.8 Parameters of original and optimally balanced planar five-bar mechanism 

 

Link 

i 

Length 

ai 

(m) 

 

Original mechanism Optimally balanced mechanism 

Mass 

mi 

(kg) 

Moment 

of 

inertia 
c

iI   

(kg-m
2
) 

di 

(m) 

 

θi 

(deg) 

 

Mass 

mi 

(kg) 

Moment 

of 

inertia 
c

iI   

(kg-m
2
) 

di 

(m) 

 

θi 

(deg) 

 

1 0.02 0.03 1.00e-6
 

0.01 0 0.015 2.93e-6
 

0.0017 180 

2 0.10 0.15 1.25e-4 0.05 0 0.052 1.07e-4 0.0146 0 

3 0.10 0.15 1.25e-4 0.05 0 0.038 8.72e-5 0.0312 0 

4 0.04 0.06 8.00e-6 0.02 0 0.021 8.05e-6 0.0061 0 

0 0.04 3.9000m     0.1260m     

 

Note that we consider all moving links in optimization for mass redistribution. Figure 

4.12 shows the variations in the shaking force, shaking moment and driving torque 

over the complete crank cycle. The optimized link parameters are then found by using 

the equimomental conditions and given in Table 4.8. The comparison of the RMS 

values of shaking force, shaking moment and driving torque of original mechanism 

with those of optimally balanced mechanism are provided in Table 4.9. 
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Fig. 4.12 Variations in the dynamic quantities of original and optimally balanced five-bar 

mechanism using GA and TLBO for complete cycle of operation 
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Table 4.9 Normalized RMS values of dynamic quantities in the original and optimally balanced 

five-bar mechanism using GA and TLBO 

  

Normalised 

shaking force 

 

 

Normalised 

shaking moment 

 

Normalised 

driving torque  

No. of  

function 

evaluations 

Original mechanism 2388 21913 6111  

Optimally balanced 

using GA 

641.00  

(-73.15%) 

7934.00  

(-63.79%) 

2183.7 

(-64.26%) 

68000 

Optimally balanced 

using TLBO 

549.30  

(-77.00%) 

5248.10  

(-76.05%) 

1457.4 

(-76.15%) 

36000 

 

Figure 4.13 shows Pareto front while Fig. 4.14 presents the convergence plot for the 

performance comparison of both the optimization techniques. The optimum values of 

the design variables, i.e., the point-mass parameters are given in Table 4.10. The 

reduction of about 77%, 76%  and 76% in the RMS values of shaking force, shaking 

moment and driving torque, respectively, are achieved using TLBO with 47% less 

function evaluations than that of GA.   
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Fig. 4.13 Pareto front for five-bar mechanism  
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Fig. 4.14 Convergence plot comparing GA and TLBO values for five-bar mechanism 

Table 4.10 Normalised optimum equimomental point-mass parameters for balanced five-bar 

mechanism  

 Link mi1 mi2 mi3 li1 

Original 

mechanism 

1 0.9107 0.0447 0.0447 0.5774 

2 4.5534 0.2233 0.2233 2.8868 

3 4.5534 0.2233 0.2233 2.8868 

4 1.8214 0.0893 0.0893 1.1547 

Optimally 

balanced 

using GA 

1 0.1669 0.1639 0.1639 0.6822 

2 0.8698 0.8368 0.8368 3.2733 

3 0.8243 0.7988 0.7988 3.3033 

4 0.2730 0.2695 0.2695 1.3657 

Optimally 

balanced 

using TLBO 

1 0.1430 0.1405 0.1405 0.5848 

2 0.7456 0.7172 0.7172 2.8057 

3 0.7066 0.6847 0.6847 2.8314 

4 0.2340 0.2310 0.2310 1.1706 

 

4.5.3 Stephenson Six-bar Mechanism 

The analytical conditions are presented by Berkof and Lowen (1969) for only shaking 

force balancing of planar six-bar mechanism in which counterweight methodology is 

used. In another method (Verschuure et al., 2007), a convex optimization technique is 

used in determining the optimal shape, position and mass of the counterweights.The 

method proposed in this chapter is used to solve the balancing problem of a planar 

Stephenson six-bar mechanism as reported by Verschuure et al.(2007) shown in Fig. 
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4.3 for which parameters of original mechanism are given in Table 4.11. For the 

constant angular velocity of 2π rad/sec for link #3, both the shaking force and the 

shaking moment are minimized by redistributing the link masses as against the 

addition of counterweights as suggested in (Berkof and Lowen, 1969; Verschuure et 

al., 2007).   

Table 4.11 Parameters of original and optimally balanced planar Stephenson six-bar 

mechanism  

 

Link 

i 

Length 

ai 

(m) 

 

Original mechanism Optimally balanced mechanism 

Mass 

mi 

(kg) 

Moment 

of 

inertia 
c

iI   

(kg-m
2
) 

di 

(m) 

 

θi 

(deg) 

 

Mass 

mi 

(kg) 

Moment 

of 

inertia 
c

iI   

(kg-m
2
) 

di 

(m) 

 

θi 

(deg) 

 

1 0.0559 0.060 4.98e-5
 

0.0286 3 0.031 3.72e-5
 

0.0249 0 

2 0.1206 0.082 3.27e-4 0.0630 0 0.060 2.00e-4 0.0409 0 

3 0.0032 0.075 7.27e-7 0.0031 5 0.019 2.27e-6 0.0057 180 

4 0.1397 0.173 1.21e-3 0.0836 19 0.058 2.88e-4 0.0566 0 

5 0.0444 0.039 1.53e-5 0.0197 0 0.018 8.12e-6 0.0566 0 

0 0.1238 0.4290m     0.1860m     

 

The variations in the shaking force, shaking moment and driving torque over the 

complete crank cycle are shown in Fig. 4.15 whereas Fig. 4.16 shows Pareto front. 

The optimized link parameters for the balanced mechanism are given in Table 4.11 

while Table 4.12 presents original and optimized values of shaking force, shaking 

moment and driving torque. The reduction of about 70%, 73% and 58% were found in 

the RMS values of shaking force, shaking moment and driving torque, respectively 

using TLBO with 31% less function evaluations than that of GA (Fig. 4.17).  
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Table 4.12 Normalized RMS values of dynamic quantities in the original and optimally 

balanced Stephenson six-bar mechanism using GA and TLBO 

  

Normalised 

shaking force 

 

 

Normalised 

shaking moment 

 

Normalised 

driving 

torque  

No. of  

function 

evaluations 

Original mechanism 14.8371 11.3617 0.3295  

Optimally balanced 

using GA 

5.3241  

(-64.12%) 

4.2023 

 (-63.01%) 

0.1705 

(-48.25%) 

78000 

Optimally balanced 

using TLBO 

4.5064 

 (-69.63%) 

3.0534  

(-73.12%) 

0.1394 

(-57.69%) 

54000 

The optimum values of the design variables, i.e., the point-mass parameters are given 

in Table 4.13.  

Table 4.13 Normalised optimum equimomental point-mass parameters for balanced 

Stephenson six-bar mechanism  

 Link mi1 mi2 mi3 li1 

Original 

mechanism 

1 0.8039 0.1194 0.0767 0.7238 

2 1.0907 0.1331 0.1331 1.5969 

3 1.2034 0.0806 -0.0389 0.0581 

4 2.2220 0.6928 -0.0661 2.1104 

5 0.5230 0.0633 0.0633 0.4981 

Optimally 

balanced 

using GA 

1 0.5541 0.0797 0.0469 0.7963 

2 1.0403 0.1245 0.1245 1.3394 

3 -0.0057 0.1963 0.2178 0.2535 

4 1.0530 0.2886 -0.0907 1.6318 

5 0.3059 0.0395 0.0395 0.4940 

Optimally 

balanced 

using TLBO 

1 0.4688 0.0649 0.0397 0.6738 

2 0.8802 0.1054 0.1054 1.1333 

3 -0.0048 0.1661 0.1843 0.2145 

4 0.8910 0.2442 -0.0768 1.3807 

 5 0.2588 0.0334 0.0334 0.4180 
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Fig. 4.15 Variations in the dynamic quantities of original and optimally balanced Stephenson 

six-bar mechanism using GA and TLBO for complete cycle of operation 
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Fig. 4.16 Pareto front for Stephenson six-bar mechanism 
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Fig. 4.17 Convergence of objective function in GA and TLBO for Stephenson six-bar 

mechanism  

4.5.4 Slider-crank Mechanism 

A slider-crank mechanism consists of crankshaft, connecting rod and piston. It is the 

fundamental mechanism in vehicle engines, compressors and piston pumps. The 

slider-crank mechanism needs to be dynamically balanced to reduce vibrations and 

noise in the engine and to improve the vehicle performance. For an unbalanced 

mechanism, the shaking force and shaking moment are transmitted to the frame which 
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worsen the dynamic performance of vehicle engine and generate vibrations, wear and 

noise. It leads to expensive repairs and replacement of crankshaft and connecting rod 

and their reverse effects on the other parts such as cylinder block and piston. 

Figure 4.18 shows a planar slider-crank mechanism where the fixed link is detached 

from the moving links to show the reactions. The slider moves parallel to x-axis and 

O4 is the projection of piston center of mass on the frame. The parameters for original 

(Arakelian and Briot, 2010) and optimally balanced mechanism are given in Table 

4.14. 

Table 4.14 Original and optimum parameters of statically and dynamically balanced planar 

slider-crank mechanism 

 
Link 

i 

Length 

ai  (m) 
Mass mi  (kg) 

Moment of 

inertia 
c

iI   (kg-m
2
) 

di   

(m) 

θi   

(deg) 

Original mechanism 
1 0.292 2 0.03 0.1460 0 

2 0.427 3 0.14 0.2135 0 

   5m     

Force balance 

mechanism 

1 0.292 64.2219 3.2176 0.1398 180 

2 0.427 26.7551 1.1119 0.0638 180 

   90.9770m     

Force and moment 

balance mechanism 

[TLBO] result 

1 0.292 4.2481 0.0700 0.0030 180 

2 0.427 1.7470 0.0990 0.1834 0 

   5.9951m     

 

The results for full force balance are compared with the analytical full force balancing 

conditions (Bagci, 1995) which are as follow: 

)( 32111 mmadm  ; 2223 dmam  ; 1θ  and 2θ
   

(4.48) 

where all the parameters are defined in Fig. 4.18.  
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Fig. 4.18 Planar slider-crank mechanism detached from its frame 

These conditions are satisfied for the complete force balanced mechanism achieved 

using the optimization method proposed in this chapter. For the optimized 

mechanism, the shaking force is eliminated while the RMS value of shaking moment 

is increased by about 563% and driving torque value remains almost same as shown 

in Table 4.15. This confirms the results found in investigations carried out by Lowen 

et al. (1974) which shows that the shaking moment is increased for a force balanced 

mechanism. The variations in the shaking force, shaking moment and driving torque 

for complete cycle in original and optimally force balanced mechanism are shown in 

Fig. 4.19 while the parameters of the balanced mechanism are given in Table 4.14. 

Note that the total mass of mechanism increases excessively from 5 kg to 90.98 kg for 

the force balanced mechanism.  

Simultaneous minimization of the shaking force and shaking moment for 

slider crank mechanism is now achieved using the proposed optimization 

methodology. The variations in shaking force, shaking moment and driving torque 

over the complete crank cycle are shown in Fig. 4.20. 
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Fig. 4.19 Variations in the dynamic quantities of original and optimally force balanced slider-

crank mechanism for complete cycle of operation 
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Fig. 4.20 Variations in the dynamic quantities of original and optimally balanced slider-crank 

mechanism using GA and TLBO for complete cycle of operation 
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The comparison of original RMS values with those of optimum values are provided 

in Table 4.15 while Table 4.14 gives parameters for the balanced mechanism. Note 

that the total mass of optimally force and moment balanced mechanism is increased 

but not as in forced balanced mechanism. 

Table 4.15 Normalized dynamic quantities for planar slider-crank mechanism 

  

Normalised 

shaking 

force 

 

 

Normalised 

shaking 

moment 

 

Normalise

d 

driving 

torque  
No. of  

function 

evaluations 
Original mechanism 2.2188 0.4597 7.1762 

Force balanced mechanism 0.0035 

(-99.84%) 

3.0511 

(+563.71%) 

7.6118 

(+06.07%) 

Optimally balanced mechanism 

using GA 

1.2314
 

(-44.49%) 

0.2820 

(-38.66%) 

5.0746 

(-29.28%) 

60160 

Optimally balanced mechanism 

using TLBO 

1.1438
 

(-48.45%) 

0.2568 

(-44.14%) 

4.6298 

(-35.48%) 

32000 

Pareto front for this problem is shown in Fig. 4.21. The reduction of about 48%, 44% 

and 35% in the RMS values of shaking force, shaking moment and driving torque, 

respectively, are achieved using TLBO with 47% less function evaluations than that 

of GA (Fig. 4.22). The optimum values of the design variables, i.e., the point-mass 

parameters are given in Table 4.16. Note here that the reductions in the shaking force 

and shaking moment are achieved numerically by redistributing masses optimally 

instead of adding cam mechanisms and counterweights. 

Table 4.16 Optimum equimomental point-mass parameters for balanced slider-crank 

mechanism  

 Link mi1 mi2 mi3 li1 

Original mechanism 
1 1.6884 0.1558 0.1588 0.1905 

2 2.4060 0.2970 0.2970 0.3037 

Optimally balanced 

using GA 

1 1.2011 1.2905 1.2905 0.1143 

2 1.3176 0.1188 0.1188 0.2119 

Optimally balanced 

using TLBO 

1 1.3491 1.4495 1.4495 0.1284 

2 1.4800 0.1335 0.1335 0.2380 
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Fig. 4.21 Pareto front for slider-crank mechanism 

0 2 4 6 8 10 12

x 10
4

0.5

1

1.5

2

2.5

Function Evaluations

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

 

 

GA

TLBO

 

Fig. 4.22 Convergence of objective function in GA and TLBO for slider-crank mechanism 

The method earlier used to simultaneously reduce the shaking force and shaking 

moment for the problem considered suggests use of additional members like cam 

mechanism and counterweight (Arakelian and Briot, 2010). Hence, the optimal 

dynamic balancing is achieved numerically by redistribution of link masses.  

4.6 Multi-cylinder Engine 

Multi-cylinder machines such as engines and compressors use multiple slider-crank 

mechanisms connected to a common crankshaft. The harmonic balancing is 

recommended for these machines by properly selecting the relative position of the 
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mechanism planes and the relative orientation of the crank angles (Dresig and 

Holzweibig, 2010). The complete balancing of shaking force and shaking moment in 

engines can also be achieved using force and moment balancers (Bagci, 1995). For 

balancing of shaking force and shaking moment in a four-cylinder inline engine, the 

crank throws are arranged at 0°,180°,180°,0° on the crankshaft (Fig. 4.23). This 

arrangement is considered to be the best approach to achieve the primary balance in a 

multi-cylinder engine.  

To balance the secondary forces and moments, two counterrotating balance 

shafts at twice crankshaft speed with chains and/or gears known as Lanchester 

balancer are used (Garrett et al., 2001; Norton, 2011; Chiou and Davies, 1994; 

Arakelian and Makhsudyan, 2010). Figure 4.24 shows reaction forces in main 

bearings in a four-cylinder inline engine having same slider-crank mechanism in each 

cylinder with arrangement shown in Fig. 4.23. As shown in Fig. 4.24, reaction forces 

in bearings A, C and E are not vanishing while in bearings B and D, they will vanish. 

i

01f  is the reaction force of the frame on the crank of the slider-crank mechanism of 

the ith cylinder for i=1,…,4.  

  

Fig. 4.23 Crank orientations in four-cylinder inline engine 
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Fig. 4.24 Bearing forces in four-cylinder inline engine 

Thus, the bearing forces for this arrangement of four-cylinder inline engine are 

defined as: 

2/
1

01A fF  ; 0B F ; )2/2/(
3

01

2

01C ffF  ; 0D F ; 2/
4

01E fF   (4.49) 

The bearing forces can be reduced when optimally balanced slider-crank mechanisms are 

used in four-cylinder inline engine while the addition of counterweights are suggested in 

traditional approach (Hoag, 2006) for the same. The RMS and peak values of forces on 

bearings A, C and E (Fig. 4.24) are calculated using Eq. (4.44) and reduced by about 44% 

and 71%, respectively, for the optimum mechanism found in previous section. The 

variation of the bearing force for the complete cycle for heavily loaded bearing C is shown 

in Fig. 4.25. The original and optimized RMS and peak values of the bearing forces are 

compared in Table 4.17.    

Table 4.17 Normalized bearing forces in four-cylinder inline engine 

 FA  and FE FC 

 RMS value Peak value RMS value Peak value 

Original mechanism 1.5560 8.6715 3.1120 17.3430 

Optimized mechanism 0.8663  

(-44.32%) 

2.4845 

(-71.35%) 

1.7326  

(-44.32%) 

4.9690 

(-71.35%) 
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Fig. 4.25 Force on bearing C in four-cylinder inline engine 

4.7 Summary 

The shaking force and shaking moment developed due to inertia forces in the planar 

mechanisms are minimized by finding the optimal mass distribution of the moving 

links of the mechanisms. The inertial properties of the mechanism links are 

represented by the parameters of the equimomental point-mass system to achieve 

mass distribution. The point-mass parameters are taken as the design variables in the 

formulation of the optimization problem to minimize the shaking force and shaking 

moment. The RMS values of normalised shaking force and shaking moment in planar 

four-bar, five-bar, six-bar and slider-crank mechanism are reduced significantly by 

(65%, 73%), (77%, 76%), (70%, 73%) and (48%, 44%), respectively. The proposed 

optimization method also demonstrates GA and TLBO as solvers in mechanism 

balancing. It is found that TLBO is more computationally efficient and effective for 

mechanism balancing than that of GA. 
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Chapter 5 

Optimal Link Shape Synthesis 

In this chapter, the link shapes are synthesized for optimally balanced mechanism for 

the given motion. The link shapes satisfying kinematic and dynamic requirements are 

very crucial for the design of a mechanism and its performance. The shape synthesis 

using parametric curves like Hermite, Bezier and B-spline curves leads to computer-

aided design (CAD) and manufacturing of the mechanism links. Through CAD 

modeling of the links using these curves; the design, production and functional details 

can be easily transmitted between engineering and manufacturing operations. The 

CAD modeling of the links is also useful in analyzing the static and dynamic response 

of the designed mechanism. The real-time behavior of the mechanism is evaluated 

through computer simulation and thus it eliminates the need of the experimental tests 

for the actual mechanism. Therefore, the cost and time are saved to a great extent and 

any possible error is realized before manufacturing of the mechanism links.  

The optimization problem formulation for link shape synthesis for the 

optimally balanced simple and multiloop planar mechanisms is presented in this 

chapter. The closed parametric curve is used to represent the link shape and its 

geometric and inertial properties are calculated using well known Green’s theorem. 

The proposed optimization problem includes the equality constraints to keep the 

resulting inertial properties same as the inertial properties of the optimally balanced 

mechanisms obtained in the chapter 4.      

5.1 Link Shape  

The link shape is represented by the parametric curve, i.e., closed cubic B-spline curve as 

shown in Fig. 5.1. If the curve interpolates or approximates a set of n+1 control points, 
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P0, P1,…, Pn (Zeid and Sivasubramanian, 2009; Mortenson, 2006) then the position of 

any point on the curve is defined as: 

max

0

, 0    ,)()( uuuNu
n

i

kii 


PP
      

(5.1) 

For a curve of degree (k-1), the B-spline function )(, uN ki  is computed iteratively as: 

1

1-1,

1-

1-,

,

)(
)(

)(
)()(










iki

ki

ki

iki

ki

iki
u-u

uN
u-u

u-u

uN
u-uuN

    

(5.2) 

where  



 




otherwise    0,

    1, 1

,1

ii

i

uuu
N

      
(5.3) 

In Eq. (5.3), 
,1iN is a unit step function and iu are known as parametric knots or knot 

values. These values form a sequence of nondecreasing integers called the knot 

vector. The parametric equation of ith curve segment of a cubic B-spline curve having 

control points Pi-1,  Pi,  Pi+1 and Pi+2 for  ii uuu  ,1-  is given as: 

6
)( 2413 21-1  
 iiii

i

PαPαPαPα
uP

      
(5.4) 

where 

3223

1 3-3- iuiiuuα 
 

     

(5.5) 
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Fig. 5.1 Closed cubic B-spline curve and its control points 

1333)6-9(-3)9-(33
23223

2  iiiiiuiuuα
 

  

(5.6) 

463)129()9(-6-3
23223

3  iiiiuiuuα
 

  

(5.7) 

433)63(3)3(3
23223

4  iiiiiuiuuα
 

  

(5.8) 

The control points form the vertices of the characteristic polygon of the B-spline 

curve as shown in Fig. 5.1. Note that the cubic B-spline curve is a composite sequence 

of curve segments connected with C
2
 continuity which blends two curve segments 

with same curvature. The coordinates of any point on the ith segment of the curve are 

given by Eq. (5.4) as:  

6
)( 241321-1  
 iiii

i

xαxαxαxα
ux

      
(5.9) 

6
)( 241321-1  
 iiii

i

yαyαyαyα
uy

      
(5.10) 

where the terms α1, α 2, α 3 and α 4 are defined in Eqs. (5.5) – (5.8), and (xi-1 , yi-1), (xi , yi), 

etc. are the coordinates of points Pi-1, Pi, etc. respectively.  The mass and inertia of the 

link that is synthesized using closed cubic B-spline curve can be calculated using 

P0, Pn 

 

P1 

 

Pi 

 

Pn-1 
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Green’s theorem (Crisco et al., 1998; Brlek et al., 2005). For two functions P(x, y) and 

Q(x, y) over a closed region D in the plane with boundary D , Green's theorem presents: 

  



















D
D

QdyPdxdxdy
y

P

x

Q

      
(5.11) 

The area of closed region D is calculated as: 


D

dxdyA
      

(5.12) 

This area is calculated using Green's theorem by taking   0yx,P and   xyx,Q   

that gives: 

dxdy
y

P

x

Q
A

D

 


















      
(5.13) 


D

xdyA
      

(5.14) 

For a plane curve specified parametrically as  )()( uy,ux

 

for  10 u ,uu , Eq. (5.14) 

becomes: 

duyxA
u

u 
1

0       
(5.15) 

Similarly, the moment about x-axis and y-axis of plane are computed as: 

using /2-
2

yP  and 0Q  

duxydxyydxdyM
u

u
x  

1

0

22

2

1

2

1

    
(5.16) 

using 0P and /2
2

xQ    

http://mathworld.wolfram.com/GreensTheorem.html#eqn3
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duyxdyxxdxdyM
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0

22

2

1

2

1

     
(5.17) 

The geometric centroid ),( yx  of plane curve is given by AMx y/ and AMy x/ . 

Finally, the area moments of inertia can be computed as: 

using /3
3

yP  and 0Q  

duxydxydxdyyI
u

u
xx  

1

0

332

3

1

3

1

    
(5.18) 

using 0P and 
3

/ 3Q x  

duyxdyxdxdyxI
u

u
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1
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332

3

1

3

1

     
(5.19) 

Hence, the area A, centroid (  ̅   ̅) and area moment of inertia about centroidal axes 

[Ixx, Iyy, Izz] of the closed curve made of n cubic B-spline segments are calculated as: 





n

i

u

u
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ii du uyuxA
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i1 1-
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(5.20) 
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http://mathworld.wolfram.com/GeometricCentroid.html
http://mathworld.wolfram.com/AreaMomentofInertia.html
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(5.25) 

The first derivatives )(ux
'
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and )(uy

'

i

 
of )(uxi and )(uyi  

with respect to u, respectively, in 

Eqs. (5.20) – (5.24) are given by: 
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(5.31) 

For geometric properties defined in Eqs. (5.20) – (5.25), the mass and mass moment of 

inertia of a link with shape represented by the closed curve are calculated as: 

Atρm           (5.32) 

tρII zz          (5.33) 

where t and ρ represent thickness and material density for the link, respectively.  

5.2 Optimization Problem Formulation 

In this section, an optimization problem is formulated to find the optimum link shapes 

corresponding to the inertial parameters of the optimally balanced mechanisms obtained in 
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the chapter 4. To formulate the optimization problem, the Cartesian coordinates of 

control points of cubic B-spline curve are taken as design variables as shown in Fig. 

5.2.  

For a binary link, Fig. 5.2 (a), the link length, ai, between joint origins Oi to Oi+1 is 

divided into equal parts. Hence, the x-coordinates of the control points lying between 

Oi and Oi+1 are fixed according to the link length. Now, the y-coordinates are taken as 

the design variables. Furthermore, the extension of link beyond Oi and Oi+1 is 

controlled by points P0, P1, Pn-1 at one end and by points Pn/2-1, Pn/2, Pn/2+1 at other end. 

Hence, x-coordinate of P0, y-coordinates of P1 and Pn-1 are chosen as the design 

variables at the right end and same is done at left end. Finally, the design vector is 

proposed as:   

T

1-1/2/21-/210 ] ...    ...  [ nnnn yyxyyx x       (5.34) 

The conditions for symmetrical and non-symmetrical shapes are imposed by 

controlling coordinates of the opposite points as y y j i  
and y yj i

, respectively. 

In addition to manufacturing benefits, the symmetrical shapes have zero products of 

inertia. 

For a ternary link having joint origins as Oi,Oi+1 and Oi+2 shown in Fig. 5.2(b), the link 

length, ai, can be defined as summation of the distances between joints, i.e., ai = ai1 + 

ai2 + ai3. The number of control points between two joints can be decided according to 

the distance between them. 
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(a) Binary link 

 
(b) Ternary link 

 

Fig. 5.2 Closed cubic B-spline curve representing link shape and its control points where Pi and 

Pj are two opposite points about x-axis 

If n1, n2, and n3 are number of control points for lengths ai1, ai2, and ai3, respectively, 

then total number of control points is the sum of n1, n2, and n3. At each joint, two 

points coincide and their y-coordinate can be determined by considering the local 

coordinate frame in the link as shown in Fig. 5.2 (b). The design vector in this case 

can be defined as: 

1 2 3

T

11 1 21 2 31 3[  ... ... ... ]x n n ny y  y y  y y       (5.35) 
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Note that for the link having three or more joints, the shapes can be synthesized by 

selecting y-coordinates for each segment of the length between joints. The inertial 

properties of resulting shapes are constrained by the optimal properties. These 

constraints ensure that the links with optimum shapes have the same inertial 

properties as that of the optimally balanced mechanism links. The objective function 

is formulated to minimize the percentage error in resulting links inertia values as: 

*

*

( )
Minimize Z  100


 i i

i

I I

I        
(5.36) 

; Subject to
*

ii mm 
*

ii

*

ii yyxx  ;               for  i = 1, 2,…,n   (5.37) 

     
y y j i

 (for symmetrical binary link); y yj i
 (for non-symmetrical binary link)

 

here parameters with superscript ‘*’ represent parameters obtained in the chapter 4 for 

the optimally balanced mechanism and subscript ‘i’ is used for ith link of mechanism. 

The teaching-learning-based optimization (TLBO) algorithm is used to solve this 

optimization problem. It is advantageous to use TLBO as compared to the other 

evolutionary optimization algorithms, as (1) it doesn’t require any algorithm specific 

parameters to be defined to start the optimization procedure and (2) it converges to the 

optimum solution faster than other evolutionary optimization algorithms. Also, the 

initial values of the design variables are not required to start searching the optimum 

solution and hence no initial shape is required. The thickness of mechanism links is 

taken as 10 percent of the driving link length and the link material is chosen as the 

mild steel (density = 7850 kg/m
3
) for deciding the density and maximum permissible 

stress. Furthermore, the thickness of the link is taken uniform normal to the plane of 

motion and can be different for different link in the mechanism considered. The stress 
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at the weakest section in each link is calculated for the maximum joint force occurred 

during the complete cycle of operation. Moreover, the von mises stresses for the peak 

load is considered to determine minimum cross-section of each link. The inertial 

properties of links are calculated using Eqs. (5.32) – (5.33) and verified by CAD 

models developed using Autodesk Inventor software. The flow chart shown in Fig. 

5.4 illustrates the two-stage optimization method proposed for the optimum design of 

the planar mechanisms.    

5.3 Planar Mechanisms  

In this section, the effectiveness of the proposed optimization method for link shape 

synthesis is shown by applying it to four optimally balanced planar mechanism 

obtained in chapter 4. Based on the design variables defined in Fig. 5.2, total 28 

design variables, namely, x0, x13, y1…y26 are now considered for the optimum link 

shape synthesis for the planar mechanisms (Fig. 5.3).  

 

 

 

 

Fig. 5.3 Design variables to find optimum link shape of planar mechanisms 

Here, ai represents the link length between joints Oi and Oi+1. The design variables x0 

and x13 are representing link lengths beyond the joints Oi+1 and Oi, respectively. 
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Fig. 5.4 Two stage optimization scheme to balance mechanism and shape synthesis 

The lengths ai, x0 and x13 are divided each into equal parts which decide the x-

coordinates of control points. So, these x-coordinates are given as follows: 

Solution using GA and TLBO in MATLAB 
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x1 = ai + x0;  x2 = ai + 0.75x0;  x3 = ai + 0.50x0; x4 = ai + 0.25x0; x5 = ai;  

x6 = 0.75ai; x7 = 0.50ai; x8 = 0.25ai; x9 =0;  

x10 = -0.25x13;  x11 =-0.50x13;  x12 = -0.75x13;  x13 = -x13;  

x14 = -x13; x15 = -0.75x13; x16 = -0.50x13; x17 = -0.25x13;  

x18 = 0; x19 = 0.25ai; x20 = 0.50ai; x21 = 0.75ai;  

x22 = ai; x23 = ai + 0.25x0; x24 = ai + 0.50x0; x25 = ai + 0.75x0; x26 = ai + x0. 

Moreover, the symmetrical link shapes can be obtained by controlling the y-

coordinates as: 

y14  = -y13 y21  = -y6 

y15  = -y12 y22  = -y5 

y16  = -y11 y23  = -y4 

y17  = -y10 y24  = -y3 

y18  = -y9 y25  = -y2 

y19  = -y8 y26  = -y1 

y20  = -y7  

Note that lengths x0 and x13 are variables while ai is the length of the ith link. 

5.3.1 Four-bar Mechanism 

The optimization problem of link shape synthesis for a planar four-bar mechanism 

(Berkof, 1973; Farmani et al., 2011) presented in Eqs. (5.36) – (5.37) is solved and 

the resulting link shapes are shown in Fig. 5.5. 
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                             (a) case 1                                                             (b) case 2 

 

 

 

                                   (c) case 3                                                           (d) case 4   
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(e) case 5      (f) case 6 

- - - - initial mechanism                   optimized mechanism 

                                 denotes joint         denotes mass center 

Fig. 5.5 Original and optimally designed mechanisms corresponding to different cases for 

four-bar mechanism [all figures drawn on scale] 

The conditions for full force balancing (Eq. 4.42) are satisfied for the complete force 

balanced mechanism achieved for cases (1) and (3) as shown in Fig. 5.5. Thus the 

shaking force in a mechanism can be completely eliminated by finding optimum link 

shapes (Fig. 5.5 (a) and (c)). Note that the complete shaking force balancing is 

achieved in four-bar mechanism by redistributing the masses of link #1 and #3 

instead of adding the counterweights to these links as suggested in the literature. For 

case (3), as shown in Fig. 5.5 (c), the shaking force is balanced after converting link 

#2 into the physical pendulum which requires more mass for balancing as compared 

to case (1). The total mass is increased for a complete force balanced mechanism and 

also the increments in the RMS values of the shaking moment and the driving torque 

are found as 50.24% and 77.71%, respectively, in case 1. Similarly, the shapes for 

different cases considered in chapter 4 are found and shown in Figs. 5.5(b) - 5.5(f) 

where the non-symmetric link shapes are found as the special case (case 6). The 
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values of the design variables, defined in Fig. 5.3, for the optimally designed four-bar 

mechanism are given in Table 5.1 while the CAD model of the mechanism is shown 

in Fig. 5.6.   

Table 5.1 Design variables for optimally designed four-bar mechanism (all parameters are in 

meters) 

case 1 

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.000 0.000 0.000 0.000 0.025 0.025 0.025 0.025 0.025 0.035 0.089 0.116 0.117 0.000 0.120 

2 0.000 0.000 0.000 0.000 0.025 0.025 0.025 0.025 0.025 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 0.000 0.000 0.025 0.025 0.025 0.025 0.025 0.056 0.063 0.095 0.118 0.000 0.242 

case 2 

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.011 0.010 0.006 0.007 0.009 0.011 0.013 0.016 0.022 0.027 0.024 0.016 0.011 0.003 0.054 

2 0.013 0.012 0.008 0.008 0.011 0.013 0.016 0.020 0.026 0.033 0.027 0.020 0.013 0.005 0.132 

3 0.007 0.007 0.007 0.007 0.010 0.012 0.015 0.018 0.025 0.031 0.025 0.018 0.012 0.006 0.123 

case 3 

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.000 0.000 0.000 0.000 0.025 0.025 0.032 0.047 0.053 0.035 0.058 0.069 0.082 0.000 0.128 

2 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.082 0.082 

3 0.000 0.000 0.000 0.000 0.025 0.032 0.047 0.058 0.063 0.075 0.087 0.095 0.118 0.000 0.261 

case 4 

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.006 0.005 0.003 0.003 0.004 0.005 0.007 0.008 0.011 0.014 0.011 0.008 0.005 0.012 0.027 

2 0.007 0.006 0.004 0.004 0.005 0.007 0.008 0.010 0.013 0.017 0.013 0.010 0.007 0.005 0.066 

3 0.004 0.004 0.004 0.004 0.005 0.006 0.007 0.009 0.012 0.015 0.009 0.006 0.012 0.007 0.062 

case 5 

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.011 0.010 0.006 0.006 0.009 0.011 0.013 0.016 0.021 0.027 0.022 0.016 0.011 0.000 0.054 
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2 0.013 0.012 0.008 0.008 0.011 0.013 0.016 0.020 0.026 0.033 0.027 0.020 0.013 0.000 0.132 

3 0.007 0.007 0.007 0.007 0.010 0.012 0.015 0.018 0.025 0.031 0.025 0.018 0.012 0.000 0.123 

case 6 

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 

1 0.010 0.03 0.010 0.003 0.013 0.004 0.008 0.002 0.022 0.008 0.002 0.019 0.006 0.011 0.010 

2 0.014 0.019 0.010 0.004 0.011 0.005 0.007 0.021 0.023 0.022 0.025 0.024 0.012 0.012 0.018 

3 0.003 0.002 0.002 0.007 0.014 0.019 0.005 0.014 0.015 0.026 0.010 0.002 0.009 0.003 0.001 

DV 

Link 
y16 y17 y18 y19 y20 y21 y22 y23 y24 y25 y26 x0 x13   

1 0.022 0.001 0.032 0.021 0.016 0.014 0.005 0.006 0.006 0.008 0.004 0.020 0.039   

2 0.023 0.004 0.030 0.032 0.009 0.021 0.006 0.011 0.005 0.007 0.005 0.040 0.065   

3 0.038 0.021 0.038 0.023 0.001 0.013 0.011 0.008 0.007 0.003 0.009 0.055 0.073   

 

 

 

 

(case 1) 
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(case 2) 

 

 

 

(case 3) 
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(case 4) 

 

 

 

(case 5) 
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(case 6) 

Fig. 5.6 CAD model of optimally designed four-bar mechanism  

For the same problem, the physical pendulum concept was used along with the 

addition of force and inertia counterweights to balance the mechanism (Berkof, 1973; 

Farmani et al., 2011) as shown in Fig. 5.7.  

 

Fig. 5.7 Fully force and moment balanced inline four-bar mechanism (Farmani et al., 2011) 
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Whereas, the reductions of about 65%, 73% and 75% in RMS values of shaking force, 

shaking moment and driving torque, respectively, are achieved for the optimally 

designed mechanism (case 2) using the optimization method proposed in this chapter.    

5.3.2 Five-bar Mechanism 

The reduction of about 77%, 76%  and 76% in the RMS values of shaking force, 

shaking moment and driving torque, respectively, are achieved for the optimally 

balanced five-bar mechanism obtained in chapter 4. The corresponding optimum link 

shapes for the balanced mechanism are found using the methodology proposed in this 

chapter and is shown in Fig. 5.8. Table 5.2 presents the optimum values of the design 

variables corresponding to the optimum shape obtained for five-bar mechanism 

whereas the CAD model of the optimally designed mechanism is shown in Fig. 5.9.   

 

                      - - - - - - initial mechanism           optimized mechanism 

Fig. 5.8 Original and optimally designed five-bar mechanism [figure drawn on scale] 
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Table 5.2 Design variables for optimally designed five-bar mechanism (all parameters are in 

meters)  

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.006 0.006 0.010 0.009 0.007 0.004 0.003 0.010 

2 0.002 0.002 0.002 0.004 0.004 0.006 0.005 0.008 0.010 0.015 0.012 0.010 0.008 0.006 0.019 

3 0.001 0.002 0.002 0.003 0.003 0.005 0.006 0.005 0.006 0.010 0.010 0.006 0.005 0.012 0.039 

4 0.001 0.001 0.001 0.002 0.002 0.004 0.003 0.004 0.004 0.006 0.007 0.006 0.007 0.004 0.022 

 

 

Fig. 5.9 CAD model of optimally designed five-bar mechanism 

For the same problem, Ilia and Sinatra (2009) balanced only the shaking force through 

optimizing the center of mass parameters of the moving links. Whereas, the shaking 

force, shaking moment and driving torque for the mechanism are reduced 

significantly here by finding the optimum shapes of the mechanism links.   

5.3.3 Stephenson Six-bar Mechanism 

For optimally balanced Stephenson six-bar mechanism obtained in chapter 4, the 

reduction of about 70%, 73% and 58% were found in the RMS values of shaking 

force, shaking moment and driving torque, respectively. Figure 5.10 shows the 

optimum shapes for the optimally balanced mechanism. The optimum values of the 
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design variables are given in Table 5.3 while Fig. 5.11 shows the CAD model of the 

optimally designed mechanism.   

 

 

                      

 - - - - - - initial mechanism           optimized mechanism 

Fig. 5.10 Original and optimized link shapes of Stephenson six-bar mechanism [figure 

drawn on scale] 

Table 5.3 Design variables for optimally designed Stephenson six-bar mechanism (all 

parameters are in meters)  

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.007 0.006 0.006 0.005 0.005 0.003 0.004 0.006 0.006 0.010 0.009 0.007 0.004 0.010 0.010 

2 0.001 0.001 0.002 0.003 0.003 0.005 0.004 0.007 0.008 0.008 0.008 0.008 0.006 0.006 0.019 

3 0.002 0.003 0.004 0.005 0.005 0.008 0.007 0.008 0.009 0.009 0.012 0.014 0.011 0.009 0.017 

4 0.001 0.002 0.002 0.003 0.003 0.005 0.004 0.007 0.008 0.008 0.008 0.008 0.006 0.002 0.005 

5 0.001 0.001 0.001 0.002 0.002 0.004 0.003 0.005 0.006 0.006 0.006 0.006 0.005 0.003 0.008 
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Fig. 5.11 CAD model of optimally designed Stephenson six-bar mechanism 

Verschuure et al. (2007) used 90° sector-type counterweights to reduce the shaking 

force and shaking moment for the same problem (Fig. 5.12). Whereas the significant 

reductions of about 70%, 73% and 58% in shaking force, shaking moment and 

driving torque, respectively, are achieved here for the optimally designed mechanism. 

 

Fig. 5.12 Balancing of shaking force and shaking moment in Stephenson six-bar 

mechanism using counterweights (Verschuure et al., 2007) 
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5.3.4 Slider-crank Mechanism 

The link shapes are synthesized using the optimization method proposed in this 

chapter for the force balanced slider-crank mechanism achieved in chapter 4 (Fig. 

5.13). For this, the masses of the crank and the connecting rod are optimally 

distributed while use of the additional members like duplicate mechanism and 

counterweights are suggested in the traditional approach. However, the total mass is 

increased in both approaches. Table 5.4 presents the optimum values of the design 

variables corresponding to the optimum shape obtained for this mechanism whereas 

its CAD model is shown in n Fig. 5.14. The conditions for full force balancing (Eq. 

4.43) are satisfied for the complete force balanced slider-crank mechanism achieved 

here (Fig. 5.13). In this case, the complete elimination of the shaking force increases 

the RMS value of shaking moment by about 563% while the overall mass of the 

mechanism is increased significantly.   

 
Fig. 5.13 Original and optimally designed force balanced planar slider-crank mechanism 

[figure on scale] 
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Fig. 5.14 CAD model of optimally designed force balanced slider-crank mechanism 

Similarly, The reduction of about 48%, 44% and 35% in the RMS values of shaking 

force, shaking moment and driving torque, respectively, are achieved for the 

optimally balanced mechanism (chapter 4). The corresponding shapes of mechanism 

links are shown in Fig. 5.15. Table 5.4 presents the design variables defined in Fig. 

5.3 for the mechanism whereas the CAD model of the optimally designed mechanism 

is shown in Fig. 5.16. For the same problem, use of the cam attached counterweights 

and spring is suggested to balance the shaking force and shaking moment in the 

literature (Arakelian and Briot, 2010) as shown in Fig. 5.17.    
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Table 5.4 Design variables for optimally designed slider-crank mechanism (all parameters are 

in meters)  

Force balanced  

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.009 0.010 0.013 0.018 0.023 0.029 0.032 0.036 0.078 0.165 0.171 0.179 0.184 0.019 0.363 

2 0.005 0.006 0.007 0.010 0.014 0.017 0.019 0.022 0.028 0.045 0.076 0.093 0.109 0.008 0.291 

Force and moment balanced 

DV 

Link 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 x0 x13 

1 0.005 0.005 0.006 0.009 0.012 0.014 0.016 0.018 0.039 0.083 0.085 0.089 0.092 0.009 0.131 

2 0.004 0.004 0.005 0.007 0.009 0.011 0.013 0.015 0.019 0.021 0.022 0.024 0.025 0.005 0.039 

 

 

                      - - - - - - initial mechanism           optimized mechanism 

Fig. 5.15 Original and optimally designed planar slider-crank mechanism [figure drawn on 

scale] 
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Fig. 5.16 CAD model of optimally designed planar slider-crank mechanism 

 

Fig. 5.17 Complete force and moment balancing of slider-crank mechanism using cam 

attached counterweights (Arakelian and Briot, 2010) 

5.4 Summary 

The physically possible shapes are constructed for the optimal inertial parameters of 

the mechanism links and the given kinematic structure. The percentage error of 

resulting link inertia values defined as the objective function was found within ± 5 

percent. Thus, the two-stage optimization formulation including the dynamic 

balancing and the dynamics of mechanism has been brought in shape synthesis of 

links. The benefit associated with the proposed method is that the links of balanced 
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mechanism are of the uniform thickness while the force and inertia counterweights 

added to the original mechanisms in traditional methods (Berkof, 1973; Farmani et 

al., 2011; Berkof and Lowen, 1969) are of large thickness and radius compared to the 

original link parameters. Also, the proposed method doesn’t require any pre-defined 

shapes or design domain to start with as suggested in (Farmani et al., 2011; 

Verschuure et al., 2007). The resulting stresses for links of the balanced mechanism 

can be calculated at the weakest sections under external loads.    
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Chapter 6 

Conclusions 

This thesis presents a two stage optimization methodology for optimum dynamic 

design of the planar mechanisms. The optimization problem formulation and various 

terms used by the classical and evolutionary optimization techniques are discussed in 

chapter 3. The popular evolutionary optimization techniques, Genetic algorithm (GA) 

and teaching-learning-based optimization (TLBO) algorithm are presented in details 

in this chapter. Both the optimization techniques are demonstrated by solving a 

numerical example for one iteration.  

In chapter 4, an optimization problem is formulated to minimize the shaking 

force and shaking moment developed due to inertia forces in the planar mechanisms 

and solved using GA and TLBO. The balancing of the planar mechanisms is achieved 

through optimal mass distribution of the moving links. The inertial properties of links 

are represented by the equimomental point-mass system and the point-mass 

parameters are chosen as the design variables in the formulation of the optimization 

problem. The RMS values of normalised shaking force and shaking moment in planar 

four-bar, five-bar, six-bar and slider-crank mechanisms are reduced significantly by 

(65%, 73%), (77%, 76%), (70%, 73%) and (48%, 44%), respectively. It is found that 

TLBO is more computationally efficient and effective for mechanism balancing than 

that of GA. In chapter 5, the physical shapes are obtained corresponding to the 

optimal inertial parameters of the mechanism links found in chapter 4 for the given 

kinematic structure. The objective function for the shape optimization problem is 

formulated as the percentage error of resulting link inertia values over the optimum 

inertia values. The shape synthesis is obtained within ± 5 percent of the optimum 
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values. The resulting stresses for links of the balanced mechanism are calculated at 

the weakest sections under external loads.    

 The two-stage optimization method developed in this thesis includes the 

dynamic balancing and the dynamics of mechanism for shape synthesis of links. It is 

demonstrated that the conversion of the rigid links into the equimomental system of 

point-masses is more useful in solving the balancing problem for mechanism design. 

The optimal mass distributions of moving links by taking point-mass parameters as 

the design variables reduce the inertial forces and moments significantly. The links 

are of the uniform thickness in contrast of the traditional methods where the concept 

of the counterweights is used. Normally, counterweights are of large thickness and 

radius compared to the original link parameters. Also, the proposed method doesn’t 

require any pre-defined shapes or design domain to start with the optimization 

procedure.  

The method is quite general and equally applicable for all single or multiloop 

mechanisms where the analytical solutions are not available. The proposed method 

also demonstrates teaching-learning-based algorithm and genetic algorithm as a solver 

in mechanism balancing and design. In addition, the optimized values of link mass 

and inertia are effectively converted into physically possible shapes of links using 

closed B-spline curves. The novelty of the methodology is that it combines the 

dynamics and design solution for mechanisms. 

The contributions of this research work are summarized as follows: 

1. An optimization problem formulation is proposed for the dynamic balancing 

and link shape synthesis of the planar multiloop mechanisms. 
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2. The optimum mass distribution for the moving links for the optimally 

balanced mechanisms is proposed instead of the counterweights and/or 

additional members’ methodology. 

3. The computer aided design principles are integrated in a novel design 

methodology for links shapes formation for the optimally balanced 

mechanisms.  

4. Implementation of evolutionary optimization techniques for mechanism 

design is explored.    

5. Genetic algorithm (GA) and Teaching-learning-based optimization algorithm 

(TLBO) are applied for the mechanism design problem. It is established that 

TLBO is computationally more efficient than GA.  

Future Scope of Work 

This research work has given rise to some useful directions which forms the future 

scope of research. They are as follows: 

1. Application of other advanced and hybridized optimization techniques to 

further improve the results.  

2. Consideration of the flexibility, elastic deformation and joint clearance for the 

mechanism links. 

3. Consideration of dynamic stresses due to variable loading and fatigue failure. 

4. Application of equimomental system of more than three point-masses for 

mechanism links and their effects on dynamic balancing results. 

5. Application of the proposed method to optimally design the spatial 

mechanisms considering feasibility constraints.         
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Appendix A 

MATLAB codes for generating shape 

A B-spline curve is made of several curve segments defined by its control points. The 

MATLAB codes to generate a shape using B-spline curve are presented here. For 

example, a circle of radius 50 mm is generated using linear, quadratic and cubic B-spline 

curves. The circle can be generated with a suitable number of control points depending 

upon the choice as higher number of control points take more computational time to 

generate the curve. Considering the appropriate smoothness, visualization and calculation 

time, the circle with 16 control points is demonstrated here as an example (Fig. A.1).  

 

Fig. A.1 The control points of a circle 

A.1 Control points calculation and plotting 

The coordinates of the control points are calculated and plotted using the following 

MATLAB code.  
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% coordinates of 16 control points 

x0=50*cos(0); y0=50*sin(0); 

x1=50*cos(pi/8); y1=50*sin(pi/8); 

x2=50*cos(2*pi/8); y2=50*sin(2*pi/8); 

x3=50*cos(3*pi/8); y3=50*sin(3*pi/8); 

x4=50*cos(4*pi/8); y4=50*sin(4*pi/8); 

x5=50*cos(5*pi/8); y5=50*sin(5*pi/8); 

x6=50*cos(6*pi/8); y6=50*sin(6*pi/8); 

x7=50*cos(7*pi/8); y7=50*sin(7*pi/8); 

x8=50*cos(8*pi/8); y8=50*sin(8*pi/8); 

x9=50*cos(9*pi/8); y9=50*sin(9*pi/8); 

x10=50*cos(10*pi/8); y10=50*sin(10*pi/8); 

x11=50*cos(11*pi/8); y11=50*sin(11*pi/8); 

x12=50*cos(12*pi/8); y12=50*sin(12*pi/8); 

x13=50*cos(13*pi/8); y13=50*sin(13*pi/8); 

x14=50*cos(14*pi/8); y14=50*sin(14*pi/8); 

x15=50*cos(15*pi/8); y15=50*sin(15*pi/8); 

x=[x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15]; 

y=[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15]; 

plot(x,y,'or'); 

xlabel('x'); ylabel('y') 

This MATLAB code generates control points of the circle. 

A.2 Generation of circle using linear B-spline curve 

The circle is generated using 16 linear B-spline curve segments corresponding to the 

control points obtained in the last section. Following is the MATLAB code:  

% coordinates for linear B-spline curve 

Lx=[x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x0]; 

Ly=[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y0]; 

LB=eq_linear_B_spline(Lx,Ly); 
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for i = 1 : 16; 

linear_B_spline=ezplot(LB(1, i),LB(2, i), [i - 1, i]); 

end 

The function for generating piecewise linear B-spline curve used in this code is as 

follows: 

function eq_linear=eq_linear_B_spline(x,y)  

syms u real; 

p=[x; y]; 

eq_linear=[ ];  

for i=1:16; 

yi=linear_B_spline(p(1, i : i + 1), p(2, i : i + 1)); 

eq_linear = [eq_linear, simplify(subs(yi, u, u - i + 1))]; 

end 

end 

The function used for elementary linear B-spline curve equation is given as:  

function equation = linear_B_spline(x,y)  

syms u real;  

n1 = (1 - u); 

n2 = u; 

equation = ([x; y]*[n1, n2]'); 

end 

The circle composed of linear B-spline curve segments along with control points’ using 

this code is shown in Fig. A.2. The resulting shape is a sequence of straight-line segments 

connecting the control points. 
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Fig. A.2 Circle generated using linear B-spline curve segments 

A.3 Generation of circle using quadratic B-spline curve 

The circle is generated using 16 quadratic B-spline curve segments corresponding to the 

control points obtained in section A.1. Following is the MATLAB code:  

% coordinates for quadratic B-spline curve 

Qx=[x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x0 x1]; 

Qy=[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y0 y1]; 

QB=eq_quadratic_B_spline(Qx,Qy); 

for i = 1 : 16; 

quadratic_B_spline=ezplot(QB(1, i), QB(2, i), [i - 1, i]); 

end 

The function for generating piecewise quadratic B-spline curve used in this code is as 

follows: 

function eq_quadratic=eq_quadratic_B_spline(x,y)  

syms u real; 

p=[x; y]; 
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eq_quadratic=[ ]; 

for i=1:16; 

yi=quadratic_B_spline(p(1,i:i+2),p(2,i:i+2)); 

eq_quadratic=[eq_quadratic,simplify(subs(yi,u,u-i+1))]; 

end 

end 

The function used for elementary quadratic B-spline curve equation is given as:  

function equation = quadratic_B_spline(x,y)  

syms u real;  

n1 = (1-u).^2; 

n2 = -2*u.^2 + 2*u + 1; 

n3 = u.^2; 

equation = ([x; y]*[n1, n2, n3]'/2); 

end 

The circle composed of quadratic B-spline curve segments along with control points’ 

using this code is shown in Fig. A.3.  

 

Fig. A.3 Circle generated using quadratic B-spline curve segments 
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The resulting shape has first-order parametric continuity throughout the curve.  

A.4 Generation of circle using cubic B-spline curve 

The circle is generated using 16 cubic B-spline curve segments using the MATLAB code 

given below:  

% coordinates for cubic B-spline curve 

Cx=[x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x0 x1 x2]; 

Cy=[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y0 y1 y2]; 

CB=eq_cubic_B_spline(Cx,Cy); 

for i = 1 : 16; 

cubic_B_spline=ezplot(CB(1, i), CB(2, i), [i - 1, i]); 

end 

The function for generating piecewise cubic B-spline curve used in this code is as 

follows: 

function eq_cubic = eq_cubic_B_spline(x,y)  

syms u real; 

p=[x; y]; 

eq_cubic=[ ]; 

for i = 1 : 16; 

yi = cubic_B_spline(p(1, i : i + 3), p(2, i : i + 3)); 

eq_cubic = [eq_cubic, simplify(subs(yi, u, u - i + 1))]; 

end 

end 

The function used for elementary cubic B-spline curve equation is given as:  

function equation = cubic_B_spline(x, y) 

syms u real; 

n1 = (1-u).^3; 

n2 = 3*u.^3 - 6*u.^2 + 4; 

n3 = -3*u.^3 + 3*u.^2 + 3*u + 1; 



148 

 

n4 = u.^3; 

equation = ([x; y]*[n1, n2, n3, n4]'/6); 

end 

The circle composed of cubic B-spline curve segments along with control points using 

this code is shown in Fig. A.4. The resulting shape has second-order parametric 

continuity throughout the curve.  

 

Fig. A.4 Circle generated using cubic B-spline curve segments 

Note that both the quadratic and cubic B-spline curves are not passing through the control 

points as shown in Fig. A.3 and Fig. A.4. These curves are uniform and periodic in nature 
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cubic B-spline curves is shown in Fig. A.5. 
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Fig. A.5 Circle generated using linear, quadratic and cubic B-spline curve segments 

The B-spline curves are controlled within the convex hull of the control polygon 

connecting the control points. In Fig. A.5, linear, quadratic and cubic B-spline curves are 

shown by dashed line (red), dotted line (blue) and bold line (green), respectively. The 

control points are shown as the circles in red colour. 
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Appendix B 

MATLAB codes for calculating inertial properties of a shape 

The MATLAB programs to calculate the inertial properties using green’s theorem for the 

shape generated using B-spline curves are given here. The inertial properties are 

calculated for a circle generated in Appendix A using linear, quadratic and cubic B-spline 

curves. The area A, centroid ( ) and area moment of inertia about centroidal axes [Ixx, 

Iyy, Izz] of a closed curve made of n B-spline curve segments are defined in Eqs. (5.20) – 

(5.25) as: 
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The parameters for circle are taken as: 

(i) Radius, r = 0.05 m, (ii) Thickness, t = 0.01 m, (iii) Density, ρ = 7860 kg/m
3 

Using standard formulas, the geometric and inertial properties of the circle are found as: 

Area = 2πrA
 
= 0.00785 m

2
;  
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Mass = Atρm  = 0.6170 kg;  

Mass center = CGx = CGy = 0; 

Mass moment of inertia about mass center = I = mr
2
/2 = 7.7125 x 10

-4
 kg-m

2
  

The MATLAB codes are developed using Eqs. (5.20) – (5.25) to calculate these properties 

for the shape generated using linear, quadratic and cubic B-spline curves.  

1. For the circle generated using linear B-spline curve, the inertial properties are 

calculated using the following MATLAB code:  

Lx=[x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x0]/1000;      % in meters 

Ly=[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y0]/1000;      % in meters 

LB=eq_linear_B_spline(Lx,Ly); 

for i = 1 : 16; 

LX(i)=LB(1,i); 

LY(i)=LB(2,i); 

LX_dot(i)=diff(LX(i),sym('u')); 

LY_dot(i)=diff(LY(i),sym('u')); 

LA(i)=LX(i)*LY_dot(i); 

Larea(i)=int(LA(i),sym('u'),i-1,i);        

LCGx(i)=LX(i)^2*LY_dot(i); 

Lcentroid_x(i)=int(LCGx(i),sym('u'),i-1,i); 

LCGy(i)= LY(i)^2*LX_dot(i); 

Lcentroid_y(i)=int(LCGy(i),sym('u'),i-1,i); 

LIxx(i)=LY(i)^3*LX_dot(i); 

LIxx(i)=-int(LIxx(i),sym('u'),i-1,i)/3;       

LIyy(i)=LX(i)^3*LY_dot(i); 

LIyy(i)=int(LIyy(i),sym('u'),i-1,i)/3;        

LIzz(i)=LIxx(i)+LIyy(i);         

end 

Larea=sum(Larea);            % area in meter
2
 using Eq. (5.20) 
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Lcentroid_x=sum(Lcentroid_x)/(2*Larea);   % centroid in meters using Eq. (5.21) 

Lcentroid_y=-sum(Lcentroid_y)/(2*Larea);   % centroid in meters using Eq. (5.22) 

Lmass=Larea*t*rho;                      % mass in kg  

LIxx=sum(LIxx); 

LIyy=sum(LIyy); 

LIzz=sum(LIzz); 

LIzz=sum(LIzz) *t*rho;     % moment of inertia in Kg-meter
2 

using Eq. (5.25)  

The function, eq_linear_B_spline, used for generating piecewise linear B-spline curve is 

defined in Appendix A. 

2. For the circle generated using quadratic B-spline curve, the inertial properties are 

calculated using the following MATLAB code:  

Qx=[x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x0 x1]/1000;   % in meters 

Qy=[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y0 y1]/1000;   % in meters 

QB=eq_quadratic_B_spline(Qx,Qy); 

for i = 1 : 16; 

QX(i)=QB(1,i); 

QY(i)=QB(2,i); 

QX_dot(i)=diff(QX(i),sym('u')); 

QY_dot(i)=diff(QY(i),sym('u')); 

QA(i)=QX(i)*QY_dot(i); 

Qarea(i)=int(QA(i),sym('u'),i-1,i) ; 

QCGx(i)=QX(i)^2*QY_dot(i); 

Qcentroid_x(i)=int(QCGx(i),sym('u'),i-1,i); 

QCGy(i)= QY(i)^2*QX_dot(i); 

Qcentroid_y(i)=int(QCGy(i),sym('u'),i-1,i); 

QIxx(i)=QY(i)^3*QX_dot(i); 

QIxx(i)=-int(QIxx(i),sym('u'),i-1,i)/3; 

QIyy(i)=QX(i)^3*QY_dot(i); 
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QIyy(i)=int(QIyy(i),sym('u'),i-1,i)/3; 

QIzz(i)=QIxx(i)+QIyy(i); 

end; 

Qarea=sum(Qarea);            % area in meter
2
 using Eq. (5.20) 

Qcentroid_x=sum(Qcentroid_x)/(2*Qarea);   % centroid in meters using Eq. (5.21) 

Qcentroid_y=-sum(Qcentroid_y)/(2*Qarea);  % centroid in meters using Eq. (5.22) 

Qmass=Qarea*t*rho;          % mass in Kg 

QIxx=sum(QIxx); 

QIyy=sum(QIyy); 

QIzz=sum(QIzz); 

QIzz=sum(QIzz) *t*rho;     % moment of inertia in Kg-meter
2 

using Eq. (5.25)  

The function, eq_quadratic_B_spline, used for generating piecewise quadratic B-spline 

curve is defined in Appendix A. 

3. For the circle generated using cubic B-spline curve, the inertial properties are 

calculated using the following MATLAB code:  

Cx=[x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x0 x1 x2]/1000; 

% in meters 

Cy=[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y0 y1 y2]/1000; 

% in meters 

CB=eq_cubic_B_spline(Cx,Cy); 

for i = 1 : 16; 

CX(i)=CB(1,i); 

CY(i)=CB(2,i); 

CX_dot(i)=diff(CX(i),sym('u')); 

CY_dot(i)=diff(CY(i),sym('u')); 

CA(i)=CX(i)*CY_dot(i); 

Carea(i)=int(CA(i),sym('u'),i-1,i) ; 

CCGx(i)=CX(i)^2*CY_dot(i); 

Ccentroid_x(i)=int(CCGx(i),sym('u'),i-1,i); 
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CCGy(i)=CX(i)*CY(i)*CY_dot(i); 

Ccentroid_y(i)=int(CCGy(i),sym('u'),i-1,i); 

CIxx(i)=CY(i)^3*CX_dot(i); 

CIxx(i)=-int(CIxx(i),sym('u'),i-1,i)/3; 

CIyy(i)=CX(i)^3*CY_dot(i); 

CIyy(i)=int(CIyy(i),sym('u'),i-1,i)/3; 

CIzz(i)=CIxx(i)+CIyy(i); 

end; 

Carea=sum(Carea);                % area in meter
2
 using Eq. (5.20) 

Ccentroid_x=sum(Ccentroid_x)/(2*Carea);   % centroid in meters using Eq. (5.21) 

Ccentroid_y=sum(Ccentroid_y)/Carea;   % centroid in meters using Eq. (5.22) 

Cmass=Carea*t*rho;          % mass in Kg 

CIxx=sum(CIxx); 

CIyy=sum(CIyy); 

CIzz=sum(CIzz); 

CIzz=sum(CIzz) *t*rho;     % moment of inertia in Kg-meter
2 

using Eq. (5.25)  

The function, eq_cubic_B_spline, used for generating piecewise cubic B-spline curve is 

defined in Appendix A. 

The inertial properties calculated for the circle generated using linear, quadratic and cubic 

B-spline curves are given in Table B.1. 

Table B.1 Inertial properties of the circle 

 
Original 

Linear  

B-spline 

Quadratic 

B-spline 

Cubic 

B-spline 

Area (m
2
) 0.0078 0.0077 0.0076 0.0075 

CGx (m) 0.0000 0.0000 0.0000 0.0000 

CGy (m) 0.0000 0.0000 0.0000 0.0000 

Mass (kg) 0.6170 0.6016 0.5939 0.5864 

Mass moment of 

inertia (kg-m
2
) 

7.7125e-4 7.3289e-4 7.1432e-4 6.9617e-4 
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